1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_is_data_reloc_root(root)) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 pgoff_t index = offset >> PAGE_SHIFT; 399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int ret; 427 428 if (args->default_acl) { 429 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (ret) 432 return ret; 433 } 434 if (args->acl) { 435 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (ret) 437 return ret; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.type = BTRFS_EXTENT_DATA_KEY; 493 key.offset = 0; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* Inline extents are limited to sectorsize. */ 570 if (size > fs_info->sectorsize) 571 return false; 572 573 /* We do not allow a non-compressed extent to be as large as block size. */ 574 if (data_len >= fs_info->sectorsize) 575 return false; 576 577 /* We cannot exceed the maximum inline data size. */ 578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 579 return false; 580 581 /* We cannot exceed the user specified max_inline size. */ 582 if (data_len > fs_info->max_inline) 583 return false; 584 585 /* Inline extents must be the entirety of the file. */ 586 if (size < i_size_read(&inode->vfs_inode)) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * conditionally insert an inline extent into the file. This 594 * does the checks required to make sure the data is small enough 595 * to fit as an inline extent. 596 * 597 * If being used directly, you must have already checked we're allowed to cow 598 * the range by getting true from can_cow_file_range_inline(). 599 */ 600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 601 u64 size, size_t compressed_size, 602 int compress_type, 603 struct folio *compressed_folio, 604 bool update_i_size) 605 { 606 struct btrfs_drop_extents_args drop_args = { 0 }; 607 struct btrfs_root *root = inode->root; 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_trans_handle *trans; 610 u64 data_len = (compressed_size ?: size); 611 int ret; 612 struct btrfs_path *path; 613 614 path = btrfs_alloc_path(); 615 if (!path) 616 return -ENOMEM; 617 618 trans = btrfs_join_transaction(root); 619 if (IS_ERR(trans)) { 620 btrfs_free_path(path); 621 return PTR_ERR(trans); 622 } 623 trans->block_rsv = &inode->block_rsv; 624 625 drop_args.path = path; 626 drop_args.start = 0; 627 drop_args.end = fs_info->sectorsize; 628 drop_args.drop_cache = true; 629 drop_args.replace_extent = true; 630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 631 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto out; 635 } 636 637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 638 size, compressed_size, compress_type, 639 compressed_folio, update_i_size); 640 if (ret && ret != -ENOSPC) { 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } else if (ret == -ENOSPC) { 644 ret = 1; 645 goto out; 646 } 647 648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 649 ret = btrfs_update_inode(trans, inode); 650 if (ret && ret != -ENOSPC) { 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } else if (ret == -ENOSPC) { 654 ret = 1; 655 goto out; 656 } 657 658 btrfs_set_inode_full_sync(inode); 659 out: 660 /* 661 * Don't forget to free the reserved space, as for inlined extent 662 * it won't count as data extent, free them directly here. 663 * And at reserve time, it's always aligned to page size, so 664 * just free one page here. 665 */ 666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 667 btrfs_free_path(path); 668 btrfs_end_transaction(trans); 669 return ret; 670 } 671 672 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 673 struct folio *locked_folio, 674 u64 offset, u64 end, 675 size_t compressed_size, 676 int compress_type, 677 struct folio *compressed_folio, 678 bool update_i_size) 679 { 680 struct extent_state *cached = NULL; 681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 684 int ret; 685 686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 687 return 1; 688 689 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 690 ret = __cow_file_range_inline(inode, size, compressed_size, 691 compress_type, compressed_folio, 692 update_i_size); 693 if (ret > 0) { 694 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 695 return ret; 696 } 697 698 /* 699 * In the successful case (ret == 0 here), cow_file_range will return 1. 700 * 701 * Quite a bit further up the callstack in extent_writepage(), ret == 1 702 * is treated as a short circuited success and does not unlock the folio, 703 * so we must do it here. 704 * 705 * In the failure case, the locked_folio does get unlocked by 706 * btrfs_folio_end_all_writers, which asserts that it is still locked 707 * at that point, so we must *not* unlock it here. 708 * 709 * The other two callsites in compress_file_range do not have a 710 * locked_folio, so they are not relevant to this logic. 711 */ 712 if (ret == 0) 713 locked_folio = NULL; 714 715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 716 clear_flags, PAGE_UNLOCK | 717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 718 return ret; 719 } 720 721 struct async_extent { 722 u64 start; 723 u64 ram_size; 724 u64 compressed_size; 725 struct folio **folios; 726 unsigned long nr_folios; 727 int compress_type; 728 struct list_head list; 729 }; 730 731 struct async_chunk { 732 struct btrfs_inode *inode; 733 struct folio *locked_folio; 734 u64 start; 735 u64 end; 736 blk_opf_t write_flags; 737 struct list_head extents; 738 struct cgroup_subsys_state *blkcg_css; 739 struct btrfs_work work; 740 struct async_cow *async_cow; 741 }; 742 743 struct async_cow { 744 atomic_t num_chunks; 745 struct async_chunk chunks[]; 746 }; 747 748 static noinline int add_async_extent(struct async_chunk *cow, 749 u64 start, u64 ram_size, 750 u64 compressed_size, 751 struct folio **folios, 752 unsigned long nr_folios, 753 int compress_type) 754 { 755 struct async_extent *async_extent; 756 757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 758 if (!async_extent) 759 return -ENOMEM; 760 async_extent->start = start; 761 async_extent->ram_size = ram_size; 762 async_extent->compressed_size = compressed_size; 763 async_extent->folios = folios; 764 async_extent->nr_folios = nr_folios; 765 async_extent->compress_type = compress_type; 766 list_add_tail(&async_extent->list, &cow->extents); 767 return 0; 768 } 769 770 /* 771 * Check if the inode needs to be submitted to compression, based on mount 772 * options, defragmentation, properties or heuristics. 773 */ 774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 775 u64 end) 776 { 777 struct btrfs_fs_info *fs_info = inode->root->fs_info; 778 779 if (!btrfs_inode_can_compress(inode)) { 780 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 781 return 0; 782 } 783 784 /* Defrag ioctl takes precedence over mount options and properties. */ 785 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 786 return 0; 787 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 788 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 789 return 1; 790 /* force compress */ 791 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 792 return 1; 793 /* bad compression ratios */ 794 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 795 return 0; 796 if (btrfs_test_opt(fs_info, COMPRESS) || 797 inode->flags & BTRFS_INODE_COMPRESS || 798 inode->prop_compress) 799 return btrfs_compress_heuristic(inode, start, end); 800 return 0; 801 } 802 803 static inline void inode_should_defrag(struct btrfs_inode *inode, 804 u64 start, u64 end, u64 num_bytes, u32 small_write) 805 { 806 /* If this is a small write inside eof, kick off a defrag */ 807 if (num_bytes < small_write && 808 (start > 0 || end + 1 < inode->disk_i_size)) 809 btrfs_add_inode_defrag(inode, small_write); 810 } 811 812 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 813 { 814 const pgoff_t end_index = end >> PAGE_SHIFT; 815 struct folio *folio; 816 int ret = 0; 817 818 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 819 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 820 if (IS_ERR(folio)) { 821 if (!ret) 822 ret = PTR_ERR(folio); 823 continue; 824 } 825 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 826 end + 1 - start); 827 folio_put(folio); 828 } 829 return ret; 830 } 831 832 /* 833 * Work queue call back to started compression on a file and pages. 834 * 835 * This is done inside an ordered work queue, and the compression is spread 836 * across many cpus. The actual IO submission is step two, and the ordered work 837 * queue takes care of making sure that happens in the same order things were 838 * put onto the queue by writepages and friends. 839 * 840 * If this code finds it can't get good compression, it puts an entry onto the 841 * work queue to write the uncompressed bytes. This makes sure that both 842 * compressed inodes and uncompressed inodes are written in the same order that 843 * the flusher thread sent them down. 844 */ 845 static void compress_file_range(struct btrfs_work *work) 846 { 847 struct async_chunk *async_chunk = 848 container_of(work, struct async_chunk, work); 849 struct btrfs_inode *inode = async_chunk->inode; 850 struct btrfs_fs_info *fs_info = inode->root->fs_info; 851 struct address_space *mapping = inode->vfs_inode.i_mapping; 852 u64 blocksize = fs_info->sectorsize; 853 u64 start = async_chunk->start; 854 u64 end = async_chunk->end; 855 u64 actual_end; 856 u64 i_size; 857 int ret = 0; 858 struct folio **folios; 859 unsigned long nr_folios; 860 unsigned long total_compressed = 0; 861 unsigned long total_in = 0; 862 unsigned int poff; 863 int i; 864 int compress_type = fs_info->compress_type; 865 int compress_level = fs_info->compress_level; 866 867 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 868 869 /* 870 * We need to call clear_page_dirty_for_io on each page in the range. 871 * Otherwise applications with the file mmap'd can wander in and change 872 * the page contents while we are compressing them. 873 */ 874 ret = extent_range_clear_dirty_for_io(inode, start, end); 875 876 /* 877 * All the folios should have been locked thus no failure. 878 * 879 * And even if some folios are missing, btrfs_compress_folios() 880 * would handle them correctly, so here just do an ASSERT() check for 881 * early logic errors. 882 */ 883 ASSERT(ret == 0); 884 885 /* 886 * We need to save i_size before now because it could change in between 887 * us evaluating the size and assigning it. This is because we lock and 888 * unlock the page in truncate and fallocate, and then modify the i_size 889 * later on. 890 * 891 * The barriers are to emulate READ_ONCE, remove that once i_size_read 892 * does that for us. 893 */ 894 barrier(); 895 i_size = i_size_read(&inode->vfs_inode); 896 barrier(); 897 actual_end = min_t(u64, i_size, end + 1); 898 again: 899 folios = NULL; 900 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 901 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 902 903 /* 904 * we don't want to send crud past the end of i_size through 905 * compression, that's just a waste of CPU time. So, if the 906 * end of the file is before the start of our current 907 * requested range of bytes, we bail out to the uncompressed 908 * cleanup code that can deal with all of this. 909 * 910 * It isn't really the fastest way to fix things, but this is a 911 * very uncommon corner. 912 */ 913 if (actual_end <= start) 914 goto cleanup_and_bail_uncompressed; 915 916 total_compressed = actual_end - start; 917 918 /* 919 * Skip compression for a small file range(<=blocksize) that 920 * isn't an inline extent, since it doesn't save disk space at all. 921 */ 922 if (total_compressed <= blocksize && 923 (start > 0 || end + 1 < inode->disk_i_size)) 924 goto cleanup_and_bail_uncompressed; 925 926 total_compressed = min_t(unsigned long, total_compressed, 927 BTRFS_MAX_UNCOMPRESSED); 928 total_in = 0; 929 ret = 0; 930 931 /* 932 * We do compression for mount -o compress and when the inode has not 933 * been flagged as NOCOMPRESS. This flag can change at any time if we 934 * discover bad compression ratios. 935 */ 936 if (!inode_need_compress(inode, start, end)) 937 goto cleanup_and_bail_uncompressed; 938 939 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 940 if (!folios) { 941 /* 942 * Memory allocation failure is not a fatal error, we can fall 943 * back to uncompressed code. 944 */ 945 goto cleanup_and_bail_uncompressed; 946 } 947 948 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 949 compress_type = inode->defrag_compress; 950 compress_level = inode->defrag_compress_level; 951 } else if (inode->prop_compress) { 952 compress_type = inode->prop_compress; 953 } 954 955 /* Compression level is applied here. */ 956 ret = btrfs_compress_folios(compress_type, compress_level, 957 mapping, start, folios, &nr_folios, &total_in, 958 &total_compressed); 959 if (ret) 960 goto mark_incompressible; 961 962 /* 963 * Zero the tail end of the last page, as we might be sending it down 964 * to disk. 965 */ 966 poff = offset_in_page(total_compressed); 967 if (poff) 968 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 969 970 /* 971 * Try to create an inline extent. 972 * 973 * If we didn't compress the entire range, try to create an uncompressed 974 * inline extent, else a compressed one. 975 * 976 * Check cow_file_range() for why we don't even try to create inline 977 * extent for the subpage case. 978 */ 979 if (total_in < actual_end) 980 ret = cow_file_range_inline(inode, NULL, start, end, 0, 981 BTRFS_COMPRESS_NONE, NULL, false); 982 else 983 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 984 compress_type, folios[0], false); 985 if (ret <= 0) { 986 if (ret < 0) 987 mapping_set_error(mapping, -EIO); 988 goto free_pages; 989 } 990 991 /* 992 * We aren't doing an inline extent. Round the compressed size up to a 993 * block size boundary so the allocator does sane things. 994 */ 995 total_compressed = ALIGN(total_compressed, blocksize); 996 997 /* 998 * One last check to make sure the compression is really a win, compare 999 * the page count read with the blocks on disk, compression must free at 1000 * least one sector. 1001 */ 1002 total_in = round_up(total_in, fs_info->sectorsize); 1003 if (total_compressed + blocksize > total_in) 1004 goto mark_incompressible; 1005 1006 /* 1007 * The async work queues will take care of doing actual allocation on 1008 * disk for these compressed pages, and will submit the bios. 1009 */ 1010 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1011 nr_folios, compress_type); 1012 BUG_ON(ret); 1013 if (start + total_in < end) { 1014 start += total_in; 1015 cond_resched(); 1016 goto again; 1017 } 1018 return; 1019 1020 mark_incompressible: 1021 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1022 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1023 cleanup_and_bail_uncompressed: 1024 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1025 BTRFS_COMPRESS_NONE); 1026 BUG_ON(ret); 1027 free_pages: 1028 if (folios) { 1029 for (i = 0; i < nr_folios; i++) { 1030 WARN_ON(folios[i]->mapping); 1031 btrfs_free_compr_folio(folios[i]); 1032 } 1033 kfree(folios); 1034 } 1035 } 1036 1037 static void free_async_extent_pages(struct async_extent *async_extent) 1038 { 1039 int i; 1040 1041 if (!async_extent->folios) 1042 return; 1043 1044 for (i = 0; i < async_extent->nr_folios; i++) { 1045 WARN_ON(async_extent->folios[i]->mapping); 1046 btrfs_free_compr_folio(async_extent->folios[i]); 1047 } 1048 kfree(async_extent->folios); 1049 async_extent->nr_folios = 0; 1050 async_extent->folios = NULL; 1051 } 1052 1053 static void submit_uncompressed_range(struct btrfs_inode *inode, 1054 struct async_extent *async_extent, 1055 struct folio *locked_folio) 1056 { 1057 u64 start = async_extent->start; 1058 u64 end = async_extent->start + async_extent->ram_size - 1; 1059 int ret; 1060 struct writeback_control wbc = { 1061 .sync_mode = WB_SYNC_ALL, 1062 .range_start = start, 1063 .range_end = end, 1064 .no_cgroup_owner = 1, 1065 }; 1066 1067 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1068 ret = run_delalloc_cow(inode, locked_folio, start, end, 1069 &wbc, false); 1070 wbc_detach_inode(&wbc); 1071 if (ret < 0) { 1072 if (locked_folio) 1073 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1074 start, async_extent->ram_size); 1075 btrfs_err_rl(inode->root->fs_info, 1076 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1077 __func__, btrfs_root_id(inode->root), 1078 btrfs_ino(inode), start, async_extent->ram_size, ret); 1079 } 1080 } 1081 1082 static void submit_one_async_extent(struct async_chunk *async_chunk, 1083 struct async_extent *async_extent, 1084 u64 *alloc_hint) 1085 { 1086 struct btrfs_inode *inode = async_chunk->inode; 1087 struct extent_io_tree *io_tree = &inode->io_tree; 1088 struct btrfs_root *root = inode->root; 1089 struct btrfs_fs_info *fs_info = root->fs_info; 1090 struct btrfs_ordered_extent *ordered; 1091 struct btrfs_file_extent file_extent; 1092 struct btrfs_key ins; 1093 struct folio *locked_folio = NULL; 1094 struct extent_state *cached = NULL; 1095 struct extent_map *em; 1096 int ret = 0; 1097 bool free_pages = false; 1098 u64 start = async_extent->start; 1099 u64 end = async_extent->start + async_extent->ram_size - 1; 1100 1101 if (async_chunk->blkcg_css) 1102 kthread_associate_blkcg(async_chunk->blkcg_css); 1103 1104 /* 1105 * If async_chunk->locked_folio is in the async_extent range, we need to 1106 * handle it. 1107 */ 1108 if (async_chunk->locked_folio) { 1109 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1110 u64 locked_folio_end = locked_folio_start + 1111 folio_size(async_chunk->locked_folio) - 1; 1112 1113 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1114 locked_folio = async_chunk->locked_folio; 1115 } 1116 1117 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1118 ASSERT(!async_extent->folios); 1119 ASSERT(async_extent->nr_folios == 0); 1120 submit_uncompressed_range(inode, async_extent, locked_folio); 1121 free_pages = true; 1122 goto done; 1123 } 1124 1125 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1126 async_extent->compressed_size, 1127 async_extent->compressed_size, 1128 0, *alloc_hint, &ins, 1, 1); 1129 if (ret) { 1130 /* 1131 * We can't reserve contiguous space for the compressed size. 1132 * Unlikely, but it's possible that we could have enough 1133 * non-contiguous space for the uncompressed size instead. So 1134 * fall back to uncompressed. 1135 */ 1136 submit_uncompressed_range(inode, async_extent, locked_folio); 1137 free_pages = true; 1138 goto done; 1139 } 1140 1141 btrfs_lock_extent(io_tree, start, end, &cached); 1142 1143 /* Here we're doing allocation and writeback of the compressed pages */ 1144 file_extent.disk_bytenr = ins.objectid; 1145 file_extent.disk_num_bytes = ins.offset; 1146 file_extent.ram_bytes = async_extent->ram_size; 1147 file_extent.num_bytes = async_extent->ram_size; 1148 file_extent.offset = 0; 1149 file_extent.compression = async_extent->compress_type; 1150 1151 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1152 if (IS_ERR(em)) { 1153 ret = PTR_ERR(em); 1154 goto out_free_reserve; 1155 } 1156 btrfs_free_extent_map(em); 1157 1158 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1159 1U << BTRFS_ORDERED_COMPRESSED); 1160 if (IS_ERR(ordered)) { 1161 btrfs_drop_extent_map_range(inode, start, end, false); 1162 ret = PTR_ERR(ordered); 1163 goto out_free_reserve; 1164 } 1165 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1166 1167 /* Clear dirty, set writeback and unlock the pages. */ 1168 extent_clear_unlock_delalloc(inode, start, end, 1169 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1170 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1171 btrfs_submit_compressed_write(ordered, 1172 async_extent->folios, /* compressed_folios */ 1173 async_extent->nr_folios, 1174 async_chunk->write_flags, true); 1175 *alloc_hint = ins.objectid + ins.offset; 1176 done: 1177 if (async_chunk->blkcg_css) 1178 kthread_associate_blkcg(NULL); 1179 if (free_pages) 1180 free_async_extent_pages(async_extent); 1181 kfree(async_extent); 1182 return; 1183 1184 out_free_reserve: 1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1186 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1187 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1188 extent_clear_unlock_delalloc(inode, start, end, 1189 NULL, &cached, 1190 EXTENT_LOCKED | EXTENT_DELALLOC | 1191 EXTENT_DELALLOC_NEW | 1192 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1193 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1194 PAGE_END_WRITEBACK); 1195 free_async_extent_pages(async_extent); 1196 if (async_chunk->blkcg_css) 1197 kthread_associate_blkcg(NULL); 1198 btrfs_debug(fs_info, 1199 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1200 btrfs_root_id(root), btrfs_ino(inode), start, 1201 async_extent->ram_size, ret); 1202 kfree(async_extent); 1203 } 1204 1205 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1206 u64 num_bytes) 1207 { 1208 struct extent_map_tree *em_tree = &inode->extent_tree; 1209 struct extent_map *em; 1210 u64 alloc_hint = 0; 1211 1212 read_lock(&em_tree->lock); 1213 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1214 if (em) { 1215 /* 1216 * if block start isn't an actual block number then find the 1217 * first block in this inode and use that as a hint. If that 1218 * block is also bogus then just don't worry about it. 1219 */ 1220 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1221 btrfs_free_extent_map(em); 1222 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1223 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1224 alloc_hint = btrfs_extent_map_block_start(em); 1225 if (em) 1226 btrfs_free_extent_map(em); 1227 } else { 1228 alloc_hint = btrfs_extent_map_block_start(em); 1229 btrfs_free_extent_map(em); 1230 } 1231 } 1232 read_unlock(&em_tree->lock); 1233 1234 return alloc_hint; 1235 } 1236 1237 /* 1238 * when extent_io.c finds a delayed allocation range in the file, 1239 * the call backs end up in this code. The basic idea is to 1240 * allocate extents on disk for the range, and create ordered data structs 1241 * in ram to track those extents. 1242 * 1243 * locked_folio is the folio that writepage had locked already. We use 1244 * it to make sure we don't do extra locks or unlocks. 1245 * 1246 * When this function fails, it unlocks all pages except @locked_folio. 1247 * 1248 * When this function successfully creates an inline extent, it returns 1 and 1249 * unlocks all pages including locked_folio and starts I/O on them. 1250 * (In reality inline extents are limited to a single page, so locked_folio is 1251 * the only page handled anyway). 1252 * 1253 * When this function succeed and creates a normal extent, the page locking 1254 * status depends on the passed in flags: 1255 * 1256 * - If @keep_locked is set, all pages are kept locked. 1257 * - Else all pages except for @locked_folio are unlocked. 1258 * 1259 * When a failure happens in the second or later iteration of the 1260 * while-loop, the ordered extents created in previous iterations are cleaned up. 1261 */ 1262 static noinline int cow_file_range(struct btrfs_inode *inode, 1263 struct folio *locked_folio, u64 start, 1264 u64 end, u64 *done_offset, 1265 bool keep_locked, bool no_inline) 1266 { 1267 struct btrfs_root *root = inode->root; 1268 struct btrfs_fs_info *fs_info = root->fs_info; 1269 struct extent_state *cached = NULL; 1270 u64 alloc_hint = 0; 1271 u64 orig_start = start; 1272 u64 num_bytes; 1273 u64 cur_alloc_size = 0; 1274 u64 min_alloc_size; 1275 u64 blocksize = fs_info->sectorsize; 1276 struct btrfs_key ins; 1277 struct extent_map *em; 1278 unsigned clear_bits; 1279 unsigned long page_ops; 1280 int ret = 0; 1281 1282 if (btrfs_is_free_space_inode(inode)) { 1283 ret = -EINVAL; 1284 goto out_unlock; 1285 } 1286 1287 num_bytes = ALIGN(end - start + 1, blocksize); 1288 num_bytes = max(blocksize, num_bytes); 1289 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1290 1291 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1292 1293 if (!no_inline) { 1294 /* lets try to make an inline extent */ 1295 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1296 BTRFS_COMPRESS_NONE, NULL, false); 1297 if (ret <= 0) { 1298 /* 1299 * We succeeded, return 1 so the caller knows we're done 1300 * with this page and already handled the IO. 1301 * 1302 * If there was an error then cow_file_range_inline() has 1303 * already done the cleanup. 1304 */ 1305 if (ret == 0) 1306 ret = 1; 1307 goto done; 1308 } 1309 } 1310 1311 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1312 1313 /* 1314 * We're not doing compressed IO, don't unlock the first page (which 1315 * the caller expects to stay locked), don't clear any dirty bits and 1316 * don't set any writeback bits. 1317 * 1318 * Do set the Ordered (Private2) bit so we know this page was properly 1319 * setup for writepage. 1320 */ 1321 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1322 page_ops |= PAGE_SET_ORDERED; 1323 1324 /* 1325 * Relocation relies on the relocated extents to have exactly the same 1326 * size as the original extents. Normally writeback for relocation data 1327 * extents follows a NOCOW path because relocation preallocates the 1328 * extents. However, due to an operation such as scrub turning a block 1329 * group to RO mode, it may fallback to COW mode, so we must make sure 1330 * an extent allocated during COW has exactly the requested size and can 1331 * not be split into smaller extents, otherwise relocation breaks and 1332 * fails during the stage where it updates the bytenr of file extent 1333 * items. 1334 */ 1335 if (btrfs_is_data_reloc_root(root)) 1336 min_alloc_size = num_bytes; 1337 else 1338 min_alloc_size = fs_info->sectorsize; 1339 1340 while (num_bytes > 0) { 1341 struct btrfs_ordered_extent *ordered; 1342 struct btrfs_file_extent file_extent; 1343 1344 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1345 min_alloc_size, 0, alloc_hint, 1346 &ins, 1, 1); 1347 if (ret == -EAGAIN) { 1348 /* 1349 * btrfs_reserve_extent only returns -EAGAIN for zoned 1350 * file systems, which is an indication that there are 1351 * no active zones to allocate from at the moment. 1352 * 1353 * If this is the first loop iteration, wait for at 1354 * least one zone to finish before retrying the 1355 * allocation. Otherwise ask the caller to write out 1356 * the already allocated blocks before coming back to 1357 * us, or return -ENOSPC if it can't handle retries. 1358 */ 1359 ASSERT(btrfs_is_zoned(fs_info)); 1360 if (start == orig_start) { 1361 wait_on_bit_io(&inode->root->fs_info->flags, 1362 BTRFS_FS_NEED_ZONE_FINISH, 1363 TASK_UNINTERRUPTIBLE); 1364 continue; 1365 } 1366 if (done_offset) { 1367 /* 1368 * Move @end to the end of the processed range, 1369 * and exit the loop to unlock the processed extents. 1370 */ 1371 end = start - 1; 1372 ret = 0; 1373 break; 1374 } 1375 ret = -ENOSPC; 1376 } 1377 if (ret < 0) 1378 goto out_unlock; 1379 cur_alloc_size = ins.offset; 1380 1381 file_extent.disk_bytenr = ins.objectid; 1382 file_extent.disk_num_bytes = ins.offset; 1383 file_extent.num_bytes = ins.offset; 1384 file_extent.ram_bytes = ins.offset; 1385 file_extent.offset = 0; 1386 file_extent.compression = BTRFS_COMPRESS_NONE; 1387 1388 /* 1389 * Locked range will be released either during error clean up or 1390 * after the whole range is finished. 1391 */ 1392 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1393 &cached); 1394 1395 em = btrfs_create_io_em(inode, start, &file_extent, 1396 BTRFS_ORDERED_REGULAR); 1397 if (IS_ERR(em)) { 1398 btrfs_unlock_extent(&inode->io_tree, start, 1399 start + cur_alloc_size - 1, &cached); 1400 ret = PTR_ERR(em); 1401 goto out_reserve; 1402 } 1403 btrfs_free_extent_map(em); 1404 1405 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1406 1U << BTRFS_ORDERED_REGULAR); 1407 if (IS_ERR(ordered)) { 1408 btrfs_unlock_extent(&inode->io_tree, start, 1409 start + cur_alloc_size - 1, &cached); 1410 ret = PTR_ERR(ordered); 1411 goto out_drop_extent_cache; 1412 } 1413 1414 if (btrfs_is_data_reloc_root(root)) { 1415 ret = btrfs_reloc_clone_csums(ordered); 1416 1417 /* 1418 * Only drop cache here, and process as normal. 1419 * 1420 * We must not allow extent_clear_unlock_delalloc() 1421 * at out_unlock label to free meta of this ordered 1422 * extent, as its meta should be freed by 1423 * btrfs_finish_ordered_io(). 1424 * 1425 * So we must continue until @start is increased to 1426 * skip current ordered extent. 1427 */ 1428 if (ret) 1429 btrfs_drop_extent_map_range(inode, start, 1430 start + cur_alloc_size - 1, 1431 false); 1432 } 1433 btrfs_put_ordered_extent(ordered); 1434 1435 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1436 1437 if (num_bytes < cur_alloc_size) 1438 num_bytes = 0; 1439 else 1440 num_bytes -= cur_alloc_size; 1441 alloc_hint = ins.objectid + ins.offset; 1442 start += cur_alloc_size; 1443 cur_alloc_size = 0; 1444 1445 /* 1446 * btrfs_reloc_clone_csums() error, since start is increased 1447 * extent_clear_unlock_delalloc() at out_unlock label won't 1448 * free metadata of current ordered extent, we're OK to exit. 1449 */ 1450 if (ret) 1451 goto out_unlock; 1452 } 1453 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1454 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1455 done: 1456 if (done_offset) 1457 *done_offset = end; 1458 return ret; 1459 1460 out_drop_extent_cache: 1461 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1462 out_reserve: 1463 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1464 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1465 out_unlock: 1466 /* 1467 * Now, we have three regions to clean up: 1468 * 1469 * |-------(1)----|---(2)---|-------------(3)----------| 1470 * `- orig_start `- start `- start + cur_alloc_size `- end 1471 * 1472 * We process each region below. 1473 */ 1474 1475 /* 1476 * For the range (1). We have already instantiated the ordered extents 1477 * for this region, thus we need to cleanup those ordered extents. 1478 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1479 * are also handled by the ordered extents cleanup. 1480 * 1481 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1482 * finish the writeback of the involved folios, which will be never submitted. 1483 */ 1484 if (orig_start < start) { 1485 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1486 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1487 1488 if (!locked_folio) 1489 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1490 1491 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1492 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1493 locked_folio, NULL, clear_bits, page_ops); 1494 } 1495 1496 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1497 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1498 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1499 1500 /* 1501 * For the range (2). If we reserved an extent for our delalloc range 1502 * (or a subrange) and failed to create the respective ordered extent, 1503 * then it means that when we reserved the extent we decremented the 1504 * extent's size from the data space_info's bytes_may_use counter and 1505 * incremented the space_info's bytes_reserved counter by the same 1506 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1507 * to decrement again the data space_info's bytes_may_use counter, 1508 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1509 */ 1510 if (cur_alloc_size) { 1511 extent_clear_unlock_delalloc(inode, start, 1512 start + cur_alloc_size - 1, 1513 locked_folio, &cached, clear_bits, 1514 page_ops); 1515 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1516 } 1517 1518 /* 1519 * For the range (3). We never touched the region. In addition to the 1520 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1521 * space_info's bytes_may_use counter, reserved in 1522 * btrfs_check_data_free_space(). 1523 */ 1524 if (start + cur_alloc_size < end) { 1525 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1526 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1527 end, locked_folio, 1528 &cached, clear_bits, page_ops); 1529 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1530 end - start - cur_alloc_size + 1, NULL); 1531 } 1532 btrfs_err_rl(fs_info, 1533 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1534 __func__, btrfs_root_id(inode->root), 1535 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1536 return ret; 1537 } 1538 1539 /* 1540 * Phase two of compressed writeback. This is the ordered portion of the code, 1541 * which only gets called in the order the work was queued. We walk all the 1542 * async extents created by compress_file_range and send them down to the disk. 1543 * 1544 * If called with @do_free == true then it'll try to finish the work and free 1545 * the work struct eventually. 1546 */ 1547 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1548 { 1549 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1550 work); 1551 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1552 struct async_extent *async_extent; 1553 unsigned long nr_pages; 1554 u64 alloc_hint = 0; 1555 1556 if (do_free) { 1557 struct async_cow *async_cow; 1558 1559 btrfs_add_delayed_iput(async_chunk->inode); 1560 if (async_chunk->blkcg_css) 1561 css_put(async_chunk->blkcg_css); 1562 1563 async_cow = async_chunk->async_cow; 1564 if (atomic_dec_and_test(&async_cow->num_chunks)) 1565 kvfree(async_cow); 1566 return; 1567 } 1568 1569 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1570 PAGE_SHIFT; 1571 1572 while (!list_empty(&async_chunk->extents)) { 1573 async_extent = list_first_entry(&async_chunk->extents, 1574 struct async_extent, list); 1575 list_del(&async_extent->list); 1576 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1577 } 1578 1579 /* atomic_sub_return implies a barrier */ 1580 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1581 5 * SZ_1M) 1582 cond_wake_up_nomb(&fs_info->async_submit_wait); 1583 } 1584 1585 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1586 struct folio *locked_folio, u64 start, 1587 u64 end, struct writeback_control *wbc) 1588 { 1589 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1590 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1591 struct async_cow *ctx; 1592 struct async_chunk *async_chunk; 1593 unsigned long nr_pages; 1594 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1595 int i; 1596 unsigned nofs_flag; 1597 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1598 1599 nofs_flag = memalloc_nofs_save(); 1600 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1601 memalloc_nofs_restore(nofs_flag); 1602 if (!ctx) 1603 return false; 1604 1605 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1606 1607 async_chunk = ctx->chunks; 1608 atomic_set(&ctx->num_chunks, num_chunks); 1609 1610 for (i = 0; i < num_chunks; i++) { 1611 u64 cur_end = min(end, start + SZ_512K - 1); 1612 1613 /* 1614 * igrab is called higher up in the call chain, take only the 1615 * lightweight reference for the callback lifetime 1616 */ 1617 ihold(&inode->vfs_inode); 1618 async_chunk[i].async_cow = ctx; 1619 async_chunk[i].inode = inode; 1620 async_chunk[i].start = start; 1621 async_chunk[i].end = cur_end; 1622 async_chunk[i].write_flags = write_flags; 1623 INIT_LIST_HEAD(&async_chunk[i].extents); 1624 1625 /* 1626 * The locked_folio comes all the way from writepage and its 1627 * the original folio we were actually given. As we spread 1628 * this large delalloc region across multiple async_chunk 1629 * structs, only the first struct needs a pointer to 1630 * locked_folio. 1631 * 1632 * This way we don't need racey decisions about who is supposed 1633 * to unlock it. 1634 */ 1635 if (locked_folio) { 1636 /* 1637 * Depending on the compressibility, the pages might or 1638 * might not go through async. We want all of them to 1639 * be accounted against wbc once. Let's do it here 1640 * before the paths diverge. wbc accounting is used 1641 * only for foreign writeback detection and doesn't 1642 * need full accuracy. Just account the whole thing 1643 * against the first page. 1644 */ 1645 wbc_account_cgroup_owner(wbc, locked_folio, 1646 cur_end - start); 1647 async_chunk[i].locked_folio = locked_folio; 1648 locked_folio = NULL; 1649 } else { 1650 async_chunk[i].locked_folio = NULL; 1651 } 1652 1653 if (blkcg_css != blkcg_root_css) { 1654 css_get(blkcg_css); 1655 async_chunk[i].blkcg_css = blkcg_css; 1656 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1657 } else { 1658 async_chunk[i].blkcg_css = NULL; 1659 } 1660 1661 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1662 submit_compressed_extents); 1663 1664 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1665 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1666 1667 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1668 1669 start = cur_end + 1; 1670 } 1671 return true; 1672 } 1673 1674 /* 1675 * Run the delalloc range from start to end, and write back any dirty pages 1676 * covered by the range. 1677 */ 1678 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1679 struct folio *locked_folio, u64 start, 1680 u64 end, struct writeback_control *wbc, 1681 bool pages_dirty) 1682 { 1683 u64 done_offset = end; 1684 int ret; 1685 1686 while (start <= end) { 1687 ret = cow_file_range(inode, locked_folio, start, end, 1688 &done_offset, true, false); 1689 if (ret) 1690 return ret; 1691 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1692 start, done_offset, wbc, pages_dirty); 1693 start = done_offset + 1; 1694 } 1695 1696 return 1; 1697 } 1698 1699 static int fallback_to_cow(struct btrfs_inode *inode, 1700 struct folio *locked_folio, const u64 start, 1701 const u64 end) 1702 { 1703 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1704 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1705 const u64 range_bytes = end + 1 - start; 1706 struct extent_io_tree *io_tree = &inode->io_tree; 1707 struct extent_state *cached_state = NULL; 1708 u64 range_start = start; 1709 u64 count; 1710 int ret; 1711 1712 /* 1713 * If EXTENT_NORESERVE is set it means that when the buffered write was 1714 * made we had not enough available data space and therefore we did not 1715 * reserve data space for it, since we though we could do NOCOW for the 1716 * respective file range (either there is prealloc extent or the inode 1717 * has the NOCOW bit set). 1718 * 1719 * However when we need to fallback to COW mode (because for example the 1720 * block group for the corresponding extent was turned to RO mode by a 1721 * scrub or relocation) we need to do the following: 1722 * 1723 * 1) We increment the bytes_may_use counter of the data space info. 1724 * If COW succeeds, it allocates a new data extent and after doing 1725 * that it decrements the space info's bytes_may_use counter and 1726 * increments its bytes_reserved counter by the same amount (we do 1727 * this at btrfs_add_reserved_bytes()). So we need to increment the 1728 * bytes_may_use counter to compensate (when space is reserved at 1729 * buffered write time, the bytes_may_use counter is incremented); 1730 * 1731 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1732 * that if the COW path fails for any reason, it decrements (through 1733 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1734 * data space info, which we incremented in the step above. 