xref: /linux/fs/btrfs/inode.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 outstanding_extents;
72 	u64 reserve;
73 	u64 unsubmitted_oe_range_start;
74 	u64 unsubmitted_oe_range_end;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 					   u64 len, u64 orig_start,
114 					   u64 block_start, u64 block_len,
115 					   u64 orig_block_len, u64 ram_bytes,
116 					   int type);
117 
118 static int btrfs_dirty_inode(struct inode *inode);
119 
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126 
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 				     struct inode *inode,  struct inode *dir,
129 				     const struct qstr *qstr)
130 {
131 	int err;
132 
133 	err = btrfs_init_acl(trans, inode, dir);
134 	if (!err)
135 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 	return err;
137 }
138 
139 /*
140  * this does all the hard work for inserting an inline extent into
141  * the btree.  The caller should have done a btrfs_drop_extents so that
142  * no overlapping inline items exist in the btree
143  */
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 				struct btrfs_path *path, int extent_inserted,
146 				struct btrfs_root *root, struct inode *inode,
147 				u64 start, size_t size, size_t compressed_size,
148 				int compress_type,
149 				struct page **compressed_pages)
150 {
151 	struct extent_buffer *leaf;
152 	struct page *page = NULL;
153 	char *kaddr;
154 	unsigned long ptr;
155 	struct btrfs_file_extent_item *ei;
156 	int err = 0;
157 	int ret;
158 	size_t cur_size = size;
159 	unsigned long offset;
160 
161 	if (compressed_size && compressed_pages)
162 		cur_size = compressed_size;
163 
164 	inode_add_bytes(inode, size);
165 
166 	if (!extent_inserted) {
167 		struct btrfs_key key;
168 		size_t datasize;
169 
170 		key.objectid = btrfs_ino(inode);
171 		key.offset = start;
172 		key.type = BTRFS_EXTENT_DATA_KEY;
173 
174 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 		path->leave_spinning = 1;
176 		ret = btrfs_insert_empty_item(trans, root, path, &key,
177 					      datasize);
178 		if (ret) {
179 			err = ret;
180 			goto fail;
181 		}
182 	}
183 	leaf = path->nodes[0];
184 	ei = btrfs_item_ptr(leaf, path->slots[0],
185 			    struct btrfs_file_extent_item);
186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
189 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 	ptr = btrfs_file_extent_inline_start(ei);
192 
193 	if (compress_type != BTRFS_COMPRESS_NONE) {
194 		struct page *cpage;
195 		int i = 0;
196 		while (compressed_size > 0) {
197 			cpage = compressed_pages[i];
198 			cur_size = min_t(unsigned long, compressed_size,
199 				       PAGE_SIZE);
200 
201 			kaddr = kmap_atomic(cpage);
202 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 			kunmap_atomic(kaddr);
204 
205 			i++;
206 			ptr += cur_size;
207 			compressed_size -= cur_size;
208 		}
209 		btrfs_set_file_extent_compression(leaf, ei,
210 						  compress_type);
211 	} else {
212 		page = find_get_page(inode->i_mapping,
213 				     start >> PAGE_SHIFT);
214 		btrfs_set_file_extent_compression(leaf, ei, 0);
215 		kaddr = kmap_atomic(page);
216 		offset = start & (PAGE_SIZE - 1);
217 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 		kunmap_atomic(kaddr);
219 		put_page(page);
220 	}
221 	btrfs_mark_buffer_dirty(leaf);
222 	btrfs_release_path(path);
223 
224 	/*
225 	 * we're an inline extent, so nobody can
226 	 * extend the file past i_size without locking
227 	 * a page we already have locked.
228 	 *
229 	 * We must do any isize and inode updates
230 	 * before we unlock the pages.  Otherwise we
231 	 * could end up racing with unlink.
232 	 */
233 	BTRFS_I(inode)->disk_i_size = inode->i_size;
234 	ret = btrfs_update_inode(trans, root, inode);
235 
236 	return ret;
237 fail:
238 	return err;
239 }
240 
241 
242 /*
243  * conditionally insert an inline extent into the file.  This
244  * does the checks required to make sure the data is small enough
245  * to fit as an inline extent.
246  */
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 					  struct inode *inode, u64 start,
249 					  u64 end, size_t compressed_size,
250 					  int compress_type,
251 					  struct page **compressed_pages)
252 {
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, root->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > root->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 	    (!compressed_size &&
271 	    (actual_end & (root->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > root->fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans, root);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_root *root = BTRFS_I(inode)->root;
377 
378 	/* force compress */
379 	if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_root *root = BTRFS_I(inode)->root;
415 	u64 num_bytes;
416 	u64 blocksize = root->sectorsize;
417 	u64 actual_end;
418 	u64 isize = i_size_read(inode);
419 	int ret = 0;
420 	struct page **pages = NULL;
421 	unsigned long nr_pages;
422 	unsigned long nr_pages_ret = 0;
423 	unsigned long total_compressed = 0;
424 	unsigned long total_in = 0;
425 	unsigned long max_compressed = SZ_128K;
426 	unsigned long max_uncompressed = SZ_128K;
427 	int i;
428 	int will_compress;
429 	int compress_type = root->fs_info->compress_type;
430 	int redirty = 0;
431 
432 	/* if this is a small write inside eof, kick off a defrag */
433 	if ((end - start + 1) < SZ_16K &&
434 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 		btrfs_add_inode_defrag(NULL, inode);
436 
437 	actual_end = min_t(u64, isize, end + 1);
438 again:
439 	will_compress = 0;
440 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 
443 	/*
444 	 * we don't want to send crud past the end of i_size through
445 	 * compression, that's just a waste of CPU time.  So, if the
446 	 * end of the file is before the start of our current
447 	 * requested range of bytes, we bail out to the uncompressed
448 	 * cleanup code that can deal with all of this.
449 	 *
450 	 * It isn't really the fastest way to fix things, but this is a
451 	 * very uncommon corner.
452 	 */
453 	if (actual_end <= start)
454 		goto cleanup_and_bail_uncompressed;
455 
456 	total_compressed = actual_end - start;
457 
458 	/*
459 	 * skip compression for a small file range(<=blocksize) that
460 	 * isn't an inline extent, since it doesn't save disk space at all.
461 	 */
462 	if (total_compressed <= blocksize &&
463 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 		goto cleanup_and_bail_uncompressed;
465 
466 	/* we want to make sure that amount of ram required to uncompress
467 	 * an extent is reasonable, so we limit the total size in ram
468 	 * of a compressed extent to 128k.  This is a crucial number
469 	 * because it also controls how easily we can spread reads across
470 	 * cpus for decompression.
471 	 *
472 	 * We also want to make sure the amount of IO required to do
473 	 * a random read is reasonably small, so we limit the size of
474 	 * a compressed extent to 128k.
475 	 */
476 	total_compressed = min(total_compressed, max_uncompressed);
477 	num_bytes = ALIGN(end - start + 1, blocksize);
478 	num_bytes = max(blocksize,  num_bytes);
479 	total_in = 0;
480 	ret = 0;
481 
482 	/*
483 	 * we do compression for mount -o compress and when the
484 	 * inode has not been flagged as nocompress.  This flag can
485 	 * change at any time if we discover bad compression ratios.
486 	 */
487 	if (inode_need_compress(inode)) {
488 		WARN_ON(pages);
489 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 		if (!pages) {
491 			/* just bail out to the uncompressed code */
492 			goto cont;
493 		}
494 
495 		if (BTRFS_I(inode)->force_compress)
496 			compress_type = BTRFS_I(inode)->force_compress;
497 
498 		/*
499 		 * we need to call clear_page_dirty_for_io on each
500 		 * page in the range.  Otherwise applications with the file
501 		 * mmap'd can wander in and change the page contents while
502 		 * we are compressing them.
503 		 *
504 		 * If the compression fails for any reason, we set the pages
505 		 * dirty again later on.
506 		 */
507 		extent_range_clear_dirty_for_io(inode, start, end);
508 		redirty = 1;
509 		ret = btrfs_compress_pages(compress_type,
510 					   inode->i_mapping, start,
511 					   total_compressed, pages,
512 					   nr_pages, &nr_pages_ret,
513 					   &total_in,
514 					   &total_compressed,
515 					   max_compressed);
516 
517 		if (!ret) {
518 			unsigned long offset = total_compressed &
519 				(PAGE_SIZE - 1);
520 			struct page *page = pages[nr_pages_ret - 1];
521 			char *kaddr;
522 
523 			/* zero the tail end of the last page, we might be
524 			 * sending it down to disk
525 			 */
526 			if (offset) {
527 				kaddr = kmap_atomic(page);
528 				memset(kaddr + offset, 0,
529 				       PAGE_SIZE - offset);
530 				kunmap_atomic(kaddr);
531 			}
532 			will_compress = 1;
533 		}
534 	}
535 cont:
536 	if (start == 0) {
537 		/* lets try to make an inline extent */
538 		if (ret || total_in < (actual_end - start)) {
539 			/* we didn't compress the entire range, try
540 			 * to make an uncompressed inline extent.
541 			 */
542 			ret = cow_file_range_inline(root, inode, start, end,
543 						    0, 0, NULL);
544 		} else {
545 			/* try making a compressed inline extent */
546 			ret = cow_file_range_inline(root, inode, start, end,
547 						    total_compressed,
548 						    compress_type, pages);
549 		}
550 		if (ret <= 0) {
551 			unsigned long clear_flags = EXTENT_DELALLOC |
552 				EXTENT_DEFRAG;
553 			unsigned long page_error_op;
554 
555 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 
558 			/*
559 			 * inline extent creation worked or returned error,
560 			 * we don't need to create any more async work items.
561 			 * Unlock and free up our temp pages.
562 			 */
563 			extent_clear_unlock_delalloc(inode, start, end, NULL,
564 						     clear_flags, PAGE_UNLOCK |
565 						     PAGE_CLEAR_DIRTY |
566 						     PAGE_SET_WRITEBACK |
567 						     page_error_op |
568 						     PAGE_END_WRITEBACK);
569 			goto free_pages_out;
570 		}
571 	}
572 
573 	if (will_compress) {
574 		/*
575 		 * we aren't doing an inline extent round the compressed size
576 		 * up to a block size boundary so the allocator does sane
577 		 * things
578 		 */
579 		total_compressed = ALIGN(total_compressed, blocksize);
580 
581 		/*
582 		 * one last check to make sure the compression is really a
583 		 * win, compare the page count read with the blocks on disk
584 		 */
585 		total_in = ALIGN(total_in, PAGE_SIZE);
586 		if (total_compressed >= total_in) {
587 			will_compress = 0;
588 		} else {
589 			num_bytes = total_in;
590 			*num_added += 1;
591 
592 			/*
593 			 * The async work queues will take care of doing actual
594 			 * allocation on disk for these compressed pages, and
595 			 * will submit them to the elevator.
596 			 */
597 			add_async_extent(async_cow, start, num_bytes,
598 					total_compressed, pages, nr_pages_ret,
599 					compress_type);
600 
601 			if (start + num_bytes < end) {
602 				start += num_bytes;
603 				pages = NULL;
604 				cond_resched();
605 				goto again;
606 			}
607 			return;
608 		}
609 	}
610 	if (pages) {
611 		/*
612 		 * the compression code ran but failed to make things smaller,
613 		 * free any pages it allocated and our page pointer array
614 		 */
615 		for (i = 0; i < nr_pages_ret; i++) {
616 			WARN_ON(pages[i]->mapping);
617 			put_page(pages[i]);
618 		}
619 		kfree(pages);
620 		pages = NULL;
621 		total_compressed = 0;
622 		nr_pages_ret = 0;
623 
624 		/* flag the file so we don't compress in the future */
625 		if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
626 		    !(BTRFS_I(inode)->force_compress)) {
627 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
628 		}
629 	}
630 cleanup_and_bail_uncompressed:
631 	/*
632 	 * No compression, but we still need to write the pages in the file
633 	 * we've been given so far.  redirty the locked page if it corresponds
634 	 * to our extent and set things up for the async work queue to run
635 	 * cow_file_range to do the normal delalloc dance.
636 	 */
637 	if (page_offset(locked_page) >= start &&
638 	    page_offset(locked_page) <= end)
639 		__set_page_dirty_nobuffers(locked_page);
640 		/* unlocked later on in the async handlers */
641 
642 	if (redirty)
643 		extent_range_redirty_for_io(inode, start, end);
644 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
645 			 BTRFS_COMPRESS_NONE);
646 	*num_added += 1;
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     async_extent->start +
716 					     async_extent->ram_size - 1,
717 					     &page_started, &nr_written, 0,
718 					     NULL);
719 
720 			/* JDM XXX */
721 
722 			/*
723 			 * if page_started, cow_file_range inserted an
724 			 * inline extent and took care of all the unlocking
725 			 * and IO for us.  Otherwise, we need to submit
726 			 * all those pages down to the drive.
727 			 */
728 			if (!page_started && !ret)
729 				extent_write_locked_range(io_tree,
730 						  inode, async_extent->start,
731 						  async_extent->start +
732 						  async_extent->ram_size - 1,
733 						  btrfs_get_extent,
734 						  WB_SYNC_ALL);
735 			else if (ret)
736 				unlock_page(async_cow->locked_page);
737 			kfree(async_extent);
738 			cond_resched();
739 			continue;
740 		}
741 
742 		lock_extent(io_tree, async_extent->start,
743 			    async_extent->start + async_extent->ram_size - 1);
744 
745 		ret = btrfs_reserve_extent(root,
746 					   async_extent->compressed_size,
747 					   async_extent->compressed_size,
748 					   0, alloc_hint, &ins, 1, 1);
749 		if (ret) {
750 			free_async_extent_pages(async_extent);
751 
752 			if (ret == -ENOSPC) {
753 				unlock_extent(io_tree, async_extent->start,
754 					      async_extent->start +
755 					      async_extent->ram_size - 1);
756 
757 				/*
758 				 * we need to redirty the pages if we decide to
759 				 * fallback to uncompressed IO, otherwise we
760 				 * will not submit these pages down to lower
761 				 * layers.
762 				 */
763 				extent_range_redirty_for_io(inode,
764 						async_extent->start,
765 						async_extent->start +
766 						async_extent->ram_size - 1);
767 
768 				goto retry;
769 			}
770 			goto out_free;
771 		}
772 		/*
773 		 * here we're doing allocation and writeback of the
774 		 * compressed pages
775 		 */
776 		btrfs_drop_extent_cache(inode, async_extent->start,
777 					async_extent->start +
778 					async_extent->ram_size - 1, 0);
779 
780 		em = alloc_extent_map();
781 		if (!em) {
782 			ret = -ENOMEM;
783 			goto out_free_reserve;
784 		}
785 		em->start = async_extent->start;
786 		em->len = async_extent->ram_size;
787 		em->orig_start = em->start;
788 		em->mod_start = em->start;
789 		em->mod_len = em->len;
790 
791 		em->block_start = ins.objectid;
792 		em->block_len = ins.offset;
793 		em->orig_block_len = ins.offset;
794 		em->ram_bytes = async_extent->ram_size;
795 		em->bdev = root->fs_info->fs_devices->latest_bdev;
796 		em->compress_type = async_extent->compress_type;
797 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
798 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
799 		em->generation = -1;
800 
801 		while (1) {
802 			write_lock(&em_tree->lock);
803 			ret = add_extent_mapping(em_tree, em, 1);
804 			write_unlock(&em_tree->lock);
805 			if (ret != -EEXIST) {
806 				free_extent_map(em);
807 				break;
808 			}
809 			btrfs_drop_extent_cache(inode, async_extent->start,
810 						async_extent->start +
811 						async_extent->ram_size - 1, 0);
812 		}
813 
814 		if (ret)
815 			goto out_free_reserve;
816 
817 		ret = btrfs_add_ordered_extent_compress(inode,
818 						async_extent->start,
819 						ins.objectid,
820 						async_extent->ram_size,
821 						ins.offset,
822 						BTRFS_ORDERED_COMPRESSED,
823 						async_extent->compress_type);
824 		if (ret) {
825 			btrfs_drop_extent_cache(inode, async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1, 0);
828 			goto out_free_reserve;
829 		}
830 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
831 
832 		/*
833 		 * clear dirty, set writeback and unlock the pages.
834 		 */
835 		extent_clear_unlock_delalloc(inode, async_extent->start,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
840 				PAGE_SET_WRITEBACK);
841 		ret = btrfs_submit_compressed_write(inode,
842 				    async_extent->start,
843 				    async_extent->ram_size,
844 				    ins.objectid,
845 				    ins.offset, async_extent->pages,
846 				    async_extent->nr_pages);
847 		if (ret) {
848 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
849 			struct page *p = async_extent->pages[0];
850 			const u64 start = async_extent->start;
851 			const u64 end = start + async_extent->ram_size - 1;
852 
853 			p->mapping = inode->i_mapping;
854 			tree->ops->writepage_end_io_hook(p, start, end,
855 							 NULL, 0);
856 			p->mapping = NULL;
857 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
858 						     PAGE_END_WRITEBACK |
859 						     PAGE_SET_ERROR);
860 			free_async_extent_pages(async_extent);
861 		}
862 		alloc_hint = ins.objectid + ins.offset;
863 		kfree(async_extent);
864 		cond_resched();
865 	}
866 	return;
867 out_free_reserve:
868 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
869 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
870 out_free:
871 	extent_clear_unlock_delalloc(inode, async_extent->start,
872 				     async_extent->start +
873 				     async_extent->ram_size - 1,
874 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
875 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
876 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
877 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
878 				     PAGE_SET_ERROR);
879 	free_async_extent_pages(async_extent);
880 	kfree(async_extent);
881 	goto again;
882 }
883 
884 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
885 				      u64 num_bytes)
886 {
887 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
888 	struct extent_map *em;
889 	u64 alloc_hint = 0;
890 
891 	read_lock(&em_tree->lock);
892 	em = search_extent_mapping(em_tree, start, num_bytes);
893 	if (em) {
894 		/*
895 		 * if block start isn't an actual block number then find the
896 		 * first block in this inode and use that as a hint.  If that
897 		 * block is also bogus then just don't worry about it.
898 		 */
899 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
900 			free_extent_map(em);
901 			em = search_extent_mapping(em_tree, 0, 0);
902 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
903 				alloc_hint = em->block_start;
904 			if (em)
905 				free_extent_map(em);
906 		} else {
907 			alloc_hint = em->block_start;
908 			free_extent_map(em);
909 		}
910 	}
911 	read_unlock(&em_tree->lock);
912 
913 	return alloc_hint;
914 }
915 
916 /*
917  * when extent_io.c finds a delayed allocation range in the file,
918  * the call backs end up in this code.  The basic idea is to
919  * allocate extents on disk for the range, and create ordered data structs
920  * in ram to track those extents.
921  *
922  * locked_page is the page that writepage had locked already.  We use
923  * it to make sure we don't do extra locks or unlocks.
924  *
925  * *page_started is set to one if we unlock locked_page and do everything
926  * required to start IO on it.  It may be clean and already done with
927  * IO when we return.
928  */
929 static noinline int cow_file_range(struct inode *inode,
930 				   struct page *locked_page,
931 				   u64 start, u64 end, u64 delalloc_end,
932 				   int *page_started, unsigned long *nr_written,
933 				   int unlock, struct btrfs_dedupe_hash *hash)
934 {
935 	struct btrfs_root *root = BTRFS_I(inode)->root;
936 	u64 alloc_hint = 0;
937 	u64 num_bytes;
938 	unsigned long ram_size;
939 	u64 disk_num_bytes;
940 	u64 cur_alloc_size;
941 	u64 blocksize = root->sectorsize;
942 	struct btrfs_key ins;
943 	struct extent_map *em;
944 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
945 	int ret = 0;
946 
947 	if (btrfs_is_free_space_inode(inode)) {
948 		WARN_ON_ONCE(1);
949 		ret = -EINVAL;
950 		goto out_unlock;
951 	}
952 
953 	num_bytes = ALIGN(end - start + 1, blocksize);
954 	num_bytes = max(blocksize,  num_bytes);
955 	disk_num_bytes = num_bytes;
956 
957 	/* if this is a small write inside eof, kick off defrag */
958 	if (num_bytes < SZ_64K &&
959 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
960 		btrfs_add_inode_defrag(NULL, inode);
961 
962 	if (start == 0) {
963 		/* lets try to make an inline extent */
964 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
965 					    NULL);
966 		if (ret == 0) {
967 			extent_clear_unlock_delalloc(inode, start, end, NULL,
968 				     EXTENT_LOCKED | EXTENT_DELALLOC |
969 				     EXTENT_DEFRAG, PAGE_UNLOCK |
970 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
971 				     PAGE_END_WRITEBACK);
972 
973 			*nr_written = *nr_written +
974 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
975 			*page_started = 1;
976 			goto out;
977 		} else if (ret < 0) {
978 			goto out_unlock;
979 		}
980 	}
981 
982 	BUG_ON(disk_num_bytes >
983 	       btrfs_super_total_bytes(root->fs_info->super_copy));
984 
985 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
986 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
987 
988 	while (disk_num_bytes > 0) {
989 		unsigned long op;
990 
991 		cur_alloc_size = disk_num_bytes;
992 		ret = btrfs_reserve_extent(root, cur_alloc_size,
993 					   root->sectorsize, 0, alloc_hint,
994 					   &ins, 1, 1);
995 		if (ret < 0)
996 			goto out_unlock;
997 
998 		em = alloc_extent_map();
999 		if (!em) {
1000 			ret = -ENOMEM;
1001 			goto out_reserve;
1002 		}
1003 		em->start = start;
1004 		em->orig_start = em->start;
1005 		ram_size = ins.offset;
1006 		em->len = ins.offset;
1007 		em->mod_start = em->start;
1008 		em->mod_len = em->len;
1009 
1010 		em->block_start = ins.objectid;
1011 		em->block_len = ins.offset;
1012 		em->orig_block_len = ins.offset;
1013 		em->ram_bytes = ram_size;
1014 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1015 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1016 		em->generation = -1;
1017 
1018 		while (1) {
1019 			write_lock(&em_tree->lock);
1020 			ret = add_extent_mapping(em_tree, em, 1);
1021 			write_unlock(&em_tree->lock);
1022 			if (ret != -EEXIST) {
1023 				free_extent_map(em);
1024 				break;
1025 			}
1026 			btrfs_drop_extent_cache(inode, start,
1027 						start + ram_size - 1, 0);
1028 		}
1029 		if (ret)
1030 			goto out_reserve;
1031 
1032 		cur_alloc_size = ins.offset;
1033 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1034 					       ram_size, cur_alloc_size, 0);
1035 		if (ret)
1036 			goto out_drop_extent_cache;
1037 
1038 		if (root->root_key.objectid ==
1039 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 			ret = btrfs_reloc_clone_csums(inode, start,
1041 						      cur_alloc_size);
1042 			if (ret)
1043 				goto out_drop_extent_cache;
1044 		}
1045 
1046 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1047 
1048 		if (disk_num_bytes < cur_alloc_size)
1049 			break;
1050 
1051 		/* we're not doing compressed IO, don't unlock the first
1052 		 * page (which the caller expects to stay locked), don't
1053 		 * clear any dirty bits and don't set any writeback bits
1054 		 *
1055 		 * Do set the Private2 bit so we know this page was properly
1056 		 * setup for writepage
1057 		 */
1058 		op = unlock ? PAGE_UNLOCK : 0;
1059 		op |= PAGE_SET_PRIVATE2;
1060 
1061 		extent_clear_unlock_delalloc(inode, start,
1062 					     start + ram_size - 1, locked_page,
1063 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1064 					     op);
1065 		disk_num_bytes -= cur_alloc_size;
1066 		num_bytes -= cur_alloc_size;
1067 		alloc_hint = ins.objectid + ins.offset;
1068 		start += cur_alloc_size;
1069 	}
1070 out:
1071 	return ret;
1072 
1073 out_drop_extent_cache:
1074 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1075 out_reserve:
1076 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1077 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1078 out_unlock:
1079 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1080 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1081 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1082 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1083 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1084 	goto out;
1085 }
1086 
1087 /*
1088  * work queue call back to started compression on a file and pages
1089  */
1090 static noinline void async_cow_start(struct btrfs_work *work)
1091 {
1092 	struct async_cow *async_cow;
1093 	int num_added = 0;
1094 	async_cow = container_of(work, struct async_cow, work);
1095 
1096 	compress_file_range(async_cow->inode, async_cow->locked_page,
1097 			    async_cow->start, async_cow->end, async_cow,
1098 			    &num_added);
1099 	if (num_added == 0) {
1100 		btrfs_add_delayed_iput(async_cow->inode);
1101 		async_cow->inode = NULL;
1102 	}
1103 }
1104 
1105 /*
1106  * work queue call back to submit previously compressed pages
1107  */
1108 static noinline void async_cow_submit(struct btrfs_work *work)
1109 {
1110 	struct async_cow *async_cow;
1111 	struct btrfs_root *root;
1112 	unsigned long nr_pages;
1113 
1114 	async_cow = container_of(work, struct async_cow, work);
1115 
1116 	root = async_cow->root;
1117 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1118 		PAGE_SHIFT;
1119 
1120 	/*
1121 	 * atomic_sub_return implies a barrier for waitqueue_active
1122 	 */
1123 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1124 	    5 * SZ_1M &&
1125 	    waitqueue_active(&root->fs_info->async_submit_wait))
1126 		wake_up(&root->fs_info->async_submit_wait);
1127 
1128 	if (async_cow->inode)
1129 		submit_compressed_extents(async_cow->inode, async_cow);
1130 }
1131 
1132 static noinline void async_cow_free(struct btrfs_work *work)
1133 {
1134 	struct async_cow *async_cow;
1135 	async_cow = container_of(work, struct async_cow, work);
1136 	if (async_cow->inode)
1137 		btrfs_add_delayed_iput(async_cow->inode);
1138 	kfree(async_cow);
1139 }
1140 
1141 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1142 				u64 start, u64 end, int *page_started,
1143 				unsigned long *nr_written)
1144 {
1145 	struct async_cow *async_cow;
1146 	struct btrfs_root *root = BTRFS_I(inode)->root;
1147 	unsigned long nr_pages;
1148 	u64 cur_end;
1149 	int limit = 10 * SZ_1M;
1150 
1151 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1152 			 1, 0, NULL, GFP_NOFS);
1153 	while (start < end) {
1154 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1155 		BUG_ON(!async_cow); /* -ENOMEM */
1156 		async_cow->inode = igrab(inode);
1157 		async_cow->root = root;
1158 		async_cow->locked_page = locked_page;
1159 		async_cow->start = start;
1160 
1161 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1162 		    !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1163 			cur_end = end;
1164 		else
1165 			cur_end = min(end, start + SZ_512K - 1);
1166 
1167 		async_cow->end = cur_end;
1168 		INIT_LIST_HEAD(&async_cow->extents);
1169 
1170 		btrfs_init_work(&async_cow->work,
1171 				btrfs_delalloc_helper,
1172 				async_cow_start, async_cow_submit,
1173 				async_cow_free);
1174 
1175 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1176 			PAGE_SHIFT;
1177 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1178 
1179 		btrfs_queue_work(root->fs_info->delalloc_workers,
1180 				 &async_cow->work);
1181 
1182 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1183 			wait_event(root->fs_info->async_submit_wait,
1184 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1185 			    limit));
1186 		}
1187 
1188 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1189 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1190 			wait_event(root->fs_info->async_submit_wait,
1191 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1192 			   0));
1193 		}
1194 
1195 		*nr_written += nr_pages;
1196 		start = cur_end + 1;
1197 	}
1198 	*page_started = 1;
1199 	return 0;
1200 }
1201 
1202 static noinline int csum_exist_in_range(struct btrfs_root *root,
1203 					u64 bytenr, u64 num_bytes)
1204 {
1205 	int ret;
1206 	struct btrfs_ordered_sum *sums;
1207 	LIST_HEAD(list);
1208 
1209 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1210 				       bytenr + num_bytes - 1, &list, 0);
1211 	if (ret == 0 && list_empty(&list))
1212 		return 0;
1213 
1214 	while (!list_empty(&list)) {
1215 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1216 		list_del(&sums->list);
1217 		kfree(sums);
1218 	}
1219 	return 1;
1220 }
1221 
1222 /*
1223  * when nowcow writeback call back.  This checks for snapshots or COW copies
1224  * of the extents that exist in the file, and COWs the file as required.
1225  *
1226  * If no cow copies or snapshots exist, we write directly to the existing
1227  * blocks on disk
1228  */
1229 static noinline int run_delalloc_nocow(struct inode *inode,
1230 				       struct page *locked_page,
1231 			      u64 start, u64 end, int *page_started, int force,
1232 			      unsigned long *nr_written)
1233 {
1234 	struct btrfs_root *root = BTRFS_I(inode)->root;
1235 	struct btrfs_trans_handle *trans;
1236 	struct extent_buffer *leaf;
1237 	struct btrfs_path *path;
1238 	struct btrfs_file_extent_item *fi;
1239 	struct btrfs_key found_key;
1240 	u64 cow_start;
1241 	u64 cur_offset;
1242 	u64 extent_end;
1243 	u64 extent_offset;
1244 	u64 disk_bytenr;
1245 	u64 num_bytes;
1246 	u64 disk_num_bytes;
1247 	u64 ram_bytes;
1248 	int extent_type;
1249 	int ret, err;
1250 	int type;
1251 	int nocow;
1252 	int check_prev = 1;
1253 	bool nolock;
1254 	u64 ino = btrfs_ino(inode);
1255 
1256 	path = btrfs_alloc_path();
1257 	if (!path) {
1258 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1259 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1260 					     EXTENT_DO_ACCOUNTING |
1261 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1262 					     PAGE_CLEAR_DIRTY |
1263 					     PAGE_SET_WRITEBACK |
1264 					     PAGE_END_WRITEBACK);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	nolock = btrfs_is_free_space_inode(inode);
1269 
1270 	if (nolock)
1271 		trans = btrfs_join_transaction_nolock(root);
1272 	else
1273 		trans = btrfs_join_transaction(root);
1274 
1275 	if (IS_ERR(trans)) {
1276 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1278 					     EXTENT_DO_ACCOUNTING |
1279 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1280 					     PAGE_CLEAR_DIRTY |
1281 					     PAGE_SET_WRITEBACK |
1282 					     PAGE_END_WRITEBACK);
1283 		btrfs_free_path(path);
1284 		return PTR_ERR(trans);
1285 	}
1286 
1287 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1288 
1289 	cow_start = (u64)-1;
1290 	cur_offset = start;
1291 	while (1) {
1292 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1293 					       cur_offset, 0);
1294 		if (ret < 0)
1295 			goto error;
1296 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1297 			leaf = path->nodes[0];
1298 			btrfs_item_key_to_cpu(leaf, &found_key,
1299 					      path->slots[0] - 1);
1300 			if (found_key.objectid == ino &&
1301 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1302 				path->slots[0]--;
1303 		}
1304 		check_prev = 0;
1305 next_slot:
1306 		leaf = path->nodes[0];
1307 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1308 			ret = btrfs_next_leaf(root, path);
1309 			if (ret < 0)
1310 				goto error;
1311 			if (ret > 0)
1312 				break;
1313 			leaf = path->nodes[0];
1314 		}
1315 
1316 		nocow = 0;
1317 		disk_bytenr = 0;
1318 		num_bytes = 0;
1319 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1320 
1321 		if (found_key.objectid > ino)
1322 			break;
1323 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1324 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1325 			path->slots[0]++;
1326 			goto next_slot;
1327 		}
1328 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1329 		    found_key.offset > end)
1330 			break;
1331 
1332 		if (found_key.offset > cur_offset) {
1333 			extent_end = found_key.offset;
1334 			extent_type = 0;
1335 			goto out_check;
1336 		}
1337 
1338 		fi = btrfs_item_ptr(leaf, path->slots[0],
1339 				    struct btrfs_file_extent_item);
1340 		extent_type = btrfs_file_extent_type(leaf, fi);
1341 
1342 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1343 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1344 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1345 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1346 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1347 			extent_end = found_key.offset +
1348 				btrfs_file_extent_num_bytes(leaf, fi);
1349 			disk_num_bytes =
1350 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1351 			if (extent_end <= start) {
1352 				path->slots[0]++;
1353 				goto next_slot;
1354 			}
1355 			if (disk_bytenr == 0)
1356 				goto out_check;
1357 			if (btrfs_file_extent_compression(leaf, fi) ||
1358 			    btrfs_file_extent_encryption(leaf, fi) ||
1359 			    btrfs_file_extent_other_encoding(leaf, fi))
1360 				goto out_check;
1361 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1362 				goto out_check;
1363 			if (btrfs_extent_readonly(root, disk_bytenr))
1364 				goto out_check;
1365 			if (btrfs_cross_ref_exist(trans, root, ino,
1366 						  found_key.offset -
1367 						  extent_offset, disk_bytenr))
1368 				goto out_check;
1369 			disk_bytenr += extent_offset;
1370 			disk_bytenr += cur_offset - found_key.offset;
1371 			num_bytes = min(end + 1, extent_end) - cur_offset;
1372 			/*
1373 			 * if there are pending snapshots for this root,
1374 			 * we fall into common COW way.
1375 			 */
1376 			if (!nolock) {
1377 				err = btrfs_start_write_no_snapshoting(root);
1378 				if (!err)
1379 					goto out_check;
1380 			}
1381 			/*
1382 			 * force cow if csum exists in the range.
1383 			 * this ensure that csum for a given extent are
1384 			 * either valid or do not exist.
1385 			 */
1386 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1387 				goto out_check;
1388 			if (!btrfs_inc_nocow_writers(root->fs_info,
1389 						     disk_bytenr))
1390 				goto out_check;
1391 			nocow = 1;
1392 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 			extent_end = found_key.offset +
1394 				btrfs_file_extent_inline_len(leaf,
1395 						     path->slots[0], fi);
1396 			extent_end = ALIGN(extent_end, root->sectorsize);
1397 		} else {
1398 			BUG_ON(1);
1399 		}
1400 out_check:
1401 		if (extent_end <= start) {
1402 			path->slots[0]++;
1403 			if (!nolock && nocow)
1404 				btrfs_end_write_no_snapshoting(root);
1405 			if (nocow)
1406 				btrfs_dec_nocow_writers(root->fs_info,
1407 							disk_bytenr);
1408 			goto next_slot;
1409 		}
1410 		if (!nocow) {
1411 			if (cow_start == (u64)-1)
1412 				cow_start = cur_offset;
1413 			cur_offset = extent_end;
1414 			if (cur_offset > end)
1415 				break;
1416 			path->slots[0]++;
1417 			goto next_slot;
1418 		}
1419 
1420 		btrfs_release_path(path);
1421 		if (cow_start != (u64)-1) {
1422 			ret = cow_file_range(inode, locked_page,
1423 					     cow_start, found_key.offset - 1,
1424 					     end, page_started, nr_written, 1,
1425 					     NULL);
1426 			if (ret) {
1427 				if (!nolock && nocow)
1428 					btrfs_end_write_no_snapshoting(root);
1429 				if (nocow)
1430 					btrfs_dec_nocow_writers(root->fs_info,
1431 								disk_bytenr);
1432 				goto error;
1433 			}
1434 			cow_start = (u64)-1;
1435 		}
1436 
1437 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1438 			struct extent_map *em;
1439 			struct extent_map_tree *em_tree;
1440 			em_tree = &BTRFS_I(inode)->extent_tree;
1441 			em = alloc_extent_map();
1442 			BUG_ON(!em); /* -ENOMEM */
1443 			em->start = cur_offset;
1444 			em->orig_start = found_key.offset - extent_offset;
1445 			em->len = num_bytes;
1446 			em->block_len = num_bytes;
1447 			em->block_start = disk_bytenr;
1448 			em->orig_block_len = disk_num_bytes;
1449 			em->ram_bytes = ram_bytes;
1450 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1451 			em->mod_start = em->start;
1452 			em->mod_len = em->len;
1453 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1454 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1455 			em->generation = -1;
1456 			while (1) {
1457 				write_lock(&em_tree->lock);
1458 				ret = add_extent_mapping(em_tree, em, 1);
1459 				write_unlock(&em_tree->lock);
1460 				if (ret != -EEXIST) {
1461 					free_extent_map(em);
1462 					break;
1463 				}
1464 				btrfs_drop_extent_cache(inode, em->start,
1465 						em->start + em->len - 1, 0);
1466 			}
1467 			type = BTRFS_ORDERED_PREALLOC;
1468 		} else {
1469 			type = BTRFS_ORDERED_NOCOW;
1470 		}
1471 
1472 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1473 					       num_bytes, num_bytes, type);
1474 		if (nocow)
1475 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1476 		BUG_ON(ret); /* -ENOMEM */
1477 
1478 		if (root->root_key.objectid ==
1479 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1480 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1481 						      num_bytes);
1482 			if (ret) {
1483 				if (!nolock && nocow)
1484 					btrfs_end_write_no_snapshoting(root);
1485 				goto error;
1486 			}
1487 		}
1488 
1489 		extent_clear_unlock_delalloc(inode, cur_offset,
1490 					     cur_offset + num_bytes - 1,
1491 					     locked_page, EXTENT_LOCKED |
1492 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1493 					     PAGE_SET_PRIVATE2);
1494 		if (!nolock && nocow)
1495 			btrfs_end_write_no_snapshoting(root);
1496 		cur_offset = extent_end;
1497 		if (cur_offset > end)
1498 			break;
1499 	}
1500 	btrfs_release_path(path);
1501 
1502 	if (cur_offset <= end && cow_start == (u64)-1) {
1503 		cow_start = cur_offset;
1504 		cur_offset = end;
1505 	}
1506 
1507 	if (cow_start != (u64)-1) {
1508 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1509 				     page_started, nr_written, 1, NULL);
1510 		if (ret)
1511 			goto error;
1512 	}
1513 
1514 error:
1515 	err = btrfs_end_transaction(trans, root);
1516 	if (!ret)
1517 		ret = err;
1518 
1519 	if (ret && cur_offset < end)
1520 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1521 					     locked_page, EXTENT_LOCKED |
1522 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1523 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1524 					     PAGE_CLEAR_DIRTY |
1525 					     PAGE_SET_WRITEBACK |
1526 					     PAGE_END_WRITEBACK);
1527 	btrfs_free_path(path);
1528 	return ret;
1529 }
1530 
1531 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1532 {
1533 
1534 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1535 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1536 		return 0;
1537 
1538 	/*
1539 	 * @defrag_bytes is a hint value, no spinlock held here,
1540 	 * if is not zero, it means the file is defragging.
1541 	 * Force cow if given extent needs to be defragged.
1542 	 */
1543 	if (BTRFS_I(inode)->defrag_bytes &&
1544 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1545 			   EXTENT_DEFRAG, 0, NULL))
1546 		return 1;
1547 
1548 	return 0;
1549 }
1550 
1551 /*
1552  * extent_io.c call back to do delayed allocation processing
1553  */
1554 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1555 			      u64 start, u64 end, int *page_started,
1556 			      unsigned long *nr_written)
1557 {
1558 	int ret;
1559 	int force_cow = need_force_cow(inode, start, end);
1560 
1561 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1562 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1563 					 page_started, 1, nr_written);
1564 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1565 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1566 					 page_started, 0, nr_written);
1567 	} else if (!inode_need_compress(inode)) {
1568 		ret = cow_file_range(inode, locked_page, start, end, end,
1569 				      page_started, nr_written, 1, NULL);
1570 	} else {
1571 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 			&BTRFS_I(inode)->runtime_flags);
1573 		ret = cow_file_range_async(inode, locked_page, start, end,
1574 					   page_started, nr_written);
1575 	}
1576 	return ret;
1577 }
1578 
1579 static void btrfs_split_extent_hook(struct inode *inode,
1580 				    struct extent_state *orig, u64 split)
1581 {
1582 	u64 size;
1583 
1584 	/* not delalloc, ignore it */
1585 	if (!(orig->state & EXTENT_DELALLOC))
1586 		return;
1587 
1588 	size = orig->end - orig->start + 1;
1589 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1590 		u64 num_extents;
1591 		u64 new_size;
1592 
1593 		/*
1594 		 * See the explanation in btrfs_merge_extent_hook, the same
1595 		 * applies here, just in reverse.
1596 		 */
1597 		new_size = orig->end - split + 1;
1598 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1599 					BTRFS_MAX_EXTENT_SIZE);
1600 		new_size = split - orig->start;
1601 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1602 					BTRFS_MAX_EXTENT_SIZE);
1603 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1605 			return;
1606 	}
1607 
1608 	spin_lock(&BTRFS_I(inode)->lock);
1609 	BTRFS_I(inode)->outstanding_extents++;
1610 	spin_unlock(&BTRFS_I(inode)->lock);
1611 }
1612 
1613 /*
1614  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615  * extents so we can keep track of new extents that are just merged onto old
1616  * extents, such as when we are doing sequential writes, so we can properly
1617  * account for the metadata space we'll need.
