xref: /linux/fs/btrfs/inode.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
82 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
83 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
84 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
85 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
86 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
87 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
88 };
89 
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94 				   struct page *locked_page,
95 				   u64 start, u64 end, int *page_started,
96 				   unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 				struct btrfs_root *root, struct inode *inode);
99 
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 				     struct inode *inode,  struct inode *dir,
102 				     const struct qstr *qstr)
103 {
104 	int err;
105 
106 	err = btrfs_init_acl(trans, inode, dir);
107 	if (!err)
108 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 	return err;
110 }
111 
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 				struct btrfs_root *root, struct inode *inode,
119 				u64 start, size_t size, size_t compressed_size,
120 				int compress_type,
121 				struct page **compressed_pages)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 	struct extent_buffer *leaf;
126 	struct page *page = NULL;
127 	char *kaddr;
128 	unsigned long ptr;
129 	struct btrfs_file_extent_item *ei;
130 	int err = 0;
131 	int ret;
132 	size_t cur_size = size;
133 	size_t datasize;
134 	unsigned long offset;
135 
136 	if (compressed_size && compressed_pages)
137 		cur_size = compressed_size;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	path->leave_spinning = 1;
144 
145 	key.objectid = btrfs_ino(inode);
146 	key.offset = start;
147 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 
150 	inode_add_bytes(inode, size);
151 	ret = btrfs_insert_empty_item(trans, root, path, &key,
152 				      datasize);
153 	if (ret) {
154 		err = ret;
155 		goto fail;
156 	}
157 	leaf = path->nodes[0];
158 	ei = btrfs_item_ptr(leaf, path->slots[0],
159 			    struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 	btrfs_set_file_extent_encryption(leaf, ei, 0);
163 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 	ptr = btrfs_file_extent_inline_start(ei);
166 
167 	if (compress_type != BTRFS_COMPRESS_NONE) {
168 		struct page *cpage;
169 		int i = 0;
170 		while (compressed_size > 0) {
171 			cpage = compressed_pages[i];
172 			cur_size = min_t(unsigned long, compressed_size,
173 				       PAGE_CACHE_SIZE);
174 
175 			kaddr = kmap_atomic(cpage);
176 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 			kunmap_atomic(kaddr);
178 
179 			i++;
180 			ptr += cur_size;
181 			compressed_size -= cur_size;
182 		}
183 		btrfs_set_file_extent_compression(leaf, ei,
184 						  compress_type);
185 	} else {
186 		page = find_get_page(inode->i_mapping,
187 				     start >> PAGE_CACHE_SHIFT);
188 		btrfs_set_file_extent_compression(leaf, ei, 0);
189 		kaddr = kmap_atomic(page);
190 		offset = start & (PAGE_CACHE_SIZE - 1);
191 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 		kunmap_atomic(kaddr);
193 		page_cache_release(page);
194 	}
195 	btrfs_mark_buffer_dirty(leaf);
196 	btrfs_free_path(path);
197 
198 	/*
199 	 * we're an inline extent, so nobody can
200 	 * extend the file past i_size without locking
201 	 * a page we already have locked.
202 	 *
203 	 * We must do any isize and inode updates
204 	 * before we unlock the pages.  Otherwise we
205 	 * could end up racing with unlink.
206 	 */
207 	BTRFS_I(inode)->disk_i_size = inode->i_size;
208 	ret = btrfs_update_inode(trans, root, inode);
209 
210 	return ret;
211 fail:
212 	btrfs_free_path(path);
213 	return err;
214 }
215 
216 
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 				 struct btrfs_root *root,
224 				 struct inode *inode, u64 start, u64 end,
225 				 size_t compressed_size, int compress_type,
226 				 struct page **compressed_pages)
227 {
228 	u64 isize = i_size_read(inode);
229 	u64 actual_end = min(end + 1, isize);
230 	u64 inline_len = actual_end - start;
231 	u64 aligned_end = (end + root->sectorsize - 1) &
232 			~((u64)root->sectorsize - 1);
233 	u64 hint_byte;
234 	u64 data_len = inline_len;
235 	int ret;
236 
237 	if (compressed_size)
238 		data_len = compressed_size;
239 
240 	if (start > 0 ||
241 	    actual_end >= PAGE_CACHE_SIZE ||
242 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 	    (!compressed_size &&
244 	    (actual_end & (root->sectorsize - 1)) == 0) ||
245 	    end + 1 < isize ||
246 	    data_len > root->fs_info->max_inline) {
247 		return 1;
248 	}
249 
250 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 				 &hint_byte, 1);
252 	if (ret)
253 		return ret;
254 
255 	if (isize > actual_end)
256 		inline_len = min_t(u64, isize, actual_end);
257 	ret = insert_inline_extent(trans, root, inode, start,
258 				   inline_len, compressed_size,
259 				   compress_type, compressed_pages);
260 	if (ret && ret != -ENOSPC) {
261 		btrfs_abort_transaction(trans, root, ret);
262 		return ret;
263 	} else if (ret == -ENOSPC) {
264 		return 1;
265 	}
266 
267 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
268 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 	return 0;
270 }
271 
272 struct async_extent {
273 	u64 start;
274 	u64 ram_size;
275 	u64 compressed_size;
276 	struct page **pages;
277 	unsigned long nr_pages;
278 	int compress_type;
279 	struct list_head list;
280 };
281 
282 struct async_cow {
283 	struct inode *inode;
284 	struct btrfs_root *root;
285 	struct page *locked_page;
286 	u64 start;
287 	u64 end;
288 	struct list_head extents;
289 	struct btrfs_work work;
290 };
291 
292 static noinline int add_async_extent(struct async_cow *cow,
293 				     u64 start, u64 ram_size,
294 				     u64 compressed_size,
295 				     struct page **pages,
296 				     unsigned long nr_pages,
297 				     int compress_type)
298 {
299 	struct async_extent *async_extent;
300 
301 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
302 	BUG_ON(!async_extent); /* -ENOMEM */
303 	async_extent->start = start;
304 	async_extent->ram_size = ram_size;
305 	async_extent->compressed_size = compressed_size;
306 	async_extent->pages = pages;
307 	async_extent->nr_pages = nr_pages;
308 	async_extent->compress_type = compress_type;
309 	list_add_tail(&async_extent->list, &cow->extents);
310 	return 0;
311 }
312 
313 /*
314  * we create compressed extents in two phases.  The first
315  * phase compresses a range of pages that have already been
316  * locked (both pages and state bits are locked).
317  *
318  * This is done inside an ordered work queue, and the compression
319  * is spread across many cpus.  The actual IO submission is step
320  * two, and the ordered work queue takes care of making sure that
321  * happens in the same order things were put onto the queue by
322  * writepages and friends.
323  *
324  * If this code finds it can't get good compression, it puts an
325  * entry onto the work queue to write the uncompressed bytes.  This
326  * makes sure that both compressed inodes and uncompressed inodes
327  * are written in the same order that pdflush sent them down.
328  */
329 static noinline int compress_file_range(struct inode *inode,
330 					struct page *locked_page,
331 					u64 start, u64 end,
332 					struct async_cow *async_cow,
333 					int *num_added)
334 {
335 	struct btrfs_root *root = BTRFS_I(inode)->root;
336 	struct btrfs_trans_handle *trans;
337 	u64 num_bytes;
338 	u64 blocksize = root->sectorsize;
339 	u64 actual_end;
340 	u64 isize = i_size_read(inode);
341 	int ret = 0;
342 	struct page **pages = NULL;
343 	unsigned long nr_pages;
344 	unsigned long nr_pages_ret = 0;
345 	unsigned long total_compressed = 0;
346 	unsigned long total_in = 0;
347 	unsigned long max_compressed = 128 * 1024;
348 	unsigned long max_uncompressed = 128 * 1024;
349 	int i;
350 	int will_compress;
351 	int compress_type = root->fs_info->compress_type;
352 
353 	/* if this is a small write inside eof, kick off a defrag */
354 	if ((end - start + 1) < 16 * 1024 &&
355 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
356 		btrfs_add_inode_defrag(NULL, inode);
357 
358 	actual_end = min_t(u64, isize, end + 1);
359 again:
360 	will_compress = 0;
361 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
362 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
363 
364 	/*
365 	 * we don't want to send crud past the end of i_size through
366 	 * compression, that's just a waste of CPU time.  So, if the
367 	 * end of the file is before the start of our current
368 	 * requested range of bytes, we bail out to the uncompressed
369 	 * cleanup code that can deal with all of this.
370 	 *
371 	 * It isn't really the fastest way to fix things, but this is a
372 	 * very uncommon corner.
373 	 */
374 	if (actual_end <= start)
375 		goto cleanup_and_bail_uncompressed;
376 
377 	total_compressed = actual_end - start;
378 
379 	/* we want to make sure that amount of ram required to uncompress
380 	 * an extent is reasonable, so we limit the total size in ram
381 	 * of a compressed extent to 128k.  This is a crucial number
382 	 * because it also controls how easily we can spread reads across
383 	 * cpus for decompression.
384 	 *
385 	 * We also want to make sure the amount of IO required to do
386 	 * a random read is reasonably small, so we limit the size of
387 	 * a compressed extent to 128k.
388 	 */
389 	total_compressed = min(total_compressed, max_uncompressed);
390 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
391 	num_bytes = max(blocksize,  num_bytes);
392 	total_in = 0;
393 	ret = 0;
394 
395 	/*
396 	 * we do compression for mount -o compress and when the
397 	 * inode has not been flagged as nocompress.  This flag can
398 	 * change at any time if we discover bad compression ratios.
399 	 */
400 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
401 	    (btrfs_test_opt(root, COMPRESS) ||
402 	     (BTRFS_I(inode)->force_compress) ||
403 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
404 		WARN_ON(pages);
405 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
406 		if (!pages) {
407 			/* just bail out to the uncompressed code */
408 			goto cont;
409 		}
410 
411 		if (BTRFS_I(inode)->force_compress)
412 			compress_type = BTRFS_I(inode)->force_compress;
413 
414 		ret = btrfs_compress_pages(compress_type,
415 					   inode->i_mapping, start,
416 					   total_compressed, pages,
417 					   nr_pages, &nr_pages_ret,
418 					   &total_in,
419 					   &total_compressed,
420 					   max_compressed);
421 
422 		if (!ret) {
423 			unsigned long offset = total_compressed &
424 				(PAGE_CACHE_SIZE - 1);
425 			struct page *page = pages[nr_pages_ret - 1];
426 			char *kaddr;
427 
428 			/* zero the tail end of the last page, we might be
429 			 * sending it down to disk
430 			 */
431 			if (offset) {
432 				kaddr = kmap_atomic(page);
433 				memset(kaddr + offset, 0,
434 				       PAGE_CACHE_SIZE - offset);
435 				kunmap_atomic(kaddr);
436 			}
437 			will_compress = 1;
438 		}
439 	}
440 cont:
441 	if (start == 0) {
442 		trans = btrfs_join_transaction(root);
443 		if (IS_ERR(trans)) {
444 			ret = PTR_ERR(trans);
445 			trans = NULL;
446 			goto cleanup_and_out;
447 		}
448 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
449 
450 		/* lets try to make an inline extent */
451 		if (ret || total_in < (actual_end - start)) {
452 			/* we didn't compress the entire range, try
453 			 * to make an uncompressed inline extent.
454 			 */
455 			ret = cow_file_range_inline(trans, root, inode,
456 						    start, end, 0, 0, NULL);
457 		} else {
458 			/* try making a compressed inline extent */
459 			ret = cow_file_range_inline(trans, root, inode,
460 						    start, end,
461 						    total_compressed,
462 						    compress_type, pages);
463 		}
464 		if (ret <= 0) {
465 			/*
466 			 * inline extent creation worked or returned error,
467 			 * we don't need to create any more async work items.
468 			 * Unlock and free up our temp pages.
469 			 */
470 			extent_clear_unlock_delalloc(inode,
471 			     &BTRFS_I(inode)->io_tree,
472 			     start, end, NULL,
473 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
474 			     EXTENT_CLEAR_DELALLOC |
475 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
476 
477 			btrfs_end_transaction(trans, root);
478 			goto free_pages_out;
479 		}
480 		btrfs_end_transaction(trans, root);
481 	}
482 
483 	if (will_compress) {
484 		/*
485 		 * we aren't doing an inline extent round the compressed size
486 		 * up to a block size boundary so the allocator does sane
487 		 * things
488 		 */
489 		total_compressed = (total_compressed + blocksize - 1) &
490 			~(blocksize - 1);
491 
492 		/*
493 		 * one last check to make sure the compression is really a
494 		 * win, compare the page count read with the blocks on disk
495 		 */
496 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
497 			~(PAGE_CACHE_SIZE - 1);
498 		if (total_compressed >= total_in) {
499 			will_compress = 0;
500 		} else {
501 			num_bytes = total_in;
502 		}
503 	}
504 	if (!will_compress && pages) {
505 		/*
506 		 * the compression code ran but failed to make things smaller,
507 		 * free any pages it allocated and our page pointer array
508 		 */
509 		for (i = 0; i < nr_pages_ret; i++) {
510 			WARN_ON(pages[i]->mapping);
511 			page_cache_release(pages[i]);
512 		}
513 		kfree(pages);
514 		pages = NULL;
515 		total_compressed = 0;
516 		nr_pages_ret = 0;
517 
518 		/* flag the file so we don't compress in the future */
519 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
520 		    !(BTRFS_I(inode)->force_compress)) {
521 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
522 		}
523 	}
524 	if (will_compress) {
525 		*num_added += 1;
526 
527 		/* the async work queues will take care of doing actual
528 		 * allocation on disk for these compressed pages,
529 		 * and will submit them to the elevator.
530 		 */
531 		add_async_extent(async_cow, start, num_bytes,
532 				 total_compressed, pages, nr_pages_ret,
533 				 compress_type);
534 
535 		if (start + num_bytes < end) {
536 			start += num_bytes;
537 			pages = NULL;
538 			cond_resched();
539 			goto again;
540 		}
541 	} else {
542 cleanup_and_bail_uncompressed:
543 		/*
544 		 * No compression, but we still need to write the pages in
545 		 * the file we've been given so far.  redirty the locked
546 		 * page if it corresponds to our extent and set things up
547 		 * for the async work queue to run cow_file_range to do
548 		 * the normal delalloc dance
549 		 */
550 		if (page_offset(locked_page) >= start &&
551 		    page_offset(locked_page) <= end) {
552 			__set_page_dirty_nobuffers(locked_page);
553 			/* unlocked later on in the async handlers */
554 		}
555 		add_async_extent(async_cow, start, end - start + 1,
556 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
557 		*num_added += 1;
558 	}
559 
560 out:
561 	return ret;
562 
563 free_pages_out:
564 	for (i = 0; i < nr_pages_ret; i++) {
565 		WARN_ON(pages[i]->mapping);
566 		page_cache_release(pages[i]);
567 	}
568 	kfree(pages);
569 
570 	goto out;
571 
572 cleanup_and_out:
573 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
574 				     start, end, NULL,
575 				     EXTENT_CLEAR_UNLOCK_PAGE |
576 				     EXTENT_CLEAR_DIRTY |
577 				     EXTENT_CLEAR_DELALLOC |
578 				     EXTENT_SET_WRITEBACK |
579 				     EXTENT_END_WRITEBACK);
580 	if (!trans || IS_ERR(trans))
581 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
582 	else
583 		btrfs_abort_transaction(trans, root, ret);
584 	goto free_pages_out;
585 }
586 
587 /*
588  * phase two of compressed writeback.  This is the ordered portion
589  * of the code, which only gets called in the order the work was
590  * queued.  We walk all the async extents created by compress_file_range
591  * and send them down to the disk.
592  */
593 static noinline int submit_compressed_extents(struct inode *inode,
594 					      struct async_cow *async_cow)
595 {
596 	struct async_extent *async_extent;
597 	u64 alloc_hint = 0;
598 	struct btrfs_trans_handle *trans;
599 	struct btrfs_key ins;
600 	struct extent_map *em;
601 	struct btrfs_root *root = BTRFS_I(inode)->root;
602 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
603 	struct extent_io_tree *io_tree;
604 	int ret = 0;
605 
606 	if (list_empty(&async_cow->extents))
607 		return 0;
608 
609 
610 	while (!list_empty(&async_cow->extents)) {
611 		async_extent = list_entry(async_cow->extents.next,
612 					  struct async_extent, list);
613 		list_del(&async_extent->list);
614 
615 		io_tree = &BTRFS_I(inode)->io_tree;
616 
617 retry:
618 		/* did the compression code fall back to uncompressed IO? */
619 		if (!async_extent->pages) {
620 			int page_started = 0;
621 			unsigned long nr_written = 0;
622 
623 			lock_extent(io_tree, async_extent->start,
624 					 async_extent->start +
625 					 async_extent->ram_size - 1);
626 
627 			/* allocate blocks */
628 			ret = cow_file_range(inode, async_cow->locked_page,
629 					     async_extent->start,
630 					     async_extent->start +
631 					     async_extent->ram_size - 1,
632 					     &page_started, &nr_written, 0);
633 
634 			/* JDM XXX */
635 
636 			/*
637 			 * if page_started, cow_file_range inserted an
638 			 * inline extent and took care of all the unlocking
639 			 * and IO for us.  Otherwise, we need to submit
640 			 * all those pages down to the drive.
641 			 */
642 			if (!page_started && !ret)
643 				extent_write_locked_range(io_tree,
644 						  inode, async_extent->start,
645 						  async_extent->start +
646 						  async_extent->ram_size - 1,
647 						  btrfs_get_extent,
648 						  WB_SYNC_ALL);
649 			kfree(async_extent);
650 			cond_resched();
651 			continue;
652 		}
653 
654 		lock_extent(io_tree, async_extent->start,
655 			    async_extent->start + async_extent->ram_size - 1);
656 
657 		trans = btrfs_join_transaction(root);
658 		if (IS_ERR(trans)) {
659 			ret = PTR_ERR(trans);
660 		} else {
661 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
662 			ret = btrfs_reserve_extent(trans, root,
663 					   async_extent->compressed_size,
664 					   async_extent->compressed_size,
665 					   0, alloc_hint, &ins, 1);
666 			if (ret)
667 				btrfs_abort_transaction(trans, root, ret);
668 			btrfs_end_transaction(trans, root);
669 		}
670 
671 		if (ret) {
672 			int i;
673 			for (i = 0; i < async_extent->nr_pages; i++) {
674 				WARN_ON(async_extent->pages[i]->mapping);
675 				page_cache_release(async_extent->pages[i]);
676 			}
677 			kfree(async_extent->pages);
678 			async_extent->nr_pages = 0;
679 			async_extent->pages = NULL;
680 			unlock_extent(io_tree, async_extent->start,
681 				      async_extent->start +
682 				      async_extent->ram_size - 1);
683 			if (ret == -ENOSPC)
684 				goto retry;
685 			goto out_free; /* JDM: Requeue? */
686 		}
687 
688 		/*
689 		 * here we're doing allocation and writeback of the
690 		 * compressed pages
691 		 */
692 		btrfs_drop_extent_cache(inode, async_extent->start,
693 					async_extent->start +
694 					async_extent->ram_size - 1, 0);
695 
696 		em = alloc_extent_map();
697 		BUG_ON(!em); /* -ENOMEM */
698 		em->start = async_extent->start;
699 		em->len = async_extent->ram_size;
700 		em->orig_start = em->start;
701 
702 		em->block_start = ins.objectid;
703 		em->block_len = ins.offset;
704 		em->bdev = root->fs_info->fs_devices->latest_bdev;
705 		em->compress_type = async_extent->compress_type;
706 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
707 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708 
709 		while (1) {
710 			write_lock(&em_tree->lock);
711 			ret = add_extent_mapping(em_tree, em);
712 			write_unlock(&em_tree->lock);
713 			if (ret != -EEXIST) {
714 				free_extent_map(em);
715 				break;
716 			}
717 			btrfs_drop_extent_cache(inode, async_extent->start,
718 						async_extent->start +
719 						async_extent->ram_size - 1, 0);
720 		}
721 
722 		ret = btrfs_add_ordered_extent_compress(inode,
723 						async_extent->start,
724 						ins.objectid,
725 						async_extent->ram_size,
726 						ins.offset,
727 						BTRFS_ORDERED_COMPRESSED,
728 						async_extent->compress_type);
729 		BUG_ON(ret); /* -ENOMEM */
730 
731 		/*
732 		 * clear dirty, set writeback and unlock the pages.
733 		 */
734 		extent_clear_unlock_delalloc(inode,
735 				&BTRFS_I(inode)->io_tree,
736 				async_extent->start,
737 				async_extent->start +
738 				async_extent->ram_size - 1,
739 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
740 				EXTENT_CLEAR_UNLOCK |
741 				EXTENT_CLEAR_DELALLOC |
742 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
743 
744 		ret = btrfs_submit_compressed_write(inode,
745 				    async_extent->start,
746 				    async_extent->ram_size,
747 				    ins.objectid,
748 				    ins.offset, async_extent->pages,
749 				    async_extent->nr_pages);
750 
751 		BUG_ON(ret); /* -ENOMEM */
752 		alloc_hint = ins.objectid + ins.offset;
753 		kfree(async_extent);
754 		cond_resched();
755 	}
756 	ret = 0;
757 out:
758 	return ret;
759 out_free:
760 	kfree(async_extent);
761 	goto out;
762 }
763 
764 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765 				      u64 num_bytes)
766 {
767 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 	struct extent_map *em;
769 	u64 alloc_hint = 0;
770 
771 	read_lock(&em_tree->lock);
772 	em = search_extent_mapping(em_tree, start, num_bytes);
773 	if (em) {
774 		/*
775 		 * if block start isn't an actual block number then find the
776 		 * first block in this inode and use that as a hint.  If that
777 		 * block is also bogus then just don't worry about it.
778 		 */
779 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
780 			free_extent_map(em);
781 			em = search_extent_mapping(em_tree, 0, 0);
782 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
783 				alloc_hint = em->block_start;
784 			if (em)
785 				free_extent_map(em);
786 		} else {
787 			alloc_hint = em->block_start;
788 			free_extent_map(em);
789 		}
790 	}
791 	read_unlock(&em_tree->lock);
792 
793 	return alloc_hint;
794 }
795 
796 /*
797  * when extent_io.c finds a delayed allocation range in the file,
798  * the call backs end up in this code.  The basic idea is to
799  * allocate extents on disk for the range, and create ordered data structs
800  * in ram to track those extents.
801  *
802  * locked_page is the page that writepage had locked already.  We use
803  * it to make sure we don't do extra locks or unlocks.
804  *
805  * *page_started is set to one if we unlock locked_page and do everything
806  * required to start IO on it.  It may be clean and already done with
807  * IO when we return.
808  */
809 static noinline int cow_file_range(struct inode *inode,
810 				   struct page *locked_page,
811 				   u64 start, u64 end, int *page_started,
812 				   unsigned long *nr_written,
813 				   int unlock)
814 {
815 	struct btrfs_root *root = BTRFS_I(inode)->root;
816 	struct btrfs_trans_handle *trans;
817 	u64 alloc_hint = 0;
818 	u64 num_bytes;
819 	unsigned long ram_size;
820 	u64 disk_num_bytes;
821 	u64 cur_alloc_size;
822 	u64 blocksize = root->sectorsize;
823 	struct btrfs_key ins;
824 	struct extent_map *em;
825 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 	int ret = 0;
827 
828 	BUG_ON(btrfs_is_free_space_inode(root, inode));
829 	trans = btrfs_join_transaction(root);
830 	if (IS_ERR(trans)) {
831 		extent_clear_unlock_delalloc(inode,
832 			     &BTRFS_I(inode)->io_tree,
833 			     start, end, locked_page,
834 			     EXTENT_CLEAR_UNLOCK_PAGE |
835 			     EXTENT_CLEAR_UNLOCK |
836 			     EXTENT_CLEAR_DELALLOC |
837 			     EXTENT_CLEAR_DIRTY |
838 			     EXTENT_SET_WRITEBACK |
839 			     EXTENT_END_WRITEBACK);
840 		return PTR_ERR(trans);
841 	}
842 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
843 
844 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
845 	num_bytes = max(blocksize,  num_bytes);
846 	disk_num_bytes = num_bytes;
847 	ret = 0;
848 
849 	/* if this is a small write inside eof, kick off defrag */
850 	if (num_bytes < 64 * 1024 &&
851 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
852 		btrfs_add_inode_defrag(trans, inode);
853 
854 	if (start == 0) {
855 		/* lets try to make an inline extent */
856 		ret = cow_file_range_inline(trans, root, inode,
857 					    start, end, 0, 0, NULL);
858 		if (ret == 0) {
859 			extent_clear_unlock_delalloc(inode,
860 				     &BTRFS_I(inode)->io_tree,
861 				     start, end, NULL,
862 				     EXTENT_CLEAR_UNLOCK_PAGE |
863 				     EXTENT_CLEAR_UNLOCK |
864 				     EXTENT_CLEAR_DELALLOC |
865 				     EXTENT_CLEAR_DIRTY |
866 				     EXTENT_SET_WRITEBACK |
867 				     EXTENT_END_WRITEBACK);
868 
869 			*nr_written = *nr_written +
870 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 			*page_started = 1;
872 			goto out;
873 		} else if (ret < 0) {
874 			btrfs_abort_transaction(trans, root, ret);
875 			goto out_unlock;
876 		}
877 	}
878 
879 	BUG_ON(disk_num_bytes >
880 	       btrfs_super_total_bytes(root->fs_info->super_copy));
881 
882 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
883 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
884 
885 	while (disk_num_bytes > 0) {
886 		unsigned long op;
887 
888 		cur_alloc_size = disk_num_bytes;
889 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
890 					   root->sectorsize, 0, alloc_hint,
891 					   &ins, 1);
892 		if (ret < 0) {
893 			btrfs_abort_transaction(trans, root, ret);
894 			goto out_unlock;
895 		}
896 
897 		em = alloc_extent_map();
898 		BUG_ON(!em); /* -ENOMEM */
899 		em->start = start;
900 		em->orig_start = em->start;
901 		ram_size = ins.offset;
902 		em->len = ins.offset;
903 
904 		em->block_start = ins.objectid;
905 		em->block_len = ins.offset;
906 		em->bdev = root->fs_info->fs_devices->latest_bdev;
907 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
908 
909 		while (1) {
910 			write_lock(&em_tree->lock);
911 			ret = add_extent_mapping(em_tree, em);
912 			write_unlock(&em_tree->lock);
913 			if (ret != -EEXIST) {
914 				free_extent_map(em);
915 				break;
916 			}
917 			btrfs_drop_extent_cache(inode, start,
918 						start + ram_size - 1, 0);
919 		}
920 
921 		cur_alloc_size = ins.offset;
922 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
923 					       ram_size, cur_alloc_size, 0);
924 		BUG_ON(ret); /* -ENOMEM */
925 
926 		if (root->root_key.objectid ==
927 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
928 			ret = btrfs_reloc_clone_csums(inode, start,
929 						      cur_alloc_size);
930 			if (ret) {
931 				btrfs_abort_transaction(trans, root, ret);
932 				goto out_unlock;
933 			}
934 		}
935 
936 		if (disk_num_bytes < cur_alloc_size)
937 			break;
938 
939 		/* we're not doing compressed IO, don't unlock the first
940 		 * page (which the caller expects to stay locked), don't
941 		 * clear any dirty bits and don't set any writeback bits
942 		 *
943 		 * Do set the Private2 bit so we know this page was properly
944 		 * setup for writepage
945 		 */
946 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
947 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
948 			EXTENT_SET_PRIVATE2;
949 
950 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
951 					     start, start + ram_size - 1,
952 					     locked_page, op);
953 		disk_num_bytes -= cur_alloc_size;
954 		num_bytes -= cur_alloc_size;
955 		alloc_hint = ins.objectid + ins.offset;
956 		start += cur_alloc_size;
957 	}
958 	ret = 0;
959 out:
960 	btrfs_end_transaction(trans, root);
961 
962 	return ret;
963 out_unlock:
964 	extent_clear_unlock_delalloc(inode,
965 		     &BTRFS_I(inode)->io_tree,
966 		     start, end, locked_page,
967 		     EXTENT_CLEAR_UNLOCK_PAGE |
968 		     EXTENT_CLEAR_UNLOCK |
969 		     EXTENT_CLEAR_DELALLOC |
970 		     EXTENT_CLEAR_DIRTY |
971 		     EXTENT_SET_WRITEBACK |
972 		     EXTENT_END_WRITEBACK);
973 
974 	goto out;
975 }
976 
977 /*
978  * work queue call back to started compression on a file and pages
979  */
980 static noinline void async_cow_start(struct btrfs_work *work)
981 {
982 	struct async_cow *async_cow;
983 	int num_added = 0;
984 	async_cow = container_of(work, struct async_cow, work);
985 
986 	compress_file_range(async_cow->inode, async_cow->locked_page,
987 			    async_cow->start, async_cow->end, async_cow,
988 			    &num_added);
989 	if (num_added == 0) {
990 		btrfs_add_delayed_iput(async_cow->inode);
991 		async_cow->inode = NULL;
992 	}
993 }
994 
995 /*
996  * work queue call back to submit previously compressed pages
997  */
998 static noinline void async_cow_submit(struct btrfs_work *work)
999 {
1000 	struct async_cow *async_cow;
1001 	struct btrfs_root *root;
1002 	unsigned long nr_pages;
1003 
1004 	async_cow = container_of(work, struct async_cow, work);
1005 
1006 	root = async_cow->root;
1007 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1008 		PAGE_CACHE_SHIFT;
1009 
1010 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1011 
1012 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
1013 	    5 * 1042 * 1024 &&
1014 	    waitqueue_active(&root->fs_info->async_submit_wait))
1015 		wake_up(&root->fs_info->async_submit_wait);
1016 
1017 	if (async_cow->inode)
1018 		submit_compressed_extents(async_cow->inode, async_cow);
1019 }
1020 
1021 static noinline void async_cow_free(struct btrfs_work *work)
1022 {
1023 	struct async_cow *async_cow;
1024 	async_cow = container_of(work, struct async_cow, work);
1025 	if (async_cow->inode)
1026 		btrfs_add_delayed_iput(async_cow->inode);
1027 	kfree(async_cow);
1028 }
1029 
1030 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1031 				u64 start, u64 end, int *page_started,
1032 				unsigned long *nr_written)
1033 {
1034 	struct async_cow *async_cow;
1035 	struct btrfs_root *root = BTRFS_I(inode)->root;
1036 	unsigned long nr_pages;
1037 	u64 cur_end;
1038 	int limit = 10 * 1024 * 1042;
1039 
1040 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1041 			 1, 0, NULL, GFP_NOFS);
1042 	while (start < end) {
1043 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1044 		BUG_ON(!async_cow); /* -ENOMEM */
1045 		async_cow->inode = igrab(inode);
1046 		async_cow->root = root;
1047 		async_cow->locked_page = locked_page;
1048 		async_cow->start = start;
1049 
1050 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1051 			cur_end = end;
1052 		else
1053 			cur_end = min(end, start + 512 * 1024 - 1);
1054 
1055 		async_cow->end = cur_end;
1056 		INIT_LIST_HEAD(&async_cow->extents);
1057 
1058 		async_cow->work.func = async_cow_start;
1059 		async_cow->work.ordered_func = async_cow_submit;
1060 		async_cow->work.ordered_free = async_cow_free;
1061 		async_cow->work.flags = 0;
1062 
1063 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1064 			PAGE_CACHE_SHIFT;
1065 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1066 
1067 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1068 				   &async_cow->work);
1069 
1070 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1071 			wait_event(root->fs_info->async_submit_wait,
1072 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1073 			    limit));
1074 		}
1075 
1076 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1077 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1078 			wait_event(root->fs_info->async_submit_wait,
1079 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1080 			   0));
1081 		}
1082 
1083 		*nr_written += nr_pages;
1084 		start = cur_end + 1;
1085 	}
1086 	*page_started = 1;
1087 	return 0;
1088 }
1089 
1090 static noinline int csum_exist_in_range(struct btrfs_root *root,
1091 					u64 bytenr, u64 num_bytes)
1092 {
1093 	int ret;
1094 	struct btrfs_ordered_sum *sums;
1095 	LIST_HEAD(list);
1096 
1097 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1098 				       bytenr + num_bytes - 1, &list, 0);
1099 	if (ret == 0 && list_empty(&list))
1100 		return 0;
1101 
1102 	while (!list_empty(&list)) {
1103 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1104 		list_del(&sums->list);
1105 		kfree(sums);
1106 	}
1107 	return 1;
1108 }
1109 
1110 /*
1111  * when nowcow writeback call back.  This checks for snapshots or COW copies
1112  * of the extents that exist in the file, and COWs the file as required.
