xref: /linux/fs/btrfs/inode.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52 
53 struct btrfs_iget_args {
54 	u64 ino;
55 	struct btrfs_root *root;
56 };
57 
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67 
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93 	int err;
94 
95 	err = btrfs_init_acl(inode, dir);
96 	if (!err)
97 		err = btrfs_xattr_security_init(inode, dir);
98 	return err;
99 }
100 
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 				struct btrfs_root *root, struct inode *inode,
108 				u64 start, size_t size, size_t compressed_size,
109 				struct page **compressed_pages)
110 {
111 	struct btrfs_key key;
112 	struct btrfs_path *path;
113 	struct extent_buffer *leaf;
114 	struct page *page = NULL;
115 	char *kaddr;
116 	unsigned long ptr;
117 	struct btrfs_file_extent_item *ei;
118 	int err = 0;
119 	int ret;
120 	size_t cur_size = size;
121 	size_t datasize;
122 	unsigned long offset;
123 	int use_compress = 0;
124 
125 	if (compressed_size && compressed_pages) {
126 		use_compress = 1;
127 		cur_size = compressed_size;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	path->leave_spinning = 1;
135 	btrfs_set_trans_block_group(trans, inode);
136 
137 	key.objectid = inode->i_ino;
138 	key.offset = start;
139 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
141 
142 	inode_add_bytes(inode, size);
143 	ret = btrfs_insert_empty_item(trans, root, path, &key,
144 				      datasize);
145 	BUG_ON(ret);
146 	if (ret) {
147 		err = ret;
148 		goto fail;
149 	}
150 	leaf = path->nodes[0];
151 	ei = btrfs_item_ptr(leaf, path->slots[0],
152 			    struct btrfs_file_extent_item);
153 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 	btrfs_set_file_extent_encryption(leaf, ei, 0);
156 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 	ptr = btrfs_file_extent_inline_start(ei);
159 
160 	if (use_compress) {
161 		struct page *cpage;
162 		int i = 0;
163 		while (compressed_size > 0) {
164 			cpage = compressed_pages[i];
165 			cur_size = min_t(unsigned long, compressed_size,
166 				       PAGE_CACHE_SIZE);
167 
168 			kaddr = kmap_atomic(cpage, KM_USER0);
169 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 			kunmap_atomic(kaddr, KM_USER0);
171 
172 			i++;
173 			ptr += cur_size;
174 			compressed_size -= cur_size;
175 		}
176 		btrfs_set_file_extent_compression(leaf, ei,
177 						  BTRFS_COMPRESS_ZLIB);
178 	} else {
179 		page = find_get_page(inode->i_mapping,
180 				     start >> PAGE_CACHE_SHIFT);
181 		btrfs_set_file_extent_compression(leaf, ei, 0);
182 		kaddr = kmap_atomic(page, KM_USER0);
183 		offset = start & (PAGE_CACHE_SIZE - 1);
184 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 		kunmap_atomic(kaddr, KM_USER0);
186 		page_cache_release(page);
187 	}
188 	btrfs_mark_buffer_dirty(leaf);
189 	btrfs_free_path(path);
190 
191 	BTRFS_I(inode)->disk_i_size = inode->i_size;
192 	btrfs_update_inode(trans, root, inode);
193 	return 0;
194 fail:
195 	btrfs_free_path(path);
196 	return err;
197 }
198 
199 
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 				 struct btrfs_root *root,
207 				 struct inode *inode, u64 start, u64 end,
208 				 size_t compressed_size,
209 				 struct page **compressed_pages)
210 {
211 	u64 isize = i_size_read(inode);
212 	u64 actual_end = min(end + 1, isize);
213 	u64 inline_len = actual_end - start;
214 	u64 aligned_end = (end + root->sectorsize - 1) &
215 			~((u64)root->sectorsize - 1);
216 	u64 hint_byte;
217 	u64 data_len = inline_len;
218 	int ret;
219 
220 	if (compressed_size)
221 		data_len = compressed_size;
222 
223 	if (start > 0 ||
224 	    actual_end >= PAGE_CACHE_SIZE ||
225 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 	    (!compressed_size &&
227 	    (actual_end & (root->sectorsize - 1)) == 0) ||
228 	    end + 1 < isize ||
229 	    data_len > root->fs_info->max_inline) {
230 		return 1;
231 	}
232 
233 	ret = btrfs_drop_extents(trans, root, inode, start,
234 				 aligned_end, aligned_end, start,
235 				 &hint_byte, 1);
236 	BUG_ON(ret);
237 
238 	if (isize > actual_end)
239 		inline_len = min_t(u64, isize, actual_end);
240 	ret = insert_inline_extent(trans, root, inode, start,
241 				   inline_len, compressed_size,
242 				   compressed_pages);
243 	BUG_ON(ret);
244 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245 	return 0;
246 }
247 
248 struct async_extent {
249 	u64 start;
250 	u64 ram_size;
251 	u64 compressed_size;
252 	struct page **pages;
253 	unsigned long nr_pages;
254 	struct list_head list;
255 };
256 
257 struct async_cow {
258 	struct inode *inode;
259 	struct btrfs_root *root;
260 	struct page *locked_page;
261 	u64 start;
262 	u64 end;
263 	struct list_head extents;
264 	struct btrfs_work work;
265 };
266 
267 static noinline int add_async_extent(struct async_cow *cow,
268 				     u64 start, u64 ram_size,
269 				     u64 compressed_size,
270 				     struct page **pages,
271 				     unsigned long nr_pages)
272 {
273 	struct async_extent *async_extent;
274 
275 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 	async_extent->start = start;
277 	async_extent->ram_size = ram_size;
278 	async_extent->compressed_size = compressed_size;
279 	async_extent->pages = pages;
280 	async_extent->nr_pages = nr_pages;
281 	list_add_tail(&async_extent->list, &cow->extents);
282 	return 0;
283 }
284 
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302 					struct page *locked_page,
303 					u64 start, u64 end,
304 					struct async_cow *async_cow,
305 					int *num_added)
306 {
307 	struct btrfs_root *root = BTRFS_I(inode)->root;
308 	struct btrfs_trans_handle *trans;
309 	u64 num_bytes;
310 	u64 orig_start;
311 	u64 disk_num_bytes;
312 	u64 blocksize = root->sectorsize;
313 	u64 actual_end;
314 	u64 isize = i_size_read(inode);
315 	int ret = 0;
316 	struct page **pages = NULL;
317 	unsigned long nr_pages;
318 	unsigned long nr_pages_ret = 0;
319 	unsigned long total_compressed = 0;
320 	unsigned long total_in = 0;
321 	unsigned long max_compressed = 128 * 1024;
322 	unsigned long max_uncompressed = 128 * 1024;
323 	int i;
324 	int will_compress;
325 
326 	orig_start = start;
327 
328 	actual_end = min_t(u64, isize, end + 1);
329 again:
330 	will_compress = 0;
331 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333 
334 	/*
335 	 * we don't want to send crud past the end of i_size through
336 	 * compression, that's just a waste of CPU time.  So, if the
337 	 * end of the file is before the start of our current
338 	 * requested range of bytes, we bail out to the uncompressed
339 	 * cleanup code that can deal with all of this.
340 	 *
341 	 * It isn't really the fastest way to fix things, but this is a
342 	 * very uncommon corner.
343 	 */
344 	if (actual_end <= start)
345 		goto cleanup_and_bail_uncompressed;
346 
347 	total_compressed = actual_end - start;
348 
349 	/* we want to make sure that amount of ram required to uncompress
350 	 * an extent is reasonable, so we limit the total size in ram
351 	 * of a compressed extent to 128k.  This is a crucial number
352 	 * because it also controls how easily we can spread reads across
353 	 * cpus for decompression.
354 	 *
355 	 * We also want to make sure the amount of IO required to do
356 	 * a random read is reasonably small, so we limit the size of
357 	 * a compressed extent to 128k.
358 	 */
359 	total_compressed = min(total_compressed, max_uncompressed);
360 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 	num_bytes = max(blocksize,  num_bytes);
362 	disk_num_bytes = num_bytes;
363 	total_in = 0;
364 	ret = 0;
365 
366 	/*
367 	 * we do compression for mount -o compress and when the
368 	 * inode has not been flagged as nocompress.  This flag can
369 	 * change at any time if we discover bad compression ratios.
370 	 */
371 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 	    btrfs_test_opt(root, COMPRESS)) {
373 		WARN_ON(pages);
374 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375 
376 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 						total_compressed, pages,
378 						nr_pages, &nr_pages_ret,
379 						&total_in,
380 						&total_compressed,
381 						max_compressed);
382 
383 		if (!ret) {
384 			unsigned long offset = total_compressed &
385 				(PAGE_CACHE_SIZE - 1);
386 			struct page *page = pages[nr_pages_ret - 1];
387 			char *kaddr;
388 
389 			/* zero the tail end of the last page, we might be
390 			 * sending it down to disk
391 			 */
392 			if (offset) {
393 				kaddr = kmap_atomic(page, KM_USER0);
394 				memset(kaddr + offset, 0,
395 				       PAGE_CACHE_SIZE - offset);
396 				kunmap_atomic(kaddr, KM_USER0);
397 			}
398 			will_compress = 1;
399 		}
400 	}
401 	if (start == 0) {
402 		trans = btrfs_join_transaction(root, 1);
403 		BUG_ON(!trans);
404 		btrfs_set_trans_block_group(trans, inode);
405 
406 		/* lets try to make an inline extent */
407 		if (ret || total_in < (actual_end - start)) {
408 			/* we didn't compress the entire range, try
409 			 * to make an uncompressed inline extent.
410 			 */
411 			ret = cow_file_range_inline(trans, root, inode,
412 						    start, end, 0, NULL);
413 		} else {
414 			/* try making a compressed inline extent */
415 			ret = cow_file_range_inline(trans, root, inode,
416 						    start, end,
417 						    total_compressed, pages);
418 		}
419 		btrfs_end_transaction(trans, root);
420 		if (ret == 0) {
421 			/*
422 			 * inline extent creation worked, we don't need
423 			 * to create any more async work items.  Unlock
424 			 * and free up our temp pages.
425 			 */
426 			extent_clear_unlock_delalloc(inode,
427 			     &BTRFS_I(inode)->io_tree,
428 			     start, end, NULL,
429 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430 			     EXTENT_CLEAR_DELALLOC |
431 			     EXTENT_CLEAR_ACCOUNTING |
432 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433 			ret = 0;
434 			goto free_pages_out;
435 		}
436 	}
437 
438 	if (will_compress) {
439 		/*
440 		 * we aren't doing an inline extent round the compressed size
441 		 * up to a block size boundary so the allocator does sane
442 		 * things
443 		 */
444 		total_compressed = (total_compressed + blocksize - 1) &
445 			~(blocksize - 1);
446 
447 		/*
448 		 * one last check to make sure the compression is really a
449 		 * win, compare the page count read with the blocks on disk
450 		 */
451 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 			~(PAGE_CACHE_SIZE - 1);
453 		if (total_compressed >= total_in) {
454 			will_compress = 0;
455 		} else {
456 			disk_num_bytes = total_compressed;
457 			num_bytes = total_in;
458 		}
459 	}
460 	if (!will_compress && pages) {
461 		/*
462 		 * the compression code ran but failed to make things smaller,
463 		 * free any pages it allocated and our page pointer array
464 		 */
465 		for (i = 0; i < nr_pages_ret; i++) {
466 			WARN_ON(pages[i]->mapping);
467 			page_cache_release(pages[i]);
468 		}
469 		kfree(pages);
470 		pages = NULL;
471 		total_compressed = 0;
472 		nr_pages_ret = 0;
473 
474 		/* flag the file so we don't compress in the future */
475 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476 	}
477 	if (will_compress) {
478 		*num_added += 1;
479 
480 		/* the async work queues will take care of doing actual
481 		 * allocation on disk for these compressed pages,
482 		 * and will submit them to the elevator.
483 		 */
484 		add_async_extent(async_cow, start, num_bytes,
485 				 total_compressed, pages, nr_pages_ret);
486 
487 		if (start + num_bytes < end && start + num_bytes < actual_end) {
488 			start += num_bytes;
489 			pages = NULL;
490 			cond_resched();
491 			goto again;
492 		}
493 	} else {
494 cleanup_and_bail_uncompressed:
495 		/*
496 		 * No compression, but we still need to write the pages in
497 		 * the file we've been given so far.  redirty the locked
498 		 * page if it corresponds to our extent and set things up
499 		 * for the async work queue to run cow_file_range to do
500 		 * the normal delalloc dance
501 		 */
502 		if (page_offset(locked_page) >= start &&
503 		    page_offset(locked_page) <= end) {
504 			__set_page_dirty_nobuffers(locked_page);
505 			/* unlocked later on in the async handlers */
506 		}
507 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 		*num_added += 1;
509 	}
510 
511 out:
512 	return 0;
513 
514 free_pages_out:
515 	for (i = 0; i < nr_pages_ret; i++) {
516 		WARN_ON(pages[i]->mapping);
517 		page_cache_release(pages[i]);
518 	}
519 	kfree(pages);
520 
521 	goto out;
522 }
523 
524 /*
525  * phase two of compressed writeback.  This is the ordered portion
526  * of the code, which only gets called in the order the work was
527  * queued.  We walk all the async extents created by compress_file_range
528  * and send them down to the disk.
529  */
530 static noinline int submit_compressed_extents(struct inode *inode,
531 					      struct async_cow *async_cow)
532 {
533 	struct async_extent *async_extent;
534 	u64 alloc_hint = 0;
535 	struct btrfs_trans_handle *trans;
536 	struct btrfs_key ins;
537 	struct extent_map *em;
538 	struct btrfs_root *root = BTRFS_I(inode)->root;
539 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 	struct extent_io_tree *io_tree;
541 	int ret = 0;
542 
543 	if (list_empty(&async_cow->extents))
544 		return 0;
545 
546 	trans = btrfs_join_transaction(root, 1);
547 
548 	while (!list_empty(&async_cow->extents)) {
549 		async_extent = list_entry(async_cow->extents.next,
550 					  struct async_extent, list);
551 		list_del(&async_extent->list);
552 
553 		io_tree = &BTRFS_I(inode)->io_tree;
554 
555 retry:
556 		/* did the compression code fall back to uncompressed IO? */
557 		if (!async_extent->pages) {
558 			int page_started = 0;
559 			unsigned long nr_written = 0;
560 
561 			lock_extent(io_tree, async_extent->start,
562 				    async_extent->start +
563 				    async_extent->ram_size - 1, GFP_NOFS);
564 
565 			/* allocate blocks */
566 			ret = cow_file_range(inode, async_cow->locked_page,
567 					     async_extent->start,
568 					     async_extent->start +
569 					     async_extent->ram_size - 1,
570 					     &page_started, &nr_written, 0);
571 
572 			/*
573 			 * if page_started, cow_file_range inserted an
574 			 * inline extent and took care of all the unlocking
575 			 * and IO for us.  Otherwise, we need to submit
576 			 * all those pages down to the drive.
577 			 */
578 			if (!page_started && !ret)
579 				extent_write_locked_range(io_tree,
580 						  inode, async_extent->start,
581 						  async_extent->start +
582 						  async_extent->ram_size - 1,
583 						  btrfs_get_extent,
584 						  WB_SYNC_ALL);
585 			kfree(async_extent);
586 			cond_resched();
587 			continue;
588 		}
589 
590 		lock_extent(io_tree, async_extent->start,
591 			    async_extent->start + async_extent->ram_size - 1,
592 			    GFP_NOFS);
593 		/*
594 		 * here we're doing allocation and writeback of the
595 		 * compressed pages
596 		 */
597 		btrfs_drop_extent_cache(inode, async_extent->start,
598 					async_extent->start +
599 					async_extent->ram_size - 1, 0);
600 
601 		ret = btrfs_reserve_extent(trans, root,
602 					   async_extent->compressed_size,
603 					   async_extent->compressed_size,
604 					   0, alloc_hint,
605 					   (u64)-1, &ins, 1);
606 		if (ret) {
607 			int i;
608 			for (i = 0; i < async_extent->nr_pages; i++) {
609 				WARN_ON(async_extent->pages[i]->mapping);
610 				page_cache_release(async_extent->pages[i]);
611 			}
612 			kfree(async_extent->pages);
613 			async_extent->nr_pages = 0;
614 			async_extent->pages = NULL;
615 			unlock_extent(io_tree, async_extent->start,
616 				      async_extent->start +
617 				      async_extent->ram_size - 1, GFP_NOFS);
618 			goto retry;
619 		}
620 
621 		em = alloc_extent_map(GFP_NOFS);
622 		em->start = async_extent->start;
623 		em->len = async_extent->ram_size;
624 		em->orig_start = em->start;
625 
626 		em->block_start = ins.objectid;
627 		em->block_len = ins.offset;
628 		em->bdev = root->fs_info->fs_devices->latest_bdev;
629 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
630 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
631 
632 		while (1) {
633 			write_lock(&em_tree->lock);
634 			ret = add_extent_mapping(em_tree, em);
635 			write_unlock(&em_tree->lock);
636 			if (ret != -EEXIST) {
637 				free_extent_map(em);
638 				break;
639 			}
640 			btrfs_drop_extent_cache(inode, async_extent->start,
641 						async_extent->start +
642 						async_extent->ram_size - 1, 0);
643 		}
644 
645 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
646 					       ins.objectid,
647 					       async_extent->ram_size,
648 					       ins.offset,
649 					       BTRFS_ORDERED_COMPRESSED);
650 		BUG_ON(ret);
651 
652 		btrfs_end_transaction(trans, root);
653 
654 		/*
655 		 * clear dirty, set writeback and unlock the pages.
656 		 */
657 		extent_clear_unlock_delalloc(inode,
658 				&BTRFS_I(inode)->io_tree,
659 				async_extent->start,
660 				async_extent->start +
661 				async_extent->ram_size - 1,
662 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
663 				EXTENT_CLEAR_UNLOCK |
664 				EXTENT_CLEAR_DELALLOC |
665 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
666 
667 		ret = btrfs_submit_compressed_write(inode,
668 				    async_extent->start,
669 				    async_extent->ram_size,
670 				    ins.objectid,
671 				    ins.offset, async_extent->pages,
672 				    async_extent->nr_pages);
673 
674 		BUG_ON(ret);
675 		trans = btrfs_join_transaction(root, 1);
676 		alloc_hint = ins.objectid + ins.offset;
677 		kfree(async_extent);
678 		cond_resched();
679 	}
680 
681 	btrfs_end_transaction(trans, root);
682 	return 0;
683 }
684 
685 /*
686  * when extent_io.c finds a delayed allocation range in the file,
687  * the call backs end up in this code.  The basic idea is to
688  * allocate extents on disk for the range, and create ordered data structs
689  * in ram to track those extents.
690  *
691  * locked_page is the page that writepage had locked already.  We use
692  * it to make sure we don't do extra locks or unlocks.
693  *
694  * *page_started is set to one if we unlock locked_page and do everything
695  * required to start IO on it.  It may be clean and already done with
696  * IO when we return.
697  */
698 static noinline int cow_file_range(struct inode *inode,
699 				   struct page *locked_page,
700 				   u64 start, u64 end, int *page_started,
701 				   unsigned long *nr_written,
702 				   int unlock)
703 {
704 	struct btrfs_root *root = BTRFS_I(inode)->root;
705 	struct btrfs_trans_handle *trans;
706 	u64 alloc_hint = 0;
707 	u64 num_bytes;
708 	unsigned long ram_size;
709 	u64 disk_num_bytes;
710 	u64 cur_alloc_size;
711 	u64 blocksize = root->sectorsize;
712 	u64 actual_end;
713 	u64 isize = i_size_read(inode);
714 	struct btrfs_key ins;
715 	struct extent_map *em;
716 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 	int ret = 0;
718 
719 	trans = btrfs_join_transaction(root, 1);
720 	BUG_ON(!trans);
721 	btrfs_set_trans_block_group(trans, inode);
722 
723 	actual_end = min_t(u64, isize, end + 1);
724 
725 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
726 	num_bytes = max(blocksize,  num_bytes);
727 	disk_num_bytes = num_bytes;
728 	ret = 0;
729 
730 	if (start == 0) {
731 		/* lets try to make an inline extent */
732 		ret = cow_file_range_inline(trans, root, inode,
733 					    start, end, 0, NULL);
734 		if (ret == 0) {
735 			extent_clear_unlock_delalloc(inode,
736 				     &BTRFS_I(inode)->io_tree,
737 				     start, end, NULL,
738 				     EXTENT_CLEAR_UNLOCK_PAGE |
739 				     EXTENT_CLEAR_UNLOCK |
740 				     EXTENT_CLEAR_DELALLOC |
741 				     EXTENT_CLEAR_ACCOUNTING |
742 				     EXTENT_CLEAR_DIRTY |
743 				     EXTENT_SET_WRITEBACK |
744 				     EXTENT_END_WRITEBACK);
745 			*nr_written = *nr_written +
746 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
747 			*page_started = 1;
748 			ret = 0;
749 			goto out;
750 		}
751 	}
752 
753 	BUG_ON(disk_num_bytes >
754 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
755 
756 
757 	read_lock(&BTRFS_I(inode)->extent_tree.lock);
758 	em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
759 				   start, num_bytes);
760 	if (em) {
761 		/*
762 		 * if block start isn't an actual block number then find the
763 		 * first block in this inode and use that as a hint.  If that
764 		 * block is also bogus then just don't worry about it.