1618  */
1619 static void btrfs_merge_extent_hook(struct inode *inode,
1620 				    struct extent_state *new,
1621 				    struct extent_state *other)
1622 {
1623 	u64 new_size, old_size;
1624 	u64 num_extents;
1625 
1626 	/* not delalloc, ignore it */
1627 	if (!(other->state & EXTENT_DELALLOC))
1628 		return;
1629 
1630 	if (new->start > other->start)
1631 		new_size = new->end - other->start + 1;
1632 	else
1633 		new_size = other->end - new->start + 1;
1634 
1635 	/* we're not bigger than the max, unreserve the space and go */
1636 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1637 		spin_lock(&BTRFS_I(inode)->lock);
1638 		BTRFS_I(inode)->outstanding_extents--;
1639 		spin_unlock(&BTRFS_I(inode)->lock);
1640 		return;
1641 	}
1642 
1643 	/*
1644 	 * We have to add up either side to figure out how many extents were
1645 	 * accounted for before we merged into one big extent.  If the number of
1646 	 * extents we accounted for is <= the amount we need for the new range
1647 	 * then we can return, otherwise drop.  Think of it like this
1648 	 *
1649 	 * [ 4k][MAX_SIZE]
1650 	 *
1651 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 	 * need 2 outstanding extents, on one side we have 1 and the other side
1653 	 * we have 1 so they are == and we can return.  But in this case
1654 	 *
1655 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1656 	 *
1657 	 * Each range on their own accounts for 2 extents, but merged together
1658 	 * they are only 3 extents worth of accounting, so we need to drop in
1659 	 * this case.
1660 	 */
1661 	old_size = other->end - other->start + 1;
1662 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1663 				BTRFS_MAX_EXTENT_SIZE);
1664 	old_size = new->end - new->start + 1;
1665 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1666 				 BTRFS_MAX_EXTENT_SIZE);
1667 
1668 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1669 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1670 		return;
1671 
1672 	spin_lock(&BTRFS_I(inode)->lock);
1673 	BTRFS_I(inode)->outstanding_extents--;
1674 	spin_unlock(&BTRFS_I(inode)->lock);
1675 }
1676 
1677 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1678 				      struct inode *inode)
1679 {
1680 	spin_lock(&root->delalloc_lock);
1681 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1682 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1683 			      &root->delalloc_inodes);
1684 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 			&BTRFS_I(inode)->runtime_flags);
1686 		root->nr_delalloc_inodes++;
1687 		if (root->nr_delalloc_inodes == 1) {
1688 			spin_lock(&root->fs_info->delalloc_root_lock);
1689 			BUG_ON(!list_empty(&root->delalloc_root));
1690 			list_add_tail(&root->delalloc_root,
1691 				      &root->fs_info->delalloc_roots);
1692 			spin_unlock(&root->fs_info->delalloc_root_lock);
1693 		}
1694 	}
1695 	spin_unlock(&root->delalloc_lock);
1696 }
1697 
1698 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1699 				     struct inode *inode)
1700 {
1701 	spin_lock(&root->delalloc_lock);
1702 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1704 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1705 			  &BTRFS_I(inode)->runtime_flags);
1706 		root->nr_delalloc_inodes--;
1707 		if (!root->nr_delalloc_inodes) {
1708 			spin_lock(&root->fs_info->delalloc_root_lock);
1709 			BUG_ON(list_empty(&root->delalloc_root));
1710 			list_del_init(&root->delalloc_root);
1711 			spin_unlock(&root->fs_info->delalloc_root_lock);
1712 		}
1713 	}
1714 	spin_unlock(&root->delalloc_lock);
1715 }
1716 
1717 /*
1718  * extent_io.c set_bit_hook, used to track delayed allocation
1719  * bytes in this file, and to maintain the list of inodes that
1720  * have pending delalloc work to be done.
1721  */
1722 static void btrfs_set_bit_hook(struct inode *inode,
1723 			       struct extent_state *state, unsigned *bits)
1724 {
1725 
1726 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1727 		WARN_ON(1);
1728 	/*
1729 	 * set_bit and clear bit hooks normally require _irqsave/restore
1730 	 * but in this case, we are only testing for the DELALLOC
1731 	 * bit, which is only set or cleared with irqs on
1732 	 */
1733 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1734 		struct btrfs_root *root = BTRFS_I(inode)->root;
1735 		u64 len = state->end + 1 - state->start;
1736 		bool do_list = !btrfs_is_free_space_inode(inode);
1737 
1738 		if (*bits & EXTENT_FIRST_DELALLOC) {
1739 			*bits &= ~EXTENT_FIRST_DELALLOC;
1740 		} else {
1741 			spin_lock(&BTRFS_I(inode)->lock);
1742 			BTRFS_I(inode)->outstanding_extents++;
1743 			spin_unlock(&BTRFS_I(inode)->lock);
1744 		}
1745 
1746 		/* For sanity tests */
1747 		if (btrfs_is_testing(root->fs_info))
1748 			return;
1749 
1750 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1751 				     root->fs_info->delalloc_batch);
1752 		spin_lock(&BTRFS_I(inode)->lock);
1753 		BTRFS_I(inode)->delalloc_bytes += len;
1754 		if (*bits & EXTENT_DEFRAG)
1755 			BTRFS_I(inode)->defrag_bytes += len;
1756 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1757 					 &BTRFS_I(inode)->runtime_flags))
1758 			btrfs_add_delalloc_inodes(root, inode);
1759 		spin_unlock(&BTRFS_I(inode)->lock);
1760 	}
1761 }
1762 
1763 /*
1764  * extent_io.c clear_bit_hook, see set_bit_hook for why
1765  */
1766 static void btrfs_clear_bit_hook(struct inode *inode,
1767 				 struct extent_state *state,
1768 				 unsigned *bits)
1769 {
1770 	u64 len = state->end + 1 - state->start;
1771 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1772 				    BTRFS_MAX_EXTENT_SIZE);
1773 
1774 	spin_lock(&BTRFS_I(inode)->lock);
1775 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1776 		BTRFS_I(inode)->defrag_bytes -= len;
1777 	spin_unlock(&BTRFS_I(inode)->lock);
1778 
1779 	/*
1780 	 * set_bit and clear bit hooks normally require _irqsave/restore
1781 	 * but in this case, we are only testing for the DELALLOC
1782 	 * bit, which is only set or cleared with irqs on
1783 	 */
1784 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1785 		struct btrfs_root *root = BTRFS_I(inode)->root;
1786 		bool do_list = !btrfs_is_free_space_inode(inode);
1787 
1788 		if (*bits & EXTENT_FIRST_DELALLOC) {
1789 			*bits &= ~EXTENT_FIRST_DELALLOC;
1790 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1791 			spin_lock(&BTRFS_I(inode)->lock);
1792 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1793 			spin_unlock(&BTRFS_I(inode)->lock);
1794 		}
1795 
1796 		/*
1797 		 * We don't reserve metadata space for space cache inodes so we
1798 		 * don't need to call dellalloc_release_metadata if there is an
1799 		 * error.
1800 		 */
1801 		if (*bits & EXTENT_DO_ACCOUNTING &&
1802 		    root != root->fs_info->tree_root)
1803 			btrfs_delalloc_release_metadata(inode, len);
1804 
1805 		/* For sanity tests. */
1806 		if (btrfs_is_testing(root->fs_info))
1807 			return;
1808 
1809 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1810 		    && do_list && !(state->state & EXTENT_NORESERVE))
1811 			btrfs_free_reserved_data_space_noquota(inode,
1812 					state->start, len);
1813 
1814 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1815 				     root->fs_info->delalloc_batch);
1816 		spin_lock(&BTRFS_I(inode)->lock);
1817 		BTRFS_I(inode)->delalloc_bytes -= len;
1818 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1819 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1820 			     &BTRFS_I(inode)->runtime_flags))
1821 			btrfs_del_delalloc_inode(root, inode);
1822 		spin_unlock(&BTRFS_I(inode)->lock);
1823 	}
1824 }
1825 
1826 /*
1827  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828  * we don't create bios that span stripes or chunks
1829  *
1830  * return 1 if page cannot be merged to bio
1831  * return 0 if page can be merged to bio
1832  * return error otherwise
1833  */
1834 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1835 			 size_t size, struct bio *bio,
1836 			 unsigned long bio_flags)
1837 {
1838 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1839 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1840 	u64 length = 0;
1841 	u64 map_length;
1842 	int ret;
1843 
1844 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1845 		return 0;
1846 
1847 	length = bio->bi_iter.bi_size;
1848 	map_length = length;
1849 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1850 			      &map_length, NULL, 0);
1851 	if (ret < 0)
1852 		return ret;
1853 	if (map_length < length + size)
1854 		return 1;
1855 	return 0;
1856 }
1857 
1858 /*
1859  * in order to insert checksums into the metadata in large chunks,
1860  * we wait until bio submission time.   All the pages in the bio are
1861  * checksummed and sums are attached onto the ordered extent record.
1862  *
1863  * At IO completion time the cums attached on the ordered extent record
1864  * are inserted into the btree
1865  */
1866 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1867 				    int mirror_num, unsigned long bio_flags,
1868 				    u64 bio_offset)
1869 {
1870 	struct btrfs_root *root = BTRFS_I(inode)->root;
1871 	int ret = 0;
1872 
1873 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1874 	BUG_ON(ret); /* -ENOMEM */
1875 	return 0;
1876 }
1877 
1878 /*
1879  * in order to insert checksums into the metadata in large chunks,
1880  * we wait until bio submission time.   All the pages in the bio are
1881  * checksummed and sums are attached onto the ordered extent record.
1882  *
1883  * At IO completion time the cums attached on the ordered extent record
1884  * are inserted into the btree
1885  */
1886 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1887 			  int mirror_num, unsigned long bio_flags,
1888 			  u64 bio_offset)
1889 {
1890 	struct btrfs_root *root = BTRFS_I(inode)->root;
1891 	int ret;
1892 
1893 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1894 	if (ret) {
1895 		bio->bi_error = ret;
1896 		bio_endio(bio);
1897 	}
1898 	return ret;
1899 }
1900 
1901 /*
1902  * extent_io.c submission hook. This does the right thing for csum calculation
1903  * on write, or reading the csums from the tree before a read
1904  */
1905 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1906 			  int mirror_num, unsigned long bio_flags,
1907 			  u64 bio_offset)
1908 {
1909 	struct btrfs_root *root = BTRFS_I(inode)->root;
1910 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1911 	int ret = 0;
1912 	int skip_sum;
1913 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1914 
1915 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1916 
1917 	if (btrfs_is_free_space_inode(inode))
1918 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1919 
1920 	if (bio_op(bio) != REQ_OP_WRITE) {
1921 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1922 		if (ret)
1923 			goto out;
1924 
1925 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1926 			ret = btrfs_submit_compressed_read(inode, bio,
1927 							   mirror_num,
1928 							   bio_flags);
1929 			goto out;
1930 		} else if (!skip_sum) {
1931 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1932 			if (ret)
1933 				goto out;
1934 		}
1935 		goto mapit;
1936 	} else if (async && !skip_sum) {
1937 		/* csum items have already been cloned */
1938 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1939 			goto mapit;
1940 		/* we're doing a write, do the async checksumming */
1941 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1942 				   inode, bio, mirror_num,
1943 				   bio_flags, bio_offset,
1944 				   __btrfs_submit_bio_start,
1945 				   __btrfs_submit_bio_done);
1946 		goto out;
1947 	} else if (!skip_sum) {
1948 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1949 		if (ret)
1950 			goto out;
1951 	}
1952 
1953 mapit:
1954 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1955 
1956 out:
1957 	if (ret < 0) {
1958 		bio->bi_error = ret;
1959 		bio_endio(bio);
1960 	}
1961 	return ret;
1962 }
1963 
1964 /*
1965  * given a list of ordered sums record them in the inode.  This happens
1966  * at IO completion time based on sums calculated at bio submission time.
1967  */
1968 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1969 			     struct inode *inode, u64 file_offset,
1970 			     struct list_head *list)
1971 {
1972 	struct btrfs_ordered_sum *sum;
1973 
1974 	list_for_each_entry(sum, list, list) {
1975 		trans->adding_csums = 1;
1976 		btrfs_csum_file_blocks(trans,
1977 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1978 		trans->adding_csums = 0;
1979 	}
1980 	return 0;
1981 }
1982 
1983 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1984 			      struct extent_state **cached_state)
1985 {
1986 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1987 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1988 				   cached_state);
1989 }
1990 
1991 /* see btrfs_writepage_start_hook for details on why this is required */
1992 struct btrfs_writepage_fixup {
1993 	struct page *page;
1994 	struct btrfs_work work;
1995 };
1996 
1997 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1998 {
1999 	struct btrfs_writepage_fixup *fixup;
2000 	struct btrfs_ordered_extent *ordered;
2001 	struct extent_state *cached_state = NULL;
2002 	struct page *page;
2003 	struct inode *inode;
2004 	u64 page_start;
2005 	u64 page_end;
2006 	int ret;
2007 
2008 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2009 	page = fixup->page;
2010 again:
2011 	lock_page(page);
2012 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2013 		ClearPageChecked(page);
2014 		goto out_page;
2015 	}
2016 
2017 	inode = page->mapping->host;
2018 	page_start = page_offset(page);
2019 	page_end = page_offset(page) + PAGE_SIZE - 1;
2020 
2021 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2022 			 &cached_state);
2023 
2024 	/* already ordered? We're done */
2025 	if (PagePrivate2(page))
2026 		goto out;
2027 
2028 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2029 					PAGE_SIZE);
2030 	if (ordered) {
2031 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2032 				     page_end, &cached_state, GFP_NOFS);
2033 		unlock_page(page);
2034 		btrfs_start_ordered_extent(inode, ordered, 1);
2035 		btrfs_put_ordered_extent(ordered);
2036 		goto again;
2037 	}
2038 
2039 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2040 					   PAGE_SIZE);
2041 	if (ret) {
2042 		mapping_set_error(page->mapping, ret);
2043 		end_extent_writepage(page, ret, page_start, page_end);
2044 		ClearPageChecked(page);
2045 		goto out;
2046 	 }
2047 
2048 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2049 	ClearPageChecked(page);
2050 	set_page_dirty(page);
2051 out:
2052 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2053 			     &cached_state, GFP_NOFS);
2054 out_page:
2055 	unlock_page(page);
2056 	put_page(page);
2057 	kfree(fixup);
2058 }
2059 
2060 /*
2061  * There are a few paths in the higher layers of the kernel that directly
2062  * set the page dirty bit without asking the filesystem if it is a
2063  * good idea.  This causes problems because we want to make sure COW
2064  * properly happens and the data=ordered rules are followed.
2065  *
2066  * In our case any range that doesn't have the ORDERED bit set
2067  * hasn't been properly setup for IO.  We kick off an async process
2068  * to fix it up.  The async helper will wait for ordered extents, set
2069  * the delalloc bit and make it safe to write the page.
2070  */
2071 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2072 {
2073 	struct inode *inode = page->mapping->host;
2074 	struct btrfs_writepage_fixup *fixup;
2075 	struct btrfs_root *root = BTRFS_I(inode)->root;
2076 
2077 	/* this page is properly in the ordered list */
2078 	if (TestClearPagePrivate2(page))
2079 		return 0;
2080 
2081 	if (PageChecked(page))
2082 		return -EAGAIN;
2083 
2084 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2085 	if (!fixup)
2086 		return -EAGAIN;
2087 
2088 	SetPageChecked(page);
2089 	get_page(page);
2090 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2091 			btrfs_writepage_fixup_worker, NULL, NULL);
2092 	fixup->page = page;
2093 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2094 	return -EBUSY;
2095 }
2096 
2097 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2098 				       struct inode *inode, u64 file_pos,
2099 				       u64 disk_bytenr, u64 disk_num_bytes,
2100 				       u64 num_bytes, u64 ram_bytes,
2101 				       u8 compression, u8 encryption,
2102 				       u16 other_encoding, int extent_type)
2103 {
2104 	struct btrfs_root *root = BTRFS_I(inode)->root;
2105 	struct btrfs_file_extent_item *fi;
2106 	struct btrfs_path *path;
2107 	struct extent_buffer *leaf;
2108 	struct btrfs_key ins;
2109 	int extent_inserted = 0;
2110 	int ret;
2111 
2112 	path = btrfs_alloc_path();
2113 	if (!path)
2114 		return -ENOMEM;
2115 
2116 	/*
2117 	 * we may be replacing one extent in the tree with another.
2118 	 * The new extent is pinned in the extent map, and we don't want
2119 	 * to drop it from the cache until it is completely in the btree.
2120 	 *
2121 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2122 	 * the caller is expected to unpin it and allow it to be merged
2123 	 * with the others.
2124 	 */
2125 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2126 				   file_pos + num_bytes, NULL, 0,
2127 				   1, sizeof(*fi), &extent_inserted);
2128 	if (ret)
2129 		goto out;
2130 
2131 	if (!extent_inserted) {
2132 		ins.objectid = btrfs_ino(inode);
2133 		ins.offset = file_pos;
2134 		ins.type = BTRFS_EXTENT_DATA_KEY;
2135 
2136 		path->leave_spinning = 1;
2137 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2138 					      sizeof(*fi));
2139 		if (ret)
2140 			goto out;
2141 	}
2142 	leaf = path->nodes[0];
2143 	fi = btrfs_item_ptr(leaf, path->slots[0],
2144 			    struct btrfs_file_extent_item);
2145 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2147 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2148 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2149 	btrfs_set_file_extent_offset(leaf, fi, 0);
2150 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2151 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2152 	btrfs_set_file_extent_compression(leaf, fi, compression);
2153 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2154 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2155 
2156 	btrfs_mark_buffer_dirty(leaf);
2157 	btrfs_release_path(path);
2158 
2159 	inode_add_bytes(inode, num_bytes);
2160 
2161 	ins.objectid = disk_bytenr;
2162 	ins.offset = disk_num_bytes;
2163 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2164 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2165 					root->root_key.objectid,
2166 					btrfs_ino(inode), file_pos,
2167 					ram_bytes, &ins);
2168 	/*
2169 	 * Release the reserved range from inode dirty range map, as it is
2170 	 * already moved into delayed_ref_head
2171 	 */
2172 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2173 out:
2174 	btrfs_free_path(path);
2175 
2176 	return ret;
2177 }
2178 
2179 /* snapshot-aware defrag */
2180 struct sa_defrag_extent_backref {
2181 	struct rb_node node;
2182 	struct old_sa_defrag_extent *old;
2183 	u64 root_id;
2184 	u64 inum;
2185 	u64 file_pos;
2186 	u64 extent_offset;
2187 	u64 num_bytes;
2188 	u64 generation;
2189 };
2190 
2191 struct old_sa_defrag_extent {
2192 	struct list_head list;
2193 	struct new_sa_defrag_extent *new;
2194 
2195 	u64 extent_offset;
2196 	u64 bytenr;
2197 	u64 offset;
2198 	u64 len;
2199 	int count;
2200 };
2201 
2202 struct new_sa_defrag_extent {
2203 	struct rb_root root;
2204 	struct list_head head;
2205 	struct btrfs_path *path;
2206 	struct inode *inode;
2207 	u64 file_pos;
2208 	u64 len;
2209 	u64 bytenr;
2210 	u64 disk_len;
2211 	u8 compress_type;
2212 };
2213 
2214 static int backref_comp(struct sa_defrag_extent_backref *b1,
2215 			struct sa_defrag_extent_backref *b2)
2216 {
2217 	if (b1->root_id < b2->root_id)
2218 		return -1;
2219 	else if (b1->root_id > b2->root_id)
2220 		return 1;
2221 
2222 	if (b1->inum < b2->inum)
2223 		return -1;
2224 	else if (b1->inum > b2->inum)
2225 		return 1;
2226 
2227 	if (b1->file_pos < b2->file_pos)
2228 		return -1;
2229 	else if (b1->file_pos > b2->file_pos)
2230 		return 1;
2231 
2232 	/*
2233 	 * [------------------------------] ===> (a range of space)
2234 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2235 	 * |<---------------------------->| ===> (fs/file tree B)
2236 	 *
2237 	 * A range of space can refer to two file extents in one tree while
2238 	 * refer to only one file extent in another tree.
2239 	 *
2240 	 * So we may process a disk offset more than one time(two extents in A)
2241 	 * and locate at the same extent(one extent in B), then insert two same
2242 	 * backrefs(both refer to the extent in B).
2243 	 */
2244 	return 0;
2245 }
2246 
2247 static void backref_insert(struct rb_root *root,
2248 			   struct sa_defrag_extent_backref *backref)
2249 {
2250 	struct rb_node **p = &root->rb_node;
2251 	struct rb_node *parent = NULL;
2252 	struct sa_defrag_extent_backref *entry;
2253 	int ret;
2254 
2255 	while (*p) {
2256 		parent = *p;
2257 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2258 
2259 		ret = backref_comp(backref, entry);
2260 		if (ret < 0)
2261 			p = &(*p)->rb_left;
2262 		else
2263 			p = &(*p)->rb_right;
2264 	}
2265 
2266 	rb_link_node(&backref->node, parent, p);
2267 	rb_insert_color(&backref->node, root);
2268 }
2269 
2270 /*
2271  * Note the backref might has changed, and in this case we just return 0.
2272  */
2273 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2274 				       void *ctx)
2275 {
2276 	struct btrfs_file_extent_item *extent;
2277 	struct btrfs_fs_info *fs_info;
2278 	struct old_sa_defrag_extent *old = ctx;
2279 	struct new_sa_defrag_extent *new = old->new;
2280 	struct btrfs_path *path = new->path;
2281 	struct btrfs_key key;
2282 	struct btrfs_root *root;
2283 	struct sa_defrag_extent_backref *backref;
2284 	struct extent_buffer *leaf;
2285 	struct inode *inode = new->inode;
2286 	int slot;
2287 	int ret;
2288 	u64 extent_offset;
2289 	u64 num_bytes;
2290 
2291 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2292 	    inum == btrfs_ino(inode))
2293 		return 0;
2294 
2295 	key.objectid = root_id;
2296 	key.type = BTRFS_ROOT_ITEM_KEY;
2297 	key.offset = (u64)-1;
2298 
2299 	fs_info = BTRFS_I(inode)->root->fs_info;
2300 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2301 	if (IS_ERR(root)) {
2302 		if (PTR_ERR(root) == -ENOENT)
2303 			return 0;
2304 		WARN_ON(1);
2305 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2306 			 inum, offset, root_id);
2307 		return PTR_ERR(root);
2308 	}
2309 
2310 	key.objectid = inum;
2311 	key.type = BTRFS_EXTENT_DATA_KEY;
2312 	if (offset > (u64)-1 << 32)
2313 		key.offset = 0;
2314 	else
2315 		key.offset = offset;
2316 
2317 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 	if (WARN_ON(ret < 0))
2319 		return ret;
2320 	ret = 0;
2321 
2322 	while (1) {
2323 		cond_resched();
2324 
2325 		leaf = path->nodes[0];
2326 		slot = path->slots[0];
2327 
2328 		if (slot >= btrfs_header_nritems(leaf)) {
2329 			ret = btrfs_next_leaf(root, path);
2330 			if (ret < 0) {
2331 				goto out;
2332 			} else if (ret > 0) {
2333 				ret = 0;
2334 				goto out;
2335 			}
2336 			continue;
2337 		}
2338 
2339 		path->slots[0]++;
2340 
2341 		btrfs_item_key_to_cpu(leaf, &key, slot);
2342 
2343 		if (key.objectid > inum)
2344 			goto out;
2345 
2346 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2347 			continue;
2348 
2349 		extent = btrfs_item_ptr(leaf, slot,
2350 					struct btrfs_file_extent_item);
2351 
2352 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2353 			continue;
2354 
2355 		/*
2356 		 * 'offset' refers to the exact key.offset,
2357 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2358 		 * (key.offset - extent_offset).
2359 		 */
2360 		if (key.offset != offset)
2361 			continue;
2362 
2363 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2364 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2365 
2366 		if (extent_offset >= old->extent_offset + old->offset +
2367 		    old->len || extent_offset + num_bytes <=
2368 		    old->extent_offset + old->offset)
2369 			continue;
2370 		break;
2371 	}
2372 
2373 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2374 	if (!backref) {
2375 		ret = -ENOENT;
2376 		goto out;
2377 	}
2378 
2379 	backref->root_id = root_id;
2380 	backref->inum = inum;
2381 	backref->file_pos = offset;
2382 	backref->num_bytes = num_bytes;
2383 	backref->extent_offset = extent_offset;
2384 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2385 	backref->old = old;
2386 	backref_insert(&new->root, backref);
2387 	old->count++;
2388 out:
2389 	btrfs_release_path(path);
2390 	WARN_ON(ret);
2391 	return ret;
2392 }
2393 
2394 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2395 				   struct new_sa_defrag_extent *new)
2396 {
2397 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2398 	struct old_sa_defrag_extent *old, *tmp;
2399 	int ret;
2400 
2401 	new->path = path;
2402 
2403 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2404 		ret = iterate_inodes_from_logical(old->bytenr +
2405 						  old->extent_offset, fs_info,
2406 						  path, record_one_backref,
2407 						  old);
2408 		if (ret < 0 && ret != -ENOENT)
2409 			return false;
2410 
2411 		/* no backref to be processed for this extent */
2412 		if (!old->count) {
2413 			list_del(&old->list);
2414 			kfree(old);
2415 		}
2416 	}
2417 
2418 	if (list_empty(&new->head))
2419 		return false;
2420 
2421 	return true;
2422 }
2423 
2424 static int relink_is_mergable(struct extent_buffer *leaf,
2425 			      struct btrfs_file_extent_item *fi,
2426 			      struct new_sa_defrag_extent *new)
2427 {
2428 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2429 		return 0;
2430 
2431 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2432 		return 0;
2433 
2434 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2435 		return 0;
2436 
2437 	if (btrfs_file_extent_encryption(leaf, fi) ||
2438 	    btrfs_file_extent_other_encoding(leaf, fi))
2439 		return 0;
2440 
2441 	return 1;
2442 }
2443 
2444 /*
2445  * Note the backref might has changed, and in this case we just return 0.
2446  */
2447 static noinline int relink_extent_backref(struct btrfs_path *path,
2448 				 struct sa_defrag_extent_backref *prev,
2449 				 struct sa_defrag_extent_backref *backref)
2450 {
2451 	struct btrfs_file_extent_item *extent;
2452 	struct btrfs_file_extent_item *item;
2453 	struct btrfs_ordered_extent *ordered;
2454 	struct btrfs_trans_handle *trans;
2455 	struct btrfs_fs_info *fs_info;
2456 	struct btrfs_root *root;
2457 	struct btrfs_key key;
2458 	struct extent_buffer *leaf;
2459 	struct old_sa_defrag_extent *old = backref->old;
2460 	struct new_sa_defrag_extent *new = old->new;
2461 	struct inode *src_inode = new->inode;
2462 	struct inode *inode;
2463 	struct extent_state *cached = NULL;
2464 	int ret = 0;
2465 	u64 start;
2466 	u64 len;
2467 	u64 lock_start;
2468 	u64 lock_end;
2469 	bool merge = false;
2470 	int index;
2471 
2472 	if (prev && prev->root_id == backref->root_id &&
2473 	    prev->inum == backref->inum &&
2474 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2475 		merge = true;
2476 
2477 	/* step 1: get root */
2478 	key.objectid = backref->root_id;
2479 	key.type = BTRFS_ROOT_ITEM_KEY;
2480 	key.offset = (u64)-1;
2481 
2482 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2483 	index = srcu_read_lock(&fs_info->subvol_srcu);
2484 
2485 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2486 	if (IS_ERR(root)) {
2487 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 		if (PTR_ERR(root) == -ENOENT)
2489 			return 0;
2490 		return PTR_ERR(root);
2491 	}
2492 
2493 	if (btrfs_root_readonly(root)) {
2494 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2495 		return 0;
2496 	}
2497 
2498 	/* step 2: get inode */
2499 	key.objectid = backref->inum;
2500 	key.type = BTRFS_INODE_ITEM_KEY;
2501 	key.offset = 0;
2502 
2503 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2504 	if (IS_ERR(inode)) {
2505 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2506 		return 0;
2507 	}
2508 
2509 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2510 
2511 	/* step 3: relink backref */
2512 	lock_start = backref->file_pos;
2513 	lock_end = backref->file_pos + backref->num_bytes - 1;
2514 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2515 			 &cached);
2516 
2517 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2518 	if (ordered) {
2519 		btrfs_put_ordered_extent(ordered);
2520 		goto out_unlock;
2521 	}
2522 
2523 	trans = btrfs_join_transaction(root);
2524 	if (IS_ERR(trans)) {
2525 		ret = PTR_ERR(trans);
2526 		goto out_unlock;
2527 	}
2528 
2529 	key.objectid = backref->inum;
2530 	key.type = BTRFS_EXTENT_DATA_KEY;
2531 	key.offset = backref->file_pos;
2532 
2533 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2534 	if (ret < 0) {
2535 		goto out_free_path;
2536 	} else if (ret > 0) {
2537 		ret = 0;
2538 		goto out_free_path;
2539 	}
2540 
2541 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2542 				struct btrfs_file_extent_item);
2543 
2544 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2545 	    backref->generation)
2546 		goto out_free_path;
2547 
2548 	btrfs_release_path(path);
2549 
2550 	start = backref->file_pos;
2551 	if (backref->extent_offset < old->extent_offset + old->offset)
2552 		start += old->extent_offset + old->offset -
2553 			 backref->extent_offset;
2554 
2555 	len = min(backref->extent_offset + backref->num_bytes,
2556 		  old->extent_offset + old->offset + old->len);
2557 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2558 
2559 	ret = btrfs_drop_extents(trans, root, inode, start,
2560 				 start + len, 1);
2561 	if (ret)
2562 		goto out_free_path;
2563 again:
2564 	key.objectid = btrfs_ino(inode);
2565 	key.type = BTRFS_EXTENT_DATA_KEY;
2566 	key.offset = start;
2567 
2568 	path->leave_spinning = 1;
2569 	if (merge) {
2570 		struct btrfs_file_extent_item *fi;
2571 		u64 extent_len;
2572 		struct btrfs_key found_key;
2573 
2574 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2575 		if (ret < 0)
2576 			goto out_free_path;
2577 
2578 		path->slots[0]--;
2579 		leaf = path->nodes[0];
2580 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2581 
2582 		fi = btrfs_item_ptr(leaf, path->slots[0],
2583 				    struct btrfs_file_extent_item);
2584 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2585 
2586 		if (extent_len + found_key.offset == start &&
2587 		    relink_is_mergable(leaf, fi, new)) {
2588 			btrfs_set_file_extent_num_bytes(leaf, fi,
2589 							extent_len + len);
2590 			btrfs_mark_buffer_dirty(leaf);
2591 			inode_add_bytes(inode, len);
2592 
2593 			ret = 1;
2594 			goto out_free_path;
2595 		} else {
2596 			merge = false;
2597 			btrfs_release_path(path);
2598 			goto again;
2599 		}
2600 	}
2601 
2602 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2603 					sizeof(*extent));
2604 	if (ret) {
2605 		btrfs_abort_transaction(trans, ret);
2606 		goto out_free_path;
2607 	}
2608 
2609 	leaf = path->nodes[0];
2610 	item = btrfs_item_ptr(leaf, path->slots[0],
2611 				struct btrfs_file_extent_item);
2612 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2613 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2614 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2615 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2616 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2617 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2618 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2619 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2620 	btrfs_set_file_extent_encryption(leaf, item, 0);
2621 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2622 
2623 	btrfs_mark_buffer_dirty(leaf);
2624 	inode_add_bytes(inode, len);
2625 	btrfs_release_path(path);
2626 
2627 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2628 			new->disk_len, 0,
2629 			backref->root_id, backref->inum,
2630 			new->file_pos);	/* start - extent_offset */
2631 	if (ret) {
2632 		btrfs_abort_transaction(trans, ret);
2633 		goto out_free_path;
2634 	}
2635 
2636 	ret = 1;
2637 out_free_path:
2638 	btrfs_release_path(path);
2639 	path->leave_spinning = 0;
2640 	btrfs_end_transaction(trans, root);
2641 out_unlock:
2642 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2643 			     &cached, GFP_NOFS);
2644 	iput(inode);
2645 	return ret;
2646 }
2647 
2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2649 {
2650 	struct old_sa_defrag_extent *old, *tmp;
2651 
2652 	if (!new)
2653 		return;
2654 
2655 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2656 		kfree(old);
2657 	}
2658 	kfree(new);
2659 }
2660 
2661 static void relink_file_extents(struct new_sa_defrag_extent *new)
2662 {
2663 	struct btrfs_path *path;
2664 	struct sa_defrag_extent_backref *backref;
2665 	struct sa_defrag_extent_backref *prev = NULL;
2666 	struct inode *inode;
2667 	struct btrfs_root *root;
2668 	struct rb_node *node;
2669 	int ret;
2670 
2671 	inode = new->inode;
2672 	root = BTRFS_I(inode)->root;
2673 
2674 	path = btrfs_alloc_path();
2675 	if (!path)
2676 		return;
2677 
2678 	if (!record_extent_backrefs(path, new)) {
2679 		btrfs_free_path(path);
2680 		goto out;
2681 	}
2682 	btrfs_release_path(path);
2683 
2684 	while (1) {
2685 		node = rb_first(&new->root);
2686 		if (!node)
2687 			break;
2688 		rb_erase(node, &new->root);
2689 
2690 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2691 
2692 		ret = relink_extent_backref(path, prev, backref);
2693 		WARN_ON(ret < 0);
2694 
2695 		kfree(prev);
2696 
2697 		if (ret == 1)
2698 			prev = backref;
2699 		else
2700 			prev = NULL;
2701 		cond_resched();
2702 	}
2703 	kfree(prev);
2704 
2705 	btrfs_free_path(path);
2706 out:
2707 	free_sa_defrag_extent(new);
2708 
2709 	atomic_dec(&root->fs_info->defrag_running);
2710 	wake_up(&root->fs_info->transaction_wait);
2711 }
2712 
2713 static struct new_sa_defrag_extent *
2714 record_old_file_extents(struct inode *inode,
2715 			struct btrfs_ordered_extent *ordered)
2716 {
2717 	struct btrfs_root *root = BTRFS_I(inode)->root;
2718 	struct btrfs_path *path;
2719 	struct btrfs_key key;
2720 	struct old_sa_defrag_extent *old;
2721 	struct new_sa_defrag_extent *new;
2722 	int ret;
2723 
2724 	new = kmalloc(sizeof(*new), GFP_NOFS);
2725 	if (!new)
2726 		return NULL;
2727 
2728 	new->inode = inode;
2729 	new->file_pos = ordered->file_offset;
2730 	new->len = ordered->len;
2731 	new->bytenr = ordered->start;
2732 	new->disk_len = ordered->disk_len;
2733 	new->compress_type = ordered->compress_type;
2734 	new->root = RB_ROOT;
2735 	INIT_LIST_HEAD(&new->head);
2736 
2737 	path = btrfs_alloc_path();
2738 	if (!path)
2739 		goto out_kfree;
2740 
2741 	key.objectid = btrfs_ino(inode);
2742 	key.type = BTRFS_EXTENT_DATA_KEY;
2743 	key.offset = new->file_pos;
2744 
2745 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2746 	if (ret < 0)
2747 		goto out_free_path;
2748 	if (ret > 0 && path->slots[0] > 0)
2749 		path->slots[0]--;
2750 
2751 	/* find out all the old extents for the file range */
2752 	while (1) {
2753 		struct btrfs_file_extent_item *extent;
2754 		struct extent_buffer *l;
2755 		int slot;
2756 		u64 num_bytes;
2757 		u64 offset;
2758 		u64 end;
2759 		u64 disk_bytenr;
2760 		u64 extent_offset;
2761 
2762 		l = path->nodes[0];
2763 		slot = path->slots[0];
2764 
2765 		if (slot >= btrfs_header_nritems(l)) {
2766 			ret = btrfs_next_leaf(root, path);
2767 			if (ret < 0)
2768 				goto out_free_path;
2769 			else if (ret > 0)
2770 				break;
2771 			continue;
2772 		}
2773 
2774 		btrfs_item_key_to_cpu(l, &key, slot);
2775 
2776 		if (key.objectid != btrfs_ino(inode))
2777 			break;
2778 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2779 			break;
2780 		if (key.offset >= new->file_pos + new->len)
2781 			break;
2782 
2783 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2784 
2785 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2786 		if (key.offset + num_bytes < new->file_pos)
2787 			goto next;
2788 
2789 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2790 		if (!disk_bytenr)
2791 			goto next;
2792 
2793 		extent_offset = btrfs_file_extent_offset(l, extent);
2794 
2795 		old = kmalloc(sizeof(*old), GFP_NOFS);
2796 		if (!old)
2797 			goto out_free_path;
2798 
2799 		offset = max(new->file_pos, key.offset);
2800 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2801 
2802 		old->bytenr = disk_bytenr;
2803 		old->extent_offset = extent_offset;
2804 		old->offset = offset - key.offset;
2805 		old->len = end - offset;
2806 		old->new = new;
2807 		old->count = 0;
2808 		list_add_tail(&old->list, &new->head);
2809 next:
2810 		path->slots[0]++;
2811 		cond_resched();
2812 	}
2813 
2814 	btrfs_free_path(path);
2815 	atomic_inc(&root->fs_info->defrag_running);
2816 
2817 	return new;
2818 
2819 out_free_path:
2820 	btrfs_free_path(path);
2821 out_kfree:
2822 	free_sa_defrag_extent(new);
2823 	return NULL;
2824 }
2825 
2826 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2827 					 u64 start, u64 len)
2828 {
2829 	struct btrfs_block_group_cache *cache;
2830 
2831 	cache = btrfs_lookup_block_group(root->fs_info, start);
2832 	ASSERT(cache);
2833 
2834 	spin_lock(&cache->lock);
2835 	cache->delalloc_bytes -= len;
2836 	spin_unlock(&cache->lock);
2837 
2838 	btrfs_put_block_group(cache);
2839 }
2840 
2841 /* as ordered data IO finishes, this gets called so we can finish
2842  * an ordered extent if the range of bytes in the file it covers are
2843  * fully written.
2844  */
2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2846 {
2847 	struct inode *inode = ordered_extent->inode;
2848 	struct btrfs_root *root = BTRFS_I(inode)->root;
2849 	struct btrfs_trans_handle *trans = NULL;
2850 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2851 	struct extent_state *cached_state = NULL;
2852 	struct new_sa_defrag_extent *new = NULL;
2853 	int compress_type = 0;
2854 	int ret = 0;
2855 	u64 logical_len = ordered_extent->len;
2856 	bool nolock;
2857 	bool truncated = false;
2858 
2859 	nolock = btrfs_is_free_space_inode(inode);
2860 
2861 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2862 		ret = -EIO;
2863 		goto out;
2864 	}
2865 
2866 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2867 				     ordered_extent->file_offset +
2868 				     ordered_extent->len - 1);
2869 
2870 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2871 		truncated = true;
2872 		logical_len = ordered_extent->truncated_len;
2873 		/* Truncated the entire extent, don't bother adding */
2874 		if (!logical_len)
2875 			goto out;
2876 	}
2877 
2878 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2879 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2880 
2881 		/*
2882 		 * For mwrite(mmap + memset to write) case, we still reserve
2883 		 * space for NOCOW range.