1735 * 1736 * If we need to fallback to cow and the inode corresponds to a free 1737 * space cache inode or an inode of the data relocation tree, we must 1738 * also increment bytes_may_use of the data space_info for the same 1739 * reason. Space caches and relocated data extents always get a prealloc 1740 * extent for them, however scrub or balance may have set the block 1741 * group that contains that extent to RO mode and therefore force COW 1742 * when starting writeback. 1743 */ 1744 btrfs_lock_extent(io_tree, start, end, &cached_state); 1745 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1746 EXTENT_NORESERVE, 0, NULL); 1747 if (count > 0 || is_space_ino || is_reloc_ino) { 1748 u64 bytes = count; 1749 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1750 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1751 1752 if (is_space_ino || is_reloc_ino) 1753 bytes = range_bytes; 1754 1755 spin_lock(&sinfo->lock); 1756 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1757 spin_unlock(&sinfo->lock); 1758 1759 if (count > 0) 1760 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1761 &cached_state); 1762 } 1763 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1764 1765 /* 1766 * Don't try to create inline extents, as a mix of inline extent that 1767 * is written out and unlocked directly and a normal NOCOW extent 1768 * doesn't work. 1769 */ 1770 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1771 true); 1772 ASSERT(ret != 1); 1773 return ret; 1774 } 1775 1776 struct can_nocow_file_extent_args { 1777 /* Input fields. */ 1778 1779 /* Start file offset of the range we want to NOCOW. */ 1780 u64 start; 1781 /* End file offset (inclusive) of the range we want to NOCOW. */ 1782 u64 end; 1783 bool writeback_path; 1784 /* 1785 * Free the path passed to can_nocow_file_extent() once it's not needed 1786 * anymore. 1787 */ 1788 bool free_path; 1789 1790 /* 1791 * Output fields. Only set when can_nocow_file_extent() returns 1. 1792 * The expected file extent for the NOCOW write. 1793 */ 1794 struct btrfs_file_extent file_extent; 1795 }; 1796 1797 /* 1798 * Check if we can NOCOW the file extent that the path points to. 1799 * This function may return with the path released, so the caller should check 1800 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1801 * 1802 * Returns: < 0 on error 1803 * 0 if we can not NOCOW 1804 * 1 if we can NOCOW 1805 */ 1806 static int can_nocow_file_extent(struct btrfs_path *path, 1807 struct btrfs_key *key, 1808 struct btrfs_inode *inode, 1809 struct can_nocow_file_extent_args *args) 1810 { 1811 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1812 struct extent_buffer *leaf = path->nodes[0]; 1813 struct btrfs_root *root = inode->root; 1814 struct btrfs_file_extent_item *fi; 1815 struct btrfs_root *csum_root; 1816 u64 io_start; 1817 u64 extent_end; 1818 u8 extent_type; 1819 int can_nocow = 0; 1820 int ret = 0; 1821 bool nowait = path->nowait; 1822 1823 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1824 extent_type = btrfs_file_extent_type(leaf, fi); 1825 1826 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1827 goto out; 1828 1829 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1830 extent_type == BTRFS_FILE_EXTENT_REG) 1831 goto out; 1832 1833 /* 1834 * If the extent was created before the generation where the last snapshot 1835 * for its subvolume was created, then this implies the extent is shared, 1836 * hence we must COW. 1837 */ 1838 if (btrfs_file_extent_generation(leaf, fi) <= 1839 btrfs_root_last_snapshot(&root->root_item)) 1840 goto out; 1841 1842 /* An explicit hole, must COW. */ 1843 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1844 goto out; 1845 1846 /* Compressed/encrypted/encoded extents must be COWed. */ 1847 if (btrfs_file_extent_compression(leaf, fi) || 1848 btrfs_file_extent_encryption(leaf, fi) || 1849 btrfs_file_extent_other_encoding(leaf, fi)) 1850 goto out; 1851 1852 extent_end = btrfs_file_extent_end(path); 1853 1854 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1855 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1856 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1857 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1858 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1859 1860 /* 1861 * The following checks can be expensive, as they need to take other 1862 * locks and do btree or rbtree searches, so release the path to avoid 1863 * blocking other tasks for too long. 1864 */ 1865 btrfs_release_path(path); 1866 1867 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1868 args->file_extent.disk_bytenr, path); 1869 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1870 if (ret != 0) 1871 goto out; 1872 1873 if (args->free_path) { 1874 /* 1875 * We don't need the path anymore, plus through the 1876 * btrfs_lookup_csums_list() call below we will end up allocating 1877 * another path. So free the path to avoid unnecessary extra 1878 * memory usage. 1879 */ 1880 btrfs_free_path(path); 1881 path = NULL; 1882 } 1883 1884 /* If there are pending snapshots for this root, we must COW. */ 1885 if (args->writeback_path && !is_freespace_inode && 1886 atomic_read(&root->snapshot_force_cow)) 1887 goto out; 1888 1889 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1890 args->file_extent.offset += args->start - key->offset; 1891 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1892 1893 /* 1894 * Force COW if csums exist in the range. This ensures that csums for a 1895 * given extent are either valid or do not exist. 1896 */ 1897 1898 csum_root = btrfs_csum_root(root->fs_info, io_start); 1899 ret = btrfs_lookup_csums_list(csum_root, io_start, 1900 io_start + args->file_extent.num_bytes - 1, 1901 NULL, nowait); 1902 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1903 if (ret != 0) 1904 goto out; 1905 1906 can_nocow = 1; 1907 out: 1908 if (args->free_path && path) 1909 btrfs_free_path(path); 1910 1911 return ret < 0 ? ret : can_nocow; 1912 } 1913 1914 /* 1915 * Cleanup the dirty folios which will never be submitted due to error. 1916 * 1917 * When running a delalloc range, we may need to split the ranges (due to 1918 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1919 * out and previously successfully executed range will never be submitted, thus 1920 * we have to cleanup those folios by clearing their dirty flag, starting and 1921 * finishing the writeback. 1922 */ 1923 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1924 struct folio *locked_folio, 1925 u64 start, u64 end, int error) 1926 { 1927 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1928 struct address_space *mapping = inode->vfs_inode.i_mapping; 1929 pgoff_t start_index = start >> PAGE_SHIFT; 1930 pgoff_t end_index = end >> PAGE_SHIFT; 1931 u32 len; 1932 1933 ASSERT(end + 1 - start < U32_MAX); 1934 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1935 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1936 len = end + 1 - start; 1937 1938 /* 1939 * Handle the locked folio first. 1940 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1941 */ 1942 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1943 1944 for (pgoff_t index = start_index; index <= end_index; index++) { 1945 struct folio *folio; 1946 1947 /* Already handled at the beginning. */ 1948 if (index == locked_folio->index) 1949 continue; 1950 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1951 /* Cache already dropped, no need to do any cleanup. */ 1952 if (IS_ERR(folio)) 1953 continue; 1954 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1955 folio_unlock(folio); 1956 folio_put(folio); 1957 } 1958 mapping_set_error(mapping, error); 1959 } 1960 1961 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1962 struct extent_state **cached, 1963 struct can_nocow_file_extent_args *nocow_args, 1964 u64 file_pos, bool is_prealloc) 1965 { 1966 struct btrfs_ordered_extent *ordered; 1967 u64 len = nocow_args->file_extent.num_bytes; 1968 u64 end = file_pos + len - 1; 1969 int ret = 0; 1970 1971 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1972 1973 if (is_prealloc) { 1974 struct extent_map *em; 1975 1976 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1977 BTRFS_ORDERED_PREALLOC); 1978 if (IS_ERR(em)) { 1979 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1980 return PTR_ERR(em); 1981 } 1982 btrfs_free_extent_map(em); 1983 } 1984 1985 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1986 is_prealloc 1987 ? (1U << BTRFS_ORDERED_PREALLOC) 1988 : (1U << BTRFS_ORDERED_NOCOW)); 1989 if (IS_ERR(ordered)) { 1990 if (is_prealloc) 1991 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1992 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1993 return PTR_ERR(ordered); 1994 } 1995 1996 if (btrfs_is_data_reloc_root(inode->root)) 1997 /* 1998 * Errors are handled later, as we must prevent 1999 * extent_clear_unlock_delalloc() in error handler from freeing 2000 * metadata of the created ordered extent. 2001 */ 2002 ret = btrfs_reloc_clone_csums(ordered); 2003 btrfs_put_ordered_extent(ordered); 2004 2005 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2006 EXTENT_LOCKED | EXTENT_DELALLOC | 2007 EXTENT_CLEAR_DATA_RESV, 2008 PAGE_UNLOCK | PAGE_SET_ORDERED); 2009 /* 2010 * On error, we need to cleanup the ordered extents we created. 2011 * 2012 * We do not clear the folio Dirty flags because they are set and 2013 * cleaered by the caller. 2014 */ 2015 if (ret < 0) 2016 btrfs_cleanup_ordered_extents(inode, file_pos, end); 2017 return ret; 2018 } 2019 2020 /* 2021 * when nowcow writeback call back. This checks for snapshots or COW copies 2022 * of the extents that exist in the file, and COWs the file as required. 2023 * 2024 * If no cow copies or snapshots exist, we write directly to the existing 2025 * blocks on disk 2026 */ 2027 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2028 struct folio *locked_folio, 2029 const u64 start, const u64 end) 2030 { 2031 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2032 struct btrfs_root *root = inode->root; 2033 struct btrfs_path *path; 2034 u64 cow_start = (u64)-1; 2035 /* 2036 * If not 0, represents the inclusive end of the last fallback_to_cow() 2037 * range. Only for error handling. 2038 */ 2039 u64 cow_end = 0; 2040 u64 cur_offset = start; 2041 int ret; 2042 bool check_prev = true; 2043 u64 ino = btrfs_ino(inode); 2044 struct can_nocow_file_extent_args nocow_args = { 0 }; 2045 2046 /* 2047 * Normally on a zoned device we're only doing COW writes, but in case 2048 * of relocation on a zoned filesystem serializes I/O so that we're only 2049 * writing sequentially and can end up here as well. 2050 */ 2051 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2052 2053 path = btrfs_alloc_path(); 2054 if (!path) { 2055 ret = -ENOMEM; 2056 goto error; 2057 } 2058 2059 nocow_args.end = end; 2060 nocow_args.writeback_path = true; 2061 2062 while (cur_offset <= end) { 2063 struct btrfs_block_group *nocow_bg = NULL; 2064 struct btrfs_key found_key; 2065 struct btrfs_file_extent_item *fi; 2066 struct extent_buffer *leaf; 2067 struct extent_state *cached_state = NULL; 2068 u64 extent_end; 2069 int extent_type; 2070 2071 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2072 cur_offset, 0); 2073 if (ret < 0) 2074 goto error; 2075 2076 /* 2077 * If there is no extent for our range when doing the initial 2078 * search, then go back to the previous slot as it will be the 2079 * one containing the search offset 2080 */ 2081 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2082 leaf = path->nodes[0]; 2083 btrfs_item_key_to_cpu(leaf, &found_key, 2084 path->slots[0] - 1); 2085 if (found_key.objectid == ino && 2086 found_key.type == BTRFS_EXTENT_DATA_KEY) 2087 path->slots[0]--; 2088 } 2089 check_prev = false; 2090 next_slot: 2091 /* Go to next leaf if we have exhausted the current one */ 2092 leaf = path->nodes[0]; 2093 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2094 ret = btrfs_next_leaf(root, path); 2095 if (ret < 0) 2096 goto error; 2097 if (ret > 0) 2098 break; 2099 leaf = path->nodes[0]; 2100 } 2101 2102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2103 2104 /* Didn't find anything for our INO */ 2105 if (found_key.objectid > ino) 2106 break; 2107 /* 2108 * Keep searching until we find an EXTENT_ITEM or there are no 2109 * more extents for this inode 2110 */ 2111 if (WARN_ON_ONCE(found_key.objectid < ino) || 2112 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2113 path->slots[0]++; 2114 goto next_slot; 2115 } 2116 2117 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2118 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2119 found_key.offset > end) 2120 break; 2121 2122 /* 2123 * If the found extent starts after requested offset, then 2124 * adjust cur_offset to be right before this extent begins. 2125 */ 2126 if (found_key.offset > cur_offset) { 2127 if (cow_start == (u64)-1) 2128 cow_start = cur_offset; 2129 cur_offset = found_key.offset; 2130 goto next_slot; 2131 } 2132 2133 /* 2134 * Found extent which begins before our range and potentially 2135 * intersect it 2136 */ 2137 fi = btrfs_item_ptr(leaf, path->slots[0], 2138 struct btrfs_file_extent_item); 2139 extent_type = btrfs_file_extent_type(leaf, fi); 2140 /* If this is triggered then we have a memory corruption. */ 2141 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2142 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2143 ret = -EUCLEAN; 2144 goto error; 2145 } 2146 extent_end = btrfs_file_extent_end(path); 2147 2148 /* 2149 * If the extent we got ends before our current offset, skip to 2150 * the next extent. 2151 */ 2152 if (extent_end <= cur_offset) { 2153 path->slots[0]++; 2154 goto next_slot; 2155 } 2156 2157 nocow_args.start = cur_offset; 2158 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2159 if (ret < 0) 2160 goto error; 2161 if (ret == 0) 2162 goto must_cow; 2163 2164 ret = 0; 2165 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2166 nocow_args.file_extent.disk_bytenr + 2167 nocow_args.file_extent.offset); 2168 if (!nocow_bg) { 2169 must_cow: 2170 /* 2171 * If we can't perform NOCOW writeback for the range, 2172 * then record the beginning of the range that needs to 2173 * be COWed. It will be written out before the next 2174 * NOCOW range if we find one, or when exiting this 2175 * loop. 2176 */ 2177 if (cow_start == (u64)-1) 2178 cow_start = cur_offset; 2179 cur_offset = extent_end; 2180 if (cur_offset > end) 2181 break; 2182 if (!path->nodes[0]) 2183 continue; 2184 path->slots[0]++; 2185 goto next_slot; 2186 } 2187 2188 /* 2189 * COW range from cow_start to found_key.offset - 1. As the key 2190 * will contain the beginning of the first extent that can be 2191 * NOCOW, following one which needs to be COW'ed 2192 */ 2193 if (cow_start != (u64)-1) { 2194 ret = fallback_to_cow(inode, locked_folio, cow_start, 2195 found_key.offset - 1); 2196 if (ret) { 2197 cow_end = found_key.offset - 1; 2198 btrfs_dec_nocow_writers(nocow_bg); 2199 goto error; 2200 } 2201 cow_start = (u64)-1; 2202 } 2203 2204 ret = nocow_one_range(inode, locked_folio, &cached_state, 2205 &nocow_args, cur_offset, 2206 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2207 btrfs_dec_nocow_writers(nocow_bg); 2208 if (ret < 0) 2209 goto error; 2210 cur_offset = extent_end; 2211 } 2212 btrfs_release_path(path); 2213 2214 if (cur_offset <= end && cow_start == (u64)-1) 2215 cow_start = cur_offset; 2216 2217 if (cow_start != (u64)-1) { 2218 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2219 if (ret) { 2220 cow_end = end; 2221 goto error; 2222 } 2223 cow_start = (u64)-1; 2224 } 2225 2226 btrfs_free_path(path); 2227 return 0; 2228 2229 error: 2230 /* 2231 * There are several error cases: 2232 * 2233 * 1) Failed without falling back to COW 2234 * start cur_offset end 2235 * |/////////////| | 2236 * 2237 * In this case, cow_start should be (u64)-1. 2238 * 2239 * For range [start, cur_offset) the folios are already unlocked (except 2240 * @locked_folio), EXTENT_DELALLOC already removed. 2241 * Need to clear the dirty flags and finish the ordered extents. 2242 * 2243 * 2) Failed with error before calling fallback_to_cow() 2244 * 2245 * start cow_start end 2246 * |/////////////| | 2247 * 2248 * In this case, only @cow_start is set, @cur_offset is between 2249 * [cow_start, end) 2250 * 2251 * It's mostly the same as case 1), just replace @cur_offset with 2252 * @cow_start. 2253 * 2254 * 3) Failed with error from fallback_to_cow() 2255 * 2256 * start cow_start cow_end end 2257 * |/////////////|-----------| | 2258 * 2259 * In this case, both @cow_start and @cow_end is set. 2260 * 2261 * For range [start, cow_start) it's the same as case 1). 2262 * But for range [cow_start, cow_end), all the cleanup is handled by 2263 * cow_file_range(), we should not touch anything in that range. 2264 * 2265 * So for all above cases, if @cow_start is set, cleanup ordered extents 2266 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2267 */ 2268 if (cow_start != (u64)-1) 2269 cur_offset = cow_start; 2270 2271 if (cur_offset > start) { 2272 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2273 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2274 } 2275 2276 /* 2277 * If an error happened while a COW region is outstanding, cur_offset 2278 * needs to be reset to @cow_end + 1 to skip the COW range, as 2279 * cow_file_range() will do the proper cleanup at error. 2280 */ 2281 if (cow_end) 2282 cur_offset = cow_end + 1; 2283 2284 /* 2285 * We need to lock the extent here because we're clearing DELALLOC and 2286 * we're not locked at this point. 2287 */ 2288 if (cur_offset < end) { 2289 struct extent_state *cached = NULL; 2290 2291 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached); 2292 extent_clear_unlock_delalloc(inode, cur_offset, end, 2293 locked_folio, &cached, 2294 EXTENT_LOCKED | EXTENT_DELALLOC | 2295 EXTENT_DEFRAG | 2296 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2297 PAGE_START_WRITEBACK | 2298 PAGE_END_WRITEBACK); 2299 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2300 } 2301 btrfs_free_path(path); 2302 btrfs_err_rl(fs_info, 2303 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2304 __func__, btrfs_root_id(inode->root), 2305 btrfs_ino(inode), start, end + 1 - start, ret); 2306 return ret; 2307 } 2308 2309 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2310 { 2311 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2312 if (inode->defrag_bytes && 2313 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2314 return false; 2315 return true; 2316 } 2317 return false; 2318 } 2319 2320 /* 2321 * Function to process delayed allocation (create CoW) for ranges which are 2322 * being touched for the first time. 2323 */ 2324 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2325 u64 start, u64 end, struct writeback_control *wbc) 2326 { 2327 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2328 int ret; 2329 2330 /* 2331 * The range must cover part of the @locked_folio, or a return of 1 2332 * can confuse the caller. 2333 */ 2334 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2335 2336 if (should_nocow(inode, start, end)) { 2337 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2338 return ret; 2339 } 2340 2341 if (btrfs_inode_can_compress(inode) && 2342 inode_need_compress(inode, start, end) && 2343 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2344 return 1; 2345 2346 if (zoned) 2347 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2348 true); 2349 else 2350 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2351 false, false); 2352 return ret; 2353 } 2354 2355 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2356 struct extent_state *orig, u64 split) 2357 { 2358 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2359 u64 size; 2360 2361 lockdep_assert_held(&inode->io_tree.lock); 2362 2363 /* not delalloc, ignore it */ 2364 if (!(orig->state & EXTENT_DELALLOC)) 2365 return; 2366 2367 size = orig->end - orig->start + 1; 2368 if (size > fs_info->max_extent_size) { 2369 u32 num_extents; 2370 u64 new_size; 2371 2372 /* 2373 * See the explanation in btrfs_merge_delalloc_extent, the same 2374 * applies here, just in reverse. 2375 */ 2376 new_size = orig->end - split + 1; 2377 num_extents = count_max_extents(fs_info, new_size); 2378 new_size = split - orig->start; 2379 num_extents += count_max_extents(fs_info, new_size); 2380 if (count_max_extents(fs_info, size) >= num_extents) 2381 return; 2382 } 2383 2384 spin_lock(&inode->lock); 2385 btrfs_mod_outstanding_extents(inode, 1); 2386 spin_unlock(&inode->lock); 2387 } 2388 2389 /* 2390 * Handle merged delayed allocation extents so we can keep track of new extents 2391 * that are just merged onto old extents, such as when we are doing sequential 2392 * writes, so we can properly account for the metadata space we'll need. 2393 */ 2394 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2395 struct extent_state *other) 2396 { 2397 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2398 u64 new_size, old_size; 2399 u32 num_extents; 2400 2401 lockdep_assert_held(&inode->io_tree.lock); 2402 2403 /* not delalloc, ignore it */ 2404 if (!(other->state & EXTENT_DELALLOC)) 2405 return; 2406 2407 if (new->start > other->start) 2408 new_size = new->end - other->start + 1; 2409 else 2410 new_size = other->end - new->start + 1; 2411 2412 /* we're not bigger than the max, unreserve the space and go */ 2413 if (new_size <= fs_info->max_extent_size) { 2414 spin_lock(&inode->lock); 2415 btrfs_mod_outstanding_extents(inode, -1); 2416 spin_unlock(&inode->lock); 2417 return; 2418 } 2419 2420 /* 2421 * We have to add up either side to figure out how many extents were 2422 * accounted for before we merged into one big extent. If the number of 2423 * extents we accounted for is <= the amount we need for the new range 2424 * then we can return, otherwise drop. Think of it like this 2425 * 2426 * [ 4k][MAX_SIZE] 2427 * 2428 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2429 * need 2 outstanding extents, on one side we have 1 and the other side 2430 * we have 1 so they are == and we can return. But in this case 2431 * 2432 * [MAX_SIZE+4k][MAX_SIZE+4k] 2433 * 2434 * Each range on their own accounts for 2 extents, but merged together 2435 * they are only 3 extents worth of accounting, so we need to drop in 2436 * this case. 2437 */ 2438 old_size = other->end - other->start + 1; 2439 num_extents = count_max_extents(fs_info, old_size); 2440 old_size = new->end - new->start + 1; 2441 num_extents += count_max_extents(fs_info, old_size); 2442 if (count_max_extents(fs_info, new_size) >= num_extents) 2443 return; 2444 2445 spin_lock(&inode->lock); 2446 btrfs_mod_outstanding_extents(inode, -1); 2447 spin_unlock(&inode->lock); 2448 } 2449 2450 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2451 { 2452 struct btrfs_root *root = inode->root; 2453 struct btrfs_fs_info *fs_info = root->fs_info; 2454 2455 spin_lock(&root->delalloc_lock); 2456 ASSERT(list_empty(&inode->delalloc_inodes)); 2457 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2458 root->nr_delalloc_inodes++; 2459 if (root->nr_delalloc_inodes == 1) { 2460 spin_lock(&fs_info->delalloc_root_lock); 2461 ASSERT(list_empty(&root->delalloc_root)); 2462 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2463 spin_unlock(&fs_info->delalloc_root_lock); 2464 } 2465 spin_unlock(&root->delalloc_lock); 2466 } 2467 2468 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2469 { 2470 struct btrfs_root *root = inode->root; 2471 struct btrfs_fs_info *fs_info = root->fs_info; 2472 2473 lockdep_assert_held(&root->delalloc_lock); 2474 2475 /* 2476 * We may be called after the inode was already deleted from the list, 2477 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2478 * and then later through btrfs_clear_delalloc_extent() while the inode 2479 * still has ->delalloc_bytes > 0. 2480 */ 2481 if (!list_empty(&inode->delalloc_inodes)) { 2482 list_del_init(&inode->delalloc_inodes); 2483 root->nr_delalloc_inodes--; 2484 if (!root->nr_delalloc_inodes) { 2485 ASSERT(list_empty(&root->delalloc_inodes)); 2486 spin_lock(&fs_info->delalloc_root_lock); 2487 ASSERT(!list_empty(&root->delalloc_root)); 2488 list_del_init(&root->delalloc_root); 2489 spin_unlock(&fs_info->delalloc_root_lock); 2490 } 2491 } 2492 } 2493 2494 /* 2495 * Properly track delayed allocation bytes in the inode and to maintain the 2496 * list of inodes that have pending delalloc work to be done. 2497 */ 2498 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2499 u32 bits) 2500 { 2501 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2502 2503 lockdep_assert_held(&inode->io_tree.lock); 2504 2505 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2506 WARN_ON(1); 2507 /* 2508 * set_bit and clear bit hooks normally require _irqsave/restore 2509 * but in this case, we are only testing for the DELALLOC 2510 * bit, which is only set or cleared with irqs on 2511 */ 2512 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2513 u64 len = state->end + 1 - state->start; 2514 u64 prev_delalloc_bytes; 2515 u32 num_extents = count_max_extents(fs_info, len); 2516 2517 spin_lock(&inode->lock); 2518 btrfs_mod_outstanding_extents(inode, num_extents); 2519 spin_unlock(&inode->lock); 2520 2521 /* For sanity tests */ 2522 if (btrfs_is_testing(fs_info)) 2523 return; 2524 2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2526 fs_info->delalloc_batch); 2527 spin_lock(&inode->lock); 2528 prev_delalloc_bytes = inode->delalloc_bytes; 2529 inode->delalloc_bytes += len; 2530 if (bits & EXTENT_DEFRAG) 2531 inode->defrag_bytes += len; 2532 spin_unlock(&inode->lock); 2533 2534 /* 2535 * We don't need to be under the protection of the inode's lock, 2536 * because we are called while holding the inode's io_tree lock 2537 * and are therefore protected against concurrent calls of this 2538 * function and btrfs_clear_delalloc_extent(). 2539 */ 2540 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2541 btrfs_add_delalloc_inode(inode); 2542 } 2543 2544 if (!(state->state & EXTENT_DELALLOC_NEW) && 2545 (bits & EXTENT_DELALLOC_NEW)) { 2546 spin_lock(&inode->lock); 2547 inode->new_delalloc_bytes += state->end + 1 - state->start; 2548 spin_unlock(&inode->lock); 2549 } 2550 } 2551 2552 /* 2553 * Once a range is no longer delalloc this function ensures that proper 2554 * accounting happens. 2555 */ 2556 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2557 struct extent_state *state, u32 bits) 2558 { 2559 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2560 u64 len = state->end + 1 - state->start; 2561 u32 num_extents = count_max_extents(fs_info, len); 2562 2563 lockdep_assert_held(&inode->io_tree.lock); 2564 2565 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2566 spin_lock(&inode->lock); 2567 inode->defrag_bytes -= len; 2568 spin_unlock(&inode->lock); 2569 } 2570 2571 /* 2572 * set_bit and clear bit hooks normally require _irqsave/restore 2573 * but in this case, we are only testing for the DELALLOC 2574 * bit, which is only set or cleared with irqs on 2575 */ 2576 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2577 struct btrfs_root *root = inode->root; 2578 u64 new_delalloc_bytes; 2579 2580 spin_lock(&inode->lock); 2581 btrfs_mod_outstanding_extents(inode, -num_extents); 2582 spin_unlock(&inode->lock); 2583 2584 /* 2585 * We don't reserve metadata space for space cache inodes so we 2586 * don't need to call delalloc_release_metadata if there is an 2587 * error. 2588 */ 2589 if (bits & EXTENT_CLEAR_META_RESV && 2590 root != fs_info->tree_root) 2591 btrfs_delalloc_release_metadata(inode, len, true); 2592 2593 /* For sanity tests. */ 2594 if (btrfs_is_testing(fs_info)) 2595 return; 2596 2597 if (!btrfs_is_data_reloc_root(root) && 2598 !btrfs_is_free_space_inode(inode) && 2599 !(state->state & EXTENT_NORESERVE) && 2600 (bits & EXTENT_CLEAR_DATA_RESV)) 2601 btrfs_free_reserved_data_space_noquota(inode, len); 2602 2603 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2604 fs_info->delalloc_batch); 2605 spin_lock(&inode->lock); 2606 inode->delalloc_bytes -= len; 2607 new_delalloc_bytes = inode->delalloc_bytes; 2608 spin_unlock(&inode->lock); 2609 2610 /* 2611 * We don't need to be under the protection of the inode's lock, 2612 * because we are called while holding the inode's io_tree lock 2613 * and are therefore protected against concurrent calls of this 2614 * function and btrfs_set_delalloc_extent(). 2615 */ 2616 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2617 spin_lock(&root->delalloc_lock); 2618 btrfs_del_delalloc_inode(inode); 2619 spin_unlock(&root->delalloc_lock); 2620 } 2621 } 2622 2623 if ((state->state & EXTENT_DELALLOC_NEW) && 2624 (bits & EXTENT_DELALLOC_NEW)) { 2625 spin_lock(&inode->lock); 2626 ASSERT(inode->new_delalloc_bytes >= len); 2627 inode->new_delalloc_bytes -= len; 2628 if (bits & EXTENT_ADD_INODE_BYTES) 2629 inode_add_bytes(&inode->vfs_inode, len); 2630 spin_unlock(&inode->lock); 2631 } 2632 } 2633 2634 /* 2635 * given a list of ordered sums record them in the inode. This happens 2636 * at IO completion time based on sums calculated at bio submission time. 2637 */ 2638 static int add_pending_csums(struct btrfs_trans_handle *trans, 2639 struct list_head *list) 2640 { 2641 struct btrfs_ordered_sum *sum; 2642 struct btrfs_root *csum_root = NULL; 2643 int ret; 2644 2645 list_for_each_entry(sum, list, list) { 2646 trans->adding_csums = true; 2647 if (!csum_root) 2648 csum_root = btrfs_csum_root(trans->fs_info, 2649 sum->logical); 2650 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2651 trans->adding_csums = false; 2652 if (ret) 2653 return ret; 2654 } 2655 return 0; 2656 } 2657 2658 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2659 const u64 start, 2660 const u64 len, 2661 struct extent_state **cached_state) 2662 { 2663 u64 search_start = start; 2664 const u64 end = start + len - 1; 2665 2666 while (search_start < end) { 2667 const u64 search_len = end - search_start + 1; 2668 struct extent_map *em; 2669 u64 em_len; 2670 int ret = 0; 2671 2672 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2673 if (IS_ERR(em)) 2674 return PTR_ERR(em); 2675 2676 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2677 goto next; 2678 2679 em_len = em->len; 2680 if (em->start < search_start) 2681 em_len -= search_start - em->start; 2682 if (em_len > search_len) 2683 em_len = search_len; 2684 2685 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2686 search_start + em_len - 1, 2687 EXTENT_DELALLOC_NEW, cached_state); 2688 next: 2689 search_start = btrfs_extent_map_end(em); 2690 btrfs_free_extent_map(em); 2691 if (ret) 2692 return ret; 2693 } 2694 return 0; 2695 } 2696 2697 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2698 unsigned int extra_bits, 2699 struct extent_state **cached_state) 2700 { 2701 WARN_ON(PAGE_ALIGNED(end)); 2702 2703 if (start >= i_size_read(&inode->vfs_inode) && 2704 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2705 /* 2706 * There can't be any extents following eof in this case so just 2707 * set the delalloc new bit for the range directly. 2708 */ 2709 extra_bits |= EXTENT_DELALLOC_NEW; 2710 } else { 2711 int ret; 2712 2713 ret = btrfs_find_new_delalloc_bytes(inode, start, 2714 end + 1 - start, 2715 cached_state); 2716 if (ret) 2717 return ret; 2718 } 2719 2720 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2721 EXTENT_DELALLOC | extra_bits, cached_state); 2722 } 2723 2724 /* see btrfs_writepage_start_hook for details on why this is required */ 2725 struct btrfs_writepage_fixup { 2726 struct folio *folio; 2727 struct btrfs_inode *inode; 2728 struct btrfs_work work; 2729 }; 2730 2731 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2732 { 2733 struct btrfs_writepage_fixup *fixup = 2734 container_of(work, struct btrfs_writepage_fixup, work); 2735 struct btrfs_ordered_extent *ordered; 2736 struct extent_state *cached_state = NULL; 2737 struct extent_changeset *data_reserved = NULL; 2738 struct folio *folio = fixup->folio; 2739 struct btrfs_inode *inode = fixup->inode; 2740 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2741 u64 page_start = folio_pos(folio); 2742 u64 page_end = folio_end(folio) - 1; 2743 int ret = 0; 2744 bool free_delalloc_space = true; 2745 2746 /* 2747 * This is similar to page_mkwrite, we need to reserve the space before 2748 * we take the folio lock. 2749 */ 2750 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2751 folio_size(folio)); 2752 again: 2753 folio_lock(folio); 2754 2755 /* 2756 * Before we queued this fixup, we took a reference on the folio. 2757 * folio->mapping may go NULL, but it shouldn't be moved to a different 2758 * address space. 2759 */ 2760 if (!folio->mapping || !folio_test_dirty(folio) || 2761 !folio_test_checked(folio)) { 2762 /* 2763 * Unfortunately this is a little tricky, either 2764 * 2765 * 1) We got here and our folio had already been dealt with and 2766 * we reserved our space, thus ret == 0, so we need to just 2767 * drop our space reservation and bail. This can happen the 2768 * first time we come into the fixup worker, or could happen 2769 * while waiting for the ordered extent. 2770 * 2) Our folio was already dealt with, but we happened to get an 2771 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2772 * this case we obviously don't have anything to release, but 2773 * because the folio was already dealt with we don't want to 2774 * mark the folio with an error, so make sure we're resetting 2775 * ret to 0. This is why we have this check _before_ the ret 2776 * check, because we do not want to have a surprise ENOSPC 2777 * when the folio was already properly dealt with. 2778 */ 2779 if (!ret) { 2780 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2781 btrfs_delalloc_release_space(inode, data_reserved, 2782 page_start, folio_size(folio), 2783 true); 2784 } 2785 ret = 0; 2786 goto out_page; 2787 } 2788 2789 /* 2790 * We can't mess with the folio state unless it is locked, so now that 2791 * it is locked bail if we failed to make our space reservation. 2792 */ 2793 if (ret) 2794 goto out_page; 2795 2796 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2797 2798 /* already ordered? We're done */ 2799 if (folio_test_ordered(folio)) 2800 goto out_reserved; 2801 2802 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2803 if (ordered) { 2804 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2805 &cached_state); 2806 folio_unlock(folio); 2807 btrfs_start_ordered_extent(ordered); 2808 btrfs_put_ordered_extent(ordered); 2809 goto again; 2810 } 2811 2812 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2813 &cached_state); 2814 if (ret) 2815 goto out_reserved; 2816 2817 /* 2818 * Everything went as planned, we're now the owner of a dirty page with 2819 * delayed allocation bits set and space reserved for our COW 2820 * destination. 2821 * 2822 * The page was dirty when we started, nothing should have cleaned it. 2823 */ 2824 BUG_ON(!folio_test_dirty(folio)); 2825 free_delalloc_space = false; 2826 out_reserved: 2827 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2828 if (free_delalloc_space) 2829 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2830 PAGE_SIZE, true); 2831 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2832 out_page: 2833 if (ret) { 2834 /* 2835 * We hit ENOSPC or other errors. Update the mapping and page 2836 * to reflect the errors and clean the page. 2837 */ 2838 mapping_set_error(folio->mapping, ret); 2839 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2840 folio_size(folio), !ret); 2841 folio_clear_dirty_for_io(folio); 2842 } 2843 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2844 folio_unlock(folio); 2845 folio_put(folio); 2846 kfree(fixup); 2847 extent_changeset_free(data_reserved); 2848 /* 2849 * As a precaution, do a delayed iput in case it would be the last iput 2850 * that could need flushing space. Recursing back to fixup worker would 2851 * deadlock. 2852 */ 2853 btrfs_add_delayed_iput(inode); 2854 } 2855 2856 /* 2857 * There are a few paths in the higher layers of the kernel that directly 2858 * set the folio dirty bit without asking the filesystem if it is a 2859 * good idea. This causes problems because we want to make sure COW 2860 * properly happens and the data=ordered rules are followed. 2861 * 2862 * In our case any range that doesn't have the ORDERED bit set 2863 * hasn't been properly setup for IO. We kick off an async process 2864 * to fix it up. The async helper will wait for ordered extents, set 2865 * the delalloc bit and make it safe to write the folio. 2866 */ 2867 int btrfs_writepage_cow_fixup(struct folio *folio) 2868 { 2869 struct inode *inode = folio->mapping->host; 2870 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2871 struct btrfs_writepage_fixup *fixup; 2872 2873 /* This folio has ordered extent covering it already */ 2874 if (folio_test_ordered(folio)) 2875 return 0; 2876 2877 /* 2878 * For experimental build, we error out instead of EAGAIN. 2879 * 2880 * We should not hit such out-of-band dirty folios anymore. 2881 */ 2882 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2883 DEBUG_WARN(); 2884 btrfs_err_rl(fs_info, 2885 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2886 btrfs_root_id(BTRFS_I(inode)->root), 2887 btrfs_ino(BTRFS_I(inode)), 2888 folio_pos(folio)); 2889 return -EUCLEAN; 2890 } 2891 2892 /* 2893 * folio_checked is set below when we create a fixup worker for this 2894 * folio, don't try to create another one if we're already 2895 * folio_test_checked. 2896 * 2897 * The extent_io writepage code will redirty the foio if we send back 2898 * EAGAIN. 2899 */ 2900 if (folio_test_checked(folio)) 2901 return -EAGAIN; 2902 2903 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2904 if (!fixup) 2905 return -EAGAIN; 2906 2907 /* 2908 * We are already holding a reference to this inode from 2909 * write_cache_pages. We need to hold it because the space reservation 2910 * takes place outside of the folio lock, and we can't trust 2911 * folio->mapping outside of the folio lock. 2912 */ 2913 ihold(inode); 2914 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2915 folio_get(folio); 2916 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2917 fixup->folio = folio; 2918 fixup->inode = BTRFS_I(inode); 2919 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2920 2921 return -EAGAIN; 2922 } 2923 2924 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2925 struct btrfs_inode *inode, u64 file_pos, 2926 struct btrfs_file_extent_item *stack_fi, 2927 const bool update_inode_bytes, 2928 u64 qgroup_reserved) 2929 { 2930 struct btrfs_root *root = inode->root; 2931 const u64 sectorsize = root->fs_info->sectorsize; 2932 BTRFS_PATH_AUTO_FREE(path); 2933 struct extent_buffer *leaf; 2934 struct btrfs_key ins; 2935 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2936 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2937 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2938 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2939 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2940 struct btrfs_drop_extents_args drop_args = { 0 }; 2941 int ret; 2942 2943 path = btrfs_alloc_path(); 2944 if (!path) 2945 return -ENOMEM; 2946 2947 /* 2948 * we may be replacing one extent in the tree with another. 