xref: /linux/fs/btrfs/inode.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 #include "raid-stripe-tree.h"
75 
76 struct btrfs_iget_args {
77 	u64 ino;
78 	struct btrfs_root *root;
79 };
80 
81 struct btrfs_dio_data {
82 	ssize_t submitted;
83 	struct extent_changeset *data_reserved;
84 	struct btrfs_ordered_extent *ordered;
85 	bool data_space_reserved;
86 	bool nocow_done;
87 };
88 
89 struct btrfs_dio_private {
90 	/* Range of I/O */
91 	u64 file_offset;
92 	u32 bytes;
93 
94 	/* This must be last */
95 	struct btrfs_bio bbio;
96 };
97 
98 static struct bio_set btrfs_dio_bioset;
99 
100 struct btrfs_rename_ctx {
101 	/* Output field. Stores the index number of the old directory entry. */
102 	u64 index;
103 };
104 
105 /*
106  * Used by data_reloc_print_warning_inode() to pass needed info for filename
107  * resolution and output of error message.
108  */
109 struct data_reloc_warn {
110 	struct btrfs_path path;
111 	struct btrfs_fs_info *fs_info;
112 	u64 extent_item_size;
113 	u64 logical;
114 	int mirror_num;
115 };
116 
117 static const struct inode_operations btrfs_dir_inode_operations;
118 static const struct inode_operations btrfs_symlink_inode_operations;
119 static const struct inode_operations btrfs_special_inode_operations;
120 static const struct inode_operations btrfs_file_inode_operations;
121 static const struct address_space_operations btrfs_aops;
122 static const struct file_operations btrfs_dir_file_operations;
123 
124 static struct kmem_cache *btrfs_inode_cachep;
125 
126 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
127 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 
129 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
130 				     struct page *locked_page, u64 start,
131 				     u64 end, struct writeback_control *wbc,
132 				     bool pages_dirty);
133 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
134 				       u64 len, u64 orig_start, u64 block_start,
135 				       u64 block_len, u64 orig_block_len,
136 				       u64 ram_bytes, int compress_type,
137 				       int type);
138 
139 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
140 					  u64 root, void *warn_ctx)
141 {
142 	struct data_reloc_warn *warn = warn_ctx;
143 	struct btrfs_fs_info *fs_info = warn->fs_info;
144 	struct extent_buffer *eb;
145 	struct btrfs_inode_item *inode_item;
146 	struct inode_fs_paths *ipath = NULL;
147 	struct btrfs_root *local_root;
148 	struct btrfs_key key;
149 	unsigned int nofs_flag;
150 	u32 nlink;
151 	int ret;
152 
153 	local_root = btrfs_get_fs_root(fs_info, root, true);
154 	if (IS_ERR(local_root)) {
155 		ret = PTR_ERR(local_root);
156 		goto err;
157 	}
158 
159 	/* This makes the path point to (inum INODE_ITEM ioff). */
160 	key.objectid = inum;
161 	key.type = BTRFS_INODE_ITEM_KEY;
162 	key.offset = 0;
163 
164 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
165 	if (ret) {
166 		btrfs_put_root(local_root);
167 		btrfs_release_path(&warn->path);
168 		goto err;
169 	}
170 
171 	eb = warn->path.nodes[0];
172 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
173 	nlink = btrfs_inode_nlink(eb, inode_item);
174 	btrfs_release_path(&warn->path);
175 
176 	nofs_flag = memalloc_nofs_save();
177 	ipath = init_ipath(4096, local_root, &warn->path);
178 	memalloc_nofs_restore(nofs_flag);
179 	if (IS_ERR(ipath)) {
180 		btrfs_put_root(local_root);
181 		ret = PTR_ERR(ipath);
182 		ipath = NULL;
183 		/*
184 		 * -ENOMEM, not a critical error, just output an generic error
185 		 * without filename.
186 		 */
187 		btrfs_warn(fs_info,
188 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
189 			   warn->logical, warn->mirror_num, root, inum, offset);
190 		return ret;
191 	}
192 	ret = paths_from_inode(inum, ipath);
193 	if (ret < 0)
194 		goto err;
195 
196 	/*
197 	 * We deliberately ignore the bit ipath might have been too small to
198 	 * hold all of the paths here
199 	 */
200 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
201 		btrfs_warn(fs_info,
202 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
203 			   warn->logical, warn->mirror_num, root, inum, offset,
204 			   fs_info->sectorsize, nlink,
205 			   (char *)(unsigned long)ipath->fspath->val[i]);
206 	}
207 
208 	btrfs_put_root(local_root);
209 	free_ipath(ipath);
210 	return 0;
211 
212 err:
213 	btrfs_warn(fs_info,
214 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
215 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
216 
217 	free_ipath(ipath);
218 	return ret;
219 }
220 
221 /*
222  * Do extra user-friendly error output (e.g. lookup all the affected files).
223  *
224  * Return true if we succeeded doing the backref lookup.
225  * Return false if such lookup failed, and has to fallback to the old error message.
226  */
227 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
228 				   const u8 *csum, const u8 *csum_expected,
229 				   int mirror_num)
230 {
231 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
232 	struct btrfs_path path = { 0 };
233 	struct btrfs_key found_key = { 0 };
234 	struct extent_buffer *eb;
235 	struct btrfs_extent_item *ei;
236 	const u32 csum_size = fs_info->csum_size;
237 	u64 logical;
238 	u64 flags;
239 	u32 item_size;
240 	int ret;
241 
242 	mutex_lock(&fs_info->reloc_mutex);
243 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
244 	mutex_unlock(&fs_info->reloc_mutex);
245 
246 	if (logical == U64_MAX) {
247 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
248 		btrfs_warn_rl(fs_info,
249 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
250 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
251 			CSUM_FMT_VALUE(csum_size, csum),
252 			CSUM_FMT_VALUE(csum_size, csum_expected),
253 			mirror_num);
254 		return;
255 	}
256 
257 	logical += file_off;
258 	btrfs_warn_rl(fs_info,
259 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
260 			inode->root->root_key.objectid,
261 			btrfs_ino(inode), file_off, logical,
262 			CSUM_FMT_VALUE(csum_size, csum),
263 			CSUM_FMT_VALUE(csum_size, csum_expected),
264 			mirror_num);
265 
266 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
267 	if (ret < 0) {
268 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
269 			     logical, ret);
270 		return;
271 	}
272 	eb = path.nodes[0];
273 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
274 	item_size = btrfs_item_size(eb, path.slots[0]);
275 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
276 		unsigned long ptr = 0;
277 		u64 ref_root;
278 		u8 ref_level;
279 
280 		while (true) {
281 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
282 						      item_size, &ref_root,
283 						      &ref_level);
284 			if (ret < 0) {
285 				btrfs_warn_rl(fs_info,
286 				"failed to resolve tree backref for logical %llu: %d",
287 					      logical, ret);
288 				break;
289 			}
290 			if (ret > 0)
291 				break;
292 
293 			btrfs_warn_rl(fs_info,
294 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
295 				logical, mirror_num,
296 				(ref_level ? "node" : "leaf"),
297 				ref_level, ref_root);
298 		}
299 		btrfs_release_path(&path);
300 	} else {
301 		struct btrfs_backref_walk_ctx ctx = { 0 };
302 		struct data_reloc_warn reloc_warn = { 0 };
303 
304 		btrfs_release_path(&path);
305 
306 		ctx.bytenr = found_key.objectid;
307 		ctx.extent_item_pos = logical - found_key.objectid;
308 		ctx.fs_info = fs_info;
309 
310 		reloc_warn.logical = logical;
311 		reloc_warn.extent_item_size = found_key.offset;
312 		reloc_warn.mirror_num = mirror_num;
313 		reloc_warn.fs_info = fs_info;
314 
315 		iterate_extent_inodes(&ctx, true,
316 				      data_reloc_print_warning_inode, &reloc_warn);
317 	}
318 }
319 
320 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
321 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
322 {
323 	struct btrfs_root *root = inode->root;
324 	const u32 csum_size = root->fs_info->csum_size;
325 
326 	/* For data reloc tree, it's better to do a backref lookup instead. */
327 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
328 		return print_data_reloc_error(inode, logical_start, csum,
329 					      csum_expected, mirror_num);
330 
331 	/* Output without objectid, which is more meaningful */
332 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
333 		btrfs_warn_rl(root->fs_info,
334 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
335 			root->root_key.objectid, btrfs_ino(inode),
336 			logical_start,
337 			CSUM_FMT_VALUE(csum_size, csum),
338 			CSUM_FMT_VALUE(csum_size, csum_expected),
339 			mirror_num);
340 	} else {
341 		btrfs_warn_rl(root->fs_info,
342 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
343 			root->root_key.objectid, btrfs_ino(inode),
344 			logical_start,
345 			CSUM_FMT_VALUE(csum_size, csum),
346 			CSUM_FMT_VALUE(csum_size, csum_expected),
347 			mirror_num);
348 	}
349 }
350 
351 /*
352  * Lock inode i_rwsem based on arguments passed.
353  *
354  * ilock_flags can have the following bit set:
355  *
356  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
357  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
358  *		     return -EAGAIN
359  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
360  */
361 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
362 {
363 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
364 		if (ilock_flags & BTRFS_ILOCK_TRY) {
365 			if (!inode_trylock_shared(&inode->vfs_inode))
366 				return -EAGAIN;
367 			else
368 				return 0;
369 		}
370 		inode_lock_shared(&inode->vfs_inode);
371 	} else {
372 		if (ilock_flags & BTRFS_ILOCK_TRY) {
373 			if (!inode_trylock(&inode->vfs_inode))
374 				return -EAGAIN;
375 			else
376 				return 0;
377 		}
378 		inode_lock(&inode->vfs_inode);
379 	}
380 	if (ilock_flags & BTRFS_ILOCK_MMAP)
381 		down_write(&inode->i_mmap_lock);
382 	return 0;
383 }
384 
385 /*
386  * Unock inode i_rwsem.
387  *
388  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
389  * to decide whether the lock acquired is shared or exclusive.
390  */
391 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
392 {
393 	if (ilock_flags & BTRFS_ILOCK_MMAP)
394 		up_write(&inode->i_mmap_lock);
395 	if (ilock_flags & BTRFS_ILOCK_SHARED)
396 		inode_unlock_shared(&inode->vfs_inode);
397 	else
398 		inode_unlock(&inode->vfs_inode);
399 }
400 
401 /*
402  * Cleanup all submitted ordered extents in specified range to handle errors
403  * from the btrfs_run_delalloc_range() callback.
404  *
405  * NOTE: caller must ensure that when an error happens, it can not call
406  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
407  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
408  * to be released, which we want to happen only when finishing the ordered
409  * extent (btrfs_finish_ordered_io()).
410  */
411 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
412 						 struct page *locked_page,
413 						 u64 offset, u64 bytes)
414 {
415 	unsigned long index = offset >> PAGE_SHIFT;
416 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
417 	u64 page_start = 0, page_end = 0;
418 	struct page *page;
419 
420 	if (locked_page) {
421 		page_start = page_offset(locked_page);
422 		page_end = page_start + PAGE_SIZE - 1;
423 	}
424 
425 	while (index <= end_index) {
426 		/*
427 		 * For locked page, we will call btrfs_mark_ordered_io_finished
428 		 * through btrfs_mark_ordered_io_finished() on it
429 		 * in run_delalloc_range() for the error handling, which will
430 		 * clear page Ordered and run the ordered extent accounting.
431 		 *
432 		 * Here we can't just clear the Ordered bit, or
433 		 * btrfs_mark_ordered_io_finished() would skip the accounting
434 		 * for the page range, and the ordered extent will never finish.
435 		 */
436 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
437 			index++;
438 			continue;
439 		}
440 		page = find_get_page(inode->vfs_inode.i_mapping, index);
441 		index++;
442 		if (!page)
443 			continue;
444 
445 		/*
446 		 * Here we just clear all Ordered bits for every page in the
447 		 * range, then btrfs_mark_ordered_io_finished() will handle
448 		 * the ordered extent accounting for the range.
449 		 */
450 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
451 					       offset, bytes);
452 		put_page(page);
453 	}
454 
455 	if (locked_page) {
456 		/* The locked page covers the full range, nothing needs to be done */
457 		if (bytes + offset <= page_start + PAGE_SIZE)
458 			return;
459 		/*
460 		 * In case this page belongs to the delalloc range being
461 		 * instantiated then skip it, since the first page of a range is
462 		 * going to be properly cleaned up by the caller of
463 		 * run_delalloc_range
464 		 */
465 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
466 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
467 			offset = page_offset(locked_page) + PAGE_SIZE;
468 		}
469 	}
470 
471 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
472 }
473 
474 static int btrfs_dirty_inode(struct btrfs_inode *inode);
475 
476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
477 				     struct btrfs_new_inode_args *args)
478 {
479 	int err;
480 
481 	if (args->default_acl) {
482 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
483 				      ACL_TYPE_DEFAULT);
484 		if (err)
485 			return err;
486 	}
487 	if (args->acl) {
488 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
489 		if (err)
490 			return err;
491 	}
492 	if (!args->default_acl && !args->acl)
493 		cache_no_acl(args->inode);
494 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
495 					 &args->dentry->d_name);
496 }
497 
498 /*
499  * this does all the hard work for inserting an inline extent into
500  * the btree.  The caller should have done a btrfs_drop_extents so that
501  * no overlapping inline items exist in the btree
502  */
503 static int insert_inline_extent(struct btrfs_trans_handle *trans,
504 				struct btrfs_path *path,
505 				struct btrfs_inode *inode, bool extent_inserted,
506 				size_t size, size_t compressed_size,
507 				int compress_type,
508 				struct page **compressed_pages,
509 				bool update_i_size)
510 {
511 	struct btrfs_root *root = inode->root;
512 	struct extent_buffer *leaf;
513 	struct page *page = NULL;
514 	char *kaddr;
515 	unsigned long ptr;
516 	struct btrfs_file_extent_item *ei;
517 	int ret;
518 	size_t cur_size = size;
519 	u64 i_size;
520 
521 	ASSERT((compressed_size > 0 && compressed_pages) ||
522 	       (compressed_size == 0 && !compressed_pages));
523 
524 	if (compressed_size && compressed_pages)
525 		cur_size = compressed_size;
526 
527 	if (!extent_inserted) {
528 		struct btrfs_key key;
529 		size_t datasize;
530 
531 		key.objectid = btrfs_ino(inode);
532 		key.offset = 0;
533 		key.type = BTRFS_EXTENT_DATA_KEY;
534 
535 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
536 		ret = btrfs_insert_empty_item(trans, root, path, &key,
537 					      datasize);
538 		if (ret)
539 			goto fail;
540 	}
541 	leaf = path->nodes[0];
542 	ei = btrfs_item_ptr(leaf, path->slots[0],
543 			    struct btrfs_file_extent_item);
544 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
545 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
546 	btrfs_set_file_extent_encryption(leaf, ei, 0);
547 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
548 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
549 	ptr = btrfs_file_extent_inline_start(ei);
550 
551 	if (compress_type != BTRFS_COMPRESS_NONE) {
552 		struct page *cpage;
553 		int i = 0;
554 		while (compressed_size > 0) {
555 			cpage = compressed_pages[i];
556 			cur_size = min_t(unsigned long, compressed_size,
557 				       PAGE_SIZE);
558 
559 			kaddr = kmap_local_page(cpage);
560 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
561 			kunmap_local(kaddr);
562 
563 			i++;
564 			ptr += cur_size;
565 			compressed_size -= cur_size;
566 		}
567 		btrfs_set_file_extent_compression(leaf, ei,
568 						  compress_type);
569 	} else {
570 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
571 		btrfs_set_file_extent_compression(leaf, ei, 0);
572 		kaddr = kmap_local_page(page);
573 		write_extent_buffer(leaf, kaddr, ptr, size);
574 		kunmap_local(kaddr);
575 		put_page(page);
576 	}
577 	btrfs_mark_buffer_dirty(trans, leaf);
578 	btrfs_release_path(path);
579 
580 	/*
581 	 * We align size to sectorsize for inline extents just for simplicity
582 	 * sake.
583 	 */
584 	ret = btrfs_inode_set_file_extent_range(inode, 0,
585 					ALIGN(size, root->fs_info->sectorsize));
586 	if (ret)
587 		goto fail;
588 
589 	/*
590 	 * We're an inline extent, so nobody can extend the file past i_size
591 	 * without locking a page we already have locked.
592 	 *
593 	 * We must do any i_size and inode updates before we unlock the pages.
594 	 * Otherwise we could end up racing with unlink.
595 	 */
596 	i_size = i_size_read(&inode->vfs_inode);
597 	if (update_i_size && size > i_size) {
598 		i_size_write(&inode->vfs_inode, size);
599 		i_size = size;
600 	}
601 	inode->disk_i_size = i_size;
602 
603 fail:
604 	return ret;
605 }
606 
607 
608 /*
609  * conditionally insert an inline extent into the file.  This
610  * does the checks required to make sure the data is small enough
611  * to fit as an inline extent.
612  */
613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
614 					  size_t compressed_size,
615 					  int compress_type,
616 					  struct page **compressed_pages,
617 					  bool update_i_size)
618 {
619 	struct btrfs_drop_extents_args drop_args = { 0 };
620 	struct btrfs_root *root = inode->root;
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	struct btrfs_trans_handle *trans;
623 	u64 data_len = (compressed_size ?: size);
624 	int ret;
625 	struct btrfs_path *path;
626 
627 	/*
628 	 * We can create an inline extent if it ends at or beyond the current
629 	 * i_size, is no larger than a sector (decompressed), and the (possibly
630 	 * compressed) data fits in a leaf and the configured maximum inline
631 	 * size.
632 	 */
633 	if (size < i_size_read(&inode->vfs_inode) ||
634 	    size > fs_info->sectorsize ||
635 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
636 	    data_len > fs_info->max_inline)
637 		return 1;
638 
639 	path = btrfs_alloc_path();
640 	if (!path)
641 		return -ENOMEM;
642 
643 	trans = btrfs_join_transaction(root);
644 	if (IS_ERR(trans)) {
645 		btrfs_free_path(path);
646 		return PTR_ERR(trans);
647 	}
648 	trans->block_rsv = &inode->block_rsv;
649 
650 	drop_args.path = path;
651 	drop_args.start = 0;
652 	drop_args.end = fs_info->sectorsize;
653 	drop_args.drop_cache = true;
654 	drop_args.replace_extent = true;
655 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
656 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
657 	if (ret) {
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
663 				   size, compressed_size, compress_type,
664 				   compressed_pages, update_i_size);
665 	if (ret && ret != -ENOSPC) {
666 		btrfs_abort_transaction(trans, ret);
667 		goto out;
668 	} else if (ret == -ENOSPC) {
669 		ret = 1;
670 		goto out;
671 	}
672 
673 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
674 	ret = btrfs_update_inode(trans, inode);
675 	if (ret && ret != -ENOSPC) {
676 		btrfs_abort_transaction(trans, ret);
677 		goto out;
678 	} else if (ret == -ENOSPC) {
679 		ret = 1;
680 		goto out;
681 	}
682 
683 	btrfs_set_inode_full_sync(inode);
684 out:
685 	/*
686 	 * Don't forget to free the reserved space, as for inlined extent
687 	 * it won't count as data extent, free them directly here.
688 	 * And at reserve time, it's always aligned to page size, so
689 	 * just free one page here.
690 	 */
691 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
692 	btrfs_free_path(path);
693 	btrfs_end_transaction(trans);
694 	return ret;
695 }
696 
697 struct async_extent {
698 	u64 start;
699 	u64 ram_size;
700 	u64 compressed_size;
701 	struct page **pages;
702 	unsigned long nr_pages;
703 	int compress_type;
704 	struct list_head list;
705 };
706 
707 struct async_chunk {
708 	struct btrfs_inode *inode;
709 	struct page *locked_page;
710 	u64 start;
711 	u64 end;
712 	blk_opf_t write_flags;
713 	struct list_head extents;
714 	struct cgroup_subsys_state *blkcg_css;
715 	struct btrfs_work work;
716 	struct async_cow *async_cow;
717 };
718 
719 struct async_cow {
720 	atomic_t num_chunks;
721 	struct async_chunk chunks[];
722 };
723 
724 static noinline int add_async_extent(struct async_chunk *cow,
725 				     u64 start, u64 ram_size,
726 				     u64 compressed_size,
727 				     struct page **pages,
728 				     unsigned long nr_pages,
729 				     int compress_type)
730 {
731 	struct async_extent *async_extent;
732 
733 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
734 	BUG_ON(!async_extent); /* -ENOMEM */
735 	async_extent->start = start;
736 	async_extent->ram_size = ram_size;
737 	async_extent->compressed_size = compressed_size;
738 	async_extent->pages = pages;
739 	async_extent->nr_pages = nr_pages;
740 	async_extent->compress_type = compress_type;
741 	list_add_tail(&async_extent->list, &cow->extents);
742 	return 0;
743 }
744 
745 /*
746  * Check if the inode needs to be submitted to compression, based on mount
747  * options, defragmentation, properties or heuristics.
748  */
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 				      u64 end)
751 {
752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 
754 	if (!btrfs_inode_can_compress(inode)) {
755 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 			btrfs_ino(inode));
758 		return 0;
759 	}
760 	/*
761 	 * Special check for subpage.
762 	 *
763 	 * We lock the full page then run each delalloc range in the page, thus
764 	 * for the following case, we will hit some subpage specific corner case:
765 	 *
766 	 * 0		32K		64K
767 	 * |	|///////|	|///////|
768 	 *		\- A		\- B
769 	 *
770 	 * In above case, both range A and range B will try to unlock the full
771 	 * page [0, 64K), causing the one finished later will have page
772 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 	 *
774 	 * So here we add an artificial limit that subpage compression can only
775 	 * if the range is fully page aligned.
776 	 *
777 	 * In theory we only need to ensure the first page is fully covered, but
778 	 * the tailing partial page will be locked until the full compression
779 	 * finishes, delaying the write of other range.
780 	 *
781 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 	 * first to prevent any submitted async extent to unlock the full page.
783 	 * By this, we can ensure for subpage case that only the last async_cow
784 	 * will unlock the full page.
785 	 */
786 	if (fs_info->sectorsize < PAGE_SIZE) {
787 		if (!PAGE_ALIGNED(start) ||
788 		    !PAGE_ALIGNED(end + 1))
789 			return 0;
790 	}
791 
792 	/* force compress */
793 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 		return 1;
795 	/* defrag ioctl */
796 	if (inode->defrag_compress)
797 		return 1;
798 	/* bad compression ratios */
799 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 		return 0;
801 	if (btrfs_test_opt(fs_info, COMPRESS) ||
802 	    inode->flags & BTRFS_INODE_COMPRESS ||
803 	    inode->prop_compress)
804 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
805 	return 0;
806 }
807 
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 		u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 	/* If this is a small write inside eof, kick off a defrag */
812 	if (num_bytes < small_write &&
813 	    (start > 0 || end + 1 < inode->disk_i_size))
814 		btrfs_add_inode_defrag(NULL, inode, small_write);
815 }
816 
817 /*
818  * Work queue call back to started compression on a file and pages.
819  *
820  * This is done inside an ordered work queue, and the compression is spread
821  * across many cpus.  The actual IO submission is step two, and the ordered work
822  * queue takes care of making sure that happens in the same order things were
823  * put onto the queue by writepages and friends.
824  *
825  * If this code finds it can't get good compression, it puts an entry onto the
826  * work queue to write the uncompressed bytes.  This makes sure that both
827  * compressed inodes and uncompressed inodes are written in the same order that
828  * the flusher thread sent them down.
829  */
830 static void compress_file_range(struct btrfs_work *work)
831 {
832 	struct async_chunk *async_chunk =
833 		container_of(work, struct async_chunk, work);
834 	struct btrfs_inode *inode = async_chunk->inode;
835 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
836 	struct address_space *mapping = inode->vfs_inode.i_mapping;
837 	u64 blocksize = fs_info->sectorsize;
838 	u64 start = async_chunk->start;
839 	u64 end = async_chunk->end;
840 	u64 actual_end;
841 	u64 i_size;
842 	int ret = 0;
843 	struct page **pages;
844 	unsigned long nr_pages;
845 	unsigned long total_compressed = 0;
846 	unsigned long total_in = 0;
847 	unsigned int poff;
848 	int i;
849 	int compress_type = fs_info->compress_type;
850 
851 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
852 
853 	/*
854 	 * We need to call clear_page_dirty_for_io on each page in the range.
855 	 * Otherwise applications with the file mmap'd can wander in and change
856 	 * the page contents while we are compressing them.
857 	 */
858 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
859 
860 	/*
861 	 * We need to save i_size before now because it could change in between
862 	 * us evaluating the size and assigning it.  This is because we lock and
863 	 * unlock the page in truncate and fallocate, and then modify the i_size
864 	 * later on.
865 	 *
866 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 	 * does that for us.
868 	 */
869 	barrier();
870 	i_size = i_size_read(&inode->vfs_inode);
871 	barrier();
872 	actual_end = min_t(u64, i_size, end + 1);
873 again:
874 	pages = NULL;
875 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
876 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
877 
878 	/*
879 	 * we don't want to send crud past the end of i_size through
880 	 * compression, that's just a waste of CPU time.  So, if the
881 	 * end of the file is before the start of our current
882 	 * requested range of bytes, we bail out to the uncompressed
883 	 * cleanup code that can deal with all of this.
884 	 *
885 	 * It isn't really the fastest way to fix things, but this is a
886 	 * very uncommon corner.
887 	 */
888 	if (actual_end <= start)
889 		goto cleanup_and_bail_uncompressed;
890 
891 	total_compressed = actual_end - start;
892 
893 	/*
894 	 * Skip compression for a small file range(<=blocksize) that
895 	 * isn't an inline extent, since it doesn't save disk space at all.
896 	 */
897 	if (total_compressed <= blocksize &&
898 	   (start > 0 || end + 1 < inode->disk_i_size))
899 		goto cleanup_and_bail_uncompressed;
900 
901 	/*
902 	 * For subpage case, we require full page alignment for the sector
903 	 * aligned range.
904 	 * Thus we must also check against @actual_end, not just @end.
905 	 */
906 	if (blocksize < PAGE_SIZE) {
907 		if (!PAGE_ALIGNED(start) ||
908 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
909 			goto cleanup_and_bail_uncompressed;
910 	}
911 
912 	total_compressed = min_t(unsigned long, total_compressed,
913 			BTRFS_MAX_UNCOMPRESSED);
914 	total_in = 0;
915 	ret = 0;
916 
917 	/*
918 	 * We do compression for mount -o compress and when the inode has not
919 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
920 	 * discover bad compression ratios.
921 	 */
922 	if (!inode_need_compress(inode, start, end))
923 		goto cleanup_and_bail_uncompressed;
924 
925 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
926 	if (!pages) {
927 		/*
928 		 * Memory allocation failure is not a fatal error, we can fall
929 		 * back to uncompressed code.
930 		 */
931 		goto cleanup_and_bail_uncompressed;
932 	}
933 
934 	if (inode->defrag_compress)
935 		compress_type = inode->defrag_compress;
936 	else if (inode->prop_compress)
937 		compress_type = inode->prop_compress;
938 
939 	/* Compression level is applied here. */
940 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
941 				   mapping, start, pages, &nr_pages, &total_in,
942 				   &total_compressed);
943 	if (ret)
944 		goto mark_incompressible;
945 
946 	/*
947 	 * Zero the tail end of the last page, as we might be sending it down
948 	 * to disk.
949 	 */
950 	poff = offset_in_page(total_compressed);
951 	if (poff)
952 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
953 
954 	/*
955 	 * Try to create an inline extent.
956 	 *
957 	 * If we didn't compress the entire range, try to create an uncompressed
958 	 * inline extent, else a compressed one.
959 	 *
960 	 * Check cow_file_range() for why we don't even try to create inline
961 	 * extent for the subpage case.
962 	 */
963 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
964 		if (total_in < actual_end) {
965 			ret = cow_file_range_inline(inode, actual_end, 0,
966 						    BTRFS_COMPRESS_NONE, NULL,
967 						    false);
968 		} else {
969 			ret = cow_file_range_inline(inode, actual_end,
970 						    total_compressed,
971 						    compress_type, pages,
972 						    false);
973 		}
974 		if (ret <= 0) {
975 			unsigned long clear_flags = EXTENT_DELALLOC |
976 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
977 				EXTENT_DO_ACCOUNTING;
978 
979 			if (ret < 0)
980 				mapping_set_error(mapping, -EIO);
981 
982 			/*
983 			 * inline extent creation worked or returned error,
984 			 * we don't need to create any more async work items.
985 			 * Unlock and free up our temp pages.
986 			 *
987 			 * We use DO_ACCOUNTING here because we need the
988 			 * delalloc_release_metadata to be done _after_ we drop
989 			 * our outstanding extent for clearing delalloc for this
990 			 * range.
991 			 */
992 			extent_clear_unlock_delalloc(inode, start, end,
993 						     NULL,
994 						     clear_flags,
995 						     PAGE_UNLOCK |
996 						     PAGE_START_WRITEBACK |
997 						     PAGE_END_WRITEBACK);
998 			goto free_pages;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * We aren't doing an inline extent. Round the compressed size up to a
1004 	 * block size boundary so the allocator does sane things.
1005 	 */
1006 	total_compressed = ALIGN(total_compressed, blocksize);
1007 
1008 	/*
1009 	 * One last check to make sure the compression is really a win, compare
1010 	 * the page count read with the blocks on disk, compression must free at
1011 	 * least one sector.
1012 	 */
1013 	total_in = round_up(total_in, fs_info->sectorsize);
1014 	if (total_compressed + blocksize > total_in)
1015 		goto mark_incompressible;
1016 
1017 	/*
1018 	 * The async work queues will take care of doing actual allocation on
1019 	 * disk for these compressed pages, and will submit the bios.
1020 	 */
1021 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1022 			 nr_pages, compress_type);
1023 	if (start + total_in < end) {
1024 		start += total_in;
1025 		cond_resched();
1026 		goto again;
1027 	}
1028 	return;
1029 
1030 mark_incompressible:
1031 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1032 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1033 cleanup_and_bail_uncompressed:
1034 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1035 			 BTRFS_COMPRESS_NONE);
1036 free_pages:
1037 	if (pages) {
1038 		for (i = 0; i < nr_pages; i++) {
1039 			WARN_ON(pages[i]->mapping);
1040 			put_page(pages[i]);
1041 		}
1042 		kfree(pages);
1043 	}
1044 }
1045 
1046 static void free_async_extent_pages(struct async_extent *async_extent)
1047 {
1048 	int i;
1049 
1050 	if (!async_extent->pages)
1051 		return;
1052 
1053 	for (i = 0; i < async_extent->nr_pages; i++) {
1054 		WARN_ON(async_extent->pages[i]->mapping);
1055 		put_page(async_extent->pages[i]);
1056 	}
1057 	kfree(async_extent->pages);
1058 	async_extent->nr_pages = 0;
1059 	async_extent->pages = NULL;
1060 }
1061 
1062 static void submit_uncompressed_range(struct btrfs_inode *inode,
1063 				      struct async_extent *async_extent,
1064 				      struct page *locked_page)
1065 {
1066 	u64 start = async_extent->start;
1067 	u64 end = async_extent->start + async_extent->ram_size - 1;
1068 	int ret;
1069 	struct writeback_control wbc = {
1070 		.sync_mode		= WB_SYNC_ALL,
1071 		.range_start		= start,
1072 		.range_end		= end,
1073 		.no_cgroup_owner	= 1,
1074 	};
1075 
1076 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1077 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1078 	wbc_detach_inode(&wbc);
1079 	if (ret < 0) {
1080 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1081 		if (locked_page) {
1082 			const u64 page_start = page_offset(locked_page);
1083 
1084 			set_page_writeback(locked_page);
1085 			end_page_writeback(locked_page);
1086 			btrfs_mark_ordered_io_finished(inode, locked_page,
1087 						       page_start, PAGE_SIZE,
1088 						       !ret);
1089 			mapping_set_error(locked_page->mapping, ret);
1090 			unlock_page(locked_page);
1091 		}
1092 	}
1093 }
1094 
1095 static void submit_one_async_extent(struct async_chunk *async_chunk,
1096 				    struct async_extent *async_extent,
1097 				    u64 *alloc_hint)
1098 {
1099 	struct btrfs_inode *inode = async_chunk->inode;
1100 	struct extent_io_tree *io_tree = &inode->io_tree;
1101 	struct btrfs_root *root = inode->root;
1102 	struct btrfs_fs_info *fs_info = root->fs_info;
1103 	struct btrfs_ordered_extent *ordered;
1104 	struct btrfs_key ins;
1105 	struct page *locked_page = NULL;
1106 	struct extent_map *em;
1107 	int ret = 0;
1108 	u64 start = async_extent->start;
1109 	u64 end = async_extent->start + async_extent->ram_size - 1;
1110 
1111 	if (async_chunk->blkcg_css)
1112 		kthread_associate_blkcg(async_chunk->blkcg_css);
1113 
1114 	/*
1115 	 * If async_chunk->locked_page is in the async_extent range, we need to
1116 	 * handle it.
1117 	 */
1118 	if (async_chunk->locked_page) {
1119 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1120 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1121 
1122 		if (!(start >= locked_page_end || end <= locked_page_start))
1123 			locked_page = async_chunk->locked_page;
1124 	}
1125 	lock_extent(io_tree, start, end, NULL);
1126 
1127 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1128 		submit_uncompressed_range(inode, async_extent, locked_page);
1129 		goto done;
1130 	}
1131 
1132 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1133 				   async_extent->compressed_size,
1134 				   async_extent->compressed_size,
1135 				   0, *alloc_hint, &ins, 1, 1);
1136 	if (ret) {
1137 		/*
1138 		 * Here we used to try again by going back to non-compressed
1139 		 * path for ENOSPC.  But we can't reserve space even for
1140 		 * compressed size, how could it work for uncompressed size
1141 		 * which requires larger size?  So here we directly go error
1142 		 * path.
1143 		 */
1144 		goto out_free;
1145 	}
1146 
1147 	/* Here we're doing allocation and writeback of the compressed pages */
1148 	em = create_io_em(inode, start,
1149 			  async_extent->ram_size,	/* len */
1150 			  start,			/* orig_start */
1151 			  ins.objectid,			/* block_start */
1152 			  ins.offset,			/* block_len */
1153 			  ins.offset,			/* orig_block_len */
1154 			  async_extent->ram_size,	/* ram_bytes */
1155 			  async_extent->compress_type,
1156 			  BTRFS_ORDERED_COMPRESSED);
1157 	if (IS_ERR(em)) {
1158 		ret = PTR_ERR(em);
1159 		goto out_free_reserve;
1160 	}
1161 	free_extent_map(em);
1162 
1163 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1164 				       async_extent->ram_size,	/* num_bytes */
1165 				       async_extent->ram_size,	/* ram_bytes */
1166 				       ins.objectid,		/* disk_bytenr */
1167 				       ins.offset,		/* disk_num_bytes */
1168 				       0,			/* offset */
1169 				       1 << BTRFS_ORDERED_COMPRESSED,
1170 				       async_extent->compress_type);
1171 	if (IS_ERR(ordered)) {
1172 		btrfs_drop_extent_map_range(inode, start, end, false);
1173 		ret = PTR_ERR(ordered);
1174 		goto out_free_reserve;
1175 	}
1176 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1177 
1178 	/* Clear dirty, set writeback and unlock the pages. */
1179 	extent_clear_unlock_delalloc(inode, start, end,
1180 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1181 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1182 	btrfs_submit_compressed_write(ordered,
1183 			    async_extent->pages,	/* compressed_pages */
1184 			    async_extent->nr_pages,
1185 			    async_chunk->write_flags, true);
1186 	*alloc_hint = ins.objectid + ins.offset;
1187 done:
1188 	if (async_chunk->blkcg_css)
1189 		kthread_associate_blkcg(NULL);
1190 	kfree(async_extent);
1191 	return;
1192 
1193 out_free_reserve:
1194 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1195 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1196 out_free:
1197 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1198 	extent_clear_unlock_delalloc(inode, start, end,
1199 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1200 				     EXTENT_DELALLOC_NEW |
1201 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1202 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1203 				     PAGE_END_WRITEBACK);
1204 	free_async_extent_pages(async_extent);
1205 	if (async_chunk->blkcg_css)
1206 		kthread_associate_blkcg(NULL);
1207 	btrfs_debug(fs_info,
1208 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1209 		    root->root_key.objectid, btrfs_ino(inode), start,
1210 		    async_extent->ram_size, ret);
1211 	kfree(async_extent);
1212 }
1213 
1214 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1215 				      u64 num_bytes)
1216 {
1217 	struct extent_map_tree *em_tree = &inode->extent_tree;
1218 	struct extent_map *em;
1219 	u64 alloc_hint = 0;
1220 
1221 	read_lock(&em_tree->lock);
1222 	em = search_extent_mapping(em_tree, start, num_bytes);
1223 	if (em) {
1224 		/*
1225 		 * if block start isn't an actual block number then find the
1226 		 * first block in this inode and use that as a hint.  If that
1227 		 * block is also bogus then just don't worry about it.
1228 		 */
1229 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1230 			free_extent_map(em);
1231 			em = search_extent_mapping(em_tree, 0, 0);
1232 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1233 				alloc_hint = em->block_start;
1234 			if (em)
1235 				free_extent_map(em);
1236 		} else {
1237 			alloc_hint = em->block_start;
1238 			free_extent_map(em);
1239 		}
1240 	}
1241 	read_unlock(&em_tree->lock);
1242 
1243 	return alloc_hint;
1244 }
1245 
1246 /*
1247  * when extent_io.c finds a delayed allocation range in the file,
1248  * the call backs end up in this code.  The basic idea is to
1249  * allocate extents on disk for the range, and create ordered data structs
1250  * in ram to track those extents.
1251  *
1252  * locked_page is the page that writepage had locked already.  We use
1253  * it to make sure we don't do extra locks or unlocks.
1254  *
1255  * When this function fails, it unlocks all pages except @locked_page.
1256  *
1257  * When this function successfully creates an inline extent, it returns 1 and
1258  * unlocks all pages including locked_page and starts I/O on them.
1259  * (In reality inline extents are limited to a single page, so locked_page is
1260  * the only page handled anyway).
1261  *
1262  * When this function succeed and creates a normal extent, the page locking
1263  * status depends on the passed in flags:
1264  *
1265  * - If @keep_locked is set, all pages are kept locked.
1266  * - Else all pages except for @locked_page are unlocked.
1267  *
1268  * When a failure happens in the second or later iteration of the
1269  * while-loop, the ordered extents created in previous iterations are kept
1270  * intact. So, the caller must clean them up by calling
1271  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1272  * example.
1273  */
1274 static noinline int cow_file_range(struct btrfs_inode *inode,
1275 				   struct page *locked_page, u64 start, u64 end,
1276 				   u64 *done_offset,
1277 				   bool keep_locked, bool no_inline)
1278 {
1279 	struct btrfs_root *root = inode->root;
1280 	struct btrfs_fs_info *fs_info = root->fs_info;
1281 	u64 alloc_hint = 0;
1282 	u64 orig_start = start;
1283 	u64 num_bytes;
1284 	unsigned long ram_size;
1285 	u64 cur_alloc_size = 0;
1286 	u64 min_alloc_size;
1287 	u64 blocksize = fs_info->sectorsize;
1288 	struct btrfs_key ins;
1289 	struct extent_map *em;
1290 	unsigned clear_bits;
1291 	unsigned long page_ops;
1292 	bool extent_reserved = false;
1293 	int ret = 0;
1294 
1295 	if (btrfs_is_free_space_inode(inode)) {
1296 		ret = -EINVAL;
1297 		goto out_unlock;
1298 	}
1299 
1300 	num_bytes = ALIGN(end - start + 1, blocksize);
1301 	num_bytes = max(blocksize,  num_bytes);
1302 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1303 
1304 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1305 
1306 	/*
1307 	 * Due to the page size limit, for subpage we can only trigger the
1308 	 * writeback for the dirty sectors of page, that means data writeback
1309 	 * is doing more writeback than what we want.
1310 	 *
1311 	 * This is especially unexpected for some call sites like fallocate,
1312 	 * where we only increase i_size after everything is done.
1313 	 * This means we can trigger inline extent even if we didn't want to.
1314 	 * So here we skip inline extent creation completely.
1315 	 */
1316 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1317 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1318 				       end + 1);
1319 
1320 		/* lets try to make an inline extent */
1321 		ret = cow_file_range_inline(inode, actual_end, 0,
1322 					    BTRFS_COMPRESS_NONE, NULL, false);
1323 		if (ret == 0) {
1324 			/*
1325 			 * We use DO_ACCOUNTING here because we need the
1326 			 * delalloc_release_metadata to be run _after_ we drop
1327 			 * our outstanding extent for clearing delalloc for this
1328 			 * range.
1329 			 */
1330 			extent_clear_unlock_delalloc(inode, start, end,
1331 				     locked_page,
1332 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1333 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1334 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1335 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1336 			/*
1337 			 * locked_page is locked by the caller of
1338 			 * writepage_delalloc(), not locked by
1339 			 * __process_pages_contig().
1340 			 *
1341 			 * We can't let __process_pages_contig() to unlock it,
1342 			 * as it doesn't have any subpage::writers recorded.
1343 			 *
1344 			 * Here we manually unlock the page, since the caller
1345 			 * can't determine if it's an inline extent or a
1346 			 * compressed extent.
1347 			 */
1348 			unlock_page(locked_page);
1349 			ret = 1;
1350 			goto done;
1351 		} else if (ret < 0) {
1352 			goto out_unlock;
1353 		}
1354 	}
1355 
1356 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1357 
1358 	/*
1359 	 * Relocation relies on the relocated extents to have exactly the same
1360 	 * size as the original extents. Normally writeback for relocation data
1361 	 * extents follows a NOCOW path because relocation preallocates the
1362 	 * extents. However, due to an operation such as scrub turning a block
1363 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1364 	 * an extent allocated during COW has exactly the requested size and can
1365 	 * not be split into smaller extents, otherwise relocation breaks and
1366 	 * fails during the stage where it updates the bytenr of file extent
1367 	 * items.
1368 	 */
1369 	if (btrfs_is_data_reloc_root(root))
1370 		min_alloc_size = num_bytes;
1371 	else
1372 		min_alloc_size = fs_info->sectorsize;
1373 
1374 	while (num_bytes > 0) {
1375 		struct btrfs_ordered_extent *ordered;
1376 
1377 		cur_alloc_size = num_bytes;
1378 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1379 					   min_alloc_size, 0, alloc_hint,
1380 					   &ins, 1, 1);
1381 		if (ret == -EAGAIN) {
1382 			/*
1383 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1384 			 * file systems, which is an indication that there are
1385 			 * no active zones to allocate from at the moment.
1386 			 *
1387 			 * If this is the first loop iteration, wait for at
1388 			 * least one zone to finish before retrying the
1389 			 * allocation.  Otherwise ask the caller to write out
1390 			 * the already allocated blocks before coming back to
1391 			 * us, or return -ENOSPC if it can't handle retries.