765 		 */
766 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
767 			free_extent_map(em);
768 			em = search_extent_mapping(em_tree, 0, 0);
769 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
770 				alloc_hint = em->block_start;
771 			if (em)
772 				free_extent_map(em);
773 		} else {
774 			alloc_hint = em->block_start;
775 			free_extent_map(em);
776 		}
777 	}
778 	read_unlock(&BTRFS_I(inode)->extent_tree.lock);
779 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
780 
781 	while (disk_num_bytes > 0) {
782 		unsigned long op;
783 
784 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
785 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
786 					   root->sectorsize, 0, alloc_hint,
787 					   (u64)-1, &ins, 1);
788 		BUG_ON(ret);
789 
790 		em = alloc_extent_map(GFP_NOFS);
791 		em->start = start;
792 		em->orig_start = em->start;
793 		ram_size = ins.offset;
794 		em->len = ins.offset;
795 
796 		em->block_start = ins.objectid;
797 		em->block_len = ins.offset;
798 		em->bdev = root->fs_info->fs_devices->latest_bdev;
799 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
800 
801 		while (1) {
802 			write_lock(&em_tree->lock);
803 			ret = add_extent_mapping(em_tree, em);
804 			write_unlock(&em_tree->lock);
805 			if (ret != -EEXIST) {
806 				free_extent_map(em);
807 				break;
808 			}
809 			btrfs_drop_extent_cache(inode, start,
810 						start + ram_size - 1, 0);
811 		}
812 
813 		cur_alloc_size = ins.offset;
814 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
815 					       ram_size, cur_alloc_size, 0);
816 		BUG_ON(ret);
817 
818 		if (root->root_key.objectid ==
819 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
820 			ret = btrfs_reloc_clone_csums(inode, start,
821 						      cur_alloc_size);
822 			BUG_ON(ret);
823 		}
824 
825 		if (disk_num_bytes < cur_alloc_size)
826 			break;
827 
828 		/* we're not doing compressed IO, don't unlock the first
829 		 * page (which the caller expects to stay locked), don't
830 		 * clear any dirty bits and don't set any writeback bits
831 		 *
832 		 * Do set the Private2 bit so we know this page was properly
833 		 * setup for writepage
834 		 */
835 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
836 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
837 			EXTENT_SET_PRIVATE2;
838 
839 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
840 					     start, start + ram_size - 1,
841 					     locked_page, op);
842 		disk_num_bytes -= cur_alloc_size;
843 		num_bytes -= cur_alloc_size;
844 		alloc_hint = ins.objectid + ins.offset;
845 		start += cur_alloc_size;
846 	}
847 out:
848 	ret = 0;
849 	btrfs_end_transaction(trans, root);
850 
851 	return ret;
852 }
853 
854 /*
855  * work queue call back to started compression on a file and pages
856  */
857 static noinline void async_cow_start(struct btrfs_work *work)
858 {
859 	struct async_cow *async_cow;
860 	int num_added = 0;
861 	async_cow = container_of(work, struct async_cow, work);
862 
863 	compress_file_range(async_cow->inode, async_cow->locked_page,
864 			    async_cow->start, async_cow->end, async_cow,
865 			    &num_added);
866 	if (num_added == 0)
867 		async_cow->inode = NULL;
868 }
869 
870 /*
871  * work queue call back to submit previously compressed pages
872  */
873 static noinline void async_cow_submit(struct btrfs_work *work)
874 {
875 	struct async_cow *async_cow;
876 	struct btrfs_root *root;
877 	unsigned long nr_pages;
878 
879 	async_cow = container_of(work, struct async_cow, work);
880 
881 	root = async_cow->root;
882 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
883 		PAGE_CACHE_SHIFT;
884 
885 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
886 
887 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
888 	    5 * 1042 * 1024 &&
889 	    waitqueue_active(&root->fs_info->async_submit_wait))
890 		wake_up(&root->fs_info->async_submit_wait);
891 
892 	if (async_cow->inode)
893 		submit_compressed_extents(async_cow->inode, async_cow);
894 }
895 
896 static noinline void async_cow_free(struct btrfs_work *work)
897 {
898 	struct async_cow *async_cow;
899 	async_cow = container_of(work, struct async_cow, work);
900 	kfree(async_cow);
901 }
902 
903 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
904 				u64 start, u64 end, int *page_started,
905 				unsigned long *nr_written)
906 {
907 	struct async_cow *async_cow;
908 	struct btrfs_root *root = BTRFS_I(inode)->root;
909 	unsigned long nr_pages;
910 	u64 cur_end;
911 	int limit = 10 * 1024 * 1042;
912 
913 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
914 			 1, 0, NULL, GFP_NOFS);
915 	while (start < end) {
916 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
917 		async_cow->inode = inode;
918 		async_cow->root = root;
919 		async_cow->locked_page = locked_page;
920 		async_cow->start = start;
921 
922 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
923 			cur_end = end;
924 		else
925 			cur_end = min(end, start + 512 * 1024 - 1);
926 
927 		async_cow->end = cur_end;
928 		INIT_LIST_HEAD(&async_cow->extents);
929 
930 		async_cow->work.func = async_cow_start;
931 		async_cow->work.ordered_func = async_cow_submit;
932 		async_cow->work.ordered_free = async_cow_free;
933 		async_cow->work.flags = 0;
934 
935 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
936 			PAGE_CACHE_SHIFT;
937 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
938 
939 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
940 				   &async_cow->work);
941 
942 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
943 			wait_event(root->fs_info->async_submit_wait,
944 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
945 			    limit));
946 		}
947 
948 		while (atomic_read(&root->fs_info->async_submit_draining) &&
949 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
950 			wait_event(root->fs_info->async_submit_wait,
951 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
952 			   0));
953 		}
954 
955 		*nr_written += nr_pages;
956 		start = cur_end + 1;
957 	}
958 	*page_started = 1;
959 	return 0;
960 }
961 
962 static noinline int csum_exist_in_range(struct btrfs_root *root,
963 					u64 bytenr, u64 num_bytes)
964 {
965 	int ret;
966 	struct btrfs_ordered_sum *sums;
967 	LIST_HEAD(list);
968 
969 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
970 				       bytenr + num_bytes - 1, &list);
971 	if (ret == 0 && list_empty(&list))
972 		return 0;
973 
974 	while (!list_empty(&list)) {
975 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
976 		list_del(&sums->list);
977 		kfree(sums);
978 	}
979 	return 1;
980 }
981 
982 /*
983  * when nowcow writeback call back.  This checks for snapshots or COW copies
984  * of the extents that exist in the file, and COWs the file as required.
985  *
986  * If no cow copies or snapshots exist, we write directly to the existing
987  * blocks on disk
988  */
989 static noinline int run_delalloc_nocow(struct inode *inode,
990 				       struct page *locked_page,
991 			      u64 start, u64 end, int *page_started, int force,
992 			      unsigned long *nr_written)
993 {
994 	struct btrfs_root *root = BTRFS_I(inode)->root;
995 	struct btrfs_trans_handle *trans;
996 	struct extent_buffer *leaf;
997 	struct btrfs_path *path;
998 	struct btrfs_file_extent_item *fi;
999 	struct btrfs_key found_key;
1000 	u64 cow_start;
1001 	u64 cur_offset;
1002 	u64 extent_end;
1003 	u64 extent_offset;
1004 	u64 disk_bytenr;
1005 	u64 num_bytes;
1006 	int extent_type;
1007 	int ret;
1008 	int type;
1009 	int nocow;
1010 	int check_prev = 1;
1011 
1012 	path = btrfs_alloc_path();
1013 	BUG_ON(!path);
1014 	trans = btrfs_join_transaction(root, 1);
1015 	BUG_ON(!trans);
1016 
1017 	cow_start = (u64)-1;
1018 	cur_offset = start;
1019 	while (1) {
1020 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1021 					       cur_offset, 0);
1022 		BUG_ON(ret < 0);
1023 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1024 			leaf = path->nodes[0];
1025 			btrfs_item_key_to_cpu(leaf, &found_key,
1026 					      path->slots[0] - 1);
1027 			if (found_key.objectid == inode->i_ino &&
1028 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1029 				path->slots[0]--;
1030 		}
1031 		check_prev = 0;
1032 next_slot:
1033 		leaf = path->nodes[0];
1034 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1035 			ret = btrfs_next_leaf(root, path);
1036 			if (ret < 0)
1037 				BUG_ON(1);
1038 			if (ret > 0)
1039 				break;
1040 			leaf = path->nodes[0];
1041 		}
1042 
1043 		nocow = 0;
1044 		disk_bytenr = 0;
1045 		num_bytes = 0;
1046 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1047 
1048 		if (found_key.objectid > inode->i_ino ||
1049 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1050 		    found_key.offset > end)
1051 			break;
1052 
1053 		if (found_key.offset > cur_offset) {
1054 			extent_end = found_key.offset;
1055 			extent_type = 0;
1056 			goto out_check;
1057 		}
1058 
1059 		fi = btrfs_item_ptr(leaf, path->slots[0],
1060 				    struct btrfs_file_extent_item);
1061 		extent_type = btrfs_file_extent_type(leaf, fi);
1062 
1063 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1064 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1065 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1066 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1067 			extent_end = found_key.offset +
1068 				btrfs_file_extent_num_bytes(leaf, fi);
1069 			if (extent_end <= start) {
1070 				path->slots[0]++;
1071 				goto next_slot;
1072 			}
1073 			if (disk_bytenr == 0)
1074 				goto out_check;
1075 			if (btrfs_file_extent_compression(leaf, fi) ||
1076 			    btrfs_file_extent_encryption(leaf, fi) ||
1077 			    btrfs_file_extent_other_encoding(leaf, fi))
1078 				goto out_check;
1079 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1080 				goto out_check;
1081 			if (btrfs_extent_readonly(root, disk_bytenr))
1082 				goto out_check;
1083 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1084 						  found_key.offset -
1085 						  extent_offset, disk_bytenr))
1086 				goto out_check;
1087 			disk_bytenr += extent_offset;
1088 			disk_bytenr += cur_offset - found_key.offset;
1089 			num_bytes = min(end + 1, extent_end) - cur_offset;
1090 			/*
1091 			 * force cow if csum exists in the range.
1092 			 * this ensure that csum for a given extent are
1093 			 * either valid or do not exist.
1094 			 */
1095 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1096 				goto out_check;
1097 			nocow = 1;
1098 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1099 			extent_end = found_key.offset +
1100 				btrfs_file_extent_inline_len(leaf, fi);
1101 			extent_end = ALIGN(extent_end, root->sectorsize);
1102 		} else {
1103 			BUG_ON(1);
1104 		}
1105 out_check:
1106 		if (extent_end <= start) {
1107 			path->slots[0]++;
1108 			goto next_slot;
1109 		}
1110 		if (!nocow) {
1111 			if (cow_start == (u64)-1)
1112 				cow_start = cur_offset;
1113 			cur_offset = extent_end;
1114 			if (cur_offset > end)
1115 				break;
1116 			path->slots[0]++;
1117 			goto next_slot;
1118 		}
1119 
1120 		btrfs_release_path(root, path);
1121 		if (cow_start != (u64)-1) {
1122 			ret = cow_file_range(inode, locked_page, cow_start,
1123 					found_key.offset - 1, page_started,
1124 					nr_written, 1);
1125 			BUG_ON(ret);
1126 			cow_start = (u64)-1;
1127 		}
1128 
1129 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1130 			struct extent_map *em;
1131 			struct extent_map_tree *em_tree;
1132 			em_tree = &BTRFS_I(inode)->extent_tree;
1133 			em = alloc_extent_map(GFP_NOFS);
1134 			em->start = cur_offset;
1135 			em->orig_start = em->start;
1136 			em->len = num_bytes;
1137 			em->block_len = num_bytes;
1138 			em->block_start = disk_bytenr;
1139 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1140 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1141 			while (1) {
1142 				write_lock(&em_tree->lock);
1143 				ret = add_extent_mapping(em_tree, em);
1144 				write_unlock(&em_tree->lock);
1145 				if (ret != -EEXIST) {
1146 					free_extent_map(em);
1147 					break;
1148 				}
1149 				btrfs_drop_extent_cache(inode, em->start,
1150 						em->start + em->len - 1, 0);
1151 			}
1152 			type = BTRFS_ORDERED_PREALLOC;
1153 		} else {
1154 			type = BTRFS_ORDERED_NOCOW;
1155 		}
1156 
1157 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1158 					       num_bytes, num_bytes, type);
1159 		BUG_ON(ret);
1160 
1161 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1162 				cur_offset, cur_offset + num_bytes - 1,
1163 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1164 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1165 				EXTENT_SET_PRIVATE2);
1166 		cur_offset = extent_end;
1167 		if (cur_offset > end)
1168 			break;
1169 	}
1170 	btrfs_release_path(root, path);
1171 
1172 	if (cur_offset <= end && cow_start == (u64)-1)
1173 		cow_start = cur_offset;
1174 	if (cow_start != (u64)-1) {
1175 		ret = cow_file_range(inode, locked_page, cow_start, end,
1176 				     page_started, nr_written, 1);
1177 		BUG_ON(ret);
1178 	}
1179 
1180 	ret = btrfs_end_transaction(trans, root);
1181 	BUG_ON(ret);
1182 	btrfs_free_path(path);
1183 	return 0;
1184 }
1185 
1186 /*
1187  * extent_io.c call back to do delayed allocation processing
1188  */
1189 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1190 			      u64 start, u64 end, int *page_started,
1191 			      unsigned long *nr_written)
1192 {
1193 	int ret;
1194 	struct btrfs_root *root = BTRFS_I(inode)->root;
1195 
1196 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1197 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1198 					 page_started, 1, nr_written);
1199 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1200 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1201 					 page_started, 0, nr_written);
1202 	else if (!btrfs_test_opt(root, COMPRESS))
1203 		ret = cow_file_range(inode, locked_page, start, end,
1204 				      page_started, nr_written, 1);
1205 	else
1206 		ret = cow_file_range_async(inode, locked_page, start, end,
1207 					   page_started, nr_written);
1208 	return ret;
1209 }
1210 
1211 static int btrfs_split_extent_hook(struct inode *inode,
1212 				    struct extent_state *orig, u64 split)
1213 {
1214 	struct btrfs_root *root = BTRFS_I(inode)->root;
1215 	u64 size;
1216 
1217 	if (!(orig->state & EXTENT_DELALLOC))
1218 		return 0;
1219 
1220 	size = orig->end - orig->start + 1;
1221 	if (size > root->fs_info->max_extent) {
1222 		u64 num_extents;
1223 		u64 new_size;
1224 
1225 		new_size = orig->end - split + 1;
1226 		num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1227 					root->fs_info->max_extent);
1228 
1229 		/*
1230 		 * if we break a large extent up then leave oustanding_extents
1231 		 * be, since we've already accounted for the large extent.
1232 		 */
1233 		if (div64_u64(new_size + root->fs_info->max_extent - 1,
1234 			      root->fs_info->max_extent) < num_extents)
1235 			return 0;
1236 	}
1237 
1238 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1239 	BTRFS_I(inode)->outstanding_extents++;
1240 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1247  * extents so we can keep track of new extents that are just merged onto old
1248  * extents, such as when we are doing sequential writes, so we can properly
1249  * account for the metadata space we'll need.
1250  */
1251 static int btrfs_merge_extent_hook(struct inode *inode,
1252 				   struct extent_state *new,
1253 				   struct extent_state *other)
1254 {
1255 	struct btrfs_root *root = BTRFS_I(inode)->root;
1256 	u64 new_size, old_size;
1257 	u64 num_extents;
1258 
1259 	/* not delalloc, ignore it */
1260 	if (!(other->state & EXTENT_DELALLOC))
1261 		return 0;
1262 
1263 	old_size = other->end - other->start + 1;
1264 	if (new->start < other->start)
1265 		new_size = other->end - new->start + 1;
1266 	else
1267 		new_size = new->end - other->start + 1;
1268 
1269 	/* we're not bigger than the max, unreserve the space and go */
1270 	if (new_size <= root->fs_info->max_extent) {
1271 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1272 		BTRFS_I(inode)->outstanding_extents--;
1273 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1274 		return 0;
1275 	}
1276 
1277 	/*
1278 	 * If we grew by another max_extent, just return, we want to keep that
1279 	 * reserved amount.
1280 	 */
1281 	num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1282 				root->fs_info->max_extent);
1283 	if (div64_u64(new_size + root->fs_info->max_extent - 1,
1284 		      root->fs_info->max_extent) > num_extents)
1285 		return 0;
1286 
1287 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 	BTRFS_I(inode)->outstanding_extents--;
1289 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * extent_io.c set_bit_hook, used to track delayed allocation
1296  * bytes in this file, and to maintain the list of inodes that
1297  * have pending delalloc work to be done.
1298  */
1299 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1300 		       unsigned long old, unsigned long bits)
1301 {
1302 
1303 	/*
1304 	 * set_bit and clear bit hooks normally require _irqsave/restore
1305 	 * but in this case, we are only testeing for the DELALLOC
1306 	 * bit, which is only set or cleared with irqs on
1307 	 */
1308 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1309 		struct btrfs_root *root = BTRFS_I(inode)->root;
1310 
1311 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1312 		BTRFS_I(inode)->outstanding_extents++;
1313 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1314 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1315 		spin_lock(&root->fs_info->delalloc_lock);
1316 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1317 		root->fs_info->delalloc_bytes += end - start + 1;
1318 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 				      &root->fs_info->delalloc_inodes);
1321 		}
1322 		spin_unlock(&root->fs_info->delalloc_lock);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /*
1328  * extent_io.c clear_bit_hook, see set_bit_hook for why
1329  */
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331 				struct extent_state *state, unsigned long bits)
1332 {
1333 	/*
1334 	 * set_bit and clear bit hooks normally require _irqsave/restore
1335 	 * but in this case, we are only testeing for the DELALLOC
1336 	 * bit, which is only set or cleared with irqs on
1337 	 */
1338 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1339 		struct btrfs_root *root = BTRFS_I(inode)->root;
1340 
1341 		if (bits & EXTENT_DO_ACCOUNTING) {
1342 			spin_lock(&BTRFS_I(inode)->accounting_lock);
1343 			BTRFS_I(inode)->outstanding_extents--;
1344 			spin_unlock(&BTRFS_I(inode)->accounting_lock);
1345 			btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1346 		}
1347 
1348 		spin_lock(&root->fs_info->delalloc_lock);
1349 		if (state->end - state->start + 1 >
1350 		    root->fs_info->delalloc_bytes) {
1351 			printk(KERN_INFO "btrfs warning: delalloc account "
1352 			       "%llu %llu\n",
1353 			       (unsigned long long)
1354 			       state->end - state->start + 1,
1355 			       (unsigned long long)
1356 			       root->fs_info->delalloc_bytes);
1357 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1358 			root->fs_info->delalloc_bytes = 0;
1359 			BTRFS_I(inode)->delalloc_bytes = 0;
1360 		} else {
1361 			btrfs_delalloc_free_space(root, inode,
1362 						  state->end -
1363 						  state->start + 1);
1364 			root->fs_info->delalloc_bytes -= state->end -
1365 				state->start + 1;
1366 			BTRFS_I(inode)->delalloc_bytes -= state->end -
1367 				state->start + 1;
1368 		}
1369 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1370 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1371 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1372 		}
1373 		spin_unlock(&root->fs_info->delalloc_lock);
1374 	}
1375 	return 0;
1376 }
1377 
1378 /*
1379  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1380  * we don't create bios that span stripes or chunks
1381  */
1382 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1383 			 size_t size, struct bio *bio,
1384 			 unsigned long bio_flags)
1385 {
1386 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1387 	struct btrfs_mapping_tree *map_tree;
1388 	u64 logical = (u64)bio->bi_sector << 9;
1389 	u64 length = 0;
1390 	u64 map_length;
1391 	int ret;
1392 
1393 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1394 		return 0;
1395 
1396 	length = bio->bi_size;
1397 	map_tree = &root->fs_info->mapping_tree;
1398 	map_length = length;
1399 	ret = btrfs_map_block(map_tree, READ, logical,
1400 			      &map_length, NULL, 0);
1401 
1402 	if (map_length < length + size)
1403 		return 1;
1404 	return 0;
1405 }
1406 
1407 /*
1408  * in order to insert checksums into the metadata in large chunks,
1409  * we wait until bio submission time.   All the pages in the bio are
1410  * checksummed and sums are attached onto the ordered extent record.
1411  *
1412  * At IO completion time the cums attached on the ordered extent record
1413  * are inserted into the btree
1414  */
1415 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1416 				    struct bio *bio, int mirror_num,
1417 				    unsigned long bio_flags)
1418 {
1419 	struct btrfs_root *root = BTRFS_I(inode)->root;
1420 	int ret = 0;
1421 
1422 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1423 	BUG_ON(ret);
1424 	return 0;
1425 }
1426 
1427 /*
1428  * in order to insert checksums into the metadata in large chunks,
1429  * we wait until bio submission time.   All the pages in the bio are
1430  * checksummed and sums are attached onto the ordered extent record.
1431  *
1432  * At IO completion time the cums attached on the ordered extent record
1433  * are inserted into the btree
1434  */
1435 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1436 			  int mirror_num, unsigned long bio_flags)
1437 {
1438 	struct btrfs_root *root = BTRFS_I(inode)->root;
1439 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 }
1441 
1442 /*
1443  * extent_io.c submission hook. This does the right thing for csum calculation
1444  * on write, or reading the csums from the tree before a read
1445  */
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447 			  int mirror_num, unsigned long bio_flags)
1448 {
1449 	struct btrfs_root *root = BTRFS_I(inode)->root;
1450 	int ret = 0;
1451 	int skip_sum;
1452 
1453 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1454 
1455 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1456 	BUG_ON(ret);
1457 
1458 	if (!(rw & (1 << BIO_RW))) {
1459 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1460 			return btrfs_submit_compressed_read(inode, bio,
1461 						    mirror_num, bio_flags);
1462 		} else if (!skip_sum)
1463 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1464 		goto mapit;
1465 	} else if (!skip_sum) {
1466 		/* csum items have already been cloned */
1467 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1468 			goto mapit;
1469 		/* we're doing a write, do the async checksumming */
1470 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1471 				   inode, rw, bio, mirror_num,
1472 				   bio_flags, __btrfs_submit_bio_start,
1473 				   __btrfs_submit_bio_done);
1474 	}
1475 
1476 mapit:
1477 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1478 }
1479 
1480 /*
1481  * given a list of ordered sums record them in the inode.  This happens
1482  * at IO completion time based on sums calculated at bio submission time.
1483  */
1484 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1485 			     struct inode *inode, u64 file_offset,
1486 			     struct list_head *list)
1487 {
1488 	struct btrfs_ordered_sum *sum;
1489 
1490 	btrfs_set_trans_block_group(trans, inode);
1491 
1492 	list_for_each_entry(sum, list, list) {
1493 		btrfs_csum_file_blocks(trans,
1494 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1495 	}
1496 	return 0;
1497 }
1498 
1499 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1500 {
1501 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502 		WARN_ON(1);
1503 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504 				   GFP_NOFS);
1505 }
1506 
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509 	struct page *page;
1510 	struct btrfs_work work;
1511 };
1512 
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515 	struct btrfs_writepage_fixup *fixup;
1516 	struct btrfs_ordered_extent *ordered;
1517 	struct page *page;
1518 	struct inode *inode;
1519 	u64 page_start;
1520 	u64 page_end;
1521 
1522 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523 	page = fixup->page;
1524 again:
1525 	lock_page(page);
1526 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 		ClearPageChecked(page);
1528 		goto out_page;
1529 	}
1530 
1531 	inode = page->mapping->host;
1532 	page_start = page_offset(page);
1533 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1534 
1535 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1536 
1537 	/* already ordered? We're done */
1538 	if (PagePrivate2(page))
1539 		goto out;
1540 
1541 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1542 	if (ordered) {
1543 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1544 			      page_end, GFP_NOFS);
1545 		unlock_page(page);
1546 		btrfs_start_ordered_extent(inode, ordered, 1);
1547 		goto again;
1548 	}
1549 
1550 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1551 	ClearPageChecked(page);
1552 out:
1553 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1554 out_page:
1555 	unlock_page(page);
1556 	page_cache_release(page);
1557 }
1558 
1559 /*
1560  * There are a few paths in the higher layers of the kernel that directly
1561  * set the page dirty bit without asking the filesystem if it is a
1562  * good idea.  This causes problems because we want to make sure COW
1563  * properly happens and the data=ordered rules are followed.
1564  *
1565  * In our case any range that doesn't have the ORDERED bit set
1566  * hasn't been properly setup for IO.  We kick off an async process
1567  * to fix it up.  The async helper will wait for ordered extents, set
1568  * the delalloc bit and make it safe to write the page.
