1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 74 struct btrfs_iget_args { 75 u64 ino; 76 struct btrfs_root *root; 77 }; 78 79 struct btrfs_dio_data { 80 ssize_t submitted; 81 struct extent_changeset *data_reserved; 82 struct btrfs_ordered_extent *ordered; 83 bool data_space_reserved; 84 bool nocow_done; 85 }; 86 87 struct btrfs_dio_private { 88 /* Range of I/O */ 89 u64 file_offset; 90 u32 bytes; 91 92 /* This must be last */ 93 struct btrfs_bio bbio; 94 }; 95 96 static struct bio_set btrfs_dio_bioset; 97 98 struct btrfs_rename_ctx { 99 /* Output field. Stores the index number of the old directory entry. */ 100 u64 index; 101 }; 102 103 static const struct inode_operations btrfs_dir_inode_operations; 104 static const struct inode_operations btrfs_symlink_inode_operations; 105 static const struct inode_operations btrfs_special_inode_operations; 106 static const struct inode_operations btrfs_file_inode_operations; 107 static const struct address_space_operations btrfs_aops; 108 static const struct file_operations btrfs_dir_file_operations; 109 110 static struct kmem_cache *btrfs_inode_cachep; 111 112 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 113 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 114 static noinline int cow_file_range(struct btrfs_inode *inode, 115 struct page *locked_page, 116 u64 start, u64 end, int *page_started, 117 unsigned long *nr_written, int unlock, 118 u64 *done_offset); 119 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 120 u64 len, u64 orig_start, u64 block_start, 121 u64 block_len, u64 orig_block_len, 122 u64 ram_bytes, int compress_type, 123 int type); 124 125 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 126 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 127 { 128 struct btrfs_root *root = inode->root; 129 const u32 csum_size = root->fs_info->csum_size; 130 131 /* Output without objectid, which is more meaningful */ 132 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 133 btrfs_warn_rl(root->fs_info, 134 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 135 root->root_key.objectid, btrfs_ino(inode), 136 logical_start, 137 CSUM_FMT_VALUE(csum_size, csum), 138 CSUM_FMT_VALUE(csum_size, csum_expected), 139 mirror_num); 140 } else { 141 btrfs_warn_rl(root->fs_info, 142 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 143 root->root_key.objectid, btrfs_ino(inode), 144 logical_start, 145 CSUM_FMT_VALUE(csum_size, csum), 146 CSUM_FMT_VALUE(csum_size, csum_expected), 147 mirror_num); 148 } 149 } 150 151 /* 152 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 153 * 154 * ilock_flags can have the following bit set: 155 * 156 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 157 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 158 * return -EAGAIN 159 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 160 */ 161 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 162 { 163 if (ilock_flags & BTRFS_ILOCK_SHARED) { 164 if (ilock_flags & BTRFS_ILOCK_TRY) { 165 if (!inode_trylock_shared(&inode->vfs_inode)) 166 return -EAGAIN; 167 else 168 return 0; 169 } 170 inode_lock_shared(&inode->vfs_inode); 171 } else { 172 if (ilock_flags & BTRFS_ILOCK_TRY) { 173 if (!inode_trylock(&inode->vfs_inode)) 174 return -EAGAIN; 175 else 176 return 0; 177 } 178 inode_lock(&inode->vfs_inode); 179 } 180 if (ilock_flags & BTRFS_ILOCK_MMAP) 181 down_write(&inode->i_mmap_lock); 182 return 0; 183 } 184 185 /* 186 * btrfs_inode_unlock - unock inode i_rwsem 187 * 188 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 189 * to decide whether the lock acquired is shared or exclusive. 190 */ 191 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 192 { 193 if (ilock_flags & BTRFS_ILOCK_MMAP) 194 up_write(&inode->i_mmap_lock); 195 if (ilock_flags & BTRFS_ILOCK_SHARED) 196 inode_unlock_shared(&inode->vfs_inode); 197 else 198 inode_unlock(&inode->vfs_inode); 199 } 200 201 /* 202 * Cleanup all submitted ordered extents in specified range to handle errors 203 * from the btrfs_run_delalloc_range() callback. 204 * 205 * NOTE: caller must ensure that when an error happens, it can not call 206 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 207 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 208 * to be released, which we want to happen only when finishing the ordered 209 * extent (btrfs_finish_ordered_io()). 210 */ 211 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 212 struct page *locked_page, 213 u64 offset, u64 bytes) 214 { 215 unsigned long index = offset >> PAGE_SHIFT; 216 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 217 u64 page_start = 0, page_end = 0; 218 struct page *page; 219 220 if (locked_page) { 221 page_start = page_offset(locked_page); 222 page_end = page_start + PAGE_SIZE - 1; 223 } 224 225 while (index <= end_index) { 226 /* 227 * For locked page, we will call end_extent_writepage() on it 228 * in run_delalloc_range() for the error handling. That 229 * end_extent_writepage() function will call 230 * btrfs_mark_ordered_io_finished() to clear page Ordered and 231 * run the ordered extent accounting. 232 * 233 * Here we can't just clear the Ordered bit, or 234 * btrfs_mark_ordered_io_finished() would skip the accounting 235 * for the page range, and the ordered extent will never finish. 236 */ 237 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 238 index++; 239 continue; 240 } 241 page = find_get_page(inode->vfs_inode.i_mapping, index); 242 index++; 243 if (!page) 244 continue; 245 246 /* 247 * Here we just clear all Ordered bits for every page in the 248 * range, then btrfs_mark_ordered_io_finished() will handle 249 * the ordered extent accounting for the range. 250 */ 251 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 252 offset, bytes); 253 put_page(page); 254 } 255 256 if (locked_page) { 257 /* The locked page covers the full range, nothing needs to be done */ 258 if (bytes + offset <= page_start + PAGE_SIZE) 259 return; 260 /* 261 * In case this page belongs to the delalloc range being 262 * instantiated then skip it, since the first page of a range is 263 * going to be properly cleaned up by the caller of 264 * run_delalloc_range 265 */ 266 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 267 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 268 offset = page_offset(locked_page) + PAGE_SIZE; 269 } 270 } 271 272 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 273 } 274 275 static int btrfs_dirty_inode(struct btrfs_inode *inode); 276 277 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 278 struct btrfs_new_inode_args *args) 279 { 280 int err; 281 282 if (args->default_acl) { 283 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 284 ACL_TYPE_DEFAULT); 285 if (err) 286 return err; 287 } 288 if (args->acl) { 289 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 290 if (err) 291 return err; 292 } 293 if (!args->default_acl && !args->acl) 294 cache_no_acl(args->inode); 295 return btrfs_xattr_security_init(trans, args->inode, args->dir, 296 &args->dentry->d_name); 297 } 298 299 /* 300 * this does all the hard work for inserting an inline extent into 301 * the btree. The caller should have done a btrfs_drop_extents so that 302 * no overlapping inline items exist in the btree 303 */ 304 static int insert_inline_extent(struct btrfs_trans_handle *trans, 305 struct btrfs_path *path, 306 struct btrfs_inode *inode, bool extent_inserted, 307 size_t size, size_t compressed_size, 308 int compress_type, 309 struct page **compressed_pages, 310 bool update_i_size) 311 { 312 struct btrfs_root *root = inode->root; 313 struct extent_buffer *leaf; 314 struct page *page = NULL; 315 char *kaddr; 316 unsigned long ptr; 317 struct btrfs_file_extent_item *ei; 318 int ret; 319 size_t cur_size = size; 320 u64 i_size; 321 322 ASSERT((compressed_size > 0 && compressed_pages) || 323 (compressed_size == 0 && !compressed_pages)); 324 325 if (compressed_size && compressed_pages) 326 cur_size = compressed_size; 327 328 if (!extent_inserted) { 329 struct btrfs_key key; 330 size_t datasize; 331 332 key.objectid = btrfs_ino(inode); 333 key.offset = 0; 334 key.type = BTRFS_EXTENT_DATA_KEY; 335 336 datasize = btrfs_file_extent_calc_inline_size(cur_size); 337 ret = btrfs_insert_empty_item(trans, root, path, &key, 338 datasize); 339 if (ret) 340 goto fail; 341 } 342 leaf = path->nodes[0]; 343 ei = btrfs_item_ptr(leaf, path->slots[0], 344 struct btrfs_file_extent_item); 345 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 346 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 347 btrfs_set_file_extent_encryption(leaf, ei, 0); 348 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 349 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 350 ptr = btrfs_file_extent_inline_start(ei); 351 352 if (compress_type != BTRFS_COMPRESS_NONE) { 353 struct page *cpage; 354 int i = 0; 355 while (compressed_size > 0) { 356 cpage = compressed_pages[i]; 357 cur_size = min_t(unsigned long, compressed_size, 358 PAGE_SIZE); 359 360 kaddr = kmap_local_page(cpage); 361 write_extent_buffer(leaf, kaddr, ptr, cur_size); 362 kunmap_local(kaddr); 363 364 i++; 365 ptr += cur_size; 366 compressed_size -= cur_size; 367 } 368 btrfs_set_file_extent_compression(leaf, ei, 369 compress_type); 370 } else { 371 page = find_get_page(inode->vfs_inode.i_mapping, 0); 372 btrfs_set_file_extent_compression(leaf, ei, 0); 373 kaddr = kmap_local_page(page); 374 write_extent_buffer(leaf, kaddr, ptr, size); 375 kunmap_local(kaddr); 376 put_page(page); 377 } 378 btrfs_mark_buffer_dirty(leaf); 379 btrfs_release_path(path); 380 381 /* 382 * We align size to sectorsize for inline extents just for simplicity 383 * sake. 384 */ 385 ret = btrfs_inode_set_file_extent_range(inode, 0, 386 ALIGN(size, root->fs_info->sectorsize)); 387 if (ret) 388 goto fail; 389 390 /* 391 * We're an inline extent, so nobody can extend the file past i_size 392 * without locking a page we already have locked. 393 * 394 * We must do any i_size and inode updates before we unlock the pages. 395 * Otherwise we could end up racing with unlink. 396 */ 397 i_size = i_size_read(&inode->vfs_inode); 398 if (update_i_size && size > i_size) { 399 i_size_write(&inode->vfs_inode, size); 400 i_size = size; 401 } 402 inode->disk_i_size = i_size; 403 404 fail: 405 return ret; 406 } 407 408 409 /* 410 * conditionally insert an inline extent into the file. This 411 * does the checks required to make sure the data is small enough 412 * to fit as an inline extent. 