1392 			 */
1393 			ASSERT(btrfs_is_zoned(fs_info));
1394 			if (start == orig_start) {
1395 				wait_on_bit_io(&inode->root->fs_info->flags,
1396 					       BTRFS_FS_NEED_ZONE_FINISH,
1397 					       TASK_UNINTERRUPTIBLE);
1398 				continue;
1399 			}
1400 			if (done_offset) {
1401 				*done_offset = start - 1;
1402 				return 0;
1403 			}
1404 			ret = -ENOSPC;
1405 		}
1406 		if (ret < 0)
1407 			goto out_unlock;
1408 		cur_alloc_size = ins.offset;
1409 		extent_reserved = true;
1410 
1411 		ram_size = ins.offset;
1412 		em = create_io_em(inode, start, ins.offset, /* len */
1413 				  start, /* orig_start */
1414 				  ins.objectid, /* block_start */
1415 				  ins.offset, /* block_len */
1416 				  ins.offset, /* orig_block_len */
1417 				  ram_size, /* ram_bytes */
1418 				  BTRFS_COMPRESS_NONE, /* compress_type */
1419 				  BTRFS_ORDERED_REGULAR /* type */);
1420 		if (IS_ERR(em)) {
1421 			ret = PTR_ERR(em);
1422 			goto out_reserve;
1423 		}
1424 		free_extent_map(em);
1425 
1426 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1427 					ram_size, ins.objectid, cur_alloc_size,
1428 					0, 1 << BTRFS_ORDERED_REGULAR,
1429 					BTRFS_COMPRESS_NONE);
1430 		if (IS_ERR(ordered)) {
1431 			ret = PTR_ERR(ordered);
1432 			goto out_drop_extent_cache;
1433 		}
1434 
1435 		if (btrfs_is_data_reloc_root(root)) {
1436 			ret = btrfs_reloc_clone_csums(ordered);
1437 
1438 			/*
1439 			 * Only drop cache here, and process as normal.
1440 			 *
1441 			 * We must not allow extent_clear_unlock_delalloc()
1442 			 * at out_unlock label to free meta of this ordered
1443 			 * extent, as its meta should be freed by
1444 			 * btrfs_finish_ordered_io().
1445 			 *
1446 			 * So we must continue until @start is increased to
1447 			 * skip current ordered extent.
1448 			 */
1449 			if (ret)
1450 				btrfs_drop_extent_map_range(inode, start,
1451 							    start + ram_size - 1,
1452 							    false);
1453 		}
1454 		btrfs_put_ordered_extent(ordered);
1455 
1456 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1457 
1458 		/*
1459 		 * We're not doing compressed IO, don't unlock the first page
1460 		 * (which the caller expects to stay locked), don't clear any
1461 		 * dirty bits and don't set any writeback bits
1462 		 *
1463 		 * Do set the Ordered (Private2) bit so we know this page was
1464 		 * properly setup for writepage.
1465 		 */
1466 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1467 		page_ops |= PAGE_SET_ORDERED;
1468 
1469 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1470 					     locked_page,
1471 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1472 					     page_ops);
1473 		if (num_bytes < cur_alloc_size)
1474 			num_bytes = 0;
1475 		else
1476 			num_bytes -= cur_alloc_size;
1477 		alloc_hint = ins.objectid + ins.offset;
1478 		start += cur_alloc_size;
1479 		extent_reserved = false;
1480 
1481 		/*
1482 		 * btrfs_reloc_clone_csums() error, since start is increased
1483 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1484 		 * free metadata of current ordered extent, we're OK to exit.
1485 		 */
1486 		if (ret)
1487 			goto out_unlock;
1488 	}
1489 done:
1490 	if (done_offset)
1491 		*done_offset = end;
1492 	return ret;
1493 
1494 out_drop_extent_cache:
1495 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1496 out_reserve:
1497 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1498 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1499 out_unlock:
1500 	/*
1501 	 * Now, we have three regions to clean up:
1502 	 *
1503 	 * |-------(1)----|---(2)---|-------------(3)----------|
1504 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1505 	 *
1506 	 * We process each region below.
1507 	 */
1508 
1509 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1510 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1511 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1512 
1513 	/*
1514 	 * For the range (1). We have already instantiated the ordered extents
1515 	 * for this region. They are cleaned up by
1516 	 * btrfs_cleanup_ordered_extents() in e.g,
1517 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1518 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1519 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1520 	 * function.
1521 	 *
1522 	 * However, in case of @keep_locked, we still need to unlock the pages
1523 	 * (except @locked_page) to ensure all the pages are unlocked.
1524 	 */
1525 	if (keep_locked && orig_start < start) {
1526 		if (!locked_page)
1527 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1528 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1529 					     locked_page, 0, page_ops);
1530 	}
1531 
1532 	/*
1533 	 * For the range (2). If we reserved an extent for our delalloc range
1534 	 * (or a subrange) and failed to create the respective ordered extent,
1535 	 * then it means that when we reserved the extent we decremented the
1536 	 * extent's size from the data space_info's bytes_may_use counter and
1537 	 * incremented the space_info's bytes_reserved counter by the same
1538 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1539 	 * to decrement again the data space_info's bytes_may_use counter,
1540 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1541 	 */
1542 	if (extent_reserved) {
1543 		extent_clear_unlock_delalloc(inode, start,
1544 					     start + cur_alloc_size - 1,
1545 					     locked_page,
1546 					     clear_bits,
1547 					     page_ops);
1548 		start += cur_alloc_size;
1549 	}
1550 
1551 	/*
1552 	 * For the range (3). We never touched the region. In addition to the
1553 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1554 	 * space_info's bytes_may_use counter, reserved in
1555 	 * btrfs_check_data_free_space().
1556 	 */
1557 	if (start < end) {
1558 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1559 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1560 					     clear_bits, page_ops);
1561 	}
1562 	return ret;
1563 }
1564 
1565 /*
1566  * Phase two of compressed writeback.  This is the ordered portion of the code,
1567  * which only gets called in the order the work was queued.  We walk all the
1568  * async extents created by compress_file_range and send them down to the disk.
1569  *
1570  * If called with @do_free == true then it'll try to finish the work and free
1571  * the work struct eventually.
1572  */
1573 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1574 {
1575 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1576 						     work);
1577 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1578 	struct async_extent *async_extent;
1579 	unsigned long nr_pages;
1580 	u64 alloc_hint = 0;
1581 
1582 	if (do_free) {
1583 		struct async_chunk *async_chunk;
1584 		struct async_cow *async_cow;
1585 
1586 		async_chunk = container_of(work, struct async_chunk, work);
1587 		btrfs_add_delayed_iput(async_chunk->inode);
1588 		if (async_chunk->blkcg_css)
1589 			css_put(async_chunk->blkcg_css);
1590 
1591 		async_cow = async_chunk->async_cow;
1592 		if (atomic_dec_and_test(&async_cow->num_chunks))
1593 			kvfree(async_cow);
1594 		return;
1595 	}
1596 
1597 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1598 		PAGE_SHIFT;
1599 
1600 	while (!list_empty(&async_chunk->extents)) {
1601 		async_extent = list_entry(async_chunk->extents.next,
1602 					  struct async_extent, list);
1603 		list_del(&async_extent->list);
1604 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1605 	}
1606 
1607 	/* atomic_sub_return implies a barrier */
1608 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1609 	    5 * SZ_1M)
1610 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1611 }
1612 
1613 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1614 				    struct page *locked_page, u64 start,
1615 				    u64 end, struct writeback_control *wbc)
1616 {
1617 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1618 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1619 	struct async_cow *ctx;
1620 	struct async_chunk *async_chunk;
1621 	unsigned long nr_pages;
1622 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1623 	int i;
1624 	unsigned nofs_flag;
1625 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1626 
1627 	nofs_flag = memalloc_nofs_save();
1628 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1629 	memalloc_nofs_restore(nofs_flag);
1630 	if (!ctx)
1631 		return false;
1632 
1633 	unlock_extent(&inode->io_tree, start, end, NULL);
1634 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1635 
1636 	async_chunk = ctx->chunks;
1637 	atomic_set(&ctx->num_chunks, num_chunks);
1638 
1639 	for (i = 0; i < num_chunks; i++) {
1640 		u64 cur_end = min(end, start + SZ_512K - 1);
1641 
1642 		/*
1643 		 * igrab is called higher up in the call chain, take only the
1644 		 * lightweight reference for the callback lifetime
1645 		 */
1646 		ihold(&inode->vfs_inode);
1647 		async_chunk[i].async_cow = ctx;
1648 		async_chunk[i].inode = inode;
1649 		async_chunk[i].start = start;
1650 		async_chunk[i].end = cur_end;
1651 		async_chunk[i].write_flags = write_flags;
1652 		INIT_LIST_HEAD(&async_chunk[i].extents);
1653 
1654 		/*
1655 		 * The locked_page comes all the way from writepage and its
1656 		 * the original page we were actually given.  As we spread
1657 		 * this large delalloc region across multiple async_chunk
1658 		 * structs, only the first struct needs a pointer to locked_page
1659 		 *
1660 		 * This way we don't need racey decisions about who is supposed
1661 		 * to unlock it.
1662 		 */
1663 		if (locked_page) {
1664 			/*
1665 			 * Depending on the compressibility, the pages might or
1666 			 * might not go through async.  We want all of them to
1667 			 * be accounted against wbc once.  Let's do it here
1668 			 * before the paths diverge.  wbc accounting is used
1669 			 * only for foreign writeback detection and doesn't
1670 			 * need full accuracy.  Just account the whole thing
1671 			 * against the first page.
1672 			 */
1673 			wbc_account_cgroup_owner(wbc, locked_page,
1674 						 cur_end - start);
1675 			async_chunk[i].locked_page = locked_page;
1676 			locked_page = NULL;
1677 		} else {
1678 			async_chunk[i].locked_page = NULL;
1679 		}
1680 
1681 		if (blkcg_css != blkcg_root_css) {
1682 			css_get(blkcg_css);
1683 			async_chunk[i].blkcg_css = blkcg_css;
1684 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1685 		} else {
1686 			async_chunk[i].blkcg_css = NULL;
1687 		}
1688 
1689 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1690 				submit_compressed_extents);
1691 
1692 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1693 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1694 
1695 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1696 
1697 		start = cur_end + 1;
1698 	}
1699 	return true;
1700 }
1701 
1702 /*
1703  * Run the delalloc range from start to end, and write back any dirty pages
1704  * covered by the range.
1705  */
1706 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1707 				     struct page *locked_page, u64 start,
1708 				     u64 end, struct writeback_control *wbc,
1709 				     bool pages_dirty)
1710 {
1711 	u64 done_offset = end;
1712 	int ret;
1713 
1714 	while (start <= end) {
1715 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1716 				     true, false);
1717 		if (ret)
1718 			return ret;
1719 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1720 					  done_offset, wbc, pages_dirty);
1721 		start = done_offset + 1;
1722 	}
1723 
1724 	return 1;
1725 }
1726 
1727 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1728 					u64 bytenr, u64 num_bytes, bool nowait)
1729 {
1730 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1731 	struct btrfs_ordered_sum *sums;
1732 	int ret;
1733 	LIST_HEAD(list);
1734 
1735 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1736 				      &list, 0, nowait);
1737 	if (ret == 0 && list_empty(&list))
1738 		return 0;
1739 
1740 	while (!list_empty(&list)) {
1741 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1742 		list_del(&sums->list);
1743 		kfree(sums);
1744 	}
1745 	if (ret < 0)
1746 		return ret;
1747 	return 1;
1748 }
1749 
1750 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1751 			   const u64 start, const u64 end)
1752 {
1753 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1754 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1755 	const u64 range_bytes = end + 1 - start;
1756 	struct extent_io_tree *io_tree = &inode->io_tree;
1757 	u64 range_start = start;
1758 	u64 count;
1759 	int ret;
1760 
1761 	/*
1762 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1763 	 * made we had not enough available data space and therefore we did not
1764 	 * reserve data space for it, since we though we could do NOCOW for the
1765 	 * respective file range (either there is prealloc extent or the inode
1766 	 * has the NOCOW bit set).
1767 	 *
1768 	 * However when we need to fallback to COW mode (because for example the
1769 	 * block group for the corresponding extent was turned to RO mode by a
1770 	 * scrub or relocation) we need to do the following:
1771 	 *
1772 	 * 1) We increment the bytes_may_use counter of the data space info.
1773 	 *    If COW succeeds, it allocates a new data extent and after doing
1774 	 *    that it decrements the space info's bytes_may_use counter and
1775 	 *    increments its bytes_reserved counter by the same amount (we do
1776 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1777 	 *    bytes_may_use counter to compensate (when space is reserved at
1778 	 *    buffered write time, the bytes_may_use counter is incremented);
1779 	 *
1780 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1781 	 *    that if the COW path fails for any reason, it decrements (through
1782 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1783 	 *    data space info, which we incremented in the step above.
1784 	 *
1785 	 * If we need to fallback to cow and the inode corresponds to a free
1786 	 * space cache inode or an inode of the data relocation tree, we must
1787 	 * also increment bytes_may_use of the data space_info for the same
1788 	 * reason. Space caches and relocated data extents always get a prealloc
1789 	 * extent for them, however scrub or balance may have set the block
1790 	 * group that contains that extent to RO mode and therefore force COW
1791 	 * when starting writeback.
1792 	 */
1793 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1794 				 EXTENT_NORESERVE, 0, NULL);
1795 	if (count > 0 || is_space_ino || is_reloc_ino) {
1796 		u64 bytes = count;
1797 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1798 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1799 
1800 		if (is_space_ino || is_reloc_ino)
1801 			bytes = range_bytes;
1802 
1803 		spin_lock(&sinfo->lock);
1804 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1805 		spin_unlock(&sinfo->lock);
1806 
1807 		if (count > 0)
1808 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1809 					 NULL);
1810 	}
1811 
1812 	/*
1813 	 * Don't try to create inline extents, as a mix of inline extent that
1814 	 * is written out and unlocked directly and a normal NOCOW extent
1815 	 * doesn't work.
1816 	 */
1817 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1818 	ASSERT(ret != 1);
1819 	return ret;
1820 }
1821 
1822 struct can_nocow_file_extent_args {
1823 	/* Input fields. */
1824 
1825 	/* Start file offset of the range we want to NOCOW. */
1826 	u64 start;
1827 	/* End file offset (inclusive) of the range we want to NOCOW. */
1828 	u64 end;
1829 	bool writeback_path;
1830 	bool strict;
1831 	/*
1832 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1833 	 * anymore.
1834 	 */
1835 	bool free_path;
1836 
1837 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1838 
1839 	u64 disk_bytenr;
1840 	u64 disk_num_bytes;
1841 	u64 extent_offset;
1842 	/* Number of bytes that can be written to in NOCOW mode. */
1843 	u64 num_bytes;
1844 };
1845 
1846 /*
1847  * Check if we can NOCOW the file extent that the path points to.
1848  * This function may return with the path released, so the caller should check
1849  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1850  *
1851  * Returns: < 0 on error
1852  *            0 if we can not NOCOW
1853  *            1 if we can NOCOW
1854  */
1855 static int can_nocow_file_extent(struct btrfs_path *path,
1856 				 struct btrfs_key *key,
1857 				 struct btrfs_inode *inode,
1858 				 struct can_nocow_file_extent_args *args)
1859 {
1860 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1861 	struct extent_buffer *leaf = path->nodes[0];
1862 	struct btrfs_root *root = inode->root;
1863 	struct btrfs_file_extent_item *fi;
1864 	u64 extent_end;
1865 	u8 extent_type;
1866 	int can_nocow = 0;
1867 	int ret = 0;
1868 	bool nowait = path->nowait;
1869 
1870 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1871 	extent_type = btrfs_file_extent_type(leaf, fi);
1872 
1873 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1874 		goto out;
1875 
1876 	/* Can't access these fields unless we know it's not an inline extent. */
1877 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1878 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1879 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1880 
1881 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1882 	    extent_type == BTRFS_FILE_EXTENT_REG)
1883 		goto out;
1884 
1885 	/*
1886 	 * If the extent was created before the generation where the last snapshot
1887 	 * for its subvolume was created, then this implies the extent is shared,
1888 	 * hence we must COW.
1889 	 */
1890 	if (!args->strict &&
1891 	    btrfs_file_extent_generation(leaf, fi) <=
1892 	    btrfs_root_last_snapshot(&root->root_item))
1893 		goto out;
1894 
1895 	/* An explicit hole, must COW. */
1896 	if (args->disk_bytenr == 0)
1897 		goto out;
1898 
1899 	/* Compressed/encrypted/encoded extents must be COWed. */
1900 	if (btrfs_file_extent_compression(leaf, fi) ||
1901 	    btrfs_file_extent_encryption(leaf, fi) ||
1902 	    btrfs_file_extent_other_encoding(leaf, fi))
1903 		goto out;
1904 
1905 	extent_end = btrfs_file_extent_end(path);
1906 
1907 	/*
1908 	 * The following checks can be expensive, as they need to take other
1909 	 * locks and do btree or rbtree searches, so release the path to avoid
1910 	 * blocking other tasks for too long.
1911 	 */
1912 	btrfs_release_path(path);
1913 
1914 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1915 				    key->offset - args->extent_offset,
1916 				    args->disk_bytenr, args->strict, path);
1917 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1918 	if (ret != 0)
1919 		goto out;
1920 
1921 	if (args->free_path) {
1922 		/*
1923 		 * We don't need the path anymore, plus through the
1924 		 * csum_exist_in_range() call below we will end up allocating
1925 		 * another path. So free the path to avoid unnecessary extra
1926 		 * memory usage.
1927 		 */
1928 		btrfs_free_path(path);
1929 		path = NULL;
1930 	}
1931 
1932 	/* If there are pending snapshots for this root, we must COW. */
1933 	if (args->writeback_path && !is_freespace_inode &&
1934 	    atomic_read(&root->snapshot_force_cow))
1935 		goto out;
1936 
1937 	args->disk_bytenr += args->extent_offset;
1938 	args->disk_bytenr += args->start - key->offset;
1939 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1940 
1941 	/*
1942 	 * Force COW if csums exist in the range. This ensures that csums for a
1943 	 * given extent are either valid or do not exist.
1944 	 */
1945 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1946 				  nowait);
1947 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1948 	if (ret != 0)
1949 		goto out;
1950 
1951 	can_nocow = 1;
1952  out:
1953 	if (args->free_path && path)
1954 		btrfs_free_path(path);
1955 
1956 	return ret < 0 ? ret : can_nocow;
1957 }
1958 
1959 /*
1960  * when nowcow writeback call back.  This checks for snapshots or COW copies
1961  * of the extents that exist in the file, and COWs the file as required.
1962  *
1963  * If no cow copies or snapshots exist, we write directly to the existing
1964  * blocks on disk
1965  */
1966 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1967 				       struct page *locked_page,
1968 				       const u64 start, const u64 end)
1969 {
1970 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1971 	struct btrfs_root *root = inode->root;
1972 	struct btrfs_path *path;
1973 	u64 cow_start = (u64)-1;
1974 	u64 cur_offset = start;
1975 	int ret;
1976 	bool check_prev = true;
1977 	u64 ino = btrfs_ino(inode);
1978 	struct can_nocow_file_extent_args nocow_args = { 0 };
1979 
1980 	/*
1981 	 * Normally on a zoned device we're only doing COW writes, but in case
1982 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1983 	 * writing sequentially and can end up here as well.
1984 	 */
1985 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1986 
1987 	path = btrfs_alloc_path();
1988 	if (!path) {
1989 		ret = -ENOMEM;
1990 		goto error;
1991 	}
1992 
1993 	nocow_args.end = end;
1994 	nocow_args.writeback_path = true;
1995 
1996 	while (1) {
1997 		struct btrfs_block_group *nocow_bg = NULL;
1998 		struct btrfs_ordered_extent *ordered;
1999 		struct btrfs_key found_key;
2000 		struct btrfs_file_extent_item *fi;
2001 		struct extent_buffer *leaf;
2002 		u64 extent_end;
2003 		u64 ram_bytes;
2004 		u64 nocow_end;
2005 		int extent_type;
2006 		bool is_prealloc;
2007 
2008 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2009 					       cur_offset, 0);
2010 		if (ret < 0)
2011 			goto error;
2012 
2013 		/*
2014 		 * If there is no extent for our range when doing the initial
2015 		 * search, then go back to the previous slot as it will be the
2016 		 * one containing the search offset
2017 		 */
2018 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2019 			leaf = path->nodes[0];
2020 			btrfs_item_key_to_cpu(leaf, &found_key,
2021 					      path->slots[0] - 1);
2022 			if (found_key.objectid == ino &&
2023 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2024 				path->slots[0]--;
2025 		}
2026 		check_prev = false;
2027 next_slot:
2028 		/* Go to next leaf if we have exhausted the current one */
2029 		leaf = path->nodes[0];
2030 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2031 			ret = btrfs_next_leaf(root, path);
2032 			if (ret < 0)
2033 				goto error;
2034 			if (ret > 0)
2035 				break;
2036 			leaf = path->nodes[0];
2037 		}
2038 
2039 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2040 
2041 		/* Didn't find anything for our INO */
2042 		if (found_key.objectid > ino)
2043 			break;
2044 		/*
2045 		 * Keep searching until we find an EXTENT_ITEM or there are no
2046 		 * more extents for this inode
2047 		 */
2048 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2049 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2050 			path->slots[0]++;
2051 			goto next_slot;
2052 		}
2053 
2054 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2055 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2056 		    found_key.offset > end)
2057 			break;
2058 
2059 		/*
2060 		 * If the found extent starts after requested offset, then
2061 		 * adjust extent_end to be right before this extent begins
2062 		 */
2063 		if (found_key.offset > cur_offset) {
2064 			extent_end = found_key.offset;
2065 			extent_type = 0;
2066 			goto must_cow;
2067 		}
2068 
2069 		/*
2070 		 * Found extent which begins before our range and potentially
2071 		 * intersect it
2072 		 */
2073 		fi = btrfs_item_ptr(leaf, path->slots[0],
2074 				    struct btrfs_file_extent_item);
2075 		extent_type = btrfs_file_extent_type(leaf, fi);
2076 		/* If this is triggered then we have a memory corruption. */
2077 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2078 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2079 			ret = -EUCLEAN;
2080 			goto error;
2081 		}
2082 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2083 		extent_end = btrfs_file_extent_end(path);
2084 
2085 		/*
2086 		 * If the extent we got ends before our current offset, skip to
2087 		 * the next extent.
2088 		 */
2089 		if (extent_end <= cur_offset) {
2090 			path->slots[0]++;
2091 			goto next_slot;
2092 		}
2093 
2094 		nocow_args.start = cur_offset;
2095 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2096 		if (ret < 0)
2097 			goto error;
2098 		if (ret == 0)
2099 			goto must_cow;
2100 
2101 		ret = 0;
2102 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2103 		if (!nocow_bg) {
2104 must_cow:
2105 			/*
2106 			 * If we can't perform NOCOW writeback for the range,
2107 			 * then record the beginning of the range that needs to
2108 			 * be COWed.  It will be written out before the next
2109 			 * NOCOW range if we find one, or when exiting this
2110 			 * loop.
2111 			 */
2112 			if (cow_start == (u64)-1)
2113 				cow_start = cur_offset;
2114 			cur_offset = extent_end;
2115 			if (cur_offset > end)
2116 				break;
2117 			if (!path->nodes[0])
2118 				continue;
2119 			path->slots[0]++;
2120 			goto next_slot;
2121 		}
2122 
2123 		/*
2124 		 * COW range from cow_start to found_key.offset - 1. As the key
2125 		 * will contain the beginning of the first extent that can be
2126 		 * NOCOW, following one which needs to be COW'ed
2127 		 */
2128 		if (cow_start != (u64)-1) {
2129 			ret = fallback_to_cow(inode, locked_page,
2130 					      cow_start, found_key.offset - 1);
2131 			cow_start = (u64)-1;
2132 			if (ret) {
2133 				btrfs_dec_nocow_writers(nocow_bg);
2134 				goto error;
2135 			}
2136 		}
2137 
2138 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2139 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2140 		if (is_prealloc) {
2141 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2142 			struct extent_map *em;
2143 
2144 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2145 					  orig_start,
2146 					  nocow_args.disk_bytenr, /* block_start */
2147 					  nocow_args.num_bytes, /* block_len */
2148 					  nocow_args.disk_num_bytes, /* orig_block_len */
2149 					  ram_bytes, BTRFS_COMPRESS_NONE,
2150 					  BTRFS_ORDERED_PREALLOC);
2151 			if (IS_ERR(em)) {
2152 				btrfs_dec_nocow_writers(nocow_bg);
2153 				ret = PTR_ERR(em);
2154 				goto error;
2155 			}
2156 			free_extent_map(em);
2157 		}
2158 
2159 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2160 				nocow_args.num_bytes, nocow_args.num_bytes,
2161 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2162 				is_prealloc
2163 				? (1 << BTRFS_ORDERED_PREALLOC)
2164 				: (1 << BTRFS_ORDERED_NOCOW),
2165 				BTRFS_COMPRESS_NONE);
2166 		btrfs_dec_nocow_writers(nocow_bg);
2167 		if (IS_ERR(ordered)) {
2168 			if (is_prealloc) {
2169 				btrfs_drop_extent_map_range(inode, cur_offset,
2170 							    nocow_end, false);
2171 			}
2172 			ret = PTR_ERR(ordered);
2173 			goto error;
2174 		}
2175 
2176 		if (btrfs_is_data_reloc_root(root))
2177 			/*
2178 			 * Error handled later, as we must prevent
2179 			 * extent_clear_unlock_delalloc() in error handler
2180 			 * from freeing metadata of created ordered extent.
2181 			 */
2182 			ret = btrfs_reloc_clone_csums(ordered);
2183 		btrfs_put_ordered_extent(ordered);
2184 
2185 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2186 					     locked_page, EXTENT_LOCKED |
2187 					     EXTENT_DELALLOC |
2188 					     EXTENT_CLEAR_DATA_RESV,
2189 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2190 
2191 		cur_offset = extent_end;
2192 
2193 		/*
2194 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2195 		 * handler, as metadata for created ordered extent will only
2196 		 * be freed by btrfs_finish_ordered_io().
2197 		 */
2198 		if (ret)
2199 			goto error;
2200 		if (cur_offset > end)
2201 			break;
2202 	}
2203 	btrfs_release_path(path);
2204 
2205 	if (cur_offset <= end && cow_start == (u64)-1)
2206 		cow_start = cur_offset;
2207 
2208 	if (cow_start != (u64)-1) {
2209 		cur_offset = end;
2210 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2211 		cow_start = (u64)-1;
2212 		if (ret)
2213 			goto error;
2214 	}
2215 
2216 	btrfs_free_path(path);
2217 	return 0;
2218 
2219 error:
2220 	/*
2221 	 * If an error happened while a COW region is outstanding, cur_offset
2222 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2223 	 * as well.
2224 	 */
2225 	if (cow_start != (u64)-1)
2226 		cur_offset = cow_start;
2227 	if (cur_offset < end)
2228 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2229 					     locked_page, EXTENT_LOCKED |
2230 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2231 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2232 					     PAGE_START_WRITEBACK |
2233 					     PAGE_END_WRITEBACK);
2234 	btrfs_free_path(path);
2235 	return ret;
2236 }
2237 
2238 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2239 {
2240 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2241 		if (inode->defrag_bytes &&
2242 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2243 			return false;
2244 		return true;
2245 	}
2246 	return false;
2247 }
2248 
2249 /*
2250  * Function to process delayed allocation (create CoW) for ranges which are
2251  * being touched for the first time.
2252  */
2253 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2254 			     u64 start, u64 end, struct writeback_control *wbc)
2255 {
2256 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2257 	int ret;
2258 
2259 	/*
2260 	 * The range must cover part of the @locked_page, or a return of 1
2261 	 * can confuse the caller.
2262 	 */
2263 	ASSERT(!(end <= page_offset(locked_page) ||
2264 		 start >= page_offset(locked_page) + PAGE_SIZE));
2265 
2266 	if (should_nocow(inode, start, end)) {
2267 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2268 		goto out;
2269 	}
2270 
2271 	if (btrfs_inode_can_compress(inode) &&
2272 	    inode_need_compress(inode, start, end) &&
2273 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2274 		return 1;
2275 
2276 	if (zoned)
2277 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2278 				       true);
2279 	else
2280 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2281 				     false, false);
2282 
2283 out:
2284 	if (ret < 0)
2285 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2286 					      end - start + 1);
2287 	return ret;
2288 }
2289 
2290 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2291 				 struct extent_state *orig, u64 split)
2292 {
2293 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2294 	u64 size;
2295 
2296 	/* not delalloc, ignore it */
2297 	if (!(orig->state & EXTENT_DELALLOC))
2298 		return;
2299 
2300 	size = orig->end - orig->start + 1;
2301 	if (size > fs_info->max_extent_size) {
2302 		u32 num_extents;
2303 		u64 new_size;
2304 
2305 		/*
2306 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2307 		 * applies here, just in reverse.
2308 		 */
2309 		new_size = orig->end - split + 1;
2310 		num_extents = count_max_extents(fs_info, new_size);
2311 		new_size = split - orig->start;
2312 		num_extents += count_max_extents(fs_info, new_size);
2313 		if (count_max_extents(fs_info, size) >= num_extents)
2314 			return;
2315 	}
2316 
2317 	spin_lock(&inode->lock);
2318 	btrfs_mod_outstanding_extents(inode, 1);
2319 	spin_unlock(&inode->lock);
2320 }
2321 
2322 /*
2323  * Handle merged delayed allocation extents so we can keep track of new extents
2324  * that are just merged onto old extents, such as when we are doing sequential
2325  * writes, so we can properly account for the metadata space we'll need.
2326  */
2327 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2328 				 struct extent_state *other)
2329 {
2330 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2331 	u64 new_size, old_size;
2332 	u32 num_extents;
2333 
2334 	/* not delalloc, ignore it */
2335 	if (!(other->state & EXTENT_DELALLOC))
2336 		return;
2337 
2338 	if (new->start > other->start)
2339 		new_size = new->end - other->start + 1;
2340 	else
2341 		new_size = other->end - new->start + 1;
2342 
2343 	/* we're not bigger than the max, unreserve the space and go */
2344 	if (new_size <= fs_info->max_extent_size) {
2345 		spin_lock(&inode->lock);
2346 		btrfs_mod_outstanding_extents(inode, -1);
2347 		spin_unlock(&inode->lock);
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * We have to add up either side to figure out how many extents were
2353 	 * accounted for before we merged into one big extent.  If the number of
2354 	 * extents we accounted for is <= the amount we need for the new range
2355 	 * then we can return, otherwise drop.  Think of it like this
2356 	 *
2357 	 * [ 4k][MAX_SIZE]
2358 	 *
2359 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2360 	 * need 2 outstanding extents, on one side we have 1 and the other side
2361 	 * we have 1 so they are == and we can return.  But in this case
2362 	 *
2363 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2364 	 *
2365 	 * Each range on their own accounts for 2 extents, but merged together
2366 	 * they are only 3 extents worth of accounting, so we need to drop in
2367 	 * this case.
2368 	 */
2369 	old_size = other->end - other->start + 1;
2370 	num_extents = count_max_extents(fs_info, old_size);
2371 	old_size = new->end - new->start + 1;
2372 	num_extents += count_max_extents(fs_info, old_size);
2373 	if (count_max_extents(fs_info, new_size) >= num_extents)
2374 		return;
2375 
2376 	spin_lock(&inode->lock);
2377 	btrfs_mod_outstanding_extents(inode, -1);
2378 	spin_unlock(&inode->lock);
2379 }
2380 
2381 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2382 				      struct btrfs_inode *inode)
2383 {
2384 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2385 
2386 	spin_lock(&root->delalloc_lock);
2387 	if (list_empty(&inode->delalloc_inodes)) {
2388 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2389 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2390 		root->nr_delalloc_inodes++;
2391 		if (root->nr_delalloc_inodes == 1) {
2392 			spin_lock(&fs_info->delalloc_root_lock);
2393 			BUG_ON(!list_empty(&root->delalloc_root));
2394 			list_add_tail(&root->delalloc_root,
2395 				      &fs_info->delalloc_roots);
2396 			spin_unlock(&fs_info->delalloc_root_lock);
2397 		}
2398 	}
2399 	spin_unlock(&root->delalloc_lock);
2400 }
2401 
2402 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2403 				struct btrfs_inode *inode)
2404 {
2405 	struct btrfs_fs_info *fs_info = root->fs_info;
2406 
2407 	if (!list_empty(&inode->delalloc_inodes)) {
2408 		list_del_init(&inode->delalloc_inodes);
2409 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2410 			  &inode->runtime_flags);
2411 		root->nr_delalloc_inodes--;
2412 		if (!root->nr_delalloc_inodes) {
2413 			ASSERT(list_empty(&root->delalloc_inodes));
2414 			spin_lock(&fs_info->delalloc_root_lock);
2415 			BUG_ON(list_empty(&root->delalloc_root));
2416 			list_del_init(&root->delalloc_root);
2417 			spin_unlock(&fs_info->delalloc_root_lock);
2418 		}
2419 	}
2420 }
2421 
2422 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2423 				     struct btrfs_inode *inode)
2424 {
2425 	spin_lock(&root->delalloc_lock);
2426 	__btrfs_del_delalloc_inode(root, inode);
2427 	spin_unlock(&root->delalloc_lock);
2428 }
2429 
2430 /*
2431  * Properly track delayed allocation bytes in the inode and to maintain the
2432  * list of inodes that have pending delalloc work to be done.
2433  */
2434 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2435 			       u32 bits)
2436 {
2437 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2438 
2439 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2440 		WARN_ON(1);
2441 	/*
2442 	 * set_bit and clear bit hooks normally require _irqsave/restore
2443 	 * but in this case, we are only testing for the DELALLOC
2444 	 * bit, which is only set or cleared with irqs on
2445 	 */
2446 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2447 		struct btrfs_root *root = inode->root;
2448 		u64 len = state->end + 1 - state->start;
2449 		u32 num_extents = count_max_extents(fs_info, len);
2450 		bool do_list = !btrfs_is_free_space_inode(inode);
2451 
2452 		spin_lock(&inode->lock);
2453 		btrfs_mod_outstanding_extents(inode, num_extents);
2454 		spin_unlock(&inode->lock);
2455 
2456 		/* For sanity tests */
2457 		if (btrfs_is_testing(fs_info))
2458 			return;
2459 
2460 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2461 					 fs_info->delalloc_batch);
2462 		spin_lock(&inode->lock);
2463 		inode->delalloc_bytes += len;
2464 		if (bits & EXTENT_DEFRAG)
2465 			inode->defrag_bytes += len;
2466 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2467 					 &inode->runtime_flags))
2468 			btrfs_add_delalloc_inodes(root, inode);
2469 		spin_unlock(&inode->lock);
2470 	}
2471 
2472 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2473 	    (bits & EXTENT_DELALLOC_NEW)) {
2474 		spin_lock(&inode->lock);
2475 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2476 		spin_unlock(&inode->lock);
2477 	}
2478 }
2479 
2480 /*
2481  * Once a range is no longer delalloc this function ensures that proper
2482  * accounting happens.
2483  */
2484 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2485 				 struct extent_state *state, u32 bits)
2486 {
2487 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2488 	u64 len = state->end + 1 - state->start;
2489 	u32 num_extents = count_max_extents(fs_info, len);
2490 
2491 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2492 		spin_lock(&inode->lock);
2493 		inode->defrag_bytes -= len;
2494 		spin_unlock(&inode->lock);
2495 	}
2496 
2497 	/*
2498 	 * set_bit and clear bit hooks normally require _irqsave/restore
2499 	 * but in this case, we are only testing for the DELALLOC
2500 	 * bit, which is only set or cleared with irqs on
2501 	 */
2502 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2503 		struct btrfs_root *root = inode->root;
2504 		bool do_list = !btrfs_is_free_space_inode(inode);
2505 
2506 		spin_lock(&inode->lock);
2507 		btrfs_mod_outstanding_extents(inode, -num_extents);
2508 		spin_unlock(&inode->lock);
2509 
2510 		/*
2511 		 * We don't reserve metadata space for space cache inodes so we
2512 		 * don't need to call delalloc_release_metadata if there is an
2513 		 * error.
2514 		 */
2515 		if (bits & EXTENT_CLEAR_META_RESV &&
2516 		    root != fs_info->tree_root)
2517 			btrfs_delalloc_release_metadata(inode, len, false);
2518 
2519 		/* For sanity tests. */
2520 		if (btrfs_is_testing(fs_info))
2521 			return;
2522 
2523 		if (!btrfs_is_data_reloc_root(root) &&
2524 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2525 		    (bits & EXTENT_CLEAR_DATA_RESV))
2526 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2527 
2528 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2529 					 fs_info->delalloc_batch);
2530 		spin_lock(&inode->lock);
2531 		inode->delalloc_bytes -= len;
2532 		if (do_list && inode->delalloc_bytes == 0 &&
2533 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2534 					&inode->runtime_flags))
2535 			btrfs_del_delalloc_inode(root, inode);
2536 		spin_unlock(&inode->lock);
2537 	}
2538 
2539 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2540 	    (bits & EXTENT_DELALLOC_NEW)) {
2541 		spin_lock(&inode->lock);
2542 		ASSERT(inode->new_delalloc_bytes >= len);
2543 		inode->new_delalloc_bytes -= len;
2544 		if (bits & EXTENT_ADD_INODE_BYTES)
2545 			inode_add_bytes(&inode->vfs_inode, len);
2546 		spin_unlock(&inode->lock);
2547 	}
2548 }
2549 
2550 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2551 					struct btrfs_ordered_extent *ordered)
2552 {
2553 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2554 	u64 len = bbio->bio.bi_iter.bi_size;
2555 	struct btrfs_ordered_extent *new;
2556 	int ret;
2557 
2558 	/* Must always be called for the beginning of an ordered extent. */
2559 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2560 		return -EINVAL;
2561 
2562 	/* No need to split if the ordered extent covers the entire bio. */
2563 	if (ordered->disk_num_bytes == len) {
2564 		refcount_inc(&ordered->refs);
2565 		bbio->ordered = ordered;
2566 		return 0;
2567 	}
2568 
2569 	/*
2570 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2571 	 * a pre-existing one.
2572 	 */
2573 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2574 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2575 				       ordered->num_bytes, len,
2576 				       ordered->disk_bytenr);
2577 		if (ret)
2578 			return ret;
2579 	}
2580 
2581 	new = btrfs_split_ordered_extent(ordered, len);
2582 	if (IS_ERR(new))
2583 		return PTR_ERR(new);
2584 	bbio->ordered = new;
2585 	return 0;
2586 }
2587 
2588 /*
2589  * given a list of ordered sums record them in the inode.  This happens
2590  * at IO completion time based on sums calculated at bio submission time.
2591  */
2592 static int add_pending_csums(struct btrfs_trans_handle *trans,
2593 			     struct list_head *list)
2594 {
2595 	struct btrfs_ordered_sum *sum;
2596 	struct btrfs_root *csum_root = NULL;
2597 	int ret;
2598 
2599 	list_for_each_entry(sum, list, list) {
2600 		trans->adding_csums = true;
2601 		if (!csum_root)
2602 			csum_root = btrfs_csum_root(trans->fs_info,
2603 						    sum->logical);
2604 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2605 		trans->adding_csums = false;
2606 		if (ret)
2607 			return ret;
2608 	}
2609 	return 0;
2610 }
2611 
2612 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2613 					 const u64 start,
2614 					 const u64 len,
2615 					 struct extent_state **cached_state)
2616 {
2617 	u64 search_start = start;
2618 	const u64 end = start + len - 1;
2619 
2620 	while (search_start < end) {
2621 		const u64 search_len = end - search_start + 1;
2622 		struct extent_map *em;
2623 		u64 em_len;
2624 		int ret = 0;
2625 
2626 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2627 		if (IS_ERR(em))
2628 			return PTR_ERR(em);
2629 
2630 		if (em->block_start != EXTENT_MAP_HOLE)
2631 			goto next;
2632 
2633 		em_len = em->len;
2634 		if (em->start < search_start)
2635 			em_len -= search_start - em->start;
2636 		if (em_len > search_len)
2637 			em_len = search_len;
2638 
2639 		ret = set_extent_bit(&inode->io_tree, search_start,
2640 				     search_start + em_len - 1,
2641 				     EXTENT_DELALLOC_NEW, cached_state);
2642 next:
2643 		search_start = extent_map_end(em);
2644 		free_extent_map(em);
2645 		if (ret)
2646 			return ret;
2647 	}
2648 	return 0;
2649 }
2650 
2651 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2652 			      unsigned int extra_bits,
2653 			      struct extent_state **cached_state)
2654 {
2655 	WARN_ON(PAGE_ALIGNED(end));
2656 
2657 	if (start >= i_size_read(&inode->vfs_inode) &&
2658 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2659 		/*
2660 		 * There can't be any extents following eof in this case so just
2661 		 * set the delalloc new bit for the range directly.
2662 		 */
2663 		extra_bits |= EXTENT_DELALLOC_NEW;
2664 	} else {
2665 		int ret;
2666 
2667 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2668 						    end + 1 - start,
2669 						    cached_state);
2670 		if (ret)
2671 			return ret;
2672 	}
2673 
2674 	return set_extent_bit(&inode->io_tree, start, end,
2675 			      EXTENT_DELALLOC | extra_bits, cached_state);
2676 }
2677 
2678 /* see btrfs_writepage_start_hook for details on why this is required */
2679 struct btrfs_writepage_fixup {
2680 	struct page *page;
2681 	struct btrfs_inode *inode;
2682 	struct btrfs_work work;
2683 };
2684 
2685 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2686 {
2687 	struct btrfs_writepage_fixup *fixup =
2688 		container_of(work, struct btrfs_writepage_fixup, work);
2689 	struct btrfs_ordered_extent *ordered;
2690 	struct extent_state *cached_state = NULL;
2691 	struct extent_changeset *data_reserved = NULL;
2692 	struct page *page = fixup->page;
2693 	struct btrfs_inode *inode = fixup->inode;
2694 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2695 	u64 page_start = page_offset(page);
2696 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2697 	int ret = 0;
2698 	bool free_delalloc_space = true;
2699 
2700 	/*
2701 	 * This is similar to page_mkwrite, we need to reserve the space before
2702 	 * we take the page lock.
2703 	 */
2704 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2705 					   PAGE_SIZE);
2706 again:
2707 	lock_page(page);
2708 
2709 	/*
2710 	 * Before we queued this fixup, we took a reference on the page.
2711 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2712 	 * address space.
2713 	 */
2714 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2715 		/*
2716 		 * Unfortunately this is a little tricky, either
2717 		 *
2718 		 * 1) We got here and our page had already been dealt with and
2719 		 *    we reserved our space, thus ret == 0, so we need to just
2720 		 *    drop our space reservation and bail.  This can happen the
2721 		 *    first time we come into the fixup worker, or could happen
2722 		 *    while waiting for the ordered extent.
2723 		 * 2) Our page was already dealt with, but we happened to get an
2724 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2725 		 *    this case we obviously don't have anything to release, but
2726 		 *    because the page was already dealt with we don't want to
2727 		 *    mark the page with an error, so make sure we're resetting
2728 		 *    ret to 0.  This is why we have this check _before_ the ret
2729 		 *    check, because we do not want to have a surprise ENOSPC
2730 		 *    when the page was already properly dealt with.