1569  */
1570 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1571 {
1572 	struct inode *inode = page->mapping->host;
1573 	struct btrfs_writepage_fixup *fixup;
1574 	struct btrfs_root *root = BTRFS_I(inode)->root;
1575 
1576 	/* this page is properly in the ordered list */
1577 	if (TestClearPagePrivate2(page))
1578 		return 0;
1579 
1580 	if (PageChecked(page))
1581 		return -EAGAIN;
1582 
1583 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1584 	if (!fixup)
1585 		return -EAGAIN;
1586 
1587 	SetPageChecked(page);
1588 	page_cache_get(page);
1589 	fixup->work.func = btrfs_writepage_fixup_worker;
1590 	fixup->page = page;
1591 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1592 	return -EAGAIN;
1593 }
1594 
1595 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1596 				       struct inode *inode, u64 file_pos,
1597 				       u64 disk_bytenr, u64 disk_num_bytes,
1598 				       u64 num_bytes, u64 ram_bytes,
1599 				       u64 locked_end,
1600 				       u8 compression, u8 encryption,
1601 				       u16 other_encoding, int extent_type)
1602 {
1603 	struct btrfs_root *root = BTRFS_I(inode)->root;
1604 	struct btrfs_file_extent_item *fi;
1605 	struct btrfs_path *path;
1606 	struct extent_buffer *leaf;
1607 	struct btrfs_key ins;
1608 	u64 hint;
1609 	int ret;
1610 
1611 	path = btrfs_alloc_path();
1612 	BUG_ON(!path);
1613 
1614 	path->leave_spinning = 1;
1615 
1616 	/*
1617 	 * we may be replacing one extent in the tree with another.
1618 	 * The new extent is pinned in the extent map, and we don't want
1619 	 * to drop it from the cache until it is completely in the btree.
1620 	 *
1621 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1622 	 * the caller is expected to unpin it and allow it to be merged
1623 	 * with the others.
1624 	 */
1625 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1626 				 file_pos + num_bytes, locked_end,
1627 				 file_pos, &hint, 0);
1628 	BUG_ON(ret);
1629 
1630 	ins.objectid = inode->i_ino;
1631 	ins.offset = file_pos;
1632 	ins.type = BTRFS_EXTENT_DATA_KEY;
1633 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1634 	BUG_ON(ret);
1635 	leaf = path->nodes[0];
1636 	fi = btrfs_item_ptr(leaf, path->slots[0],
1637 			    struct btrfs_file_extent_item);
1638 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1639 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1640 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1641 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1642 	btrfs_set_file_extent_offset(leaf, fi, 0);
1643 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1644 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1645 	btrfs_set_file_extent_compression(leaf, fi, compression);
1646 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1647 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1648 
1649 	btrfs_unlock_up_safe(path, 1);
1650 	btrfs_set_lock_blocking(leaf);
1651 
1652 	btrfs_mark_buffer_dirty(leaf);
1653 
1654 	inode_add_bytes(inode, num_bytes);
1655 
1656 	ins.objectid = disk_bytenr;
1657 	ins.offset = disk_num_bytes;
1658 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1659 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1660 					root->root_key.objectid,
1661 					inode->i_ino, file_pos, &ins);
1662 	BUG_ON(ret);
1663 	btrfs_free_path(path);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * helper function for btrfs_finish_ordered_io, this
1670  * just reads in some of the csum leaves to prime them into ram
1671  * before we start the transaction.  It limits the amount of btree
1672  * reads required while inside the transaction.
1673  */
1674 static noinline void reada_csum(struct btrfs_root *root,
1675 				struct btrfs_path *path,
1676 				struct btrfs_ordered_extent *ordered_extent)
1677 {
1678 	struct btrfs_ordered_sum *sum;
1679 	u64 bytenr;
1680 
1681 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1682 			 list);
1683 	bytenr = sum->sums[0].bytenr;
1684 
1685 	/*
1686 	 * we don't care about the results, the point of this search is
1687 	 * just to get the btree leaves into ram
1688 	 */
1689 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1690 }
1691 
1692 /* as ordered data IO finishes, this gets called so we can finish
1693  * an ordered extent if the range of bytes in the file it covers are
1694  * fully written.
1695  */
1696 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1697 {
1698 	struct btrfs_root *root = BTRFS_I(inode)->root;
1699 	struct btrfs_trans_handle *trans;
1700 	struct btrfs_ordered_extent *ordered_extent = NULL;
1701 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1702 	struct btrfs_path *path;
1703 	int compressed = 0;
1704 	int ret;
1705 
1706 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1707 	if (!ret)
1708 		return 0;
1709 
1710 	/*
1711 	 * before we join the transaction, try to do some of our IO.
1712 	 * This will limit the amount of IO that we have to do with
1713 	 * the transaction running.  We're unlikely to need to do any
1714 	 * IO if the file extents are new, the disk_i_size checks
1715 	 * covers the most common case.
1716 	 */
1717 	if (start < BTRFS_I(inode)->disk_i_size) {
1718 		path = btrfs_alloc_path();
1719 		if (path) {
1720 			ret = btrfs_lookup_file_extent(NULL, root, path,
1721 						       inode->i_ino,
1722 						       start, 0);
1723 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1724 								     start);
1725 			if (!list_empty(&ordered_extent->list)) {
1726 				btrfs_release_path(root, path);
1727 				reada_csum(root, path, ordered_extent);
1728 			}
1729 			btrfs_free_path(path);
1730 		}
1731 	}
1732 
1733 	trans = btrfs_join_transaction(root, 1);
1734 
1735 	if (!ordered_extent)
1736 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1737 	BUG_ON(!ordered_extent);
1738 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1739 		goto nocow;
1740 
1741 	lock_extent(io_tree, ordered_extent->file_offset,
1742 		    ordered_extent->file_offset + ordered_extent->len - 1,
1743 		    GFP_NOFS);
1744 
1745 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1746 		compressed = 1;
1747 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1748 		BUG_ON(compressed);
1749 		ret = btrfs_mark_extent_written(trans, root, inode,
1750 						ordered_extent->file_offset,
1751 						ordered_extent->file_offset +
1752 						ordered_extent->len);
1753 		BUG_ON(ret);
1754 	} else {
1755 		ret = insert_reserved_file_extent(trans, inode,
1756 						ordered_extent->file_offset,
1757 						ordered_extent->start,
1758 						ordered_extent->disk_len,
1759 						ordered_extent->len,
1760 						ordered_extent->len,
1761 						ordered_extent->file_offset +
1762 						ordered_extent->len,
1763 						compressed, 0, 0,
1764 						BTRFS_FILE_EXTENT_REG);
1765 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1766 				   ordered_extent->file_offset,
1767 				   ordered_extent->len);
1768 		BUG_ON(ret);
1769 	}
1770 	unlock_extent(io_tree, ordered_extent->file_offset,
1771 		    ordered_extent->file_offset + ordered_extent->len - 1,
1772 		    GFP_NOFS);
1773 nocow:
1774 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1775 			  &ordered_extent->list);
1776 
1777 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1778 	btrfs_ordered_update_i_size(inode, ordered_extent);
1779 	btrfs_update_inode(trans, root, inode);
1780 	btrfs_remove_ordered_extent(inode, ordered_extent);
1781 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1782 
1783 	/* once for us */
1784 	btrfs_put_ordered_extent(ordered_extent);
1785 	/* once for the tree */
1786 	btrfs_put_ordered_extent(ordered_extent);
1787 
1788 	btrfs_end_transaction(trans, root);
1789 	return 0;
1790 }
1791 
1792 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1793 				struct extent_state *state, int uptodate)
1794 {
1795 	ClearPagePrivate2(page);
1796 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1797 }
1798 
1799 /*
1800  * When IO fails, either with EIO or csum verification fails, we
1801  * try other mirrors that might have a good copy of the data.  This
1802  * io_failure_record is used to record state as we go through all the
1803  * mirrors.  If another mirror has good data, the page is set up to date
1804  * and things continue.  If a good mirror can't be found, the original
1805  * bio end_io callback is called to indicate things have failed.
1806  */
1807 struct io_failure_record {
1808 	struct page *page;
1809 	u64 start;
1810 	u64 len;
1811 	u64 logical;
1812 	unsigned long bio_flags;
1813 	int last_mirror;
1814 };
1815 
1816 static int btrfs_io_failed_hook(struct bio *failed_bio,
1817 			 struct page *page, u64 start, u64 end,
1818 			 struct extent_state *state)
1819 {
1820 	struct io_failure_record *failrec = NULL;
1821 	u64 private;
1822 	struct extent_map *em;
1823 	struct inode *inode = page->mapping->host;
1824 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1826 	struct bio *bio;
1827 	int num_copies;
1828 	int ret;
1829 	int rw;
1830 	u64 logical;
1831 
1832 	ret = get_state_private(failure_tree, start, &private);
1833 	if (ret) {
1834 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1835 		if (!failrec)
1836 			return -ENOMEM;
1837 		failrec->start = start;
1838 		failrec->len = end - start + 1;
1839 		failrec->last_mirror = 0;
1840 		failrec->bio_flags = 0;
1841 
1842 		read_lock(&em_tree->lock);
1843 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1844 		if (em->start > start || em->start + em->len < start) {
1845 			free_extent_map(em);
1846 			em = NULL;
1847 		}
1848 		read_unlock(&em_tree->lock);
1849 
1850 		if (!em || IS_ERR(em)) {
1851 			kfree(failrec);
1852 			return -EIO;
1853 		}
1854 		logical = start - em->start;
1855 		logical = em->block_start + logical;
1856 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1857 			logical = em->block_start;
1858 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1859 		}
1860 		failrec->logical = logical;
1861 		free_extent_map(em);
1862 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1863 				EXTENT_DIRTY, GFP_NOFS);
1864 		set_state_private(failure_tree, start,
1865 				 (u64)(unsigned long)failrec);
1866 	} else {
1867 		failrec = (struct io_failure_record *)(unsigned long)private;
1868 	}
1869 	num_copies = btrfs_num_copies(
1870 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1871 			      failrec->logical, failrec->len);
1872 	failrec->last_mirror++;
1873 	if (!state) {
1874 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1875 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1876 						    failrec->start,
1877 						    EXTENT_LOCKED);
1878 		if (state && state->start != failrec->start)
1879 			state = NULL;
1880 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1881 	}
1882 	if (!state || failrec->last_mirror > num_copies) {
1883 		set_state_private(failure_tree, failrec->start, 0);
1884 		clear_extent_bits(failure_tree, failrec->start,
1885 				  failrec->start + failrec->len - 1,
1886 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1887 		kfree(failrec);
1888 		return -EIO;
1889 	}
1890 	bio = bio_alloc(GFP_NOFS, 1);
1891 	bio->bi_private = state;
1892 	bio->bi_end_io = failed_bio->bi_end_io;
1893 	bio->bi_sector = failrec->logical >> 9;
1894 	bio->bi_bdev = failed_bio->bi_bdev;
1895 	bio->bi_size = 0;
1896 
1897 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1898 	if (failed_bio->bi_rw & (1 << BIO_RW))
1899 		rw = WRITE;
1900 	else
1901 		rw = READ;
1902 
1903 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1904 						      failrec->last_mirror,
1905 						      failrec->bio_flags);
1906 	return 0;
1907 }
1908 
1909 /*
1910  * each time an IO finishes, we do a fast check in the IO failure tree
1911  * to see if we need to process or clean up an io_failure_record
1912  */
1913 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1914 {
1915 	u64 private;
1916 	u64 private_failure;
1917 	struct io_failure_record *failure;
1918 	int ret;
1919 
1920 	private = 0;
1921 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1922 			     (u64)-1, 1, EXTENT_DIRTY)) {
1923 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1924 					start, &private_failure);
1925 		if (ret == 0) {
1926 			failure = (struct io_failure_record *)(unsigned long)
1927 				   private_failure;
1928 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 					  failure->start, 0);
1930 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1931 					  failure->start,
1932 					  failure->start + failure->len - 1,
1933 					  EXTENT_DIRTY | EXTENT_LOCKED,
1934 					  GFP_NOFS);
1935 			kfree(failure);
1936 		}
1937 	}
1938 	return 0;
1939 }
1940 
1941 /*
1942  * when reads are done, we need to check csums to verify the data is correct
1943  * if there's a match, we allow the bio to finish.  If not, we go through
1944  * the io_failure_record routines to find good copies
1945  */
1946 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1947 			       struct extent_state *state)
1948 {
1949 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1950 	struct inode *inode = page->mapping->host;
1951 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1952 	char *kaddr;
1953 	u64 private = ~(u32)0;
1954 	int ret;
1955 	struct btrfs_root *root = BTRFS_I(inode)->root;
1956 	u32 csum = ~(u32)0;
1957 
1958 	if (PageChecked(page)) {
1959 		ClearPageChecked(page);
1960 		goto good;
1961 	}
1962 
1963 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1964 		return 0;
1965 
1966 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1967 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1968 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1969 				  GFP_NOFS);
1970 		return 0;
1971 	}
1972 
1973 	if (state && state->start == start) {
1974 		private = state->private;
1975 		ret = 0;
1976 	} else {
1977 		ret = get_state_private(io_tree, start, &private);
1978 	}
1979 	kaddr = kmap_atomic(page, KM_USER0);
1980 	if (ret)
1981 		goto zeroit;
1982 
1983 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1984 	btrfs_csum_final(csum, (char *)&csum);
1985 	if (csum != private)
1986 		goto zeroit;
1987 
1988 	kunmap_atomic(kaddr, KM_USER0);
1989 good:
1990 	/* if the io failure tree for this inode is non-empty,
1991 	 * check to see if we've recovered from a failed IO
1992 	 */
1993 	btrfs_clean_io_failures(inode, start);
1994 	return 0;
1995 
1996 zeroit:
1997 	if (printk_ratelimit()) {
1998 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1999 		       "private %llu\n", page->mapping->host->i_ino,
2000 		       (unsigned long long)start, csum,
2001 		       (unsigned long long)private);
2002 	}
2003 	memset(kaddr + offset, 1, end - start + 1);
2004 	flush_dcache_page(page);
2005 	kunmap_atomic(kaddr, KM_USER0);
2006 	if (private == 0)
2007 		return 0;
2008 	return -EIO;
2009 }
2010 
2011 /*
2012  * This creates an orphan entry for the given inode in case something goes
2013  * wrong in the middle of an unlink/truncate.
2014  */
2015 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2016 {
2017 	struct btrfs_root *root = BTRFS_I(inode)->root;
2018 	int ret = 0;
2019 
2020 	spin_lock(&root->list_lock);
2021 
2022 	/* already on the orphan list, we're good */
2023 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2024 		spin_unlock(&root->list_lock);
2025 		return 0;
2026 	}
2027 
2028 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2029 
2030 	spin_unlock(&root->list_lock);
2031 
2032 	/*
2033 	 * insert an orphan item to track this unlinked/truncated file
2034 	 */
2035 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2036 
2037 	return ret;
2038 }
2039 
2040 /*
2041  * We have done the truncate/delete so we can go ahead and remove the orphan
2042  * item for this particular inode.
2043  */
2044 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2045 {
2046 	struct btrfs_root *root = BTRFS_I(inode)->root;
2047 	int ret = 0;
2048 
2049 	spin_lock(&root->list_lock);
2050 
2051 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2052 		spin_unlock(&root->list_lock);
2053 		return 0;
2054 	}
2055 
2056 	list_del_init(&BTRFS_I(inode)->i_orphan);
2057 	if (!trans) {
2058 		spin_unlock(&root->list_lock);
2059 		return 0;
2060 	}
2061 
2062 	spin_unlock(&root->list_lock);
2063 
2064 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * this cleans up any orphans that may be left on the list from the last use
2071  * of this root.
2072  */
2073 void btrfs_orphan_cleanup(struct btrfs_root *root)
2074 {
2075 	struct btrfs_path *path;
2076 	struct extent_buffer *leaf;
2077 	struct btrfs_item *item;
2078 	struct btrfs_key key, found_key;
2079 	struct btrfs_trans_handle *trans;
2080 	struct inode *inode;
2081 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2082 
2083 	path = btrfs_alloc_path();
2084 	if (!path)
2085 		return;
2086 	path->reada = -1;
2087 
2088 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2089 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2090 	key.offset = (u64)-1;
2091 
2092 
2093 	while (1) {
2094 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2095 		if (ret < 0) {
2096 			printk(KERN_ERR "Error searching slot for orphan: %d"
2097 			       "\n", ret);
2098 			break;
2099 		}
2100 
2101 		/*
2102 		 * if ret == 0 means we found what we were searching for, which
2103 		 * is weird, but possible, so only screw with path if we didnt
2104 		 * find the key and see if we have stuff that matches
2105 		 */
2106 		if (ret > 0) {
2107 			if (path->slots[0] == 0)
2108 				break;
2109 			path->slots[0]--;
2110 		}
2111 
2112 		/* pull out the item */
2113 		leaf = path->nodes[0];
2114 		item = btrfs_item_nr(leaf, path->slots[0]);
2115 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2116 
2117 		/* make sure the item matches what we want */
2118 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2119 			break;
2120 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2121 			break;
2122 
2123 		/* release the path since we're done with it */
2124 		btrfs_release_path(root, path);
2125 
2126 		/*
2127 		 * this is where we are basically btrfs_lookup, without the
2128 		 * crossing root thing.  we store the inode number in the
2129 		 * offset of the orphan item.
2130 		 */
2131 		found_key.objectid = found_key.offset;
2132 		found_key.type = BTRFS_INODE_ITEM_KEY;
2133 		found_key.offset = 0;
2134 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2135 		if (IS_ERR(inode))
2136 			break;
2137 
2138 		/*
2139 		 * add this inode to the orphan list so btrfs_orphan_del does
2140 		 * the proper thing when we hit it
2141 		 */
2142 		spin_lock(&root->list_lock);
2143 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2144 		spin_unlock(&root->list_lock);
2145 
2146 		/*
2147 		 * if this is a bad inode, means we actually succeeded in
2148 		 * removing the inode, but not the orphan record, which means
2149 		 * we need to manually delete the orphan since iput will just
2150 		 * do a destroy_inode
2151 		 */
2152 		if (is_bad_inode(inode)) {
2153 			trans = btrfs_start_transaction(root, 1);
2154 			btrfs_orphan_del(trans, inode);
2155 			btrfs_end_transaction(trans, root);
2156 			iput(inode);
2157 			continue;
2158 		}
2159 
2160 		/* if we have links, this was a truncate, lets do that */
2161 		if (inode->i_nlink) {
2162 			nr_truncate++;
2163 			btrfs_truncate(inode);
2164 		} else {
2165 			nr_unlink++;
2166 		}
2167 
2168 		/* this will do delete_inode and everything for us */
2169 		iput(inode);
2170 	}
2171 
2172 	if (nr_unlink)
2173 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2174 	if (nr_truncate)
2175 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2176 
2177 	btrfs_free_path(path);
2178 }
2179 
2180 /*
2181  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2182  * don't find any xattrs, we know there can't be any acls.
2183  *
2184  * slot is the slot the inode is in, objectid is the objectid of the inode
2185  */
2186 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2187 					  int slot, u64 objectid)
2188 {
2189 	u32 nritems = btrfs_header_nritems(leaf);
2190 	struct btrfs_key found_key;
2191 	int scanned = 0;
2192 
2193 	slot++;
2194 	while (slot < nritems) {
2195 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2196 
2197 		/* we found a different objectid, there must not be acls */
2198 		if (found_key.objectid != objectid)
2199 			return 0;
2200 
2201 		/* we found an xattr, assume we've got an acl */
2202 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2203 			return 1;
2204 
2205 		/*
2206 		 * we found a key greater than an xattr key, there can't
2207 		 * be any acls later on
2208 		 */
2209 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2210 			return 0;
2211 
2212 		slot++;
2213 		scanned++;
2214 
2215 		/*
2216 		 * it goes inode, inode backrefs, xattrs, extents,
2217 		 * so if there are a ton of hard links to an inode there can
2218 		 * be a lot of backrefs.  Don't waste time searching too hard,
2219 		 * this is just an optimization
2220 		 */
2221 		if (scanned >= 8)
2222 			break;
2223 	}
2224 	/* we hit the end of the leaf before we found an xattr or
2225 	 * something larger than an xattr.  We have to assume the inode
2226 	 * has acls
2227 	 */
2228 	return 1;
2229 }
2230 
2231 /*
2232  * read an inode from the btree into the in-memory inode
2233  */
2234 static void btrfs_read_locked_inode(struct inode *inode)
2235 {
2236 	struct btrfs_path *path;
2237 	struct extent_buffer *leaf;
2238 	struct btrfs_inode_item *inode_item;
2239 	struct btrfs_timespec *tspec;
2240 	struct btrfs_root *root = BTRFS_I(inode)->root;
2241 	struct btrfs_key location;
2242 	int maybe_acls;
2243 	u64 alloc_group_block;
2244 	u32 rdev;
2245 	int ret;
2246 
2247 	path = btrfs_alloc_path();
2248 	BUG_ON(!path);
2249 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2250 
2251 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2252 	if (ret)
2253 		goto make_bad;
2254 
2255 	leaf = path->nodes[0];
2256 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2257 				    struct btrfs_inode_item);
2258 
2259 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2260 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2261 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2262 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2263 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2264 
2265 	tspec = btrfs_inode_atime(inode_item);
2266 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2267 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2268 
2269 	tspec = btrfs_inode_mtime(inode_item);
2270 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2271 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2272 
2273 	tspec = btrfs_inode_ctime(inode_item);
2274 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2275 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2276 
2277 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2278 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2279 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2280 	inode->i_generation = BTRFS_I(inode)->generation;
2281 	inode->i_rdev = 0;
2282 	rdev = btrfs_inode_rdev(leaf, inode_item);
2283 
2284 	BTRFS_I(inode)->index_cnt = (u64)-1;
2285 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2286 
2287 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2288 
2289 	/*
2290 	 * try to precache a NULL acl entry for files that don't have
2291 	 * any xattrs or acls
2292 	 */
2293 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2294 	if (!maybe_acls)
2295 		cache_no_acl(inode);
2296 
2297 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2298 						alloc_group_block, 0);
2299 	btrfs_free_path(path);
2300 	inode_item = NULL;
2301 
2302 	switch (inode->i_mode & S_IFMT) {
2303 	case S_IFREG:
2304 		inode->i_mapping->a_ops = &btrfs_aops;
2305 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2306 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2307 		inode->i_fop = &btrfs_file_operations;
2308 		inode->i_op = &btrfs_file_inode_operations;
2309 		break;
2310 	case S_IFDIR:
2311 		inode->i_fop = &btrfs_dir_file_operations;
2312 		if (root == root->fs_info->tree_root)
2313 			inode->i_op = &btrfs_dir_ro_inode_operations;
2314 		else
2315 			inode->i_op = &btrfs_dir_inode_operations;
2316 		break;
2317 	case S_IFLNK:
2318 		inode->i_op = &btrfs_symlink_inode_operations;
2319 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2320 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2321 		break;
2322 	default:
2323 		inode->i_op = &btrfs_special_inode_operations;
2324 		init_special_inode(inode, inode->i_mode, rdev);
2325 		break;
2326 	}
2327 
2328 	btrfs_update_iflags(inode);
2329 	return;
2330 
2331 make_bad:
2332 	btrfs_free_path(path);
2333 	make_bad_inode(inode);
2334 }
2335 
2336 /*
2337  * given a leaf and an inode, copy the inode fields into the leaf
2338  */
2339 static void fill_inode_item(struct btrfs_trans_handle *trans,
2340 			    struct extent_buffer *leaf,
2341 			    struct btrfs_inode_item *item,
2342 			    struct inode *inode)
2343 {
2344 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2345 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2346 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2347 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2348 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2349 
2350 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2351 			       inode->i_atime.tv_sec);
2352 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2353 				inode->i_atime.tv_nsec);
2354 
2355 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2356 			       inode->i_mtime.tv_sec);
2357 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2358 				inode->i_mtime.tv_nsec);
2359 
2360 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2361 			       inode->i_ctime.tv_sec);
2362 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2363 				inode->i_ctime.tv_nsec);
2364 
2365 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2366 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2367 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2368 	btrfs_set_inode_transid(leaf, item, trans->transid);
2369 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2370 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2371 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2372 }
2373 
2374 /*
2375  * copy everything in the in-memory inode into the btree.
