1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 outstanding_extents; 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_transaction_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 113 u64 len, u64 orig_start, 114 u64 block_start, u64 block_len, 115 u64 orig_block_len, u64 ram_bytes, 116 int type); 117 118 static int btrfs_dirty_inode(struct inode *inode); 119 120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 121 void btrfs_test_inode_set_ops(struct inode *inode) 122 { 123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 124 } 125 #endif 126 127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 128 struct inode *inode, struct inode *dir, 129 const struct qstr *qstr) 130 { 131 int err; 132 133 err = btrfs_init_acl(trans, inode, dir); 134 if (!err) 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 136 return err; 137 } 138 139 /* 140 * this does all the hard work for inserting an inline extent into 141 * the btree. The caller should have done a btrfs_drop_extents so that 142 * no overlapping inline items exist in the btree 143 */ 144 static int insert_inline_extent(struct btrfs_trans_handle *trans, 145 struct btrfs_path *path, int extent_inserted, 146 struct btrfs_root *root, struct inode *inode, 147 u64 start, size_t size, size_t compressed_size, 148 int compress_type, 149 struct page **compressed_pages) 150 { 151 struct extent_buffer *leaf; 152 struct page *page = NULL; 153 char *kaddr; 154 unsigned long ptr; 155 struct btrfs_file_extent_item *ei; 156 int err = 0; 157 int ret; 158 size_t cur_size = size; 159 unsigned long offset; 160 161 if (compressed_size && compressed_pages) 162 cur_size = compressed_size; 163 164 inode_add_bytes(inode, size); 165 166 if (!extent_inserted) { 167 struct btrfs_key key; 168 size_t datasize; 169 170 key.objectid = btrfs_ino(inode); 171 key.offset = start; 172 key.type = BTRFS_EXTENT_DATA_KEY; 173 174 datasize = btrfs_file_extent_calc_inline_size(cur_size); 175 path->leave_spinning = 1; 176 ret = btrfs_insert_empty_item(trans, root, path, &key, 177 datasize); 178 if (ret) { 179 err = ret; 180 goto fail; 181 } 182 } 183 leaf = path->nodes[0]; 184 ei = btrfs_item_ptr(leaf, path->slots[0], 185 struct btrfs_file_extent_item); 186 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 188 btrfs_set_file_extent_encryption(leaf, ei, 0); 189 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 190 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 191 ptr = btrfs_file_extent_inline_start(ei); 192 193 if (compress_type != BTRFS_COMPRESS_NONE) { 194 struct page *cpage; 195 int i = 0; 196 while (compressed_size > 0) { 197 cpage = compressed_pages[i]; 198 cur_size = min_t(unsigned long, compressed_size, 199 PAGE_SIZE); 200 201 kaddr = kmap_atomic(cpage); 202 write_extent_buffer(leaf, kaddr, ptr, cur_size); 203 kunmap_atomic(kaddr); 204 205 i++; 206 ptr += cur_size; 207 compressed_size -= cur_size; 208 } 209 btrfs_set_file_extent_compression(leaf, ei, 210 compress_type); 211 } else { 212 page = find_get_page(inode->i_mapping, 213 start >> PAGE_SHIFT); 214 btrfs_set_file_extent_compression(leaf, ei, 0); 215 kaddr = kmap_atomic(page); 216 offset = start & (PAGE_SIZE - 1); 217 write_extent_buffer(leaf, kaddr + offset, ptr, size); 218 kunmap_atomic(kaddr); 219 put_page(page); 220 } 221 btrfs_mark_buffer_dirty(leaf); 222 btrfs_release_path(path); 223 224 /* 225 * we're an inline extent, so nobody can 226 * extend the file past i_size without locking 227 * a page we already have locked. 228 * 229 * We must do any isize and inode updates 230 * before we unlock the pages. Otherwise we 231 * could end up racing with unlink. 232 */ 233 BTRFS_I(inode)->disk_i_size = inode->i_size; 234 ret = btrfs_update_inode(trans, root, inode); 235 236 return ret; 237 fail: 238 return err; 239 } 240 241 242 /* 243 * conditionally insert an inline extent into the file. This 244 * does the checks required to make sure the data is small enough 245 * to fit as an inline extent. 246 */ 247 static noinline int cow_file_range_inline(struct btrfs_root *root, 248 struct inode *inode, u64 start, 249 u64 end, size_t compressed_size, 250 int compress_type, 251 struct page **compressed_pages) 252 { 253 struct btrfs_trans_handle *trans; 254 u64 isize = i_size_read(inode); 255 u64 actual_end = min(end + 1, isize); 256 u64 inline_len = actual_end - start; 257 u64 aligned_end = ALIGN(end, root->sectorsize); 258 u64 data_len = inline_len; 259 int ret; 260 struct btrfs_path *path; 261 int extent_inserted = 0; 262 u32 extent_item_size; 263 264 if (compressed_size) 265 data_len = compressed_size; 266 267 if (start > 0 || 268 actual_end > root->sectorsize || 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 270 (!compressed_size && 271 (actual_end & (root->sectorsize - 1)) == 0) || 272 end + 1 < isize || 273 data_len > root->fs_info->max_inline) { 274 return 1; 275 } 276 277 path = btrfs_alloc_path(); 278 if (!path) 279 return -ENOMEM; 280 281 trans = btrfs_join_transaction(root); 282 if (IS_ERR(trans)) { 283 btrfs_free_path(path); 284 return PTR_ERR(trans); 285 } 286 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 287 288 if (compressed_size && compressed_pages) 289 extent_item_size = btrfs_file_extent_calc_inline_size( 290 compressed_size); 291 else 292 extent_item_size = btrfs_file_extent_calc_inline_size( 293 inline_len); 294 295 ret = __btrfs_drop_extents(trans, root, inode, path, 296 start, aligned_end, NULL, 297 1, 1, extent_item_size, &extent_inserted); 298 if (ret) { 299 btrfs_abort_transaction(trans, ret); 300 goto out; 301 } 302 303 if (isize > actual_end) 304 inline_len = min_t(u64, isize, actual_end); 305 ret = insert_inline_extent(trans, path, extent_inserted, 306 root, inode, start, 307 inline_len, compressed_size, 308 compress_type, compressed_pages); 309 if (ret && ret != -ENOSPC) { 310 btrfs_abort_transaction(trans, ret); 311 goto out; 312 } else if (ret == -ENOSPC) { 313 ret = 1; 314 goto out; 315 } 316 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 318 btrfs_delalloc_release_metadata(inode, end + 1 - start); 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 320 out: 321 /* 322 * Don't forget to free the reserved space, as for inlined extent 323 * it won't count as data extent, free them directly here. 324 * And at reserve time, it's always aligned to page size, so 325 * just free one page here. 326 */ 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 328 btrfs_free_path(path); 329 btrfs_end_transaction(trans, root); 330 return ret; 331 } 332 333 struct async_extent { 334 u64 start; 335 u64 ram_size; 336 u64 compressed_size; 337 struct page **pages; 338 unsigned long nr_pages; 339 int compress_type; 340 struct list_head list; 341 }; 342 343 struct async_cow { 344 struct inode *inode; 345 struct btrfs_root *root; 346 struct page *locked_page; 347 u64 start; 348 u64 end; 349 struct list_head extents; 350 struct btrfs_work work; 351 }; 352 353 static noinline int add_async_extent(struct async_cow *cow, 354 u64 start, u64 ram_size, 355 u64 compressed_size, 356 struct page **pages, 357 unsigned long nr_pages, 358 int compress_type) 359 { 360 struct async_extent *async_extent; 361 362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 363 BUG_ON(!async_extent); /* -ENOMEM */ 364 async_extent->start = start; 365 async_extent->ram_size = ram_size; 366 async_extent->compressed_size = compressed_size; 367 async_extent->pages = pages; 368 async_extent->nr_pages = nr_pages; 369 async_extent->compress_type = compress_type; 370 list_add_tail(&async_extent->list, &cow->extents); 371 return 0; 372 } 373 374 static inline int inode_need_compress(struct inode *inode) 375 { 376 struct btrfs_root *root = BTRFS_I(inode)->root; 377 378 /* force compress */ 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 380 return 1; 381 /* bad compression ratios */ 382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 383 return 0; 384 if (btrfs_test_opt(root->fs_info, COMPRESS) || 385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 386 BTRFS_I(inode)->force_compress) 387 return 1; 388 return 0; 389 } 390 391 /* 392 * we create compressed extents in two phases. The first 393 * phase compresses a range of pages that have already been 394 * locked (both pages and state bits are locked). 395 * 396 * This is done inside an ordered work queue, and the compression 397 * is spread across many cpus. The actual IO submission is step 398 * two, and the ordered work queue takes care of making sure that 399 * happens in the same order things were put onto the queue by 400 * writepages and friends. 401 * 402 * If this code finds it can't get good compression, it puts an 403 * entry onto the work queue to write the uncompressed bytes. This 404 * makes sure that both compressed inodes and uncompressed inodes 405 * are written in the same order that the flusher thread sent them 406 * down. 407 */ 408 static noinline void compress_file_range(struct inode *inode, 409 struct page *locked_page, 410 u64 start, u64 end, 411 struct async_cow *async_cow, 412 int *num_added) 413 { 414 struct btrfs_root *root = BTRFS_I(inode)->root; 415 u64 num_bytes; 416 u64 blocksize = root->sectorsize; 417 u64 actual_end; 418 u64 isize = i_size_read(inode); 419 int ret = 0; 420 struct page **pages = NULL; 421 unsigned long nr_pages; 422 unsigned long nr_pages_ret = 0; 423 unsigned long total_compressed = 0; 424 unsigned long total_in = 0; 425 unsigned long max_compressed = SZ_128K; 426 unsigned long max_uncompressed = SZ_128K; 427 int i; 428 int will_compress; 429 int compress_type = root->fs_info->compress_type; 430 int redirty = 0; 431 432 /* if this is a small write inside eof, kick off a defrag */ 433 if ((end - start + 1) < SZ_16K && 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 435 btrfs_add_inode_defrag(NULL, inode); 436 437 actual_end = min_t(u64, isize, end + 1); 438 again: 439 will_compress = 0; 440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 442 443 /* 444 * we don't want to send crud past the end of i_size through 445 * compression, that's just a waste of CPU time. So, if the 446 * end of the file is before the start of our current 447 * requested range of bytes, we bail out to the uncompressed 448 * cleanup code that can deal with all of this. 449 * 450 * It isn't really the fastest way to fix things, but this is a 451 * very uncommon corner. 452 */ 453 if (actual_end <= start) 454 goto cleanup_and_bail_uncompressed; 455 456 total_compressed = actual_end - start; 457 458 /* 459 * skip compression for a small file range(<=blocksize) that 460 * isn't an inline extent, since it doesn't save disk space at all. 461 */ 462 if (total_compressed <= blocksize && 463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 464 goto cleanup_and_bail_uncompressed; 465 466 /* we want to make sure that amount of ram required to uncompress 467 * an extent is reasonable, so we limit the total size in ram 468 * of a compressed extent to 128k. This is a crucial number 469 * because it also controls how easily we can spread reads across 470 * cpus for decompression. 471 * 472 * We also want to make sure the amount of IO required to do 473 * a random read is reasonably small, so we limit the size of 474 * a compressed extent to 128k. 475 */ 476 total_compressed = min(total_compressed, max_uncompressed); 477 num_bytes = ALIGN(end - start + 1, blocksize); 478 num_bytes = max(blocksize, num_bytes); 479 total_in = 0; 480 ret = 0; 481 482 /* 483 * we do compression for mount -o compress and when the 484 * inode has not been flagged as nocompress. This flag can 485 * change at any time if we discover bad compression ratios. 486 */ 487 if (inode_need_compress(inode)) { 488 WARN_ON(pages); 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 490 if (!pages) { 491 /* just bail out to the uncompressed code */ 492 goto cont; 493 } 494 495 if (BTRFS_I(inode)->force_compress) 496 compress_type = BTRFS_I(inode)->force_compress; 497 498 /* 499 * we need to call clear_page_dirty_for_io on each 500 * page in the range. Otherwise applications with the file 501 * mmap'd can wander in and change the page contents while 502 * we are compressing them. 503 * 504 * If the compression fails for any reason, we set the pages 505 * dirty again later on. 506 */ 507 extent_range_clear_dirty_for_io(inode, start, end); 508 redirty = 1; 509 ret = btrfs_compress_pages(compress_type, 510 inode->i_mapping, start, 511 total_compressed, pages, 512 nr_pages, &nr_pages_ret, 513 &total_in, 514 &total_compressed, 515 max_compressed); 516 517 if (!ret) { 518 unsigned long offset = total_compressed & 519 (PAGE_SIZE - 1); 520 struct page *page = pages[nr_pages_ret - 1]; 521 char *kaddr; 522 523 /* zero the tail end of the last page, we might be 524 * sending it down to disk 525 */ 526 if (offset) { 527 kaddr = kmap_atomic(page); 528 memset(kaddr + offset, 0, 529 PAGE_SIZE - offset); 530 kunmap_atomic(kaddr); 531 } 532 will_compress = 1; 533 } 534 } 535 cont: 536 if (start == 0) { 537 /* lets try to make an inline extent */ 538 if (ret || total_in < (actual_end - start)) { 539 /* we didn't compress the entire range, try 540 * to make an uncompressed inline extent. 541 */ 542 ret = cow_file_range_inline(root, inode, start, end, 543 0, 0, NULL); 544 } else { 545 /* try making a compressed inline extent */ 546 ret = cow_file_range_inline(root, inode, start, end, 547 total_compressed, 548 compress_type, pages); 549 } 550 if (ret <= 0) { 551 unsigned long clear_flags = EXTENT_DELALLOC | 552 EXTENT_DEFRAG; 553 unsigned long page_error_op; 554 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 557 558 /* 559 * inline extent creation worked or returned error, 560 * we don't need to create any more async work items. 561 * Unlock and free up our temp pages. 562 */ 563 extent_clear_unlock_delalloc(inode, start, end, NULL, 564 clear_flags, PAGE_UNLOCK | 565 PAGE_CLEAR_DIRTY | 566 PAGE_SET_WRITEBACK | 567 page_error_op | 568 PAGE_END_WRITEBACK); 569 goto free_pages_out; 570 } 571 } 572 573 if (will_compress) { 574 /* 575 * we aren't doing an inline extent round the compressed size 576 * up to a block size boundary so the allocator does sane 577 * things 578 */ 579 total_compressed = ALIGN(total_compressed, blocksize); 580 581 /* 582 * one last check to make sure the compression is really a 583 * win, compare the page count read with the blocks on disk 584 */ 585 total_in = ALIGN(total_in, PAGE_SIZE); 586 if (total_compressed >= total_in) { 587 will_compress = 0; 588 } else { 589 num_bytes = total_in; 590 *num_added += 1; 591 592 /* 593 * The async work queues will take care of doing actual 594 * allocation on disk for these compressed pages, and 595 * will submit them to the elevator. 596 */ 597 add_async_extent(async_cow, start, num_bytes, 598 total_compressed, pages, nr_pages_ret, 599 compress_type); 600 601 if (start + num_bytes < end) { 602 start += num_bytes; 603 pages = NULL; 604 cond_resched(); 605 goto again; 606 } 607 return; 608 } 609 } 610 if (pages) { 611 /* 612 * the compression code ran but failed to make things smaller, 613 * free any pages it allocated and our page pointer array 614 */ 615 for (i = 0; i < nr_pages_ret; i++) { 616 WARN_ON(pages[i]->mapping); 617 put_page(pages[i]); 618 } 619 kfree(pages); 620 pages = NULL; 621 total_compressed = 0; 622 nr_pages_ret = 0; 623 624 /* flag the file so we don't compress in the future */ 625 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) && 626 !(BTRFS_I(inode)->force_compress)) { 627 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 628 } 629 } 630 cleanup_and_bail_uncompressed: 631 /* 632 * No compression, but we still need to write the pages in the file 633 * we've been given so far. redirty the locked page if it corresponds 634 * to our extent and set things up for the async work queue to run 635 * cow_file_range to do the normal delalloc dance. 636 */ 637 if (page_offset(locked_page) >= start && 638 page_offset(locked_page) <= end) 639 __set_page_dirty_nobuffers(locked_page); 640 /* unlocked later on in the async handlers */ 641 642 if (redirty) 643 extent_range_redirty_for_io(inode, start, end); 644 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 645 BTRFS_COMPRESS_NONE); 646 *num_added += 1; 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 &page_started, &nr_written, 0, 718 NULL); 719 720 /* JDM XXX */ 721 722 /* 723 * if page_started, cow_file_range inserted an 724 * inline extent and took care of all the unlocking 725 * and IO for us. Otherwise, we need to submit 726 * all those pages down to the drive. 727 */ 728 if (!page_started && !ret) 729 extent_write_locked_range(io_tree, 730 inode, async_extent->start, 731 async_extent->start + 732 async_extent->ram_size - 1, 733 btrfs_get_extent, 734 WB_SYNC_ALL); 735 else if (ret) 736 unlock_page(async_cow->locked_page); 737 kfree(async_extent); 738 cond_resched(); 739 continue; 740 } 741 742 lock_extent(io_tree, async_extent->start, 743 async_extent->start + async_extent->ram_size - 1); 744 745 ret = btrfs_reserve_extent(root, 746 async_extent->compressed_size, 747 async_extent->compressed_size, 748 0, alloc_hint, &ins, 1, 1); 749 if (ret) { 750 free_async_extent_pages(async_extent); 751 752 if (ret == -ENOSPC) { 753 unlock_extent(io_tree, async_extent->start, 754 async_extent->start + 755 async_extent->ram_size - 1); 756 757 /* 758 * we need to redirty the pages if we decide to 759 * fallback to uncompressed IO, otherwise we 760 * will not submit these pages down to lower 761 * layers. 762 */ 763 extent_range_redirty_for_io(inode, 764 async_extent->start, 765 async_extent->start + 766 async_extent->ram_size - 1); 767 768 goto retry; 769 } 770 goto out_free; 771 } 772 /* 773 * here we're doing allocation and writeback of the 774 * compressed pages 775 */ 776 btrfs_drop_extent_cache(inode, async_extent->start, 777 async_extent->start + 778 async_extent->ram_size - 1, 0); 779 780 em = alloc_extent_map(); 781 if (!em) { 782 ret = -ENOMEM; 783 goto out_free_reserve; 784 } 785 em->start = async_extent->start; 786 em->len = async_extent->ram_size; 787 em->orig_start = em->start; 788 em->mod_start = em->start; 789 em->mod_len = em->len; 790 791 em->block_start = ins.objectid; 792 em->block_len = ins.offset; 793 em->orig_block_len = ins.offset; 794 em->ram_bytes = async_extent->ram_size; 795 em->bdev = root->fs_info->fs_devices->latest_bdev; 796 em->compress_type = async_extent->compress_type; 797 set_bit(EXTENT_FLAG_PINNED, &em->flags); 798 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 799 em->generation = -1; 800 801 while (1) { 802 write_lock(&em_tree->lock); 803 ret = add_extent_mapping(em_tree, em, 1); 804 write_unlock(&em_tree->lock); 805 if (ret != -EEXIST) { 806 free_extent_map(em); 807 break; 808 } 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 } 813 814 if (ret) 815 goto out_free_reserve; 816 817 ret = btrfs_add_ordered_extent_compress(inode, 818 async_extent->start, 819 ins.objectid, 820 async_extent->ram_size, 821 ins.offset, 822 BTRFS_ORDERED_COMPRESSED, 823 async_extent->compress_type); 824 if (ret) { 825 btrfs_drop_extent_cache(inode, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1, 0); 828 goto out_free_reserve; 829 } 830 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 831 832 /* 833 * clear dirty, set writeback and unlock the pages. 834 */ 835 extent_clear_unlock_delalloc(inode, async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 840 PAGE_SET_WRITEBACK); 841 ret = btrfs_submit_compressed_write(inode, 842 async_extent->start, 843 async_extent->ram_size, 844 ins.objectid, 845 ins.offset, async_extent->pages, 846 async_extent->nr_pages); 847 if (ret) { 848 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 849 struct page *p = async_extent->pages[0]; 850 const u64 start = async_extent->start; 851 const u64 end = start + async_extent->ram_size - 1; 852 853 p->mapping = inode->i_mapping; 854 tree->ops->writepage_end_io_hook(p, start, end, 855 NULL, 0); 856 p->mapping = NULL; 857 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 858 PAGE_END_WRITEBACK | 859 PAGE_SET_ERROR); 860 free_async_extent_pages(async_extent); 861 } 862 alloc_hint = ins.objectid + ins.offset; 863 kfree(async_extent); 864 cond_resched(); 865 } 866 return; 867 out_free_reserve: 868 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 870 out_free: 871 extent_clear_unlock_delalloc(inode, async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 875 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 877 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 878 PAGE_SET_ERROR); 879 free_async_extent_pages(async_extent); 880 kfree(async_extent); 881 goto again; 882 } 883 884 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 885 u64 num_bytes) 886 { 887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 888 struct extent_map *em; 889 u64 alloc_hint = 0; 890 891 read_lock(&em_tree->lock); 892 em = search_extent_mapping(em_tree, start, num_bytes); 893 if (em) { 894 /* 895 * if block start isn't an actual block number then find the 896 * first block in this inode and use that as a hint. If that 897 * block is also bogus then just don't worry about it. 898 */ 899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 900 free_extent_map(em); 901 em = search_extent_mapping(em_tree, 0, 0); 902 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 903 alloc_hint = em->block_start; 904 if (em) 905 free_extent_map(em); 906 } else { 907 alloc_hint = em->block_start; 908 free_extent_map(em); 909 } 910 } 911 read_unlock(&em_tree->lock); 912 913 return alloc_hint; 914 } 915 916 /* 917 * when extent_io.c finds a delayed allocation range in the file, 918 * the call backs end up in this code. The basic idea is to 919 * allocate extents on disk for the range, and create ordered data structs 920 * in ram to track those extents. 921 * 922 * locked_page is the page that writepage had locked already. We use 923 * it to make sure we don't do extra locks or unlocks. 924 * 925 * *page_started is set to one if we unlock locked_page and do everything 926 * required to start IO on it. It may be clean and already done with 927 * IO when we return. 928 */ 929 static noinline int cow_file_range(struct inode *inode, 930 struct page *locked_page, 931 u64 start, u64 end, u64 delalloc_end, 932 int *page_started, unsigned long *nr_written, 933 int unlock, struct btrfs_dedupe_hash *hash) 934 { 935 struct btrfs_root *root = BTRFS_I(inode)->root; 936 u64 alloc_hint = 0; 937 u64 num_bytes; 938 unsigned long ram_size; 939 u64 disk_num_bytes; 940 u64 cur_alloc_size; 941 u64 blocksize = root->sectorsize; 942 struct btrfs_key ins; 943 struct extent_map *em; 944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 945 int ret = 0; 946 947 if (btrfs_is_free_space_inode(inode)) { 948 WARN_ON_ONCE(1); 949 ret = -EINVAL; 950 goto out_unlock; 951 } 952 953 num_bytes = ALIGN(end - start + 1, blocksize); 954 num_bytes = max(blocksize, num_bytes); 955 disk_num_bytes = num_bytes; 956 957 /* if this is a small write inside eof, kick off defrag */ 958 if (num_bytes < SZ_64K && 959 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 960 btrfs_add_inode_defrag(NULL, inode); 961 962 if (start == 0) { 963 /* lets try to make an inline extent */ 964 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 965 NULL); 966 if (ret == 0) { 967 extent_clear_unlock_delalloc(inode, start, end, NULL, 968 EXTENT_LOCKED | EXTENT_DELALLOC | 969 EXTENT_DEFRAG, PAGE_UNLOCK | 970 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 971 PAGE_END_WRITEBACK); 972 973 *nr_written = *nr_written + 974 (end - start + PAGE_SIZE) / PAGE_SIZE; 975 *page_started = 1; 976 goto out; 977 } else if (ret < 0) { 978 goto out_unlock; 979 } 980 } 981 982 BUG_ON(disk_num_bytes > 983 btrfs_super_total_bytes(root->fs_info->super_copy)); 984 985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 986 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 987 988 while (disk_num_bytes > 0) { 989 unsigned long op; 990 991 cur_alloc_size = disk_num_bytes; 992 ret = btrfs_reserve_extent(root, cur_alloc_size, 993 root->sectorsize, 0, alloc_hint, 994 &ins, 1, 1); 995 if (ret < 0) 996 goto out_unlock; 997 998 em = alloc_extent_map(); 999 if (!em) { 1000 ret = -ENOMEM; 1001 goto out_reserve; 1002 } 1003 em->start = start; 1004 em->orig_start = em->start; 1005 ram_size = ins.offset; 1006 em->len = ins.offset; 1007 em->mod_start = em->start; 1008 em->mod_len = em->len; 1009 1010 em->block_start = ins.objectid; 1011 em->block_len = ins.offset; 1012 em->orig_block_len = ins.offset; 1013 em->ram_bytes = ram_size; 1014 em->bdev = root->fs_info->fs_devices->latest_bdev; 1015 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1016 em->generation = -1; 1017 1018 while (1) { 1019 write_lock(&em_tree->lock); 1020 ret = add_extent_mapping(em_tree, em, 1); 1021 write_unlock(&em_tree->lock); 1022 if (ret != -EEXIST) { 1023 free_extent_map(em); 1024 break; 1025 } 1026 btrfs_drop_extent_cache(inode, start, 1027 start + ram_size - 1, 0); 1028 } 1029 if (ret) 1030 goto out_reserve; 1031 1032 cur_alloc_size = ins.offset; 1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1034 ram_size, cur_alloc_size, 0); 1035 if (ret) 1036 goto out_drop_extent_cache; 1037 1038 if (root->root_key.objectid == 1039 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1040 ret = btrfs_reloc_clone_csums(inode, start, 1041 cur_alloc_size); 1042 if (ret) 1043 goto out_drop_extent_cache; 1044 } 1045 1046 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1047 1048 if (disk_num_bytes < cur_alloc_size) 1049 break; 1050 1051 /* we're not doing compressed IO, don't unlock the first 1052 * page (which the caller expects to stay locked), don't 1053 * clear any dirty bits and don't set any writeback bits 1054 * 1055 * Do set the Private2 bit so we know this page was properly 1056 * setup for writepage 1057 */ 1058 op = unlock ? PAGE_UNLOCK : 0; 1059 op |= PAGE_SET_PRIVATE2; 1060 1061 extent_clear_unlock_delalloc(inode, start, 1062 start + ram_size - 1, locked_page, 1063 EXTENT_LOCKED | EXTENT_DELALLOC, 1064 op); 1065 disk_num_bytes -= cur_alloc_size; 1066 num_bytes -= cur_alloc_size; 1067 alloc_hint = ins.objectid + ins.offset; 1068 start += cur_alloc_size; 1069 } 1070 out: 1071 return ret; 1072 1073 out_drop_extent_cache: 1074 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1075 out_reserve: 1076 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1077 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1078 out_unlock: 1079 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1081 EXTENT_DELALLOC | EXTENT_DEFRAG, 1082 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1083 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1084 goto out; 1085 } 1086 1087 /* 1088 * work queue call back to started compression on a file and pages 1089 */ 1090 static noinline void async_cow_start(struct btrfs_work *work) 1091 { 1092 struct async_cow *async_cow; 1093 int num_added = 0; 1094 async_cow = container_of(work, struct async_cow, work); 1095 1096 compress_file_range(async_cow->inode, async_cow->locked_page, 1097 async_cow->start, async_cow->end, async_cow, 1098 &num_added); 1099 if (num_added == 0) { 1100 btrfs_add_delayed_iput(async_cow->inode); 1101 async_cow->inode = NULL; 1102 } 1103 } 1104 1105 /* 1106 * work queue call back to submit previously compressed pages 1107 */ 1108 static noinline void async_cow_submit(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 struct btrfs_root *root; 1112 unsigned long nr_pages; 1113 1114 async_cow = container_of(work, struct async_cow, work); 1115 1116 root = async_cow->root; 1117 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1118 PAGE_SHIFT; 1119 1120 /* 1121 * atomic_sub_return implies a barrier for waitqueue_active 1122 */ 1123 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1124 5 * SZ_1M && 1125 waitqueue_active(&root->fs_info->async_submit_wait)) 1126 wake_up(&root->fs_info->async_submit_wait); 1127 1128 if (async_cow->inode) 1129 submit_compressed_extents(async_cow->inode, async_cow); 1130 } 1131 1132 static noinline void async_cow_free(struct btrfs_work *work) 1133 { 1134 struct async_cow *async_cow; 1135 async_cow = container_of(work, struct async_cow, work); 1136 if (async_cow->inode) 1137 btrfs_add_delayed_iput(async_cow->inode); 1138 kfree(async_cow); 1139 } 1140 1141 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1142 u64 start, u64 end, int *page_started, 1143 unsigned long *nr_written) 1144 { 1145 struct async_cow *async_cow; 1146 struct btrfs_root *root = BTRFS_I(inode)->root; 1147 unsigned long nr_pages; 1148 u64 cur_end; 1149 int limit = 10 * SZ_1M; 1150 1151 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1152 1, 0, NULL, GFP_NOFS); 1153 while (start < end) { 1154 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1155 BUG_ON(!async_cow); /* -ENOMEM */ 1156 async_cow->inode = igrab(inode); 1157 async_cow->root = root; 1158 async_cow->locked_page = locked_page; 1159 async_cow->start = start; 1160 1161 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1162 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 1163 cur_end = end; 1164 else 1165 cur_end = min(end, start + SZ_512K - 1); 1166 1167 async_cow->end = cur_end; 1168 INIT_LIST_HEAD(&async_cow->extents); 1169 1170 btrfs_init_work(&async_cow->work, 1171 btrfs_delalloc_helper, 1172 async_cow_start, async_cow_submit, 1173 async_cow_free); 1174 1175 nr_pages = (cur_end - start + PAGE_SIZE) >> 1176 PAGE_SHIFT; 1177 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1178 1179 btrfs_queue_work(root->fs_info->delalloc_workers, 1180 &async_cow->work); 1181 1182 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1183 wait_event(root->fs_info->async_submit_wait, 1184 (atomic_read(&root->fs_info->async_delalloc_pages) < 1185 limit)); 1186 } 1187 1188 while (atomic_read(&root->fs_info->async_submit_draining) && 1189 atomic_read(&root->fs_info->async_delalloc_pages)) { 1190 wait_event(root->fs_info->async_submit_wait, 1191 (atomic_read(&root->fs_info->async_delalloc_pages) == 1192 0)); 1193 } 1194 1195 *nr_written += nr_pages; 1196 start = cur_end + 1; 1197 } 1198 *page_started = 1; 1199 return 0; 1200 } 1201 1202 static noinline int csum_exist_in_range(struct btrfs_root *root, 1203 u64 bytenr, u64 num_bytes) 1204 { 1205 int ret; 1206 struct btrfs_ordered_sum *sums; 1207 LIST_HEAD(list); 1208 1209 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1210 bytenr + num_bytes - 1, &list, 0); 1211 if (ret == 0 && list_empty(&list)) 1212 return 0; 1213 1214 while (!list_empty(&list)) { 1215 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1216 list_del(&sums->list); 1217 kfree(sums); 1218 } 1219 return 1; 1220 } 1221 1222 /* 1223 * when nowcow writeback call back. This checks for snapshots or COW copies 1224 * of the extents that exist in the file, and COWs the file as required. 1225 * 1226 * If no cow copies or snapshots exist, we write directly to the existing 1227 * blocks on disk 1228 */ 1229 static noinline int run_delalloc_nocow(struct inode *inode, 1230 struct page *locked_page, 1231 u64 start, u64 end, int *page_started, int force, 1232 unsigned long *nr_written) 1233 { 1234 struct btrfs_root *root = BTRFS_I(inode)->root; 1235 struct btrfs_trans_handle *trans; 1236 struct extent_buffer *leaf; 1237 struct btrfs_path *path; 1238 struct btrfs_file_extent_item *fi; 1239 struct btrfs_key found_key; 1240 u64 cow_start; 1241 u64 cur_offset; 1242 u64 extent_end; 1243 u64 extent_offset; 1244 u64 disk_bytenr; 1245 u64 num_bytes; 1246 u64 disk_num_bytes; 1247 u64 ram_bytes; 1248 int extent_type; 1249 int ret, err; 1250 int type; 1251 int nocow; 1252 int check_prev = 1; 1253 bool nolock; 1254 u64 ino = btrfs_ino(inode); 1255 1256 path = btrfs_alloc_path(); 1257 if (!path) { 1258 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1259 EXTENT_LOCKED | EXTENT_DELALLOC | 1260 EXTENT_DO_ACCOUNTING | 1261 EXTENT_DEFRAG, PAGE_UNLOCK | 1262 PAGE_CLEAR_DIRTY | 1263 PAGE_SET_WRITEBACK | 1264 PAGE_END_WRITEBACK); 1265 return -ENOMEM; 1266 } 1267 1268 nolock = btrfs_is_free_space_inode(inode); 1269 1270 if (nolock) 1271 trans = btrfs_join_transaction_nolock(root); 1272 else 1273 trans = btrfs_join_transaction(root); 1274 1275 if (IS_ERR(trans)) { 1276 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1277 EXTENT_LOCKED | EXTENT_DELALLOC | 1278 EXTENT_DO_ACCOUNTING | 1279 EXTENT_DEFRAG, PAGE_UNLOCK | 1280 PAGE_CLEAR_DIRTY | 1281 PAGE_SET_WRITEBACK | 1282 PAGE_END_WRITEBACK); 1283 btrfs_free_path(path); 1284 return PTR_ERR(trans); 1285 } 1286 1287 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1288 1289 cow_start = (u64)-1; 1290 cur_offset = start; 1291 while (1) { 1292 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1293 cur_offset, 0); 1294 if (ret < 0) 1295 goto error; 1296 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1297 leaf = path->nodes[0]; 1298 btrfs_item_key_to_cpu(leaf, &found_key, 1299 path->slots[0] - 1); 1300 if (found_key.objectid == ino && 1301 found_key.type == BTRFS_EXTENT_DATA_KEY) 1302 path->slots[0]--; 1303 } 1304 check_prev = 0; 1305 next_slot: 1306 leaf = path->nodes[0]; 1307 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1308 ret = btrfs_next_leaf(root, path); 1309 if (ret < 0) 1310 goto error; 1311 if (ret > 0) 1312 break; 1313 leaf = path->nodes[0]; 1314 } 1315 1316 nocow = 0; 1317 disk_bytenr = 0; 1318 num_bytes = 0; 1319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1320 1321 if (found_key.objectid > ino) 1322 break; 1323 if (WARN_ON_ONCE(found_key.objectid < ino) || 1324 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1325 path->slots[0]++; 1326 goto next_slot; 1327 } 1328 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1329 found_key.offset > end) 1330 break; 1331 1332 if (found_key.offset > cur_offset) { 1333 extent_end = found_key.offset; 1334 extent_type = 0; 1335 goto out_check; 1336 } 1337 1338 fi = btrfs_item_ptr(leaf, path->slots[0], 1339 struct btrfs_file_extent_item); 1340 extent_type = btrfs_file_extent_type(leaf, fi); 1341 1342 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1343 if (extent_type == BTRFS_FILE_EXTENT_REG || 1344 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1345 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1346 extent_offset = btrfs_file_extent_offset(leaf, fi); 1347 extent_end = found_key.offset + 1348 btrfs_file_extent_num_bytes(leaf, fi); 1349 disk_num_bytes = 1350 btrfs_file_extent_disk_num_bytes(leaf, fi); 1351 if (extent_end <= start) { 1352 path->slots[0]++; 1353 goto next_slot; 1354 } 1355 if (disk_bytenr == 0) 1356 goto out_check; 1357 if (btrfs_file_extent_compression(leaf, fi) || 1358 btrfs_file_extent_encryption(leaf, fi) || 1359 btrfs_file_extent_other_encoding(leaf, fi)) 1360 goto out_check; 1361 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1362 goto out_check; 1363 if (btrfs_extent_readonly(root, disk_bytenr)) 1364 goto out_check; 1365 if (btrfs_cross_ref_exist(trans, root, ino, 1366 found_key.offset - 1367 extent_offset, disk_bytenr)) 1368 goto out_check; 1369 disk_bytenr += extent_offset; 1370 disk_bytenr += cur_offset - found_key.offset; 1371 num_bytes = min(end + 1, extent_end) - cur_offset; 1372 /* 1373 * if there are pending snapshots for this root, 1374 * we fall into common COW way. 1375 */ 1376 if (!nolock) { 1377 err = btrfs_start_write_no_snapshoting(root); 1378 if (!err) 1379 goto out_check; 1380 } 1381 /* 1382 * force cow if csum exists in the range. 1383 * this ensure that csum for a given extent are 1384 * either valid or do not exist. 1385 */ 1386 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1387 goto out_check; 1388 if (!btrfs_inc_nocow_writers(root->fs_info, 1389 disk_bytenr)) 1390 goto out_check; 1391 nocow = 1; 1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1393 extent_end = found_key.offset + 1394 btrfs_file_extent_inline_len(leaf, 1395 path->slots[0], fi); 1396 extent_end = ALIGN(extent_end, root->sectorsize); 1397 } else { 1398 BUG_ON(1); 1399 } 1400 out_check: 1401 if (extent_end <= start) { 1402 path->slots[0]++; 1403 if (!nolock && nocow) 1404 btrfs_end_write_no_snapshoting(root); 1405 if (nocow) 1406 btrfs_dec_nocow_writers(root->fs_info, 1407 disk_bytenr); 1408 goto next_slot; 1409 } 1410 if (!nocow) { 1411 if (cow_start == (u64)-1) 1412 cow_start = cur_offset; 1413 cur_offset = extent_end; 1414 if (cur_offset > end) 1415 break; 1416 path->slots[0]++; 1417 goto next_slot; 1418 } 1419 1420 btrfs_release_path(path); 1421 if (cow_start != (u64)-1) { 1422 ret = cow_file_range(inode, locked_page, 1423 cow_start, found_key.offset - 1, 1424 end, page_started, nr_written, 1, 1425 NULL); 1426 if (ret) { 1427 if (!nolock && nocow) 1428 btrfs_end_write_no_snapshoting(root); 1429 if (nocow) 1430 btrfs_dec_nocow_writers(root->fs_info, 1431 disk_bytenr); 1432 goto error; 1433 } 1434 cow_start = (u64)-1; 1435 } 1436 1437 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1438 struct extent_map *em; 1439 struct extent_map_tree *em_tree; 1440 em_tree = &BTRFS_I(inode)->extent_tree; 1441 em = alloc_extent_map(); 1442 BUG_ON(!em); /* -ENOMEM */ 1443 em->start = cur_offset; 1444 em->orig_start = found_key.offset - extent_offset; 1445 em->len = num_bytes; 1446 em->block_len = num_bytes; 1447 em->block_start = disk_bytenr; 1448 em->orig_block_len = disk_num_bytes; 1449 em->ram_bytes = ram_bytes; 1450 em->bdev = root->fs_info->fs_devices->latest_bdev; 1451 em->mod_start = em->start; 1452 em->mod_len = em->len; 1453 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1454 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1455 em->generation = -1; 1456 while (1) { 1457 write_lock(&em_tree->lock); 1458 ret = add_extent_mapping(em_tree, em, 1); 1459 write_unlock(&em_tree->lock); 1460 if (ret != -EEXIST) { 1461 free_extent_map(em); 1462 break; 1463 } 1464 btrfs_drop_extent_cache(inode, em->start, 1465 em->start + em->len - 1, 0); 1466 } 1467 type = BTRFS_ORDERED_PREALLOC; 1468 } else { 1469 type = BTRFS_ORDERED_NOCOW; 1470 } 1471 1472 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1473 num_bytes, num_bytes, type); 1474 if (nocow) 1475 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1476 BUG_ON(ret); /* -ENOMEM */ 1477 1478 if (root->root_key.objectid == 1479 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1480 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1481 num_bytes); 1482 if (ret) { 1483 if (!nolock && nocow) 1484 btrfs_end_write_no_snapshoting(root); 1485 goto error; 1486 } 1487 } 1488 1489 extent_clear_unlock_delalloc(inode, cur_offset, 1490 cur_offset + num_bytes - 1, 1491 locked_page, EXTENT_LOCKED | 1492 EXTENT_DELALLOC, PAGE_UNLOCK | 1493 PAGE_SET_PRIVATE2); 1494 if (!nolock && nocow) 1495 btrfs_end_write_no_snapshoting(root); 1496 cur_offset = extent_end; 1497 if (cur_offset > end) 1498 break; 1499 } 1500 btrfs_release_path(path); 1501 1502 if (cur_offset <= end && cow_start == (u64)-1) { 1503 cow_start = cur_offset; 1504 cur_offset = end; 1505 } 1506 1507 if (cow_start != (u64)-1) { 1508 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1509 page_started, nr_written, 1, NULL); 1510 if (ret) 1511 goto error; 1512 } 1513 1514 error: 1515 err = btrfs_end_transaction(trans, root); 1516 if (!ret) 1517 ret = err; 1518 1519 if (ret && cur_offset < end) 1520 extent_clear_unlock_delalloc(inode, cur_offset, end, 1521 locked_page, EXTENT_LOCKED | 1522 EXTENT_DELALLOC | EXTENT_DEFRAG | 1523 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1524 PAGE_CLEAR_DIRTY | 1525 PAGE_SET_WRITEBACK | 1526 PAGE_END_WRITEBACK); 1527 btrfs_free_path(path); 1528 return ret; 1529 } 1530 1531 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1532 { 1533 1534 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1535 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1536 return 0; 1537 1538 /* 1539 * @defrag_bytes is a hint value, no spinlock held here, 1540 * if is not zero, it means the file is defragging. 