xref: /linux/fs/btrfs/inode.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 				       u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * Cleanup all submitted ordered extents in specified range to handle errors
99  * from the btrfs_run_delalloc_range() callback.
100  *
101  * NOTE: caller must ensure that when an error happens, it can not call
102  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104  * to be released, which we want to happen only when finishing the ordered
105  * extent (btrfs_finish_ordered_io()).
106  */
107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 						 struct page *locked_page,
109 						 u64 offset, u64 bytes)
110 {
111 	unsigned long index = offset >> PAGE_SHIFT;
112 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 	u64 page_start = page_offset(locked_page);
114 	u64 page_end = page_start + PAGE_SIZE - 1;
115 
116 	struct page *page;
117 
118 	while (index <= end_index) {
119 		page = find_get_page(inode->i_mapping, index);
120 		index++;
121 		if (!page)
122 			continue;
123 		ClearPagePrivate2(page);
124 		put_page(page);
125 	}
126 
127 	/*
128 	 * In case this page belongs to the delalloc range being instantiated
129 	 * then skip it, since the first page of a range is going to be
130 	 * properly cleaned up by the caller of run_delalloc_range
131 	 */
132 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 		offset += PAGE_SIZE;
134 		bytes -= PAGE_SIZE;
135 	}
136 
137 	return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139 
140 static int btrfs_dirty_inode(struct inode *inode);
141 
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148 
149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 				     struct inode *inode,  struct inode *dir,
151 				     const struct qstr *qstr)
152 {
153 	int err;
154 
155 	err = btrfs_init_acl(trans, inode, dir);
156 	if (!err)
157 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 	return err;
159 }
160 
161 /*
162  * this does all the hard work for inserting an inline extent into
163  * the btree.  The caller should have done a btrfs_drop_extents so that
164  * no overlapping inline items exist in the btree
165  */
166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 				struct btrfs_path *path, int extent_inserted,
168 				struct btrfs_root *root, struct inode *inode,
169 				u64 start, size_t size, size_t compressed_size,
170 				int compress_type,
171 				struct page **compressed_pages)
172 {
173 	struct extent_buffer *leaf;
174 	struct page *page = NULL;
175 	char *kaddr;
176 	unsigned long ptr;
177 	struct btrfs_file_extent_item *ei;
178 	int ret;
179 	size_t cur_size = size;
180 	unsigned long offset;
181 
182 	ASSERT((compressed_size > 0 && compressed_pages) ||
183 	       (compressed_size == 0 && !compressed_pages));
184 
185 	if (compressed_size && compressed_pages)
186 		cur_size = compressed_size;
187 
188 	inode_add_bytes(inode, size);
189 
190 	if (!extent_inserted) {
191 		struct btrfs_key key;
192 		size_t datasize;
193 
194 		key.objectid = btrfs_ino(BTRFS_I(inode));
195 		key.offset = start;
196 		key.type = BTRFS_EXTENT_DATA_KEY;
197 
198 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 		path->leave_spinning = 1;
200 		ret = btrfs_insert_empty_item(trans, root, path, &key,
201 					      datasize);
202 		if (ret)
203 			goto fail;
204 	}
205 	leaf = path->nodes[0];
206 	ei = btrfs_item_ptr(leaf, path->slots[0],
207 			    struct btrfs_file_extent_item);
208 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 	btrfs_set_file_extent_encryption(leaf, ei, 0);
211 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 	ptr = btrfs_file_extent_inline_start(ei);
214 
215 	if (compress_type != BTRFS_COMPRESS_NONE) {
216 		struct page *cpage;
217 		int i = 0;
218 		while (compressed_size > 0) {
219 			cpage = compressed_pages[i];
220 			cur_size = min_t(unsigned long, compressed_size,
221 				       PAGE_SIZE);
222 
223 			kaddr = kmap_atomic(cpage);
224 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 			kunmap_atomic(kaddr);
226 
227 			i++;
228 			ptr += cur_size;
229 			compressed_size -= cur_size;
230 		}
231 		btrfs_set_file_extent_compression(leaf, ei,
232 						  compress_type);
233 	} else {
234 		page = find_get_page(inode->i_mapping,
235 				     start >> PAGE_SHIFT);
236 		btrfs_set_file_extent_compression(leaf, ei, 0);
237 		kaddr = kmap_atomic(page);
238 		offset = offset_in_page(start);
239 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 		kunmap_atomic(kaddr);
241 		put_page(page);
242 	}
243 	btrfs_mark_buffer_dirty(leaf);
244 	btrfs_release_path(path);
245 
246 	/*
247 	 * we're an inline extent, so nobody can
248 	 * extend the file past i_size without locking
249 	 * a page we already have locked.
250 	 *
251 	 * We must do any isize and inode updates
252 	 * before we unlock the pages.  Otherwise we
253 	 * could end up racing with unlink.
254 	 */
255 	BTRFS_I(inode)->disk_i_size = inode->i_size;
256 	ret = btrfs_update_inode(trans, root, inode);
257 
258 fail:
259 	return ret;
260 }
261 
262 
263 /*
264  * conditionally insert an inline extent into the file.  This
265  * does the checks required to make sure the data is small enough
266  * to fit as an inline extent.
267  */
268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 					  u64 end, size_t compressed_size,
270 					  int compress_type,
271 					  struct page **compressed_pages)
272 {
273 	struct btrfs_root *root = BTRFS_I(inode)->root;
274 	struct btrfs_fs_info *fs_info = root->fs_info;
275 	struct btrfs_trans_handle *trans;
276 	u64 isize = i_size_read(inode);
277 	u64 actual_end = min(end + 1, isize);
278 	u64 inline_len = actual_end - start;
279 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 	u64 data_len = inline_len;
281 	int ret;
282 	struct btrfs_path *path;
283 	int extent_inserted = 0;
284 	u32 extent_item_size;
285 
286 	if (compressed_size)
287 		data_len = compressed_size;
288 
289 	if (start > 0 ||
290 	    actual_end > fs_info->sectorsize ||
291 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 	    (!compressed_size &&
293 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 	    end + 1 < isize ||
295 	    data_len > fs_info->max_inline) {
296 		return 1;
297 	}
298 
299 	path = btrfs_alloc_path();
300 	if (!path)
301 		return -ENOMEM;
302 
303 	trans = btrfs_join_transaction(root);
304 	if (IS_ERR(trans)) {
305 		btrfs_free_path(path);
306 		return PTR_ERR(trans);
307 	}
308 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309 
310 	if (compressed_size && compressed_pages)
311 		extent_item_size = btrfs_file_extent_calc_inline_size(
312 		   compressed_size);
313 	else
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		    inline_len);
316 
317 	ret = __btrfs_drop_extents(trans, root, inode, path,
318 				   start, aligned_end, NULL,
319 				   1, 1, extent_item_size, &extent_inserted);
320 	if (ret) {
321 		btrfs_abort_transaction(trans, ret);
322 		goto out;
323 	}
324 
325 	if (isize > actual_end)
326 		inline_len = min_t(u64, isize, actual_end);
327 	ret = insert_inline_extent(trans, path, extent_inserted,
328 				   root, inode, start,
329 				   inline_len, compressed_size,
330 				   compress_type, compressed_pages);
331 	if (ret && ret != -ENOSPC) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	} else if (ret == -ENOSPC) {
335 		ret = 1;
336 		goto out;
337 	}
338 
339 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 	/*
343 	 * Don't forget to free the reserved space, as for inlined extent
344 	 * it won't count as data extent, free them directly here.
345 	 * And at reserve time, it's always aligned to page size, so
346 	 * just free one page here.
347 	 */
348 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 	btrfs_free_path(path);
350 	btrfs_end_transaction(trans);
351 	return ret;
352 }
353 
354 struct async_extent {
355 	u64 start;
356 	u64 ram_size;
357 	u64 compressed_size;
358 	struct page **pages;
359 	unsigned long nr_pages;
360 	int compress_type;
361 	struct list_head list;
362 };
363 
364 struct async_chunk {
365 	struct inode *inode;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 	atomic_t *pending;
373 };
374 
375 struct async_cow {
376 	/* Number of chunks in flight; must be first in the structure */
377 	atomic_t num_chunks;
378 	struct async_chunk chunks[];
379 };
380 
381 static noinline int add_async_extent(struct async_chunk *cow,
382 				     u64 start, u64 ram_size,
383 				     u64 compressed_size,
384 				     struct page **pages,
385 				     unsigned long nr_pages,
386 				     int compress_type)
387 {
388 	struct async_extent *async_extent;
389 
390 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 	BUG_ON(!async_extent); /* -ENOMEM */
392 	async_extent->start = start;
393 	async_extent->ram_size = ram_size;
394 	async_extent->compressed_size = compressed_size;
395 	async_extent->pages = pages;
396 	async_extent->nr_pages = nr_pages;
397 	async_extent->compress_type = compress_type;
398 	list_add_tail(&async_extent->list, &cow->extents);
399 	return 0;
400 }
401 
402 /*
403  * Check if the inode has flags compatible with compression
404  */
405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 		return false;
410 	return true;
411 }
412 
413 /*
414  * Check if the inode needs to be submitted to compression, based on mount
415  * options, defragmentation, properties or heuristics.
416  */
417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 
421 	if (!inode_can_compress(inode)) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 			btrfs_ino(BTRFS_I(inode)));
425 		return 0;
426 	}
427 	/* force compress */
428 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 		return 1;
430 	/* defrag ioctl */
431 	if (BTRFS_I(inode)->defrag_compress)
432 		return 1;
433 	/* bad compression ratios */
434 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 		return 0;
436 	if (btrfs_test_opt(fs_info, COMPRESS) ||
437 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 	    BTRFS_I(inode)->prop_compress)
439 		return btrfs_compress_heuristic(inode, start, end);
440 	return 0;
441 }
442 
443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 		u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 	/* If this is a small write inside eof, kick off a defrag */
447 	if (num_bytes < small_write &&
448 	    (start > 0 || end + 1 < inode->disk_i_size))
449 		btrfs_add_inode_defrag(NULL, inode);
450 }
451 
452 /*
453  * we create compressed extents in two phases.  The first
454  * phase compresses a range of pages that have already been
455  * locked (both pages and state bits are locked).
456  *
457  * This is done inside an ordered work queue, and the compression
458  * is spread across many cpus.  The actual IO submission is step
459  * two, and the ordered work queue takes care of making sure that
460  * happens in the same order things were put onto the queue by
461  * writepages and friends.
462  *
463  * If this code finds it can't get good compression, it puts an
464  * entry onto the work queue to write the uncompressed bytes.  This
465  * makes sure that both compressed inodes and uncompressed inodes
466  * are written in the same order that the flusher thread sent them
467  * down.
468  */
469 static noinline int compress_file_range(struct async_chunk *async_chunk)
470 {
471 	struct inode *inode = async_chunk->inode;
472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
473 	u64 blocksize = fs_info->sectorsize;
474 	u64 start = async_chunk->start;
475 	u64 end = async_chunk->end;
476 	u64 actual_end;
477 	int ret = 0;
478 	struct page **pages = NULL;
479 	unsigned long nr_pages;
480 	unsigned long total_compressed = 0;
481 	unsigned long total_in = 0;
482 	int i;
483 	int will_compress;
484 	int compress_type = fs_info->compress_type;
485 	int compressed_extents = 0;
486 	int redirty = 0;
487 
488 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
489 			SZ_16K);
490 
491 	actual_end = min_t(u64, i_size_read(inode), end + 1);
492 again:
493 	will_compress = 0;
494 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
495 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
496 	nr_pages = min_t(unsigned long, nr_pages,
497 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
498 
499 	/*
500 	 * we don't want to send crud past the end of i_size through
501 	 * compression, that's just a waste of CPU time.  So, if the
502 	 * end of the file is before the start of our current
503 	 * requested range of bytes, we bail out to the uncompressed
504 	 * cleanup code that can deal with all of this.
505 	 *
506 	 * It isn't really the fastest way to fix things, but this is a
507 	 * very uncommon corner.
508 	 */
509 	if (actual_end <= start)
510 		goto cleanup_and_bail_uncompressed;
511 
512 	total_compressed = actual_end - start;
513 
514 	/*
515 	 * skip compression for a small file range(<=blocksize) that
516 	 * isn't an inline extent, since it doesn't save disk space at all.
517 	 */
518 	if (total_compressed <= blocksize &&
519 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
520 		goto cleanup_and_bail_uncompressed;
521 
522 	total_compressed = min_t(unsigned long, total_compressed,
523 			BTRFS_MAX_UNCOMPRESSED);
524 	total_in = 0;
525 	ret = 0;
526 
527 	/*
528 	 * we do compression for mount -o compress and when the
529 	 * inode has not been flagged as nocompress.  This flag can
530 	 * change at any time if we discover bad compression ratios.
531 	 */
532 	if (inode_need_compress(inode, start, end)) {
533 		WARN_ON(pages);
534 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
535 		if (!pages) {
536 			/* just bail out to the uncompressed code */
537 			nr_pages = 0;
538 			goto cont;
539 		}
540 
541 		if (BTRFS_I(inode)->defrag_compress)
542 			compress_type = BTRFS_I(inode)->defrag_compress;
543 		else if (BTRFS_I(inode)->prop_compress)
544 			compress_type = BTRFS_I(inode)->prop_compress;
545 
546 		/*
547 		 * we need to call clear_page_dirty_for_io on each
548 		 * page in the range.  Otherwise applications with the file
549 		 * mmap'd can wander in and change the page contents while
550 		 * we are compressing them.
551 		 *
552 		 * If the compression fails for any reason, we set the pages
553 		 * dirty again later on.
554 		 *
555 		 * Note that the remaining part is redirtied, the start pointer
556 		 * has moved, the end is the original one.
557 		 */
558 		if (!redirty) {
559 			extent_range_clear_dirty_for_io(inode, start, end);
560 			redirty = 1;
561 		}
562 
563 		/* Compression level is applied here and only here */
564 		ret = btrfs_compress_pages(
565 			compress_type | (fs_info->compress_level << 4),
566 					   inode->i_mapping, start,
567 					   pages,
568 					   &nr_pages,
569 					   &total_in,
570 					   &total_compressed);
571 
572 		if (!ret) {
573 			unsigned long offset = offset_in_page(total_compressed);
574 			struct page *page = pages[nr_pages - 1];
575 			char *kaddr;
576 
577 			/* zero the tail end of the last page, we might be
578 			 * sending it down to disk
579 			 */
580 			if (offset) {
581 				kaddr = kmap_atomic(page);
582 				memset(kaddr + offset, 0,
583 				       PAGE_SIZE - offset);
584 				kunmap_atomic(kaddr);
585 			}
586 			will_compress = 1;
587 		}
588 	}
589 cont:
590 	if (start == 0) {
591 		/* lets try to make an inline extent */
592 		if (ret || total_in < actual_end) {
593 			/* we didn't compress the entire range, try
594 			 * to make an uncompressed inline extent.
595 			 */
596 			ret = cow_file_range_inline(inode, start, end, 0,
597 						    BTRFS_COMPRESS_NONE, NULL);
598 		} else {
599 			/* try making a compressed inline extent */
600 			ret = cow_file_range_inline(inode, start, end,
601 						    total_compressed,
602 						    compress_type, pages);
603 		}
604 		if (ret <= 0) {
605 			unsigned long clear_flags = EXTENT_DELALLOC |
606 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
607 				EXTENT_DO_ACCOUNTING;
608 			unsigned long page_error_op;
609 
610 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
611 
612 			/*
613 			 * inline extent creation worked or returned error,
614 			 * we don't need to create any more async work items.
615 			 * Unlock and free up our temp pages.
616 			 *
617 			 * We use DO_ACCOUNTING here because we need the
618 			 * delalloc_release_metadata to be done _after_ we drop
619 			 * our outstanding extent for clearing delalloc for this
620 			 * range.
621 			 */
622 			extent_clear_unlock_delalloc(inode, start, end, NULL,
623 						     clear_flags,
624 						     PAGE_UNLOCK |
625 						     PAGE_CLEAR_DIRTY |
626 						     PAGE_SET_WRITEBACK |
627 						     page_error_op |
628 						     PAGE_END_WRITEBACK);
629 
630 			for (i = 0; i < nr_pages; i++) {
631 				WARN_ON(pages[i]->mapping);
632 				put_page(pages[i]);
633 			}
634 			kfree(pages);
635 
636 			return 0;
637 		}
638 	}
639 
640 	if (will_compress) {
641 		/*
642 		 * we aren't doing an inline extent round the compressed size
643 		 * up to a block size boundary so the allocator does sane
644 		 * things
645 		 */
646 		total_compressed = ALIGN(total_compressed, blocksize);
647 
648 		/*
649 		 * one last check to make sure the compression is really a
650 		 * win, compare the page count read with the blocks on disk,
651 		 * compression must free at least one sector size
652 		 */
653 		total_in = ALIGN(total_in, PAGE_SIZE);
654 		if (total_compressed + blocksize <= total_in) {
655 			compressed_extents++;
656 
657 			/*
658 			 * The async work queues will take care of doing actual
659 			 * allocation on disk for these compressed pages, and
660 			 * will submit them to the elevator.
661 			 */
662 			add_async_extent(async_chunk, start, total_in,
663 					total_compressed, pages, nr_pages,
664 					compress_type);
665 
666 			if (start + total_in < end) {
667 				start += total_in;
668 				pages = NULL;
669 				cond_resched();
670 				goto again;
671 			}
672 			return compressed_extents;
673 		}
674 	}
675 	if (pages) {
676 		/*
677 		 * the compression code ran but failed to make things smaller,
678 		 * free any pages it allocated and our page pointer array
679 		 */
680 		for (i = 0; i < nr_pages; i++) {
681 			WARN_ON(pages[i]->mapping);
682 			put_page(pages[i]);
683 		}
684 		kfree(pages);
685 		pages = NULL;
686 		total_compressed = 0;
687 		nr_pages = 0;
688 
689 		/* flag the file so we don't compress in the future */
690 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
691 		    !(BTRFS_I(inode)->prop_compress)) {
692 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
693 		}
694 	}
695 cleanup_and_bail_uncompressed:
696 	/*
697 	 * No compression, but we still need to write the pages in the file
698 	 * we've been given so far.  redirty the locked page if it corresponds
699 	 * to our extent and set things up for the async work queue to run
700 	 * cow_file_range to do the normal delalloc dance.
701 	 */
702 	if (page_offset(async_chunk->locked_page) >= start &&
703 	    page_offset(async_chunk->locked_page) <= end)
704 		__set_page_dirty_nobuffers(async_chunk->locked_page);
705 		/* unlocked later on in the async handlers */
706 
707 	if (redirty)
708 		extent_range_redirty_for_io(inode, start, end);
709 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
710 			 BTRFS_COMPRESS_NONE);
711 	compressed_extents++;
712 
713 	return compressed_extents;
714 }
715 
716 static void free_async_extent_pages(struct async_extent *async_extent)
717 {
718 	int i;
719 
720 	if (!async_extent->pages)
721 		return;
722 
723 	for (i = 0; i < async_extent->nr_pages; i++) {
724 		WARN_ON(async_extent->pages[i]->mapping);
725 		put_page(async_extent->pages[i]);
726 	}
727 	kfree(async_extent->pages);
728 	async_extent->nr_pages = 0;
729 	async_extent->pages = NULL;
730 }
731 
732 /*
733  * phase two of compressed writeback.  This is the ordered portion
734  * of the code, which only gets called in the order the work was
735  * queued.  We walk all the async extents created by compress_file_range
736  * and send them down to the disk.
737  */
738 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
739 {
740 	struct inode *inode = async_chunk->inode;
741 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
742 	struct async_extent *async_extent;
743 	u64 alloc_hint = 0;
744 	struct btrfs_key ins;
745 	struct extent_map *em;
746 	struct btrfs_root *root = BTRFS_I(inode)->root;
747 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
748 	int ret = 0;
749 
750 again:
751 	while (!list_empty(&async_chunk->extents)) {
752 		async_extent = list_entry(async_chunk->extents.next,
753 					  struct async_extent, list);
754 		list_del(&async_extent->list);
755 
756 retry:
757 		lock_extent(io_tree, async_extent->start,
758 			    async_extent->start + async_extent->ram_size - 1);
759 		/* did the compression code fall back to uncompressed IO? */
760 		if (!async_extent->pages) {
761 			int page_started = 0;
762 			unsigned long nr_written = 0;
763 
764 			/* allocate blocks */
765 			ret = cow_file_range(inode, async_chunk->locked_page,
766 					     async_extent->start,
767 					     async_extent->start +
768 					     async_extent->ram_size - 1,
769 					     &page_started, &nr_written, 0);
770 
771 			/* JDM XXX */
772 
773 			/*
774 			 * if page_started, cow_file_range inserted an
775 			 * inline extent and took care of all the unlocking
776 			 * and IO for us.  Otherwise, we need to submit
777 			 * all those pages down to the drive.
778 			 */
779 			if (!page_started && !ret)
780 				extent_write_locked_range(inode,
781 						  async_extent->start,
782 						  async_extent->start +
783 						  async_extent->ram_size - 1,
784 						  WB_SYNC_ALL);
785 			else if (ret)
786 				unlock_page(async_chunk->locked_page);
787 			kfree(async_extent);
788 			cond_resched();
789 			continue;
790 		}
791 
792 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
793 					   async_extent->compressed_size,
794 					   async_extent->compressed_size,
795 					   0, alloc_hint, &ins, 1, 1);
796 		if (ret) {
797 			free_async_extent_pages(async_extent);
798 
799 			if (ret == -ENOSPC) {
800 				unlock_extent(io_tree, async_extent->start,
801 					      async_extent->start +
802 					      async_extent->ram_size - 1);
803 
804 				/*
805 				 * we need to redirty the pages if we decide to
806 				 * fallback to uncompressed IO, otherwise we
807 				 * will not submit these pages down to lower
808 				 * layers.
809 				 */
810 				extent_range_redirty_for_io(inode,
811 						async_extent->start,
812 						async_extent->start +
813 						async_extent->ram_size - 1);
814 
815 				goto retry;
816 			}
817 			goto out_free;
818 		}
819 		/*
820 		 * here we're doing allocation and writeback of the
821 		 * compressed pages
822 		 */
823 		em = create_io_em(inode, async_extent->start,
824 				  async_extent->ram_size, /* len */
825 				  async_extent->start, /* orig_start */
826 				  ins.objectid, /* block_start */
827 				  ins.offset, /* block_len */
828 				  ins.offset, /* orig_block_len */
829 				  async_extent->ram_size, /* ram_bytes */
830 				  async_extent->compress_type,
831 				  BTRFS_ORDERED_COMPRESSED);
832 		if (IS_ERR(em))
833 			/* ret value is not necessary due to void function */
834 			goto out_free_reserve;
835 		free_extent_map(em);
836 
837 		ret = btrfs_add_ordered_extent_compress(inode,
838 						async_extent->start,
839 						ins.objectid,
840 						async_extent->ram_size,
841 						ins.offset,
842 						BTRFS_ORDERED_COMPRESSED,
843 						async_extent->compress_type);
844 		if (ret) {
845 			btrfs_drop_extent_cache(BTRFS_I(inode),
846 						async_extent->start,
847 						async_extent->start +
848 						async_extent->ram_size - 1, 0);
849 			goto out_free_reserve;
850 		}
851 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
852 
853 		/*
854 		 * clear dirty, set writeback and unlock the pages.
855 		 */
856 		extent_clear_unlock_delalloc(inode, async_extent->start,
857 				async_extent->start +
858 				async_extent->ram_size - 1,
859 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
860 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
861 				PAGE_SET_WRITEBACK);
862 		if (btrfs_submit_compressed_write(inode,
863 				    async_extent->start,
864 				    async_extent->ram_size,
865 				    ins.objectid,
866 				    ins.offset, async_extent->pages,
867 				    async_extent->nr_pages,
868 				    async_chunk->write_flags)) {
869 			struct page *p = async_extent->pages[0];
870 			const u64 start = async_extent->start;
871 			const u64 end = start + async_extent->ram_size - 1;
872 
873 			p->mapping = inode->i_mapping;
874 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
875 
876 			p->mapping = NULL;
877 			extent_clear_unlock_delalloc(inode, start, end,
878 						     NULL, 0,
879 						     PAGE_END_WRITEBACK |
880 						     PAGE_SET_ERROR);
881 			free_async_extent_pages(async_extent);
882 		}
883 		alloc_hint = ins.objectid + ins.offset;
884 		kfree(async_extent);
885 		cond_resched();
886 	}
887 	return;
888 out_free_reserve:
889 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
890 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
891 out_free:
892 	extent_clear_unlock_delalloc(inode, async_extent->start,
893 				     async_extent->start +
894 				     async_extent->ram_size - 1,
895 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
896 				     EXTENT_DELALLOC_NEW |
897 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
898 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
899 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
900 				     PAGE_SET_ERROR);
901 	free_async_extent_pages(async_extent);
902 	kfree(async_extent);
903 	goto again;
904 }
905 
906 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
907 				      u64 num_bytes)
908 {
909 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
910 	struct extent_map *em;
911 	u64 alloc_hint = 0;
912 
913 	read_lock(&em_tree->lock);
914 	em = search_extent_mapping(em_tree, start, num_bytes);
915 	if (em) {
916 		/*
917 		 * if block start isn't an actual block number then find the
918 		 * first block in this inode and use that as a hint.  If that
919 		 * block is also bogus then just don't worry about it.
920 		 */
921 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
922 			free_extent_map(em);
923 			em = search_extent_mapping(em_tree, 0, 0);
924 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
925 				alloc_hint = em->block_start;
926 			if (em)
927 				free_extent_map(em);
928 		} else {
929 			alloc_hint = em->block_start;
930 			free_extent_map(em);
931 		}
932 	}
933 	read_unlock(&em_tree->lock);
934 
935 	return alloc_hint;
936 }
937 
938 /*
939  * when extent_io.c finds a delayed allocation range in the file,
940  * the call backs end up in this code.  The basic idea is to
941  * allocate extents on disk for the range, and create ordered data structs
942  * in ram to track those extents.
943  *
944  * locked_page is the page that writepage had locked already.  We use
945  * it to make sure we don't do extra locks or unlocks.
946  *
947  * *page_started is set to one if we unlock locked_page and do everything
948  * required to start IO on it.  It may be clean and already done with
949  * IO when we return.
950  */
951 static noinline int cow_file_range(struct inode *inode,
952 				   struct page *locked_page,
953 				   u64 start, u64 end, int *page_started,
954 				   unsigned long *nr_written, int unlock)
955 {
956 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
957 	struct btrfs_root *root = BTRFS_I(inode)->root;
958 	u64 alloc_hint = 0;
959 	u64 num_bytes;
960 	unsigned long ram_size;
961 	u64 cur_alloc_size = 0;
962 	u64 blocksize = fs_info->sectorsize;
963 	struct btrfs_key ins;
964 	struct extent_map *em;
965 	unsigned clear_bits;
966 	unsigned long page_ops;
967 	bool extent_reserved = false;
968 	int ret = 0;
969 
970 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
971 		WARN_ON_ONCE(1);
972 		ret = -EINVAL;
973 		goto out_unlock;
974 	}
975 
976 	num_bytes = ALIGN(end - start + 1, blocksize);
977 	num_bytes = max(blocksize,  num_bytes);
978 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
979 
980 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
981 
982 	if (start == 0) {
983 		/* lets try to make an inline extent */
984 		ret = cow_file_range_inline(inode, start, end, 0,
985 					    BTRFS_COMPRESS_NONE, NULL);
986 		if (ret == 0) {
987 			/*
988 			 * We use DO_ACCOUNTING here because we need the
989 			 * delalloc_release_metadata to be run _after_ we drop
990 			 * our outstanding extent for clearing delalloc for this
991 			 * range.
992 			 */
993 			extent_clear_unlock_delalloc(inode, start, end, NULL,
994 				     EXTENT_LOCKED | EXTENT_DELALLOC |
995 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
997 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
998 				     PAGE_END_WRITEBACK);
999 			*nr_written = *nr_written +
1000 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1001 			*page_started = 1;
1002 			goto out;
1003 		} else if (ret < 0) {
1004 			goto out_unlock;
1005 		}
1006 	}
1007 
1008 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1009 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1010 			start + num_bytes - 1, 0);
1011 
1012 	while (num_bytes > 0) {
1013 		cur_alloc_size = num_bytes;
1014 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1015 					   fs_info->sectorsize, 0, alloc_hint,
1016 					   &ins, 1, 1);
1017 		if (ret < 0)
1018 			goto out_unlock;
1019 		cur_alloc_size = ins.offset;
1020 		extent_reserved = true;
1021 
1022 		ram_size = ins.offset;
1023 		em = create_io_em(inode, start, ins.offset, /* len */
1024 				  start, /* orig_start */
1025 				  ins.objectid, /* block_start */
1026 				  ins.offset, /* block_len */
1027 				  ins.offset, /* orig_block_len */
1028 				  ram_size, /* ram_bytes */
1029 				  BTRFS_COMPRESS_NONE, /* compress_type */
1030 				  BTRFS_ORDERED_REGULAR /* type */);
1031 		if (IS_ERR(em)) {
1032 			ret = PTR_ERR(em);
1033 			goto out_reserve;
1034 		}
1035 		free_extent_map(em);
1036 
1037 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1038 					       ram_size, cur_alloc_size, 0);
1039 		if (ret)
1040 			goto out_drop_extent_cache;
1041 
1042 		if (root->root_key.objectid ==
1043 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1044 			ret = btrfs_reloc_clone_csums(inode, start,
1045 						      cur_alloc_size);
1046 			/*
1047 			 * Only drop cache here, and process as normal.
1048 			 *
1049 			 * We must not allow extent_clear_unlock_delalloc()
1050 			 * at out_unlock label to free meta of this ordered
1051 			 * extent, as its meta should be freed by
1052 			 * btrfs_finish_ordered_io().
1053 			 *
1054 			 * So we must continue until @start is increased to
1055 			 * skip current ordered extent.
1056 			 */
1057 			if (ret)
1058 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1059 						start + ram_size - 1, 0);
1060 		}
1061 
1062 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1063 
1064 		/* we're not doing compressed IO, don't unlock the first
1065 		 * page (which the caller expects to stay locked), don't
1066 		 * clear any dirty bits and don't set any writeback bits
1067 		 *
1068 		 * Do set the Private2 bit so we know this page was properly
1069 		 * setup for writepage
1070 		 */
1071 		page_ops = unlock ? PAGE_UNLOCK : 0;
1072 		page_ops |= PAGE_SET_PRIVATE2;
1073 
1074 		extent_clear_unlock_delalloc(inode, start,
1075 					     start + ram_size - 1,
1076 					     locked_page,
1077 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1078 					     page_ops);
1079 		if (num_bytes < cur_alloc_size)
1080 			num_bytes = 0;
1081 		else
1082 			num_bytes -= cur_alloc_size;
1083 		alloc_hint = ins.objectid + ins.offset;
1084 		start += cur_alloc_size;
1085 		extent_reserved = false;
1086 
1087 		/*
1088 		 * btrfs_reloc_clone_csums() error, since start is increased
1089 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1090 		 * free metadata of current ordered extent, we're OK to exit.
1091 		 */
1092 		if (ret)
1093 			goto out_unlock;
1094 	}
1095 out:
1096 	return ret;
1097 
1098 out_drop_extent_cache:
1099 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1100 out_reserve:
1101 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1102 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1103 out_unlock:
1104 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1105 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1106 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1107 		PAGE_END_WRITEBACK;
1108 	/*
1109 	 * If we reserved an extent for our delalloc range (or a subrange) and
1110 	 * failed to create the respective ordered extent, then it means that
1111 	 * when we reserved the extent we decremented the extent's size from
1112 	 * the data space_info's bytes_may_use counter and incremented the
1113 	 * space_info's bytes_reserved counter by the same amount. We must make
1114 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1115 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1116 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1117 	 */
1118 	if (extent_reserved) {
1119 		extent_clear_unlock_delalloc(inode, start,
1120 					     start + cur_alloc_size,
1121 					     locked_page,
1122 					     clear_bits,
1123 					     page_ops);
1124 		start += cur_alloc_size;
1125 		if (start >= end)
1126 			goto out;
1127 	}
1128 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1129 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1130 				     page_ops);
1131 	goto out;
1132 }
1133 
1134 /*
1135  * work queue call back to started compression on a file and pages
1136  */
1137 static noinline void async_cow_start(struct btrfs_work *work)
1138 {
1139 	struct async_chunk *async_chunk;
1140 	int compressed_extents;
1141 
1142 	async_chunk = container_of(work, struct async_chunk, work);
1143 
1144 	compressed_extents = compress_file_range(async_chunk);
1145 	if (compressed_extents == 0) {
1146 		btrfs_add_delayed_iput(async_chunk->inode);
1147 		async_chunk->inode = NULL;
1148 	}
1149 }
1150 
1151 /*
1152  * work queue call back to submit previously compressed pages
1153  */
1154 static noinline void async_cow_submit(struct btrfs_work *work)
1155 {
1156 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1157 						     work);
1158 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1159 	unsigned long nr_pages;
1160 
1161 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1162 		PAGE_SHIFT;
1163 
1164 	/* atomic_sub_return implies a barrier */
1165 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1166 	    5 * SZ_1M)
1167 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1168 
1169 	/*
1170 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1171 	 * in which case we don't have anything to submit, yet we need to
1172 	 * always adjust ->async_delalloc_pages as its paired with the init
1173 	 * happening in cow_file_range_async
1174 	 */
1175 	if (async_chunk->inode)
1176 		submit_compressed_extents(async_chunk);
1177 }
1178 
1179 static noinline void async_cow_free(struct btrfs_work *work)
1180 {
1181 	struct async_chunk *async_chunk;
1182 
1183 	async_chunk = container_of(work, struct async_chunk, work);
1184 	if (async_chunk->inode)
1185 		btrfs_add_delayed_iput(async_chunk->inode);
1186 	/*
1187 	 * Since the pointer to 'pending' is at the beginning of the array of
1188 	 * async_chunk's, freeing it ensures the whole array has been freed.
1189 	 */
1190 	if (atomic_dec_and_test(async_chunk->pending))
1191 		kvfree(async_chunk->pending);
1192 }
1193 
1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 				u64 start, u64 end, int *page_started,
1196 				unsigned long *nr_written,
1197 				unsigned int write_flags)
1198 {
1199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1200 	struct async_cow *ctx;
1201 	struct async_chunk *async_chunk;
1202 	unsigned long nr_pages;
1203 	u64 cur_end;
1204 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1205 	int i;
1206 	bool should_compress;
1207 	unsigned nofs_flag;
1208 
1209 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1210 
1211 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1212 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1213 		num_chunks = 1;
1214 		should_compress = false;
1215 	} else {
1216 		should_compress = true;
1217 	}
1218 
1219 	nofs_flag = memalloc_nofs_save();
1220 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1221 	memalloc_nofs_restore(nofs_flag);
1222 
1223 	if (!ctx) {
1224 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1225 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1226 			EXTENT_DO_ACCOUNTING;
1227 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1228 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1229 			PAGE_SET_ERROR;
1230 
1231 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1232 					     clear_bits, page_ops);
1233 		return -ENOMEM;
1234 	}
1235 
1236 	async_chunk = ctx->chunks;
1237 	atomic_set(&ctx->num_chunks, num_chunks);
1238 
1239 	for (i = 0; i < num_chunks; i++) {
1240 		if (should_compress)
1241 			cur_end = min(end, start + SZ_512K - 1);
1242 		else
1243 			cur_end = end;
1244 
1245 		/*
1246 		 * igrab is called higher up in the call chain, take only the
1247 		 * lightweight reference for the callback lifetime
1248 		 */
1249 		ihold(inode);
1250 		async_chunk[i].pending = &ctx->num_chunks;
1251 		async_chunk[i].inode = inode;
1252 		async_chunk[i].start = start;
1253 		async_chunk[i].end = cur_end;
1254 		async_chunk[i].locked_page = locked_page;
1255 		async_chunk[i].write_flags = write_flags;
1256 		INIT_LIST_HEAD(&async_chunk[i].extents);
1257 
1258 		btrfs_init_work(&async_chunk[i].work,
1259 				btrfs_delalloc_helper,
1260 				async_cow_start, async_cow_submit,
1261 				async_cow_free);
1262 
1263 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1264 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1265 
1266 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1267 
1268 		*nr_written += nr_pages;
1269 		start = cur_end + 1;
1270 	}
1271 	*page_started = 1;
1272 	return 0;
1273 }
1274 
1275 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1276 					u64 bytenr, u64 num_bytes)
1277 {
1278 	int ret;
1279 	struct btrfs_ordered_sum *sums;
1280 	LIST_HEAD(list);
1281 
1282 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1283 				       bytenr + num_bytes - 1, &list, 0);
1284 	if (ret == 0 && list_empty(&list))
1285 		return 0;
1286 
1287 	while (!list_empty(&list)) {
1288 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1289 		list_del(&sums->list);
1290 		kfree(sums);
1291 	}
1292 	if (ret < 0)
1293 		return ret;
1294 	return 1;
1295 }
1296 
1297 /*
1298  * when nowcow writeback call back.  This checks for snapshots or COW copies
1299  * of the extents that exist in the file, and COWs the file as required.
1300  *
1301  * If no cow copies or snapshots exist, we write directly to the existing
1302  * blocks on disk
1303  */
1304 static noinline int run_delalloc_nocow(struct inode *inode,
1305 				       struct page *locked_page,
1306 				       const u64 start, const u64 end,
1307 				       int *page_started, int force,
1308 				       unsigned long *nr_written)
1309 {
1310 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1311 	struct btrfs_root *root = BTRFS_I(inode)->root;
1312 	struct btrfs_path *path;
1313 	u64 cow_start = (u64)-1;
1314 	u64 cur_offset = start;
1315 	int ret;
1316 	bool check_prev = true;
1317 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1318 	u64 ino = btrfs_ino(BTRFS_I(inode));
1319 	bool nocow = false;
1320 	u64 disk_bytenr = 0;
1321 
1322 	path = btrfs_alloc_path();
1323 	if (!path) {
1324 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1325 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1326 					     EXTENT_DO_ACCOUNTING |
1327 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1328 					     PAGE_CLEAR_DIRTY |
1329 					     PAGE_SET_WRITEBACK |
1330 					     PAGE_END_WRITEBACK);
1331 		return -ENOMEM;
1332 	}
1333 
1334 	while (1) {
1335 		struct btrfs_key found_key;
1336 		struct btrfs_file_extent_item *fi;
1337 		struct extent_buffer *leaf;
1338 		u64 extent_end;
1339 		u64 extent_offset;
1340 		u64 num_bytes = 0;
1341 		u64 disk_num_bytes;
1342 		u64 ram_bytes;
1343 		int extent_type;
1344 
1345 		nocow = false;
1346 
1347 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1348 					       cur_offset, 0);
1349 		if (ret < 0)
1350 			goto error;
1351 
1352 		/*
1353 		 * If there is no extent for our range when doing the initial
1354 		 * search, then go back to the previous slot as it will be the
1355 		 * one containing the search offset
1356 		 */
1357 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1358 			leaf = path->nodes[0];
1359 			btrfs_item_key_to_cpu(leaf, &found_key,
1360 					      path->slots[0] - 1);
1361 			if (found_key.objectid == ino &&
1362 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1363 				path->slots[0]--;
1364 		}
1365 		check_prev = false;
1366 next_slot:
1367 		/* Go to next leaf if we have exhausted the current one */
1368 		leaf = path->nodes[0];
1369 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1370 			ret = btrfs_next_leaf(root, path);
1371 			if (ret < 0) {
1372 				if (cow_start != (u64)-1)
1373 					cur_offset = cow_start;
1374 				goto error;
1375 			}
1376 			if (ret > 0)
1377 				break;
1378 			leaf = path->nodes[0];
1379 		}
1380 
1381 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1382 
1383 		/* Didn't find anything for our INO */
1384 		if (found_key.objectid > ino)
1385 			break;
1386 		/*
1387 		 * Keep searching until we find an EXTENT_ITEM or there are no
1388 		 * more extents for this inode
1389 		 */
1390 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1391 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1392 			path->slots[0]++;
1393 			goto next_slot;
1394 		}
1395 
1396 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1397 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1398 		    found_key.offset > end)
1399 			break;
1400 
1401 		/*
1402 		 * If the found extent starts after requested offset, then
1403 		 * adjust extent_end to be right before this extent begins
1404 		 */
1405 		if (found_key.offset > cur_offset) {
1406 			extent_end = found_key.offset;
1407 			extent_type = 0;
1408 			goto out_check;
1409 		}
1410 
1411 		/*
1412 		 * Found extent which begins before our range and potentially
1413 		 * intersect it
1414 		 */
1415 		fi = btrfs_item_ptr(leaf, path->slots[0],
1416 				    struct btrfs_file_extent_item);
1417 		extent_type = btrfs_file_extent_type(leaf, fi);
1418 
1419 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1420 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1421 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1422 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1423 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1424 			extent_end = found_key.offset +
1425 				btrfs_file_extent_num_bytes(leaf, fi);
1426 			disk_num_bytes =
1427 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1428 			/*
1429 			 * If extent we got ends before our range starts, skip
1430 			 * to next extent
1431 			 */
1432 			if (extent_end <= start) {
1433 				path->slots[0]++;
1434 				goto next_slot;
1435 			}
1436 			/* Skip holes */
1437 			if (disk_bytenr == 0)
1438 				goto out_check;
1439 			/* Skip compressed/encrypted/encoded extents */
1440 			if (btrfs_file_extent_compression(leaf, fi) ||
1441 			    btrfs_file_extent_encryption(leaf, fi) ||
1442 			    btrfs_file_extent_other_encoding(leaf, fi))
1443 				goto out_check;
1444 			/*
1445 			 * If extent is created before the last volume's snapshot
1446 			 * this implies the extent is shared, hence we can't do
1447 			 * nocow. This is the same check as in
1448 			 * btrfs_cross_ref_exist but without calling
1449 			 * btrfs_search_slot.
1450 			 */
1451 			if (!freespace_inode &&
1452 			    btrfs_file_extent_generation(leaf, fi) <=
1453 			    btrfs_root_last_snapshot(&root->root_item))
1454 				goto out_check;
1455 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1456 				goto out_check;
1457 			/* If extent is RO, we must COW it */
1458 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1459 				goto out_check;
1460 			ret = btrfs_cross_ref_exist(root, ino,
1461 						    found_key.offset -
1462 						    extent_offset, disk_bytenr);
1463 			if (ret) {
1464 				/*
1465 				 * ret could be -EIO if the above fails to read
1466 				 * metadata.
