xref: /linux/fs/btrfs/inode.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct folio *locked_folio, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct folio *locked_folio,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct folio *folio;
403 
404 	if (locked_folio) {
405 		page_start = folio_pos(locked_folio);
406 		page_end = page_start + folio_size(locked_folio) - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
425 		index++;
426 		if (IS_ERR(folio))
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 						offset, bytes);
436 		folio_put(folio);
437 	}
438 
439 	if (locked_folio) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + folio_size(locked_folio))
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - folio_pos(locked_folio) -
451 				folio_size(locked_folio);
452 			offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 		}
454 	}
455 
456 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458 
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460 
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 				     struct btrfs_new_inode_args *args)
463 {
464 	int err;
465 
466 	if (args->default_acl) {
467 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 				      ACL_TYPE_DEFAULT);
469 		if (err)
470 			return err;
471 	}
472 	if (args->acl) {
473 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 		if (err)
475 			return err;
476 	}
477 	if (!args->default_acl && !args->acl)
478 		cache_no_acl(args->inode);
479 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 					 &args->dentry->d_name);
481 }
482 
483 /*
484  * this does all the hard work for inserting an inline extent into
485  * the btree.  The caller should have done a btrfs_drop_extents so that
486  * no overlapping inline items exist in the btree
487  */
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 				struct btrfs_path *path,
490 				struct btrfs_inode *inode, bool extent_inserted,
491 				size_t size, size_t compressed_size,
492 				int compress_type,
493 				struct folio *compressed_folio,
494 				bool update_i_size)
495 {
496 	struct btrfs_root *root = inode->root;
497 	struct extent_buffer *leaf;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		struct folio *folio;
558 
559 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping,
560 					    0, 0, 0);
561 		ASSERT(!IS_ERR(folio));
562 		btrfs_set_file_extent_compression(leaf, ei, 0);
563 		kaddr = kmap_local_folio(folio, 0);
564 		write_extent_buffer(leaf, kaddr, ptr, size);
565 		kunmap_local(kaddr);
566 		folio_put(folio);
567 	}
568 	btrfs_mark_buffer_dirty(trans, leaf);
569 	btrfs_release_path(path);
570 
571 	/*
572 	 * We align size to sectorsize for inline extents just for simplicity
573 	 * sake.
574 	 */
575 	ret = btrfs_inode_set_file_extent_range(inode, 0,
576 					ALIGN(size, root->fs_info->sectorsize));
577 	if (ret)
578 		goto fail;
579 
580 	/*
581 	 * We're an inline extent, so nobody can extend the file past i_size
582 	 * without locking a page we already have locked.
583 	 *
584 	 * We must do any i_size and inode updates before we unlock the pages.
585 	 * Otherwise we could end up racing with unlink.
586 	 */
587 	i_size = i_size_read(&inode->vfs_inode);
588 	if (update_i_size && size > i_size) {
589 		i_size_write(&inode->vfs_inode, size);
590 		i_size = size;
591 	}
592 	inode->disk_i_size = i_size;
593 
594 fail:
595 	return ret;
596 }
597 
598 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
599 				      u64 offset, u64 size,
600 				      size_t compressed_size)
601 {
602 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
603 	u64 data_len = (compressed_size ?: size);
604 
605 	/* Inline extents must start at offset 0. */
606 	if (offset != 0)
607 		return false;
608 
609 	/*
610 	 * Due to the page size limit, for subpage we can only trigger the
611 	 * writeback for the dirty sectors of page, that means data writeback
612 	 * is doing more writeback than what we want.
613 	 *
614 	 * This is especially unexpected for some call sites like fallocate,
615 	 * where we only increase i_size after everything is done.
616 	 * This means we can trigger inline extent even if we didn't want to.
617 	 * So here we skip inline extent creation completely.
618 	 */
619 	if (fs_info->sectorsize != PAGE_SIZE)
620 		return false;
621 
622 	/* Inline extents are limited to sectorsize. */
623 	if (size > fs_info->sectorsize)
624 		return false;
625 
626 	/* We cannot exceed the maximum inline data size. */
627 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
628 		return false;
629 
630 	/* We cannot exceed the user specified max_inline size. */
631 	if (data_len > fs_info->max_inline)
632 		return false;
633 
634 	/* Inline extents must be the entirety of the file. */
635 	if (size < i_size_read(&inode->vfs_inode))
636 		return false;
637 
638 	return true;
639 }
640 
641 /*
642  * conditionally insert an inline extent into the file.  This
643  * does the checks required to make sure the data is small enough
644  * to fit as an inline extent.
645  *
646  * If being used directly, you must have already checked we're allowed to cow
647  * the range by getting true from can_cow_file_range_inline().
648  */
649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
650 					    u64 size, size_t compressed_size,
651 					    int compress_type,
652 					    struct folio *compressed_folio,
653 					    bool update_i_size)
654 {
655 	struct btrfs_drop_extents_args drop_args = { 0 };
656 	struct btrfs_root *root = inode->root;
657 	struct btrfs_fs_info *fs_info = root->fs_info;
658 	struct btrfs_trans_handle *trans;
659 	u64 data_len = (compressed_size ?: size);
660 	int ret;
661 	struct btrfs_path *path;
662 
663 	path = btrfs_alloc_path();
664 	if (!path)
665 		return -ENOMEM;
666 
667 	trans = btrfs_join_transaction(root);
668 	if (IS_ERR(trans)) {
669 		btrfs_free_path(path);
670 		return PTR_ERR(trans);
671 	}
672 	trans->block_rsv = &inode->block_rsv;
673 
674 	drop_args.path = path;
675 	drop_args.start = 0;
676 	drop_args.end = fs_info->sectorsize;
677 	drop_args.drop_cache = true;
678 	drop_args.replace_extent = true;
679 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
680 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
681 	if (ret) {
682 		btrfs_abort_transaction(trans, ret);
683 		goto out;
684 	}
685 
686 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
687 				   size, compressed_size, compress_type,
688 				   compressed_folio, update_i_size);
689 	if (ret && ret != -ENOSPC) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto out;
692 	} else if (ret == -ENOSPC) {
693 		ret = 1;
694 		goto out;
695 	}
696 
697 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
698 	ret = btrfs_update_inode(trans, inode);
699 	if (ret && ret != -ENOSPC) {
700 		btrfs_abort_transaction(trans, ret);
701 		goto out;
702 	} else if (ret == -ENOSPC) {
703 		ret = 1;
704 		goto out;
705 	}
706 
707 	btrfs_set_inode_full_sync(inode);
708 out:
709 	/*
710 	 * Don't forget to free the reserved space, as for inlined extent
711 	 * it won't count as data extent, free them directly here.
712 	 * And at reserve time, it's always aligned to page size, so
713 	 * just free one page here.
714 	 */
715 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
716 	btrfs_free_path(path);
717 	btrfs_end_transaction(trans);
718 	return ret;
719 }
720 
721 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
722 					  struct folio *locked_folio,
723 					  u64 offset, u64 end,
724 					  size_t compressed_size,
725 					  int compress_type,
726 					  struct folio *compressed_folio,
727 					  bool update_i_size)
728 {
729 	struct extent_state *cached = NULL;
730 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
731 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
732 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
733 	int ret;
734 
735 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
736 		return 1;
737 
738 	lock_extent(&inode->io_tree, offset, end, &cached);
739 	ret = __cow_file_range_inline(inode, offset, size, compressed_size,
740 				      compress_type, compressed_folio,
741 				      update_i_size);
742 	if (ret > 0) {
743 		unlock_extent(&inode->io_tree, offset, end, &cached);
744 		return ret;
745 	}
746 
747 	/*
748 	 * In the successful case (ret == 0 here), cow_file_range will return 1.
749 	 *
750 	 * Quite a bit further up the callstack in extent_writepage(), ret == 1
751 	 * is treated as a short circuited success and does not unlock the folio,
752 	 * so we must do it here.
753 	 *
754 	 * In the failure case, the locked_folio does get unlocked by
755 	 * btrfs_folio_end_all_writers, which asserts that it is still locked
756 	 * at that point, so we must *not* unlock it here.
757 	 *
758 	 * The other two callsites in compress_file_range do not have a
759 	 * locked_folio, so they are not relevant to this logic.
760 	 */
761 	if (ret == 0)
762 		locked_folio = NULL;
763 
764 	extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
765 				     clear_flags, PAGE_UNLOCK |
766 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
767 	return ret;
768 }
769 
770 struct async_extent {
771 	u64 start;
772 	u64 ram_size;
773 	u64 compressed_size;
774 	struct folio **folios;
775 	unsigned long nr_folios;
776 	int compress_type;
777 	struct list_head list;
778 };
779 
780 struct async_chunk {
781 	struct btrfs_inode *inode;
782 	struct folio *locked_folio;
783 	u64 start;
784 	u64 end;
785 	blk_opf_t write_flags;
786 	struct list_head extents;
787 	struct cgroup_subsys_state *blkcg_css;
788 	struct btrfs_work work;
789 	struct async_cow *async_cow;
790 };
791 
792 struct async_cow {
793 	atomic_t num_chunks;
794 	struct async_chunk chunks[];
795 };
796 
797 static noinline int add_async_extent(struct async_chunk *cow,
798 				     u64 start, u64 ram_size,
799 				     u64 compressed_size,
800 				     struct folio **folios,
801 				     unsigned long nr_folios,
802 				     int compress_type)
803 {
804 	struct async_extent *async_extent;
805 
806 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
807 	if (!async_extent)
808 		return -ENOMEM;
809 	async_extent->start = start;
810 	async_extent->ram_size = ram_size;
811 	async_extent->compressed_size = compressed_size;
812 	async_extent->folios = folios;
813 	async_extent->nr_folios = nr_folios;
814 	async_extent->compress_type = compress_type;
815 	list_add_tail(&async_extent->list, &cow->extents);
816 	return 0;
817 }
818 
819 /*
820  * Check if the inode needs to be submitted to compression, based on mount
821  * options, defragmentation, properties or heuristics.
822  */
823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
824 				      u64 end)
825 {
826 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
827 
828 	if (!btrfs_inode_can_compress(inode)) {
829 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
830 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
831 			btrfs_ino(inode));
832 		return 0;
833 	}
834 	/*
835 	 * Special check for subpage.
836 	 *
837 	 * We lock the full page then run each delalloc range in the page, thus
838 	 * for the following case, we will hit some subpage specific corner case:
839 	 *
840 	 * 0		32K		64K
841 	 * |	|///////|	|///////|
842 	 *		\- A		\- B
843 	 *
844 	 * In above case, both range A and range B will try to unlock the full
845 	 * page [0, 64K), causing the one finished later will have page
846 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
847 	 *
848 	 * So here we add an artificial limit that subpage compression can only
849 	 * if the range is fully page aligned.
850 	 *
851 	 * In theory we only need to ensure the first page is fully covered, but
852 	 * the tailing partial page will be locked until the full compression
853 	 * finishes, delaying the write of other range.
854 	 *
855 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
856 	 * first to prevent any submitted async extent to unlock the full page.
857 	 * By this, we can ensure for subpage case that only the last async_cow
858 	 * will unlock the full page.
859 	 */
860 	if (fs_info->sectorsize < PAGE_SIZE) {
861 		if (!PAGE_ALIGNED(start) ||
862 		    !PAGE_ALIGNED(end + 1))
863 			return 0;
864 	}
865 
866 	/* force compress */
867 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
868 		return 1;
869 	/* defrag ioctl */
870 	if (inode->defrag_compress)
871 		return 1;
872 	/* bad compression ratios */
873 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
874 		return 0;
875 	if (btrfs_test_opt(fs_info, COMPRESS) ||
876 	    inode->flags & BTRFS_INODE_COMPRESS ||
877 	    inode->prop_compress)
878 		return btrfs_compress_heuristic(inode, start, end);
879 	return 0;
880 }
881 
882 static inline void inode_should_defrag(struct btrfs_inode *inode,
883 		u64 start, u64 end, u64 num_bytes, u32 small_write)
884 {
885 	/* If this is a small write inside eof, kick off a defrag */
886 	if (num_bytes < small_write &&
887 	    (start > 0 || end + 1 < inode->disk_i_size))
888 		btrfs_add_inode_defrag(inode, small_write);
889 }
890 
891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
892 {
893 	unsigned long end_index = end >> PAGE_SHIFT;
894 	struct folio *folio;
895 	int ret = 0;
896 
897 	for (unsigned long index = start >> PAGE_SHIFT;
898 	     index <= end_index; index++) {
899 		folio = __filemap_get_folio(inode->i_mapping, index, 0, 0);
900 		if (IS_ERR(folio)) {
901 			if (!ret)
902 				ret = PTR_ERR(folio);
903 			continue;
904 		}
905 		folio_clear_dirty_for_io(folio);
906 		folio_put(folio);
907 	}
908 	return ret;
909 }
910 
911 /*
912  * Work queue call back to started compression on a file and pages.
913  *
914  * This is done inside an ordered work queue, and the compression is spread
915  * across many cpus.  The actual IO submission is step two, and the ordered work
916  * queue takes care of making sure that happens in the same order things were
917  * put onto the queue by writepages and friends.
918  *
919  * If this code finds it can't get good compression, it puts an entry onto the
920  * work queue to write the uncompressed bytes.  This makes sure that both
921  * compressed inodes and uncompressed inodes are written in the same order that
922  * the flusher thread sent them down.
923  */
924 static void compress_file_range(struct btrfs_work *work)
925 {
926 	struct async_chunk *async_chunk =
927 		container_of(work, struct async_chunk, work);
928 	struct btrfs_inode *inode = async_chunk->inode;
929 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
930 	struct address_space *mapping = inode->vfs_inode.i_mapping;
931 	u64 blocksize = fs_info->sectorsize;
932 	u64 start = async_chunk->start;
933 	u64 end = async_chunk->end;
934 	u64 actual_end;
935 	u64 i_size;
936 	int ret = 0;
937 	struct folio **folios;
938 	unsigned long nr_folios;
939 	unsigned long total_compressed = 0;
940 	unsigned long total_in = 0;
941 	unsigned int poff;
942 	int i;
943 	int compress_type = fs_info->compress_type;
944 
945 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
946 
947 	/*
948 	 * We need to call clear_page_dirty_for_io on each page in the range.
949 	 * Otherwise applications with the file mmap'd can wander in and change
950 	 * the page contents while we are compressing them.
951 	 */
952 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
953 
954 	/*
955 	 * All the folios should have been locked thus no failure.
956 	 *
957 	 * And even if some folios are missing, btrfs_compress_folios()
958 	 * would handle them correctly, so here just do an ASSERT() check for
959 	 * early logic errors.
960 	 */
961 	ASSERT(ret == 0);
962 
963 	/*
964 	 * We need to save i_size before now because it could change in between
965 	 * us evaluating the size and assigning it.  This is because we lock and
966 	 * unlock the page in truncate and fallocate, and then modify the i_size
967 	 * later on.
968 	 *
969 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
970 	 * does that for us.
971 	 */
972 	barrier();
973 	i_size = i_size_read(&inode->vfs_inode);
974 	barrier();
975 	actual_end = min_t(u64, i_size, end + 1);
976 again:
977 	folios = NULL;
978 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
979 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
980 
981 	/*
982 	 * we don't want to send crud past the end of i_size through
983 	 * compression, that's just a waste of CPU time.  So, if the
984 	 * end of the file is before the start of our current
985 	 * requested range of bytes, we bail out to the uncompressed
986 	 * cleanup code that can deal with all of this.
987 	 *
988 	 * It isn't really the fastest way to fix things, but this is a
989 	 * very uncommon corner.
990 	 */
991 	if (actual_end <= start)
992 		goto cleanup_and_bail_uncompressed;
993 
994 	total_compressed = actual_end - start;
995 
996 	/*
997 	 * Skip compression for a small file range(<=blocksize) that
998 	 * isn't an inline extent, since it doesn't save disk space at all.
999 	 */
1000 	if (total_compressed <= blocksize &&
1001 	   (start > 0 || end + 1 < inode->disk_i_size))
1002 		goto cleanup_and_bail_uncompressed;
1003 
1004 	/*
1005 	 * For subpage case, we require full page alignment for the sector
1006 	 * aligned range.
1007 	 * Thus we must also check against @actual_end, not just @end.
1008 	 */
1009 	if (blocksize < PAGE_SIZE) {
1010 		if (!PAGE_ALIGNED(start) ||
1011 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
1012 			goto cleanup_and_bail_uncompressed;
1013 	}
1014 
1015 	total_compressed = min_t(unsigned long, total_compressed,
1016 			BTRFS_MAX_UNCOMPRESSED);
1017 	total_in = 0;
1018 	ret = 0;
1019 
1020 	/*
1021 	 * We do compression for mount -o compress and when the inode has not
1022 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
1023 	 * discover bad compression ratios.
1024 	 */
1025 	if (!inode_need_compress(inode, start, end))
1026 		goto cleanup_and_bail_uncompressed;
1027 
1028 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1029 	if (!folios) {
1030 		/*
1031 		 * Memory allocation failure is not a fatal error, we can fall
1032 		 * back to uncompressed code.
1033 		 */
1034 		goto cleanup_and_bail_uncompressed;
1035 	}
1036 
1037 	if (inode->defrag_compress)
1038 		compress_type = inode->defrag_compress;
1039 	else if (inode->prop_compress)
1040 		compress_type = inode->prop_compress;
1041 
1042 	/* Compression level is applied here. */
1043 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1044 				    mapping, start, folios, &nr_folios, &total_in,
1045 				    &total_compressed);
1046 	if (ret)
1047 		goto mark_incompressible;
1048 
1049 	/*
1050 	 * Zero the tail end of the last page, as we might be sending it down
1051 	 * to disk.
1052 	 */
1053 	poff = offset_in_page(total_compressed);
1054 	if (poff)
1055 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1056 
1057 	/*
1058 	 * Try to create an inline extent.
1059 	 *
1060 	 * If we didn't compress the entire range, try to create an uncompressed
1061 	 * inline extent, else a compressed one.
1062 	 *
1063 	 * Check cow_file_range() for why we don't even try to create inline
1064 	 * extent for the subpage case.
1065 	 */
1066 	if (total_in < actual_end)
1067 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1068 					    BTRFS_COMPRESS_NONE, NULL, false);
1069 	else
1070 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1071 					    compress_type, folios[0], false);
1072 	if (ret <= 0) {
1073 		if (ret < 0)
1074 			mapping_set_error(mapping, -EIO);
1075 		goto free_pages;
1076 	}
1077 
1078 	/*
1079 	 * We aren't doing an inline extent. Round the compressed size up to a
1080 	 * block size boundary so the allocator does sane things.
1081 	 */
1082 	total_compressed = ALIGN(total_compressed, blocksize);
1083 
1084 	/*
1085 	 * One last check to make sure the compression is really a win, compare
1086 	 * the page count read with the blocks on disk, compression must free at
1087 	 * least one sector.
1088 	 */
1089 	total_in = round_up(total_in, fs_info->sectorsize);
1090 	if (total_compressed + blocksize > total_in)
1091 		goto mark_incompressible;
1092 
1093 	/*
1094 	 * The async work queues will take care of doing actual allocation on
1095 	 * disk for these compressed pages, and will submit the bios.
1096 	 */
1097 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1098 			       nr_folios, compress_type);
1099 	BUG_ON(ret);
1100 	if (start + total_in < end) {
1101 		start += total_in;
1102 		cond_resched();
1103 		goto again;
1104 	}
1105 	return;
1106 
1107 mark_incompressible:
1108 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1109 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1110 cleanup_and_bail_uncompressed:
1111 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1112 			       BTRFS_COMPRESS_NONE);
1113 	BUG_ON(ret);
1114 free_pages:
1115 	if (folios) {
1116 		for (i = 0; i < nr_folios; i++) {
1117 			WARN_ON(folios[i]->mapping);
1118 			btrfs_free_compr_folio(folios[i]);
1119 		}
1120 		kfree(folios);
1121 	}
1122 }
1123 
1124 static void free_async_extent_pages(struct async_extent *async_extent)
1125 {
1126 	int i;
1127 
1128 	if (!async_extent->folios)
1129 		return;
1130 
1131 	for (i = 0; i < async_extent->nr_folios; i++) {
1132 		WARN_ON(async_extent->folios[i]->mapping);
1133 		btrfs_free_compr_folio(async_extent->folios[i]);
1134 	}
1135 	kfree(async_extent->folios);
1136 	async_extent->nr_folios = 0;
1137 	async_extent->folios = NULL;
1138 }
1139 
1140 static void submit_uncompressed_range(struct btrfs_inode *inode,
1141 				      struct async_extent *async_extent,
1142 				      struct folio *locked_folio)
1143 {
1144 	u64 start = async_extent->start;
1145 	u64 end = async_extent->start + async_extent->ram_size - 1;
1146 	int ret;
1147 	struct writeback_control wbc = {
1148 		.sync_mode		= WB_SYNC_ALL,
1149 		.range_start		= start,
1150 		.range_end		= end,
1151 		.no_cgroup_owner	= 1,
1152 	};
1153 
1154 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1155 	ret = run_delalloc_cow(inode, locked_folio, start, end,
1156 			       &wbc, false);
1157 	wbc_detach_inode(&wbc);
1158 	if (ret < 0) {
1159 		btrfs_cleanup_ordered_extents(inode, locked_folio,
1160 					      start, end - start + 1);
1161 		if (locked_folio) {
1162 			const u64 page_start = folio_pos(locked_folio);
1163 
1164 			folio_start_writeback(locked_folio);
1165 			folio_end_writeback(locked_folio);
1166 			btrfs_mark_ordered_io_finished(inode, locked_folio,
1167 						       page_start, PAGE_SIZE,
1168 						       !ret);
1169 			mapping_set_error(locked_folio->mapping, ret);
1170 			folio_unlock(locked_folio);
1171 		}
1172 	}
1173 }
1174 
1175 static void submit_one_async_extent(struct async_chunk *async_chunk,
1176 				    struct async_extent *async_extent,
1177 				    u64 *alloc_hint)
1178 {
1179 	struct btrfs_inode *inode = async_chunk->inode;
1180 	struct extent_io_tree *io_tree = &inode->io_tree;
1181 	struct btrfs_root *root = inode->root;
1182 	struct btrfs_fs_info *fs_info = root->fs_info;
1183 	struct btrfs_ordered_extent *ordered;
1184 	struct btrfs_file_extent file_extent;
1185 	struct btrfs_key ins;
1186 	struct folio *locked_folio = NULL;
1187 	struct extent_state *cached = NULL;
1188 	struct extent_map *em;
1189 	int ret = 0;
1190 	u64 start = async_extent->start;
1191 	u64 end = async_extent->start + async_extent->ram_size - 1;
1192 
1193 	if (async_chunk->blkcg_css)
1194 		kthread_associate_blkcg(async_chunk->blkcg_css);
1195 
1196 	/*
1197 	 * If async_chunk->locked_folio is in the async_extent range, we need to
1198 	 * handle it.
1199 	 */
1200 	if (async_chunk->locked_folio) {
1201 		u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1202 		u64 locked_folio_end = locked_folio_start +
1203 			folio_size(async_chunk->locked_folio) - 1;
1204 
1205 		if (!(start >= locked_folio_end || end <= locked_folio_start))
1206 			locked_folio = async_chunk->locked_folio;
1207 	}
1208 
1209 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1210 		submit_uncompressed_range(inode, async_extent, locked_folio);
1211 		goto done;
1212 	}
1213 
1214 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1215 				   async_extent->compressed_size,
1216 				   async_extent->compressed_size,
1217 				   0, *alloc_hint, &ins, 1, 1);
1218 	if (ret) {
1219 		/*
1220 		 * We can't reserve contiguous space for the compressed size.
1221 		 * Unlikely, but it's possible that we could have enough
1222 		 * non-contiguous space for the uncompressed size instead.  So
1223 		 * fall back to uncompressed.
1224 		 */
1225 		submit_uncompressed_range(inode, async_extent, locked_folio);
1226 		goto done;
1227 	}
1228 
1229 	lock_extent(io_tree, start, end, &cached);
1230 
1231 	/* Here we're doing allocation and writeback of the compressed pages */
1232 	file_extent.disk_bytenr = ins.objectid;
1233 	file_extent.disk_num_bytes = ins.offset;
1234 	file_extent.ram_bytes = async_extent->ram_size;
1235 	file_extent.num_bytes = async_extent->ram_size;
1236 	file_extent.offset = 0;
1237 	file_extent.compression = async_extent->compress_type;
1238 
1239 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1240 	if (IS_ERR(em)) {
1241 		ret = PTR_ERR(em);
1242 		goto out_free_reserve;
1243 	}
1244 	free_extent_map(em);
1245 
1246 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1247 					     1 << BTRFS_ORDERED_COMPRESSED);
1248 	if (IS_ERR(ordered)) {
1249 		btrfs_drop_extent_map_range(inode, start, end, false);
1250 		ret = PTR_ERR(ordered);
1251 		goto out_free_reserve;
1252 	}
1253 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1254 
1255 	/* Clear dirty, set writeback and unlock the pages. */
1256 	extent_clear_unlock_delalloc(inode, start, end,
1257 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1258 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1259 	btrfs_submit_compressed_write(ordered,
1260 			    async_extent->folios,	/* compressed_folios */
1261 			    async_extent->nr_folios,
1262 			    async_chunk->write_flags, true);
1263 	*alloc_hint = ins.objectid + ins.offset;
1264 done:
1265 	if (async_chunk->blkcg_css)
1266 		kthread_associate_blkcg(NULL);
1267 	kfree(async_extent);
1268 	return;
1269 
1270 out_free_reserve:
1271 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1272 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1273 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1274 	extent_clear_unlock_delalloc(inode, start, end,
1275 				     NULL, &cached,
1276 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1277 				     EXTENT_DELALLOC_NEW |
1278 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1279 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1280 				     PAGE_END_WRITEBACK);
1281 	free_async_extent_pages(async_extent);
1282 	if (async_chunk->blkcg_css)
1283 		kthread_associate_blkcg(NULL);
1284 	btrfs_debug(fs_info,
1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1286 		    btrfs_root_id(root), btrfs_ino(inode), start,
1287 		    async_extent->ram_size, ret);
1288 	kfree(async_extent);
1289 }
1290 
1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1292 				     u64 num_bytes)
1293 {
1294 	struct extent_map_tree *em_tree = &inode->extent_tree;
1295 	struct extent_map *em;
1296 	u64 alloc_hint = 0;
1297 
1298 	read_lock(&em_tree->lock);
1299 	em = search_extent_mapping(em_tree, start, num_bytes);
1300 	if (em) {
1301 		/*
1302 		 * if block start isn't an actual block number then find the
1303 		 * first block in this inode and use that as a hint.  If that
1304 		 * block is also bogus then just don't worry about it.
1305 		 */
1306 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1307 			free_extent_map(em);
1308 			em = search_extent_mapping(em_tree, 0, 0);
1309 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1310 				alloc_hint = extent_map_block_start(em);
1311 			if (em)
1312 				free_extent_map(em);
1313 		} else {
1314 			alloc_hint = extent_map_block_start(em);
1315 			free_extent_map(em);
1316 		}
1317 	}
1318 	read_unlock(&em_tree->lock);
1319 
1320 	return alloc_hint;
1321 }
1322 
1323 /*
1324  * when extent_io.c finds a delayed allocation range in the file,
1325  * the call backs end up in this code.  The basic idea is to
1326  * allocate extents on disk for the range, and create ordered data structs
1327  * in ram to track those extents.
1328  *
1329  * locked_folio is the folio that writepage had locked already.  We use
1330  * it to make sure we don't do extra locks or unlocks.
1331  *
1332  * When this function fails, it unlocks all pages except @locked_folio.
1333  *
1334  * When this function successfully creates an inline extent, it returns 1 and
1335  * unlocks all pages including locked_folio and starts I/O on them.
1336  * (In reality inline extents are limited to a single page, so locked_folio is
1337  * the only page handled anyway).
1338  *
1339  * When this function succeed and creates a normal extent, the page locking
1340  * status depends on the passed in flags:
1341  *
1342  * - If @keep_locked is set, all pages are kept locked.
1343  * - Else all pages except for @locked_folio are unlocked.
1344  *
1345  * When a failure happens in the second or later iteration of the
1346  * while-loop, the ordered extents created in previous iterations are kept
1347  * intact. So, the caller must clean them up by calling
1348  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1349  * example.
1350  */
1351 static noinline int cow_file_range(struct btrfs_inode *inode,
1352 				   struct folio *locked_folio, u64 start,
1353 				   u64 end, u64 *done_offset,
1354 				   bool keep_locked, bool no_inline)
1355 {
1356 	struct btrfs_root *root = inode->root;
1357 	struct btrfs_fs_info *fs_info = root->fs_info;
1358 	struct extent_state *cached = NULL;
1359 	u64 alloc_hint = 0;
1360 	u64 orig_start = start;
1361 	u64 num_bytes;
1362 	unsigned long ram_size;
1363 	u64 cur_alloc_size = 0;
1364 	u64 min_alloc_size;
1365 	u64 blocksize = fs_info->sectorsize;
1366 	struct btrfs_key ins;
1367 	struct extent_map *em;
1368 	unsigned clear_bits;
1369 	unsigned long page_ops;
1370 	bool extent_reserved = false;
1371 	int ret = 0;
1372 
1373 	if (btrfs_is_free_space_inode(inode)) {
1374 		ret = -EINVAL;
1375 		goto out_unlock;
1376 	}
1377 
1378 	num_bytes = ALIGN(end - start + 1, blocksize);
1379 	num_bytes = max(blocksize,  num_bytes);
1380 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1381 
1382 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1383 
1384 	if (!no_inline) {
1385 		/* lets try to make an inline extent */
1386 		ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1387 					    BTRFS_COMPRESS_NONE, NULL, false);
1388 		if (ret <= 0) {
1389 			/*
1390 			 * We succeeded, return 1 so the caller knows we're done
1391 			 * with this page and already handled the IO.
1392 			 *
1393 			 * If there was an error then cow_file_range_inline() has
1394 			 * already done the cleanup.
1395 			 */
1396 			if (ret == 0)
1397 				ret = 1;
1398 			goto done;
1399 		}
1400 	}
1401 
1402 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1403 
1404 	/*
1405 	 * Relocation relies on the relocated extents to have exactly the same
1406 	 * size as the original extents. Normally writeback for relocation data
1407 	 * extents follows a NOCOW path because relocation preallocates the
1408 	 * extents. However, due to an operation such as scrub turning a block
1409 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1410 	 * an extent allocated during COW has exactly the requested size and can
1411 	 * not be split into smaller extents, otherwise relocation breaks and
1412 	 * fails during the stage where it updates the bytenr of file extent
1413 	 * items.
1414 	 */
1415 	if (btrfs_is_data_reloc_root(root))
1416 		min_alloc_size = num_bytes;
1417 	else
1418 		min_alloc_size = fs_info->sectorsize;
1419 
1420 	while (num_bytes > 0) {
1421 		struct btrfs_ordered_extent *ordered;
1422 		struct btrfs_file_extent file_extent;
1423 
1424 		cur_alloc_size = num_bytes;
1425 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1426 					   min_alloc_size, 0, alloc_hint,
1427 					   &ins, 1, 1);
1428 		if (ret == -EAGAIN) {
1429 			/*
1430 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1431 			 * file systems, which is an indication that there are
1432 			 * no active zones to allocate from at the moment.
1433 			 *
1434 			 * If this is the first loop iteration, wait for at
1435 			 * least one zone to finish before retrying the
1436 			 * allocation.  Otherwise ask the caller to write out
1437 			 * the already allocated blocks before coming back to
1438 			 * us, or return -ENOSPC if it can't handle retries.
1439 			 */
1440 			ASSERT(btrfs_is_zoned(fs_info));
1441 			if (start == orig_start) {
1442 				wait_on_bit_io(&inode->root->fs_info->flags,
1443 					       BTRFS_FS_NEED_ZONE_FINISH,
1444 					       TASK_UNINTERRUPTIBLE);
1445 				continue;
1446 			}
1447 			if (done_offset) {
1448 				*done_offset = start - 1;
1449 				return 0;
1450 			}
1451 			ret = -ENOSPC;
1452 		}
1453 		if (ret < 0)
1454 			goto out_unlock;
1455 		cur_alloc_size = ins.offset;
1456 		extent_reserved = true;
1457 
1458 		ram_size = ins.offset;
1459 		file_extent.disk_bytenr = ins.objectid;
1460 		file_extent.disk_num_bytes = ins.offset;
1461 		file_extent.num_bytes = ins.offset;
1462 		file_extent.ram_bytes = ins.offset;
1463 		file_extent.offset = 0;
1464 		file_extent.compression = BTRFS_COMPRESS_NONE;
1465 
1466 		lock_extent(&inode->io_tree, start, start + ram_size - 1,
1467 			    &cached);
1468 
1469 		em = btrfs_create_io_em(inode, start, &file_extent,
1470 					BTRFS_ORDERED_REGULAR);
1471 		if (IS_ERR(em)) {
1472 			unlock_extent(&inode->io_tree, start,
1473 				      start + ram_size - 1, &cached);
1474 			ret = PTR_ERR(em);
1475 			goto out_reserve;
1476 		}
1477 		free_extent_map(em);
1478 
1479 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1480 						     1 << BTRFS_ORDERED_REGULAR);
1481 		if (IS_ERR(ordered)) {
1482 			unlock_extent(&inode->io_tree, start,
1483 				      start + ram_size - 1, &cached);
1484 			ret = PTR_ERR(ordered);
1485 			goto out_drop_extent_cache;
1486 		}
1487 
1488 		if (btrfs_is_data_reloc_root(root)) {
1489 			ret = btrfs_reloc_clone_csums(ordered);
1490 
1491 			/*
1492 			 * Only drop cache here, and process as normal.
1493 			 *
1494 			 * We must not allow extent_clear_unlock_delalloc()
1495 			 * at out_unlock label to free meta of this ordered
1496 			 * extent, as its meta should be freed by
1497 			 * btrfs_finish_ordered_io().
1498 			 *
1499 			 * So we must continue until @start is increased to
1500 			 * skip current ordered extent.
1501 			 */
1502 			if (ret)
1503 				btrfs_drop_extent_map_range(inode, start,
1504 							    start + ram_size - 1,
1505 							    false);
1506 		}
1507 		btrfs_put_ordered_extent(ordered);
1508 
1509 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1510 
1511 		/*
1512 		 * We're not doing compressed IO, don't unlock the first page
1513 		 * (which the caller expects to stay locked), don't clear any
1514 		 * dirty bits and don't set any writeback bits
1515 		 *
1516 		 * Do set the Ordered (Private2) bit so we know this page was
1517 		 * properly setup for writepage.
1518 		 */
1519 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1520 		page_ops |= PAGE_SET_ORDERED;
1521 
1522 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1523 					     locked_folio, &cached,
1524 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1525 					     page_ops);
1526 		if (num_bytes < cur_alloc_size)
1527 			num_bytes = 0;
1528 		else
1529 			num_bytes -= cur_alloc_size;
1530 		alloc_hint = ins.objectid + ins.offset;
1531 		start += cur_alloc_size;
1532 		extent_reserved = false;
1533 
1534 		/*
1535 		 * btrfs_reloc_clone_csums() error, since start is increased
1536 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1537 		 * free metadata of current ordered extent, we're OK to exit.
1538 		 */
1539 		if (ret)
1540 			goto out_unlock;
1541 	}
1542 done:
1543 	if (done_offset)
1544 		*done_offset = end;
1545 	return ret;
1546 
1547 out_drop_extent_cache:
1548 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1549 out_reserve:
1550 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1551 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1552 out_unlock:
1553 	/*
1554 	 * Now, we have three regions to clean up:
1555 	 *
1556 	 * |-------(1)----|---(2)---|-------------(3)----------|
1557 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1558 	 *
1559 	 * We process each region below.
1560 	 */
1561 
1562 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1563 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1564 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1565 
1566 	/*
1567 	 * For the range (1). We have already instantiated the ordered extents
1568 	 * for this region. They are cleaned up by
1569 	 * btrfs_cleanup_ordered_extents() in e.g,
1570 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1571 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1572 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1573 	 * function.
1574 	 *
1575 	 * However, in case of @keep_locked, we still need to unlock the pages
1576 	 * (except @locked_folio) to ensure all the pages are unlocked.
1577 	 */
1578 	if (keep_locked && orig_start < start) {
1579 		if (!locked_folio)
1580 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1581 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1582 					     locked_folio, NULL, 0, page_ops);
1583 	}
1584 
1585 	/*
1586 	 * At this point we're unlocked, we want to make sure we're only
1587 	 * clearing these flags under the extent lock, so lock the rest of the
1588 	 * range and clear everything up.
1589 	 */
1590 	lock_extent(&inode->io_tree, start, end, NULL);
1591 
1592 	/*
1593 	 * For the range (2). If we reserved an extent for our delalloc range
1594 	 * (or a subrange) and failed to create the respective ordered extent,
1595 	 * then it means that when we reserved the extent we decremented the
1596 	 * extent's size from the data space_info's bytes_may_use counter and
1597 	 * incremented the space_info's bytes_reserved counter by the same
1598 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1599 	 * to decrement again the data space_info's bytes_may_use counter,
1600 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1601 	 */
1602 	if (extent_reserved) {
1603 		extent_clear_unlock_delalloc(inode, start,
1604 					     start + cur_alloc_size - 1,
1605 					     locked_folio, &cached, clear_bits,
1606 					     page_ops);
1607 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1608 		start += cur_alloc_size;
1609 	}
1610 
1611 	/*
1612 	 * For the range (3). We never touched the region. In addition to the
1613 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1614 	 * space_info's bytes_may_use counter, reserved in
1615 	 * btrfs_check_data_free_space().
1616 	 */
1617 	if (start < end) {
1618 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1619 		extent_clear_unlock_delalloc(inode, start, end, locked_folio,
1620 					     &cached, clear_bits, page_ops);
1621 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1622 	}
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Phase two of compressed writeback.  This is the ordered portion of the code,
1628  * which only gets called in the order the work was queued.  We walk all the
1629  * async extents created by compress_file_range and send them down to the disk.
1630  *
1631  * If called with @do_free == true then it'll try to finish the work and free
1632  * the work struct eventually.