1113  *
1114  * If no cow copies or snapshots exist, we write directly to the existing
1115  * blocks on disk
1116  */
1117 static noinline int run_delalloc_nocow(struct inode *inode,
1118 				       struct page *locked_page,
1119 			      u64 start, u64 end, int *page_started, int force,
1120 			      unsigned long *nr_written)
1121 {
1122 	struct btrfs_root *root = BTRFS_I(inode)->root;
1123 	struct btrfs_trans_handle *trans;
1124 	struct extent_buffer *leaf;
1125 	struct btrfs_path *path;
1126 	struct btrfs_file_extent_item *fi;
1127 	struct btrfs_key found_key;
1128 	u64 cow_start;
1129 	u64 cur_offset;
1130 	u64 extent_end;
1131 	u64 extent_offset;
1132 	u64 disk_bytenr;
1133 	u64 num_bytes;
1134 	int extent_type;
1135 	int ret, err;
1136 	int type;
1137 	int nocow;
1138 	int check_prev = 1;
1139 	bool nolock;
1140 	u64 ino = btrfs_ino(inode);
1141 
1142 	path = btrfs_alloc_path();
1143 	if (!path) {
1144 		extent_clear_unlock_delalloc(inode,
1145 			     &BTRFS_I(inode)->io_tree,
1146 			     start, end, locked_page,
1147 			     EXTENT_CLEAR_UNLOCK_PAGE |
1148 			     EXTENT_CLEAR_UNLOCK |
1149 			     EXTENT_CLEAR_DELALLOC |
1150 			     EXTENT_CLEAR_DIRTY |
1151 			     EXTENT_SET_WRITEBACK |
1152 			     EXTENT_END_WRITEBACK);
1153 		return -ENOMEM;
1154 	}
1155 
1156 	nolock = btrfs_is_free_space_inode(root, inode);
1157 
1158 	if (nolock)
1159 		trans = btrfs_join_transaction_nolock(root);
1160 	else
1161 		trans = btrfs_join_transaction(root);
1162 
1163 	if (IS_ERR(trans)) {
1164 		extent_clear_unlock_delalloc(inode,
1165 			     &BTRFS_I(inode)->io_tree,
1166 			     start, end, locked_page,
1167 			     EXTENT_CLEAR_UNLOCK_PAGE |
1168 			     EXTENT_CLEAR_UNLOCK |
1169 			     EXTENT_CLEAR_DELALLOC |
1170 			     EXTENT_CLEAR_DIRTY |
1171 			     EXTENT_SET_WRITEBACK |
1172 			     EXTENT_END_WRITEBACK);
1173 		btrfs_free_path(path);
1174 		return PTR_ERR(trans);
1175 	}
1176 
1177 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1178 
1179 	cow_start = (u64)-1;
1180 	cur_offset = start;
1181 	while (1) {
1182 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1183 					       cur_offset, 0);
1184 		if (ret < 0) {
1185 			btrfs_abort_transaction(trans, root, ret);
1186 			goto error;
1187 		}
1188 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1189 			leaf = path->nodes[0];
1190 			btrfs_item_key_to_cpu(leaf, &found_key,
1191 					      path->slots[0] - 1);
1192 			if (found_key.objectid == ino &&
1193 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1194 				path->slots[0]--;
1195 		}
1196 		check_prev = 0;
1197 next_slot:
1198 		leaf = path->nodes[0];
1199 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1200 			ret = btrfs_next_leaf(root, path);
1201 			if (ret < 0) {
1202 				btrfs_abort_transaction(trans, root, ret);
1203 				goto error;
1204 			}
1205 			if (ret > 0)
1206 				break;
1207 			leaf = path->nodes[0];
1208 		}
1209 
1210 		nocow = 0;
1211 		disk_bytenr = 0;
1212 		num_bytes = 0;
1213 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1214 
1215 		if (found_key.objectid > ino ||
1216 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1217 		    found_key.offset > end)
1218 			break;
1219 
1220 		if (found_key.offset > cur_offset) {
1221 			extent_end = found_key.offset;
1222 			extent_type = 0;
1223 			goto out_check;
1224 		}
1225 
1226 		fi = btrfs_item_ptr(leaf, path->slots[0],
1227 				    struct btrfs_file_extent_item);
1228 		extent_type = btrfs_file_extent_type(leaf, fi);
1229 
1230 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1231 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1232 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1233 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1234 			extent_end = found_key.offset +
1235 				btrfs_file_extent_num_bytes(leaf, fi);
1236 			if (extent_end <= start) {
1237 				path->slots[0]++;
1238 				goto next_slot;
1239 			}
1240 			if (disk_bytenr == 0)
1241 				goto out_check;
1242 			if (btrfs_file_extent_compression(leaf, fi) ||
1243 			    btrfs_file_extent_encryption(leaf, fi) ||
1244 			    btrfs_file_extent_other_encoding(leaf, fi))
1245 				goto out_check;
1246 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 				goto out_check;
1248 			if (btrfs_extent_readonly(root, disk_bytenr))
1249 				goto out_check;
1250 			if (btrfs_cross_ref_exist(trans, root, ino,
1251 						  found_key.offset -
1252 						  extent_offset, disk_bytenr))
1253 				goto out_check;
1254 			disk_bytenr += extent_offset;
1255 			disk_bytenr += cur_offset - found_key.offset;
1256 			num_bytes = min(end + 1, extent_end) - cur_offset;
1257 			/*
1258 			 * force cow if csum exists in the range.
1259 			 * this ensure that csum for a given extent are
1260 			 * either valid or do not exist.
1261 			 */
1262 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 				goto out_check;
1264 			nocow = 1;
1265 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 			extent_end = found_key.offset +
1267 				btrfs_file_extent_inline_len(leaf, fi);
1268 			extent_end = ALIGN(extent_end, root->sectorsize);
1269 		} else {
1270 			BUG_ON(1);
1271 		}
1272 out_check:
1273 		if (extent_end <= start) {
1274 			path->slots[0]++;
1275 			goto next_slot;
1276 		}
1277 		if (!nocow) {
1278 			if (cow_start == (u64)-1)
1279 				cow_start = cur_offset;
1280 			cur_offset = extent_end;
1281 			if (cur_offset > end)
1282 				break;
1283 			path->slots[0]++;
1284 			goto next_slot;
1285 		}
1286 
1287 		btrfs_release_path(path);
1288 		if (cow_start != (u64)-1) {
1289 			ret = cow_file_range(inode, locked_page, cow_start,
1290 					found_key.offset - 1, page_started,
1291 					nr_written, 1);
1292 			if (ret) {
1293 				btrfs_abort_transaction(trans, root, ret);
1294 				goto error;
1295 			}
1296 			cow_start = (u64)-1;
1297 		}
1298 
1299 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 			struct extent_map *em;
1301 			struct extent_map_tree *em_tree;
1302 			em_tree = &BTRFS_I(inode)->extent_tree;
1303 			em = alloc_extent_map();
1304 			BUG_ON(!em); /* -ENOMEM */
1305 			em->start = cur_offset;
1306 			em->orig_start = em->start;
1307 			em->len = num_bytes;
1308 			em->block_len = num_bytes;
1309 			em->block_start = disk_bytenr;
1310 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1311 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312 			while (1) {
1313 				write_lock(&em_tree->lock);
1314 				ret = add_extent_mapping(em_tree, em);
1315 				write_unlock(&em_tree->lock);
1316 				if (ret != -EEXIST) {
1317 					free_extent_map(em);
1318 					break;
1319 				}
1320 				btrfs_drop_extent_cache(inode, em->start,
1321 						em->start + em->len - 1, 0);
1322 			}
1323 			type = BTRFS_ORDERED_PREALLOC;
1324 		} else {
1325 			type = BTRFS_ORDERED_NOCOW;
1326 		}
1327 
1328 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1329 					       num_bytes, num_bytes, type);
1330 		BUG_ON(ret); /* -ENOMEM */
1331 
1332 		if (root->root_key.objectid ==
1333 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1334 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1335 						      num_bytes);
1336 			if (ret) {
1337 				btrfs_abort_transaction(trans, root, ret);
1338 				goto error;
1339 			}
1340 		}
1341 
1342 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1343 				cur_offset, cur_offset + num_bytes - 1,
1344 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1345 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1346 				EXTENT_SET_PRIVATE2);
1347 		cur_offset = extent_end;
1348 		if (cur_offset > end)
1349 			break;
1350 	}
1351 	btrfs_release_path(path);
1352 
1353 	if (cur_offset <= end && cow_start == (u64)-1) {
1354 		cow_start = cur_offset;
1355 		cur_offset = end;
1356 	}
1357 
1358 	if (cow_start != (u64)-1) {
1359 		ret = cow_file_range(inode, locked_page, cow_start, end,
1360 				     page_started, nr_written, 1);
1361 		if (ret) {
1362 			btrfs_abort_transaction(trans, root, ret);
1363 			goto error;
1364 		}
1365 	}
1366 
1367 error:
1368 	if (nolock) {
1369 		err = btrfs_end_transaction_nolock(trans, root);
1370 	} else {
1371 		err = btrfs_end_transaction(trans, root);
1372 	}
1373 	if (!ret)
1374 		ret = err;
1375 
1376 	if (ret && cur_offset < end)
1377 		extent_clear_unlock_delalloc(inode,
1378 			     &BTRFS_I(inode)->io_tree,
1379 			     cur_offset, end, locked_page,
1380 			     EXTENT_CLEAR_UNLOCK_PAGE |
1381 			     EXTENT_CLEAR_UNLOCK |
1382 			     EXTENT_CLEAR_DELALLOC |
1383 			     EXTENT_CLEAR_DIRTY |
1384 			     EXTENT_SET_WRITEBACK |
1385 			     EXTENT_END_WRITEBACK);
1386 
1387 	btrfs_free_path(path);
1388 	return ret;
1389 }
1390 
1391 /*
1392  * extent_io.c call back to do delayed allocation processing
1393  */
1394 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1395 			      u64 start, u64 end, int *page_started,
1396 			      unsigned long *nr_written)
1397 {
1398 	int ret;
1399 	struct btrfs_root *root = BTRFS_I(inode)->root;
1400 
1401 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1402 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1403 					 page_started, 1, nr_written);
1404 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1405 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1406 					 page_started, 0, nr_written);
1407 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1408 		   !(BTRFS_I(inode)->force_compress) &&
1409 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1410 		ret = cow_file_range(inode, locked_page, start, end,
1411 				      page_started, nr_written, 1);
1412 	} else {
1413 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1414 			&BTRFS_I(inode)->runtime_flags);
1415 		ret = cow_file_range_async(inode, locked_page, start, end,
1416 					   page_started, nr_written);
1417 	}
1418 	return ret;
1419 }
1420 
1421 static void btrfs_split_extent_hook(struct inode *inode,
1422 				    struct extent_state *orig, u64 split)
1423 {
1424 	/* not delalloc, ignore it */
1425 	if (!(orig->state & EXTENT_DELALLOC))
1426 		return;
1427 
1428 	spin_lock(&BTRFS_I(inode)->lock);
1429 	BTRFS_I(inode)->outstanding_extents++;
1430 	spin_unlock(&BTRFS_I(inode)->lock);
1431 }
1432 
1433 /*
1434  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1435  * extents so we can keep track of new extents that are just merged onto old
1436  * extents, such as when we are doing sequential writes, so we can properly
1437  * account for the metadata space we'll need.
1438  */
1439 static void btrfs_merge_extent_hook(struct inode *inode,
1440 				    struct extent_state *new,
1441 				    struct extent_state *other)
1442 {
1443 	/* not delalloc, ignore it */
1444 	if (!(other->state & EXTENT_DELALLOC))
1445 		return;
1446 
1447 	spin_lock(&BTRFS_I(inode)->lock);
1448 	BTRFS_I(inode)->outstanding_extents--;
1449 	spin_unlock(&BTRFS_I(inode)->lock);
1450 }
1451 
1452 /*
1453  * extent_io.c set_bit_hook, used to track delayed allocation
1454  * bytes in this file, and to maintain the list of inodes that
1455  * have pending delalloc work to be done.
1456  */
1457 static void btrfs_set_bit_hook(struct inode *inode,
1458 			       struct extent_state *state, int *bits)
1459 {
1460 
1461 	/*
1462 	 * set_bit and clear bit hooks normally require _irqsave/restore
1463 	 * but in this case, we are only testing for the DELALLOC
1464 	 * bit, which is only set or cleared with irqs on
1465 	 */
1466 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1467 		struct btrfs_root *root = BTRFS_I(inode)->root;
1468 		u64 len = state->end + 1 - state->start;
1469 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1470 
1471 		if (*bits & EXTENT_FIRST_DELALLOC) {
1472 			*bits &= ~EXTENT_FIRST_DELALLOC;
1473 		} else {
1474 			spin_lock(&BTRFS_I(inode)->lock);
1475 			BTRFS_I(inode)->outstanding_extents++;
1476 			spin_unlock(&BTRFS_I(inode)->lock);
1477 		}
1478 
1479 		spin_lock(&root->fs_info->delalloc_lock);
1480 		BTRFS_I(inode)->delalloc_bytes += len;
1481 		root->fs_info->delalloc_bytes += len;
1482 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1483 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1484 				      &root->fs_info->delalloc_inodes);
1485 		}
1486 		spin_unlock(&root->fs_info->delalloc_lock);
1487 	}
1488 }
1489 
1490 /*
1491  * extent_io.c clear_bit_hook, see set_bit_hook for why
1492  */
1493 static void btrfs_clear_bit_hook(struct inode *inode,
1494 				 struct extent_state *state, int *bits)
1495 {
1496 	/*
1497 	 * set_bit and clear bit hooks normally require _irqsave/restore
1498 	 * but in this case, we are only testing for the DELALLOC
1499 	 * bit, which is only set or cleared with irqs on
1500 	 */
1501 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1502 		struct btrfs_root *root = BTRFS_I(inode)->root;
1503 		u64 len = state->end + 1 - state->start;
1504 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1505 
1506 		if (*bits & EXTENT_FIRST_DELALLOC) {
1507 			*bits &= ~EXTENT_FIRST_DELALLOC;
1508 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1509 			spin_lock(&BTRFS_I(inode)->lock);
1510 			BTRFS_I(inode)->outstanding_extents--;
1511 			spin_unlock(&BTRFS_I(inode)->lock);
1512 		}
1513 
1514 		if (*bits & EXTENT_DO_ACCOUNTING)
1515 			btrfs_delalloc_release_metadata(inode, len);
1516 
1517 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1518 		    && do_list)
1519 			btrfs_free_reserved_data_space(inode, len);
1520 
1521 		spin_lock(&root->fs_info->delalloc_lock);
1522 		root->fs_info->delalloc_bytes -= len;
1523 		BTRFS_I(inode)->delalloc_bytes -= len;
1524 
1525 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1526 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528 		}
1529 		spin_unlock(&root->fs_info->delalloc_lock);
1530 	}
1531 }
1532 
1533 /*
1534  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1535  * we don't create bios that span stripes or chunks
1536  */
1537 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1538 			 size_t size, struct bio *bio,
1539 			 unsigned long bio_flags)
1540 {
1541 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1542 	struct btrfs_mapping_tree *map_tree;
1543 	u64 logical = (u64)bio->bi_sector << 9;
1544 	u64 length = 0;
1545 	u64 map_length;
1546 	int ret;
1547 
1548 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1549 		return 0;
1550 
1551 	length = bio->bi_size;
1552 	map_tree = &root->fs_info->mapping_tree;
1553 	map_length = length;
1554 	ret = btrfs_map_block(map_tree, READ, logical,
1555 			      &map_length, NULL, 0);
1556 	/* Will always return 0 or 1 with map_multi == NULL */
1557 	BUG_ON(ret < 0);
1558 	if (map_length < length + size)
1559 		return 1;
1560 	return 0;
1561 }
1562 
1563 /*
1564  * in order to insert checksums into the metadata in large chunks,
1565  * we wait until bio submission time.   All the pages in the bio are
1566  * checksummed and sums are attached onto the ordered extent record.
1567  *
1568  * At IO completion time the cums attached on the ordered extent record
1569  * are inserted into the btree
1570  */
1571 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1572 				    struct bio *bio, int mirror_num,
1573 				    unsigned long bio_flags,
1574 				    u64 bio_offset)
1575 {
1576 	struct btrfs_root *root = BTRFS_I(inode)->root;
1577 	int ret = 0;
1578 
1579 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1580 	BUG_ON(ret); /* -ENOMEM */
1581 	return 0;
1582 }
1583 
1584 /*
1585  * in order to insert checksums into the metadata in large chunks,
1586  * we wait until bio submission time.   All the pages in the bio are
1587  * checksummed and sums are attached onto the ordered extent record.
1588  *
1589  * At IO completion time the cums attached on the ordered extent record
1590  * are inserted into the btree
1591  */
1592 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1593 			  int mirror_num, unsigned long bio_flags,
1594 			  u64 bio_offset)
1595 {
1596 	struct btrfs_root *root = BTRFS_I(inode)->root;
1597 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1598 }
1599 
1600 /*
1601  * extent_io.c submission hook. This does the right thing for csum calculation
1602  * on write, or reading the csums from the tree before a read
1603  */
1604 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1605 			  int mirror_num, unsigned long bio_flags,
1606 			  u64 bio_offset)
1607 {
1608 	struct btrfs_root *root = BTRFS_I(inode)->root;
1609 	int ret = 0;
1610 	int skip_sum;
1611 	int metadata = 0;
1612 
1613 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1614 
1615 	if (btrfs_is_free_space_inode(root, inode))
1616 		metadata = 2;
1617 
1618 	if (!(rw & REQ_WRITE)) {
1619 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1620 		if (ret)
1621 			return ret;
1622 
1623 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1624 			return btrfs_submit_compressed_read(inode, bio,
1625 						    mirror_num, bio_flags);
1626 		} else if (!skip_sum) {
1627 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1628 			if (ret)
1629 				return ret;
1630 		}
1631 		goto mapit;
1632 	} else if (!skip_sum) {
1633 		/* csum items have already been cloned */
1634 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1635 			goto mapit;
1636 		/* we're doing a write, do the async checksumming */
1637 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1638 				   inode, rw, bio, mirror_num,
1639 				   bio_flags, bio_offset,
1640 				   __btrfs_submit_bio_start,
1641 				   __btrfs_submit_bio_done);
1642 	}
1643 
1644 mapit:
1645 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1646 }
1647 
1648 /*
1649  * given a list of ordered sums record them in the inode.  This happens
1650  * at IO completion time based on sums calculated at bio submission time.
1651  */
1652 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1653 			     struct inode *inode, u64 file_offset,
1654 			     struct list_head *list)
1655 {
1656 	struct btrfs_ordered_sum *sum;
1657 
1658 	list_for_each_entry(sum, list, list) {
1659 		btrfs_csum_file_blocks(trans,
1660 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1661 	}
1662 	return 0;
1663 }
1664 
1665 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1666 			      struct extent_state **cached_state)
1667 {
1668 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1669 		WARN_ON(1);
1670 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1671 				   cached_state, GFP_NOFS);
1672 }
1673 
1674 /* see btrfs_writepage_start_hook for details on why this is required */
1675 struct btrfs_writepage_fixup {
1676 	struct page *page;
1677 	struct btrfs_work work;
1678 };
1679 
1680 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1681 {
1682 	struct btrfs_writepage_fixup *fixup;
1683 	struct btrfs_ordered_extent *ordered;
1684 	struct extent_state *cached_state = NULL;
1685 	struct page *page;
1686 	struct inode *inode;
1687 	u64 page_start;
1688 	u64 page_end;
1689 	int ret;
1690 
1691 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1692 	page = fixup->page;
1693 again:
1694 	lock_page(page);
1695 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1696 		ClearPageChecked(page);
1697 		goto out_page;
1698 	}
1699 
1700 	inode = page->mapping->host;
1701 	page_start = page_offset(page);
1702 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1703 
1704 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1705 			 &cached_state);
1706 
1707 	/* already ordered? We're done */
1708 	if (PagePrivate2(page))
1709 		goto out;
1710 
1711 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1712 	if (ordered) {
1713 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1714 				     page_end, &cached_state, GFP_NOFS);
1715 		unlock_page(page);
1716 		btrfs_start_ordered_extent(inode, ordered, 1);
1717 		btrfs_put_ordered_extent(ordered);
1718 		goto again;
1719 	}
1720 
1721 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1722 	if (ret) {
1723 		mapping_set_error(page->mapping, ret);
1724 		end_extent_writepage(page, ret, page_start, page_end);
1725 		ClearPageChecked(page);
1726 		goto out;
1727 	 }
1728 
1729 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1730 	ClearPageChecked(page);
1731 	set_page_dirty(page);
1732 out:
1733 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1734 			     &cached_state, GFP_NOFS);
1735 out_page:
1736 	unlock_page(page);
1737 	page_cache_release(page);
1738 	kfree(fixup);
1739 }
1740 
1741 /*
1742  * There are a few paths in the higher layers of the kernel that directly
1743  * set the page dirty bit without asking the filesystem if it is a
1744  * good idea.  This causes problems because we want to make sure COW
1745  * properly happens and the data=ordered rules are followed.
1746  *
1747  * In our case any range that doesn't have the ORDERED bit set
1748  * hasn't been properly setup for IO.  We kick off an async process
1749  * to fix it up.  The async helper will wait for ordered extents, set
1750  * the delalloc bit and make it safe to write the page.
1751  */
1752 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1753 {
1754 	struct inode *inode = page->mapping->host;
1755 	struct btrfs_writepage_fixup *fixup;
1756 	struct btrfs_root *root = BTRFS_I(inode)->root;
1757 
1758 	/* this page is properly in the ordered list */
1759 	if (TestClearPagePrivate2(page))
1760 		return 0;
1761 
1762 	if (PageChecked(page))
1763 		return -EAGAIN;
1764 
1765 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1766 	if (!fixup)
1767 		return -EAGAIN;
1768 
1769 	SetPageChecked(page);
1770 	page_cache_get(page);
1771 	fixup->work.func = btrfs_writepage_fixup_worker;
1772 	fixup->page = page;
1773 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1774 	return -EBUSY;
1775 }
1776 
1777 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1778 				       struct inode *inode, u64 file_pos,
1779 				       u64 disk_bytenr, u64 disk_num_bytes,
1780 				       u64 num_bytes, u64 ram_bytes,
1781 				       u8 compression, u8 encryption,
1782 				       u16 other_encoding, int extent_type)
1783 {
1784 	struct btrfs_root *root = BTRFS_I(inode)->root;
1785 	struct btrfs_file_extent_item *fi;
1786 	struct btrfs_path *path;
1787 	struct extent_buffer *leaf;
1788 	struct btrfs_key ins;
1789 	u64 hint;
1790 	int ret;
1791 
1792 	path = btrfs_alloc_path();
1793 	if (!path)
1794 		return -ENOMEM;
1795 
1796 	path->leave_spinning = 1;
1797 
1798 	/*
1799 	 * we may be replacing one extent in the tree with another.
1800 	 * The new extent is pinned in the extent map, and we don't want
1801 	 * to drop it from the cache until it is completely in the btree.
1802 	 *
1803 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1804 	 * the caller is expected to unpin it and allow it to be merged
1805 	 * with the others.
1806 	 */
1807 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1808 				 &hint, 0);
1809 	if (ret)
1810 		goto out;
1811 
1812 	ins.objectid = btrfs_ino(inode);
1813 	ins.offset = file_pos;
1814 	ins.type = BTRFS_EXTENT_DATA_KEY;
1815 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1816 	if (ret)
1817 		goto out;
1818 	leaf = path->nodes[0];
1819 	fi = btrfs_item_ptr(leaf, path->slots[0],
1820 			    struct btrfs_file_extent_item);
1821 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1822 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1823 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1824 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1825 	btrfs_set_file_extent_offset(leaf, fi, 0);
1826 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1827 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1828 	btrfs_set_file_extent_compression(leaf, fi, compression);
1829 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1830 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1831 
1832 	btrfs_unlock_up_safe(path, 1);
1833 	btrfs_set_lock_blocking(leaf);
1834 
1835 	btrfs_mark_buffer_dirty(leaf);
1836 
1837 	inode_add_bytes(inode, num_bytes);
1838 
1839 	ins.objectid = disk_bytenr;
1840 	ins.offset = disk_num_bytes;
1841 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1842 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1843 					root->root_key.objectid,
1844 					btrfs_ino(inode), file_pos, &ins);
1845 out:
1846 	btrfs_free_path(path);
1847 
1848 	return ret;
1849 }
1850 
1851 /*
1852  * helper function for btrfs_finish_ordered_io, this
1853  * just reads in some of the csum leaves to prime them into ram
1854  * before we start the transaction.  It limits the amount of btree
1855  * reads required while inside the transaction.
1856  */
1857 /* as ordered data IO finishes, this gets called so we can finish
1858  * an ordered extent if the range of bytes in the file it covers are
1859  * fully written.
1860  */
1861 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1862 {
1863 	struct inode *inode = ordered_extent->inode;
1864 	struct btrfs_root *root = BTRFS_I(inode)->root;
1865 	struct btrfs_trans_handle *trans = NULL;
1866 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1867 	struct extent_state *cached_state = NULL;
1868 	int compress_type = 0;
1869 	int ret;
1870 	bool nolock;
1871 
1872 	nolock = btrfs_is_free_space_inode(root, inode);
1873 
1874 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1875 		ret = -EIO;
1876 		goto out;
1877 	}
1878 
1879 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1880 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1881 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1882 		if (!ret) {
1883 			if (nolock)
1884 				trans = btrfs_join_transaction_nolock(root);
1885 			else
1886 				trans = btrfs_join_transaction(root);
1887 			if (IS_ERR(trans))
1888 				return PTR_ERR(trans);
1889 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1890 			ret = btrfs_update_inode_fallback(trans, root, inode);
1891 			if (ret) /* -ENOMEM or corruption */
1892 				btrfs_abort_transaction(trans, root, ret);
1893 		}
1894 		goto out;
1895 	}
1896 
1897 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1898 			 ordered_extent->file_offset + ordered_extent->len - 1,
1899 			 0, &cached_state);
1900 
1901 	if (nolock)
1902 		trans = btrfs_join_transaction_nolock(root);
1903 	else
1904 		trans = btrfs_join_transaction(root);
1905 	if (IS_ERR(trans)) {
1906 		ret = PTR_ERR(trans);
1907 		trans = NULL;
1908 		goto out_unlock;
1909 	}
1910 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1911 
1912 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1913 		compress_type = ordered_extent->compress_type;
1914 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1915 		BUG_ON(compress_type);
1916 		ret = btrfs_mark_extent_written(trans, inode,
1917 						ordered_extent->file_offset,
1918 						ordered_extent->file_offset +
1919 						ordered_extent->len);
1920 	} else {
1921 		BUG_ON(root == root->fs_info->tree_root);
1922 		ret = insert_reserved_file_extent(trans, inode,
1923 						ordered_extent->file_offset,
1924 						ordered_extent->start,
1925 						ordered_extent->disk_len,
1926 						ordered_extent->len,
1927 						ordered_extent->len,
1928 						compress_type, 0, 0,
1929 						BTRFS_FILE_EXTENT_REG);
1930 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1931 				   ordered_extent->file_offset,
1932 				   ordered_extent->len);
1933 	}
1934 
1935 	if (ret < 0) {
1936 		btrfs_abort_transaction(trans, root, ret);
1937 		goto out_unlock;
1938 	}
1939 
1940 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1941 			  &ordered_extent->list);
1942 
1943 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1944 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1945 		ret = btrfs_update_inode_fallback(trans, root, inode);
1946 		if (ret) { /* -ENOMEM or corruption */
1947 			btrfs_abort_transaction(trans, root, ret);
1948 			goto out_unlock;
1949 		}
1950 	}
1951 	ret = 0;
1952 out_unlock:
1953 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1954 			     ordered_extent->file_offset +
1955 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1956 out:
1957 	if (root != root->fs_info->tree_root)
1958 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1959 	if (trans) {
1960 		if (nolock)
1961 			btrfs_end_transaction_nolock(trans, root);
1962 		else
1963 			btrfs_end_transaction(trans, root);
1964 	}
1965 
1966 	if (ret)
1967 		clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1968 				      ordered_extent->file_offset +
1969 				      ordered_extent->len - 1, NULL, GFP_NOFS);
1970 
1971 	/*
1972 	 * This needs to be dont to make sure anybody waiting knows we are done
1973 	 * upating everything for this ordered extent.
