1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct folio *locked_folio, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct folio *folio; 403 404 if (locked_folio) { 405 page_start = folio_pos(locked_folio); 406 page_end = page_start + folio_size(locked_folio) - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0); 425 index++; 426 if (IS_ERR(folio)) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 435 offset, bytes); 436 folio_put(folio); 437 } 438 439 if (locked_folio) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + folio_size(locked_folio)) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - folio_pos(locked_folio) - 451 folio_size(locked_folio); 452 offset = folio_pos(locked_folio) + folio_size(locked_folio); 453 } 454 } 455 456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 457 } 458 459 static int btrfs_dirty_inode(struct btrfs_inode *inode); 460 461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 462 struct btrfs_new_inode_args *args) 463 { 464 int err; 465 466 if (args->default_acl) { 467 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 468 ACL_TYPE_DEFAULT); 469 if (err) 470 return err; 471 } 472 if (args->acl) { 473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 474 if (err) 475 return err; 476 } 477 if (!args->default_acl && !args->acl) 478 cache_no_acl(args->inode); 479 return btrfs_xattr_security_init(trans, args->inode, args->dir, 480 &args->dentry->d_name); 481 } 482 483 /* 484 * this does all the hard work for inserting an inline extent into 485 * the btree. The caller should have done a btrfs_drop_extents so that 486 * no overlapping inline items exist in the btree 487 */ 488 static int insert_inline_extent(struct btrfs_trans_handle *trans, 489 struct btrfs_path *path, 490 struct btrfs_inode *inode, bool extent_inserted, 491 size_t size, size_t compressed_size, 492 int compress_type, 493 struct folio *compressed_folio, 494 bool update_i_size) 495 { 496 struct btrfs_root *root = inode->root; 497 struct extent_buffer *leaf; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 struct folio *folio; 558 559 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, 560 0, 0, 0); 561 ASSERT(!IS_ERR(folio)); 562 btrfs_set_file_extent_compression(leaf, ei, 0); 563 kaddr = kmap_local_folio(folio, 0); 564 write_extent_buffer(leaf, kaddr, ptr, size); 565 kunmap_local(kaddr); 566 folio_put(folio); 567 } 568 btrfs_mark_buffer_dirty(trans, leaf); 569 btrfs_release_path(path); 570 571 /* 572 * We align size to sectorsize for inline extents just for simplicity 573 * sake. 574 */ 575 ret = btrfs_inode_set_file_extent_range(inode, 0, 576 ALIGN(size, root->fs_info->sectorsize)); 577 if (ret) 578 goto fail; 579 580 /* 581 * We're an inline extent, so nobody can extend the file past i_size 582 * without locking a page we already have locked. 583 * 584 * We must do any i_size and inode updates before we unlock the pages. 585 * Otherwise we could end up racing with unlink. 586 */ 587 i_size = i_size_read(&inode->vfs_inode); 588 if (update_i_size && size > i_size) { 589 i_size_write(&inode->vfs_inode, size); 590 i_size = size; 591 } 592 inode->disk_i_size = i_size; 593 594 fail: 595 return ret; 596 } 597 598 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 599 u64 offset, u64 size, 600 size_t compressed_size) 601 { 602 struct btrfs_fs_info *fs_info = inode->root->fs_info; 603 u64 data_len = (compressed_size ?: size); 604 605 /* Inline extents must start at offset 0. */ 606 if (offset != 0) 607 return false; 608 609 /* 610 * Due to the page size limit, for subpage we can only trigger the 611 * writeback for the dirty sectors of page, that means data writeback 612 * is doing more writeback than what we want. 613 * 614 * This is especially unexpected for some call sites like fallocate, 615 * where we only increase i_size after everything is done. 616 * This means we can trigger inline extent even if we didn't want to. 617 * So here we skip inline extent creation completely. 618 */ 619 if (fs_info->sectorsize != PAGE_SIZE) 620 return false; 621 622 /* Inline extents are limited to sectorsize. */ 623 if (size > fs_info->sectorsize) 624 return false; 625 626 /* We cannot exceed the maximum inline data size. */ 627 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 628 return false; 629 630 /* We cannot exceed the user specified max_inline size. */ 631 if (data_len > fs_info->max_inline) 632 return false; 633 634 /* Inline extents must be the entirety of the file. */ 635 if (size < i_size_read(&inode->vfs_inode)) 636 return false; 637 638 return true; 639 } 640 641 /* 642 * conditionally insert an inline extent into the file. This 643 * does the checks required to make sure the data is small enough 644 * to fit as an inline extent. 645 * 646 * If being used directly, you must have already checked we're allowed to cow 647 * the range by getting true from can_cow_file_range_inline(). 648 */ 649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 650 u64 size, size_t compressed_size, 651 int compress_type, 652 struct folio *compressed_folio, 653 bool update_i_size) 654 { 655 struct btrfs_drop_extents_args drop_args = { 0 }; 656 struct btrfs_root *root = inode->root; 657 struct btrfs_fs_info *fs_info = root->fs_info; 658 struct btrfs_trans_handle *trans; 659 u64 data_len = (compressed_size ?: size); 660 int ret; 661 struct btrfs_path *path; 662 663 path = btrfs_alloc_path(); 664 if (!path) 665 return -ENOMEM; 666 667 trans = btrfs_join_transaction(root); 668 if (IS_ERR(trans)) { 669 btrfs_free_path(path); 670 return PTR_ERR(trans); 671 } 672 trans->block_rsv = &inode->block_rsv; 673 674 drop_args.path = path; 675 drop_args.start = 0; 676 drop_args.end = fs_info->sectorsize; 677 drop_args.drop_cache = true; 678 drop_args.replace_extent = true; 679 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 680 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 681 if (ret) { 682 btrfs_abort_transaction(trans, ret); 683 goto out; 684 } 685 686 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 687 size, compressed_size, compress_type, 688 compressed_folio, update_i_size); 689 if (ret && ret != -ENOSPC) { 690 btrfs_abort_transaction(trans, ret); 691 goto out; 692 } else if (ret == -ENOSPC) { 693 ret = 1; 694 goto out; 695 } 696 697 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 698 ret = btrfs_update_inode(trans, inode); 699 if (ret && ret != -ENOSPC) { 700 btrfs_abort_transaction(trans, ret); 701 goto out; 702 } else if (ret == -ENOSPC) { 703 ret = 1; 704 goto out; 705 } 706 707 btrfs_set_inode_full_sync(inode); 708 out: 709 /* 710 * Don't forget to free the reserved space, as for inlined extent 711 * it won't count as data extent, free them directly here. 712 * And at reserve time, it's always aligned to page size, so 713 * just free one page here. 714 */ 715 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 716 btrfs_free_path(path); 717 btrfs_end_transaction(trans); 718 return ret; 719 } 720 721 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 722 struct folio *locked_folio, 723 u64 offset, u64 end, 724 size_t compressed_size, 725 int compress_type, 726 struct folio *compressed_folio, 727 bool update_i_size) 728 { 729 struct extent_state *cached = NULL; 730 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 731 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 732 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 733 int ret; 734 735 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 736 return 1; 737 738 lock_extent(&inode->io_tree, offset, end, &cached); 739 ret = __cow_file_range_inline(inode, offset, size, compressed_size, 740 compress_type, compressed_folio, 741 update_i_size); 742 if (ret > 0) { 743 unlock_extent(&inode->io_tree, offset, end, &cached); 744 return ret; 745 } 746 747 /* 748 * In the successful case (ret == 0 here), cow_file_range will return 1. 749 * 750 * Quite a bit further up the callstack in extent_writepage(), ret == 1 751 * is treated as a short circuited success and does not unlock the folio, 752 * so we must do it here. 753 * 754 * In the failure case, the locked_folio does get unlocked by 755 * btrfs_folio_end_all_writers, which asserts that it is still locked 756 * at that point, so we must *not* unlock it here. 757 * 758 * The other two callsites in compress_file_range do not have a 759 * locked_folio, so they are not relevant to this logic. 760 */ 761 if (ret == 0) 762 locked_folio = NULL; 763 764 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 765 clear_flags, PAGE_UNLOCK | 766 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 767 return ret; 768 } 769 770 struct async_extent { 771 u64 start; 772 u64 ram_size; 773 u64 compressed_size; 774 struct folio **folios; 775 unsigned long nr_folios; 776 int compress_type; 777 struct list_head list; 778 }; 779 780 struct async_chunk { 781 struct btrfs_inode *inode; 782 struct folio *locked_folio; 783 u64 start; 784 u64 end; 785 blk_opf_t write_flags; 786 struct list_head extents; 787 struct cgroup_subsys_state *blkcg_css; 788 struct btrfs_work work; 789 struct async_cow *async_cow; 790 }; 791 792 struct async_cow { 793 atomic_t num_chunks; 794 struct async_chunk chunks[]; 795 }; 796 797 static noinline int add_async_extent(struct async_chunk *cow, 798 u64 start, u64 ram_size, 799 u64 compressed_size, 800 struct folio **folios, 801 unsigned long nr_folios, 802 int compress_type) 803 { 804 struct async_extent *async_extent; 805 806 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 807 if (!async_extent) 808 return -ENOMEM; 809 async_extent->start = start; 810 async_extent->ram_size = ram_size; 811 async_extent->compressed_size = compressed_size; 812 async_extent->folios = folios; 813 async_extent->nr_folios = nr_folios; 814 async_extent->compress_type = compress_type; 815 list_add_tail(&async_extent->list, &cow->extents); 816 return 0; 817 } 818 819 /* 820 * Check if the inode needs to be submitted to compression, based on mount 821 * options, defragmentation, properties or heuristics. 822 */ 823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 824 u64 end) 825 { 826 struct btrfs_fs_info *fs_info = inode->root->fs_info; 827 828 if (!btrfs_inode_can_compress(inode)) { 829 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 830 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 831 btrfs_ino(inode)); 832 return 0; 833 } 834 /* 835 * Special check for subpage. 836 * 837 * We lock the full page then run each delalloc range in the page, thus 838 * for the following case, we will hit some subpage specific corner case: 839 * 840 * 0 32K 64K 841 * | |///////| |///////| 842 * \- A \- B 843 * 844 * In above case, both range A and range B will try to unlock the full 845 * page [0, 64K), causing the one finished later will have page 846 * unlocked already, triggering various page lock requirement BUG_ON()s. 847 * 848 * So here we add an artificial limit that subpage compression can only 849 * if the range is fully page aligned. 850 * 851 * In theory we only need to ensure the first page is fully covered, but 852 * the tailing partial page will be locked until the full compression 853 * finishes, delaying the write of other range. 854 * 855 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 856 * first to prevent any submitted async extent to unlock the full page. 857 * By this, we can ensure for subpage case that only the last async_cow 858 * will unlock the full page. 859 */ 860 if (fs_info->sectorsize < PAGE_SIZE) { 861 if (!PAGE_ALIGNED(start) || 862 !PAGE_ALIGNED(end + 1)) 863 return 0; 864 } 865 866 /* force compress */ 867 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 868 return 1; 869 /* defrag ioctl */ 870 if (inode->defrag_compress) 871 return 1; 872 /* bad compression ratios */ 873 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 874 return 0; 875 if (btrfs_test_opt(fs_info, COMPRESS) || 876 inode->flags & BTRFS_INODE_COMPRESS || 877 inode->prop_compress) 878 return btrfs_compress_heuristic(inode, start, end); 879 return 0; 880 } 881 882 static inline void inode_should_defrag(struct btrfs_inode *inode, 883 u64 start, u64 end, u64 num_bytes, u32 small_write) 884 { 885 /* If this is a small write inside eof, kick off a defrag */ 886 if (num_bytes < small_write && 887 (start > 0 || end + 1 < inode->disk_i_size)) 888 btrfs_add_inode_defrag(inode, small_write); 889 } 890 891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 892 { 893 unsigned long end_index = end >> PAGE_SHIFT; 894 struct folio *folio; 895 int ret = 0; 896 897 for (unsigned long index = start >> PAGE_SHIFT; 898 index <= end_index; index++) { 899 folio = __filemap_get_folio(inode->i_mapping, index, 0, 0); 900 if (IS_ERR(folio)) { 901 if (!ret) 902 ret = PTR_ERR(folio); 903 continue; 904 } 905 folio_clear_dirty_for_io(folio); 906 folio_put(folio); 907 } 908 return ret; 909 } 910 911 /* 912 * Work queue call back to started compression on a file and pages. 913 * 914 * This is done inside an ordered work queue, and the compression is spread 915 * across many cpus. The actual IO submission is step two, and the ordered work 916 * queue takes care of making sure that happens in the same order things were 917 * put onto the queue by writepages and friends. 918 * 919 * If this code finds it can't get good compression, it puts an entry onto the 920 * work queue to write the uncompressed bytes. This makes sure that both 921 * compressed inodes and uncompressed inodes are written in the same order that 922 * the flusher thread sent them down. 923 */ 924 static void compress_file_range(struct btrfs_work *work) 925 { 926 struct async_chunk *async_chunk = 927 container_of(work, struct async_chunk, work); 928 struct btrfs_inode *inode = async_chunk->inode; 929 struct btrfs_fs_info *fs_info = inode->root->fs_info; 930 struct address_space *mapping = inode->vfs_inode.i_mapping; 931 u64 blocksize = fs_info->sectorsize; 932 u64 start = async_chunk->start; 933 u64 end = async_chunk->end; 934 u64 actual_end; 935 u64 i_size; 936 int ret = 0; 937 struct folio **folios; 938 unsigned long nr_folios; 939 unsigned long total_compressed = 0; 940 unsigned long total_in = 0; 941 unsigned int poff; 942 int i; 943 int compress_type = fs_info->compress_type; 944 945 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 946 947 /* 948 * We need to call clear_page_dirty_for_io on each page in the range. 949 * Otherwise applications with the file mmap'd can wander in and change 950 * the page contents while we are compressing them. 951 */ 952 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 953 954 /* 955 * All the folios should have been locked thus no failure. 956 * 957 * And even if some folios are missing, btrfs_compress_folios() 958 * would handle them correctly, so here just do an ASSERT() check for 959 * early logic errors. 960 */ 961 ASSERT(ret == 0); 962 963 /* 964 * We need to save i_size before now because it could change in between 965 * us evaluating the size and assigning it. This is because we lock and 966 * unlock the page in truncate and fallocate, and then modify the i_size 967 * later on. 968 * 969 * The barriers are to emulate READ_ONCE, remove that once i_size_read 970 * does that for us. 971 */ 972 barrier(); 973 i_size = i_size_read(&inode->vfs_inode); 974 barrier(); 975 actual_end = min_t(u64, i_size, end + 1); 976 again: 977 folios = NULL; 978 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 979 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 980 981 /* 982 * we don't want to send crud past the end of i_size through 983 * compression, that's just a waste of CPU time. So, if the 984 * end of the file is before the start of our current 985 * requested range of bytes, we bail out to the uncompressed 986 * cleanup code that can deal with all of this. 987 * 988 * It isn't really the fastest way to fix things, but this is a 989 * very uncommon corner. 990 */ 991 if (actual_end <= start) 992 goto cleanup_and_bail_uncompressed; 993 994 total_compressed = actual_end - start; 995 996 /* 997 * Skip compression for a small file range(<=blocksize) that 998 * isn't an inline extent, since it doesn't save disk space at all. 999 */ 1000 if (total_compressed <= blocksize && 1001 (start > 0 || end + 1 < inode->disk_i_size)) 1002 goto cleanup_and_bail_uncompressed; 1003 1004 /* 1005 * For subpage case, we require full page alignment for the sector 1006 * aligned range. 1007 * Thus we must also check against @actual_end, not just @end. 1008 */ 1009 if (blocksize < PAGE_SIZE) { 1010 if (!PAGE_ALIGNED(start) || 1011 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 1012 goto cleanup_and_bail_uncompressed; 1013 } 1014 1015 total_compressed = min_t(unsigned long, total_compressed, 1016 BTRFS_MAX_UNCOMPRESSED); 1017 total_in = 0; 1018 ret = 0; 1019 1020 /* 1021 * We do compression for mount -o compress and when the inode has not 1022 * been flagged as NOCOMPRESS. This flag can change at any time if we 1023 * discover bad compression ratios. 1024 */ 1025 if (!inode_need_compress(inode, start, end)) 1026 goto cleanup_and_bail_uncompressed; 1027 1028 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1029 if (!folios) { 1030 /* 1031 * Memory allocation failure is not a fatal error, we can fall 1032 * back to uncompressed code. 1033 */ 1034 goto cleanup_and_bail_uncompressed; 1035 } 1036 1037 if (inode->defrag_compress) 1038 compress_type = inode->defrag_compress; 1039 else if (inode->prop_compress) 1040 compress_type = inode->prop_compress; 1041 1042 /* Compression level is applied here. */ 1043 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1044 mapping, start, folios, &nr_folios, &total_in, 1045 &total_compressed); 1046 if (ret) 1047 goto mark_incompressible; 1048 1049 /* 1050 * Zero the tail end of the last page, as we might be sending it down 1051 * to disk. 1052 */ 1053 poff = offset_in_page(total_compressed); 1054 if (poff) 1055 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1056 1057 /* 1058 * Try to create an inline extent. 1059 * 1060 * If we didn't compress the entire range, try to create an uncompressed 1061 * inline extent, else a compressed one. 1062 * 1063 * Check cow_file_range() for why we don't even try to create inline 1064 * extent for the subpage case. 1065 */ 1066 if (total_in < actual_end) 1067 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1068 BTRFS_COMPRESS_NONE, NULL, false); 1069 else 1070 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1071 compress_type, folios[0], false); 1072 if (ret <= 0) { 1073 if (ret < 0) 1074 mapping_set_error(mapping, -EIO); 1075 goto free_pages; 1076 } 1077 1078 /* 1079 * We aren't doing an inline extent. Round the compressed size up to a 1080 * block size boundary so the allocator does sane things. 1081 */ 1082 total_compressed = ALIGN(total_compressed, blocksize); 1083 1084 /* 1085 * One last check to make sure the compression is really a win, compare 1086 * the page count read with the blocks on disk, compression must free at 1087 * least one sector. 1088 */ 1089 total_in = round_up(total_in, fs_info->sectorsize); 1090 if (total_compressed + blocksize > total_in) 1091 goto mark_incompressible; 1092 1093 /* 1094 * The async work queues will take care of doing actual allocation on 1095 * disk for these compressed pages, and will submit the bios. 1096 */ 1097 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1098 nr_folios, compress_type); 1099 BUG_ON(ret); 1100 if (start + total_in < end) { 1101 start += total_in; 1102 cond_resched(); 1103 goto again; 1104 } 1105 return; 1106 1107 mark_incompressible: 1108 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1109 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1110 cleanup_and_bail_uncompressed: 1111 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1112 BTRFS_COMPRESS_NONE); 1113 BUG_ON(ret); 1114 free_pages: 1115 if (folios) { 1116 for (i = 0; i < nr_folios; i++) { 1117 WARN_ON(folios[i]->mapping); 1118 btrfs_free_compr_folio(folios[i]); 1119 } 1120 kfree(folios); 1121 } 1122 } 1123 1124 static void free_async_extent_pages(struct async_extent *async_extent) 1125 { 1126 int i; 1127 1128 if (!async_extent->folios) 1129 return; 1130 1131 for (i = 0; i < async_extent->nr_folios; i++) { 1132 WARN_ON(async_extent->folios[i]->mapping); 1133 btrfs_free_compr_folio(async_extent->folios[i]); 1134 } 1135 kfree(async_extent->folios); 1136 async_extent->nr_folios = 0; 1137 async_extent->folios = NULL; 1138 } 1139 1140 static void submit_uncompressed_range(struct btrfs_inode *inode, 1141 struct async_extent *async_extent, 1142 struct folio *locked_folio) 1143 { 1144 u64 start = async_extent->start; 1145 u64 end = async_extent->start + async_extent->ram_size - 1; 1146 int ret; 1147 struct writeback_control wbc = { 1148 .sync_mode = WB_SYNC_ALL, 1149 .range_start = start, 1150 .range_end = end, 1151 .no_cgroup_owner = 1, 1152 }; 1153 1154 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1155 ret = run_delalloc_cow(inode, locked_folio, start, end, 1156 &wbc, false); 1157 wbc_detach_inode(&wbc); 1158 if (ret < 0) { 1159 btrfs_cleanup_ordered_extents(inode, locked_folio, 1160 start, end - start + 1); 1161 if (locked_folio) { 1162 const u64 page_start = folio_pos(locked_folio); 1163 1164 folio_start_writeback(locked_folio); 1165 folio_end_writeback(locked_folio); 1166 btrfs_mark_ordered_io_finished(inode, locked_folio, 1167 page_start, PAGE_SIZE, 1168 !ret); 1169 mapping_set_error(locked_folio->mapping, ret); 1170 folio_unlock(locked_folio); 1171 } 1172 } 1173 } 1174 1175 static void submit_one_async_extent(struct async_chunk *async_chunk, 1176 struct async_extent *async_extent, 1177 u64 *alloc_hint) 1178 { 1179 struct btrfs_inode *inode = async_chunk->inode; 1180 struct extent_io_tree *io_tree = &inode->io_tree; 1181 struct btrfs_root *root = inode->root; 1182 struct btrfs_fs_info *fs_info = root->fs_info; 1183 struct btrfs_ordered_extent *ordered; 1184 struct btrfs_file_extent file_extent; 1185 struct btrfs_key ins; 1186 struct folio *locked_folio = NULL; 1187 struct extent_state *cached = NULL; 1188 struct extent_map *em; 1189 int ret = 0; 1190 u64 start = async_extent->start; 1191 u64 end = async_extent->start + async_extent->ram_size - 1; 1192 1193 if (async_chunk->blkcg_css) 1194 kthread_associate_blkcg(async_chunk->blkcg_css); 1195 1196 /* 1197 * If async_chunk->locked_folio is in the async_extent range, we need to 1198 * handle it. 1199 */ 1200 if (async_chunk->locked_folio) { 1201 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1202 u64 locked_folio_end = locked_folio_start + 1203 folio_size(async_chunk->locked_folio) - 1; 1204 1205 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1206 locked_folio = async_chunk->locked_folio; 1207 } 1208 1209 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1210 submit_uncompressed_range(inode, async_extent, locked_folio); 1211 goto done; 1212 } 1213 1214 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1215 async_extent->compressed_size, 1216 async_extent->compressed_size, 1217 0, *alloc_hint, &ins, 1, 1); 1218 if (ret) { 1219 /* 1220 * We can't reserve contiguous space for the compressed size. 1221 * Unlikely, but it's possible that we could have enough 1222 * non-contiguous space for the uncompressed size instead. So 1223 * fall back to uncompressed. 1224 */ 1225 submit_uncompressed_range(inode, async_extent, locked_folio); 1226 goto done; 1227 } 1228 1229 lock_extent(io_tree, start, end, &cached); 1230 1231 /* Here we're doing allocation and writeback of the compressed pages */ 1232 file_extent.disk_bytenr = ins.objectid; 1233 file_extent.disk_num_bytes = ins.offset; 1234 file_extent.ram_bytes = async_extent->ram_size; 1235 file_extent.num_bytes = async_extent->ram_size; 1236 file_extent.offset = 0; 1237 file_extent.compression = async_extent->compress_type; 1238 1239 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1240 if (IS_ERR(em)) { 1241 ret = PTR_ERR(em); 1242 goto out_free_reserve; 1243 } 1244 free_extent_map(em); 1245 1246 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1247 1 << BTRFS_ORDERED_COMPRESSED); 1248 if (IS_ERR(ordered)) { 1249 btrfs_drop_extent_map_range(inode, start, end, false); 1250 ret = PTR_ERR(ordered); 1251 goto out_free_reserve; 1252 } 1253 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1254 1255 /* Clear dirty, set writeback and unlock the pages. */ 1256 extent_clear_unlock_delalloc(inode, start, end, 1257 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1258 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1259 btrfs_submit_compressed_write(ordered, 1260 async_extent->folios, /* compressed_folios */ 1261 async_extent->nr_folios, 1262 async_chunk->write_flags, true); 1263 *alloc_hint = ins.objectid + ins.offset; 1264 done: 1265 if (async_chunk->blkcg_css) 1266 kthread_associate_blkcg(NULL); 1267 kfree(async_extent); 1268 return; 1269 1270 out_free_reserve: 1271 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1272 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1273 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1274 extent_clear_unlock_delalloc(inode, start, end, 1275 NULL, &cached, 1276 EXTENT_LOCKED | EXTENT_DELALLOC | 1277 EXTENT_DELALLOC_NEW | 1278 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1279 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1280 PAGE_END_WRITEBACK); 1281 free_async_extent_pages(async_extent); 1282 if (async_chunk->blkcg_css) 1283 kthread_associate_blkcg(NULL); 1284 btrfs_debug(fs_info, 1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1286 btrfs_root_id(root), btrfs_ino(inode), start, 1287 async_extent->ram_size, ret); 1288 kfree(async_extent); 1289 } 1290 1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1292 u64 num_bytes) 1293 { 1294 struct extent_map_tree *em_tree = &inode->extent_tree; 1295 struct extent_map *em; 1296 u64 alloc_hint = 0; 1297 1298 read_lock(&em_tree->lock); 1299 em = search_extent_mapping(em_tree, start, num_bytes); 1300 if (em) { 1301 /* 1302 * if block start isn't an actual block number then find the 1303 * first block in this inode and use that as a hint. If that 1304 * block is also bogus then just don't worry about it. 1305 */ 1306 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1307 free_extent_map(em); 1308 em = search_extent_mapping(em_tree, 0, 0); 1309 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1310 alloc_hint = extent_map_block_start(em); 1311 if (em) 1312 free_extent_map(em); 1313 } else { 1314 alloc_hint = extent_map_block_start(em); 1315 free_extent_map(em); 1316 } 1317 } 1318 read_unlock(&em_tree->lock); 1319 1320 return alloc_hint; 1321 } 1322 1323 /* 1324 * when extent_io.c finds a delayed allocation range in the file, 1325 * the call backs end up in this code. The basic idea is to 1326 * allocate extents on disk for the range, and create ordered data structs 1327 * in ram to track those extents. 1328 * 1329 * locked_folio is the folio that writepage had locked already. We use 1330 * it to make sure we don't do extra locks or unlocks. 1331 * 1332 * When this function fails, it unlocks all pages except @locked_folio. 1333 * 1334 * When this function successfully creates an inline extent, it returns 1 and 1335 * unlocks all pages including locked_folio and starts I/O on them. 1336 * (In reality inline extents are limited to a single page, so locked_folio is 1337 * the only page handled anyway). 1338 * 1339 * When this function succeed and creates a normal extent, the page locking 1340 * status depends on the passed in flags: 1341 * 1342 * - If @keep_locked is set, all pages are kept locked. 1343 * - Else all pages except for @locked_folio are unlocked. 1344 * 1345 * When a failure happens in the second or later iteration of the 1346 * while-loop, the ordered extents created in previous iterations are kept 1347 * intact. So, the caller must clean them up by calling 1348 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1349 * example. 1350 */ 1351 static noinline int cow_file_range(struct btrfs_inode *inode, 1352 struct folio *locked_folio, u64 start, 1353 u64 end, u64 *done_offset, 1354 bool keep_locked, bool no_inline) 1355 { 1356 struct btrfs_root *root = inode->root; 1357 struct btrfs_fs_info *fs_info = root->fs_info; 1358 struct extent_state *cached = NULL; 1359 u64 alloc_hint = 0; 1360 u64 orig_start = start; 1361 u64 num_bytes; 1362 unsigned long ram_size; 1363 u64 cur_alloc_size = 0; 1364 u64 min_alloc_size; 1365 u64 blocksize = fs_info->sectorsize; 1366 struct btrfs_key ins; 1367 struct extent_map *em; 1368 unsigned clear_bits; 1369 unsigned long page_ops; 1370 bool extent_reserved = false; 1371 int ret = 0; 1372 1373 if (btrfs_is_free_space_inode(inode)) { 1374 ret = -EINVAL; 1375 goto out_unlock; 1376 } 1377 1378 num_bytes = ALIGN(end - start + 1, blocksize); 1379 num_bytes = max(blocksize, num_bytes); 1380 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1381 1382 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1383 1384 if (!no_inline) { 1385 /* lets try to make an inline extent */ 1386 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1387 BTRFS_COMPRESS_NONE, NULL, false); 1388 if (ret <= 0) { 1389 /* 1390 * We succeeded, return 1 so the caller knows we're done 1391 * with this page and already handled the IO. 1392 * 1393 * If there was an error then cow_file_range_inline() has 1394 * already done the cleanup. 1395 */ 1396 if (ret == 0) 1397 ret = 1; 1398 goto done; 1399 } 1400 } 1401 1402 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1403 1404 /* 1405 * Relocation relies on the relocated extents to have exactly the same 1406 * size as the original extents. Normally writeback for relocation data 1407 * extents follows a NOCOW path because relocation preallocates the 1408 * extents. However, due to an operation such as scrub turning a block 1409 * group to RO mode, it may fallback to COW mode, so we must make sure 1410 * an extent allocated during COW has exactly the requested size and can 1411 * not be split into smaller extents, otherwise relocation breaks and 1412 * fails during the stage where it updates the bytenr of file extent 1413 * items. 1414 */ 1415 if (btrfs_is_data_reloc_root(root)) 1416 min_alloc_size = num_bytes; 1417 else 1418 min_alloc_size = fs_info->sectorsize; 1419 1420 while (num_bytes > 0) { 1421 struct btrfs_ordered_extent *ordered; 1422 struct btrfs_file_extent file_extent; 1423 1424 cur_alloc_size = num_bytes; 1425 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1426 min_alloc_size, 0, alloc_hint, 1427 &ins, 1, 1); 1428 if (ret == -EAGAIN) { 1429 /* 1430 * btrfs_reserve_extent only returns -EAGAIN for zoned 1431 * file systems, which is an indication that there are 1432 * no active zones to allocate from at the moment. 1433 * 1434 * If this is the first loop iteration, wait for at 1435 * least one zone to finish before retrying the 1436 * allocation. Otherwise ask the caller to write out 1437 * the already allocated blocks before coming back to 1438 * us, or return -ENOSPC if it can't handle retries. 1439 */ 1440 ASSERT(btrfs_is_zoned(fs_info)); 1441 if (start == orig_start) { 1442 wait_on_bit_io(&inode->root->fs_info->flags, 1443 BTRFS_FS_NEED_ZONE_FINISH, 1444 TASK_UNINTERRUPTIBLE); 1445 continue; 1446 } 1447 if (done_offset) { 1448 *done_offset = start - 1; 1449 return 0; 1450 } 1451 ret = -ENOSPC; 1452 } 1453 if (ret < 0) 1454 goto out_unlock; 1455 cur_alloc_size = ins.offset; 1456 extent_reserved = true; 1457 1458 ram_size = ins.offset; 1459 file_extent.disk_bytenr = ins.objectid; 1460 file_extent.disk_num_bytes = ins.offset; 1461 file_extent.num_bytes = ins.offset; 1462 file_extent.ram_bytes = ins.offset; 1463 file_extent.offset = 0; 1464 file_extent.compression = BTRFS_COMPRESS_NONE; 1465 1466 lock_extent(&inode->io_tree, start, start + ram_size - 1, 1467 &cached); 1468 1469 em = btrfs_create_io_em(inode, start, &file_extent, 1470 BTRFS_ORDERED_REGULAR); 1471 if (IS_ERR(em)) { 1472 unlock_extent(&inode->io_tree, start, 1473 start + ram_size - 1, &cached); 1474 ret = PTR_ERR(em); 1475 goto out_reserve; 1476 } 1477 free_extent_map(em); 1478 1479 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1480 1 << BTRFS_ORDERED_REGULAR); 1481 if (IS_ERR(ordered)) { 1482 unlock_extent(&inode->io_tree, start, 1483 start + ram_size - 1, &cached); 1484 ret = PTR_ERR(ordered); 1485 goto out_drop_extent_cache; 1486 } 1487 1488 if (btrfs_is_data_reloc_root(root)) { 1489 ret = btrfs_reloc_clone_csums(ordered); 1490 1491 /* 1492 * Only drop cache here, and process as normal. 1493 * 1494 * We must not allow extent_clear_unlock_delalloc() 1495 * at out_unlock label to free meta of this ordered 1496 * extent, as its meta should be freed by 1497 * btrfs_finish_ordered_io(). 1498 * 1499 * So we must continue until @start is increased to 1500 * skip current ordered extent. 1501 */ 1502 if (ret) 1503 btrfs_drop_extent_map_range(inode, start, 1504 start + ram_size - 1, 1505 false); 1506 } 1507 btrfs_put_ordered_extent(ordered); 1508 1509 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1510 1511 /* 1512 * We're not doing compressed IO, don't unlock the first page 1513 * (which the caller expects to stay locked), don't clear any 1514 * dirty bits and don't set any writeback bits 1515 * 1516 * Do set the Ordered (Private2) bit so we know this page was 1517 * properly setup for writepage. 1518 */ 1519 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1520 page_ops |= PAGE_SET_ORDERED; 1521 1522 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1523 locked_folio, &cached, 1524 EXTENT_LOCKED | EXTENT_DELALLOC, 1525 page_ops); 1526 if (num_bytes < cur_alloc_size) 1527 num_bytes = 0; 1528 else 1529 num_bytes -= cur_alloc_size; 1530 alloc_hint = ins.objectid + ins.offset; 1531 start += cur_alloc_size; 1532 extent_reserved = false; 1533 1534 /* 1535 * btrfs_reloc_clone_csums() error, since start is increased 1536 * extent_clear_unlock_delalloc() at out_unlock label won't 1537 * free metadata of current ordered extent, we're OK to exit. 1538 */ 1539 if (ret) 1540 goto out_unlock; 1541 } 1542 done: 1543 if (done_offset) 1544 *done_offset = end; 1545 return ret; 1546 1547 out_drop_extent_cache: 1548 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1549 out_reserve: 1550 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1552 out_unlock: 1553 /* 1554 * Now, we have three regions to clean up: 1555 * 1556 * |-------(1)----|---(2)---|-------------(3)----------| 1557 * `- orig_start `- start `- start + cur_alloc_size `- end 1558 * 1559 * We process each region below. 1560 */ 1561 1562 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1563 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1564 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1565 1566 /* 1567 * For the range (1). We have already instantiated the ordered extents 1568 * for this region. They are cleaned up by 1569 * btrfs_cleanup_ordered_extents() in e.g, 1570 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1571 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1572 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1573 * function. 1574 * 1575 * However, in case of @keep_locked, we still need to unlock the pages 1576 * (except @locked_folio) to ensure all the pages are unlocked. 1577 */ 1578 if (keep_locked && orig_start < start) { 1579 if (!locked_folio) 1580 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1581 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1582 locked_folio, NULL, 0, page_ops); 1583 } 1584 1585 /* 1586 * At this point we're unlocked, we want to make sure we're only 1587 * clearing these flags under the extent lock, so lock the rest of the 1588 * range and clear everything up. 1589 */ 1590 lock_extent(&inode->io_tree, start, end, NULL); 1591 1592 /* 1593 * For the range (2). If we reserved an extent for our delalloc range 1594 * (or a subrange) and failed to create the respective ordered extent, 1595 * then it means that when we reserved the extent we decremented the 1596 * extent's size from the data space_info's bytes_may_use counter and 1597 * incremented the space_info's bytes_reserved counter by the same 1598 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1599 * to decrement again the data space_info's bytes_may_use counter, 1600 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1601 */ 1602 if (extent_reserved) { 1603 extent_clear_unlock_delalloc(inode, start, 1604 start + cur_alloc_size - 1, 1605 locked_folio, &cached, clear_bits, 1606 page_ops); 1607 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1608 start += cur_alloc_size; 1609 } 1610 1611 /* 1612 * For the range (3). We never touched the region. In addition to the 1613 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1614 * space_info's bytes_may_use counter, reserved in 1615 * btrfs_check_data_free_space(). 1616 */ 1617 if (start < end) { 1618 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1619 extent_clear_unlock_delalloc(inode, start, end, locked_folio, 1620 &cached, clear_bits, page_ops); 1621 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1622 } 1623 return ret; 1624 } 1625 1626 /* 1627 * Phase two of compressed writeback. This is the ordered portion of the code, 1628 * which only gets called in the order the work was queued. We walk all the 1629 * async extents created by compress_file_range and send them down to the disk. 1630 * 1631 * If called with @do_free == true then it'll try to finish the work and free 1632 * the work struct eventually. 