2949 * The new extent is pinned in the extent map, and we don't want 2950 * to drop it from the cache until it is completely in the btree. 2951 * 2952 * So, tell btrfs_drop_extents to leave this extent in the cache. 2953 * the caller is expected to unpin it and allow it to be merged 2954 * with the others. 2955 */ 2956 drop_args.path = path; 2957 drop_args.start = file_pos; 2958 drop_args.end = file_pos + num_bytes; 2959 drop_args.replace_extent = true; 2960 drop_args.extent_item_size = sizeof(*stack_fi); 2961 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2962 if (ret) 2963 goto out; 2964 2965 if (!drop_args.extent_inserted) { 2966 ins.objectid = btrfs_ino(inode); 2967 ins.type = BTRFS_EXTENT_DATA_KEY; 2968 ins.offset = file_pos; 2969 2970 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2971 sizeof(*stack_fi)); 2972 if (ret) 2973 goto out; 2974 } 2975 leaf = path->nodes[0]; 2976 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2977 write_extent_buffer(leaf, stack_fi, 2978 btrfs_item_ptr_offset(leaf, path->slots[0]), 2979 sizeof(struct btrfs_file_extent_item)); 2980 2981 btrfs_release_path(path); 2982 2983 /* 2984 * If we dropped an inline extent here, we know the range where it is 2985 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2986 * number of bytes only for that range containing the inline extent. 2987 * The remaining of the range will be processed when clearning the 2988 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2989 */ 2990 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2991 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2992 2993 inline_size = drop_args.bytes_found - inline_size; 2994 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2995 drop_args.bytes_found -= inline_size; 2996 num_bytes -= sectorsize; 2997 } 2998 2999 if (update_inode_bytes) 3000 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3001 3002 ins.objectid = disk_bytenr; 3003 ins.type = BTRFS_EXTENT_ITEM_KEY; 3004 ins.offset = disk_num_bytes; 3005 3006 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3007 if (ret) 3008 goto out; 3009 3010 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3011 file_pos - offset, 3012 qgroup_reserved, &ins); 3013 out: 3014 return ret; 3015 } 3016 3017 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3018 u64 start, u64 len) 3019 { 3020 struct btrfs_block_group *cache; 3021 3022 cache = btrfs_lookup_block_group(fs_info, start); 3023 ASSERT(cache); 3024 3025 spin_lock(&cache->lock); 3026 cache->delalloc_bytes -= len; 3027 spin_unlock(&cache->lock); 3028 3029 btrfs_put_block_group(cache); 3030 } 3031 3032 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3033 struct btrfs_ordered_extent *oe) 3034 { 3035 struct btrfs_file_extent_item stack_fi; 3036 bool update_inode_bytes; 3037 u64 num_bytes = oe->num_bytes; 3038 u64 ram_bytes = oe->ram_bytes; 3039 3040 memset(&stack_fi, 0, sizeof(stack_fi)); 3041 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3042 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3043 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3044 oe->disk_num_bytes); 3045 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3046 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3047 num_bytes = oe->truncated_len; 3048 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3049 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3050 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3051 /* Encryption and other encoding is reserved and all 0 */ 3052 3053 /* 3054 * For delalloc, when completing an ordered extent we update the inode's 3055 * bytes when clearing the range in the inode's io tree, so pass false 3056 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3057 * except if the ordered extent was truncated. 3058 */ 3059 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3060 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3061 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3062 3063 return insert_reserved_file_extent(trans, oe->inode, 3064 oe->file_offset, &stack_fi, 3065 update_inode_bytes, oe->qgroup_rsv); 3066 } 3067 3068 /* 3069 * As ordered data IO finishes, this gets called so we can finish 3070 * an ordered extent if the range of bytes in the file it covers are 3071 * fully written. 3072 */ 3073 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3074 { 3075 struct btrfs_inode *inode = ordered_extent->inode; 3076 struct btrfs_root *root = inode->root; 3077 struct btrfs_fs_info *fs_info = root->fs_info; 3078 struct btrfs_trans_handle *trans = NULL; 3079 struct extent_io_tree *io_tree = &inode->io_tree; 3080 struct extent_state *cached_state = NULL; 3081 u64 start, end; 3082 int compress_type = 0; 3083 int ret = 0; 3084 u64 logical_len = ordered_extent->num_bytes; 3085 bool freespace_inode; 3086 bool truncated = false; 3087 bool clear_reserved_extent = true; 3088 unsigned int clear_bits = EXTENT_DEFRAG; 3089 3090 start = ordered_extent->file_offset; 3091 end = start + ordered_extent->num_bytes - 1; 3092 3093 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3094 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3095 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3096 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3097 clear_bits |= EXTENT_DELALLOC_NEW; 3098 3099 freespace_inode = btrfs_is_free_space_inode(inode); 3100 if (!freespace_inode) 3101 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3102 3103 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3104 ret = -EIO; 3105 goto out; 3106 } 3107 3108 if (btrfs_is_zoned(fs_info)) 3109 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3110 ordered_extent->disk_num_bytes); 3111 3112 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3113 truncated = true; 3114 logical_len = ordered_extent->truncated_len; 3115 /* Truncated the entire extent, don't bother adding */ 3116 if (!logical_len) 3117 goto out; 3118 } 3119 3120 /* 3121 * If it's a COW write we need to lock the extent range as we will be 3122 * inserting/replacing file extent items and unpinning an extent map. 3123 * This must be taken before joining a transaction, as it's a higher 3124 * level lock (like the inode's VFS lock), otherwise we can run into an 3125 * ABBA deadlock with other tasks (transactions work like a lock, 3126 * depending on their current state). 3127 */ 3128 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3129 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3130 btrfs_lock_extent_bits(io_tree, start, end, 3131 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3132 &cached_state); 3133 } 3134 3135 if (freespace_inode) 3136 trans = btrfs_join_transaction_spacecache(root); 3137 else 3138 trans = btrfs_join_transaction(root); 3139 if (IS_ERR(trans)) { 3140 ret = PTR_ERR(trans); 3141 trans = NULL; 3142 goto out; 3143 } 3144 3145 trans->block_rsv = &inode->block_rsv; 3146 3147 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3148 if (ret) { 3149 btrfs_abort_transaction(trans, ret); 3150 goto out; 3151 } 3152 3153 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3154 /* Logic error */ 3155 ASSERT(list_empty(&ordered_extent->list)); 3156 if (!list_empty(&ordered_extent->list)) { 3157 ret = -EINVAL; 3158 btrfs_abort_transaction(trans, ret); 3159 goto out; 3160 } 3161 3162 btrfs_inode_safe_disk_i_size_write(inode, 0); 3163 ret = btrfs_update_inode_fallback(trans, inode); 3164 if (ret) { 3165 /* -ENOMEM or corruption */ 3166 btrfs_abort_transaction(trans, ret); 3167 } 3168 goto out; 3169 } 3170 3171 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3172 compress_type = ordered_extent->compress_type; 3173 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3174 BUG_ON(compress_type); 3175 ret = btrfs_mark_extent_written(trans, inode, 3176 ordered_extent->file_offset, 3177 ordered_extent->file_offset + 3178 logical_len); 3179 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3180 ordered_extent->disk_num_bytes); 3181 } else { 3182 BUG_ON(root == fs_info->tree_root); 3183 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3184 if (!ret) { 3185 clear_reserved_extent = false; 3186 btrfs_release_delalloc_bytes(fs_info, 3187 ordered_extent->disk_bytenr, 3188 ordered_extent->disk_num_bytes); 3189 } 3190 } 3191 if (ret < 0) { 3192 btrfs_abort_transaction(trans, ret); 3193 goto out; 3194 } 3195 3196 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3197 ordered_extent->num_bytes, trans->transid); 3198 if (ret < 0) { 3199 btrfs_abort_transaction(trans, ret); 3200 goto out; 3201 } 3202 3203 ret = add_pending_csums(trans, &ordered_extent->list); 3204 if (ret) { 3205 btrfs_abort_transaction(trans, ret); 3206 goto out; 3207 } 3208 3209 /* 3210 * If this is a new delalloc range, clear its new delalloc flag to 3211 * update the inode's number of bytes. This needs to be done first 3212 * before updating the inode item. 3213 */ 3214 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3215 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3216 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3217 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3218 &cached_state); 3219 3220 btrfs_inode_safe_disk_i_size_write(inode, 0); 3221 ret = btrfs_update_inode_fallback(trans, inode); 3222 if (ret) { /* -ENOMEM or corruption */ 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 out: 3227 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3228 &cached_state); 3229 3230 if (trans) 3231 btrfs_end_transaction(trans); 3232 3233 if (ret || truncated) { 3234 /* 3235 * If we failed to finish this ordered extent for any reason we 3236 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3237 * extent, and mark the inode with the error if it wasn't 3238 * already set. Any error during writeback would have already 3239 * set the mapping error, so we need to set it if we're the ones 3240 * marking this ordered extent as failed. 3241 */ 3242 if (ret) 3243 btrfs_mark_ordered_extent_error(ordered_extent); 3244 3245 /* 3246 * Drop extent maps for the part of the extent we didn't write. 3247 * 3248 * We have an exception here for the free_space_inode, this is 3249 * because when we do btrfs_get_extent() on the free space inode 3250 * we will search the commit root. If this is a new block group 3251 * we won't find anything, and we will trip over the assert in 3252 * writepage where we do ASSERT(em->block_start != 3253 * EXTENT_MAP_HOLE). 3254 * 3255 * Theoretically we could also skip this for any NOCOW extent as 3256 * we don't mess with the extent map tree in the NOCOW case, but 3257 * for now simply skip this if we are the free space inode. 3258 */ 3259 if (!btrfs_is_free_space_inode(inode)) { 3260 u64 unwritten_start = start; 3261 3262 if (truncated) 3263 unwritten_start += logical_len; 3264 3265 btrfs_drop_extent_map_range(inode, unwritten_start, 3266 end, false); 3267 } 3268 3269 /* 3270 * If the ordered extent had an IOERR or something else went 3271 * wrong we need to return the space for this ordered extent 3272 * back to the allocator. We only free the extent in the 3273 * truncated case if we didn't write out the extent at all. 3274 * 3275 * If we made it past insert_reserved_file_extent before we 3276 * errored out then we don't need to do this as the accounting 3277 * has already been done. 3278 */ 3279 if ((ret || !logical_len) && 3280 clear_reserved_extent && 3281 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3282 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3283 /* 3284 * Discard the range before returning it back to the 3285 * free space pool 3286 */ 3287 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3288 btrfs_discard_extent(fs_info, 3289 ordered_extent->disk_bytenr, 3290 ordered_extent->disk_num_bytes, 3291 NULL); 3292 btrfs_free_reserved_extent(fs_info, 3293 ordered_extent->disk_bytenr, 3294 ordered_extent->disk_num_bytes, true); 3295 /* 3296 * Actually free the qgroup rsv which was released when 3297 * the ordered extent was created. 3298 */ 3299 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3300 ordered_extent->qgroup_rsv, 3301 BTRFS_QGROUP_RSV_DATA); 3302 } 3303 } 3304 3305 /* 3306 * This needs to be done to make sure anybody waiting knows we are done 3307 * updating everything for this ordered extent. 3308 */ 3309 btrfs_remove_ordered_extent(inode, ordered_extent); 3310 3311 /* once for us */ 3312 btrfs_put_ordered_extent(ordered_extent); 3313 /* once for the tree */ 3314 btrfs_put_ordered_extent(ordered_extent); 3315 3316 return ret; 3317 } 3318 3319 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3320 { 3321 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3322 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3323 list_empty(&ordered->bioc_list)) 3324 btrfs_finish_ordered_zoned(ordered); 3325 return btrfs_finish_one_ordered(ordered); 3326 } 3327 3328 /* 3329 * Verify the checksum for a single sector without any extra action that depend 3330 * on the type of I/O. 3331 * 3332 * @kaddr must be a properly kmapped address. 3333 */ 3334 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 3335 const u8 * const csum_expected) 3336 { 3337 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3338 3339 shash->tfm = fs_info->csum_shash; 3340 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3341 3342 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3343 return -EIO; 3344 return 0; 3345 } 3346 3347 /* 3348 * Verify the checksum of a single data sector. 3349 * 3350 * @bbio: btrfs_io_bio which contains the csum 3351 * @dev: device the sector is on 3352 * @bio_offset: offset to the beginning of the bio (in bytes) 3353 * @bv: bio_vec to check 3354 * 3355 * Check if the checksum on a data block is valid. When a checksum mismatch is 3356 * detected, report the error and fill the corrupted range with zero. 3357 * 3358 * Return %true if the sector is ok or had no checksum to start with, else %false. 3359 */ 3360 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3361 u32 bio_offset, struct bio_vec *bv) 3362 { 3363 struct btrfs_inode *inode = bbio->inode; 3364 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3365 u64 file_offset = bbio->file_offset + bio_offset; 3366 u64 end = file_offset + bv->bv_len - 1; 3367 u8 *csum_expected; 3368 u8 csum[BTRFS_CSUM_SIZE]; 3369 void *kaddr; 3370 3371 ASSERT(bv->bv_len == fs_info->sectorsize); 3372 3373 if (!bbio->csum) 3374 return true; 3375 3376 if (btrfs_is_data_reloc_root(inode->root) && 3377 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3378 NULL)) { 3379 /* Skip the range without csum for data reloc inode */ 3380 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3381 EXTENT_NODATASUM, NULL); 3382 return true; 3383 } 3384 3385 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3386 fs_info->csum_size; 3387 kaddr = bvec_kmap_local(bv); 3388 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) { 3389 kunmap_local(kaddr); 3390 goto zeroit; 3391 } 3392 kunmap_local(kaddr); 3393 return true; 3394 3395 zeroit: 3396 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3397 bbio->mirror_num); 3398 if (dev) 3399 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3400 memzero_bvec(bv); 3401 return false; 3402 } 3403 3404 /* 3405 * Perform a delayed iput on @inode. 3406 * 3407 * @inode: The inode we want to perform iput on 3408 * 3409 * This function uses the generic vfs_inode::i_count to track whether we should 3410 * just decrement it (in case it's > 1) or if this is the last iput then link 3411 * the inode to the delayed iput machinery. Delayed iputs are processed at 3412 * transaction commit time/superblock commit/cleaner kthread. 3413 */ 3414 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3415 { 3416 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3417 unsigned long flags; 3418 3419 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3420 return; 3421 3422 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3423 atomic_inc(&fs_info->nr_delayed_iputs); 3424 /* 3425 * Need to be irq safe here because we can be called from either an irq 3426 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3427 * context. 3428 */ 3429 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3430 ASSERT(list_empty(&inode->delayed_iput)); 3431 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3432 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3433 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3434 wake_up_process(fs_info->cleaner_kthread); 3435 } 3436 3437 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3438 struct btrfs_inode *inode) 3439 { 3440 list_del_init(&inode->delayed_iput); 3441 spin_unlock_irq(&fs_info->delayed_iput_lock); 3442 iput(&inode->vfs_inode); 3443 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3444 wake_up(&fs_info->delayed_iputs_wait); 3445 spin_lock_irq(&fs_info->delayed_iput_lock); 3446 } 3447 3448 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3449 struct btrfs_inode *inode) 3450 { 3451 if (!list_empty(&inode->delayed_iput)) { 3452 spin_lock_irq(&fs_info->delayed_iput_lock); 3453 if (!list_empty(&inode->delayed_iput)) 3454 run_delayed_iput_locked(fs_info, inode); 3455 spin_unlock_irq(&fs_info->delayed_iput_lock); 3456 } 3457 } 3458 3459 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3460 { 3461 /* 3462 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3463 * calls btrfs_add_delayed_iput() and that needs to lock 3464 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3465 * prevent a deadlock. 3466 */ 3467 spin_lock_irq(&fs_info->delayed_iput_lock); 3468 while (!list_empty(&fs_info->delayed_iputs)) { 3469 struct btrfs_inode *inode; 3470 3471 inode = list_first_entry(&fs_info->delayed_iputs, 3472 struct btrfs_inode, delayed_iput); 3473 run_delayed_iput_locked(fs_info, inode); 3474 if (need_resched()) { 3475 spin_unlock_irq(&fs_info->delayed_iput_lock); 3476 cond_resched(); 3477 spin_lock_irq(&fs_info->delayed_iput_lock); 3478 } 3479 } 3480 spin_unlock_irq(&fs_info->delayed_iput_lock); 3481 } 3482 3483 /* 3484 * Wait for flushing all delayed iputs 3485 * 3486 * @fs_info: the filesystem 3487 * 3488 * This will wait on any delayed iputs that are currently running with KILLABLE 3489 * set. Once they are all done running we will return, unless we are killed in 3490 * which case we return EINTR. This helps in user operations like fallocate etc 3491 * that might get blocked on the iputs. 3492 * 3493 * Return EINTR if we were killed, 0 if nothing's pending 3494 */ 3495 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3496 { 3497 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3498 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3499 if (ret) 3500 return -EINTR; 3501 return 0; 3502 } 3503 3504 /* 3505 * This creates an orphan entry for the given inode in case something goes wrong 3506 * in the middle of an unlink. 3507 */ 3508 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3509 struct btrfs_inode *inode) 3510 { 3511 int ret; 3512 3513 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3514 if (ret && ret != -EEXIST) { 3515 btrfs_abort_transaction(trans, ret); 3516 return ret; 3517 } 3518 3519 return 0; 3520 } 3521 3522 /* 3523 * We have done the delete so we can go ahead and remove the orphan item for 3524 * this particular inode. 3525 */ 3526 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3527 struct btrfs_inode *inode) 3528 { 3529 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3530 } 3531 3532 /* 3533 * this cleans up any orphans that may be left on the list from the last use 3534 * of this root. 3535 */ 3536 int btrfs_orphan_cleanup(struct btrfs_root *root) 3537 { 3538 struct btrfs_fs_info *fs_info = root->fs_info; 3539 BTRFS_PATH_AUTO_FREE(path); 3540 struct extent_buffer *leaf; 3541 struct btrfs_key key, found_key; 3542 struct btrfs_trans_handle *trans; 3543 u64 last_objectid = 0; 3544 int ret = 0, nr_unlink = 0; 3545 3546 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3547 return 0; 3548 3549 path = btrfs_alloc_path(); 3550 if (!path) { 3551 ret = -ENOMEM; 3552 goto out; 3553 } 3554 path->reada = READA_BACK; 3555 3556 key.objectid = BTRFS_ORPHAN_OBJECTID; 3557 key.type = BTRFS_ORPHAN_ITEM_KEY; 3558 key.offset = (u64)-1; 3559 3560 while (1) { 3561 struct btrfs_inode *inode; 3562 3563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3564 if (ret < 0) 3565 goto out; 3566 3567 /* 3568 * if ret == 0 means we found what we were searching for, which 3569 * is weird, but possible, so only screw with path if we didn't 3570 * find the key and see if we have stuff that matches 3571 */ 3572 if (ret > 0) { 3573 ret = 0; 3574 if (path->slots[0] == 0) 3575 break; 3576 path->slots[0]--; 3577 } 3578 3579 /* pull out the item */ 3580 leaf = path->nodes[0]; 3581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3582 3583 /* make sure the item matches what we want */ 3584 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3585 break; 3586 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3587 break; 3588 3589 /* release the path since we're done with it */ 3590 btrfs_release_path(path); 3591 3592 /* 3593 * this is where we are basically btrfs_lookup, without the 3594 * crossing root thing. we store the inode number in the 3595 * offset of the orphan item. 3596 */ 3597 3598 if (found_key.offset == last_objectid) { 3599 /* 3600 * We found the same inode as before. This means we were 3601 * not able to remove its items via eviction triggered 3602 * by an iput(). A transaction abort may have happened, 3603 * due to -ENOSPC for example, so try to grab the error 3604 * that lead to a transaction abort, if any. 3605 */ 3606 btrfs_err(fs_info, 3607 "Error removing orphan entry, stopping orphan cleanup"); 3608 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3609 goto out; 3610 } 3611 3612 last_objectid = found_key.offset; 3613 3614 found_key.objectid = found_key.offset; 3615 found_key.type = BTRFS_INODE_ITEM_KEY; 3616 found_key.offset = 0; 3617 inode = btrfs_iget(last_objectid, root); 3618 if (IS_ERR(inode)) { 3619 ret = PTR_ERR(inode); 3620 inode = NULL; 3621 if (ret != -ENOENT) 3622 goto out; 3623 } 3624 3625 if (!inode && root == fs_info->tree_root) { 3626 struct btrfs_root *dead_root; 3627 int is_dead_root = 0; 3628 3629 /* 3630 * This is an orphan in the tree root. Currently these 3631 * could come from 2 sources: 3632 * a) a root (snapshot/subvolume) deletion in progress 3633 * b) a free space cache inode 3634 * We need to distinguish those two, as the orphan item 3635 * for a root must not get deleted before the deletion 3636 * of the snapshot/subvolume's tree completes. 3637 * 3638 * btrfs_find_orphan_roots() ran before us, which has 3639 * found all deleted roots and loaded them into 3640 * fs_info->fs_roots_radix. So here we can find if an 3641 * orphan item corresponds to a deleted root by looking 3642 * up the root from that radix tree. 3643 */ 3644 3645 spin_lock(&fs_info->fs_roots_radix_lock); 3646 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3647 (unsigned long)found_key.objectid); 3648 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3649 is_dead_root = 1; 3650 spin_unlock(&fs_info->fs_roots_radix_lock); 3651 3652 if (is_dead_root) { 3653 /* prevent this orphan from being found again */ 3654 key.offset = found_key.objectid - 1; 3655 continue; 3656 } 3657 3658 } 3659 3660 /* 3661 * If we have an inode with links, there are a couple of 3662 * possibilities: 3663 * 3664 * 1. We were halfway through creating fsverity metadata for the 3665 * file. In that case, the orphan item represents incomplete 3666 * fsverity metadata which must be cleaned up with 3667 * btrfs_drop_verity_items and deleting the orphan item. 3668 3669 * 2. Old kernels (before v3.12) used to create an 3670 * orphan item for truncate indicating that there were possibly 3671 * extent items past i_size that needed to be deleted. In v3.12, 3672 * truncate was changed to update i_size in sync with the extent 3673 * items, but the (useless) orphan item was still created. Since 3674 * v4.18, we don't create the orphan item for truncate at all. 3675 * 3676 * So, this item could mean that we need to do a truncate, but 3677 * only if this filesystem was last used on a pre-v3.12 kernel 3678 * and was not cleanly unmounted. The odds of that are quite 3679 * slim, and it's a pain to do the truncate now, so just delete 3680 * the orphan item. 3681 * 3682 * It's also possible that this orphan item was supposed to be 3683 * deleted but wasn't. The inode number may have been reused, 3684 * but either way, we can delete the orphan item. 3685 */ 3686 if (!inode || inode->vfs_inode.i_nlink) { 3687 if (inode) { 3688 ret = btrfs_drop_verity_items(inode); 3689 iput(&inode->vfs_inode); 3690 inode = NULL; 3691 if (ret) 3692 goto out; 3693 } 3694 trans = btrfs_start_transaction(root, 1); 3695 if (IS_ERR(trans)) { 3696 ret = PTR_ERR(trans); 3697 goto out; 3698 } 3699 btrfs_debug(fs_info, "auto deleting %Lu", 3700 found_key.objectid); 3701 ret = btrfs_del_orphan_item(trans, root, 3702 found_key.objectid); 3703 btrfs_end_transaction(trans); 3704 if (ret) 3705 goto out; 3706 continue; 3707 } 3708 3709 nr_unlink++; 3710 3711 /* this will do delete_inode and everything for us */ 3712 iput(&inode->vfs_inode); 3713 } 3714 /* release the path since we're done with it */ 3715 btrfs_release_path(path); 3716 3717 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3718 trans = btrfs_join_transaction(root); 3719 if (!IS_ERR(trans)) 3720 btrfs_end_transaction(trans); 3721 } 3722 3723 if (nr_unlink) 3724 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3725 3726 out: 3727 if (ret) 3728 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3729 return ret; 3730 } 3731 3732 /* 3733 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3734 * can't be any ACLs. 3735 * 3736 * @leaf: the eb leaf where to search 3737 * @slot: the slot the inode is in 3738 * @objectid: the objectid of the inode 3739 * 3740 * Return true if there is xattr/ACL, false otherwise. 3741 */ 3742 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3743 int slot, u64 objectid, 3744 int *first_xattr_slot) 3745 { 3746 u32 nritems = btrfs_header_nritems(leaf); 3747 struct btrfs_key found_key; 3748 static u64 xattr_access = 0; 3749 static u64 xattr_default = 0; 3750 int scanned = 0; 3751 3752 if (!xattr_access) { 3753 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3754 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3755 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3756 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3757 } 3758 3759 slot++; 3760 *first_xattr_slot = -1; 3761 while (slot < nritems) { 3762 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3763 3764 /* We found a different objectid, there must be no ACLs. */ 3765 if (found_key.objectid != objectid) 3766 return false; 3767 3768 /* We found an xattr, assume we've got an ACL. */ 3769 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3770 if (*first_xattr_slot == -1) 3771 *first_xattr_slot = slot; 3772 if (found_key.offset == xattr_access || 3773 found_key.offset == xattr_default) 3774 return true; 3775 } 3776 3777 /* 3778 * We found a key greater than an xattr key, there can't be any 3779 * ACLs later on. 3780 */ 3781 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3782 return false; 3783 3784 slot++; 3785 scanned++; 3786 3787 /* 3788 * The item order goes like: 3789 * - inode 3790 * - inode backrefs 3791 * - xattrs 3792 * - extents, 3793 * 3794 * so if there are lots of hard links to an inode there can be 3795 * a lot of backrefs. Don't waste time searching too hard, 3796 * this is just an optimization. 3797 */ 3798 if (scanned >= 8) 3799 break; 3800 } 3801 /* 3802 * We hit the end of the leaf before we found an xattr or something 3803 * larger than an xattr. We have to assume the inode has ACLs. 3804 */ 3805 if (*first_xattr_slot == -1) 3806 *first_xattr_slot = slot; 3807 return true; 3808 } 3809 3810 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3811 { 3812 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3813 3814 if (WARN_ON_ONCE(inode->file_extent_tree)) 3815 return 0; 3816 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3817 return 0; 3818 if (!S_ISREG(inode->vfs_inode.i_mode)) 3819 return 0; 3820 if (btrfs_is_free_space_inode(inode)) 3821 return 0; 3822 3823 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3824 if (!inode->file_extent_tree) 3825 return -ENOMEM; 3826 3827 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3828 IO_TREE_INODE_FILE_EXTENT); 3829 /* Lockdep class is set only for the file extent tree. */ 3830 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3831 3832 return 0; 3833 } 3834 3835 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3836 { 3837 struct btrfs_root *root = inode->root; 3838 struct btrfs_inode *existing; 3839 const u64 ino = btrfs_ino(inode); 3840 int ret; 3841 3842 if (inode_unhashed(&inode->vfs_inode)) 3843 return 0; 3844 3845 if (prealloc) { 3846 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3847 if (ret) 3848 return ret; 3849 } 3850 3851 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3852 3853 if (xa_is_err(existing)) { 3854 ret = xa_err(existing); 3855 ASSERT(ret != -EINVAL); 3856 ASSERT(ret != -ENOMEM); 3857 return ret; 3858 } else if (existing) { 3859 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3860 } 3861 3862 return 0; 3863 } 3864 3865 /* 3866 * Read a locked inode from the btree into the in-memory inode and add it to 3867 * its root list/tree. 3868 * 3869 * On failure clean up the inode. 3870 */ 3871 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3872 { 3873 struct btrfs_root *root = inode->root; 3874 struct btrfs_fs_info *fs_info = root->fs_info; 3875 struct extent_buffer *leaf; 3876 struct btrfs_inode_item *inode_item; 3877 struct inode *vfs_inode = &inode->vfs_inode; 3878 struct btrfs_key location; 3879 unsigned long ptr; 3880 int maybe_acls; 3881 u32 rdev; 3882 int ret; 3883 bool filled = false; 3884 int first_xattr_slot; 3885 3886 ret = btrfs_init_file_extent_tree(inode); 3887 if (ret) 3888 goto out; 3889 3890 ret = btrfs_fill_inode(inode, &rdev); 3891 if (!ret) 3892 filled = true; 3893 3894 ASSERT(path); 3895 3896 btrfs_get_inode_key(inode, &location); 3897 3898 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3899 if (ret) { 3900 /* 3901 * ret > 0 can come from btrfs_search_slot called by 3902 * btrfs_lookup_inode(), this means the inode was not found. 3903 */ 3904 if (ret > 0) 3905 ret = -ENOENT; 3906 goto out; 3907 } 3908 3909 leaf = path->nodes[0]; 3910 3911 if (filled) 3912 goto cache_index; 3913 3914 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3915 struct btrfs_inode_item); 3916 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3917 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3918 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3919 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3920 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3921 btrfs_inode_set_file_extent_range(inode, 0, 3922 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3923 3924 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3925 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3926 3927 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3928 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3929 3930 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3931 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3932 3933 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3934 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3935 3936 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3937 inode->generation = btrfs_inode_generation(leaf, inode_item); 3938 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3939 3940 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3941 vfs_inode->i_generation = inode->generation; 3942 vfs_inode->i_rdev = 0; 3943 rdev = btrfs_inode_rdev(leaf, inode_item); 3944 3945 if (S_ISDIR(vfs_inode->i_mode)) 3946 inode->index_cnt = (u64)-1; 3947 3948 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3949 &inode->flags, &inode->ro_flags); 3950 btrfs_update_inode_mapping_flags(inode); 3951 btrfs_set_inode_mapping_order(inode); 3952 3953 cache_index: 3954 /* 3955 * If we were modified in the current generation and evicted from memory 3956 * and then re-read we need to do a full sync since we don't have any 3957 * idea about which extents were modified before we were evicted from 3958 * cache. 3959 * 3960 * This is required for both inode re-read from disk and delayed inode 3961 * in the delayed_nodes xarray. 3962 */ 3963 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3964 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3965 3966 /* 3967 * We don't persist the id of the transaction where an unlink operation 3968 * against the inode was last made. So here we assume the inode might 3969 * have been evicted, and therefore the exact value of last_unlink_trans 3970 * lost, and set it to last_trans to avoid metadata inconsistencies 3971 * between the inode and its parent if the inode is fsync'ed and the log 3972 * replayed. For example, in the scenario: 3973 * 3974 * touch mydir/foo 3975 * ln mydir/foo mydir/bar 3976 * sync 3977 * unlink mydir/bar 3978 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3979 * xfs_io -c fsync mydir/foo 3980 * <power failure> 3981 * mount fs, triggers fsync log replay 3982 * 3983 * We must make sure that when we fsync our inode foo we also log its 3984 * parent inode, otherwise after log replay the parent still has the 3985 * dentry with the "bar" name but our inode foo has a link count of 1 3986 * and doesn't have an inode ref with the name "bar" anymore. 3987 * 3988 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3989 * but it guarantees correctness at the expense of occasional full 3990 * transaction commits on fsync if our inode is a directory, or if our 3991 * inode is not a directory, logging its parent unnecessarily. 3992 */ 3993 inode->last_unlink_trans = inode->last_trans; 3994 3995 /* 3996 * Same logic as for last_unlink_trans. We don't persist the generation 3997 * of the last transaction where this inode was used for a reflink 3998 * operation, so after eviction and reloading the inode we must be 3999 * pessimistic and assume the last transaction that modified the inode. 4000 */ 4001 inode->last_reflink_trans = inode->last_trans; 4002 4003 path->slots[0]++; 4004 if (vfs_inode->i_nlink != 1 || 4005 path->slots[0] >= btrfs_header_nritems(leaf)) 4006 goto cache_acl; 4007 4008 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4009 if (location.objectid != btrfs_ino(inode)) 4010 goto cache_acl; 4011 4012 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4013 if (location.type == BTRFS_INODE_REF_KEY) { 4014 struct btrfs_inode_ref *ref; 4015 4016 ref = (struct btrfs_inode_ref *)ptr; 4017 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4018 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4019 struct btrfs_inode_extref *extref; 4020 4021 extref = (struct btrfs_inode_extref *)ptr; 4022 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4023 } 4024 cache_acl: 4025 /* 4026 * try to precache a NULL acl entry for files that don't have 4027 * any xattrs or acls 4028 */ 4029 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4030 btrfs_ino(inode), &first_xattr_slot); 4031 if (first_xattr_slot != -1) { 4032 path->slots[0] = first_xattr_slot; 4033 ret = btrfs_load_inode_props(inode, path); 4034 if (ret) 4035 btrfs_err(fs_info, 4036 "error loading props for ino %llu (root %llu): %d", 4037 btrfs_ino(inode), btrfs_root_id(root), ret); 4038 } 4039 4040 if (!maybe_acls) 4041 cache_no_acl(vfs_inode); 4042 4043 switch (vfs_inode->i_mode & S_IFMT) { 4044 case S_IFREG: 4045 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4046 vfs_inode->i_fop = &btrfs_file_operations; 4047 vfs_inode->i_op = &btrfs_file_inode_operations; 4048 break; 4049 case S_IFDIR: 4050 vfs_inode->i_fop = &btrfs_dir_file_operations; 4051 vfs_inode->i_op = &btrfs_dir_inode_operations; 4052 break; 4053 case S_IFLNK: 4054 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4055 inode_nohighmem(vfs_inode); 4056 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4057 break; 4058 default: 4059 vfs_inode->i_op = &btrfs_special_inode_operations; 4060 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4061 break; 4062 } 4063 4064 btrfs_sync_inode_flags_to_i_flags(inode); 4065 4066 ret = btrfs_add_inode_to_root(inode, true); 4067 if (ret) 4068 goto out; 4069 4070 return 0; 4071 out: 4072 iget_failed(vfs_inode); 4073 return ret; 4074 } 4075 4076 /* 4077 * given a leaf and an inode, copy the inode fields into the leaf 4078 */ 4079 static void fill_inode_item(struct btrfs_trans_handle *trans, 4080 struct extent_buffer *leaf, 4081 struct btrfs_inode_item *item, 4082 struct inode *inode) 4083 { 4084 u64 flags; 4085 4086 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4087 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4088 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4089 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4090 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4091 4092 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4093 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4094 4095 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4096 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4097 4098 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4099 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4100 4101 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4102 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4103 4104 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4105 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4106 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4107 btrfs_set_inode_transid(leaf, item, trans->transid); 4108 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4109 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4110 BTRFS_I(inode)->ro_flags); 4111 btrfs_set_inode_flags(leaf, item, flags); 4112 btrfs_set_inode_block_group(leaf, item, 0); 4113 } 4114 4115 /* 4116 * copy everything in the in-memory inode into the btree. 4117 */ 4118 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4119 struct btrfs_inode *inode) 4120 { 4121 struct btrfs_inode_item *inode_item; 4122 BTRFS_PATH_AUTO_FREE(path); 4123 struct extent_buffer *leaf; 4124 struct btrfs_key key; 4125 int ret; 4126 4127 path = btrfs_alloc_path(); 4128 if (!path) 4129 return -ENOMEM; 4130 4131 btrfs_get_inode_key(inode, &key); 4132 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4133 if (ret) { 4134 if (ret > 0) 4135 ret = -ENOENT; 4136 return ret; 4137 } 4138 4139 leaf = path->nodes[0]; 4140 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4141 struct btrfs_inode_item); 4142 4143 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4144 btrfs_set_inode_last_trans(trans, inode); 4145 return 0; 4146 } 4147 4148 /* 4149 * copy everything in the in-memory inode into the btree. 