1467 				 */
1468 				if (ret < 0) {
1469 					if (cow_start != (u64)-1)
1470 						cur_offset = cow_start;
1471 					goto error;
1472 				}
1473 
1474 				WARN_ON_ONCE(freespace_inode);
1475 				goto out_check;
1476 			}
1477 			disk_bytenr += extent_offset;
1478 			disk_bytenr += cur_offset - found_key.offset;
1479 			num_bytes = min(end + 1, extent_end) - cur_offset;
1480 			/*
1481 			 * If there are pending snapshots for this root, we
1482 			 * fall into common COW way
1483 			 */
1484 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1485 				goto out_check;
1486 			/*
1487 			 * force cow if csum exists in the range.
1488 			 * this ensure that csum for a given extent are
1489 			 * either valid or do not exist.
1490 			 */
1491 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1492 						  num_bytes);
1493 			if (ret) {
1494 				/*
1495 				 * ret could be -EIO if the above fails to read
1496 				 * metadata.
1497 				 */
1498 				if (ret < 0) {
1499 					if (cow_start != (u64)-1)
1500 						cur_offset = cow_start;
1501 					goto error;
1502 				}
1503 				WARN_ON_ONCE(freespace_inode);
1504 				goto out_check;
1505 			}
1506 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1507 				goto out_check;
1508 			nocow = true;
1509 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1510 			extent_end = found_key.offset + ram_bytes;
1511 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1512 			/* Skip extents outside of our requested range */
1513 			if (extent_end <= start) {
1514 				path->slots[0]++;
1515 				goto next_slot;
1516 			}
1517 		} else {
1518 			/* If this triggers then we have a memory corruption */
1519 			BUG();
1520 		}
1521 out_check:
1522 		/*
1523 		 * If nocow is false then record the beginning of the range
1524 		 * that needs to be COWed
1525 		 */
1526 		if (!nocow) {
1527 			if (cow_start == (u64)-1)
1528 				cow_start = cur_offset;
1529 			cur_offset = extent_end;
1530 			if (cur_offset > end)
1531 				break;
1532 			path->slots[0]++;
1533 			goto next_slot;
1534 		}
1535 
1536 		btrfs_release_path(path);
1537 
1538 		/*
1539 		 * COW range from cow_start to found_key.offset - 1. As the key
1540 		 * will contain the beginning of the first extent that can be
1541 		 * NOCOW, following one which needs to be COW'ed
1542 		 */
1543 		if (cow_start != (u64)-1) {
1544 			ret = cow_file_range(inode, locked_page,
1545 					     cow_start, found_key.offset - 1,
1546 					     page_started, nr_written, 1);
1547 			if (ret) {
1548 				if (nocow)
1549 					btrfs_dec_nocow_writers(fs_info,
1550 								disk_bytenr);
1551 				goto error;
1552 			}
1553 			cow_start = (u64)-1;
1554 		}
1555 
1556 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1557 			u64 orig_start = found_key.offset - extent_offset;
1558 			struct extent_map *em;
1559 
1560 			em = create_io_em(inode, cur_offset, num_bytes,
1561 					  orig_start,
1562 					  disk_bytenr, /* block_start */
1563 					  num_bytes, /* block_len */
1564 					  disk_num_bytes, /* orig_block_len */
1565 					  ram_bytes, BTRFS_COMPRESS_NONE,
1566 					  BTRFS_ORDERED_PREALLOC);
1567 			if (IS_ERR(em)) {
1568 				if (nocow)
1569 					btrfs_dec_nocow_writers(fs_info,
1570 								disk_bytenr);
1571 				ret = PTR_ERR(em);
1572 				goto error;
1573 			}
1574 			free_extent_map(em);
1575 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1576 						       disk_bytenr, num_bytes,
1577 						       num_bytes,
1578 						       BTRFS_ORDERED_PREALLOC);
1579 			if (ret) {
1580 				btrfs_drop_extent_cache(BTRFS_I(inode),
1581 							cur_offset,
1582 							cur_offset + num_bytes - 1,
1583 							0);
1584 				goto error;
1585 			}
1586 		} else {
1587 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1588 						       disk_bytenr, num_bytes,
1589 						       num_bytes,
1590 						       BTRFS_ORDERED_NOCOW);
1591 			if (ret)
1592 				goto error;
1593 		}
1594 
1595 		if (nocow)
1596 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1597 		nocow = false;
1598 
1599 		if (root->root_key.objectid ==
1600 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1601 			/*
1602 			 * Error handled later, as we must prevent
1603 			 * extent_clear_unlock_delalloc() in error handler
1604 			 * from freeing metadata of created ordered extent.
1605 			 */
1606 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1607 						      num_bytes);
1608 
1609 		extent_clear_unlock_delalloc(inode, cur_offset,
1610 					     cur_offset + num_bytes - 1,
1611 					     locked_page, EXTENT_LOCKED |
1612 					     EXTENT_DELALLOC |
1613 					     EXTENT_CLEAR_DATA_RESV,
1614 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1615 
1616 		cur_offset = extent_end;
1617 
1618 		/*
1619 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1620 		 * handler, as metadata for created ordered extent will only
1621 		 * be freed by btrfs_finish_ordered_io().
1622 		 */
1623 		if (ret)
1624 			goto error;
1625 		if (cur_offset > end)
1626 			break;
1627 	}
1628 	btrfs_release_path(path);
1629 
1630 	if (cur_offset <= end && cow_start == (u64)-1)
1631 		cow_start = cur_offset;
1632 
1633 	if (cow_start != (u64)-1) {
1634 		cur_offset = end;
1635 		ret = cow_file_range(inode, locked_page, cow_start, end,
1636 				     page_started, nr_written, 1);
1637 		if (ret)
1638 			goto error;
1639 	}
1640 
1641 error:
1642 	if (nocow)
1643 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1644 
1645 	if (ret && cur_offset < end)
1646 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1647 					     locked_page, EXTENT_LOCKED |
1648 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1649 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1650 					     PAGE_CLEAR_DIRTY |
1651 					     PAGE_SET_WRITEBACK |
1652 					     PAGE_END_WRITEBACK);
1653 	btrfs_free_path(path);
1654 	return ret;
1655 }
1656 
1657 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1658 {
1659 
1660 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1661 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1662 		return 0;
1663 
1664 	/*
1665 	 * @defrag_bytes is a hint value, no spinlock held here,
1666 	 * if is not zero, it means the file is defragging.
1667 	 * Force cow if given extent needs to be defragged.
1668 	 */
1669 	if (BTRFS_I(inode)->defrag_bytes &&
1670 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1671 			   EXTENT_DEFRAG, 0, NULL))
1672 		return 1;
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * Function to process delayed allocation (create CoW) for ranges which are
1679  * being touched for the first time.
1680  */
1681 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1682 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1683 		struct writeback_control *wbc)
1684 {
1685 	int ret;
1686 	int force_cow = need_force_cow(inode, start, end);
1687 	unsigned int write_flags = wbc_to_write_flags(wbc);
1688 
1689 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1690 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1691 					 page_started, 1, nr_written);
1692 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1693 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1694 					 page_started, 0, nr_written);
1695 	} else if (!inode_can_compress(inode) ||
1696 		   !inode_need_compress(inode, start, end)) {
1697 		ret = cow_file_range(inode, locked_page, start, end,
1698 				      page_started, nr_written, 1);
1699 	} else {
1700 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1701 			&BTRFS_I(inode)->runtime_flags);
1702 		ret = cow_file_range_async(inode, locked_page, start, end,
1703 					   page_started, nr_written,
1704 					   write_flags);
1705 	}
1706 	if (ret)
1707 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1708 					      end - start + 1);
1709 	return ret;
1710 }
1711 
1712 void btrfs_split_delalloc_extent(struct inode *inode,
1713 				 struct extent_state *orig, u64 split)
1714 {
1715 	u64 size;
1716 
1717 	/* not delalloc, ignore it */
1718 	if (!(orig->state & EXTENT_DELALLOC))
1719 		return;
1720 
1721 	size = orig->end - orig->start + 1;
1722 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1723 		u32 num_extents;
1724 		u64 new_size;
1725 
1726 		/*
1727 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1728 		 * applies here, just in reverse.
1729 		 */
1730 		new_size = orig->end - split + 1;
1731 		num_extents = count_max_extents(new_size);
1732 		new_size = split - orig->start;
1733 		num_extents += count_max_extents(new_size);
1734 		if (count_max_extents(size) >= num_extents)
1735 			return;
1736 	}
1737 
1738 	spin_lock(&BTRFS_I(inode)->lock);
1739 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1740 	spin_unlock(&BTRFS_I(inode)->lock);
1741 }
1742 
1743 /*
1744  * Handle merged delayed allocation extents so we can keep track of new extents
1745  * that are just merged onto old extents, such as when we are doing sequential
1746  * writes, so we can properly account for the metadata space we'll need.
1747  */
1748 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1749 				 struct extent_state *other)
1750 {
1751 	u64 new_size, old_size;
1752 	u32 num_extents;
1753 
1754 	/* not delalloc, ignore it */
1755 	if (!(other->state & EXTENT_DELALLOC))
1756 		return;
1757 
1758 	if (new->start > other->start)
1759 		new_size = new->end - other->start + 1;
1760 	else
1761 		new_size = other->end - new->start + 1;
1762 
1763 	/* we're not bigger than the max, unreserve the space and go */
1764 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1765 		spin_lock(&BTRFS_I(inode)->lock);
1766 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1767 		spin_unlock(&BTRFS_I(inode)->lock);
1768 		return;
1769 	}
1770 
1771 	/*
1772 	 * We have to add up either side to figure out how many extents were
1773 	 * accounted for before we merged into one big extent.  If the number of
1774 	 * extents we accounted for is <= the amount we need for the new range
1775 	 * then we can return, otherwise drop.  Think of it like this
1776 	 *
1777 	 * [ 4k][MAX_SIZE]
1778 	 *
1779 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1780 	 * need 2 outstanding extents, on one side we have 1 and the other side
1781 	 * we have 1 so they are == and we can return.  But in this case
1782 	 *
1783 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1784 	 *
1785 	 * Each range on their own accounts for 2 extents, but merged together
1786 	 * they are only 3 extents worth of accounting, so we need to drop in
1787 	 * this case.
1788 	 */
1789 	old_size = other->end - other->start + 1;
1790 	num_extents = count_max_extents(old_size);
1791 	old_size = new->end - new->start + 1;
1792 	num_extents += count_max_extents(old_size);
1793 	if (count_max_extents(new_size) >= num_extents)
1794 		return;
1795 
1796 	spin_lock(&BTRFS_I(inode)->lock);
1797 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1798 	spin_unlock(&BTRFS_I(inode)->lock);
1799 }
1800 
1801 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1802 				      struct inode *inode)
1803 {
1804 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1805 
1806 	spin_lock(&root->delalloc_lock);
1807 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1808 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1809 			      &root->delalloc_inodes);
1810 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1811 			&BTRFS_I(inode)->runtime_flags);
1812 		root->nr_delalloc_inodes++;
1813 		if (root->nr_delalloc_inodes == 1) {
1814 			spin_lock(&fs_info->delalloc_root_lock);
1815 			BUG_ON(!list_empty(&root->delalloc_root));
1816 			list_add_tail(&root->delalloc_root,
1817 				      &fs_info->delalloc_roots);
1818 			spin_unlock(&fs_info->delalloc_root_lock);
1819 		}
1820 	}
1821 	spin_unlock(&root->delalloc_lock);
1822 }
1823 
1824 
1825 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1826 				struct btrfs_inode *inode)
1827 {
1828 	struct btrfs_fs_info *fs_info = root->fs_info;
1829 
1830 	if (!list_empty(&inode->delalloc_inodes)) {
1831 		list_del_init(&inode->delalloc_inodes);
1832 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1833 			  &inode->runtime_flags);
1834 		root->nr_delalloc_inodes--;
1835 		if (!root->nr_delalloc_inodes) {
1836 			ASSERT(list_empty(&root->delalloc_inodes));
1837 			spin_lock(&fs_info->delalloc_root_lock);
1838 			BUG_ON(list_empty(&root->delalloc_root));
1839 			list_del_init(&root->delalloc_root);
1840 			spin_unlock(&fs_info->delalloc_root_lock);
1841 		}
1842 	}
1843 }
1844 
1845 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1846 				     struct btrfs_inode *inode)
1847 {
1848 	spin_lock(&root->delalloc_lock);
1849 	__btrfs_del_delalloc_inode(root, inode);
1850 	spin_unlock(&root->delalloc_lock);
1851 }
1852 
1853 /*
1854  * Properly track delayed allocation bytes in the inode and to maintain the
1855  * list of inodes that have pending delalloc work to be done.
1856  */
1857 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1858 			       unsigned *bits)
1859 {
1860 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1861 
1862 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1863 		WARN_ON(1);
1864 	/*
1865 	 * set_bit and clear bit hooks normally require _irqsave/restore
1866 	 * but in this case, we are only testing for the DELALLOC
1867 	 * bit, which is only set or cleared with irqs on
1868 	 */
1869 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1870 		struct btrfs_root *root = BTRFS_I(inode)->root;
1871 		u64 len = state->end + 1 - state->start;
1872 		u32 num_extents = count_max_extents(len);
1873 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1874 
1875 		spin_lock(&BTRFS_I(inode)->lock);
1876 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1877 		spin_unlock(&BTRFS_I(inode)->lock);
1878 
1879 		/* For sanity tests */
1880 		if (btrfs_is_testing(fs_info))
1881 			return;
1882 
1883 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1884 					 fs_info->delalloc_batch);
1885 		spin_lock(&BTRFS_I(inode)->lock);
1886 		BTRFS_I(inode)->delalloc_bytes += len;
1887 		if (*bits & EXTENT_DEFRAG)
1888 			BTRFS_I(inode)->defrag_bytes += len;
1889 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1890 					 &BTRFS_I(inode)->runtime_flags))
1891 			btrfs_add_delalloc_inodes(root, inode);
1892 		spin_unlock(&BTRFS_I(inode)->lock);
1893 	}
1894 
1895 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1896 	    (*bits & EXTENT_DELALLOC_NEW)) {
1897 		spin_lock(&BTRFS_I(inode)->lock);
1898 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1899 			state->start;
1900 		spin_unlock(&BTRFS_I(inode)->lock);
1901 	}
1902 }
1903 
1904 /*
1905  * Once a range is no longer delalloc this function ensures that proper
1906  * accounting happens.
1907  */
1908 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1909 				 struct extent_state *state, unsigned *bits)
1910 {
1911 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1912 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1913 	u64 len = state->end + 1 - state->start;
1914 	u32 num_extents = count_max_extents(len);
1915 
1916 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1917 		spin_lock(&inode->lock);
1918 		inode->defrag_bytes -= len;
1919 		spin_unlock(&inode->lock);
1920 	}
1921 
1922 	/*
1923 	 * set_bit and clear bit hooks normally require _irqsave/restore
1924 	 * but in this case, we are only testing for the DELALLOC
1925 	 * bit, which is only set or cleared with irqs on
1926 	 */
1927 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1928 		struct btrfs_root *root = inode->root;
1929 		bool do_list = !btrfs_is_free_space_inode(inode);
1930 
1931 		spin_lock(&inode->lock);
1932 		btrfs_mod_outstanding_extents(inode, -num_extents);
1933 		spin_unlock(&inode->lock);
1934 
1935 		/*
1936 		 * We don't reserve metadata space for space cache inodes so we
1937 		 * don't need to call delalloc_release_metadata if there is an
1938 		 * error.
1939 		 */
1940 		if (*bits & EXTENT_CLEAR_META_RESV &&
1941 		    root != fs_info->tree_root)
1942 			btrfs_delalloc_release_metadata(inode, len, false);
1943 
1944 		/* For sanity tests. */
1945 		if (btrfs_is_testing(fs_info))
1946 			return;
1947 
1948 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1949 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1950 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1951 			btrfs_free_reserved_data_space_noquota(
1952 					&inode->vfs_inode,
1953 					state->start, len);
1954 
1955 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1956 					 fs_info->delalloc_batch);
1957 		spin_lock(&inode->lock);
1958 		inode->delalloc_bytes -= len;
1959 		if (do_list && inode->delalloc_bytes == 0 &&
1960 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1961 					&inode->runtime_flags))
1962 			btrfs_del_delalloc_inode(root, inode);
1963 		spin_unlock(&inode->lock);
1964 	}
1965 
1966 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1967 	    (*bits & EXTENT_DELALLOC_NEW)) {
1968 		spin_lock(&inode->lock);
1969 		ASSERT(inode->new_delalloc_bytes >= len);
1970 		inode->new_delalloc_bytes -= len;
1971 		spin_unlock(&inode->lock);
1972 	}
1973 }
1974 
1975 /*
1976  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1977  * in a chunk's stripe. This function ensures that bios do not span a
1978  * stripe/chunk
1979  *
1980  * @page - The page we are about to add to the bio
1981  * @size - size we want to add to the bio
1982  * @bio - bio we want to ensure is smaller than a stripe
1983  * @bio_flags - flags of the bio
1984  *
1985  * return 1 if page cannot be added to the bio
1986  * return 0 if page can be added to the bio
1987  * return error otherwise
1988  */
1989 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1990 			     unsigned long bio_flags)
1991 {
1992 	struct inode *inode = page->mapping->host;
1993 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1994 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1995 	u64 length = 0;
1996 	u64 map_length;
1997 	int ret;
1998 	struct btrfs_io_geometry geom;
1999 
2000 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2001 		return 0;
2002 
2003 	length = bio->bi_iter.bi_size;
2004 	map_length = length;
2005 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2006 				    &geom);
2007 	if (ret < 0)
2008 		return ret;
2009 
2010 	if (geom.len < length + size)
2011 		return 1;
2012 	return 0;
2013 }
2014 
2015 /*
2016  * in order to insert checksums into the metadata in large chunks,
2017  * we wait until bio submission time.   All the pages in the bio are
2018  * checksummed and sums are attached onto the ordered extent record.
2019  *
2020  * At IO completion time the cums attached on the ordered extent record
2021  * are inserted into the btree
2022  */
2023 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2024 				    u64 bio_offset)
2025 {
2026 	struct inode *inode = private_data;
2027 	blk_status_t ret = 0;
2028 
2029 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2030 	BUG_ON(ret); /* -ENOMEM */
2031 	return 0;
2032 }
2033 
2034 /*
2035  * extent_io.c submission hook. This does the right thing for csum calculation
2036  * on write, or reading the csums from the tree before a read.
2037  *
2038  * Rules about async/sync submit,
2039  * a) read:				sync submit
2040  *
2041  * b) write without checksum:		sync submit
2042  *
2043  * c) write with checksum:
2044  *    c-1) if bio is issued by fsync:	sync submit
2045  *         (sync_writers != 0)
2046  *
2047  *    c-2) if root is reloc root:	sync submit
2048  *         (only in case of buffered IO)
2049  *
2050  *    c-3) otherwise:			async submit
2051  */
2052 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2053 					  int mirror_num,
2054 					  unsigned long bio_flags)
2055 
2056 {
2057 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2058 	struct btrfs_root *root = BTRFS_I(inode)->root;
2059 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2060 	blk_status_t ret = 0;
2061 	int skip_sum;
2062 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2063 
2064 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2065 
2066 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2067 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2068 
2069 	if (bio_op(bio) != REQ_OP_WRITE) {
2070 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2071 		if (ret)
2072 			goto out;
2073 
2074 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2075 			ret = btrfs_submit_compressed_read(inode, bio,
2076 							   mirror_num,
2077 							   bio_flags);
2078 			goto out;
2079 		} else if (!skip_sum) {
2080 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2081 			if (ret)
2082 				goto out;
2083 		}
2084 		goto mapit;
2085 	} else if (async && !skip_sum) {
2086 		/* csum items have already been cloned */
2087 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2088 			goto mapit;
2089 		/* we're doing a write, do the async checksumming */
2090 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2091 					  0, inode, btrfs_submit_bio_start);
2092 		goto out;
2093 	} else if (!skip_sum) {
2094 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2095 		if (ret)
2096 			goto out;
2097 	}
2098 
2099 mapit:
2100 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2101 
2102 out:
2103 	if (ret) {
2104 		bio->bi_status = ret;
2105 		bio_endio(bio);
2106 	}
2107 	return ret;
2108 }
2109 
2110 /*
2111  * given a list of ordered sums record them in the inode.  This happens
2112  * at IO completion time based on sums calculated at bio submission time.
2113  */
2114 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2115 			     struct inode *inode, struct list_head *list)
2116 {
2117 	struct btrfs_ordered_sum *sum;
2118 	int ret;
2119 
2120 	list_for_each_entry(sum, list, list) {
2121 		trans->adding_csums = true;
2122 		ret = btrfs_csum_file_blocks(trans,
2123 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2124 		trans->adding_csums = false;
2125 		if (ret)
2126 			return ret;
2127 	}
2128 	return 0;
2129 }
2130 
2131 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2132 			      unsigned int extra_bits,
2133 			      struct extent_state **cached_state)
2134 {
2135 	WARN_ON(PAGE_ALIGNED(end));
2136 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2137 				   extra_bits, cached_state);
2138 }
2139 
2140 /* see btrfs_writepage_start_hook for details on why this is required */
2141 struct btrfs_writepage_fixup {
2142 	struct page *page;
2143 	struct btrfs_work work;
2144 };
2145 
2146 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2147 {
2148 	struct btrfs_writepage_fixup *fixup;
2149 	struct btrfs_ordered_extent *ordered;
2150 	struct extent_state *cached_state = NULL;
2151 	struct extent_changeset *data_reserved = NULL;
2152 	struct page *page;
2153 	struct inode *inode;
2154 	u64 page_start;
2155 	u64 page_end;
2156 	int ret;
2157 
2158 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2159 	page = fixup->page;
2160 again:
2161 	lock_page(page);
2162 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2163 		ClearPageChecked(page);
2164 		goto out_page;
2165 	}
2166 
2167 	inode = page->mapping->host;
2168 	page_start = page_offset(page);
2169 	page_end = page_offset(page) + PAGE_SIZE - 1;
2170 
2171 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2172 			 &cached_state);
2173 
2174 	/* already ordered? We're done */
2175 	if (PagePrivate2(page))
2176 		goto out;
2177 
2178 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2179 					PAGE_SIZE);
2180 	if (ordered) {
2181 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2182 				     page_end, &cached_state);
2183 		unlock_page(page);
2184 		btrfs_start_ordered_extent(inode, ordered, 1);
2185 		btrfs_put_ordered_extent(ordered);
2186 		goto again;
2187 	}
2188 
2189 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2190 					   PAGE_SIZE);
2191 	if (ret) {
2192 		mapping_set_error(page->mapping, ret);
2193 		end_extent_writepage(page, ret, page_start, page_end);
2194 		ClearPageChecked(page);
2195 		goto out;
2196 	 }
2197 
2198 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2199 					&cached_state);
2200 	if (ret) {
2201 		mapping_set_error(page->mapping, ret);
2202 		end_extent_writepage(page, ret, page_start, page_end);
2203 		ClearPageChecked(page);
2204 		goto out;
2205 	}
2206 
2207 	ClearPageChecked(page);
2208 	set_page_dirty(page);
2209 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2210 out:
2211 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2212 			     &cached_state);
2213 out_page:
2214 	unlock_page(page);
2215 	put_page(page);
2216 	kfree(fixup);
2217 	extent_changeset_free(data_reserved);
2218 }
2219 
2220 /*
2221  * There are a few paths in the higher layers of the kernel that directly
2222  * set the page dirty bit without asking the filesystem if it is a
2223  * good idea.  This causes problems because we want to make sure COW
2224  * properly happens and the data=ordered rules are followed.
2225  *
2226  * In our case any range that doesn't have the ORDERED bit set
2227  * hasn't been properly setup for IO.  We kick off an async process
2228  * to fix it up.  The async helper will wait for ordered extents, set
2229  * the delalloc bit and make it safe to write the page.
2230  */
2231 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2232 {
2233 	struct inode *inode = page->mapping->host;
2234 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2235 	struct btrfs_writepage_fixup *fixup;
2236 
2237 	/* this page is properly in the ordered list */
2238 	if (TestClearPagePrivate2(page))
2239 		return 0;
2240 
2241 	if (PageChecked(page))
2242 		return -EAGAIN;
2243 
2244 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2245 	if (!fixup)
2246 		return -EAGAIN;
2247 
2248 	SetPageChecked(page);
2249 	get_page(page);
2250 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2251 			btrfs_writepage_fixup_worker, NULL, NULL);
2252 	fixup->page = page;
2253 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2254 	return -EBUSY;
2255 }
2256 
2257 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2258 				       struct inode *inode, u64 file_pos,
2259 				       u64 disk_bytenr, u64 disk_num_bytes,
2260 				       u64 num_bytes, u64 ram_bytes,
2261 				       u8 compression, u8 encryption,
2262 				       u16 other_encoding, int extent_type)
2263 {
2264 	struct btrfs_root *root = BTRFS_I(inode)->root;
2265 	struct btrfs_file_extent_item *fi;
2266 	struct btrfs_path *path;
2267 	struct extent_buffer *leaf;
2268 	struct btrfs_key ins;
2269 	u64 qg_released;
2270 	int extent_inserted = 0;
2271 	int ret;
2272 
2273 	path = btrfs_alloc_path();
2274 	if (!path)
2275 		return -ENOMEM;
2276 
2277 	/*
2278 	 * we may be replacing one extent in the tree with another.
2279 	 * The new extent is pinned in the extent map, and we don't want
2280 	 * to drop it from the cache until it is completely in the btree.
2281 	 *
2282 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2283 	 * the caller is expected to unpin it and allow it to be merged
2284 	 * with the others.
2285 	 */
2286 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2287 				   file_pos + num_bytes, NULL, 0,
2288 				   1, sizeof(*fi), &extent_inserted);
2289 	if (ret)
2290 		goto out;
2291 
2292 	if (!extent_inserted) {
2293 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2294 		ins.offset = file_pos;
2295 		ins.type = BTRFS_EXTENT_DATA_KEY;
2296 
2297 		path->leave_spinning = 1;
2298 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2299 					      sizeof(*fi));
2300 		if (ret)
2301 			goto out;
2302 	}
2303 	leaf = path->nodes[0];
2304 	fi = btrfs_item_ptr(leaf, path->slots[0],
2305 			    struct btrfs_file_extent_item);
2306 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2307 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2308 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2309 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2310 	btrfs_set_file_extent_offset(leaf, fi, 0);
2311 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2312 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2313 	btrfs_set_file_extent_compression(leaf, fi, compression);
2314 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2315 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2316 
2317 	btrfs_mark_buffer_dirty(leaf);
2318 	btrfs_release_path(path);
2319 
2320 	inode_add_bytes(inode, num_bytes);
2321 
2322 	ins.objectid = disk_bytenr;
2323 	ins.offset = disk_num_bytes;
2324 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2325 
2326 	/*
2327 	 * Release the reserved range from inode dirty range map, as it is
2328 	 * already moved into delayed_ref_head
2329 	 */
2330 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2331 	if (ret < 0)
2332 		goto out;
2333 	qg_released = ret;
2334 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2335 					       btrfs_ino(BTRFS_I(inode)),
2336 					       file_pos, qg_released, &ins);
2337 out:
2338 	btrfs_free_path(path);
2339 
2340 	return ret;
2341 }
2342 
2343 /* snapshot-aware defrag */
2344 struct sa_defrag_extent_backref {
2345 	struct rb_node node;
2346 	struct old_sa_defrag_extent *old;
2347 	u64 root_id;
2348 	u64 inum;
2349 	u64 file_pos;
2350 	u64 extent_offset;
2351 	u64 num_bytes;
2352 	u64 generation;
2353 };
2354 
2355 struct old_sa_defrag_extent {
2356 	struct list_head list;
2357 	struct new_sa_defrag_extent *new;
2358 
2359 	u64 extent_offset;
2360 	u64 bytenr;
2361 	u64 offset;
2362 	u64 len;
2363 	int count;
2364 };
2365 
2366 struct new_sa_defrag_extent {
2367 	struct rb_root root;
2368 	struct list_head head;
2369 	struct btrfs_path *path;
2370 	struct inode *inode;
2371 	u64 file_pos;
2372 	u64 len;
2373 	u64 bytenr;
2374 	u64 disk_len;
2375 	u8 compress_type;
2376 };
2377 
2378 static int backref_comp(struct sa_defrag_extent_backref *b1,
2379 			struct sa_defrag_extent_backref *b2)
2380 {
2381 	if (b1->root_id < b2->root_id)
2382 		return -1;
2383 	else if (b1->root_id > b2->root_id)
2384 		return 1;
2385 
2386 	if (b1->inum < b2->inum)
2387 		return -1;
2388 	else if (b1->inum > b2->inum)
2389 		return 1;
2390 
2391 	if (b1->file_pos < b2->file_pos)
2392 		return -1;
2393 	else if (b1->file_pos > b2->file_pos)
2394 		return 1;
2395 
2396 	/*
2397 	 * [------------------------------] ===> (a range of space)
2398 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2399 	 * |<---------------------------->| ===> (fs/file tree B)
2400 	 *
2401 	 * A range of space can refer to two file extents in one tree while
2402 	 * refer to only one file extent in another tree.
2403 	 *
2404 	 * So we may process a disk offset more than one time(two extents in A)
2405 	 * and locate at the same extent(one extent in B), then insert two same
2406 	 * backrefs(both refer to the extent in B).
2407 	 */
2408 	return 0;
2409 }
2410 
2411 static void backref_insert(struct rb_root *root,
2412 			   struct sa_defrag_extent_backref *backref)
2413 {
2414 	struct rb_node **p = &root->rb_node;
2415 	struct rb_node *parent = NULL;
2416 	struct sa_defrag_extent_backref *entry;
2417 	int ret;
2418 
2419 	while (*p) {
2420 		parent = *p;
2421 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2422 
2423 		ret = backref_comp(backref, entry);
2424 		if (ret < 0)
2425 			p = &(*p)->rb_left;
2426 		else
2427 			p = &(*p)->rb_right;
2428 	}
2429 
2430 	rb_link_node(&backref->node, parent, p);
2431 	rb_insert_color(&backref->node, root);
2432 }
2433 
2434 /*
2435  * Note the backref might has changed, and in this case we just return 0.
2436  */
2437 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2438 				       void *ctx)
2439 {
2440 	struct btrfs_file_extent_item *extent;
2441 	struct old_sa_defrag_extent *old = ctx;
2442 	struct new_sa_defrag_extent *new = old->new;
2443 	struct btrfs_path *path = new->path;
2444 	struct btrfs_key key;
2445 	struct btrfs_root *root;
2446 	struct sa_defrag_extent_backref *backref;
2447 	struct extent_buffer *leaf;
2448 	struct inode *inode = new->inode;
2449 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2450 	int slot;
2451 	int ret;
2452 	u64 extent_offset;
2453 	u64 num_bytes;
2454 
2455 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2456 	    inum == btrfs_ino(BTRFS_I(inode)))
2457 		return 0;
2458 
2459 	key.objectid = root_id;
2460 	key.type = BTRFS_ROOT_ITEM_KEY;
2461 	key.offset = (u64)-1;
2462 
2463 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2464 	if (IS_ERR(root)) {
2465 		if (PTR_ERR(root) == -ENOENT)
2466 			return 0;
2467 		WARN_ON(1);
2468 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2469 			 inum, offset, root_id);
2470 		return PTR_ERR(root);
2471 	}
2472 
2473 	key.objectid = inum;
2474 	key.type = BTRFS_EXTENT_DATA_KEY;
2475 	if (offset > (u64)-1 << 32)
2476 		key.offset = 0;
2477 	else
2478 		key.offset = offset;
2479 
2480 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2481 	if (WARN_ON(ret < 0))
2482 		return ret;
2483 	ret = 0;
2484 
2485 	while (1) {
2486 		cond_resched();
2487 
2488 		leaf = path->nodes[0];
2489 		slot = path->slots[0];
2490 
2491 		if (slot >= btrfs_header_nritems(leaf)) {
2492 			ret = btrfs_next_leaf(root, path);
2493 			if (ret < 0) {
2494 				goto out;
2495 			} else if (ret > 0) {
2496 				ret = 0;
2497 				goto out;
2498 			}
2499 			continue;
2500 		}
2501 
2502 		path->slots[0]++;
2503 
2504 		btrfs_item_key_to_cpu(leaf, &key, slot);
2505 
2506 		if (key.objectid > inum)
2507 			goto out;
2508 
2509 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2510 			continue;
2511 
2512 		extent = btrfs_item_ptr(leaf, slot,
2513 					struct btrfs_file_extent_item);
2514 
2515 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2516 			continue;
2517 
2518 		/*
2519 		 * 'offset' refers to the exact key.offset,
2520 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2521 		 * (key.offset - extent_offset).
2522 		 */
2523 		if (key.offset != offset)
2524 			continue;
2525 
2526 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2527 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2528 
2529 		if (extent_offset >= old->extent_offset + old->offset +
2530 		    old->len || extent_offset + num_bytes <=
2531 		    old->extent_offset + old->offset)
2532 			continue;
2533 		break;
2534 	}
2535 
2536 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2537 	if (!backref) {
2538 		ret = -ENOENT;
2539 		goto out;
2540 	}
2541 
2542 	backref->root_id = root_id;
2543 	backref->inum = inum;
2544 	backref->file_pos = offset;
2545 	backref->num_bytes = num_bytes;
2546 	backref->extent_offset = extent_offset;
2547 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2548 	backref->old = old;
2549 	backref_insert(&new->root, backref);
2550 	old->count++;
2551 out:
2552 	btrfs_release_path(path);
2553 	WARN_ON(ret);
2554 	return ret;
2555 }
2556 
2557 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2558 				   struct new_sa_defrag_extent *new)
2559 {
2560 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2561 	struct old_sa_defrag_extent *old, *tmp;
2562 	int ret;
2563 
2564 	new->path = path;
2565 
2566 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2567 		ret = iterate_inodes_from_logical(old->bytenr +
2568 						  old->extent_offset, fs_info,
2569 						  path, record_one_backref,
2570 						  old, false);
2571 		if (ret < 0 && ret != -ENOENT)
2572 			return false;
2573 
2574 		/* no backref to be processed for this extent */
2575 		if (!old->count) {
2576 			list_del(&old->list);
2577 			kfree(old);
2578 		}
2579 	}
2580 
2581 	if (list_empty(&new->head))
2582 		return false;
2583 
2584 	return true;
2585 }
2586 
2587 static int relink_is_mergable(struct extent_buffer *leaf,
2588 			      struct btrfs_file_extent_item *fi,
2589 			      struct new_sa_defrag_extent *new)
2590 {
2591 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2592 		return 0;
2593 
2594 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2595 		return 0;
2596 
2597 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2598 		return 0;
2599 
2600 	if (btrfs_file_extent_encryption(leaf, fi) ||
2601 	    btrfs_file_extent_other_encoding(leaf, fi))
2602 		return 0;
2603 
2604 	return 1;
2605 }
2606 
2607 /*
2608  * Note the backref might has changed, and in this case we just return 0.
2609  */
2610 static noinline int relink_extent_backref(struct btrfs_path *path,
2611 				 struct sa_defrag_extent_backref *prev,
2612 				 struct sa_defrag_extent_backref *backref)
2613 {
2614 	struct btrfs_file_extent_item *extent;
2615 	struct btrfs_file_extent_item *item;
2616 	struct btrfs_ordered_extent *ordered;
2617 	struct btrfs_trans_handle *trans;
2618 	struct btrfs_ref ref = { 0 };
2619 	struct btrfs_root *root;
2620 	struct btrfs_key key;
2621 	struct extent_buffer *leaf;
2622 	struct old_sa_defrag_extent *old = backref->old;
2623 	struct new_sa_defrag_extent *new = old->new;
2624 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2625 	struct inode *inode;
2626 	struct extent_state *cached = NULL;
2627 	int ret = 0;
2628 	u64 start;
2629 	u64 len;
2630 	u64 lock_start;
2631 	u64 lock_end;
2632 	bool merge = false;
2633 	int index;
2634 
2635 	if (prev && prev->root_id == backref->root_id &&
2636 	    prev->inum == backref->inum &&
2637 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2638 		merge = true;
2639 
2640 	/* step 1: get root */
2641 	key.objectid = backref->root_id;
2642 	key.type = BTRFS_ROOT_ITEM_KEY;
2643 	key.offset = (u64)-1;
2644 
2645 	index = srcu_read_lock(&fs_info->subvol_srcu);
2646 
2647 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2648 	if (IS_ERR(root)) {
2649 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2650 		if (PTR_ERR(root) == -ENOENT)
2651 			return 0;
2652 		return PTR_ERR(root);
2653 	}
2654 
2655 	if (btrfs_root_readonly(root)) {
2656 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2657 		return 0;
2658 	}
2659 
2660 	/* step 2: get inode */
2661 	key.objectid = backref->inum;
2662 	key.type = BTRFS_INODE_ITEM_KEY;
2663 	key.offset = 0;
2664 
2665 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2666 	if (IS_ERR(inode)) {
2667 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2668 		return 0;
2669 	}
2670 
2671 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2672 
2673 	/* step 3: relink backref */
2674 	lock_start = backref->file_pos;
2675 	lock_end = backref->file_pos + backref->num_bytes - 1;
2676 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2677 			 &cached);
2678 
2679 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2680 	if (ordered) {
2681 		btrfs_put_ordered_extent(ordered);
2682 		goto out_unlock;
2683 	}
2684 
2685 	trans = btrfs_join_transaction(root);
2686 	if (IS_ERR(trans)) {
2687 		ret = PTR_ERR(trans);
2688 		goto out_unlock;
2689 	}
2690 
2691 	key.objectid = backref->inum;
2692 	key.type = BTRFS_EXTENT_DATA_KEY;
2693 	key.offset = backref->file_pos;
2694 
2695 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696 	if (ret < 0) {
2697 		goto out_free_path;
2698 	} else if (ret > 0) {
2699 		ret = 0;
2700 		goto out_free_path;
2701 	}
2702 
2703 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2704 				struct btrfs_file_extent_item);
2705 
2706 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2707 	    backref->generation)
2708 		goto out_free_path;
2709 
2710 	btrfs_release_path(path);
2711 
2712 	start = backref->file_pos;
2713 	if (backref->extent_offset < old->extent_offset + old->offset)
2714 		start += old->extent_offset + old->offset -
2715 			 backref->extent_offset;
2716 
2717 	len = min(backref->extent_offset + backref->num_bytes,
2718 		  old->extent_offset + old->offset + old->len);
2719 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2720 
2721 	ret = btrfs_drop_extents(trans, root, inode, start,
2722 				 start + len, 1);
2723 	if (ret)
2724 		goto out_free_path;
2725 again:
2726 	key.objectid = btrfs_ino(BTRFS_I(inode));
2727 	key.type = BTRFS_EXTENT_DATA_KEY;
2728 	key.offset = start;
2729 
2730 	path->leave_spinning = 1;
2731 	if (merge) {
2732 		struct btrfs_file_extent_item *fi;
2733 		u64 extent_len;
2734 		struct btrfs_key found_key;
2735 
2736 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2737 		if (ret < 0)
2738 			goto out_free_path;
2739 
2740 		path->slots[0]--;
2741 		leaf = path->nodes[0];
2742 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2743 
2744 		fi = btrfs_item_ptr(leaf, path->slots[0],
2745 				    struct btrfs_file_extent_item);
2746 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2747 
2748 		if (extent_len + found_key.offset == start &&
2749 		    relink_is_mergable(leaf, fi, new)) {
2750 			btrfs_set_file_extent_num_bytes(leaf, fi,
2751 							extent_len + len);
2752 			btrfs_mark_buffer_dirty(leaf);
2753 			inode_add_bytes(inode, len);
2754 
2755 			ret = 1;
2756 			goto out_free_path;
2757 		} else {
2758 			merge = false;
2759 			btrfs_release_path(path);
2760 			goto again;
2761 		}
2762 	}
2763 
2764 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2765 					sizeof(*extent));
2766 	if (ret) {
2767 		btrfs_abort_transaction(trans, ret);
2768 		goto out_free_path;
2769 	}
2770 
2771 	leaf = path->nodes[0];
2772 	item = btrfs_item_ptr(leaf, path->slots[0],
2773 				struct btrfs_file_extent_item);
2774 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2775 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2776 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2777 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2778 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2779 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2780 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2781 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2782 	btrfs_set_file_extent_encryption(leaf, item, 0);
2783 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2784 
2785 	btrfs_mark_buffer_dirty(leaf);
2786 	inode_add_bytes(inode, len);
2787 	btrfs_release_path(path);
2788 
2789 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2790 			       new->disk_len, 0);
2791 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2792 			    new->file_pos);  /* start - extent_offset */
2793 	ret = btrfs_inc_extent_ref(trans, &ref);
2794 	if (ret) {
2795 		btrfs_abort_transaction(trans, ret);
2796 		goto out_free_path;
2797 	}
2798 
2799 	ret = 1;
2800 out_free_path:
2801 	btrfs_release_path(path);
2802 	path->leave_spinning = 0;
2803 	btrfs_end_transaction(trans);
2804 out_unlock:
2805 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2806 			     &cached);
2807 	iput(inode);
2808 	return ret;
2809 }
2810 
2811 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2812 {
2813 	struct old_sa_defrag_extent *old, *tmp;
2814 
2815 	if (!new)
2816 		return;
2817 
2818 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2819 		kfree(old);
2820 	}
2821 	kfree(new);
2822 }
2823 
2824 static void relink_file_extents(struct new_sa_defrag_extent *new)
2825 {
2826 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2827 	struct btrfs_path *path;
2828 	struct sa_defrag_extent_backref *backref;
2829 	struct sa_defrag_extent_backref *prev = NULL;
2830 	struct rb_node *node;
2831 	int ret;
2832 
2833 	path = btrfs_alloc_path();
2834 	if (!path)
2835 		return;
2836 
2837 	if (!record_extent_backrefs(path, new)) {
2838 		btrfs_free_path(path);
2839 		goto out;
2840 	}
2841 	btrfs_release_path(path);
2842 
2843 	while (1) {
2844 		node = rb_first(&new->root);
2845 		if (!node)
2846 			break;
2847 		rb_erase(node, &new->root);
2848 
2849 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2850 
2851 		ret = relink_extent_backref(path, prev, backref);
2852 		WARN_ON(ret < 0);
2853 
2854 		kfree(prev);
2855 
2856 		if (ret == 1)
2857 			prev = backref;
2858 		else
2859 			prev = NULL;
2860 		cond_resched();
2861 	}
2862 	kfree(prev);
2863 
2864 	btrfs_free_path(path);
2865 out:
2866 	free_sa_defrag_extent(new);
2867 
2868 	atomic_dec(&fs_info->defrag_running);
2869 	wake_up(&fs_info->transaction_wait);
2870 }
2871 
2872 static struct new_sa_defrag_extent *
2873 record_old_file_extents(struct inode *inode,
2874 			struct btrfs_ordered_extent *ordered)
2875 {
2876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2877 	struct btrfs_root *root = BTRFS_I(inode)->root;
2878 	struct btrfs_path *path;
2879 	struct btrfs_key key;
2880 	struct old_sa_defrag_extent *old;
2881 	struct new_sa_defrag_extent *new;
2882 	int ret;
2883 
2884 	new = kmalloc(sizeof(*new), GFP_NOFS);
2885 	if (!new)
2886 		return NULL;
2887 
2888 	new->inode = inode;
2889 	new->file_pos = ordered->file_offset;
2890 	new->len = ordered->len;
2891 	new->bytenr = ordered->start;
2892 	new->disk_len = ordered->disk_len;
2893 	new->compress_type = ordered->compress_type;
2894 	new->root = RB_ROOT;
2895 	INIT_LIST_HEAD(&new->head);
2896 
2897 	path = btrfs_alloc_path();
2898 	if (!path)
2899 		goto out_kfree;
2900 
2901 	key.objectid = btrfs_ino(BTRFS_I(inode));
2902 	key.type = BTRFS_EXTENT_DATA_KEY;
2903 	key.offset = new->file_pos;
2904 
2905 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2906 	if (ret < 0)
2907 		goto out_free_path;
2908 	if (ret > 0 && path->slots[0] > 0)
2909 		path->slots[0]--;
2910 
2911 	/* find out all the old extents for the file range */
2912 	while (1) {
2913 		struct btrfs_file_extent_item *extent;
2914 		struct extent_buffer *l;
2915 		int slot;
2916 		u64 num_bytes;
2917 		u64 offset;
2918 		u64 end;
2919 		u64 disk_bytenr;
2920 		u64 extent_offset;
2921 
2922 		l = path->nodes[0];
2923 		slot = path->slots[0];
2924 
2925 		if (slot >= btrfs_header_nritems(l)) {
2926 			ret = btrfs_next_leaf(root, path);
2927 			if (ret < 0)
2928 				goto out_free_path;
2929 			else if (ret > 0)
2930 				break;
2931 			continue;
2932 		}
2933 
2934 		btrfs_item_key_to_cpu(l, &key, slot);
2935 
2936 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2937 			break;
2938 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2939 			break;
2940 		if (key.offset >= new->file_pos + new->len)
2941 			break;
2942 
2943 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2944 
2945 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2946 		if (key.offset + num_bytes < new->file_pos)
2947 			goto next;
2948 
2949 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2950 		if (!disk_bytenr)
2951 			goto next;
2952 
2953 		extent_offset = btrfs_file_extent_offset(l, extent);
2954 
2955 		old = kmalloc(sizeof(*old), GFP_NOFS);
2956 		if (!old)
2957 			goto out_free_path;
2958 
2959 		offset = max(new->file_pos, key.offset);
2960 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2961 
2962 		old->bytenr = disk_bytenr;
2963 		old->extent_offset = extent_offset;
2964 		old->offset = offset - key.offset;
2965 		old->len = end - offset;
2966 		old->new = new;
2967 		old->count = 0;
2968 		list_add_tail(&old->list, &new->head);
2969 next:
2970 		path->slots[0]++;
2971 		cond_resched();
2972 	}
2973 
2974 	btrfs_free_path(path);
2975 	atomic_inc(&fs_info->defrag_running);
2976 
2977 	return new;
2978 
2979 out_free_path:
2980 	btrfs_free_path(path);
2981 out_kfree:
2982 	free_sa_defrag_extent(new);
2983 	return NULL;
2984 }
2985 
2986 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2987 					 u64 start, u64 len)
2988 {
2989 	struct btrfs_block_group_cache *cache;
2990 
2991 	cache = btrfs_lookup_block_group(fs_info, start);
2992 	ASSERT(cache);
2993 
2994 	spin_lock(&cache->lock);
2995 	cache->delalloc_bytes -= len;
2996 	spin_unlock(&cache->lock);
2997 
2998 	btrfs_put_block_group(cache);
2999 }
3000 
3001 /* as ordered data IO finishes, this gets called so we can finish
3002  * an ordered extent if the range of bytes in the file it covers are
3003  * fully written.