413 */ 414 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 415 size_t compressed_size, 416 int compress_type, 417 struct page **compressed_pages, 418 bool update_i_size) 419 { 420 struct btrfs_drop_extents_args drop_args = { 0 }; 421 struct btrfs_root *root = inode->root; 422 struct btrfs_fs_info *fs_info = root->fs_info; 423 struct btrfs_trans_handle *trans; 424 u64 data_len = (compressed_size ?: size); 425 int ret; 426 struct btrfs_path *path; 427 428 /* 429 * We can create an inline extent if it ends at or beyond the current 430 * i_size, is no larger than a sector (decompressed), and the (possibly 431 * compressed) data fits in a leaf and the configured maximum inline 432 * size. 433 */ 434 if (size < i_size_read(&inode->vfs_inode) || 435 size > fs_info->sectorsize || 436 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 437 data_len > fs_info->max_inline) 438 return 1; 439 440 path = btrfs_alloc_path(); 441 if (!path) 442 return -ENOMEM; 443 444 trans = btrfs_join_transaction(root); 445 if (IS_ERR(trans)) { 446 btrfs_free_path(path); 447 return PTR_ERR(trans); 448 } 449 trans->block_rsv = &inode->block_rsv; 450 451 drop_args.path = path; 452 drop_args.start = 0; 453 drop_args.end = fs_info->sectorsize; 454 drop_args.drop_cache = true; 455 drop_args.replace_extent = true; 456 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 457 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 458 if (ret) { 459 btrfs_abort_transaction(trans, ret); 460 goto out; 461 } 462 463 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 464 size, compressed_size, compress_type, 465 compressed_pages, update_i_size); 466 if (ret && ret != -ENOSPC) { 467 btrfs_abort_transaction(trans, ret); 468 goto out; 469 } else if (ret == -ENOSPC) { 470 ret = 1; 471 goto out; 472 } 473 474 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 475 ret = btrfs_update_inode(trans, root, inode); 476 if (ret && ret != -ENOSPC) { 477 btrfs_abort_transaction(trans, ret); 478 goto out; 479 } else if (ret == -ENOSPC) { 480 ret = 1; 481 goto out; 482 } 483 484 btrfs_set_inode_full_sync(inode); 485 out: 486 /* 487 * Don't forget to free the reserved space, as for inlined extent 488 * it won't count as data extent, free them directly here. 489 * And at reserve time, it's always aligned to page size, so 490 * just free one page here. 491 */ 492 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 493 btrfs_free_path(path); 494 btrfs_end_transaction(trans); 495 return ret; 496 } 497 498 struct async_extent { 499 u64 start; 500 u64 ram_size; 501 u64 compressed_size; 502 struct page **pages; 503 unsigned long nr_pages; 504 int compress_type; 505 struct list_head list; 506 }; 507 508 struct async_chunk { 509 struct btrfs_inode *inode; 510 struct page *locked_page; 511 u64 start; 512 u64 end; 513 blk_opf_t write_flags; 514 struct list_head extents; 515 struct cgroup_subsys_state *blkcg_css; 516 struct btrfs_work work; 517 struct async_cow *async_cow; 518 }; 519 520 struct async_cow { 521 atomic_t num_chunks; 522 struct async_chunk chunks[]; 523 }; 524 525 static noinline int add_async_extent(struct async_chunk *cow, 526 u64 start, u64 ram_size, 527 u64 compressed_size, 528 struct page **pages, 529 unsigned long nr_pages, 530 int compress_type) 531 { 532 struct async_extent *async_extent; 533 534 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 535 BUG_ON(!async_extent); /* -ENOMEM */ 536 async_extent->start = start; 537 async_extent->ram_size = ram_size; 538 async_extent->compressed_size = compressed_size; 539 async_extent->pages = pages; 540 async_extent->nr_pages = nr_pages; 541 async_extent->compress_type = compress_type; 542 list_add_tail(&async_extent->list, &cow->extents); 543 return 0; 544 } 545 546 /* 547 * Check if the inode needs to be submitted to compression, based on mount 548 * options, defragmentation, properties or heuristics. 549 */ 550 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 551 u64 end) 552 { 553 struct btrfs_fs_info *fs_info = inode->root->fs_info; 554 555 if (!btrfs_inode_can_compress(inode)) { 556 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 557 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 558 btrfs_ino(inode)); 559 return 0; 560 } 561 /* 562 * Special check for subpage. 563 * 564 * We lock the full page then run each delalloc range in the page, thus 565 * for the following case, we will hit some subpage specific corner case: 566 * 567 * 0 32K 64K 568 * | |///////| |///////| 569 * \- A \- B 570 * 571 * In above case, both range A and range B will try to unlock the full 572 * page [0, 64K), causing the one finished later will have page 573 * unlocked already, triggering various page lock requirement BUG_ON()s. 574 * 575 * So here we add an artificial limit that subpage compression can only 576 * if the range is fully page aligned. 577 * 578 * In theory we only need to ensure the first page is fully covered, but 579 * the tailing partial page will be locked until the full compression 580 * finishes, delaying the write of other range. 581 * 582 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 583 * first to prevent any submitted async extent to unlock the full page. 584 * By this, we can ensure for subpage case that only the last async_cow 585 * will unlock the full page. 586 */ 587 if (fs_info->sectorsize < PAGE_SIZE) { 588 if (!PAGE_ALIGNED(start) || 589 !PAGE_ALIGNED(end + 1)) 590 return 0; 591 } 592 593 /* force compress */ 594 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 595 return 1; 596 /* defrag ioctl */ 597 if (inode->defrag_compress) 598 return 1; 599 /* bad compression ratios */ 600 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 601 return 0; 602 if (btrfs_test_opt(fs_info, COMPRESS) || 603 inode->flags & BTRFS_INODE_COMPRESS || 604 inode->prop_compress) 605 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 606 return 0; 607 } 608 609 static inline void inode_should_defrag(struct btrfs_inode *inode, 610 u64 start, u64 end, u64 num_bytes, u32 small_write) 611 { 612 /* If this is a small write inside eof, kick off a defrag */ 613 if (num_bytes < small_write && 614 (start > 0 || end + 1 < inode->disk_i_size)) 615 btrfs_add_inode_defrag(NULL, inode, small_write); 616 } 617 618 /* 619 * we create compressed extents in two phases. The first 620 * phase compresses a range of pages that have already been 621 * locked (both pages and state bits are locked). 622 * 623 * This is done inside an ordered work queue, and the compression 624 * is spread across many cpus. The actual IO submission is step 625 * two, and the ordered work queue takes care of making sure that 626 * happens in the same order things were put onto the queue by 627 * writepages and friends. 628 * 629 * If this code finds it can't get good compression, it puts an 630 * entry onto the work queue to write the uncompressed bytes. This 631 * makes sure that both compressed inodes and uncompressed inodes 632 * are written in the same order that the flusher thread sent them 633 * down. 634 */ 635 static noinline int compress_file_range(struct async_chunk *async_chunk) 636 { 637 struct btrfs_inode *inode = async_chunk->inode; 638 struct btrfs_fs_info *fs_info = inode->root->fs_info; 639 u64 blocksize = fs_info->sectorsize; 640 u64 start = async_chunk->start; 641 u64 end = async_chunk->end; 642 u64 actual_end; 643 u64 i_size; 644 int ret = 0; 645 struct page **pages = NULL; 646 unsigned long nr_pages; 647 unsigned long total_compressed = 0; 648 unsigned long total_in = 0; 649 int i; 650 int will_compress; 651 int compress_type = fs_info->compress_type; 652 int compressed_extents = 0; 653 int redirty = 0; 654 655 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 656 657 /* 658 * We need to save i_size before now because it could change in between 659 * us evaluating the size and assigning it. This is because we lock and 660 * unlock the page in truncate and fallocate, and then modify the i_size 661 * later on. 662 * 663 * The barriers are to emulate READ_ONCE, remove that once i_size_read 664 * does that for us. 665 */ 666 barrier(); 667 i_size = i_size_read(&inode->vfs_inode); 668 barrier(); 669 actual_end = min_t(u64, i_size, end + 1); 670 again: 671 will_compress = 0; 672 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 673 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 674 675 /* 676 * we don't want to send crud past the end of i_size through 677 * compression, that's just a waste of CPU time. So, if the 678 * end of the file is before the start of our current 679 * requested range of bytes, we bail out to the uncompressed 680 * cleanup code that can deal with all of this. 681 * 682 * It isn't really the fastest way to fix things, but this is a 683 * very uncommon corner. 684 */ 685 if (actual_end <= start) 686 goto cleanup_and_bail_uncompressed; 687 688 total_compressed = actual_end - start; 689 690 /* 691 * Skip compression for a small file range(<=blocksize) that 692 * isn't an inline extent, since it doesn't save disk space at all. 693 */ 694 if (total_compressed <= blocksize && 695 (start > 0 || end + 1 < inode->disk_i_size)) 696 goto cleanup_and_bail_uncompressed; 697 698 /* 699 * For subpage case, we require full page alignment for the sector 700 * aligned range. 701 * Thus we must also check against @actual_end, not just @end. 702 */ 703 if (blocksize < PAGE_SIZE) { 704 if (!PAGE_ALIGNED(start) || 705 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 706 goto cleanup_and_bail_uncompressed; 707 } 708 709 total_compressed = min_t(unsigned long, total_compressed, 710 BTRFS_MAX_UNCOMPRESSED); 711 total_in = 0; 712 ret = 0; 713 714 /* 715 * we do compression for mount -o compress and when the 716 * inode has not been flagged as nocompress. This flag can 717 * change at any time if we discover bad compression ratios. 718 */ 719 if (inode_need_compress(inode, start, end)) { 720 WARN_ON(pages); 721 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 722 if (!pages) { 723 /* just bail out to the uncompressed code */ 724 nr_pages = 0; 725 goto cont; 726 } 727 728 if (inode->defrag_compress) 729 compress_type = inode->defrag_compress; 730 else if (inode->prop_compress) 731 compress_type = inode->prop_compress; 732 733 /* 734 * we need to call clear_page_dirty_for_io on each 735 * page in the range. Otherwise applications with the file 736 * mmap'd can wander in and change the page contents while 737 * we are compressing them. 738 * 739 * If the compression fails for any reason, we set the pages 740 * dirty again later on. 741 * 742 * Note that the remaining part is redirtied, the start pointer 743 * has moved, the end is the original one. 744 */ 745 if (!redirty) { 746 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 747 redirty = 1; 748 } 749 750 /* Compression level is applied here and only here */ 751 ret = btrfs_compress_pages( 752 compress_type | (fs_info->compress_level << 4), 753 inode->vfs_inode.i_mapping, start, 754 pages, 755 &nr_pages, 756 &total_in, 757 &total_compressed); 758 759 if (!ret) { 760 unsigned long offset = offset_in_page(total_compressed); 761 struct page *page = pages[nr_pages - 1]; 762 763 /* zero the tail end of the last page, we might be 764 * sending it down to disk 765 */ 766 if (offset) 767 memzero_page(page, offset, PAGE_SIZE - offset); 768 will_compress = 1; 769 } 770 } 771 cont: 772 /* 773 * Check cow_file_range() for why we don't even try to create inline 774 * extent for subpage case. 775 */ 776 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 777 /* lets try to make an inline extent */ 778 if (ret || total_in < actual_end) { 779 /* we didn't compress the entire range, try 780 * to make an uncompressed inline extent. 781 */ 782 ret = cow_file_range_inline(inode, actual_end, 783 0, BTRFS_COMPRESS_NONE, 784 NULL, false); 785 } else { 786 /* try making a compressed inline extent */ 787 ret = cow_file_range_inline(inode, actual_end, 788 total_compressed, 789 compress_type, pages, 790 false); 791 } 792 if (ret <= 0) { 793 unsigned long clear_flags = EXTENT_DELALLOC | 794 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 795 EXTENT_DO_ACCOUNTING; 796 unsigned long page_error_op; 797 798 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 799 800 /* 801 * inline extent creation worked or returned error, 802 * we don't need to create any more async work items. 803 * Unlock and free up our temp pages. 804 * 805 * We use DO_ACCOUNTING here because we need the 806 * delalloc_release_metadata to be done _after_ we drop 807 * our outstanding extent for clearing delalloc for this 808 * range. 809 */ 810 extent_clear_unlock_delalloc(inode, start, end, 811 NULL, 812 clear_flags, 813 PAGE_UNLOCK | 814 PAGE_START_WRITEBACK | 815 page_error_op | 816 PAGE_END_WRITEBACK); 817 818 /* 819 * Ensure we only free the compressed pages if we have 820 * them allocated, as we can still reach here with 821 * inode_need_compress() == false. 822 */ 823 if (pages) { 824 for (i = 0; i < nr_pages; i++) { 825 WARN_ON(pages[i]->mapping); 826 put_page(pages[i]); 827 } 828 kfree(pages); 829 } 830 return 0; 831 } 832 } 833 834 if (will_compress) { 835 /* 836 * we aren't doing an inline extent round the compressed size 837 * up to a block size boundary so the allocator does sane 838 * things 839 */ 840 total_compressed = ALIGN(total_compressed, blocksize); 841 842 /* 843 * one last check to make sure the compression is really a 844 * win, compare the page count read with the blocks on disk, 845 * compression must free at least one sector size 846 */ 847 total_in = round_up(total_in, fs_info->sectorsize); 848 if (total_compressed + blocksize <= total_in) { 849 compressed_extents++; 850 851 /* 852 * The async work queues will take care of doing actual 853 * allocation on disk for these compressed pages, and 854 * will submit them to the elevator. 