4150 */ 4151 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4152 struct btrfs_inode *inode) 4153 { 4154 struct btrfs_root *root = inode->root; 4155 struct btrfs_fs_info *fs_info = root->fs_info; 4156 int ret; 4157 4158 /* 4159 * If the inode is a free space inode, we can deadlock during commit 4160 * if we put it into the delayed code. 4161 * 4162 * The data relocation inode should also be directly updated 4163 * without delay 4164 */ 4165 if (!btrfs_is_free_space_inode(inode) 4166 && !btrfs_is_data_reloc_root(root) 4167 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4168 btrfs_update_root_times(trans, root); 4169 4170 ret = btrfs_delayed_update_inode(trans, inode); 4171 if (!ret) 4172 btrfs_set_inode_last_trans(trans, inode); 4173 return ret; 4174 } 4175 4176 return btrfs_update_inode_item(trans, inode); 4177 } 4178 4179 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4180 struct btrfs_inode *inode) 4181 { 4182 int ret; 4183 4184 ret = btrfs_update_inode(trans, inode); 4185 if (ret == -ENOSPC) 4186 return btrfs_update_inode_item(trans, inode); 4187 return ret; 4188 } 4189 4190 /* 4191 * unlink helper that gets used here in inode.c and in the tree logging 4192 * recovery code. It remove a link in a directory with a given name, and 4193 * also drops the back refs in the inode to the directory 4194 */ 4195 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4196 struct btrfs_inode *dir, 4197 struct btrfs_inode *inode, 4198 const struct fscrypt_str *name, 4199 struct btrfs_rename_ctx *rename_ctx) 4200 { 4201 struct btrfs_root *root = dir->root; 4202 struct btrfs_fs_info *fs_info = root->fs_info; 4203 struct btrfs_path *path; 4204 int ret = 0; 4205 struct btrfs_dir_item *di; 4206 u64 index; 4207 u64 ino = btrfs_ino(inode); 4208 u64 dir_ino = btrfs_ino(dir); 4209 4210 path = btrfs_alloc_path(); 4211 if (!path) 4212 return -ENOMEM; 4213 4214 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4215 if (IS_ERR_OR_NULL(di)) { 4216 btrfs_free_path(path); 4217 return di ? PTR_ERR(di) : -ENOENT; 4218 } 4219 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4220 /* 4221 * Down the call chains below we'll also need to allocate a path, so no 4222 * need to hold on to this one for longer than necessary. 4223 */ 4224 btrfs_free_path(path); 4225 if (ret) 4226 return ret; 4227 4228 /* 4229 * If we don't have dir index, we have to get it by looking up 4230 * the inode ref, since we get the inode ref, remove it directly, 4231 * it is unnecessary to do delayed deletion. 4232 * 4233 * But if we have dir index, needn't search inode ref to get it. 4234 * Since the inode ref is close to the inode item, it is better 4235 * that we delay to delete it, and just do this deletion when 4236 * we update the inode item. 4237 */ 4238 if (inode->dir_index) { 4239 ret = btrfs_delayed_delete_inode_ref(inode); 4240 if (!ret) { 4241 index = inode->dir_index; 4242 goto skip_backref; 4243 } 4244 } 4245 4246 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4247 if (ret) { 4248 btrfs_crit(fs_info, 4249 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4250 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4251 btrfs_abort_transaction(trans, ret); 4252 return ret; 4253 } 4254 skip_backref: 4255 if (rename_ctx) 4256 rename_ctx->index = index; 4257 4258 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4259 if (ret) { 4260 btrfs_abort_transaction(trans, ret); 4261 return ret; 4262 } 4263 4264 /* 4265 * If we are in a rename context, we don't need to update anything in the 4266 * log. That will be done later during the rename by btrfs_log_new_name(). 4267 * Besides that, doing it here would only cause extra unnecessary btree 4268 * operations on the log tree, increasing latency for applications. 4269 */ 4270 if (!rename_ctx) { 4271 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4272 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4273 } 4274 4275 /* 4276 * If we have a pending delayed iput we could end up with the final iput 4277 * being run in btrfs-cleaner context. If we have enough of these built 4278 * up we can end up burning a lot of time in btrfs-cleaner without any 4279 * way to throttle the unlinks. Since we're currently holding a ref on 4280 * the inode we can run the delayed iput here without any issues as the 4281 * final iput won't be done until after we drop the ref we're currently 4282 * holding. 4283 */ 4284 btrfs_run_delayed_iput(fs_info, inode); 4285 4286 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4287 inode_inc_iversion(&inode->vfs_inode); 4288 inode_set_ctime_current(&inode->vfs_inode); 4289 inode_inc_iversion(&dir->vfs_inode); 4290 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4291 4292 return btrfs_update_inode(trans, dir); 4293 } 4294 4295 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4296 struct btrfs_inode *dir, struct btrfs_inode *inode, 4297 const struct fscrypt_str *name) 4298 { 4299 int ret; 4300 4301 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4302 if (!ret) { 4303 drop_nlink(&inode->vfs_inode); 4304 ret = btrfs_update_inode(trans, inode); 4305 } 4306 return ret; 4307 } 4308 4309 /* 4310 * helper to start transaction for unlink and rmdir. 4311 * 4312 * unlink and rmdir are special in btrfs, they do not always free space, so 4313 * if we cannot make our reservations the normal way try and see if there is 4314 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4315 * allow the unlink to occur. 4316 */ 4317 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4318 { 4319 struct btrfs_root *root = dir->root; 4320 4321 return btrfs_start_transaction_fallback_global_rsv(root, 4322 BTRFS_UNLINK_METADATA_UNITS); 4323 } 4324 4325 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4326 { 4327 struct btrfs_trans_handle *trans; 4328 struct inode *inode = d_inode(dentry); 4329 int ret; 4330 struct fscrypt_name fname; 4331 4332 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4333 if (ret) 4334 return ret; 4335 4336 /* This needs to handle no-key deletions later on */ 4337 4338 trans = __unlink_start_trans(BTRFS_I(dir)); 4339 if (IS_ERR(trans)) { 4340 ret = PTR_ERR(trans); 4341 goto fscrypt_free; 4342 } 4343 4344 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4345 false); 4346 4347 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4348 &fname.disk_name); 4349 if (ret) 4350 goto end_trans; 4351 4352 if (inode->i_nlink == 0) { 4353 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4354 if (ret) 4355 goto end_trans; 4356 } 4357 4358 end_trans: 4359 btrfs_end_transaction(trans); 4360 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4361 fscrypt_free: 4362 fscrypt_free_filename(&fname); 4363 return ret; 4364 } 4365 4366 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4367 struct btrfs_inode *dir, struct dentry *dentry) 4368 { 4369 struct btrfs_root *root = dir->root; 4370 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4371 struct btrfs_path *path; 4372 struct extent_buffer *leaf; 4373 struct btrfs_dir_item *di; 4374 struct btrfs_key key; 4375 u64 index; 4376 int ret; 4377 u64 objectid; 4378 u64 dir_ino = btrfs_ino(dir); 4379 struct fscrypt_name fname; 4380 4381 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4382 if (ret) 4383 return ret; 4384 4385 /* This needs to handle no-key deletions later on */ 4386 4387 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4388 objectid = btrfs_root_id(inode->root); 4389 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4390 objectid = inode->ref_root_id; 4391 } else { 4392 WARN_ON(1); 4393 fscrypt_free_filename(&fname); 4394 return -EINVAL; 4395 } 4396 4397 path = btrfs_alloc_path(); 4398 if (!path) { 4399 ret = -ENOMEM; 4400 goto out; 4401 } 4402 4403 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4404 &fname.disk_name, -1); 4405 if (IS_ERR_OR_NULL(di)) { 4406 ret = di ? PTR_ERR(di) : -ENOENT; 4407 goto out; 4408 } 4409 4410 leaf = path->nodes[0]; 4411 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4412 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4413 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4414 if (ret) { 4415 btrfs_abort_transaction(trans, ret); 4416 goto out; 4417 } 4418 btrfs_release_path(path); 4419 4420 /* 4421 * This is a placeholder inode for a subvolume we didn't have a 4422 * reference to at the time of the snapshot creation. In the meantime 4423 * we could have renamed the real subvol link into our snapshot, so 4424 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4425 * Instead simply lookup the dir_index_item for this entry so we can 4426 * remove it. Otherwise we know we have a ref to the root and we can 4427 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4428 */ 4429 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4430 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4431 if (IS_ERR(di)) { 4432 ret = PTR_ERR(di); 4433 btrfs_abort_transaction(trans, ret); 4434 goto out; 4435 } 4436 4437 leaf = path->nodes[0]; 4438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4439 index = key.offset; 4440 btrfs_release_path(path); 4441 } else { 4442 ret = btrfs_del_root_ref(trans, objectid, 4443 btrfs_root_id(root), dir_ino, 4444 &index, &fname.disk_name); 4445 if (ret) { 4446 btrfs_abort_transaction(trans, ret); 4447 goto out; 4448 } 4449 } 4450 4451 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4452 if (ret) { 4453 btrfs_abort_transaction(trans, ret); 4454 goto out; 4455 } 4456 4457 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4458 inode_inc_iversion(&dir->vfs_inode); 4459 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4460 ret = btrfs_update_inode_fallback(trans, dir); 4461 if (ret) 4462 btrfs_abort_transaction(trans, ret); 4463 out: 4464 btrfs_free_path(path); 4465 fscrypt_free_filename(&fname); 4466 return ret; 4467 } 4468 4469 /* 4470 * Helper to check if the subvolume references other subvolumes or if it's 4471 * default. 4472 */ 4473 static noinline int may_destroy_subvol(struct btrfs_root *root) 4474 { 4475 struct btrfs_fs_info *fs_info = root->fs_info; 4476 BTRFS_PATH_AUTO_FREE(path); 4477 struct btrfs_dir_item *di; 4478 struct btrfs_key key; 4479 struct fscrypt_str name = FSTR_INIT("default", 7); 4480 u64 dir_id; 4481 int ret; 4482 4483 path = btrfs_alloc_path(); 4484 if (!path) 4485 return -ENOMEM; 4486 4487 /* Make sure this root isn't set as the default subvol */ 4488 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4489 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4490 dir_id, &name, 0); 4491 if (di && !IS_ERR(di)) { 4492 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4493 if (key.objectid == btrfs_root_id(root)) { 4494 ret = -EPERM; 4495 btrfs_err(fs_info, 4496 "deleting default subvolume %llu is not allowed", 4497 key.objectid); 4498 return ret; 4499 } 4500 btrfs_release_path(path); 4501 } 4502 4503 key.objectid = btrfs_root_id(root); 4504 key.type = BTRFS_ROOT_REF_KEY; 4505 key.offset = (u64)-1; 4506 4507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4508 if (ret < 0) 4509 return ret; 4510 if (ret == 0) { 4511 /* 4512 * Key with offset -1 found, there would have to exist a root 4513 * with such id, but this is out of valid range. 4514 */ 4515 return -EUCLEAN; 4516 } 4517 4518 ret = 0; 4519 if (path->slots[0] > 0) { 4520 path->slots[0]--; 4521 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4522 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4523 ret = -ENOTEMPTY; 4524 } 4525 4526 return ret; 4527 } 4528 4529 /* Delete all dentries for inodes belonging to the root */ 4530 static void btrfs_prune_dentries(struct btrfs_root *root) 4531 { 4532 struct btrfs_fs_info *fs_info = root->fs_info; 4533 struct btrfs_inode *inode; 4534 u64 min_ino = 0; 4535 4536 if (!BTRFS_FS_ERROR(fs_info)) 4537 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4538 4539 inode = btrfs_find_first_inode(root, min_ino); 4540 while (inode) { 4541 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4542 d_prune_aliases(&inode->vfs_inode); 4543 4544 min_ino = btrfs_ino(inode) + 1; 4545 /* 4546 * btrfs_drop_inode() will have it removed from the inode 4547 * cache when its usage count hits zero. 4548 */ 4549 iput(&inode->vfs_inode); 4550 cond_resched(); 4551 inode = btrfs_find_first_inode(root, min_ino); 4552 } 4553 } 4554 4555 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4556 { 4557 struct btrfs_root *root = dir->root; 4558 struct btrfs_fs_info *fs_info = root->fs_info; 4559 struct inode *inode = d_inode(dentry); 4560 struct btrfs_root *dest = BTRFS_I(inode)->root; 4561 struct btrfs_trans_handle *trans; 4562 struct btrfs_block_rsv block_rsv; 4563 u64 root_flags; 4564 u64 qgroup_reserved = 0; 4565 int ret; 4566 4567 down_write(&fs_info->subvol_sem); 4568 4569 /* 4570 * Don't allow to delete a subvolume with send in progress. This is 4571 * inside the inode lock so the error handling that has to drop the bit 4572 * again is not run concurrently. 4573 */ 4574 spin_lock(&dest->root_item_lock); 4575 if (dest->send_in_progress) { 4576 spin_unlock(&dest->root_item_lock); 4577 btrfs_warn(fs_info, 4578 "attempt to delete subvolume %llu during send", 4579 btrfs_root_id(dest)); 4580 ret = -EPERM; 4581 goto out_up_write; 4582 } 4583 if (atomic_read(&dest->nr_swapfiles)) { 4584 spin_unlock(&dest->root_item_lock); 4585 btrfs_warn(fs_info, 4586 "attempt to delete subvolume %llu with active swapfile", 4587 btrfs_root_id(root)); 4588 ret = -EPERM; 4589 goto out_up_write; 4590 } 4591 root_flags = btrfs_root_flags(&dest->root_item); 4592 btrfs_set_root_flags(&dest->root_item, 4593 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4594 spin_unlock(&dest->root_item_lock); 4595 4596 ret = may_destroy_subvol(dest); 4597 if (ret) 4598 goto out_undead; 4599 4600 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4601 /* 4602 * One for dir inode, 4603 * two for dir entries, 4604 * two for root ref/backref. 4605 */ 4606 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4607 if (ret) 4608 goto out_undead; 4609 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4610 4611 trans = btrfs_start_transaction(root, 0); 4612 if (IS_ERR(trans)) { 4613 ret = PTR_ERR(trans); 4614 goto out_release; 4615 } 4616 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4617 qgroup_reserved = 0; 4618 trans->block_rsv = &block_rsv; 4619 trans->bytes_reserved = block_rsv.size; 4620 4621 btrfs_record_snapshot_destroy(trans, dir); 4622 4623 ret = btrfs_unlink_subvol(trans, dir, dentry); 4624 if (ret) { 4625 btrfs_abort_transaction(trans, ret); 4626 goto out_end_trans; 4627 } 4628 4629 ret = btrfs_record_root_in_trans(trans, dest); 4630 if (ret) { 4631 btrfs_abort_transaction(trans, ret); 4632 goto out_end_trans; 4633 } 4634 4635 memset(&dest->root_item.drop_progress, 0, 4636 sizeof(dest->root_item.drop_progress)); 4637 btrfs_set_root_drop_level(&dest->root_item, 0); 4638 btrfs_set_root_refs(&dest->root_item, 0); 4639 4640 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4641 ret = btrfs_insert_orphan_item(trans, 4642 fs_info->tree_root, 4643 btrfs_root_id(dest)); 4644 if (ret) { 4645 btrfs_abort_transaction(trans, ret); 4646 goto out_end_trans; 4647 } 4648 } 4649 4650 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4651 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4652 if (ret && ret != -ENOENT) { 4653 btrfs_abort_transaction(trans, ret); 4654 goto out_end_trans; 4655 } 4656 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4657 ret = btrfs_uuid_tree_remove(trans, 4658 dest->root_item.received_uuid, 4659 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4660 btrfs_root_id(dest)); 4661 if (ret && ret != -ENOENT) { 4662 btrfs_abort_transaction(trans, ret); 4663 goto out_end_trans; 4664 } 4665 } 4666 4667 free_anon_bdev(dest->anon_dev); 4668 dest->anon_dev = 0; 4669 out_end_trans: 4670 trans->block_rsv = NULL; 4671 trans->bytes_reserved = 0; 4672 ret = btrfs_end_transaction(trans); 4673 inode->i_flags |= S_DEAD; 4674 out_release: 4675 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4676 if (qgroup_reserved) 4677 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4678 out_undead: 4679 if (ret) { 4680 spin_lock(&dest->root_item_lock); 4681 root_flags = btrfs_root_flags(&dest->root_item); 4682 btrfs_set_root_flags(&dest->root_item, 4683 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4684 spin_unlock(&dest->root_item_lock); 4685 } 4686 out_up_write: 4687 up_write(&fs_info->subvol_sem); 4688 if (!ret) { 4689 d_invalidate(dentry); 4690 btrfs_prune_dentries(dest); 4691 ASSERT(dest->send_in_progress == 0); 4692 } 4693 4694 return ret; 4695 } 4696 4697 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4698 { 4699 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4700 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4701 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4702 int ret = 0; 4703 struct btrfs_trans_handle *trans; 4704 struct fscrypt_name fname; 4705 4706 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4707 return -ENOTEMPTY; 4708 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4709 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4710 btrfs_err(fs_info, 4711 "extent tree v2 doesn't support snapshot deletion yet"); 4712 return -EOPNOTSUPP; 4713 } 4714 return btrfs_delete_subvolume(dir, dentry); 4715 } 4716 4717 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4718 if (ret) 4719 return ret; 4720 4721 /* This needs to handle no-key deletions later on */ 4722 4723 trans = __unlink_start_trans(dir); 4724 if (IS_ERR(trans)) { 4725 ret = PTR_ERR(trans); 4726 goto out_notrans; 4727 } 4728 4729 /* 4730 * Propagate the last_unlink_trans value of the deleted dir to its 4731 * parent directory. This is to prevent an unrecoverable log tree in the 4732 * case we do something like this: 4733 * 1) create dir foo 4734 * 2) create snapshot under dir foo 4735 * 3) delete the snapshot 4736 * 4) rmdir foo 4737 * 5) mkdir foo 4738 * 6) fsync foo or some file inside foo 4739 * 4740 * This is because we can't unlink other roots when replaying the dir 4741 * deletes for directory foo. 4742 */ 4743 if (inode->last_unlink_trans >= trans->transid) 4744 btrfs_record_snapshot_destroy(trans, dir); 4745 4746 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4747 ret = btrfs_unlink_subvol(trans, dir, dentry); 4748 goto out; 4749 } 4750 4751 ret = btrfs_orphan_add(trans, inode); 4752 if (ret) 4753 goto out; 4754 4755 /* now the directory is empty */ 4756 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4757 if (!ret) 4758 btrfs_i_size_write(inode, 0); 4759 out: 4760 btrfs_end_transaction(trans); 4761 out_notrans: 4762 btrfs_btree_balance_dirty(fs_info); 4763 fscrypt_free_filename(&fname); 4764 4765 return ret; 4766 } 4767 4768 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4769 { 4770 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4771 blockstart, blocksize); 4772 4773 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4774 return true; 4775 return false; 4776 } 4777 4778 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4779 { 4780 const pgoff_t index = (start >> PAGE_SHIFT); 4781 struct address_space *mapping = inode->vfs_inode.i_mapping; 4782 struct folio *folio; 4783 u64 zero_start; 4784 u64 zero_end; 4785 int ret = 0; 4786 4787 again: 4788 folio = filemap_lock_folio(mapping, index); 4789 /* No folio present. */ 4790 if (IS_ERR(folio)) 4791 return 0; 4792 4793 if (!folio_test_uptodate(folio)) { 4794 ret = btrfs_read_folio(NULL, folio); 4795 folio_lock(folio); 4796 if (folio->mapping != mapping) { 4797 folio_unlock(folio); 4798 folio_put(folio); 4799 goto again; 4800 } 4801 if (!folio_test_uptodate(folio)) { 4802 ret = -EIO; 4803 goto out_unlock; 4804 } 4805 } 4806 folio_wait_writeback(folio); 4807 4808 /* 4809 * We do not need to lock extents nor wait for OE, as it's already 4810 * beyond EOF. 4811 */ 4812 4813 zero_start = max_t(u64, folio_pos(folio), start); 4814 zero_end = folio_end(folio); 4815 folio_zero_range(folio, zero_start - folio_pos(folio), 4816 zero_end - zero_start); 4817 4818 out_unlock: 4819 folio_unlock(folio); 4820 folio_put(folio); 4821 return ret; 4822 } 4823 4824 /* 4825 * Handle the truncation of a fs block. 4826 * 4827 * @inode - inode that we're zeroing 4828 * @offset - the file offset of the block to truncate 4829 * The value must be inside [@start, @end], and the function will do 4830 * extra checks if the block that covers @offset needs to be zeroed. 4831 * @start - the start file offset of the range we want to zero 4832 * @end - the end (inclusive) file offset of the range we want to zero. 4833 * 4834 * If the range is not block aligned, read out the folio that covers @offset, 4835 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4836 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4837 * for writeback. 4838 * 4839 * This is utilized by hole punch, zero range, file expansion. 4840 */ 4841 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4842 { 4843 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4844 struct address_space *mapping = inode->vfs_inode.i_mapping; 4845 struct extent_io_tree *io_tree = &inode->io_tree; 4846 struct btrfs_ordered_extent *ordered; 4847 struct extent_state *cached_state = NULL; 4848 struct extent_changeset *data_reserved = NULL; 4849 bool only_release_metadata = false; 4850 u32 blocksize = fs_info->sectorsize; 4851 pgoff_t index = (offset >> PAGE_SHIFT); 4852 struct folio *folio; 4853 gfp_t mask = btrfs_alloc_write_mask(mapping); 4854 int ret = 0; 4855 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4856 blocksize); 4857 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4858 blocksize); 4859 bool need_truncate_head = false; 4860 bool need_truncate_tail = false; 4861 u64 zero_start; 4862 u64 zero_end; 4863 u64 block_start; 4864 u64 block_end; 4865 4866 /* @offset should be inside the range. */ 4867 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4868 offset, start, end); 4869 4870 /* The range is aligned at both ends. */ 4871 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4872 /* 4873 * For block size < page size case, we may have polluted blocks 4874 * beyond EOF. So we also need to zero them out. 4875 */ 4876 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4877 ret = truncate_block_zero_beyond_eof(inode, start); 4878 goto out; 4879 } 4880 4881 /* 4882 * @offset may not be inside the head nor tail block. In that case we 4883 * don't need to do anything. 4884 */ 4885 if (!in_head_block && !in_tail_block) 4886 goto out; 4887 4888 /* 4889 * Skip the truncatioin if the range in the target block is already aligned. 4890 * The seemingly complex check will also handle the same block case. 4891 */ 4892 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4893 need_truncate_head = true; 4894 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4895 need_truncate_tail = true; 4896 if (!need_truncate_head && !need_truncate_tail) 4897 goto out; 4898 4899 block_start = round_down(offset, blocksize); 4900 block_end = block_start + blocksize - 1; 4901 4902 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4903 blocksize, false); 4904 if (ret < 0) { 4905 size_t write_bytes = blocksize; 4906 4907 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4908 /* For nocow case, no need to reserve data space. */ 4909 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4910 write_bytes, blocksize); 4911 only_release_metadata = true; 4912 } else { 4913 goto out; 4914 } 4915 } 4916 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4917 if (ret < 0) { 4918 if (!only_release_metadata) 4919 btrfs_free_reserved_data_space(inode, data_reserved, 4920 block_start, blocksize); 4921 goto out; 4922 } 4923 again: 4924 folio = __filemap_get_folio(mapping, index, 4925 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4926 if (IS_ERR(folio)) { 4927 if (only_release_metadata) 4928 btrfs_delalloc_release_metadata(inode, blocksize, true); 4929 else 4930 btrfs_delalloc_release_space(inode, data_reserved, 4931 block_start, blocksize, true); 4932 btrfs_delalloc_release_extents(inode, blocksize); 4933 ret = PTR_ERR(folio); 4934 goto out; 4935 } 4936 4937 if (!folio_test_uptodate(folio)) { 4938 ret = btrfs_read_folio(NULL, folio); 4939 folio_lock(folio); 4940 if (folio->mapping != mapping) { 4941 folio_unlock(folio); 4942 folio_put(folio); 4943 goto again; 4944 } 4945 if (!folio_test_uptodate(folio)) { 4946 ret = -EIO; 4947 goto out_unlock; 4948 } 4949 } 4950 4951 /* 4952 * We unlock the page after the io is completed and then re-lock it 4953 * above. release_folio() could have come in between that and cleared 4954 * folio private, but left the page in the mapping. Set the page mapped 4955 * here to make sure it's properly set for the subpage stuff. 4956 */ 4957 ret = set_folio_extent_mapped(folio); 4958 if (ret < 0) 4959 goto out_unlock; 4960 4961 folio_wait_writeback(folio); 4962 4963 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 4964 4965 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4966 if (ordered) { 4967 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4968 folio_unlock(folio); 4969 folio_put(folio); 4970 btrfs_start_ordered_extent(ordered); 4971 btrfs_put_ordered_extent(ordered); 4972 goto again; 4973 } 4974 4975 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 4976 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4977 &cached_state); 4978 4979 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4980 &cached_state); 4981 if (ret) { 4982 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4983 goto out_unlock; 4984 } 4985 4986 if (end == (u64)-1) { 4987 /* 4988 * We're truncating beyond EOF, the remaining blocks normally are 4989 * already holes thus no need to zero again, but it's possible for 4990 * fs block size < page size cases to have memory mapped writes 4991 * to pollute ranges beyond EOF. 4992 * 4993 * In that case although such polluted blocks beyond EOF will 4994 * not reach disk, it still affects our page caches. 4995 */ 4996 zero_start = max_t(u64, folio_pos(folio), start); 4997 zero_end = min_t(u64, folio_end(folio) - 1, end); 4998 } else { 4999 zero_start = max_t(u64, block_start, start); 5000 zero_end = min_t(u64, block_end, end); 5001 } 5002 folio_zero_range(folio, zero_start - folio_pos(folio), 5003 zero_end - zero_start + 1); 5004 5005 btrfs_folio_clear_checked(fs_info, folio, block_start, 5006 block_end + 1 - block_start); 5007 btrfs_folio_set_dirty(fs_info, folio, block_start, 5008 block_end + 1 - block_start); 5009 5010 if (only_release_metadata) 5011 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5012 EXTENT_NORESERVE, &cached_state); 5013 5014 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5015 5016 out_unlock: 5017 if (ret) { 5018 if (only_release_metadata) 5019 btrfs_delalloc_release_metadata(inode, blocksize, true); 5020 else 5021 btrfs_delalloc_release_space(inode, data_reserved, 5022 block_start, blocksize, true); 5023 } 5024 btrfs_delalloc_release_extents(inode, blocksize); 5025 folio_unlock(folio); 5026 folio_put(folio); 5027 out: 5028 if (only_release_metadata) 5029 btrfs_check_nocow_unlock(inode); 5030 extent_changeset_free(data_reserved); 5031 return ret; 5032 } 5033 5034 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5035 { 5036 struct btrfs_root *root = inode->root; 5037 struct btrfs_fs_info *fs_info = root->fs_info; 5038 struct btrfs_trans_handle *trans; 5039 struct btrfs_drop_extents_args drop_args = { 0 }; 5040 int ret; 5041 5042 /* 5043 * If NO_HOLES is enabled, we don't need to do anything. 5044 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5045 * or btrfs_update_inode() will be called, which guarantee that the next 5046 * fsync will know this inode was changed and needs to be logged. 5047 */ 5048 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5049 return 0; 5050 5051 /* 5052 * 1 - for the one we're dropping 5053 * 1 - for the one we're adding 5054 * 1 - for updating the inode. 5055 */ 5056 trans = btrfs_start_transaction(root, 3); 5057 if (IS_ERR(trans)) 5058 return PTR_ERR(trans); 5059 5060 drop_args.start = offset; 5061 drop_args.end = offset + len; 5062 drop_args.drop_cache = true; 5063 5064 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5065 if (ret) { 5066 btrfs_abort_transaction(trans, ret); 5067 btrfs_end_transaction(trans); 5068 return ret; 5069 } 5070 5071 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5072 if (ret) { 5073 btrfs_abort_transaction(trans, ret); 5074 } else { 5075 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5076 btrfs_update_inode(trans, inode); 5077 } 5078 btrfs_end_transaction(trans); 5079 return ret; 5080 } 5081 5082 /* 5083 * This function puts in dummy file extents for the area we're creating a hole 5084 * for. So if we are truncating this file to a larger size we need to insert 5085 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5086 * the range between oldsize and size 5087 */ 5088 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5089 { 5090 struct btrfs_root *root = inode->root; 5091 struct btrfs_fs_info *fs_info = root->fs_info; 5092 struct extent_io_tree *io_tree = &inode->io_tree; 5093 struct extent_map *em = NULL; 5094 struct extent_state *cached_state = NULL; 5095 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5096 u64 block_end = ALIGN(size, fs_info->sectorsize); 5097 u64 last_byte; 5098 u64 cur_offset; 5099 u64 hole_size; 5100 int ret = 0; 5101 5102 /* 5103 * If our size started in the middle of a block we need to zero out the 5104 * rest of the block before we expand the i_size, otherwise we could 5105 * expose stale data. 5106 */ 5107 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5108 if (ret) 5109 return ret; 5110 5111 if (size <= hole_start) 5112 return 0; 5113 5114 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5115 &cached_state); 5116 cur_offset = hole_start; 5117 while (1) { 5118 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5119 if (IS_ERR(em)) { 5120 ret = PTR_ERR(em); 5121 em = NULL; 5122 break; 5123 } 5124 last_byte = min(btrfs_extent_map_end(em), block_end); 5125 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5126 hole_size = last_byte - cur_offset; 5127 5128 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5129 struct extent_map *hole_em; 5130 5131 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5132 if (ret) 5133 break; 5134 5135 ret = btrfs_inode_set_file_extent_range(inode, 5136 cur_offset, hole_size); 5137 if (ret) 5138 break; 5139 5140 hole_em = btrfs_alloc_extent_map(); 5141 if (!hole_em) { 5142 btrfs_drop_extent_map_range(inode, cur_offset, 5143 cur_offset + hole_size - 1, 5144 false); 5145 btrfs_set_inode_full_sync(inode); 5146 goto next; 5147 } 5148 hole_em->start = cur_offset; 5149 hole_em->len = hole_size; 5150 5151 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5152 hole_em->disk_num_bytes = 0; 5153 hole_em->ram_bytes = hole_size; 5154 hole_em->generation = btrfs_get_fs_generation(fs_info); 5155 5156 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5157 btrfs_free_extent_map(hole_em); 5158 } else { 5159 ret = btrfs_inode_set_file_extent_range(inode, 5160 cur_offset, hole_size); 5161 if (ret) 5162 break; 5163 } 5164 next: 5165 btrfs_free_extent_map(em); 5166 em = NULL; 5167 cur_offset = last_byte; 5168 if (cur_offset >= block_end) 5169 break; 5170 } 5171 btrfs_free_extent_map(em); 5172 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5173 return ret; 5174 } 5175 5176 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5177 { 5178 struct btrfs_root *root = BTRFS_I(inode)->root; 5179 struct btrfs_trans_handle *trans; 5180 loff_t oldsize = i_size_read(inode); 5181 loff_t newsize = attr->ia_size; 5182 int mask = attr->ia_valid; 5183 int ret; 5184 5185 /* 5186 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5187 * special case where we need to update the times despite not having 5188 * these flags set. For all other operations the VFS set these flags 5189 * explicitly if it wants a timestamp update. 5190 */ 5191 if (newsize != oldsize) { 5192 inode_inc_iversion(inode); 5193 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5194 inode_set_mtime_to_ts(inode, 5195 inode_set_ctime_current(inode)); 5196 } 5197 } 5198 5199 if (newsize > oldsize) { 5200 /* 5201 * Don't do an expanding truncate while snapshotting is ongoing. 5202 * This is to ensure the snapshot captures a fully consistent 5203 * state of this file - if the snapshot captures this expanding 5204 * truncation, it must capture all writes that happened before 5205 * this truncation. 5206 */ 5207 btrfs_drew_write_lock(&root->snapshot_lock); 5208 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5209 if (ret) { 5210 btrfs_drew_write_unlock(&root->snapshot_lock); 5211 return ret; 5212 } 5213 5214 trans = btrfs_start_transaction(root, 1); 5215 if (IS_ERR(trans)) { 5216 btrfs_drew_write_unlock(&root->snapshot_lock); 5217 return PTR_ERR(trans); 5218 } 5219 5220 i_size_write(inode, newsize); 5221 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5222 pagecache_isize_extended(inode, oldsize, newsize); 5223 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5224 btrfs_drew_write_unlock(&root->snapshot_lock); 5225 btrfs_end_transaction(trans); 5226 } else { 5227 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5228 5229 if (btrfs_is_zoned(fs_info)) { 5230 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5231 ALIGN(newsize, fs_info->sectorsize), 5232 (u64)-1); 5233 if (ret) 5234 return ret; 5235 } 5236 5237 /* 5238 * We're truncating a file that used to have good data down to 5239 * zero. Make sure any new writes to the file get on disk 5240 * on close. 5241 */ 5242 if (newsize == 0) 5243 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5244 &BTRFS_I(inode)->runtime_flags); 5245 5246 truncate_setsize(inode, newsize); 5247 5248 inode_dio_wait(inode); 5249 5250 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5251 if (ret && inode->i_nlink) { 5252 int ret2; 5253 5254 /* 5255 * Truncate failed, so fix up the in-memory size. We 5256 * adjusted disk_i_size down as we removed extents, so 5257 * wait for disk_i_size to be stable and then update the 5258 * in-memory size to match. 5259 */ 5260 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5261 if (ret2) 5262 return ret2; 5263 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5264 } 5265 } 5266 5267 return ret; 5268 } 5269 5270 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5271 struct iattr *attr) 5272 { 5273 struct inode *inode = d_inode(dentry); 5274 struct btrfs_root *root = BTRFS_I(inode)->root; 5275 int ret; 5276 5277 if (btrfs_root_readonly(root)) 5278 return -EROFS; 5279 5280 ret = setattr_prepare(idmap, dentry, attr); 5281 if (ret) 5282 return ret; 5283 5284 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5285 ret = btrfs_setsize(inode, attr); 5286 if (ret) 5287 return ret; 5288 } 5289 5290 if (attr->ia_valid) { 5291 setattr_copy(idmap, inode, attr); 5292 inode_inc_iversion(inode); 5293 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5294 5295 if (!ret && attr->ia_valid & ATTR_MODE) 5296 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5297 } 5298 5299 return ret; 5300 } 5301 5302 /* 5303 * While truncating the inode pages during eviction, we get the VFS 5304 * calling btrfs_invalidate_folio() against each folio of the inode. This 5305 * is slow because the calls to btrfs_invalidate_folio() result in a 5306 * huge amount of calls to lock_extent() and clear_extent_bit(), 5307 * which keep merging and splitting extent_state structures over and over, 5308 * wasting lots of time. 5309 * 5310 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5311 * skip all those expensive operations on a per folio basis and do only 5312 * the ordered io finishing, while we release here the extent_map and 5313 * extent_state structures, without the excessive merging and splitting. 5314 */ 5315 static void evict_inode_truncate_pages(struct inode *inode) 5316 { 5317 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5318 struct rb_node *node; 5319 5320 ASSERT(inode->i_state & I_FREEING); 5321 truncate_inode_pages_final(&inode->i_data); 5322 5323 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5324 5325 /* 5326 * Keep looping until we have no more ranges in the io tree. 5327 * We can have ongoing bios started by readahead that have 5328 * their endio callback (extent_io.c:end_bio_extent_readpage) 5329 * still in progress (unlocked the pages in the bio but did not yet 5330 * unlocked the ranges in the io tree). Therefore this means some 5331 * ranges can still be locked and eviction started because before 5332 * submitting those bios, which are executed by a separate task (work 5333 * queue kthread), inode references (inode->i_count) were not taken 5334 * (which would be dropped in the end io callback of each bio). 5335 * Therefore here we effectively end up waiting for those bios and 5336 * anyone else holding locked ranges without having bumped the inode's 5337 * reference count - if we don't do it, when they access the inode's 5338 * io_tree to unlock a range it may be too late, leading to an 5339 * use-after-free issue. 5340 */ 5341 spin_lock(&io_tree->lock); 5342 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5343 struct extent_state *state; 5344 struct extent_state *cached_state = NULL; 5345 u64 start; 5346 u64 end; 5347 unsigned state_flags; 5348 5349 node = rb_first(&io_tree->state); 5350 state = rb_entry(node, struct extent_state, rb_node); 5351 start = state->start; 5352 end = state->end; 5353 state_flags = state->state; 5354 spin_unlock(&io_tree->lock); 5355 5356 btrfs_lock_extent(io_tree, start, end, &cached_state); 5357 5358 /* 5359 * If still has DELALLOC flag, the extent didn't reach disk, 5360 * and its reserved space won't be freed by delayed_ref. 5361 * So we need to free its reserved space here. 5362 * (Refer to comment in btrfs_invalidate_folio, case 2) 5363 * 5364 * Note, end is the bytenr of last byte, so we need + 1 here. 5365 */ 5366 if (state_flags & EXTENT_DELALLOC) 5367 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5368 end - start + 1, NULL); 5369 5370 btrfs_clear_extent_bit(io_tree, start, end, 5371 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5372 &cached_state); 5373 5374 cond_resched(); 5375 spin_lock(&io_tree->lock); 5376 } 5377 spin_unlock(&io_tree->lock); 5378 } 5379 5380 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5381 struct btrfs_block_rsv *rsv) 5382 { 5383 struct btrfs_fs_info *fs_info = root->fs_info; 5384 struct btrfs_trans_handle *trans; 5385 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5386 int ret; 5387 5388 /* 5389 * Eviction should be taking place at some place safe because of our 5390 * delayed iputs. However the normal flushing code will run delayed 5391 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5392 * 5393 * We reserve the delayed_refs_extra here again because we can't use 5394 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5395 * above. We reserve our extra bit here because we generate a ton of 5396 * delayed refs activity by truncating. 5397 * 5398 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5399 * if we fail to make this reservation we can re-try without the 5400 * delayed_refs_extra so we can make some forward progress. 