2376  */
2377 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2378 				struct btrfs_root *root, struct inode *inode)
2379 {
2380 	struct btrfs_inode_item *inode_item;
2381 	struct btrfs_path *path;
2382 	struct extent_buffer *leaf;
2383 	int ret;
2384 
2385 	path = btrfs_alloc_path();
2386 	BUG_ON(!path);
2387 	path->leave_spinning = 1;
2388 	ret = btrfs_lookup_inode(trans, root, path,
2389 				 &BTRFS_I(inode)->location, 1);
2390 	if (ret) {
2391 		if (ret > 0)
2392 			ret = -ENOENT;
2393 		goto failed;
2394 	}
2395 
2396 	btrfs_unlock_up_safe(path, 1);
2397 	leaf = path->nodes[0];
2398 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2399 				  struct btrfs_inode_item);
2400 
2401 	fill_inode_item(trans, leaf, inode_item, inode);
2402 	btrfs_mark_buffer_dirty(leaf);
2403 	btrfs_set_inode_last_trans(trans, inode);
2404 	ret = 0;
2405 failed:
2406 	btrfs_free_path(path);
2407 	return ret;
2408 }
2409 
2410 
2411 /*
2412  * unlink helper that gets used here in inode.c and in the tree logging
2413  * recovery code.  It remove a link in a directory with a given name, and
2414  * also drops the back refs in the inode to the directory
2415  */
2416 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2417 		       struct btrfs_root *root,
2418 		       struct inode *dir, struct inode *inode,
2419 		       const char *name, int name_len)
2420 {
2421 	struct btrfs_path *path;
2422 	int ret = 0;
2423 	struct extent_buffer *leaf;
2424 	struct btrfs_dir_item *di;
2425 	struct btrfs_key key;
2426 	u64 index;
2427 
2428 	path = btrfs_alloc_path();
2429 	if (!path) {
2430 		ret = -ENOMEM;
2431 		goto err;
2432 	}
2433 
2434 	path->leave_spinning = 1;
2435 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2436 				    name, name_len, -1);
2437 	if (IS_ERR(di)) {
2438 		ret = PTR_ERR(di);
2439 		goto err;
2440 	}
2441 	if (!di) {
2442 		ret = -ENOENT;
2443 		goto err;
2444 	}
2445 	leaf = path->nodes[0];
2446 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2447 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2448 	if (ret)
2449 		goto err;
2450 	btrfs_release_path(root, path);
2451 
2452 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2453 				  inode->i_ino,
2454 				  dir->i_ino, &index);
2455 	if (ret) {
2456 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2457 		       "inode %lu parent %lu\n", name_len, name,
2458 		       inode->i_ino, dir->i_ino);
2459 		goto err;
2460 	}
2461 
2462 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2463 					 index, name, name_len, -1);
2464 	if (IS_ERR(di)) {
2465 		ret = PTR_ERR(di);
2466 		goto err;
2467 	}
2468 	if (!di) {
2469 		ret = -ENOENT;
2470 		goto err;
2471 	}
2472 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2473 	btrfs_release_path(root, path);
2474 
2475 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2476 					 inode, dir->i_ino);
2477 	BUG_ON(ret != 0 && ret != -ENOENT);
2478 
2479 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2480 					   dir, index);
2481 	BUG_ON(ret);
2482 err:
2483 	btrfs_free_path(path);
2484 	if (ret)
2485 		goto out;
2486 
2487 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2488 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2489 	btrfs_update_inode(trans, root, dir);
2490 	btrfs_drop_nlink(inode);
2491 	ret = btrfs_update_inode(trans, root, inode);
2492 out:
2493 	return ret;
2494 }
2495 
2496 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2497 {
2498 	struct btrfs_root *root;
2499 	struct btrfs_trans_handle *trans;
2500 	struct inode *inode = dentry->d_inode;
2501 	int ret;
2502 	unsigned long nr = 0;
2503 
2504 	root = BTRFS_I(dir)->root;
2505 
2506 	/*
2507 	 * 5 items for unlink inode
2508 	 * 1 for orphan
2509 	 */
2510 	ret = btrfs_reserve_metadata_space(root, 6);
2511 	if (ret)
2512 		return ret;
2513 
2514 	trans = btrfs_start_transaction(root, 1);
2515 	if (IS_ERR(trans)) {
2516 		btrfs_unreserve_metadata_space(root, 6);
2517 		return PTR_ERR(trans);
2518 	}
2519 
2520 	btrfs_set_trans_block_group(trans, dir);
2521 
2522 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2523 
2524 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2525 				 dentry->d_name.name, dentry->d_name.len);
2526 
2527 	if (inode->i_nlink == 0)
2528 		ret = btrfs_orphan_add(trans, inode);
2529 
2530 	nr = trans->blocks_used;
2531 
2532 	btrfs_end_transaction_throttle(trans, root);
2533 	btrfs_unreserve_metadata_space(root, 6);
2534 	btrfs_btree_balance_dirty(root, nr);
2535 	return ret;
2536 }
2537 
2538 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2539 			struct btrfs_root *root,
2540 			struct inode *dir, u64 objectid,
2541 			const char *name, int name_len)
2542 {
2543 	struct btrfs_path *path;
2544 	struct extent_buffer *leaf;
2545 	struct btrfs_dir_item *di;
2546 	struct btrfs_key key;
2547 	u64 index;
2548 	int ret;
2549 
2550 	path = btrfs_alloc_path();
2551 	if (!path)
2552 		return -ENOMEM;
2553 
2554 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2555 				   name, name_len, -1);
2556 	BUG_ON(!di || IS_ERR(di));
2557 
2558 	leaf = path->nodes[0];
2559 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2560 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2561 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2562 	BUG_ON(ret);
2563 	btrfs_release_path(root, path);
2564 
2565 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2566 				 objectid, root->root_key.objectid,
2567 				 dir->i_ino, &index, name, name_len);
2568 	if (ret < 0) {
2569 		BUG_ON(ret != -ENOENT);
2570 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2571 						 name, name_len);
2572 		BUG_ON(!di || IS_ERR(di));
2573 
2574 		leaf = path->nodes[0];
2575 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 		btrfs_release_path(root, path);
2577 		index = key.offset;
2578 	}
2579 
2580 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2581 					 index, name, name_len, -1);
2582 	BUG_ON(!di || IS_ERR(di));
2583 
2584 	leaf = path->nodes[0];
2585 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2586 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2587 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2588 	BUG_ON(ret);
2589 	btrfs_release_path(root, path);
2590 
2591 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2592 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2593 	ret = btrfs_update_inode(trans, root, dir);
2594 	BUG_ON(ret);
2595 	dir->i_sb->s_dirt = 1;
2596 
2597 	btrfs_free_path(path);
2598 	return 0;
2599 }
2600 
2601 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2602 {
2603 	struct inode *inode = dentry->d_inode;
2604 	int err = 0;
2605 	int ret;
2606 	struct btrfs_root *root = BTRFS_I(dir)->root;
2607 	struct btrfs_trans_handle *trans;
2608 	unsigned long nr = 0;
2609 
2610 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2611 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2612 		return -ENOTEMPTY;
2613 
2614 	ret = btrfs_reserve_metadata_space(root, 5);
2615 	if (ret)
2616 		return ret;
2617 
2618 	trans = btrfs_start_transaction(root, 1);
2619 	if (IS_ERR(trans)) {
2620 		btrfs_unreserve_metadata_space(root, 5);
2621 		return PTR_ERR(trans);
2622 	}
2623 
2624 	btrfs_set_trans_block_group(trans, dir);
2625 
2626 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2627 		err = btrfs_unlink_subvol(trans, root, dir,
2628 					  BTRFS_I(inode)->location.objectid,
2629 					  dentry->d_name.name,
2630 					  dentry->d_name.len);
2631 		goto out;
2632 	}
2633 
2634 	err = btrfs_orphan_add(trans, inode);
2635 	if (err)
2636 		goto out;
2637 
2638 	/* now the directory is empty */
2639 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2640 				 dentry->d_name.name, dentry->d_name.len);
2641 	if (!err)
2642 		btrfs_i_size_write(inode, 0);
2643 out:
2644 	nr = trans->blocks_used;
2645 	ret = btrfs_end_transaction_throttle(trans, root);
2646 	btrfs_unreserve_metadata_space(root, 5);
2647 	btrfs_btree_balance_dirty(root, nr);
2648 
2649 	if (ret && !err)
2650 		err = ret;
2651 	return err;
2652 }
2653 
2654 #if 0
2655 /*
2656  * when truncating bytes in a file, it is possible to avoid reading
2657  * the leaves that contain only checksum items.  This can be the
2658  * majority of the IO required to delete a large file, but it must
2659  * be done carefully.
2660  *
2661  * The keys in the level just above the leaves are checked to make sure
2662  * the lowest key in a given leaf is a csum key, and starts at an offset
2663  * after the new  size.
2664  *
2665  * Then the key for the next leaf is checked to make sure it also has
2666  * a checksum item for the same file.  If it does, we know our target leaf
2667  * contains only checksum items, and it can be safely freed without reading
2668  * it.
2669  *
2670  * This is just an optimization targeted at large files.  It may do
2671  * nothing.  It will return 0 unless things went badly.
2672  */
2673 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2674 				     struct btrfs_root *root,
2675 				     struct btrfs_path *path,
2676 				     struct inode *inode, u64 new_size)
2677 {
2678 	struct btrfs_key key;
2679 	int ret;
2680 	int nritems;
2681 	struct btrfs_key found_key;
2682 	struct btrfs_key other_key;
2683 	struct btrfs_leaf_ref *ref;
2684 	u64 leaf_gen;
2685 	u64 leaf_start;
2686 
2687 	path->lowest_level = 1;
2688 	key.objectid = inode->i_ino;
2689 	key.type = BTRFS_CSUM_ITEM_KEY;
2690 	key.offset = new_size;
2691 again:
2692 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2693 	if (ret < 0)
2694 		goto out;
2695 
2696 	if (path->nodes[1] == NULL) {
2697 		ret = 0;
2698 		goto out;
2699 	}
2700 	ret = 0;
2701 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2702 	nritems = btrfs_header_nritems(path->nodes[1]);
2703 
2704 	if (!nritems)
2705 		goto out;
2706 
2707 	if (path->slots[1] >= nritems)
2708 		goto next_node;
2709 
2710 	/* did we find a key greater than anything we want to delete? */
2711 	if (found_key.objectid > inode->i_ino ||
2712 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2713 		goto out;
2714 
2715 	/* we check the next key in the node to make sure the leave contains
2716 	 * only checksum items.  This comparison doesn't work if our
2717 	 * leaf is the last one in the node
2718 	 */
2719 	if (path->slots[1] + 1 >= nritems) {
2720 next_node:
2721 		/* search forward from the last key in the node, this
2722 		 * will bring us into the next node in the tree
2723 		 */
2724 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2725 
2726 		/* unlikely, but we inc below, so check to be safe */
2727 		if (found_key.offset == (u64)-1)
2728 			goto out;
2729 
2730 		/* search_forward needs a path with locks held, do the
2731 		 * search again for the original key.  It is possible
2732 		 * this will race with a balance and return a path that
2733 		 * we could modify, but this drop is just an optimization
2734 		 * and is allowed to miss some leaves.
2735 		 */
2736 		btrfs_release_path(root, path);
2737 		found_key.offset++;
2738 
2739 		/* setup a max key for search_forward */
2740 		other_key.offset = (u64)-1;
2741 		other_key.type = key.type;
2742 		other_key.objectid = key.objectid;
2743 
2744 		path->keep_locks = 1;
2745 		ret = btrfs_search_forward(root, &found_key, &other_key,
2746 					   path, 0, 0);
2747 		path->keep_locks = 0;
2748 		if (ret || found_key.objectid != key.objectid ||
2749 		    found_key.type != key.type) {
2750 			ret = 0;
2751 			goto out;
2752 		}
2753 
2754 		key.offset = found_key.offset;
2755 		btrfs_release_path(root, path);
2756 		cond_resched();
2757 		goto again;
2758 	}
2759 
2760 	/* we know there's one more slot after us in the tree,
2761 	 * read that key so we can verify it is also a checksum item
2762 	 */
2763 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2764 
2765 	if (found_key.objectid < inode->i_ino)
2766 		goto next_key;
2767 
2768 	if (found_key.type != key.type || found_key.offset < new_size)
2769 		goto next_key;
2770 
2771 	/*
2772 	 * if the key for the next leaf isn't a csum key from this objectid,
2773 	 * we can't be sure there aren't good items inside this leaf.
2774 	 * Bail out
2775 	 */
2776 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2777 		goto out;
2778 
2779 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2780 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2781 	/*
2782 	 * it is safe to delete this leaf, it contains only
2783 	 * csum items from this inode at an offset >= new_size
2784 	 */
2785 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2786 	BUG_ON(ret);
2787 
2788 	if (root->ref_cows && leaf_gen < trans->transid) {
2789 		ref = btrfs_alloc_leaf_ref(root, 0);
2790 		if (ref) {
2791 			ref->root_gen = root->root_key.offset;
2792 			ref->bytenr = leaf_start;
2793 			ref->owner = 0;
2794 			ref->generation = leaf_gen;
2795 			ref->nritems = 0;
2796 
2797 			btrfs_sort_leaf_ref(ref);
2798 
2799 			ret = btrfs_add_leaf_ref(root, ref, 0);
2800 			WARN_ON(ret);
2801 			btrfs_free_leaf_ref(root, ref);
2802 		} else {
2803 			WARN_ON(1);
2804 		}
2805 	}
2806 next_key:
2807 	btrfs_release_path(root, path);
2808 
2809 	if (other_key.objectid == inode->i_ino &&
2810 	    other_key.type == key.type && other_key.offset > key.offset) {
2811 		key.offset = other_key.offset;
2812 		cond_resched();
2813 		goto again;
2814 	}
2815 	ret = 0;
2816 out:
2817 	/* fixup any changes we've made to the path */
2818 	path->lowest_level = 0;
2819 	path->keep_locks = 0;
2820 	btrfs_release_path(root, path);
2821 	return ret;
2822 }
2823 
2824 #endif
2825 
2826 /*
2827  * this can truncate away extent items, csum items and directory items.
2828  * It starts at a high offset and removes keys until it can't find
2829  * any higher than new_size
2830  *
2831  * csum items that cross the new i_size are truncated to the new size
2832  * as well.
2833  *
2834  * min_type is the minimum key type to truncate down to.  If set to 0, this
2835  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2836  */
2837 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2838 					struct btrfs_root *root,
2839 					struct inode *inode,
2840 					u64 new_size, u32 min_type)
2841 {
2842 	int ret;
2843 	struct btrfs_path *path;
2844 	struct btrfs_key key;
2845 	struct btrfs_key found_key;
2846 	u32 found_type = (u8)-1;
2847 	struct extent_buffer *leaf;
2848 	struct btrfs_file_extent_item *fi;
2849 	u64 extent_start = 0;
2850 	u64 extent_num_bytes = 0;
2851 	u64 extent_offset = 0;
2852 	u64 item_end = 0;
2853 	int found_extent;
2854 	int del_item;
2855 	int pending_del_nr = 0;
2856 	int pending_del_slot = 0;
2857 	int extent_type = -1;
2858 	int encoding;
2859 	u64 mask = root->sectorsize - 1;
2860 
2861 	if (root->ref_cows)
2862 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2863 	path = btrfs_alloc_path();
2864 	BUG_ON(!path);
2865 	path->reada = -1;
2866 
2867 	/* FIXME, add redo link to tree so we don't leak on crash */
2868 	key.objectid = inode->i_ino;
2869 	key.offset = (u64)-1;
2870 	key.type = (u8)-1;
2871 
2872 search_again:
2873 	path->leave_spinning = 1;
2874 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2875 	if (ret < 0)
2876 		goto error;
2877 
2878 	if (ret > 0) {
2879 		/* there are no items in the tree for us to truncate, we're
2880 		 * done
2881 		 */
2882 		if (path->slots[0] == 0) {
2883 			ret = 0;
2884 			goto error;
2885 		}
2886 		path->slots[0]--;
2887 	}
2888 
2889 	while (1) {
2890 		fi = NULL;
2891 		leaf = path->nodes[0];
2892 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2893 		found_type = btrfs_key_type(&found_key);
2894 		encoding = 0;
2895 
2896 		if (found_key.objectid != inode->i_ino)
2897 			break;
2898 
2899 		if (found_type < min_type)
2900 			break;
2901 
2902 		item_end = found_key.offset;
2903 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2904 			fi = btrfs_item_ptr(leaf, path->slots[0],
2905 					    struct btrfs_file_extent_item);
2906 			extent_type = btrfs_file_extent_type(leaf, fi);
2907 			encoding = btrfs_file_extent_compression(leaf, fi);
2908 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2909 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2910 
2911 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2912 				item_end +=
2913 				    btrfs_file_extent_num_bytes(leaf, fi);
2914 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2915 				item_end += btrfs_file_extent_inline_len(leaf,
2916 									 fi);
2917 			}
2918 			item_end--;
2919 		}
2920 		if (item_end < new_size) {
2921 			if (found_type == BTRFS_DIR_ITEM_KEY)
2922 				found_type = BTRFS_INODE_ITEM_KEY;
2923 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2924 				found_type = BTRFS_EXTENT_DATA_KEY;
2925 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2926 				found_type = BTRFS_XATTR_ITEM_KEY;
2927 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2928 				found_type = BTRFS_INODE_REF_KEY;
2929 			else if (found_type)
2930 				found_type--;
2931 			else
2932 				break;
2933 			btrfs_set_key_type(&key, found_type);
2934 			goto next;
2935 		}
2936 		if (found_key.offset >= new_size)
2937 			del_item = 1;
2938 		else
2939 			del_item = 0;
2940 		found_extent = 0;
2941 
2942 		/* FIXME, shrink the extent if the ref count is only 1 */
2943 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2944 			goto delete;
2945 
2946 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2947 			u64 num_dec;
2948 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2949 			if (!del_item && !encoding) {
2950 				u64 orig_num_bytes =
2951 					btrfs_file_extent_num_bytes(leaf, fi);
2952 				extent_num_bytes = new_size -
2953 					found_key.offset + root->sectorsize - 1;
2954 				extent_num_bytes = extent_num_bytes &
2955 					~((u64)root->sectorsize - 1);
2956 				btrfs_set_file_extent_num_bytes(leaf, fi,
2957 							 extent_num_bytes);
2958 				num_dec = (orig_num_bytes -
2959 					   extent_num_bytes);
2960 				if (root->ref_cows && extent_start != 0)
2961 					inode_sub_bytes(inode, num_dec);
2962 				btrfs_mark_buffer_dirty(leaf);
2963 			} else {
2964 				extent_num_bytes =
2965 					btrfs_file_extent_disk_num_bytes(leaf,
2966 									 fi);
2967 				extent_offset = found_key.offset -
2968 					btrfs_file_extent_offset(leaf, fi);
2969 
2970 				/* FIXME blocksize != 4096 */
2971 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2972 				if (extent_start != 0) {
2973 					found_extent = 1;
2974 					if (root->ref_cows)
2975 						inode_sub_bytes(inode, num_dec);
2976 				}
2977 			}
2978 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2979 			/*
2980 			 * we can't truncate inline items that have had
2981 			 * special encodings
2982 			 */
2983 			if (!del_item &&
2984 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2985 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2986 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2987 				u32 size = new_size - found_key.offset;
2988 
2989 				if (root->ref_cows) {
2990 					inode_sub_bytes(inode, item_end + 1 -
2991 							new_size);
2992 				}
2993 				size =
2994 				    btrfs_file_extent_calc_inline_size(size);
2995 				ret = btrfs_truncate_item(trans, root, path,
2996 							  size, 1);
2997 				BUG_ON(ret);
2998 			} else if (root->ref_cows) {
2999 				inode_sub_bytes(inode, item_end + 1 -
3000 						found_key.offset);
3001 			}
3002 		}
3003 delete:
3004 		if (del_item) {
3005 			if (!pending_del_nr) {
3006 				/* no pending yet, add ourselves */
3007 				pending_del_slot = path->slots[0];
3008 				pending_del_nr = 1;
3009 			} else if (pending_del_nr &&
3010 				   path->slots[0] + 1 == pending_del_slot) {
3011 				/* hop on the pending chunk */
3012 				pending_del_nr++;
3013 				pending_del_slot = path->slots[0];
3014 			} else {
3015 				BUG();
3016 			}
3017 		} else {
3018 			break;
3019 		}
3020 		if (found_extent && root->ref_cows) {
3021 			btrfs_set_path_blocking(path);
3022 			ret = btrfs_free_extent(trans, root, extent_start,
3023 						extent_num_bytes, 0,
3024 						btrfs_header_owner(leaf),
3025 						inode->i_ino, extent_offset);
3026 			BUG_ON(ret);
3027 		}
3028 next:
3029 		if (path->slots[0] == 0) {
3030 			if (pending_del_nr)
3031 				goto del_pending;
3032 			btrfs_release_path(root, path);
3033 			if (found_type == BTRFS_INODE_ITEM_KEY)
3034 				break;
3035 			goto search_again;
3036 		}
3037 
3038 		path->slots[0]--;
3039 		if (pending_del_nr &&
3040 		    path->slots[0] + 1 != pending_del_slot) {
3041 			struct btrfs_key debug;
3042 del_pending:
3043 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
3044 					      pending_del_slot);
3045 			ret = btrfs_del_items(trans, root, path,
3046 					      pending_del_slot,
3047 					      pending_del_nr);
3048 			BUG_ON(ret);
3049 			pending_del_nr = 0;
3050 			btrfs_release_path(root, path);
3051 			if (found_type == BTRFS_INODE_ITEM_KEY)
3052 				break;
3053 			goto search_again;
3054 		}
3055 	}
3056 	ret = 0;
3057 error:
3058 	if (pending_del_nr) {
3059 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3060 				      pending_del_nr);
3061 	}
3062 	btrfs_free_path(path);
3063 	return ret;
3064 }
3065 
3066 /*
3067  * taken from block_truncate_page, but does cow as it zeros out
3068  * any bytes left in the last page in the file.