1974 	 */
1975 	btrfs_remove_ordered_extent(inode, ordered_extent);
1976 
1977 	/* once for us */
1978 	btrfs_put_ordered_extent(ordered_extent);
1979 	/* once for the tree */
1980 	btrfs_put_ordered_extent(ordered_extent);
1981 
1982 	return ret;
1983 }
1984 
1985 static void finish_ordered_fn(struct btrfs_work *work)
1986 {
1987 	struct btrfs_ordered_extent *ordered_extent;
1988 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1989 	btrfs_finish_ordered_io(ordered_extent);
1990 }
1991 
1992 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1993 				struct extent_state *state, int uptodate)
1994 {
1995 	struct inode *inode = page->mapping->host;
1996 	struct btrfs_root *root = BTRFS_I(inode)->root;
1997 	struct btrfs_ordered_extent *ordered_extent = NULL;
1998 	struct btrfs_workers *workers;
1999 
2000 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2001 
2002 	ClearPagePrivate2(page);
2003 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2004 					    end - start + 1, uptodate))
2005 		return 0;
2006 
2007 	ordered_extent->work.func = finish_ordered_fn;
2008 	ordered_extent->work.flags = 0;
2009 
2010 	if (btrfs_is_free_space_inode(root, inode))
2011 		workers = &root->fs_info->endio_freespace_worker;
2012 	else
2013 		workers = &root->fs_info->endio_write_workers;
2014 	btrfs_queue_worker(workers, &ordered_extent->work);
2015 
2016 	return 0;
2017 }
2018 
2019 /*
2020  * when reads are done, we need to check csums to verify the data is correct
2021  * if there's a match, we allow the bio to finish.  If not, the code in
2022  * extent_io.c will try to find good copies for us.
2023  */
2024 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2025 			       struct extent_state *state, int mirror)
2026 {
2027 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2028 	struct inode *inode = page->mapping->host;
2029 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2030 	char *kaddr;
2031 	u64 private = ~(u32)0;
2032 	int ret;
2033 	struct btrfs_root *root = BTRFS_I(inode)->root;
2034 	u32 csum = ~(u32)0;
2035 
2036 	if (PageChecked(page)) {
2037 		ClearPageChecked(page);
2038 		goto good;
2039 	}
2040 
2041 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2042 		goto good;
2043 
2044 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2045 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2046 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2047 				  GFP_NOFS);
2048 		return 0;
2049 	}
2050 
2051 	if (state && state->start == start) {
2052 		private = state->private;
2053 		ret = 0;
2054 	} else {
2055 		ret = get_state_private(io_tree, start, &private);
2056 	}
2057 	kaddr = kmap_atomic(page);
2058 	if (ret)
2059 		goto zeroit;
2060 
2061 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2062 	btrfs_csum_final(csum, (char *)&csum);
2063 	if (csum != private)
2064 		goto zeroit;
2065 
2066 	kunmap_atomic(kaddr);
2067 good:
2068 	return 0;
2069 
2070 zeroit:
2071 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2072 		       "private %llu\n",
2073 		       (unsigned long long)btrfs_ino(page->mapping->host),
2074 		       (unsigned long long)start, csum,
2075 		       (unsigned long long)private);
2076 	memset(kaddr + offset, 1, end - start + 1);
2077 	flush_dcache_page(page);
2078 	kunmap_atomic(kaddr);
2079 	if (private == 0)
2080 		return 0;
2081 	return -EIO;
2082 }
2083 
2084 struct delayed_iput {
2085 	struct list_head list;
2086 	struct inode *inode;
2087 };
2088 
2089 /* JDM: If this is fs-wide, why can't we add a pointer to
2090  * btrfs_inode instead and avoid the allocation? */
2091 void btrfs_add_delayed_iput(struct inode *inode)
2092 {
2093 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 	struct delayed_iput *delayed;
2095 
2096 	if (atomic_add_unless(&inode->i_count, -1, 1))
2097 		return;
2098 
2099 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2100 	delayed->inode = inode;
2101 
2102 	spin_lock(&fs_info->delayed_iput_lock);
2103 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2104 	spin_unlock(&fs_info->delayed_iput_lock);
2105 }
2106 
2107 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2108 {
2109 	LIST_HEAD(list);
2110 	struct btrfs_fs_info *fs_info = root->fs_info;
2111 	struct delayed_iput *delayed;
2112 	int empty;
2113 
2114 	spin_lock(&fs_info->delayed_iput_lock);
2115 	empty = list_empty(&fs_info->delayed_iputs);
2116 	spin_unlock(&fs_info->delayed_iput_lock);
2117 	if (empty)
2118 		return;
2119 
2120 	down_read(&root->fs_info->cleanup_work_sem);
2121 	spin_lock(&fs_info->delayed_iput_lock);
2122 	list_splice_init(&fs_info->delayed_iputs, &list);
2123 	spin_unlock(&fs_info->delayed_iput_lock);
2124 
2125 	while (!list_empty(&list)) {
2126 		delayed = list_entry(list.next, struct delayed_iput, list);
2127 		list_del(&delayed->list);
2128 		iput(delayed->inode);
2129 		kfree(delayed);
2130 	}
2131 	up_read(&root->fs_info->cleanup_work_sem);
2132 }
2133 
2134 enum btrfs_orphan_cleanup_state {
2135 	ORPHAN_CLEANUP_STARTED	= 1,
2136 	ORPHAN_CLEANUP_DONE	= 2,
2137 };
2138 
2139 /*
2140  * This is called in transaction commit time. If there are no orphan
2141  * files in the subvolume, it removes orphan item and frees block_rsv
2142  * structure.
2143  */
2144 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2145 			      struct btrfs_root *root)
2146 {
2147 	struct btrfs_block_rsv *block_rsv;
2148 	int ret;
2149 
2150 	if (atomic_read(&root->orphan_inodes) ||
2151 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2152 		return;
2153 
2154 	spin_lock(&root->orphan_lock);
2155 	if (atomic_read(&root->orphan_inodes)) {
2156 		spin_unlock(&root->orphan_lock);
2157 		return;
2158 	}
2159 
2160 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2161 		spin_unlock(&root->orphan_lock);
2162 		return;
2163 	}
2164 
2165 	block_rsv = root->orphan_block_rsv;
2166 	root->orphan_block_rsv = NULL;
2167 	spin_unlock(&root->orphan_lock);
2168 
2169 	if (root->orphan_item_inserted &&
2170 	    btrfs_root_refs(&root->root_item) > 0) {
2171 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2172 					    root->root_key.objectid);
2173 		BUG_ON(ret);
2174 		root->orphan_item_inserted = 0;
2175 	}
2176 
2177 	if (block_rsv) {
2178 		WARN_ON(block_rsv->size > 0);
2179 		btrfs_free_block_rsv(root, block_rsv);
2180 	}
2181 }
2182 
2183 /*
2184  * This creates an orphan entry for the given inode in case something goes
2185  * wrong in the middle of an unlink/truncate.
2186  *
2187  * NOTE: caller of this function should reserve 5 units of metadata for
2188  *	 this function.
2189  */
2190 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2191 {
2192 	struct btrfs_root *root = BTRFS_I(inode)->root;
2193 	struct btrfs_block_rsv *block_rsv = NULL;
2194 	int reserve = 0;
2195 	int insert = 0;
2196 	int ret;
2197 
2198 	if (!root->orphan_block_rsv) {
2199 		block_rsv = btrfs_alloc_block_rsv(root);
2200 		if (!block_rsv)
2201 			return -ENOMEM;
2202 	}
2203 
2204 	spin_lock(&root->orphan_lock);
2205 	if (!root->orphan_block_rsv) {
2206 		root->orphan_block_rsv = block_rsv;
2207 	} else if (block_rsv) {
2208 		btrfs_free_block_rsv(root, block_rsv);
2209 		block_rsv = NULL;
2210 	}
2211 
2212 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2213 			      &BTRFS_I(inode)->runtime_flags)) {
2214 #if 0
2215 		/*
2216 		 * For proper ENOSPC handling, we should do orphan
2217 		 * cleanup when mounting. But this introduces backward
2218 		 * compatibility issue.
2219 		 */
2220 		if (!xchg(&root->orphan_item_inserted, 1))
2221 			insert = 2;
2222 		else
2223 			insert = 1;
2224 #endif
2225 		insert = 1;
2226 		atomic_dec(&root->orphan_inodes);
2227 	}
2228 
2229 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2230 			      &BTRFS_I(inode)->runtime_flags))
2231 		reserve = 1;
2232 	spin_unlock(&root->orphan_lock);
2233 
2234 	/* grab metadata reservation from transaction handle */
2235 	if (reserve) {
2236 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2237 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2238 	}
2239 
2240 	/* insert an orphan item to track this unlinked/truncated file */
2241 	if (insert >= 1) {
2242 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2243 		if (ret && ret != -EEXIST) {
2244 			clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2245 				  &BTRFS_I(inode)->runtime_flags);
2246 			btrfs_abort_transaction(trans, root, ret);
2247 			return ret;
2248 		}
2249 		ret = 0;
2250 	}
2251 
2252 	/* insert an orphan item to track subvolume contains orphan files */
2253 	if (insert >= 2) {
2254 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2255 					       root->root_key.objectid);
2256 		if (ret && ret != -EEXIST) {
2257 			btrfs_abort_transaction(trans, root, ret);
2258 			return ret;
2259 		}
2260 	}
2261 	return 0;
2262 }
2263 
2264 /*
2265  * We have done the truncate/delete so we can go ahead and remove the orphan
2266  * item for this particular inode.
2267  */
2268 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2269 {
2270 	struct btrfs_root *root = BTRFS_I(inode)->root;
2271 	int delete_item = 0;
2272 	int release_rsv = 0;
2273 	int ret = 0;
2274 
2275 	spin_lock(&root->orphan_lock);
2276 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2277 			       &BTRFS_I(inode)->runtime_flags))
2278 		delete_item = 1;
2279 
2280 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2281 			       &BTRFS_I(inode)->runtime_flags))
2282 		release_rsv = 1;
2283 	spin_unlock(&root->orphan_lock);
2284 
2285 	if (trans && delete_item) {
2286 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2287 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2288 	}
2289 
2290 	if (release_rsv) {
2291 		btrfs_orphan_release_metadata(inode);
2292 		atomic_dec(&root->orphan_inodes);
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 /*
2299  * this cleans up any orphans that may be left on the list from the last use
2300  * of this root.
2301  */
2302 int btrfs_orphan_cleanup(struct btrfs_root *root)
2303 {
2304 	struct btrfs_path *path;
2305 	struct extent_buffer *leaf;
2306 	struct btrfs_key key, found_key;
2307 	struct btrfs_trans_handle *trans;
2308 	struct inode *inode;
2309 	u64 last_objectid = 0;
2310 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2311 
2312 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2313 		return 0;
2314 
2315 	path = btrfs_alloc_path();
2316 	if (!path) {
2317 		ret = -ENOMEM;
2318 		goto out;
2319 	}
2320 	path->reada = -1;
2321 
2322 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2323 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2324 	key.offset = (u64)-1;
2325 
2326 	while (1) {
2327 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2328 		if (ret < 0)
2329 			goto out;
2330 
2331 		/*
2332 		 * if ret == 0 means we found what we were searching for, which
2333 		 * is weird, but possible, so only screw with path if we didn't
2334 		 * find the key and see if we have stuff that matches
2335 		 */
2336 		if (ret > 0) {
2337 			ret = 0;
2338 			if (path->slots[0] == 0)
2339 				break;
2340 			path->slots[0]--;
2341 		}
2342 
2343 		/* pull out the item */
2344 		leaf = path->nodes[0];
2345 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2346 
2347 		/* make sure the item matches what we want */
2348 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2349 			break;
2350 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2351 			break;
2352 
2353 		/* release the path since we're done with it */
2354 		btrfs_release_path(path);
2355 
2356 		/*
2357 		 * this is where we are basically btrfs_lookup, without the
2358 		 * crossing root thing.  we store the inode number in the
2359 		 * offset of the orphan item.
2360 		 */
2361 
2362 		if (found_key.offset == last_objectid) {
2363 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2364 			       "stopping orphan cleanup\n");
2365 			ret = -EINVAL;
2366 			goto out;
2367 		}
2368 
2369 		last_objectid = found_key.offset;
2370 
2371 		found_key.objectid = found_key.offset;
2372 		found_key.type = BTRFS_INODE_ITEM_KEY;
2373 		found_key.offset = 0;
2374 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2375 		ret = PTR_RET(inode);
2376 		if (ret && ret != -ESTALE)
2377 			goto out;
2378 
2379 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
2380 			struct btrfs_root *dead_root;
2381 			struct btrfs_fs_info *fs_info = root->fs_info;
2382 			int is_dead_root = 0;
2383 
2384 			/*
2385 			 * this is an orphan in the tree root. Currently these
2386 			 * could come from 2 sources:
2387 			 *  a) a snapshot deletion in progress
2388 			 *  b) a free space cache inode
2389 			 * We need to distinguish those two, as the snapshot
2390 			 * orphan must not get deleted.
2391 			 * find_dead_roots already ran before us, so if this
2392 			 * is a snapshot deletion, we should find the root
2393 			 * in the dead_roots list
2394 			 */
2395 			spin_lock(&fs_info->trans_lock);
2396 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2397 					    root_list) {
2398 				if (dead_root->root_key.objectid ==
2399 				    found_key.objectid) {
2400 					is_dead_root = 1;
2401 					break;
2402 				}
2403 			}
2404 			spin_unlock(&fs_info->trans_lock);
2405 			if (is_dead_root) {
2406 				/* prevent this orphan from being found again */
2407 				key.offset = found_key.objectid - 1;
2408 				continue;
2409 			}
2410 		}
2411 		/*
2412 		 * Inode is already gone but the orphan item is still there,
2413 		 * kill the orphan item.
2414 		 */
2415 		if (ret == -ESTALE) {
2416 			trans = btrfs_start_transaction(root, 1);
2417 			if (IS_ERR(trans)) {
2418 				ret = PTR_ERR(trans);
2419 				goto out;
2420 			}
2421 			printk(KERN_ERR "auto deleting %Lu\n",
2422 			       found_key.objectid);
2423 			ret = btrfs_del_orphan_item(trans, root,
2424 						    found_key.objectid);
2425 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2426 			btrfs_end_transaction(trans, root);
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * add this inode to the orphan list so btrfs_orphan_del does
2432 		 * the proper thing when we hit it
2433 		 */
2434 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2435 			&BTRFS_I(inode)->runtime_flags);
2436 
2437 		/* if we have links, this was a truncate, lets do that */
2438 		if (inode->i_nlink) {
2439 			if (!S_ISREG(inode->i_mode)) {
2440 				WARN_ON(1);
2441 				iput(inode);
2442 				continue;
2443 			}
2444 			nr_truncate++;
2445 			ret = btrfs_truncate(inode);
2446 		} else {
2447 			nr_unlink++;
2448 		}
2449 
2450 		/* this will do delete_inode and everything for us */
2451 		iput(inode);
2452 		if (ret)
2453 			goto out;
2454 	}
2455 	/* release the path since we're done with it */
2456 	btrfs_release_path(path);
2457 
2458 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2459 
2460 	if (root->orphan_block_rsv)
2461 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2462 					(u64)-1);
2463 
2464 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2465 		trans = btrfs_join_transaction(root);
2466 		if (!IS_ERR(trans))
2467 			btrfs_end_transaction(trans, root);
2468 	}
2469 
2470 	if (nr_unlink)
2471 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2472 	if (nr_truncate)
2473 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2474 
2475 out:
2476 	if (ret)
2477 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2478 	btrfs_free_path(path);
2479 	return ret;
2480 }
2481 
2482 /*
2483  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2484  * don't find any xattrs, we know there can't be any acls.
2485  *
2486  * slot is the slot the inode is in, objectid is the objectid of the inode
2487  */
2488 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2489 					  int slot, u64 objectid)
2490 {
2491 	u32 nritems = btrfs_header_nritems(leaf);
2492 	struct btrfs_key found_key;
2493 	int scanned = 0;
2494 
2495 	slot++;
2496 	while (slot < nritems) {
2497 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2498 
2499 		/* we found a different objectid, there must not be acls */
2500 		if (found_key.objectid != objectid)
2501 			return 0;
2502 
2503 		/* we found an xattr, assume we've got an acl */
2504 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2505 			return 1;
2506 
2507 		/*
2508 		 * we found a key greater than an xattr key, there can't
2509 		 * be any acls later on
2510 		 */
2511 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2512 			return 0;
2513 
2514 		slot++;
2515 		scanned++;
2516 
2517 		/*
2518 		 * it goes inode, inode backrefs, xattrs, extents,
2519 		 * so if there are a ton of hard links to an inode there can
2520 		 * be a lot of backrefs.  Don't waste time searching too hard,
2521 		 * this is just an optimization
2522 		 */
2523 		if (scanned >= 8)
2524 			break;
2525 	}
2526 	/* we hit the end of the leaf before we found an xattr or
2527 	 * something larger than an xattr.  We have to assume the inode
2528 	 * has acls
2529 	 */
2530 	return 1;
2531 }
2532 
2533 /*
2534  * read an inode from the btree into the in-memory inode
2535  */
2536 static void btrfs_read_locked_inode(struct inode *inode)
2537 {
2538 	struct btrfs_path *path;
2539 	struct extent_buffer *leaf;
2540 	struct btrfs_inode_item *inode_item;
2541 	struct btrfs_timespec *tspec;
2542 	struct btrfs_root *root = BTRFS_I(inode)->root;
2543 	struct btrfs_key location;
2544 	int maybe_acls;
2545 	u32 rdev;
2546 	int ret;
2547 	bool filled = false;
2548 
2549 	ret = btrfs_fill_inode(inode, &rdev);
2550 	if (!ret)
2551 		filled = true;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		goto make_bad;
2556 
2557 	path->leave_spinning = 1;
2558 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2559 
2560 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2561 	if (ret)
2562 		goto make_bad;
2563 
2564 	leaf = path->nodes[0];
2565 
2566 	if (filled)
2567 		goto cache_acl;
2568 
2569 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2570 				    struct btrfs_inode_item);
2571 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2572 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2573 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2574 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2575 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2576 
2577 	tspec = btrfs_inode_atime(inode_item);
2578 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2579 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2580 
2581 	tspec = btrfs_inode_mtime(inode_item);
2582 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2583 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2584 
2585 	tspec = btrfs_inode_ctime(inode_item);
2586 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2587 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2588 
2589 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2590 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2591 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2592 	inode->i_generation = BTRFS_I(inode)->generation;
2593 	inode->i_rdev = 0;
2594 	rdev = btrfs_inode_rdev(leaf, inode_item);
2595 
2596 	BTRFS_I(inode)->index_cnt = (u64)-1;
2597 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2598 cache_acl:
2599 	/*
2600 	 * try to precache a NULL acl entry for files that don't have
2601 	 * any xattrs or acls
2602 	 */
2603 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2604 					   btrfs_ino(inode));
2605 	if (!maybe_acls)
2606 		cache_no_acl(inode);
2607 
2608 	btrfs_free_path(path);
2609 
2610 	switch (inode->i_mode & S_IFMT) {
2611 	case S_IFREG:
2612 		inode->i_mapping->a_ops = &btrfs_aops;
2613 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2614 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2615 		inode->i_fop = &btrfs_file_operations;
2616 		inode->i_op = &btrfs_file_inode_operations;
2617 		break;
2618 	case S_IFDIR:
2619 		inode->i_fop = &btrfs_dir_file_operations;
2620 		if (root == root->fs_info->tree_root)
2621 			inode->i_op = &btrfs_dir_ro_inode_operations;
2622 		else
2623 			inode->i_op = &btrfs_dir_inode_operations;
2624 		break;
2625 	case S_IFLNK:
2626 		inode->i_op = &btrfs_symlink_inode_operations;
2627 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2628 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2629 		break;
2630 	default:
2631 		inode->i_op = &btrfs_special_inode_operations;
2632 		init_special_inode(inode, inode->i_mode, rdev);
2633 		break;
2634 	}
2635 
2636 	btrfs_update_iflags(inode);
2637 	return;
2638 
2639 make_bad:
2640 	btrfs_free_path(path);
2641 	make_bad_inode(inode);
2642 }
2643 
2644 /*
2645  * given a leaf and an inode, copy the inode fields into the leaf
2646  */
2647 static void fill_inode_item(struct btrfs_trans_handle *trans,
2648 			    struct extent_buffer *leaf,
2649 			    struct btrfs_inode_item *item,
2650 			    struct inode *inode)
2651 {
2652 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2653 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2654 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2655 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2656 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2657 
2658 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2659 			       inode->i_atime.tv_sec);
2660 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2661 				inode->i_atime.tv_nsec);
2662 
2663 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2664 			       inode->i_mtime.tv_sec);
2665 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2666 				inode->i_mtime.tv_nsec);
2667 
2668 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2669 			       inode->i_ctime.tv_sec);
2670 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2671 				inode->i_ctime.tv_nsec);
2672 
2673 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2674 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2675 	btrfs_set_inode_sequence(leaf, item, inode->i_version);
2676 	btrfs_set_inode_transid(leaf, item, trans->transid);
2677 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2678 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2679 	btrfs_set_inode_block_group(leaf, item, 0);
2680 }
2681 
2682 /*
2683  * copy everything in the in-memory inode into the btree.
2684  */
2685 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2686 				struct btrfs_root *root, struct inode *inode)
2687 {
2688 	struct btrfs_inode_item *inode_item;
2689 	struct btrfs_path *path;
2690 	struct extent_buffer *leaf;
2691 	int ret;
2692 
2693 	path = btrfs_alloc_path();
2694 	if (!path)
2695 		return -ENOMEM;
2696 
2697 	path->leave_spinning = 1;
2698 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2699 				 1);
2700 	if (ret) {
2701 		if (ret > 0)
2702 			ret = -ENOENT;
2703 		goto failed;
2704 	}
2705 
2706 	btrfs_unlock_up_safe(path, 1);
2707 	leaf = path->nodes[0];
2708 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2709 				    struct btrfs_inode_item);
2710 
2711 	fill_inode_item(trans, leaf, inode_item, inode);
2712 	btrfs_mark_buffer_dirty(leaf);
2713 	btrfs_set_inode_last_trans(trans, inode);
2714 	ret = 0;
2715 failed:
2716 	btrfs_free_path(path);
2717 	return ret;
2718 }
2719 
2720 /*
2721  * copy everything in the in-memory inode into the btree.
2722  */
2723 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2724 				struct btrfs_root *root, struct inode *inode)
2725 {
2726 	int ret;
2727 
2728 	/*
2729 	 * If the inode is a free space inode, we can deadlock during commit
2730 	 * if we put it into the delayed code.
2731 	 *
2732 	 * The data relocation inode should also be directly updated
2733 	 * without delay
2734 	 */
2735 	if (!btrfs_is_free_space_inode(root, inode)
2736 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2737 		ret = btrfs_delayed_update_inode(trans, root, inode);
2738 		if (!ret)
2739 			btrfs_set_inode_last_trans(trans, inode);
2740 		return ret;
2741 	}
2742 
2743 	return btrfs_update_inode_item(trans, root, inode);
2744 }
2745 
2746 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2747 				struct btrfs_root *root, struct inode *inode)
2748 {
2749 	int ret;
2750 
2751 	ret = btrfs_update_inode(trans, root, inode);
2752 	if (ret == -ENOSPC)
2753 		return btrfs_update_inode_item(trans, root, inode);
2754 	return ret;
2755 }
2756 
2757 /*
2758  * unlink helper that gets used here in inode.c and in the tree logging
2759  * recovery code.  It remove a link in a directory with a given name, and
2760  * also drops the back refs in the inode to the directory
2761  */
2762 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2763 				struct btrfs_root *root,
2764 				struct inode *dir, struct inode *inode,
2765 				const char *name, int name_len)
2766 {
2767 	struct btrfs_path *path;
2768 	int ret = 0;
2769 	struct extent_buffer *leaf;
2770 	struct btrfs_dir_item *di;
2771 	struct btrfs_key key;
2772 	u64 index;
2773 	u64 ino = btrfs_ino(inode);
2774 	u64 dir_ino = btrfs_ino(dir);
2775 
2776 	path = btrfs_alloc_path();
2777 	if (!path) {
2778 		ret = -ENOMEM;
2779 		goto out;
2780 	}
2781 
2782 	path->leave_spinning = 1;
2783 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2784 				    name, name_len, -1);
2785 	if (IS_ERR(di)) {
2786 		ret = PTR_ERR(di);
2787 		goto err;
2788 	}
2789 	if (!di) {
2790 		ret = -ENOENT;
2791 		goto err;
2792 	}
2793 	leaf = path->nodes[0];
2794 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2795 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2796 	if (ret)
2797 		goto err;
2798 	btrfs_release_path(path);
2799 
2800 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2801 				  dir_ino, &index);
2802 	if (ret) {
2803 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2804 		       "inode %llu parent %llu\n", name_len, name,
2805 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2806 		btrfs_abort_transaction(trans, root, ret);
2807 		goto err;
2808 	}
2809 
2810 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2811 	if (ret) {
2812 		btrfs_abort_transaction(trans, root, ret);
2813 		goto err;
2814 	}
2815 
2816 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2817 					 inode, dir_ino);
2818 	if (ret != 0 && ret != -ENOENT) {
2819 		btrfs_abort_transaction(trans, root, ret);
2820 		goto err;
2821 	}
2822 
2823 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2824 					   dir, index);
2825 	if (ret == -ENOENT)
2826 		ret = 0;
2827 err:
2828 	btrfs_free_path(path);
2829 	if (ret)
2830 		goto out;
2831 
2832 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2833 	inode_inc_iversion(inode);
2834 	inode_inc_iversion(dir);
2835 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2836 	btrfs_update_inode(trans, root, dir);
2837 out:
2838 	return ret;
2839 }
2840 
2841 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2842 		       struct btrfs_root *root,
2843 		       struct inode *dir, struct inode *inode,
2844 		       const char *name, int name_len)
2845 {
2846 	int ret;
2847 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2848 	if (!ret) {
2849 		btrfs_drop_nlink(inode);
2850 		ret = btrfs_update_inode(trans, root, inode);
2851 	}
2852 	return ret;
2853 }
2854 
2855 
2856 /* helper to check if there is any shared block in the path */
2857 static int check_path_shared(struct btrfs_root *root,
2858 			     struct btrfs_path *path)
2859 {
2860 	struct extent_buffer *eb;
2861 	int level;
2862 	u64 refs = 1;
2863 
2864 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2865 		int ret;
2866 
2867 		if (!path->nodes[level])
2868 			break;
2869 		eb = path->nodes[level];
2870 		if (!btrfs_block_can_be_shared(root, eb))
2871 			continue;
2872 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2873 					       &refs, NULL);
2874 		if (refs > 1)
2875 			return 1;
2876 	}
2877 	return 0;
2878 }
2879 
2880 /*
2881  * helper to start transaction for unlink and rmdir.
2882  *
2883  * unlink and rmdir are special in btrfs, they do not always free space.
2884  * so in enospc case, we should make sure they will free space before
2885  * allowing them to use the global metadata reservation.
2886  */
2887 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2888 						       struct dentry *dentry)
2889 {
2890 	struct btrfs_trans_handle *trans;
2891 	struct btrfs_root *root = BTRFS_I(dir)->root;
2892 	struct btrfs_path *path;
2893 	struct btrfs_inode_ref *ref;
2894 	struct btrfs_dir_item *di;
2895 	struct inode *inode = dentry->d_inode;
2896 	u64 index;
2897 	int check_link = 1;
2898 	int err = -ENOSPC;
2899 	int ret;
2900 	u64 ino = btrfs_ino(inode);
2901 	u64 dir_ino = btrfs_ino(dir);
2902 
2903 	/*
2904 	 * 1 for the possible orphan item
2905 	 * 1 for the dir item
2906 	 * 1 for the dir index
2907 	 * 1 for the inode ref
2908 	 * 1 for the inode ref in the tree log
2909 	 * 2 for the dir entries in the log
2910 	 * 1 for the inode
2911 	 */
2912 	trans = btrfs_start_transaction(root, 8);
2913 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2914 		return trans;
2915 
2916 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2917 		return ERR_PTR(-ENOSPC);
2918 
2919 	/* check if there is someone else holds reference */
2920 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2921 		return ERR_PTR(-ENOSPC);
2922 
2923 	if (atomic_read(&inode->i_count) > 2)
2924 		return ERR_PTR(-ENOSPC);
2925 
2926 	if (xchg(&root->fs_info->enospc_unlink, 1))
2927 		return ERR_PTR(-ENOSPC);
2928 
2929 	path = btrfs_alloc_path();
2930 	if (!path) {
2931 		root->fs_info->enospc_unlink = 0;
2932 		return ERR_PTR(-ENOMEM);
2933 	}
2934 
2935 	/* 1 for the orphan item */
2936 	trans = btrfs_start_transaction(root, 1);
2937 	if (IS_ERR(trans)) {
2938 		btrfs_free_path(path);
2939 		root->fs_info->enospc_unlink = 0;
2940 		return trans;
2941 	}
2942 
2943 	path->skip_locking = 1;
2944 	path->search_commit_root = 1;
2945 
2946 	ret = btrfs_lookup_inode(trans, root, path,
2947 				&BTRFS_I(dir)->location, 0);
2948 	if (ret < 0) {
2949 		err = ret;
2950 		goto out;
2951 	}
2952 	if (ret == 0) {
2953 		if (check_path_shared(root, path))
2954 			goto out;
2955 	} else {
2956 		check_link = 0;
2957 	}
2958 	btrfs_release_path(path);
2959 
2960 	ret = btrfs_lookup_inode(trans, root, path,
2961 				&BTRFS_I(inode)->location, 0);
2962 	if (ret < 0) {
2963 		err = ret;
2964 		goto out;
2965 	}
2966 	if (ret == 0) {
2967 		if (check_path_shared(root, path))
2968 			goto out;
2969 	} else {
2970 		check_link = 0;
2971 	}
2972 	btrfs_release_path(path);
2973 
2974 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2975 		ret = btrfs_lookup_file_extent(trans, root, path,
2976 					       ino, (u64)-1, 0);
2977 		if (ret < 0) {
2978 			err = ret;
2979 			goto out;
2980 		}
2981 		BUG_ON(ret == 0); /* Corruption */
2982 		if (check_path_shared(root, path))
2983 			goto out;
2984 		btrfs_release_path(path);
2985 	}
2986 
2987 	if (!check_link) {
2988 		err = 0;
2989 		goto out;
2990 	}
2991 
2992 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2993 				dentry->d_name.name, dentry->d_name.len, 0);
2994 	if (IS_ERR(di)) {
2995 		err = PTR_ERR(di);
2996 		goto out;
2997 	}
2998 	if (di) {
2999 		if (check_path_shared(root, path))
3000 			goto out;
3001 	} else {
3002 		err = 0;
3003 		goto out;
3004 	}
3005 	btrfs_release_path(path);
3006 
3007 	ref = btrfs_lookup_inode_ref(trans, root, path,
3008 				dentry->d_name.name, dentry->d_name.len,
3009 				ino, dir_ino, 0);
3010 	if (IS_ERR(ref)) {
3011 		err = PTR_ERR(ref);
3012 		goto out;
3013 	}
3014 	BUG_ON(!ref); /* Logic error */
3015 	if (check_path_shared(root, path))
3016 		goto out;
3017 	index = btrfs_inode_ref_index(path->nodes[0], ref);
3018 	btrfs_release_path(path);
3019 
3020 	/*
3021 	 * This is a commit root search, if we can lookup inode item and other
3022 	 * relative items in the commit root, it means the transaction of
3023 	 * dir/file creation has been committed, and the dir index item that we
3024 	 * delay to insert has also been inserted into the commit root. So
3025 	 * we needn't worry about the delayed insertion of the dir index item
3026 	 * here.