1541 * Force cow if given extent needs to be defragged. 1542 */ 1543 if (BTRFS_I(inode)->defrag_bytes && 1544 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1545 EXTENT_DEFRAG, 0, NULL)) 1546 return 1; 1547 1548 return 0; 1549 } 1550 1551 /* 1552 * extent_io.c call back to do delayed allocation processing 1553 */ 1554 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1555 u64 start, u64 end, int *page_started, 1556 unsigned long *nr_written) 1557 { 1558 int ret; 1559 int force_cow = need_force_cow(inode, start, end); 1560 1561 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1562 ret = run_delalloc_nocow(inode, locked_page, start, end, 1563 page_started, 1, nr_written); 1564 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1565 ret = run_delalloc_nocow(inode, locked_page, start, end, 1566 page_started, 0, nr_written); 1567 } else if (!inode_need_compress(inode)) { 1568 ret = cow_file_range(inode, locked_page, start, end, end, 1569 page_started, nr_written, 1, NULL); 1570 } else { 1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1572 &BTRFS_I(inode)->runtime_flags); 1573 ret = cow_file_range_async(inode, locked_page, start, end, 1574 page_started, nr_written); 1575 } 1576 return ret; 1577 } 1578 1579 static void btrfs_split_extent_hook(struct inode *inode, 1580 struct extent_state *orig, u64 split) 1581 { 1582 u64 size; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(orig->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 size = orig->end - orig->start + 1; 1589 if (size > BTRFS_MAX_EXTENT_SIZE) { 1590 u64 num_extents; 1591 u64 new_size; 1592 1593 /* 1594 * See the explanation in btrfs_merge_extent_hook, the same 1595 * applies here, just in reverse. 1596 */ 1597 new_size = orig->end - split + 1; 1598 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1599 BTRFS_MAX_EXTENT_SIZE); 1600 new_size = split - orig->start; 1601 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1602 BTRFS_MAX_EXTENT_SIZE); 1603 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1604 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1605 return; 1606 } 1607 1608 spin_lock(&BTRFS_I(inode)->lock); 1609 BTRFS_I(inode)->outstanding_extents++; 1610 spin_unlock(&BTRFS_I(inode)->lock); 1611 } 1612 1613 /* 1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1615 * extents so we can keep track of new extents that are just merged onto old 1616 * extents, such as when we are doing sequential writes, so we can properly 1617 * account for the metadata space we'll need. 1618 */ 1619 static void btrfs_merge_extent_hook(struct inode *inode, 1620 struct extent_state *new, 1621 struct extent_state *other) 1622 { 1623 u64 new_size, old_size; 1624 u64 num_extents; 1625 1626 /* not delalloc, ignore it */ 1627 if (!(other->state & EXTENT_DELALLOC)) 1628 return; 1629 1630 if (new->start > other->start) 1631 new_size = new->end - other->start + 1; 1632 else 1633 new_size = other->end - new->start + 1; 1634 1635 /* we're not bigger than the max, unreserve the space and go */ 1636 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1637 spin_lock(&BTRFS_I(inode)->lock); 1638 BTRFS_I(inode)->outstanding_extents--; 1639 spin_unlock(&BTRFS_I(inode)->lock); 1640 return; 1641 } 1642 1643 /* 1644 * We have to add up either side to figure out how many extents were 1645 * accounted for before we merged into one big extent. If the number of 1646 * extents we accounted for is <= the amount we need for the new range 1647 * then we can return, otherwise drop. Think of it like this 1648 * 1649 * [ 4k][MAX_SIZE] 1650 * 1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1652 * need 2 outstanding extents, on one side we have 1 and the other side 1653 * we have 1 so they are == and we can return. But in this case 1654 * 1655 * [MAX_SIZE+4k][MAX_SIZE+4k] 1656 * 1657 * Each range on their own accounts for 2 extents, but merged together 1658 * they are only 3 extents worth of accounting, so we need to drop in 1659 * this case. 1660 */ 1661 old_size = other->end - other->start + 1; 1662 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1663 BTRFS_MAX_EXTENT_SIZE); 1664 old_size = new->end - new->start + 1; 1665 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1666 BTRFS_MAX_EXTENT_SIZE); 1667 1668 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1669 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1670 return; 1671 1672 spin_lock(&BTRFS_I(inode)->lock); 1673 BTRFS_I(inode)->outstanding_extents--; 1674 spin_unlock(&BTRFS_I(inode)->lock); 1675 } 1676 1677 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1678 struct inode *inode) 1679 { 1680 spin_lock(&root->delalloc_lock); 1681 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1682 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1683 &root->delalloc_inodes); 1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1685 &BTRFS_I(inode)->runtime_flags); 1686 root->nr_delalloc_inodes++; 1687 if (root->nr_delalloc_inodes == 1) { 1688 spin_lock(&root->fs_info->delalloc_root_lock); 1689 BUG_ON(!list_empty(&root->delalloc_root)); 1690 list_add_tail(&root->delalloc_root, 1691 &root->fs_info->delalloc_roots); 1692 spin_unlock(&root->fs_info->delalloc_root_lock); 1693 } 1694 } 1695 spin_unlock(&root->delalloc_lock); 1696 } 1697 1698 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1699 struct inode *inode) 1700 { 1701 spin_lock(&root->delalloc_lock); 1702 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1703 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1705 &BTRFS_I(inode)->runtime_flags); 1706 root->nr_delalloc_inodes--; 1707 if (!root->nr_delalloc_inodes) { 1708 spin_lock(&root->fs_info->delalloc_root_lock); 1709 BUG_ON(list_empty(&root->delalloc_root)); 1710 list_del_init(&root->delalloc_root); 1711 spin_unlock(&root->fs_info->delalloc_root_lock); 1712 } 1713 } 1714 spin_unlock(&root->delalloc_lock); 1715 } 1716 1717 /* 1718 * extent_io.c set_bit_hook, used to track delayed allocation 1719 * bytes in this file, and to maintain the list of inodes that 1720 * have pending delalloc work to be done. 1721 */ 1722 static void btrfs_set_bit_hook(struct inode *inode, 1723 struct extent_state *state, unsigned *bits) 1724 { 1725 1726 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1727 WARN_ON(1); 1728 /* 1729 * set_bit and clear bit hooks normally require _irqsave/restore 1730 * but in this case, we are only testing for the DELALLOC 1731 * bit, which is only set or cleared with irqs on 1732 */ 1733 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1734 struct btrfs_root *root = BTRFS_I(inode)->root; 1735 u64 len = state->end + 1 - state->start; 1736 bool do_list = !btrfs_is_free_space_inode(inode); 1737 1738 if (*bits & EXTENT_FIRST_DELALLOC) { 1739 *bits &= ~EXTENT_FIRST_DELALLOC; 1740 } else { 1741 spin_lock(&BTRFS_I(inode)->lock); 1742 BTRFS_I(inode)->outstanding_extents++; 1743 spin_unlock(&BTRFS_I(inode)->lock); 1744 } 1745 1746 /* For sanity tests */ 1747 if (btrfs_is_testing(root->fs_info)) 1748 return; 1749 1750 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1751 root->fs_info->delalloc_batch); 1752 spin_lock(&BTRFS_I(inode)->lock); 1753 BTRFS_I(inode)->delalloc_bytes += len; 1754 if (*bits & EXTENT_DEFRAG) 1755 BTRFS_I(inode)->defrag_bytes += len; 1756 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1757 &BTRFS_I(inode)->runtime_flags)) 1758 btrfs_add_delalloc_inodes(root, inode); 1759 spin_unlock(&BTRFS_I(inode)->lock); 1760 } 1761 } 1762 1763 /* 1764 * extent_io.c clear_bit_hook, see set_bit_hook for why 1765 */ 1766 static void btrfs_clear_bit_hook(struct inode *inode, 1767 struct extent_state *state, 1768 unsigned *bits) 1769 { 1770 u64 len = state->end + 1 - state->start; 1771 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1772 BTRFS_MAX_EXTENT_SIZE); 1773 1774 spin_lock(&BTRFS_I(inode)->lock); 1775 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1776 BTRFS_I(inode)->defrag_bytes -= len; 1777 spin_unlock(&BTRFS_I(inode)->lock); 1778 1779 /* 1780 * set_bit and clear bit hooks normally require _irqsave/restore 1781 * but in this case, we are only testing for the DELALLOC 1782 * bit, which is only set or cleared with irqs on 1783 */ 1784 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1785 struct btrfs_root *root = BTRFS_I(inode)->root; 1786 bool do_list = !btrfs_is_free_space_inode(inode); 1787 1788 if (*bits & EXTENT_FIRST_DELALLOC) { 1789 *bits &= ~EXTENT_FIRST_DELALLOC; 1790 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1791 spin_lock(&BTRFS_I(inode)->lock); 1792 BTRFS_I(inode)->outstanding_extents -= num_extents; 1793 spin_unlock(&BTRFS_I(inode)->lock); 1794 } 1795 1796 /* 1797 * We don't reserve metadata space for space cache inodes so we 1798 * don't need to call dellalloc_release_metadata if there is an 1799 * error. 1800 */ 1801 if (*bits & EXTENT_DO_ACCOUNTING && 1802 root != root->fs_info->tree_root) 1803 btrfs_delalloc_release_metadata(inode, len); 1804 1805 /* For sanity tests. */ 1806 if (btrfs_is_testing(root->fs_info)) 1807 return; 1808 1809 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1810 && do_list && !(state->state & EXTENT_NORESERVE)) 1811 btrfs_free_reserved_data_space_noquota(inode, 1812 state->start, len); 1813 1814 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1815 root->fs_info->delalloc_batch); 1816 spin_lock(&BTRFS_I(inode)->lock); 1817 BTRFS_I(inode)->delalloc_bytes -= len; 1818 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1820 &BTRFS_I(inode)->runtime_flags)) 1821 btrfs_del_delalloc_inode(root, inode); 1822 spin_unlock(&BTRFS_I(inode)->lock); 1823 } 1824 } 1825 1826 /* 1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1828 * we don't create bios that span stripes or chunks 1829 * 1830 * return 1 if page cannot be merged to bio 1831 * return 0 if page can be merged to bio 1832 * return error otherwise 1833 */ 1834 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1835 size_t size, struct bio *bio, 1836 unsigned long bio_flags) 1837 { 1838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1839 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1840 u64 length = 0; 1841 u64 map_length; 1842 int ret; 1843 1844 if (bio_flags & EXTENT_BIO_COMPRESSED) 1845 return 0; 1846 1847 length = bio->bi_iter.bi_size; 1848 map_length = length; 1849 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical, 1850 &map_length, NULL, 0); 1851 if (ret < 0) 1852 return ret; 1853 if (map_length < length + size) 1854 return 1; 1855 return 0; 1856 } 1857 1858 /* 1859 * in order to insert checksums into the metadata in large chunks, 1860 * we wait until bio submission time. All the pages in the bio are 1861 * checksummed and sums are attached onto the ordered extent record. 1862 * 1863 * At IO completion time the cums attached on the ordered extent record 1864 * are inserted into the btree 1865 */ 1866 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1867 int mirror_num, unsigned long bio_flags, 1868 u64 bio_offset) 1869 { 1870 struct btrfs_root *root = BTRFS_I(inode)->root; 1871 int ret = 0; 1872 1873 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1874 BUG_ON(ret); /* -ENOMEM */ 1875 return 0; 1876 } 1877 1878 /* 1879 * in order to insert checksums into the metadata in large chunks, 1880 * we wait until bio submission time. All the pages in the bio are 1881 * checksummed and sums are attached onto the ordered extent record. 1882 * 1883 * At IO completion time the cums attached on the ordered extent record 1884 * are inserted into the btree 1885 */ 1886 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1887 int mirror_num, unsigned long bio_flags, 1888 u64 bio_offset) 1889 { 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 int ret; 1892 1893 ret = btrfs_map_bio(root, bio, mirror_num, 1); 1894 if (ret) { 1895 bio->bi_error = ret; 1896 bio_endio(bio); 1897 } 1898 return ret; 1899 } 1900 1901 /* 1902 * extent_io.c submission hook. This does the right thing for csum calculation 1903 * on write, or reading the csums from the tree before a read 1904 */ 1905 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1906 int mirror_num, unsigned long bio_flags, 1907 u64 bio_offset) 1908 { 1909 struct btrfs_root *root = BTRFS_I(inode)->root; 1910 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1911 int ret = 0; 1912 int skip_sum; 1913 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1914 1915 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1916 1917 if (btrfs_is_free_space_inode(inode)) 1918 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1919 1920 if (bio_op(bio) != REQ_OP_WRITE) { 1921 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1922 if (ret) 1923 goto out; 1924 1925 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1926 ret = btrfs_submit_compressed_read(inode, bio, 1927 mirror_num, 1928 bio_flags); 1929 goto out; 1930 } else if (!skip_sum) { 1931 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1932 if (ret) 1933 goto out; 1934 } 1935 goto mapit; 1936 } else if (async && !skip_sum) { 1937 /* csum items have already been cloned */ 1938 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1939 goto mapit; 1940 /* we're doing a write, do the async checksumming */ 1941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1942 inode, bio, mirror_num, 1943 bio_flags, bio_offset, 1944 __btrfs_submit_bio_start, 1945 __btrfs_submit_bio_done); 1946 goto out; 1947 } else if (!skip_sum) { 1948 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1949 if (ret) 1950 goto out; 1951 } 1952 1953 mapit: 1954 ret = btrfs_map_bio(root, bio, mirror_num, 0); 1955 1956 out: 1957 if (ret < 0) { 1958 bio->bi_error = ret; 1959 bio_endio(bio); 1960 } 1961 return ret; 1962 } 1963 1964 /* 1965 * given a list of ordered sums record them in the inode. This happens 1966 * at IO completion time based on sums calculated at bio submission time. 1967 */ 1968 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1969 struct inode *inode, u64 file_offset, 1970 struct list_head *list) 1971 { 1972 struct btrfs_ordered_sum *sum; 1973 1974 list_for_each_entry(sum, list, list) { 1975 trans->adding_csums = 1; 1976 btrfs_csum_file_blocks(trans, 1977 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1978 trans->adding_csums = 0; 1979 } 1980 return 0; 1981 } 1982 1983 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1984 struct extent_state **cached_state) 1985 { 1986 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1987 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1988 cached_state); 1989 } 1990 1991 /* see btrfs_writepage_start_hook for details on why this is required */ 1992 struct btrfs_writepage_fixup { 1993 struct page *page; 1994 struct btrfs_work work; 1995 }; 1996 1997 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1998 { 1999 struct btrfs_writepage_fixup *fixup; 2000 struct btrfs_ordered_extent *ordered; 2001 struct extent_state *cached_state = NULL; 2002 struct page *page; 2003 struct inode *inode; 2004 u64 page_start; 2005 u64 page_end; 2006 int ret; 2007 2008 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2009 page = fixup->page; 2010 again: 2011 lock_page(page); 2012 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2013 ClearPageChecked(page); 2014 goto out_page; 2015 } 2016 2017 inode = page->mapping->host; 2018 page_start = page_offset(page); 2019 page_end = page_offset(page) + PAGE_SIZE - 1; 2020 2021 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2022 &cached_state); 2023 2024 /* already ordered? We're done */ 2025 if (PagePrivate2(page)) 2026 goto out; 2027 2028 ordered = btrfs_lookup_ordered_range(inode, page_start, 2029 PAGE_SIZE); 2030 if (ordered) { 2031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2032 page_end, &cached_state, GFP_NOFS); 2033 unlock_page(page); 2034 btrfs_start_ordered_extent(inode, ordered, 1); 2035 btrfs_put_ordered_extent(ordered); 2036 goto again; 2037 } 2038 2039 ret = btrfs_delalloc_reserve_space(inode, page_start, 2040 PAGE_SIZE); 2041 if (ret) { 2042 mapping_set_error(page->mapping, ret); 2043 end_extent_writepage(page, ret, page_start, page_end); 2044 ClearPageChecked(page); 2045 goto out; 2046 } 2047 2048 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2049 ClearPageChecked(page); 2050 set_page_dirty(page); 2051 out: 2052 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2053 &cached_state, GFP_NOFS); 2054 out_page: 2055 unlock_page(page); 2056 put_page(page); 2057 kfree(fixup); 2058 } 2059 2060 /* 2061 * There are a few paths in the higher layers of the kernel that directly 2062 * set the page dirty bit without asking the filesystem if it is a 2063 * good idea. This causes problems because we want to make sure COW 2064 * properly happens and the data=ordered rules are followed. 2065 * 2066 * In our case any range that doesn't have the ORDERED bit set 2067 * hasn't been properly setup for IO. We kick off an async process 2068 * to fix it up. The async helper will wait for ordered extents, set 2069 * the delalloc bit and make it safe to write the page. 2070 */ 2071 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2072 { 2073 struct inode *inode = page->mapping->host; 2074 struct btrfs_writepage_fixup *fixup; 2075 struct btrfs_root *root = BTRFS_I(inode)->root; 2076 2077 /* this page is properly in the ordered list */ 2078 if (TestClearPagePrivate2(page)) 2079 return 0; 2080 2081 if (PageChecked(page)) 2082 return -EAGAIN; 2083 2084 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2085 if (!fixup) 2086 return -EAGAIN; 2087 2088 SetPageChecked(page); 2089 get_page(page); 2090 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2091 btrfs_writepage_fixup_worker, NULL, NULL); 2092 fixup->page = page; 2093 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2094 return -EBUSY; 2095 } 2096 2097 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2098 struct inode *inode, u64 file_pos, 2099 u64 disk_bytenr, u64 disk_num_bytes, 2100 u64 num_bytes, u64 ram_bytes, 2101 u8 compression, u8 encryption, 2102 u16 other_encoding, int extent_type) 2103 { 2104 struct btrfs_root *root = BTRFS_I(inode)->root; 2105 struct btrfs_file_extent_item *fi; 2106 struct btrfs_path *path; 2107 struct extent_buffer *leaf; 2108 struct btrfs_key ins; 2109 int extent_inserted = 0; 2110 int ret; 2111 2112 path = btrfs_alloc_path(); 2113 if (!path) 2114 return -ENOMEM; 2115 2116 /* 2117 * we may be replacing one extent in the tree with another. 2118 * The new extent is pinned in the extent map, and we don't want 2119 * to drop it from the cache until it is completely in the btree. 2120 * 2121 * So, tell btrfs_drop_extents to leave this extent in the cache. 2122 * the caller is expected to unpin it and allow it to be merged 2123 * with the others. 2124 */ 2125 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2126 file_pos + num_bytes, NULL, 0, 2127 1, sizeof(*fi), &extent_inserted); 2128 if (ret) 2129 goto out; 2130 2131 if (!extent_inserted) { 2132 ins.objectid = btrfs_ino(inode); 2133 ins.offset = file_pos; 2134 ins.type = BTRFS_EXTENT_DATA_KEY; 2135 2136 path->leave_spinning = 1; 2137 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2138 sizeof(*fi)); 2139 if (ret) 2140 goto out; 2141 } 2142 leaf = path->nodes[0]; 2143 fi = btrfs_item_ptr(leaf, path->slots[0], 2144 struct btrfs_file_extent_item); 2145 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2146 btrfs_set_file_extent_type(leaf, fi, extent_type); 2147 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2148 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2149 btrfs_set_file_extent_offset(leaf, fi, 0); 2150 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2151 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2152 btrfs_set_file_extent_compression(leaf, fi, compression); 2153 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2154 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2155 2156 btrfs_mark_buffer_dirty(leaf); 2157 btrfs_release_path(path); 2158 2159 inode_add_bytes(inode, num_bytes); 2160 2161 ins.objectid = disk_bytenr; 2162 ins.offset = disk_num_bytes; 2163 ins.type = BTRFS_EXTENT_ITEM_KEY; 2164 ret = btrfs_alloc_reserved_file_extent(trans, root, 2165 root->root_key.objectid, 2166 btrfs_ino(inode), file_pos, 2167 ram_bytes, &ins); 2168 /* 2169 * Release the reserved range from inode dirty range map, as it is 2170 * already moved into delayed_ref_head 2171 */ 2172 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2173 out: 2174 btrfs_free_path(path); 2175 2176 return ret; 2177 } 2178 2179 /* snapshot-aware defrag */ 2180 struct sa_defrag_extent_backref { 2181 struct rb_node node; 2182 struct old_sa_defrag_extent *old; 2183 u64 root_id; 2184 u64 inum; 2185 u64 file_pos; 2186 u64 extent_offset; 2187 u64 num_bytes; 2188 u64 generation; 2189 }; 2190 2191 struct old_sa_defrag_extent { 2192 struct list_head list; 2193 struct new_sa_defrag_extent *new; 2194 2195 u64 extent_offset; 2196 u64 bytenr; 2197 u64 offset; 2198 u64 len; 2199 int count; 2200 }; 2201 2202 struct new_sa_defrag_extent { 2203 struct rb_root root; 2204 struct list_head head; 2205 struct btrfs_path *path; 2206 struct inode *inode; 2207 u64 file_pos; 2208 u64 len; 2209 u64 bytenr; 2210 u64 disk_len; 2211 u8 compress_type; 2212 }; 2213 2214 static int backref_comp(struct sa_defrag_extent_backref *b1, 2215 struct sa_defrag_extent_backref *b2) 2216 { 2217 if (b1->root_id < b2->root_id) 2218 return -1; 2219 else if (b1->root_id > b2->root_id) 2220 return 1; 2221 2222 if (b1->inum < b2->inum) 2223 return -1; 2224 else if (b1->inum > b2->inum) 2225 return 1; 2226 2227 if (b1->file_pos < b2->file_pos) 2228 return -1; 2229 else if (b1->file_pos > b2->file_pos) 2230 return 1; 2231 2232 /* 2233 * [------------------------------] ===> (a range of space) 2234 * |<--->| |<---->| =============> (fs/file tree A) 2235 * |<---------------------------->| ===> (fs/file tree B) 2236 * 2237 * A range of space can refer to two file extents in one tree while 2238 * refer to only one file extent in another tree. 2239 * 2240 * So we may process a disk offset more than one time(two extents in A) 2241 * and locate at the same extent(one extent in B), then insert two same 2242 * backrefs(both refer to the extent in B). 2243 */ 2244 return 0; 2245 } 2246 2247 static void backref_insert(struct rb_root *root, 2248 struct sa_defrag_extent_backref *backref) 2249 { 2250 struct rb_node **p = &root->rb_node; 2251 struct rb_node *parent = NULL; 2252 struct sa_defrag_extent_backref *entry; 2253 int ret; 2254 2255 while (*p) { 2256 parent = *p; 2257 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2258 2259 ret = backref_comp(backref, entry); 2260 if (ret < 0) 2261 p = &(*p)->rb_left; 2262 else 2263 p = &(*p)->rb_right; 2264 } 2265 2266 rb_link_node(&backref->node, parent, p); 2267 rb_insert_color(&backref->node, root); 2268 } 2269 2270 /* 2271 * Note the backref might has changed, and in this case we just return 0. 2272 */ 2273 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2274 void *ctx) 2275 { 2276 struct btrfs_file_extent_item *extent; 2277 struct btrfs_fs_info *fs_info; 2278 struct old_sa_defrag_extent *old = ctx; 2279 struct new_sa_defrag_extent *new = old->new; 2280 struct btrfs_path *path = new->path; 2281 struct btrfs_key key; 2282 struct btrfs_root *root; 2283 struct sa_defrag_extent_backref *backref; 2284 struct extent_buffer *leaf; 2285 struct inode *inode = new->inode; 2286 int slot; 2287 int ret; 2288 u64 extent_offset; 2289 u64 num_bytes; 2290 2291 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2292 inum == btrfs_ino(inode)) 2293 return 0; 2294 2295 key.objectid = root_id; 2296 key.type = BTRFS_ROOT_ITEM_KEY; 2297 key.offset = (u64)-1; 2298 2299 fs_info = BTRFS_I(inode)->root->fs_info; 2300 root = btrfs_read_fs_root_no_name(fs_info, &key); 2301 if (IS_ERR(root)) { 2302 if (PTR_ERR(root) == -ENOENT) 2303 return 0; 2304 WARN_ON(1); 2305 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2306 inum, offset, root_id); 2307 return PTR_ERR(root); 2308 } 2309 2310 key.objectid = inum; 2311 key.type = BTRFS_EXTENT_DATA_KEY; 2312 if (offset > (u64)-1 << 32) 2313 key.offset = 0; 2314 else 2315 key.offset = offset; 2316 2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2318 if (WARN_ON(ret < 0)) 2319 return ret; 2320 ret = 0; 2321 2322 while (1) { 2323 cond_resched(); 2324 2325 leaf = path->nodes[0]; 2326 slot = path->slots[0]; 2327 2328 if (slot >= btrfs_header_nritems(leaf)) { 2329 ret = btrfs_next_leaf(root, path); 2330 if (ret < 0) { 2331 goto out; 2332 } else if (ret > 0) { 2333 ret = 0; 2334 goto out; 2335 } 2336 continue; 2337 } 2338 2339 path->slots[0]++; 2340 2341 btrfs_item_key_to_cpu(leaf, &key, slot); 2342 2343 if (key.objectid > inum) 2344 goto out; 2345 2346 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2347 continue; 2348 2349 extent = btrfs_item_ptr(leaf, slot, 2350 struct btrfs_file_extent_item); 2351 2352 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2353 continue; 2354 2355 /* 2356 * 'offset' refers to the exact key.offset, 2357 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2358 * (key.offset - extent_offset). 2359 */ 2360 if (key.offset != offset) 2361 continue; 2362 2363 extent_offset = btrfs_file_extent_offset(leaf, extent); 2364 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2365 2366 if (extent_offset >= old->extent_offset + old->offset + 2367 old->len || extent_offset + num_bytes <= 2368 old->extent_offset + old->offset) 2369 continue; 2370 break; 2371 } 2372 2373 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2374 if (!backref) { 2375 ret = -ENOENT; 2376 goto out; 2377 } 2378 2379 backref->root_id = root_id; 2380 backref->inum = inum; 2381 backref->file_pos = offset; 2382 backref->num_bytes = num_bytes; 2383 backref->extent_offset = extent_offset; 2384 backref->generation = btrfs_file_extent_generation(leaf, extent); 2385 backref->old = old; 2386 backref_insert(&new->root, backref); 2387 old->count++; 2388 out: 2389 btrfs_release_path(path); 2390 WARN_ON(ret); 2391 return ret; 2392 } 2393 2394 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2395 struct new_sa_defrag_extent *new) 2396 { 2397 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2398 struct old_sa_defrag_extent *old, *tmp; 2399 int ret; 2400 2401 new->path = path; 2402 2403 list_for_each_entry_safe(old, tmp, &new->head, list) { 2404 ret = iterate_inodes_from_logical(old->bytenr + 2405 old->extent_offset, fs_info, 2406 path, record_one_backref, 2407 old); 2408 if (ret < 0 && ret != -ENOENT) 2409 return false; 2410 2411 /* no backref to be processed for this extent */ 2412 if (!old->count) { 2413 list_del(&old->list); 2414 kfree(old); 2415 } 2416 } 2417 2418 if (list_empty(&new->head)) 2419 return false; 2420 2421 return true; 2422 } 2423 2424 static int relink_is_mergable(struct extent_buffer *leaf, 2425 struct btrfs_file_extent_item *fi, 2426 struct new_sa_defrag_extent *new) 2427 { 2428 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2429 return 0; 2430 2431 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2432 return 0; 2433 2434 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2435 return 0; 2436 2437 if (btrfs_file_extent_encryption(leaf, fi) || 2438 btrfs_file_extent_other_encoding(leaf, fi)) 2439 return 0; 2440 2441 return 1; 2442 } 2443 2444 /* 2445 * Note the backref might has changed, and in this case we just return 0. 2446 */ 2447 static noinline int relink_extent_backref(struct btrfs_path *path, 2448 struct sa_defrag_extent_backref *prev, 2449 struct sa_defrag_extent_backref *backref) 2450 { 2451 struct btrfs_file_extent_item *extent; 2452 struct btrfs_file_extent_item *item; 2453 struct btrfs_ordered_extent *ordered; 2454 struct btrfs_trans_handle *trans; 2455 struct btrfs_fs_info *fs_info; 2456 struct btrfs_root *root; 2457 struct btrfs_key key; 2458 struct extent_buffer *leaf; 2459 struct old_sa_defrag_extent *old = backref->old; 2460 struct new_sa_defrag_extent *new = old->new; 2461 struct inode *src_inode = new->inode; 2462 struct inode *inode; 2463 struct extent_state *cached = NULL; 2464 int ret = 0; 2465 u64 start; 2466 u64 len; 2467 u64 lock_start; 2468 u64 lock_end; 2469 bool merge = false; 2470 int index; 2471 2472 if (prev && prev->root_id == backref->root_id && 2473 prev->inum == backref->inum && 2474 prev->file_pos + prev->num_bytes == backref->file_pos) 2475 merge = true; 2476 2477 /* step 1: get root */ 2478 key.objectid = backref->root_id; 2479 key.type = BTRFS_ROOT_ITEM_KEY; 2480 key.offset = (u64)-1; 2481 2482 fs_info = BTRFS_I(src_inode)->root->fs_info; 2483 index = srcu_read_lock(&fs_info->subvol_srcu); 2484 2485 root = btrfs_read_fs_root_no_name(fs_info, &key); 2486 if (IS_ERR(root)) { 2487 srcu_read_unlock(&fs_info->subvol_srcu, index); 2488 if (PTR_ERR(root) == -ENOENT) 2489 return 0; 2490 return PTR_ERR(root); 2491 } 2492 2493 if (btrfs_root_readonly(root)) { 2494 srcu_read_unlock(&fs_info->subvol_srcu, index); 2495 return 0; 2496 } 2497 2498 /* step 2: get inode */ 2499 key.objectid = backref->inum; 2500 key.type = BTRFS_INODE_ITEM_KEY; 2501 key.offset = 0; 2502 2503 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2504 if (IS_ERR(inode)) { 2505 srcu_read_unlock(&fs_info->subvol_srcu, index); 2506 return 0; 2507 } 2508 2509 srcu_read_unlock(&fs_info->subvol_srcu, index); 2510 2511 /* step 3: relink backref */ 2512 lock_start = backref->file_pos; 2513 lock_end = backref->file_pos + backref->num_bytes - 1; 2514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2515 &cached); 2516 2517 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2518 if (ordered) { 2519 btrfs_put_ordered_extent(ordered); 2520 goto out_unlock; 2521 } 2522 2523 trans = btrfs_join_transaction(root); 2524 if (IS_ERR(trans)) { 2525 ret = PTR_ERR(trans); 2526 goto out_unlock; 2527 } 2528 2529 key.objectid = backref->inum; 2530 key.type = BTRFS_EXTENT_DATA_KEY; 2531 key.offset = backref->file_pos; 2532 2533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2534 if (ret < 0) { 2535 goto out_free_path; 2536 } else if (ret > 0) { 2537 ret = 0; 2538 goto out_free_path; 2539 } 2540 2541 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2542 struct btrfs_file_extent_item); 2543 2544 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2545 backref->generation) 2546 goto out_free_path; 2547 2548 btrfs_release_path(path); 2549 2550 start = backref->file_pos; 2551 if (backref->extent_offset < old->extent_offset + old->offset) 2552 start += old->extent_offset + old->offset - 2553 backref->extent_offset; 2554 2555 len = min(backref->extent_offset + backref->num_bytes, 2556 old->extent_offset + old->offset + old->len); 2557 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2558 2559 ret = btrfs_drop_extents(trans, root, inode, start, 2560 start + len, 1); 2561 if (ret) 2562 goto out_free_path; 2563 again: 2564 key.objectid = btrfs_ino(inode); 2565 key.type = BTRFS_EXTENT_DATA_KEY; 2566 key.offset = start; 2567 2568 path->leave_spinning = 1; 2569 if (merge) { 2570 struct btrfs_file_extent_item *fi; 2571 u64 extent_len; 2572 struct btrfs_key found_key; 2573 2574 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2575 if (ret < 0) 2576 goto out_free_path; 2577 2578 path->slots[0]--; 2579 leaf = path->nodes[0]; 2580 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2581 2582 fi = btrfs_item_ptr(leaf, path->slots[0], 2583 struct btrfs_file_extent_item); 2584 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2585 2586 if (extent_len + found_key.offset == start && 2587 relink_is_mergable(leaf, fi, new)) { 2588 btrfs_set_file_extent_num_bytes(leaf, fi, 2589 extent_len + len); 2590 btrfs_mark_buffer_dirty(leaf); 2591 inode_add_bytes(inode, len); 2592 2593 ret = 1; 2594 goto out_free_path; 2595 } else { 2596 merge = false; 2597 btrfs_release_path(path); 2598 goto again; 2599 } 2600 } 2601 2602 ret = btrfs_insert_empty_item(trans, root, path, &key, 2603 sizeof(*extent)); 2604 if (ret) { 2605 btrfs_abort_transaction(trans, ret); 2606 goto out_free_path; 2607 } 2608 2609 leaf = path->nodes[0]; 2610 item = btrfs_item_ptr(leaf, path->slots[0], 2611 struct btrfs_file_extent_item); 2612 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2613 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2614 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2615 btrfs_set_file_extent_num_bytes(leaf, item, len); 2616 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2617 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2618 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2619 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2620 btrfs_set_file_extent_encryption(leaf, item, 0); 2621 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2622 2623 btrfs_mark_buffer_dirty(leaf); 2624 inode_add_bytes(inode, len); 2625 btrfs_release_path(path); 2626 2627 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2628 new->disk_len, 0, 2629 backref->root_id, backref->inum, 2630 new->file_pos); /* start - extent_offset */ 2631 if (ret) { 2632 btrfs_abort_transaction(trans, ret); 2633 goto out_free_path; 2634 } 2635 2636 ret = 1; 2637 out_free_path: 2638 btrfs_release_path(path); 2639 path->leave_spinning = 0; 2640 btrfs_end_transaction(trans, root); 2641 out_unlock: 2642 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2643 &cached, GFP_NOFS); 2644 iput(inode); 2645 return ret; 2646 } 2647 2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2649 { 2650 struct old_sa_defrag_extent *old, *tmp; 2651 2652 if (!new) 2653 return; 2654 2655 list_for_each_entry_safe(old, tmp, &new->head, list) { 2656 kfree(old); 2657 } 2658 kfree(new); 2659 } 2660 2661 static void relink_file_extents(struct new_sa_defrag_extent *new) 2662 { 2663 struct btrfs_path *path; 2664 struct sa_defrag_extent_backref *backref; 2665 struct sa_defrag_extent_backref *prev = NULL; 2666 struct inode *inode; 2667 struct btrfs_root *root; 2668 struct rb_node *node; 2669 int ret; 2670 2671 inode = new->inode; 2672 root = BTRFS_I(inode)->root; 2673 2674 path = btrfs_alloc_path(); 2675 if (!path) 2676 return; 2677 2678 if (!record_extent_backrefs(path, new)) { 2679 btrfs_free_path(path); 2680 goto out; 2681 } 2682 btrfs_release_path(path); 2683 2684 while (1) { 2685 node = rb_first(&new->root); 2686 if (!node) 2687 break; 2688 rb_erase(node, &new->root); 2689 2690 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2691 2692 ret = relink_extent_backref(path, prev, backref); 2693 WARN_ON(ret < 0); 2694 2695 kfree(prev); 2696 2697 if (ret == 1) 2698 prev = backref; 2699 else 2700 prev = NULL; 2701 cond_resched(); 2702 } 2703 kfree(prev); 2704 2705 btrfs_free_path(path); 2706 out: 2707 free_sa_defrag_extent(new); 2708 2709 atomic_dec(&root->fs_info->defrag_running); 2710 wake_up(&root->fs_info->transaction_wait); 2711 } 2712 2713 static struct new_sa_defrag_extent * 2714 record_old_file_extents(struct inode *inode, 2715 struct btrfs_ordered_extent *ordered) 2716 { 2717 struct btrfs_root *root = BTRFS_I(inode)->root; 2718 struct btrfs_path *path; 2719 struct btrfs_key key; 2720 struct old_sa_defrag_extent *old; 2721 struct new_sa_defrag_extent *new; 2722 int ret; 2723 2724 new = kmalloc(sizeof(*new), GFP_NOFS); 2725 if (!new) 2726 return NULL; 2727 2728 new->inode = inode; 2729 new->file_pos = ordered->file_offset; 2730 new->len = ordered->len; 2731 new->bytenr = ordered->start; 2732 new->disk_len = ordered->disk_len; 2733 new->compress_type = ordered->compress_type; 2734 new->root = RB_ROOT; 2735 INIT_LIST_HEAD(&new->head); 2736 2737 path = btrfs_alloc_path(); 2738 if (!path) 2739 goto out_kfree; 2740 2741 key.objectid = btrfs_ino(inode); 2742 key.type = BTRFS_EXTENT_DATA_KEY; 2743 key.offset = new->file_pos; 2744 2745 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2746 if (ret < 0) 2747 goto out_free_path; 2748 if (ret > 0 && path->slots[0] > 0) 2749 path->slots[0]--; 2750 2751 /* find out all the old extents for the file range */ 2752 while (1) { 2753 struct btrfs_file_extent_item *extent; 2754 struct extent_buffer *l; 2755 int slot; 2756 u64 num_bytes; 2757 u64 offset; 2758 u64 end; 2759 u64 disk_bytenr; 2760 u64 extent_offset; 2761 2762 l = path->nodes[0]; 2763 slot = path->slots[0]; 2764 2765 if (slot >= btrfs_header_nritems(l)) { 2766 ret = btrfs_next_leaf(root, path); 2767 if (ret < 0) 2768 goto out_free_path; 2769 else if (ret > 0) 2770 break; 2771 continue; 2772 } 2773 2774 btrfs_item_key_to_cpu(l, &key, slot); 2775 2776 if (key.objectid != btrfs_ino(inode)) 2777 break; 2778 if (key.type != BTRFS_EXTENT_DATA_KEY) 2779 break; 2780 if (key.offset >= new->file_pos + new->len) 2781 break; 2782 2783 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2784 2785 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2786 if (key.offset + num_bytes < new->file_pos) 2787 goto next; 2788 2789 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2790 if (!disk_bytenr) 2791 goto next; 2792 2793 extent_offset = btrfs_file_extent_offset(l, extent); 2794 2795 old = kmalloc(sizeof(*old), GFP_NOFS); 2796 if (!old) 2797 goto out_free_path; 2798 2799 offset = max(new->file_pos, key.offset); 2800 end = min(new->file_pos + new->len, key.offset + num_bytes); 2801 2802 old->bytenr = disk_bytenr; 2803 old->extent_offset = extent_offset; 2804 old->offset = offset - key.offset; 2805 old->len = end - offset; 2806 old->new = new; 2807 old->count = 0; 2808 list_add_tail(&old->list, &new->head); 2809 next: 2810 path->slots[0]++; 2811 cond_resched(); 2812 } 2813 2814 btrfs_free_path(path); 2815 atomic_inc(&root->fs_info->defrag_running); 2816 2817 return new; 2818 2819 out_free_path: 2820 btrfs_free_path(path); 2821 out_kfree: 2822 free_sa_defrag_extent(new); 2823 return NULL; 2824 } 2825 2826 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2827 u64 start, u64 len) 2828 { 2829 struct btrfs_block_group_cache *cache; 2830 2831 cache = btrfs_lookup_block_group(root->fs_info, start); 2832 ASSERT(cache); 2833 2834 spin_lock(&cache->lock); 2835 cache->delalloc_bytes -= len; 2836 spin_unlock(&cache->lock); 2837 2838 btrfs_put_block_group(cache); 2839 } 2840 2841 /* as ordered data IO finishes, this gets called so we can finish 2842 * an ordered extent if the range of bytes in the file it covers are 2843 * fully written. 