2884 		 * As NOCOW won't cause a new delayed ref, just free the space
2885 		 */
2886 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2887 				       ordered_extent->len);
2888 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2889 		if (nolock)
2890 			trans = btrfs_join_transaction_nolock(root);
2891 		else
2892 			trans = btrfs_join_transaction(root);
2893 		if (IS_ERR(trans)) {
2894 			ret = PTR_ERR(trans);
2895 			trans = NULL;
2896 			goto out;
2897 		}
2898 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2899 		ret = btrfs_update_inode_fallback(trans, root, inode);
2900 		if (ret) /* -ENOMEM or corruption */
2901 			btrfs_abort_transaction(trans, ret);
2902 		goto out;
2903 	}
2904 
2905 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2906 			 ordered_extent->file_offset + ordered_extent->len - 1,
2907 			 &cached_state);
2908 
2909 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2910 			ordered_extent->file_offset + ordered_extent->len - 1,
2911 			EXTENT_DEFRAG, 1, cached_state);
2912 	if (ret) {
2913 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2914 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2915 			/* the inode is shared */
2916 			new = record_old_file_extents(inode, ordered_extent);
2917 
2918 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2919 			ordered_extent->file_offset + ordered_extent->len - 1,
2920 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2921 	}
2922 
2923 	if (nolock)
2924 		trans = btrfs_join_transaction_nolock(root);
2925 	else
2926 		trans = btrfs_join_transaction(root);
2927 	if (IS_ERR(trans)) {
2928 		ret = PTR_ERR(trans);
2929 		trans = NULL;
2930 		goto out_unlock;
2931 	}
2932 
2933 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2934 
2935 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2936 		compress_type = ordered_extent->compress_type;
2937 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2938 		BUG_ON(compress_type);
2939 		ret = btrfs_mark_extent_written(trans, inode,
2940 						ordered_extent->file_offset,
2941 						ordered_extent->file_offset +
2942 						logical_len);
2943 	} else {
2944 		BUG_ON(root == root->fs_info->tree_root);
2945 		ret = insert_reserved_file_extent(trans, inode,
2946 						ordered_extent->file_offset,
2947 						ordered_extent->start,
2948 						ordered_extent->disk_len,
2949 						logical_len, logical_len,
2950 						compress_type, 0, 0,
2951 						BTRFS_FILE_EXTENT_REG);
2952 		if (!ret)
2953 			btrfs_release_delalloc_bytes(root,
2954 						     ordered_extent->start,
2955 						     ordered_extent->disk_len);
2956 	}
2957 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2958 			   ordered_extent->file_offset, ordered_extent->len,
2959 			   trans->transid);
2960 	if (ret < 0) {
2961 		btrfs_abort_transaction(trans, ret);
2962 		goto out_unlock;
2963 	}
2964 
2965 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2966 			  &ordered_extent->list);
2967 
2968 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2969 	ret = btrfs_update_inode_fallback(trans, root, inode);
2970 	if (ret) { /* -ENOMEM or corruption */
2971 		btrfs_abort_transaction(trans, ret);
2972 		goto out_unlock;
2973 	}
2974 	ret = 0;
2975 out_unlock:
2976 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2977 			     ordered_extent->file_offset +
2978 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2979 out:
2980 	if (root != root->fs_info->tree_root)
2981 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2982 	if (trans)
2983 		btrfs_end_transaction(trans, root);
2984 
2985 	if (ret || truncated) {
2986 		u64 start, end;
2987 
2988 		if (truncated)
2989 			start = ordered_extent->file_offset + logical_len;
2990 		else
2991 			start = ordered_extent->file_offset;
2992 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2993 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2994 
2995 		/* Drop the cache for the part of the extent we didn't write. */
2996 		btrfs_drop_extent_cache(inode, start, end, 0);
2997 
2998 		/*
2999 		 * If the ordered extent had an IOERR or something else went
3000 		 * wrong we need to return the space for this ordered extent
3001 		 * back to the allocator.  We only free the extent in the
3002 		 * truncated case if we didn't write out the extent at all.
3003 		 */
3004 		if ((ret || !logical_len) &&
3005 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3006 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3007 			btrfs_free_reserved_extent(root, ordered_extent->start,
3008 						   ordered_extent->disk_len, 1);
3009 	}
3010 
3011 
3012 	/*
3013 	 * This needs to be done to make sure anybody waiting knows we are done
3014 	 * updating everything for this ordered extent.
3015 	 */
3016 	btrfs_remove_ordered_extent(inode, ordered_extent);
3017 
3018 	/* for snapshot-aware defrag */
3019 	if (new) {
3020 		if (ret) {
3021 			free_sa_defrag_extent(new);
3022 			atomic_dec(&root->fs_info->defrag_running);
3023 		} else {
3024 			relink_file_extents(new);
3025 		}
3026 	}
3027 
3028 	/* once for us */
3029 	btrfs_put_ordered_extent(ordered_extent);
3030 	/* once for the tree */
3031 	btrfs_put_ordered_extent(ordered_extent);
3032 
3033 	return ret;
3034 }
3035 
3036 static void finish_ordered_fn(struct btrfs_work *work)
3037 {
3038 	struct btrfs_ordered_extent *ordered_extent;
3039 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3040 	btrfs_finish_ordered_io(ordered_extent);
3041 }
3042 
3043 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3044 				struct extent_state *state, int uptodate)
3045 {
3046 	struct inode *inode = page->mapping->host;
3047 	struct btrfs_root *root = BTRFS_I(inode)->root;
3048 	struct btrfs_ordered_extent *ordered_extent = NULL;
3049 	struct btrfs_workqueue *wq;
3050 	btrfs_work_func_t func;
3051 
3052 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3053 
3054 	ClearPagePrivate2(page);
3055 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3056 					    end - start + 1, uptodate))
3057 		return 0;
3058 
3059 	if (btrfs_is_free_space_inode(inode)) {
3060 		wq = root->fs_info->endio_freespace_worker;
3061 		func = btrfs_freespace_write_helper;
3062 	} else {
3063 		wq = root->fs_info->endio_write_workers;
3064 		func = btrfs_endio_write_helper;
3065 	}
3066 
3067 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3068 			NULL);
3069 	btrfs_queue_work(wq, &ordered_extent->work);
3070 
3071 	return 0;
3072 }
3073 
3074 static int __readpage_endio_check(struct inode *inode,
3075 				  struct btrfs_io_bio *io_bio,
3076 				  int icsum, struct page *page,
3077 				  int pgoff, u64 start, size_t len)
3078 {
3079 	char *kaddr;
3080 	u32 csum_expected;
3081 	u32 csum = ~(u32)0;
3082 
3083 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3084 
3085 	kaddr = kmap_atomic(page);
3086 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3087 	btrfs_csum_final(csum, (char *)&csum);
3088 	if (csum != csum_expected)
3089 		goto zeroit;
3090 
3091 	kunmap_atomic(kaddr);
3092 	return 0;
3093 zeroit:
3094 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3095 		"csum failed ino %llu off %llu csum %u expected csum %u",
3096 			   btrfs_ino(inode), start, csum, csum_expected);
3097 	memset(kaddr + pgoff, 1, len);
3098 	flush_dcache_page(page);
3099 	kunmap_atomic(kaddr);
3100 	if (csum_expected == 0)
3101 		return 0;
3102 	return -EIO;
3103 }
3104 
3105 /*
3106  * when reads are done, we need to check csums to verify the data is correct
3107  * if there's a match, we allow the bio to finish.  If not, the code in
3108  * extent_io.c will try to find good copies for us.
3109  */
3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3111 				      u64 phy_offset, struct page *page,
3112 				      u64 start, u64 end, int mirror)
3113 {
3114 	size_t offset = start - page_offset(page);
3115 	struct inode *inode = page->mapping->host;
3116 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3117 	struct btrfs_root *root = BTRFS_I(inode)->root;
3118 
3119 	if (PageChecked(page)) {
3120 		ClearPageChecked(page);
3121 		return 0;
3122 	}
3123 
3124 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3125 		return 0;
3126 
3127 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3128 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3129 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3130 		return 0;
3131 	}
3132 
3133 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3134 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3135 				      start, (size_t)(end - start + 1));
3136 }
3137 
3138 void btrfs_add_delayed_iput(struct inode *inode)
3139 {
3140 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3141 	struct btrfs_inode *binode = BTRFS_I(inode);
3142 
3143 	if (atomic_add_unless(&inode->i_count, -1, 1))
3144 		return;
3145 
3146 	spin_lock(&fs_info->delayed_iput_lock);
3147 	if (binode->delayed_iput_count == 0) {
3148 		ASSERT(list_empty(&binode->delayed_iput));
3149 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3150 	} else {
3151 		binode->delayed_iput_count++;
3152 	}
3153 	spin_unlock(&fs_info->delayed_iput_lock);
3154 }
3155 
3156 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3157 {
3158 	struct btrfs_fs_info *fs_info = root->fs_info;
3159 
3160 	spin_lock(&fs_info->delayed_iput_lock);
3161 	while (!list_empty(&fs_info->delayed_iputs)) {
3162 		struct btrfs_inode *inode;
3163 
3164 		inode = list_first_entry(&fs_info->delayed_iputs,
3165 				struct btrfs_inode, delayed_iput);
3166 		if (inode->delayed_iput_count) {
3167 			inode->delayed_iput_count--;
3168 			list_move_tail(&inode->delayed_iput,
3169 					&fs_info->delayed_iputs);
3170 		} else {
3171 			list_del_init(&inode->delayed_iput);
3172 		}
3173 		spin_unlock(&fs_info->delayed_iput_lock);
3174 		iput(&inode->vfs_inode);
3175 		spin_lock(&fs_info->delayed_iput_lock);
3176 	}
3177 	spin_unlock(&fs_info->delayed_iput_lock);
3178 }
3179 
3180 /*
3181  * This is called in transaction commit time. If there are no orphan
3182  * files in the subvolume, it removes orphan item and frees block_rsv
3183  * structure.
3184  */
3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3186 			      struct btrfs_root *root)
3187 {
3188 	struct btrfs_block_rsv *block_rsv;
3189 	int ret;
3190 
3191 	if (atomic_read(&root->orphan_inodes) ||
3192 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3193 		return;
3194 
3195 	spin_lock(&root->orphan_lock);
3196 	if (atomic_read(&root->orphan_inodes)) {
3197 		spin_unlock(&root->orphan_lock);
3198 		return;
3199 	}
3200 
3201 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3202 		spin_unlock(&root->orphan_lock);
3203 		return;
3204 	}
3205 
3206 	block_rsv = root->orphan_block_rsv;
3207 	root->orphan_block_rsv = NULL;
3208 	spin_unlock(&root->orphan_lock);
3209 
3210 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3211 	    btrfs_root_refs(&root->root_item) > 0) {
3212 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3213 					    root->root_key.objectid);
3214 		if (ret)
3215 			btrfs_abort_transaction(trans, ret);
3216 		else
3217 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3218 				  &root->state);
3219 	}
3220 
3221 	if (block_rsv) {
3222 		WARN_ON(block_rsv->size > 0);
3223 		btrfs_free_block_rsv(root, block_rsv);
3224 	}
3225 }
3226 
3227 /*
3228  * This creates an orphan entry for the given inode in case something goes
3229  * wrong in the middle of an unlink/truncate.
3230  *
3231  * NOTE: caller of this function should reserve 5 units of metadata for
3232  *	 this function.
3233  */
3234 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3235 {
3236 	struct btrfs_root *root = BTRFS_I(inode)->root;
3237 	struct btrfs_block_rsv *block_rsv = NULL;
3238 	int reserve = 0;
3239 	int insert = 0;
3240 	int ret;
3241 
3242 	if (!root->orphan_block_rsv) {
3243 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3244 		if (!block_rsv)
3245 			return -ENOMEM;
3246 	}
3247 
3248 	spin_lock(&root->orphan_lock);
3249 	if (!root->orphan_block_rsv) {
3250 		root->orphan_block_rsv = block_rsv;
3251 	} else if (block_rsv) {
3252 		btrfs_free_block_rsv(root, block_rsv);
3253 		block_rsv = NULL;
3254 	}
3255 
3256 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3257 			      &BTRFS_I(inode)->runtime_flags)) {
3258 #if 0
3259 		/*
3260 		 * For proper ENOSPC handling, we should do orphan
3261 		 * cleanup when mounting. But this introduces backward
3262 		 * compatibility issue.
3263 		 */
3264 		if (!xchg(&root->orphan_item_inserted, 1))
3265 			insert = 2;
3266 		else
3267 			insert = 1;
3268 #endif
3269 		insert = 1;
3270 		atomic_inc(&root->orphan_inodes);
3271 	}
3272 
3273 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274 			      &BTRFS_I(inode)->runtime_flags))
3275 		reserve = 1;
3276 	spin_unlock(&root->orphan_lock);
3277 
3278 	/* grab metadata reservation from transaction handle */
3279 	if (reserve) {
3280 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3281 		ASSERT(!ret);
3282 		if (ret) {
3283 			atomic_dec(&root->orphan_inodes);
3284 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3285 				  &BTRFS_I(inode)->runtime_flags);
3286 			if (insert)
3287 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 					  &BTRFS_I(inode)->runtime_flags);
3289 			return ret;
3290 		}
3291 	}
3292 
3293 	/* insert an orphan item to track this unlinked/truncated file */
3294 	if (insert >= 1) {
3295 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3296 		if (ret) {
3297 			atomic_dec(&root->orphan_inodes);
3298 			if (reserve) {
3299 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3300 					  &BTRFS_I(inode)->runtime_flags);
3301 				btrfs_orphan_release_metadata(inode);
3302 			}
3303 			if (ret != -EEXIST) {
3304 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 					  &BTRFS_I(inode)->runtime_flags);
3306 				btrfs_abort_transaction(trans, ret);
3307 				return ret;
3308 			}
3309 		}
3310 		ret = 0;
3311 	}
3312 
3313 	/* insert an orphan item to track subvolume contains orphan files */
3314 	if (insert >= 2) {
3315 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3316 					       root->root_key.objectid);
3317 		if (ret && ret != -EEXIST) {
3318 			btrfs_abort_transaction(trans, ret);
3319 			return ret;
3320 		}
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  * We have done the truncate/delete so we can go ahead and remove the orphan
3327  * item for this particular inode.
3328  */
3329 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3330 			    struct inode *inode)
3331 {
3332 	struct btrfs_root *root = BTRFS_I(inode)->root;
3333 	int delete_item = 0;
3334 	int release_rsv = 0;
3335 	int ret = 0;
3336 
3337 	spin_lock(&root->orphan_lock);
3338 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3339 			       &BTRFS_I(inode)->runtime_flags))
3340 		delete_item = 1;
3341 
3342 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3343 			       &BTRFS_I(inode)->runtime_flags))
3344 		release_rsv = 1;
3345 	spin_unlock(&root->orphan_lock);
3346 
3347 	if (delete_item) {
3348 		atomic_dec(&root->orphan_inodes);
3349 		if (trans)
3350 			ret = btrfs_del_orphan_item(trans, root,
3351 						    btrfs_ino(inode));
3352 	}
3353 
3354 	if (release_rsv)
3355 		btrfs_orphan_release_metadata(inode);
3356 
3357 	return ret;
3358 }
3359 
3360 /*
3361  * this cleans up any orphans that may be left on the list from the last use
3362  * of this root.
3363  */
3364 int btrfs_orphan_cleanup(struct btrfs_root *root)
3365 {
3366 	struct btrfs_path *path;
3367 	struct extent_buffer *leaf;
3368 	struct btrfs_key key, found_key;
3369 	struct btrfs_trans_handle *trans;
3370 	struct inode *inode;
3371 	u64 last_objectid = 0;
3372 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3373 
3374 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3375 		return 0;
3376 
3377 	path = btrfs_alloc_path();
3378 	if (!path) {
3379 		ret = -ENOMEM;
3380 		goto out;
3381 	}
3382 	path->reada = READA_BACK;
3383 
3384 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3385 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3386 	key.offset = (u64)-1;
3387 
3388 	while (1) {
3389 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3390 		if (ret < 0)
3391 			goto out;
3392 
3393 		/*
3394 		 * if ret == 0 means we found what we were searching for, which
3395 		 * is weird, but possible, so only screw with path if we didn't
3396 		 * find the key and see if we have stuff that matches
3397 		 */
3398 		if (ret > 0) {
3399 			ret = 0;
3400 			if (path->slots[0] == 0)
3401 				break;
3402 			path->slots[0]--;
3403 		}
3404 
3405 		/* pull out the item */
3406 		leaf = path->nodes[0];
3407 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3408 
3409 		/* make sure the item matches what we want */
3410 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3411 			break;
3412 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3413 			break;
3414 
3415 		/* release the path since we're done with it */
3416 		btrfs_release_path(path);
3417 
3418 		/*
3419 		 * this is where we are basically btrfs_lookup, without the
3420 		 * crossing root thing.  we store the inode number in the
3421 		 * offset of the orphan item.
3422 		 */
3423 
3424 		if (found_key.offset == last_objectid) {
3425 			btrfs_err(root->fs_info,
3426 				"Error removing orphan entry, stopping orphan cleanup");
3427 			ret = -EINVAL;
3428 			goto out;
3429 		}
3430 
3431 		last_objectid = found_key.offset;
3432 
3433 		found_key.objectid = found_key.offset;
3434 		found_key.type = BTRFS_INODE_ITEM_KEY;
3435 		found_key.offset = 0;
3436 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3437 		ret = PTR_ERR_OR_ZERO(inode);
3438 		if (ret && ret != -ENOENT)
3439 			goto out;
3440 
3441 		if (ret == -ENOENT && root == root->fs_info->tree_root) {
3442 			struct btrfs_root *dead_root;
3443 			struct btrfs_fs_info *fs_info = root->fs_info;
3444 			int is_dead_root = 0;
3445 
3446 			/*
3447 			 * this is an orphan in the tree root. Currently these
3448 			 * could come from 2 sources:
3449 			 *  a) a snapshot deletion in progress
3450 			 *  b) a free space cache inode
3451 			 * We need to distinguish those two, as the snapshot
3452 			 * orphan must not get deleted.
3453 			 * find_dead_roots already ran before us, so if this
3454 			 * is a snapshot deletion, we should find the root
3455 			 * in the dead_roots list
3456 			 */
3457 			spin_lock(&fs_info->trans_lock);
3458 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3459 					    root_list) {
3460 				if (dead_root->root_key.objectid ==
3461 				    found_key.objectid) {
3462 					is_dead_root = 1;
3463 					break;
3464 				}
3465 			}
3466 			spin_unlock(&fs_info->trans_lock);
3467 			if (is_dead_root) {
3468 				/* prevent this orphan from being found again */
3469 				key.offset = found_key.objectid - 1;
3470 				continue;
3471 			}
3472 		}
3473 		/*
3474 		 * Inode is already gone but the orphan item is still there,
3475 		 * kill the orphan item.
3476 		 */
3477 		if (ret == -ENOENT) {
3478 			trans = btrfs_start_transaction(root, 1);
3479 			if (IS_ERR(trans)) {
3480 				ret = PTR_ERR(trans);
3481 				goto out;
3482 			}
3483 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3484 				found_key.objectid);
3485 			ret = btrfs_del_orphan_item(trans, root,
3486 						    found_key.objectid);
3487 			btrfs_end_transaction(trans, root);
3488 			if (ret)
3489 				goto out;
3490 			continue;
3491 		}
3492 
3493 		/*
3494 		 * add this inode to the orphan list so btrfs_orphan_del does
3495 		 * the proper thing when we hit it
3496 		 */
3497 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3498 			&BTRFS_I(inode)->runtime_flags);
3499 		atomic_inc(&root->orphan_inodes);
3500 
3501 		/* if we have links, this was a truncate, lets do that */
3502 		if (inode->i_nlink) {
3503 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3504 				iput(inode);
3505 				continue;
3506 			}
3507 			nr_truncate++;
3508 
3509 			/* 1 for the orphan item deletion. */
3510 			trans = btrfs_start_transaction(root, 1);
3511 			if (IS_ERR(trans)) {
3512 				iput(inode);
3513 				ret = PTR_ERR(trans);
3514 				goto out;
3515 			}
3516 			ret = btrfs_orphan_add(trans, inode);
3517 			btrfs_end_transaction(trans, root);
3518 			if (ret) {
3519 				iput(inode);
3520 				goto out;
3521 			}
3522 
3523 			ret = btrfs_truncate(inode);
3524 			if (ret)
3525 				btrfs_orphan_del(NULL, inode);
3526 		} else {
3527 			nr_unlink++;
3528 		}
3529 
3530 		/* this will do delete_inode and everything for us */
3531 		iput(inode);
3532 		if (ret)
3533 			goto out;
3534 	}
3535 	/* release the path since we're done with it */
3536 	btrfs_release_path(path);
3537 
3538 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3539 
3540 	if (root->orphan_block_rsv)
3541 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3542 					(u64)-1);
3543 
3544 	if (root->orphan_block_rsv ||
3545 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3546 		trans = btrfs_join_transaction(root);
3547 		if (!IS_ERR(trans))
3548 			btrfs_end_transaction(trans, root);
3549 	}
3550 
3551 	if (nr_unlink)
3552 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3553 	if (nr_truncate)
3554 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3555 
3556 out:
3557 	if (ret)
3558 		btrfs_err(root->fs_info,
3559 			"could not do orphan cleanup %d", ret);
3560 	btrfs_free_path(path);
3561 	return ret;
3562 }
3563 
3564 /*
3565  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3566  * don't find any xattrs, we know there can't be any acls.
3567  *
3568  * slot is the slot the inode is in, objectid is the objectid of the inode
3569  */
3570 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3571 					  int slot, u64 objectid,
3572 					  int *first_xattr_slot)
3573 {
3574 	u32 nritems = btrfs_header_nritems(leaf);
3575 	struct btrfs_key found_key;
3576 	static u64 xattr_access = 0;
3577 	static u64 xattr_default = 0;
3578 	int scanned = 0;
3579 
3580 	if (!xattr_access) {
3581 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3582 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3583 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3584 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3585 	}
3586 
3587 	slot++;
3588 	*first_xattr_slot = -1;
3589 	while (slot < nritems) {
3590 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3591 
3592 		/* we found a different objectid, there must not be acls */
3593 		if (found_key.objectid != objectid)
3594 			return 0;
3595 
3596 		/* we found an xattr, assume we've got an acl */
3597 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3598 			if (*first_xattr_slot == -1)
3599 				*first_xattr_slot = slot;
3600 			if (found_key.offset == xattr_access ||
3601 			    found_key.offset == xattr_default)
3602 				return 1;
3603 		}
3604 
3605 		/*
3606 		 * we found a key greater than an xattr key, there can't
3607 		 * be any acls later on
3608 		 */
3609 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3610 			return 0;
3611 
3612 		slot++;
3613 		scanned++;
3614 
3615 		/*
3616 		 * it goes inode, inode backrefs, xattrs, extents,
3617 		 * so if there are a ton of hard links to an inode there can
3618 		 * be a lot of backrefs.  Don't waste time searching too hard,
3619 		 * this is just an optimization
3620 		 */
3621 		if (scanned >= 8)
3622 			break;
3623 	}
3624 	/* we hit the end of the leaf before we found an xattr or
3625 	 * something larger than an xattr.  We have to assume the inode
3626 	 * has acls
3627 	 */
3628 	if (*first_xattr_slot == -1)
3629 		*first_xattr_slot = slot;
3630 	return 1;
3631 }
3632 
3633 /*
3634  * read an inode from the btree into the in-memory inode
3635  */
3636 static int btrfs_read_locked_inode(struct inode *inode)
3637 {
3638 	struct btrfs_path *path;
3639 	struct extent_buffer *leaf;
3640 	struct btrfs_inode_item *inode_item;
3641 	struct btrfs_root *root = BTRFS_I(inode)->root;
3642 	struct btrfs_key location;
3643 	unsigned long ptr;
3644 	int maybe_acls;
3645 	u32 rdev;
3646 	int ret;
3647 	bool filled = false;
3648 	int first_xattr_slot;
3649 
3650 	ret = btrfs_fill_inode(inode, &rdev);
3651 	if (!ret)
3652 		filled = true;
3653 
3654 	path = btrfs_alloc_path();
3655 	if (!path) {
3656 		ret = -ENOMEM;
3657 		goto make_bad;
3658 	}
3659 
3660 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3661 
3662 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3663 	if (ret) {
3664 		if (ret > 0)
3665 			ret = -ENOENT;
3666 		goto make_bad;
3667 	}
3668 
3669 	leaf = path->nodes[0];
3670 
3671 	if (filled)
3672 		goto cache_index;
3673 
3674 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3675 				    struct btrfs_inode_item);
3676 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3677 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3678 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3679 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3680 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3681 
3682 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3683 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3684 
3685 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3686 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3687 
3688 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3689 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3690 
3691 	BTRFS_I(inode)->i_otime.tv_sec =
3692 		btrfs_timespec_sec(leaf, &inode_item->otime);
3693 	BTRFS_I(inode)->i_otime.tv_nsec =
3694 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3695 
3696 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3697 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3698 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3699 
3700 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3701 	inode->i_generation = BTRFS_I(inode)->generation;
3702 	inode->i_rdev = 0;
3703 	rdev = btrfs_inode_rdev(leaf, inode_item);
3704 
3705 	BTRFS_I(inode)->index_cnt = (u64)-1;
3706 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3707 
3708 cache_index:
3709 	/*
3710 	 * If we were modified in the current generation and evicted from memory
3711 	 * and then re-read we need to do a full sync since we don't have any
3712 	 * idea about which extents were modified before we were evicted from
3713 	 * cache.
3714 	 *
3715 	 * This is required for both inode re-read from disk and delayed inode
3716 	 * in delayed_nodes_tree.
3717 	 */
3718 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3719 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3720 			&BTRFS_I(inode)->runtime_flags);
3721 
3722 	/*
3723 	 * We don't persist the id of the transaction where an unlink operation
3724 	 * against the inode was last made. So here we assume the inode might
3725 	 * have been evicted, and therefore the exact value of last_unlink_trans
3726 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3727 	 * between the inode and its parent if the inode is fsync'ed and the log
3728 	 * replayed. For example, in the scenario:
3729 	 *
3730 	 * touch mydir/foo
3731 	 * ln mydir/foo mydir/bar
3732 	 * sync
3733 	 * unlink mydir/bar
3734 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3735 	 * xfs_io -c fsync mydir/foo
3736 	 * <power failure>
3737 	 * mount fs, triggers fsync log replay
3738 	 *
3739 	 * We must make sure that when we fsync our inode foo we also log its
3740 	 * parent inode, otherwise after log replay the parent still has the
3741 	 * dentry with the "bar" name but our inode foo has a link count of 1
3742 	 * and doesn't have an inode ref with the name "bar" anymore.
3743 	 *
3744 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3745 	 * but it guarantees correctness at the expense of occasional full
3746 	 * transaction commits on fsync if our inode is a directory, or if our
3747 	 * inode is not a directory, logging its parent unnecessarily.
3748 	 */
3749 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3750 
3751 	path->slots[0]++;
3752 	if (inode->i_nlink != 1 ||
3753 	    path->slots[0] >= btrfs_header_nritems(leaf))
3754 		goto cache_acl;
3755 
3756 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3757 	if (location.objectid != btrfs_ino(inode))
3758 		goto cache_acl;
3759 
3760 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3761 	if (location.type == BTRFS_INODE_REF_KEY) {
3762 		struct btrfs_inode_ref *ref;
3763 
3764 		ref = (struct btrfs_inode_ref *)ptr;
3765 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3766 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3767 		struct btrfs_inode_extref *extref;
3768 
3769 		extref = (struct btrfs_inode_extref *)ptr;
3770 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3771 								     extref);
3772 	}
3773 cache_acl:
3774 	/*
3775 	 * try to precache a NULL acl entry for files that don't have
3776 	 * any xattrs or acls
3777 	 */
3778 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3779 					   btrfs_ino(inode), &first_xattr_slot);
3780 	if (first_xattr_slot != -1) {
3781 		path->slots[0] = first_xattr_slot;
3782 		ret = btrfs_load_inode_props(inode, path);
3783 		if (ret)
3784 			btrfs_err(root->fs_info,
3785 				  "error loading props for ino %llu (root %llu): %d",
3786 				  btrfs_ino(inode),
3787 				  root->root_key.objectid, ret);
3788 	}
3789 	btrfs_free_path(path);
3790 
3791 	if (!maybe_acls)
3792 		cache_no_acl(inode);
3793 
3794 	switch (inode->i_mode & S_IFMT) {
3795 	case S_IFREG:
3796 		inode->i_mapping->a_ops = &btrfs_aops;
3797 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3798 		inode->i_fop = &btrfs_file_operations;
3799 		inode->i_op = &btrfs_file_inode_operations;
3800 		break;
3801 	case S_IFDIR:
3802 		inode->i_fop = &btrfs_dir_file_operations;
3803 		if (root == root->fs_info->tree_root)
3804 			inode->i_op = &btrfs_dir_ro_inode_operations;
3805 		else
3806 			inode->i_op = &btrfs_dir_inode_operations;
3807 		break;
3808 	case S_IFLNK:
3809 		inode->i_op = &btrfs_symlink_inode_operations;
3810 		inode_nohighmem(inode);
3811 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3812 		break;
3813 	default:
3814 		inode->i_op = &btrfs_special_inode_operations;
3815 		init_special_inode(inode, inode->i_mode, rdev);
3816 		break;
3817 	}
3818 
3819 	btrfs_update_iflags(inode);
3820 	return 0;
3821 
3822 make_bad:
3823 	btrfs_free_path(path);
3824 	make_bad_inode(inode);
3825 	return ret;
3826 }
3827 
3828 /*
3829  * given a leaf and an inode, copy the inode fields into the leaf
3830  */
3831 static void fill_inode_item(struct btrfs_trans_handle *trans,
3832 			    struct extent_buffer *leaf,
3833 			    struct btrfs_inode_item *item,
3834 			    struct inode *inode)
3835 {
3836 	struct btrfs_map_token token;
3837 
3838 	btrfs_init_map_token(&token);
3839 
3840 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3841 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3842 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3843 				   &token);
3844 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3845 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3846 
3847 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3848 				     inode->i_atime.tv_sec, &token);
3849 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3850 				      inode->i_atime.tv_nsec, &token);
3851 
3852 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3853 				     inode->i_mtime.tv_sec, &token);
3854 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3855 				      inode->i_mtime.tv_nsec, &token);
3856 
3857 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3858 				     inode->i_ctime.tv_sec, &token);
3859 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3860 				      inode->i_ctime.tv_nsec, &token);
3861 
3862 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3863 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3864 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3865 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3866 
3867 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3868 				     &token);
3869 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3870 					 &token);
3871 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3872 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3873 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3874 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3875 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3876 }
3877 
3878 /*
3879  * copy everything in the in-memory inode into the btree.
3880  */
3881 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3882 				struct btrfs_root *root, struct inode *inode)
3883 {
3884 	struct btrfs_inode_item *inode_item;
3885 	struct btrfs_path *path;
3886 	struct extent_buffer *leaf;
3887 	int ret;
3888 
3889 	path = btrfs_alloc_path();
3890 	if (!path)
3891 		return -ENOMEM;
3892 
3893 	path->leave_spinning = 1;
3894 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3895 				 1);
3896 	if (ret) {
3897 		if (ret > 0)
3898 			ret = -ENOENT;
3899 		goto failed;
3900 	}
3901 
3902 	leaf = path->nodes[0];
3903 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3904 				    struct btrfs_inode_item);
3905 
3906 	fill_inode_item(trans, leaf, inode_item, inode);
3907 	btrfs_mark_buffer_dirty(leaf);
3908 	btrfs_set_inode_last_trans(trans, inode);
3909 	ret = 0;
3910 failed:
3911 	btrfs_free_path(path);
3912 	return ret;
3913 }
3914 
3915 /*
3916  * copy everything in the in-memory inode into the btree.
3917  */
3918 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3919 				struct btrfs_root *root, struct inode *inode)
3920 {
3921 	int ret;
3922 
3923 	/*
3924 	 * If the inode is a free space inode, we can deadlock during commit
3925 	 * if we put it into the delayed code.
3926 	 *
3927 	 * The data relocation inode should also be directly updated
3928 	 * without delay
3929 	 */
3930 	if (!btrfs_is_free_space_inode(inode)
3931 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3932 	    && !root->fs_info->log_root_recovering) {
3933 		btrfs_update_root_times(trans, root);
3934 
3935 		ret = btrfs_delayed_update_inode(trans, root, inode);
3936 		if (!ret)
3937 			btrfs_set_inode_last_trans(trans, inode);
3938 		return ret;
3939 	}
3940 
3941 	return btrfs_update_inode_item(trans, root, inode);
3942 }
3943 
3944 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3945 					 struct btrfs_root *root,
3946 					 struct inode *inode)
3947 {
3948 	int ret;
3949 
3950 	ret = btrfs_update_inode(trans, root, inode);
3951 	if (ret == -ENOSPC)
3952 		return btrfs_update_inode_item(trans, root, inode);
3953 	return ret;
3954 }
3955 
3956 /*
3957  * unlink helper that gets used here in inode.c and in the tree logging
3958  * recovery code.  It remove a link in a directory with a given name, and
3959  * also drops the back refs in the inode to the directory
3960  */
3961 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3962 				struct btrfs_root *root,
3963 				struct inode *dir, struct inode *inode,
3964 				const char *name, int name_len)
3965 {
3966 	struct btrfs_path *path;
3967 	int ret = 0;
3968 	struct extent_buffer *leaf;
3969 	struct btrfs_dir_item *di;
3970 	struct btrfs_key key;
3971 	u64 index;
3972 	u64 ino = btrfs_ino(inode);
3973 	u64 dir_ino = btrfs_ino(dir);
3974 
3975 	path = btrfs_alloc_path();
3976 	if (!path) {
3977 		ret = -ENOMEM;
3978 		goto out;
3979 	}
3980 
3981 	path->leave_spinning = 1;
3982 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3983 				    name, name_len, -1);
3984 	if (IS_ERR(di)) {
3985 		ret = PTR_ERR(di);
3986 		goto err;
3987 	}
3988 	if (!di) {
3989 		ret = -ENOENT;
3990 		goto err;
3991 	}
3992 	leaf = path->nodes[0];
3993 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3994 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3995 	if (ret)
3996 		goto err;
3997 	btrfs_release_path(path);
3998 
3999 	/*
4000 	 * If we don't have dir index, we have to get it by looking up
4001 	 * the inode ref, since we get the inode ref, remove it directly,
4002 	 * it is unnecessary to do delayed deletion.
4003 	 *
4004 	 * But if we have dir index, needn't search inode ref to get it.
4005 	 * Since the inode ref is close to the inode item, it is better
4006 	 * that we delay to delete it, and just do this deletion when
4007 	 * we update the inode item.
4008 	 */
4009 	if (BTRFS_I(inode)->dir_index) {
4010 		ret = btrfs_delayed_delete_inode_ref(inode);
4011 		if (!ret) {
4012 			index = BTRFS_I(inode)->dir_index;
4013 			goto skip_backref;
4014 		}
4015 	}
4016 
4017 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4018 				  dir_ino, &index);
4019 	if (ret) {
4020 		btrfs_info(root->fs_info,
4021 			"failed to delete reference to %.*s, inode %llu parent %llu",
4022 			name_len, name, ino, dir_ino);
4023 		btrfs_abort_transaction(trans, ret);
4024 		goto err;
4025 	}
4026 skip_backref:
4027 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4028 	if (ret) {
4029 		btrfs_abort_transaction(trans, ret);
4030 		goto err;
4031 	}
4032 
4033 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4034 					 inode, dir_ino);
4035 	if (ret != 0 && ret != -ENOENT) {
4036 		btrfs_abort_transaction(trans, ret);
4037 		goto err;
4038 	}
4039 
4040 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4041 					   dir, index);
4042 	if (ret == -ENOENT)
4043 		ret = 0;
4044 	else if (ret)
4045 		btrfs_abort_transaction(trans, ret);
4046 err:
4047 	btrfs_free_path(path);
4048 	if (ret)
4049 		goto out;
4050 
4051 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4052 	inode_inc_iversion(inode);
4053 	inode_inc_iversion(dir);
4054 	inode->i_ctime = dir->i_mtime =
4055 		dir->i_ctime = current_fs_time(inode->i_sb);
4056 	ret = btrfs_update_inode(trans, root, dir);
4057 out:
4058 	return ret;
4059 }
4060 
4061 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4062 		       struct btrfs_root *root,
4063 		       struct inode *dir, struct inode *inode,
4064 		       const char *name, int name_len)
4065 {
4066 	int ret;
4067 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4068 	if (!ret) {
4069 		drop_nlink(inode);
4070 		ret = btrfs_update_inode(trans, root, inode);
4071 	}
4072 	return ret;
4073 }
4074 
4075 /*
4076  * helper to start transaction for unlink and rmdir.
4077  *
4078  * unlink and rmdir are special in btrfs, they do not always free space, so
4079  * if we cannot make our reservations the normal way try and see if there is
4080  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4081  * allow the unlink to occur.
4082  */
4083 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4084 {
4085 	struct btrfs_root *root = BTRFS_I(dir)->root;
4086 
4087 	/*
4088 	 * 1 for the possible orphan item
4089 	 * 1 for the dir item
4090 	 * 1 for the dir index
4091 	 * 1 for the inode ref
4092 	 * 1 for the inode
4093 	 */
4094 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4095 }
4096 
4097 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4098 {
4099 	struct btrfs_root *root = BTRFS_I(dir)->root;
4100 	struct btrfs_trans_handle *trans;
4101 	struct inode *inode = d_inode(dentry);
4102 	int ret;
4103 
4104 	trans = __unlink_start_trans(dir);
4105 	if (IS_ERR(trans))
4106 		return PTR_ERR(trans);
4107 
4108 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4109 
4110 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4111 				 dentry->d_name.name, dentry->d_name.len);
4112 	if (ret)
4113 		goto out;
4114 
4115 	if (inode->i_nlink == 0) {
4116 		ret = btrfs_orphan_add(trans, inode);
4117 		if (ret)
4118 			goto out;
4119 	}
4120 
4121 out:
4122 	btrfs_end_transaction(trans, root);
4123 	btrfs_btree_balance_dirty(root);
4124 	return ret;
4125 }
4126 
4127 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4128 			struct btrfs_root *root,
4129 			struct inode *dir, u64 objectid,
4130 			const char *name, int name_len)
4131 {
4132 	struct btrfs_path *path;
4133 	struct extent_buffer *leaf;
4134 	struct btrfs_dir_item *di;
4135 	struct btrfs_key key;
4136 	u64 index;
4137 	int ret;
4138 	u64 dir_ino = btrfs_ino(dir);
4139 
4140 	path = btrfs_alloc_path();
4141 	if (!path)
4142 		return -ENOMEM;
4143 
4144 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4145 				   name, name_len, -1);
4146 	if (IS_ERR_OR_NULL(di)) {
4147 		if (!di)
4148 			ret = -ENOENT;
4149 		else
4150 			ret = PTR_ERR(di);
4151 		goto out;
4152 	}
4153 
4154 	leaf = path->nodes[0];
4155 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4156 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4157 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4158 	if (ret) {
4159 		btrfs_abort_transaction(trans, ret);
4160 		goto out;
4161 	}
4162 	btrfs_release_path(path);
4163 
4164 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4165 				 objectid, root->root_key.objectid,
4166 				 dir_ino, &index, name, name_len);
4167 	if (ret < 0) {
4168 		if (ret != -ENOENT) {
4169 			btrfs_abort_transaction(trans, ret);
4170 			goto out;
4171 		}
4172 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4173 						 name, name_len);
4174 		if (IS_ERR_OR_NULL(di)) {
4175 			if (!di)
4176 				ret = -ENOENT;
4177 			else
4178 				ret = PTR_ERR(di);
4179 			btrfs_abort_transaction(trans, ret);
4180 			goto out;
4181 		}
4182 
4183 		leaf = path->nodes[0];
4184 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4185 		btrfs_release_path(path);
4186 		index = key.offset;
4187 	}
4188 	btrfs_release_path(path);
4189 
4190 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4191 	if (ret) {
4192 		btrfs_abort_transaction(trans, ret);
4193 		goto out;
4194 	}
4195 
4196 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4197 	inode_inc_iversion(dir);
4198 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4199 	ret = btrfs_update_inode_fallback(trans, root, dir);
4200 	if (ret)
4201 		btrfs_abort_transaction(trans, ret);
4202 out:
4203 	btrfs_free_path(path);
4204 	return ret;
4205 }
4206 
4207 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4208 {
4209 	struct inode *inode = d_inode(dentry);
4210 	int err = 0;
4211 	struct btrfs_root *root = BTRFS_I(dir)->root;
4212 	struct btrfs_trans_handle *trans;
4213 	u64 last_unlink_trans;
4214 
4215 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4216 		return -ENOTEMPTY;
4217 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4218 		return -EPERM;
4219 
4220 	trans = __unlink_start_trans(dir);
4221 	if (IS_ERR(trans))
4222 		return PTR_ERR(trans);
4223 
4224 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4225 		err = btrfs_unlink_subvol(trans, root, dir,
4226 					  BTRFS_I(inode)->location.objectid,
4227 					  dentry->d_name.name,
4228 					  dentry->d_name.len);
4229 		goto out;
4230 	}
4231 
4232 	err = btrfs_orphan_add(trans, inode);
4233 	if (err)
4234 		goto out;
4235 
4236 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4237 
4238 	/* now the directory is empty */
4239 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4240 				 dentry->d_name.name, dentry->d_name.len);
4241 	if (!err) {
4242 		btrfs_i_size_write(inode, 0);
4243 		/*
4244 		 * Propagate the last_unlink_trans value of the deleted dir to
4245 		 * its parent directory. This is to prevent an unrecoverable
4246 		 * log tree in the case we do something like this:
4247 		 * 1) create dir foo
4248 		 * 2) create snapshot under dir foo
4249 		 * 3) delete the snapshot
4250 		 * 4) rmdir foo
4251 		 * 5) mkdir foo
4252 		 * 6) fsync foo or some file inside foo
4253 		 */
4254 		if (last_unlink_trans >= trans->transid)
4255 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4256 	}
4257 out:
4258 	btrfs_end_transaction(trans, root);
4259 	btrfs_btree_balance_dirty(root);
4260 
4261 	return err;
4262 }
4263 
4264 static int truncate_space_check(struct btrfs_trans_handle *trans,
4265 				struct btrfs_root *root,
4266 				u64 bytes_deleted)
4267 {
4268 	int ret;
4269 
4270 	/*
4271 	 * This is only used to apply pressure to the enospc system, we don't
4272 	 * intend to use this reservation at all.