3027 	 */
3028 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3029 				dentry->d_name.name, dentry->d_name.len, 0);
3030 	if (IS_ERR(di)) {
3031 		err = PTR_ERR(di);
3032 		goto out;
3033 	}
3034 	BUG_ON(ret == -ENOENT);
3035 	if (check_path_shared(root, path))
3036 		goto out;
3037 
3038 	err = 0;
3039 out:
3040 	btrfs_free_path(path);
3041 	/* Migrate the orphan reservation over */
3042 	if (!err)
3043 		err = btrfs_block_rsv_migrate(trans->block_rsv,
3044 				&root->fs_info->global_block_rsv,
3045 				trans->bytes_reserved);
3046 
3047 	if (err) {
3048 		btrfs_end_transaction(trans, root);
3049 		root->fs_info->enospc_unlink = 0;
3050 		return ERR_PTR(err);
3051 	}
3052 
3053 	trans->block_rsv = &root->fs_info->global_block_rsv;
3054 	return trans;
3055 }
3056 
3057 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3058 			       struct btrfs_root *root)
3059 {
3060 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3061 		btrfs_block_rsv_release(root, trans->block_rsv,
3062 					trans->bytes_reserved);
3063 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3064 		BUG_ON(!root->fs_info->enospc_unlink);
3065 		root->fs_info->enospc_unlink = 0;
3066 	}
3067 	btrfs_end_transaction(trans, root);
3068 }
3069 
3070 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3071 {
3072 	struct btrfs_root *root = BTRFS_I(dir)->root;
3073 	struct btrfs_trans_handle *trans;
3074 	struct inode *inode = dentry->d_inode;
3075 	int ret;
3076 	unsigned long nr = 0;
3077 
3078 	trans = __unlink_start_trans(dir, dentry);
3079 	if (IS_ERR(trans))
3080 		return PTR_ERR(trans);
3081 
3082 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3083 
3084 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3085 				 dentry->d_name.name, dentry->d_name.len);
3086 	if (ret)
3087 		goto out;
3088 
3089 	if (inode->i_nlink == 0) {
3090 		ret = btrfs_orphan_add(trans, inode);
3091 		if (ret)
3092 			goto out;
3093 	}
3094 
3095 out:
3096 	nr = trans->blocks_used;
3097 	__unlink_end_trans(trans, root);
3098 	btrfs_btree_balance_dirty(root, nr);
3099 	return ret;
3100 }
3101 
3102 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3103 			struct btrfs_root *root,
3104 			struct inode *dir, u64 objectid,
3105 			const char *name, int name_len)
3106 {
3107 	struct btrfs_path *path;
3108 	struct extent_buffer *leaf;
3109 	struct btrfs_dir_item *di;
3110 	struct btrfs_key key;
3111 	u64 index;
3112 	int ret;
3113 	u64 dir_ino = btrfs_ino(dir);
3114 
3115 	path = btrfs_alloc_path();
3116 	if (!path)
3117 		return -ENOMEM;
3118 
3119 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3120 				   name, name_len, -1);
3121 	if (IS_ERR_OR_NULL(di)) {
3122 		if (!di)
3123 			ret = -ENOENT;
3124 		else
3125 			ret = PTR_ERR(di);
3126 		goto out;
3127 	}
3128 
3129 	leaf = path->nodes[0];
3130 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3131 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3132 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3133 	if (ret) {
3134 		btrfs_abort_transaction(trans, root, ret);
3135 		goto out;
3136 	}
3137 	btrfs_release_path(path);
3138 
3139 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3140 				 objectid, root->root_key.objectid,
3141 				 dir_ino, &index, name, name_len);
3142 	if (ret < 0) {
3143 		if (ret != -ENOENT) {
3144 			btrfs_abort_transaction(trans, root, ret);
3145 			goto out;
3146 		}
3147 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3148 						 name, name_len);
3149 		if (IS_ERR_OR_NULL(di)) {
3150 			if (!di)
3151 				ret = -ENOENT;
3152 			else
3153 				ret = PTR_ERR(di);
3154 			btrfs_abort_transaction(trans, root, ret);
3155 			goto out;
3156 		}
3157 
3158 		leaf = path->nodes[0];
3159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3160 		btrfs_release_path(path);
3161 		index = key.offset;
3162 	}
3163 	btrfs_release_path(path);
3164 
3165 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3166 	if (ret) {
3167 		btrfs_abort_transaction(trans, root, ret);
3168 		goto out;
3169 	}
3170 
3171 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3172 	inode_inc_iversion(dir);
3173 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3174 	ret = btrfs_update_inode(trans, root, dir);
3175 	if (ret)
3176 		btrfs_abort_transaction(trans, root, ret);
3177 out:
3178 	btrfs_free_path(path);
3179 	return ret;
3180 }
3181 
3182 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3183 {
3184 	struct inode *inode = dentry->d_inode;
3185 	int err = 0;
3186 	struct btrfs_root *root = BTRFS_I(dir)->root;
3187 	struct btrfs_trans_handle *trans;
3188 	unsigned long nr = 0;
3189 
3190 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3191 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3192 		return -ENOTEMPTY;
3193 
3194 	trans = __unlink_start_trans(dir, dentry);
3195 	if (IS_ERR(trans))
3196 		return PTR_ERR(trans);
3197 
3198 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3199 		err = btrfs_unlink_subvol(trans, root, dir,
3200 					  BTRFS_I(inode)->location.objectid,
3201 					  dentry->d_name.name,
3202 					  dentry->d_name.len);
3203 		goto out;
3204 	}
3205 
3206 	err = btrfs_orphan_add(trans, inode);
3207 	if (err)
3208 		goto out;
3209 
3210 	/* now the directory is empty */
3211 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3212 				 dentry->d_name.name, dentry->d_name.len);
3213 	if (!err)
3214 		btrfs_i_size_write(inode, 0);
3215 out:
3216 	nr = trans->blocks_used;
3217 	__unlink_end_trans(trans, root);
3218 	btrfs_btree_balance_dirty(root, nr);
3219 
3220 	return err;
3221 }
3222 
3223 /*
3224  * this can truncate away extent items, csum items and directory items.
3225  * It starts at a high offset and removes keys until it can't find
3226  * any higher than new_size
3227  *
3228  * csum items that cross the new i_size are truncated to the new size
3229  * as well.
3230  *
3231  * min_type is the minimum key type to truncate down to.  If set to 0, this
3232  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3233  */
3234 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3235 			       struct btrfs_root *root,
3236 			       struct inode *inode,
3237 			       u64 new_size, u32 min_type)
3238 {
3239 	struct btrfs_path *path;
3240 	struct extent_buffer *leaf;
3241 	struct btrfs_file_extent_item *fi;
3242 	struct btrfs_key key;
3243 	struct btrfs_key found_key;
3244 	u64 extent_start = 0;
3245 	u64 extent_num_bytes = 0;
3246 	u64 extent_offset = 0;
3247 	u64 item_end = 0;
3248 	u64 mask = root->sectorsize - 1;
3249 	u32 found_type = (u8)-1;
3250 	int found_extent;
3251 	int del_item;
3252 	int pending_del_nr = 0;
3253 	int pending_del_slot = 0;
3254 	int extent_type = -1;
3255 	int ret;
3256 	int err = 0;
3257 	u64 ino = btrfs_ino(inode);
3258 
3259 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3260 
3261 	path = btrfs_alloc_path();
3262 	if (!path)
3263 		return -ENOMEM;
3264 	path->reada = -1;
3265 
3266 	if (root->ref_cows || root == root->fs_info->tree_root)
3267 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3268 
3269 	/*
3270 	 * This function is also used to drop the items in the log tree before
3271 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3272 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3273 	 * items.
3274 	 */
3275 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3276 		btrfs_kill_delayed_inode_items(inode);
3277 
3278 	key.objectid = ino;
3279 	key.offset = (u64)-1;
3280 	key.type = (u8)-1;
3281 
3282 search_again:
3283 	path->leave_spinning = 1;
3284 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3285 	if (ret < 0) {
3286 		err = ret;
3287 		goto out;
3288 	}
3289 
3290 	if (ret > 0) {
3291 		/* there are no items in the tree for us to truncate, we're
3292 		 * done
3293 		 */
3294 		if (path->slots[0] == 0)
3295 			goto out;
3296 		path->slots[0]--;
3297 	}
3298 
3299 	while (1) {
3300 		fi = NULL;
3301 		leaf = path->nodes[0];
3302 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3303 		found_type = btrfs_key_type(&found_key);
3304 
3305 		if (found_key.objectid != ino)
3306 			break;
3307 
3308 		if (found_type < min_type)
3309 			break;
3310 
3311 		item_end = found_key.offset;
3312 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3313 			fi = btrfs_item_ptr(leaf, path->slots[0],
3314 					    struct btrfs_file_extent_item);
3315 			extent_type = btrfs_file_extent_type(leaf, fi);
3316 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3317 				item_end +=
3318 				    btrfs_file_extent_num_bytes(leaf, fi);
3319 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3320 				item_end += btrfs_file_extent_inline_len(leaf,
3321 									 fi);
3322 			}
3323 			item_end--;
3324 		}
3325 		if (found_type > min_type) {
3326 			del_item = 1;
3327 		} else {
3328 			if (item_end < new_size)
3329 				break;
3330 			if (found_key.offset >= new_size)
3331 				del_item = 1;
3332 			else
3333 				del_item = 0;
3334 		}
3335 		found_extent = 0;
3336 		/* FIXME, shrink the extent if the ref count is only 1 */
3337 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3338 			goto delete;
3339 
3340 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3341 			u64 num_dec;
3342 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3343 			if (!del_item) {
3344 				u64 orig_num_bytes =
3345 					btrfs_file_extent_num_bytes(leaf, fi);
3346 				extent_num_bytes = new_size -
3347 					found_key.offset + root->sectorsize - 1;
3348 				extent_num_bytes = extent_num_bytes &
3349 					~((u64)root->sectorsize - 1);
3350 				btrfs_set_file_extent_num_bytes(leaf, fi,
3351 							 extent_num_bytes);
3352 				num_dec = (orig_num_bytes -
3353 					   extent_num_bytes);
3354 				if (root->ref_cows && extent_start != 0)
3355 					inode_sub_bytes(inode, num_dec);
3356 				btrfs_mark_buffer_dirty(leaf);
3357 			} else {
3358 				extent_num_bytes =
3359 					btrfs_file_extent_disk_num_bytes(leaf,
3360 									 fi);
3361 				extent_offset = found_key.offset -
3362 					btrfs_file_extent_offset(leaf, fi);
3363 
3364 				/* FIXME blocksize != 4096 */
3365 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3366 				if (extent_start != 0) {
3367 					found_extent = 1;
3368 					if (root->ref_cows)
3369 						inode_sub_bytes(inode, num_dec);
3370 				}
3371 			}
3372 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3373 			/*
3374 			 * we can't truncate inline items that have had
3375 			 * special encodings
3376 			 */
3377 			if (!del_item &&
3378 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3379 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3380 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3381 				u32 size = new_size - found_key.offset;
3382 
3383 				if (root->ref_cows) {
3384 					inode_sub_bytes(inode, item_end + 1 -
3385 							new_size);
3386 				}
3387 				size =
3388 				    btrfs_file_extent_calc_inline_size(size);
3389 				btrfs_truncate_item(trans, root, path,
3390 						    size, 1);
3391 			} else if (root->ref_cows) {
3392 				inode_sub_bytes(inode, item_end + 1 -
3393 						found_key.offset);
3394 			}
3395 		}
3396 delete:
3397 		if (del_item) {
3398 			if (!pending_del_nr) {
3399 				/* no pending yet, add ourselves */
3400 				pending_del_slot = path->slots[0];
3401 				pending_del_nr = 1;
3402 			} else if (pending_del_nr &&
3403 				   path->slots[0] + 1 == pending_del_slot) {
3404 				/* hop on the pending chunk */
3405 				pending_del_nr++;
3406 				pending_del_slot = path->slots[0];
3407 			} else {
3408 				BUG();
3409 			}
3410 		} else {
3411 			break;
3412 		}
3413 		if (found_extent && (root->ref_cows ||
3414 				     root == root->fs_info->tree_root)) {
3415 			btrfs_set_path_blocking(path);
3416 			ret = btrfs_free_extent(trans, root, extent_start,
3417 						extent_num_bytes, 0,
3418 						btrfs_header_owner(leaf),
3419 						ino, extent_offset, 0);
3420 			BUG_ON(ret);
3421 		}
3422 
3423 		if (found_type == BTRFS_INODE_ITEM_KEY)
3424 			break;
3425 
3426 		if (path->slots[0] == 0 ||
3427 		    path->slots[0] != pending_del_slot) {
3428 			if (root->ref_cows &&
3429 			    BTRFS_I(inode)->location.objectid !=
3430 						BTRFS_FREE_INO_OBJECTID) {
3431 				err = -EAGAIN;
3432 				goto out;
3433 			}
3434 			if (pending_del_nr) {
3435 				ret = btrfs_del_items(trans, root, path,
3436 						pending_del_slot,
3437 						pending_del_nr);
3438 				if (ret) {
3439 					btrfs_abort_transaction(trans,
3440 								root, ret);
3441 					goto error;
3442 				}
3443 				pending_del_nr = 0;
3444 			}
3445 			btrfs_release_path(path);
3446 			goto search_again;
3447 		} else {
3448 			path->slots[0]--;
3449 		}
3450 	}
3451 out:
3452 	if (pending_del_nr) {
3453 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3454 				      pending_del_nr);
3455 		if (ret)
3456 			btrfs_abort_transaction(trans, root, ret);
3457 	}
3458 error:
3459 	btrfs_free_path(path);
3460 	return err;
3461 }
3462 
3463 /*
3464  * taken from block_truncate_page, but does cow as it zeros out
3465  * any bytes left in the last page in the file.
3466  */
3467 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3468 {
3469 	struct inode *inode = mapping->host;
3470 	struct btrfs_root *root = BTRFS_I(inode)->root;
3471 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3472 	struct btrfs_ordered_extent *ordered;
3473 	struct extent_state *cached_state = NULL;
3474 	char *kaddr;
3475 	u32 blocksize = root->sectorsize;
3476 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3477 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3478 	struct page *page;
3479 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3480 	int ret = 0;
3481 	u64 page_start;
3482 	u64 page_end;
3483 
3484 	if ((offset & (blocksize - 1)) == 0)
3485 		goto out;
3486 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3487 	if (ret)
3488 		goto out;
3489 
3490 	ret = -ENOMEM;
3491 again:
3492 	page = find_or_create_page(mapping, index, mask);
3493 	if (!page) {
3494 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3495 		goto out;
3496 	}
3497 
3498 	page_start = page_offset(page);
3499 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3500 
3501 	if (!PageUptodate(page)) {
3502 		ret = btrfs_readpage(NULL, page);
3503 		lock_page(page);
3504 		if (page->mapping != mapping) {
3505 			unlock_page(page);
3506 			page_cache_release(page);
3507 			goto again;
3508 		}
3509 		if (!PageUptodate(page)) {
3510 			ret = -EIO;
3511 			goto out_unlock;
3512 		}
3513 	}
3514 	wait_on_page_writeback(page);
3515 
3516 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3517 	set_page_extent_mapped(page);
3518 
3519 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3520 	if (ordered) {
3521 		unlock_extent_cached(io_tree, page_start, page_end,
3522 				     &cached_state, GFP_NOFS);
3523 		unlock_page(page);
3524 		page_cache_release(page);
3525 		btrfs_start_ordered_extent(inode, ordered, 1);
3526 		btrfs_put_ordered_extent(ordered);
3527 		goto again;
3528 	}
3529 
3530 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3531 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3532 			  0, 0, &cached_state, GFP_NOFS);
3533 
3534 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3535 					&cached_state);
3536 	if (ret) {
3537 		unlock_extent_cached(io_tree, page_start, page_end,
3538 				     &cached_state, GFP_NOFS);
3539 		goto out_unlock;
3540 	}
3541 
3542 	ret = 0;
3543 	if (offset != PAGE_CACHE_SIZE) {
3544 		kaddr = kmap(page);
3545 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3546 		flush_dcache_page(page);
3547 		kunmap(page);
3548 	}
3549 	ClearPageChecked(page);
3550 	set_page_dirty(page);
3551 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3552 			     GFP_NOFS);
3553 
3554 out_unlock:
3555 	if (ret)
3556 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3557 	unlock_page(page);
3558 	page_cache_release(page);
3559 out:
3560 	return ret;
3561 }
3562 
3563 /*
3564  * This function puts in dummy file extents for the area we're creating a hole
3565  * for.  So if we are truncating this file to a larger size we need to insert
3566  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3567  * the range between oldsize and size
3568  */
3569 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3570 {
3571 	struct btrfs_trans_handle *trans;
3572 	struct btrfs_root *root = BTRFS_I(inode)->root;
3573 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3574 	struct extent_map *em = NULL;
3575 	struct extent_state *cached_state = NULL;
3576 	u64 mask = root->sectorsize - 1;
3577 	u64 hole_start = (oldsize + mask) & ~mask;
3578 	u64 block_end = (size + mask) & ~mask;
3579 	u64 last_byte;
3580 	u64 cur_offset;
3581 	u64 hole_size;
3582 	int err = 0;
3583 
3584 	if (size <= hole_start)
3585 		return 0;
3586 
3587 	while (1) {
3588 		struct btrfs_ordered_extent *ordered;
3589 		btrfs_wait_ordered_range(inode, hole_start,
3590 					 block_end - hole_start);
3591 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3592 				 &cached_state);
3593 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3594 		if (!ordered)
3595 			break;
3596 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3597 				     &cached_state, GFP_NOFS);
3598 		btrfs_put_ordered_extent(ordered);
3599 	}
3600 
3601 	cur_offset = hole_start;
3602 	while (1) {
3603 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3604 				block_end - cur_offset, 0);
3605 		if (IS_ERR(em)) {
3606 			err = PTR_ERR(em);
3607 			break;
3608 		}
3609 		last_byte = min(extent_map_end(em), block_end);
3610 		last_byte = (last_byte + mask) & ~mask;
3611 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3612 			u64 hint_byte = 0;
3613 			hole_size = last_byte - cur_offset;
3614 
3615 			trans = btrfs_start_transaction(root, 3);
3616 			if (IS_ERR(trans)) {
3617 				err = PTR_ERR(trans);
3618 				break;
3619 			}
3620 
3621 			err = btrfs_drop_extents(trans, inode, cur_offset,
3622 						 cur_offset + hole_size,
3623 						 &hint_byte, 1);
3624 			if (err) {
3625 				btrfs_abort_transaction(trans, root, err);
3626 				btrfs_end_transaction(trans, root);
3627 				break;
3628 			}
3629 
3630 			err = btrfs_insert_file_extent(trans, root,
3631 					btrfs_ino(inode), cur_offset, 0,
3632 					0, hole_size, 0, hole_size,
3633 					0, 0, 0);
3634 			if (err) {
3635 				btrfs_abort_transaction(trans, root, err);
3636 				btrfs_end_transaction(trans, root);
3637 				break;
3638 			}
3639 
3640 			btrfs_drop_extent_cache(inode, hole_start,
3641 					last_byte - 1, 0);
3642 
3643 			btrfs_update_inode(trans, root, inode);
3644 			btrfs_end_transaction(trans, root);
3645 		}
3646 		free_extent_map(em);
3647 		em = NULL;
3648 		cur_offset = last_byte;
3649 		if (cur_offset >= block_end)
3650 			break;
3651 	}
3652 
3653 	free_extent_map(em);
3654 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3655 			     GFP_NOFS);
3656 	return err;
3657 }
3658 
3659 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3660 {
3661 	struct btrfs_root *root = BTRFS_I(inode)->root;
3662 	struct btrfs_trans_handle *trans;
3663 	loff_t oldsize = i_size_read(inode);
3664 	int ret;
3665 
3666 	if (newsize == oldsize)
3667 		return 0;
3668 
3669 	if (newsize > oldsize) {
3670 		truncate_pagecache(inode, oldsize, newsize);
3671 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3672 		if (ret)
3673 			return ret;
3674 
3675 		trans = btrfs_start_transaction(root, 1);
3676 		if (IS_ERR(trans))
3677 			return PTR_ERR(trans);
3678 
3679 		i_size_write(inode, newsize);
3680 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3681 		ret = btrfs_update_inode(trans, root, inode);
3682 		btrfs_end_transaction(trans, root);
3683 	} else {
3684 
3685 		/*
3686 		 * We're truncating a file that used to have good data down to
3687 		 * zero. Make sure it gets into the ordered flush list so that
3688 		 * any new writes get down to disk quickly.
3689 		 */
3690 		if (newsize == 0)
3691 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3692 				&BTRFS_I(inode)->runtime_flags);
3693 
3694 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3695 		truncate_setsize(inode, newsize);
3696 		ret = btrfs_truncate(inode);
3697 	}
3698 
3699 	return ret;
3700 }
3701 
3702 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3703 {
3704 	struct inode *inode = dentry->d_inode;
3705 	struct btrfs_root *root = BTRFS_I(inode)->root;
3706 	int err;
3707 
3708 	if (btrfs_root_readonly(root))
3709 		return -EROFS;
3710 
3711 	err = inode_change_ok(inode, attr);
3712 	if (err)
3713 		return err;
3714 
3715 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3716 		err = btrfs_setsize(inode, attr->ia_size);
3717 		if (err)
3718 			return err;
3719 	}
3720 
3721 	if (attr->ia_valid) {
3722 		setattr_copy(inode, attr);
3723 		inode_inc_iversion(inode);
3724 		err = btrfs_dirty_inode(inode);
3725 
3726 		if (!err && attr->ia_valid & ATTR_MODE)
3727 			err = btrfs_acl_chmod(inode);
3728 	}
3729 
3730 	return err;
3731 }
3732 
3733 void btrfs_evict_inode(struct inode *inode)
3734 {
3735 	struct btrfs_trans_handle *trans;
3736 	struct btrfs_root *root = BTRFS_I(inode)->root;
3737 	struct btrfs_block_rsv *rsv, *global_rsv;
3738 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3739 	unsigned long nr;
3740 	int ret;
3741 
3742 	trace_btrfs_inode_evict(inode);
3743 
3744 	truncate_inode_pages(&inode->i_data, 0);
3745 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3746 			       btrfs_is_free_space_inode(root, inode)))
3747 		goto no_delete;
3748 
3749 	if (is_bad_inode(inode)) {
3750 		btrfs_orphan_del(NULL, inode);
3751 		goto no_delete;
3752 	}
3753 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3754 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3755 
3756 	if (root->fs_info->log_root_recovering) {
3757 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3758 				 &BTRFS_I(inode)->runtime_flags));
3759 		goto no_delete;
3760 	}
3761 
3762 	if (inode->i_nlink > 0) {
3763 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3764 		goto no_delete;
3765 	}
3766 
3767 	rsv = btrfs_alloc_block_rsv(root);
3768 	if (!rsv) {
3769 		btrfs_orphan_del(NULL, inode);
3770 		goto no_delete;
3771 	}
3772 	rsv->size = min_size;
3773 	global_rsv = &root->fs_info->global_block_rsv;
3774 
3775 	btrfs_i_size_write(inode, 0);
3776 
3777 	/*
3778 	 * This is a bit simpler than btrfs_truncate since
3779 	 *
3780 	 * 1) We've already reserved our space for our orphan item in the
3781 	 *    unlink.
3782 	 * 2) We're going to delete the inode item, so we don't need to update
3783 	 *    it at all.
3784 	 *
3785 	 * So we just need to reserve some slack space in case we add bytes when
3786 	 * doing the truncate.
3787 	 */
3788 	while (1) {
3789 		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3790 
3791 		/*
3792 		 * Try and steal from the global reserve since we will
3793 		 * likely not use this space anyway, we want to try as
3794 		 * hard as possible to get this to work.
3795 		 */
3796 		if (ret)
3797 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3798 
3799 		if (ret) {
3800 			printk(KERN_WARNING "Could not get space for a "
3801 			       "delete, will truncate on mount %d\n", ret);
3802 			btrfs_orphan_del(NULL, inode);
3803 			btrfs_free_block_rsv(root, rsv);
3804 			goto no_delete;
3805 		}
3806 
3807 		trans = btrfs_start_transaction(root, 0);
3808 		if (IS_ERR(trans)) {
3809 			btrfs_orphan_del(NULL, inode);
3810 			btrfs_free_block_rsv(root, rsv);
3811 			goto no_delete;
3812 		}
3813 
3814 		trans->block_rsv = rsv;
3815 
3816 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3817 		if (ret != -EAGAIN)
3818 			break;
3819 
3820 		nr = trans->blocks_used;
3821 		btrfs_end_transaction(trans, root);
3822 		trans = NULL;
3823 		btrfs_btree_balance_dirty(root, nr);
3824 	}
3825 
3826 	btrfs_free_block_rsv(root, rsv);
3827 
3828 	if (ret == 0) {
3829 		trans->block_rsv = root->orphan_block_rsv;
3830 		ret = btrfs_orphan_del(trans, inode);
3831 		BUG_ON(ret);
3832 	}
3833 
3834 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3835 	if (!(root == root->fs_info->tree_root ||
3836 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3837 		btrfs_return_ino(root, btrfs_ino(inode));
3838 
3839 	nr = trans->blocks_used;
3840 	btrfs_end_transaction(trans, root);
3841 	btrfs_btree_balance_dirty(root, nr);
3842 no_delete:
3843 	clear_inode(inode);
3844 	return;
3845 }
3846 
3847 /*
3848  * this returns the key found in the dir entry in the location pointer.
3849  * If no dir entries were found, location->objectid is 0.
3850  */
3851 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3852 			       struct btrfs_key *location)
3853 {
3854 	const char *name = dentry->d_name.name;
3855 	int namelen = dentry->d_name.len;
3856 	struct btrfs_dir_item *di;
3857 	struct btrfs_path *path;
3858 	struct btrfs_root *root = BTRFS_I(dir)->root;
3859 	int ret = 0;
3860 
3861 	path = btrfs_alloc_path();
3862 	if (!path)
3863 		return -ENOMEM;
3864 
3865 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3866 				    namelen, 0);
3867 	if (IS_ERR(di))
3868 		ret = PTR_ERR(di);
3869 
3870 	if (IS_ERR_OR_NULL(di))
3871 		goto out_err;
3872 
3873 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3874 out:
3875 	btrfs_free_path(path);
3876 	return ret;
3877 out_err:
3878 	location->objectid = 0;
3879 	goto out;
3880 }
3881 
3882 /*
3883  * when we hit a tree root in a directory, the btrfs part of the inode
3884  * needs to be changed to reflect the root directory of the tree root.  This
3885  * is kind of like crossing a mount point.