3004  */
3005 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3006 {
3007 	struct inode *inode = ordered_extent->inode;
3008 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3009 	struct btrfs_root *root = BTRFS_I(inode)->root;
3010 	struct btrfs_trans_handle *trans = NULL;
3011 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3012 	struct extent_state *cached_state = NULL;
3013 	struct new_sa_defrag_extent *new = NULL;
3014 	int compress_type = 0;
3015 	int ret = 0;
3016 	u64 logical_len = ordered_extent->len;
3017 	bool nolock;
3018 	bool truncated = false;
3019 	bool range_locked = false;
3020 	bool clear_new_delalloc_bytes = false;
3021 	bool clear_reserved_extent = true;
3022 
3023 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3024 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3025 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3026 		clear_new_delalloc_bytes = true;
3027 
3028 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3029 
3030 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3031 		ret = -EIO;
3032 		goto out;
3033 	}
3034 
3035 	btrfs_free_io_failure_record(BTRFS_I(inode),
3036 			ordered_extent->file_offset,
3037 			ordered_extent->file_offset +
3038 			ordered_extent->len - 1);
3039 
3040 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3041 		truncated = true;
3042 		logical_len = ordered_extent->truncated_len;
3043 		/* Truncated the entire extent, don't bother adding */
3044 		if (!logical_len)
3045 			goto out;
3046 	}
3047 
3048 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3049 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3050 
3051 		/*
3052 		 * For mwrite(mmap + memset to write) case, we still reserve
3053 		 * space for NOCOW range.
3054 		 * As NOCOW won't cause a new delayed ref, just free the space
3055 		 */
3056 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3057 				       ordered_extent->len);
3058 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3059 		if (nolock)
3060 			trans = btrfs_join_transaction_nolock(root);
3061 		else
3062 			trans = btrfs_join_transaction(root);
3063 		if (IS_ERR(trans)) {
3064 			ret = PTR_ERR(trans);
3065 			trans = NULL;
3066 			goto out;
3067 		}
3068 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3069 		ret = btrfs_update_inode_fallback(trans, root, inode);
3070 		if (ret) /* -ENOMEM or corruption */
3071 			btrfs_abort_transaction(trans, ret);
3072 		goto out;
3073 	}
3074 
3075 	range_locked = true;
3076 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3077 			 ordered_extent->file_offset + ordered_extent->len - 1,
3078 			 &cached_state);
3079 
3080 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3081 			ordered_extent->file_offset + ordered_extent->len - 1,
3082 			EXTENT_DEFRAG, 0, cached_state);
3083 	if (ret) {
3084 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3085 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3086 			/* the inode is shared */
3087 			new = record_old_file_extents(inode, ordered_extent);
3088 
3089 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3090 			ordered_extent->file_offset + ordered_extent->len - 1,
3091 			EXTENT_DEFRAG, 0, 0, &cached_state);
3092 	}
3093 
3094 	if (nolock)
3095 		trans = btrfs_join_transaction_nolock(root);
3096 	else
3097 		trans = btrfs_join_transaction(root);
3098 	if (IS_ERR(trans)) {
3099 		ret = PTR_ERR(trans);
3100 		trans = NULL;
3101 		goto out;
3102 	}
3103 
3104 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3105 
3106 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3107 		compress_type = ordered_extent->compress_type;
3108 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3109 		BUG_ON(compress_type);
3110 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3111 				       ordered_extent->len);
3112 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3113 						ordered_extent->file_offset,
3114 						ordered_extent->file_offset +
3115 						logical_len);
3116 	} else {
3117 		BUG_ON(root == fs_info->tree_root);
3118 		ret = insert_reserved_file_extent(trans, inode,
3119 						ordered_extent->file_offset,
3120 						ordered_extent->start,
3121 						ordered_extent->disk_len,
3122 						logical_len, logical_len,
3123 						compress_type, 0, 0,
3124 						BTRFS_FILE_EXTENT_REG);
3125 		if (!ret) {
3126 			clear_reserved_extent = false;
3127 			btrfs_release_delalloc_bytes(fs_info,
3128 						     ordered_extent->start,
3129 						     ordered_extent->disk_len);
3130 		}
3131 	}
3132 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3133 			   ordered_extent->file_offset, ordered_extent->len,
3134 			   trans->transid);
3135 	if (ret < 0) {
3136 		btrfs_abort_transaction(trans, ret);
3137 		goto out;
3138 	}
3139 
3140 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3141 	if (ret) {
3142 		btrfs_abort_transaction(trans, ret);
3143 		goto out;
3144 	}
3145 
3146 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3147 	ret = btrfs_update_inode_fallback(trans, root, inode);
3148 	if (ret) { /* -ENOMEM or corruption */
3149 		btrfs_abort_transaction(trans, ret);
3150 		goto out;
3151 	}
3152 	ret = 0;
3153 out:
3154 	if (range_locked || clear_new_delalloc_bytes) {
3155 		unsigned int clear_bits = 0;
3156 
3157 		if (range_locked)
3158 			clear_bits |= EXTENT_LOCKED;
3159 		if (clear_new_delalloc_bytes)
3160 			clear_bits |= EXTENT_DELALLOC_NEW;
3161 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3162 				 ordered_extent->file_offset,
3163 				 ordered_extent->file_offset +
3164 				 ordered_extent->len - 1,
3165 				 clear_bits,
3166 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3167 				 0, &cached_state);
3168 	}
3169 
3170 	if (trans)
3171 		btrfs_end_transaction(trans);
3172 
3173 	if (ret || truncated) {
3174 		u64 start, end;
3175 
3176 		if (truncated)
3177 			start = ordered_extent->file_offset + logical_len;
3178 		else
3179 			start = ordered_extent->file_offset;
3180 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3181 		clear_extent_uptodate(io_tree, start, end, NULL);
3182 
3183 		/* Drop the cache for the part of the extent we didn't write. */
3184 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3185 
3186 		/*
3187 		 * If the ordered extent had an IOERR or something else went
3188 		 * wrong we need to return the space for this ordered extent
3189 		 * back to the allocator.  We only free the extent in the
3190 		 * truncated case if we didn't write out the extent at all.
3191 		 *
3192 		 * If we made it past insert_reserved_file_extent before we
3193 		 * errored out then we don't need to do this as the accounting
3194 		 * has already been done.
3195 		 */
3196 		if ((ret || !logical_len) &&
3197 		    clear_reserved_extent &&
3198 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3199 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3200 			btrfs_free_reserved_extent(fs_info,
3201 						   ordered_extent->start,
3202 						   ordered_extent->disk_len, 1);
3203 	}
3204 
3205 
3206 	/*
3207 	 * This needs to be done to make sure anybody waiting knows we are done
3208 	 * updating everything for this ordered extent.
3209 	 */
3210 	btrfs_remove_ordered_extent(inode, ordered_extent);
3211 
3212 	/* for snapshot-aware defrag */
3213 	if (new) {
3214 		if (ret) {
3215 			free_sa_defrag_extent(new);
3216 			atomic_dec(&fs_info->defrag_running);
3217 		} else {
3218 			relink_file_extents(new);
3219 		}
3220 	}
3221 
3222 	/* once for us */
3223 	btrfs_put_ordered_extent(ordered_extent);
3224 	/* once for the tree */
3225 	btrfs_put_ordered_extent(ordered_extent);
3226 
3227 	return ret;
3228 }
3229 
3230 static void finish_ordered_fn(struct btrfs_work *work)
3231 {
3232 	struct btrfs_ordered_extent *ordered_extent;
3233 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3234 	btrfs_finish_ordered_io(ordered_extent);
3235 }
3236 
3237 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3238 					  u64 end, int uptodate)
3239 {
3240 	struct inode *inode = page->mapping->host;
3241 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3242 	struct btrfs_ordered_extent *ordered_extent = NULL;
3243 	struct btrfs_workqueue *wq;
3244 	btrfs_work_func_t func;
3245 
3246 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3247 
3248 	ClearPagePrivate2(page);
3249 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3250 					    end - start + 1, uptodate))
3251 		return;
3252 
3253 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3254 		wq = fs_info->endio_freespace_worker;
3255 		func = btrfs_freespace_write_helper;
3256 	} else {
3257 		wq = fs_info->endio_write_workers;
3258 		func = btrfs_endio_write_helper;
3259 	}
3260 
3261 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3262 			NULL);
3263 	btrfs_queue_work(wq, &ordered_extent->work);
3264 }
3265 
3266 static int __readpage_endio_check(struct inode *inode,
3267 				  struct btrfs_io_bio *io_bio,
3268 				  int icsum, struct page *page,
3269 				  int pgoff, u64 start, size_t len)
3270 {
3271 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3272 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3273 	char *kaddr;
3274 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3275 	u8 *csum_expected;
3276 	u8 csum[BTRFS_CSUM_SIZE];
3277 
3278 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3279 
3280 	kaddr = kmap_atomic(page);
3281 	shash->tfm = fs_info->csum_shash;
3282 
3283 	crypto_shash_init(shash);
3284 	crypto_shash_update(shash, kaddr + pgoff, len);
3285 	crypto_shash_final(shash, csum);
3286 
3287 	if (memcmp(csum, csum_expected, csum_size))
3288 		goto zeroit;
3289 
3290 	kunmap_atomic(kaddr);
3291 	return 0;
3292 zeroit:
3293 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3294 				    io_bio->mirror_num);
3295 	memset(kaddr + pgoff, 1, len);
3296 	flush_dcache_page(page);
3297 	kunmap_atomic(kaddr);
3298 	return -EIO;
3299 }
3300 
3301 /*
3302  * when reads are done, we need to check csums to verify the data is correct
3303  * if there's a match, we allow the bio to finish.  If not, the code in
3304  * extent_io.c will try to find good copies for us.
3305  */
3306 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3307 				      u64 phy_offset, struct page *page,
3308 				      u64 start, u64 end, int mirror)
3309 {
3310 	size_t offset = start - page_offset(page);
3311 	struct inode *inode = page->mapping->host;
3312 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3313 	struct btrfs_root *root = BTRFS_I(inode)->root;
3314 
3315 	if (PageChecked(page)) {
3316 		ClearPageChecked(page);
3317 		return 0;
3318 	}
3319 
3320 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3321 		return 0;
3322 
3323 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3324 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3325 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3326 		return 0;
3327 	}
3328 
3329 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3330 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3331 				      start, (size_t)(end - start + 1));
3332 }
3333 
3334 /*
3335  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3336  *
3337  * @inode: The inode we want to perform iput on
3338  *
3339  * This function uses the generic vfs_inode::i_count to track whether we should
3340  * just decrement it (in case it's > 1) or if this is the last iput then link
3341  * the inode to the delayed iput machinery. Delayed iputs are processed at
3342  * transaction commit time/superblock commit/cleaner kthread.
3343  */
3344 void btrfs_add_delayed_iput(struct inode *inode)
3345 {
3346 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3347 	struct btrfs_inode *binode = BTRFS_I(inode);
3348 
3349 	if (atomic_add_unless(&inode->i_count, -1, 1))
3350 		return;
3351 
3352 	atomic_inc(&fs_info->nr_delayed_iputs);
3353 	spin_lock(&fs_info->delayed_iput_lock);
3354 	ASSERT(list_empty(&binode->delayed_iput));
3355 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3356 	spin_unlock(&fs_info->delayed_iput_lock);
3357 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3358 		wake_up_process(fs_info->cleaner_kthread);
3359 }
3360 
3361 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3362 				    struct btrfs_inode *inode)
3363 {
3364 	list_del_init(&inode->delayed_iput);
3365 	spin_unlock(&fs_info->delayed_iput_lock);
3366 	iput(&inode->vfs_inode);
3367 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3368 		wake_up(&fs_info->delayed_iputs_wait);
3369 	spin_lock(&fs_info->delayed_iput_lock);
3370 }
3371 
3372 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3373 				   struct btrfs_inode *inode)
3374 {
3375 	if (!list_empty(&inode->delayed_iput)) {
3376 		spin_lock(&fs_info->delayed_iput_lock);
3377 		if (!list_empty(&inode->delayed_iput))
3378 			run_delayed_iput_locked(fs_info, inode);
3379 		spin_unlock(&fs_info->delayed_iput_lock);
3380 	}
3381 }
3382 
3383 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3384 {
3385 
3386 	spin_lock(&fs_info->delayed_iput_lock);
3387 	while (!list_empty(&fs_info->delayed_iputs)) {
3388 		struct btrfs_inode *inode;
3389 
3390 		inode = list_first_entry(&fs_info->delayed_iputs,
3391 				struct btrfs_inode, delayed_iput);
3392 		run_delayed_iput_locked(fs_info, inode);
3393 	}
3394 	spin_unlock(&fs_info->delayed_iput_lock);
3395 }
3396 
3397 /**
3398  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3399  * @fs_info - the fs_info for this fs
3400  * @return - EINTR if we were killed, 0 if nothing's pending
3401  *
3402  * This will wait on any delayed iputs that are currently running with KILLABLE
3403  * set.  Once they are all done running we will return, unless we are killed in
3404  * which case we return EINTR. This helps in user operations like fallocate etc
3405  * that might get blocked on the iputs.
3406  */
3407 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3408 {
3409 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3410 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3411 	if (ret)
3412 		return -EINTR;
3413 	return 0;
3414 }
3415 
3416 /*
3417  * This creates an orphan entry for the given inode in case something goes wrong
3418  * in the middle of an unlink.
3419  */
3420 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3421 		     struct btrfs_inode *inode)
3422 {
3423 	int ret;
3424 
3425 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3426 	if (ret && ret != -EEXIST) {
3427 		btrfs_abort_transaction(trans, ret);
3428 		return ret;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 /*
3435  * We have done the delete so we can go ahead and remove the orphan item for
3436  * this particular inode.
3437  */
3438 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3439 			    struct btrfs_inode *inode)
3440 {
3441 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3442 }
3443 
3444 /*
3445  * this cleans up any orphans that may be left on the list from the last use
3446  * of this root.
3447  */
3448 int btrfs_orphan_cleanup(struct btrfs_root *root)
3449 {
3450 	struct btrfs_fs_info *fs_info = root->fs_info;
3451 	struct btrfs_path *path;
3452 	struct extent_buffer *leaf;
3453 	struct btrfs_key key, found_key;
3454 	struct btrfs_trans_handle *trans;
3455 	struct inode *inode;
3456 	u64 last_objectid = 0;
3457 	int ret = 0, nr_unlink = 0;
3458 
3459 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3460 		return 0;
3461 
3462 	path = btrfs_alloc_path();
3463 	if (!path) {
3464 		ret = -ENOMEM;
3465 		goto out;
3466 	}
3467 	path->reada = READA_BACK;
3468 
3469 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3470 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3471 	key.offset = (u64)-1;
3472 
3473 	while (1) {
3474 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3475 		if (ret < 0)
3476 			goto out;
3477 
3478 		/*
3479 		 * if ret == 0 means we found what we were searching for, which
3480 		 * is weird, but possible, so only screw with path if we didn't
3481 		 * find the key and see if we have stuff that matches
3482 		 */
3483 		if (ret > 0) {
3484 			ret = 0;
3485 			if (path->slots[0] == 0)
3486 				break;
3487 			path->slots[0]--;
3488 		}
3489 
3490 		/* pull out the item */
3491 		leaf = path->nodes[0];
3492 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3493 
3494 		/* make sure the item matches what we want */
3495 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3496 			break;
3497 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3498 			break;
3499 
3500 		/* release the path since we're done with it */
3501 		btrfs_release_path(path);
3502 
3503 		/*
3504 		 * this is where we are basically btrfs_lookup, without the
3505 		 * crossing root thing.  we store the inode number in the
3506 		 * offset of the orphan item.
3507 		 */
3508 
3509 		if (found_key.offset == last_objectid) {
3510 			btrfs_err(fs_info,
3511 				  "Error removing orphan entry, stopping orphan cleanup");
3512 			ret = -EINVAL;
3513 			goto out;
3514 		}
3515 
3516 		last_objectid = found_key.offset;
3517 
3518 		found_key.objectid = found_key.offset;
3519 		found_key.type = BTRFS_INODE_ITEM_KEY;
3520 		found_key.offset = 0;
3521 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3522 		ret = PTR_ERR_OR_ZERO(inode);
3523 		if (ret && ret != -ENOENT)
3524 			goto out;
3525 
3526 		if (ret == -ENOENT && root == fs_info->tree_root) {
3527 			struct btrfs_root *dead_root;
3528 			struct btrfs_fs_info *fs_info = root->fs_info;
3529 			int is_dead_root = 0;
3530 
3531 			/*
3532 			 * this is an orphan in the tree root. Currently these
3533 			 * could come from 2 sources:
3534 			 *  a) a snapshot deletion in progress
3535 			 *  b) a free space cache inode
3536 			 * We need to distinguish those two, as the snapshot
3537 			 * orphan must not get deleted.
3538 			 * find_dead_roots already ran before us, so if this
3539 			 * is a snapshot deletion, we should find the root
3540 			 * in the dead_roots list
3541 			 */
3542 			spin_lock(&fs_info->trans_lock);
3543 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3544 					    root_list) {
3545 				if (dead_root->root_key.objectid ==
3546 				    found_key.objectid) {
3547 					is_dead_root = 1;
3548 					break;
3549 				}
3550 			}
3551 			spin_unlock(&fs_info->trans_lock);
3552 			if (is_dead_root) {
3553 				/* prevent this orphan from being found again */
3554 				key.offset = found_key.objectid - 1;
3555 				continue;
3556 			}
3557 
3558 		}
3559 
3560 		/*
3561 		 * If we have an inode with links, there are a couple of
3562 		 * possibilities. Old kernels (before v3.12) used to create an
3563 		 * orphan item for truncate indicating that there were possibly
3564 		 * extent items past i_size that needed to be deleted. In v3.12,
3565 		 * truncate was changed to update i_size in sync with the extent
3566 		 * items, but the (useless) orphan item was still created. Since
3567 		 * v4.18, we don't create the orphan item for truncate at all.
3568 		 *
3569 		 * So, this item could mean that we need to do a truncate, but
3570 		 * only if this filesystem was last used on a pre-v3.12 kernel
3571 		 * and was not cleanly unmounted. The odds of that are quite
3572 		 * slim, and it's a pain to do the truncate now, so just delete
3573 		 * the orphan item.
3574 		 *
3575 		 * It's also possible that this orphan item was supposed to be
3576 		 * deleted but wasn't. The inode number may have been reused,
3577 		 * but either way, we can delete the orphan item.
3578 		 */
3579 		if (ret == -ENOENT || inode->i_nlink) {
3580 			if (!ret)
3581 				iput(inode);
3582 			trans = btrfs_start_transaction(root, 1);
3583 			if (IS_ERR(trans)) {
3584 				ret = PTR_ERR(trans);
3585 				goto out;
3586 			}
3587 			btrfs_debug(fs_info, "auto deleting %Lu",
3588 				    found_key.objectid);
3589 			ret = btrfs_del_orphan_item(trans, root,
3590 						    found_key.objectid);
3591 			btrfs_end_transaction(trans);
3592 			if (ret)
3593 				goto out;
3594 			continue;
3595 		}
3596 
3597 		nr_unlink++;
3598 
3599 		/* this will do delete_inode and everything for us */
3600 		iput(inode);
3601 	}
3602 	/* release the path since we're done with it */
3603 	btrfs_release_path(path);
3604 
3605 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3606 
3607 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3608 		trans = btrfs_join_transaction(root);
3609 		if (!IS_ERR(trans))
3610 			btrfs_end_transaction(trans);
3611 	}
3612 
3613 	if (nr_unlink)
3614 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3615 
3616 out:
3617 	if (ret)
3618 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3619 	btrfs_free_path(path);
3620 	return ret;
3621 }
3622 
3623 /*
3624  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3625  * don't find any xattrs, we know there can't be any acls.
3626  *
3627  * slot is the slot the inode is in, objectid is the objectid of the inode
3628  */
3629 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3630 					  int slot, u64 objectid,
3631 					  int *first_xattr_slot)
3632 {
3633 	u32 nritems = btrfs_header_nritems(leaf);
3634 	struct btrfs_key found_key;
3635 	static u64 xattr_access = 0;
3636 	static u64 xattr_default = 0;
3637 	int scanned = 0;
3638 
3639 	if (!xattr_access) {
3640 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3641 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3642 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3643 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3644 	}
3645 
3646 	slot++;
3647 	*first_xattr_slot = -1;
3648 	while (slot < nritems) {
3649 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3650 
3651 		/* we found a different objectid, there must not be acls */
3652 		if (found_key.objectid != objectid)
3653 			return 0;
3654 
3655 		/* we found an xattr, assume we've got an acl */
3656 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3657 			if (*first_xattr_slot == -1)
3658 				*first_xattr_slot = slot;
3659 			if (found_key.offset == xattr_access ||
3660 			    found_key.offset == xattr_default)
3661 				return 1;
3662 		}
3663 
3664 		/*
3665 		 * we found a key greater than an xattr key, there can't
3666 		 * be any acls later on
3667 		 */
3668 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3669 			return 0;
3670 
3671 		slot++;
3672 		scanned++;
3673 
3674 		/*
3675 		 * it goes inode, inode backrefs, xattrs, extents,
3676 		 * so if there are a ton of hard links to an inode there can
3677 		 * be a lot of backrefs.  Don't waste time searching too hard,
3678 		 * this is just an optimization
3679 		 */
3680 		if (scanned >= 8)
3681 			break;
3682 	}
3683 	/* we hit the end of the leaf before we found an xattr or
3684 	 * something larger than an xattr.  We have to assume the inode
3685 	 * has acls
3686 	 */
3687 	if (*first_xattr_slot == -1)
3688 		*first_xattr_slot = slot;
3689 	return 1;
3690 }
3691 
3692 /*
3693  * read an inode from the btree into the in-memory inode
3694  */
3695 static int btrfs_read_locked_inode(struct inode *inode,
3696 				   struct btrfs_path *in_path)
3697 {
3698 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3699 	struct btrfs_path *path = in_path;
3700 	struct extent_buffer *leaf;
3701 	struct btrfs_inode_item *inode_item;
3702 	struct btrfs_root *root = BTRFS_I(inode)->root;
3703 	struct btrfs_key location;
3704 	unsigned long ptr;
3705 	int maybe_acls;
3706 	u32 rdev;
3707 	int ret;
3708 	bool filled = false;
3709 	int first_xattr_slot;
3710 
3711 	ret = btrfs_fill_inode(inode, &rdev);
3712 	if (!ret)
3713 		filled = true;
3714 
3715 	if (!path) {
3716 		path = btrfs_alloc_path();
3717 		if (!path)
3718 			return -ENOMEM;
3719 	}
3720 
3721 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3722 
3723 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3724 	if (ret) {
3725 		if (path != in_path)
3726 			btrfs_free_path(path);
3727 		return ret;
3728 	}
3729 
3730 	leaf = path->nodes[0];
3731 
3732 	if (filled)
3733 		goto cache_index;
3734 
3735 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3736 				    struct btrfs_inode_item);
3737 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3738 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3739 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3740 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3741 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3742 
3743 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3744 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3745 
3746 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3747 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3748 
3749 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3750 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3751 
3752 	BTRFS_I(inode)->i_otime.tv_sec =
3753 		btrfs_timespec_sec(leaf, &inode_item->otime);
3754 	BTRFS_I(inode)->i_otime.tv_nsec =
3755 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3756 
3757 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3758 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3759 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3760 
3761 	inode_set_iversion_queried(inode,
3762 				   btrfs_inode_sequence(leaf, inode_item));
3763 	inode->i_generation = BTRFS_I(inode)->generation;
3764 	inode->i_rdev = 0;
3765 	rdev = btrfs_inode_rdev(leaf, inode_item);
3766 
3767 	BTRFS_I(inode)->index_cnt = (u64)-1;
3768 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3769 
3770 cache_index:
3771 	/*
3772 	 * If we were modified in the current generation and evicted from memory
3773 	 * and then re-read we need to do a full sync since we don't have any
3774 	 * idea about which extents were modified before we were evicted from
3775 	 * cache.
3776 	 *
3777 	 * This is required for both inode re-read from disk and delayed inode
3778 	 * in delayed_nodes_tree.
3779 	 */
3780 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3781 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3782 			&BTRFS_I(inode)->runtime_flags);
3783 
3784 	/*
3785 	 * We don't persist the id of the transaction where an unlink operation
3786 	 * against the inode was last made. So here we assume the inode might
3787 	 * have been evicted, and therefore the exact value of last_unlink_trans
3788 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3789 	 * between the inode and its parent if the inode is fsync'ed and the log
3790 	 * replayed. For example, in the scenario:
3791 	 *
3792 	 * touch mydir/foo
3793 	 * ln mydir/foo mydir/bar
3794 	 * sync
3795 	 * unlink mydir/bar
3796 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3797 	 * xfs_io -c fsync mydir/foo
3798 	 * <power failure>
3799 	 * mount fs, triggers fsync log replay
3800 	 *
3801 	 * We must make sure that when we fsync our inode foo we also log its
3802 	 * parent inode, otherwise after log replay the parent still has the
3803 	 * dentry with the "bar" name but our inode foo has a link count of 1
3804 	 * and doesn't have an inode ref with the name "bar" anymore.
3805 	 *
3806 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3807 	 * but it guarantees correctness at the expense of occasional full
3808 	 * transaction commits on fsync if our inode is a directory, or if our
3809 	 * inode is not a directory, logging its parent unnecessarily.
3810 	 */
3811 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3812 
3813 	path->slots[0]++;
3814 	if (inode->i_nlink != 1 ||
3815 	    path->slots[0] >= btrfs_header_nritems(leaf))
3816 		goto cache_acl;
3817 
3818 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3819 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3820 		goto cache_acl;
3821 
3822 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3823 	if (location.type == BTRFS_INODE_REF_KEY) {
3824 		struct btrfs_inode_ref *ref;
3825 
3826 		ref = (struct btrfs_inode_ref *)ptr;
3827 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3828 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3829 		struct btrfs_inode_extref *extref;
3830 
3831 		extref = (struct btrfs_inode_extref *)ptr;
3832 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3833 								     extref);
3834 	}
3835 cache_acl:
3836 	/*
3837 	 * try to precache a NULL acl entry for files that don't have
3838 	 * any xattrs or acls
3839 	 */
3840 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3841 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3842 	if (first_xattr_slot != -1) {
3843 		path->slots[0] = first_xattr_slot;
3844 		ret = btrfs_load_inode_props(inode, path);
3845 		if (ret)
3846 			btrfs_err(fs_info,
3847 				  "error loading props for ino %llu (root %llu): %d",
3848 				  btrfs_ino(BTRFS_I(inode)),
3849 				  root->root_key.objectid, ret);
3850 	}
3851 	if (path != in_path)
3852 		btrfs_free_path(path);
3853 
3854 	if (!maybe_acls)
3855 		cache_no_acl(inode);
3856 
3857 	switch (inode->i_mode & S_IFMT) {
3858 	case S_IFREG:
3859 		inode->i_mapping->a_ops = &btrfs_aops;
3860 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3861 		inode->i_fop = &btrfs_file_operations;
3862 		inode->i_op = &btrfs_file_inode_operations;
3863 		break;
3864 	case S_IFDIR:
3865 		inode->i_fop = &btrfs_dir_file_operations;
3866 		inode->i_op = &btrfs_dir_inode_operations;
3867 		break;
3868 	case S_IFLNK:
3869 		inode->i_op = &btrfs_symlink_inode_operations;
3870 		inode_nohighmem(inode);
3871 		inode->i_mapping->a_ops = &btrfs_aops;
3872 		break;
3873 	default:
3874 		inode->i_op = &btrfs_special_inode_operations;
3875 		init_special_inode(inode, inode->i_mode, rdev);
3876 		break;
3877 	}
3878 
3879 	btrfs_sync_inode_flags_to_i_flags(inode);
3880 	return 0;
3881 }
3882 
3883 /*
3884  * given a leaf and an inode, copy the inode fields into the leaf
3885  */
3886 static void fill_inode_item(struct btrfs_trans_handle *trans,
3887 			    struct extent_buffer *leaf,
3888 			    struct btrfs_inode_item *item,
3889 			    struct inode *inode)
3890 {
3891 	struct btrfs_map_token token;
3892 
3893 	btrfs_init_map_token(&token, leaf);
3894 
3895 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3896 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3897 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3898 				   &token);
3899 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3900 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3901 
3902 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3903 				     inode->i_atime.tv_sec, &token);
3904 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3905 				      inode->i_atime.tv_nsec, &token);
3906 
3907 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3908 				     inode->i_mtime.tv_sec, &token);
3909 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3910 				      inode->i_mtime.tv_nsec, &token);
3911 
3912 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3913 				     inode->i_ctime.tv_sec, &token);
3914 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3915 				      inode->i_ctime.tv_nsec, &token);
3916 
3917 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3918 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3919 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3920 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3921 
3922 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3923 				     &token);
3924 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3925 					 &token);
3926 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3927 				       &token);
3928 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3929 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3930 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3931 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3932 }
3933 
3934 /*
3935  * copy everything in the in-memory inode into the btree.
3936  */
3937 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3938 				struct btrfs_root *root, struct inode *inode)
3939 {
3940 	struct btrfs_inode_item *inode_item;
3941 	struct btrfs_path *path;
3942 	struct extent_buffer *leaf;
3943 	int ret;
3944 
3945 	path = btrfs_alloc_path();
3946 	if (!path)
3947 		return -ENOMEM;
3948 
3949 	path->leave_spinning = 1;
3950 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3951 				 1);
3952 	if (ret) {
3953 		if (ret > 0)
3954 			ret = -ENOENT;
3955 		goto failed;
3956 	}
3957 
3958 	leaf = path->nodes[0];
3959 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3960 				    struct btrfs_inode_item);
3961 
3962 	fill_inode_item(trans, leaf, inode_item, inode);
3963 	btrfs_mark_buffer_dirty(leaf);
3964 	btrfs_set_inode_last_trans(trans, inode);
3965 	ret = 0;
3966 failed:
3967 	btrfs_free_path(path);
3968 	return ret;
3969 }
3970 
3971 /*
3972  * copy everything in the in-memory inode into the btree.
3973  */
3974 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3975 				struct btrfs_root *root, struct inode *inode)
3976 {
3977 	struct btrfs_fs_info *fs_info = root->fs_info;
3978 	int ret;
3979 
3980 	/*
3981 	 * If the inode is a free space inode, we can deadlock during commit
3982 	 * if we put it into the delayed code.
3983 	 *
3984 	 * The data relocation inode should also be directly updated
3985 	 * without delay
3986 	 */
3987 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3988 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3989 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3990 		btrfs_update_root_times(trans, root);
3991 
3992 		ret = btrfs_delayed_update_inode(trans, root, inode);
3993 		if (!ret)
3994 			btrfs_set_inode_last_trans(trans, inode);
3995 		return ret;
3996 	}
3997 
3998 	return btrfs_update_inode_item(trans, root, inode);
3999 }
4000 
4001 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4002 					 struct btrfs_root *root,
4003 					 struct inode *inode)
4004 {
4005 	int ret;
4006 
4007 	ret = btrfs_update_inode(trans, root, inode);
4008 	if (ret == -ENOSPC)
4009 		return btrfs_update_inode_item(trans, root, inode);
4010 	return ret;
4011 }
4012 
4013 /*
4014  * unlink helper that gets used here in inode.c and in the tree logging
4015  * recovery code.  It remove a link in a directory with a given name, and
4016  * also drops the back refs in the inode to the directory
4017  */
4018 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4019 				struct btrfs_root *root,
4020 				struct btrfs_inode *dir,
4021 				struct btrfs_inode *inode,
4022 				const char *name, int name_len)
4023 {
4024 	struct btrfs_fs_info *fs_info = root->fs_info;
4025 	struct btrfs_path *path;
4026 	int ret = 0;
4027 	struct btrfs_dir_item *di;
4028 	u64 index;
4029 	u64 ino = btrfs_ino(inode);
4030 	u64 dir_ino = btrfs_ino(dir);
4031 
4032 	path = btrfs_alloc_path();
4033 	if (!path) {
4034 		ret = -ENOMEM;
4035 		goto out;
4036 	}
4037 
4038 	path->leave_spinning = 1;
4039 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4040 				    name, name_len, -1);
4041 	if (IS_ERR_OR_NULL(di)) {
4042 		ret = di ? PTR_ERR(di) : -ENOENT;
4043 		goto err;
4044 	}
4045 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4046 	if (ret)
4047 		goto err;
4048 	btrfs_release_path(path);
4049 
4050 	/*
4051 	 * If we don't have dir index, we have to get it by looking up
4052 	 * the inode ref, since we get the inode ref, remove it directly,
4053 	 * it is unnecessary to do delayed deletion.
4054 	 *
4055 	 * But if we have dir index, needn't search inode ref to get it.
4056 	 * Since the inode ref is close to the inode item, it is better
4057 	 * that we delay to delete it, and just do this deletion when
4058 	 * we update the inode item.
4059 	 */
4060 	if (inode->dir_index) {
4061 		ret = btrfs_delayed_delete_inode_ref(inode);
4062 		if (!ret) {
4063 			index = inode->dir_index;
4064 			goto skip_backref;
4065 		}
4066 	}
4067 
4068 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4069 				  dir_ino, &index);
4070 	if (ret) {
4071 		btrfs_info(fs_info,
4072 			"failed to delete reference to %.*s, inode %llu parent %llu",
4073 			name_len, name, ino, dir_ino);
4074 		btrfs_abort_transaction(trans, ret);
4075 		goto err;
4076 	}
4077 skip_backref:
4078 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4079 	if (ret) {
4080 		btrfs_abort_transaction(trans, ret);
4081 		goto err;
4082 	}
4083 
4084 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4085 			dir_ino);
4086 	if (ret != 0 && ret != -ENOENT) {
4087 		btrfs_abort_transaction(trans, ret);
4088 		goto err;
4089 	}
4090 
4091 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4092 			index);
4093 	if (ret == -ENOENT)
4094 		ret = 0;
4095 	else if (ret)
4096 		btrfs_abort_transaction(trans, ret);
4097 
4098 	/*
4099 	 * If we have a pending delayed iput we could end up with the final iput
4100 	 * being run in btrfs-cleaner context.  If we have enough of these built
4101 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4102 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4103 	 * the inode we can run the delayed iput here without any issues as the
4104 	 * final iput won't be done until after we drop the ref we're currently
4105 	 * holding.
4106 	 */
4107 	btrfs_run_delayed_iput(fs_info, inode);
4108 err:
4109 	btrfs_free_path(path);
4110 	if (ret)
4111 		goto out;
4112 
4113 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4114 	inode_inc_iversion(&inode->vfs_inode);
4115 	inode_inc_iversion(&dir->vfs_inode);
4116 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4117 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4118 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4119 out:
4120 	return ret;
4121 }
4122 
4123 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4124 		       struct btrfs_root *root,
4125 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4126 		       const char *name, int name_len)
4127 {
4128 	int ret;
4129 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4130 	if (!ret) {
4131 		drop_nlink(&inode->vfs_inode);
4132 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4133 	}
4134 	return ret;
4135 }
4136 
4137 /*
4138  * helper to start transaction for unlink and rmdir.
4139  *
4140  * unlink and rmdir are special in btrfs, they do not always free space, so
4141  * if we cannot make our reservations the normal way try and see if there is
4142  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4143  * allow the unlink to occur.
4144  */
4145 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4146 {
4147 	struct btrfs_root *root = BTRFS_I(dir)->root;
4148 
4149 	/*
4150 	 * 1 for the possible orphan item
4151 	 * 1 for the dir item
4152 	 * 1 for the dir index
4153 	 * 1 for the inode ref
4154 	 * 1 for the inode
4155 	 */
4156 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4157 }
4158 
4159 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4160 {
4161 	struct btrfs_root *root = BTRFS_I(dir)->root;
4162 	struct btrfs_trans_handle *trans;
4163 	struct inode *inode = d_inode(dentry);
4164 	int ret;
4165 
4166 	trans = __unlink_start_trans(dir);
4167 	if (IS_ERR(trans))
4168 		return PTR_ERR(trans);
4169 
4170 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4171 			0);
4172 
4173 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4174 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4175 			dentry->d_name.len);
4176 	if (ret)
4177 		goto out;
4178 
4179 	if (inode->i_nlink == 0) {
4180 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4181 		if (ret)
4182 			goto out;
4183 	}
4184 
4185 out:
4186 	btrfs_end_transaction(trans);
4187 	btrfs_btree_balance_dirty(root->fs_info);
4188 	return ret;
4189 }
4190 
4191 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4192 			       struct inode *dir, u64 objectid,
4193 			       const char *name, int name_len)
4194 {
4195 	struct btrfs_root *root = BTRFS_I(dir)->root;
4196 	struct btrfs_path *path;
4197 	struct extent_buffer *leaf;
4198 	struct btrfs_dir_item *di;
4199 	struct btrfs_key key;
4200 	u64 index;
4201 	int ret;
4202 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4203 
4204 	path = btrfs_alloc_path();
4205 	if (!path)
4206 		return -ENOMEM;
4207 
4208 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4209 				   name, name_len, -1);
4210 	if (IS_ERR_OR_NULL(di)) {
4211 		ret = di ? PTR_ERR(di) : -ENOENT;
4212 		goto out;
4213 	}
4214 
4215 	leaf = path->nodes[0];
4216 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4217 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4218 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4219 	if (ret) {
4220 		btrfs_abort_transaction(trans, ret);
4221 		goto out;
4222 	}
4223 	btrfs_release_path(path);
4224 
4225 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4226 				 dir_ino, &index, name, name_len);
4227 	if (ret < 0) {
4228 		if (ret != -ENOENT) {
4229 			btrfs_abort_transaction(trans, ret);
4230 			goto out;
4231 		}
4232 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4233 						 name, name_len);
4234 		if (IS_ERR_OR_NULL(di)) {
4235 			if (!di)
4236 				ret = -ENOENT;
4237 			else
4238 				ret = PTR_ERR(di);
4239 			btrfs_abort_transaction(trans, ret);
4240 			goto out;
4241 		}
4242 
4243 		leaf = path->nodes[0];
4244 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4245 		index = key.offset;
4246 	}
4247 	btrfs_release_path(path);
4248 
4249 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4250 	if (ret) {
4251 		btrfs_abort_transaction(trans, ret);
4252 		goto out;
4253 	}
4254 
4255 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4256 	inode_inc_iversion(dir);
4257 	dir->i_mtime = dir->i_ctime = current_time(dir);
4258 	ret = btrfs_update_inode_fallback(trans, root, dir);
4259 	if (ret)
4260 		btrfs_abort_transaction(trans, ret);
4261 out:
4262 	btrfs_free_path(path);
4263 	return ret;
4264 }
4265 
4266 /*
4267  * Helper to check if the subvolume references other subvolumes or if it's
4268  * default.