2731 		 */
2732 		if (!ret) {
2733 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2734 			btrfs_delalloc_release_space(inode, data_reserved,
2735 						     page_start, PAGE_SIZE,
2736 						     true);
2737 		}
2738 		ret = 0;
2739 		goto out_page;
2740 	}
2741 
2742 	/*
2743 	 * We can't mess with the page state unless it is locked, so now that
2744 	 * it is locked bail if we failed to make our space reservation.
2745 	 */
2746 	if (ret)
2747 		goto out_page;
2748 
2749 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2750 
2751 	/* already ordered? We're done */
2752 	if (PageOrdered(page))
2753 		goto out_reserved;
2754 
2755 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2756 	if (ordered) {
2757 		unlock_extent(&inode->io_tree, page_start, page_end,
2758 			      &cached_state);
2759 		unlock_page(page);
2760 		btrfs_start_ordered_extent(ordered);
2761 		btrfs_put_ordered_extent(ordered);
2762 		goto again;
2763 	}
2764 
2765 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2766 					&cached_state);
2767 	if (ret)
2768 		goto out_reserved;
2769 
2770 	/*
2771 	 * Everything went as planned, we're now the owner of a dirty page with
2772 	 * delayed allocation bits set and space reserved for our COW
2773 	 * destination.
2774 	 *
2775 	 * The page was dirty when we started, nothing should have cleaned it.
2776 	 */
2777 	BUG_ON(!PageDirty(page));
2778 	free_delalloc_space = false;
2779 out_reserved:
2780 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2781 	if (free_delalloc_space)
2782 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2783 					     PAGE_SIZE, true);
2784 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2785 out_page:
2786 	if (ret) {
2787 		/*
2788 		 * We hit ENOSPC or other errors.  Update the mapping and page
2789 		 * to reflect the errors and clean the page.
2790 		 */
2791 		mapping_set_error(page->mapping, ret);
2792 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2793 					       PAGE_SIZE, !ret);
2794 		clear_page_dirty_for_io(page);
2795 	}
2796 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2797 	unlock_page(page);
2798 	put_page(page);
2799 	kfree(fixup);
2800 	extent_changeset_free(data_reserved);
2801 	/*
2802 	 * As a precaution, do a delayed iput in case it would be the last iput
2803 	 * that could need flushing space. Recursing back to fixup worker would
2804 	 * deadlock.
2805 	 */
2806 	btrfs_add_delayed_iput(inode);
2807 }
2808 
2809 /*
2810  * There are a few paths in the higher layers of the kernel that directly
2811  * set the page dirty bit without asking the filesystem if it is a
2812  * good idea.  This causes problems because we want to make sure COW
2813  * properly happens and the data=ordered rules are followed.
2814  *
2815  * In our case any range that doesn't have the ORDERED bit set
2816  * hasn't been properly setup for IO.  We kick off an async process
2817  * to fix it up.  The async helper will wait for ordered extents, set
2818  * the delalloc bit and make it safe to write the page.
2819  */
2820 int btrfs_writepage_cow_fixup(struct page *page)
2821 {
2822 	struct inode *inode = page->mapping->host;
2823 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2824 	struct btrfs_writepage_fixup *fixup;
2825 
2826 	/* This page has ordered extent covering it already */
2827 	if (PageOrdered(page))
2828 		return 0;
2829 
2830 	/*
2831 	 * PageChecked is set below when we create a fixup worker for this page,
2832 	 * don't try to create another one if we're already PageChecked()
2833 	 *
2834 	 * The extent_io writepage code will redirty the page if we send back
2835 	 * EAGAIN.
2836 	 */
2837 	if (PageChecked(page))
2838 		return -EAGAIN;
2839 
2840 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2841 	if (!fixup)
2842 		return -EAGAIN;
2843 
2844 	/*
2845 	 * We are already holding a reference to this inode from
2846 	 * write_cache_pages.  We need to hold it because the space reservation
2847 	 * takes place outside of the page lock, and we can't trust
2848 	 * page->mapping outside of the page lock.
2849 	 */
2850 	ihold(inode);
2851 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2852 	get_page(page);
2853 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2854 	fixup->page = page;
2855 	fixup->inode = BTRFS_I(inode);
2856 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2857 
2858 	return -EAGAIN;
2859 }
2860 
2861 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2862 				       struct btrfs_inode *inode, u64 file_pos,
2863 				       struct btrfs_file_extent_item *stack_fi,
2864 				       const bool update_inode_bytes,
2865 				       u64 qgroup_reserved)
2866 {
2867 	struct btrfs_root *root = inode->root;
2868 	const u64 sectorsize = root->fs_info->sectorsize;
2869 	struct btrfs_path *path;
2870 	struct extent_buffer *leaf;
2871 	struct btrfs_key ins;
2872 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2873 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2874 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2875 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2876 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2877 	struct btrfs_drop_extents_args drop_args = { 0 };
2878 	int ret;
2879 
2880 	path = btrfs_alloc_path();
2881 	if (!path)
2882 		return -ENOMEM;
2883 
2884 	/*
2885 	 * we may be replacing one extent in the tree with another.
2886 	 * The new extent is pinned in the extent map, and we don't want
2887 	 * to drop it from the cache until it is completely in the btree.
2888 	 *
2889 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2890 	 * the caller is expected to unpin it and allow it to be merged
2891 	 * with the others.
2892 	 */
2893 	drop_args.path = path;
2894 	drop_args.start = file_pos;
2895 	drop_args.end = file_pos + num_bytes;
2896 	drop_args.replace_extent = true;
2897 	drop_args.extent_item_size = sizeof(*stack_fi);
2898 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2899 	if (ret)
2900 		goto out;
2901 
2902 	if (!drop_args.extent_inserted) {
2903 		ins.objectid = btrfs_ino(inode);
2904 		ins.offset = file_pos;
2905 		ins.type = BTRFS_EXTENT_DATA_KEY;
2906 
2907 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2908 					      sizeof(*stack_fi));
2909 		if (ret)
2910 			goto out;
2911 	}
2912 	leaf = path->nodes[0];
2913 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2914 	write_extent_buffer(leaf, stack_fi,
2915 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2916 			sizeof(struct btrfs_file_extent_item));
2917 
2918 	btrfs_mark_buffer_dirty(trans, leaf);
2919 	btrfs_release_path(path);
2920 
2921 	/*
2922 	 * If we dropped an inline extent here, we know the range where it is
2923 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2924 	 * number of bytes only for that range containing the inline extent.
2925 	 * The remaining of the range will be processed when clearning the
2926 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2927 	 */
2928 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2929 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2930 
2931 		inline_size = drop_args.bytes_found - inline_size;
2932 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2933 		drop_args.bytes_found -= inline_size;
2934 		num_bytes -= sectorsize;
2935 	}
2936 
2937 	if (update_inode_bytes)
2938 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2939 
2940 	ins.objectid = disk_bytenr;
2941 	ins.offset = disk_num_bytes;
2942 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2943 
2944 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2945 	if (ret)
2946 		goto out;
2947 
2948 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2949 					       file_pos - offset,
2950 					       qgroup_reserved, &ins);
2951 out:
2952 	btrfs_free_path(path);
2953 
2954 	return ret;
2955 }
2956 
2957 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2958 					 u64 start, u64 len)
2959 {
2960 	struct btrfs_block_group *cache;
2961 
2962 	cache = btrfs_lookup_block_group(fs_info, start);
2963 	ASSERT(cache);
2964 
2965 	spin_lock(&cache->lock);
2966 	cache->delalloc_bytes -= len;
2967 	spin_unlock(&cache->lock);
2968 
2969 	btrfs_put_block_group(cache);
2970 }
2971 
2972 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2973 					     struct btrfs_ordered_extent *oe)
2974 {
2975 	struct btrfs_file_extent_item stack_fi;
2976 	bool update_inode_bytes;
2977 	u64 num_bytes = oe->num_bytes;
2978 	u64 ram_bytes = oe->ram_bytes;
2979 
2980 	memset(&stack_fi, 0, sizeof(stack_fi));
2981 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2982 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2983 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2984 						   oe->disk_num_bytes);
2985 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2986 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2987 		num_bytes = oe->truncated_len;
2988 		ram_bytes = num_bytes;
2989 	}
2990 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2991 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2992 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2993 	/* Encryption and other encoding is reserved and all 0 */
2994 
2995 	/*
2996 	 * For delalloc, when completing an ordered extent we update the inode's
2997 	 * bytes when clearing the range in the inode's io tree, so pass false
2998 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2999 	 * except if the ordered extent was truncated.
3000 	 */
3001 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3002 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3003 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3004 
3005 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3006 					   oe->file_offset, &stack_fi,
3007 					   update_inode_bytes, oe->qgroup_rsv);
3008 }
3009 
3010 /*
3011  * As ordered data IO finishes, this gets called so we can finish
3012  * an ordered extent if the range of bytes in the file it covers are
3013  * fully written.
3014  */
3015 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3016 {
3017 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3018 	struct btrfs_root *root = inode->root;
3019 	struct btrfs_fs_info *fs_info = root->fs_info;
3020 	struct btrfs_trans_handle *trans = NULL;
3021 	struct extent_io_tree *io_tree = &inode->io_tree;
3022 	struct extent_state *cached_state = NULL;
3023 	u64 start, end;
3024 	int compress_type = 0;
3025 	int ret = 0;
3026 	u64 logical_len = ordered_extent->num_bytes;
3027 	bool freespace_inode;
3028 	bool truncated = false;
3029 	bool clear_reserved_extent = true;
3030 	unsigned int clear_bits = EXTENT_DEFRAG;
3031 
3032 	start = ordered_extent->file_offset;
3033 	end = start + ordered_extent->num_bytes - 1;
3034 
3035 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3036 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3038 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3039 		clear_bits |= EXTENT_DELALLOC_NEW;
3040 
3041 	freespace_inode = btrfs_is_free_space_inode(inode);
3042 	if (!freespace_inode)
3043 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3044 
3045 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3046 		ret = -EIO;
3047 		goto out;
3048 	}
3049 
3050 	if (btrfs_is_zoned(fs_info))
3051 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3052 					ordered_extent->disk_num_bytes);
3053 
3054 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3055 		truncated = true;
3056 		logical_len = ordered_extent->truncated_len;
3057 		/* Truncated the entire extent, don't bother adding */
3058 		if (!logical_len)
3059 			goto out;
3060 	}
3061 
3062 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3063 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3064 
3065 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3066 		if (freespace_inode)
3067 			trans = btrfs_join_transaction_spacecache(root);
3068 		else
3069 			trans = btrfs_join_transaction(root);
3070 		if (IS_ERR(trans)) {
3071 			ret = PTR_ERR(trans);
3072 			trans = NULL;
3073 			goto out;
3074 		}
3075 		trans->block_rsv = &inode->block_rsv;
3076 		ret = btrfs_update_inode_fallback(trans, inode);
3077 		if (ret) /* -ENOMEM or corruption */
3078 			btrfs_abort_transaction(trans, ret);
3079 		goto out;
3080 	}
3081 
3082 	clear_bits |= EXTENT_LOCKED;
3083 	lock_extent(io_tree, start, end, &cached_state);
3084 
3085 	if (freespace_inode)
3086 		trans = btrfs_join_transaction_spacecache(root);
3087 	else
3088 		trans = btrfs_join_transaction(root);
3089 	if (IS_ERR(trans)) {
3090 		ret = PTR_ERR(trans);
3091 		trans = NULL;
3092 		goto out;
3093 	}
3094 
3095 	trans->block_rsv = &inode->block_rsv;
3096 
3097 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3098 	if (ret)
3099 		goto out;
3100 
3101 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3102 		compress_type = ordered_extent->compress_type;
3103 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3104 		BUG_ON(compress_type);
3105 		ret = btrfs_mark_extent_written(trans, inode,
3106 						ordered_extent->file_offset,
3107 						ordered_extent->file_offset +
3108 						logical_len);
3109 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3110 						  ordered_extent->disk_num_bytes);
3111 	} else {
3112 		BUG_ON(root == fs_info->tree_root);
3113 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3114 		if (!ret) {
3115 			clear_reserved_extent = false;
3116 			btrfs_release_delalloc_bytes(fs_info,
3117 						ordered_extent->disk_bytenr,
3118 						ordered_extent->disk_num_bytes);
3119 		}
3120 	}
3121 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3122 			   ordered_extent->num_bytes, trans->transid);
3123 	if (ret < 0) {
3124 		btrfs_abort_transaction(trans, ret);
3125 		goto out;
3126 	}
3127 
3128 	ret = add_pending_csums(trans, &ordered_extent->list);
3129 	if (ret) {
3130 		btrfs_abort_transaction(trans, ret);
3131 		goto out;
3132 	}
3133 
3134 	/*
3135 	 * If this is a new delalloc range, clear its new delalloc flag to
3136 	 * update the inode's number of bytes. This needs to be done first
3137 	 * before updating the inode item.
3138 	 */
3139 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3140 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3141 		clear_extent_bit(&inode->io_tree, start, end,
3142 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3143 				 &cached_state);
3144 
3145 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3146 	ret = btrfs_update_inode_fallback(trans, inode);
3147 	if (ret) { /* -ENOMEM or corruption */
3148 		btrfs_abort_transaction(trans, ret);
3149 		goto out;
3150 	}
3151 	ret = 0;
3152 out:
3153 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3154 			 &cached_state);
3155 
3156 	if (trans)
3157 		btrfs_end_transaction(trans);
3158 
3159 	if (ret || truncated) {
3160 		u64 unwritten_start = start;
3161 
3162 		/*
3163 		 * If we failed to finish this ordered extent for any reason we
3164 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3165 		 * extent, and mark the inode with the error if it wasn't
3166 		 * already set.  Any error during writeback would have already
3167 		 * set the mapping error, so we need to set it if we're the ones
3168 		 * marking this ordered extent as failed.
3169 		 */
3170 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3171 					     &ordered_extent->flags))
3172 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3173 
3174 		if (truncated)
3175 			unwritten_start += logical_len;
3176 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3177 
3178 		/* Drop extent maps for the part of the extent we didn't write. */
3179 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3180 
3181 		/*
3182 		 * If the ordered extent had an IOERR or something else went
3183 		 * wrong we need to return the space for this ordered extent
3184 		 * back to the allocator.  We only free the extent in the
3185 		 * truncated case if we didn't write out the extent at all.
3186 		 *
3187 		 * If we made it past insert_reserved_file_extent before we
3188 		 * errored out then we don't need to do this as the accounting
3189 		 * has already been done.
3190 		 */
3191 		if ((ret || !logical_len) &&
3192 		    clear_reserved_extent &&
3193 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3194 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3195 			/*
3196 			 * Discard the range before returning it back to the
3197 			 * free space pool
3198 			 */
3199 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3200 				btrfs_discard_extent(fs_info,
3201 						ordered_extent->disk_bytenr,
3202 						ordered_extent->disk_num_bytes,
3203 						NULL);
3204 			btrfs_free_reserved_extent(fs_info,
3205 					ordered_extent->disk_bytenr,
3206 					ordered_extent->disk_num_bytes, 1);
3207 			/*
3208 			 * Actually free the qgroup rsv which was released when
3209 			 * the ordered extent was created.
3210 			 */
3211 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3212 						  ordered_extent->qgroup_rsv,
3213 						  BTRFS_QGROUP_RSV_DATA);
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * This needs to be done to make sure anybody waiting knows we are done
3219 	 * updating everything for this ordered extent.
3220 	 */
3221 	btrfs_remove_ordered_extent(inode, ordered_extent);
3222 
3223 	/* once for us */
3224 	btrfs_put_ordered_extent(ordered_extent);
3225 	/* once for the tree */
3226 	btrfs_put_ordered_extent(ordered_extent);
3227 
3228 	return ret;
3229 }
3230 
3231 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3232 {
3233 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3234 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3235 	    list_empty(&ordered->bioc_list))
3236 		btrfs_finish_ordered_zoned(ordered);
3237 	return btrfs_finish_one_ordered(ordered);
3238 }
3239 
3240 /*
3241  * Verify the checksum for a single sector without any extra action that depend
3242  * on the type of I/O.
3243  */
3244 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3245 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3246 {
3247 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3248 	char *kaddr;
3249 
3250 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3251 
3252 	shash->tfm = fs_info->csum_shash;
3253 
3254 	kaddr = kmap_local_page(page) + pgoff;
3255 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3256 	kunmap_local(kaddr);
3257 
3258 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3259 		return -EIO;
3260 	return 0;
3261 }
3262 
3263 /*
3264  * Verify the checksum of a single data sector.
3265  *
3266  * @bbio:	btrfs_io_bio which contains the csum
3267  * @dev:	device the sector is on
3268  * @bio_offset:	offset to the beginning of the bio (in bytes)
3269  * @bv:		bio_vec to check
3270  *
3271  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3272  * detected, report the error and fill the corrupted range with zero.
3273  *
3274  * Return %true if the sector is ok or had no checksum to start with, else %false.
3275  */
3276 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3277 			u32 bio_offset, struct bio_vec *bv)
3278 {
3279 	struct btrfs_inode *inode = bbio->inode;
3280 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3281 	u64 file_offset = bbio->file_offset + bio_offset;
3282 	u64 end = file_offset + bv->bv_len - 1;
3283 	u8 *csum_expected;
3284 	u8 csum[BTRFS_CSUM_SIZE];
3285 
3286 	ASSERT(bv->bv_len == fs_info->sectorsize);
3287 
3288 	if (!bbio->csum)
3289 		return true;
3290 
3291 	if (btrfs_is_data_reloc_root(inode->root) &&
3292 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3293 			   NULL)) {
3294 		/* Skip the range without csum for data reloc inode */
3295 		clear_extent_bits(&inode->io_tree, file_offset, end,
3296 				  EXTENT_NODATASUM);
3297 		return true;
3298 	}
3299 
3300 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3301 				fs_info->csum_size;
3302 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3303 				    csum_expected))
3304 		goto zeroit;
3305 	return true;
3306 
3307 zeroit:
3308 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3309 				    bbio->mirror_num);
3310 	if (dev)
3311 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3312 	memzero_bvec(bv);
3313 	return false;
3314 }
3315 
3316 /*
3317  * Perform a delayed iput on @inode.
3318  *
3319  * @inode: The inode we want to perform iput on
3320  *
3321  * This function uses the generic vfs_inode::i_count to track whether we should
3322  * just decrement it (in case it's > 1) or if this is the last iput then link
3323  * the inode to the delayed iput machinery. Delayed iputs are processed at
3324  * transaction commit time/superblock commit/cleaner kthread.
3325  */
3326 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3327 {
3328 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3329 	unsigned long flags;
3330 
3331 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3332 		return;
3333 
3334 	atomic_inc(&fs_info->nr_delayed_iputs);
3335 	/*
3336 	 * Need to be irq safe here because we can be called from either an irq
3337 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3338 	 * context.
3339 	 */
3340 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3341 	ASSERT(list_empty(&inode->delayed_iput));
3342 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3343 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3344 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3345 		wake_up_process(fs_info->cleaner_kthread);
3346 }
3347 
3348 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3349 				    struct btrfs_inode *inode)
3350 {
3351 	list_del_init(&inode->delayed_iput);
3352 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3353 	iput(&inode->vfs_inode);
3354 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3355 		wake_up(&fs_info->delayed_iputs_wait);
3356 	spin_lock_irq(&fs_info->delayed_iput_lock);
3357 }
3358 
3359 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3360 				   struct btrfs_inode *inode)
3361 {
3362 	if (!list_empty(&inode->delayed_iput)) {
3363 		spin_lock_irq(&fs_info->delayed_iput_lock);
3364 		if (!list_empty(&inode->delayed_iput))
3365 			run_delayed_iput_locked(fs_info, inode);
3366 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3367 	}
3368 }
3369 
3370 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3371 {
3372 	/*
3373 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3374 	 * calls btrfs_add_delayed_iput() and that needs to lock
3375 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3376 	 * prevent a deadlock.
3377 	 */
3378 	spin_lock_irq(&fs_info->delayed_iput_lock);
3379 	while (!list_empty(&fs_info->delayed_iputs)) {
3380 		struct btrfs_inode *inode;
3381 
3382 		inode = list_first_entry(&fs_info->delayed_iputs,
3383 				struct btrfs_inode, delayed_iput);
3384 		run_delayed_iput_locked(fs_info, inode);
3385 		if (need_resched()) {
3386 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3387 			cond_resched();
3388 			spin_lock_irq(&fs_info->delayed_iput_lock);
3389 		}
3390 	}
3391 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3392 }
3393 
3394 /*
3395  * Wait for flushing all delayed iputs
3396  *
3397  * @fs_info:  the filesystem
3398  *
3399  * This will wait on any delayed iputs that are currently running with KILLABLE
3400  * set.  Once they are all done running we will return, unless we are killed in
3401  * which case we return EINTR. This helps in user operations like fallocate etc
3402  * that might get blocked on the iputs.
3403  *
3404  * Return EINTR if we were killed, 0 if nothing's pending
3405  */
3406 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3407 {
3408 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3409 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3410 	if (ret)
3411 		return -EINTR;
3412 	return 0;
3413 }
3414 
3415 /*
3416  * This creates an orphan entry for the given inode in case something goes wrong
3417  * in the middle of an unlink.
3418  */
3419 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3420 		     struct btrfs_inode *inode)
3421 {
3422 	int ret;
3423 
3424 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3425 	if (ret && ret != -EEXIST) {
3426 		btrfs_abort_transaction(trans, ret);
3427 		return ret;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 /*
3434  * We have done the delete so we can go ahead and remove the orphan item for
3435  * this particular inode.
3436  */
3437 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3438 			    struct btrfs_inode *inode)
3439 {
3440 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3441 }
3442 
3443 /*
3444  * this cleans up any orphans that may be left on the list from the last use
3445  * of this root.
3446  */
3447 int btrfs_orphan_cleanup(struct btrfs_root *root)
3448 {
3449 	struct btrfs_fs_info *fs_info = root->fs_info;
3450 	struct btrfs_path *path;
3451 	struct extent_buffer *leaf;
3452 	struct btrfs_key key, found_key;
3453 	struct btrfs_trans_handle *trans;
3454 	struct inode *inode;
3455 	u64 last_objectid = 0;
3456 	int ret = 0, nr_unlink = 0;
3457 
3458 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3459 		return 0;
3460 
3461 	path = btrfs_alloc_path();
3462 	if (!path) {
3463 		ret = -ENOMEM;
3464 		goto out;
3465 	}
3466 	path->reada = READA_BACK;
3467 
3468 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3469 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3470 	key.offset = (u64)-1;
3471 
3472 	while (1) {
3473 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3474 		if (ret < 0)
3475 			goto out;
3476 
3477 		/*
3478 		 * if ret == 0 means we found what we were searching for, which
3479 		 * is weird, but possible, so only screw with path if we didn't
3480 		 * find the key and see if we have stuff that matches
3481 		 */
3482 		if (ret > 0) {
3483 			ret = 0;
3484 			if (path->slots[0] == 0)
3485 				break;
3486 			path->slots[0]--;
3487 		}
3488 
3489 		/* pull out the item */
3490 		leaf = path->nodes[0];
3491 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3492 
3493 		/* make sure the item matches what we want */
3494 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3495 			break;
3496 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3497 			break;
3498 
3499 		/* release the path since we're done with it */
3500 		btrfs_release_path(path);
3501 
3502 		/*
3503 		 * this is where we are basically btrfs_lookup, without the
3504 		 * crossing root thing.  we store the inode number in the
3505 		 * offset of the orphan item.
3506 		 */
3507 
3508 		if (found_key.offset == last_objectid) {
3509 			/*
3510 			 * We found the same inode as before. This means we were
3511 			 * not able to remove its items via eviction triggered
3512 			 * by an iput(). A transaction abort may have happened,
3513 			 * due to -ENOSPC for example, so try to grab the error
3514 			 * that lead to a transaction abort, if any.
3515 			 */
3516 			btrfs_err(fs_info,
3517 				  "Error removing orphan entry, stopping orphan cleanup");
3518 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3519 			goto out;
3520 		}
3521 
3522 		last_objectid = found_key.offset;
3523 
3524 		found_key.objectid = found_key.offset;
3525 		found_key.type = BTRFS_INODE_ITEM_KEY;
3526 		found_key.offset = 0;
3527 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3528 		if (IS_ERR(inode)) {
3529 			ret = PTR_ERR(inode);
3530 			inode = NULL;
3531 			if (ret != -ENOENT)
3532 				goto out;
3533 		}
3534 
3535 		if (!inode && root == fs_info->tree_root) {
3536 			struct btrfs_root *dead_root;
3537 			int is_dead_root = 0;
3538 
3539 			/*
3540 			 * This is an orphan in the tree root. Currently these
3541 			 * could come from 2 sources:
3542 			 *  a) a root (snapshot/subvolume) deletion in progress
3543 			 *  b) a free space cache inode
3544 			 * We need to distinguish those two, as the orphan item
3545 			 * for a root must not get deleted before the deletion
3546 			 * of the snapshot/subvolume's tree completes.
3547 			 *
3548 			 * btrfs_find_orphan_roots() ran before us, which has
3549 			 * found all deleted roots and loaded them into
3550 			 * fs_info->fs_roots_radix. So here we can find if an
3551 			 * orphan item corresponds to a deleted root by looking
3552 			 * up the root from that radix tree.
3553 			 */
3554 
3555 			spin_lock(&fs_info->fs_roots_radix_lock);
3556 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3557 							 (unsigned long)found_key.objectid);
3558 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3559 				is_dead_root = 1;
3560 			spin_unlock(&fs_info->fs_roots_radix_lock);
3561 
3562 			if (is_dead_root) {
3563 				/* prevent this orphan from being found again */
3564 				key.offset = found_key.objectid - 1;
3565 				continue;
3566 			}
3567 
3568 		}
3569 
3570 		/*
3571 		 * If we have an inode with links, there are a couple of
3572 		 * possibilities:
3573 		 *
3574 		 * 1. We were halfway through creating fsverity metadata for the
3575 		 * file. In that case, the orphan item represents incomplete
3576 		 * fsverity metadata which must be cleaned up with
3577 		 * btrfs_drop_verity_items and deleting the orphan item.
3578 
3579 		 * 2. Old kernels (before v3.12) used to create an
3580 		 * orphan item for truncate indicating that there were possibly
3581 		 * extent items past i_size that needed to be deleted. In v3.12,
3582 		 * truncate was changed to update i_size in sync with the extent
3583 		 * items, but the (useless) orphan item was still created. Since
3584 		 * v4.18, we don't create the orphan item for truncate at all.
3585 		 *
3586 		 * So, this item could mean that we need to do a truncate, but
3587 		 * only if this filesystem was last used on a pre-v3.12 kernel
3588 		 * and was not cleanly unmounted. The odds of that are quite
3589 		 * slim, and it's a pain to do the truncate now, so just delete
3590 		 * the orphan item.
3591 		 *
3592 		 * It's also possible that this orphan item was supposed to be
3593 		 * deleted but wasn't. The inode number may have been reused,
3594 		 * but either way, we can delete the orphan item.
3595 		 */
3596 		if (!inode || inode->i_nlink) {
3597 			if (inode) {
3598 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3599 				iput(inode);
3600 				inode = NULL;
3601 				if (ret)
3602 					goto out;
3603 			}
3604 			trans = btrfs_start_transaction(root, 1);
3605 			if (IS_ERR(trans)) {
3606 				ret = PTR_ERR(trans);
3607 				goto out;
3608 			}
3609 			btrfs_debug(fs_info, "auto deleting %Lu",
3610 				    found_key.objectid);
3611 			ret = btrfs_del_orphan_item(trans, root,
3612 						    found_key.objectid);
3613 			btrfs_end_transaction(trans);
3614 			if (ret)
3615 				goto out;
3616 			continue;
3617 		}
3618 
3619 		nr_unlink++;
3620 
3621 		/* this will do delete_inode and everything for us */
3622 		iput(inode);
3623 	}
3624 	/* release the path since we're done with it */
3625 	btrfs_release_path(path);
3626 
3627 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3628 		trans = btrfs_join_transaction(root);
3629 		if (!IS_ERR(trans))
3630 			btrfs_end_transaction(trans);
3631 	}
3632 
3633 	if (nr_unlink)
3634 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3635 
3636 out:
3637 	if (ret)
3638 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3639 	btrfs_free_path(path);
3640 	return ret;
3641 }
3642 
3643 /*
3644  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3645  * don't find any xattrs, we know there can't be any acls.
3646  *
3647  * slot is the slot the inode is in, objectid is the objectid of the inode
3648  */
3649 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3650 					  int slot, u64 objectid,
3651 					  int *first_xattr_slot)
3652 {
3653 	u32 nritems = btrfs_header_nritems(leaf);
3654 	struct btrfs_key found_key;
3655 	static u64 xattr_access = 0;
3656 	static u64 xattr_default = 0;
3657 	int scanned = 0;
3658 
3659 	if (!xattr_access) {
3660 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3661 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3662 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3663 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3664 	}
3665 
3666 	slot++;
3667 	*first_xattr_slot = -1;
3668 	while (slot < nritems) {
3669 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3670 
3671 		/* we found a different objectid, there must not be acls */
3672 		if (found_key.objectid != objectid)
3673 			return 0;
3674 
3675 		/* we found an xattr, assume we've got an acl */
3676 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3677 			if (*first_xattr_slot == -1)
3678 				*first_xattr_slot = slot;
3679 			if (found_key.offset == xattr_access ||
3680 			    found_key.offset == xattr_default)
3681 				return 1;
3682 		}
3683 
3684 		/*
3685 		 * we found a key greater than an xattr key, there can't
3686 		 * be any acls later on
3687 		 */
3688 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3689 			return 0;
3690 
3691 		slot++;
3692 		scanned++;
3693 
3694 		/*
3695 		 * it goes inode, inode backrefs, xattrs, extents,
3696 		 * so if there are a ton of hard links to an inode there can
3697 		 * be a lot of backrefs.  Don't waste time searching too hard,
3698 		 * this is just an optimization
3699 		 */
3700 		if (scanned >= 8)
3701 			break;
3702 	}
3703 	/* we hit the end of the leaf before we found an xattr or
3704 	 * something larger than an xattr.  We have to assume the inode
3705 	 * has acls
3706 	 */
3707 	if (*first_xattr_slot == -1)
3708 		*first_xattr_slot = slot;
3709 	return 1;
3710 }
3711 
3712 /*
3713  * read an inode from the btree into the in-memory inode
3714  */
3715 static int btrfs_read_locked_inode(struct inode *inode,
3716 				   struct btrfs_path *in_path)
3717 {
3718 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3719 	struct btrfs_path *path = in_path;
3720 	struct extent_buffer *leaf;
3721 	struct btrfs_inode_item *inode_item;
3722 	struct btrfs_root *root = BTRFS_I(inode)->root;
3723 	struct btrfs_key location;
3724 	unsigned long ptr;
3725 	int maybe_acls;
3726 	u32 rdev;
3727 	int ret;
3728 	bool filled = false;
3729 	int first_xattr_slot;
3730 
3731 	ret = btrfs_fill_inode(inode, &rdev);
3732 	if (!ret)
3733 		filled = true;
3734 
3735 	if (!path) {
3736 		path = btrfs_alloc_path();
3737 		if (!path)
3738 			return -ENOMEM;
3739 	}
3740 
3741 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3742 
3743 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3744 	if (ret) {
3745 		if (path != in_path)
3746 			btrfs_free_path(path);
3747 		return ret;
3748 	}
3749 
3750 	leaf = path->nodes[0];
3751 
3752 	if (filled)
3753 		goto cache_index;
3754 
3755 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3756 				    struct btrfs_inode_item);
3757 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3758 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3759 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3760 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3761 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3762 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3763 			round_up(i_size_read(inode), fs_info->sectorsize));
3764 
3765 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3766 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3767 
3768 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3769 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3770 
3771 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3772 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3773 
3774 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3775 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3776 
3777 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3778 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3779 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3780 
3781 	inode_set_iversion_queried(inode,
3782 				   btrfs_inode_sequence(leaf, inode_item));
3783 	inode->i_generation = BTRFS_I(inode)->generation;
3784 	inode->i_rdev = 0;
3785 	rdev = btrfs_inode_rdev(leaf, inode_item);
3786 
3787 	BTRFS_I(inode)->index_cnt = (u64)-1;
3788 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3789 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3790 
3791 cache_index:
3792 	/*
3793 	 * If we were modified in the current generation and evicted from memory
3794 	 * and then re-read we need to do a full sync since we don't have any
3795 	 * idea about which extents were modified before we were evicted from
3796 	 * cache.
3797 	 *
3798 	 * This is required for both inode re-read from disk and delayed inode
3799 	 * in delayed_nodes_tree.
3800 	 */
3801 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3802 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3803 			&BTRFS_I(inode)->runtime_flags);
3804 
3805 	/*
3806 	 * We don't persist the id of the transaction where an unlink operation
3807 	 * against the inode was last made. So here we assume the inode might
3808 	 * have been evicted, and therefore the exact value of last_unlink_trans
3809 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3810 	 * between the inode and its parent if the inode is fsync'ed and the log
3811 	 * replayed. For example, in the scenario:
3812 	 *
3813 	 * touch mydir/foo
3814 	 * ln mydir/foo mydir/bar
3815 	 * sync
3816 	 * unlink mydir/bar
3817 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3818 	 * xfs_io -c fsync mydir/foo
3819 	 * <power failure>
3820 	 * mount fs, triggers fsync log replay
3821 	 *
3822 	 * We must make sure that when we fsync our inode foo we also log its
3823 	 * parent inode, otherwise after log replay the parent still has the
3824 	 * dentry with the "bar" name but our inode foo has a link count of 1
3825 	 * and doesn't have an inode ref with the name "bar" anymore.
3826 	 *
3827 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3828 	 * but it guarantees correctness at the expense of occasional full
3829 	 * transaction commits on fsync if our inode is a directory, or if our
3830 	 * inode is not a directory, logging its parent unnecessarily.
3831 	 */
3832 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3833 
3834 	/*
3835 	 * Same logic as for last_unlink_trans. We don't persist the generation
3836 	 * of the last transaction where this inode was used for a reflink
3837 	 * operation, so after eviction and reloading the inode we must be
3838 	 * pessimistic and assume the last transaction that modified the inode.
3839 	 */
3840 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3841 
3842 	path->slots[0]++;
3843 	if (inode->i_nlink != 1 ||
3844 	    path->slots[0] >= btrfs_header_nritems(leaf))
3845 		goto cache_acl;
3846 
3847 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3848 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3849 		goto cache_acl;
3850 
3851 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3852 	if (location.type == BTRFS_INODE_REF_KEY) {
3853 		struct btrfs_inode_ref *ref;
3854 
3855 		ref = (struct btrfs_inode_ref *)ptr;
3856 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3857 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3858 		struct btrfs_inode_extref *extref;
3859 
3860 		extref = (struct btrfs_inode_extref *)ptr;
3861 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3862 								     extref);
3863 	}
3864 cache_acl:
3865 	/*
3866 	 * try to precache a NULL acl entry for files that don't have
3867 	 * any xattrs or acls
3868 	 */
3869 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3870 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3871 	if (first_xattr_slot != -1) {
3872 		path->slots[0] = first_xattr_slot;
3873 		ret = btrfs_load_inode_props(inode, path);
3874 		if (ret)
3875 			btrfs_err(fs_info,
3876 				  "error loading props for ino %llu (root %llu): %d",
3877 				  btrfs_ino(BTRFS_I(inode)),
3878 				  root->root_key.objectid, ret);
3879 	}
3880 	if (path != in_path)
3881 		btrfs_free_path(path);
3882 
3883 	if (!maybe_acls)
3884 		cache_no_acl(inode);
3885 
3886 	switch (inode->i_mode & S_IFMT) {
3887 	case S_IFREG:
3888 		inode->i_mapping->a_ops = &btrfs_aops;
3889 		inode->i_fop = &btrfs_file_operations;
3890 		inode->i_op = &btrfs_file_inode_operations;
3891 		break;
3892 	case S_IFDIR:
3893 		inode->i_fop = &btrfs_dir_file_operations;
3894 		inode->i_op = &btrfs_dir_inode_operations;
3895 		break;
3896 	case S_IFLNK:
3897 		inode->i_op = &btrfs_symlink_inode_operations;
3898 		inode_nohighmem(inode);
3899 		inode->i_mapping->a_ops = &btrfs_aops;
3900 		break;
3901 	default:
3902 		inode->i_op = &btrfs_special_inode_operations;
3903 		init_special_inode(inode, inode->i_mode, rdev);
3904 		break;
3905 	}
3906 
3907 	btrfs_sync_inode_flags_to_i_flags(inode);
3908 	return 0;
3909 }
3910 
3911 /*
3912  * given a leaf and an inode, copy the inode fields into the leaf
3913  */
3914 static void fill_inode_item(struct btrfs_trans_handle *trans,
3915 			    struct extent_buffer *leaf,
3916 			    struct btrfs_inode_item *item,
3917 			    struct inode *inode)
3918 {
3919 	struct btrfs_map_token token;
3920 	u64 flags;
3921 
3922 	btrfs_init_map_token(&token, leaf);
3923 
3924 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3925 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3926 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3927 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3928 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3929 
3930 	btrfs_set_token_timespec_sec(&token, &item->atime,
3931 				     inode_get_atime_sec(inode));
3932 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3933 				      inode_get_atime_nsec(inode));
3934 
3935 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3936 				     inode_get_mtime_sec(inode));
3937 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3938 				      inode_get_mtime_nsec(inode));
3939 
3940 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3941 				     inode_get_ctime_sec(inode));
3942 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3943 				      inode_get_ctime_nsec(inode));
3944 
3945 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3946 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3947 
3948 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3949 	btrfs_set_token_inode_generation(&token, item,
3950 					 BTRFS_I(inode)->generation);
3951 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3952 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3953 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3954 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3955 					  BTRFS_I(inode)->ro_flags);
3956 	btrfs_set_token_inode_flags(&token, item, flags);
3957 	btrfs_set_token_inode_block_group(&token, item, 0);
3958 }
3959 
3960 /*
3961  * copy everything in the in-memory inode into the btree.
3962  */
3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 					    struct btrfs_inode *inode)
3965 {
3966 	struct btrfs_inode_item *inode_item;
3967 	struct btrfs_path *path;
3968 	struct extent_buffer *leaf;
3969 	int ret;
3970 
3971 	path = btrfs_alloc_path();
3972 	if (!path)
3973 		return -ENOMEM;
3974 
3975 	ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
3976 	if (ret) {
3977 		if (ret > 0)
3978 			ret = -ENOENT;
3979 		goto failed;
3980 	}
3981 
3982 	leaf = path->nodes[0];
3983 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3984 				    struct btrfs_inode_item);
3985 
3986 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3987 	btrfs_mark_buffer_dirty(trans, leaf);
3988 	btrfs_set_inode_last_trans(trans, inode);
3989 	ret = 0;
3990 failed:
3991 	btrfs_free_path(path);
3992 	return ret;
3993 }
3994 
3995 /*
3996  * copy everything in the in-memory inode into the btree.
3997  */
3998 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3999 		       struct btrfs_inode *inode)
4000 {
4001 	struct btrfs_root *root = inode->root;
4002 	struct btrfs_fs_info *fs_info = root->fs_info;
4003 	int ret;
4004 
4005 	/*
4006 	 * If the inode is a free space inode, we can deadlock during commit
4007 	 * if we put it into the delayed code.
4008 	 *
4009 	 * The data relocation inode should also be directly updated
4010 	 * without delay
4011 	 */
4012 	if (!btrfs_is_free_space_inode(inode)
4013 	    && !btrfs_is_data_reloc_root(root)
4014 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4015 		btrfs_update_root_times(trans, root);
4016 
4017 		ret = btrfs_delayed_update_inode(trans, inode);
4018 		if (!ret)
4019 			btrfs_set_inode_last_trans(trans, inode);
4020 		return ret;
4021 	}
4022 
4023 	return btrfs_update_inode_item(trans, inode);
4024 }
4025 
4026 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4027 				struct btrfs_inode *inode)
4028 {
4029 	int ret;
4030 
4031 	ret = btrfs_update_inode(trans, inode);
4032 	if (ret == -ENOSPC)
4033 		return btrfs_update_inode_item(trans, inode);
4034 	return ret;
4035 }
4036 
4037 /*
4038  * unlink helper that gets used here in inode.c and in the tree logging
4039  * recovery code.  It remove a link in a directory with a given name, and
4040  * also drops the back refs in the inode to the directory
4041  */
4042 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4043 				struct btrfs_inode *dir,
4044 				struct btrfs_inode *inode,
4045 				const struct fscrypt_str *name,
4046 				struct btrfs_rename_ctx *rename_ctx)
4047 {
4048 	struct btrfs_root *root = dir->root;
4049 	struct btrfs_fs_info *fs_info = root->fs_info;
4050 	struct btrfs_path *path;
4051 	int ret = 0;
4052 	struct btrfs_dir_item *di;
4053 	u64 index;
4054 	u64 ino = btrfs_ino(inode);
4055 	u64 dir_ino = btrfs_ino(dir);
4056 
4057 	path = btrfs_alloc_path();
4058 	if (!path) {
4059 		ret = -ENOMEM;
4060 		goto out;
4061 	}
4062 
4063 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4064 	if (IS_ERR_OR_NULL(di)) {
4065 		ret = di ? PTR_ERR(di) : -ENOENT;
4066 		goto err;
4067 	}
4068 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4069 	if (ret)
4070 		goto err;
4071 	btrfs_release_path(path);
4072 
4073 	/*
4074 	 * If we don't have dir index, we have to get it by looking up
4075 	 * the inode ref, since we get the inode ref, remove it directly,
4076 	 * it is unnecessary to do delayed deletion.
4077 	 *
4078 	 * But if we have dir index, needn't search inode ref to get it.
4079 	 * Since the inode ref is close to the inode item, it is better
4080 	 * that we delay to delete it, and just do this deletion when
4081 	 * we update the inode item.
4082 	 */
4083 	if (inode->dir_index) {
4084 		ret = btrfs_delayed_delete_inode_ref(inode);
4085 		if (!ret) {
4086 			index = inode->dir_index;
4087 			goto skip_backref;
4088 		}
4089 	}
4090 
4091 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4092 	if (ret) {
4093 		btrfs_info(fs_info,
4094 			"failed to delete reference to %.*s, inode %llu parent %llu",
4095 			name->len, name->name, ino, dir_ino);
4096 		btrfs_abort_transaction(trans, ret);
4097 		goto err;
4098 	}
4099 skip_backref:
4100 	if (rename_ctx)
4101 		rename_ctx->index = index;
4102 
4103 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4104 	if (ret) {
4105 		btrfs_abort_transaction(trans, ret);
4106 		goto err;
4107 	}
4108 
4109 	/*
4110 	 * If we are in a rename context, we don't need to update anything in the
4111 	 * log. That will be done later during the rename by btrfs_log_new_name().
4112 	 * Besides that, doing it here would only cause extra unnecessary btree
4113 	 * operations on the log tree, increasing latency for applications.
4114 	 */
4115 	if (!rename_ctx) {
4116 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4117 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4118 	}
4119 
4120 	/*
4121 	 * If we have a pending delayed iput we could end up with the final iput
4122 	 * being run in btrfs-cleaner context.  If we have enough of these built
4123 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4124 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4125 	 * the inode we can run the delayed iput here without any issues as the
4126 	 * final iput won't be done until after we drop the ref we're currently
4127 	 * holding.