4273 	 */
4274 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4275 	bytes_deleted *= root->nodesize;
4276 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4277 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4278 	if (!ret) {
4279 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4280 					      trans->transid,
4281 					      bytes_deleted, 1);
4282 		trans->bytes_reserved += bytes_deleted;
4283 	}
4284 	return ret;
4285 
4286 }
4287 
4288 static int truncate_inline_extent(struct inode *inode,
4289 				  struct btrfs_path *path,
4290 				  struct btrfs_key *found_key,
4291 				  const u64 item_end,
4292 				  const u64 new_size)
4293 {
4294 	struct extent_buffer *leaf = path->nodes[0];
4295 	int slot = path->slots[0];
4296 	struct btrfs_file_extent_item *fi;
4297 	u32 size = (u32)(new_size - found_key->offset);
4298 	struct btrfs_root *root = BTRFS_I(inode)->root;
4299 
4300 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4301 
4302 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4303 		loff_t offset = new_size;
4304 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4305 
4306 		/*
4307 		 * Zero out the remaining of the last page of our inline extent,
4308 		 * instead of directly truncating our inline extent here - that
4309 		 * would be much more complex (decompressing all the data, then
4310 		 * compressing the truncated data, which might be bigger than
4311 		 * the size of the inline extent, resize the extent, etc).
4312 		 * We release the path because to get the page we might need to
4313 		 * read the extent item from disk (data not in the page cache).
4314 		 */
4315 		btrfs_release_path(path);
4316 		return btrfs_truncate_block(inode, offset, page_end - offset,
4317 					0);
4318 	}
4319 
4320 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4321 	size = btrfs_file_extent_calc_inline_size(size);
4322 	btrfs_truncate_item(root, path, size, 1);
4323 
4324 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4325 		inode_sub_bytes(inode, item_end + 1 - new_size);
4326 
4327 	return 0;
4328 }
4329 
4330 /*
4331  * this can truncate away extent items, csum items and directory items.
4332  * It starts at a high offset and removes keys until it can't find
4333  * any higher than new_size
4334  *
4335  * csum items that cross the new i_size are truncated to the new size
4336  * as well.
4337  *
4338  * min_type is the minimum key type to truncate down to.  If set to 0, this
4339  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4340  */
4341 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4342 			       struct btrfs_root *root,
4343 			       struct inode *inode,
4344 			       u64 new_size, u32 min_type)
4345 {
4346 	struct btrfs_path *path;
4347 	struct extent_buffer *leaf;
4348 	struct btrfs_file_extent_item *fi;
4349 	struct btrfs_key key;
4350 	struct btrfs_key found_key;
4351 	u64 extent_start = 0;
4352 	u64 extent_num_bytes = 0;
4353 	u64 extent_offset = 0;
4354 	u64 item_end = 0;
4355 	u64 last_size = new_size;
4356 	u32 found_type = (u8)-1;
4357 	int found_extent;
4358 	int del_item;
4359 	int pending_del_nr = 0;
4360 	int pending_del_slot = 0;
4361 	int extent_type = -1;
4362 	int ret;
4363 	int err = 0;
4364 	u64 ino = btrfs_ino(inode);
4365 	u64 bytes_deleted = 0;
4366 	bool be_nice = 0;
4367 	bool should_throttle = 0;
4368 	bool should_end = 0;
4369 
4370 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4371 
4372 	/*
4373 	 * for non-free space inodes and ref cows, we want to back off from
4374 	 * time to time
4375 	 */
4376 	if (!btrfs_is_free_space_inode(inode) &&
4377 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4378 		be_nice = 1;
4379 
4380 	path = btrfs_alloc_path();
4381 	if (!path)
4382 		return -ENOMEM;
4383 	path->reada = READA_BACK;
4384 
4385 	/*
4386 	 * We want to drop from the next block forward in case this new size is
4387 	 * not block aligned since we will be keeping the last block of the
4388 	 * extent just the way it is.
4389 	 */
4390 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4391 	    root == root->fs_info->tree_root)
4392 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4393 					root->sectorsize), (u64)-1, 0);
4394 
4395 	/*
4396 	 * This function is also used to drop the items in the log tree before
4397 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4398 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4399 	 * items.
4400 	 */
4401 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4402 		btrfs_kill_delayed_inode_items(inode);
4403 
4404 	key.objectid = ino;
4405 	key.offset = (u64)-1;
4406 	key.type = (u8)-1;
4407 
4408 search_again:
4409 	/*
4410 	 * with a 16K leaf size and 128MB extents, you can actually queue
4411 	 * up a huge file in a single leaf.  Most of the time that
4412 	 * bytes_deleted is > 0, it will be huge by the time we get here
4413 	 */
4414 	if (be_nice && bytes_deleted > SZ_32M) {
4415 		if (btrfs_should_end_transaction(trans, root)) {
4416 			err = -EAGAIN;
4417 			goto error;
4418 		}
4419 	}
4420 
4421 
4422 	path->leave_spinning = 1;
4423 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4424 	if (ret < 0) {
4425 		err = ret;
4426 		goto out;
4427 	}
4428 
4429 	if (ret > 0) {
4430 		/* there are no items in the tree for us to truncate, we're
4431 		 * done
4432 		 */
4433 		if (path->slots[0] == 0)
4434 			goto out;
4435 		path->slots[0]--;
4436 	}
4437 
4438 	while (1) {
4439 		fi = NULL;
4440 		leaf = path->nodes[0];
4441 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4442 		found_type = found_key.type;
4443 
4444 		if (found_key.objectid != ino)
4445 			break;
4446 
4447 		if (found_type < min_type)
4448 			break;
4449 
4450 		item_end = found_key.offset;
4451 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4452 			fi = btrfs_item_ptr(leaf, path->slots[0],
4453 					    struct btrfs_file_extent_item);
4454 			extent_type = btrfs_file_extent_type(leaf, fi);
4455 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4456 				item_end +=
4457 				    btrfs_file_extent_num_bytes(leaf, fi);
4458 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4459 				item_end += btrfs_file_extent_inline_len(leaf,
4460 							 path->slots[0], fi);
4461 			}
4462 			item_end--;
4463 		}
4464 		if (found_type > min_type) {
4465 			del_item = 1;
4466 		} else {
4467 			if (item_end < new_size)
4468 				break;
4469 			if (found_key.offset >= new_size)
4470 				del_item = 1;
4471 			else
4472 				del_item = 0;
4473 		}
4474 		found_extent = 0;
4475 		/* FIXME, shrink the extent if the ref count is only 1 */
4476 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4477 			goto delete;
4478 
4479 		if (del_item)
4480 			last_size = found_key.offset;
4481 		else
4482 			last_size = new_size;
4483 
4484 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4485 			u64 num_dec;
4486 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4487 			if (!del_item) {
4488 				u64 orig_num_bytes =
4489 					btrfs_file_extent_num_bytes(leaf, fi);
4490 				extent_num_bytes = ALIGN(new_size -
4491 						found_key.offset,
4492 						root->sectorsize);
4493 				btrfs_set_file_extent_num_bytes(leaf, fi,
4494 							 extent_num_bytes);
4495 				num_dec = (orig_num_bytes -
4496 					   extent_num_bytes);
4497 				if (test_bit(BTRFS_ROOT_REF_COWS,
4498 					     &root->state) &&
4499 				    extent_start != 0)
4500 					inode_sub_bytes(inode, num_dec);
4501 				btrfs_mark_buffer_dirty(leaf);
4502 			} else {
4503 				extent_num_bytes =
4504 					btrfs_file_extent_disk_num_bytes(leaf,
4505 									 fi);
4506 				extent_offset = found_key.offset -
4507 					btrfs_file_extent_offset(leaf, fi);
4508 
4509 				/* FIXME blocksize != 4096 */
4510 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4511 				if (extent_start != 0) {
4512 					found_extent = 1;
4513 					if (test_bit(BTRFS_ROOT_REF_COWS,
4514 						     &root->state))
4515 						inode_sub_bytes(inode, num_dec);
4516 				}
4517 			}
4518 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4519 			/*
4520 			 * we can't truncate inline items that have had
4521 			 * special encodings
4522 			 */
4523 			if (!del_item &&
4524 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4525 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4526 
4527 				/*
4528 				 * Need to release path in order to truncate a
4529 				 * compressed extent. So delete any accumulated
4530 				 * extent items so far.
4531 				 */
4532 				if (btrfs_file_extent_compression(leaf, fi) !=
4533 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4534 					err = btrfs_del_items(trans, root, path,
4535 							      pending_del_slot,
4536 							      pending_del_nr);
4537 					if (err) {
4538 						btrfs_abort_transaction(trans,
4539 									err);
4540 						goto error;
4541 					}
4542 					pending_del_nr = 0;
4543 				}
4544 
4545 				err = truncate_inline_extent(inode, path,
4546 							     &found_key,
4547 							     item_end,
4548 							     new_size);
4549 				if (err) {
4550 					btrfs_abort_transaction(trans, err);
4551 					goto error;
4552 				}
4553 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4554 					    &root->state)) {
4555 				inode_sub_bytes(inode, item_end + 1 - new_size);
4556 			}
4557 		}
4558 delete:
4559 		if (del_item) {
4560 			if (!pending_del_nr) {
4561 				/* no pending yet, add ourselves */
4562 				pending_del_slot = path->slots[0];
4563 				pending_del_nr = 1;
4564 			} else if (pending_del_nr &&
4565 				   path->slots[0] + 1 == pending_del_slot) {
4566 				/* hop on the pending chunk */
4567 				pending_del_nr++;
4568 				pending_del_slot = path->slots[0];
4569 			} else {
4570 				BUG();
4571 			}
4572 		} else {
4573 			break;
4574 		}
4575 		should_throttle = 0;
4576 
4577 		if (found_extent &&
4578 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4579 		     root == root->fs_info->tree_root)) {
4580 			btrfs_set_path_blocking(path);
4581 			bytes_deleted += extent_num_bytes;
4582 			ret = btrfs_free_extent(trans, root, extent_start,
4583 						extent_num_bytes, 0,
4584 						btrfs_header_owner(leaf),
4585 						ino, extent_offset);
4586 			BUG_ON(ret);
4587 			if (btrfs_should_throttle_delayed_refs(trans, root))
4588 				btrfs_async_run_delayed_refs(root,
4589 							     trans->transid,
4590 					trans->delayed_ref_updates * 2, 0);
4591 			if (be_nice) {
4592 				if (truncate_space_check(trans, root,
4593 							 extent_num_bytes)) {
4594 					should_end = 1;
4595 				}
4596 				if (btrfs_should_throttle_delayed_refs(trans,
4597 								       root)) {
4598 					should_throttle = 1;
4599 				}
4600 			}
4601 		}
4602 
4603 		if (found_type == BTRFS_INODE_ITEM_KEY)
4604 			break;
4605 
4606 		if (path->slots[0] == 0 ||
4607 		    path->slots[0] != pending_del_slot ||
4608 		    should_throttle || should_end) {
4609 			if (pending_del_nr) {
4610 				ret = btrfs_del_items(trans, root, path,
4611 						pending_del_slot,
4612 						pending_del_nr);
4613 				if (ret) {
4614 					btrfs_abort_transaction(trans, ret);
4615 					goto error;
4616 				}
4617 				pending_del_nr = 0;
4618 			}
4619 			btrfs_release_path(path);
4620 			if (should_throttle) {
4621 				unsigned long updates = trans->delayed_ref_updates;
4622 				if (updates) {
4623 					trans->delayed_ref_updates = 0;
4624 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4625 					if (ret && !err)
4626 						err = ret;
4627 				}
4628 			}
4629 			/*
4630 			 * if we failed to refill our space rsv, bail out
4631 			 * and let the transaction restart
4632 			 */
4633 			if (should_end) {
4634 				err = -EAGAIN;
4635 				goto error;
4636 			}
4637 			goto search_again;
4638 		} else {
4639 			path->slots[0]--;
4640 		}
4641 	}
4642 out:
4643 	if (pending_del_nr) {
4644 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4645 				      pending_del_nr);
4646 		if (ret)
4647 			btrfs_abort_transaction(trans, ret);
4648 	}
4649 error:
4650 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4651 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4652 
4653 	btrfs_free_path(path);
4654 
4655 	if (be_nice && bytes_deleted > SZ_32M) {
4656 		unsigned long updates = trans->delayed_ref_updates;
4657 		if (updates) {
4658 			trans->delayed_ref_updates = 0;
4659 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4660 			if (ret && !err)
4661 				err = ret;
4662 		}
4663 	}
4664 	return err;
4665 }
4666 
4667 /*
4668  * btrfs_truncate_block - read, zero a chunk and write a block
4669  * @inode - inode that we're zeroing
4670  * @from - the offset to start zeroing
4671  * @len - the length to zero, 0 to zero the entire range respective to the
4672  *	offset
4673  * @front - zero up to the offset instead of from the offset on
4674  *
4675  * This will find the block for the "from" offset and cow the block and zero the
4676  * part we want to zero.  This is used with truncate and hole punching.
4677  */
4678 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4679 			int front)
4680 {
4681 	struct address_space *mapping = inode->i_mapping;
4682 	struct btrfs_root *root = BTRFS_I(inode)->root;
4683 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4684 	struct btrfs_ordered_extent *ordered;
4685 	struct extent_state *cached_state = NULL;
4686 	char *kaddr;
4687 	u32 blocksize = root->sectorsize;
4688 	pgoff_t index = from >> PAGE_SHIFT;
4689 	unsigned offset = from & (blocksize - 1);
4690 	struct page *page;
4691 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4692 	int ret = 0;
4693 	u64 block_start;
4694 	u64 block_end;
4695 
4696 	if ((offset & (blocksize - 1)) == 0 &&
4697 	    (!len || ((len & (blocksize - 1)) == 0)))
4698 		goto out;
4699 
4700 	ret = btrfs_delalloc_reserve_space(inode,
4701 			round_down(from, blocksize), blocksize);
4702 	if (ret)
4703 		goto out;
4704 
4705 again:
4706 	page = find_or_create_page(mapping, index, mask);
4707 	if (!page) {
4708 		btrfs_delalloc_release_space(inode,
4709 				round_down(from, blocksize),
4710 				blocksize);
4711 		ret = -ENOMEM;
4712 		goto out;
4713 	}
4714 
4715 	block_start = round_down(from, blocksize);
4716 	block_end = block_start + blocksize - 1;
4717 
4718 	if (!PageUptodate(page)) {
4719 		ret = btrfs_readpage(NULL, page);
4720 		lock_page(page);
4721 		if (page->mapping != mapping) {
4722 			unlock_page(page);
4723 			put_page(page);
4724 			goto again;
4725 		}
4726 		if (!PageUptodate(page)) {
4727 			ret = -EIO;
4728 			goto out_unlock;
4729 		}
4730 	}
4731 	wait_on_page_writeback(page);
4732 
4733 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4734 	set_page_extent_mapped(page);
4735 
4736 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4737 	if (ordered) {
4738 		unlock_extent_cached(io_tree, block_start, block_end,
4739 				     &cached_state, GFP_NOFS);
4740 		unlock_page(page);
4741 		put_page(page);
4742 		btrfs_start_ordered_extent(inode, ordered, 1);
4743 		btrfs_put_ordered_extent(ordered);
4744 		goto again;
4745 	}
4746 
4747 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4748 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4749 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4750 			  0, 0, &cached_state, GFP_NOFS);
4751 
4752 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4753 					&cached_state);
4754 	if (ret) {
4755 		unlock_extent_cached(io_tree, block_start, block_end,
4756 				     &cached_state, GFP_NOFS);
4757 		goto out_unlock;
4758 	}
4759 
4760 	if (offset != blocksize) {
4761 		if (!len)
4762 			len = blocksize - offset;
4763 		kaddr = kmap(page);
4764 		if (front)
4765 			memset(kaddr + (block_start - page_offset(page)),
4766 				0, offset);
4767 		else
4768 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4769 				0, len);
4770 		flush_dcache_page(page);
4771 		kunmap(page);
4772 	}
4773 	ClearPageChecked(page);
4774 	set_page_dirty(page);
4775 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4776 			     GFP_NOFS);
4777 
4778 out_unlock:
4779 	if (ret)
4780 		btrfs_delalloc_release_space(inode, block_start,
4781 					     blocksize);
4782 	unlock_page(page);
4783 	put_page(page);
4784 out:
4785 	return ret;
4786 }
4787 
4788 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4789 			     u64 offset, u64 len)
4790 {
4791 	struct btrfs_trans_handle *trans;
4792 	int ret;
4793 
4794 	/*
4795 	 * Still need to make sure the inode looks like it's been updated so
4796 	 * that any holes get logged if we fsync.
4797 	 */
4798 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4799 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4800 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4801 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4802 		return 0;
4803 	}
4804 
4805 	/*
4806 	 * 1 - for the one we're dropping
4807 	 * 1 - for the one we're adding
4808 	 * 1 - for updating the inode.
4809 	 */
4810 	trans = btrfs_start_transaction(root, 3);
4811 	if (IS_ERR(trans))
4812 		return PTR_ERR(trans);
4813 
4814 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4815 	if (ret) {
4816 		btrfs_abort_transaction(trans, ret);
4817 		btrfs_end_transaction(trans, root);
4818 		return ret;
4819 	}
4820 
4821 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4822 				       0, 0, len, 0, len, 0, 0, 0);
4823 	if (ret)
4824 		btrfs_abort_transaction(trans, ret);
4825 	else
4826 		btrfs_update_inode(trans, root, inode);
4827 	btrfs_end_transaction(trans, root);
4828 	return ret;
4829 }
4830 
4831 /*
4832  * This function puts in dummy file extents for the area we're creating a hole
4833  * for.  So if we are truncating this file to a larger size we need to insert
4834  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4835  * the range between oldsize and size
4836  */
4837 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4838 {
4839 	struct btrfs_root *root = BTRFS_I(inode)->root;
4840 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4841 	struct extent_map *em = NULL;
4842 	struct extent_state *cached_state = NULL;
4843 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4844 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4845 	u64 block_end = ALIGN(size, root->sectorsize);
4846 	u64 last_byte;
4847 	u64 cur_offset;
4848 	u64 hole_size;
4849 	int err = 0;
4850 
4851 	/*
4852 	 * If our size started in the middle of a block we need to zero out the
4853 	 * rest of the block before we expand the i_size, otherwise we could
4854 	 * expose stale data.
4855 	 */
4856 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4857 	if (err)
4858 		return err;
4859 
4860 	if (size <= hole_start)
4861 		return 0;
4862 
4863 	while (1) {
4864 		struct btrfs_ordered_extent *ordered;
4865 
4866 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4867 				 &cached_state);
4868 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4869 						     block_end - hole_start);
4870 		if (!ordered)
4871 			break;
4872 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4873 				     &cached_state, GFP_NOFS);
4874 		btrfs_start_ordered_extent(inode, ordered, 1);
4875 		btrfs_put_ordered_extent(ordered);
4876 	}
4877 
4878 	cur_offset = hole_start;
4879 	while (1) {
4880 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4881 				block_end - cur_offset, 0);
4882 		if (IS_ERR(em)) {
4883 			err = PTR_ERR(em);
4884 			em = NULL;
4885 			break;
4886 		}
4887 		last_byte = min(extent_map_end(em), block_end);
4888 		last_byte = ALIGN(last_byte , root->sectorsize);
4889 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4890 			struct extent_map *hole_em;
4891 			hole_size = last_byte - cur_offset;
4892 
4893 			err = maybe_insert_hole(root, inode, cur_offset,
4894 						hole_size);
4895 			if (err)
4896 				break;
4897 			btrfs_drop_extent_cache(inode, cur_offset,
4898 						cur_offset + hole_size - 1, 0);
4899 			hole_em = alloc_extent_map();
4900 			if (!hole_em) {
4901 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4902 					&BTRFS_I(inode)->runtime_flags);
4903 				goto next;
4904 			}
4905 			hole_em->start = cur_offset;
4906 			hole_em->len = hole_size;
4907 			hole_em->orig_start = cur_offset;
4908 
4909 			hole_em->block_start = EXTENT_MAP_HOLE;
4910 			hole_em->block_len = 0;
4911 			hole_em->orig_block_len = 0;
4912 			hole_em->ram_bytes = hole_size;
4913 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4914 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4915 			hole_em->generation = root->fs_info->generation;
4916 
4917 			while (1) {
4918 				write_lock(&em_tree->lock);
4919 				err = add_extent_mapping(em_tree, hole_em, 1);
4920 				write_unlock(&em_tree->lock);
4921 				if (err != -EEXIST)
4922 					break;
4923 				btrfs_drop_extent_cache(inode, cur_offset,
4924 							cur_offset +
4925 							hole_size - 1, 0);
4926 			}
4927 			free_extent_map(hole_em);
4928 		}
4929 next:
4930 		free_extent_map(em);
4931 		em = NULL;
4932 		cur_offset = last_byte;
4933 		if (cur_offset >= block_end)
4934 			break;
4935 	}
4936 	free_extent_map(em);
4937 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4938 			     GFP_NOFS);
4939 	return err;
4940 }
4941 
4942 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4943 {
4944 	struct btrfs_root *root = BTRFS_I(inode)->root;
4945 	struct btrfs_trans_handle *trans;
4946 	loff_t oldsize = i_size_read(inode);
4947 	loff_t newsize = attr->ia_size;
4948 	int mask = attr->ia_valid;
4949 	int ret;
4950 
4951 	/*
4952 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4953 	 * special case where we need to update the times despite not having
4954 	 * these flags set.  For all other operations the VFS set these flags
4955 	 * explicitly if it wants a timestamp update.
4956 	 */
4957 	if (newsize != oldsize) {
4958 		inode_inc_iversion(inode);
4959 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4960 			inode->i_ctime = inode->i_mtime =
4961 				current_fs_time(inode->i_sb);
4962 	}
4963 
4964 	if (newsize > oldsize) {
4965 		/*
4966 		 * Don't do an expanding truncate while snapshoting is ongoing.
4967 		 * This is to ensure the snapshot captures a fully consistent
4968 		 * state of this file - if the snapshot captures this expanding
4969 		 * truncation, it must capture all writes that happened before
4970 		 * this truncation.
4971 		 */
4972 		btrfs_wait_for_snapshot_creation(root);
4973 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4974 		if (ret) {
4975 			btrfs_end_write_no_snapshoting(root);
4976 			return ret;
4977 		}
4978 
4979 		trans = btrfs_start_transaction(root, 1);
4980 		if (IS_ERR(trans)) {
4981 			btrfs_end_write_no_snapshoting(root);
4982 			return PTR_ERR(trans);
4983 		}
4984 
4985 		i_size_write(inode, newsize);
4986 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4987 		pagecache_isize_extended(inode, oldsize, newsize);
4988 		ret = btrfs_update_inode(trans, root, inode);
4989 		btrfs_end_write_no_snapshoting(root);
4990 		btrfs_end_transaction(trans, root);
4991 	} else {
4992 
4993 		/*
4994 		 * We're truncating a file that used to have good data down to
4995 		 * zero. Make sure it gets into the ordered flush list so that
4996 		 * any new writes get down to disk quickly.
4997 		 */
4998 		if (newsize == 0)
4999 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5000 				&BTRFS_I(inode)->runtime_flags);
5001 
5002 		/*
5003 		 * 1 for the orphan item we're going to add
5004 		 * 1 for the orphan item deletion.
5005 		 */
5006 		trans = btrfs_start_transaction(root, 2);
5007 		if (IS_ERR(trans))
5008 			return PTR_ERR(trans);
5009 
5010 		/*
5011 		 * We need to do this in case we fail at _any_ point during the
5012 		 * actual truncate.  Once we do the truncate_setsize we could
5013 		 * invalidate pages which forces any outstanding ordered io to
5014 		 * be instantly completed which will give us extents that need
5015 		 * to be truncated.  If we fail to get an orphan inode down we
5016 		 * could have left over extents that were never meant to live,
5017 		 * so we need to guarantee from this point on that everything
5018 		 * will be consistent.
5019 		 */
5020 		ret = btrfs_orphan_add(trans, inode);
5021 		btrfs_end_transaction(trans, root);
5022 		if (ret)
5023 			return ret;
5024 
5025 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5026 		truncate_setsize(inode, newsize);
5027 
5028 		/* Disable nonlocked read DIO to avoid the end less truncate */
5029 		btrfs_inode_block_unlocked_dio(inode);
5030 		inode_dio_wait(inode);
5031 		btrfs_inode_resume_unlocked_dio(inode);
5032 
5033 		ret = btrfs_truncate(inode);
5034 		if (ret && inode->i_nlink) {
5035 			int err;
5036 
5037 			/*
5038 			 * failed to truncate, disk_i_size is only adjusted down
5039 			 * as we remove extents, so it should represent the true
5040 			 * size of the inode, so reset the in memory size and
5041 			 * delete our orphan entry.
5042 			 */
5043 			trans = btrfs_join_transaction(root);
5044 			if (IS_ERR(trans)) {
5045 				btrfs_orphan_del(NULL, inode);
5046 				return ret;
5047 			}
5048 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5049 			err = btrfs_orphan_del(trans, inode);
5050 			if (err)
5051 				btrfs_abort_transaction(trans, err);
5052 			btrfs_end_transaction(trans, root);
5053 		}
5054 	}
5055 
5056 	return ret;
5057 }
5058 
5059 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5060 {
5061 	struct inode *inode = d_inode(dentry);
5062 	struct btrfs_root *root = BTRFS_I(inode)->root;
5063 	int err;
5064 
5065 	if (btrfs_root_readonly(root))
5066 		return -EROFS;
5067 
5068 	err = inode_change_ok(inode, attr);
5069 	if (err)
5070 		return err;
5071 
5072 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5073 		err = btrfs_setsize(inode, attr);
5074 		if (err)
5075 			return err;
5076 	}
5077 
5078 	if (attr->ia_valid) {
5079 		setattr_copy(inode, attr);
5080 		inode_inc_iversion(inode);
5081 		err = btrfs_dirty_inode(inode);
5082 
5083 		if (!err && attr->ia_valid & ATTR_MODE)
5084 			err = posix_acl_chmod(inode, inode->i_mode);
5085 	}
5086 
5087 	return err;
5088 }
5089 
5090 /*
5091  * While truncating the inode pages during eviction, we get the VFS calling
5092  * btrfs_invalidatepage() against each page of the inode. This is slow because
5093  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5094  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5095  * extent_state structures over and over, wasting lots of time.
5096  *
5097  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5098  * those expensive operations on a per page basis and do only the ordered io
5099  * finishing, while we release here the extent_map and extent_state structures,
5100  * without the excessive merging and splitting.
5101  */
5102 static void evict_inode_truncate_pages(struct inode *inode)
5103 {
5104 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5105 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5106 	struct rb_node *node;
5107 
5108 	ASSERT(inode->i_state & I_FREEING);
5109 	truncate_inode_pages_final(&inode->i_data);
5110 
5111 	write_lock(&map_tree->lock);
5112 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5113 		struct extent_map *em;
5114 
5115 		node = rb_first(&map_tree->map);
5116 		em = rb_entry(node, struct extent_map, rb_node);
5117 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5118 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5119 		remove_extent_mapping(map_tree, em);
5120 		free_extent_map(em);
5121 		if (need_resched()) {
5122 			write_unlock(&map_tree->lock);
5123 			cond_resched();
5124 			write_lock(&map_tree->lock);
5125 		}
5126 	}
5127 	write_unlock(&map_tree->lock);
5128 
5129 	/*
5130 	 * Keep looping until we have no more ranges in the io tree.
5131 	 * We can have ongoing bios started by readpages (called from readahead)
5132 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5133 	 * still in progress (unlocked the pages in the bio but did not yet
5134 	 * unlocked the ranges in the io tree). Therefore this means some
5135 	 * ranges can still be locked and eviction started because before
5136 	 * submitting those bios, which are executed by a separate task (work
5137 	 * queue kthread), inode references (inode->i_count) were not taken
5138 	 * (which would be dropped in the end io callback of each bio).
5139 	 * Therefore here we effectively end up waiting for those bios and
5140 	 * anyone else holding locked ranges without having bumped the inode's
5141 	 * reference count - if we don't do it, when they access the inode's
5142 	 * io_tree to unlock a range it may be too late, leading to an
5143 	 * use-after-free issue.
5144 	 */
5145 	spin_lock(&io_tree->lock);
5146 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5147 		struct extent_state *state;
5148 		struct extent_state *cached_state = NULL;
5149 		u64 start;
5150 		u64 end;
5151 
5152 		node = rb_first(&io_tree->state);
5153 		state = rb_entry(node, struct extent_state, rb_node);
5154 		start = state->start;
5155 		end = state->end;
5156 		spin_unlock(&io_tree->lock);
5157 
5158 		lock_extent_bits(io_tree, start, end, &cached_state);
5159 
5160 		/*
5161 		 * If still has DELALLOC flag, the extent didn't reach disk,
5162 		 * and its reserved space won't be freed by delayed_ref.
5163 		 * So we need to free its reserved space here.
5164 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5165 		 *
5166 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5167 		 */
5168 		if (state->state & EXTENT_DELALLOC)
5169 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5170 
5171 		clear_extent_bit(io_tree, start, end,
5172 				 EXTENT_LOCKED | EXTENT_DIRTY |
5173 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5174 				 EXTENT_DEFRAG, 1, 1,
5175 				 &cached_state, GFP_NOFS);
5176 
5177 		cond_resched();
5178 		spin_lock(&io_tree->lock);
5179 	}
5180 	spin_unlock(&io_tree->lock);
5181 }
5182 
5183 void btrfs_evict_inode(struct inode *inode)
5184 {
5185 	struct btrfs_trans_handle *trans;
5186 	struct btrfs_root *root = BTRFS_I(inode)->root;
5187 	struct btrfs_block_rsv *rsv, *global_rsv;
5188 	int steal_from_global = 0;
5189 	u64 min_size;
5190 	int ret;
5191 
5192 	trace_btrfs_inode_evict(inode);
5193 
5194 	if (!root) {
5195 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5196 		return;
5197 	}
5198 
5199 	min_size = btrfs_calc_trunc_metadata_size(root, 1);
5200 
5201 	evict_inode_truncate_pages(inode);
5202 
5203 	if (inode->i_nlink &&
5204 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5205 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5206 	     btrfs_is_free_space_inode(inode)))
5207 		goto no_delete;
5208 
5209 	if (is_bad_inode(inode)) {
5210 		btrfs_orphan_del(NULL, inode);
5211 		goto no_delete;
5212 	}
5213 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5214 	if (!special_file(inode->i_mode))
5215 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5216 
5217 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5218 
5219 	if (root->fs_info->log_root_recovering) {
5220 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5221 				 &BTRFS_I(inode)->runtime_flags));
5222 		goto no_delete;
5223 	}
5224 
5225 	if (inode->i_nlink > 0) {
5226 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5227 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5228 		goto no_delete;
5229 	}
5230 
5231 	ret = btrfs_commit_inode_delayed_inode(inode);
5232 	if (ret) {
5233 		btrfs_orphan_del(NULL, inode);
5234 		goto no_delete;
5235 	}
5236 
5237 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5238 	if (!rsv) {
5239 		btrfs_orphan_del(NULL, inode);
5240 		goto no_delete;
5241 	}
5242 	rsv->size = min_size;
5243 	rsv->failfast = 1;
5244 	global_rsv = &root->fs_info->global_block_rsv;
5245 
5246 	btrfs_i_size_write(inode, 0);
5247 
5248 	/*
5249 	 * This is a bit simpler than btrfs_truncate since we've already
5250 	 * reserved our space for our orphan item in the unlink, so we just
5251 	 * need to reserve some slack space in case we add bytes and update
5252 	 * inode item when doing the truncate.
5253 	 */
5254 	while (1) {
5255 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5256 					     BTRFS_RESERVE_FLUSH_LIMIT);
5257 
5258 		/*
5259 		 * Try and steal from the global reserve since we will
5260 		 * likely not use this space anyway, we want to try as
5261 		 * hard as possible to get this to work.
5262 		 */
5263 		if (ret)
5264 			steal_from_global++;
5265 		else
5266 			steal_from_global = 0;
5267 		ret = 0;
5268 
5269 		/*
5270 		 * steal_from_global == 0: we reserved stuff, hooray!
5271 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5272 		 * steal_from_global == 2: we've committed, still not a lot of
5273 		 * room but maybe we'll have room in the global reserve this
5274 		 * time.
5275 		 * steal_from_global == 3: abandon all hope!
5276 		 */
5277 		if (steal_from_global > 2) {
5278 			btrfs_warn(root->fs_info,
5279 				"Could not get space for a delete, will truncate on mount %d",
5280 				ret);
5281 			btrfs_orphan_del(NULL, inode);
5282 			btrfs_free_block_rsv(root, rsv);
5283 			goto no_delete;
5284 		}
5285 
5286 		trans = btrfs_join_transaction(root);
5287 		if (IS_ERR(trans)) {
5288 			btrfs_orphan_del(NULL, inode);
5289 			btrfs_free_block_rsv(root, rsv);
5290 			goto no_delete;
5291 		}
5292 
5293 		/*
5294 		 * We can't just steal from the global reserve, we need to make
5295 		 * sure there is room to do it, if not we need to commit and try
5296 		 * again.
5297 		 */
5298 		if (steal_from_global) {
5299 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5300 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5301 							      min_size, 0);
5302 			else
5303 				ret = -ENOSPC;
5304 		}
5305 
5306 		/*
5307 		 * Couldn't steal from the global reserve, we have too much
5308 		 * pending stuff built up, commit the transaction and try it
5309 		 * again.
5310 		 */
5311 		if (ret) {
5312 			ret = btrfs_commit_transaction(trans, root);
5313 			if (ret) {
5314 				btrfs_orphan_del(NULL, inode);
5315 				btrfs_free_block_rsv(root, rsv);
5316 				goto no_delete;
5317 			}
5318 			continue;
5319 		} else {
5320 			steal_from_global = 0;
5321 		}
5322 
5323 		trans->block_rsv = rsv;
5324 
5325 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5326 		if (ret != -ENOSPC && ret != -EAGAIN)
5327 			break;
5328 
5329 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5330 		btrfs_end_transaction(trans, root);
5331 		trans = NULL;
5332 		btrfs_btree_balance_dirty(root);
5333 	}
5334 
5335 	btrfs_free_block_rsv(root, rsv);
5336 
5337 	/*
5338 	 * Errors here aren't a big deal, it just means we leave orphan items
5339 	 * in the tree.  They will be cleaned up on the next mount.
5340 	 */
5341 	if (ret == 0) {
5342 		trans->block_rsv = root->orphan_block_rsv;
5343 		btrfs_orphan_del(trans, inode);
5344 	} else {
5345 		btrfs_orphan_del(NULL, inode);
5346 	}
5347 
5348 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5349 	if (!(root == root->fs_info->tree_root ||
5350 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5351 		btrfs_return_ino(root, btrfs_ino(inode));
5352 
5353 	btrfs_end_transaction(trans, root);
5354 	btrfs_btree_balance_dirty(root);
5355 no_delete:
5356 	btrfs_remove_delayed_node(inode);
5357 	clear_inode(inode);
5358 }
5359 
5360 /*
5361  * this returns the key found in the dir entry in the location pointer.
5362  * If no dir entries were found, location->objectid is 0.
5363  */
5364 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5365 			       struct btrfs_key *location)
5366 {
5367 	const char *name = dentry->d_name.name;
5368 	int namelen = dentry->d_name.len;
5369 	struct btrfs_dir_item *di;
5370 	struct btrfs_path *path;
5371 	struct btrfs_root *root = BTRFS_I(dir)->root;
5372 	int ret = 0;
5373 
5374 	path = btrfs_alloc_path();
5375 	if (!path)
5376 		return -ENOMEM;
5377 
5378 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5379 				    namelen, 0);
5380 	if (IS_ERR(di))
5381 		ret = PTR_ERR(di);
5382 
5383 	if (IS_ERR_OR_NULL(di))
5384 		goto out_err;
5385 
5386 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5387 out:
5388 	btrfs_free_path(path);
5389 	return ret;
5390 out_err:
5391 	location->objectid = 0;
5392 	goto out;
5393 }
5394 
5395 /*
5396  * when we hit a tree root in a directory, the btrfs part of the inode
5397  * needs to be changed to reflect the root directory of the tree root.  This
5398  * is kind of like crossing a mount point.
5399  */
5400 static int fixup_tree_root_location(struct btrfs_root *root,
5401 				    struct inode *dir,
5402 				    struct dentry *dentry,
5403 				    struct btrfs_key *location,
5404 				    struct btrfs_root **sub_root)
5405 {
5406 	struct btrfs_path *path;
5407 	struct btrfs_root *new_root;
5408 	struct btrfs_root_ref *ref;
5409 	struct extent_buffer *leaf;
5410 	struct btrfs_key key;
5411 	int ret;
5412 	int err = 0;
5413 
5414 	path = btrfs_alloc_path();
5415 	if (!path) {
5416 		err = -ENOMEM;
5417 		goto out;
5418 	}
5419 
5420 	err = -ENOENT;
5421 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5422 	key.type = BTRFS_ROOT_REF_KEY;
5423 	key.offset = location->objectid;
5424 
5425 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5426 				0, 0);
5427 	if (ret) {
5428 		if (ret < 0)
5429 			err = ret;
5430 		goto out;
5431 	}
5432 
5433 	leaf = path->nodes[0];
5434 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5435 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5436 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5437 		goto out;
5438 
5439 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5440 				   (unsigned long)(ref + 1),
5441 				   dentry->d_name.len);
5442 	if (ret)
5443 		goto out;
5444 
5445 	btrfs_release_path(path);
5446 
5447 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5448 	if (IS_ERR(new_root)) {
5449 		err = PTR_ERR(new_root);
5450 		goto out;
5451 	}
5452 
5453 	*sub_root = new_root;
5454 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5455 	location->type = BTRFS_INODE_ITEM_KEY;
5456 	location->offset = 0;
5457 	err = 0;
5458 out:
5459 	btrfs_free_path(path);
5460 	return err;
5461 }
5462 
5463 static void inode_tree_add(struct inode *inode)
5464 {
5465 	struct btrfs_root *root = BTRFS_I(inode)->root;
5466 	struct btrfs_inode *entry;
5467 	struct rb_node **p;
5468 	struct rb_node *parent;
5469 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5470 	u64 ino = btrfs_ino(inode);
5471 
5472 	if (inode_unhashed(inode))
5473 		return;
5474 	parent = NULL;
5475 	spin_lock(&root->inode_lock);
5476 	p = &root->inode_tree.rb_node;
5477 	while (*p) {
5478 		parent = *p;
5479 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5480 
5481 		if (ino < btrfs_ino(&entry->vfs_inode))
5482 			p = &parent->rb_left;
5483 		else if (ino > btrfs_ino(&entry->vfs_inode))
5484 			p = &parent->rb_right;
5485 		else {
5486 			WARN_ON(!(entry->vfs_inode.i_state &
5487 				  (I_WILL_FREE | I_FREEING)));
5488 			rb_replace_node(parent, new, &root->inode_tree);
5489 			RB_CLEAR_NODE(parent);
5490 			spin_unlock(&root->inode_lock);
5491 			return;
5492 		}
5493 	}
5494 	rb_link_node(new, parent, p);
5495 	rb_insert_color(new, &root->inode_tree);
5496 	spin_unlock(&root->inode_lock);
5497 }
5498 
5499 static void inode_tree_del(struct inode *inode)
5500 {
5501 	struct btrfs_root *root = BTRFS_I(inode)->root;
5502 	int empty = 0;
5503 
5504 	spin_lock(&root->inode_lock);
5505 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5506 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5507 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5508 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5509 	}
5510 	spin_unlock(&root->inode_lock);
5511 
5512 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5513 		synchronize_srcu(&root->fs_info->subvol_srcu);
5514 		spin_lock(&root->inode_lock);
5515 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5516 		spin_unlock(&root->inode_lock);
5517 		if (empty)
5518 			btrfs_add_dead_root(root);
5519 	}
5520 }
5521 
5522 void btrfs_invalidate_inodes(struct btrfs_root *root)
5523 {
5524 	struct rb_node *node;
5525 	struct rb_node *prev;
5526 	struct btrfs_inode *entry;
5527 	struct inode *inode;
5528 	u64 objectid = 0;
5529 
5530 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5531 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5532 
5533 	spin_lock(&root->inode_lock);
5534 again:
5535 	node = root->inode_tree.rb_node;
5536 	prev = NULL;
5537 	while (node) {
5538 		prev = node;
5539 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5540 
5541 		if (objectid < btrfs_ino(&entry->vfs_inode))
5542 			node = node->rb_left;
5543 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5544 			node = node->rb_right;
5545 		else
5546 			break;
5547 	}
5548 	if (!node) {
5549 		while (prev) {
5550 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5551 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5552 				node = prev;
5553 				break;
5554 			}
5555 			prev = rb_next(prev);
5556 		}
5557 	}
5558 	while (node) {
5559 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5560 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5561 		inode = igrab(&entry->vfs_inode);
5562 		if (inode) {
5563 			spin_unlock(&root->inode_lock);
5564 			if (atomic_read(&inode->i_count) > 1)
5565 				d_prune_aliases(inode);
5566 			/*
5567 			 * btrfs_drop_inode will have it removed from
5568 			 * the inode cache when its usage count
5569 			 * hits zero.