1633 */ 1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1635 { 1636 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1637 work); 1638 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1639 struct async_extent *async_extent; 1640 unsigned long nr_pages; 1641 u64 alloc_hint = 0; 1642 1643 if (do_free) { 1644 struct async_cow *async_cow; 1645 1646 btrfs_add_delayed_iput(async_chunk->inode); 1647 if (async_chunk->blkcg_css) 1648 css_put(async_chunk->blkcg_css); 1649 1650 async_cow = async_chunk->async_cow; 1651 if (atomic_dec_and_test(&async_cow->num_chunks)) 1652 kvfree(async_cow); 1653 return; 1654 } 1655 1656 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1657 PAGE_SHIFT; 1658 1659 while (!list_empty(&async_chunk->extents)) { 1660 async_extent = list_entry(async_chunk->extents.next, 1661 struct async_extent, list); 1662 list_del(&async_extent->list); 1663 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1664 } 1665 1666 /* atomic_sub_return implies a barrier */ 1667 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1668 5 * SZ_1M) 1669 cond_wake_up_nomb(&fs_info->async_submit_wait); 1670 } 1671 1672 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1673 struct folio *locked_folio, u64 start, 1674 u64 end, struct writeback_control *wbc) 1675 { 1676 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1677 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1678 struct async_cow *ctx; 1679 struct async_chunk *async_chunk; 1680 unsigned long nr_pages; 1681 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1682 int i; 1683 unsigned nofs_flag; 1684 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1685 1686 nofs_flag = memalloc_nofs_save(); 1687 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1688 memalloc_nofs_restore(nofs_flag); 1689 if (!ctx) 1690 return false; 1691 1692 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1693 1694 async_chunk = ctx->chunks; 1695 atomic_set(&ctx->num_chunks, num_chunks); 1696 1697 for (i = 0; i < num_chunks; i++) { 1698 u64 cur_end = min(end, start + SZ_512K - 1); 1699 1700 /* 1701 * igrab is called higher up in the call chain, take only the 1702 * lightweight reference for the callback lifetime 1703 */ 1704 ihold(&inode->vfs_inode); 1705 async_chunk[i].async_cow = ctx; 1706 async_chunk[i].inode = inode; 1707 async_chunk[i].start = start; 1708 async_chunk[i].end = cur_end; 1709 async_chunk[i].write_flags = write_flags; 1710 INIT_LIST_HEAD(&async_chunk[i].extents); 1711 1712 /* 1713 * The locked_folio comes all the way from writepage and its 1714 * the original folio we were actually given. As we spread 1715 * this large delalloc region across multiple async_chunk 1716 * structs, only the first struct needs a pointer to 1717 * locked_folio. 1718 * 1719 * This way we don't need racey decisions about who is supposed 1720 * to unlock it. 1721 */ 1722 if (locked_folio) { 1723 /* 1724 * Depending on the compressibility, the pages might or 1725 * might not go through async. We want all of them to 1726 * be accounted against wbc once. Let's do it here 1727 * before the paths diverge. wbc accounting is used 1728 * only for foreign writeback detection and doesn't 1729 * need full accuracy. Just account the whole thing 1730 * against the first page. 1731 */ 1732 wbc_account_cgroup_owner(wbc, &locked_folio->page, 1733 cur_end - start); 1734 async_chunk[i].locked_folio = locked_folio; 1735 locked_folio = NULL; 1736 } else { 1737 async_chunk[i].locked_folio = NULL; 1738 } 1739 1740 if (blkcg_css != blkcg_root_css) { 1741 css_get(blkcg_css); 1742 async_chunk[i].blkcg_css = blkcg_css; 1743 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1744 } else { 1745 async_chunk[i].blkcg_css = NULL; 1746 } 1747 1748 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1749 submit_compressed_extents); 1750 1751 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1752 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1753 1754 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1755 1756 start = cur_end + 1; 1757 } 1758 return true; 1759 } 1760 1761 /* 1762 * Run the delalloc range from start to end, and write back any dirty pages 1763 * covered by the range. 1764 */ 1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1766 struct folio *locked_folio, u64 start, 1767 u64 end, struct writeback_control *wbc, 1768 bool pages_dirty) 1769 { 1770 u64 done_offset = end; 1771 int ret; 1772 1773 while (start <= end) { 1774 ret = cow_file_range(inode, locked_folio, start, end, 1775 &done_offset, true, false); 1776 if (ret) 1777 return ret; 1778 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1779 start, done_offset, wbc, pages_dirty); 1780 start = done_offset + 1; 1781 } 1782 1783 return 1; 1784 } 1785 1786 static int fallback_to_cow(struct btrfs_inode *inode, 1787 struct folio *locked_folio, const u64 start, 1788 const u64 end) 1789 { 1790 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1791 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1792 const u64 range_bytes = end + 1 - start; 1793 struct extent_io_tree *io_tree = &inode->io_tree; 1794 struct extent_state *cached_state = NULL; 1795 u64 range_start = start; 1796 u64 count; 1797 int ret; 1798 1799 /* 1800 * If EXTENT_NORESERVE is set it means that when the buffered write was 1801 * made we had not enough available data space and therefore we did not 1802 * reserve data space for it, since we though we could do NOCOW for the 1803 * respective file range (either there is prealloc extent or the inode 1804 * has the NOCOW bit set). 1805 * 1806 * However when we need to fallback to COW mode (because for example the 1807 * block group for the corresponding extent was turned to RO mode by a 1808 * scrub or relocation) we need to do the following: 1809 * 1810 * 1) We increment the bytes_may_use counter of the data space info. 1811 * If COW succeeds, it allocates a new data extent and after doing 1812 * that it decrements the space info's bytes_may_use counter and 1813 * increments its bytes_reserved counter by the same amount (we do 1814 * this at btrfs_add_reserved_bytes()). So we need to increment the 1815 * bytes_may_use counter to compensate (when space is reserved at 1816 * buffered write time, the bytes_may_use counter is incremented); 1817 * 1818 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1819 * that if the COW path fails for any reason, it decrements (through 1820 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1821 * data space info, which we incremented in the step above. 1822 * 1823 * If we need to fallback to cow and the inode corresponds to a free 1824 * space cache inode or an inode of the data relocation tree, we must 1825 * also increment bytes_may_use of the data space_info for the same 1826 * reason. Space caches and relocated data extents always get a prealloc 1827 * extent for them, however scrub or balance may have set the block 1828 * group that contains that extent to RO mode and therefore force COW 1829 * when starting writeback. 1830 */ 1831 lock_extent(io_tree, start, end, &cached_state); 1832 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1833 EXTENT_NORESERVE, 0, NULL); 1834 if (count > 0 || is_space_ino || is_reloc_ino) { 1835 u64 bytes = count; 1836 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1837 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1838 1839 if (is_space_ino || is_reloc_ino) 1840 bytes = range_bytes; 1841 1842 spin_lock(&sinfo->lock); 1843 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1844 spin_unlock(&sinfo->lock); 1845 1846 if (count > 0) 1847 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1848 NULL); 1849 } 1850 unlock_extent(io_tree, start, end, &cached_state); 1851 1852 /* 1853 * Don't try to create inline extents, as a mix of inline extent that 1854 * is written out and unlocked directly and a normal NOCOW extent 1855 * doesn't work. 1856 */ 1857 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1858 true); 1859 ASSERT(ret != 1); 1860 return ret; 1861 } 1862 1863 struct can_nocow_file_extent_args { 1864 /* Input fields. */ 1865 1866 /* Start file offset of the range we want to NOCOW. */ 1867 u64 start; 1868 /* End file offset (inclusive) of the range we want to NOCOW. */ 1869 u64 end; 1870 bool writeback_path; 1871 bool strict; 1872 /* 1873 * Free the path passed to can_nocow_file_extent() once it's not needed 1874 * anymore. 1875 */ 1876 bool free_path; 1877 1878 /* 1879 * Output fields. Only set when can_nocow_file_extent() returns 1. 1880 * The expected file extent for the NOCOW write. 1881 */ 1882 struct btrfs_file_extent file_extent; 1883 }; 1884 1885 /* 1886 * Check if we can NOCOW the file extent that the path points to. 1887 * This function may return with the path released, so the caller should check 1888 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1889 * 1890 * Returns: < 0 on error 1891 * 0 if we can not NOCOW 1892 * 1 if we can NOCOW 1893 */ 1894 static int can_nocow_file_extent(struct btrfs_path *path, 1895 struct btrfs_key *key, 1896 struct btrfs_inode *inode, 1897 struct can_nocow_file_extent_args *args) 1898 { 1899 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1900 struct extent_buffer *leaf = path->nodes[0]; 1901 struct btrfs_root *root = inode->root; 1902 struct btrfs_file_extent_item *fi; 1903 struct btrfs_root *csum_root; 1904 u64 io_start; 1905 u64 extent_end; 1906 u8 extent_type; 1907 int can_nocow = 0; 1908 int ret = 0; 1909 bool nowait = path->nowait; 1910 1911 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1912 extent_type = btrfs_file_extent_type(leaf, fi); 1913 1914 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1915 goto out; 1916 1917 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1918 extent_type == BTRFS_FILE_EXTENT_REG) 1919 goto out; 1920 1921 /* 1922 * If the extent was created before the generation where the last snapshot 1923 * for its subvolume was created, then this implies the extent is shared, 1924 * hence we must COW. 1925 */ 1926 if (!args->strict && 1927 btrfs_file_extent_generation(leaf, fi) <= 1928 btrfs_root_last_snapshot(&root->root_item)) 1929 goto out; 1930 1931 /* An explicit hole, must COW. */ 1932 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1933 goto out; 1934 1935 /* Compressed/encrypted/encoded extents must be COWed. */ 1936 if (btrfs_file_extent_compression(leaf, fi) || 1937 btrfs_file_extent_encryption(leaf, fi) || 1938 btrfs_file_extent_other_encoding(leaf, fi)) 1939 goto out; 1940 1941 extent_end = btrfs_file_extent_end(path); 1942 1943 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1944 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1945 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1946 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1947 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1948 1949 /* 1950 * The following checks can be expensive, as they need to take other 1951 * locks and do btree or rbtree searches, so release the path to avoid 1952 * blocking other tasks for too long. 1953 */ 1954 btrfs_release_path(path); 1955 1956 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1957 key->offset - args->file_extent.offset, 1958 args->file_extent.disk_bytenr, args->strict, path); 1959 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1960 if (ret != 0) 1961 goto out; 1962 1963 if (args->free_path) { 1964 /* 1965 * We don't need the path anymore, plus through the 1966 * btrfs_lookup_csums_list() call below we will end up allocating 1967 * another path. So free the path to avoid unnecessary extra 1968 * memory usage. 1969 */ 1970 btrfs_free_path(path); 1971 path = NULL; 1972 } 1973 1974 /* If there are pending snapshots for this root, we must COW. */ 1975 if (args->writeback_path && !is_freespace_inode && 1976 atomic_read(&root->snapshot_force_cow)) 1977 goto out; 1978 1979 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1980 args->file_extent.offset += args->start - key->offset; 1981 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1982 1983 /* 1984 * Force COW if csums exist in the range. This ensures that csums for a 1985 * given extent are either valid or do not exist. 1986 */ 1987 1988 csum_root = btrfs_csum_root(root->fs_info, io_start); 1989 ret = btrfs_lookup_csums_list(csum_root, io_start, 1990 io_start + args->file_extent.num_bytes - 1, 1991 NULL, nowait); 1992 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1993 if (ret != 0) 1994 goto out; 1995 1996 can_nocow = 1; 1997 out: 1998 if (args->free_path && path) 1999 btrfs_free_path(path); 2000 2001 return ret < 0 ? ret : can_nocow; 2002 } 2003 2004 /* 2005 * when nowcow writeback call back. This checks for snapshots or COW copies 2006 * of the extents that exist in the file, and COWs the file as required. 2007 * 2008 * If no cow copies or snapshots exist, we write directly to the existing 2009 * blocks on disk 2010 */ 2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2012 struct folio *locked_folio, 2013 const u64 start, const u64 end) 2014 { 2015 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2016 struct btrfs_root *root = inode->root; 2017 struct btrfs_path *path; 2018 u64 cow_start = (u64)-1; 2019 u64 cur_offset = start; 2020 int ret; 2021 bool check_prev = true; 2022 u64 ino = btrfs_ino(inode); 2023 struct can_nocow_file_extent_args nocow_args = { 0 }; 2024 2025 /* 2026 * Normally on a zoned device we're only doing COW writes, but in case 2027 * of relocation on a zoned filesystem serializes I/O so that we're only 2028 * writing sequentially and can end up here as well. 2029 */ 2030 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2031 2032 path = btrfs_alloc_path(); 2033 if (!path) { 2034 ret = -ENOMEM; 2035 goto error; 2036 } 2037 2038 nocow_args.end = end; 2039 nocow_args.writeback_path = true; 2040 2041 while (cur_offset <= end) { 2042 struct btrfs_block_group *nocow_bg = NULL; 2043 struct btrfs_ordered_extent *ordered; 2044 struct btrfs_key found_key; 2045 struct btrfs_file_extent_item *fi; 2046 struct extent_buffer *leaf; 2047 struct extent_state *cached_state = NULL; 2048 u64 extent_end; 2049 u64 nocow_end; 2050 int extent_type; 2051 bool is_prealloc; 2052 2053 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2054 cur_offset, 0); 2055 if (ret < 0) 2056 goto error; 2057 2058 /* 2059 * If there is no extent for our range when doing the initial 2060 * search, then go back to the previous slot as it will be the 2061 * one containing the search offset 2062 */ 2063 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2064 leaf = path->nodes[0]; 2065 btrfs_item_key_to_cpu(leaf, &found_key, 2066 path->slots[0] - 1); 2067 if (found_key.objectid == ino && 2068 found_key.type == BTRFS_EXTENT_DATA_KEY) 2069 path->slots[0]--; 2070 } 2071 check_prev = false; 2072 next_slot: 2073 /* Go to next leaf if we have exhausted the current one */ 2074 leaf = path->nodes[0]; 2075 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2076 ret = btrfs_next_leaf(root, path); 2077 if (ret < 0) 2078 goto error; 2079 if (ret > 0) 2080 break; 2081 leaf = path->nodes[0]; 2082 } 2083 2084 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2085 2086 /* Didn't find anything for our INO */ 2087 if (found_key.objectid > ino) 2088 break; 2089 /* 2090 * Keep searching until we find an EXTENT_ITEM or there are no 2091 * more extents for this inode 2092 */ 2093 if (WARN_ON_ONCE(found_key.objectid < ino) || 2094 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2095 path->slots[0]++; 2096 goto next_slot; 2097 } 2098 2099 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2100 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2101 found_key.offset > end) 2102 break; 2103 2104 /* 2105 * If the found extent starts after requested offset, then 2106 * adjust extent_end to be right before this extent begins 2107 */ 2108 if (found_key.offset > cur_offset) { 2109 extent_end = found_key.offset; 2110 extent_type = 0; 2111 goto must_cow; 2112 } 2113 2114 /* 2115 * Found extent which begins before our range and potentially 2116 * intersect it 2117 */ 2118 fi = btrfs_item_ptr(leaf, path->slots[0], 2119 struct btrfs_file_extent_item); 2120 extent_type = btrfs_file_extent_type(leaf, fi); 2121 /* If this is triggered then we have a memory corruption. */ 2122 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2123 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2124 ret = -EUCLEAN; 2125 goto error; 2126 } 2127 extent_end = btrfs_file_extent_end(path); 2128 2129 /* 2130 * If the extent we got ends before our current offset, skip to 2131 * the next extent. 2132 */ 2133 if (extent_end <= cur_offset) { 2134 path->slots[0]++; 2135 goto next_slot; 2136 } 2137 2138 nocow_args.start = cur_offset; 2139 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2140 if (ret < 0) 2141 goto error; 2142 if (ret == 0) 2143 goto must_cow; 2144 2145 ret = 0; 2146 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2147 nocow_args.file_extent.disk_bytenr + 2148 nocow_args.file_extent.offset); 2149 if (!nocow_bg) { 2150 must_cow: 2151 /* 2152 * If we can't perform NOCOW writeback for the range, 2153 * then record the beginning of the range that needs to 2154 * be COWed. It will be written out before the next 2155 * NOCOW range if we find one, or when exiting this 2156 * loop. 2157 */ 2158 if (cow_start == (u64)-1) 2159 cow_start = cur_offset; 2160 cur_offset = extent_end; 2161 if (cur_offset > end) 2162 break; 2163 if (!path->nodes[0]) 2164 continue; 2165 path->slots[0]++; 2166 goto next_slot; 2167 } 2168 2169 /* 2170 * COW range from cow_start to found_key.offset - 1. As the key 2171 * will contain the beginning of the first extent that can be 2172 * NOCOW, following one which needs to be COW'ed 2173 */ 2174 if (cow_start != (u64)-1) { 2175 ret = fallback_to_cow(inode, locked_folio, cow_start, 2176 found_key.offset - 1); 2177 cow_start = (u64)-1; 2178 if (ret) { 2179 btrfs_dec_nocow_writers(nocow_bg); 2180 goto error; 2181 } 2182 } 2183 2184 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2185 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2186 2187 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2188 if (is_prealloc) { 2189 struct extent_map *em; 2190 2191 em = btrfs_create_io_em(inode, cur_offset, 2192 &nocow_args.file_extent, 2193 BTRFS_ORDERED_PREALLOC); 2194 if (IS_ERR(em)) { 2195 unlock_extent(&inode->io_tree, cur_offset, 2196 nocow_end, &cached_state); 2197 btrfs_dec_nocow_writers(nocow_bg); 2198 ret = PTR_ERR(em); 2199 goto error; 2200 } 2201 free_extent_map(em); 2202 } 2203 2204 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2205 &nocow_args.file_extent, 2206 is_prealloc 2207 ? (1 << BTRFS_ORDERED_PREALLOC) 2208 : (1 << BTRFS_ORDERED_NOCOW)); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (IS_ERR(ordered)) { 2211 if (is_prealloc) { 2212 btrfs_drop_extent_map_range(inode, cur_offset, 2213 nocow_end, false); 2214 } 2215 unlock_extent(&inode->io_tree, cur_offset, 2216 nocow_end, &cached_state); 2217 ret = PTR_ERR(ordered); 2218 goto error; 2219 } 2220 2221 if (btrfs_is_data_reloc_root(root)) 2222 /* 2223 * Error handled later, as we must prevent 2224 * extent_clear_unlock_delalloc() in error handler 2225 * from freeing metadata of created ordered extent. 2226 */ 2227 ret = btrfs_reloc_clone_csums(ordered); 2228 btrfs_put_ordered_extent(ordered); 2229 2230 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2231 locked_folio, &cached_state, 2232 EXTENT_LOCKED | EXTENT_DELALLOC | 2233 EXTENT_CLEAR_DATA_RESV, 2234 PAGE_UNLOCK | PAGE_SET_ORDERED); 2235 2236 cur_offset = extent_end; 2237 2238 /* 2239 * btrfs_reloc_clone_csums() error, now we're OK to call error 2240 * handler, as metadata for created ordered extent will only 2241 * be freed by btrfs_finish_ordered_io(). 2242 */ 2243 if (ret) 2244 goto error; 2245 } 2246 btrfs_release_path(path); 2247 2248 if (cur_offset <= end && cow_start == (u64)-1) 2249 cow_start = cur_offset; 2250 2251 if (cow_start != (u64)-1) { 2252 cur_offset = end; 2253 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2254 cow_start = (u64)-1; 2255 if (ret) 2256 goto error; 2257 } 2258 2259 btrfs_free_path(path); 2260 return 0; 2261 2262 error: 2263 /* 2264 * If an error happened while a COW region is outstanding, cur_offset 2265 * needs to be reset to cow_start to ensure the COW region is unlocked 2266 * as well. 2267 */ 2268 if (cow_start != (u64)-1) 2269 cur_offset = cow_start; 2270 2271 /* 2272 * We need to lock the extent here because we're clearing DELALLOC and 2273 * we're not locked at this point. 2274 */ 2275 if (cur_offset < end) { 2276 struct extent_state *cached = NULL; 2277 2278 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2279 extent_clear_unlock_delalloc(inode, cur_offset, end, 2280 locked_folio, &cached, 2281 EXTENT_LOCKED | EXTENT_DELALLOC | 2282 EXTENT_DEFRAG | 2283 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2284 PAGE_START_WRITEBACK | 2285 PAGE_END_WRITEBACK); 2286 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2287 } 2288 btrfs_free_path(path); 2289 return ret; 2290 } 2291 2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2293 { 2294 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2295 if (inode->defrag_bytes && 2296 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2297 return false; 2298 return true; 2299 } 2300 return false; 2301 } 2302 2303 /* 2304 * Function to process delayed allocation (create CoW) for ranges which are 2305 * being touched for the first time. 2306 */ 2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2308 u64 start, u64 end, struct writeback_control *wbc) 2309 { 2310 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2311 int ret; 2312 2313 /* 2314 * The range must cover part of the @locked_folio, or a return of 1 2315 * can confuse the caller. 2316 */ 2317 ASSERT(!(end <= folio_pos(locked_folio) || 2318 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2319 2320 if (should_nocow(inode, start, end)) { 2321 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2322 goto out; 2323 } 2324 2325 if (btrfs_inode_can_compress(inode) && 2326 inode_need_compress(inode, start, end) && 2327 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2328 return 1; 2329 2330 if (zoned) 2331 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2332 true); 2333 else 2334 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2335 false, false); 2336 2337 out: 2338 if (ret < 0) 2339 btrfs_cleanup_ordered_extents(inode, locked_folio, start, 2340 end - start + 1); 2341 return ret; 2342 } 2343 2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2345 struct extent_state *orig, u64 split) 2346 { 2347 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2348 u64 size; 2349 2350 lockdep_assert_held(&inode->io_tree.lock); 2351 2352 /* not delalloc, ignore it */ 2353 if (!(orig->state & EXTENT_DELALLOC)) 2354 return; 2355 2356 size = orig->end - orig->start + 1; 2357 if (size > fs_info->max_extent_size) { 2358 u32 num_extents; 2359 u64 new_size; 2360 2361 /* 2362 * See the explanation in btrfs_merge_delalloc_extent, the same 2363 * applies here, just in reverse. 2364 */ 2365 new_size = orig->end - split + 1; 2366 num_extents = count_max_extents(fs_info, new_size); 2367 new_size = split - orig->start; 2368 num_extents += count_max_extents(fs_info, new_size); 2369 if (count_max_extents(fs_info, size) >= num_extents) 2370 return; 2371 } 2372 2373 spin_lock(&inode->lock); 2374 btrfs_mod_outstanding_extents(inode, 1); 2375 spin_unlock(&inode->lock); 2376 } 2377 2378 /* 2379 * Handle merged delayed allocation extents so we can keep track of new extents 2380 * that are just merged onto old extents, such as when we are doing sequential 2381 * writes, so we can properly account for the metadata space we'll need. 2382 */ 2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2384 struct extent_state *other) 2385 { 2386 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2387 u64 new_size, old_size; 2388 u32 num_extents; 2389 2390 lockdep_assert_held(&inode->io_tree.lock); 2391 2392 /* not delalloc, ignore it */ 2393 if (!(other->state & EXTENT_DELALLOC)) 2394 return; 2395 2396 if (new->start > other->start) 2397 new_size = new->end - other->start + 1; 2398 else 2399 new_size = other->end - new->start + 1; 2400 2401 /* we're not bigger than the max, unreserve the space and go */ 2402 if (new_size <= fs_info->max_extent_size) { 2403 spin_lock(&inode->lock); 2404 btrfs_mod_outstanding_extents(inode, -1); 2405 spin_unlock(&inode->lock); 2406 return; 2407 } 2408 2409 /* 2410 * We have to add up either side to figure out how many extents were 2411 * accounted for before we merged into one big extent. If the number of 2412 * extents we accounted for is <= the amount we need for the new range 2413 * then we can return, otherwise drop. Think of it like this 2414 * 2415 * [ 4k][MAX_SIZE] 2416 * 2417 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2418 * need 2 outstanding extents, on one side we have 1 and the other side 2419 * we have 1 so they are == and we can return. But in this case 2420 * 2421 * [MAX_SIZE+4k][MAX_SIZE+4k] 2422 * 2423 * Each range on their own accounts for 2 extents, but merged together 2424 * they are only 3 extents worth of accounting, so we need to drop in 2425 * this case. 2426 */ 2427 old_size = other->end - other->start + 1; 2428 num_extents = count_max_extents(fs_info, old_size); 2429 old_size = new->end - new->start + 1; 2430 num_extents += count_max_extents(fs_info, old_size); 2431 if (count_max_extents(fs_info, new_size) >= num_extents) 2432 return; 2433 2434 spin_lock(&inode->lock); 2435 btrfs_mod_outstanding_extents(inode, -1); 2436 spin_unlock(&inode->lock); 2437 } 2438 2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2440 { 2441 struct btrfs_root *root = inode->root; 2442 struct btrfs_fs_info *fs_info = root->fs_info; 2443 2444 spin_lock(&root->delalloc_lock); 2445 ASSERT(list_empty(&inode->delalloc_inodes)); 2446 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2447 root->nr_delalloc_inodes++; 2448 if (root->nr_delalloc_inodes == 1) { 2449 spin_lock(&fs_info->delalloc_root_lock); 2450 ASSERT(list_empty(&root->delalloc_root)); 2451 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2452 spin_unlock(&fs_info->delalloc_root_lock); 2453 } 2454 spin_unlock(&root->delalloc_lock); 2455 } 2456 2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2458 { 2459 struct btrfs_root *root = inode->root; 2460 struct btrfs_fs_info *fs_info = root->fs_info; 2461 2462 lockdep_assert_held(&root->delalloc_lock); 2463 2464 /* 2465 * We may be called after the inode was already deleted from the list, 2466 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2467 * and then later through btrfs_clear_delalloc_extent() while the inode 2468 * still has ->delalloc_bytes > 0. 2469 */ 2470 if (!list_empty(&inode->delalloc_inodes)) { 2471 list_del_init(&inode->delalloc_inodes); 2472 root->nr_delalloc_inodes--; 2473 if (!root->nr_delalloc_inodes) { 2474 ASSERT(list_empty(&root->delalloc_inodes)); 2475 spin_lock(&fs_info->delalloc_root_lock); 2476 ASSERT(!list_empty(&root->delalloc_root)); 2477 list_del_init(&root->delalloc_root); 2478 spin_unlock(&fs_info->delalloc_root_lock); 2479 } 2480 } 2481 } 2482 2483 /* 2484 * Properly track delayed allocation bytes in the inode and to maintain the 2485 * list of inodes that have pending delalloc work to be done. 2486 */ 2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2488 u32 bits) 2489 { 2490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2491 2492 lockdep_assert_held(&inode->io_tree.lock); 2493 2494 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2495 WARN_ON(1); 2496 /* 2497 * set_bit and clear bit hooks normally require _irqsave/restore 2498 * but in this case, we are only testing for the DELALLOC 2499 * bit, which is only set or cleared with irqs on 2500 */ 2501 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2502 u64 len = state->end + 1 - state->start; 2503 u64 prev_delalloc_bytes; 2504 u32 num_extents = count_max_extents(fs_info, len); 2505 2506 spin_lock(&inode->lock); 2507 btrfs_mod_outstanding_extents(inode, num_extents); 2508 spin_unlock(&inode->lock); 2509 2510 /* For sanity tests */ 2511 if (btrfs_is_testing(fs_info)) 2512 return; 2513 2514 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2515 fs_info->delalloc_batch); 2516 spin_lock(&inode->lock); 2517 prev_delalloc_bytes = inode->delalloc_bytes; 2518 inode->delalloc_bytes += len; 2519 if (bits & EXTENT_DEFRAG) 2520 inode->defrag_bytes += len; 2521 spin_unlock(&inode->lock); 2522 2523 /* 2524 * We don't need to be under the protection of the inode's lock, 2525 * because we are called while holding the inode's io_tree lock 2526 * and are therefore protected against concurrent calls of this 2527 * function and btrfs_clear_delalloc_extent(). 2528 */ 2529 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2530 btrfs_add_delalloc_inode(inode); 2531 } 2532 2533 if (!(state->state & EXTENT_DELALLOC_NEW) && 2534 (bits & EXTENT_DELALLOC_NEW)) { 2535 spin_lock(&inode->lock); 2536 inode->new_delalloc_bytes += state->end + 1 - state->start; 2537 spin_unlock(&inode->lock); 2538 } 2539 } 2540 2541 /* 2542 * Once a range is no longer delalloc this function ensures that proper 2543 * accounting happens. 2544 */ 2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2546 struct extent_state *state, u32 bits) 2547 { 2548 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2549 u64 len = state->end + 1 - state->start; 2550 u32 num_extents = count_max_extents(fs_info, len); 2551 2552 lockdep_assert_held(&inode->io_tree.lock); 2553 2554 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2555 spin_lock(&inode->lock); 2556 inode->defrag_bytes -= len; 2557 spin_unlock(&inode->lock); 2558 } 2559 2560 /* 2561 * set_bit and clear bit hooks normally require _irqsave/restore 2562 * but in this case, we are only testing for the DELALLOC 2563 * bit, which is only set or cleared with irqs on 2564 */ 2565 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2566 struct btrfs_root *root = inode->root; 2567 u64 new_delalloc_bytes; 2568 2569 spin_lock(&inode->lock); 2570 btrfs_mod_outstanding_extents(inode, -num_extents); 2571 spin_unlock(&inode->lock); 2572 2573 /* 2574 * We don't reserve metadata space for space cache inodes so we 2575 * don't need to call delalloc_release_metadata if there is an 2576 * error. 2577 */ 2578 if (bits & EXTENT_CLEAR_META_RESV && 2579 root != fs_info->tree_root) 2580 btrfs_delalloc_release_metadata(inode, len, true); 2581 2582 /* For sanity tests. */ 2583 if (btrfs_is_testing(fs_info)) 2584 return; 2585 2586 if (!btrfs_is_data_reloc_root(root) && 2587 !btrfs_is_free_space_inode(inode) && 2588 !(state->state & EXTENT_NORESERVE) && 2589 (bits & EXTENT_CLEAR_DATA_RESV)) 2590 btrfs_free_reserved_data_space_noquota(fs_info, len); 2591 2592 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2593 fs_info->delalloc_batch); 2594 spin_lock(&inode->lock); 2595 inode->delalloc_bytes -= len; 2596 new_delalloc_bytes = inode->delalloc_bytes; 2597 spin_unlock(&inode->lock); 2598 2599 /* 2600 * We don't need to be under the protection of the inode's lock, 2601 * because we are called while holding the inode's io_tree lock 2602 * and are therefore protected against concurrent calls of this 2603 * function and btrfs_set_delalloc_extent(). 2604 */ 2605 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2606 spin_lock(&root->delalloc_lock); 2607 btrfs_del_delalloc_inode(inode); 2608 spin_unlock(&root->delalloc_lock); 2609 } 2610 } 2611 2612 if ((state->state & EXTENT_DELALLOC_NEW) && 2613 (bits & EXTENT_DELALLOC_NEW)) { 2614 spin_lock(&inode->lock); 2615 ASSERT(inode->new_delalloc_bytes >= len); 2616 inode->new_delalloc_bytes -= len; 2617 if (bits & EXTENT_ADD_INODE_BYTES) 2618 inode_add_bytes(&inode->vfs_inode, len); 2619 spin_unlock(&inode->lock); 2620 } 2621 } 2622 2623 /* 2624 * given a list of ordered sums record them in the inode. This happens 2625 * at IO completion time based on sums calculated at bio submission time. 2626 */ 2627 static int add_pending_csums(struct btrfs_trans_handle *trans, 2628 struct list_head *list) 2629 { 2630 struct btrfs_ordered_sum *sum; 2631 struct btrfs_root *csum_root = NULL; 2632 int ret; 2633 2634 list_for_each_entry(sum, list, list) { 2635 trans->adding_csums = true; 2636 if (!csum_root) 2637 csum_root = btrfs_csum_root(trans->fs_info, 2638 sum->logical); 2639 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2640 trans->adding_csums = false; 2641 if (ret) 2642 return ret; 2643 } 2644 return 0; 2645 } 2646 2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2648 const u64 start, 2649 const u64 len, 2650 struct extent_state **cached_state) 2651 { 2652 u64 search_start = start; 2653 const u64 end = start + len - 1; 2654 2655 while (search_start < end) { 2656 const u64 search_len = end - search_start + 1; 2657 struct extent_map *em; 2658 u64 em_len; 2659 int ret = 0; 2660 2661 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2662 if (IS_ERR(em)) 2663 return PTR_ERR(em); 2664 2665 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2666 goto next; 2667 2668 em_len = em->len; 2669 if (em->start < search_start) 2670 em_len -= search_start - em->start; 2671 if (em_len > search_len) 2672 em_len = search_len; 2673 2674 ret = set_extent_bit(&inode->io_tree, search_start, 2675 search_start + em_len - 1, 2676 EXTENT_DELALLOC_NEW, cached_state); 2677 next: 2678 search_start = extent_map_end(em); 2679 free_extent_map(em); 2680 if (ret) 2681 return ret; 2682 } 2683 return 0; 2684 } 2685 2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2687 unsigned int extra_bits, 2688 struct extent_state **cached_state) 2689 { 2690 WARN_ON(PAGE_ALIGNED(end)); 2691 2692 if (start >= i_size_read(&inode->vfs_inode) && 2693 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2694 /* 2695 * There can't be any extents following eof in this case so just 2696 * set the delalloc new bit for the range directly. 2697 */ 2698 extra_bits |= EXTENT_DELALLOC_NEW; 2699 } else { 2700 int ret; 2701 2702 ret = btrfs_find_new_delalloc_bytes(inode, start, 2703 end + 1 - start, 2704 cached_state); 2705 if (ret) 2706 return ret; 2707 } 2708 2709 return set_extent_bit(&inode->io_tree, start, end, 2710 EXTENT_DELALLOC | extra_bits, cached_state); 2711 } 2712 2713 /* see btrfs_writepage_start_hook for details on why this is required */ 2714 struct btrfs_writepage_fixup { 2715 struct folio *folio; 2716 struct btrfs_inode *inode; 2717 struct btrfs_work work; 2718 }; 2719 2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2721 { 2722 struct btrfs_writepage_fixup *fixup = 2723 container_of(work, struct btrfs_writepage_fixup, work); 2724 struct btrfs_ordered_extent *ordered; 2725 struct extent_state *cached_state = NULL; 2726 struct extent_changeset *data_reserved = NULL; 2727 struct folio *folio = fixup->folio; 2728 struct btrfs_inode *inode = fixup->inode; 2729 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2730 u64 page_start = folio_pos(folio); 2731 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2732 int ret = 0; 2733 bool free_delalloc_space = true; 2734 2735 /* 2736 * This is similar to page_mkwrite, we need to reserve the space before 2737 * we take the folio lock. 2738 */ 2739 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2740 folio_size(folio)); 2741 again: 2742 folio_lock(folio); 2743 2744 /* 2745 * Before we queued this fixup, we took a reference on the folio. 2746 * folio->mapping may go NULL, but it shouldn't be moved to a different 2747 * address space. 2748 */ 2749 if (!folio->mapping || !folio_test_dirty(folio) || 2750 !folio_test_checked(folio)) { 2751 /* 2752 * Unfortunately this is a little tricky, either 2753 * 2754 * 1) We got here and our folio had already been dealt with and 2755 * we reserved our space, thus ret == 0, so we need to just 2756 * drop our space reservation and bail. This can happen the 2757 * first time we come into the fixup worker, or could happen 2758 * while waiting for the ordered extent. 2759 * 2) Our folio was already dealt with, but we happened to get an 2760 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2761 * this case we obviously don't have anything to release, but 2762 * because the folio was already dealt with we don't want to 2763 * mark the folio with an error, so make sure we're resetting 2764 * ret to 0. This is why we have this check _before_ the ret 2765 * check, because we do not want to have a surprise ENOSPC 2766 * when the folio was already properly dealt with. 2767 */ 2768 if (!ret) { 2769 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2770 btrfs_delalloc_release_space(inode, data_reserved, 2771 page_start, folio_size(folio), 2772 true); 2773 } 2774 ret = 0; 2775 goto out_page; 2776 } 2777 2778 /* 2779 * We can't mess with the folio state unless it is locked, so now that 2780 * it is locked bail if we failed to make our space reservation. 2781 */ 2782 if (ret) 2783 goto out_page; 2784 2785 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2786 2787 /* already ordered? We're done */ 2788 if (folio_test_ordered(folio)) 2789 goto out_reserved; 2790 2791 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2792 if (ordered) { 2793 unlock_extent(&inode->io_tree, page_start, page_end, 2794 &cached_state); 2795 folio_unlock(folio); 2796 btrfs_start_ordered_extent(ordered); 2797 btrfs_put_ordered_extent(ordered); 2798 goto again; 2799 } 2800 2801 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2802 &cached_state); 2803 if (ret) 2804 goto out_reserved; 2805 2806 /* 2807 * Everything went as planned, we're now the owner of a dirty page with 2808 * delayed allocation bits set and space reserved for our COW 2809 * destination. 2810 * 2811 * The page was dirty when we started, nothing should have cleaned it. 2812 */ 2813 BUG_ON(!folio_test_dirty(folio)); 2814 free_delalloc_space = false; 2815 out_reserved: 2816 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2817 if (free_delalloc_space) 2818 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2819 PAGE_SIZE, true); 2820 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2821 out_page: 2822 if (ret) { 2823 /* 2824 * We hit ENOSPC or other errors. Update the mapping and page 2825 * to reflect the errors and clean the page. 2826 */ 2827 mapping_set_error(folio->mapping, ret); 2828 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2829 folio_size(folio), !ret); 2830 folio_clear_dirty_for_io(folio); 2831 } 2832 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2833 folio_unlock(folio); 2834 folio_put(folio); 2835 kfree(fixup); 2836 extent_changeset_free(data_reserved); 2837 /* 2838 * As a precaution, do a delayed iput in case it would be the last iput 2839 * that could need flushing space. Recursing back to fixup worker would 2840 * deadlock. 