4128 	 */
4129 	btrfs_run_delayed_iput(fs_info, inode);
4130 err:
4131 	btrfs_free_path(path);
4132 	if (ret)
4133 		goto out;
4134 
4135 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4136 	inode_inc_iversion(&inode->vfs_inode);
4137 	inode_inc_iversion(&dir->vfs_inode);
4138  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4139 	ret = btrfs_update_inode(trans, dir);
4140 out:
4141 	return ret;
4142 }
4143 
4144 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4145 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4146 		       const struct fscrypt_str *name)
4147 {
4148 	int ret;
4149 
4150 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4151 	if (!ret) {
4152 		drop_nlink(&inode->vfs_inode);
4153 		ret = btrfs_update_inode(trans, inode);
4154 	}
4155 	return ret;
4156 }
4157 
4158 /*
4159  * helper to start transaction for unlink and rmdir.
4160  *
4161  * unlink and rmdir are special in btrfs, they do not always free space, so
4162  * if we cannot make our reservations the normal way try and see if there is
4163  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4164  * allow the unlink to occur.
4165  */
4166 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4167 {
4168 	struct btrfs_root *root = dir->root;
4169 
4170 	return btrfs_start_transaction_fallback_global_rsv(root,
4171 						   BTRFS_UNLINK_METADATA_UNITS);
4172 }
4173 
4174 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4175 {
4176 	struct btrfs_trans_handle *trans;
4177 	struct inode *inode = d_inode(dentry);
4178 	int ret;
4179 	struct fscrypt_name fname;
4180 
4181 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4182 	if (ret)
4183 		return ret;
4184 
4185 	/* This needs to handle no-key deletions later on */
4186 
4187 	trans = __unlink_start_trans(BTRFS_I(dir));
4188 	if (IS_ERR(trans)) {
4189 		ret = PTR_ERR(trans);
4190 		goto fscrypt_free;
4191 	}
4192 
4193 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4194 				false);
4195 
4196 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4197 				 &fname.disk_name);
4198 	if (ret)
4199 		goto end_trans;
4200 
4201 	if (inode->i_nlink == 0) {
4202 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4203 		if (ret)
4204 			goto end_trans;
4205 	}
4206 
4207 end_trans:
4208 	btrfs_end_transaction(trans);
4209 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4210 fscrypt_free:
4211 	fscrypt_free_filename(&fname);
4212 	return ret;
4213 }
4214 
4215 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4216 			       struct btrfs_inode *dir, struct dentry *dentry)
4217 {
4218 	struct btrfs_root *root = dir->root;
4219 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4220 	struct btrfs_path *path;
4221 	struct extent_buffer *leaf;
4222 	struct btrfs_dir_item *di;
4223 	struct btrfs_key key;
4224 	u64 index;
4225 	int ret;
4226 	u64 objectid;
4227 	u64 dir_ino = btrfs_ino(dir);
4228 	struct fscrypt_name fname;
4229 
4230 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4231 	if (ret)
4232 		return ret;
4233 
4234 	/* This needs to handle no-key deletions later on */
4235 
4236 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4237 		objectid = inode->root->root_key.objectid;
4238 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4239 		objectid = inode->location.objectid;
4240 	} else {
4241 		WARN_ON(1);
4242 		fscrypt_free_filename(&fname);
4243 		return -EINVAL;
4244 	}
4245 
4246 	path = btrfs_alloc_path();
4247 	if (!path) {
4248 		ret = -ENOMEM;
4249 		goto out;
4250 	}
4251 
4252 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4253 				   &fname.disk_name, -1);
4254 	if (IS_ERR_OR_NULL(di)) {
4255 		ret = di ? PTR_ERR(di) : -ENOENT;
4256 		goto out;
4257 	}
4258 
4259 	leaf = path->nodes[0];
4260 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4261 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4262 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4263 	if (ret) {
4264 		btrfs_abort_transaction(trans, ret);
4265 		goto out;
4266 	}
4267 	btrfs_release_path(path);
4268 
4269 	/*
4270 	 * This is a placeholder inode for a subvolume we didn't have a
4271 	 * reference to at the time of the snapshot creation.  In the meantime
4272 	 * we could have renamed the real subvol link into our snapshot, so
4273 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4274 	 * Instead simply lookup the dir_index_item for this entry so we can
4275 	 * remove it.  Otherwise we know we have a ref to the root and we can
4276 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4277 	 */
4278 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4279 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4280 		if (IS_ERR_OR_NULL(di)) {
4281 			if (!di)
4282 				ret = -ENOENT;
4283 			else
4284 				ret = PTR_ERR(di);
4285 			btrfs_abort_transaction(trans, ret);
4286 			goto out;
4287 		}
4288 
4289 		leaf = path->nodes[0];
4290 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4291 		index = key.offset;
4292 		btrfs_release_path(path);
4293 	} else {
4294 		ret = btrfs_del_root_ref(trans, objectid,
4295 					 root->root_key.objectid, dir_ino,
4296 					 &index, &fname.disk_name);
4297 		if (ret) {
4298 			btrfs_abort_transaction(trans, ret);
4299 			goto out;
4300 		}
4301 	}
4302 
4303 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4304 	if (ret) {
4305 		btrfs_abort_transaction(trans, ret);
4306 		goto out;
4307 	}
4308 
4309 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4310 	inode_inc_iversion(&dir->vfs_inode);
4311 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4312 	ret = btrfs_update_inode_fallback(trans, dir);
4313 	if (ret)
4314 		btrfs_abort_transaction(trans, ret);
4315 out:
4316 	btrfs_free_path(path);
4317 	fscrypt_free_filename(&fname);
4318 	return ret;
4319 }
4320 
4321 /*
4322  * Helper to check if the subvolume references other subvolumes or if it's
4323  * default.
4324  */
4325 static noinline int may_destroy_subvol(struct btrfs_root *root)
4326 {
4327 	struct btrfs_fs_info *fs_info = root->fs_info;
4328 	struct btrfs_path *path;
4329 	struct btrfs_dir_item *di;
4330 	struct btrfs_key key;
4331 	struct fscrypt_str name = FSTR_INIT("default", 7);
4332 	u64 dir_id;
4333 	int ret;
4334 
4335 	path = btrfs_alloc_path();
4336 	if (!path)
4337 		return -ENOMEM;
4338 
4339 	/* Make sure this root isn't set as the default subvol */
4340 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4341 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4342 				   dir_id, &name, 0);
4343 	if (di && !IS_ERR(di)) {
4344 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4345 		if (key.objectid == root->root_key.objectid) {
4346 			ret = -EPERM;
4347 			btrfs_err(fs_info,
4348 				  "deleting default subvolume %llu is not allowed",
4349 				  key.objectid);
4350 			goto out;
4351 		}
4352 		btrfs_release_path(path);
4353 	}
4354 
4355 	key.objectid = root->root_key.objectid;
4356 	key.type = BTRFS_ROOT_REF_KEY;
4357 	key.offset = (u64)-1;
4358 
4359 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4360 	if (ret < 0)
4361 		goto out;
4362 	BUG_ON(ret == 0);
4363 
4364 	ret = 0;
4365 	if (path->slots[0] > 0) {
4366 		path->slots[0]--;
4367 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4368 		if (key.objectid == root->root_key.objectid &&
4369 		    key.type == BTRFS_ROOT_REF_KEY)
4370 			ret = -ENOTEMPTY;
4371 	}
4372 out:
4373 	btrfs_free_path(path);
4374 	return ret;
4375 }
4376 
4377 /* Delete all dentries for inodes belonging to the root */
4378 static void btrfs_prune_dentries(struct btrfs_root *root)
4379 {
4380 	struct btrfs_fs_info *fs_info = root->fs_info;
4381 	struct rb_node *node;
4382 	struct rb_node *prev;
4383 	struct btrfs_inode *entry;
4384 	struct inode *inode;
4385 	u64 objectid = 0;
4386 
4387 	if (!BTRFS_FS_ERROR(fs_info))
4388 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4389 
4390 	spin_lock(&root->inode_lock);
4391 again:
4392 	node = root->inode_tree.rb_node;
4393 	prev = NULL;
4394 	while (node) {
4395 		prev = node;
4396 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4397 
4398 		if (objectid < btrfs_ino(entry))
4399 			node = node->rb_left;
4400 		else if (objectid > btrfs_ino(entry))
4401 			node = node->rb_right;
4402 		else
4403 			break;
4404 	}
4405 	if (!node) {
4406 		while (prev) {
4407 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4408 			if (objectid <= btrfs_ino(entry)) {
4409 				node = prev;
4410 				break;
4411 			}
4412 			prev = rb_next(prev);
4413 		}
4414 	}
4415 	while (node) {
4416 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4417 		objectid = btrfs_ino(entry) + 1;
4418 		inode = igrab(&entry->vfs_inode);
4419 		if (inode) {
4420 			spin_unlock(&root->inode_lock);
4421 			if (atomic_read(&inode->i_count) > 1)
4422 				d_prune_aliases(inode);
4423 			/*
4424 			 * btrfs_drop_inode will have it removed from the inode
4425 			 * cache when its usage count hits zero.
4426 			 */
4427 			iput(inode);
4428 			cond_resched();
4429 			spin_lock(&root->inode_lock);
4430 			goto again;
4431 		}
4432 
4433 		if (cond_resched_lock(&root->inode_lock))
4434 			goto again;
4435 
4436 		node = rb_next(node);
4437 	}
4438 	spin_unlock(&root->inode_lock);
4439 }
4440 
4441 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4442 {
4443 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4444 	struct btrfs_root *root = dir->root;
4445 	struct inode *inode = d_inode(dentry);
4446 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4447 	struct btrfs_trans_handle *trans;
4448 	struct btrfs_block_rsv block_rsv;
4449 	u64 root_flags;
4450 	int ret;
4451 
4452 	/*
4453 	 * Don't allow to delete a subvolume with send in progress. This is
4454 	 * inside the inode lock so the error handling that has to drop the bit
4455 	 * again is not run concurrently.
4456 	 */
4457 	spin_lock(&dest->root_item_lock);
4458 	if (dest->send_in_progress) {
4459 		spin_unlock(&dest->root_item_lock);
4460 		btrfs_warn(fs_info,
4461 			   "attempt to delete subvolume %llu during send",
4462 			   dest->root_key.objectid);
4463 		return -EPERM;
4464 	}
4465 	if (atomic_read(&dest->nr_swapfiles)) {
4466 		spin_unlock(&dest->root_item_lock);
4467 		btrfs_warn(fs_info,
4468 			   "attempt to delete subvolume %llu with active swapfile",
4469 			   root->root_key.objectid);
4470 		return -EPERM;
4471 	}
4472 	root_flags = btrfs_root_flags(&dest->root_item);
4473 	btrfs_set_root_flags(&dest->root_item,
4474 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4475 	spin_unlock(&dest->root_item_lock);
4476 
4477 	down_write(&fs_info->subvol_sem);
4478 
4479 	ret = may_destroy_subvol(dest);
4480 	if (ret)
4481 		goto out_up_write;
4482 
4483 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4484 	/*
4485 	 * One for dir inode,
4486 	 * two for dir entries,
4487 	 * two for root ref/backref.
4488 	 */
4489 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4490 	if (ret)
4491 		goto out_up_write;
4492 
4493 	trans = btrfs_start_transaction(root, 0);
4494 	if (IS_ERR(trans)) {
4495 		ret = PTR_ERR(trans);
4496 		goto out_release;
4497 	}
4498 	trans->block_rsv = &block_rsv;
4499 	trans->bytes_reserved = block_rsv.size;
4500 
4501 	btrfs_record_snapshot_destroy(trans, dir);
4502 
4503 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4504 	if (ret) {
4505 		btrfs_abort_transaction(trans, ret);
4506 		goto out_end_trans;
4507 	}
4508 
4509 	ret = btrfs_record_root_in_trans(trans, dest);
4510 	if (ret) {
4511 		btrfs_abort_transaction(trans, ret);
4512 		goto out_end_trans;
4513 	}
4514 
4515 	memset(&dest->root_item.drop_progress, 0,
4516 		sizeof(dest->root_item.drop_progress));
4517 	btrfs_set_root_drop_level(&dest->root_item, 0);
4518 	btrfs_set_root_refs(&dest->root_item, 0);
4519 
4520 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4521 		ret = btrfs_insert_orphan_item(trans,
4522 					fs_info->tree_root,
4523 					dest->root_key.objectid);
4524 		if (ret) {
4525 			btrfs_abort_transaction(trans, ret);
4526 			goto out_end_trans;
4527 		}
4528 	}
4529 
4530 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4531 				  BTRFS_UUID_KEY_SUBVOL,
4532 				  dest->root_key.objectid);
4533 	if (ret && ret != -ENOENT) {
4534 		btrfs_abort_transaction(trans, ret);
4535 		goto out_end_trans;
4536 	}
4537 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4538 		ret = btrfs_uuid_tree_remove(trans,
4539 					  dest->root_item.received_uuid,
4540 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4541 					  dest->root_key.objectid);
4542 		if (ret && ret != -ENOENT) {
4543 			btrfs_abort_transaction(trans, ret);
4544 			goto out_end_trans;
4545 		}
4546 	}
4547 
4548 	free_anon_bdev(dest->anon_dev);
4549 	dest->anon_dev = 0;
4550 out_end_trans:
4551 	trans->block_rsv = NULL;
4552 	trans->bytes_reserved = 0;
4553 	ret = btrfs_end_transaction(trans);
4554 	inode->i_flags |= S_DEAD;
4555 out_release:
4556 	btrfs_subvolume_release_metadata(root, &block_rsv);
4557 out_up_write:
4558 	up_write(&fs_info->subvol_sem);
4559 	if (ret) {
4560 		spin_lock(&dest->root_item_lock);
4561 		root_flags = btrfs_root_flags(&dest->root_item);
4562 		btrfs_set_root_flags(&dest->root_item,
4563 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4564 		spin_unlock(&dest->root_item_lock);
4565 	} else {
4566 		d_invalidate(dentry);
4567 		btrfs_prune_dentries(dest);
4568 		ASSERT(dest->send_in_progress == 0);
4569 	}
4570 
4571 	return ret;
4572 }
4573 
4574 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4575 {
4576 	struct inode *inode = d_inode(dentry);
4577 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4578 	int err = 0;
4579 	struct btrfs_trans_handle *trans;
4580 	u64 last_unlink_trans;
4581 	struct fscrypt_name fname;
4582 
4583 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4584 		return -ENOTEMPTY;
4585 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4586 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4587 			btrfs_err(fs_info,
4588 			"extent tree v2 doesn't support snapshot deletion yet");
4589 			return -EOPNOTSUPP;
4590 		}
4591 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4592 	}
4593 
4594 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4595 	if (err)
4596 		return err;
4597 
4598 	/* This needs to handle no-key deletions later on */
4599 
4600 	trans = __unlink_start_trans(BTRFS_I(dir));
4601 	if (IS_ERR(trans)) {
4602 		err = PTR_ERR(trans);
4603 		goto out_notrans;
4604 	}
4605 
4606 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4607 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4608 		goto out;
4609 	}
4610 
4611 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4612 	if (err)
4613 		goto out;
4614 
4615 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4616 
4617 	/* now the directory is empty */
4618 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4619 				 &fname.disk_name);
4620 	if (!err) {
4621 		btrfs_i_size_write(BTRFS_I(inode), 0);
4622 		/*
4623 		 * Propagate the last_unlink_trans value of the deleted dir to
4624 		 * its parent directory. This is to prevent an unrecoverable
4625 		 * log tree in the case we do something like this:
4626 		 * 1) create dir foo
4627 		 * 2) create snapshot under dir foo
4628 		 * 3) delete the snapshot
4629 		 * 4) rmdir foo
4630 		 * 5) mkdir foo
4631 		 * 6) fsync foo or some file inside foo
4632 		 */
4633 		if (last_unlink_trans >= trans->transid)
4634 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4635 	}
4636 out:
4637 	btrfs_end_transaction(trans);
4638 out_notrans:
4639 	btrfs_btree_balance_dirty(fs_info);
4640 	fscrypt_free_filename(&fname);
4641 
4642 	return err;
4643 }
4644 
4645 /*
4646  * Read, zero a chunk and write a block.
4647  *
4648  * @inode - inode that we're zeroing
4649  * @from - the offset to start zeroing
4650  * @len - the length to zero, 0 to zero the entire range respective to the
4651  *	offset
4652  * @front - zero up to the offset instead of from the offset on
4653  *
4654  * This will find the block for the "from" offset and cow the block and zero the
4655  * part we want to zero.  This is used with truncate and hole punching.
4656  */
4657 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4658 			 int front)
4659 {
4660 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4661 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4662 	struct extent_io_tree *io_tree = &inode->io_tree;
4663 	struct btrfs_ordered_extent *ordered;
4664 	struct extent_state *cached_state = NULL;
4665 	struct extent_changeset *data_reserved = NULL;
4666 	bool only_release_metadata = false;
4667 	u32 blocksize = fs_info->sectorsize;
4668 	pgoff_t index = from >> PAGE_SHIFT;
4669 	unsigned offset = from & (blocksize - 1);
4670 	struct page *page;
4671 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4672 	size_t write_bytes = blocksize;
4673 	int ret = 0;
4674 	u64 block_start;
4675 	u64 block_end;
4676 
4677 	if (IS_ALIGNED(offset, blocksize) &&
4678 	    (!len || IS_ALIGNED(len, blocksize)))
4679 		goto out;
4680 
4681 	block_start = round_down(from, blocksize);
4682 	block_end = block_start + blocksize - 1;
4683 
4684 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4685 					  blocksize, false);
4686 	if (ret < 0) {
4687 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4688 			/* For nocow case, no need to reserve data space */
4689 			only_release_metadata = true;
4690 		} else {
4691 			goto out;
4692 		}
4693 	}
4694 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4695 	if (ret < 0) {
4696 		if (!only_release_metadata)
4697 			btrfs_free_reserved_data_space(inode, data_reserved,
4698 						       block_start, blocksize);
4699 		goto out;
4700 	}
4701 again:
4702 	page = find_or_create_page(mapping, index, mask);
4703 	if (!page) {
4704 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4705 					     blocksize, true);
4706 		btrfs_delalloc_release_extents(inode, blocksize);
4707 		ret = -ENOMEM;
4708 		goto out;
4709 	}
4710 
4711 	if (!PageUptodate(page)) {
4712 		ret = btrfs_read_folio(NULL, page_folio(page));
4713 		lock_page(page);
4714 		if (page->mapping != mapping) {
4715 			unlock_page(page);
4716 			put_page(page);
4717 			goto again;
4718 		}
4719 		if (!PageUptodate(page)) {
4720 			ret = -EIO;
4721 			goto out_unlock;
4722 		}
4723 	}
4724 
4725 	/*
4726 	 * We unlock the page after the io is completed and then re-lock it
4727 	 * above.  release_folio() could have come in between that and cleared
4728 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4729 	 * here to make sure it's properly set for the subpage stuff.
4730 	 */
4731 	ret = set_page_extent_mapped(page);
4732 	if (ret < 0)
4733 		goto out_unlock;
4734 
4735 	wait_on_page_writeback(page);
4736 
4737 	lock_extent(io_tree, block_start, block_end, &cached_state);
4738 
4739 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4740 	if (ordered) {
4741 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4742 		unlock_page(page);
4743 		put_page(page);
4744 		btrfs_start_ordered_extent(ordered);
4745 		btrfs_put_ordered_extent(ordered);
4746 		goto again;
4747 	}
4748 
4749 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4750 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4751 			 &cached_state);
4752 
4753 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4754 					&cached_state);
4755 	if (ret) {
4756 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4757 		goto out_unlock;
4758 	}
4759 
4760 	if (offset != blocksize) {
4761 		if (!len)
4762 			len = blocksize - offset;
4763 		if (front)
4764 			memzero_page(page, (block_start - page_offset(page)),
4765 				     offset);
4766 		else
4767 			memzero_page(page, (block_start - page_offset(page)) + offset,
4768 				     len);
4769 	}
4770 	btrfs_page_clear_checked(fs_info, page, block_start,
4771 				 block_end + 1 - block_start);
4772 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4773 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4774 
4775 	if (only_release_metadata)
4776 		set_extent_bit(&inode->io_tree, block_start, block_end,
4777 			       EXTENT_NORESERVE, NULL);
4778 
4779 out_unlock:
4780 	if (ret) {
4781 		if (only_release_metadata)
4782 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4783 		else
4784 			btrfs_delalloc_release_space(inode, data_reserved,
4785 					block_start, blocksize, true);
4786 	}
4787 	btrfs_delalloc_release_extents(inode, blocksize);
4788 	unlock_page(page);
4789 	put_page(page);
4790 out:
4791 	if (only_release_metadata)
4792 		btrfs_check_nocow_unlock(inode);
4793 	extent_changeset_free(data_reserved);
4794 	return ret;
4795 }
4796 
4797 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4798 {
4799 	struct btrfs_root *root = inode->root;
4800 	struct btrfs_fs_info *fs_info = root->fs_info;
4801 	struct btrfs_trans_handle *trans;
4802 	struct btrfs_drop_extents_args drop_args = { 0 };
4803 	int ret;
4804 
4805 	/*
4806 	 * If NO_HOLES is enabled, we don't need to do anything.
4807 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4808 	 * or btrfs_update_inode() will be called, which guarantee that the next
4809 	 * fsync will know this inode was changed and needs to be logged.
4810 	 */
4811 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4812 		return 0;
4813 
4814 	/*
4815 	 * 1 - for the one we're dropping
4816 	 * 1 - for the one we're adding
4817 	 * 1 - for updating the inode.
4818 	 */
4819 	trans = btrfs_start_transaction(root, 3);
4820 	if (IS_ERR(trans))
4821 		return PTR_ERR(trans);
4822 
4823 	drop_args.start = offset;
4824 	drop_args.end = offset + len;
4825 	drop_args.drop_cache = true;
4826 
4827 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4828 	if (ret) {
4829 		btrfs_abort_transaction(trans, ret);
4830 		btrfs_end_transaction(trans);
4831 		return ret;
4832 	}
4833 
4834 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4835 	if (ret) {
4836 		btrfs_abort_transaction(trans, ret);
4837 	} else {
4838 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4839 		btrfs_update_inode(trans, inode);
4840 	}
4841 	btrfs_end_transaction(trans);
4842 	return ret;
4843 }
4844 
4845 /*
4846  * This function puts in dummy file extents for the area we're creating a hole
4847  * for.  So if we are truncating this file to a larger size we need to insert
4848  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4849  * the range between oldsize and size
4850  */
4851 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4852 {
4853 	struct btrfs_root *root = inode->root;
4854 	struct btrfs_fs_info *fs_info = root->fs_info;
4855 	struct extent_io_tree *io_tree = &inode->io_tree;
4856 	struct extent_map *em = NULL;
4857 	struct extent_state *cached_state = NULL;
4858 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4859 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4860 	u64 last_byte;
4861 	u64 cur_offset;
4862 	u64 hole_size;
4863 	int err = 0;
4864 
4865 	/*
4866 	 * If our size started in the middle of a block we need to zero out the
4867 	 * rest of the block before we expand the i_size, otherwise we could
4868 	 * expose stale data.
4869 	 */
4870 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4871 	if (err)
4872 		return err;
4873 
4874 	if (size <= hole_start)
4875 		return 0;
4876 
4877 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4878 					   &cached_state);
4879 	cur_offset = hole_start;
4880 	while (1) {
4881 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4882 				      block_end - cur_offset);
4883 		if (IS_ERR(em)) {
4884 			err = PTR_ERR(em);
4885 			em = NULL;
4886 			break;
4887 		}
4888 		last_byte = min(extent_map_end(em), block_end);
4889 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4890 		hole_size = last_byte - cur_offset;
4891 
4892 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4893 			struct extent_map *hole_em;
4894 
4895 			err = maybe_insert_hole(inode, cur_offset, hole_size);
4896 			if (err)
4897 				break;
4898 
4899 			err = btrfs_inode_set_file_extent_range(inode,
4900 							cur_offset, hole_size);
4901 			if (err)
4902 				break;
4903 
4904 			hole_em = alloc_extent_map();
4905 			if (!hole_em) {
4906 				btrfs_drop_extent_map_range(inode, cur_offset,
4907 						    cur_offset + hole_size - 1,
4908 						    false);
4909 				btrfs_set_inode_full_sync(inode);
4910 				goto next;
4911 			}
4912 			hole_em->start = cur_offset;
4913 			hole_em->len = hole_size;
4914 			hole_em->orig_start = cur_offset;
4915 
4916 			hole_em->block_start = EXTENT_MAP_HOLE;
4917 			hole_em->block_len = 0;
4918 			hole_em->orig_block_len = 0;
4919 			hole_em->ram_bytes = hole_size;
4920 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4921 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4922 
4923 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4924 			free_extent_map(hole_em);
4925 		} else {
4926 			err = btrfs_inode_set_file_extent_range(inode,
4927 							cur_offset, hole_size);
4928 			if (err)
4929 				break;
4930 		}
4931 next:
4932 		free_extent_map(em);
4933 		em = NULL;
4934 		cur_offset = last_byte;
4935 		if (cur_offset >= block_end)
4936 			break;
4937 	}
4938 	free_extent_map(em);
4939 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4940 	return err;
4941 }
4942 
4943 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4944 {
4945 	struct btrfs_root *root = BTRFS_I(inode)->root;
4946 	struct btrfs_trans_handle *trans;
4947 	loff_t oldsize = i_size_read(inode);
4948 	loff_t newsize = attr->ia_size;
4949 	int mask = attr->ia_valid;
4950 	int ret;
4951 
4952 	/*
4953 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4954 	 * special case where we need to update the times despite not having
4955 	 * these flags set.  For all other operations the VFS set these flags
4956 	 * explicitly if it wants a timestamp update.
4957 	 */
4958 	if (newsize != oldsize) {
4959 		inode_inc_iversion(inode);
4960 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4961 			inode_set_mtime_to_ts(inode,
4962 					      inode_set_ctime_current(inode));
4963 		}
4964 	}
4965 
4966 	if (newsize > oldsize) {
4967 		/*
4968 		 * Don't do an expanding truncate while snapshotting is ongoing.
4969 		 * This is to ensure the snapshot captures a fully consistent
4970 		 * state of this file - if the snapshot captures this expanding
4971 		 * truncation, it must capture all writes that happened before
4972 		 * this truncation.
4973 		 */
4974 		btrfs_drew_write_lock(&root->snapshot_lock);
4975 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4976 		if (ret) {
4977 			btrfs_drew_write_unlock(&root->snapshot_lock);
4978 			return ret;
4979 		}
4980 
4981 		trans = btrfs_start_transaction(root, 1);
4982 		if (IS_ERR(trans)) {
4983 			btrfs_drew_write_unlock(&root->snapshot_lock);
4984 			return PTR_ERR(trans);
4985 		}
4986 
4987 		i_size_write(inode, newsize);
4988 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4989 		pagecache_isize_extended(inode, oldsize, newsize);
4990 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
4991 		btrfs_drew_write_unlock(&root->snapshot_lock);
4992 		btrfs_end_transaction(trans);
4993 	} else {
4994 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4995 
4996 		if (btrfs_is_zoned(fs_info)) {
4997 			ret = btrfs_wait_ordered_range(inode,
4998 					ALIGN(newsize, fs_info->sectorsize),
4999 					(u64)-1);
5000 			if (ret)
5001 				return ret;
5002 		}
5003 
5004 		/*
5005 		 * We're truncating a file that used to have good data down to
5006 		 * zero. Make sure any new writes to the file get on disk
5007 		 * on close.
5008 		 */
5009 		if (newsize == 0)
5010 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5011 				&BTRFS_I(inode)->runtime_flags);
5012 
5013 		truncate_setsize(inode, newsize);
5014 
5015 		inode_dio_wait(inode);
5016 
5017 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5018 		if (ret && inode->i_nlink) {
5019 			int err;
5020 
5021 			/*
5022 			 * Truncate failed, so fix up the in-memory size. We
5023 			 * adjusted disk_i_size down as we removed extents, so
5024 			 * wait for disk_i_size to be stable and then update the
5025 			 * in-memory size to match.
5026 			 */
5027 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5028 			if (err)
5029 				return err;
5030 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5031 		}
5032 	}
5033 
5034 	return ret;
5035 }
5036 
5037 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5038 			 struct iattr *attr)
5039 {
5040 	struct inode *inode = d_inode(dentry);
5041 	struct btrfs_root *root = BTRFS_I(inode)->root;
5042 	int err;
5043 
5044 	if (btrfs_root_readonly(root))
5045 		return -EROFS;
5046 
5047 	err = setattr_prepare(idmap, dentry, attr);
5048 	if (err)
5049 		return err;
5050 
5051 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5052 		err = btrfs_setsize(inode, attr);
5053 		if (err)
5054 			return err;
5055 	}
5056 
5057 	if (attr->ia_valid) {
5058 		setattr_copy(idmap, inode, attr);
5059 		inode_inc_iversion(inode);
5060 		err = btrfs_dirty_inode(BTRFS_I(inode));
5061 
5062 		if (!err && attr->ia_valid & ATTR_MODE)
5063 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5064 	}
5065 
5066 	return err;
5067 }
5068 
5069 /*
5070  * While truncating the inode pages during eviction, we get the VFS
5071  * calling btrfs_invalidate_folio() against each folio of the inode. This
5072  * is slow because the calls to btrfs_invalidate_folio() result in a
5073  * huge amount of calls to lock_extent() and clear_extent_bit(),
5074  * which keep merging and splitting extent_state structures over and over,
5075  * wasting lots of time.
5076  *
5077  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5078  * skip all those expensive operations on a per folio basis and do only
5079  * the ordered io finishing, while we release here the extent_map and
5080  * extent_state structures, without the excessive merging and splitting.
5081  */
5082 static void evict_inode_truncate_pages(struct inode *inode)
5083 {
5084 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5085 	struct rb_node *node;
5086 
5087 	ASSERT(inode->i_state & I_FREEING);
5088 	truncate_inode_pages_final(&inode->i_data);
5089 
5090 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5091 
5092 	/*
5093 	 * Keep looping until we have no more ranges in the io tree.
5094 	 * We can have ongoing bios started by readahead that have
5095 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5096 	 * still in progress (unlocked the pages in the bio but did not yet
5097 	 * unlocked the ranges in the io tree). Therefore this means some
5098 	 * ranges can still be locked and eviction started because before
5099 	 * submitting those bios, which are executed by a separate task (work
5100 	 * queue kthread), inode references (inode->i_count) were not taken
5101 	 * (which would be dropped in the end io callback of each bio).
5102 	 * Therefore here we effectively end up waiting for those bios and
5103 	 * anyone else holding locked ranges without having bumped the inode's
5104 	 * reference count - if we don't do it, when they access the inode's
5105 	 * io_tree to unlock a range it may be too late, leading to an
5106 	 * use-after-free issue.
5107 	 */
5108 	spin_lock(&io_tree->lock);
5109 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5110 		struct extent_state *state;
5111 		struct extent_state *cached_state = NULL;
5112 		u64 start;
5113 		u64 end;
5114 		unsigned state_flags;
5115 
5116 		node = rb_first(&io_tree->state);
5117 		state = rb_entry(node, struct extent_state, rb_node);
5118 		start = state->start;
5119 		end = state->end;
5120 		state_flags = state->state;
5121 		spin_unlock(&io_tree->lock);
5122 
5123 		lock_extent(io_tree, start, end, &cached_state);
5124 
5125 		/*
5126 		 * If still has DELALLOC flag, the extent didn't reach disk,
5127 		 * and its reserved space won't be freed by delayed_ref.
5128 		 * So we need to free its reserved space here.
5129 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5130 		 *
5131 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5132 		 */
5133 		if (state_flags & EXTENT_DELALLOC)
5134 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5135 					       end - start + 1);
5136 
5137 		clear_extent_bit(io_tree, start, end,
5138 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5139 				 &cached_state);
5140 
5141 		cond_resched();
5142 		spin_lock(&io_tree->lock);
5143 	}
5144 	spin_unlock(&io_tree->lock);
5145 }
5146 
5147 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5148 							struct btrfs_block_rsv *rsv)
5149 {
5150 	struct btrfs_fs_info *fs_info = root->fs_info;
5151 	struct btrfs_trans_handle *trans;
5152 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5153 	int ret;
5154 
5155 	/*
5156 	 * Eviction should be taking place at some place safe because of our
5157 	 * delayed iputs.  However the normal flushing code will run delayed
5158 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5159 	 *
5160 	 * We reserve the delayed_refs_extra here again because we can't use
5161 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5162 	 * above.  We reserve our extra bit here because we generate a ton of
5163 	 * delayed refs activity by truncating.
5164 	 *
5165 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5166 	 * if we fail to make this reservation we can re-try without the
5167 	 * delayed_refs_extra so we can make some forward progress.
5168 	 */
5169 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5170 				     BTRFS_RESERVE_FLUSH_EVICT);
5171 	if (ret) {
5172 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5173 					     BTRFS_RESERVE_FLUSH_EVICT);
5174 		if (ret) {
5175 			btrfs_warn(fs_info,
5176 				   "could not allocate space for delete; will truncate on mount");
5177 			return ERR_PTR(-ENOSPC);
5178 		}
5179 		delayed_refs_extra = 0;
5180 	}
5181 
5182 	trans = btrfs_join_transaction(root);
5183 	if (IS_ERR(trans))
5184 		return trans;
5185 
5186 	if (delayed_refs_extra) {
5187 		trans->block_rsv = &fs_info->trans_block_rsv;
5188 		trans->bytes_reserved = delayed_refs_extra;
5189 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5190 					delayed_refs_extra, true);
5191 	}
5192 	return trans;
5193 }
5194 
5195 void btrfs_evict_inode(struct inode *inode)
5196 {
5197 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5198 	struct btrfs_trans_handle *trans;
5199 	struct btrfs_root *root = BTRFS_I(inode)->root;
5200 	struct btrfs_block_rsv *rsv = NULL;
5201 	int ret;
5202 
5203 	trace_btrfs_inode_evict(inode);
5204 
5205 	if (!root) {
5206 		fsverity_cleanup_inode(inode);
5207 		clear_inode(inode);
5208 		return;
5209 	}
5210 
5211 	evict_inode_truncate_pages(inode);
5212 
5213 	if (inode->i_nlink &&
5214 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5215 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5216 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5217 		goto out;
5218 
5219 	if (is_bad_inode(inode))
5220 		goto out;
5221 
5222 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5223 		goto out;
5224 
5225 	if (inode->i_nlink > 0) {
5226 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5227 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5228 		goto out;
5229 	}
5230 
5231 	/*
5232 	 * This makes sure the inode item in tree is uptodate and the space for
5233 	 * the inode update is released.
5234 	 */
5235 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5236 	if (ret)
5237 		goto out;
5238 
5239 	/*
5240 	 * This drops any pending insert or delete operations we have for this
5241 	 * inode.  We could have a delayed dir index deletion queued up, but
5242 	 * we're removing the inode completely so that'll be taken care of in
5243 	 * the truncate.
5244 	 */
5245 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5246 
5247 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5248 	if (!rsv)
5249 		goto out;
5250 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5251 	rsv->failfast = true;
5252 
5253 	btrfs_i_size_write(BTRFS_I(inode), 0);
5254 
5255 	while (1) {
5256 		struct btrfs_truncate_control control = {
5257 			.inode = BTRFS_I(inode),
5258 			.ino = btrfs_ino(BTRFS_I(inode)),
5259 			.new_size = 0,
5260 			.min_type = 0,
5261 		};
5262 
5263 		trans = evict_refill_and_join(root, rsv);
5264 		if (IS_ERR(trans))
5265 			goto out;
5266 
5267 		trans->block_rsv = rsv;
5268 
5269 		ret = btrfs_truncate_inode_items(trans, root, &control);
5270 		trans->block_rsv = &fs_info->trans_block_rsv;
5271 		btrfs_end_transaction(trans);
5272 		/*
5273 		 * We have not added new delayed items for our inode after we
5274 		 * have flushed its delayed items, so no need to throttle on
5275 		 * delayed items. However we have modified extent buffers.
5276 		 */
5277 		btrfs_btree_balance_dirty_nodelay(fs_info);
5278 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5279 			goto out;
5280 		else if (!ret)
5281 			break;
5282 	}
5283 
5284 	/*
5285 	 * Errors here aren't a big deal, it just means we leave orphan items in
5286 	 * the tree. They will be cleaned up on the next mount. If the inode
5287 	 * number gets reused, cleanup deletes the orphan item without doing
5288 	 * anything, and unlink reuses the existing orphan item.
5289 	 *
5290 	 * If it turns out that we are dropping too many of these, we might want
5291 	 * to add a mechanism for retrying these after a commit.
5292 	 */
5293 	trans = evict_refill_and_join(root, rsv);
5294 	if (!IS_ERR(trans)) {
5295 		trans->block_rsv = rsv;
5296 		btrfs_orphan_del(trans, BTRFS_I(inode));
5297 		trans->block_rsv = &fs_info->trans_block_rsv;
5298 		btrfs_end_transaction(trans);
5299 	}
5300 
5301 out:
5302 	btrfs_free_block_rsv(fs_info, rsv);
5303 	/*
5304 	 * If we didn't successfully delete, the orphan item will still be in
5305 	 * the tree and we'll retry on the next mount. Again, we might also want
5306 	 * to retry these periodically in the future.
5307 	 */
5308 	btrfs_remove_delayed_node(BTRFS_I(inode));
5309 	fsverity_cleanup_inode(inode);
5310 	clear_inode(inode);
5311 }
5312 
5313 /*
5314  * Return the key found in the dir entry in the location pointer, fill @type
5315  * with BTRFS_FT_*, and return 0.
5316  *
5317  * If no dir entries were found, returns -ENOENT.
5318  * If found a corrupted location in dir entry, returns -EUCLEAN.
5319  */
5320 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5321 			       struct btrfs_key *location, u8 *type)
5322 {
5323 	struct btrfs_dir_item *di;
5324 	struct btrfs_path *path;
5325 	struct btrfs_root *root = dir->root;
5326 	int ret = 0;
5327 	struct fscrypt_name fname;
5328 
5329 	path = btrfs_alloc_path();
5330 	if (!path)
5331 		return -ENOMEM;
5332 
5333 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5334 	if (ret < 0)
5335 		goto out;
5336 	/*
5337 	 * fscrypt_setup_filename() should never return a positive value, but
5338 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5339 	 */
5340 	ASSERT(ret == 0);
5341 
5342 	/* This needs to handle no-key deletions later on */
5343 
5344 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5345 				   &fname.disk_name, 0);
5346 	if (IS_ERR_OR_NULL(di)) {
5347 		ret = di ? PTR_ERR(di) : -ENOENT;
5348 		goto out;
5349 	}
5350 
5351 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5352 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5353 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5354 		ret = -EUCLEAN;
5355 		btrfs_warn(root->fs_info,
5356 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5357 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5358 			   location->objectid, location->type, location->offset);
5359 	}
5360 	if (!ret)
5361 		*type = btrfs_dir_ftype(path->nodes[0], di);
5362 out:
5363 	fscrypt_free_filename(&fname);
5364 	btrfs_free_path(path);
5365 	return ret;
5366 }
5367 
5368 /*
5369  * when we hit a tree root in a directory, the btrfs part of the inode
5370  * needs to be changed to reflect the root directory of the tree root.  This
5371  * is kind of like crossing a mount point.
5372  */
5373 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5374 				    struct btrfs_inode *dir,
5375 				    struct dentry *dentry,
5376 				    struct btrfs_key *location,
5377 				    struct btrfs_root **sub_root)
5378 {
5379 	struct btrfs_path *path;
5380 	struct btrfs_root *new_root;
5381 	struct btrfs_root_ref *ref;
5382 	struct extent_buffer *leaf;
5383 	struct btrfs_key key;
5384 	int ret;
5385 	int err = 0;
5386 	struct fscrypt_name fname;
5387 
5388 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5389 	if (ret)
5390 		return ret;
5391 
5392 	path = btrfs_alloc_path();
5393 	if (!path) {
5394 		err = -ENOMEM;
5395 		goto out;
5396 	}
5397 
5398 	err = -ENOENT;
5399 	key.objectid = dir->root->root_key.objectid;
5400 	key.type = BTRFS_ROOT_REF_KEY;
5401 	key.offset = location->objectid;
5402 
5403 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5404 	if (ret) {
5405 		if (ret < 0)
5406 			err = ret;
5407 		goto out;
5408 	}
5409 
5410 	leaf = path->nodes[0];
5411 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5412 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5413 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5414 		goto out;
5415 
5416 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5417 				   (unsigned long)(ref + 1), fname.disk_name.len);
5418 	if (ret)
5419 		goto out;
5420 
5421 	btrfs_release_path(path);
5422 
5423 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5424 	if (IS_ERR(new_root)) {
5425 		err = PTR_ERR(new_root);
5426 		goto out;
5427 	}
5428 
5429 	*sub_root = new_root;
5430 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5431 	location->type = BTRFS_INODE_ITEM_KEY;
5432 	location->offset = 0;
5433 	err = 0;
5434 out:
5435 	btrfs_free_path(path);
5436 	fscrypt_free_filename(&fname);
5437 	return err;
5438 }
5439 
5440 static void inode_tree_add(struct btrfs_inode *inode)
5441 {
5442 	struct btrfs_root *root = inode->root;
5443 	struct btrfs_inode *entry;
5444 	struct rb_node **p;
5445 	struct rb_node *parent;
5446 	struct rb_node *new = &inode->rb_node;
5447 	u64 ino = btrfs_ino(inode);
5448 
5449 	if (inode_unhashed(&inode->vfs_inode))
5450 		return;
5451 	parent = NULL;
5452 	spin_lock(&root->inode_lock);
5453 	p = &root->inode_tree.rb_node;
5454 	while (*p) {
5455 		parent = *p;
5456 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5457 
5458 		if (ino < btrfs_ino(entry))
5459 			p = &parent->rb_left;
5460 		else if (ino > btrfs_ino(entry))
5461 			p = &parent->rb_right;
5462 		else {
5463 			WARN_ON(!(entry->vfs_inode.i_state &
5464 				  (I_WILL_FREE | I_FREEING)));
5465 			rb_replace_node(parent, new, &root->inode_tree);
5466 			RB_CLEAR_NODE(parent);
5467 			spin_unlock(&root->inode_lock);
5468 			return;
5469 		}
5470 	}
5471 	rb_link_node(new, parent, p);
5472 	rb_insert_color(new, &root->inode_tree);
5473 	spin_unlock(&root->inode_lock);
5474 }
5475 
5476 static void inode_tree_del(struct btrfs_inode *inode)
5477 {
5478 	struct btrfs_root *root = inode->root;
5479 	int empty = 0;
5480 
5481 	spin_lock(&root->inode_lock);
5482 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5483 		rb_erase(&inode->rb_node, &root->inode_tree);
5484 		RB_CLEAR_NODE(&inode->rb_node);
5485 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 	}
5487 	spin_unlock(&root->inode_lock);
5488 
5489 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5490 		spin_lock(&root->inode_lock);
5491 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5492 		spin_unlock(&root->inode_lock);
5493 		if (empty)
5494 			btrfs_add_dead_root(root);
5495 	}
5496 }
5497 
5498 
5499 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5500 {
5501 	struct btrfs_iget_args *args = p;
5502 
5503 	inode->i_ino = args->ino;
5504 	BTRFS_I(inode)->location.objectid = args->ino;
5505 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5506 	BTRFS_I(inode)->location.offset = 0;
5507 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5508 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5509 
5510 	if (args->root && args->root == args->root->fs_info->tree_root &&
5511 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5512 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5513 			&BTRFS_I(inode)->runtime_flags);
5514 	return 0;
5515 }
5516 
5517 static int btrfs_find_actor(struct inode *inode, void *opaque)
5518 {
5519 	struct btrfs_iget_args *args = opaque;
5520 
5521 	return args->ino == BTRFS_I(inode)->location.objectid &&
5522 		args->root == BTRFS_I(inode)->root;
5523 }
5524 
5525 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5526 				       struct btrfs_root *root)
5527 {
5528 	struct inode *inode;
5529 	struct btrfs_iget_args args;
5530 	unsigned long hashval = btrfs_inode_hash(ino, root);
5531 
5532 	args.ino = ino;
5533 	args.root = root;
5534 
5535 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5536 			     btrfs_init_locked_inode,
5537 			     (void *)&args);
5538 	return inode;
5539 }
5540 
5541 /*
5542  * Get an inode object given its inode number and corresponding root.