4269  */
4270 static noinline int may_destroy_subvol(struct btrfs_root *root)
4271 {
4272 	struct btrfs_fs_info *fs_info = root->fs_info;
4273 	struct btrfs_path *path;
4274 	struct btrfs_dir_item *di;
4275 	struct btrfs_key key;
4276 	u64 dir_id;
4277 	int ret;
4278 
4279 	path = btrfs_alloc_path();
4280 	if (!path)
4281 		return -ENOMEM;
4282 
4283 	/* Make sure this root isn't set as the default subvol */
4284 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4285 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4286 				   dir_id, "default", 7, 0);
4287 	if (di && !IS_ERR(di)) {
4288 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4289 		if (key.objectid == root->root_key.objectid) {
4290 			ret = -EPERM;
4291 			btrfs_err(fs_info,
4292 				  "deleting default subvolume %llu is not allowed",
4293 				  key.objectid);
4294 			goto out;
4295 		}
4296 		btrfs_release_path(path);
4297 	}
4298 
4299 	key.objectid = root->root_key.objectid;
4300 	key.type = BTRFS_ROOT_REF_KEY;
4301 	key.offset = (u64)-1;
4302 
4303 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4304 	if (ret < 0)
4305 		goto out;
4306 	BUG_ON(ret == 0);
4307 
4308 	ret = 0;
4309 	if (path->slots[0] > 0) {
4310 		path->slots[0]--;
4311 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4312 		if (key.objectid == root->root_key.objectid &&
4313 		    key.type == BTRFS_ROOT_REF_KEY)
4314 			ret = -ENOTEMPTY;
4315 	}
4316 out:
4317 	btrfs_free_path(path);
4318 	return ret;
4319 }
4320 
4321 /* Delete all dentries for inodes belonging to the root */
4322 static void btrfs_prune_dentries(struct btrfs_root *root)
4323 {
4324 	struct btrfs_fs_info *fs_info = root->fs_info;
4325 	struct rb_node *node;
4326 	struct rb_node *prev;
4327 	struct btrfs_inode *entry;
4328 	struct inode *inode;
4329 	u64 objectid = 0;
4330 
4331 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4332 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4333 
4334 	spin_lock(&root->inode_lock);
4335 again:
4336 	node = root->inode_tree.rb_node;
4337 	prev = NULL;
4338 	while (node) {
4339 		prev = node;
4340 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4341 
4342 		if (objectid < btrfs_ino(entry))
4343 			node = node->rb_left;
4344 		else if (objectid > btrfs_ino(entry))
4345 			node = node->rb_right;
4346 		else
4347 			break;
4348 	}
4349 	if (!node) {
4350 		while (prev) {
4351 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4352 			if (objectid <= btrfs_ino(entry)) {
4353 				node = prev;
4354 				break;
4355 			}
4356 			prev = rb_next(prev);
4357 		}
4358 	}
4359 	while (node) {
4360 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4361 		objectid = btrfs_ino(entry) + 1;
4362 		inode = igrab(&entry->vfs_inode);
4363 		if (inode) {
4364 			spin_unlock(&root->inode_lock);
4365 			if (atomic_read(&inode->i_count) > 1)
4366 				d_prune_aliases(inode);
4367 			/*
4368 			 * btrfs_drop_inode will have it removed from the inode
4369 			 * cache when its usage count hits zero.
4370 			 */
4371 			iput(inode);
4372 			cond_resched();
4373 			spin_lock(&root->inode_lock);
4374 			goto again;
4375 		}
4376 
4377 		if (cond_resched_lock(&root->inode_lock))
4378 			goto again;
4379 
4380 		node = rb_next(node);
4381 	}
4382 	spin_unlock(&root->inode_lock);
4383 }
4384 
4385 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4386 {
4387 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4388 	struct btrfs_root *root = BTRFS_I(dir)->root;
4389 	struct inode *inode = d_inode(dentry);
4390 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4391 	struct btrfs_trans_handle *trans;
4392 	struct btrfs_block_rsv block_rsv;
4393 	u64 root_flags;
4394 	int ret;
4395 	int err;
4396 
4397 	/*
4398 	 * Don't allow to delete a subvolume with send in progress. This is
4399 	 * inside the inode lock so the error handling that has to drop the bit
4400 	 * again is not run concurrently.
4401 	 */
4402 	spin_lock(&dest->root_item_lock);
4403 	if (dest->send_in_progress) {
4404 		spin_unlock(&dest->root_item_lock);
4405 		btrfs_warn(fs_info,
4406 			   "attempt to delete subvolume %llu during send",
4407 			   dest->root_key.objectid);
4408 		return -EPERM;
4409 	}
4410 	root_flags = btrfs_root_flags(&dest->root_item);
4411 	btrfs_set_root_flags(&dest->root_item,
4412 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4413 	spin_unlock(&dest->root_item_lock);
4414 
4415 	down_write(&fs_info->subvol_sem);
4416 
4417 	err = may_destroy_subvol(dest);
4418 	if (err)
4419 		goto out_up_write;
4420 
4421 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4422 	/*
4423 	 * One for dir inode,
4424 	 * two for dir entries,
4425 	 * two for root ref/backref.
4426 	 */
4427 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4428 	if (err)
4429 		goto out_up_write;
4430 
4431 	trans = btrfs_start_transaction(root, 0);
4432 	if (IS_ERR(trans)) {
4433 		err = PTR_ERR(trans);
4434 		goto out_release;
4435 	}
4436 	trans->block_rsv = &block_rsv;
4437 	trans->bytes_reserved = block_rsv.size;
4438 
4439 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4440 
4441 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4442 				  dentry->d_name.name, dentry->d_name.len);
4443 	if (ret) {
4444 		err = ret;
4445 		btrfs_abort_transaction(trans, ret);
4446 		goto out_end_trans;
4447 	}
4448 
4449 	btrfs_record_root_in_trans(trans, dest);
4450 
4451 	memset(&dest->root_item.drop_progress, 0,
4452 		sizeof(dest->root_item.drop_progress));
4453 	dest->root_item.drop_level = 0;
4454 	btrfs_set_root_refs(&dest->root_item, 0);
4455 
4456 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4457 		ret = btrfs_insert_orphan_item(trans,
4458 					fs_info->tree_root,
4459 					dest->root_key.objectid);
4460 		if (ret) {
4461 			btrfs_abort_transaction(trans, ret);
4462 			err = ret;
4463 			goto out_end_trans;
4464 		}
4465 	}
4466 
4467 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4468 				  BTRFS_UUID_KEY_SUBVOL,
4469 				  dest->root_key.objectid);
4470 	if (ret && ret != -ENOENT) {
4471 		btrfs_abort_transaction(trans, ret);
4472 		err = ret;
4473 		goto out_end_trans;
4474 	}
4475 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4476 		ret = btrfs_uuid_tree_remove(trans,
4477 					  dest->root_item.received_uuid,
4478 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4479 					  dest->root_key.objectid);
4480 		if (ret && ret != -ENOENT) {
4481 			btrfs_abort_transaction(trans, ret);
4482 			err = ret;
4483 			goto out_end_trans;
4484 		}
4485 	}
4486 
4487 out_end_trans:
4488 	trans->block_rsv = NULL;
4489 	trans->bytes_reserved = 0;
4490 	ret = btrfs_end_transaction(trans);
4491 	if (ret && !err)
4492 		err = ret;
4493 	inode->i_flags |= S_DEAD;
4494 out_release:
4495 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4496 out_up_write:
4497 	up_write(&fs_info->subvol_sem);
4498 	if (err) {
4499 		spin_lock(&dest->root_item_lock);
4500 		root_flags = btrfs_root_flags(&dest->root_item);
4501 		btrfs_set_root_flags(&dest->root_item,
4502 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4503 		spin_unlock(&dest->root_item_lock);
4504 	} else {
4505 		d_invalidate(dentry);
4506 		btrfs_prune_dentries(dest);
4507 		ASSERT(dest->send_in_progress == 0);
4508 
4509 		/* the last ref */
4510 		if (dest->ino_cache_inode) {
4511 			iput(dest->ino_cache_inode);
4512 			dest->ino_cache_inode = NULL;
4513 		}
4514 	}
4515 
4516 	return err;
4517 }
4518 
4519 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4520 {
4521 	struct inode *inode = d_inode(dentry);
4522 	int err = 0;
4523 	struct btrfs_root *root = BTRFS_I(dir)->root;
4524 	struct btrfs_trans_handle *trans;
4525 	u64 last_unlink_trans;
4526 
4527 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4528 		return -ENOTEMPTY;
4529 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4530 		return btrfs_delete_subvolume(dir, dentry);
4531 
4532 	trans = __unlink_start_trans(dir);
4533 	if (IS_ERR(trans))
4534 		return PTR_ERR(trans);
4535 
4536 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4537 		err = btrfs_unlink_subvol(trans, dir,
4538 					  BTRFS_I(inode)->location.objectid,
4539 					  dentry->d_name.name,
4540 					  dentry->d_name.len);
4541 		goto out;
4542 	}
4543 
4544 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4545 	if (err)
4546 		goto out;
4547 
4548 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4549 
4550 	/* now the directory is empty */
4551 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4552 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4553 			dentry->d_name.len);
4554 	if (!err) {
4555 		btrfs_i_size_write(BTRFS_I(inode), 0);
4556 		/*
4557 		 * Propagate the last_unlink_trans value of the deleted dir to
4558 		 * its parent directory. This is to prevent an unrecoverable
4559 		 * log tree in the case we do something like this:
4560 		 * 1) create dir foo
4561 		 * 2) create snapshot under dir foo
4562 		 * 3) delete the snapshot
4563 		 * 4) rmdir foo
4564 		 * 5) mkdir foo
4565 		 * 6) fsync foo or some file inside foo
4566 		 */
4567 		if (last_unlink_trans >= trans->transid)
4568 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4569 	}
4570 out:
4571 	btrfs_end_transaction(trans);
4572 	btrfs_btree_balance_dirty(root->fs_info);
4573 
4574 	return err;
4575 }
4576 
4577 /*
4578  * Return this if we need to call truncate_block for the last bit of the
4579  * truncate.
4580  */
4581 #define NEED_TRUNCATE_BLOCK 1
4582 
4583 /*
4584  * this can truncate away extent items, csum items and directory items.
4585  * It starts at a high offset and removes keys until it can't find
4586  * any higher than new_size
4587  *
4588  * csum items that cross the new i_size are truncated to the new size
4589  * as well.
4590  *
4591  * min_type is the minimum key type to truncate down to.  If set to 0, this
4592  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4593  */
4594 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4595 			       struct btrfs_root *root,
4596 			       struct inode *inode,
4597 			       u64 new_size, u32 min_type)
4598 {
4599 	struct btrfs_fs_info *fs_info = root->fs_info;
4600 	struct btrfs_path *path;
4601 	struct extent_buffer *leaf;
4602 	struct btrfs_file_extent_item *fi;
4603 	struct btrfs_key key;
4604 	struct btrfs_key found_key;
4605 	u64 extent_start = 0;
4606 	u64 extent_num_bytes = 0;
4607 	u64 extent_offset = 0;
4608 	u64 item_end = 0;
4609 	u64 last_size = new_size;
4610 	u32 found_type = (u8)-1;
4611 	int found_extent;
4612 	int del_item;
4613 	int pending_del_nr = 0;
4614 	int pending_del_slot = 0;
4615 	int extent_type = -1;
4616 	int ret;
4617 	u64 ino = btrfs_ino(BTRFS_I(inode));
4618 	u64 bytes_deleted = 0;
4619 	bool be_nice = false;
4620 	bool should_throttle = false;
4621 
4622 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4623 
4624 	/*
4625 	 * for non-free space inodes and ref cows, we want to back off from
4626 	 * time to time
4627 	 */
4628 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4629 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4630 		be_nice = true;
4631 
4632 	path = btrfs_alloc_path();
4633 	if (!path)
4634 		return -ENOMEM;
4635 	path->reada = READA_BACK;
4636 
4637 	/*
4638 	 * We want to drop from the next block forward in case this new size is
4639 	 * not block aligned since we will be keeping the last block of the
4640 	 * extent just the way it is.
4641 	 */
4642 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4643 	    root == fs_info->tree_root)
4644 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4645 					fs_info->sectorsize),
4646 					(u64)-1, 0);
4647 
4648 	/*
4649 	 * This function is also used to drop the items in the log tree before
4650 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4651 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4652 	 * items.
4653 	 */
4654 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4655 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4656 
4657 	key.objectid = ino;
4658 	key.offset = (u64)-1;
4659 	key.type = (u8)-1;
4660 
4661 search_again:
4662 	/*
4663 	 * with a 16K leaf size and 128MB extents, you can actually queue
4664 	 * up a huge file in a single leaf.  Most of the time that
4665 	 * bytes_deleted is > 0, it will be huge by the time we get here
4666 	 */
4667 	if (be_nice && bytes_deleted > SZ_32M &&
4668 	    btrfs_should_end_transaction(trans)) {
4669 		ret = -EAGAIN;
4670 		goto out;
4671 	}
4672 
4673 	path->leave_spinning = 1;
4674 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4675 	if (ret < 0)
4676 		goto out;
4677 
4678 	if (ret > 0) {
4679 		ret = 0;
4680 		/* there are no items in the tree for us to truncate, we're
4681 		 * done
4682 		 */
4683 		if (path->slots[0] == 0)
4684 			goto out;
4685 		path->slots[0]--;
4686 	}
4687 
4688 	while (1) {
4689 		fi = NULL;
4690 		leaf = path->nodes[0];
4691 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4692 		found_type = found_key.type;
4693 
4694 		if (found_key.objectid != ino)
4695 			break;
4696 
4697 		if (found_type < min_type)
4698 			break;
4699 
4700 		item_end = found_key.offset;
4701 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4702 			fi = btrfs_item_ptr(leaf, path->slots[0],
4703 					    struct btrfs_file_extent_item);
4704 			extent_type = btrfs_file_extent_type(leaf, fi);
4705 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4706 				item_end +=
4707 				    btrfs_file_extent_num_bytes(leaf, fi);
4708 
4709 				trace_btrfs_truncate_show_fi_regular(
4710 					BTRFS_I(inode), leaf, fi,
4711 					found_key.offset);
4712 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4713 				item_end += btrfs_file_extent_ram_bytes(leaf,
4714 									fi);
4715 
4716 				trace_btrfs_truncate_show_fi_inline(
4717 					BTRFS_I(inode), leaf, fi, path->slots[0],
4718 					found_key.offset);
4719 			}
4720 			item_end--;
4721 		}
4722 		if (found_type > min_type) {
4723 			del_item = 1;
4724 		} else {
4725 			if (item_end < new_size)
4726 				break;
4727 			if (found_key.offset >= new_size)
4728 				del_item = 1;
4729 			else
4730 				del_item = 0;
4731 		}
4732 		found_extent = 0;
4733 		/* FIXME, shrink the extent if the ref count is only 1 */
4734 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4735 			goto delete;
4736 
4737 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4738 			u64 num_dec;
4739 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4740 			if (!del_item) {
4741 				u64 orig_num_bytes =
4742 					btrfs_file_extent_num_bytes(leaf, fi);
4743 				extent_num_bytes = ALIGN(new_size -
4744 						found_key.offset,
4745 						fs_info->sectorsize);
4746 				btrfs_set_file_extent_num_bytes(leaf, fi,
4747 							 extent_num_bytes);
4748 				num_dec = (orig_num_bytes -
4749 					   extent_num_bytes);
4750 				if (test_bit(BTRFS_ROOT_REF_COWS,
4751 					     &root->state) &&
4752 				    extent_start != 0)
4753 					inode_sub_bytes(inode, num_dec);
4754 				btrfs_mark_buffer_dirty(leaf);
4755 			} else {
4756 				extent_num_bytes =
4757 					btrfs_file_extent_disk_num_bytes(leaf,
4758 									 fi);
4759 				extent_offset = found_key.offset -
4760 					btrfs_file_extent_offset(leaf, fi);
4761 
4762 				/* FIXME blocksize != 4096 */
4763 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4764 				if (extent_start != 0) {
4765 					found_extent = 1;
4766 					if (test_bit(BTRFS_ROOT_REF_COWS,
4767 						     &root->state))
4768 						inode_sub_bytes(inode, num_dec);
4769 				}
4770 			}
4771 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4772 			/*
4773 			 * we can't truncate inline items that have had
4774 			 * special encodings
4775 			 */
4776 			if (!del_item &&
4777 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4778 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4779 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4780 				u32 size = (u32)(new_size - found_key.offset);
4781 
4782 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4783 				size = btrfs_file_extent_calc_inline_size(size);
4784 				btrfs_truncate_item(path, size, 1);
4785 			} else if (!del_item) {
4786 				/*
4787 				 * We have to bail so the last_size is set to
4788 				 * just before this extent.
4789 				 */
4790 				ret = NEED_TRUNCATE_BLOCK;
4791 				break;
4792 			}
4793 
4794 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4795 				inode_sub_bytes(inode, item_end + 1 - new_size);
4796 		}
4797 delete:
4798 		if (del_item)
4799 			last_size = found_key.offset;
4800 		else
4801 			last_size = new_size;
4802 		if (del_item) {
4803 			if (!pending_del_nr) {
4804 				/* no pending yet, add ourselves */
4805 				pending_del_slot = path->slots[0];
4806 				pending_del_nr = 1;
4807 			} else if (pending_del_nr &&
4808 				   path->slots[0] + 1 == pending_del_slot) {
4809 				/* hop on the pending chunk */
4810 				pending_del_nr++;
4811 				pending_del_slot = path->slots[0];
4812 			} else {
4813 				BUG();
4814 			}
4815 		} else {
4816 			break;
4817 		}
4818 		should_throttle = false;
4819 
4820 		if (found_extent &&
4821 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4822 		     root == fs_info->tree_root)) {
4823 			struct btrfs_ref ref = { 0 };
4824 
4825 			btrfs_set_path_blocking(path);
4826 			bytes_deleted += extent_num_bytes;
4827 
4828 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4829 					extent_start, extent_num_bytes, 0);
4830 			ref.real_root = root->root_key.objectid;
4831 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4832 					ino, extent_offset);
4833 			ret = btrfs_free_extent(trans, &ref);
4834 			if (ret) {
4835 				btrfs_abort_transaction(trans, ret);
4836 				break;
4837 			}
4838 			if (be_nice) {
4839 				if (btrfs_should_throttle_delayed_refs(trans))
4840 					should_throttle = true;
4841 			}
4842 		}
4843 
4844 		if (found_type == BTRFS_INODE_ITEM_KEY)
4845 			break;
4846 
4847 		if (path->slots[0] == 0 ||
4848 		    path->slots[0] != pending_del_slot ||
4849 		    should_throttle) {
4850 			if (pending_del_nr) {
4851 				ret = btrfs_del_items(trans, root, path,
4852 						pending_del_slot,
4853 						pending_del_nr);
4854 				if (ret) {
4855 					btrfs_abort_transaction(trans, ret);
4856 					break;
4857 				}
4858 				pending_del_nr = 0;
4859 			}
4860 			btrfs_release_path(path);
4861 
4862 			/*
4863 			 * We can generate a lot of delayed refs, so we need to
4864 			 * throttle every once and a while and make sure we're
4865 			 * adding enough space to keep up with the work we are
4866 			 * generating.  Since we hold a transaction here we
4867 			 * can't flush, and we don't want to FLUSH_LIMIT because
4868 			 * we could have generated too many delayed refs to
4869 			 * actually allocate, so just bail if we're short and
4870 			 * let the normal reservation dance happen higher up.
4871 			 */
4872 			if (should_throttle) {
4873 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4874 							BTRFS_RESERVE_NO_FLUSH);
4875 				if (ret) {
4876 					ret = -EAGAIN;
4877 					break;
4878 				}
4879 			}
4880 			goto search_again;
4881 		} else {
4882 			path->slots[0]--;
4883 		}
4884 	}
4885 out:
4886 	if (ret >= 0 && pending_del_nr) {
4887 		int err;
4888 
4889 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4890 				      pending_del_nr);
4891 		if (err) {
4892 			btrfs_abort_transaction(trans, err);
4893 			ret = err;
4894 		}
4895 	}
4896 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4897 		ASSERT(last_size >= new_size);
4898 		if (!ret && last_size > new_size)
4899 			last_size = new_size;
4900 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4901 	}
4902 
4903 	btrfs_free_path(path);
4904 	return ret;
4905 }
4906 
4907 /*
4908  * btrfs_truncate_block - read, zero a chunk and write a block
4909  * @inode - inode that we're zeroing
4910  * @from - the offset to start zeroing
4911  * @len - the length to zero, 0 to zero the entire range respective to the
4912  *	offset
4913  * @front - zero up to the offset instead of from the offset on
4914  *
4915  * This will find the block for the "from" offset and cow the block and zero the
4916  * part we want to zero.  This is used with truncate and hole punching.
4917  */
4918 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4919 			int front)
4920 {
4921 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4922 	struct address_space *mapping = inode->i_mapping;
4923 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4924 	struct btrfs_ordered_extent *ordered;
4925 	struct extent_state *cached_state = NULL;
4926 	struct extent_changeset *data_reserved = NULL;
4927 	char *kaddr;
4928 	u32 blocksize = fs_info->sectorsize;
4929 	pgoff_t index = from >> PAGE_SHIFT;
4930 	unsigned offset = from & (blocksize - 1);
4931 	struct page *page;
4932 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4933 	int ret = 0;
4934 	u64 block_start;
4935 	u64 block_end;
4936 
4937 	if (IS_ALIGNED(offset, blocksize) &&
4938 	    (!len || IS_ALIGNED(len, blocksize)))
4939 		goto out;
4940 
4941 	block_start = round_down(from, blocksize);
4942 	block_end = block_start + blocksize - 1;
4943 
4944 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4945 					   block_start, blocksize);
4946 	if (ret)
4947 		goto out;
4948 
4949 again:
4950 	page = find_or_create_page(mapping, index, mask);
4951 	if (!page) {
4952 		btrfs_delalloc_release_space(inode, data_reserved,
4953 					     block_start, blocksize, true);
4954 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4955 		ret = -ENOMEM;
4956 		goto out;
4957 	}
4958 
4959 	if (!PageUptodate(page)) {
4960 		ret = btrfs_readpage(NULL, page);
4961 		lock_page(page);
4962 		if (page->mapping != mapping) {
4963 			unlock_page(page);
4964 			put_page(page);
4965 			goto again;
4966 		}
4967 		if (!PageUptodate(page)) {
4968 			ret = -EIO;
4969 			goto out_unlock;
4970 		}
4971 	}
4972 	wait_on_page_writeback(page);
4973 
4974 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4975 	set_page_extent_mapped(page);
4976 
4977 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4978 	if (ordered) {
4979 		unlock_extent_cached(io_tree, block_start, block_end,
4980 				     &cached_state);
4981 		unlock_page(page);
4982 		put_page(page);
4983 		btrfs_start_ordered_extent(inode, ordered, 1);
4984 		btrfs_put_ordered_extent(ordered);
4985 		goto again;
4986 	}
4987 
4988 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4989 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4990 			 0, 0, &cached_state);
4991 
4992 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4993 					&cached_state);
4994 	if (ret) {
4995 		unlock_extent_cached(io_tree, block_start, block_end,
4996 				     &cached_state);
4997 		goto out_unlock;
4998 	}
4999 
5000 	if (offset != blocksize) {
5001 		if (!len)
5002 			len = blocksize - offset;
5003 		kaddr = kmap(page);
5004 		if (front)
5005 			memset(kaddr + (block_start - page_offset(page)),
5006 				0, offset);
5007 		else
5008 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5009 				0, len);
5010 		flush_dcache_page(page);
5011 		kunmap(page);
5012 	}
5013 	ClearPageChecked(page);
5014 	set_page_dirty(page);
5015 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5016 
5017 out_unlock:
5018 	if (ret)
5019 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5020 					     blocksize, true);
5021 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
5022 	unlock_page(page);
5023 	put_page(page);
5024 out:
5025 	extent_changeset_free(data_reserved);
5026 	return ret;
5027 }
5028 
5029 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5030 			     u64 offset, u64 len)
5031 {
5032 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5033 	struct btrfs_trans_handle *trans;
5034 	int ret;
5035 
5036 	/*
5037 	 * Still need to make sure the inode looks like it's been updated so
5038 	 * that any holes get logged if we fsync.
5039 	 */
5040 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5041 		BTRFS_I(inode)->last_trans = fs_info->generation;
5042 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5043 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5044 		return 0;
5045 	}
5046 
5047 	/*
5048 	 * 1 - for the one we're dropping
5049 	 * 1 - for the one we're adding
5050 	 * 1 - for updating the inode.
5051 	 */
5052 	trans = btrfs_start_transaction(root, 3);
5053 	if (IS_ERR(trans))
5054 		return PTR_ERR(trans);
5055 
5056 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5057 	if (ret) {
5058 		btrfs_abort_transaction(trans, ret);
5059 		btrfs_end_transaction(trans);
5060 		return ret;
5061 	}
5062 
5063 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5064 			offset, 0, 0, len, 0, len, 0, 0, 0);
5065 	if (ret)
5066 		btrfs_abort_transaction(trans, ret);
5067 	else
5068 		btrfs_update_inode(trans, root, inode);
5069 	btrfs_end_transaction(trans);
5070 	return ret;
5071 }
5072 
5073 /*
5074  * This function puts in dummy file extents for the area we're creating a hole
5075  * for.  So if we are truncating this file to a larger size we need to insert
5076  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5077  * the range between oldsize and size
5078  */
5079 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5080 {
5081 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5082 	struct btrfs_root *root = BTRFS_I(inode)->root;
5083 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084 	struct extent_map *em = NULL;
5085 	struct extent_state *cached_state = NULL;
5086 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5087 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5088 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5089 	u64 last_byte;
5090 	u64 cur_offset;
5091 	u64 hole_size;
5092 	int err = 0;
5093 
5094 	/*
5095 	 * If our size started in the middle of a block we need to zero out the
5096 	 * rest of the block before we expand the i_size, otherwise we could
5097 	 * expose stale data.
5098 	 */
5099 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5100 	if (err)
5101 		return err;
5102 
5103 	if (size <= hole_start)
5104 		return 0;
5105 
5106 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5107 					   block_end - 1, &cached_state);
5108 	cur_offset = hole_start;
5109 	while (1) {
5110 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5111 				block_end - cur_offset, 0);
5112 		if (IS_ERR(em)) {
5113 			err = PTR_ERR(em);
5114 			em = NULL;
5115 			break;
5116 		}
5117 		last_byte = min(extent_map_end(em), block_end);
5118 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5119 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5120 			struct extent_map *hole_em;
5121 			hole_size = last_byte - cur_offset;
5122 
5123 			err = maybe_insert_hole(root, inode, cur_offset,
5124 						hole_size);
5125 			if (err)
5126 				break;
5127 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5128 						cur_offset + hole_size - 1, 0);
5129 			hole_em = alloc_extent_map();
5130 			if (!hole_em) {
5131 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5132 					&BTRFS_I(inode)->runtime_flags);
5133 				goto next;
5134 			}
5135 			hole_em->start = cur_offset;
5136 			hole_em->len = hole_size;
5137 			hole_em->orig_start = cur_offset;
5138 
5139 			hole_em->block_start = EXTENT_MAP_HOLE;
5140 			hole_em->block_len = 0;
5141 			hole_em->orig_block_len = 0;
5142 			hole_em->ram_bytes = hole_size;
5143 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5144 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5145 			hole_em->generation = fs_info->generation;
5146 
5147 			while (1) {
5148 				write_lock(&em_tree->lock);
5149 				err = add_extent_mapping(em_tree, hole_em, 1);
5150 				write_unlock(&em_tree->lock);
5151 				if (err != -EEXIST)
5152 					break;
5153 				btrfs_drop_extent_cache(BTRFS_I(inode),
5154 							cur_offset,
5155 							cur_offset +
5156 							hole_size - 1, 0);
5157 			}
5158 			free_extent_map(hole_em);
5159 		}
5160 next:
5161 		free_extent_map(em);
5162 		em = NULL;
5163 		cur_offset = last_byte;
5164 		if (cur_offset >= block_end)
5165 			break;
5166 	}
5167 	free_extent_map(em);
5168 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5169 	return err;
5170 }
5171 
5172 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5173 {
5174 	struct btrfs_root *root = BTRFS_I(inode)->root;
5175 	struct btrfs_trans_handle *trans;
5176 	loff_t oldsize = i_size_read(inode);
5177 	loff_t newsize = attr->ia_size;
5178 	int mask = attr->ia_valid;
5179 	int ret;
5180 
5181 	/*
5182 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5183 	 * special case where we need to update the times despite not having
5184 	 * these flags set.  For all other operations the VFS set these flags
5185 	 * explicitly if it wants a timestamp update.
5186 	 */
5187 	if (newsize != oldsize) {
5188 		inode_inc_iversion(inode);
5189 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5190 			inode->i_ctime = inode->i_mtime =
5191 				current_time(inode);
5192 	}
5193 
5194 	if (newsize > oldsize) {
5195 		/*
5196 		 * Don't do an expanding truncate while snapshotting is ongoing.
5197 		 * This is to ensure the snapshot captures a fully consistent
5198 		 * state of this file - if the snapshot captures this expanding
5199 		 * truncation, it must capture all writes that happened before
5200 		 * this truncation.
5201 		 */
5202 		btrfs_wait_for_snapshot_creation(root);
5203 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5204 		if (ret) {
5205 			btrfs_end_write_no_snapshotting(root);
5206 			return ret;
5207 		}
5208 
5209 		trans = btrfs_start_transaction(root, 1);
5210 		if (IS_ERR(trans)) {
5211 			btrfs_end_write_no_snapshotting(root);
5212 			return PTR_ERR(trans);
5213 		}
5214 
5215 		i_size_write(inode, newsize);
5216 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5217 		pagecache_isize_extended(inode, oldsize, newsize);
5218 		ret = btrfs_update_inode(trans, root, inode);
5219 		btrfs_end_write_no_snapshotting(root);
5220 		btrfs_end_transaction(trans);
5221 	} else {
5222 
5223 		/*
5224 		 * We're truncating a file that used to have good data down to
5225 		 * zero. Make sure it gets into the ordered flush list so that
5226 		 * any new writes get down to disk quickly.
5227 		 */
5228 		if (newsize == 0)
5229 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5230 				&BTRFS_I(inode)->runtime_flags);
5231 
5232 		truncate_setsize(inode, newsize);
5233 
5234 		/* Disable nonlocked read DIO to avoid the endless truncate */
5235 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5236 		inode_dio_wait(inode);
5237 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5238 
5239 		ret = btrfs_truncate(inode, newsize == oldsize);
5240 		if (ret && inode->i_nlink) {
5241 			int err;
5242 
5243 			/*
5244 			 * Truncate failed, so fix up the in-memory size. We
5245 			 * adjusted disk_i_size down as we removed extents, so
5246 			 * wait for disk_i_size to be stable and then update the
5247 			 * in-memory size to match.
5248 			 */
5249 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5250 			if (err)
5251 				return err;
5252 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5253 		}
5254 	}
5255 
5256 	return ret;
5257 }
5258 
5259 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5260 {
5261 	struct inode *inode = d_inode(dentry);
5262 	struct btrfs_root *root = BTRFS_I(inode)->root;
5263 	int err;
5264 
5265 	if (btrfs_root_readonly(root))
5266 		return -EROFS;
5267 
5268 	err = setattr_prepare(dentry, attr);
5269 	if (err)
5270 		return err;
5271 
5272 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5273 		err = btrfs_setsize(inode, attr);
5274 		if (err)
5275 			return err;
5276 	}
5277 
5278 	if (attr->ia_valid) {
5279 		setattr_copy(inode, attr);
5280 		inode_inc_iversion(inode);
5281 		err = btrfs_dirty_inode(inode);
5282 
5283 		if (!err && attr->ia_valid & ATTR_MODE)
5284 			err = posix_acl_chmod(inode, inode->i_mode);
5285 	}
5286 
5287 	return err;
5288 }
5289 
5290 /*
5291  * While truncating the inode pages during eviction, we get the VFS calling
5292  * btrfs_invalidatepage() against each page of the inode. This is slow because
5293  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5294  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5295  * extent_state structures over and over, wasting lots of time.
5296  *
5297  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5298  * those expensive operations on a per page basis and do only the ordered io
5299  * finishing, while we release here the extent_map and extent_state structures,
5300  * without the excessive merging and splitting.
5301  */
5302 static void evict_inode_truncate_pages(struct inode *inode)
5303 {
5304 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5305 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5306 	struct rb_node *node;
5307 
5308 	ASSERT(inode->i_state & I_FREEING);
5309 	truncate_inode_pages_final(&inode->i_data);
5310 
5311 	write_lock(&map_tree->lock);
5312 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5313 		struct extent_map *em;
5314 
5315 		node = rb_first_cached(&map_tree->map);
5316 		em = rb_entry(node, struct extent_map, rb_node);
5317 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5318 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5319 		remove_extent_mapping(map_tree, em);
5320 		free_extent_map(em);
5321 		if (need_resched()) {
5322 			write_unlock(&map_tree->lock);
5323 			cond_resched();
5324 			write_lock(&map_tree->lock);
5325 		}
5326 	}
5327 	write_unlock(&map_tree->lock);
5328 
5329 	/*
5330 	 * Keep looping until we have no more ranges in the io tree.
5331 	 * We can have ongoing bios started by readpages (called from readahead)
5332 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5333 	 * still in progress (unlocked the pages in the bio but did not yet
5334 	 * unlocked the ranges in the io tree). Therefore this means some
5335 	 * ranges can still be locked and eviction started because before
5336 	 * submitting those bios, which are executed by a separate task (work
5337 	 * queue kthread), inode references (inode->i_count) were not taken
5338 	 * (which would be dropped in the end io callback of each bio).
5339 	 * Therefore here we effectively end up waiting for those bios and
5340 	 * anyone else holding locked ranges without having bumped the inode's
5341 	 * reference count - if we don't do it, when they access the inode's
5342 	 * io_tree to unlock a range it may be too late, leading to an
5343 	 * use-after-free issue.
5344 	 */
5345 	spin_lock(&io_tree->lock);
5346 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5347 		struct extent_state *state;
5348 		struct extent_state *cached_state = NULL;
5349 		u64 start;
5350 		u64 end;
5351 		unsigned state_flags;
5352 
5353 		node = rb_first(&io_tree->state);
5354 		state = rb_entry(node, struct extent_state, rb_node);
5355 		start = state->start;
5356 		end = state->end;
5357 		state_flags = state->state;
5358 		spin_unlock(&io_tree->lock);
5359 
5360 		lock_extent_bits(io_tree, start, end, &cached_state);
5361 
5362 		/*
5363 		 * If still has DELALLOC flag, the extent didn't reach disk,
5364 		 * and its reserved space won't be freed by delayed_ref.
5365 		 * So we need to free its reserved space here.
5366 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5367 		 *
5368 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5369 		 */
5370 		if (state_flags & EXTENT_DELALLOC)
5371 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5372 
5373 		clear_extent_bit(io_tree, start, end,
5374 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5375 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5376 				 &cached_state);
5377 
5378 		cond_resched();
5379 		spin_lock(&io_tree->lock);
5380 	}
5381 	spin_unlock(&io_tree->lock);
5382 }
5383 
5384 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5385 							struct btrfs_block_rsv *rsv)
5386 {
5387 	struct btrfs_fs_info *fs_info = root->fs_info;
5388 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5389 	struct btrfs_trans_handle *trans;
5390 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5391 	int ret;
5392 
5393 	/*
5394 	 * Eviction should be taking place at some place safe because of our
5395 	 * delayed iputs.  However the normal flushing code will run delayed
5396 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5397 	 *
5398 	 * We reserve the delayed_refs_extra here again because we can't use
5399 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5400 	 * above.  We reserve our extra bit here because we generate a ton of
5401 	 * delayed refs activity by truncating.
5402 	 *
5403 	 * If we cannot make our reservation we'll attempt to steal from the
5404 	 * global reserve, because we really want to be able to free up space.
5405 	 */
5406 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5407 				     BTRFS_RESERVE_FLUSH_EVICT);
5408 	if (ret) {
5409 		/*
5410 		 * Try to steal from the global reserve if there is space for
5411 		 * it.
5412 		 */
5413 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5414 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5415 			btrfs_warn(fs_info,
5416 				   "could not allocate space for delete; will truncate on mount");
5417 			return ERR_PTR(-ENOSPC);
5418 		}
5419 		delayed_refs_extra = 0;
5420 	}
5421 
5422 	trans = btrfs_join_transaction(root);
5423 	if (IS_ERR(trans))
5424 		return trans;
5425 
5426 	if (delayed_refs_extra) {
5427 		trans->block_rsv = &fs_info->trans_block_rsv;
5428 		trans->bytes_reserved = delayed_refs_extra;
5429 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5430 					delayed_refs_extra, 1);
5431 	}
5432 	return trans;
5433 }
5434 
5435 void btrfs_evict_inode(struct inode *inode)
5436 {
5437 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5438 	struct btrfs_trans_handle *trans;
5439 	struct btrfs_root *root = BTRFS_I(inode)->root;
5440 	struct btrfs_block_rsv *rsv;
5441 	int ret;
5442 
5443 	trace_btrfs_inode_evict(inode);
5444 
5445 	if (!root) {
5446 		clear_inode(inode);
5447 		return;
5448 	}
5449 
5450 	evict_inode_truncate_pages(inode);
5451 
5452 	if (inode->i_nlink &&
5453 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5454 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5455 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5456 		goto no_delete;
5457 
5458 	if (is_bad_inode(inode))
5459 		goto no_delete;
5460 
5461 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5462 
5463 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5464 		goto no_delete;
5465 
5466 	if (inode->i_nlink > 0) {
5467 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5468 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5469 		goto no_delete;
5470 	}
5471 
5472 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5473 	if (ret)
5474 		goto no_delete;
5475 
5476 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5477 	if (!rsv)
5478 		goto no_delete;
5479 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5480 	rsv->failfast = 1;
5481 
5482 	btrfs_i_size_write(BTRFS_I(inode), 0);
5483 
5484 	while (1) {
5485 		trans = evict_refill_and_join(root, rsv);
5486 		if (IS_ERR(trans))
5487 			goto free_rsv;
5488 
5489 		trans->block_rsv = rsv;
5490 
5491 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5492 		trans->block_rsv = &fs_info->trans_block_rsv;
5493 		btrfs_end_transaction(trans);
5494 		btrfs_btree_balance_dirty(fs_info);
5495 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5496 			goto free_rsv;
5497 		else if (!ret)
5498 			break;
5499 	}
5500 
5501 	/*
5502 	 * Errors here aren't a big deal, it just means we leave orphan items in
5503 	 * the tree. They will be cleaned up on the next mount. If the inode
5504 	 * number gets reused, cleanup deletes the orphan item without doing
5505 	 * anything, and unlink reuses the existing orphan item.
5506 	 *
5507 	 * If it turns out that we are dropping too many of these, we might want
5508 	 * to add a mechanism for retrying these after a commit.
5509 	 */
5510 	trans = evict_refill_and_join(root, rsv);
5511 	if (!IS_ERR(trans)) {
5512 		trans->block_rsv = rsv;
5513 		btrfs_orphan_del(trans, BTRFS_I(inode));
5514 		trans->block_rsv = &fs_info->trans_block_rsv;
5515 		btrfs_end_transaction(trans);
5516 	}
5517 
5518 	if (!(root == fs_info->tree_root ||
5519 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5520 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5521 
5522 free_rsv:
5523 	btrfs_free_block_rsv(fs_info, rsv);
5524 no_delete:
5525 	/*
5526 	 * If we didn't successfully delete, the orphan item will still be in
5527 	 * the tree and we'll retry on the next mount. Again, we might also want
5528 	 * to retry these periodically in the future.
5529 	 */
5530 	btrfs_remove_delayed_node(BTRFS_I(inode));
5531 	clear_inode(inode);
5532 }
5533 
5534 /*
5535  * Return the key found in the dir entry in the location pointer, fill @type
5536  * with BTRFS_FT_*, and return 0.
5537  *
5538  * If no dir entries were found, returns -ENOENT.
5539  * If found a corrupted location in dir entry, returns -EUCLEAN.
5540  */
5541 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5542 			       struct btrfs_key *location, u8 *type)
5543 {
5544 	const char *name = dentry->d_name.name;
5545 	int namelen = dentry->d_name.len;
5546 	struct btrfs_dir_item *di;
5547 	struct btrfs_path *path;
5548 	struct btrfs_root *root = BTRFS_I(dir)->root;
5549 	int ret = 0;
5550 
5551 	path = btrfs_alloc_path();
5552 	if (!path)
5553 		return -ENOMEM;
5554 
5555 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5556 			name, namelen, 0);
5557 	if (IS_ERR_OR_NULL(di)) {
5558 		ret = di ? PTR_ERR(di) : -ENOENT;
5559 		goto out;
5560 	}
5561 
5562 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5563 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5564 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5565 		ret = -EUCLEAN;
5566 		btrfs_warn(root->fs_info,
5567 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5568 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5569 			   location->objectid, location->type, location->offset);
5570 	}
5571 	if (!ret)
5572 		*type = btrfs_dir_type(path->nodes[0], di);
5573 out:
5574 	btrfs_free_path(path);
5575 	return ret;
5576 }
5577 
5578 /*
5579  * when we hit a tree root in a directory, the btrfs part of the inode
5580  * needs to be changed to reflect the root directory of the tree root.  This
5581  * is kind of like crossing a mount point.