3886  */
3887 static int fixup_tree_root_location(struct btrfs_root *root,
3888 				    struct inode *dir,
3889 				    struct dentry *dentry,
3890 				    struct btrfs_key *location,
3891 				    struct btrfs_root **sub_root)
3892 {
3893 	struct btrfs_path *path;
3894 	struct btrfs_root *new_root;
3895 	struct btrfs_root_ref *ref;
3896 	struct extent_buffer *leaf;
3897 	int ret;
3898 	int err = 0;
3899 
3900 	path = btrfs_alloc_path();
3901 	if (!path) {
3902 		err = -ENOMEM;
3903 		goto out;
3904 	}
3905 
3906 	err = -ENOENT;
3907 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3908 				  BTRFS_I(dir)->root->root_key.objectid,
3909 				  location->objectid);
3910 	if (ret) {
3911 		if (ret < 0)
3912 			err = ret;
3913 		goto out;
3914 	}
3915 
3916 	leaf = path->nodes[0];
3917 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3918 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3919 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3920 		goto out;
3921 
3922 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3923 				   (unsigned long)(ref + 1),
3924 				   dentry->d_name.len);
3925 	if (ret)
3926 		goto out;
3927 
3928 	btrfs_release_path(path);
3929 
3930 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3931 	if (IS_ERR(new_root)) {
3932 		err = PTR_ERR(new_root);
3933 		goto out;
3934 	}
3935 
3936 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3937 		err = -ENOENT;
3938 		goto out;
3939 	}
3940 
3941 	*sub_root = new_root;
3942 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3943 	location->type = BTRFS_INODE_ITEM_KEY;
3944 	location->offset = 0;
3945 	err = 0;
3946 out:
3947 	btrfs_free_path(path);
3948 	return err;
3949 }
3950 
3951 static void inode_tree_add(struct inode *inode)
3952 {
3953 	struct btrfs_root *root = BTRFS_I(inode)->root;
3954 	struct btrfs_inode *entry;
3955 	struct rb_node **p;
3956 	struct rb_node *parent;
3957 	u64 ino = btrfs_ino(inode);
3958 again:
3959 	p = &root->inode_tree.rb_node;
3960 	parent = NULL;
3961 
3962 	if (inode_unhashed(inode))
3963 		return;
3964 
3965 	spin_lock(&root->inode_lock);
3966 	while (*p) {
3967 		parent = *p;
3968 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3969 
3970 		if (ino < btrfs_ino(&entry->vfs_inode))
3971 			p = &parent->rb_left;
3972 		else if (ino > btrfs_ino(&entry->vfs_inode))
3973 			p = &parent->rb_right;
3974 		else {
3975 			WARN_ON(!(entry->vfs_inode.i_state &
3976 				  (I_WILL_FREE | I_FREEING)));
3977 			rb_erase(parent, &root->inode_tree);
3978 			RB_CLEAR_NODE(parent);
3979 			spin_unlock(&root->inode_lock);
3980 			goto again;
3981 		}
3982 	}
3983 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3984 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3985 	spin_unlock(&root->inode_lock);
3986 }
3987 
3988 static void inode_tree_del(struct inode *inode)
3989 {
3990 	struct btrfs_root *root = BTRFS_I(inode)->root;
3991 	int empty = 0;
3992 
3993 	spin_lock(&root->inode_lock);
3994 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3995 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3996 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3997 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3998 	}
3999 	spin_unlock(&root->inode_lock);
4000 
4001 	/*
4002 	 * Free space cache has inodes in the tree root, but the tree root has a
4003 	 * root_refs of 0, so this could end up dropping the tree root as a
4004 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
4005 	 * make sure we don't drop it.
4006 	 */
4007 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4008 	    root != root->fs_info->tree_root) {
4009 		synchronize_srcu(&root->fs_info->subvol_srcu);
4010 		spin_lock(&root->inode_lock);
4011 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4012 		spin_unlock(&root->inode_lock);
4013 		if (empty)
4014 			btrfs_add_dead_root(root);
4015 	}
4016 }
4017 
4018 void btrfs_invalidate_inodes(struct btrfs_root *root)
4019 {
4020 	struct rb_node *node;
4021 	struct rb_node *prev;
4022 	struct btrfs_inode *entry;
4023 	struct inode *inode;
4024 	u64 objectid = 0;
4025 
4026 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4027 
4028 	spin_lock(&root->inode_lock);
4029 again:
4030 	node = root->inode_tree.rb_node;
4031 	prev = NULL;
4032 	while (node) {
4033 		prev = node;
4034 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4035 
4036 		if (objectid < btrfs_ino(&entry->vfs_inode))
4037 			node = node->rb_left;
4038 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4039 			node = node->rb_right;
4040 		else
4041 			break;
4042 	}
4043 	if (!node) {
4044 		while (prev) {
4045 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4046 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4047 				node = prev;
4048 				break;
4049 			}
4050 			prev = rb_next(prev);
4051 		}
4052 	}
4053 	while (node) {
4054 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4055 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4056 		inode = igrab(&entry->vfs_inode);
4057 		if (inode) {
4058 			spin_unlock(&root->inode_lock);
4059 			if (atomic_read(&inode->i_count) > 1)
4060 				d_prune_aliases(inode);
4061 			/*
4062 			 * btrfs_drop_inode will have it removed from
4063 			 * the inode cache when its usage count
4064 			 * hits zero.
4065 			 */
4066 			iput(inode);
4067 			cond_resched();
4068 			spin_lock(&root->inode_lock);
4069 			goto again;
4070 		}
4071 
4072 		if (cond_resched_lock(&root->inode_lock))
4073 			goto again;
4074 
4075 		node = rb_next(node);
4076 	}
4077 	spin_unlock(&root->inode_lock);
4078 }
4079 
4080 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4081 {
4082 	struct btrfs_iget_args *args = p;
4083 	inode->i_ino = args->ino;
4084 	BTRFS_I(inode)->root = args->root;
4085 	btrfs_set_inode_space_info(args->root, inode);
4086 	return 0;
4087 }
4088 
4089 static int btrfs_find_actor(struct inode *inode, void *opaque)
4090 {
4091 	struct btrfs_iget_args *args = opaque;
4092 	return args->ino == btrfs_ino(inode) &&
4093 		args->root == BTRFS_I(inode)->root;
4094 }
4095 
4096 static struct inode *btrfs_iget_locked(struct super_block *s,
4097 				       u64 objectid,
4098 				       struct btrfs_root *root)
4099 {
4100 	struct inode *inode;
4101 	struct btrfs_iget_args args;
4102 	args.ino = objectid;
4103 	args.root = root;
4104 
4105 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4106 			     btrfs_init_locked_inode,
4107 			     (void *)&args);
4108 	return inode;
4109 }
4110 
4111 /* Get an inode object given its location and corresponding root.
4112  * Returns in *is_new if the inode was read from disk
4113  */
4114 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4115 			 struct btrfs_root *root, int *new)
4116 {
4117 	struct inode *inode;
4118 
4119 	inode = btrfs_iget_locked(s, location->objectid, root);
4120 	if (!inode)
4121 		return ERR_PTR(-ENOMEM);
4122 
4123 	if (inode->i_state & I_NEW) {
4124 		BTRFS_I(inode)->root = root;
4125 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4126 		btrfs_read_locked_inode(inode);
4127 		if (!is_bad_inode(inode)) {
4128 			inode_tree_add(inode);
4129 			unlock_new_inode(inode);
4130 			if (new)
4131 				*new = 1;
4132 		} else {
4133 			unlock_new_inode(inode);
4134 			iput(inode);
4135 			inode = ERR_PTR(-ESTALE);
4136 		}
4137 	}
4138 
4139 	return inode;
4140 }
4141 
4142 static struct inode *new_simple_dir(struct super_block *s,
4143 				    struct btrfs_key *key,
4144 				    struct btrfs_root *root)
4145 {
4146 	struct inode *inode = new_inode(s);
4147 
4148 	if (!inode)
4149 		return ERR_PTR(-ENOMEM);
4150 
4151 	BTRFS_I(inode)->root = root;
4152 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4153 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4154 
4155 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4156 	inode->i_op = &btrfs_dir_ro_inode_operations;
4157 	inode->i_fop = &simple_dir_operations;
4158 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4159 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4160 
4161 	return inode;
4162 }
4163 
4164 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4165 {
4166 	struct inode *inode;
4167 	struct btrfs_root *root = BTRFS_I(dir)->root;
4168 	struct btrfs_root *sub_root = root;
4169 	struct btrfs_key location;
4170 	int index;
4171 	int ret = 0;
4172 
4173 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4174 		return ERR_PTR(-ENAMETOOLONG);
4175 
4176 	if (unlikely(d_need_lookup(dentry))) {
4177 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4178 		kfree(dentry->d_fsdata);
4179 		dentry->d_fsdata = NULL;
4180 		/* This thing is hashed, drop it for now */
4181 		d_drop(dentry);
4182 	} else {
4183 		ret = btrfs_inode_by_name(dir, dentry, &location);
4184 	}
4185 
4186 	if (ret < 0)
4187 		return ERR_PTR(ret);
4188 
4189 	if (location.objectid == 0)
4190 		return NULL;
4191 
4192 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4193 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4194 		return inode;
4195 	}
4196 
4197 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4198 
4199 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4200 	ret = fixup_tree_root_location(root, dir, dentry,
4201 				       &location, &sub_root);
4202 	if (ret < 0) {
4203 		if (ret != -ENOENT)
4204 			inode = ERR_PTR(ret);
4205 		else
4206 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4207 	} else {
4208 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4209 	}
4210 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4211 
4212 	if (!IS_ERR(inode) && root != sub_root) {
4213 		down_read(&root->fs_info->cleanup_work_sem);
4214 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4215 			ret = btrfs_orphan_cleanup(sub_root);
4216 		up_read(&root->fs_info->cleanup_work_sem);
4217 		if (ret)
4218 			inode = ERR_PTR(ret);
4219 	}
4220 
4221 	return inode;
4222 }
4223 
4224 static int btrfs_dentry_delete(const struct dentry *dentry)
4225 {
4226 	struct btrfs_root *root;
4227 	struct inode *inode = dentry->d_inode;
4228 
4229 	if (!inode && !IS_ROOT(dentry))
4230 		inode = dentry->d_parent->d_inode;
4231 
4232 	if (inode) {
4233 		root = BTRFS_I(inode)->root;
4234 		if (btrfs_root_refs(&root->root_item) == 0)
4235 			return 1;
4236 
4237 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4238 			return 1;
4239 	}
4240 	return 0;
4241 }
4242 
4243 static void btrfs_dentry_release(struct dentry *dentry)
4244 {
4245 	if (dentry->d_fsdata)
4246 		kfree(dentry->d_fsdata);
4247 }
4248 
4249 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4250 				   struct nameidata *nd)
4251 {
4252 	struct dentry *ret;
4253 
4254 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4255 	if (unlikely(d_need_lookup(dentry))) {
4256 		spin_lock(&dentry->d_lock);
4257 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4258 		spin_unlock(&dentry->d_lock);
4259 	}
4260 	return ret;
4261 }
4262 
4263 unsigned char btrfs_filetype_table[] = {
4264 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4265 };
4266 
4267 static int btrfs_real_readdir(struct file *filp, void *dirent,
4268 			      filldir_t filldir)
4269 {
4270 	struct inode *inode = filp->f_dentry->d_inode;
4271 	struct btrfs_root *root = BTRFS_I(inode)->root;
4272 	struct btrfs_item *item;
4273 	struct btrfs_dir_item *di;
4274 	struct btrfs_key key;
4275 	struct btrfs_key found_key;
4276 	struct btrfs_path *path;
4277 	struct list_head ins_list;
4278 	struct list_head del_list;
4279 	int ret;
4280 	struct extent_buffer *leaf;
4281 	int slot;
4282 	unsigned char d_type;
4283 	int over = 0;
4284 	u32 di_cur;
4285 	u32 di_total;
4286 	u32 di_len;
4287 	int key_type = BTRFS_DIR_INDEX_KEY;
4288 	char tmp_name[32];
4289 	char *name_ptr;
4290 	int name_len;
4291 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4292 
4293 	/* FIXME, use a real flag for deciding about the key type */
4294 	if (root->fs_info->tree_root == root)
4295 		key_type = BTRFS_DIR_ITEM_KEY;
4296 
4297 	/* special case for "." */
4298 	if (filp->f_pos == 0) {
4299 		over = filldir(dirent, ".", 1,
4300 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4301 		if (over)
4302 			return 0;
4303 		filp->f_pos = 1;
4304 	}
4305 	/* special case for .., just use the back ref */
4306 	if (filp->f_pos == 1) {
4307 		u64 pino = parent_ino(filp->f_path.dentry);
4308 		over = filldir(dirent, "..", 2,
4309 			       filp->f_pos, pino, DT_DIR);
4310 		if (over)
4311 			return 0;
4312 		filp->f_pos = 2;
4313 	}
4314 	path = btrfs_alloc_path();
4315 	if (!path)
4316 		return -ENOMEM;
4317 
4318 	path->reada = 1;
4319 
4320 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4321 		INIT_LIST_HEAD(&ins_list);
4322 		INIT_LIST_HEAD(&del_list);
4323 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4324 	}
4325 
4326 	btrfs_set_key_type(&key, key_type);
4327 	key.offset = filp->f_pos;
4328 	key.objectid = btrfs_ino(inode);
4329 
4330 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4331 	if (ret < 0)
4332 		goto err;
4333 
4334 	while (1) {
4335 		leaf = path->nodes[0];
4336 		slot = path->slots[0];
4337 		if (slot >= btrfs_header_nritems(leaf)) {
4338 			ret = btrfs_next_leaf(root, path);
4339 			if (ret < 0)
4340 				goto err;
4341 			else if (ret > 0)
4342 				break;
4343 			continue;
4344 		}
4345 
4346 		item = btrfs_item_nr(leaf, slot);
4347 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4348 
4349 		if (found_key.objectid != key.objectid)
4350 			break;
4351 		if (btrfs_key_type(&found_key) != key_type)
4352 			break;
4353 		if (found_key.offset < filp->f_pos)
4354 			goto next;
4355 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4356 		    btrfs_should_delete_dir_index(&del_list,
4357 						  found_key.offset))
4358 			goto next;
4359 
4360 		filp->f_pos = found_key.offset;
4361 		is_curr = 1;
4362 
4363 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4364 		di_cur = 0;
4365 		di_total = btrfs_item_size(leaf, item);
4366 
4367 		while (di_cur < di_total) {
4368 			struct btrfs_key location;
4369 
4370 			if (verify_dir_item(root, leaf, di))
4371 				break;
4372 
4373 			name_len = btrfs_dir_name_len(leaf, di);
4374 			if (name_len <= sizeof(tmp_name)) {
4375 				name_ptr = tmp_name;
4376 			} else {
4377 				name_ptr = kmalloc(name_len, GFP_NOFS);
4378 				if (!name_ptr) {
4379 					ret = -ENOMEM;
4380 					goto err;
4381 				}
4382 			}
4383 			read_extent_buffer(leaf, name_ptr,
4384 					   (unsigned long)(di + 1), name_len);
4385 
4386 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4387 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4388 
4389 
4390 			/* is this a reference to our own snapshot? If so
4391 			 * skip it.
4392 			 *
4393 			 * In contrast to old kernels, we insert the snapshot's
4394 			 * dir item and dir index after it has been created, so
4395 			 * we won't find a reference to our own snapshot. We
4396 			 * still keep the following code for backward
4397 			 * compatibility.
4398 			 */
4399 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4400 			    location.objectid == root->root_key.objectid) {
4401 				over = 0;
4402 				goto skip;
4403 			}
4404 			over = filldir(dirent, name_ptr, name_len,
4405 				       found_key.offset, location.objectid,
4406 				       d_type);
4407 
4408 skip:
4409 			if (name_ptr != tmp_name)
4410 				kfree(name_ptr);
4411 
4412 			if (over)
4413 				goto nopos;
4414 			di_len = btrfs_dir_name_len(leaf, di) +
4415 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4416 			di_cur += di_len;
4417 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4418 		}
4419 next:
4420 		path->slots[0]++;
4421 	}
4422 
4423 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4424 		if (is_curr)
4425 			filp->f_pos++;
4426 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4427 						      &ins_list);
4428 		if (ret)
4429 			goto nopos;
4430 	}
4431 
4432 	/* Reached end of directory/root. Bump pos past the last item. */
4433 	if (key_type == BTRFS_DIR_INDEX_KEY)
4434 		/*
4435 		 * 32-bit glibc will use getdents64, but then strtol -
4436 		 * so the last number we can serve is this.
4437 		 */
4438 		filp->f_pos = 0x7fffffff;
4439 	else
4440 		filp->f_pos++;
4441 nopos:
4442 	ret = 0;
4443 err:
4444 	if (key_type == BTRFS_DIR_INDEX_KEY)
4445 		btrfs_put_delayed_items(&ins_list, &del_list);
4446 	btrfs_free_path(path);
4447 	return ret;
4448 }
4449 
4450 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4451 {
4452 	struct btrfs_root *root = BTRFS_I(inode)->root;
4453 	struct btrfs_trans_handle *trans;
4454 	int ret = 0;
4455 	bool nolock = false;
4456 
4457 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4458 		return 0;
4459 
4460 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4461 		nolock = true;
4462 
4463 	if (wbc->sync_mode == WB_SYNC_ALL) {
4464 		if (nolock)
4465 			trans = btrfs_join_transaction_nolock(root);
4466 		else
4467 			trans = btrfs_join_transaction(root);
4468 		if (IS_ERR(trans))
4469 			return PTR_ERR(trans);
4470 		if (nolock)
4471 			ret = btrfs_end_transaction_nolock(trans, root);
4472 		else
4473 			ret = btrfs_commit_transaction(trans, root);
4474 	}
4475 	return ret;
4476 }
4477 
4478 /*
4479  * This is somewhat expensive, updating the tree every time the
4480  * inode changes.  But, it is most likely to find the inode in cache.
4481  * FIXME, needs more benchmarking...there are no reasons other than performance
4482  * to keep or drop this code.
4483  */
4484 int btrfs_dirty_inode(struct inode *inode)
4485 {
4486 	struct btrfs_root *root = BTRFS_I(inode)->root;
4487 	struct btrfs_trans_handle *trans;
4488 	int ret;
4489 
4490 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4491 		return 0;
4492 
4493 	trans = btrfs_join_transaction(root);
4494 	if (IS_ERR(trans))
4495 		return PTR_ERR(trans);
4496 
4497 	ret = btrfs_update_inode(trans, root, inode);
4498 	if (ret && ret == -ENOSPC) {
4499 		/* whoops, lets try again with the full transaction */
4500 		btrfs_end_transaction(trans, root);
4501 		trans = btrfs_start_transaction(root, 1);
4502 		if (IS_ERR(trans))
4503 			return PTR_ERR(trans);
4504 
4505 		ret = btrfs_update_inode(trans, root, inode);
4506 	}
4507 	btrfs_end_transaction(trans, root);
4508 	if (BTRFS_I(inode)->delayed_node)
4509 		btrfs_balance_delayed_items(root);
4510 
4511 	return ret;
4512 }
4513 
4514 /*
4515  * This is a copy of file_update_time.  We need this so we can return error on
4516  * ENOSPC for updating the inode in the case of file write and mmap writes.
4517  */
4518 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4519 			     int flags)
4520 {
4521 	if (flags & S_VERSION)
4522 		inode_inc_iversion(inode);
4523 	if (flags & S_CTIME)
4524 		inode->i_ctime = *now;
4525 	if (flags & S_MTIME)
4526 		inode->i_mtime = *now;
4527 	if (flags & S_ATIME)
4528 		inode->i_atime = *now;
4529 	return btrfs_dirty_inode(inode);
4530 }
4531 
4532 /*
4533  * find the highest existing sequence number in a directory
4534  * and then set the in-memory index_cnt variable to reflect
4535  * free sequence numbers
4536  */
4537 static int btrfs_set_inode_index_count(struct inode *inode)
4538 {
4539 	struct btrfs_root *root = BTRFS_I(inode)->root;
4540 	struct btrfs_key key, found_key;
4541 	struct btrfs_path *path;
4542 	struct extent_buffer *leaf;
4543 	int ret;
4544 
4545 	key.objectid = btrfs_ino(inode);
4546 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4547 	key.offset = (u64)-1;
4548 
4549 	path = btrfs_alloc_path();
4550 	if (!path)
4551 		return -ENOMEM;
4552 
4553 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4554 	if (ret < 0)
4555 		goto out;
4556 	/* FIXME: we should be able to handle this */
4557 	if (ret == 0)
4558 		goto out;
4559 	ret = 0;
4560 
4561 	/*
4562 	 * MAGIC NUMBER EXPLANATION:
4563 	 * since we search a directory based on f_pos we have to start at 2
4564 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4565 	 * else has to start at 2
4566 	 */
4567 	if (path->slots[0] == 0) {
4568 		BTRFS_I(inode)->index_cnt = 2;
4569 		goto out;
4570 	}
4571 
4572 	path->slots[0]--;
4573 
4574 	leaf = path->nodes[0];
4575 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4576 
4577 	if (found_key.objectid != btrfs_ino(inode) ||
4578 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4579 		BTRFS_I(inode)->index_cnt = 2;
4580 		goto out;
4581 	}
4582 
4583 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4584 out:
4585 	btrfs_free_path(path);
4586 	return ret;
4587 }
4588 
4589 /*
4590  * helper to find a free sequence number in a given directory.  This current
4591  * code is very simple, later versions will do smarter things in the btree
4592  */
4593 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4594 {
4595 	int ret = 0;
4596 
4597 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4598 		ret = btrfs_inode_delayed_dir_index_count(dir);
4599 		if (ret) {
4600 			ret = btrfs_set_inode_index_count(dir);
4601 			if (ret)
4602 				return ret;
4603 		}
4604 	}
4605 
4606 	*index = BTRFS_I(dir)->index_cnt;
4607 	BTRFS_I(dir)->index_cnt++;
4608 
4609 	return ret;
4610 }
4611 
4612 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4613 				     struct btrfs_root *root,
4614 				     struct inode *dir,
4615 				     const char *name, int name_len,
4616 				     u64 ref_objectid, u64 objectid,
4617 				     umode_t mode, u64 *index)
4618 {
4619 	struct inode *inode;
4620 	struct btrfs_inode_item *inode_item;
4621 	struct btrfs_key *location;
4622 	struct btrfs_path *path;
4623 	struct btrfs_inode_ref *ref;
4624 	struct btrfs_key key[2];
4625 	u32 sizes[2];
4626 	unsigned long ptr;
4627 	int ret;
4628 	int owner;
4629 
4630 	path = btrfs_alloc_path();
4631 	if (!path)
4632 		return ERR_PTR(-ENOMEM);
4633 
4634 	inode = new_inode(root->fs_info->sb);
4635 	if (!inode) {
4636 		btrfs_free_path(path);
4637 		return ERR_PTR(-ENOMEM);
4638 	}
4639 
4640 	/*
4641 	 * we have to initialize this early, so we can reclaim the inode
4642 	 * number if we fail afterwards in this function.
4643 	 */
4644 	inode->i_ino = objectid;
4645 
4646 	if (dir) {
4647 		trace_btrfs_inode_request(dir);
4648 
4649 		ret = btrfs_set_inode_index(dir, index);
4650 		if (ret) {
4651 			btrfs_free_path(path);
4652 			iput(inode);
4653 			return ERR_PTR(ret);
4654 		}
4655 	}
4656 	/*
4657 	 * index_cnt is ignored for everything but a dir,
4658 	 * btrfs_get_inode_index_count has an explanation for the magic
4659 	 * number
4660 	 */
4661 	BTRFS_I(inode)->index_cnt = 2;
4662 	BTRFS_I(inode)->root = root;
4663 	BTRFS_I(inode)->generation = trans->transid;
4664 	inode->i_generation = BTRFS_I(inode)->generation;
4665 	btrfs_set_inode_space_info(root, inode);
4666 
4667 	if (S_ISDIR(mode))
4668 		owner = 0;
4669 	else
4670 		owner = 1;
4671 
4672 	key[0].objectid = objectid;
4673 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4674 	key[0].offset = 0;
4675 
4676 	key[1].objectid = objectid;
4677 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4678 	key[1].offset = ref_objectid;
4679 
4680 	sizes[0] = sizeof(struct btrfs_inode_item);
4681 	sizes[1] = name_len + sizeof(*ref);
4682 
4683 	path->leave_spinning = 1;
4684 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4685 	if (ret != 0)
4686 		goto fail;
4687 
4688 	inode_init_owner(inode, dir, mode);
4689 	inode_set_bytes(inode, 0);
4690 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4691 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4692 				  struct btrfs_inode_item);
4693 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4694 
4695 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4696 			     struct btrfs_inode_ref);
4697 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4698 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4699 	ptr = (unsigned long)(ref + 1);
4700 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4701 
4702 	btrfs_mark_buffer_dirty(path->nodes[0]);
4703 	btrfs_free_path(path);
4704 
4705 	location = &BTRFS_I(inode)->location;
4706 	location->objectid = objectid;
4707 	location->offset = 0;
4708 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4709 
4710 	btrfs_inherit_iflags(inode, dir);
4711 
4712 	if (S_ISREG(mode)) {
4713 		if (btrfs_test_opt(root, NODATASUM))
4714 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4715 		if (btrfs_test_opt(root, NODATACOW) ||
4716 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4717 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4718 	}
4719 
4720 	insert_inode_hash(inode);
4721 	inode_tree_add(inode);
4722 
4723 	trace_btrfs_inode_new(inode);
4724 	btrfs_set_inode_last_trans(trans, inode);
4725 
4726 	return inode;
4727 fail:
4728 	if (dir)
4729 		BTRFS_I(dir)->index_cnt--;
4730 	btrfs_free_path(path);
4731 	iput(inode);
4732 	return ERR_PTR(ret);
4733 }
4734 
4735 static inline u8 btrfs_inode_type(struct inode *inode)
4736 {
4737 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4738 }
4739 
4740 /*
4741  * utility function to add 'inode' into 'parent_inode' with
4742  * a give name and a given sequence number.
4743  * if 'add_backref' is true, also insert a backref from the
4744  * inode to the parent directory.
4745  */
4746 int btrfs_add_link(struct btrfs_trans_handle *trans,
4747 		   struct inode *parent_inode, struct inode *inode,
4748 		   const char *name, int name_len, int add_backref, u64 index)
4749 {
4750 	int ret = 0;
4751 	struct btrfs_key key;
4752 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4753 	u64 ino = btrfs_ino(inode);
4754 	u64 parent_ino = btrfs_ino(parent_inode);
4755 
4756 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4757 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4758 	} else {
4759 		key.objectid = ino;
4760 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4761 		key.offset = 0;
4762 	}
4763 
4764 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4765 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4766 					 key.objectid, root->root_key.objectid,
4767 					 parent_ino, index, name, name_len);
4768 	} else if (add_backref) {
4769 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4770 					     parent_ino, index);
4771 	}
4772 
4773 	/* Nothing to clean up yet */
4774 	if (ret)
4775 		return ret;
4776 
4777 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
4778 				    parent_inode, &key,
4779 				    btrfs_inode_type(inode), index);
4780 	if (ret == -EEXIST)
4781 		goto fail_dir_item;
4782 	else if (ret) {
4783 		btrfs_abort_transaction(trans, root, ret);
4784 		return ret;
4785 	}
4786 
4787 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
4788 			   name_len * 2);
4789 	inode_inc_iversion(parent_inode);
4790 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4791 	ret = btrfs_update_inode(trans, root, parent_inode);
4792 	if (ret)
4793 		btrfs_abort_transaction(trans, root, ret);
4794 	return ret;
4795 
4796 fail_dir_item:
4797 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4798 		u64 local_index;
4799 		int err;
4800 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4801 				 key.objectid, root->root_key.objectid,
4802 				 parent_ino, &local_index, name, name_len);
4803 
4804 	} else if (add_backref) {
4805 		u64 local_index;
4806 		int err;
4807 
4808 		err = btrfs_del_inode_ref(trans, root, name, name_len,
4809 					  ino, parent_ino, &local_index);
4810 	}
4811 	return ret;
4812 }
4813 
4814 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4815 			    struct inode *dir, struct dentry *dentry,
4816 			    struct inode *inode, int backref, u64 index)
4817 {
4818 	int err = btrfs_add_link(trans, dir, inode,
4819 				 dentry->d_name.name, dentry->d_name.len,
4820 				 backref, index);
4821 	if (err > 0)
4822 		err = -EEXIST;
4823 	return err;
4824 }
4825 
4826 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4827 			umode_t mode, dev_t rdev)
4828 {
4829 	struct btrfs_trans_handle *trans;
4830 	struct btrfs_root *root = BTRFS_I(dir)->root;
4831 	struct inode *inode = NULL;
4832 	int err;
4833 	int drop_inode = 0;
4834 	u64 objectid;
4835 	unsigned long nr = 0;
4836 	u64 index = 0;
4837 
4838 	if (!new_valid_dev(rdev))
4839 		return -EINVAL;
4840 
4841 	/*
4842 	 * 2 for inode item and ref
4843 	 * 2 for dir items
4844 	 * 1 for xattr if selinux is on
4845 	 */
4846 	trans = btrfs_start_transaction(root, 5);
4847 	if (IS_ERR(trans))
4848 		return PTR_ERR(trans);
4849 
4850 	err = btrfs_find_free_ino(root, &objectid);
4851 	if (err)
4852 		goto out_unlock;
4853 
4854 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4855 				dentry->d_name.len, btrfs_ino(dir), objectid,
4856 				mode, &index);
4857 	if (IS_ERR(inode)) {
4858 		err = PTR_ERR(inode);
4859 		goto out_unlock;
4860 	}
4861 
4862 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4863 	if (err) {
4864 		drop_inode = 1;
4865 		goto out_unlock;
4866 	}
4867 
4868 	/*
4869 	* If the active LSM wants to access the inode during
4870 	* d_instantiate it needs these. Smack checks to see
4871 	* if the filesystem supports xattrs by looking at the
4872 	* ops vector.
4873 	*/
4874 
4875 	inode->i_op = &btrfs_special_inode_operations;
4876 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4877 	if (err)
4878 		drop_inode = 1;
4879 	else {
4880 		init_special_inode(inode, inode->i_mode, rdev);
4881 		btrfs_update_inode(trans, root, inode);
4882 		d_instantiate(dentry, inode);
4883 	}
4884 out_unlock:
4885 	nr = trans->blocks_used;
4886 	btrfs_end_transaction(trans, root);
4887 	btrfs_btree_balance_dirty(root, nr);
4888 	if (drop_inode) {
4889 		inode_dec_link_count(inode);
4890 		iput(inode);
4891 	}
4892 	return err;
4893 }
4894 
4895 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4896 			umode_t mode, struct nameidata *nd)
4897 {
4898 	struct btrfs_trans_handle *trans;
4899 	struct btrfs_root *root = BTRFS_I(dir)->root;
4900 	struct inode *inode = NULL;
4901 	int drop_inode = 0;
4902 	int err;
4903 	unsigned long nr = 0;
4904 	u64 objectid;
4905 	u64 index = 0;
4906 
4907 	/*
4908 	 * 2 for inode item and ref
4909 	 * 2 for dir items
4910 	 * 1 for xattr if selinux is on
4911 	 */
4912 	trans = btrfs_start_transaction(root, 5);
4913 	if (IS_ERR(trans))
4914 		return PTR_ERR(trans);
4915 
4916 	err = btrfs_find_free_ino(root, &objectid);
4917 	if (err)
4918 		goto out_unlock;
4919 
4920 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4921 				dentry->d_name.len, btrfs_ino(dir), objectid,
4922 				mode, &index);
4923 	if (IS_ERR(inode)) {
4924 		err = PTR_ERR(inode);
4925 		goto out_unlock;
4926 	}
4927 
4928 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4929 	if (err) {
4930 		drop_inode = 1;
4931 		goto out_unlock;
4932 	}
4933 
4934 	/*
4935 	* If the active LSM wants to access the inode during
4936 	* d_instantiate it needs these. Smack checks to see
4937 	* if the filesystem supports xattrs by looking at the
4938 	* ops vector.