5401 */ 5402 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5403 BTRFS_RESERVE_FLUSH_EVICT); 5404 if (ret) { 5405 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5406 BTRFS_RESERVE_FLUSH_EVICT); 5407 if (ret) { 5408 btrfs_warn(fs_info, 5409 "could not allocate space for delete; will truncate on mount"); 5410 return ERR_PTR(-ENOSPC); 5411 } 5412 delayed_refs_extra = 0; 5413 } 5414 5415 trans = btrfs_join_transaction(root); 5416 if (IS_ERR(trans)) 5417 return trans; 5418 5419 if (delayed_refs_extra) { 5420 trans->block_rsv = &fs_info->trans_block_rsv; 5421 trans->bytes_reserved = delayed_refs_extra; 5422 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5423 delayed_refs_extra, true); 5424 } 5425 return trans; 5426 } 5427 5428 void btrfs_evict_inode(struct inode *inode) 5429 { 5430 struct btrfs_fs_info *fs_info; 5431 struct btrfs_trans_handle *trans; 5432 struct btrfs_root *root = BTRFS_I(inode)->root; 5433 struct btrfs_block_rsv rsv; 5434 int ret; 5435 5436 trace_btrfs_inode_evict(inode); 5437 5438 if (!root) { 5439 fsverity_cleanup_inode(inode); 5440 clear_inode(inode); 5441 return; 5442 } 5443 5444 fs_info = inode_to_fs_info(inode); 5445 evict_inode_truncate_pages(inode); 5446 5447 if (inode->i_nlink && 5448 ((btrfs_root_refs(&root->root_item) != 0 && 5449 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5450 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5451 goto out; 5452 5453 if (is_bad_inode(inode)) 5454 goto out; 5455 5456 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5457 goto out; 5458 5459 if (inode->i_nlink > 0) { 5460 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5461 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5462 goto out; 5463 } 5464 5465 /* 5466 * This makes sure the inode item in tree is uptodate and the space for 5467 * the inode update is released. 5468 */ 5469 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5470 if (ret) 5471 goto out; 5472 5473 /* 5474 * This drops any pending insert or delete operations we have for this 5475 * inode. We could have a delayed dir index deletion queued up, but 5476 * we're removing the inode completely so that'll be taken care of in 5477 * the truncate. 5478 */ 5479 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5480 5481 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5482 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5483 rsv.failfast = true; 5484 5485 btrfs_i_size_write(BTRFS_I(inode), 0); 5486 5487 while (1) { 5488 struct btrfs_truncate_control control = { 5489 .inode = BTRFS_I(inode), 5490 .ino = btrfs_ino(BTRFS_I(inode)), 5491 .new_size = 0, 5492 .min_type = 0, 5493 }; 5494 5495 trans = evict_refill_and_join(root, &rsv); 5496 if (IS_ERR(trans)) 5497 goto out_release; 5498 5499 trans->block_rsv = &rsv; 5500 5501 ret = btrfs_truncate_inode_items(trans, root, &control); 5502 trans->block_rsv = &fs_info->trans_block_rsv; 5503 btrfs_end_transaction(trans); 5504 /* 5505 * We have not added new delayed items for our inode after we 5506 * have flushed its delayed items, so no need to throttle on 5507 * delayed items. However we have modified extent buffers. 5508 */ 5509 btrfs_btree_balance_dirty_nodelay(fs_info); 5510 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5511 goto out_release; 5512 else if (!ret) 5513 break; 5514 } 5515 5516 /* 5517 * Errors here aren't a big deal, it just means we leave orphan items in 5518 * the tree. They will be cleaned up on the next mount. If the inode 5519 * number gets reused, cleanup deletes the orphan item without doing 5520 * anything, and unlink reuses the existing orphan item. 5521 * 5522 * If it turns out that we are dropping too many of these, we might want 5523 * to add a mechanism for retrying these after a commit. 5524 */ 5525 trans = evict_refill_and_join(root, &rsv); 5526 if (!IS_ERR(trans)) { 5527 trans->block_rsv = &rsv; 5528 btrfs_orphan_del(trans, BTRFS_I(inode)); 5529 trans->block_rsv = &fs_info->trans_block_rsv; 5530 btrfs_end_transaction(trans); 5531 } 5532 5533 out_release: 5534 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5535 out: 5536 /* 5537 * If we didn't successfully delete, the orphan item will still be in 5538 * the tree and we'll retry on the next mount. Again, we might also want 5539 * to retry these periodically in the future. 5540 */ 5541 btrfs_remove_delayed_node(BTRFS_I(inode)); 5542 fsverity_cleanup_inode(inode); 5543 clear_inode(inode); 5544 } 5545 5546 /* 5547 * Return the key found in the dir entry in the location pointer, fill @type 5548 * with BTRFS_FT_*, and return 0. 5549 * 5550 * If no dir entries were found, returns -ENOENT. 5551 * If found a corrupted location in dir entry, returns -EUCLEAN. 5552 */ 5553 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5554 struct btrfs_key *location, u8 *type) 5555 { 5556 struct btrfs_dir_item *di; 5557 BTRFS_PATH_AUTO_FREE(path); 5558 struct btrfs_root *root = dir->root; 5559 int ret = 0; 5560 struct fscrypt_name fname; 5561 5562 path = btrfs_alloc_path(); 5563 if (!path) 5564 return -ENOMEM; 5565 5566 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5567 if (ret < 0) 5568 return ret; 5569 /* 5570 * fscrypt_setup_filename() should never return a positive value, but 5571 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5572 */ 5573 ASSERT(ret == 0); 5574 5575 /* This needs to handle no-key deletions later on */ 5576 5577 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5578 &fname.disk_name, 0); 5579 if (IS_ERR_OR_NULL(di)) { 5580 ret = di ? PTR_ERR(di) : -ENOENT; 5581 goto out; 5582 } 5583 5584 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5585 if (location->type != BTRFS_INODE_ITEM_KEY && 5586 location->type != BTRFS_ROOT_ITEM_KEY) { 5587 ret = -EUCLEAN; 5588 btrfs_warn(root->fs_info, 5589 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5590 __func__, fname.disk_name.name, btrfs_ino(dir), 5591 location->objectid, location->type, location->offset); 5592 } 5593 if (!ret) 5594 *type = btrfs_dir_ftype(path->nodes[0], di); 5595 out: 5596 fscrypt_free_filename(&fname); 5597 return ret; 5598 } 5599 5600 /* 5601 * when we hit a tree root in a directory, the btrfs part of the inode 5602 * needs to be changed to reflect the root directory of the tree root. This 5603 * is kind of like crossing a mount point. 5604 */ 5605 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5606 struct btrfs_inode *dir, 5607 struct dentry *dentry, 5608 struct btrfs_key *location, 5609 struct btrfs_root **sub_root) 5610 { 5611 BTRFS_PATH_AUTO_FREE(path); 5612 struct btrfs_root *new_root; 5613 struct btrfs_root_ref *ref; 5614 struct extent_buffer *leaf; 5615 struct btrfs_key key; 5616 int ret; 5617 int err = 0; 5618 struct fscrypt_name fname; 5619 5620 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5621 if (ret) 5622 return ret; 5623 5624 path = btrfs_alloc_path(); 5625 if (!path) { 5626 err = -ENOMEM; 5627 goto out; 5628 } 5629 5630 err = -ENOENT; 5631 key.objectid = btrfs_root_id(dir->root); 5632 key.type = BTRFS_ROOT_REF_KEY; 5633 key.offset = location->objectid; 5634 5635 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5636 if (ret) { 5637 if (ret < 0) 5638 err = ret; 5639 goto out; 5640 } 5641 5642 leaf = path->nodes[0]; 5643 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5644 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5645 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5646 goto out; 5647 5648 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5649 (unsigned long)(ref + 1), fname.disk_name.len); 5650 if (ret) 5651 goto out; 5652 5653 btrfs_release_path(path); 5654 5655 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5656 if (IS_ERR(new_root)) { 5657 err = PTR_ERR(new_root); 5658 goto out; 5659 } 5660 5661 *sub_root = new_root; 5662 location->objectid = btrfs_root_dirid(&new_root->root_item); 5663 location->type = BTRFS_INODE_ITEM_KEY; 5664 location->offset = 0; 5665 err = 0; 5666 out: 5667 fscrypt_free_filename(&fname); 5668 return err; 5669 } 5670 5671 5672 5673 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5674 { 5675 struct btrfs_root *root = inode->root; 5676 struct btrfs_inode *entry; 5677 bool empty = false; 5678 5679 xa_lock(&root->inodes); 5680 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5681 if (entry == inode) 5682 empty = xa_empty(&root->inodes); 5683 xa_unlock(&root->inodes); 5684 5685 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5686 xa_lock(&root->inodes); 5687 empty = xa_empty(&root->inodes); 5688 xa_unlock(&root->inodes); 5689 if (empty) 5690 btrfs_add_dead_root(root); 5691 } 5692 } 5693 5694 5695 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5696 { 5697 struct btrfs_iget_args *args = p; 5698 5699 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5700 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5701 5702 if (args->root && args->root == args->root->fs_info->tree_root && 5703 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5704 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5705 &BTRFS_I(inode)->runtime_flags); 5706 return 0; 5707 } 5708 5709 static int btrfs_find_actor(struct inode *inode, void *opaque) 5710 { 5711 struct btrfs_iget_args *args = opaque; 5712 5713 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5714 args->root == BTRFS_I(inode)->root; 5715 } 5716 5717 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5718 { 5719 struct inode *inode; 5720 struct btrfs_iget_args args; 5721 unsigned long hashval = btrfs_inode_hash(ino, root); 5722 5723 args.ino = ino; 5724 args.root = root; 5725 5726 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5727 btrfs_init_locked_inode, 5728 (void *)&args); 5729 if (!inode) 5730 return NULL; 5731 return BTRFS_I(inode); 5732 } 5733 5734 /* 5735 * Get an inode object given its inode number and corresponding root. Path is 5736 * preallocated to prevent recursing back to iget through allocator. 5737 */ 5738 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5739 struct btrfs_path *path) 5740 { 5741 struct btrfs_inode *inode; 5742 int ret; 5743 5744 inode = btrfs_iget_locked(ino, root); 5745 if (!inode) 5746 return ERR_PTR(-ENOMEM); 5747 5748 if (!(inode->vfs_inode.i_state & I_NEW)) 5749 return inode; 5750 5751 ret = btrfs_read_locked_inode(inode, path); 5752 if (ret) 5753 return ERR_PTR(ret); 5754 5755 unlock_new_inode(&inode->vfs_inode); 5756 return inode; 5757 } 5758 5759 /* 5760 * Get an inode object given its inode number and corresponding root. 5761 */ 5762 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5763 { 5764 struct btrfs_inode *inode; 5765 struct btrfs_path *path; 5766 int ret; 5767 5768 inode = btrfs_iget_locked(ino, root); 5769 if (!inode) 5770 return ERR_PTR(-ENOMEM); 5771 5772 if (!(inode->vfs_inode.i_state & I_NEW)) 5773 return inode; 5774 5775 path = btrfs_alloc_path(); 5776 if (!path) { 5777 iget_failed(&inode->vfs_inode); 5778 return ERR_PTR(-ENOMEM); 5779 } 5780 5781 ret = btrfs_read_locked_inode(inode, path); 5782 btrfs_free_path(path); 5783 if (ret) 5784 return ERR_PTR(ret); 5785 5786 unlock_new_inode(&inode->vfs_inode); 5787 return inode; 5788 } 5789 5790 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5791 struct btrfs_key *key, 5792 struct btrfs_root *root) 5793 { 5794 struct timespec64 ts; 5795 struct inode *vfs_inode; 5796 struct btrfs_inode *inode; 5797 5798 vfs_inode = new_inode(dir->i_sb); 5799 if (!vfs_inode) 5800 return ERR_PTR(-ENOMEM); 5801 5802 inode = BTRFS_I(vfs_inode); 5803 inode->root = btrfs_grab_root(root); 5804 inode->ref_root_id = key->objectid; 5805 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5806 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5807 5808 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5809 /* 5810 * We only need lookup, the rest is read-only and there's no inode 5811 * associated with the dentry 5812 */ 5813 vfs_inode->i_op = &simple_dir_inode_operations; 5814 vfs_inode->i_opflags &= ~IOP_XATTR; 5815 vfs_inode->i_fop = &simple_dir_operations; 5816 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5817 5818 ts = inode_set_ctime_current(vfs_inode); 5819 inode_set_mtime_to_ts(vfs_inode, ts); 5820 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5821 inode->i_otime_sec = ts.tv_sec; 5822 inode->i_otime_nsec = ts.tv_nsec; 5823 5824 vfs_inode->i_uid = dir->i_uid; 5825 vfs_inode->i_gid = dir->i_gid; 5826 5827 return inode; 5828 } 5829 5830 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5831 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5832 static_assert(BTRFS_FT_DIR == FT_DIR); 5833 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5834 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5835 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5836 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5837 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5838 5839 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5840 { 5841 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5842 } 5843 5844 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5845 { 5846 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5847 struct btrfs_inode *inode; 5848 struct btrfs_root *root = BTRFS_I(dir)->root; 5849 struct btrfs_root *sub_root = root; 5850 struct btrfs_key location = { 0 }; 5851 u8 di_type = 0; 5852 int ret = 0; 5853 5854 if (dentry->d_name.len > BTRFS_NAME_LEN) 5855 return ERR_PTR(-ENAMETOOLONG); 5856 5857 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5858 if (ret < 0) 5859 return ERR_PTR(ret); 5860 5861 if (location.type == BTRFS_INODE_ITEM_KEY) { 5862 inode = btrfs_iget(location.objectid, root); 5863 if (IS_ERR(inode)) 5864 return ERR_CAST(inode); 5865 5866 /* Do extra check against inode mode with di_type */ 5867 if (btrfs_inode_type(inode) != di_type) { 5868 btrfs_crit(fs_info, 5869 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5870 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5871 di_type); 5872 iput(&inode->vfs_inode); 5873 return ERR_PTR(-EUCLEAN); 5874 } 5875 return &inode->vfs_inode; 5876 } 5877 5878 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5879 &location, &sub_root); 5880 if (ret < 0) { 5881 if (ret != -ENOENT) 5882 inode = ERR_PTR(ret); 5883 else 5884 inode = new_simple_dir(dir, &location, root); 5885 } else { 5886 inode = btrfs_iget(location.objectid, sub_root); 5887 btrfs_put_root(sub_root); 5888 5889 if (IS_ERR(inode)) 5890 return ERR_CAST(inode); 5891 5892 down_read(&fs_info->cleanup_work_sem); 5893 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5894 ret = btrfs_orphan_cleanup(sub_root); 5895 up_read(&fs_info->cleanup_work_sem); 5896 if (ret) { 5897 iput(&inode->vfs_inode); 5898 inode = ERR_PTR(ret); 5899 } 5900 } 5901 5902 if (IS_ERR(inode)) 5903 return ERR_CAST(inode); 5904 5905 return &inode->vfs_inode; 5906 } 5907 5908 static int btrfs_dentry_delete(const struct dentry *dentry) 5909 { 5910 struct btrfs_root *root; 5911 struct inode *inode = d_inode(dentry); 5912 5913 if (!inode && !IS_ROOT(dentry)) 5914 inode = d_inode(dentry->d_parent); 5915 5916 if (inode) { 5917 root = BTRFS_I(inode)->root; 5918 if (btrfs_root_refs(&root->root_item) == 0) 5919 return 1; 5920 5921 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5922 return 1; 5923 } 5924 return 0; 5925 } 5926 5927 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5928 unsigned int flags) 5929 { 5930 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5931 5932 if (inode == ERR_PTR(-ENOENT)) 5933 inode = NULL; 5934 return d_splice_alias(inode, dentry); 5935 } 5936 5937 /* 5938 * Find the highest existing sequence number in a directory and then set the 5939 * in-memory index_cnt variable to the first free sequence number. 5940 */ 5941 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5942 { 5943 struct btrfs_root *root = inode->root; 5944 struct btrfs_key key, found_key; 5945 BTRFS_PATH_AUTO_FREE(path); 5946 struct extent_buffer *leaf; 5947 int ret; 5948 5949 key.objectid = btrfs_ino(inode); 5950 key.type = BTRFS_DIR_INDEX_KEY; 5951 key.offset = (u64)-1; 5952 5953 path = btrfs_alloc_path(); 5954 if (!path) 5955 return -ENOMEM; 5956 5957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5958 if (ret < 0) 5959 return ret; 5960 /* FIXME: we should be able to handle this */ 5961 if (ret == 0) 5962 return ret; 5963 5964 if (path->slots[0] == 0) { 5965 inode->index_cnt = BTRFS_DIR_START_INDEX; 5966 return 0; 5967 } 5968 5969 path->slots[0]--; 5970 5971 leaf = path->nodes[0]; 5972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5973 5974 if (found_key.objectid != btrfs_ino(inode) || 5975 found_key.type != BTRFS_DIR_INDEX_KEY) { 5976 inode->index_cnt = BTRFS_DIR_START_INDEX; 5977 return 0; 5978 } 5979 5980 inode->index_cnt = found_key.offset + 1; 5981 5982 return 0; 5983 } 5984 5985 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5986 { 5987 int ret = 0; 5988 5989 btrfs_inode_lock(dir, 0); 5990 if (dir->index_cnt == (u64)-1) { 5991 ret = btrfs_inode_delayed_dir_index_count(dir); 5992 if (ret) { 5993 ret = btrfs_set_inode_index_count(dir); 5994 if (ret) 5995 goto out; 5996 } 5997 } 5998 5999 /* index_cnt is the index number of next new entry, so decrement it. */ 6000 *index = dir->index_cnt - 1; 6001 out: 6002 btrfs_inode_unlock(dir, 0); 6003 6004 return ret; 6005 } 6006 6007 /* 6008 * All this infrastructure exists because dir_emit can fault, and we are holding 6009 * the tree lock when doing readdir. For now just allocate a buffer and copy 6010 * our information into that, and then dir_emit from the buffer. This is 6011 * similar to what NFS does, only we don't keep the buffer around in pagecache 6012 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6013 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6014 * tree lock. 6015 */ 6016 static int btrfs_opendir(struct inode *inode, struct file *file) 6017 { 6018 struct btrfs_file_private *private; 6019 u64 last_index; 6020 int ret; 6021 6022 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6023 if (ret) 6024 return ret; 6025 6026 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6027 if (!private) 6028 return -ENOMEM; 6029 private->last_index = last_index; 6030 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6031 if (!private->filldir_buf) { 6032 kfree(private); 6033 return -ENOMEM; 6034 } 6035 file->private_data = private; 6036 return 0; 6037 } 6038 6039 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6040 { 6041 struct btrfs_file_private *private = file->private_data; 6042 int ret; 6043 6044 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6045 &private->last_index); 6046 if (ret) 6047 return ret; 6048 6049 return generic_file_llseek(file, offset, whence); 6050 } 6051 6052 struct dir_entry { 6053 u64 ino; 6054 u64 offset; 6055 unsigned type; 6056 int name_len; 6057 }; 6058 6059 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6060 { 6061 while (entries--) { 6062 struct dir_entry *entry = addr; 6063 char *name = (char *)(entry + 1); 6064 6065 ctx->pos = get_unaligned(&entry->offset); 6066 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6067 get_unaligned(&entry->ino), 6068 get_unaligned(&entry->type))) 6069 return 1; 6070 addr += sizeof(struct dir_entry) + 6071 get_unaligned(&entry->name_len); 6072 ctx->pos++; 6073 } 6074 return 0; 6075 } 6076 6077 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6078 { 6079 struct inode *inode = file_inode(file); 6080 struct btrfs_root *root = BTRFS_I(inode)->root; 6081 struct btrfs_file_private *private = file->private_data; 6082 struct btrfs_dir_item *di; 6083 struct btrfs_key key; 6084 struct btrfs_key found_key; 6085 BTRFS_PATH_AUTO_FREE(path); 6086 void *addr; 6087 LIST_HEAD(ins_list); 6088 LIST_HEAD(del_list); 6089 int ret; 6090 char *name_ptr; 6091 int name_len; 6092 int entries = 0; 6093 int total_len = 0; 6094 bool put = false; 6095 struct btrfs_key location; 6096 6097 if (!dir_emit_dots(file, ctx)) 6098 return 0; 6099 6100 path = btrfs_alloc_path(); 6101 if (!path) 6102 return -ENOMEM; 6103 6104 addr = private->filldir_buf; 6105 path->reada = READA_FORWARD; 6106 6107 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6108 &ins_list, &del_list); 6109 6110 again: 6111 key.type = BTRFS_DIR_INDEX_KEY; 6112 key.offset = ctx->pos; 6113 key.objectid = btrfs_ino(BTRFS_I(inode)); 6114 6115 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6116 struct dir_entry *entry; 6117 struct extent_buffer *leaf = path->nodes[0]; 6118 u8 ftype; 6119 6120 if (found_key.objectid != key.objectid) 6121 break; 6122 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6123 break; 6124 if (found_key.offset < ctx->pos) 6125 continue; 6126 if (found_key.offset > private->last_index) 6127 break; 6128 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6129 continue; 6130 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6131 name_len = btrfs_dir_name_len(leaf, di); 6132 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6133 PAGE_SIZE) { 6134 btrfs_release_path(path); 6135 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6136 if (ret) 6137 goto nopos; 6138 addr = private->filldir_buf; 6139 entries = 0; 6140 total_len = 0; 6141 goto again; 6142 } 6143 6144 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6145 entry = addr; 6146 name_ptr = (char *)(entry + 1); 6147 read_extent_buffer(leaf, name_ptr, 6148 (unsigned long)(di + 1), name_len); 6149 put_unaligned(name_len, &entry->name_len); 6150 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6151 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6152 put_unaligned(location.objectid, &entry->ino); 6153 put_unaligned(found_key.offset, &entry->offset); 6154 entries++; 6155 addr += sizeof(struct dir_entry) + name_len; 6156 total_len += sizeof(struct dir_entry) + name_len; 6157 } 6158 /* Catch error encountered during iteration */ 6159 if (ret < 0) 6160 goto err; 6161 6162 btrfs_release_path(path); 6163 6164 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6165 if (ret) 6166 goto nopos; 6167 6168 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6169 goto nopos; 6170 6171 /* 6172 * Stop new entries from being returned after we return the last 6173 * entry. 6174 * 6175 * New directory entries are assigned a strictly increasing 6176 * offset. This means that new entries created during readdir 6177 * are *guaranteed* to be seen in the future by that readdir. 6178 * This has broken buggy programs which operate on names as 6179 * they're returned by readdir. Until we reuse freed offsets 6180 * we have this hack to stop new entries from being returned 6181 * under the assumption that they'll never reach this huge 6182 * offset. 6183 * 6184 * This is being careful not to overflow 32bit loff_t unless the 6185 * last entry requires it because doing so has broken 32bit apps 6186 * in the past. 6187 */ 6188 if (ctx->pos >= INT_MAX) 6189 ctx->pos = LLONG_MAX; 6190 else 6191 ctx->pos = INT_MAX; 6192 nopos: 6193 ret = 0; 6194 err: 6195 if (put) 6196 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6197 return ret; 6198 } 6199 6200 /* 6201 * This is somewhat expensive, updating the tree every time the 6202 * inode changes. But, it is most likely to find the inode in cache. 6203 * FIXME, needs more benchmarking...there are no reasons other than performance 6204 * to keep or drop this code. 6205 */ 6206 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6207 { 6208 struct btrfs_root *root = inode->root; 6209 struct btrfs_fs_info *fs_info = root->fs_info; 6210 struct btrfs_trans_handle *trans; 6211 int ret; 6212 6213 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6214 return 0; 6215 6216 trans = btrfs_join_transaction(root); 6217 if (IS_ERR(trans)) 6218 return PTR_ERR(trans); 6219 6220 ret = btrfs_update_inode(trans, inode); 6221 if (ret == -ENOSPC || ret == -EDQUOT) { 6222 /* whoops, lets try again with the full transaction */ 6223 btrfs_end_transaction(trans); 6224 trans = btrfs_start_transaction(root, 1); 6225 if (IS_ERR(trans)) 6226 return PTR_ERR(trans); 6227 6228 ret = btrfs_update_inode(trans, inode); 6229 } 6230 btrfs_end_transaction(trans); 6231 if (inode->delayed_node) 6232 btrfs_balance_delayed_items(fs_info); 6233 6234 return ret; 6235 } 6236 6237 /* 6238 * This is a copy of file_update_time. We need this so we can return error on 6239 * ENOSPC for updating the inode in the case of file write and mmap writes. 6240 */ 6241 static int btrfs_update_time(struct inode *inode, int flags) 6242 { 6243 struct btrfs_root *root = BTRFS_I(inode)->root; 6244 bool dirty; 6245 6246 if (btrfs_root_readonly(root)) 6247 return -EROFS; 6248 6249 dirty = inode_update_timestamps(inode, flags); 6250 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6251 } 6252 6253 /* 6254 * helper to find a free sequence number in a given directory. This current 6255 * code is very simple, later versions will do smarter things in the btree 6256 */ 6257 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6258 { 6259 int ret = 0; 6260 6261 if (dir->index_cnt == (u64)-1) { 6262 ret = btrfs_inode_delayed_dir_index_count(dir); 6263 if (ret) { 6264 ret = btrfs_set_inode_index_count(dir); 6265 if (ret) 6266 return ret; 6267 } 6268 } 6269 6270 *index = dir->index_cnt; 6271 dir->index_cnt++; 6272 6273 return ret; 6274 } 6275 6276 static int btrfs_insert_inode_locked(struct inode *inode) 6277 { 6278 struct btrfs_iget_args args; 6279 6280 args.ino = btrfs_ino(BTRFS_I(inode)); 6281 args.root = BTRFS_I(inode)->root; 6282 6283 return insert_inode_locked4(inode, 6284 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6285 btrfs_find_actor, &args); 6286 } 6287 6288 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6289 unsigned int *trans_num_items) 6290 { 6291 struct inode *dir = args->dir; 6292 struct inode *inode = args->inode; 6293 int ret; 6294 6295 if (!args->orphan) { 6296 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6297 &args->fname); 6298 if (ret) 6299 return ret; 6300 } 6301 6302 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6303 if (ret) { 6304 fscrypt_free_filename(&args->fname); 6305 return ret; 6306 } 6307 6308 /* 1 to add inode item */ 6309 *trans_num_items = 1; 6310 /* 1 to add compression property */ 6311 if (BTRFS_I(dir)->prop_compress) 6312 (*trans_num_items)++; 6313 /* 1 to add default ACL xattr */ 6314 if (args->default_acl) 6315 (*trans_num_items)++; 6316 /* 1 to add access ACL xattr */ 6317 if (args->acl) 6318 (*trans_num_items)++; 6319 #ifdef CONFIG_SECURITY 6320 /* 1 to add LSM xattr */ 6321 if (dir->i_security) 6322 (*trans_num_items)++; 6323 #endif 6324 if (args->orphan) { 6325 /* 1 to add orphan item */ 6326 (*trans_num_items)++; 6327 } else { 6328 /* 6329 * 1 to add dir item 6330 * 1 to add dir index 6331 * 1 to update parent inode item 6332 * 6333 * No need for 1 unit for the inode ref item because it is 6334 * inserted in a batch together with the inode item at 6335 * btrfs_create_new_inode(). 6336 */ 6337 *trans_num_items += 3; 6338 } 6339 return 0; 6340 } 6341 6342 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6343 { 6344 posix_acl_release(args->acl); 6345 posix_acl_release(args->default_acl); 6346 fscrypt_free_filename(&args->fname); 6347 } 6348 6349 /* 6350 * Inherit flags from the parent inode. 6351 * 6352 * Currently only the compression flags and the cow flags are inherited. 6353 */ 6354 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6355 { 6356 unsigned int flags; 6357 6358 flags = dir->flags; 6359 6360 if (flags & BTRFS_INODE_NOCOMPRESS) { 6361 inode->flags &= ~BTRFS_INODE_COMPRESS; 6362 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6363 } else if (flags & BTRFS_INODE_COMPRESS) { 6364 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6365 inode->flags |= BTRFS_INODE_COMPRESS; 6366 } 6367 6368 if (flags & BTRFS_INODE_NODATACOW) { 6369 inode->flags |= BTRFS_INODE_NODATACOW; 6370 if (S_ISREG(inode->vfs_inode.i_mode)) 6371 inode->flags |= BTRFS_INODE_NODATASUM; 6372 } 6373 6374 btrfs_sync_inode_flags_to_i_flags(inode); 6375 } 6376 6377 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6378 struct btrfs_new_inode_args *args) 6379 { 6380 struct timespec64 ts; 6381 struct inode *dir = args->dir; 6382 struct inode *inode = args->inode; 6383 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6384 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6385 struct btrfs_root *root; 6386 struct btrfs_inode_item *inode_item; 6387 struct btrfs_path *path; 6388 u64 objectid; 6389 struct btrfs_inode_ref *ref; 6390 struct btrfs_key key[2]; 6391 u32 sizes[2]; 6392 struct btrfs_item_batch batch; 6393 unsigned long ptr; 6394 int ret; 6395 bool xa_reserved = false; 6396 6397 path = btrfs_alloc_path(); 6398 if (!path) 6399 return -ENOMEM; 6400 6401 if (!args->subvol) 6402 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6403 root = BTRFS_I(inode)->root; 6404 6405 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6406 if (ret) 6407 goto out; 6408 6409 ret = btrfs_get_free_objectid(root, &objectid); 6410 if (ret) 6411 goto out; 6412 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6413 6414 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6415 if (ret) 6416 goto out; 6417 xa_reserved = true; 6418 6419 if (args->orphan) { 6420 /* 6421 * O_TMPFILE, set link count to 0, so that after this point, we 6422 * fill in an inode item with the correct link count. 6423 */ 6424 set_nlink(inode, 0); 6425 } else { 6426 trace_btrfs_inode_request(dir); 6427 6428 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6429 if (ret) 6430 goto out; 6431 } 6432 6433 if (S_ISDIR(inode->i_mode)) 6434 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6435 6436 BTRFS_I(inode)->generation = trans->transid; 6437 inode->i_generation = BTRFS_I(inode)->generation; 6438 6439 /* 6440 * We don't have any capability xattrs set here yet, shortcut any 6441 * queries for the xattrs here. If we add them later via the inode 6442 * security init path or any other path this flag will be cleared. 6443 */ 6444 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6445 6446 /* 6447 * Subvolumes don't inherit flags from their parent directory. 6448 * Originally this was probably by accident, but we probably can't 6449 * change it now without compatibility issues. 6450 */ 6451 if (!args->subvol) 6452 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6453 6454 if (S_ISREG(inode->i_mode)) { 6455 if (btrfs_test_opt(fs_info, NODATASUM)) 6456 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6457 if (btrfs_test_opt(fs_info, NODATACOW)) 6458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6459 BTRFS_INODE_NODATASUM; 6460 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6461 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6462 } 6463 6464 ret = btrfs_insert_inode_locked(inode); 6465 if (ret < 0) { 6466 if (!args->orphan) 6467 BTRFS_I(dir)->index_cnt--; 6468 goto out; 6469 } 6470 6471 /* 6472 * We could have gotten an inode number from somebody who was fsynced 6473 * and then removed in this same transaction, so let's just set full 6474 * sync since it will be a full sync anyway and this will blow away the 6475 * old info in the log. 6476 */ 6477 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6478 6479 key[0].objectid = objectid; 6480 key[0].type = BTRFS_INODE_ITEM_KEY; 6481 key[0].offset = 0; 6482 6483 sizes[0] = sizeof(struct btrfs_inode_item); 6484 6485 if (!args->orphan) { 6486 /* 6487 * Start new inodes with an inode_ref. This is slightly more 6488 * efficient for small numbers of hard links since they will 6489 * be packed into one item. Extended refs will kick in if we 6490 * add more hard links than can fit in the ref item. 6491 */ 6492 key[1].objectid = objectid; 6493 key[1].type = BTRFS_INODE_REF_KEY; 6494 if (args->subvol) { 6495 key[1].offset = objectid; 6496 sizes[1] = 2 + sizeof(*ref); 6497 } else { 6498 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6499 sizes[1] = name->len + sizeof(*ref); 6500 } 6501 } 6502 6503 batch.keys = &key[0]; 6504 batch.data_sizes = &sizes[0]; 6505 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6506 batch.nr = args->orphan ? 1 : 2; 6507 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6508 if (ret != 0) { 6509 btrfs_abort_transaction(trans, ret); 6510 goto discard; 6511 } 6512 6513 ts = simple_inode_init_ts(inode); 6514 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6515 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6516 6517 /* 6518 * We're going to fill the inode item now, so at this point the inode 6519 * must be fully initialized. 6520 */ 6521 6522 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6523 struct btrfs_inode_item); 6524 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6525 sizeof(*inode_item)); 6526 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6527 6528 if (!args->orphan) { 6529 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6530 struct btrfs_inode_ref); 6531 ptr = (unsigned long)(ref + 1); 6532 if (args->subvol) { 6533 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6534 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6535 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6536 } else { 6537 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6538 name->len); 6539 btrfs_set_inode_ref_index(path->nodes[0], ref, 6540 BTRFS_I(inode)->dir_index); 6541 write_extent_buffer(path->nodes[0], name->name, ptr, 6542 name->len); 6543 } 6544 } 6545 6546 /* 6547 * We don't need the path anymore, plus inheriting properties, adding 6548 * ACLs, security xattrs, orphan item or adding the link, will result in 6549 * allocating yet another path. So just free our path. 6550 */ 6551 btrfs_free_path(path); 6552 path = NULL; 6553 6554 if (args->subvol) { 6555 struct btrfs_inode *parent; 6556 6557 /* 6558 * Subvolumes inherit properties from their parent subvolume, 6559 * not the directory they were created in. 6560 */ 6561 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6562 if (IS_ERR(parent)) { 6563 ret = PTR_ERR(parent); 6564 } else { 6565 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6566 parent); 6567 iput(&parent->vfs_inode); 6568 } 6569 } else { 6570 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6571 BTRFS_I(dir)); 6572 } 6573 if (ret) { 6574 btrfs_err(fs_info, 6575 "error inheriting props for ino %llu (root %llu): %d", 6576 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6577 } 6578 6579 /* 6580 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6581 * probably a bug. 6582 */ 6583 if (!args->subvol) { 6584 ret = btrfs_init_inode_security(trans, args); 6585 if (ret) { 6586 btrfs_abort_transaction(trans, ret); 6587 goto discard; 6588 } 6589 } 6590 6591 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6592 if (WARN_ON(ret)) { 6593 /* Shouldn't happen, we used xa_reserve() before. */ 6594 btrfs_abort_transaction(trans, ret); 6595 goto discard; 6596 } 6597 6598 trace_btrfs_inode_new(inode); 6599 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6600 6601 btrfs_update_root_times(trans, root); 6602 6603 if (args->orphan) { 6604 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6605 if (ret) { 6606 btrfs_abort_transaction(trans, ret); 6607 goto discard; 6608 } 6609 } else { 6610 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6611 0, BTRFS_I(inode)->dir_index); 6612 if (ret) { 6613 btrfs_abort_transaction(trans, ret); 6614 goto discard; 6615 } 6616 } 6617 6618 return 0; 6619 6620 discard: 6621 /* 6622 * discard_new_inode() calls iput(), but the caller owns the reference 6623 * to the inode. 6624 */ 6625 ihold(inode); 6626 discard_new_inode(inode); 6627 out: 6628 if (xa_reserved) 6629 xa_release(&root->inodes, objectid); 6630 6631 btrfs_free_path(path); 6632 return ret; 6633 } 6634 6635 /* 6636 * utility function to add 'inode' into 'parent_inode' with 6637 * a give name and a given sequence number. 6638 * if 'add_backref' is true, also insert a backref from the 6639 * inode to the parent directory. 6640 */ 6641 int btrfs_add_link(struct btrfs_trans_handle *trans, 6642 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6643 const struct fscrypt_str *name, int add_backref, u64 index) 6644 { 6645 int ret = 0; 6646 struct btrfs_key key; 6647 struct btrfs_root *root = parent_inode->root; 6648 u64 ino = btrfs_ino(inode); 6649 u64 parent_ino = btrfs_ino(parent_inode); 6650 6651 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6652 memcpy(&key, &inode->root->root_key, sizeof(key)); 6653 } else { 6654 key.objectid = ino; 6655 key.type = BTRFS_INODE_ITEM_KEY; 6656 key.offset = 0; 6657 } 6658 6659 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6660 ret = btrfs_add_root_ref(trans, key.objectid, 6661 btrfs_root_id(root), parent_ino, 6662 index, name); 6663 } else if (add_backref) { 6664 ret = btrfs_insert_inode_ref(trans, root, name, 6665 ino, parent_ino, index); 6666 } 6667 6668 /* Nothing to clean up yet */ 6669 if (ret) 6670 return ret; 6671 6672 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6673 btrfs_inode_type(inode), index); 6674 if (ret == -EEXIST || ret == -EOVERFLOW) 6675 goto fail_dir_item; 6676 else if (ret) { 6677 btrfs_abort_transaction(trans, ret); 6678 return ret; 6679 } 6680 6681 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6682 name->len * 2); 6683 inode_inc_iversion(&parent_inode->vfs_inode); 6684 /* 6685 * If we are replaying a log tree, we do not want to update the mtime 6686 * and ctime of the parent directory with the current time, since the 6687 * log replay procedure is responsible for setting them to their correct 6688 * values (the ones it had when the fsync was done). 