855 */ 856 add_async_extent(async_chunk, start, total_in, 857 total_compressed, pages, nr_pages, 858 compress_type); 859 860 if (start + total_in < end) { 861 start += total_in; 862 pages = NULL; 863 cond_resched(); 864 goto again; 865 } 866 return compressed_extents; 867 } 868 } 869 if (pages) { 870 /* 871 * the compression code ran but failed to make things smaller, 872 * free any pages it allocated and our page pointer array 873 */ 874 for (i = 0; i < nr_pages; i++) { 875 WARN_ON(pages[i]->mapping); 876 put_page(pages[i]); 877 } 878 kfree(pages); 879 pages = NULL; 880 total_compressed = 0; 881 nr_pages = 0; 882 883 /* flag the file so we don't compress in the future */ 884 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 885 !(inode->prop_compress)) { 886 inode->flags |= BTRFS_INODE_NOCOMPRESS; 887 } 888 } 889 cleanup_and_bail_uncompressed: 890 /* 891 * No compression, but we still need to write the pages in the file 892 * we've been given so far. redirty the locked page if it corresponds 893 * to our extent and set things up for the async work queue to run 894 * cow_file_range to do the normal delalloc dance. 895 */ 896 if (async_chunk->locked_page && 897 (page_offset(async_chunk->locked_page) >= start && 898 page_offset(async_chunk->locked_page)) <= end) { 899 __set_page_dirty_nobuffers(async_chunk->locked_page); 900 /* unlocked later on in the async handlers */ 901 } 902 903 if (redirty) 904 extent_range_redirty_for_io(&inode->vfs_inode, start, end); 905 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 906 BTRFS_COMPRESS_NONE); 907 compressed_extents++; 908 909 return compressed_extents; 910 } 911 912 static void free_async_extent_pages(struct async_extent *async_extent) 913 { 914 int i; 915 916 if (!async_extent->pages) 917 return; 918 919 for (i = 0; i < async_extent->nr_pages; i++) { 920 WARN_ON(async_extent->pages[i]->mapping); 921 put_page(async_extent->pages[i]); 922 } 923 kfree(async_extent->pages); 924 async_extent->nr_pages = 0; 925 async_extent->pages = NULL; 926 } 927 928 static int submit_uncompressed_range(struct btrfs_inode *inode, 929 struct async_extent *async_extent, 930 struct page *locked_page) 931 { 932 u64 start = async_extent->start; 933 u64 end = async_extent->start + async_extent->ram_size - 1; 934 unsigned long nr_written = 0; 935 int page_started = 0; 936 int ret; 937 938 /* 939 * Call cow_file_range() to run the delalloc range directly, since we 940 * won't go to NOCOW or async path again. 941 * 942 * Also we call cow_file_range() with @unlock_page == 0, so that we 943 * can directly submit them without interruption. 944 */ 945 ret = cow_file_range(inode, locked_page, start, end, &page_started, 946 &nr_written, 0, NULL); 947 /* Inline extent inserted, page gets unlocked and everything is done */ 948 if (page_started) 949 return 0; 950 951 if (ret < 0) { 952 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 953 if (locked_page) { 954 const u64 page_start = page_offset(locked_page); 955 const u64 page_end = page_start + PAGE_SIZE - 1; 956 957 btrfs_page_set_error(inode->root->fs_info, locked_page, 958 page_start, PAGE_SIZE); 959 set_page_writeback(locked_page); 960 end_page_writeback(locked_page); 961 end_extent_writepage(locked_page, ret, page_start, page_end); 962 unlock_page(locked_page); 963 } 964 return ret; 965 } 966 967 /* All pages will be unlocked, including @locked_page */ 968 return extent_write_locked_range(&inode->vfs_inode, start, end); 969 } 970 971 static int submit_one_async_extent(struct btrfs_inode *inode, 972 struct async_chunk *async_chunk, 973 struct async_extent *async_extent, 974 u64 *alloc_hint) 975 { 976 struct extent_io_tree *io_tree = &inode->io_tree; 977 struct btrfs_root *root = inode->root; 978 struct btrfs_fs_info *fs_info = root->fs_info; 979 struct btrfs_key ins; 980 struct page *locked_page = NULL; 981 struct extent_map *em; 982 int ret = 0; 983 u64 start = async_extent->start; 984 u64 end = async_extent->start + async_extent->ram_size - 1; 985 986 if (async_chunk->blkcg_css) 987 kthread_associate_blkcg(async_chunk->blkcg_css); 988 989 /* 990 * If async_chunk->locked_page is in the async_extent range, we need to 991 * handle it. 992 */ 993 if (async_chunk->locked_page) { 994 u64 locked_page_start = page_offset(async_chunk->locked_page); 995 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 996 997 if (!(start >= locked_page_end || end <= locked_page_start)) 998 locked_page = async_chunk->locked_page; 999 } 1000 lock_extent(io_tree, start, end, NULL); 1001 1002 /* We have fall back to uncompressed write */ 1003 if (!async_extent->pages) { 1004 ret = submit_uncompressed_range(inode, async_extent, locked_page); 1005 goto done; 1006 } 1007 1008 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1009 async_extent->compressed_size, 1010 async_extent->compressed_size, 1011 0, *alloc_hint, &ins, 1, 1); 1012 if (ret) { 1013 free_async_extent_pages(async_extent); 1014 /* 1015 * Here we used to try again by going back to non-compressed 1016 * path for ENOSPC. But we can't reserve space even for 1017 * compressed size, how could it work for uncompressed size 1018 * which requires larger size? So here we directly go error 1019 * path. 1020 */ 1021 goto out_free; 1022 } 1023 1024 /* Here we're doing allocation and writeback of the compressed pages */ 1025 em = create_io_em(inode, start, 1026 async_extent->ram_size, /* len */ 1027 start, /* orig_start */ 1028 ins.objectid, /* block_start */ 1029 ins.offset, /* block_len */ 1030 ins.offset, /* orig_block_len */ 1031 async_extent->ram_size, /* ram_bytes */ 1032 async_extent->compress_type, 1033 BTRFS_ORDERED_COMPRESSED); 1034 if (IS_ERR(em)) { 1035 ret = PTR_ERR(em); 1036 goto out_free_reserve; 1037 } 1038 free_extent_map(em); 1039 1040 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 1041 async_extent->ram_size, /* num_bytes */ 1042 async_extent->ram_size, /* ram_bytes */ 1043 ins.objectid, /* disk_bytenr */ 1044 ins.offset, /* disk_num_bytes */ 1045 0, /* offset */ 1046 1 << BTRFS_ORDERED_COMPRESSED, 1047 async_extent->compress_type); 1048 if (ret) { 1049 btrfs_drop_extent_map_range(inode, start, end, false); 1050 goto out_free_reserve; 1051 } 1052 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1053 1054 /* Clear dirty, set writeback and unlock the pages. */ 1055 extent_clear_unlock_delalloc(inode, start, end, 1056 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1057 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1058 1059 btrfs_submit_compressed_write(inode, start, /* file_offset */ 1060 async_extent->ram_size, /* num_bytes */ 1061 ins.objectid, /* disk_bytenr */ 1062 ins.offset, /* compressed_len */ 1063 async_extent->pages, /* compressed_pages */ 1064 async_extent->nr_pages, 1065 async_chunk->write_flags, true); 1066 *alloc_hint = ins.objectid + ins.offset; 1067 done: 1068 if (async_chunk->blkcg_css) 1069 kthread_associate_blkcg(NULL); 1070 kfree(async_extent); 1071 return ret; 1072 1073 out_free_reserve: 1074 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1075 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1076 out_free: 1077 extent_clear_unlock_delalloc(inode, start, end, 1078 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1079 EXTENT_DELALLOC_NEW | 1080 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1081 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1082 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1083 free_async_extent_pages(async_extent); 1084 goto done; 1085 } 1086 1087 /* 1088 * Phase two of compressed writeback. This is the ordered portion of the code, 1089 * which only gets called in the order the work was queued. We walk all the 1090 * async extents created by compress_file_range and send them down to the disk. 1091 */ 1092 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1093 { 1094 struct btrfs_inode *inode = async_chunk->inode; 1095 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1096 struct async_extent *async_extent; 1097 u64 alloc_hint = 0; 1098 int ret = 0; 1099 1100 while (!list_empty(&async_chunk->extents)) { 1101 u64 extent_start; 1102 u64 ram_size; 1103 1104 async_extent = list_entry(async_chunk->extents.next, 1105 struct async_extent, list); 1106 list_del(&async_extent->list); 1107 extent_start = async_extent->start; 1108 ram_size = async_extent->ram_size; 1109 1110 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1111 &alloc_hint); 1112 btrfs_debug(fs_info, 1113 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1114 inode->root->root_key.objectid, 1115 btrfs_ino(inode), extent_start, ram_size, ret); 1116 } 1117 } 1118 1119 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1120 u64 num_bytes) 1121 { 1122 struct extent_map_tree *em_tree = &inode->extent_tree; 1123 struct extent_map *em; 1124 u64 alloc_hint = 0; 1125 1126 read_lock(&em_tree->lock); 1127 em = search_extent_mapping(em_tree, start, num_bytes); 1128 if (em) { 1129 /* 1130 * if block start isn't an actual block number then find the 1131 * first block in this inode and use that as a hint. If that 1132 * block is also bogus then just don't worry about it. 1133 */ 1134 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1135 free_extent_map(em); 1136 em = search_extent_mapping(em_tree, 0, 0); 1137 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1138 alloc_hint = em->block_start; 1139 if (em) 1140 free_extent_map(em); 1141 } else { 1142 alloc_hint = em->block_start; 1143 free_extent_map(em); 1144 } 1145 } 1146 read_unlock(&em_tree->lock); 1147 1148 return alloc_hint; 1149 } 1150 1151 /* 1152 * when extent_io.c finds a delayed allocation range in the file, 1153 * the call backs end up in this code. The basic idea is to 1154 * allocate extents on disk for the range, and create ordered data structs 1155 * in ram to track those extents. 1156 * 1157 * locked_page is the page that writepage had locked already. We use 1158 * it to make sure we don't do extra locks or unlocks. 1159 * 1160 * *page_started is set to one if we unlock locked_page and do everything 1161 * required to start IO on it. It may be clean and already done with 1162 * IO when we return. 1163 * 1164 * When unlock == 1, we unlock the pages in successfully allocated regions. 1165 * When unlock == 0, we leave them locked for writing them out. 1166 * 1167 * However, we unlock all the pages except @locked_page in case of failure. 1168 * 1169 * In summary, page locking state will be as follow: 1170 * 1171 * - page_started == 1 (return value) 1172 * - All the pages are unlocked. IO is started. 1173 * - Note that this can happen only on success 1174 * - unlock == 1 1175 * - All the pages except @locked_page are unlocked in any case 1176 * - unlock == 0 1177 * - On success, all the pages are locked for writing out them 1178 * - On failure, all the pages except @locked_page are unlocked 1179 * 1180 * When a failure happens in the second or later iteration of the 1181 * while-loop, the ordered extents created in previous iterations are kept 1182 * intact. So, the caller must clean them up by calling 1183 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1184 * example. 1185 */ 1186 static noinline int cow_file_range(struct btrfs_inode *inode, 1187 struct page *locked_page, 1188 u64 start, u64 end, int *page_started, 1189 unsigned long *nr_written, int unlock, 1190 u64 *done_offset) 1191 { 1192 struct btrfs_root *root = inode->root; 1193 struct btrfs_fs_info *fs_info = root->fs_info; 1194 u64 alloc_hint = 0; 1195 u64 orig_start = start; 1196 u64 num_bytes; 1197 unsigned long ram_size; 1198 u64 cur_alloc_size = 0; 1199 u64 min_alloc_size; 1200 u64 blocksize = fs_info->sectorsize; 1201 struct btrfs_key ins; 1202 struct extent_map *em; 1203 unsigned clear_bits; 1204 unsigned long page_ops; 1205 bool extent_reserved = false; 1206 int ret = 0; 1207 1208 if (btrfs_is_free_space_inode(inode)) { 1209 ret = -EINVAL; 1210 goto out_unlock; 1211 } 1212 1213 num_bytes = ALIGN(end - start + 1, blocksize); 1214 num_bytes = max(blocksize, num_bytes); 1215 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1216 1217 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1218 1219 /* 1220 * Due to the page size limit, for subpage we can only trigger the 1221 * writeback for the dirty sectors of page, that means data writeback 1222 * is doing more writeback than what we want. 1223 * 1224 * This is especially unexpected for some call sites like fallocate, 1225 * where we only increase i_size after everything is done. 1226 * This means we can trigger inline extent even if we didn't want to. 1227 * So here we skip inline extent creation completely. 