5543  * Path can be preallocated to prevent recursing back to iget through
5544  * allocator. NULL is also valid but may require an additional allocation
5545  * later.
5546  */
5547 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5548 			      struct btrfs_root *root, struct btrfs_path *path)
5549 {
5550 	struct inode *inode;
5551 
5552 	inode = btrfs_iget_locked(s, ino, root);
5553 	if (!inode)
5554 		return ERR_PTR(-ENOMEM);
5555 
5556 	if (inode->i_state & I_NEW) {
5557 		int ret;
5558 
5559 		ret = btrfs_read_locked_inode(inode, path);
5560 		if (!ret) {
5561 			inode_tree_add(BTRFS_I(inode));
5562 			unlock_new_inode(inode);
5563 		} else {
5564 			iget_failed(inode);
5565 			/*
5566 			 * ret > 0 can come from btrfs_search_slot called by
5567 			 * btrfs_read_locked_inode, this means the inode item
5568 			 * was not found.
5569 			 */
5570 			if (ret > 0)
5571 				ret = -ENOENT;
5572 			inode = ERR_PTR(ret);
5573 		}
5574 	}
5575 
5576 	return inode;
5577 }
5578 
5579 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5580 {
5581 	return btrfs_iget_path(s, ino, root, NULL);
5582 }
5583 
5584 static struct inode *new_simple_dir(struct inode *dir,
5585 				    struct btrfs_key *key,
5586 				    struct btrfs_root *root)
5587 {
5588 	struct timespec64 ts;
5589 	struct inode *inode = new_inode(dir->i_sb);
5590 
5591 	if (!inode)
5592 		return ERR_PTR(-ENOMEM);
5593 
5594 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5595 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5596 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5597 
5598 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5599 	/*
5600 	 * We only need lookup, the rest is read-only and there's no inode
5601 	 * associated with the dentry
5602 	 */
5603 	inode->i_op = &simple_dir_inode_operations;
5604 	inode->i_opflags &= ~IOP_XATTR;
5605 	inode->i_fop = &simple_dir_operations;
5606 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5607 
5608 	ts = inode_set_ctime_current(inode);
5609 	inode_set_mtime_to_ts(inode, ts);
5610 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5611 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5612 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5613 
5614 	inode->i_uid = dir->i_uid;
5615 	inode->i_gid = dir->i_gid;
5616 
5617 	return inode;
5618 }
5619 
5620 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5621 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5622 static_assert(BTRFS_FT_DIR == FT_DIR);
5623 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5624 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5625 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5626 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5627 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5628 
5629 static inline u8 btrfs_inode_type(struct inode *inode)
5630 {
5631 	return fs_umode_to_ftype(inode->i_mode);
5632 }
5633 
5634 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5635 {
5636 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5637 	struct inode *inode;
5638 	struct btrfs_root *root = BTRFS_I(dir)->root;
5639 	struct btrfs_root *sub_root = root;
5640 	struct btrfs_key location;
5641 	u8 di_type = 0;
5642 	int ret = 0;
5643 
5644 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5645 		return ERR_PTR(-ENAMETOOLONG);
5646 
5647 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5648 	if (ret < 0)
5649 		return ERR_PTR(ret);
5650 
5651 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5652 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5653 		if (IS_ERR(inode))
5654 			return inode;
5655 
5656 		/* Do extra check against inode mode with di_type */
5657 		if (btrfs_inode_type(inode) != di_type) {
5658 			btrfs_crit(fs_info,
5659 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5660 				  inode->i_mode, btrfs_inode_type(inode),
5661 				  di_type);
5662 			iput(inode);
5663 			return ERR_PTR(-EUCLEAN);
5664 		}
5665 		return inode;
5666 	}
5667 
5668 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5669 				       &location, &sub_root);
5670 	if (ret < 0) {
5671 		if (ret != -ENOENT)
5672 			inode = ERR_PTR(ret);
5673 		else
5674 			inode = new_simple_dir(dir, &location, root);
5675 	} else {
5676 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5677 		btrfs_put_root(sub_root);
5678 
5679 		if (IS_ERR(inode))
5680 			return inode;
5681 
5682 		down_read(&fs_info->cleanup_work_sem);
5683 		if (!sb_rdonly(inode->i_sb))
5684 			ret = btrfs_orphan_cleanup(sub_root);
5685 		up_read(&fs_info->cleanup_work_sem);
5686 		if (ret) {
5687 			iput(inode);
5688 			inode = ERR_PTR(ret);
5689 		}
5690 	}
5691 
5692 	return inode;
5693 }
5694 
5695 static int btrfs_dentry_delete(const struct dentry *dentry)
5696 {
5697 	struct btrfs_root *root;
5698 	struct inode *inode = d_inode(dentry);
5699 
5700 	if (!inode && !IS_ROOT(dentry))
5701 		inode = d_inode(dentry->d_parent);
5702 
5703 	if (inode) {
5704 		root = BTRFS_I(inode)->root;
5705 		if (btrfs_root_refs(&root->root_item) == 0)
5706 			return 1;
5707 
5708 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5709 			return 1;
5710 	}
5711 	return 0;
5712 }
5713 
5714 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5715 				   unsigned int flags)
5716 {
5717 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5718 
5719 	if (inode == ERR_PTR(-ENOENT))
5720 		inode = NULL;
5721 	return d_splice_alias(inode, dentry);
5722 }
5723 
5724 /*
5725  * Find the highest existing sequence number in a directory and then set the
5726  * in-memory index_cnt variable to the first free sequence number.
5727  */
5728 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5729 {
5730 	struct btrfs_root *root = inode->root;
5731 	struct btrfs_key key, found_key;
5732 	struct btrfs_path *path;
5733 	struct extent_buffer *leaf;
5734 	int ret;
5735 
5736 	key.objectid = btrfs_ino(inode);
5737 	key.type = BTRFS_DIR_INDEX_KEY;
5738 	key.offset = (u64)-1;
5739 
5740 	path = btrfs_alloc_path();
5741 	if (!path)
5742 		return -ENOMEM;
5743 
5744 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5745 	if (ret < 0)
5746 		goto out;
5747 	/* FIXME: we should be able to handle this */
5748 	if (ret == 0)
5749 		goto out;
5750 	ret = 0;
5751 
5752 	if (path->slots[0] == 0) {
5753 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5754 		goto out;
5755 	}
5756 
5757 	path->slots[0]--;
5758 
5759 	leaf = path->nodes[0];
5760 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5761 
5762 	if (found_key.objectid != btrfs_ino(inode) ||
5763 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5764 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5765 		goto out;
5766 	}
5767 
5768 	inode->index_cnt = found_key.offset + 1;
5769 out:
5770 	btrfs_free_path(path);
5771 	return ret;
5772 }
5773 
5774 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5775 {
5776 	int ret = 0;
5777 
5778 	btrfs_inode_lock(dir, 0);
5779 	if (dir->index_cnt == (u64)-1) {
5780 		ret = btrfs_inode_delayed_dir_index_count(dir);
5781 		if (ret) {
5782 			ret = btrfs_set_inode_index_count(dir);
5783 			if (ret)
5784 				goto out;
5785 		}
5786 	}
5787 
5788 	/* index_cnt is the index number of next new entry, so decrement it. */
5789 	*index = dir->index_cnt - 1;
5790 out:
5791 	btrfs_inode_unlock(dir, 0);
5792 
5793 	return ret;
5794 }
5795 
5796 /*
5797  * All this infrastructure exists because dir_emit can fault, and we are holding
5798  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5799  * our information into that, and then dir_emit from the buffer.  This is
5800  * similar to what NFS does, only we don't keep the buffer around in pagecache
5801  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5802  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5803  * tree lock.
5804  */
5805 static int btrfs_opendir(struct inode *inode, struct file *file)
5806 {
5807 	struct btrfs_file_private *private;
5808 	u64 last_index;
5809 	int ret;
5810 
5811 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5812 	if (ret)
5813 		return ret;
5814 
5815 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5816 	if (!private)
5817 		return -ENOMEM;
5818 	private->last_index = last_index;
5819 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5820 	if (!private->filldir_buf) {
5821 		kfree(private);
5822 		return -ENOMEM;
5823 	}
5824 	file->private_data = private;
5825 	return 0;
5826 }
5827 
5828 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5829 {
5830 	struct btrfs_file_private *private = file->private_data;
5831 	int ret;
5832 
5833 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5834 				       &private->last_index);
5835 	if (ret)
5836 		return ret;
5837 
5838 	return generic_file_llseek(file, offset, whence);
5839 }
5840 
5841 struct dir_entry {
5842 	u64 ino;
5843 	u64 offset;
5844 	unsigned type;
5845 	int name_len;
5846 };
5847 
5848 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5849 {
5850 	while (entries--) {
5851 		struct dir_entry *entry = addr;
5852 		char *name = (char *)(entry + 1);
5853 
5854 		ctx->pos = get_unaligned(&entry->offset);
5855 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5856 					 get_unaligned(&entry->ino),
5857 					 get_unaligned(&entry->type)))
5858 			return 1;
5859 		addr += sizeof(struct dir_entry) +
5860 			get_unaligned(&entry->name_len);
5861 		ctx->pos++;
5862 	}
5863 	return 0;
5864 }
5865 
5866 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5867 {
5868 	struct inode *inode = file_inode(file);
5869 	struct btrfs_root *root = BTRFS_I(inode)->root;
5870 	struct btrfs_file_private *private = file->private_data;
5871 	struct btrfs_dir_item *di;
5872 	struct btrfs_key key;
5873 	struct btrfs_key found_key;
5874 	struct btrfs_path *path;
5875 	void *addr;
5876 	LIST_HEAD(ins_list);
5877 	LIST_HEAD(del_list);
5878 	int ret;
5879 	char *name_ptr;
5880 	int name_len;
5881 	int entries = 0;
5882 	int total_len = 0;
5883 	bool put = false;
5884 	struct btrfs_key location;
5885 
5886 	if (!dir_emit_dots(file, ctx))
5887 		return 0;
5888 
5889 	path = btrfs_alloc_path();
5890 	if (!path)
5891 		return -ENOMEM;
5892 
5893 	addr = private->filldir_buf;
5894 	path->reada = READA_FORWARD;
5895 
5896 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5897 					      &ins_list, &del_list);
5898 
5899 again:
5900 	key.type = BTRFS_DIR_INDEX_KEY;
5901 	key.offset = ctx->pos;
5902 	key.objectid = btrfs_ino(BTRFS_I(inode));
5903 
5904 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5905 		struct dir_entry *entry;
5906 		struct extent_buffer *leaf = path->nodes[0];
5907 		u8 ftype;
5908 
5909 		if (found_key.objectid != key.objectid)
5910 			break;
5911 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5912 			break;
5913 		if (found_key.offset < ctx->pos)
5914 			continue;
5915 		if (found_key.offset > private->last_index)
5916 			break;
5917 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5918 			continue;
5919 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5920 		name_len = btrfs_dir_name_len(leaf, di);
5921 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5922 		    PAGE_SIZE) {
5923 			btrfs_release_path(path);
5924 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5925 			if (ret)
5926 				goto nopos;
5927 			addr = private->filldir_buf;
5928 			entries = 0;
5929 			total_len = 0;
5930 			goto again;
5931 		}
5932 
5933 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5934 		entry = addr;
5935 		name_ptr = (char *)(entry + 1);
5936 		read_extent_buffer(leaf, name_ptr,
5937 				   (unsigned long)(di + 1), name_len);
5938 		put_unaligned(name_len, &entry->name_len);
5939 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5940 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5941 		put_unaligned(location.objectid, &entry->ino);
5942 		put_unaligned(found_key.offset, &entry->offset);
5943 		entries++;
5944 		addr += sizeof(struct dir_entry) + name_len;
5945 		total_len += sizeof(struct dir_entry) + name_len;
5946 	}
5947 	/* Catch error encountered during iteration */
5948 	if (ret < 0)
5949 		goto err;
5950 
5951 	btrfs_release_path(path);
5952 
5953 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5954 	if (ret)
5955 		goto nopos;
5956 
5957 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5958 	if (ret)
5959 		goto nopos;
5960 
5961 	/*
5962 	 * Stop new entries from being returned after we return the last
5963 	 * entry.
5964 	 *
5965 	 * New directory entries are assigned a strictly increasing
5966 	 * offset.  This means that new entries created during readdir
5967 	 * are *guaranteed* to be seen in the future by that readdir.
5968 	 * This has broken buggy programs which operate on names as
5969 	 * they're returned by readdir.  Until we re-use freed offsets
5970 	 * we have this hack to stop new entries from being returned
5971 	 * under the assumption that they'll never reach this huge
5972 	 * offset.
5973 	 *
5974 	 * This is being careful not to overflow 32bit loff_t unless the
5975 	 * last entry requires it because doing so has broken 32bit apps
5976 	 * in the past.
5977 	 */
5978 	if (ctx->pos >= INT_MAX)
5979 		ctx->pos = LLONG_MAX;
5980 	else
5981 		ctx->pos = INT_MAX;
5982 nopos:
5983 	ret = 0;
5984 err:
5985 	if (put)
5986 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5987 	btrfs_free_path(path);
5988 	return ret;
5989 }
5990 
5991 /*
5992  * This is somewhat expensive, updating the tree every time the
5993  * inode changes.  But, it is most likely to find the inode in cache.
5994  * FIXME, needs more benchmarking...there are no reasons other than performance
5995  * to keep or drop this code.
5996  */
5997 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5998 {
5999 	struct btrfs_root *root = inode->root;
6000 	struct btrfs_fs_info *fs_info = root->fs_info;
6001 	struct btrfs_trans_handle *trans;
6002 	int ret;
6003 
6004 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6005 		return 0;
6006 
6007 	trans = btrfs_join_transaction(root);
6008 	if (IS_ERR(trans))
6009 		return PTR_ERR(trans);
6010 
6011 	ret = btrfs_update_inode(trans, inode);
6012 	if (ret == -ENOSPC || ret == -EDQUOT) {
6013 		/* whoops, lets try again with the full transaction */
6014 		btrfs_end_transaction(trans);
6015 		trans = btrfs_start_transaction(root, 1);
6016 		if (IS_ERR(trans))
6017 			return PTR_ERR(trans);
6018 
6019 		ret = btrfs_update_inode(trans, inode);
6020 	}
6021 	btrfs_end_transaction(trans);
6022 	if (inode->delayed_node)
6023 		btrfs_balance_delayed_items(fs_info);
6024 
6025 	return ret;
6026 }
6027 
6028 /*
6029  * This is a copy of file_update_time.  We need this so we can return error on
6030  * ENOSPC for updating the inode in the case of file write and mmap writes.
6031  */
6032 static int btrfs_update_time(struct inode *inode, int flags)
6033 {
6034 	struct btrfs_root *root = BTRFS_I(inode)->root;
6035 	bool dirty;
6036 
6037 	if (btrfs_root_readonly(root))
6038 		return -EROFS;
6039 
6040 	dirty = inode_update_timestamps(inode, flags);
6041 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6042 }
6043 
6044 /*
6045  * helper to find a free sequence number in a given directory.  This current
6046  * code is very simple, later versions will do smarter things in the btree
6047  */
6048 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6049 {
6050 	int ret = 0;
6051 
6052 	if (dir->index_cnt == (u64)-1) {
6053 		ret = btrfs_inode_delayed_dir_index_count(dir);
6054 		if (ret) {
6055 			ret = btrfs_set_inode_index_count(dir);
6056 			if (ret)
6057 				return ret;
6058 		}
6059 	}
6060 
6061 	*index = dir->index_cnt;
6062 	dir->index_cnt++;
6063 
6064 	return ret;
6065 }
6066 
6067 static int btrfs_insert_inode_locked(struct inode *inode)
6068 {
6069 	struct btrfs_iget_args args;
6070 
6071 	args.ino = BTRFS_I(inode)->location.objectid;
6072 	args.root = BTRFS_I(inode)->root;
6073 
6074 	return insert_inode_locked4(inode,
6075 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6076 		   btrfs_find_actor, &args);
6077 }
6078 
6079 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6080 			    unsigned int *trans_num_items)
6081 {
6082 	struct inode *dir = args->dir;
6083 	struct inode *inode = args->inode;
6084 	int ret;
6085 
6086 	if (!args->orphan) {
6087 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6088 					     &args->fname);
6089 		if (ret)
6090 			return ret;
6091 	}
6092 
6093 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6094 	if (ret) {
6095 		fscrypt_free_filename(&args->fname);
6096 		return ret;
6097 	}
6098 
6099 	/* 1 to add inode item */
6100 	*trans_num_items = 1;
6101 	/* 1 to add compression property */
6102 	if (BTRFS_I(dir)->prop_compress)
6103 		(*trans_num_items)++;
6104 	/* 1 to add default ACL xattr */
6105 	if (args->default_acl)
6106 		(*trans_num_items)++;
6107 	/* 1 to add access ACL xattr */
6108 	if (args->acl)
6109 		(*trans_num_items)++;
6110 #ifdef CONFIG_SECURITY
6111 	/* 1 to add LSM xattr */
6112 	if (dir->i_security)
6113 		(*trans_num_items)++;
6114 #endif
6115 	if (args->orphan) {
6116 		/* 1 to add orphan item */
6117 		(*trans_num_items)++;
6118 	} else {
6119 		/*
6120 		 * 1 to add dir item
6121 		 * 1 to add dir index
6122 		 * 1 to update parent inode item
6123 		 *
6124 		 * No need for 1 unit for the inode ref item because it is
6125 		 * inserted in a batch together with the inode item at
6126 		 * btrfs_create_new_inode().
6127 		 */
6128 		*trans_num_items += 3;
6129 	}
6130 	return 0;
6131 }
6132 
6133 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6134 {
6135 	posix_acl_release(args->acl);
6136 	posix_acl_release(args->default_acl);
6137 	fscrypt_free_filename(&args->fname);
6138 }
6139 
6140 /*
6141  * Inherit flags from the parent inode.
6142  *
6143  * Currently only the compression flags and the cow flags are inherited.
6144  */
6145 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6146 {
6147 	unsigned int flags;
6148 
6149 	flags = dir->flags;
6150 
6151 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6152 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6153 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6154 	} else if (flags & BTRFS_INODE_COMPRESS) {
6155 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6156 		inode->flags |= BTRFS_INODE_COMPRESS;
6157 	}
6158 
6159 	if (flags & BTRFS_INODE_NODATACOW) {
6160 		inode->flags |= BTRFS_INODE_NODATACOW;
6161 		if (S_ISREG(inode->vfs_inode.i_mode))
6162 			inode->flags |= BTRFS_INODE_NODATASUM;
6163 	}
6164 
6165 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6166 }
6167 
6168 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6169 			   struct btrfs_new_inode_args *args)
6170 {
6171 	struct timespec64 ts;
6172 	struct inode *dir = args->dir;
6173 	struct inode *inode = args->inode;
6174 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6175 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6176 	struct btrfs_root *root;
6177 	struct btrfs_inode_item *inode_item;
6178 	struct btrfs_key *location;
6179 	struct btrfs_path *path;
6180 	u64 objectid;
6181 	struct btrfs_inode_ref *ref;
6182 	struct btrfs_key key[2];
6183 	u32 sizes[2];
6184 	struct btrfs_item_batch batch;
6185 	unsigned long ptr;
6186 	int ret;
6187 
6188 	path = btrfs_alloc_path();
6189 	if (!path)
6190 		return -ENOMEM;
6191 
6192 	if (!args->subvol)
6193 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6194 	root = BTRFS_I(inode)->root;
6195 
6196 	ret = btrfs_get_free_objectid(root, &objectid);
6197 	if (ret)
6198 		goto out;
6199 	inode->i_ino = objectid;
6200 
6201 	if (args->orphan) {
6202 		/*
6203 		 * O_TMPFILE, set link count to 0, so that after this point, we
6204 		 * fill in an inode item with the correct link count.
6205 		 */
6206 		set_nlink(inode, 0);
6207 	} else {
6208 		trace_btrfs_inode_request(dir);
6209 
6210 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6211 		if (ret)
6212 			goto out;
6213 	}
6214 	/* index_cnt is ignored for everything but a dir. */
6215 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6216 	BTRFS_I(inode)->generation = trans->transid;
6217 	inode->i_generation = BTRFS_I(inode)->generation;
6218 
6219 	/*
6220 	 * Subvolumes don't inherit flags from their parent directory.
6221 	 * Originally this was probably by accident, but we probably can't
6222 	 * change it now without compatibility issues.
6223 	 */
6224 	if (!args->subvol)
6225 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6226 
6227 	if (S_ISREG(inode->i_mode)) {
6228 		if (btrfs_test_opt(fs_info, NODATASUM))
6229 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6230 		if (btrfs_test_opt(fs_info, NODATACOW))
6231 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6232 				BTRFS_INODE_NODATASUM;
6233 	}
6234 
6235 	location = &BTRFS_I(inode)->location;
6236 	location->objectid = objectid;
6237 	location->offset = 0;
6238 	location->type = BTRFS_INODE_ITEM_KEY;
6239 
6240 	ret = btrfs_insert_inode_locked(inode);
6241 	if (ret < 0) {
6242 		if (!args->orphan)
6243 			BTRFS_I(dir)->index_cnt--;
6244 		goto out;
6245 	}
6246 
6247 	/*
6248 	 * We could have gotten an inode number from somebody who was fsynced
6249 	 * and then removed in this same transaction, so let's just set full
6250 	 * sync since it will be a full sync anyway and this will blow away the
6251 	 * old info in the log.
6252 	 */
6253 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6254 
6255 	key[0].objectid = objectid;
6256 	key[0].type = BTRFS_INODE_ITEM_KEY;
6257 	key[0].offset = 0;
6258 
6259 	sizes[0] = sizeof(struct btrfs_inode_item);
6260 
6261 	if (!args->orphan) {
6262 		/*
6263 		 * Start new inodes with an inode_ref. This is slightly more
6264 		 * efficient for small numbers of hard links since they will
6265 		 * be packed into one item. Extended refs will kick in if we
6266 		 * add more hard links than can fit in the ref item.
6267 		 */
6268 		key[1].objectid = objectid;
6269 		key[1].type = BTRFS_INODE_REF_KEY;
6270 		if (args->subvol) {
6271 			key[1].offset = objectid;
6272 			sizes[1] = 2 + sizeof(*ref);
6273 		} else {
6274 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6275 			sizes[1] = name->len + sizeof(*ref);
6276 		}
6277 	}
6278 
6279 	batch.keys = &key[0];
6280 	batch.data_sizes = &sizes[0];
6281 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6282 	batch.nr = args->orphan ? 1 : 2;
6283 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6284 	if (ret != 0) {
6285 		btrfs_abort_transaction(trans, ret);
6286 		goto discard;
6287 	}
6288 
6289 	ts = simple_inode_init_ts(inode);
6290 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6291 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6292 
6293 	/*
6294 	 * We're going to fill the inode item now, so at this point the inode
6295 	 * must be fully initialized.
6296 	 */
6297 
6298 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6299 				  struct btrfs_inode_item);
6300 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6301 			     sizeof(*inode_item));
6302 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6303 
6304 	if (!args->orphan) {
6305 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6306 				     struct btrfs_inode_ref);
6307 		ptr = (unsigned long)(ref + 1);
6308 		if (args->subvol) {
6309 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6310 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6311 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6312 		} else {
6313 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6314 						     name->len);
6315 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6316 						  BTRFS_I(inode)->dir_index);
6317 			write_extent_buffer(path->nodes[0], name->name, ptr,
6318 					    name->len);
6319 		}
6320 	}
6321 
6322 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6323 	/*
6324 	 * We don't need the path anymore, plus inheriting properties, adding
6325 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6326 	 * allocating yet another path. So just free our path.
6327 	 */
6328 	btrfs_free_path(path);
6329 	path = NULL;
6330 
6331 	if (args->subvol) {
6332 		struct inode *parent;
6333 
6334 		/*
6335 		 * Subvolumes inherit properties from their parent subvolume,
6336 		 * not the directory they were created in.
6337 		 */
6338 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6339 				    BTRFS_I(dir)->root);
6340 		if (IS_ERR(parent)) {
6341 			ret = PTR_ERR(parent);
6342 		} else {
6343 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6344 			iput(parent);
6345 		}
6346 	} else {
6347 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6348 	}
6349 	if (ret) {
6350 		btrfs_err(fs_info,
6351 			  "error inheriting props for ino %llu (root %llu): %d",
6352 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6353 			  ret);
6354 	}
6355 
6356 	/*
6357 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6358 	 * probably a bug.
6359 	 */
6360 	if (!args->subvol) {
6361 		ret = btrfs_init_inode_security(trans, args);
6362 		if (ret) {
6363 			btrfs_abort_transaction(trans, ret);
6364 			goto discard;
6365 		}
6366 	}
6367 
6368 	inode_tree_add(BTRFS_I(inode));
6369 
6370 	trace_btrfs_inode_new(inode);
6371 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6372 
6373 	btrfs_update_root_times(trans, root);
6374 
6375 	if (args->orphan) {
6376 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6377 	} else {
6378 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6379 				     0, BTRFS_I(inode)->dir_index);
6380 	}
6381 	if (ret) {
6382 		btrfs_abort_transaction(trans, ret);
6383 		goto discard;
6384 	}
6385 
6386 	return 0;
6387 
6388 discard:
6389 	/*
6390 	 * discard_new_inode() calls iput(), but the caller owns the reference
6391 	 * to the inode.
6392 	 */
6393 	ihold(inode);
6394 	discard_new_inode(inode);
6395 out:
6396 	btrfs_free_path(path);
6397 	return ret;
6398 }
6399 
6400 /*
6401  * utility function to add 'inode' into 'parent_inode' with
6402  * a give name and a given sequence number.
6403  * if 'add_backref' is true, also insert a backref from the
6404  * inode to the parent directory.
6405  */
6406 int btrfs_add_link(struct btrfs_trans_handle *trans,
6407 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6408 		   const struct fscrypt_str *name, int add_backref, u64 index)
6409 {
6410 	int ret = 0;
6411 	struct btrfs_key key;
6412 	struct btrfs_root *root = parent_inode->root;
6413 	u64 ino = btrfs_ino(inode);
6414 	u64 parent_ino = btrfs_ino(parent_inode);
6415 
6416 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6417 		memcpy(&key, &inode->root->root_key, sizeof(key));
6418 	} else {
6419 		key.objectid = ino;
6420 		key.type = BTRFS_INODE_ITEM_KEY;
6421 		key.offset = 0;
6422 	}
6423 
6424 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6425 		ret = btrfs_add_root_ref(trans, key.objectid,
6426 					 root->root_key.objectid, parent_ino,
6427 					 index, name);
6428 	} else if (add_backref) {
6429 		ret = btrfs_insert_inode_ref(trans, root, name,
6430 					     ino, parent_ino, index);
6431 	}
6432 
6433 	/* Nothing to clean up yet */
6434 	if (ret)
6435 		return ret;
6436 
6437 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6438 				    btrfs_inode_type(&inode->vfs_inode), index);
6439 	if (ret == -EEXIST || ret == -EOVERFLOW)
6440 		goto fail_dir_item;
6441 	else if (ret) {
6442 		btrfs_abort_transaction(trans, ret);
6443 		return ret;
6444 	}
6445 
6446 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6447 			   name->len * 2);
6448 	inode_inc_iversion(&parent_inode->vfs_inode);
6449 	/*
6450 	 * If we are replaying a log tree, we do not want to update the mtime
6451 	 * and ctime of the parent directory with the current time, since the
6452 	 * log replay procedure is responsible for setting them to their correct
6453 	 * values (the ones it had when the fsync was done).
6454 	 */
6455 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6456 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6457 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6458 
6459 	ret = btrfs_update_inode(trans, parent_inode);
6460 	if (ret)
6461 		btrfs_abort_transaction(trans, ret);
6462 	return ret;
6463 
6464 fail_dir_item:
6465 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6466 		u64 local_index;
6467 		int err;
6468 		err = btrfs_del_root_ref(trans, key.objectid,
6469 					 root->root_key.objectid, parent_ino,
6470 					 &local_index, name);
6471 		if (err)
6472 			btrfs_abort_transaction(trans, err);
6473 	} else if (add_backref) {
6474 		u64 local_index;
6475 		int err;
6476 
6477 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6478 					  &local_index);
6479 		if (err)
6480 			btrfs_abort_transaction(trans, err);
6481 	}
6482 
6483 	/* Return the original error code */
6484 	return ret;
6485 }
6486 
6487 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6488 			       struct inode *inode)
6489 {
6490 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6491 	struct btrfs_root *root = BTRFS_I(dir)->root;
6492 	struct btrfs_new_inode_args new_inode_args = {
6493 		.dir = dir,
6494 		.dentry = dentry,
6495 		.inode = inode,
6496 	};
6497 	unsigned int trans_num_items;
6498 	struct btrfs_trans_handle *trans;
6499 	int err;
6500 
6501 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6502 	if (err)
6503 		goto out_inode;
6504 
6505 	trans = btrfs_start_transaction(root, trans_num_items);
6506 	if (IS_ERR(trans)) {
6507 		err = PTR_ERR(trans);
6508 		goto out_new_inode_args;
6509 	}
6510 
6511 	err = btrfs_create_new_inode(trans, &new_inode_args);
6512 	if (!err)
6513 		d_instantiate_new(dentry, inode);
6514 
6515 	btrfs_end_transaction(trans);
6516 	btrfs_btree_balance_dirty(fs_info);
6517 out_new_inode_args:
6518 	btrfs_new_inode_args_destroy(&new_inode_args);
6519 out_inode:
6520 	if (err)
6521 		iput(inode);
6522 	return err;
6523 }
6524 
6525 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6526 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6527 {
6528 	struct inode *inode;
6529 
6530 	inode = new_inode(dir->i_sb);
6531 	if (!inode)
6532 		return -ENOMEM;
6533 	inode_init_owner(idmap, inode, dir, mode);
6534 	inode->i_op = &btrfs_special_inode_operations;
6535 	init_special_inode(inode, inode->i_mode, rdev);
6536 	return btrfs_create_common(dir, dentry, inode);
6537 }
6538 
6539 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6540 			struct dentry *dentry, umode_t mode, bool excl)
6541 {
6542 	struct inode *inode;
6543 
6544 	inode = new_inode(dir->i_sb);
6545 	if (!inode)
6546 		return -ENOMEM;
6547 	inode_init_owner(idmap, inode, dir, mode);
6548 	inode->i_fop = &btrfs_file_operations;
6549 	inode->i_op = &btrfs_file_inode_operations;
6550 	inode->i_mapping->a_ops = &btrfs_aops;
6551 	return btrfs_create_common(dir, dentry, inode);
6552 }
6553 
6554 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6555 		      struct dentry *dentry)
6556 {
6557 	struct btrfs_trans_handle *trans = NULL;
6558 	struct btrfs_root *root = BTRFS_I(dir)->root;
6559 	struct inode *inode = d_inode(old_dentry);
6560 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6561 	struct fscrypt_name fname;
6562 	u64 index;
6563 	int err;
6564 	int drop_inode = 0;
6565 
6566 	/* do not allow sys_link's with other subvols of the same device */
6567 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6568 		return -EXDEV;
6569 
6570 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6571 		return -EMLINK;
6572 
6573 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6574 	if (err)
6575 		goto fail;
6576 
6577 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6578 	if (err)
6579 		goto fail;
6580 
6581 	/*
6582 	 * 2 items for inode and inode ref
6583 	 * 2 items for dir items
6584 	 * 1 item for parent inode
6585 	 * 1 item for orphan item deletion if O_TMPFILE
6586 	 */
6587 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6588 	if (IS_ERR(trans)) {
6589 		err = PTR_ERR(trans);
6590 		trans = NULL;
6591 		goto fail;
6592 	}
6593 
6594 	/* There are several dir indexes for this inode, clear the cache. */
6595 	BTRFS_I(inode)->dir_index = 0ULL;
6596 	inc_nlink(inode);
6597 	inode_inc_iversion(inode);
6598 	inode_set_ctime_current(inode);
6599 	ihold(inode);
6600 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6601 
6602 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6603 			     &fname.disk_name, 1, index);
6604 
6605 	if (err) {
6606 		drop_inode = 1;
6607 	} else {
6608 		struct dentry *parent = dentry->d_parent;
6609 
6610 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6611 		if (err)
6612 			goto fail;
6613 		if (inode->i_nlink == 1) {
6614 			/*
6615 			 * If new hard link count is 1, it's a file created
6616 			 * with open(2) O_TMPFILE flag.
6617 			 */
6618 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6619 			if (err)
6620 				goto fail;
6621 		}
6622 		d_instantiate(dentry, inode);
6623 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6624 	}
6625 
6626 fail:
6627 	fscrypt_free_filename(&fname);
6628 	if (trans)
6629 		btrfs_end_transaction(trans);
6630 	if (drop_inode) {
6631 		inode_dec_link_count(inode);
6632 		iput(inode);
6633 	}
6634 	btrfs_btree_balance_dirty(fs_info);
6635 	return err;
6636 }
6637 
6638 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6639 		       struct dentry *dentry, umode_t mode)
6640 {
6641 	struct inode *inode;
6642 
6643 	inode = new_inode(dir->i_sb);
6644 	if (!inode)
6645 		return -ENOMEM;
6646 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6647 	inode->i_op = &btrfs_dir_inode_operations;
6648 	inode->i_fop = &btrfs_dir_file_operations;
6649 	return btrfs_create_common(dir, dentry, inode);
6650 }
6651 
6652 static noinline int uncompress_inline(struct btrfs_path *path,
6653 				      struct page *page,
6654 				      struct btrfs_file_extent_item *item)
6655 {
6656 	int ret;
6657 	struct extent_buffer *leaf = path->nodes[0];
6658 	char *tmp;
6659 	size_t max_size;
6660 	unsigned long inline_size;
6661 	unsigned long ptr;
6662 	int compress_type;
6663 
6664 	compress_type = btrfs_file_extent_compression(leaf, item);
6665 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6666 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6667 	tmp = kmalloc(inline_size, GFP_NOFS);
6668 	if (!tmp)
6669 		return -ENOMEM;
6670 	ptr = btrfs_file_extent_inline_start(item);
6671 
6672 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6673 
6674 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6675 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6676 
6677 	/*
6678 	 * decompression code contains a memset to fill in any space between the end
6679 	 * of the uncompressed data and the end of max_size in case the decompressed
6680 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6681 	 * the end of an inline extent and the beginning of the next block, so we
6682 	 * cover that region here.
6683 	 */
6684 
6685 	if (max_size < PAGE_SIZE)
6686 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6687 	kfree(tmp);
6688 	return ret;
6689 }
6690 
6691 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6692 			      struct page *page)
6693 {
6694 	struct btrfs_file_extent_item *fi;
6695 	void *kaddr;
6696 	size_t copy_size;
6697 
6698 	if (!page || PageUptodate(page))
6699 		return 0;
6700 
6701 	ASSERT(page_offset(page) == 0);
6702 
6703 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6704 			    struct btrfs_file_extent_item);
6705 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6706 		return uncompress_inline(path, page, fi);
6707 
6708 	copy_size = min_t(u64, PAGE_SIZE,
6709 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6710 	kaddr = kmap_local_page(page);
6711 	read_extent_buffer(path->nodes[0], kaddr,
6712 			   btrfs_file_extent_inline_start(fi), copy_size);
6713 	kunmap_local(kaddr);
6714 	if (copy_size < PAGE_SIZE)
6715 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6716 	return 0;
6717 }
6718 
6719 /*
6720  * Lookup the first extent overlapping a range in a file.
6721  *
6722  * @inode:	file to search in
6723  * @page:	page to read extent data into if the extent is inline
6724  * @pg_offset:	offset into @page to copy to
6725  * @start:	file offset
6726  * @len:	length of range starting at @start
6727  *
6728  * Return the first &struct extent_map which overlaps the given range, reading
6729  * it from the B-tree and caching it if necessary. Note that there may be more
6730  * extents which overlap the given range after the returned extent_map.
6731  *
6732  * If @page is not NULL and the extent is inline, this also reads the extent
6733  * data directly into the page and marks the extent up to date in the io_tree.
6734  *
6735  * Return: ERR_PTR on error, non-NULL extent_map on success.
6736  */
6737 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6738 				    struct page *page, size_t pg_offset,
6739 				    u64 start, u64 len)
6740 {
6741 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6742 	int ret = 0;
6743 	u64 extent_start = 0;
6744 	u64 extent_end = 0;
6745 	u64 objectid = btrfs_ino(inode);
6746 	int extent_type = -1;
6747 	struct btrfs_path *path = NULL;
6748 	struct btrfs_root *root = inode->root;
6749 	struct btrfs_file_extent_item *item;
6750 	struct extent_buffer *leaf;
6751 	struct btrfs_key found_key;
6752 	struct extent_map *em = NULL;
6753 	struct extent_map_tree *em_tree = &inode->extent_tree;
6754 
6755 	read_lock(&em_tree->lock);
6756 	em = lookup_extent_mapping(em_tree, start, len);
6757 	read_unlock(&em_tree->lock);
6758 
6759 	if (em) {
6760 		if (em->start > start || em->start + em->len <= start)
6761 			free_extent_map(em);
6762 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6763 			free_extent_map(em);
6764 		else
6765 			goto out;
6766 	}
6767 	em = alloc_extent_map();
6768 	if (!em) {
6769 		ret = -ENOMEM;
6770 		goto out;
6771 	}
6772 	em->start = EXTENT_MAP_HOLE;
6773 	em->orig_start = EXTENT_MAP_HOLE;
6774 	em->len = (u64)-1;
6775 	em->block_len = (u64)-1;
6776 
6777 	path = btrfs_alloc_path();
6778 	if (!path) {
6779 		ret = -ENOMEM;
6780 		goto out;
6781 	}
6782 
6783 	/* Chances are we'll be called again, so go ahead and do readahead */
6784 	path->reada = READA_FORWARD;
6785 
6786 	/*
6787 	 * The same explanation in load_free_space_cache applies here as well,
6788 	 * we only read when we're loading the free space cache, and at that
6789 	 * point the commit_root has everything we need.
6790 	 */
6791 	if (btrfs_is_free_space_inode(inode)) {
6792 		path->search_commit_root = 1;
6793 		path->skip_locking = 1;
6794 	}
6795 
6796 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6797 	if (ret < 0) {
6798 		goto out;
6799 	} else if (ret > 0) {
6800 		if (path->slots[0] == 0)
6801 			goto not_found;
6802 		path->slots[0]--;
6803 		ret = 0;
6804 	}
6805 
6806 	leaf = path->nodes[0];
6807 	item = btrfs_item_ptr(leaf, path->slots[0],
6808 			      struct btrfs_file_extent_item);
6809 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6810 	if (found_key.objectid != objectid ||
6811 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6812 		/*
6813 		 * If we backup past the first extent we want to move forward
6814 		 * and see if there is an extent in front of us, otherwise we'll
6815 		 * say there is a hole for our whole search range which can
6816 		 * cause problems.
6817 		 */
6818 		extent_end = start;
6819 		goto next;
6820 	}
6821 
6822 	extent_type = btrfs_file_extent_type(leaf, item);
6823 	extent_start = found_key.offset;
6824 	extent_end = btrfs_file_extent_end(path);
6825 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6826 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6827 		/* Only regular file could have regular/prealloc extent */
6828 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6829 			ret = -EUCLEAN;
6830 			btrfs_crit(fs_info,
6831 		"regular/prealloc extent found for non-regular inode %llu",
6832 				   btrfs_ino(inode));
6833 			goto out;
6834 		}
6835 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6836 						       extent_start);
6837 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6838 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6839 						      path->slots[0],
6840 						      extent_start);
6841 	}
6842 next:
6843 	if (start >= extent_end) {
6844 		path->slots[0]++;
6845 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6846 			ret = btrfs_next_leaf(root, path);
6847 			if (ret < 0)
6848 				goto out;
6849 			else if (ret > 0)
6850 				goto not_found;
6851 
6852 			leaf = path->nodes[0];
6853 		}
6854 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6855 		if (found_key.objectid != objectid ||
6856 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6857 			goto not_found;
6858 		if (start + len <= found_key.offset)
6859 			goto not_found;
6860 		if (start > found_key.offset)
6861 			goto next;
6862 
6863 		/* New extent overlaps with existing one */
6864 		em->start = start;
6865 		em->orig_start = start;
6866 		em->len = found_key.offset - start;
6867 		em->block_start = EXTENT_MAP_HOLE;
6868 		goto insert;
6869 	}
6870 
6871 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6872 
6873 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6874 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6875 		goto insert;
6876 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6877 		/*
6878 		 * Inline extent can only exist at file offset 0. This is
6879 		 * ensured by tree-checker and inline extent creation path.
6880 		 * Thus all members representing file offsets should be zero.
6881 		 */
6882 		ASSERT(pg_offset == 0);
6883 		ASSERT(extent_start == 0);
6884 		ASSERT(em->start == 0);
6885 
6886 		/*
6887 		 * btrfs_extent_item_to_extent_map() should have properly
6888 		 * initialized em members already.
6889 		 *
6890 		 * Other members are not utilized for inline extents.