6689 */ 6690 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6691 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6692 inode_set_ctime_current(&parent_inode->vfs_inode)); 6693 6694 ret = btrfs_update_inode(trans, parent_inode); 6695 if (ret) 6696 btrfs_abort_transaction(trans, ret); 6697 return ret; 6698 6699 fail_dir_item: 6700 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6701 u64 local_index; 6702 int ret2; 6703 6704 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6705 parent_ino, &local_index, name); 6706 if (ret2) 6707 btrfs_abort_transaction(trans, ret2); 6708 } else if (add_backref) { 6709 int ret2; 6710 6711 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6712 if (ret2) 6713 btrfs_abort_transaction(trans, ret2); 6714 } 6715 6716 /* Return the original error code */ 6717 return ret; 6718 } 6719 6720 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6721 struct inode *inode) 6722 { 6723 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6724 struct btrfs_root *root = BTRFS_I(dir)->root; 6725 struct btrfs_new_inode_args new_inode_args = { 6726 .dir = dir, 6727 .dentry = dentry, 6728 .inode = inode, 6729 }; 6730 unsigned int trans_num_items; 6731 struct btrfs_trans_handle *trans; 6732 int ret; 6733 6734 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6735 if (ret) 6736 goto out_inode; 6737 6738 trans = btrfs_start_transaction(root, trans_num_items); 6739 if (IS_ERR(trans)) { 6740 ret = PTR_ERR(trans); 6741 goto out_new_inode_args; 6742 } 6743 6744 ret = btrfs_create_new_inode(trans, &new_inode_args); 6745 if (!ret) 6746 d_instantiate_new(dentry, inode); 6747 6748 btrfs_end_transaction(trans); 6749 btrfs_btree_balance_dirty(fs_info); 6750 out_new_inode_args: 6751 btrfs_new_inode_args_destroy(&new_inode_args); 6752 out_inode: 6753 if (ret) 6754 iput(inode); 6755 return ret; 6756 } 6757 6758 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6759 struct dentry *dentry, umode_t mode, dev_t rdev) 6760 { 6761 struct inode *inode; 6762 6763 inode = new_inode(dir->i_sb); 6764 if (!inode) 6765 return -ENOMEM; 6766 inode_init_owner(idmap, inode, dir, mode); 6767 inode->i_op = &btrfs_special_inode_operations; 6768 init_special_inode(inode, inode->i_mode, rdev); 6769 return btrfs_create_common(dir, dentry, inode); 6770 } 6771 6772 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6773 struct dentry *dentry, umode_t mode, bool excl) 6774 { 6775 struct inode *inode; 6776 6777 inode = new_inode(dir->i_sb); 6778 if (!inode) 6779 return -ENOMEM; 6780 inode_init_owner(idmap, inode, dir, mode); 6781 inode->i_fop = &btrfs_file_operations; 6782 inode->i_op = &btrfs_file_inode_operations; 6783 inode->i_mapping->a_ops = &btrfs_aops; 6784 return btrfs_create_common(dir, dentry, inode); 6785 } 6786 6787 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6788 struct dentry *dentry) 6789 { 6790 struct btrfs_trans_handle *trans = NULL; 6791 struct btrfs_root *root = BTRFS_I(dir)->root; 6792 struct inode *inode = d_inode(old_dentry); 6793 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6794 struct fscrypt_name fname; 6795 u64 index; 6796 int ret; 6797 int drop_inode = 0; 6798 6799 /* do not allow sys_link's with other subvols of the same device */ 6800 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6801 return -EXDEV; 6802 6803 if (inode->i_nlink >= BTRFS_LINK_MAX) 6804 return -EMLINK; 6805 6806 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6807 if (ret) 6808 goto fail; 6809 6810 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6811 if (ret) 6812 goto fail; 6813 6814 /* 6815 * 2 items for inode and inode ref 6816 * 2 items for dir items 6817 * 1 item for parent inode 6818 * 1 item for orphan item deletion if O_TMPFILE 6819 */ 6820 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6821 if (IS_ERR(trans)) { 6822 ret = PTR_ERR(trans); 6823 trans = NULL; 6824 goto fail; 6825 } 6826 6827 /* There are several dir indexes for this inode, clear the cache. */ 6828 BTRFS_I(inode)->dir_index = 0ULL; 6829 inc_nlink(inode); 6830 inode_inc_iversion(inode); 6831 inode_set_ctime_current(inode); 6832 ihold(inode); 6833 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6834 6835 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6836 &fname.disk_name, 1, index); 6837 6838 if (ret) { 6839 drop_inode = 1; 6840 } else { 6841 struct dentry *parent = dentry->d_parent; 6842 6843 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6844 if (ret) 6845 goto fail; 6846 if (inode->i_nlink == 1) { 6847 /* 6848 * If new hard link count is 1, it's a file created 6849 * with open(2) O_TMPFILE flag. 6850 */ 6851 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6852 if (ret) 6853 goto fail; 6854 } 6855 d_instantiate(dentry, inode); 6856 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6857 } 6858 6859 fail: 6860 fscrypt_free_filename(&fname); 6861 if (trans) 6862 btrfs_end_transaction(trans); 6863 if (drop_inode) { 6864 inode_dec_link_count(inode); 6865 iput(inode); 6866 } 6867 btrfs_btree_balance_dirty(fs_info); 6868 return ret; 6869 } 6870 6871 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6872 struct dentry *dentry, umode_t mode) 6873 { 6874 struct inode *inode; 6875 6876 inode = new_inode(dir->i_sb); 6877 if (!inode) 6878 return ERR_PTR(-ENOMEM); 6879 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6880 inode->i_op = &btrfs_dir_inode_operations; 6881 inode->i_fop = &btrfs_dir_file_operations; 6882 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6883 } 6884 6885 static noinline int uncompress_inline(struct btrfs_path *path, 6886 struct folio *folio, 6887 struct btrfs_file_extent_item *item) 6888 { 6889 int ret; 6890 struct extent_buffer *leaf = path->nodes[0]; 6891 const u32 blocksize = leaf->fs_info->sectorsize; 6892 char *tmp; 6893 size_t max_size; 6894 unsigned long inline_size; 6895 unsigned long ptr; 6896 int compress_type; 6897 6898 compress_type = btrfs_file_extent_compression(leaf, item); 6899 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6900 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6901 tmp = kmalloc(inline_size, GFP_NOFS); 6902 if (!tmp) 6903 return -ENOMEM; 6904 ptr = btrfs_file_extent_inline_start(item); 6905 6906 read_extent_buffer(leaf, tmp, ptr, inline_size); 6907 6908 max_size = min_t(unsigned long, blocksize, max_size); 6909 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6910 max_size); 6911 6912 /* 6913 * decompression code contains a memset to fill in any space between the end 6914 * of the uncompressed data and the end of max_size in case the decompressed 6915 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6916 * the end of an inline extent and the beginning of the next block, so we 6917 * cover that region here. 6918 */ 6919 6920 if (max_size < blocksize) 6921 folio_zero_range(folio, max_size, blocksize - max_size); 6922 kfree(tmp); 6923 return ret; 6924 } 6925 6926 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6927 { 6928 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6929 struct btrfs_file_extent_item *fi; 6930 void *kaddr; 6931 size_t copy_size; 6932 6933 if (!folio || folio_test_uptodate(folio)) 6934 return 0; 6935 6936 ASSERT(folio_pos(folio) == 0); 6937 6938 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6939 struct btrfs_file_extent_item); 6940 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6941 return uncompress_inline(path, folio, fi); 6942 6943 copy_size = min_t(u64, blocksize, 6944 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6945 kaddr = kmap_local_folio(folio, 0); 6946 read_extent_buffer(path->nodes[0], kaddr, 6947 btrfs_file_extent_inline_start(fi), copy_size); 6948 kunmap_local(kaddr); 6949 if (copy_size < blocksize) 6950 folio_zero_range(folio, copy_size, blocksize - copy_size); 6951 return 0; 6952 } 6953 6954 /* 6955 * Lookup the first extent overlapping a range in a file. 6956 * 6957 * @inode: file to search in 6958 * @page: page to read extent data into if the extent is inline 6959 * @start: file offset 6960 * @len: length of range starting at @start 6961 * 6962 * Return the first &struct extent_map which overlaps the given range, reading 6963 * it from the B-tree and caching it if necessary. Note that there may be more 6964 * extents which overlap the given range after the returned extent_map. 6965 * 6966 * If @page is not NULL and the extent is inline, this also reads the extent 6967 * data directly into the page and marks the extent up to date in the io_tree. 6968 * 6969 * Return: ERR_PTR on error, non-NULL extent_map on success. 6970 */ 6971 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6972 struct folio *folio, u64 start, u64 len) 6973 { 6974 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6975 int ret = 0; 6976 u64 extent_start = 0; 6977 u64 extent_end = 0; 6978 u64 objectid = btrfs_ino(inode); 6979 int extent_type = -1; 6980 struct btrfs_path *path = NULL; 6981 struct btrfs_root *root = inode->root; 6982 struct btrfs_file_extent_item *item; 6983 struct extent_buffer *leaf; 6984 struct btrfs_key found_key; 6985 struct extent_map *em = NULL; 6986 struct extent_map_tree *em_tree = &inode->extent_tree; 6987 6988 read_lock(&em_tree->lock); 6989 em = btrfs_lookup_extent_mapping(em_tree, start, len); 6990 read_unlock(&em_tree->lock); 6991 6992 if (em) { 6993 if (em->start > start || em->start + em->len <= start) 6994 btrfs_free_extent_map(em); 6995 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6996 btrfs_free_extent_map(em); 6997 else 6998 goto out; 6999 } 7000 em = btrfs_alloc_extent_map(); 7001 if (!em) { 7002 ret = -ENOMEM; 7003 goto out; 7004 } 7005 em->start = EXTENT_MAP_HOLE; 7006 em->disk_bytenr = EXTENT_MAP_HOLE; 7007 em->len = (u64)-1; 7008 7009 path = btrfs_alloc_path(); 7010 if (!path) { 7011 ret = -ENOMEM; 7012 goto out; 7013 } 7014 7015 /* Chances are we'll be called again, so go ahead and do readahead */ 7016 path->reada = READA_FORWARD; 7017 7018 /* 7019 * The same explanation in load_free_space_cache applies here as well, 7020 * we only read when we're loading the free space cache, and at that 7021 * point the commit_root has everything we need. 7022 */ 7023 if (btrfs_is_free_space_inode(inode)) { 7024 path->search_commit_root = 1; 7025 path->skip_locking = 1; 7026 } 7027 7028 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7029 if (ret < 0) { 7030 goto out; 7031 } else if (ret > 0) { 7032 if (path->slots[0] == 0) 7033 goto not_found; 7034 path->slots[0]--; 7035 ret = 0; 7036 } 7037 7038 leaf = path->nodes[0]; 7039 item = btrfs_item_ptr(leaf, path->slots[0], 7040 struct btrfs_file_extent_item); 7041 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7042 if (found_key.objectid != objectid || 7043 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7044 /* 7045 * If we backup past the first extent we want to move forward 7046 * and see if there is an extent in front of us, otherwise we'll 7047 * say there is a hole for our whole search range which can 7048 * cause problems. 7049 */ 7050 extent_end = start; 7051 goto next; 7052 } 7053 7054 extent_type = btrfs_file_extent_type(leaf, item); 7055 extent_start = found_key.offset; 7056 extent_end = btrfs_file_extent_end(path); 7057 if (extent_type == BTRFS_FILE_EXTENT_REG || 7058 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7059 /* Only regular file could have regular/prealloc extent */ 7060 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7061 ret = -EUCLEAN; 7062 btrfs_crit(fs_info, 7063 "regular/prealloc extent found for non-regular inode %llu", 7064 btrfs_ino(inode)); 7065 goto out; 7066 } 7067 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7068 extent_start); 7069 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7070 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7071 path->slots[0], 7072 extent_start); 7073 } 7074 next: 7075 if (start >= extent_end) { 7076 path->slots[0]++; 7077 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7078 ret = btrfs_next_leaf(root, path); 7079 if (ret < 0) 7080 goto out; 7081 else if (ret > 0) 7082 goto not_found; 7083 7084 leaf = path->nodes[0]; 7085 } 7086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7087 if (found_key.objectid != objectid || 7088 found_key.type != BTRFS_EXTENT_DATA_KEY) 7089 goto not_found; 7090 if (start + len <= found_key.offset) 7091 goto not_found; 7092 if (start > found_key.offset) 7093 goto next; 7094 7095 /* New extent overlaps with existing one */ 7096 em->start = start; 7097 em->len = found_key.offset - start; 7098 em->disk_bytenr = EXTENT_MAP_HOLE; 7099 goto insert; 7100 } 7101 7102 btrfs_extent_item_to_extent_map(inode, path, item, em); 7103 7104 if (extent_type == BTRFS_FILE_EXTENT_REG || 7105 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7106 goto insert; 7107 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7108 /* 7109 * Inline extent can only exist at file offset 0. This is 7110 * ensured by tree-checker and inline extent creation path. 7111 * Thus all members representing file offsets should be zero. 7112 */ 7113 ASSERT(extent_start == 0); 7114 ASSERT(em->start == 0); 7115 7116 /* 7117 * btrfs_extent_item_to_extent_map() should have properly 7118 * initialized em members already. 7119 * 7120 * Other members are not utilized for inline extents. 7121 */ 7122 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7123 ASSERT(em->len == fs_info->sectorsize); 7124 7125 ret = read_inline_extent(path, folio); 7126 if (ret < 0) 7127 goto out; 7128 goto insert; 7129 } 7130 not_found: 7131 em->start = start; 7132 em->len = len; 7133 em->disk_bytenr = EXTENT_MAP_HOLE; 7134 insert: 7135 ret = 0; 7136 btrfs_release_path(path); 7137 if (em->start > start || btrfs_extent_map_end(em) <= start) { 7138 btrfs_err(fs_info, 7139 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7140 em->start, em->len, start, len); 7141 ret = -EIO; 7142 goto out; 7143 } 7144 7145 write_lock(&em_tree->lock); 7146 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7147 write_unlock(&em_tree->lock); 7148 out: 7149 btrfs_free_path(path); 7150 7151 trace_btrfs_get_extent(root, inode, em); 7152 7153 if (ret) { 7154 btrfs_free_extent_map(em); 7155 return ERR_PTR(ret); 7156 } 7157 return em; 7158 } 7159 7160 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7161 { 7162 struct btrfs_block_group *block_group; 7163 bool readonly = false; 7164 7165 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7166 if (!block_group || block_group->ro) 7167 readonly = true; 7168 if (block_group) 7169 btrfs_put_block_group(block_group); 7170 return readonly; 7171 } 7172 7173 /* 7174 * Check if we can do nocow write into the range [@offset, @offset + @len) 7175 * 7176 * @offset: File offset 7177 * @len: The length to write, will be updated to the nocow writeable 7178 * range 7179 * @orig_start: (optional) Return the original file offset of the file extent 7180 * @orig_len: (optional) Return the original on-disk length of the file extent 7181 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7182 * 7183 * Return: 7184 * >0 and update @len if we can do nocow write 7185 * 0 if we can't do nocow write 7186 * <0 if error happened 7187 * 7188 * NOTE: This only checks the file extents, caller is responsible to wait for 7189 * any ordered extents. 7190 */ 7191 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7192 struct btrfs_file_extent *file_extent, 7193 bool nowait) 7194 { 7195 struct btrfs_root *root = inode->root; 7196 struct btrfs_fs_info *fs_info = root->fs_info; 7197 struct can_nocow_file_extent_args nocow_args = { 0 }; 7198 BTRFS_PATH_AUTO_FREE(path); 7199 int ret; 7200 struct extent_buffer *leaf; 7201 struct extent_io_tree *io_tree = &inode->io_tree; 7202 struct btrfs_file_extent_item *fi; 7203 struct btrfs_key key; 7204 int found_type; 7205 7206 path = btrfs_alloc_path(); 7207 if (!path) 7208 return -ENOMEM; 7209 path->nowait = nowait; 7210 7211 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7212 offset, 0); 7213 if (ret < 0) 7214 return ret; 7215 7216 if (ret == 1) { 7217 if (path->slots[0] == 0) { 7218 /* Can't find the item, must COW. */ 7219 return 0; 7220 } 7221 path->slots[0]--; 7222 } 7223 ret = 0; 7224 leaf = path->nodes[0]; 7225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7226 if (key.objectid != btrfs_ino(inode) || 7227 key.type != BTRFS_EXTENT_DATA_KEY) { 7228 /* Not our file or wrong item type, must COW. */ 7229 return 0; 7230 } 7231 7232 if (key.offset > offset) { 7233 /* Wrong offset, must COW. */ 7234 return 0; 7235 } 7236 7237 if (btrfs_file_extent_end(path) <= offset) 7238 return 0; 7239 7240 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7241 found_type = btrfs_file_extent_type(leaf, fi); 7242 7243 nocow_args.start = offset; 7244 nocow_args.end = offset + *len - 1; 7245 nocow_args.free_path = true; 7246 7247 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7248 /* can_nocow_file_extent() has freed the path. */ 7249 path = NULL; 7250 7251 if (ret != 1) { 7252 /* Treat errors as not being able to NOCOW. */ 7253 return 0; 7254 } 7255 7256 if (btrfs_extent_readonly(fs_info, 7257 nocow_args.file_extent.disk_bytenr + 7258 nocow_args.file_extent.offset)) 7259 return 0; 7260 7261 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7262 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7263 u64 range_end; 7264 7265 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7266 root->fs_info->sectorsize) - 1; 7267 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7268 EXTENT_DELALLOC); 7269 if (ret) 7270 return -EAGAIN; 7271 } 7272 7273 if (file_extent) 7274 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7275 7276 *len = nocow_args.file_extent.num_bytes; 7277 7278 return 1; 7279 } 7280 7281 /* The callers of this must take lock_extent() */ 7282 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7283 const struct btrfs_file_extent *file_extent, 7284 int type) 7285 { 7286 struct extent_map *em; 7287 int ret; 7288 7289 /* 7290 * Note the missing NOCOW type. 7291 * 7292 * For pure NOCOW writes, we should not create an io extent map, but 7293 * just reusing the existing one. 7294 * Only PREALLOC writes (NOCOW write into preallocated range) can 7295 * create an io extent map. 7296 */ 7297 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7298 type == BTRFS_ORDERED_COMPRESSED || 7299 type == BTRFS_ORDERED_REGULAR); 7300 7301 switch (type) { 7302 case BTRFS_ORDERED_PREALLOC: 7303 /* We're only referring part of a larger preallocated extent. */ 7304 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7305 break; 7306 case BTRFS_ORDERED_REGULAR: 7307 /* COW results a new extent matching our file extent size. */ 7308 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7309 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7310 7311 /* Since it's a new extent, we should not have any offset. */ 7312 ASSERT(file_extent->offset == 0); 7313 break; 7314 case BTRFS_ORDERED_COMPRESSED: 7315 /* Must be compressed. */ 7316 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7317 7318 /* 7319 * Encoded write can make us to refer to part of the 7320 * uncompressed extent. 7321 */ 7322 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7323 break; 7324 } 7325 7326 em = btrfs_alloc_extent_map(); 7327 if (!em) 7328 return ERR_PTR(-ENOMEM); 7329 7330 em->start = start; 7331 em->len = file_extent->num_bytes; 7332 em->disk_bytenr = file_extent->disk_bytenr; 7333 em->disk_num_bytes = file_extent->disk_num_bytes; 7334 em->ram_bytes = file_extent->ram_bytes; 7335 em->generation = -1; 7336 em->offset = file_extent->offset; 7337 em->flags |= EXTENT_FLAG_PINNED; 7338 if (type == BTRFS_ORDERED_COMPRESSED) 7339 btrfs_extent_map_set_compression(em, file_extent->compression); 7340 7341 ret = btrfs_replace_extent_map_range(inode, em, true); 7342 if (ret) { 7343 btrfs_free_extent_map(em); 7344 return ERR_PTR(ret); 7345 } 7346 7347 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7348 return em; 7349 } 7350 7351 /* 7352 * For release_folio() and invalidate_folio() we have a race window where 7353 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7354 * If we continue to release/invalidate the page, we could cause use-after-free 7355 * for subpage spinlock. So this function is to spin and wait for subpage 7356 * spinlock. 7357 */ 7358 static void wait_subpage_spinlock(struct folio *folio) 7359 { 7360 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7361 struct btrfs_folio_state *bfs; 7362 7363 if (!btrfs_is_subpage(fs_info, folio)) 7364 return; 7365 7366 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7367 bfs = folio_get_private(folio); 7368 7369 /* 7370 * This may look insane as we just acquire the spinlock and release it, 7371 * without doing anything. But we just want to make sure no one is 7372 * still holding the subpage spinlock. 7373 * And since the page is not dirty nor writeback, and we have page 7374 * locked, the only possible way to hold a spinlock is from the endio 7375 * function to clear page writeback. 7376 * 7377 * Here we just acquire the spinlock so that all existing callers 7378 * should exit and we're safe to release/invalidate the page. 7379 */ 7380 spin_lock_irq(&bfs->lock); 7381 spin_unlock_irq(&bfs->lock); 7382 } 7383 7384 static int btrfs_launder_folio(struct folio *folio) 7385 { 7386 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7387 folio_size(folio), NULL); 7388 } 7389 7390 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7391 { 7392 if (try_release_extent_mapping(folio, gfp_flags)) { 7393 wait_subpage_spinlock(folio); 7394 clear_folio_extent_mapped(folio); 7395 return true; 7396 } 7397 return false; 7398 } 7399 7400 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7401 { 7402 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7403 return false; 7404 return __btrfs_release_folio(folio, gfp_flags); 7405 } 7406 7407 #ifdef CONFIG_MIGRATION 7408 static int btrfs_migrate_folio(struct address_space *mapping, 7409 struct folio *dst, struct folio *src, 7410 enum migrate_mode mode) 7411 { 7412 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7413 7414 if (ret != MIGRATEPAGE_SUCCESS) 7415 return ret; 7416 7417 if (folio_test_ordered(src)) { 7418 folio_clear_ordered(src); 7419 folio_set_ordered(dst); 7420 } 7421 7422 return MIGRATEPAGE_SUCCESS; 7423 } 7424 #else 7425 #define btrfs_migrate_folio NULL 7426 #endif 7427 7428 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7429 size_t length) 7430 { 7431 struct btrfs_inode *inode = folio_to_inode(folio); 7432 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7433 struct extent_io_tree *tree = &inode->io_tree; 7434 struct extent_state *cached_state = NULL; 7435 u64 page_start = folio_pos(folio); 7436 u64 page_end = page_start + folio_size(folio) - 1; 7437 u64 cur; 7438 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7439 7440 /* 7441 * We have folio locked so no new ordered extent can be created on this 7442 * page, nor bio can be submitted for this folio. 7443 * 7444 * But already submitted bio can still be finished on this folio. 7445 * Furthermore, endio function won't skip folio which has Ordered 7446 * already cleared, so it's possible for endio and 7447 * invalidate_folio to do the same ordered extent accounting twice 7448 * on one folio. 7449 * 7450 * So here we wait for any submitted bios to finish, so that we won't 7451 * do double ordered extent accounting on the same folio. 7452 */ 7453 folio_wait_writeback(folio); 7454 wait_subpage_spinlock(folio); 7455 7456 /* 7457 * For subpage case, we have call sites like 7458 * btrfs_punch_hole_lock_range() which passes range not aligned to 7459 * sectorsize. 7460 * If the range doesn't cover the full folio, we don't need to and 7461 * shouldn't clear page extent mapped, as folio->private can still 7462 * record subpage dirty bits for other part of the range. 7463 * 7464 * For cases that invalidate the full folio even the range doesn't 7465 * cover the full folio, like invalidating the last folio, we're 7466 * still safe to wait for ordered extent to finish. 7467 */ 7468 if (!(offset == 0 && length == folio_size(folio))) { 7469 btrfs_release_folio(folio, GFP_NOFS); 7470 return; 7471 } 7472 7473 if (!inode_evicting) 7474 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7475 7476 cur = page_start; 7477 while (cur < page_end) { 7478 struct btrfs_ordered_extent *ordered; 7479 u64 range_end; 7480 u32 range_len; 7481 u32 extra_flags = 0; 7482 7483 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7484 page_end + 1 - cur); 7485 if (!ordered) { 7486 range_end = page_end; 7487 /* 7488 * No ordered extent covering this range, we are safe 7489 * to delete all extent states in the range. 7490 */ 7491 extra_flags = EXTENT_CLEAR_ALL_BITS; 7492 goto next; 7493 } 7494 if (ordered->file_offset > cur) { 7495 /* 7496 * There is a range between [cur, oe->file_offset) not 7497 * covered by any ordered extent. 7498 * We are safe to delete all extent states, and handle 7499 * the ordered extent in the next iteration. 7500 */ 7501 range_end = ordered->file_offset - 1; 7502 extra_flags = EXTENT_CLEAR_ALL_BITS; 7503 goto next; 7504 } 7505 7506 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7507 page_end); 7508 ASSERT(range_end + 1 - cur < U32_MAX); 7509 range_len = range_end + 1 - cur; 7510 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7511 /* 7512 * If Ordered is cleared, it means endio has 7513 * already been executed for the range. 7514 * We can't delete the extent states as 7515 * btrfs_finish_ordered_io() may still use some of them. 7516 */ 7517 goto next; 7518 } 7519 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7520 7521 /* 7522 * IO on this page will never be started, so we need to account 7523 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7524 * here, must leave that up for the ordered extent completion. 7525 * 7526 * This will also unlock the range for incoming 7527 * btrfs_finish_ordered_io(). 7528 */ 7529 if (!inode_evicting) 7530 btrfs_clear_extent_bit(tree, cur, range_end, 7531 EXTENT_DELALLOC | 7532 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7533 EXTENT_DEFRAG, &cached_state); 7534 7535 spin_lock_irq(&inode->ordered_tree_lock); 7536 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7537 ordered->truncated_len = min(ordered->truncated_len, 7538 cur - ordered->file_offset); 7539 spin_unlock_irq(&inode->ordered_tree_lock); 7540 7541 /* 7542 * If the ordered extent has finished, we're safe to delete all 7543 * the extent states of the range, otherwise 7544 * btrfs_finish_ordered_io() will get executed by endio for 7545 * other pages, so we can't delete extent states. 7546 */ 7547 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7548 cur, range_end + 1 - cur)) { 7549 btrfs_finish_ordered_io(ordered); 7550 /* 7551 * The ordered extent has finished, now we're again 7552 * safe to delete all extent states of the range. 7553 */ 7554 extra_flags = EXTENT_CLEAR_ALL_BITS; 7555 } 7556 next: 7557 if (ordered) 7558 btrfs_put_ordered_extent(ordered); 7559 /* 7560 * Qgroup reserved space handler 7561 * Sector(s) here will be either: 7562 * 7563 * 1) Already written to disk or bio already finished 7564 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7565 * Qgroup will be handled by its qgroup_record then. 7566 * btrfs_qgroup_free_data() call will do nothing here. 7567 * 7568 * 2) Not written to disk yet 7569 * Then btrfs_qgroup_free_data() call will clear the 7570 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7571 * reserved data space. 7572 * Since the IO will never happen for this page. 7573 */ 7574 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7575 if (!inode_evicting) 7576 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7577 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7578 EXTENT_DEFRAG | extra_flags, 7579 &cached_state); 7580 cur = range_end + 1; 7581 } 7582 /* 7583 * We have iterated through all ordered extents of the page, the page 7584 * should not have Ordered anymore, or the above iteration 7585 * did something wrong. 7586 */ 7587 ASSERT(!folio_test_ordered(folio)); 7588 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7589 if (!inode_evicting) 7590 __btrfs_release_folio(folio, GFP_NOFS); 7591 clear_folio_extent_mapped(folio); 7592 } 7593 7594 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7595 { 7596 struct btrfs_truncate_control control = { 7597 .inode = inode, 7598 .ino = btrfs_ino(inode), 7599 .min_type = BTRFS_EXTENT_DATA_KEY, 7600 .clear_extent_range = true, 7601 }; 7602 struct btrfs_root *root = inode->root; 7603 struct btrfs_fs_info *fs_info = root->fs_info; 7604 struct btrfs_block_rsv rsv; 7605 int ret; 7606 struct btrfs_trans_handle *trans; 7607 u64 mask = fs_info->sectorsize - 1; 7608 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7609 7610 if (!skip_writeback) { 7611 ret = btrfs_wait_ordered_range(inode, 7612 inode->vfs_inode.i_size & (~mask), 7613 (u64)-1); 7614 if (ret) 7615 return ret; 7616 } 7617 7618 /* 7619 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7620 * things going on here: 7621 * 7622 * 1) We need to reserve space to update our inode. 7623 * 7624 * 2) We need to have something to cache all the space that is going to 7625 * be free'd up by the truncate operation, but also have some slack 7626 * space reserved in case it uses space during the truncate (thank you 7627 * very much snapshotting). 7628 * 7629 * And we need these to be separate. The fact is we can use a lot of 7630 * space doing the truncate, and we have no earthly idea how much space 7631 * we will use, so we need the truncate reservation to be separate so it 7632 * doesn't end up using space reserved for updating the inode. We also 7633 * need to be able to stop the transaction and start a new one, which 7634 * means we need to be able to update the inode several times, and we 7635 * have no idea of knowing how many times that will be, so we can't just 7636 * reserve 1 item for the entirety of the operation, so that has to be 7637 * done separately as well. 7638 * 7639 * So that leaves us with 7640 * 7641 * 1) rsv - for the truncate reservation, which we will steal from the 7642 * transaction reservation. 7643 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7644 * updating the inode. 7645 */ 7646 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7647 rsv.size = min_size; 7648 rsv.failfast = true; 7649 7650 /* 7651 * 1 for the truncate slack space 7652 * 1 for updating the inode. 7653 */ 7654 trans = btrfs_start_transaction(root, 2); 7655 if (IS_ERR(trans)) { 7656 ret = PTR_ERR(trans); 7657 goto out; 7658 } 7659 7660 /* Migrate the slack space for the truncate to our reserve */ 7661 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7662 min_size, false); 7663 /* 7664 * We have reserved 2 metadata units when we started the transaction and 7665 * min_size matches 1 unit, so this should never fail, but if it does, 7666 * it's not critical we just fail truncation. 7667 */ 7668 if (WARN_ON(ret)) { 7669 btrfs_end_transaction(trans); 7670 goto out; 7671 } 7672 7673 trans->block_rsv = &rsv; 7674 7675 while (1) { 7676 struct extent_state *cached_state = NULL; 7677 const u64 new_size = inode->vfs_inode.i_size; 7678 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7679 7680 control.new_size = new_size; 7681 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7682 /* 7683 * We want to drop from the next block forward in case this new 7684 * size is not block aligned since we will be keeping the last 7685 * block of the extent just the way it is. 7686 */ 7687 btrfs_drop_extent_map_range(inode, 7688 ALIGN(new_size, fs_info->sectorsize), 7689 (u64)-1, false); 7690 7691 ret = btrfs_truncate_inode_items(trans, root, &control); 7692 7693 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7694 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7695 7696 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7697 7698 trans->block_rsv = &fs_info->trans_block_rsv; 7699 if (ret != -ENOSPC && ret != -EAGAIN) 7700 break; 7701 7702 ret = btrfs_update_inode(trans, inode); 7703 if (ret) 7704 break; 7705 7706 btrfs_end_transaction(trans); 7707 btrfs_btree_balance_dirty(fs_info); 7708 7709 trans = btrfs_start_transaction(root, 2); 7710 if (IS_ERR(trans)) { 7711 ret = PTR_ERR(trans); 7712 trans = NULL; 7713 break; 7714 } 7715 7716 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7717 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7718 &rsv, min_size, false); 7719 /* 7720 * We have reserved 2 metadata units when we started the 7721 * transaction and min_size matches 1 unit, so this should never 7722 * fail, but if it does, it's not critical we just fail truncation. 7723 */ 7724 if (WARN_ON(ret)) 7725 break; 7726 7727 trans->block_rsv = &rsv; 7728 } 7729 7730 /* 7731 * We can't call btrfs_truncate_block inside a trans handle as we could 7732 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7733 * know we've truncated everything except the last little bit, and can 7734 * do btrfs_truncate_block and then update the disk_i_size. 7735 */ 7736 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7737 btrfs_end_transaction(trans); 7738 btrfs_btree_balance_dirty(fs_info); 7739 7740 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7741 inode->vfs_inode.i_size, (u64)-1); 7742 if (ret) 7743 goto out; 7744 trans = btrfs_start_transaction(root, 1); 7745 if (IS_ERR(trans)) { 7746 ret = PTR_ERR(trans); 7747 goto out; 7748 } 7749 btrfs_inode_safe_disk_i_size_write(inode, 0); 7750 } 7751 7752 if (trans) { 7753 int ret2; 7754 7755 trans->block_rsv = &fs_info->trans_block_rsv; 7756 ret2 = btrfs_update_inode(trans, inode); 7757 if (ret2 && !ret) 7758 ret = ret2; 7759 7760 ret2 = btrfs_end_transaction(trans); 7761 if (ret2 && !ret) 7762 ret = ret2; 7763 btrfs_btree_balance_dirty(fs_info); 7764 } 7765 out: 7766 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7767 /* 7768 * So if we truncate and then write and fsync we normally would just 7769 * write the extents that changed, which is a problem if we need to 7770 * first truncate that entire inode. So set this flag so we write out 7771 * all of the extents in the inode to the sync log so we're completely 7772 * safe. 7773 * 7774 * If no extents were dropped or trimmed we don't need to force the next 7775 * fsync to truncate all the inode's items from the log and re-log them 7776 * all. This means the truncate operation did not change the file size, 7777 * or changed it to a smaller size but there was only an implicit hole 7778 * between the old i_size and the new i_size, and there were no prealloc 7779 * extents beyond i_size to drop. 7780 */ 7781 if (control.extents_found > 0) 7782 btrfs_set_inode_full_sync(inode); 7783 7784 return ret; 7785 } 7786 7787 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7788 struct inode *dir) 7789 { 7790 struct inode *inode; 7791 7792 inode = new_inode(dir->i_sb); 7793 if (inode) { 7794 /* 7795 * Subvolumes don't inherit the sgid bit or the parent's gid if 7796 * the parent's sgid bit is set. This is probably a bug. 7797 */ 7798 inode_init_owner(idmap, inode, NULL, 7799 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7800 inode->i_op = &btrfs_dir_inode_operations; 7801 inode->i_fop = &btrfs_dir_file_operations; 7802 } 7803 return inode; 7804 } 7805 7806 struct inode *btrfs_alloc_inode(struct super_block *sb) 7807 { 7808 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7809 struct btrfs_inode *ei; 7810 struct inode *inode; 7811 7812 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7813 if (!ei) 7814 return NULL; 7815 7816 ei->root = NULL; 7817 ei->generation = 0; 7818 ei->last_trans = 0; 7819 ei->last_sub_trans = 0; 7820 ei->logged_trans = 0; 7821 ei->delalloc_bytes = 0; 7822 ei->new_delalloc_bytes = 0; 7823 ei->defrag_bytes = 0; 7824 ei->disk_i_size = 0; 7825 ei->flags = 0; 7826 ei->ro_flags = 0; 7827 /* 7828 * ->index_cnt will be properly initialized later when creating a new 7829 * inode (btrfs_create_new_inode()) or when reading an existing inode 7830 * from disk (btrfs_read_locked_inode()). 7831 */ 7832 ei->csum_bytes = 0; 7833 ei->dir_index = 0; 7834 ei->last_unlink_trans = 0; 7835 ei->last_reflink_trans = 0; 7836 ei->last_log_commit = 0; 7837 7838 spin_lock_init(&ei->lock); 7839 ei->outstanding_extents = 0; 7840 if (sb->s_magic != BTRFS_TEST_MAGIC) 7841 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7842 BTRFS_BLOCK_RSV_DELALLOC); 7843 ei->runtime_flags = 0; 7844 ei->prop_compress = BTRFS_COMPRESS_NONE; 7845 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7846 7847 ei->delayed_node = NULL; 7848 7849 ei->i_otime_sec = 0; 7850 ei->i_otime_nsec = 0; 7851 7852 inode = &ei->vfs_inode; 7853 btrfs_extent_map_tree_init(&ei->extent_tree); 7854 7855 /* This io tree sets the valid inode. */ 7856 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7857 ei->io_tree.inode = ei; 7858 7859 ei->file_extent_tree = NULL; 7860 7861 mutex_init(&ei->log_mutex); 7862 spin_lock_init(&ei->ordered_tree_lock); 7863 ei->ordered_tree = RB_ROOT; 7864 ei->ordered_tree_last = NULL; 7865 INIT_LIST_HEAD(&ei->delalloc_inodes); 7866 INIT_LIST_HEAD(&ei->delayed_iput); 7867 init_rwsem(&ei->i_mmap_lock); 7868 7869 return inode; 7870 } 7871 7872 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7873 void btrfs_test_destroy_inode(struct inode *inode) 7874 { 7875 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7876 kfree(BTRFS_I(inode)->file_extent_tree); 7877 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7878 } 7879 #endif 7880 7881 void btrfs_free_inode(struct inode *inode) 7882 { 7883 kfree(BTRFS_I(inode)->file_extent_tree); 7884 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7885 } 7886 7887 void btrfs_destroy_inode(struct inode *vfs_inode) 7888 { 7889 struct btrfs_ordered_extent *ordered; 7890 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7891 struct btrfs_root *root = inode->root; 7892 bool freespace_inode; 7893 7894 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7895 WARN_ON(vfs_inode->i_data.nrpages); 7896 WARN_ON(inode->block_rsv.reserved); 7897 WARN_ON(inode->block_rsv.size); 7898 WARN_ON(inode->outstanding_extents); 7899 if (!S_ISDIR(vfs_inode->i_mode)) { 7900 WARN_ON(inode->delalloc_bytes); 7901 WARN_ON(inode->new_delalloc_bytes); 7902 WARN_ON(inode->csum_bytes); 7903 } 7904 if (!root || !btrfs_is_data_reloc_root(root)) 7905 WARN_ON(inode->defrag_bytes); 7906 7907 /* 7908 * This can happen where we create an inode, but somebody else also 7909 * created the same inode and we need to destroy the one we already 7910 * created. 7911 */ 7912 if (!root) 7913 return; 7914 7915 /* 7916 * If this is a free space inode do not take the ordered extents lockdep 7917 * map. 7918 */ 7919 freespace_inode = btrfs_is_free_space_inode(inode); 7920 7921 while (1) { 7922 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7923 if (!ordered) 7924 break; 7925 else { 7926 btrfs_err(root->fs_info, 7927 "found ordered extent %llu %llu on inode cleanup", 7928 ordered->file_offset, ordered->num_bytes); 7929 7930 if (!freespace_inode) 7931 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7932 7933 btrfs_remove_ordered_extent(inode, ordered); 7934 btrfs_put_ordered_extent(ordered); 7935 btrfs_put_ordered_extent(ordered); 7936 } 7937 } 7938 btrfs_qgroup_check_reserved_leak(inode); 7939 btrfs_del_inode_from_root(inode); 7940 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7941 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7942 btrfs_put_root(inode->root); 7943 } 7944 7945 int btrfs_drop_inode(struct inode *inode) 7946 { 7947 struct btrfs_root *root = BTRFS_I(inode)->root; 7948 7949 if (root == NULL) 7950 return 1; 7951 7952 /* the snap/subvol tree is on deleting */ 7953 if (btrfs_root_refs(&root->root_item) == 0) 7954 return 1; 7955 else 7956 return generic_drop_inode(inode); 7957 } 7958 7959 static void init_once(void *foo) 7960 { 7961 struct btrfs_inode *ei = foo; 7962 7963 inode_init_once(&ei->vfs_inode); 7964 } 7965 7966 void __cold btrfs_destroy_cachep(void) 7967 { 7968 /* 7969 * Make sure all delayed rcu free inodes are flushed before we 7970 * destroy cache. 