2841 */ 2842 btrfs_add_delayed_iput(inode); 2843 } 2844 2845 /* 2846 * There are a few paths in the higher layers of the kernel that directly 2847 * set the folio dirty bit without asking the filesystem if it is a 2848 * good idea. This causes problems because we want to make sure COW 2849 * properly happens and the data=ordered rules are followed. 2850 * 2851 * In our case any range that doesn't have the ORDERED bit set 2852 * hasn't been properly setup for IO. We kick off an async process 2853 * to fix it up. The async helper will wait for ordered extents, set 2854 * the delalloc bit and make it safe to write the folio. 2855 */ 2856 int btrfs_writepage_cow_fixup(struct folio *folio) 2857 { 2858 struct inode *inode = folio->mapping->host; 2859 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2860 struct btrfs_writepage_fixup *fixup; 2861 2862 /* This folio has ordered extent covering it already */ 2863 if (folio_test_ordered(folio)) 2864 return 0; 2865 2866 /* 2867 * folio_checked is set below when we create a fixup worker for this 2868 * folio, don't try to create another one if we're already 2869 * folio_test_checked. 2870 * 2871 * The extent_io writepage code will redirty the foio if we send back 2872 * EAGAIN. 2873 */ 2874 if (folio_test_checked(folio)) 2875 return -EAGAIN; 2876 2877 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2878 if (!fixup) 2879 return -EAGAIN; 2880 2881 /* 2882 * We are already holding a reference to this inode from 2883 * write_cache_pages. We need to hold it because the space reservation 2884 * takes place outside of the folio lock, and we can't trust 2885 * page->mapping outside of the folio lock. 2886 */ 2887 ihold(inode); 2888 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2889 folio_get(folio); 2890 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2891 fixup->folio = folio; 2892 fixup->inode = BTRFS_I(inode); 2893 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2894 2895 return -EAGAIN; 2896 } 2897 2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2899 struct btrfs_inode *inode, u64 file_pos, 2900 struct btrfs_file_extent_item *stack_fi, 2901 const bool update_inode_bytes, 2902 u64 qgroup_reserved) 2903 { 2904 struct btrfs_root *root = inode->root; 2905 const u64 sectorsize = root->fs_info->sectorsize; 2906 struct btrfs_path *path; 2907 struct extent_buffer *leaf; 2908 struct btrfs_key ins; 2909 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2910 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2911 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2912 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2913 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2914 struct btrfs_drop_extents_args drop_args = { 0 }; 2915 int ret; 2916 2917 path = btrfs_alloc_path(); 2918 if (!path) 2919 return -ENOMEM; 2920 2921 /* 2922 * we may be replacing one extent in the tree with another. 2923 * The new extent is pinned in the extent map, and we don't want 2924 * to drop it from the cache until it is completely in the btree. 2925 * 2926 * So, tell btrfs_drop_extents to leave this extent in the cache. 2927 * the caller is expected to unpin it and allow it to be merged 2928 * with the others. 2929 */ 2930 drop_args.path = path; 2931 drop_args.start = file_pos; 2932 drop_args.end = file_pos + num_bytes; 2933 drop_args.replace_extent = true; 2934 drop_args.extent_item_size = sizeof(*stack_fi); 2935 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2936 if (ret) 2937 goto out; 2938 2939 if (!drop_args.extent_inserted) { 2940 ins.objectid = btrfs_ino(inode); 2941 ins.offset = file_pos; 2942 ins.type = BTRFS_EXTENT_DATA_KEY; 2943 2944 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2945 sizeof(*stack_fi)); 2946 if (ret) 2947 goto out; 2948 } 2949 leaf = path->nodes[0]; 2950 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2951 write_extent_buffer(leaf, stack_fi, 2952 btrfs_item_ptr_offset(leaf, path->slots[0]), 2953 sizeof(struct btrfs_file_extent_item)); 2954 2955 btrfs_mark_buffer_dirty(trans, leaf); 2956 btrfs_release_path(path); 2957 2958 /* 2959 * If we dropped an inline extent here, we know the range where it is 2960 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2961 * number of bytes only for that range containing the inline extent. 2962 * The remaining of the range will be processed when clearning the 2963 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2964 */ 2965 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2966 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2967 2968 inline_size = drop_args.bytes_found - inline_size; 2969 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2970 drop_args.bytes_found -= inline_size; 2971 num_bytes -= sectorsize; 2972 } 2973 2974 if (update_inode_bytes) 2975 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2976 2977 ins.objectid = disk_bytenr; 2978 ins.offset = disk_num_bytes; 2979 ins.type = BTRFS_EXTENT_ITEM_KEY; 2980 2981 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2982 if (ret) 2983 goto out; 2984 2985 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2986 file_pos - offset, 2987 qgroup_reserved, &ins); 2988 out: 2989 btrfs_free_path(path); 2990 2991 return ret; 2992 } 2993 2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2995 u64 start, u64 len) 2996 { 2997 struct btrfs_block_group *cache; 2998 2999 cache = btrfs_lookup_block_group(fs_info, start); 3000 ASSERT(cache); 3001 3002 spin_lock(&cache->lock); 3003 cache->delalloc_bytes -= len; 3004 spin_unlock(&cache->lock); 3005 3006 btrfs_put_block_group(cache); 3007 } 3008 3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3010 struct btrfs_ordered_extent *oe) 3011 { 3012 struct btrfs_file_extent_item stack_fi; 3013 bool update_inode_bytes; 3014 u64 num_bytes = oe->num_bytes; 3015 u64 ram_bytes = oe->ram_bytes; 3016 3017 memset(&stack_fi, 0, sizeof(stack_fi)); 3018 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3019 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3020 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3021 oe->disk_num_bytes); 3022 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3023 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3024 num_bytes = oe->truncated_len; 3025 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3026 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3027 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3028 /* Encryption and other encoding is reserved and all 0 */ 3029 3030 /* 3031 * For delalloc, when completing an ordered extent we update the inode's 3032 * bytes when clearing the range in the inode's io tree, so pass false 3033 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3034 * except if the ordered extent was truncated. 3035 */ 3036 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3037 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3038 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3039 3040 return insert_reserved_file_extent(trans, oe->inode, 3041 oe->file_offset, &stack_fi, 3042 update_inode_bytes, oe->qgroup_rsv); 3043 } 3044 3045 /* 3046 * As ordered data IO finishes, this gets called so we can finish 3047 * an ordered extent if the range of bytes in the file it covers are 3048 * fully written. 3049 */ 3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3051 { 3052 struct btrfs_inode *inode = ordered_extent->inode; 3053 struct btrfs_root *root = inode->root; 3054 struct btrfs_fs_info *fs_info = root->fs_info; 3055 struct btrfs_trans_handle *trans = NULL; 3056 struct extent_io_tree *io_tree = &inode->io_tree; 3057 struct extent_state *cached_state = NULL; 3058 u64 start, end; 3059 int compress_type = 0; 3060 int ret = 0; 3061 u64 logical_len = ordered_extent->num_bytes; 3062 bool freespace_inode; 3063 bool truncated = false; 3064 bool clear_reserved_extent = true; 3065 unsigned int clear_bits = EXTENT_DEFRAG; 3066 3067 start = ordered_extent->file_offset; 3068 end = start + ordered_extent->num_bytes - 1; 3069 3070 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3071 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3072 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3073 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3074 clear_bits |= EXTENT_DELALLOC_NEW; 3075 3076 freespace_inode = btrfs_is_free_space_inode(inode); 3077 if (!freespace_inode) 3078 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3079 3080 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3081 ret = -EIO; 3082 goto out; 3083 } 3084 3085 if (btrfs_is_zoned(fs_info)) 3086 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3087 ordered_extent->disk_num_bytes); 3088 3089 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3090 truncated = true; 3091 logical_len = ordered_extent->truncated_len; 3092 /* Truncated the entire extent, don't bother adding */ 3093 if (!logical_len) 3094 goto out; 3095 } 3096 3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3098 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3099 3100 btrfs_inode_safe_disk_i_size_write(inode, 0); 3101 if (freespace_inode) 3102 trans = btrfs_join_transaction_spacecache(root); 3103 else 3104 trans = btrfs_join_transaction(root); 3105 if (IS_ERR(trans)) { 3106 ret = PTR_ERR(trans); 3107 trans = NULL; 3108 goto out; 3109 } 3110 trans->block_rsv = &inode->block_rsv; 3111 ret = btrfs_update_inode_fallback(trans, inode); 3112 if (ret) /* -ENOMEM or corruption */ 3113 btrfs_abort_transaction(trans, ret); 3114 3115 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3116 if (ret) 3117 btrfs_abort_transaction(trans, ret); 3118 3119 goto out; 3120 } 3121 3122 clear_bits |= EXTENT_LOCKED; 3123 lock_extent(io_tree, start, end, &cached_state); 3124 3125 if (freespace_inode) 3126 trans = btrfs_join_transaction_spacecache(root); 3127 else 3128 trans = btrfs_join_transaction(root); 3129 if (IS_ERR(trans)) { 3130 ret = PTR_ERR(trans); 3131 trans = NULL; 3132 goto out; 3133 } 3134 3135 trans->block_rsv = &inode->block_rsv; 3136 3137 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3138 if (ret) 3139 goto out; 3140 3141 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3142 compress_type = ordered_extent->compress_type; 3143 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3144 BUG_ON(compress_type); 3145 ret = btrfs_mark_extent_written(trans, inode, 3146 ordered_extent->file_offset, 3147 ordered_extent->file_offset + 3148 logical_len); 3149 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3150 ordered_extent->disk_num_bytes); 3151 } else { 3152 BUG_ON(root == fs_info->tree_root); 3153 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3154 if (!ret) { 3155 clear_reserved_extent = false; 3156 btrfs_release_delalloc_bytes(fs_info, 3157 ordered_extent->disk_bytenr, 3158 ordered_extent->disk_num_bytes); 3159 } 3160 } 3161 if (ret < 0) { 3162 btrfs_abort_transaction(trans, ret); 3163 goto out; 3164 } 3165 3166 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3167 ordered_extent->num_bytes, trans->transid); 3168 if (ret < 0) { 3169 btrfs_abort_transaction(trans, ret); 3170 goto out; 3171 } 3172 3173 ret = add_pending_csums(trans, &ordered_extent->list); 3174 if (ret) { 3175 btrfs_abort_transaction(trans, ret); 3176 goto out; 3177 } 3178 3179 /* 3180 * If this is a new delalloc range, clear its new delalloc flag to 3181 * update the inode's number of bytes. This needs to be done first 3182 * before updating the inode item. 3183 */ 3184 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3185 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3186 clear_extent_bit(&inode->io_tree, start, end, 3187 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3188 &cached_state); 3189 3190 btrfs_inode_safe_disk_i_size_write(inode, 0); 3191 ret = btrfs_update_inode_fallback(trans, inode); 3192 if (ret) { /* -ENOMEM or corruption */ 3193 btrfs_abort_transaction(trans, ret); 3194 goto out; 3195 } 3196 out: 3197 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3198 &cached_state); 3199 3200 if (trans) 3201 btrfs_end_transaction(trans); 3202 3203 if (ret || truncated) { 3204 u64 unwritten_start = start; 3205 3206 /* 3207 * If we failed to finish this ordered extent for any reason we 3208 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3209 * extent, and mark the inode with the error if it wasn't 3210 * already set. Any error during writeback would have already 3211 * set the mapping error, so we need to set it if we're the ones 3212 * marking this ordered extent as failed. 3213 */ 3214 if (ret) 3215 btrfs_mark_ordered_extent_error(ordered_extent); 3216 3217 if (truncated) 3218 unwritten_start += logical_len; 3219 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3220 3221 /* 3222 * Drop extent maps for the part of the extent we didn't write. 3223 * 3224 * We have an exception here for the free_space_inode, this is 3225 * because when we do btrfs_get_extent() on the free space inode 3226 * we will search the commit root. If this is a new block group 3227 * we won't find anything, and we will trip over the assert in 3228 * writepage where we do ASSERT(em->block_start != 3229 * EXTENT_MAP_HOLE). 3230 * 3231 * Theoretically we could also skip this for any NOCOW extent as 3232 * we don't mess with the extent map tree in the NOCOW case, but 3233 * for now simply skip this if we are the free space inode. 3234 */ 3235 if (!btrfs_is_free_space_inode(inode)) 3236 btrfs_drop_extent_map_range(inode, unwritten_start, 3237 end, false); 3238 3239 /* 3240 * If the ordered extent had an IOERR or something else went 3241 * wrong we need to return the space for this ordered extent 3242 * back to the allocator. We only free the extent in the 3243 * truncated case if we didn't write out the extent at all. 3244 * 3245 * If we made it past insert_reserved_file_extent before we 3246 * errored out then we don't need to do this as the accounting 3247 * has already been done. 3248 */ 3249 if ((ret || !logical_len) && 3250 clear_reserved_extent && 3251 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3252 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3253 /* 3254 * Discard the range before returning it back to the 3255 * free space pool 3256 */ 3257 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3258 btrfs_discard_extent(fs_info, 3259 ordered_extent->disk_bytenr, 3260 ordered_extent->disk_num_bytes, 3261 NULL); 3262 btrfs_free_reserved_extent(fs_info, 3263 ordered_extent->disk_bytenr, 3264 ordered_extent->disk_num_bytes, 1); 3265 /* 3266 * Actually free the qgroup rsv which was released when 3267 * the ordered extent was created. 3268 */ 3269 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3270 ordered_extent->qgroup_rsv, 3271 BTRFS_QGROUP_RSV_DATA); 3272 } 3273 } 3274 3275 /* 3276 * This needs to be done to make sure anybody waiting knows we are done 3277 * updating everything for this ordered extent. 3278 */ 3279 btrfs_remove_ordered_extent(inode, ordered_extent); 3280 3281 /* once for us */ 3282 btrfs_put_ordered_extent(ordered_extent); 3283 /* once for the tree */ 3284 btrfs_put_ordered_extent(ordered_extent); 3285 3286 return ret; 3287 } 3288 3289 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3290 { 3291 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3292 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3293 list_empty(&ordered->bioc_list)) 3294 btrfs_finish_ordered_zoned(ordered); 3295 return btrfs_finish_one_ordered(ordered); 3296 } 3297 3298 /* 3299 * Verify the checksum for a single sector without any extra action that depend 3300 * on the type of I/O. 3301 */ 3302 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3303 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3304 { 3305 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3306 char *kaddr; 3307 3308 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3309 3310 shash->tfm = fs_info->csum_shash; 3311 3312 kaddr = kmap_local_page(page) + pgoff; 3313 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3314 kunmap_local(kaddr); 3315 3316 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3317 return -EIO; 3318 return 0; 3319 } 3320 3321 /* 3322 * Verify the checksum of a single data sector. 3323 * 3324 * @bbio: btrfs_io_bio which contains the csum 3325 * @dev: device the sector is on 3326 * @bio_offset: offset to the beginning of the bio (in bytes) 3327 * @bv: bio_vec to check 3328 * 3329 * Check if the checksum on a data block is valid. When a checksum mismatch is 3330 * detected, report the error and fill the corrupted range with zero. 3331 * 3332 * Return %true if the sector is ok or had no checksum to start with, else %false. 3333 */ 3334 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3335 u32 bio_offset, struct bio_vec *bv) 3336 { 3337 struct btrfs_inode *inode = bbio->inode; 3338 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3339 u64 file_offset = bbio->file_offset + bio_offset; 3340 u64 end = file_offset + bv->bv_len - 1; 3341 u8 *csum_expected; 3342 u8 csum[BTRFS_CSUM_SIZE]; 3343 3344 ASSERT(bv->bv_len == fs_info->sectorsize); 3345 3346 if (!bbio->csum) 3347 return true; 3348 3349 if (btrfs_is_data_reloc_root(inode->root) && 3350 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3351 NULL)) { 3352 /* Skip the range without csum for data reloc inode */ 3353 clear_extent_bits(&inode->io_tree, file_offset, end, 3354 EXTENT_NODATASUM); 3355 return true; 3356 } 3357 3358 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3359 fs_info->csum_size; 3360 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3361 csum_expected)) 3362 goto zeroit; 3363 return true; 3364 3365 zeroit: 3366 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3367 bbio->mirror_num); 3368 if (dev) 3369 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3370 memzero_bvec(bv); 3371 return false; 3372 } 3373 3374 /* 3375 * Perform a delayed iput on @inode. 3376 * 3377 * @inode: The inode we want to perform iput on 3378 * 3379 * This function uses the generic vfs_inode::i_count to track whether we should 3380 * just decrement it (in case it's > 1) or if this is the last iput then link 3381 * the inode to the delayed iput machinery. Delayed iputs are processed at 3382 * transaction commit time/superblock commit/cleaner kthread. 3383 */ 3384 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3385 { 3386 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3387 unsigned long flags; 3388 3389 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3390 return; 3391 3392 atomic_inc(&fs_info->nr_delayed_iputs); 3393 /* 3394 * Need to be irq safe here because we can be called from either an irq 3395 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3396 * context. 3397 */ 3398 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3399 ASSERT(list_empty(&inode->delayed_iput)); 3400 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3401 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3402 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3403 wake_up_process(fs_info->cleaner_kthread); 3404 } 3405 3406 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3407 struct btrfs_inode *inode) 3408 { 3409 list_del_init(&inode->delayed_iput); 3410 spin_unlock_irq(&fs_info->delayed_iput_lock); 3411 iput(&inode->vfs_inode); 3412 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3413 wake_up(&fs_info->delayed_iputs_wait); 3414 spin_lock_irq(&fs_info->delayed_iput_lock); 3415 } 3416 3417 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3418 struct btrfs_inode *inode) 3419 { 3420 if (!list_empty(&inode->delayed_iput)) { 3421 spin_lock_irq(&fs_info->delayed_iput_lock); 3422 if (!list_empty(&inode->delayed_iput)) 3423 run_delayed_iput_locked(fs_info, inode); 3424 spin_unlock_irq(&fs_info->delayed_iput_lock); 3425 } 3426 } 3427 3428 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3429 { 3430 /* 3431 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3432 * calls btrfs_add_delayed_iput() and that needs to lock 3433 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3434 * prevent a deadlock. 3435 */ 3436 spin_lock_irq(&fs_info->delayed_iput_lock); 3437 while (!list_empty(&fs_info->delayed_iputs)) { 3438 struct btrfs_inode *inode; 3439 3440 inode = list_first_entry(&fs_info->delayed_iputs, 3441 struct btrfs_inode, delayed_iput); 3442 run_delayed_iput_locked(fs_info, inode); 3443 if (need_resched()) { 3444 spin_unlock_irq(&fs_info->delayed_iput_lock); 3445 cond_resched(); 3446 spin_lock_irq(&fs_info->delayed_iput_lock); 3447 } 3448 } 3449 spin_unlock_irq(&fs_info->delayed_iput_lock); 3450 } 3451 3452 /* 3453 * Wait for flushing all delayed iputs 3454 * 3455 * @fs_info: the filesystem 3456 * 3457 * This will wait on any delayed iputs that are currently running with KILLABLE 3458 * set. Once they are all done running we will return, unless we are killed in 3459 * which case we return EINTR. This helps in user operations like fallocate etc 3460 * that might get blocked on the iputs. 3461 * 3462 * Return EINTR if we were killed, 0 if nothing's pending 3463 */ 3464 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3465 { 3466 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3467 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3468 if (ret) 3469 return -EINTR; 3470 return 0; 3471 } 3472 3473 /* 3474 * This creates an orphan entry for the given inode in case something goes wrong 3475 * in the middle of an unlink. 3476 */ 3477 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3478 struct btrfs_inode *inode) 3479 { 3480 int ret; 3481 3482 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3483 if (ret && ret != -EEXIST) { 3484 btrfs_abort_transaction(trans, ret); 3485 return ret; 3486 } 3487 3488 return 0; 3489 } 3490 3491 /* 3492 * We have done the delete so we can go ahead and remove the orphan item for 3493 * this particular inode. 3494 */ 3495 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3496 struct btrfs_inode *inode) 3497 { 3498 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3499 } 3500 3501 /* 3502 * this cleans up any orphans that may be left on the list from the last use 3503 * of this root. 3504 */ 3505 int btrfs_orphan_cleanup(struct btrfs_root *root) 3506 { 3507 struct btrfs_fs_info *fs_info = root->fs_info; 3508 struct btrfs_path *path; 3509 struct extent_buffer *leaf; 3510 struct btrfs_key key, found_key; 3511 struct btrfs_trans_handle *trans; 3512 struct inode *inode; 3513 u64 last_objectid = 0; 3514 int ret = 0, nr_unlink = 0; 3515 3516 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3517 return 0; 3518 3519 path = btrfs_alloc_path(); 3520 if (!path) { 3521 ret = -ENOMEM; 3522 goto out; 3523 } 3524 path->reada = READA_BACK; 3525 3526 key.objectid = BTRFS_ORPHAN_OBJECTID; 3527 key.type = BTRFS_ORPHAN_ITEM_KEY; 3528 key.offset = (u64)-1; 3529 3530 while (1) { 3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3532 if (ret < 0) 3533 goto out; 3534 3535 /* 3536 * if ret == 0 means we found what we were searching for, which 3537 * is weird, but possible, so only screw with path if we didn't 3538 * find the key and see if we have stuff that matches 3539 */ 3540 if (ret > 0) { 3541 ret = 0; 3542 if (path->slots[0] == 0) 3543 break; 3544 path->slots[0]--; 3545 } 3546 3547 /* pull out the item */ 3548 leaf = path->nodes[0]; 3549 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3550 3551 /* make sure the item matches what we want */ 3552 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3553 break; 3554 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3555 break; 3556 3557 /* release the path since we're done with it */ 3558 btrfs_release_path(path); 3559 3560 /* 3561 * this is where we are basically btrfs_lookup, without the 3562 * crossing root thing. we store the inode number in the 3563 * offset of the orphan item. 3564 */ 3565 3566 if (found_key.offset == last_objectid) { 3567 /* 3568 * We found the same inode as before. This means we were 3569 * not able to remove its items via eviction triggered 3570 * by an iput(). A transaction abort may have happened, 3571 * due to -ENOSPC for example, so try to grab the error 3572 * that lead to a transaction abort, if any. 3573 */ 3574 btrfs_err(fs_info, 3575 "Error removing orphan entry, stopping orphan cleanup"); 3576 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3577 goto out; 3578 } 3579 3580 last_objectid = found_key.offset; 3581 3582 found_key.objectid = found_key.offset; 3583 found_key.type = BTRFS_INODE_ITEM_KEY; 3584 found_key.offset = 0; 3585 inode = btrfs_iget(last_objectid, root); 3586 if (IS_ERR(inode)) { 3587 ret = PTR_ERR(inode); 3588 inode = NULL; 3589 if (ret != -ENOENT) 3590 goto out; 3591 } 3592 3593 if (!inode && root == fs_info->tree_root) { 3594 struct btrfs_root *dead_root; 3595 int is_dead_root = 0; 3596 3597 /* 3598 * This is an orphan in the tree root. Currently these 3599 * could come from 2 sources: 3600 * a) a root (snapshot/subvolume) deletion in progress 3601 * b) a free space cache inode 3602 * We need to distinguish those two, as the orphan item 3603 * for a root must not get deleted before the deletion 3604 * of the snapshot/subvolume's tree completes. 3605 * 3606 * btrfs_find_orphan_roots() ran before us, which has 3607 * found all deleted roots and loaded them into 3608 * fs_info->fs_roots_radix. So here we can find if an 3609 * orphan item corresponds to a deleted root by looking 3610 * up the root from that radix tree. 3611 */ 3612 3613 spin_lock(&fs_info->fs_roots_radix_lock); 3614 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3615 (unsigned long)found_key.objectid); 3616 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3617 is_dead_root = 1; 3618 spin_unlock(&fs_info->fs_roots_radix_lock); 3619 3620 if (is_dead_root) { 3621 /* prevent this orphan from being found again */ 3622 key.offset = found_key.objectid - 1; 3623 continue; 3624 } 3625 3626 } 3627 3628 /* 3629 * If we have an inode with links, there are a couple of 3630 * possibilities: 3631 * 3632 * 1. We were halfway through creating fsverity metadata for the 3633 * file. In that case, the orphan item represents incomplete 3634 * fsverity metadata which must be cleaned up with 3635 * btrfs_drop_verity_items and deleting the orphan item. 3636 3637 * 2. Old kernels (before v3.12) used to create an 3638 * orphan item for truncate indicating that there were possibly 3639 * extent items past i_size that needed to be deleted. In v3.12, 3640 * truncate was changed to update i_size in sync with the extent 3641 * items, but the (useless) orphan item was still created. Since 3642 * v4.18, we don't create the orphan item for truncate at all. 3643 * 3644 * So, this item could mean that we need to do a truncate, but 3645 * only if this filesystem was last used on a pre-v3.12 kernel 3646 * and was not cleanly unmounted. The odds of that are quite 3647 * slim, and it's a pain to do the truncate now, so just delete 3648 * the orphan item. 3649 * 3650 * It's also possible that this orphan item was supposed to be 3651 * deleted but wasn't. The inode number may have been reused, 3652 * but either way, we can delete the orphan item. 3653 */ 3654 if (!inode || inode->i_nlink) { 3655 if (inode) { 3656 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3657 iput(inode); 3658 inode = NULL; 3659 if (ret) 3660 goto out; 3661 } 3662 trans = btrfs_start_transaction(root, 1); 3663 if (IS_ERR(trans)) { 3664 ret = PTR_ERR(trans); 3665 goto out; 3666 } 3667 btrfs_debug(fs_info, "auto deleting %Lu", 3668 found_key.objectid); 3669 ret = btrfs_del_orphan_item(trans, root, 3670 found_key.objectid); 3671 btrfs_end_transaction(trans); 3672 if (ret) 3673 goto out; 3674 continue; 3675 } 3676 3677 nr_unlink++; 3678 3679 /* this will do delete_inode and everything for us */ 3680 iput(inode); 3681 } 3682 /* release the path since we're done with it */ 3683 btrfs_release_path(path); 3684 3685 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3686 trans = btrfs_join_transaction(root); 3687 if (!IS_ERR(trans)) 3688 btrfs_end_transaction(trans); 3689 } 3690 3691 if (nr_unlink) 3692 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3693 3694 out: 3695 if (ret) 3696 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3697 btrfs_free_path(path); 3698 return ret; 3699 } 3700 3701 /* 3702 * very simple check to peek ahead in the leaf looking for xattrs. If we 3703 * don't find any xattrs, we know there can't be any acls. 3704 * 3705 * slot is the slot the inode is in, objectid is the objectid of the inode 3706 */ 3707 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3708 int slot, u64 objectid, 3709 int *first_xattr_slot) 3710 { 3711 u32 nritems = btrfs_header_nritems(leaf); 3712 struct btrfs_key found_key; 3713 static u64 xattr_access = 0; 3714 static u64 xattr_default = 0; 3715 int scanned = 0; 3716 3717 if (!xattr_access) { 3718 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3719 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3720 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3721 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3722 } 3723 3724 slot++; 3725 *first_xattr_slot = -1; 3726 while (slot < nritems) { 3727 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3728 3729 /* we found a different objectid, there must not be acls */ 3730 if (found_key.objectid != objectid) 3731 return 0; 3732 3733 /* we found an xattr, assume we've got an acl */ 3734 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3735 if (*first_xattr_slot == -1) 3736 *first_xattr_slot = slot; 3737 if (found_key.offset == xattr_access || 3738 found_key.offset == xattr_default) 3739 return 1; 3740 } 3741 3742 /* 3743 * we found a key greater than an xattr key, there can't 3744 * be any acls later on 3745 */ 3746 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3747 return 0; 3748 3749 slot++; 3750 scanned++; 3751 3752 /* 3753 * it goes inode, inode backrefs, xattrs, extents, 3754 * so if there are a ton of hard links to an inode there can 3755 * be a lot of backrefs. Don't waste time searching too hard, 3756 * this is just an optimization 3757 */ 3758 if (scanned >= 8) 3759 break; 3760 } 3761 /* we hit the end of the leaf before we found an xattr or 3762 * something larger than an xattr. We have to assume the inode 3763 * has acls 3764 */ 3765 if (*first_xattr_slot == -1) 3766 *first_xattr_slot = slot; 3767 return 1; 3768 } 3769 3770 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3771 { 3772 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3773 3774 if (WARN_ON_ONCE(inode->file_extent_tree)) 3775 return 0; 3776 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3777 return 0; 3778 if (!S_ISREG(inode->vfs_inode.i_mode)) 3779 return 0; 3780 if (btrfs_is_free_space_inode(inode)) 3781 return 0; 3782 3783 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3784 if (!inode->file_extent_tree) 3785 return -ENOMEM; 3786 3787 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3788 /* Lockdep class is set only for the file extent tree. */ 3789 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3790 3791 return 0; 3792 } 3793 3794 /* 3795 * read an inode from the btree into the in-memory inode 3796 */ 3797 static int btrfs_read_locked_inode(struct inode *inode, 3798 struct btrfs_path *in_path) 3799 { 3800 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3801 struct btrfs_path *path = in_path; 3802 struct extent_buffer *leaf; 3803 struct btrfs_inode_item *inode_item; 3804 struct btrfs_root *root = BTRFS_I(inode)->root; 3805 struct btrfs_key location; 3806 unsigned long ptr; 3807 int maybe_acls; 3808 u32 rdev; 3809 int ret; 3810 bool filled = false; 3811 int first_xattr_slot; 3812 3813 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3814 if (ret) 3815 return ret; 3816 3817 ret = btrfs_fill_inode(inode, &rdev); 3818 if (!ret) 3819 filled = true; 3820 3821 if (!path) { 3822 path = btrfs_alloc_path(); 3823 if (!path) 3824 return -ENOMEM; 3825 } 3826 3827 btrfs_get_inode_key(BTRFS_I(inode), &location); 3828 3829 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3830 if (ret) { 3831 if (path != in_path) 3832 btrfs_free_path(path); 3833 return ret; 3834 } 3835 3836 leaf = path->nodes[0]; 3837 3838 if (filled) 3839 goto cache_index; 3840 3841 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3842 struct btrfs_inode_item); 3843 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3844 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3845 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3846 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3847 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3848 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3849 round_up(i_size_read(inode), fs_info->sectorsize)); 3850 3851 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3852 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3853 3854 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3855 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3856 3857 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3858 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3859 3860 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3861 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3862 3863 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3864 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3865 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3866 3867 inode_set_iversion_queried(inode, 3868 btrfs_inode_sequence(leaf, inode_item)); 3869 inode->i_generation = BTRFS_I(inode)->generation; 3870 inode->i_rdev = 0; 3871 rdev = btrfs_inode_rdev(leaf, inode_item); 3872 3873 if (S_ISDIR(inode->i_mode)) 3874 BTRFS_I(inode)->index_cnt = (u64)-1; 3875 3876 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3877 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3878 3879 cache_index: 3880 /* 3881 * If we were modified in the current generation and evicted from memory 3882 * and then re-read we need to do a full sync since we don't have any 3883 * idea about which extents were modified before we were evicted from 3884 * cache. 3885 * 3886 * This is required for both inode re-read from disk and delayed inode 3887 * in the delayed_nodes xarray. 3888 */ 3889 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3890 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3891 &BTRFS_I(inode)->runtime_flags); 3892 3893 /* 3894 * We don't persist the id of the transaction where an unlink operation 3895 * against the inode was last made. So here we assume the inode might 3896 * have been evicted, and therefore the exact value of last_unlink_trans 3897 * lost, and set it to last_trans to avoid metadata inconsistencies 3898 * between the inode and its parent if the inode is fsync'ed and the log 3899 * replayed. For example, in the scenario: 3900 * 3901 * touch mydir/foo 3902 * ln mydir/foo mydir/bar 3903 * sync 3904 * unlink mydir/bar 3905 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3906 * xfs_io -c fsync mydir/foo 3907 * <power failure> 3908 * mount fs, triggers fsync log replay 3909 * 3910 * We must make sure that when we fsync our inode foo we also log its 3911 * parent inode, otherwise after log replay the parent still has the 3912 * dentry with the "bar" name but our inode foo has a link count of 1 3913 * and doesn't have an inode ref with the name "bar" anymore. 3914 * 3915 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3916 * but it guarantees correctness at the expense of occasional full 3917 * transaction commits on fsync if our inode is a directory, or if our 3918 * inode is not a directory, logging its parent unnecessarily. 3919 */ 3920 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3921 3922 /* 3923 * Same logic as for last_unlink_trans. We don't persist the generation 3924 * of the last transaction where this inode was used for a reflink 3925 * operation, so after eviction and reloading the inode we must be 3926 * pessimistic and assume the last transaction that modified the inode. 