2844 */ 2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2846 { 2847 struct inode *inode = ordered_extent->inode; 2848 struct btrfs_root *root = BTRFS_I(inode)->root; 2849 struct btrfs_trans_handle *trans = NULL; 2850 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2851 struct extent_state *cached_state = NULL; 2852 struct new_sa_defrag_extent *new = NULL; 2853 int compress_type = 0; 2854 int ret = 0; 2855 u64 logical_len = ordered_extent->len; 2856 bool nolock; 2857 bool truncated = false; 2858 2859 nolock = btrfs_is_free_space_inode(inode); 2860 2861 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2862 ret = -EIO; 2863 goto out; 2864 } 2865 2866 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2867 ordered_extent->file_offset + 2868 ordered_extent->len - 1); 2869 2870 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2871 truncated = true; 2872 logical_len = ordered_extent->truncated_len; 2873 /* Truncated the entire extent, don't bother adding */ 2874 if (!logical_len) 2875 goto out; 2876 } 2877 2878 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2879 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2880 2881 /* 2882 * For mwrite(mmap + memset to write) case, we still reserve 2883 * space for NOCOW range. 2884 * As NOCOW won't cause a new delayed ref, just free the space 2885 */ 2886 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2887 ordered_extent->len); 2888 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2889 if (nolock) 2890 trans = btrfs_join_transaction_nolock(root); 2891 else 2892 trans = btrfs_join_transaction(root); 2893 if (IS_ERR(trans)) { 2894 ret = PTR_ERR(trans); 2895 trans = NULL; 2896 goto out; 2897 } 2898 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2899 ret = btrfs_update_inode_fallback(trans, root, inode); 2900 if (ret) /* -ENOMEM or corruption */ 2901 btrfs_abort_transaction(trans, ret); 2902 goto out; 2903 } 2904 2905 lock_extent_bits(io_tree, ordered_extent->file_offset, 2906 ordered_extent->file_offset + ordered_extent->len - 1, 2907 &cached_state); 2908 2909 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2910 ordered_extent->file_offset + ordered_extent->len - 1, 2911 EXTENT_DEFRAG, 1, cached_state); 2912 if (ret) { 2913 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2914 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2915 /* the inode is shared */ 2916 new = record_old_file_extents(inode, ordered_extent); 2917 2918 clear_extent_bit(io_tree, ordered_extent->file_offset, 2919 ordered_extent->file_offset + ordered_extent->len - 1, 2920 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2921 } 2922 2923 if (nolock) 2924 trans = btrfs_join_transaction_nolock(root); 2925 else 2926 trans = btrfs_join_transaction(root); 2927 if (IS_ERR(trans)) { 2928 ret = PTR_ERR(trans); 2929 trans = NULL; 2930 goto out_unlock; 2931 } 2932 2933 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2934 2935 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2936 compress_type = ordered_extent->compress_type; 2937 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2938 BUG_ON(compress_type); 2939 ret = btrfs_mark_extent_written(trans, inode, 2940 ordered_extent->file_offset, 2941 ordered_extent->file_offset + 2942 logical_len); 2943 } else { 2944 BUG_ON(root == root->fs_info->tree_root); 2945 ret = insert_reserved_file_extent(trans, inode, 2946 ordered_extent->file_offset, 2947 ordered_extent->start, 2948 ordered_extent->disk_len, 2949 logical_len, logical_len, 2950 compress_type, 0, 0, 2951 BTRFS_FILE_EXTENT_REG); 2952 if (!ret) 2953 btrfs_release_delalloc_bytes(root, 2954 ordered_extent->start, 2955 ordered_extent->disk_len); 2956 } 2957 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2958 ordered_extent->file_offset, ordered_extent->len, 2959 trans->transid); 2960 if (ret < 0) { 2961 btrfs_abort_transaction(trans, ret); 2962 goto out_unlock; 2963 } 2964 2965 add_pending_csums(trans, inode, ordered_extent->file_offset, 2966 &ordered_extent->list); 2967 2968 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2969 ret = btrfs_update_inode_fallback(trans, root, inode); 2970 if (ret) { /* -ENOMEM or corruption */ 2971 btrfs_abort_transaction(trans, ret); 2972 goto out_unlock; 2973 } 2974 ret = 0; 2975 out_unlock: 2976 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2977 ordered_extent->file_offset + 2978 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2979 out: 2980 if (root != root->fs_info->tree_root) 2981 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2982 if (trans) 2983 btrfs_end_transaction(trans, root); 2984 2985 if (ret || truncated) { 2986 u64 start, end; 2987 2988 if (truncated) 2989 start = ordered_extent->file_offset + logical_len; 2990 else 2991 start = ordered_extent->file_offset; 2992 end = ordered_extent->file_offset + ordered_extent->len - 1; 2993 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2994 2995 /* Drop the cache for the part of the extent we didn't write. */ 2996 btrfs_drop_extent_cache(inode, start, end, 0); 2997 2998 /* 2999 * If the ordered extent had an IOERR or something else went 3000 * wrong we need to return the space for this ordered extent 3001 * back to the allocator. We only free the extent in the 3002 * truncated case if we didn't write out the extent at all. 3003 */ 3004 if ((ret || !logical_len) && 3005 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3006 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3007 btrfs_free_reserved_extent(root, ordered_extent->start, 3008 ordered_extent->disk_len, 1); 3009 } 3010 3011 3012 /* 3013 * This needs to be done to make sure anybody waiting knows we are done 3014 * updating everything for this ordered extent. 3015 */ 3016 btrfs_remove_ordered_extent(inode, ordered_extent); 3017 3018 /* for snapshot-aware defrag */ 3019 if (new) { 3020 if (ret) { 3021 free_sa_defrag_extent(new); 3022 atomic_dec(&root->fs_info->defrag_running); 3023 } else { 3024 relink_file_extents(new); 3025 } 3026 } 3027 3028 /* once for us */ 3029 btrfs_put_ordered_extent(ordered_extent); 3030 /* once for the tree */ 3031 btrfs_put_ordered_extent(ordered_extent); 3032 3033 return ret; 3034 } 3035 3036 static void finish_ordered_fn(struct btrfs_work *work) 3037 { 3038 struct btrfs_ordered_extent *ordered_extent; 3039 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3040 btrfs_finish_ordered_io(ordered_extent); 3041 } 3042 3043 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3044 struct extent_state *state, int uptodate) 3045 { 3046 struct inode *inode = page->mapping->host; 3047 struct btrfs_root *root = BTRFS_I(inode)->root; 3048 struct btrfs_ordered_extent *ordered_extent = NULL; 3049 struct btrfs_workqueue *wq; 3050 btrfs_work_func_t func; 3051 3052 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3053 3054 ClearPagePrivate2(page); 3055 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3056 end - start + 1, uptodate)) 3057 return 0; 3058 3059 if (btrfs_is_free_space_inode(inode)) { 3060 wq = root->fs_info->endio_freespace_worker; 3061 func = btrfs_freespace_write_helper; 3062 } else { 3063 wq = root->fs_info->endio_write_workers; 3064 func = btrfs_endio_write_helper; 3065 } 3066 3067 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3068 NULL); 3069 btrfs_queue_work(wq, &ordered_extent->work); 3070 3071 return 0; 3072 } 3073 3074 static int __readpage_endio_check(struct inode *inode, 3075 struct btrfs_io_bio *io_bio, 3076 int icsum, struct page *page, 3077 int pgoff, u64 start, size_t len) 3078 { 3079 char *kaddr; 3080 u32 csum_expected; 3081 u32 csum = ~(u32)0; 3082 3083 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3084 3085 kaddr = kmap_atomic(page); 3086 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3087 btrfs_csum_final(csum, (char *)&csum); 3088 if (csum != csum_expected) 3089 goto zeroit; 3090 3091 kunmap_atomic(kaddr); 3092 return 0; 3093 zeroit: 3094 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3095 "csum failed ino %llu off %llu csum %u expected csum %u", 3096 btrfs_ino(inode), start, csum, csum_expected); 3097 memset(kaddr + pgoff, 1, len); 3098 flush_dcache_page(page); 3099 kunmap_atomic(kaddr); 3100 if (csum_expected == 0) 3101 return 0; 3102 return -EIO; 3103 } 3104 3105 /* 3106 * when reads are done, we need to check csums to verify the data is correct 3107 * if there's a match, we allow the bio to finish. If not, the code in 3108 * extent_io.c will try to find good copies for us. 3109 */ 3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3111 u64 phy_offset, struct page *page, 3112 u64 start, u64 end, int mirror) 3113 { 3114 size_t offset = start - page_offset(page); 3115 struct inode *inode = page->mapping->host; 3116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3117 struct btrfs_root *root = BTRFS_I(inode)->root; 3118 3119 if (PageChecked(page)) { 3120 ClearPageChecked(page); 3121 return 0; 3122 } 3123 3124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3125 return 0; 3126 3127 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3128 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3129 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3130 return 0; 3131 } 3132 3133 phy_offset >>= inode->i_sb->s_blocksize_bits; 3134 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3135 start, (size_t)(end - start + 1)); 3136 } 3137 3138 void btrfs_add_delayed_iput(struct inode *inode) 3139 { 3140 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3141 struct btrfs_inode *binode = BTRFS_I(inode); 3142 3143 if (atomic_add_unless(&inode->i_count, -1, 1)) 3144 return; 3145 3146 spin_lock(&fs_info->delayed_iput_lock); 3147 if (binode->delayed_iput_count == 0) { 3148 ASSERT(list_empty(&binode->delayed_iput)); 3149 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3150 } else { 3151 binode->delayed_iput_count++; 3152 } 3153 spin_unlock(&fs_info->delayed_iput_lock); 3154 } 3155 3156 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3157 { 3158 struct btrfs_fs_info *fs_info = root->fs_info; 3159 3160 spin_lock(&fs_info->delayed_iput_lock); 3161 while (!list_empty(&fs_info->delayed_iputs)) { 3162 struct btrfs_inode *inode; 3163 3164 inode = list_first_entry(&fs_info->delayed_iputs, 3165 struct btrfs_inode, delayed_iput); 3166 if (inode->delayed_iput_count) { 3167 inode->delayed_iput_count--; 3168 list_move_tail(&inode->delayed_iput, 3169 &fs_info->delayed_iputs); 3170 } else { 3171 list_del_init(&inode->delayed_iput); 3172 } 3173 spin_unlock(&fs_info->delayed_iput_lock); 3174 iput(&inode->vfs_inode); 3175 spin_lock(&fs_info->delayed_iput_lock); 3176 } 3177 spin_unlock(&fs_info->delayed_iput_lock); 3178 } 3179 3180 /* 3181 * This is called in transaction commit time. If there are no orphan 3182 * files in the subvolume, it removes orphan item and frees block_rsv 3183 * structure. 3184 */ 3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root) 3187 { 3188 struct btrfs_block_rsv *block_rsv; 3189 int ret; 3190 3191 if (atomic_read(&root->orphan_inodes) || 3192 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3193 return; 3194 3195 spin_lock(&root->orphan_lock); 3196 if (atomic_read(&root->orphan_inodes)) { 3197 spin_unlock(&root->orphan_lock); 3198 return; 3199 } 3200 3201 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3202 spin_unlock(&root->orphan_lock); 3203 return; 3204 } 3205 3206 block_rsv = root->orphan_block_rsv; 3207 root->orphan_block_rsv = NULL; 3208 spin_unlock(&root->orphan_lock); 3209 3210 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3211 btrfs_root_refs(&root->root_item) > 0) { 3212 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3213 root->root_key.objectid); 3214 if (ret) 3215 btrfs_abort_transaction(trans, ret); 3216 else 3217 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3218 &root->state); 3219 } 3220 3221 if (block_rsv) { 3222 WARN_ON(block_rsv->size > 0); 3223 btrfs_free_block_rsv(root, block_rsv); 3224 } 3225 } 3226 3227 /* 3228 * This creates an orphan entry for the given inode in case something goes 3229 * wrong in the middle of an unlink/truncate. 3230 * 3231 * NOTE: caller of this function should reserve 5 units of metadata for 3232 * this function. 3233 */ 3234 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3235 { 3236 struct btrfs_root *root = BTRFS_I(inode)->root; 3237 struct btrfs_block_rsv *block_rsv = NULL; 3238 int reserve = 0; 3239 int insert = 0; 3240 int ret; 3241 3242 if (!root->orphan_block_rsv) { 3243 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3244 if (!block_rsv) 3245 return -ENOMEM; 3246 } 3247 3248 spin_lock(&root->orphan_lock); 3249 if (!root->orphan_block_rsv) { 3250 root->orphan_block_rsv = block_rsv; 3251 } else if (block_rsv) { 3252 btrfs_free_block_rsv(root, block_rsv); 3253 block_rsv = NULL; 3254 } 3255 3256 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3257 &BTRFS_I(inode)->runtime_flags)) { 3258 #if 0 3259 /* 3260 * For proper ENOSPC handling, we should do orphan 3261 * cleanup when mounting. But this introduces backward 3262 * compatibility issue. 3263 */ 3264 if (!xchg(&root->orphan_item_inserted, 1)) 3265 insert = 2; 3266 else 3267 insert = 1; 3268 #endif 3269 insert = 1; 3270 atomic_inc(&root->orphan_inodes); 3271 } 3272 3273 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3274 &BTRFS_I(inode)->runtime_flags)) 3275 reserve = 1; 3276 spin_unlock(&root->orphan_lock); 3277 3278 /* grab metadata reservation from transaction handle */ 3279 if (reserve) { 3280 ret = btrfs_orphan_reserve_metadata(trans, inode); 3281 ASSERT(!ret); 3282 if (ret) { 3283 atomic_dec(&root->orphan_inodes); 3284 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3285 &BTRFS_I(inode)->runtime_flags); 3286 if (insert) 3287 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3288 &BTRFS_I(inode)->runtime_flags); 3289 return ret; 3290 } 3291 } 3292 3293 /* insert an orphan item to track this unlinked/truncated file */ 3294 if (insert >= 1) { 3295 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3296 if (ret) { 3297 atomic_dec(&root->orphan_inodes); 3298 if (reserve) { 3299 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3300 &BTRFS_I(inode)->runtime_flags); 3301 btrfs_orphan_release_metadata(inode); 3302 } 3303 if (ret != -EEXIST) { 3304 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3305 &BTRFS_I(inode)->runtime_flags); 3306 btrfs_abort_transaction(trans, ret); 3307 return ret; 3308 } 3309 } 3310 ret = 0; 3311 } 3312 3313 /* insert an orphan item to track subvolume contains orphan files */ 3314 if (insert >= 2) { 3315 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3316 root->root_key.objectid); 3317 if (ret && ret != -EEXIST) { 3318 btrfs_abort_transaction(trans, ret); 3319 return ret; 3320 } 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * We have done the truncate/delete so we can go ahead and remove the orphan 3327 * item for this particular inode. 3328 */ 3329 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3330 struct inode *inode) 3331 { 3332 struct btrfs_root *root = BTRFS_I(inode)->root; 3333 int delete_item = 0; 3334 int release_rsv = 0; 3335 int ret = 0; 3336 3337 spin_lock(&root->orphan_lock); 3338 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3339 &BTRFS_I(inode)->runtime_flags)) 3340 delete_item = 1; 3341 3342 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3343 &BTRFS_I(inode)->runtime_flags)) 3344 release_rsv = 1; 3345 spin_unlock(&root->orphan_lock); 3346 3347 if (delete_item) { 3348 atomic_dec(&root->orphan_inodes); 3349 if (trans) 3350 ret = btrfs_del_orphan_item(trans, root, 3351 btrfs_ino(inode)); 3352 } 3353 3354 if (release_rsv) 3355 btrfs_orphan_release_metadata(inode); 3356 3357 return ret; 3358 } 3359 3360 /* 3361 * this cleans up any orphans that may be left on the list from the last use 3362 * of this root. 3363 */ 3364 int btrfs_orphan_cleanup(struct btrfs_root *root) 3365 { 3366 struct btrfs_path *path; 3367 struct extent_buffer *leaf; 3368 struct btrfs_key key, found_key; 3369 struct btrfs_trans_handle *trans; 3370 struct inode *inode; 3371 u64 last_objectid = 0; 3372 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3373 3374 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3375 return 0; 3376 3377 path = btrfs_alloc_path(); 3378 if (!path) { 3379 ret = -ENOMEM; 3380 goto out; 3381 } 3382 path->reada = READA_BACK; 3383 3384 key.objectid = BTRFS_ORPHAN_OBJECTID; 3385 key.type = BTRFS_ORPHAN_ITEM_KEY; 3386 key.offset = (u64)-1; 3387 3388 while (1) { 3389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3390 if (ret < 0) 3391 goto out; 3392 3393 /* 3394 * if ret == 0 means we found what we were searching for, which 3395 * is weird, but possible, so only screw with path if we didn't 3396 * find the key and see if we have stuff that matches 3397 */ 3398 if (ret > 0) { 3399 ret = 0; 3400 if (path->slots[0] == 0) 3401 break; 3402 path->slots[0]--; 3403 } 3404 3405 /* pull out the item */ 3406 leaf = path->nodes[0]; 3407 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3408 3409 /* make sure the item matches what we want */ 3410 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3411 break; 3412 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3413 break; 3414 3415 /* release the path since we're done with it */ 3416 btrfs_release_path(path); 3417 3418 /* 3419 * this is where we are basically btrfs_lookup, without the 3420 * crossing root thing. we store the inode number in the 3421 * offset of the orphan item. 3422 */ 3423 3424 if (found_key.offset == last_objectid) { 3425 btrfs_err(root->fs_info, 3426 "Error removing orphan entry, stopping orphan cleanup"); 3427 ret = -EINVAL; 3428 goto out; 3429 } 3430 3431 last_objectid = found_key.offset; 3432 3433 found_key.objectid = found_key.offset; 3434 found_key.type = BTRFS_INODE_ITEM_KEY; 3435 found_key.offset = 0; 3436 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3437 ret = PTR_ERR_OR_ZERO(inode); 3438 if (ret && ret != -ENOENT) 3439 goto out; 3440 3441 if (ret == -ENOENT && root == root->fs_info->tree_root) { 3442 struct btrfs_root *dead_root; 3443 struct btrfs_fs_info *fs_info = root->fs_info; 3444 int is_dead_root = 0; 3445 3446 /* 3447 * this is an orphan in the tree root. Currently these 3448 * could come from 2 sources: 3449 * a) a snapshot deletion in progress 3450 * b) a free space cache inode 3451 * We need to distinguish those two, as the snapshot 3452 * orphan must not get deleted. 3453 * find_dead_roots already ran before us, so if this 3454 * is a snapshot deletion, we should find the root 3455 * in the dead_roots list 3456 */ 3457 spin_lock(&fs_info->trans_lock); 3458 list_for_each_entry(dead_root, &fs_info->dead_roots, 3459 root_list) { 3460 if (dead_root->root_key.objectid == 3461 found_key.objectid) { 3462 is_dead_root = 1; 3463 break; 3464 } 3465 } 3466 spin_unlock(&fs_info->trans_lock); 3467 if (is_dead_root) { 3468 /* prevent this orphan from being found again */ 3469 key.offset = found_key.objectid - 1; 3470 continue; 3471 } 3472 } 3473 /* 3474 * Inode is already gone but the orphan item is still there, 3475 * kill the orphan item. 3476 */ 3477 if (ret == -ENOENT) { 3478 trans = btrfs_start_transaction(root, 1); 3479 if (IS_ERR(trans)) { 3480 ret = PTR_ERR(trans); 3481 goto out; 3482 } 3483 btrfs_debug(root->fs_info, "auto deleting %Lu", 3484 found_key.objectid); 3485 ret = btrfs_del_orphan_item(trans, root, 3486 found_key.objectid); 3487 btrfs_end_transaction(trans, root); 3488 if (ret) 3489 goto out; 3490 continue; 3491 } 3492 3493 /* 3494 * add this inode to the orphan list so btrfs_orphan_del does 3495 * the proper thing when we hit it 3496 */ 3497 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3498 &BTRFS_I(inode)->runtime_flags); 3499 atomic_inc(&root->orphan_inodes); 3500 3501 /* if we have links, this was a truncate, lets do that */ 3502 if (inode->i_nlink) { 3503 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3504 iput(inode); 3505 continue; 3506 } 3507 nr_truncate++; 3508 3509 /* 1 for the orphan item deletion. */ 3510 trans = btrfs_start_transaction(root, 1); 3511 if (IS_ERR(trans)) { 3512 iput(inode); 3513 ret = PTR_ERR(trans); 3514 goto out; 3515 } 3516 ret = btrfs_orphan_add(trans, inode); 3517 btrfs_end_transaction(trans, root); 3518 if (ret) { 3519 iput(inode); 3520 goto out; 3521 } 3522 3523 ret = btrfs_truncate(inode); 3524 if (ret) 3525 btrfs_orphan_del(NULL, inode); 3526 } else { 3527 nr_unlink++; 3528 } 3529 3530 /* this will do delete_inode and everything for us */ 3531 iput(inode); 3532 if (ret) 3533 goto out; 3534 } 3535 /* release the path since we're done with it */ 3536 btrfs_release_path(path); 3537 3538 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3539 3540 if (root->orphan_block_rsv) 3541 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3542 (u64)-1); 3543 3544 if (root->orphan_block_rsv || 3545 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3546 trans = btrfs_join_transaction(root); 3547 if (!IS_ERR(trans)) 3548 btrfs_end_transaction(trans, root); 3549 } 3550 3551 if (nr_unlink) 3552 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3553 if (nr_truncate) 3554 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3555 3556 out: 3557 if (ret) 3558 btrfs_err(root->fs_info, 3559 "could not do orphan cleanup %d", ret); 3560 btrfs_free_path(path); 3561 return ret; 3562 } 3563 3564 /* 3565 * very simple check to peek ahead in the leaf looking for xattrs. If we 3566 * don't find any xattrs, we know there can't be any acls. 3567 * 3568 * slot is the slot the inode is in, objectid is the objectid of the inode 3569 */ 3570 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3571 int slot, u64 objectid, 3572 int *first_xattr_slot) 3573 { 3574 u32 nritems = btrfs_header_nritems(leaf); 3575 struct btrfs_key found_key; 3576 static u64 xattr_access = 0; 3577 static u64 xattr_default = 0; 3578 int scanned = 0; 3579 3580 if (!xattr_access) { 3581 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3582 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3583 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3584 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3585 } 3586 3587 slot++; 3588 *first_xattr_slot = -1; 3589 while (slot < nritems) { 3590 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3591 3592 /* we found a different objectid, there must not be acls */ 3593 if (found_key.objectid != objectid) 3594 return 0; 3595 3596 /* we found an xattr, assume we've got an acl */ 3597 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3598 if (*first_xattr_slot == -1) 3599 *first_xattr_slot = slot; 3600 if (found_key.offset == xattr_access || 3601 found_key.offset == xattr_default) 3602 return 1; 3603 } 3604 3605 /* 3606 * we found a key greater than an xattr key, there can't 3607 * be any acls later on 3608 */ 3609 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3610 return 0; 3611 3612 slot++; 3613 scanned++; 3614 3615 /* 3616 * it goes inode, inode backrefs, xattrs, extents, 3617 * so if there are a ton of hard links to an inode there can 3618 * be a lot of backrefs. Don't waste time searching too hard, 3619 * this is just an optimization 3620 */ 3621 if (scanned >= 8) 3622 break; 3623 } 3624 /* we hit the end of the leaf before we found an xattr or 3625 * something larger than an xattr. We have to assume the inode 3626 * has acls 3627 */ 3628 if (*first_xattr_slot == -1) 3629 *first_xattr_slot = slot; 3630 return 1; 3631 } 3632 3633 /* 3634 * read an inode from the btree into the in-memory inode 3635 */ 3636 static int btrfs_read_locked_inode(struct inode *inode) 3637 { 3638 struct btrfs_path *path; 3639 struct extent_buffer *leaf; 3640 struct btrfs_inode_item *inode_item; 3641 struct btrfs_root *root = BTRFS_I(inode)->root; 3642 struct btrfs_key location; 3643 unsigned long ptr; 3644 int maybe_acls; 3645 u32 rdev; 3646 int ret; 3647 bool filled = false; 3648 int first_xattr_slot; 3649 3650 ret = btrfs_fill_inode(inode, &rdev); 3651 if (!ret) 3652 filled = true; 3653 3654 path = btrfs_alloc_path(); 3655 if (!path) { 3656 ret = -ENOMEM; 3657 goto make_bad; 3658 } 3659 3660 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3661 3662 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3663 if (ret) { 3664 if (ret > 0) 3665 ret = -ENOENT; 3666 goto make_bad; 3667 } 3668 3669 leaf = path->nodes[0]; 3670 3671 if (filled) 3672 goto cache_index; 3673 3674 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3675 struct btrfs_inode_item); 3676 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3677 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3678 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3679 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3680 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3681 3682 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3683 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3684 3685 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3686 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3687 3688 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3689 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3690 3691 BTRFS_I(inode)->i_otime.tv_sec = 3692 btrfs_timespec_sec(leaf, &inode_item->otime); 3693 BTRFS_I(inode)->i_otime.tv_nsec = 3694 btrfs_timespec_nsec(leaf, &inode_item->otime); 3695 3696 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3697 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3698 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3699 3700 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3701 inode->i_generation = BTRFS_I(inode)->generation; 3702 inode->i_rdev = 0; 3703 rdev = btrfs_inode_rdev(leaf, inode_item); 3704 3705 BTRFS_I(inode)->index_cnt = (u64)-1; 3706 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3707 3708 cache_index: 3709 /* 3710 * If we were modified in the current generation and evicted from memory 3711 * and then re-read we need to do a full sync since we don't have any 3712 * idea about which extents were modified before we were evicted from 3713 * cache. 3714 * 3715 * This is required for both inode re-read from disk and delayed inode 3716 * in delayed_nodes_tree. 3717 */ 3718 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3719 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3720 &BTRFS_I(inode)->runtime_flags); 3721 3722 /* 3723 * We don't persist the id of the transaction where an unlink operation 3724 * against the inode was last made. So here we assume the inode might 3725 * have been evicted, and therefore the exact value of last_unlink_trans 3726 * lost, and set it to last_trans to avoid metadata inconsistencies 3727 * between the inode and its parent if the inode is fsync'ed and the log 3728 * replayed. For example, in the scenario: 3729 * 3730 * touch mydir/foo 3731 * ln mydir/foo mydir/bar 3732 * sync 3733 * unlink mydir/bar 3734 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3735 * xfs_io -c fsync mydir/foo 3736 * <power failure> 3737 * mount fs, triggers fsync log replay 3738 * 3739 * We must make sure that when we fsync our inode foo we also log its 3740 * parent inode, otherwise after log replay the parent still has the 3741 * dentry with the "bar" name but our inode foo has a link count of 1 3742 * and doesn't have an inode ref with the name "bar" anymore. 3743 * 3744 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3745 * but it guarantees correctness at the expense of occasional full 3746 * transaction commits on fsync if our inode is a directory, or if our 3747 * inode is not a directory, logging its parent unnecessarily. 3748 */ 3749 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3750 3751 path->slots[0]++; 3752 if (inode->i_nlink != 1 || 3753 path->slots[0] >= btrfs_header_nritems(leaf)) 3754 goto cache_acl; 3755 3756 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3757 if (location.objectid != btrfs_ino(inode)) 3758 goto cache_acl; 3759 3760 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3761 if (location.type == BTRFS_INODE_REF_KEY) { 3762 struct btrfs_inode_ref *ref; 3763 3764 ref = (struct btrfs_inode_ref *)ptr; 3765 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3766 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3767 struct btrfs_inode_extref *extref; 3768 3769 extref = (struct btrfs_inode_extref *)ptr; 3770 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3771 extref); 3772 } 3773 cache_acl: 3774 /* 3775 * try to precache a NULL acl entry for files that don't have 3776 * any xattrs or acls 3777 */ 3778 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3779 btrfs_ino(inode), &first_xattr_slot); 3780 if (first_xattr_slot != -1) { 3781 path->slots[0] = first_xattr_slot; 3782 ret = btrfs_load_inode_props(inode, path); 3783 if (ret) 3784 btrfs_err(root->fs_info, 3785 "error loading props for ino %llu (root %llu): %d", 3786 btrfs_ino(inode), 3787 root->root_key.objectid, ret); 3788 } 3789 btrfs_free_path(path); 3790 3791 if (!maybe_acls) 3792 cache_no_acl(inode); 3793 3794 switch (inode->i_mode & S_IFMT) { 3795 case S_IFREG: 3796 inode->i_mapping->a_ops = &btrfs_aops; 3797 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3798 inode->i_fop = &btrfs_file_operations; 3799 inode->i_op = &btrfs_file_inode_operations; 3800 break; 3801 case S_IFDIR: 3802 inode->i_fop = &btrfs_dir_file_operations; 3803 if (root == root->fs_info->tree_root) 3804 inode->i_op = &btrfs_dir_ro_inode_operations; 3805 else 3806 inode->i_op = &btrfs_dir_inode_operations; 3807 break; 3808 case S_IFLNK: 3809 inode->i_op = &btrfs_symlink_inode_operations; 3810 inode_nohighmem(inode); 3811 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3812 break; 3813 default: 3814 inode->i_op = &btrfs_special_inode_operations; 3815 init_special_inode(inode, inode->i_mode, rdev); 3816 break; 3817 } 3818 3819 btrfs_update_iflags(inode); 3820 return 0; 3821 3822 make_bad: 3823 btrfs_free_path(path); 3824 make_bad_inode(inode); 3825 return ret; 3826 } 3827 3828 /* 3829 * given a leaf and an inode, copy the inode fields into the leaf 3830 */ 3831 static void fill_inode_item(struct btrfs_trans_handle *trans, 3832 struct extent_buffer *leaf, 3833 struct btrfs_inode_item *item, 3834 struct inode *inode) 3835 { 3836 struct btrfs_map_token token; 3837 3838 btrfs_init_map_token(&token); 3839 3840 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3841 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3842 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3843 &token); 3844 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3845 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3846 3847 btrfs_set_token_timespec_sec(leaf, &item->atime, 3848 inode->i_atime.tv_sec, &token); 3849 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3850 inode->i_atime.tv_nsec, &token); 3851 3852 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3853 inode->i_mtime.tv_sec, &token); 3854 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3855 inode->i_mtime.tv_nsec, &token); 3856 3857 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3858 inode->i_ctime.tv_sec, &token); 3859 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3860 inode->i_ctime.tv_nsec, &token); 3861 3862 btrfs_set_token_timespec_sec(leaf, &item->otime, 3863 BTRFS_I(inode)->i_otime.tv_sec, &token); 3864 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3865 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3866 3867 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3868 &token); 3869 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3870 &token); 3871 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3872 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3873 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3874 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3875 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3876 } 3877 3878 /* 3879 * copy everything in the in-memory inode into the btree. 3880 */ 3881 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3882 struct btrfs_root *root, struct inode *inode) 3883 { 3884 struct btrfs_inode_item *inode_item; 3885 struct btrfs_path *path; 3886 struct extent_buffer *leaf; 3887 int ret; 3888 3889 path = btrfs_alloc_path(); 3890 if (!path) 3891 return -ENOMEM; 3892 3893 path->leave_spinning = 1; 3894 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3895 1); 3896 if (ret) { 3897 if (ret > 0) 3898 ret = -ENOENT; 3899 goto failed; 3900 } 3901 3902 leaf = path->nodes[0]; 3903 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3904 struct btrfs_inode_item); 3905 3906 fill_inode_item(trans, leaf, inode_item, inode); 3907 btrfs_mark_buffer_dirty(leaf); 3908 btrfs_set_inode_last_trans(trans, inode); 3909 ret = 0; 3910 failed: 3911 btrfs_free_path(path); 3912 return ret; 3913 } 3914 3915 /* 3916 * copy everything in the in-memory inode into the btree. 3917 */ 3918 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3919 struct btrfs_root *root, struct inode *inode) 3920 { 3921 int ret; 3922 3923 /* 3924 * If the inode is a free space inode, we can deadlock during commit 3925 * if we put it into the delayed code. 3926 * 3927 * The data relocation inode should also be directly updated 3928 * without delay 3929 */ 3930 if (!btrfs_is_free_space_inode(inode) 3931 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3932 && !root->fs_info->log_root_recovering) { 3933 btrfs_update_root_times(trans, root); 3934 3935 ret = btrfs_delayed_update_inode(trans, root, inode); 3936 if (!ret) 3937 btrfs_set_inode_last_trans(trans, inode); 3938 return ret; 3939 } 3940 3941 return btrfs_update_inode_item(trans, root, inode); 3942 } 3943 3944 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3945 struct btrfs_root *root, 3946 struct inode *inode) 3947 { 3948 int ret; 3949 3950 ret = btrfs_update_inode(trans, root, inode); 3951 if (ret == -ENOSPC) 3952 return btrfs_update_inode_item(trans, root, inode); 3953 return ret; 3954 } 3955 3956 /* 3957 * unlink helper that gets used here in inode.c and in the tree logging 3958 * recovery code. It remove a link in a directory with a given name, and 3959 * also drops the back refs in the inode to the directory 3960 */ 3961 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3962 struct btrfs_root *root, 3963 struct inode *dir, struct inode *inode, 3964 const char *name, int name_len) 3965 { 3966 struct btrfs_path *path; 3967 int ret = 0; 3968 struct extent_buffer *leaf; 3969 struct btrfs_dir_item *di; 3970 struct btrfs_key key; 3971 u64 index; 3972 u64 ino = btrfs_ino(inode); 3973 u64 dir_ino = btrfs_ino(dir); 3974 3975 path = btrfs_alloc_path(); 3976 if (!path) { 3977 ret = -ENOMEM; 3978 goto out; 3979 } 3980 3981 path->leave_spinning = 1; 3982 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3983 name, name_len, -1); 3984 if (IS_ERR(di)) { 3985 ret = PTR_ERR(di); 3986 goto err; 3987 } 3988 if (!di) { 3989 ret = -ENOENT; 3990 goto err; 3991 } 3992 leaf = path->nodes[0]; 3993 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3994 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3995 if (ret) 3996 goto err; 3997 btrfs_release_path(path); 3998 3999 /* 4000 * If we don't have dir index, we have to get it by looking up 4001 * the inode ref, since we get the inode ref, remove it directly, 4002 * it is unnecessary to do delayed deletion. 4003 * 4004 * But if we have dir index, needn't search inode ref to get it. 4005 * Since the inode ref is close to the inode item, it is better 4006 * that we delay to delete it, and just do this deletion when 4007 * we update the inode item. 4008 */ 4009 if (BTRFS_I(inode)->dir_index) { 4010 ret = btrfs_delayed_delete_inode_ref(inode); 4011 if (!ret) { 4012 index = BTRFS_I(inode)->dir_index; 4013 goto skip_backref; 4014 } 4015 } 4016 4017 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4018 dir_ino, &index); 4019 if (ret) { 4020 btrfs_info(root->fs_info, 4021 "failed to delete reference to %.*s, inode %llu parent %llu", 4022 name_len, name, ino, dir_ino); 4023 btrfs_abort_transaction(trans, ret); 4024 goto err; 4025 } 4026 skip_backref: 4027 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4028 if (ret) { 4029 btrfs_abort_transaction(trans, ret); 4030 goto err; 4031 } 4032 4033 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4034 inode, dir_ino); 4035 if (ret != 0 && ret != -ENOENT) { 4036 btrfs_abort_transaction(trans, ret); 4037 goto err; 4038 } 4039 4040 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4041 dir, index); 4042 if (ret == -ENOENT) 4043 ret = 0; 4044 else if (ret) 4045 btrfs_abort_transaction(trans, ret); 4046 err: 4047 btrfs_free_path(path); 4048 if (ret) 4049 goto out; 4050 4051 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4052 inode_inc_iversion(inode); 4053 inode_inc_iversion(dir); 4054 inode->i_ctime = dir->i_mtime = 4055 dir->i_ctime = current_fs_time(inode->i_sb); 4056 ret = btrfs_update_inode(trans, root, dir); 4057 out: 4058 return ret; 4059 } 4060 4061 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct inode *dir, struct inode *inode, 4064 const char *name, int name_len) 4065 { 4066 int ret; 4067 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4068 if (!ret) { 4069 drop_nlink(inode); 4070 ret = btrfs_update_inode(trans, root, inode); 4071 } 4072 return ret; 4073 } 4074 4075 /* 4076 * helper to start transaction for unlink and rmdir. 4077 * 4078 * unlink and rmdir are special in btrfs, they do not always free space, so 4079 * if we cannot make our reservations the normal way try and see if there is 4080 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4081 * allow the unlink to occur. 