5570 			 */
5571 			iput(inode);
5572 			cond_resched();
5573 			spin_lock(&root->inode_lock);
5574 			goto again;
5575 		}
5576 
5577 		if (cond_resched_lock(&root->inode_lock))
5578 			goto again;
5579 
5580 		node = rb_next(node);
5581 	}
5582 	spin_unlock(&root->inode_lock);
5583 }
5584 
5585 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5586 {
5587 	struct btrfs_iget_args *args = p;
5588 	inode->i_ino = args->location->objectid;
5589 	memcpy(&BTRFS_I(inode)->location, args->location,
5590 	       sizeof(*args->location));
5591 	BTRFS_I(inode)->root = args->root;
5592 	return 0;
5593 }
5594 
5595 static int btrfs_find_actor(struct inode *inode, void *opaque)
5596 {
5597 	struct btrfs_iget_args *args = opaque;
5598 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5599 		args->root == BTRFS_I(inode)->root;
5600 }
5601 
5602 static struct inode *btrfs_iget_locked(struct super_block *s,
5603 				       struct btrfs_key *location,
5604 				       struct btrfs_root *root)
5605 {
5606 	struct inode *inode;
5607 	struct btrfs_iget_args args;
5608 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5609 
5610 	args.location = location;
5611 	args.root = root;
5612 
5613 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5614 			     btrfs_init_locked_inode,
5615 			     (void *)&args);
5616 	return inode;
5617 }
5618 
5619 /* Get an inode object given its location and corresponding root.
5620  * Returns in *is_new if the inode was read from disk
5621  */
5622 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5623 			 struct btrfs_root *root, int *new)
5624 {
5625 	struct inode *inode;
5626 
5627 	inode = btrfs_iget_locked(s, location, root);
5628 	if (!inode)
5629 		return ERR_PTR(-ENOMEM);
5630 
5631 	if (inode->i_state & I_NEW) {
5632 		int ret;
5633 
5634 		ret = btrfs_read_locked_inode(inode);
5635 		if (!is_bad_inode(inode)) {
5636 			inode_tree_add(inode);
5637 			unlock_new_inode(inode);
5638 			if (new)
5639 				*new = 1;
5640 		} else {
5641 			unlock_new_inode(inode);
5642 			iput(inode);
5643 			ASSERT(ret < 0);
5644 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5645 		}
5646 	}
5647 
5648 	return inode;
5649 }
5650 
5651 static struct inode *new_simple_dir(struct super_block *s,
5652 				    struct btrfs_key *key,
5653 				    struct btrfs_root *root)
5654 {
5655 	struct inode *inode = new_inode(s);
5656 
5657 	if (!inode)
5658 		return ERR_PTR(-ENOMEM);
5659 
5660 	BTRFS_I(inode)->root = root;
5661 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5662 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5663 
5664 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5665 	inode->i_op = &btrfs_dir_ro_inode_operations;
5666 	inode->i_fop = &simple_dir_operations;
5667 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5668 	inode->i_mtime = current_fs_time(inode->i_sb);
5669 	inode->i_atime = inode->i_mtime;
5670 	inode->i_ctime = inode->i_mtime;
5671 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5672 
5673 	return inode;
5674 }
5675 
5676 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5677 {
5678 	struct inode *inode;
5679 	struct btrfs_root *root = BTRFS_I(dir)->root;
5680 	struct btrfs_root *sub_root = root;
5681 	struct btrfs_key location;
5682 	int index;
5683 	int ret = 0;
5684 
5685 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5686 		return ERR_PTR(-ENAMETOOLONG);
5687 
5688 	ret = btrfs_inode_by_name(dir, dentry, &location);
5689 	if (ret < 0)
5690 		return ERR_PTR(ret);
5691 
5692 	if (location.objectid == 0)
5693 		return ERR_PTR(-ENOENT);
5694 
5695 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5696 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5697 		return inode;
5698 	}
5699 
5700 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5701 
5702 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5703 	ret = fixup_tree_root_location(root, dir, dentry,
5704 				       &location, &sub_root);
5705 	if (ret < 0) {
5706 		if (ret != -ENOENT)
5707 			inode = ERR_PTR(ret);
5708 		else
5709 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5710 	} else {
5711 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5712 	}
5713 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5714 
5715 	if (!IS_ERR(inode) && root != sub_root) {
5716 		down_read(&root->fs_info->cleanup_work_sem);
5717 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5718 			ret = btrfs_orphan_cleanup(sub_root);
5719 		up_read(&root->fs_info->cleanup_work_sem);
5720 		if (ret) {
5721 			iput(inode);
5722 			inode = ERR_PTR(ret);
5723 		}
5724 	}
5725 
5726 	return inode;
5727 }
5728 
5729 static int btrfs_dentry_delete(const struct dentry *dentry)
5730 {
5731 	struct btrfs_root *root;
5732 	struct inode *inode = d_inode(dentry);
5733 
5734 	if (!inode && !IS_ROOT(dentry))
5735 		inode = d_inode(dentry->d_parent);
5736 
5737 	if (inode) {
5738 		root = BTRFS_I(inode)->root;
5739 		if (btrfs_root_refs(&root->root_item) == 0)
5740 			return 1;
5741 
5742 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5743 			return 1;
5744 	}
5745 	return 0;
5746 }
5747 
5748 static void btrfs_dentry_release(struct dentry *dentry)
5749 {
5750 	kfree(dentry->d_fsdata);
5751 }
5752 
5753 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5754 				   unsigned int flags)
5755 {
5756 	struct inode *inode;
5757 
5758 	inode = btrfs_lookup_dentry(dir, dentry);
5759 	if (IS_ERR(inode)) {
5760 		if (PTR_ERR(inode) == -ENOENT)
5761 			inode = NULL;
5762 		else
5763 			return ERR_CAST(inode);
5764 	}
5765 
5766 	return d_splice_alias(inode, dentry);
5767 }
5768 
5769 unsigned char btrfs_filetype_table[] = {
5770 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5771 };
5772 
5773 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5774 {
5775 	struct inode *inode = file_inode(file);
5776 	struct btrfs_root *root = BTRFS_I(inode)->root;
5777 	struct btrfs_item *item;
5778 	struct btrfs_dir_item *di;
5779 	struct btrfs_key key;
5780 	struct btrfs_key found_key;
5781 	struct btrfs_path *path;
5782 	struct list_head ins_list;
5783 	struct list_head del_list;
5784 	int ret;
5785 	struct extent_buffer *leaf;
5786 	int slot;
5787 	unsigned char d_type;
5788 	int over = 0;
5789 	u32 di_cur;
5790 	u32 di_total;
5791 	u32 di_len;
5792 	int key_type = BTRFS_DIR_INDEX_KEY;
5793 	char tmp_name[32];
5794 	char *name_ptr;
5795 	int name_len;
5796 	int is_curr = 0;	/* ctx->pos points to the current index? */
5797 	bool emitted;
5798 	bool put = false;
5799 
5800 	/* FIXME, use a real flag for deciding about the key type */
5801 	if (root->fs_info->tree_root == root)
5802 		key_type = BTRFS_DIR_ITEM_KEY;
5803 
5804 	if (!dir_emit_dots(file, ctx))
5805 		return 0;
5806 
5807 	path = btrfs_alloc_path();
5808 	if (!path)
5809 		return -ENOMEM;
5810 
5811 	path->reada = READA_FORWARD;
5812 
5813 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5814 		INIT_LIST_HEAD(&ins_list);
5815 		INIT_LIST_HEAD(&del_list);
5816 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5817 						      &del_list);
5818 	}
5819 
5820 	key.type = key_type;
5821 	key.offset = ctx->pos;
5822 	key.objectid = btrfs_ino(inode);
5823 
5824 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5825 	if (ret < 0)
5826 		goto err;
5827 
5828 	emitted = false;
5829 	while (1) {
5830 		leaf = path->nodes[0];
5831 		slot = path->slots[0];
5832 		if (slot >= btrfs_header_nritems(leaf)) {
5833 			ret = btrfs_next_leaf(root, path);
5834 			if (ret < 0)
5835 				goto err;
5836 			else if (ret > 0)
5837 				break;
5838 			continue;
5839 		}
5840 
5841 		item = btrfs_item_nr(slot);
5842 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5843 
5844 		if (found_key.objectid != key.objectid)
5845 			break;
5846 		if (found_key.type != key_type)
5847 			break;
5848 		if (found_key.offset < ctx->pos)
5849 			goto next;
5850 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5851 		    btrfs_should_delete_dir_index(&del_list,
5852 						  found_key.offset))
5853 			goto next;
5854 
5855 		ctx->pos = found_key.offset;
5856 		is_curr = 1;
5857 
5858 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5859 		di_cur = 0;
5860 		di_total = btrfs_item_size(leaf, item);
5861 
5862 		while (di_cur < di_total) {
5863 			struct btrfs_key location;
5864 
5865 			if (verify_dir_item(root, leaf, di))
5866 				break;
5867 
5868 			name_len = btrfs_dir_name_len(leaf, di);
5869 			if (name_len <= sizeof(tmp_name)) {
5870 				name_ptr = tmp_name;
5871 			} else {
5872 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5873 				if (!name_ptr) {
5874 					ret = -ENOMEM;
5875 					goto err;
5876 				}
5877 			}
5878 			read_extent_buffer(leaf, name_ptr,
5879 					   (unsigned long)(di + 1), name_len);
5880 
5881 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5882 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5883 
5884 
5885 			/* is this a reference to our own snapshot? If so
5886 			 * skip it.
5887 			 *
5888 			 * In contrast to old kernels, we insert the snapshot's
5889 			 * dir item and dir index after it has been created, so
5890 			 * we won't find a reference to our own snapshot. We
5891 			 * still keep the following code for backward
5892 			 * compatibility.
5893 			 */
5894 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5895 			    location.objectid == root->root_key.objectid) {
5896 				over = 0;
5897 				goto skip;
5898 			}
5899 			over = !dir_emit(ctx, name_ptr, name_len,
5900 				       location.objectid, d_type);
5901 
5902 skip:
5903 			if (name_ptr != tmp_name)
5904 				kfree(name_ptr);
5905 
5906 			if (over)
5907 				goto nopos;
5908 			emitted = true;
5909 			di_len = btrfs_dir_name_len(leaf, di) +
5910 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5911 			di_cur += di_len;
5912 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5913 		}
5914 next:
5915 		path->slots[0]++;
5916 	}
5917 
5918 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5919 		if (is_curr)
5920 			ctx->pos++;
5921 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5922 		if (ret)
5923 			goto nopos;
5924 	}
5925 
5926 	/*
5927 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5928 	 * it was was set to the termination value in previous call. We assume
5929 	 * that "." and ".." were emitted if we reach this point and set the
5930 	 * termination value as well for an empty directory.
5931 	 */
5932 	if (ctx->pos > 2 && !emitted)
5933 		goto nopos;
5934 
5935 	/* Reached end of directory/root. Bump pos past the last item. */
5936 	ctx->pos++;
5937 
5938 	/*
5939 	 * Stop new entries from being returned after we return the last
5940 	 * entry.
5941 	 *
5942 	 * New directory entries are assigned a strictly increasing
5943 	 * offset.  This means that new entries created during readdir
5944 	 * are *guaranteed* to be seen in the future by that readdir.
5945 	 * This has broken buggy programs which operate on names as
5946 	 * they're returned by readdir.  Until we re-use freed offsets
5947 	 * we have this hack to stop new entries from being returned
5948 	 * under the assumption that they'll never reach this huge
5949 	 * offset.
5950 	 *
5951 	 * This is being careful not to overflow 32bit loff_t unless the
5952 	 * last entry requires it because doing so has broken 32bit apps
5953 	 * in the past.
5954 	 */
5955 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5956 		if (ctx->pos >= INT_MAX)
5957 			ctx->pos = LLONG_MAX;
5958 		else
5959 			ctx->pos = INT_MAX;
5960 	}
5961 nopos:
5962 	ret = 0;
5963 err:
5964 	if (put)
5965 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5966 	btrfs_free_path(path);
5967 	return ret;
5968 }
5969 
5970 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5971 {
5972 	struct btrfs_root *root = BTRFS_I(inode)->root;
5973 	struct btrfs_trans_handle *trans;
5974 	int ret = 0;
5975 	bool nolock = false;
5976 
5977 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5978 		return 0;
5979 
5980 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5981 		nolock = true;
5982 
5983 	if (wbc->sync_mode == WB_SYNC_ALL) {
5984 		if (nolock)
5985 			trans = btrfs_join_transaction_nolock(root);
5986 		else
5987 			trans = btrfs_join_transaction(root);
5988 		if (IS_ERR(trans))
5989 			return PTR_ERR(trans);
5990 		ret = btrfs_commit_transaction(trans, root);
5991 	}
5992 	return ret;
5993 }
5994 
5995 /*
5996  * This is somewhat expensive, updating the tree every time the
5997  * inode changes.  But, it is most likely to find the inode in cache.
5998  * FIXME, needs more benchmarking...there are no reasons other than performance
5999  * to keep or drop this code.
6000  */
6001 static int btrfs_dirty_inode(struct inode *inode)
6002 {
6003 	struct btrfs_root *root = BTRFS_I(inode)->root;
6004 	struct btrfs_trans_handle *trans;
6005 	int ret;
6006 
6007 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6008 		return 0;
6009 
6010 	trans = btrfs_join_transaction(root);
6011 	if (IS_ERR(trans))
6012 		return PTR_ERR(trans);
6013 
6014 	ret = btrfs_update_inode(trans, root, inode);
6015 	if (ret && ret == -ENOSPC) {
6016 		/* whoops, lets try again with the full transaction */
6017 		btrfs_end_transaction(trans, root);
6018 		trans = btrfs_start_transaction(root, 1);
6019 		if (IS_ERR(trans))
6020 			return PTR_ERR(trans);
6021 
6022 		ret = btrfs_update_inode(trans, root, inode);
6023 	}
6024 	btrfs_end_transaction(trans, root);
6025 	if (BTRFS_I(inode)->delayed_node)
6026 		btrfs_balance_delayed_items(root);
6027 
6028 	return ret;
6029 }
6030 
6031 /*
6032  * This is a copy of file_update_time.  We need this so we can return error on
6033  * ENOSPC for updating the inode in the case of file write and mmap writes.
6034  */
6035 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6036 			     int flags)
6037 {
6038 	struct btrfs_root *root = BTRFS_I(inode)->root;
6039 
6040 	if (btrfs_root_readonly(root))
6041 		return -EROFS;
6042 
6043 	if (flags & S_VERSION)
6044 		inode_inc_iversion(inode);
6045 	if (flags & S_CTIME)
6046 		inode->i_ctime = *now;
6047 	if (flags & S_MTIME)
6048 		inode->i_mtime = *now;
6049 	if (flags & S_ATIME)
6050 		inode->i_atime = *now;
6051 	return btrfs_dirty_inode(inode);
6052 }
6053 
6054 /*
6055  * find the highest existing sequence number in a directory
6056  * and then set the in-memory index_cnt variable to reflect
6057  * free sequence numbers
6058  */
6059 static int btrfs_set_inode_index_count(struct inode *inode)
6060 {
6061 	struct btrfs_root *root = BTRFS_I(inode)->root;
6062 	struct btrfs_key key, found_key;
6063 	struct btrfs_path *path;
6064 	struct extent_buffer *leaf;
6065 	int ret;
6066 
6067 	key.objectid = btrfs_ino(inode);
6068 	key.type = BTRFS_DIR_INDEX_KEY;
6069 	key.offset = (u64)-1;
6070 
6071 	path = btrfs_alloc_path();
6072 	if (!path)
6073 		return -ENOMEM;
6074 
6075 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6076 	if (ret < 0)
6077 		goto out;
6078 	/* FIXME: we should be able to handle this */
6079 	if (ret == 0)
6080 		goto out;
6081 	ret = 0;
6082 
6083 	/*
6084 	 * MAGIC NUMBER EXPLANATION:
6085 	 * since we search a directory based on f_pos we have to start at 2
6086 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6087 	 * else has to start at 2
6088 	 */
6089 	if (path->slots[0] == 0) {
6090 		BTRFS_I(inode)->index_cnt = 2;
6091 		goto out;
6092 	}
6093 
6094 	path->slots[0]--;
6095 
6096 	leaf = path->nodes[0];
6097 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6098 
6099 	if (found_key.objectid != btrfs_ino(inode) ||
6100 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6101 		BTRFS_I(inode)->index_cnt = 2;
6102 		goto out;
6103 	}
6104 
6105 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6106 out:
6107 	btrfs_free_path(path);
6108 	return ret;
6109 }
6110 
6111 /*
6112  * helper to find a free sequence number in a given directory.  This current
6113  * code is very simple, later versions will do smarter things in the btree
6114  */
6115 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6116 {
6117 	int ret = 0;
6118 
6119 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6120 		ret = btrfs_inode_delayed_dir_index_count(dir);
6121 		if (ret) {
6122 			ret = btrfs_set_inode_index_count(dir);
6123 			if (ret)
6124 				return ret;
6125 		}
6126 	}
6127 
6128 	*index = BTRFS_I(dir)->index_cnt;
6129 	BTRFS_I(dir)->index_cnt++;
6130 
6131 	return ret;
6132 }
6133 
6134 static int btrfs_insert_inode_locked(struct inode *inode)
6135 {
6136 	struct btrfs_iget_args args;
6137 	args.location = &BTRFS_I(inode)->location;
6138 	args.root = BTRFS_I(inode)->root;
6139 
6140 	return insert_inode_locked4(inode,
6141 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6142 		   btrfs_find_actor, &args);
6143 }
6144 
6145 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6146 				     struct btrfs_root *root,
6147 				     struct inode *dir,
6148 				     const char *name, int name_len,
6149 				     u64 ref_objectid, u64 objectid,
6150 				     umode_t mode, u64 *index)
6151 {
6152 	struct inode *inode;
6153 	struct btrfs_inode_item *inode_item;
6154 	struct btrfs_key *location;
6155 	struct btrfs_path *path;
6156 	struct btrfs_inode_ref *ref;
6157 	struct btrfs_key key[2];
6158 	u32 sizes[2];
6159 	int nitems = name ? 2 : 1;
6160 	unsigned long ptr;
6161 	int ret;
6162 
6163 	path = btrfs_alloc_path();
6164 	if (!path)
6165 		return ERR_PTR(-ENOMEM);
6166 
6167 	inode = new_inode(root->fs_info->sb);
6168 	if (!inode) {
6169 		btrfs_free_path(path);
6170 		return ERR_PTR(-ENOMEM);
6171 	}
6172 
6173 	/*
6174 	 * O_TMPFILE, set link count to 0, so that after this point,
6175 	 * we fill in an inode item with the correct link count.
6176 	 */
6177 	if (!name)
6178 		set_nlink(inode, 0);
6179 
6180 	/*
6181 	 * we have to initialize this early, so we can reclaim the inode
6182 	 * number if we fail afterwards in this function.
6183 	 */
6184 	inode->i_ino = objectid;
6185 
6186 	if (dir && name) {
6187 		trace_btrfs_inode_request(dir);
6188 
6189 		ret = btrfs_set_inode_index(dir, index);
6190 		if (ret) {
6191 			btrfs_free_path(path);
6192 			iput(inode);
6193 			return ERR_PTR(ret);
6194 		}
6195 	} else if (dir) {
6196 		*index = 0;
6197 	}
6198 	/*
6199 	 * index_cnt is ignored for everything but a dir,
6200 	 * btrfs_get_inode_index_count has an explanation for the magic
6201 	 * number
6202 	 */
6203 	BTRFS_I(inode)->index_cnt = 2;
6204 	BTRFS_I(inode)->dir_index = *index;
6205 	BTRFS_I(inode)->root = root;
6206 	BTRFS_I(inode)->generation = trans->transid;
6207 	inode->i_generation = BTRFS_I(inode)->generation;
6208 
6209 	/*
6210 	 * We could have gotten an inode number from somebody who was fsynced
6211 	 * and then removed in this same transaction, so let's just set full
6212 	 * sync since it will be a full sync anyway and this will blow away the
6213 	 * old info in the log.
6214 	 */
6215 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6216 
6217 	key[0].objectid = objectid;
6218 	key[0].type = BTRFS_INODE_ITEM_KEY;
6219 	key[0].offset = 0;
6220 
6221 	sizes[0] = sizeof(struct btrfs_inode_item);
6222 
6223 	if (name) {
6224 		/*
6225 		 * Start new inodes with an inode_ref. This is slightly more
6226 		 * efficient for small numbers of hard links since they will
6227 		 * be packed into one item. Extended refs will kick in if we
6228 		 * add more hard links than can fit in the ref item.
6229 		 */
6230 		key[1].objectid = objectid;
6231 		key[1].type = BTRFS_INODE_REF_KEY;
6232 		key[1].offset = ref_objectid;
6233 
6234 		sizes[1] = name_len + sizeof(*ref);
6235 	}
6236 
6237 	location = &BTRFS_I(inode)->location;
6238 	location->objectid = objectid;
6239 	location->offset = 0;
6240 	location->type = BTRFS_INODE_ITEM_KEY;
6241 
6242 	ret = btrfs_insert_inode_locked(inode);
6243 	if (ret < 0)
6244 		goto fail;
6245 
6246 	path->leave_spinning = 1;
6247 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6248 	if (ret != 0)
6249 		goto fail_unlock;
6250 
6251 	inode_init_owner(inode, dir, mode);
6252 	inode_set_bytes(inode, 0);
6253 
6254 	inode->i_mtime = current_fs_time(inode->i_sb);
6255 	inode->i_atime = inode->i_mtime;
6256 	inode->i_ctime = inode->i_mtime;
6257 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6258 
6259 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6260 				  struct btrfs_inode_item);
6261 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6262 			     sizeof(*inode_item));
6263 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6264 
6265 	if (name) {
6266 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6267 				     struct btrfs_inode_ref);
6268 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6269 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6270 		ptr = (unsigned long)(ref + 1);
6271 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6272 	}
6273 
6274 	btrfs_mark_buffer_dirty(path->nodes[0]);
6275 	btrfs_free_path(path);
6276 
6277 	btrfs_inherit_iflags(inode, dir);
6278 
6279 	if (S_ISREG(mode)) {
6280 		if (btrfs_test_opt(root->fs_info, NODATASUM))
6281 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6282 		if (btrfs_test_opt(root->fs_info, NODATACOW))
6283 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6284 				BTRFS_INODE_NODATASUM;
6285 	}
6286 
6287 	inode_tree_add(inode);
6288 
6289 	trace_btrfs_inode_new(inode);
6290 	btrfs_set_inode_last_trans(trans, inode);
6291 
6292 	btrfs_update_root_times(trans, root);
6293 
6294 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6295 	if (ret)
6296 		btrfs_err(root->fs_info,
6297 			  "error inheriting props for ino %llu (root %llu): %d",
6298 			  btrfs_ino(inode), root->root_key.objectid, ret);
6299 
6300 	return inode;
6301 
6302 fail_unlock:
6303 	unlock_new_inode(inode);
6304 fail:
6305 	if (dir && name)
6306 		BTRFS_I(dir)->index_cnt--;
6307 	btrfs_free_path(path);
6308 	iput(inode);
6309 	return ERR_PTR(ret);
6310 }
6311 
6312 static inline u8 btrfs_inode_type(struct inode *inode)
6313 {
6314 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6315 }
6316 
6317 /*
6318  * utility function to add 'inode' into 'parent_inode' with
6319  * a give name and a given sequence number.
6320  * if 'add_backref' is true, also insert a backref from the
6321  * inode to the parent directory.
6322  */
6323 int btrfs_add_link(struct btrfs_trans_handle *trans,
6324 		   struct inode *parent_inode, struct inode *inode,
6325 		   const char *name, int name_len, int add_backref, u64 index)
6326 {
6327 	int ret = 0;
6328 	struct btrfs_key key;
6329 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6330 	u64 ino = btrfs_ino(inode);
6331 	u64 parent_ino = btrfs_ino(parent_inode);
6332 
6333 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6334 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6335 	} else {
6336 		key.objectid = ino;
6337 		key.type = BTRFS_INODE_ITEM_KEY;
6338 		key.offset = 0;
6339 	}
6340 
6341 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6342 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6343 					 key.objectid, root->root_key.objectid,
6344 					 parent_ino, index, name, name_len);
6345 	} else if (add_backref) {
6346 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6347 					     parent_ino, index);
6348 	}
6349 
6350 	/* Nothing to clean up yet */
6351 	if (ret)
6352 		return ret;
6353 
6354 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6355 				    parent_inode, &key,
6356 				    btrfs_inode_type(inode), index);
6357 	if (ret == -EEXIST || ret == -EOVERFLOW)
6358 		goto fail_dir_item;
6359 	else if (ret) {
6360 		btrfs_abort_transaction(trans, ret);
6361 		return ret;
6362 	}
6363 
6364 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6365 			   name_len * 2);
6366 	inode_inc_iversion(parent_inode);
6367 	parent_inode->i_mtime = parent_inode->i_ctime =
6368 		current_fs_time(parent_inode->i_sb);
6369 	ret = btrfs_update_inode(trans, root, parent_inode);
6370 	if (ret)
6371 		btrfs_abort_transaction(trans, ret);
6372 	return ret;
6373 
6374 fail_dir_item:
6375 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6376 		u64 local_index;
6377 		int err;
6378 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6379 				 key.objectid, root->root_key.objectid,
6380 				 parent_ino, &local_index, name, name_len);
6381 
6382 	} else if (add_backref) {
6383 		u64 local_index;
6384 		int err;
6385 
6386 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6387 					  ino, parent_ino, &local_index);
6388 	}
6389 	return ret;
6390 }
6391 
6392 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6393 			    struct inode *dir, struct dentry *dentry,
6394 			    struct inode *inode, int backref, u64 index)
6395 {
6396 	int err = btrfs_add_link(trans, dir, inode,
6397 				 dentry->d_name.name, dentry->d_name.len,
6398 				 backref, index);
6399 	if (err > 0)
6400 		err = -EEXIST;
6401 	return err;
6402 }
6403 
6404 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6405 			umode_t mode, dev_t rdev)
6406 {
6407 	struct btrfs_trans_handle *trans;
6408 	struct btrfs_root *root = BTRFS_I(dir)->root;
6409 	struct inode *inode = NULL;
6410 	int err;
6411 	int drop_inode = 0;
6412 	u64 objectid;
6413 	u64 index = 0;
6414 
6415 	/*
6416 	 * 2 for inode item and ref
6417 	 * 2 for dir items
6418 	 * 1 for xattr if selinux is on
6419 	 */
6420 	trans = btrfs_start_transaction(root, 5);
6421 	if (IS_ERR(trans))
6422 		return PTR_ERR(trans);
6423 
6424 	err = btrfs_find_free_ino(root, &objectid);
6425 	if (err)
6426 		goto out_unlock;
6427 
6428 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6429 				dentry->d_name.len, btrfs_ino(dir), objectid,
6430 				mode, &index);
6431 	if (IS_ERR(inode)) {
6432 		err = PTR_ERR(inode);
6433 		goto out_unlock;
6434 	}
6435 
6436 	/*
6437 	* If the active LSM wants to access the inode during
6438 	* d_instantiate it needs these. Smack checks to see
6439 	* if the filesystem supports xattrs by looking at the
6440 	* ops vector.
6441 	*/
6442 	inode->i_op = &btrfs_special_inode_operations;
6443 	init_special_inode(inode, inode->i_mode, rdev);
6444 
6445 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6446 	if (err)
6447 		goto out_unlock_inode;
6448 
6449 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6450 	if (err) {
6451 		goto out_unlock_inode;
6452 	} else {
6453 		btrfs_update_inode(trans, root, inode);
6454 		unlock_new_inode(inode);
6455 		d_instantiate(dentry, inode);
6456 	}
6457 
6458 out_unlock:
6459 	btrfs_end_transaction(trans, root);
6460 	btrfs_balance_delayed_items(root);
6461 	btrfs_btree_balance_dirty(root);
6462 	if (drop_inode) {
6463 		inode_dec_link_count(inode);
6464 		iput(inode);
6465 	}
6466 	return err;
6467 
6468 out_unlock_inode:
6469 	drop_inode = 1;
6470 	unlock_new_inode(inode);
6471 	goto out_unlock;
6472 
6473 }
6474 
6475 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6476 			umode_t mode, bool excl)
6477 {
6478 	struct btrfs_trans_handle *trans;
6479 	struct btrfs_root *root = BTRFS_I(dir)->root;
6480 	struct inode *inode = NULL;
6481 	int drop_inode_on_err = 0;
6482 	int err;
6483 	u64 objectid;
6484 	u64 index = 0;
6485 
6486 	/*
6487 	 * 2 for inode item and ref
6488 	 * 2 for dir items
6489 	 * 1 for xattr if selinux is on
6490 	 */
6491 	trans = btrfs_start_transaction(root, 5);
6492 	if (IS_ERR(trans))
6493 		return PTR_ERR(trans);
6494 
6495 	err = btrfs_find_free_ino(root, &objectid);
6496 	if (err)
6497 		goto out_unlock;
6498 
6499 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6500 				dentry->d_name.len, btrfs_ino(dir), objectid,
6501 				mode, &index);
6502 	if (IS_ERR(inode)) {
6503 		err = PTR_ERR(inode);
6504 		goto out_unlock;
6505 	}
6506 	drop_inode_on_err = 1;
6507 	/*
6508 	* If the active LSM wants to access the inode during
6509 	* d_instantiate it needs these. Smack checks to see
6510 	* if the filesystem supports xattrs by looking at the
6511 	* ops vector.
6512 	*/
6513 	inode->i_fop = &btrfs_file_operations;
6514 	inode->i_op = &btrfs_file_inode_operations;
6515 	inode->i_mapping->a_ops = &btrfs_aops;
6516 
6517 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6518 	if (err)
6519 		goto out_unlock_inode;
6520 
6521 	err = btrfs_update_inode(trans, root, inode);
6522 	if (err)
6523 		goto out_unlock_inode;
6524 
6525 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6526 	if (err)
6527 		goto out_unlock_inode;
6528 
6529 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6530 	unlock_new_inode(inode);
6531 	d_instantiate(dentry, inode);
6532 
6533 out_unlock:
6534 	btrfs_end_transaction(trans, root);
6535 	if (err && drop_inode_on_err) {
6536 		inode_dec_link_count(inode);
6537 		iput(inode);
6538 	}
6539 	btrfs_balance_delayed_items(root);
6540 	btrfs_btree_balance_dirty(root);
6541 	return err;
6542 
6543 out_unlock_inode:
6544 	unlock_new_inode(inode);
6545 	goto out_unlock;
6546 
6547 }
6548 
6549 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6550 		      struct dentry *dentry)
6551 {
6552 	struct btrfs_trans_handle *trans = NULL;
6553 	struct btrfs_root *root = BTRFS_I(dir)->root;
6554 	struct inode *inode = d_inode(old_dentry);
6555 	u64 index;
6556 	int err;
6557 	int drop_inode = 0;
6558 
6559 	/* do not allow sys_link's with other subvols of the same device */
6560 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6561 		return -EXDEV;
6562 
6563 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6564 		return -EMLINK;
6565 
6566 	err = btrfs_set_inode_index(dir, &index);
6567 	if (err)
6568 		goto fail;
6569 
6570 	/*
6571 	 * 2 items for inode and inode ref
6572 	 * 2 items for dir items
6573 	 * 1 item for parent inode
6574 	 */
6575 	trans = btrfs_start_transaction(root, 5);
6576 	if (IS_ERR(trans)) {
6577 		err = PTR_ERR(trans);
6578 		trans = NULL;
6579 		goto fail;
6580 	}
6581 
6582 	/* There are several dir indexes for this inode, clear the cache. */
6583 	BTRFS_I(inode)->dir_index = 0ULL;
6584 	inc_nlink(inode);
6585 	inode_inc_iversion(inode);
6586 	inode->i_ctime = current_fs_time(inode->i_sb);
6587 	ihold(inode);
6588 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6589 
6590 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6591 
6592 	if (err) {
6593 		drop_inode = 1;
6594 	} else {
6595 		struct dentry *parent = dentry->d_parent;
6596 		err = btrfs_update_inode(trans, root, inode);
6597 		if (err)
6598 			goto fail;
6599 		if (inode->i_nlink == 1) {
6600 			/*
6601 			 * If new hard link count is 1, it's a file created
6602 			 * with open(2) O_TMPFILE flag.
6603 			 */
6604 			err = btrfs_orphan_del(trans, inode);
6605 			if (err)
6606 				goto fail;
6607 		}
6608 		d_instantiate(dentry, inode);
6609 		btrfs_log_new_name(trans, inode, NULL, parent);
6610 	}
6611 
6612 	btrfs_balance_delayed_items(root);
6613 fail:
6614 	if (trans)
6615 		btrfs_end_transaction(trans, root);
6616 	if (drop_inode) {
6617 		inode_dec_link_count(inode);
6618 		iput(inode);
6619 	}
6620 	btrfs_btree_balance_dirty(root);
6621 	return err;
6622 }
6623 
6624 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6625 {
6626 	struct inode *inode = NULL;
6627 	struct btrfs_trans_handle *trans;
6628 	struct btrfs_root *root = BTRFS_I(dir)->root;
6629 	int err = 0;
6630 	int drop_on_err = 0;
6631 	u64 objectid = 0;
6632 	u64 index = 0;
6633 
6634 	/*
6635 	 * 2 items for inode and ref
6636 	 * 2 items for dir items
6637 	 * 1 for xattr if selinux is on
6638 	 */
6639 	trans = btrfs_start_transaction(root, 5);
6640 	if (IS_ERR(trans))
6641 		return PTR_ERR(trans);
6642 
6643 	err = btrfs_find_free_ino(root, &objectid);
6644 	if (err)
6645 		goto out_fail;
6646 
6647 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6648 				dentry->d_name.len, btrfs_ino(dir), objectid,
6649 				S_IFDIR | mode, &index);
6650 	if (IS_ERR(inode)) {
6651 		err = PTR_ERR(inode);
6652 		goto out_fail;
6653 	}
6654 
6655 	drop_on_err = 1;
6656 	/* these must be set before we unlock the inode */
6657 	inode->i_op = &btrfs_dir_inode_operations;
6658 	inode->i_fop = &btrfs_dir_file_operations;
6659 
6660 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6661 	if (err)
6662 		goto out_fail_inode;
6663 
6664 	btrfs_i_size_write(inode, 0);
6665 	err = btrfs_update_inode(trans, root, inode);
6666 	if (err)
6667 		goto out_fail_inode;
6668 
6669 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6670 			     dentry->d_name.len, 0, index);
6671 	if (err)
6672 		goto out_fail_inode;
6673 
6674 	d_instantiate(dentry, inode);
6675 	/*
6676 	 * mkdir is special.  We're unlocking after we call d_instantiate
6677 	 * to avoid a race with nfsd calling d_instantiate.
6678 	 */
6679 	unlock_new_inode(inode);
6680 	drop_on_err = 0;
6681 
6682 out_fail:
6683 	btrfs_end_transaction(trans, root);
6684 	if (drop_on_err) {
6685 		inode_dec_link_count(inode);
6686 		iput(inode);
6687 	}
6688 	btrfs_balance_delayed_items(root);
6689 	btrfs_btree_balance_dirty(root);
6690 	return err;
6691 
6692 out_fail_inode:
6693 	unlock_new_inode(inode);
6694 	goto out_fail;
6695 }
6696 
6697 /* Find next extent map of a given extent map, caller needs to ensure locks */
6698 static struct extent_map *next_extent_map(struct extent_map *em)
6699 {
6700 	struct rb_node *next;
6701 
6702 	next = rb_next(&em->rb_node);
6703 	if (!next)
6704 		return NULL;
6705 	return container_of(next, struct extent_map, rb_node);
6706 }
6707 
6708 static struct extent_map *prev_extent_map(struct extent_map *em)
6709 {
6710 	struct rb_node *prev;
6711 
6712 	prev = rb_prev(&em->rb_node);
6713 	if (!prev)
6714 		return NULL;
6715 	return container_of(prev, struct extent_map, rb_node);
6716 }
6717 
6718 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6719  * the existing extent is the nearest extent to map_start,
6720  * and an extent that you want to insert, deal with overlap and insert
6721  * the best fitted new extent into the tree.
6722  */
6723 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6724 				struct extent_map *existing,
6725 				struct extent_map *em,
6726 				u64 map_start)
6727 {
6728 	struct extent_map *prev;
6729 	struct extent_map *next;
6730 	u64 start;
6731 	u64 end;
6732 	u64 start_diff;
6733 
6734 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6735 
6736 	if (existing->start > map_start) {
6737 		next = existing;
6738 		prev = prev_extent_map(next);
6739 	} else {
6740 		prev = existing;
6741 		next = next_extent_map(prev);
6742 	}
6743 
6744 	start = prev ? extent_map_end(prev) : em->start;
6745 	start = max_t(u64, start, em->start);
6746 	end = next ? next->start : extent_map_end(em);
6747 	end = min_t(u64, end, extent_map_end(em));
6748 	start_diff = start - em->start;
6749 	em->start = start;
6750 	em->len = end - start;
6751 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6752 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6753 		em->block_start += start_diff;
6754 		em->block_len -= start_diff;
6755 	}
6756 	return add_extent_mapping(em_tree, em, 0);
6757 }
6758 
6759 static noinline int uncompress_inline(struct btrfs_path *path,
6760 				      struct page *page,
6761 				      size_t pg_offset, u64 extent_offset,
6762 				      struct btrfs_file_extent_item *item)
6763 {
6764 	int ret;
6765 	struct extent_buffer *leaf = path->nodes[0];
6766 	char *tmp;
6767 	size_t max_size;
6768 	unsigned long inline_size;
6769 	unsigned long ptr;
6770 	int compress_type;
6771 
6772 	WARN_ON(pg_offset != 0);
6773 	compress_type = btrfs_file_extent_compression(leaf, item);
6774 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6775 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6776 					btrfs_item_nr(path->slots[0]));
6777 	tmp = kmalloc(inline_size, GFP_NOFS);
6778 	if (!tmp)
6779 		return -ENOMEM;
6780 	ptr = btrfs_file_extent_inline_start(item);
6781 
6782 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6783 
6784 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6785 	ret = btrfs_decompress(compress_type, tmp, page,
6786 			       extent_offset, inline_size, max_size);
6787 	kfree(tmp);
6788 	return ret;
6789 }
6790 
6791 /*
6792  * a bit scary, this does extent mapping from logical file offset to the disk.
6793  * the ugly parts come from merging extents from the disk with the in-ram
6794  * representation.  This gets more complex because of the data=ordered code,
6795  * where the in-ram extents might be locked pending data=ordered completion.
6796  *
6797  * This also copies inline extents directly into the page.
6798  */
6799 
6800 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6801 				    size_t pg_offset, u64 start, u64 len,
6802 				    int create)
6803 {
6804 	int ret;
6805 	int err = 0;
6806 	u64 extent_start = 0;
6807 	u64 extent_end = 0;
6808 	u64 objectid = btrfs_ino(inode);
6809 	u32 found_type;
6810 	struct btrfs_path *path = NULL;
6811 	struct btrfs_root *root = BTRFS_I(inode)->root;
6812 	struct btrfs_file_extent_item *item;
6813 	struct extent_buffer *leaf;
6814 	struct btrfs_key found_key;
6815 	struct extent_map *em = NULL;
6816 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6817 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6818 	struct btrfs_trans_handle *trans = NULL;
6819 	const bool new_inline = !page || create;
6820 
6821 again:
6822 	read_lock(&em_tree->lock);
6823 	em = lookup_extent_mapping(em_tree, start, len);
6824 	if (em)
6825 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6826 	read_unlock(&em_tree->lock);
6827 
6828 	if (em) {
6829 		if (em->start > start || em->start + em->len <= start)
6830 			free_extent_map(em);
6831 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6832 			free_extent_map(em);
6833 		else
6834 			goto out;
6835 	}
6836 	em = alloc_extent_map();
6837 	if (!em) {
6838 		err = -ENOMEM;
6839 		goto out;
6840 	}
6841 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6842 	em->start = EXTENT_MAP_HOLE;
6843 	em->orig_start = EXTENT_MAP_HOLE;
6844 	em->len = (u64)-1;
6845 	em->block_len = (u64)-1;
6846 
6847 	if (!path) {
6848 		path = btrfs_alloc_path();
6849 		if (!path) {
6850 			err = -ENOMEM;
6851 			goto out;
6852 		}
6853 		/*
6854 		 * Chances are we'll be called again, so go ahead and do
6855 		 * readahead
6856 		 */
6857 		path->reada = READA_FORWARD;
6858 	}
6859 
6860 	ret = btrfs_lookup_file_extent(trans, root, path,
6861 				       objectid, start, trans != NULL);
6862 	if (ret < 0) {
6863 		err = ret;
6864 		goto out;
6865 	}
6866 
6867 	if (ret != 0) {
6868 		if (path->slots[0] == 0)
6869 			goto not_found;
6870 		path->slots[0]--;
6871 	}
6872 
6873 	leaf = path->nodes[0];
6874 	item = btrfs_item_ptr(leaf, path->slots[0],
6875 			      struct btrfs_file_extent_item);
6876 	/* are we inside the extent that was found? */
6877 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6878 	found_type = found_key.type;
6879 	if (found_key.objectid != objectid ||
6880 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6881 		/*
6882 		 * If we backup past the first extent we want to move forward
6883 		 * and see if there is an extent in front of us, otherwise we'll
6884 		 * say there is a hole for our whole search range which can
6885 		 * cause problems.