3927 */ 3928 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3929 3930 path->slots[0]++; 3931 if (inode->i_nlink != 1 || 3932 path->slots[0] >= btrfs_header_nritems(leaf)) 3933 goto cache_acl; 3934 3935 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3936 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3937 goto cache_acl; 3938 3939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3940 if (location.type == BTRFS_INODE_REF_KEY) { 3941 struct btrfs_inode_ref *ref; 3942 3943 ref = (struct btrfs_inode_ref *)ptr; 3944 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3945 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3946 struct btrfs_inode_extref *extref; 3947 3948 extref = (struct btrfs_inode_extref *)ptr; 3949 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3950 extref); 3951 } 3952 cache_acl: 3953 /* 3954 * try to precache a NULL acl entry for files that don't have 3955 * any xattrs or acls 3956 */ 3957 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3958 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3959 if (first_xattr_slot != -1) { 3960 path->slots[0] = first_xattr_slot; 3961 ret = btrfs_load_inode_props(inode, path); 3962 if (ret) 3963 btrfs_err(fs_info, 3964 "error loading props for ino %llu (root %llu): %d", 3965 btrfs_ino(BTRFS_I(inode)), 3966 btrfs_root_id(root), ret); 3967 } 3968 if (path != in_path) 3969 btrfs_free_path(path); 3970 3971 if (!maybe_acls) 3972 cache_no_acl(inode); 3973 3974 switch (inode->i_mode & S_IFMT) { 3975 case S_IFREG: 3976 inode->i_mapping->a_ops = &btrfs_aops; 3977 inode->i_fop = &btrfs_file_operations; 3978 inode->i_op = &btrfs_file_inode_operations; 3979 break; 3980 case S_IFDIR: 3981 inode->i_fop = &btrfs_dir_file_operations; 3982 inode->i_op = &btrfs_dir_inode_operations; 3983 break; 3984 case S_IFLNK: 3985 inode->i_op = &btrfs_symlink_inode_operations; 3986 inode_nohighmem(inode); 3987 inode->i_mapping->a_ops = &btrfs_aops; 3988 break; 3989 default: 3990 inode->i_op = &btrfs_special_inode_operations; 3991 init_special_inode(inode, inode->i_mode, rdev); 3992 break; 3993 } 3994 3995 btrfs_sync_inode_flags_to_i_flags(inode); 3996 return 0; 3997 } 3998 3999 /* 4000 * given a leaf and an inode, copy the inode fields into the leaf 4001 */ 4002 static void fill_inode_item(struct btrfs_trans_handle *trans, 4003 struct extent_buffer *leaf, 4004 struct btrfs_inode_item *item, 4005 struct inode *inode) 4006 { 4007 struct btrfs_map_token token; 4008 u64 flags; 4009 4010 btrfs_init_map_token(&token, leaf); 4011 4012 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4013 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4014 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4015 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4016 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4017 4018 btrfs_set_token_timespec_sec(&token, &item->atime, 4019 inode_get_atime_sec(inode)); 4020 btrfs_set_token_timespec_nsec(&token, &item->atime, 4021 inode_get_atime_nsec(inode)); 4022 4023 btrfs_set_token_timespec_sec(&token, &item->mtime, 4024 inode_get_mtime_sec(inode)); 4025 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4026 inode_get_mtime_nsec(inode)); 4027 4028 btrfs_set_token_timespec_sec(&token, &item->ctime, 4029 inode_get_ctime_sec(inode)); 4030 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4031 inode_get_ctime_nsec(inode)); 4032 4033 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4034 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4035 4036 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4037 btrfs_set_token_inode_generation(&token, item, 4038 BTRFS_I(inode)->generation); 4039 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4040 btrfs_set_token_inode_transid(&token, item, trans->transid); 4041 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4042 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4043 BTRFS_I(inode)->ro_flags); 4044 btrfs_set_token_inode_flags(&token, item, flags); 4045 btrfs_set_token_inode_block_group(&token, item, 0); 4046 } 4047 4048 /* 4049 * copy everything in the in-memory inode into the btree. 4050 */ 4051 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4052 struct btrfs_inode *inode) 4053 { 4054 struct btrfs_inode_item *inode_item; 4055 struct btrfs_path *path; 4056 struct extent_buffer *leaf; 4057 struct btrfs_key key; 4058 int ret; 4059 4060 path = btrfs_alloc_path(); 4061 if (!path) 4062 return -ENOMEM; 4063 4064 btrfs_get_inode_key(inode, &key); 4065 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4066 if (ret) { 4067 if (ret > 0) 4068 ret = -ENOENT; 4069 goto failed; 4070 } 4071 4072 leaf = path->nodes[0]; 4073 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4074 struct btrfs_inode_item); 4075 4076 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4077 btrfs_mark_buffer_dirty(trans, leaf); 4078 btrfs_set_inode_last_trans(trans, inode); 4079 ret = 0; 4080 failed: 4081 btrfs_free_path(path); 4082 return ret; 4083 } 4084 4085 /* 4086 * copy everything in the in-memory inode into the btree. 4087 */ 4088 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4089 struct btrfs_inode *inode) 4090 { 4091 struct btrfs_root *root = inode->root; 4092 struct btrfs_fs_info *fs_info = root->fs_info; 4093 int ret; 4094 4095 /* 4096 * If the inode is a free space inode, we can deadlock during commit 4097 * if we put it into the delayed code. 4098 * 4099 * The data relocation inode should also be directly updated 4100 * without delay 4101 */ 4102 if (!btrfs_is_free_space_inode(inode) 4103 && !btrfs_is_data_reloc_root(root) 4104 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4105 btrfs_update_root_times(trans, root); 4106 4107 ret = btrfs_delayed_update_inode(trans, inode); 4108 if (!ret) 4109 btrfs_set_inode_last_trans(trans, inode); 4110 return ret; 4111 } 4112 4113 return btrfs_update_inode_item(trans, inode); 4114 } 4115 4116 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4117 struct btrfs_inode *inode) 4118 { 4119 int ret; 4120 4121 ret = btrfs_update_inode(trans, inode); 4122 if (ret == -ENOSPC) 4123 return btrfs_update_inode_item(trans, inode); 4124 return ret; 4125 } 4126 4127 /* 4128 * unlink helper that gets used here in inode.c and in the tree logging 4129 * recovery code. It remove a link in a directory with a given name, and 4130 * also drops the back refs in the inode to the directory 4131 */ 4132 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4133 struct btrfs_inode *dir, 4134 struct btrfs_inode *inode, 4135 const struct fscrypt_str *name, 4136 struct btrfs_rename_ctx *rename_ctx) 4137 { 4138 struct btrfs_root *root = dir->root; 4139 struct btrfs_fs_info *fs_info = root->fs_info; 4140 struct btrfs_path *path; 4141 int ret = 0; 4142 struct btrfs_dir_item *di; 4143 u64 index; 4144 u64 ino = btrfs_ino(inode); 4145 u64 dir_ino = btrfs_ino(dir); 4146 4147 path = btrfs_alloc_path(); 4148 if (!path) { 4149 ret = -ENOMEM; 4150 goto out; 4151 } 4152 4153 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4154 if (IS_ERR_OR_NULL(di)) { 4155 ret = di ? PTR_ERR(di) : -ENOENT; 4156 goto err; 4157 } 4158 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4159 if (ret) 4160 goto err; 4161 btrfs_release_path(path); 4162 4163 /* 4164 * If we don't have dir index, we have to get it by looking up 4165 * the inode ref, since we get the inode ref, remove it directly, 4166 * it is unnecessary to do delayed deletion. 4167 * 4168 * But if we have dir index, needn't search inode ref to get it. 4169 * Since the inode ref is close to the inode item, it is better 4170 * that we delay to delete it, and just do this deletion when 4171 * we update the inode item. 4172 */ 4173 if (inode->dir_index) { 4174 ret = btrfs_delayed_delete_inode_ref(inode); 4175 if (!ret) { 4176 index = inode->dir_index; 4177 goto skip_backref; 4178 } 4179 } 4180 4181 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4182 if (ret) { 4183 btrfs_info(fs_info, 4184 "failed to delete reference to %.*s, inode %llu parent %llu", 4185 name->len, name->name, ino, dir_ino); 4186 btrfs_abort_transaction(trans, ret); 4187 goto err; 4188 } 4189 skip_backref: 4190 if (rename_ctx) 4191 rename_ctx->index = index; 4192 4193 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4194 if (ret) { 4195 btrfs_abort_transaction(trans, ret); 4196 goto err; 4197 } 4198 4199 /* 4200 * If we are in a rename context, we don't need to update anything in the 4201 * log. That will be done later during the rename by btrfs_log_new_name(). 4202 * Besides that, doing it here would only cause extra unnecessary btree 4203 * operations on the log tree, increasing latency for applications. 4204 */ 4205 if (!rename_ctx) { 4206 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4207 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4208 } 4209 4210 /* 4211 * If we have a pending delayed iput we could end up with the final iput 4212 * being run in btrfs-cleaner context. If we have enough of these built 4213 * up we can end up burning a lot of time in btrfs-cleaner without any 4214 * way to throttle the unlinks. Since we're currently holding a ref on 4215 * the inode we can run the delayed iput here without any issues as the 4216 * final iput won't be done until after we drop the ref we're currently 4217 * holding. 4218 */ 4219 btrfs_run_delayed_iput(fs_info, inode); 4220 err: 4221 btrfs_free_path(path); 4222 if (ret) 4223 goto out; 4224 4225 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4226 inode_inc_iversion(&inode->vfs_inode); 4227 inode_set_ctime_current(&inode->vfs_inode); 4228 inode_inc_iversion(&dir->vfs_inode); 4229 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4230 ret = btrfs_update_inode(trans, dir); 4231 out: 4232 return ret; 4233 } 4234 4235 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4236 struct btrfs_inode *dir, struct btrfs_inode *inode, 4237 const struct fscrypt_str *name) 4238 { 4239 int ret; 4240 4241 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4242 if (!ret) { 4243 drop_nlink(&inode->vfs_inode); 4244 ret = btrfs_update_inode(trans, inode); 4245 } 4246 return ret; 4247 } 4248 4249 /* 4250 * helper to start transaction for unlink and rmdir. 4251 * 4252 * unlink and rmdir are special in btrfs, they do not always free space, so 4253 * if we cannot make our reservations the normal way try and see if there is 4254 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4255 * allow the unlink to occur. 4256 */ 4257 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4258 { 4259 struct btrfs_root *root = dir->root; 4260 4261 return btrfs_start_transaction_fallback_global_rsv(root, 4262 BTRFS_UNLINK_METADATA_UNITS); 4263 } 4264 4265 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4266 { 4267 struct btrfs_trans_handle *trans; 4268 struct inode *inode = d_inode(dentry); 4269 int ret; 4270 struct fscrypt_name fname; 4271 4272 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4273 if (ret) 4274 return ret; 4275 4276 /* This needs to handle no-key deletions later on */ 4277 4278 trans = __unlink_start_trans(BTRFS_I(dir)); 4279 if (IS_ERR(trans)) { 4280 ret = PTR_ERR(trans); 4281 goto fscrypt_free; 4282 } 4283 4284 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4285 false); 4286 4287 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4288 &fname.disk_name); 4289 if (ret) 4290 goto end_trans; 4291 4292 if (inode->i_nlink == 0) { 4293 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4294 if (ret) 4295 goto end_trans; 4296 } 4297 4298 end_trans: 4299 btrfs_end_transaction(trans); 4300 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4301 fscrypt_free: 4302 fscrypt_free_filename(&fname); 4303 return ret; 4304 } 4305 4306 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4307 struct btrfs_inode *dir, struct dentry *dentry) 4308 { 4309 struct btrfs_root *root = dir->root; 4310 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4311 struct btrfs_path *path; 4312 struct extent_buffer *leaf; 4313 struct btrfs_dir_item *di; 4314 struct btrfs_key key; 4315 u64 index; 4316 int ret; 4317 u64 objectid; 4318 u64 dir_ino = btrfs_ino(dir); 4319 struct fscrypt_name fname; 4320 4321 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4322 if (ret) 4323 return ret; 4324 4325 /* This needs to handle no-key deletions later on */ 4326 4327 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4328 objectid = btrfs_root_id(inode->root); 4329 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4330 objectid = inode->ref_root_id; 4331 } else { 4332 WARN_ON(1); 4333 fscrypt_free_filename(&fname); 4334 return -EINVAL; 4335 } 4336 4337 path = btrfs_alloc_path(); 4338 if (!path) { 4339 ret = -ENOMEM; 4340 goto out; 4341 } 4342 4343 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4344 &fname.disk_name, -1); 4345 if (IS_ERR_OR_NULL(di)) { 4346 ret = di ? PTR_ERR(di) : -ENOENT; 4347 goto out; 4348 } 4349 4350 leaf = path->nodes[0]; 4351 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4352 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4353 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4354 if (ret) { 4355 btrfs_abort_transaction(trans, ret); 4356 goto out; 4357 } 4358 btrfs_release_path(path); 4359 4360 /* 4361 * This is a placeholder inode for a subvolume we didn't have a 4362 * reference to at the time of the snapshot creation. In the meantime 4363 * we could have renamed the real subvol link into our snapshot, so 4364 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4365 * Instead simply lookup the dir_index_item for this entry so we can 4366 * remove it. Otherwise we know we have a ref to the root and we can 4367 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4368 */ 4369 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4370 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4371 if (IS_ERR(di)) { 4372 ret = PTR_ERR(di); 4373 btrfs_abort_transaction(trans, ret); 4374 goto out; 4375 } 4376 4377 leaf = path->nodes[0]; 4378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4379 index = key.offset; 4380 btrfs_release_path(path); 4381 } else { 4382 ret = btrfs_del_root_ref(trans, objectid, 4383 btrfs_root_id(root), dir_ino, 4384 &index, &fname.disk_name); 4385 if (ret) { 4386 btrfs_abort_transaction(trans, ret); 4387 goto out; 4388 } 4389 } 4390 4391 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4392 if (ret) { 4393 btrfs_abort_transaction(trans, ret); 4394 goto out; 4395 } 4396 4397 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4398 inode_inc_iversion(&dir->vfs_inode); 4399 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4400 ret = btrfs_update_inode_fallback(trans, dir); 4401 if (ret) 4402 btrfs_abort_transaction(trans, ret); 4403 out: 4404 btrfs_free_path(path); 4405 fscrypt_free_filename(&fname); 4406 return ret; 4407 } 4408 4409 /* 4410 * Helper to check if the subvolume references other subvolumes or if it's 4411 * default. 4412 */ 4413 static noinline int may_destroy_subvol(struct btrfs_root *root) 4414 { 4415 struct btrfs_fs_info *fs_info = root->fs_info; 4416 struct btrfs_path *path; 4417 struct btrfs_dir_item *di; 4418 struct btrfs_key key; 4419 struct fscrypt_str name = FSTR_INIT("default", 7); 4420 u64 dir_id; 4421 int ret; 4422 4423 path = btrfs_alloc_path(); 4424 if (!path) 4425 return -ENOMEM; 4426 4427 /* Make sure this root isn't set as the default subvol */ 4428 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4429 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4430 dir_id, &name, 0); 4431 if (di && !IS_ERR(di)) { 4432 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4433 if (key.objectid == btrfs_root_id(root)) { 4434 ret = -EPERM; 4435 btrfs_err(fs_info, 4436 "deleting default subvolume %llu is not allowed", 4437 key.objectid); 4438 goto out; 4439 } 4440 btrfs_release_path(path); 4441 } 4442 4443 key.objectid = btrfs_root_id(root); 4444 key.type = BTRFS_ROOT_REF_KEY; 4445 key.offset = (u64)-1; 4446 4447 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4448 if (ret < 0) 4449 goto out; 4450 if (ret == 0) { 4451 /* 4452 * Key with offset -1 found, there would have to exist a root 4453 * with such id, but this is out of valid range. 4454 */ 4455 ret = -EUCLEAN; 4456 goto out; 4457 } 4458 4459 ret = 0; 4460 if (path->slots[0] > 0) { 4461 path->slots[0]--; 4462 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4463 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4464 ret = -ENOTEMPTY; 4465 } 4466 out: 4467 btrfs_free_path(path); 4468 return ret; 4469 } 4470 4471 /* Delete all dentries for inodes belonging to the root */ 4472 static void btrfs_prune_dentries(struct btrfs_root *root) 4473 { 4474 struct btrfs_fs_info *fs_info = root->fs_info; 4475 struct btrfs_inode *inode; 4476 u64 min_ino = 0; 4477 4478 if (!BTRFS_FS_ERROR(fs_info)) 4479 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4480 4481 inode = btrfs_find_first_inode(root, min_ino); 4482 while (inode) { 4483 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4484 d_prune_aliases(&inode->vfs_inode); 4485 4486 min_ino = btrfs_ino(inode) + 1; 4487 /* 4488 * btrfs_drop_inode() will have it removed from the inode 4489 * cache when its usage count hits zero. 4490 */ 4491 iput(&inode->vfs_inode); 4492 cond_resched(); 4493 inode = btrfs_find_first_inode(root, min_ino); 4494 } 4495 } 4496 4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4498 { 4499 struct btrfs_root *root = dir->root; 4500 struct btrfs_fs_info *fs_info = root->fs_info; 4501 struct inode *inode = d_inode(dentry); 4502 struct btrfs_root *dest = BTRFS_I(inode)->root; 4503 struct btrfs_trans_handle *trans; 4504 struct btrfs_block_rsv block_rsv; 4505 u64 root_flags; 4506 u64 qgroup_reserved = 0; 4507 int ret; 4508 4509 down_write(&fs_info->subvol_sem); 4510 4511 /* 4512 * Don't allow to delete a subvolume with send in progress. This is 4513 * inside the inode lock so the error handling that has to drop the bit 4514 * again is not run concurrently. 4515 */ 4516 spin_lock(&dest->root_item_lock); 4517 if (dest->send_in_progress) { 4518 spin_unlock(&dest->root_item_lock); 4519 btrfs_warn(fs_info, 4520 "attempt to delete subvolume %llu during send", 4521 btrfs_root_id(dest)); 4522 ret = -EPERM; 4523 goto out_up_write; 4524 } 4525 if (atomic_read(&dest->nr_swapfiles)) { 4526 spin_unlock(&dest->root_item_lock); 4527 btrfs_warn(fs_info, 4528 "attempt to delete subvolume %llu with active swapfile", 4529 btrfs_root_id(root)); 4530 ret = -EPERM; 4531 goto out_up_write; 4532 } 4533 root_flags = btrfs_root_flags(&dest->root_item); 4534 btrfs_set_root_flags(&dest->root_item, 4535 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4536 spin_unlock(&dest->root_item_lock); 4537 4538 ret = may_destroy_subvol(dest); 4539 if (ret) 4540 goto out_undead; 4541 4542 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4543 /* 4544 * One for dir inode, 4545 * two for dir entries, 4546 * two for root ref/backref. 4547 */ 4548 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4549 if (ret) 4550 goto out_undead; 4551 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4552 4553 trans = btrfs_start_transaction(root, 0); 4554 if (IS_ERR(trans)) { 4555 ret = PTR_ERR(trans); 4556 goto out_release; 4557 } 4558 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4559 qgroup_reserved = 0; 4560 trans->block_rsv = &block_rsv; 4561 trans->bytes_reserved = block_rsv.size; 4562 4563 btrfs_record_snapshot_destroy(trans, dir); 4564 4565 ret = btrfs_unlink_subvol(trans, dir, dentry); 4566 if (ret) { 4567 btrfs_abort_transaction(trans, ret); 4568 goto out_end_trans; 4569 } 4570 4571 ret = btrfs_record_root_in_trans(trans, dest); 4572 if (ret) { 4573 btrfs_abort_transaction(trans, ret); 4574 goto out_end_trans; 4575 } 4576 4577 memset(&dest->root_item.drop_progress, 0, 4578 sizeof(dest->root_item.drop_progress)); 4579 btrfs_set_root_drop_level(&dest->root_item, 0); 4580 btrfs_set_root_refs(&dest->root_item, 0); 4581 4582 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4583 ret = btrfs_insert_orphan_item(trans, 4584 fs_info->tree_root, 4585 btrfs_root_id(dest)); 4586 if (ret) { 4587 btrfs_abort_transaction(trans, ret); 4588 goto out_end_trans; 4589 } 4590 } 4591 4592 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4593 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4594 if (ret && ret != -ENOENT) { 4595 btrfs_abort_transaction(trans, ret); 4596 goto out_end_trans; 4597 } 4598 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4599 ret = btrfs_uuid_tree_remove(trans, 4600 dest->root_item.received_uuid, 4601 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4602 btrfs_root_id(dest)); 4603 if (ret && ret != -ENOENT) { 4604 btrfs_abort_transaction(trans, ret); 4605 goto out_end_trans; 4606 } 4607 } 4608 4609 free_anon_bdev(dest->anon_dev); 4610 dest->anon_dev = 0; 4611 out_end_trans: 4612 trans->block_rsv = NULL; 4613 trans->bytes_reserved = 0; 4614 ret = btrfs_end_transaction(trans); 4615 inode->i_flags |= S_DEAD; 4616 out_release: 4617 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4618 if (qgroup_reserved) 4619 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4620 out_undead: 4621 if (ret) { 4622 spin_lock(&dest->root_item_lock); 4623 root_flags = btrfs_root_flags(&dest->root_item); 4624 btrfs_set_root_flags(&dest->root_item, 4625 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4626 spin_unlock(&dest->root_item_lock); 4627 } 4628 out_up_write: 4629 up_write(&fs_info->subvol_sem); 4630 if (!ret) { 4631 d_invalidate(dentry); 4632 btrfs_prune_dentries(dest); 4633 ASSERT(dest->send_in_progress == 0); 4634 } 4635 4636 return ret; 4637 } 4638 4639 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4640 { 4641 struct inode *inode = d_inode(dentry); 4642 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4643 int ret = 0; 4644 struct btrfs_trans_handle *trans; 4645 u64 last_unlink_trans; 4646 struct fscrypt_name fname; 4647 4648 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4649 return -ENOTEMPTY; 4650 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4651 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4652 btrfs_err(fs_info, 4653 "extent tree v2 doesn't support snapshot deletion yet"); 4654 return -EOPNOTSUPP; 4655 } 4656 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4657 } 4658 4659 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4660 if (ret) 4661 return ret; 4662 4663 /* This needs to handle no-key deletions later on */ 4664 4665 trans = __unlink_start_trans(BTRFS_I(dir)); 4666 if (IS_ERR(trans)) { 4667 ret = PTR_ERR(trans); 4668 goto out_notrans; 4669 } 4670 4671 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4672 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4673 goto out; 4674 } 4675 4676 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4677 if (ret) 4678 goto out; 4679 4680 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4681 4682 /* now the directory is empty */ 4683 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4684 &fname.disk_name); 4685 if (!ret) { 4686 btrfs_i_size_write(BTRFS_I(inode), 0); 4687 /* 4688 * Propagate the last_unlink_trans value of the deleted dir to 4689 * its parent directory. This is to prevent an unrecoverable 4690 * log tree in the case we do something like this: 4691 * 1) create dir foo 4692 * 2) create snapshot under dir foo 4693 * 3) delete the snapshot 4694 * 4) rmdir foo 4695 * 5) mkdir foo 4696 * 6) fsync foo or some file inside foo 4697 */ 4698 if (last_unlink_trans >= trans->transid) 4699 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4700 } 4701 out: 4702 btrfs_end_transaction(trans); 4703 out_notrans: 4704 btrfs_btree_balance_dirty(fs_info); 4705 fscrypt_free_filename(&fname); 4706 4707 return ret; 4708 } 4709 4710 /* 4711 * Read, zero a chunk and write a block. 4712 * 4713 * @inode - inode that we're zeroing 4714 * @from - the offset to start zeroing 4715 * @len - the length to zero, 0 to zero the entire range respective to the 4716 * offset 4717 * @front - zero up to the offset instead of from the offset on 4718 * 4719 * This will find the block for the "from" offset and cow the block and zero the 4720 * part we want to zero. This is used with truncate and hole punching. 4721 */ 4722 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4723 int front) 4724 { 4725 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4726 struct address_space *mapping = inode->vfs_inode.i_mapping; 4727 struct extent_io_tree *io_tree = &inode->io_tree; 4728 struct btrfs_ordered_extent *ordered; 4729 struct extent_state *cached_state = NULL; 4730 struct extent_changeset *data_reserved = NULL; 4731 bool only_release_metadata = false; 4732 u32 blocksize = fs_info->sectorsize; 4733 pgoff_t index = from >> PAGE_SHIFT; 4734 unsigned offset = from & (blocksize - 1); 4735 struct folio *folio; 4736 gfp_t mask = btrfs_alloc_write_mask(mapping); 4737 size_t write_bytes = blocksize; 4738 int ret = 0; 4739 u64 block_start; 4740 u64 block_end; 4741 4742 if (IS_ALIGNED(offset, blocksize) && 4743 (!len || IS_ALIGNED(len, blocksize))) 4744 goto out; 4745 4746 block_start = round_down(from, blocksize); 4747 block_end = block_start + blocksize - 1; 4748 4749 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4750 blocksize, false); 4751 if (ret < 0) { 4752 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4753 /* For nocow case, no need to reserve data space */ 4754 only_release_metadata = true; 4755 } else { 4756 goto out; 4757 } 4758 } 4759 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4760 if (ret < 0) { 4761 if (!only_release_metadata) 4762 btrfs_free_reserved_data_space(inode, data_reserved, 4763 block_start, blocksize); 4764 goto out; 4765 } 4766 again: 4767 folio = __filemap_get_folio(mapping, index, 4768 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4769 if (IS_ERR(folio)) { 4770 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4771 blocksize, true); 4772 btrfs_delalloc_release_extents(inode, blocksize); 4773 ret = -ENOMEM; 4774 goto out; 4775 } 4776 4777 if (!folio_test_uptodate(folio)) { 4778 ret = btrfs_read_folio(NULL, folio); 4779 folio_lock(folio); 4780 if (folio->mapping != mapping) { 4781 folio_unlock(folio); 4782 folio_put(folio); 4783 goto again; 4784 } 4785 if (!folio_test_uptodate(folio)) { 4786 ret = -EIO; 4787 goto out_unlock; 4788 } 4789 } 4790 4791 /* 4792 * We unlock the page after the io is completed and then re-lock it 4793 * above. release_folio() could have come in between that and cleared 4794 * folio private, but left the page in the mapping. Set the page mapped 4795 * here to make sure it's properly set for the subpage stuff. 4796 */ 4797 ret = set_folio_extent_mapped(folio); 4798 if (ret < 0) 4799 goto out_unlock; 4800 4801 folio_wait_writeback(folio); 4802 4803 lock_extent(io_tree, block_start, block_end, &cached_state); 4804 4805 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4806 if (ordered) { 4807 unlock_extent(io_tree, block_start, block_end, &cached_state); 4808 folio_unlock(folio); 4809 folio_put(folio); 4810 btrfs_start_ordered_extent(ordered); 4811 btrfs_put_ordered_extent(ordered); 4812 goto again; 4813 } 4814 4815 clear_extent_bit(&inode->io_tree, block_start, block_end, 4816 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4817 &cached_state); 4818 4819 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4820 &cached_state); 4821 if (ret) { 4822 unlock_extent(io_tree, block_start, block_end, &cached_state); 4823 goto out_unlock; 4824 } 4825 4826 if (offset != blocksize) { 4827 if (!len) 4828 len = blocksize - offset; 4829 if (front) 4830 folio_zero_range(folio, block_start - folio_pos(folio), 4831 offset); 4832 else 4833 folio_zero_range(folio, 4834 (block_start - folio_pos(folio)) + offset, 4835 len); 4836 } 4837 btrfs_folio_clear_checked(fs_info, folio, block_start, 4838 block_end + 1 - block_start); 4839 btrfs_folio_set_dirty(fs_info, folio, block_start, 4840 block_end + 1 - block_start); 4841 unlock_extent(io_tree, block_start, block_end, &cached_state); 4842 4843 if (only_release_metadata) 4844 set_extent_bit(&inode->io_tree, block_start, block_end, 4845 EXTENT_NORESERVE, NULL); 4846 4847 out_unlock: 4848 if (ret) { 4849 if (only_release_metadata) 4850 btrfs_delalloc_release_metadata(inode, blocksize, true); 4851 else 4852 btrfs_delalloc_release_space(inode, data_reserved, 4853 block_start, blocksize, true); 4854 } 4855 btrfs_delalloc_release_extents(inode, blocksize); 4856 folio_unlock(folio); 4857 folio_put(folio); 4858 out: 4859 if (only_release_metadata) 4860 btrfs_check_nocow_unlock(inode); 4861 extent_changeset_free(data_reserved); 4862 return ret; 4863 } 4864 4865 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4866 { 4867 struct btrfs_root *root = inode->root; 4868 struct btrfs_fs_info *fs_info = root->fs_info; 4869 struct btrfs_trans_handle *trans; 4870 struct btrfs_drop_extents_args drop_args = { 0 }; 4871 int ret; 4872 4873 /* 4874 * If NO_HOLES is enabled, we don't need to do anything. 4875 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4876 * or btrfs_update_inode() will be called, which guarantee that the next 4877 * fsync will know this inode was changed and needs to be logged. 4878 */ 4879 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4880 return 0; 4881 4882 /* 4883 * 1 - for the one we're dropping 4884 * 1 - for the one we're adding 4885 * 1 - for updating the inode. 4886 */ 4887 trans = btrfs_start_transaction(root, 3); 4888 if (IS_ERR(trans)) 4889 return PTR_ERR(trans); 4890 4891 drop_args.start = offset; 4892 drop_args.end = offset + len; 4893 drop_args.drop_cache = true; 4894 4895 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4896 if (ret) { 4897 btrfs_abort_transaction(trans, ret); 4898 btrfs_end_transaction(trans); 4899 return ret; 4900 } 4901 4902 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4903 if (ret) { 4904 btrfs_abort_transaction(trans, ret); 4905 } else { 4906 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4907 btrfs_update_inode(trans, inode); 4908 } 4909 btrfs_end_transaction(trans); 4910 return ret; 4911 } 4912 4913 /* 4914 * This function puts in dummy file extents for the area we're creating a hole 4915 * for. So if we are truncating this file to a larger size we need to insert 4916 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4917 * the range between oldsize and size 4918 */ 4919 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4920 { 4921 struct btrfs_root *root = inode->root; 4922 struct btrfs_fs_info *fs_info = root->fs_info; 4923 struct extent_io_tree *io_tree = &inode->io_tree; 4924 struct extent_map *em = NULL; 4925 struct extent_state *cached_state = NULL; 4926 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4927 u64 block_end = ALIGN(size, fs_info->sectorsize); 4928 u64 last_byte; 4929 u64 cur_offset; 4930 u64 hole_size; 4931 int ret = 0; 4932 4933 /* 4934 * If our size started in the middle of a block we need to zero out the 4935 * rest of the block before we expand the i_size, otherwise we could 4936 * expose stale data. 4937 */ 4938 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4939 if (ret) 4940 return ret; 4941 4942 if (size <= hole_start) 4943 return 0; 4944 4945 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4946 &cached_state); 4947 cur_offset = hole_start; 4948 while (1) { 4949 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4950 if (IS_ERR(em)) { 4951 ret = PTR_ERR(em); 4952 em = NULL; 4953 break; 4954 } 4955 last_byte = min(extent_map_end(em), block_end); 4956 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4957 hole_size = last_byte - cur_offset; 4958 4959 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4960 struct extent_map *hole_em; 4961 4962 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4963 if (ret) 4964 break; 4965 4966 ret = btrfs_inode_set_file_extent_range(inode, 4967 cur_offset, hole_size); 4968 if (ret) 4969 break; 4970 4971 hole_em = alloc_extent_map(); 4972 if (!hole_em) { 4973 btrfs_drop_extent_map_range(inode, cur_offset, 4974 cur_offset + hole_size - 1, 4975 false); 4976 btrfs_set_inode_full_sync(inode); 4977 goto next; 4978 } 4979 hole_em->start = cur_offset; 4980 hole_em->len = hole_size; 4981 4982 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4983 hole_em->disk_num_bytes = 0; 4984 hole_em->ram_bytes = hole_size; 4985 hole_em->generation = btrfs_get_fs_generation(fs_info); 4986 4987 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4988 free_extent_map(hole_em); 4989 } else { 4990 ret = btrfs_inode_set_file_extent_range(inode, 4991 cur_offset, hole_size); 4992 if (ret) 4993 break; 4994 } 4995 next: 4996 free_extent_map(em); 4997 em = NULL; 4998 cur_offset = last_byte; 4999 if (cur_offset >= block_end) 5000 break; 5001 } 5002 free_extent_map(em); 5003 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5004 return ret; 5005 } 5006 5007 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5008 { 5009 struct btrfs_root *root = BTRFS_I(inode)->root; 5010 struct btrfs_trans_handle *trans; 5011 loff_t oldsize = i_size_read(inode); 5012 loff_t newsize = attr->ia_size; 5013 int mask = attr->ia_valid; 5014 int ret; 5015 5016 /* 5017 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5018 * special case where we need to update the times despite not having 5019 * these flags set. For all other operations the VFS set these flags 5020 * explicitly if it wants a timestamp update. 5021 */ 5022 if (newsize != oldsize) { 5023 inode_inc_iversion(inode); 5024 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5025 inode_set_mtime_to_ts(inode, 5026 inode_set_ctime_current(inode)); 5027 } 5028 } 5029 5030 if (newsize > oldsize) { 5031 /* 5032 * Don't do an expanding truncate while snapshotting is ongoing. 5033 * This is to ensure the snapshot captures a fully consistent 5034 * state of this file - if the snapshot captures this expanding 5035 * truncation, it must capture all writes that happened before 5036 * this truncation. 5037 */ 5038 btrfs_drew_write_lock(&root->snapshot_lock); 5039 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5040 if (ret) { 5041 btrfs_drew_write_unlock(&root->snapshot_lock); 5042 return ret; 5043 } 5044 5045 trans = btrfs_start_transaction(root, 1); 5046 if (IS_ERR(trans)) { 5047 btrfs_drew_write_unlock(&root->snapshot_lock); 5048 return PTR_ERR(trans); 5049 } 5050 5051 i_size_write(inode, newsize); 5052 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5053 pagecache_isize_extended(inode, oldsize, newsize); 5054 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5055 btrfs_drew_write_unlock(&root->snapshot_lock); 5056 btrfs_end_transaction(trans); 5057 } else { 5058 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5059 5060 if (btrfs_is_zoned(fs_info)) { 5061 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5062 ALIGN(newsize, fs_info->sectorsize), 5063 (u64)-1); 5064 if (ret) 5065 return ret; 5066 } 5067 5068 /* 5069 * We're truncating a file that used to have good data down to 5070 * zero. Make sure any new writes to the file get on disk 5071 * on close. 5072 */ 5073 if (newsize == 0) 5074 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5075 &BTRFS_I(inode)->runtime_flags); 5076 5077 truncate_setsize(inode, newsize); 5078 5079 inode_dio_wait(inode); 5080 5081 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5082 if (ret && inode->i_nlink) { 5083 int err; 5084 5085 /* 5086 * Truncate failed, so fix up the in-memory size. We 5087 * adjusted disk_i_size down as we removed extents, so 5088 * wait for disk_i_size to be stable and then update the 5089 * in-memory size to match. 5090 */ 5091 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5092 if (err) 5093 return err; 5094 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5095 } 5096 } 5097 5098 return ret; 5099 } 5100 5101 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5102 struct iattr *attr) 5103 { 5104 struct inode *inode = d_inode(dentry); 5105 struct btrfs_root *root = BTRFS_I(inode)->root; 5106 int err; 5107 5108 if (btrfs_root_readonly(root)) 5109 return -EROFS; 5110 5111 err = setattr_prepare(idmap, dentry, attr); 5112 if (err) 5113 return err; 5114 5115 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5116 err = btrfs_setsize(inode, attr); 5117 if (err) 5118 return err; 5119 } 5120 5121 if (attr->ia_valid) { 5122 setattr_copy(idmap, inode, attr); 5123 inode_inc_iversion(inode); 5124 err = btrfs_dirty_inode(BTRFS_I(inode)); 5125 5126 if (!err && attr->ia_valid & ATTR_MODE) 5127 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5128 } 5129 5130 return err; 5131 } 5132 5133 /* 5134 * While truncating the inode pages during eviction, we get the VFS 5135 * calling btrfs_invalidate_folio() against each folio of the inode. This 5136 * is slow because the calls to btrfs_invalidate_folio() result in a 5137 * huge amount of calls to lock_extent() and clear_extent_bit(), 5138 * which keep merging and splitting extent_state structures over and over, 5139 * wasting lots of time. 5140 * 5141 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5142 * skip all those expensive operations on a per folio basis and do only 5143 * the ordered io finishing, while we release here the extent_map and 5144 * extent_state structures, without the excessive merging and splitting. 5145 */ 5146 static void evict_inode_truncate_pages(struct inode *inode) 5147 { 5148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5149 struct rb_node *node; 5150 5151 ASSERT(inode->i_state & I_FREEING); 5152 truncate_inode_pages_final(&inode->i_data); 5153 5154 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5155 5156 /* 5157 * Keep looping until we have no more ranges in the io tree. 5158 * We can have ongoing bios started by readahead that have 5159 * their endio callback (extent_io.c:end_bio_extent_readpage) 5160 * still in progress (unlocked the pages in the bio but did not yet 5161 * unlocked the ranges in the io tree). Therefore this means some 5162 * ranges can still be locked and eviction started because before 5163 * submitting those bios, which are executed by a separate task (work 5164 * queue kthread), inode references (inode->i_count) were not taken 5165 * (which would be dropped in the end io callback of each bio). 5166 * Therefore here we effectively end up waiting for those bios and 5167 * anyone else holding locked ranges without having bumped the inode's 5168 * reference count - if we don't do it, when they access the inode's 5169 * io_tree to unlock a range it may be too late, leading to an 5170 * use-after-free issue. 5171 */ 5172 spin_lock(&io_tree->lock); 5173 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5174 struct extent_state *state; 5175 struct extent_state *cached_state = NULL; 5176 u64 start; 5177 u64 end; 5178 unsigned state_flags; 5179 5180 node = rb_first(&io_tree->state); 5181 state = rb_entry(node, struct extent_state, rb_node); 5182 start = state->start; 5183 end = state->end; 5184 state_flags = state->state; 5185 spin_unlock(&io_tree->lock); 5186 5187 lock_extent(io_tree, start, end, &cached_state); 5188 5189 /* 5190 * If still has DELALLOC flag, the extent didn't reach disk, 5191 * and its reserved space won't be freed by delayed_ref. 5192 * So we need to free its reserved space here. 5193 * (Refer to comment in btrfs_invalidate_folio, case 2) 5194 * 5195 * Note, end is the bytenr of last byte, so we need + 1 here. 5196 */ 5197 if (state_flags & EXTENT_DELALLOC) 5198 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5199 end - start + 1, NULL); 5200 5201 clear_extent_bit(io_tree, start, end, 5202 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5203 &cached_state); 5204 5205 cond_resched(); 5206 spin_lock(&io_tree->lock); 5207 } 5208 spin_unlock(&io_tree->lock); 5209 } 5210 5211 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5212 struct btrfs_block_rsv *rsv) 5213 { 5214 struct btrfs_fs_info *fs_info = root->fs_info; 5215 struct btrfs_trans_handle *trans; 5216 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5217 int ret; 5218 5219 /* 5220 * Eviction should be taking place at some place safe because of our 5221 * delayed iputs. However the normal flushing code will run delayed 5222 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5223 * 5224 * We reserve the delayed_refs_extra here again because we can't use 5225 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5226 * above. We reserve our extra bit here because we generate a ton of 5227 * delayed refs activity by truncating. 