3069  */
3070 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3071 {
3072 	struct inode *inode = mapping->host;
3073 	struct btrfs_root *root = BTRFS_I(inode)->root;
3074 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3075 	struct btrfs_ordered_extent *ordered;
3076 	char *kaddr;
3077 	u32 blocksize = root->sectorsize;
3078 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3079 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3080 	struct page *page;
3081 	int ret = 0;
3082 	u64 page_start;
3083 	u64 page_end;
3084 
3085 	if ((offset & (blocksize - 1)) == 0)
3086 		goto out;
3087 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3088 	if (ret)
3089 		goto out;
3090 
3091 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3092 	if (ret)
3093 		goto out;
3094 
3095 	ret = -ENOMEM;
3096 again:
3097 	page = grab_cache_page(mapping, index);
3098 	if (!page) {
3099 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3100 		btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3101 		goto out;
3102 	}
3103 
3104 	page_start = page_offset(page);
3105 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3106 
3107 	if (!PageUptodate(page)) {
3108 		ret = btrfs_readpage(NULL, page);
3109 		lock_page(page);
3110 		if (page->mapping != mapping) {
3111 			unlock_page(page);
3112 			page_cache_release(page);
3113 			goto again;
3114 		}
3115 		if (!PageUptodate(page)) {
3116 			ret = -EIO;
3117 			goto out_unlock;
3118 		}
3119 	}
3120 	wait_on_page_writeback(page);
3121 
3122 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123 	set_page_extent_mapped(page);
3124 
3125 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3126 	if (ordered) {
3127 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3128 		unlock_page(page);
3129 		page_cache_release(page);
3130 		btrfs_start_ordered_extent(inode, ordered, 1);
3131 		btrfs_put_ordered_extent(ordered);
3132 		goto again;
3133 	}
3134 
3135 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3136 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3137 			  GFP_NOFS);
3138 
3139 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3140 	if (ret) {
3141 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3142 		goto out_unlock;
3143 	}
3144 
3145 	ret = 0;
3146 	if (offset != PAGE_CACHE_SIZE) {
3147 		kaddr = kmap(page);
3148 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3149 		flush_dcache_page(page);
3150 		kunmap(page);
3151 	}
3152 	ClearPageChecked(page);
3153 	set_page_dirty(page);
3154 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3155 
3156 out_unlock:
3157 	if (ret)
3158 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3159 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3160 	unlock_page(page);
3161 	page_cache_release(page);
3162 out:
3163 	return ret;
3164 }
3165 
3166 int btrfs_cont_expand(struct inode *inode, loff_t size)
3167 {
3168 	struct btrfs_trans_handle *trans;
3169 	struct btrfs_root *root = BTRFS_I(inode)->root;
3170 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 	struct extent_map *em;
3172 	u64 mask = root->sectorsize - 1;
3173 	u64 hole_start = (inode->i_size + mask) & ~mask;
3174 	u64 block_end = (size + mask) & ~mask;
3175 	u64 last_byte;
3176 	u64 cur_offset;
3177 	u64 hole_size;
3178 	int err = 0;
3179 
3180 	if (size <= hole_start)
3181 		return 0;
3182 
3183 	err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3184 	if (err)
3185 		return err;
3186 
3187 	while (1) {
3188 		struct btrfs_ordered_extent *ordered;
3189 		btrfs_wait_ordered_range(inode, hole_start,
3190 					 block_end - hole_start);
3191 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3192 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3193 		if (!ordered)
3194 			break;
3195 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3196 		btrfs_put_ordered_extent(ordered);
3197 	}
3198 
3199 	trans = btrfs_start_transaction(root, 1);
3200 	btrfs_set_trans_block_group(trans, inode);
3201 
3202 	cur_offset = hole_start;
3203 	while (1) {
3204 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3205 				block_end - cur_offset, 0);
3206 		BUG_ON(IS_ERR(em) || !em);
3207 		last_byte = min(extent_map_end(em), block_end);
3208 		last_byte = (last_byte + mask) & ~mask;
3209 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3210 			u64 hint_byte = 0;
3211 			hole_size = last_byte - cur_offset;
3212 			err = btrfs_drop_extents(trans, root, inode,
3213 						 cur_offset,
3214 						 cur_offset + hole_size,
3215 						 block_end,
3216 						 cur_offset, &hint_byte, 1);
3217 			if (err)
3218 				break;
3219 
3220 			err = btrfs_reserve_metadata_space(root, 1);
3221 			if (err)
3222 				break;
3223 
3224 			err = btrfs_insert_file_extent(trans, root,
3225 					inode->i_ino, cur_offset, 0,
3226 					0, hole_size, 0, hole_size,
3227 					0, 0, 0);
3228 			btrfs_drop_extent_cache(inode, hole_start,
3229 					last_byte - 1, 0);
3230 			btrfs_unreserve_metadata_space(root, 1);
3231 		}
3232 		free_extent_map(em);
3233 		cur_offset = last_byte;
3234 		if (err || cur_offset >= block_end)
3235 			break;
3236 	}
3237 
3238 	btrfs_end_transaction(trans, root);
3239 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3240 	return err;
3241 }
3242 
3243 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3244 {
3245 	struct inode *inode = dentry->d_inode;
3246 	int err;
3247 
3248 	err = inode_change_ok(inode, attr);
3249 	if (err)
3250 		return err;
3251 
3252 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3253 		if (attr->ia_size > inode->i_size) {
3254 			err = btrfs_cont_expand(inode, attr->ia_size);
3255 			if (err)
3256 				return err;
3257 		} else if (inode->i_size > 0 &&
3258 			   attr->ia_size == 0) {
3259 
3260 			/* we're truncating a file that used to have good
3261 			 * data down to zero.  Make sure it gets into
3262 			 * the ordered flush list so that any new writes
3263 			 * get down to disk quickly.
3264 			 */
3265 			BTRFS_I(inode)->ordered_data_close = 1;
3266 		}
3267 	}
3268 
3269 	err = inode_setattr(inode, attr);
3270 
3271 	if (!err && ((attr->ia_valid & ATTR_MODE)))
3272 		err = btrfs_acl_chmod(inode);
3273 	return err;
3274 }
3275 
3276 void btrfs_delete_inode(struct inode *inode)
3277 {
3278 	struct btrfs_trans_handle *trans;
3279 	struct btrfs_root *root = BTRFS_I(inode)->root;
3280 	unsigned long nr;
3281 	int ret;
3282 
3283 	truncate_inode_pages(&inode->i_data, 0);
3284 	if (is_bad_inode(inode)) {
3285 		btrfs_orphan_del(NULL, inode);
3286 		goto no_delete;
3287 	}
3288 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3289 
3290 	if (inode->i_nlink > 0) {
3291 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3292 		goto no_delete;
3293 	}
3294 
3295 	btrfs_i_size_write(inode, 0);
3296 	trans = btrfs_join_transaction(root, 1);
3297 
3298 	btrfs_set_trans_block_group(trans, inode);
3299 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3300 	if (ret) {
3301 		btrfs_orphan_del(NULL, inode);
3302 		goto no_delete_lock;
3303 	}
3304 
3305 	btrfs_orphan_del(trans, inode);
3306 
3307 	nr = trans->blocks_used;
3308 	clear_inode(inode);
3309 
3310 	btrfs_end_transaction(trans, root);
3311 	btrfs_btree_balance_dirty(root, nr);
3312 	return;
3313 
3314 no_delete_lock:
3315 	nr = trans->blocks_used;
3316 	btrfs_end_transaction(trans, root);
3317 	btrfs_btree_balance_dirty(root, nr);
3318 no_delete:
3319 	clear_inode(inode);
3320 }
3321 
3322 /*
3323  * this returns the key found in the dir entry in the location pointer.
3324  * If no dir entries were found, location->objectid is 0.
3325  */
3326 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3327 			       struct btrfs_key *location)
3328 {
3329 	const char *name = dentry->d_name.name;
3330 	int namelen = dentry->d_name.len;
3331 	struct btrfs_dir_item *di;
3332 	struct btrfs_path *path;
3333 	struct btrfs_root *root = BTRFS_I(dir)->root;
3334 	int ret = 0;
3335 
3336 	path = btrfs_alloc_path();
3337 	BUG_ON(!path);
3338 
3339 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3340 				    namelen, 0);
3341 	if (IS_ERR(di))
3342 		ret = PTR_ERR(di);
3343 
3344 	if (!di || IS_ERR(di))
3345 		goto out_err;
3346 
3347 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3348 out:
3349 	btrfs_free_path(path);
3350 	return ret;
3351 out_err:
3352 	location->objectid = 0;
3353 	goto out;
3354 }
3355 
3356 /*
3357  * when we hit a tree root in a directory, the btrfs part of the inode
3358  * needs to be changed to reflect the root directory of the tree root.  This
3359  * is kind of like crossing a mount point.
3360  */
3361 static int fixup_tree_root_location(struct btrfs_root *root,
3362 				    struct inode *dir,
3363 				    struct dentry *dentry,
3364 				    struct btrfs_key *location,
3365 				    struct btrfs_root **sub_root)
3366 {
3367 	struct btrfs_path *path;
3368 	struct btrfs_root *new_root;
3369 	struct btrfs_root_ref *ref;
3370 	struct extent_buffer *leaf;
3371 	int ret;
3372 	int err = 0;
3373 
3374 	path = btrfs_alloc_path();
3375 	if (!path) {
3376 		err = -ENOMEM;
3377 		goto out;
3378 	}
3379 
3380 	err = -ENOENT;
3381 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3382 				  BTRFS_I(dir)->root->root_key.objectid,
3383 				  location->objectid);
3384 	if (ret) {
3385 		if (ret < 0)
3386 			err = ret;
3387 		goto out;
3388 	}
3389 
3390 	leaf = path->nodes[0];
3391 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3392 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3393 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3394 		goto out;
3395 
3396 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3397 				   (unsigned long)(ref + 1),
3398 				   dentry->d_name.len);
3399 	if (ret)
3400 		goto out;
3401 
3402 	btrfs_release_path(root->fs_info->tree_root, path);
3403 
3404 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3405 	if (IS_ERR(new_root)) {
3406 		err = PTR_ERR(new_root);
3407 		goto out;
3408 	}
3409 
3410 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3411 		err = -ENOENT;
3412 		goto out;
3413 	}
3414 
3415 	*sub_root = new_root;
3416 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3417 	location->type = BTRFS_INODE_ITEM_KEY;
3418 	location->offset = 0;
3419 	err = 0;
3420 out:
3421 	btrfs_free_path(path);
3422 	return err;
3423 }
3424 
3425 static void inode_tree_add(struct inode *inode)
3426 {
3427 	struct btrfs_root *root = BTRFS_I(inode)->root;
3428 	struct btrfs_inode *entry;
3429 	struct rb_node **p;
3430 	struct rb_node *parent;
3431 again:
3432 	p = &root->inode_tree.rb_node;
3433 	parent = NULL;
3434 
3435 	if (hlist_unhashed(&inode->i_hash))
3436 		return;
3437 
3438 	spin_lock(&root->inode_lock);
3439 	while (*p) {
3440 		parent = *p;
3441 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3442 
3443 		if (inode->i_ino < entry->vfs_inode.i_ino)
3444 			p = &parent->rb_left;
3445 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3446 			p = &parent->rb_right;
3447 		else {
3448 			WARN_ON(!(entry->vfs_inode.i_state &
3449 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3450 			rb_erase(parent, &root->inode_tree);
3451 			RB_CLEAR_NODE(parent);
3452 			spin_unlock(&root->inode_lock);
3453 			goto again;
3454 		}
3455 	}
3456 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3457 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3458 	spin_unlock(&root->inode_lock);
3459 }
3460 
3461 static void inode_tree_del(struct inode *inode)
3462 {
3463 	struct btrfs_root *root = BTRFS_I(inode)->root;
3464 	int empty = 0;
3465 
3466 	spin_lock(&root->inode_lock);
3467 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3468 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3469 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3470 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3471 	}
3472 	spin_unlock(&root->inode_lock);
3473 
3474 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
3475 		synchronize_srcu(&root->fs_info->subvol_srcu);
3476 		spin_lock(&root->inode_lock);
3477 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3478 		spin_unlock(&root->inode_lock);
3479 		if (empty)
3480 			btrfs_add_dead_root(root);
3481 	}
3482 }
3483 
3484 int btrfs_invalidate_inodes(struct btrfs_root *root)
3485 {
3486 	struct rb_node *node;
3487 	struct rb_node *prev;
3488 	struct btrfs_inode *entry;
3489 	struct inode *inode;
3490 	u64 objectid = 0;
3491 
3492 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3493 
3494 	spin_lock(&root->inode_lock);
3495 again:
3496 	node = root->inode_tree.rb_node;
3497 	prev = NULL;
3498 	while (node) {
3499 		prev = node;
3500 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3501 
3502 		if (objectid < entry->vfs_inode.i_ino)
3503 			node = node->rb_left;
3504 		else if (objectid > entry->vfs_inode.i_ino)
3505 			node = node->rb_right;
3506 		else
3507 			break;
3508 	}
3509 	if (!node) {
3510 		while (prev) {
3511 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3512 			if (objectid <= entry->vfs_inode.i_ino) {
3513 				node = prev;
3514 				break;
3515 			}
3516 			prev = rb_next(prev);
3517 		}
3518 	}
3519 	while (node) {
3520 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3521 		objectid = entry->vfs_inode.i_ino + 1;
3522 		inode = igrab(&entry->vfs_inode);
3523 		if (inode) {
3524 			spin_unlock(&root->inode_lock);
3525 			if (atomic_read(&inode->i_count) > 1)
3526 				d_prune_aliases(inode);
3527 			/*
3528 			 * btrfs_drop_inode will remove it from
3529 			 * the inode cache when its usage count
3530 			 * hits zero.
3531 			 */
3532 			iput(inode);
3533 			cond_resched();
3534 			spin_lock(&root->inode_lock);
3535 			goto again;
3536 		}
3537 
3538 		if (cond_resched_lock(&root->inode_lock))
3539 			goto again;
3540 
3541 		node = rb_next(node);
3542 	}
3543 	spin_unlock(&root->inode_lock);
3544 	return 0;
3545 }
3546 
3547 static noinline void init_btrfs_i(struct inode *inode)
3548 {
3549 	struct btrfs_inode *bi = BTRFS_I(inode);
3550 
3551 	bi->generation = 0;
3552 	bi->sequence = 0;
3553 	bi->last_trans = 0;
3554 	bi->last_sub_trans = 0;
3555 	bi->logged_trans = 0;
3556 	bi->delalloc_bytes = 0;
3557 	bi->reserved_bytes = 0;
3558 	bi->disk_i_size = 0;
3559 	bi->flags = 0;
3560 	bi->index_cnt = (u64)-1;
3561 	bi->last_unlink_trans = 0;
3562 	bi->ordered_data_close = 0;
3563 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3564 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3565 			     inode->i_mapping, GFP_NOFS);
3566 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3567 			     inode->i_mapping, GFP_NOFS);
3568 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3569 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3570 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3571 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3572 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3573 	mutex_init(&BTRFS_I(inode)->log_mutex);
3574 }
3575 
3576 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3577 {
3578 	struct btrfs_iget_args *args = p;
3579 	inode->i_ino = args->ino;
3580 	init_btrfs_i(inode);
3581 	BTRFS_I(inode)->root = args->root;
3582 	btrfs_set_inode_space_info(args->root, inode);
3583 	return 0;
3584 }
3585 
3586 static int btrfs_find_actor(struct inode *inode, void *opaque)
3587 {
3588 	struct btrfs_iget_args *args = opaque;
3589 	return args->ino == inode->i_ino &&
3590 		args->root == BTRFS_I(inode)->root;
3591 }
3592 
3593 static struct inode *btrfs_iget_locked(struct super_block *s,
3594 				       u64 objectid,
3595 				       struct btrfs_root *root)
3596 {
3597 	struct inode *inode;
3598 	struct btrfs_iget_args args;
3599 	args.ino = objectid;
3600 	args.root = root;
3601 
3602 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3603 			     btrfs_init_locked_inode,
3604 			     (void *)&args);
3605 	return inode;
3606 }
3607 
3608 /* Get an inode object given its location and corresponding root.
3609  * Returns in *is_new if the inode was read from disk
3610  */
3611 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3612 			 struct btrfs_root *root)
3613 {
3614 	struct inode *inode;
3615 
3616 	inode = btrfs_iget_locked(s, location->objectid, root);
3617 	if (!inode)
3618 		return ERR_PTR(-ENOMEM);
3619 
3620 	if (inode->i_state & I_NEW) {
3621 		BTRFS_I(inode)->root = root;
3622 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3623 		btrfs_read_locked_inode(inode);
3624 
3625 		inode_tree_add(inode);
3626 		unlock_new_inode(inode);
3627 	}
3628 
3629 	return inode;
3630 }
3631 
3632 static struct inode *new_simple_dir(struct super_block *s,
3633 				    struct btrfs_key *key,
3634 				    struct btrfs_root *root)
3635 {
3636 	struct inode *inode = new_inode(s);
3637 
3638 	if (!inode)
3639 		return ERR_PTR(-ENOMEM);
3640 
3641 	init_btrfs_i(inode);
3642 
3643 	BTRFS_I(inode)->root = root;
3644 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3645 	BTRFS_I(inode)->dummy_inode = 1;
3646 
3647 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3648 	inode->i_op = &simple_dir_inode_operations;
3649 	inode->i_fop = &simple_dir_operations;
3650 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3651 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3652 
3653 	return inode;
3654 }
3655 
3656 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3657 {
3658 	struct inode *inode;
3659 	struct btrfs_root *root = BTRFS_I(dir)->root;
3660 	struct btrfs_root *sub_root = root;
3661 	struct btrfs_key location;
3662 	int index;
3663 	int ret;
3664 
3665 	dentry->d_op = &btrfs_dentry_operations;
3666 
3667 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3668 		return ERR_PTR(-ENAMETOOLONG);
3669 
3670 	ret = btrfs_inode_by_name(dir, dentry, &location);
3671 
3672 	if (ret < 0)
3673 		return ERR_PTR(ret);
3674 
3675 	if (location.objectid == 0)
3676 		return NULL;
3677 
3678 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3679 		inode = btrfs_iget(dir->i_sb, &location, root);
3680 		return inode;
3681 	}
3682 
3683 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3684 
3685 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3686 	ret = fixup_tree_root_location(root, dir, dentry,
3687 				       &location, &sub_root);
3688 	if (ret < 0) {
3689 		if (ret != -ENOENT)
3690 			inode = ERR_PTR(ret);
3691 		else
3692 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3693 	} else {
3694 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3695 	}
3696 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3697 
3698 	return inode;
3699 }
3700 
3701 static int btrfs_dentry_delete(struct dentry *dentry)
3702 {
3703 	struct btrfs_root *root;
3704 
3705 	if (!dentry->d_inode && !IS_ROOT(dentry))
3706 		dentry = dentry->d_parent;
3707 
3708 	if (dentry->d_inode) {
3709 		root = BTRFS_I(dentry->d_inode)->root;
3710 		if (btrfs_root_refs(&root->root_item) == 0)
3711 			return 1;
3712 	}
3713 	return 0;
3714 }
3715 
3716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3717 				   struct nameidata *nd)
3718 {
3719 	struct inode *inode;
3720 
3721 	inode = btrfs_lookup_dentry(dir, dentry);
3722 	if (IS_ERR(inode))
3723 		return ERR_CAST(inode);
3724 
3725 	return d_splice_alias(inode, dentry);
3726 }
3727 
3728 static unsigned char btrfs_filetype_table[] = {
3729 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3730 };
3731 
3732 static int btrfs_real_readdir(struct file *filp, void *dirent,
3733 			      filldir_t filldir)
3734 {
3735 	struct inode *inode = filp->f_dentry->d_inode;
3736 	struct btrfs_root *root = BTRFS_I(inode)->root;
3737 	struct btrfs_item *item;
3738 	struct btrfs_dir_item *di;
3739 	struct btrfs_key key;
3740 	struct btrfs_key found_key;
3741 	struct btrfs_path *path;
3742 	int ret;
3743 	u32 nritems;
3744 	struct extent_buffer *leaf;
3745 	int slot;
3746 	int advance;
3747 	unsigned char d_type;
3748 	int over = 0;
3749 	u32 di_cur;
3750 	u32 di_total;
3751 	u32 di_len;
3752 	int key_type = BTRFS_DIR_INDEX_KEY;
3753 	char tmp_name[32];
3754 	char *name_ptr;
3755 	int name_len;
3756 
3757 	/* FIXME, use a real flag for deciding about the key type */
3758 	if (root->fs_info->tree_root == root)
3759 		key_type = BTRFS_DIR_ITEM_KEY;
3760 
3761 	/* special case for "." */
3762 	if (filp->f_pos == 0) {
3763 		over = filldir(dirent, ".", 1,
3764 			       1, inode->i_ino,
3765 			       DT_DIR);
3766 		if (over)
3767 			return 0;
3768 		filp->f_pos = 1;
3769 	}
3770 	/* special case for .., just use the back ref */
3771 	if (filp->f_pos == 1) {
3772 		u64 pino = parent_ino(filp->f_path.dentry);
3773 		over = filldir(dirent, "..", 2,
3774 			       2, pino, DT_DIR);
3775 		if (over)
3776 			return 0;
3777 		filp->f_pos = 2;
3778 	}
3779 	path = btrfs_alloc_path();
3780 	path->reada = 2;
3781 
3782 	btrfs_set_key_type(&key, key_type);
3783 	key.offset = filp->f_pos;
3784 	key.objectid = inode->i_ino;
3785 
3786 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3787 	if (ret < 0)
3788 		goto err;
3789 	advance = 0;
3790 
3791 	while (1) {
3792 		leaf = path->nodes[0];
3793 		nritems = btrfs_header_nritems(leaf);
3794 		slot = path->slots[0];
3795 		if (advance || slot >= nritems) {
3796 			if (slot >= nritems - 1) {
3797 				ret = btrfs_next_leaf(root, path);
3798 				if (ret)
3799 					break;
3800 				leaf = path->nodes[0];
3801 				nritems = btrfs_header_nritems(leaf);
3802 				slot = path->slots[0];
3803 			} else {
3804 				slot++;
3805 				path->slots[0]++;
3806 			}
3807 		}
3808 
3809 		advance = 1;
3810 		item = btrfs_item_nr(leaf, slot);
3811 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3812 
3813 		if (found_key.objectid != key.objectid)
3814 			break;
3815 		if (btrfs_key_type(&found_key) != key_type)
3816 			break;
3817 		if (found_key.offset < filp->f_pos)
3818 			continue;
3819 
3820 		filp->f_pos = found_key.offset;
3821 
3822 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3823 		di_cur = 0;
3824 		di_total = btrfs_item_size(leaf, item);
3825 
3826 		while (di_cur < di_total) {
3827 			struct btrfs_key location;
3828 
3829 			name_len = btrfs_dir_name_len(leaf, di);
3830 			if (name_len <= sizeof(tmp_name)) {
3831 				name_ptr = tmp_name;
3832 			} else {
3833 				name_ptr = kmalloc(name_len, GFP_NOFS);
3834 				if (!name_ptr) {
3835 					ret = -ENOMEM;
3836 					goto err;
3837 				}
3838 			}
3839 			read_extent_buffer(leaf, name_ptr,
3840 					   (unsigned long)(di + 1), name_len);
3841 
3842 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3843 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3844 
3845 			/* is this a reference to our own snapshot? If so
3846 			 * skip it
3847 			 */
3848 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3849 			    location.objectid == root->root_key.objectid) {
3850 				over = 0;
3851 				goto skip;
3852 			}
3853 			over = filldir(dirent, name_ptr, name_len,
3854 				       found_key.offset, location.objectid,
3855 				       d_type);
3856 
3857 skip:
3858 			if (name_ptr != tmp_name)
3859 				kfree(name_ptr);
3860 
3861 			if (over)
3862 				goto nopos;
3863 			di_len = btrfs_dir_name_len(leaf, di) +
3864 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3865 			di_cur += di_len;
3866 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3867 		}
3868 	}
3869 
3870 	/* Reached end of directory/root. Bump pos past the last item. */
3871 	if (key_type == BTRFS_DIR_INDEX_KEY)
3872 		filp->f_pos = INT_LIMIT(off_t);
3873 	else
3874 		filp->f_pos++;
3875 nopos:
3876 	ret = 0;
3877 err:
3878 	btrfs_free_path(path);
3879 	return ret;
3880 }
3881 
3882 int btrfs_write_inode(struct inode *inode, int wait)
3883 {
3884 	struct btrfs_root *root = BTRFS_I(inode)->root;
3885 	struct btrfs_trans_handle *trans;
3886 	int ret = 0;
3887 
3888 	if (root->fs_info->btree_inode == inode)
3889 		return 0;
3890 
3891 	if (wait) {
3892 		trans = btrfs_join_transaction(root, 1);
3893 		btrfs_set_trans_block_group(trans, inode);
3894 		ret = btrfs_commit_transaction(trans, root);
3895 	}
3896 	return ret;
3897 }
3898 
3899 /*
3900  * This is somewhat expensive, updating the tree every time the
3901  * inode changes.  But, it is most likely to find the inode in cache.