6886 		 */
6887 		extent_end = start;
6888 		goto next;
6889 	}
6890 
6891 	found_type = btrfs_file_extent_type(leaf, item);
6892 	extent_start = found_key.offset;
6893 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6894 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6895 		extent_end = extent_start +
6896 		       btrfs_file_extent_num_bytes(leaf, item);
6897 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6898 		size_t size;
6899 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6900 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6901 	}
6902 next:
6903 	if (start >= extent_end) {
6904 		path->slots[0]++;
6905 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6906 			ret = btrfs_next_leaf(root, path);
6907 			if (ret < 0) {
6908 				err = ret;
6909 				goto out;
6910 			}
6911 			if (ret > 0)
6912 				goto not_found;
6913 			leaf = path->nodes[0];
6914 		}
6915 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6916 		if (found_key.objectid != objectid ||
6917 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6918 			goto not_found;
6919 		if (start + len <= found_key.offset)
6920 			goto not_found;
6921 		if (start > found_key.offset)
6922 			goto next;
6923 		em->start = start;
6924 		em->orig_start = start;
6925 		em->len = found_key.offset - start;
6926 		goto not_found_em;
6927 	}
6928 
6929 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6930 
6931 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6932 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6933 		goto insert;
6934 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6935 		unsigned long ptr;
6936 		char *map;
6937 		size_t size;
6938 		size_t extent_offset;
6939 		size_t copy_size;
6940 
6941 		if (new_inline)
6942 			goto out;
6943 
6944 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6945 		extent_offset = page_offset(page) + pg_offset - extent_start;
6946 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6947 				  size - extent_offset);
6948 		em->start = extent_start + extent_offset;
6949 		em->len = ALIGN(copy_size, root->sectorsize);
6950 		em->orig_block_len = em->len;
6951 		em->orig_start = em->start;
6952 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6953 		if (create == 0 && !PageUptodate(page)) {
6954 			if (btrfs_file_extent_compression(leaf, item) !=
6955 			    BTRFS_COMPRESS_NONE) {
6956 				ret = uncompress_inline(path, page, pg_offset,
6957 							extent_offset, item);
6958 				if (ret) {
6959 					err = ret;
6960 					goto out;
6961 				}
6962 			} else {
6963 				map = kmap(page);
6964 				read_extent_buffer(leaf, map + pg_offset, ptr,
6965 						   copy_size);
6966 				if (pg_offset + copy_size < PAGE_SIZE) {
6967 					memset(map + pg_offset + copy_size, 0,
6968 					       PAGE_SIZE - pg_offset -
6969 					       copy_size);
6970 				}
6971 				kunmap(page);
6972 			}
6973 			flush_dcache_page(page);
6974 		} else if (create && PageUptodate(page)) {
6975 			BUG();
6976 			if (!trans) {
6977 				kunmap(page);
6978 				free_extent_map(em);
6979 				em = NULL;
6980 
6981 				btrfs_release_path(path);
6982 				trans = btrfs_join_transaction(root);
6983 
6984 				if (IS_ERR(trans))
6985 					return ERR_CAST(trans);
6986 				goto again;
6987 			}
6988 			map = kmap(page);
6989 			write_extent_buffer(leaf, map + pg_offset, ptr,
6990 					    copy_size);
6991 			kunmap(page);
6992 			btrfs_mark_buffer_dirty(leaf);
6993 		}
6994 		set_extent_uptodate(io_tree, em->start,
6995 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6996 		goto insert;
6997 	}
6998 not_found:
6999 	em->start = start;
7000 	em->orig_start = start;
7001 	em->len = len;
7002 not_found_em:
7003 	em->block_start = EXTENT_MAP_HOLE;
7004 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7005 insert:
7006 	btrfs_release_path(path);
7007 	if (em->start > start || extent_map_end(em) <= start) {
7008 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
7009 			em->start, em->len, start, len);
7010 		err = -EIO;
7011 		goto out;
7012 	}
7013 
7014 	err = 0;
7015 	write_lock(&em_tree->lock);
7016 	ret = add_extent_mapping(em_tree, em, 0);
7017 	/* it is possible that someone inserted the extent into the tree
7018 	 * while we had the lock dropped.  It is also possible that
7019 	 * an overlapping map exists in the tree
7020 	 */
7021 	if (ret == -EEXIST) {
7022 		struct extent_map *existing;
7023 
7024 		ret = 0;
7025 
7026 		existing = search_extent_mapping(em_tree, start, len);
7027 		/*
7028 		 * existing will always be non-NULL, since there must be
7029 		 * extent causing the -EEXIST.
7030 		 */
7031 		if (existing->start == em->start &&
7032 		    extent_map_end(existing) == extent_map_end(em) &&
7033 		    em->block_start == existing->block_start) {
7034 			/*
7035 			 * these two extents are the same, it happens
7036 			 * with inlines especially
7037 			 */
7038 			free_extent_map(em);
7039 			em = existing;
7040 			err = 0;
7041 
7042 		} else if (start >= extent_map_end(existing) ||
7043 		    start <= existing->start) {
7044 			/*
7045 			 * The existing extent map is the one nearest to
7046 			 * the [start, start + len) range which overlaps
7047 			 */
7048 			err = merge_extent_mapping(em_tree, existing,
7049 						   em, start);
7050 			free_extent_map(existing);
7051 			if (err) {
7052 				free_extent_map(em);
7053 				em = NULL;
7054 			}
7055 		} else {
7056 			free_extent_map(em);
7057 			em = existing;
7058 			err = 0;
7059 		}
7060 	}
7061 	write_unlock(&em_tree->lock);
7062 out:
7063 
7064 	trace_btrfs_get_extent(root, em);
7065 
7066 	btrfs_free_path(path);
7067 	if (trans) {
7068 		ret = btrfs_end_transaction(trans, root);
7069 		if (!err)
7070 			err = ret;
7071 	}
7072 	if (err) {
7073 		free_extent_map(em);
7074 		return ERR_PTR(err);
7075 	}
7076 	BUG_ON(!em); /* Error is always set */
7077 	return em;
7078 }
7079 
7080 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7081 					   size_t pg_offset, u64 start, u64 len,
7082 					   int create)
7083 {
7084 	struct extent_map *em;
7085 	struct extent_map *hole_em = NULL;
7086 	u64 range_start = start;
7087 	u64 end;
7088 	u64 found;
7089 	u64 found_end;
7090 	int err = 0;
7091 
7092 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7093 	if (IS_ERR(em))
7094 		return em;
7095 	if (em) {
7096 		/*
7097 		 * if our em maps to
7098 		 * -  a hole or
7099 		 * -  a pre-alloc extent,
7100 		 * there might actually be delalloc bytes behind it.
7101 		 */
7102 		if (em->block_start != EXTENT_MAP_HOLE &&
7103 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7104 			return em;
7105 		else
7106 			hole_em = em;
7107 	}
7108 
7109 	/* check to see if we've wrapped (len == -1 or similar) */
7110 	end = start + len;
7111 	if (end < start)
7112 		end = (u64)-1;
7113 	else
7114 		end -= 1;
7115 
7116 	em = NULL;
7117 
7118 	/* ok, we didn't find anything, lets look for delalloc */
7119 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7120 				 end, len, EXTENT_DELALLOC, 1);
7121 	found_end = range_start + found;
7122 	if (found_end < range_start)
7123 		found_end = (u64)-1;
7124 
7125 	/*
7126 	 * we didn't find anything useful, return
7127 	 * the original results from get_extent()
7128 	 */
7129 	if (range_start > end || found_end <= start) {
7130 		em = hole_em;
7131 		hole_em = NULL;
7132 		goto out;
7133 	}
7134 
7135 	/* adjust the range_start to make sure it doesn't
7136 	 * go backwards from the start they passed in
7137 	 */
7138 	range_start = max(start, range_start);
7139 	found = found_end - range_start;
7140 
7141 	if (found > 0) {
7142 		u64 hole_start = start;
7143 		u64 hole_len = len;
7144 
7145 		em = alloc_extent_map();
7146 		if (!em) {
7147 			err = -ENOMEM;
7148 			goto out;
7149 		}
7150 		/*
7151 		 * when btrfs_get_extent can't find anything it
7152 		 * returns one huge hole
7153 		 *
7154 		 * make sure what it found really fits our range, and
7155 		 * adjust to make sure it is based on the start from
7156 		 * the caller
7157 		 */
7158 		if (hole_em) {
7159 			u64 calc_end = extent_map_end(hole_em);
7160 
7161 			if (calc_end <= start || (hole_em->start > end)) {
7162 				free_extent_map(hole_em);
7163 				hole_em = NULL;
7164 			} else {
7165 				hole_start = max(hole_em->start, start);
7166 				hole_len = calc_end - hole_start;
7167 			}
7168 		}
7169 		em->bdev = NULL;
7170 		if (hole_em && range_start > hole_start) {
7171 			/* our hole starts before our delalloc, so we
7172 			 * have to return just the parts of the hole
7173 			 * that go until  the delalloc starts
7174 			 */
7175 			em->len = min(hole_len,
7176 				      range_start - hole_start);
7177 			em->start = hole_start;
7178 			em->orig_start = hole_start;
7179 			/*
7180 			 * don't adjust block start at all,
7181 			 * it is fixed at EXTENT_MAP_HOLE
7182 			 */
7183 			em->block_start = hole_em->block_start;
7184 			em->block_len = hole_len;
7185 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7186 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7187 		} else {
7188 			em->start = range_start;
7189 			em->len = found;
7190 			em->orig_start = range_start;
7191 			em->block_start = EXTENT_MAP_DELALLOC;
7192 			em->block_len = found;
7193 		}
7194 	} else if (hole_em) {
7195 		return hole_em;
7196 	}
7197 out:
7198 
7199 	free_extent_map(hole_em);
7200 	if (err) {
7201 		free_extent_map(em);
7202 		return ERR_PTR(err);
7203 	}
7204 	return em;
7205 }
7206 
7207 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7208 						  const u64 start,
7209 						  const u64 len,
7210 						  const u64 orig_start,
7211 						  const u64 block_start,
7212 						  const u64 block_len,
7213 						  const u64 orig_block_len,
7214 						  const u64 ram_bytes,
7215 						  const int type)
7216 {
7217 	struct extent_map *em = NULL;
7218 	int ret;
7219 
7220 	down_read(&BTRFS_I(inode)->dio_sem);
7221 	if (type != BTRFS_ORDERED_NOCOW) {
7222 		em = create_pinned_em(inode, start, len, orig_start,
7223 				      block_start, block_len, orig_block_len,
7224 				      ram_bytes, type);
7225 		if (IS_ERR(em))
7226 			goto out;
7227 	}
7228 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7229 					   len, block_len, type);
7230 	if (ret) {
7231 		if (em) {
7232 			free_extent_map(em);
7233 			btrfs_drop_extent_cache(inode, start,
7234 						start + len - 1, 0);
7235 		}
7236 		em = ERR_PTR(ret);
7237 	}
7238  out:
7239 	up_read(&BTRFS_I(inode)->dio_sem);
7240 
7241 	return em;
7242 }
7243 
7244 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7245 						  u64 start, u64 len)
7246 {
7247 	struct btrfs_root *root = BTRFS_I(inode)->root;
7248 	struct extent_map *em;
7249 	struct btrfs_key ins;
7250 	u64 alloc_hint;
7251 	int ret;
7252 
7253 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7254 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7255 				   alloc_hint, &ins, 1, 1);
7256 	if (ret)
7257 		return ERR_PTR(ret);
7258 
7259 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7260 				     ins.objectid, ins.offset, ins.offset,
7261 				     ins.offset, 0);
7262 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7263 	if (IS_ERR(em))
7264 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7265 
7266 	return em;
7267 }
7268 
7269 /*
7270  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7271  * block must be cow'd
7272  */
7273 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7274 			      u64 *orig_start, u64 *orig_block_len,
7275 			      u64 *ram_bytes)
7276 {
7277 	struct btrfs_trans_handle *trans;
7278 	struct btrfs_path *path;
7279 	int ret;
7280 	struct extent_buffer *leaf;
7281 	struct btrfs_root *root = BTRFS_I(inode)->root;
7282 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7283 	struct btrfs_file_extent_item *fi;
7284 	struct btrfs_key key;
7285 	u64 disk_bytenr;
7286 	u64 backref_offset;
7287 	u64 extent_end;
7288 	u64 num_bytes;
7289 	int slot;
7290 	int found_type;
7291 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7292 
7293 	path = btrfs_alloc_path();
7294 	if (!path)
7295 		return -ENOMEM;
7296 
7297 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7298 				       offset, 0);
7299 	if (ret < 0)
7300 		goto out;
7301 
7302 	slot = path->slots[0];
7303 	if (ret == 1) {
7304 		if (slot == 0) {
7305 			/* can't find the item, must cow */
7306 			ret = 0;
7307 			goto out;
7308 		}
7309 		slot--;
7310 	}
7311 	ret = 0;
7312 	leaf = path->nodes[0];
7313 	btrfs_item_key_to_cpu(leaf, &key, slot);
7314 	if (key.objectid != btrfs_ino(inode) ||
7315 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7316 		/* not our file or wrong item type, must cow */
7317 		goto out;
7318 	}
7319 
7320 	if (key.offset > offset) {
7321 		/* Wrong offset, must cow */
7322 		goto out;
7323 	}
7324 
7325 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7326 	found_type = btrfs_file_extent_type(leaf, fi);
7327 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7328 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7329 		/* not a regular extent, must cow */
7330 		goto out;
7331 	}
7332 
7333 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7334 		goto out;
7335 
7336 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7337 	if (extent_end <= offset)
7338 		goto out;
7339 
7340 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7341 	if (disk_bytenr == 0)
7342 		goto out;
7343 
7344 	if (btrfs_file_extent_compression(leaf, fi) ||
7345 	    btrfs_file_extent_encryption(leaf, fi) ||
7346 	    btrfs_file_extent_other_encoding(leaf, fi))
7347 		goto out;
7348 
7349 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7350 
7351 	if (orig_start) {
7352 		*orig_start = key.offset - backref_offset;
7353 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7354 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7355 	}
7356 
7357 	if (btrfs_extent_readonly(root, disk_bytenr))
7358 		goto out;
7359 
7360 	num_bytes = min(offset + *len, extent_end) - offset;
7361 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7362 		u64 range_end;
7363 
7364 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7365 		ret = test_range_bit(io_tree, offset, range_end,
7366 				     EXTENT_DELALLOC, 0, NULL);
7367 		if (ret) {
7368 			ret = -EAGAIN;
7369 			goto out;
7370 		}
7371 	}
7372 
7373 	btrfs_release_path(path);
7374 
7375 	/*
7376 	 * look for other files referencing this extent, if we
7377 	 * find any we must cow
7378 	 */
7379 	trans = btrfs_join_transaction(root);
7380 	if (IS_ERR(trans)) {
7381 		ret = 0;
7382 		goto out;
7383 	}
7384 
7385 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7386 				    key.offset - backref_offset, disk_bytenr);
7387 	btrfs_end_transaction(trans, root);
7388 	if (ret) {
7389 		ret = 0;
7390 		goto out;
7391 	}
7392 
7393 	/*
7394 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7395 	 * in this extent we are about to write.  If there
7396 	 * are any csums in that range we have to cow in order
7397 	 * to keep the csums correct
7398 	 */
7399 	disk_bytenr += backref_offset;
7400 	disk_bytenr += offset - key.offset;
7401 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7402 				goto out;
7403 	/*
7404 	 * all of the above have passed, it is safe to overwrite this extent
7405 	 * without cow
7406 	 */
7407 	*len = num_bytes;
7408 	ret = 1;
7409 out:
7410 	btrfs_free_path(path);
7411 	return ret;
7412 }
7413 
7414 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7415 {
7416 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7417 	int found = false;
7418 	void **pagep = NULL;
7419 	struct page *page = NULL;
7420 	int start_idx;
7421 	int end_idx;
7422 
7423 	start_idx = start >> PAGE_SHIFT;
7424 
7425 	/*
7426 	 * end is the last byte in the last page.  end == start is legal
7427 	 */
7428 	end_idx = end >> PAGE_SHIFT;
7429 
7430 	rcu_read_lock();
7431 
7432 	/* Most of the code in this while loop is lifted from
7433 	 * find_get_page.  It's been modified to begin searching from a
7434 	 * page and return just the first page found in that range.  If the
7435 	 * found idx is less than or equal to the end idx then we know that
7436 	 * a page exists.  If no pages are found or if those pages are
7437 	 * outside of the range then we're fine (yay!) */
7438 	while (page == NULL &&
7439 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7440 		page = radix_tree_deref_slot(pagep);
7441 		if (unlikely(!page))
7442 			break;
7443 
7444 		if (radix_tree_exception(page)) {
7445 			if (radix_tree_deref_retry(page)) {
7446 				page = NULL;
7447 				continue;
7448 			}
7449 			/*
7450 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7451 			 * here as an exceptional entry: so return it without
7452 			 * attempting to raise page count.
7453 			 */
7454 			page = NULL;
7455 			break; /* TODO: Is this relevant for this use case? */
7456 		}
7457 
7458 		if (!page_cache_get_speculative(page)) {
7459 			page = NULL;
7460 			continue;
7461 		}
7462 
7463 		/*
7464 		 * Has the page moved?
7465 		 * This is part of the lockless pagecache protocol. See
7466 		 * include/linux/pagemap.h for details.
7467 		 */
7468 		if (unlikely(page != *pagep)) {
7469 			put_page(page);
7470 			page = NULL;
7471 		}
7472 	}
7473 
7474 	if (page) {
7475 		if (page->index <= end_idx)
7476 			found = true;
7477 		put_page(page);
7478 	}
7479 
7480 	rcu_read_unlock();
7481 	return found;
7482 }
7483 
7484 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7485 			      struct extent_state **cached_state, int writing)
7486 {
7487 	struct btrfs_ordered_extent *ordered;
7488 	int ret = 0;
7489 
7490 	while (1) {
7491 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7492 				 cached_state);
7493 		/*
7494 		 * We're concerned with the entire range that we're going to be
7495 		 * doing DIO to, so we need to make sure there's no ordered
7496 		 * extents in this range.
7497 		 */
7498 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7499 						     lockend - lockstart + 1);
7500 
7501 		/*
7502 		 * We need to make sure there are no buffered pages in this
7503 		 * range either, we could have raced between the invalidate in
7504 		 * generic_file_direct_write and locking the extent.  The
7505 		 * invalidate needs to happen so that reads after a write do not
7506 		 * get stale data.
7507 		 */
7508 		if (!ordered &&
7509 		    (!writing ||
7510 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7511 			break;
7512 
7513 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7514 				     cached_state, GFP_NOFS);
7515 
7516 		if (ordered) {
7517 			/*
7518 			 * If we are doing a DIO read and the ordered extent we
7519 			 * found is for a buffered write, we can not wait for it
7520 			 * to complete and retry, because if we do so we can
7521 			 * deadlock with concurrent buffered writes on page
7522 			 * locks. This happens only if our DIO read covers more
7523 			 * than one extent map, if at this point has already
7524 			 * created an ordered extent for a previous extent map
7525 			 * and locked its range in the inode's io tree, and a
7526 			 * concurrent write against that previous extent map's
7527 			 * range and this range started (we unlock the ranges
7528 			 * in the io tree only when the bios complete and
7529 			 * buffered writes always lock pages before attempting
7530 			 * to lock range in the io tree).
7531 			 */
7532 			if (writing ||
7533 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7534 				btrfs_start_ordered_extent(inode, ordered, 1);
7535 			else
7536 				ret = -ENOTBLK;
7537 			btrfs_put_ordered_extent(ordered);
7538 		} else {
7539 			/*
7540 			 * We could trigger writeback for this range (and wait
7541 			 * for it to complete) and then invalidate the pages for
7542 			 * this range (through invalidate_inode_pages2_range()),
7543 			 * but that can lead us to a deadlock with a concurrent
7544 			 * call to readpages() (a buffered read or a defrag call
7545 			 * triggered a readahead) on a page lock due to an
7546 			 * ordered dio extent we created before but did not have
7547 			 * yet a corresponding bio submitted (whence it can not
7548 			 * complete), which makes readpages() wait for that
7549 			 * ordered extent to complete while holding a lock on
7550 			 * that page.
7551 			 */
7552 			ret = -ENOTBLK;
7553 		}
7554 
7555 		if (ret)
7556 			break;
7557 
7558 		cond_resched();
7559 	}
7560 
7561 	return ret;
7562 }
7563 
7564 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7565 					   u64 len, u64 orig_start,
7566 					   u64 block_start, u64 block_len,
7567 					   u64 orig_block_len, u64 ram_bytes,
7568 					   int type)
7569 {
7570 	struct extent_map_tree *em_tree;
7571 	struct extent_map *em;
7572 	struct btrfs_root *root = BTRFS_I(inode)->root;
7573 	int ret;
7574 
7575 	em_tree = &BTRFS_I(inode)->extent_tree;
7576 	em = alloc_extent_map();
7577 	if (!em)
7578 		return ERR_PTR(-ENOMEM);
7579 
7580 	em->start = start;
7581 	em->orig_start = orig_start;
7582 	em->mod_start = start;
7583 	em->mod_len = len;
7584 	em->len = len;
7585 	em->block_len = block_len;
7586 	em->block_start = block_start;
7587 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7588 	em->orig_block_len = orig_block_len;
7589 	em->ram_bytes = ram_bytes;
7590 	em->generation = -1;
7591 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7592 	if (type == BTRFS_ORDERED_PREALLOC)
7593 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7594 
7595 	do {
7596 		btrfs_drop_extent_cache(inode, em->start,
7597 				em->start + em->len - 1, 0);
7598 		write_lock(&em_tree->lock);
7599 		ret = add_extent_mapping(em_tree, em, 1);
7600 		write_unlock(&em_tree->lock);
7601 	} while (ret == -EEXIST);
7602 
7603 	if (ret) {
7604 		free_extent_map(em);
7605 		return ERR_PTR(ret);
7606 	}
7607 
7608 	return em;
7609 }
7610 
7611 static void adjust_dio_outstanding_extents(struct inode *inode,
7612 					   struct btrfs_dio_data *dio_data,
7613 					   const u64 len)
7614 {
7615 	unsigned num_extents;
7616 
7617 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7618 					   BTRFS_MAX_EXTENT_SIZE);
7619 	/*
7620 	 * If we have an outstanding_extents count still set then we're
7621 	 * within our reservation, otherwise we need to adjust our inode
7622 	 * counter appropriately.
7623 	 */
7624 	if (dio_data->outstanding_extents) {
7625 		dio_data->outstanding_extents -= num_extents;
7626 	} else {
7627 		spin_lock(&BTRFS_I(inode)->lock);
7628 		BTRFS_I(inode)->outstanding_extents += num_extents;
7629 		spin_unlock(&BTRFS_I(inode)->lock);
7630 	}
7631 }
7632 
7633 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7634 				   struct buffer_head *bh_result, int create)
7635 {
7636 	struct extent_map *em;
7637 	struct btrfs_root *root = BTRFS_I(inode)->root;
7638 	struct extent_state *cached_state = NULL;
7639 	struct btrfs_dio_data *dio_data = NULL;
7640 	u64 start = iblock << inode->i_blkbits;
7641 	u64 lockstart, lockend;
7642 	u64 len = bh_result->b_size;
7643 	int unlock_bits = EXTENT_LOCKED;
7644 	int ret = 0;
7645 
7646 	if (create)
7647 		unlock_bits |= EXTENT_DIRTY;
7648 	else
7649 		len = min_t(u64, len, root->sectorsize);
7650 
7651 	lockstart = start;
7652 	lockend = start + len - 1;
7653 
7654 	if (current->journal_info) {
7655 		/*
7656 		 * Need to pull our outstanding extents and set journal_info to NULL so
7657 		 * that anything that needs to check if there's a transaction doesn't get
7658 		 * confused.
7659 		 */
7660 		dio_data = current->journal_info;
7661 		current->journal_info = NULL;
7662 	}
7663 
7664 	/*
7665 	 * If this errors out it's because we couldn't invalidate pagecache for
7666 	 * this range and we need to fallback to buffered.
7667 	 */
7668 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7669 			       create)) {
7670 		ret = -ENOTBLK;
7671 		goto err;
7672 	}
7673 
7674 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7675 	if (IS_ERR(em)) {
7676 		ret = PTR_ERR(em);
7677 		goto unlock_err;
7678 	}
7679 
7680 	/*
7681 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7682 	 * io.  INLINE is special, and we could probably kludge it in here, but
7683 	 * it's still buffered so for safety lets just fall back to the generic
7684 	 * buffered path.
7685 	 *
7686 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7687 	 * decompress it, so there will be buffering required no matter what we
7688 	 * do, so go ahead and fallback to buffered.
7689 	 *
7690 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7691 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7692 	 * the generic code.
7693 	 */
7694 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7695 	    em->block_start == EXTENT_MAP_INLINE) {
7696 		free_extent_map(em);
7697 		ret = -ENOTBLK;
7698 		goto unlock_err;
7699 	}
7700 
7701 	/* Just a good old fashioned hole, return */
7702 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7703 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7704 		free_extent_map(em);
7705 		goto unlock_err;
7706 	}
7707 
7708 	/*
7709 	 * We don't allocate a new extent in the following cases
7710 	 *
7711 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7712 	 * existing extent.
7713 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7714 	 * just use the extent.
7715 	 *
7716 	 */
7717 	if (!create) {
7718 		len = min(len, em->len - (start - em->start));
7719 		lockstart = start + len;
7720 		goto unlock;
7721 	}
7722 
7723 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7724 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7725 	     em->block_start != EXTENT_MAP_HOLE)) {
7726 		int type;
7727 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7728 
7729 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7730 			type = BTRFS_ORDERED_PREALLOC;
7731 		else
7732 			type = BTRFS_ORDERED_NOCOW;
7733 		len = min(len, em->len - (start - em->start));
7734 		block_start = em->block_start + (start - em->start);
7735 
7736 		if (can_nocow_extent(inode, start, &len, &orig_start,
7737 				     &orig_block_len, &ram_bytes) == 1 &&
7738 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7739 			struct extent_map *em2;
7740 
7741 			em2 = btrfs_create_dio_extent(inode, start, len,
7742 						      orig_start, block_start,
7743 						      len, orig_block_len,
7744 						      ram_bytes, type);
7745 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7746 			if (type == BTRFS_ORDERED_PREALLOC) {
7747 				free_extent_map(em);
7748 				em = em2;
7749 			}
7750 			if (em2 && IS_ERR(em2)) {
7751 				ret = PTR_ERR(em2);
7752 				goto unlock_err;
7753 			}
7754 			goto unlock;
7755 		}
7756 	}
7757 
7758 	/*
7759 	 * this will cow the extent, reset the len in case we changed
7760 	 * it above
7761 	 */
7762 	len = bh_result->b_size;
7763 	free_extent_map(em);
7764 	em = btrfs_new_extent_direct(inode, start, len);
7765 	if (IS_ERR(em)) {
7766 		ret = PTR_ERR(em);
7767 		goto unlock_err;
7768 	}
7769 	len = min(len, em->len - (start - em->start));
7770 unlock:
7771 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7772 		inode->i_blkbits;
7773 	bh_result->b_size = len;
7774 	bh_result->b_bdev = em->bdev;
7775 	set_buffer_mapped(bh_result);
7776 	if (create) {
7777 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7778 			set_buffer_new(bh_result);
7779 
7780 		/*
7781 		 * Need to update the i_size under the extent lock so buffered
7782 		 * readers will get the updated i_size when we unlock.
7783 		 */
7784 		if (start + len > i_size_read(inode))
7785 			i_size_write(inode, start + len);
7786 
7787 		adjust_dio_outstanding_extents(inode, dio_data, len);
7788 		btrfs_free_reserved_data_space(inode, start, len);
7789 		WARN_ON(dio_data->reserve < len);
7790 		dio_data->reserve -= len;
7791 		dio_data->unsubmitted_oe_range_end = start + len;
7792 		current->journal_info = dio_data;
7793 	}
7794 
7795 	/*
7796 	 * In the case of write we need to clear and unlock the entire range,
7797 	 * in the case of read we need to unlock only the end area that we
7798 	 * aren't using if there is any left over space.
7799 	 */
7800 	if (lockstart < lockend) {
7801 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7802 				 lockend, unlock_bits, 1, 0,
7803 				 &cached_state, GFP_NOFS);
7804 	} else {
7805 		free_extent_state(cached_state);
7806 	}
7807 
7808 	free_extent_map(em);
7809 
7810 	return 0;
7811 
7812 unlock_err:
7813 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7814 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7815 err:
7816 	if (dio_data)
7817 		current->journal_info = dio_data;
7818 	/*
7819 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7820 	 * write less data then expected, so that we don't underflow our inode's
7821 	 * outstanding extents counter.
7822 	 */
7823 	if (create && dio_data)
7824 		adjust_dio_outstanding_extents(inode, dio_data, len);
7825 
7826 	return ret;
7827 }
7828 
7829 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7830 					int mirror_num)
7831 {
7832 	struct btrfs_root *root = BTRFS_I(inode)->root;
7833 	int ret;
7834 
7835 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7836 
7837 	bio_get(bio);
7838 
7839 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7840 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7841 	if (ret)
7842 		goto err;
7843 
7844 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7845 err:
7846 	bio_put(bio);
7847 	return ret;
7848 }
7849 
7850 static int btrfs_check_dio_repairable(struct inode *inode,
7851 				      struct bio *failed_bio,
7852 				      struct io_failure_record *failrec,
7853 				      int failed_mirror)
7854 {
7855 	int num_copies;
7856 
7857 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7858 				      failrec->logical, failrec->len);
7859 	if (num_copies == 1) {
7860 		/*
7861 		 * we only have a single copy of the data, so don't bother with
7862 		 * all the retry and error correction code that follows. no
7863 		 * matter what the error is, it is very likely to persist.
7864 		 */
7865 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7866 			 num_copies, failrec->this_mirror, failed_mirror);
7867 		return 0;
7868 	}
7869 
7870 	failrec->failed_mirror = failed_mirror;
7871 	failrec->this_mirror++;
7872 	if (failrec->this_mirror == failed_mirror)
7873 		failrec->this_mirror++;
7874 
7875 	if (failrec->this_mirror > num_copies) {
7876 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7877 			 num_copies, failrec->this_mirror, failed_mirror);
7878 		return 0;
7879 	}
7880 
7881 	return 1;
7882 }
7883 
7884 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7885 			struct page *page, unsigned int pgoff,
7886 			u64 start, u64 end, int failed_mirror,
7887 			bio_end_io_t *repair_endio, void *repair_arg)
7888 {
7889 	struct io_failure_record *failrec;
7890 	struct bio *bio;
7891 	int isector;
7892 	int read_mode;
7893 	int ret;
7894 
7895 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7896 
7897 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7898 	if (ret)
7899 		return ret;
7900 
7901 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7902 					 failed_mirror);
7903 	if (!ret) {
7904 		free_io_failure(inode, failrec);
7905 		return -EIO;
7906 	}
7907 
7908 	if ((failed_bio->bi_vcnt > 1)
7909 		|| (failed_bio->bi_io_vec->bv_len
7910 			> BTRFS_I(inode)->root->sectorsize))
7911 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7912 	else
7913 		read_mode = READ_SYNC;
7914 
7915 	isector = start - btrfs_io_bio(failed_bio)->logical;
7916 	isector >>= inode->i_sb->s_blocksize_bits;
7917 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7918 				pgoff, isector, repair_endio, repair_arg);
7919 	if (!bio) {
7920 		free_io_failure(inode, failrec);
7921 		return -EIO;
7922 	}
7923 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7924 
7925 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7926 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7927 		    read_mode, failrec->this_mirror, failrec->in_validation);
7928 
7929 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7930 	if (ret) {
7931 		free_io_failure(inode, failrec);
7932 		bio_put(bio);
7933 	}
7934 
7935 	return ret;
7936 }
7937 
7938 struct btrfs_retry_complete {
7939 	struct completion done;
7940 	struct inode *inode;
7941 	u64 start;
7942 	int uptodate;
7943 };
7944 
7945 static void btrfs_retry_endio_nocsum(struct bio *bio)
7946 {
7947 	struct btrfs_retry_complete *done = bio->bi_private;
7948 	struct inode *inode;
7949 	struct bio_vec *bvec;
7950 	int i;
7951 
7952 	if (bio->bi_error)
7953 		goto end;
7954 
7955 	ASSERT(bio->bi_vcnt == 1);
7956 	inode = bio->bi_io_vec->bv_page->mapping->host;
7957 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7958 
7959 	done->uptodate = 1;
7960 	bio_for_each_segment_all(bvec, bio, i)
7961 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7962 end:
7963 	complete(&done->done);
7964 	bio_put(bio);
7965 }
7966 
7967 static int __btrfs_correct_data_nocsum(struct inode *inode,
7968 				       struct btrfs_io_bio *io_bio)
7969 {
7970 	struct btrfs_fs_info *fs_info;
7971 	struct bio_vec *bvec;
7972 	struct btrfs_retry_complete done;
7973 	u64 start;
7974 	unsigned int pgoff;
7975 	u32 sectorsize;
7976 	int nr_sectors;
7977 	int i;
7978 	int ret;
7979 
7980 	fs_info = BTRFS_I(inode)->root->fs_info;
7981 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7982 
7983 	start = io_bio->logical;
7984 	done.inode = inode;
7985 
7986 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7987 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7988 		pgoff = bvec->bv_offset;
7989 
7990 next_block_or_try_again:
7991 		done.uptodate = 0;
7992 		done.start = start;
7993 		init_completion(&done.done);
7994 
7995 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7996 				pgoff, start, start + sectorsize - 1,
7997 				io_bio->mirror_num,
7998 				btrfs_retry_endio_nocsum, &done);
7999 		if (ret)
8000 			return ret;
8001 
8002 		wait_for_completion(&done.done);
8003 
8004 		if (!done.uptodate) {
8005 			/* We might have another mirror, so try again */
8006 			goto next_block_or_try_again;
8007 		}
8008 
8009 		start += sectorsize;
8010 
8011 		if (nr_sectors--) {
8012 			pgoff += sectorsize;
8013 			goto next_block_or_try_again;
8014 		}
8015 	}
8016 
8017 	return 0;
8018 }
8019 
8020 static void btrfs_retry_endio(struct bio *bio)
8021 {
8022 	struct btrfs_retry_complete *done = bio->bi_private;
8023 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8024 	struct inode *inode;
8025 	struct bio_vec *bvec;
8026 	u64 start;
8027 	int uptodate;
8028 	int ret;
8029 	int i;
8030 
8031 	if (bio->bi_error)
8032 		goto end;
8033 
8034 	uptodate = 1;
8035 
8036 	start = done->start;
8037 
8038 	ASSERT(bio->bi_vcnt == 1);
8039 	inode = bio->bi_io_vec->bv_page->mapping->host;
8040 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8041 
8042 	bio_for_each_segment_all(bvec, bio, i) {
8043 		ret = __readpage_endio_check(done->inode, io_bio, i,
8044 					bvec->bv_page, bvec->bv_offset,
8045 					done->start, bvec->bv_len);
8046 		if (!ret)
8047 			clean_io_failure(done->inode, done->start,
8048 					bvec->bv_page, bvec->bv_offset);
8049 		else
8050 			uptodate = 0;
8051 	}
8052 
8053 	done->uptodate = uptodate;
8054 end:
8055 	complete(&done->done);
8056 	bio_put(bio);
8057 }
8058 
8059 static int __btrfs_subio_endio_read(struct inode *inode,
8060 				    struct btrfs_io_bio *io_bio, int err)
8061 {
8062 	struct btrfs_fs_info *fs_info;
8063 	struct bio_vec *bvec;
8064 	struct btrfs_retry_complete done;
8065 	u64 start;
8066 	u64 offset = 0;
8067 	u32 sectorsize;
8068 	int nr_sectors;
8069 	unsigned int pgoff;
8070 	int csum_pos;
8071 	int i;
8072 	int ret;
8073 
8074 	fs_info = BTRFS_I(inode)->root->fs_info;
8075 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8076 
8077 	err = 0;
8078 	start = io_bio->logical;
8079 	done.inode = inode;
8080 
8081 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8082 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8083 
8084 		pgoff = bvec->bv_offset;
8085 next_block:
8086 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8087 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8088 					bvec->bv_page, pgoff, start,
8089 					sectorsize);
8090 		if (likely(!ret))
8091 			goto next;
8092 try_again:
8093 		done.uptodate = 0;
8094 		done.start = start;
8095 		init_completion(&done.done);
8096 
8097 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8098 				pgoff, start, start + sectorsize - 1,
8099 				io_bio->mirror_num,
8100 				btrfs_retry_endio, &done);
8101 		if (ret) {
8102 			err = ret;
8103 			goto next;
8104 		}
8105 
8106 		wait_for_completion(&done.done);
8107 
8108 		if (!done.uptodate) {
8109 			/* We might have another mirror, so try again */
8110 			goto try_again;
8111 		}
8112 next:
8113 		offset += sectorsize;
8114 		start += sectorsize;
8115 
8116 		ASSERT(nr_sectors);
8117 
8118 		if (--nr_sectors) {
8119 			pgoff += sectorsize;
8120 			goto next_block;
8121 		}
8122 	}
8123 
8124 	return err;
8125 }
8126 
8127 static int btrfs_subio_endio_read(struct inode *inode,
8128 				  struct btrfs_io_bio *io_bio, int err)
8129 {
8130 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8131 
8132 	if (skip_csum) {
8133 		if (unlikely(err))
8134 			return __btrfs_correct_data_nocsum(inode, io_bio);
8135 		else
8136 			return 0;
8137 	} else {
8138 		return __btrfs_subio_endio_read(inode, io_bio, err);
8139 	}
8140 }
8141 
8142 static void btrfs_endio_direct_read(struct bio *bio)
8143 {
8144 	struct btrfs_dio_private *dip = bio->bi_private;
8145 	struct inode *inode = dip->inode;
8146 	struct bio *dio_bio;
8147 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8148 	int err = bio->bi_error;
8149 
8150 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8151 		err = btrfs_subio_endio_read(inode, io_bio, err);
8152 
8153 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8154 		      dip->logical_offset + dip->bytes - 1);
8155 	dio_bio = dip->dio_bio;
8156 
8157 	kfree(dip);
8158 
8159 	dio_bio->bi_error = bio->bi_error;
8160 	dio_end_io(dio_bio, bio->bi_error);
8161 
8162 	if (io_bio->end_io)
8163 		io_bio->end_io(io_bio, err);
8164 	bio_put(bio);
8165 }
8166 
8167 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8168 						    const u64 offset,
8169 						    const u64 bytes,
8170 						    const int uptodate)
8171 {
8172 	struct btrfs_root *root = BTRFS_I(inode)->root;
8173 	struct btrfs_ordered_extent *ordered = NULL;
8174 	u64 ordered_offset = offset;
8175 	u64 ordered_bytes = bytes;
8176 	int ret;
8177 
8178 again:
8179 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8180 						   &ordered_offset,
8181 						   ordered_bytes,
8182 						   uptodate);
8183 	if (!ret)
8184 		goto out_test;
8185 
8186 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8187 			finish_ordered_fn, NULL, NULL);
8188 	btrfs_queue_work(root->fs_info->endio_write_workers,
8189 			 &ordered->work);
8190 out_test:
8191 	/*
8192 	 * our bio might span multiple ordered extents.  If we haven't
8193 	 * completed the accounting for the whole dio, go back and try again
8194 	 */
8195 	if (ordered_offset < offset + bytes) {
8196 		ordered_bytes = offset + bytes - ordered_offset;
8197 		ordered = NULL;
8198 		goto again;
8199 	}
8200 }
8201 
8202 static void btrfs_endio_direct_write(struct bio *bio)
8203 {
8204 	struct btrfs_dio_private *dip = bio->bi_private;
8205 	struct bio *dio_bio = dip->dio_bio;
8206 
8207 	btrfs_endio_direct_write_update_ordered(dip->inode,
8208 						dip->logical_offset,
8209 						dip->bytes,
8210 						!bio->bi_error);
8211 
8212 	kfree(dip);
8213 
8214 	dio_bio->bi_error = bio->bi_error;
8215 	dio_end_io(dio_bio, bio->bi_error);
8216 	bio_put(bio);
8217 }
8218 
8219 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8220 				    struct bio *bio, int mirror_num,
8221 				    unsigned long bio_flags, u64 offset)
8222 {
8223 	int ret;
8224 	struct btrfs_root *root = BTRFS_I(inode)->root;
8225 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8226 	BUG_ON(ret); /* -ENOMEM */
8227 	return 0;
8228 }
8229 
8230 static void btrfs_end_dio_bio(struct bio *bio)
8231 {
8232 	struct btrfs_dio_private *dip = bio->bi_private;
8233 	int err = bio->bi_error;
8234 
8235 	if (err)
8236 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8237 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8238 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8239 			   (unsigned long long)bio->bi_iter.bi_sector,
8240 			   bio->bi_iter.bi_size, err);
8241 
8242 	if (dip->subio_endio)
8243 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8244 
8245 	if (err) {
8246 		dip->errors = 1;
8247 
8248 		/*
8249 		 * before atomic variable goto zero, we must make sure
8250 		 * dip->errors is perceived to be set.