1633  */
1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1635 {
1636 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1637 						     work);
1638 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1639 	struct async_extent *async_extent;
1640 	unsigned long nr_pages;
1641 	u64 alloc_hint = 0;
1642 
1643 	if (do_free) {
1644 		struct async_cow *async_cow;
1645 
1646 		btrfs_add_delayed_iput(async_chunk->inode);
1647 		if (async_chunk->blkcg_css)
1648 			css_put(async_chunk->blkcg_css);
1649 
1650 		async_cow = async_chunk->async_cow;
1651 		if (atomic_dec_and_test(&async_cow->num_chunks))
1652 			kvfree(async_cow);
1653 		return;
1654 	}
1655 
1656 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1657 		PAGE_SHIFT;
1658 
1659 	while (!list_empty(&async_chunk->extents)) {
1660 		async_extent = list_entry(async_chunk->extents.next,
1661 					  struct async_extent, list);
1662 		list_del(&async_extent->list);
1663 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1664 	}
1665 
1666 	/* atomic_sub_return implies a barrier */
1667 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1668 	    5 * SZ_1M)
1669 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1670 }
1671 
1672 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1673 				    struct folio *locked_folio, u64 start,
1674 				    u64 end, struct writeback_control *wbc)
1675 {
1676 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1677 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1678 	struct async_cow *ctx;
1679 	struct async_chunk *async_chunk;
1680 	unsigned long nr_pages;
1681 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1682 	int i;
1683 	unsigned nofs_flag;
1684 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1685 
1686 	nofs_flag = memalloc_nofs_save();
1687 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1688 	memalloc_nofs_restore(nofs_flag);
1689 	if (!ctx)
1690 		return false;
1691 
1692 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1693 
1694 	async_chunk = ctx->chunks;
1695 	atomic_set(&ctx->num_chunks, num_chunks);
1696 
1697 	for (i = 0; i < num_chunks; i++) {
1698 		u64 cur_end = min(end, start + SZ_512K - 1);
1699 
1700 		/*
1701 		 * igrab is called higher up in the call chain, take only the
1702 		 * lightweight reference for the callback lifetime
1703 		 */
1704 		ihold(&inode->vfs_inode);
1705 		async_chunk[i].async_cow = ctx;
1706 		async_chunk[i].inode = inode;
1707 		async_chunk[i].start = start;
1708 		async_chunk[i].end = cur_end;
1709 		async_chunk[i].write_flags = write_flags;
1710 		INIT_LIST_HEAD(&async_chunk[i].extents);
1711 
1712 		/*
1713 		 * The locked_folio comes all the way from writepage and its
1714 		 * the original folio we were actually given.  As we spread
1715 		 * this large delalloc region across multiple async_chunk
1716 		 * structs, only the first struct needs a pointer to
1717 		 * locked_folio.
1718 		 *
1719 		 * This way we don't need racey decisions about who is supposed
1720 		 * to unlock it.
1721 		 */
1722 		if (locked_folio) {
1723 			/*
1724 			 * Depending on the compressibility, the pages might or
1725 			 * might not go through async.  We want all of them to
1726 			 * be accounted against wbc once.  Let's do it here
1727 			 * before the paths diverge.  wbc accounting is used
1728 			 * only for foreign writeback detection and doesn't
1729 			 * need full accuracy.  Just account the whole thing
1730 			 * against the first page.
1731 			 */
1732 			wbc_account_cgroup_owner(wbc, &locked_folio->page,
1733 						 cur_end - start);
1734 			async_chunk[i].locked_folio = locked_folio;
1735 			locked_folio = NULL;
1736 		} else {
1737 			async_chunk[i].locked_folio = NULL;
1738 		}
1739 
1740 		if (blkcg_css != blkcg_root_css) {
1741 			css_get(blkcg_css);
1742 			async_chunk[i].blkcg_css = blkcg_css;
1743 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1744 		} else {
1745 			async_chunk[i].blkcg_css = NULL;
1746 		}
1747 
1748 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1749 				submit_compressed_extents);
1750 
1751 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1752 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1753 
1754 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1755 
1756 		start = cur_end + 1;
1757 	}
1758 	return true;
1759 }
1760 
1761 /*
1762  * Run the delalloc range from start to end, and write back any dirty pages
1763  * covered by the range.
1764  */
1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1766 				     struct folio *locked_folio, u64 start,
1767 				     u64 end, struct writeback_control *wbc,
1768 				     bool pages_dirty)
1769 {
1770 	u64 done_offset = end;
1771 	int ret;
1772 
1773 	while (start <= end) {
1774 		ret = cow_file_range(inode, locked_folio, start, end,
1775 				     &done_offset, true, false);
1776 		if (ret)
1777 			return ret;
1778 		extent_write_locked_range(&inode->vfs_inode, locked_folio,
1779 					  start, done_offset, wbc, pages_dirty);
1780 		start = done_offset + 1;
1781 	}
1782 
1783 	return 1;
1784 }
1785 
1786 static int fallback_to_cow(struct btrfs_inode *inode,
1787 			   struct folio *locked_folio, const u64 start,
1788 			   const u64 end)
1789 {
1790 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1791 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1792 	const u64 range_bytes = end + 1 - start;
1793 	struct extent_io_tree *io_tree = &inode->io_tree;
1794 	struct extent_state *cached_state = NULL;
1795 	u64 range_start = start;
1796 	u64 count;
1797 	int ret;
1798 
1799 	/*
1800 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1801 	 * made we had not enough available data space and therefore we did not
1802 	 * reserve data space for it, since we though we could do NOCOW for the
1803 	 * respective file range (either there is prealloc extent or the inode
1804 	 * has the NOCOW bit set).
1805 	 *
1806 	 * However when we need to fallback to COW mode (because for example the
1807 	 * block group for the corresponding extent was turned to RO mode by a
1808 	 * scrub or relocation) we need to do the following:
1809 	 *
1810 	 * 1) We increment the bytes_may_use counter of the data space info.
1811 	 *    If COW succeeds, it allocates a new data extent and after doing
1812 	 *    that it decrements the space info's bytes_may_use counter and
1813 	 *    increments its bytes_reserved counter by the same amount (we do
1814 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1815 	 *    bytes_may_use counter to compensate (when space is reserved at
1816 	 *    buffered write time, the bytes_may_use counter is incremented);
1817 	 *
1818 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1819 	 *    that if the COW path fails for any reason, it decrements (through
1820 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1821 	 *    data space info, which we incremented in the step above.
1822 	 *
1823 	 * If we need to fallback to cow and the inode corresponds to a free
1824 	 * space cache inode or an inode of the data relocation tree, we must
1825 	 * also increment bytes_may_use of the data space_info for the same
1826 	 * reason. Space caches and relocated data extents always get a prealloc
1827 	 * extent for them, however scrub or balance may have set the block
1828 	 * group that contains that extent to RO mode and therefore force COW
1829 	 * when starting writeback.
1830 	 */
1831 	lock_extent(io_tree, start, end, &cached_state);
1832 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1833 				 EXTENT_NORESERVE, 0, NULL);
1834 	if (count > 0 || is_space_ino || is_reloc_ino) {
1835 		u64 bytes = count;
1836 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1837 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1838 
1839 		if (is_space_ino || is_reloc_ino)
1840 			bytes = range_bytes;
1841 
1842 		spin_lock(&sinfo->lock);
1843 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1844 		spin_unlock(&sinfo->lock);
1845 
1846 		if (count > 0)
1847 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1848 					 NULL);
1849 	}
1850 	unlock_extent(io_tree, start, end, &cached_state);
1851 
1852 	/*
1853 	 * Don't try to create inline extents, as a mix of inline extent that
1854 	 * is written out and unlocked directly and a normal NOCOW extent
1855 	 * doesn't work.
1856 	 */
1857 	ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1858 			     true);
1859 	ASSERT(ret != 1);
1860 	return ret;
1861 }
1862 
1863 struct can_nocow_file_extent_args {
1864 	/* Input fields. */
1865 
1866 	/* Start file offset of the range we want to NOCOW. */
1867 	u64 start;
1868 	/* End file offset (inclusive) of the range we want to NOCOW. */
1869 	u64 end;
1870 	bool writeback_path;
1871 	bool strict;
1872 	/*
1873 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1874 	 * anymore.
1875 	 */
1876 	bool free_path;
1877 
1878 	/*
1879 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1880 	 * The expected file extent for the NOCOW write.
1881 	 */
1882 	struct btrfs_file_extent file_extent;
1883 };
1884 
1885 /*
1886  * Check if we can NOCOW the file extent that the path points to.
1887  * This function may return with the path released, so the caller should check
1888  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1889  *
1890  * Returns: < 0 on error
1891  *            0 if we can not NOCOW
1892  *            1 if we can NOCOW
1893  */
1894 static int can_nocow_file_extent(struct btrfs_path *path,
1895 				 struct btrfs_key *key,
1896 				 struct btrfs_inode *inode,
1897 				 struct can_nocow_file_extent_args *args)
1898 {
1899 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1900 	struct extent_buffer *leaf = path->nodes[0];
1901 	struct btrfs_root *root = inode->root;
1902 	struct btrfs_file_extent_item *fi;
1903 	struct btrfs_root *csum_root;
1904 	u64 io_start;
1905 	u64 extent_end;
1906 	u8 extent_type;
1907 	int can_nocow = 0;
1908 	int ret = 0;
1909 	bool nowait = path->nowait;
1910 
1911 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1912 	extent_type = btrfs_file_extent_type(leaf, fi);
1913 
1914 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1915 		goto out;
1916 
1917 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1918 	    extent_type == BTRFS_FILE_EXTENT_REG)
1919 		goto out;
1920 
1921 	/*
1922 	 * If the extent was created before the generation where the last snapshot
1923 	 * for its subvolume was created, then this implies the extent is shared,
1924 	 * hence we must COW.
1925 	 */
1926 	if (!args->strict &&
1927 	    btrfs_file_extent_generation(leaf, fi) <=
1928 	    btrfs_root_last_snapshot(&root->root_item))
1929 		goto out;
1930 
1931 	/* An explicit hole, must COW. */
1932 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1933 		goto out;
1934 
1935 	/* Compressed/encrypted/encoded extents must be COWed. */
1936 	if (btrfs_file_extent_compression(leaf, fi) ||
1937 	    btrfs_file_extent_encryption(leaf, fi) ||
1938 	    btrfs_file_extent_other_encoding(leaf, fi))
1939 		goto out;
1940 
1941 	extent_end = btrfs_file_extent_end(path);
1942 
1943 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1944 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1945 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1946 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1947 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1948 
1949 	/*
1950 	 * The following checks can be expensive, as they need to take other
1951 	 * locks and do btree or rbtree searches, so release the path to avoid
1952 	 * blocking other tasks for too long.
1953 	 */
1954 	btrfs_release_path(path);
1955 
1956 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1957 				    key->offset - args->file_extent.offset,
1958 				    args->file_extent.disk_bytenr, args->strict, path);
1959 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1960 	if (ret != 0)
1961 		goto out;
1962 
1963 	if (args->free_path) {
1964 		/*
1965 		 * We don't need the path anymore, plus through the
1966 		 * btrfs_lookup_csums_list() call below we will end up allocating
1967 		 * another path. So free the path to avoid unnecessary extra
1968 		 * memory usage.
1969 		 */
1970 		btrfs_free_path(path);
1971 		path = NULL;
1972 	}
1973 
1974 	/* If there are pending snapshots for this root, we must COW. */
1975 	if (args->writeback_path && !is_freespace_inode &&
1976 	    atomic_read(&root->snapshot_force_cow))
1977 		goto out;
1978 
1979 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1980 	args->file_extent.offset += args->start - key->offset;
1981 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1982 
1983 	/*
1984 	 * Force COW if csums exist in the range. This ensures that csums for a
1985 	 * given extent are either valid or do not exist.
1986 	 */
1987 
1988 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1989 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1990 				      io_start + args->file_extent.num_bytes - 1,
1991 				      NULL, nowait);
1992 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1993 	if (ret != 0)
1994 		goto out;
1995 
1996 	can_nocow = 1;
1997  out:
1998 	if (args->free_path && path)
1999 		btrfs_free_path(path);
2000 
2001 	return ret < 0 ? ret : can_nocow;
2002 }
2003 
2004 /*
2005  * when nowcow writeback call back.  This checks for snapshots or COW copies
2006  * of the extents that exist in the file, and COWs the file as required.
2007  *
2008  * If no cow copies or snapshots exist, we write directly to the existing
2009  * blocks on disk
2010  */
2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2012 				       struct folio *locked_folio,
2013 				       const u64 start, const u64 end)
2014 {
2015 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2016 	struct btrfs_root *root = inode->root;
2017 	struct btrfs_path *path;
2018 	u64 cow_start = (u64)-1;
2019 	u64 cur_offset = start;
2020 	int ret;
2021 	bool check_prev = true;
2022 	u64 ino = btrfs_ino(inode);
2023 	struct can_nocow_file_extent_args nocow_args = { 0 };
2024 
2025 	/*
2026 	 * Normally on a zoned device we're only doing COW writes, but in case
2027 	 * of relocation on a zoned filesystem serializes I/O so that we're only
2028 	 * writing sequentially and can end up here as well.
2029 	 */
2030 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2031 
2032 	path = btrfs_alloc_path();
2033 	if (!path) {
2034 		ret = -ENOMEM;
2035 		goto error;
2036 	}
2037 
2038 	nocow_args.end = end;
2039 	nocow_args.writeback_path = true;
2040 
2041 	while (cur_offset <= end) {
2042 		struct btrfs_block_group *nocow_bg = NULL;
2043 		struct btrfs_ordered_extent *ordered;
2044 		struct btrfs_key found_key;
2045 		struct btrfs_file_extent_item *fi;
2046 		struct extent_buffer *leaf;
2047 		struct extent_state *cached_state = NULL;
2048 		u64 extent_end;
2049 		u64 nocow_end;
2050 		int extent_type;
2051 		bool is_prealloc;
2052 
2053 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2054 					       cur_offset, 0);
2055 		if (ret < 0)
2056 			goto error;
2057 
2058 		/*
2059 		 * If there is no extent for our range when doing the initial
2060 		 * search, then go back to the previous slot as it will be the
2061 		 * one containing the search offset
2062 		 */
2063 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2064 			leaf = path->nodes[0];
2065 			btrfs_item_key_to_cpu(leaf, &found_key,
2066 					      path->slots[0] - 1);
2067 			if (found_key.objectid == ino &&
2068 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2069 				path->slots[0]--;
2070 		}
2071 		check_prev = false;
2072 next_slot:
2073 		/* Go to next leaf if we have exhausted the current one */
2074 		leaf = path->nodes[0];
2075 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2076 			ret = btrfs_next_leaf(root, path);
2077 			if (ret < 0)
2078 				goto error;
2079 			if (ret > 0)
2080 				break;
2081 			leaf = path->nodes[0];
2082 		}
2083 
2084 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2085 
2086 		/* Didn't find anything for our INO */
2087 		if (found_key.objectid > ino)
2088 			break;
2089 		/*
2090 		 * Keep searching until we find an EXTENT_ITEM or there are no
2091 		 * more extents for this inode
2092 		 */
2093 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2094 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2095 			path->slots[0]++;
2096 			goto next_slot;
2097 		}
2098 
2099 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2100 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2101 		    found_key.offset > end)
2102 			break;
2103 
2104 		/*
2105 		 * If the found extent starts after requested offset, then
2106 		 * adjust extent_end to be right before this extent begins
2107 		 */
2108 		if (found_key.offset > cur_offset) {
2109 			extent_end = found_key.offset;
2110 			extent_type = 0;
2111 			goto must_cow;
2112 		}
2113 
2114 		/*
2115 		 * Found extent which begins before our range and potentially
2116 		 * intersect it
2117 		 */
2118 		fi = btrfs_item_ptr(leaf, path->slots[0],
2119 				    struct btrfs_file_extent_item);
2120 		extent_type = btrfs_file_extent_type(leaf, fi);
2121 		/* If this is triggered then we have a memory corruption. */
2122 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2123 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2124 			ret = -EUCLEAN;
2125 			goto error;
2126 		}
2127 		extent_end = btrfs_file_extent_end(path);
2128 
2129 		/*
2130 		 * If the extent we got ends before our current offset, skip to
2131 		 * the next extent.
2132 		 */
2133 		if (extent_end <= cur_offset) {
2134 			path->slots[0]++;
2135 			goto next_slot;
2136 		}
2137 
2138 		nocow_args.start = cur_offset;
2139 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2140 		if (ret < 0)
2141 			goto error;
2142 		if (ret == 0)
2143 			goto must_cow;
2144 
2145 		ret = 0;
2146 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2147 				nocow_args.file_extent.disk_bytenr +
2148 				nocow_args.file_extent.offset);
2149 		if (!nocow_bg) {
2150 must_cow:
2151 			/*
2152 			 * If we can't perform NOCOW writeback for the range,
2153 			 * then record the beginning of the range that needs to
2154 			 * be COWed.  It will be written out before the next
2155 			 * NOCOW range if we find one, or when exiting this
2156 			 * loop.
2157 			 */
2158 			if (cow_start == (u64)-1)
2159 				cow_start = cur_offset;
2160 			cur_offset = extent_end;
2161 			if (cur_offset > end)
2162 				break;
2163 			if (!path->nodes[0])
2164 				continue;
2165 			path->slots[0]++;
2166 			goto next_slot;
2167 		}
2168 
2169 		/*
2170 		 * COW range from cow_start to found_key.offset - 1. As the key
2171 		 * will contain the beginning of the first extent that can be
2172 		 * NOCOW, following one which needs to be COW'ed
2173 		 */
2174 		if (cow_start != (u64)-1) {
2175 			ret = fallback_to_cow(inode, locked_folio, cow_start,
2176 					      found_key.offset - 1);
2177 			cow_start = (u64)-1;
2178 			if (ret) {
2179 				btrfs_dec_nocow_writers(nocow_bg);
2180 				goto error;
2181 			}
2182 		}
2183 
2184 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2185 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2186 
2187 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2188 		if (is_prealloc) {
2189 			struct extent_map *em;
2190 
2191 			em = btrfs_create_io_em(inode, cur_offset,
2192 						&nocow_args.file_extent,
2193 						BTRFS_ORDERED_PREALLOC);
2194 			if (IS_ERR(em)) {
2195 				unlock_extent(&inode->io_tree, cur_offset,
2196 					      nocow_end, &cached_state);
2197 				btrfs_dec_nocow_writers(nocow_bg);
2198 				ret = PTR_ERR(em);
2199 				goto error;
2200 			}
2201 			free_extent_map(em);
2202 		}
2203 
2204 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2205 				&nocow_args.file_extent,
2206 				is_prealloc
2207 				? (1 << BTRFS_ORDERED_PREALLOC)
2208 				: (1 << BTRFS_ORDERED_NOCOW));
2209 		btrfs_dec_nocow_writers(nocow_bg);
2210 		if (IS_ERR(ordered)) {
2211 			if (is_prealloc) {
2212 				btrfs_drop_extent_map_range(inode, cur_offset,
2213 							    nocow_end, false);
2214 			}
2215 			unlock_extent(&inode->io_tree, cur_offset,
2216 				      nocow_end, &cached_state);
2217 			ret = PTR_ERR(ordered);
2218 			goto error;
2219 		}
2220 
2221 		if (btrfs_is_data_reloc_root(root))
2222 			/*
2223 			 * Error handled later, as we must prevent
2224 			 * extent_clear_unlock_delalloc() in error handler
2225 			 * from freeing metadata of created ordered extent.
2226 			 */
2227 			ret = btrfs_reloc_clone_csums(ordered);
2228 		btrfs_put_ordered_extent(ordered);
2229 
2230 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2231 					     locked_folio, &cached_state,
2232 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2233 					     EXTENT_CLEAR_DATA_RESV,
2234 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2235 
2236 		cur_offset = extent_end;
2237 
2238 		/*
2239 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2240 		 * handler, as metadata for created ordered extent will only
2241 		 * be freed by btrfs_finish_ordered_io().
2242 		 */
2243 		if (ret)
2244 			goto error;
2245 	}
2246 	btrfs_release_path(path);
2247 
2248 	if (cur_offset <= end && cow_start == (u64)-1)
2249 		cow_start = cur_offset;
2250 
2251 	if (cow_start != (u64)-1) {
2252 		cur_offset = end;
2253 		ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2254 		cow_start = (u64)-1;
2255 		if (ret)
2256 			goto error;
2257 	}
2258 
2259 	btrfs_free_path(path);
2260 	return 0;
2261 
2262 error:
2263 	/*
2264 	 * If an error happened while a COW region is outstanding, cur_offset
2265 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2266 	 * as well.
2267 	 */
2268 	if (cow_start != (u64)-1)
2269 		cur_offset = cow_start;
2270 
2271 	/*
2272 	 * We need to lock the extent here because we're clearing DELALLOC and
2273 	 * we're not locked at this point.
2274 	 */
2275 	if (cur_offset < end) {
2276 		struct extent_state *cached = NULL;
2277 
2278 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2279 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2280 					     locked_folio, &cached,
2281 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2282 					     EXTENT_DEFRAG |
2283 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2284 					     PAGE_START_WRITEBACK |
2285 					     PAGE_END_WRITEBACK);
2286 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2287 	}
2288 	btrfs_free_path(path);
2289 	return ret;
2290 }
2291 
2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2293 {
2294 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2295 		if (inode->defrag_bytes &&
2296 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2297 			return false;
2298 		return true;
2299 	}
2300 	return false;
2301 }
2302 
2303 /*
2304  * Function to process delayed allocation (create CoW) for ranges which are
2305  * being touched for the first time.
2306  */
2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2308 			     u64 start, u64 end, struct writeback_control *wbc)
2309 {
2310 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2311 	int ret;
2312 
2313 	/*
2314 	 * The range must cover part of the @locked_folio, or a return of 1
2315 	 * can confuse the caller.
2316 	 */
2317 	ASSERT(!(end <= folio_pos(locked_folio) ||
2318 		 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2319 
2320 	if (should_nocow(inode, start, end)) {
2321 		ret = run_delalloc_nocow(inode, locked_folio, start, end);
2322 		goto out;
2323 	}
2324 
2325 	if (btrfs_inode_can_compress(inode) &&
2326 	    inode_need_compress(inode, start, end) &&
2327 	    run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2328 		return 1;
2329 
2330 	if (zoned)
2331 		ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2332 				       true);
2333 	else
2334 		ret = cow_file_range(inode, locked_folio, start, end, NULL,
2335 				     false, false);
2336 
2337 out:
2338 	if (ret < 0)
2339 		btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2340 					      end - start + 1);
2341 	return ret;
2342 }
2343 
2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2345 				 struct extent_state *orig, u64 split)
2346 {
2347 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2348 	u64 size;
2349 
2350 	lockdep_assert_held(&inode->io_tree.lock);
2351 
2352 	/* not delalloc, ignore it */
2353 	if (!(orig->state & EXTENT_DELALLOC))
2354 		return;
2355 
2356 	size = orig->end - orig->start + 1;
2357 	if (size > fs_info->max_extent_size) {
2358 		u32 num_extents;
2359 		u64 new_size;
2360 
2361 		/*
2362 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2363 		 * applies here, just in reverse.
2364 		 */
2365 		new_size = orig->end - split + 1;
2366 		num_extents = count_max_extents(fs_info, new_size);
2367 		new_size = split - orig->start;
2368 		num_extents += count_max_extents(fs_info, new_size);
2369 		if (count_max_extents(fs_info, size) >= num_extents)
2370 			return;
2371 	}
2372 
2373 	spin_lock(&inode->lock);
2374 	btrfs_mod_outstanding_extents(inode, 1);
2375 	spin_unlock(&inode->lock);
2376 }
2377 
2378 /*
2379  * Handle merged delayed allocation extents so we can keep track of new extents
2380  * that are just merged onto old extents, such as when we are doing sequential
2381  * writes, so we can properly account for the metadata space we'll need.
2382  */
2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2384 				 struct extent_state *other)
2385 {
2386 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2387 	u64 new_size, old_size;
2388 	u32 num_extents;
2389 
2390 	lockdep_assert_held(&inode->io_tree.lock);
2391 
2392 	/* not delalloc, ignore it */
2393 	if (!(other->state & EXTENT_DELALLOC))
2394 		return;
2395 
2396 	if (new->start > other->start)
2397 		new_size = new->end - other->start + 1;
2398 	else
2399 		new_size = other->end - new->start + 1;
2400 
2401 	/* we're not bigger than the max, unreserve the space and go */
2402 	if (new_size <= fs_info->max_extent_size) {
2403 		spin_lock(&inode->lock);
2404 		btrfs_mod_outstanding_extents(inode, -1);
2405 		spin_unlock(&inode->lock);
2406 		return;
2407 	}
2408 
2409 	/*
2410 	 * We have to add up either side to figure out how many extents were
2411 	 * accounted for before we merged into one big extent.  If the number of
2412 	 * extents we accounted for is <= the amount we need for the new range
2413 	 * then we can return, otherwise drop.  Think of it like this
2414 	 *
2415 	 * [ 4k][MAX_SIZE]
2416 	 *
2417 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2418 	 * need 2 outstanding extents, on one side we have 1 and the other side
2419 	 * we have 1 so they are == and we can return.  But in this case
2420 	 *
2421 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2422 	 *
2423 	 * Each range on their own accounts for 2 extents, but merged together
2424 	 * they are only 3 extents worth of accounting, so we need to drop in
2425 	 * this case.
2426 	 */
2427 	old_size = other->end - other->start + 1;
2428 	num_extents = count_max_extents(fs_info, old_size);
2429 	old_size = new->end - new->start + 1;
2430 	num_extents += count_max_extents(fs_info, old_size);
2431 	if (count_max_extents(fs_info, new_size) >= num_extents)
2432 		return;
2433 
2434 	spin_lock(&inode->lock);
2435 	btrfs_mod_outstanding_extents(inode, -1);
2436 	spin_unlock(&inode->lock);
2437 }
2438 
2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2440 {
2441 	struct btrfs_root *root = inode->root;
2442 	struct btrfs_fs_info *fs_info = root->fs_info;
2443 
2444 	spin_lock(&root->delalloc_lock);
2445 	ASSERT(list_empty(&inode->delalloc_inodes));
2446 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2447 	root->nr_delalloc_inodes++;
2448 	if (root->nr_delalloc_inodes == 1) {
2449 		spin_lock(&fs_info->delalloc_root_lock);
2450 		ASSERT(list_empty(&root->delalloc_root));
2451 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2452 		spin_unlock(&fs_info->delalloc_root_lock);
2453 	}
2454 	spin_unlock(&root->delalloc_lock);
2455 }
2456 
2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2458 {
2459 	struct btrfs_root *root = inode->root;
2460 	struct btrfs_fs_info *fs_info = root->fs_info;
2461 
2462 	lockdep_assert_held(&root->delalloc_lock);
2463 
2464 	/*
2465 	 * We may be called after the inode was already deleted from the list,
2466 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2467 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2468 	 * still has ->delalloc_bytes > 0.
2469 	 */
2470 	if (!list_empty(&inode->delalloc_inodes)) {
2471 		list_del_init(&inode->delalloc_inodes);
2472 		root->nr_delalloc_inodes--;
2473 		if (!root->nr_delalloc_inodes) {
2474 			ASSERT(list_empty(&root->delalloc_inodes));
2475 			spin_lock(&fs_info->delalloc_root_lock);
2476 			ASSERT(!list_empty(&root->delalloc_root));
2477 			list_del_init(&root->delalloc_root);
2478 			spin_unlock(&fs_info->delalloc_root_lock);
2479 		}
2480 	}
2481 }
2482 
2483 /*
2484  * Properly track delayed allocation bytes in the inode and to maintain the
2485  * list of inodes that have pending delalloc work to be done.
2486  */
2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2488 			       u32 bits)
2489 {
2490 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2491 
2492 	lockdep_assert_held(&inode->io_tree.lock);
2493 
2494 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2495 		WARN_ON(1);
2496 	/*
2497 	 * set_bit and clear bit hooks normally require _irqsave/restore
2498 	 * but in this case, we are only testing for the DELALLOC
2499 	 * bit, which is only set or cleared with irqs on
2500 	 */
2501 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 		u64 len = state->end + 1 - state->start;
2503 		u64 prev_delalloc_bytes;
2504 		u32 num_extents = count_max_extents(fs_info, len);
2505 
2506 		spin_lock(&inode->lock);
2507 		btrfs_mod_outstanding_extents(inode, num_extents);
2508 		spin_unlock(&inode->lock);
2509 
2510 		/* For sanity tests */
2511 		if (btrfs_is_testing(fs_info))
2512 			return;
2513 
2514 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2515 					 fs_info->delalloc_batch);
2516 		spin_lock(&inode->lock);
2517 		prev_delalloc_bytes = inode->delalloc_bytes;
2518 		inode->delalloc_bytes += len;
2519 		if (bits & EXTENT_DEFRAG)
2520 			inode->defrag_bytes += len;
2521 		spin_unlock(&inode->lock);
2522 
2523 		/*
2524 		 * We don't need to be under the protection of the inode's lock,
2525 		 * because we are called while holding the inode's io_tree lock
2526 		 * and are therefore protected against concurrent calls of this
2527 		 * function and btrfs_clear_delalloc_extent().
2528 		 */
2529 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2530 			btrfs_add_delalloc_inode(inode);
2531 	}
2532 
2533 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2534 	    (bits & EXTENT_DELALLOC_NEW)) {
2535 		spin_lock(&inode->lock);
2536 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2537 		spin_unlock(&inode->lock);
2538 	}
2539 }
2540 
2541 /*
2542  * Once a range is no longer delalloc this function ensures that proper
2543  * accounting happens.
2544  */
2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2546 				 struct extent_state *state, u32 bits)
2547 {
2548 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2549 	u64 len = state->end + 1 - state->start;
2550 	u32 num_extents = count_max_extents(fs_info, len);
2551 
2552 	lockdep_assert_held(&inode->io_tree.lock);
2553 
2554 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2555 		spin_lock(&inode->lock);
2556 		inode->defrag_bytes -= len;
2557 		spin_unlock(&inode->lock);
2558 	}
2559 
2560 	/*
2561 	 * set_bit and clear bit hooks normally require _irqsave/restore
2562 	 * but in this case, we are only testing for the DELALLOC
2563 	 * bit, which is only set or cleared with irqs on
2564 	 */
2565 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2566 		struct btrfs_root *root = inode->root;
2567 		u64 new_delalloc_bytes;
2568 
2569 		spin_lock(&inode->lock);
2570 		btrfs_mod_outstanding_extents(inode, -num_extents);
2571 		spin_unlock(&inode->lock);
2572 
2573 		/*
2574 		 * We don't reserve metadata space for space cache inodes so we
2575 		 * don't need to call delalloc_release_metadata if there is an
2576 		 * error.
2577 		 */
2578 		if (bits & EXTENT_CLEAR_META_RESV &&
2579 		    root != fs_info->tree_root)
2580 			btrfs_delalloc_release_metadata(inode, len, true);
2581 
2582 		/* For sanity tests. */
2583 		if (btrfs_is_testing(fs_info))
2584 			return;
2585 
2586 		if (!btrfs_is_data_reloc_root(root) &&
2587 		    !btrfs_is_free_space_inode(inode) &&
2588 		    !(state->state & EXTENT_NORESERVE) &&
2589 		    (bits & EXTENT_CLEAR_DATA_RESV))
2590 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2591 
2592 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2593 					 fs_info->delalloc_batch);
2594 		spin_lock(&inode->lock);
2595 		inode->delalloc_bytes -= len;
2596 		new_delalloc_bytes = inode->delalloc_bytes;
2597 		spin_unlock(&inode->lock);
2598 
2599 		/*
2600 		 * We don't need to be under the protection of the inode's lock,
2601 		 * because we are called while holding the inode's io_tree lock
2602 		 * and are therefore protected against concurrent calls of this
2603 		 * function and btrfs_set_delalloc_extent().
2604 		 */
2605 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2606 			spin_lock(&root->delalloc_lock);
2607 			btrfs_del_delalloc_inode(inode);
2608 			spin_unlock(&root->delalloc_lock);
2609 		}
2610 	}
2611 
2612 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2613 	    (bits & EXTENT_DELALLOC_NEW)) {
2614 		spin_lock(&inode->lock);
2615 		ASSERT(inode->new_delalloc_bytes >= len);
2616 		inode->new_delalloc_bytes -= len;
2617 		if (bits & EXTENT_ADD_INODE_BYTES)
2618 			inode_add_bytes(&inode->vfs_inode, len);
2619 		spin_unlock(&inode->lock);
2620 	}
2621 }
2622 
2623 /*
2624  * given a list of ordered sums record them in the inode.  This happens
2625  * at IO completion time based on sums calculated at bio submission time.
2626  */
2627 static int add_pending_csums(struct btrfs_trans_handle *trans,
2628 			     struct list_head *list)
2629 {
2630 	struct btrfs_ordered_sum *sum;
2631 	struct btrfs_root *csum_root = NULL;
2632 	int ret;
2633 
2634 	list_for_each_entry(sum, list, list) {
2635 		trans->adding_csums = true;
2636 		if (!csum_root)
2637 			csum_root = btrfs_csum_root(trans->fs_info,
2638 						    sum->logical);
2639 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2640 		trans->adding_csums = false;
2641 		if (ret)
2642 			return ret;
2643 	}
2644 	return 0;
2645 }
2646 
2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2648 					 const u64 start,
2649 					 const u64 len,
2650 					 struct extent_state **cached_state)
2651 {
2652 	u64 search_start = start;
2653 	const u64 end = start + len - 1;
2654 
2655 	while (search_start < end) {
2656 		const u64 search_len = end - search_start + 1;
2657 		struct extent_map *em;
2658 		u64 em_len;
2659 		int ret = 0;
2660 
2661 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2662 		if (IS_ERR(em))
2663 			return PTR_ERR(em);
2664 
2665 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2666 			goto next;
2667 
2668 		em_len = em->len;
2669 		if (em->start < search_start)
2670 			em_len -= search_start - em->start;
2671 		if (em_len > search_len)
2672 			em_len = search_len;
2673 
2674 		ret = set_extent_bit(&inode->io_tree, search_start,
2675 				     search_start + em_len - 1,
2676 				     EXTENT_DELALLOC_NEW, cached_state);
2677 next:
2678 		search_start = extent_map_end(em);
2679 		free_extent_map(em);
2680 		if (ret)
2681 			return ret;
2682 	}
2683 	return 0;
2684 }
2685 
2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2687 			      unsigned int extra_bits,
2688 			      struct extent_state **cached_state)
2689 {
2690 	WARN_ON(PAGE_ALIGNED(end));
2691 
2692 	if (start >= i_size_read(&inode->vfs_inode) &&
2693 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2694 		/*
2695 		 * There can't be any extents following eof in this case so just
2696 		 * set the delalloc new bit for the range directly.
2697 		 */
2698 		extra_bits |= EXTENT_DELALLOC_NEW;
2699 	} else {
2700 		int ret;
2701 
2702 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2703 						    end + 1 - start,
2704 						    cached_state);
2705 		if (ret)
2706 			return ret;
2707 	}
2708 
2709 	return set_extent_bit(&inode->io_tree, start, end,
2710 			      EXTENT_DELALLOC | extra_bits, cached_state);
2711 }
2712 
2713 /* see btrfs_writepage_start_hook for details on why this is required */
2714 struct btrfs_writepage_fixup {
2715 	struct folio *folio;
2716 	struct btrfs_inode *inode;
2717 	struct btrfs_work work;
2718 };
2719 
2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2721 {
2722 	struct btrfs_writepage_fixup *fixup =
2723 		container_of(work, struct btrfs_writepage_fixup, work);
2724 	struct btrfs_ordered_extent *ordered;
2725 	struct extent_state *cached_state = NULL;
2726 	struct extent_changeset *data_reserved = NULL;
2727 	struct folio *folio = fixup->folio;
2728 	struct btrfs_inode *inode = fixup->inode;
2729 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2730 	u64 page_start = folio_pos(folio);
2731 	u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2732 	int ret = 0;
2733 	bool free_delalloc_space = true;
2734 
2735 	/*
2736 	 * This is similar to page_mkwrite, we need to reserve the space before
2737 	 * we take the folio lock.
2738 	 */
2739 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2740 					   folio_size(folio));
2741 again:
2742 	folio_lock(folio);
2743 
2744 	/*
2745 	 * Before we queued this fixup, we took a reference on the folio.
2746 	 * folio->mapping may go NULL, but it shouldn't be moved to a different
2747 	 * address space.
2748 	 */
2749 	if (!folio->mapping || !folio_test_dirty(folio) ||
2750 	    !folio_test_checked(folio)) {
2751 		/*
2752 		 * Unfortunately this is a little tricky, either
2753 		 *
2754 		 * 1) We got here and our folio had already been dealt with and
2755 		 *    we reserved our space, thus ret == 0, so we need to just
2756 		 *    drop our space reservation and bail.  This can happen the
2757 		 *    first time we come into the fixup worker, or could happen
2758 		 *    while waiting for the ordered extent.
2759 		 * 2) Our folio was already dealt with, but we happened to get an
2760 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2761 		 *    this case we obviously don't have anything to release, but
2762 		 *    because the folio was already dealt with we don't want to
2763 		 *    mark the folio with an error, so make sure we're resetting
2764 		 *    ret to 0.  This is why we have this check _before_ the ret
2765 		 *    check, because we do not want to have a surprise ENOSPC
2766 		 *    when the folio was already properly dealt with.
2767 		 */
2768 		if (!ret) {
2769 			btrfs_delalloc_release_extents(inode, folio_size(folio));
2770 			btrfs_delalloc_release_space(inode, data_reserved,
2771 						     page_start, folio_size(folio),
2772 						     true);
2773 		}
2774 		ret = 0;
2775 		goto out_page;
2776 	}
2777 
2778 	/*
2779 	 * We can't mess with the folio state unless it is locked, so now that
2780 	 * it is locked bail if we failed to make our space reservation.
2781 	 */
2782 	if (ret)
2783 		goto out_page;
2784 
2785 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2786 
2787 	/* already ordered? We're done */
2788 	if (folio_test_ordered(folio))
2789 		goto out_reserved;
2790 
2791 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2792 	if (ordered) {
2793 		unlock_extent(&inode->io_tree, page_start, page_end,
2794 			      &cached_state);
2795 		folio_unlock(folio);
2796 		btrfs_start_ordered_extent(ordered);
2797 		btrfs_put_ordered_extent(ordered);
2798 		goto again;
2799 	}
2800 
2801 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2802 					&cached_state);
2803 	if (ret)
2804 		goto out_reserved;
2805 
2806 	/*
2807 	 * Everything went as planned, we're now the owner of a dirty page with
2808 	 * delayed allocation bits set and space reserved for our COW
2809 	 * destination.
2810 	 *
2811 	 * The page was dirty when we started, nothing should have cleaned it.
2812 	 */
2813 	BUG_ON(!folio_test_dirty(folio));
2814 	free_delalloc_space = false;
2815 out_reserved:
2816 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2817 	if (free_delalloc_space)
2818 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2819 					     PAGE_SIZE, true);
2820 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2821 out_page:
2822 	if (ret) {
2823 		/*
2824 		 * We hit ENOSPC or other errors.  Update the mapping and page
2825 		 * to reflect the errors and clean the page.