3902  * FIXME, needs more benchmarking...there are no reasons other than performance
3903  * to keep or drop this code.
3904  */
3905 void btrfs_dirty_inode(struct inode *inode)
3906 {
3907 	struct btrfs_root *root = BTRFS_I(inode)->root;
3908 	struct btrfs_trans_handle *trans;
3909 
3910 	trans = btrfs_join_transaction(root, 1);
3911 	btrfs_set_trans_block_group(trans, inode);
3912 	btrfs_update_inode(trans, root, inode);
3913 	btrfs_end_transaction(trans, root);
3914 }
3915 
3916 /*
3917  * find the highest existing sequence number in a directory
3918  * and then set the in-memory index_cnt variable to reflect
3919  * free sequence numbers
3920  */
3921 static int btrfs_set_inode_index_count(struct inode *inode)
3922 {
3923 	struct btrfs_root *root = BTRFS_I(inode)->root;
3924 	struct btrfs_key key, found_key;
3925 	struct btrfs_path *path;
3926 	struct extent_buffer *leaf;
3927 	int ret;
3928 
3929 	key.objectid = inode->i_ino;
3930 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3931 	key.offset = (u64)-1;
3932 
3933 	path = btrfs_alloc_path();
3934 	if (!path)
3935 		return -ENOMEM;
3936 
3937 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3938 	if (ret < 0)
3939 		goto out;
3940 	/* FIXME: we should be able to handle this */
3941 	if (ret == 0)
3942 		goto out;
3943 	ret = 0;
3944 
3945 	/*
3946 	 * MAGIC NUMBER EXPLANATION:
3947 	 * since we search a directory based on f_pos we have to start at 2
3948 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3949 	 * else has to start at 2
3950 	 */
3951 	if (path->slots[0] == 0) {
3952 		BTRFS_I(inode)->index_cnt = 2;
3953 		goto out;
3954 	}
3955 
3956 	path->slots[0]--;
3957 
3958 	leaf = path->nodes[0];
3959 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3960 
3961 	if (found_key.objectid != inode->i_ino ||
3962 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3963 		BTRFS_I(inode)->index_cnt = 2;
3964 		goto out;
3965 	}
3966 
3967 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3968 out:
3969 	btrfs_free_path(path);
3970 	return ret;
3971 }
3972 
3973 /*
3974  * helper to find a free sequence number in a given directory.  This current
3975  * code is very simple, later versions will do smarter things in the btree
3976  */
3977 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3978 {
3979 	int ret = 0;
3980 
3981 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3982 		ret = btrfs_set_inode_index_count(dir);
3983 		if (ret)
3984 			return ret;
3985 	}
3986 
3987 	*index = BTRFS_I(dir)->index_cnt;
3988 	BTRFS_I(dir)->index_cnt++;
3989 
3990 	return ret;
3991 }
3992 
3993 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3994 				     struct btrfs_root *root,
3995 				     struct inode *dir,
3996 				     const char *name, int name_len,
3997 				     u64 ref_objectid, u64 objectid,
3998 				     u64 alloc_hint, int mode, u64 *index)
3999 {
4000 	struct inode *inode;
4001 	struct btrfs_inode_item *inode_item;
4002 	struct btrfs_key *location;
4003 	struct btrfs_path *path;
4004 	struct btrfs_inode_ref *ref;
4005 	struct btrfs_key key[2];
4006 	u32 sizes[2];
4007 	unsigned long ptr;
4008 	int ret;
4009 	int owner;
4010 
4011 	path = btrfs_alloc_path();
4012 	BUG_ON(!path);
4013 
4014 	inode = new_inode(root->fs_info->sb);
4015 	if (!inode)
4016 		return ERR_PTR(-ENOMEM);
4017 
4018 	if (dir) {
4019 		ret = btrfs_set_inode_index(dir, index);
4020 		if (ret) {
4021 			iput(inode);
4022 			return ERR_PTR(ret);
4023 		}
4024 	}
4025 	/*
4026 	 * index_cnt is ignored for everything but a dir,
4027 	 * btrfs_get_inode_index_count has an explanation for the magic
4028 	 * number
4029 	 */
4030 	init_btrfs_i(inode);
4031 	BTRFS_I(inode)->index_cnt = 2;
4032 	BTRFS_I(inode)->root = root;
4033 	BTRFS_I(inode)->generation = trans->transid;
4034 	btrfs_set_inode_space_info(root, inode);
4035 
4036 	if (mode & S_IFDIR)
4037 		owner = 0;
4038 	else
4039 		owner = 1;
4040 	BTRFS_I(inode)->block_group =
4041 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4042 
4043 	key[0].objectid = objectid;
4044 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4045 	key[0].offset = 0;
4046 
4047 	key[1].objectid = objectid;
4048 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4049 	key[1].offset = ref_objectid;
4050 
4051 	sizes[0] = sizeof(struct btrfs_inode_item);
4052 	sizes[1] = name_len + sizeof(*ref);
4053 
4054 	path->leave_spinning = 1;
4055 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4056 	if (ret != 0)
4057 		goto fail;
4058 
4059 	inode->i_uid = current_fsuid();
4060 
4061 	if (dir && (dir->i_mode & S_ISGID)) {
4062 		inode->i_gid = dir->i_gid;
4063 		if (S_ISDIR(mode))
4064 			mode |= S_ISGID;
4065 	} else
4066 		inode->i_gid = current_fsgid();
4067 
4068 	inode->i_mode = mode;
4069 	inode->i_ino = objectid;
4070 	inode_set_bytes(inode, 0);
4071 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4072 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4073 				  struct btrfs_inode_item);
4074 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4075 
4076 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4077 			     struct btrfs_inode_ref);
4078 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4079 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4080 	ptr = (unsigned long)(ref + 1);
4081 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4082 
4083 	btrfs_mark_buffer_dirty(path->nodes[0]);
4084 	btrfs_free_path(path);
4085 
4086 	location = &BTRFS_I(inode)->location;
4087 	location->objectid = objectid;
4088 	location->offset = 0;
4089 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4090 
4091 	btrfs_inherit_iflags(inode, dir);
4092 
4093 	if ((mode & S_IFREG)) {
4094 		if (btrfs_test_opt(root, NODATASUM))
4095 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4096 		if (btrfs_test_opt(root, NODATACOW))
4097 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4098 	}
4099 
4100 	insert_inode_hash(inode);
4101 	inode_tree_add(inode);
4102 	return inode;
4103 fail:
4104 	if (dir)
4105 		BTRFS_I(dir)->index_cnt--;
4106 	btrfs_free_path(path);
4107 	iput(inode);
4108 	return ERR_PTR(ret);
4109 }
4110 
4111 static inline u8 btrfs_inode_type(struct inode *inode)
4112 {
4113 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4114 }
4115 
4116 /*
4117  * utility function to add 'inode' into 'parent_inode' with
4118  * a give name and a given sequence number.
4119  * if 'add_backref' is true, also insert a backref from the
4120  * inode to the parent directory.
4121  */
4122 int btrfs_add_link(struct btrfs_trans_handle *trans,
4123 		   struct inode *parent_inode, struct inode *inode,
4124 		   const char *name, int name_len, int add_backref, u64 index)
4125 {
4126 	int ret = 0;
4127 	struct btrfs_key key;
4128 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4129 
4130 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4131 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4132 	} else {
4133 		key.objectid = inode->i_ino;
4134 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4135 		key.offset = 0;
4136 	}
4137 
4138 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4139 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4140 					 key.objectid, root->root_key.objectid,
4141 					 parent_inode->i_ino,
4142 					 index, name, name_len);
4143 	} else if (add_backref) {
4144 		ret = btrfs_insert_inode_ref(trans, root,
4145 					     name, name_len, inode->i_ino,
4146 					     parent_inode->i_ino, index);
4147 	}
4148 
4149 	if (ret == 0) {
4150 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4151 					    parent_inode->i_ino, &key,
4152 					    btrfs_inode_type(inode), index);
4153 		BUG_ON(ret);
4154 
4155 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4156 				   name_len * 2);
4157 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4158 		ret = btrfs_update_inode(trans, root, parent_inode);
4159 	}
4160 	return ret;
4161 }
4162 
4163 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4164 			    struct dentry *dentry, struct inode *inode,
4165 			    int backref, u64 index)
4166 {
4167 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4168 				 inode, dentry->d_name.name,
4169 				 dentry->d_name.len, backref, index);
4170 	if (!err) {
4171 		d_instantiate(dentry, inode);
4172 		return 0;
4173 	}
4174 	if (err > 0)
4175 		err = -EEXIST;
4176 	return err;
4177 }
4178 
4179 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4180 			int mode, dev_t rdev)
4181 {
4182 	struct btrfs_trans_handle *trans;
4183 	struct btrfs_root *root = BTRFS_I(dir)->root;
4184 	struct inode *inode = NULL;
4185 	int err;
4186 	int drop_inode = 0;
4187 	u64 objectid;
4188 	unsigned long nr = 0;
4189 	u64 index = 0;
4190 
4191 	if (!new_valid_dev(rdev))
4192 		return -EINVAL;
4193 
4194 	/*
4195 	 * 2 for inode item and ref
4196 	 * 2 for dir items
4197 	 * 1 for xattr if selinux is on
4198 	 */
4199 	err = btrfs_reserve_metadata_space(root, 5);
4200 	if (err)
4201 		return err;
4202 
4203 	trans = btrfs_start_transaction(root, 1);
4204 	if (!trans)
4205 		goto fail;
4206 	btrfs_set_trans_block_group(trans, dir);
4207 
4208 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4209 	if (err) {
4210 		err = -ENOSPC;
4211 		goto out_unlock;
4212 	}
4213 
4214 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4215 				dentry->d_name.len,
4216 				dentry->d_parent->d_inode->i_ino, objectid,
4217 				BTRFS_I(dir)->block_group, mode, &index);
4218 	err = PTR_ERR(inode);
4219 	if (IS_ERR(inode))
4220 		goto out_unlock;
4221 
4222 	err = btrfs_init_inode_security(inode, dir);
4223 	if (err) {
4224 		drop_inode = 1;
4225 		goto out_unlock;
4226 	}
4227 
4228 	btrfs_set_trans_block_group(trans, inode);
4229 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4230 	if (err)
4231 		drop_inode = 1;
4232 	else {
4233 		inode->i_op = &btrfs_special_inode_operations;
4234 		init_special_inode(inode, inode->i_mode, rdev);
4235 		btrfs_update_inode(trans, root, inode);
4236 	}
4237 	btrfs_update_inode_block_group(trans, inode);
4238 	btrfs_update_inode_block_group(trans, dir);
4239 out_unlock:
4240 	nr = trans->blocks_used;
4241 	btrfs_end_transaction_throttle(trans, root);
4242 fail:
4243 	btrfs_unreserve_metadata_space(root, 5);
4244 	if (drop_inode) {
4245 		inode_dec_link_count(inode);
4246 		iput(inode);
4247 	}
4248 	btrfs_btree_balance_dirty(root, nr);
4249 	return err;
4250 }
4251 
4252 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4253 			int mode, struct nameidata *nd)
4254 {
4255 	struct btrfs_trans_handle *trans;
4256 	struct btrfs_root *root = BTRFS_I(dir)->root;
4257 	struct inode *inode = NULL;
4258 	int err;
4259 	int drop_inode = 0;
4260 	unsigned long nr = 0;
4261 	u64 objectid;
4262 	u64 index = 0;
4263 
4264 	/*
4265 	 * 2 for inode item and ref
4266 	 * 2 for dir items
4267 	 * 1 for xattr if selinux is on
4268 	 */
4269 	err = btrfs_reserve_metadata_space(root, 5);
4270 	if (err)
4271 		return err;
4272 
4273 	trans = btrfs_start_transaction(root, 1);
4274 	if (!trans)
4275 		goto fail;
4276 	btrfs_set_trans_block_group(trans, dir);
4277 
4278 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4279 	if (err) {
4280 		err = -ENOSPC;
4281 		goto out_unlock;
4282 	}
4283 
4284 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4285 				dentry->d_name.len,
4286 				dentry->d_parent->d_inode->i_ino,
4287 				objectid, BTRFS_I(dir)->block_group, mode,
4288 				&index);
4289 	err = PTR_ERR(inode);
4290 	if (IS_ERR(inode))
4291 		goto out_unlock;
4292 
4293 	err = btrfs_init_inode_security(inode, dir);
4294 	if (err) {
4295 		drop_inode = 1;
4296 		goto out_unlock;
4297 	}
4298 
4299 	btrfs_set_trans_block_group(trans, inode);
4300 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4301 	if (err)
4302 		drop_inode = 1;
4303 	else {
4304 		inode->i_mapping->a_ops = &btrfs_aops;
4305 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4306 		inode->i_fop = &btrfs_file_operations;
4307 		inode->i_op = &btrfs_file_inode_operations;
4308 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4309 	}
4310 	btrfs_update_inode_block_group(trans, inode);
4311 	btrfs_update_inode_block_group(trans, dir);
4312 out_unlock:
4313 	nr = trans->blocks_used;
4314 	btrfs_end_transaction_throttle(trans, root);
4315 fail:
4316 	btrfs_unreserve_metadata_space(root, 5);
4317 	if (drop_inode) {
4318 		inode_dec_link_count(inode);
4319 		iput(inode);
4320 	}
4321 	btrfs_btree_balance_dirty(root, nr);
4322 	return err;
4323 }
4324 
4325 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4326 		      struct dentry *dentry)
4327 {
4328 	struct btrfs_trans_handle *trans;
4329 	struct btrfs_root *root = BTRFS_I(dir)->root;
4330 	struct inode *inode = old_dentry->d_inode;
4331 	u64 index;
4332 	unsigned long nr = 0;
4333 	int err;
4334 	int drop_inode = 0;
4335 
4336 	if (inode->i_nlink == 0)
4337 		return -ENOENT;
4338 
4339 	/*
4340 	 * 1 item for inode ref
4341 	 * 2 items for dir items
4342 	 */
4343 	err = btrfs_reserve_metadata_space(root, 3);
4344 	if (err)
4345 		return err;
4346 
4347 	btrfs_inc_nlink(inode);
4348 
4349 	err = btrfs_set_inode_index(dir, &index);
4350 	if (err)
4351 		goto fail;
4352 
4353 	trans = btrfs_start_transaction(root, 1);
4354 
4355 	btrfs_set_trans_block_group(trans, dir);
4356 	atomic_inc(&inode->i_count);
4357 
4358 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4359 
4360 	if (err) {
4361 		drop_inode = 1;
4362 	} else {
4363 		btrfs_update_inode_block_group(trans, dir);
4364 		err = btrfs_update_inode(trans, root, inode);
4365 		BUG_ON(err);
4366 		btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4367 	}
4368 
4369 	nr = trans->blocks_used;
4370 	btrfs_end_transaction_throttle(trans, root);
4371 fail:
4372 	btrfs_unreserve_metadata_space(root, 3);
4373 	if (drop_inode) {
4374 		inode_dec_link_count(inode);
4375 		iput(inode);
4376 	}
4377 	btrfs_btree_balance_dirty(root, nr);
4378 	return err;
4379 }
4380 
4381 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4382 {
4383 	struct inode *inode = NULL;
4384 	struct btrfs_trans_handle *trans;
4385 	struct btrfs_root *root = BTRFS_I(dir)->root;
4386 	int err = 0;
4387 	int drop_on_err = 0;
4388 	u64 objectid = 0;
4389 	u64 index = 0;
4390 	unsigned long nr = 1;
4391 
4392 	/*
4393 	 * 2 items for inode and ref
4394 	 * 2 items for dir items
4395 	 * 1 for xattr if selinux is on
4396 	 */
4397 	err = btrfs_reserve_metadata_space(root, 5);
4398 	if (err)
4399 		return err;
4400 
4401 	trans = btrfs_start_transaction(root, 1);
4402 	if (!trans) {
4403 		err = -ENOMEM;
4404 		goto out_unlock;
4405 	}
4406 	btrfs_set_trans_block_group(trans, dir);
4407 
4408 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4409 	if (err) {
4410 		err = -ENOSPC;
4411 		goto out_unlock;
4412 	}
4413 
4414 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4415 				dentry->d_name.len,
4416 				dentry->d_parent->d_inode->i_ino, objectid,
4417 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4418 				&index);
4419 	if (IS_ERR(inode)) {
4420 		err = PTR_ERR(inode);
4421 		goto out_fail;
4422 	}
4423 
4424 	drop_on_err = 1;
4425 
4426 	err = btrfs_init_inode_security(inode, dir);
4427 	if (err)
4428 		goto out_fail;
4429 
4430 	inode->i_op = &btrfs_dir_inode_operations;
4431 	inode->i_fop = &btrfs_dir_file_operations;
4432 	btrfs_set_trans_block_group(trans, inode);
4433 
4434 	btrfs_i_size_write(inode, 0);
4435 	err = btrfs_update_inode(trans, root, inode);
4436 	if (err)
4437 		goto out_fail;
4438 
4439 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4440 				 inode, dentry->d_name.name,
4441 				 dentry->d_name.len, 0, index);
4442 	if (err)
4443 		goto out_fail;
4444 
4445 	d_instantiate(dentry, inode);
4446 	drop_on_err = 0;
4447 	btrfs_update_inode_block_group(trans, inode);
4448 	btrfs_update_inode_block_group(trans, dir);
4449 
4450 out_fail:
4451 	nr = trans->blocks_used;
4452 	btrfs_end_transaction_throttle(trans, root);
4453 
4454 out_unlock:
4455 	btrfs_unreserve_metadata_space(root, 5);
4456 	if (drop_on_err)
4457 		iput(inode);
4458 	btrfs_btree_balance_dirty(root, nr);
4459 	return err;
4460 }
4461 
4462 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4463  * and an extent that you want to insert, deal with overlap and insert
4464  * the new extent into the tree.
4465  */
4466 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4467 				struct extent_map *existing,
4468 				struct extent_map *em,
4469 				u64 map_start, u64 map_len)
4470 {
4471 	u64 start_diff;
4472 
4473 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4474 	start_diff = map_start - em->start;
4475 	em->start = map_start;
4476 	em->len = map_len;
4477 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4478 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4479 		em->block_start += start_diff;
4480 		em->block_len -= start_diff;
4481 	}
4482 	return add_extent_mapping(em_tree, em);
4483 }
4484 
4485 static noinline int uncompress_inline(struct btrfs_path *path,
4486 				      struct inode *inode, struct page *page,
4487 				      size_t pg_offset, u64 extent_offset,
4488 				      struct btrfs_file_extent_item *item)
4489 {
4490 	int ret;
4491 	struct extent_buffer *leaf = path->nodes[0];
4492 	char *tmp;
4493 	size_t max_size;
4494 	unsigned long inline_size;
4495 	unsigned long ptr;
4496 
4497 	WARN_ON(pg_offset != 0);
4498 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4499 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4500 					btrfs_item_nr(leaf, path->slots[0]));
4501 	tmp = kmalloc(inline_size, GFP_NOFS);
4502 	ptr = btrfs_file_extent_inline_start(item);
4503 
4504 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4505 
4506 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4507 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4508 				    inline_size, max_size);
4509 	if (ret) {
4510 		char *kaddr = kmap_atomic(page, KM_USER0);
4511 		unsigned long copy_size = min_t(u64,
4512 				  PAGE_CACHE_SIZE - pg_offset,
4513 				  max_size - extent_offset);
4514 		memset(kaddr + pg_offset, 0, copy_size);
4515 		kunmap_atomic(kaddr, KM_USER0);
4516 	}
4517 	kfree(tmp);
4518 	return 0;
4519 }
4520 
4521 /*
4522  * a bit scary, this does extent mapping from logical file offset to the disk.
4523  * the ugly parts come from merging extents from the disk with the in-ram
4524  * representation.  This gets more complex because of the data=ordered code,
4525  * where the in-ram extents might be locked pending data=ordered completion.
4526  *
4527  * This also copies inline extents directly into the page.