6891 		 */
6892 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6893 		ASSERT(em->len == fs_info->sectorsize);
6894 
6895 		ret = read_inline_extent(inode, path, page);
6896 		if (ret < 0)
6897 			goto out;
6898 		goto insert;
6899 	}
6900 not_found:
6901 	em->start = start;
6902 	em->orig_start = start;
6903 	em->len = len;
6904 	em->block_start = EXTENT_MAP_HOLE;
6905 insert:
6906 	ret = 0;
6907 	btrfs_release_path(path);
6908 	if (em->start > start || extent_map_end(em) <= start) {
6909 		btrfs_err(fs_info,
6910 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6911 			  em->start, em->len, start, len);
6912 		ret = -EIO;
6913 		goto out;
6914 	}
6915 
6916 	write_lock(&em_tree->lock);
6917 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6918 	write_unlock(&em_tree->lock);
6919 out:
6920 	btrfs_free_path(path);
6921 
6922 	trace_btrfs_get_extent(root, inode, em);
6923 
6924 	if (ret) {
6925 		free_extent_map(em);
6926 		return ERR_PTR(ret);
6927 	}
6928 	return em;
6929 }
6930 
6931 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6932 						  struct btrfs_dio_data *dio_data,
6933 						  const u64 start,
6934 						  const u64 len,
6935 						  const u64 orig_start,
6936 						  const u64 block_start,
6937 						  const u64 block_len,
6938 						  const u64 orig_block_len,
6939 						  const u64 ram_bytes,
6940 						  const int type)
6941 {
6942 	struct extent_map *em = NULL;
6943 	struct btrfs_ordered_extent *ordered;
6944 
6945 	if (type != BTRFS_ORDERED_NOCOW) {
6946 		em = create_io_em(inode, start, len, orig_start, block_start,
6947 				  block_len, orig_block_len, ram_bytes,
6948 				  BTRFS_COMPRESS_NONE, /* compress_type */
6949 				  type);
6950 		if (IS_ERR(em))
6951 			goto out;
6952 	}
6953 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6954 					     block_start, block_len, 0,
6955 					     (1 << type) |
6956 					     (1 << BTRFS_ORDERED_DIRECT),
6957 					     BTRFS_COMPRESS_NONE);
6958 	if (IS_ERR(ordered)) {
6959 		if (em) {
6960 			free_extent_map(em);
6961 			btrfs_drop_extent_map_range(inode, start,
6962 						    start + len - 1, false);
6963 		}
6964 		em = ERR_CAST(ordered);
6965 	} else {
6966 		ASSERT(!dio_data->ordered);
6967 		dio_data->ordered = ordered;
6968 	}
6969  out:
6970 
6971 	return em;
6972 }
6973 
6974 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6975 						  struct btrfs_dio_data *dio_data,
6976 						  u64 start, u64 len)
6977 {
6978 	struct btrfs_root *root = inode->root;
6979 	struct btrfs_fs_info *fs_info = root->fs_info;
6980 	struct extent_map *em;
6981 	struct btrfs_key ins;
6982 	u64 alloc_hint;
6983 	int ret;
6984 
6985 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6986 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6987 				   0, alloc_hint, &ins, 1, 1);
6988 	if (ret)
6989 		return ERR_PTR(ret);
6990 
6991 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6992 				     ins.objectid, ins.offset, ins.offset,
6993 				     ins.offset, BTRFS_ORDERED_REGULAR);
6994 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6995 	if (IS_ERR(em))
6996 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6997 					   1);
6998 
6999 	return em;
7000 }
7001 
7002 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7003 {
7004 	struct btrfs_block_group *block_group;
7005 	bool readonly = false;
7006 
7007 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7008 	if (!block_group || block_group->ro)
7009 		readonly = true;
7010 	if (block_group)
7011 		btrfs_put_block_group(block_group);
7012 	return readonly;
7013 }
7014 
7015 /*
7016  * Check if we can do nocow write into the range [@offset, @offset + @len)
7017  *
7018  * @offset:	File offset
7019  * @len:	The length to write, will be updated to the nocow writeable
7020  *		range
7021  * @orig_start:	(optional) Return the original file offset of the file extent
7022  * @orig_len:	(optional) Return the original on-disk length of the file extent
7023  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7024  * @strict:	if true, omit optimizations that might force us into unnecessary
7025  *		cow. e.g., don't trust generation number.
7026  *
7027  * Return:
7028  * >0	and update @len if we can do nocow write
7029  *  0	if we can't do nocow write
7030  * <0	if error happened
7031  *
7032  * NOTE: This only checks the file extents, caller is responsible to wait for
7033  *	 any ordered extents.
7034  */
7035 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7036 			      u64 *orig_start, u64 *orig_block_len,
7037 			      u64 *ram_bytes, bool nowait, bool strict)
7038 {
7039 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7040 	struct can_nocow_file_extent_args nocow_args = { 0 };
7041 	struct btrfs_path *path;
7042 	int ret;
7043 	struct extent_buffer *leaf;
7044 	struct btrfs_root *root = BTRFS_I(inode)->root;
7045 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7046 	struct btrfs_file_extent_item *fi;
7047 	struct btrfs_key key;
7048 	int found_type;
7049 
7050 	path = btrfs_alloc_path();
7051 	if (!path)
7052 		return -ENOMEM;
7053 	path->nowait = nowait;
7054 
7055 	ret = btrfs_lookup_file_extent(NULL, root, path,
7056 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7057 	if (ret < 0)
7058 		goto out;
7059 
7060 	if (ret == 1) {
7061 		if (path->slots[0] == 0) {
7062 			/* can't find the item, must cow */
7063 			ret = 0;
7064 			goto out;
7065 		}
7066 		path->slots[0]--;
7067 	}
7068 	ret = 0;
7069 	leaf = path->nodes[0];
7070 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7071 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7072 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7073 		/* not our file or wrong item type, must cow */
7074 		goto out;
7075 	}
7076 
7077 	if (key.offset > offset) {
7078 		/* Wrong offset, must cow */
7079 		goto out;
7080 	}
7081 
7082 	if (btrfs_file_extent_end(path) <= offset)
7083 		goto out;
7084 
7085 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7086 	found_type = btrfs_file_extent_type(leaf, fi);
7087 	if (ram_bytes)
7088 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7089 
7090 	nocow_args.start = offset;
7091 	nocow_args.end = offset + *len - 1;
7092 	nocow_args.strict = strict;
7093 	nocow_args.free_path = true;
7094 
7095 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7096 	/* can_nocow_file_extent() has freed the path. */
7097 	path = NULL;
7098 
7099 	if (ret != 1) {
7100 		/* Treat errors as not being able to NOCOW. */
7101 		ret = 0;
7102 		goto out;
7103 	}
7104 
7105 	ret = 0;
7106 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7107 		goto out;
7108 
7109 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7110 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7111 		u64 range_end;
7112 
7113 		range_end = round_up(offset + nocow_args.num_bytes,
7114 				     root->fs_info->sectorsize) - 1;
7115 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7116 		if (ret) {
7117 			ret = -EAGAIN;
7118 			goto out;
7119 		}
7120 	}
7121 
7122 	if (orig_start)
7123 		*orig_start = key.offset - nocow_args.extent_offset;
7124 	if (orig_block_len)
7125 		*orig_block_len = nocow_args.disk_num_bytes;
7126 
7127 	*len = nocow_args.num_bytes;
7128 	ret = 1;
7129 out:
7130 	btrfs_free_path(path);
7131 	return ret;
7132 }
7133 
7134 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7135 			      struct extent_state **cached_state,
7136 			      unsigned int iomap_flags)
7137 {
7138 	const bool writing = (iomap_flags & IOMAP_WRITE);
7139 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7140 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7141 	struct btrfs_ordered_extent *ordered;
7142 	int ret = 0;
7143 
7144 	while (1) {
7145 		if (nowait) {
7146 			if (!try_lock_extent(io_tree, lockstart, lockend,
7147 					     cached_state))
7148 				return -EAGAIN;
7149 		} else {
7150 			lock_extent(io_tree, lockstart, lockend, cached_state);
7151 		}
7152 		/*
7153 		 * We're concerned with the entire range that we're going to be
7154 		 * doing DIO to, so we need to make sure there's no ordered
7155 		 * extents in this range.
7156 		 */
7157 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7158 						     lockend - lockstart + 1);
7159 
7160 		/*
7161 		 * We need to make sure there are no buffered pages in this
7162 		 * range either, we could have raced between the invalidate in
7163 		 * generic_file_direct_write and locking the extent.  The
7164 		 * invalidate needs to happen so that reads after a write do not
7165 		 * get stale data.
7166 		 */
7167 		if (!ordered &&
7168 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7169 							 lockstart, lockend)))
7170 			break;
7171 
7172 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7173 
7174 		if (ordered) {
7175 			if (nowait) {
7176 				btrfs_put_ordered_extent(ordered);
7177 				ret = -EAGAIN;
7178 				break;
7179 			}
7180 			/*
7181 			 * If we are doing a DIO read and the ordered extent we
7182 			 * found is for a buffered write, we can not wait for it
7183 			 * to complete and retry, because if we do so we can
7184 			 * deadlock with concurrent buffered writes on page
7185 			 * locks. This happens only if our DIO read covers more
7186 			 * than one extent map, if at this point has already
7187 			 * created an ordered extent for a previous extent map
7188 			 * and locked its range in the inode's io tree, and a
7189 			 * concurrent write against that previous extent map's
7190 			 * range and this range started (we unlock the ranges
7191 			 * in the io tree only when the bios complete and
7192 			 * buffered writes always lock pages before attempting
7193 			 * to lock range in the io tree).
7194 			 */
7195 			if (writing ||
7196 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7197 				btrfs_start_ordered_extent(ordered);
7198 			else
7199 				ret = nowait ? -EAGAIN : -ENOTBLK;
7200 			btrfs_put_ordered_extent(ordered);
7201 		} else {
7202 			/*
7203 			 * We could trigger writeback for this range (and wait
7204 			 * for it to complete) and then invalidate the pages for
7205 			 * this range (through invalidate_inode_pages2_range()),
7206 			 * but that can lead us to a deadlock with a concurrent
7207 			 * call to readahead (a buffered read or a defrag call
7208 			 * triggered a readahead) on a page lock due to an
7209 			 * ordered dio extent we created before but did not have
7210 			 * yet a corresponding bio submitted (whence it can not
7211 			 * complete), which makes readahead wait for that
7212 			 * ordered extent to complete while holding a lock on
7213 			 * that page.
7214 			 */
7215 			ret = nowait ? -EAGAIN : -ENOTBLK;
7216 		}
7217 
7218 		if (ret)
7219 			break;
7220 
7221 		cond_resched();
7222 	}
7223 
7224 	return ret;
7225 }
7226 
7227 /* The callers of this must take lock_extent() */
7228 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7229 				       u64 len, u64 orig_start, u64 block_start,
7230 				       u64 block_len, u64 orig_block_len,
7231 				       u64 ram_bytes, int compress_type,
7232 				       int type)
7233 {
7234 	struct extent_map *em;
7235 	int ret;
7236 
7237 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7238 	       type == BTRFS_ORDERED_COMPRESSED ||
7239 	       type == BTRFS_ORDERED_NOCOW ||
7240 	       type == BTRFS_ORDERED_REGULAR);
7241 
7242 	em = alloc_extent_map();
7243 	if (!em)
7244 		return ERR_PTR(-ENOMEM);
7245 
7246 	em->start = start;
7247 	em->orig_start = orig_start;
7248 	em->len = len;
7249 	em->block_len = block_len;
7250 	em->block_start = block_start;
7251 	em->orig_block_len = orig_block_len;
7252 	em->ram_bytes = ram_bytes;
7253 	em->generation = -1;
7254 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7255 	if (type == BTRFS_ORDERED_PREALLOC) {
7256 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7257 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7258 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7259 		em->compress_type = compress_type;
7260 	}
7261 
7262 	ret = btrfs_replace_extent_map_range(inode, em, true);
7263 	if (ret) {
7264 		free_extent_map(em);
7265 		return ERR_PTR(ret);
7266 	}
7267 
7268 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7269 	return em;
7270 }
7271 
7272 
7273 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7274 					 struct inode *inode,
7275 					 struct btrfs_dio_data *dio_data,
7276 					 u64 start, u64 *lenp,
7277 					 unsigned int iomap_flags)
7278 {
7279 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7280 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7281 	struct extent_map *em = *map;
7282 	int type;
7283 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7284 	struct btrfs_block_group *bg;
7285 	bool can_nocow = false;
7286 	bool space_reserved = false;
7287 	u64 len = *lenp;
7288 	u64 prev_len;
7289 	int ret = 0;
7290 
7291 	/*
7292 	 * We don't allocate a new extent in the following cases
7293 	 *
7294 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7295 	 * existing extent.
7296 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7297 	 * just use the extent.
7298 	 *
7299 	 */
7300 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7301 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7302 	     em->block_start != EXTENT_MAP_HOLE)) {
7303 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7304 			type = BTRFS_ORDERED_PREALLOC;
7305 		else
7306 			type = BTRFS_ORDERED_NOCOW;
7307 		len = min(len, em->len - (start - em->start));
7308 		block_start = em->block_start + (start - em->start);
7309 
7310 		if (can_nocow_extent(inode, start, &len, &orig_start,
7311 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7312 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7313 			if (bg)
7314 				can_nocow = true;
7315 		}
7316 	}
7317 
7318 	prev_len = len;
7319 	if (can_nocow) {
7320 		struct extent_map *em2;
7321 
7322 		/* We can NOCOW, so only need to reserve metadata space. */
7323 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7324 						      nowait);
7325 		if (ret < 0) {
7326 			/* Our caller expects us to free the input extent map. */
7327 			free_extent_map(em);
7328 			*map = NULL;
7329 			btrfs_dec_nocow_writers(bg);
7330 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7331 				ret = -EAGAIN;
7332 			goto out;
7333 		}
7334 		space_reserved = true;
7335 
7336 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7337 					      orig_start, block_start,
7338 					      len, orig_block_len,
7339 					      ram_bytes, type);
7340 		btrfs_dec_nocow_writers(bg);
7341 		if (type == BTRFS_ORDERED_PREALLOC) {
7342 			free_extent_map(em);
7343 			*map = em2;
7344 			em = em2;
7345 		}
7346 
7347 		if (IS_ERR(em2)) {
7348 			ret = PTR_ERR(em2);
7349 			goto out;
7350 		}
7351 
7352 		dio_data->nocow_done = true;
7353 	} else {
7354 		/* Our caller expects us to free the input extent map. */
7355 		free_extent_map(em);
7356 		*map = NULL;
7357 
7358 		if (nowait) {
7359 			ret = -EAGAIN;
7360 			goto out;
7361 		}
7362 
7363 		/*
7364 		 * If we could not allocate data space before locking the file
7365 		 * range and we can't do a NOCOW write, then we have to fail.
7366 		 */
7367 		if (!dio_data->data_space_reserved) {
7368 			ret = -ENOSPC;
7369 			goto out;
7370 		}
7371 
7372 		/*
7373 		 * We have to COW and we have already reserved data space before,
7374 		 * so now we reserve only metadata.
7375 		 */
7376 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7377 						      false);
7378 		if (ret < 0)
7379 			goto out;
7380 		space_reserved = true;
7381 
7382 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7383 		if (IS_ERR(em)) {
7384 			ret = PTR_ERR(em);
7385 			goto out;
7386 		}
7387 		*map = em;
7388 		len = min(len, em->len - (start - em->start));
7389 		if (len < prev_len)
7390 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7391 							prev_len - len, true);
7392 	}
7393 
7394 	/*
7395 	 * We have created our ordered extent, so we can now release our reservation
7396 	 * for an outstanding extent.
7397 	 */
7398 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7399 
7400 	/*
7401 	 * Need to update the i_size under the extent lock so buffered
7402 	 * readers will get the updated i_size when we unlock.
7403 	 */
7404 	if (start + len > i_size_read(inode))
7405 		i_size_write(inode, start + len);
7406 out:
7407 	if (ret && space_reserved) {
7408 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7409 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7410 	}
7411 	*lenp = len;
7412 	return ret;
7413 }
7414 
7415 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7416 		loff_t length, unsigned int flags, struct iomap *iomap,
7417 		struct iomap *srcmap)
7418 {
7419 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7421 	struct extent_map *em;
7422 	struct extent_state *cached_state = NULL;
7423 	struct btrfs_dio_data *dio_data = iter->private;
7424 	u64 lockstart, lockend;
7425 	const bool write = !!(flags & IOMAP_WRITE);
7426 	int ret = 0;
7427 	u64 len = length;
7428 	const u64 data_alloc_len = length;
7429 	bool unlock_extents = false;
7430 
7431 	/*
7432 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7433 	 * we're NOWAIT we may submit a bio for a partial range and return
7434 	 * EIOCBQUEUED, which would result in an errant short read.
7435 	 *
7436 	 * The best way to handle this would be to allow for partial completions
7437 	 * of iocb's, so we could submit the partial bio, return and fault in
7438 	 * the rest of the pages, and then submit the io for the rest of the
7439 	 * range.  However we don't have that currently, so simply return
7440 	 * -EAGAIN at this point so that the normal path is used.
7441 	 */
7442 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7443 		return -EAGAIN;
7444 
7445 	/*
7446 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7447 	 * to allocate a contiguous array for the checksums.
7448 	 */
7449 	if (!write)
7450 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7451 
7452 	lockstart = start;
7453 	lockend = start + len - 1;
7454 
7455 	/*
7456 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7457 	 * enough if we've written compressed pages to this area, so we need to
7458 	 * flush the dirty pages again to make absolutely sure that any
7459 	 * outstanding dirty pages are on disk - the first flush only starts
7460 	 * compression on the data, while keeping the pages locked, so by the
7461 	 * time the second flush returns we know bios for the compressed pages
7462 	 * were submitted and finished, and the pages no longer under writeback.
7463 	 *
7464 	 * If we have a NOWAIT request and we have any pages in the range that
7465 	 * are locked, likely due to compression still in progress, we don't want
7466 	 * to block on page locks. We also don't want to block on pages marked as
7467 	 * dirty or under writeback (same as for the non-compression case).
7468 	 * iomap_dio_rw() did the same check, but after that and before we got
7469 	 * here, mmap'ed writes may have happened or buffered reads started
7470 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7471 	 * the file range yet.
7472 	 */
7473 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7474 		     &BTRFS_I(inode)->runtime_flags)) {
7475 		if (flags & IOMAP_NOWAIT) {
7476 			if (filemap_range_needs_writeback(inode->i_mapping,
7477 							  lockstart, lockend))
7478 				return -EAGAIN;
7479 		} else {
7480 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7481 						       start + length - 1);
7482 			if (ret)
7483 				return ret;
7484 		}
7485 	}
7486 
7487 	memset(dio_data, 0, sizeof(*dio_data));
7488 
7489 	/*
7490 	 * We always try to allocate data space and must do it before locking
7491 	 * the file range, to avoid deadlocks with concurrent writes to the same
7492 	 * range if the range has several extents and the writes don't expand the
7493 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7494 	 * allocate data space here we continue and later, after locking the
7495 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7496 	 * NOCOW write.
7497 	 */
7498 	if (write && !(flags & IOMAP_NOWAIT)) {
7499 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7500 						  &dio_data->data_reserved,
7501 						  start, data_alloc_len, false);
7502 		if (!ret)
7503 			dio_data->data_space_reserved = true;
7504 		else if (ret && !(BTRFS_I(inode)->flags &
7505 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7506 			goto err;
7507 	}
7508 
7509 	/*
7510 	 * If this errors out it's because we couldn't invalidate pagecache for
7511 	 * this range and we need to fallback to buffered IO, or we are doing a
7512 	 * NOWAIT read/write and we need to block.
7513 	 */
7514 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7515 	if (ret < 0)
7516 		goto err;
7517 
7518 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7519 	if (IS_ERR(em)) {
7520 		ret = PTR_ERR(em);
7521 		goto unlock_err;
7522 	}
7523 
7524 	/*
7525 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7526 	 * io.  INLINE is special, and we could probably kludge it in here, but
7527 	 * it's still buffered so for safety lets just fall back to the generic
7528 	 * buffered path.
7529 	 *
7530 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7531 	 * decompress it, so there will be buffering required no matter what we
7532 	 * do, so go ahead and fallback to buffered.
7533 	 *
7534 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7535 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7536 	 * the generic code.
7537 	 */
7538 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7539 	    em->block_start == EXTENT_MAP_INLINE) {
7540 		free_extent_map(em);
7541 		/*
7542 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7543 		 * fallback to buffered IO. This is not only because we can
7544 		 * block with buffered IO (no support for NOWAIT semantics at
7545 		 * the moment) but also to avoid returning short reads to user
7546 		 * space - this happens if we were able to read some data from
7547 		 * previous non-compressed extents and then when we fallback to
7548 		 * buffered IO, at btrfs_file_read_iter() by calling
7549 		 * filemap_read(), we fail to fault in pages for the read buffer,
7550 		 * in which case filemap_read() returns a short read (the number
7551 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7552 		 */
7553 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7554 		goto unlock_err;
7555 	}
7556 
7557 	len = min(len, em->len - (start - em->start));
7558 
7559 	/*
7560 	 * If we have a NOWAIT request and the range contains multiple extents
7561 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7562 	 * caller fallback to a context where it can do a blocking (without
7563 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7564 	 * success to the caller, which is not optimal for writes and for reads
7565 	 * it can result in unexpected behaviour for an application.
7566 	 *
7567 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7568 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7569 	 * asked for, resulting in an unexpected, and incorrect, short read.
7570 	 * That is, the caller asked to read N bytes and we return less than that,
7571 	 * which is wrong unless we are crossing EOF. This happens if we get a
7572 	 * page fault error when trying to fault in pages for the buffer that is
7573 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7574 	 * have previously submitted bios for other extents in the range, in
7575 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7576 	 * those bios have completed by the time we get the page fault error,
7577 	 * which we return back to our caller - we should only return EIOCBQUEUED
7578 	 * after we have submitted bios for all the extents in the range.
7579 	 */
7580 	if ((flags & IOMAP_NOWAIT) && len < length) {
7581 		free_extent_map(em);
7582 		ret = -EAGAIN;
7583 		goto unlock_err;
7584 	}
7585 
7586 	if (write) {
7587 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7588 						    start, &len, flags);
7589 		if (ret < 0)
7590 			goto unlock_err;
7591 		unlock_extents = true;
7592 		/* Recalc len in case the new em is smaller than requested */
7593 		len = min(len, em->len - (start - em->start));
7594 		if (dio_data->data_space_reserved) {
7595 			u64 release_offset;
7596 			u64 release_len = 0;
7597 
7598 			if (dio_data->nocow_done) {
7599 				release_offset = start;
7600 				release_len = data_alloc_len;
7601 			} else if (len < data_alloc_len) {
7602 				release_offset = start + len;
7603 				release_len = data_alloc_len - len;
7604 			}
7605 
7606 			if (release_len > 0)
7607 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7608 							       dio_data->data_reserved,
7609 							       release_offset,
7610 							       release_len);
7611 		}
7612 	} else {
7613 		/*
7614 		 * We need to unlock only the end area that we aren't using.
7615 		 * The rest is going to be unlocked by the endio routine.
7616 		 */
7617 		lockstart = start + len;
7618 		if (lockstart < lockend)
7619 			unlock_extents = true;
7620 	}
7621 
7622 	if (unlock_extents)
7623 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7624 			      &cached_state);
7625 	else
7626 		free_extent_state(cached_state);
7627 
7628 	/*
7629 	 * Translate extent map information to iomap.
7630 	 * We trim the extents (and move the addr) even though iomap code does
7631 	 * that, since we have locked only the parts we are performing I/O in.
7632 	 */
7633 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7634 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7635 		iomap->addr = IOMAP_NULL_ADDR;
7636 		iomap->type = IOMAP_HOLE;
7637 	} else {
7638 		iomap->addr = em->block_start + (start - em->start);
7639 		iomap->type = IOMAP_MAPPED;
7640 	}
7641 	iomap->offset = start;
7642 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7643 	iomap->length = len;
7644 	free_extent_map(em);
7645 
7646 	return 0;
7647 
7648 unlock_err:
7649 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7650 		      &cached_state);
7651 err:
7652 	if (dio_data->data_space_reserved) {
7653 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7654 					       dio_data->data_reserved,
7655 					       start, data_alloc_len);
7656 		extent_changeset_free(dio_data->data_reserved);
7657 	}
7658 
7659 	return ret;
7660 }
7661 
7662 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7663 		ssize_t written, unsigned int flags, struct iomap *iomap)
7664 {
7665 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7666 	struct btrfs_dio_data *dio_data = iter->private;
7667 	size_t submitted = dio_data->submitted;
7668 	const bool write = !!(flags & IOMAP_WRITE);
7669 	int ret = 0;
7670 
7671 	if (!write && (iomap->type == IOMAP_HOLE)) {
7672 		/* If reading from a hole, unlock and return */
7673 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7674 			      NULL);
7675 		return 0;
7676 	}
7677 
7678 	if (submitted < length) {
7679 		pos += submitted;
7680 		length -= submitted;
7681 		if (write)
7682 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7683 						    pos, length, false);
7684 		else
7685 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7686 				      pos + length - 1, NULL);
7687 		ret = -ENOTBLK;
7688 	}
7689 	if (write) {
7690 		btrfs_put_ordered_extent(dio_data->ordered);
7691 		dio_data->ordered = NULL;
7692 	}
7693 
7694 	if (write)
7695 		extent_changeset_free(dio_data->data_reserved);
7696 	return ret;
7697 }
7698 
7699 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7700 {
7701 	struct btrfs_dio_private *dip =
7702 		container_of(bbio, struct btrfs_dio_private, bbio);
7703 	struct btrfs_inode *inode = bbio->inode;
7704 	struct bio *bio = &bbio->bio;
7705 
7706 	if (bio->bi_status) {
7707 		btrfs_warn(inode->root->fs_info,
7708 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7709 			   btrfs_ino(inode), bio->bi_opf,
7710 			   dip->file_offset, dip->bytes, bio->bi_status);
7711 	}
7712 
7713 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7714 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7715 					    dip->file_offset, dip->bytes,
7716 					    !bio->bi_status);
7717 	} else {
7718 		unlock_extent(&inode->io_tree, dip->file_offset,
7719 			      dip->file_offset + dip->bytes - 1, NULL);
7720 	}
7721 
7722 	bbio->bio.bi_private = bbio->private;
7723 	iomap_dio_bio_end_io(bio);
7724 }
7725 
7726 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7727 				loff_t file_offset)
7728 {
7729 	struct btrfs_bio *bbio = btrfs_bio(bio);
7730 	struct btrfs_dio_private *dip =
7731 		container_of(bbio, struct btrfs_dio_private, bbio);
7732 	struct btrfs_dio_data *dio_data = iter->private;
7733 
7734 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7735 		       btrfs_dio_end_io, bio->bi_private);
7736 	bbio->inode = BTRFS_I(iter->inode);
7737 	bbio->file_offset = file_offset;
7738 
7739 	dip->file_offset = file_offset;
7740 	dip->bytes = bio->bi_iter.bi_size;
7741 
7742 	dio_data->submitted += bio->bi_iter.bi_size;
7743 
7744 	/*
7745 	 * Check if we are doing a partial write.  If we are, we need to split
7746 	 * the ordered extent to match the submitted bio.  Hang on to the
7747 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7748 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7749 	 * remaining pages is blocked on the outstanding ordered extent.
7750 	 */
7751 	if (iter->flags & IOMAP_WRITE) {
7752 		int ret;
7753 
7754 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7755 		if (ret) {
7756 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7757 						    file_offset, dip->bytes,
7758 						    !ret);
7759 			bio->bi_status = errno_to_blk_status(ret);
7760 			iomap_dio_bio_end_io(bio);
7761 			return;
7762 		}
7763 	}
7764 
7765 	btrfs_submit_bio(bbio, 0);
7766 }
7767 
7768 static const struct iomap_ops btrfs_dio_iomap_ops = {
7769 	.iomap_begin            = btrfs_dio_iomap_begin,
7770 	.iomap_end              = btrfs_dio_iomap_end,
7771 };
7772 
7773 static const struct iomap_dio_ops btrfs_dio_ops = {
7774 	.submit_io		= btrfs_dio_submit_io,
7775 	.bio_set		= &btrfs_dio_bioset,
7776 };
7777 
7778 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7779 {
7780 	struct btrfs_dio_data data = { 0 };
7781 
7782 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7783 			    IOMAP_DIO_PARTIAL, &data, done_before);
7784 }
7785 
7786 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7787 				  size_t done_before)
7788 {
7789 	struct btrfs_dio_data data = { 0 };
7790 
7791 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7792 			    IOMAP_DIO_PARTIAL, &data, done_before);
7793 }
7794 
7795 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7796 			u64 start, u64 len)
7797 {
7798 	int	ret;
7799 
7800 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7801 	if (ret)
7802 		return ret;
7803 
7804 	/*
7805 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7806 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7807 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7808 	 * in the compression of data (in an async thread) and will return
7809 	 * before the compression is done and writeback is started. A second
7810 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7811 	 * complete and writeback to start. We also need to wait for ordered
7812 	 * extents to complete, because our fiemap implementation uses mainly
7813 	 * file extent items to list the extents, searching for extent maps
7814 	 * only for file ranges with holes or prealloc extents to figure out
7815 	 * if we have delalloc in those ranges.
7816 	 */
7817 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7818 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7819 		if (ret)
7820 			return ret;
7821 	}
7822 
7823 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7824 }
7825 
7826 static int btrfs_writepages(struct address_space *mapping,
7827 			    struct writeback_control *wbc)
7828 {
7829 	return extent_writepages(mapping, wbc);
7830 }
7831 
7832 static void btrfs_readahead(struct readahead_control *rac)
7833 {
7834 	extent_readahead(rac);
7835 }
7836 
7837 /*
7838  * For release_folio() and invalidate_folio() we have a race window where
7839  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7840  * If we continue to release/invalidate the page, we could cause use-after-free
7841  * for subpage spinlock.  So this function is to spin and wait for subpage
7842  * spinlock.
7843  */
7844 static void wait_subpage_spinlock(struct page *page)
7845 {
7846 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7847 	struct btrfs_subpage *subpage;
7848 
7849 	if (!btrfs_is_subpage(fs_info, page))
7850 		return;
7851 
7852 	ASSERT(PagePrivate(page) && page->private);
7853 	subpage = (struct btrfs_subpage *)page->private;
7854 
7855 	/*
7856 	 * This may look insane as we just acquire the spinlock and release it,
7857 	 * without doing anything.  But we just want to make sure no one is
7858 	 * still holding the subpage spinlock.
7859 	 * And since the page is not dirty nor writeback, and we have page
7860 	 * locked, the only possible way to hold a spinlock is from the endio
7861 	 * function to clear page writeback.
7862 	 *
7863 	 * Here we just acquire the spinlock so that all existing callers
7864 	 * should exit and we're safe to release/invalidate the page.
7865 	 */
7866 	spin_lock_irq(&subpage->lock);
7867 	spin_unlock_irq(&subpage->lock);
7868 }
7869 
7870 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7871 {
7872 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7873 
7874 	if (ret == 1) {
7875 		wait_subpage_spinlock(&folio->page);
7876 		clear_page_extent_mapped(&folio->page);
7877 	}
7878 	return ret;
7879 }
7880 
7881 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7882 {
7883 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7884 		return false;
7885 	return __btrfs_release_folio(folio, gfp_flags);
7886 }
7887 
7888 #ifdef CONFIG_MIGRATION
7889 static int btrfs_migrate_folio(struct address_space *mapping,
7890 			     struct folio *dst, struct folio *src,
7891 			     enum migrate_mode mode)
7892 {
7893 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7894 
7895 	if (ret != MIGRATEPAGE_SUCCESS)
7896 		return ret;
7897 
7898 	if (folio_test_ordered(src)) {
7899 		folio_clear_ordered(src);
7900 		folio_set_ordered(dst);
7901 	}
7902 
7903 	return MIGRATEPAGE_SUCCESS;
7904 }
7905 #else
7906 #define btrfs_migrate_folio NULL
7907 #endif
7908 
7909 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7910 				 size_t length)
7911 {
7912 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7913 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7914 	struct extent_io_tree *tree = &inode->io_tree;
7915 	struct extent_state *cached_state = NULL;
7916 	u64 page_start = folio_pos(folio);
7917 	u64 page_end = page_start + folio_size(folio) - 1;
7918 	u64 cur;
7919 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7920 
7921 	/*
7922 	 * We have folio locked so no new ordered extent can be created on this
7923 	 * page, nor bio can be submitted for this folio.
7924 	 *
7925 	 * But already submitted bio can still be finished on this folio.
7926 	 * Furthermore, endio function won't skip folio which has Ordered
7927 	 * (Private2) already cleared, so it's possible for endio and
7928 	 * invalidate_folio to do the same ordered extent accounting twice
7929 	 * on one folio.
7930 	 *
7931 	 * So here we wait for any submitted bios to finish, so that we won't
7932 	 * do double ordered extent accounting on the same folio.
7933 	 */
7934 	folio_wait_writeback(folio);
7935 	wait_subpage_spinlock(&folio->page);
7936 
7937 	/*
7938 	 * For subpage case, we have call sites like
7939 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7940 	 * sectorsize.
7941 	 * If the range doesn't cover the full folio, we don't need to and
7942 	 * shouldn't clear page extent mapped, as folio->private can still
7943 	 * record subpage dirty bits for other part of the range.
7944 	 *
7945 	 * For cases that invalidate the full folio even the range doesn't
7946 	 * cover the full folio, like invalidating the last folio, we're
7947 	 * still safe to wait for ordered extent to finish.
7948 	 */
7949 	if (!(offset == 0 && length == folio_size(folio))) {
7950 		btrfs_release_folio(folio, GFP_NOFS);
7951 		return;
7952 	}
7953 
7954 	if (!inode_evicting)
7955 		lock_extent(tree, page_start, page_end, &cached_state);
7956 
7957 	cur = page_start;
7958 	while (cur < page_end) {
7959 		struct btrfs_ordered_extent *ordered;
7960 		u64 range_end;
7961 		u32 range_len;
7962 		u32 extra_flags = 0;
7963 
7964 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7965 							   page_end + 1 - cur);
7966 		if (!ordered) {
7967 			range_end = page_end;
7968 			/*
7969 			 * No ordered extent covering this range, we are safe
7970 			 * to delete all extent states in the range.
7971 			 */
7972 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7973 			goto next;
7974 		}
7975 		if (ordered->file_offset > cur) {
7976 			/*
7977 			 * There is a range between [cur, oe->file_offset) not
7978 			 * covered by any ordered extent.
7979 			 * We are safe to delete all extent states, and handle
7980 			 * the ordered extent in the next iteration.
7981 			 */
7982 			range_end = ordered->file_offset - 1;
7983 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7984 			goto next;
7985 		}
7986 
7987 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7988 				page_end);
7989 		ASSERT(range_end + 1 - cur < U32_MAX);
7990 		range_len = range_end + 1 - cur;
7991 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7992 			/*
7993 			 * If Ordered (Private2) is cleared, it means endio has
7994 			 * already been executed for the range.
7995 			 * We can't delete the extent states as
7996 			 * btrfs_finish_ordered_io() may still use some of them.
7997 			 */
7998 			goto next;
7999 		}
8000 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8001 
8002 		/*
8003 		 * IO on this page will never be started, so we need to account
8004 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8005 		 * here, must leave that up for the ordered extent completion.
8006 		 *
8007 		 * This will also unlock the range for incoming
8008 		 * btrfs_finish_ordered_io().
8009 		 */
8010 		if (!inode_evicting)
8011 			clear_extent_bit(tree, cur, range_end,
8012 					 EXTENT_DELALLOC |
8013 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8014 					 EXTENT_DEFRAG, &cached_state);
8015 
8016 		spin_lock_irq(&inode->ordered_tree_lock);
8017 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8018 		ordered->truncated_len = min(ordered->truncated_len,
8019 					     cur - ordered->file_offset);
8020 		spin_unlock_irq(&inode->ordered_tree_lock);
8021 
8022 		/*
8023 		 * If the ordered extent has finished, we're safe to delete all
8024 		 * the extent states of the range, otherwise
8025 		 * btrfs_finish_ordered_io() will get executed by endio for
8026 		 * other pages, so we can't delete extent states.
8027 		 */
8028 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8029 						   cur, range_end + 1 - cur)) {
8030 			btrfs_finish_ordered_io(ordered);
8031 			/*
8032 			 * The ordered extent has finished, now we're again
8033 			 * safe to delete all extent states of the range.
8034 			 */
8035 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8036 		}
8037 next:
8038 		if (ordered)
8039 			btrfs_put_ordered_extent(ordered);
8040 		/*
8041 		 * Qgroup reserved space handler
8042 		 * Sector(s) here will be either:
8043 		 *
8044 		 * 1) Already written to disk or bio already finished
8045 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8046 		 *    Qgroup will be handled by its qgroup_record then.
8047 		 *    btrfs_qgroup_free_data() call will do nothing here.
8048 		 *
8049 		 * 2) Not written to disk yet
8050 		 *    Then btrfs_qgroup_free_data() call will clear the
8051 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8052 		 *    reserved data space.
8053 		 *    Since the IO will never happen for this page.
8054 		 */
8055 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8056 		if (!inode_evicting) {
8057 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8058 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8059 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8060 				 extra_flags, &cached_state);
8061 		}
8062 		cur = range_end + 1;
8063 	}
8064 	/*
8065 	 * We have iterated through all ordered extents of the page, the page
8066 	 * should not have Ordered (Private2) anymore, or the above iteration
8067 	 * did something wrong.
8068 	 */
8069 	ASSERT(!folio_test_ordered(folio));
8070 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8071 	if (!inode_evicting)
8072 		__btrfs_release_folio(folio, GFP_NOFS);
8073 	clear_page_extent_mapped(&folio->page);
8074 }
8075 
8076 /*
8077  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8078  * called from a page fault handler when a page is first dirtied. Hence we must
8079  * be careful to check for EOF conditions here. We set the page up correctly
8080  * for a written page which means we get ENOSPC checking when writing into
8081  * holes and correct delalloc and unwritten extent mapping on filesystems that
8082  * support these features.
8083  *
8084  * We are not allowed to take the i_mutex here so we have to play games to
8085  * protect against truncate races as the page could now be beyond EOF.  Because
8086  * truncate_setsize() writes the inode size before removing pages, once we have
8087  * the page lock we can determine safely if the page is beyond EOF. If it is not
8088  * beyond EOF, then the page is guaranteed safe against truncation until we
8089  * unlock the page.
8090  */
8091 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8092 {
8093 	struct page *page = vmf->page;
8094 	struct inode *inode = file_inode(vmf->vma->vm_file);
8095 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8096 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8097 	struct btrfs_ordered_extent *ordered;
8098 	struct extent_state *cached_state = NULL;
8099 	struct extent_changeset *data_reserved = NULL;
8100 	unsigned long zero_start;
8101 	loff_t size;
8102 	vm_fault_t ret;
8103 	int ret2;
8104 	int reserved = 0;
8105 	u64 reserved_space;
8106 	u64 page_start;
8107 	u64 page_end;
8108 	u64 end;
8109 
8110 	reserved_space = PAGE_SIZE;
8111 
8112 	sb_start_pagefault(inode->i_sb);
8113 	page_start = page_offset(page);
8114 	page_end = page_start + PAGE_SIZE - 1;
8115 	end = page_end;
8116 
8117 	/*
8118 	 * Reserving delalloc space after obtaining the page lock can lead to
8119 	 * deadlock. For example, if a dirty page is locked by this function
8120 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8121 	 * dirty page write out, then the btrfs_writepages() function could
8122 	 * end up waiting indefinitely to get a lock on the page currently
8123 	 * being processed by btrfs_page_mkwrite() function.
8124 	 */
8125 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8126 					    page_start, reserved_space);
8127 	if (!ret2) {
8128 		ret2 = file_update_time(vmf->vma->vm_file);
8129 		reserved = 1;
8130 	}
8131 	if (ret2) {
8132 		ret = vmf_error(ret2);
8133 		if (reserved)
8134 			goto out;
8135 		goto out_noreserve;
8136 	}
8137 
8138 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8139 again:
8140 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8141 	lock_page(page);
8142 	size = i_size_read(inode);
8143 
8144 	if ((page->mapping != inode->i_mapping) ||
8145 	    (page_start >= size)) {
8146 		/* page got truncated out from underneath us */
8147 		goto out_unlock;
8148 	}
8149 	wait_on_page_writeback(page);
8150 
8151 	lock_extent(io_tree, page_start, page_end, &cached_state);
8152 	ret2 = set_page_extent_mapped(page);
8153 	if (ret2 < 0) {
8154 		ret = vmf_error(ret2);
8155 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8156 		goto out_unlock;
8157 	}
8158 
8159 	/*
8160 	 * we can't set the delalloc bits if there are pending ordered
8161 	 * extents.  Drop our locks and wait for them to finish
8162 	 */
8163 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8164 			PAGE_SIZE);
8165 	if (ordered) {
8166 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8167 		unlock_page(page);
8168 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8169 		btrfs_start_ordered_extent(ordered);
8170 		btrfs_put_ordered_extent(ordered);
8171 		goto again;
8172 	}
8173 
8174 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8175 		reserved_space = round_up(size - page_start,
8176 					  fs_info->sectorsize);
8177 		if (reserved_space < PAGE_SIZE) {
8178 			end = page_start + reserved_space - 1;
8179 			btrfs_delalloc_release_space(BTRFS_I(inode),
8180 					data_reserved, page_start,
8181 					PAGE_SIZE - reserved_space, true);
8182 		}
8183 	}
8184 
8185 	/*
8186 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8187 	 * faulted in, but write(2) could also dirty a page and set delalloc
8188 	 * bits, thus in this case for space account reason, we still need to
8189 	 * clear any delalloc bits within this page range since we have to
8190 	 * reserve data&meta space before lock_page() (see above comments).
8191 	 */
8192 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8193 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8194 			  EXTENT_DEFRAG, &cached_state);
8195 
8196 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8197 					&cached_state);
8198 	if (ret2) {
8199 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8200 		ret = VM_FAULT_SIGBUS;
8201 		goto out_unlock;
8202 	}
8203 
8204 	/* page is wholly or partially inside EOF */
8205 	if (page_start + PAGE_SIZE > size)
8206 		zero_start = offset_in_page(size);
8207 	else
8208 		zero_start = PAGE_SIZE;
8209 
8210 	if (zero_start != PAGE_SIZE)
8211 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8212 
8213 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8214 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8215 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8216 
8217 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8218 
8219 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8220 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8221 
8222 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8223 	sb_end_pagefault(inode->i_sb);
8224 	extent_changeset_free(data_reserved);
8225 	return VM_FAULT_LOCKED;
8226 
8227 out_unlock:
8228 	unlock_page(page);
8229 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8230 out:
8231 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8232 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8233 				     reserved_space, (ret != 0));
8234 out_noreserve:
8235 	sb_end_pagefault(inode->i_sb);
8236 	extent_changeset_free(data_reserved);
8237 	return ret;
8238 }
8239 
8240 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8241 {
8242 	struct btrfs_truncate_control control = {
8243 		.inode = inode,
8244 		.ino = btrfs_ino(inode),
8245 		.min_type = BTRFS_EXTENT_DATA_KEY,
8246 		.clear_extent_range = true,
8247 	};
8248 	struct btrfs_root *root = inode->root;
8249 	struct btrfs_fs_info *fs_info = root->fs_info;
8250 	struct btrfs_block_rsv *rsv;
8251 	int ret;
8252 	struct btrfs_trans_handle *trans;
8253 	u64 mask = fs_info->sectorsize - 1;
8254 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8255 
8256 	if (!skip_writeback) {
8257 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8258 					       inode->vfs_inode.i_size & (~mask),
8259 					       (u64)-1);
8260 		if (ret)
8261 			return ret;
8262 	}
8263 
8264 	/*
8265 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8266 	 * things going on here:
8267 	 *
8268 	 * 1) We need to reserve space to update our inode.
8269 	 *
8270 	 * 2) We need to have something to cache all the space that is going to
8271 	 * be free'd up by the truncate operation, but also have some slack
8272 	 * space reserved in case it uses space during the truncate (thank you
8273 	 * very much snapshotting).