2826 		 */
2827 		mapping_set_error(folio->mapping, ret);
2828 		btrfs_mark_ordered_io_finished(inode, folio, page_start,
2829 					       folio_size(folio), !ret);
2830 		folio_clear_dirty_for_io(folio);
2831 	}
2832 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2833 	folio_unlock(folio);
2834 	folio_put(folio);
2835 	kfree(fixup);
2836 	extent_changeset_free(data_reserved);
2837 	/*
2838 	 * As a precaution, do a delayed iput in case it would be the last iput
2839 	 * that could need flushing space. Recursing back to fixup worker would
2840 	 * deadlock.
2841 	 */
2842 	btrfs_add_delayed_iput(inode);
2843 }
2844 
2845 /*
2846  * There are a few paths in the higher layers of the kernel that directly
2847  * set the folio dirty bit without asking the filesystem if it is a
2848  * good idea.  This causes problems because we want to make sure COW
2849  * properly happens and the data=ordered rules are followed.
2850  *
2851  * In our case any range that doesn't have the ORDERED bit set
2852  * hasn't been properly setup for IO.  We kick off an async process
2853  * to fix it up.  The async helper will wait for ordered extents, set
2854  * the delalloc bit and make it safe to write the folio.
2855  */
2856 int btrfs_writepage_cow_fixup(struct folio *folio)
2857 {
2858 	struct inode *inode = folio->mapping->host;
2859 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2860 	struct btrfs_writepage_fixup *fixup;
2861 
2862 	/* This folio has ordered extent covering it already */
2863 	if (folio_test_ordered(folio))
2864 		return 0;
2865 
2866 	/*
2867 	 * folio_checked is set below when we create a fixup worker for this
2868 	 * folio, don't try to create another one if we're already
2869 	 * folio_test_checked.
2870 	 *
2871 	 * The extent_io writepage code will redirty the foio if we send back
2872 	 * EAGAIN.
2873 	 */
2874 	if (folio_test_checked(folio))
2875 		return -EAGAIN;
2876 
2877 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2878 	if (!fixup)
2879 		return -EAGAIN;
2880 
2881 	/*
2882 	 * We are already holding a reference to this inode from
2883 	 * write_cache_pages.  We need to hold it because the space reservation
2884 	 * takes place outside of the folio lock, and we can't trust
2885 	 * page->mapping outside of the folio lock.
2886 	 */
2887 	ihold(inode);
2888 	btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2889 	folio_get(folio);
2890 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2891 	fixup->folio = folio;
2892 	fixup->inode = BTRFS_I(inode);
2893 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2894 
2895 	return -EAGAIN;
2896 }
2897 
2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2899 				       struct btrfs_inode *inode, u64 file_pos,
2900 				       struct btrfs_file_extent_item *stack_fi,
2901 				       const bool update_inode_bytes,
2902 				       u64 qgroup_reserved)
2903 {
2904 	struct btrfs_root *root = inode->root;
2905 	const u64 sectorsize = root->fs_info->sectorsize;
2906 	struct btrfs_path *path;
2907 	struct extent_buffer *leaf;
2908 	struct btrfs_key ins;
2909 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2910 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2911 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2912 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2913 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2914 	struct btrfs_drop_extents_args drop_args = { 0 };
2915 	int ret;
2916 
2917 	path = btrfs_alloc_path();
2918 	if (!path)
2919 		return -ENOMEM;
2920 
2921 	/*
2922 	 * we may be replacing one extent in the tree with another.
2923 	 * The new extent is pinned in the extent map, and we don't want
2924 	 * to drop it from the cache until it is completely in the btree.
2925 	 *
2926 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2927 	 * the caller is expected to unpin it and allow it to be merged
2928 	 * with the others.
2929 	 */
2930 	drop_args.path = path;
2931 	drop_args.start = file_pos;
2932 	drop_args.end = file_pos + num_bytes;
2933 	drop_args.replace_extent = true;
2934 	drop_args.extent_item_size = sizeof(*stack_fi);
2935 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2936 	if (ret)
2937 		goto out;
2938 
2939 	if (!drop_args.extent_inserted) {
2940 		ins.objectid = btrfs_ino(inode);
2941 		ins.offset = file_pos;
2942 		ins.type = BTRFS_EXTENT_DATA_KEY;
2943 
2944 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2945 					      sizeof(*stack_fi));
2946 		if (ret)
2947 			goto out;
2948 	}
2949 	leaf = path->nodes[0];
2950 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2951 	write_extent_buffer(leaf, stack_fi,
2952 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2953 			sizeof(struct btrfs_file_extent_item));
2954 
2955 	btrfs_mark_buffer_dirty(trans, leaf);
2956 	btrfs_release_path(path);
2957 
2958 	/*
2959 	 * If we dropped an inline extent here, we know the range where it is
2960 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2961 	 * number of bytes only for that range containing the inline extent.
2962 	 * The remaining of the range will be processed when clearning the
2963 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2964 	 */
2965 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2966 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2967 
2968 		inline_size = drop_args.bytes_found - inline_size;
2969 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2970 		drop_args.bytes_found -= inline_size;
2971 		num_bytes -= sectorsize;
2972 	}
2973 
2974 	if (update_inode_bytes)
2975 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2976 
2977 	ins.objectid = disk_bytenr;
2978 	ins.offset = disk_num_bytes;
2979 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2980 
2981 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2982 	if (ret)
2983 		goto out;
2984 
2985 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2986 					       file_pos - offset,
2987 					       qgroup_reserved, &ins);
2988 out:
2989 	btrfs_free_path(path);
2990 
2991 	return ret;
2992 }
2993 
2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2995 					 u64 start, u64 len)
2996 {
2997 	struct btrfs_block_group *cache;
2998 
2999 	cache = btrfs_lookup_block_group(fs_info, start);
3000 	ASSERT(cache);
3001 
3002 	spin_lock(&cache->lock);
3003 	cache->delalloc_bytes -= len;
3004 	spin_unlock(&cache->lock);
3005 
3006 	btrfs_put_block_group(cache);
3007 }
3008 
3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3010 					     struct btrfs_ordered_extent *oe)
3011 {
3012 	struct btrfs_file_extent_item stack_fi;
3013 	bool update_inode_bytes;
3014 	u64 num_bytes = oe->num_bytes;
3015 	u64 ram_bytes = oe->ram_bytes;
3016 
3017 	memset(&stack_fi, 0, sizeof(stack_fi));
3018 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3019 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3020 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3021 						   oe->disk_num_bytes);
3022 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3023 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3024 		num_bytes = oe->truncated_len;
3025 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3026 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3027 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3028 	/* Encryption and other encoding is reserved and all 0 */
3029 
3030 	/*
3031 	 * For delalloc, when completing an ordered extent we update the inode's
3032 	 * bytes when clearing the range in the inode's io tree, so pass false
3033 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3034 	 * except if the ordered extent was truncated.
3035 	 */
3036 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3037 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3038 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3039 
3040 	return insert_reserved_file_extent(trans, oe->inode,
3041 					   oe->file_offset, &stack_fi,
3042 					   update_inode_bytes, oe->qgroup_rsv);
3043 }
3044 
3045 /*
3046  * As ordered data IO finishes, this gets called so we can finish
3047  * an ordered extent if the range of bytes in the file it covers are
3048  * fully written.
3049  */
3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3051 {
3052 	struct btrfs_inode *inode = ordered_extent->inode;
3053 	struct btrfs_root *root = inode->root;
3054 	struct btrfs_fs_info *fs_info = root->fs_info;
3055 	struct btrfs_trans_handle *trans = NULL;
3056 	struct extent_io_tree *io_tree = &inode->io_tree;
3057 	struct extent_state *cached_state = NULL;
3058 	u64 start, end;
3059 	int compress_type = 0;
3060 	int ret = 0;
3061 	u64 logical_len = ordered_extent->num_bytes;
3062 	bool freespace_inode;
3063 	bool truncated = false;
3064 	bool clear_reserved_extent = true;
3065 	unsigned int clear_bits = EXTENT_DEFRAG;
3066 
3067 	start = ordered_extent->file_offset;
3068 	end = start + ordered_extent->num_bytes - 1;
3069 
3070 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3071 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3072 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3073 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3074 		clear_bits |= EXTENT_DELALLOC_NEW;
3075 
3076 	freespace_inode = btrfs_is_free_space_inode(inode);
3077 	if (!freespace_inode)
3078 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3079 
3080 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3081 		ret = -EIO;
3082 		goto out;
3083 	}
3084 
3085 	if (btrfs_is_zoned(fs_info))
3086 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3087 					ordered_extent->disk_num_bytes);
3088 
3089 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3090 		truncated = true;
3091 		logical_len = ordered_extent->truncated_len;
3092 		/* Truncated the entire extent, don't bother adding */
3093 		if (!logical_len)
3094 			goto out;
3095 	}
3096 
3097 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3098 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3099 
3100 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3101 		if (freespace_inode)
3102 			trans = btrfs_join_transaction_spacecache(root);
3103 		else
3104 			trans = btrfs_join_transaction(root);
3105 		if (IS_ERR(trans)) {
3106 			ret = PTR_ERR(trans);
3107 			trans = NULL;
3108 			goto out;
3109 		}
3110 		trans->block_rsv = &inode->block_rsv;
3111 		ret = btrfs_update_inode_fallback(trans, inode);
3112 		if (ret) /* -ENOMEM or corruption */
3113 			btrfs_abort_transaction(trans, ret);
3114 
3115 		ret = btrfs_insert_raid_extent(trans, ordered_extent);
3116 		if (ret)
3117 			btrfs_abort_transaction(trans, ret);
3118 
3119 		goto out;
3120 	}
3121 
3122 	clear_bits |= EXTENT_LOCKED;
3123 	lock_extent(io_tree, start, end, &cached_state);
3124 
3125 	if (freespace_inode)
3126 		trans = btrfs_join_transaction_spacecache(root);
3127 	else
3128 		trans = btrfs_join_transaction(root);
3129 	if (IS_ERR(trans)) {
3130 		ret = PTR_ERR(trans);
3131 		trans = NULL;
3132 		goto out;
3133 	}
3134 
3135 	trans->block_rsv = &inode->block_rsv;
3136 
3137 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3138 	if (ret)
3139 		goto out;
3140 
3141 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3142 		compress_type = ordered_extent->compress_type;
3143 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3144 		BUG_ON(compress_type);
3145 		ret = btrfs_mark_extent_written(trans, inode,
3146 						ordered_extent->file_offset,
3147 						ordered_extent->file_offset +
3148 						logical_len);
3149 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3150 						  ordered_extent->disk_num_bytes);
3151 	} else {
3152 		BUG_ON(root == fs_info->tree_root);
3153 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3154 		if (!ret) {
3155 			clear_reserved_extent = false;
3156 			btrfs_release_delalloc_bytes(fs_info,
3157 						ordered_extent->disk_bytenr,
3158 						ordered_extent->disk_num_bytes);
3159 		}
3160 	}
3161 	if (ret < 0) {
3162 		btrfs_abort_transaction(trans, ret);
3163 		goto out;
3164 	}
3165 
3166 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3167 				 ordered_extent->num_bytes, trans->transid);
3168 	if (ret < 0) {
3169 		btrfs_abort_transaction(trans, ret);
3170 		goto out;
3171 	}
3172 
3173 	ret = add_pending_csums(trans, &ordered_extent->list);
3174 	if (ret) {
3175 		btrfs_abort_transaction(trans, ret);
3176 		goto out;
3177 	}
3178 
3179 	/*
3180 	 * If this is a new delalloc range, clear its new delalloc flag to
3181 	 * update the inode's number of bytes. This needs to be done first
3182 	 * before updating the inode item.
3183 	 */
3184 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3185 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3186 		clear_extent_bit(&inode->io_tree, start, end,
3187 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3188 				 &cached_state);
3189 
3190 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3191 	ret = btrfs_update_inode_fallback(trans, inode);
3192 	if (ret) { /* -ENOMEM or corruption */
3193 		btrfs_abort_transaction(trans, ret);
3194 		goto out;
3195 	}
3196 out:
3197 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3198 			 &cached_state);
3199 
3200 	if (trans)
3201 		btrfs_end_transaction(trans);
3202 
3203 	if (ret || truncated) {
3204 		u64 unwritten_start = start;
3205 
3206 		/*
3207 		 * If we failed to finish this ordered extent for any reason we
3208 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3209 		 * extent, and mark the inode with the error if it wasn't
3210 		 * already set.  Any error during writeback would have already
3211 		 * set the mapping error, so we need to set it if we're the ones
3212 		 * marking this ordered extent as failed.
3213 		 */
3214 		if (ret)
3215 			btrfs_mark_ordered_extent_error(ordered_extent);
3216 
3217 		if (truncated)
3218 			unwritten_start += logical_len;
3219 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3220 
3221 		/*
3222 		 * Drop extent maps for the part of the extent we didn't write.
3223 		 *
3224 		 * We have an exception here for the free_space_inode, this is
3225 		 * because when we do btrfs_get_extent() on the free space inode
3226 		 * we will search the commit root.  If this is a new block group
3227 		 * we won't find anything, and we will trip over the assert in
3228 		 * writepage where we do ASSERT(em->block_start !=
3229 		 * EXTENT_MAP_HOLE).
3230 		 *
3231 		 * Theoretically we could also skip this for any NOCOW extent as
3232 		 * we don't mess with the extent map tree in the NOCOW case, but
3233 		 * for now simply skip this if we are the free space inode.
3234 		 */
3235 		if (!btrfs_is_free_space_inode(inode))
3236 			btrfs_drop_extent_map_range(inode, unwritten_start,
3237 						    end, false);
3238 
3239 		/*
3240 		 * If the ordered extent had an IOERR or something else went
3241 		 * wrong we need to return the space for this ordered extent
3242 		 * back to the allocator.  We only free the extent in the
3243 		 * truncated case if we didn't write out the extent at all.
3244 		 *
3245 		 * If we made it past insert_reserved_file_extent before we
3246 		 * errored out then we don't need to do this as the accounting
3247 		 * has already been done.
3248 		 */
3249 		if ((ret || !logical_len) &&
3250 		    clear_reserved_extent &&
3251 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3252 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3253 			/*
3254 			 * Discard the range before returning it back to the
3255 			 * free space pool
3256 			 */
3257 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3258 				btrfs_discard_extent(fs_info,
3259 						ordered_extent->disk_bytenr,
3260 						ordered_extent->disk_num_bytes,
3261 						NULL);
3262 			btrfs_free_reserved_extent(fs_info,
3263 					ordered_extent->disk_bytenr,
3264 					ordered_extent->disk_num_bytes, 1);
3265 			/*
3266 			 * Actually free the qgroup rsv which was released when
3267 			 * the ordered extent was created.
3268 			 */
3269 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3270 						  ordered_extent->qgroup_rsv,
3271 						  BTRFS_QGROUP_RSV_DATA);
3272 		}
3273 	}
3274 
3275 	/*
3276 	 * This needs to be done to make sure anybody waiting knows we are done
3277 	 * updating everything for this ordered extent.
3278 	 */
3279 	btrfs_remove_ordered_extent(inode, ordered_extent);
3280 
3281 	/* once for us */
3282 	btrfs_put_ordered_extent(ordered_extent);
3283 	/* once for the tree */
3284 	btrfs_put_ordered_extent(ordered_extent);
3285 
3286 	return ret;
3287 }
3288 
3289 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3290 {
3291 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3292 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3293 	    list_empty(&ordered->bioc_list))
3294 		btrfs_finish_ordered_zoned(ordered);
3295 	return btrfs_finish_one_ordered(ordered);
3296 }
3297 
3298 /*
3299  * Verify the checksum for a single sector without any extra action that depend
3300  * on the type of I/O.
3301  */
3302 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3303 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3304 {
3305 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3306 	char *kaddr;
3307 
3308 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3309 
3310 	shash->tfm = fs_info->csum_shash;
3311 
3312 	kaddr = kmap_local_page(page) + pgoff;
3313 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3314 	kunmap_local(kaddr);
3315 
3316 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3317 		return -EIO;
3318 	return 0;
3319 }
3320 
3321 /*
3322  * Verify the checksum of a single data sector.
3323  *
3324  * @bbio:	btrfs_io_bio which contains the csum
3325  * @dev:	device the sector is on
3326  * @bio_offset:	offset to the beginning of the bio (in bytes)
3327  * @bv:		bio_vec to check
3328  *
3329  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3330  * detected, report the error and fill the corrupted range with zero.
3331  *
3332  * Return %true if the sector is ok or had no checksum to start with, else %false.
3333  */
3334 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3335 			u32 bio_offset, struct bio_vec *bv)
3336 {
3337 	struct btrfs_inode *inode = bbio->inode;
3338 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3339 	u64 file_offset = bbio->file_offset + bio_offset;
3340 	u64 end = file_offset + bv->bv_len - 1;
3341 	u8 *csum_expected;
3342 	u8 csum[BTRFS_CSUM_SIZE];
3343 
3344 	ASSERT(bv->bv_len == fs_info->sectorsize);
3345 
3346 	if (!bbio->csum)
3347 		return true;
3348 
3349 	if (btrfs_is_data_reloc_root(inode->root) &&
3350 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3351 			   NULL)) {
3352 		/* Skip the range without csum for data reloc inode */
3353 		clear_extent_bits(&inode->io_tree, file_offset, end,
3354 				  EXTENT_NODATASUM);
3355 		return true;
3356 	}
3357 
3358 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3359 				fs_info->csum_size;
3360 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3361 				    csum_expected))
3362 		goto zeroit;
3363 	return true;
3364 
3365 zeroit:
3366 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3367 				    bbio->mirror_num);
3368 	if (dev)
3369 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3370 	memzero_bvec(bv);
3371 	return false;
3372 }
3373 
3374 /*
3375  * Perform a delayed iput on @inode.
3376  *
3377  * @inode: The inode we want to perform iput on
3378  *
3379  * This function uses the generic vfs_inode::i_count to track whether we should
3380  * just decrement it (in case it's > 1) or if this is the last iput then link
3381  * the inode to the delayed iput machinery. Delayed iputs are processed at
3382  * transaction commit time/superblock commit/cleaner kthread.
3383  */
3384 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3385 {
3386 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387 	unsigned long flags;
3388 
3389 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3390 		return;
3391 
3392 	atomic_inc(&fs_info->nr_delayed_iputs);
3393 	/*
3394 	 * Need to be irq safe here because we can be called from either an irq
3395 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3396 	 * context.
3397 	 */
3398 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3399 	ASSERT(list_empty(&inode->delayed_iput));
3400 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3401 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3402 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3403 		wake_up_process(fs_info->cleaner_kthread);
3404 }
3405 
3406 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3407 				    struct btrfs_inode *inode)
3408 {
3409 	list_del_init(&inode->delayed_iput);
3410 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3411 	iput(&inode->vfs_inode);
3412 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3413 		wake_up(&fs_info->delayed_iputs_wait);
3414 	spin_lock_irq(&fs_info->delayed_iput_lock);
3415 }
3416 
3417 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3418 				   struct btrfs_inode *inode)
3419 {
3420 	if (!list_empty(&inode->delayed_iput)) {
3421 		spin_lock_irq(&fs_info->delayed_iput_lock);
3422 		if (!list_empty(&inode->delayed_iput))
3423 			run_delayed_iput_locked(fs_info, inode);
3424 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3425 	}
3426 }
3427 
3428 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3429 {
3430 	/*
3431 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3432 	 * calls btrfs_add_delayed_iput() and that needs to lock
3433 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3434 	 * prevent a deadlock.
3435 	 */
3436 	spin_lock_irq(&fs_info->delayed_iput_lock);
3437 	while (!list_empty(&fs_info->delayed_iputs)) {
3438 		struct btrfs_inode *inode;
3439 
3440 		inode = list_first_entry(&fs_info->delayed_iputs,
3441 				struct btrfs_inode, delayed_iput);
3442 		run_delayed_iput_locked(fs_info, inode);
3443 		if (need_resched()) {
3444 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3445 			cond_resched();
3446 			spin_lock_irq(&fs_info->delayed_iput_lock);
3447 		}
3448 	}
3449 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3450 }
3451 
3452 /*
3453  * Wait for flushing all delayed iputs
3454  *
3455  * @fs_info:  the filesystem
3456  *
3457  * This will wait on any delayed iputs that are currently running with KILLABLE
3458  * set.  Once they are all done running we will return, unless we are killed in
3459  * which case we return EINTR. This helps in user operations like fallocate etc
3460  * that might get blocked on the iputs.
3461  *
3462  * Return EINTR if we were killed, 0 if nothing's pending
3463  */
3464 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3465 {
3466 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3467 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3468 	if (ret)
3469 		return -EINTR;
3470 	return 0;
3471 }
3472 
3473 /*
3474  * This creates an orphan entry for the given inode in case something goes wrong
3475  * in the middle of an unlink.
3476  */
3477 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3478 		     struct btrfs_inode *inode)
3479 {
3480 	int ret;
3481 
3482 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3483 	if (ret && ret != -EEXIST) {
3484 		btrfs_abort_transaction(trans, ret);
3485 		return ret;
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 /*
3492  * We have done the delete so we can go ahead and remove the orphan item for
3493  * this particular inode.
3494  */
3495 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3496 			    struct btrfs_inode *inode)
3497 {
3498 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3499 }
3500 
3501 /*
3502  * this cleans up any orphans that may be left on the list from the last use
3503  * of this root.
3504  */
3505 int btrfs_orphan_cleanup(struct btrfs_root *root)
3506 {
3507 	struct btrfs_fs_info *fs_info = root->fs_info;
3508 	struct btrfs_path *path;
3509 	struct extent_buffer *leaf;
3510 	struct btrfs_key key, found_key;
3511 	struct btrfs_trans_handle *trans;
3512 	struct inode *inode;
3513 	u64 last_objectid = 0;
3514 	int ret = 0, nr_unlink = 0;
3515 
3516 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3517 		return 0;
3518 
3519 	path = btrfs_alloc_path();
3520 	if (!path) {
3521 		ret = -ENOMEM;
3522 		goto out;
3523 	}
3524 	path->reada = READA_BACK;
3525 
3526 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3527 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3528 	key.offset = (u64)-1;
3529 
3530 	while (1) {
3531 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532 		if (ret < 0)
3533 			goto out;
3534 
3535 		/*
3536 		 * if ret == 0 means we found what we were searching for, which
3537 		 * is weird, but possible, so only screw with path if we didn't
3538 		 * find the key and see if we have stuff that matches
3539 		 */
3540 		if (ret > 0) {
3541 			ret = 0;
3542 			if (path->slots[0] == 0)
3543 				break;
3544 			path->slots[0]--;
3545 		}
3546 
3547 		/* pull out the item */
3548 		leaf = path->nodes[0];
3549 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3550 
3551 		/* make sure the item matches what we want */
3552 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3553 			break;
3554 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3555 			break;
3556 
3557 		/* release the path since we're done with it */
3558 		btrfs_release_path(path);
3559 
3560 		/*
3561 		 * this is where we are basically btrfs_lookup, without the
3562 		 * crossing root thing.  we store the inode number in the
3563 		 * offset of the orphan item.
3564 		 */
3565 
3566 		if (found_key.offset == last_objectid) {
3567 			/*
3568 			 * We found the same inode as before. This means we were
3569 			 * not able to remove its items via eviction triggered
3570 			 * by an iput(). A transaction abort may have happened,
3571 			 * due to -ENOSPC for example, so try to grab the error
3572 			 * that lead to a transaction abort, if any.
3573 			 */
3574 			btrfs_err(fs_info,
3575 				  "Error removing orphan entry, stopping orphan cleanup");
3576 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3577 			goto out;
3578 		}
3579 
3580 		last_objectid = found_key.offset;
3581 
3582 		found_key.objectid = found_key.offset;
3583 		found_key.type = BTRFS_INODE_ITEM_KEY;
3584 		found_key.offset = 0;
3585 		inode = btrfs_iget(last_objectid, root);
3586 		if (IS_ERR(inode)) {
3587 			ret = PTR_ERR(inode);
3588 			inode = NULL;
3589 			if (ret != -ENOENT)
3590 				goto out;
3591 		}
3592 
3593 		if (!inode && root == fs_info->tree_root) {
3594 			struct btrfs_root *dead_root;
3595 			int is_dead_root = 0;
3596 
3597 			/*
3598 			 * This is an orphan in the tree root. Currently these
3599 			 * could come from 2 sources:
3600 			 *  a) a root (snapshot/subvolume) deletion in progress
3601 			 *  b) a free space cache inode
3602 			 * We need to distinguish those two, as the orphan item
3603 			 * for a root must not get deleted before the deletion
3604 			 * of the snapshot/subvolume's tree completes.
3605 			 *
3606 			 * btrfs_find_orphan_roots() ran before us, which has
3607 			 * found all deleted roots and loaded them into
3608 			 * fs_info->fs_roots_radix. So here we can find if an
3609 			 * orphan item corresponds to a deleted root by looking
3610 			 * up the root from that radix tree.
3611 			 */
3612 
3613 			spin_lock(&fs_info->fs_roots_radix_lock);
3614 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3615 							 (unsigned long)found_key.objectid);
3616 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3617 				is_dead_root = 1;
3618 			spin_unlock(&fs_info->fs_roots_radix_lock);
3619 
3620 			if (is_dead_root) {
3621 				/* prevent this orphan from being found again */
3622 				key.offset = found_key.objectid - 1;
3623 				continue;
3624 			}
3625 
3626 		}
3627 
3628 		/*
3629 		 * If we have an inode with links, there are a couple of
3630 		 * possibilities:
3631 		 *
3632 		 * 1. We were halfway through creating fsverity metadata for the
3633 		 * file. In that case, the orphan item represents incomplete
3634 		 * fsverity metadata which must be cleaned up with
3635 		 * btrfs_drop_verity_items and deleting the orphan item.
3636 
3637 		 * 2. Old kernels (before v3.12) used to create an
3638 		 * orphan item for truncate indicating that there were possibly
3639 		 * extent items past i_size that needed to be deleted. In v3.12,
3640 		 * truncate was changed to update i_size in sync with the extent
3641 		 * items, but the (useless) orphan item was still created. Since
3642 		 * v4.18, we don't create the orphan item for truncate at all.
3643 		 *
3644 		 * So, this item could mean that we need to do a truncate, but
3645 		 * only if this filesystem was last used on a pre-v3.12 kernel
3646 		 * and was not cleanly unmounted. The odds of that are quite
3647 		 * slim, and it's a pain to do the truncate now, so just delete
3648 		 * the orphan item.
3649 		 *
3650 		 * It's also possible that this orphan item was supposed to be
3651 		 * deleted but wasn't. The inode number may have been reused,
3652 		 * but either way, we can delete the orphan item.
3653 		 */
3654 		if (!inode || inode->i_nlink) {
3655 			if (inode) {
3656 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3657 				iput(inode);
3658 				inode = NULL;
3659 				if (ret)
3660 					goto out;
3661 			}
3662 			trans = btrfs_start_transaction(root, 1);
3663 			if (IS_ERR(trans)) {
3664 				ret = PTR_ERR(trans);
3665 				goto out;
3666 			}
3667 			btrfs_debug(fs_info, "auto deleting %Lu",
3668 				    found_key.objectid);
3669 			ret = btrfs_del_orphan_item(trans, root,
3670 						    found_key.objectid);
3671 			btrfs_end_transaction(trans);
3672 			if (ret)
3673 				goto out;
3674 			continue;
3675 		}
3676 
3677 		nr_unlink++;
3678 
3679 		/* this will do delete_inode and everything for us */
3680 		iput(inode);
3681 	}
3682 	/* release the path since we're done with it */
3683 	btrfs_release_path(path);
3684 
3685 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3686 		trans = btrfs_join_transaction(root);
3687 		if (!IS_ERR(trans))
3688 			btrfs_end_transaction(trans);
3689 	}
3690 
3691 	if (nr_unlink)
3692 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3693 
3694 out:
3695 	if (ret)
3696 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3697 	btrfs_free_path(path);
3698 	return ret;
3699 }
3700 
3701 /*
3702  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3703  * don't find any xattrs, we know there can't be any acls.
3704  *
3705  * slot is the slot the inode is in, objectid is the objectid of the inode
3706  */
3707 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3708 					  int slot, u64 objectid,
3709 					  int *first_xattr_slot)
3710 {
3711 	u32 nritems = btrfs_header_nritems(leaf);
3712 	struct btrfs_key found_key;
3713 	static u64 xattr_access = 0;
3714 	static u64 xattr_default = 0;
3715 	int scanned = 0;
3716 
3717 	if (!xattr_access) {
3718 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3719 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3720 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3721 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3722 	}
3723 
3724 	slot++;
3725 	*first_xattr_slot = -1;
3726 	while (slot < nritems) {
3727 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3728 
3729 		/* we found a different objectid, there must not be acls */
3730 		if (found_key.objectid != objectid)
3731 			return 0;
3732 
3733 		/* we found an xattr, assume we've got an acl */
3734 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3735 			if (*first_xattr_slot == -1)
3736 				*first_xattr_slot = slot;
3737 			if (found_key.offset == xattr_access ||
3738 			    found_key.offset == xattr_default)
3739 				return 1;
3740 		}
3741 
3742 		/*
3743 		 * we found a key greater than an xattr key, there can't
3744 		 * be any acls later on
3745 		 */
3746 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3747 			return 0;
3748 
3749 		slot++;
3750 		scanned++;
3751 
3752 		/*
3753 		 * it goes inode, inode backrefs, xattrs, extents,
3754 		 * so if there are a ton of hard links to an inode there can
3755 		 * be a lot of backrefs.  Don't waste time searching too hard,
3756 		 * this is just an optimization
3757 		 */
3758 		if (scanned >= 8)
3759 			break;
3760 	}
3761 	/* we hit the end of the leaf before we found an xattr or
3762 	 * something larger than an xattr.  We have to assume the inode
3763 	 * has acls
3764 	 */
3765 	if (*first_xattr_slot == -1)
3766 		*first_xattr_slot = slot;
3767 	return 1;
3768 }
3769 
3770 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3771 {
3772 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3773 
3774 	if (WARN_ON_ONCE(inode->file_extent_tree))
3775 		return 0;
3776 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3777 		return 0;
3778 	if (!S_ISREG(inode->vfs_inode.i_mode))
3779 		return 0;
3780 	if (btrfs_is_free_space_inode(inode))
3781 		return 0;
3782 
3783 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3784 	if (!inode->file_extent_tree)
3785 		return -ENOMEM;
3786 
3787 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3788 	/* Lockdep class is set only for the file extent tree. */
3789 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3790 
3791 	return 0;
3792 }
3793 
3794 /*
3795  * read an inode from the btree into the in-memory inode
3796  */
3797 static int btrfs_read_locked_inode(struct inode *inode,
3798 				   struct btrfs_path *in_path)
3799 {
3800 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3801 	struct btrfs_path *path = in_path;
3802 	struct extent_buffer *leaf;
3803 	struct btrfs_inode_item *inode_item;
3804 	struct btrfs_root *root = BTRFS_I(inode)->root;
3805 	struct btrfs_key location;
3806 	unsigned long ptr;
3807 	int maybe_acls;
3808 	u32 rdev;
3809 	int ret;
3810 	bool filled = false;
3811 	int first_xattr_slot;
3812 
3813 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3814 	if (ret)
3815 		return ret;
3816 
3817 	ret = btrfs_fill_inode(inode, &rdev);
3818 	if (!ret)
3819 		filled = true;
3820 
3821 	if (!path) {
3822 		path = btrfs_alloc_path();
3823 		if (!path)
3824 			return -ENOMEM;
3825 	}
3826 
3827 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3828 
3829 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3830 	if (ret) {
3831 		if (path != in_path)
3832 			btrfs_free_path(path);
3833 		return ret;
3834 	}
3835 
3836 	leaf = path->nodes[0];
3837 
3838 	if (filled)
3839 		goto cache_index;
3840 
3841 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3842 				    struct btrfs_inode_item);
3843 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3844 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3845 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3846 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3847 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3848 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3849 			round_up(i_size_read(inode), fs_info->sectorsize));
3850 
3851 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3852 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3853 
3854 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3855 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3856 
3857 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3858 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3859 
3860 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3861 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3862 
3863 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3864 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3865 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3866 
3867 	inode_set_iversion_queried(inode,
3868 				   btrfs_inode_sequence(leaf, inode_item));
3869 	inode->i_generation = BTRFS_I(inode)->generation;
3870 	inode->i_rdev = 0;
3871 	rdev = btrfs_inode_rdev(leaf, inode_item);
3872 
3873 	if (S_ISDIR(inode->i_mode))
3874 		BTRFS_I(inode)->index_cnt = (u64)-1;
3875 
3876 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3877 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3878 
3879 cache_index:
3880 	/*
3881 	 * If we were modified in the current generation and evicted from memory
3882 	 * and then re-read we need to do a full sync since we don't have any
3883 	 * idea about which extents were modified before we were evicted from
3884 	 * cache.
3885 	 *
3886 	 * This is required for both inode re-read from disk and delayed inode
3887 	 * in the delayed_nodes xarray.
3888 	 */
3889 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3890 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3891 			&BTRFS_I(inode)->runtime_flags);
3892 
3893 	/*
3894 	 * We don't persist the id of the transaction where an unlink operation
3895 	 * against the inode was last made. So here we assume the inode might
3896 	 * have been evicted, and therefore the exact value of last_unlink_trans
3897 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3898 	 * between the inode and its parent if the inode is fsync'ed and the log
3899 	 * replayed. For example, in the scenario:
3900 	 *
3901 	 * touch mydir/foo
3902 	 * ln mydir/foo mydir/bar
3903 	 * sync
3904 	 * unlink mydir/bar
3905 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3906 	 * xfs_io -c fsync mydir/foo
3907 	 * <power failure>
3908 	 * mount fs, triggers fsync log replay
3909 	 *
3910 	 * We must make sure that when we fsync our inode foo we also log its
3911 	 * parent inode, otherwise after log replay the parent still has the
3912 	 * dentry with the "bar" name but our inode foo has a link count of 1
3913 	 * and doesn't have an inode ref with the name "bar" anymore.
3914 	 *
3915 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3916 	 * but it guarantees correctness at the expense of occasional full
3917 	 * transaction commits on fsync if our inode is a directory, or if our
3918 	 * inode is not a directory, logging its parent unnecessarily.
3919 	 */
3920 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3921 
3922 	/*
3923 	 * Same logic as for last_unlink_trans. We don't persist the generation
3924 	 * of the last transaction where this inode was used for a reflink
3925 	 * operation, so after eviction and reloading the inode we must be
3926 	 * pessimistic and assume the last transaction that modified the inode.
3927 	 */
3928 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3929 
3930 	path->slots[0]++;
3931 	if (inode->i_nlink != 1 ||
3932 	    path->slots[0] >= btrfs_header_nritems(leaf))
3933 		goto cache_acl;
3934 
3935 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3936 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3937 		goto cache_acl;
3938 
3939 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3940 	if (location.type == BTRFS_INODE_REF_KEY) {
3941 		struct btrfs_inode_ref *ref;
3942 
3943 		ref = (struct btrfs_inode_ref *)ptr;
3944 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3945 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3946 		struct btrfs_inode_extref *extref;
3947 
3948 		extref = (struct btrfs_inode_extref *)ptr;
3949 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3950 								     extref);
3951 	}
3952 cache_acl:
3953 	/*
3954 	 * try to precache a NULL acl entry for files that don't have
3955 	 * any xattrs or acls
3956 	 */
3957 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3958 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3959 	if (first_xattr_slot != -1) {
3960 		path->slots[0] = first_xattr_slot;
3961 		ret = btrfs_load_inode_props(inode, path);
3962 		if (ret)
3963 			btrfs_err(fs_info,
3964 				  "error loading props for ino %llu (root %llu): %d",
3965 				  btrfs_ino(BTRFS_I(inode)),
3966 				  btrfs_root_id(root), ret);
3967 	}
3968 	if (path != in_path)
3969 		btrfs_free_path(path);
3970 
3971 	if (!maybe_acls)
3972 		cache_no_acl(inode);
3973 
3974 	switch (inode->i_mode & S_IFMT) {
3975 	case S_IFREG:
3976 		inode->i_mapping->a_ops = &btrfs_aops;
3977 		inode->i_fop = &btrfs_file_operations;
3978 		inode->i_op = &btrfs_file_inode_operations;
3979 		break;
3980 	case S_IFDIR:
3981 		inode->i_fop = &btrfs_dir_file_operations;
3982 		inode->i_op = &btrfs_dir_inode_operations;
3983 		break;
3984 	case S_IFLNK:
3985 		inode->i_op = &btrfs_symlink_inode_operations;
3986 		inode_nohighmem(inode);
3987 		inode->i_mapping->a_ops = &btrfs_aops;
3988 		break;
3989 	default:
3990 		inode->i_op = &btrfs_special_inode_operations;
3991 		init_special_inode(inode, inode->i_mode, rdev);
3992 		break;
3993 	}
3994 
3995 	btrfs_sync_inode_flags_to_i_flags(inode);
3996 	return 0;
3997 }
3998 
3999 /*
4000  * given a leaf and an inode, copy the inode fields into the leaf
4001  */
4002 static void fill_inode_item(struct btrfs_trans_handle *trans,
4003 			    struct extent_buffer *leaf,
4004 			    struct btrfs_inode_item *item,
4005 			    struct inode *inode)
4006 {
4007 	struct btrfs_map_token token;
4008 	u64 flags;
4009 
4010 	btrfs_init_map_token(&token, leaf);
4011 
4012 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4013 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4014 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4015 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4016 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4017 
4018 	btrfs_set_token_timespec_sec(&token, &item->atime,
4019 				     inode_get_atime_sec(inode));
4020 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4021 				      inode_get_atime_nsec(inode));
4022 
4023 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4024 				     inode_get_mtime_sec(inode));
4025 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4026 				      inode_get_mtime_nsec(inode));
4027 
4028 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4029 				     inode_get_ctime_sec(inode));
4030 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4031 				      inode_get_ctime_nsec(inode));
4032 
4033 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4034 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4035 
4036 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4037 	btrfs_set_token_inode_generation(&token, item,
4038 					 BTRFS_I(inode)->generation);
4039 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4040 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4041 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4042 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4043 					  BTRFS_I(inode)->ro_flags);
4044 	btrfs_set_token_inode_flags(&token, item, flags);
4045 	btrfs_set_token_inode_block_group(&token, item, 0);
4046 }
4047 
4048 /*
4049  * copy everything in the in-memory inode into the btree.
4050  */
4051 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4052 					    struct btrfs_inode *inode)
4053 {
4054 	struct btrfs_inode_item *inode_item;
4055 	struct btrfs_path *path;
4056 	struct extent_buffer *leaf;
4057 	struct btrfs_key key;
4058 	int ret;
4059 
4060 	path = btrfs_alloc_path();
4061 	if (!path)
4062 		return -ENOMEM;
4063 
4064 	btrfs_get_inode_key(inode, &key);
4065 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4066 	if (ret) {
4067 		if (ret > 0)
4068 			ret = -ENOENT;
4069 		goto failed;
4070 	}
4071 
4072 	leaf = path->nodes[0];
4073 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4074 				    struct btrfs_inode_item);
4075 
4076 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4077 	btrfs_mark_buffer_dirty(trans, leaf);
4078 	btrfs_set_inode_last_trans(trans, inode);
4079 	ret = 0;
4080 failed:
4081 	btrfs_free_path(path);
4082 	return ret;
4083 }
4084 
4085 /*
4086  * copy everything in the in-memory inode into the btree.