5228 * 5229 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5230 * if we fail to make this reservation we can re-try without the 5231 * delayed_refs_extra so we can make some forward progress. 5232 */ 5233 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5234 BTRFS_RESERVE_FLUSH_EVICT); 5235 if (ret) { 5236 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5237 BTRFS_RESERVE_FLUSH_EVICT); 5238 if (ret) { 5239 btrfs_warn(fs_info, 5240 "could not allocate space for delete; will truncate on mount"); 5241 return ERR_PTR(-ENOSPC); 5242 } 5243 delayed_refs_extra = 0; 5244 } 5245 5246 trans = btrfs_join_transaction(root); 5247 if (IS_ERR(trans)) 5248 return trans; 5249 5250 if (delayed_refs_extra) { 5251 trans->block_rsv = &fs_info->trans_block_rsv; 5252 trans->bytes_reserved = delayed_refs_extra; 5253 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5254 delayed_refs_extra, true); 5255 } 5256 return trans; 5257 } 5258 5259 void btrfs_evict_inode(struct inode *inode) 5260 { 5261 struct btrfs_fs_info *fs_info; 5262 struct btrfs_trans_handle *trans; 5263 struct btrfs_root *root = BTRFS_I(inode)->root; 5264 struct btrfs_block_rsv *rsv = NULL; 5265 int ret; 5266 5267 trace_btrfs_inode_evict(inode); 5268 5269 if (!root) { 5270 fsverity_cleanup_inode(inode); 5271 clear_inode(inode); 5272 return; 5273 } 5274 5275 fs_info = inode_to_fs_info(inode); 5276 evict_inode_truncate_pages(inode); 5277 5278 if (inode->i_nlink && 5279 ((btrfs_root_refs(&root->root_item) != 0 && 5280 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5281 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5282 goto out; 5283 5284 if (is_bad_inode(inode)) 5285 goto out; 5286 5287 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5288 goto out; 5289 5290 if (inode->i_nlink > 0) { 5291 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5292 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5293 goto out; 5294 } 5295 5296 /* 5297 * This makes sure the inode item in tree is uptodate and the space for 5298 * the inode update is released. 5299 */ 5300 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5301 if (ret) 5302 goto out; 5303 5304 /* 5305 * This drops any pending insert or delete operations we have for this 5306 * inode. We could have a delayed dir index deletion queued up, but 5307 * we're removing the inode completely so that'll be taken care of in 5308 * the truncate. 5309 */ 5310 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5311 5312 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5313 if (!rsv) 5314 goto out; 5315 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5316 rsv->failfast = true; 5317 5318 btrfs_i_size_write(BTRFS_I(inode), 0); 5319 5320 while (1) { 5321 struct btrfs_truncate_control control = { 5322 .inode = BTRFS_I(inode), 5323 .ino = btrfs_ino(BTRFS_I(inode)), 5324 .new_size = 0, 5325 .min_type = 0, 5326 }; 5327 5328 trans = evict_refill_and_join(root, rsv); 5329 if (IS_ERR(trans)) 5330 goto out; 5331 5332 trans->block_rsv = rsv; 5333 5334 ret = btrfs_truncate_inode_items(trans, root, &control); 5335 trans->block_rsv = &fs_info->trans_block_rsv; 5336 btrfs_end_transaction(trans); 5337 /* 5338 * We have not added new delayed items for our inode after we 5339 * have flushed its delayed items, so no need to throttle on 5340 * delayed items. However we have modified extent buffers. 5341 */ 5342 btrfs_btree_balance_dirty_nodelay(fs_info); 5343 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5344 goto out; 5345 else if (!ret) 5346 break; 5347 } 5348 5349 /* 5350 * Errors here aren't a big deal, it just means we leave orphan items in 5351 * the tree. They will be cleaned up on the next mount. If the inode 5352 * number gets reused, cleanup deletes the orphan item without doing 5353 * anything, and unlink reuses the existing orphan item. 5354 * 5355 * If it turns out that we are dropping too many of these, we might want 5356 * to add a mechanism for retrying these after a commit. 5357 */ 5358 trans = evict_refill_and_join(root, rsv); 5359 if (!IS_ERR(trans)) { 5360 trans->block_rsv = rsv; 5361 btrfs_orphan_del(trans, BTRFS_I(inode)); 5362 trans->block_rsv = &fs_info->trans_block_rsv; 5363 btrfs_end_transaction(trans); 5364 } 5365 5366 out: 5367 btrfs_free_block_rsv(fs_info, rsv); 5368 /* 5369 * If we didn't successfully delete, the orphan item will still be in 5370 * the tree and we'll retry on the next mount. Again, we might also want 5371 * to retry these periodically in the future. 5372 */ 5373 btrfs_remove_delayed_node(BTRFS_I(inode)); 5374 fsverity_cleanup_inode(inode); 5375 clear_inode(inode); 5376 } 5377 5378 /* 5379 * Return the key found in the dir entry in the location pointer, fill @type 5380 * with BTRFS_FT_*, and return 0. 5381 * 5382 * If no dir entries were found, returns -ENOENT. 5383 * If found a corrupted location in dir entry, returns -EUCLEAN. 5384 */ 5385 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5386 struct btrfs_key *location, u8 *type) 5387 { 5388 struct btrfs_dir_item *di; 5389 struct btrfs_path *path; 5390 struct btrfs_root *root = dir->root; 5391 int ret = 0; 5392 struct fscrypt_name fname; 5393 5394 path = btrfs_alloc_path(); 5395 if (!path) 5396 return -ENOMEM; 5397 5398 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5399 if (ret < 0) 5400 goto out; 5401 /* 5402 * fscrypt_setup_filename() should never return a positive value, but 5403 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5404 */ 5405 ASSERT(ret == 0); 5406 5407 /* This needs to handle no-key deletions later on */ 5408 5409 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5410 &fname.disk_name, 0); 5411 if (IS_ERR_OR_NULL(di)) { 5412 ret = di ? PTR_ERR(di) : -ENOENT; 5413 goto out; 5414 } 5415 5416 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5417 if (location->type != BTRFS_INODE_ITEM_KEY && 5418 location->type != BTRFS_ROOT_ITEM_KEY) { 5419 ret = -EUCLEAN; 5420 btrfs_warn(root->fs_info, 5421 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5422 __func__, fname.disk_name.name, btrfs_ino(dir), 5423 location->objectid, location->type, location->offset); 5424 } 5425 if (!ret) 5426 *type = btrfs_dir_ftype(path->nodes[0], di); 5427 out: 5428 fscrypt_free_filename(&fname); 5429 btrfs_free_path(path); 5430 return ret; 5431 } 5432 5433 /* 5434 * when we hit a tree root in a directory, the btrfs part of the inode 5435 * needs to be changed to reflect the root directory of the tree root. This 5436 * is kind of like crossing a mount point. 5437 */ 5438 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5439 struct btrfs_inode *dir, 5440 struct dentry *dentry, 5441 struct btrfs_key *location, 5442 struct btrfs_root **sub_root) 5443 { 5444 struct btrfs_path *path; 5445 struct btrfs_root *new_root; 5446 struct btrfs_root_ref *ref; 5447 struct extent_buffer *leaf; 5448 struct btrfs_key key; 5449 int ret; 5450 int err = 0; 5451 struct fscrypt_name fname; 5452 5453 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5454 if (ret) 5455 return ret; 5456 5457 path = btrfs_alloc_path(); 5458 if (!path) { 5459 err = -ENOMEM; 5460 goto out; 5461 } 5462 5463 err = -ENOENT; 5464 key.objectid = btrfs_root_id(dir->root); 5465 key.type = BTRFS_ROOT_REF_KEY; 5466 key.offset = location->objectid; 5467 5468 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5469 if (ret) { 5470 if (ret < 0) 5471 err = ret; 5472 goto out; 5473 } 5474 5475 leaf = path->nodes[0]; 5476 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5477 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5478 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5479 goto out; 5480 5481 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5482 (unsigned long)(ref + 1), fname.disk_name.len); 5483 if (ret) 5484 goto out; 5485 5486 btrfs_release_path(path); 5487 5488 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5489 if (IS_ERR(new_root)) { 5490 err = PTR_ERR(new_root); 5491 goto out; 5492 } 5493 5494 *sub_root = new_root; 5495 location->objectid = btrfs_root_dirid(&new_root->root_item); 5496 location->type = BTRFS_INODE_ITEM_KEY; 5497 location->offset = 0; 5498 err = 0; 5499 out: 5500 btrfs_free_path(path); 5501 fscrypt_free_filename(&fname); 5502 return err; 5503 } 5504 5505 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 5506 { 5507 struct btrfs_root *root = inode->root; 5508 struct btrfs_inode *existing; 5509 const u64 ino = btrfs_ino(inode); 5510 int ret; 5511 5512 if (inode_unhashed(&inode->vfs_inode)) 5513 return 0; 5514 5515 if (prealloc) { 5516 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 5517 if (ret) 5518 return ret; 5519 } 5520 5521 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 5522 5523 if (xa_is_err(existing)) { 5524 ret = xa_err(existing); 5525 ASSERT(ret != -EINVAL); 5526 ASSERT(ret != -ENOMEM); 5527 return ret; 5528 } else if (existing) { 5529 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 5530 } 5531 5532 return 0; 5533 } 5534 5535 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5536 { 5537 struct btrfs_root *root = inode->root; 5538 struct btrfs_inode *entry; 5539 bool empty = false; 5540 5541 xa_lock(&root->inodes); 5542 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5543 if (entry == inode) 5544 empty = xa_empty(&root->inodes); 5545 xa_unlock(&root->inodes); 5546 5547 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5548 xa_lock(&root->inodes); 5549 empty = xa_empty(&root->inodes); 5550 xa_unlock(&root->inodes); 5551 if (empty) 5552 btrfs_add_dead_root(root); 5553 } 5554 } 5555 5556 5557 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5558 { 5559 struct btrfs_iget_args *args = p; 5560 5561 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5562 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5563 5564 if (args->root && args->root == args->root->fs_info->tree_root && 5565 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5566 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5567 &BTRFS_I(inode)->runtime_flags); 5568 return 0; 5569 } 5570 5571 static int btrfs_find_actor(struct inode *inode, void *opaque) 5572 { 5573 struct btrfs_iget_args *args = opaque; 5574 5575 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5576 args->root == BTRFS_I(inode)->root; 5577 } 5578 5579 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5580 { 5581 struct inode *inode; 5582 struct btrfs_iget_args args; 5583 unsigned long hashval = btrfs_inode_hash(ino, root); 5584 5585 args.ino = ino; 5586 args.root = root; 5587 5588 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5589 btrfs_init_locked_inode, 5590 (void *)&args); 5591 return inode; 5592 } 5593 5594 /* 5595 * Get an inode object given its inode number and corresponding root. 5596 * Path can be preallocated to prevent recursing back to iget through 5597 * allocator. NULL is also valid but may require an additional allocation 5598 * later. 5599 */ 5600 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5601 struct btrfs_path *path) 5602 { 5603 struct inode *inode; 5604 int ret; 5605 5606 inode = btrfs_iget_locked(ino, root); 5607 if (!inode) 5608 return ERR_PTR(-ENOMEM); 5609 5610 if (!(inode->i_state & I_NEW)) 5611 return inode; 5612 5613 ret = btrfs_read_locked_inode(inode, path); 5614 /* 5615 * ret > 0 can come from btrfs_search_slot called by 5616 * btrfs_read_locked_inode(), this means the inode item was not found. 5617 */ 5618 if (ret > 0) 5619 ret = -ENOENT; 5620 if (ret < 0) 5621 goto error; 5622 5623 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 5624 if (ret < 0) 5625 goto error; 5626 5627 unlock_new_inode(inode); 5628 5629 return inode; 5630 error: 5631 iget_failed(inode); 5632 return ERR_PTR(ret); 5633 } 5634 5635 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5636 { 5637 return btrfs_iget_path(ino, root, NULL); 5638 } 5639 5640 static struct inode *new_simple_dir(struct inode *dir, 5641 struct btrfs_key *key, 5642 struct btrfs_root *root) 5643 { 5644 struct timespec64 ts; 5645 struct inode *inode = new_inode(dir->i_sb); 5646 5647 if (!inode) 5648 return ERR_PTR(-ENOMEM); 5649 5650 BTRFS_I(inode)->root = btrfs_grab_root(root); 5651 BTRFS_I(inode)->ref_root_id = key->objectid; 5652 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5653 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5654 5655 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5656 /* 5657 * We only need lookup, the rest is read-only and there's no inode 5658 * associated with the dentry 5659 */ 5660 inode->i_op = &simple_dir_inode_operations; 5661 inode->i_opflags &= ~IOP_XATTR; 5662 inode->i_fop = &simple_dir_operations; 5663 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5664 5665 ts = inode_set_ctime_current(inode); 5666 inode_set_mtime_to_ts(inode, ts); 5667 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5668 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5669 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5670 5671 inode->i_uid = dir->i_uid; 5672 inode->i_gid = dir->i_gid; 5673 5674 return inode; 5675 } 5676 5677 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5678 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5679 static_assert(BTRFS_FT_DIR == FT_DIR); 5680 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5681 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5682 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5683 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5684 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5685 5686 static inline u8 btrfs_inode_type(struct inode *inode) 5687 { 5688 return fs_umode_to_ftype(inode->i_mode); 5689 } 5690 5691 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5692 { 5693 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5694 struct inode *inode; 5695 struct btrfs_root *root = BTRFS_I(dir)->root; 5696 struct btrfs_root *sub_root = root; 5697 struct btrfs_key location = { 0 }; 5698 u8 di_type = 0; 5699 int ret = 0; 5700 5701 if (dentry->d_name.len > BTRFS_NAME_LEN) 5702 return ERR_PTR(-ENAMETOOLONG); 5703 5704 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5705 if (ret < 0) 5706 return ERR_PTR(ret); 5707 5708 if (location.type == BTRFS_INODE_ITEM_KEY) { 5709 inode = btrfs_iget(location.objectid, root); 5710 if (IS_ERR(inode)) 5711 return inode; 5712 5713 /* Do extra check against inode mode with di_type */ 5714 if (btrfs_inode_type(inode) != di_type) { 5715 btrfs_crit(fs_info, 5716 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5717 inode->i_mode, btrfs_inode_type(inode), 5718 di_type); 5719 iput(inode); 5720 return ERR_PTR(-EUCLEAN); 5721 } 5722 return inode; 5723 } 5724 5725 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5726 &location, &sub_root); 5727 if (ret < 0) { 5728 if (ret != -ENOENT) 5729 inode = ERR_PTR(ret); 5730 else 5731 inode = new_simple_dir(dir, &location, root); 5732 } else { 5733 inode = btrfs_iget(location.objectid, sub_root); 5734 btrfs_put_root(sub_root); 5735 5736 if (IS_ERR(inode)) 5737 return inode; 5738 5739 down_read(&fs_info->cleanup_work_sem); 5740 if (!sb_rdonly(inode->i_sb)) 5741 ret = btrfs_orphan_cleanup(sub_root); 5742 up_read(&fs_info->cleanup_work_sem); 5743 if (ret) { 5744 iput(inode); 5745 inode = ERR_PTR(ret); 5746 } 5747 } 5748 5749 return inode; 5750 } 5751 5752 static int btrfs_dentry_delete(const struct dentry *dentry) 5753 { 5754 struct btrfs_root *root; 5755 struct inode *inode = d_inode(dentry); 5756 5757 if (!inode && !IS_ROOT(dentry)) 5758 inode = d_inode(dentry->d_parent); 5759 5760 if (inode) { 5761 root = BTRFS_I(inode)->root; 5762 if (btrfs_root_refs(&root->root_item) == 0) 5763 return 1; 5764 5765 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5766 return 1; 5767 } 5768 return 0; 5769 } 5770 5771 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5772 unsigned int flags) 5773 { 5774 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5775 5776 if (inode == ERR_PTR(-ENOENT)) 5777 inode = NULL; 5778 return d_splice_alias(inode, dentry); 5779 } 5780 5781 /* 5782 * Find the highest existing sequence number in a directory and then set the 5783 * in-memory index_cnt variable to the first free sequence number. 5784 */ 5785 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5786 { 5787 struct btrfs_root *root = inode->root; 5788 struct btrfs_key key, found_key; 5789 struct btrfs_path *path; 5790 struct extent_buffer *leaf; 5791 int ret; 5792 5793 key.objectid = btrfs_ino(inode); 5794 key.type = BTRFS_DIR_INDEX_KEY; 5795 key.offset = (u64)-1; 5796 5797 path = btrfs_alloc_path(); 5798 if (!path) 5799 return -ENOMEM; 5800 5801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5802 if (ret < 0) 5803 goto out; 5804 /* FIXME: we should be able to handle this */ 5805 if (ret == 0) 5806 goto out; 5807 ret = 0; 5808 5809 if (path->slots[0] == 0) { 5810 inode->index_cnt = BTRFS_DIR_START_INDEX; 5811 goto out; 5812 } 5813 5814 path->slots[0]--; 5815 5816 leaf = path->nodes[0]; 5817 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5818 5819 if (found_key.objectid != btrfs_ino(inode) || 5820 found_key.type != BTRFS_DIR_INDEX_KEY) { 5821 inode->index_cnt = BTRFS_DIR_START_INDEX; 5822 goto out; 5823 } 5824 5825 inode->index_cnt = found_key.offset + 1; 5826 out: 5827 btrfs_free_path(path); 5828 return ret; 5829 } 5830 5831 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5832 { 5833 int ret = 0; 5834 5835 btrfs_inode_lock(dir, 0); 5836 if (dir->index_cnt == (u64)-1) { 5837 ret = btrfs_inode_delayed_dir_index_count(dir); 5838 if (ret) { 5839 ret = btrfs_set_inode_index_count(dir); 5840 if (ret) 5841 goto out; 5842 } 5843 } 5844 5845 /* index_cnt is the index number of next new entry, so decrement it. */ 5846 *index = dir->index_cnt - 1; 5847 out: 5848 btrfs_inode_unlock(dir, 0); 5849 5850 return ret; 5851 } 5852 5853 /* 5854 * All this infrastructure exists because dir_emit can fault, and we are holding 5855 * the tree lock when doing readdir. For now just allocate a buffer and copy 5856 * our information into that, and then dir_emit from the buffer. This is 5857 * similar to what NFS does, only we don't keep the buffer around in pagecache 5858 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5859 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5860 * tree lock. 5861 */ 5862 static int btrfs_opendir(struct inode *inode, struct file *file) 5863 { 5864 struct btrfs_file_private *private; 5865 u64 last_index; 5866 int ret; 5867 5868 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5869 if (ret) 5870 return ret; 5871 5872 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5873 if (!private) 5874 return -ENOMEM; 5875 private->last_index = last_index; 5876 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5877 if (!private->filldir_buf) { 5878 kfree(private); 5879 return -ENOMEM; 5880 } 5881 file->private_data = private; 5882 return 0; 5883 } 5884 5885 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5886 { 5887 struct btrfs_file_private *private = file->private_data; 5888 int ret; 5889 5890 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5891 &private->last_index); 5892 if (ret) 5893 return ret; 5894 5895 return generic_file_llseek(file, offset, whence); 5896 } 5897 5898 struct dir_entry { 5899 u64 ino; 5900 u64 offset; 5901 unsigned type; 5902 int name_len; 5903 }; 5904 5905 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5906 { 5907 while (entries--) { 5908 struct dir_entry *entry = addr; 5909 char *name = (char *)(entry + 1); 5910 5911 ctx->pos = get_unaligned(&entry->offset); 5912 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5913 get_unaligned(&entry->ino), 5914 get_unaligned(&entry->type))) 5915 return 1; 5916 addr += sizeof(struct dir_entry) + 5917 get_unaligned(&entry->name_len); 5918 ctx->pos++; 5919 } 5920 return 0; 5921 } 5922 5923 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5924 { 5925 struct inode *inode = file_inode(file); 5926 struct btrfs_root *root = BTRFS_I(inode)->root; 5927 struct btrfs_file_private *private = file->private_data; 5928 struct btrfs_dir_item *di; 5929 struct btrfs_key key; 5930 struct btrfs_key found_key; 5931 struct btrfs_path *path; 5932 void *addr; 5933 LIST_HEAD(ins_list); 5934 LIST_HEAD(del_list); 5935 int ret; 5936 char *name_ptr; 5937 int name_len; 5938 int entries = 0; 5939 int total_len = 0; 5940 bool put = false; 5941 struct btrfs_key location; 5942 5943 if (!dir_emit_dots(file, ctx)) 5944 return 0; 5945 5946 path = btrfs_alloc_path(); 5947 if (!path) 5948 return -ENOMEM; 5949 5950 addr = private->filldir_buf; 5951 path->reada = READA_FORWARD; 5952 5953 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5954 &ins_list, &del_list); 5955 5956 again: 5957 key.type = BTRFS_DIR_INDEX_KEY; 5958 key.offset = ctx->pos; 5959 key.objectid = btrfs_ino(BTRFS_I(inode)); 5960 5961 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5962 struct dir_entry *entry; 5963 struct extent_buffer *leaf = path->nodes[0]; 5964 u8 ftype; 5965 5966 if (found_key.objectid != key.objectid) 5967 break; 5968 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5969 break; 5970 if (found_key.offset < ctx->pos) 5971 continue; 5972 if (found_key.offset > private->last_index) 5973 break; 5974 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5975 continue; 5976 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5977 name_len = btrfs_dir_name_len(leaf, di); 5978 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5979 PAGE_SIZE) { 5980 btrfs_release_path(path); 5981 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5982 if (ret) 5983 goto nopos; 5984 addr = private->filldir_buf; 5985 entries = 0; 5986 total_len = 0; 5987 goto again; 5988 } 5989 5990 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5991 entry = addr; 5992 name_ptr = (char *)(entry + 1); 5993 read_extent_buffer(leaf, name_ptr, 5994 (unsigned long)(di + 1), name_len); 5995 put_unaligned(name_len, &entry->name_len); 5996 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5997 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5998 put_unaligned(location.objectid, &entry->ino); 5999 put_unaligned(found_key.offset, &entry->offset); 6000 entries++; 6001 addr += sizeof(struct dir_entry) + name_len; 6002 total_len += sizeof(struct dir_entry) + name_len; 6003 } 6004 /* Catch error encountered during iteration */ 6005 if (ret < 0) 6006 goto err; 6007 6008 btrfs_release_path(path); 6009 6010 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6011 if (ret) 6012 goto nopos; 6013 6014 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6015 if (ret) 6016 goto nopos; 6017 6018 /* 6019 * Stop new entries from being returned after we return the last 6020 * entry. 6021 * 6022 * New directory entries are assigned a strictly increasing 6023 * offset. This means that new entries created during readdir 6024 * are *guaranteed* to be seen in the future by that readdir. 6025 * This has broken buggy programs which operate on names as 6026 * they're returned by readdir. Until we re-use freed offsets 6027 * we have this hack to stop new entries from being returned 6028 * under the assumption that they'll never reach this huge 6029 * offset. 6030 * 6031 * This is being careful not to overflow 32bit loff_t unless the 6032 * last entry requires it because doing so has broken 32bit apps 6033 * in the past. 6034 */ 6035 if (ctx->pos >= INT_MAX) 6036 ctx->pos = LLONG_MAX; 6037 else 6038 ctx->pos = INT_MAX; 6039 nopos: 6040 ret = 0; 6041 err: 6042 if (put) 6043 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6044 btrfs_free_path(path); 6045 return ret; 6046 } 6047 6048 /* 6049 * This is somewhat expensive, updating the tree every time the 6050 * inode changes. But, it is most likely to find the inode in cache. 6051 * FIXME, needs more benchmarking...there are no reasons other than performance 6052 * to keep or drop this code. 6053 */ 6054 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6055 { 6056 struct btrfs_root *root = inode->root; 6057 struct btrfs_fs_info *fs_info = root->fs_info; 6058 struct btrfs_trans_handle *trans; 6059 int ret; 6060 6061 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6062 return 0; 6063 6064 trans = btrfs_join_transaction(root); 6065 if (IS_ERR(trans)) 6066 return PTR_ERR(trans); 6067 6068 ret = btrfs_update_inode(trans, inode); 6069 if (ret == -ENOSPC || ret == -EDQUOT) { 6070 /* whoops, lets try again with the full transaction */ 6071 btrfs_end_transaction(trans); 6072 trans = btrfs_start_transaction(root, 1); 6073 if (IS_ERR(trans)) 6074 return PTR_ERR(trans); 6075 6076 ret = btrfs_update_inode(trans, inode); 6077 } 6078 btrfs_end_transaction(trans); 6079 if (inode->delayed_node) 6080 btrfs_balance_delayed_items(fs_info); 6081 6082 return ret; 6083 } 6084 6085 /* 6086 * This is a copy of file_update_time. We need this so we can return error on 6087 * ENOSPC for updating the inode in the case of file write and mmap writes. 6088 */ 6089 static int btrfs_update_time(struct inode *inode, int flags) 6090 { 6091 struct btrfs_root *root = BTRFS_I(inode)->root; 6092 bool dirty; 6093 6094 if (btrfs_root_readonly(root)) 6095 return -EROFS; 6096 6097 dirty = inode_update_timestamps(inode, flags); 6098 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6099 } 6100 6101 /* 6102 * helper to find a free sequence number in a given directory. This current 6103 * code is very simple, later versions will do smarter things in the btree 6104 */ 6105 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6106 { 6107 int ret = 0; 6108 6109 if (dir->index_cnt == (u64)-1) { 6110 ret = btrfs_inode_delayed_dir_index_count(dir); 6111 if (ret) { 6112 ret = btrfs_set_inode_index_count(dir); 6113 if (ret) 6114 return ret; 6115 } 6116 } 6117 6118 *index = dir->index_cnt; 6119 dir->index_cnt++; 6120 6121 return ret; 6122 } 6123 6124 static int btrfs_insert_inode_locked(struct inode *inode) 6125 { 6126 struct btrfs_iget_args args; 6127 6128 args.ino = btrfs_ino(BTRFS_I(inode)); 6129 args.root = BTRFS_I(inode)->root; 6130 6131 return insert_inode_locked4(inode, 6132 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6133 btrfs_find_actor, &args); 6134 } 6135 6136 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6137 unsigned int *trans_num_items) 6138 { 6139 struct inode *dir = args->dir; 6140 struct inode *inode = args->inode; 6141 int ret; 6142 6143 if (!args->orphan) { 6144 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6145 &args->fname); 6146 if (ret) 6147 return ret; 6148 } 6149 6150 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6151 if (ret) { 6152 fscrypt_free_filename(&args->fname); 6153 return ret; 6154 } 6155 6156 /* 1 to add inode item */ 6157 *trans_num_items = 1; 6158 /* 1 to add compression property */ 6159 if (BTRFS_I(dir)->prop_compress) 6160 (*trans_num_items)++; 6161 /* 1 to add default ACL xattr */ 6162 if (args->default_acl) 6163 (*trans_num_items)++; 6164 /* 1 to add access ACL xattr */ 6165 if (args->acl) 6166 (*trans_num_items)++; 6167 #ifdef CONFIG_SECURITY 6168 /* 1 to add LSM xattr */ 6169 if (dir->i_security) 6170 (*trans_num_items)++; 6171 #endif 6172 if (args->orphan) { 6173 /* 1 to add orphan item */ 6174 (*trans_num_items)++; 6175 } else { 6176 /* 6177 * 1 to add dir item 6178 * 1 to add dir index 6179 * 1 to update parent inode item 6180 * 6181 * No need for 1 unit for the inode ref item because it is 6182 * inserted in a batch together with the inode item at 6183 * btrfs_create_new_inode(). 6184 */ 6185 *trans_num_items += 3; 6186 } 6187 return 0; 6188 } 6189 6190 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6191 { 6192 posix_acl_release(args->acl); 6193 posix_acl_release(args->default_acl); 6194 fscrypt_free_filename(&args->fname); 6195 } 6196 6197 /* 6198 * Inherit flags from the parent inode. 6199 * 6200 * Currently only the compression flags and the cow flags are inherited. 6201 */ 6202 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6203 { 6204 unsigned int flags; 6205 6206 flags = dir->flags; 6207 6208 if (flags & BTRFS_INODE_NOCOMPRESS) { 6209 inode->flags &= ~BTRFS_INODE_COMPRESS; 6210 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6211 } else if (flags & BTRFS_INODE_COMPRESS) { 6212 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6213 inode->flags |= BTRFS_INODE_COMPRESS; 6214 } 6215 6216 if (flags & BTRFS_INODE_NODATACOW) { 6217 inode->flags |= BTRFS_INODE_NODATACOW; 6218 if (S_ISREG(inode->vfs_inode.i_mode)) 6219 inode->flags |= BTRFS_INODE_NODATASUM; 6220 } 6221 6222 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6223 } 6224 6225 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6226 struct btrfs_new_inode_args *args) 6227 { 6228 struct timespec64 ts; 6229 struct inode *dir = args->dir; 6230 struct inode *inode = args->inode; 6231 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6232 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6233 struct btrfs_root *root; 6234 struct btrfs_inode_item *inode_item; 6235 struct btrfs_path *path; 6236 u64 objectid; 6237 struct btrfs_inode_ref *ref; 6238 struct btrfs_key key[2]; 6239 u32 sizes[2]; 6240 struct btrfs_item_batch batch; 6241 unsigned long ptr; 6242 int ret; 6243 bool xa_reserved = false; 6244 6245 path = btrfs_alloc_path(); 6246 if (!path) 6247 return -ENOMEM; 6248 6249 if (!args->subvol) 6250 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6251 root = BTRFS_I(inode)->root; 6252 6253 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6254 if (ret) 6255 goto out; 6256 6257 ret = btrfs_get_free_objectid(root, &objectid); 6258 if (ret) 6259 goto out; 6260 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6261 6262 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6263 if (ret) 6264 goto out; 6265 xa_reserved = true; 6266 6267 if (args->orphan) { 6268 /* 6269 * O_TMPFILE, set link count to 0, so that after this point, we 6270 * fill in an inode item with the correct link count. 6271 */ 6272 set_nlink(inode, 0); 6273 } else { 6274 trace_btrfs_inode_request(dir); 6275 6276 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6277 if (ret) 6278 goto out; 6279 } 6280 6281 if (S_ISDIR(inode->i_mode)) 6282 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6283 6284 BTRFS_I(inode)->generation = trans->transid; 6285 inode->i_generation = BTRFS_I(inode)->generation; 6286 6287 /* 6288 * We don't have any capability xattrs set here yet, shortcut any 6289 * queries for the xattrs here. If we add them later via the inode 6290 * security init path or any other path this flag will be cleared. 6291 */ 6292 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6293 6294 /* 6295 * Subvolumes don't inherit flags from their parent directory. 6296 * Originally this was probably by accident, but we probably can't 6297 * change it now without compatibility issues. 6298 */ 6299 if (!args->subvol) 6300 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6301 6302 if (S_ISREG(inode->i_mode)) { 6303 if (btrfs_test_opt(fs_info, NODATASUM)) 6304 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6305 if (btrfs_test_opt(fs_info, NODATACOW)) 6306 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6307 BTRFS_INODE_NODATASUM; 6308 } 6309 6310 ret = btrfs_insert_inode_locked(inode); 6311 if (ret < 0) { 6312 if (!args->orphan) 6313 BTRFS_I(dir)->index_cnt--; 6314 goto out; 6315 } 6316 6317 /* 6318 * We could have gotten an inode number from somebody who was fsynced 6319 * and then removed in this same transaction, so let's just set full 6320 * sync since it will be a full sync anyway and this will blow away the 6321 * old info in the log. 6322 */ 6323 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6324 6325 key[0].objectid = objectid; 6326 key[0].type = BTRFS_INODE_ITEM_KEY; 6327 key[0].offset = 0; 6328 6329 sizes[0] = sizeof(struct btrfs_inode_item); 6330 6331 if (!args->orphan) { 6332 /* 6333 * Start new inodes with an inode_ref. This is slightly more 6334 * efficient for small numbers of hard links since they will 6335 * be packed into one item. Extended refs will kick in if we 6336 * add more hard links than can fit in the ref item. 6337 */ 6338 key[1].objectid = objectid; 6339 key[1].type = BTRFS_INODE_REF_KEY; 6340 if (args->subvol) { 6341 key[1].offset = objectid; 6342 sizes[1] = 2 + sizeof(*ref); 6343 } else { 6344 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6345 sizes[1] = name->len + sizeof(*ref); 6346 } 6347 } 6348 6349 batch.keys = &key[0]; 6350 batch.data_sizes = &sizes[0]; 6351 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6352 batch.nr = args->orphan ? 1 : 2; 6353 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6354 if (ret != 0) { 6355 btrfs_abort_transaction(trans, ret); 6356 goto discard; 6357 } 6358 6359 ts = simple_inode_init_ts(inode); 6360 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6361 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6362 6363 /* 6364 * We're going to fill the inode item now, so at this point the inode 6365 * must be fully initialized. 6366 */ 6367 6368 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6369 struct btrfs_inode_item); 6370 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6371 sizeof(*inode_item)); 6372 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6373 6374 if (!args->orphan) { 6375 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6376 struct btrfs_inode_ref); 6377 ptr = (unsigned long)(ref + 1); 6378 if (args->subvol) { 6379 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6380 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6381 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6382 } else { 6383 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6384 name->len); 6385 btrfs_set_inode_ref_index(path->nodes[0], ref, 6386 BTRFS_I(inode)->dir_index); 6387 write_extent_buffer(path->nodes[0], name->name, ptr, 6388 name->len); 6389 } 6390 } 6391 6392 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6393 /* 6394 * We don't need the path anymore, plus inheriting properties, adding 6395 * ACLs, security xattrs, orphan item or adding the link, will result in 6396 * allocating yet another path. So just free our path. 6397 */ 6398 btrfs_free_path(path); 6399 path = NULL; 6400 6401 if (args->subvol) { 6402 struct inode *parent; 6403 6404 /* 6405 * Subvolumes inherit properties from their parent subvolume, 6406 * not the directory they were created in. 6407 */ 6408 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6409 if (IS_ERR(parent)) { 6410 ret = PTR_ERR(parent); 6411 } else { 6412 ret = btrfs_inode_inherit_props(trans, inode, parent); 6413 iput(parent); 6414 } 6415 } else { 6416 ret = btrfs_inode_inherit_props(trans, inode, dir); 6417 } 6418 if (ret) { 6419 btrfs_err(fs_info, 6420 "error inheriting props for ino %llu (root %llu): %d", 6421 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6422 } 6423 6424 /* 6425 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6426 * probably a bug. 6427 */ 6428 if (!args->subvol) { 6429 ret = btrfs_init_inode_security(trans, args); 6430 if (ret) { 6431 btrfs_abort_transaction(trans, ret); 6432 goto discard; 6433 } 6434 } 6435 6436 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6437 if (WARN_ON(ret)) { 6438 /* Shouldn't happen, we used xa_reserve() before. */ 6439 btrfs_abort_transaction(trans, ret); 6440 goto discard; 6441 } 6442 6443 trace_btrfs_inode_new(inode); 6444 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6445 6446 btrfs_update_root_times(trans, root); 6447 6448 if (args->orphan) { 6449 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6450 } else { 6451 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6452 0, BTRFS_I(inode)->dir_index); 6453 } 6454 if (ret) { 6455 btrfs_abort_transaction(trans, ret); 6456 goto discard; 6457 } 6458 6459 return 0; 6460 6461 discard: 6462 /* 6463 * discard_new_inode() calls iput(), but the caller owns the reference 6464 * to the inode. 6465 */ 6466 ihold(inode); 6467 discard_new_inode(inode); 6468 out: 6469 if (xa_reserved) 6470 xa_release(&root->inodes, objectid); 6471 6472 btrfs_free_path(path); 6473 return ret; 6474 } 6475 6476 /* 6477 * utility function to add 'inode' into 'parent_inode' with 6478 * a give name and a given sequence number. 6479 * if 'add_backref' is true, also insert a backref from the 6480 * inode to the parent directory. 6481 */ 6482 int btrfs_add_link(struct btrfs_trans_handle *trans, 6483 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6484 const struct fscrypt_str *name, int add_backref, u64 index) 6485 { 6486 int ret = 0; 6487 struct btrfs_key key; 6488 struct btrfs_root *root = parent_inode->root; 6489 u64 ino = btrfs_ino(inode); 6490 u64 parent_ino = btrfs_ino(parent_inode); 6491 6492 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6493 memcpy(&key, &inode->root->root_key, sizeof(key)); 6494 } else { 6495 key.objectid = ino; 6496 key.type = BTRFS_INODE_ITEM_KEY; 6497 key.offset = 0; 6498 } 6499 6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6501 ret = btrfs_add_root_ref(trans, key.objectid, 6502 btrfs_root_id(root), parent_ino, 6503 index, name); 6504 } else if (add_backref) { 6505 ret = btrfs_insert_inode_ref(trans, root, name, 6506 ino, parent_ino, index); 6507 } 6508 6509 /* Nothing to clean up yet */ 6510 if (ret) 6511 return ret; 6512 6513 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6514 btrfs_inode_type(&inode->vfs_inode), index); 6515 if (ret == -EEXIST || ret == -EOVERFLOW) 6516 goto fail_dir_item; 6517 else if (ret) { 6518 btrfs_abort_transaction(trans, ret); 6519 return ret; 6520 } 6521 6522 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6523 name->len * 2); 6524 inode_inc_iversion(&parent_inode->vfs_inode); 6525 /* 6526 * If we are replaying a log tree, we do not want to update the mtime 6527 * and ctime of the parent directory with the current time, since the 6528 * log replay procedure is responsible for setting them to their correct 6529 * values (the ones it had when the fsync was done). 