4082 */ 4083 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4084 { 4085 struct btrfs_root *root = BTRFS_I(dir)->root; 4086 4087 /* 4088 * 1 for the possible orphan item 4089 * 1 for the dir item 4090 * 1 for the dir index 4091 * 1 for the inode ref 4092 * 1 for the inode 4093 */ 4094 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4095 } 4096 4097 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4098 { 4099 struct btrfs_root *root = BTRFS_I(dir)->root; 4100 struct btrfs_trans_handle *trans; 4101 struct inode *inode = d_inode(dentry); 4102 int ret; 4103 4104 trans = __unlink_start_trans(dir); 4105 if (IS_ERR(trans)) 4106 return PTR_ERR(trans); 4107 4108 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4109 4110 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4111 dentry->d_name.name, dentry->d_name.len); 4112 if (ret) 4113 goto out; 4114 4115 if (inode->i_nlink == 0) { 4116 ret = btrfs_orphan_add(trans, inode); 4117 if (ret) 4118 goto out; 4119 } 4120 4121 out: 4122 btrfs_end_transaction(trans, root); 4123 btrfs_btree_balance_dirty(root); 4124 return ret; 4125 } 4126 4127 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4128 struct btrfs_root *root, 4129 struct inode *dir, u64 objectid, 4130 const char *name, int name_len) 4131 { 4132 struct btrfs_path *path; 4133 struct extent_buffer *leaf; 4134 struct btrfs_dir_item *di; 4135 struct btrfs_key key; 4136 u64 index; 4137 int ret; 4138 u64 dir_ino = btrfs_ino(dir); 4139 4140 path = btrfs_alloc_path(); 4141 if (!path) 4142 return -ENOMEM; 4143 4144 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4145 name, name_len, -1); 4146 if (IS_ERR_OR_NULL(di)) { 4147 if (!di) 4148 ret = -ENOENT; 4149 else 4150 ret = PTR_ERR(di); 4151 goto out; 4152 } 4153 4154 leaf = path->nodes[0]; 4155 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4156 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4157 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4158 if (ret) { 4159 btrfs_abort_transaction(trans, ret); 4160 goto out; 4161 } 4162 btrfs_release_path(path); 4163 4164 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4165 objectid, root->root_key.objectid, 4166 dir_ino, &index, name, name_len); 4167 if (ret < 0) { 4168 if (ret != -ENOENT) { 4169 btrfs_abort_transaction(trans, ret); 4170 goto out; 4171 } 4172 di = btrfs_search_dir_index_item(root, path, dir_ino, 4173 name, name_len); 4174 if (IS_ERR_OR_NULL(di)) { 4175 if (!di) 4176 ret = -ENOENT; 4177 else 4178 ret = PTR_ERR(di); 4179 btrfs_abort_transaction(trans, ret); 4180 goto out; 4181 } 4182 4183 leaf = path->nodes[0]; 4184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4185 btrfs_release_path(path); 4186 index = key.offset; 4187 } 4188 btrfs_release_path(path); 4189 4190 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4191 if (ret) { 4192 btrfs_abort_transaction(trans, ret); 4193 goto out; 4194 } 4195 4196 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4197 inode_inc_iversion(dir); 4198 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4199 ret = btrfs_update_inode_fallback(trans, root, dir); 4200 if (ret) 4201 btrfs_abort_transaction(trans, ret); 4202 out: 4203 btrfs_free_path(path); 4204 return ret; 4205 } 4206 4207 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4208 { 4209 struct inode *inode = d_inode(dentry); 4210 int err = 0; 4211 struct btrfs_root *root = BTRFS_I(dir)->root; 4212 struct btrfs_trans_handle *trans; 4213 u64 last_unlink_trans; 4214 4215 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4216 return -ENOTEMPTY; 4217 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4218 return -EPERM; 4219 4220 trans = __unlink_start_trans(dir); 4221 if (IS_ERR(trans)) 4222 return PTR_ERR(trans); 4223 4224 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4225 err = btrfs_unlink_subvol(trans, root, dir, 4226 BTRFS_I(inode)->location.objectid, 4227 dentry->d_name.name, 4228 dentry->d_name.len); 4229 goto out; 4230 } 4231 4232 err = btrfs_orphan_add(trans, inode); 4233 if (err) 4234 goto out; 4235 4236 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4237 4238 /* now the directory is empty */ 4239 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4240 dentry->d_name.name, dentry->d_name.len); 4241 if (!err) { 4242 btrfs_i_size_write(inode, 0); 4243 /* 4244 * Propagate the last_unlink_trans value of the deleted dir to 4245 * its parent directory. This is to prevent an unrecoverable 4246 * log tree in the case we do something like this: 4247 * 1) create dir foo 4248 * 2) create snapshot under dir foo 4249 * 3) delete the snapshot 4250 * 4) rmdir foo 4251 * 5) mkdir foo 4252 * 6) fsync foo or some file inside foo 4253 */ 4254 if (last_unlink_trans >= trans->transid) 4255 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4256 } 4257 out: 4258 btrfs_end_transaction(trans, root); 4259 btrfs_btree_balance_dirty(root); 4260 4261 return err; 4262 } 4263 4264 static int truncate_space_check(struct btrfs_trans_handle *trans, 4265 struct btrfs_root *root, 4266 u64 bytes_deleted) 4267 { 4268 int ret; 4269 4270 /* 4271 * This is only used to apply pressure to the enospc system, we don't 4272 * intend to use this reservation at all. 4273 */ 4274 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4275 bytes_deleted *= root->nodesize; 4276 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4277 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4278 if (!ret) { 4279 trace_btrfs_space_reservation(root->fs_info, "transaction", 4280 trans->transid, 4281 bytes_deleted, 1); 4282 trans->bytes_reserved += bytes_deleted; 4283 } 4284 return ret; 4285 4286 } 4287 4288 static int truncate_inline_extent(struct inode *inode, 4289 struct btrfs_path *path, 4290 struct btrfs_key *found_key, 4291 const u64 item_end, 4292 const u64 new_size) 4293 { 4294 struct extent_buffer *leaf = path->nodes[0]; 4295 int slot = path->slots[0]; 4296 struct btrfs_file_extent_item *fi; 4297 u32 size = (u32)(new_size - found_key->offset); 4298 struct btrfs_root *root = BTRFS_I(inode)->root; 4299 4300 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4301 4302 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4303 loff_t offset = new_size; 4304 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4305 4306 /* 4307 * Zero out the remaining of the last page of our inline extent, 4308 * instead of directly truncating our inline extent here - that 4309 * would be much more complex (decompressing all the data, then 4310 * compressing the truncated data, which might be bigger than 4311 * the size of the inline extent, resize the extent, etc). 4312 * We release the path because to get the page we might need to 4313 * read the extent item from disk (data not in the page cache). 4314 */ 4315 btrfs_release_path(path); 4316 return btrfs_truncate_block(inode, offset, page_end - offset, 4317 0); 4318 } 4319 4320 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4321 size = btrfs_file_extent_calc_inline_size(size); 4322 btrfs_truncate_item(root, path, size, 1); 4323 4324 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4325 inode_sub_bytes(inode, item_end + 1 - new_size); 4326 4327 return 0; 4328 } 4329 4330 /* 4331 * this can truncate away extent items, csum items and directory items. 4332 * It starts at a high offset and removes keys until it can't find 4333 * any higher than new_size 4334 * 4335 * csum items that cross the new i_size are truncated to the new size 4336 * as well. 4337 * 4338 * min_type is the minimum key type to truncate down to. If set to 0, this 4339 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4340 */ 4341 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4342 struct btrfs_root *root, 4343 struct inode *inode, 4344 u64 new_size, u32 min_type) 4345 { 4346 struct btrfs_path *path; 4347 struct extent_buffer *leaf; 4348 struct btrfs_file_extent_item *fi; 4349 struct btrfs_key key; 4350 struct btrfs_key found_key; 4351 u64 extent_start = 0; 4352 u64 extent_num_bytes = 0; 4353 u64 extent_offset = 0; 4354 u64 item_end = 0; 4355 u64 last_size = new_size; 4356 u32 found_type = (u8)-1; 4357 int found_extent; 4358 int del_item; 4359 int pending_del_nr = 0; 4360 int pending_del_slot = 0; 4361 int extent_type = -1; 4362 int ret; 4363 int err = 0; 4364 u64 ino = btrfs_ino(inode); 4365 u64 bytes_deleted = 0; 4366 bool be_nice = 0; 4367 bool should_throttle = 0; 4368 bool should_end = 0; 4369 4370 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4371 4372 /* 4373 * for non-free space inodes and ref cows, we want to back off from 4374 * time to time 4375 */ 4376 if (!btrfs_is_free_space_inode(inode) && 4377 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4378 be_nice = 1; 4379 4380 path = btrfs_alloc_path(); 4381 if (!path) 4382 return -ENOMEM; 4383 path->reada = READA_BACK; 4384 4385 /* 4386 * We want to drop from the next block forward in case this new size is 4387 * not block aligned since we will be keeping the last block of the 4388 * extent just the way it is. 4389 */ 4390 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4391 root == root->fs_info->tree_root) 4392 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4393 root->sectorsize), (u64)-1, 0); 4394 4395 /* 4396 * This function is also used to drop the items in the log tree before 4397 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4398 * it is used to drop the loged items. So we shouldn't kill the delayed 4399 * items. 4400 */ 4401 if (min_type == 0 && root == BTRFS_I(inode)->root) 4402 btrfs_kill_delayed_inode_items(inode); 4403 4404 key.objectid = ino; 4405 key.offset = (u64)-1; 4406 key.type = (u8)-1; 4407 4408 search_again: 4409 /* 4410 * with a 16K leaf size and 128MB extents, you can actually queue 4411 * up a huge file in a single leaf. Most of the time that 4412 * bytes_deleted is > 0, it will be huge by the time we get here 4413 */ 4414 if (be_nice && bytes_deleted > SZ_32M) { 4415 if (btrfs_should_end_transaction(trans, root)) { 4416 err = -EAGAIN; 4417 goto error; 4418 } 4419 } 4420 4421 4422 path->leave_spinning = 1; 4423 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4424 if (ret < 0) { 4425 err = ret; 4426 goto out; 4427 } 4428 4429 if (ret > 0) { 4430 /* there are no items in the tree for us to truncate, we're 4431 * done 4432 */ 4433 if (path->slots[0] == 0) 4434 goto out; 4435 path->slots[0]--; 4436 } 4437 4438 while (1) { 4439 fi = NULL; 4440 leaf = path->nodes[0]; 4441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4442 found_type = found_key.type; 4443 4444 if (found_key.objectid != ino) 4445 break; 4446 4447 if (found_type < min_type) 4448 break; 4449 4450 item_end = found_key.offset; 4451 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4452 fi = btrfs_item_ptr(leaf, path->slots[0], 4453 struct btrfs_file_extent_item); 4454 extent_type = btrfs_file_extent_type(leaf, fi); 4455 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4456 item_end += 4457 btrfs_file_extent_num_bytes(leaf, fi); 4458 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4459 item_end += btrfs_file_extent_inline_len(leaf, 4460 path->slots[0], fi); 4461 } 4462 item_end--; 4463 } 4464 if (found_type > min_type) { 4465 del_item = 1; 4466 } else { 4467 if (item_end < new_size) 4468 break; 4469 if (found_key.offset >= new_size) 4470 del_item = 1; 4471 else 4472 del_item = 0; 4473 } 4474 found_extent = 0; 4475 /* FIXME, shrink the extent if the ref count is only 1 */ 4476 if (found_type != BTRFS_EXTENT_DATA_KEY) 4477 goto delete; 4478 4479 if (del_item) 4480 last_size = found_key.offset; 4481 else 4482 last_size = new_size; 4483 4484 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4485 u64 num_dec; 4486 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4487 if (!del_item) { 4488 u64 orig_num_bytes = 4489 btrfs_file_extent_num_bytes(leaf, fi); 4490 extent_num_bytes = ALIGN(new_size - 4491 found_key.offset, 4492 root->sectorsize); 4493 btrfs_set_file_extent_num_bytes(leaf, fi, 4494 extent_num_bytes); 4495 num_dec = (orig_num_bytes - 4496 extent_num_bytes); 4497 if (test_bit(BTRFS_ROOT_REF_COWS, 4498 &root->state) && 4499 extent_start != 0) 4500 inode_sub_bytes(inode, num_dec); 4501 btrfs_mark_buffer_dirty(leaf); 4502 } else { 4503 extent_num_bytes = 4504 btrfs_file_extent_disk_num_bytes(leaf, 4505 fi); 4506 extent_offset = found_key.offset - 4507 btrfs_file_extent_offset(leaf, fi); 4508 4509 /* FIXME blocksize != 4096 */ 4510 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4511 if (extent_start != 0) { 4512 found_extent = 1; 4513 if (test_bit(BTRFS_ROOT_REF_COWS, 4514 &root->state)) 4515 inode_sub_bytes(inode, num_dec); 4516 } 4517 } 4518 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4519 /* 4520 * we can't truncate inline items that have had 4521 * special encodings 4522 */ 4523 if (!del_item && 4524 btrfs_file_extent_encryption(leaf, fi) == 0 && 4525 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4526 4527 /* 4528 * Need to release path in order to truncate a 4529 * compressed extent. So delete any accumulated 4530 * extent items so far. 4531 */ 4532 if (btrfs_file_extent_compression(leaf, fi) != 4533 BTRFS_COMPRESS_NONE && pending_del_nr) { 4534 err = btrfs_del_items(trans, root, path, 4535 pending_del_slot, 4536 pending_del_nr); 4537 if (err) { 4538 btrfs_abort_transaction(trans, 4539 err); 4540 goto error; 4541 } 4542 pending_del_nr = 0; 4543 } 4544 4545 err = truncate_inline_extent(inode, path, 4546 &found_key, 4547 item_end, 4548 new_size); 4549 if (err) { 4550 btrfs_abort_transaction(trans, err); 4551 goto error; 4552 } 4553 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4554 &root->state)) { 4555 inode_sub_bytes(inode, item_end + 1 - new_size); 4556 } 4557 } 4558 delete: 4559 if (del_item) { 4560 if (!pending_del_nr) { 4561 /* no pending yet, add ourselves */ 4562 pending_del_slot = path->slots[0]; 4563 pending_del_nr = 1; 4564 } else if (pending_del_nr && 4565 path->slots[0] + 1 == pending_del_slot) { 4566 /* hop on the pending chunk */ 4567 pending_del_nr++; 4568 pending_del_slot = path->slots[0]; 4569 } else { 4570 BUG(); 4571 } 4572 } else { 4573 break; 4574 } 4575 should_throttle = 0; 4576 4577 if (found_extent && 4578 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4579 root == root->fs_info->tree_root)) { 4580 btrfs_set_path_blocking(path); 4581 bytes_deleted += extent_num_bytes; 4582 ret = btrfs_free_extent(trans, root, extent_start, 4583 extent_num_bytes, 0, 4584 btrfs_header_owner(leaf), 4585 ino, extent_offset); 4586 BUG_ON(ret); 4587 if (btrfs_should_throttle_delayed_refs(trans, root)) 4588 btrfs_async_run_delayed_refs(root, 4589 trans->transid, 4590 trans->delayed_ref_updates * 2, 0); 4591 if (be_nice) { 4592 if (truncate_space_check(trans, root, 4593 extent_num_bytes)) { 4594 should_end = 1; 4595 } 4596 if (btrfs_should_throttle_delayed_refs(trans, 4597 root)) { 4598 should_throttle = 1; 4599 } 4600 } 4601 } 4602 4603 if (found_type == BTRFS_INODE_ITEM_KEY) 4604 break; 4605 4606 if (path->slots[0] == 0 || 4607 path->slots[0] != pending_del_slot || 4608 should_throttle || should_end) { 4609 if (pending_del_nr) { 4610 ret = btrfs_del_items(trans, root, path, 4611 pending_del_slot, 4612 pending_del_nr); 4613 if (ret) { 4614 btrfs_abort_transaction(trans, ret); 4615 goto error; 4616 } 4617 pending_del_nr = 0; 4618 } 4619 btrfs_release_path(path); 4620 if (should_throttle) { 4621 unsigned long updates = trans->delayed_ref_updates; 4622 if (updates) { 4623 trans->delayed_ref_updates = 0; 4624 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4625 if (ret && !err) 4626 err = ret; 4627 } 4628 } 4629 /* 4630 * if we failed to refill our space rsv, bail out 4631 * and let the transaction restart 4632 */ 4633 if (should_end) { 4634 err = -EAGAIN; 4635 goto error; 4636 } 4637 goto search_again; 4638 } else { 4639 path->slots[0]--; 4640 } 4641 } 4642 out: 4643 if (pending_del_nr) { 4644 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4645 pending_del_nr); 4646 if (ret) 4647 btrfs_abort_transaction(trans, ret); 4648 } 4649 error: 4650 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4651 btrfs_ordered_update_i_size(inode, last_size, NULL); 4652 4653 btrfs_free_path(path); 4654 4655 if (be_nice && bytes_deleted > SZ_32M) { 4656 unsigned long updates = trans->delayed_ref_updates; 4657 if (updates) { 4658 trans->delayed_ref_updates = 0; 4659 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4660 if (ret && !err) 4661 err = ret; 4662 } 4663 } 4664 return err; 4665 } 4666 4667 /* 4668 * btrfs_truncate_block - read, zero a chunk and write a block 4669 * @inode - inode that we're zeroing 4670 * @from - the offset to start zeroing 4671 * @len - the length to zero, 0 to zero the entire range respective to the 4672 * offset 4673 * @front - zero up to the offset instead of from the offset on 4674 * 4675 * This will find the block for the "from" offset and cow the block and zero the 4676 * part we want to zero. This is used with truncate and hole punching. 4677 */ 4678 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4679 int front) 4680 { 4681 struct address_space *mapping = inode->i_mapping; 4682 struct btrfs_root *root = BTRFS_I(inode)->root; 4683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4684 struct btrfs_ordered_extent *ordered; 4685 struct extent_state *cached_state = NULL; 4686 char *kaddr; 4687 u32 blocksize = root->sectorsize; 4688 pgoff_t index = from >> PAGE_SHIFT; 4689 unsigned offset = from & (blocksize - 1); 4690 struct page *page; 4691 gfp_t mask = btrfs_alloc_write_mask(mapping); 4692 int ret = 0; 4693 u64 block_start; 4694 u64 block_end; 4695 4696 if ((offset & (blocksize - 1)) == 0 && 4697 (!len || ((len & (blocksize - 1)) == 0))) 4698 goto out; 4699 4700 ret = btrfs_delalloc_reserve_space(inode, 4701 round_down(from, blocksize), blocksize); 4702 if (ret) 4703 goto out; 4704 4705 again: 4706 page = find_or_create_page(mapping, index, mask); 4707 if (!page) { 4708 btrfs_delalloc_release_space(inode, 4709 round_down(from, blocksize), 4710 blocksize); 4711 ret = -ENOMEM; 4712 goto out; 4713 } 4714 4715 block_start = round_down(from, blocksize); 4716 block_end = block_start + blocksize - 1; 4717 4718 if (!PageUptodate(page)) { 4719 ret = btrfs_readpage(NULL, page); 4720 lock_page(page); 4721 if (page->mapping != mapping) { 4722 unlock_page(page); 4723 put_page(page); 4724 goto again; 4725 } 4726 if (!PageUptodate(page)) { 4727 ret = -EIO; 4728 goto out_unlock; 4729 } 4730 } 4731 wait_on_page_writeback(page); 4732 4733 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4734 set_page_extent_mapped(page); 4735 4736 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4737 if (ordered) { 4738 unlock_extent_cached(io_tree, block_start, block_end, 4739 &cached_state, GFP_NOFS); 4740 unlock_page(page); 4741 put_page(page); 4742 btrfs_start_ordered_extent(inode, ordered, 1); 4743 btrfs_put_ordered_extent(ordered); 4744 goto again; 4745 } 4746 4747 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4748 EXTENT_DIRTY | EXTENT_DELALLOC | 4749 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4750 0, 0, &cached_state, GFP_NOFS); 4751 4752 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4753 &cached_state); 4754 if (ret) { 4755 unlock_extent_cached(io_tree, block_start, block_end, 4756 &cached_state, GFP_NOFS); 4757 goto out_unlock; 4758 } 4759 4760 if (offset != blocksize) { 4761 if (!len) 4762 len = blocksize - offset; 4763 kaddr = kmap(page); 4764 if (front) 4765 memset(kaddr + (block_start - page_offset(page)), 4766 0, offset); 4767 else 4768 memset(kaddr + (block_start - page_offset(page)) + offset, 4769 0, len); 4770 flush_dcache_page(page); 4771 kunmap(page); 4772 } 4773 ClearPageChecked(page); 4774 set_page_dirty(page); 4775 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4776 GFP_NOFS); 4777 4778 out_unlock: 4779 if (ret) 4780 btrfs_delalloc_release_space(inode, block_start, 4781 blocksize); 4782 unlock_page(page); 4783 put_page(page); 4784 out: 4785 return ret; 4786 } 4787 4788 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4789 u64 offset, u64 len) 4790 { 4791 struct btrfs_trans_handle *trans; 4792 int ret; 4793 4794 /* 4795 * Still need to make sure the inode looks like it's been updated so 4796 * that any holes get logged if we fsync. 4797 */ 4798 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4799 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4800 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4801 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4802 return 0; 4803 } 4804 4805 /* 4806 * 1 - for the one we're dropping 4807 * 1 - for the one we're adding 4808 * 1 - for updating the inode. 4809 */ 4810 trans = btrfs_start_transaction(root, 3); 4811 if (IS_ERR(trans)) 4812 return PTR_ERR(trans); 4813 4814 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4815 if (ret) { 4816 btrfs_abort_transaction(trans, ret); 4817 btrfs_end_transaction(trans, root); 4818 return ret; 4819 } 4820 4821 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4822 0, 0, len, 0, len, 0, 0, 0); 4823 if (ret) 4824 btrfs_abort_transaction(trans, ret); 4825 else 4826 btrfs_update_inode(trans, root, inode); 4827 btrfs_end_transaction(trans, root); 4828 return ret; 4829 } 4830 4831 /* 4832 * This function puts in dummy file extents for the area we're creating a hole 4833 * for. So if we are truncating this file to a larger size we need to insert 4834 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4835 * the range between oldsize and size 4836 */ 4837 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4838 { 4839 struct btrfs_root *root = BTRFS_I(inode)->root; 4840 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4841 struct extent_map *em = NULL; 4842 struct extent_state *cached_state = NULL; 4843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4844 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4845 u64 block_end = ALIGN(size, root->sectorsize); 4846 u64 last_byte; 4847 u64 cur_offset; 4848 u64 hole_size; 4849 int err = 0; 4850 4851 /* 4852 * If our size started in the middle of a block we need to zero out the 4853 * rest of the block before we expand the i_size, otherwise we could 4854 * expose stale data. 4855 */ 4856 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4857 if (err) 4858 return err; 4859 4860 if (size <= hole_start) 4861 return 0; 4862 4863 while (1) { 4864 struct btrfs_ordered_extent *ordered; 4865 4866 lock_extent_bits(io_tree, hole_start, block_end - 1, 4867 &cached_state); 4868 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4869 block_end - hole_start); 4870 if (!ordered) 4871 break; 4872 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4873 &cached_state, GFP_NOFS); 4874 btrfs_start_ordered_extent(inode, ordered, 1); 4875 btrfs_put_ordered_extent(ordered); 4876 } 4877 4878 cur_offset = hole_start; 4879 while (1) { 4880 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4881 block_end - cur_offset, 0); 4882 if (IS_ERR(em)) { 4883 err = PTR_ERR(em); 4884 em = NULL; 4885 break; 4886 } 4887 last_byte = min(extent_map_end(em), block_end); 4888 last_byte = ALIGN(last_byte , root->sectorsize); 4889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4890 struct extent_map *hole_em; 4891 hole_size = last_byte - cur_offset; 4892 4893 err = maybe_insert_hole(root, inode, cur_offset, 4894 hole_size); 4895 if (err) 4896 break; 4897 btrfs_drop_extent_cache(inode, cur_offset, 4898 cur_offset + hole_size - 1, 0); 4899 hole_em = alloc_extent_map(); 4900 if (!hole_em) { 4901 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4902 &BTRFS_I(inode)->runtime_flags); 4903 goto next; 4904 } 4905 hole_em->start = cur_offset; 4906 hole_em->len = hole_size; 4907 hole_em->orig_start = cur_offset; 4908 4909 hole_em->block_start = EXTENT_MAP_HOLE; 4910 hole_em->block_len = 0; 4911 hole_em->orig_block_len = 0; 4912 hole_em->ram_bytes = hole_size; 4913 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4914 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4915 hole_em->generation = root->fs_info->generation; 4916 4917 while (1) { 4918 write_lock(&em_tree->lock); 4919 err = add_extent_mapping(em_tree, hole_em, 1); 4920 write_unlock(&em_tree->lock); 4921 if (err != -EEXIST) 4922 break; 4923 btrfs_drop_extent_cache(inode, cur_offset, 4924 cur_offset + 4925 hole_size - 1, 0); 4926 } 4927 free_extent_map(hole_em); 4928 } 4929 next: 4930 free_extent_map(em); 4931 em = NULL; 4932 cur_offset = last_byte; 4933 if (cur_offset >= block_end) 4934 break; 4935 } 4936 free_extent_map(em); 4937 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4938 GFP_NOFS); 4939 return err; 4940 } 4941 4942 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4943 { 4944 struct btrfs_root *root = BTRFS_I(inode)->root; 4945 struct btrfs_trans_handle *trans; 4946 loff_t oldsize = i_size_read(inode); 4947 loff_t newsize = attr->ia_size; 4948 int mask = attr->ia_valid; 4949 int ret; 4950 4951 /* 4952 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4953 * special case where we need to update the times despite not having 4954 * these flags set. For all other operations the VFS set these flags 4955 * explicitly if it wants a timestamp update. 4956 */ 4957 if (newsize != oldsize) { 4958 inode_inc_iversion(inode); 4959 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4960 inode->i_ctime = inode->i_mtime = 4961 current_fs_time(inode->i_sb); 4962 } 4963 4964 if (newsize > oldsize) { 4965 /* 4966 * Don't do an expanding truncate while snapshoting is ongoing. 4967 * This is to ensure the snapshot captures a fully consistent 4968 * state of this file - if the snapshot captures this expanding 4969 * truncation, it must capture all writes that happened before 4970 * this truncation. 4971 */ 4972 btrfs_wait_for_snapshot_creation(root); 4973 ret = btrfs_cont_expand(inode, oldsize, newsize); 4974 if (ret) { 4975 btrfs_end_write_no_snapshoting(root); 4976 return ret; 4977 } 4978 4979 trans = btrfs_start_transaction(root, 1); 4980 if (IS_ERR(trans)) { 4981 btrfs_end_write_no_snapshoting(root); 4982 return PTR_ERR(trans); 4983 } 4984 4985 i_size_write(inode, newsize); 4986 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4987 pagecache_isize_extended(inode, oldsize, newsize); 4988 ret = btrfs_update_inode(trans, root, inode); 4989 btrfs_end_write_no_snapshoting(root); 4990 btrfs_end_transaction(trans, root); 4991 } else { 4992 4993 /* 4994 * We're truncating a file that used to have good data down to 4995 * zero. Make sure it gets into the ordered flush list so that 4996 * any new writes get down to disk quickly. 4997 */ 4998 if (newsize == 0) 4999 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5000 &BTRFS_I(inode)->runtime_flags); 5001 5002 /* 5003 * 1 for the orphan item we're going to add 5004 * 1 for the orphan item deletion. 5005 */ 5006 trans = btrfs_start_transaction(root, 2); 5007 if (IS_ERR(trans)) 5008 return PTR_ERR(trans); 5009 5010 /* 5011 * We need to do this in case we fail at _any_ point during the 5012 * actual truncate. Once we do the truncate_setsize we could 5013 * invalidate pages which forces any outstanding ordered io to 5014 * be instantly completed which will give us extents that need 5015 * to be truncated. If we fail to get an orphan inode down we 5016 * could have left over extents that were never meant to live, 5017 * so we need to guarantee from this point on that everything 5018 * will be consistent. 5019 */ 5020 ret = btrfs_orphan_add(trans, inode); 5021 btrfs_end_transaction(trans, root); 5022 if (ret) 5023 return ret; 5024 5025 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5026 truncate_setsize(inode, newsize); 5027 5028 /* Disable nonlocked read DIO to avoid the end less truncate */ 5029 btrfs_inode_block_unlocked_dio(inode); 5030 inode_dio_wait(inode); 5031 btrfs_inode_resume_unlocked_dio(inode); 5032 5033 ret = btrfs_truncate(inode); 5034 if (ret && inode->i_nlink) { 5035 int err; 5036 5037 /* 5038 * failed to truncate, disk_i_size is only adjusted down 5039 * as we remove extents, so it should represent the true 5040 * size of the inode, so reset the in memory size and 5041 * delete our orphan entry. 5042 */ 5043 trans = btrfs_join_transaction(root); 5044 if (IS_ERR(trans)) { 5045 btrfs_orphan_del(NULL, inode); 5046 return ret; 5047 } 5048 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5049 err = btrfs_orphan_del(trans, inode); 5050 if (err) 5051 btrfs_abort_transaction(trans, err); 5052 btrfs_end_transaction(trans, root); 5053 } 5054 } 5055 5056 return ret; 5057 } 5058 5059 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5060 { 5061 struct inode *inode = d_inode(dentry); 5062 struct btrfs_root *root = BTRFS_I(inode)->root; 5063 int err; 5064 5065 if (btrfs_root_readonly(root)) 5066 return -EROFS; 5067 5068 err = inode_change_ok(inode, attr); 5069 if (err) 5070 return err; 5071 5072 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5073 err = btrfs_setsize(inode, attr); 5074 if (err) 5075 return err; 5076 } 5077 5078 if (attr->ia_valid) { 5079 setattr_copy(inode, attr); 5080 inode_inc_iversion(inode); 5081 err = btrfs_dirty_inode(inode); 5082 5083 if (!err && attr->ia_valid & ATTR_MODE) 5084 err = posix_acl_chmod(inode, inode->i_mode); 5085 } 5086 5087 return err; 5088 } 5089 5090 /* 5091 * While truncating the inode pages during eviction, we get the VFS calling 5092 * btrfs_invalidatepage() against each page of the inode. This is slow because 5093 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5094 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5095 * extent_state structures over and over, wasting lots of time. 5096 * 5097 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5098 * those expensive operations on a per page basis and do only the ordered io 5099 * finishing, while we release here the extent_map and extent_state structures, 5100 * without the excessive merging and splitting. 5101 */ 5102 static void evict_inode_truncate_pages(struct inode *inode) 5103 { 5104 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5105 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5106 struct rb_node *node; 5107 5108 ASSERT(inode->i_state & I_FREEING); 5109 truncate_inode_pages_final(&inode->i_data); 5110 5111 write_lock(&map_tree->lock); 5112 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5113 struct extent_map *em; 5114 5115 node = rb_first(&map_tree->map); 5116 em = rb_entry(node, struct extent_map, rb_node); 5117 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5118 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5119 remove_extent_mapping(map_tree, em); 5120 free_extent_map(em); 5121 if (need_resched()) { 5122 write_unlock(&map_tree->lock); 5123 cond_resched(); 5124 write_lock(&map_tree->lock); 5125 } 5126 } 5127 write_unlock(&map_tree->lock); 5128 5129 /* 5130 * Keep looping until we have no more ranges in the io tree. 5131 * We can have ongoing bios started by readpages (called from readahead) 5132 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5133 * still in progress (unlocked the pages in the bio but did not yet 5134 * unlocked the ranges in the io tree). Therefore this means some 5135 * ranges can still be locked and eviction started because before 5136 * submitting those bios, which are executed by a separate task (work 5137 * queue kthread), inode references (inode->i_count) were not taken 5138 * (which would be dropped in the end io callback of each bio). 5139 * Therefore here we effectively end up waiting for those bios and 5140 * anyone else holding locked ranges without having bumped the inode's 5141 * reference count - if we don't do it, when they access the inode's 5142 * io_tree to unlock a range it may be too late, leading to an 5143 * use-after-free issue. 5144 */ 5145 spin_lock(&io_tree->lock); 5146 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5147 struct extent_state *state; 5148 struct extent_state *cached_state = NULL; 5149 u64 start; 5150 u64 end; 5151 5152 node = rb_first(&io_tree->state); 5153 state = rb_entry(node, struct extent_state, rb_node); 5154 start = state->start; 5155 end = state->end; 5156 spin_unlock(&io_tree->lock); 5157 5158 lock_extent_bits(io_tree, start, end, &cached_state); 5159 5160 /* 5161 * If still has DELALLOC flag, the extent didn't reach disk, 5162 * and its reserved space won't be freed by delayed_ref. 5163 * So we need to free its reserved space here. 5164 * (Refer to comment in btrfs_invalidatepage, case 2) 5165 * 5166 * Note, end is the bytenr of last byte, so we need + 1 here. 5167 */ 5168 if (state->state & EXTENT_DELALLOC) 5169 btrfs_qgroup_free_data(inode, start, end - start + 1); 5170 5171 clear_extent_bit(io_tree, start, end, 5172 EXTENT_LOCKED | EXTENT_DIRTY | 5173 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5174 EXTENT_DEFRAG, 1, 1, 5175 &cached_state, GFP_NOFS); 5176 5177 cond_resched(); 5178 spin_lock(&io_tree->lock); 5179 } 5180 spin_unlock(&io_tree->lock); 5181 } 5182 5183 void btrfs_evict_inode(struct inode *inode) 5184 { 5185 struct btrfs_trans_handle *trans; 5186 struct btrfs_root *root = BTRFS_I(inode)->root; 5187 struct btrfs_block_rsv *rsv, *global_rsv; 5188 int steal_from_global = 0; 5189 u64 min_size; 5190 int ret; 5191 5192 trace_btrfs_inode_evict(inode); 5193 5194 if (!root) { 5195 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5196 return; 5197 } 5198 5199 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5200 5201 evict_inode_truncate_pages(inode); 5202 5203 if (inode->i_nlink && 5204 ((btrfs_root_refs(&root->root_item) != 0 && 5205 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5206 btrfs_is_free_space_inode(inode))) 5207 goto no_delete; 5208 5209 if (is_bad_inode(inode)) { 5210 btrfs_orphan_del(NULL, inode); 5211 goto no_delete; 5212 } 5213 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5214 if (!special_file(inode->i_mode)) 5215 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5216 5217 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5218 5219 if (root->fs_info->log_root_recovering) { 5220 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5221 &BTRFS_I(inode)->runtime_flags)); 5222 goto no_delete; 5223 } 5224 5225 if (inode->i_nlink > 0) { 5226 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5227 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5228 goto no_delete; 5229 } 5230 5231 ret = btrfs_commit_inode_delayed_inode(inode); 5232 if (ret) { 5233 btrfs_orphan_del(NULL, inode); 5234 goto no_delete; 5235 } 5236 5237 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5238 if (!rsv) { 5239 btrfs_orphan_del(NULL, inode); 5240 goto no_delete; 5241 } 5242 rsv->size = min_size; 5243 rsv->failfast = 1; 5244 global_rsv = &root->fs_info->global_block_rsv; 5245 5246 btrfs_i_size_write(inode, 0); 5247 5248 /* 5249 * This is a bit simpler than btrfs_truncate since we've already 5250 * reserved our space for our orphan item in the unlink, so we just 5251 * need to reserve some slack space in case we add bytes and update 5252 * inode item when doing the truncate. 5253 */ 5254 while (1) { 5255 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5256 BTRFS_RESERVE_FLUSH_LIMIT); 5257 5258 /* 5259 * Try and steal from the global reserve since we will 5260 * likely not use this space anyway, we want to try as 5261 * hard as possible to get this to work. 5262 */ 5263 if (ret) 5264 steal_from_global++; 5265 else 5266 steal_from_global = 0; 5267 ret = 0; 5268 5269 /* 5270 * steal_from_global == 0: we reserved stuff, hooray! 5271 * steal_from_global == 1: we didn't reserve stuff, boo! 5272 * steal_from_global == 2: we've committed, still not a lot of 5273 * room but maybe we'll have room in the global reserve this 5274 * time. 5275 * steal_from_global == 3: abandon all hope! 5276 */ 5277 if (steal_from_global > 2) { 5278 btrfs_warn(root->fs_info, 5279 "Could not get space for a delete, will truncate on mount %d", 5280 ret); 5281 btrfs_orphan_del(NULL, inode); 5282 btrfs_free_block_rsv(root, rsv); 5283 goto no_delete; 5284 } 5285 5286 trans = btrfs_join_transaction(root); 5287 if (IS_ERR(trans)) { 5288 btrfs_orphan_del(NULL, inode); 5289 btrfs_free_block_rsv(root, rsv); 5290 goto no_delete; 5291 } 5292 5293 /* 5294 * We can't just steal from the global reserve, we need to make 5295 * sure there is room to do it, if not we need to commit and try 5296 * again. 5297 */ 5298 if (steal_from_global) { 5299 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5300 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5301 min_size, 0); 5302 else 5303 ret = -ENOSPC; 5304 } 5305 5306 /* 5307 * Couldn't steal from the global reserve, we have too much 5308 * pending stuff built up, commit the transaction and try it 5309 * again. 5310 */ 5311 if (ret) { 5312 ret = btrfs_commit_transaction(trans, root); 5313 if (ret) { 5314 btrfs_orphan_del(NULL, inode); 5315 btrfs_free_block_rsv(root, rsv); 5316 goto no_delete; 5317 } 5318 continue; 5319 } else { 5320 steal_from_global = 0; 5321 } 5322 5323 trans->block_rsv = rsv; 5324 5325 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5326 if (ret != -ENOSPC && ret != -EAGAIN) 5327 break; 5328 5329 trans->block_rsv = &root->fs_info->trans_block_rsv; 5330 btrfs_end_transaction(trans, root); 5331 trans = NULL; 5332 btrfs_btree_balance_dirty(root); 5333 } 5334 5335 btrfs_free_block_rsv(root, rsv); 5336 5337 /* 5338 * Errors here aren't a big deal, it just means we leave orphan items 5339 * in the tree. They will be cleaned up on the next mount. 5340 */ 5341 if (ret == 0) { 5342 trans->block_rsv = root->orphan_block_rsv; 5343 btrfs_orphan_del(trans, inode); 5344 } else { 5345 btrfs_orphan_del(NULL, inode); 5346 } 5347 5348 trans->block_rsv = &root->fs_info->trans_block_rsv; 5349 if (!(root == root->fs_info->tree_root || 5350 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5351 btrfs_return_ino(root, btrfs_ino(inode)); 5352 5353 btrfs_end_transaction(trans, root); 5354 btrfs_btree_balance_dirty(root); 5355 no_delete: 5356 btrfs_remove_delayed_node(inode); 5357 clear_inode(inode); 5358 } 5359 5360 /* 5361 * this returns the key found in the dir entry in the location pointer. 5362 * If no dir entries were found, location->objectid is 0. 5363 */ 5364 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5365 struct btrfs_key *location) 5366 { 5367 const char *name = dentry->d_name.name; 5368 int namelen = dentry->d_name.len; 5369 struct btrfs_dir_item *di; 5370 struct btrfs_path *path; 5371 struct btrfs_root *root = BTRFS_I(dir)->root; 5372 int ret = 0; 5373 5374 path = btrfs_alloc_path(); 5375 if (!path) 5376 return -ENOMEM; 5377 5378 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5379 namelen, 0); 5380 if (IS_ERR(di)) 5381 ret = PTR_ERR(di); 5382 5383 if (IS_ERR_OR_NULL(di)) 5384 goto out_err; 5385 5386 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5387 out: 5388 btrfs_free_path(path); 5389 return ret; 5390 out_err: 5391 location->objectid = 0; 5392 goto out; 5393 } 5394 5395 /* 5396 * when we hit a tree root in a directory, the btrfs part of the inode 5397 * needs to be changed to reflect the root directory of the tree root. This 5398 * is kind of like crossing a mount point. 