8274 	 *
8275 	 * And we need these to be separate.  The fact is we can use a lot of
8276 	 * space doing the truncate, and we have no earthly idea how much space
8277 	 * we will use, so we need the truncate reservation to be separate so it
8278 	 * doesn't end up using space reserved for updating the inode.  We also
8279 	 * need to be able to stop the transaction and start a new one, which
8280 	 * means we need to be able to update the inode several times, and we
8281 	 * have no idea of knowing how many times that will be, so we can't just
8282 	 * reserve 1 item for the entirety of the operation, so that has to be
8283 	 * done separately as well.
8284 	 *
8285 	 * So that leaves us with
8286 	 *
8287 	 * 1) rsv - for the truncate reservation, which we will steal from the
8288 	 * transaction reservation.
8289 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8290 	 * updating the inode.
8291 	 */
8292 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8293 	if (!rsv)
8294 		return -ENOMEM;
8295 	rsv->size = min_size;
8296 	rsv->failfast = true;
8297 
8298 	/*
8299 	 * 1 for the truncate slack space
8300 	 * 1 for updating the inode.
8301 	 */
8302 	trans = btrfs_start_transaction(root, 2);
8303 	if (IS_ERR(trans)) {
8304 		ret = PTR_ERR(trans);
8305 		goto out;
8306 	}
8307 
8308 	/* Migrate the slack space for the truncate to our reserve */
8309 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8310 				      min_size, false);
8311 	/*
8312 	 * We have reserved 2 metadata units when we started the transaction and
8313 	 * min_size matches 1 unit, so this should never fail, but if it does,
8314 	 * it's not critical we just fail truncation.
8315 	 */
8316 	if (WARN_ON(ret)) {
8317 		btrfs_end_transaction(trans);
8318 		goto out;
8319 	}
8320 
8321 	trans->block_rsv = rsv;
8322 
8323 	while (1) {
8324 		struct extent_state *cached_state = NULL;
8325 		const u64 new_size = inode->vfs_inode.i_size;
8326 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8327 
8328 		control.new_size = new_size;
8329 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8330 		/*
8331 		 * We want to drop from the next block forward in case this new
8332 		 * size is not block aligned since we will be keeping the last
8333 		 * block of the extent just the way it is.
8334 		 */
8335 		btrfs_drop_extent_map_range(inode,
8336 					    ALIGN(new_size, fs_info->sectorsize),
8337 					    (u64)-1, false);
8338 
8339 		ret = btrfs_truncate_inode_items(trans, root, &control);
8340 
8341 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8342 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8343 
8344 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8345 
8346 		trans->block_rsv = &fs_info->trans_block_rsv;
8347 		if (ret != -ENOSPC && ret != -EAGAIN)
8348 			break;
8349 
8350 		ret = btrfs_update_inode(trans, inode);
8351 		if (ret)
8352 			break;
8353 
8354 		btrfs_end_transaction(trans);
8355 		btrfs_btree_balance_dirty(fs_info);
8356 
8357 		trans = btrfs_start_transaction(root, 2);
8358 		if (IS_ERR(trans)) {
8359 			ret = PTR_ERR(trans);
8360 			trans = NULL;
8361 			break;
8362 		}
8363 
8364 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8365 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8366 					      rsv, min_size, false);
8367 		/*
8368 		 * We have reserved 2 metadata units when we started the
8369 		 * transaction and min_size matches 1 unit, so this should never
8370 		 * fail, but if it does, it's not critical we just fail truncation.
8371 		 */
8372 		if (WARN_ON(ret))
8373 			break;
8374 
8375 		trans->block_rsv = rsv;
8376 	}
8377 
8378 	/*
8379 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8380 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8381 	 * know we've truncated everything except the last little bit, and can
8382 	 * do btrfs_truncate_block and then update the disk_i_size.
8383 	 */
8384 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8385 		btrfs_end_transaction(trans);
8386 		btrfs_btree_balance_dirty(fs_info);
8387 
8388 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8389 		if (ret)
8390 			goto out;
8391 		trans = btrfs_start_transaction(root, 1);
8392 		if (IS_ERR(trans)) {
8393 			ret = PTR_ERR(trans);
8394 			goto out;
8395 		}
8396 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8397 	}
8398 
8399 	if (trans) {
8400 		int ret2;
8401 
8402 		trans->block_rsv = &fs_info->trans_block_rsv;
8403 		ret2 = btrfs_update_inode(trans, inode);
8404 		if (ret2 && !ret)
8405 			ret = ret2;
8406 
8407 		ret2 = btrfs_end_transaction(trans);
8408 		if (ret2 && !ret)
8409 			ret = ret2;
8410 		btrfs_btree_balance_dirty(fs_info);
8411 	}
8412 out:
8413 	btrfs_free_block_rsv(fs_info, rsv);
8414 	/*
8415 	 * So if we truncate and then write and fsync we normally would just
8416 	 * write the extents that changed, which is a problem if we need to
8417 	 * first truncate that entire inode.  So set this flag so we write out
8418 	 * all of the extents in the inode to the sync log so we're completely
8419 	 * safe.
8420 	 *
8421 	 * If no extents were dropped or trimmed we don't need to force the next
8422 	 * fsync to truncate all the inode's items from the log and re-log them
8423 	 * all. This means the truncate operation did not change the file size,
8424 	 * or changed it to a smaller size but there was only an implicit hole
8425 	 * between the old i_size and the new i_size, and there were no prealloc
8426 	 * extents beyond i_size to drop.
8427 	 */
8428 	if (control.extents_found > 0)
8429 		btrfs_set_inode_full_sync(inode);
8430 
8431 	return ret;
8432 }
8433 
8434 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8435 				     struct inode *dir)
8436 {
8437 	struct inode *inode;
8438 
8439 	inode = new_inode(dir->i_sb);
8440 	if (inode) {
8441 		/*
8442 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8443 		 * the parent's sgid bit is set. This is probably a bug.
8444 		 */
8445 		inode_init_owner(idmap, inode, NULL,
8446 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8447 		inode->i_op = &btrfs_dir_inode_operations;
8448 		inode->i_fop = &btrfs_dir_file_operations;
8449 	}
8450 	return inode;
8451 }
8452 
8453 struct inode *btrfs_alloc_inode(struct super_block *sb)
8454 {
8455 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8456 	struct btrfs_inode *ei;
8457 	struct inode *inode;
8458 
8459 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8460 	if (!ei)
8461 		return NULL;
8462 
8463 	ei->root = NULL;
8464 	ei->generation = 0;
8465 	ei->last_trans = 0;
8466 	ei->last_sub_trans = 0;
8467 	ei->logged_trans = 0;
8468 	ei->delalloc_bytes = 0;
8469 	ei->new_delalloc_bytes = 0;
8470 	ei->defrag_bytes = 0;
8471 	ei->disk_i_size = 0;
8472 	ei->flags = 0;
8473 	ei->ro_flags = 0;
8474 	ei->csum_bytes = 0;
8475 	ei->index_cnt = (u64)-1;
8476 	ei->dir_index = 0;
8477 	ei->last_unlink_trans = 0;
8478 	ei->last_reflink_trans = 0;
8479 	ei->last_log_commit = 0;
8480 
8481 	spin_lock_init(&ei->lock);
8482 	ei->outstanding_extents = 0;
8483 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8484 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8485 					      BTRFS_BLOCK_RSV_DELALLOC);
8486 	ei->runtime_flags = 0;
8487 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8488 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8489 
8490 	ei->delayed_node = NULL;
8491 
8492 	ei->i_otime_sec = 0;
8493 	ei->i_otime_nsec = 0;
8494 
8495 	inode = &ei->vfs_inode;
8496 	extent_map_tree_init(&ei->extent_tree);
8497 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8498 	ei->io_tree.inode = ei;
8499 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8500 			    IO_TREE_INODE_FILE_EXTENT);
8501 	mutex_init(&ei->log_mutex);
8502 	spin_lock_init(&ei->ordered_tree_lock);
8503 	ei->ordered_tree = RB_ROOT;
8504 	ei->ordered_tree_last = NULL;
8505 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8506 	INIT_LIST_HEAD(&ei->delayed_iput);
8507 	RB_CLEAR_NODE(&ei->rb_node);
8508 	init_rwsem(&ei->i_mmap_lock);
8509 
8510 	return inode;
8511 }
8512 
8513 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8514 void btrfs_test_destroy_inode(struct inode *inode)
8515 {
8516 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8517 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8518 }
8519 #endif
8520 
8521 void btrfs_free_inode(struct inode *inode)
8522 {
8523 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8524 }
8525 
8526 void btrfs_destroy_inode(struct inode *vfs_inode)
8527 {
8528 	struct btrfs_ordered_extent *ordered;
8529 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8530 	struct btrfs_root *root = inode->root;
8531 	bool freespace_inode;
8532 
8533 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8534 	WARN_ON(vfs_inode->i_data.nrpages);
8535 	WARN_ON(inode->block_rsv.reserved);
8536 	WARN_ON(inode->block_rsv.size);
8537 	WARN_ON(inode->outstanding_extents);
8538 	if (!S_ISDIR(vfs_inode->i_mode)) {
8539 		WARN_ON(inode->delalloc_bytes);
8540 		WARN_ON(inode->new_delalloc_bytes);
8541 	}
8542 	WARN_ON(inode->csum_bytes);
8543 	WARN_ON(inode->defrag_bytes);
8544 
8545 	/*
8546 	 * This can happen where we create an inode, but somebody else also
8547 	 * created the same inode and we need to destroy the one we already
8548 	 * created.
8549 	 */
8550 	if (!root)
8551 		return;
8552 
8553 	/*
8554 	 * If this is a free space inode do not take the ordered extents lockdep
8555 	 * map.
8556 	 */
8557 	freespace_inode = btrfs_is_free_space_inode(inode);
8558 
8559 	while (1) {
8560 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8561 		if (!ordered)
8562 			break;
8563 		else {
8564 			btrfs_err(root->fs_info,
8565 				  "found ordered extent %llu %llu on inode cleanup",
8566 				  ordered->file_offset, ordered->num_bytes);
8567 
8568 			if (!freespace_inode)
8569 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8570 
8571 			btrfs_remove_ordered_extent(inode, ordered);
8572 			btrfs_put_ordered_extent(ordered);
8573 			btrfs_put_ordered_extent(ordered);
8574 		}
8575 	}
8576 	btrfs_qgroup_check_reserved_leak(inode);
8577 	inode_tree_del(inode);
8578 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8579 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8580 	btrfs_put_root(inode->root);
8581 }
8582 
8583 int btrfs_drop_inode(struct inode *inode)
8584 {
8585 	struct btrfs_root *root = BTRFS_I(inode)->root;
8586 
8587 	if (root == NULL)
8588 		return 1;
8589 
8590 	/* the snap/subvol tree is on deleting */
8591 	if (btrfs_root_refs(&root->root_item) == 0)
8592 		return 1;
8593 	else
8594 		return generic_drop_inode(inode);
8595 }
8596 
8597 static void init_once(void *foo)
8598 {
8599 	struct btrfs_inode *ei = foo;
8600 
8601 	inode_init_once(&ei->vfs_inode);
8602 }
8603 
8604 void __cold btrfs_destroy_cachep(void)
8605 {
8606 	/*
8607 	 * Make sure all delayed rcu free inodes are flushed before we
8608 	 * destroy cache.
8609 	 */
8610 	rcu_barrier();
8611 	bioset_exit(&btrfs_dio_bioset);
8612 	kmem_cache_destroy(btrfs_inode_cachep);
8613 }
8614 
8615 int __init btrfs_init_cachep(void)
8616 {
8617 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8618 			sizeof(struct btrfs_inode), 0,
8619 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8620 			init_once);
8621 	if (!btrfs_inode_cachep)
8622 		goto fail;
8623 
8624 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8625 			offsetof(struct btrfs_dio_private, bbio.bio),
8626 			BIOSET_NEED_BVECS))
8627 		goto fail;
8628 
8629 	return 0;
8630 fail:
8631 	btrfs_destroy_cachep();
8632 	return -ENOMEM;
8633 }
8634 
8635 static int btrfs_getattr(struct mnt_idmap *idmap,
8636 			 const struct path *path, struct kstat *stat,
8637 			 u32 request_mask, unsigned int flags)
8638 {
8639 	u64 delalloc_bytes;
8640 	u64 inode_bytes;
8641 	struct inode *inode = d_inode(path->dentry);
8642 	u32 blocksize = inode->i_sb->s_blocksize;
8643 	u32 bi_flags = BTRFS_I(inode)->flags;
8644 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8645 
8646 	stat->result_mask |= STATX_BTIME;
8647 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8648 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8649 	if (bi_flags & BTRFS_INODE_APPEND)
8650 		stat->attributes |= STATX_ATTR_APPEND;
8651 	if (bi_flags & BTRFS_INODE_COMPRESS)
8652 		stat->attributes |= STATX_ATTR_COMPRESSED;
8653 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8654 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8655 	if (bi_flags & BTRFS_INODE_NODUMP)
8656 		stat->attributes |= STATX_ATTR_NODUMP;
8657 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8658 		stat->attributes |= STATX_ATTR_VERITY;
8659 
8660 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8661 				  STATX_ATTR_COMPRESSED |
8662 				  STATX_ATTR_IMMUTABLE |
8663 				  STATX_ATTR_NODUMP);
8664 
8665 	generic_fillattr(idmap, request_mask, inode, stat);
8666 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8667 
8668 	spin_lock(&BTRFS_I(inode)->lock);
8669 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8670 	inode_bytes = inode_get_bytes(inode);
8671 	spin_unlock(&BTRFS_I(inode)->lock);
8672 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8673 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8674 	return 0;
8675 }
8676 
8677 static int btrfs_rename_exchange(struct inode *old_dir,
8678 			      struct dentry *old_dentry,
8679 			      struct inode *new_dir,
8680 			      struct dentry *new_dentry)
8681 {
8682 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8683 	struct btrfs_trans_handle *trans;
8684 	unsigned int trans_num_items;
8685 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8686 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8687 	struct inode *new_inode = new_dentry->d_inode;
8688 	struct inode *old_inode = old_dentry->d_inode;
8689 	struct btrfs_rename_ctx old_rename_ctx;
8690 	struct btrfs_rename_ctx new_rename_ctx;
8691 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8692 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8693 	u64 old_idx = 0;
8694 	u64 new_idx = 0;
8695 	int ret;
8696 	int ret2;
8697 	bool need_abort = false;
8698 	struct fscrypt_name old_fname, new_fname;
8699 	struct fscrypt_str *old_name, *new_name;
8700 
8701 	/*
8702 	 * For non-subvolumes allow exchange only within one subvolume, in the
8703 	 * same inode namespace. Two subvolumes (represented as directory) can
8704 	 * be exchanged as they're a logical link and have a fixed inode number.
8705 	 */
8706 	if (root != dest &&
8707 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8708 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8709 		return -EXDEV;
8710 
8711 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8712 	if (ret)
8713 		return ret;
8714 
8715 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8716 	if (ret) {
8717 		fscrypt_free_filename(&old_fname);
8718 		return ret;
8719 	}
8720 
8721 	old_name = &old_fname.disk_name;
8722 	new_name = &new_fname.disk_name;
8723 
8724 	/* close the race window with snapshot create/destroy ioctl */
8725 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8726 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8727 		down_read(&fs_info->subvol_sem);
8728 
8729 	/*
8730 	 * For each inode:
8731 	 * 1 to remove old dir item
8732 	 * 1 to remove old dir index
8733 	 * 1 to add new dir item
8734 	 * 1 to add new dir index
8735 	 * 1 to update parent inode
8736 	 *
8737 	 * If the parents are the same, we only need to account for one
8738 	 */
8739 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8740 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8741 		/*
8742 		 * 1 to remove old root ref
8743 		 * 1 to remove old root backref
8744 		 * 1 to add new root ref
8745 		 * 1 to add new root backref
8746 		 */
8747 		trans_num_items += 4;
8748 	} else {
8749 		/*
8750 		 * 1 to update inode item
8751 		 * 1 to remove old inode ref
8752 		 * 1 to add new inode ref
8753 		 */
8754 		trans_num_items += 3;
8755 	}
8756 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8757 		trans_num_items += 4;
8758 	else
8759 		trans_num_items += 3;
8760 	trans = btrfs_start_transaction(root, trans_num_items);
8761 	if (IS_ERR(trans)) {
8762 		ret = PTR_ERR(trans);
8763 		goto out_notrans;
8764 	}
8765 
8766 	if (dest != root) {
8767 		ret = btrfs_record_root_in_trans(trans, dest);
8768 		if (ret)
8769 			goto out_fail;
8770 	}
8771 
8772 	/*
8773 	 * We need to find a free sequence number both in the source and
8774 	 * in the destination directory for the exchange.
8775 	 */
8776 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8777 	if (ret)
8778 		goto out_fail;
8779 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8780 	if (ret)
8781 		goto out_fail;
8782 
8783 	BTRFS_I(old_inode)->dir_index = 0ULL;
8784 	BTRFS_I(new_inode)->dir_index = 0ULL;
8785 
8786 	/* Reference for the source. */
8787 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8788 		/* force full log commit if subvolume involved. */
8789 		btrfs_set_log_full_commit(trans);
8790 	} else {
8791 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8792 					     btrfs_ino(BTRFS_I(new_dir)),
8793 					     old_idx);
8794 		if (ret)
8795 			goto out_fail;
8796 		need_abort = true;
8797 	}
8798 
8799 	/* And now for the dest. */
8800 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8801 		/* force full log commit if subvolume involved. */
8802 		btrfs_set_log_full_commit(trans);
8803 	} else {
8804 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8805 					     btrfs_ino(BTRFS_I(old_dir)),
8806 					     new_idx);
8807 		if (ret) {
8808 			if (need_abort)
8809 				btrfs_abort_transaction(trans, ret);
8810 			goto out_fail;
8811 		}
8812 	}
8813 
8814 	/* Update inode version and ctime/mtime. */
8815 	inode_inc_iversion(old_dir);
8816 	inode_inc_iversion(new_dir);
8817 	inode_inc_iversion(old_inode);
8818 	inode_inc_iversion(new_inode);
8819 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8820 
8821 	if (old_dentry->d_parent != new_dentry->d_parent) {
8822 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8823 					BTRFS_I(old_inode), true);
8824 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8825 					BTRFS_I(new_inode), true);
8826 	}
8827 
8828 	/* src is a subvolume */
8829 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8830 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8831 	} else { /* src is an inode */
8832 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8833 					   BTRFS_I(old_dentry->d_inode),
8834 					   old_name, &old_rename_ctx);
8835 		if (!ret)
8836 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8837 	}
8838 	if (ret) {
8839 		btrfs_abort_transaction(trans, ret);
8840 		goto out_fail;
8841 	}
8842 
8843 	/* dest is a subvolume */
8844 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8845 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8846 	} else { /* dest is an inode */
8847 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8848 					   BTRFS_I(new_dentry->d_inode),
8849 					   new_name, &new_rename_ctx);
8850 		if (!ret)
8851 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8852 	}
8853 	if (ret) {
8854 		btrfs_abort_transaction(trans, ret);
8855 		goto out_fail;
8856 	}
8857 
8858 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8859 			     new_name, 0, old_idx);
8860 	if (ret) {
8861 		btrfs_abort_transaction(trans, ret);
8862 		goto out_fail;
8863 	}
8864 
8865 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8866 			     old_name, 0, new_idx);
8867 	if (ret) {
8868 		btrfs_abort_transaction(trans, ret);
8869 		goto out_fail;
8870 	}
8871 
8872 	if (old_inode->i_nlink == 1)
8873 		BTRFS_I(old_inode)->dir_index = old_idx;
8874 	if (new_inode->i_nlink == 1)
8875 		BTRFS_I(new_inode)->dir_index = new_idx;
8876 
8877 	/*
8878 	 * Now pin the logs of the roots. We do it to ensure that no other task
8879 	 * can sync the logs while we are in progress with the rename, because
8880 	 * that could result in an inconsistency in case any of the inodes that
8881 	 * are part of this rename operation were logged before.
8882 	 */
8883 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8884 		btrfs_pin_log_trans(root);
8885 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8886 		btrfs_pin_log_trans(dest);
8887 
8888 	/* Do the log updates for all inodes. */
8889 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8890 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8891 				   old_rename_ctx.index, new_dentry->d_parent);
8892 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8893 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8894 				   new_rename_ctx.index, old_dentry->d_parent);
8895 
8896 	/* Now unpin the logs. */
8897 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8898 		btrfs_end_log_trans(root);
8899 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8900 		btrfs_end_log_trans(dest);
8901 out_fail:
8902 	ret2 = btrfs_end_transaction(trans);
8903 	ret = ret ? ret : ret2;
8904 out_notrans:
8905 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8906 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8907 		up_read(&fs_info->subvol_sem);
8908 
8909 	fscrypt_free_filename(&new_fname);
8910 	fscrypt_free_filename(&old_fname);
8911 	return ret;
8912 }
8913 
8914 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8915 					struct inode *dir)
8916 {
8917 	struct inode *inode;
8918 
8919 	inode = new_inode(dir->i_sb);
8920 	if (inode) {
8921 		inode_init_owner(idmap, inode, dir,
8922 				 S_IFCHR | WHITEOUT_MODE);
8923 		inode->i_op = &btrfs_special_inode_operations;
8924 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8925 	}
8926 	return inode;
8927 }
8928 
8929 static int btrfs_rename(struct mnt_idmap *idmap,
8930 			struct inode *old_dir, struct dentry *old_dentry,
8931 			struct inode *new_dir, struct dentry *new_dentry,
8932 			unsigned int flags)
8933 {
8934 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8935 	struct btrfs_new_inode_args whiteout_args = {
8936 		.dir = old_dir,
8937 		.dentry = old_dentry,
8938 	};
8939 	struct btrfs_trans_handle *trans;
8940 	unsigned int trans_num_items;
8941 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8942 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8943 	struct inode *new_inode = d_inode(new_dentry);
8944 	struct inode *old_inode = d_inode(old_dentry);
8945 	struct btrfs_rename_ctx rename_ctx;
8946 	u64 index = 0;
8947 	int ret;
8948 	int ret2;
8949 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8950 	struct fscrypt_name old_fname, new_fname;
8951 
8952 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8953 		return -EPERM;
8954 
8955 	/* we only allow rename subvolume link between subvolumes */
8956 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8957 		return -EXDEV;
8958 
8959 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8960 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8961 		return -ENOTEMPTY;
8962 
8963 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8964 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8965 		return -ENOTEMPTY;
8966 
8967 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8968 	if (ret)
8969 		return ret;
8970 
8971 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8972 	if (ret) {
8973 		fscrypt_free_filename(&old_fname);
8974 		return ret;
8975 	}
8976 
8977 	/* check for collisions, even if the  name isn't there */
8978 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8979 	if (ret) {
8980 		if (ret == -EEXIST) {
8981 			/* we shouldn't get
8982 			 * eexist without a new_inode */
8983 			if (WARN_ON(!new_inode)) {
8984 				goto out_fscrypt_names;
8985 			}
8986 		} else {
8987 			/* maybe -EOVERFLOW */
8988 			goto out_fscrypt_names;
8989 		}
8990 	}
8991 	ret = 0;
8992 
8993 	/*
8994 	 * we're using rename to replace one file with another.  Start IO on it
8995 	 * now so  we don't add too much work to the end of the transaction
8996 	 */
8997 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8998 		filemap_flush(old_inode->i_mapping);
8999 
9000 	if (flags & RENAME_WHITEOUT) {
9001 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9002 		if (!whiteout_args.inode) {
9003 			ret = -ENOMEM;
9004 			goto out_fscrypt_names;
9005 		}
9006 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9007 		if (ret)
9008 			goto out_whiteout_inode;
9009 	} else {
9010 		/* 1 to update the old parent inode. */
9011 		trans_num_items = 1;
9012 	}
9013 
9014 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9015 		/* Close the race window with snapshot create/destroy ioctl */
9016 		down_read(&fs_info->subvol_sem);
9017 		/*
9018 		 * 1 to remove old root ref
9019 		 * 1 to remove old root backref
9020 		 * 1 to add new root ref
9021 		 * 1 to add new root backref
9022 		 */
9023 		trans_num_items += 4;
9024 	} else {
9025 		/*
9026 		 * 1 to update inode
9027 		 * 1 to remove old inode ref
9028 		 * 1 to add new inode ref
9029 		 */
9030 		trans_num_items += 3;
9031 	}
9032 	/*
9033 	 * 1 to remove old dir item
9034 	 * 1 to remove old dir index
9035 	 * 1 to add new dir item
9036 	 * 1 to add new dir index
9037 	 */
9038 	trans_num_items += 4;
9039 	/* 1 to update new parent inode if it's not the same as the old parent */
9040 	if (new_dir != old_dir)
9041 		trans_num_items++;
9042 	if (new_inode) {
9043 		/*
9044 		 * 1 to update inode
9045 		 * 1 to remove inode ref
9046 		 * 1 to remove dir item
9047 		 * 1 to remove dir index
9048 		 * 1 to possibly add orphan item
9049 		 */
9050 		trans_num_items += 5;
9051 	}
9052 	trans = btrfs_start_transaction(root, trans_num_items);
9053 	if (IS_ERR(trans)) {
9054 		ret = PTR_ERR(trans);
9055 		goto out_notrans;
9056 	}
9057 
9058 	if (dest != root) {
9059 		ret = btrfs_record_root_in_trans(trans, dest);
9060 		if (ret)
9061 			goto out_fail;
9062 	}
9063 
9064 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9065 	if (ret)
9066 		goto out_fail;
9067 
9068 	BTRFS_I(old_inode)->dir_index = 0ULL;
9069 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9070 		/* force full log commit if subvolume involved. */
9071 		btrfs_set_log_full_commit(trans);
9072 	} else {
9073 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9074 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9075 					     index);
9076 		if (ret)
9077 			goto out_fail;
9078 	}
9079 
9080 	inode_inc_iversion(old_dir);
9081 	inode_inc_iversion(new_dir);
9082 	inode_inc_iversion(old_inode);
9083 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9084 
9085 	if (old_dentry->d_parent != new_dentry->d_parent)
9086 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9087 					BTRFS_I(old_inode), true);
9088 
9089 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9090 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9091 	} else {
9092 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9093 					   BTRFS_I(d_inode(old_dentry)),
9094 					   &old_fname.disk_name, &rename_ctx);
9095 		if (!ret)
9096 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9097 	}
9098 	if (ret) {
9099 		btrfs_abort_transaction(trans, ret);
9100 		goto out_fail;
9101 	}
9102 
9103 	if (new_inode) {
9104 		inode_inc_iversion(new_inode);
9105 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9106 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9107 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9108 			BUG_ON(new_inode->i_nlink == 0);
9109 		} else {
9110 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9111 						 BTRFS_I(d_inode(new_dentry)),
9112 						 &new_fname.disk_name);
9113 		}
9114 		if (!ret && new_inode->i_nlink == 0)
9115 			ret = btrfs_orphan_add(trans,
9116 					BTRFS_I(d_inode(new_dentry)));
9117 		if (ret) {
9118 			btrfs_abort_transaction(trans, ret);
9119 			goto out_fail;
9120 		}
9121 	}
9122 
9123 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9124 			     &new_fname.disk_name, 0, index);
9125 	if (ret) {
9126 		btrfs_abort_transaction(trans, ret);
9127 		goto out_fail;
9128 	}
9129 
9130 	if (old_inode->i_nlink == 1)
9131 		BTRFS_I(old_inode)->dir_index = index;
9132 
9133 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9134 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9135 				   rename_ctx.index, new_dentry->d_parent);
9136 
9137 	if (flags & RENAME_WHITEOUT) {
9138 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9139 		if (ret) {
9140 			btrfs_abort_transaction(trans, ret);
9141 			goto out_fail;
9142 		} else {
9143 			unlock_new_inode(whiteout_args.inode);
9144 			iput(whiteout_args.inode);
9145 			whiteout_args.inode = NULL;
9146 		}
9147 	}
9148 out_fail:
9149 	ret2 = btrfs_end_transaction(trans);
9150 	ret = ret ? ret : ret2;
9151 out_notrans:
9152 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9153 		up_read(&fs_info->subvol_sem);
9154 	if (flags & RENAME_WHITEOUT)
9155 		btrfs_new_inode_args_destroy(&whiteout_args);
9156 out_whiteout_inode:
9157 	if (flags & RENAME_WHITEOUT)
9158 		iput(whiteout_args.inode);
9159 out_fscrypt_names:
9160 	fscrypt_free_filename(&old_fname);
9161 	fscrypt_free_filename(&new_fname);
9162 	return ret;
9163 }
9164 
9165 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9166 			 struct dentry *old_dentry, struct inode *new_dir,
9167 			 struct dentry *new_dentry, unsigned int flags)
9168 {
9169 	int ret;
9170 
9171 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9172 		return -EINVAL;
9173 
9174 	if (flags & RENAME_EXCHANGE)
9175 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9176 					    new_dentry);
9177 	else
9178 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9179 				   new_dentry, flags);
9180 
9181 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9182 
9183 	return ret;
9184 }
9185 
9186 struct btrfs_delalloc_work {
9187 	struct inode *inode;
9188 	struct completion completion;
9189 	struct list_head list;
9190 	struct btrfs_work work;
9191 };
9192 
9193 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9194 {
9195 	struct btrfs_delalloc_work *delalloc_work;
9196 	struct inode *inode;
9197 
9198 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9199 				     work);
9200 	inode = delalloc_work->inode;
9201 	filemap_flush(inode->i_mapping);
9202 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9203 				&BTRFS_I(inode)->runtime_flags))
9204 		filemap_flush(inode->i_mapping);
9205 
9206 	iput(inode);
9207 	complete(&delalloc_work->completion);
9208 }
9209 
9210 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9211 {
9212 	struct btrfs_delalloc_work *work;
9213 
9214 	work = kmalloc(sizeof(*work), GFP_NOFS);
9215 	if (!work)
9216 		return NULL;
9217 
9218 	init_completion(&work->completion);
9219 	INIT_LIST_HEAD(&work->list);
9220 	work->inode = inode;
9221 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9222 
9223 	return work;
9224 }
9225 
9226 /*
9227  * some fairly slow code that needs optimization. This walks the list
9228  * of all the inodes with pending delalloc and forces them to disk.
9229  */
9230 static int start_delalloc_inodes(struct btrfs_root *root,
9231 				 struct writeback_control *wbc, bool snapshot,
9232 				 bool in_reclaim_context)
9233 {
9234 	struct btrfs_inode *binode;
9235 	struct inode *inode;
9236 	struct btrfs_delalloc_work *work, *next;
9237 	LIST_HEAD(works);
9238 	LIST_HEAD(splice);
9239 	int ret = 0;
9240 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9241 
9242 	mutex_lock(&root->delalloc_mutex);
9243 	spin_lock(&root->delalloc_lock);
9244 	list_splice_init(&root->delalloc_inodes, &splice);
9245 	while (!list_empty(&splice)) {
9246 		binode = list_entry(splice.next, struct btrfs_inode,
9247 				    delalloc_inodes);
9248 
9249 		list_move_tail(&binode->delalloc_inodes,
9250 			       &root->delalloc_inodes);
9251 
9252 		if (in_reclaim_context &&
9253 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9254 			continue;
9255 
9256 		inode = igrab(&binode->vfs_inode);
9257 		if (!inode) {
9258 			cond_resched_lock(&root->delalloc_lock);
9259 			continue;
9260 		}
9261 		spin_unlock(&root->delalloc_lock);
9262 
9263 		if (snapshot)
9264 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9265 				&binode->runtime_flags);
9266 		if (full_flush) {
9267 			work = btrfs_alloc_delalloc_work(inode);
9268 			if (!work) {
9269 				iput(inode);
9270 				ret = -ENOMEM;
9271 				goto out;
9272 			}
9273 			list_add_tail(&work->list, &works);
9274 			btrfs_queue_work(root->fs_info->flush_workers,
9275 					 &work->work);
9276 		} else {
9277 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9278 			btrfs_add_delayed_iput(BTRFS_I(inode));
9279 			if (ret || wbc->nr_to_write <= 0)
9280 				goto out;
9281 		}
9282 		cond_resched();
9283 		spin_lock(&root->delalloc_lock);
9284 	}
9285 	spin_unlock(&root->delalloc_lock);
9286 
9287 out:
9288 	list_for_each_entry_safe(work, next, &works, list) {
9289 		list_del_init(&work->list);
9290 		wait_for_completion(&work->completion);
9291 		kfree(work);
9292 	}
9293 
9294 	if (!list_empty(&splice)) {
9295 		spin_lock(&root->delalloc_lock);
9296 		list_splice_tail(&splice, &root->delalloc_inodes);
9297 		spin_unlock(&root->delalloc_lock);
9298 	}
9299 	mutex_unlock(&root->delalloc_mutex);
9300 	return ret;
9301 }
9302 
9303 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9304 {
9305 	struct writeback_control wbc = {
9306 		.nr_to_write = LONG_MAX,
9307 		.sync_mode = WB_SYNC_NONE,
9308 		.range_start = 0,
9309 		.range_end = LLONG_MAX,
9310 	};
9311 	struct btrfs_fs_info *fs_info = root->fs_info;
9312 
9313 	if (BTRFS_FS_ERROR(fs_info))
9314 		return -EROFS;
9315 
9316 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9317 }
9318 
9319 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9320 			       bool in_reclaim_context)
9321 {
9322 	struct writeback_control wbc = {
9323 		.nr_to_write = nr,
9324 		.sync_mode = WB_SYNC_NONE,
9325 		.range_start = 0,
9326 		.range_end = LLONG_MAX,
9327 	};
9328 	struct btrfs_root *root;
9329 	LIST_HEAD(splice);
9330 	int ret;
9331 
9332 	if (BTRFS_FS_ERROR(fs_info))
9333 		return -EROFS;
9334 
9335 	mutex_lock(&fs_info->delalloc_root_mutex);
9336 	spin_lock(&fs_info->delalloc_root_lock);
9337 	list_splice_init(&fs_info->delalloc_roots, &splice);
9338 	while (!list_empty(&splice)) {
9339 		/*
9340 		 * Reset nr_to_write here so we know that we're doing a full
9341 		 * flush.
9342 		 */
9343 		if (nr == LONG_MAX)
9344 			wbc.nr_to_write = LONG_MAX;
9345 
9346 		root = list_first_entry(&splice, struct btrfs_root,
9347 					delalloc_root);
9348 		root = btrfs_grab_root(root);
9349 		BUG_ON(!root);
9350 		list_move_tail(&root->delalloc_root,
9351 			       &fs_info->delalloc_roots);
9352 		spin_unlock(&fs_info->delalloc_root_lock);
9353 
9354 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9355 		btrfs_put_root(root);
9356 		if (ret < 0 || wbc.nr_to_write <= 0)
9357 			goto out;
9358 		spin_lock(&fs_info->delalloc_root_lock);
9359 	}
9360 	spin_unlock(&fs_info->delalloc_root_lock);
9361 
9362 	ret = 0;
9363 out:
9364 	if (!list_empty(&splice)) {
9365 		spin_lock(&fs_info->delalloc_root_lock);
9366 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9367 		spin_unlock(&fs_info->delalloc_root_lock);
9368 	}
9369 	mutex_unlock(&fs_info->delalloc_root_mutex);
9370 	return ret;
9371 }
9372 
9373 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9374 			 struct dentry *dentry, const char *symname)
9375 {
9376 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9377 	struct btrfs_trans_handle *trans;
9378 	struct btrfs_root *root = BTRFS_I(dir)->root;
9379 	struct btrfs_path *path;
9380 	struct btrfs_key key;
9381 	struct inode *inode;
9382 	struct btrfs_new_inode_args new_inode_args = {
9383 		.dir = dir,
9384 		.dentry = dentry,
9385 	};
9386 	unsigned int trans_num_items;
9387 	int err;
9388 	int name_len;
9389 	int datasize;
9390 	unsigned long ptr;
9391 	struct btrfs_file_extent_item *ei;
9392 	struct extent_buffer *leaf;
9393 
9394 	name_len = strlen(symname);
9395 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9396 		return -ENAMETOOLONG;
9397 
9398 	inode = new_inode(dir->i_sb);
9399 	if (!inode)
9400 		return -ENOMEM;
9401 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9402 	inode->i_op = &btrfs_symlink_inode_operations;
9403 	inode_nohighmem(inode);
9404 	inode->i_mapping->a_ops = &btrfs_aops;
9405 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9406 	inode_set_bytes(inode, name_len);
9407 
9408 	new_inode_args.inode = inode;
9409 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9410 	if (err)
9411 		goto out_inode;
9412 	/* 1 additional item for the inline extent */
9413 	trans_num_items++;
9414 
9415 	trans = btrfs_start_transaction(root, trans_num_items);
9416 	if (IS_ERR(trans)) {
9417 		err = PTR_ERR(trans);
9418 		goto out_new_inode_args;
9419 	}
9420 
9421 	err = btrfs_create_new_inode(trans, &new_inode_args);
9422 	if (err)
9423 		goto out;
9424 
9425 	path = btrfs_alloc_path();
9426 	if (!path) {
9427 		err = -ENOMEM;
9428 		btrfs_abort_transaction(trans, err);
9429 		discard_new_inode(inode);
9430 		inode = NULL;
9431 		goto out;
9432 	}
9433 	key.objectid = btrfs_ino(BTRFS_I(inode));
9434 	key.offset = 0;
9435 	key.type = BTRFS_EXTENT_DATA_KEY;
9436 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9437 	err = btrfs_insert_empty_item(trans, root, path, &key,
9438 				      datasize);
9439 	if (err) {
9440 		btrfs_abort_transaction(trans, err);
9441 		btrfs_free_path(path);
9442 		discard_new_inode(inode);
9443 		inode = NULL;
9444 		goto out;
9445 	}
9446 	leaf = path->nodes[0];
9447 	ei = btrfs_item_ptr(leaf, path->slots[0],
9448 			    struct btrfs_file_extent_item);
9449 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9450 	btrfs_set_file_extent_type(leaf, ei,
9451 				   BTRFS_FILE_EXTENT_INLINE);
9452 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9453 	btrfs_set_file_extent_compression(leaf, ei, 0);
9454 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9455 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9456 
9457 	ptr = btrfs_file_extent_inline_start(ei);
9458 	write_extent_buffer(leaf, symname, ptr, name_len);
9459 	btrfs_mark_buffer_dirty(trans, leaf);
9460 	btrfs_free_path(path);
9461 
9462 	d_instantiate_new(dentry, inode);
9463 	err = 0;
9464 out:
9465 	btrfs_end_transaction(trans);
9466 	btrfs_btree_balance_dirty(fs_info);
9467 out_new_inode_args:
9468 	btrfs_new_inode_args_destroy(&new_inode_args);
9469 out_inode:
9470 	if (err)
9471 		iput(inode);
9472 	return err;
9473 }
9474 
9475 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9476 				       struct btrfs_trans_handle *trans_in,
9477 				       struct btrfs_inode *inode,
9478 				       struct btrfs_key *ins,
9479 				       u64 file_offset)
9480 {
9481 	struct btrfs_file_extent_item stack_fi;
9482 	struct btrfs_replace_extent_info extent_info;
9483 	struct btrfs_trans_handle *trans = trans_in;
9484 	struct btrfs_path *path;
9485 	u64 start = ins->objectid;
9486 	u64 len = ins->offset;
9487 	int qgroup_released;
9488 	int ret;
9489 
9490 	memset(&stack_fi, 0, sizeof(stack_fi));
9491 
9492 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9493 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9494 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9495 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9496 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9497 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9498 	/* Encryption and other encoding is reserved and all 0 */
9499 
9500 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9501 	if (qgroup_released < 0)
9502 		return ERR_PTR(qgroup_released);
9503 
9504 	if (trans) {
9505 		ret = insert_reserved_file_extent(trans, inode,
9506 						  file_offset, &stack_fi,
9507 						  true, qgroup_released);
9508 		if (ret)
9509 			goto free_qgroup;
9510 		return trans;
9511 	}
9512 
9513 	extent_info.disk_offset = start;
9514 	extent_info.disk_len = len;
9515 	extent_info.data_offset = 0;
9516 	extent_info.data_len = len;
9517 	extent_info.file_offset = file_offset;
9518 	extent_info.extent_buf = (char *)&stack_fi;
9519 	extent_info.is_new_extent = true;
9520 	extent_info.update_times = true;
9521 	extent_info.qgroup_reserved = qgroup_released;
9522 	extent_info.insertions = 0;
9523 
9524 	path = btrfs_alloc_path();
9525 	if (!path) {
9526 		ret = -ENOMEM;
9527 		goto free_qgroup;
9528 	}
9529 
9530 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9531 				     file_offset + len - 1, &extent_info,
9532 				     &trans);
9533 	btrfs_free_path(path);
9534 	if (ret)
9535 		goto free_qgroup;
9536 	return trans;
9537 
9538 free_qgroup:
9539 	/*
9540 	 * We have released qgroup data range at the beginning of the function,
9541 	 * and normally qgroup_released bytes will be freed when committing
9542 	 * transaction.
9543 	 * But if we error out early, we have to free what we have released
9544 	 * or we leak qgroup data reservation.
9545 	 */
9546 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9547 			inode->root->root_key.objectid, qgroup_released,
9548 			BTRFS_QGROUP_RSV_DATA);
9549 	return ERR_PTR(ret);
9550 }
9551 
9552 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9553 				       u64 start, u64 num_bytes, u64 min_size,
9554 				       loff_t actual_len, u64 *alloc_hint,
9555 				       struct btrfs_trans_handle *trans)
9556 {
9557 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9558 	struct extent_map *em;
9559 	struct btrfs_root *root = BTRFS_I(inode)->root;
9560 	struct btrfs_key ins;
9561 	u64 cur_offset = start;
9562 	u64 clear_offset = start;
9563 	u64 i_size;
9564 	u64 cur_bytes;
9565 	u64 last_alloc = (u64)-1;
9566 	int ret = 0;
9567 	bool own_trans = true;
9568 	u64 end = start + num_bytes - 1;
9569 
9570 	if (trans)
9571 		own_trans = false;
9572 	while (num_bytes > 0) {
9573 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9574 		cur_bytes = max(cur_bytes, min_size);
9575 		/*
9576 		 * If we are severely fragmented we could end up with really
9577 		 * small allocations, so if the allocator is returning small
9578 		 * chunks lets make its job easier by only searching for those
9579 		 * sized chunks.
9580 		 */
9581 		cur_bytes = min(cur_bytes, last_alloc);
9582 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9583 				min_size, 0, *alloc_hint, &ins, 1, 0);
9584 		if (ret)
9585 			break;
9586 
9587 		/*
9588 		 * We've reserved this space, and thus converted it from
9589 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9590 		 * from here on out we will only need to clear our reservation
9591 		 * for the remaining unreserved area, so advance our
9592 		 * clear_offset by our extent size.
9593 		 */
9594 		clear_offset += ins.offset;
9595 
9596 		last_alloc = ins.offset;
9597 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9598 						    &ins, cur_offset);
9599 		/*
9600 		 * Now that we inserted the prealloc extent we can finally
9601 		 * decrement the number of reservations in the block group.
9602 		 * If we did it before, we could race with relocation and have
9603 		 * relocation miss the reserved extent, making it fail later.