6530 */ 6531 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6532 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6533 inode_set_ctime_current(&parent_inode->vfs_inode)); 6534 6535 ret = btrfs_update_inode(trans, parent_inode); 6536 if (ret) 6537 btrfs_abort_transaction(trans, ret); 6538 return ret; 6539 6540 fail_dir_item: 6541 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6542 u64 local_index; 6543 int err; 6544 err = btrfs_del_root_ref(trans, key.objectid, 6545 btrfs_root_id(root), parent_ino, 6546 &local_index, name); 6547 if (err) 6548 btrfs_abort_transaction(trans, err); 6549 } else if (add_backref) { 6550 u64 local_index; 6551 int err; 6552 6553 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6554 &local_index); 6555 if (err) 6556 btrfs_abort_transaction(trans, err); 6557 } 6558 6559 /* Return the original error code */ 6560 return ret; 6561 } 6562 6563 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6564 struct inode *inode) 6565 { 6566 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6567 struct btrfs_root *root = BTRFS_I(dir)->root; 6568 struct btrfs_new_inode_args new_inode_args = { 6569 .dir = dir, 6570 .dentry = dentry, 6571 .inode = inode, 6572 }; 6573 unsigned int trans_num_items; 6574 struct btrfs_trans_handle *trans; 6575 int err; 6576 6577 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6578 if (err) 6579 goto out_inode; 6580 6581 trans = btrfs_start_transaction(root, trans_num_items); 6582 if (IS_ERR(trans)) { 6583 err = PTR_ERR(trans); 6584 goto out_new_inode_args; 6585 } 6586 6587 err = btrfs_create_new_inode(trans, &new_inode_args); 6588 if (!err) 6589 d_instantiate_new(dentry, inode); 6590 6591 btrfs_end_transaction(trans); 6592 btrfs_btree_balance_dirty(fs_info); 6593 out_new_inode_args: 6594 btrfs_new_inode_args_destroy(&new_inode_args); 6595 out_inode: 6596 if (err) 6597 iput(inode); 6598 return err; 6599 } 6600 6601 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6602 struct dentry *dentry, umode_t mode, dev_t rdev) 6603 { 6604 struct inode *inode; 6605 6606 inode = new_inode(dir->i_sb); 6607 if (!inode) 6608 return -ENOMEM; 6609 inode_init_owner(idmap, inode, dir, mode); 6610 inode->i_op = &btrfs_special_inode_operations; 6611 init_special_inode(inode, inode->i_mode, rdev); 6612 return btrfs_create_common(dir, dentry, inode); 6613 } 6614 6615 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6616 struct dentry *dentry, umode_t mode, bool excl) 6617 { 6618 struct inode *inode; 6619 6620 inode = new_inode(dir->i_sb); 6621 if (!inode) 6622 return -ENOMEM; 6623 inode_init_owner(idmap, inode, dir, mode); 6624 inode->i_fop = &btrfs_file_operations; 6625 inode->i_op = &btrfs_file_inode_operations; 6626 inode->i_mapping->a_ops = &btrfs_aops; 6627 return btrfs_create_common(dir, dentry, inode); 6628 } 6629 6630 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6631 struct dentry *dentry) 6632 { 6633 struct btrfs_trans_handle *trans = NULL; 6634 struct btrfs_root *root = BTRFS_I(dir)->root; 6635 struct inode *inode = d_inode(old_dentry); 6636 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6637 struct fscrypt_name fname; 6638 u64 index; 6639 int err; 6640 int drop_inode = 0; 6641 6642 /* do not allow sys_link's with other subvols of the same device */ 6643 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6644 return -EXDEV; 6645 6646 if (inode->i_nlink >= BTRFS_LINK_MAX) 6647 return -EMLINK; 6648 6649 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6650 if (err) 6651 goto fail; 6652 6653 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6654 if (err) 6655 goto fail; 6656 6657 /* 6658 * 2 items for inode and inode ref 6659 * 2 items for dir items 6660 * 1 item for parent inode 6661 * 1 item for orphan item deletion if O_TMPFILE 6662 */ 6663 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6664 if (IS_ERR(trans)) { 6665 err = PTR_ERR(trans); 6666 trans = NULL; 6667 goto fail; 6668 } 6669 6670 /* There are several dir indexes for this inode, clear the cache. */ 6671 BTRFS_I(inode)->dir_index = 0ULL; 6672 inc_nlink(inode); 6673 inode_inc_iversion(inode); 6674 inode_set_ctime_current(inode); 6675 ihold(inode); 6676 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6677 6678 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6679 &fname.disk_name, 1, index); 6680 6681 if (err) { 6682 drop_inode = 1; 6683 } else { 6684 struct dentry *parent = dentry->d_parent; 6685 6686 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6687 if (err) 6688 goto fail; 6689 if (inode->i_nlink == 1) { 6690 /* 6691 * If new hard link count is 1, it's a file created 6692 * with open(2) O_TMPFILE flag. 6693 */ 6694 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6695 if (err) 6696 goto fail; 6697 } 6698 d_instantiate(dentry, inode); 6699 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6700 } 6701 6702 fail: 6703 fscrypt_free_filename(&fname); 6704 if (trans) 6705 btrfs_end_transaction(trans); 6706 if (drop_inode) { 6707 inode_dec_link_count(inode); 6708 iput(inode); 6709 } 6710 btrfs_btree_balance_dirty(fs_info); 6711 return err; 6712 } 6713 6714 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6715 struct dentry *dentry, umode_t mode) 6716 { 6717 struct inode *inode; 6718 6719 inode = new_inode(dir->i_sb); 6720 if (!inode) 6721 return -ENOMEM; 6722 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6723 inode->i_op = &btrfs_dir_inode_operations; 6724 inode->i_fop = &btrfs_dir_file_operations; 6725 return btrfs_create_common(dir, dentry, inode); 6726 } 6727 6728 static noinline int uncompress_inline(struct btrfs_path *path, 6729 struct folio *folio, 6730 struct btrfs_file_extent_item *item) 6731 { 6732 int ret; 6733 struct extent_buffer *leaf = path->nodes[0]; 6734 char *tmp; 6735 size_t max_size; 6736 unsigned long inline_size; 6737 unsigned long ptr; 6738 int compress_type; 6739 6740 compress_type = btrfs_file_extent_compression(leaf, item); 6741 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6742 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6743 tmp = kmalloc(inline_size, GFP_NOFS); 6744 if (!tmp) 6745 return -ENOMEM; 6746 ptr = btrfs_file_extent_inline_start(item); 6747 6748 read_extent_buffer(leaf, tmp, ptr, inline_size); 6749 6750 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6751 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6752 max_size); 6753 6754 /* 6755 * decompression code contains a memset to fill in any space between the end 6756 * of the uncompressed data and the end of max_size in case the decompressed 6757 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6758 * the end of an inline extent and the beginning of the next block, so we 6759 * cover that region here. 6760 */ 6761 6762 if (max_size < PAGE_SIZE) 6763 folio_zero_range(folio, max_size, PAGE_SIZE - max_size); 6764 kfree(tmp); 6765 return ret; 6766 } 6767 6768 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6769 struct folio *folio) 6770 { 6771 struct btrfs_file_extent_item *fi; 6772 void *kaddr; 6773 size_t copy_size; 6774 6775 if (!folio || folio_test_uptodate(folio)) 6776 return 0; 6777 6778 ASSERT(folio_pos(folio) == 0); 6779 6780 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6781 struct btrfs_file_extent_item); 6782 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6783 return uncompress_inline(path, folio, fi); 6784 6785 copy_size = min_t(u64, PAGE_SIZE, 6786 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6787 kaddr = kmap_local_folio(folio, 0); 6788 read_extent_buffer(path->nodes[0], kaddr, 6789 btrfs_file_extent_inline_start(fi), copy_size); 6790 kunmap_local(kaddr); 6791 if (copy_size < PAGE_SIZE) 6792 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size); 6793 return 0; 6794 } 6795 6796 /* 6797 * Lookup the first extent overlapping a range in a file. 6798 * 6799 * @inode: file to search in 6800 * @page: page to read extent data into if the extent is inline 6801 * @start: file offset 6802 * @len: length of range starting at @start 6803 * 6804 * Return the first &struct extent_map which overlaps the given range, reading 6805 * it from the B-tree and caching it if necessary. Note that there may be more 6806 * extents which overlap the given range after the returned extent_map. 6807 * 6808 * If @page is not NULL and the extent is inline, this also reads the extent 6809 * data directly into the page and marks the extent up to date in the io_tree. 6810 * 6811 * Return: ERR_PTR on error, non-NULL extent_map on success. 6812 */ 6813 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6814 struct folio *folio, u64 start, u64 len) 6815 { 6816 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6817 int ret = 0; 6818 u64 extent_start = 0; 6819 u64 extent_end = 0; 6820 u64 objectid = btrfs_ino(inode); 6821 int extent_type = -1; 6822 struct btrfs_path *path = NULL; 6823 struct btrfs_root *root = inode->root; 6824 struct btrfs_file_extent_item *item; 6825 struct extent_buffer *leaf; 6826 struct btrfs_key found_key; 6827 struct extent_map *em = NULL; 6828 struct extent_map_tree *em_tree = &inode->extent_tree; 6829 6830 read_lock(&em_tree->lock); 6831 em = lookup_extent_mapping(em_tree, start, len); 6832 read_unlock(&em_tree->lock); 6833 6834 if (em) { 6835 if (em->start > start || em->start + em->len <= start) 6836 free_extent_map(em); 6837 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6838 free_extent_map(em); 6839 else 6840 goto out; 6841 } 6842 em = alloc_extent_map(); 6843 if (!em) { 6844 ret = -ENOMEM; 6845 goto out; 6846 } 6847 em->start = EXTENT_MAP_HOLE; 6848 em->disk_bytenr = EXTENT_MAP_HOLE; 6849 em->len = (u64)-1; 6850 6851 path = btrfs_alloc_path(); 6852 if (!path) { 6853 ret = -ENOMEM; 6854 goto out; 6855 } 6856 6857 /* Chances are we'll be called again, so go ahead and do readahead */ 6858 path->reada = READA_FORWARD; 6859 6860 /* 6861 * The same explanation in load_free_space_cache applies here as well, 6862 * we only read when we're loading the free space cache, and at that 6863 * point the commit_root has everything we need. 6864 */ 6865 if (btrfs_is_free_space_inode(inode)) { 6866 path->search_commit_root = 1; 6867 path->skip_locking = 1; 6868 } 6869 6870 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6871 if (ret < 0) { 6872 goto out; 6873 } else if (ret > 0) { 6874 if (path->slots[0] == 0) 6875 goto not_found; 6876 path->slots[0]--; 6877 ret = 0; 6878 } 6879 6880 leaf = path->nodes[0]; 6881 item = btrfs_item_ptr(leaf, path->slots[0], 6882 struct btrfs_file_extent_item); 6883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6884 if (found_key.objectid != objectid || 6885 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6886 /* 6887 * If we backup past the first extent we want to move forward 6888 * and see if there is an extent in front of us, otherwise we'll 6889 * say there is a hole for our whole search range which can 6890 * cause problems. 6891 */ 6892 extent_end = start; 6893 goto next; 6894 } 6895 6896 extent_type = btrfs_file_extent_type(leaf, item); 6897 extent_start = found_key.offset; 6898 extent_end = btrfs_file_extent_end(path); 6899 if (extent_type == BTRFS_FILE_EXTENT_REG || 6900 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6901 /* Only regular file could have regular/prealloc extent */ 6902 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6903 ret = -EUCLEAN; 6904 btrfs_crit(fs_info, 6905 "regular/prealloc extent found for non-regular inode %llu", 6906 btrfs_ino(inode)); 6907 goto out; 6908 } 6909 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6910 extent_start); 6911 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6912 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6913 path->slots[0], 6914 extent_start); 6915 } 6916 next: 6917 if (start >= extent_end) { 6918 path->slots[0]++; 6919 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6920 ret = btrfs_next_leaf(root, path); 6921 if (ret < 0) 6922 goto out; 6923 else if (ret > 0) 6924 goto not_found; 6925 6926 leaf = path->nodes[0]; 6927 } 6928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6929 if (found_key.objectid != objectid || 6930 found_key.type != BTRFS_EXTENT_DATA_KEY) 6931 goto not_found; 6932 if (start + len <= found_key.offset) 6933 goto not_found; 6934 if (start > found_key.offset) 6935 goto next; 6936 6937 /* New extent overlaps with existing one */ 6938 em->start = start; 6939 em->len = found_key.offset - start; 6940 em->disk_bytenr = EXTENT_MAP_HOLE; 6941 goto insert; 6942 } 6943 6944 btrfs_extent_item_to_extent_map(inode, path, item, em); 6945 6946 if (extent_type == BTRFS_FILE_EXTENT_REG || 6947 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6948 goto insert; 6949 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6950 /* 6951 * Inline extent can only exist at file offset 0. This is 6952 * ensured by tree-checker and inline extent creation path. 6953 * Thus all members representing file offsets should be zero. 6954 */ 6955 ASSERT(extent_start == 0); 6956 ASSERT(em->start == 0); 6957 6958 /* 6959 * btrfs_extent_item_to_extent_map() should have properly 6960 * initialized em members already. 6961 * 6962 * Other members are not utilized for inline extents. 6963 */ 6964 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6965 ASSERT(em->len == fs_info->sectorsize); 6966 6967 ret = read_inline_extent(inode, path, folio); 6968 if (ret < 0) 6969 goto out; 6970 goto insert; 6971 } 6972 not_found: 6973 em->start = start; 6974 em->len = len; 6975 em->disk_bytenr = EXTENT_MAP_HOLE; 6976 insert: 6977 ret = 0; 6978 btrfs_release_path(path); 6979 if (em->start > start || extent_map_end(em) <= start) { 6980 btrfs_err(fs_info, 6981 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6982 em->start, em->len, start, len); 6983 ret = -EIO; 6984 goto out; 6985 } 6986 6987 write_lock(&em_tree->lock); 6988 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6989 write_unlock(&em_tree->lock); 6990 out: 6991 btrfs_free_path(path); 6992 6993 trace_btrfs_get_extent(root, inode, em); 6994 6995 if (ret) { 6996 free_extent_map(em); 6997 return ERR_PTR(ret); 6998 } 6999 return em; 7000 } 7001 7002 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7003 { 7004 struct btrfs_block_group *block_group; 7005 bool readonly = false; 7006 7007 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7008 if (!block_group || block_group->ro) 7009 readonly = true; 7010 if (block_group) 7011 btrfs_put_block_group(block_group); 7012 return readonly; 7013 } 7014 7015 /* 7016 * Check if we can do nocow write into the range [@offset, @offset + @len) 7017 * 7018 * @offset: File offset 7019 * @len: The length to write, will be updated to the nocow writeable 7020 * range 7021 * @orig_start: (optional) Return the original file offset of the file extent 7022 * @orig_len: (optional) Return the original on-disk length of the file extent 7023 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7024 * @strict: if true, omit optimizations that might force us into unnecessary 7025 * cow. e.g., don't trust generation number. 7026 * 7027 * Return: 7028 * >0 and update @len if we can do nocow write 7029 * 0 if we can't do nocow write 7030 * <0 if error happened 7031 * 7032 * NOTE: This only checks the file extents, caller is responsible to wait for 7033 * any ordered extents. 7034 */ 7035 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7036 struct btrfs_file_extent *file_extent, 7037 bool nowait, bool strict) 7038 { 7039 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7040 struct can_nocow_file_extent_args nocow_args = { 0 }; 7041 struct btrfs_path *path; 7042 int ret; 7043 struct extent_buffer *leaf; 7044 struct btrfs_root *root = BTRFS_I(inode)->root; 7045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7046 struct btrfs_file_extent_item *fi; 7047 struct btrfs_key key; 7048 int found_type; 7049 7050 path = btrfs_alloc_path(); 7051 if (!path) 7052 return -ENOMEM; 7053 path->nowait = nowait; 7054 7055 ret = btrfs_lookup_file_extent(NULL, root, path, 7056 btrfs_ino(BTRFS_I(inode)), offset, 0); 7057 if (ret < 0) 7058 goto out; 7059 7060 if (ret == 1) { 7061 if (path->slots[0] == 0) { 7062 /* can't find the item, must cow */ 7063 ret = 0; 7064 goto out; 7065 } 7066 path->slots[0]--; 7067 } 7068 ret = 0; 7069 leaf = path->nodes[0]; 7070 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7071 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7072 key.type != BTRFS_EXTENT_DATA_KEY) { 7073 /* not our file or wrong item type, must cow */ 7074 goto out; 7075 } 7076 7077 if (key.offset > offset) { 7078 /* Wrong offset, must cow */ 7079 goto out; 7080 } 7081 7082 if (btrfs_file_extent_end(path) <= offset) 7083 goto out; 7084 7085 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7086 found_type = btrfs_file_extent_type(leaf, fi); 7087 7088 nocow_args.start = offset; 7089 nocow_args.end = offset + *len - 1; 7090 nocow_args.strict = strict; 7091 nocow_args.free_path = true; 7092 7093 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7094 /* can_nocow_file_extent() has freed the path. */ 7095 path = NULL; 7096 7097 if (ret != 1) { 7098 /* Treat errors as not being able to NOCOW. */ 7099 ret = 0; 7100 goto out; 7101 } 7102 7103 ret = 0; 7104 if (btrfs_extent_readonly(fs_info, 7105 nocow_args.file_extent.disk_bytenr + 7106 nocow_args.file_extent.offset)) 7107 goto out; 7108 7109 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7110 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7111 u64 range_end; 7112 7113 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7114 root->fs_info->sectorsize) - 1; 7115 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7116 if (ret) { 7117 ret = -EAGAIN; 7118 goto out; 7119 } 7120 } 7121 7122 if (file_extent) 7123 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7124 7125 *len = nocow_args.file_extent.num_bytes; 7126 ret = 1; 7127 out: 7128 btrfs_free_path(path); 7129 return ret; 7130 } 7131 7132 /* The callers of this must take lock_extent() */ 7133 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7134 const struct btrfs_file_extent *file_extent, 7135 int type) 7136 { 7137 struct extent_map *em; 7138 int ret; 7139 7140 /* 7141 * Note the missing NOCOW type. 7142 * 7143 * For pure NOCOW writes, we should not create an io extent map, but 7144 * just reusing the existing one. 7145 * Only PREALLOC writes (NOCOW write into preallocated range) can 7146 * create an io extent map. 7147 */ 7148 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7149 type == BTRFS_ORDERED_COMPRESSED || 7150 type == BTRFS_ORDERED_REGULAR); 7151 7152 switch (type) { 7153 case BTRFS_ORDERED_PREALLOC: 7154 /* We're only referring part of a larger preallocated extent. */ 7155 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7156 break; 7157 case BTRFS_ORDERED_REGULAR: 7158 /* COW results a new extent matching our file extent size. */ 7159 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7160 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7161 7162 /* Since it's a new extent, we should not have any offset. */ 7163 ASSERT(file_extent->offset == 0); 7164 break; 7165 case BTRFS_ORDERED_COMPRESSED: 7166 /* Must be compressed. */ 7167 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7168 7169 /* 7170 * Encoded write can make us to refer to part of the 7171 * uncompressed extent. 7172 */ 7173 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7174 break; 7175 } 7176 7177 em = alloc_extent_map(); 7178 if (!em) 7179 return ERR_PTR(-ENOMEM); 7180 7181 em->start = start; 7182 em->len = file_extent->num_bytes; 7183 em->disk_bytenr = file_extent->disk_bytenr; 7184 em->disk_num_bytes = file_extent->disk_num_bytes; 7185 em->ram_bytes = file_extent->ram_bytes; 7186 em->generation = -1; 7187 em->offset = file_extent->offset; 7188 em->flags |= EXTENT_FLAG_PINNED; 7189 if (type == BTRFS_ORDERED_COMPRESSED) 7190 extent_map_set_compression(em, file_extent->compression); 7191 7192 ret = btrfs_replace_extent_map_range(inode, em, true); 7193 if (ret) { 7194 free_extent_map(em); 7195 return ERR_PTR(ret); 7196 } 7197 7198 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7199 return em; 7200 } 7201 7202 /* 7203 * For release_folio() and invalidate_folio() we have a race window where 7204 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7205 * If we continue to release/invalidate the page, we could cause use-after-free 7206 * for subpage spinlock. So this function is to spin and wait for subpage 7207 * spinlock. 7208 */ 7209 static void wait_subpage_spinlock(struct folio *folio) 7210 { 7211 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7212 struct btrfs_subpage *subpage; 7213 7214 if (!btrfs_is_subpage(fs_info, folio->mapping)) 7215 return; 7216 7217 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7218 subpage = folio_get_private(folio); 7219 7220 /* 7221 * This may look insane as we just acquire the spinlock and release it, 7222 * without doing anything. But we just want to make sure no one is 7223 * still holding the subpage spinlock. 7224 * And since the page is not dirty nor writeback, and we have page 7225 * locked, the only possible way to hold a spinlock is from the endio 7226 * function to clear page writeback. 7227 * 7228 * Here we just acquire the spinlock so that all existing callers 7229 * should exit and we're safe to release/invalidate the page. 7230 */ 7231 spin_lock_irq(&subpage->lock); 7232 spin_unlock_irq(&subpage->lock); 7233 } 7234 7235 static int btrfs_launder_folio(struct folio *folio) 7236 { 7237 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7238 PAGE_SIZE, NULL); 7239 } 7240 7241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7242 { 7243 if (try_release_extent_mapping(folio, gfp_flags)) { 7244 wait_subpage_spinlock(folio); 7245 clear_folio_extent_mapped(folio); 7246 return true; 7247 } 7248 return false; 7249 } 7250 7251 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7252 { 7253 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7254 return false; 7255 return __btrfs_release_folio(folio, gfp_flags); 7256 } 7257 7258 #ifdef CONFIG_MIGRATION 7259 static int btrfs_migrate_folio(struct address_space *mapping, 7260 struct folio *dst, struct folio *src, 7261 enum migrate_mode mode) 7262 { 7263 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7264 7265 if (ret != MIGRATEPAGE_SUCCESS) 7266 return ret; 7267 7268 if (folio_test_ordered(src)) { 7269 folio_clear_ordered(src); 7270 folio_set_ordered(dst); 7271 } 7272 7273 return MIGRATEPAGE_SUCCESS; 7274 } 7275 #else 7276 #define btrfs_migrate_folio NULL 7277 #endif 7278 7279 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7280 size_t length) 7281 { 7282 struct btrfs_inode *inode = folio_to_inode(folio); 7283 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7284 struct extent_io_tree *tree = &inode->io_tree; 7285 struct extent_state *cached_state = NULL; 7286 u64 page_start = folio_pos(folio); 7287 u64 page_end = page_start + folio_size(folio) - 1; 7288 u64 cur; 7289 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7290 7291 /* 7292 * We have folio locked so no new ordered extent can be created on this 7293 * page, nor bio can be submitted for this folio. 7294 * 7295 * But already submitted bio can still be finished on this folio. 7296 * Furthermore, endio function won't skip folio which has Ordered 7297 * (Private2) already cleared, so it's possible for endio and 7298 * invalidate_folio to do the same ordered extent accounting twice 7299 * on one folio. 7300 * 7301 * So here we wait for any submitted bios to finish, so that we won't 7302 * do double ordered extent accounting on the same folio. 7303 */ 7304 folio_wait_writeback(folio); 7305 wait_subpage_spinlock(folio); 7306 7307 /* 7308 * For subpage case, we have call sites like 7309 * btrfs_punch_hole_lock_range() which passes range not aligned to 7310 * sectorsize. 7311 * If the range doesn't cover the full folio, we don't need to and 7312 * shouldn't clear page extent mapped, as folio->private can still 7313 * record subpage dirty bits for other part of the range. 7314 * 7315 * For cases that invalidate the full folio even the range doesn't 7316 * cover the full folio, like invalidating the last folio, we're 7317 * still safe to wait for ordered extent to finish. 7318 */ 7319 if (!(offset == 0 && length == folio_size(folio))) { 7320 btrfs_release_folio(folio, GFP_NOFS); 7321 return; 7322 } 7323 7324 if (!inode_evicting) 7325 lock_extent(tree, page_start, page_end, &cached_state); 7326 7327 cur = page_start; 7328 while (cur < page_end) { 7329 struct btrfs_ordered_extent *ordered; 7330 u64 range_end; 7331 u32 range_len; 7332 u32 extra_flags = 0; 7333 7334 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7335 page_end + 1 - cur); 7336 if (!ordered) { 7337 range_end = page_end; 7338 /* 7339 * No ordered extent covering this range, we are safe 7340 * to delete all extent states in the range. 7341 */ 7342 extra_flags = EXTENT_CLEAR_ALL_BITS; 7343 goto next; 7344 } 7345 if (ordered->file_offset > cur) { 7346 /* 7347 * There is a range between [cur, oe->file_offset) not 7348 * covered by any ordered extent. 7349 * We are safe to delete all extent states, and handle 7350 * the ordered extent in the next iteration. 7351 */ 7352 range_end = ordered->file_offset - 1; 7353 extra_flags = EXTENT_CLEAR_ALL_BITS; 7354 goto next; 7355 } 7356 7357 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7358 page_end); 7359 ASSERT(range_end + 1 - cur < U32_MAX); 7360 range_len = range_end + 1 - cur; 7361 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7362 /* 7363 * If Ordered (Private2) is cleared, it means endio has 7364 * already been executed for the range. 7365 * We can't delete the extent states as 7366 * btrfs_finish_ordered_io() may still use some of them. 7367 */ 7368 goto next; 7369 } 7370 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7371 7372 /* 7373 * IO on this page will never be started, so we need to account 7374 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7375 * here, must leave that up for the ordered extent completion. 7376 * 7377 * This will also unlock the range for incoming 7378 * btrfs_finish_ordered_io(). 7379 */ 7380 if (!inode_evicting) 7381 clear_extent_bit(tree, cur, range_end, 7382 EXTENT_DELALLOC | 7383 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7384 EXTENT_DEFRAG, &cached_state); 7385 7386 spin_lock_irq(&inode->ordered_tree_lock); 7387 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7388 ordered->truncated_len = min(ordered->truncated_len, 7389 cur - ordered->file_offset); 7390 spin_unlock_irq(&inode->ordered_tree_lock); 7391 7392 /* 7393 * If the ordered extent has finished, we're safe to delete all 7394 * the extent states of the range, otherwise 7395 * btrfs_finish_ordered_io() will get executed by endio for 7396 * other pages, so we can't delete extent states. 7397 */ 7398 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7399 cur, range_end + 1 - cur)) { 7400 btrfs_finish_ordered_io(ordered); 7401 /* 7402 * The ordered extent has finished, now we're again 7403 * safe to delete all extent states of the range. 7404 */ 7405 extra_flags = EXTENT_CLEAR_ALL_BITS; 7406 } 7407 next: 7408 if (ordered) 7409 btrfs_put_ordered_extent(ordered); 7410 /* 7411 * Qgroup reserved space handler 7412 * Sector(s) here will be either: 7413 * 7414 * 1) Already written to disk or bio already finished 7415 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7416 * Qgroup will be handled by its qgroup_record then. 7417 * btrfs_qgroup_free_data() call will do nothing here. 7418 * 7419 * 2) Not written to disk yet 7420 * Then btrfs_qgroup_free_data() call will clear the 7421 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7422 * reserved data space. 7423 * Since the IO will never happen for this page. 7424 */ 7425 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7426 if (!inode_evicting) { 7427 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7428 EXTENT_DELALLOC | EXTENT_UPTODATE | 7429 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7430 extra_flags, &cached_state); 7431 } 7432 cur = range_end + 1; 7433 } 7434 /* 7435 * We have iterated through all ordered extents of the page, the page 7436 * should not have Ordered (Private2) anymore, or the above iteration 7437 * did something wrong. 7438 */ 7439 ASSERT(!folio_test_ordered(folio)); 7440 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7441 if (!inode_evicting) 7442 __btrfs_release_folio(folio, GFP_NOFS); 7443 clear_folio_extent_mapped(folio); 7444 } 7445 7446 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7447 { 7448 struct btrfs_truncate_control control = { 7449 .inode = inode, 7450 .ino = btrfs_ino(inode), 7451 .min_type = BTRFS_EXTENT_DATA_KEY, 7452 .clear_extent_range = true, 7453 }; 7454 struct btrfs_root *root = inode->root; 7455 struct btrfs_fs_info *fs_info = root->fs_info; 7456 struct btrfs_block_rsv *rsv; 7457 int ret; 7458 struct btrfs_trans_handle *trans; 7459 u64 mask = fs_info->sectorsize - 1; 7460 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7461 7462 if (!skip_writeback) { 7463 ret = btrfs_wait_ordered_range(inode, 7464 inode->vfs_inode.i_size & (~mask), 7465 (u64)-1); 7466 if (ret) 7467 return ret; 7468 } 7469 7470 /* 7471 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7472 * things going on here: 7473 * 7474 * 1) We need to reserve space to update our inode. 7475 * 7476 * 2) We need to have something to cache all the space that is going to 7477 * be free'd up by the truncate operation, but also have some slack 7478 * space reserved in case it uses space during the truncate (thank you 7479 * very much snapshotting). 7480 * 7481 * And we need these to be separate. The fact is we can use a lot of 7482 * space doing the truncate, and we have no earthly idea how much space 7483 * we will use, so we need the truncate reservation to be separate so it 7484 * doesn't end up using space reserved for updating the inode. We also 7485 * need to be able to stop the transaction and start a new one, which 7486 * means we need to be able to update the inode several times, and we 7487 * have no idea of knowing how many times that will be, so we can't just 7488 * reserve 1 item for the entirety of the operation, so that has to be 7489 * done separately as well. 7490 * 7491 * So that leaves us with 7492 * 7493 * 1) rsv - for the truncate reservation, which we will steal from the 7494 * transaction reservation. 7495 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7496 * updating the inode. 7497 */ 7498 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7499 if (!rsv) 7500 return -ENOMEM; 7501 rsv->size = min_size; 7502 rsv->failfast = true; 7503 7504 /* 7505 * 1 for the truncate slack space 7506 * 1 for updating the inode. 7507 */ 7508 trans = btrfs_start_transaction(root, 2); 7509 if (IS_ERR(trans)) { 7510 ret = PTR_ERR(trans); 7511 goto out; 7512 } 7513 7514 /* Migrate the slack space for the truncate to our reserve */ 7515 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7516 min_size, false); 7517 /* 7518 * We have reserved 2 metadata units when we started the transaction and 7519 * min_size matches 1 unit, so this should never fail, but if it does, 7520 * it's not critical we just fail truncation. 7521 */ 7522 if (WARN_ON(ret)) { 7523 btrfs_end_transaction(trans); 7524 goto out; 7525 } 7526 7527 trans->block_rsv = rsv; 7528 7529 while (1) { 7530 struct extent_state *cached_state = NULL; 7531 const u64 new_size = inode->vfs_inode.i_size; 7532 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7533 7534 control.new_size = new_size; 7535 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7536 /* 7537 * We want to drop from the next block forward in case this new 7538 * size is not block aligned since we will be keeping the last 7539 * block of the extent just the way it is. 7540 */ 7541 btrfs_drop_extent_map_range(inode, 7542 ALIGN(new_size, fs_info->sectorsize), 7543 (u64)-1, false); 7544 7545 ret = btrfs_truncate_inode_items(trans, root, &control); 7546 7547 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7548 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7549 7550 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7551 7552 trans->block_rsv = &fs_info->trans_block_rsv; 7553 if (ret != -ENOSPC && ret != -EAGAIN) 7554 break; 7555 7556 ret = btrfs_update_inode(trans, inode); 7557 if (ret) 7558 break; 7559 7560 btrfs_end_transaction(trans); 7561 btrfs_btree_balance_dirty(fs_info); 7562 7563 trans = btrfs_start_transaction(root, 2); 7564 if (IS_ERR(trans)) { 7565 ret = PTR_ERR(trans); 7566 trans = NULL; 7567 break; 7568 } 7569 7570 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7571 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7572 rsv, min_size, false); 7573 /* 7574 * We have reserved 2 metadata units when we started the 7575 * transaction and min_size matches 1 unit, so this should never 7576 * fail, but if it does, it's not critical we just fail truncation. 7577 */ 7578 if (WARN_ON(ret)) 7579 break; 7580 7581 trans->block_rsv = rsv; 7582 } 7583 7584 /* 7585 * We can't call btrfs_truncate_block inside a trans handle as we could 7586 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7587 * know we've truncated everything except the last little bit, and can 7588 * do btrfs_truncate_block and then update the disk_i_size. 7589 */ 7590 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7591 btrfs_end_transaction(trans); 7592 btrfs_btree_balance_dirty(fs_info); 7593 7594 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7595 if (ret) 7596 goto out; 7597 trans = btrfs_start_transaction(root, 1); 7598 if (IS_ERR(trans)) { 7599 ret = PTR_ERR(trans); 7600 goto out; 7601 } 7602 btrfs_inode_safe_disk_i_size_write(inode, 0); 7603 } 7604 7605 if (trans) { 7606 int ret2; 7607 7608 trans->block_rsv = &fs_info->trans_block_rsv; 7609 ret2 = btrfs_update_inode(trans, inode); 7610 if (ret2 && !ret) 7611 ret = ret2; 7612 7613 ret2 = btrfs_end_transaction(trans); 7614 if (ret2 && !ret) 7615 ret = ret2; 7616 btrfs_btree_balance_dirty(fs_info); 7617 } 7618 out: 7619 btrfs_free_block_rsv(fs_info, rsv); 7620 /* 7621 * So if we truncate and then write and fsync we normally would just 7622 * write the extents that changed, which is a problem if we need to 7623 * first truncate that entire inode. So set this flag so we write out 7624 * all of the extents in the inode to the sync log so we're completely 7625 * safe. 7626 * 7627 * If no extents were dropped or trimmed we don't need to force the next 7628 * fsync to truncate all the inode's items from the log and re-log them 7629 * all. This means the truncate operation did not change the file size, 7630 * or changed it to a smaller size but there was only an implicit hole 7631 * between the old i_size and the new i_size, and there were no prealloc 7632 * extents beyond i_size to drop. 7633 */ 7634 if (control.extents_found > 0) 7635 btrfs_set_inode_full_sync(inode); 7636 7637 return ret; 7638 } 7639 7640 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7641 struct inode *dir) 7642 { 7643 struct inode *inode; 7644 7645 inode = new_inode(dir->i_sb); 7646 if (inode) { 7647 /* 7648 * Subvolumes don't inherit the sgid bit or the parent's gid if 7649 * the parent's sgid bit is set. This is probably a bug. 7650 */ 7651 inode_init_owner(idmap, inode, NULL, 7652 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7653 inode->i_op = &btrfs_dir_inode_operations; 7654 inode->i_fop = &btrfs_dir_file_operations; 7655 } 7656 return inode; 7657 } 7658 7659 struct inode *btrfs_alloc_inode(struct super_block *sb) 7660 { 7661 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7662 struct btrfs_inode *ei; 7663 struct inode *inode; 7664 7665 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7666 if (!ei) 7667 return NULL; 7668 7669 ei->root = NULL; 7670 ei->generation = 0; 7671 ei->last_trans = 0; 7672 ei->last_sub_trans = 0; 7673 ei->logged_trans = 0; 7674 ei->delalloc_bytes = 0; 7675 ei->new_delalloc_bytes = 0; 7676 ei->defrag_bytes = 0; 7677 ei->disk_i_size = 0; 7678 ei->flags = 0; 7679 ei->ro_flags = 0; 7680 /* 7681 * ->index_cnt will be properly initialized later when creating a new 7682 * inode (btrfs_create_new_inode()) or when reading an existing inode 7683 * from disk (btrfs_read_locked_inode()). 7684 */ 7685 ei->csum_bytes = 0; 7686 ei->dir_index = 0; 7687 ei->last_unlink_trans = 0; 7688 ei->last_reflink_trans = 0; 7689 ei->last_log_commit = 0; 7690 7691 spin_lock_init(&ei->lock); 7692 ei->outstanding_extents = 0; 7693 if (sb->s_magic != BTRFS_TEST_MAGIC) 7694 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7695 BTRFS_BLOCK_RSV_DELALLOC); 7696 ei->runtime_flags = 0; 7697 ei->prop_compress = BTRFS_COMPRESS_NONE; 7698 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7699 7700 ei->delayed_node = NULL; 7701 7702 ei->i_otime_sec = 0; 7703 ei->i_otime_nsec = 0; 7704 7705 inode = &ei->vfs_inode; 7706 extent_map_tree_init(&ei->extent_tree); 7707 7708 /* This io tree sets the valid inode. */ 7709 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7710 ei->io_tree.inode = ei; 7711 7712 ei->file_extent_tree = NULL; 7713 7714 mutex_init(&ei->log_mutex); 7715 spin_lock_init(&ei->ordered_tree_lock); 7716 ei->ordered_tree = RB_ROOT; 7717 ei->ordered_tree_last = NULL; 7718 INIT_LIST_HEAD(&ei->delalloc_inodes); 7719 INIT_LIST_HEAD(&ei->delayed_iput); 7720 init_rwsem(&ei->i_mmap_lock); 7721 7722 return inode; 7723 } 7724 7725 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7726 void btrfs_test_destroy_inode(struct inode *inode) 7727 { 7728 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7729 kfree(BTRFS_I(inode)->file_extent_tree); 7730 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7731 } 7732 #endif 7733 7734 void btrfs_free_inode(struct inode *inode) 7735 { 7736 kfree(BTRFS_I(inode)->file_extent_tree); 7737 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7738 } 7739 7740 void btrfs_destroy_inode(struct inode *vfs_inode) 7741 { 7742 struct btrfs_ordered_extent *ordered; 7743 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7744 struct btrfs_root *root = inode->root; 7745 bool freespace_inode; 7746 7747 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7748 WARN_ON(vfs_inode->i_data.nrpages); 7749 WARN_ON(inode->block_rsv.reserved); 7750 WARN_ON(inode->block_rsv.size); 7751 WARN_ON(inode->outstanding_extents); 7752 if (!S_ISDIR(vfs_inode->i_mode)) { 7753 WARN_ON(inode->delalloc_bytes); 7754 WARN_ON(inode->new_delalloc_bytes); 7755 WARN_ON(inode->csum_bytes); 7756 } 7757 if (!root || !btrfs_is_data_reloc_root(root)) 7758 WARN_ON(inode->defrag_bytes); 7759 7760 /* 7761 * This can happen where we create an inode, but somebody else also 7762 * created the same inode and we need to destroy the one we already 7763 * created. 