4087  */
4088 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4089 		       struct btrfs_inode *inode)
4090 {
4091 	struct btrfs_root *root = inode->root;
4092 	struct btrfs_fs_info *fs_info = root->fs_info;
4093 	int ret;
4094 
4095 	/*
4096 	 * If the inode is a free space inode, we can deadlock during commit
4097 	 * if we put it into the delayed code.
4098 	 *
4099 	 * The data relocation inode should also be directly updated
4100 	 * without delay
4101 	 */
4102 	if (!btrfs_is_free_space_inode(inode)
4103 	    && !btrfs_is_data_reloc_root(root)
4104 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4105 		btrfs_update_root_times(trans, root);
4106 
4107 		ret = btrfs_delayed_update_inode(trans, inode);
4108 		if (!ret)
4109 			btrfs_set_inode_last_trans(trans, inode);
4110 		return ret;
4111 	}
4112 
4113 	return btrfs_update_inode_item(trans, inode);
4114 }
4115 
4116 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4117 				struct btrfs_inode *inode)
4118 {
4119 	int ret;
4120 
4121 	ret = btrfs_update_inode(trans, inode);
4122 	if (ret == -ENOSPC)
4123 		return btrfs_update_inode_item(trans, inode);
4124 	return ret;
4125 }
4126 
4127 /*
4128  * unlink helper that gets used here in inode.c and in the tree logging
4129  * recovery code.  It remove a link in a directory with a given name, and
4130  * also drops the back refs in the inode to the directory
4131  */
4132 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4133 				struct btrfs_inode *dir,
4134 				struct btrfs_inode *inode,
4135 				const struct fscrypt_str *name,
4136 				struct btrfs_rename_ctx *rename_ctx)
4137 {
4138 	struct btrfs_root *root = dir->root;
4139 	struct btrfs_fs_info *fs_info = root->fs_info;
4140 	struct btrfs_path *path;
4141 	int ret = 0;
4142 	struct btrfs_dir_item *di;
4143 	u64 index;
4144 	u64 ino = btrfs_ino(inode);
4145 	u64 dir_ino = btrfs_ino(dir);
4146 
4147 	path = btrfs_alloc_path();
4148 	if (!path) {
4149 		ret = -ENOMEM;
4150 		goto out;
4151 	}
4152 
4153 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4154 	if (IS_ERR_OR_NULL(di)) {
4155 		ret = di ? PTR_ERR(di) : -ENOENT;
4156 		goto err;
4157 	}
4158 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4159 	if (ret)
4160 		goto err;
4161 	btrfs_release_path(path);
4162 
4163 	/*
4164 	 * If we don't have dir index, we have to get it by looking up
4165 	 * the inode ref, since we get the inode ref, remove it directly,
4166 	 * it is unnecessary to do delayed deletion.
4167 	 *
4168 	 * But if we have dir index, needn't search inode ref to get it.
4169 	 * Since the inode ref is close to the inode item, it is better
4170 	 * that we delay to delete it, and just do this deletion when
4171 	 * we update the inode item.
4172 	 */
4173 	if (inode->dir_index) {
4174 		ret = btrfs_delayed_delete_inode_ref(inode);
4175 		if (!ret) {
4176 			index = inode->dir_index;
4177 			goto skip_backref;
4178 		}
4179 	}
4180 
4181 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4182 	if (ret) {
4183 		btrfs_info(fs_info,
4184 			"failed to delete reference to %.*s, inode %llu parent %llu",
4185 			name->len, name->name, ino, dir_ino);
4186 		btrfs_abort_transaction(trans, ret);
4187 		goto err;
4188 	}
4189 skip_backref:
4190 	if (rename_ctx)
4191 		rename_ctx->index = index;
4192 
4193 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4194 	if (ret) {
4195 		btrfs_abort_transaction(trans, ret);
4196 		goto err;
4197 	}
4198 
4199 	/*
4200 	 * If we are in a rename context, we don't need to update anything in the
4201 	 * log. That will be done later during the rename by btrfs_log_new_name().
4202 	 * Besides that, doing it here would only cause extra unnecessary btree
4203 	 * operations on the log tree, increasing latency for applications.
4204 	 */
4205 	if (!rename_ctx) {
4206 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4207 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4208 	}
4209 
4210 	/*
4211 	 * If we have a pending delayed iput we could end up with the final iput
4212 	 * being run in btrfs-cleaner context.  If we have enough of these built
4213 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4214 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4215 	 * the inode we can run the delayed iput here without any issues as the
4216 	 * final iput won't be done until after we drop the ref we're currently
4217 	 * holding.
4218 	 */
4219 	btrfs_run_delayed_iput(fs_info, inode);
4220 err:
4221 	btrfs_free_path(path);
4222 	if (ret)
4223 		goto out;
4224 
4225 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4226 	inode_inc_iversion(&inode->vfs_inode);
4227 	inode_set_ctime_current(&inode->vfs_inode);
4228 	inode_inc_iversion(&dir->vfs_inode);
4229  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4230 	ret = btrfs_update_inode(trans, dir);
4231 out:
4232 	return ret;
4233 }
4234 
4235 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4236 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4237 		       const struct fscrypt_str *name)
4238 {
4239 	int ret;
4240 
4241 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4242 	if (!ret) {
4243 		drop_nlink(&inode->vfs_inode);
4244 		ret = btrfs_update_inode(trans, inode);
4245 	}
4246 	return ret;
4247 }
4248 
4249 /*
4250  * helper to start transaction for unlink and rmdir.
4251  *
4252  * unlink and rmdir are special in btrfs, they do not always free space, so
4253  * if we cannot make our reservations the normal way try and see if there is
4254  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4255  * allow the unlink to occur.
4256  */
4257 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4258 {
4259 	struct btrfs_root *root = dir->root;
4260 
4261 	return btrfs_start_transaction_fallback_global_rsv(root,
4262 						   BTRFS_UNLINK_METADATA_UNITS);
4263 }
4264 
4265 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4266 {
4267 	struct btrfs_trans_handle *trans;
4268 	struct inode *inode = d_inode(dentry);
4269 	int ret;
4270 	struct fscrypt_name fname;
4271 
4272 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4273 	if (ret)
4274 		return ret;
4275 
4276 	/* This needs to handle no-key deletions later on */
4277 
4278 	trans = __unlink_start_trans(BTRFS_I(dir));
4279 	if (IS_ERR(trans)) {
4280 		ret = PTR_ERR(trans);
4281 		goto fscrypt_free;
4282 	}
4283 
4284 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4285 				false);
4286 
4287 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4288 				 &fname.disk_name);
4289 	if (ret)
4290 		goto end_trans;
4291 
4292 	if (inode->i_nlink == 0) {
4293 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4294 		if (ret)
4295 			goto end_trans;
4296 	}
4297 
4298 end_trans:
4299 	btrfs_end_transaction(trans);
4300 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4301 fscrypt_free:
4302 	fscrypt_free_filename(&fname);
4303 	return ret;
4304 }
4305 
4306 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4307 			       struct btrfs_inode *dir, struct dentry *dentry)
4308 {
4309 	struct btrfs_root *root = dir->root;
4310 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4311 	struct btrfs_path *path;
4312 	struct extent_buffer *leaf;
4313 	struct btrfs_dir_item *di;
4314 	struct btrfs_key key;
4315 	u64 index;
4316 	int ret;
4317 	u64 objectid;
4318 	u64 dir_ino = btrfs_ino(dir);
4319 	struct fscrypt_name fname;
4320 
4321 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4322 	if (ret)
4323 		return ret;
4324 
4325 	/* This needs to handle no-key deletions later on */
4326 
4327 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4328 		objectid = btrfs_root_id(inode->root);
4329 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4330 		objectid = inode->ref_root_id;
4331 	} else {
4332 		WARN_ON(1);
4333 		fscrypt_free_filename(&fname);
4334 		return -EINVAL;
4335 	}
4336 
4337 	path = btrfs_alloc_path();
4338 	if (!path) {
4339 		ret = -ENOMEM;
4340 		goto out;
4341 	}
4342 
4343 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4344 				   &fname.disk_name, -1);
4345 	if (IS_ERR_OR_NULL(di)) {
4346 		ret = di ? PTR_ERR(di) : -ENOENT;
4347 		goto out;
4348 	}
4349 
4350 	leaf = path->nodes[0];
4351 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4352 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4353 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4354 	if (ret) {
4355 		btrfs_abort_transaction(trans, ret);
4356 		goto out;
4357 	}
4358 	btrfs_release_path(path);
4359 
4360 	/*
4361 	 * This is a placeholder inode for a subvolume we didn't have a
4362 	 * reference to at the time of the snapshot creation.  In the meantime
4363 	 * we could have renamed the real subvol link into our snapshot, so
4364 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4365 	 * Instead simply lookup the dir_index_item for this entry so we can
4366 	 * remove it.  Otherwise we know we have a ref to the root and we can
4367 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4368 	 */
4369 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4370 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4371 		if (IS_ERR(di)) {
4372 			ret = PTR_ERR(di);
4373 			btrfs_abort_transaction(trans, ret);
4374 			goto out;
4375 		}
4376 
4377 		leaf = path->nodes[0];
4378 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379 		index = key.offset;
4380 		btrfs_release_path(path);
4381 	} else {
4382 		ret = btrfs_del_root_ref(trans, objectid,
4383 					 btrfs_root_id(root), dir_ino,
4384 					 &index, &fname.disk_name);
4385 		if (ret) {
4386 			btrfs_abort_transaction(trans, ret);
4387 			goto out;
4388 		}
4389 	}
4390 
4391 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4392 	if (ret) {
4393 		btrfs_abort_transaction(trans, ret);
4394 		goto out;
4395 	}
4396 
4397 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4398 	inode_inc_iversion(&dir->vfs_inode);
4399 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4400 	ret = btrfs_update_inode_fallback(trans, dir);
4401 	if (ret)
4402 		btrfs_abort_transaction(trans, ret);
4403 out:
4404 	btrfs_free_path(path);
4405 	fscrypt_free_filename(&fname);
4406 	return ret;
4407 }
4408 
4409 /*
4410  * Helper to check if the subvolume references other subvolumes or if it's
4411  * default.
4412  */
4413 static noinline int may_destroy_subvol(struct btrfs_root *root)
4414 {
4415 	struct btrfs_fs_info *fs_info = root->fs_info;
4416 	struct btrfs_path *path;
4417 	struct btrfs_dir_item *di;
4418 	struct btrfs_key key;
4419 	struct fscrypt_str name = FSTR_INIT("default", 7);
4420 	u64 dir_id;
4421 	int ret;
4422 
4423 	path = btrfs_alloc_path();
4424 	if (!path)
4425 		return -ENOMEM;
4426 
4427 	/* Make sure this root isn't set as the default subvol */
4428 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4429 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4430 				   dir_id, &name, 0);
4431 	if (di && !IS_ERR(di)) {
4432 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4433 		if (key.objectid == btrfs_root_id(root)) {
4434 			ret = -EPERM;
4435 			btrfs_err(fs_info,
4436 				  "deleting default subvolume %llu is not allowed",
4437 				  key.objectid);
4438 			goto out;
4439 		}
4440 		btrfs_release_path(path);
4441 	}
4442 
4443 	key.objectid = btrfs_root_id(root);
4444 	key.type = BTRFS_ROOT_REF_KEY;
4445 	key.offset = (u64)-1;
4446 
4447 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4448 	if (ret < 0)
4449 		goto out;
4450 	if (ret == 0) {
4451 		/*
4452 		 * Key with offset -1 found, there would have to exist a root
4453 		 * with such id, but this is out of valid range.
4454 		 */
4455 		ret = -EUCLEAN;
4456 		goto out;
4457 	}
4458 
4459 	ret = 0;
4460 	if (path->slots[0] > 0) {
4461 		path->slots[0]--;
4462 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4463 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4464 			ret = -ENOTEMPTY;
4465 	}
4466 out:
4467 	btrfs_free_path(path);
4468 	return ret;
4469 }
4470 
4471 /* Delete all dentries for inodes belonging to the root */
4472 static void btrfs_prune_dentries(struct btrfs_root *root)
4473 {
4474 	struct btrfs_fs_info *fs_info = root->fs_info;
4475 	struct btrfs_inode *inode;
4476 	u64 min_ino = 0;
4477 
4478 	if (!BTRFS_FS_ERROR(fs_info))
4479 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4480 
4481 	inode = btrfs_find_first_inode(root, min_ino);
4482 	while (inode) {
4483 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4484 			d_prune_aliases(&inode->vfs_inode);
4485 
4486 		min_ino = btrfs_ino(inode) + 1;
4487 		/*
4488 		 * btrfs_drop_inode() will have it removed from the inode
4489 		 * cache when its usage count hits zero.
4490 		 */
4491 		iput(&inode->vfs_inode);
4492 		cond_resched();
4493 		inode = btrfs_find_first_inode(root, min_ino);
4494 	}
4495 }
4496 
4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4498 {
4499 	struct btrfs_root *root = dir->root;
4500 	struct btrfs_fs_info *fs_info = root->fs_info;
4501 	struct inode *inode = d_inode(dentry);
4502 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4503 	struct btrfs_trans_handle *trans;
4504 	struct btrfs_block_rsv block_rsv;
4505 	u64 root_flags;
4506 	u64 qgroup_reserved = 0;
4507 	int ret;
4508 
4509 	down_write(&fs_info->subvol_sem);
4510 
4511 	/*
4512 	 * Don't allow to delete a subvolume with send in progress. This is
4513 	 * inside the inode lock so the error handling that has to drop the bit
4514 	 * again is not run concurrently.
4515 	 */
4516 	spin_lock(&dest->root_item_lock);
4517 	if (dest->send_in_progress) {
4518 		spin_unlock(&dest->root_item_lock);
4519 		btrfs_warn(fs_info,
4520 			   "attempt to delete subvolume %llu during send",
4521 			   btrfs_root_id(dest));
4522 		ret = -EPERM;
4523 		goto out_up_write;
4524 	}
4525 	if (atomic_read(&dest->nr_swapfiles)) {
4526 		spin_unlock(&dest->root_item_lock);
4527 		btrfs_warn(fs_info,
4528 			   "attempt to delete subvolume %llu with active swapfile",
4529 			   btrfs_root_id(root));
4530 		ret = -EPERM;
4531 		goto out_up_write;
4532 	}
4533 	root_flags = btrfs_root_flags(&dest->root_item);
4534 	btrfs_set_root_flags(&dest->root_item,
4535 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4536 	spin_unlock(&dest->root_item_lock);
4537 
4538 	ret = may_destroy_subvol(dest);
4539 	if (ret)
4540 		goto out_undead;
4541 
4542 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4543 	/*
4544 	 * One for dir inode,
4545 	 * two for dir entries,
4546 	 * two for root ref/backref.
4547 	 */
4548 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4549 	if (ret)
4550 		goto out_undead;
4551 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4552 
4553 	trans = btrfs_start_transaction(root, 0);
4554 	if (IS_ERR(trans)) {
4555 		ret = PTR_ERR(trans);
4556 		goto out_release;
4557 	}
4558 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4559 	qgroup_reserved = 0;
4560 	trans->block_rsv = &block_rsv;
4561 	trans->bytes_reserved = block_rsv.size;
4562 
4563 	btrfs_record_snapshot_destroy(trans, dir);
4564 
4565 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4566 	if (ret) {
4567 		btrfs_abort_transaction(trans, ret);
4568 		goto out_end_trans;
4569 	}
4570 
4571 	ret = btrfs_record_root_in_trans(trans, dest);
4572 	if (ret) {
4573 		btrfs_abort_transaction(trans, ret);
4574 		goto out_end_trans;
4575 	}
4576 
4577 	memset(&dest->root_item.drop_progress, 0,
4578 		sizeof(dest->root_item.drop_progress));
4579 	btrfs_set_root_drop_level(&dest->root_item, 0);
4580 	btrfs_set_root_refs(&dest->root_item, 0);
4581 
4582 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4583 		ret = btrfs_insert_orphan_item(trans,
4584 					fs_info->tree_root,
4585 					btrfs_root_id(dest));
4586 		if (ret) {
4587 			btrfs_abort_transaction(trans, ret);
4588 			goto out_end_trans;
4589 		}
4590 	}
4591 
4592 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4593 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4594 	if (ret && ret != -ENOENT) {
4595 		btrfs_abort_transaction(trans, ret);
4596 		goto out_end_trans;
4597 	}
4598 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4599 		ret = btrfs_uuid_tree_remove(trans,
4600 					  dest->root_item.received_uuid,
4601 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4602 					  btrfs_root_id(dest));
4603 		if (ret && ret != -ENOENT) {
4604 			btrfs_abort_transaction(trans, ret);
4605 			goto out_end_trans;
4606 		}
4607 	}
4608 
4609 	free_anon_bdev(dest->anon_dev);
4610 	dest->anon_dev = 0;
4611 out_end_trans:
4612 	trans->block_rsv = NULL;
4613 	trans->bytes_reserved = 0;
4614 	ret = btrfs_end_transaction(trans);
4615 	inode->i_flags |= S_DEAD;
4616 out_release:
4617 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4618 	if (qgroup_reserved)
4619 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4620 out_undead:
4621 	if (ret) {
4622 		spin_lock(&dest->root_item_lock);
4623 		root_flags = btrfs_root_flags(&dest->root_item);
4624 		btrfs_set_root_flags(&dest->root_item,
4625 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4626 		spin_unlock(&dest->root_item_lock);
4627 	}
4628 out_up_write:
4629 	up_write(&fs_info->subvol_sem);
4630 	if (!ret) {
4631 		d_invalidate(dentry);
4632 		btrfs_prune_dentries(dest);
4633 		ASSERT(dest->send_in_progress == 0);
4634 	}
4635 
4636 	return ret;
4637 }
4638 
4639 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4640 {
4641 	struct inode *inode = d_inode(dentry);
4642 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4643 	int ret = 0;
4644 	struct btrfs_trans_handle *trans;
4645 	u64 last_unlink_trans;
4646 	struct fscrypt_name fname;
4647 
4648 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4649 		return -ENOTEMPTY;
4650 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4651 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4652 			btrfs_err(fs_info,
4653 			"extent tree v2 doesn't support snapshot deletion yet");
4654 			return -EOPNOTSUPP;
4655 		}
4656 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4657 	}
4658 
4659 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4660 	if (ret)
4661 		return ret;
4662 
4663 	/* This needs to handle no-key deletions later on */
4664 
4665 	trans = __unlink_start_trans(BTRFS_I(dir));
4666 	if (IS_ERR(trans)) {
4667 		ret = PTR_ERR(trans);
4668 		goto out_notrans;
4669 	}
4670 
4671 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4672 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4673 		goto out;
4674 	}
4675 
4676 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4677 	if (ret)
4678 		goto out;
4679 
4680 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4681 
4682 	/* now the directory is empty */
4683 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4684 				 &fname.disk_name);
4685 	if (!ret) {
4686 		btrfs_i_size_write(BTRFS_I(inode), 0);
4687 		/*
4688 		 * Propagate the last_unlink_trans value of the deleted dir to
4689 		 * its parent directory. This is to prevent an unrecoverable
4690 		 * log tree in the case we do something like this:
4691 		 * 1) create dir foo
4692 		 * 2) create snapshot under dir foo
4693 		 * 3) delete the snapshot
4694 		 * 4) rmdir foo
4695 		 * 5) mkdir foo
4696 		 * 6) fsync foo or some file inside foo
4697 		 */
4698 		if (last_unlink_trans >= trans->transid)
4699 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4700 	}
4701 out:
4702 	btrfs_end_transaction(trans);
4703 out_notrans:
4704 	btrfs_btree_balance_dirty(fs_info);
4705 	fscrypt_free_filename(&fname);
4706 
4707 	return ret;
4708 }
4709 
4710 /*
4711  * Read, zero a chunk and write a block.
4712  *
4713  * @inode - inode that we're zeroing
4714  * @from - the offset to start zeroing
4715  * @len - the length to zero, 0 to zero the entire range respective to the
4716  *	offset
4717  * @front - zero up to the offset instead of from the offset on
4718  *
4719  * This will find the block for the "from" offset and cow the block and zero the
4720  * part we want to zero.  This is used with truncate and hole punching.
4721  */
4722 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4723 			 int front)
4724 {
4725 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4726 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4727 	struct extent_io_tree *io_tree = &inode->io_tree;
4728 	struct btrfs_ordered_extent *ordered;
4729 	struct extent_state *cached_state = NULL;
4730 	struct extent_changeset *data_reserved = NULL;
4731 	bool only_release_metadata = false;
4732 	u32 blocksize = fs_info->sectorsize;
4733 	pgoff_t index = from >> PAGE_SHIFT;
4734 	unsigned offset = from & (blocksize - 1);
4735 	struct folio *folio;
4736 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4737 	size_t write_bytes = blocksize;
4738 	int ret = 0;
4739 	u64 block_start;
4740 	u64 block_end;
4741 
4742 	if (IS_ALIGNED(offset, blocksize) &&
4743 	    (!len || IS_ALIGNED(len, blocksize)))
4744 		goto out;
4745 
4746 	block_start = round_down(from, blocksize);
4747 	block_end = block_start + blocksize - 1;
4748 
4749 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4750 					  blocksize, false);
4751 	if (ret < 0) {
4752 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4753 			/* For nocow case, no need to reserve data space */
4754 			only_release_metadata = true;
4755 		} else {
4756 			goto out;
4757 		}
4758 	}
4759 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4760 	if (ret < 0) {
4761 		if (!only_release_metadata)
4762 			btrfs_free_reserved_data_space(inode, data_reserved,
4763 						       block_start, blocksize);
4764 		goto out;
4765 	}
4766 again:
4767 	folio = __filemap_get_folio(mapping, index,
4768 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4769 	if (IS_ERR(folio)) {
4770 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4771 					     blocksize, true);
4772 		btrfs_delalloc_release_extents(inode, blocksize);
4773 		ret = -ENOMEM;
4774 		goto out;
4775 	}
4776 
4777 	if (!folio_test_uptodate(folio)) {
4778 		ret = btrfs_read_folio(NULL, folio);
4779 		folio_lock(folio);
4780 		if (folio->mapping != mapping) {
4781 			folio_unlock(folio);
4782 			folio_put(folio);
4783 			goto again;
4784 		}
4785 		if (!folio_test_uptodate(folio)) {
4786 			ret = -EIO;
4787 			goto out_unlock;
4788 		}
4789 	}
4790 
4791 	/*
4792 	 * We unlock the page after the io is completed and then re-lock it
4793 	 * above.  release_folio() could have come in between that and cleared
4794 	 * folio private, but left the page in the mapping.  Set the page mapped
4795 	 * here to make sure it's properly set for the subpage stuff.
4796 	 */
4797 	ret = set_folio_extent_mapped(folio);
4798 	if (ret < 0)
4799 		goto out_unlock;
4800 
4801 	folio_wait_writeback(folio);
4802 
4803 	lock_extent(io_tree, block_start, block_end, &cached_state);
4804 
4805 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4806 	if (ordered) {
4807 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4808 		folio_unlock(folio);
4809 		folio_put(folio);
4810 		btrfs_start_ordered_extent(ordered);
4811 		btrfs_put_ordered_extent(ordered);
4812 		goto again;
4813 	}
4814 
4815 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4816 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4817 			 &cached_state);
4818 
4819 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4820 					&cached_state);
4821 	if (ret) {
4822 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4823 		goto out_unlock;
4824 	}
4825 
4826 	if (offset != blocksize) {
4827 		if (!len)
4828 			len = blocksize - offset;
4829 		if (front)
4830 			folio_zero_range(folio, block_start - folio_pos(folio),
4831 					 offset);
4832 		else
4833 			folio_zero_range(folio,
4834 					 (block_start - folio_pos(folio)) + offset,
4835 					 len);
4836 	}
4837 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4838 				  block_end + 1 - block_start);
4839 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4840 			      block_end + 1 - block_start);
4841 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4842 
4843 	if (only_release_metadata)
4844 		set_extent_bit(&inode->io_tree, block_start, block_end,
4845 			       EXTENT_NORESERVE, NULL);
4846 
4847 out_unlock:
4848 	if (ret) {
4849 		if (only_release_metadata)
4850 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4851 		else
4852 			btrfs_delalloc_release_space(inode, data_reserved,
4853 					block_start, blocksize, true);
4854 	}
4855 	btrfs_delalloc_release_extents(inode, blocksize);
4856 	folio_unlock(folio);
4857 	folio_put(folio);
4858 out:
4859 	if (only_release_metadata)
4860 		btrfs_check_nocow_unlock(inode);
4861 	extent_changeset_free(data_reserved);
4862 	return ret;
4863 }
4864 
4865 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4866 {
4867 	struct btrfs_root *root = inode->root;
4868 	struct btrfs_fs_info *fs_info = root->fs_info;
4869 	struct btrfs_trans_handle *trans;
4870 	struct btrfs_drop_extents_args drop_args = { 0 };
4871 	int ret;
4872 
4873 	/*
4874 	 * If NO_HOLES is enabled, we don't need to do anything.
4875 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4876 	 * or btrfs_update_inode() will be called, which guarantee that the next
4877 	 * fsync will know this inode was changed and needs to be logged.
4878 	 */
4879 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4880 		return 0;
4881 
4882 	/*
4883 	 * 1 - for the one we're dropping
4884 	 * 1 - for the one we're adding
4885 	 * 1 - for updating the inode.
4886 	 */
4887 	trans = btrfs_start_transaction(root, 3);
4888 	if (IS_ERR(trans))
4889 		return PTR_ERR(trans);
4890 
4891 	drop_args.start = offset;
4892 	drop_args.end = offset + len;
4893 	drop_args.drop_cache = true;
4894 
4895 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4896 	if (ret) {
4897 		btrfs_abort_transaction(trans, ret);
4898 		btrfs_end_transaction(trans);
4899 		return ret;
4900 	}
4901 
4902 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4903 	if (ret) {
4904 		btrfs_abort_transaction(trans, ret);
4905 	} else {
4906 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4907 		btrfs_update_inode(trans, inode);
4908 	}
4909 	btrfs_end_transaction(trans);
4910 	return ret;
4911 }
4912 
4913 /*
4914  * This function puts in dummy file extents for the area we're creating a hole
4915  * for.  So if we are truncating this file to a larger size we need to insert
4916  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4917  * the range between oldsize and size
4918  */
4919 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4920 {
4921 	struct btrfs_root *root = inode->root;
4922 	struct btrfs_fs_info *fs_info = root->fs_info;
4923 	struct extent_io_tree *io_tree = &inode->io_tree;
4924 	struct extent_map *em = NULL;
4925 	struct extent_state *cached_state = NULL;
4926 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4927 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4928 	u64 last_byte;
4929 	u64 cur_offset;
4930 	u64 hole_size;
4931 	int ret = 0;
4932 
4933 	/*
4934 	 * If our size started in the middle of a block we need to zero out the
4935 	 * rest of the block before we expand the i_size, otherwise we could
4936 	 * expose stale data.
4937 	 */
4938 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4939 	if (ret)
4940 		return ret;
4941 
4942 	if (size <= hole_start)
4943 		return 0;
4944 
4945 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4946 					   &cached_state);
4947 	cur_offset = hole_start;
4948 	while (1) {
4949 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4950 		if (IS_ERR(em)) {
4951 			ret = PTR_ERR(em);
4952 			em = NULL;
4953 			break;
4954 		}
4955 		last_byte = min(extent_map_end(em), block_end);
4956 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4957 		hole_size = last_byte - cur_offset;
4958 
4959 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4960 			struct extent_map *hole_em;
4961 
4962 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4963 			if (ret)
4964 				break;
4965 
4966 			ret = btrfs_inode_set_file_extent_range(inode,
4967 							cur_offset, hole_size);
4968 			if (ret)
4969 				break;
4970 
4971 			hole_em = alloc_extent_map();
4972 			if (!hole_em) {
4973 				btrfs_drop_extent_map_range(inode, cur_offset,
4974 						    cur_offset + hole_size - 1,
4975 						    false);
4976 				btrfs_set_inode_full_sync(inode);
4977 				goto next;
4978 			}
4979 			hole_em->start = cur_offset;
4980 			hole_em->len = hole_size;
4981 
4982 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4983 			hole_em->disk_num_bytes = 0;
4984 			hole_em->ram_bytes = hole_size;
4985 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4986 
4987 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4988 			free_extent_map(hole_em);
4989 		} else {
4990 			ret = btrfs_inode_set_file_extent_range(inode,
4991 							cur_offset, hole_size);
4992 			if (ret)
4993 				break;
4994 		}
4995 next:
4996 		free_extent_map(em);
4997 		em = NULL;
4998 		cur_offset = last_byte;
4999 		if (cur_offset >= block_end)
5000 			break;
5001 	}
5002 	free_extent_map(em);
5003 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5004 	return ret;
5005 }
5006 
5007 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5008 {
5009 	struct btrfs_root *root = BTRFS_I(inode)->root;
5010 	struct btrfs_trans_handle *trans;
5011 	loff_t oldsize = i_size_read(inode);
5012 	loff_t newsize = attr->ia_size;
5013 	int mask = attr->ia_valid;
5014 	int ret;
5015 
5016 	/*
5017 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5018 	 * special case where we need to update the times despite not having
5019 	 * these flags set.  For all other operations the VFS set these flags
5020 	 * explicitly if it wants a timestamp update.
5021 	 */
5022 	if (newsize != oldsize) {
5023 		inode_inc_iversion(inode);
5024 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5025 			inode_set_mtime_to_ts(inode,
5026 					      inode_set_ctime_current(inode));
5027 		}
5028 	}
5029 
5030 	if (newsize > oldsize) {
5031 		/*
5032 		 * Don't do an expanding truncate while snapshotting is ongoing.
5033 		 * This is to ensure the snapshot captures a fully consistent
5034 		 * state of this file - if the snapshot captures this expanding
5035 		 * truncation, it must capture all writes that happened before
5036 		 * this truncation.
5037 		 */
5038 		btrfs_drew_write_lock(&root->snapshot_lock);
5039 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5040 		if (ret) {
5041 			btrfs_drew_write_unlock(&root->snapshot_lock);
5042 			return ret;
5043 		}
5044 
5045 		trans = btrfs_start_transaction(root, 1);
5046 		if (IS_ERR(trans)) {
5047 			btrfs_drew_write_unlock(&root->snapshot_lock);
5048 			return PTR_ERR(trans);
5049 		}
5050 
5051 		i_size_write(inode, newsize);
5052 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5053 		pagecache_isize_extended(inode, oldsize, newsize);
5054 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5055 		btrfs_drew_write_unlock(&root->snapshot_lock);
5056 		btrfs_end_transaction(trans);
5057 	} else {
5058 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5059 
5060 		if (btrfs_is_zoned(fs_info)) {
5061 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5062 					ALIGN(newsize, fs_info->sectorsize),
5063 					(u64)-1);
5064 			if (ret)
5065 				return ret;
5066 		}
5067 
5068 		/*
5069 		 * We're truncating a file that used to have good data down to
5070 		 * zero. Make sure any new writes to the file get on disk
5071 		 * on close.
5072 		 */
5073 		if (newsize == 0)
5074 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5075 				&BTRFS_I(inode)->runtime_flags);
5076 
5077 		truncate_setsize(inode, newsize);
5078 
5079 		inode_dio_wait(inode);
5080 
5081 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5082 		if (ret && inode->i_nlink) {
5083 			int err;
5084 
5085 			/*
5086 			 * Truncate failed, so fix up the in-memory size. We
5087 			 * adjusted disk_i_size down as we removed extents, so
5088 			 * wait for disk_i_size to be stable and then update the
5089 			 * in-memory size to match.
5090 			 */
5091 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5092 			if (err)
5093 				return err;
5094 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5095 		}
5096 	}
5097 
5098 	return ret;
5099 }
5100 
5101 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5102 			 struct iattr *attr)
5103 {
5104 	struct inode *inode = d_inode(dentry);
5105 	struct btrfs_root *root = BTRFS_I(inode)->root;
5106 	int err;
5107 
5108 	if (btrfs_root_readonly(root))
5109 		return -EROFS;
5110 
5111 	err = setattr_prepare(idmap, dentry, attr);
5112 	if (err)
5113 		return err;
5114 
5115 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5116 		err = btrfs_setsize(inode, attr);
5117 		if (err)
5118 			return err;
5119 	}
5120 
5121 	if (attr->ia_valid) {
5122 		setattr_copy(idmap, inode, attr);
5123 		inode_inc_iversion(inode);
5124 		err = btrfs_dirty_inode(BTRFS_I(inode));
5125 
5126 		if (!err && attr->ia_valid & ATTR_MODE)
5127 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5128 	}
5129 
5130 	return err;
5131 }
5132 
5133 /*
5134  * While truncating the inode pages during eviction, we get the VFS
5135  * calling btrfs_invalidate_folio() against each folio of the inode. This
5136  * is slow because the calls to btrfs_invalidate_folio() result in a
5137  * huge amount of calls to lock_extent() and clear_extent_bit(),
5138  * which keep merging and splitting extent_state structures over and over,
5139  * wasting lots of time.
5140  *
5141  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5142  * skip all those expensive operations on a per folio basis and do only
5143  * the ordered io finishing, while we release here the extent_map and
5144  * extent_state structures, without the excessive merging and splitting.
5145  */
5146 static void evict_inode_truncate_pages(struct inode *inode)
5147 {
5148 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5149 	struct rb_node *node;
5150 
5151 	ASSERT(inode->i_state & I_FREEING);
5152 	truncate_inode_pages_final(&inode->i_data);
5153 
5154 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5155 
5156 	/*
5157 	 * Keep looping until we have no more ranges in the io tree.
5158 	 * We can have ongoing bios started by readahead that have
5159 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5160 	 * still in progress (unlocked the pages in the bio but did not yet
5161 	 * unlocked the ranges in the io tree). Therefore this means some
5162 	 * ranges can still be locked and eviction started because before
5163 	 * submitting those bios, which are executed by a separate task (work
5164 	 * queue kthread), inode references (inode->i_count) were not taken
5165 	 * (which would be dropped in the end io callback of each bio).
5166 	 * Therefore here we effectively end up waiting for those bios and
5167 	 * anyone else holding locked ranges without having bumped the inode's
5168 	 * reference count - if we don't do it, when they access the inode's
5169 	 * io_tree to unlock a range it may be too late, leading to an
5170 	 * use-after-free issue.
5171 	 */
5172 	spin_lock(&io_tree->lock);
5173 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5174 		struct extent_state *state;
5175 		struct extent_state *cached_state = NULL;
5176 		u64 start;
5177 		u64 end;
5178 		unsigned state_flags;
5179 
5180 		node = rb_first(&io_tree->state);
5181 		state = rb_entry(node, struct extent_state, rb_node);
5182 		start = state->start;
5183 		end = state->end;
5184 		state_flags = state->state;
5185 		spin_unlock(&io_tree->lock);
5186 
5187 		lock_extent(io_tree, start, end, &cached_state);
5188 
5189 		/*
5190 		 * If still has DELALLOC flag, the extent didn't reach disk,
5191 		 * and its reserved space won't be freed by delayed_ref.
5192 		 * So we need to free its reserved space here.
5193 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5194 		 *
5195 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5196 		 */
5197 		if (state_flags & EXTENT_DELALLOC)
5198 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5199 					       end - start + 1, NULL);
5200 
5201 		clear_extent_bit(io_tree, start, end,
5202 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5203 				 &cached_state);
5204 
5205 		cond_resched();
5206 		spin_lock(&io_tree->lock);
5207 	}
5208 	spin_unlock(&io_tree->lock);
5209 }
5210 
5211 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5212 							struct btrfs_block_rsv *rsv)
5213 {
5214 	struct btrfs_fs_info *fs_info = root->fs_info;
5215 	struct btrfs_trans_handle *trans;
5216 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5217 	int ret;
5218 
5219 	/*
5220 	 * Eviction should be taking place at some place safe because of our
5221 	 * delayed iputs.  However the normal flushing code will run delayed
5222 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5223 	 *
5224 	 * We reserve the delayed_refs_extra here again because we can't use
5225 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5226 	 * above.  We reserve our extra bit here because we generate a ton of
5227 	 * delayed refs activity by truncating.
5228 	 *
5229 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5230 	 * if we fail to make this reservation we can re-try without the
5231 	 * delayed_refs_extra so we can make some forward progress.
5232 	 */
5233 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5234 				     BTRFS_RESERVE_FLUSH_EVICT);
5235 	if (ret) {
5236 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5237 					     BTRFS_RESERVE_FLUSH_EVICT);
5238 		if (ret) {
5239 			btrfs_warn(fs_info,
5240 				   "could not allocate space for delete; will truncate on mount");
5241 			return ERR_PTR(-ENOSPC);
5242 		}
5243 		delayed_refs_extra = 0;
5244 	}
5245 
5246 	trans = btrfs_join_transaction(root);
5247 	if (IS_ERR(trans))
5248 		return trans;
5249 
5250 	if (delayed_refs_extra) {
5251 		trans->block_rsv = &fs_info->trans_block_rsv;
5252 		trans->bytes_reserved = delayed_refs_extra;
5253 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5254 					delayed_refs_extra, true);
5255 	}
5256 	return trans;
5257 }
5258 
5259 void btrfs_evict_inode(struct inode *inode)
5260 {
5261 	struct btrfs_fs_info *fs_info;
5262 	struct btrfs_trans_handle *trans;
5263 	struct btrfs_root *root = BTRFS_I(inode)->root;
5264 	struct btrfs_block_rsv *rsv = NULL;
5265 	int ret;
5266 
5267 	trace_btrfs_inode_evict(inode);
5268 
5269 	if (!root) {
5270 		fsverity_cleanup_inode(inode);
5271 		clear_inode(inode);
5272 		return;
5273 	}
5274 
5275 	fs_info = inode_to_fs_info(inode);
5276 	evict_inode_truncate_pages(inode);
5277 
5278 	if (inode->i_nlink &&
5279 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5280 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5281 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5282 		goto out;
5283 
5284 	if (is_bad_inode(inode))
5285 		goto out;
5286 
5287 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5288 		goto out;
5289 
5290 	if (inode->i_nlink > 0) {
5291 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5292 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5293 		goto out;
5294 	}
5295 
5296 	/*
5297 	 * This makes sure the inode item in tree is uptodate and the space for
5298 	 * the inode update is released.
5299 	 */
5300 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5301 	if (ret)
5302 		goto out;
5303 
5304 	/*
5305 	 * This drops any pending insert or delete operations we have for this
5306 	 * inode.  We could have a delayed dir index deletion queued up, but
5307 	 * we're removing the inode completely so that'll be taken care of in
5308 	 * the truncate.