4939 	*/
4940 	inode->i_fop = &btrfs_file_operations;
4941 	inode->i_op = &btrfs_file_inode_operations;
4942 
4943 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4944 	if (err)
4945 		drop_inode = 1;
4946 	else {
4947 		inode->i_mapping->a_ops = &btrfs_aops;
4948 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4949 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4950 		d_instantiate(dentry, inode);
4951 	}
4952 out_unlock:
4953 	nr = trans->blocks_used;
4954 	btrfs_end_transaction(trans, root);
4955 	if (drop_inode) {
4956 		inode_dec_link_count(inode);
4957 		iput(inode);
4958 	}
4959 	btrfs_btree_balance_dirty(root, nr);
4960 	return err;
4961 }
4962 
4963 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4964 		      struct dentry *dentry)
4965 {
4966 	struct btrfs_trans_handle *trans;
4967 	struct btrfs_root *root = BTRFS_I(dir)->root;
4968 	struct inode *inode = old_dentry->d_inode;
4969 	u64 index;
4970 	unsigned long nr = 0;
4971 	int err;
4972 	int drop_inode = 0;
4973 
4974 	/* do not allow sys_link's with other subvols of the same device */
4975 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4976 		return -EXDEV;
4977 
4978 	if (inode->i_nlink == ~0U)
4979 		return -EMLINK;
4980 
4981 	err = btrfs_set_inode_index(dir, &index);
4982 	if (err)
4983 		goto fail;
4984 
4985 	/*
4986 	 * 2 items for inode and inode ref
4987 	 * 2 items for dir items
4988 	 * 1 item for parent inode
4989 	 */
4990 	trans = btrfs_start_transaction(root, 5);
4991 	if (IS_ERR(trans)) {
4992 		err = PTR_ERR(trans);
4993 		goto fail;
4994 	}
4995 
4996 	btrfs_inc_nlink(inode);
4997 	inode_inc_iversion(inode);
4998 	inode->i_ctime = CURRENT_TIME;
4999 	ihold(inode);
5000 
5001 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5002 
5003 	if (err) {
5004 		drop_inode = 1;
5005 	} else {
5006 		struct dentry *parent = dentry->d_parent;
5007 		err = btrfs_update_inode(trans, root, inode);
5008 		if (err)
5009 			goto fail;
5010 		d_instantiate(dentry, inode);
5011 		btrfs_log_new_name(trans, inode, NULL, parent);
5012 	}
5013 
5014 	nr = trans->blocks_used;
5015 	btrfs_end_transaction(trans, root);
5016 fail:
5017 	if (drop_inode) {
5018 		inode_dec_link_count(inode);
5019 		iput(inode);
5020 	}
5021 	btrfs_btree_balance_dirty(root, nr);
5022 	return err;
5023 }
5024 
5025 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5026 {
5027 	struct inode *inode = NULL;
5028 	struct btrfs_trans_handle *trans;
5029 	struct btrfs_root *root = BTRFS_I(dir)->root;
5030 	int err = 0;
5031 	int drop_on_err = 0;
5032 	u64 objectid = 0;
5033 	u64 index = 0;
5034 	unsigned long nr = 1;
5035 
5036 	/*
5037 	 * 2 items for inode and ref
5038 	 * 2 items for dir items
5039 	 * 1 for xattr if selinux is on
5040 	 */
5041 	trans = btrfs_start_transaction(root, 5);
5042 	if (IS_ERR(trans))
5043 		return PTR_ERR(trans);
5044 
5045 	err = btrfs_find_free_ino(root, &objectid);
5046 	if (err)
5047 		goto out_fail;
5048 
5049 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5050 				dentry->d_name.len, btrfs_ino(dir), objectid,
5051 				S_IFDIR | mode, &index);
5052 	if (IS_ERR(inode)) {
5053 		err = PTR_ERR(inode);
5054 		goto out_fail;
5055 	}
5056 
5057 	drop_on_err = 1;
5058 
5059 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5060 	if (err)
5061 		goto out_fail;
5062 
5063 	inode->i_op = &btrfs_dir_inode_operations;
5064 	inode->i_fop = &btrfs_dir_file_operations;
5065 
5066 	btrfs_i_size_write(inode, 0);
5067 	err = btrfs_update_inode(trans, root, inode);
5068 	if (err)
5069 		goto out_fail;
5070 
5071 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5072 			     dentry->d_name.len, 0, index);
5073 	if (err)
5074 		goto out_fail;
5075 
5076 	d_instantiate(dentry, inode);
5077 	drop_on_err = 0;
5078 
5079 out_fail:
5080 	nr = trans->blocks_used;
5081 	btrfs_end_transaction(trans, root);
5082 	if (drop_on_err)
5083 		iput(inode);
5084 	btrfs_btree_balance_dirty(root, nr);
5085 	return err;
5086 }
5087 
5088 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5089  * and an extent that you want to insert, deal with overlap and insert
5090  * the new extent into the tree.
5091  */
5092 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5093 				struct extent_map *existing,
5094 				struct extent_map *em,
5095 				u64 map_start, u64 map_len)
5096 {
5097 	u64 start_diff;
5098 
5099 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5100 	start_diff = map_start - em->start;
5101 	em->start = map_start;
5102 	em->len = map_len;
5103 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5104 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5105 		em->block_start += start_diff;
5106 		em->block_len -= start_diff;
5107 	}
5108 	return add_extent_mapping(em_tree, em);
5109 }
5110 
5111 static noinline int uncompress_inline(struct btrfs_path *path,
5112 				      struct inode *inode, struct page *page,
5113 				      size_t pg_offset, u64 extent_offset,
5114 				      struct btrfs_file_extent_item *item)
5115 {
5116 	int ret;
5117 	struct extent_buffer *leaf = path->nodes[0];
5118 	char *tmp;
5119 	size_t max_size;
5120 	unsigned long inline_size;
5121 	unsigned long ptr;
5122 	int compress_type;
5123 
5124 	WARN_ON(pg_offset != 0);
5125 	compress_type = btrfs_file_extent_compression(leaf, item);
5126 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5127 	inline_size = btrfs_file_extent_inline_item_len(leaf,
5128 					btrfs_item_nr(leaf, path->slots[0]));
5129 	tmp = kmalloc(inline_size, GFP_NOFS);
5130 	if (!tmp)
5131 		return -ENOMEM;
5132 	ptr = btrfs_file_extent_inline_start(item);
5133 
5134 	read_extent_buffer(leaf, tmp, ptr, inline_size);
5135 
5136 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5137 	ret = btrfs_decompress(compress_type, tmp, page,
5138 			       extent_offset, inline_size, max_size);
5139 	if (ret) {
5140 		char *kaddr = kmap_atomic(page);
5141 		unsigned long copy_size = min_t(u64,
5142 				  PAGE_CACHE_SIZE - pg_offset,
5143 				  max_size - extent_offset);
5144 		memset(kaddr + pg_offset, 0, copy_size);
5145 		kunmap_atomic(kaddr);
5146 	}
5147 	kfree(tmp);
5148 	return 0;
5149 }
5150 
5151 /*
5152  * a bit scary, this does extent mapping from logical file offset to the disk.
5153  * the ugly parts come from merging extents from the disk with the in-ram
5154  * representation.  This gets more complex because of the data=ordered code,
5155  * where the in-ram extents might be locked pending data=ordered completion.
5156  *
5157  * This also copies inline extents directly into the page.
5158  */
5159 
5160 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5161 				    size_t pg_offset, u64 start, u64 len,
5162 				    int create)
5163 {
5164 	int ret;
5165 	int err = 0;
5166 	u64 bytenr;
5167 	u64 extent_start = 0;
5168 	u64 extent_end = 0;
5169 	u64 objectid = btrfs_ino(inode);
5170 	u32 found_type;
5171 	struct btrfs_path *path = NULL;
5172 	struct btrfs_root *root = BTRFS_I(inode)->root;
5173 	struct btrfs_file_extent_item *item;
5174 	struct extent_buffer *leaf;
5175 	struct btrfs_key found_key;
5176 	struct extent_map *em = NULL;
5177 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5178 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5179 	struct btrfs_trans_handle *trans = NULL;
5180 	int compress_type;
5181 
5182 again:
5183 	read_lock(&em_tree->lock);
5184 	em = lookup_extent_mapping(em_tree, start, len);
5185 	if (em)
5186 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5187 	read_unlock(&em_tree->lock);
5188 
5189 	if (em) {
5190 		if (em->start > start || em->start + em->len <= start)
5191 			free_extent_map(em);
5192 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5193 			free_extent_map(em);
5194 		else
5195 			goto out;
5196 	}
5197 	em = alloc_extent_map();
5198 	if (!em) {
5199 		err = -ENOMEM;
5200 		goto out;
5201 	}
5202 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5203 	em->start = EXTENT_MAP_HOLE;
5204 	em->orig_start = EXTENT_MAP_HOLE;
5205 	em->len = (u64)-1;
5206 	em->block_len = (u64)-1;
5207 
5208 	if (!path) {
5209 		path = btrfs_alloc_path();
5210 		if (!path) {
5211 			err = -ENOMEM;
5212 			goto out;
5213 		}
5214 		/*
5215 		 * Chances are we'll be called again, so go ahead and do
5216 		 * readahead
5217 		 */
5218 		path->reada = 1;
5219 	}
5220 
5221 	ret = btrfs_lookup_file_extent(trans, root, path,
5222 				       objectid, start, trans != NULL);
5223 	if (ret < 0) {
5224 		err = ret;
5225 		goto out;
5226 	}
5227 
5228 	if (ret != 0) {
5229 		if (path->slots[0] == 0)
5230 			goto not_found;
5231 		path->slots[0]--;
5232 	}
5233 
5234 	leaf = path->nodes[0];
5235 	item = btrfs_item_ptr(leaf, path->slots[0],
5236 			      struct btrfs_file_extent_item);
5237 	/* are we inside the extent that was found? */
5238 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5239 	found_type = btrfs_key_type(&found_key);
5240 	if (found_key.objectid != objectid ||
5241 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5242 		goto not_found;
5243 	}
5244 
5245 	found_type = btrfs_file_extent_type(leaf, item);
5246 	extent_start = found_key.offset;
5247 	compress_type = btrfs_file_extent_compression(leaf, item);
5248 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5249 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5250 		extent_end = extent_start +
5251 		       btrfs_file_extent_num_bytes(leaf, item);
5252 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5253 		size_t size;
5254 		size = btrfs_file_extent_inline_len(leaf, item);
5255 		extent_end = (extent_start + size + root->sectorsize - 1) &
5256 			~((u64)root->sectorsize - 1);
5257 	}
5258 
5259 	if (start >= extent_end) {
5260 		path->slots[0]++;
5261 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5262 			ret = btrfs_next_leaf(root, path);
5263 			if (ret < 0) {
5264 				err = ret;
5265 				goto out;
5266 			}
5267 			if (ret > 0)
5268 				goto not_found;
5269 			leaf = path->nodes[0];
5270 		}
5271 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5272 		if (found_key.objectid != objectid ||
5273 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5274 			goto not_found;
5275 		if (start + len <= found_key.offset)
5276 			goto not_found;
5277 		em->start = start;
5278 		em->len = found_key.offset - start;
5279 		goto not_found_em;
5280 	}
5281 
5282 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5283 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5284 		em->start = extent_start;
5285 		em->len = extent_end - extent_start;
5286 		em->orig_start = extent_start -
5287 				 btrfs_file_extent_offset(leaf, item);
5288 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5289 		if (bytenr == 0) {
5290 			em->block_start = EXTENT_MAP_HOLE;
5291 			goto insert;
5292 		}
5293 		if (compress_type != BTRFS_COMPRESS_NONE) {
5294 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5295 			em->compress_type = compress_type;
5296 			em->block_start = bytenr;
5297 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5298 									 item);
5299 		} else {
5300 			bytenr += btrfs_file_extent_offset(leaf, item);
5301 			em->block_start = bytenr;
5302 			em->block_len = em->len;
5303 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5304 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5305 		}
5306 		goto insert;
5307 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5308 		unsigned long ptr;
5309 		char *map;
5310 		size_t size;
5311 		size_t extent_offset;
5312 		size_t copy_size;
5313 
5314 		em->block_start = EXTENT_MAP_INLINE;
5315 		if (!page || create) {
5316 			em->start = extent_start;
5317 			em->len = extent_end - extent_start;
5318 			goto out;
5319 		}
5320 
5321 		size = btrfs_file_extent_inline_len(leaf, item);
5322 		extent_offset = page_offset(page) + pg_offset - extent_start;
5323 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5324 				size - extent_offset);
5325 		em->start = extent_start + extent_offset;
5326 		em->len = (copy_size + root->sectorsize - 1) &
5327 			~((u64)root->sectorsize - 1);
5328 		em->orig_start = EXTENT_MAP_INLINE;
5329 		if (compress_type) {
5330 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5331 			em->compress_type = compress_type;
5332 		}
5333 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5334 		if (create == 0 && !PageUptodate(page)) {
5335 			if (btrfs_file_extent_compression(leaf, item) !=
5336 			    BTRFS_COMPRESS_NONE) {
5337 				ret = uncompress_inline(path, inode, page,
5338 							pg_offset,
5339 							extent_offset, item);
5340 				BUG_ON(ret); /* -ENOMEM */
5341 			} else {
5342 				map = kmap(page);
5343 				read_extent_buffer(leaf, map + pg_offset, ptr,
5344 						   copy_size);
5345 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5346 					memset(map + pg_offset + copy_size, 0,
5347 					       PAGE_CACHE_SIZE - pg_offset -
5348 					       copy_size);
5349 				}
5350 				kunmap(page);
5351 			}
5352 			flush_dcache_page(page);
5353 		} else if (create && PageUptodate(page)) {
5354 			BUG();
5355 			if (!trans) {
5356 				kunmap(page);
5357 				free_extent_map(em);
5358 				em = NULL;
5359 
5360 				btrfs_release_path(path);
5361 				trans = btrfs_join_transaction(root);
5362 
5363 				if (IS_ERR(trans))
5364 					return ERR_CAST(trans);
5365 				goto again;
5366 			}
5367 			map = kmap(page);
5368 			write_extent_buffer(leaf, map + pg_offset, ptr,
5369 					    copy_size);
5370 			kunmap(page);
5371 			btrfs_mark_buffer_dirty(leaf);
5372 		}
5373 		set_extent_uptodate(io_tree, em->start,
5374 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5375 		goto insert;
5376 	} else {
5377 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5378 		WARN_ON(1);
5379 	}
5380 not_found:
5381 	em->start = start;
5382 	em->len = len;
5383 not_found_em:
5384 	em->block_start = EXTENT_MAP_HOLE;
5385 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5386 insert:
5387 	btrfs_release_path(path);
5388 	if (em->start > start || extent_map_end(em) <= start) {
5389 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5390 		       "[%llu %llu]\n", (unsigned long long)em->start,
5391 		       (unsigned long long)em->len,
5392 		       (unsigned long long)start,
5393 		       (unsigned long long)len);
5394 		err = -EIO;
5395 		goto out;
5396 	}
5397 
5398 	err = 0;
5399 	write_lock(&em_tree->lock);
5400 	ret = add_extent_mapping(em_tree, em);
5401 	/* it is possible that someone inserted the extent into the tree
5402 	 * while we had the lock dropped.  It is also possible that
5403 	 * an overlapping map exists in the tree
5404 	 */
5405 	if (ret == -EEXIST) {
5406 		struct extent_map *existing;
5407 
5408 		ret = 0;
5409 
5410 		existing = lookup_extent_mapping(em_tree, start, len);
5411 		if (existing && (existing->start > start ||
5412 		    existing->start + existing->len <= start)) {
5413 			free_extent_map(existing);
5414 			existing = NULL;
5415 		}
5416 		if (!existing) {
5417 			existing = lookup_extent_mapping(em_tree, em->start,
5418 							 em->len);
5419 			if (existing) {
5420 				err = merge_extent_mapping(em_tree, existing,
5421 							   em, start,
5422 							   root->sectorsize);
5423 				free_extent_map(existing);
5424 				if (err) {
5425 					free_extent_map(em);
5426 					em = NULL;
5427 				}
5428 			} else {
5429 				err = -EIO;
5430 				free_extent_map(em);
5431 				em = NULL;
5432 			}
5433 		} else {
5434 			free_extent_map(em);
5435 			em = existing;
5436 			err = 0;
5437 		}
5438 	}
5439 	write_unlock(&em_tree->lock);
5440 out:
5441 
5442 	trace_btrfs_get_extent(root, em);
5443 
5444 	if (path)
5445 		btrfs_free_path(path);
5446 	if (trans) {
5447 		ret = btrfs_end_transaction(trans, root);
5448 		if (!err)
5449 			err = ret;
5450 	}
5451 	if (err) {
5452 		free_extent_map(em);
5453 		return ERR_PTR(err);
5454 	}
5455 	BUG_ON(!em); /* Error is always set */
5456 	return em;
5457 }
5458 
5459 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5460 					   size_t pg_offset, u64 start, u64 len,
5461 					   int create)
5462 {
5463 	struct extent_map *em;
5464 	struct extent_map *hole_em = NULL;
5465 	u64 range_start = start;
5466 	u64 end;
5467 	u64 found;
5468 	u64 found_end;
5469 	int err = 0;
5470 
5471 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5472 	if (IS_ERR(em))
5473 		return em;
5474 	if (em) {
5475 		/*
5476 		 * if our em maps to a hole, there might
5477 		 * actually be delalloc bytes behind it
5478 		 */
5479 		if (em->block_start != EXTENT_MAP_HOLE)
5480 			return em;
5481 		else
5482 			hole_em = em;
5483 	}
5484 
5485 	/* check to see if we've wrapped (len == -1 or similar) */
5486 	end = start + len;
5487 	if (end < start)
5488 		end = (u64)-1;
5489 	else
5490 		end -= 1;
5491 
5492 	em = NULL;
5493 
5494 	/* ok, we didn't find anything, lets look for delalloc */
5495 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5496 				 end, len, EXTENT_DELALLOC, 1);
5497 	found_end = range_start + found;
5498 	if (found_end < range_start)
5499 		found_end = (u64)-1;
5500 
5501 	/*
5502 	 * we didn't find anything useful, return
5503 	 * the original results from get_extent()
5504 	 */
5505 	if (range_start > end || found_end <= start) {
5506 		em = hole_em;
5507 		hole_em = NULL;
5508 		goto out;
5509 	}
5510 
5511 	/* adjust the range_start to make sure it doesn't
5512 	 * go backwards from the start they passed in
5513 	 */
5514 	range_start = max(start,range_start);
5515 	found = found_end - range_start;
5516 
5517 	if (found > 0) {
5518 		u64 hole_start = start;
5519 		u64 hole_len = len;
5520 
5521 		em = alloc_extent_map();
5522 		if (!em) {
5523 			err = -ENOMEM;
5524 			goto out;
5525 		}
5526 		/*
5527 		 * when btrfs_get_extent can't find anything it
5528 		 * returns one huge hole
5529 		 *
5530 		 * make sure what it found really fits our range, and
5531 		 * adjust to make sure it is based on the start from
5532 		 * the caller
5533 		 */
5534 		if (hole_em) {
5535 			u64 calc_end = extent_map_end(hole_em);
5536 
5537 			if (calc_end <= start || (hole_em->start > end)) {
5538 				free_extent_map(hole_em);
5539 				hole_em = NULL;
5540 			} else {
5541 				hole_start = max(hole_em->start, start);
5542 				hole_len = calc_end - hole_start;
5543 			}
5544 		}
5545 		em->bdev = NULL;
5546 		if (hole_em && range_start > hole_start) {
5547 			/* our hole starts before our delalloc, so we
5548 			 * have to return just the parts of the hole
5549 			 * that go until  the delalloc starts
5550 			 */
5551 			em->len = min(hole_len,
5552 				      range_start - hole_start);
5553 			em->start = hole_start;
5554 			em->orig_start = hole_start;
5555 			/*
5556 			 * don't adjust block start at all,
5557 			 * it is fixed at EXTENT_MAP_HOLE
5558 			 */
5559 			em->block_start = hole_em->block_start;
5560 			em->block_len = hole_len;
5561 		} else {
5562 			em->start = range_start;
5563 			em->len = found;
5564 			em->orig_start = range_start;
5565 			em->block_start = EXTENT_MAP_DELALLOC;
5566 			em->block_len = found;
5567 		}
5568 	} else if (hole_em) {
5569 		return hole_em;
5570 	}
5571 out:
5572 
5573 	free_extent_map(hole_em);
5574 	if (err) {
5575 		free_extent_map(em);
5576 		return ERR_PTR(err);
5577 	}
5578 	return em;
5579 }
5580 
5581 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5582 						  struct extent_map *em,
5583 						  u64 start, u64 len)
5584 {
5585 	struct btrfs_root *root = BTRFS_I(inode)->root;
5586 	struct btrfs_trans_handle *trans;
5587 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5588 	struct btrfs_key ins;
5589 	u64 alloc_hint;
5590 	int ret;
5591 	bool insert = false;
5592 
5593 	/*
5594 	 * Ok if the extent map we looked up is a hole and is for the exact
5595 	 * range we want, there is no reason to allocate a new one, however if
5596 	 * it is not right then we need to free this one and drop the cache for
5597 	 * our range.
5598 	 */
5599 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5600 	    em->len != len) {
5601 		free_extent_map(em);
5602 		em = NULL;
5603 		insert = true;
5604 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5605 	}
5606 
5607 	trans = btrfs_join_transaction(root);
5608 	if (IS_ERR(trans))
5609 		return ERR_CAST(trans);
5610 
5611 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5612 		btrfs_add_inode_defrag(trans, inode);
5613 
5614 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5615 
5616 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5617 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5618 				   alloc_hint, &ins, 1);
5619 	if (ret) {
5620 		em = ERR_PTR(ret);
5621 		goto out;
5622 	}
5623 
5624 	if (!em) {
5625 		em = alloc_extent_map();
5626 		if (!em) {
5627 			em = ERR_PTR(-ENOMEM);
5628 			goto out;
5629 		}
5630 	}
5631 
5632 	em->start = start;
5633 	em->orig_start = em->start;
5634 	em->len = ins.offset;
5635 
5636 	em->block_start = ins.objectid;
5637 	em->block_len = ins.offset;
5638 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5639 
5640 	/*
5641 	 * We need to do this because if we're using the original em we searched
5642 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5643 	 */
5644 	em->flags = 0;
5645 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5646 
5647 	while (insert) {
5648 		write_lock(&em_tree->lock);
5649 		ret = add_extent_mapping(em_tree, em);
5650 		write_unlock(&em_tree->lock);
5651 		if (ret != -EEXIST)
5652 			break;
5653 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5654 	}
5655 
5656 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5657 					   ins.offset, ins.offset, 0);
5658 	if (ret) {
5659 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5660 		em = ERR_PTR(ret);
5661 	}
5662 out:
5663 	btrfs_end_transaction(trans, root);
5664 	return em;
5665 }
5666 
5667 /*
5668  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5669  * block must be cow'd
5670  */
5671 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5672 				      struct inode *inode, u64 offset, u64 len)
5673 {
5674 	struct btrfs_path *path;
5675 	int ret;
5676 	struct extent_buffer *leaf;
5677 	struct btrfs_root *root = BTRFS_I(inode)->root;
5678 	struct btrfs_file_extent_item *fi;
5679 	struct btrfs_key key;
5680 	u64 disk_bytenr;
5681 	u64 backref_offset;
5682 	u64 extent_end;
5683 	u64 num_bytes;
5684 	int slot;
5685 	int found_type;
5686 
5687 	path = btrfs_alloc_path();
5688 	if (!path)
5689 		return -ENOMEM;
5690 
5691 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5692 				       offset, 0);
5693 	if (ret < 0)
5694 		goto out;
5695 
5696 	slot = path->slots[0];
5697 	if (ret == 1) {
5698 		if (slot == 0) {
5699 			/* can't find the item, must cow */
5700 			ret = 0;
5701 			goto out;
5702 		}
5703 		slot--;
5704 	}
5705 	ret = 0;
5706 	leaf = path->nodes[0];
5707 	btrfs_item_key_to_cpu(leaf, &key, slot);
5708 	if (key.objectid != btrfs_ino(inode) ||
5709 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5710 		/* not our file or wrong item type, must cow */
5711 		goto out;
5712 	}
5713 
5714 	if (key.offset > offset) {
5715 		/* Wrong offset, must cow */
5716 		goto out;
5717 	}
5718 
5719 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5720 	found_type = btrfs_file_extent_type(leaf, fi);
5721 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5722 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5723 		/* not a regular extent, must cow */
5724 		goto out;
5725 	}
5726 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5727 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5728 
5729 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5730 	if (extent_end < offset + len) {
5731 		/* extent doesn't include our full range, must cow */
5732 		goto out;
5733 	}
5734 
5735 	if (btrfs_extent_readonly(root, disk_bytenr))
5736 		goto out;
5737 
5738 	/*
5739 	 * look for other files referencing this extent, if we
5740 	 * find any we must cow
5741 	 */
5742 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5743 				  key.offset - backref_offset, disk_bytenr))
5744 		goto out;
5745 
5746 	/*
5747 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5748 	 * in this extent we are about to write.  If there
5749 	 * are any csums in that range we have to cow in order
5750 	 * to keep the csums correct
5751 	 */
5752 	disk_bytenr += backref_offset;
5753 	disk_bytenr += offset - key.offset;
5754 	num_bytes = min(offset + len, extent_end) - offset;
5755 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5756 				goto out;
5757 	/*
5758 	 * all of the above have passed, it is safe to overwrite this extent
5759 	 * without cow
5760 	 */
5761 	ret = 1;
5762 out:
5763 	btrfs_free_path(path);
5764 	return ret;
5765 }
5766 
5767 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5768 				   struct buffer_head *bh_result, int create)
5769 {
5770 	struct extent_map *em;
5771 	struct btrfs_root *root = BTRFS_I(inode)->root;
5772 	u64 start = iblock << inode->i_blkbits;
5773 	u64 len = bh_result->b_size;
5774 	struct btrfs_trans_handle *trans;
5775 
5776 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5777 	if (IS_ERR(em))
5778 		return PTR_ERR(em);
5779 
5780 	/*
5781 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5782 	 * io.  INLINE is special, and we could probably kludge it in here, but
5783 	 * it's still buffered so for safety lets just fall back to the generic
5784 	 * buffered path.
5785 	 *
5786 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5787 	 * decompress it, so there will be buffering required no matter what we
5788 	 * do, so go ahead and fallback to buffered.
5789 	 *
5790 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5791 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5792 	 * the generic code.
5793 	 */
5794 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5795 	    em->block_start == EXTENT_MAP_INLINE) {
5796 		free_extent_map(em);
5797 		return -ENOTBLK;
5798 	}
5799 
5800 	/* Just a good old fashioned hole, return */
5801 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5802 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5803 		free_extent_map(em);
5804 		/* DIO will do one hole at a time, so just unlock a sector */
5805 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5806 			      start + root->sectorsize - 1);
5807 		return 0;
5808 	}
5809 
5810 	/*
5811 	 * We don't allocate a new extent in the following cases
5812 	 *
5813 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5814 	 * existing extent.
5815 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5816 	 * just use the extent.
5817 	 *
5818 	 */
5819 	if (!create) {
5820 		len = em->len - (start - em->start);
5821 		goto map;
5822 	}
5823 
5824 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5825 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5826 	     em->block_start != EXTENT_MAP_HOLE)) {
5827 		int type;
5828 		int ret;
5829 		u64 block_start;
5830 
5831 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5832 			type = BTRFS_ORDERED_PREALLOC;
5833 		else
5834 			type = BTRFS_ORDERED_NOCOW;
5835 		len = min(len, em->len - (start - em->start));
5836 		block_start = em->block_start + (start - em->start);
5837 
5838 		/*
5839 		 * we're not going to log anything, but we do need
5840 		 * to make sure the current transaction stays open
5841 		 * while we look for nocow cross refs
5842 		 */
5843 		trans = btrfs_join_transaction(root);
5844 		if (IS_ERR(trans))
5845 			goto must_cow;
5846 
5847 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5848 			ret = btrfs_add_ordered_extent_dio(inode, start,
5849 					   block_start, len, len, type);
5850 			btrfs_end_transaction(trans, root);
5851 			if (ret) {
5852 				free_extent_map(em);
5853 				return ret;
5854 			}
5855 			goto unlock;
5856 		}
5857 		btrfs_end_transaction(trans, root);
5858 	}
5859 must_cow:
5860 	/*
5861 	 * this will cow the extent, reset the len in case we changed
5862 	 * it above
5863 	 */
5864 	len = bh_result->b_size;
5865 	em = btrfs_new_extent_direct(inode, em, start, len);
5866 	if (IS_ERR(em))
5867 		return PTR_ERR(em);
5868 	len = min(len, em->len - (start - em->start));
5869 unlock:
5870 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5871 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5872 			  0, NULL, GFP_NOFS);
5873 map:
5874 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5875 		inode->i_blkbits;
5876 	bh_result->b_size = len;
5877 	bh_result->b_bdev = em->bdev;
5878 	set_buffer_mapped(bh_result);
5879 	if (create) {
5880 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5881 			set_buffer_new(bh_result);
5882 
5883 		/*
5884 		 * Need to update the i_size under the extent lock so buffered
5885 		 * readers will get the updated i_size when we unlock.