5582  */
5583 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5584 				    struct inode *dir,
5585 				    struct dentry *dentry,
5586 				    struct btrfs_key *location,
5587 				    struct btrfs_root **sub_root)
5588 {
5589 	struct btrfs_path *path;
5590 	struct btrfs_root *new_root;
5591 	struct btrfs_root_ref *ref;
5592 	struct extent_buffer *leaf;
5593 	struct btrfs_key key;
5594 	int ret;
5595 	int err = 0;
5596 
5597 	path = btrfs_alloc_path();
5598 	if (!path) {
5599 		err = -ENOMEM;
5600 		goto out;
5601 	}
5602 
5603 	err = -ENOENT;
5604 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5605 	key.type = BTRFS_ROOT_REF_KEY;
5606 	key.offset = location->objectid;
5607 
5608 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5609 	if (ret) {
5610 		if (ret < 0)
5611 			err = ret;
5612 		goto out;
5613 	}
5614 
5615 	leaf = path->nodes[0];
5616 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5617 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5618 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5619 		goto out;
5620 
5621 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5622 				   (unsigned long)(ref + 1),
5623 				   dentry->d_name.len);
5624 	if (ret)
5625 		goto out;
5626 
5627 	btrfs_release_path(path);
5628 
5629 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5630 	if (IS_ERR(new_root)) {
5631 		err = PTR_ERR(new_root);
5632 		goto out;
5633 	}
5634 
5635 	*sub_root = new_root;
5636 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5637 	location->type = BTRFS_INODE_ITEM_KEY;
5638 	location->offset = 0;
5639 	err = 0;
5640 out:
5641 	btrfs_free_path(path);
5642 	return err;
5643 }
5644 
5645 static void inode_tree_add(struct inode *inode)
5646 {
5647 	struct btrfs_root *root = BTRFS_I(inode)->root;
5648 	struct btrfs_inode *entry;
5649 	struct rb_node **p;
5650 	struct rb_node *parent;
5651 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5652 	u64 ino = btrfs_ino(BTRFS_I(inode));
5653 
5654 	if (inode_unhashed(inode))
5655 		return;
5656 	parent = NULL;
5657 	spin_lock(&root->inode_lock);
5658 	p = &root->inode_tree.rb_node;
5659 	while (*p) {
5660 		parent = *p;
5661 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5662 
5663 		if (ino < btrfs_ino(entry))
5664 			p = &parent->rb_left;
5665 		else if (ino > btrfs_ino(entry))
5666 			p = &parent->rb_right;
5667 		else {
5668 			WARN_ON(!(entry->vfs_inode.i_state &
5669 				  (I_WILL_FREE | I_FREEING)));
5670 			rb_replace_node(parent, new, &root->inode_tree);
5671 			RB_CLEAR_NODE(parent);
5672 			spin_unlock(&root->inode_lock);
5673 			return;
5674 		}
5675 	}
5676 	rb_link_node(new, parent, p);
5677 	rb_insert_color(new, &root->inode_tree);
5678 	spin_unlock(&root->inode_lock);
5679 }
5680 
5681 static void inode_tree_del(struct inode *inode)
5682 {
5683 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5684 	struct btrfs_root *root = BTRFS_I(inode)->root;
5685 	int empty = 0;
5686 
5687 	spin_lock(&root->inode_lock);
5688 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5689 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5690 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5691 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5692 	}
5693 	spin_unlock(&root->inode_lock);
5694 
5695 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5696 		synchronize_srcu(&fs_info->subvol_srcu);
5697 		spin_lock(&root->inode_lock);
5698 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5699 		spin_unlock(&root->inode_lock);
5700 		if (empty)
5701 			btrfs_add_dead_root(root);
5702 	}
5703 }
5704 
5705 
5706 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5707 {
5708 	struct btrfs_iget_args *args = p;
5709 	inode->i_ino = args->location->objectid;
5710 	memcpy(&BTRFS_I(inode)->location, args->location,
5711 	       sizeof(*args->location));
5712 	BTRFS_I(inode)->root = args->root;
5713 	return 0;
5714 }
5715 
5716 static int btrfs_find_actor(struct inode *inode, void *opaque)
5717 {
5718 	struct btrfs_iget_args *args = opaque;
5719 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5720 		args->root == BTRFS_I(inode)->root;
5721 }
5722 
5723 static struct inode *btrfs_iget_locked(struct super_block *s,
5724 				       struct btrfs_key *location,
5725 				       struct btrfs_root *root)
5726 {
5727 	struct inode *inode;
5728 	struct btrfs_iget_args args;
5729 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5730 
5731 	args.location = location;
5732 	args.root = root;
5733 
5734 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5735 			     btrfs_init_locked_inode,
5736 			     (void *)&args);
5737 	return inode;
5738 }
5739 
5740 /* Get an inode object given its location and corresponding root.
5741  * Returns in *is_new if the inode was read from disk
5742  */
5743 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5744 			      struct btrfs_root *root, int *new,
5745 			      struct btrfs_path *path)
5746 {
5747 	struct inode *inode;
5748 
5749 	inode = btrfs_iget_locked(s, location, root);
5750 	if (!inode)
5751 		return ERR_PTR(-ENOMEM);
5752 
5753 	if (inode->i_state & I_NEW) {
5754 		int ret;
5755 
5756 		ret = btrfs_read_locked_inode(inode, path);
5757 		if (!ret) {
5758 			inode_tree_add(inode);
5759 			unlock_new_inode(inode);
5760 			if (new)
5761 				*new = 1;
5762 		} else {
5763 			iget_failed(inode);
5764 			/*
5765 			 * ret > 0 can come from btrfs_search_slot called by
5766 			 * btrfs_read_locked_inode, this means the inode item
5767 			 * was not found.
5768 			 */
5769 			if (ret > 0)
5770 				ret = -ENOENT;
5771 			inode = ERR_PTR(ret);
5772 		}
5773 	}
5774 
5775 	return inode;
5776 }
5777 
5778 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5779 			 struct btrfs_root *root, int *new)
5780 {
5781 	return btrfs_iget_path(s, location, root, new, NULL);
5782 }
5783 
5784 static struct inode *new_simple_dir(struct super_block *s,
5785 				    struct btrfs_key *key,
5786 				    struct btrfs_root *root)
5787 {
5788 	struct inode *inode = new_inode(s);
5789 
5790 	if (!inode)
5791 		return ERR_PTR(-ENOMEM);
5792 
5793 	BTRFS_I(inode)->root = root;
5794 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5795 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5796 
5797 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5798 	inode->i_op = &btrfs_dir_ro_inode_operations;
5799 	inode->i_opflags &= ~IOP_XATTR;
5800 	inode->i_fop = &simple_dir_operations;
5801 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5802 	inode->i_mtime = current_time(inode);
5803 	inode->i_atime = inode->i_mtime;
5804 	inode->i_ctime = inode->i_mtime;
5805 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5806 
5807 	return inode;
5808 }
5809 
5810 static inline u8 btrfs_inode_type(struct inode *inode)
5811 {
5812 	/*
5813 	 * Compile-time asserts that generic FT_* types still match
5814 	 * BTRFS_FT_* types
5815 	 */
5816 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5817 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5818 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5819 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5820 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5821 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5822 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5823 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5824 
5825 	return fs_umode_to_ftype(inode->i_mode);
5826 }
5827 
5828 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5829 {
5830 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5831 	struct inode *inode;
5832 	struct btrfs_root *root = BTRFS_I(dir)->root;
5833 	struct btrfs_root *sub_root = root;
5834 	struct btrfs_key location;
5835 	u8 di_type = 0;
5836 	int index;
5837 	int ret = 0;
5838 
5839 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5840 		return ERR_PTR(-ENAMETOOLONG);
5841 
5842 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5843 	if (ret < 0)
5844 		return ERR_PTR(ret);
5845 
5846 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5847 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5848 		if (IS_ERR(inode))
5849 			return inode;
5850 
5851 		/* Do extra check against inode mode with di_type */
5852 		if (btrfs_inode_type(inode) != di_type) {
5853 			btrfs_crit(fs_info,
5854 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5855 				  inode->i_mode, btrfs_inode_type(inode),
5856 				  di_type);
5857 			iput(inode);
5858 			return ERR_PTR(-EUCLEAN);
5859 		}
5860 		return inode;
5861 	}
5862 
5863 	index = srcu_read_lock(&fs_info->subvol_srcu);
5864 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5865 				       &location, &sub_root);
5866 	if (ret < 0) {
5867 		if (ret != -ENOENT)
5868 			inode = ERR_PTR(ret);
5869 		else
5870 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5871 	} else {
5872 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5873 	}
5874 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5875 
5876 	if (!IS_ERR(inode) && root != sub_root) {
5877 		down_read(&fs_info->cleanup_work_sem);
5878 		if (!sb_rdonly(inode->i_sb))
5879 			ret = btrfs_orphan_cleanup(sub_root);
5880 		up_read(&fs_info->cleanup_work_sem);
5881 		if (ret) {
5882 			iput(inode);
5883 			inode = ERR_PTR(ret);
5884 		}
5885 	}
5886 
5887 	return inode;
5888 }
5889 
5890 static int btrfs_dentry_delete(const struct dentry *dentry)
5891 {
5892 	struct btrfs_root *root;
5893 	struct inode *inode = d_inode(dentry);
5894 
5895 	if (!inode && !IS_ROOT(dentry))
5896 		inode = d_inode(dentry->d_parent);
5897 
5898 	if (inode) {
5899 		root = BTRFS_I(inode)->root;
5900 		if (btrfs_root_refs(&root->root_item) == 0)
5901 			return 1;
5902 
5903 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5904 			return 1;
5905 	}
5906 	return 0;
5907 }
5908 
5909 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5910 				   unsigned int flags)
5911 {
5912 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5913 
5914 	if (inode == ERR_PTR(-ENOENT))
5915 		inode = NULL;
5916 	return d_splice_alias(inode, dentry);
5917 }
5918 
5919 /*
5920  * All this infrastructure exists because dir_emit can fault, and we are holding
5921  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5922  * our information into that, and then dir_emit from the buffer.  This is
5923  * similar to what NFS does, only we don't keep the buffer around in pagecache
5924  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5925  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5926  * tree lock.
5927  */
5928 static int btrfs_opendir(struct inode *inode, struct file *file)
5929 {
5930 	struct btrfs_file_private *private;
5931 
5932 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5933 	if (!private)
5934 		return -ENOMEM;
5935 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5936 	if (!private->filldir_buf) {
5937 		kfree(private);
5938 		return -ENOMEM;
5939 	}
5940 	file->private_data = private;
5941 	return 0;
5942 }
5943 
5944 struct dir_entry {
5945 	u64 ino;
5946 	u64 offset;
5947 	unsigned type;
5948 	int name_len;
5949 };
5950 
5951 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5952 {
5953 	while (entries--) {
5954 		struct dir_entry *entry = addr;
5955 		char *name = (char *)(entry + 1);
5956 
5957 		ctx->pos = get_unaligned(&entry->offset);
5958 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5959 					 get_unaligned(&entry->ino),
5960 					 get_unaligned(&entry->type)))
5961 			return 1;
5962 		addr += sizeof(struct dir_entry) +
5963 			get_unaligned(&entry->name_len);
5964 		ctx->pos++;
5965 	}
5966 	return 0;
5967 }
5968 
5969 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5970 {
5971 	struct inode *inode = file_inode(file);
5972 	struct btrfs_root *root = BTRFS_I(inode)->root;
5973 	struct btrfs_file_private *private = file->private_data;
5974 	struct btrfs_dir_item *di;
5975 	struct btrfs_key key;
5976 	struct btrfs_key found_key;
5977 	struct btrfs_path *path;
5978 	void *addr;
5979 	struct list_head ins_list;
5980 	struct list_head del_list;
5981 	int ret;
5982 	struct extent_buffer *leaf;
5983 	int slot;
5984 	char *name_ptr;
5985 	int name_len;
5986 	int entries = 0;
5987 	int total_len = 0;
5988 	bool put = false;
5989 	struct btrfs_key location;
5990 
5991 	if (!dir_emit_dots(file, ctx))
5992 		return 0;
5993 
5994 	path = btrfs_alloc_path();
5995 	if (!path)
5996 		return -ENOMEM;
5997 
5998 	addr = private->filldir_buf;
5999 	path->reada = READA_FORWARD;
6000 
6001 	INIT_LIST_HEAD(&ins_list);
6002 	INIT_LIST_HEAD(&del_list);
6003 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6004 
6005 again:
6006 	key.type = BTRFS_DIR_INDEX_KEY;
6007 	key.offset = ctx->pos;
6008 	key.objectid = btrfs_ino(BTRFS_I(inode));
6009 
6010 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6011 	if (ret < 0)
6012 		goto err;
6013 
6014 	while (1) {
6015 		struct dir_entry *entry;
6016 
6017 		leaf = path->nodes[0];
6018 		slot = path->slots[0];
6019 		if (slot >= btrfs_header_nritems(leaf)) {
6020 			ret = btrfs_next_leaf(root, path);
6021 			if (ret < 0)
6022 				goto err;
6023 			else if (ret > 0)
6024 				break;
6025 			continue;
6026 		}
6027 
6028 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6029 
6030 		if (found_key.objectid != key.objectid)
6031 			break;
6032 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6033 			break;
6034 		if (found_key.offset < ctx->pos)
6035 			goto next;
6036 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6037 			goto next;
6038 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6039 		name_len = btrfs_dir_name_len(leaf, di);
6040 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6041 		    PAGE_SIZE) {
6042 			btrfs_release_path(path);
6043 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6044 			if (ret)
6045 				goto nopos;
6046 			addr = private->filldir_buf;
6047 			entries = 0;
6048 			total_len = 0;
6049 			goto again;
6050 		}
6051 
6052 		entry = addr;
6053 		put_unaligned(name_len, &entry->name_len);
6054 		name_ptr = (char *)(entry + 1);
6055 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6056 				   name_len);
6057 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6058 				&entry->type);
6059 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6060 		put_unaligned(location.objectid, &entry->ino);
6061 		put_unaligned(found_key.offset, &entry->offset);
6062 		entries++;
6063 		addr += sizeof(struct dir_entry) + name_len;
6064 		total_len += sizeof(struct dir_entry) + name_len;
6065 next:
6066 		path->slots[0]++;
6067 	}
6068 	btrfs_release_path(path);
6069 
6070 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6071 	if (ret)
6072 		goto nopos;
6073 
6074 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6075 	if (ret)
6076 		goto nopos;
6077 
6078 	/*
6079 	 * Stop new entries from being returned after we return the last
6080 	 * entry.
6081 	 *
6082 	 * New directory entries are assigned a strictly increasing
6083 	 * offset.  This means that new entries created during readdir
6084 	 * are *guaranteed* to be seen in the future by that readdir.
6085 	 * This has broken buggy programs which operate on names as
6086 	 * they're returned by readdir.  Until we re-use freed offsets
6087 	 * we have this hack to stop new entries from being returned
6088 	 * under the assumption that they'll never reach this huge
6089 	 * offset.
6090 	 *
6091 	 * This is being careful not to overflow 32bit loff_t unless the
6092 	 * last entry requires it because doing so has broken 32bit apps
6093 	 * in the past.
6094 	 */
6095 	if (ctx->pos >= INT_MAX)
6096 		ctx->pos = LLONG_MAX;
6097 	else
6098 		ctx->pos = INT_MAX;
6099 nopos:
6100 	ret = 0;
6101 err:
6102 	if (put)
6103 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6104 	btrfs_free_path(path);
6105 	return ret;
6106 }
6107 
6108 /*
6109  * This is somewhat expensive, updating the tree every time the
6110  * inode changes.  But, it is most likely to find the inode in cache.
6111  * FIXME, needs more benchmarking...there are no reasons other than performance
6112  * to keep or drop this code.
6113  */
6114 static int btrfs_dirty_inode(struct inode *inode)
6115 {
6116 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6117 	struct btrfs_root *root = BTRFS_I(inode)->root;
6118 	struct btrfs_trans_handle *trans;
6119 	int ret;
6120 
6121 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6122 		return 0;
6123 
6124 	trans = btrfs_join_transaction(root);
6125 	if (IS_ERR(trans))
6126 		return PTR_ERR(trans);
6127 
6128 	ret = btrfs_update_inode(trans, root, inode);
6129 	if (ret && ret == -ENOSPC) {
6130 		/* whoops, lets try again with the full transaction */
6131 		btrfs_end_transaction(trans);
6132 		trans = btrfs_start_transaction(root, 1);
6133 		if (IS_ERR(trans))
6134 			return PTR_ERR(trans);
6135 
6136 		ret = btrfs_update_inode(trans, root, inode);
6137 	}
6138 	btrfs_end_transaction(trans);
6139 	if (BTRFS_I(inode)->delayed_node)
6140 		btrfs_balance_delayed_items(fs_info);
6141 
6142 	return ret;
6143 }
6144 
6145 /*
6146  * This is a copy of file_update_time.  We need this so we can return error on
6147  * ENOSPC for updating the inode in the case of file write and mmap writes.
6148  */
6149 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6150 			     int flags)
6151 {
6152 	struct btrfs_root *root = BTRFS_I(inode)->root;
6153 	bool dirty = flags & ~S_VERSION;
6154 
6155 	if (btrfs_root_readonly(root))
6156 		return -EROFS;
6157 
6158 	if (flags & S_VERSION)
6159 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6160 	if (flags & S_CTIME)
6161 		inode->i_ctime = *now;
6162 	if (flags & S_MTIME)
6163 		inode->i_mtime = *now;
6164 	if (flags & S_ATIME)
6165 		inode->i_atime = *now;
6166 	return dirty ? btrfs_dirty_inode(inode) : 0;
6167 }
6168 
6169 /*
6170  * find the highest existing sequence number in a directory
6171  * and then set the in-memory index_cnt variable to reflect
6172  * free sequence numbers
6173  */
6174 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6175 {
6176 	struct btrfs_root *root = inode->root;
6177 	struct btrfs_key key, found_key;
6178 	struct btrfs_path *path;
6179 	struct extent_buffer *leaf;
6180 	int ret;
6181 
6182 	key.objectid = btrfs_ino(inode);
6183 	key.type = BTRFS_DIR_INDEX_KEY;
6184 	key.offset = (u64)-1;
6185 
6186 	path = btrfs_alloc_path();
6187 	if (!path)
6188 		return -ENOMEM;
6189 
6190 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6191 	if (ret < 0)
6192 		goto out;
6193 	/* FIXME: we should be able to handle this */
6194 	if (ret == 0)
6195 		goto out;
6196 	ret = 0;
6197 
6198 	/*
6199 	 * MAGIC NUMBER EXPLANATION:
6200 	 * since we search a directory based on f_pos we have to start at 2
6201 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6202 	 * else has to start at 2
6203 	 */
6204 	if (path->slots[0] == 0) {
6205 		inode->index_cnt = 2;
6206 		goto out;
6207 	}
6208 
6209 	path->slots[0]--;
6210 
6211 	leaf = path->nodes[0];
6212 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6213 
6214 	if (found_key.objectid != btrfs_ino(inode) ||
6215 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6216 		inode->index_cnt = 2;
6217 		goto out;
6218 	}
6219 
6220 	inode->index_cnt = found_key.offset + 1;
6221 out:
6222 	btrfs_free_path(path);
6223 	return ret;
6224 }
6225 
6226 /*
6227  * helper to find a free sequence number in a given directory.  This current
6228  * code is very simple, later versions will do smarter things in the btree
6229  */
6230 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6231 {
6232 	int ret = 0;
6233 
6234 	if (dir->index_cnt == (u64)-1) {
6235 		ret = btrfs_inode_delayed_dir_index_count(dir);
6236 		if (ret) {
6237 			ret = btrfs_set_inode_index_count(dir);
6238 			if (ret)
6239 				return ret;
6240 		}
6241 	}
6242 
6243 	*index = dir->index_cnt;
6244 	dir->index_cnt++;
6245 
6246 	return ret;
6247 }
6248 
6249 static int btrfs_insert_inode_locked(struct inode *inode)
6250 {
6251 	struct btrfs_iget_args args;
6252 	args.location = &BTRFS_I(inode)->location;
6253 	args.root = BTRFS_I(inode)->root;
6254 
6255 	return insert_inode_locked4(inode,
6256 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6257 		   btrfs_find_actor, &args);
6258 }
6259 
6260 /*
6261  * Inherit flags from the parent inode.
6262  *
6263  * Currently only the compression flags and the cow flags are inherited.
6264  */
6265 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6266 {
6267 	unsigned int flags;
6268 
6269 	if (!dir)
6270 		return;
6271 
6272 	flags = BTRFS_I(dir)->flags;
6273 
6274 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6275 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6276 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6277 	} else if (flags & BTRFS_INODE_COMPRESS) {
6278 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6279 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6280 	}
6281 
6282 	if (flags & BTRFS_INODE_NODATACOW) {
6283 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6284 		if (S_ISREG(inode->i_mode))
6285 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6286 	}
6287 
6288 	btrfs_sync_inode_flags_to_i_flags(inode);
6289 }
6290 
6291 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6292 				     struct btrfs_root *root,
6293 				     struct inode *dir,
6294 				     const char *name, int name_len,
6295 				     u64 ref_objectid, u64 objectid,
6296 				     umode_t mode, u64 *index)
6297 {
6298 	struct btrfs_fs_info *fs_info = root->fs_info;
6299 	struct inode *inode;
6300 	struct btrfs_inode_item *inode_item;
6301 	struct btrfs_key *location;
6302 	struct btrfs_path *path;
6303 	struct btrfs_inode_ref *ref;
6304 	struct btrfs_key key[2];
6305 	u32 sizes[2];
6306 	int nitems = name ? 2 : 1;
6307 	unsigned long ptr;
6308 	unsigned int nofs_flag;
6309 	int ret;
6310 
6311 	path = btrfs_alloc_path();
6312 	if (!path)
6313 		return ERR_PTR(-ENOMEM);
6314 
6315 	nofs_flag = memalloc_nofs_save();
6316 	inode = new_inode(fs_info->sb);
6317 	memalloc_nofs_restore(nofs_flag);
6318 	if (!inode) {
6319 		btrfs_free_path(path);
6320 		return ERR_PTR(-ENOMEM);
6321 	}
6322 
6323 	/*
6324 	 * O_TMPFILE, set link count to 0, so that after this point,
6325 	 * we fill in an inode item with the correct link count.
6326 	 */
6327 	if (!name)
6328 		set_nlink(inode, 0);
6329 
6330 	/*
6331 	 * we have to initialize this early, so we can reclaim the inode
6332 	 * number if we fail afterwards in this function.
6333 	 */
6334 	inode->i_ino = objectid;
6335 
6336 	if (dir && name) {
6337 		trace_btrfs_inode_request(dir);
6338 
6339 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6340 		if (ret) {
6341 			btrfs_free_path(path);
6342 			iput(inode);
6343 			return ERR_PTR(ret);
6344 		}
6345 	} else if (dir) {
6346 		*index = 0;
6347 	}
6348 	/*
6349 	 * index_cnt is ignored for everything but a dir,
6350 	 * btrfs_set_inode_index_count has an explanation for the magic
6351 	 * number
6352 	 */
6353 	BTRFS_I(inode)->index_cnt = 2;
6354 	BTRFS_I(inode)->dir_index = *index;
6355 	BTRFS_I(inode)->root = root;
6356 	BTRFS_I(inode)->generation = trans->transid;
6357 	inode->i_generation = BTRFS_I(inode)->generation;
6358 
6359 	/*
6360 	 * We could have gotten an inode number from somebody who was fsynced
6361 	 * and then removed in this same transaction, so let's just set full
6362 	 * sync since it will be a full sync anyway and this will blow away the
6363 	 * old info in the log.
6364 	 */
6365 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6366 
6367 	key[0].objectid = objectid;
6368 	key[0].type = BTRFS_INODE_ITEM_KEY;
6369 	key[0].offset = 0;
6370 
6371 	sizes[0] = sizeof(struct btrfs_inode_item);
6372 
6373 	if (name) {
6374 		/*
6375 		 * Start new inodes with an inode_ref. This is slightly more
6376 		 * efficient for small numbers of hard links since they will
6377 		 * be packed into one item. Extended refs will kick in if we
6378 		 * add more hard links than can fit in the ref item.
6379 		 */
6380 		key[1].objectid = objectid;
6381 		key[1].type = BTRFS_INODE_REF_KEY;
6382 		key[1].offset = ref_objectid;
6383 
6384 		sizes[1] = name_len + sizeof(*ref);
6385 	}
6386 
6387 	location = &BTRFS_I(inode)->location;
6388 	location->objectid = objectid;
6389 	location->offset = 0;
6390 	location->type = BTRFS_INODE_ITEM_KEY;
6391 
6392 	ret = btrfs_insert_inode_locked(inode);
6393 	if (ret < 0) {
6394 		iput(inode);
6395 		goto fail;
6396 	}
6397 
6398 	path->leave_spinning = 1;
6399 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6400 	if (ret != 0)
6401 		goto fail_unlock;
6402 
6403 	inode_init_owner(inode, dir, mode);
6404 	inode_set_bytes(inode, 0);
6405 
6406 	inode->i_mtime = current_time(inode);
6407 	inode->i_atime = inode->i_mtime;
6408 	inode->i_ctime = inode->i_mtime;
6409 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6410 
6411 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6412 				  struct btrfs_inode_item);
6413 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6414 			     sizeof(*inode_item));
6415 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6416 
6417 	if (name) {
6418 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6419 				     struct btrfs_inode_ref);
6420 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6421 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6422 		ptr = (unsigned long)(ref + 1);
6423 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6424 	}
6425 
6426 	btrfs_mark_buffer_dirty(path->nodes[0]);
6427 	btrfs_free_path(path);
6428 
6429 	btrfs_inherit_iflags(inode, dir);
6430 
6431 	if (S_ISREG(mode)) {
6432 		if (btrfs_test_opt(fs_info, NODATASUM))
6433 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6434 		if (btrfs_test_opt(fs_info, NODATACOW))
6435 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6436 				BTRFS_INODE_NODATASUM;
6437 	}
6438 
6439 	inode_tree_add(inode);
6440 
6441 	trace_btrfs_inode_new(inode);
6442 	btrfs_set_inode_last_trans(trans, inode);
6443 
6444 	btrfs_update_root_times(trans, root);
6445 
6446 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6447 	if (ret)
6448 		btrfs_err(fs_info,
6449 			  "error inheriting props for ino %llu (root %llu): %d",
6450 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6451 
6452 	return inode;
6453 
6454 fail_unlock:
6455 	discard_new_inode(inode);
6456 fail:
6457 	if (dir && name)
6458 		BTRFS_I(dir)->index_cnt--;
6459 	btrfs_free_path(path);
6460 	return ERR_PTR(ret);
6461 }
6462 
6463 /*
6464  * utility function to add 'inode' into 'parent_inode' with
6465  * a give name and a given sequence number.
6466  * if 'add_backref' is true, also insert a backref from the
6467  * inode to the parent directory.
6468  */
6469 int btrfs_add_link(struct btrfs_trans_handle *trans,
6470 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6471 		   const char *name, int name_len, int add_backref, u64 index)
6472 {
6473 	int ret = 0;
6474 	struct btrfs_key key;
6475 	struct btrfs_root *root = parent_inode->root;
6476 	u64 ino = btrfs_ino(inode);
6477 	u64 parent_ino = btrfs_ino(parent_inode);
6478 
6479 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6480 		memcpy(&key, &inode->root->root_key, sizeof(key));
6481 	} else {
6482 		key.objectid = ino;
6483 		key.type = BTRFS_INODE_ITEM_KEY;
6484 		key.offset = 0;
6485 	}
6486 
6487 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6488 		ret = btrfs_add_root_ref(trans, key.objectid,
6489 					 root->root_key.objectid, parent_ino,
6490 					 index, name, name_len);
6491 	} else if (add_backref) {
6492 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6493 					     parent_ino, index);
6494 	}
6495 
6496 	/* Nothing to clean up yet */
6497 	if (ret)
6498 		return ret;
6499 
6500 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6501 				    btrfs_inode_type(&inode->vfs_inode), index);
6502 	if (ret == -EEXIST || ret == -EOVERFLOW)
6503 		goto fail_dir_item;
6504 	else if (ret) {
6505 		btrfs_abort_transaction(trans, ret);
6506 		return ret;
6507 	}
6508 
6509 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6510 			   name_len * 2);
6511 	inode_inc_iversion(&parent_inode->vfs_inode);
6512 	/*
6513 	 * If we are replaying a log tree, we do not want to update the mtime
6514 	 * and ctime of the parent directory with the current time, since the
6515 	 * log replay procedure is responsible for setting them to their correct
6516 	 * values (the ones it had when the fsync was done).
6517 	 */
6518 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6519 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6520 
6521 		parent_inode->vfs_inode.i_mtime = now;
6522 		parent_inode->vfs_inode.i_ctime = now;
6523 	}
6524 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6525 	if (ret)
6526 		btrfs_abort_transaction(trans, ret);
6527 	return ret;
6528 
6529 fail_dir_item:
6530 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6531 		u64 local_index;
6532 		int err;
6533 		err = btrfs_del_root_ref(trans, key.objectid,
6534 					 root->root_key.objectid, parent_ino,
6535 					 &local_index, name, name_len);
6536 		if (err)
6537 			btrfs_abort_transaction(trans, err);
6538 	} else if (add_backref) {
6539 		u64 local_index;
6540 		int err;
6541 
6542 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6543 					  ino, parent_ino, &local_index);
6544 		if (err)
6545 			btrfs_abort_transaction(trans, err);
6546 	}
6547 
6548 	/* Return the original error code */
6549 	return ret;
6550 }
6551 
6552 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6553 			    struct btrfs_inode *dir, struct dentry *dentry,
6554 			    struct btrfs_inode *inode, int backref, u64 index)
6555 {
6556 	int err = btrfs_add_link(trans, dir, inode,
6557 				 dentry->d_name.name, dentry->d_name.len,
6558 				 backref, index);
6559 	if (err > 0)
6560 		err = -EEXIST;
6561 	return err;
6562 }
6563 
6564 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6565 			umode_t mode, dev_t rdev)
6566 {
6567 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6568 	struct btrfs_trans_handle *trans;
6569 	struct btrfs_root *root = BTRFS_I(dir)->root;
6570 	struct inode *inode = NULL;
6571 	int err;
6572 	u64 objectid;
6573 	u64 index = 0;
6574 
6575 	/*
6576 	 * 2 for inode item and ref
6577 	 * 2 for dir items
6578 	 * 1 for xattr if selinux is on
6579 	 */
6580 	trans = btrfs_start_transaction(root, 5);
6581 	if (IS_ERR(trans))
6582 		return PTR_ERR(trans);
6583 
6584 	err = btrfs_find_free_ino(root, &objectid);
6585 	if (err)
6586 		goto out_unlock;
6587 
6588 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6589 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6590 			mode, &index);
6591 	if (IS_ERR(inode)) {
6592 		err = PTR_ERR(inode);
6593 		inode = NULL;
6594 		goto out_unlock;
6595 	}
6596 
6597 	/*
6598 	* If the active LSM wants to access the inode during
6599 	* d_instantiate it needs these. Smack checks to see
6600 	* if the filesystem supports xattrs by looking at the
6601 	* ops vector.
6602 	*/
6603 	inode->i_op = &btrfs_special_inode_operations;
6604 	init_special_inode(inode, inode->i_mode, rdev);
6605 
6606 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6607 	if (err)
6608 		goto out_unlock;
6609 
6610 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6611 			0, index);
6612 	if (err)
6613 		goto out_unlock;
6614 
6615 	btrfs_update_inode(trans, root, inode);
6616 	d_instantiate_new(dentry, inode);
6617 
6618 out_unlock:
6619 	btrfs_end_transaction(trans);
6620 	btrfs_btree_balance_dirty(fs_info);
6621 	if (err && inode) {
6622 		inode_dec_link_count(inode);
6623 		discard_new_inode(inode);
6624 	}
6625 	return err;
6626 }
6627 
6628 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6629 			umode_t mode, bool excl)
6630 {
6631 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6632 	struct btrfs_trans_handle *trans;
6633 	struct btrfs_root *root = BTRFS_I(dir)->root;
6634 	struct inode *inode = NULL;
6635 	int err;
6636 	u64 objectid;
6637 	u64 index = 0;
6638 
6639 	/*
6640 	 * 2 for inode item and ref
6641 	 * 2 for dir items
6642 	 * 1 for xattr if selinux is on
6643 	 */
6644 	trans = btrfs_start_transaction(root, 5);
6645 	if (IS_ERR(trans))
6646 		return PTR_ERR(trans);
6647 
6648 	err = btrfs_find_free_ino(root, &objectid);
6649 	if (err)
6650 		goto out_unlock;
6651 
6652 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6653 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6654 			mode, &index);
6655 	if (IS_ERR(inode)) {
6656 		err = PTR_ERR(inode);
6657 		inode = NULL;
6658 		goto out_unlock;
6659 	}
6660 	/*
6661 	* If the active LSM wants to access the inode during
6662 	* d_instantiate it needs these. Smack checks to see
6663 	* if the filesystem supports xattrs by looking at the
6664 	* ops vector.
6665 	*/
6666 	inode->i_fop = &btrfs_file_operations;
6667 	inode->i_op = &btrfs_file_inode_operations;
6668 	inode->i_mapping->a_ops = &btrfs_aops;
6669 
6670 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6671 	if (err)
6672 		goto out_unlock;
6673 
6674 	err = btrfs_update_inode(trans, root, inode);
6675 	if (err)
6676 		goto out_unlock;
6677 
6678 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6679 			0, index);
6680 	if (err)
6681 		goto out_unlock;
6682 
6683 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6684 	d_instantiate_new(dentry, inode);
6685 
6686 out_unlock:
6687 	btrfs_end_transaction(trans);
6688 	if (err && inode) {
6689 		inode_dec_link_count(inode);
6690 		discard_new_inode(inode);
6691 	}
6692 	btrfs_btree_balance_dirty(fs_info);
6693 	return err;
6694 }
6695 
6696 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6697 		      struct dentry *dentry)
6698 {
6699 	struct btrfs_trans_handle *trans = NULL;
6700 	struct btrfs_root *root = BTRFS_I(dir)->root;
6701 	struct inode *inode = d_inode(old_dentry);
6702 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6703 	u64 index;
6704 	int err;
6705 	int drop_inode = 0;
6706 
6707 	/* do not allow sys_link's with other subvols of the same device */
6708 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6709 		return -EXDEV;
6710 
6711 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6712 		return -EMLINK;
6713 
6714 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6715 	if (err)
6716 		goto fail;
6717 
6718 	/*
6719 	 * 2 items for inode and inode ref
6720 	 * 2 items for dir items
6721 	 * 1 item for parent inode
6722 	 * 1 item for orphan item deletion if O_TMPFILE
6723 	 */
6724 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6725 	if (IS_ERR(trans)) {
6726 		err = PTR_ERR(trans);
6727 		trans = NULL;
6728 		goto fail;
6729 	}
6730 
6731 	/* There are several dir indexes for this inode, clear the cache. */
6732 	BTRFS_I(inode)->dir_index = 0ULL;
6733 	inc_nlink(inode);
6734 	inode_inc_iversion(inode);
6735 	inode->i_ctime = current_time(inode);
6736 	ihold(inode);
6737 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6738 
6739 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6740 			1, index);
6741 
6742 	if (err) {
6743 		drop_inode = 1;
6744 	} else {
6745 		struct dentry *parent = dentry->d_parent;
6746 		int ret;
6747 
6748 		err = btrfs_update_inode(trans, root, inode);
6749 		if (err)
6750 			goto fail;
6751 		if (inode->i_nlink == 1) {
6752 			/*
6753 			 * If new hard link count is 1, it's a file created
6754 			 * with open(2) O_TMPFILE flag.
6755 			 */
6756 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6757 			if (err)
6758 				goto fail;
6759 		}
6760 		d_instantiate(dentry, inode);
6761 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6762 					 true, NULL);
6763 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6764 			err = btrfs_commit_transaction(trans);
6765 			trans = NULL;
6766 		}
6767 	}
6768 
6769 fail:
6770 	if (trans)
6771 		btrfs_end_transaction(trans);
6772 	if (drop_inode) {
6773 		inode_dec_link_count(inode);
6774 		iput(inode);
6775 	}
6776 	btrfs_btree_balance_dirty(fs_info);
6777 	return err;
6778 }
6779 
6780 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6781 {
6782 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6783 	struct inode *inode = NULL;
6784 	struct btrfs_trans_handle *trans;
6785 	struct btrfs_root *root = BTRFS_I(dir)->root;
6786 	int err = 0;
6787 	u64 objectid = 0;
6788 	u64 index = 0;
6789 
6790 	/*
6791 	 * 2 items for inode and ref
6792 	 * 2 items for dir items
6793 	 * 1 for xattr if selinux is on
6794 	 */
6795 	trans = btrfs_start_transaction(root, 5);
6796 	if (IS_ERR(trans))
6797 		return PTR_ERR(trans);
6798 
6799 	err = btrfs_find_free_ino(root, &objectid);
6800 	if (err)
6801 		goto out_fail;
6802 
6803 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6804 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6805 			S_IFDIR | mode, &index);
6806 	if (IS_ERR(inode)) {
6807 		err = PTR_ERR(inode);
6808 		inode = NULL;
6809 		goto out_fail;
6810 	}
6811 
6812 	/* these must be set before we unlock the inode */
6813 	inode->i_op = &btrfs_dir_inode_operations;
6814 	inode->i_fop = &btrfs_dir_file_operations;
6815 
6816 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6817 	if (err)
6818 		goto out_fail;
6819 
6820 	btrfs_i_size_write(BTRFS_I(inode), 0);
6821 	err = btrfs_update_inode(trans, root, inode);
6822 	if (err)
6823 		goto out_fail;
6824 
6825 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6826 			dentry->d_name.name,
6827 			dentry->d_name.len, 0, index);
6828 	if (err)
6829 		goto out_fail;
6830 
6831 	d_instantiate_new(dentry, inode);
6832 
6833 out_fail:
6834 	btrfs_end_transaction(trans);
6835 	if (err && inode) {
6836 		inode_dec_link_count(inode);
6837 		discard_new_inode(inode);
6838 	}
6839 	btrfs_btree_balance_dirty(fs_info);
6840 	return err;
6841 }
6842 
6843 static noinline int uncompress_inline(struct btrfs_path *path,
6844 				      struct page *page,
6845 				      size_t pg_offset, u64 extent_offset,
6846 				      struct btrfs_file_extent_item *item)
6847 {
6848 	int ret;
6849 	struct extent_buffer *leaf = path->nodes[0];
6850 	char *tmp;
6851 	size_t max_size;
6852 	unsigned long inline_size;
6853 	unsigned long ptr;
6854 	int compress_type;
6855 
6856 	WARN_ON(pg_offset != 0);
6857 	compress_type = btrfs_file_extent_compression(leaf, item);
6858 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6859 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6860 					btrfs_item_nr(path->slots[0]));
6861 	tmp = kmalloc(inline_size, GFP_NOFS);
6862 	if (!tmp)
6863 		return -ENOMEM;
6864 	ptr = btrfs_file_extent_inline_start(item);
6865 
6866 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6867 
6868 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6869 	ret = btrfs_decompress(compress_type, tmp, page,
6870 			       extent_offset, inline_size, max_size);
6871 
6872 	/*
6873 	 * decompression code contains a memset to fill in any space between the end
6874 	 * of the uncompressed data and the end of max_size in case the decompressed
6875 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6876 	 * the end of an inline extent and the beginning of the next block, so we
6877 	 * cover that region here.
6878 	 */
6879 
6880 	if (max_size + pg_offset < PAGE_SIZE) {
6881 		char *map = kmap(page);
6882 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6883 		kunmap(page);
6884 	}
6885 	kfree(tmp);
6886 	return ret;
6887 }
6888 
6889 /*
6890  * a bit scary, this does extent mapping from logical file offset to the disk.
6891  * the ugly parts come from merging extents from the disk with the in-ram
6892  * representation.  This gets more complex because of the data=ordered code,
6893  * where the in-ram extents might be locked pending data=ordered completion.
6894  *
6895  * This also copies inline extents directly into the page.
6896  */
6897 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6898 				    struct page *page,
6899 				    size_t pg_offset, u64 start, u64 len,
6900 				    int create)
6901 {
6902 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6903 	int ret;
6904 	int err = 0;
6905 	u64 extent_start = 0;
6906 	u64 extent_end = 0;
6907 	u64 objectid = btrfs_ino(inode);
6908 	int extent_type = -1;
6909 	struct btrfs_path *path = NULL;
6910 	struct btrfs_root *root = inode->root;
6911 	struct btrfs_file_extent_item *item;
6912 	struct extent_buffer *leaf;
6913 	struct btrfs_key found_key;
6914 	struct extent_map *em = NULL;
6915 	struct extent_map_tree *em_tree = &inode->extent_tree;
6916 	struct extent_io_tree *io_tree = &inode->io_tree;
6917 	const bool new_inline = !page || create;
6918 
6919 	read_lock(&em_tree->lock);
6920 	em = lookup_extent_mapping(em_tree, start, len);
6921 	if (em)
6922 		em->bdev = fs_info->fs_devices->latest_bdev;
6923 	read_unlock(&em_tree->lock);
6924 
6925 	if (em) {
6926 		if (em->start > start || em->start + em->len <= start)
6927 			free_extent_map(em);
6928 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6929 			free_extent_map(em);
6930 		else
6931 			goto out;
6932 	}
6933 	em = alloc_extent_map();
6934 	if (!em) {
6935 		err = -ENOMEM;
6936 		goto out;
6937 	}
6938 	em->bdev = fs_info->fs_devices->latest_bdev;
6939 	em->start = EXTENT_MAP_HOLE;
6940 	em->orig_start = EXTENT_MAP_HOLE;
6941 	em->len = (u64)-1;
6942 	em->block_len = (u64)-1;
6943 
6944 	path = btrfs_alloc_path();
6945 	if (!path) {
6946 		err = -ENOMEM;
6947 		goto out;
6948 	}
6949 
6950 	/* Chances are we'll be called again, so go ahead and do readahead */
6951 	path->reada = READA_FORWARD;
6952 
6953 	/*
6954 	 * Unless we're going to uncompress the inline extent, no sleep would
6955 	 * happen.
6956 	 */
6957 	path->leave_spinning = 1;
6958 
6959 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6960 	if (ret < 0) {
6961 		err = ret;
6962 		goto out;
6963 	} else if (ret > 0) {
6964 		if (path->slots[0] == 0)
6965 			goto not_found;
6966 		path->slots[0]--;
6967 	}
6968 
6969 	leaf = path->nodes[0];
6970 	item = btrfs_item_ptr(leaf, path->slots[0],
6971 			      struct btrfs_file_extent_item);
6972 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6973 	if (found_key.objectid != objectid ||
6974 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6975 		/*
6976 		 * If we backup past the first extent we want to move forward
6977 		 * and see if there is an extent in front of us, otherwise we'll
6978 		 * say there is a hole for our whole search range which can
6979 		 * cause problems.