5309 	 */
5310 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5311 
5312 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5313 	if (!rsv)
5314 		goto out;
5315 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5316 	rsv->failfast = true;
5317 
5318 	btrfs_i_size_write(BTRFS_I(inode), 0);
5319 
5320 	while (1) {
5321 		struct btrfs_truncate_control control = {
5322 			.inode = BTRFS_I(inode),
5323 			.ino = btrfs_ino(BTRFS_I(inode)),
5324 			.new_size = 0,
5325 			.min_type = 0,
5326 		};
5327 
5328 		trans = evict_refill_and_join(root, rsv);
5329 		if (IS_ERR(trans))
5330 			goto out;
5331 
5332 		trans->block_rsv = rsv;
5333 
5334 		ret = btrfs_truncate_inode_items(trans, root, &control);
5335 		trans->block_rsv = &fs_info->trans_block_rsv;
5336 		btrfs_end_transaction(trans);
5337 		/*
5338 		 * We have not added new delayed items for our inode after we
5339 		 * have flushed its delayed items, so no need to throttle on
5340 		 * delayed items. However we have modified extent buffers.
5341 		 */
5342 		btrfs_btree_balance_dirty_nodelay(fs_info);
5343 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5344 			goto out;
5345 		else if (!ret)
5346 			break;
5347 	}
5348 
5349 	/*
5350 	 * Errors here aren't a big deal, it just means we leave orphan items in
5351 	 * the tree. They will be cleaned up on the next mount. If the inode
5352 	 * number gets reused, cleanup deletes the orphan item without doing
5353 	 * anything, and unlink reuses the existing orphan item.
5354 	 *
5355 	 * If it turns out that we are dropping too many of these, we might want
5356 	 * to add a mechanism for retrying these after a commit.
5357 	 */
5358 	trans = evict_refill_and_join(root, rsv);
5359 	if (!IS_ERR(trans)) {
5360 		trans->block_rsv = rsv;
5361 		btrfs_orphan_del(trans, BTRFS_I(inode));
5362 		trans->block_rsv = &fs_info->trans_block_rsv;
5363 		btrfs_end_transaction(trans);
5364 	}
5365 
5366 out:
5367 	btrfs_free_block_rsv(fs_info, rsv);
5368 	/*
5369 	 * If we didn't successfully delete, the orphan item will still be in
5370 	 * the tree and we'll retry on the next mount. Again, we might also want
5371 	 * to retry these periodically in the future.
5372 	 */
5373 	btrfs_remove_delayed_node(BTRFS_I(inode));
5374 	fsverity_cleanup_inode(inode);
5375 	clear_inode(inode);
5376 }
5377 
5378 /*
5379  * Return the key found in the dir entry in the location pointer, fill @type
5380  * with BTRFS_FT_*, and return 0.
5381  *
5382  * If no dir entries were found, returns -ENOENT.
5383  * If found a corrupted location in dir entry, returns -EUCLEAN.
5384  */
5385 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5386 			       struct btrfs_key *location, u8 *type)
5387 {
5388 	struct btrfs_dir_item *di;
5389 	struct btrfs_path *path;
5390 	struct btrfs_root *root = dir->root;
5391 	int ret = 0;
5392 	struct fscrypt_name fname;
5393 
5394 	path = btrfs_alloc_path();
5395 	if (!path)
5396 		return -ENOMEM;
5397 
5398 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5399 	if (ret < 0)
5400 		goto out;
5401 	/*
5402 	 * fscrypt_setup_filename() should never return a positive value, but
5403 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5404 	 */
5405 	ASSERT(ret == 0);
5406 
5407 	/* This needs to handle no-key deletions later on */
5408 
5409 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5410 				   &fname.disk_name, 0);
5411 	if (IS_ERR_OR_NULL(di)) {
5412 		ret = di ? PTR_ERR(di) : -ENOENT;
5413 		goto out;
5414 	}
5415 
5416 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5417 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5418 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5419 		ret = -EUCLEAN;
5420 		btrfs_warn(root->fs_info,
5421 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5422 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5423 			   location->objectid, location->type, location->offset);
5424 	}
5425 	if (!ret)
5426 		*type = btrfs_dir_ftype(path->nodes[0], di);
5427 out:
5428 	fscrypt_free_filename(&fname);
5429 	btrfs_free_path(path);
5430 	return ret;
5431 }
5432 
5433 /*
5434  * when we hit a tree root in a directory, the btrfs part of the inode
5435  * needs to be changed to reflect the root directory of the tree root.  This
5436  * is kind of like crossing a mount point.
5437  */
5438 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5439 				    struct btrfs_inode *dir,
5440 				    struct dentry *dentry,
5441 				    struct btrfs_key *location,
5442 				    struct btrfs_root **sub_root)
5443 {
5444 	struct btrfs_path *path;
5445 	struct btrfs_root *new_root;
5446 	struct btrfs_root_ref *ref;
5447 	struct extent_buffer *leaf;
5448 	struct btrfs_key key;
5449 	int ret;
5450 	int err = 0;
5451 	struct fscrypt_name fname;
5452 
5453 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5454 	if (ret)
5455 		return ret;
5456 
5457 	path = btrfs_alloc_path();
5458 	if (!path) {
5459 		err = -ENOMEM;
5460 		goto out;
5461 	}
5462 
5463 	err = -ENOENT;
5464 	key.objectid = btrfs_root_id(dir->root);
5465 	key.type = BTRFS_ROOT_REF_KEY;
5466 	key.offset = location->objectid;
5467 
5468 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5469 	if (ret) {
5470 		if (ret < 0)
5471 			err = ret;
5472 		goto out;
5473 	}
5474 
5475 	leaf = path->nodes[0];
5476 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5477 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5478 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5479 		goto out;
5480 
5481 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5482 				   (unsigned long)(ref + 1), fname.disk_name.len);
5483 	if (ret)
5484 		goto out;
5485 
5486 	btrfs_release_path(path);
5487 
5488 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5489 	if (IS_ERR(new_root)) {
5490 		err = PTR_ERR(new_root);
5491 		goto out;
5492 	}
5493 
5494 	*sub_root = new_root;
5495 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5496 	location->type = BTRFS_INODE_ITEM_KEY;
5497 	location->offset = 0;
5498 	err = 0;
5499 out:
5500 	btrfs_free_path(path);
5501 	fscrypt_free_filename(&fname);
5502 	return err;
5503 }
5504 
5505 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5506 {
5507 	struct btrfs_root *root = inode->root;
5508 	struct btrfs_inode *existing;
5509 	const u64 ino = btrfs_ino(inode);
5510 	int ret;
5511 
5512 	if (inode_unhashed(&inode->vfs_inode))
5513 		return 0;
5514 
5515 	if (prealloc) {
5516 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5517 		if (ret)
5518 			return ret;
5519 	}
5520 
5521 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5522 
5523 	if (xa_is_err(existing)) {
5524 		ret = xa_err(existing);
5525 		ASSERT(ret != -EINVAL);
5526 		ASSERT(ret != -ENOMEM);
5527 		return ret;
5528 	} else if (existing) {
5529 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5530 	}
5531 
5532 	return 0;
5533 }
5534 
5535 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5536 {
5537 	struct btrfs_root *root = inode->root;
5538 	struct btrfs_inode *entry;
5539 	bool empty = false;
5540 
5541 	xa_lock(&root->inodes);
5542 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5543 	if (entry == inode)
5544 		empty = xa_empty(&root->inodes);
5545 	xa_unlock(&root->inodes);
5546 
5547 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5548 		xa_lock(&root->inodes);
5549 		empty = xa_empty(&root->inodes);
5550 		xa_unlock(&root->inodes);
5551 		if (empty)
5552 			btrfs_add_dead_root(root);
5553 	}
5554 }
5555 
5556 
5557 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558 {
5559 	struct btrfs_iget_args *args = p;
5560 
5561 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5562 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5563 
5564 	if (args->root && args->root == args->root->fs_info->tree_root &&
5565 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5566 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5567 			&BTRFS_I(inode)->runtime_flags);
5568 	return 0;
5569 }
5570 
5571 static int btrfs_find_actor(struct inode *inode, void *opaque)
5572 {
5573 	struct btrfs_iget_args *args = opaque;
5574 
5575 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5576 		args->root == BTRFS_I(inode)->root;
5577 }
5578 
5579 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5580 {
5581 	struct inode *inode;
5582 	struct btrfs_iget_args args;
5583 	unsigned long hashval = btrfs_inode_hash(ino, root);
5584 
5585 	args.ino = ino;
5586 	args.root = root;
5587 
5588 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5589 			     btrfs_init_locked_inode,
5590 			     (void *)&args);
5591 	return inode;
5592 }
5593 
5594 /*
5595  * Get an inode object given its inode number and corresponding root.
5596  * Path can be preallocated to prevent recursing back to iget through
5597  * allocator. NULL is also valid but may require an additional allocation
5598  * later.
5599  */
5600 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5601 			      struct btrfs_path *path)
5602 {
5603 	struct inode *inode;
5604 	int ret;
5605 
5606 	inode = btrfs_iget_locked(ino, root);
5607 	if (!inode)
5608 		return ERR_PTR(-ENOMEM);
5609 
5610 	if (!(inode->i_state & I_NEW))
5611 		return inode;
5612 
5613 	ret = btrfs_read_locked_inode(inode, path);
5614 	/*
5615 	 * ret > 0 can come from btrfs_search_slot called by
5616 	 * btrfs_read_locked_inode(), this means the inode item was not found.
5617 	 */
5618 	if (ret > 0)
5619 		ret = -ENOENT;
5620 	if (ret < 0)
5621 		goto error;
5622 
5623 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5624 	if (ret < 0)
5625 		goto error;
5626 
5627 	unlock_new_inode(inode);
5628 
5629 	return inode;
5630 error:
5631 	iget_failed(inode);
5632 	return ERR_PTR(ret);
5633 }
5634 
5635 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5636 {
5637 	return btrfs_iget_path(ino, root, NULL);
5638 }
5639 
5640 static struct inode *new_simple_dir(struct inode *dir,
5641 				    struct btrfs_key *key,
5642 				    struct btrfs_root *root)
5643 {
5644 	struct timespec64 ts;
5645 	struct inode *inode = new_inode(dir->i_sb);
5646 
5647 	if (!inode)
5648 		return ERR_PTR(-ENOMEM);
5649 
5650 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5651 	BTRFS_I(inode)->ref_root_id = key->objectid;
5652 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5653 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5654 
5655 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5656 	/*
5657 	 * We only need lookup, the rest is read-only and there's no inode
5658 	 * associated with the dentry
5659 	 */
5660 	inode->i_op = &simple_dir_inode_operations;
5661 	inode->i_opflags &= ~IOP_XATTR;
5662 	inode->i_fop = &simple_dir_operations;
5663 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5664 
5665 	ts = inode_set_ctime_current(inode);
5666 	inode_set_mtime_to_ts(inode, ts);
5667 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5668 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5669 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5670 
5671 	inode->i_uid = dir->i_uid;
5672 	inode->i_gid = dir->i_gid;
5673 
5674 	return inode;
5675 }
5676 
5677 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5678 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5679 static_assert(BTRFS_FT_DIR == FT_DIR);
5680 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5681 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5682 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5683 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5684 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5685 
5686 static inline u8 btrfs_inode_type(struct inode *inode)
5687 {
5688 	return fs_umode_to_ftype(inode->i_mode);
5689 }
5690 
5691 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5692 {
5693 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5694 	struct inode *inode;
5695 	struct btrfs_root *root = BTRFS_I(dir)->root;
5696 	struct btrfs_root *sub_root = root;
5697 	struct btrfs_key location = { 0 };
5698 	u8 di_type = 0;
5699 	int ret = 0;
5700 
5701 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5702 		return ERR_PTR(-ENAMETOOLONG);
5703 
5704 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5705 	if (ret < 0)
5706 		return ERR_PTR(ret);
5707 
5708 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5709 		inode = btrfs_iget(location.objectid, root);
5710 		if (IS_ERR(inode))
5711 			return inode;
5712 
5713 		/* Do extra check against inode mode with di_type */
5714 		if (btrfs_inode_type(inode) != di_type) {
5715 			btrfs_crit(fs_info,
5716 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5717 				  inode->i_mode, btrfs_inode_type(inode),
5718 				  di_type);
5719 			iput(inode);
5720 			return ERR_PTR(-EUCLEAN);
5721 		}
5722 		return inode;
5723 	}
5724 
5725 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5726 				       &location, &sub_root);
5727 	if (ret < 0) {
5728 		if (ret != -ENOENT)
5729 			inode = ERR_PTR(ret);
5730 		else
5731 			inode = new_simple_dir(dir, &location, root);
5732 	} else {
5733 		inode = btrfs_iget(location.objectid, sub_root);
5734 		btrfs_put_root(sub_root);
5735 
5736 		if (IS_ERR(inode))
5737 			return inode;
5738 
5739 		down_read(&fs_info->cleanup_work_sem);
5740 		if (!sb_rdonly(inode->i_sb))
5741 			ret = btrfs_orphan_cleanup(sub_root);
5742 		up_read(&fs_info->cleanup_work_sem);
5743 		if (ret) {
5744 			iput(inode);
5745 			inode = ERR_PTR(ret);
5746 		}
5747 	}
5748 
5749 	return inode;
5750 }
5751 
5752 static int btrfs_dentry_delete(const struct dentry *dentry)
5753 {
5754 	struct btrfs_root *root;
5755 	struct inode *inode = d_inode(dentry);
5756 
5757 	if (!inode && !IS_ROOT(dentry))
5758 		inode = d_inode(dentry->d_parent);
5759 
5760 	if (inode) {
5761 		root = BTRFS_I(inode)->root;
5762 		if (btrfs_root_refs(&root->root_item) == 0)
5763 			return 1;
5764 
5765 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5766 			return 1;
5767 	}
5768 	return 0;
5769 }
5770 
5771 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5772 				   unsigned int flags)
5773 {
5774 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5775 
5776 	if (inode == ERR_PTR(-ENOENT))
5777 		inode = NULL;
5778 	return d_splice_alias(inode, dentry);
5779 }
5780 
5781 /*
5782  * Find the highest existing sequence number in a directory and then set the
5783  * in-memory index_cnt variable to the first free sequence number.
5784  */
5785 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5786 {
5787 	struct btrfs_root *root = inode->root;
5788 	struct btrfs_key key, found_key;
5789 	struct btrfs_path *path;
5790 	struct extent_buffer *leaf;
5791 	int ret;
5792 
5793 	key.objectid = btrfs_ino(inode);
5794 	key.type = BTRFS_DIR_INDEX_KEY;
5795 	key.offset = (u64)-1;
5796 
5797 	path = btrfs_alloc_path();
5798 	if (!path)
5799 		return -ENOMEM;
5800 
5801 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5802 	if (ret < 0)
5803 		goto out;
5804 	/* FIXME: we should be able to handle this */
5805 	if (ret == 0)
5806 		goto out;
5807 	ret = 0;
5808 
5809 	if (path->slots[0] == 0) {
5810 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5811 		goto out;
5812 	}
5813 
5814 	path->slots[0]--;
5815 
5816 	leaf = path->nodes[0];
5817 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5818 
5819 	if (found_key.objectid != btrfs_ino(inode) ||
5820 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5821 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5822 		goto out;
5823 	}
5824 
5825 	inode->index_cnt = found_key.offset + 1;
5826 out:
5827 	btrfs_free_path(path);
5828 	return ret;
5829 }
5830 
5831 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5832 {
5833 	int ret = 0;
5834 
5835 	btrfs_inode_lock(dir, 0);
5836 	if (dir->index_cnt == (u64)-1) {
5837 		ret = btrfs_inode_delayed_dir_index_count(dir);
5838 		if (ret) {
5839 			ret = btrfs_set_inode_index_count(dir);
5840 			if (ret)
5841 				goto out;
5842 		}
5843 	}
5844 
5845 	/* index_cnt is the index number of next new entry, so decrement it. */
5846 	*index = dir->index_cnt - 1;
5847 out:
5848 	btrfs_inode_unlock(dir, 0);
5849 
5850 	return ret;
5851 }
5852 
5853 /*
5854  * All this infrastructure exists because dir_emit can fault, and we are holding
5855  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5856  * our information into that, and then dir_emit from the buffer.  This is
5857  * similar to what NFS does, only we don't keep the buffer around in pagecache
5858  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5859  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5860  * tree lock.
5861  */
5862 static int btrfs_opendir(struct inode *inode, struct file *file)
5863 {
5864 	struct btrfs_file_private *private;
5865 	u64 last_index;
5866 	int ret;
5867 
5868 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5869 	if (ret)
5870 		return ret;
5871 
5872 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5873 	if (!private)
5874 		return -ENOMEM;
5875 	private->last_index = last_index;
5876 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5877 	if (!private->filldir_buf) {
5878 		kfree(private);
5879 		return -ENOMEM;
5880 	}
5881 	file->private_data = private;
5882 	return 0;
5883 }
5884 
5885 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5886 {
5887 	struct btrfs_file_private *private = file->private_data;
5888 	int ret;
5889 
5890 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5891 				       &private->last_index);
5892 	if (ret)
5893 		return ret;
5894 
5895 	return generic_file_llseek(file, offset, whence);
5896 }
5897 
5898 struct dir_entry {
5899 	u64 ino;
5900 	u64 offset;
5901 	unsigned type;
5902 	int name_len;
5903 };
5904 
5905 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5906 {
5907 	while (entries--) {
5908 		struct dir_entry *entry = addr;
5909 		char *name = (char *)(entry + 1);
5910 
5911 		ctx->pos = get_unaligned(&entry->offset);
5912 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5913 					 get_unaligned(&entry->ino),
5914 					 get_unaligned(&entry->type)))
5915 			return 1;
5916 		addr += sizeof(struct dir_entry) +
5917 			get_unaligned(&entry->name_len);
5918 		ctx->pos++;
5919 	}
5920 	return 0;
5921 }
5922 
5923 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5924 {
5925 	struct inode *inode = file_inode(file);
5926 	struct btrfs_root *root = BTRFS_I(inode)->root;
5927 	struct btrfs_file_private *private = file->private_data;
5928 	struct btrfs_dir_item *di;
5929 	struct btrfs_key key;
5930 	struct btrfs_key found_key;
5931 	struct btrfs_path *path;
5932 	void *addr;
5933 	LIST_HEAD(ins_list);
5934 	LIST_HEAD(del_list);
5935 	int ret;
5936 	char *name_ptr;
5937 	int name_len;
5938 	int entries = 0;
5939 	int total_len = 0;
5940 	bool put = false;
5941 	struct btrfs_key location;
5942 
5943 	if (!dir_emit_dots(file, ctx))
5944 		return 0;
5945 
5946 	path = btrfs_alloc_path();
5947 	if (!path)
5948 		return -ENOMEM;
5949 
5950 	addr = private->filldir_buf;
5951 	path->reada = READA_FORWARD;
5952 
5953 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5954 					      &ins_list, &del_list);
5955 
5956 again:
5957 	key.type = BTRFS_DIR_INDEX_KEY;
5958 	key.offset = ctx->pos;
5959 	key.objectid = btrfs_ino(BTRFS_I(inode));
5960 
5961 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5962 		struct dir_entry *entry;
5963 		struct extent_buffer *leaf = path->nodes[0];
5964 		u8 ftype;
5965 
5966 		if (found_key.objectid != key.objectid)
5967 			break;
5968 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5969 			break;
5970 		if (found_key.offset < ctx->pos)
5971 			continue;
5972 		if (found_key.offset > private->last_index)
5973 			break;
5974 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5975 			continue;
5976 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5977 		name_len = btrfs_dir_name_len(leaf, di);
5978 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5979 		    PAGE_SIZE) {
5980 			btrfs_release_path(path);
5981 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5982 			if (ret)
5983 				goto nopos;
5984 			addr = private->filldir_buf;
5985 			entries = 0;
5986 			total_len = 0;
5987 			goto again;
5988 		}
5989 
5990 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5991 		entry = addr;
5992 		name_ptr = (char *)(entry + 1);
5993 		read_extent_buffer(leaf, name_ptr,
5994 				   (unsigned long)(di + 1), name_len);
5995 		put_unaligned(name_len, &entry->name_len);
5996 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5997 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5998 		put_unaligned(location.objectid, &entry->ino);
5999 		put_unaligned(found_key.offset, &entry->offset);
6000 		entries++;
6001 		addr += sizeof(struct dir_entry) + name_len;
6002 		total_len += sizeof(struct dir_entry) + name_len;
6003 	}
6004 	/* Catch error encountered during iteration */
6005 	if (ret < 0)
6006 		goto err;
6007 
6008 	btrfs_release_path(path);
6009 
6010 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6011 	if (ret)
6012 		goto nopos;
6013 
6014 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6015 	if (ret)
6016 		goto nopos;
6017 
6018 	/*
6019 	 * Stop new entries from being returned after we return the last
6020 	 * entry.
6021 	 *
6022 	 * New directory entries are assigned a strictly increasing
6023 	 * offset.  This means that new entries created during readdir
6024 	 * are *guaranteed* to be seen in the future by that readdir.
6025 	 * This has broken buggy programs which operate on names as
6026 	 * they're returned by readdir.  Until we re-use freed offsets
6027 	 * we have this hack to stop new entries from being returned
6028 	 * under the assumption that they'll never reach this huge
6029 	 * offset.
6030 	 *
6031 	 * This is being careful not to overflow 32bit loff_t unless the
6032 	 * last entry requires it because doing so has broken 32bit apps
6033 	 * in the past.
6034 	 */
6035 	if (ctx->pos >= INT_MAX)
6036 		ctx->pos = LLONG_MAX;
6037 	else
6038 		ctx->pos = INT_MAX;
6039 nopos:
6040 	ret = 0;
6041 err:
6042 	if (put)
6043 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6044 	btrfs_free_path(path);
6045 	return ret;
6046 }
6047 
6048 /*
6049  * This is somewhat expensive, updating the tree every time the
6050  * inode changes.  But, it is most likely to find the inode in cache.
6051  * FIXME, needs more benchmarking...there are no reasons other than performance
6052  * to keep or drop this code.
6053  */
6054 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6055 {
6056 	struct btrfs_root *root = inode->root;
6057 	struct btrfs_fs_info *fs_info = root->fs_info;
6058 	struct btrfs_trans_handle *trans;
6059 	int ret;
6060 
6061 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6062 		return 0;
6063 
6064 	trans = btrfs_join_transaction(root);
6065 	if (IS_ERR(trans))
6066 		return PTR_ERR(trans);
6067 
6068 	ret = btrfs_update_inode(trans, inode);
6069 	if (ret == -ENOSPC || ret == -EDQUOT) {
6070 		/* whoops, lets try again with the full transaction */
6071 		btrfs_end_transaction(trans);
6072 		trans = btrfs_start_transaction(root, 1);
6073 		if (IS_ERR(trans))
6074 			return PTR_ERR(trans);
6075 
6076 		ret = btrfs_update_inode(trans, inode);
6077 	}
6078 	btrfs_end_transaction(trans);
6079 	if (inode->delayed_node)
6080 		btrfs_balance_delayed_items(fs_info);
6081 
6082 	return ret;
6083 }
6084 
6085 /*
6086  * This is a copy of file_update_time.  We need this so we can return error on
6087  * ENOSPC for updating the inode in the case of file write and mmap writes.
6088  */
6089 static int btrfs_update_time(struct inode *inode, int flags)
6090 {
6091 	struct btrfs_root *root = BTRFS_I(inode)->root;
6092 	bool dirty;
6093 
6094 	if (btrfs_root_readonly(root))
6095 		return -EROFS;
6096 
6097 	dirty = inode_update_timestamps(inode, flags);
6098 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6099 }
6100 
6101 /*
6102  * helper to find a free sequence number in a given directory.  This current
6103  * code is very simple, later versions will do smarter things in the btree
6104  */
6105 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6106 {
6107 	int ret = 0;
6108 
6109 	if (dir->index_cnt == (u64)-1) {
6110 		ret = btrfs_inode_delayed_dir_index_count(dir);
6111 		if (ret) {
6112 			ret = btrfs_set_inode_index_count(dir);
6113 			if (ret)
6114 				return ret;
6115 		}
6116 	}
6117 
6118 	*index = dir->index_cnt;
6119 	dir->index_cnt++;
6120 
6121 	return ret;
6122 }
6123 
6124 static int btrfs_insert_inode_locked(struct inode *inode)
6125 {
6126 	struct btrfs_iget_args args;
6127 
6128 	args.ino = btrfs_ino(BTRFS_I(inode));
6129 	args.root = BTRFS_I(inode)->root;
6130 
6131 	return insert_inode_locked4(inode,
6132 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6133 		   btrfs_find_actor, &args);
6134 }
6135 
6136 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6137 			    unsigned int *trans_num_items)
6138 {
6139 	struct inode *dir = args->dir;
6140 	struct inode *inode = args->inode;
6141 	int ret;
6142 
6143 	if (!args->orphan) {
6144 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6145 					     &args->fname);
6146 		if (ret)
6147 			return ret;
6148 	}
6149 
6150 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6151 	if (ret) {
6152 		fscrypt_free_filename(&args->fname);
6153 		return ret;
6154 	}
6155 
6156 	/* 1 to add inode item */
6157 	*trans_num_items = 1;
6158 	/* 1 to add compression property */
6159 	if (BTRFS_I(dir)->prop_compress)
6160 		(*trans_num_items)++;
6161 	/* 1 to add default ACL xattr */
6162 	if (args->default_acl)
6163 		(*trans_num_items)++;
6164 	/* 1 to add access ACL xattr */
6165 	if (args->acl)
6166 		(*trans_num_items)++;
6167 #ifdef CONFIG_SECURITY
6168 	/* 1 to add LSM xattr */
6169 	if (dir->i_security)
6170 		(*trans_num_items)++;
6171 #endif
6172 	if (args->orphan) {
6173 		/* 1 to add orphan item */
6174 		(*trans_num_items)++;
6175 	} else {
6176 		/*
6177 		 * 1 to add dir item
6178 		 * 1 to add dir index
6179 		 * 1 to update parent inode item
6180 		 *
6181 		 * No need for 1 unit for the inode ref item because it is
6182 		 * inserted in a batch together with the inode item at
6183 		 * btrfs_create_new_inode().
6184 		 */
6185 		*trans_num_items += 3;
6186 	}
6187 	return 0;
6188 }
6189 
6190 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6191 {
6192 	posix_acl_release(args->acl);
6193 	posix_acl_release(args->default_acl);
6194 	fscrypt_free_filename(&args->fname);
6195 }
6196 
6197 /*
6198  * Inherit flags from the parent inode.
6199  *
6200  * Currently only the compression flags and the cow flags are inherited.
6201  */
6202 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6203 {
6204 	unsigned int flags;
6205 
6206 	flags = dir->flags;
6207 
6208 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6209 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6210 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6211 	} else if (flags & BTRFS_INODE_COMPRESS) {
6212 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6213 		inode->flags |= BTRFS_INODE_COMPRESS;
6214 	}
6215 
6216 	if (flags & BTRFS_INODE_NODATACOW) {
6217 		inode->flags |= BTRFS_INODE_NODATACOW;
6218 		if (S_ISREG(inode->vfs_inode.i_mode))
6219 			inode->flags |= BTRFS_INODE_NODATASUM;
6220 	}
6221 
6222 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6223 }
6224 
6225 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6226 			   struct btrfs_new_inode_args *args)
6227 {
6228 	struct timespec64 ts;
6229 	struct inode *dir = args->dir;
6230 	struct inode *inode = args->inode;
6231 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6232 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6233 	struct btrfs_root *root;
6234 	struct btrfs_inode_item *inode_item;
6235 	struct btrfs_path *path;
6236 	u64 objectid;
6237 	struct btrfs_inode_ref *ref;
6238 	struct btrfs_key key[2];
6239 	u32 sizes[2];
6240 	struct btrfs_item_batch batch;
6241 	unsigned long ptr;
6242 	int ret;
6243 	bool xa_reserved = false;
6244 
6245 	path = btrfs_alloc_path();
6246 	if (!path)
6247 		return -ENOMEM;
6248 
6249 	if (!args->subvol)
6250 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6251 	root = BTRFS_I(inode)->root;
6252 
6253 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6254 	if (ret)
6255 		goto out;
6256 
6257 	ret = btrfs_get_free_objectid(root, &objectid);
6258 	if (ret)
6259 		goto out;
6260 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6261 
6262 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6263 	if (ret)
6264 		goto out;
6265 	xa_reserved = true;
6266 
6267 	if (args->orphan) {
6268 		/*
6269 		 * O_TMPFILE, set link count to 0, so that after this point, we
6270 		 * fill in an inode item with the correct link count.
6271 		 */
6272 		set_nlink(inode, 0);
6273 	} else {
6274 		trace_btrfs_inode_request(dir);
6275 
6276 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6277 		if (ret)
6278 			goto out;
6279 	}
6280 
6281 	if (S_ISDIR(inode->i_mode))
6282 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6283 
6284 	BTRFS_I(inode)->generation = trans->transid;
6285 	inode->i_generation = BTRFS_I(inode)->generation;
6286 
6287 	/*
6288 	 * We don't have any capability xattrs set here yet, shortcut any
6289 	 * queries for the xattrs here.  If we add them later via the inode
6290 	 * security init path or any other path this flag will be cleared.
6291 	 */
6292 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6293 
6294 	/*
6295 	 * Subvolumes don't inherit flags from their parent directory.
6296 	 * Originally this was probably by accident, but we probably can't
6297 	 * change it now without compatibility issues.
6298 	 */
6299 	if (!args->subvol)
6300 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6301 
6302 	if (S_ISREG(inode->i_mode)) {
6303 		if (btrfs_test_opt(fs_info, NODATASUM))
6304 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6305 		if (btrfs_test_opt(fs_info, NODATACOW))
6306 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6307 				BTRFS_INODE_NODATASUM;
6308 	}
6309 
6310 	ret = btrfs_insert_inode_locked(inode);
6311 	if (ret < 0) {
6312 		if (!args->orphan)
6313 			BTRFS_I(dir)->index_cnt--;
6314 		goto out;
6315 	}
6316 
6317 	/*
6318 	 * We could have gotten an inode number from somebody who was fsynced
6319 	 * and then removed in this same transaction, so let's just set full
6320 	 * sync since it will be a full sync anyway and this will blow away the
6321 	 * old info in the log.
6322 	 */
6323 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6324 
6325 	key[0].objectid = objectid;
6326 	key[0].type = BTRFS_INODE_ITEM_KEY;
6327 	key[0].offset = 0;
6328 
6329 	sizes[0] = sizeof(struct btrfs_inode_item);
6330 
6331 	if (!args->orphan) {
6332 		/*
6333 		 * Start new inodes with an inode_ref. This is slightly more
6334 		 * efficient for small numbers of hard links since they will
6335 		 * be packed into one item. Extended refs will kick in if we
6336 		 * add more hard links than can fit in the ref item.
6337 		 */
6338 		key[1].objectid = objectid;
6339 		key[1].type = BTRFS_INODE_REF_KEY;
6340 		if (args->subvol) {
6341 			key[1].offset = objectid;
6342 			sizes[1] = 2 + sizeof(*ref);
6343 		} else {
6344 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6345 			sizes[1] = name->len + sizeof(*ref);
6346 		}
6347 	}
6348 
6349 	batch.keys = &key[0];
6350 	batch.data_sizes = &sizes[0];
6351 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6352 	batch.nr = args->orphan ? 1 : 2;
6353 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6354 	if (ret != 0) {
6355 		btrfs_abort_transaction(trans, ret);
6356 		goto discard;
6357 	}
6358 
6359 	ts = simple_inode_init_ts(inode);
6360 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6361 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6362 
6363 	/*
6364 	 * We're going to fill the inode item now, so at this point the inode
6365 	 * must be fully initialized.
6366 	 */
6367 
6368 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6369 				  struct btrfs_inode_item);
6370 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6371 			     sizeof(*inode_item));
6372 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6373 
6374 	if (!args->orphan) {
6375 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6376 				     struct btrfs_inode_ref);
6377 		ptr = (unsigned long)(ref + 1);
6378 		if (args->subvol) {
6379 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6380 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6381 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6382 		} else {
6383 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6384 						     name->len);
6385 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6386 						  BTRFS_I(inode)->dir_index);
6387 			write_extent_buffer(path->nodes[0], name->name, ptr,
6388 					    name->len);
6389 		}
6390 	}
6391 
6392 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6393 	/*
6394 	 * We don't need the path anymore, plus inheriting properties, adding
6395 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6396 	 * allocating yet another path. So just free our path.
6397 	 */
6398 	btrfs_free_path(path);
6399 	path = NULL;
6400 
6401 	if (args->subvol) {
6402 		struct inode *parent;
6403 
6404 		/*
6405 		 * Subvolumes inherit properties from their parent subvolume,
6406 		 * not the directory they were created in.
6407 		 */
6408 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6409 		if (IS_ERR(parent)) {
6410 			ret = PTR_ERR(parent);
6411 		} else {
6412 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6413 			iput(parent);
6414 		}
6415 	} else {
6416 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6417 	}
6418 	if (ret) {
6419 		btrfs_err(fs_info,
6420 			  "error inheriting props for ino %llu (root %llu): %d",
6421 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6422 	}
6423 
6424 	/*
6425 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6426 	 * probably a bug.
6427 	 */
6428 	if (!args->subvol) {
6429 		ret = btrfs_init_inode_security(trans, args);
6430 		if (ret) {
6431 			btrfs_abort_transaction(trans, ret);
6432 			goto discard;
6433 		}
6434 	}
6435 
6436 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6437 	if (WARN_ON(ret)) {
6438 		/* Shouldn't happen, we used xa_reserve() before. */
6439 		btrfs_abort_transaction(trans, ret);
6440 		goto discard;
6441 	}
6442 
6443 	trace_btrfs_inode_new(inode);
6444 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6445 
6446 	btrfs_update_root_times(trans, root);
6447 
6448 	if (args->orphan) {
6449 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6450 	} else {
6451 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6452 				     0, BTRFS_I(inode)->dir_index);
6453 	}
6454 	if (ret) {
6455 		btrfs_abort_transaction(trans, ret);
6456 		goto discard;
6457 	}
6458 
6459 	return 0;
6460 
6461 discard:
6462 	/*
6463 	 * discard_new_inode() calls iput(), but the caller owns the reference
6464 	 * to the inode.
6465 	 */
6466 	ihold(inode);
6467 	discard_new_inode(inode);
6468 out:
6469 	if (xa_reserved)
6470 		xa_release(&root->inodes, objectid);
6471 
6472 	btrfs_free_path(path);
6473 	return ret;
6474 }
6475 
6476 /*
6477  * utility function to add 'inode' into 'parent_inode' with
6478  * a give name and a given sequence number.
6479  * if 'add_backref' is true, also insert a backref from the
6480  * inode to the parent directory.
6481  */
6482 int btrfs_add_link(struct btrfs_trans_handle *trans,
6483 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6484 		   const struct fscrypt_str *name, int add_backref, u64 index)
6485 {
6486 	int ret = 0;
6487 	struct btrfs_key key;
6488 	struct btrfs_root *root = parent_inode->root;
6489 	u64 ino = btrfs_ino(inode);
6490 	u64 parent_ino = btrfs_ino(parent_inode);
6491 
6492 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 		memcpy(&key, &inode->root->root_key, sizeof(key));
6494 	} else {
6495 		key.objectid = ino;
6496 		key.type = BTRFS_INODE_ITEM_KEY;
6497 		key.offset = 0;
6498 	}
6499 
6500 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6501 		ret = btrfs_add_root_ref(trans, key.objectid,
6502 					 btrfs_root_id(root), parent_ino,
6503 					 index, name);
6504 	} else if (add_backref) {
6505 		ret = btrfs_insert_inode_ref(trans, root, name,
6506 					     ino, parent_ino, index);
6507 	}
6508 
6509 	/* Nothing to clean up yet */
6510 	if (ret)
6511 		return ret;
6512 
6513 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6514 				    btrfs_inode_type(&inode->vfs_inode), index);
6515 	if (ret == -EEXIST || ret == -EOVERFLOW)
6516 		goto fail_dir_item;
6517 	else if (ret) {
6518 		btrfs_abort_transaction(trans, ret);
6519 		return ret;
6520 	}
6521 
6522 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6523 			   name->len * 2);
6524 	inode_inc_iversion(&parent_inode->vfs_inode);
6525 	/*
6526 	 * If we are replaying a log tree, we do not want to update the mtime
6527 	 * and ctime of the parent directory with the current time, since the
6528 	 * log replay procedure is responsible for setting them to their correct
6529 	 * values (the ones it had when the fsync was done).