1228 */ 1229 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1230 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1231 end + 1); 1232 1233 /* lets try to make an inline extent */ 1234 ret = cow_file_range_inline(inode, actual_end, 0, 1235 BTRFS_COMPRESS_NONE, NULL, false); 1236 if (ret == 0) { 1237 /* 1238 * We use DO_ACCOUNTING here because we need the 1239 * delalloc_release_metadata to be run _after_ we drop 1240 * our outstanding extent for clearing delalloc for this 1241 * range. 1242 */ 1243 extent_clear_unlock_delalloc(inode, start, end, 1244 locked_page, 1245 EXTENT_LOCKED | EXTENT_DELALLOC | 1246 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1247 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1248 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1249 *nr_written = *nr_written + 1250 (end - start + PAGE_SIZE) / PAGE_SIZE; 1251 *page_started = 1; 1252 /* 1253 * locked_page is locked by the caller of 1254 * writepage_delalloc(), not locked by 1255 * __process_pages_contig(). 1256 * 1257 * We can't let __process_pages_contig() to unlock it, 1258 * as it doesn't have any subpage::writers recorded. 1259 * 1260 * Here we manually unlock the page, since the caller 1261 * can't use page_started to determine if it's an 1262 * inline extent or a compressed extent. 1263 */ 1264 unlock_page(locked_page); 1265 goto out; 1266 } else if (ret < 0) { 1267 goto out_unlock; 1268 } 1269 } 1270 1271 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1272 1273 /* 1274 * Relocation relies on the relocated extents to have exactly the same 1275 * size as the original extents. Normally writeback for relocation data 1276 * extents follows a NOCOW path because relocation preallocates the 1277 * extents. However, due to an operation such as scrub turning a block 1278 * group to RO mode, it may fallback to COW mode, so we must make sure 1279 * an extent allocated during COW has exactly the requested size and can 1280 * not be split into smaller extents, otherwise relocation breaks and 1281 * fails during the stage where it updates the bytenr of file extent 1282 * items. 1283 */ 1284 if (btrfs_is_data_reloc_root(root)) 1285 min_alloc_size = num_bytes; 1286 else 1287 min_alloc_size = fs_info->sectorsize; 1288 1289 while (num_bytes > 0) { 1290 cur_alloc_size = num_bytes; 1291 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1292 min_alloc_size, 0, alloc_hint, 1293 &ins, 1, 1); 1294 if (ret < 0) 1295 goto out_unlock; 1296 cur_alloc_size = ins.offset; 1297 extent_reserved = true; 1298 1299 ram_size = ins.offset; 1300 em = create_io_em(inode, start, ins.offset, /* len */ 1301 start, /* orig_start */ 1302 ins.objectid, /* block_start */ 1303 ins.offset, /* block_len */ 1304 ins.offset, /* orig_block_len */ 1305 ram_size, /* ram_bytes */ 1306 BTRFS_COMPRESS_NONE, /* compress_type */ 1307 BTRFS_ORDERED_REGULAR /* type */); 1308 if (IS_ERR(em)) { 1309 ret = PTR_ERR(em); 1310 goto out_reserve; 1311 } 1312 free_extent_map(em); 1313 1314 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1315 ins.objectid, cur_alloc_size, 0, 1316 1 << BTRFS_ORDERED_REGULAR, 1317 BTRFS_COMPRESS_NONE); 1318 if (ret) 1319 goto out_drop_extent_cache; 1320 1321 if (btrfs_is_data_reloc_root(root)) { 1322 ret = btrfs_reloc_clone_csums(inode, start, 1323 cur_alloc_size); 1324 /* 1325 * Only drop cache here, and process as normal. 1326 * 1327 * We must not allow extent_clear_unlock_delalloc() 1328 * at out_unlock label to free meta of this ordered 1329 * extent, as its meta should be freed by 1330 * btrfs_finish_ordered_io(). 1331 * 1332 * So we must continue until @start is increased to 1333 * skip current ordered extent. 1334 */ 1335 if (ret) 1336 btrfs_drop_extent_map_range(inode, start, 1337 start + ram_size - 1, 1338 false); 1339 } 1340 1341 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1342 1343 /* 1344 * We're not doing compressed IO, don't unlock the first page 1345 * (which the caller expects to stay locked), don't clear any 1346 * dirty bits and don't set any writeback bits 1347 * 1348 * Do set the Ordered (Private2) bit so we know this page was 1349 * properly setup for writepage. 1350 */ 1351 page_ops = unlock ? PAGE_UNLOCK : 0; 1352 page_ops |= PAGE_SET_ORDERED; 1353 1354 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1355 locked_page, 1356 EXTENT_LOCKED | EXTENT_DELALLOC, 1357 page_ops); 1358 if (num_bytes < cur_alloc_size) 1359 num_bytes = 0; 1360 else 1361 num_bytes -= cur_alloc_size; 1362 alloc_hint = ins.objectid + ins.offset; 1363 start += cur_alloc_size; 1364 extent_reserved = false; 1365 1366 /* 1367 * btrfs_reloc_clone_csums() error, since start is increased 1368 * extent_clear_unlock_delalloc() at out_unlock label won't 1369 * free metadata of current ordered extent, we're OK to exit. 1370 */ 1371 if (ret) 1372 goto out_unlock; 1373 } 1374 out: 1375 return ret; 1376 1377 out_drop_extent_cache: 1378 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1379 out_reserve: 1380 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1381 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1382 out_unlock: 1383 /* 1384 * If done_offset is non-NULL and ret == -EAGAIN, we expect the 1385 * caller to write out the successfully allocated region and retry. 1386 */ 1387 if (done_offset && ret == -EAGAIN) { 1388 if (orig_start < start) 1389 *done_offset = start - 1; 1390 else 1391 *done_offset = start; 1392 return ret; 1393 } else if (ret == -EAGAIN) { 1394 /* Convert to -ENOSPC since the caller cannot retry. */ 1395 ret = -ENOSPC; 1396 } 1397 1398 /* 1399 * Now, we have three regions to clean up: 1400 * 1401 * |-------(1)----|---(2)---|-------------(3)----------| 1402 * `- orig_start `- start `- start + cur_alloc_size `- end 1403 * 1404 * We process each region below. 1405 */ 1406 1407 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1408 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1409 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1410 1411 /* 1412 * For the range (1). We have already instantiated the ordered extents 1413 * for this region. They are cleaned up by 1414 * btrfs_cleanup_ordered_extents() in e.g, 1415 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1416 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1417 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1418 * function. 1419 * 1420 * However, in case of unlock == 0, we still need to unlock the pages 1421 * (except @locked_page) to ensure all the pages are unlocked. 1422 */ 1423 if (!unlock && orig_start < start) { 1424 if (!locked_page) 1425 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1426 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1427 locked_page, 0, page_ops); 1428 } 1429 1430 /* 1431 * For the range (2). If we reserved an extent for our delalloc range 1432 * (or a subrange) and failed to create the respective ordered extent, 1433 * then it means that when we reserved the extent we decremented the 1434 * extent's size from the data space_info's bytes_may_use counter and 1435 * incremented the space_info's bytes_reserved counter by the same 1436 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1437 * to decrement again the data space_info's bytes_may_use counter, 1438 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1439 */ 1440 if (extent_reserved) { 1441 extent_clear_unlock_delalloc(inode, start, 1442 start + cur_alloc_size - 1, 1443 locked_page, 1444 clear_bits, 1445 page_ops); 1446 start += cur_alloc_size; 1447 if (start >= end) 1448 return ret; 1449 } 1450 1451 /* 1452 * For the range (3). We never touched the region. In addition to the 1453 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1454 * space_info's bytes_may_use counter, reserved in 1455 * btrfs_check_data_free_space(). 1456 */ 1457 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1458 clear_bits | EXTENT_CLEAR_DATA_RESV, 1459 page_ops); 1460 return ret; 1461 } 1462 1463 /* 1464 * work queue call back to started compression on a file and pages 1465 */ 1466 static noinline void async_cow_start(struct btrfs_work *work) 1467 { 1468 struct async_chunk *async_chunk; 1469 int compressed_extents; 1470 1471 async_chunk = container_of(work, struct async_chunk, work); 1472 1473 compressed_extents = compress_file_range(async_chunk); 1474 if (compressed_extents == 0) { 1475 btrfs_add_delayed_iput(async_chunk->inode); 1476 async_chunk->inode = NULL; 1477 } 1478 } 1479 1480 /* 1481 * work queue call back to submit previously compressed pages 1482 */ 1483 static noinline void async_cow_submit(struct btrfs_work *work) 1484 { 1485 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1486 work); 1487 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1488 unsigned long nr_pages; 1489 1490 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1491 PAGE_SHIFT; 1492 1493 /* 1494 * ->inode could be NULL if async_chunk_start has failed to compress, 1495 * in which case we don't have anything to submit, yet we need to 1496 * always adjust ->async_delalloc_pages as its paired with the init 1497 * happening in cow_file_range_async 1498 */ 1499 if (async_chunk->inode) 1500 submit_compressed_extents(async_chunk); 1501 1502 /* atomic_sub_return implies a barrier */ 1503 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1504 5 * SZ_1M) 1505 cond_wake_up_nomb(&fs_info->async_submit_wait); 1506 } 1507 1508 static noinline void async_cow_free(struct btrfs_work *work) 1509 { 1510 struct async_chunk *async_chunk; 1511 struct async_cow *async_cow; 1512 1513 async_chunk = container_of(work, struct async_chunk, work); 1514 if (async_chunk->inode) 1515 btrfs_add_delayed_iput(async_chunk->inode); 1516 if (async_chunk->blkcg_css) 1517 css_put(async_chunk->blkcg_css); 1518 1519 async_cow = async_chunk->async_cow; 1520 if (atomic_dec_and_test(&async_cow->num_chunks)) 1521 kvfree(async_cow); 1522 } 1523 1524 static int cow_file_range_async(struct btrfs_inode *inode, 1525 struct writeback_control *wbc, 1526 struct page *locked_page, 1527 u64 start, u64 end, int *page_started, 1528 unsigned long *nr_written) 1529 { 1530 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1531 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1532 struct async_cow *ctx; 1533 struct async_chunk *async_chunk; 1534 unsigned long nr_pages; 1535 u64 cur_end; 1536 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1537 int i; 1538 bool should_compress; 1539 unsigned nofs_flag; 1540 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1541 1542 unlock_extent(&inode->io_tree, start, end, NULL); 1543 1544 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1545 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1546 num_chunks = 1; 1547 should_compress = false; 1548 } else { 1549 should_compress = true; 1550 } 1551 1552 nofs_flag = memalloc_nofs_save(); 1553 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1554 memalloc_nofs_restore(nofs_flag); 1555 1556 if (!ctx) { 1557 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1558 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1559 EXTENT_DO_ACCOUNTING; 1560 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1561 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1562 1563 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1564 clear_bits, page_ops); 1565 return -ENOMEM; 1566 } 1567 1568 async_chunk = ctx->chunks; 1569 atomic_set(&ctx->num_chunks, num_chunks); 1570 1571 for (i = 0; i < num_chunks; i++) { 1572 if (should_compress) 1573 cur_end = min(end, start + SZ_512K - 1); 1574 else 1575 cur_end = end; 1576 1577 /* 1578 * igrab is called higher up in the call chain, take only the 1579 * lightweight reference for the callback lifetime 1580 */ 1581 ihold(&inode->vfs_inode); 1582 async_chunk[i].async_cow = ctx; 1583 async_chunk[i].inode = inode; 1584 async_chunk[i].start = start; 1585 async_chunk[i].end = cur_end; 1586 async_chunk[i].write_flags = write_flags; 1587 INIT_LIST_HEAD(&async_chunk[i].extents); 1588 1589 /* 1590 * The locked_page comes all the way from writepage and its 1591 * the original page we were actually given. As we spread 1592 * this large delalloc region across multiple async_chunk 1593 * structs, only the first struct needs a pointer to locked_page 1594 * 1595 * This way we don't need racey decisions about who is supposed 1596 * to unlock it. 1597 */ 1598 if (locked_page) { 