6980 		 */
6981 		extent_end = start;
6982 		goto next;
6983 	}
6984 
6985 	extent_type = btrfs_file_extent_type(leaf, item);
6986 	extent_start = found_key.offset;
6987 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6988 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6989 		/* Only regular file could have regular/prealloc extent */
6990 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6991 			ret = -EUCLEAN;
6992 			btrfs_crit(fs_info,
6993 		"regular/prealloc extent found for non-regular inode %llu",
6994 				   btrfs_ino(inode));
6995 			goto out;
6996 		}
6997 		extent_end = extent_start +
6998 		       btrfs_file_extent_num_bytes(leaf, item);
6999 
7000 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7001 						       extent_start);
7002 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7003 		size_t size;
7004 
7005 		size = btrfs_file_extent_ram_bytes(leaf, item);
7006 		extent_end = ALIGN(extent_start + size,
7007 				   fs_info->sectorsize);
7008 
7009 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7010 						      path->slots[0],
7011 						      extent_start);
7012 	}
7013 next:
7014 	if (start >= extent_end) {
7015 		path->slots[0]++;
7016 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7017 			ret = btrfs_next_leaf(root, path);
7018 			if (ret < 0) {
7019 				err = ret;
7020 				goto out;
7021 			} else if (ret > 0) {
7022 				goto not_found;
7023 			}
7024 			leaf = path->nodes[0];
7025 		}
7026 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7027 		if (found_key.objectid != objectid ||
7028 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7029 			goto not_found;
7030 		if (start + len <= found_key.offset)
7031 			goto not_found;
7032 		if (start > found_key.offset)
7033 			goto next;
7034 
7035 		/* New extent overlaps with existing one */
7036 		em->start = start;
7037 		em->orig_start = start;
7038 		em->len = found_key.offset - start;
7039 		em->block_start = EXTENT_MAP_HOLE;
7040 		goto insert;
7041 	}
7042 
7043 	btrfs_extent_item_to_extent_map(inode, path, item,
7044 			new_inline, em);
7045 
7046 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7047 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7048 		goto insert;
7049 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7050 		unsigned long ptr;
7051 		char *map;
7052 		size_t size;
7053 		size_t extent_offset;
7054 		size_t copy_size;
7055 
7056 		if (new_inline)
7057 			goto out;
7058 
7059 		size = btrfs_file_extent_ram_bytes(leaf, item);
7060 		extent_offset = page_offset(page) + pg_offset - extent_start;
7061 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7062 				  size - extent_offset);
7063 		em->start = extent_start + extent_offset;
7064 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7065 		em->orig_block_len = em->len;
7066 		em->orig_start = em->start;
7067 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7068 
7069 		btrfs_set_path_blocking(path);
7070 		if (!PageUptodate(page)) {
7071 			if (btrfs_file_extent_compression(leaf, item) !=
7072 			    BTRFS_COMPRESS_NONE) {
7073 				ret = uncompress_inline(path, page, pg_offset,
7074 							extent_offset, item);
7075 				if (ret) {
7076 					err = ret;
7077 					goto out;
7078 				}
7079 			} else {
7080 				map = kmap(page);
7081 				read_extent_buffer(leaf, map + pg_offset, ptr,
7082 						   copy_size);
7083 				if (pg_offset + copy_size < PAGE_SIZE) {
7084 					memset(map + pg_offset + copy_size, 0,
7085 					       PAGE_SIZE - pg_offset -
7086 					       copy_size);
7087 				}
7088 				kunmap(page);
7089 			}
7090 			flush_dcache_page(page);
7091 		}
7092 		set_extent_uptodate(io_tree, em->start,
7093 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7094 		goto insert;
7095 	}
7096 not_found:
7097 	em->start = start;
7098 	em->orig_start = start;
7099 	em->len = len;
7100 	em->block_start = EXTENT_MAP_HOLE;
7101 insert:
7102 	btrfs_release_path(path);
7103 	if (em->start > start || extent_map_end(em) <= start) {
7104 		btrfs_err(fs_info,
7105 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7106 			  em->start, em->len, start, len);
7107 		err = -EIO;
7108 		goto out;
7109 	}
7110 
7111 	err = 0;
7112 	write_lock(&em_tree->lock);
7113 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7114 	write_unlock(&em_tree->lock);
7115 out:
7116 	btrfs_free_path(path);
7117 
7118 	trace_btrfs_get_extent(root, inode, em);
7119 
7120 	if (err) {
7121 		free_extent_map(em);
7122 		return ERR_PTR(err);
7123 	}
7124 	BUG_ON(!em); /* Error is always set */
7125 	return em;
7126 }
7127 
7128 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7129 					   u64 start, u64 len)
7130 {
7131 	struct extent_map *em;
7132 	struct extent_map *hole_em = NULL;
7133 	u64 delalloc_start = start;
7134 	u64 end;
7135 	u64 delalloc_len;
7136 	u64 delalloc_end;
7137 	int err = 0;
7138 
7139 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7140 	if (IS_ERR(em))
7141 		return em;
7142 	/*
7143 	 * If our em maps to:
7144 	 * - a hole or
7145 	 * - a pre-alloc extent,
7146 	 * there might actually be delalloc bytes behind it.
7147 	 */
7148 	if (em->block_start != EXTENT_MAP_HOLE &&
7149 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7150 		return em;
7151 	else
7152 		hole_em = em;
7153 
7154 	/* check to see if we've wrapped (len == -1 or similar) */
7155 	end = start + len;
7156 	if (end < start)
7157 		end = (u64)-1;
7158 	else
7159 		end -= 1;
7160 
7161 	em = NULL;
7162 
7163 	/* ok, we didn't find anything, lets look for delalloc */
7164 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7165 				 end, len, EXTENT_DELALLOC, 1);
7166 	delalloc_end = delalloc_start + delalloc_len;
7167 	if (delalloc_end < delalloc_start)
7168 		delalloc_end = (u64)-1;
7169 
7170 	/*
7171 	 * We didn't find anything useful, return the original results from
7172 	 * get_extent()
7173 	 */
7174 	if (delalloc_start > end || delalloc_end <= start) {
7175 		em = hole_em;
7176 		hole_em = NULL;
7177 		goto out;
7178 	}
7179 
7180 	/*
7181 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7182 	 * the start they passed in
7183 	 */
7184 	delalloc_start = max(start, delalloc_start);
7185 	delalloc_len = delalloc_end - delalloc_start;
7186 
7187 	if (delalloc_len > 0) {
7188 		u64 hole_start;
7189 		u64 hole_len;
7190 		const u64 hole_end = extent_map_end(hole_em);
7191 
7192 		em = alloc_extent_map();
7193 		if (!em) {
7194 			err = -ENOMEM;
7195 			goto out;
7196 		}
7197 		em->bdev = NULL;
7198 
7199 		ASSERT(hole_em);
7200 		/*
7201 		 * When btrfs_get_extent can't find anything it returns one
7202 		 * huge hole
7203 		 *
7204 		 * Make sure what it found really fits our range, and adjust to
7205 		 * make sure it is based on the start from the caller
7206 		 */
7207 		if (hole_end <= start || hole_em->start > end) {
7208 		       free_extent_map(hole_em);
7209 		       hole_em = NULL;
7210 		} else {
7211 		       hole_start = max(hole_em->start, start);
7212 		       hole_len = hole_end - hole_start;
7213 		}
7214 
7215 		if (hole_em && delalloc_start > hole_start) {
7216 			/*
7217 			 * Our hole starts before our delalloc, so we have to
7218 			 * return just the parts of the hole that go until the
7219 			 * delalloc starts
7220 			 */
7221 			em->len = min(hole_len, delalloc_start - hole_start);
7222 			em->start = hole_start;
7223 			em->orig_start = hole_start;
7224 			/*
7225 			 * Don't adjust block start at all, it is fixed at
7226 			 * EXTENT_MAP_HOLE
7227 			 */
7228 			em->block_start = hole_em->block_start;
7229 			em->block_len = hole_len;
7230 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7231 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7232 		} else {
7233 			/*
7234 			 * Hole is out of passed range or it starts after
7235 			 * delalloc range
7236 			 */
7237 			em->start = delalloc_start;
7238 			em->len = delalloc_len;
7239 			em->orig_start = delalloc_start;
7240 			em->block_start = EXTENT_MAP_DELALLOC;
7241 			em->block_len = delalloc_len;
7242 		}
7243 	} else {
7244 		return hole_em;
7245 	}
7246 out:
7247 
7248 	free_extent_map(hole_em);
7249 	if (err) {
7250 		free_extent_map(em);
7251 		return ERR_PTR(err);
7252 	}
7253 	return em;
7254 }
7255 
7256 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7257 						  const u64 start,
7258 						  const u64 len,
7259 						  const u64 orig_start,
7260 						  const u64 block_start,
7261 						  const u64 block_len,
7262 						  const u64 orig_block_len,
7263 						  const u64 ram_bytes,
7264 						  const int type)
7265 {
7266 	struct extent_map *em = NULL;
7267 	int ret;
7268 
7269 	if (type != BTRFS_ORDERED_NOCOW) {
7270 		em = create_io_em(inode, start, len, orig_start,
7271 				  block_start, block_len, orig_block_len,
7272 				  ram_bytes,
7273 				  BTRFS_COMPRESS_NONE, /* compress_type */
7274 				  type);
7275 		if (IS_ERR(em))
7276 			goto out;
7277 	}
7278 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7279 					   len, block_len, type);
7280 	if (ret) {
7281 		if (em) {
7282 			free_extent_map(em);
7283 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7284 						start + len - 1, 0);
7285 		}
7286 		em = ERR_PTR(ret);
7287 	}
7288  out:
7289 
7290 	return em;
7291 }
7292 
7293 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7294 						  u64 start, u64 len)
7295 {
7296 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7297 	struct btrfs_root *root = BTRFS_I(inode)->root;
7298 	struct extent_map *em;
7299 	struct btrfs_key ins;
7300 	u64 alloc_hint;
7301 	int ret;
7302 
7303 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7304 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7305 				   0, alloc_hint, &ins, 1, 1);
7306 	if (ret)
7307 		return ERR_PTR(ret);
7308 
7309 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7310 				     ins.objectid, ins.offset, ins.offset,
7311 				     ins.offset, BTRFS_ORDERED_REGULAR);
7312 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7313 	if (IS_ERR(em))
7314 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7315 					   ins.offset, 1);
7316 
7317 	return em;
7318 }
7319 
7320 /*
7321  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7322  * block must be cow'd
7323  */
7324 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7325 			      u64 *orig_start, u64 *orig_block_len,
7326 			      u64 *ram_bytes)
7327 {
7328 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7329 	struct btrfs_path *path;
7330 	int ret;
7331 	struct extent_buffer *leaf;
7332 	struct btrfs_root *root = BTRFS_I(inode)->root;
7333 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7334 	struct btrfs_file_extent_item *fi;
7335 	struct btrfs_key key;
7336 	u64 disk_bytenr;
7337 	u64 backref_offset;
7338 	u64 extent_end;
7339 	u64 num_bytes;
7340 	int slot;
7341 	int found_type;
7342 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7343 
7344 	path = btrfs_alloc_path();
7345 	if (!path)
7346 		return -ENOMEM;
7347 
7348 	ret = btrfs_lookup_file_extent(NULL, root, path,
7349 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7350 	if (ret < 0)
7351 		goto out;
7352 
7353 	slot = path->slots[0];
7354 	if (ret == 1) {
7355 		if (slot == 0) {
7356 			/* can't find the item, must cow */
7357 			ret = 0;
7358 			goto out;
7359 		}
7360 		slot--;
7361 	}
7362 	ret = 0;
7363 	leaf = path->nodes[0];
7364 	btrfs_item_key_to_cpu(leaf, &key, slot);
7365 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7366 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7367 		/* not our file or wrong item type, must cow */
7368 		goto out;
7369 	}
7370 
7371 	if (key.offset > offset) {
7372 		/* Wrong offset, must cow */
7373 		goto out;
7374 	}
7375 
7376 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7377 	found_type = btrfs_file_extent_type(leaf, fi);
7378 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7379 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7380 		/* not a regular extent, must cow */
7381 		goto out;
7382 	}
7383 
7384 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7385 		goto out;
7386 
7387 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7388 	if (extent_end <= offset)
7389 		goto out;
7390 
7391 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7392 	if (disk_bytenr == 0)
7393 		goto out;
7394 
7395 	if (btrfs_file_extent_compression(leaf, fi) ||
7396 	    btrfs_file_extent_encryption(leaf, fi) ||
7397 	    btrfs_file_extent_other_encoding(leaf, fi))
7398 		goto out;
7399 
7400 	/*
7401 	 * Do the same check as in btrfs_cross_ref_exist but without the
7402 	 * unnecessary search.
7403 	 */
7404 	if (btrfs_file_extent_generation(leaf, fi) <=
7405 	    btrfs_root_last_snapshot(&root->root_item))
7406 		goto out;
7407 
7408 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7409 
7410 	if (orig_start) {
7411 		*orig_start = key.offset - backref_offset;
7412 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7413 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7414 	}
7415 
7416 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7417 		goto out;
7418 
7419 	num_bytes = min(offset + *len, extent_end) - offset;
7420 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7421 		u64 range_end;
7422 
7423 		range_end = round_up(offset + num_bytes,
7424 				     root->fs_info->sectorsize) - 1;
7425 		ret = test_range_bit(io_tree, offset, range_end,
7426 				     EXTENT_DELALLOC, 0, NULL);
7427 		if (ret) {
7428 			ret = -EAGAIN;
7429 			goto out;
7430 		}
7431 	}
7432 
7433 	btrfs_release_path(path);
7434 
7435 	/*
7436 	 * look for other files referencing this extent, if we
7437 	 * find any we must cow
7438 	 */
7439 
7440 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7441 				    key.offset - backref_offset, disk_bytenr);
7442 	if (ret) {
7443 		ret = 0;
7444 		goto out;
7445 	}
7446 
7447 	/*
7448 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7449 	 * in this extent we are about to write.  If there
7450 	 * are any csums in that range we have to cow in order
7451 	 * to keep the csums correct
7452 	 */
7453 	disk_bytenr += backref_offset;
7454 	disk_bytenr += offset - key.offset;
7455 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7456 		goto out;
7457 	/*
7458 	 * all of the above have passed, it is safe to overwrite this extent
7459 	 * without cow
7460 	 */
7461 	*len = num_bytes;
7462 	ret = 1;
7463 out:
7464 	btrfs_free_path(path);
7465 	return ret;
7466 }
7467 
7468 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7469 			      struct extent_state **cached_state, int writing)
7470 {
7471 	struct btrfs_ordered_extent *ordered;
7472 	int ret = 0;
7473 
7474 	while (1) {
7475 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7476 				 cached_state);
7477 		/*
7478 		 * We're concerned with the entire range that we're going to be
7479 		 * doing DIO to, so we need to make sure there's no ordered
7480 		 * extents in this range.
7481 		 */
7482 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7483 						     lockend - lockstart + 1);
7484 
7485 		/*
7486 		 * We need to make sure there are no buffered pages in this
7487 		 * range either, we could have raced between the invalidate in
7488 		 * generic_file_direct_write and locking the extent.  The
7489 		 * invalidate needs to happen so that reads after a write do not
7490 		 * get stale data.
7491 		 */
7492 		if (!ordered &&
7493 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7494 							 lockstart, lockend)))
7495 			break;
7496 
7497 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7498 				     cached_state);
7499 
7500 		if (ordered) {
7501 			/*
7502 			 * If we are doing a DIO read and the ordered extent we
7503 			 * found is for a buffered write, we can not wait for it
7504 			 * to complete and retry, because if we do so we can
7505 			 * deadlock with concurrent buffered writes on page
7506 			 * locks. This happens only if our DIO read covers more
7507 			 * than one extent map, if at this point has already
7508 			 * created an ordered extent for a previous extent map
7509 			 * and locked its range in the inode's io tree, and a
7510 			 * concurrent write against that previous extent map's
7511 			 * range and this range started (we unlock the ranges
7512 			 * in the io tree only when the bios complete and
7513 			 * buffered writes always lock pages before attempting
7514 			 * to lock range in the io tree).
7515 			 */
7516 			if (writing ||
7517 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7518 				btrfs_start_ordered_extent(inode, ordered, 1);
7519 			else
7520 				ret = -ENOTBLK;
7521 			btrfs_put_ordered_extent(ordered);
7522 		} else {
7523 			/*
7524 			 * We could trigger writeback for this range (and wait
7525 			 * for it to complete) and then invalidate the pages for
7526 			 * this range (through invalidate_inode_pages2_range()),
7527 			 * but that can lead us to a deadlock with a concurrent
7528 			 * call to readpages() (a buffered read or a defrag call
7529 			 * triggered a readahead) on a page lock due to an
7530 			 * ordered dio extent we created before but did not have
7531 			 * yet a corresponding bio submitted (whence it can not
7532 			 * complete), which makes readpages() wait for that
7533 			 * ordered extent to complete while holding a lock on
7534 			 * that page.
7535 			 */
7536 			ret = -ENOTBLK;
7537 		}
7538 
7539 		if (ret)
7540 			break;
7541 
7542 		cond_resched();
7543 	}
7544 
7545 	return ret;
7546 }
7547 
7548 /* The callers of this must take lock_extent() */
7549 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7550 				       u64 orig_start, u64 block_start,
7551 				       u64 block_len, u64 orig_block_len,
7552 				       u64 ram_bytes, int compress_type,
7553 				       int type)
7554 {
7555 	struct extent_map_tree *em_tree;
7556 	struct extent_map *em;
7557 	struct btrfs_root *root = BTRFS_I(inode)->root;
7558 	int ret;
7559 
7560 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7561 	       type == BTRFS_ORDERED_COMPRESSED ||
7562 	       type == BTRFS_ORDERED_NOCOW ||
7563 	       type == BTRFS_ORDERED_REGULAR);
7564 
7565 	em_tree = &BTRFS_I(inode)->extent_tree;
7566 	em = alloc_extent_map();
7567 	if (!em)
7568 		return ERR_PTR(-ENOMEM);
7569 
7570 	em->start = start;
7571 	em->orig_start = orig_start;
7572 	em->len = len;
7573 	em->block_len = block_len;
7574 	em->block_start = block_start;
7575 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7576 	em->orig_block_len = orig_block_len;
7577 	em->ram_bytes = ram_bytes;
7578 	em->generation = -1;
7579 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7580 	if (type == BTRFS_ORDERED_PREALLOC) {
7581 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7582 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7583 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7584 		em->compress_type = compress_type;
7585 	}
7586 
7587 	do {
7588 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7589 				em->start + em->len - 1, 0);
7590 		write_lock(&em_tree->lock);
7591 		ret = add_extent_mapping(em_tree, em, 1);
7592 		write_unlock(&em_tree->lock);
7593 		/*
7594 		 * The caller has taken lock_extent(), who could race with us
7595 		 * to add em?
7596 		 */
7597 	} while (ret == -EEXIST);
7598 
7599 	if (ret) {
7600 		free_extent_map(em);
7601 		return ERR_PTR(ret);
7602 	}
7603 
7604 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7605 	return em;
7606 }
7607 
7608 
7609 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7610 					struct buffer_head *bh_result,
7611 					struct inode *inode,
7612 					u64 start, u64 len)
7613 {
7614 	if (em->block_start == EXTENT_MAP_HOLE ||
7615 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7616 		return -ENOENT;
7617 
7618 	len = min(len, em->len - (start - em->start));
7619 
7620 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7621 		inode->i_blkbits;
7622 	bh_result->b_size = len;
7623 	bh_result->b_bdev = em->bdev;
7624 	set_buffer_mapped(bh_result);
7625 
7626 	return 0;
7627 }
7628 
7629 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7630 					 struct buffer_head *bh_result,
7631 					 struct inode *inode,
7632 					 struct btrfs_dio_data *dio_data,
7633 					 u64 start, u64 len)
7634 {
7635 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7636 	struct extent_map *em = *map;
7637 	int ret = 0;
7638 
7639 	/*
7640 	 * We don't allocate a new extent in the following cases
7641 	 *
7642 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7643 	 * existing extent.
7644 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7645 	 * just use the extent.
7646 	 *
7647 	 */
7648 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7649 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7650 	     em->block_start != EXTENT_MAP_HOLE)) {
7651 		int type;
7652 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7653 
7654 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7655 			type = BTRFS_ORDERED_PREALLOC;
7656 		else
7657 			type = BTRFS_ORDERED_NOCOW;
7658 		len = min(len, em->len - (start - em->start));
7659 		block_start = em->block_start + (start - em->start);
7660 
7661 		if (can_nocow_extent(inode, start, &len, &orig_start,
7662 				     &orig_block_len, &ram_bytes) == 1 &&
7663 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7664 			struct extent_map *em2;
7665 
7666 			em2 = btrfs_create_dio_extent(inode, start, len,
7667 						      orig_start, block_start,
7668 						      len, orig_block_len,
7669 						      ram_bytes, type);
7670 			btrfs_dec_nocow_writers(fs_info, block_start);
7671 			if (type == BTRFS_ORDERED_PREALLOC) {
7672 				free_extent_map(em);
7673 				*map = em = em2;
7674 			}
7675 
7676 			if (em2 && IS_ERR(em2)) {
7677 				ret = PTR_ERR(em2);
7678 				goto out;
7679 			}
7680 			/*
7681 			 * For inode marked NODATACOW or extent marked PREALLOC,
7682 			 * use the existing or preallocated extent, so does not
7683 			 * need to adjust btrfs_space_info's bytes_may_use.
7684 			 */
7685 			btrfs_free_reserved_data_space_noquota(inode, start,
7686 							       len);
7687 			goto skip_cow;
7688 		}
7689 	}
7690 
7691 	/* this will cow the extent */
7692 	len = bh_result->b_size;
7693 	free_extent_map(em);
7694 	*map = em = btrfs_new_extent_direct(inode, start, len);
7695 	if (IS_ERR(em)) {
7696 		ret = PTR_ERR(em);
7697 		goto out;
7698 	}
7699 
7700 	len = min(len, em->len - (start - em->start));
7701 
7702 skip_cow:
7703 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7704 		inode->i_blkbits;
7705 	bh_result->b_size = len;
7706 	bh_result->b_bdev = em->bdev;
7707 	set_buffer_mapped(bh_result);
7708 
7709 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7710 		set_buffer_new(bh_result);
7711 
7712 	/*
7713 	 * Need to update the i_size under the extent lock so buffered
7714 	 * readers will get the updated i_size when we unlock.
7715 	 */
7716 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7717 		i_size_write(inode, start + len);
7718 
7719 	WARN_ON(dio_data->reserve < len);
7720 	dio_data->reserve -= len;
7721 	dio_data->unsubmitted_oe_range_end = start + len;
7722 	current->journal_info = dio_data;
7723 out:
7724 	return ret;
7725 }
7726 
7727 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7728 				   struct buffer_head *bh_result, int create)
7729 {
7730 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7731 	struct extent_map *em;
7732 	struct extent_state *cached_state = NULL;
7733 	struct btrfs_dio_data *dio_data = NULL;
7734 	u64 start = iblock << inode->i_blkbits;
7735 	u64 lockstart, lockend;
7736 	u64 len = bh_result->b_size;
7737 	int ret = 0;
7738 
7739 	if (!create)
7740 		len = min_t(u64, len, fs_info->sectorsize);
7741 
7742 	lockstart = start;
7743 	lockend = start + len - 1;
7744 
7745 	if (current->journal_info) {
7746 		/*
7747 		 * Need to pull our outstanding extents and set journal_info to NULL so
7748 		 * that anything that needs to check if there's a transaction doesn't get
7749 		 * confused.
7750 		 */
7751 		dio_data = current->journal_info;
7752 		current->journal_info = NULL;
7753 	}
7754 
7755 	/*
7756 	 * If this errors out it's because we couldn't invalidate pagecache for
7757 	 * this range and we need to fallback to buffered.
7758 	 */
7759 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7760 			       create)) {
7761 		ret = -ENOTBLK;
7762 		goto err;
7763 	}
7764 
7765 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7766 	if (IS_ERR(em)) {
7767 		ret = PTR_ERR(em);
7768 		goto unlock_err;
7769 	}
7770 
7771 	/*
7772 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7773 	 * io.  INLINE is special, and we could probably kludge it in here, but
7774 	 * it's still buffered so for safety lets just fall back to the generic
7775 	 * buffered path.
7776 	 *
7777 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7778 	 * decompress it, so there will be buffering required no matter what we
7779 	 * do, so go ahead and fallback to buffered.
7780 	 *
7781 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7782 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7783 	 * the generic code.
7784 	 */
7785 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7786 	    em->block_start == EXTENT_MAP_INLINE) {
7787 		free_extent_map(em);
7788 		ret = -ENOTBLK;
7789 		goto unlock_err;
7790 	}
7791 
7792 	if (create) {
7793 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7794 						    dio_data, start, len);
7795 		if (ret < 0)
7796 			goto unlock_err;
7797 
7798 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7799 				     lockend, &cached_state);
7800 	} else {
7801 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7802 						   start, len);
7803 		/* Can be negative only if we read from a hole */
7804 		if (ret < 0) {
7805 			ret = 0;
7806 			free_extent_map(em);
7807 			goto unlock_err;
7808 		}
7809 		/*
7810 		 * We need to unlock only the end area that we aren't using.
7811 		 * The rest is going to be unlocked by the endio routine.
7812 		 */
7813 		lockstart = start + bh_result->b_size;
7814 		if (lockstart < lockend) {
7815 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7816 					     lockstart, lockend, &cached_state);
7817 		} else {
7818 			free_extent_state(cached_state);
7819 		}
7820 	}
7821 
7822 	free_extent_map(em);
7823 
7824 	return 0;
7825 
7826 unlock_err:
7827 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7828 			     &cached_state);
7829 err:
7830 	if (dio_data)
7831 		current->journal_info = dio_data;
7832 	return ret;
7833 }
7834 
7835 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7836 						 struct bio *bio,
7837 						 int mirror_num)
7838 {
7839 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7840 	blk_status_t ret;
7841 
7842 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7843 
7844 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7845 	if (ret)
7846 		return ret;
7847 
7848 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7849 
7850 	return ret;
7851 }
7852 
7853 static int btrfs_check_dio_repairable(struct inode *inode,
7854 				      struct bio *failed_bio,
7855 				      struct io_failure_record *failrec,
7856 				      int failed_mirror)
7857 {
7858 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7859 	int num_copies;
7860 
7861 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7862 	if (num_copies == 1) {
7863 		/*
7864 		 * we only have a single copy of the data, so don't bother with
7865 		 * all the retry and error correction code that follows. no
7866 		 * matter what the error is, it is very likely to persist.
7867 		 */
7868 		btrfs_debug(fs_info,
7869 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7870 			num_copies, failrec->this_mirror, failed_mirror);
7871 		return 0;
7872 	}
7873 
7874 	failrec->failed_mirror = failed_mirror;
7875 	failrec->this_mirror++;
7876 	if (failrec->this_mirror == failed_mirror)
7877 		failrec->this_mirror++;
7878 
7879 	if (failrec->this_mirror > num_copies) {
7880 		btrfs_debug(fs_info,
7881 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7882 			num_copies, failrec->this_mirror, failed_mirror);
7883 		return 0;
7884 	}
7885 
7886 	return 1;
7887 }
7888 
7889 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7890 				   struct page *page, unsigned int pgoff,
7891 				   u64 start, u64 end, int failed_mirror,
7892 				   bio_end_io_t *repair_endio, void *repair_arg)
7893 {
7894 	struct io_failure_record *failrec;
7895 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7896 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7897 	struct bio *bio;
7898 	int isector;
7899 	unsigned int read_mode = 0;
7900 	int segs;
7901 	int ret;
7902 	blk_status_t status;
7903 	struct bio_vec bvec;
7904 
7905 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7906 
7907 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7908 	if (ret)
7909 		return errno_to_blk_status(ret);
7910 
7911 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7912 					 failed_mirror);
7913 	if (!ret) {
7914 		free_io_failure(failure_tree, io_tree, failrec);
7915 		return BLK_STS_IOERR;
7916 	}
7917 
7918 	segs = bio_segments(failed_bio);
7919 	bio_get_first_bvec(failed_bio, &bvec);
7920 	if (segs > 1 ||
7921 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7922 		read_mode |= REQ_FAILFAST_DEV;
7923 
7924 	isector = start - btrfs_io_bio(failed_bio)->logical;
7925 	isector >>= inode->i_sb->s_blocksize_bits;
7926 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7927 				pgoff, isector, repair_endio, repair_arg);
7928 	bio->bi_opf = REQ_OP_READ | read_mode;
7929 
7930 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7931 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7932 		    read_mode, failrec->this_mirror, failrec->in_validation);
7933 
7934 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7935 	if (status) {
7936 		free_io_failure(failure_tree, io_tree, failrec);
7937 		bio_put(bio);
7938 	}
7939 
7940 	return status;
7941 }
7942 
7943 struct btrfs_retry_complete {
7944 	struct completion done;
7945 	struct inode *inode;
7946 	u64 start;
7947 	int uptodate;
7948 };
7949 
7950 static void btrfs_retry_endio_nocsum(struct bio *bio)
7951 {
7952 	struct btrfs_retry_complete *done = bio->bi_private;
7953 	struct inode *inode = done->inode;
7954 	struct bio_vec *bvec;
7955 	struct extent_io_tree *io_tree, *failure_tree;
7956 	struct bvec_iter_all iter_all;
7957 
7958 	if (bio->bi_status)
7959 		goto end;
7960 
7961 	ASSERT(bio->bi_vcnt == 1);
7962 	io_tree = &BTRFS_I(inode)->io_tree;
7963 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7964 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7965 
7966 	done->uptodate = 1;
7967 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7968 	bio_for_each_segment_all(bvec, bio, iter_all)
7969 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7970 				 io_tree, done->start, bvec->bv_page,
7971 				 btrfs_ino(BTRFS_I(inode)), 0);
7972 end:
7973 	complete(&done->done);
7974 	bio_put(bio);
7975 }
7976 
7977 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7978 						struct btrfs_io_bio *io_bio)
7979 {
7980 	struct btrfs_fs_info *fs_info;
7981 	struct bio_vec bvec;
7982 	struct bvec_iter iter;
7983 	struct btrfs_retry_complete done;
7984 	u64 start;
7985 	unsigned int pgoff;
7986 	u32 sectorsize;
7987 	int nr_sectors;
7988 	blk_status_t ret;
7989 	blk_status_t err = BLK_STS_OK;
7990 
7991 	fs_info = BTRFS_I(inode)->root->fs_info;
7992 	sectorsize = fs_info->sectorsize;
7993 
7994 	start = io_bio->logical;
7995 	done.inode = inode;
7996 	io_bio->bio.bi_iter = io_bio->iter;
7997 
7998 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7999 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8000 		pgoff = bvec.bv_offset;
8001 
8002 next_block_or_try_again:
8003 		done.uptodate = 0;
8004 		done.start = start;
8005 		init_completion(&done.done);
8006 
8007 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8008 				pgoff, start, start + sectorsize - 1,
8009 				io_bio->mirror_num,
8010 				btrfs_retry_endio_nocsum, &done);
8011 		if (ret) {
8012 			err = ret;
8013 			goto next;
8014 		}
8015 
8016 		wait_for_completion_io(&done.done);
8017 
8018 		if (!done.uptodate) {
8019 			/* We might have another mirror, so try again */
8020 			goto next_block_or_try_again;
8021 		}
8022 
8023 next:
8024 		start += sectorsize;
8025 
8026 		nr_sectors--;
8027 		if (nr_sectors) {
8028 			pgoff += sectorsize;
8029 			ASSERT(pgoff < PAGE_SIZE);
8030 			goto next_block_or_try_again;
8031 		}
8032 	}
8033 
8034 	return err;
8035 }
8036 
8037 static void btrfs_retry_endio(struct bio *bio)
8038 {
8039 	struct btrfs_retry_complete *done = bio->bi_private;
8040 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8041 	struct extent_io_tree *io_tree, *failure_tree;
8042 	struct inode *inode = done->inode;
8043 	struct bio_vec *bvec;
8044 	int uptodate;
8045 	int ret;
8046 	int i = 0;
8047 	struct bvec_iter_all iter_all;
8048 
8049 	if (bio->bi_status)
8050 		goto end;
8051 
8052 	uptodate = 1;
8053 
8054 	ASSERT(bio->bi_vcnt == 1);
8055 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8056 
8057 	io_tree = &BTRFS_I(inode)->io_tree;
8058 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8059 
8060 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8061 	bio_for_each_segment_all(bvec, bio, iter_all) {
8062 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8063 					     bvec->bv_offset, done->start,
8064 					     bvec->bv_len);
8065 		if (!ret)
8066 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8067 					 failure_tree, io_tree, done->start,
8068 					 bvec->bv_page,
8069 					 btrfs_ino(BTRFS_I(inode)),
8070 					 bvec->bv_offset);
8071 		else
8072 			uptodate = 0;
8073 		i++;
8074 	}
8075 
8076 	done->uptodate = uptodate;
8077 end:
8078 	complete(&done->done);
8079 	bio_put(bio);
8080 }
8081 
8082 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8083 		struct btrfs_io_bio *io_bio, blk_status_t err)
8084 {
8085 	struct btrfs_fs_info *fs_info;
8086 	struct bio_vec bvec;
8087 	struct bvec_iter iter;
8088 	struct btrfs_retry_complete done;
8089 	u64 start;
8090 	u64 offset = 0;
8091 	u32 sectorsize;
8092 	int nr_sectors;
8093 	unsigned int pgoff;
8094 	int csum_pos;
8095 	bool uptodate = (err == 0);
8096 	int ret;
8097 	blk_status_t status;
8098 
8099 	fs_info = BTRFS_I(inode)->root->fs_info;
8100 	sectorsize = fs_info->sectorsize;
8101 
8102 	err = BLK_STS_OK;
8103 	start = io_bio->logical;
8104 	done.inode = inode;
8105 	io_bio->bio.bi_iter = io_bio->iter;
8106 
8107 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8108 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8109 
8110 		pgoff = bvec.bv_offset;
8111 next_block:
8112 		if (uptodate) {
8113 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8114 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8115 					bvec.bv_page, pgoff, start, sectorsize);
8116 			if (likely(!ret))
8117 				goto next;
8118 		}
8119 try_again:
8120 		done.uptodate = 0;
8121 		done.start = start;
8122 		init_completion(&done.done);
8123 
8124 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8125 					pgoff, start, start + sectorsize - 1,
8126 					io_bio->mirror_num, btrfs_retry_endio,
8127 					&done);
8128 		if (status) {
8129 			err = status;
8130 			goto next;
8131 		}
8132 
8133 		wait_for_completion_io(&done.done);
8134 
8135 		if (!done.uptodate) {
8136 			/* We might have another mirror, so try again */
8137 			goto try_again;
8138 		}
8139 next:
8140 		offset += sectorsize;
8141 		start += sectorsize;
8142 
8143 		ASSERT(nr_sectors);
8144 
8145 		nr_sectors--;
8146 		if (nr_sectors) {
8147 			pgoff += sectorsize;
8148 			ASSERT(pgoff < PAGE_SIZE);
8149 			goto next_block;
8150 		}
8151 	}
8152 
8153 	return err;
8154 }
8155 
8156 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8157 		struct btrfs_io_bio *io_bio, blk_status_t err)
8158 {
8159 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8160 
8161 	if (skip_csum) {
8162 		if (unlikely(err))
8163 			return __btrfs_correct_data_nocsum(inode, io_bio);
8164 		else
8165 			return BLK_STS_OK;
8166 	} else {
8167 		return __btrfs_subio_endio_read(inode, io_bio, err);
8168 	}
8169 }
8170 
8171 static void btrfs_endio_direct_read(struct bio *bio)
8172 {
8173 	struct btrfs_dio_private *dip = bio->bi_private;
8174 	struct inode *inode = dip->inode;
8175 	struct bio *dio_bio;
8176 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8177 	blk_status_t err = bio->bi_status;
8178 
8179 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8180 		err = btrfs_subio_endio_read(inode, io_bio, err);
8181 
8182 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8183 		      dip->logical_offset + dip->bytes - 1);
8184 	dio_bio = dip->dio_bio;
8185 
8186 	kfree(dip);
8187 
8188 	dio_bio->bi_status = err;
8189 	dio_end_io(dio_bio);
8190 	btrfs_io_bio_free_csum(io_bio);
8191 	bio_put(bio);
8192 }
8193 
8194 static void __endio_write_update_ordered(struct inode *inode,
8195 					 const u64 offset, const u64 bytes,
8196 					 const bool uptodate)
8197 {
8198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8199 	struct btrfs_ordered_extent *ordered = NULL;
8200 	struct btrfs_workqueue *wq;
8201 	btrfs_work_func_t func;
8202 	u64 ordered_offset = offset;
8203 	u64 ordered_bytes = bytes;
8204 	u64 last_offset;
8205 
8206 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8207 		wq = fs_info->endio_freespace_worker;
8208 		func = btrfs_freespace_write_helper;
8209 	} else {
8210 		wq = fs_info->endio_write_workers;
8211 		func = btrfs_endio_write_helper;
8212 	}
8213 
8214 	while (ordered_offset < offset + bytes) {
8215 		last_offset = ordered_offset;
8216 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8217 							   &ordered_offset,
8218 							   ordered_bytes,
8219 							   uptodate)) {
8220 			btrfs_init_work(&ordered->work, func,
8221 					finish_ordered_fn,
8222 					NULL, NULL);
8223 			btrfs_queue_work(wq, &ordered->work);
8224 		}
8225 		/*
8226 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8227 		 * extent in the range, we can exit.
8228 		 */
8229 		if (ordered_offset == last_offset)
8230 			return;
8231 		/*
8232 		 * Our bio might span multiple ordered extents. In this case
8233 		 * we keep going until we have accounted the whole dio.
8234 		 */
8235 		if (ordered_offset < offset + bytes) {
8236 			ordered_bytes = offset + bytes - ordered_offset;
8237 			ordered = NULL;
8238 		}
8239 	}
8240 }
8241 
8242 static void btrfs_endio_direct_write(struct bio *bio)
8243 {
8244 	struct btrfs_dio_private *dip = bio->bi_private;
8245 	struct bio *dio_bio = dip->dio_bio;
8246 
8247 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8248 				     dip->bytes, !bio->bi_status);
8249 
8250 	kfree(dip);
8251 
8252 	dio_bio->bi_status = bio->bi_status;
8253 	dio_end_io(dio_bio);
8254 	bio_put(bio);
8255 }
8256 
8257 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8258 				    struct bio *bio, u64 offset)
8259 {
8260 	struct inode *inode = private_data;
8261 	blk_status_t ret;
8262 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8263 	BUG_ON(ret); /* -ENOMEM */
8264 	return 0;
8265 }
8266 
8267 static void btrfs_end_dio_bio(struct bio *bio)
8268 {
8269 	struct btrfs_dio_private *dip = bio->bi_private;
8270 	blk_status_t err = bio->bi_status;
8271 
8272 	if (err)
8273 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8274 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8275 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8276 			   bio->bi_opf,
8277 			   (unsigned long long)bio->bi_iter.bi_sector,
8278 			   bio->bi_iter.bi_size, err);
8279 
8280 	if (dip->subio_endio)
8281 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8282 
8283 	if (err) {
8284 		/*
8285 		 * We want to perceive the errors flag being set before
8286 		 * decrementing the reference count. We don't need a barrier
8287 		 * since atomic operations with a return value are fully
8288 		 * ordered as per atomic_t.txt
8289 		 */
8290 		dip->errors = 1;
8291 	}
8292 
8293 	/* if there are more bios still pending for this dio, just exit */
8294 	if (!atomic_dec_and_test(&dip->pending_bios))
8295 		goto out;
8296 
8297 	if (dip->errors) {
8298 		bio_io_error(dip->orig_bio);
8299 	} else {
8300 		dip->dio_bio->bi_status = BLK_STS_OK;
8301 		bio_endio(dip->orig_bio);
8302 	}
8303 out:
8304 	bio_put(bio);
8305 }
8306 
8307 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8308 						 struct btrfs_dio_private *dip,
8309 						 struct bio *bio,
8310 						 u64 file_offset)
8311 {
8312 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8313 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8314 	blk_status_t ret;
8315 
8316 	/*
8317 	 * We load all the csum data we need when we submit
8318 	 * the first bio to reduce the csum tree search and
8319 	 * contention.
8320 	 */
8321 	if (dip->logical_offset == file_offset) {
8322 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8323 						file_offset);
8324 		if (ret)
8325 			return ret;
8326 	}
8327 
8328 	if (bio == dip->orig_bio)
8329 		return 0;
8330 
8331 	file_offset -= dip->logical_offset;
8332 	file_offset >>= inode->i_sb->s_blocksize_bits;
8333 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8334 
8335 	return 0;
8336 }
8337 
8338 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8339 		struct inode *inode, u64 file_offset, int async_submit)
8340 {
8341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8342 	struct btrfs_dio_private *dip = bio->bi_private;
8343 	bool write = bio_op(bio) == REQ_OP_WRITE;
8344 	blk_status_t ret;
8345 
8346 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8347 	if (async_submit)
8348 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8349 
8350 	if (!write) {
8351 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8352 		if (ret)
8353 			goto err;
8354 	}
8355 
8356 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8357 		goto map;
8358 
8359 	if (write && async_submit) {
8360 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8361 					  file_offset, inode,
8362 					  btrfs_submit_bio_start_direct_io);
8363 		goto err;
8364 	} else if (write) {
8365 		/*
8366 		 * If we aren't doing async submit, calculate the csum of the
8367 		 * bio now.
8368 		 */
8369 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8370 		if (ret)
8371 			goto err;
8372 	} else {
8373 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8374 						     file_offset);
8375 		if (ret)
8376 			goto err;
8377 	}
8378 map:
8379 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8380 err:
8381 	return ret;
8382 }
8383 
8384 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8385 {
8386 	struct inode *inode = dip->inode;
8387 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8388 	struct bio *bio;
8389 	struct bio *orig_bio = dip->orig_bio;
8390 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8391 	u64 file_offset = dip->logical_offset;
8392 	int async_submit = 0;
8393 	u64 submit_len;
8394 	int clone_offset = 0;
8395 	int clone_len;
8396 	int ret;
8397 	blk_status_t status;
8398 	struct btrfs_io_geometry geom;
8399 
8400 	submit_len = orig_bio->bi_iter.bi_size;
8401 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8402 				    start_sector << 9, submit_len, &geom);
8403 	if (ret)
8404 		return -EIO;
8405 
8406 	if (geom.len >= submit_len) {
8407 		bio = orig_bio;
8408 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8409 		goto submit;
8410 	}
8411 
8412 	/* async crcs make it difficult to collect full stripe writes. */
8413 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8414 		async_submit = 0;
8415 	else
8416 		async_submit = 1;
8417 
8418 	/* bio split */
8419 	ASSERT(geom.len <= INT_MAX);
8420 	atomic_inc(&dip->pending_bios);
8421 	do {
8422 		clone_len = min_t(int, submit_len, geom.len);
8423 
8424 		/*
8425 		 * This will never fail as it's passing GPF_NOFS and
8426 		 * the allocation is backed by btrfs_bioset.