7971 */ 7972 rcu_barrier(); 7973 kmem_cache_destroy(btrfs_inode_cachep); 7974 } 7975 7976 int __init btrfs_init_cachep(void) 7977 { 7978 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7979 sizeof(struct btrfs_inode), 0, 7980 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7981 init_once); 7982 if (!btrfs_inode_cachep) 7983 return -ENOMEM; 7984 7985 return 0; 7986 } 7987 7988 static int btrfs_getattr(struct mnt_idmap *idmap, 7989 const struct path *path, struct kstat *stat, 7990 u32 request_mask, unsigned int flags) 7991 { 7992 u64 delalloc_bytes; 7993 u64 inode_bytes; 7994 struct inode *inode = d_inode(path->dentry); 7995 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7996 u32 bi_flags = BTRFS_I(inode)->flags; 7997 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7998 7999 stat->result_mask |= STATX_BTIME; 8000 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8001 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8002 if (bi_flags & BTRFS_INODE_APPEND) 8003 stat->attributes |= STATX_ATTR_APPEND; 8004 if (bi_flags & BTRFS_INODE_COMPRESS) 8005 stat->attributes |= STATX_ATTR_COMPRESSED; 8006 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8007 stat->attributes |= STATX_ATTR_IMMUTABLE; 8008 if (bi_flags & BTRFS_INODE_NODUMP) 8009 stat->attributes |= STATX_ATTR_NODUMP; 8010 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8011 stat->attributes |= STATX_ATTR_VERITY; 8012 8013 stat->attributes_mask |= (STATX_ATTR_APPEND | 8014 STATX_ATTR_COMPRESSED | 8015 STATX_ATTR_IMMUTABLE | 8016 STATX_ATTR_NODUMP); 8017 8018 generic_fillattr(idmap, request_mask, inode, stat); 8019 stat->dev = BTRFS_I(inode)->root->anon_dev; 8020 8021 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8022 stat->result_mask |= STATX_SUBVOL; 8023 8024 spin_lock(&BTRFS_I(inode)->lock); 8025 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8026 inode_bytes = inode_get_bytes(inode); 8027 spin_unlock(&BTRFS_I(inode)->lock); 8028 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8029 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8030 return 0; 8031 } 8032 8033 static int btrfs_rename_exchange(struct inode *old_dir, 8034 struct dentry *old_dentry, 8035 struct inode *new_dir, 8036 struct dentry *new_dentry) 8037 { 8038 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8039 struct btrfs_trans_handle *trans; 8040 unsigned int trans_num_items; 8041 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8042 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8043 struct inode *new_inode = new_dentry->d_inode; 8044 struct inode *old_inode = old_dentry->d_inode; 8045 struct btrfs_rename_ctx old_rename_ctx; 8046 struct btrfs_rename_ctx new_rename_ctx; 8047 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8048 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8049 u64 old_idx = 0; 8050 u64 new_idx = 0; 8051 int ret; 8052 int ret2; 8053 bool need_abort = false; 8054 bool logs_pinned = false; 8055 struct fscrypt_name old_fname, new_fname; 8056 struct fscrypt_str *old_name, *new_name; 8057 8058 /* 8059 * For non-subvolumes allow exchange only within one subvolume, in the 8060 * same inode namespace. Two subvolumes (represented as directory) can 8061 * be exchanged as they're a logical link and have a fixed inode number. 8062 */ 8063 if (root != dest && 8064 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8065 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8066 return -EXDEV; 8067 8068 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8069 if (ret) 8070 return ret; 8071 8072 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8073 if (ret) { 8074 fscrypt_free_filename(&old_fname); 8075 return ret; 8076 } 8077 8078 old_name = &old_fname.disk_name; 8079 new_name = &new_fname.disk_name; 8080 8081 /* close the race window with snapshot create/destroy ioctl */ 8082 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8083 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8084 down_read(&fs_info->subvol_sem); 8085 8086 /* 8087 * For each inode: 8088 * 1 to remove old dir item 8089 * 1 to remove old dir index 8090 * 1 to add new dir item 8091 * 1 to add new dir index 8092 * 1 to update parent inode 8093 * 8094 * If the parents are the same, we only need to account for one 8095 */ 8096 trans_num_items = (old_dir == new_dir ? 9 : 10); 8097 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8098 /* 8099 * 1 to remove old root ref 8100 * 1 to remove old root backref 8101 * 1 to add new root ref 8102 * 1 to add new root backref 8103 */ 8104 trans_num_items += 4; 8105 } else { 8106 /* 8107 * 1 to update inode item 8108 * 1 to remove old inode ref 8109 * 1 to add new inode ref 8110 */ 8111 trans_num_items += 3; 8112 } 8113 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8114 trans_num_items += 4; 8115 else 8116 trans_num_items += 3; 8117 trans = btrfs_start_transaction(root, trans_num_items); 8118 if (IS_ERR(trans)) { 8119 ret = PTR_ERR(trans); 8120 goto out_notrans; 8121 } 8122 8123 if (dest != root) { 8124 ret = btrfs_record_root_in_trans(trans, dest); 8125 if (ret) 8126 goto out_fail; 8127 } 8128 8129 /* 8130 * We need to find a free sequence number both in the source and 8131 * in the destination directory for the exchange. 8132 */ 8133 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8134 if (ret) 8135 goto out_fail; 8136 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8137 if (ret) 8138 goto out_fail; 8139 8140 BTRFS_I(old_inode)->dir_index = 0ULL; 8141 BTRFS_I(new_inode)->dir_index = 0ULL; 8142 8143 /* Reference for the source. */ 8144 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8145 /* force full log commit if subvolume involved. */ 8146 btrfs_set_log_full_commit(trans); 8147 } else { 8148 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8149 btrfs_ino(BTRFS_I(new_dir)), 8150 old_idx); 8151 if (ret) 8152 goto out_fail; 8153 need_abort = true; 8154 } 8155 8156 /* And now for the dest. */ 8157 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8158 /* force full log commit if subvolume involved. */ 8159 btrfs_set_log_full_commit(trans); 8160 } else { 8161 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8162 btrfs_ino(BTRFS_I(old_dir)), 8163 new_idx); 8164 if (ret) { 8165 if (need_abort) 8166 btrfs_abort_transaction(trans, ret); 8167 goto out_fail; 8168 } 8169 } 8170 8171 /* Update inode version and ctime/mtime. */ 8172 inode_inc_iversion(old_dir); 8173 inode_inc_iversion(new_dir); 8174 inode_inc_iversion(old_inode); 8175 inode_inc_iversion(new_inode); 8176 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8177 8178 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8179 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8180 /* 8181 * If we are renaming in the same directory (and it's not for 8182 * root entries) pin the log early to prevent any concurrent 8183 * task from logging the directory after we removed the old 8184 * entries and before we add the new entries, otherwise that 8185 * task can sync a log without any entry for the inodes we are 8186 * renaming and therefore replaying that log, if a power failure 8187 * happens after syncing the log, would result in deleting the 8188 * inodes. 8189 * 8190 * If the rename affects two different directories, we want to 8191 * make sure the that there's no log commit that contains 8192 * updates for only one of the directories but not for the 8193 * other. 8194 * 8195 * If we are renaming an entry for a root, we don't care about 8196 * log updates since we called btrfs_set_log_full_commit(). 8197 */ 8198 btrfs_pin_log_trans(root); 8199 btrfs_pin_log_trans(dest); 8200 logs_pinned = true; 8201 } 8202 8203 if (old_dentry->d_parent != new_dentry->d_parent) { 8204 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8205 BTRFS_I(old_inode), true); 8206 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8207 BTRFS_I(new_inode), true); 8208 } 8209 8210 /* src is a subvolume */ 8211 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8212 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8213 if (ret) { 8214 btrfs_abort_transaction(trans, ret); 8215 goto out_fail; 8216 } 8217 } else { /* src is an inode */ 8218 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8219 BTRFS_I(old_dentry->d_inode), 8220 old_name, &old_rename_ctx); 8221 if (ret) { 8222 btrfs_abort_transaction(trans, ret); 8223 goto out_fail; 8224 } 8225 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8226 if (ret) { 8227 btrfs_abort_transaction(trans, ret); 8228 goto out_fail; 8229 } 8230 } 8231 8232 /* dest is a subvolume */ 8233 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8234 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8235 if (ret) { 8236 btrfs_abort_transaction(trans, ret); 8237 goto out_fail; 8238 } 8239 } else { /* dest is an inode */ 8240 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8241 BTRFS_I(new_dentry->d_inode), 8242 new_name, &new_rename_ctx); 8243 if (ret) { 8244 btrfs_abort_transaction(trans, ret); 8245 goto out_fail; 8246 } 8247 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8248 if (ret) { 8249 btrfs_abort_transaction(trans, ret); 8250 goto out_fail; 8251 } 8252 } 8253 8254 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8255 new_name, 0, old_idx); 8256 if (ret) { 8257 btrfs_abort_transaction(trans, ret); 8258 goto out_fail; 8259 } 8260 8261 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8262 old_name, 0, new_idx); 8263 if (ret) { 8264 btrfs_abort_transaction(trans, ret); 8265 goto out_fail; 8266 } 8267 8268 if (old_inode->i_nlink == 1) 8269 BTRFS_I(old_inode)->dir_index = old_idx; 8270 if (new_inode->i_nlink == 1) 8271 BTRFS_I(new_inode)->dir_index = new_idx; 8272 8273 /* 8274 * Do the log updates for all inodes. 8275 * 8276 * If either entry is for a root we don't need to update the logs since 8277 * we've called btrfs_set_log_full_commit() before. 8278 */ 8279 if (logs_pinned) { 8280 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8281 old_rename_ctx.index, new_dentry->d_parent); 8282 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8283 new_rename_ctx.index, old_dentry->d_parent); 8284 } 8285 8286 out_fail: 8287 if (logs_pinned) { 8288 btrfs_end_log_trans(root); 8289 btrfs_end_log_trans(dest); 8290 } 8291 ret2 = btrfs_end_transaction(trans); 8292 ret = ret ? ret : ret2; 8293 out_notrans: 8294 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8295 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8296 up_read(&fs_info->subvol_sem); 8297 8298 fscrypt_free_filename(&new_fname); 8299 fscrypt_free_filename(&old_fname); 8300 return ret; 8301 } 8302 8303 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8304 struct inode *dir) 8305 { 8306 struct inode *inode; 8307 8308 inode = new_inode(dir->i_sb); 8309 if (inode) { 8310 inode_init_owner(idmap, inode, dir, 8311 S_IFCHR | WHITEOUT_MODE); 8312 inode->i_op = &btrfs_special_inode_operations; 8313 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8314 } 8315 return inode; 8316 } 8317 8318 static int btrfs_rename(struct mnt_idmap *idmap, 8319 struct inode *old_dir, struct dentry *old_dentry, 8320 struct inode *new_dir, struct dentry *new_dentry, 8321 unsigned int flags) 8322 { 8323 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8324 struct btrfs_new_inode_args whiteout_args = { 8325 .dir = old_dir, 8326 .dentry = old_dentry, 8327 }; 8328 struct btrfs_trans_handle *trans; 8329 unsigned int trans_num_items; 8330 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8331 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8332 struct inode *new_inode = d_inode(new_dentry); 8333 struct inode *old_inode = d_inode(old_dentry); 8334 struct btrfs_rename_ctx rename_ctx; 8335 u64 index = 0; 8336 int ret; 8337 int ret2; 8338 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8339 struct fscrypt_name old_fname, new_fname; 8340 bool logs_pinned = false; 8341 8342 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8343 return -EPERM; 8344 8345 /* we only allow rename subvolume link between subvolumes */ 8346 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8347 return -EXDEV; 8348 8349 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8350 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8351 return -ENOTEMPTY; 8352 8353 if (S_ISDIR(old_inode->i_mode) && new_inode && 8354 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8355 return -ENOTEMPTY; 8356 8357 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8358 if (ret) 8359 return ret; 8360 8361 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8362 if (ret) { 8363 fscrypt_free_filename(&old_fname); 8364 return ret; 8365 } 8366 8367 /* check for collisions, even if the name isn't there */ 8368 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8369 if (ret) { 8370 if (ret == -EEXIST) { 8371 /* we shouldn't get 8372 * eexist without a new_inode */ 8373 if (WARN_ON(!new_inode)) { 8374 goto out_fscrypt_names; 8375 } 8376 } else { 8377 /* maybe -EOVERFLOW */ 8378 goto out_fscrypt_names; 8379 } 8380 } 8381 ret = 0; 8382 8383 /* 8384 * we're using rename to replace one file with another. Start IO on it 8385 * now so we don't add too much work to the end of the transaction 8386 */ 8387 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8388 filemap_flush(old_inode->i_mapping); 8389 8390 if (flags & RENAME_WHITEOUT) { 8391 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8392 if (!whiteout_args.inode) { 8393 ret = -ENOMEM; 8394 goto out_fscrypt_names; 8395 } 8396 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8397 if (ret) 8398 goto out_whiteout_inode; 8399 } else { 8400 /* 1 to update the old parent inode. */ 8401 trans_num_items = 1; 8402 } 8403 8404 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8405 /* Close the race window with snapshot create/destroy ioctl */ 8406 down_read(&fs_info->subvol_sem); 8407 /* 8408 * 1 to remove old root ref 8409 * 1 to remove old root backref 8410 * 1 to add new root ref 8411 * 1 to add new root backref 8412 */ 8413 trans_num_items += 4; 8414 } else { 8415 /* 8416 * 1 to update inode 8417 * 1 to remove old inode ref 8418 * 1 to add new inode ref 8419 */ 8420 trans_num_items += 3; 8421 } 8422 /* 8423 * 1 to remove old dir item 8424 * 1 to remove old dir index 8425 * 1 to add new dir item 8426 * 1 to add new dir index 8427 */ 8428 trans_num_items += 4; 8429 /* 1 to update new parent inode if it's not the same as the old parent */ 8430 if (new_dir != old_dir) 8431 trans_num_items++; 8432 if (new_inode) { 8433 /* 8434 * 1 to update inode 8435 * 1 to remove inode ref 8436 * 1 to remove dir item 8437 * 1 to remove dir index 8438 * 1 to possibly add orphan item 8439 */ 8440 trans_num_items += 5; 8441 } 8442 trans = btrfs_start_transaction(root, trans_num_items); 8443 if (IS_ERR(trans)) { 8444 ret = PTR_ERR(trans); 8445 goto out_notrans; 8446 } 8447 8448 if (dest != root) { 8449 ret = btrfs_record_root_in_trans(trans, dest); 8450 if (ret) 8451 goto out_fail; 8452 } 8453 8454 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8455 if (ret) 8456 goto out_fail; 8457 8458 BTRFS_I(old_inode)->dir_index = 0ULL; 8459 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8460 /* force full log commit if subvolume involved. */ 8461 btrfs_set_log_full_commit(trans); 8462 } else { 8463 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8464 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8465 index); 8466 if (ret) 8467 goto out_fail; 8468 } 8469 8470 inode_inc_iversion(old_dir); 8471 inode_inc_iversion(new_dir); 8472 inode_inc_iversion(old_inode); 8473 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8474 8475 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8476 /* 8477 * If we are renaming in the same directory (and it's not a 8478 * root entry) pin the log to prevent any concurrent task from 8479 * logging the directory after we removed the old entry and 8480 * before we add the new entry, otherwise that task can sync 8481 * a log without any entry for the inode we are renaming and 8482 * therefore replaying that log, if a power failure happens 8483 * after syncing the log, would result in deleting the inode. 8484 * 8485 * If the rename affects two different directories, we want to 8486 * make sure the that there's no log commit that contains 8487 * updates for only one of the directories but not for the 8488 * other. 8489 * 8490 * If we are renaming an entry for a root, we don't care about 8491 * log updates since we called btrfs_set_log_full_commit(). 8492 */ 8493 btrfs_pin_log_trans(root); 8494 btrfs_pin_log_trans(dest); 8495 logs_pinned = true; 8496 } 8497 8498 if (old_dentry->d_parent != new_dentry->d_parent) 8499 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8500 BTRFS_I(old_inode), true); 8501 8502 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8503 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8504 if (ret) { 8505 btrfs_abort_transaction(trans, ret); 8506 goto out_fail; 8507 } 8508 } else { 8509 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8510 BTRFS_I(d_inode(old_dentry)), 8511 &old_fname.disk_name, &rename_ctx); 8512 if (ret) { 8513 btrfs_abort_transaction(trans, ret); 8514 goto out_fail; 8515 } 8516 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8517 if (ret) { 8518 btrfs_abort_transaction(trans, ret); 8519 goto out_fail; 8520 } 8521 } 8522 8523 if (new_inode) { 8524 inode_inc_iversion(new_inode); 8525 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8526 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8527 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8528 if (ret) { 8529 btrfs_abort_transaction(trans, ret); 8530 goto out_fail; 8531 } 8532 BUG_ON(new_inode->i_nlink == 0); 8533 } else { 8534 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8535 BTRFS_I(d_inode(new_dentry)), 8536 &new_fname.disk_name); 8537 if (ret) { 8538 btrfs_abort_transaction(trans, ret); 8539 goto out_fail; 8540 } 8541 } 8542 if (new_inode->i_nlink == 0) { 8543 ret = btrfs_orphan_add(trans, 8544 BTRFS_I(d_inode(new_dentry))); 8545 if (ret) { 8546 btrfs_abort_transaction(trans, ret); 8547 goto out_fail; 8548 } 8549 } 8550 } 8551 8552 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8553 &new_fname.disk_name, 0, index); 8554 if (ret) { 8555 btrfs_abort_transaction(trans, ret); 8556 goto out_fail; 8557 } 8558 8559 if (old_inode->i_nlink == 1) 8560 BTRFS_I(old_inode)->dir_index = index; 8561 8562 if (logs_pinned) 8563 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8564 rename_ctx.index, new_dentry->d_parent); 8565 8566 if (flags & RENAME_WHITEOUT) { 8567 ret = btrfs_create_new_inode(trans, &whiteout_args); 8568 if (ret) { 8569 btrfs_abort_transaction(trans, ret); 8570 goto out_fail; 8571 } else { 8572 unlock_new_inode(whiteout_args.inode); 8573 iput(whiteout_args.inode); 8574 whiteout_args.inode = NULL; 8575 } 8576 } 8577 out_fail: 8578 if (logs_pinned) { 8579 btrfs_end_log_trans(root); 8580 btrfs_end_log_trans(dest); 8581 } 8582 ret2 = btrfs_end_transaction(trans); 8583 ret = ret ? ret : ret2; 8584 out_notrans: 8585 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8586 up_read(&fs_info->subvol_sem); 8587 if (flags & RENAME_WHITEOUT) 8588 btrfs_new_inode_args_destroy(&whiteout_args); 8589 out_whiteout_inode: 8590 if (flags & RENAME_WHITEOUT) 8591 iput(whiteout_args.inode); 8592 out_fscrypt_names: 8593 fscrypt_free_filename(&old_fname); 8594 fscrypt_free_filename(&new_fname); 8595 return ret; 8596 } 8597 8598 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8599 struct dentry *old_dentry, struct inode *new_dir, 8600 struct dentry *new_dentry, unsigned int flags) 8601 { 8602 int ret; 8603 8604 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8605 return -EINVAL; 8606 8607 if (flags & RENAME_EXCHANGE) 8608 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8609 new_dentry); 8610 else 8611 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8612 new_dentry, flags); 8613 8614 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8615 8616 return ret; 8617 } 8618 8619 struct btrfs_delalloc_work { 8620 struct inode *inode; 8621 struct completion completion; 8622 struct list_head list; 8623 struct btrfs_work work; 8624 }; 8625 8626 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8627 { 8628 struct btrfs_delalloc_work *delalloc_work; 8629 struct inode *inode; 8630 8631 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8632 work); 8633 inode = delalloc_work->inode; 8634 filemap_flush(inode->i_mapping); 8635 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8636 &BTRFS_I(inode)->runtime_flags)) 8637 filemap_flush(inode->i_mapping); 8638 8639 iput(inode); 8640 complete(&delalloc_work->completion); 8641 } 8642 8643 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8644 { 8645 struct btrfs_delalloc_work *work; 8646 8647 work = kmalloc(sizeof(*work), GFP_NOFS); 8648 if (!work) 8649 return NULL; 8650 8651 init_completion(&work->completion); 8652 INIT_LIST_HEAD(&work->list); 8653 work->inode = inode; 8654 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8655 8656 return work; 8657 } 8658 8659 /* 8660 * some fairly slow code that needs optimization. This walks the list 8661 * of all the inodes with pending delalloc and forces them to disk. 8662 */ 8663 static int start_delalloc_inodes(struct btrfs_root *root, 8664 struct writeback_control *wbc, bool snapshot, 8665 bool in_reclaim_context) 8666 { 8667 struct btrfs_delalloc_work *work, *next; 8668 LIST_HEAD(works); 8669 LIST_HEAD(splice); 8670 int ret = 0; 8671 bool full_flush = wbc->nr_to_write == LONG_MAX; 8672 8673 mutex_lock(&root->delalloc_mutex); 8674 spin_lock(&root->delalloc_lock); 8675 list_splice_init(&root->delalloc_inodes, &splice); 8676 while (!list_empty(&splice)) { 8677 struct btrfs_inode *inode; 8678 struct inode *tmp_inode; 8679 8680 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8681 8682 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8683 8684 if (in_reclaim_context && 8685 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8686 continue; 8687 8688 tmp_inode = igrab(&inode->vfs_inode); 8689 if (!tmp_inode) { 8690 cond_resched_lock(&root->delalloc_lock); 8691 continue; 8692 } 8693 spin_unlock(&root->delalloc_lock); 8694 8695 if (snapshot) 8696 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8697 if (full_flush) { 8698 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8699 if (!work) { 8700 iput(&inode->vfs_inode); 8701 ret = -ENOMEM; 8702 goto out; 8703 } 8704 list_add_tail(&work->list, &works); 8705 btrfs_queue_work(root->fs_info->flush_workers, 8706 &work->work); 8707 } else { 8708 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8709 btrfs_add_delayed_iput(inode); 8710 if (ret || wbc->nr_to_write <= 0) 8711 goto out; 8712 } 8713 cond_resched(); 8714 spin_lock(&root->delalloc_lock); 8715 } 8716 spin_unlock(&root->delalloc_lock); 8717 8718 out: 8719 list_for_each_entry_safe(work, next, &works, list) { 8720 list_del_init(&work->list); 8721 wait_for_completion(&work->completion); 8722 kfree(work); 8723 } 8724 8725 if (!list_empty(&splice)) { 8726 spin_lock(&root->delalloc_lock); 8727 list_splice_tail(&splice, &root->delalloc_inodes); 8728 spin_unlock(&root->delalloc_lock); 8729 } 8730 mutex_unlock(&root->delalloc_mutex); 8731 return ret; 8732 } 8733 8734 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8735 { 8736 struct writeback_control wbc = { 8737 .nr_to_write = LONG_MAX, 8738 .sync_mode = WB_SYNC_NONE, 8739 .range_start = 0, 8740 .range_end = LLONG_MAX, 8741 }; 8742 struct btrfs_fs_info *fs_info = root->fs_info; 8743 8744 if (BTRFS_FS_ERROR(fs_info)) 8745 return -EROFS; 8746 8747 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8748 } 8749 8750 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8751 bool in_reclaim_context) 8752 { 8753 struct writeback_control wbc = { 8754 .nr_to_write = nr, 8755 .sync_mode = WB_SYNC_NONE, 8756 .range_start = 0, 8757 .range_end = LLONG_MAX, 8758 }; 8759 struct btrfs_root *root; 8760 LIST_HEAD(splice); 8761 int ret; 8762 8763 if (BTRFS_FS_ERROR(fs_info)) 8764 return -EROFS; 8765 8766 mutex_lock(&fs_info->delalloc_root_mutex); 8767 spin_lock(&fs_info->delalloc_root_lock); 8768 list_splice_init(&fs_info->delalloc_roots, &splice); 8769 while (!list_empty(&splice)) { 8770 /* 8771 * Reset nr_to_write here so we know that we're doing a full 8772 * flush. 8773 */ 8774 if (nr == LONG_MAX) 8775 wbc.nr_to_write = LONG_MAX; 8776 8777 root = list_first_entry(&splice, struct btrfs_root, 8778 delalloc_root); 8779 root = btrfs_grab_root(root); 8780 BUG_ON(!root); 8781 list_move_tail(&root->delalloc_root, 8782 &fs_info->delalloc_roots); 8783 spin_unlock(&fs_info->delalloc_root_lock); 8784 8785 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8786 btrfs_put_root(root); 8787 if (ret < 0 || wbc.nr_to_write <= 0) 8788 goto out; 8789 spin_lock(&fs_info->delalloc_root_lock); 8790 } 8791 spin_unlock(&fs_info->delalloc_root_lock); 8792 8793 ret = 0; 8794 out: 8795 if (!list_empty(&splice)) { 8796 spin_lock(&fs_info->delalloc_root_lock); 8797 list_splice_tail(&splice, &fs_info->delalloc_roots); 8798 spin_unlock(&fs_info->delalloc_root_lock); 8799 } 8800 mutex_unlock(&fs_info->delalloc_root_mutex); 8801 return ret; 8802 } 8803 8804 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8805 struct dentry *dentry, const char *symname) 8806 { 8807 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8808 struct btrfs_trans_handle *trans; 8809 struct btrfs_root *root = BTRFS_I(dir)->root; 8810 struct btrfs_path *path; 8811 struct btrfs_key key; 8812 struct inode *inode; 8813 struct btrfs_new_inode_args new_inode_args = { 8814 .dir = dir, 8815 .dentry = dentry, 8816 }; 8817 unsigned int trans_num_items; 8818 int ret; 8819 int name_len; 8820 int datasize; 8821 unsigned long ptr; 8822 struct btrfs_file_extent_item *ei; 8823 struct extent_buffer *leaf; 8824 8825 name_len = strlen(symname); 8826 /* 8827 * Symlinks utilize uncompressed inline extent data, which should not 8828 * reach block size. 8829 */ 8830 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8831 name_len >= fs_info->sectorsize) 8832 return -ENAMETOOLONG; 8833 8834 inode = new_inode(dir->i_sb); 8835 if (!inode) 8836 return -ENOMEM; 8837 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8838 inode->i_op = &btrfs_symlink_inode_operations; 8839 inode_nohighmem(inode); 8840 inode->i_mapping->a_ops = &btrfs_aops; 8841 btrfs_i_size_write(BTRFS_I(inode), name_len); 8842 inode_set_bytes(inode, name_len); 8843 8844 new_inode_args.inode = inode; 8845 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8846 if (ret) 8847 goto out_inode; 8848 /* 1 additional item for the inline extent */ 8849 trans_num_items++; 8850 8851 trans = btrfs_start_transaction(root, trans_num_items); 8852 if (IS_ERR(trans)) { 8853 ret = PTR_ERR(trans); 8854 goto out_new_inode_args; 8855 } 8856 8857 ret = btrfs_create_new_inode(trans, &new_inode_args); 8858 if (ret) 8859 goto out; 8860 8861 path = btrfs_alloc_path(); 8862 if (!path) { 8863 ret = -ENOMEM; 8864 btrfs_abort_transaction(trans, ret); 8865 discard_new_inode(inode); 8866 inode = NULL; 8867 goto out; 8868 } 8869 key.objectid = btrfs_ino(BTRFS_I(inode)); 8870 key.type = BTRFS_EXTENT_DATA_KEY; 8871 key.offset = 0; 8872 datasize = btrfs_file_extent_calc_inline_size(name_len); 8873 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8874 if (ret) { 8875 btrfs_abort_transaction(trans, ret); 8876 btrfs_free_path(path); 8877 discard_new_inode(inode); 8878 inode = NULL; 8879 goto out; 8880 } 8881 leaf = path->nodes[0]; 8882 ei = btrfs_item_ptr(leaf, path->slots[0], 8883 struct btrfs_file_extent_item); 8884 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8885 btrfs_set_file_extent_type(leaf, ei, 8886 BTRFS_FILE_EXTENT_INLINE); 8887 btrfs_set_file_extent_encryption(leaf, ei, 0); 8888 btrfs_set_file_extent_compression(leaf, ei, 0); 8889 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8890 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8891 8892 ptr = btrfs_file_extent_inline_start(ei); 8893 write_extent_buffer(leaf, symname, ptr, name_len); 8894 btrfs_free_path(path); 8895 8896 d_instantiate_new(dentry, inode); 8897 ret = 0; 8898 out: 8899 btrfs_end_transaction(trans); 8900 btrfs_btree_balance_dirty(fs_info); 8901 out_new_inode_args: 8902 btrfs_new_inode_args_destroy(&new_inode_args); 8903 out_inode: 8904 if (ret) 8905 iput(inode); 8906 return ret; 8907 } 8908 8909 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8910 struct btrfs_trans_handle *trans_in, 8911 struct btrfs_inode *inode, 8912 struct btrfs_key *ins, 8913 u64 file_offset) 8914 { 8915 struct btrfs_file_extent_item stack_fi; 8916 struct btrfs_replace_extent_info extent_info; 8917 struct btrfs_trans_handle *trans = trans_in; 8918 struct btrfs_path *path; 8919 u64 start = ins->objectid; 8920 u64 len = ins->offset; 8921 u64 qgroup_released = 0; 8922 int ret; 8923 8924 memset(&stack_fi, 0, sizeof(stack_fi)); 8925 8926 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8927 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8928 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8929 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8930 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8931 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8932 /* Encryption and other encoding is reserved and all 0 */ 8933 8934 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8935 if (ret < 0) 8936 return ERR_PTR(ret); 8937 8938 if (trans) { 8939 ret = insert_reserved_file_extent(trans, inode, 8940 file_offset, &stack_fi, 8941 true, qgroup_released); 8942 if (ret) 8943 goto free_qgroup; 8944 return trans; 8945 } 8946 8947 extent_info.disk_offset = start; 8948 extent_info.disk_len = len; 8949 extent_info.data_offset = 0; 8950 extent_info.data_len = len; 8951 extent_info.file_offset = file_offset; 8952 extent_info.extent_buf = (char *)&stack_fi; 8953 extent_info.is_new_extent = true; 8954 extent_info.update_times = true; 8955 extent_info.qgroup_reserved = qgroup_released; 8956 extent_info.insertions = 0; 8957 8958 path = btrfs_alloc_path(); 8959 if (!path) { 8960 ret = -ENOMEM; 8961 goto free_qgroup; 8962 } 8963 8964 ret = btrfs_replace_file_extents(inode, path, file_offset, 8965 file_offset + len - 1, &extent_info, 8966 &trans); 8967 btrfs_free_path(path); 8968 if (ret) 8969 goto free_qgroup; 8970 return trans; 8971 8972 free_qgroup: 8973 /* 8974 * We have released qgroup data range at the beginning of the function, 8975 * and normally qgroup_released bytes will be freed when committing 8976 * transaction. 8977 * But if we error out early, we have to free what we have released 8978 * or we leak qgroup data reservation. 8979 */ 8980 btrfs_qgroup_free_refroot(inode->root->fs_info, 8981 btrfs_root_id(inode->root), qgroup_released, 8982 BTRFS_QGROUP_RSV_DATA); 8983 return ERR_PTR(ret); 8984 } 8985 8986 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8987 u64 start, u64 num_bytes, u64 min_size, 8988 loff_t actual_len, u64 *alloc_hint, 8989 struct btrfs_trans_handle *trans) 8990 { 8991 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8992 struct extent_map *em; 8993 struct btrfs_root *root = BTRFS_I(inode)->root; 8994 struct btrfs_key ins; 8995 u64 cur_offset = start; 8996 u64 clear_offset = start; 8997 u64 i_size; 8998 u64 cur_bytes; 8999 u64 last_alloc = (u64)-1; 9000 int ret = 0; 9001 bool own_trans = true; 9002 u64 end = start + num_bytes - 1; 9003 9004 if (trans) 9005 own_trans = false; 9006 while (num_bytes > 0) { 9007 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9008 cur_bytes = max(cur_bytes, min_size); 9009 /* 9010 * If we are severely fragmented we could end up with really 9011 * small allocations, so if the allocator is returning small 9012 * chunks lets make its job easier by only searching for those 9013 * sized chunks. 9014 */ 9015 cur_bytes = min(cur_bytes, last_alloc); 9016 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9017 min_size, 0, *alloc_hint, &ins, 1, 0); 9018 if (ret) 9019 break; 9020 9021 /* 9022 * We've reserved this space, and thus converted it from 9023 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9024 * from here on out we will only need to clear our reservation 9025 * for the remaining unreserved area, so advance our 9026 * clear_offset by our extent size. 9027 */ 9028 clear_offset += ins.offset; 9029 9030 last_alloc = ins.offset; 9031 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9032 &ins, cur_offset); 9033 /* 9034 * Now that we inserted the prealloc extent we can finally 9035 * decrement the number of reservations in the block group. 9036 * If we did it before, we could race with relocation and have 9037 * relocation miss the reserved extent, making it fail later. 9038 */ 9039 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9040 if (IS_ERR(trans)) { 9041 ret = PTR_ERR(trans); 9042 btrfs_free_reserved_extent(fs_info, ins.objectid, 9043 ins.offset, false); 9044 break; 9045 } 9046 9047 em = btrfs_alloc_extent_map(); 9048 if (!em) { 9049 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9050 cur_offset + ins.offset - 1, false); 9051 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9052 goto next; 9053 } 9054 9055 em->start = cur_offset; 9056 em->len = ins.offset; 9057 em->disk_bytenr = ins.objectid; 9058 em->offset = 0; 9059 em->disk_num_bytes = ins.offset; 9060 em->ram_bytes = ins.offset; 9061 em->flags |= EXTENT_FLAG_PREALLOC; 9062 em->generation = trans->transid; 9063 9064 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9065 btrfs_free_extent_map(em); 9066 next: 9067 num_bytes -= ins.offset; 9068 cur_offset += ins.offset; 9069 *alloc_hint = ins.objectid + ins.offset; 9070 9071 inode_inc_iversion(inode); 9072 inode_set_ctime_current(inode); 9073 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9074 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9075 (actual_len > inode->i_size) && 9076 (cur_offset > inode->i_size)) { 9077 if (cur_offset > actual_len) 9078 i_size = actual_len; 9079 else 9080 i_size = cur_offset; 9081 i_size_write(inode, i_size); 9082 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9083 } 9084 9085 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9086 9087 if (ret) { 9088 btrfs_abort_transaction(trans, ret); 9089 if (own_trans) 9090 btrfs_end_transaction(trans); 9091 break; 9092 } 9093 9094 if (own_trans) { 9095 btrfs_end_transaction(trans); 9096 trans = NULL; 9097 } 9098 } 9099 if (clear_offset < end) 9100 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9101 end - clear_offset + 1); 9102 return ret; 9103 } 9104 9105 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9106 u64 start, u64 num_bytes, u64 min_size, 9107 loff_t actual_len, u64 *alloc_hint) 9108 { 9109 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9110 min_size, actual_len, alloc_hint, 9111 NULL); 9112 } 9113 9114 int btrfs_prealloc_file_range_trans(struct inode *inode, 9115 struct btrfs_trans_handle *trans, int mode, 9116 u64 start, u64 num_bytes, u64 min_size, 9117 loff_t actual_len, u64 *alloc_hint) 9118 { 9119 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9120 min_size, actual_len, alloc_hint, trans); 9121 } 9122 9123 static int btrfs_permission(struct mnt_idmap *idmap, 9124 struct inode *inode, int mask) 9125 { 9126 struct btrfs_root *root = BTRFS_I(inode)->root; 9127 umode_t mode = inode->i_mode; 9128 9129 if (mask & MAY_WRITE && 9130 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9131 if (btrfs_root_readonly(root)) 9132 return -EROFS; 9133 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9134 return -EACCES; 9135 } 9136 return generic_permission(idmap, inode, mask); 9137 } 9138 9139 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9140 struct file *file, umode_t mode) 9141 { 9142 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9143 struct btrfs_trans_handle *trans; 9144 struct btrfs_root *root = BTRFS_I(dir)->root; 9145 struct inode *inode; 9146 struct btrfs_new_inode_args new_inode_args = { 9147 .dir = dir, 9148 .dentry = file->f_path.dentry, 9149 .orphan = true, 9150 }; 9151 unsigned int trans_num_items; 9152 int ret; 9153 9154 inode = new_inode(dir->i_sb); 9155 if (!inode) 9156 return -ENOMEM; 9157 inode_init_owner(idmap, inode, dir, mode); 9158 inode->i_fop = &btrfs_file_operations; 9159 inode->i_op = &btrfs_file_inode_operations; 9160 inode->i_mapping->a_ops = &btrfs_aops; 9161 9162 new_inode_args.inode = inode; 9163 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9164 if (ret) 9165 goto out_inode; 9166 9167 trans = btrfs_start_transaction(root, trans_num_items); 9168 if (IS_ERR(trans)) { 9169 ret = PTR_ERR(trans); 9170 goto out_new_inode_args; 9171 } 9172 9173 ret = btrfs_create_new_inode(trans, &new_inode_args); 9174 9175 /* 9176 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9177 * set it to 1 because d_tmpfile() will issue a warning if the count is 9178 * 0, through: 9179 * 9180 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9181 */ 9182 set_nlink(inode, 1); 9183 9184 if (!ret) { 9185 d_tmpfile(file, inode); 9186 unlock_new_inode(inode); 9187 mark_inode_dirty(inode); 9188 } 9189 9190 btrfs_end_transaction(trans); 9191 btrfs_btree_balance_dirty(fs_info); 9192 out_new_inode_args: 9193 btrfs_new_inode_args_destroy(&new_inode_args); 9194 out_inode: 9195 if (ret) 9196 iput(inode); 9197 return finish_open_simple(file, ret); 9198 } 9199 9200 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9201 int compress_type) 9202 { 9203 switch (compress_type) { 9204 case BTRFS_COMPRESS_NONE: 9205 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9206 case BTRFS_COMPRESS_ZLIB: 9207 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9208 case BTRFS_COMPRESS_LZO: 9209 /* 9210 * The LZO format depends on the sector size. 64K is the maximum 9211 * sector size that we support. 9212 */ 9213 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9214 return -EINVAL; 9215 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9216 (fs_info->sectorsize_bits - 12); 9217 case BTRFS_COMPRESS_ZSTD: 9218 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9219 default: 9220 return -EUCLEAN; 9221 } 9222 } 9223 9224 static ssize_t btrfs_encoded_read_inline( 9225 struct kiocb *iocb, 9226 struct iov_iter *iter, u64 start, 9227 u64 lockend, 9228 struct extent_state **cached_state, 9229 u64 extent_start, size_t count, 9230 struct btrfs_ioctl_encoded_io_args *encoded, 9231 bool *unlocked) 9232 { 9233 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9234 struct btrfs_root *root = inode->root; 9235 struct btrfs_fs_info *fs_info = root->fs_info; 9236 struct extent_io_tree *io_tree = &inode->io_tree; 9237 BTRFS_PATH_AUTO_FREE(path); 9238 struct extent_buffer *leaf; 9239 struct btrfs_file_extent_item *item; 9240 u64 ram_bytes; 9241 unsigned long ptr; 9242 void *tmp; 9243 ssize_t ret; 9244 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9245 9246 path = btrfs_alloc_path(); 9247 if (!path) 9248 return -ENOMEM; 9249 9250 path->nowait = nowait; 9251 9252 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9253 extent_start, 0); 9254 if (ret) { 9255 if (ret > 0) { 9256 /* The extent item disappeared? */ 9257 return -EIO; 9258 } 9259 return ret; 9260 } 9261 leaf = path->nodes[0]; 9262 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9263 9264 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9265 ptr = btrfs_file_extent_inline_start(item); 9266 9267 encoded->len = min_t(u64, extent_start + ram_bytes, 9268 inode->vfs_inode.i_size) - iocb->ki_pos; 9269 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9270 btrfs_file_extent_compression(leaf, item)); 9271 if (ret < 0) 9272 return ret; 9273 encoded->compression = ret; 9274 if (encoded->compression) { 9275 size_t inline_size; 9276 9277 inline_size = btrfs_file_extent_inline_item_len(leaf, 9278 path->slots[0]); 9279 if (inline_size > count) 9280 return -ENOBUFS; 9281 9282 count = inline_size; 9283 encoded->unencoded_len = ram_bytes; 9284 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9285 } else { 9286 count = min_t(u64, count, encoded->len); 9287 encoded->len = count; 9288 encoded->unencoded_len = count; 9289 ptr += iocb->ki_pos - extent_start; 9290 } 9291 9292 tmp = kmalloc(count, GFP_NOFS); 9293 if (!tmp) 9294 return -ENOMEM; 9295 9296 read_extent_buffer(leaf, tmp, ptr, count); 9297 btrfs_release_path(path); 9298 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9299 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9300 *unlocked = true; 9301 9302 ret = copy_to_iter(tmp, count, iter); 9303 if (ret != count) 9304 ret = -EFAULT; 9305 kfree(tmp); 9306 9307 return ret; 9308 } 9309 9310 struct btrfs_encoded_read_private { 9311 struct completion *sync_reads; 9312 void *uring_ctx; 9313 refcount_t pending_refs; 9314 blk_status_t status; 9315 }; 9316 9317 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9318 { 9319 struct btrfs_encoded_read_private *priv = bbio->private; 9320 9321 if (bbio->bio.bi_status) { 9322 /* 9323 * The memory barrier implied by the refcount_dec_and_test() here 9324 * pairs with the memory barrier implied by the refcount_dec_and_test() 9325 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9326 * this write is observed before the load of status in 9327 * btrfs_encoded_read_regular_fill_pages(). 