5399 */ 5400 static int fixup_tree_root_location(struct btrfs_root *root, 5401 struct inode *dir, 5402 struct dentry *dentry, 5403 struct btrfs_key *location, 5404 struct btrfs_root **sub_root) 5405 { 5406 struct btrfs_path *path; 5407 struct btrfs_root *new_root; 5408 struct btrfs_root_ref *ref; 5409 struct extent_buffer *leaf; 5410 struct btrfs_key key; 5411 int ret; 5412 int err = 0; 5413 5414 path = btrfs_alloc_path(); 5415 if (!path) { 5416 err = -ENOMEM; 5417 goto out; 5418 } 5419 5420 err = -ENOENT; 5421 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5422 key.type = BTRFS_ROOT_REF_KEY; 5423 key.offset = location->objectid; 5424 5425 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5426 0, 0); 5427 if (ret) { 5428 if (ret < 0) 5429 err = ret; 5430 goto out; 5431 } 5432 5433 leaf = path->nodes[0]; 5434 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5435 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5436 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5437 goto out; 5438 5439 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5440 (unsigned long)(ref + 1), 5441 dentry->d_name.len); 5442 if (ret) 5443 goto out; 5444 5445 btrfs_release_path(path); 5446 5447 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5448 if (IS_ERR(new_root)) { 5449 err = PTR_ERR(new_root); 5450 goto out; 5451 } 5452 5453 *sub_root = new_root; 5454 location->objectid = btrfs_root_dirid(&new_root->root_item); 5455 location->type = BTRFS_INODE_ITEM_KEY; 5456 location->offset = 0; 5457 err = 0; 5458 out: 5459 btrfs_free_path(path); 5460 return err; 5461 } 5462 5463 static void inode_tree_add(struct inode *inode) 5464 { 5465 struct btrfs_root *root = BTRFS_I(inode)->root; 5466 struct btrfs_inode *entry; 5467 struct rb_node **p; 5468 struct rb_node *parent; 5469 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5470 u64 ino = btrfs_ino(inode); 5471 5472 if (inode_unhashed(inode)) 5473 return; 5474 parent = NULL; 5475 spin_lock(&root->inode_lock); 5476 p = &root->inode_tree.rb_node; 5477 while (*p) { 5478 parent = *p; 5479 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5480 5481 if (ino < btrfs_ino(&entry->vfs_inode)) 5482 p = &parent->rb_left; 5483 else if (ino > btrfs_ino(&entry->vfs_inode)) 5484 p = &parent->rb_right; 5485 else { 5486 WARN_ON(!(entry->vfs_inode.i_state & 5487 (I_WILL_FREE | I_FREEING))); 5488 rb_replace_node(parent, new, &root->inode_tree); 5489 RB_CLEAR_NODE(parent); 5490 spin_unlock(&root->inode_lock); 5491 return; 5492 } 5493 } 5494 rb_link_node(new, parent, p); 5495 rb_insert_color(new, &root->inode_tree); 5496 spin_unlock(&root->inode_lock); 5497 } 5498 5499 static void inode_tree_del(struct inode *inode) 5500 { 5501 struct btrfs_root *root = BTRFS_I(inode)->root; 5502 int empty = 0; 5503 5504 spin_lock(&root->inode_lock); 5505 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5506 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5507 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5508 empty = RB_EMPTY_ROOT(&root->inode_tree); 5509 } 5510 spin_unlock(&root->inode_lock); 5511 5512 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5513 synchronize_srcu(&root->fs_info->subvol_srcu); 5514 spin_lock(&root->inode_lock); 5515 empty = RB_EMPTY_ROOT(&root->inode_tree); 5516 spin_unlock(&root->inode_lock); 5517 if (empty) 5518 btrfs_add_dead_root(root); 5519 } 5520 } 5521 5522 void btrfs_invalidate_inodes(struct btrfs_root *root) 5523 { 5524 struct rb_node *node; 5525 struct rb_node *prev; 5526 struct btrfs_inode *entry; 5527 struct inode *inode; 5528 u64 objectid = 0; 5529 5530 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5531 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5532 5533 spin_lock(&root->inode_lock); 5534 again: 5535 node = root->inode_tree.rb_node; 5536 prev = NULL; 5537 while (node) { 5538 prev = node; 5539 entry = rb_entry(node, struct btrfs_inode, rb_node); 5540 5541 if (objectid < btrfs_ino(&entry->vfs_inode)) 5542 node = node->rb_left; 5543 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5544 node = node->rb_right; 5545 else 5546 break; 5547 } 5548 if (!node) { 5549 while (prev) { 5550 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5551 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5552 node = prev; 5553 break; 5554 } 5555 prev = rb_next(prev); 5556 } 5557 } 5558 while (node) { 5559 entry = rb_entry(node, struct btrfs_inode, rb_node); 5560 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5561 inode = igrab(&entry->vfs_inode); 5562 if (inode) { 5563 spin_unlock(&root->inode_lock); 5564 if (atomic_read(&inode->i_count) > 1) 5565 d_prune_aliases(inode); 5566 /* 5567 * btrfs_drop_inode will have it removed from 5568 * the inode cache when its usage count 5569 * hits zero. 5570 */ 5571 iput(inode); 5572 cond_resched(); 5573 spin_lock(&root->inode_lock); 5574 goto again; 5575 } 5576 5577 if (cond_resched_lock(&root->inode_lock)) 5578 goto again; 5579 5580 node = rb_next(node); 5581 } 5582 spin_unlock(&root->inode_lock); 5583 } 5584 5585 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5586 { 5587 struct btrfs_iget_args *args = p; 5588 inode->i_ino = args->location->objectid; 5589 memcpy(&BTRFS_I(inode)->location, args->location, 5590 sizeof(*args->location)); 5591 BTRFS_I(inode)->root = args->root; 5592 return 0; 5593 } 5594 5595 static int btrfs_find_actor(struct inode *inode, void *opaque) 5596 { 5597 struct btrfs_iget_args *args = opaque; 5598 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5599 args->root == BTRFS_I(inode)->root; 5600 } 5601 5602 static struct inode *btrfs_iget_locked(struct super_block *s, 5603 struct btrfs_key *location, 5604 struct btrfs_root *root) 5605 { 5606 struct inode *inode; 5607 struct btrfs_iget_args args; 5608 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5609 5610 args.location = location; 5611 args.root = root; 5612 5613 inode = iget5_locked(s, hashval, btrfs_find_actor, 5614 btrfs_init_locked_inode, 5615 (void *)&args); 5616 return inode; 5617 } 5618 5619 /* Get an inode object given its location and corresponding root. 5620 * Returns in *is_new if the inode was read from disk 5621 */ 5622 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5623 struct btrfs_root *root, int *new) 5624 { 5625 struct inode *inode; 5626 5627 inode = btrfs_iget_locked(s, location, root); 5628 if (!inode) 5629 return ERR_PTR(-ENOMEM); 5630 5631 if (inode->i_state & I_NEW) { 5632 int ret; 5633 5634 ret = btrfs_read_locked_inode(inode); 5635 if (!is_bad_inode(inode)) { 5636 inode_tree_add(inode); 5637 unlock_new_inode(inode); 5638 if (new) 5639 *new = 1; 5640 } else { 5641 unlock_new_inode(inode); 5642 iput(inode); 5643 ASSERT(ret < 0); 5644 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5645 } 5646 } 5647 5648 return inode; 5649 } 5650 5651 static struct inode *new_simple_dir(struct super_block *s, 5652 struct btrfs_key *key, 5653 struct btrfs_root *root) 5654 { 5655 struct inode *inode = new_inode(s); 5656 5657 if (!inode) 5658 return ERR_PTR(-ENOMEM); 5659 5660 BTRFS_I(inode)->root = root; 5661 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5662 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5663 5664 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5665 inode->i_op = &btrfs_dir_ro_inode_operations; 5666 inode->i_fop = &simple_dir_operations; 5667 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5668 inode->i_mtime = current_fs_time(inode->i_sb); 5669 inode->i_atime = inode->i_mtime; 5670 inode->i_ctime = inode->i_mtime; 5671 BTRFS_I(inode)->i_otime = inode->i_mtime; 5672 5673 return inode; 5674 } 5675 5676 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5677 { 5678 struct inode *inode; 5679 struct btrfs_root *root = BTRFS_I(dir)->root; 5680 struct btrfs_root *sub_root = root; 5681 struct btrfs_key location; 5682 int index; 5683 int ret = 0; 5684 5685 if (dentry->d_name.len > BTRFS_NAME_LEN) 5686 return ERR_PTR(-ENAMETOOLONG); 5687 5688 ret = btrfs_inode_by_name(dir, dentry, &location); 5689 if (ret < 0) 5690 return ERR_PTR(ret); 5691 5692 if (location.objectid == 0) 5693 return ERR_PTR(-ENOENT); 5694 5695 if (location.type == BTRFS_INODE_ITEM_KEY) { 5696 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5697 return inode; 5698 } 5699 5700 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5701 5702 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5703 ret = fixup_tree_root_location(root, dir, dentry, 5704 &location, &sub_root); 5705 if (ret < 0) { 5706 if (ret != -ENOENT) 5707 inode = ERR_PTR(ret); 5708 else 5709 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5710 } else { 5711 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5712 } 5713 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5714 5715 if (!IS_ERR(inode) && root != sub_root) { 5716 down_read(&root->fs_info->cleanup_work_sem); 5717 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5718 ret = btrfs_orphan_cleanup(sub_root); 5719 up_read(&root->fs_info->cleanup_work_sem); 5720 if (ret) { 5721 iput(inode); 5722 inode = ERR_PTR(ret); 5723 } 5724 } 5725 5726 return inode; 5727 } 5728 5729 static int btrfs_dentry_delete(const struct dentry *dentry) 5730 { 5731 struct btrfs_root *root; 5732 struct inode *inode = d_inode(dentry); 5733 5734 if (!inode && !IS_ROOT(dentry)) 5735 inode = d_inode(dentry->d_parent); 5736 5737 if (inode) { 5738 root = BTRFS_I(inode)->root; 5739 if (btrfs_root_refs(&root->root_item) == 0) 5740 return 1; 5741 5742 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5743 return 1; 5744 } 5745 return 0; 5746 } 5747 5748 static void btrfs_dentry_release(struct dentry *dentry) 5749 { 5750 kfree(dentry->d_fsdata); 5751 } 5752 5753 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5754 unsigned int flags) 5755 { 5756 struct inode *inode; 5757 5758 inode = btrfs_lookup_dentry(dir, dentry); 5759 if (IS_ERR(inode)) { 5760 if (PTR_ERR(inode) == -ENOENT) 5761 inode = NULL; 5762 else 5763 return ERR_CAST(inode); 5764 } 5765 5766 return d_splice_alias(inode, dentry); 5767 } 5768 5769 unsigned char btrfs_filetype_table[] = { 5770 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5771 }; 5772 5773 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5774 { 5775 struct inode *inode = file_inode(file); 5776 struct btrfs_root *root = BTRFS_I(inode)->root; 5777 struct btrfs_item *item; 5778 struct btrfs_dir_item *di; 5779 struct btrfs_key key; 5780 struct btrfs_key found_key; 5781 struct btrfs_path *path; 5782 struct list_head ins_list; 5783 struct list_head del_list; 5784 int ret; 5785 struct extent_buffer *leaf; 5786 int slot; 5787 unsigned char d_type; 5788 int over = 0; 5789 u32 di_cur; 5790 u32 di_total; 5791 u32 di_len; 5792 int key_type = BTRFS_DIR_INDEX_KEY; 5793 char tmp_name[32]; 5794 char *name_ptr; 5795 int name_len; 5796 int is_curr = 0; /* ctx->pos points to the current index? */ 5797 bool emitted; 5798 bool put = false; 5799 5800 /* FIXME, use a real flag for deciding about the key type */ 5801 if (root->fs_info->tree_root == root) 5802 key_type = BTRFS_DIR_ITEM_KEY; 5803 5804 if (!dir_emit_dots(file, ctx)) 5805 return 0; 5806 5807 path = btrfs_alloc_path(); 5808 if (!path) 5809 return -ENOMEM; 5810 5811 path->reada = READA_FORWARD; 5812 5813 if (key_type == BTRFS_DIR_INDEX_KEY) { 5814 INIT_LIST_HEAD(&ins_list); 5815 INIT_LIST_HEAD(&del_list); 5816 put = btrfs_readdir_get_delayed_items(inode, &ins_list, 5817 &del_list); 5818 } 5819 5820 key.type = key_type; 5821 key.offset = ctx->pos; 5822 key.objectid = btrfs_ino(inode); 5823 5824 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5825 if (ret < 0) 5826 goto err; 5827 5828 emitted = false; 5829 while (1) { 5830 leaf = path->nodes[0]; 5831 slot = path->slots[0]; 5832 if (slot >= btrfs_header_nritems(leaf)) { 5833 ret = btrfs_next_leaf(root, path); 5834 if (ret < 0) 5835 goto err; 5836 else if (ret > 0) 5837 break; 5838 continue; 5839 } 5840 5841 item = btrfs_item_nr(slot); 5842 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5843 5844 if (found_key.objectid != key.objectid) 5845 break; 5846 if (found_key.type != key_type) 5847 break; 5848 if (found_key.offset < ctx->pos) 5849 goto next; 5850 if (key_type == BTRFS_DIR_INDEX_KEY && 5851 btrfs_should_delete_dir_index(&del_list, 5852 found_key.offset)) 5853 goto next; 5854 5855 ctx->pos = found_key.offset; 5856 is_curr = 1; 5857 5858 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5859 di_cur = 0; 5860 di_total = btrfs_item_size(leaf, item); 5861 5862 while (di_cur < di_total) { 5863 struct btrfs_key location; 5864 5865 if (verify_dir_item(root, leaf, di)) 5866 break; 5867 5868 name_len = btrfs_dir_name_len(leaf, di); 5869 if (name_len <= sizeof(tmp_name)) { 5870 name_ptr = tmp_name; 5871 } else { 5872 name_ptr = kmalloc(name_len, GFP_KERNEL); 5873 if (!name_ptr) { 5874 ret = -ENOMEM; 5875 goto err; 5876 } 5877 } 5878 read_extent_buffer(leaf, name_ptr, 5879 (unsigned long)(di + 1), name_len); 5880 5881 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5882 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5883 5884 5885 /* is this a reference to our own snapshot? If so 5886 * skip it. 5887 * 5888 * In contrast to old kernels, we insert the snapshot's 5889 * dir item and dir index after it has been created, so 5890 * we won't find a reference to our own snapshot. We 5891 * still keep the following code for backward 5892 * compatibility. 5893 */ 5894 if (location.type == BTRFS_ROOT_ITEM_KEY && 5895 location.objectid == root->root_key.objectid) { 5896 over = 0; 5897 goto skip; 5898 } 5899 over = !dir_emit(ctx, name_ptr, name_len, 5900 location.objectid, d_type); 5901 5902 skip: 5903 if (name_ptr != tmp_name) 5904 kfree(name_ptr); 5905 5906 if (over) 5907 goto nopos; 5908 emitted = true; 5909 di_len = btrfs_dir_name_len(leaf, di) + 5910 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5911 di_cur += di_len; 5912 di = (struct btrfs_dir_item *)((char *)di + di_len); 5913 } 5914 next: 5915 path->slots[0]++; 5916 } 5917 5918 if (key_type == BTRFS_DIR_INDEX_KEY) { 5919 if (is_curr) 5920 ctx->pos++; 5921 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5922 if (ret) 5923 goto nopos; 5924 } 5925 5926 /* 5927 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5928 * it was was set to the termination value in previous call. We assume 5929 * that "." and ".." were emitted if we reach this point and set the 5930 * termination value as well for an empty directory. 5931 */ 5932 if (ctx->pos > 2 && !emitted) 5933 goto nopos; 5934 5935 /* Reached end of directory/root. Bump pos past the last item. */ 5936 ctx->pos++; 5937 5938 /* 5939 * Stop new entries from being returned after we return the last 5940 * entry. 5941 * 5942 * New directory entries are assigned a strictly increasing 5943 * offset. This means that new entries created during readdir 5944 * are *guaranteed* to be seen in the future by that readdir. 5945 * This has broken buggy programs which operate on names as 5946 * they're returned by readdir. Until we re-use freed offsets 5947 * we have this hack to stop new entries from being returned 5948 * under the assumption that they'll never reach this huge 5949 * offset. 5950 * 5951 * This is being careful not to overflow 32bit loff_t unless the 5952 * last entry requires it because doing so has broken 32bit apps 5953 * in the past. 5954 */ 5955 if (key_type == BTRFS_DIR_INDEX_KEY) { 5956 if (ctx->pos >= INT_MAX) 5957 ctx->pos = LLONG_MAX; 5958 else 5959 ctx->pos = INT_MAX; 5960 } 5961 nopos: 5962 ret = 0; 5963 err: 5964 if (put) 5965 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5966 btrfs_free_path(path); 5967 return ret; 5968 } 5969 5970 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5971 { 5972 struct btrfs_root *root = BTRFS_I(inode)->root; 5973 struct btrfs_trans_handle *trans; 5974 int ret = 0; 5975 bool nolock = false; 5976 5977 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5978 return 0; 5979 5980 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5981 nolock = true; 5982 5983 if (wbc->sync_mode == WB_SYNC_ALL) { 5984 if (nolock) 5985 trans = btrfs_join_transaction_nolock(root); 5986 else 5987 trans = btrfs_join_transaction(root); 5988 if (IS_ERR(trans)) 5989 return PTR_ERR(trans); 5990 ret = btrfs_commit_transaction(trans, root); 5991 } 5992 return ret; 5993 } 5994 5995 /* 5996 * This is somewhat expensive, updating the tree every time the 5997 * inode changes. But, it is most likely to find the inode in cache. 5998 * FIXME, needs more benchmarking...there are no reasons other than performance 5999 * to keep or drop this code. 6000 */ 6001 static int btrfs_dirty_inode(struct inode *inode) 6002 { 6003 struct btrfs_root *root = BTRFS_I(inode)->root; 6004 struct btrfs_trans_handle *trans; 6005 int ret; 6006 6007 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6008 return 0; 6009 6010 trans = btrfs_join_transaction(root); 6011 if (IS_ERR(trans)) 6012 return PTR_ERR(trans); 6013 6014 ret = btrfs_update_inode(trans, root, inode); 6015 if (ret && ret == -ENOSPC) { 6016 /* whoops, lets try again with the full transaction */ 6017 btrfs_end_transaction(trans, root); 6018 trans = btrfs_start_transaction(root, 1); 6019 if (IS_ERR(trans)) 6020 return PTR_ERR(trans); 6021 6022 ret = btrfs_update_inode(trans, root, inode); 6023 } 6024 btrfs_end_transaction(trans, root); 6025 if (BTRFS_I(inode)->delayed_node) 6026 btrfs_balance_delayed_items(root); 6027 6028 return ret; 6029 } 6030 6031 /* 6032 * This is a copy of file_update_time. We need this so we can return error on 6033 * ENOSPC for updating the inode in the case of file write and mmap writes. 6034 */ 6035 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6036 int flags) 6037 { 6038 struct btrfs_root *root = BTRFS_I(inode)->root; 6039 6040 if (btrfs_root_readonly(root)) 6041 return -EROFS; 6042 6043 if (flags & S_VERSION) 6044 inode_inc_iversion(inode); 6045 if (flags & S_CTIME) 6046 inode->i_ctime = *now; 6047 if (flags & S_MTIME) 6048 inode->i_mtime = *now; 6049 if (flags & S_ATIME) 6050 inode->i_atime = *now; 6051 return btrfs_dirty_inode(inode); 6052 } 6053 6054 /* 6055 * find the highest existing sequence number in a directory 6056 * and then set the in-memory index_cnt variable to reflect 6057 * free sequence numbers 6058 */ 6059 static int btrfs_set_inode_index_count(struct inode *inode) 6060 { 6061 struct btrfs_root *root = BTRFS_I(inode)->root; 6062 struct btrfs_key key, found_key; 6063 struct btrfs_path *path; 6064 struct extent_buffer *leaf; 6065 int ret; 6066 6067 key.objectid = btrfs_ino(inode); 6068 key.type = BTRFS_DIR_INDEX_KEY; 6069 key.offset = (u64)-1; 6070 6071 path = btrfs_alloc_path(); 6072 if (!path) 6073 return -ENOMEM; 6074 6075 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6076 if (ret < 0) 6077 goto out; 6078 /* FIXME: we should be able to handle this */ 6079 if (ret == 0) 6080 goto out; 6081 ret = 0; 6082 6083 /* 6084 * MAGIC NUMBER EXPLANATION: 6085 * since we search a directory based on f_pos we have to start at 2 6086 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6087 * else has to start at 2 6088 */ 6089 if (path->slots[0] == 0) { 6090 BTRFS_I(inode)->index_cnt = 2; 6091 goto out; 6092 } 6093 6094 path->slots[0]--; 6095 6096 leaf = path->nodes[0]; 6097 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6098 6099 if (found_key.objectid != btrfs_ino(inode) || 6100 found_key.type != BTRFS_DIR_INDEX_KEY) { 6101 BTRFS_I(inode)->index_cnt = 2; 6102 goto out; 6103 } 6104 6105 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6106 out: 6107 btrfs_free_path(path); 6108 return ret; 6109 } 6110 6111 /* 6112 * helper to find a free sequence number in a given directory. This current 6113 * code is very simple, later versions will do smarter things in the btree 6114 */ 6115 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6116 { 6117 int ret = 0; 6118 6119 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6120 ret = btrfs_inode_delayed_dir_index_count(dir); 6121 if (ret) { 6122 ret = btrfs_set_inode_index_count(dir); 6123 if (ret) 6124 return ret; 6125 } 6126 } 6127 6128 *index = BTRFS_I(dir)->index_cnt; 6129 BTRFS_I(dir)->index_cnt++; 6130 6131 return ret; 6132 } 6133 6134 static int btrfs_insert_inode_locked(struct inode *inode) 6135 { 6136 struct btrfs_iget_args args; 6137 args.location = &BTRFS_I(inode)->location; 6138 args.root = BTRFS_I(inode)->root; 6139 6140 return insert_inode_locked4(inode, 6141 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6142 btrfs_find_actor, &args); 6143 } 6144 6145 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6146 struct btrfs_root *root, 6147 struct inode *dir, 6148 const char *name, int name_len, 6149 u64 ref_objectid, u64 objectid, 6150 umode_t mode, u64 *index) 6151 { 6152 struct inode *inode; 6153 struct btrfs_inode_item *inode_item; 6154 struct btrfs_key *location; 6155 struct btrfs_path *path; 6156 struct btrfs_inode_ref *ref; 6157 struct btrfs_key key[2]; 6158 u32 sizes[2]; 6159 int nitems = name ? 2 : 1; 6160 unsigned long ptr; 6161 int ret; 6162 6163 path = btrfs_alloc_path(); 6164 if (!path) 6165 return ERR_PTR(-ENOMEM); 6166 6167 inode = new_inode(root->fs_info->sb); 6168 if (!inode) { 6169 btrfs_free_path(path); 6170 return ERR_PTR(-ENOMEM); 6171 } 6172 6173 /* 6174 * O_TMPFILE, set link count to 0, so that after this point, 6175 * we fill in an inode item with the correct link count. 6176 */ 6177 if (!name) 6178 set_nlink(inode, 0); 6179 6180 /* 6181 * we have to initialize this early, so we can reclaim the inode 6182 * number if we fail afterwards in this function. 6183 */ 6184 inode->i_ino = objectid; 6185 6186 if (dir && name) { 6187 trace_btrfs_inode_request(dir); 6188 6189 ret = btrfs_set_inode_index(dir, index); 6190 if (ret) { 6191 btrfs_free_path(path); 6192 iput(inode); 6193 return ERR_PTR(ret); 6194 } 6195 } else if (dir) { 6196 *index = 0; 6197 } 6198 /* 6199 * index_cnt is ignored for everything but a dir, 6200 * btrfs_get_inode_index_count has an explanation for the magic 6201 * number 6202 */ 6203 BTRFS_I(inode)->index_cnt = 2; 6204 BTRFS_I(inode)->dir_index = *index; 6205 BTRFS_I(inode)->root = root; 6206 BTRFS_I(inode)->generation = trans->transid; 6207 inode->i_generation = BTRFS_I(inode)->generation; 6208 6209 /* 6210 * We could have gotten an inode number from somebody who was fsynced 6211 * and then removed in this same transaction, so let's just set full 6212 * sync since it will be a full sync anyway and this will blow away the 6213 * old info in the log. 6214 */ 6215 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6216 6217 key[0].objectid = objectid; 6218 key[0].type = BTRFS_INODE_ITEM_KEY; 6219 key[0].offset = 0; 6220 6221 sizes[0] = sizeof(struct btrfs_inode_item); 6222 6223 if (name) { 6224 /* 6225 * Start new inodes with an inode_ref. This is slightly more 6226 * efficient for small numbers of hard links since they will 6227 * be packed into one item. Extended refs will kick in if we 6228 * add more hard links than can fit in the ref item. 6229 */ 6230 key[1].objectid = objectid; 6231 key[1].type = BTRFS_INODE_REF_KEY; 6232 key[1].offset = ref_objectid; 6233 6234 sizes[1] = name_len + sizeof(*ref); 6235 } 6236 6237 location = &BTRFS_I(inode)->location; 6238 location->objectid = objectid; 6239 location->offset = 0; 6240 location->type = BTRFS_INODE_ITEM_KEY; 6241 6242 ret = btrfs_insert_inode_locked(inode); 6243 if (ret < 0) 6244 goto fail; 6245 6246 path->leave_spinning = 1; 6247 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6248 if (ret != 0) 6249 goto fail_unlock; 6250 6251 inode_init_owner(inode, dir, mode); 6252 inode_set_bytes(inode, 0); 6253 6254 inode->i_mtime = current_fs_time(inode->i_sb); 6255 inode->i_atime = inode->i_mtime; 6256 inode->i_ctime = inode->i_mtime; 6257 BTRFS_I(inode)->i_otime = inode->i_mtime; 6258 6259 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6260 struct btrfs_inode_item); 6261 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6262 sizeof(*inode_item)); 6263 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6264 6265 if (name) { 6266 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6267 struct btrfs_inode_ref); 6268 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6269 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6270 ptr = (unsigned long)(ref + 1); 6271 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6272 } 6273 6274 btrfs_mark_buffer_dirty(path->nodes[0]); 6275 btrfs_free_path(path); 6276 6277 btrfs_inherit_iflags(inode, dir); 6278 6279 if (S_ISREG(mode)) { 6280 if (btrfs_test_opt(root->fs_info, NODATASUM)) 6281 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6282 if (btrfs_test_opt(root->fs_info, NODATACOW)) 6283 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6284 BTRFS_INODE_NODATASUM; 6285 } 6286 6287 inode_tree_add(inode); 6288 6289 trace_btrfs_inode_new(inode); 6290 btrfs_set_inode_last_trans(trans, inode); 6291 6292 btrfs_update_root_times(trans, root); 6293 6294 ret = btrfs_inode_inherit_props(trans, inode, dir); 6295 if (ret) 6296 btrfs_err(root->fs_info, 6297 "error inheriting props for ino %llu (root %llu): %d", 6298 btrfs_ino(inode), root->root_key.objectid, ret); 6299 6300 return inode; 6301 6302 fail_unlock: 6303 unlock_new_inode(inode); 6304 fail: 6305 if (dir && name) 6306 BTRFS_I(dir)->index_cnt--; 6307 btrfs_free_path(path); 6308 iput(inode); 6309 return ERR_PTR(ret); 6310 } 6311 6312 static inline u8 btrfs_inode_type(struct inode *inode) 6313 { 6314 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6315 } 6316 6317 /* 6318 * utility function to add 'inode' into 'parent_inode' with 6319 * a give name and a given sequence number. 6320 * if 'add_backref' is true, also insert a backref from the 6321 * inode to the parent directory. 6322 */ 6323 int btrfs_add_link(struct btrfs_trans_handle *trans, 6324 struct inode *parent_inode, struct inode *inode, 6325 const char *name, int name_len, int add_backref, u64 index) 6326 { 6327 int ret = 0; 6328 struct btrfs_key key; 6329 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6330 u64 ino = btrfs_ino(inode); 6331 u64 parent_ino = btrfs_ino(parent_inode); 6332 6333 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6334 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6335 } else { 6336 key.objectid = ino; 6337 key.type = BTRFS_INODE_ITEM_KEY; 6338 key.offset = 0; 6339 } 6340 6341 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6342 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6343 key.objectid, root->root_key.objectid, 6344 parent_ino, index, name, name_len); 6345 } else if (add_backref) { 6346 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6347 parent_ino, index); 6348 } 6349 6350 /* Nothing to clean up yet */ 6351 if (ret) 6352 return ret; 6353 6354 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6355 parent_inode, &key, 6356 btrfs_inode_type(inode), index); 6357 if (ret == -EEXIST || ret == -EOVERFLOW) 6358 goto fail_dir_item; 6359 else if (ret) { 6360 btrfs_abort_transaction(trans, ret); 6361 return ret; 6362 } 6363 6364 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6365 name_len * 2); 6366 inode_inc_iversion(parent_inode); 6367 parent_inode->i_mtime = parent_inode->i_ctime = 6368 current_fs_time(parent_inode->i_sb); 6369 ret = btrfs_update_inode(trans, root, parent_inode); 6370 if (ret) 6371 btrfs_abort_transaction(trans, ret); 6372 return ret; 6373 6374 fail_dir_item: 6375 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6376 u64 local_index; 6377 int err; 6378 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6379 key.objectid, root->root_key.objectid, 6380 parent_ino, &local_index, name, name_len); 6381 6382 } else if (add_backref) { 6383 u64 local_index; 6384 int err; 6385 6386 err = btrfs_del_inode_ref(trans, root, name, name_len, 6387 ino, parent_ino, &local_index); 6388 } 6389 return ret; 6390 } 6391 6392 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6393 struct inode *dir, struct dentry *dentry, 6394 struct inode *inode, int backref, u64 index) 6395 { 6396 int err = btrfs_add_link(trans, dir, inode, 6397 dentry->d_name.name, dentry->d_name.len, 6398 backref, index); 6399 if (err > 0) 6400 err = -EEXIST; 6401 return err; 6402 } 6403 6404 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6405 umode_t mode, dev_t rdev) 6406 { 6407 struct btrfs_trans_handle *trans; 6408 struct btrfs_root *root = BTRFS_I(dir)->root; 6409 struct inode *inode = NULL; 6410 int err; 6411 int drop_inode = 0; 6412 u64 objectid; 6413 u64 index = 0; 6414 6415 /* 6416 * 2 for inode item and ref 6417 * 2 for dir items 6418 * 1 for xattr if selinux is on 6419 */ 6420 trans = btrfs_start_transaction(root, 5); 6421 if (IS_ERR(trans)) 6422 return PTR_ERR(trans); 6423 6424 err = btrfs_find_free_ino(root, &objectid); 6425 if (err) 6426 goto out_unlock; 6427 6428 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6429 dentry->d_name.len, btrfs_ino(dir), objectid, 6430 mode, &index); 6431 if (IS_ERR(inode)) { 6432 err = PTR_ERR(inode); 6433 goto out_unlock; 6434 } 6435 6436 /* 6437 * If the active LSM wants to access the inode during 6438 * d_instantiate it needs these. Smack checks to see 6439 * if the filesystem supports xattrs by looking at the 6440 * ops vector. 6441 */ 6442 inode->i_op = &btrfs_special_inode_operations; 6443 init_special_inode(inode, inode->i_mode, rdev); 6444 6445 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6446 if (err) 6447 goto out_unlock_inode; 6448 6449 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6450 if (err) { 6451 goto out_unlock_inode; 6452 } else { 6453 btrfs_update_inode(trans, root, inode); 6454 unlock_new_inode(inode); 6455 d_instantiate(dentry, inode); 6456 } 6457 6458 out_unlock: 6459 btrfs_end_transaction(trans, root); 6460 btrfs_balance_delayed_items(root); 6461 btrfs_btree_balance_dirty(root); 6462 if (drop_inode) { 6463 inode_dec_link_count(inode); 6464 iput(inode); 6465 } 6466 return err; 6467 6468 out_unlock_inode: 6469 drop_inode = 1; 6470 unlock_new_inode(inode); 6471 goto out_unlock; 6472 6473 } 6474 6475 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6476 umode_t mode, bool excl) 6477 { 6478 struct btrfs_trans_handle *trans; 6479 struct btrfs_root *root = BTRFS_I(dir)->root; 6480 struct inode *inode = NULL; 6481 int drop_inode_on_err = 0; 6482 int err; 6483 u64 objectid; 6484 u64 index = 0; 6485 6486 /* 6487 * 2 for inode item and ref 6488 * 2 for dir items 6489 * 1 for xattr if selinux is on 6490 */ 6491 trans = btrfs_start_transaction(root, 5); 6492 if (IS_ERR(trans)) 6493 return PTR_ERR(trans); 6494 6495 err = btrfs_find_free_ino(root, &objectid); 6496 if (err) 6497 goto out_unlock; 6498 6499 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6500 dentry->d_name.len, btrfs_ino(dir), objectid, 6501 mode, &index); 6502 if (IS_ERR(inode)) { 6503 err = PTR_ERR(inode); 6504 goto out_unlock; 6505 } 6506 drop_inode_on_err = 1; 6507 /* 6508 * If the active LSM wants to access the inode during 6509 * d_instantiate it needs these. Smack checks to see 6510 * if the filesystem supports xattrs by looking at the 6511 * ops vector. 6512 */ 6513 inode->i_fop = &btrfs_file_operations; 6514 inode->i_op = &btrfs_file_inode_operations; 6515 inode->i_mapping->a_ops = &btrfs_aops; 6516 6517 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6518 if (err) 6519 goto out_unlock_inode; 6520 6521 err = btrfs_update_inode(trans, root, inode); 6522 if (err) 6523 goto out_unlock_inode; 6524 6525 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6526 if (err) 6527 goto out_unlock_inode; 6528 6529 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6530 unlock_new_inode(inode); 6531 d_instantiate(dentry, inode); 6532 6533 out_unlock: 6534 btrfs_end_transaction(trans, root); 6535 if (err && drop_inode_on_err) { 6536 inode_dec_link_count(inode); 6537 iput(inode); 6538 } 6539 btrfs_balance_delayed_items(root); 6540 btrfs_btree_balance_dirty(root); 6541 return err; 6542 6543 out_unlock_inode: 6544 unlock_new_inode(inode); 6545 goto out_unlock; 6546 6547 } 6548 6549 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6550 struct dentry *dentry) 6551 { 6552 struct btrfs_trans_handle *trans = NULL; 6553 struct btrfs_root *root = BTRFS_I(dir)->root; 6554 struct inode *inode = d_inode(old_dentry); 6555 u64 index; 6556 int err; 6557 int drop_inode = 0; 6558 6559 /* do not allow sys_link's with other subvols of the same device */ 6560 if (root->objectid != BTRFS_I(inode)->root->objectid) 6561 return -EXDEV; 6562 6563 if (inode->i_nlink >= BTRFS_LINK_MAX) 6564 return -EMLINK; 6565 6566 err = btrfs_set_inode_index(dir, &index); 6567 if (err) 6568 goto fail; 6569 6570 /* 6571 * 2 items for inode and inode ref 6572 * 2 items for dir items 6573 * 1 item for parent inode 6574 */ 6575 trans = btrfs_start_transaction(root, 5); 6576 if (IS_ERR(trans)) { 6577 err = PTR_ERR(trans); 6578 trans = NULL; 6579 goto fail; 6580 } 6581 6582 /* There are several dir indexes for this inode, clear the cache. */ 6583 BTRFS_I(inode)->dir_index = 0ULL; 6584 inc_nlink(inode); 6585 inode_inc_iversion(inode); 6586 inode->i_ctime = current_fs_time(inode->i_sb); 6587 ihold(inode); 6588 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6589 6590 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6591 6592 if (err) { 6593 drop_inode = 1; 6594 } else { 6595 struct dentry *parent = dentry->d_parent; 6596 err = btrfs_update_inode(trans, root, inode); 6597 if (err) 6598 goto fail; 6599 if (inode->i_nlink == 1) { 6600 /* 6601 * If new hard link count is 1, it's a file created 6602 * with open(2) O_TMPFILE flag. 6603 */ 6604 err = btrfs_orphan_del(trans, inode); 6605 if (err) 6606 goto fail; 6607 } 6608 d_instantiate(dentry, inode); 6609 btrfs_log_new_name(trans, inode, NULL, parent); 6610 } 6611 6612 btrfs_balance_delayed_items(root); 6613 fail: 6614 if (trans) 6615 btrfs_end_transaction(trans, root); 6616 if (drop_inode) { 6617 inode_dec_link_count(inode); 6618 iput(inode); 6619 } 6620 btrfs_btree_balance_dirty(root); 6621 return err; 6622 } 6623 6624 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6625 { 6626 struct inode *inode = NULL; 6627 struct btrfs_trans_handle *trans; 6628 struct btrfs_root *root = BTRFS_I(dir)->root; 6629 int err = 0; 6630 int drop_on_err = 0; 6631 u64 objectid = 0; 6632 u64 index = 0; 6633 6634 /* 6635 * 2 items for inode and ref 6636 * 2 items for dir items 6637 * 1 for xattr if selinux is on 6638 */ 6639 trans = btrfs_start_transaction(root, 5); 6640 if (IS_ERR(trans)) 6641 return PTR_ERR(trans); 6642 6643 err = btrfs_find_free_ino(root, &objectid); 6644 if (err) 6645 goto out_fail; 6646 6647 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6648 dentry->d_name.len, btrfs_ino(dir), objectid, 6649 S_IFDIR | mode, &index); 6650 if (IS_ERR(inode)) { 6651 err = PTR_ERR(inode); 6652 goto out_fail; 6653 } 6654 6655 drop_on_err = 1; 6656 /* these must be set before we unlock the inode */ 6657 inode->i_op = &btrfs_dir_inode_operations; 6658 inode->i_fop = &btrfs_dir_file_operations; 6659 6660 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6661 if (err) 6662 goto out_fail_inode; 6663 6664 btrfs_i_size_write(inode, 0); 6665 err = btrfs_update_inode(trans, root, inode); 6666 if (err) 6667 goto out_fail_inode; 6668 6669 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6670 dentry->d_name.len, 0, index); 6671 if (err) 6672 goto out_fail_inode; 6673 6674 d_instantiate(dentry, inode); 6675 /* 6676 * mkdir is special. We're unlocking after we call d_instantiate 6677 * to avoid a race with nfsd calling d_instantiate. 6678 */ 6679 unlock_new_inode(inode); 6680 drop_on_err = 0; 6681 6682 out_fail: 6683 btrfs_end_transaction(trans, root); 6684 if (drop_on_err) { 6685 inode_dec_link_count(inode); 6686 iput(inode); 6687 } 6688 btrfs_balance_delayed_items(root); 6689 btrfs_btree_balance_dirty(root); 6690 return err; 6691 6692 out_fail_inode: 6693 unlock_new_inode(inode); 6694 goto out_fail; 6695 } 6696 6697 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6698 static struct extent_map *next_extent_map(struct extent_map *em) 6699 { 6700 struct rb_node *next; 6701 6702 next = rb_next(&em->rb_node); 6703 if (!next) 6704 return NULL; 6705 return container_of(next, struct extent_map, rb_node); 6706 } 6707 6708 static struct extent_map *prev_extent_map(struct extent_map *em) 6709 { 6710 struct rb_node *prev; 6711 6712 prev = rb_prev(&em->rb_node); 6713 if (!prev) 6714 return NULL; 6715 return container_of(prev, struct extent_map, rb_node); 6716 } 6717 6718 /* helper for btfs_get_extent. Given an existing extent in the tree, 6719 * the existing extent is the nearest extent to map_start, 6720 * and an extent that you want to insert, deal with overlap and insert 6721 * the best fitted new extent into the tree. 6722 */ 6723 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6724 struct extent_map *existing, 6725 struct extent_map *em, 6726 u64 map_start) 6727 { 6728 struct extent_map *prev; 6729 struct extent_map *next; 6730 u64 start; 6731 u64 end; 6732 u64 start_diff; 6733 6734 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6735 6736 if (existing->start > map_start) { 6737 next = existing; 6738 prev = prev_extent_map(next); 6739 } else { 6740 prev = existing; 6741 next = next_extent_map(prev); 6742 } 6743 6744 start = prev ? extent_map_end(prev) : em->start; 6745 start = max_t(u64, start, em->start); 6746 end = next ? next->start : extent_map_end(em); 6747 end = min_t(u64, end, extent_map_end(em)); 6748 start_diff = start - em->start; 6749 em->start = start; 6750 em->len = end - start; 6751 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6752 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6753 em->block_start += start_diff; 6754 em->block_len -= start_diff; 6755 } 6756 return add_extent_mapping(em_tree, em, 0); 6757 } 6758 6759 static noinline int uncompress_inline(struct btrfs_path *path, 6760 struct page *page, 6761 size_t pg_offset, u64 extent_offset, 6762 struct btrfs_file_extent_item *item) 6763 { 6764 int ret; 6765 struct extent_buffer *leaf = path->nodes[0]; 6766 char *tmp; 6767 size_t max_size; 6768 unsigned long inline_size; 6769 unsigned long ptr; 6770 int compress_type; 6771 6772 WARN_ON(pg_offset != 0); 6773 compress_type = btrfs_file_extent_compression(leaf, item); 6774 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6775 inline_size = btrfs_file_extent_inline_item_len(leaf, 6776 btrfs_item_nr(path->slots[0])); 6777 tmp = kmalloc(inline_size, GFP_NOFS); 6778 if (!tmp) 6779 return -ENOMEM; 6780 ptr = btrfs_file_extent_inline_start(item); 6781 6782 read_extent_buffer(leaf, tmp, ptr, inline_size); 6783 6784 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6785 ret = btrfs_decompress(compress_type, tmp, page, 6786 extent_offset, inline_size, max_size); 6787 kfree(tmp); 6788 return ret; 6789 } 6790 6791 /* 6792 * a bit scary, this does extent mapping from logical file offset to the disk. 6793 * the ugly parts come from merging extents from the disk with the in-ram 6794 * representation. This gets more complex because of the data=ordered code, 6795 * where the in-ram extents might be locked pending data=ordered completion. 