9604 		 */
9605 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9606 		if (IS_ERR(trans)) {
9607 			ret = PTR_ERR(trans);
9608 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9609 						   ins.offset, 0);
9610 			break;
9611 		}
9612 
9613 		em = alloc_extent_map();
9614 		if (!em) {
9615 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9616 					    cur_offset + ins.offset - 1, false);
9617 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9618 			goto next;
9619 		}
9620 
9621 		em->start = cur_offset;
9622 		em->orig_start = cur_offset;
9623 		em->len = ins.offset;
9624 		em->block_start = ins.objectid;
9625 		em->block_len = ins.offset;
9626 		em->orig_block_len = ins.offset;
9627 		em->ram_bytes = ins.offset;
9628 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9629 		em->generation = trans->transid;
9630 
9631 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9632 		free_extent_map(em);
9633 next:
9634 		num_bytes -= ins.offset;
9635 		cur_offset += ins.offset;
9636 		*alloc_hint = ins.objectid + ins.offset;
9637 
9638 		inode_inc_iversion(inode);
9639 		inode_set_ctime_current(inode);
9640 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9641 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9642 		    (actual_len > inode->i_size) &&
9643 		    (cur_offset > inode->i_size)) {
9644 			if (cur_offset > actual_len)
9645 				i_size = actual_len;
9646 			else
9647 				i_size = cur_offset;
9648 			i_size_write(inode, i_size);
9649 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9650 		}
9651 
9652 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
9653 
9654 		if (ret) {
9655 			btrfs_abort_transaction(trans, ret);
9656 			if (own_trans)
9657 				btrfs_end_transaction(trans);
9658 			break;
9659 		}
9660 
9661 		if (own_trans) {
9662 			btrfs_end_transaction(trans);
9663 			trans = NULL;
9664 		}
9665 	}
9666 	if (clear_offset < end)
9667 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9668 			end - clear_offset + 1);
9669 	return ret;
9670 }
9671 
9672 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9673 			      u64 start, u64 num_bytes, u64 min_size,
9674 			      loff_t actual_len, u64 *alloc_hint)
9675 {
9676 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9677 					   min_size, actual_len, alloc_hint,
9678 					   NULL);
9679 }
9680 
9681 int btrfs_prealloc_file_range_trans(struct inode *inode,
9682 				    struct btrfs_trans_handle *trans, int mode,
9683 				    u64 start, u64 num_bytes, u64 min_size,
9684 				    loff_t actual_len, u64 *alloc_hint)
9685 {
9686 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9687 					   min_size, actual_len, alloc_hint, trans);
9688 }
9689 
9690 static int btrfs_permission(struct mnt_idmap *idmap,
9691 			    struct inode *inode, int mask)
9692 {
9693 	struct btrfs_root *root = BTRFS_I(inode)->root;
9694 	umode_t mode = inode->i_mode;
9695 
9696 	if (mask & MAY_WRITE &&
9697 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9698 		if (btrfs_root_readonly(root))
9699 			return -EROFS;
9700 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9701 			return -EACCES;
9702 	}
9703 	return generic_permission(idmap, inode, mask);
9704 }
9705 
9706 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9707 			 struct file *file, umode_t mode)
9708 {
9709 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9710 	struct btrfs_trans_handle *trans;
9711 	struct btrfs_root *root = BTRFS_I(dir)->root;
9712 	struct inode *inode;
9713 	struct btrfs_new_inode_args new_inode_args = {
9714 		.dir = dir,
9715 		.dentry = file->f_path.dentry,
9716 		.orphan = true,
9717 	};
9718 	unsigned int trans_num_items;
9719 	int ret;
9720 
9721 	inode = new_inode(dir->i_sb);
9722 	if (!inode)
9723 		return -ENOMEM;
9724 	inode_init_owner(idmap, inode, dir, mode);
9725 	inode->i_fop = &btrfs_file_operations;
9726 	inode->i_op = &btrfs_file_inode_operations;
9727 	inode->i_mapping->a_ops = &btrfs_aops;
9728 
9729 	new_inode_args.inode = inode;
9730 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9731 	if (ret)
9732 		goto out_inode;
9733 
9734 	trans = btrfs_start_transaction(root, trans_num_items);
9735 	if (IS_ERR(trans)) {
9736 		ret = PTR_ERR(trans);
9737 		goto out_new_inode_args;
9738 	}
9739 
9740 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9741 
9742 	/*
9743 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9744 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9745 	 * 0, through:
9746 	 *
9747 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9748 	 */
9749 	set_nlink(inode, 1);
9750 
9751 	if (!ret) {
9752 		d_tmpfile(file, inode);
9753 		unlock_new_inode(inode);
9754 		mark_inode_dirty(inode);
9755 	}
9756 
9757 	btrfs_end_transaction(trans);
9758 	btrfs_btree_balance_dirty(fs_info);
9759 out_new_inode_args:
9760 	btrfs_new_inode_args_destroy(&new_inode_args);
9761 out_inode:
9762 	if (ret)
9763 		iput(inode);
9764 	return finish_open_simple(file, ret);
9765 }
9766 
9767 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9768 {
9769 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9770 	unsigned long index = start >> PAGE_SHIFT;
9771 	unsigned long end_index = end >> PAGE_SHIFT;
9772 	struct page *page;
9773 	u32 len;
9774 
9775 	ASSERT(end + 1 - start <= U32_MAX);
9776 	len = end + 1 - start;
9777 	while (index <= end_index) {
9778 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9779 		ASSERT(page); /* Pages should be in the extent_io_tree */
9780 
9781 		btrfs_page_set_writeback(fs_info, page, start, len);
9782 		put_page(page);
9783 		index++;
9784 	}
9785 }
9786 
9787 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9788 					     int compress_type)
9789 {
9790 	switch (compress_type) {
9791 	case BTRFS_COMPRESS_NONE:
9792 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9793 	case BTRFS_COMPRESS_ZLIB:
9794 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9795 	case BTRFS_COMPRESS_LZO:
9796 		/*
9797 		 * The LZO format depends on the sector size. 64K is the maximum
9798 		 * sector size that we support.
9799 		 */
9800 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9801 			return -EINVAL;
9802 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9803 		       (fs_info->sectorsize_bits - 12);
9804 	case BTRFS_COMPRESS_ZSTD:
9805 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9806 	default:
9807 		return -EUCLEAN;
9808 	}
9809 }
9810 
9811 static ssize_t btrfs_encoded_read_inline(
9812 				struct kiocb *iocb,
9813 				struct iov_iter *iter, u64 start,
9814 				u64 lockend,
9815 				struct extent_state **cached_state,
9816 				u64 extent_start, size_t count,
9817 				struct btrfs_ioctl_encoded_io_args *encoded,
9818 				bool *unlocked)
9819 {
9820 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9821 	struct btrfs_root *root = inode->root;
9822 	struct btrfs_fs_info *fs_info = root->fs_info;
9823 	struct extent_io_tree *io_tree = &inode->io_tree;
9824 	struct btrfs_path *path;
9825 	struct extent_buffer *leaf;
9826 	struct btrfs_file_extent_item *item;
9827 	u64 ram_bytes;
9828 	unsigned long ptr;
9829 	void *tmp;
9830 	ssize_t ret;
9831 
9832 	path = btrfs_alloc_path();
9833 	if (!path) {
9834 		ret = -ENOMEM;
9835 		goto out;
9836 	}
9837 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9838 				       extent_start, 0);
9839 	if (ret) {
9840 		if (ret > 0) {
9841 			/* The extent item disappeared? */
9842 			ret = -EIO;
9843 		}
9844 		goto out;
9845 	}
9846 	leaf = path->nodes[0];
9847 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9848 
9849 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9850 	ptr = btrfs_file_extent_inline_start(item);
9851 
9852 	encoded->len = min_t(u64, extent_start + ram_bytes,
9853 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9854 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9855 				 btrfs_file_extent_compression(leaf, item));
9856 	if (ret < 0)
9857 		goto out;
9858 	encoded->compression = ret;
9859 	if (encoded->compression) {
9860 		size_t inline_size;
9861 
9862 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9863 								path->slots[0]);
9864 		if (inline_size > count) {
9865 			ret = -ENOBUFS;
9866 			goto out;
9867 		}
9868 		count = inline_size;
9869 		encoded->unencoded_len = ram_bytes;
9870 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9871 	} else {
9872 		count = min_t(u64, count, encoded->len);
9873 		encoded->len = count;
9874 		encoded->unencoded_len = count;
9875 		ptr += iocb->ki_pos - extent_start;
9876 	}
9877 
9878 	tmp = kmalloc(count, GFP_NOFS);
9879 	if (!tmp) {
9880 		ret = -ENOMEM;
9881 		goto out;
9882 	}
9883 	read_extent_buffer(leaf, tmp, ptr, count);
9884 	btrfs_release_path(path);
9885 	unlock_extent(io_tree, start, lockend, cached_state);
9886 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9887 	*unlocked = true;
9888 
9889 	ret = copy_to_iter(tmp, count, iter);
9890 	if (ret != count)
9891 		ret = -EFAULT;
9892 	kfree(tmp);
9893 out:
9894 	btrfs_free_path(path);
9895 	return ret;
9896 }
9897 
9898 struct btrfs_encoded_read_private {
9899 	wait_queue_head_t wait;
9900 	atomic_t pending;
9901 	blk_status_t status;
9902 };
9903 
9904 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9905 {
9906 	struct btrfs_encoded_read_private *priv = bbio->private;
9907 
9908 	if (bbio->bio.bi_status) {
9909 		/*
9910 		 * The memory barrier implied by the atomic_dec_return() here
9911 		 * pairs with the memory barrier implied by the
9912 		 * atomic_dec_return() or io_wait_event() in
9913 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9914 		 * write is observed before the load of status in
9915 		 * btrfs_encoded_read_regular_fill_pages().
9916 		 */
9917 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9918 	}
9919 	if (!atomic_dec_return(&priv->pending))
9920 		wake_up(&priv->wait);
9921 	bio_put(&bbio->bio);
9922 }
9923 
9924 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9925 					  u64 file_offset, u64 disk_bytenr,
9926 					  u64 disk_io_size, struct page **pages)
9927 {
9928 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9929 	struct btrfs_encoded_read_private priv = {
9930 		.pending = ATOMIC_INIT(1),
9931 	};
9932 	unsigned long i = 0;
9933 	struct btrfs_bio *bbio;
9934 
9935 	init_waitqueue_head(&priv.wait);
9936 
9937 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9938 			       btrfs_encoded_read_endio, &priv);
9939 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9940 	bbio->inode = inode;
9941 
9942 	do {
9943 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9944 
9945 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9946 			atomic_inc(&priv.pending);
9947 			btrfs_submit_bio(bbio, 0);
9948 
9949 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9950 					       btrfs_encoded_read_endio, &priv);
9951 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9952 			bbio->inode = inode;
9953 			continue;
9954 		}
9955 
9956 		i++;
9957 		disk_bytenr += bytes;
9958 		disk_io_size -= bytes;
9959 	} while (disk_io_size);
9960 
9961 	atomic_inc(&priv.pending);
9962 	btrfs_submit_bio(bbio, 0);
9963 
9964 	if (atomic_dec_return(&priv.pending))
9965 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9966 	/* See btrfs_encoded_read_endio() for ordering. */
9967 	return blk_status_to_errno(READ_ONCE(priv.status));
9968 }
9969 
9970 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9971 					  struct iov_iter *iter,
9972 					  u64 start, u64 lockend,
9973 					  struct extent_state **cached_state,
9974 					  u64 disk_bytenr, u64 disk_io_size,
9975 					  size_t count, bool compressed,
9976 					  bool *unlocked)
9977 {
9978 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9979 	struct extent_io_tree *io_tree = &inode->io_tree;
9980 	struct page **pages;
9981 	unsigned long nr_pages, i;
9982 	u64 cur;
9983 	size_t page_offset;
9984 	ssize_t ret;
9985 
9986 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9987 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9988 	if (!pages)
9989 		return -ENOMEM;
9990 	ret = btrfs_alloc_page_array(nr_pages, pages);
9991 	if (ret) {
9992 		ret = -ENOMEM;
9993 		goto out;
9994 		}
9995 
9996 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9997 						    disk_io_size, pages);
9998 	if (ret)
9999 		goto out;
10000 
10001 	unlock_extent(io_tree, start, lockend, cached_state);
10002 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10003 	*unlocked = true;
10004 
10005 	if (compressed) {
10006 		i = 0;
10007 		page_offset = 0;
10008 	} else {
10009 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10010 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10011 	}
10012 	cur = 0;
10013 	while (cur < count) {
10014 		size_t bytes = min_t(size_t, count - cur,
10015 				     PAGE_SIZE - page_offset);
10016 
10017 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10018 				      iter) != bytes) {
10019 			ret = -EFAULT;
10020 			goto out;
10021 		}
10022 		i++;
10023 		cur += bytes;
10024 		page_offset = 0;
10025 	}
10026 	ret = count;
10027 out:
10028 	for (i = 0; i < nr_pages; i++) {
10029 		if (pages[i])
10030 			__free_page(pages[i]);
10031 	}
10032 	kfree(pages);
10033 	return ret;
10034 }
10035 
10036 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10037 			   struct btrfs_ioctl_encoded_io_args *encoded)
10038 {
10039 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10040 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10041 	struct extent_io_tree *io_tree = &inode->io_tree;
10042 	ssize_t ret;
10043 	size_t count = iov_iter_count(iter);
10044 	u64 start, lockend, disk_bytenr, disk_io_size;
10045 	struct extent_state *cached_state = NULL;
10046 	struct extent_map *em;
10047 	bool unlocked = false;
10048 
10049 	file_accessed(iocb->ki_filp);
10050 
10051 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10052 
10053 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10054 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10055 		return 0;
10056 	}
10057 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10058 	/*
10059 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10060 	 * it's compressed we know that it won't be longer than this.
10061 	 */
10062 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10063 
10064 	for (;;) {
10065 		struct btrfs_ordered_extent *ordered;
10066 
10067 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10068 					       lockend - start + 1);
10069 		if (ret)
10070 			goto out_unlock_inode;
10071 		lock_extent(io_tree, start, lockend, &cached_state);
10072 		ordered = btrfs_lookup_ordered_range(inode, start,
10073 						     lockend - start + 1);
10074 		if (!ordered)
10075 			break;
10076 		btrfs_put_ordered_extent(ordered);
10077 		unlock_extent(io_tree, start, lockend, &cached_state);
10078 		cond_resched();
10079 	}
10080 
10081 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10082 	if (IS_ERR(em)) {
10083 		ret = PTR_ERR(em);
10084 		goto out_unlock_extent;
10085 	}
10086 
10087 	if (em->block_start == EXTENT_MAP_INLINE) {
10088 		u64 extent_start = em->start;
10089 
10090 		/*
10091 		 * For inline extents we get everything we need out of the
10092 		 * extent item.
10093 		 */
10094 		free_extent_map(em);
10095 		em = NULL;
10096 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10097 						&cached_state, extent_start,
10098 						count, encoded, &unlocked);
10099 		goto out;
10100 	}
10101 
10102 	/*
10103 	 * We only want to return up to EOF even if the extent extends beyond
10104 	 * that.
10105 	 */
10106 	encoded->len = min_t(u64, extent_map_end(em),
10107 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10108 	if (em->block_start == EXTENT_MAP_HOLE ||
10109 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10110 		disk_bytenr = EXTENT_MAP_HOLE;
10111 		count = min_t(u64, count, encoded->len);
10112 		encoded->len = count;
10113 		encoded->unencoded_len = count;
10114 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10115 		disk_bytenr = em->block_start;
10116 		/*
10117 		 * Bail if the buffer isn't large enough to return the whole
10118 		 * compressed extent.
10119 		 */
10120 		if (em->block_len > count) {
10121 			ret = -ENOBUFS;
10122 			goto out_em;
10123 		}
10124 		disk_io_size = em->block_len;
10125 		count = em->block_len;
10126 		encoded->unencoded_len = em->ram_bytes;
10127 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10128 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10129 							     em->compress_type);
10130 		if (ret < 0)
10131 			goto out_em;
10132 		encoded->compression = ret;
10133 	} else {
10134 		disk_bytenr = em->block_start + (start - em->start);
10135 		if (encoded->len > count)
10136 			encoded->len = count;
10137 		/*
10138 		 * Don't read beyond what we locked. This also limits the page
10139 		 * allocations that we'll do.
10140 		 */
10141 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10142 		count = start + disk_io_size - iocb->ki_pos;
10143 		encoded->len = count;
10144 		encoded->unencoded_len = count;
10145 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10146 	}
10147 	free_extent_map(em);
10148 	em = NULL;
10149 
10150 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10151 		unlock_extent(io_tree, start, lockend, &cached_state);
10152 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10153 		unlocked = true;
10154 		ret = iov_iter_zero(count, iter);
10155 		if (ret != count)
10156 			ret = -EFAULT;
10157 	} else {
10158 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10159 						 &cached_state, disk_bytenr,
10160 						 disk_io_size, count,
10161 						 encoded->compression,
10162 						 &unlocked);
10163 	}
10164 
10165 out:
10166 	if (ret >= 0)
10167 		iocb->ki_pos += encoded->len;
10168 out_em:
10169 	free_extent_map(em);
10170 out_unlock_extent:
10171 	if (!unlocked)
10172 		unlock_extent(io_tree, start, lockend, &cached_state);
10173 out_unlock_inode:
10174 	if (!unlocked)
10175 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10176 	return ret;
10177 }
10178 
10179 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10180 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10181 {
10182 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10183 	struct btrfs_root *root = inode->root;
10184 	struct btrfs_fs_info *fs_info = root->fs_info;
10185 	struct extent_io_tree *io_tree = &inode->io_tree;
10186 	struct extent_changeset *data_reserved = NULL;
10187 	struct extent_state *cached_state = NULL;
10188 	struct btrfs_ordered_extent *ordered;
10189 	int compression;
10190 	size_t orig_count;
10191 	u64 start, end;
10192 	u64 num_bytes, ram_bytes, disk_num_bytes;
10193 	unsigned long nr_pages, i;
10194 	struct page **pages;
10195 	struct btrfs_key ins;
10196 	bool extent_reserved = false;
10197 	struct extent_map *em;
10198 	ssize_t ret;
10199 
10200 	switch (encoded->compression) {
10201 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10202 		compression = BTRFS_COMPRESS_ZLIB;
10203 		break;
10204 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10205 		compression = BTRFS_COMPRESS_ZSTD;
10206 		break;
10207 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10208 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10209 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10210 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10211 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10212 		/* The sector size must match for LZO. */
10213 		if (encoded->compression -
10214 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10215 		    fs_info->sectorsize_bits)
10216 			return -EINVAL;
10217 		compression = BTRFS_COMPRESS_LZO;
10218 		break;
10219 	default:
10220 		return -EINVAL;
10221 	}
10222 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10223 		return -EINVAL;
10224 
10225 	orig_count = iov_iter_count(from);
10226 
10227 	/* The extent size must be sane. */
10228 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10229 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10230 		return -EINVAL;
10231 
10232 	/*
10233 	 * The compressed data must be smaller than the decompressed data.
10234 	 *
10235 	 * It's of course possible for data to compress to larger or the same
10236 	 * size, but the buffered I/O path falls back to no compression for such
10237 	 * data, and we don't want to break any assumptions by creating these
10238 	 * extents.
10239 	 *
10240 	 * Note that this is less strict than the current check we have that the
10241 	 * compressed data must be at least one sector smaller than the
10242 	 * decompressed data. We only want to enforce the weaker requirement
10243 	 * from old kernels that it is at least one byte smaller.
10244 	 */
10245 	if (orig_count >= encoded->unencoded_len)
10246 		return -EINVAL;
10247 
10248 	/* The extent must start on a sector boundary. */
10249 	start = iocb->ki_pos;
10250 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10251 		return -EINVAL;
10252 
10253 	/*
10254 	 * The extent must end on a sector boundary. However, we allow a write
10255 	 * which ends at or extends i_size to have an unaligned length; we round
10256 	 * up the extent size and set i_size to the unaligned end.
10257 	 */
10258 	if (start + encoded->len < inode->vfs_inode.i_size &&
10259 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10260 		return -EINVAL;
10261 
10262 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10263 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10264 		return -EINVAL;
10265 
10266 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10267 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10268 	end = start + num_bytes - 1;
10269 
10270 	/*
10271 	 * If the extent cannot be inline, the compressed data on disk must be
10272 	 * sector-aligned. For convenience, we extend it with zeroes if it
10273 	 * isn't.
10274 	 */
10275 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10276 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10277 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10278 	if (!pages)
10279 		return -ENOMEM;
10280 	for (i = 0; i < nr_pages; i++) {
10281 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10282 		char *kaddr;
10283 
10284 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10285 		if (!pages[i]) {
10286 			ret = -ENOMEM;
10287 			goto out_pages;
10288 		}
10289 		kaddr = kmap_local_page(pages[i]);
10290 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10291 			kunmap_local(kaddr);
10292 			ret = -EFAULT;
10293 			goto out_pages;
10294 		}
10295 		if (bytes < PAGE_SIZE)
10296 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10297 		kunmap_local(kaddr);
10298 	}
10299 
10300 	for (;;) {
10301 		struct btrfs_ordered_extent *ordered;
10302 
10303 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10304 		if (ret)
10305 			goto out_pages;
10306 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10307 						    start >> PAGE_SHIFT,
10308 						    end >> PAGE_SHIFT);
10309 		if (ret)
10310 			goto out_pages;
10311 		lock_extent(io_tree, start, end, &cached_state);
10312 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10313 		if (!ordered &&
10314 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10315 			break;
10316 		if (ordered)
10317 			btrfs_put_ordered_extent(ordered);
10318 		unlock_extent(io_tree, start, end, &cached_state);
10319 		cond_resched();
10320 	}
10321 
10322 	/*
10323 	 * We don't use the higher-level delalloc space functions because our
10324 	 * num_bytes and disk_num_bytes are different.
10325 	 */
10326 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10327 	if (ret)
10328 		goto out_unlock;
10329 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10330 	if (ret)
10331 		goto out_free_data_space;
10332 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10333 					      false);
10334 	if (ret)
10335 		goto out_qgroup_free_data;
10336 
10337 	/* Try an inline extent first. */
10338 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10339 	    encoded->unencoded_offset == 0) {
10340 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10341 					    compression, pages, true);
10342 		if (ret <= 0) {
10343 			if (ret == 0)
10344 				ret = orig_count;
10345 			goto out_delalloc_release;
10346 		}
10347 	}
10348 
10349 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10350 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10351 	if (ret)
10352 		goto out_delalloc_release;
10353 	extent_reserved = true;
10354 
10355 	em = create_io_em(inode, start, num_bytes,
10356 			  start - encoded->unencoded_offset, ins.objectid,
10357 			  ins.offset, ins.offset, ram_bytes, compression,
10358 			  BTRFS_ORDERED_COMPRESSED);
10359 	if (IS_ERR(em)) {
10360 		ret = PTR_ERR(em);
10361 		goto out_free_reserved;
10362 	}
10363 	free_extent_map(em);
10364 
10365 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10366 				       ins.objectid, ins.offset,
10367 				       encoded->unencoded_offset,
10368 				       (1 << BTRFS_ORDERED_ENCODED) |
10369 				       (1 << BTRFS_ORDERED_COMPRESSED),
10370 				       compression);
10371 	if (IS_ERR(ordered)) {
10372 		btrfs_drop_extent_map_range(inode, start, end, false);
10373 		ret = PTR_ERR(ordered);
10374 		goto out_free_reserved;
10375 	}
10376 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10377 
10378 	if (start + encoded->len > inode->vfs_inode.i_size)
10379 		i_size_write(&inode->vfs_inode, start + encoded->len);
10380 
10381 	unlock_extent(io_tree, start, end, &cached_state);
10382 
10383 	btrfs_delalloc_release_extents(inode, num_bytes);
10384 
10385 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10386 	ret = orig_count;
10387 	goto out;
10388 
10389 out_free_reserved:
10390 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10391 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10392 out_delalloc_release:
10393 	btrfs_delalloc_release_extents(inode, num_bytes);
10394 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10395 out_qgroup_free_data:
10396 	if (ret < 0)
10397 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10398 out_free_data_space:
10399 	/*
10400 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10401 	 * bytes_may_use.
10402 	 */
10403 	if (!extent_reserved)
10404 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10405 out_unlock:
10406 	unlock_extent(io_tree, start, end, &cached_state);
10407 out_pages:
10408 	for (i = 0; i < nr_pages; i++) {
10409 		if (pages[i])
10410 			__free_page(pages[i]);
10411 	}
10412 	kvfree(pages);
10413 out:
10414 	if (ret >= 0)
10415 		iocb->ki_pos += encoded->len;
10416 	return ret;
10417 }
10418 
10419 #ifdef CONFIG_SWAP
10420 /*
10421  * Add an entry indicating a block group or device which is pinned by a
10422  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10423  * negative errno on failure.
10424  */
10425 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10426 				  bool is_block_group)
10427 {
10428 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10429 	struct btrfs_swapfile_pin *sp, *entry;
10430 	struct rb_node **p;
10431 	struct rb_node *parent = NULL;
10432 
10433 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10434 	if (!sp)
10435 		return -ENOMEM;
10436 	sp->ptr = ptr;
10437 	sp->inode = inode;
10438 	sp->is_block_group = is_block_group;
10439 	sp->bg_extent_count = 1;
10440 
10441 	spin_lock(&fs_info->swapfile_pins_lock);
10442 	p = &fs_info->swapfile_pins.rb_node;
10443 	while (*p) {
10444 		parent = *p;
10445 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10446 		if (sp->ptr < entry->ptr ||
10447 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10448 			p = &(*p)->rb_left;
10449 		} else if (sp->ptr > entry->ptr ||
10450 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10451 			p = &(*p)->rb_right;
10452 		} else {
10453 			if (is_block_group)
10454 				entry->bg_extent_count++;
10455 			spin_unlock(&fs_info->swapfile_pins_lock);
10456 			kfree(sp);
10457 			return 1;
10458 		}
10459 	}
10460 	rb_link_node(&sp->node, parent, p);
10461 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10462 	spin_unlock(&fs_info->swapfile_pins_lock);
10463 	return 0;
10464 }
10465 
10466 /* Free all of the entries pinned by this swapfile. */
10467 static void btrfs_free_swapfile_pins(struct inode *inode)
10468 {
10469 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10470 	struct btrfs_swapfile_pin *sp;
10471 	struct rb_node *node, *next;
10472 
10473 	spin_lock(&fs_info->swapfile_pins_lock);
10474 	node = rb_first(&fs_info->swapfile_pins);
10475 	while (node) {
10476 		next = rb_next(node);
10477 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10478 		if (sp->inode == inode) {
10479 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10480 			if (sp->is_block_group) {
10481 				btrfs_dec_block_group_swap_extents(sp->ptr,
10482 							   sp->bg_extent_count);
10483 				btrfs_put_block_group(sp->ptr);
10484 			}
10485 			kfree(sp);
10486 		}
10487 		node = next;
10488 	}
10489 	spin_unlock(&fs_info->swapfile_pins_lock);
10490 }
10491 
10492 struct btrfs_swap_info {
10493 	u64 start;
10494 	u64 block_start;
10495 	u64 block_len;
10496 	u64 lowest_ppage;
10497 	u64 highest_ppage;
10498 	unsigned long nr_pages;
10499 	int nr_extents;
10500 };
10501 
10502 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10503 				 struct btrfs_swap_info *bsi)
10504 {
10505 	unsigned long nr_pages;
10506 	unsigned long max_pages;
10507 	u64 first_ppage, first_ppage_reported, next_ppage;
10508 	int ret;
10509 
10510 	/*
10511 	 * Our swapfile may have had its size extended after the swap header was
10512 	 * written. In that case activating the swapfile should not go beyond
10513 	 * the max size set in the swap header.
10514 	 */
10515 	if (bsi->nr_pages >= sis->max)
10516 		return 0;
10517 
10518 	max_pages = sis->max - bsi->nr_pages;
10519 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10520 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10521 
10522 	if (first_ppage >= next_ppage)
10523 		return 0;
10524 	nr_pages = next_ppage - first_ppage;
10525 	nr_pages = min(nr_pages, max_pages);
10526 
10527 	first_ppage_reported = first_ppage;
10528 	if (bsi->start == 0)
10529 		first_ppage_reported++;
10530 	if (bsi->lowest_ppage > first_ppage_reported)
10531 		bsi->lowest_ppage = first_ppage_reported;
10532 	if (bsi->highest_ppage < (next_ppage - 1))
10533 		bsi->highest_ppage = next_ppage - 1;
10534 
10535 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10536 	if (ret < 0)
10537 		return ret;
10538 	bsi->nr_extents += ret;
10539 	bsi->nr_pages += nr_pages;
10540 	return 0;
10541 }
10542 
10543 static void btrfs_swap_deactivate(struct file *file)
10544 {
10545 	struct inode *inode = file_inode(file);
10546 
10547 	btrfs_free_swapfile_pins(inode);
10548 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10549 }
10550 
10551 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10552 			       sector_t *span)
10553 {
10554 	struct inode *inode = file_inode(file);
10555 	struct btrfs_root *root = BTRFS_I(inode)->root;
10556 	struct btrfs_fs_info *fs_info = root->fs_info;
10557 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10558 	struct extent_state *cached_state = NULL;
10559 	struct extent_map *em = NULL;
10560 	struct btrfs_device *device = NULL;
10561 	struct btrfs_swap_info bsi = {
10562 		.lowest_ppage = (sector_t)-1ULL,
10563 	};
10564 	int ret = 0;
10565 	u64 isize;
10566 	u64 start;
10567 
10568 	/*
10569 	 * If the swap file was just created, make sure delalloc is done. If the
10570 	 * file changes again after this, the user is doing something stupid and
10571 	 * we don't really care.
10572 	 */
10573 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10574 	if (ret)
10575 		return ret;
10576 
10577 	/*
10578 	 * The inode is locked, so these flags won't change after we check them.
10579 	 */
10580 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10581 		btrfs_warn(fs_info, "swapfile must not be compressed");
10582 		return -EINVAL;
10583 	}
10584 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10585 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10586 		return -EINVAL;
10587 	}
10588 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10589 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10590 		return -EINVAL;
10591 	}
10592 
10593 	/*
10594 	 * Balance or device remove/replace/resize can move stuff around from
10595 	 * under us. The exclop protection makes sure they aren't running/won't
10596 	 * run concurrently while we are mapping the swap extents, and
10597 	 * fs_info->swapfile_pins prevents them from running while the swap
10598 	 * file is active and moving the extents. Note that this also prevents
10599 	 * a concurrent device add which isn't actually necessary, but it's not
10600 	 * really worth the trouble to allow it.
10601 	 */
10602 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10603 		btrfs_warn(fs_info,
10604 	   "cannot activate swapfile while exclusive operation is running");
10605 		return -EBUSY;
10606 	}
10607 
10608 	/*
10609 	 * Prevent snapshot creation while we are activating the swap file.
10610 	 * We do not want to race with snapshot creation. If snapshot creation
10611 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10612 	 * completes before the first write into the swap file after it is
10613 	 * activated, than that write would fallback to COW.
10614 	 */
10615 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10616 		btrfs_exclop_finish(fs_info);
10617 		btrfs_warn(fs_info,
10618 	   "cannot activate swapfile because snapshot creation is in progress");
10619 		return -EINVAL;
10620 	}
10621 	/*
10622 	 * Snapshots can create extents which require COW even if NODATACOW is
10623 	 * set. We use this counter to prevent snapshots. We must increment it
10624 	 * before walking the extents because we don't want a concurrent
10625 	 * snapshot to run after we've already checked the extents.
10626 	 *
10627 	 * It is possible that subvolume is marked for deletion but still not
10628 	 * removed yet. To prevent this race, we check the root status before
10629 	 * activating the swapfile.
10630 	 */
10631 	spin_lock(&root->root_item_lock);
10632 	if (btrfs_root_dead(root)) {
10633 		spin_unlock(&root->root_item_lock);
10634 
10635 		btrfs_exclop_finish(fs_info);
10636 		btrfs_warn(fs_info,
10637 		"cannot activate swapfile because subvolume %llu is being deleted",
10638 			root->root_key.objectid);
10639 		return -EPERM;
10640 	}
10641 	atomic_inc(&root->nr_swapfiles);
10642 	spin_unlock(&root->root_item_lock);
10643 
10644 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10645 
10646 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10647 	start = 0;
10648 	while (start < isize) {
10649 		u64 logical_block_start, physical_block_start;
10650 		struct btrfs_block_group *bg;
10651 		u64 len = isize - start;
10652 
10653 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10654 		if (IS_ERR(em)) {
10655 			ret = PTR_ERR(em);
10656 			goto out;
10657 		}
10658 
10659 		if (em->block_start == EXTENT_MAP_HOLE) {
10660 			btrfs_warn(fs_info, "swapfile must not have holes");
10661 			ret = -EINVAL;
10662 			goto out;
10663 		}
10664 		if (em->block_start == EXTENT_MAP_INLINE) {
10665 			/*
10666 			 * It's unlikely we'll ever actually find ourselves
10667 			 * here, as a file small enough to fit inline won't be
10668 			 * big enough to store more than the swap header, but in
10669 			 * case something changes in the future, let's catch it
10670 			 * here rather than later.
10671 			 */
10672 			btrfs_warn(fs_info, "swapfile must not be inline");
10673 			ret = -EINVAL;
10674 			goto out;
10675 		}
10676 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10677 			btrfs_warn(fs_info, "swapfile must not be compressed");
10678 			ret = -EINVAL;
10679 			goto out;
10680 		}
10681 
10682 		logical_block_start = em->block_start + (start - em->start);
10683 		len = min(len, em->len - (start - em->start));
10684 		free_extent_map(em);
10685 		em = NULL;
10686 
10687 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10688 		if (ret < 0) {
10689 			goto out;
10690 		} else if (ret) {
10691 			ret = 0;
10692 		} else {
10693 			btrfs_warn(fs_info,
10694 				   "swapfile must not be copy-on-write");
10695 			ret = -EINVAL;
10696 			goto out;
10697 		}
10698 
10699 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10700 		if (IS_ERR(em)) {
10701 			ret = PTR_ERR(em);
10702 			goto out;
10703 		}
10704 
10705 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10706 			btrfs_warn(fs_info,
10707 				   "swapfile must have single data profile");
10708 			ret = -EINVAL;
10709 			goto out;
10710 		}
10711 
10712 		if (device == NULL) {
10713 			device = em->map_lookup->stripes[0].dev;
10714 			ret = btrfs_add_swapfile_pin(inode, device, false);
10715 			if (ret == 1)
10716 				ret = 0;
10717 			else if (ret)
10718 				goto out;
10719 		} else if (device != em->map_lookup->stripes[0].dev) {
10720 			btrfs_warn(fs_info, "swapfile must be on one device");
10721 			ret = -EINVAL;
10722 			goto out;
10723 		}
10724 
10725 		physical_block_start = (em->map_lookup->stripes[0].physical +
10726 					(logical_block_start - em->start));
10727 		len = min(len, em->len - (logical_block_start - em->start));
10728 		free_extent_map(em);
10729 		em = NULL;
10730 
10731 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10732 		if (!bg) {
10733 			btrfs_warn(fs_info,
10734 			   "could not find block group containing swapfile");
10735 			ret = -EINVAL;
10736 			goto out;
10737 		}
10738 
10739 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10740 			btrfs_warn(fs_info,
10741 			   "block group for swapfile at %llu is read-only%s",
10742 			   bg->start,
10743 			   atomic_read(&fs_info->scrubs_running) ?
10744 				       " (scrub running)" : "");
10745 			btrfs_put_block_group(bg);
10746 			ret = -EINVAL;
10747 			goto out;
10748 		}
10749 
10750 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10751 		if (ret) {
10752 			btrfs_put_block_group(bg);
10753 			if (ret == 1)
10754 				ret = 0;
10755 			else
10756 				goto out;
10757 		}
10758 
10759 		if (bsi.block_len &&
10760 		    bsi.block_start + bsi.block_len == physical_block_start) {
10761 			bsi.block_len += len;
10762 		} else {
10763 			if (bsi.block_len) {
10764 				ret = btrfs_add_swap_extent(sis, &bsi);
10765 				if (ret)
10766 					goto out;
10767 			}
10768 			bsi.start = start;
10769 			bsi.block_start = physical_block_start;
10770 			bsi.block_len = len;
10771 		}
10772 
10773 		start += len;
10774 	}
10775 
10776 	if (bsi.block_len)
10777 		ret = btrfs_add_swap_extent(sis, &bsi);
10778 
10779 out:
10780 	if (!IS_ERR_OR_NULL(em))
10781 		free_extent_map(em);
10782 
10783 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10784 
10785 	if (ret)
10786 		btrfs_swap_deactivate(file);
10787 
10788 	btrfs_drew_write_unlock(&root->snapshot_lock);
10789 
10790 	btrfs_exclop_finish(fs_info);
10791 
10792 	if (ret)
10793 		return ret;
10794 
10795 	if (device)
10796 		sis->bdev = device->bdev;
10797 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10798 	sis->max = bsi.nr_pages;
10799 	sis->pages = bsi.nr_pages - 1;
10800 	sis->highest_bit = bsi.nr_pages - 1;
10801 	return bsi.nr_extents;
10802 }
10803 #else
10804 static void btrfs_swap_deactivate(struct file *file)
10805 {
10806 }
10807 
10808 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10809 			       sector_t *span)
10810 {
10811 	return -EOPNOTSUPP;
10812 }
10813 #endif
10814 
10815 /*
10816  * Update the number of bytes used in the VFS' inode. When we replace extents in
10817  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10818  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10819  * always get a correct value.
10820  */
10821 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10822 			      const u64 add_bytes,
10823 			      const u64 del_bytes)
10824 {
10825 	if (add_bytes == del_bytes)
10826 		return;
10827 
10828 	spin_lock(&inode->lock);
10829 	if (del_bytes > 0)
10830 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10831 	if (add_bytes > 0)
10832 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10833 	spin_unlock(&inode->lock);
10834 }
10835 
10836 /*
10837  * Verify that there are no ordered extents for a given file range.
10838  *
10839  * @inode:   The target inode.
10840  * @start:   Start offset of the file range, should be sector size aligned.
10841  * @end:     End offset (inclusive) of the file range, its value +1 should be
10842  *           sector size aligned.
10843  *
10844  * This should typically be used for cases where we locked an inode's VFS lock in
10845  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10846  * we have flushed all delalloc in the range, we have waited for all ordered
10847  * extents in the range to complete and finally we have locked the file range in
10848  * the inode's io_tree.
10849  */
10850 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10851 {
10852 	struct btrfs_root *root = inode->root;
10853 	struct btrfs_ordered_extent *ordered;
10854 
10855 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10856 		return;
10857 
10858 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10859 	if (ordered) {
10860 		btrfs_err(root->fs_info,
10861 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10862 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10863 			  ordered->file_offset,
10864 			  ordered->file_offset + ordered->num_bytes - 1);
10865 		btrfs_put_ordered_extent(ordered);
10866 	}
10867 
10868 	ASSERT(ordered == NULL);
10869 }
10870 
10871 static const struct inode_operations btrfs_dir_inode_operations = {
10872 	.getattr	= btrfs_getattr,
10873 	.lookup		= btrfs_lookup,
10874 	.create		= btrfs_create,
10875 	.unlink		= btrfs_unlink,
10876 	.link		= btrfs_link,
10877 	.mkdir		= btrfs_mkdir,
10878 	.rmdir		= btrfs_rmdir,
10879 	.rename		= btrfs_rename2,
10880 	.symlink	= btrfs_symlink,
10881 	.setattr	= btrfs_setattr,
10882 	.mknod		= btrfs_mknod,
10883 	.listxattr	= btrfs_listxattr,
10884 	.permission	= btrfs_permission,
10885 	.get_inode_acl	= btrfs_get_acl,
10886 	.set_acl	= btrfs_set_acl,
10887 	.update_time	= btrfs_update_time,
10888 	.tmpfile        = btrfs_tmpfile,
10889 	.fileattr_get	= btrfs_fileattr_get,
10890 	.fileattr_set	= btrfs_fileattr_set,
10891 };
10892 
10893 static const struct file_operations btrfs_dir_file_operations = {
10894 	.llseek		= btrfs_dir_llseek,
10895 	.read		= generic_read_dir,
10896 	.iterate_shared	= btrfs_real_readdir,
10897 	.open		= btrfs_opendir,
10898 	.unlocked_ioctl	= btrfs_ioctl,
10899 #ifdef CONFIG_COMPAT
10900 	.compat_ioctl	= btrfs_compat_ioctl,
10901 #endif
10902 	.release        = btrfs_release_file,
10903 	.fsync		= btrfs_sync_file,
10904 };
10905 
10906 /*
10907  * btrfs doesn't support the bmap operation because swapfiles
10908  * use bmap to make a mapping of extents in the file.  They assume
10909  * these extents won't change over the life of the file and they
10910  * use the bmap result to do IO directly to the drive.
10911  *
10912  * the btrfs bmap call would return logical addresses that aren't
10913  * suitable for IO and they also will change frequently as COW
10914  * operations happen.  So, swapfile + btrfs == corruption.
10915  *
10916  * For now we're avoiding this by dropping bmap.
10917  */
10918 static const struct address_space_operations btrfs_aops = {
10919 	.read_folio	= btrfs_read_folio,
10920 	.writepages	= btrfs_writepages,
10921 	.readahead	= btrfs_readahead,
10922 	.invalidate_folio = btrfs_invalidate_folio,
10923 	.release_folio	= btrfs_release_folio,
10924 	.migrate_folio	= btrfs_migrate_folio,
10925 	.dirty_folio	= filemap_dirty_folio,
10926 	.error_remove_page = generic_error_remove_page,
10927 	.swap_activate	= btrfs_swap_activate,
10928 	.swap_deactivate = btrfs_swap_deactivate,
10929 };
10930 
10931 static const struct inode_operations btrfs_file_inode_operations = {
10932 	.getattr	= btrfs_getattr,
10933 	.setattr	= btrfs_setattr,
10934 	.listxattr      = btrfs_listxattr,
10935 	.permission	= btrfs_permission,
10936 	.fiemap		= btrfs_fiemap,
10937 	.get_inode_acl	= btrfs_get_acl,
10938 	.set_acl	= btrfs_set_acl,
10939 	.update_time	= btrfs_update_time,
10940 	.fileattr_get	= btrfs_fileattr_get,
10941 	.fileattr_set	= btrfs_fileattr_set,
10942 };
10943 static const struct inode_operations btrfs_special_inode_operations = {
10944 	.getattr	= btrfs_getattr,
10945 	.setattr	= btrfs_setattr,
10946 	.permission	= btrfs_permission,
10947 	.listxattr	= btrfs_listxattr,
10948 	.get_inode_acl	= btrfs_get_acl,
10949 	.set_acl	= btrfs_set_acl,
10950 	.update_time	= btrfs_update_time,
10951 };
10952 static const struct inode_operations btrfs_symlink_inode_operations = {
10953 	.get_link	= page_get_link,
10954 	.getattr	= btrfs_getattr,
10955 	.setattr	= btrfs_setattr,
10956 	.permission	= btrfs_permission,
10957 	.listxattr	= btrfs_listxattr,
10958 	.update_time	= btrfs_update_time,
10959 };
10960 
10961 const struct dentry_operations btrfs_dentry_operations = {
10962 	.d_delete	= btrfs_dentry_delete,
10963 };
10964