5886 		 */
5887 		if (start + len > i_size_read(inode))
5888 			i_size_write(inode, start + len);
5889 	}
5890 
5891 	free_extent_map(em);
5892 
5893 	return 0;
5894 }
5895 
5896 struct btrfs_dio_private {
5897 	struct inode *inode;
5898 	u64 logical_offset;
5899 	u64 disk_bytenr;
5900 	u64 bytes;
5901 	u32 *csums;
5902 	void *private;
5903 
5904 	/* number of bios pending for this dio */
5905 	atomic_t pending_bios;
5906 
5907 	/* IO errors */
5908 	int errors;
5909 
5910 	struct bio *orig_bio;
5911 };
5912 
5913 static void btrfs_endio_direct_read(struct bio *bio, int err)
5914 {
5915 	struct btrfs_dio_private *dip = bio->bi_private;
5916 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5917 	struct bio_vec *bvec = bio->bi_io_vec;
5918 	struct inode *inode = dip->inode;
5919 	struct btrfs_root *root = BTRFS_I(inode)->root;
5920 	u64 start;
5921 	u32 *private = dip->csums;
5922 
5923 	start = dip->logical_offset;
5924 	do {
5925 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5926 			struct page *page = bvec->bv_page;
5927 			char *kaddr;
5928 			u32 csum = ~(u32)0;
5929 			unsigned long flags;
5930 
5931 			local_irq_save(flags);
5932 			kaddr = kmap_atomic(page);
5933 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5934 					       csum, bvec->bv_len);
5935 			btrfs_csum_final(csum, (char *)&csum);
5936 			kunmap_atomic(kaddr);
5937 			local_irq_restore(flags);
5938 
5939 			flush_dcache_page(bvec->bv_page);
5940 			if (csum != *private) {
5941 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5942 				      " %llu csum %u private %u\n",
5943 				      (unsigned long long)btrfs_ino(inode),
5944 				      (unsigned long long)start,
5945 				      csum, *private);
5946 				err = -EIO;
5947 			}
5948 		}
5949 
5950 		start += bvec->bv_len;
5951 		private++;
5952 		bvec++;
5953 	} while (bvec <= bvec_end);
5954 
5955 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5956 		      dip->logical_offset + dip->bytes - 1);
5957 	bio->bi_private = dip->private;
5958 
5959 	kfree(dip->csums);
5960 	kfree(dip);
5961 
5962 	/* If we had a csum failure make sure to clear the uptodate flag */
5963 	if (err)
5964 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5965 	dio_end_io(bio, err);
5966 }
5967 
5968 static void btrfs_endio_direct_write(struct bio *bio, int err)
5969 {
5970 	struct btrfs_dio_private *dip = bio->bi_private;
5971 	struct inode *inode = dip->inode;
5972 	struct btrfs_root *root = BTRFS_I(inode)->root;
5973 	struct btrfs_ordered_extent *ordered = NULL;
5974 	u64 ordered_offset = dip->logical_offset;
5975 	u64 ordered_bytes = dip->bytes;
5976 	int ret;
5977 
5978 	if (err)
5979 		goto out_done;
5980 again:
5981 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5982 						   &ordered_offset,
5983 						   ordered_bytes, !err);
5984 	if (!ret)
5985 		goto out_test;
5986 
5987 	ordered->work.func = finish_ordered_fn;
5988 	ordered->work.flags = 0;
5989 	btrfs_queue_worker(&root->fs_info->endio_write_workers,
5990 			   &ordered->work);
5991 out_test:
5992 	/*
5993 	 * our bio might span multiple ordered extents.  If we haven't
5994 	 * completed the accounting for the whole dio, go back and try again
5995 	 */
5996 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5997 		ordered_bytes = dip->logical_offset + dip->bytes -
5998 			ordered_offset;
5999 		ordered = NULL;
6000 		goto again;
6001 	}
6002 out_done:
6003 	bio->bi_private = dip->private;
6004 
6005 	kfree(dip);
6006 
6007 	/* If we had an error make sure to clear the uptodate flag */
6008 	if (err)
6009 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
6010 	dio_end_io(bio, err);
6011 }
6012 
6013 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6014 				    struct bio *bio, int mirror_num,
6015 				    unsigned long bio_flags, u64 offset)
6016 {
6017 	int ret;
6018 	struct btrfs_root *root = BTRFS_I(inode)->root;
6019 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6020 	BUG_ON(ret); /* -ENOMEM */
6021 	return 0;
6022 }
6023 
6024 static void btrfs_end_dio_bio(struct bio *bio, int err)
6025 {
6026 	struct btrfs_dio_private *dip = bio->bi_private;
6027 
6028 	if (err) {
6029 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6030 		      "sector %#Lx len %u err no %d\n",
6031 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6032 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6033 		dip->errors = 1;
6034 
6035 		/*
6036 		 * before atomic variable goto zero, we must make sure
6037 		 * dip->errors is perceived to be set.
6038 		 */
6039 		smp_mb__before_atomic_dec();
6040 	}
6041 
6042 	/* if there are more bios still pending for this dio, just exit */
6043 	if (!atomic_dec_and_test(&dip->pending_bios))
6044 		goto out;
6045 
6046 	if (dip->errors)
6047 		bio_io_error(dip->orig_bio);
6048 	else {
6049 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6050 		bio_endio(dip->orig_bio, 0);
6051 	}
6052 out:
6053 	bio_put(bio);
6054 }
6055 
6056 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6057 				       u64 first_sector, gfp_t gfp_flags)
6058 {
6059 	int nr_vecs = bio_get_nr_vecs(bdev);
6060 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6061 }
6062 
6063 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6064 					 int rw, u64 file_offset, int skip_sum,
6065 					 u32 *csums, int async_submit)
6066 {
6067 	int write = rw & REQ_WRITE;
6068 	struct btrfs_root *root = BTRFS_I(inode)->root;
6069 	int ret;
6070 
6071 	bio_get(bio);
6072 
6073 	if (!write) {
6074 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6075 		if (ret)
6076 			goto err;
6077 	}
6078 
6079 	if (skip_sum)
6080 		goto map;
6081 
6082 	if (write && async_submit) {
6083 		ret = btrfs_wq_submit_bio(root->fs_info,
6084 				   inode, rw, bio, 0, 0,
6085 				   file_offset,
6086 				   __btrfs_submit_bio_start_direct_io,
6087 				   __btrfs_submit_bio_done);
6088 		goto err;
6089 	} else if (write) {
6090 		/*
6091 		 * If we aren't doing async submit, calculate the csum of the
6092 		 * bio now.
6093 		 */
6094 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6095 		if (ret)
6096 			goto err;
6097 	} else if (!skip_sum) {
6098 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6099 					  file_offset, csums);
6100 		if (ret)
6101 			goto err;
6102 	}
6103 
6104 map:
6105 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6106 err:
6107 	bio_put(bio);
6108 	return ret;
6109 }
6110 
6111 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6112 				    int skip_sum)
6113 {
6114 	struct inode *inode = dip->inode;
6115 	struct btrfs_root *root = BTRFS_I(inode)->root;
6116 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6117 	struct bio *bio;
6118 	struct bio *orig_bio = dip->orig_bio;
6119 	struct bio_vec *bvec = orig_bio->bi_io_vec;
6120 	u64 start_sector = orig_bio->bi_sector;
6121 	u64 file_offset = dip->logical_offset;
6122 	u64 submit_len = 0;
6123 	u64 map_length;
6124 	int nr_pages = 0;
6125 	u32 *csums = dip->csums;
6126 	int ret = 0;
6127 	int async_submit = 0;
6128 	int write = rw & REQ_WRITE;
6129 
6130 	map_length = orig_bio->bi_size;
6131 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6132 			      &map_length, NULL, 0);
6133 	if (ret) {
6134 		bio_put(orig_bio);
6135 		return -EIO;
6136 	}
6137 
6138 	if (map_length >= orig_bio->bi_size) {
6139 		bio = orig_bio;
6140 		goto submit;
6141 	}
6142 
6143 	async_submit = 1;
6144 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6145 	if (!bio)
6146 		return -ENOMEM;
6147 	bio->bi_private = dip;
6148 	bio->bi_end_io = btrfs_end_dio_bio;
6149 	atomic_inc(&dip->pending_bios);
6150 
6151 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6152 		if (unlikely(map_length < submit_len + bvec->bv_len ||
6153 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6154 				 bvec->bv_offset) < bvec->bv_len)) {
6155 			/*
6156 			 * inc the count before we submit the bio so
6157 			 * we know the end IO handler won't happen before
6158 			 * we inc the count. Otherwise, the dip might get freed
6159 			 * before we're done setting it up
6160 			 */
6161 			atomic_inc(&dip->pending_bios);
6162 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
6163 						     file_offset, skip_sum,
6164 						     csums, async_submit);
6165 			if (ret) {
6166 				bio_put(bio);
6167 				atomic_dec(&dip->pending_bios);
6168 				goto out_err;
6169 			}
6170 
6171 			/* Write's use the ordered csums */
6172 			if (!write && !skip_sum)
6173 				csums = csums + nr_pages;
6174 			start_sector += submit_len >> 9;
6175 			file_offset += submit_len;
6176 
6177 			submit_len = 0;
6178 			nr_pages = 0;
6179 
6180 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6181 						  start_sector, GFP_NOFS);
6182 			if (!bio)
6183 				goto out_err;
6184 			bio->bi_private = dip;
6185 			bio->bi_end_io = btrfs_end_dio_bio;
6186 
6187 			map_length = orig_bio->bi_size;
6188 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6189 					      &map_length, NULL, 0);
6190 			if (ret) {
6191 				bio_put(bio);
6192 				goto out_err;
6193 			}
6194 		} else {
6195 			submit_len += bvec->bv_len;
6196 			nr_pages ++;
6197 			bvec++;
6198 		}
6199 	}
6200 
6201 submit:
6202 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6203 				     csums, async_submit);
6204 	if (!ret)
6205 		return 0;
6206 
6207 	bio_put(bio);
6208 out_err:
6209 	dip->errors = 1;
6210 	/*
6211 	 * before atomic variable goto zero, we must
6212 	 * make sure dip->errors is perceived to be set.
6213 	 */
6214 	smp_mb__before_atomic_dec();
6215 	if (atomic_dec_and_test(&dip->pending_bios))
6216 		bio_io_error(dip->orig_bio);
6217 
6218 	/* bio_end_io() will handle error, so we needn't return it */
6219 	return 0;
6220 }
6221 
6222 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6223 				loff_t file_offset)
6224 {
6225 	struct btrfs_root *root = BTRFS_I(inode)->root;
6226 	struct btrfs_dio_private *dip;
6227 	struct bio_vec *bvec = bio->bi_io_vec;
6228 	int skip_sum;
6229 	int write = rw & REQ_WRITE;
6230 	int ret = 0;
6231 
6232 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6233 
6234 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6235 	if (!dip) {
6236 		ret = -ENOMEM;
6237 		goto free_ordered;
6238 	}
6239 	dip->csums = NULL;
6240 
6241 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6242 	if (!write && !skip_sum) {
6243 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6244 		if (!dip->csums) {
6245 			kfree(dip);
6246 			ret = -ENOMEM;
6247 			goto free_ordered;
6248 		}
6249 	}
6250 
6251 	dip->private = bio->bi_private;
6252 	dip->inode = inode;
6253 	dip->logical_offset = file_offset;
6254 
6255 	dip->bytes = 0;
6256 	do {
6257 		dip->bytes += bvec->bv_len;
6258 		bvec++;
6259 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6260 
6261 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6262 	bio->bi_private = dip;
6263 	dip->errors = 0;
6264 	dip->orig_bio = bio;
6265 	atomic_set(&dip->pending_bios, 0);
6266 
6267 	if (write)
6268 		bio->bi_end_io = btrfs_endio_direct_write;
6269 	else
6270 		bio->bi_end_io = btrfs_endio_direct_read;
6271 
6272 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6273 	if (!ret)
6274 		return;
6275 free_ordered:
6276 	/*
6277 	 * If this is a write, we need to clean up the reserved space and kill
6278 	 * the ordered extent.
6279 	 */
6280 	if (write) {
6281 		struct btrfs_ordered_extent *ordered;
6282 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6283 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6284 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6285 			btrfs_free_reserved_extent(root, ordered->start,
6286 						   ordered->disk_len);
6287 		btrfs_put_ordered_extent(ordered);
6288 		btrfs_put_ordered_extent(ordered);
6289 	}
6290 	bio_endio(bio, ret);
6291 }
6292 
6293 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6294 			const struct iovec *iov, loff_t offset,
6295 			unsigned long nr_segs)
6296 {
6297 	int seg;
6298 	int i;
6299 	size_t size;
6300 	unsigned long addr;
6301 	unsigned blocksize_mask = root->sectorsize - 1;
6302 	ssize_t retval = -EINVAL;
6303 	loff_t end = offset;
6304 
6305 	if (offset & blocksize_mask)
6306 		goto out;
6307 
6308 	/* Check the memory alignment.  Blocks cannot straddle pages */
6309 	for (seg = 0; seg < nr_segs; seg++) {
6310 		addr = (unsigned long)iov[seg].iov_base;
6311 		size = iov[seg].iov_len;
6312 		end += size;
6313 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6314 			goto out;
6315 
6316 		/* If this is a write we don't need to check anymore */
6317 		if (rw & WRITE)
6318 			continue;
6319 
6320 		/*
6321 		 * Check to make sure we don't have duplicate iov_base's in this
6322 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6323 		 * when reading back.
6324 		 */
6325 		for (i = seg + 1; i < nr_segs; i++) {
6326 			if (iov[seg].iov_base == iov[i].iov_base)
6327 				goto out;
6328 		}
6329 	}
6330 	retval = 0;
6331 out:
6332 	return retval;
6333 }
6334 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6335 			const struct iovec *iov, loff_t offset,
6336 			unsigned long nr_segs)
6337 {
6338 	struct file *file = iocb->ki_filp;
6339 	struct inode *inode = file->f_mapping->host;
6340 	struct btrfs_ordered_extent *ordered;
6341 	struct extent_state *cached_state = NULL;
6342 	u64 lockstart, lockend;
6343 	ssize_t ret;
6344 	int writing = rw & WRITE;
6345 	int write_bits = 0;
6346 	size_t count = iov_length(iov, nr_segs);
6347 
6348 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6349 			    offset, nr_segs)) {
6350 		return 0;
6351 	}
6352 
6353 	lockstart = offset;
6354 	lockend = offset + count - 1;
6355 
6356 	if (writing) {
6357 		ret = btrfs_delalloc_reserve_space(inode, count);
6358 		if (ret)
6359 			goto out;
6360 	}
6361 
6362 	while (1) {
6363 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6364 				 0, &cached_state);
6365 		/*
6366 		 * We're concerned with the entire range that we're going to be
6367 		 * doing DIO to, so we need to make sure theres no ordered
6368 		 * extents in this range.
6369 		 */
6370 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6371 						     lockend - lockstart + 1);
6372 
6373 		/*
6374 		 * We need to make sure there are no buffered pages in this
6375 		 * range either, we could have raced between the invalidate in
6376 		 * generic_file_direct_write and locking the extent.  The
6377 		 * invalidate needs to happen so that reads after a write do not
6378 		 * get stale data.
6379 		 */
6380 		if (!ordered && (!writing ||
6381 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
6382 				    lockstart, lockend, EXTENT_UPTODATE, 0,
6383 				    cached_state)))
6384 			break;
6385 
6386 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6387 				     &cached_state, GFP_NOFS);
6388 
6389 		if (ordered) {
6390 			btrfs_start_ordered_extent(inode, ordered, 1);
6391 			btrfs_put_ordered_extent(ordered);
6392 		} else {
6393 			/* Screw you mmap */
6394 			ret = filemap_write_and_wait_range(file->f_mapping,
6395 							   lockstart,
6396 							   lockend);
6397 			if (ret)
6398 				goto out;
6399 
6400 			/*
6401 			 * If we found a page that couldn't be invalidated just
6402 			 * fall back to buffered.
6403 			 */
6404 			ret = invalidate_inode_pages2_range(file->f_mapping,
6405 					lockstart >> PAGE_CACHE_SHIFT,
6406 					lockend >> PAGE_CACHE_SHIFT);
6407 			if (ret) {
6408 				if (ret == -EBUSY)
6409 					ret = 0;
6410 				goto out;
6411 			}
6412 		}
6413 
6414 		cond_resched();
6415 	}
6416 
6417 	/*
6418 	 * we don't use btrfs_set_extent_delalloc because we don't want
6419 	 * the dirty or uptodate bits
6420 	 */
6421 	if (writing) {
6422 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6423 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6424 				     EXTENT_DELALLOC, NULL, &cached_state,
6425 				     GFP_NOFS);
6426 		if (ret) {
6427 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6428 					 lockend, EXTENT_LOCKED | write_bits,
6429 					 1, 0, &cached_state, GFP_NOFS);
6430 			goto out;
6431 		}
6432 	}
6433 
6434 	free_extent_state(cached_state);
6435 	cached_state = NULL;
6436 
6437 	ret = __blockdev_direct_IO(rw, iocb, inode,
6438 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6439 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6440 		   btrfs_submit_direct, 0);
6441 
6442 	if (ret < 0 && ret != -EIOCBQUEUED) {
6443 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6444 			      offset + iov_length(iov, nr_segs) - 1,
6445 			      EXTENT_LOCKED | write_bits, 1, 0,
6446 			      &cached_state, GFP_NOFS);
6447 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6448 		/*
6449 		 * We're falling back to buffered, unlock the section we didn't
6450 		 * do IO on.
6451 		 */
6452 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6453 			      offset + iov_length(iov, nr_segs) - 1,
6454 			      EXTENT_LOCKED | write_bits, 1, 0,
6455 			      &cached_state, GFP_NOFS);
6456 	}
6457 out:
6458 	free_extent_state(cached_state);
6459 	return ret;
6460 }
6461 
6462 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6463 		__u64 start, __u64 len)
6464 {
6465 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6466 }
6467 
6468 int btrfs_readpage(struct file *file, struct page *page)
6469 {
6470 	struct extent_io_tree *tree;
6471 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6472 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6473 }
6474 
6475 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6476 {
6477 	struct extent_io_tree *tree;
6478 
6479 
6480 	if (current->flags & PF_MEMALLOC) {
6481 		redirty_page_for_writepage(wbc, page);
6482 		unlock_page(page);
6483 		return 0;
6484 	}
6485 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6486 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6487 }
6488 
6489 int btrfs_writepages(struct address_space *mapping,
6490 		     struct writeback_control *wbc)
6491 {
6492 	struct extent_io_tree *tree;
6493 
6494 	tree = &BTRFS_I(mapping->host)->io_tree;
6495 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6496 }
6497 
6498 static int
6499 btrfs_readpages(struct file *file, struct address_space *mapping,
6500 		struct list_head *pages, unsigned nr_pages)
6501 {
6502 	struct extent_io_tree *tree;
6503 	tree = &BTRFS_I(mapping->host)->io_tree;
6504 	return extent_readpages(tree, mapping, pages, nr_pages,
6505 				btrfs_get_extent);
6506 }
6507 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6508 {
6509 	struct extent_io_tree *tree;
6510 	struct extent_map_tree *map;
6511 	int ret;
6512 
6513 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6514 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6515 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6516 	if (ret == 1) {
6517 		ClearPagePrivate(page);
6518 		set_page_private(page, 0);
6519 		page_cache_release(page);
6520 	}
6521 	return ret;
6522 }
6523 
6524 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6525 {
6526 	if (PageWriteback(page) || PageDirty(page))
6527 		return 0;
6528 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6529 }
6530 
6531 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6532 {
6533 	struct inode *inode = page->mapping->host;
6534 	struct extent_io_tree *tree;
6535 	struct btrfs_ordered_extent *ordered;
6536 	struct extent_state *cached_state = NULL;
6537 	u64 page_start = page_offset(page);
6538 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6539 
6540 	/*
6541 	 * we have the page locked, so new writeback can't start,
6542 	 * and the dirty bit won't be cleared while we are here.
6543 	 *
6544 	 * Wait for IO on this page so that we can safely clear
6545 	 * the PagePrivate2 bit and do ordered accounting
6546 	 */
6547 	wait_on_page_writeback(page);
6548 
6549 	tree = &BTRFS_I(inode)->io_tree;
6550 	if (offset) {
6551 		btrfs_releasepage(page, GFP_NOFS);
6552 		return;
6553 	}
6554 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6555 	ordered = btrfs_lookup_ordered_extent(inode,
6556 					   page_offset(page));
6557 	if (ordered) {
6558 		/*
6559 		 * IO on this page will never be started, so we need
6560 		 * to account for any ordered extents now
6561 		 */
6562 		clear_extent_bit(tree, page_start, page_end,
6563 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6564 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6565 				 &cached_state, GFP_NOFS);
6566 		/*
6567 		 * whoever cleared the private bit is responsible
6568 		 * for the finish_ordered_io
6569 		 */
6570 		if (TestClearPagePrivate2(page) &&
6571 		    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6572 						   PAGE_CACHE_SIZE, 1)) {
6573 			btrfs_finish_ordered_io(ordered);
6574 		}
6575 		btrfs_put_ordered_extent(ordered);
6576 		cached_state = NULL;
6577 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6578 	}
6579 	clear_extent_bit(tree, page_start, page_end,
6580 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6581 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6582 	__btrfs_releasepage(page, GFP_NOFS);
6583 
6584 	ClearPageChecked(page);
6585 	if (PagePrivate(page)) {
6586 		ClearPagePrivate(page);
6587 		set_page_private(page, 0);
6588 		page_cache_release(page);
6589 	}
6590 }
6591 
6592 /*
6593  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6594  * called from a page fault handler when a page is first dirtied. Hence we must
6595  * be careful to check for EOF conditions here. We set the page up correctly
6596  * for a written page which means we get ENOSPC checking when writing into
6597  * holes and correct delalloc and unwritten extent mapping on filesystems that
6598  * support these features.
6599  *
6600  * We are not allowed to take the i_mutex here so we have to play games to
6601  * protect against truncate races as the page could now be beyond EOF.  Because
6602  * vmtruncate() writes the inode size before removing pages, once we have the
6603  * page lock we can determine safely if the page is beyond EOF. If it is not
6604  * beyond EOF, then the page is guaranteed safe against truncation until we
6605  * unlock the page.
6606  */
6607 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6608 {
6609 	struct page *page = vmf->page;
6610 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6611 	struct btrfs_root *root = BTRFS_I(inode)->root;
6612 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6613 	struct btrfs_ordered_extent *ordered;
6614 	struct extent_state *cached_state = NULL;
6615 	char *kaddr;
6616 	unsigned long zero_start;
6617 	loff_t size;
6618 	int ret;
6619 	int reserved = 0;
6620 	u64 page_start;
6621 	u64 page_end;
6622 
6623 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6624 	if (!ret) {
6625 		ret = file_update_time(vma->vm_file);
6626 		reserved = 1;
6627 	}
6628 	if (ret) {
6629 		if (ret == -ENOMEM)
6630 			ret = VM_FAULT_OOM;
6631 		else /* -ENOSPC, -EIO, etc */
6632 			ret = VM_FAULT_SIGBUS;
6633 		if (reserved)
6634 			goto out;
6635 		goto out_noreserve;
6636 	}
6637 
6638 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6639 again:
6640 	lock_page(page);
6641 	size = i_size_read(inode);
6642 	page_start = page_offset(page);
6643 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6644 
6645 	if ((page->mapping != inode->i_mapping) ||
6646 	    (page_start >= size)) {
6647 		/* page got truncated out from underneath us */
6648 		goto out_unlock;
6649 	}
6650 	wait_on_page_writeback(page);
6651 
6652 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6653 	set_page_extent_mapped(page);
6654 
6655 	/*
6656 	 * we can't set the delalloc bits if there are pending ordered
6657 	 * extents.  Drop our locks and wait for them to finish
6658 	 */
6659 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6660 	if (ordered) {
6661 		unlock_extent_cached(io_tree, page_start, page_end,
6662 				     &cached_state, GFP_NOFS);
6663 		unlock_page(page);
6664 		btrfs_start_ordered_extent(inode, ordered, 1);
6665 		btrfs_put_ordered_extent(ordered);
6666 		goto again;
6667 	}
6668 
6669 	/*
6670 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6671 	 * if it was already dirty, so for space accounting reasons we need to
6672 	 * clear any delalloc bits for the range we are fixing to save.  There
6673 	 * is probably a better way to do this, but for now keep consistent with
6674 	 * prepare_pages in the normal write path.
6675 	 */
6676 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6677 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6678 			  0, 0, &cached_state, GFP_NOFS);
6679 
6680 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6681 					&cached_state);
6682 	if (ret) {
6683 		unlock_extent_cached(io_tree, page_start, page_end,
6684 				     &cached_state, GFP_NOFS);
6685 		ret = VM_FAULT_SIGBUS;
6686 		goto out_unlock;
6687 	}
6688 	ret = 0;
6689 
6690 	/* page is wholly or partially inside EOF */
6691 	if (page_start + PAGE_CACHE_SIZE > size)
6692 		zero_start = size & ~PAGE_CACHE_MASK;
6693 	else
6694 		zero_start = PAGE_CACHE_SIZE;
6695 
6696 	if (zero_start != PAGE_CACHE_SIZE) {
6697 		kaddr = kmap(page);
6698 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6699 		flush_dcache_page(page);
6700 		kunmap(page);
6701 	}
6702 	ClearPageChecked(page);
6703 	set_page_dirty(page);
6704 	SetPageUptodate(page);
6705 
6706 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6707 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6708 
6709 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6710 
6711 out_unlock:
6712 	if (!ret)
6713 		return VM_FAULT_LOCKED;
6714 	unlock_page(page);
6715 out:
6716 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6717 out_noreserve:
6718 	return ret;
6719 }
6720 
6721 static int btrfs_truncate(struct inode *inode)
6722 {
6723 	struct btrfs_root *root = BTRFS_I(inode)->root;
6724 	struct btrfs_block_rsv *rsv;
6725 	int ret;
6726 	int err = 0;
6727 	struct btrfs_trans_handle *trans;
6728 	unsigned long nr;
6729 	u64 mask = root->sectorsize - 1;
6730 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6731 
6732 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6733 	if (ret)
6734 		return ret;
6735 
6736 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6737 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6738 
6739 	/*
6740 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6741 	 * 3 things going on here
6742 	 *
6743 	 * 1) We need to reserve space for our orphan item and the space to
6744 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6745 	 * orphan item because we didn't reserve space to remove it.
6746 	 *
6747 	 * 2) We need to reserve space to update our inode.
6748 	 *
6749 	 * 3) We need to have something to cache all the space that is going to
6750 	 * be free'd up by the truncate operation, but also have some slack
6751 	 * space reserved in case it uses space during the truncate (thank you
6752 	 * very much snapshotting).
6753 	 *
6754 	 * And we need these to all be seperate.  The fact is we can use alot of
6755 	 * space doing the truncate, and we have no earthly idea how much space
6756 	 * we will use, so we need the truncate reservation to be seperate so it
6757 	 * doesn't end up using space reserved for updating the inode or
6758 	 * removing the orphan item.  We also need to be able to stop the
6759 	 * transaction and start a new one, which means we need to be able to
6760 	 * update the inode several times, and we have no idea of knowing how
6761 	 * many times that will be, so we can't just reserve 1 item for the
6762 	 * entirety of the opration, so that has to be done seperately as well.
6763 	 * Then there is the orphan item, which does indeed need to be held on
6764 	 * to for the whole operation, and we need nobody to touch this reserved
6765 	 * space except the orphan code.
6766 	 *
6767 	 * So that leaves us with
6768 	 *
6769 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6770 	 * 2) rsv - for the truncate reservation, which we will steal from the
6771 	 * transaction reservation.
6772 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6773 	 * updating the inode.
6774 	 */
6775 	rsv = btrfs_alloc_block_rsv(root);
6776 	if (!rsv)
6777 		return -ENOMEM;
6778 	rsv->size = min_size;
6779 
6780 	/*
6781 	 * 1 for the truncate slack space
6782 	 * 1 for the orphan item we're going to add
6783 	 * 1 for the orphan item deletion
6784 	 * 1 for updating the inode.
6785 	 */
6786 	trans = btrfs_start_transaction(root, 4);
6787 	if (IS_ERR(trans)) {
6788 		err = PTR_ERR(trans);
6789 		goto out;
6790 	}
6791 
6792 	/* Migrate the slack space for the truncate to our reserve */
6793 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6794 				      min_size);
6795 	BUG_ON(ret);
6796 
6797 	ret = btrfs_orphan_add(trans, inode);
6798 	if (ret) {
6799 		btrfs_end_transaction(trans, root);
6800 		goto out;
6801 	}
6802 
6803 	/*
6804 	 * setattr is responsible for setting the ordered_data_close flag,
6805 	 * but that is only tested during the last file release.  That
6806 	 * could happen well after the next commit, leaving a great big
6807 	 * window where new writes may get lost if someone chooses to write
6808 	 * to this file after truncating to zero
6809 	 *
6810 	 * The inode doesn't have any dirty data here, and so if we commit
6811 	 * this is a noop.  If someone immediately starts writing to the inode
6812 	 * it is very likely we'll catch some of their writes in this
6813 	 * transaction, and the commit will find this file on the ordered
6814 	 * data list with good things to send down.
6815 	 *
6816 	 * This is a best effort solution, there is still a window where
6817 	 * using truncate to replace the contents of the file will
6818 	 * end up with a zero length file after a crash.
6819 	 */
6820 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6821 					   &BTRFS_I(inode)->runtime_flags))
6822 		btrfs_add_ordered_operation(trans, root, inode);
6823 
6824 	while (1) {
6825 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6826 		if (ret) {
6827 			/*
6828 			 * This can only happen with the original transaction we
6829 			 * started above, every other time we shouldn't have a
6830 			 * transaction started yet.