7764 */ 7765 if (!root) 7766 return; 7767 7768 /* 7769 * If this is a free space inode do not take the ordered extents lockdep 7770 * map. 7771 */ 7772 freespace_inode = btrfs_is_free_space_inode(inode); 7773 7774 while (1) { 7775 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7776 if (!ordered) 7777 break; 7778 else { 7779 btrfs_err(root->fs_info, 7780 "found ordered extent %llu %llu on inode cleanup", 7781 ordered->file_offset, ordered->num_bytes); 7782 7783 if (!freespace_inode) 7784 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7785 7786 btrfs_remove_ordered_extent(inode, ordered); 7787 btrfs_put_ordered_extent(ordered); 7788 btrfs_put_ordered_extent(ordered); 7789 } 7790 } 7791 btrfs_qgroup_check_reserved_leak(inode); 7792 btrfs_del_inode_from_root(inode); 7793 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7794 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7795 btrfs_put_root(inode->root); 7796 } 7797 7798 int btrfs_drop_inode(struct inode *inode) 7799 { 7800 struct btrfs_root *root = BTRFS_I(inode)->root; 7801 7802 if (root == NULL) 7803 return 1; 7804 7805 /* the snap/subvol tree is on deleting */ 7806 if (btrfs_root_refs(&root->root_item) == 0) 7807 return 1; 7808 else 7809 return generic_drop_inode(inode); 7810 } 7811 7812 static void init_once(void *foo) 7813 { 7814 struct btrfs_inode *ei = foo; 7815 7816 inode_init_once(&ei->vfs_inode); 7817 } 7818 7819 void __cold btrfs_destroy_cachep(void) 7820 { 7821 /* 7822 * Make sure all delayed rcu free inodes are flushed before we 7823 * destroy cache. 7824 */ 7825 rcu_barrier(); 7826 kmem_cache_destroy(btrfs_inode_cachep); 7827 } 7828 7829 int __init btrfs_init_cachep(void) 7830 { 7831 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7832 sizeof(struct btrfs_inode), 0, 7833 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7834 init_once); 7835 if (!btrfs_inode_cachep) 7836 return -ENOMEM; 7837 7838 return 0; 7839 } 7840 7841 static int btrfs_getattr(struct mnt_idmap *idmap, 7842 const struct path *path, struct kstat *stat, 7843 u32 request_mask, unsigned int flags) 7844 { 7845 u64 delalloc_bytes; 7846 u64 inode_bytes; 7847 struct inode *inode = d_inode(path->dentry); 7848 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7849 u32 bi_flags = BTRFS_I(inode)->flags; 7850 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7851 7852 stat->result_mask |= STATX_BTIME; 7853 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7854 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7855 if (bi_flags & BTRFS_INODE_APPEND) 7856 stat->attributes |= STATX_ATTR_APPEND; 7857 if (bi_flags & BTRFS_INODE_COMPRESS) 7858 stat->attributes |= STATX_ATTR_COMPRESSED; 7859 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7860 stat->attributes |= STATX_ATTR_IMMUTABLE; 7861 if (bi_flags & BTRFS_INODE_NODUMP) 7862 stat->attributes |= STATX_ATTR_NODUMP; 7863 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7864 stat->attributes |= STATX_ATTR_VERITY; 7865 7866 stat->attributes_mask |= (STATX_ATTR_APPEND | 7867 STATX_ATTR_COMPRESSED | 7868 STATX_ATTR_IMMUTABLE | 7869 STATX_ATTR_NODUMP); 7870 7871 generic_fillattr(idmap, request_mask, inode, stat); 7872 stat->dev = BTRFS_I(inode)->root->anon_dev; 7873 7874 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7875 stat->result_mask |= STATX_SUBVOL; 7876 7877 spin_lock(&BTRFS_I(inode)->lock); 7878 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7879 inode_bytes = inode_get_bytes(inode); 7880 spin_unlock(&BTRFS_I(inode)->lock); 7881 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7882 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7883 return 0; 7884 } 7885 7886 static int btrfs_rename_exchange(struct inode *old_dir, 7887 struct dentry *old_dentry, 7888 struct inode *new_dir, 7889 struct dentry *new_dentry) 7890 { 7891 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7892 struct btrfs_trans_handle *trans; 7893 unsigned int trans_num_items; 7894 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7895 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7896 struct inode *new_inode = new_dentry->d_inode; 7897 struct inode *old_inode = old_dentry->d_inode; 7898 struct btrfs_rename_ctx old_rename_ctx; 7899 struct btrfs_rename_ctx new_rename_ctx; 7900 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7901 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7902 u64 old_idx = 0; 7903 u64 new_idx = 0; 7904 int ret; 7905 int ret2; 7906 bool need_abort = false; 7907 struct fscrypt_name old_fname, new_fname; 7908 struct fscrypt_str *old_name, *new_name; 7909 7910 /* 7911 * For non-subvolumes allow exchange only within one subvolume, in the 7912 * same inode namespace. Two subvolumes (represented as directory) can 7913 * be exchanged as they're a logical link and have a fixed inode number. 7914 */ 7915 if (root != dest && 7916 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7917 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7918 return -EXDEV; 7919 7920 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7921 if (ret) 7922 return ret; 7923 7924 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7925 if (ret) { 7926 fscrypt_free_filename(&old_fname); 7927 return ret; 7928 } 7929 7930 old_name = &old_fname.disk_name; 7931 new_name = &new_fname.disk_name; 7932 7933 /* close the race window with snapshot create/destroy ioctl */ 7934 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7935 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7936 down_read(&fs_info->subvol_sem); 7937 7938 /* 7939 * For each inode: 7940 * 1 to remove old dir item 7941 * 1 to remove old dir index 7942 * 1 to add new dir item 7943 * 1 to add new dir index 7944 * 1 to update parent inode 7945 * 7946 * If the parents are the same, we only need to account for one 7947 */ 7948 trans_num_items = (old_dir == new_dir ? 9 : 10); 7949 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7950 /* 7951 * 1 to remove old root ref 7952 * 1 to remove old root backref 7953 * 1 to add new root ref 7954 * 1 to add new root backref 7955 */ 7956 trans_num_items += 4; 7957 } else { 7958 /* 7959 * 1 to update inode item 7960 * 1 to remove old inode ref 7961 * 1 to add new inode ref 7962 */ 7963 trans_num_items += 3; 7964 } 7965 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7966 trans_num_items += 4; 7967 else 7968 trans_num_items += 3; 7969 trans = btrfs_start_transaction(root, trans_num_items); 7970 if (IS_ERR(trans)) { 7971 ret = PTR_ERR(trans); 7972 goto out_notrans; 7973 } 7974 7975 if (dest != root) { 7976 ret = btrfs_record_root_in_trans(trans, dest); 7977 if (ret) 7978 goto out_fail; 7979 } 7980 7981 /* 7982 * We need to find a free sequence number both in the source and 7983 * in the destination directory for the exchange. 7984 */ 7985 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7986 if (ret) 7987 goto out_fail; 7988 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7989 if (ret) 7990 goto out_fail; 7991 7992 BTRFS_I(old_inode)->dir_index = 0ULL; 7993 BTRFS_I(new_inode)->dir_index = 0ULL; 7994 7995 /* Reference for the source. */ 7996 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7997 /* force full log commit if subvolume involved. */ 7998 btrfs_set_log_full_commit(trans); 7999 } else { 8000 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8001 btrfs_ino(BTRFS_I(new_dir)), 8002 old_idx); 8003 if (ret) 8004 goto out_fail; 8005 need_abort = true; 8006 } 8007 8008 /* And now for the dest. */ 8009 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8010 /* force full log commit if subvolume involved. */ 8011 btrfs_set_log_full_commit(trans); 8012 } else { 8013 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8014 btrfs_ino(BTRFS_I(old_dir)), 8015 new_idx); 8016 if (ret) { 8017 if (need_abort) 8018 btrfs_abort_transaction(trans, ret); 8019 goto out_fail; 8020 } 8021 } 8022 8023 /* Update inode version and ctime/mtime. */ 8024 inode_inc_iversion(old_dir); 8025 inode_inc_iversion(new_dir); 8026 inode_inc_iversion(old_inode); 8027 inode_inc_iversion(new_inode); 8028 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8029 8030 if (old_dentry->d_parent != new_dentry->d_parent) { 8031 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8032 BTRFS_I(old_inode), true); 8033 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8034 BTRFS_I(new_inode), true); 8035 } 8036 8037 /* src is a subvolume */ 8038 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8039 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8040 } else { /* src is an inode */ 8041 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8042 BTRFS_I(old_dentry->d_inode), 8043 old_name, &old_rename_ctx); 8044 if (!ret) 8045 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8046 } 8047 if (ret) { 8048 btrfs_abort_transaction(trans, ret); 8049 goto out_fail; 8050 } 8051 8052 /* dest is a subvolume */ 8053 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8054 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8055 } else { /* dest is an inode */ 8056 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8057 BTRFS_I(new_dentry->d_inode), 8058 new_name, &new_rename_ctx); 8059 if (!ret) 8060 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8061 } 8062 if (ret) { 8063 btrfs_abort_transaction(trans, ret); 8064 goto out_fail; 8065 } 8066 8067 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8068 new_name, 0, old_idx); 8069 if (ret) { 8070 btrfs_abort_transaction(trans, ret); 8071 goto out_fail; 8072 } 8073 8074 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8075 old_name, 0, new_idx); 8076 if (ret) { 8077 btrfs_abort_transaction(trans, ret); 8078 goto out_fail; 8079 } 8080 8081 if (old_inode->i_nlink == 1) 8082 BTRFS_I(old_inode)->dir_index = old_idx; 8083 if (new_inode->i_nlink == 1) 8084 BTRFS_I(new_inode)->dir_index = new_idx; 8085 8086 /* 8087 * Now pin the logs of the roots. We do it to ensure that no other task 8088 * can sync the logs while we are in progress with the rename, because 8089 * that could result in an inconsistency in case any of the inodes that 8090 * are part of this rename operation were logged before. 8091 */ 8092 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8093 btrfs_pin_log_trans(root); 8094 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8095 btrfs_pin_log_trans(dest); 8096 8097 /* Do the log updates for all inodes. */ 8098 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8099 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8100 old_rename_ctx.index, new_dentry->d_parent); 8101 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8102 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8103 new_rename_ctx.index, old_dentry->d_parent); 8104 8105 /* Now unpin the logs. */ 8106 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8107 btrfs_end_log_trans(root); 8108 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8109 btrfs_end_log_trans(dest); 8110 out_fail: 8111 ret2 = btrfs_end_transaction(trans); 8112 ret = ret ? ret : ret2; 8113 out_notrans: 8114 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8115 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8116 up_read(&fs_info->subvol_sem); 8117 8118 fscrypt_free_filename(&new_fname); 8119 fscrypt_free_filename(&old_fname); 8120 return ret; 8121 } 8122 8123 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8124 struct inode *dir) 8125 { 8126 struct inode *inode; 8127 8128 inode = new_inode(dir->i_sb); 8129 if (inode) { 8130 inode_init_owner(idmap, inode, dir, 8131 S_IFCHR | WHITEOUT_MODE); 8132 inode->i_op = &btrfs_special_inode_operations; 8133 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8134 } 8135 return inode; 8136 } 8137 8138 static int btrfs_rename(struct mnt_idmap *idmap, 8139 struct inode *old_dir, struct dentry *old_dentry, 8140 struct inode *new_dir, struct dentry *new_dentry, 8141 unsigned int flags) 8142 { 8143 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8144 struct btrfs_new_inode_args whiteout_args = { 8145 .dir = old_dir, 8146 .dentry = old_dentry, 8147 }; 8148 struct btrfs_trans_handle *trans; 8149 unsigned int trans_num_items; 8150 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8151 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8152 struct inode *new_inode = d_inode(new_dentry); 8153 struct inode *old_inode = d_inode(old_dentry); 8154 struct btrfs_rename_ctx rename_ctx; 8155 u64 index = 0; 8156 int ret; 8157 int ret2; 8158 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8159 struct fscrypt_name old_fname, new_fname; 8160 8161 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8162 return -EPERM; 8163 8164 /* we only allow rename subvolume link between subvolumes */ 8165 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8166 return -EXDEV; 8167 8168 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8169 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8170 return -ENOTEMPTY; 8171 8172 if (S_ISDIR(old_inode->i_mode) && new_inode && 8173 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8174 return -ENOTEMPTY; 8175 8176 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8177 if (ret) 8178 return ret; 8179 8180 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8181 if (ret) { 8182 fscrypt_free_filename(&old_fname); 8183 return ret; 8184 } 8185 8186 /* check for collisions, even if the name isn't there */ 8187 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8188 if (ret) { 8189 if (ret == -EEXIST) { 8190 /* we shouldn't get 8191 * eexist without a new_inode */ 8192 if (WARN_ON(!new_inode)) { 8193 goto out_fscrypt_names; 8194 } 8195 } else { 8196 /* maybe -EOVERFLOW */ 8197 goto out_fscrypt_names; 8198 } 8199 } 8200 ret = 0; 8201 8202 /* 8203 * we're using rename to replace one file with another. Start IO on it 8204 * now so we don't add too much work to the end of the transaction 8205 */ 8206 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8207 filemap_flush(old_inode->i_mapping); 8208 8209 if (flags & RENAME_WHITEOUT) { 8210 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8211 if (!whiteout_args.inode) { 8212 ret = -ENOMEM; 8213 goto out_fscrypt_names; 8214 } 8215 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8216 if (ret) 8217 goto out_whiteout_inode; 8218 } else { 8219 /* 1 to update the old parent inode. */ 8220 trans_num_items = 1; 8221 } 8222 8223 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8224 /* Close the race window with snapshot create/destroy ioctl */ 8225 down_read(&fs_info->subvol_sem); 8226 /* 8227 * 1 to remove old root ref 8228 * 1 to remove old root backref 8229 * 1 to add new root ref 8230 * 1 to add new root backref 8231 */ 8232 trans_num_items += 4; 8233 } else { 8234 /* 8235 * 1 to update inode 8236 * 1 to remove old inode ref 8237 * 1 to add new inode ref 8238 */ 8239 trans_num_items += 3; 8240 } 8241 /* 8242 * 1 to remove old dir item 8243 * 1 to remove old dir index 8244 * 1 to add new dir item 8245 * 1 to add new dir index 8246 */ 8247 trans_num_items += 4; 8248 /* 1 to update new parent inode if it's not the same as the old parent */ 8249 if (new_dir != old_dir) 8250 trans_num_items++; 8251 if (new_inode) { 8252 /* 8253 * 1 to update inode 8254 * 1 to remove inode ref 8255 * 1 to remove dir item 8256 * 1 to remove dir index 8257 * 1 to possibly add orphan item 8258 */ 8259 trans_num_items += 5; 8260 } 8261 trans = btrfs_start_transaction(root, trans_num_items); 8262 if (IS_ERR(trans)) { 8263 ret = PTR_ERR(trans); 8264 goto out_notrans; 8265 } 8266 8267 if (dest != root) { 8268 ret = btrfs_record_root_in_trans(trans, dest); 8269 if (ret) 8270 goto out_fail; 8271 } 8272 8273 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8274 if (ret) 8275 goto out_fail; 8276 8277 BTRFS_I(old_inode)->dir_index = 0ULL; 8278 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8279 /* force full log commit if subvolume involved. */ 8280 btrfs_set_log_full_commit(trans); 8281 } else { 8282 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8283 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8284 index); 8285 if (ret) 8286 goto out_fail; 8287 } 8288 8289 inode_inc_iversion(old_dir); 8290 inode_inc_iversion(new_dir); 8291 inode_inc_iversion(old_inode); 8292 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8293 8294 if (old_dentry->d_parent != new_dentry->d_parent) 8295 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8296 BTRFS_I(old_inode), true); 8297 8298 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8299 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8300 } else { 8301 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8302 BTRFS_I(d_inode(old_dentry)), 8303 &old_fname.disk_name, &rename_ctx); 8304 if (!ret) 8305 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8306 } 8307 if (ret) { 8308 btrfs_abort_transaction(trans, ret); 8309 goto out_fail; 8310 } 8311 8312 if (new_inode) { 8313 inode_inc_iversion(new_inode); 8314 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8315 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8316 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8317 BUG_ON(new_inode->i_nlink == 0); 8318 } else { 8319 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8320 BTRFS_I(d_inode(new_dentry)), 8321 &new_fname.disk_name); 8322 } 8323 if (!ret && new_inode->i_nlink == 0) 8324 ret = btrfs_orphan_add(trans, 8325 BTRFS_I(d_inode(new_dentry))); 8326 if (ret) { 8327 btrfs_abort_transaction(trans, ret); 8328 goto out_fail; 8329 } 8330 } 8331 8332 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8333 &new_fname.disk_name, 0, index); 8334 if (ret) { 8335 btrfs_abort_transaction(trans, ret); 8336 goto out_fail; 8337 } 8338 8339 if (old_inode->i_nlink == 1) 8340 BTRFS_I(old_inode)->dir_index = index; 8341 8342 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8343 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8344 rename_ctx.index, new_dentry->d_parent); 8345 8346 if (flags & RENAME_WHITEOUT) { 8347 ret = btrfs_create_new_inode(trans, &whiteout_args); 8348 if (ret) { 8349 btrfs_abort_transaction(trans, ret); 8350 goto out_fail; 8351 } else { 8352 unlock_new_inode(whiteout_args.inode); 8353 iput(whiteout_args.inode); 8354 whiteout_args.inode = NULL; 8355 } 8356 } 8357 out_fail: 8358 ret2 = btrfs_end_transaction(trans); 8359 ret = ret ? ret : ret2; 8360 out_notrans: 8361 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8362 up_read(&fs_info->subvol_sem); 8363 if (flags & RENAME_WHITEOUT) 8364 btrfs_new_inode_args_destroy(&whiteout_args); 8365 out_whiteout_inode: 8366 if (flags & RENAME_WHITEOUT) 8367 iput(whiteout_args.inode); 8368 out_fscrypt_names: 8369 fscrypt_free_filename(&old_fname); 8370 fscrypt_free_filename(&new_fname); 8371 return ret; 8372 } 8373 8374 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8375 struct dentry *old_dentry, struct inode *new_dir, 8376 struct dentry *new_dentry, unsigned int flags) 8377 { 8378 int ret; 8379 8380 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8381 return -EINVAL; 8382 8383 if (flags & RENAME_EXCHANGE) 8384 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8385 new_dentry); 8386 else 8387 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8388 new_dentry, flags); 8389 8390 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8391 8392 return ret; 8393 } 8394 8395 struct btrfs_delalloc_work { 8396 struct inode *inode; 8397 struct completion completion; 8398 struct list_head list; 8399 struct btrfs_work work; 8400 }; 8401 8402 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8403 { 8404 struct btrfs_delalloc_work *delalloc_work; 8405 struct inode *inode; 8406 8407 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8408 work); 8409 inode = delalloc_work->inode; 8410 filemap_flush(inode->i_mapping); 8411 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8412 &BTRFS_I(inode)->runtime_flags)) 8413 filemap_flush(inode->i_mapping); 8414 8415 iput(inode); 8416 complete(&delalloc_work->completion); 8417 } 8418 8419 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8420 { 8421 struct btrfs_delalloc_work *work; 8422 8423 work = kmalloc(sizeof(*work), GFP_NOFS); 8424 if (!work) 8425 return NULL; 8426 8427 init_completion(&work->completion); 8428 INIT_LIST_HEAD(&work->list); 8429 work->inode = inode; 8430 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8431 8432 return work; 8433 } 8434 8435 /* 8436 * some fairly slow code that needs optimization. This walks the list 8437 * of all the inodes with pending delalloc and forces them to disk. 8438 */ 8439 static int start_delalloc_inodes(struct btrfs_root *root, 8440 struct writeback_control *wbc, bool snapshot, 8441 bool in_reclaim_context) 8442 { 8443 struct btrfs_inode *binode; 8444 struct inode *inode; 8445 struct btrfs_delalloc_work *work, *next; 8446 LIST_HEAD(works); 8447 LIST_HEAD(splice); 8448 int ret = 0; 8449 bool full_flush = wbc->nr_to_write == LONG_MAX; 8450 8451 mutex_lock(&root->delalloc_mutex); 8452 spin_lock(&root->delalloc_lock); 8453 list_splice_init(&root->delalloc_inodes, &splice); 8454 while (!list_empty(&splice)) { 8455 binode = list_entry(splice.next, struct btrfs_inode, 8456 delalloc_inodes); 8457 8458 list_move_tail(&binode->delalloc_inodes, 8459 &root->delalloc_inodes); 8460 8461 if (in_reclaim_context && 8462 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8463 continue; 8464 8465 inode = igrab(&binode->vfs_inode); 8466 if (!inode) { 8467 cond_resched_lock(&root->delalloc_lock); 8468 continue; 8469 } 8470 spin_unlock(&root->delalloc_lock); 8471 8472 if (snapshot) 8473 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8474 &binode->runtime_flags); 8475 if (full_flush) { 8476 work = btrfs_alloc_delalloc_work(inode); 8477 if (!work) { 8478 iput(inode); 8479 ret = -ENOMEM; 8480 goto out; 8481 } 8482 list_add_tail(&work->list, &works); 8483 btrfs_queue_work(root->fs_info->flush_workers, 8484 &work->work); 8485 } else { 8486 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8487 btrfs_add_delayed_iput(BTRFS_I(inode)); 8488 if (ret || wbc->nr_to_write <= 0) 8489 goto out; 8490 } 8491 cond_resched(); 8492 spin_lock(&root->delalloc_lock); 8493 } 8494 spin_unlock(&root->delalloc_lock); 8495 8496 out: 8497 list_for_each_entry_safe(work, next, &works, list) { 8498 list_del_init(&work->list); 8499 wait_for_completion(&work->completion); 8500 kfree(work); 8501 } 8502 8503 if (!list_empty(&splice)) { 8504 spin_lock(&root->delalloc_lock); 8505 list_splice_tail(&splice, &root->delalloc_inodes); 8506 spin_unlock(&root->delalloc_lock); 8507 } 8508 mutex_unlock(&root->delalloc_mutex); 8509 return ret; 8510 } 8511 8512 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8513 { 8514 struct writeback_control wbc = { 8515 .nr_to_write = LONG_MAX, 8516 .sync_mode = WB_SYNC_NONE, 8517 .range_start = 0, 8518 .range_end = LLONG_MAX, 8519 }; 8520 struct btrfs_fs_info *fs_info = root->fs_info; 8521 8522 if (BTRFS_FS_ERROR(fs_info)) 8523 return -EROFS; 8524 8525 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8526 } 8527 8528 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8529 bool in_reclaim_context) 8530 { 8531 struct writeback_control wbc = { 8532 .nr_to_write = nr, 8533 .sync_mode = WB_SYNC_NONE, 8534 .range_start = 0, 8535 .range_end = LLONG_MAX, 8536 }; 8537 struct btrfs_root *root; 8538 LIST_HEAD(splice); 8539 int ret; 8540 8541 if (BTRFS_FS_ERROR(fs_info)) 8542 return -EROFS; 8543 8544 mutex_lock(&fs_info->delalloc_root_mutex); 8545 spin_lock(&fs_info->delalloc_root_lock); 8546 list_splice_init(&fs_info->delalloc_roots, &splice); 8547 while (!list_empty(&splice)) { 8548 /* 8549 * Reset nr_to_write here so we know that we're doing a full 8550 * flush. 8551 */ 8552 if (nr == LONG_MAX) 8553 wbc.nr_to_write = LONG_MAX; 8554 8555 root = list_first_entry(&splice, struct btrfs_root, 8556 delalloc_root); 8557 root = btrfs_grab_root(root); 8558 BUG_ON(!root); 8559 list_move_tail(&root->delalloc_root, 8560 &fs_info->delalloc_roots); 8561 spin_unlock(&fs_info->delalloc_root_lock); 8562 8563 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8564 btrfs_put_root(root); 8565 if (ret < 0 || wbc.nr_to_write <= 0) 8566 goto out; 8567 spin_lock(&fs_info->delalloc_root_lock); 8568 } 8569 spin_unlock(&fs_info->delalloc_root_lock); 8570 8571 ret = 0; 8572 out: 8573 if (!list_empty(&splice)) { 8574 spin_lock(&fs_info->delalloc_root_lock); 8575 list_splice_tail(&splice, &fs_info->delalloc_roots); 8576 spin_unlock(&fs_info->delalloc_root_lock); 8577 } 8578 mutex_unlock(&fs_info->delalloc_root_mutex); 8579 return ret; 8580 } 8581 8582 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8583 struct dentry *dentry, const char *symname) 8584 { 8585 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8586 struct btrfs_trans_handle *trans; 8587 struct btrfs_root *root = BTRFS_I(dir)->root; 8588 struct btrfs_path *path; 8589 struct btrfs_key key; 8590 struct inode *inode; 8591 struct btrfs_new_inode_args new_inode_args = { 8592 .dir = dir, 8593 .dentry = dentry, 8594 }; 8595 unsigned int trans_num_items; 8596 int err; 8597 int name_len; 8598 int datasize; 8599 unsigned long ptr; 8600 struct btrfs_file_extent_item *ei; 8601 struct extent_buffer *leaf; 8602 8603 name_len = strlen(symname); 8604 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8605 return -ENAMETOOLONG; 8606 8607 inode = new_inode(dir->i_sb); 8608 if (!inode) 8609 return -ENOMEM; 8610 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8611 inode->i_op = &btrfs_symlink_inode_operations; 8612 inode_nohighmem(inode); 8613 inode->i_mapping->a_ops = &btrfs_aops; 8614 btrfs_i_size_write(BTRFS_I(inode), name_len); 8615 inode_set_bytes(inode, name_len); 8616 8617 new_inode_args.inode = inode; 8618 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8619 if (err) 8620 goto out_inode; 8621 /* 1 additional item for the inline extent */ 8622 trans_num_items++; 8623 8624 trans = btrfs_start_transaction(root, trans_num_items); 8625 if (IS_ERR(trans)) { 8626 err = PTR_ERR(trans); 8627 goto out_new_inode_args; 8628 } 8629 8630 err = btrfs_create_new_inode(trans, &new_inode_args); 8631 if (err) 8632 goto out; 8633 8634 path = btrfs_alloc_path(); 8635 if (!path) { 8636 err = -ENOMEM; 8637 btrfs_abort_transaction(trans, err); 8638 discard_new_inode(inode); 8639 inode = NULL; 8640 goto out; 8641 } 8642 key.objectid = btrfs_ino(BTRFS_I(inode)); 8643 key.offset = 0; 8644 key.type = BTRFS_EXTENT_DATA_KEY; 8645 datasize = btrfs_file_extent_calc_inline_size(name_len); 8646 err = btrfs_insert_empty_item(trans, root, path, &key, 8647 datasize); 8648 if (err) { 8649 btrfs_abort_transaction(trans, err); 8650 btrfs_free_path(path); 8651 discard_new_inode(inode); 8652 inode = NULL; 8653 goto out; 8654 } 8655 leaf = path->nodes[0]; 8656 ei = btrfs_item_ptr(leaf, path->slots[0], 8657 struct btrfs_file_extent_item); 8658 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8659 btrfs_set_file_extent_type(leaf, ei, 8660 BTRFS_FILE_EXTENT_INLINE); 8661 btrfs_set_file_extent_encryption(leaf, ei, 0); 8662 btrfs_set_file_extent_compression(leaf, ei, 0); 8663 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8664 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8665 8666 ptr = btrfs_file_extent_inline_start(ei); 8667 write_extent_buffer(leaf, symname, ptr, name_len); 8668 btrfs_mark_buffer_dirty(trans, leaf); 8669 btrfs_free_path(path); 8670 8671 d_instantiate_new(dentry, inode); 8672 err = 0; 8673 out: 8674 btrfs_end_transaction(trans); 8675 btrfs_btree_balance_dirty(fs_info); 8676 out_new_inode_args: 8677 btrfs_new_inode_args_destroy(&new_inode_args); 8678 out_inode: 8679 if (err) 8680 iput(inode); 8681 return err; 8682 } 8683 8684 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8685 struct btrfs_trans_handle *trans_in, 8686 struct btrfs_inode *inode, 8687 struct btrfs_key *ins, 8688 u64 file_offset) 8689 { 8690 struct btrfs_file_extent_item stack_fi; 8691 struct btrfs_replace_extent_info extent_info; 8692 struct btrfs_trans_handle *trans = trans_in; 8693 struct btrfs_path *path; 8694 u64 start = ins->objectid; 8695 u64 len = ins->offset; 8696 u64 qgroup_released = 0; 8697 int ret; 8698 8699 memset(&stack_fi, 0, sizeof(stack_fi)); 8700 8701 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8702 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8703 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8704 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8705 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8706 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8707 /* Encryption and other encoding is reserved and all 0 */ 8708 8709 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8710 if (ret < 0) 8711 return ERR_PTR(ret); 8712 8713 if (trans) { 8714 ret = insert_reserved_file_extent(trans, inode, 8715 file_offset, &stack_fi, 8716 true, qgroup_released); 8717 if (ret) 8718 goto free_qgroup; 8719 return trans; 8720 } 8721 8722 extent_info.disk_offset = start; 8723 extent_info.disk_len = len; 8724 extent_info.data_offset = 0; 8725 extent_info.data_len = len; 8726 extent_info.file_offset = file_offset; 8727 extent_info.extent_buf = (char *)&stack_fi; 8728 extent_info.is_new_extent = true; 8729 extent_info.update_times = true; 8730 extent_info.qgroup_reserved = qgroup_released; 8731 extent_info.insertions = 0; 8732 8733 path = btrfs_alloc_path(); 8734 if (!path) { 8735 ret = -ENOMEM; 8736 goto free_qgroup; 8737 } 8738 8739 ret = btrfs_replace_file_extents(inode, path, file_offset, 8740 file_offset + len - 1, &extent_info, 8741 &trans); 8742 btrfs_free_path(path); 8743 if (ret) 8744 goto free_qgroup; 8745 return trans; 8746 8747 free_qgroup: 8748 /* 8749 * We have released qgroup data range at the beginning of the function, 8750 * and normally qgroup_released bytes will be freed when committing 8751 * transaction. 8752 * But if we error out early, we have to free what we have released 8753 * or we leak qgroup data reservation. 8754 */ 8755 btrfs_qgroup_free_refroot(inode->root->fs_info, 8756 btrfs_root_id(inode->root), qgroup_released, 8757 BTRFS_QGROUP_RSV_DATA); 8758 return ERR_PTR(ret); 8759 } 8760 8761 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8762 u64 start, u64 num_bytes, u64 min_size, 8763 loff_t actual_len, u64 *alloc_hint, 8764 struct btrfs_trans_handle *trans) 8765 { 8766 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8767 struct extent_map *em; 8768 struct btrfs_root *root = BTRFS_I(inode)->root; 8769 struct btrfs_key ins; 8770 u64 cur_offset = start; 8771 u64 clear_offset = start; 8772 u64 i_size; 8773 u64 cur_bytes; 8774 u64 last_alloc = (u64)-1; 8775 int ret = 0; 8776 bool own_trans = true; 8777 u64 end = start + num_bytes - 1; 8778 8779 if (trans) 8780 own_trans = false; 8781 while (num_bytes > 0) { 8782 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8783 cur_bytes = max(cur_bytes, min_size); 8784 /* 8785 * If we are severely fragmented we could end up with really 8786 * small allocations, so if the allocator is returning small 8787 * chunks lets make its job easier by only searching for those 8788 * sized chunks. 8789 */ 8790 cur_bytes = min(cur_bytes, last_alloc); 8791 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8792 min_size, 0, *alloc_hint, &ins, 1, 0); 8793 if (ret) 8794 break; 8795 8796 /* 8797 * We've reserved this space, and thus converted it from 8798 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8799 * from here on out we will only need to clear our reservation 8800 * for the remaining unreserved area, so advance our 8801 * clear_offset by our extent size. 8802 */ 8803 clear_offset += ins.offset; 8804 8805 last_alloc = ins.offset; 8806 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8807 &ins, cur_offset); 8808 /* 8809 * Now that we inserted the prealloc extent we can finally 8810 * decrement the number of reservations in the block group. 8811 * If we did it before, we could race with relocation and have 8812 * relocation miss the reserved extent, making it fail later. 8813 */ 8814 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8815 if (IS_ERR(trans)) { 8816 ret = PTR_ERR(trans); 8817 btrfs_free_reserved_extent(fs_info, ins.objectid, 8818 ins.offset, 0); 8819 break; 8820 } 8821 8822 em = alloc_extent_map(); 8823 if (!em) { 8824 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8825 cur_offset + ins.offset - 1, false); 8826 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8827 goto next; 8828 } 8829 8830 em->start = cur_offset; 8831 em->len = ins.offset; 8832 em->disk_bytenr = ins.objectid; 8833 em->offset = 0; 8834 em->disk_num_bytes = ins.offset; 8835 em->ram_bytes = ins.offset; 8836 em->flags |= EXTENT_FLAG_PREALLOC; 8837 em->generation = trans->transid; 8838 8839 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8840 free_extent_map(em); 8841 next: 8842 num_bytes -= ins.offset; 8843 cur_offset += ins.offset; 8844 *alloc_hint = ins.objectid + ins.offset; 8845 8846 inode_inc_iversion(inode); 8847 inode_set_ctime_current(inode); 8848 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8849 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8850 (actual_len > inode->i_size) && 8851 (cur_offset > inode->i_size)) { 8852 if (cur_offset > actual_len) 8853 i_size = actual_len; 8854 else 8855 i_size = cur_offset; 8856 i_size_write(inode, i_size); 8857 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8858 } 8859 8860 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8861 8862 if (ret) { 8863 btrfs_abort_transaction(trans, ret); 8864 if (own_trans) 8865 btrfs_end_transaction(trans); 8866 break; 8867 } 8868 8869 if (own_trans) { 8870 btrfs_end_transaction(trans); 8871 trans = NULL; 8872 } 8873 } 8874 if (clear_offset < end) 8875 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8876 end - clear_offset + 1); 8877 return ret; 8878 } 8879 8880 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8881 u64 start, u64 num_bytes, u64 min_size, 8882 loff_t actual_len, u64 *alloc_hint) 8883 { 8884 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8885 min_size, actual_len, alloc_hint, 8886 NULL); 8887 } 8888 8889 int btrfs_prealloc_file_range_trans(struct inode *inode, 8890 struct btrfs_trans_handle *trans, int mode, 8891 u64 start, u64 num_bytes, u64 min_size, 8892 loff_t actual_len, u64 *alloc_hint) 8893 { 8894 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8895 min_size, actual_len, alloc_hint, trans); 8896 } 8897 8898 static int btrfs_permission(struct mnt_idmap *idmap, 8899 struct inode *inode, int mask) 8900 { 8901 struct btrfs_root *root = BTRFS_I(inode)->root; 8902 umode_t mode = inode->i_mode; 8903 8904 if (mask & MAY_WRITE && 8905 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8906 if (btrfs_root_readonly(root)) 8907 return -EROFS; 8908 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8909 return -EACCES; 8910 } 8911 return generic_permission(idmap, inode, mask); 8912 } 8913 8914 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8915 struct file *file, umode_t mode) 8916 { 8917 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8918 struct btrfs_trans_handle *trans; 8919 struct btrfs_root *root = BTRFS_I(dir)->root; 8920 struct inode *inode; 8921 struct btrfs_new_inode_args new_inode_args = { 8922 .dir = dir, 8923 .dentry = file->f_path.dentry, 8924 .orphan = true, 8925 }; 8926 unsigned int trans_num_items; 8927 int ret; 8928 8929 inode = new_inode(dir->i_sb); 8930 if (!inode) 8931 return -ENOMEM; 8932 inode_init_owner(idmap, inode, dir, mode); 8933 inode->i_fop = &btrfs_file_operations; 8934 inode->i_op = &btrfs_file_inode_operations; 8935 inode->i_mapping->a_ops = &btrfs_aops; 8936 8937 new_inode_args.inode = inode; 8938 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8939 if (ret) 8940 goto out_inode; 8941 8942 trans = btrfs_start_transaction(root, trans_num_items); 8943 if (IS_ERR(trans)) { 8944 ret = PTR_ERR(trans); 8945 goto out_new_inode_args; 8946 } 8947 8948 ret = btrfs_create_new_inode(trans, &new_inode_args); 8949 8950 /* 8951 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8952 * set it to 1 because d_tmpfile() will issue a warning if the count is 8953 * 0, through: 8954 * 8955 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8956 */ 8957 set_nlink(inode, 1); 8958 8959 if (!ret) { 8960 d_tmpfile(file, inode); 8961 unlock_new_inode(inode); 8962 mark_inode_dirty(inode); 8963 } 8964 8965 btrfs_end_transaction(trans); 8966 btrfs_btree_balance_dirty(fs_info); 8967 out_new_inode_args: 8968 btrfs_new_inode_args_destroy(&new_inode_args); 8969 out_inode: 8970 if (ret) 8971 iput(inode); 8972 return finish_open_simple(file, ret); 8973 } 8974 8975 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 8976 { 8977 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8978 unsigned long index = start >> PAGE_SHIFT; 8979 unsigned long end_index = end >> PAGE_SHIFT; 8980 struct folio *folio; 8981 u32 len; 8982 8983 ASSERT(end + 1 - start <= U32_MAX); 8984 len = end + 1 - start; 8985 while (index <= end_index) { 8986 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0); 8987 ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */ 8988 8989 /* This is for data, which doesn't yet support larger folio. */ 8990 ASSERT(folio_order(folio) == 0); 8991 btrfs_folio_set_writeback(fs_info, folio, start, len); 8992 folio_put(folio); 8993 index++; 8994 } 8995 } 8996 8997 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8998 int compress_type) 8999 { 9000 switch (compress_type) { 9001 case BTRFS_COMPRESS_NONE: 9002 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9003 case BTRFS_COMPRESS_ZLIB: 9004 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9005 case BTRFS_COMPRESS_LZO: 9006 /* 9007 * The LZO format depends on the sector size. 64K is the maximum 9008 * sector size that we support. 