8427 		 */
8428 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8429 					      clone_len);
8430 		bio->bi_private = dip;
8431 		bio->bi_end_io = btrfs_end_dio_bio;
8432 		btrfs_io_bio(bio)->logical = file_offset;
8433 
8434 		ASSERT(submit_len >= clone_len);
8435 		submit_len -= clone_len;
8436 		if (submit_len == 0)
8437 			break;
8438 
8439 		/*
8440 		 * Increase the count before we submit the bio so we know
8441 		 * the end IO handler won't happen before we increase the
8442 		 * count. Otherwise, the dip might get freed before we're
8443 		 * done setting it up.
8444 		 */
8445 		atomic_inc(&dip->pending_bios);
8446 
8447 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8448 						async_submit);
8449 		if (status) {
8450 			bio_put(bio);
8451 			atomic_dec(&dip->pending_bios);
8452 			goto out_err;
8453 		}
8454 
8455 		clone_offset += clone_len;
8456 		start_sector += clone_len >> 9;
8457 		file_offset += clone_len;
8458 
8459 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8460 				      start_sector << 9, submit_len, &geom);
8461 		if (ret)
8462 			goto out_err;
8463 	} while (submit_len > 0);
8464 
8465 submit:
8466 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8467 	if (!status)
8468 		return 0;
8469 
8470 	bio_put(bio);
8471 out_err:
8472 	dip->errors = 1;
8473 	/*
8474 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8475 	 * perceived to be set. This ordering is ensured by the fact that an
8476 	 * atomic operations with a return value are fully ordered as per
8477 	 * atomic_t.txt
8478 	 */
8479 	if (atomic_dec_and_test(&dip->pending_bios))
8480 		bio_io_error(dip->orig_bio);
8481 
8482 	/* bio_end_io() will handle error, so we needn't return it */
8483 	return 0;
8484 }
8485 
8486 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8487 				loff_t file_offset)
8488 {
8489 	struct btrfs_dio_private *dip = NULL;
8490 	struct bio *bio = NULL;
8491 	struct btrfs_io_bio *io_bio;
8492 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8493 	int ret = 0;
8494 
8495 	bio = btrfs_bio_clone(dio_bio);
8496 
8497 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8498 	if (!dip) {
8499 		ret = -ENOMEM;
8500 		goto free_ordered;
8501 	}
8502 
8503 	dip->private = dio_bio->bi_private;
8504 	dip->inode = inode;
8505 	dip->logical_offset = file_offset;
8506 	dip->bytes = dio_bio->bi_iter.bi_size;
8507 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8508 	bio->bi_private = dip;
8509 	dip->orig_bio = bio;
8510 	dip->dio_bio = dio_bio;
8511 	atomic_set(&dip->pending_bios, 0);
8512 	io_bio = btrfs_io_bio(bio);
8513 	io_bio->logical = file_offset;
8514 
8515 	if (write) {
8516 		bio->bi_end_io = btrfs_endio_direct_write;
8517 	} else {
8518 		bio->bi_end_io = btrfs_endio_direct_read;
8519 		dip->subio_endio = btrfs_subio_endio_read;
8520 	}
8521 
8522 	/*
8523 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8524 	 * even if we fail to submit a bio, because in such case we do the
8525 	 * corresponding error handling below and it must not be done a second
8526 	 * time by btrfs_direct_IO().
8527 	 */
8528 	if (write) {
8529 		struct btrfs_dio_data *dio_data = current->journal_info;
8530 
8531 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8532 			dip->bytes;
8533 		dio_data->unsubmitted_oe_range_start =
8534 			dio_data->unsubmitted_oe_range_end;
8535 	}
8536 
8537 	ret = btrfs_submit_direct_hook(dip);
8538 	if (!ret)
8539 		return;
8540 
8541 	btrfs_io_bio_free_csum(io_bio);
8542 
8543 free_ordered:
8544 	/*
8545 	 * If we arrived here it means either we failed to submit the dip
8546 	 * or we either failed to clone the dio_bio or failed to allocate the
8547 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8548 	 * call bio_endio against our io_bio so that we get proper resource
8549 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8550 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8551 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8552 	 */
8553 	if (bio && dip) {
8554 		bio_io_error(bio);
8555 		/*
8556 		 * The end io callbacks free our dip, do the final put on bio
8557 		 * and all the cleanup and final put for dio_bio (through
8558 		 * dio_end_io()).
8559 		 */
8560 		dip = NULL;
8561 		bio = NULL;
8562 	} else {
8563 		if (write)
8564 			__endio_write_update_ordered(inode,
8565 						file_offset,
8566 						dio_bio->bi_iter.bi_size,
8567 						false);
8568 		else
8569 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8570 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8571 
8572 		dio_bio->bi_status = BLK_STS_IOERR;
8573 		/*
8574 		 * Releases and cleans up our dio_bio, no need to bio_put()
8575 		 * nor bio_endio()/bio_io_error() against dio_bio.
8576 		 */
8577 		dio_end_io(dio_bio);
8578 	}
8579 	if (bio)
8580 		bio_put(bio);
8581 	kfree(dip);
8582 }
8583 
8584 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8585 			       const struct iov_iter *iter, loff_t offset)
8586 {
8587 	int seg;
8588 	int i;
8589 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8590 	ssize_t retval = -EINVAL;
8591 
8592 	if (offset & blocksize_mask)
8593 		goto out;
8594 
8595 	if (iov_iter_alignment(iter) & blocksize_mask)
8596 		goto out;
8597 
8598 	/* If this is a write we don't need to check anymore */
8599 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8600 		return 0;
8601 	/*
8602 	 * Check to make sure we don't have duplicate iov_base's in this
8603 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8604 	 * when reading back.
8605 	 */
8606 	for (seg = 0; seg < iter->nr_segs; seg++) {
8607 		for (i = seg + 1; i < iter->nr_segs; i++) {
8608 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8609 				goto out;
8610 		}
8611 	}
8612 	retval = 0;
8613 out:
8614 	return retval;
8615 }
8616 
8617 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8618 {
8619 	struct file *file = iocb->ki_filp;
8620 	struct inode *inode = file->f_mapping->host;
8621 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8622 	struct btrfs_dio_data dio_data = { 0 };
8623 	struct extent_changeset *data_reserved = NULL;
8624 	loff_t offset = iocb->ki_pos;
8625 	size_t count = 0;
8626 	int flags = 0;
8627 	bool wakeup = true;
8628 	bool relock = false;
8629 	ssize_t ret;
8630 
8631 	if (check_direct_IO(fs_info, iter, offset))
8632 		return 0;
8633 
8634 	inode_dio_begin(inode);
8635 
8636 	/*
8637 	 * The generic stuff only does filemap_write_and_wait_range, which
8638 	 * isn't enough if we've written compressed pages to this area, so
8639 	 * we need to flush the dirty pages again to make absolutely sure
8640 	 * that any outstanding dirty pages are on disk.
8641 	 */
8642 	count = iov_iter_count(iter);
8643 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8644 		     &BTRFS_I(inode)->runtime_flags))
8645 		filemap_fdatawrite_range(inode->i_mapping, offset,
8646 					 offset + count - 1);
8647 
8648 	if (iov_iter_rw(iter) == WRITE) {
8649 		/*
8650 		 * If the write DIO is beyond the EOF, we need update
8651 		 * the isize, but it is protected by i_mutex. So we can
8652 		 * not unlock the i_mutex at this case.
8653 		 */
8654 		if (offset + count <= inode->i_size) {
8655 			dio_data.overwrite = 1;
8656 			inode_unlock(inode);
8657 			relock = true;
8658 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8659 			ret = -EAGAIN;
8660 			goto out;
8661 		}
8662 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8663 						   offset, count);
8664 		if (ret)
8665 			goto out;
8666 
8667 		/*
8668 		 * We need to know how many extents we reserved so that we can
8669 		 * do the accounting properly if we go over the number we
8670 		 * originally calculated.  Abuse current->journal_info for this.
8671 		 */
8672 		dio_data.reserve = round_up(count,
8673 					    fs_info->sectorsize);
8674 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8675 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8676 		current->journal_info = &dio_data;
8677 		down_read(&BTRFS_I(inode)->dio_sem);
8678 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8679 				     &BTRFS_I(inode)->runtime_flags)) {
8680 		inode_dio_end(inode);
8681 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8682 		wakeup = false;
8683 	}
8684 
8685 	ret = __blockdev_direct_IO(iocb, inode,
8686 				   fs_info->fs_devices->latest_bdev,
8687 				   iter, btrfs_get_blocks_direct, NULL,
8688 				   btrfs_submit_direct, flags);
8689 	if (iov_iter_rw(iter) == WRITE) {
8690 		up_read(&BTRFS_I(inode)->dio_sem);
8691 		current->journal_info = NULL;
8692 		if (ret < 0 && ret != -EIOCBQUEUED) {
8693 			if (dio_data.reserve)
8694 				btrfs_delalloc_release_space(inode, data_reserved,
8695 					offset, dio_data.reserve, true);
8696 			/*
8697 			 * On error we might have left some ordered extents
8698 			 * without submitting corresponding bios for them, so
8699 			 * cleanup them up to avoid other tasks getting them
8700 			 * and waiting for them to complete forever.
8701 			 */
8702 			if (dio_data.unsubmitted_oe_range_start <
8703 			    dio_data.unsubmitted_oe_range_end)
8704 				__endio_write_update_ordered(inode,
8705 					dio_data.unsubmitted_oe_range_start,
8706 					dio_data.unsubmitted_oe_range_end -
8707 					dio_data.unsubmitted_oe_range_start,
8708 					false);
8709 		} else if (ret >= 0 && (size_t)ret < count)
8710 			btrfs_delalloc_release_space(inode, data_reserved,
8711 					offset, count - (size_t)ret, true);
8712 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8713 	}
8714 out:
8715 	if (wakeup)
8716 		inode_dio_end(inode);
8717 	if (relock)
8718 		inode_lock(inode);
8719 
8720 	extent_changeset_free(data_reserved);
8721 	return ret;
8722 }
8723 
8724 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8725 
8726 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8727 		__u64 start, __u64 len)
8728 {
8729 	int	ret;
8730 
8731 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8732 	if (ret)
8733 		return ret;
8734 
8735 	return extent_fiemap(inode, fieinfo, start, len);
8736 }
8737 
8738 int btrfs_readpage(struct file *file, struct page *page)
8739 {
8740 	struct extent_io_tree *tree;
8741 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8742 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8743 }
8744 
8745 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8746 {
8747 	struct inode *inode = page->mapping->host;
8748 	int ret;
8749 
8750 	if (current->flags & PF_MEMALLOC) {
8751 		redirty_page_for_writepage(wbc, page);
8752 		unlock_page(page);
8753 		return 0;
8754 	}
8755 
8756 	/*
8757 	 * If we are under memory pressure we will call this directly from the
8758 	 * VM, we need to make sure we have the inode referenced for the ordered
8759 	 * extent.  If not just return like we didn't do anything.
8760 	 */
8761 	if (!igrab(inode)) {
8762 		redirty_page_for_writepage(wbc, page);
8763 		return AOP_WRITEPAGE_ACTIVATE;
8764 	}
8765 	ret = extent_write_full_page(page, wbc);
8766 	btrfs_add_delayed_iput(inode);
8767 	return ret;
8768 }
8769 
8770 static int btrfs_writepages(struct address_space *mapping,
8771 			    struct writeback_control *wbc)
8772 {
8773 	return extent_writepages(mapping, wbc);
8774 }
8775 
8776 static int
8777 btrfs_readpages(struct file *file, struct address_space *mapping,
8778 		struct list_head *pages, unsigned nr_pages)
8779 {
8780 	return extent_readpages(mapping, pages, nr_pages);
8781 }
8782 
8783 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8784 {
8785 	int ret = try_release_extent_mapping(page, gfp_flags);
8786 	if (ret == 1) {
8787 		ClearPagePrivate(page);
8788 		set_page_private(page, 0);
8789 		put_page(page);
8790 	}
8791 	return ret;
8792 }
8793 
8794 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8795 {
8796 	if (PageWriteback(page) || PageDirty(page))
8797 		return 0;
8798 	return __btrfs_releasepage(page, gfp_flags);
8799 }
8800 
8801 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8802 				 unsigned int length)
8803 {
8804 	struct inode *inode = page->mapping->host;
8805 	struct extent_io_tree *tree;
8806 	struct btrfs_ordered_extent *ordered;
8807 	struct extent_state *cached_state = NULL;
8808 	u64 page_start = page_offset(page);
8809 	u64 page_end = page_start + PAGE_SIZE - 1;
8810 	u64 start;
8811 	u64 end;
8812 	int inode_evicting = inode->i_state & I_FREEING;
8813 
8814 	/*
8815 	 * we have the page locked, so new writeback can't start,
8816 	 * and the dirty bit won't be cleared while we are here.
8817 	 *
8818 	 * Wait for IO on this page so that we can safely clear
8819 	 * the PagePrivate2 bit and do ordered accounting
8820 	 */
8821 	wait_on_page_writeback(page);
8822 
8823 	tree = &BTRFS_I(inode)->io_tree;
8824 	if (offset) {
8825 		btrfs_releasepage(page, GFP_NOFS);
8826 		return;
8827 	}
8828 
8829 	if (!inode_evicting)
8830 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8831 again:
8832 	start = page_start;
8833 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8834 					page_end - start + 1);
8835 	if (ordered) {
8836 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8837 		/*
8838 		 * IO on this page will never be started, so we need
8839 		 * to account for any ordered extents now
8840 		 */
8841 		if (!inode_evicting)
8842 			clear_extent_bit(tree, start, end,
8843 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8844 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8845 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8846 		/*
8847 		 * whoever cleared the private bit is responsible
8848 		 * for the finish_ordered_io
8849 		 */
8850 		if (TestClearPagePrivate2(page)) {
8851 			struct btrfs_ordered_inode_tree *tree;
8852 			u64 new_len;
8853 
8854 			tree = &BTRFS_I(inode)->ordered_tree;
8855 
8856 			spin_lock_irq(&tree->lock);
8857 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8858 			new_len = start - ordered->file_offset;
8859 			if (new_len < ordered->truncated_len)
8860 				ordered->truncated_len = new_len;
8861 			spin_unlock_irq(&tree->lock);
8862 
8863 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8864 							   start,
8865 							   end - start + 1, 1))
8866 				btrfs_finish_ordered_io(ordered);
8867 		}
8868 		btrfs_put_ordered_extent(ordered);
8869 		if (!inode_evicting) {
8870 			cached_state = NULL;
8871 			lock_extent_bits(tree, start, end,
8872 					 &cached_state);
8873 		}
8874 
8875 		start = end + 1;
8876 		if (start < page_end)
8877 			goto again;
8878 	}
8879 
8880 	/*
8881 	 * Qgroup reserved space handler
8882 	 * Page here will be either
8883 	 * 1) Already written to disk
8884 	 *    In this case, its reserved space is released from data rsv map
8885 	 *    and will be freed by delayed_ref handler finally.
8886 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8887 	 *    space.
8888 	 * 2) Not written to disk
8889 	 *    This means the reserved space should be freed here. However,
8890 	 *    if a truncate invalidates the page (by clearing PageDirty)
8891 	 *    and the page is accounted for while allocating extent
8892 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8893 	 *    free the entire extent.
8894 	 */
8895 	if (PageDirty(page))
8896 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8897 	if (!inode_evicting) {
8898 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8899 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8900 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8901 				 &cached_state);
8902 
8903 		__btrfs_releasepage(page, GFP_NOFS);
8904 	}
8905 
8906 	ClearPageChecked(page);
8907 	if (PagePrivate(page)) {
8908 		ClearPagePrivate(page);
8909 		set_page_private(page, 0);
8910 		put_page(page);
8911 	}
8912 }
8913 
8914 /*
8915  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8916  * called from a page fault handler when a page is first dirtied. Hence we must
8917  * be careful to check for EOF conditions here. We set the page up correctly
8918  * for a written page which means we get ENOSPC checking when writing into
8919  * holes and correct delalloc and unwritten extent mapping on filesystems that
8920  * support these features.
8921  *
8922  * We are not allowed to take the i_mutex here so we have to play games to
8923  * protect against truncate races as the page could now be beyond EOF.  Because
8924  * truncate_setsize() writes the inode size before removing pages, once we have
8925  * the page lock we can determine safely if the page is beyond EOF. If it is not
8926  * beyond EOF, then the page is guaranteed safe against truncation until we
8927  * unlock the page.
8928  */
8929 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8930 {
8931 	struct page *page = vmf->page;
8932 	struct inode *inode = file_inode(vmf->vma->vm_file);
8933 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8934 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8935 	struct btrfs_ordered_extent *ordered;
8936 	struct extent_state *cached_state = NULL;
8937 	struct extent_changeset *data_reserved = NULL;
8938 	char *kaddr;
8939 	unsigned long zero_start;
8940 	loff_t size;
8941 	vm_fault_t ret;
8942 	int ret2;
8943 	int reserved = 0;
8944 	u64 reserved_space;
8945 	u64 page_start;
8946 	u64 page_end;
8947 	u64 end;
8948 
8949 	reserved_space = PAGE_SIZE;
8950 
8951 	sb_start_pagefault(inode->i_sb);
8952 	page_start = page_offset(page);
8953 	page_end = page_start + PAGE_SIZE - 1;
8954 	end = page_end;
8955 
8956 	/*
8957 	 * Reserving delalloc space after obtaining the page lock can lead to
8958 	 * deadlock. For example, if a dirty page is locked by this function
8959 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8960 	 * dirty page write out, then the btrfs_writepage() function could
8961 	 * end up waiting indefinitely to get a lock on the page currently
8962 	 * being processed by btrfs_page_mkwrite() function.
8963 	 */
8964 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8965 					   reserved_space);
8966 	if (!ret2) {
8967 		ret2 = file_update_time(vmf->vma->vm_file);
8968 		reserved = 1;
8969 	}
8970 	if (ret2) {
8971 		ret = vmf_error(ret2);
8972 		if (reserved)
8973 			goto out;
8974 		goto out_noreserve;
8975 	}
8976 
8977 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8978 again:
8979 	lock_page(page);
8980 	size = i_size_read(inode);
8981 
8982 	if ((page->mapping != inode->i_mapping) ||
8983 	    (page_start >= size)) {
8984 		/* page got truncated out from underneath us */
8985 		goto out_unlock;
8986 	}
8987 	wait_on_page_writeback(page);
8988 
8989 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8990 	set_page_extent_mapped(page);
8991 
8992 	/*
8993 	 * we can't set the delalloc bits if there are pending ordered
8994 	 * extents.  Drop our locks and wait for them to finish
8995 	 */
8996 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8997 			PAGE_SIZE);
8998 	if (ordered) {
8999 		unlock_extent_cached(io_tree, page_start, page_end,
9000 				     &cached_state);
9001 		unlock_page(page);
9002 		btrfs_start_ordered_extent(inode, ordered, 1);
9003 		btrfs_put_ordered_extent(ordered);
9004 		goto again;
9005 	}
9006 
9007 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9008 		reserved_space = round_up(size - page_start,
9009 					  fs_info->sectorsize);
9010 		if (reserved_space < PAGE_SIZE) {
9011 			end = page_start + reserved_space - 1;
9012 			btrfs_delalloc_release_space(inode, data_reserved,
9013 					page_start, PAGE_SIZE - reserved_space,
9014 					true);
9015 		}
9016 	}
9017 
9018 	/*
9019 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9020 	 * faulted in, but write(2) could also dirty a page and set delalloc
9021 	 * bits, thus in this case for space account reason, we still need to
9022 	 * clear any delalloc bits within this page range since we have to
9023 	 * reserve data&meta space before lock_page() (see above comments).
9024 	 */
9025 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9026 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9027 			  EXTENT_DEFRAG, 0, 0, &cached_state);
9028 
9029 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9030 					&cached_state);
9031 	if (ret2) {
9032 		unlock_extent_cached(io_tree, page_start, page_end,
9033 				     &cached_state);
9034 		ret = VM_FAULT_SIGBUS;
9035 		goto out_unlock;
9036 	}
9037 	ret2 = 0;
9038 
9039 	/* page is wholly or partially inside EOF */
9040 	if (page_start + PAGE_SIZE > size)
9041 		zero_start = offset_in_page(size);
9042 	else
9043 		zero_start = PAGE_SIZE;
9044 
9045 	if (zero_start != PAGE_SIZE) {
9046 		kaddr = kmap(page);
9047 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9048 		flush_dcache_page(page);
9049 		kunmap(page);
9050 	}
9051 	ClearPageChecked(page);
9052 	set_page_dirty(page);
9053 	SetPageUptodate(page);
9054 
9055 	BTRFS_I(inode)->last_trans = fs_info->generation;
9056 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9057 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9058 
9059 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9060 
9061 	if (!ret2) {
9062 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9063 		sb_end_pagefault(inode->i_sb);
9064 		extent_changeset_free(data_reserved);
9065 		return VM_FAULT_LOCKED;
9066 	}
9067 
9068 out_unlock:
9069 	unlock_page(page);
9070 out:
9071 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9072 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9073 				     reserved_space, (ret != 0));
9074 out_noreserve:
9075 	sb_end_pagefault(inode->i_sb);
9076 	extent_changeset_free(data_reserved);
9077 	return ret;
9078 }
9079 
9080 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9081 {
9082 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9083 	struct btrfs_root *root = BTRFS_I(inode)->root;
9084 	struct btrfs_block_rsv *rsv;
9085 	int ret;
9086 	struct btrfs_trans_handle *trans;
9087 	u64 mask = fs_info->sectorsize - 1;
9088 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9089 
9090 	if (!skip_writeback) {
9091 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9092 					       (u64)-1);
9093 		if (ret)
9094 			return ret;
9095 	}
9096 
9097 	/*
9098 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9099 	 * things going on here:
9100 	 *
9101 	 * 1) We need to reserve space to update our inode.
9102 	 *
9103 	 * 2) We need to have something to cache all the space that is going to
9104 	 * be free'd up by the truncate operation, but also have some slack
9105 	 * space reserved in case it uses space during the truncate (thank you
9106 	 * very much snapshotting).
9107 	 *
9108 	 * And we need these to be separate.  The fact is we can use a lot of
9109 	 * space doing the truncate, and we have no earthly idea how much space
9110 	 * we will use, so we need the truncate reservation to be separate so it
9111 	 * doesn't end up using space reserved for updating the inode.  We also
9112 	 * need to be able to stop the transaction and start a new one, which
9113 	 * means we need to be able to update the inode several times, and we
9114 	 * have no idea of knowing how many times that will be, so we can't just
9115 	 * reserve 1 item for the entirety of the operation, so that has to be
9116 	 * done separately as well.
9117 	 *
9118 	 * So that leaves us with
9119 	 *
9120 	 * 1) rsv - for the truncate reservation, which we will steal from the
9121 	 * transaction reservation.
9122 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9123 	 * updating the inode.
9124 	 */
9125 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9126 	if (!rsv)
9127 		return -ENOMEM;
9128 	rsv->size = min_size;
9129 	rsv->failfast = 1;
9130 
9131 	/*
9132 	 * 1 for the truncate slack space
9133 	 * 1 for updating the inode.
9134 	 */
9135 	trans = btrfs_start_transaction(root, 2);
9136 	if (IS_ERR(trans)) {
9137 		ret = PTR_ERR(trans);
9138 		goto out;
9139 	}
9140 
9141 	/* Migrate the slack space for the truncate to our reserve */
9142 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9143 				      min_size, false);
9144 	BUG_ON(ret);
9145 
9146 	/*
9147 	 * So if we truncate and then write and fsync we normally would just
9148 	 * write the extents that changed, which is a problem if we need to
9149 	 * first truncate that entire inode.  So set this flag so we write out
9150 	 * all of the extents in the inode to the sync log so we're completely
9151 	 * safe.
9152 	 */
9153 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9154 	trans->block_rsv = rsv;
9155 
9156 	while (1) {
9157 		ret = btrfs_truncate_inode_items(trans, root, inode,
9158 						 inode->i_size,
9159 						 BTRFS_EXTENT_DATA_KEY);
9160 		trans->block_rsv = &fs_info->trans_block_rsv;
9161 		if (ret != -ENOSPC && ret != -EAGAIN)
9162 			break;
9163 
9164 		ret = btrfs_update_inode(trans, root, inode);
9165 		if (ret)
9166 			break;
9167 
9168 		btrfs_end_transaction(trans);
9169 		btrfs_btree_balance_dirty(fs_info);
9170 
9171 		trans = btrfs_start_transaction(root, 2);
9172 		if (IS_ERR(trans)) {
9173 			ret = PTR_ERR(trans);
9174 			trans = NULL;
9175 			break;
9176 		}
9177 
9178 		btrfs_block_rsv_release(fs_info, rsv, -1);
9179 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9180 					      rsv, min_size, false);
9181 		BUG_ON(ret);	/* shouldn't happen */
9182 		trans->block_rsv = rsv;
9183 	}
9184 
9185 	/*
9186 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9187 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9188 	 * we've truncated everything except the last little bit, and can do
9189 	 * btrfs_truncate_block and then update the disk_i_size.
9190 	 */
9191 	if (ret == NEED_TRUNCATE_BLOCK) {
9192 		btrfs_end_transaction(trans);
9193 		btrfs_btree_balance_dirty(fs_info);
9194 
9195 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9196 		if (ret)
9197 			goto out;
9198 		trans = btrfs_start_transaction(root, 1);
9199 		if (IS_ERR(trans)) {
9200 			ret = PTR_ERR(trans);
9201 			goto out;
9202 		}
9203 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9204 	}
9205 
9206 	if (trans) {
9207 		int ret2;
9208 
9209 		trans->block_rsv = &fs_info->trans_block_rsv;
9210 		ret2 = btrfs_update_inode(trans, root, inode);
9211 		if (ret2 && !ret)
9212 			ret = ret2;
9213 
9214 		ret2 = btrfs_end_transaction(trans);
9215 		if (ret2 && !ret)
9216 			ret = ret2;
9217 		btrfs_btree_balance_dirty(fs_info);
9218 	}
9219 out:
9220 	btrfs_free_block_rsv(fs_info, rsv);
9221 
9222 	return ret;
9223 }
9224 
9225 /*
9226  * create a new subvolume directory/inode (helper for the ioctl).
9227  */
9228 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9229 			     struct btrfs_root *new_root,
9230 			     struct btrfs_root *parent_root,
9231 			     u64 new_dirid)
9232 {
9233 	struct inode *inode;
9234 	int err;
9235 	u64 index = 0;
9236 
9237 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9238 				new_dirid, new_dirid,
9239 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9240 				&index);
9241 	if (IS_ERR(inode))
9242 		return PTR_ERR(inode);
9243 	inode->i_op = &btrfs_dir_inode_operations;
9244 	inode->i_fop = &btrfs_dir_file_operations;
9245 
9246 	set_nlink(inode, 1);
9247 	btrfs_i_size_write(BTRFS_I(inode), 0);
9248 	unlock_new_inode(inode);
9249 
9250 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9251 	if (err)
9252 		btrfs_err(new_root->fs_info,
9253 			  "error inheriting subvolume %llu properties: %d",
9254 			  new_root->root_key.objectid, err);
9255 
9256 	err = btrfs_update_inode(trans, new_root, inode);
9257 
9258 	iput(inode);
9259 	return err;
9260 }
9261 
9262 struct inode *btrfs_alloc_inode(struct super_block *sb)
9263 {
9264 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9265 	struct btrfs_inode *ei;
9266 	struct inode *inode;
9267 
9268 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9269 	if (!ei)
9270 		return NULL;
9271 
9272 	ei->root = NULL;
9273 	ei->generation = 0;
9274 	ei->last_trans = 0;
9275 	ei->last_sub_trans = 0;
9276 	ei->logged_trans = 0;
9277 	ei->delalloc_bytes = 0;
9278 	ei->new_delalloc_bytes = 0;
9279 	ei->defrag_bytes = 0;
9280 	ei->disk_i_size = 0;
9281 	ei->flags = 0;
9282 	ei->csum_bytes = 0;
9283 	ei->index_cnt = (u64)-1;
9284 	ei->dir_index = 0;
9285 	ei->last_unlink_trans = 0;
9286 	ei->last_log_commit = 0;
9287 
9288 	spin_lock_init(&ei->lock);
9289 	ei->outstanding_extents = 0;
9290 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9291 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9292 					      BTRFS_BLOCK_RSV_DELALLOC);
9293 	ei->runtime_flags = 0;
9294 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9295 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9296 
9297 	ei->delayed_node = NULL;
9298 
9299 	ei->i_otime.tv_sec = 0;
9300 	ei->i_otime.tv_nsec = 0;
9301 
9302 	inode = &ei->vfs_inode;
9303 	extent_map_tree_init(&ei->extent_tree);
9304 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9305 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9306 			    IO_TREE_INODE_IO_FAILURE, inode);
9307 	ei->io_tree.track_uptodate = true;
9308 	ei->io_failure_tree.track_uptodate = true;
9309 	atomic_set(&ei->sync_writers, 0);
9310 	mutex_init(&ei->log_mutex);
9311 	mutex_init(&ei->delalloc_mutex);
9312 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9313 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9314 	INIT_LIST_HEAD(&ei->delayed_iput);
9315 	RB_CLEAR_NODE(&ei->rb_node);
9316 	init_rwsem(&ei->dio_sem);
9317 
9318 	return inode;
9319 }
9320 
9321 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9322 void btrfs_test_destroy_inode(struct inode *inode)
9323 {
9324 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9325 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9326 }
9327 #endif
9328 
9329 void btrfs_free_inode(struct inode *inode)
9330 {
9331 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9332 }
9333 
9334 void btrfs_destroy_inode(struct inode *inode)
9335 {
9336 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9337 	struct btrfs_ordered_extent *ordered;
9338 	struct btrfs_root *root = BTRFS_I(inode)->root;
9339 
9340 	WARN_ON(!hlist_empty(&inode->i_dentry));
9341 	WARN_ON(inode->i_data.nrpages);
9342 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9343 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9344 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9345 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9346 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9347 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9348 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9349 
9350 	/*
9351 	 * This can happen where we create an inode, but somebody else also
9352 	 * created the same inode and we need to destroy the one we already
9353 	 * created.
9354 	 */
9355 	if (!root)
9356 		return;
9357 
9358 	while (1) {
9359 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9360 		if (!ordered)
9361 			break;
9362 		else {
9363 			btrfs_err(fs_info,
9364 				  "found ordered extent %llu %llu on inode cleanup",
9365 				  ordered->file_offset, ordered->len);
9366 			btrfs_remove_ordered_extent(inode, ordered);
9367 			btrfs_put_ordered_extent(ordered);
9368 			btrfs_put_ordered_extent(ordered);
9369 		}
9370 	}
9371 	btrfs_qgroup_check_reserved_leak(inode);
9372 	inode_tree_del(inode);
9373 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9374 }
9375 
9376 int btrfs_drop_inode(struct inode *inode)
9377 {
9378 	struct btrfs_root *root = BTRFS_I(inode)->root;
9379 
9380 	if (root == NULL)
9381 		return 1;
9382 
9383 	/* the snap/subvol tree is on deleting */
9384 	if (btrfs_root_refs(&root->root_item) == 0)
9385 		return 1;
9386 	else
9387 		return generic_drop_inode(inode);
9388 }
9389 
9390 static void init_once(void *foo)
9391 {
9392 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9393 
9394 	inode_init_once(&ei->vfs_inode);
9395 }
9396 
9397 void __cold btrfs_destroy_cachep(void)
9398 {
9399 	/*
9400 	 * Make sure all delayed rcu free inodes are flushed before we
9401 	 * destroy cache.
9402 	 */
9403 	rcu_barrier();
9404 	kmem_cache_destroy(btrfs_inode_cachep);
9405 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9406 	kmem_cache_destroy(btrfs_path_cachep);
9407 	kmem_cache_destroy(btrfs_free_space_cachep);
9408 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9409 }
9410 
9411 int __init btrfs_init_cachep(void)
9412 {
9413 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9414 			sizeof(struct btrfs_inode), 0,
9415 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9416 			init_once);
9417 	if (!btrfs_inode_cachep)
9418 		goto fail;
9419 
9420 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9421 			sizeof(struct btrfs_trans_handle), 0,
9422 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9423 	if (!btrfs_trans_handle_cachep)
9424 		goto fail;
9425 
9426 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9427 			sizeof(struct btrfs_path), 0,
9428 			SLAB_MEM_SPREAD, NULL);
9429 	if (!btrfs_path_cachep)
9430 		goto fail;
9431 
9432 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9433 			sizeof(struct btrfs_free_space), 0,
9434 			SLAB_MEM_SPREAD, NULL);
9435 	if (!btrfs_free_space_cachep)
9436 		goto fail;
9437 
9438 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9439 							PAGE_SIZE, PAGE_SIZE,
9440 							SLAB_RED_ZONE, NULL);
9441 	if (!btrfs_free_space_bitmap_cachep)
9442 		goto fail;
9443 
9444 	return 0;
9445 fail:
9446 	btrfs_destroy_cachep();
9447 	return -ENOMEM;
9448 }
9449 
9450 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9451 			 u32 request_mask, unsigned int flags)
9452 {
9453 	u64 delalloc_bytes;
9454 	struct inode *inode = d_inode(path->dentry);
9455 	u32 blocksize = inode->i_sb->s_blocksize;
9456 	u32 bi_flags = BTRFS_I(inode)->flags;
9457 
9458 	stat->result_mask |= STATX_BTIME;
9459 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9460 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9461 	if (bi_flags & BTRFS_INODE_APPEND)
9462 		stat->attributes |= STATX_ATTR_APPEND;
9463 	if (bi_flags & BTRFS_INODE_COMPRESS)
9464 		stat->attributes |= STATX_ATTR_COMPRESSED;
9465 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9466 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9467 	if (bi_flags & BTRFS_INODE_NODUMP)
9468 		stat->attributes |= STATX_ATTR_NODUMP;
9469 
9470 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9471 				  STATX_ATTR_COMPRESSED |
9472 				  STATX_ATTR_IMMUTABLE |
9473 				  STATX_ATTR_NODUMP);
9474 
9475 	generic_fillattr(inode, stat);
9476 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9477 
9478 	spin_lock(&BTRFS_I(inode)->lock);
9479 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9480 	spin_unlock(&BTRFS_I(inode)->lock);
9481 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9482 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9483 	return 0;
9484 }
9485 
9486 static int btrfs_rename_exchange(struct inode *old_dir,
9487 			      struct dentry *old_dentry,
9488 			      struct inode *new_dir,
9489 			      struct dentry *new_dentry)
9490 {
9491 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9492 	struct btrfs_trans_handle *trans;
9493 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9494 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9495 	struct inode *new_inode = new_dentry->d_inode;
9496 	struct inode *old_inode = old_dentry->d_inode;
9497 	struct timespec64 ctime = current_time(old_inode);
9498 	struct dentry *parent;
9499 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9500 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9501 	u64 old_idx = 0;
9502 	u64 new_idx = 0;
9503 	u64 root_objectid;
9504 	int ret;
9505 	bool root_log_pinned = false;
9506 	bool dest_log_pinned = false;
9507 	struct btrfs_log_ctx ctx_root;
9508 	struct btrfs_log_ctx ctx_dest;
9509 	bool sync_log_root = false;
9510 	bool sync_log_dest = false;
9511 	bool commit_transaction = false;
9512 
9513 	/* we only allow rename subvolume link between subvolumes */
9514 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9515 		return -EXDEV;
9516 
9517 	btrfs_init_log_ctx(&ctx_root, old_inode);
9518 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9519 
9520 	/* close the race window with snapshot create/destroy ioctl */
9521 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9522 		down_read(&fs_info->subvol_sem);
9523 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9524 		down_read(&fs_info->subvol_sem);
9525 
9526 	/*
9527 	 * We want to reserve the absolute worst case amount of items.  So if
9528 	 * both inodes are subvols and we need to unlink them then that would
9529 	 * require 4 item modifications, but if they are both normal inodes it
9530 	 * would require 5 item modifications, so we'll assume their normal
9531 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9532 	 * should cover the worst case number of items we'll modify.
9533 	 */
9534 	trans = btrfs_start_transaction(root, 12);
9535 	if (IS_ERR(trans)) {
9536 		ret = PTR_ERR(trans);
9537 		goto out_notrans;
9538 	}
9539 
9540 	/*
9541 	 * We need to find a free sequence number both in the source and
9542 	 * in the destination directory for the exchange.
9543 	 */
9544 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9545 	if (ret)
9546 		goto out_fail;
9547 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9548 	if (ret)
9549 		goto out_fail;
9550 
9551 	BTRFS_I(old_inode)->dir_index = 0ULL;
9552 	BTRFS_I(new_inode)->dir_index = 0ULL;
9553 
9554 	/* Reference for the source. */
9555 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9556 		/* force full log commit if subvolume involved. */
9557 		btrfs_set_log_full_commit(trans);
9558 	} else {
9559 		btrfs_pin_log_trans(root);
9560 		root_log_pinned = true;
9561 		ret = btrfs_insert_inode_ref(trans, dest,
9562 					     new_dentry->d_name.name,
9563 					     new_dentry->d_name.len,
9564 					     old_ino,
9565 					     btrfs_ino(BTRFS_I(new_dir)),
9566 					     old_idx);
9567 		if (ret)
9568 			goto out_fail;
9569 	}
9570 
9571 	/* And now for the dest. */
9572 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9573 		/* force full log commit if subvolume involved. */
9574 		btrfs_set_log_full_commit(trans);
9575 	} else {
9576 		btrfs_pin_log_trans(dest);
9577 		dest_log_pinned = true;
9578 		ret = btrfs_insert_inode_ref(trans, root,
9579 					     old_dentry->d_name.name,
9580 					     old_dentry->d_name.len,
9581 					     new_ino,
9582 					     btrfs_ino(BTRFS_I(old_dir)),
9583 					     new_idx);
9584 		if (ret)
9585 			goto out_fail;
9586 	}
9587 
9588 	/* Update inode version and ctime/mtime. */
9589 	inode_inc_iversion(old_dir);
9590 	inode_inc_iversion(new_dir);
9591 	inode_inc_iversion(old_inode);
9592 	inode_inc_iversion(new_inode);
9593 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9594 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9595 	old_inode->i_ctime = ctime;
9596 	new_inode->i_ctime = ctime;
9597 
9598 	if (old_dentry->d_parent != new_dentry->d_parent) {
9599 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9600 				BTRFS_I(old_inode), 1);
9601 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9602 				BTRFS_I(new_inode), 1);
9603 	}
9604 
9605 	/* src is a subvolume */
9606 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9607 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9608 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9609 					  old_dentry->d_name.name,
9610 					  old_dentry->d_name.len);
9611 	} else { /* src is an inode */
9612 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9613 					   BTRFS_I(old_dentry->d_inode),
9614 					   old_dentry->d_name.name,
9615 					   old_dentry->d_name.len);
9616 		if (!ret)
9617 			ret = btrfs_update_inode(trans, root, old_inode);
9618 	}
9619 	if (ret) {
9620 		btrfs_abort_transaction(trans, ret);
9621 		goto out_fail;
9622 	}
9623 
9624 	/* dest is a subvolume */
9625 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9626 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9627 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9628 					  new_dentry->d_name.name,
9629 					  new_dentry->d_name.len);
9630 	} else { /* dest is an inode */
9631 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9632 					   BTRFS_I(new_dentry->d_inode),
9633 					   new_dentry->d_name.name,
9634 					   new_dentry->d_name.len);
9635 		if (!ret)
9636 			ret = btrfs_update_inode(trans, dest, new_inode);
9637 	}
9638 	if (ret) {
9639 		btrfs_abort_transaction(trans, ret);
9640 		goto out_fail;
9641 	}
9642 
9643 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9644 			     new_dentry->d_name.name,
9645 			     new_dentry->d_name.len, 0, old_idx);
9646 	if (ret) {
9647 		btrfs_abort_transaction(trans, ret);
9648 		goto out_fail;
9649 	}
9650 
9651 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9652 			     old_dentry->d_name.name,
9653 			     old_dentry->d_name.len, 0, new_idx);
9654 	if (ret) {
9655 		btrfs_abort_transaction(trans, ret);
9656 		goto out_fail;
9657 	}
9658 
9659 	if (old_inode->i_nlink == 1)
9660 		BTRFS_I(old_inode)->dir_index = old_idx;
9661 	if (new_inode->i_nlink == 1)
9662 		BTRFS_I(new_inode)->dir_index = new_idx;
9663 
9664 	if (root_log_pinned) {
9665 		parent = new_dentry->d_parent;
9666 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9667 					 BTRFS_I(old_dir), parent,
9668 					 false, &ctx_root);
9669 		if (ret == BTRFS_NEED_LOG_SYNC)
9670 			sync_log_root = true;
9671 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9672 			commit_transaction = true;
9673 		ret = 0;
9674 		btrfs_end_log_trans(root);
9675 		root_log_pinned = false;
9676 	}
9677 	if (dest_log_pinned) {
9678 		if (!commit_transaction) {
9679 			parent = old_dentry->d_parent;
9680 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9681 						 BTRFS_I(new_dir), parent,
9682 						 false, &ctx_dest);
9683 			if (ret == BTRFS_NEED_LOG_SYNC)
9684 				sync_log_dest = true;
9685 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9686 				commit_transaction = true;
9687 			ret = 0;
9688 		}
9689 		btrfs_end_log_trans(dest);
9690 		dest_log_pinned = false;
9691 	}
9692 out_fail:
9693 	/*
9694 	 * If we have pinned a log and an error happened, we unpin tasks
9695 	 * trying to sync the log and force them to fallback to a transaction
9696 	 * commit if the log currently contains any of the inodes involved in
9697 	 * this rename operation (to ensure we do not persist a log with an
9698 	 * inconsistent state for any of these inodes or leading to any
9699 	 * inconsistencies when replayed). If the transaction was aborted, the
9700 	 * abortion reason is propagated to userspace when attempting to commit
9701 	 * the transaction. If the log does not contain any of these inodes, we
9702 	 * allow the tasks to sync it.