6796 * 6797 * This also copies inline extents directly into the page. 6798 */ 6799 6800 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6801 size_t pg_offset, u64 start, u64 len, 6802 int create) 6803 { 6804 int ret; 6805 int err = 0; 6806 u64 extent_start = 0; 6807 u64 extent_end = 0; 6808 u64 objectid = btrfs_ino(inode); 6809 u32 found_type; 6810 struct btrfs_path *path = NULL; 6811 struct btrfs_root *root = BTRFS_I(inode)->root; 6812 struct btrfs_file_extent_item *item; 6813 struct extent_buffer *leaf; 6814 struct btrfs_key found_key; 6815 struct extent_map *em = NULL; 6816 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6818 struct btrfs_trans_handle *trans = NULL; 6819 const bool new_inline = !page || create; 6820 6821 again: 6822 read_lock(&em_tree->lock); 6823 em = lookup_extent_mapping(em_tree, start, len); 6824 if (em) 6825 em->bdev = root->fs_info->fs_devices->latest_bdev; 6826 read_unlock(&em_tree->lock); 6827 6828 if (em) { 6829 if (em->start > start || em->start + em->len <= start) 6830 free_extent_map(em); 6831 else if (em->block_start == EXTENT_MAP_INLINE && page) 6832 free_extent_map(em); 6833 else 6834 goto out; 6835 } 6836 em = alloc_extent_map(); 6837 if (!em) { 6838 err = -ENOMEM; 6839 goto out; 6840 } 6841 em->bdev = root->fs_info->fs_devices->latest_bdev; 6842 em->start = EXTENT_MAP_HOLE; 6843 em->orig_start = EXTENT_MAP_HOLE; 6844 em->len = (u64)-1; 6845 em->block_len = (u64)-1; 6846 6847 if (!path) { 6848 path = btrfs_alloc_path(); 6849 if (!path) { 6850 err = -ENOMEM; 6851 goto out; 6852 } 6853 /* 6854 * Chances are we'll be called again, so go ahead and do 6855 * readahead 6856 */ 6857 path->reada = READA_FORWARD; 6858 } 6859 6860 ret = btrfs_lookup_file_extent(trans, root, path, 6861 objectid, start, trans != NULL); 6862 if (ret < 0) { 6863 err = ret; 6864 goto out; 6865 } 6866 6867 if (ret != 0) { 6868 if (path->slots[0] == 0) 6869 goto not_found; 6870 path->slots[0]--; 6871 } 6872 6873 leaf = path->nodes[0]; 6874 item = btrfs_item_ptr(leaf, path->slots[0], 6875 struct btrfs_file_extent_item); 6876 /* are we inside the extent that was found? */ 6877 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6878 found_type = found_key.type; 6879 if (found_key.objectid != objectid || 6880 found_type != BTRFS_EXTENT_DATA_KEY) { 6881 /* 6882 * If we backup past the first extent we want to move forward 6883 * and see if there is an extent in front of us, otherwise we'll 6884 * say there is a hole for our whole search range which can 6885 * cause problems. 6886 */ 6887 extent_end = start; 6888 goto next; 6889 } 6890 6891 found_type = btrfs_file_extent_type(leaf, item); 6892 extent_start = found_key.offset; 6893 if (found_type == BTRFS_FILE_EXTENT_REG || 6894 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6895 extent_end = extent_start + 6896 btrfs_file_extent_num_bytes(leaf, item); 6897 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6898 size_t size; 6899 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6900 extent_end = ALIGN(extent_start + size, root->sectorsize); 6901 } 6902 next: 6903 if (start >= extent_end) { 6904 path->slots[0]++; 6905 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6906 ret = btrfs_next_leaf(root, path); 6907 if (ret < 0) { 6908 err = ret; 6909 goto out; 6910 } 6911 if (ret > 0) 6912 goto not_found; 6913 leaf = path->nodes[0]; 6914 } 6915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6916 if (found_key.objectid != objectid || 6917 found_key.type != BTRFS_EXTENT_DATA_KEY) 6918 goto not_found; 6919 if (start + len <= found_key.offset) 6920 goto not_found; 6921 if (start > found_key.offset) 6922 goto next; 6923 em->start = start; 6924 em->orig_start = start; 6925 em->len = found_key.offset - start; 6926 goto not_found_em; 6927 } 6928 6929 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6930 6931 if (found_type == BTRFS_FILE_EXTENT_REG || 6932 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6933 goto insert; 6934 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6935 unsigned long ptr; 6936 char *map; 6937 size_t size; 6938 size_t extent_offset; 6939 size_t copy_size; 6940 6941 if (new_inline) 6942 goto out; 6943 6944 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6945 extent_offset = page_offset(page) + pg_offset - extent_start; 6946 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6947 size - extent_offset); 6948 em->start = extent_start + extent_offset; 6949 em->len = ALIGN(copy_size, root->sectorsize); 6950 em->orig_block_len = em->len; 6951 em->orig_start = em->start; 6952 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6953 if (create == 0 && !PageUptodate(page)) { 6954 if (btrfs_file_extent_compression(leaf, item) != 6955 BTRFS_COMPRESS_NONE) { 6956 ret = uncompress_inline(path, page, pg_offset, 6957 extent_offset, item); 6958 if (ret) { 6959 err = ret; 6960 goto out; 6961 } 6962 } else { 6963 map = kmap(page); 6964 read_extent_buffer(leaf, map + pg_offset, ptr, 6965 copy_size); 6966 if (pg_offset + copy_size < PAGE_SIZE) { 6967 memset(map + pg_offset + copy_size, 0, 6968 PAGE_SIZE - pg_offset - 6969 copy_size); 6970 } 6971 kunmap(page); 6972 } 6973 flush_dcache_page(page); 6974 } else if (create && PageUptodate(page)) { 6975 BUG(); 6976 if (!trans) { 6977 kunmap(page); 6978 free_extent_map(em); 6979 em = NULL; 6980 6981 btrfs_release_path(path); 6982 trans = btrfs_join_transaction(root); 6983 6984 if (IS_ERR(trans)) 6985 return ERR_CAST(trans); 6986 goto again; 6987 } 6988 map = kmap(page); 6989 write_extent_buffer(leaf, map + pg_offset, ptr, 6990 copy_size); 6991 kunmap(page); 6992 btrfs_mark_buffer_dirty(leaf); 6993 } 6994 set_extent_uptodate(io_tree, em->start, 6995 extent_map_end(em) - 1, NULL, GFP_NOFS); 6996 goto insert; 6997 } 6998 not_found: 6999 em->start = start; 7000 em->orig_start = start; 7001 em->len = len; 7002 not_found_em: 7003 em->block_start = EXTENT_MAP_HOLE; 7004 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7005 insert: 7006 btrfs_release_path(path); 7007 if (em->start > start || extent_map_end(em) <= start) { 7008 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 7009 em->start, em->len, start, len); 7010 err = -EIO; 7011 goto out; 7012 } 7013 7014 err = 0; 7015 write_lock(&em_tree->lock); 7016 ret = add_extent_mapping(em_tree, em, 0); 7017 /* it is possible that someone inserted the extent into the tree 7018 * while we had the lock dropped. It is also possible that 7019 * an overlapping map exists in the tree 7020 */ 7021 if (ret == -EEXIST) { 7022 struct extent_map *existing; 7023 7024 ret = 0; 7025 7026 existing = search_extent_mapping(em_tree, start, len); 7027 /* 7028 * existing will always be non-NULL, since there must be 7029 * extent causing the -EEXIST. 7030 */ 7031 if (existing->start == em->start && 7032 extent_map_end(existing) == extent_map_end(em) && 7033 em->block_start == existing->block_start) { 7034 /* 7035 * these two extents are the same, it happens 7036 * with inlines especially 7037 */ 7038 free_extent_map(em); 7039 em = existing; 7040 err = 0; 7041 7042 } else if (start >= extent_map_end(existing) || 7043 start <= existing->start) { 7044 /* 7045 * The existing extent map is the one nearest to 7046 * the [start, start + len) range which overlaps 7047 */ 7048 err = merge_extent_mapping(em_tree, existing, 7049 em, start); 7050 free_extent_map(existing); 7051 if (err) { 7052 free_extent_map(em); 7053 em = NULL; 7054 } 7055 } else { 7056 free_extent_map(em); 7057 em = existing; 7058 err = 0; 7059 } 7060 } 7061 write_unlock(&em_tree->lock); 7062 out: 7063 7064 trace_btrfs_get_extent(root, em); 7065 7066 btrfs_free_path(path); 7067 if (trans) { 7068 ret = btrfs_end_transaction(trans, root); 7069 if (!err) 7070 err = ret; 7071 } 7072 if (err) { 7073 free_extent_map(em); 7074 return ERR_PTR(err); 7075 } 7076 BUG_ON(!em); /* Error is always set */ 7077 return em; 7078 } 7079 7080 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7081 size_t pg_offset, u64 start, u64 len, 7082 int create) 7083 { 7084 struct extent_map *em; 7085 struct extent_map *hole_em = NULL; 7086 u64 range_start = start; 7087 u64 end; 7088 u64 found; 7089 u64 found_end; 7090 int err = 0; 7091 7092 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7093 if (IS_ERR(em)) 7094 return em; 7095 if (em) { 7096 /* 7097 * if our em maps to 7098 * - a hole or 7099 * - a pre-alloc extent, 7100 * there might actually be delalloc bytes behind it. 7101 */ 7102 if (em->block_start != EXTENT_MAP_HOLE && 7103 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7104 return em; 7105 else 7106 hole_em = em; 7107 } 7108 7109 /* check to see if we've wrapped (len == -1 or similar) */ 7110 end = start + len; 7111 if (end < start) 7112 end = (u64)-1; 7113 else 7114 end -= 1; 7115 7116 em = NULL; 7117 7118 /* ok, we didn't find anything, lets look for delalloc */ 7119 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7120 end, len, EXTENT_DELALLOC, 1); 7121 found_end = range_start + found; 7122 if (found_end < range_start) 7123 found_end = (u64)-1; 7124 7125 /* 7126 * we didn't find anything useful, return 7127 * the original results from get_extent() 7128 */ 7129 if (range_start > end || found_end <= start) { 7130 em = hole_em; 7131 hole_em = NULL; 7132 goto out; 7133 } 7134 7135 /* adjust the range_start to make sure it doesn't 7136 * go backwards from the start they passed in 7137 */ 7138 range_start = max(start, range_start); 7139 found = found_end - range_start; 7140 7141 if (found > 0) { 7142 u64 hole_start = start; 7143 u64 hole_len = len; 7144 7145 em = alloc_extent_map(); 7146 if (!em) { 7147 err = -ENOMEM; 7148 goto out; 7149 } 7150 /* 7151 * when btrfs_get_extent can't find anything it 7152 * returns one huge hole 7153 * 7154 * make sure what it found really fits our range, and 7155 * adjust to make sure it is based on the start from 7156 * the caller 7157 */ 7158 if (hole_em) { 7159 u64 calc_end = extent_map_end(hole_em); 7160 7161 if (calc_end <= start || (hole_em->start > end)) { 7162 free_extent_map(hole_em); 7163 hole_em = NULL; 7164 } else { 7165 hole_start = max(hole_em->start, start); 7166 hole_len = calc_end - hole_start; 7167 } 7168 } 7169 em->bdev = NULL; 7170 if (hole_em && range_start > hole_start) { 7171 /* our hole starts before our delalloc, so we 7172 * have to return just the parts of the hole 7173 * that go until the delalloc starts 7174 */ 7175 em->len = min(hole_len, 7176 range_start - hole_start); 7177 em->start = hole_start; 7178 em->orig_start = hole_start; 7179 /* 7180 * don't adjust block start at all, 7181 * it is fixed at EXTENT_MAP_HOLE 7182 */ 7183 em->block_start = hole_em->block_start; 7184 em->block_len = hole_len; 7185 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7186 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7187 } else { 7188 em->start = range_start; 7189 em->len = found; 7190 em->orig_start = range_start; 7191 em->block_start = EXTENT_MAP_DELALLOC; 7192 em->block_len = found; 7193 } 7194 } else if (hole_em) { 7195 return hole_em; 7196 } 7197 out: 7198 7199 free_extent_map(hole_em); 7200 if (err) { 7201 free_extent_map(em); 7202 return ERR_PTR(err); 7203 } 7204 return em; 7205 } 7206 7207 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7208 const u64 start, 7209 const u64 len, 7210 const u64 orig_start, 7211 const u64 block_start, 7212 const u64 block_len, 7213 const u64 orig_block_len, 7214 const u64 ram_bytes, 7215 const int type) 7216 { 7217 struct extent_map *em = NULL; 7218 int ret; 7219 7220 down_read(&BTRFS_I(inode)->dio_sem); 7221 if (type != BTRFS_ORDERED_NOCOW) { 7222 em = create_pinned_em(inode, start, len, orig_start, 7223 block_start, block_len, orig_block_len, 7224 ram_bytes, type); 7225 if (IS_ERR(em)) 7226 goto out; 7227 } 7228 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7229 len, block_len, type); 7230 if (ret) { 7231 if (em) { 7232 free_extent_map(em); 7233 btrfs_drop_extent_cache(inode, start, 7234 start + len - 1, 0); 7235 } 7236 em = ERR_PTR(ret); 7237 } 7238 out: 7239 up_read(&BTRFS_I(inode)->dio_sem); 7240 7241 return em; 7242 } 7243 7244 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7245 u64 start, u64 len) 7246 { 7247 struct btrfs_root *root = BTRFS_I(inode)->root; 7248 struct extent_map *em; 7249 struct btrfs_key ins; 7250 u64 alloc_hint; 7251 int ret; 7252 7253 alloc_hint = get_extent_allocation_hint(inode, start, len); 7254 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7255 alloc_hint, &ins, 1, 1); 7256 if (ret) 7257 return ERR_PTR(ret); 7258 7259 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7260 ins.objectid, ins.offset, ins.offset, 7261 ins.offset, 0); 7262 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7263 if (IS_ERR(em)) 7264 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7265 7266 return em; 7267 } 7268 7269 /* 7270 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7271 * block must be cow'd 7272 */ 7273 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7274 u64 *orig_start, u64 *orig_block_len, 7275 u64 *ram_bytes) 7276 { 7277 struct btrfs_trans_handle *trans; 7278 struct btrfs_path *path; 7279 int ret; 7280 struct extent_buffer *leaf; 7281 struct btrfs_root *root = BTRFS_I(inode)->root; 7282 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7283 struct btrfs_file_extent_item *fi; 7284 struct btrfs_key key; 7285 u64 disk_bytenr; 7286 u64 backref_offset; 7287 u64 extent_end; 7288 u64 num_bytes; 7289 int slot; 7290 int found_type; 7291 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7292 7293 path = btrfs_alloc_path(); 7294 if (!path) 7295 return -ENOMEM; 7296 7297 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7298 offset, 0); 7299 if (ret < 0) 7300 goto out; 7301 7302 slot = path->slots[0]; 7303 if (ret == 1) { 7304 if (slot == 0) { 7305 /* can't find the item, must cow */ 7306 ret = 0; 7307 goto out; 7308 } 7309 slot--; 7310 } 7311 ret = 0; 7312 leaf = path->nodes[0]; 7313 btrfs_item_key_to_cpu(leaf, &key, slot); 7314 if (key.objectid != btrfs_ino(inode) || 7315 key.type != BTRFS_EXTENT_DATA_KEY) { 7316 /* not our file or wrong item type, must cow */ 7317 goto out; 7318 } 7319 7320 if (key.offset > offset) { 7321 /* Wrong offset, must cow */ 7322 goto out; 7323 } 7324 7325 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7326 found_type = btrfs_file_extent_type(leaf, fi); 7327 if (found_type != BTRFS_FILE_EXTENT_REG && 7328 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7329 /* not a regular extent, must cow */ 7330 goto out; 7331 } 7332 7333 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7334 goto out; 7335 7336 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7337 if (extent_end <= offset) 7338 goto out; 7339 7340 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7341 if (disk_bytenr == 0) 7342 goto out; 7343 7344 if (btrfs_file_extent_compression(leaf, fi) || 7345 btrfs_file_extent_encryption(leaf, fi) || 7346 btrfs_file_extent_other_encoding(leaf, fi)) 7347 goto out; 7348 7349 backref_offset = btrfs_file_extent_offset(leaf, fi); 7350 7351 if (orig_start) { 7352 *orig_start = key.offset - backref_offset; 7353 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7354 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7355 } 7356 7357 if (btrfs_extent_readonly(root, disk_bytenr)) 7358 goto out; 7359 7360 num_bytes = min(offset + *len, extent_end) - offset; 7361 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7362 u64 range_end; 7363 7364 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7365 ret = test_range_bit(io_tree, offset, range_end, 7366 EXTENT_DELALLOC, 0, NULL); 7367 if (ret) { 7368 ret = -EAGAIN; 7369 goto out; 7370 } 7371 } 7372 7373 btrfs_release_path(path); 7374 7375 /* 7376 * look for other files referencing this extent, if we 7377 * find any we must cow 7378 */ 7379 trans = btrfs_join_transaction(root); 7380 if (IS_ERR(trans)) { 7381 ret = 0; 7382 goto out; 7383 } 7384 7385 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7386 key.offset - backref_offset, disk_bytenr); 7387 btrfs_end_transaction(trans, root); 7388 if (ret) { 7389 ret = 0; 7390 goto out; 7391 } 7392 7393 /* 7394 * adjust disk_bytenr and num_bytes to cover just the bytes 7395 * in this extent we are about to write. If there 7396 * are any csums in that range we have to cow in order 7397 * to keep the csums correct 7398 */ 7399 disk_bytenr += backref_offset; 7400 disk_bytenr += offset - key.offset; 7401 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7402 goto out; 7403 /* 7404 * all of the above have passed, it is safe to overwrite this extent 7405 * without cow 7406 */ 7407 *len = num_bytes; 7408 ret = 1; 7409 out: 7410 btrfs_free_path(path); 7411 return ret; 7412 } 7413 7414 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7415 { 7416 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7417 int found = false; 7418 void **pagep = NULL; 7419 struct page *page = NULL; 7420 int start_idx; 7421 int end_idx; 7422 7423 start_idx = start >> PAGE_SHIFT; 7424 7425 /* 7426 * end is the last byte in the last page. end == start is legal 7427 */ 7428 end_idx = end >> PAGE_SHIFT; 7429 7430 rcu_read_lock(); 7431 7432 /* Most of the code in this while loop is lifted from 7433 * find_get_page. It's been modified to begin searching from a 7434 * page and return just the first page found in that range. If the 7435 * found idx is less than or equal to the end idx then we know that 7436 * a page exists. If no pages are found or if those pages are 7437 * outside of the range then we're fine (yay!) */ 7438 while (page == NULL && 7439 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7440 page = radix_tree_deref_slot(pagep); 7441 if (unlikely(!page)) 7442 break; 7443 7444 if (radix_tree_exception(page)) { 7445 if (radix_tree_deref_retry(page)) { 7446 page = NULL; 7447 continue; 7448 } 7449 /* 7450 * Otherwise, shmem/tmpfs must be storing a swap entry 7451 * here as an exceptional entry: so return it without 7452 * attempting to raise page count. 7453 */ 7454 page = NULL; 7455 break; /* TODO: Is this relevant for this use case? */ 7456 } 7457 7458 if (!page_cache_get_speculative(page)) { 7459 page = NULL; 7460 continue; 7461 } 7462 7463 /* 7464 * Has the page moved? 7465 * This is part of the lockless pagecache protocol. See 7466 * include/linux/pagemap.h for details. 7467 */ 7468 if (unlikely(page != *pagep)) { 7469 put_page(page); 7470 page = NULL; 7471 } 7472 } 7473 7474 if (page) { 7475 if (page->index <= end_idx) 7476 found = true; 7477 put_page(page); 7478 } 7479 7480 rcu_read_unlock(); 7481 return found; 7482 } 7483 7484 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7485 struct extent_state **cached_state, int writing) 7486 { 7487 struct btrfs_ordered_extent *ordered; 7488 int ret = 0; 7489 7490 while (1) { 7491 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7492 cached_state); 7493 /* 7494 * We're concerned with the entire range that we're going to be 7495 * doing DIO to, so we need to make sure there's no ordered 7496 * extents in this range. 7497 */ 7498 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7499 lockend - lockstart + 1); 7500 7501 /* 7502 * We need to make sure there are no buffered pages in this 7503 * range either, we could have raced between the invalidate in 7504 * generic_file_direct_write and locking the extent. The 7505 * invalidate needs to happen so that reads after a write do not 7506 * get stale data. 7507 */ 7508 if (!ordered && 7509 (!writing || 7510 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7511 break; 7512 7513 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7514 cached_state, GFP_NOFS); 7515 7516 if (ordered) { 7517 /* 7518 * If we are doing a DIO read and the ordered extent we 7519 * found is for a buffered write, we can not wait for it 7520 * to complete and retry, because if we do so we can 7521 * deadlock with concurrent buffered writes on page 7522 * locks. This happens only if our DIO read covers more 7523 * than one extent map, if at this point has already 7524 * created an ordered extent for a previous extent map 7525 * and locked its range in the inode's io tree, and a 7526 * concurrent write against that previous extent map's 7527 * range and this range started (we unlock the ranges 7528 * in the io tree only when the bios complete and 7529 * buffered writes always lock pages before attempting 7530 * to lock range in the io tree). 7531 */ 7532 if (writing || 7533 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7534 btrfs_start_ordered_extent(inode, ordered, 1); 7535 else 7536 ret = -ENOTBLK; 7537 btrfs_put_ordered_extent(ordered); 7538 } else { 7539 /* 7540 * We could trigger writeback for this range (and wait 7541 * for it to complete) and then invalidate the pages for 7542 * this range (through invalidate_inode_pages2_range()), 7543 * but that can lead us to a deadlock with a concurrent 7544 * call to readpages() (a buffered read or a defrag call 7545 * triggered a readahead) on a page lock due to an 7546 * ordered dio extent we created before but did not have 7547 * yet a corresponding bio submitted (whence it can not 7548 * complete), which makes readpages() wait for that 7549 * ordered extent to complete while holding a lock on 7550 * that page. 7551 */ 7552 ret = -ENOTBLK; 7553 } 7554 7555 if (ret) 7556 break; 7557 7558 cond_resched(); 7559 } 7560 7561 return ret; 7562 } 7563 7564 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7565 u64 len, u64 orig_start, 7566 u64 block_start, u64 block_len, 7567 u64 orig_block_len, u64 ram_bytes, 7568 int type) 7569 { 7570 struct extent_map_tree *em_tree; 7571 struct extent_map *em; 7572 struct btrfs_root *root = BTRFS_I(inode)->root; 7573 int ret; 7574 7575 em_tree = &BTRFS_I(inode)->extent_tree; 7576 em = alloc_extent_map(); 7577 if (!em) 7578 return ERR_PTR(-ENOMEM); 7579 7580 em->start = start; 7581 em->orig_start = orig_start; 7582 em->mod_start = start; 7583 em->mod_len = len; 7584 em->len = len; 7585 em->block_len = block_len; 7586 em->block_start = block_start; 7587 em->bdev = root->fs_info->fs_devices->latest_bdev; 7588 em->orig_block_len = orig_block_len; 7589 em->ram_bytes = ram_bytes; 7590 em->generation = -1; 7591 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7592 if (type == BTRFS_ORDERED_PREALLOC) 7593 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7594 7595 do { 7596 btrfs_drop_extent_cache(inode, em->start, 7597 em->start + em->len - 1, 0); 7598 write_lock(&em_tree->lock); 7599 ret = add_extent_mapping(em_tree, em, 1); 7600 write_unlock(&em_tree->lock); 7601 } while (ret == -EEXIST); 7602 7603 if (ret) { 7604 free_extent_map(em); 7605 return ERR_PTR(ret); 7606 } 7607 7608 return em; 7609 } 7610 7611 static void adjust_dio_outstanding_extents(struct inode *inode, 7612 struct btrfs_dio_data *dio_data, 7613 const u64 len) 7614 { 7615 unsigned num_extents; 7616 7617 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7618 BTRFS_MAX_EXTENT_SIZE); 7619 /* 7620 * If we have an outstanding_extents count still set then we're 7621 * within our reservation, otherwise we need to adjust our inode 7622 * counter appropriately. 7623 */ 7624 if (dio_data->outstanding_extents) { 7625 dio_data->outstanding_extents -= num_extents; 7626 } else { 7627 spin_lock(&BTRFS_I(inode)->lock); 7628 BTRFS_I(inode)->outstanding_extents += num_extents; 7629 spin_unlock(&BTRFS_I(inode)->lock); 7630 } 7631 } 7632 7633 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7634 struct buffer_head *bh_result, int create) 7635 { 7636 struct extent_map *em; 7637 struct btrfs_root *root = BTRFS_I(inode)->root; 7638 struct extent_state *cached_state = NULL; 7639 struct btrfs_dio_data *dio_data = NULL; 7640 u64 start = iblock << inode->i_blkbits; 7641 u64 lockstart, lockend; 7642 u64 len = bh_result->b_size; 7643 int unlock_bits = EXTENT_LOCKED; 7644 int ret = 0; 7645 7646 if (create) 7647 unlock_bits |= EXTENT_DIRTY; 7648 else 7649 len = min_t(u64, len, root->sectorsize); 7650 7651 lockstart = start; 7652 lockend = start + len - 1; 7653 7654 if (current->journal_info) { 7655 /* 7656 * Need to pull our outstanding extents and set journal_info to NULL so 7657 * that anything that needs to check if there's a transaction doesn't get 7658 * confused. 7659 */ 7660 dio_data = current->journal_info; 7661 current->journal_info = NULL; 7662 } 7663 7664 /* 7665 * If this errors out it's because we couldn't invalidate pagecache for 7666 * this range and we need to fallback to buffered. 7667 */ 7668 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7669 create)) { 7670 ret = -ENOTBLK; 7671 goto err; 7672 } 7673 7674 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7675 if (IS_ERR(em)) { 7676 ret = PTR_ERR(em); 7677 goto unlock_err; 7678 } 7679 7680 /* 7681 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7682 * io. INLINE is special, and we could probably kludge it in here, but 7683 * it's still buffered so for safety lets just fall back to the generic 7684 * buffered path. 7685 * 7686 * For COMPRESSED we _have_ to read the entire extent in so we can 7687 * decompress it, so there will be buffering required no matter what we 7688 * do, so go ahead and fallback to buffered. 7689 * 7690 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7691 * to buffered IO. Don't blame me, this is the price we pay for using 7692 * the generic code. 7693 */ 7694 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7695 em->block_start == EXTENT_MAP_INLINE) { 7696 free_extent_map(em); 7697 ret = -ENOTBLK; 7698 goto unlock_err; 7699 } 7700 7701 /* Just a good old fashioned hole, return */ 7702 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7703 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7704 free_extent_map(em); 7705 goto unlock_err; 7706 } 7707 7708 /* 7709 * We don't allocate a new extent in the following cases 7710 * 7711 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7712 * existing extent. 7713 * 2) The extent is marked as PREALLOC. We're good to go here and can 7714 * just use the extent. 7715 * 7716 */ 7717 if (!create) { 7718 len = min(len, em->len - (start - em->start)); 7719 lockstart = start + len; 7720 goto unlock; 7721 } 7722 7723 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7724 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7725 em->block_start != EXTENT_MAP_HOLE)) { 7726 int type; 7727 u64 block_start, orig_start, orig_block_len, ram_bytes; 7728 7729 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7730 type = BTRFS_ORDERED_PREALLOC; 7731 else 7732 type = BTRFS_ORDERED_NOCOW; 7733 len = min(len, em->len - (start - em->start)); 7734 block_start = em->block_start + (start - em->start); 7735 7736 if (can_nocow_extent(inode, start, &len, &orig_start, 7737 &orig_block_len, &ram_bytes) == 1 && 7738 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7739 struct extent_map *em2; 7740 7741 em2 = btrfs_create_dio_extent(inode, start, len, 7742 orig_start, block_start, 7743 len, orig_block_len, 7744 ram_bytes, type); 7745 btrfs_dec_nocow_writers(root->fs_info, block_start); 7746 if (type == BTRFS_ORDERED_PREALLOC) { 7747 free_extent_map(em); 7748 em = em2; 7749 } 7750 if (em2 && IS_ERR(em2)) { 7751 ret = PTR_ERR(em2); 7752 goto unlock_err; 7753 } 7754 goto unlock; 7755 } 7756 } 7757 7758 /* 7759 * this will cow the extent, reset the len in case we changed 7760 * it above 7761 */ 7762 len = bh_result->b_size; 7763 free_extent_map(em); 7764 em = btrfs_new_extent_direct(inode, start, len); 7765 if (IS_ERR(em)) { 7766 ret = PTR_ERR(em); 7767 goto unlock_err; 7768 } 7769 len = min(len, em->len - (start - em->start)); 7770 unlock: 7771 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7772 inode->i_blkbits; 7773 bh_result->b_size = len; 7774 bh_result->b_bdev = em->bdev; 7775 set_buffer_mapped(bh_result); 7776 if (create) { 7777 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7778 set_buffer_new(bh_result); 7779 7780 /* 7781 * Need to update the i_size under the extent lock so buffered 7782 * readers will get the updated i_size when we unlock. 7783 */ 7784 if (start + len > i_size_read(inode)) 7785 i_size_write(inode, start + len); 7786 7787 adjust_dio_outstanding_extents(inode, dio_data, len); 7788 btrfs_free_reserved_data_space(inode, start, len); 7789 WARN_ON(dio_data->reserve < len); 7790 dio_data->reserve -= len; 7791 dio_data->unsubmitted_oe_range_end = start + len; 7792 current->journal_info = dio_data; 7793 } 7794 7795 /* 7796 * In the case of write we need to clear and unlock the entire range, 7797 * in the case of read we need to unlock only the end area that we 7798 * aren't using if there is any left over space. 7799 */ 7800 if (lockstart < lockend) { 7801 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7802 lockend, unlock_bits, 1, 0, 7803 &cached_state, GFP_NOFS); 7804 } else { 7805 free_extent_state(cached_state); 7806 } 7807 7808 free_extent_map(em); 7809 7810 return 0; 7811 7812 unlock_err: 7813 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7814 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7815 err: 7816 if (dio_data) 7817 current->journal_info = dio_data; 7818 /* 7819 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7820 * write less data then expected, so that we don't underflow our inode's 7821 * outstanding extents counter. 7822 */ 7823 if (create && dio_data) 7824 adjust_dio_outstanding_extents(inode, dio_data, len); 7825 7826 return ret; 7827 } 7828 7829 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7830 int mirror_num) 7831 { 7832 struct btrfs_root *root = BTRFS_I(inode)->root; 7833 int ret; 7834 7835 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7836 7837 bio_get(bio); 7838 7839 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7840 BTRFS_WQ_ENDIO_DIO_REPAIR); 7841 if (ret) 7842 goto err; 7843 7844 ret = btrfs_map_bio(root, bio, mirror_num, 0); 7845 err: 7846 bio_put(bio); 7847 return ret; 7848 } 7849 7850 static int btrfs_check_dio_repairable(struct inode *inode, 7851 struct bio *failed_bio, 7852 struct io_failure_record *failrec, 7853 int failed_mirror) 7854 { 7855 int num_copies; 7856 7857 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7858 failrec->logical, failrec->len); 7859 if (num_copies == 1) { 7860 /* 7861 * we only have a single copy of the data, so don't bother with 7862 * all the retry and error correction code that follows. no 7863 * matter what the error is, it is very likely to persist. 7864 */ 7865 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7866 num_copies, failrec->this_mirror, failed_mirror); 7867 return 0; 7868 } 7869 7870 failrec->failed_mirror = failed_mirror; 7871 failrec->this_mirror++; 7872 if (failrec->this_mirror == failed_mirror) 7873 failrec->this_mirror++; 7874 7875 if (failrec->this_mirror > num_copies) { 7876 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7877 num_copies, failrec->this_mirror, failed_mirror); 7878 return 0; 7879 } 7880 7881 return 1; 7882 } 7883 7884 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7885 struct page *page, unsigned int pgoff, 7886 u64 start, u64 end, int failed_mirror, 7887 bio_end_io_t *repair_endio, void *repair_arg) 7888 { 7889 struct io_failure_record *failrec; 7890 struct bio *bio; 7891 int isector; 7892 int read_mode; 7893 int ret; 7894 7895 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7896 7897 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7898 if (ret) 7899 return ret; 7900 7901 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7902 failed_mirror); 7903 if (!ret) { 7904 free_io_failure(inode, failrec); 7905 return -EIO; 7906 } 7907 7908 if ((failed_bio->bi_vcnt > 1) 7909 || (failed_bio->bi_io_vec->bv_len 7910 > BTRFS_I(inode)->root->sectorsize)) 7911 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7912 else 7913 read_mode = READ_SYNC; 7914 7915 isector = start - btrfs_io_bio(failed_bio)->logical; 7916 isector >>= inode->i_sb->s_blocksize_bits; 7917 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7918 pgoff, isector, repair_endio, repair_arg); 7919 if (!bio) { 7920 free_io_failure(inode, failrec); 7921 return -EIO; 7922 } 7923 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7924 7925 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7926 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7927 read_mode, failrec->this_mirror, failrec->in_validation); 7928 7929 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7930 if (ret) { 7931 free_io_failure(inode, failrec); 7932 bio_put(bio); 7933 } 7934 7935 return ret; 7936 } 7937 7938 struct btrfs_retry_complete { 7939 struct completion done; 7940 struct inode *inode; 7941 u64 start; 7942 int uptodate; 7943 }; 7944 7945 static void btrfs_retry_endio_nocsum(struct bio *bio) 7946 { 7947 struct btrfs_retry_complete *done = bio->bi_private; 7948 struct inode *inode; 7949 struct bio_vec *bvec; 7950 int i; 7951 7952 if (bio->bi_error) 7953 goto end; 7954 7955 ASSERT(bio->bi_vcnt == 1); 7956 inode = bio->bi_io_vec->bv_page->mapping->host; 7957 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7958 7959 done->uptodate = 1; 7960 bio_for_each_segment_all(bvec, bio, i) 7961 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7962 end: 7963 complete(&done->done); 7964 bio_put(bio); 7965 } 7966 7967 static int __btrfs_correct_data_nocsum(struct inode *inode, 7968 struct btrfs_io_bio *io_bio) 7969 { 7970 struct btrfs_fs_info *fs_info; 7971 struct bio_vec *bvec; 7972 struct btrfs_retry_complete done; 7973 u64 start; 7974 unsigned int pgoff; 7975 u32 sectorsize; 7976 int nr_sectors; 7977 int i; 7978 int ret; 7979 7980 fs_info = BTRFS_I(inode)->root->fs_info; 7981 sectorsize = BTRFS_I(inode)->root->sectorsize; 7982 7983 start = io_bio->logical; 7984 done.inode = inode; 7985 7986 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7987 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7988 pgoff = bvec->bv_offset; 7989 7990 next_block_or_try_again: 7991 done.uptodate = 0; 7992 done.start = start; 7993 init_completion(&done.done); 7994 7995 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7996 pgoff, start, start + sectorsize - 1, 7997 io_bio->mirror_num, 7998 btrfs_retry_endio_nocsum, &done); 7999 if (ret) 8000 return ret; 8001 8002 wait_for_completion(&done.done); 8003 8004 if (!done.uptodate) { 8005 /* We might have another mirror, so try again */ 8006 goto next_block_or_try_again; 8007 } 8008 8009 start += sectorsize; 8010 8011 if (nr_sectors--) { 8012 pgoff += sectorsize; 8013 goto next_block_or_try_again; 8014 } 8015 } 8016 8017 return 0; 8018 } 8019 8020 static void btrfs_retry_endio(struct bio *bio) 8021 { 8022 struct btrfs_retry_complete *done = bio->bi_private; 8023 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8024 struct inode *inode; 8025 struct bio_vec *bvec; 8026 u64 start; 8027 int uptodate; 8028 int ret; 8029 int i; 8030 8031 if (bio->bi_error) 8032 goto end; 8033 8034 uptodate = 1; 8035 8036 start = done->start; 8037 8038 ASSERT(bio->bi_vcnt == 1); 8039 inode = bio->bi_io_vec->bv_page->mapping->host; 8040 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8041 8042 bio_for_each_segment_all(bvec, bio, i) { 8043 ret = __readpage_endio_check(done->inode, io_bio, i, 8044 bvec->bv_page, bvec->bv_offset, 8045 done->start, bvec->bv_len); 8046 if (!ret) 8047 clean_io_failure(done->inode, done->start, 8048 bvec->bv_page, bvec->bv_offset); 8049 else 8050 uptodate = 0; 8051 } 8052 8053 done->uptodate = uptodate; 8054 end: 8055 complete(&done->done); 8056 bio_put(bio); 8057 } 8058 8059 static int __btrfs_subio_endio_read(struct inode *inode, 8060 struct btrfs_io_bio *io_bio, int err) 8061 { 8062 struct btrfs_fs_info *fs_info; 8063 struct bio_vec *bvec; 8064 struct btrfs_retry_complete done; 8065 u64 start; 8066 u64 offset = 0; 8067 u32 sectorsize; 8068 int nr_sectors; 8069 unsigned int pgoff; 8070 int csum_pos; 8071 int i; 8072 int ret; 8073 8074 fs_info = BTRFS_I(inode)->root->fs_info; 8075 sectorsize = BTRFS_I(inode)->root->sectorsize; 8076 8077 err = 0; 8078 start = io_bio->logical; 8079 done.inode = inode; 8080 8081 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8082 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8083 8084 pgoff = bvec->bv_offset; 8085 next_block: 8086 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8087 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8088 bvec->bv_page, pgoff, start, 8089 sectorsize); 8090 if (likely(!ret)) 8091 goto next; 8092 try_again: 8093 done.uptodate = 0; 8094 done.start = start; 8095 init_completion(&done.done); 8096 8097 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8098 pgoff, start, start + sectorsize - 1, 8099 io_bio->mirror_num, 8100 btrfs_retry_endio, &done); 8101 if (ret) { 8102 err = ret; 8103 goto next; 8104 } 8105 8106 wait_for_completion(&done.done); 8107 8108 if (!done.uptodate) { 8109 /* We might have another mirror, so try again */ 8110 goto try_again; 8111 } 8112 next: 8113 offset += sectorsize; 8114 start += sectorsize; 8115 8116 ASSERT(nr_sectors); 8117 8118 if (--nr_sectors) { 8119 pgoff += sectorsize; 8120 goto next_block; 8121 } 8122 } 8123 8124 return err; 8125 } 8126 8127 static int btrfs_subio_endio_read(struct inode *inode, 8128 struct btrfs_io_bio *io_bio, int err) 8129 { 8130 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8131 8132 if (skip_csum) { 8133 if (unlikely(err)) 8134 return __btrfs_correct_data_nocsum(inode, io_bio); 8135 else 8136 return 0; 8137 } else { 8138 return __btrfs_subio_endio_read(inode, io_bio, err); 8139 } 8140 } 8141 8142 static void btrfs_endio_direct_read(struct bio *bio) 8143 { 8144 struct btrfs_dio_private *dip = bio->bi_private; 8145 struct inode *inode = dip->inode; 8146 struct bio *dio_bio; 8147 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8148 int err = bio->bi_error; 8149 8150 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8151 err = btrfs_subio_endio_read(inode, io_bio, err); 8152 8153 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8154 dip->logical_offset + dip->bytes - 1); 8155 dio_bio = dip->dio_bio; 8156 8157 kfree(dip); 8158 8159 dio_bio->bi_error = bio->bi_error; 8160 dio_end_io(dio_bio, bio->bi_error); 8161 8162 if (io_bio->end_io) 8163 io_bio->end_io(io_bio, err); 8164 bio_put(bio); 8165 } 8166 8167 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8168 const u64 offset, 8169 const u64 bytes, 8170 const int uptodate) 8171 { 8172 struct btrfs_root *root = BTRFS_I(inode)->root; 8173 struct btrfs_ordered_extent *ordered = NULL; 8174 u64 ordered_offset = offset; 8175 u64 ordered_bytes = bytes; 8176 int ret; 8177 8178 again: 8179 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8180 &ordered_offset, 8181 ordered_bytes, 8182 uptodate); 8183 if (!ret) 8184 goto out_test; 8185 8186 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8187 finish_ordered_fn, NULL, NULL); 8188 btrfs_queue_work(root->fs_info->endio_write_workers, 8189 &ordered->work); 8190 out_test: 8191 /* 8192 * our bio might span multiple ordered extents. If we haven't 8193 * completed the accounting for the whole dio, go back and try again 8194 */ 8195 if (ordered_offset < offset + bytes) { 8196 ordered_bytes = offset + bytes - ordered_offset; 8197 ordered = NULL; 8198 goto again; 8199 } 8200 } 8201 8202 static void btrfs_endio_direct_write(struct bio *bio) 8203 { 8204 struct btrfs_dio_private *dip = bio->bi_private; 8205 struct bio *dio_bio = dip->dio_bio; 8206 8207 btrfs_endio_direct_write_update_ordered(dip->inode, 8208 dip->logical_offset, 8209 dip->bytes, 8210 !bio->bi_error); 8211 8212 kfree(dip); 8213 8214 dio_bio->bi_error = bio->bi_error; 8215 dio_end_io(dio_bio, bio->bi_error); 8216 bio_put(bio); 8217 } 8218 8219 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8220 struct bio *bio, int mirror_num, 8221 unsigned long bio_flags, u64 offset) 8222 { 8223 int ret; 8224 struct btrfs_root *root = BTRFS_I(inode)->root; 8225 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8226 BUG_ON(ret); /* -ENOMEM */ 8227 return 0; 8228 } 8229 8230 static void btrfs_end_dio_bio(struct bio *bio) 8231 { 8232 struct btrfs_dio_private *dip = bio->bi_private; 8233 int err = bio->bi_error; 8234 8235 if (err) 8236 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8237 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8238 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf, 8239 (unsigned long long)bio->bi_iter.bi_sector, 8240 bio->bi_iter.bi_size, err); 8241 8242 if (dip->subio_endio) 8243 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8244 8245 if (err) { 8246 dip->errors = 1; 8247 8248 /* 8249 * before atomic variable goto zero, we must make sure 8250 * dip->errors is perceived to be set. 8251 */ 8252 smp_mb__before_atomic(); 8253 } 8254 8255 /* if there are more bios still pending for this dio, just exit */ 8256 if (!atomic_dec_and_test(&dip->pending_bios)) 8257 goto out; 8258 8259 if (dip->errors) { 8260 bio_io_error(dip->orig_bio); 8261 } else { 8262 dip->dio_bio->bi_error = 0; 8263 bio_endio(dip->orig_bio); 8264 } 8265 out: 8266 bio_put(bio); 8267 } 8268 8269 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8270 u64 first_sector, gfp_t gfp_flags) 8271 { 8272 struct bio *bio; 8273 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8274 if (bio) 8275 bio_associate_current(bio); 8276 return bio; 8277 } 8278 8279 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8280 struct inode *inode, 8281 struct btrfs_dio_private *dip, 8282 struct bio *bio, 8283 u64 file_offset) 8284 { 8285 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8286 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8287 int ret; 8288 8289 /* 8290 * We load all the csum data we need when we submit 8291 * the first bio to reduce the csum tree search and 8292 * contention. 