9009 */ 9010 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9011 return -EINVAL; 9012 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9013 (fs_info->sectorsize_bits - 12); 9014 case BTRFS_COMPRESS_ZSTD: 9015 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9016 default: 9017 return -EUCLEAN; 9018 } 9019 } 9020 9021 static ssize_t btrfs_encoded_read_inline( 9022 struct kiocb *iocb, 9023 struct iov_iter *iter, u64 start, 9024 u64 lockend, 9025 struct extent_state **cached_state, 9026 u64 extent_start, size_t count, 9027 struct btrfs_ioctl_encoded_io_args *encoded, 9028 bool *unlocked) 9029 { 9030 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9031 struct btrfs_root *root = inode->root; 9032 struct btrfs_fs_info *fs_info = root->fs_info; 9033 struct extent_io_tree *io_tree = &inode->io_tree; 9034 struct btrfs_path *path; 9035 struct extent_buffer *leaf; 9036 struct btrfs_file_extent_item *item; 9037 u64 ram_bytes; 9038 unsigned long ptr; 9039 void *tmp; 9040 ssize_t ret; 9041 9042 path = btrfs_alloc_path(); 9043 if (!path) { 9044 ret = -ENOMEM; 9045 goto out; 9046 } 9047 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9048 extent_start, 0); 9049 if (ret) { 9050 if (ret > 0) { 9051 /* The extent item disappeared? */ 9052 ret = -EIO; 9053 } 9054 goto out; 9055 } 9056 leaf = path->nodes[0]; 9057 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9058 9059 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9060 ptr = btrfs_file_extent_inline_start(item); 9061 9062 encoded->len = min_t(u64, extent_start + ram_bytes, 9063 inode->vfs_inode.i_size) - iocb->ki_pos; 9064 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9065 btrfs_file_extent_compression(leaf, item)); 9066 if (ret < 0) 9067 goto out; 9068 encoded->compression = ret; 9069 if (encoded->compression) { 9070 size_t inline_size; 9071 9072 inline_size = btrfs_file_extent_inline_item_len(leaf, 9073 path->slots[0]); 9074 if (inline_size > count) { 9075 ret = -ENOBUFS; 9076 goto out; 9077 } 9078 count = inline_size; 9079 encoded->unencoded_len = ram_bytes; 9080 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9081 } else { 9082 count = min_t(u64, count, encoded->len); 9083 encoded->len = count; 9084 encoded->unencoded_len = count; 9085 ptr += iocb->ki_pos - extent_start; 9086 } 9087 9088 tmp = kmalloc(count, GFP_NOFS); 9089 if (!tmp) { 9090 ret = -ENOMEM; 9091 goto out; 9092 } 9093 read_extent_buffer(leaf, tmp, ptr, count); 9094 btrfs_release_path(path); 9095 unlock_extent(io_tree, start, lockend, cached_state); 9096 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9097 *unlocked = true; 9098 9099 ret = copy_to_iter(tmp, count, iter); 9100 if (ret != count) 9101 ret = -EFAULT; 9102 kfree(tmp); 9103 out: 9104 btrfs_free_path(path); 9105 return ret; 9106 } 9107 9108 struct btrfs_encoded_read_private { 9109 wait_queue_head_t wait; 9110 atomic_t pending; 9111 blk_status_t status; 9112 }; 9113 9114 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9115 { 9116 struct btrfs_encoded_read_private *priv = bbio->private; 9117 9118 if (bbio->bio.bi_status) { 9119 /* 9120 * The memory barrier implied by the atomic_dec_return() here 9121 * pairs with the memory barrier implied by the 9122 * atomic_dec_return() or io_wait_event() in 9123 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9124 * write is observed before the load of status in 9125 * btrfs_encoded_read_regular_fill_pages(). 9126 */ 9127 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9128 } 9129 if (!atomic_dec_return(&priv->pending)) 9130 wake_up(&priv->wait); 9131 bio_put(&bbio->bio); 9132 } 9133 9134 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9135 u64 file_offset, u64 disk_bytenr, 9136 u64 disk_io_size, struct page **pages) 9137 { 9138 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9139 struct btrfs_encoded_read_private priv = { 9140 .pending = ATOMIC_INIT(1), 9141 }; 9142 unsigned long i = 0; 9143 struct btrfs_bio *bbio; 9144 9145 init_waitqueue_head(&priv.wait); 9146 9147 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9148 btrfs_encoded_read_endio, &priv); 9149 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9150 bbio->inode = inode; 9151 9152 do { 9153 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9154 9155 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9156 atomic_inc(&priv.pending); 9157 btrfs_submit_bbio(bbio, 0); 9158 9159 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9160 btrfs_encoded_read_endio, &priv); 9161 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9162 bbio->inode = inode; 9163 continue; 9164 } 9165 9166 i++; 9167 disk_bytenr += bytes; 9168 disk_io_size -= bytes; 9169 } while (disk_io_size); 9170 9171 atomic_inc(&priv.pending); 9172 btrfs_submit_bbio(bbio, 0); 9173 9174 if (atomic_dec_return(&priv.pending)) 9175 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9176 /* See btrfs_encoded_read_endio() for ordering. */ 9177 return blk_status_to_errno(READ_ONCE(priv.status)); 9178 } 9179 9180 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9181 struct iov_iter *iter, 9182 u64 start, u64 lockend, 9183 struct extent_state **cached_state, 9184 u64 disk_bytenr, u64 disk_io_size, 9185 size_t count, bool compressed, 9186 bool *unlocked) 9187 { 9188 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9189 struct extent_io_tree *io_tree = &inode->io_tree; 9190 struct page **pages; 9191 unsigned long nr_pages, i; 9192 u64 cur; 9193 size_t page_offset; 9194 ssize_t ret; 9195 9196 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9197 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9198 if (!pages) 9199 return -ENOMEM; 9200 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9201 if (ret) { 9202 ret = -ENOMEM; 9203 goto out; 9204 } 9205 9206 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9207 disk_io_size, pages); 9208 if (ret) 9209 goto out; 9210 9211 unlock_extent(io_tree, start, lockend, cached_state); 9212 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9213 *unlocked = true; 9214 9215 if (compressed) { 9216 i = 0; 9217 page_offset = 0; 9218 } else { 9219 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9220 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9221 } 9222 cur = 0; 9223 while (cur < count) { 9224 size_t bytes = min_t(size_t, count - cur, 9225 PAGE_SIZE - page_offset); 9226 9227 if (copy_page_to_iter(pages[i], page_offset, bytes, 9228 iter) != bytes) { 9229 ret = -EFAULT; 9230 goto out; 9231 } 9232 i++; 9233 cur += bytes; 9234 page_offset = 0; 9235 } 9236 ret = count; 9237 out: 9238 for (i = 0; i < nr_pages; i++) { 9239 if (pages[i]) 9240 __free_page(pages[i]); 9241 } 9242 kfree(pages); 9243 return ret; 9244 } 9245 9246 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9247 struct btrfs_ioctl_encoded_io_args *encoded) 9248 { 9249 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9250 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9251 struct extent_io_tree *io_tree = &inode->io_tree; 9252 ssize_t ret; 9253 size_t count = iov_iter_count(iter); 9254 u64 start, lockend, disk_bytenr, disk_io_size; 9255 struct extent_state *cached_state = NULL; 9256 struct extent_map *em; 9257 bool unlocked = false; 9258 9259 file_accessed(iocb->ki_filp); 9260 9261 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 9262 9263 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9264 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9265 return 0; 9266 } 9267 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9268 /* 9269 * We don't know how long the extent containing iocb->ki_pos is, but if 9270 * it's compressed we know that it won't be longer than this. 9271 */ 9272 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9273 9274 for (;;) { 9275 struct btrfs_ordered_extent *ordered; 9276 9277 ret = btrfs_wait_ordered_range(inode, start, 9278 lockend - start + 1); 9279 if (ret) 9280 goto out_unlock_inode; 9281 lock_extent(io_tree, start, lockend, &cached_state); 9282 ordered = btrfs_lookup_ordered_range(inode, start, 9283 lockend - start + 1); 9284 if (!ordered) 9285 break; 9286 btrfs_put_ordered_extent(ordered); 9287 unlock_extent(io_tree, start, lockend, &cached_state); 9288 cond_resched(); 9289 } 9290 9291 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9292 if (IS_ERR(em)) { 9293 ret = PTR_ERR(em); 9294 goto out_unlock_extent; 9295 } 9296 9297 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9298 u64 extent_start = em->start; 9299 9300 /* 9301 * For inline extents we get everything we need out of the 9302 * extent item. 9303 */ 9304 free_extent_map(em); 9305 em = NULL; 9306 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9307 &cached_state, extent_start, 9308 count, encoded, &unlocked); 9309 goto out; 9310 } 9311 9312 /* 9313 * We only want to return up to EOF even if the extent extends beyond 9314 * that. 9315 */ 9316 encoded->len = min_t(u64, extent_map_end(em), 9317 inode->vfs_inode.i_size) - iocb->ki_pos; 9318 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9319 (em->flags & EXTENT_FLAG_PREALLOC)) { 9320 disk_bytenr = EXTENT_MAP_HOLE; 9321 count = min_t(u64, count, encoded->len); 9322 encoded->len = count; 9323 encoded->unencoded_len = count; 9324 } else if (extent_map_is_compressed(em)) { 9325 disk_bytenr = em->disk_bytenr; 9326 /* 9327 * Bail if the buffer isn't large enough to return the whole 9328 * compressed extent. 9329 */ 9330 if (em->disk_num_bytes > count) { 9331 ret = -ENOBUFS; 9332 goto out_em; 9333 } 9334 disk_io_size = em->disk_num_bytes; 9335 count = em->disk_num_bytes; 9336 encoded->unencoded_len = em->ram_bytes; 9337 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9338 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9339 extent_map_compression(em)); 9340 if (ret < 0) 9341 goto out_em; 9342 encoded->compression = ret; 9343 } else { 9344 disk_bytenr = extent_map_block_start(em) + (start - em->start); 9345 if (encoded->len > count) 9346 encoded->len = count; 9347 /* 9348 * Don't read beyond what we locked. This also limits the page 9349 * allocations that we'll do. 9350 */ 9351 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9352 count = start + disk_io_size - iocb->ki_pos; 9353 encoded->len = count; 9354 encoded->unencoded_len = count; 9355 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 9356 } 9357 free_extent_map(em); 9358 em = NULL; 9359 9360 if (disk_bytenr == EXTENT_MAP_HOLE) { 9361 unlock_extent(io_tree, start, lockend, &cached_state); 9362 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9363 unlocked = true; 9364 ret = iov_iter_zero(count, iter); 9365 if (ret != count) 9366 ret = -EFAULT; 9367 } else { 9368 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 9369 &cached_state, disk_bytenr, 9370 disk_io_size, count, 9371 encoded->compression, 9372 &unlocked); 9373 } 9374 9375 out: 9376 if (ret >= 0) 9377 iocb->ki_pos += encoded->len; 9378 out_em: 9379 free_extent_map(em); 9380 out_unlock_extent: 9381 if (!unlocked) 9382 unlock_extent(io_tree, start, lockend, &cached_state); 9383 out_unlock_inode: 9384 if (!unlocked) 9385 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9386 return ret; 9387 } 9388 9389 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9390 const struct btrfs_ioctl_encoded_io_args *encoded) 9391 { 9392 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9393 struct btrfs_root *root = inode->root; 9394 struct btrfs_fs_info *fs_info = root->fs_info; 9395 struct extent_io_tree *io_tree = &inode->io_tree; 9396 struct extent_changeset *data_reserved = NULL; 9397 struct extent_state *cached_state = NULL; 9398 struct btrfs_ordered_extent *ordered; 9399 struct btrfs_file_extent file_extent; 9400 int compression; 9401 size_t orig_count; 9402 u64 start, end; 9403 u64 num_bytes, ram_bytes, disk_num_bytes; 9404 unsigned long nr_folios, i; 9405 struct folio **folios; 9406 struct btrfs_key ins; 9407 bool extent_reserved = false; 9408 struct extent_map *em; 9409 ssize_t ret; 9410 9411 switch (encoded->compression) { 9412 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9413 compression = BTRFS_COMPRESS_ZLIB; 9414 break; 9415 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9416 compression = BTRFS_COMPRESS_ZSTD; 9417 break; 9418 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9419 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9420 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9421 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9422 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9423 /* The sector size must match for LZO. */ 9424 if (encoded->compression - 9425 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9426 fs_info->sectorsize_bits) 9427 return -EINVAL; 9428 compression = BTRFS_COMPRESS_LZO; 9429 break; 9430 default: 9431 return -EINVAL; 9432 } 9433 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9434 return -EINVAL; 9435 9436 /* 9437 * Compressed extents should always have checksums, so error out if we 9438 * have a NOCOW file or inode was created while mounted with NODATASUM. 9439 */ 9440 if (inode->flags & BTRFS_INODE_NODATASUM) 9441 return -EINVAL; 9442 9443 orig_count = iov_iter_count(from); 9444 9445 /* The extent size must be sane. */ 9446 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9447 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9448 return -EINVAL; 9449 9450 /* 9451 * The compressed data must be smaller than the decompressed data. 9452 * 9453 * It's of course possible for data to compress to larger or the same 9454 * size, but the buffered I/O path falls back to no compression for such 9455 * data, and we don't want to break any assumptions by creating these 9456 * extents. 9457 * 9458 * Note that this is less strict than the current check we have that the 9459 * compressed data must be at least one sector smaller than the 9460 * decompressed data. We only want to enforce the weaker requirement 9461 * from old kernels that it is at least one byte smaller. 9462 */ 9463 if (orig_count >= encoded->unencoded_len) 9464 return -EINVAL; 9465 9466 /* The extent must start on a sector boundary. */ 9467 start = iocb->ki_pos; 9468 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9469 return -EINVAL; 9470 9471 /* 9472 * The extent must end on a sector boundary. However, we allow a write 9473 * which ends at or extends i_size to have an unaligned length; we round 9474 * up the extent size and set i_size to the unaligned end. 9475 */ 9476 if (start + encoded->len < inode->vfs_inode.i_size && 9477 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9478 return -EINVAL; 9479 9480 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9481 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9482 return -EINVAL; 9483 9484 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9485 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9486 end = start + num_bytes - 1; 9487 9488 /* 9489 * If the extent cannot be inline, the compressed data on disk must be 9490 * sector-aligned. For convenience, we extend it with zeroes if it 9491 * isn't. 9492 */ 9493 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9494 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9495 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 9496 if (!folios) 9497 return -ENOMEM; 9498 for (i = 0; i < nr_folios; i++) { 9499 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9500 char *kaddr; 9501 9502 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9503 if (!folios[i]) { 9504 ret = -ENOMEM; 9505 goto out_folios; 9506 } 9507 kaddr = kmap_local_folio(folios[i], 0); 9508 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9509 kunmap_local(kaddr); 9510 ret = -EFAULT; 9511 goto out_folios; 9512 } 9513 if (bytes < PAGE_SIZE) 9514 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9515 kunmap_local(kaddr); 9516 } 9517 9518 for (;;) { 9519 struct btrfs_ordered_extent *ordered; 9520 9521 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9522 if (ret) 9523 goto out_folios; 9524 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9525 start >> PAGE_SHIFT, 9526 end >> PAGE_SHIFT); 9527 if (ret) 9528 goto out_folios; 9529 lock_extent(io_tree, start, end, &cached_state); 9530 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9531 if (!ordered && 9532 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9533 break; 9534 if (ordered) 9535 btrfs_put_ordered_extent(ordered); 9536 unlock_extent(io_tree, start, end, &cached_state); 9537 cond_resched(); 9538 } 9539 9540 /* 9541 * We don't use the higher-level delalloc space functions because our 9542 * num_bytes and disk_num_bytes are different. 9543 */ 9544 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9545 if (ret) 9546 goto out_unlock; 9547 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9548 if (ret) 9549 goto out_free_data_space; 9550 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9551 false); 9552 if (ret) 9553 goto out_qgroup_free_data; 9554 9555 /* Try an inline extent first. */ 9556 if (encoded->unencoded_len == encoded->len && 9557 encoded->unencoded_offset == 0 && 9558 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9559 ret = __cow_file_range_inline(inode, start, encoded->len, 9560 orig_count, compression, folios[0], 9561 true); 9562 if (ret <= 0) { 9563 if (ret == 0) 9564 ret = orig_count; 9565 goto out_delalloc_release; 9566 } 9567 } 9568 9569 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9570 disk_num_bytes, 0, 0, &ins, 1, 1); 9571 if (ret) 9572 goto out_delalloc_release; 9573 extent_reserved = true; 9574 9575 file_extent.disk_bytenr = ins.objectid; 9576 file_extent.disk_num_bytes = ins.offset; 9577 file_extent.num_bytes = num_bytes; 9578 file_extent.ram_bytes = ram_bytes; 9579 file_extent.offset = encoded->unencoded_offset; 9580 file_extent.compression = compression; 9581 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9582 if (IS_ERR(em)) { 9583 ret = PTR_ERR(em); 9584 goto out_free_reserved; 9585 } 9586 free_extent_map(em); 9587 9588 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9589 (1 << BTRFS_ORDERED_ENCODED) | 9590 (1 << BTRFS_ORDERED_COMPRESSED)); 9591 if (IS_ERR(ordered)) { 9592 btrfs_drop_extent_map_range(inode, start, end, false); 9593 ret = PTR_ERR(ordered); 9594 goto out_free_reserved; 9595 } 9596 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9597 9598 if (start + encoded->len > inode->vfs_inode.i_size) 9599 i_size_write(&inode->vfs_inode, start + encoded->len); 9600 9601 unlock_extent(io_tree, start, end, &cached_state); 9602 9603 btrfs_delalloc_release_extents(inode, num_bytes); 9604 9605 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9606 ret = orig_count; 9607 goto out; 9608 9609 out_free_reserved: 9610 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9611 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9612 out_delalloc_release: 9613 btrfs_delalloc_release_extents(inode, num_bytes); 9614 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9615 out_qgroup_free_data: 9616 if (ret < 0) 9617 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9618 out_free_data_space: 9619 /* 9620 * If btrfs_reserve_extent() succeeded, then we already decremented 9621 * bytes_may_use. 9622 */ 9623 if (!extent_reserved) 9624 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9625 out_unlock: 9626 unlock_extent(io_tree, start, end, &cached_state); 9627 out_folios: 9628 for (i = 0; i < nr_folios; i++) { 9629 if (folios[i]) 9630 folio_put(folios[i]); 9631 } 9632 kvfree(folios); 9633 out: 9634 if (ret >= 0) 9635 iocb->ki_pos += encoded->len; 9636 return ret; 9637 } 9638 9639 #ifdef CONFIG_SWAP 9640 /* 9641 * Add an entry indicating a block group or device which is pinned by a 9642 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9643 * negative errno on failure. 9644 */ 9645 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9646 bool is_block_group) 9647 { 9648 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9649 struct btrfs_swapfile_pin *sp, *entry; 9650 struct rb_node **p; 9651 struct rb_node *parent = NULL; 9652 9653 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9654 if (!sp) 9655 return -ENOMEM; 9656 sp->ptr = ptr; 9657 sp->inode = inode; 9658 sp->is_block_group = is_block_group; 9659 sp->bg_extent_count = 1; 9660 9661 spin_lock(&fs_info->swapfile_pins_lock); 9662 p = &fs_info->swapfile_pins.rb_node; 9663 while (*p) { 9664 parent = *p; 9665 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9666 if (sp->ptr < entry->ptr || 9667 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9668 p = &(*p)->rb_left; 9669 } else if (sp->ptr > entry->ptr || 9670 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9671 p = &(*p)->rb_right; 9672 } else { 9673 if (is_block_group) 9674 entry->bg_extent_count++; 9675 spin_unlock(&fs_info->swapfile_pins_lock); 9676 kfree(sp); 9677 return 1; 9678 } 9679 } 9680 rb_link_node(&sp->node, parent, p); 9681 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9682 spin_unlock(&fs_info->swapfile_pins_lock); 9683 return 0; 9684 } 9685 9686 /* Free all of the entries pinned by this swapfile. */ 9687 static void btrfs_free_swapfile_pins(struct inode *inode) 9688 { 9689 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9690 struct btrfs_swapfile_pin *sp; 9691 struct rb_node *node, *next; 9692 9693 spin_lock(&fs_info->swapfile_pins_lock); 9694 node = rb_first(&fs_info->swapfile_pins); 9695 while (node) { 9696 next = rb_next(node); 9697 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9698 if (sp->inode == inode) { 9699 rb_erase(&sp->node, &fs_info->swapfile_pins); 9700 if (sp->is_block_group) { 9701 btrfs_dec_block_group_swap_extents(sp->ptr, 9702 sp->bg_extent_count); 9703 btrfs_put_block_group(sp->ptr); 9704 } 9705 kfree(sp); 9706 } 9707 node = next; 9708 } 9709 spin_unlock(&fs_info->swapfile_pins_lock); 9710 } 9711 9712 struct btrfs_swap_info { 9713 u64 start; 9714 u64 block_start; 9715 u64 block_len; 9716 u64 lowest_ppage; 9717 u64 highest_ppage; 9718 unsigned long nr_pages; 9719 int nr_extents; 9720 }; 9721 9722 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9723 struct btrfs_swap_info *bsi) 9724 { 9725 unsigned long nr_pages; 9726 unsigned long max_pages; 9727 u64 first_ppage, first_ppage_reported, next_ppage; 9728 int ret; 9729 9730 /* 9731 * Our swapfile may have had its size extended after the swap header was 9732 * written. In that case activating the swapfile should not go beyond 9733 * the max size set in the swap header. 9734 */ 9735 if (bsi->nr_pages >= sis->max) 9736 return 0; 9737 9738 max_pages = sis->max - bsi->nr_pages; 9739 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9740 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9741 9742 if (first_ppage >= next_ppage) 9743 return 0; 9744 nr_pages = next_ppage - first_ppage; 9745 nr_pages = min(nr_pages, max_pages); 9746 9747 first_ppage_reported = first_ppage; 9748 if (bsi->start == 0) 9749 first_ppage_reported++; 9750 if (bsi->lowest_ppage > first_ppage_reported) 9751 bsi->lowest_ppage = first_ppage_reported; 9752 if (bsi->highest_ppage < (next_ppage - 1)) 9753 bsi->highest_ppage = next_ppage - 1; 9754 9755 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9756 if (ret < 0) 9757 return ret; 9758 bsi->nr_extents += ret; 9759 bsi->nr_pages += nr_pages; 9760 return 0; 9761 } 9762 9763 static void btrfs_swap_deactivate(struct file *file) 9764 { 9765 struct inode *inode = file_inode(file); 9766 9767 btrfs_free_swapfile_pins(inode); 9768 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9769 } 9770 9771 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9772 sector_t *span) 9773 { 9774 struct inode *inode = file_inode(file); 9775 struct btrfs_root *root = BTRFS_I(inode)->root; 9776 struct btrfs_fs_info *fs_info = root->fs_info; 9777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9778 struct extent_state *cached_state = NULL; 9779 struct extent_map *em = NULL; 9780 struct btrfs_chunk_map *map = NULL; 9781 struct btrfs_device *device = NULL; 9782 struct btrfs_swap_info bsi = { 9783 .lowest_ppage = (sector_t)-1ULL, 9784 }; 9785 int ret = 0; 9786 u64 isize; 9787 u64 start; 9788 9789 /* 9790 * If the swap file was just created, make sure delalloc is done. If the 9791 * file changes again after this, the user is doing something stupid and 9792 * we don't really care. 9793 */ 9794 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9795 if (ret) 9796 return ret; 9797 9798 /* 9799 * The inode is locked, so these flags won't change after we check them. 9800 */ 9801 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9802 btrfs_warn(fs_info, "swapfile must not be compressed"); 9803 return -EINVAL; 9804 } 9805 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9806 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9807 return -EINVAL; 9808 } 9809 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9810 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9811 return -EINVAL; 9812 } 9813 9814 /* 9815 * Balance or device remove/replace/resize can move stuff around from 9816 * under us. The exclop protection makes sure they aren't running/won't 9817 * run concurrently while we are mapping the swap extents, and 9818 * fs_info->swapfile_pins prevents them from running while the swap 9819 * file is active and moving the extents. Note that this also prevents 9820 * a concurrent device add which isn't actually necessary, but it's not 9821 * really worth the trouble to allow it. 9822 */ 9823 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9824 btrfs_warn(fs_info, 9825 "cannot activate swapfile while exclusive operation is running"); 9826 return -EBUSY; 9827 } 9828 9829 /* 9830 * Prevent snapshot creation while we are activating the swap file. 9831 * We do not want to race with snapshot creation. If snapshot creation 9832 * already started before we bumped nr_swapfiles from 0 to 1 and 9833 * completes before the first write into the swap file after it is 9834 * activated, than that write would fallback to COW. 9835 */ 9836 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9837 btrfs_exclop_finish(fs_info); 9838 btrfs_warn(fs_info, 9839 "cannot activate swapfile because snapshot creation is in progress"); 9840 return -EINVAL; 9841 } 9842 /* 9843 * Snapshots can create extents which require COW even if NODATACOW is 9844 * set. We use this counter to prevent snapshots. We must increment it 9845 * before walking the extents because we don't want a concurrent 9846 * snapshot to run after we've already checked the extents. 9847 * 9848 * It is possible that subvolume is marked for deletion but still not 9849 * removed yet. To prevent this race, we check the root status before 9850 * activating the swapfile. 9851 */ 9852 spin_lock(&root->root_item_lock); 9853 if (btrfs_root_dead(root)) { 9854 spin_unlock(&root->root_item_lock); 9855 9856 btrfs_exclop_finish(fs_info); 9857 btrfs_warn(fs_info, 9858 "cannot activate swapfile because subvolume %llu is being deleted", 9859 btrfs_root_id(root)); 9860 return -EPERM; 9861 } 9862 atomic_inc(&root->nr_swapfiles); 9863 spin_unlock(&root->root_item_lock); 9864 9865 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9866 9867 lock_extent(io_tree, 0, isize - 1, &cached_state); 9868 start = 0; 9869 while (start < isize) { 9870 u64 logical_block_start, physical_block_start; 9871 struct btrfs_block_group *bg; 9872 u64 len = isize - start; 9873 9874 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9875 if (IS_ERR(em)) { 9876 ret = PTR_ERR(em); 9877 goto out; 9878 } 9879 9880 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9881 btrfs_warn(fs_info, "swapfile must not have holes"); 9882 ret = -EINVAL; 9883 goto out; 9884 } 9885 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9886 /* 9887 * It's unlikely we'll ever actually find ourselves 9888 * here, as a file small enough to fit inline won't be 9889 * big enough to store more than the swap header, but in 9890 * case something changes in the future, let's catch it 9891 * here rather than later. 9892 */ 9893 btrfs_warn(fs_info, "swapfile must not be inline"); 9894 ret = -EINVAL; 9895 goto out; 9896 } 9897 if (extent_map_is_compressed(em)) { 9898 btrfs_warn(fs_info, "swapfile must not be compressed"); 9899 ret = -EINVAL; 9900 goto out; 9901 } 9902 9903 logical_block_start = extent_map_block_start(em) + (start - em->start); 9904 len = min(len, em->len - (start - em->start)); 9905 free_extent_map(em); 9906 em = NULL; 9907 9908 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9909 if (ret < 0) { 9910 goto out; 9911 } else if (ret) { 9912 ret = 0; 9913 } else { 9914 btrfs_warn(fs_info, 9915 "swapfile must not be copy-on-write"); 9916 ret = -EINVAL; 9917 goto out; 9918 } 9919 9920 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9921 if (IS_ERR(map)) { 9922 ret = PTR_ERR(map); 9923 goto out; 9924 } 9925 9926 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9927 btrfs_warn(fs_info, 9928 "swapfile must have single data profile"); 9929 ret = -EINVAL; 9930 goto out; 9931 } 9932 9933 if (device == NULL) { 9934 device = map->stripes[0].dev; 9935 ret = btrfs_add_swapfile_pin(inode, device, false); 9936 if (ret == 1) 9937 ret = 0; 9938 else if (ret) 9939 goto out; 9940 } else if (device != map->stripes[0].dev) { 9941 btrfs_warn(fs_info, "swapfile must be on one device"); 9942 ret = -EINVAL; 9943 goto out; 9944 } 9945 9946 physical_block_start = (map->stripes[0].physical + 9947 (logical_block_start - map->start)); 9948 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9949 btrfs_free_chunk_map(map); 9950 map = NULL; 9951 9952 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9953 if (!bg) { 9954 btrfs_warn(fs_info, 9955 "could not find block group containing swapfile"); 9956 ret = -EINVAL; 9957 goto out; 9958 } 9959 9960 if (!btrfs_inc_block_group_swap_extents(bg)) { 9961 btrfs_warn(fs_info, 9962 "block group for swapfile at %llu is read-only%s", 9963 bg->start, 9964 atomic_read(&fs_info->scrubs_running) ? 9965 " (scrub running)" : ""); 9966 btrfs_put_block_group(bg); 9967 ret = -EINVAL; 9968 goto out; 9969 } 9970 9971 ret = btrfs_add_swapfile_pin(inode, bg, true); 9972 if (ret) { 9973 btrfs_put_block_group(bg); 9974 if (ret == 1) 9975 ret = 0; 9976 else 9977 goto out; 9978 } 9979 9980 if (bsi.block_len && 9981 bsi.block_start + bsi.block_len == physical_block_start) { 9982 bsi.block_len += len; 9983 } else { 9984 if (bsi.block_len) { 9985 ret = btrfs_add_swap_extent(sis, &bsi); 9986 if (ret) 9987 goto out; 9988 } 9989 bsi.start = start; 9990 bsi.block_start = physical_block_start; 9991 bsi.block_len = len; 9992 } 9993 9994 start += len; 9995 } 9996 9997 if (bsi.block_len) 9998 ret = btrfs_add_swap_extent(sis, &bsi); 9999 10000 out: 10001 if (!IS_ERR_OR_NULL(em)) 10002 free_extent_map(em); 10003 if (!IS_ERR_OR_NULL(map)) 10004 btrfs_free_chunk_map(map); 10005 10006 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10007 10008 if (ret) 10009 btrfs_swap_deactivate(file); 10010 10011 btrfs_drew_write_unlock(&root->snapshot_lock); 10012 10013 btrfs_exclop_finish(fs_info); 10014 10015 if (ret) 10016 return ret; 10017 10018 if (device) 10019 sis->bdev = device->bdev; 10020 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10021 sis->max = bsi.nr_pages; 10022 sis->pages = bsi.nr_pages - 1; 10023 sis->highest_bit = bsi.nr_pages - 1; 10024 return bsi.nr_extents; 10025 } 10026 #else 10027 static void btrfs_swap_deactivate(struct file *file) 10028 { 10029 } 10030 10031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10032 sector_t *span) 10033 { 10034 return -EOPNOTSUPP; 10035 } 10036 #endif 10037 10038 /* 10039 * Update the number of bytes used in the VFS' inode. When we replace extents in 10040 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10041 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10042 * always get a correct value. 10043 */ 10044 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10045 const u64 add_bytes, 10046 const u64 del_bytes) 10047 { 10048 if (add_bytes == del_bytes) 10049 return; 10050 10051 spin_lock(&inode->lock); 10052 if (del_bytes > 0) 10053 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10054 if (add_bytes > 0) 10055 inode_add_bytes(&inode->vfs_inode, add_bytes); 10056 spin_unlock(&inode->lock); 10057 } 10058 10059 /* 10060 * Verify that there are no ordered extents for a given file range. 10061 * 10062 * @inode: The target inode. 10063 * @start: Start offset of the file range, should be sector size aligned. 10064 * @end: End offset (inclusive) of the file range, its value +1 should be 10065 * sector size aligned. 10066 * 10067 * This should typically be used for cases where we locked an inode's VFS lock in 10068 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10069 * we have flushed all delalloc in the range, we have waited for all ordered 10070 * extents in the range to complete and finally we have locked the file range in 10071 * the inode's io_tree. 10072 */ 10073 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10074 { 10075 struct btrfs_root *root = inode->root; 10076 struct btrfs_ordered_extent *ordered; 10077 10078 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10079 return; 10080 10081 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10082 if (ordered) { 10083 btrfs_err(root->fs_info, 10084 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10085 start, end, btrfs_ino(inode), btrfs_root_id(root), 10086 ordered->file_offset, 10087 ordered->file_offset + ordered->num_bytes - 1); 10088 btrfs_put_ordered_extent(ordered); 10089 } 10090 10091 ASSERT(ordered == NULL); 10092 } 10093 10094 /* 10095 * Find the first inode with a minimum number. 10096 * 10097 * @root: The root to search for. 10098 * @min_ino: The minimum inode number. 10099 * 10100 * Find the first inode in the @root with a number >= @min_ino and return it. 10101 * Returns NULL if no such inode found. 10102 */ 10103 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10104 { 10105 struct btrfs_inode *inode; 10106 unsigned long from = min_ino; 10107 10108 xa_lock(&root->inodes); 10109 while (true) { 10110 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10111 if (!inode) 10112 break; 10113 if (igrab(&inode->vfs_inode)) 10114 break; 10115 10116 from = btrfs_ino(inode) + 1; 10117 cond_resched_lock(&root->inodes.xa_lock); 10118 } 10119 xa_unlock(&root->inodes); 10120 10121 return inode; 10122 } 10123 10124 static const struct inode_operations btrfs_dir_inode_operations = { 10125 .getattr = btrfs_getattr, 10126 .lookup = btrfs_lookup, 10127 .create = btrfs_create, 10128 .unlink = btrfs_unlink, 10129 .link = btrfs_link, 10130 .mkdir = btrfs_mkdir, 10131 .rmdir = btrfs_rmdir, 10132 .rename = btrfs_rename2, 10133 .symlink = btrfs_symlink, 10134 .setattr = btrfs_setattr, 10135 .mknod = btrfs_mknod, 10136 .listxattr = btrfs_listxattr, 10137 .permission = btrfs_permission, 10138 .get_inode_acl = btrfs_get_acl, 10139 .set_acl = btrfs_set_acl, 10140 .update_time = btrfs_update_time, 10141 .tmpfile = btrfs_tmpfile, 10142 .fileattr_get = btrfs_fileattr_get, 10143 .fileattr_set = btrfs_fileattr_set, 10144 }; 10145 10146 static const struct file_operations btrfs_dir_file_operations = { 10147 .llseek = btrfs_dir_llseek, 10148 .read = generic_read_dir, 10149 .iterate_shared = btrfs_real_readdir, 10150 .open = btrfs_opendir, 10151 .unlocked_ioctl = btrfs_ioctl, 10152 #ifdef CONFIG_COMPAT 10153 .compat_ioctl = btrfs_compat_ioctl, 10154 #endif 10155 .release = btrfs_release_file, 10156 .fsync = btrfs_sync_file, 10157 }; 10158 10159 /* 10160 * btrfs doesn't support the bmap operation because swapfiles 10161 * use bmap to make a mapping of extents in the file. They assume 10162 * these extents won't change over the life of the file and they 10163 * use the bmap result to do IO directly to the drive. 10164 * 10165 * the btrfs bmap call would return logical addresses that aren't 10166 * suitable for IO and they also will change frequently as COW 10167 * operations happen. So, swapfile + btrfs == corruption. 10168 * 10169 * For now we're avoiding this by dropping bmap. 10170 */ 10171 static const struct address_space_operations btrfs_aops = { 10172 .read_folio = btrfs_read_folio, 10173 .writepages = btrfs_writepages, 10174 .readahead = btrfs_readahead, 10175 .invalidate_folio = btrfs_invalidate_folio, 10176 .launder_folio = btrfs_launder_folio, 10177 .release_folio = btrfs_release_folio, 10178 .migrate_folio = btrfs_migrate_folio, 10179 .dirty_folio = filemap_dirty_folio, 10180 .error_remove_folio = generic_error_remove_folio, 10181 .swap_activate = btrfs_swap_activate, 10182 .swap_deactivate = btrfs_swap_deactivate, 10183 }; 10184 10185 static const struct inode_operations btrfs_file_inode_operations = { 10186 .getattr = btrfs_getattr, 10187 .setattr = btrfs_setattr, 10188 .listxattr = btrfs_listxattr, 10189 .permission = btrfs_permission, 10190 .fiemap = btrfs_fiemap, 10191 .get_inode_acl = btrfs_get_acl, 10192 .set_acl = btrfs_set_acl, 10193 .update_time = btrfs_update_time, 10194 .fileattr_get = btrfs_fileattr_get, 10195 .fileattr_set = btrfs_fileattr_set, 10196 }; 10197 static const struct inode_operations btrfs_special_inode_operations = { 10198 .getattr = btrfs_getattr, 10199 .setattr = btrfs_setattr, 10200 .permission = btrfs_permission, 10201 .listxattr = btrfs_listxattr, 10202 .get_inode_acl = btrfs_get_acl, 10203 .set_acl = btrfs_set_acl, 10204 .update_time = btrfs_update_time, 10205 }; 10206 static const struct inode_operations btrfs_symlink_inode_operations = { 10207 .get_link = page_get_link, 10208 .getattr = btrfs_getattr, 10209 .setattr = btrfs_setattr, 10210 .permission = btrfs_permission, 10211 .listxattr = btrfs_listxattr, 10212 .update_time = btrfs_update_time, 10213 }; 10214 10215 const struct dentry_operations btrfs_dentry_operations = { 10216 .d_delete = btrfs_dentry_delete, 10217 }; 10218