9328 */ 9329 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9330 } 9331 if (refcount_dec_and_test(&priv->pending_refs)) { 9332 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9333 9334 if (priv->uring_ctx) { 9335 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9336 kfree(priv); 9337 } else { 9338 complete(priv->sync_reads); 9339 } 9340 } 9341 bio_put(&bbio->bio); 9342 } 9343 9344 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9345 u64 disk_bytenr, u64 disk_io_size, 9346 struct page **pages, void *uring_ctx) 9347 { 9348 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9349 struct btrfs_encoded_read_private *priv, sync_priv; 9350 struct completion sync_reads; 9351 unsigned long i = 0; 9352 struct btrfs_bio *bbio; 9353 int ret; 9354 9355 /* 9356 * Fast path for synchronous reads which completes in this call, io_uring 9357 * needs longer time span. 9358 */ 9359 if (uring_ctx) { 9360 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9361 if (!priv) 9362 return -ENOMEM; 9363 } else { 9364 priv = &sync_priv; 9365 init_completion(&sync_reads); 9366 priv->sync_reads = &sync_reads; 9367 } 9368 9369 refcount_set(&priv->pending_refs, 1); 9370 priv->status = 0; 9371 priv->uring_ctx = uring_ctx; 9372 9373 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9374 btrfs_encoded_read_endio, priv); 9375 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9376 bbio->inode = inode; 9377 9378 do { 9379 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9380 9381 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9382 refcount_inc(&priv->pending_refs); 9383 btrfs_submit_bbio(bbio, 0); 9384 9385 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9386 btrfs_encoded_read_endio, priv); 9387 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9388 bbio->inode = inode; 9389 continue; 9390 } 9391 9392 i++; 9393 disk_bytenr += bytes; 9394 disk_io_size -= bytes; 9395 } while (disk_io_size); 9396 9397 refcount_inc(&priv->pending_refs); 9398 btrfs_submit_bbio(bbio, 0); 9399 9400 if (uring_ctx) { 9401 if (refcount_dec_and_test(&priv->pending_refs)) { 9402 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9403 btrfs_uring_read_extent_endio(uring_ctx, ret); 9404 kfree(priv); 9405 return ret; 9406 } 9407 9408 return -EIOCBQUEUED; 9409 } else { 9410 if (!refcount_dec_and_test(&priv->pending_refs)) 9411 wait_for_completion_io(&sync_reads); 9412 /* See btrfs_encoded_read_endio() for ordering. */ 9413 return blk_status_to_errno(READ_ONCE(priv->status)); 9414 } 9415 } 9416 9417 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9418 u64 start, u64 lockend, 9419 struct extent_state **cached_state, 9420 u64 disk_bytenr, u64 disk_io_size, 9421 size_t count, bool compressed, bool *unlocked) 9422 { 9423 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9424 struct extent_io_tree *io_tree = &inode->io_tree; 9425 struct page **pages; 9426 unsigned long nr_pages, i; 9427 u64 cur; 9428 size_t page_offset; 9429 ssize_t ret; 9430 9431 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9432 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9433 if (!pages) 9434 return -ENOMEM; 9435 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9436 if (ret) { 9437 ret = -ENOMEM; 9438 goto out; 9439 } 9440 9441 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9442 disk_io_size, pages, NULL); 9443 if (ret) 9444 goto out; 9445 9446 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9447 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9448 *unlocked = true; 9449 9450 if (compressed) { 9451 i = 0; 9452 page_offset = 0; 9453 } else { 9454 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9455 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9456 } 9457 cur = 0; 9458 while (cur < count) { 9459 size_t bytes = min_t(size_t, count - cur, 9460 PAGE_SIZE - page_offset); 9461 9462 if (copy_page_to_iter(pages[i], page_offset, bytes, 9463 iter) != bytes) { 9464 ret = -EFAULT; 9465 goto out; 9466 } 9467 i++; 9468 cur += bytes; 9469 page_offset = 0; 9470 } 9471 ret = count; 9472 out: 9473 for (i = 0; i < nr_pages; i++) { 9474 if (pages[i]) 9475 __free_page(pages[i]); 9476 } 9477 kfree(pages); 9478 return ret; 9479 } 9480 9481 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9482 struct btrfs_ioctl_encoded_io_args *encoded, 9483 struct extent_state **cached_state, 9484 u64 *disk_bytenr, u64 *disk_io_size) 9485 { 9486 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9487 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9488 struct extent_io_tree *io_tree = &inode->io_tree; 9489 ssize_t ret; 9490 size_t count = iov_iter_count(iter); 9491 u64 start, lockend; 9492 struct extent_map *em; 9493 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9494 bool unlocked = false; 9495 9496 file_accessed(iocb->ki_filp); 9497 9498 ret = btrfs_inode_lock(inode, 9499 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9500 if (ret) 9501 return ret; 9502 9503 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9504 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9505 return 0; 9506 } 9507 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9508 /* 9509 * We don't know how long the extent containing iocb->ki_pos is, but if 9510 * it's compressed we know that it won't be longer than this. 9511 */ 9512 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9513 9514 if (nowait) { 9515 struct btrfs_ordered_extent *ordered; 9516 9517 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9518 start, lockend)) { 9519 ret = -EAGAIN; 9520 goto out_unlock_inode; 9521 } 9522 9523 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9524 ret = -EAGAIN; 9525 goto out_unlock_inode; 9526 } 9527 9528 ordered = btrfs_lookup_ordered_range(inode, start, 9529 lockend - start + 1); 9530 if (ordered) { 9531 btrfs_put_ordered_extent(ordered); 9532 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9533 ret = -EAGAIN; 9534 goto out_unlock_inode; 9535 } 9536 } else { 9537 for (;;) { 9538 struct btrfs_ordered_extent *ordered; 9539 9540 ret = btrfs_wait_ordered_range(inode, start, 9541 lockend - start + 1); 9542 if (ret) 9543 goto out_unlock_inode; 9544 9545 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9546 ordered = btrfs_lookup_ordered_range(inode, start, 9547 lockend - start + 1); 9548 if (!ordered) 9549 break; 9550 btrfs_put_ordered_extent(ordered); 9551 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9552 cond_resched(); 9553 } 9554 } 9555 9556 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9557 if (IS_ERR(em)) { 9558 ret = PTR_ERR(em); 9559 goto out_unlock_extent; 9560 } 9561 9562 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9563 u64 extent_start = em->start; 9564 9565 /* 9566 * For inline extents we get everything we need out of the 9567 * extent item. 9568 */ 9569 btrfs_free_extent_map(em); 9570 em = NULL; 9571 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9572 cached_state, extent_start, 9573 count, encoded, &unlocked); 9574 goto out_unlock_extent; 9575 } 9576 9577 /* 9578 * We only want to return up to EOF even if the extent extends beyond 9579 * that. 9580 */ 9581 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9582 inode->vfs_inode.i_size) - iocb->ki_pos; 9583 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9584 (em->flags & EXTENT_FLAG_PREALLOC)) { 9585 *disk_bytenr = EXTENT_MAP_HOLE; 9586 count = min_t(u64, count, encoded->len); 9587 encoded->len = count; 9588 encoded->unencoded_len = count; 9589 } else if (btrfs_extent_map_is_compressed(em)) { 9590 *disk_bytenr = em->disk_bytenr; 9591 /* 9592 * Bail if the buffer isn't large enough to return the whole 9593 * compressed extent. 9594 */ 9595 if (em->disk_num_bytes > count) { 9596 ret = -ENOBUFS; 9597 goto out_em; 9598 } 9599 *disk_io_size = em->disk_num_bytes; 9600 count = em->disk_num_bytes; 9601 encoded->unencoded_len = em->ram_bytes; 9602 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9603 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9604 btrfs_extent_map_compression(em)); 9605 if (ret < 0) 9606 goto out_em; 9607 encoded->compression = ret; 9608 } else { 9609 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9610 if (encoded->len > count) 9611 encoded->len = count; 9612 /* 9613 * Don't read beyond what we locked. This also limits the page 9614 * allocations that we'll do. 9615 */ 9616 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9617 count = start + *disk_io_size - iocb->ki_pos; 9618 encoded->len = count; 9619 encoded->unencoded_len = count; 9620 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9621 } 9622 btrfs_free_extent_map(em); 9623 em = NULL; 9624 9625 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9626 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9627 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9628 unlocked = true; 9629 ret = iov_iter_zero(count, iter); 9630 if (ret != count) 9631 ret = -EFAULT; 9632 } else { 9633 ret = -EIOCBQUEUED; 9634 goto out_unlock_extent; 9635 } 9636 9637 out_em: 9638 btrfs_free_extent_map(em); 9639 out_unlock_extent: 9640 /* Leave inode and extent locked if we need to do a read. */ 9641 if (!unlocked && ret != -EIOCBQUEUED) 9642 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9643 out_unlock_inode: 9644 if (!unlocked && ret != -EIOCBQUEUED) 9645 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9646 return ret; 9647 } 9648 9649 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9650 const struct btrfs_ioctl_encoded_io_args *encoded) 9651 { 9652 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9653 struct btrfs_root *root = inode->root; 9654 struct btrfs_fs_info *fs_info = root->fs_info; 9655 struct extent_io_tree *io_tree = &inode->io_tree; 9656 struct extent_changeset *data_reserved = NULL; 9657 struct extent_state *cached_state = NULL; 9658 struct btrfs_ordered_extent *ordered; 9659 struct btrfs_file_extent file_extent; 9660 int compression; 9661 size_t orig_count; 9662 u64 start, end; 9663 u64 num_bytes, ram_bytes, disk_num_bytes; 9664 unsigned long nr_folios, i; 9665 struct folio **folios; 9666 struct btrfs_key ins; 9667 bool extent_reserved = false; 9668 struct extent_map *em; 9669 ssize_t ret; 9670 9671 switch (encoded->compression) { 9672 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9673 compression = BTRFS_COMPRESS_ZLIB; 9674 break; 9675 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9676 compression = BTRFS_COMPRESS_ZSTD; 9677 break; 9678 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9679 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9683 /* The sector size must match for LZO. */ 9684 if (encoded->compression - 9685 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9686 fs_info->sectorsize_bits) 9687 return -EINVAL; 9688 compression = BTRFS_COMPRESS_LZO; 9689 break; 9690 default: 9691 return -EINVAL; 9692 } 9693 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9694 return -EINVAL; 9695 9696 /* 9697 * Compressed extents should always have checksums, so error out if we 9698 * have a NOCOW file or inode was created while mounted with NODATASUM. 9699 */ 9700 if (inode->flags & BTRFS_INODE_NODATASUM) 9701 return -EINVAL; 9702 9703 orig_count = iov_iter_count(from); 9704 9705 /* The extent size must be sane. */ 9706 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9707 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9708 return -EINVAL; 9709 9710 /* 9711 * The compressed data must be smaller than the decompressed data. 9712 * 9713 * It's of course possible for data to compress to larger or the same 9714 * size, but the buffered I/O path falls back to no compression for such 9715 * data, and we don't want to break any assumptions by creating these 9716 * extents. 9717 * 9718 * Note that this is less strict than the current check we have that the 9719 * compressed data must be at least one sector smaller than the 9720 * decompressed data. We only want to enforce the weaker requirement 9721 * from old kernels that it is at least one byte smaller. 9722 */ 9723 if (orig_count >= encoded->unencoded_len) 9724 return -EINVAL; 9725 9726 /* The extent must start on a sector boundary. */ 9727 start = iocb->ki_pos; 9728 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9729 return -EINVAL; 9730 9731 /* 9732 * The extent must end on a sector boundary. However, we allow a write 9733 * which ends at or extends i_size to have an unaligned length; we round 9734 * up the extent size and set i_size to the unaligned end. 9735 */ 9736 if (start + encoded->len < inode->vfs_inode.i_size && 9737 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9738 return -EINVAL; 9739 9740 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9741 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9742 return -EINVAL; 9743 9744 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9745 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9746 end = start + num_bytes - 1; 9747 9748 /* 9749 * If the extent cannot be inline, the compressed data on disk must be 9750 * sector-aligned. For convenience, we extend it with zeroes if it 9751 * isn't. 9752 */ 9753 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9754 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9755 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9756 if (!folios) 9757 return -ENOMEM; 9758 for (i = 0; i < nr_folios; i++) { 9759 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9760 char *kaddr; 9761 9762 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9763 if (!folios[i]) { 9764 ret = -ENOMEM; 9765 goto out_folios; 9766 } 9767 kaddr = kmap_local_folio(folios[i], 0); 9768 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9769 kunmap_local(kaddr); 9770 ret = -EFAULT; 9771 goto out_folios; 9772 } 9773 if (bytes < PAGE_SIZE) 9774 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9775 kunmap_local(kaddr); 9776 } 9777 9778 for (;;) { 9779 struct btrfs_ordered_extent *ordered; 9780 9781 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9782 if (ret) 9783 goto out_folios; 9784 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9785 start >> PAGE_SHIFT, 9786 end >> PAGE_SHIFT); 9787 if (ret) 9788 goto out_folios; 9789 btrfs_lock_extent(io_tree, start, end, &cached_state); 9790 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9791 if (!ordered && 9792 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9793 break; 9794 if (ordered) 9795 btrfs_put_ordered_extent(ordered); 9796 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9797 cond_resched(); 9798 } 9799 9800 /* 9801 * We don't use the higher-level delalloc space functions because our 9802 * num_bytes and disk_num_bytes are different. 9803 */ 9804 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9805 if (ret) 9806 goto out_unlock; 9807 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9808 if (ret) 9809 goto out_free_data_space; 9810 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9811 false); 9812 if (ret) 9813 goto out_qgroup_free_data; 9814 9815 /* Try an inline extent first. */ 9816 if (encoded->unencoded_len == encoded->len && 9817 encoded->unencoded_offset == 0 && 9818 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9819 ret = __cow_file_range_inline(inode, encoded->len, 9820 orig_count, compression, folios[0], 9821 true); 9822 if (ret <= 0) { 9823 if (ret == 0) 9824 ret = orig_count; 9825 goto out_delalloc_release; 9826 } 9827 } 9828 9829 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9830 disk_num_bytes, 0, 0, &ins, 1, 1); 9831 if (ret) 9832 goto out_delalloc_release; 9833 extent_reserved = true; 9834 9835 file_extent.disk_bytenr = ins.objectid; 9836 file_extent.disk_num_bytes = ins.offset; 9837 file_extent.num_bytes = num_bytes; 9838 file_extent.ram_bytes = ram_bytes; 9839 file_extent.offset = encoded->unencoded_offset; 9840 file_extent.compression = compression; 9841 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9842 if (IS_ERR(em)) { 9843 ret = PTR_ERR(em); 9844 goto out_free_reserved; 9845 } 9846 btrfs_free_extent_map(em); 9847 9848 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9849 (1U << BTRFS_ORDERED_ENCODED) | 9850 (1U << BTRFS_ORDERED_COMPRESSED)); 9851 if (IS_ERR(ordered)) { 9852 btrfs_drop_extent_map_range(inode, start, end, false); 9853 ret = PTR_ERR(ordered); 9854 goto out_free_reserved; 9855 } 9856 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9857 9858 if (start + encoded->len > inode->vfs_inode.i_size) 9859 i_size_write(&inode->vfs_inode, start + encoded->len); 9860 9861 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9862 9863 btrfs_delalloc_release_extents(inode, num_bytes); 9864 9865 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9866 ret = orig_count; 9867 goto out; 9868 9869 out_free_reserved: 9870 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9871 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9872 out_delalloc_release: 9873 btrfs_delalloc_release_extents(inode, num_bytes); 9874 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9875 out_qgroup_free_data: 9876 if (ret < 0) 9877 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9878 out_free_data_space: 9879 /* 9880 * If btrfs_reserve_extent() succeeded, then we already decremented 9881 * bytes_may_use. 9882 */ 9883 if (!extent_reserved) 9884 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9885 out_unlock: 9886 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9887 out_folios: 9888 for (i = 0; i < nr_folios; i++) { 9889 if (folios[i]) 9890 folio_put(folios[i]); 9891 } 9892 kvfree(folios); 9893 out: 9894 if (ret >= 0) 9895 iocb->ki_pos += encoded->len; 9896 return ret; 9897 } 9898 9899 #ifdef CONFIG_SWAP 9900 /* 9901 * Add an entry indicating a block group or device which is pinned by a 9902 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9903 * negative errno on failure. 9904 */ 9905 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9906 bool is_block_group) 9907 { 9908 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9909 struct btrfs_swapfile_pin *sp, *entry; 9910 struct rb_node **p; 9911 struct rb_node *parent = NULL; 9912 9913 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9914 if (!sp) 9915 return -ENOMEM; 9916 sp->ptr = ptr; 9917 sp->inode = inode; 9918 sp->is_block_group = is_block_group; 9919 sp->bg_extent_count = 1; 9920 9921 spin_lock(&fs_info->swapfile_pins_lock); 9922 p = &fs_info->swapfile_pins.rb_node; 9923 while (*p) { 9924 parent = *p; 9925 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9926 if (sp->ptr < entry->ptr || 9927 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9928 p = &(*p)->rb_left; 9929 } else if (sp->ptr > entry->ptr || 9930 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9931 p = &(*p)->rb_right; 9932 } else { 9933 if (is_block_group) 9934 entry->bg_extent_count++; 9935 spin_unlock(&fs_info->swapfile_pins_lock); 9936 kfree(sp); 9937 return 1; 9938 } 9939 } 9940 rb_link_node(&sp->node, parent, p); 9941 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9942 spin_unlock(&fs_info->swapfile_pins_lock); 9943 return 0; 9944 } 9945 9946 /* Free all of the entries pinned by this swapfile. */ 9947 static void btrfs_free_swapfile_pins(struct inode *inode) 9948 { 9949 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9950 struct btrfs_swapfile_pin *sp; 9951 struct rb_node *node, *next; 9952 9953 spin_lock(&fs_info->swapfile_pins_lock); 9954 node = rb_first(&fs_info->swapfile_pins); 9955 while (node) { 9956 next = rb_next(node); 9957 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9958 if (sp->inode == inode) { 9959 rb_erase(&sp->node, &fs_info->swapfile_pins); 9960 if (sp->is_block_group) { 9961 btrfs_dec_block_group_swap_extents(sp->ptr, 9962 sp->bg_extent_count); 9963 btrfs_put_block_group(sp->ptr); 9964 } 9965 kfree(sp); 9966 } 9967 node = next; 9968 } 9969 spin_unlock(&fs_info->swapfile_pins_lock); 9970 } 9971 9972 struct btrfs_swap_info { 9973 u64 start; 9974 u64 block_start; 9975 u64 block_len; 9976 u64 lowest_ppage; 9977 u64 highest_ppage; 9978 unsigned long nr_pages; 9979 int nr_extents; 9980 }; 9981 9982 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9983 struct btrfs_swap_info *bsi) 9984 { 9985 unsigned long nr_pages; 9986 unsigned long max_pages; 9987 u64 first_ppage, first_ppage_reported, next_ppage; 9988 int ret; 9989 9990 /* 9991 * Our swapfile may have had its size extended after the swap header was 9992 * written. In that case activating the swapfile should not go beyond 9993 * the max size set in the swap header. 9994 */ 9995 if (bsi->nr_pages >= sis->max) 9996 return 0; 9997 9998 max_pages = sis->max - bsi->nr_pages; 9999 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10000 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10001 10002 if (first_ppage >= next_ppage) 10003 return 0; 10004 nr_pages = next_ppage - first_ppage; 10005 nr_pages = min(nr_pages, max_pages); 10006 10007 first_ppage_reported = first_ppage; 10008 if (bsi->start == 0) 10009 first_ppage_reported++; 10010 if (bsi->lowest_ppage > first_ppage_reported) 10011 bsi->lowest_ppage = first_ppage_reported; 10012 if (bsi->highest_ppage < (next_ppage - 1)) 10013 bsi->highest_ppage = next_ppage - 1; 10014 10015 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10016 if (ret < 0) 10017 return ret; 10018 bsi->nr_extents += ret; 10019 bsi->nr_pages += nr_pages; 10020 return 0; 10021 } 10022 10023 static void btrfs_swap_deactivate(struct file *file) 10024 { 10025 struct inode *inode = file_inode(file); 10026 10027 btrfs_free_swapfile_pins(inode); 10028 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10029 } 10030 10031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10032 sector_t *span) 10033 { 10034 struct inode *inode = file_inode(file); 10035 struct btrfs_root *root = BTRFS_I(inode)->root; 10036 struct btrfs_fs_info *fs_info = root->fs_info; 10037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10038 struct extent_state *cached_state = NULL; 10039 struct btrfs_chunk_map *map = NULL; 10040 struct btrfs_device *device = NULL; 10041 struct btrfs_swap_info bsi = { 10042 .lowest_ppage = (sector_t)-1ULL, 10043 }; 10044 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10045 struct btrfs_path *path = NULL; 10046 int ret = 0; 10047 u64 isize; 10048 u64 prev_extent_end = 0; 10049 10050 /* 10051 * Acquire the inode's mmap lock to prevent races with memory mapped 10052 * writes, as they could happen after we flush delalloc below and before 10053 * we lock the extent range further below. The inode was already locked 10054 * up in the call chain. 10055 */ 10056 btrfs_assert_inode_locked(BTRFS_I(inode)); 10057 down_write(&BTRFS_I(inode)->i_mmap_lock); 10058 10059 /* 10060 * If the swap file was just created, make sure delalloc is done. If the 10061 * file changes again after this, the user is doing something stupid and 10062 * we don't really care. 10063 */ 10064 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10065 if (ret) 10066 goto out_unlock_mmap; 10067 10068 /* 10069 * The inode is locked, so these flags won't change after we check them. 10070 */ 10071 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10072 btrfs_warn(fs_info, "swapfile must not be compressed"); 10073 ret = -EINVAL; 10074 goto out_unlock_mmap; 10075 } 10076 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10077 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10078 ret = -EINVAL; 10079 goto out_unlock_mmap; 10080 } 10081 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10082 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10083 ret = -EINVAL; 10084 goto out_unlock_mmap; 10085 } 10086 10087 path = btrfs_alloc_path(); 10088 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10089 if (!path || !backref_ctx) { 10090 ret = -ENOMEM; 10091 goto out_unlock_mmap; 10092 } 10093 10094 /* 10095 * Balance or device remove/replace/resize can move stuff around from 10096 * under us. The exclop protection makes sure they aren't running/won't 10097 * run concurrently while we are mapping the swap extents, and 10098 * fs_info->swapfile_pins prevents them from running while the swap 10099 * file is active and moving the extents. Note that this also prevents 10100 * a concurrent device add which isn't actually necessary, but it's not 10101 * really worth the trouble to allow it. 10102 */ 10103 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10104 btrfs_warn(fs_info, 10105 "cannot activate swapfile while exclusive operation is running"); 10106 ret = -EBUSY; 10107 goto out_unlock_mmap; 10108 } 10109 10110 /* 10111 * Prevent snapshot creation while we are activating the swap file. 10112 * We do not want to race with snapshot creation. If snapshot creation 10113 * already started before we bumped nr_swapfiles from 0 to 1 and 10114 * completes before the first write into the swap file after it is 10115 * activated, than that write would fallback to COW. 10116 */ 10117 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10118 btrfs_exclop_finish(fs_info); 10119 btrfs_warn(fs_info, 10120 "cannot activate swapfile because snapshot creation is in progress"); 10121 ret = -EINVAL; 10122 goto out_unlock_mmap; 10123 } 10124 /* 10125 * Snapshots can create extents which require COW even if NODATACOW is 10126 * set. We use this counter to prevent snapshots. We must increment it 10127 * before walking the extents because we don't want a concurrent 10128 * snapshot to run after we've already checked the extents. 10129 * 10130 * It is possible that subvolume is marked for deletion but still not 10131 * removed yet. To prevent this race, we check the root status before 10132 * activating the swapfile. 10133 */ 10134 spin_lock(&root->root_item_lock); 10135 if (btrfs_root_dead(root)) { 10136 spin_unlock(&root->root_item_lock); 10137 10138 btrfs_drew_write_unlock(&root->snapshot_lock); 10139 btrfs_exclop_finish(fs_info); 10140 btrfs_warn(fs_info, 10141 "cannot activate swapfile because subvolume %llu is being deleted", 10142 btrfs_root_id(root)); 10143 ret = -EPERM; 10144 goto out_unlock_mmap; 10145 } 10146 atomic_inc(&root->nr_swapfiles); 10147 spin_unlock(&root->root_item_lock); 10148 10149 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10150 10151 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10152 while (prev_extent_end < isize) { 10153 struct btrfs_key key; 10154 struct extent_buffer *leaf; 10155 struct btrfs_file_extent_item *ei; 10156 struct btrfs_block_group *bg; 10157 u64 logical_block_start; 10158 u64 physical_block_start; 10159 u64 extent_gen; 10160 u64 disk_bytenr; 10161 u64 len; 10162 10163 key.objectid = btrfs_ino(BTRFS_I(inode)); 10164 key.type = BTRFS_EXTENT_DATA_KEY; 10165 key.offset = prev_extent_end; 10166 10167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10168 if (ret < 0) 10169 goto out; 10170 10171 /* 10172 * If key not found it means we have an implicit hole (NO_HOLES 10173 * is enabled). 10174 */ 10175 if (ret > 0) { 10176 btrfs_warn(fs_info, "swapfile must not have holes"); 10177 ret = -EINVAL; 10178 goto out; 10179 } 10180 10181 leaf = path->nodes[0]; 10182 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10183 10184 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10185 /* 10186 * It's unlikely we'll ever actually find ourselves 10187 * here, as a file small enough to fit inline won't be 10188 * big enough to store more than the swap header, but in 10189 * case something changes in the future, let's catch it 10190 * here rather than later. 10191 */ 10192 btrfs_warn(fs_info, "swapfile must not be inline"); 10193 ret = -EINVAL; 10194 goto out; 10195 } 10196 10197 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10198 btrfs_warn(fs_info, "swapfile must not be compressed"); 10199 ret = -EINVAL; 10200 goto out; 10201 } 10202 10203 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10204 if (disk_bytenr == 0) { 10205 btrfs_warn(fs_info, "swapfile must not have holes"); 10206 ret = -EINVAL; 10207 goto out; 10208 } 10209 10210 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10211 extent_gen = btrfs_file_extent_generation(leaf, ei); 10212 prev_extent_end = btrfs_file_extent_end(path); 10213 10214 if (prev_extent_end > isize) 10215 len = isize - key.offset; 10216 else 10217 len = btrfs_file_extent_num_bytes(leaf, ei); 10218 10219 backref_ctx->curr_leaf_bytenr = leaf->start; 10220 10221 /* 10222 * Don't need the path anymore, release to avoid deadlocks when 10223 * calling btrfs_is_data_extent_shared() because when joining a 10224 * transaction it can block waiting for the current one's commit 10225 * which in turn may be trying to lock the same leaf to flush 10226 * delayed items for example. 10227 */ 10228 btrfs_release_path(path); 10229 10230 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10231 extent_gen, backref_ctx); 10232 if (ret < 0) { 10233 goto out; 10234 } else if (ret > 0) { 10235 btrfs_warn(fs_info, 10236 "swapfile must not be copy-on-write"); 10237 ret = -EINVAL; 10238 goto out; 10239 } 10240 10241 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10242 if (IS_ERR(map)) { 10243 ret = PTR_ERR(map); 10244 goto out; 10245 } 10246 10247 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10248 btrfs_warn(fs_info, 10249 "swapfile must have single data profile"); 10250 ret = -EINVAL; 10251 goto out; 10252 } 10253 10254 if (device == NULL) { 10255 device = map->stripes[0].dev; 10256 ret = btrfs_add_swapfile_pin(inode, device, false); 10257 if (ret == 1) 10258 ret = 0; 10259 else if (ret) 10260 goto out; 10261 } else if (device != map->stripes[0].dev) { 10262 btrfs_warn(fs_info, "swapfile must be on one device"); 10263 ret = -EINVAL; 10264 goto out; 10265 } 10266 10267 physical_block_start = (map->stripes[0].physical + 10268 (logical_block_start - map->start)); 10269 btrfs_free_chunk_map(map); 10270 map = NULL; 10271 10272 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10273 if (!bg) { 10274 btrfs_warn(fs_info, 10275 "could not find block group containing swapfile"); 10276 ret = -EINVAL; 10277 goto out; 10278 } 10279 10280 if (!btrfs_inc_block_group_swap_extents(bg)) { 10281 btrfs_warn(fs_info, 10282 "block group for swapfile at %llu is read-only%s", 10283 bg->start, 10284 atomic_read(&fs_info->scrubs_running) ? 10285 " (scrub running)" : ""); 10286 btrfs_put_block_group(bg); 10287 ret = -EINVAL; 10288 goto out; 10289 } 10290 10291 ret = btrfs_add_swapfile_pin(inode, bg, true); 10292 if (ret) { 10293 btrfs_put_block_group(bg); 10294 if (ret == 1) 10295 ret = 0; 10296 else 10297 goto out; 10298 } 10299 10300 if (bsi.block_len && 10301 bsi.block_start + bsi.block_len == physical_block_start) { 10302 bsi.block_len += len; 10303 } else { 10304 if (bsi.block_len) { 10305 ret = btrfs_add_swap_extent(sis, &bsi); 10306 if (ret) 10307 goto out; 10308 } 10309 bsi.start = key.offset; 10310 bsi.block_start = physical_block_start; 10311 bsi.block_len = len; 10312 } 10313 10314 if (fatal_signal_pending(current)) { 10315 ret = -EINTR; 10316 goto out; 10317 } 10318 10319 cond_resched(); 10320 } 10321 10322 if (bsi.block_len) 10323 ret = btrfs_add_swap_extent(sis, &bsi); 10324 10325 out: 10326 if (!IS_ERR_OR_NULL(map)) 10327 btrfs_free_chunk_map(map); 10328 10329 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10330 10331 if (ret) 10332 btrfs_swap_deactivate(file); 10333 10334 btrfs_drew_write_unlock(&root->snapshot_lock); 10335 10336 btrfs_exclop_finish(fs_info); 10337 10338 out_unlock_mmap: 10339 up_write(&BTRFS_I(inode)->i_mmap_lock); 10340 btrfs_free_backref_share_ctx(backref_ctx); 10341 btrfs_free_path(path); 10342 if (ret) 10343 return ret; 10344 10345 if (device) 10346 sis->bdev = device->bdev; 10347 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10348 sis->max = bsi.nr_pages; 10349 sis->pages = bsi.nr_pages - 1; 10350 return bsi.nr_extents; 10351 } 10352 #else 10353 static void btrfs_swap_deactivate(struct file *file) 10354 { 10355 } 10356 10357 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10358 sector_t *span) 10359 { 10360 return -EOPNOTSUPP; 10361 } 10362 #endif 10363 10364 /* 10365 * Update the number of bytes used in the VFS' inode. When we replace extents in 10366 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10367 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10368 * always get a correct value. 10369 */ 10370 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10371 const u64 add_bytes, 10372 const u64 del_bytes) 10373 { 10374 if (add_bytes == del_bytes) 10375 return; 10376 10377 spin_lock(&inode->lock); 10378 if (del_bytes > 0) 10379 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10380 if (add_bytes > 0) 10381 inode_add_bytes(&inode->vfs_inode, add_bytes); 10382 spin_unlock(&inode->lock); 10383 } 10384 10385 /* 10386 * Verify that there are no ordered extents for a given file range. 10387 * 10388 * @inode: The target inode. 10389 * @start: Start offset of the file range, should be sector size aligned. 10390 * @end: End offset (inclusive) of the file range, its value +1 should be 10391 * sector size aligned. 10392 * 10393 * This should typically be used for cases where we locked an inode's VFS lock in 10394 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10395 * we have flushed all delalloc in the range, we have waited for all ordered 10396 * extents in the range to complete and finally we have locked the file range in 10397 * the inode's io_tree. 10398 */ 10399 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10400 { 10401 struct btrfs_root *root = inode->root; 10402 struct btrfs_ordered_extent *ordered; 10403 10404 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10405 return; 10406 10407 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10408 if (ordered) { 10409 btrfs_err(root->fs_info, 10410 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10411 start, end, btrfs_ino(inode), btrfs_root_id(root), 10412 ordered->file_offset, 10413 ordered->file_offset + ordered->num_bytes - 1); 10414 btrfs_put_ordered_extent(ordered); 10415 } 10416 10417 ASSERT(ordered == NULL); 10418 } 10419 10420 /* 10421 * Find the first inode with a minimum number. 10422 * 10423 * @root: The root to search for. 10424 * @min_ino: The minimum inode number. 10425 * 10426 * Find the first inode in the @root with a number >= @min_ino and return it. 10427 * Returns NULL if no such inode found. 10428 */ 10429 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10430 { 10431 struct btrfs_inode *inode; 10432 unsigned long from = min_ino; 10433 10434 xa_lock(&root->inodes); 10435 while (true) { 10436 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10437 if (!inode) 10438 break; 10439 if (igrab(&inode->vfs_inode)) 10440 break; 10441 10442 from = btrfs_ino(inode) + 1; 10443 cond_resched_lock(&root->inodes.xa_lock); 10444 } 10445 xa_unlock(&root->inodes); 10446 10447 return inode; 10448 } 10449 10450 static const struct inode_operations btrfs_dir_inode_operations = { 10451 .getattr = btrfs_getattr, 10452 .lookup = btrfs_lookup, 10453 .create = btrfs_create, 10454 .unlink = btrfs_unlink, 10455 .link = btrfs_link, 10456 .mkdir = btrfs_mkdir, 10457 .rmdir = btrfs_rmdir, 10458 .rename = btrfs_rename2, 10459 .symlink = btrfs_symlink, 10460 .setattr = btrfs_setattr, 10461 .mknod = btrfs_mknod, 10462 .listxattr = btrfs_listxattr, 10463 .permission = btrfs_permission, 10464 .get_inode_acl = btrfs_get_acl, 10465 .set_acl = btrfs_set_acl, 10466 .update_time = btrfs_update_time, 10467 .tmpfile = btrfs_tmpfile, 10468 .fileattr_get = btrfs_fileattr_get, 10469 .fileattr_set = btrfs_fileattr_set, 10470 }; 10471 10472 static const struct file_operations btrfs_dir_file_operations = { 10473 .llseek = btrfs_dir_llseek, 10474 .read = generic_read_dir, 10475 .iterate_shared = btrfs_real_readdir, 10476 .open = btrfs_opendir, 10477 .unlocked_ioctl = btrfs_ioctl, 10478 #ifdef CONFIG_COMPAT 10479 .compat_ioctl = btrfs_compat_ioctl, 10480 #endif 10481 .release = btrfs_release_file, 10482 .fsync = btrfs_sync_file, 10483 }; 10484 10485 /* 10486 * btrfs doesn't support the bmap operation because swapfiles 10487 * use bmap to make a mapping of extents in the file. They assume 10488 * these extents won't change over the life of the file and they 10489 * use the bmap result to do IO directly to the drive. 10490 * 10491 * the btrfs bmap call would return logical addresses that aren't 10492 * suitable for IO and they also will change frequently as COW 10493 * operations happen. So, swapfile + btrfs == corruption. 10494 * 10495 * For now we're avoiding this by dropping bmap. 10496 */ 10497 static const struct address_space_operations btrfs_aops = { 10498 .read_folio = btrfs_read_folio, 10499 .writepages = btrfs_writepages, 10500 .readahead = btrfs_readahead, 10501 .invalidate_folio = btrfs_invalidate_folio, 10502 .launder_folio = btrfs_launder_folio, 10503 .release_folio = btrfs_release_folio, 10504 .migrate_folio = btrfs_migrate_folio, 10505 .dirty_folio = filemap_dirty_folio, 10506 .error_remove_folio = generic_error_remove_folio, 10507 .swap_activate = btrfs_swap_activate, 10508 .swap_deactivate = btrfs_swap_deactivate, 10509 }; 10510 10511 static const struct inode_operations btrfs_file_inode_operations = { 10512 .getattr = btrfs_getattr, 10513 .setattr = btrfs_setattr, 10514 .listxattr = btrfs_listxattr, 10515 .permission = btrfs_permission, 10516 .fiemap = btrfs_fiemap, 10517 .get_inode_acl = btrfs_get_acl, 10518 .set_acl = btrfs_set_acl, 10519 .update_time = btrfs_update_time, 10520 .fileattr_get = btrfs_fileattr_get, 10521 .fileattr_set = btrfs_fileattr_set, 10522 }; 10523 static const struct inode_operations btrfs_special_inode_operations = { 10524 .getattr = btrfs_getattr, 10525 .setattr = btrfs_setattr, 10526 .permission = btrfs_permission, 10527 .listxattr = btrfs_listxattr, 10528 .get_inode_acl = btrfs_get_acl, 10529 .set_acl = btrfs_set_acl, 10530 .update_time = btrfs_update_time, 10531 }; 10532 static const struct inode_operations btrfs_symlink_inode_operations = { 10533 .get_link = page_get_link, 10534 .getattr = btrfs_getattr, 10535 .setattr = btrfs_setattr, 10536 .permission = btrfs_permission, 10537 .listxattr = btrfs_listxattr, 10538 .update_time = btrfs_update_time, 10539 }; 10540 10541 const struct dentry_operations btrfs_dentry_operations = { 10542 .d_delete = btrfs_dentry_delete, 10543 }; 10544