1599 /* 1600 * Depending on the compressibility, the pages might or 1601 * might not go through async. We want all of them to 1602 * be accounted against wbc once. Let's do it here 1603 * before the paths diverge. wbc accounting is used 1604 * only for foreign writeback detection and doesn't 1605 * need full accuracy. Just account the whole thing 1606 * against the first page. 1607 */ 1608 wbc_account_cgroup_owner(wbc, locked_page, 1609 cur_end - start); 1610 async_chunk[i].locked_page = locked_page; 1611 locked_page = NULL; 1612 } else { 1613 async_chunk[i].locked_page = NULL; 1614 } 1615 1616 if (blkcg_css != blkcg_root_css) { 1617 css_get(blkcg_css); 1618 async_chunk[i].blkcg_css = blkcg_css; 1619 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1620 } else { 1621 async_chunk[i].blkcg_css = NULL; 1622 } 1623 1624 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1625 async_cow_submit, async_cow_free); 1626 1627 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1628 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1629 1630 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1631 1632 *nr_written += nr_pages; 1633 start = cur_end + 1; 1634 } 1635 *page_started = 1; 1636 return 0; 1637 } 1638 1639 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1640 struct page *locked_page, u64 start, 1641 u64 end, int *page_started, 1642 unsigned long *nr_written) 1643 { 1644 u64 done_offset = end; 1645 int ret; 1646 bool locked_page_done = false; 1647 1648 while (start <= end) { 1649 ret = cow_file_range(inode, locked_page, start, end, page_started, 1650 nr_written, 0, &done_offset); 1651 if (ret && ret != -EAGAIN) 1652 return ret; 1653 1654 if (*page_started) { 1655 ASSERT(ret == 0); 1656 return 0; 1657 } 1658 1659 if (ret == 0) 1660 done_offset = end; 1661 1662 if (done_offset == start) { 1663 wait_on_bit_io(&inode->root->fs_info->flags, 1664 BTRFS_FS_NEED_ZONE_FINISH, 1665 TASK_UNINTERRUPTIBLE); 1666 continue; 1667 } 1668 1669 if (!locked_page_done) { 1670 __set_page_dirty_nobuffers(locked_page); 1671 account_page_redirty(locked_page); 1672 } 1673 locked_page_done = true; 1674 extent_write_locked_range(&inode->vfs_inode, start, done_offset); 1675 1676 start = done_offset + 1; 1677 } 1678 1679 *page_started = 1; 1680 1681 return 0; 1682 } 1683 1684 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1685 u64 bytenr, u64 num_bytes, bool nowait) 1686 { 1687 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1688 struct btrfs_ordered_sum *sums; 1689 int ret; 1690 LIST_HEAD(list); 1691 1692 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1693 &list, 0, nowait); 1694 if (ret == 0 && list_empty(&list)) 1695 return 0; 1696 1697 while (!list_empty(&list)) { 1698 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1699 list_del(&sums->list); 1700 kfree(sums); 1701 } 1702 if (ret < 0) 1703 return ret; 1704 return 1; 1705 } 1706 1707 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1708 const u64 start, const u64 end, 1709 int *page_started, unsigned long *nr_written) 1710 { 1711 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1712 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1713 const u64 range_bytes = end + 1 - start; 1714 struct extent_io_tree *io_tree = &inode->io_tree; 1715 u64 range_start = start; 1716 u64 count; 1717 1718 /* 1719 * If EXTENT_NORESERVE is set it means that when the buffered write was 1720 * made we had not enough available data space and therefore we did not 1721 * reserve data space for it, since we though we could do NOCOW for the 1722 * respective file range (either there is prealloc extent or the inode 1723 * has the NOCOW bit set). 1724 * 1725 * However when we need to fallback to COW mode (because for example the 1726 * block group for the corresponding extent was turned to RO mode by a 1727 * scrub or relocation) we need to do the following: 1728 * 1729 * 1) We increment the bytes_may_use counter of the data space info. 1730 * If COW succeeds, it allocates a new data extent and after doing 1731 * that it decrements the space info's bytes_may_use counter and 1732 * increments its bytes_reserved counter by the same amount (we do 1733 * this at btrfs_add_reserved_bytes()). So we need to increment the 1734 * bytes_may_use counter to compensate (when space is reserved at 1735 * buffered write time, the bytes_may_use counter is incremented); 1736 * 1737 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1738 * that if the COW path fails for any reason, it decrements (through 1739 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1740 * data space info, which we incremented in the step above. 1741 * 1742 * If we need to fallback to cow and the inode corresponds to a free 1743 * space cache inode or an inode of the data relocation tree, we must 1744 * also increment bytes_may_use of the data space_info for the same 1745 * reason. Space caches and relocated data extents always get a prealloc 1746 * extent for them, however scrub or balance may have set the block 1747 * group that contains that extent to RO mode and therefore force COW 1748 * when starting writeback. 1749 */ 1750 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1751 EXTENT_NORESERVE, 0, NULL); 1752 if (count > 0 || is_space_ino || is_reloc_ino) { 1753 u64 bytes = count; 1754 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1755 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1756 1757 if (is_space_ino || is_reloc_ino) 1758 bytes = range_bytes; 1759 1760 spin_lock(&sinfo->lock); 1761 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1762 spin_unlock(&sinfo->lock); 1763 1764 if (count > 0) 1765 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1766 NULL); 1767 } 1768 1769 return cow_file_range(inode, locked_page, start, end, page_started, 1770 nr_written, 1, NULL); 1771 } 1772 1773 struct can_nocow_file_extent_args { 1774 /* Input fields. */ 1775 1776 /* Start file offset of the range we want to NOCOW. */ 1777 u64 start; 1778 /* End file offset (inclusive) of the range we want to NOCOW. */ 1779 u64 end; 1780 bool writeback_path; 1781 bool strict; 1782 /* 1783 * Free the path passed to can_nocow_file_extent() once it's not needed 1784 * anymore. 1785 */ 1786 bool free_path; 1787 1788 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1789 1790 u64 disk_bytenr; 1791 u64 disk_num_bytes; 1792 u64 extent_offset; 1793 /* Number of bytes that can be written to in NOCOW mode. */ 1794 u64 num_bytes; 1795 }; 1796 1797 /* 1798 * Check if we can NOCOW the file extent that the path points to. 1799 * This function may return with the path released, so the caller should check 1800 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1801 * 1802 * Returns: < 0 on error 1803 * 0 if we can not NOCOW 1804 * 1 if we can NOCOW 1805 */ 1806 static int can_nocow_file_extent(struct btrfs_path *path, 1807 struct btrfs_key *key, 1808 struct btrfs_inode *inode, 1809 struct can_nocow_file_extent_args *args) 1810 { 1811 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1812 struct extent_buffer *leaf = path->nodes[0]; 1813 struct btrfs_root *root = inode->root; 1814 struct btrfs_file_extent_item *fi; 1815 u64 extent_end; 1816 u8 extent_type; 1817 int can_nocow = 0; 1818 int ret = 0; 1819 bool nowait = path->nowait; 1820 1821 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1822 extent_type = btrfs_file_extent_type(leaf, fi); 1823 1824 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1825 goto out; 1826 1827 /* Can't access these fields unless we know it's not an inline extent. */ 1828 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1829 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1830 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1831 1832 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1833 extent_type == BTRFS_FILE_EXTENT_REG) 1834 goto out; 1835 1836 /* 1837 * If the extent was created before the generation where the last snapshot 1838 * for its subvolume was created, then this implies the extent is shared, 1839 * hence we must COW. 1840 */ 1841 if (!args->strict && 1842 btrfs_file_extent_generation(leaf, fi) <= 1843 btrfs_root_last_snapshot(&root->root_item)) 1844 goto out; 1845 1846 /* An explicit hole, must COW. */ 1847 if (args->disk_bytenr == 0) 1848 goto out; 1849 1850 /* Compressed/encrypted/encoded extents must be COWed. */ 1851 if (btrfs_file_extent_compression(leaf, fi) || 1852 btrfs_file_extent_encryption(leaf, fi) || 1853 btrfs_file_extent_other_encoding(leaf, fi)) 1854 goto out; 1855 1856 extent_end = btrfs_file_extent_end(path); 1857 1858 /* 1859 * The following checks can be expensive, as they need to take other 1860 * locks and do btree or rbtree searches, so release the path to avoid 1861 * blocking other tasks for too long. 1862 */ 1863 btrfs_release_path(path); 1864 1865 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1866 key->offset - args->extent_offset, 1867 args->disk_bytenr, false, path); 1868 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1869 if (ret != 0) 1870 goto out; 1871 1872 if (args->free_path) { 1873 /* 1874 * We don't need the path anymore, plus through the 1875 * csum_exist_in_range() call below we will end up allocating 1876 * another path. So free the path to avoid unnecessary extra 1877 * memory usage. 1878 */ 1879 btrfs_free_path(path); 1880 path = NULL; 1881 } 1882 1883 /* If there are pending snapshots for this root, we must COW. */ 1884 if (args->writeback_path && !is_freespace_inode && 1885 atomic_read(&root->snapshot_force_cow)) 1886 goto out; 1887 1888 args->disk_bytenr += args->extent_offset; 1889 args->disk_bytenr += args->start - key->offset; 1890 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1891 1892 /* 1893 * Force COW if csums exist in the range. This ensures that csums for a 1894 * given extent are either valid or do not exist. 1895 */ 1896 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1897 nowait); 1898 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1899 if (ret != 0) 1900 goto out; 1901 1902 can_nocow = 1; 1903 out: 1904 if (args->free_path && path) 1905 btrfs_free_path(path); 1906 1907 return ret < 0 ? ret : can_nocow; 1908 } 1909 1910 /* 1911 * when nowcow writeback call back. This checks for snapshots or COW copies 1912 * of the extents that exist in the file, and COWs the file as required. 1913 * 1914 * If no cow copies or snapshots exist, we write directly to the existing 1915 * blocks on disk 1916 */ 1917 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1918 struct page *locked_page, 1919 const u64 start, const u64 end, 1920 int *page_started, 1921 unsigned long *nr_written) 1922 { 1923 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1924 struct btrfs_root *root = inode->root; 1925 struct btrfs_path *path; 1926 u64 cow_start = (u64)-1; 1927 u64 cur_offset = start; 1928 int ret; 1929 bool check_prev = true; 1930 u64 ino = btrfs_ino(inode); 1931 struct btrfs_block_group *bg; 1932 bool nocow = false; 1933 struct can_nocow_file_extent_args nocow_args = { 0 }; 1934 1935 path = btrfs_alloc_path(); 1936 if (!path) { 1937 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1938 EXTENT_LOCKED | EXTENT_DELALLOC | 1939 EXTENT_DO_ACCOUNTING | 1940 EXTENT_DEFRAG, PAGE_UNLOCK | 1941 PAGE_START_WRITEBACK | 1942 PAGE_END_WRITEBACK); 1943 return -ENOMEM; 1944 } 1945 1946 nocow_args.end = end; 1947 nocow_args.writeback_path = true; 1948 1949 while (1) { 1950 struct btrfs_key found_key; 1951 struct btrfs_file_extent_item *fi; 1952 struct extent_buffer *leaf; 1953 u64 extent_end; 1954 u64 ram_bytes; 1955 u64 nocow_end; 1956 int extent_type; 1957 1958 nocow = false; 1959 1960 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1961 cur_offset, 0); 1962 if (ret < 0) 1963 goto error; 1964 1965 /* 1966 * If there is no extent for our range when doing the initial 1967 * search, then go back to the previous slot as it will be the 1968 * one containing the search offset 1969 */ 1970 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1971 leaf = path->nodes[0]; 1972 btrfs_item_key_to_cpu(leaf, &found_key, 1973 path->slots[0] - 1); 1974 if (found_key.objectid == ino && 1975 found_key.type == BTRFS_EXTENT_DATA_KEY) 1976 path->slots[0]--; 1977 } 1978 check_prev = false; 1979 next_slot: 1980 /* Go to next leaf if we have exhausted the current one */ 1981 leaf = path->nodes[0]; 1982 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1983 ret = btrfs_next_leaf(root, path); 1984 if (ret < 0) { 1985 if (cow_start != (u64)-1) 1986 cur_offset = cow_start; 1987 goto error; 1988 } 1989 if (ret > 0) 1990 break; 1991 leaf = path->nodes[0]; 1992 } 1993 1994 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1995 1996 /* Didn't find anything for our INO */ 1997 if (found_key.objectid > ino) 1998 break; 1999 /* 2000 * Keep searching until we find an EXTENT_ITEM or there are no 2001 * more extents for this inode 2002 */ 2003 if (WARN_ON_ONCE(found_key.objectid < ino) || 2004 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2005 path->slots[0]++; 2006 goto next_slot; 2007 } 2008 2009 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2010 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2011 found_key.offset > end) 2012 break; 2013 2014 /* 2015 * If the found extent starts after requested offset, then 2016 * adjust extent_end to be right before this extent begins 2017 */ 2018 if (found_key.offset > cur_offset) { 2019 extent_end = found_key.offset; 2020 extent_type = 0; 2021 goto out_check; 2022 } 2023 2024 /* 2025 * Found extent which begins before our range and potentially 2026 * intersect it 2027 */ 2028 fi = btrfs_item_ptr(leaf, path->slots[0], 2029 struct btrfs_file_extent_item); 2030 extent_type = btrfs_file_extent_type(leaf, fi); 2031 /* If this is triggered then we have a memory corruption. */ 2032 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2033 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2034 ret = -EUCLEAN; 2035 goto error; 2036 } 2037 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2038 extent_end = btrfs_file_extent_end(path); 2039 2040 /* 2041 * If the extent we got ends before our current offset, skip to 2042 * the next extent. 