6530 	 */
6531 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6532 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6533 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6534 
6535 	ret = btrfs_update_inode(trans, parent_inode);
6536 	if (ret)
6537 		btrfs_abort_transaction(trans, ret);
6538 	return ret;
6539 
6540 fail_dir_item:
6541 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6542 		u64 local_index;
6543 		int err;
6544 		err = btrfs_del_root_ref(trans, key.objectid,
6545 					 btrfs_root_id(root), parent_ino,
6546 					 &local_index, name);
6547 		if (err)
6548 			btrfs_abort_transaction(trans, err);
6549 	} else if (add_backref) {
6550 		u64 local_index;
6551 		int err;
6552 
6553 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6554 					  &local_index);
6555 		if (err)
6556 			btrfs_abort_transaction(trans, err);
6557 	}
6558 
6559 	/* Return the original error code */
6560 	return ret;
6561 }
6562 
6563 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6564 			       struct inode *inode)
6565 {
6566 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6567 	struct btrfs_root *root = BTRFS_I(dir)->root;
6568 	struct btrfs_new_inode_args new_inode_args = {
6569 		.dir = dir,
6570 		.dentry = dentry,
6571 		.inode = inode,
6572 	};
6573 	unsigned int trans_num_items;
6574 	struct btrfs_trans_handle *trans;
6575 	int err;
6576 
6577 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6578 	if (err)
6579 		goto out_inode;
6580 
6581 	trans = btrfs_start_transaction(root, trans_num_items);
6582 	if (IS_ERR(trans)) {
6583 		err = PTR_ERR(trans);
6584 		goto out_new_inode_args;
6585 	}
6586 
6587 	err = btrfs_create_new_inode(trans, &new_inode_args);
6588 	if (!err)
6589 		d_instantiate_new(dentry, inode);
6590 
6591 	btrfs_end_transaction(trans);
6592 	btrfs_btree_balance_dirty(fs_info);
6593 out_new_inode_args:
6594 	btrfs_new_inode_args_destroy(&new_inode_args);
6595 out_inode:
6596 	if (err)
6597 		iput(inode);
6598 	return err;
6599 }
6600 
6601 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6602 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6603 {
6604 	struct inode *inode;
6605 
6606 	inode = new_inode(dir->i_sb);
6607 	if (!inode)
6608 		return -ENOMEM;
6609 	inode_init_owner(idmap, inode, dir, mode);
6610 	inode->i_op = &btrfs_special_inode_operations;
6611 	init_special_inode(inode, inode->i_mode, rdev);
6612 	return btrfs_create_common(dir, dentry, inode);
6613 }
6614 
6615 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6616 			struct dentry *dentry, umode_t mode, bool excl)
6617 {
6618 	struct inode *inode;
6619 
6620 	inode = new_inode(dir->i_sb);
6621 	if (!inode)
6622 		return -ENOMEM;
6623 	inode_init_owner(idmap, inode, dir, mode);
6624 	inode->i_fop = &btrfs_file_operations;
6625 	inode->i_op = &btrfs_file_inode_operations;
6626 	inode->i_mapping->a_ops = &btrfs_aops;
6627 	return btrfs_create_common(dir, dentry, inode);
6628 }
6629 
6630 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6631 		      struct dentry *dentry)
6632 {
6633 	struct btrfs_trans_handle *trans = NULL;
6634 	struct btrfs_root *root = BTRFS_I(dir)->root;
6635 	struct inode *inode = d_inode(old_dentry);
6636 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6637 	struct fscrypt_name fname;
6638 	u64 index;
6639 	int err;
6640 	int drop_inode = 0;
6641 
6642 	/* do not allow sys_link's with other subvols of the same device */
6643 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6644 		return -EXDEV;
6645 
6646 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6647 		return -EMLINK;
6648 
6649 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6650 	if (err)
6651 		goto fail;
6652 
6653 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6654 	if (err)
6655 		goto fail;
6656 
6657 	/*
6658 	 * 2 items for inode and inode ref
6659 	 * 2 items for dir items
6660 	 * 1 item for parent inode
6661 	 * 1 item for orphan item deletion if O_TMPFILE
6662 	 */
6663 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6664 	if (IS_ERR(trans)) {
6665 		err = PTR_ERR(trans);
6666 		trans = NULL;
6667 		goto fail;
6668 	}
6669 
6670 	/* There are several dir indexes for this inode, clear the cache. */
6671 	BTRFS_I(inode)->dir_index = 0ULL;
6672 	inc_nlink(inode);
6673 	inode_inc_iversion(inode);
6674 	inode_set_ctime_current(inode);
6675 	ihold(inode);
6676 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6677 
6678 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6679 			     &fname.disk_name, 1, index);
6680 
6681 	if (err) {
6682 		drop_inode = 1;
6683 	} else {
6684 		struct dentry *parent = dentry->d_parent;
6685 
6686 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6687 		if (err)
6688 			goto fail;
6689 		if (inode->i_nlink == 1) {
6690 			/*
6691 			 * If new hard link count is 1, it's a file created
6692 			 * with open(2) O_TMPFILE flag.
6693 			 */
6694 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6695 			if (err)
6696 				goto fail;
6697 		}
6698 		d_instantiate(dentry, inode);
6699 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6700 	}
6701 
6702 fail:
6703 	fscrypt_free_filename(&fname);
6704 	if (trans)
6705 		btrfs_end_transaction(trans);
6706 	if (drop_inode) {
6707 		inode_dec_link_count(inode);
6708 		iput(inode);
6709 	}
6710 	btrfs_btree_balance_dirty(fs_info);
6711 	return err;
6712 }
6713 
6714 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6715 		       struct dentry *dentry, umode_t mode)
6716 {
6717 	struct inode *inode;
6718 
6719 	inode = new_inode(dir->i_sb);
6720 	if (!inode)
6721 		return -ENOMEM;
6722 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6723 	inode->i_op = &btrfs_dir_inode_operations;
6724 	inode->i_fop = &btrfs_dir_file_operations;
6725 	return btrfs_create_common(dir, dentry, inode);
6726 }
6727 
6728 static noinline int uncompress_inline(struct btrfs_path *path,
6729 				      struct folio *folio,
6730 				      struct btrfs_file_extent_item *item)
6731 {
6732 	int ret;
6733 	struct extent_buffer *leaf = path->nodes[0];
6734 	char *tmp;
6735 	size_t max_size;
6736 	unsigned long inline_size;
6737 	unsigned long ptr;
6738 	int compress_type;
6739 
6740 	compress_type = btrfs_file_extent_compression(leaf, item);
6741 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6742 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6743 	tmp = kmalloc(inline_size, GFP_NOFS);
6744 	if (!tmp)
6745 		return -ENOMEM;
6746 	ptr = btrfs_file_extent_inline_start(item);
6747 
6748 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6749 
6750 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6751 	ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6752 			       max_size);
6753 
6754 	/*
6755 	 * decompression code contains a memset to fill in any space between the end
6756 	 * of the uncompressed data and the end of max_size in case the decompressed
6757 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6758 	 * the end of an inline extent and the beginning of the next block, so we
6759 	 * cover that region here.
6760 	 */
6761 
6762 	if (max_size < PAGE_SIZE)
6763 		folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6764 	kfree(tmp);
6765 	return ret;
6766 }
6767 
6768 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6769 			      struct folio *folio)
6770 {
6771 	struct btrfs_file_extent_item *fi;
6772 	void *kaddr;
6773 	size_t copy_size;
6774 
6775 	if (!folio || folio_test_uptodate(folio))
6776 		return 0;
6777 
6778 	ASSERT(folio_pos(folio) == 0);
6779 
6780 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6781 			    struct btrfs_file_extent_item);
6782 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6783 		return uncompress_inline(path, folio, fi);
6784 
6785 	copy_size = min_t(u64, PAGE_SIZE,
6786 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6787 	kaddr = kmap_local_folio(folio, 0);
6788 	read_extent_buffer(path->nodes[0], kaddr,
6789 			   btrfs_file_extent_inline_start(fi), copy_size);
6790 	kunmap_local(kaddr);
6791 	if (copy_size < PAGE_SIZE)
6792 		folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6793 	return 0;
6794 }
6795 
6796 /*
6797  * Lookup the first extent overlapping a range in a file.
6798  *
6799  * @inode:	file to search in
6800  * @page:	page to read extent data into if the extent is inline
6801  * @start:	file offset
6802  * @len:	length of range starting at @start
6803  *
6804  * Return the first &struct extent_map which overlaps the given range, reading
6805  * it from the B-tree and caching it if necessary. Note that there may be more
6806  * extents which overlap the given range after the returned extent_map.
6807  *
6808  * If @page is not NULL and the extent is inline, this also reads the extent
6809  * data directly into the page and marks the extent up to date in the io_tree.
6810  *
6811  * Return: ERR_PTR on error, non-NULL extent_map on success.
6812  */
6813 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6814 				    struct folio *folio, u64 start, u64 len)
6815 {
6816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6817 	int ret = 0;
6818 	u64 extent_start = 0;
6819 	u64 extent_end = 0;
6820 	u64 objectid = btrfs_ino(inode);
6821 	int extent_type = -1;
6822 	struct btrfs_path *path = NULL;
6823 	struct btrfs_root *root = inode->root;
6824 	struct btrfs_file_extent_item *item;
6825 	struct extent_buffer *leaf;
6826 	struct btrfs_key found_key;
6827 	struct extent_map *em = NULL;
6828 	struct extent_map_tree *em_tree = &inode->extent_tree;
6829 
6830 	read_lock(&em_tree->lock);
6831 	em = lookup_extent_mapping(em_tree, start, len);
6832 	read_unlock(&em_tree->lock);
6833 
6834 	if (em) {
6835 		if (em->start > start || em->start + em->len <= start)
6836 			free_extent_map(em);
6837 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6838 			free_extent_map(em);
6839 		else
6840 			goto out;
6841 	}
6842 	em = alloc_extent_map();
6843 	if (!em) {
6844 		ret = -ENOMEM;
6845 		goto out;
6846 	}
6847 	em->start = EXTENT_MAP_HOLE;
6848 	em->disk_bytenr = EXTENT_MAP_HOLE;
6849 	em->len = (u64)-1;
6850 
6851 	path = btrfs_alloc_path();
6852 	if (!path) {
6853 		ret = -ENOMEM;
6854 		goto out;
6855 	}
6856 
6857 	/* Chances are we'll be called again, so go ahead and do readahead */
6858 	path->reada = READA_FORWARD;
6859 
6860 	/*
6861 	 * The same explanation in load_free_space_cache applies here as well,
6862 	 * we only read when we're loading the free space cache, and at that
6863 	 * point the commit_root has everything we need.
6864 	 */
6865 	if (btrfs_is_free_space_inode(inode)) {
6866 		path->search_commit_root = 1;
6867 		path->skip_locking = 1;
6868 	}
6869 
6870 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6871 	if (ret < 0) {
6872 		goto out;
6873 	} else if (ret > 0) {
6874 		if (path->slots[0] == 0)
6875 			goto not_found;
6876 		path->slots[0]--;
6877 		ret = 0;
6878 	}
6879 
6880 	leaf = path->nodes[0];
6881 	item = btrfs_item_ptr(leaf, path->slots[0],
6882 			      struct btrfs_file_extent_item);
6883 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6884 	if (found_key.objectid != objectid ||
6885 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6886 		/*
6887 		 * If we backup past the first extent we want to move forward
6888 		 * and see if there is an extent in front of us, otherwise we'll
6889 		 * say there is a hole for our whole search range which can
6890 		 * cause problems.
6891 		 */
6892 		extent_end = start;
6893 		goto next;
6894 	}
6895 
6896 	extent_type = btrfs_file_extent_type(leaf, item);
6897 	extent_start = found_key.offset;
6898 	extent_end = btrfs_file_extent_end(path);
6899 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6900 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6901 		/* Only regular file could have regular/prealloc extent */
6902 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6903 			ret = -EUCLEAN;
6904 			btrfs_crit(fs_info,
6905 		"regular/prealloc extent found for non-regular inode %llu",
6906 				   btrfs_ino(inode));
6907 			goto out;
6908 		}
6909 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6910 						       extent_start);
6911 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6912 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6913 						      path->slots[0],
6914 						      extent_start);
6915 	}
6916 next:
6917 	if (start >= extent_end) {
6918 		path->slots[0]++;
6919 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6920 			ret = btrfs_next_leaf(root, path);
6921 			if (ret < 0)
6922 				goto out;
6923 			else if (ret > 0)
6924 				goto not_found;
6925 
6926 			leaf = path->nodes[0];
6927 		}
6928 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6929 		if (found_key.objectid != objectid ||
6930 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6931 			goto not_found;
6932 		if (start + len <= found_key.offset)
6933 			goto not_found;
6934 		if (start > found_key.offset)
6935 			goto next;
6936 
6937 		/* New extent overlaps with existing one */
6938 		em->start = start;
6939 		em->len = found_key.offset - start;
6940 		em->disk_bytenr = EXTENT_MAP_HOLE;
6941 		goto insert;
6942 	}
6943 
6944 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6945 
6946 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6947 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6948 		goto insert;
6949 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6950 		/*
6951 		 * Inline extent can only exist at file offset 0. This is
6952 		 * ensured by tree-checker and inline extent creation path.
6953 		 * Thus all members representing file offsets should be zero.
6954 		 */
6955 		ASSERT(extent_start == 0);
6956 		ASSERT(em->start == 0);
6957 
6958 		/*
6959 		 * btrfs_extent_item_to_extent_map() should have properly
6960 		 * initialized em members already.
6961 		 *
6962 		 * Other members are not utilized for inline extents.
6963 		 */
6964 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6965 		ASSERT(em->len == fs_info->sectorsize);
6966 
6967 		ret = read_inline_extent(inode, path, folio);
6968 		if (ret < 0)
6969 			goto out;
6970 		goto insert;
6971 	}
6972 not_found:
6973 	em->start = start;
6974 	em->len = len;
6975 	em->disk_bytenr = EXTENT_MAP_HOLE;
6976 insert:
6977 	ret = 0;
6978 	btrfs_release_path(path);
6979 	if (em->start > start || extent_map_end(em) <= start) {
6980 		btrfs_err(fs_info,
6981 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6982 			  em->start, em->len, start, len);
6983 		ret = -EIO;
6984 		goto out;
6985 	}
6986 
6987 	write_lock(&em_tree->lock);
6988 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6989 	write_unlock(&em_tree->lock);
6990 out:
6991 	btrfs_free_path(path);
6992 
6993 	trace_btrfs_get_extent(root, inode, em);
6994 
6995 	if (ret) {
6996 		free_extent_map(em);
6997 		return ERR_PTR(ret);
6998 	}
6999 	return em;
7000 }
7001 
7002 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7003 {
7004 	struct btrfs_block_group *block_group;
7005 	bool readonly = false;
7006 
7007 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7008 	if (!block_group || block_group->ro)
7009 		readonly = true;
7010 	if (block_group)
7011 		btrfs_put_block_group(block_group);
7012 	return readonly;
7013 }
7014 
7015 /*
7016  * Check if we can do nocow write into the range [@offset, @offset + @len)
7017  *
7018  * @offset:	File offset
7019  * @len:	The length to write, will be updated to the nocow writeable
7020  *		range
7021  * @orig_start:	(optional) Return the original file offset of the file extent
7022  * @orig_len:	(optional) Return the original on-disk length of the file extent
7023  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7024  * @strict:	if true, omit optimizations that might force us into unnecessary
7025  *		cow. e.g., don't trust generation number.
7026  *
7027  * Return:
7028  * >0	and update @len if we can do nocow write
7029  *  0	if we can't do nocow write
7030  * <0	if error happened
7031  *
7032  * NOTE: This only checks the file extents, caller is responsible to wait for
7033  *	 any ordered extents.
7034  */
7035 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7036 			      struct btrfs_file_extent *file_extent,
7037 			      bool nowait, bool strict)
7038 {
7039 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7040 	struct can_nocow_file_extent_args nocow_args = { 0 };
7041 	struct btrfs_path *path;
7042 	int ret;
7043 	struct extent_buffer *leaf;
7044 	struct btrfs_root *root = BTRFS_I(inode)->root;
7045 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7046 	struct btrfs_file_extent_item *fi;
7047 	struct btrfs_key key;
7048 	int found_type;
7049 
7050 	path = btrfs_alloc_path();
7051 	if (!path)
7052 		return -ENOMEM;
7053 	path->nowait = nowait;
7054 
7055 	ret = btrfs_lookup_file_extent(NULL, root, path,
7056 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7057 	if (ret < 0)
7058 		goto out;
7059 
7060 	if (ret == 1) {
7061 		if (path->slots[0] == 0) {
7062 			/* can't find the item, must cow */
7063 			ret = 0;
7064 			goto out;
7065 		}
7066 		path->slots[0]--;
7067 	}
7068 	ret = 0;
7069 	leaf = path->nodes[0];
7070 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7071 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7072 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7073 		/* not our file or wrong item type, must cow */
7074 		goto out;
7075 	}
7076 
7077 	if (key.offset > offset) {
7078 		/* Wrong offset, must cow */
7079 		goto out;
7080 	}
7081 
7082 	if (btrfs_file_extent_end(path) <= offset)
7083 		goto out;
7084 
7085 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7086 	found_type = btrfs_file_extent_type(leaf, fi);
7087 
7088 	nocow_args.start = offset;
7089 	nocow_args.end = offset + *len - 1;
7090 	nocow_args.strict = strict;
7091 	nocow_args.free_path = true;
7092 
7093 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7094 	/* can_nocow_file_extent() has freed the path. */
7095 	path = NULL;
7096 
7097 	if (ret != 1) {
7098 		/* Treat errors as not being able to NOCOW. */
7099 		ret = 0;
7100 		goto out;
7101 	}
7102 
7103 	ret = 0;
7104 	if (btrfs_extent_readonly(fs_info,
7105 				  nocow_args.file_extent.disk_bytenr +
7106 				  nocow_args.file_extent.offset))
7107 		goto out;
7108 
7109 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7110 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7111 		u64 range_end;
7112 
7113 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7114 				     root->fs_info->sectorsize) - 1;
7115 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7116 		if (ret) {
7117 			ret = -EAGAIN;
7118 			goto out;
7119 		}
7120 	}
7121 
7122 	if (file_extent)
7123 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7124 
7125 	*len = nocow_args.file_extent.num_bytes;
7126 	ret = 1;
7127 out:
7128 	btrfs_free_path(path);
7129 	return ret;
7130 }
7131 
7132 /* The callers of this must take lock_extent() */
7133 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7134 				      const struct btrfs_file_extent *file_extent,
7135 				      int type)
7136 {
7137 	struct extent_map *em;
7138 	int ret;
7139 
7140 	/*
7141 	 * Note the missing NOCOW type.
7142 	 *
7143 	 * For pure NOCOW writes, we should not create an io extent map, but
7144 	 * just reusing the existing one.
7145 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7146 	 * create an io extent map.
7147 	 */
7148 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7149 	       type == BTRFS_ORDERED_COMPRESSED ||
7150 	       type == BTRFS_ORDERED_REGULAR);
7151 
7152 	switch (type) {
7153 	case BTRFS_ORDERED_PREALLOC:
7154 		/* We're only referring part of a larger preallocated extent. */
7155 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7156 		break;
7157 	case BTRFS_ORDERED_REGULAR:
7158 		/* COW results a new extent matching our file extent size. */
7159 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7160 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7161 
7162 		/* Since it's a new extent, we should not have any offset. */
7163 		ASSERT(file_extent->offset == 0);
7164 		break;
7165 	case BTRFS_ORDERED_COMPRESSED:
7166 		/* Must be compressed. */
7167 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7168 
7169 		/*
7170 		 * Encoded write can make us to refer to part of the
7171 		 * uncompressed extent.
7172 		 */
7173 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7174 		break;
7175 	}
7176 
7177 	em = alloc_extent_map();
7178 	if (!em)
7179 		return ERR_PTR(-ENOMEM);
7180 
7181 	em->start = start;
7182 	em->len = file_extent->num_bytes;
7183 	em->disk_bytenr = file_extent->disk_bytenr;
7184 	em->disk_num_bytes = file_extent->disk_num_bytes;
7185 	em->ram_bytes = file_extent->ram_bytes;
7186 	em->generation = -1;
7187 	em->offset = file_extent->offset;
7188 	em->flags |= EXTENT_FLAG_PINNED;
7189 	if (type == BTRFS_ORDERED_COMPRESSED)
7190 		extent_map_set_compression(em, file_extent->compression);
7191 
7192 	ret = btrfs_replace_extent_map_range(inode, em, true);
7193 	if (ret) {
7194 		free_extent_map(em);
7195 		return ERR_PTR(ret);
7196 	}
7197 
7198 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7199 	return em;
7200 }
7201 
7202 /*
7203  * For release_folio() and invalidate_folio() we have a race window where
7204  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7205  * If we continue to release/invalidate the page, we could cause use-after-free
7206  * for subpage spinlock.  So this function is to spin and wait for subpage
7207  * spinlock.
7208  */
7209 static void wait_subpage_spinlock(struct folio *folio)
7210 {
7211 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7212 	struct btrfs_subpage *subpage;
7213 
7214 	if (!btrfs_is_subpage(fs_info, folio->mapping))
7215 		return;
7216 
7217 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7218 	subpage = folio_get_private(folio);
7219 
7220 	/*
7221 	 * This may look insane as we just acquire the spinlock and release it,
7222 	 * without doing anything.  But we just want to make sure no one is
7223 	 * still holding the subpage spinlock.
7224 	 * And since the page is not dirty nor writeback, and we have page
7225 	 * locked, the only possible way to hold a spinlock is from the endio
7226 	 * function to clear page writeback.
7227 	 *
7228 	 * Here we just acquire the spinlock so that all existing callers
7229 	 * should exit and we're safe to release/invalidate the page.
7230 	 */
7231 	spin_lock_irq(&subpage->lock);
7232 	spin_unlock_irq(&subpage->lock);
7233 }
7234 
7235 static int btrfs_launder_folio(struct folio *folio)
7236 {
7237 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7238 				      PAGE_SIZE, NULL);
7239 }
7240 
7241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7242 {
7243 	if (try_release_extent_mapping(folio, gfp_flags)) {
7244 		wait_subpage_spinlock(folio);
7245 		clear_folio_extent_mapped(folio);
7246 		return true;
7247 	}
7248 	return false;
7249 }
7250 
7251 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7252 {
7253 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7254 		return false;
7255 	return __btrfs_release_folio(folio, gfp_flags);
7256 }
7257 
7258 #ifdef CONFIG_MIGRATION
7259 static int btrfs_migrate_folio(struct address_space *mapping,
7260 			     struct folio *dst, struct folio *src,
7261 			     enum migrate_mode mode)
7262 {
7263 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7264 
7265 	if (ret != MIGRATEPAGE_SUCCESS)
7266 		return ret;
7267 
7268 	if (folio_test_ordered(src)) {
7269 		folio_clear_ordered(src);
7270 		folio_set_ordered(dst);
7271 	}
7272 
7273 	return MIGRATEPAGE_SUCCESS;
7274 }
7275 #else
7276 #define btrfs_migrate_folio NULL
7277 #endif
7278 
7279 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7280 				 size_t length)
7281 {
7282 	struct btrfs_inode *inode = folio_to_inode(folio);
7283 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7284 	struct extent_io_tree *tree = &inode->io_tree;
7285 	struct extent_state *cached_state = NULL;
7286 	u64 page_start = folio_pos(folio);
7287 	u64 page_end = page_start + folio_size(folio) - 1;
7288 	u64 cur;
7289 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7290 
7291 	/*
7292 	 * We have folio locked so no new ordered extent can be created on this
7293 	 * page, nor bio can be submitted for this folio.
7294 	 *
7295 	 * But already submitted bio can still be finished on this folio.
7296 	 * Furthermore, endio function won't skip folio which has Ordered
7297 	 * (Private2) already cleared, so it's possible for endio and
7298 	 * invalidate_folio to do the same ordered extent accounting twice
7299 	 * on one folio.
7300 	 *
7301 	 * So here we wait for any submitted bios to finish, so that we won't
7302 	 * do double ordered extent accounting on the same folio.
7303 	 */
7304 	folio_wait_writeback(folio);
7305 	wait_subpage_spinlock(folio);
7306 
7307 	/*
7308 	 * For subpage case, we have call sites like
7309 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7310 	 * sectorsize.
7311 	 * If the range doesn't cover the full folio, we don't need to and
7312 	 * shouldn't clear page extent mapped, as folio->private can still
7313 	 * record subpage dirty bits for other part of the range.
7314 	 *
7315 	 * For cases that invalidate the full folio even the range doesn't
7316 	 * cover the full folio, like invalidating the last folio, we're
7317 	 * still safe to wait for ordered extent to finish.
7318 	 */
7319 	if (!(offset == 0 && length == folio_size(folio))) {
7320 		btrfs_release_folio(folio, GFP_NOFS);
7321 		return;
7322 	}
7323 
7324 	if (!inode_evicting)
7325 		lock_extent(tree, page_start, page_end, &cached_state);
7326 
7327 	cur = page_start;
7328 	while (cur < page_end) {
7329 		struct btrfs_ordered_extent *ordered;
7330 		u64 range_end;
7331 		u32 range_len;
7332 		u32 extra_flags = 0;
7333 
7334 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7335 							   page_end + 1 - cur);
7336 		if (!ordered) {
7337 			range_end = page_end;
7338 			/*
7339 			 * No ordered extent covering this range, we are safe
7340 			 * to delete all extent states in the range.
7341 			 */
7342 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7343 			goto next;
7344 		}
7345 		if (ordered->file_offset > cur) {
7346 			/*
7347 			 * There is a range between [cur, oe->file_offset) not
7348 			 * covered by any ordered extent.
7349 			 * We are safe to delete all extent states, and handle
7350 			 * the ordered extent in the next iteration.
7351 			 */
7352 			range_end = ordered->file_offset - 1;
7353 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7354 			goto next;
7355 		}
7356 
7357 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7358 				page_end);
7359 		ASSERT(range_end + 1 - cur < U32_MAX);
7360 		range_len = range_end + 1 - cur;
7361 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7362 			/*
7363 			 * If Ordered (Private2) is cleared, it means endio has
7364 			 * already been executed for the range.
7365 			 * We can't delete the extent states as
7366 			 * btrfs_finish_ordered_io() may still use some of them.
7367 			 */
7368 			goto next;
7369 		}
7370 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7371 
7372 		/*
7373 		 * IO on this page will never be started, so we need to account
7374 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7375 		 * here, must leave that up for the ordered extent completion.
7376 		 *
7377 		 * This will also unlock the range for incoming
7378 		 * btrfs_finish_ordered_io().
7379 		 */
7380 		if (!inode_evicting)
7381 			clear_extent_bit(tree, cur, range_end,
7382 					 EXTENT_DELALLOC |
7383 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7384 					 EXTENT_DEFRAG, &cached_state);
7385 
7386 		spin_lock_irq(&inode->ordered_tree_lock);
7387 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7388 		ordered->truncated_len = min(ordered->truncated_len,
7389 					     cur - ordered->file_offset);
7390 		spin_unlock_irq(&inode->ordered_tree_lock);
7391 
7392 		/*
7393 		 * If the ordered extent has finished, we're safe to delete all
7394 		 * the extent states of the range, otherwise
7395 		 * btrfs_finish_ordered_io() will get executed by endio for
7396 		 * other pages, so we can't delete extent states.
7397 		 */
7398 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7399 						   cur, range_end + 1 - cur)) {
7400 			btrfs_finish_ordered_io(ordered);
7401 			/*
7402 			 * The ordered extent has finished, now we're again
7403 			 * safe to delete all extent states of the range.
7404 			 */
7405 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7406 		}
7407 next:
7408 		if (ordered)
7409 			btrfs_put_ordered_extent(ordered);
7410 		/*
7411 		 * Qgroup reserved space handler
7412 		 * Sector(s) here will be either:
7413 		 *
7414 		 * 1) Already written to disk or bio already finished
7415 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7416 		 *    Qgroup will be handled by its qgroup_record then.
7417 		 *    btrfs_qgroup_free_data() call will do nothing here.
7418 		 *
7419 		 * 2) Not written to disk yet
7420 		 *    Then btrfs_qgroup_free_data() call will clear the
7421 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7422 		 *    reserved data space.
7423 		 *    Since the IO will never happen for this page.
7424 		 */
7425 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7426 		if (!inode_evicting) {
7427 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7428 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7429 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7430 				 extra_flags, &cached_state);
7431 		}
7432 		cur = range_end + 1;
7433 	}
7434 	/*
7435 	 * We have iterated through all ordered extents of the page, the page
7436 	 * should not have Ordered (Private2) anymore, or the above iteration
7437 	 * did something wrong.
7438 	 */
7439 	ASSERT(!folio_test_ordered(folio));
7440 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7441 	if (!inode_evicting)
7442 		__btrfs_release_folio(folio, GFP_NOFS);
7443 	clear_folio_extent_mapped(folio);
7444 }
7445 
7446 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7447 {
7448 	struct btrfs_truncate_control control = {
7449 		.inode = inode,
7450 		.ino = btrfs_ino(inode),
7451 		.min_type = BTRFS_EXTENT_DATA_KEY,
7452 		.clear_extent_range = true,
7453 	};
7454 	struct btrfs_root *root = inode->root;
7455 	struct btrfs_fs_info *fs_info = root->fs_info;
7456 	struct btrfs_block_rsv *rsv;
7457 	int ret;
7458 	struct btrfs_trans_handle *trans;
7459 	u64 mask = fs_info->sectorsize - 1;
7460 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7461 
7462 	if (!skip_writeback) {
7463 		ret = btrfs_wait_ordered_range(inode,
7464 					       inode->vfs_inode.i_size & (~mask),
7465 					       (u64)-1);
7466 		if (ret)
7467 			return ret;
7468 	}
7469 
7470 	/*
7471 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7472 	 * things going on here:
7473 	 *
7474 	 * 1) We need to reserve space to update our inode.
7475 	 *
7476 	 * 2) We need to have something to cache all the space that is going to
7477 	 * be free'd up by the truncate operation, but also have some slack
7478 	 * space reserved in case it uses space during the truncate (thank you
7479 	 * very much snapshotting).
7480 	 *
7481 	 * And we need these to be separate.  The fact is we can use a lot of
7482 	 * space doing the truncate, and we have no earthly idea how much space
7483 	 * we will use, so we need the truncate reservation to be separate so it
7484 	 * doesn't end up using space reserved for updating the inode.  We also
7485 	 * need to be able to stop the transaction and start a new one, which
7486 	 * means we need to be able to update the inode several times, and we
7487 	 * have no idea of knowing how many times that will be, so we can't just
7488 	 * reserve 1 item for the entirety of the operation, so that has to be
7489 	 * done separately as well.
7490 	 *
7491 	 * So that leaves us with
7492 	 *
7493 	 * 1) rsv - for the truncate reservation, which we will steal from the
7494 	 * transaction reservation.
7495 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7496 	 * updating the inode.
7497 	 */
7498 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7499 	if (!rsv)
7500 		return -ENOMEM;
7501 	rsv->size = min_size;
7502 	rsv->failfast = true;
7503 
7504 	/*
7505 	 * 1 for the truncate slack space
7506 	 * 1 for updating the inode.
7507 	 */
7508 	trans = btrfs_start_transaction(root, 2);
7509 	if (IS_ERR(trans)) {
7510 		ret = PTR_ERR(trans);
7511 		goto out;
7512 	}
7513 
7514 	/* Migrate the slack space for the truncate to our reserve */
7515 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7516 				      min_size, false);
7517 	/*
7518 	 * We have reserved 2 metadata units when we started the transaction and
7519 	 * min_size matches 1 unit, so this should never fail, but if it does,
7520 	 * it's not critical we just fail truncation.
7521 	 */
7522 	if (WARN_ON(ret)) {
7523 		btrfs_end_transaction(trans);
7524 		goto out;
7525 	}
7526 
7527 	trans->block_rsv = rsv;
7528 
7529 	while (1) {
7530 		struct extent_state *cached_state = NULL;
7531 		const u64 new_size = inode->vfs_inode.i_size;
7532 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7533 
7534 		control.new_size = new_size;
7535 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7536 		/*
7537 		 * We want to drop from the next block forward in case this new
7538 		 * size is not block aligned since we will be keeping the last
7539 		 * block of the extent just the way it is.
7540 		 */
7541 		btrfs_drop_extent_map_range(inode,
7542 					    ALIGN(new_size, fs_info->sectorsize),
7543 					    (u64)-1, false);
7544 
7545 		ret = btrfs_truncate_inode_items(trans, root, &control);
7546 
7547 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7548 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7549 
7550 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7551 
7552 		trans->block_rsv = &fs_info->trans_block_rsv;
7553 		if (ret != -ENOSPC && ret != -EAGAIN)
7554 			break;
7555 
7556 		ret = btrfs_update_inode(trans, inode);
7557 		if (ret)
7558 			break;
7559 
7560 		btrfs_end_transaction(trans);
7561 		btrfs_btree_balance_dirty(fs_info);
7562 
7563 		trans = btrfs_start_transaction(root, 2);
7564 		if (IS_ERR(trans)) {
7565 			ret = PTR_ERR(trans);
7566 			trans = NULL;
7567 			break;
7568 		}
7569 
7570 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7571 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7572 					      rsv, min_size, false);
7573 		/*
7574 		 * We have reserved 2 metadata units when we started the
7575 		 * transaction and min_size matches 1 unit, so this should never
7576 		 * fail, but if it does, it's not critical we just fail truncation.
7577 		 */
7578 		if (WARN_ON(ret))
7579 			break;
7580 
7581 		trans->block_rsv = rsv;
7582 	}
7583 
7584 	/*
7585 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7586 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7587 	 * know we've truncated everything except the last little bit, and can
7588 	 * do btrfs_truncate_block and then update the disk_i_size.
7589 	 */
7590 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7591 		btrfs_end_transaction(trans);
7592 		btrfs_btree_balance_dirty(fs_info);
7593 
7594 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7595 		if (ret)
7596 			goto out;
7597 		trans = btrfs_start_transaction(root, 1);
7598 		if (IS_ERR(trans)) {
7599 			ret = PTR_ERR(trans);
7600 			goto out;
7601 		}
7602 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7603 	}
7604 
7605 	if (trans) {
7606 		int ret2;
7607 
7608 		trans->block_rsv = &fs_info->trans_block_rsv;
7609 		ret2 = btrfs_update_inode(trans, inode);
7610 		if (ret2 && !ret)
7611 			ret = ret2;
7612 
7613 		ret2 = btrfs_end_transaction(trans);
7614 		if (ret2 && !ret)
7615 			ret = ret2;
7616 		btrfs_btree_balance_dirty(fs_info);
7617 	}
7618 out:
7619 	btrfs_free_block_rsv(fs_info, rsv);
7620 	/*
7621 	 * So if we truncate and then write and fsync we normally would just
7622 	 * write the extents that changed, which is a problem if we need to
7623 	 * first truncate that entire inode.  So set this flag so we write out
7624 	 * all of the extents in the inode to the sync log so we're completely
7625 	 * safe.
7626 	 *
7627 	 * If no extents were dropped or trimmed we don't need to force the next
7628 	 * fsync to truncate all the inode's items from the log and re-log them
7629 	 * all. This means the truncate operation did not change the file size,
7630 	 * or changed it to a smaller size but there was only an implicit hole
7631 	 * between the old i_size and the new i_size, and there were no prealloc
7632 	 * extents beyond i_size to drop.
7633 	 */
7634 	if (control.extents_found > 0)
7635 		btrfs_set_inode_full_sync(inode);
7636 
7637 	return ret;
7638 }
7639 
7640 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7641 				     struct inode *dir)
7642 {
7643 	struct inode *inode;
7644 
7645 	inode = new_inode(dir->i_sb);
7646 	if (inode) {
7647 		/*
7648 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7649 		 * the parent's sgid bit is set. This is probably a bug.
7650 		 */
7651 		inode_init_owner(idmap, inode, NULL,
7652 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7653 		inode->i_op = &btrfs_dir_inode_operations;
7654 		inode->i_fop = &btrfs_dir_file_operations;
7655 	}
7656 	return inode;
7657 }
7658 
7659 struct inode *btrfs_alloc_inode(struct super_block *sb)
7660 {
7661 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7662 	struct btrfs_inode *ei;
7663 	struct inode *inode;
7664 
7665 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7666 	if (!ei)
7667 		return NULL;
7668 
7669 	ei->root = NULL;
7670 	ei->generation = 0;
7671 	ei->last_trans = 0;
7672 	ei->last_sub_trans = 0;
7673 	ei->logged_trans = 0;
7674 	ei->delalloc_bytes = 0;
7675 	ei->new_delalloc_bytes = 0;
7676 	ei->defrag_bytes = 0;
7677 	ei->disk_i_size = 0;
7678 	ei->flags = 0;
7679 	ei->ro_flags = 0;
7680 	/*
7681 	 * ->index_cnt will be properly initialized later when creating a new
7682 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7683 	 * from disk (btrfs_read_locked_inode()).
7684 	 */
7685 	ei->csum_bytes = 0;
7686 	ei->dir_index = 0;
7687 	ei->last_unlink_trans = 0;
7688 	ei->last_reflink_trans = 0;
7689 	ei->last_log_commit = 0;
7690 
7691 	spin_lock_init(&ei->lock);
7692 	ei->outstanding_extents = 0;
7693 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7694 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7695 					      BTRFS_BLOCK_RSV_DELALLOC);
7696 	ei->runtime_flags = 0;
7697 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7698 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7699 
7700 	ei->delayed_node = NULL;
7701 
7702 	ei->i_otime_sec = 0;
7703 	ei->i_otime_nsec = 0;
7704 
7705 	inode = &ei->vfs_inode;
7706 	extent_map_tree_init(&ei->extent_tree);
7707 
7708 	/* This io tree sets the valid inode. */
7709 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7710 	ei->io_tree.inode = ei;
7711 
7712 	ei->file_extent_tree = NULL;
7713 
7714 	mutex_init(&ei->log_mutex);
7715 	spin_lock_init(&ei->ordered_tree_lock);
7716 	ei->ordered_tree = RB_ROOT;
7717 	ei->ordered_tree_last = NULL;
7718 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7719 	INIT_LIST_HEAD(&ei->delayed_iput);
7720 	init_rwsem(&ei->i_mmap_lock);
7721 
7722 	return inode;
7723 }
7724 
7725 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7726 void btrfs_test_destroy_inode(struct inode *inode)
7727 {
7728 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7729 	kfree(BTRFS_I(inode)->file_extent_tree);
7730 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7731 }
7732 #endif
7733 
7734 void btrfs_free_inode(struct inode *inode)
7735 {
7736 	kfree(BTRFS_I(inode)->file_extent_tree);
7737 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7738 }
7739 
7740 void btrfs_destroy_inode(struct inode *vfs_inode)
7741 {
7742 	struct btrfs_ordered_extent *ordered;
7743 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7744 	struct btrfs_root *root = inode->root;
7745 	bool freespace_inode;
7746 
7747 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7748 	WARN_ON(vfs_inode->i_data.nrpages);
7749 	WARN_ON(inode->block_rsv.reserved);
7750 	WARN_ON(inode->block_rsv.size);
7751 	WARN_ON(inode->outstanding_extents);
7752 	if (!S_ISDIR(vfs_inode->i_mode)) {
7753 		WARN_ON(inode->delalloc_bytes);
7754 		WARN_ON(inode->new_delalloc_bytes);
7755 		WARN_ON(inode->csum_bytes);
7756 	}
7757 	if (!root || !btrfs_is_data_reloc_root(root))
7758 		WARN_ON(inode->defrag_bytes);
7759 
7760 	/*
7761 	 * This can happen where we create an inode, but somebody else also
7762 	 * created the same inode and we need to destroy the one we already
7763 	 * created.
7764 	 */
7765 	if (!root)
7766 		return;
7767 
7768 	/*
7769 	 * If this is a free space inode do not take the ordered extents lockdep
7770 	 * map.
7771 	 */
7772 	freespace_inode = btrfs_is_free_space_inode(inode);
7773 
7774 	while (1) {
7775 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7776 		if (!ordered)
7777 			break;
7778 		else {
7779 			btrfs_err(root->fs_info,
7780 				  "found ordered extent %llu %llu on inode cleanup",
7781 				  ordered->file_offset, ordered->num_bytes);
7782 
7783 			if (!freespace_inode)
7784 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7785 
7786 			btrfs_remove_ordered_extent(inode, ordered);
7787 			btrfs_put_ordered_extent(ordered);
7788 			btrfs_put_ordered_extent(ordered);
7789 		}
7790 	}
7791 	btrfs_qgroup_check_reserved_leak(inode);
7792 	btrfs_del_inode_from_root(inode);
7793 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7794 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7795 	btrfs_put_root(inode->root);
7796 }
7797 
7798 int btrfs_drop_inode(struct inode *inode)
7799 {
7800 	struct btrfs_root *root = BTRFS_I(inode)->root;
7801 
7802 	if (root == NULL)
7803 		return 1;
7804 
7805 	/* the snap/subvol tree is on deleting */
7806 	if (btrfs_root_refs(&root->root_item) == 0)
7807 		return 1;
7808 	else
7809 		return generic_drop_inode(inode);
7810 }
7811 
7812 static void init_once(void *foo)
7813 {
7814 	struct btrfs_inode *ei = foo;
7815 
7816 	inode_init_once(&ei->vfs_inode);
7817 }
7818 
7819 void __cold btrfs_destroy_cachep(void)
7820 {
7821 	/*
7822 	 * Make sure all delayed rcu free inodes are flushed before we
7823 	 * destroy cache.