9703 	 */
9704 	if (ret && (root_log_pinned || dest_log_pinned)) {
9705 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9706 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9707 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9708 		    (new_inode &&
9709 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9710 			btrfs_set_log_full_commit(trans);
9711 
9712 		if (root_log_pinned) {
9713 			btrfs_end_log_trans(root);
9714 			root_log_pinned = false;
9715 		}
9716 		if (dest_log_pinned) {
9717 			btrfs_end_log_trans(dest);
9718 			dest_log_pinned = false;
9719 		}
9720 	}
9721 	if (!ret && sync_log_root && !commit_transaction) {
9722 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9723 				     &ctx_root);
9724 		if (ret)
9725 			commit_transaction = true;
9726 	}
9727 	if (!ret && sync_log_dest && !commit_transaction) {
9728 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9729 				     &ctx_dest);
9730 		if (ret)
9731 			commit_transaction = true;
9732 	}
9733 	if (commit_transaction) {
9734 		ret = btrfs_commit_transaction(trans);
9735 	} else {
9736 		int ret2;
9737 
9738 		ret2 = btrfs_end_transaction(trans);
9739 		ret = ret ? ret : ret2;
9740 	}
9741 out_notrans:
9742 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9743 		up_read(&fs_info->subvol_sem);
9744 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9745 		up_read(&fs_info->subvol_sem);
9746 
9747 	return ret;
9748 }
9749 
9750 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9751 				     struct btrfs_root *root,
9752 				     struct inode *dir,
9753 				     struct dentry *dentry)
9754 {
9755 	int ret;
9756 	struct inode *inode;
9757 	u64 objectid;
9758 	u64 index;
9759 
9760 	ret = btrfs_find_free_ino(root, &objectid);
9761 	if (ret)
9762 		return ret;
9763 
9764 	inode = btrfs_new_inode(trans, root, dir,
9765 				dentry->d_name.name,
9766 				dentry->d_name.len,
9767 				btrfs_ino(BTRFS_I(dir)),
9768 				objectid,
9769 				S_IFCHR | WHITEOUT_MODE,
9770 				&index);
9771 
9772 	if (IS_ERR(inode)) {
9773 		ret = PTR_ERR(inode);
9774 		return ret;
9775 	}
9776 
9777 	inode->i_op = &btrfs_special_inode_operations;
9778 	init_special_inode(inode, inode->i_mode,
9779 		WHITEOUT_DEV);
9780 
9781 	ret = btrfs_init_inode_security(trans, inode, dir,
9782 				&dentry->d_name);
9783 	if (ret)
9784 		goto out;
9785 
9786 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9787 				BTRFS_I(inode), 0, index);
9788 	if (ret)
9789 		goto out;
9790 
9791 	ret = btrfs_update_inode(trans, root, inode);
9792 out:
9793 	unlock_new_inode(inode);
9794 	if (ret)
9795 		inode_dec_link_count(inode);
9796 	iput(inode);
9797 
9798 	return ret;
9799 }
9800 
9801 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9802 			   struct inode *new_dir, struct dentry *new_dentry,
9803 			   unsigned int flags)
9804 {
9805 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9806 	struct btrfs_trans_handle *trans;
9807 	unsigned int trans_num_items;
9808 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9809 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9810 	struct inode *new_inode = d_inode(new_dentry);
9811 	struct inode *old_inode = d_inode(old_dentry);
9812 	u64 index = 0;
9813 	u64 root_objectid;
9814 	int ret;
9815 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9816 	bool log_pinned = false;
9817 	struct btrfs_log_ctx ctx;
9818 	bool sync_log = false;
9819 	bool commit_transaction = false;
9820 
9821 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9822 		return -EPERM;
9823 
9824 	/* we only allow rename subvolume link between subvolumes */
9825 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9826 		return -EXDEV;
9827 
9828 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9829 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9830 		return -ENOTEMPTY;
9831 
9832 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9833 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9834 		return -ENOTEMPTY;
9835 
9836 
9837 	/* check for collisions, even if the  name isn't there */
9838 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9839 			     new_dentry->d_name.name,
9840 			     new_dentry->d_name.len);
9841 
9842 	if (ret) {
9843 		if (ret == -EEXIST) {
9844 			/* we shouldn't get
9845 			 * eexist without a new_inode */
9846 			if (WARN_ON(!new_inode)) {
9847 				return ret;
9848 			}
9849 		} else {
9850 			/* maybe -EOVERFLOW */
9851 			return ret;
9852 		}
9853 	}
9854 	ret = 0;
9855 
9856 	/*
9857 	 * we're using rename to replace one file with another.  Start IO on it
9858 	 * now so  we don't add too much work to the end of the transaction
9859 	 */
9860 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9861 		filemap_flush(old_inode->i_mapping);
9862 
9863 	/* close the racy window with snapshot create/destroy ioctl */
9864 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9865 		down_read(&fs_info->subvol_sem);
9866 	/*
9867 	 * We want to reserve the absolute worst case amount of items.  So if
9868 	 * both inodes are subvols and we need to unlink them then that would
9869 	 * require 4 item modifications, but if they are both normal inodes it
9870 	 * would require 5 item modifications, so we'll assume they are normal
9871 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9872 	 * should cover the worst case number of items we'll modify.
9873 	 * If our rename has the whiteout flag, we need more 5 units for the
9874 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9875 	 * when selinux is enabled).
9876 	 */
9877 	trans_num_items = 11;
9878 	if (flags & RENAME_WHITEOUT)
9879 		trans_num_items += 5;
9880 	trans = btrfs_start_transaction(root, trans_num_items);
9881 	if (IS_ERR(trans)) {
9882 		ret = PTR_ERR(trans);
9883 		goto out_notrans;
9884 	}
9885 
9886 	if (dest != root)
9887 		btrfs_record_root_in_trans(trans, dest);
9888 
9889 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9890 	if (ret)
9891 		goto out_fail;
9892 
9893 	BTRFS_I(old_inode)->dir_index = 0ULL;
9894 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9895 		/* force full log commit if subvolume involved. */
9896 		btrfs_set_log_full_commit(trans);
9897 	} else {
9898 		btrfs_pin_log_trans(root);
9899 		log_pinned = true;
9900 		ret = btrfs_insert_inode_ref(trans, dest,
9901 					     new_dentry->d_name.name,
9902 					     new_dentry->d_name.len,
9903 					     old_ino,
9904 					     btrfs_ino(BTRFS_I(new_dir)), index);
9905 		if (ret)
9906 			goto out_fail;
9907 	}
9908 
9909 	inode_inc_iversion(old_dir);
9910 	inode_inc_iversion(new_dir);
9911 	inode_inc_iversion(old_inode);
9912 	old_dir->i_ctime = old_dir->i_mtime =
9913 	new_dir->i_ctime = new_dir->i_mtime =
9914 	old_inode->i_ctime = current_time(old_dir);
9915 
9916 	if (old_dentry->d_parent != new_dentry->d_parent)
9917 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9918 				BTRFS_I(old_inode), 1);
9919 
9920 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9921 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9922 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9923 					old_dentry->d_name.name,
9924 					old_dentry->d_name.len);
9925 	} else {
9926 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9927 					BTRFS_I(d_inode(old_dentry)),
9928 					old_dentry->d_name.name,
9929 					old_dentry->d_name.len);
9930 		if (!ret)
9931 			ret = btrfs_update_inode(trans, root, old_inode);
9932 	}
9933 	if (ret) {
9934 		btrfs_abort_transaction(trans, ret);
9935 		goto out_fail;
9936 	}
9937 
9938 	if (new_inode) {
9939 		inode_inc_iversion(new_inode);
9940 		new_inode->i_ctime = current_time(new_inode);
9941 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9942 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9943 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9944 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9945 						new_dentry->d_name.name,
9946 						new_dentry->d_name.len);
9947 			BUG_ON(new_inode->i_nlink == 0);
9948 		} else {
9949 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9950 						 BTRFS_I(d_inode(new_dentry)),
9951 						 new_dentry->d_name.name,
9952 						 new_dentry->d_name.len);
9953 		}
9954 		if (!ret && new_inode->i_nlink == 0)
9955 			ret = btrfs_orphan_add(trans,
9956 					BTRFS_I(d_inode(new_dentry)));
9957 		if (ret) {
9958 			btrfs_abort_transaction(trans, ret);
9959 			goto out_fail;
9960 		}
9961 	}
9962 
9963 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9964 			     new_dentry->d_name.name,
9965 			     new_dentry->d_name.len, 0, index);
9966 	if (ret) {
9967 		btrfs_abort_transaction(trans, ret);
9968 		goto out_fail;
9969 	}
9970 
9971 	if (old_inode->i_nlink == 1)
9972 		BTRFS_I(old_inode)->dir_index = index;
9973 
9974 	if (log_pinned) {
9975 		struct dentry *parent = new_dentry->d_parent;
9976 
9977 		btrfs_init_log_ctx(&ctx, old_inode);
9978 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9979 					 BTRFS_I(old_dir), parent,
9980 					 false, &ctx);
9981 		if (ret == BTRFS_NEED_LOG_SYNC)
9982 			sync_log = true;
9983 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9984 			commit_transaction = true;
9985 		ret = 0;
9986 		btrfs_end_log_trans(root);
9987 		log_pinned = false;
9988 	}
9989 
9990 	if (flags & RENAME_WHITEOUT) {
9991 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9992 						old_dentry);
9993 
9994 		if (ret) {
9995 			btrfs_abort_transaction(trans, ret);
9996 			goto out_fail;
9997 		}
9998 	}
9999 out_fail:
10000 	/*
10001 	 * If we have pinned the log and an error happened, we unpin tasks
10002 	 * trying to sync the log and force them to fallback to a transaction
10003 	 * commit if the log currently contains any of the inodes involved in
10004 	 * this rename operation (to ensure we do not persist a log with an
10005 	 * inconsistent state for any of these inodes or leading to any
10006 	 * inconsistencies when replayed). If the transaction was aborted, the
10007 	 * abortion reason is propagated to userspace when attempting to commit
10008 	 * the transaction. If the log does not contain any of these inodes, we
10009 	 * allow the tasks to sync it.
10010 	 */
10011 	if (ret && log_pinned) {
10012 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10013 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10014 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10015 		    (new_inode &&
10016 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10017 			btrfs_set_log_full_commit(trans);
10018 
10019 		btrfs_end_log_trans(root);
10020 		log_pinned = false;
10021 	}
10022 	if (!ret && sync_log) {
10023 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10024 		if (ret)
10025 			commit_transaction = true;
10026 	}
10027 	if (commit_transaction) {
10028 		ret = btrfs_commit_transaction(trans);
10029 	} else {
10030 		int ret2;
10031 
10032 		ret2 = btrfs_end_transaction(trans);
10033 		ret = ret ? ret : ret2;
10034 	}
10035 out_notrans:
10036 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10037 		up_read(&fs_info->subvol_sem);
10038 
10039 	return ret;
10040 }
10041 
10042 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10043 			 struct inode *new_dir, struct dentry *new_dentry,
10044 			 unsigned int flags)
10045 {
10046 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10047 		return -EINVAL;
10048 
10049 	if (flags & RENAME_EXCHANGE)
10050 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10051 					  new_dentry);
10052 
10053 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10054 }
10055 
10056 struct btrfs_delalloc_work {
10057 	struct inode *inode;
10058 	struct completion completion;
10059 	struct list_head list;
10060 	struct btrfs_work work;
10061 };
10062 
10063 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10064 {
10065 	struct btrfs_delalloc_work *delalloc_work;
10066 	struct inode *inode;
10067 
10068 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10069 				     work);
10070 	inode = delalloc_work->inode;
10071 	filemap_flush(inode->i_mapping);
10072 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10073 				&BTRFS_I(inode)->runtime_flags))
10074 		filemap_flush(inode->i_mapping);
10075 
10076 	iput(inode);
10077 	complete(&delalloc_work->completion);
10078 }
10079 
10080 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10081 {
10082 	struct btrfs_delalloc_work *work;
10083 
10084 	work = kmalloc(sizeof(*work), GFP_NOFS);
10085 	if (!work)
10086 		return NULL;
10087 
10088 	init_completion(&work->completion);
10089 	INIT_LIST_HEAD(&work->list);
10090 	work->inode = inode;
10091 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10092 			btrfs_run_delalloc_work, NULL, NULL);
10093 
10094 	return work;
10095 }
10096 
10097 /*
10098  * some fairly slow code that needs optimization. This walks the list
10099  * of all the inodes with pending delalloc and forces them to disk.
10100  */
10101 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10102 {
10103 	struct btrfs_inode *binode;
10104 	struct inode *inode;
10105 	struct btrfs_delalloc_work *work, *next;
10106 	struct list_head works;
10107 	struct list_head splice;
10108 	int ret = 0;
10109 
10110 	INIT_LIST_HEAD(&works);
10111 	INIT_LIST_HEAD(&splice);
10112 
10113 	mutex_lock(&root->delalloc_mutex);
10114 	spin_lock(&root->delalloc_lock);
10115 	list_splice_init(&root->delalloc_inodes, &splice);
10116 	while (!list_empty(&splice)) {
10117 		binode = list_entry(splice.next, struct btrfs_inode,
10118 				    delalloc_inodes);
10119 
10120 		list_move_tail(&binode->delalloc_inodes,
10121 			       &root->delalloc_inodes);
10122 		inode = igrab(&binode->vfs_inode);
10123 		if (!inode) {
10124 			cond_resched_lock(&root->delalloc_lock);
10125 			continue;
10126 		}
10127 		spin_unlock(&root->delalloc_lock);
10128 
10129 		if (snapshot)
10130 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10131 				&binode->runtime_flags);
10132 		work = btrfs_alloc_delalloc_work(inode);
10133 		if (!work) {
10134 			iput(inode);
10135 			ret = -ENOMEM;
10136 			goto out;
10137 		}
10138 		list_add_tail(&work->list, &works);
10139 		btrfs_queue_work(root->fs_info->flush_workers,
10140 				 &work->work);
10141 		ret++;
10142 		if (nr != -1 && ret >= nr)
10143 			goto out;
10144 		cond_resched();
10145 		spin_lock(&root->delalloc_lock);
10146 	}
10147 	spin_unlock(&root->delalloc_lock);
10148 
10149 out:
10150 	list_for_each_entry_safe(work, next, &works, list) {
10151 		list_del_init(&work->list);
10152 		wait_for_completion(&work->completion);
10153 		kfree(work);
10154 	}
10155 
10156 	if (!list_empty(&splice)) {
10157 		spin_lock(&root->delalloc_lock);
10158 		list_splice_tail(&splice, &root->delalloc_inodes);
10159 		spin_unlock(&root->delalloc_lock);
10160 	}
10161 	mutex_unlock(&root->delalloc_mutex);
10162 	return ret;
10163 }
10164 
10165 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10166 {
10167 	struct btrfs_fs_info *fs_info = root->fs_info;
10168 	int ret;
10169 
10170 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10171 		return -EROFS;
10172 
10173 	ret = start_delalloc_inodes(root, -1, true);
10174 	if (ret > 0)
10175 		ret = 0;
10176 	return ret;
10177 }
10178 
10179 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10180 {
10181 	struct btrfs_root *root;
10182 	struct list_head splice;
10183 	int ret;
10184 
10185 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10186 		return -EROFS;
10187 
10188 	INIT_LIST_HEAD(&splice);
10189 
10190 	mutex_lock(&fs_info->delalloc_root_mutex);
10191 	spin_lock(&fs_info->delalloc_root_lock);
10192 	list_splice_init(&fs_info->delalloc_roots, &splice);
10193 	while (!list_empty(&splice) && nr) {
10194 		root = list_first_entry(&splice, struct btrfs_root,
10195 					delalloc_root);
10196 		root = btrfs_grab_fs_root(root);
10197 		BUG_ON(!root);
10198 		list_move_tail(&root->delalloc_root,
10199 			       &fs_info->delalloc_roots);
10200 		spin_unlock(&fs_info->delalloc_root_lock);
10201 
10202 		ret = start_delalloc_inodes(root, nr, false);
10203 		btrfs_put_fs_root(root);
10204 		if (ret < 0)
10205 			goto out;
10206 
10207 		if (nr != -1) {
10208 			nr -= ret;
10209 			WARN_ON(nr < 0);
10210 		}
10211 		spin_lock(&fs_info->delalloc_root_lock);
10212 	}
10213 	spin_unlock(&fs_info->delalloc_root_lock);
10214 
10215 	ret = 0;
10216 out:
10217 	if (!list_empty(&splice)) {
10218 		spin_lock(&fs_info->delalloc_root_lock);
10219 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10220 		spin_unlock(&fs_info->delalloc_root_lock);
10221 	}
10222 	mutex_unlock(&fs_info->delalloc_root_mutex);
10223 	return ret;
10224 }
10225 
10226 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10227 			 const char *symname)
10228 {
10229 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10230 	struct btrfs_trans_handle *trans;
10231 	struct btrfs_root *root = BTRFS_I(dir)->root;
10232 	struct btrfs_path *path;
10233 	struct btrfs_key key;
10234 	struct inode *inode = NULL;
10235 	int err;
10236 	u64 objectid;
10237 	u64 index = 0;
10238 	int name_len;
10239 	int datasize;
10240 	unsigned long ptr;
10241 	struct btrfs_file_extent_item *ei;
10242 	struct extent_buffer *leaf;
10243 
10244 	name_len = strlen(symname);
10245 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10246 		return -ENAMETOOLONG;
10247 
10248 	/*
10249 	 * 2 items for inode item and ref
10250 	 * 2 items for dir items
10251 	 * 1 item for updating parent inode item
10252 	 * 1 item for the inline extent item
10253 	 * 1 item for xattr if selinux is on
10254 	 */
10255 	trans = btrfs_start_transaction(root, 7);
10256 	if (IS_ERR(trans))
10257 		return PTR_ERR(trans);
10258 
10259 	err = btrfs_find_free_ino(root, &objectid);
10260 	if (err)
10261 		goto out_unlock;
10262 
10263 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10264 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10265 				objectid, S_IFLNK|S_IRWXUGO, &index);
10266 	if (IS_ERR(inode)) {
10267 		err = PTR_ERR(inode);
10268 		inode = NULL;
10269 		goto out_unlock;
10270 	}
10271 
10272 	/*
10273 	* If the active LSM wants to access the inode during
10274 	* d_instantiate it needs these. Smack checks to see
10275 	* if the filesystem supports xattrs by looking at the
10276 	* ops vector.
10277 	*/
10278 	inode->i_fop = &btrfs_file_operations;
10279 	inode->i_op = &btrfs_file_inode_operations;
10280 	inode->i_mapping->a_ops = &btrfs_aops;
10281 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10282 
10283 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10284 	if (err)
10285 		goto out_unlock;
10286 
10287 	path = btrfs_alloc_path();
10288 	if (!path) {
10289 		err = -ENOMEM;
10290 		goto out_unlock;
10291 	}
10292 	key.objectid = btrfs_ino(BTRFS_I(inode));
10293 	key.offset = 0;
10294 	key.type = BTRFS_EXTENT_DATA_KEY;
10295 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10296 	err = btrfs_insert_empty_item(trans, root, path, &key,
10297 				      datasize);
10298 	if (err) {
10299 		btrfs_free_path(path);
10300 		goto out_unlock;
10301 	}
10302 	leaf = path->nodes[0];
10303 	ei = btrfs_item_ptr(leaf, path->slots[0],
10304 			    struct btrfs_file_extent_item);
10305 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10306 	btrfs_set_file_extent_type(leaf, ei,
10307 				   BTRFS_FILE_EXTENT_INLINE);
10308 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10309 	btrfs_set_file_extent_compression(leaf, ei, 0);
10310 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10311 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10312 
10313 	ptr = btrfs_file_extent_inline_start(ei);
10314 	write_extent_buffer(leaf, symname, ptr, name_len);
10315 	btrfs_mark_buffer_dirty(leaf);
10316 	btrfs_free_path(path);
10317 
10318 	inode->i_op = &btrfs_symlink_inode_operations;
10319 	inode_nohighmem(inode);
10320 	inode_set_bytes(inode, name_len);
10321 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10322 	err = btrfs_update_inode(trans, root, inode);
10323 	/*
10324 	 * Last step, add directory indexes for our symlink inode. This is the
10325 	 * last step to avoid extra cleanup of these indexes if an error happens
10326 	 * elsewhere above.
10327 	 */
10328 	if (!err)
10329 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10330 				BTRFS_I(inode), 0, index);
10331 	if (err)
10332 		goto out_unlock;
10333 
10334 	d_instantiate_new(dentry, inode);
10335 
10336 out_unlock:
10337 	btrfs_end_transaction(trans);
10338 	if (err && inode) {
10339 		inode_dec_link_count(inode);
10340 		discard_new_inode(inode);
10341 	}
10342 	btrfs_btree_balance_dirty(fs_info);
10343 	return err;
10344 }
10345 
10346 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10347 				       u64 start, u64 num_bytes, u64 min_size,
10348 				       loff_t actual_len, u64 *alloc_hint,
10349 				       struct btrfs_trans_handle *trans)
10350 {
10351 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10352 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10353 	struct extent_map *em;
10354 	struct btrfs_root *root = BTRFS_I(inode)->root;
10355 	struct btrfs_key ins;
10356 	u64 cur_offset = start;
10357 	u64 i_size;
10358 	u64 cur_bytes;
10359 	u64 last_alloc = (u64)-1;
10360 	int ret = 0;
10361 	bool own_trans = true;
10362 	u64 end = start + num_bytes - 1;
10363 
10364 	if (trans)
10365 		own_trans = false;
10366 	while (num_bytes > 0) {
10367 		if (own_trans) {
10368 			trans = btrfs_start_transaction(root, 3);
10369 			if (IS_ERR(trans)) {
10370 				ret = PTR_ERR(trans);
10371 				break;
10372 			}
10373 		}
10374 
10375 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10376 		cur_bytes = max(cur_bytes, min_size);
10377 		/*
10378 		 * If we are severely fragmented we could end up with really
10379 		 * small allocations, so if the allocator is returning small
10380 		 * chunks lets make its job easier by only searching for those
10381 		 * sized chunks.
10382 		 */
10383 		cur_bytes = min(cur_bytes, last_alloc);
10384 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10385 				min_size, 0, *alloc_hint, &ins, 1, 0);
10386 		if (ret) {
10387 			if (own_trans)
10388 				btrfs_end_transaction(trans);
10389 			break;
10390 		}
10391 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10392 
10393 		last_alloc = ins.offset;
10394 		ret = insert_reserved_file_extent(trans, inode,
10395 						  cur_offset, ins.objectid,
10396 						  ins.offset, ins.offset,
10397 						  ins.offset, 0, 0, 0,
10398 						  BTRFS_FILE_EXTENT_PREALLOC);
10399 		if (ret) {
10400 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10401 						   ins.offset, 0);
10402 			btrfs_abort_transaction(trans, ret);
10403 			if (own_trans)
10404 				btrfs_end_transaction(trans);
10405 			break;
10406 		}
10407 
10408 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10409 					cur_offset + ins.offset -1, 0);
10410 
10411 		em = alloc_extent_map();
10412 		if (!em) {
10413 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10414 				&BTRFS_I(inode)->runtime_flags);
10415 			goto next;
10416 		}
10417 
10418 		em->start = cur_offset;
10419 		em->orig_start = cur_offset;
10420 		em->len = ins.offset;
10421 		em->block_start = ins.objectid;
10422 		em->block_len = ins.offset;
10423 		em->orig_block_len = ins.offset;
10424 		em->ram_bytes = ins.offset;
10425 		em->bdev = fs_info->fs_devices->latest_bdev;
10426 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10427 		em->generation = trans->transid;
10428 
10429 		while (1) {
10430 			write_lock(&em_tree->lock);
10431 			ret = add_extent_mapping(em_tree, em, 1);
10432 			write_unlock(&em_tree->lock);
10433 			if (ret != -EEXIST)
10434 				break;
10435 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10436 						cur_offset + ins.offset - 1,
10437 						0);
10438 		}
10439 		free_extent_map(em);
10440 next:
10441 		num_bytes -= ins.offset;
10442 		cur_offset += ins.offset;
10443 		*alloc_hint = ins.objectid + ins.offset;
10444 
10445 		inode_inc_iversion(inode);
10446 		inode->i_ctime = current_time(inode);
10447 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10448 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10449 		    (actual_len > inode->i_size) &&
10450 		    (cur_offset > inode->i_size)) {
10451 			if (cur_offset > actual_len)
10452 				i_size = actual_len;
10453 			else
10454 				i_size = cur_offset;
10455 			i_size_write(inode, i_size);
10456 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10457 		}
10458 
10459 		ret = btrfs_update_inode(trans, root, inode);
10460 
10461 		if (ret) {
10462 			btrfs_abort_transaction(trans, ret);
10463 			if (own_trans)
10464 				btrfs_end_transaction(trans);
10465 			break;
10466 		}
10467 
10468 		if (own_trans)
10469 			btrfs_end_transaction(trans);
10470 	}
10471 	if (cur_offset < end)
10472 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10473 			end - cur_offset + 1);
10474 	return ret;
10475 }
10476 
10477 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10478 			      u64 start, u64 num_bytes, u64 min_size,
10479 			      loff_t actual_len, u64 *alloc_hint)
10480 {
10481 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10482 					   min_size, actual_len, alloc_hint,
10483 					   NULL);
10484 }
10485 
10486 int btrfs_prealloc_file_range_trans(struct inode *inode,
10487 				    struct btrfs_trans_handle *trans, int mode,
10488 				    u64 start, u64 num_bytes, u64 min_size,
10489 				    loff_t actual_len, u64 *alloc_hint)
10490 {
10491 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10492 					   min_size, actual_len, alloc_hint, trans);
10493 }
10494 
10495 static int btrfs_set_page_dirty(struct page *page)
10496 {
10497 	return __set_page_dirty_nobuffers(page);
10498 }
10499 
10500 static int btrfs_permission(struct inode *inode, int mask)
10501 {
10502 	struct btrfs_root *root = BTRFS_I(inode)->root;
10503 	umode_t mode = inode->i_mode;
10504 
10505 	if (mask & MAY_WRITE &&
10506 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10507 		if (btrfs_root_readonly(root))
10508 			return -EROFS;
10509 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10510 			return -EACCES;
10511 	}
10512 	return generic_permission(inode, mask);
10513 }
10514 
10515 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10516 {
10517 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10518 	struct btrfs_trans_handle *trans;
10519 	struct btrfs_root *root = BTRFS_I(dir)->root;
10520 	struct inode *inode = NULL;
10521 	u64 objectid;
10522 	u64 index;
10523 	int ret = 0;
10524 
10525 	/*
10526 	 * 5 units required for adding orphan entry
10527 	 */
10528 	trans = btrfs_start_transaction(root, 5);
10529 	if (IS_ERR(trans))
10530 		return PTR_ERR(trans);
10531 
10532 	ret = btrfs_find_free_ino(root, &objectid);
10533 	if (ret)
10534 		goto out;
10535 
10536 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10537 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10538 	if (IS_ERR(inode)) {
10539 		ret = PTR_ERR(inode);
10540 		inode = NULL;
10541 		goto out;
10542 	}
10543 
10544 	inode->i_fop = &btrfs_file_operations;
10545 	inode->i_op = &btrfs_file_inode_operations;
10546 
10547 	inode->i_mapping->a_ops = &btrfs_aops;
10548 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10549 
10550 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10551 	if (ret)
10552 		goto out;
10553 
10554 	ret = btrfs_update_inode(trans, root, inode);
10555 	if (ret)
10556 		goto out;
10557 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10558 	if (ret)
10559 		goto out;
10560 
10561 	/*
10562 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10563 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10564 	 * through:
10565 	 *
10566 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10567 	 */
10568 	set_nlink(inode, 1);
10569 	d_tmpfile(dentry, inode);
10570 	unlock_new_inode(inode);
10571 	mark_inode_dirty(inode);
10572 out:
10573 	btrfs_end_transaction(trans);
10574 	if (ret && inode)
10575 		discard_new_inode(inode);
10576 	btrfs_btree_balance_dirty(fs_info);
10577 	return ret;
10578 }
10579 
10580 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10581 {
10582 	struct inode *inode = tree->private_data;
10583 	unsigned long index = start >> PAGE_SHIFT;
10584 	unsigned long end_index = end >> PAGE_SHIFT;
10585 	struct page *page;
10586 
10587 	while (index <= end_index) {
10588 		page = find_get_page(inode->i_mapping, index);
10589 		ASSERT(page); /* Pages should be in the extent_io_tree */
10590 		set_page_writeback(page);
10591 		put_page(page);
10592 		index++;
10593 	}
10594 }
10595 
10596 #ifdef CONFIG_SWAP
10597 /*
10598  * Add an entry indicating a block group or device which is pinned by a
10599  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10600  * negative errno on failure.
10601  */
10602 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10603 				  bool is_block_group)
10604 {
10605 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10606 	struct btrfs_swapfile_pin *sp, *entry;
10607 	struct rb_node **p;
10608 	struct rb_node *parent = NULL;
10609 
10610 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10611 	if (!sp)
10612 		return -ENOMEM;
10613 	sp->ptr = ptr;
10614 	sp->inode = inode;
10615 	sp->is_block_group = is_block_group;
10616 
10617 	spin_lock(&fs_info->swapfile_pins_lock);
10618 	p = &fs_info->swapfile_pins.rb_node;
10619 	while (*p) {
10620 		parent = *p;
10621 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10622 		if (sp->ptr < entry->ptr ||
10623 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10624 			p = &(*p)->rb_left;
10625 		} else if (sp->ptr > entry->ptr ||
10626 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10627 			p = &(*p)->rb_right;
10628 		} else {
10629 			spin_unlock(&fs_info->swapfile_pins_lock);
10630 			kfree(sp);
10631 			return 1;
10632 		}
10633 	}
10634 	rb_link_node(&sp->node, parent, p);
10635 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10636 	spin_unlock(&fs_info->swapfile_pins_lock);
10637 	return 0;
10638 }
10639 
10640 /* Free all of the entries pinned by this swapfile. */
10641 static void btrfs_free_swapfile_pins(struct inode *inode)
10642 {
10643 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10644 	struct btrfs_swapfile_pin *sp;
10645 	struct rb_node *node, *next;
10646 
10647 	spin_lock(&fs_info->swapfile_pins_lock);
10648 	node = rb_first(&fs_info->swapfile_pins);
10649 	while (node) {
10650 		next = rb_next(node);
10651 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10652 		if (sp->inode == inode) {
10653 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10654 			if (sp->is_block_group)
10655 				btrfs_put_block_group(sp->ptr);
10656 			kfree(sp);
10657 		}
10658 		node = next;
10659 	}
10660 	spin_unlock(&fs_info->swapfile_pins_lock);
10661 }
10662 
10663 struct btrfs_swap_info {
10664 	u64 start;
10665 	u64 block_start;
10666 	u64 block_len;
10667 	u64 lowest_ppage;
10668 	u64 highest_ppage;
10669 	unsigned long nr_pages;
10670 	int nr_extents;
10671 };
10672 
10673 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10674 				 struct btrfs_swap_info *bsi)
10675 {
10676 	unsigned long nr_pages;
10677 	u64 first_ppage, first_ppage_reported, next_ppage;
10678 	int ret;
10679 
10680 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10681 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10682 				PAGE_SIZE) >> PAGE_SHIFT;
10683 
10684 	if (first_ppage >= next_ppage)
10685 		return 0;
10686 	nr_pages = next_ppage - first_ppage;
10687 
10688 	first_ppage_reported = first_ppage;
10689 	if (bsi->start == 0)
10690 		first_ppage_reported++;
10691 	if (bsi->lowest_ppage > first_ppage_reported)
10692 		bsi->lowest_ppage = first_ppage_reported;
10693 	if (bsi->highest_ppage < (next_ppage - 1))
10694 		bsi->highest_ppage = next_ppage - 1;
10695 
10696 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10697 	if (ret < 0)
10698 		return ret;
10699 	bsi->nr_extents += ret;
10700 	bsi->nr_pages += nr_pages;
10701 	return 0;
10702 }
10703 
10704 static void btrfs_swap_deactivate(struct file *file)
10705 {
10706 	struct inode *inode = file_inode(file);
10707 
10708 	btrfs_free_swapfile_pins(inode);
10709 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10710 }
10711 
10712 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10713 			       sector_t *span)
10714 {
10715 	struct inode *inode = file_inode(file);
10716 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10717 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10718 	struct extent_state *cached_state = NULL;
10719 	struct extent_map *em = NULL;
10720 	struct btrfs_device *device = NULL;
10721 	struct btrfs_swap_info bsi = {
10722 		.lowest_ppage = (sector_t)-1ULL,
10723 	};
10724 	int ret = 0;
10725 	u64 isize;
10726 	u64 start;
10727 
10728 	/*
10729 	 * If the swap file was just created, make sure delalloc is done. If the
10730 	 * file changes again after this, the user is doing something stupid and
10731 	 * we don't really care.
10732 	 */
10733 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10734 	if (ret)
10735 		return ret;
10736 
10737 	/*
10738 	 * The inode is locked, so these flags won't change after we check them.
10739 	 */
10740 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10741 		btrfs_warn(fs_info, "swapfile must not be compressed");
10742 		return -EINVAL;
10743 	}
10744 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10745 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10746 		return -EINVAL;
10747 	}
10748 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10749 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10750 		return -EINVAL;
10751 	}
10752 
10753 	/*
10754 	 * Balance or device remove/replace/resize can move stuff around from
10755 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10756 	 * concurrently while we are mapping the swap extents, and
10757 	 * fs_info->swapfile_pins prevents them from running while the swap file
10758 	 * is active and moving the extents. Note that this also prevents a
10759 	 * concurrent device add which isn't actually necessary, but it's not
10760 	 * really worth the trouble to allow it.
10761 	 */
10762 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10763 		btrfs_warn(fs_info,
10764 	   "cannot activate swapfile while exclusive operation is running");
10765 		return -EBUSY;
10766 	}
10767 	/*
10768 	 * Snapshots can create extents which require COW even if NODATACOW is
10769 	 * set. We use this counter to prevent snapshots. We must increment it
10770 	 * before walking the extents because we don't want a concurrent
10771 	 * snapshot to run after we've already checked the extents.
10772 	 */
10773 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10774 
10775 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10776 
10777 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10778 	start = 0;
10779 	while (start < isize) {
10780 		u64 logical_block_start, physical_block_start;
10781 		struct btrfs_block_group_cache *bg;
10782 		u64 len = isize - start;
10783 
10784 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10785 		if (IS_ERR(em)) {
10786 			ret = PTR_ERR(em);
10787 			goto out;
10788 		}
10789 
10790 		if (em->block_start == EXTENT_MAP_HOLE) {
10791 			btrfs_warn(fs_info, "swapfile must not have holes");
10792 			ret = -EINVAL;
10793 			goto out;
10794 		}
10795 		if (em->block_start == EXTENT_MAP_INLINE) {
10796 			/*
10797 			 * It's unlikely we'll ever actually find ourselves
10798 			 * here, as a file small enough to fit inline won't be
10799 			 * big enough to store more than the swap header, but in
10800 			 * case something changes in the future, let's catch it
10801 			 * here rather than later.
10802 			 */
10803 			btrfs_warn(fs_info, "swapfile must not be inline");
10804 			ret = -EINVAL;
10805 			goto out;
10806 		}
10807 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10808 			btrfs_warn(fs_info, "swapfile must not be compressed");
10809 			ret = -EINVAL;
10810 			goto out;
10811 		}
10812 
10813 		logical_block_start = em->block_start + (start - em->start);
10814 		len = min(len, em->len - (start - em->start));
10815 		free_extent_map(em);
10816 		em = NULL;
10817 
10818 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10819 		if (ret < 0) {
10820 			goto out;
10821 		} else if (ret) {
10822 			ret = 0;
10823 		} else {
10824 			btrfs_warn(fs_info,
10825 				   "swapfile must not be copy-on-write");
10826 			ret = -EINVAL;
10827 			goto out;
10828 		}
10829 
10830 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10831 		if (IS_ERR(em)) {
10832 			ret = PTR_ERR(em);
10833 			goto out;
10834 		}
10835 
10836 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10837 			btrfs_warn(fs_info,
10838 				   "swapfile must have single data profile");
10839 			ret = -EINVAL;
10840 			goto out;
10841 		}
10842 
10843 		if (device == NULL) {
10844 			device = em->map_lookup->stripes[0].dev;
10845 			ret = btrfs_add_swapfile_pin(inode, device, false);
10846 			if (ret == 1)
10847 				ret = 0;
10848 			else if (ret)
10849 				goto out;
10850 		} else if (device != em->map_lookup->stripes[0].dev) {
10851 			btrfs_warn(fs_info, "swapfile must be on one device");
10852 			ret = -EINVAL;
10853 			goto out;
10854 		}
10855 
10856 		physical_block_start = (em->map_lookup->stripes[0].physical +
10857 					(logical_block_start - em->start));
10858 		len = min(len, em->len - (logical_block_start - em->start));
10859 		free_extent_map(em);
10860 		em = NULL;
10861 
10862 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10863 		if (!bg) {
10864 			btrfs_warn(fs_info,
10865 			   "could not find block group containing swapfile");
10866 			ret = -EINVAL;
10867 			goto out;
10868 		}
10869 
10870 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10871 		if (ret) {
10872 			btrfs_put_block_group(bg);
10873 			if (ret == 1)
10874 				ret = 0;
10875 			else
10876 				goto out;
10877 		}
10878 
10879 		if (bsi.block_len &&
10880 		    bsi.block_start + bsi.block_len == physical_block_start) {
10881 			bsi.block_len += len;
10882 		} else {
10883 			if (bsi.block_len) {
10884 				ret = btrfs_add_swap_extent(sis, &bsi);
10885 				if (ret)
10886 					goto out;
10887 			}
10888 			bsi.start = start;
10889 			bsi.block_start = physical_block_start;
10890 			bsi.block_len = len;
10891 		}
10892 
10893 		start += len;
10894 	}
10895 
10896 	if (bsi.block_len)
10897 		ret = btrfs_add_swap_extent(sis, &bsi);
10898 
10899 out:
10900 	if (!IS_ERR_OR_NULL(em))
10901 		free_extent_map(em);
10902 
10903 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10904 
10905 	if (ret)
10906 		btrfs_swap_deactivate(file);
10907 
10908 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10909 
10910 	if (ret)
10911 		return ret;
10912 
10913 	if (device)
10914 		sis->bdev = device->bdev;
10915 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10916 	sis->max = bsi.nr_pages;
10917 	sis->pages = bsi.nr_pages - 1;
10918 	sis->highest_bit = bsi.nr_pages - 1;
10919 	return bsi.nr_extents;
10920 }
10921 #else
10922 static void btrfs_swap_deactivate(struct file *file)
10923 {
10924 }
10925 
10926 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10927 			       sector_t *span)
10928 {
10929 	return -EOPNOTSUPP;
10930 }
10931 #endif
10932 
10933 static const struct inode_operations btrfs_dir_inode_operations = {
10934 	.getattr	= btrfs_getattr,
10935 	.lookup		= btrfs_lookup,
10936 	.create		= btrfs_create,
10937 	.unlink		= btrfs_unlink,
10938 	.link		= btrfs_link,
10939 	.mkdir		= btrfs_mkdir,
10940 	.rmdir		= btrfs_rmdir,
10941 	.rename		= btrfs_rename2,
10942 	.symlink	= btrfs_symlink,
10943 	.setattr	= btrfs_setattr,
10944 	.mknod		= btrfs_mknod,
10945 	.listxattr	= btrfs_listxattr,
10946 	.permission	= btrfs_permission,
10947 	.get_acl	= btrfs_get_acl,
10948 	.set_acl	= btrfs_set_acl,
10949 	.update_time	= btrfs_update_time,
10950 	.tmpfile        = btrfs_tmpfile,
10951 };
10952 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10953 	.lookup		= btrfs_lookup,
10954 	.permission	= btrfs_permission,
10955 	.update_time	= btrfs_update_time,
10956 };
10957 
10958 static const struct file_operations btrfs_dir_file_operations = {
10959 	.llseek		= generic_file_llseek,
10960 	.read		= generic_read_dir,
10961 	.iterate_shared	= btrfs_real_readdir,
10962 	.open		= btrfs_opendir,
10963 	.unlocked_ioctl	= btrfs_ioctl,
10964 #ifdef CONFIG_COMPAT
10965 	.compat_ioctl	= btrfs_compat_ioctl,
10966 #endif
10967 	.release        = btrfs_release_file,
10968 	.fsync		= btrfs_sync_file,
10969 };
10970 
10971 static const struct extent_io_ops btrfs_extent_io_ops = {
10972 	/* mandatory callbacks */
10973 	.submit_bio_hook = btrfs_submit_bio_hook,
10974 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10975 };
10976 
10977 /*
10978  * btrfs doesn't support the bmap operation because swapfiles
10979  * use bmap to make a mapping of extents in the file.  They assume
10980  * these extents won't change over the life of the file and they
10981  * use the bmap result to do IO directly to the drive.
10982  *
10983  * the btrfs bmap call would return logical addresses that aren't
10984  * suitable for IO and they also will change frequently as COW
10985  * operations happen.  So, swapfile + btrfs == corruption.
10986  *
10987  * For now we're avoiding this by dropping bmap.
10988  */
10989 static const struct address_space_operations btrfs_aops = {
10990 	.readpage	= btrfs_readpage,
10991 	.writepage	= btrfs_writepage,
10992 	.writepages	= btrfs_writepages,
10993 	.readpages	= btrfs_readpages,
10994 	.direct_IO	= btrfs_direct_IO,
10995 	.invalidatepage = btrfs_invalidatepage,
10996 	.releasepage	= btrfs_releasepage,
10997 	.set_page_dirty	= btrfs_set_page_dirty,
10998 	.error_remove_page = generic_error_remove_page,
10999 	.swap_activate	= btrfs_swap_activate,
11000 	.swap_deactivate = btrfs_swap_deactivate,
11001 };
11002 
11003 static const struct inode_operations btrfs_file_inode_operations = {
11004 	.getattr	= btrfs_getattr,
11005 	.setattr	= btrfs_setattr,
11006 	.listxattr      = btrfs_listxattr,
11007 	.permission	= btrfs_permission,
11008 	.fiemap		= btrfs_fiemap,
11009 	.get_acl	= btrfs_get_acl,
11010 	.set_acl	= btrfs_set_acl,
11011 	.update_time	= btrfs_update_time,
11012 };
11013 static const struct inode_operations btrfs_special_inode_operations = {
11014 	.getattr	= btrfs_getattr,
11015 	.setattr	= btrfs_setattr,
11016 	.permission	= btrfs_permission,
11017 	.listxattr	= btrfs_listxattr,
11018 	.get_acl	= btrfs_get_acl,
11019 	.set_acl	= btrfs_set_acl,
11020 	.update_time	= btrfs_update_time,
11021 };
11022 static const struct inode_operations btrfs_symlink_inode_operations = {
11023 	.get_link	= page_get_link,
11024 	.getattr	= btrfs_getattr,
11025 	.setattr	= btrfs_setattr,
11026 	.permission	= btrfs_permission,
11027 	.listxattr	= btrfs_listxattr,
11028 	.update_time	= btrfs_update_time,
11029 };
11030 
11031 const struct dentry_operations btrfs_dentry_operations = {
11032 	.d_delete	= btrfs_dentry_delete,
11033 };
11034