2043 */ 2044 if (extent_end <= cur_offset) { 2045 path->slots[0]++; 2046 goto next_slot; 2047 } 2048 2049 nocow_args.start = cur_offset; 2050 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2051 if (ret < 0) { 2052 if (cow_start != (u64)-1) 2053 cur_offset = cow_start; 2054 goto error; 2055 } else if (ret == 0) { 2056 goto out_check; 2057 } 2058 2059 ret = 0; 2060 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2061 if (bg) 2062 nocow = true; 2063 out_check: 2064 /* 2065 * If nocow is false then record the beginning of the range 2066 * that needs to be COWed 2067 */ 2068 if (!nocow) { 2069 if (cow_start == (u64)-1) 2070 cow_start = cur_offset; 2071 cur_offset = extent_end; 2072 if (cur_offset > end) 2073 break; 2074 if (!path->nodes[0]) 2075 continue; 2076 path->slots[0]++; 2077 goto next_slot; 2078 } 2079 2080 /* 2081 * COW range from cow_start to found_key.offset - 1. As the key 2082 * will contain the beginning of the first extent that can be 2083 * NOCOW, following one which needs to be COW'ed 2084 */ 2085 if (cow_start != (u64)-1) { 2086 ret = fallback_to_cow(inode, locked_page, 2087 cow_start, found_key.offset - 1, 2088 page_started, nr_written); 2089 if (ret) 2090 goto error; 2091 cow_start = (u64)-1; 2092 } 2093 2094 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2095 2096 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2097 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2098 struct extent_map *em; 2099 2100 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2101 orig_start, 2102 nocow_args.disk_bytenr, /* block_start */ 2103 nocow_args.num_bytes, /* block_len */ 2104 nocow_args.disk_num_bytes, /* orig_block_len */ 2105 ram_bytes, BTRFS_COMPRESS_NONE, 2106 BTRFS_ORDERED_PREALLOC); 2107 if (IS_ERR(em)) { 2108 ret = PTR_ERR(em); 2109 goto error; 2110 } 2111 free_extent_map(em); 2112 ret = btrfs_add_ordered_extent(inode, 2113 cur_offset, nocow_args.num_bytes, 2114 nocow_args.num_bytes, 2115 nocow_args.disk_bytenr, 2116 nocow_args.num_bytes, 0, 2117 1 << BTRFS_ORDERED_PREALLOC, 2118 BTRFS_COMPRESS_NONE); 2119 if (ret) { 2120 btrfs_drop_extent_map_range(inode, cur_offset, 2121 nocow_end, false); 2122 goto error; 2123 } 2124 } else { 2125 ret = btrfs_add_ordered_extent(inode, cur_offset, 2126 nocow_args.num_bytes, 2127 nocow_args.num_bytes, 2128 nocow_args.disk_bytenr, 2129 nocow_args.num_bytes, 2130 0, 2131 1 << BTRFS_ORDERED_NOCOW, 2132 BTRFS_COMPRESS_NONE); 2133 if (ret) 2134 goto error; 2135 } 2136 2137 if (nocow) { 2138 btrfs_dec_nocow_writers(bg); 2139 nocow = false; 2140 } 2141 2142 if (btrfs_is_data_reloc_root(root)) 2143 /* 2144 * Error handled later, as we must prevent 2145 * extent_clear_unlock_delalloc() in error handler 2146 * from freeing metadata of created ordered extent. 2147 */ 2148 ret = btrfs_reloc_clone_csums(inode, cur_offset, 2149 nocow_args.num_bytes); 2150 2151 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2152 locked_page, EXTENT_LOCKED | 2153 EXTENT_DELALLOC | 2154 EXTENT_CLEAR_DATA_RESV, 2155 PAGE_UNLOCK | PAGE_SET_ORDERED); 2156 2157 cur_offset = extent_end; 2158 2159 /* 2160 * btrfs_reloc_clone_csums() error, now we're OK to call error 2161 * handler, as metadata for created ordered extent will only 2162 * be freed by btrfs_finish_ordered_io(). 2163 */ 2164 if (ret) 2165 goto error; 2166 if (cur_offset > end) 2167 break; 2168 } 2169 btrfs_release_path(path); 2170 2171 if (cur_offset <= end && cow_start == (u64)-1) 2172 cow_start = cur_offset; 2173 2174 if (cow_start != (u64)-1) { 2175 cur_offset = end; 2176 ret = fallback_to_cow(inode, locked_page, cow_start, end, 2177 page_started, nr_written); 2178 if (ret) 2179 goto error; 2180 } 2181 2182 error: 2183 if (nocow) 2184 btrfs_dec_nocow_writers(bg); 2185 2186 if (ret && cur_offset < end) 2187 extent_clear_unlock_delalloc(inode, cur_offset, end, 2188 locked_page, EXTENT_LOCKED | 2189 EXTENT_DELALLOC | EXTENT_DEFRAG | 2190 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2191 PAGE_START_WRITEBACK | 2192 PAGE_END_WRITEBACK); 2193 btrfs_free_path(path); 2194 return ret; 2195 } 2196 2197 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2198 { 2199 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2200 if (inode->defrag_bytes && 2201 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2202 0, NULL)) 2203 return false; 2204 return true; 2205 } 2206 return false; 2207 } 2208 2209 /* 2210 * Function to process delayed allocation (create CoW) for ranges which are 2211 * being touched for the first time. 2212 */ 2213 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2214 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2215 struct writeback_control *wbc) 2216 { 2217 int ret; 2218 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2219 2220 /* 2221 * The range must cover part of the @locked_page, or the returned 2222 * @page_started can confuse the caller. 2223 */ 2224 ASSERT(!(end <= page_offset(locked_page) || 2225 start >= page_offset(locked_page) + PAGE_SIZE)); 2226 2227 if (should_nocow(inode, start, end)) { 2228 /* 2229 * Normally on a zoned device we're only doing COW writes, but 2230 * in case of relocation on a zoned filesystem we have taken 2231 * precaution, that we're only writing sequentially. It's safe 2232 * to use run_delalloc_nocow() here, like for regular 2233 * preallocated inodes. 2234 */ 2235 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2236 ret = run_delalloc_nocow(inode, locked_page, start, end, 2237 page_started, nr_written); 2238 } else if (!btrfs_inode_can_compress(inode) || 2239 !inode_need_compress(inode, start, end)) { 2240 if (zoned) 2241 ret = run_delalloc_zoned(inode, locked_page, start, end, 2242 page_started, nr_written); 2243 else 2244 ret = cow_file_range(inode, locked_page, start, end, 2245 page_started, nr_written, 1, NULL); 2246 } else { 2247 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2248 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2249 page_started, nr_written); 2250 } 2251 ASSERT(ret <= 0); 2252 if (ret) 2253 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2254 end - start + 1); 2255 return ret; 2256 } 2257 2258 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2259 struct extent_state *orig, u64 split) 2260 { 2261 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2262 u64 size; 2263 2264 /* not delalloc, ignore it */ 2265 if (!(orig->state & EXTENT_DELALLOC)) 2266 return; 2267 2268 size = orig->end - orig->start + 1; 2269 if (size > fs_info->max_extent_size) { 2270 u32 num_extents; 2271 u64 new_size; 2272 2273 /* 2274 * See the explanation in btrfs_merge_delalloc_extent, the same 2275 * applies here, just in reverse. 2276 */ 2277 new_size = orig->end - split + 1; 2278 num_extents = count_max_extents(fs_info, new_size); 2279 new_size = split - orig->start; 2280 num_extents += count_max_extents(fs_info, new_size); 2281 if (count_max_extents(fs_info, size) >= num_extents) 2282 return; 2283 } 2284 2285 spin_lock(&inode->lock); 2286 btrfs_mod_outstanding_extents(inode, 1); 2287 spin_unlock(&inode->lock); 2288 } 2289 2290 /* 2291 * Handle merged delayed allocation extents so we can keep track of new extents 2292 * that are just merged onto old extents, such as when we are doing sequential 2293 * writes, so we can properly account for the metadata space we'll need. 2294 */ 2295 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2296 struct extent_state *other) 2297 { 2298 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2299 u64 new_size, old_size; 2300 u32 num_extents; 2301 2302 /* not delalloc, ignore it */ 2303 if (!(other->state & EXTENT_DELALLOC)) 2304 return; 2305 2306 if (new->start > other->start) 2307 new_size = new->end - other->start + 1; 2308 else 2309 new_size = other->end - new->start + 1; 2310 2311 /* we're not bigger than the max, unreserve the space and go */ 2312 if (new_size <= fs_info->max_extent_size) { 2313 spin_lock(&inode->lock); 2314 btrfs_mod_outstanding_extents(inode, -1); 2315 spin_unlock(&inode->lock); 2316 return; 2317 } 2318 2319 /* 2320 * We have to add up either side to figure out how many extents were 2321 * accounted for before we merged into one big extent. If the number of 2322 * extents we accounted for is <= the amount we need for the new range 2323 * then we can return, otherwise drop. Think of it like this 2324 * 2325 * [ 4k][MAX_SIZE] 2326 * 2327 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2328 * need 2 outstanding extents, on one side we have 1 and the other side 2329 * we have 1 so they are == and we can return. But in this case 2330 * 2331 * [MAX_SIZE+4k][MAX_SIZE+4k] 2332 * 2333 * Each range on their own accounts for 2 extents, but merged together 2334 * they are only 3 extents worth of accounting, so we need to drop in 2335 * this case. 2336 */ 2337 old_size = other->end - other->start + 1; 2338 num_extents = count_max_extents(fs_info, old_size); 2339 old_size = new->end - new->start + 1; 2340 num_extents += count_max_extents(fs_info, old_size); 2341 if (count_max_extents(fs_info, new_size) >= num_extents) 2342 return; 2343 2344 spin_lock(&inode->lock); 2345 btrfs_mod_outstanding_extents(inode, -1); 2346 spin_unlock(&inode->lock); 2347 } 2348 2349 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2350 struct btrfs_inode *inode) 2351 { 2352 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2353 2354 spin_lock(&root->delalloc_lock); 2355 if (list_empty(&inode->delalloc_inodes)) { 2356 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2357 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2358 root->nr_delalloc_inodes++; 2359 if (root->nr_delalloc_inodes == 1) { 2360 spin_lock(&fs_info->delalloc_root_lock); 2361 BUG_ON(!list_empty(&root->delalloc_root)); 2362 list_add_tail(&root->delalloc_root, 2363 &fs_info->delalloc_roots); 2364 spin_unlock(&fs_info->delalloc_root_lock); 2365 } 2366 } 2367 spin_unlock(&root->delalloc_lock); 2368 } 2369 2370 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2371 struct btrfs_inode *inode) 2372 { 2373 struct btrfs_fs_info *fs_info = root->fs_info; 2374 2375 if (!list_empty(&inode->delalloc_inodes)) { 2376 list_del_init(&inode->delalloc_inodes); 2377 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2378 &inode->runtime_flags); 2379 root->nr_delalloc_inodes--; 2380 if (!root->nr_delalloc_inodes) { 2381 ASSERT(list_empty(&root->delalloc_inodes)); 2382 spin_lock(&fs_info->delalloc_root_lock); 2383 BUG_ON(list_empty(&root->delalloc_root)); 2384 list_del_init(&root->delalloc_root); 2385 spin_unlock(&fs_info->delalloc_root_lock); 2386 } 2387 } 2388 } 2389 2390 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2391 struct btrfs_inode *inode) 2392 { 2393 spin_lock(&root->delalloc_lock); 2394 __btrfs_del_delalloc_inode(root, inode); 2395 spin_unlock(&root->delalloc_lock); 2396 } 2397 2398 /* 2399 * Properly track delayed allocation bytes in the inode and to maintain the 2400 * list of inodes that have pending delalloc work to be done. 2401 */ 2402 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2403 u32 bits) 2404 { 2405 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2406 2407 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2408 WARN_ON(1); 2409 /* 2410 * set_bit and clear bit hooks normally require _irqsave/restore 2411 * but in this case, we are only testing for the DELALLOC 2412 * bit, which is only set or cleared with irqs on 2413 */ 2414 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2415 struct btrfs_root *root = inode->root; 2416 u64 len = state->end + 1 - state->start; 2417 u32 num_extents = count_max_extents(fs_info, len); 2418 bool do_list = !btrfs_is_free_space_inode(inode); 2419 2420 spin_lock(&inode->lock); 2421 btrfs_mod_outstanding_extents(inode, num_extents); 2422 spin_unlock(&inode->lock); 2423 2424 /* For sanity tests */ 2425 if (btrfs_is_testing(fs_info)) 2426 return; 2427 2428 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2429 fs_info->delalloc_batch); 2430 spin_lock(&inode->lock); 2431 inode->delalloc_bytes += len; 2432 if (bits & EXTENT_DEFRAG) 2433 inode->defrag_bytes += len; 2434 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2435 &inode->runtime_flags)) 2436 btrfs_add_delalloc_inodes(root, inode); 2437 spin_unlock(&inode->lock); 2438 } 2439 2440 if (!