6831 			 */
6832 			if (ret == -EAGAIN)
6833 				goto end_trans;
6834 			err = ret;
6835 			break;
6836 		}
6837 
6838 		if (!trans) {
6839 			/* Just need the 1 for updating the inode */
6840 			trans = btrfs_start_transaction(root, 1);
6841 			if (IS_ERR(trans)) {
6842 				ret = err = PTR_ERR(trans);
6843 				trans = NULL;
6844 				break;
6845 			}
6846 		}
6847 
6848 		trans->block_rsv = rsv;
6849 
6850 		ret = btrfs_truncate_inode_items(trans, root, inode,
6851 						 inode->i_size,
6852 						 BTRFS_EXTENT_DATA_KEY);
6853 		if (ret != -EAGAIN) {
6854 			err = ret;
6855 			break;
6856 		}
6857 
6858 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6859 		ret = btrfs_update_inode(trans, root, inode);
6860 		if (ret) {
6861 			err = ret;
6862 			break;
6863 		}
6864 end_trans:
6865 		nr = trans->blocks_used;
6866 		btrfs_end_transaction(trans, root);
6867 		trans = NULL;
6868 		btrfs_btree_balance_dirty(root, nr);
6869 	}
6870 
6871 	if (ret == 0 && inode->i_nlink > 0) {
6872 		trans->block_rsv = root->orphan_block_rsv;
6873 		ret = btrfs_orphan_del(trans, inode);
6874 		if (ret)
6875 			err = ret;
6876 	} else if (ret && inode->i_nlink > 0) {
6877 		/*
6878 		 * Failed to do the truncate, remove us from the in memory
6879 		 * orphan list.
6880 		 */
6881 		ret = btrfs_orphan_del(NULL, inode);
6882 	}
6883 
6884 	if (trans) {
6885 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6886 		ret = btrfs_update_inode(trans, root, inode);
6887 		if (ret && !err)
6888 			err = ret;
6889 
6890 		nr = trans->blocks_used;
6891 		ret = btrfs_end_transaction(trans, root);
6892 		btrfs_btree_balance_dirty(root, nr);
6893 	}
6894 
6895 out:
6896 	btrfs_free_block_rsv(root, rsv);
6897 
6898 	if (ret && !err)
6899 		err = ret;
6900 
6901 	return err;
6902 }
6903 
6904 /*
6905  * create a new subvolume directory/inode (helper for the ioctl).
6906  */
6907 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6908 			     struct btrfs_root *new_root, u64 new_dirid)
6909 {
6910 	struct inode *inode;
6911 	int err;
6912 	u64 index = 0;
6913 
6914 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6915 				new_dirid, new_dirid,
6916 				S_IFDIR | (~current_umask() & S_IRWXUGO),
6917 				&index);
6918 	if (IS_ERR(inode))
6919 		return PTR_ERR(inode);
6920 	inode->i_op = &btrfs_dir_inode_operations;
6921 	inode->i_fop = &btrfs_dir_file_operations;
6922 
6923 	set_nlink(inode, 1);
6924 	btrfs_i_size_write(inode, 0);
6925 
6926 	err = btrfs_update_inode(trans, new_root, inode);
6927 
6928 	iput(inode);
6929 	return err;
6930 }
6931 
6932 struct inode *btrfs_alloc_inode(struct super_block *sb)
6933 {
6934 	struct btrfs_inode *ei;
6935 	struct inode *inode;
6936 
6937 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6938 	if (!ei)
6939 		return NULL;
6940 
6941 	ei->root = NULL;
6942 	ei->space_info = NULL;
6943 	ei->generation = 0;
6944 	ei->last_trans = 0;
6945 	ei->last_sub_trans = 0;
6946 	ei->logged_trans = 0;
6947 	ei->delalloc_bytes = 0;
6948 	ei->disk_i_size = 0;
6949 	ei->flags = 0;
6950 	ei->csum_bytes = 0;
6951 	ei->index_cnt = (u64)-1;
6952 	ei->last_unlink_trans = 0;
6953 
6954 	spin_lock_init(&ei->lock);
6955 	ei->outstanding_extents = 0;
6956 	ei->reserved_extents = 0;
6957 
6958 	ei->runtime_flags = 0;
6959 	ei->force_compress = BTRFS_COMPRESS_NONE;
6960 
6961 	ei->delayed_node = NULL;
6962 
6963 	inode = &ei->vfs_inode;
6964 	extent_map_tree_init(&ei->extent_tree);
6965 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6966 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6967 	ei->io_tree.track_uptodate = 1;
6968 	ei->io_failure_tree.track_uptodate = 1;
6969 	mutex_init(&ei->log_mutex);
6970 	mutex_init(&ei->delalloc_mutex);
6971 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6972 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6973 	INIT_LIST_HEAD(&ei->ordered_operations);
6974 	RB_CLEAR_NODE(&ei->rb_node);
6975 
6976 	return inode;
6977 }
6978 
6979 static void btrfs_i_callback(struct rcu_head *head)
6980 {
6981 	struct inode *inode = container_of(head, struct inode, i_rcu);
6982 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6983 }
6984 
6985 void btrfs_destroy_inode(struct inode *inode)
6986 {
6987 	struct btrfs_ordered_extent *ordered;
6988 	struct btrfs_root *root = BTRFS_I(inode)->root;
6989 
6990 	WARN_ON(!list_empty(&inode->i_dentry));
6991 	WARN_ON(inode->i_data.nrpages);
6992 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6993 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6994 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6995 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6996 
6997 	/*
6998 	 * This can happen where we create an inode, but somebody else also
6999 	 * created the same inode and we need to destroy the one we already
7000 	 * created.
7001 	 */
7002 	if (!root)
7003 		goto free;
7004 
7005 	/*
7006 	 * Make sure we're properly removed from the ordered operation
7007 	 * lists.
7008 	 */
7009 	smp_mb();
7010 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7011 		spin_lock(&root->fs_info->ordered_extent_lock);
7012 		list_del_init(&BTRFS_I(inode)->ordered_operations);
7013 		spin_unlock(&root->fs_info->ordered_extent_lock);
7014 	}
7015 
7016 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7017 		     &BTRFS_I(inode)->runtime_flags)) {
7018 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7019 		       (unsigned long long)btrfs_ino(inode));
7020 		atomic_dec(&root->orphan_inodes);
7021 	}
7022 
7023 	while (1) {
7024 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7025 		if (!ordered)
7026 			break;
7027 		else {
7028 			printk(KERN_ERR "btrfs found ordered "
7029 			       "extent %llu %llu on inode cleanup\n",
7030 			       (unsigned long long)ordered->file_offset,
7031 			       (unsigned long long)ordered->len);
7032 			btrfs_remove_ordered_extent(inode, ordered);
7033 			btrfs_put_ordered_extent(ordered);
7034 			btrfs_put_ordered_extent(ordered);
7035 		}
7036 	}
7037 	inode_tree_del(inode);
7038 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7039 free:
7040 	btrfs_remove_delayed_node(inode);
7041 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7042 }
7043 
7044 int btrfs_drop_inode(struct inode *inode)
7045 {
7046 	struct btrfs_root *root = BTRFS_I(inode)->root;
7047 
7048 	if (btrfs_root_refs(&root->root_item) == 0 &&
7049 	    !btrfs_is_free_space_inode(root, inode))
7050 		return 1;
7051 	else
7052 		return generic_drop_inode(inode);
7053 }
7054 
7055 static void init_once(void *foo)
7056 {
7057 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7058 
7059 	inode_init_once(&ei->vfs_inode);
7060 }
7061 
7062 void btrfs_destroy_cachep(void)
7063 {
7064 	if (btrfs_inode_cachep)
7065 		kmem_cache_destroy(btrfs_inode_cachep);
7066 	if (btrfs_trans_handle_cachep)
7067 		kmem_cache_destroy(btrfs_trans_handle_cachep);
7068 	if (btrfs_transaction_cachep)
7069 		kmem_cache_destroy(btrfs_transaction_cachep);
7070 	if (btrfs_path_cachep)
7071 		kmem_cache_destroy(btrfs_path_cachep);
7072 	if (btrfs_free_space_cachep)
7073 		kmem_cache_destroy(btrfs_free_space_cachep);
7074 }
7075 
7076 int btrfs_init_cachep(void)
7077 {
7078 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7079 			sizeof(struct btrfs_inode), 0,
7080 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7081 	if (!btrfs_inode_cachep)
7082 		goto fail;
7083 
7084 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7085 			sizeof(struct btrfs_trans_handle), 0,
7086 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7087 	if (!btrfs_trans_handle_cachep)
7088 		goto fail;
7089 
7090 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7091 			sizeof(struct btrfs_transaction), 0,
7092 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7093 	if (!btrfs_transaction_cachep)
7094 		goto fail;
7095 
7096 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7097 			sizeof(struct btrfs_path), 0,
7098 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7099 	if (!btrfs_path_cachep)
7100 		goto fail;
7101 
7102 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7103 			sizeof(struct btrfs_free_space), 0,
7104 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7105 	if (!btrfs_free_space_cachep)
7106 		goto fail;
7107 
7108 	return 0;
7109 fail:
7110 	btrfs_destroy_cachep();
7111 	return -ENOMEM;
7112 }
7113 
7114 static int btrfs_getattr(struct vfsmount *mnt,
7115 			 struct dentry *dentry, struct kstat *stat)
7116 {
7117 	struct inode *inode = dentry->d_inode;
7118 	u32 blocksize = inode->i_sb->s_blocksize;
7119 
7120 	generic_fillattr(inode, stat);
7121 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7122 	stat->blksize = PAGE_CACHE_SIZE;
7123 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7124 		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7125 	return 0;
7126 }
7127 
7128 /*
7129  * If a file is moved, it will inherit the cow and compression flags of the new
7130  * directory.
7131  */
7132 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7133 {
7134 	struct btrfs_inode *b_dir = BTRFS_I(dir);
7135 	struct btrfs_inode *b_inode = BTRFS_I(inode);
7136 
7137 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
7138 		b_inode->flags |= BTRFS_INODE_NODATACOW;
7139 	else
7140 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7141 
7142 	if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7143 		b_inode->flags |= BTRFS_INODE_COMPRESS;
7144 		b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7145 	} else {
7146 		b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7147 				    BTRFS_INODE_NOCOMPRESS);
7148 	}
7149 }
7150 
7151 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7152 			   struct inode *new_dir, struct dentry *new_dentry)
7153 {
7154 	struct btrfs_trans_handle *trans;
7155 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7156 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7157 	struct inode *new_inode = new_dentry->d_inode;
7158 	struct inode *old_inode = old_dentry->d_inode;
7159 	struct timespec ctime = CURRENT_TIME;
7160 	u64 index = 0;
7161 	u64 root_objectid;
7162 	int ret;
7163 	u64 old_ino = btrfs_ino(old_inode);
7164 
7165 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7166 		return -EPERM;
7167 
7168 	/* we only allow rename subvolume link between subvolumes */
7169 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7170 		return -EXDEV;
7171 
7172 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7173 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7174 		return -ENOTEMPTY;
7175 
7176 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
7177 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7178 		return -ENOTEMPTY;
7179 	/*
7180 	 * we're using rename to replace one file with another.
7181 	 * and the replacement file is large.  Start IO on it now so
7182 	 * we don't add too much work to the end of the transaction
7183 	 */
7184 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7185 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7186 		filemap_flush(old_inode->i_mapping);
7187 
7188 	/* close the racy window with snapshot create/destroy ioctl */
7189 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7190 		down_read(&root->fs_info->subvol_sem);
7191 	/*
7192 	 * We want to reserve the absolute worst case amount of items.  So if
7193 	 * both inodes are subvols and we need to unlink them then that would
7194 	 * require 4 item modifications, but if they are both normal inodes it
7195 	 * would require 5 item modifications, so we'll assume their normal
7196 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7197 	 * should cover the worst case number of items we'll modify.
7198 	 */
7199 	trans = btrfs_start_transaction(root, 20);
7200 	if (IS_ERR(trans)) {
7201                 ret = PTR_ERR(trans);
7202                 goto out_notrans;
7203         }
7204 
7205 	if (dest != root)
7206 		btrfs_record_root_in_trans(trans, dest);
7207 
7208 	ret = btrfs_set_inode_index(new_dir, &index);
7209 	if (ret)
7210 		goto out_fail;
7211 
7212 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7213 		/* force full log commit if subvolume involved. */
7214 		root->fs_info->last_trans_log_full_commit = trans->transid;
7215 	} else {
7216 		ret = btrfs_insert_inode_ref(trans, dest,
7217 					     new_dentry->d_name.name,
7218 					     new_dentry->d_name.len,
7219 					     old_ino,
7220 					     btrfs_ino(new_dir), index);
7221 		if (ret)
7222 			goto out_fail;
7223 		/*
7224 		 * this is an ugly little race, but the rename is required
7225 		 * to make sure that if we crash, the inode is either at the
7226 		 * old name or the new one.  pinning the log transaction lets
7227 		 * us make sure we don't allow a log commit to come in after
7228 		 * we unlink the name but before we add the new name back in.
7229 		 */
7230 		btrfs_pin_log_trans(root);
7231 	}
7232 	/*
7233 	 * make sure the inode gets flushed if it is replacing
7234 	 * something.
7235 	 */
7236 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7237 		btrfs_add_ordered_operation(trans, root, old_inode);
7238 
7239 	inode_inc_iversion(old_dir);
7240 	inode_inc_iversion(new_dir);
7241 	inode_inc_iversion(old_inode);
7242 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7243 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7244 	old_inode->i_ctime = ctime;
7245 
7246 	if (old_dentry->d_parent != new_dentry->d_parent)
7247 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7248 
7249 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7250 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7251 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7252 					old_dentry->d_name.name,
7253 					old_dentry->d_name.len);
7254 	} else {
7255 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7256 					old_dentry->d_inode,
7257 					old_dentry->d_name.name,
7258 					old_dentry->d_name.len);
7259 		if (!ret)
7260 			ret = btrfs_update_inode(trans, root, old_inode);
7261 	}
7262 	if (ret) {
7263 		btrfs_abort_transaction(trans, root, ret);
7264 		goto out_fail;
7265 	}
7266 
7267 	if (new_inode) {
7268 		inode_inc_iversion(new_inode);
7269 		new_inode->i_ctime = CURRENT_TIME;
7270 		if (unlikely(btrfs_ino(new_inode) ==
7271 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7272 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7273 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7274 						root_objectid,
7275 						new_dentry->d_name.name,
7276 						new_dentry->d_name.len);
7277 			BUG_ON(new_inode->i_nlink == 0);
7278 		} else {
7279 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7280 						 new_dentry->d_inode,
7281 						 new_dentry->d_name.name,
7282 						 new_dentry->d_name.len);
7283 		}
7284 		if (!ret && new_inode->i_nlink == 0) {
7285 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7286 			BUG_ON(ret);
7287 		}
7288 		if (ret) {
7289 			btrfs_abort_transaction(trans, root, ret);
7290 			goto out_fail;
7291 		}
7292 	}
7293 
7294 	fixup_inode_flags(new_dir, old_inode);
7295 
7296 	ret = btrfs_add_link(trans, new_dir, old_inode,
7297 			     new_dentry->d_name.name,
7298 			     new_dentry->d_name.len, 0, index);
7299 	if (ret) {
7300 		btrfs_abort_transaction(trans, root, ret);
7301 		goto out_fail;
7302 	}
7303 
7304 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7305 		struct dentry *parent = new_dentry->d_parent;
7306 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7307 		btrfs_end_log_trans(root);
7308 	}
7309 out_fail:
7310 	btrfs_end_transaction(trans, root);
7311 out_notrans:
7312 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7313 		up_read(&root->fs_info->subvol_sem);
7314 
7315 	return ret;
7316 }
7317 
7318 /*
7319  * some fairly slow code that needs optimization. This walks the list
7320  * of all the inodes with pending delalloc and forces them to disk.
7321  */
7322 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7323 {
7324 	struct list_head *head = &root->fs_info->delalloc_inodes;
7325 	struct btrfs_inode *binode;
7326 	struct inode *inode;
7327 
7328 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7329 		return -EROFS;
7330 
7331 	spin_lock(&root->fs_info->delalloc_lock);
7332 	while (!list_empty(head)) {
7333 		binode = list_entry(head->next, struct btrfs_inode,
7334 				    delalloc_inodes);
7335 		inode = igrab(&binode->vfs_inode);
7336 		if (!inode)
7337 			list_del_init(&binode->delalloc_inodes);
7338 		spin_unlock(&root->fs_info->delalloc_lock);
7339 		if (inode) {
7340 			filemap_flush(inode->i_mapping);
7341 			if (delay_iput)
7342 				btrfs_add_delayed_iput(inode);
7343 			else
7344 				iput(inode);
7345 		}
7346 		cond_resched();
7347 		spin_lock(&root->fs_info->delalloc_lock);
7348 	}
7349 	spin_unlock(&root->fs_info->delalloc_lock);
7350 
7351 	/* the filemap_flush will queue IO into the worker threads, but
7352 	 * we have to make sure the IO is actually started and that
7353 	 * ordered extents get created before we return
7354 	 */
7355 	atomic_inc(&root->fs_info->async_submit_draining);
7356 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7357 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7358 		wait_event(root->fs_info->async_submit_wait,
7359 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7360 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7361 	}
7362 	atomic_dec(&root->fs_info->async_submit_draining);
7363 	return 0;
7364 }
7365 
7366 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7367 			 const char *symname)
7368 {
7369 	struct btrfs_trans_handle *trans;
7370 	struct btrfs_root *root = BTRFS_I(dir)->root;
7371 	struct btrfs_path *path;
7372 	struct btrfs_key key;
7373 	struct inode *inode = NULL;
7374 	int err;
7375 	int drop_inode = 0;
7376 	u64 objectid;
7377 	u64 index = 0 ;
7378 	int name_len;
7379 	int datasize;
7380 	unsigned long ptr;
7381 	struct btrfs_file_extent_item *ei;
7382 	struct extent_buffer *leaf;
7383 	unsigned long nr = 0;
7384 
7385 	name_len = strlen(symname) + 1;
7386 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7387 		return -ENAMETOOLONG;
7388 
7389 	/*
7390 	 * 2 items for inode item and ref
7391 	 * 2 items for dir items
7392 	 * 1 item for xattr if selinux is on
7393 	 */
7394 	trans = btrfs_start_transaction(root, 5);
7395 	if (IS_ERR(trans))
7396 		return PTR_ERR(trans);
7397 
7398 	err = btrfs_find_free_ino(root, &objectid);
7399 	if (err)
7400 		goto out_unlock;
7401 
7402 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7403 				dentry->d_name.len, btrfs_ino(dir), objectid,
7404 				S_IFLNK|S_IRWXUGO, &index);
7405 	if (IS_ERR(inode)) {
7406 		err = PTR_ERR(inode);
7407 		goto out_unlock;
7408 	}
7409 
7410 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7411 	if (err) {
7412 		drop_inode = 1;
7413 		goto out_unlock;
7414 	}
7415 
7416 	/*
7417 	* If the active LSM wants to access the inode during
7418 	* d_instantiate it needs these. Smack checks to see
7419 	* if the filesystem supports xattrs by looking at the
7420 	* ops vector.
7421 	*/
7422 	inode->i_fop = &btrfs_file_operations;
7423 	inode->i_op = &btrfs_file_inode_operations;
7424 
7425 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7426 	if (err)
7427 		drop_inode = 1;
7428 	else {
7429 		inode->i_mapping->a_ops = &btrfs_aops;
7430 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7431 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7432 	}
7433 	if (drop_inode)
7434 		goto out_unlock;
7435 
7436 	path = btrfs_alloc_path();
7437 	if (!path) {
7438 		err = -ENOMEM;
7439 		drop_inode = 1;
7440 		goto out_unlock;
7441 	}
7442 	key.objectid = btrfs_ino(inode);
7443 	key.offset = 0;
7444 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7445 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7446 	err = btrfs_insert_empty_item(trans, root, path, &key,
7447 				      datasize);
7448 	if (err) {
7449 		drop_inode = 1;
7450 		btrfs_free_path(path);
7451 		goto out_unlock;
7452 	}
7453 	leaf = path->nodes[0];
7454 	ei = btrfs_item_ptr(leaf, path->slots[0],
7455 			    struct btrfs_file_extent_item);
7456 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7457 	btrfs_set_file_extent_type(leaf, ei,
7458 				   BTRFS_FILE_EXTENT_INLINE);
7459 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7460 	btrfs_set_file_extent_compression(leaf, ei, 0);
7461 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7462 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7463 
7464 	ptr = btrfs_file_extent_inline_start(ei);
7465 	write_extent_buffer(leaf, symname, ptr, name_len);
7466 	btrfs_mark_buffer_dirty(leaf);
7467 	btrfs_free_path(path);
7468 
7469 	inode->i_op = &btrfs_symlink_inode_operations;
7470 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7471 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7472 	inode_set_bytes(inode, name_len);
7473 	btrfs_i_size_write(inode, name_len - 1);
7474 	err = btrfs_update_inode(trans, root, inode);
7475 	if (err)
7476 		drop_inode = 1;
7477 
7478 out_unlock:
7479 	if (!err)
7480 		d_instantiate(dentry, inode);
7481 	nr = trans->blocks_used;
7482 	btrfs_end_transaction(trans, root);
7483 	if (drop_inode) {
7484 		inode_dec_link_count(inode);
7485 		iput(inode);
7486 	}
7487 	btrfs_btree_balance_dirty(root, nr);
7488 	return err;
7489 }
7490 
7491 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7492 				       u64 start, u64 num_bytes, u64 min_size,
7493 				       loff_t actual_len, u64 *alloc_hint,
7494 				       struct btrfs_trans_handle *trans)
7495 {
7496 	struct btrfs_root *root = BTRFS_I(inode)->root;
7497 	struct btrfs_key ins;
7498 	u64 cur_offset = start;
7499 	u64 i_size;
7500 	int ret = 0;
7501 	bool own_trans = true;
7502 
7503 	if (trans)
7504 		own_trans = false;
7505 	while (num_bytes > 0) {
7506 		if (own_trans) {
7507 			trans = btrfs_start_transaction(root, 3);
7508 			if (IS_ERR(trans)) {
7509 				ret = PTR_ERR(trans);
7510 				break;
7511 			}
7512 		}
7513 
7514 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7515 					   0, *alloc_hint, &ins, 1);
7516 		if (ret) {
7517 			if (own_trans)
7518 				btrfs_end_transaction(trans, root);
7519 			break;
7520 		}
7521 
7522 		ret = insert_reserved_file_extent(trans, inode,
7523 						  cur_offset, ins.objectid,
7524 						  ins.offset, ins.offset,
7525 						  ins.offset, 0, 0, 0,
7526 						  BTRFS_FILE_EXTENT_PREALLOC);
7527 		if (ret) {
7528 			btrfs_abort_transaction(trans, root, ret);
7529 			if (own_trans)
7530 				btrfs_end_transaction(trans, root);
7531 			break;
7532 		}
7533 		btrfs_drop_extent_cache(inode, cur_offset,
7534 					cur_offset + ins.offset -1, 0);
7535 
7536 		num_bytes -= ins.offset;
7537 		cur_offset += ins.offset;
7538 		*alloc_hint = ins.objectid + ins.offset;
7539 
7540 		inode_inc_iversion(inode);
7541 		inode->i_ctime = CURRENT_TIME;
7542 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7543 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7544 		    (actual_len > inode->i_size) &&
7545 		    (cur_offset > inode->i_size)) {
7546 			if (cur_offset > actual_len)
7547 				i_size = actual_len;
7548 			else
7549 				i_size = cur_offset;
7550 			i_size_write(inode, i_size);
7551 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7552 		}
7553 
7554 		ret = btrfs_update_inode(trans, root, inode);
7555 
7556 		if (ret) {
7557 			btrfs_abort_transaction(trans, root, ret);
7558 			if (own_trans)
7559 				btrfs_end_transaction(trans, root);
7560 			break;
7561 		}
7562 
7563 		if (own_trans)
7564 			btrfs_end_transaction(trans, root);
7565 	}
7566 	return ret;
7567 }
7568 
7569 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7570 			      u64 start, u64 num_bytes, u64 min_size,
7571 			      loff_t actual_len, u64 *alloc_hint)
7572 {
7573 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7574 					   min_size, actual_len, alloc_hint,
7575 					   NULL);
7576 }
7577 
7578 int btrfs_prealloc_file_range_trans(struct inode *inode,
7579 				    struct btrfs_trans_handle *trans, int mode,
7580 				    u64 start, u64 num_bytes, u64 min_size,
7581 				    loff_t actual_len, u64 *alloc_hint)
7582 {
7583 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7584 					   min_size, actual_len, alloc_hint, trans);
7585 }
7586 
7587 static int btrfs_set_page_dirty(struct page *page)
7588 {
7589 	return __set_page_dirty_nobuffers(page);
7590 }
7591 
7592 static int btrfs_permission(struct inode *inode, int mask)
7593 {
7594 	struct btrfs_root *root = BTRFS_I(inode)->root;
7595 	umode_t mode = inode->i_mode;
7596 
7597 	if (mask & MAY_WRITE &&
7598 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7599 		if (btrfs_root_readonly(root))
7600 			return -EROFS;
7601 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7602 			return -EACCES;
7603 	}
7604 	return generic_permission(inode, mask);
7605 }
7606 
7607 static const struct inode_operations btrfs_dir_inode_operations = {
7608 	.getattr	= btrfs_getattr,
7609 	.lookup		= btrfs_lookup,
7610 	.create		= btrfs_create,
7611 	.unlink		= btrfs_unlink,
7612 	.link		= btrfs_link,
7613 	.mkdir		= btrfs_mkdir,
7614 	.rmdir		= btrfs_rmdir,
7615 	.rename		= btrfs_rename,
7616 	.symlink	= btrfs_symlink,
7617 	.setattr	= btrfs_setattr,
7618 	.mknod		= btrfs_mknod,
7619 	.setxattr	= btrfs_setxattr,
7620 	.getxattr	= btrfs_getxattr,
7621 	.listxattr	= btrfs_listxattr,
7622 	.removexattr	= btrfs_removexattr,
7623 	.permission	= btrfs_permission,
7624 	.get_acl	= btrfs_get_acl,
7625 };
7626 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7627 	.lookup		= btrfs_lookup,
7628 	.permission	= btrfs_permission,
7629 	.get_acl	= btrfs_get_acl,
7630 };
7631 
7632 static const struct file_operations btrfs_dir_file_operations = {
7633 	.llseek		= generic_file_llseek,
7634 	.read		= generic_read_dir,
7635 	.readdir	= btrfs_real_readdir,
7636 	.unlocked_ioctl	= btrfs_ioctl,
7637 #ifdef CONFIG_COMPAT
7638 	.compat_ioctl	= btrfs_ioctl,
7639 #endif
7640 	.release        = btrfs_release_file,
7641 	.fsync		= btrfs_sync_file,
7642 };
7643 
7644 static struct extent_io_ops btrfs_extent_io_ops = {
7645 	.fill_delalloc = run_delalloc_range,
7646 	.submit_bio_hook = btrfs_submit_bio_hook,
7647 	.merge_bio_hook = btrfs_merge_bio_hook,
7648 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7649 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7650 	.writepage_start_hook = btrfs_writepage_start_hook,
7651 	.set_bit_hook = btrfs_set_bit_hook,
7652 	.clear_bit_hook = btrfs_clear_bit_hook,
7653 	.merge_extent_hook = btrfs_merge_extent_hook,
7654 	.split_extent_hook = btrfs_split_extent_hook,
7655 };
7656 
7657 /*
7658  * btrfs doesn't support the bmap operation because swapfiles
7659  * use bmap to make a mapping of extents in the file.  They assume
7660  * these extents won't change over the life of the file and they
7661  * use the bmap result to do IO directly to the drive.
7662  *
7663  * the btrfs bmap call would return logical addresses that aren't
7664  * suitable for IO and they also will change frequently as COW
7665  * operations happen.  So, swapfile + btrfs == corruption.
7666  *
7667  * For now we're avoiding this by dropping bmap.
7668  */
7669 static const struct address_space_operations btrfs_aops = {
7670 	.readpage	= btrfs_readpage,
7671 	.writepage	= btrfs_writepage,
7672 	.writepages	= btrfs_writepages,
7673 	.readpages	= btrfs_readpages,
7674 	.direct_IO	= btrfs_direct_IO,
7675 	.invalidatepage = btrfs_invalidatepage,
7676 	.releasepage	= btrfs_releasepage,
7677 	.set_page_dirty	= btrfs_set_page_dirty,
7678 	.error_remove_page = generic_error_remove_page,
7679 };
7680 
7681 static const struct address_space_operations btrfs_symlink_aops = {
7682 	.readpage	= btrfs_readpage,
7683 	.writepage	= btrfs_writepage,
7684 	.invalidatepage = btrfs_invalidatepage,
7685 	.releasepage	= btrfs_releasepage,
7686 };
7687 
7688 static const struct inode_operations btrfs_file_inode_operations = {
7689 	.getattr	= btrfs_getattr,
7690 	.setattr	= btrfs_setattr,
7691 	.setxattr	= btrfs_setxattr,
7692 	.getxattr	= btrfs_getxattr,
7693 	.listxattr      = btrfs_listxattr,
7694 	.removexattr	= btrfs_removexattr,
7695 	.permission	= btrfs_permission,
7696 	.fiemap		= btrfs_fiemap,
7697 	.get_acl	= btrfs_get_acl,
7698 	.update_time	= btrfs_update_time,
7699 };
7700 static const struct inode_operations btrfs_special_inode_operations = {
7701 	.getattr	= btrfs_getattr,
7702 	.setattr	= btrfs_setattr,
7703 	.permission	= btrfs_permission,
7704 	.setxattr	= btrfs_setxattr,
7705 	.getxattr	= btrfs_getxattr,
7706 	.listxattr	= btrfs_listxattr,
7707 	.removexattr	= btrfs_removexattr,
7708 	.get_acl	= btrfs_get_acl,
7709 	.update_time	= btrfs_update_time,
7710 };
7711 static const struct inode_operations btrfs_symlink_inode_operations = {
7712 	.readlink	= generic_readlink,
7713 	.follow_link	= page_follow_link_light,
7714 	.put_link	= page_put_link,
7715 	.getattr	= btrfs_getattr,
7716 	.setattr	= btrfs_setattr,
7717 	.permission	= btrfs_permission,
7718 	.setxattr	= btrfs_setxattr,
7719 	.getxattr	= btrfs_getxattr,
7720 	.listxattr	= btrfs_listxattr,
7721 	.removexattr	= btrfs_removexattr,
7722 	.get_acl	= btrfs_get_acl,
7723 	.update_time	= btrfs_update_time,
7724 };
7725 
7726 const struct dentry_operations btrfs_dentry_operations = {
7727 	.d_delete	= btrfs_dentry_delete,
7728 	.d_release	= btrfs_dentry_release,
7729 };
7730