7824 	 */
7825 	rcu_barrier();
7826 	kmem_cache_destroy(btrfs_inode_cachep);
7827 }
7828 
7829 int __init btrfs_init_cachep(void)
7830 {
7831 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7832 			sizeof(struct btrfs_inode), 0,
7833 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7834 			init_once);
7835 	if (!btrfs_inode_cachep)
7836 		return -ENOMEM;
7837 
7838 	return 0;
7839 }
7840 
7841 static int btrfs_getattr(struct mnt_idmap *idmap,
7842 			 const struct path *path, struct kstat *stat,
7843 			 u32 request_mask, unsigned int flags)
7844 {
7845 	u64 delalloc_bytes;
7846 	u64 inode_bytes;
7847 	struct inode *inode = d_inode(path->dentry);
7848 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7849 	u32 bi_flags = BTRFS_I(inode)->flags;
7850 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7851 
7852 	stat->result_mask |= STATX_BTIME;
7853 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7854 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7855 	if (bi_flags & BTRFS_INODE_APPEND)
7856 		stat->attributes |= STATX_ATTR_APPEND;
7857 	if (bi_flags & BTRFS_INODE_COMPRESS)
7858 		stat->attributes |= STATX_ATTR_COMPRESSED;
7859 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7860 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7861 	if (bi_flags & BTRFS_INODE_NODUMP)
7862 		stat->attributes |= STATX_ATTR_NODUMP;
7863 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7864 		stat->attributes |= STATX_ATTR_VERITY;
7865 
7866 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7867 				  STATX_ATTR_COMPRESSED |
7868 				  STATX_ATTR_IMMUTABLE |
7869 				  STATX_ATTR_NODUMP);
7870 
7871 	generic_fillattr(idmap, request_mask, inode, stat);
7872 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7873 
7874 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7875 	stat->result_mask |= STATX_SUBVOL;
7876 
7877 	spin_lock(&BTRFS_I(inode)->lock);
7878 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7879 	inode_bytes = inode_get_bytes(inode);
7880 	spin_unlock(&BTRFS_I(inode)->lock);
7881 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7882 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7883 	return 0;
7884 }
7885 
7886 static int btrfs_rename_exchange(struct inode *old_dir,
7887 			      struct dentry *old_dentry,
7888 			      struct inode *new_dir,
7889 			      struct dentry *new_dentry)
7890 {
7891 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7892 	struct btrfs_trans_handle *trans;
7893 	unsigned int trans_num_items;
7894 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7895 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7896 	struct inode *new_inode = new_dentry->d_inode;
7897 	struct inode *old_inode = old_dentry->d_inode;
7898 	struct btrfs_rename_ctx old_rename_ctx;
7899 	struct btrfs_rename_ctx new_rename_ctx;
7900 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7901 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7902 	u64 old_idx = 0;
7903 	u64 new_idx = 0;
7904 	int ret;
7905 	int ret2;
7906 	bool need_abort = false;
7907 	struct fscrypt_name old_fname, new_fname;
7908 	struct fscrypt_str *old_name, *new_name;
7909 
7910 	/*
7911 	 * For non-subvolumes allow exchange only within one subvolume, in the
7912 	 * same inode namespace. Two subvolumes (represented as directory) can
7913 	 * be exchanged as they're a logical link and have a fixed inode number.
7914 	 */
7915 	if (root != dest &&
7916 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7917 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7918 		return -EXDEV;
7919 
7920 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7921 	if (ret)
7922 		return ret;
7923 
7924 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7925 	if (ret) {
7926 		fscrypt_free_filename(&old_fname);
7927 		return ret;
7928 	}
7929 
7930 	old_name = &old_fname.disk_name;
7931 	new_name = &new_fname.disk_name;
7932 
7933 	/* close the race window with snapshot create/destroy ioctl */
7934 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7935 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7936 		down_read(&fs_info->subvol_sem);
7937 
7938 	/*
7939 	 * For each inode:
7940 	 * 1 to remove old dir item
7941 	 * 1 to remove old dir index
7942 	 * 1 to add new dir item
7943 	 * 1 to add new dir index
7944 	 * 1 to update parent inode
7945 	 *
7946 	 * If the parents are the same, we only need to account for one
7947 	 */
7948 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7949 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7950 		/*
7951 		 * 1 to remove old root ref
7952 		 * 1 to remove old root backref
7953 		 * 1 to add new root ref
7954 		 * 1 to add new root backref
7955 		 */
7956 		trans_num_items += 4;
7957 	} else {
7958 		/*
7959 		 * 1 to update inode item
7960 		 * 1 to remove old inode ref
7961 		 * 1 to add new inode ref
7962 		 */
7963 		trans_num_items += 3;
7964 	}
7965 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7966 		trans_num_items += 4;
7967 	else
7968 		trans_num_items += 3;
7969 	trans = btrfs_start_transaction(root, trans_num_items);
7970 	if (IS_ERR(trans)) {
7971 		ret = PTR_ERR(trans);
7972 		goto out_notrans;
7973 	}
7974 
7975 	if (dest != root) {
7976 		ret = btrfs_record_root_in_trans(trans, dest);
7977 		if (ret)
7978 			goto out_fail;
7979 	}
7980 
7981 	/*
7982 	 * We need to find a free sequence number both in the source and
7983 	 * in the destination directory for the exchange.
7984 	 */
7985 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7986 	if (ret)
7987 		goto out_fail;
7988 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7989 	if (ret)
7990 		goto out_fail;
7991 
7992 	BTRFS_I(old_inode)->dir_index = 0ULL;
7993 	BTRFS_I(new_inode)->dir_index = 0ULL;
7994 
7995 	/* Reference for the source. */
7996 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7997 		/* force full log commit if subvolume involved. */
7998 		btrfs_set_log_full_commit(trans);
7999 	} else {
8000 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8001 					     btrfs_ino(BTRFS_I(new_dir)),
8002 					     old_idx);
8003 		if (ret)
8004 			goto out_fail;
8005 		need_abort = true;
8006 	}
8007 
8008 	/* And now for the dest. */
8009 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8010 		/* force full log commit if subvolume involved. */
8011 		btrfs_set_log_full_commit(trans);
8012 	} else {
8013 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8014 					     btrfs_ino(BTRFS_I(old_dir)),
8015 					     new_idx);
8016 		if (ret) {
8017 			if (need_abort)
8018 				btrfs_abort_transaction(trans, ret);
8019 			goto out_fail;
8020 		}
8021 	}
8022 
8023 	/* Update inode version and ctime/mtime. */
8024 	inode_inc_iversion(old_dir);
8025 	inode_inc_iversion(new_dir);
8026 	inode_inc_iversion(old_inode);
8027 	inode_inc_iversion(new_inode);
8028 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8029 
8030 	if (old_dentry->d_parent != new_dentry->d_parent) {
8031 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8032 					BTRFS_I(old_inode), true);
8033 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8034 					BTRFS_I(new_inode), true);
8035 	}
8036 
8037 	/* src is a subvolume */
8038 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8039 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8040 	} else { /* src is an inode */
8041 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8042 					   BTRFS_I(old_dentry->d_inode),
8043 					   old_name, &old_rename_ctx);
8044 		if (!ret)
8045 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8046 	}
8047 	if (ret) {
8048 		btrfs_abort_transaction(trans, ret);
8049 		goto out_fail;
8050 	}
8051 
8052 	/* dest is a subvolume */
8053 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8054 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8055 	} else { /* dest is an inode */
8056 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8057 					   BTRFS_I(new_dentry->d_inode),
8058 					   new_name, &new_rename_ctx);
8059 		if (!ret)
8060 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8061 	}
8062 	if (ret) {
8063 		btrfs_abort_transaction(trans, ret);
8064 		goto out_fail;
8065 	}
8066 
8067 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8068 			     new_name, 0, old_idx);
8069 	if (ret) {
8070 		btrfs_abort_transaction(trans, ret);
8071 		goto out_fail;
8072 	}
8073 
8074 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8075 			     old_name, 0, new_idx);
8076 	if (ret) {
8077 		btrfs_abort_transaction(trans, ret);
8078 		goto out_fail;
8079 	}
8080 
8081 	if (old_inode->i_nlink == 1)
8082 		BTRFS_I(old_inode)->dir_index = old_idx;
8083 	if (new_inode->i_nlink == 1)
8084 		BTRFS_I(new_inode)->dir_index = new_idx;
8085 
8086 	/*
8087 	 * Now pin the logs of the roots. We do it to ensure that no other task
8088 	 * can sync the logs while we are in progress with the rename, because
8089 	 * that could result in an inconsistency in case any of the inodes that
8090 	 * are part of this rename operation were logged before.
8091 	 */
8092 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8093 		btrfs_pin_log_trans(root);
8094 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8095 		btrfs_pin_log_trans(dest);
8096 
8097 	/* Do the log updates for all inodes. */
8098 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8099 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8100 				   old_rename_ctx.index, new_dentry->d_parent);
8101 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8102 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8103 				   new_rename_ctx.index, old_dentry->d_parent);
8104 
8105 	/* Now unpin the logs. */
8106 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8107 		btrfs_end_log_trans(root);
8108 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8109 		btrfs_end_log_trans(dest);
8110 out_fail:
8111 	ret2 = btrfs_end_transaction(trans);
8112 	ret = ret ? ret : ret2;
8113 out_notrans:
8114 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8115 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8116 		up_read(&fs_info->subvol_sem);
8117 
8118 	fscrypt_free_filename(&new_fname);
8119 	fscrypt_free_filename(&old_fname);
8120 	return ret;
8121 }
8122 
8123 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8124 					struct inode *dir)
8125 {
8126 	struct inode *inode;
8127 
8128 	inode = new_inode(dir->i_sb);
8129 	if (inode) {
8130 		inode_init_owner(idmap, inode, dir,
8131 				 S_IFCHR | WHITEOUT_MODE);
8132 		inode->i_op = &btrfs_special_inode_operations;
8133 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8134 	}
8135 	return inode;
8136 }
8137 
8138 static int btrfs_rename(struct mnt_idmap *idmap,
8139 			struct inode *old_dir, struct dentry *old_dentry,
8140 			struct inode *new_dir, struct dentry *new_dentry,
8141 			unsigned int flags)
8142 {
8143 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8144 	struct btrfs_new_inode_args whiteout_args = {
8145 		.dir = old_dir,
8146 		.dentry = old_dentry,
8147 	};
8148 	struct btrfs_trans_handle *trans;
8149 	unsigned int trans_num_items;
8150 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8151 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8152 	struct inode *new_inode = d_inode(new_dentry);
8153 	struct inode *old_inode = d_inode(old_dentry);
8154 	struct btrfs_rename_ctx rename_ctx;
8155 	u64 index = 0;
8156 	int ret;
8157 	int ret2;
8158 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8159 	struct fscrypt_name old_fname, new_fname;
8160 
8161 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8162 		return -EPERM;
8163 
8164 	/* we only allow rename subvolume link between subvolumes */
8165 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8166 		return -EXDEV;
8167 
8168 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8169 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8170 		return -ENOTEMPTY;
8171 
8172 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8173 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8174 		return -ENOTEMPTY;
8175 
8176 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8177 	if (ret)
8178 		return ret;
8179 
8180 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8181 	if (ret) {
8182 		fscrypt_free_filename(&old_fname);
8183 		return ret;
8184 	}
8185 
8186 	/* check for collisions, even if the  name isn't there */
8187 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8188 	if (ret) {
8189 		if (ret == -EEXIST) {
8190 			/* we shouldn't get
8191 			 * eexist without a new_inode */
8192 			if (WARN_ON(!new_inode)) {
8193 				goto out_fscrypt_names;
8194 			}
8195 		} else {
8196 			/* maybe -EOVERFLOW */
8197 			goto out_fscrypt_names;
8198 		}
8199 	}
8200 	ret = 0;
8201 
8202 	/*
8203 	 * we're using rename to replace one file with another.  Start IO on it
8204 	 * now so  we don't add too much work to the end of the transaction
8205 	 */
8206 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8207 		filemap_flush(old_inode->i_mapping);
8208 
8209 	if (flags & RENAME_WHITEOUT) {
8210 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8211 		if (!whiteout_args.inode) {
8212 			ret = -ENOMEM;
8213 			goto out_fscrypt_names;
8214 		}
8215 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8216 		if (ret)
8217 			goto out_whiteout_inode;
8218 	} else {
8219 		/* 1 to update the old parent inode. */
8220 		trans_num_items = 1;
8221 	}
8222 
8223 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8224 		/* Close the race window with snapshot create/destroy ioctl */
8225 		down_read(&fs_info->subvol_sem);
8226 		/*
8227 		 * 1 to remove old root ref
8228 		 * 1 to remove old root backref
8229 		 * 1 to add new root ref
8230 		 * 1 to add new root backref
8231 		 */
8232 		trans_num_items += 4;
8233 	} else {
8234 		/*
8235 		 * 1 to update inode
8236 		 * 1 to remove old inode ref
8237 		 * 1 to add new inode ref
8238 		 */
8239 		trans_num_items += 3;
8240 	}
8241 	/*
8242 	 * 1 to remove old dir item
8243 	 * 1 to remove old dir index
8244 	 * 1 to add new dir item
8245 	 * 1 to add new dir index
8246 	 */
8247 	trans_num_items += 4;
8248 	/* 1 to update new parent inode if it's not the same as the old parent */
8249 	if (new_dir != old_dir)
8250 		trans_num_items++;
8251 	if (new_inode) {
8252 		/*
8253 		 * 1 to update inode
8254 		 * 1 to remove inode ref
8255 		 * 1 to remove dir item
8256 		 * 1 to remove dir index
8257 		 * 1 to possibly add orphan item
8258 		 */
8259 		trans_num_items += 5;
8260 	}
8261 	trans = btrfs_start_transaction(root, trans_num_items);
8262 	if (IS_ERR(trans)) {
8263 		ret = PTR_ERR(trans);
8264 		goto out_notrans;
8265 	}
8266 
8267 	if (dest != root) {
8268 		ret = btrfs_record_root_in_trans(trans, dest);
8269 		if (ret)
8270 			goto out_fail;
8271 	}
8272 
8273 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8274 	if (ret)
8275 		goto out_fail;
8276 
8277 	BTRFS_I(old_inode)->dir_index = 0ULL;
8278 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8279 		/* force full log commit if subvolume involved. */
8280 		btrfs_set_log_full_commit(trans);
8281 	} else {
8282 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8283 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8284 					     index);
8285 		if (ret)
8286 			goto out_fail;
8287 	}
8288 
8289 	inode_inc_iversion(old_dir);
8290 	inode_inc_iversion(new_dir);
8291 	inode_inc_iversion(old_inode);
8292 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8293 
8294 	if (old_dentry->d_parent != new_dentry->d_parent)
8295 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8296 					BTRFS_I(old_inode), true);
8297 
8298 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8299 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8300 	} else {
8301 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8302 					   BTRFS_I(d_inode(old_dentry)),
8303 					   &old_fname.disk_name, &rename_ctx);
8304 		if (!ret)
8305 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8306 	}
8307 	if (ret) {
8308 		btrfs_abort_transaction(trans, ret);
8309 		goto out_fail;
8310 	}
8311 
8312 	if (new_inode) {
8313 		inode_inc_iversion(new_inode);
8314 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8315 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8316 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8317 			BUG_ON(new_inode->i_nlink == 0);
8318 		} else {
8319 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8320 						 BTRFS_I(d_inode(new_dentry)),
8321 						 &new_fname.disk_name);
8322 		}
8323 		if (!ret && new_inode->i_nlink == 0)
8324 			ret = btrfs_orphan_add(trans,
8325 					BTRFS_I(d_inode(new_dentry)));
8326 		if (ret) {
8327 			btrfs_abort_transaction(trans, ret);
8328 			goto out_fail;
8329 		}
8330 	}
8331 
8332 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8333 			     &new_fname.disk_name, 0, index);
8334 	if (ret) {
8335 		btrfs_abort_transaction(trans, ret);
8336 		goto out_fail;
8337 	}
8338 
8339 	if (old_inode->i_nlink == 1)
8340 		BTRFS_I(old_inode)->dir_index = index;
8341 
8342 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8343 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8344 				   rename_ctx.index, new_dentry->d_parent);
8345 
8346 	if (flags & RENAME_WHITEOUT) {
8347 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8348 		if (ret) {
8349 			btrfs_abort_transaction(trans, ret);
8350 			goto out_fail;
8351 		} else {
8352 			unlock_new_inode(whiteout_args.inode);
8353 			iput(whiteout_args.inode);
8354 			whiteout_args.inode = NULL;
8355 		}
8356 	}
8357 out_fail:
8358 	ret2 = btrfs_end_transaction(trans);
8359 	ret = ret ? ret : ret2;
8360 out_notrans:
8361 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8362 		up_read(&fs_info->subvol_sem);
8363 	if (flags & RENAME_WHITEOUT)
8364 		btrfs_new_inode_args_destroy(&whiteout_args);
8365 out_whiteout_inode:
8366 	if (flags & RENAME_WHITEOUT)
8367 		iput(whiteout_args.inode);
8368 out_fscrypt_names:
8369 	fscrypt_free_filename(&old_fname);
8370 	fscrypt_free_filename(&new_fname);
8371 	return ret;
8372 }
8373 
8374 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8375 			 struct dentry *old_dentry, struct inode *new_dir,
8376 			 struct dentry *new_dentry, unsigned int flags)
8377 {
8378 	int ret;
8379 
8380 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8381 		return -EINVAL;
8382 
8383 	if (flags & RENAME_EXCHANGE)
8384 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8385 					    new_dentry);
8386 	else
8387 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8388 				   new_dentry, flags);
8389 
8390 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8391 
8392 	return ret;
8393 }
8394 
8395 struct btrfs_delalloc_work {
8396 	struct inode *inode;
8397 	struct completion completion;
8398 	struct list_head list;
8399 	struct btrfs_work work;
8400 };
8401 
8402 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8403 {
8404 	struct btrfs_delalloc_work *delalloc_work;
8405 	struct inode *inode;
8406 
8407 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8408 				     work);
8409 	inode = delalloc_work->inode;
8410 	filemap_flush(inode->i_mapping);
8411 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8412 				&BTRFS_I(inode)->runtime_flags))
8413 		filemap_flush(inode->i_mapping);
8414 
8415 	iput(inode);
8416 	complete(&delalloc_work->completion);
8417 }
8418 
8419 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8420 {
8421 	struct btrfs_delalloc_work *work;
8422 
8423 	work = kmalloc(sizeof(*work), GFP_NOFS);
8424 	if (!work)
8425 		return NULL;
8426 
8427 	init_completion(&work->completion);
8428 	INIT_LIST_HEAD(&work->list);
8429 	work->inode = inode;
8430 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8431 
8432 	return work;
8433 }
8434 
8435 /*
8436  * some fairly slow code that needs optimization. This walks the list
8437  * of all the inodes with pending delalloc and forces them to disk.
8438  */
8439 static int start_delalloc_inodes(struct btrfs_root *root,
8440 				 struct writeback_control *wbc, bool snapshot,
8441 				 bool in_reclaim_context)
8442 {
8443 	struct btrfs_inode *binode;
8444 	struct inode *inode;
8445 	struct btrfs_delalloc_work *work, *next;
8446 	LIST_HEAD(works);
8447 	LIST_HEAD(splice);
8448 	int ret = 0;
8449 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8450 
8451 	mutex_lock(&root->delalloc_mutex);
8452 	spin_lock(&root->delalloc_lock);
8453 	list_splice_init(&root->delalloc_inodes, &splice);
8454 	while (!list_empty(&splice)) {
8455 		binode = list_entry(splice.next, struct btrfs_inode,
8456 				    delalloc_inodes);
8457 
8458 		list_move_tail(&binode->delalloc_inodes,
8459 			       &root->delalloc_inodes);
8460 
8461 		if (in_reclaim_context &&
8462 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8463 			continue;
8464 
8465 		inode = igrab(&binode->vfs_inode);
8466 		if (!inode) {
8467 			cond_resched_lock(&root->delalloc_lock);
8468 			continue;
8469 		}
8470 		spin_unlock(&root->delalloc_lock);
8471 
8472 		if (snapshot)
8473 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8474 				&binode->runtime_flags);
8475 		if (full_flush) {
8476 			work = btrfs_alloc_delalloc_work(inode);
8477 			if (!work) {
8478 				iput(inode);
8479 				ret = -ENOMEM;
8480 				goto out;
8481 			}
8482 			list_add_tail(&work->list, &works);
8483 			btrfs_queue_work(root->fs_info->flush_workers,
8484 					 &work->work);
8485 		} else {
8486 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8487 			btrfs_add_delayed_iput(BTRFS_I(inode));
8488 			if (ret || wbc->nr_to_write <= 0)
8489 				goto out;
8490 		}
8491 		cond_resched();
8492 		spin_lock(&root->delalloc_lock);
8493 	}
8494 	spin_unlock(&root->delalloc_lock);
8495 
8496 out:
8497 	list_for_each_entry_safe(work, next, &works, list) {
8498 		list_del_init(&work->list);
8499 		wait_for_completion(&work->completion);
8500 		kfree(work);
8501 	}
8502 
8503 	if (!list_empty(&splice)) {
8504 		spin_lock(&root->delalloc_lock);
8505 		list_splice_tail(&splice, &root->delalloc_inodes);
8506 		spin_unlock(&root->delalloc_lock);
8507 	}
8508 	mutex_unlock(&root->delalloc_mutex);
8509 	return ret;
8510 }
8511 
8512 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8513 {
8514 	struct writeback_control wbc = {
8515 		.nr_to_write = LONG_MAX,
8516 		.sync_mode = WB_SYNC_NONE,
8517 		.range_start = 0,
8518 		.range_end = LLONG_MAX,
8519 	};
8520 	struct btrfs_fs_info *fs_info = root->fs_info;
8521 
8522 	if (BTRFS_FS_ERROR(fs_info))
8523 		return -EROFS;
8524 
8525 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8526 }
8527 
8528 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8529 			       bool in_reclaim_context)
8530 {
8531 	struct writeback_control wbc = {
8532 		.nr_to_write = nr,
8533 		.sync_mode = WB_SYNC_NONE,
8534 		.range_start = 0,
8535 		.range_end = LLONG_MAX,
8536 	};
8537 	struct btrfs_root *root;
8538 	LIST_HEAD(splice);
8539 	int ret;
8540 
8541 	if (BTRFS_FS_ERROR(fs_info))
8542 		return -EROFS;
8543 
8544 	mutex_lock(&fs_info->delalloc_root_mutex);
8545 	spin_lock(&fs_info->delalloc_root_lock);
8546 	list_splice_init(&fs_info->delalloc_roots, &splice);
8547 	while (!list_empty(&splice)) {
8548 		/*
8549 		 * Reset nr_to_write here so we know that we're doing a full
8550 		 * flush.
8551 		 */
8552 		if (nr == LONG_MAX)
8553 			wbc.nr_to_write = LONG_MAX;
8554 
8555 		root = list_first_entry(&splice, struct btrfs_root,
8556 					delalloc_root);
8557 		root = btrfs_grab_root(root);
8558 		BUG_ON(!root);
8559 		list_move_tail(&root->delalloc_root,
8560 			       &fs_info->delalloc_roots);
8561 		spin_unlock(&fs_info->delalloc_root_lock);
8562 
8563 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8564 		btrfs_put_root(root);
8565 		if (ret < 0 || wbc.nr_to_write <= 0)
8566 			goto out;
8567 		spin_lock(&fs_info->delalloc_root_lock);
8568 	}
8569 	spin_unlock(&fs_info->delalloc_root_lock);
8570 
8571 	ret = 0;
8572 out:
8573 	if (!list_empty(&splice)) {
8574 		spin_lock(&fs_info->delalloc_root_lock);
8575 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8576 		spin_unlock(&fs_info->delalloc_root_lock);
8577 	}
8578 	mutex_unlock(&fs_info->delalloc_root_mutex);
8579 	return ret;
8580 }
8581 
8582 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8583 			 struct dentry *dentry, const char *symname)
8584 {
8585 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8586 	struct btrfs_trans_handle *trans;
8587 	struct btrfs_root *root = BTRFS_I(dir)->root;
8588 	struct btrfs_path *path;
8589 	struct btrfs_key key;
8590 	struct inode *inode;
8591 	struct btrfs_new_inode_args new_inode_args = {
8592 		.dir = dir,
8593 		.dentry = dentry,
8594 	};
8595 	unsigned int trans_num_items;
8596 	int err;
8597 	int name_len;
8598 	int datasize;
8599 	unsigned long ptr;
8600 	struct btrfs_file_extent_item *ei;
8601 	struct extent_buffer *leaf;
8602 
8603 	name_len = strlen(symname);
8604 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8605 		return -ENAMETOOLONG;
8606 
8607 	inode = new_inode(dir->i_sb);
8608 	if (!inode)
8609 		return -ENOMEM;
8610 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8611 	inode->i_op = &btrfs_symlink_inode_operations;
8612 	inode_nohighmem(inode);
8613 	inode->i_mapping->a_ops = &btrfs_aops;
8614 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8615 	inode_set_bytes(inode, name_len);
8616 
8617 	new_inode_args.inode = inode;
8618 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8619 	if (err)
8620 		goto out_inode;
8621 	/* 1 additional item for the inline extent */
8622 	trans_num_items++;
8623 
8624 	trans = btrfs_start_transaction(root, trans_num_items);
8625 	if (IS_ERR(trans)) {
8626 		err = PTR_ERR(trans);
8627 		goto out_new_inode_args;
8628 	}
8629 
8630 	err = btrfs_create_new_inode(trans, &new_inode_args);
8631 	if (err)
8632 		goto out;
8633 
8634 	path = btrfs_alloc_path();
8635 	if (!path) {
8636 		err = -ENOMEM;
8637 		btrfs_abort_transaction(trans, err);
8638 		discard_new_inode(inode);
8639 		inode = NULL;
8640 		goto out;
8641 	}
8642 	key.objectid = btrfs_ino(BTRFS_I(inode));
8643 	key.offset = 0;
8644 	key.type = BTRFS_EXTENT_DATA_KEY;
8645 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8646 	err = btrfs_insert_empty_item(trans, root, path, &key,
8647 				      datasize);
8648 	if (err) {
8649 		btrfs_abort_transaction(trans, err);
8650 		btrfs_free_path(path);
8651 		discard_new_inode(inode);
8652 		inode = NULL;
8653 		goto out;
8654 	}
8655 	leaf = path->nodes[0];
8656 	ei = btrfs_item_ptr(leaf, path->slots[0],
8657 			    struct btrfs_file_extent_item);
8658 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8659 	btrfs_set_file_extent_type(leaf, ei,
8660 				   BTRFS_FILE_EXTENT_INLINE);
8661 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8662 	btrfs_set_file_extent_compression(leaf, ei, 0);
8663 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8664 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8665 
8666 	ptr = btrfs_file_extent_inline_start(ei);
8667 	write_extent_buffer(leaf, symname, ptr, name_len);
8668 	btrfs_mark_buffer_dirty(trans, leaf);
8669 	btrfs_free_path(path);
8670 
8671 	d_instantiate_new(dentry, inode);
8672 	err = 0;
8673 out:
8674 	btrfs_end_transaction(trans);
8675 	btrfs_btree_balance_dirty(fs_info);
8676 out_new_inode_args:
8677 	btrfs_new_inode_args_destroy(&new_inode_args);
8678 out_inode:
8679 	if (err)
8680 		iput(inode);
8681 	return err;
8682 }
8683 
8684 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8685 				       struct btrfs_trans_handle *trans_in,
8686 				       struct btrfs_inode *inode,
8687 				       struct btrfs_key *ins,
8688 				       u64 file_offset)
8689 {
8690 	struct btrfs_file_extent_item stack_fi;
8691 	struct btrfs_replace_extent_info extent_info;
8692 	struct btrfs_trans_handle *trans = trans_in;
8693 	struct btrfs_path *path;
8694 	u64 start = ins->objectid;
8695 	u64 len = ins->offset;
8696 	u64 qgroup_released = 0;
8697 	int ret;
8698 
8699 	memset(&stack_fi, 0, sizeof(stack_fi));
8700 
8701 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8702 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8703 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8704 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8705 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8706 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8707 	/* Encryption and other encoding is reserved and all 0 */
8708 
8709 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8710 	if (ret < 0)
8711 		return ERR_PTR(ret);
8712 
8713 	if (trans) {
8714 		ret = insert_reserved_file_extent(trans, inode,
8715 						  file_offset, &stack_fi,
8716 						  true, qgroup_released);
8717 		if (ret)
8718 			goto free_qgroup;
8719 		return trans;
8720 	}
8721 
8722 	extent_info.disk_offset = start;
8723 	extent_info.disk_len = len;
8724 	extent_info.data_offset = 0;
8725 	extent_info.data_len = len;
8726 	extent_info.file_offset = file_offset;
8727 	extent_info.extent_buf = (char *)&stack_fi;
8728 	extent_info.is_new_extent = true;
8729 	extent_info.update_times = true;
8730 	extent_info.qgroup_reserved = qgroup_released;
8731 	extent_info.insertions = 0;
8732 
8733 	path = btrfs_alloc_path();
8734 	if (!path) {
8735 		ret = -ENOMEM;
8736 		goto free_qgroup;
8737 	}
8738 
8739 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8740 				     file_offset + len - 1, &extent_info,
8741 				     &trans);
8742 	btrfs_free_path(path);
8743 	if (ret)
8744 		goto free_qgroup;
8745 	return trans;
8746 
8747 free_qgroup:
8748 	/*
8749 	 * We have released qgroup data range at the beginning of the function,
8750 	 * and normally qgroup_released bytes will be freed when committing
8751 	 * transaction.
8752 	 * But if we error out early, we have to free what we have released
8753 	 * or we leak qgroup data reservation.
8754 	 */
8755 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8756 			btrfs_root_id(inode->root), qgroup_released,
8757 			BTRFS_QGROUP_RSV_DATA);
8758 	return ERR_PTR(ret);
8759 }
8760 
8761 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8762 				       u64 start, u64 num_bytes, u64 min_size,
8763 				       loff_t actual_len, u64 *alloc_hint,
8764 				       struct btrfs_trans_handle *trans)
8765 {
8766 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8767 	struct extent_map *em;
8768 	struct btrfs_root *root = BTRFS_I(inode)->root;
8769 	struct btrfs_key ins;
8770 	u64 cur_offset = start;
8771 	u64 clear_offset = start;
8772 	u64 i_size;
8773 	u64 cur_bytes;
8774 	u64 last_alloc = (u64)-1;
8775 	int ret = 0;
8776 	bool own_trans = true;
8777 	u64 end = start + num_bytes - 1;
8778 
8779 	if (trans)
8780 		own_trans = false;
8781 	while (num_bytes > 0) {
8782 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8783 		cur_bytes = max(cur_bytes, min_size);
8784 		/*
8785 		 * If we are severely fragmented we could end up with really
8786 		 * small allocations, so if the allocator is returning small
8787 		 * chunks lets make its job easier by only searching for those
8788 		 * sized chunks.
8789 		 */
8790 		cur_bytes = min(cur_bytes, last_alloc);
8791 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8792 				min_size, 0, *alloc_hint, &ins, 1, 0);
8793 		if (ret)
8794 			break;
8795 
8796 		/*
8797 		 * We've reserved this space, and thus converted it from
8798 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8799 		 * from here on out we will only need to clear our reservation
8800 		 * for the remaining unreserved area, so advance our
8801 		 * clear_offset by our extent size.
8802 		 */
8803 		clear_offset += ins.offset;
8804 
8805 		last_alloc = ins.offset;
8806 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8807 						    &ins, cur_offset);
8808 		/*
8809 		 * Now that we inserted the prealloc extent we can finally
8810 		 * decrement the number of reservations in the block group.
8811 		 * If we did it before, we could race with relocation and have
8812 		 * relocation miss the reserved extent, making it fail later.
8813 		 */
8814 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8815 		if (IS_ERR(trans)) {
8816 			ret = PTR_ERR(trans);
8817 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8818 						   ins.offset, 0);
8819 			break;
8820 		}
8821 
8822 		em = alloc_extent_map();
8823 		if (!em) {
8824 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8825 					    cur_offset + ins.offset - 1, false);
8826 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8827 			goto next;
8828 		}
8829 
8830 		em->start = cur_offset;
8831 		em->len = ins.offset;
8832 		em->disk_bytenr = ins.objectid;
8833 		em->offset = 0;
8834 		em->disk_num_bytes = ins.offset;
8835 		em->ram_bytes = ins.offset;
8836 		em->flags |= EXTENT_FLAG_PREALLOC;
8837 		em->generation = trans->transid;
8838 
8839 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8840 		free_extent_map(em);
8841 next:
8842 		num_bytes -= ins.offset;
8843 		cur_offset += ins.offset;
8844 		*alloc_hint = ins.objectid + ins.offset;
8845 
8846 		inode_inc_iversion(inode);
8847 		inode_set_ctime_current(inode);
8848 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8849 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8850 		    (actual_len > inode->i_size) &&
8851 		    (cur_offset > inode->i_size)) {
8852 			if (cur_offset > actual_len)
8853 				i_size = actual_len;
8854 			else
8855 				i_size = cur_offset;
8856 			i_size_write(inode, i_size);
8857 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8858 		}
8859 
8860 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8861 
8862 		if (ret) {
8863 			btrfs_abort_transaction(trans, ret);
8864 			if (own_trans)
8865 				btrfs_end_transaction(trans);
8866 			break;
8867 		}
8868 
8869 		if (own_trans) {
8870 			btrfs_end_transaction(trans);
8871 			trans = NULL;
8872 		}
8873 	}
8874 	if (clear_offset < end)
8875 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8876 			end - clear_offset + 1);
8877 	return ret;
8878 }
8879 
8880 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8881 			      u64 start, u64 num_bytes, u64 min_size,
8882 			      loff_t actual_len, u64 *alloc_hint)
8883 {
8884 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8885 					   min_size, actual_len, alloc_hint,
8886 					   NULL);
8887 }
8888 
8889 int btrfs_prealloc_file_range_trans(struct inode *inode,
8890 				    struct btrfs_trans_handle *trans, int mode,
8891 				    u64 start, u64 num_bytes, u64 min_size,
8892 				    loff_t actual_len, u64 *alloc_hint)
8893 {
8894 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8895 					   min_size, actual_len, alloc_hint, trans);
8896 }
8897 
8898 static int btrfs_permission(struct mnt_idmap *idmap,
8899 			    struct inode *inode, int mask)
8900 {
8901 	struct btrfs_root *root = BTRFS_I(inode)->root;
8902 	umode_t mode = inode->i_mode;
8903 
8904 	if (mask & MAY_WRITE &&
8905 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8906 		if (btrfs_root_readonly(root))
8907 			return -EROFS;
8908 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8909 			return -EACCES;
8910 	}
8911 	return generic_permission(idmap, inode, mask);
8912 }
8913 
8914 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8915 			 struct file *file, umode_t mode)
8916 {
8917 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8918 	struct btrfs_trans_handle *trans;
8919 	struct btrfs_root *root = BTRFS_I(dir)->root;
8920 	struct inode *inode;
8921 	struct btrfs_new_inode_args new_inode_args = {
8922 		.dir = dir,
8923 		.dentry = file->f_path.dentry,
8924 		.orphan = true,
8925 	};
8926 	unsigned int trans_num_items;
8927 	int ret;
8928 
8929 	inode = new_inode(dir->i_sb);
8930 	if (!inode)
8931 		return -ENOMEM;
8932 	inode_init_owner(idmap, inode, dir, mode);
8933 	inode->i_fop = &btrfs_file_operations;
8934 	inode->i_op = &btrfs_file_inode_operations;
8935 	inode->i_mapping->a_ops = &btrfs_aops;
8936 
8937 	new_inode_args.inode = inode;
8938 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8939 	if (ret)
8940 		goto out_inode;
8941 
8942 	trans = btrfs_start_transaction(root, trans_num_items);
8943 	if (IS_ERR(trans)) {
8944 		ret = PTR_ERR(trans);
8945 		goto out_new_inode_args;
8946 	}
8947 
8948 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8949 
8950 	/*
8951 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8952 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8953 	 * 0, through:
8954 	 *
8955 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8956 	 */
8957 	set_nlink(inode, 1);
8958 
8959 	if (!ret) {
8960 		d_tmpfile(file, inode);
8961 		unlock_new_inode(inode);
8962 		mark_inode_dirty(inode);
8963 	}
8964 
8965 	btrfs_end_transaction(trans);
8966 	btrfs_btree_balance_dirty(fs_info);
8967 out_new_inode_args:
8968 	btrfs_new_inode_args_destroy(&new_inode_args);
8969 out_inode:
8970 	if (ret)
8971 		iput(inode);
8972 	return finish_open_simple(file, ret);
8973 }
8974 
8975 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8976 {
8977 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8978 	unsigned long index = start >> PAGE_SHIFT;
8979 	unsigned long end_index = end >> PAGE_SHIFT;
8980 	struct folio *folio;
8981 	u32 len;
8982 
8983 	ASSERT(end + 1 - start <= U32_MAX);
8984 	len = end + 1 - start;
8985 	while (index <= end_index) {
8986 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
8987 		ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */
8988 
8989 		/* This is for data, which doesn't yet support larger folio. */
8990 		ASSERT(folio_order(folio) == 0);
8991 		btrfs_folio_set_writeback(fs_info, folio, start, len);
8992 		folio_put(folio);
8993 		index++;
8994 	}
8995 }
8996 
8997 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8998 					     int compress_type)
8999 {
9000 	switch (compress_type) {
9001 	case BTRFS_COMPRESS_NONE:
9002 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9003 	case BTRFS_COMPRESS_ZLIB:
9004 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9005 	case BTRFS_COMPRESS_LZO:
9006 		/*
9007 		 * The LZO format depends on the sector size. 64K is the maximum
9008 		 * sector size that we support.