8251 		 */
8252 		smp_mb__before_atomic();
8253 	}
8254 
8255 	/* if there are more bios still pending for this dio, just exit */
8256 	if (!atomic_dec_and_test(&dip->pending_bios))
8257 		goto out;
8258 
8259 	if (dip->errors) {
8260 		bio_io_error(dip->orig_bio);
8261 	} else {
8262 		dip->dio_bio->bi_error = 0;
8263 		bio_endio(dip->orig_bio);
8264 	}
8265 out:
8266 	bio_put(bio);
8267 }
8268 
8269 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8270 				       u64 first_sector, gfp_t gfp_flags)
8271 {
8272 	struct bio *bio;
8273 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8274 	if (bio)
8275 		bio_associate_current(bio);
8276 	return bio;
8277 }
8278 
8279 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8280 						 struct inode *inode,
8281 						 struct btrfs_dio_private *dip,
8282 						 struct bio *bio,
8283 						 u64 file_offset)
8284 {
8285 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8286 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8287 	int ret;
8288 
8289 	/*
8290 	 * We load all the csum data we need when we submit
8291 	 * the first bio to reduce the csum tree search and
8292 	 * contention.
8293 	 */
8294 	if (dip->logical_offset == file_offset) {
8295 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8296 						file_offset);
8297 		if (ret)
8298 			return ret;
8299 	}
8300 
8301 	if (bio == dip->orig_bio)
8302 		return 0;
8303 
8304 	file_offset -= dip->logical_offset;
8305 	file_offset >>= inode->i_sb->s_blocksize_bits;
8306 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8307 
8308 	return 0;
8309 }
8310 
8311 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8312 					 u64 file_offset, int skip_sum,
8313 					 int async_submit)
8314 {
8315 	struct btrfs_dio_private *dip = bio->bi_private;
8316 	bool write = bio_op(bio) == REQ_OP_WRITE;
8317 	struct btrfs_root *root = BTRFS_I(inode)->root;
8318 	int ret;
8319 
8320 	if (async_submit)
8321 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8322 
8323 	bio_get(bio);
8324 
8325 	if (!write) {
8326 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8327 				BTRFS_WQ_ENDIO_DATA);
8328 		if (ret)
8329 			goto err;
8330 	}
8331 
8332 	if (skip_sum)
8333 		goto map;
8334 
8335 	if (write && async_submit) {
8336 		ret = btrfs_wq_submit_bio(root->fs_info,
8337 				   inode, bio, 0, 0, file_offset,
8338 				   __btrfs_submit_bio_start_direct_io,
8339 				   __btrfs_submit_bio_done);
8340 		goto err;
8341 	} else if (write) {
8342 		/*
8343 		 * If we aren't doing async submit, calculate the csum of the
8344 		 * bio now.
8345 		 */
8346 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8347 		if (ret)
8348 			goto err;
8349 	} else {
8350 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8351 						     file_offset);
8352 		if (ret)
8353 			goto err;
8354 	}
8355 map:
8356 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8357 err:
8358 	bio_put(bio);
8359 	return ret;
8360 }
8361 
8362 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8363 				    int skip_sum)
8364 {
8365 	struct inode *inode = dip->inode;
8366 	struct btrfs_root *root = BTRFS_I(inode)->root;
8367 	struct bio *bio;
8368 	struct bio *orig_bio = dip->orig_bio;
8369 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8370 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8371 	u64 file_offset = dip->logical_offset;
8372 	u64 submit_len = 0;
8373 	u64 map_length;
8374 	u32 blocksize = root->sectorsize;
8375 	int async_submit = 0;
8376 	int nr_sectors;
8377 	int ret;
8378 	int i;
8379 
8380 	map_length = orig_bio->bi_iter.bi_size;
8381 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8382 			      start_sector << 9, &map_length, NULL, 0);
8383 	if (ret)
8384 		return -EIO;
8385 
8386 	if (map_length >= orig_bio->bi_iter.bi_size) {
8387 		bio = orig_bio;
8388 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8389 		goto submit;
8390 	}
8391 
8392 	/* async crcs make it difficult to collect full stripe writes. */
8393 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8394 		async_submit = 0;
8395 	else
8396 		async_submit = 1;
8397 
8398 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8399 	if (!bio)
8400 		return -ENOMEM;
8401 
8402 	bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8403 	bio->bi_private = dip;
8404 	bio->bi_end_io = btrfs_end_dio_bio;
8405 	btrfs_io_bio(bio)->logical = file_offset;
8406 	atomic_inc(&dip->pending_bios);
8407 
8408 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8409 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8410 		i = 0;
8411 next_block:
8412 		if (unlikely(map_length < submit_len + blocksize ||
8413 		    bio_add_page(bio, bvec->bv_page, blocksize,
8414 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8415 			/*
8416 			 * inc the count before we submit the bio so
8417 			 * we know the end IO handler won't happen before
8418 			 * we inc the count. Otherwise, the dip might get freed
8419 			 * before we're done setting it up
8420 			 */
8421 			atomic_inc(&dip->pending_bios);
8422 			ret = __btrfs_submit_dio_bio(bio, inode,
8423 						     file_offset, skip_sum,
8424 						     async_submit);
8425 			if (ret) {
8426 				bio_put(bio);
8427 				atomic_dec(&dip->pending_bios);
8428 				goto out_err;
8429 			}
8430 
8431 			start_sector += submit_len >> 9;
8432 			file_offset += submit_len;
8433 
8434 			submit_len = 0;
8435 
8436 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8437 						  start_sector, GFP_NOFS);
8438 			if (!bio)
8439 				goto out_err;
8440 			bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8441 			bio->bi_private = dip;
8442 			bio->bi_end_io = btrfs_end_dio_bio;
8443 			btrfs_io_bio(bio)->logical = file_offset;
8444 
8445 			map_length = orig_bio->bi_iter.bi_size;
8446 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8447 					      start_sector << 9,
8448 					      &map_length, NULL, 0);
8449 			if (ret) {
8450 				bio_put(bio);
8451 				goto out_err;
8452 			}
8453 
8454 			goto next_block;
8455 		} else {
8456 			submit_len += blocksize;
8457 			if (--nr_sectors) {
8458 				i++;
8459 				goto next_block;
8460 			}
8461 			bvec++;
8462 		}
8463 	}
8464 
8465 submit:
8466 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8467 				     async_submit);
8468 	if (!ret)
8469 		return 0;
8470 
8471 	bio_put(bio);
8472 out_err:
8473 	dip->errors = 1;
8474 	/*
8475 	 * before atomic variable goto zero, we must
8476 	 * make sure dip->errors is perceived to be set.
8477 	 */
8478 	smp_mb__before_atomic();
8479 	if (atomic_dec_and_test(&dip->pending_bios))
8480 		bio_io_error(dip->orig_bio);
8481 
8482 	/* bio_end_io() will handle error, so we needn't return it */
8483 	return 0;
8484 }
8485 
8486 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8487 				loff_t file_offset)
8488 {
8489 	struct btrfs_dio_private *dip = NULL;
8490 	struct bio *io_bio = NULL;
8491 	struct btrfs_io_bio *btrfs_bio;
8492 	int skip_sum;
8493 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8494 	int ret = 0;
8495 
8496 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8497 
8498 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8499 	if (!io_bio) {
8500 		ret = -ENOMEM;
8501 		goto free_ordered;
8502 	}
8503 
8504 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8505 	if (!dip) {
8506 		ret = -ENOMEM;
8507 		goto free_ordered;
8508 	}
8509 
8510 	dip->private = dio_bio->bi_private;
8511 	dip->inode = inode;
8512 	dip->logical_offset = file_offset;
8513 	dip->bytes = dio_bio->bi_iter.bi_size;
8514 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8515 	io_bio->bi_private = dip;
8516 	dip->orig_bio = io_bio;
8517 	dip->dio_bio = dio_bio;
8518 	atomic_set(&dip->pending_bios, 0);
8519 	btrfs_bio = btrfs_io_bio(io_bio);
8520 	btrfs_bio->logical = file_offset;
8521 
8522 	if (write) {
8523 		io_bio->bi_end_io = btrfs_endio_direct_write;
8524 	} else {
8525 		io_bio->bi_end_io = btrfs_endio_direct_read;
8526 		dip->subio_endio = btrfs_subio_endio_read;
8527 	}
8528 
8529 	/*
8530 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8531 	 * even if we fail to submit a bio, because in such case we do the
8532 	 * corresponding error handling below and it must not be done a second
8533 	 * time by btrfs_direct_IO().
8534 	 */
8535 	if (write) {
8536 		struct btrfs_dio_data *dio_data = current->journal_info;
8537 
8538 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8539 			dip->bytes;
8540 		dio_data->unsubmitted_oe_range_start =
8541 			dio_data->unsubmitted_oe_range_end;
8542 	}
8543 
8544 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8545 	if (!ret)
8546 		return;
8547 
8548 	if (btrfs_bio->end_io)
8549 		btrfs_bio->end_io(btrfs_bio, ret);
8550 
8551 free_ordered:
8552 	/*
8553 	 * If we arrived here it means either we failed to submit the dip
8554 	 * or we either failed to clone the dio_bio or failed to allocate the
8555 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8556 	 * call bio_endio against our io_bio so that we get proper resource
8557 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8558 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8559 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8560 	 */
8561 	if (io_bio && dip) {
8562 		io_bio->bi_error = -EIO;
8563 		bio_endio(io_bio);
8564 		/*
8565 		 * The end io callbacks free our dip, do the final put on io_bio
8566 		 * and all the cleanup and final put for dio_bio (through
8567 		 * dio_end_io()).
8568 		 */
8569 		dip = NULL;
8570 		io_bio = NULL;
8571 	} else {
8572 		if (write)
8573 			btrfs_endio_direct_write_update_ordered(inode,
8574 						file_offset,
8575 						dio_bio->bi_iter.bi_size,
8576 						0);
8577 		else
8578 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8579 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8580 
8581 		dio_bio->bi_error = -EIO;
8582 		/*
8583 		 * Releases and cleans up our dio_bio, no need to bio_put()
8584 		 * nor bio_endio()/bio_io_error() against dio_bio.
8585 		 */
8586 		dio_end_io(dio_bio, ret);
8587 	}
8588 	if (io_bio)
8589 		bio_put(io_bio);
8590 	kfree(dip);
8591 }
8592 
8593 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8594 			const struct iov_iter *iter, loff_t offset)
8595 {
8596 	int seg;
8597 	int i;
8598 	unsigned blocksize_mask = root->sectorsize - 1;
8599 	ssize_t retval = -EINVAL;
8600 
8601 	if (offset & blocksize_mask)
8602 		goto out;
8603 
8604 	if (iov_iter_alignment(iter) & blocksize_mask)
8605 		goto out;
8606 
8607 	/* If this is a write we don't need to check anymore */
8608 	if (iov_iter_rw(iter) == WRITE)
8609 		return 0;
8610 	/*
8611 	 * Check to make sure we don't have duplicate iov_base's in this
8612 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8613 	 * when reading back.
8614 	 */
8615 	for (seg = 0; seg < iter->nr_segs; seg++) {
8616 		for (i = seg + 1; i < iter->nr_segs; i++) {
8617 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8618 				goto out;
8619 		}
8620 	}
8621 	retval = 0;
8622 out:
8623 	return retval;
8624 }
8625 
8626 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8627 {
8628 	struct file *file = iocb->ki_filp;
8629 	struct inode *inode = file->f_mapping->host;
8630 	struct btrfs_root *root = BTRFS_I(inode)->root;
8631 	struct btrfs_dio_data dio_data = { 0 };
8632 	loff_t offset = iocb->ki_pos;
8633 	size_t count = 0;
8634 	int flags = 0;
8635 	bool wakeup = true;
8636 	bool relock = false;
8637 	ssize_t ret;
8638 
8639 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8640 		return 0;
8641 
8642 	inode_dio_begin(inode);
8643 	smp_mb__after_atomic();
8644 
8645 	/*
8646 	 * The generic stuff only does filemap_write_and_wait_range, which
8647 	 * isn't enough if we've written compressed pages to this area, so
8648 	 * we need to flush the dirty pages again to make absolutely sure
8649 	 * that any outstanding dirty pages are on disk.
8650 	 */
8651 	count = iov_iter_count(iter);
8652 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8653 		     &BTRFS_I(inode)->runtime_flags))
8654 		filemap_fdatawrite_range(inode->i_mapping, offset,
8655 					 offset + count - 1);
8656 
8657 	if (iov_iter_rw(iter) == WRITE) {
8658 		/*
8659 		 * If the write DIO is beyond the EOF, we need update
8660 		 * the isize, but it is protected by i_mutex. So we can
8661 		 * not unlock the i_mutex at this case.
8662 		 */
8663 		if (offset + count <= inode->i_size) {
8664 			inode_unlock(inode);
8665 			relock = true;
8666 		}
8667 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8668 		if (ret)
8669 			goto out;
8670 		dio_data.outstanding_extents = div64_u64(count +
8671 						BTRFS_MAX_EXTENT_SIZE - 1,
8672 						BTRFS_MAX_EXTENT_SIZE);
8673 
8674 		/*
8675 		 * We need to know how many extents we reserved so that we can
8676 		 * do the accounting properly if we go over the number we
8677 		 * originally calculated.  Abuse current->journal_info for this.
8678 		 */
8679 		dio_data.reserve = round_up(count, root->sectorsize);
8680 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8681 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8682 		current->journal_info = &dio_data;
8683 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8684 				     &BTRFS_I(inode)->runtime_flags)) {
8685 		inode_dio_end(inode);
8686 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8687 		wakeup = false;
8688 	}
8689 
8690 	ret = __blockdev_direct_IO(iocb, inode,
8691 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8692 				   iter, btrfs_get_blocks_direct, NULL,
8693 				   btrfs_submit_direct, flags);
8694 	if (iov_iter_rw(iter) == WRITE) {
8695 		current->journal_info = NULL;
8696 		if (ret < 0 && ret != -EIOCBQUEUED) {
8697 			if (dio_data.reserve)
8698 				btrfs_delalloc_release_space(inode, offset,
8699 							     dio_data.reserve);
8700 			/*
8701 			 * On error we might have left some ordered extents
8702 			 * without submitting corresponding bios for them, so
8703 			 * cleanup them up to avoid other tasks getting them
8704 			 * and waiting for them to complete forever.
8705 			 */
8706 			if (dio_data.unsubmitted_oe_range_start <
8707 			    dio_data.unsubmitted_oe_range_end)
8708 				btrfs_endio_direct_write_update_ordered(inode,
8709 					dio_data.unsubmitted_oe_range_start,
8710 					dio_data.unsubmitted_oe_range_end -
8711 					dio_data.unsubmitted_oe_range_start,
8712 					0);
8713 		} else if (ret >= 0 && (size_t)ret < count)
8714 			btrfs_delalloc_release_space(inode, offset,
8715 						     count - (size_t)ret);
8716 	}
8717 out:
8718 	if (wakeup)
8719 		inode_dio_end(inode);
8720 	if (relock)
8721 		inode_lock(inode);
8722 
8723 	return ret;
8724 }
8725 
8726 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8727 
8728 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8729 		__u64 start, __u64 len)
8730 {
8731 	int	ret;
8732 
8733 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8734 	if (ret)
8735 		return ret;
8736 
8737 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8738 }
8739 
8740 int btrfs_readpage(struct file *file, struct page *page)
8741 {
8742 	struct extent_io_tree *tree;
8743 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8744 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8745 }
8746 
8747 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8748 {
8749 	struct extent_io_tree *tree;
8750 	struct inode *inode = page->mapping->host;
8751 	int ret;
8752 
8753 	if (current->flags & PF_MEMALLOC) {
8754 		redirty_page_for_writepage(wbc, page);
8755 		unlock_page(page);
8756 		return 0;
8757 	}
8758 
8759 	/*
8760 	 * If we are under memory pressure we will call this directly from the
8761 	 * VM, we need to make sure we have the inode referenced for the ordered
8762 	 * extent.  If not just return like we didn't do anything.
8763 	 */
8764 	if (!igrab(inode)) {
8765 		redirty_page_for_writepage(wbc, page);
8766 		return AOP_WRITEPAGE_ACTIVATE;
8767 	}
8768 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8769 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8770 	btrfs_add_delayed_iput(inode);
8771 	return ret;
8772 }
8773 
8774 static int btrfs_writepages(struct address_space *mapping,
8775 			    struct writeback_control *wbc)
8776 {
8777 	struct extent_io_tree *tree;
8778 
8779 	tree = &BTRFS_I(mapping->host)->io_tree;
8780 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8781 }
8782 
8783 static int
8784 btrfs_readpages(struct file *file, struct address_space *mapping,
8785 		struct list_head *pages, unsigned nr_pages)
8786 {
8787 	struct extent_io_tree *tree;
8788 	tree = &BTRFS_I(mapping->host)->io_tree;
8789 	return extent_readpages(tree, mapping, pages, nr_pages,
8790 				btrfs_get_extent);
8791 }
8792 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8793 {
8794 	struct extent_io_tree *tree;
8795 	struct extent_map_tree *map;
8796 	int ret;
8797 
8798 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8799 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8800 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8801 	if (ret == 1) {
8802 		ClearPagePrivate(page);
8803 		set_page_private(page, 0);
8804 		put_page(page);
8805 	}
8806 	return ret;
8807 }
8808 
8809 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8810 {
8811 	if (PageWriteback(page) || PageDirty(page))
8812 		return 0;
8813 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8814 }
8815 
8816 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8817 				 unsigned int length)
8818 {
8819 	struct inode *inode = page->mapping->host;
8820 	struct extent_io_tree *tree;
8821 	struct btrfs_ordered_extent *ordered;
8822 	struct extent_state *cached_state = NULL;
8823 	u64 page_start = page_offset(page);
8824 	u64 page_end = page_start + PAGE_SIZE - 1;
8825 	u64 start;
8826 	u64 end;
8827 	int inode_evicting = inode->i_state & I_FREEING;
8828 
8829 	/*
8830 	 * we have the page locked, so new writeback can't start,
8831 	 * and the dirty bit won't be cleared while we are here.
8832 	 *
8833 	 * Wait for IO on this page so that we can safely clear
8834 	 * the PagePrivate2 bit and do ordered accounting
8835 	 */
8836 	wait_on_page_writeback(page);
8837 
8838 	tree = &BTRFS_I(inode)->io_tree;
8839 	if (offset) {
8840 		btrfs_releasepage(page, GFP_NOFS);
8841 		return;
8842 	}
8843 
8844 	if (!inode_evicting)
8845 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8846 again:
8847 	start = page_start;
8848 	ordered = btrfs_lookup_ordered_range(inode, start,
8849 					page_end - start + 1);
8850 	if (ordered) {
8851 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8852 		/*
8853 		 * IO on this page will never be started, so we need
8854 		 * to account for any ordered extents now
8855 		 */
8856 		if (!inode_evicting)
8857 			clear_extent_bit(tree, start, end,
8858 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8859 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8860 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8861 					 GFP_NOFS);
8862 		/*
8863 		 * whoever cleared the private bit is responsible
8864 		 * for the finish_ordered_io
8865 		 */
8866 		if (TestClearPagePrivate2(page)) {
8867 			struct btrfs_ordered_inode_tree *tree;
8868 			u64 new_len;
8869 
8870 			tree = &BTRFS_I(inode)->ordered_tree;
8871 
8872 			spin_lock_irq(&tree->lock);
8873 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8874 			new_len = start - ordered->file_offset;
8875 			if (new_len < ordered->truncated_len)
8876 				ordered->truncated_len = new_len;
8877 			spin_unlock_irq(&tree->lock);
8878 
8879 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8880 							   start,
8881 							   end - start + 1, 1))
8882 				btrfs_finish_ordered_io(ordered);
8883 		}
8884 		btrfs_put_ordered_extent(ordered);
8885 		if (!inode_evicting) {
8886 			cached_state = NULL;
8887 			lock_extent_bits(tree, start, end,
8888 					 &cached_state);
8889 		}
8890 
8891 		start = end + 1;
8892 		if (start < page_end)
8893 			goto again;
8894 	}
8895 
8896 	/*
8897 	 * Qgroup reserved space handler
8898 	 * Page here will be either
8899 	 * 1) Already written to disk
8900 	 *    In this case, its reserved space is released from data rsv map
8901 	 *    and will be freed by delayed_ref handler finally.
8902 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8903 	 *    space.
8904 	 * 2) Not written to disk
8905 	 *    This means the reserved space should be freed here.
8906 	 */
8907 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8908 	if (!inode_evicting) {
8909 		clear_extent_bit(tree, page_start, page_end,
8910 				 EXTENT_LOCKED | EXTENT_DIRTY |
8911 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8912 				 EXTENT_DEFRAG, 1, 1,
8913 				 &cached_state, GFP_NOFS);
8914 
8915 		__btrfs_releasepage(page, GFP_NOFS);
8916 	}
8917 
8918 	ClearPageChecked(page);
8919 	if (PagePrivate(page)) {
8920 		ClearPagePrivate(page);
8921 		set_page_private(page, 0);
8922 		put_page(page);
8923 	}
8924 }
8925 
8926 /*
8927  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8928  * called from a page fault handler when a page is first dirtied. Hence we must
8929  * be careful to check for EOF conditions here. We set the page up correctly
8930  * for a written page which means we get ENOSPC checking when writing into
8931  * holes and correct delalloc and unwritten extent mapping on filesystems that
8932  * support these features.
8933  *
8934  * We are not allowed to take the i_mutex here so we have to play games to
8935  * protect against truncate races as the page could now be beyond EOF.  Because
8936  * vmtruncate() writes the inode size before removing pages, once we have the
8937  * page lock we can determine safely if the page is beyond EOF. If it is not
8938  * beyond EOF, then the page is guaranteed safe against truncation until we
8939  * unlock the page.
8940  */
8941 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8942 {
8943 	struct page *page = vmf->page;
8944 	struct inode *inode = file_inode(vma->vm_file);
8945 	struct btrfs_root *root = BTRFS_I(inode)->root;
8946 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8947 	struct btrfs_ordered_extent *ordered;
8948 	struct extent_state *cached_state = NULL;
8949 	char *kaddr;
8950 	unsigned long zero_start;
8951 	loff_t size;
8952 	int ret;
8953 	int reserved = 0;
8954 	u64 reserved_space;
8955 	u64 page_start;
8956 	u64 page_end;
8957 	u64 end;
8958 
8959 	reserved_space = PAGE_SIZE;
8960 
8961 	sb_start_pagefault(inode->i_sb);
8962 	page_start = page_offset(page);
8963 	page_end = page_start + PAGE_SIZE - 1;
8964 	end = page_end;
8965 
8966 	/*
8967 	 * Reserving delalloc space after obtaining the page lock can lead to
8968 	 * deadlock. For example, if a dirty page is locked by this function
8969 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8970 	 * dirty page write out, then the btrfs_writepage() function could
8971 	 * end up waiting indefinitely to get a lock on the page currently
8972 	 * being processed by btrfs_page_mkwrite() function.
8973 	 */
8974 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8975 					   reserved_space);
8976 	if (!ret) {
8977 		ret = file_update_time(vma->vm_file);
8978 		reserved = 1;
8979 	}
8980 	if (ret) {
8981 		if (ret == -ENOMEM)
8982 			ret = VM_FAULT_OOM;
8983 		else /* -ENOSPC, -EIO, etc */
8984 			ret = VM_FAULT_SIGBUS;
8985 		if (reserved)
8986 			goto out;
8987 		goto out_noreserve;
8988 	}
8989 
8990 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8991 again:
8992 	lock_page(page);
8993 	size = i_size_read(inode);
8994 
8995 	if ((page->mapping != inode->i_mapping) ||
8996 	    (page_start >= size)) {
8997 		/* page got truncated out from underneath us */
8998 		goto out_unlock;
8999 	}
9000 	wait_on_page_writeback(page);
9001 
9002 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9003 	set_page_extent_mapped(page);
9004 
9005 	/*
9006 	 * we can't set the delalloc bits if there are pending ordered
9007 	 * extents.  Drop our locks and wait for them to finish
9008 	 */
9009 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9010 	if (ordered) {
9011 		unlock_extent_cached(io_tree, page_start, page_end,
9012 				     &cached_state, GFP_NOFS);
9013 		unlock_page(page);
9014 		btrfs_start_ordered_extent(inode, ordered, 1);
9015 		btrfs_put_ordered_extent(ordered);
9016 		goto again;
9017 	}
9018 
9019 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9020 		reserved_space = round_up(size - page_start, root->sectorsize);
9021 		if (reserved_space < PAGE_SIZE) {
9022 			end = page_start + reserved_space - 1;
9023 			spin_lock(&BTRFS_I(inode)->lock);
9024 			BTRFS_I(inode)->outstanding_extents++;
9025 			spin_unlock(&BTRFS_I(inode)->lock);
9026 			btrfs_delalloc_release_space(inode, page_start,
9027 						PAGE_SIZE - reserved_space);
9028 		}
9029 	}
9030 
9031 	/*
9032 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9033 	 * if it was already dirty, so for space accounting reasons we need to
9034 	 * clear any delalloc bits for the range we are fixing to save.  There
9035 	 * is probably a better way to do this, but for now keep consistent with
9036 	 * prepare_pages in the normal write path.
9037 	 */
9038 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9039 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9040 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9041 			  0, 0, &cached_state, GFP_NOFS);
9042 
9043 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9044 					&cached_state);
9045 	if (ret) {
9046 		unlock_extent_cached(io_tree, page_start, page_end,
9047 				     &cached_state, GFP_NOFS);
9048 		ret = VM_FAULT_SIGBUS;
9049 		goto out_unlock;
9050 	}
9051 	ret = 0;
9052 
9053 	/* page is wholly or partially inside EOF */
9054 	if (page_start + PAGE_SIZE > size)
9055 		zero_start = size & ~PAGE_MASK;
9056 	else
9057 		zero_start = PAGE_SIZE;
9058 
9059 	if (zero_start != PAGE_SIZE) {
9060 		kaddr = kmap(page);
9061 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9062 		flush_dcache_page(page);
9063 		kunmap(page);
9064 	}
9065 	ClearPageChecked(page);
9066 	set_page_dirty(page);
9067 	SetPageUptodate(page);
9068 
9069 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9070 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9071 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9072 
9073 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9074 
9075 out_unlock:
9076 	if (!ret) {
9077 		sb_end_pagefault(inode->i_sb);
9078 		return VM_FAULT_LOCKED;
9079 	}
9080 	unlock_page(page);
9081 out:
9082 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9083 out_noreserve:
9084 	sb_end_pagefault(inode->i_sb);
9085 	return ret;
9086 }
9087 
9088 static int btrfs_truncate(struct inode *inode)
9089 {
9090 	struct btrfs_root *root = BTRFS_I(inode)->root;
9091 	struct btrfs_block_rsv *rsv;
9092 	int ret = 0;
9093 	int err = 0;
9094 	struct btrfs_trans_handle *trans;
9095 	u64 mask = root->sectorsize - 1;
9096 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9097 
9098 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9099 				       (u64)-1);
9100 	if (ret)
9101 		return ret;
9102 
9103 	/*
9104 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9105 	 * 3 things going on here
9106 	 *
9107 	 * 1) We need to reserve space for our orphan item and the space to
9108 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9109 	 * orphan item because we didn't reserve space to remove it.
9110 	 *
9111 	 * 2) We need to reserve space to update our inode.
9112 	 *
9113 	 * 3) We need to have something to cache all the space that is going to
9114 	 * be free'd up by the truncate operation, but also have some slack
9115 	 * space reserved in case it uses space during the truncate (thank you
9116 	 * very much snapshotting).
9117 	 *
9118 	 * And we need these to all be separate.  The fact is we can use a lot of
9119 	 * space doing the truncate, and we have no earthly idea how much space
9120 	 * we will use, so we need the truncate reservation to be separate so it
9121 	 * doesn't end up using space reserved for updating the inode or
9122 	 * removing the orphan item.  We also need to be able to stop the
9123 	 * transaction and start a new one, which means we need to be able to
9124 	 * update the inode several times, and we have no idea of knowing how
9125 	 * many times that will be, so we can't just reserve 1 item for the
9126 	 * entirety of the operation, so that has to be done separately as well.
9127 	 * Then there is the orphan item, which does indeed need to be held on
9128 	 * to for the whole operation, and we need nobody to touch this reserved
9129 	 * space except the orphan code.
9130 	 *
9131 	 * So that leaves us with
9132 	 *
9133 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9134 	 * 2) rsv - for the truncate reservation, which we will steal from the
9135 	 * transaction reservation.
9136 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9137 	 * updating the inode.
9138 	 */
9139 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9140 	if (!rsv)
9141 		return -ENOMEM;
9142 	rsv->size = min_size;
9143 	rsv->failfast = 1;
9144 
9145 	/*
9146 	 * 1 for the truncate slack space
9147 	 * 1 for updating the inode.
9148 	 */
9149 	trans = btrfs_start_transaction(root, 2);
9150 	if (IS_ERR(trans)) {
9151 		err = PTR_ERR(trans);
9152 		goto out;
9153 	}
9154 
9155 	/* Migrate the slack space for the truncate to our reserve */
9156 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9157 				      min_size, 0);
9158 	BUG_ON(ret);
9159 
9160 	/*
9161 	 * So if we truncate and then write and fsync we normally would just
9162 	 * write the extents that changed, which is a problem if we need to
9163 	 * first truncate that entire inode.  So set this flag so we write out
9164 	 * all of the extents in the inode to the sync log so we're completely
9165 	 * safe.
9166 	 */
9167 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9168 	trans->block_rsv = rsv;
9169 
9170 	while (1) {
9171 		ret = btrfs_truncate_inode_items(trans, root, inode,
9172 						 inode->i_size,
9173 						 BTRFS_EXTENT_DATA_KEY);
9174 		if (ret != -ENOSPC && ret != -EAGAIN) {
9175 			err = ret;
9176 			break;
9177 		}
9178 
9179 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9180 		ret = btrfs_update_inode(trans, root, inode);
9181 		if (ret) {
9182 			err = ret;
9183 			break;
9184 		}
9185 
9186 		btrfs_end_transaction(trans, root);
9187 		btrfs_btree_balance_dirty(root);
9188 
9189 		trans = btrfs_start_transaction(root, 2);
9190 		if (IS_ERR(trans)) {
9191 			ret = err = PTR_ERR(trans);
9192 			trans = NULL;
9193 			break;
9194 		}
9195 
9196 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9197 					      rsv, min_size, 0);
9198 		BUG_ON(ret);	/* shouldn't happen */
9199 		trans->block_rsv = rsv;
9200 	}
9201 
9202 	if (ret == 0 && inode->i_nlink > 0) {
9203 		trans->block_rsv = root->orphan_block_rsv;
9204 		ret = btrfs_orphan_del(trans, inode);
9205 		if (ret)
9206 			err = ret;
9207 	}
9208 
9209 	if (trans) {
9210 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9211 		ret = btrfs_update_inode(trans, root, inode);
9212 		if (ret && !err)
9213 			err = ret;
9214 
9215 		ret = btrfs_end_transaction(trans, root);
9216 		btrfs_btree_balance_dirty(root);
9217 	}
9218 out:
9219 	btrfs_free_block_rsv(root, rsv);
9220 
9221 	if (ret && !err)
9222 		err = ret;
9223 
9224 	return err;
9225 }
9226 
9227 /*
9228  * create a new subvolume directory/inode (helper for the ioctl).
9229  */
9230 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9231 			     struct btrfs_root *new_root,
9232 			     struct btrfs_root *parent_root,
9233 			     u64 new_dirid)
9234 {
9235 	struct inode *inode;
9236 	int err;
9237 	u64 index = 0;
9238 
9239 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9240 				new_dirid, new_dirid,
9241 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9242 				&index);
9243 	if (IS_ERR(inode))
9244 		return PTR_ERR(inode);
9245 	inode->i_op = &btrfs_dir_inode_operations;
9246 	inode->i_fop = &btrfs_dir_file_operations;
9247 
9248 	set_nlink(inode, 1);
9249 	btrfs_i_size_write(inode, 0);
9250 	unlock_new_inode(inode);
9251 
9252 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9253 	if (err)
9254 		btrfs_err(new_root->fs_info,
9255 			  "error inheriting subvolume %llu properties: %d",
9256 			  new_root->root_key.objectid, err);
9257 
9258 	err = btrfs_update_inode(trans, new_root, inode);
9259 
9260 	iput(inode);
9261 	return err;
9262 }
9263 
9264 struct inode *btrfs_alloc_inode(struct super_block *sb)
9265 {
9266 	struct btrfs_inode *ei;
9267 	struct inode *inode;
9268 
9269 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9270 	if (!ei)
9271 		return NULL;
9272 
9273 	ei->root = NULL;
9274 	ei->generation = 0;
9275 	ei->last_trans = 0;
9276 	ei->last_sub_trans = 0;
9277 	ei->logged_trans = 0;
9278 	ei->delalloc_bytes = 0;
9279 	ei->defrag_bytes = 0;
9280 	ei->disk_i_size = 0;
9281 	ei->flags = 0;
9282 	ei->csum_bytes = 0;
9283 	ei->index_cnt = (u64)-1;
9284 	ei->dir_index = 0;
9285 	ei->last_unlink_trans = 0;
9286 	ei->last_log_commit = 0;
9287 	ei->delayed_iput_count = 0;
9288 
9289 	spin_lock_init(&ei->lock);
9290 	ei->outstanding_extents = 0;
9291 	ei->reserved_extents = 0;
9292 
9293 	ei->runtime_flags = 0;
9294 	ei->force_compress = BTRFS_COMPRESS_NONE;
9295 
9296 	ei->delayed_node = NULL;
9297 
9298 	ei->i_otime.tv_sec = 0;
9299 	ei->i_otime.tv_nsec = 0;
9300 
9301 	inode = &ei->vfs_inode;
9302 	extent_map_tree_init(&ei->extent_tree);
9303 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9304 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9305 	ei->io_tree.track_uptodate = 1;
9306 	ei->io_failure_tree.track_uptodate = 1;
9307 	atomic_set(&ei->sync_writers, 0);
9308 	mutex_init(&ei->log_mutex);
9309 	mutex_init(&ei->delalloc_mutex);
9310 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9311 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9312 	INIT_LIST_HEAD(&ei->delayed_iput);
9313 	RB_CLEAR_NODE(&ei->rb_node);
9314 	init_rwsem(&ei->dio_sem);
9315 
9316 	return inode;
9317 }
9318 
9319 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9320 void btrfs_test_destroy_inode(struct inode *inode)
9321 {
9322 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9323 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9324 }
9325 #endif
9326 
9327 static void btrfs_i_callback(struct rcu_head *head)
9328 {
9329 	struct inode *inode = container_of(head, struct inode, i_rcu);
9330 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9331 }
9332 
9333 void btrfs_destroy_inode(struct inode *inode)
9334 {
9335 	struct btrfs_ordered_extent *ordered;
9336 	struct btrfs_root *root = BTRFS_I(inode)->root;
9337 
9338 	WARN_ON(!hlist_empty(&inode->i_dentry));
9339 	WARN_ON(inode->i_data.nrpages);
9340 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9341 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9342 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9343 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9344 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9345 
9346 	/*
9347 	 * This can happen where we create an inode, but somebody else also
9348 	 * created the same inode and we need to destroy the one we already
9349 	 * created.
9350 	 */
9351 	if (!root)
9352 		goto free;
9353 
9354 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9355 		     &BTRFS_I(inode)->runtime_flags)) {
9356 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9357 			btrfs_ino(inode));
9358 		atomic_dec(&root->orphan_inodes);
9359 	}
9360 
9361 	while (1) {
9362 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9363 		if (!ordered)
9364 			break;
9365 		else {
9366 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9367 				ordered->file_offset, ordered->len);
9368 			btrfs_remove_ordered_extent(inode, ordered);
9369 			btrfs_put_ordered_extent(ordered);
9370 			btrfs_put_ordered_extent(ordered);
9371 		}
9372 	}
9373 	btrfs_qgroup_check_reserved_leak(inode);
9374 	inode_tree_del(inode);
9375 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9376 free:
9377 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9378 }
9379 
9380 int btrfs_drop_inode(struct inode *inode)
9381 {
9382 	struct btrfs_root *root = BTRFS_I(inode)->root;
9383 
9384 	if (root == NULL)
9385 		return 1;
9386 
9387 	/* the snap/subvol tree is on deleting */
9388 	if (btrfs_root_refs(&root->root_item) == 0)
9389 		return 1;
9390 	else
9391 		return generic_drop_inode(inode);
9392 }
9393 
9394 static void init_once(void *foo)
9395 {
9396 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9397 
9398 	inode_init_once(&ei->vfs_inode);
9399 }
9400 
9401 void btrfs_destroy_cachep(void)
9402 {
9403 	/*
9404 	 * Make sure all delayed rcu free inodes are flushed before we
9405 	 * destroy cache.
9406 	 */
9407 	rcu_barrier();
9408 	kmem_cache_destroy(btrfs_inode_cachep);
9409 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9410 	kmem_cache_destroy(btrfs_transaction_cachep);
9411 	kmem_cache_destroy(btrfs_path_cachep);
9412 	kmem_cache_destroy(btrfs_free_space_cachep);
9413 }
9414 
9415 int btrfs_init_cachep(void)
9416 {
9417 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9418 			sizeof(struct btrfs_inode), 0,
9419 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9420 			init_once);
9421 	if (!btrfs_inode_cachep)
9422 		goto fail;
9423 
9424 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9425 			sizeof(struct btrfs_trans_handle), 0,
9426 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9427 	if (!btrfs_trans_handle_cachep)
9428 		goto fail;
9429 
9430 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9431 			sizeof(struct btrfs_transaction), 0,
9432 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9433 	if (!btrfs_transaction_cachep)
9434 		goto fail;
9435 
9436 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9437 			sizeof(struct btrfs_path), 0,
9438 			SLAB_MEM_SPREAD, NULL);
9439 	if (!btrfs_path_cachep)
9440 		goto fail;
9441 
9442 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9443 			sizeof(struct btrfs_free_space), 0,
9444 			SLAB_MEM_SPREAD, NULL);
9445 	if (!btrfs_free_space_cachep)
9446 		goto fail;
9447 
9448 	return 0;
9449 fail:
9450 	btrfs_destroy_cachep();
9451 	return -ENOMEM;
9452 }
9453 
9454 static int btrfs_getattr(struct vfsmount *mnt,
9455 			 struct dentry *dentry, struct kstat *stat)
9456 {
9457 	u64 delalloc_bytes;
9458 	struct inode *inode = d_inode(dentry);
9459 	u32 blocksize = inode->i_sb->s_blocksize;
9460 
9461 	generic_fillattr(inode, stat);
9462 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9463 
9464 	spin_lock(&BTRFS_I(inode)->lock);
9465 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9466 	spin_unlock(&BTRFS_I(inode)->lock);
9467 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9468 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9469 	return 0;
9470 }
9471 
9472 static int btrfs_rename_exchange(struct inode *old_dir,
9473 			      struct dentry *old_dentry,
9474 			      struct inode *new_dir,
9475 			      struct dentry *new_dentry)
9476 {
9477 	struct btrfs_trans_handle *trans;
9478 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9479 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9480 	struct inode *new_inode = new_dentry->d_inode;
9481 	struct inode *old_inode = old_dentry->d_inode;
9482 	struct timespec ctime = CURRENT_TIME;
9483 	struct dentry *parent;
9484 	u64 old_ino = btrfs_ino(old_inode);
9485 	u64 new_ino = btrfs_ino(new_inode);
9486 	u64 old_idx = 0;
9487 	u64 new_idx = 0;
9488 	u64 root_objectid;
9489 	int ret;
9490 	bool root_log_pinned = false;
9491 	bool dest_log_pinned = false;
9492 
9493 	/* we only allow rename subvolume link between subvolumes */
9494 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9495 		return -EXDEV;
9496 
9497 	/* close the race window with snapshot create/destroy ioctl */
9498 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9499 		down_read(&root->fs_info->subvol_sem);
9500 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9501 		down_read(&dest->fs_info->subvol_sem);
9502 
9503 	/*
9504 	 * We want to reserve the absolute worst case amount of items.  So if
9505 	 * both inodes are subvols and we need to unlink them then that would
9506 	 * require 4 item modifications, but if they are both normal inodes it
9507 	 * would require 5 item modifications, so we'll assume their normal
9508 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9509 	 * should cover the worst case number of items we'll modify.