4528  */
4529 
4530 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4531 				    size_t pg_offset, u64 start, u64 len,
4532 				    int create)
4533 {
4534 	int ret;
4535 	int err = 0;
4536 	u64 bytenr;
4537 	u64 extent_start = 0;
4538 	u64 extent_end = 0;
4539 	u64 objectid = inode->i_ino;
4540 	u32 found_type;
4541 	struct btrfs_path *path = NULL;
4542 	struct btrfs_root *root = BTRFS_I(inode)->root;
4543 	struct btrfs_file_extent_item *item;
4544 	struct extent_buffer *leaf;
4545 	struct btrfs_key found_key;
4546 	struct extent_map *em = NULL;
4547 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4548 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4549 	struct btrfs_trans_handle *trans = NULL;
4550 	int compressed;
4551 
4552 again:
4553 	read_lock(&em_tree->lock);
4554 	em = lookup_extent_mapping(em_tree, start, len);
4555 	if (em)
4556 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4557 	read_unlock(&em_tree->lock);
4558 
4559 	if (em) {
4560 		if (em->start > start || em->start + em->len <= start)
4561 			free_extent_map(em);
4562 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4563 			free_extent_map(em);
4564 		else
4565 			goto out;
4566 	}
4567 	em = alloc_extent_map(GFP_NOFS);
4568 	if (!em) {
4569 		err = -ENOMEM;
4570 		goto out;
4571 	}
4572 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4573 	em->start = EXTENT_MAP_HOLE;
4574 	em->orig_start = EXTENT_MAP_HOLE;
4575 	em->len = (u64)-1;
4576 	em->block_len = (u64)-1;
4577 
4578 	if (!path) {
4579 		path = btrfs_alloc_path();
4580 		BUG_ON(!path);
4581 	}
4582 
4583 	ret = btrfs_lookup_file_extent(trans, root, path,
4584 				       objectid, start, trans != NULL);
4585 	if (ret < 0) {
4586 		err = ret;
4587 		goto out;
4588 	}
4589 
4590 	if (ret != 0) {
4591 		if (path->slots[0] == 0)
4592 			goto not_found;
4593 		path->slots[0]--;
4594 	}
4595 
4596 	leaf = path->nodes[0];
4597 	item = btrfs_item_ptr(leaf, path->slots[0],
4598 			      struct btrfs_file_extent_item);
4599 	/* are we inside the extent that was found? */
4600 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4601 	found_type = btrfs_key_type(&found_key);
4602 	if (found_key.objectid != objectid ||
4603 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4604 		goto not_found;
4605 	}
4606 
4607 	found_type = btrfs_file_extent_type(leaf, item);
4608 	extent_start = found_key.offset;
4609 	compressed = btrfs_file_extent_compression(leaf, item);
4610 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4611 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4612 		extent_end = extent_start +
4613 		       btrfs_file_extent_num_bytes(leaf, item);
4614 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4615 		size_t size;
4616 		size = btrfs_file_extent_inline_len(leaf, item);
4617 		extent_end = (extent_start + size + root->sectorsize - 1) &
4618 			~((u64)root->sectorsize - 1);
4619 	}
4620 
4621 	if (start >= extent_end) {
4622 		path->slots[0]++;
4623 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4624 			ret = btrfs_next_leaf(root, path);
4625 			if (ret < 0) {
4626 				err = ret;
4627 				goto out;
4628 			}
4629 			if (ret > 0)
4630 				goto not_found;
4631 			leaf = path->nodes[0];
4632 		}
4633 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4634 		if (found_key.objectid != objectid ||
4635 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4636 			goto not_found;
4637 		if (start + len <= found_key.offset)
4638 			goto not_found;
4639 		em->start = start;
4640 		em->len = found_key.offset - start;
4641 		goto not_found_em;
4642 	}
4643 
4644 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4645 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4646 		em->start = extent_start;
4647 		em->len = extent_end - extent_start;
4648 		em->orig_start = extent_start -
4649 				 btrfs_file_extent_offset(leaf, item);
4650 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4651 		if (bytenr == 0) {
4652 			em->block_start = EXTENT_MAP_HOLE;
4653 			goto insert;
4654 		}
4655 		if (compressed) {
4656 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4657 			em->block_start = bytenr;
4658 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4659 									 item);
4660 		} else {
4661 			bytenr += btrfs_file_extent_offset(leaf, item);
4662 			em->block_start = bytenr;
4663 			em->block_len = em->len;
4664 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4665 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4666 		}
4667 		goto insert;
4668 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4669 		unsigned long ptr;
4670 		char *map;
4671 		size_t size;
4672 		size_t extent_offset;
4673 		size_t copy_size;
4674 
4675 		em->block_start = EXTENT_MAP_INLINE;
4676 		if (!page || create) {
4677 			em->start = extent_start;
4678 			em->len = extent_end - extent_start;
4679 			goto out;
4680 		}
4681 
4682 		size = btrfs_file_extent_inline_len(leaf, item);
4683 		extent_offset = page_offset(page) + pg_offset - extent_start;
4684 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4685 				size - extent_offset);
4686 		em->start = extent_start + extent_offset;
4687 		em->len = (copy_size + root->sectorsize - 1) &
4688 			~((u64)root->sectorsize - 1);
4689 		em->orig_start = EXTENT_MAP_INLINE;
4690 		if (compressed)
4691 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4692 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4693 		if (create == 0 && !PageUptodate(page)) {
4694 			if (btrfs_file_extent_compression(leaf, item) ==
4695 			    BTRFS_COMPRESS_ZLIB) {
4696 				ret = uncompress_inline(path, inode, page,
4697 							pg_offset,
4698 							extent_offset, item);
4699 				BUG_ON(ret);
4700 			} else {
4701 				map = kmap(page);
4702 				read_extent_buffer(leaf, map + pg_offset, ptr,
4703 						   copy_size);
4704 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4705 					memset(map + pg_offset + copy_size, 0,
4706 					       PAGE_CACHE_SIZE - pg_offset -
4707 					       copy_size);
4708 				}
4709 				kunmap(page);
4710 			}
4711 			flush_dcache_page(page);
4712 		} else if (create && PageUptodate(page)) {
4713 			if (!trans) {
4714 				kunmap(page);
4715 				free_extent_map(em);
4716 				em = NULL;
4717 				btrfs_release_path(root, path);
4718 				trans = btrfs_join_transaction(root, 1);
4719 				goto again;
4720 			}
4721 			map = kmap(page);
4722 			write_extent_buffer(leaf, map + pg_offset, ptr,
4723 					    copy_size);
4724 			kunmap(page);
4725 			btrfs_mark_buffer_dirty(leaf);
4726 		}
4727 		set_extent_uptodate(io_tree, em->start,
4728 				    extent_map_end(em) - 1, GFP_NOFS);
4729 		goto insert;
4730 	} else {
4731 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4732 		WARN_ON(1);
4733 	}
4734 not_found:
4735 	em->start = start;
4736 	em->len = len;
4737 not_found_em:
4738 	em->block_start = EXTENT_MAP_HOLE;
4739 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4740 insert:
4741 	btrfs_release_path(root, path);
4742 	if (em->start > start || extent_map_end(em) <= start) {
4743 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4744 		       "[%llu %llu]\n", (unsigned long long)em->start,
4745 		       (unsigned long long)em->len,
4746 		       (unsigned long long)start,
4747 		       (unsigned long long)len);
4748 		err = -EIO;
4749 		goto out;
4750 	}
4751 
4752 	err = 0;
4753 	write_lock(&em_tree->lock);
4754 	ret = add_extent_mapping(em_tree, em);
4755 	/* it is possible that someone inserted the extent into the tree
4756 	 * while we had the lock dropped.  It is also possible that
4757 	 * an overlapping map exists in the tree
4758 	 */
4759 	if (ret == -EEXIST) {
4760 		struct extent_map *existing;
4761 
4762 		ret = 0;
4763 
4764 		existing = lookup_extent_mapping(em_tree, start, len);
4765 		if (existing && (existing->start > start ||
4766 		    existing->start + existing->len <= start)) {
4767 			free_extent_map(existing);
4768 			existing = NULL;
4769 		}
4770 		if (!existing) {
4771 			existing = lookup_extent_mapping(em_tree, em->start,
4772 							 em->len);
4773 			if (existing) {
4774 				err = merge_extent_mapping(em_tree, existing,
4775 							   em, start,
4776 							   root->sectorsize);
4777 				free_extent_map(existing);
4778 				if (err) {
4779 					free_extent_map(em);
4780 					em = NULL;
4781 				}
4782 			} else {
4783 				err = -EIO;
4784 				free_extent_map(em);
4785 				em = NULL;
4786 			}
4787 		} else {
4788 			free_extent_map(em);
4789 			em = existing;
4790 			err = 0;
4791 		}
4792 	}
4793 	write_unlock(&em_tree->lock);
4794 out:
4795 	if (path)
4796 		btrfs_free_path(path);
4797 	if (trans) {
4798 		ret = btrfs_end_transaction(trans, root);
4799 		if (!err)
4800 			err = ret;
4801 	}
4802 	if (err) {
4803 		free_extent_map(em);
4804 		return ERR_PTR(err);
4805 	}
4806 	return em;
4807 }
4808 
4809 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4810 			const struct iovec *iov, loff_t offset,
4811 			unsigned long nr_segs)
4812 {
4813 	return -EINVAL;
4814 }
4815 
4816 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4817 		__u64 start, __u64 len)
4818 {
4819 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4820 }
4821 
4822 int btrfs_readpage(struct file *file, struct page *page)
4823 {
4824 	struct extent_io_tree *tree;
4825 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4826 	return extent_read_full_page(tree, page, btrfs_get_extent);
4827 }
4828 
4829 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4830 {
4831 	struct extent_io_tree *tree;
4832 
4833 
4834 	if (current->flags & PF_MEMALLOC) {
4835 		redirty_page_for_writepage(wbc, page);
4836 		unlock_page(page);
4837 		return 0;
4838 	}
4839 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4840 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4841 }
4842 
4843 int btrfs_writepages(struct address_space *mapping,
4844 		     struct writeback_control *wbc)
4845 {
4846 	struct extent_io_tree *tree;
4847 
4848 	tree = &BTRFS_I(mapping->host)->io_tree;
4849 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4850 }
4851 
4852 static int
4853 btrfs_readpages(struct file *file, struct address_space *mapping,
4854 		struct list_head *pages, unsigned nr_pages)
4855 {
4856 	struct extent_io_tree *tree;
4857 	tree = &BTRFS_I(mapping->host)->io_tree;
4858 	return extent_readpages(tree, mapping, pages, nr_pages,
4859 				btrfs_get_extent);
4860 }
4861 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4862 {
4863 	struct extent_io_tree *tree;
4864 	struct extent_map_tree *map;
4865 	int ret;
4866 
4867 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4868 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4869 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4870 	if (ret == 1) {
4871 		ClearPagePrivate(page);
4872 		set_page_private(page, 0);
4873 		page_cache_release(page);
4874 	}
4875 	return ret;
4876 }
4877 
4878 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4879 {
4880 	if (PageWriteback(page) || PageDirty(page))
4881 		return 0;
4882 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4883 }
4884 
4885 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4886 {
4887 	struct extent_io_tree *tree;
4888 	struct btrfs_ordered_extent *ordered;
4889 	u64 page_start = page_offset(page);
4890 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4891 
4892 
4893 	/*
4894 	 * we have the page locked, so new writeback can't start,
4895 	 * and the dirty bit won't be cleared while we are here.
4896 	 *
4897 	 * Wait for IO on this page so that we can safely clear
4898 	 * the PagePrivate2 bit and do ordered accounting
4899 	 */
4900 	wait_on_page_writeback(page);
4901 
4902 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4903 	if (offset) {
4904 		btrfs_releasepage(page, GFP_NOFS);
4905 		return;
4906 	}
4907 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4908 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4909 					   page_offset(page));
4910 	if (ordered) {
4911 		/*
4912 		 * IO on this page will never be started, so we need
4913 		 * to account for any ordered extents now
4914 		 */
4915 		clear_extent_bit(tree, page_start, page_end,
4916 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4917 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4918 				 NULL, GFP_NOFS);
4919 		/*
4920 		 * whoever cleared the private bit is responsible
4921 		 * for the finish_ordered_io
4922 		 */
4923 		if (TestClearPagePrivate2(page)) {
4924 			btrfs_finish_ordered_io(page->mapping->host,
4925 						page_start, page_end);
4926 		}
4927 		btrfs_put_ordered_extent(ordered);
4928 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4929 	}
4930 	clear_extent_bit(tree, page_start, page_end,
4931 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4932 		 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4933 	__btrfs_releasepage(page, GFP_NOFS);
4934 
4935 	ClearPageChecked(page);
4936 	if (PagePrivate(page)) {
4937 		ClearPagePrivate(page);
4938 		set_page_private(page, 0);
4939 		page_cache_release(page);
4940 	}
4941 }
4942 
4943 /*
4944  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4945  * called from a page fault handler when a page is first dirtied. Hence we must
4946  * be careful to check for EOF conditions here. We set the page up correctly
4947  * for a written page which means we get ENOSPC checking when writing into
4948  * holes and correct delalloc and unwritten extent mapping on filesystems that
4949  * support these features.
4950  *
4951  * We are not allowed to take the i_mutex here so we have to play games to
4952  * protect against truncate races as the page could now be beyond EOF.  Because
4953  * vmtruncate() writes the inode size before removing pages, once we have the
4954  * page lock we can determine safely if the page is beyond EOF. If it is not
4955  * beyond EOF, then the page is guaranteed safe against truncation until we
4956  * unlock the page.
4957  */
4958 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4959 {
4960 	struct page *page = vmf->page;
4961 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4962 	struct btrfs_root *root = BTRFS_I(inode)->root;
4963 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4964 	struct btrfs_ordered_extent *ordered;
4965 	char *kaddr;
4966 	unsigned long zero_start;
4967 	loff_t size;
4968 	int ret;
4969 	u64 page_start;
4970 	u64 page_end;
4971 
4972 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4973 	if (ret) {
4974 		if (ret == -ENOMEM)
4975 			ret = VM_FAULT_OOM;
4976 		else /* -ENOSPC, -EIO, etc */
4977 			ret = VM_FAULT_SIGBUS;
4978 		goto out;
4979 	}
4980 
4981 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4982 	if (ret) {
4983 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4984 		ret = VM_FAULT_SIGBUS;
4985 		goto out;
4986 	}
4987 
4988 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4989 again:
4990 	lock_page(page);
4991 	size = i_size_read(inode);
4992 	page_start = page_offset(page);
4993 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4994 
4995 	if ((page->mapping != inode->i_mapping) ||
4996 	    (page_start >= size)) {
4997 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4998 		/* page got truncated out from underneath us */
4999 		goto out_unlock;
5000 	}
5001 	wait_on_page_writeback(page);
5002 
5003 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5004 	set_page_extent_mapped(page);
5005 
5006 	/*
5007 	 * we can't set the delalloc bits if there are pending ordered
5008 	 * extents.  Drop our locks and wait for them to finish
5009 	 */
5010 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
5011 	if (ordered) {
5012 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5013 		unlock_page(page);
5014 		btrfs_start_ordered_extent(inode, ordered, 1);
5015 		btrfs_put_ordered_extent(ordered);
5016 		goto again;
5017 	}
5018 
5019 	/*
5020 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
5021 	 * if it was already dirty, so for space accounting reasons we need to
5022 	 * clear any delalloc bits for the range we are fixing to save.  There
5023 	 * is probably a better way to do this, but for now keep consistent with
5024 	 * prepare_pages in the normal write path.
5025 	 */
5026 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5027 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5028 			  GFP_NOFS);
5029 
5030 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5031 	if (ret) {
5032 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5033 		ret = VM_FAULT_SIGBUS;
5034 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5035 		goto out_unlock;
5036 	}
5037 	ret = 0;
5038 
5039 	/* page is wholly or partially inside EOF */
5040 	if (page_start + PAGE_CACHE_SIZE > size)
5041 		zero_start = size & ~PAGE_CACHE_MASK;
5042 	else
5043 		zero_start = PAGE_CACHE_SIZE;
5044 
5045 	if (zero_start != PAGE_CACHE_SIZE) {
5046 		kaddr = kmap(page);
5047 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5048 		flush_dcache_page(page);
5049 		kunmap(page);
5050 	}
5051 	ClearPageChecked(page);
5052 	set_page_dirty(page);
5053 	SetPageUptodate(page);
5054 
5055 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
5056 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5057 
5058 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5059 
5060 out_unlock:
5061 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5062 	if (!ret)
5063 		return VM_FAULT_LOCKED;
5064 	unlock_page(page);
5065 out:
5066 	return ret;
5067 }
5068 
5069 static void btrfs_truncate(struct inode *inode)
5070 {
5071 	struct btrfs_root *root = BTRFS_I(inode)->root;
5072 	int ret;
5073 	struct btrfs_trans_handle *trans;
5074 	unsigned long nr;
5075 	u64 mask = root->sectorsize - 1;
5076 
5077 	if (!S_ISREG(inode->i_mode))
5078 		return;
5079 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5080 		return;
5081 
5082 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5083 	if (ret)
5084 		return;
5085 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5086 
5087 	trans = btrfs_start_transaction(root, 1);
5088 
5089 	/*
5090 	 * setattr is responsible for setting the ordered_data_close flag,
5091 	 * but that is only tested during the last file release.  That
5092 	 * could happen well after the next commit, leaving a great big
5093 	 * window where new writes may get lost if someone chooses to write
5094 	 * to this file after truncating to zero
5095 	 *
5096 	 * The inode doesn't have any dirty data here, and so if we commit
5097 	 * this is a noop.  If someone immediately starts writing to the inode
5098 	 * it is very likely we'll catch some of their writes in this
5099 	 * transaction, and the commit will find this file on the ordered
5100 	 * data list with good things to send down.
5101 	 *
5102 	 * This is a best effort solution, there is still a window where
5103 	 * using truncate to replace the contents of the file will
5104 	 * end up with a zero length file after a crash.
5105 	 */
5106 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5107 		btrfs_add_ordered_operation(trans, root, inode);
5108 
5109 	btrfs_set_trans_block_group(trans, inode);
5110 	btrfs_i_size_write(inode, inode->i_size);
5111 
5112 	ret = btrfs_orphan_add(trans, inode);
5113 	if (ret)
5114 		goto out;
5115 	/* FIXME, add redo link to tree so we don't leak on crash */
5116 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5117 				      BTRFS_EXTENT_DATA_KEY);
5118 	btrfs_update_inode(trans, root, inode);
5119 
5120 	ret = btrfs_orphan_del(trans, inode);
5121 	BUG_ON(ret);
5122 
5123 out:
5124 	nr = trans->blocks_used;
5125 	ret = btrfs_end_transaction_throttle(trans, root);
5126 	BUG_ON(ret);
5127 	btrfs_btree_balance_dirty(root, nr);
5128 }
5129 
5130 /*
5131  * create a new subvolume directory/inode (helper for the ioctl).
5132  */
5133 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5134 			     struct btrfs_root *new_root,
5135 			     u64 new_dirid, u64 alloc_hint)
5136 {
5137 	struct inode *inode;
5138 	int err;
5139 	u64 index = 0;
5140 
5141 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5142 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5143 	if (IS_ERR(inode))
5144 		return PTR_ERR(inode);
5145 	inode->i_op = &btrfs_dir_inode_operations;
5146 	inode->i_fop = &btrfs_dir_file_operations;
5147 
5148 	inode->i_nlink = 1;
5149 	btrfs_i_size_write(inode, 0);
5150 
5151 	err = btrfs_update_inode(trans, new_root, inode);
5152 	BUG_ON(err);
5153 
5154 	iput(inode);
5155 	return 0;
5156 }
5157 
5158 /* helper function for file defrag and space balancing.  This
5159  * forces readahead on a given range of bytes in an inode
5160  */
5161 unsigned long btrfs_force_ra(struct address_space *mapping,
5162 			      struct file_ra_state *ra, struct file *file,
5163 			      pgoff_t offset, pgoff_t last_index)
5164 {
5165 	pgoff_t req_size = last_index - offset + 1;
5166 
5167 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5168 	return offset + req_size;
5169 }
5170 
5171 struct inode *btrfs_alloc_inode(struct super_block *sb)
5172 {
5173 	struct btrfs_inode *ei;
5174 
5175 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5176 	if (!ei)
5177 		return NULL;
5178 	ei->last_trans = 0;
5179 	ei->last_sub_trans = 0;
5180 	ei->logged_trans = 0;
5181 	ei->outstanding_extents = 0;
5182 	ei->reserved_extents = 0;
5183 	ei->root = NULL;
5184 	spin_lock_init(&ei->accounting_lock);
5185 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5186 	INIT_LIST_HEAD(&ei->i_orphan);
5187 	INIT_LIST_HEAD(&ei->ordered_operations);
5188 	return &ei->vfs_inode;
5189 }
5190 
5191 void btrfs_destroy_inode(struct inode *inode)
5192 {
5193 	struct btrfs_ordered_extent *ordered;
5194 	struct btrfs_root *root = BTRFS_I(inode)->root;
5195 
5196 	WARN_ON(!list_empty(&inode->i_dentry));
5197 	WARN_ON(inode->i_data.nrpages);
5198 
5199 	/*
5200 	 * This can happen where we create an inode, but somebody else also
5201 	 * created the same inode and we need to destroy the one we already
5202 	 * created.
5203 	 */
5204 	if (!root)
5205 		goto free;
5206 
5207 	/*
5208 	 * Make sure we're properly removed from the ordered operation
5209 	 * lists.
5210 	 */
5211 	smp_mb();
5212 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5213 		spin_lock(&root->fs_info->ordered_extent_lock);
5214 		list_del_init(&BTRFS_I(inode)->ordered_operations);
5215 		spin_unlock(&root->fs_info->ordered_extent_lock);
5216 	}
5217 
5218 	spin_lock(&root->list_lock);
5219 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5220 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5221 		       " list\n", inode->i_ino);
5222 		dump_stack();
5223 	}
5224 	spin_unlock(&root->list_lock);
5225 
5226 	while (1) {
5227 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5228 		if (!ordered)
5229 			break;
5230 		else {
5231 			printk(KERN_ERR "btrfs found ordered "
5232 			       "extent %llu %llu on inode cleanup\n",
5233 			       (unsigned long long)ordered->file_offset,
5234 			       (unsigned long long)ordered->len);
5235 			btrfs_remove_ordered_extent(inode, ordered);
5236 			btrfs_put_ordered_extent(ordered);
5237 			btrfs_put_ordered_extent(ordered);
5238 		}
5239 	}
5240 	inode_tree_del(inode);
5241 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5242 free:
5243 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5244 }
5245 
5246 void btrfs_drop_inode(struct inode *inode)
5247 {
5248 	struct btrfs_root *root = BTRFS_I(inode)->root;
5249 
5250 	if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5251 		generic_delete_inode(inode);
5252 	else
5253 		generic_drop_inode(inode);
5254 }
5255 
5256 static void init_once(void *foo)
5257 {
5258 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5259 
5260 	inode_init_once(&ei->vfs_inode);
5261 }
5262 
5263 void btrfs_destroy_cachep(void)
5264 {
5265 	if (btrfs_inode_cachep)
5266 		kmem_cache_destroy(btrfs_inode_cachep);
5267 	if (btrfs_trans_handle_cachep)
5268 		kmem_cache_destroy(btrfs_trans_handle_cachep);
5269 	if (btrfs_transaction_cachep)
5270 		kmem_cache_destroy(btrfs_transaction_cachep);
5271 	if (btrfs_path_cachep)
5272 		kmem_cache_destroy(btrfs_path_cachep);
5273 }
5274 
5275 int btrfs_init_cachep(void)
5276 {
5277 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5278 			sizeof(struct btrfs_inode), 0,
5279 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5280 	if (!btrfs_inode_cachep)
5281 		goto fail;
5282 
5283 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5284 			sizeof(struct btrfs_trans_handle), 0,
5285 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5286 	if (!btrfs_trans_handle_cachep)
5287 		goto fail;
5288 
5289 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5290 			sizeof(struct btrfs_transaction), 0,
5291 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5292 	if (!btrfs_transaction_cachep)
5293 		goto fail;
5294 
5295 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5296 			sizeof(struct btrfs_path), 0,
5297 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5298 	if (!btrfs_path_cachep)
5299 		goto fail;
5300 
5301 	return 0;
5302 fail:
5303 	btrfs_destroy_cachep();
5304 	return -ENOMEM;
5305 }
5306 
5307 static int btrfs_getattr(struct vfsmount *mnt,
5308 			 struct dentry *dentry, struct kstat *stat)
5309 {
5310 	struct inode *inode = dentry->d_inode;
5311 	generic_fillattr(inode, stat);
5312 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5313 	stat->blksize = PAGE_CACHE_SIZE;
5314 	stat->blocks = (inode_get_bytes(inode) +
5315 			BTRFS_I(inode)->delalloc_bytes) >> 9;
5316 	return 0;
5317 }
5318 
5319 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5320 			   struct inode *new_dir, struct dentry *new_dentry)
5321 {
5322 	struct btrfs_trans_handle *trans;
5323 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
5324 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5325 	struct inode *new_inode = new_dentry->d_inode;
5326 	struct inode *old_inode = old_dentry->d_inode;
5327 	struct timespec ctime = CURRENT_TIME;
5328 	u64 index = 0;
5329 	u64 root_objectid;
5330 	int ret;
5331 
5332 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5333 		return -EPERM;
5334 
5335 	/* we only allow rename subvolume link between subvolumes */
5336 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5337 		return -EXDEV;
5338 
5339 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5340 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5341 		return -ENOTEMPTY;
5342 
5343 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
5344 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5345 		return -ENOTEMPTY;
5346 
5347 	/*
5348 	 * We want to reserve the absolute worst case amount of items.  So if
5349 	 * both inodes are subvols and we need to unlink them then that would
5350 	 * require 4 item modifications, but if they are both normal inodes it
5351 	 * would require 5 item modifications, so we'll assume their normal
5352 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5353 	 * should cover the worst case number of items we'll modify.