8293 */ 8294 if (dip->logical_offset == file_offset) { 8295 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8296 file_offset); 8297 if (ret) 8298 return ret; 8299 } 8300 8301 if (bio == dip->orig_bio) 8302 return 0; 8303 8304 file_offset -= dip->logical_offset; 8305 file_offset >>= inode->i_sb->s_blocksize_bits; 8306 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8307 8308 return 0; 8309 } 8310 8311 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8312 u64 file_offset, int skip_sum, 8313 int async_submit) 8314 { 8315 struct btrfs_dio_private *dip = bio->bi_private; 8316 bool write = bio_op(bio) == REQ_OP_WRITE; 8317 struct btrfs_root *root = BTRFS_I(inode)->root; 8318 int ret; 8319 8320 if (async_submit) 8321 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8322 8323 bio_get(bio); 8324 8325 if (!write) { 8326 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8327 BTRFS_WQ_ENDIO_DATA); 8328 if (ret) 8329 goto err; 8330 } 8331 8332 if (skip_sum) 8333 goto map; 8334 8335 if (write && async_submit) { 8336 ret = btrfs_wq_submit_bio(root->fs_info, 8337 inode, bio, 0, 0, file_offset, 8338 __btrfs_submit_bio_start_direct_io, 8339 __btrfs_submit_bio_done); 8340 goto err; 8341 } else if (write) { 8342 /* 8343 * If we aren't doing async submit, calculate the csum of the 8344 * bio now. 8345 */ 8346 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8347 if (ret) 8348 goto err; 8349 } else { 8350 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8351 file_offset); 8352 if (ret) 8353 goto err; 8354 } 8355 map: 8356 ret = btrfs_map_bio(root, bio, 0, async_submit); 8357 err: 8358 bio_put(bio); 8359 return ret; 8360 } 8361 8362 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8363 int skip_sum) 8364 { 8365 struct inode *inode = dip->inode; 8366 struct btrfs_root *root = BTRFS_I(inode)->root; 8367 struct bio *bio; 8368 struct bio *orig_bio = dip->orig_bio; 8369 struct bio_vec *bvec = orig_bio->bi_io_vec; 8370 u64 start_sector = orig_bio->bi_iter.bi_sector; 8371 u64 file_offset = dip->logical_offset; 8372 u64 submit_len = 0; 8373 u64 map_length; 8374 u32 blocksize = root->sectorsize; 8375 int async_submit = 0; 8376 int nr_sectors; 8377 int ret; 8378 int i; 8379 8380 map_length = orig_bio->bi_iter.bi_size; 8381 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8382 start_sector << 9, &map_length, NULL, 0); 8383 if (ret) 8384 return -EIO; 8385 8386 if (map_length >= orig_bio->bi_iter.bi_size) { 8387 bio = orig_bio; 8388 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8389 goto submit; 8390 } 8391 8392 /* async crcs make it difficult to collect full stripe writes. */ 8393 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8394 async_submit = 0; 8395 else 8396 async_submit = 1; 8397 8398 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8399 if (!bio) 8400 return -ENOMEM; 8401 8402 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8403 bio->bi_private = dip; 8404 bio->bi_end_io = btrfs_end_dio_bio; 8405 btrfs_io_bio(bio)->logical = file_offset; 8406 atomic_inc(&dip->pending_bios); 8407 8408 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8409 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8410 i = 0; 8411 next_block: 8412 if (unlikely(map_length < submit_len + blocksize || 8413 bio_add_page(bio, bvec->bv_page, blocksize, 8414 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8415 /* 8416 * inc the count before we submit the bio so 8417 * we know the end IO handler won't happen before 8418 * we inc the count. Otherwise, the dip might get freed 8419 * before we're done setting it up 8420 */ 8421 atomic_inc(&dip->pending_bios); 8422 ret = __btrfs_submit_dio_bio(bio, inode, 8423 file_offset, skip_sum, 8424 async_submit); 8425 if (ret) { 8426 bio_put(bio); 8427 atomic_dec(&dip->pending_bios); 8428 goto out_err; 8429 } 8430 8431 start_sector += submit_len >> 9; 8432 file_offset += submit_len; 8433 8434 submit_len = 0; 8435 8436 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8437 start_sector, GFP_NOFS); 8438 if (!bio) 8439 goto out_err; 8440 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8441 bio->bi_private = dip; 8442 bio->bi_end_io = btrfs_end_dio_bio; 8443 btrfs_io_bio(bio)->logical = file_offset; 8444 8445 map_length = orig_bio->bi_iter.bi_size; 8446 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8447 start_sector << 9, 8448 &map_length, NULL, 0); 8449 if (ret) { 8450 bio_put(bio); 8451 goto out_err; 8452 } 8453 8454 goto next_block; 8455 } else { 8456 submit_len += blocksize; 8457 if (--nr_sectors) { 8458 i++; 8459 goto next_block; 8460 } 8461 bvec++; 8462 } 8463 } 8464 8465 submit: 8466 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8467 async_submit); 8468 if (!ret) 8469 return 0; 8470 8471 bio_put(bio); 8472 out_err: 8473 dip->errors = 1; 8474 /* 8475 * before atomic variable goto zero, we must 8476 * make sure dip->errors is perceived to be set. 8477 */ 8478 smp_mb__before_atomic(); 8479 if (atomic_dec_and_test(&dip->pending_bios)) 8480 bio_io_error(dip->orig_bio); 8481 8482 /* bio_end_io() will handle error, so we needn't return it */ 8483 return 0; 8484 } 8485 8486 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8487 loff_t file_offset) 8488 { 8489 struct btrfs_dio_private *dip = NULL; 8490 struct bio *io_bio = NULL; 8491 struct btrfs_io_bio *btrfs_bio; 8492 int skip_sum; 8493 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8494 int ret = 0; 8495 8496 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8497 8498 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8499 if (!io_bio) { 8500 ret = -ENOMEM; 8501 goto free_ordered; 8502 } 8503 8504 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8505 if (!dip) { 8506 ret = -ENOMEM; 8507 goto free_ordered; 8508 } 8509 8510 dip->private = dio_bio->bi_private; 8511 dip->inode = inode; 8512 dip->logical_offset = file_offset; 8513 dip->bytes = dio_bio->bi_iter.bi_size; 8514 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8515 io_bio->bi_private = dip; 8516 dip->orig_bio = io_bio; 8517 dip->dio_bio = dio_bio; 8518 atomic_set(&dip->pending_bios, 0); 8519 btrfs_bio = btrfs_io_bio(io_bio); 8520 btrfs_bio->logical = file_offset; 8521 8522 if (write) { 8523 io_bio->bi_end_io = btrfs_endio_direct_write; 8524 } else { 8525 io_bio->bi_end_io = btrfs_endio_direct_read; 8526 dip->subio_endio = btrfs_subio_endio_read; 8527 } 8528 8529 /* 8530 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8531 * even if we fail to submit a bio, because in such case we do the 8532 * corresponding error handling below and it must not be done a second 8533 * time by btrfs_direct_IO(). 8534 */ 8535 if (write) { 8536 struct btrfs_dio_data *dio_data = current->journal_info; 8537 8538 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8539 dip->bytes; 8540 dio_data->unsubmitted_oe_range_start = 8541 dio_data->unsubmitted_oe_range_end; 8542 } 8543 8544 ret = btrfs_submit_direct_hook(dip, skip_sum); 8545 if (!ret) 8546 return; 8547 8548 if (btrfs_bio->end_io) 8549 btrfs_bio->end_io(btrfs_bio, ret); 8550 8551 free_ordered: 8552 /* 8553 * If we arrived here it means either we failed to submit the dip 8554 * or we either failed to clone the dio_bio or failed to allocate the 8555 * dip. If we cloned the dio_bio and allocated the dip, we can just 8556 * call bio_endio against our io_bio so that we get proper resource 8557 * cleanup if we fail to submit the dip, otherwise, we must do the 8558 * same as btrfs_endio_direct_[write|read] because we can't call these 8559 * callbacks - they require an allocated dip and a clone of dio_bio. 8560 */ 8561 if (io_bio && dip) { 8562 io_bio->bi_error = -EIO; 8563 bio_endio(io_bio); 8564 /* 8565 * The end io callbacks free our dip, do the final put on io_bio 8566 * and all the cleanup and final put for dio_bio (through 8567 * dio_end_io()). 8568 */ 8569 dip = NULL; 8570 io_bio = NULL; 8571 } else { 8572 if (write) 8573 btrfs_endio_direct_write_update_ordered(inode, 8574 file_offset, 8575 dio_bio->bi_iter.bi_size, 8576 0); 8577 else 8578 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8579 file_offset + dio_bio->bi_iter.bi_size - 1); 8580 8581 dio_bio->bi_error = -EIO; 8582 /* 8583 * Releases and cleans up our dio_bio, no need to bio_put() 8584 * nor bio_endio()/bio_io_error() against dio_bio. 8585 */ 8586 dio_end_io(dio_bio, ret); 8587 } 8588 if (io_bio) 8589 bio_put(io_bio); 8590 kfree(dip); 8591 } 8592 8593 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8594 const struct iov_iter *iter, loff_t offset) 8595 { 8596 int seg; 8597 int i; 8598 unsigned blocksize_mask = root->sectorsize - 1; 8599 ssize_t retval = -EINVAL; 8600 8601 if (offset & blocksize_mask) 8602 goto out; 8603 8604 if (iov_iter_alignment(iter) & blocksize_mask) 8605 goto out; 8606 8607 /* If this is a write we don't need to check anymore */ 8608 if (iov_iter_rw(iter) == WRITE) 8609 return 0; 8610 /* 8611 * Check to make sure we don't have duplicate iov_base's in this 8612 * iovec, if so return EINVAL, otherwise we'll get csum errors 8613 * when reading back. 8614 */ 8615 for (seg = 0; seg < iter->nr_segs; seg++) { 8616 for (i = seg + 1; i < iter->nr_segs; i++) { 8617 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8618 goto out; 8619 } 8620 } 8621 retval = 0; 8622 out: 8623 return retval; 8624 } 8625 8626 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8627 { 8628 struct file *file = iocb->ki_filp; 8629 struct inode *inode = file->f_mapping->host; 8630 struct btrfs_root *root = BTRFS_I(inode)->root; 8631 struct btrfs_dio_data dio_data = { 0 }; 8632 loff_t offset = iocb->ki_pos; 8633 size_t count = 0; 8634 int flags = 0; 8635 bool wakeup = true; 8636 bool relock = false; 8637 ssize_t ret; 8638 8639 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8640 return 0; 8641 8642 inode_dio_begin(inode); 8643 smp_mb__after_atomic(); 8644 8645 /* 8646 * The generic stuff only does filemap_write_and_wait_range, which 8647 * isn't enough if we've written compressed pages to this area, so 8648 * we need to flush the dirty pages again to make absolutely sure 8649 * that any outstanding dirty pages are on disk. 8650 */ 8651 count = iov_iter_count(iter); 8652 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8653 &BTRFS_I(inode)->runtime_flags)) 8654 filemap_fdatawrite_range(inode->i_mapping, offset, 8655 offset + count - 1); 8656 8657 if (iov_iter_rw(iter) == WRITE) { 8658 /* 8659 * If the write DIO is beyond the EOF, we need update 8660 * the isize, but it is protected by i_mutex. So we can 8661 * not unlock the i_mutex at this case. 8662 */ 8663 if (offset + count <= inode->i_size) { 8664 inode_unlock(inode); 8665 relock = true; 8666 } 8667 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8668 if (ret) 8669 goto out; 8670 dio_data.outstanding_extents = div64_u64(count + 8671 BTRFS_MAX_EXTENT_SIZE - 1, 8672 BTRFS_MAX_EXTENT_SIZE); 8673 8674 /* 8675 * We need to know how many extents we reserved so that we can 8676 * do the accounting properly if we go over the number we 8677 * originally calculated. Abuse current->journal_info for this. 8678 */ 8679 dio_data.reserve = round_up(count, root->sectorsize); 8680 dio_data.unsubmitted_oe_range_start = (u64)offset; 8681 dio_data.unsubmitted_oe_range_end = (u64)offset; 8682 current->journal_info = &dio_data; 8683 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8684 &BTRFS_I(inode)->runtime_flags)) { 8685 inode_dio_end(inode); 8686 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8687 wakeup = false; 8688 } 8689 8690 ret = __blockdev_direct_IO(iocb, inode, 8691 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8692 iter, btrfs_get_blocks_direct, NULL, 8693 btrfs_submit_direct, flags); 8694 if (iov_iter_rw(iter) == WRITE) { 8695 current->journal_info = NULL; 8696 if (ret < 0 && ret != -EIOCBQUEUED) { 8697 if (dio_data.reserve) 8698 btrfs_delalloc_release_space(inode, offset, 8699 dio_data.reserve); 8700 /* 8701 * On error we might have left some ordered extents 8702 * without submitting corresponding bios for them, so 8703 * cleanup them up to avoid other tasks getting them 8704 * and waiting for them to complete forever. 8705 */ 8706 if (dio_data.unsubmitted_oe_range_start < 8707 dio_data.unsubmitted_oe_range_end) 8708 btrfs_endio_direct_write_update_ordered(inode, 8709 dio_data.unsubmitted_oe_range_start, 8710 dio_data.unsubmitted_oe_range_end - 8711 dio_data.unsubmitted_oe_range_start, 8712 0); 8713 } else if (ret >= 0 && (size_t)ret < count) 8714 btrfs_delalloc_release_space(inode, offset, 8715 count - (size_t)ret); 8716 } 8717 out: 8718 if (wakeup) 8719 inode_dio_end(inode); 8720 if (relock) 8721 inode_lock(inode); 8722 8723 return ret; 8724 } 8725 8726 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8727 8728 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8729 __u64 start, __u64 len) 8730 { 8731 int ret; 8732 8733 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8734 if (ret) 8735 return ret; 8736 8737 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8738 } 8739 8740 int btrfs_readpage(struct file *file, struct page *page) 8741 { 8742 struct extent_io_tree *tree; 8743 tree = &BTRFS_I(page->mapping->host)->io_tree; 8744 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8745 } 8746 8747 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8748 { 8749 struct extent_io_tree *tree; 8750 struct inode *inode = page->mapping->host; 8751 int ret; 8752 8753 if (current->flags & PF_MEMALLOC) { 8754 redirty_page_for_writepage(wbc, page); 8755 unlock_page(page); 8756 return 0; 8757 } 8758 8759 /* 8760 * If we are under memory pressure we will call this directly from the 8761 * VM, we need to make sure we have the inode referenced for the ordered 8762 * extent. If not just return like we didn't do anything. 8763 */ 8764 if (!igrab(inode)) { 8765 redirty_page_for_writepage(wbc, page); 8766 return AOP_WRITEPAGE_ACTIVATE; 8767 } 8768 tree = &BTRFS_I(page->mapping->host)->io_tree; 8769 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8770 btrfs_add_delayed_iput(inode); 8771 return ret; 8772 } 8773 8774 static int btrfs_writepages(struct address_space *mapping, 8775 struct writeback_control *wbc) 8776 { 8777 struct extent_io_tree *tree; 8778 8779 tree = &BTRFS_I(mapping->host)->io_tree; 8780 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8781 } 8782 8783 static int 8784 btrfs_readpages(struct file *file, struct address_space *mapping, 8785 struct list_head *pages, unsigned nr_pages) 8786 { 8787 struct extent_io_tree *tree; 8788 tree = &BTRFS_I(mapping->host)->io_tree; 8789 return extent_readpages(tree, mapping, pages, nr_pages, 8790 btrfs_get_extent); 8791 } 8792 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8793 { 8794 struct extent_io_tree *tree; 8795 struct extent_map_tree *map; 8796 int ret; 8797 8798 tree = &BTRFS_I(page->mapping->host)->io_tree; 8799 map = &BTRFS_I(page->mapping->host)->extent_tree; 8800 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8801 if (ret == 1) { 8802 ClearPagePrivate(page); 8803 set_page_private(page, 0); 8804 put_page(page); 8805 } 8806 return ret; 8807 } 8808 8809 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8810 { 8811 if (PageWriteback(page) || PageDirty(page)) 8812 return 0; 8813 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8814 } 8815 8816 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8817 unsigned int length) 8818 { 8819 struct inode *inode = page->mapping->host; 8820 struct extent_io_tree *tree; 8821 struct btrfs_ordered_extent *ordered; 8822 struct extent_state *cached_state = NULL; 8823 u64 page_start = page_offset(page); 8824 u64 page_end = page_start + PAGE_SIZE - 1; 8825 u64 start; 8826 u64 end; 8827 int inode_evicting = inode->i_state & I_FREEING; 8828 8829 /* 8830 * we have the page locked, so new writeback can't start, 8831 * and the dirty bit won't be cleared while we are here. 8832 * 8833 * Wait for IO on this page so that we can safely clear 8834 * the PagePrivate2 bit and do ordered accounting 8835 */ 8836 wait_on_page_writeback(page); 8837 8838 tree = &BTRFS_I(inode)->io_tree; 8839 if (offset) { 8840 btrfs_releasepage(page, GFP_NOFS); 8841 return; 8842 } 8843 8844 if (!inode_evicting) 8845 lock_extent_bits(tree, page_start, page_end, &cached_state); 8846 again: 8847 start = page_start; 8848 ordered = btrfs_lookup_ordered_range(inode, start, 8849 page_end - start + 1); 8850 if (ordered) { 8851 end = min(page_end, ordered->file_offset + ordered->len - 1); 8852 /* 8853 * IO on this page will never be started, so we need 8854 * to account for any ordered extents now 8855 */ 8856 if (!inode_evicting) 8857 clear_extent_bit(tree, start, end, 8858 EXTENT_DIRTY | EXTENT_DELALLOC | 8859 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8860 EXTENT_DEFRAG, 1, 0, &cached_state, 8861 GFP_NOFS); 8862 /* 8863 * whoever cleared the private bit is responsible 8864 * for the finish_ordered_io 8865 */ 8866 if (TestClearPagePrivate2(page)) { 8867 struct btrfs_ordered_inode_tree *tree; 8868 u64 new_len; 8869 8870 tree = &BTRFS_I(inode)->ordered_tree; 8871 8872 spin_lock_irq(&tree->lock); 8873 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8874 new_len = start - ordered->file_offset; 8875 if (new_len < ordered->truncated_len) 8876 ordered->truncated_len = new_len; 8877 spin_unlock_irq(&tree->lock); 8878 8879 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8880 start, 8881 end - start + 1, 1)) 8882 btrfs_finish_ordered_io(ordered); 8883 } 8884 btrfs_put_ordered_extent(ordered); 8885 if (!inode_evicting) { 8886 cached_state = NULL; 8887 lock_extent_bits(tree, start, end, 8888 &cached_state); 8889 } 8890 8891 start = end + 1; 8892 if (start < page_end) 8893 goto again; 8894 } 8895 8896 /* 8897 * Qgroup reserved space handler 8898 * Page here will be either 8899 * 1) Already written to disk 8900 * In this case, its reserved space is released from data rsv map 8901 * and will be freed by delayed_ref handler finally. 8902 * So even we call qgroup_free_data(), it won't decrease reserved 8903 * space. 8904 * 2) Not written to disk 8905 * This means the reserved space should be freed here. 8906 */ 8907 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8908 if (!inode_evicting) { 8909 clear_extent_bit(tree, page_start, page_end, 8910 EXTENT_LOCKED | EXTENT_DIRTY | 8911 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8912 EXTENT_DEFRAG, 1, 1, 8913 &cached_state, GFP_NOFS); 8914 8915 __btrfs_releasepage(page, GFP_NOFS); 8916 } 8917 8918 ClearPageChecked(page); 8919 if (PagePrivate(page)) { 8920 ClearPagePrivate(page); 8921 set_page_private(page, 0); 8922 put_page(page); 8923 } 8924 } 8925 8926 /* 8927 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8928 * called from a page fault handler when a page is first dirtied. Hence we must 8929 * be careful to check for EOF conditions here. We set the page up correctly 8930 * for a written page which means we get ENOSPC checking when writing into 8931 * holes and correct delalloc and unwritten extent mapping on filesystems that 8932 * support these features. 8933 * 8934 * We are not allowed to take the i_mutex here so we have to play games to 8935 * protect against truncate races as the page could now be beyond EOF. Because 8936 * vmtruncate() writes the inode size before removing pages, once we have the 8937 * page lock we can determine safely if the page is beyond EOF. If it is not 8938 * beyond EOF, then the page is guaranteed safe against truncation until we 8939 * unlock the page. 8940 */ 8941 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8942 { 8943 struct page *page = vmf->page; 8944 struct inode *inode = file_inode(vma->vm_file); 8945 struct btrfs_root *root = BTRFS_I(inode)->root; 8946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8947 struct btrfs_ordered_extent *ordered; 8948 struct extent_state *cached_state = NULL; 8949 char *kaddr; 8950 unsigned long zero_start; 8951 loff_t size; 8952 int ret; 8953 int reserved = 0; 8954 u64 reserved_space; 8955 u64 page_start; 8956 u64 page_end; 8957 u64 end; 8958 8959 reserved_space = PAGE_SIZE; 8960 8961 sb_start_pagefault(inode->i_sb); 8962 page_start = page_offset(page); 8963 page_end = page_start + PAGE_SIZE - 1; 8964 end = page_end; 8965 8966 /* 8967 * Reserving delalloc space after obtaining the page lock can lead to 8968 * deadlock. For example, if a dirty page is locked by this function 8969 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8970 * dirty page write out, then the btrfs_writepage() function could 8971 * end up waiting indefinitely to get a lock on the page currently 8972 * being processed by btrfs_page_mkwrite() function. 8973 */ 8974 ret = btrfs_delalloc_reserve_space(inode, page_start, 8975 reserved_space); 8976 if (!ret) { 8977 ret = file_update_time(vma->vm_file); 8978 reserved = 1; 8979 } 8980 if (ret) { 8981 if (ret == -ENOMEM) 8982 ret = VM_FAULT_OOM; 8983 else /* -ENOSPC, -EIO, etc */ 8984 ret = VM_FAULT_SIGBUS; 8985 if (reserved) 8986 goto out; 8987 goto out_noreserve; 8988 } 8989 8990 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8991 again: 8992 lock_page(page); 8993 size = i_size_read(inode); 8994 8995 if ((page->mapping != inode->i_mapping) || 8996 (page_start >= size)) { 8997 /* page got truncated out from underneath us */ 8998 goto out_unlock; 8999 } 9000 wait_on_page_writeback(page); 9001 9002 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9003 set_page_extent_mapped(page); 9004 9005 /* 9006 * we can't set the delalloc bits if there are pending ordered 9007 * extents. Drop our locks and wait for them to finish 9008 */ 9009 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 9010 if (ordered) { 9011 unlock_extent_cached(io_tree, page_start, page_end, 9012 &cached_state, GFP_NOFS); 9013 unlock_page(page); 9014 btrfs_start_ordered_extent(inode, ordered, 1); 9015 btrfs_put_ordered_extent(ordered); 9016 goto again; 9017 } 9018 9019 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9020 reserved_space = round_up(size - page_start, root->sectorsize); 9021 if (reserved_space < PAGE_SIZE) { 9022 end = page_start + reserved_space - 1; 9023 spin_lock(&BTRFS_I(inode)->lock); 9024 BTRFS_I(inode)->outstanding_extents++; 9025 spin_unlock(&BTRFS_I(inode)->lock); 9026 btrfs_delalloc_release_space(inode, page_start, 9027 PAGE_SIZE - reserved_space); 9028 } 9029 } 9030 9031 /* 9032 * XXX - page_mkwrite gets called every time the page is dirtied, even 9033 * if it was already dirty, so for space accounting reasons we need to 9034 * clear any delalloc bits for the range we are fixing to save. There 9035 * is probably a better way to do this, but for now keep consistent with 9036 * prepare_pages in the normal write path. 9037 */ 9038 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9039 EXTENT_DIRTY | EXTENT_DELALLOC | 9040 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9041 0, 0, &cached_state, GFP_NOFS); 9042 9043 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9044 &cached_state); 9045 if (ret) { 9046 unlock_extent_cached(io_tree, page_start, page_end, 9047 &cached_state, GFP_NOFS); 9048 ret = VM_FAULT_SIGBUS; 9049 goto out_unlock; 9050 } 9051 ret = 0; 9052 9053 /* page is wholly or partially inside EOF */ 9054 if (page_start + PAGE_SIZE > size) 9055 zero_start = size & ~PAGE_MASK; 9056 else 9057 zero_start = PAGE_SIZE; 9058 9059 if (zero_start != PAGE_SIZE) { 9060 kaddr = kmap(page); 9061 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9062 flush_dcache_page(page); 9063 kunmap(page); 9064 } 9065 ClearPageChecked(page); 9066 set_page_dirty(page); 9067 SetPageUptodate(page); 9068 9069 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9070 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9071 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9072 9073 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9074 9075 out_unlock: 9076 if (!ret) { 9077 sb_end_pagefault(inode->i_sb); 9078 return VM_FAULT_LOCKED; 9079 } 9080 unlock_page(page); 9081 out: 9082 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9083 out_noreserve: 9084 sb_end_pagefault(inode->i_sb); 9085 return ret; 9086 } 9087 9088 static int btrfs_truncate(struct inode *inode) 9089 { 9090 struct btrfs_root *root = BTRFS_I(inode)->root; 9091 struct btrfs_block_rsv *rsv; 9092 int ret = 0; 9093 int err = 0; 9094 struct btrfs_trans_handle *trans; 9095 u64 mask = root->sectorsize - 1; 9096 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9097 9098 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9099 (u64)-1); 9100 if (ret) 9101 return ret; 9102 9103 /* 9104 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9105 * 3 things going on here 9106 * 9107 * 1) We need to reserve space for our orphan item and the space to 9108 * delete our orphan item. Lord knows we don't want to have a dangling 9109 * orphan item because we didn't reserve space to remove it. 9110 * 9111 * 2) We need to reserve space to update our inode. 9112 * 9113 * 3) We need to have something to cache all the space that is going to 9114 * be free'd up by the truncate operation, but also have some slack 9115 * space reserved in case it uses space during the truncate (thank you 9116 * very much snapshotting). 9117 * 9118 * And we need these to all be separate. The fact is we can use a lot of 9119 * space doing the truncate, and we have no earthly idea how much space 9120 * we will use, so we need the truncate reservation to be separate so it 9121 * doesn't end up using space reserved for updating the inode or 9122 * removing the orphan item. We also need to be able to stop the 9123 * transaction and start a new one, which means we need to be able to 9124 * update the inode several times, and we have no idea of knowing how 9125 * many times that will be, so we can't just reserve 1 item for the 9126 * entirety of the operation, so that has to be done separately as well. 9127 * Then there is the orphan item, which does indeed need to be held on 9128 * to for the whole operation, and we need nobody to touch this reserved 9129 * space except the orphan code. 9130 * 9131 * So that leaves us with 9132 * 9133 * 1) root->orphan_block_rsv - for the orphan deletion. 9134 * 2) rsv - for the truncate reservation, which we will steal from the 9135 * transaction reservation. 9136 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9137 * updating the inode. 9138 */ 9139 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9140 if (!rsv) 9141 return -ENOMEM; 9142 rsv->size = min_size; 9143 rsv->failfast = 1; 9144 9145 /* 9146 * 1 for the truncate slack space 9147 * 1 for updating the inode. 9148 */ 9149 trans = btrfs_start_transaction(root, 2); 9150 if (IS_ERR(trans)) { 9151 err = PTR_ERR(trans); 9152 goto out; 9153 } 9154 9155 /* Migrate the slack space for the truncate to our reserve */ 9156 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9157 min_size, 0); 9158 BUG_ON(ret); 9159 9160 /* 9161 * So if we truncate and then write and fsync we normally would just 9162 * write the extents that changed, which is a problem if we need to 9163 * first truncate that entire inode. So set this flag so we write out 9164 * all of the extents in the inode to the sync log so we're completely 9165 * safe. 9166 */ 9167 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9168 trans->block_rsv = rsv; 9169 9170 while (1) { 9171 ret = btrfs_truncate_inode_items(trans, root, inode, 9172 inode->i_size, 9173 BTRFS_EXTENT_DATA_KEY); 9174 if (ret != -ENOSPC && ret != -EAGAIN) { 9175 err = ret; 9176 break; 9177 } 9178 9179 trans->block_rsv = &root->fs_info->trans_block_rsv; 9180 ret = btrfs_update_inode(trans, root, inode); 9181 if (ret) { 9182 err = ret; 9183 break; 9184 } 9185 9186 btrfs_end_transaction(trans, root); 9187 btrfs_btree_balance_dirty(root); 9188 9189 trans = btrfs_start_transaction(root, 2); 9190 if (IS_ERR(trans)) { 9191 ret = err = PTR_ERR(trans); 9192 trans = NULL; 9193 break; 9194 } 9195 9196 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9197 rsv, min_size, 0); 9198 BUG_ON(ret); /* shouldn't happen */ 9199 trans->block_rsv = rsv; 9200 } 9201 9202 if (ret == 0 && inode->i_nlink > 0) { 9203 trans->block_rsv = root->orphan_block_rsv; 9204 ret = btrfs_orphan_del(trans, inode); 9205 if (ret) 9206 err = ret; 9207 } 9208 9209 if (trans) { 9210 trans->block_rsv = &root->fs_info->trans_block_rsv; 9211 ret = btrfs_update_inode(trans, root, inode); 9212 if (ret && !err) 9213 err = ret; 9214 9215 ret = btrfs_end_transaction(trans, root); 9216 btrfs_btree_balance_dirty(root); 9217 } 9218 out: 9219 btrfs_free_block_rsv(root, rsv); 9220 9221 if (ret && !err) 9222 err = ret; 9223 9224 return err; 9225 } 9226 9227 /* 9228 * create a new subvolume directory/inode (helper for the ioctl). 9229 */ 9230 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9231 struct btrfs_root *new_root, 9232 struct btrfs_root *parent_root, 9233 u64 new_dirid) 9234 { 9235 struct inode *inode; 9236 int err; 9237 u64 index = 0; 9238 9239 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9240 new_dirid, new_dirid, 9241 S_IFDIR | (~current_umask() & S_IRWXUGO), 9242 &index); 9243 if (IS_ERR(inode)) 9244 return PTR_ERR(inode); 9245 inode->i_op = &btrfs_dir_inode_operations; 9246 inode->i_fop = &btrfs_dir_file_operations; 9247 9248 set_nlink(inode, 1); 9249 btrfs_i_size_write(inode, 0); 9250 unlock_new_inode(inode); 9251 9252 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9253 if (err) 9254 btrfs_err(new_root->fs_info, 9255 "error inheriting subvolume %llu properties: %d", 9256 new_root->root_key.objectid, err); 9257 9258 err = btrfs_update_inode(trans, new_root, inode); 9259 9260 iput(inode); 9261 return err; 9262 } 9263 9264 struct inode *btrfs_alloc_inode(struct super_block *sb) 9265 { 9266 struct btrfs_inode *ei; 9267 struct inode *inode; 9268 9269 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9270 if (!ei) 9271 return NULL; 9272 9273 ei->root = NULL; 9274 ei->generation = 0; 9275 ei->last_trans = 0; 9276 ei->last_sub_trans = 0; 9277 ei->logged_trans = 0; 9278 ei->delalloc_bytes = 0; 9279 ei->defrag_bytes = 0; 9280 ei->disk_i_size = 0; 9281 ei->flags = 0; 9282 ei->csum_bytes = 0; 9283 ei->index_cnt = (u64)-1; 9284 ei->dir_index = 0; 9285 ei->last_unlink_trans = 0; 9286 ei->last_log_commit = 0; 9287 ei->delayed_iput_count = 0; 9288 9289 spin_lock_init(&ei->lock); 9290 ei->outstanding_extents = 0; 9291 ei->reserved_extents = 0; 9292 9293 ei->runtime_flags = 0; 9294 ei->force_compress = BTRFS_COMPRESS_NONE; 9295 9296 ei->delayed_node = NULL; 9297 9298 ei->i_otime.tv_sec = 0; 9299 ei->i_otime.tv_nsec = 0; 9300 9301 inode = &ei->vfs_inode; 9302 extent_map_tree_init(&ei->extent_tree); 9303 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9304 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9305 ei->io_tree.track_uptodate = 1; 9306 ei->io_failure_tree.track_uptodate = 1; 9307 atomic_set(&ei->sync_writers, 0); 9308 mutex_init(&ei->log_mutex); 9309 mutex_init(&ei->delalloc_mutex); 9310 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9311 INIT_LIST_HEAD(&ei->delalloc_inodes); 9312 INIT_LIST_HEAD(&ei->delayed_iput); 9313 RB_CLEAR_NODE(&ei->rb_node); 9314 init_rwsem(&ei->dio_sem); 9315 9316 return inode; 9317 } 9318 9319 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9320 void btrfs_test_destroy_inode(struct inode *inode) 9321 { 9322 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9323 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9324 } 9325 #endif 9326 9327 static void btrfs_i_callback(struct rcu_head *head) 9328 { 9329 struct inode *inode = container_of(head, struct inode, i_rcu); 9330 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9331 } 9332 9333 void btrfs_destroy_inode(struct inode *inode) 9334 { 9335 struct btrfs_ordered_extent *ordered; 9336 struct btrfs_root *root = BTRFS_I(inode)->root; 9337 9338 WARN_ON(!hlist_empty(&inode->i_dentry)); 9339 WARN_ON(inode->i_data.nrpages); 9340 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9341 WARN_ON(BTRFS_I(inode)->reserved_extents); 9342 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9343 WARN_ON(BTRFS_I(inode)->csum_bytes); 9344 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9345 9346 /* 9347 * This can happen where we create an inode, but somebody else also 9348 * created the same inode and we need to destroy the one we already 9349 * created. 9350 */ 9351 if (!root) 9352 goto free; 9353 9354 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9355 &BTRFS_I(inode)->runtime_flags)) { 9356 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9357 btrfs_ino(inode)); 9358 atomic_dec(&root->orphan_inodes); 9359 } 9360 9361 while (1) { 9362 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9363 if (!ordered) 9364 break; 9365 else { 9366 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9367 ordered->file_offset, ordered->len); 9368 btrfs_remove_ordered_extent(inode, ordered); 9369 btrfs_put_ordered_extent(ordered); 9370 btrfs_put_ordered_extent(ordered); 9371 } 9372 } 9373 btrfs_qgroup_check_reserved_leak(inode); 9374 inode_tree_del(inode); 9375 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9376 free: 9377 call_rcu(&inode->i_rcu, btrfs_i_callback); 9378 } 9379 9380 int btrfs_drop_inode(struct inode *inode) 9381 { 9382 struct btrfs_root *root = BTRFS_I(inode)->root; 9383 9384 if (root == NULL) 9385 return 1; 9386 9387 /* the snap/subvol tree is on deleting */ 9388 if (btrfs_root_refs(&root->root_item) == 0) 9389 return 1; 9390 else 9391 return generic_drop_inode(inode); 9392 } 9393 9394 static void init_once(void *foo) 9395 { 9396 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9397 9398 inode_init_once(&ei->vfs_inode); 9399 } 9400 9401 void btrfs_destroy_cachep(void) 9402 { 9403 /* 9404 * Make sure all delayed rcu free inodes are flushed before we 9405 * destroy cache. 