(state->state & EXTENT_DELALLOC_NEW) && 2441 (bits & EXTENT_DELALLOC_NEW)) { 2442 spin_lock(&inode->lock); 2443 inode->new_delalloc_bytes += state->end + 1 - state->start; 2444 spin_unlock(&inode->lock); 2445 } 2446 } 2447 2448 /* 2449 * Once a range is no longer delalloc this function ensures that proper 2450 * accounting happens. 2451 */ 2452 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2453 struct extent_state *state, u32 bits) 2454 { 2455 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2456 u64 len = state->end + 1 - state->start; 2457 u32 num_extents = count_max_extents(fs_info, len); 2458 2459 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2460 spin_lock(&inode->lock); 2461 inode->defrag_bytes -= len; 2462 spin_unlock(&inode->lock); 2463 } 2464 2465 /* 2466 * set_bit and clear bit hooks normally require _irqsave/restore 2467 * but in this case, we are only testing for the DELALLOC 2468 * bit, which is only set or cleared with irqs on 2469 */ 2470 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2471 struct btrfs_root *root = inode->root; 2472 bool do_list = !btrfs_is_free_space_inode(inode); 2473 2474 spin_lock(&inode->lock); 2475 btrfs_mod_outstanding_extents(inode, -num_extents); 2476 spin_unlock(&inode->lock); 2477 2478 /* 2479 * We don't reserve metadata space for space cache inodes so we 2480 * don't need to call delalloc_release_metadata if there is an 2481 * error. 2482 */ 2483 if (bits & EXTENT_CLEAR_META_RESV && 2484 root != fs_info->tree_root) 2485 btrfs_delalloc_release_metadata(inode, len, false); 2486 2487 /* For sanity tests. */ 2488 if (btrfs_is_testing(fs_info)) 2489 return; 2490 2491 if (!btrfs_is_data_reloc_root(root) && 2492 do_list && !(state->state & EXTENT_NORESERVE) && 2493 (bits & EXTENT_CLEAR_DATA_RESV)) 2494 btrfs_free_reserved_data_space_noquota(fs_info, len); 2495 2496 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2497 fs_info->delalloc_batch); 2498 spin_lock(&inode->lock); 2499 inode->delalloc_bytes -= len; 2500 if (do_list && inode->delalloc_bytes == 0 && 2501 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2502 &inode->runtime_flags)) 2503 btrfs_del_delalloc_inode(root, inode); 2504 spin_unlock(&inode->lock); 2505 } 2506 2507 if ((state->state & EXTENT_DELALLOC_NEW) && 2508 (bits & EXTENT_DELALLOC_NEW)) { 2509 spin_lock(&inode->lock); 2510 ASSERT(inode->new_delalloc_bytes >= len); 2511 inode->new_delalloc_bytes -= len; 2512 if (bits & EXTENT_ADD_INODE_BYTES) 2513 inode_add_bytes(&inode->vfs_inode, len); 2514 spin_unlock(&inode->lock); 2515 } 2516 } 2517 2518 /* 2519 * Split off the first pre bytes from the extent_map at [start, start + len] 2520 * 2521 * This function is intended to be used only for extract_ordered_extent(). 2522 */ 2523 static int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre) 2524 { 2525 struct extent_map_tree *em_tree = &inode->extent_tree; 2526 struct extent_map *em; 2527 struct extent_map *split_pre = NULL; 2528 struct extent_map *split_mid = NULL; 2529 int ret = 0; 2530 unsigned long flags; 2531 2532 ASSERT(pre != 0); 2533 ASSERT(pre < len); 2534 2535 split_pre = alloc_extent_map(); 2536 if (!split_pre) 2537 return -ENOMEM; 2538 split_mid = alloc_extent_map(); 2539 if (!split_mid) { 2540 ret = -ENOMEM; 2541 goto out_free_pre; 2542 } 2543 2544 lock_extent(&inode->io_tree, start, start + len - 1, NULL); 2545 write_lock(&em_tree->lock); 2546 em = lookup_extent_mapping(em_tree, start, len); 2547 if (!em) { 2548 ret = -EIO; 2549 goto out_unlock; 2550 } 2551 2552 ASSERT(em->len == len); 2553 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2554 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2555 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2556 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2557 ASSERT(!list_empty(&em->list)); 2558 2559 flags = em->flags; 2560 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2561 2562 /* First, replace the em with a new extent_map starting from * em->start */ 2563 split_pre->start = em->start; 2564 split_pre->len = pre; 2565 split_pre->orig_start = split_pre->start; 2566 split_pre->block_start = em->block_start; 2567 split_pre->block_len = split_pre->len; 2568 split_pre->orig_block_len = split_pre->block_len; 2569 split_pre->ram_bytes = split_pre->len; 2570 split_pre->flags = flags; 2571 split_pre->compress_type = em->compress_type; 2572 split_pre->generation = em->generation; 2573 2574 replace_extent_mapping(em_tree, em, split_pre, 1); 2575 2576 /* 2577 * Now we only have an extent_map at: 2578 * [em->start, em->start + pre] 2579 */ 2580 2581 /* Insert the middle extent_map. */ 2582 split_mid->start = em->start + pre; 2583 split_mid->len = em->len - pre; 2584 split_mid->orig_start = split_mid->start; 2585 split_mid->block_start = em->block_start + pre; 2586 split_mid->block_len = split_mid->len; 2587 split_mid->orig_block_len = split_mid->block_len; 2588 split_mid->ram_bytes = split_mid->len; 2589 split_mid->flags = flags; 2590 split_mid->compress_type = em->compress_type; 2591 split_mid->generation = em->generation; 2592 add_extent_mapping(em_tree, split_mid, 1); 2593 2594 /* Once for us */ 2595 free_extent_map(em); 2596 /* Once for the tree */ 2597 free_extent_map(em); 2598 2599 out_unlock: 2600 write_unlock(&em_tree->lock); 2601 unlock_extent(&inode->io_tree, start, start + len - 1, NULL); 2602 free_extent_map(split_mid); 2603 out_free_pre: 2604 free_extent_map(split_pre); 2605 return ret; 2606 } 2607 2608 int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2609 struct btrfs_ordered_extent *ordered) 2610 { 2611 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2612 u64 len = bbio->bio.bi_iter.bi_size; 2613 struct btrfs_inode *inode = bbio->inode; 2614 u64 ordered_len = ordered->num_bytes; 2615 int ret = 0; 2616 2617 /* Must always be called for the beginning of an ordered extent. */ 2618 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2619 return -EINVAL; 2620 2621 /* No need to split if the ordered extent covers the entire bio. */ 2622 if (ordered->disk_num_bytes == len) 2623 return 0; 2624 2625 ret = btrfs_split_ordered_extent(ordered, len); 2626 if (ret) 2627 return ret; 2628 2629 /* 2630 * Don't split the extent_map for NOCOW extents, as we're writing into 2631 * a pre-existing one. 2632 */ 2633 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 2634 return 0; 2635 2636 return split_extent_map(inode, bbio->file_offset, ordered_len, len); 2637 } 2638 2639 /* 2640 * given a list of ordered sums record them in the inode. This happens 2641 * at IO completion time based on sums calculated at bio submission time. 2642 */ 2643 static int add_pending_csums(struct btrfs_trans_handle *trans, 2644 struct list_head *list) 2645 { 2646 struct btrfs_ordered_sum *sum; 2647 struct btrfs_root *csum_root = NULL; 2648 int ret; 2649 2650 list_for_each_entry(sum, list, list) { 2651 trans->adding_csums = true; 2652 if (!csum_root) 2653 csum_root = btrfs_csum_root(trans->fs_info, 2654 sum->bytenr); 2655 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2656 trans->adding_csums = false; 2657 if (ret) 2658 return ret; 2659 } 2660 return 0; 2661 } 2662 2663 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2664 const u64 start, 2665 const u64 len, 2666 struct extent_state **cached_state) 2667 { 2668 u64 search_start = start; 2669 const u64 end = start + len - 1; 2670 2671 while (search_start < end) { 2672 const u64 search_len = end - search_start + 1; 2673 struct extent_map *em; 2674 u64 em_len; 2675 int ret = 0; 2676 2677 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2678 if (IS_ERR(em)) 2679 return PTR_ERR(em); 2680 2681 if (em->block_start != EXTENT_MAP_HOLE) 2682 goto next; 2683 2684 em_len = em->len; 2685 if (em->start < search_start) 2686 em_len -= search_start - em->start; 2687 if (em_len > search_len) 2688 em_len = search_len; 2689 2690 ret = set_extent_bit(&inode->io_tree, search_start, 2691 search_start + em_len - 1, 2692 EXTENT_DELALLOC_NEW, cached_state, 2693 GFP_NOFS); 2694 next: 2695 search_start = extent_map_end(em); 2696 free_extent_map(em); 2697 if (ret) 2698 return ret; 2699 } 2700 return 0; 2701 } 2702 2703 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2704 unsigned int extra_bits, 2705 struct extent_state **cached_state) 2706 { 2707 WARN_ON(PAGE_ALIGNED(end)); 2708 2709 if (start >= i_size_read(&inode->vfs_inode) && 2710 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2711 /* 2712 * There can't be any extents following eof in this case so just 2713 * set the delalloc new bit for the range directly. 2714 */ 2715 extra_bits |= EXTENT_DELALLOC_NEW; 2716 } else { 2717 int ret; 2718 2719 ret = btrfs_find_new_delalloc_bytes(inode, start, 2720 end + 1 - start, 2721 cached_state); 2722 if (ret) 2723 return ret; 2724 } 2725 2726 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2727 cached_state); 2728 } 2729 2730 /* see btrfs_writepage_start_hook for details on why this is required */ 2731 struct btrfs_writepage_fixup { 2732 struct page *page; 2733 struct btrfs_inode *inode; 2734 struct btrfs_work work; 2735 }; 2736 2737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2738 { 2739 struct btrfs_writepage_fixup *fixup; 2740 struct btrfs_ordered_extent *ordered; 2741 struct extent_state *cached_state = NULL; 2742 struct extent_changeset *data_reserved = NULL; 2743 struct page *page; 2744 struct btrfs_inode *inode; 2745 u64 page_start; 2746 u64 page_end; 2747 int ret = 0; 2748 bool free_delalloc_space = true; 2749 2750 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2751 page = fixup->page; 2752 inode = fixup->inode; 2753 page_start = page_offset(page); 2754 page_end = page_offset(page) + PAGE_SIZE - 1; 2755 2756 /* 2757 * This is similar to page_mkwrite, we need to reserve the space before 2758 * we take the page lock. 2759 */ 2760 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2761 PAGE_SIZE); 2762 again: 2763 lock_page(page); 2764 2765 /* 2766 * Before we queued this fixup, we took a reference on the page. 2767 * page->mapping may go NULL, but it shouldn't be moved to a different 2768 * address space. 2769 */ 2770 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2771 /* 2772 * Unfortunately this is a little tricky, either 2773 * 2774 * 1) We got here and our page had already been dealt with and 2775 * we reserved our space, thus ret == 0, so we need to just 2776 * drop our space reservation and bail. This can happen the 2777 * first time we come into the fixup worker, or could happen 2778 * while waiting for the ordered extent. 