9510 	 */
9511 	trans = btrfs_start_transaction(root, 12);
9512 	if (IS_ERR(trans)) {
9513 		ret = PTR_ERR(trans);
9514 		goto out_notrans;
9515 	}
9516 
9517 	/*
9518 	 * We need to find a free sequence number both in the source and
9519 	 * in the destination directory for the exchange.
9520 	 */
9521 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9522 	if (ret)
9523 		goto out_fail;
9524 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9525 	if (ret)
9526 		goto out_fail;
9527 
9528 	BTRFS_I(old_inode)->dir_index = 0ULL;
9529 	BTRFS_I(new_inode)->dir_index = 0ULL;
9530 
9531 	/* Reference for the source. */
9532 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9533 		/* force full log commit if subvolume involved. */
9534 		btrfs_set_log_full_commit(root->fs_info, trans);
9535 	} else {
9536 		btrfs_pin_log_trans(root);
9537 		root_log_pinned = true;
9538 		ret = btrfs_insert_inode_ref(trans, dest,
9539 					     new_dentry->d_name.name,
9540 					     new_dentry->d_name.len,
9541 					     old_ino,
9542 					     btrfs_ino(new_dir), old_idx);
9543 		if (ret)
9544 			goto out_fail;
9545 	}
9546 
9547 	/* And now for the dest. */
9548 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9549 		/* force full log commit if subvolume involved. */
9550 		btrfs_set_log_full_commit(dest->fs_info, trans);
9551 	} else {
9552 		btrfs_pin_log_trans(dest);
9553 		dest_log_pinned = true;
9554 		ret = btrfs_insert_inode_ref(trans, root,
9555 					     old_dentry->d_name.name,
9556 					     old_dentry->d_name.len,
9557 					     new_ino,
9558 					     btrfs_ino(old_dir), new_idx);
9559 		if (ret)
9560 			goto out_fail;
9561 	}
9562 
9563 	/* Update inode version and ctime/mtime. */
9564 	inode_inc_iversion(old_dir);
9565 	inode_inc_iversion(new_dir);
9566 	inode_inc_iversion(old_inode);
9567 	inode_inc_iversion(new_inode);
9568 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9569 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9570 	old_inode->i_ctime = ctime;
9571 	new_inode->i_ctime = ctime;
9572 
9573 	if (old_dentry->d_parent != new_dentry->d_parent) {
9574 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9575 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9576 	}
9577 
9578 	/* src is a subvolume */
9579 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9580 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9581 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9582 					  root_objectid,
9583 					  old_dentry->d_name.name,
9584 					  old_dentry->d_name.len);
9585 	} else { /* src is an inode */
9586 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9587 					   old_dentry->d_inode,
9588 					   old_dentry->d_name.name,
9589 					   old_dentry->d_name.len);
9590 		if (!ret)
9591 			ret = btrfs_update_inode(trans, root, old_inode);
9592 	}
9593 	if (ret) {
9594 		btrfs_abort_transaction(trans, ret);
9595 		goto out_fail;
9596 	}
9597 
9598 	/* dest is a subvolume */
9599 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9600 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9601 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9602 					  root_objectid,
9603 					  new_dentry->d_name.name,
9604 					  new_dentry->d_name.len);
9605 	} else { /* dest is an inode */
9606 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9607 					   new_dentry->d_inode,
9608 					   new_dentry->d_name.name,
9609 					   new_dentry->d_name.len);
9610 		if (!ret)
9611 			ret = btrfs_update_inode(trans, dest, new_inode);
9612 	}
9613 	if (ret) {
9614 		btrfs_abort_transaction(trans, ret);
9615 		goto out_fail;
9616 	}
9617 
9618 	ret = btrfs_add_link(trans, new_dir, old_inode,
9619 			     new_dentry->d_name.name,
9620 			     new_dentry->d_name.len, 0, old_idx);
9621 	if (ret) {
9622 		btrfs_abort_transaction(trans, ret);
9623 		goto out_fail;
9624 	}
9625 
9626 	ret = btrfs_add_link(trans, old_dir, new_inode,
9627 			     old_dentry->d_name.name,
9628 			     old_dentry->d_name.len, 0, new_idx);
9629 	if (ret) {
9630 		btrfs_abort_transaction(trans, ret);
9631 		goto out_fail;
9632 	}
9633 
9634 	if (old_inode->i_nlink == 1)
9635 		BTRFS_I(old_inode)->dir_index = old_idx;
9636 	if (new_inode->i_nlink == 1)
9637 		BTRFS_I(new_inode)->dir_index = new_idx;
9638 
9639 	if (root_log_pinned) {
9640 		parent = new_dentry->d_parent;
9641 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9642 		btrfs_end_log_trans(root);
9643 		root_log_pinned = false;
9644 	}
9645 	if (dest_log_pinned) {
9646 		parent = old_dentry->d_parent;
9647 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9648 		btrfs_end_log_trans(dest);
9649 		dest_log_pinned = false;
9650 	}
9651 out_fail:
9652 	/*
9653 	 * If we have pinned a log and an error happened, we unpin tasks
9654 	 * trying to sync the log and force them to fallback to a transaction
9655 	 * commit if the log currently contains any of the inodes involved in
9656 	 * this rename operation (to ensure we do not persist a log with an
9657 	 * inconsistent state for any of these inodes or leading to any
9658 	 * inconsistencies when replayed). If the transaction was aborted, the
9659 	 * abortion reason is propagated to userspace when attempting to commit
9660 	 * the transaction. If the log does not contain any of these inodes, we
9661 	 * allow the tasks to sync it.
9662 	 */
9663 	if (ret && (root_log_pinned || dest_log_pinned)) {
9664 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9665 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9666 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9667 		    (new_inode &&
9668 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9669 		    btrfs_set_log_full_commit(root->fs_info, trans);
9670 
9671 		if (root_log_pinned) {
9672 			btrfs_end_log_trans(root);
9673 			root_log_pinned = false;
9674 		}
9675 		if (dest_log_pinned) {
9676 			btrfs_end_log_trans(dest);
9677 			dest_log_pinned = false;
9678 		}
9679 	}
9680 	ret = btrfs_end_transaction(trans, root);
9681 out_notrans:
9682 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9683 		up_read(&dest->fs_info->subvol_sem);
9684 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9685 		up_read(&root->fs_info->subvol_sem);
9686 
9687 	return ret;
9688 }
9689 
9690 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9691 				     struct btrfs_root *root,
9692 				     struct inode *dir,
9693 				     struct dentry *dentry)
9694 {
9695 	int ret;
9696 	struct inode *inode;
9697 	u64 objectid;
9698 	u64 index;
9699 
9700 	ret = btrfs_find_free_ino(root, &objectid);
9701 	if (ret)
9702 		return ret;
9703 
9704 	inode = btrfs_new_inode(trans, root, dir,
9705 				dentry->d_name.name,
9706 				dentry->d_name.len,
9707 				btrfs_ino(dir),
9708 				objectid,
9709 				S_IFCHR | WHITEOUT_MODE,
9710 				&index);
9711 
9712 	if (IS_ERR(inode)) {
9713 		ret = PTR_ERR(inode);
9714 		return ret;
9715 	}
9716 
9717 	inode->i_op = &btrfs_special_inode_operations;
9718 	init_special_inode(inode, inode->i_mode,
9719 		WHITEOUT_DEV);
9720 
9721 	ret = btrfs_init_inode_security(trans, inode, dir,
9722 				&dentry->d_name);
9723 	if (ret)
9724 		goto out;
9725 
9726 	ret = btrfs_add_nondir(trans, dir, dentry,
9727 				inode, 0, index);
9728 	if (ret)
9729 		goto out;
9730 
9731 	ret = btrfs_update_inode(trans, root, inode);
9732 out:
9733 	unlock_new_inode(inode);
9734 	if (ret)
9735 		inode_dec_link_count(inode);
9736 	iput(inode);
9737 
9738 	return ret;
9739 }
9740 
9741 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9742 			   struct inode *new_dir, struct dentry *new_dentry,
9743 			   unsigned int flags)
9744 {
9745 	struct btrfs_trans_handle *trans;
9746 	unsigned int trans_num_items;
9747 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9748 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9749 	struct inode *new_inode = d_inode(new_dentry);
9750 	struct inode *old_inode = d_inode(old_dentry);
9751 	u64 index = 0;
9752 	u64 root_objectid;
9753 	int ret;
9754 	u64 old_ino = btrfs_ino(old_inode);
9755 	bool log_pinned = false;
9756 
9757 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9758 		return -EPERM;
9759 
9760 	/* we only allow rename subvolume link between subvolumes */
9761 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9762 		return -EXDEV;
9763 
9764 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9765 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9766 		return -ENOTEMPTY;
9767 
9768 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9769 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9770 		return -ENOTEMPTY;
9771 
9772 
9773 	/* check for collisions, even if the  name isn't there */
9774 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9775 			     new_dentry->d_name.name,
9776 			     new_dentry->d_name.len);
9777 
9778 	if (ret) {
9779 		if (ret == -EEXIST) {
9780 			/* we shouldn't get
9781 			 * eexist without a new_inode */
9782 			if (WARN_ON(!new_inode)) {
9783 				return ret;
9784 			}
9785 		} else {
9786 			/* maybe -EOVERFLOW */
9787 			return ret;
9788 		}
9789 	}
9790 	ret = 0;
9791 
9792 	/*
9793 	 * we're using rename to replace one file with another.  Start IO on it
9794 	 * now so  we don't add too much work to the end of the transaction
9795 	 */
9796 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9797 		filemap_flush(old_inode->i_mapping);
9798 
9799 	/* close the racy window with snapshot create/destroy ioctl */
9800 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9801 		down_read(&root->fs_info->subvol_sem);
9802 	/*
9803 	 * We want to reserve the absolute worst case amount of items.  So if
9804 	 * both inodes are subvols and we need to unlink them then that would
9805 	 * require 4 item modifications, but if they are both normal inodes it
9806 	 * would require 5 item modifications, so we'll assume they are normal
9807 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9808 	 * should cover the worst case number of items we'll modify.
9809 	 * If our rename has the whiteout flag, we need more 5 units for the
9810 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9811 	 * when selinux is enabled).
9812 	 */
9813 	trans_num_items = 11;
9814 	if (flags & RENAME_WHITEOUT)
9815 		trans_num_items += 5;
9816 	trans = btrfs_start_transaction(root, trans_num_items);
9817 	if (IS_ERR(trans)) {
9818 		ret = PTR_ERR(trans);
9819 		goto out_notrans;
9820 	}
9821 
9822 	if (dest != root)
9823 		btrfs_record_root_in_trans(trans, dest);
9824 
9825 	ret = btrfs_set_inode_index(new_dir, &index);
9826 	if (ret)
9827 		goto out_fail;
9828 
9829 	BTRFS_I(old_inode)->dir_index = 0ULL;
9830 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9831 		/* force full log commit if subvolume involved. */
9832 		btrfs_set_log_full_commit(root->fs_info, trans);
9833 	} else {
9834 		btrfs_pin_log_trans(root);
9835 		log_pinned = true;
9836 		ret = btrfs_insert_inode_ref(trans, dest,
9837 					     new_dentry->d_name.name,
9838 					     new_dentry->d_name.len,
9839 					     old_ino,
9840 					     btrfs_ino(new_dir), index);
9841 		if (ret)
9842 			goto out_fail;
9843 	}
9844 
9845 	inode_inc_iversion(old_dir);
9846 	inode_inc_iversion(new_dir);
9847 	inode_inc_iversion(old_inode);
9848 	old_dir->i_ctime = old_dir->i_mtime =
9849 	new_dir->i_ctime = new_dir->i_mtime =
9850 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9851 
9852 	if (old_dentry->d_parent != new_dentry->d_parent)
9853 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9854 
9855 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9856 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9857 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9858 					old_dentry->d_name.name,
9859 					old_dentry->d_name.len);
9860 	} else {
9861 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9862 					d_inode(old_dentry),
9863 					old_dentry->d_name.name,
9864 					old_dentry->d_name.len);
9865 		if (!ret)
9866 			ret = btrfs_update_inode(trans, root, old_inode);
9867 	}
9868 	if (ret) {
9869 		btrfs_abort_transaction(trans, ret);
9870 		goto out_fail;
9871 	}
9872 
9873 	if (new_inode) {
9874 		inode_inc_iversion(new_inode);
9875 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9876 		if (unlikely(btrfs_ino(new_inode) ==
9877 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9878 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9879 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9880 						root_objectid,
9881 						new_dentry->d_name.name,
9882 						new_dentry->d_name.len);
9883 			BUG_ON(new_inode->i_nlink == 0);
9884 		} else {
9885 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9886 						 d_inode(new_dentry),
9887 						 new_dentry->d_name.name,
9888 						 new_dentry->d_name.len);
9889 		}
9890 		if (!ret && new_inode->i_nlink == 0)
9891 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9892 		if (ret) {
9893 			btrfs_abort_transaction(trans, ret);
9894 			goto out_fail;
9895 		}
9896 	}
9897 
9898 	ret = btrfs_add_link(trans, new_dir, old_inode,
9899 			     new_dentry->d_name.name,
9900 			     new_dentry->d_name.len, 0, index);
9901 	if (ret) {
9902 		btrfs_abort_transaction(trans, ret);
9903 		goto out_fail;
9904 	}
9905 
9906 	if (old_inode->i_nlink == 1)
9907 		BTRFS_I(old_inode)->dir_index = index;
9908 
9909 	if (log_pinned) {
9910 		struct dentry *parent = new_dentry->d_parent;
9911 
9912 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9913 		btrfs_end_log_trans(root);
9914 		log_pinned = false;
9915 	}
9916 
9917 	if (flags & RENAME_WHITEOUT) {
9918 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9919 						old_dentry);
9920 
9921 		if (ret) {
9922 			btrfs_abort_transaction(trans, ret);
9923 			goto out_fail;
9924 		}
9925 	}
9926 out_fail:
9927 	/*
9928 	 * If we have pinned the log and an error happened, we unpin tasks
9929 	 * trying to sync the log and force them to fallback to a transaction
9930 	 * commit if the log currently contains any of the inodes involved in
9931 	 * this rename operation (to ensure we do not persist a log with an
9932 	 * inconsistent state for any of these inodes or leading to any
9933 	 * inconsistencies when replayed). If the transaction was aborted, the
9934 	 * abortion reason is propagated to userspace when attempting to commit
9935 	 * the transaction. If the log does not contain any of these inodes, we
9936 	 * allow the tasks to sync it.
9937 	 */
9938 	if (ret && log_pinned) {
9939 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9940 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9941 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9942 		    (new_inode &&
9943 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9944 		    btrfs_set_log_full_commit(root->fs_info, trans);
9945 
9946 		btrfs_end_log_trans(root);
9947 		log_pinned = false;
9948 	}
9949 	btrfs_end_transaction(trans, root);
9950 out_notrans:
9951 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9952 		up_read(&root->fs_info->subvol_sem);
9953 
9954 	return ret;
9955 }
9956 
9957 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9958 			 struct inode *new_dir, struct dentry *new_dentry,
9959 			 unsigned int flags)
9960 {
9961 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9962 		return -EINVAL;
9963 
9964 	if (flags & RENAME_EXCHANGE)
9965 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9966 					  new_dentry);
9967 
9968 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9969 }
9970 
9971 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9972 {
9973 	struct btrfs_delalloc_work *delalloc_work;
9974 	struct inode *inode;
9975 
9976 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9977 				     work);
9978 	inode = delalloc_work->inode;
9979 	filemap_flush(inode->i_mapping);
9980 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9981 				&BTRFS_I(inode)->runtime_flags))
9982 		filemap_flush(inode->i_mapping);
9983 
9984 	if (delalloc_work->delay_iput)
9985 		btrfs_add_delayed_iput(inode);
9986 	else
9987 		iput(inode);
9988 	complete(&delalloc_work->completion);
9989 }
9990 
9991 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9992 						    int delay_iput)
9993 {
9994 	struct btrfs_delalloc_work *work;
9995 
9996 	work = kmalloc(sizeof(*work), GFP_NOFS);
9997 	if (!work)
9998 		return NULL;
9999 
10000 	init_completion(&work->completion);
10001 	INIT_LIST_HEAD(&work->list);
10002 	work->inode = inode;
10003 	work->delay_iput = delay_iput;
10004 	WARN_ON_ONCE(!inode);
10005 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10006 			btrfs_run_delalloc_work, NULL, NULL);
10007 
10008 	return work;
10009 }
10010 
10011 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10012 {
10013 	wait_for_completion(&work->completion);
10014 	kfree(work);
10015 }
10016 
10017 /*
10018  * some fairly slow code that needs optimization. This walks the list
10019  * of all the inodes with pending delalloc and forces them to disk.
10020  */
10021 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10022 				   int nr)
10023 {
10024 	struct btrfs_inode *binode;
10025 	struct inode *inode;
10026 	struct btrfs_delalloc_work *work, *next;
10027 	struct list_head works;
10028 	struct list_head splice;
10029 	int ret = 0;
10030 
10031 	INIT_LIST_HEAD(&works);
10032 	INIT_LIST_HEAD(&splice);
10033 
10034 	mutex_lock(&root->delalloc_mutex);
10035 	spin_lock(&root->delalloc_lock);
10036 	list_splice_init(&root->delalloc_inodes, &splice);
10037 	while (!list_empty(&splice)) {
10038 		binode = list_entry(splice.next, struct btrfs_inode,
10039 				    delalloc_inodes);
10040 
10041 		list_move_tail(&binode->delalloc_inodes,
10042 			       &root->delalloc_inodes);
10043 		inode = igrab(&binode->vfs_inode);
10044 		if (!inode) {
10045 			cond_resched_lock(&root->delalloc_lock);
10046 			continue;
10047 		}
10048 		spin_unlock(&root->delalloc_lock);
10049 
10050 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10051 		if (!work) {
10052 			if (delay_iput)
10053 				btrfs_add_delayed_iput(inode);
10054 			else
10055 				iput(inode);
10056 			ret = -ENOMEM;
10057 			goto out;
10058 		}
10059 		list_add_tail(&work->list, &works);
10060 		btrfs_queue_work(root->fs_info->flush_workers,
10061 				 &work->work);
10062 		ret++;
10063 		if (nr != -1 && ret >= nr)
10064 			goto out;
10065 		cond_resched();
10066 		spin_lock(&root->delalloc_lock);
10067 	}
10068 	spin_unlock(&root->delalloc_lock);
10069 
10070 out:
10071 	list_for_each_entry_safe(work, next, &works, list) {
10072 		list_del_init(&work->list);
10073 		btrfs_wait_and_free_delalloc_work(work);
10074 	}
10075 
10076 	if (!list_empty_careful(&splice)) {
10077 		spin_lock(&root->delalloc_lock);
10078 		list_splice_tail(&splice, &root->delalloc_inodes);
10079 		spin_unlock(&root->delalloc_lock);
10080 	}
10081 	mutex_unlock(&root->delalloc_mutex);
10082 	return ret;
10083 }
10084 
10085 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10086 {
10087 	int ret;
10088 
10089 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10090 		return -EROFS;
10091 
10092 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10093 	if (ret > 0)
10094 		ret = 0;
10095 	/*
10096 	 * the filemap_flush will queue IO into the worker threads, but
10097 	 * we have to make sure the IO is actually started and that
10098 	 * ordered extents get created before we return
10099 	 */
10100 	atomic_inc(&root->fs_info->async_submit_draining);
10101 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10102 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10103 		wait_event(root->fs_info->async_submit_wait,
10104 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10105 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10106 	}
10107 	atomic_dec(&root->fs_info->async_submit_draining);
10108 	return ret;
10109 }
10110 
10111 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10112 			       int nr)
10113 {
10114 	struct btrfs_root *root;
10115 	struct list_head splice;
10116 	int ret;
10117 
10118 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10119 		return -EROFS;
10120 
10121 	INIT_LIST_HEAD(&splice);
10122 
10123 	mutex_lock(&fs_info->delalloc_root_mutex);
10124 	spin_lock(&fs_info->delalloc_root_lock);
10125 	list_splice_init(&fs_info->delalloc_roots, &splice);
10126 	while (!list_empty(&splice) && nr) {
10127 		root = list_first_entry(&splice, struct btrfs_root,
10128 					delalloc_root);
10129 		root = btrfs_grab_fs_root(root);
10130 		BUG_ON(!root);
10131 		list_move_tail(&root->delalloc_root,
10132 			       &fs_info->delalloc_roots);
10133 		spin_unlock(&fs_info->delalloc_root_lock);
10134 
10135 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10136 		btrfs_put_fs_root(root);
10137 		if (ret < 0)
10138 			goto out;
10139 
10140 		if (nr != -1) {
10141 			nr -= ret;
10142 			WARN_ON(nr < 0);
10143 		}
10144 		spin_lock(&fs_info->delalloc_root_lock);
10145 	}
10146 	spin_unlock(&fs_info->delalloc_root_lock);
10147 
10148 	ret = 0;
10149 	atomic_inc(&fs_info->async_submit_draining);
10150 	while (atomic_read(&fs_info->nr_async_submits) ||
10151 	      atomic_read(&fs_info->async_delalloc_pages)) {
10152 		wait_event(fs_info->async_submit_wait,
10153 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10154 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10155 	}
10156 	atomic_dec(&fs_info->async_submit_draining);
10157 out:
10158 	if (!list_empty_careful(&splice)) {
10159 		spin_lock(&fs_info->delalloc_root_lock);
10160 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10161 		spin_unlock(&fs_info->delalloc_root_lock);
10162 	}
10163 	mutex_unlock(&fs_info->delalloc_root_mutex);
10164 	return ret;
10165 }
10166 
10167 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10168 			 const char *symname)
10169 {
10170 	struct btrfs_trans_handle *trans;
10171 	struct btrfs_root *root = BTRFS_I(dir)->root;
10172 	struct btrfs_path *path;
10173 	struct btrfs_key key;
10174 	struct inode *inode = NULL;
10175 	int err;
10176 	int drop_inode = 0;
10177 	u64 objectid;
10178 	u64 index = 0;
10179 	int name_len;
10180 	int datasize;
10181 	unsigned long ptr;
10182 	struct btrfs_file_extent_item *ei;
10183 	struct extent_buffer *leaf;
10184 
10185 	name_len = strlen(symname);
10186 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10187 		return -ENAMETOOLONG;
10188 
10189 	/*
10190 	 * 2 items for inode item and ref
10191 	 * 2 items for dir items
10192 	 * 1 item for updating parent inode item
10193 	 * 1 item for the inline extent item
10194 	 * 1 item for xattr if selinux is on
10195 	 */
10196 	trans = btrfs_start_transaction(root, 7);
10197 	if (IS_ERR(trans))
10198 		return PTR_ERR(trans);
10199 
10200 	err = btrfs_find_free_ino(root, &objectid);
10201 	if (err)
10202 		goto out_unlock;
10203 
10204 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10205 				dentry->d_name.len, btrfs_ino(dir), objectid,
10206 				S_IFLNK|S_IRWXUGO, &index);
10207 	if (IS_ERR(inode)) {
10208 		err = PTR_ERR(inode);
10209 		goto out_unlock;
10210 	}
10211 
10212 	/*
10213 	* If the active LSM wants to access the inode during
10214 	* d_instantiate it needs these. Smack checks to see
10215 	* if the filesystem supports xattrs by looking at the
10216 	* ops vector.
10217 	*/
10218 	inode->i_fop = &btrfs_file_operations;
10219 	inode->i_op = &btrfs_file_inode_operations;
10220 	inode->i_mapping->a_ops = &btrfs_aops;
10221 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10222 
10223 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10224 	if (err)
10225 		goto out_unlock_inode;
10226 
10227 	path = btrfs_alloc_path();
10228 	if (!path) {
10229 		err = -ENOMEM;
10230 		goto out_unlock_inode;
10231 	}
10232 	key.objectid = btrfs_ino(inode);
10233 	key.offset = 0;
10234 	key.type = BTRFS_EXTENT_DATA_KEY;
10235 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10236 	err = btrfs_insert_empty_item(trans, root, path, &key,
10237 				      datasize);
10238 	if (err) {
10239 		btrfs_free_path(path);
10240 		goto out_unlock_inode;
10241 	}
10242 	leaf = path->nodes[0];
10243 	ei = btrfs_item_ptr(leaf, path->slots[0],
10244 			    struct btrfs_file_extent_item);
10245 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10246 	btrfs_set_file_extent_type(leaf, ei,
10247 				   BTRFS_FILE_EXTENT_INLINE);
10248 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10249 	btrfs_set_file_extent_compression(leaf, ei, 0);
10250 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10251 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10252 
10253 	ptr = btrfs_file_extent_inline_start(ei);
10254 	write_extent_buffer(leaf, symname, ptr, name_len);
10255 	btrfs_mark_buffer_dirty(leaf);
10256 	btrfs_free_path(path);
10257 
10258 	inode->i_op = &btrfs_symlink_inode_operations;
10259 	inode_nohighmem(inode);
10260 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10261 	inode_set_bytes(inode, name_len);
10262 	btrfs_i_size_write(inode, name_len);
10263 	err = btrfs_update_inode(trans, root, inode);
10264 	/*
10265 	 * Last step, add directory indexes for our symlink inode. This is the
10266 	 * last step to avoid extra cleanup of these indexes if an error happens
10267 	 * elsewhere above.
10268 	 */
10269 	if (!err)
10270 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10271 	if (err) {
10272 		drop_inode = 1;
10273 		goto out_unlock_inode;
10274 	}
10275 
10276 	unlock_new_inode(inode);
10277 	d_instantiate(dentry, inode);
10278 
10279 out_unlock:
10280 	btrfs_end_transaction(trans, root);
10281 	if (drop_inode) {
10282 		inode_dec_link_count(inode);
10283 		iput(inode);
10284 	}
10285 	btrfs_btree_balance_dirty(root);
10286 	return err;
10287 
10288 out_unlock_inode:
10289 	drop_inode = 1;
10290 	unlock_new_inode(inode);
10291 	goto out_unlock;
10292 }
10293 
10294 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10295 				       u64 start, u64 num_bytes, u64 min_size,
10296 				       loff_t actual_len, u64 *alloc_hint,
10297 				       struct btrfs_trans_handle *trans)
10298 {
10299 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10300 	struct extent_map *em;
10301 	struct btrfs_root *root = BTRFS_I(inode)->root;
10302 	struct btrfs_key ins;
10303 	u64 cur_offset = start;
10304 	u64 i_size;
10305 	u64 cur_bytes;
10306 	u64 last_alloc = (u64)-1;
10307 	int ret = 0;
10308 	bool own_trans = true;
10309 
10310 	if (trans)
10311 		own_trans = false;
10312 	while (num_bytes > 0) {
10313 		if (own_trans) {
10314 			trans = btrfs_start_transaction(root, 3);
10315 			if (IS_ERR(trans)) {
10316 				ret = PTR_ERR(trans);
10317 				break;
10318 			}
10319 		}
10320 
10321 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10322 		cur_bytes = max(cur_bytes, min_size);
10323 		/*
10324 		 * If we are severely fragmented we could end up with really
10325 		 * small allocations, so if the allocator is returning small
10326 		 * chunks lets make its job easier by only searching for those
10327 		 * sized chunks.
10328 		 */
10329 		cur_bytes = min(cur_bytes, last_alloc);
10330 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10331 					   *alloc_hint, &ins, 1, 0);
10332 		if (ret) {
10333 			if (own_trans)
10334 				btrfs_end_transaction(trans, root);
10335 			break;
10336 		}
10337 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10338 
10339 		last_alloc = ins.offset;
10340 		ret = insert_reserved_file_extent(trans, inode,
10341 						  cur_offset, ins.objectid,
10342 						  ins.offset, ins.offset,
10343 						  ins.offset, 0, 0, 0,
10344 						  BTRFS_FILE_EXTENT_PREALLOC);
10345 		if (ret) {
10346 			btrfs_free_reserved_extent(root, ins.objectid,
10347 						   ins.offset, 0);
10348 			btrfs_abort_transaction(trans, ret);
10349 			if (own_trans)
10350 				btrfs_end_transaction(trans, root);
10351 			break;
10352 		}
10353 
10354 		btrfs_drop_extent_cache(inode, cur_offset,
10355 					cur_offset + ins.offset -1, 0);
10356 
10357 		em = alloc_extent_map();
10358 		if (!em) {
10359 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10360 				&BTRFS_I(inode)->runtime_flags);
10361 			goto next;
10362 		}
10363 
10364 		em->start = cur_offset;
10365 		em->orig_start = cur_offset;
10366 		em->len = ins.offset;
10367 		em->block_start = ins.objectid;
10368 		em->block_len = ins.offset;
10369 		em->orig_block_len = ins.offset;
10370 		em->ram_bytes = ins.offset;
10371 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10372 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10373 		em->generation = trans->transid;
10374 
10375 		while (1) {
10376 			write_lock(&em_tree->lock);
10377 			ret = add_extent_mapping(em_tree, em, 1);
10378 			write_unlock(&em_tree->lock);
10379 			if (ret != -EEXIST)
10380 				break;
10381 			btrfs_drop_extent_cache(inode, cur_offset,
10382 						cur_offset + ins.offset - 1,
10383 						0);
10384 		}
10385 		free_extent_map(em);
10386 next:
10387 		num_bytes -= ins.offset;
10388 		cur_offset += ins.offset;
10389 		*alloc_hint = ins.objectid + ins.offset;
10390 
10391 		inode_inc_iversion(inode);
10392 		inode->i_ctime = current_fs_time(inode->i_sb);
10393 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10394 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10395 		    (actual_len > inode->i_size) &&
10396 		    (cur_offset > inode->i_size)) {
10397 			if (cur_offset > actual_len)
10398 				i_size = actual_len;
10399 			else
10400 				i_size = cur_offset;
10401 			i_size_write(inode, i_size);
10402 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10403 		}
10404 
10405 		ret = btrfs_update_inode(trans, root, inode);
10406 
10407 		if (ret) {
10408 			btrfs_abort_transaction(trans, ret);
10409 			if (own_trans)
10410 				btrfs_end_transaction(trans, root);
10411 			break;
10412 		}
10413 
10414 		if (own_trans)
10415 			btrfs_end_transaction(trans, root);
10416 	}
10417 	return ret;
10418 }
10419 
10420 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10421 			      u64 start, u64 num_bytes, u64 min_size,
10422 			      loff_t actual_len, u64 *alloc_hint)
10423 {
10424 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10425 					   min_size, actual_len, alloc_hint,
10426 					   NULL);
10427 }
10428 
10429 int btrfs_prealloc_file_range_trans(struct inode *inode,
10430 				    struct btrfs_trans_handle *trans, int mode,
10431 				    u64 start, u64 num_bytes, u64 min_size,
10432 				    loff_t actual_len, u64 *alloc_hint)
10433 {
10434 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10435 					   min_size, actual_len, alloc_hint, trans);
10436 }
10437 
10438 static int btrfs_set_page_dirty(struct page *page)
10439 {
10440 	return __set_page_dirty_nobuffers(page);
10441 }
10442 
10443 static int btrfs_permission(struct inode *inode, int mask)
10444 {
10445 	struct btrfs_root *root = BTRFS_I(inode)->root;
10446 	umode_t mode = inode->i_mode;
10447 
10448 	if (mask & MAY_WRITE &&
10449 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10450 		if (btrfs_root_readonly(root))
10451 			return -EROFS;
10452 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10453 			return -EACCES;
10454 	}
10455 	return generic_permission(inode, mask);
10456 }
10457 
10458 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10459 {
10460 	struct btrfs_trans_handle *trans;
10461 	struct btrfs_root *root = BTRFS_I(dir)->root;
10462 	struct inode *inode = NULL;
10463 	u64 objectid;
10464 	u64 index;
10465 	int ret = 0;
10466 
10467 	/*
10468 	 * 5 units required for adding orphan entry
10469 	 */
10470 	trans = btrfs_start_transaction(root, 5);
10471 	if (IS_ERR(trans))
10472 		return PTR_ERR(trans);
10473 
10474 	ret = btrfs_find_free_ino(root, &objectid);
10475 	if (ret)
10476 		goto out;
10477 
10478 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10479 				btrfs_ino(dir), objectid, mode, &index);
10480 	if (IS_ERR(inode)) {
10481 		ret = PTR_ERR(inode);
10482 		inode = NULL;
10483 		goto out;
10484 	}
10485 
10486 	inode->i_fop = &btrfs_file_operations;
10487 	inode->i_op = &btrfs_file_inode_operations;
10488 
10489 	inode->i_mapping->a_ops = &btrfs_aops;
10490 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10491 
10492 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10493 	if (ret)
10494 		goto out_inode;
10495 
10496 	ret = btrfs_update_inode(trans, root, inode);
10497 	if (ret)
10498 		goto out_inode;
10499 	ret = btrfs_orphan_add(trans, inode);
10500 	if (ret)
10501 		goto out_inode;
10502 
10503 	/*
10504 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10505 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10506 	 * through:
10507 	 *
10508 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10509 	 */
10510 	set_nlink(inode, 1);
10511 	unlock_new_inode(inode);
10512 	d_tmpfile(dentry, inode);
10513 	mark_inode_dirty(inode);
10514 
10515 out:
10516 	btrfs_end_transaction(trans, root);
10517 	if (ret)
10518 		iput(inode);
10519 	btrfs_balance_delayed_items(root);
10520 	btrfs_btree_balance_dirty(root);
10521 	return ret;
10522 
10523 out_inode:
10524 	unlock_new_inode(inode);
10525 	goto out;
10526 
10527 }
10528 
10529 /* Inspired by filemap_check_errors() */
10530 int btrfs_inode_check_errors(struct inode *inode)
10531 {
10532 	int ret = 0;
10533 
10534 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10535 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10536 		ret = -ENOSPC;
10537 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10538 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10539 		ret = -EIO;
10540 
10541 	return ret;
10542 }
10543 
10544 static const struct inode_operations btrfs_dir_inode_operations = {
10545 	.getattr	= btrfs_getattr,
10546 	.lookup		= btrfs_lookup,
10547 	.create		= btrfs_create,
10548 	.unlink		= btrfs_unlink,
10549 	.link		= btrfs_link,
10550 	.mkdir		= btrfs_mkdir,
10551 	.rmdir		= btrfs_rmdir,
10552 	.rename2	= btrfs_rename2,
10553 	.symlink	= btrfs_symlink,
10554 	.setattr	= btrfs_setattr,
10555 	.mknod		= btrfs_mknod,
10556 	.setxattr	= generic_setxattr,
10557 	.getxattr	= generic_getxattr,
10558 	.listxattr	= btrfs_listxattr,
10559 	.removexattr	= generic_removexattr,
10560 	.permission	= btrfs_permission,
10561 	.get_acl	= btrfs_get_acl,
10562 	.set_acl	= btrfs_set_acl,
10563 	.update_time	= btrfs_update_time,
10564 	.tmpfile        = btrfs_tmpfile,
10565 };
10566 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10567 	.lookup		= btrfs_lookup,
10568 	.permission	= btrfs_permission,
10569 	.get_acl	= btrfs_get_acl,
10570 	.set_acl	= btrfs_set_acl,
10571 	.update_time	= btrfs_update_time,
10572 };
10573 
10574 static const struct file_operations btrfs_dir_file_operations = {
10575 	.llseek		= generic_file_llseek,
10576 	.read		= generic_read_dir,
10577 	.iterate_shared	= btrfs_real_readdir,
10578 	.unlocked_ioctl	= btrfs_ioctl,
10579 #ifdef CONFIG_COMPAT
10580 	.compat_ioctl	= btrfs_compat_ioctl,
10581 #endif
10582 	.release        = btrfs_release_file,
10583 	.fsync		= btrfs_sync_file,
10584 };
10585 
10586 static const struct extent_io_ops btrfs_extent_io_ops = {
10587 	.fill_delalloc = run_delalloc_range,
10588 	.submit_bio_hook = btrfs_submit_bio_hook,
10589 	.merge_bio_hook = btrfs_merge_bio_hook,
10590 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10591 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10592 	.writepage_start_hook = btrfs_writepage_start_hook,
10593 	.set_bit_hook = btrfs_set_bit_hook,
10594 	.clear_bit_hook = btrfs_clear_bit_hook,
10595 	.merge_extent_hook = btrfs_merge_extent_hook,
10596 	.split_extent_hook = btrfs_split_extent_hook,
10597 };
10598 
10599 /*
10600  * btrfs doesn't support the bmap operation because swapfiles
10601  * use bmap to make a mapping of extents in the file.  They assume
10602  * these extents won't change over the life of the file and they
10603  * use the bmap result to do IO directly to the drive.
10604  *
10605  * the btrfs bmap call would return logical addresses that aren't
10606  * suitable for IO and they also will change frequently as COW
10607  * operations happen.  So, swapfile + btrfs == corruption.
10608  *
10609  * For now we're avoiding this by dropping bmap.
10610  */
10611 static const struct address_space_operations btrfs_aops = {
10612 	.readpage	= btrfs_readpage,
10613 	.writepage	= btrfs_writepage,
10614 	.writepages	= btrfs_writepages,
10615 	.readpages	= btrfs_readpages,
10616 	.direct_IO	= btrfs_direct_IO,
10617 	.invalidatepage = btrfs_invalidatepage,
10618 	.releasepage	= btrfs_releasepage,
10619 	.set_page_dirty	= btrfs_set_page_dirty,
10620 	.error_remove_page = generic_error_remove_page,
10621 };
10622 
10623 static const struct address_space_operations btrfs_symlink_aops = {
10624 	.readpage	= btrfs_readpage,
10625 	.writepage	= btrfs_writepage,
10626 	.invalidatepage = btrfs_invalidatepage,
10627 	.releasepage	= btrfs_releasepage,
10628 };
10629 
10630 static const struct inode_operations btrfs_file_inode_operations = {
10631 	.getattr	= btrfs_getattr,
10632 	.setattr	= btrfs_setattr,
10633 	.setxattr	= generic_setxattr,
10634 	.getxattr	= generic_getxattr,
10635 	.listxattr      = btrfs_listxattr,
10636 	.removexattr	= generic_removexattr,
10637 	.permission	= btrfs_permission,
10638 	.fiemap		= btrfs_fiemap,
10639 	.get_acl	= btrfs_get_acl,
10640 	.set_acl	= btrfs_set_acl,
10641 	.update_time	= btrfs_update_time,
10642 };
10643 static const struct inode_operations btrfs_special_inode_operations = {
10644 	.getattr	= btrfs_getattr,
10645 	.setattr	= btrfs_setattr,
10646 	.permission	= btrfs_permission,
10647 	.setxattr	= generic_setxattr,
10648 	.getxattr	= generic_getxattr,
10649 	.listxattr	= btrfs_listxattr,
10650 	.removexattr	= generic_removexattr,
10651 	.get_acl	= btrfs_get_acl,
10652 	.set_acl	= btrfs_set_acl,
10653 	.update_time	= btrfs_update_time,
10654 };
10655 static const struct inode_operations btrfs_symlink_inode_operations = {
10656 	.readlink	= generic_readlink,
10657 	.get_link	= page_get_link,
10658 	.getattr	= btrfs_getattr,
10659 	.setattr	= btrfs_setattr,
10660 	.permission	= btrfs_permission,
10661 	.setxattr	= generic_setxattr,
10662 	.getxattr	= generic_getxattr,
10663 	.listxattr	= btrfs_listxattr,
10664 	.removexattr	= generic_removexattr,
10665 	.update_time	= btrfs_update_time,
10666 };
10667 
10668 const struct dentry_operations btrfs_dentry_operations = {
10669 	.d_delete	= btrfs_dentry_delete,
10670 	.d_release	= btrfs_dentry_release,
10671 };
10672