9009 		 */
9010 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9011 			return -EINVAL;
9012 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9013 		       (fs_info->sectorsize_bits - 12);
9014 	case BTRFS_COMPRESS_ZSTD:
9015 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9016 	default:
9017 		return -EUCLEAN;
9018 	}
9019 }
9020 
9021 static ssize_t btrfs_encoded_read_inline(
9022 				struct kiocb *iocb,
9023 				struct iov_iter *iter, u64 start,
9024 				u64 lockend,
9025 				struct extent_state **cached_state,
9026 				u64 extent_start, size_t count,
9027 				struct btrfs_ioctl_encoded_io_args *encoded,
9028 				bool *unlocked)
9029 {
9030 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9031 	struct btrfs_root *root = inode->root;
9032 	struct btrfs_fs_info *fs_info = root->fs_info;
9033 	struct extent_io_tree *io_tree = &inode->io_tree;
9034 	struct btrfs_path *path;
9035 	struct extent_buffer *leaf;
9036 	struct btrfs_file_extent_item *item;
9037 	u64 ram_bytes;
9038 	unsigned long ptr;
9039 	void *tmp;
9040 	ssize_t ret;
9041 
9042 	path = btrfs_alloc_path();
9043 	if (!path) {
9044 		ret = -ENOMEM;
9045 		goto out;
9046 	}
9047 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9048 				       extent_start, 0);
9049 	if (ret) {
9050 		if (ret > 0) {
9051 			/* The extent item disappeared? */
9052 			ret = -EIO;
9053 		}
9054 		goto out;
9055 	}
9056 	leaf = path->nodes[0];
9057 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9058 
9059 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9060 	ptr = btrfs_file_extent_inline_start(item);
9061 
9062 	encoded->len = min_t(u64, extent_start + ram_bytes,
9063 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9064 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9065 				 btrfs_file_extent_compression(leaf, item));
9066 	if (ret < 0)
9067 		goto out;
9068 	encoded->compression = ret;
9069 	if (encoded->compression) {
9070 		size_t inline_size;
9071 
9072 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9073 								path->slots[0]);
9074 		if (inline_size > count) {
9075 			ret = -ENOBUFS;
9076 			goto out;
9077 		}
9078 		count = inline_size;
9079 		encoded->unencoded_len = ram_bytes;
9080 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9081 	} else {
9082 		count = min_t(u64, count, encoded->len);
9083 		encoded->len = count;
9084 		encoded->unencoded_len = count;
9085 		ptr += iocb->ki_pos - extent_start;
9086 	}
9087 
9088 	tmp = kmalloc(count, GFP_NOFS);
9089 	if (!tmp) {
9090 		ret = -ENOMEM;
9091 		goto out;
9092 	}
9093 	read_extent_buffer(leaf, tmp, ptr, count);
9094 	btrfs_release_path(path);
9095 	unlock_extent(io_tree, start, lockend, cached_state);
9096 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9097 	*unlocked = true;
9098 
9099 	ret = copy_to_iter(tmp, count, iter);
9100 	if (ret != count)
9101 		ret = -EFAULT;
9102 	kfree(tmp);
9103 out:
9104 	btrfs_free_path(path);
9105 	return ret;
9106 }
9107 
9108 struct btrfs_encoded_read_private {
9109 	wait_queue_head_t wait;
9110 	atomic_t pending;
9111 	blk_status_t status;
9112 };
9113 
9114 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9115 {
9116 	struct btrfs_encoded_read_private *priv = bbio->private;
9117 
9118 	if (bbio->bio.bi_status) {
9119 		/*
9120 		 * The memory barrier implied by the atomic_dec_return() here
9121 		 * pairs with the memory barrier implied by the
9122 		 * atomic_dec_return() or io_wait_event() in
9123 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9124 		 * write is observed before the load of status in
9125 		 * btrfs_encoded_read_regular_fill_pages().
9126 		 */
9127 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9128 	}
9129 	if (!atomic_dec_return(&priv->pending))
9130 		wake_up(&priv->wait);
9131 	bio_put(&bbio->bio);
9132 }
9133 
9134 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9135 					  u64 file_offset, u64 disk_bytenr,
9136 					  u64 disk_io_size, struct page **pages)
9137 {
9138 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9139 	struct btrfs_encoded_read_private priv = {
9140 		.pending = ATOMIC_INIT(1),
9141 	};
9142 	unsigned long i = 0;
9143 	struct btrfs_bio *bbio;
9144 
9145 	init_waitqueue_head(&priv.wait);
9146 
9147 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9148 			       btrfs_encoded_read_endio, &priv);
9149 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9150 	bbio->inode = inode;
9151 
9152 	do {
9153 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9154 
9155 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9156 			atomic_inc(&priv.pending);
9157 			btrfs_submit_bbio(bbio, 0);
9158 
9159 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9160 					       btrfs_encoded_read_endio, &priv);
9161 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9162 			bbio->inode = inode;
9163 			continue;
9164 		}
9165 
9166 		i++;
9167 		disk_bytenr += bytes;
9168 		disk_io_size -= bytes;
9169 	} while (disk_io_size);
9170 
9171 	atomic_inc(&priv.pending);
9172 	btrfs_submit_bbio(bbio, 0);
9173 
9174 	if (atomic_dec_return(&priv.pending))
9175 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9176 	/* See btrfs_encoded_read_endio() for ordering. */
9177 	return blk_status_to_errno(READ_ONCE(priv.status));
9178 }
9179 
9180 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9181 					  struct iov_iter *iter,
9182 					  u64 start, u64 lockend,
9183 					  struct extent_state **cached_state,
9184 					  u64 disk_bytenr, u64 disk_io_size,
9185 					  size_t count, bool compressed,
9186 					  bool *unlocked)
9187 {
9188 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9189 	struct extent_io_tree *io_tree = &inode->io_tree;
9190 	struct page **pages;
9191 	unsigned long nr_pages, i;
9192 	u64 cur;
9193 	size_t page_offset;
9194 	ssize_t ret;
9195 
9196 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9197 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9198 	if (!pages)
9199 		return -ENOMEM;
9200 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9201 	if (ret) {
9202 		ret = -ENOMEM;
9203 		goto out;
9204 		}
9205 
9206 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9207 						    disk_io_size, pages);
9208 	if (ret)
9209 		goto out;
9210 
9211 	unlock_extent(io_tree, start, lockend, cached_state);
9212 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9213 	*unlocked = true;
9214 
9215 	if (compressed) {
9216 		i = 0;
9217 		page_offset = 0;
9218 	} else {
9219 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9220 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9221 	}
9222 	cur = 0;
9223 	while (cur < count) {
9224 		size_t bytes = min_t(size_t, count - cur,
9225 				     PAGE_SIZE - page_offset);
9226 
9227 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9228 				      iter) != bytes) {
9229 			ret = -EFAULT;
9230 			goto out;
9231 		}
9232 		i++;
9233 		cur += bytes;
9234 		page_offset = 0;
9235 	}
9236 	ret = count;
9237 out:
9238 	for (i = 0; i < nr_pages; i++) {
9239 		if (pages[i])
9240 			__free_page(pages[i]);
9241 	}
9242 	kfree(pages);
9243 	return ret;
9244 }
9245 
9246 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9247 			   struct btrfs_ioctl_encoded_io_args *encoded)
9248 {
9249 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9250 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9251 	struct extent_io_tree *io_tree = &inode->io_tree;
9252 	ssize_t ret;
9253 	size_t count = iov_iter_count(iter);
9254 	u64 start, lockend, disk_bytenr, disk_io_size;
9255 	struct extent_state *cached_state = NULL;
9256 	struct extent_map *em;
9257 	bool unlocked = false;
9258 
9259 	file_accessed(iocb->ki_filp);
9260 
9261 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9262 
9263 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9264 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9265 		return 0;
9266 	}
9267 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9268 	/*
9269 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9270 	 * it's compressed we know that it won't be longer than this.
9271 	 */
9272 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9273 
9274 	for (;;) {
9275 		struct btrfs_ordered_extent *ordered;
9276 
9277 		ret = btrfs_wait_ordered_range(inode, start,
9278 					       lockend - start + 1);
9279 		if (ret)
9280 			goto out_unlock_inode;
9281 		lock_extent(io_tree, start, lockend, &cached_state);
9282 		ordered = btrfs_lookup_ordered_range(inode, start,
9283 						     lockend - start + 1);
9284 		if (!ordered)
9285 			break;
9286 		btrfs_put_ordered_extent(ordered);
9287 		unlock_extent(io_tree, start, lockend, &cached_state);
9288 		cond_resched();
9289 	}
9290 
9291 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9292 	if (IS_ERR(em)) {
9293 		ret = PTR_ERR(em);
9294 		goto out_unlock_extent;
9295 	}
9296 
9297 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9298 		u64 extent_start = em->start;
9299 
9300 		/*
9301 		 * For inline extents we get everything we need out of the
9302 		 * extent item.
9303 		 */
9304 		free_extent_map(em);
9305 		em = NULL;
9306 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9307 						&cached_state, extent_start,
9308 						count, encoded, &unlocked);
9309 		goto out;
9310 	}
9311 
9312 	/*
9313 	 * We only want to return up to EOF even if the extent extends beyond
9314 	 * that.
9315 	 */
9316 	encoded->len = min_t(u64, extent_map_end(em),
9317 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9318 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9319 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9320 		disk_bytenr = EXTENT_MAP_HOLE;
9321 		count = min_t(u64, count, encoded->len);
9322 		encoded->len = count;
9323 		encoded->unencoded_len = count;
9324 	} else if (extent_map_is_compressed(em)) {
9325 		disk_bytenr = em->disk_bytenr;
9326 		/*
9327 		 * Bail if the buffer isn't large enough to return the whole
9328 		 * compressed extent.
9329 		 */
9330 		if (em->disk_num_bytes > count) {
9331 			ret = -ENOBUFS;
9332 			goto out_em;
9333 		}
9334 		disk_io_size = em->disk_num_bytes;
9335 		count = em->disk_num_bytes;
9336 		encoded->unencoded_len = em->ram_bytes;
9337 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9338 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9339 							       extent_map_compression(em));
9340 		if (ret < 0)
9341 			goto out_em;
9342 		encoded->compression = ret;
9343 	} else {
9344 		disk_bytenr = extent_map_block_start(em) + (start - em->start);
9345 		if (encoded->len > count)
9346 			encoded->len = count;
9347 		/*
9348 		 * Don't read beyond what we locked. This also limits the page
9349 		 * allocations that we'll do.
9350 		 */
9351 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9352 		count = start + disk_io_size - iocb->ki_pos;
9353 		encoded->len = count;
9354 		encoded->unencoded_len = count;
9355 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9356 	}
9357 	free_extent_map(em);
9358 	em = NULL;
9359 
9360 	if (disk_bytenr == EXTENT_MAP_HOLE) {
9361 		unlock_extent(io_tree, start, lockend, &cached_state);
9362 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9363 		unlocked = true;
9364 		ret = iov_iter_zero(count, iter);
9365 		if (ret != count)
9366 			ret = -EFAULT;
9367 	} else {
9368 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9369 						 &cached_state, disk_bytenr,
9370 						 disk_io_size, count,
9371 						 encoded->compression,
9372 						 &unlocked);
9373 	}
9374 
9375 out:
9376 	if (ret >= 0)
9377 		iocb->ki_pos += encoded->len;
9378 out_em:
9379 	free_extent_map(em);
9380 out_unlock_extent:
9381 	if (!unlocked)
9382 		unlock_extent(io_tree, start, lockend, &cached_state);
9383 out_unlock_inode:
9384 	if (!unlocked)
9385 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9386 	return ret;
9387 }
9388 
9389 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9390 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9391 {
9392 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9393 	struct btrfs_root *root = inode->root;
9394 	struct btrfs_fs_info *fs_info = root->fs_info;
9395 	struct extent_io_tree *io_tree = &inode->io_tree;
9396 	struct extent_changeset *data_reserved = NULL;
9397 	struct extent_state *cached_state = NULL;
9398 	struct btrfs_ordered_extent *ordered;
9399 	struct btrfs_file_extent file_extent;
9400 	int compression;
9401 	size_t orig_count;
9402 	u64 start, end;
9403 	u64 num_bytes, ram_bytes, disk_num_bytes;
9404 	unsigned long nr_folios, i;
9405 	struct folio **folios;
9406 	struct btrfs_key ins;
9407 	bool extent_reserved = false;
9408 	struct extent_map *em;
9409 	ssize_t ret;
9410 
9411 	switch (encoded->compression) {
9412 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9413 		compression = BTRFS_COMPRESS_ZLIB;
9414 		break;
9415 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9416 		compression = BTRFS_COMPRESS_ZSTD;
9417 		break;
9418 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9419 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9420 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9421 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9422 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9423 		/* The sector size must match for LZO. */
9424 		if (encoded->compression -
9425 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9426 		    fs_info->sectorsize_bits)
9427 			return -EINVAL;
9428 		compression = BTRFS_COMPRESS_LZO;
9429 		break;
9430 	default:
9431 		return -EINVAL;
9432 	}
9433 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9434 		return -EINVAL;
9435 
9436 	/*
9437 	 * Compressed extents should always have checksums, so error out if we
9438 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9439 	 */
9440 	if (inode->flags & BTRFS_INODE_NODATASUM)
9441 		return -EINVAL;
9442 
9443 	orig_count = iov_iter_count(from);
9444 
9445 	/* The extent size must be sane. */
9446 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9447 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9448 		return -EINVAL;
9449 
9450 	/*
9451 	 * The compressed data must be smaller than the decompressed data.
9452 	 *
9453 	 * It's of course possible for data to compress to larger or the same
9454 	 * size, but the buffered I/O path falls back to no compression for such
9455 	 * data, and we don't want to break any assumptions by creating these
9456 	 * extents.
9457 	 *
9458 	 * Note that this is less strict than the current check we have that the
9459 	 * compressed data must be at least one sector smaller than the
9460 	 * decompressed data. We only want to enforce the weaker requirement
9461 	 * from old kernels that it is at least one byte smaller.
9462 	 */
9463 	if (orig_count >= encoded->unencoded_len)
9464 		return -EINVAL;
9465 
9466 	/* The extent must start on a sector boundary. */
9467 	start = iocb->ki_pos;
9468 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9469 		return -EINVAL;
9470 
9471 	/*
9472 	 * The extent must end on a sector boundary. However, we allow a write
9473 	 * which ends at or extends i_size to have an unaligned length; we round
9474 	 * up the extent size and set i_size to the unaligned end.
9475 	 */
9476 	if (start + encoded->len < inode->vfs_inode.i_size &&
9477 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9478 		return -EINVAL;
9479 
9480 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9481 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9482 		return -EINVAL;
9483 
9484 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9485 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9486 	end = start + num_bytes - 1;
9487 
9488 	/*
9489 	 * If the extent cannot be inline, the compressed data on disk must be
9490 	 * sector-aligned. For convenience, we extend it with zeroes if it
9491 	 * isn't.
9492 	 */
9493 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9494 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9495 	folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9496 	if (!folios)
9497 		return -ENOMEM;
9498 	for (i = 0; i < nr_folios; i++) {
9499 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9500 		char *kaddr;
9501 
9502 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9503 		if (!folios[i]) {
9504 			ret = -ENOMEM;
9505 			goto out_folios;
9506 		}
9507 		kaddr = kmap_local_folio(folios[i], 0);
9508 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9509 			kunmap_local(kaddr);
9510 			ret = -EFAULT;
9511 			goto out_folios;
9512 		}
9513 		if (bytes < PAGE_SIZE)
9514 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9515 		kunmap_local(kaddr);
9516 	}
9517 
9518 	for (;;) {
9519 		struct btrfs_ordered_extent *ordered;
9520 
9521 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9522 		if (ret)
9523 			goto out_folios;
9524 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9525 						    start >> PAGE_SHIFT,
9526 						    end >> PAGE_SHIFT);
9527 		if (ret)
9528 			goto out_folios;
9529 		lock_extent(io_tree, start, end, &cached_state);
9530 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9531 		if (!ordered &&
9532 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9533 			break;
9534 		if (ordered)
9535 			btrfs_put_ordered_extent(ordered);
9536 		unlock_extent(io_tree, start, end, &cached_state);
9537 		cond_resched();
9538 	}
9539 
9540 	/*
9541 	 * We don't use the higher-level delalloc space functions because our
9542 	 * num_bytes and disk_num_bytes are different.
9543 	 */
9544 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9545 	if (ret)
9546 		goto out_unlock;
9547 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9548 	if (ret)
9549 		goto out_free_data_space;
9550 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9551 					      false);
9552 	if (ret)
9553 		goto out_qgroup_free_data;
9554 
9555 	/* Try an inline extent first. */
9556 	if (encoded->unencoded_len == encoded->len &&
9557 	    encoded->unencoded_offset == 0 &&
9558 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9559 		ret = __cow_file_range_inline(inode, start, encoded->len,
9560 					      orig_count, compression, folios[0],
9561 					      true);
9562 		if (ret <= 0) {
9563 			if (ret == 0)
9564 				ret = orig_count;
9565 			goto out_delalloc_release;
9566 		}
9567 	}
9568 
9569 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9570 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9571 	if (ret)
9572 		goto out_delalloc_release;
9573 	extent_reserved = true;
9574 
9575 	file_extent.disk_bytenr = ins.objectid;
9576 	file_extent.disk_num_bytes = ins.offset;
9577 	file_extent.num_bytes = num_bytes;
9578 	file_extent.ram_bytes = ram_bytes;
9579 	file_extent.offset = encoded->unencoded_offset;
9580 	file_extent.compression = compression;
9581 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9582 	if (IS_ERR(em)) {
9583 		ret = PTR_ERR(em);
9584 		goto out_free_reserved;
9585 	}
9586 	free_extent_map(em);
9587 
9588 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9589 				       (1 << BTRFS_ORDERED_ENCODED) |
9590 				       (1 << BTRFS_ORDERED_COMPRESSED));
9591 	if (IS_ERR(ordered)) {
9592 		btrfs_drop_extent_map_range(inode, start, end, false);
9593 		ret = PTR_ERR(ordered);
9594 		goto out_free_reserved;
9595 	}
9596 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9597 
9598 	if (start + encoded->len > inode->vfs_inode.i_size)
9599 		i_size_write(&inode->vfs_inode, start + encoded->len);
9600 
9601 	unlock_extent(io_tree, start, end, &cached_state);
9602 
9603 	btrfs_delalloc_release_extents(inode, num_bytes);
9604 
9605 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9606 	ret = orig_count;
9607 	goto out;
9608 
9609 out_free_reserved:
9610 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9611 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9612 out_delalloc_release:
9613 	btrfs_delalloc_release_extents(inode, num_bytes);
9614 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9615 out_qgroup_free_data:
9616 	if (ret < 0)
9617 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9618 out_free_data_space:
9619 	/*
9620 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9621 	 * bytes_may_use.
9622 	 */
9623 	if (!extent_reserved)
9624 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9625 out_unlock:
9626 	unlock_extent(io_tree, start, end, &cached_state);
9627 out_folios:
9628 	for (i = 0; i < nr_folios; i++) {
9629 		if (folios[i])
9630 			folio_put(folios[i]);
9631 	}
9632 	kvfree(folios);
9633 out:
9634 	if (ret >= 0)
9635 		iocb->ki_pos += encoded->len;
9636 	return ret;
9637 }
9638 
9639 #ifdef CONFIG_SWAP
9640 /*
9641  * Add an entry indicating a block group or device which is pinned by a
9642  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9643  * negative errno on failure.
9644  */
9645 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9646 				  bool is_block_group)
9647 {
9648 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9649 	struct btrfs_swapfile_pin *sp, *entry;
9650 	struct rb_node **p;
9651 	struct rb_node *parent = NULL;
9652 
9653 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9654 	if (!sp)
9655 		return -ENOMEM;
9656 	sp->ptr = ptr;
9657 	sp->inode = inode;
9658 	sp->is_block_group = is_block_group;
9659 	sp->bg_extent_count = 1;
9660 
9661 	spin_lock(&fs_info->swapfile_pins_lock);
9662 	p = &fs_info->swapfile_pins.rb_node;
9663 	while (*p) {
9664 		parent = *p;
9665 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9666 		if (sp->ptr < entry->ptr ||
9667 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9668 			p = &(*p)->rb_left;
9669 		} else if (sp->ptr > entry->ptr ||
9670 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9671 			p = &(*p)->rb_right;
9672 		} else {
9673 			if (is_block_group)
9674 				entry->bg_extent_count++;
9675 			spin_unlock(&fs_info->swapfile_pins_lock);
9676 			kfree(sp);
9677 			return 1;
9678 		}
9679 	}
9680 	rb_link_node(&sp->node, parent, p);
9681 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9682 	spin_unlock(&fs_info->swapfile_pins_lock);
9683 	return 0;
9684 }
9685 
9686 /* Free all of the entries pinned by this swapfile. */
9687 static void btrfs_free_swapfile_pins(struct inode *inode)
9688 {
9689 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9690 	struct btrfs_swapfile_pin *sp;
9691 	struct rb_node *node, *next;
9692 
9693 	spin_lock(&fs_info->swapfile_pins_lock);
9694 	node = rb_first(&fs_info->swapfile_pins);
9695 	while (node) {
9696 		next = rb_next(node);
9697 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9698 		if (sp->inode == inode) {
9699 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9700 			if (sp->is_block_group) {
9701 				btrfs_dec_block_group_swap_extents(sp->ptr,
9702 							   sp->bg_extent_count);
9703 				btrfs_put_block_group(sp->ptr);
9704 			}
9705 			kfree(sp);
9706 		}
9707 		node = next;
9708 	}
9709 	spin_unlock(&fs_info->swapfile_pins_lock);
9710 }
9711 
9712 struct btrfs_swap_info {
9713 	u64 start;
9714 	u64 block_start;
9715 	u64 block_len;
9716 	u64 lowest_ppage;
9717 	u64 highest_ppage;
9718 	unsigned long nr_pages;
9719 	int nr_extents;
9720 };
9721 
9722 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9723 				 struct btrfs_swap_info *bsi)
9724 {
9725 	unsigned long nr_pages;
9726 	unsigned long max_pages;
9727 	u64 first_ppage, first_ppage_reported, next_ppage;
9728 	int ret;
9729 
9730 	/*
9731 	 * Our swapfile may have had its size extended after the swap header was
9732 	 * written. In that case activating the swapfile should not go beyond
9733 	 * the max size set in the swap header.
9734 	 */
9735 	if (bsi->nr_pages >= sis->max)
9736 		return 0;
9737 
9738 	max_pages = sis->max - bsi->nr_pages;
9739 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9740 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9741 
9742 	if (first_ppage >= next_ppage)
9743 		return 0;
9744 	nr_pages = next_ppage - first_ppage;
9745 	nr_pages = min(nr_pages, max_pages);
9746 
9747 	first_ppage_reported = first_ppage;
9748 	if (bsi->start == 0)
9749 		first_ppage_reported++;
9750 	if (bsi->lowest_ppage > first_ppage_reported)
9751 		bsi->lowest_ppage = first_ppage_reported;
9752 	if (bsi->highest_ppage < (next_ppage - 1))
9753 		bsi->highest_ppage = next_ppage - 1;
9754 
9755 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9756 	if (ret < 0)
9757 		return ret;
9758 	bsi->nr_extents += ret;
9759 	bsi->nr_pages += nr_pages;
9760 	return 0;
9761 }
9762 
9763 static void btrfs_swap_deactivate(struct file *file)
9764 {
9765 	struct inode *inode = file_inode(file);
9766 
9767 	btrfs_free_swapfile_pins(inode);
9768 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9769 }
9770 
9771 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9772 			       sector_t *span)
9773 {
9774 	struct inode *inode = file_inode(file);
9775 	struct btrfs_root *root = BTRFS_I(inode)->root;
9776 	struct btrfs_fs_info *fs_info = root->fs_info;
9777 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9778 	struct extent_state *cached_state = NULL;
9779 	struct extent_map *em = NULL;
9780 	struct btrfs_chunk_map *map = NULL;
9781 	struct btrfs_device *device = NULL;
9782 	struct btrfs_swap_info bsi = {
9783 		.lowest_ppage = (sector_t)-1ULL,
9784 	};
9785 	int ret = 0;
9786 	u64 isize;
9787 	u64 start;
9788 
9789 	/*
9790 	 * If the swap file was just created, make sure delalloc is done. If the
9791 	 * file changes again after this, the user is doing something stupid and
9792 	 * we don't really care.
9793 	 */
9794 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9795 	if (ret)
9796 		return ret;
9797 
9798 	/*
9799 	 * The inode is locked, so these flags won't change after we check them.
9800 	 */
9801 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9802 		btrfs_warn(fs_info, "swapfile must not be compressed");
9803 		return -EINVAL;
9804 	}
9805 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9806 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9807 		return -EINVAL;
9808 	}
9809 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9810 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9811 		return -EINVAL;
9812 	}
9813 
9814 	/*
9815 	 * Balance or device remove/replace/resize can move stuff around from
9816 	 * under us. The exclop protection makes sure they aren't running/won't
9817 	 * run concurrently while we are mapping the swap extents, and
9818 	 * fs_info->swapfile_pins prevents them from running while the swap
9819 	 * file is active and moving the extents. Note that this also prevents
9820 	 * a concurrent device add which isn't actually necessary, but it's not
9821 	 * really worth the trouble to allow it.
9822 	 */
9823 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9824 		btrfs_warn(fs_info,
9825 	   "cannot activate swapfile while exclusive operation is running");
9826 		return -EBUSY;
9827 	}
9828 
9829 	/*
9830 	 * Prevent snapshot creation while we are activating the swap file.
9831 	 * We do not want to race with snapshot creation. If snapshot creation
9832 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9833 	 * completes before the first write into the swap file after it is
9834 	 * activated, than that write would fallback to COW.
9835 	 */
9836 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9837 		btrfs_exclop_finish(fs_info);
9838 		btrfs_warn(fs_info,
9839 	   "cannot activate swapfile because snapshot creation is in progress");
9840 		return -EINVAL;
9841 	}
9842 	/*
9843 	 * Snapshots can create extents which require COW even if NODATACOW is
9844 	 * set. We use this counter to prevent snapshots. We must increment it
9845 	 * before walking the extents because we don't want a concurrent
9846 	 * snapshot to run after we've already checked the extents.
9847 	 *
9848 	 * It is possible that subvolume is marked for deletion but still not
9849 	 * removed yet. To prevent this race, we check the root status before
9850 	 * activating the swapfile.
9851 	 */
9852 	spin_lock(&root->root_item_lock);
9853 	if (btrfs_root_dead(root)) {
9854 		spin_unlock(&root->root_item_lock);
9855 
9856 		btrfs_exclop_finish(fs_info);
9857 		btrfs_warn(fs_info,
9858 		"cannot activate swapfile because subvolume %llu is being deleted",
9859 			btrfs_root_id(root));
9860 		return -EPERM;
9861 	}
9862 	atomic_inc(&root->nr_swapfiles);
9863 	spin_unlock(&root->root_item_lock);
9864 
9865 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9866 
9867 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9868 	start = 0;
9869 	while (start < isize) {
9870 		u64 logical_block_start, physical_block_start;
9871 		struct btrfs_block_group *bg;
9872 		u64 len = isize - start;
9873 
9874 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9875 		if (IS_ERR(em)) {
9876 			ret = PTR_ERR(em);
9877 			goto out;
9878 		}
9879 
9880 		if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9881 			btrfs_warn(fs_info, "swapfile must not have holes");
9882 			ret = -EINVAL;
9883 			goto out;
9884 		}
9885 		if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9886 			/*
9887 			 * It's unlikely we'll ever actually find ourselves
9888 			 * here, as a file small enough to fit inline won't be
9889 			 * big enough to store more than the swap header, but in
9890 			 * case something changes in the future, let's catch it
9891 			 * here rather than later.
9892 			 */
9893 			btrfs_warn(fs_info, "swapfile must not be inline");
9894 			ret = -EINVAL;
9895 			goto out;
9896 		}
9897 		if (extent_map_is_compressed(em)) {
9898 			btrfs_warn(fs_info, "swapfile must not be compressed");
9899 			ret = -EINVAL;
9900 			goto out;
9901 		}
9902 
9903 		logical_block_start = extent_map_block_start(em) + (start - em->start);
9904 		len = min(len, em->len - (start - em->start));
9905 		free_extent_map(em);
9906 		em = NULL;
9907 
9908 		ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9909 		if (ret < 0) {
9910 			goto out;
9911 		} else if (ret) {
9912 			ret = 0;
9913 		} else {
9914 			btrfs_warn(fs_info,
9915 				   "swapfile must not be copy-on-write");
9916 			ret = -EINVAL;
9917 			goto out;
9918 		}
9919 
9920 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9921 		if (IS_ERR(map)) {
9922 			ret = PTR_ERR(map);
9923 			goto out;
9924 		}
9925 
9926 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9927 			btrfs_warn(fs_info,
9928 				   "swapfile must have single data profile");
9929 			ret = -EINVAL;
9930 			goto out;
9931 		}
9932 
9933 		if (device == NULL) {
9934 			device = map->stripes[0].dev;
9935 			ret = btrfs_add_swapfile_pin(inode, device, false);
9936 			if (ret == 1)
9937 				ret = 0;
9938 			else if (ret)
9939 				goto out;
9940 		} else if (device != map->stripes[0].dev) {
9941 			btrfs_warn(fs_info, "swapfile must be on one device");
9942 			ret = -EINVAL;
9943 			goto out;
9944 		}
9945 
9946 		physical_block_start = (map->stripes[0].physical +
9947 					(logical_block_start - map->start));
9948 		len = min(len, map->chunk_len - (logical_block_start - map->start));
9949 		btrfs_free_chunk_map(map);
9950 		map = NULL;
9951 
9952 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9953 		if (!bg) {
9954 			btrfs_warn(fs_info,
9955 			   "could not find block group containing swapfile");
9956 			ret = -EINVAL;
9957 			goto out;
9958 		}
9959 
9960 		if (!btrfs_inc_block_group_swap_extents(bg)) {
9961 			btrfs_warn(fs_info,
9962 			   "block group for swapfile at %llu is read-only%s",
9963 			   bg->start,
9964 			   atomic_read(&fs_info->scrubs_running) ?
9965 				       " (scrub running)" : "");
9966 			btrfs_put_block_group(bg);
9967 			ret = -EINVAL;
9968 			goto out;
9969 		}
9970 
9971 		ret = btrfs_add_swapfile_pin(inode, bg, true);
9972 		if (ret) {
9973 			btrfs_put_block_group(bg);
9974 			if (ret == 1)
9975 				ret = 0;
9976 			else
9977 				goto out;
9978 		}
9979 
9980 		if (bsi.block_len &&
9981 		    bsi.block_start + bsi.block_len == physical_block_start) {
9982 			bsi.block_len += len;
9983 		} else {
9984 			if (bsi.block_len) {
9985 				ret = btrfs_add_swap_extent(sis, &bsi);
9986 				if (ret)
9987 					goto out;
9988 			}
9989 			bsi.start = start;
9990 			bsi.block_start = physical_block_start;
9991 			bsi.block_len = len;
9992 		}
9993 
9994 		start += len;
9995 	}
9996 
9997 	if (bsi.block_len)
9998 		ret = btrfs_add_swap_extent(sis, &bsi);
9999 
10000 out:
10001 	if (!IS_ERR_OR_NULL(em))
10002 		free_extent_map(em);
10003 	if (!IS_ERR_OR_NULL(map))
10004 		btrfs_free_chunk_map(map);
10005 
10006 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10007 
10008 	if (ret)
10009 		btrfs_swap_deactivate(file);
10010 
10011 	btrfs_drew_write_unlock(&root->snapshot_lock);
10012 
10013 	btrfs_exclop_finish(fs_info);
10014 
10015 	if (ret)
10016 		return ret;
10017 
10018 	if (device)
10019 		sis->bdev = device->bdev;
10020 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10021 	sis->max = bsi.nr_pages;
10022 	sis->pages = bsi.nr_pages - 1;
10023 	sis->highest_bit = bsi.nr_pages - 1;
10024 	return bsi.nr_extents;
10025 }
10026 #else
10027 static void btrfs_swap_deactivate(struct file *file)
10028 {
10029 }
10030 
10031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10032 			       sector_t *span)
10033 {
10034 	return -EOPNOTSUPP;
10035 }
10036 #endif
10037 
10038 /*
10039  * Update the number of bytes used in the VFS' inode. When we replace extents in
10040  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10041  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10042  * always get a correct value.
10043  */
10044 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10045 			      const u64 add_bytes,
10046 			      const u64 del_bytes)
10047 {
10048 	if (add_bytes == del_bytes)
10049 		return;
10050 
10051 	spin_lock(&inode->lock);
10052 	if (del_bytes > 0)
10053 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10054 	if (add_bytes > 0)
10055 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10056 	spin_unlock(&inode->lock);
10057 }
10058 
10059 /*
10060  * Verify that there are no ordered extents for a given file range.
10061  *
10062  * @inode:   The target inode.
10063  * @start:   Start offset of the file range, should be sector size aligned.
10064  * @end:     End offset (inclusive) of the file range, its value +1 should be
10065  *           sector size aligned.
10066  *
10067  * This should typically be used for cases where we locked an inode's VFS lock in
10068  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10069  * we have flushed all delalloc in the range, we have waited for all ordered
10070  * extents in the range to complete and finally we have locked the file range in
10071  * the inode's io_tree.
10072  */
10073 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10074 {
10075 	struct btrfs_root *root = inode->root;
10076 	struct btrfs_ordered_extent *ordered;
10077 
10078 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10079 		return;
10080 
10081 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10082 	if (ordered) {
10083 		btrfs_err(root->fs_info,
10084 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10085 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10086 			  ordered->file_offset,
10087 			  ordered->file_offset + ordered->num_bytes - 1);
10088 		btrfs_put_ordered_extent(ordered);
10089 	}
10090 
10091 	ASSERT(ordered == NULL);
10092 }
10093 
10094 /*
10095  * Find the first inode with a minimum number.
10096  *
10097  * @root:	The root to search for.
10098  * @min_ino:	The minimum inode number.
10099  *
10100  * Find the first inode in the @root with a number >= @min_ino and return it.
10101  * Returns NULL if no such inode found.
10102  */
10103 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10104 {
10105 	struct btrfs_inode *inode;
10106 	unsigned long from = min_ino;
10107 
10108 	xa_lock(&root->inodes);
10109 	while (true) {
10110 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10111 		if (!inode)
10112 			break;
10113 		if (igrab(&inode->vfs_inode))
10114 			break;
10115 
10116 		from = btrfs_ino(inode) + 1;
10117 		cond_resched_lock(&root->inodes.xa_lock);
10118 	}
10119 	xa_unlock(&root->inodes);
10120 
10121 	return inode;
10122 }
10123 
10124 static const struct inode_operations btrfs_dir_inode_operations = {
10125 	.getattr	= btrfs_getattr,
10126 	.lookup		= btrfs_lookup,
10127 	.create		= btrfs_create,
10128 	.unlink		= btrfs_unlink,
10129 	.link		= btrfs_link,
10130 	.mkdir		= btrfs_mkdir,
10131 	.rmdir		= btrfs_rmdir,
10132 	.rename		= btrfs_rename2,
10133 	.symlink	= btrfs_symlink,
10134 	.setattr	= btrfs_setattr,
10135 	.mknod		= btrfs_mknod,
10136 	.listxattr	= btrfs_listxattr,
10137 	.permission	= btrfs_permission,
10138 	.get_inode_acl	= btrfs_get_acl,
10139 	.set_acl	= btrfs_set_acl,
10140 	.update_time	= btrfs_update_time,
10141 	.tmpfile        = btrfs_tmpfile,
10142 	.fileattr_get	= btrfs_fileattr_get,
10143 	.fileattr_set	= btrfs_fileattr_set,
10144 };
10145 
10146 static const struct file_operations btrfs_dir_file_operations = {
10147 	.llseek		= btrfs_dir_llseek,
10148 	.read		= generic_read_dir,
10149 	.iterate_shared	= btrfs_real_readdir,
10150 	.open		= btrfs_opendir,
10151 	.unlocked_ioctl	= btrfs_ioctl,
10152 #ifdef CONFIG_COMPAT
10153 	.compat_ioctl	= btrfs_compat_ioctl,
10154 #endif
10155 	.release        = btrfs_release_file,
10156 	.fsync		= btrfs_sync_file,
10157 };
10158 
10159 /*
10160  * btrfs doesn't support the bmap operation because swapfiles
10161  * use bmap to make a mapping of extents in the file.  They assume
10162  * these extents won't change over the life of the file and they
10163  * use the bmap result to do IO directly to the drive.
10164  *
10165  * the btrfs bmap call would return logical addresses that aren't
10166  * suitable for IO and they also will change frequently as COW
10167  * operations happen.  So, swapfile + btrfs == corruption.
10168  *
10169  * For now we're avoiding this by dropping bmap.
10170  */
10171 static const struct address_space_operations btrfs_aops = {
10172 	.read_folio	= btrfs_read_folio,
10173 	.writepages	= btrfs_writepages,
10174 	.readahead	= btrfs_readahead,
10175 	.invalidate_folio = btrfs_invalidate_folio,
10176 	.launder_folio	= btrfs_launder_folio,
10177 	.release_folio	= btrfs_release_folio,
10178 	.migrate_folio	= btrfs_migrate_folio,
10179 	.dirty_folio	= filemap_dirty_folio,
10180 	.error_remove_folio = generic_error_remove_folio,
10181 	.swap_activate	= btrfs_swap_activate,
10182 	.swap_deactivate = btrfs_swap_deactivate,
10183 };
10184 
10185 static const struct inode_operations btrfs_file_inode_operations = {
10186 	.getattr	= btrfs_getattr,
10187 	.setattr	= btrfs_setattr,
10188 	.listxattr      = btrfs_listxattr,
10189 	.permission	= btrfs_permission,
10190 	.fiemap		= btrfs_fiemap,
10191 	.get_inode_acl	= btrfs_get_acl,
10192 	.set_acl	= btrfs_set_acl,
10193 	.update_time	= btrfs_update_time,
10194 	.fileattr_get	= btrfs_fileattr_get,
10195 	.fileattr_set	= btrfs_fileattr_set,
10196 };
10197 static const struct inode_operations btrfs_special_inode_operations = {
10198 	.getattr	= btrfs_getattr,
10199 	.setattr	= btrfs_setattr,
10200 	.permission	= btrfs_permission,
10201 	.listxattr	= btrfs_listxattr,
10202 	.get_inode_acl	= btrfs_get_acl,
10203 	.set_acl	= btrfs_set_acl,
10204 	.update_time	= btrfs_update_time,
10205 };
10206 static const struct inode_operations btrfs_symlink_inode_operations = {
10207 	.get_link	= page_get_link,
10208 	.getattr	= btrfs_getattr,
10209 	.setattr	= btrfs_setattr,
10210 	.permission	= btrfs_permission,
10211 	.listxattr	= btrfs_listxattr,
10212 	.update_time	= btrfs_update_time,
10213 };
10214 
10215 const struct dentry_operations btrfs_dentry_operations = {
10216 	.d_delete	= btrfs_dentry_delete,
10217 };
10218