9406 */ 9407 rcu_barrier(); 9408 kmem_cache_destroy(btrfs_inode_cachep); 9409 kmem_cache_destroy(btrfs_trans_handle_cachep); 9410 kmem_cache_destroy(btrfs_transaction_cachep); 9411 kmem_cache_destroy(btrfs_path_cachep); 9412 kmem_cache_destroy(btrfs_free_space_cachep); 9413 } 9414 9415 int btrfs_init_cachep(void) 9416 { 9417 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9418 sizeof(struct btrfs_inode), 0, 9419 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9420 init_once); 9421 if (!btrfs_inode_cachep) 9422 goto fail; 9423 9424 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9425 sizeof(struct btrfs_trans_handle), 0, 9426 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9427 if (!btrfs_trans_handle_cachep) 9428 goto fail; 9429 9430 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9431 sizeof(struct btrfs_transaction), 0, 9432 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9433 if (!btrfs_transaction_cachep) 9434 goto fail; 9435 9436 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9437 sizeof(struct btrfs_path), 0, 9438 SLAB_MEM_SPREAD, NULL); 9439 if (!btrfs_path_cachep) 9440 goto fail; 9441 9442 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9443 sizeof(struct btrfs_free_space), 0, 9444 SLAB_MEM_SPREAD, NULL); 9445 if (!btrfs_free_space_cachep) 9446 goto fail; 9447 9448 return 0; 9449 fail: 9450 btrfs_destroy_cachep(); 9451 return -ENOMEM; 9452 } 9453 9454 static int btrfs_getattr(struct vfsmount *mnt, 9455 struct dentry *dentry, struct kstat *stat) 9456 { 9457 u64 delalloc_bytes; 9458 struct inode *inode = d_inode(dentry); 9459 u32 blocksize = inode->i_sb->s_blocksize; 9460 9461 generic_fillattr(inode, stat); 9462 stat->dev = BTRFS_I(inode)->root->anon_dev; 9463 9464 spin_lock(&BTRFS_I(inode)->lock); 9465 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9466 spin_unlock(&BTRFS_I(inode)->lock); 9467 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9468 ALIGN(delalloc_bytes, blocksize)) >> 9; 9469 return 0; 9470 } 9471 9472 static int btrfs_rename_exchange(struct inode *old_dir, 9473 struct dentry *old_dentry, 9474 struct inode *new_dir, 9475 struct dentry *new_dentry) 9476 { 9477 struct btrfs_trans_handle *trans; 9478 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9479 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9480 struct inode *new_inode = new_dentry->d_inode; 9481 struct inode *old_inode = old_dentry->d_inode; 9482 struct timespec ctime = CURRENT_TIME; 9483 struct dentry *parent; 9484 u64 old_ino = btrfs_ino(old_inode); 9485 u64 new_ino = btrfs_ino(new_inode); 9486 u64 old_idx = 0; 9487 u64 new_idx = 0; 9488 u64 root_objectid; 9489 int ret; 9490 bool root_log_pinned = false; 9491 bool dest_log_pinned = false; 9492 9493 /* we only allow rename subvolume link between subvolumes */ 9494 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9495 return -EXDEV; 9496 9497 /* close the race window with snapshot create/destroy ioctl */ 9498 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9499 down_read(&root->fs_info->subvol_sem); 9500 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9501 down_read(&dest->fs_info->subvol_sem); 9502 9503 /* 9504 * We want to reserve the absolute worst case amount of items. So if 9505 * both inodes are subvols and we need to unlink them then that would 9506 * require 4 item modifications, but if they are both normal inodes it 9507 * would require 5 item modifications, so we'll assume their normal 9508 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9509 * should cover the worst case number of items we'll modify. 9510 */ 9511 trans = btrfs_start_transaction(root, 12); 9512 if (IS_ERR(trans)) { 9513 ret = PTR_ERR(trans); 9514 goto out_notrans; 9515 } 9516 9517 /* 9518 * We need to find a free sequence number both in the source and 9519 * in the destination directory for the exchange. 9520 */ 9521 ret = btrfs_set_inode_index(new_dir, &old_idx); 9522 if (ret) 9523 goto out_fail; 9524 ret = btrfs_set_inode_index(old_dir, &new_idx); 9525 if (ret) 9526 goto out_fail; 9527 9528 BTRFS_I(old_inode)->dir_index = 0ULL; 9529 BTRFS_I(new_inode)->dir_index = 0ULL; 9530 9531 /* Reference for the source. */ 9532 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9533 /* force full log commit if subvolume involved. */ 9534 btrfs_set_log_full_commit(root->fs_info, trans); 9535 } else { 9536 btrfs_pin_log_trans(root); 9537 root_log_pinned = true; 9538 ret = btrfs_insert_inode_ref(trans, dest, 9539 new_dentry->d_name.name, 9540 new_dentry->d_name.len, 9541 old_ino, 9542 btrfs_ino(new_dir), old_idx); 9543 if (ret) 9544 goto out_fail; 9545 } 9546 9547 /* And now for the dest. */ 9548 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9549 /* force full log commit if subvolume involved. */ 9550 btrfs_set_log_full_commit(dest->fs_info, trans); 9551 } else { 9552 btrfs_pin_log_trans(dest); 9553 dest_log_pinned = true; 9554 ret = btrfs_insert_inode_ref(trans, root, 9555 old_dentry->d_name.name, 9556 old_dentry->d_name.len, 9557 new_ino, 9558 btrfs_ino(old_dir), new_idx); 9559 if (ret) 9560 goto out_fail; 9561 } 9562 9563 /* Update inode version and ctime/mtime. */ 9564 inode_inc_iversion(old_dir); 9565 inode_inc_iversion(new_dir); 9566 inode_inc_iversion(old_inode); 9567 inode_inc_iversion(new_inode); 9568 old_dir->i_ctime = old_dir->i_mtime = ctime; 9569 new_dir->i_ctime = new_dir->i_mtime = ctime; 9570 old_inode->i_ctime = ctime; 9571 new_inode->i_ctime = ctime; 9572 9573 if (old_dentry->d_parent != new_dentry->d_parent) { 9574 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9575 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9576 } 9577 9578 /* src is a subvolume */ 9579 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9580 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9581 ret = btrfs_unlink_subvol(trans, root, old_dir, 9582 root_objectid, 9583 old_dentry->d_name.name, 9584 old_dentry->d_name.len); 9585 } else { /* src is an inode */ 9586 ret = __btrfs_unlink_inode(trans, root, old_dir, 9587 old_dentry->d_inode, 9588 old_dentry->d_name.name, 9589 old_dentry->d_name.len); 9590 if (!ret) 9591 ret = btrfs_update_inode(trans, root, old_inode); 9592 } 9593 if (ret) { 9594 btrfs_abort_transaction(trans, ret); 9595 goto out_fail; 9596 } 9597 9598 /* dest is a subvolume */ 9599 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9600 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9601 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9602 root_objectid, 9603 new_dentry->d_name.name, 9604 new_dentry->d_name.len); 9605 } else { /* dest is an inode */ 9606 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9607 new_dentry->d_inode, 9608 new_dentry->d_name.name, 9609 new_dentry->d_name.len); 9610 if (!ret) 9611 ret = btrfs_update_inode(trans, dest, new_inode); 9612 } 9613 if (ret) { 9614 btrfs_abort_transaction(trans, ret); 9615 goto out_fail; 9616 } 9617 9618 ret = btrfs_add_link(trans, new_dir, old_inode, 9619 new_dentry->d_name.name, 9620 new_dentry->d_name.len, 0, old_idx); 9621 if (ret) { 9622 btrfs_abort_transaction(trans, ret); 9623 goto out_fail; 9624 } 9625 9626 ret = btrfs_add_link(trans, old_dir, new_inode, 9627 old_dentry->d_name.name, 9628 old_dentry->d_name.len, 0, new_idx); 9629 if (ret) { 9630 btrfs_abort_transaction(trans, ret); 9631 goto out_fail; 9632 } 9633 9634 if (old_inode->i_nlink == 1) 9635 BTRFS_I(old_inode)->dir_index = old_idx; 9636 if (new_inode->i_nlink == 1) 9637 BTRFS_I(new_inode)->dir_index = new_idx; 9638 9639 if (root_log_pinned) { 9640 parent = new_dentry->d_parent; 9641 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9642 btrfs_end_log_trans(root); 9643 root_log_pinned = false; 9644 } 9645 if (dest_log_pinned) { 9646 parent = old_dentry->d_parent; 9647 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9648 btrfs_end_log_trans(dest); 9649 dest_log_pinned = false; 9650 } 9651 out_fail: 9652 /* 9653 * If we have pinned a log and an error happened, we unpin tasks 9654 * trying to sync the log and force them to fallback to a transaction 9655 * commit if the log currently contains any of the inodes involved in 9656 * this rename operation (to ensure we do not persist a log with an 9657 * inconsistent state for any of these inodes or leading to any 9658 * inconsistencies when replayed). If the transaction was aborted, the 9659 * abortion reason is propagated to userspace when attempting to commit 9660 * the transaction. If the log does not contain any of these inodes, we 9661 * allow the tasks to sync it. 9662 */ 9663 if (ret && (root_log_pinned || dest_log_pinned)) { 9664 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9665 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9666 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9667 (new_inode && 9668 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9669 btrfs_set_log_full_commit(root->fs_info, trans); 9670 9671 if (root_log_pinned) { 9672 btrfs_end_log_trans(root); 9673 root_log_pinned = false; 9674 } 9675 if (dest_log_pinned) { 9676 btrfs_end_log_trans(dest); 9677 dest_log_pinned = false; 9678 } 9679 } 9680 ret = btrfs_end_transaction(trans, root); 9681 out_notrans: 9682 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9683 up_read(&dest->fs_info->subvol_sem); 9684 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9685 up_read(&root->fs_info->subvol_sem); 9686 9687 return ret; 9688 } 9689 9690 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9691 struct btrfs_root *root, 9692 struct inode *dir, 9693 struct dentry *dentry) 9694 { 9695 int ret; 9696 struct inode *inode; 9697 u64 objectid; 9698 u64 index; 9699 9700 ret = btrfs_find_free_ino(root, &objectid); 9701 if (ret) 9702 return ret; 9703 9704 inode = btrfs_new_inode(trans, root, dir, 9705 dentry->d_name.name, 9706 dentry->d_name.len, 9707 btrfs_ino(dir), 9708 objectid, 9709 S_IFCHR | WHITEOUT_MODE, 9710 &index); 9711 9712 if (IS_ERR(inode)) { 9713 ret = PTR_ERR(inode); 9714 return ret; 9715 } 9716 9717 inode->i_op = &btrfs_special_inode_operations; 9718 init_special_inode(inode, inode->i_mode, 9719 WHITEOUT_DEV); 9720 9721 ret = btrfs_init_inode_security(trans, inode, dir, 9722 &dentry->d_name); 9723 if (ret) 9724 goto out; 9725 9726 ret = btrfs_add_nondir(trans, dir, dentry, 9727 inode, 0, index); 9728 if (ret) 9729 goto out; 9730 9731 ret = btrfs_update_inode(trans, root, inode); 9732 out: 9733 unlock_new_inode(inode); 9734 if (ret) 9735 inode_dec_link_count(inode); 9736 iput(inode); 9737 9738 return ret; 9739 } 9740 9741 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9742 struct inode *new_dir, struct dentry *new_dentry, 9743 unsigned int flags) 9744 { 9745 struct btrfs_trans_handle *trans; 9746 unsigned int trans_num_items; 9747 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9748 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9749 struct inode *new_inode = d_inode(new_dentry); 9750 struct inode *old_inode = d_inode(old_dentry); 9751 u64 index = 0; 9752 u64 root_objectid; 9753 int ret; 9754 u64 old_ino = btrfs_ino(old_inode); 9755 bool log_pinned = false; 9756 9757 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9758 return -EPERM; 9759 9760 /* we only allow rename subvolume link between subvolumes */ 9761 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9762 return -EXDEV; 9763 9764 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9765 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9766 return -ENOTEMPTY; 9767 9768 if (S_ISDIR(old_inode->i_mode) && new_inode && 9769 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9770 return -ENOTEMPTY; 9771 9772 9773 /* check for collisions, even if the name isn't there */ 9774 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9775 new_dentry->d_name.name, 9776 new_dentry->d_name.len); 9777 9778 if (ret) { 9779 if (ret == -EEXIST) { 9780 /* we shouldn't get 9781 * eexist without a new_inode */ 9782 if (WARN_ON(!new_inode)) { 9783 return ret; 9784 } 9785 } else { 9786 /* maybe -EOVERFLOW */ 9787 return ret; 9788 } 9789 } 9790 ret = 0; 9791 9792 /* 9793 * we're using rename to replace one file with another. Start IO on it 9794 * now so we don't add too much work to the end of the transaction 9795 */ 9796 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9797 filemap_flush(old_inode->i_mapping); 9798 9799 /* close the racy window with snapshot create/destroy ioctl */ 9800 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9801 down_read(&root->fs_info->subvol_sem); 9802 /* 9803 * We want to reserve the absolute worst case amount of items. So if 9804 * both inodes are subvols and we need to unlink them then that would 9805 * require 4 item modifications, but if they are both normal inodes it 9806 * would require 5 item modifications, so we'll assume they are normal 9807 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9808 * should cover the worst case number of items we'll modify. 9809 * If our rename has the whiteout flag, we need more 5 units for the 9810 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9811 * when selinux is enabled). 9812 */ 9813 trans_num_items = 11; 9814 if (flags & RENAME_WHITEOUT) 9815 trans_num_items += 5; 9816 trans = btrfs_start_transaction(root, trans_num_items); 9817 if (IS_ERR(trans)) { 9818 ret = PTR_ERR(trans); 9819 goto out_notrans; 9820 } 9821 9822 if (dest != root) 9823 btrfs_record_root_in_trans(trans, dest); 9824 9825 ret = btrfs_set_inode_index(new_dir, &index); 9826 if (ret) 9827 goto out_fail; 9828 9829 BTRFS_I(old_inode)->dir_index = 0ULL; 9830 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9831 /* force full log commit if subvolume involved. */ 9832 btrfs_set_log_full_commit(root->fs_info, trans); 9833 } else { 9834 btrfs_pin_log_trans(root); 9835 log_pinned = true; 9836 ret = btrfs_insert_inode_ref(trans, dest, 9837 new_dentry->d_name.name, 9838 new_dentry->d_name.len, 9839 old_ino, 9840 btrfs_ino(new_dir), index); 9841 if (ret) 9842 goto out_fail; 9843 } 9844 9845 inode_inc_iversion(old_dir); 9846 inode_inc_iversion(new_dir); 9847 inode_inc_iversion(old_inode); 9848 old_dir->i_ctime = old_dir->i_mtime = 9849 new_dir->i_ctime = new_dir->i_mtime = 9850 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9851 9852 if (old_dentry->d_parent != new_dentry->d_parent) 9853 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9854 9855 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9856 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9857 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9858 old_dentry->d_name.name, 9859 old_dentry->d_name.len); 9860 } else { 9861 ret = __btrfs_unlink_inode(trans, root, old_dir, 9862 d_inode(old_dentry), 9863 old_dentry->d_name.name, 9864 old_dentry->d_name.len); 9865 if (!ret) 9866 ret = btrfs_update_inode(trans, root, old_inode); 9867 } 9868 if (ret) { 9869 btrfs_abort_transaction(trans, ret); 9870 goto out_fail; 9871 } 9872 9873 if (new_inode) { 9874 inode_inc_iversion(new_inode); 9875 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9876 if (unlikely(btrfs_ino(new_inode) == 9877 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9878 root_objectid = BTRFS_I(new_inode)->location.objectid; 9879 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9880 root_objectid, 9881 new_dentry->d_name.name, 9882 new_dentry->d_name.len); 9883 BUG_ON(new_inode->i_nlink == 0); 9884 } else { 9885 ret = btrfs_unlink_inode(trans, dest, new_dir, 9886 d_inode(new_dentry), 9887 new_dentry->d_name.name, 9888 new_dentry->d_name.len); 9889 } 9890 if (!ret && new_inode->i_nlink == 0) 9891 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9892 if (ret) { 9893 btrfs_abort_transaction(trans, ret); 9894 goto out_fail; 9895 } 9896 } 9897 9898 ret = btrfs_add_link(trans, new_dir, old_inode, 9899 new_dentry->d_name.name, 9900 new_dentry->d_name.len, 0, index); 9901 if (ret) { 9902 btrfs_abort_transaction(trans, ret); 9903 goto out_fail; 9904 } 9905 9906 if (old_inode->i_nlink == 1) 9907 BTRFS_I(old_inode)->dir_index = index; 9908 9909 if (log_pinned) { 9910 struct dentry *parent = new_dentry->d_parent; 9911 9912 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9913 btrfs_end_log_trans(root); 9914 log_pinned = false; 9915 } 9916 9917 if (flags & RENAME_WHITEOUT) { 9918 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9919 old_dentry); 9920 9921 if (ret) { 9922 btrfs_abort_transaction(trans, ret); 9923 goto out_fail; 9924 } 9925 } 9926 out_fail: 9927 /* 9928 * If we have pinned the log and an error happened, we unpin tasks 9929 * trying to sync the log and force them to fallback to a transaction 9930 * commit if the log currently contains any of the inodes involved in 9931 * this rename operation (to ensure we do not persist a log with an 9932 * inconsistent state for any of these inodes or leading to any 9933 * inconsistencies when replayed). If the transaction was aborted, the 9934 * abortion reason is propagated to userspace when attempting to commit 9935 * the transaction. If the log does not contain any of these inodes, we 9936 * allow the tasks to sync it. 9937 */ 9938 if (ret && log_pinned) { 9939 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9940 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9941 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9942 (new_inode && 9943 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9944 btrfs_set_log_full_commit(root->fs_info, trans); 9945 9946 btrfs_end_log_trans(root); 9947 log_pinned = false; 9948 } 9949 btrfs_end_transaction(trans, root); 9950 out_notrans: 9951 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9952 up_read(&root->fs_info->subvol_sem); 9953 9954 return ret; 9955 } 9956 9957 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9958 struct inode *new_dir, struct dentry *new_dentry, 9959 unsigned int flags) 9960 { 9961 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9962 return -EINVAL; 9963 9964 if (flags & RENAME_EXCHANGE) 9965 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9966 new_dentry); 9967 9968 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9969 } 9970 9971 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9972 { 9973 struct btrfs_delalloc_work *delalloc_work; 9974 struct inode *inode; 9975 9976 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9977 work); 9978 inode = delalloc_work->inode; 9979 filemap_flush(inode->i_mapping); 9980 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9981 &BTRFS_I(inode)->runtime_flags)) 9982 filemap_flush(inode->i_mapping); 9983 9984 if (delalloc_work->delay_iput) 9985 btrfs_add_delayed_iput(inode); 9986 else 9987 iput(inode); 9988 complete(&delalloc_work->completion); 9989 } 9990 9991 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9992 int delay_iput) 9993 { 9994 struct btrfs_delalloc_work *work; 9995 9996 work = kmalloc(sizeof(*work), GFP_NOFS); 9997 if (!work) 9998 return NULL; 9999 10000 init_completion(&work->completion); 10001 INIT_LIST_HEAD(&work->list); 10002 work->inode = inode; 10003 work->delay_iput = delay_iput; 10004 WARN_ON_ONCE(!inode); 10005 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10006 btrfs_run_delalloc_work, NULL, NULL); 10007 10008 return work; 10009 } 10010 10011 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10012 { 10013 wait_for_completion(&work->completion); 10014 kfree(work); 10015 } 10016 10017 /* 10018 * some fairly slow code that needs optimization. This walks the list 10019 * of all the inodes with pending delalloc and forces them to disk. 10020 */ 10021 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10022 int nr) 10023 { 10024 struct btrfs_inode *binode; 10025 struct inode *inode; 10026 struct btrfs_delalloc_work *work, *next; 10027 struct list_head works; 10028 struct list_head splice; 10029 int ret = 0; 10030 10031 INIT_LIST_HEAD(&works); 10032 INIT_LIST_HEAD(&splice); 10033 10034 mutex_lock(&root->delalloc_mutex); 10035 spin_lock(&root->delalloc_lock); 10036 list_splice_init(&root->delalloc_inodes, &splice); 10037 while (!list_empty(&splice)) { 10038 binode = list_entry(splice.next, struct btrfs_inode, 10039 delalloc_inodes); 10040 10041 list_move_tail(&binode->delalloc_inodes, 10042 &root->delalloc_inodes); 10043 inode = igrab(&binode->vfs_inode); 10044 if (!inode) { 10045 cond_resched_lock(&root->delalloc_lock); 10046 continue; 10047 } 10048 spin_unlock(&root->delalloc_lock); 10049 10050 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10051 if (!work) { 10052 if (delay_iput) 10053 btrfs_add_delayed_iput(inode); 10054 else 10055 iput(inode); 10056 ret = -ENOMEM; 10057 goto out; 10058 } 10059 list_add_tail(&work->list, &works); 10060 btrfs_queue_work(root->fs_info->flush_workers, 10061 &work->work); 10062 ret++; 10063 if (nr != -1 && ret >= nr) 10064 goto out; 10065 cond_resched(); 10066 spin_lock(&root->delalloc_lock); 10067 } 10068 spin_unlock(&root->delalloc_lock); 10069 10070 out: 10071 list_for_each_entry_safe(work, next, &works, list) { 10072 list_del_init(&work->list); 10073 btrfs_wait_and_free_delalloc_work(work); 10074 } 10075 10076 if (!list_empty_careful(&splice)) { 10077 spin_lock(&root->delalloc_lock); 10078 list_splice_tail(&splice, &root->delalloc_inodes); 10079 spin_unlock(&root->delalloc_lock); 10080 } 10081 mutex_unlock(&root->delalloc_mutex); 10082 return ret; 10083 } 10084 10085 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10086 { 10087 int ret; 10088 10089 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10090 return -EROFS; 10091 10092 ret = __start_delalloc_inodes(root, delay_iput, -1); 10093 if (ret > 0) 10094 ret = 0; 10095 /* 10096 * the filemap_flush will queue IO into the worker threads, but 10097 * we have to make sure the IO is actually started and that 10098 * ordered extents get created before we return 10099 */ 10100 atomic_inc(&root->fs_info->async_submit_draining); 10101 while (atomic_read(&root->fs_info->nr_async_submits) || 10102 atomic_read(&root->fs_info->async_delalloc_pages)) { 10103 wait_event(root->fs_info->async_submit_wait, 10104 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10105 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10106 } 10107 atomic_dec(&root->fs_info->async_submit_draining); 10108 return ret; 10109 } 10110 10111 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10112 int nr) 10113 { 10114 struct btrfs_root *root; 10115 struct list_head splice; 10116 int ret; 10117 10118 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10119 return -EROFS; 10120 10121 INIT_LIST_HEAD(&splice); 10122 10123 mutex_lock(&fs_info->delalloc_root_mutex); 10124 spin_lock(&fs_info->delalloc_root_lock); 10125 list_splice_init(&fs_info->delalloc_roots, &splice); 10126 while (!list_empty(&splice) && nr) { 10127 root = list_first_entry(&splice, struct btrfs_root, 10128 delalloc_root); 10129 root = btrfs_grab_fs_root(root); 10130 BUG_ON(!root); 10131 list_move_tail(&root->delalloc_root, 10132 &fs_info->delalloc_roots); 10133 spin_unlock(&fs_info->delalloc_root_lock); 10134 10135 ret = __start_delalloc_inodes(root, delay_iput, nr); 10136 btrfs_put_fs_root(root); 10137 if (ret < 0) 10138 goto out; 10139 10140 if (nr != -1) { 10141 nr -= ret; 10142 WARN_ON(nr < 0); 10143 } 10144 spin_lock(&fs_info->delalloc_root_lock); 10145 } 10146 spin_unlock(&fs_info->delalloc_root_lock); 10147 10148 ret = 0; 10149 atomic_inc(&fs_info->async_submit_draining); 10150 while (atomic_read(&fs_info->nr_async_submits) || 10151 atomic_read(&fs_info->async_delalloc_pages)) { 10152 wait_event(fs_info->async_submit_wait, 10153 (atomic_read(&fs_info->nr_async_submits) == 0 && 10154 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10155 } 10156 atomic_dec(&fs_info->async_submit_draining); 10157 out: 10158 if (!list_empty_careful(&splice)) { 10159 spin_lock(&fs_info->delalloc_root_lock); 10160 list_splice_tail(&splice, &fs_info->delalloc_roots); 10161 spin_unlock(&fs_info->delalloc_root_lock); 10162 } 10163 mutex_unlock(&fs_info->delalloc_root_mutex); 10164 return ret; 10165 } 10166 10167 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10168 const char *symname) 10169 { 10170 struct btrfs_trans_handle *trans; 10171 struct btrfs_root *root = BTRFS_I(dir)->root; 10172 struct btrfs_path *path; 10173 struct btrfs_key key; 10174 struct inode *inode = NULL; 10175 int err; 10176 int drop_inode = 0; 10177 u64 objectid; 10178 u64 index = 0; 10179 int name_len; 10180 int datasize; 10181 unsigned long ptr; 10182 struct btrfs_file_extent_item *ei; 10183 struct extent_buffer *leaf; 10184 10185 name_len = strlen(symname); 10186 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10187 return -ENAMETOOLONG; 10188 10189 /* 10190 * 2 items for inode item and ref 10191 * 2 items for dir items 10192 * 1 item for updating parent inode item 10193 * 1 item for the inline extent item 10194 * 1 item for xattr if selinux is on 10195 */ 10196 trans = btrfs_start_transaction(root, 7); 10197 if (IS_ERR(trans)) 10198 return PTR_ERR(trans); 10199 10200 err = btrfs_find_free_ino(root, &objectid); 10201 if (err) 10202 goto out_unlock; 10203 10204 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10205 dentry->d_name.len, btrfs_ino(dir), objectid, 10206 S_IFLNK|S_IRWXUGO, &index); 10207 if (IS_ERR(inode)) { 10208 err = PTR_ERR(inode); 10209 goto out_unlock; 10210 } 10211 10212 /* 10213 * If the active LSM wants to access the inode during 10214 * d_instantiate it needs these. Smack checks to see 10215 * if the filesystem supports xattrs by looking at the 10216 * ops vector. 10217 */ 10218 inode->i_fop = &btrfs_file_operations; 10219 inode->i_op = &btrfs_file_inode_operations; 10220 inode->i_mapping->a_ops = &btrfs_aops; 10221 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10222 10223 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10224 if (err) 10225 goto out_unlock_inode; 10226 10227 path = btrfs_alloc_path(); 10228 if (!path) { 10229 err = -ENOMEM; 10230 goto out_unlock_inode; 10231 } 10232 key.objectid = btrfs_ino(inode); 10233 key.offset = 0; 10234 key.type = BTRFS_EXTENT_DATA_KEY; 10235 datasize = btrfs_file_extent_calc_inline_size(name_len); 10236 err = btrfs_insert_empty_item(trans, root, path, &key, 10237 datasize); 10238 if (err) { 10239 btrfs_free_path(path); 10240 goto out_unlock_inode; 10241 } 10242 leaf = path->nodes[0]; 10243 ei = btrfs_item_ptr(leaf, path->slots[0], 10244 struct btrfs_file_extent_item); 10245 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10246 btrfs_set_file_extent_type(leaf, ei, 10247 BTRFS_FILE_EXTENT_INLINE); 10248 btrfs_set_file_extent_encryption(leaf, ei, 0); 10249 btrfs_set_file_extent_compression(leaf, ei, 0); 10250 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10251 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10252 10253 ptr = btrfs_file_extent_inline_start(ei); 10254 write_extent_buffer(leaf, symname, ptr, name_len); 10255 btrfs_mark_buffer_dirty(leaf); 10256 btrfs_free_path(path); 10257 10258 inode->i_op = &btrfs_symlink_inode_operations; 10259 inode_nohighmem(inode); 10260 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10261 inode_set_bytes(inode, name_len); 10262 btrfs_i_size_write(inode, name_len); 10263 err = btrfs_update_inode(trans, root, inode); 10264 /* 10265 * Last step, add directory indexes for our symlink inode. This is the 10266 * last step to avoid extra cleanup of these indexes if an error happens 10267 * elsewhere above. 10268 */ 10269 if (!err) 10270 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10271 if (err) { 10272 drop_inode = 1; 10273 goto out_unlock_inode; 10274 } 10275 10276 unlock_new_inode(inode); 10277 d_instantiate(dentry, inode); 10278 10279 out_unlock: 10280 btrfs_end_transaction(trans, root); 10281 if (drop_inode) { 10282 inode_dec_link_count(inode); 10283 iput(inode); 10284 } 10285 btrfs_btree_balance_dirty(root); 10286 return err; 10287 10288 out_unlock_inode: 10289 drop_inode = 1; 10290 unlock_new_inode(inode); 10291 goto out_unlock; 10292 } 10293 10294 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10295 u64 start, u64 num_bytes, u64 min_size, 10296 loff_t actual_len, u64 *alloc_hint, 10297 struct btrfs_trans_handle *trans) 10298 { 10299 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10300 struct extent_map *em; 10301 struct btrfs_root *root = BTRFS_I(inode)->root; 10302 struct btrfs_key ins; 10303 u64 cur_offset = start; 10304 u64 i_size; 10305 u64 cur_bytes; 10306 u64 last_alloc = (u64)-1; 10307 int ret = 0; 10308 bool own_trans = true; 10309 10310 if (trans) 10311 own_trans = false; 10312 while (num_bytes > 0) { 10313 if (own_trans) { 10314 trans = btrfs_start_transaction(root, 3); 10315 if (IS_ERR(trans)) { 10316 ret = PTR_ERR(trans); 10317 break; 10318 } 10319 } 10320 10321 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10322 cur_bytes = max(cur_bytes, min_size); 10323 /* 10324 * If we are severely fragmented we could end up with really 10325 * small allocations, so if the allocator is returning small 10326 * chunks lets make its job easier by only searching for those 10327 * sized chunks. 10328 */ 10329 cur_bytes = min(cur_bytes, last_alloc); 10330 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10331 *alloc_hint, &ins, 1, 0); 10332 if (ret) { 10333 if (own_trans) 10334 btrfs_end_transaction(trans, root); 10335 break; 10336 } 10337 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10338 10339 last_alloc = ins.offset; 10340 ret = insert_reserved_file_extent(trans, inode, 10341 cur_offset, ins.objectid, 10342 ins.offset, ins.offset, 10343 ins.offset, 0, 0, 0, 10344 BTRFS_FILE_EXTENT_PREALLOC); 10345 if (ret) { 10346 btrfs_free_reserved_extent(root, ins.objectid, 10347 ins.offset, 0); 10348 btrfs_abort_transaction(trans, ret); 10349 if (own_trans) 10350 btrfs_end_transaction(trans, root); 10351 break; 10352 } 10353 10354 btrfs_drop_extent_cache(inode, cur_offset, 10355 cur_offset + ins.offset -1, 0); 10356 10357 em = alloc_extent_map(); 10358 if (!em) { 10359 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10360 &BTRFS_I(inode)->runtime_flags); 10361 goto next; 10362 } 10363 10364 em->start = cur_offset; 10365 em->orig_start = cur_offset; 10366 em->len = ins.offset; 10367 em->block_start = ins.objectid; 10368 em->block_len = ins.offset; 10369 em->orig_block_len = ins.offset; 10370 em->ram_bytes = ins.offset; 10371 em->bdev = root->fs_info->fs_devices->latest_bdev; 10372 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10373 em->generation = trans->transid; 10374 10375 while (1) { 10376 write_lock(&em_tree->lock); 10377 ret = add_extent_mapping(em_tree, em, 1); 10378 write_unlock(&em_tree->lock); 10379 if (ret != -EEXIST) 10380 break; 10381 btrfs_drop_extent_cache(inode, cur_offset, 10382 cur_offset + ins.offset - 1, 10383 0); 10384 } 10385 free_extent_map(em); 10386 next: 10387 num_bytes -= ins.offset; 10388 cur_offset += ins.offset; 10389 *alloc_hint = ins.objectid + ins.offset; 10390 10391 inode_inc_iversion(inode); 10392 inode->i_ctime = current_fs_time(inode->i_sb); 10393 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10394 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10395 (actual_len > inode->i_size) && 10396 (cur_offset > inode->i_size)) { 10397 if (cur_offset > actual_len) 10398 i_size = actual_len; 10399 else 10400 i_size = cur_offset; 10401 i_size_write(inode, i_size); 10402 btrfs_ordered_update_i_size(inode, i_size, NULL); 10403 } 10404 10405 ret = btrfs_update_inode(trans, root, inode); 10406 10407 if (ret) { 10408 btrfs_abort_transaction(trans, ret); 10409 if (own_trans) 10410 btrfs_end_transaction(trans, root); 10411 break; 10412 } 10413 10414 if (own_trans) 10415 btrfs_end_transaction(trans, root); 10416 } 10417 return ret; 10418 } 10419 10420 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10421 u64 start, u64 num_bytes, u64 min_size, 10422 loff_t actual_len, u64 *alloc_hint) 10423 { 10424 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10425 min_size, actual_len, alloc_hint, 10426 NULL); 10427 } 10428 10429 int btrfs_prealloc_file_range_trans(struct inode *inode, 10430 struct btrfs_trans_handle *trans, int mode, 10431 u64 start, u64 num_bytes, u64 min_size, 10432 loff_t actual_len, u64 *alloc_hint) 10433 { 10434 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10435 min_size, actual_len, alloc_hint, trans); 10436 } 10437 10438 static int btrfs_set_page_dirty(struct page *page) 10439 { 10440 return __set_page_dirty_nobuffers(page); 10441 } 10442 10443 static int btrfs_permission(struct inode *inode, int mask) 10444 { 10445 struct btrfs_root *root = BTRFS_I(inode)->root; 10446 umode_t mode = inode->i_mode; 10447 10448 if (mask & MAY_WRITE && 10449 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10450 if (btrfs_root_readonly(root)) 10451 return -EROFS; 10452 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10453 return -EACCES; 10454 } 10455 return generic_permission(inode, mask); 10456 } 10457 10458 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10459 { 10460 struct btrfs_trans_handle *trans; 10461 struct btrfs_root *root = BTRFS_I(dir)->root; 10462 struct inode *inode = NULL; 10463 u64 objectid; 10464 u64 index; 10465 int ret = 0; 10466 10467 /* 10468 * 5 units required for adding orphan entry 10469 */ 10470 trans = btrfs_start_transaction(root, 5); 10471 if (IS_ERR(trans)) 10472 return PTR_ERR(trans); 10473 10474 ret = btrfs_find_free_ino(root, &objectid); 10475 if (ret) 10476 goto out; 10477 10478 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10479 btrfs_ino(dir), objectid, mode, &index); 10480 if (IS_ERR(inode)) { 10481 ret = PTR_ERR(inode); 10482 inode = NULL; 10483 goto out; 10484 } 10485 10486 inode->i_fop = &btrfs_file_operations; 10487 inode->i_op = &btrfs_file_inode_operations; 10488 10489 inode->i_mapping->a_ops = &btrfs_aops; 10490 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10491 10492 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10493 if (ret) 10494 goto out_inode; 10495 10496 ret = btrfs_update_inode(trans, root, inode); 10497 if (ret) 10498 goto out_inode; 10499 ret = btrfs_orphan_add(trans, inode); 10500 if (ret) 10501 goto out_inode; 10502 10503 /* 10504 * We set number of links to 0 in btrfs_new_inode(), and here we set 10505 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10506 * through: 10507 * 10508 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10509 */ 10510 set_nlink(inode, 1); 10511 unlock_new_inode(inode); 10512 d_tmpfile(dentry, inode); 10513 mark_inode_dirty(inode); 10514 10515 out: 10516 btrfs_end_transaction(trans, root); 10517 if (ret) 10518 iput(inode); 10519 btrfs_balance_delayed_items(root); 10520 btrfs_btree_balance_dirty(root); 10521 return ret; 10522 10523 out_inode: 10524 unlock_new_inode(inode); 10525 goto out; 10526 10527 } 10528 10529 /* Inspired by filemap_check_errors() */ 10530 int btrfs_inode_check_errors(struct inode *inode) 10531 { 10532 int ret = 0; 10533 10534 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10535 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10536 ret = -ENOSPC; 10537 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10538 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10539 ret = -EIO; 10540 10541 return ret; 10542 } 10543 10544 static const struct inode_operations btrfs_dir_inode_operations = { 10545 .getattr = btrfs_getattr, 10546 .lookup = btrfs_lookup, 10547 .create = btrfs_create, 10548 .unlink = btrfs_unlink, 10549 .link = btrfs_link, 10550 .mkdir = btrfs_mkdir, 10551 .rmdir = btrfs_rmdir, 10552 .rename2 = btrfs_rename2, 10553 .symlink = btrfs_symlink, 10554 .setattr = btrfs_setattr, 10555 .mknod = btrfs_mknod, 10556 .setxattr = generic_setxattr, 10557 .getxattr = generic_getxattr, 10558 .listxattr = btrfs_listxattr, 10559 .removexattr = generic_removexattr, 10560 .permission = btrfs_permission, 10561 .get_acl = btrfs_get_acl, 10562 .set_acl = btrfs_set_acl, 10563 .update_time = btrfs_update_time, 10564 .tmpfile = btrfs_tmpfile, 10565 }; 10566 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10567 .lookup = btrfs_lookup, 10568 .permission = btrfs_permission, 10569 .get_acl = btrfs_get_acl, 10570 .set_acl = btrfs_set_acl, 10571 .update_time = btrfs_update_time, 10572 }; 10573 10574 static const struct file_operations btrfs_dir_file_operations = { 10575 .llseek = generic_file_llseek, 10576 .read = generic_read_dir, 10577 .iterate_shared = btrfs_real_readdir, 10578 .unlocked_ioctl = btrfs_ioctl, 10579 #ifdef CONFIG_COMPAT 10580 .compat_ioctl = btrfs_compat_ioctl, 10581 #endif 10582 .release = btrfs_release_file, 10583 .fsync = btrfs_sync_file, 10584 }; 10585 10586 static const struct extent_io_ops btrfs_extent_io_ops = { 10587 .fill_delalloc = run_delalloc_range, 10588 .submit_bio_hook = btrfs_submit_bio_hook, 10589 .merge_bio_hook = btrfs_merge_bio_hook, 10590 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10591 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10592 .writepage_start_hook = btrfs_writepage_start_hook, 10593 .set_bit_hook = btrfs_set_bit_hook, 10594 .clear_bit_hook = btrfs_clear_bit_hook, 10595 .merge_extent_hook = btrfs_merge_extent_hook, 10596 .split_extent_hook = btrfs_split_extent_hook, 10597 }; 10598 10599 /* 10600 * btrfs doesn't support the bmap operation because swapfiles 10601 * use bmap to make a mapping of extents in the file. They assume 10602 * these extents won't change over the life of the file and they 10603 * use the bmap result to do IO directly to the drive. 10604 * 10605 * the btrfs bmap call would return logical addresses that aren't 10606 * suitable for IO and they also will change frequently as COW 10607 * operations happen. So, swapfile + btrfs == corruption. 10608 * 10609 * For now we're avoiding this by dropping bmap. 10610 */ 10611 static const struct address_space_operations btrfs_aops = { 10612 .readpage = btrfs_readpage, 10613 .writepage = btrfs_writepage, 10614 .writepages = btrfs_writepages, 10615 .readpages = btrfs_readpages, 10616 .direct_IO = btrfs_direct_IO, 10617 .invalidatepage = btrfs_invalidatepage, 10618 .releasepage = btrfs_releasepage, 10619 .set_page_dirty = btrfs_set_page_dirty, 10620 .error_remove_page = generic_error_remove_page, 10621 }; 10622 10623 static const struct address_space_operations btrfs_symlink_aops = { 10624 .readpage = btrfs_readpage, 10625 .writepage = btrfs_writepage, 10626 .invalidatepage = btrfs_invalidatepage, 10627 .releasepage = btrfs_releasepage, 10628 }; 10629 10630 static const struct inode_operations btrfs_file_inode_operations = { 10631 .getattr = btrfs_getattr, 10632 .setattr = btrfs_setattr, 10633 .setxattr = generic_setxattr, 10634 .getxattr = generic_getxattr, 10635 .listxattr = btrfs_listxattr, 10636 .removexattr = generic_removexattr, 10637 .permission = btrfs_permission, 10638 .fiemap = btrfs_fiemap, 10639 .get_acl = btrfs_get_acl, 10640 .set_acl = btrfs_set_acl, 10641 .update_time = btrfs_update_time, 10642 }; 10643 static const struct inode_operations btrfs_special_inode_operations = { 10644 .getattr = btrfs_getattr, 10645 .setattr = btrfs_setattr, 10646 .permission = btrfs_permission, 10647 .setxattr = generic_setxattr, 10648 .getxattr = generic_getxattr, 10649 .listxattr = btrfs_listxattr, 10650 .removexattr = generic_removexattr, 10651 .get_acl = btrfs_get_acl, 10652 .set_acl = btrfs_set_acl, 10653 .update_time = btrfs_update_time, 10654 }; 10655 static const struct inode_operations btrfs_symlink_inode_operations = { 10656 .readlink = generic_readlink, 10657 .get_link = page_get_link, 10658 .getattr = btrfs_getattr, 10659 .setattr = btrfs_setattr, 10660 .permission = btrfs_permission, 10661 .setxattr = generic_setxattr, 10662 .getxattr = generic_getxattr, 10663 .listxattr = btrfs_listxattr, 10664 .removexattr = generic_removexattr, 10665 .update_time = btrfs_update_time, 10666 }; 10667 10668 const struct dentry_operations btrfs_dentry_operations = { 10669 .d_delete = btrfs_dentry_delete, 10670 .d_release = btrfs_dentry_release, 10671 }; 10672