5354 	 */
5355 	ret = btrfs_reserve_metadata_space(root, 11);
5356 	if (ret)
5357 		return ret;
5358 
5359 	/*
5360 	 * we're using rename to replace one file with another.
5361 	 * and the replacement file is large.  Start IO on it now so
5362 	 * we don't add too much work to the end of the transaction
5363 	 */
5364 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5365 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5366 		filemap_flush(old_inode->i_mapping);
5367 
5368 	/* close the racy window with snapshot create/destroy ioctl */
5369 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5370 		down_read(&root->fs_info->subvol_sem);
5371 
5372 	trans = btrfs_start_transaction(root, 1);
5373 	btrfs_set_trans_block_group(trans, new_dir);
5374 
5375 	if (dest != root)
5376 		btrfs_record_root_in_trans(trans, dest);
5377 
5378 	ret = btrfs_set_inode_index(new_dir, &index);
5379 	if (ret)
5380 		goto out_fail;
5381 
5382 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5383 		/* force full log commit if subvolume involved. */
5384 		root->fs_info->last_trans_log_full_commit = trans->transid;
5385 	} else {
5386 		ret = btrfs_insert_inode_ref(trans, dest,
5387 					     new_dentry->d_name.name,
5388 					     new_dentry->d_name.len,
5389 					     old_inode->i_ino,
5390 					     new_dir->i_ino, index);
5391 		if (ret)
5392 			goto out_fail;
5393 		/*
5394 		 * this is an ugly little race, but the rename is required
5395 		 * to make sure that if we crash, the inode is either at the
5396 		 * old name or the new one.  pinning the log transaction lets
5397 		 * us make sure we don't allow a log commit to come in after
5398 		 * we unlink the name but before we add the new name back in.
5399 		 */
5400 		btrfs_pin_log_trans(root);
5401 	}
5402 	/*
5403 	 * make sure the inode gets flushed if it is replacing
5404 	 * something.
5405 	 */
5406 	if (new_inode && new_inode->i_size &&
5407 	    old_inode && S_ISREG(old_inode->i_mode)) {
5408 		btrfs_add_ordered_operation(trans, root, old_inode);
5409 	}
5410 
5411 	old_dir->i_ctime = old_dir->i_mtime = ctime;
5412 	new_dir->i_ctime = new_dir->i_mtime = ctime;
5413 	old_inode->i_ctime = ctime;
5414 
5415 	if (old_dentry->d_parent != new_dentry->d_parent)
5416 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5417 
5418 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5419 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5420 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5421 					old_dentry->d_name.name,
5422 					old_dentry->d_name.len);
5423 	} else {
5424 		btrfs_inc_nlink(old_dentry->d_inode);
5425 		ret = btrfs_unlink_inode(trans, root, old_dir,
5426 					 old_dentry->d_inode,
5427 					 old_dentry->d_name.name,
5428 					 old_dentry->d_name.len);
5429 	}
5430 	BUG_ON(ret);
5431 
5432 	if (new_inode) {
5433 		new_inode->i_ctime = CURRENT_TIME;
5434 		if (unlikely(new_inode->i_ino ==
5435 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5436 			root_objectid = BTRFS_I(new_inode)->location.objectid;
5437 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
5438 						root_objectid,
5439 						new_dentry->d_name.name,
5440 						new_dentry->d_name.len);
5441 			BUG_ON(new_inode->i_nlink == 0);
5442 		} else {
5443 			ret = btrfs_unlink_inode(trans, dest, new_dir,
5444 						 new_dentry->d_inode,
5445 						 new_dentry->d_name.name,
5446 						 new_dentry->d_name.len);
5447 		}
5448 		BUG_ON(ret);
5449 		if (new_inode->i_nlink == 0) {
5450 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5451 			BUG_ON(ret);
5452 		}
5453 	}
5454 
5455 	ret = btrfs_add_link(trans, new_dir, old_inode,
5456 			     new_dentry->d_name.name,
5457 			     new_dentry->d_name.len, 0, index);
5458 	BUG_ON(ret);
5459 
5460 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5461 		btrfs_log_new_name(trans, old_inode, old_dir,
5462 				   new_dentry->d_parent);
5463 		btrfs_end_log_trans(root);
5464 	}
5465 out_fail:
5466 	btrfs_end_transaction_throttle(trans, root);
5467 
5468 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5469 		up_read(&root->fs_info->subvol_sem);
5470 
5471 	btrfs_unreserve_metadata_space(root, 11);
5472 	return ret;
5473 }
5474 
5475 /*
5476  * some fairly slow code that needs optimization. This walks the list
5477  * of all the inodes with pending delalloc and forces them to disk.
5478  */
5479 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5480 {
5481 	struct list_head *head = &root->fs_info->delalloc_inodes;
5482 	struct btrfs_inode *binode;
5483 	struct inode *inode;
5484 
5485 	if (root->fs_info->sb->s_flags & MS_RDONLY)
5486 		return -EROFS;
5487 
5488 	spin_lock(&root->fs_info->delalloc_lock);
5489 	while (!list_empty(head)) {
5490 		binode = list_entry(head->next, struct btrfs_inode,
5491 				    delalloc_inodes);
5492 		inode = igrab(&binode->vfs_inode);
5493 		if (!inode)
5494 			list_del_init(&binode->delalloc_inodes);
5495 		spin_unlock(&root->fs_info->delalloc_lock);
5496 		if (inode) {
5497 			filemap_flush(inode->i_mapping);
5498 			iput(inode);
5499 		}
5500 		cond_resched();
5501 		spin_lock(&root->fs_info->delalloc_lock);
5502 	}
5503 	spin_unlock(&root->fs_info->delalloc_lock);
5504 
5505 	/* the filemap_flush will queue IO into the worker threads, but
5506 	 * we have to make sure the IO is actually started and that
5507 	 * ordered extents get created before we return
5508 	 */
5509 	atomic_inc(&root->fs_info->async_submit_draining);
5510 	while (atomic_read(&root->fs_info->nr_async_submits) ||
5511 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
5512 		wait_event(root->fs_info->async_submit_wait,
5513 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5514 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5515 	}
5516 	atomic_dec(&root->fs_info->async_submit_draining);
5517 	return 0;
5518 }
5519 
5520 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5521 			 const char *symname)
5522 {
5523 	struct btrfs_trans_handle *trans;
5524 	struct btrfs_root *root = BTRFS_I(dir)->root;
5525 	struct btrfs_path *path;
5526 	struct btrfs_key key;
5527 	struct inode *inode = NULL;
5528 	int err;
5529 	int drop_inode = 0;
5530 	u64 objectid;
5531 	u64 index = 0 ;
5532 	int name_len;
5533 	int datasize;
5534 	unsigned long ptr;
5535 	struct btrfs_file_extent_item *ei;
5536 	struct extent_buffer *leaf;
5537 	unsigned long nr = 0;
5538 
5539 	name_len = strlen(symname) + 1;
5540 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5541 		return -ENAMETOOLONG;
5542 
5543 	/*
5544 	 * 2 items for inode item and ref
5545 	 * 2 items for dir items
5546 	 * 1 item for xattr if selinux is on
5547 	 */
5548 	err = btrfs_reserve_metadata_space(root, 5);
5549 	if (err)
5550 		return err;
5551 
5552 	trans = btrfs_start_transaction(root, 1);
5553 	if (!trans)
5554 		goto out_fail;
5555 	btrfs_set_trans_block_group(trans, dir);
5556 
5557 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5558 	if (err) {
5559 		err = -ENOSPC;
5560 		goto out_unlock;
5561 	}
5562 
5563 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5564 				dentry->d_name.len,
5565 				dentry->d_parent->d_inode->i_ino, objectid,
5566 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5567 				&index);
5568 	err = PTR_ERR(inode);
5569 	if (IS_ERR(inode))
5570 		goto out_unlock;
5571 
5572 	err = btrfs_init_inode_security(inode, dir);
5573 	if (err) {
5574 		drop_inode = 1;
5575 		goto out_unlock;
5576 	}
5577 
5578 	btrfs_set_trans_block_group(trans, inode);
5579 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5580 	if (err)
5581 		drop_inode = 1;
5582 	else {
5583 		inode->i_mapping->a_ops = &btrfs_aops;
5584 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5585 		inode->i_fop = &btrfs_file_operations;
5586 		inode->i_op = &btrfs_file_inode_operations;
5587 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5588 	}
5589 	btrfs_update_inode_block_group(trans, inode);
5590 	btrfs_update_inode_block_group(trans, dir);
5591 	if (drop_inode)
5592 		goto out_unlock;
5593 
5594 	path = btrfs_alloc_path();
5595 	BUG_ON(!path);
5596 	key.objectid = inode->i_ino;
5597 	key.offset = 0;
5598 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5599 	datasize = btrfs_file_extent_calc_inline_size(name_len);
5600 	err = btrfs_insert_empty_item(trans, root, path, &key,
5601 				      datasize);
5602 	if (err) {
5603 		drop_inode = 1;
5604 		goto out_unlock;
5605 	}
5606 	leaf = path->nodes[0];
5607 	ei = btrfs_item_ptr(leaf, path->slots[0],
5608 			    struct btrfs_file_extent_item);
5609 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5610 	btrfs_set_file_extent_type(leaf, ei,
5611 				   BTRFS_FILE_EXTENT_INLINE);
5612 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5613 	btrfs_set_file_extent_compression(leaf, ei, 0);
5614 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5615 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5616 
5617 	ptr = btrfs_file_extent_inline_start(ei);
5618 	write_extent_buffer(leaf, symname, ptr, name_len);
5619 	btrfs_mark_buffer_dirty(leaf);
5620 	btrfs_free_path(path);
5621 
5622 	inode->i_op = &btrfs_symlink_inode_operations;
5623 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5624 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5625 	inode_set_bytes(inode, name_len);
5626 	btrfs_i_size_write(inode, name_len - 1);
5627 	err = btrfs_update_inode(trans, root, inode);
5628 	if (err)
5629 		drop_inode = 1;
5630 
5631 out_unlock:
5632 	nr = trans->blocks_used;
5633 	btrfs_end_transaction_throttle(trans, root);
5634 out_fail:
5635 	btrfs_unreserve_metadata_space(root, 5);
5636 	if (drop_inode) {
5637 		inode_dec_link_count(inode);
5638 		iput(inode);
5639 	}
5640 	btrfs_btree_balance_dirty(root, nr);
5641 	return err;
5642 }
5643 
5644 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5645 			       struct inode *inode, u64 start, u64 end,
5646 			       u64 locked_end, u64 alloc_hint, int mode)
5647 {
5648 	struct btrfs_root *root = BTRFS_I(inode)->root;
5649 	struct btrfs_key ins;
5650 	u64 alloc_size;
5651 	u64 cur_offset = start;
5652 	u64 num_bytes = end - start;
5653 	int ret = 0;
5654 
5655 	while (num_bytes > 0) {
5656 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5657 
5658 		ret = btrfs_reserve_metadata_space(root, 1);
5659 		if (ret)
5660 			goto out;
5661 
5662 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5663 					   root->sectorsize, 0, alloc_hint,
5664 					   (u64)-1, &ins, 1);
5665 		if (ret) {
5666 			WARN_ON(1);
5667 			goto out;
5668 		}
5669 		ret = insert_reserved_file_extent(trans, inode,
5670 						  cur_offset, ins.objectid,
5671 						  ins.offset, ins.offset,
5672 						  ins.offset, locked_end,
5673 						  0, 0, 0,
5674 						  BTRFS_FILE_EXTENT_PREALLOC);
5675 		BUG_ON(ret);
5676 		btrfs_drop_extent_cache(inode, cur_offset,
5677 					cur_offset + ins.offset -1, 0);
5678 		num_bytes -= ins.offset;
5679 		cur_offset += ins.offset;
5680 		alloc_hint = ins.objectid + ins.offset;
5681 		btrfs_unreserve_metadata_space(root, 1);
5682 	}
5683 out:
5684 	if (cur_offset > start) {
5685 		inode->i_ctime = CURRENT_TIME;
5686 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5687 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5688 		    cur_offset > i_size_read(inode))
5689 			btrfs_i_size_write(inode, cur_offset);
5690 		ret = btrfs_update_inode(trans, root, inode);
5691 		BUG_ON(ret);
5692 	}
5693 
5694 	return ret;
5695 }
5696 
5697 static long btrfs_fallocate(struct inode *inode, int mode,
5698 			    loff_t offset, loff_t len)
5699 {
5700 	u64 cur_offset;
5701 	u64 last_byte;
5702 	u64 alloc_start;
5703 	u64 alloc_end;
5704 	u64 alloc_hint = 0;
5705 	u64 locked_end;
5706 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5707 	struct extent_map *em;
5708 	struct btrfs_trans_handle *trans;
5709 	struct btrfs_root *root;
5710 	int ret;
5711 
5712 	alloc_start = offset & ~mask;
5713 	alloc_end =  (offset + len + mask) & ~mask;
5714 
5715 	/*
5716 	 * wait for ordered IO before we have any locks.  We'll loop again
5717 	 * below with the locks held.
5718 	 */
5719 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5720 
5721 	mutex_lock(&inode->i_mutex);
5722 	if (alloc_start > inode->i_size) {
5723 		ret = btrfs_cont_expand(inode, alloc_start);
5724 		if (ret)
5725 			goto out;
5726 	}
5727 
5728 	root = BTRFS_I(inode)->root;
5729 
5730 	ret = btrfs_check_data_free_space(root, inode,
5731 					  alloc_end - alloc_start);
5732 	if (ret)
5733 		goto out;
5734 
5735 	locked_end = alloc_end - 1;
5736 	while (1) {
5737 		struct btrfs_ordered_extent *ordered;
5738 
5739 		trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5740 		if (!trans) {
5741 			ret = -EIO;
5742 			goto out_free;
5743 		}
5744 
5745 		/* the extent lock is ordered inside the running
5746 		 * transaction
5747 		 */
5748 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5749 			    GFP_NOFS);
5750 		ordered = btrfs_lookup_first_ordered_extent(inode,
5751 							    alloc_end - 1);
5752 		if (ordered &&
5753 		    ordered->file_offset + ordered->len > alloc_start &&
5754 		    ordered->file_offset < alloc_end) {
5755 			btrfs_put_ordered_extent(ordered);
5756 			unlock_extent(&BTRFS_I(inode)->io_tree,
5757 				      alloc_start, locked_end, GFP_NOFS);
5758 			btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5759 
5760 			/*
5761 			 * we can't wait on the range with the transaction
5762 			 * running or with the extent lock held
5763 			 */
5764 			btrfs_wait_ordered_range(inode, alloc_start,
5765 						 alloc_end - alloc_start);
5766 		} else {
5767 			if (ordered)
5768 				btrfs_put_ordered_extent(ordered);
5769 			break;
5770 		}
5771 	}
5772 
5773 	cur_offset = alloc_start;
5774 	while (1) {
5775 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5776 				      alloc_end - cur_offset, 0);
5777 		BUG_ON(IS_ERR(em) || !em);
5778 		last_byte = min(extent_map_end(em), alloc_end);
5779 		last_byte = (last_byte + mask) & ~mask;
5780 		if (em->block_start == EXTENT_MAP_HOLE) {
5781 			ret = prealloc_file_range(trans, inode, cur_offset,
5782 					last_byte, locked_end + 1,
5783 					alloc_hint, mode);
5784 			if (ret < 0) {
5785 				free_extent_map(em);
5786 				break;
5787 			}
5788 		}
5789 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5790 			alloc_hint = em->block_start;
5791 		free_extent_map(em);
5792 
5793 		cur_offset = last_byte;
5794 		if (cur_offset >= alloc_end) {
5795 			ret = 0;
5796 			break;
5797 		}
5798 	}
5799 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5800 		      GFP_NOFS);
5801 
5802 	btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5803 out_free:
5804 	btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5805 out:
5806 	mutex_unlock(&inode->i_mutex);
5807 	return ret;
5808 }
5809 
5810 static int btrfs_set_page_dirty(struct page *page)
5811 {
5812 	return __set_page_dirty_nobuffers(page);
5813 }
5814 
5815 static int btrfs_permission(struct inode *inode, int mask)
5816 {
5817 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5818 		return -EACCES;
5819 	return generic_permission(inode, mask, btrfs_check_acl);
5820 }
5821 
5822 static const struct inode_operations btrfs_dir_inode_operations = {
5823 	.getattr	= btrfs_getattr,
5824 	.lookup		= btrfs_lookup,
5825 	.create		= btrfs_create,
5826 	.unlink		= btrfs_unlink,
5827 	.link		= btrfs_link,
5828 	.mkdir		= btrfs_mkdir,
5829 	.rmdir		= btrfs_rmdir,
5830 	.rename		= btrfs_rename,
5831 	.symlink	= btrfs_symlink,
5832 	.setattr	= btrfs_setattr,
5833 	.mknod		= btrfs_mknod,
5834 	.setxattr	= btrfs_setxattr,
5835 	.getxattr	= btrfs_getxattr,
5836 	.listxattr	= btrfs_listxattr,
5837 	.removexattr	= btrfs_removexattr,
5838 	.permission	= btrfs_permission,
5839 };
5840 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5841 	.lookup		= btrfs_lookup,
5842 	.permission	= btrfs_permission,
5843 };
5844 
5845 static const struct file_operations btrfs_dir_file_operations = {
5846 	.llseek		= generic_file_llseek,
5847 	.read		= generic_read_dir,
5848 	.readdir	= btrfs_real_readdir,
5849 	.unlocked_ioctl	= btrfs_ioctl,
5850 #ifdef CONFIG_COMPAT
5851 	.compat_ioctl	= btrfs_ioctl,
5852 #endif
5853 	.release        = btrfs_release_file,
5854 	.fsync		= btrfs_sync_file,
5855 };
5856 
5857 static struct extent_io_ops btrfs_extent_io_ops = {
5858 	.fill_delalloc = run_delalloc_range,
5859 	.submit_bio_hook = btrfs_submit_bio_hook,
5860 	.merge_bio_hook = btrfs_merge_bio_hook,
5861 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5862 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5863 	.writepage_start_hook = btrfs_writepage_start_hook,
5864 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5865 	.set_bit_hook = btrfs_set_bit_hook,
5866 	.clear_bit_hook = btrfs_clear_bit_hook,
5867 	.merge_extent_hook = btrfs_merge_extent_hook,
5868 	.split_extent_hook = btrfs_split_extent_hook,
5869 };
5870 
5871 /*
5872  * btrfs doesn't support the bmap operation because swapfiles
5873  * use bmap to make a mapping of extents in the file.  They assume
5874  * these extents won't change over the life of the file and they
5875  * use the bmap result to do IO directly to the drive.
5876  *
5877  * the btrfs bmap call would return logical addresses that aren't
5878  * suitable for IO and they also will change frequently as COW
5879  * operations happen.  So, swapfile + btrfs == corruption.
5880  *
5881  * For now we're avoiding this by dropping bmap.
5882  */
5883 static const struct address_space_operations btrfs_aops = {
5884 	.readpage	= btrfs_readpage,
5885 	.writepage	= btrfs_writepage,
5886 	.writepages	= btrfs_writepages,
5887 	.readpages	= btrfs_readpages,
5888 	.sync_page	= block_sync_page,
5889 	.direct_IO	= btrfs_direct_IO,
5890 	.invalidatepage = btrfs_invalidatepage,
5891 	.releasepage	= btrfs_releasepage,
5892 	.set_page_dirty	= btrfs_set_page_dirty,
5893 	.error_remove_page = generic_error_remove_page,
5894 };
5895 
5896 static const struct address_space_operations btrfs_symlink_aops = {
5897 	.readpage	= btrfs_readpage,
5898 	.writepage	= btrfs_writepage,
5899 	.invalidatepage = btrfs_invalidatepage,
5900 	.releasepage	= btrfs_releasepage,
5901 };
5902 
5903 static const struct inode_operations btrfs_file_inode_operations = {
5904 	.truncate	= btrfs_truncate,
5905 	.getattr	= btrfs_getattr,
5906 	.setattr	= btrfs_setattr,
5907 	.setxattr	= btrfs_setxattr,
5908 	.getxattr	= btrfs_getxattr,
5909 	.listxattr      = btrfs_listxattr,
5910 	.removexattr	= btrfs_removexattr,
5911 	.permission	= btrfs_permission,
5912 	.fallocate	= btrfs_fallocate,
5913 	.fiemap		= btrfs_fiemap,
5914 };
5915 static const struct inode_operations btrfs_special_inode_operations = {
5916 	.getattr	= btrfs_getattr,
5917 	.setattr	= btrfs_setattr,
5918 	.permission	= btrfs_permission,
5919 	.setxattr	= btrfs_setxattr,
5920 	.getxattr	= btrfs_getxattr,
5921 	.listxattr	= btrfs_listxattr,
5922 	.removexattr	= btrfs_removexattr,
5923 };
5924 static const struct inode_operations btrfs_symlink_inode_operations = {
5925 	.readlink	= generic_readlink,
5926 	.follow_link	= page_follow_link_light,
5927 	.put_link	= page_put_link,
5928 	.permission	= btrfs_permission,
5929 	.setxattr	= btrfs_setxattr,
5930 	.getxattr	= btrfs_getxattr,
5931 	.listxattr	= btrfs_listxattr,
5932 	.removexattr	= btrfs_removexattr,
5933 };
5934 
5935 const struct dentry_operations btrfs_dentry_operations = {
5936 	.d_delete	= btrfs_dentry_delete,
5937 };
5938