2779 * 2) Our page was already dealt with, but we happened to get an 2780 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2781 * this case we obviously don't have anything to release, but 2782 * because the page was already dealt with we don't want to 2783 * mark the page with an error, so make sure we're resetting 2784 * ret to 0. This is why we have this check _before_ the ret 2785 * check, because we do not want to have a surprise ENOSPC 2786 * when the page was already properly dealt with. 2787 */ 2788 if (!ret) { 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2790 btrfs_delalloc_release_space(inode, data_reserved, 2791 page_start, PAGE_SIZE, 2792 true); 2793 } 2794 ret = 0; 2795 goto out_page; 2796 } 2797 2798 /* 2799 * We can't mess with the page state unless it is locked, so now that 2800 * it is locked bail if we failed to make our space reservation. 2801 */ 2802 if (ret) 2803 goto out_page; 2804 2805 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2806 2807 /* already ordered? We're done */ 2808 if (PageOrdered(page)) 2809 goto out_reserved; 2810 2811 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2812 if (ordered) { 2813 unlock_extent(&inode->io_tree, page_start, page_end, 2814 &cached_state); 2815 unlock_page(page); 2816 btrfs_start_ordered_extent(ordered); 2817 btrfs_put_ordered_extent(ordered); 2818 goto again; 2819 } 2820 2821 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2822 &cached_state); 2823 if (ret) 2824 goto out_reserved; 2825 2826 /* 2827 * Everything went as planned, we're now the owner of a dirty page with 2828 * delayed allocation bits set and space reserved for our COW 2829 * destination. 2830 * 2831 * The page was dirty when we started, nothing should have cleaned it. 2832 */ 2833 BUG_ON(!PageDirty(page)); 2834 free_delalloc_space = false; 2835 out_reserved: 2836 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2837 if (free_delalloc_space) 2838 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2839 PAGE_SIZE, true); 2840 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2841 out_page: 2842 if (ret) { 2843 /* 2844 * We hit ENOSPC or other errors. Update the mapping and page 2845 * to reflect the errors and clean the page. 2846 */ 2847 mapping_set_error(page->mapping, ret); 2848 end_extent_writepage(page, ret, page_start, page_end); 2849 clear_page_dirty_for_io(page); 2850 SetPageError(page); 2851 } 2852 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2853 unlock_page(page); 2854 put_page(page); 2855 kfree(fixup); 2856 extent_changeset_free(data_reserved); 2857 /* 2858 * As a precaution, do a delayed iput in case it would be the last iput 2859 * that could need flushing space. Recursing back to fixup worker would 2860 * deadlock. 2861 */ 2862 btrfs_add_delayed_iput(inode); 2863 } 2864 2865 /* 2866 * There are a few paths in the higher layers of the kernel that directly 2867 * set the page dirty bit without asking the filesystem if it is a 2868 * good idea. This causes problems because we want to make sure COW 2869 * properly happens and the data=ordered rules are followed. 2870 * 2871 * In our case any range that doesn't have the ORDERED bit set 2872 * hasn't been properly setup for IO. We kick off an async process 2873 * to fix it up. The async helper will wait for ordered extents, set 2874 * the delalloc bit and make it safe to write the page. 2875 */ 2876 int btrfs_writepage_cow_fixup(struct page *page) 2877 { 2878 struct inode *inode = page->mapping->host; 2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2880 struct btrfs_writepage_fixup *fixup; 2881 2882 /* This page has ordered extent covering it already */ 2883 if (PageOrdered(page)) 2884 return 0; 2885 2886 /* 2887 * PageChecked is set below when we create a fixup worker for this page, 2888 * don't try to create another one if we're already PageChecked() 2889 * 2890 * The extent_io writepage code will redirty the page if we send back 2891 * EAGAIN. 2892 */ 2893 if (PageChecked(page)) 2894 return -EAGAIN; 2895 2896 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2897 if (!fixup) 2898 return -EAGAIN; 2899 2900 /* 2901 * We are already holding a reference to this inode from 2902 * write_cache_pages. We need to hold it because the space reservation 2903 * takes place outside of the page lock, and we can't trust 2904 * page->mapping outside of the page lock. 2905 */ 2906 ihold(inode); 2907 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2908 get_page(page); 2909 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2910 fixup->page = page; 2911 fixup->inode = BTRFS_I(inode); 2912 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2913 2914 return -EAGAIN; 2915 } 2916 2917 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2918 struct btrfs_inode *inode, u64 file_pos, 2919 struct btrfs_file_extent_item *stack_fi, 2920 const bool update_inode_bytes, 2921 u64 qgroup_reserved) 2922 { 2923 struct btrfs_root *root = inode->root; 2924 const u64 sectorsize = root->fs_info->sectorsize; 2925 struct btrfs_path *path; 2926 struct extent_buffer *leaf; 2927 struct btrfs_key ins; 2928 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2929 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2930 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2931 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2932 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2933 struct btrfs_drop_extents_args drop_args = { 0 }; 2934 int ret; 2935 2936 path = btrfs_alloc_path(); 2937 if (!path) 2938 return -ENOMEM; 2939 2940 /* 2941 * we may be replacing one extent in the tree with another. 2942 * The new extent is pinned in the extent map, and we don't want 2943 * to drop it from the cache until it is completely in the btree. 2944 * 2945 * So, tell btrfs_drop_extents to leave this extent in the cache. 2946 * the caller is expected to unpin it and allow it to be merged 2947 * with the others. 2948 */ 2949 drop_args.path = path; 2950 drop_args.start = file_pos; 2951 drop_args.end = file_pos + num_bytes; 2952 drop_args.replace_extent = true; 2953 drop_args.extent_item_size = sizeof(*stack_fi); 2954 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2955 if (ret) 2956 goto out; 2957 2958 if (!drop_args.extent_inserted) { 2959 ins.objectid = btrfs_ino(inode); 2960 ins.offset = file_pos; 2961 ins.type = BTRFS_EXTENT_DATA_KEY; 2962 2963 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2964 sizeof(*stack_fi)); 2965 if (ret) 2966 goto out; 2967 } 2968 leaf = path->nodes[0]; 2969 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2970 write_extent_buffer(leaf, stack_fi, 2971 btrfs_item_ptr_offset(leaf, path->slots[0]), 2972 sizeof(struct btrfs_file_extent_item)); 2973 2974 btrfs_mark_buffer_dirty(leaf); 2975 btrfs_release_path(path); 2976 2977 /* 2978 * If we dropped an inline extent here, we know the range where it is 2979 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2980 * number of bytes only for that range containing the inline extent. 2981 * The remaining of the range will be processed when clearning the 2982 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2983 */ 2984 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2985 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2986 2987 inline_size = drop_args.bytes_found - inline_size; 2988 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2989 drop_args.bytes_found -= inline_size; 2990 num_bytes -= sectorsize; 2991 } 2992 2993 if (update_inode_bytes) 2994 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2995 2996 ins.objectid = disk_bytenr; 2997 ins.offset = disk_num_bytes; 2998 ins.type = BTRFS_EXTENT_ITEM_KEY; 2999 3000 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3001 if (ret) 3002 goto out; 3003 3004 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3005 file_pos - offset, 3006 qgroup_reserved, &ins); 3007 out: 3008 btrfs_free_path(path); 3009 3010 return ret; 3011 } 3012 3013 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3014 u64 start, u64 len) 3015 { 3016 struct btrfs_block_group *cache; 3017 3018 cache = btrfs_lookup_block_group(fs_info, start); 3019 ASSERT(cache); 3020 3021 spin_lock(&cache->lock); 3022 cache->delalloc_bytes -= len; 3023 spin_unlock(&cache->lock); 3024 3025 btrfs_put_block_group(cache); 3026 } 3027 3028 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3029 struct btrfs_ordered_extent *oe) 3030 { 3031 struct btrfs_file_extent_item stack_fi; 3032 bool update_inode_bytes; 3033 u64 num_bytes = oe->num_bytes; 3034 u64 ram_bytes = oe->ram_bytes; 3035 3036 memset(&stack_fi, 0, sizeof(stack_fi)); 3037 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3038 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3039 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3040 oe->disk_num_bytes); 3041 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3042 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3043 num_bytes = oe->truncated_len; 3044 ram_bytes = num_bytes; 3045 } 3046 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3047 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3048 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3049 /* Encryption and other encoding is reserved and all 0 */ 3050 3051 /* 3052 * For delalloc, when completing an ordered extent we update the inode's 3053 * bytes when clearing the range in the inode's io tree, so pass false 3054 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3055 * except if the ordered extent was truncated. 3056 */ 3057 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3058 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3059 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3060 3061 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3062 oe->file_offset, &stack_fi, 3063 update_inode_bytes, oe->qgroup_rsv); 3064 } 3065 3066 /* 3067 * As ordered data IO finishes, this gets called so we can finish 3068 * an ordered extent if the range of bytes in the file it covers are 3069 * fully written. 3070 */ 3071 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3072 { 3073 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3074 struct btrfs_root *root = inode->root; 3075 struct btrfs_fs_info *fs_info = root->fs_info; 3076 struct btrfs_trans_handle *trans = NULL; 3077 struct extent_io_tree *io_tree = &inode->io_tree; 3078 struct extent_state *cached_state = NULL; 3079 u64 start, end; 3080 int compress_type = 0; 3081 int ret = 0; 3082 u64 logical_len = ordered_extent->num_bytes; 3083 bool freespace_inode; 3084 bool truncated = false; 3085 bool clear_reserved_extent = true; 3086 unsigned int clear_bits = EXTENT_DEFRAG; 3087 3088 start = ordered_extent->file_offset; 3089 end = start + ordered_extent->num_bytes - 1; 3090 3091 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3092 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3093 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3094 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3095 clear_bits |= EXTENT_DELALLOC_NEW; 3096 3097 freespace_inode = btrfs_is_free_space_inode(inode); 3098 if (!freespace_inode) 3099 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3100 3101 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3102 ret = -EIO; 3103 goto out; 3104 } 3105 3106 /* A valid ->physical implies a write on a sequential zone. */ 3107 if (ordered_extent->physical != (u64)-1) { 3108 btrfs_rewrite_logical_zoned(ordered_extent); 3109 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3110 ordered_extent->disk_num_bytes); 3111 } else if (btrfs_is_data_reloc_root(inode->root)) { 3112 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3113 ordered_extent->disk_num_bytes); 3114 } 3115 3116 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3117 truncated = true; 3118 logical_len = ordered_extent->truncated_len; 3119 /* Truncated the entire extent, don't bother adding */ 3120 if (!logical_len) 3121 goto out; 3122 } 3123 3124 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3125 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3126 3127 btrfs_inode_safe_disk_i_size_write(inode, 0); 3128 if (freespace_inode) 3129 trans = btrfs_join_transaction_spacecache(root); 3130 else 3131 trans = btrfs_join_transaction(root); 3132 if (IS_ERR(trans)) { 3133 ret = PTR_ERR(trans); 3134 trans = NULL; 3135 goto out; 3136 } 3137 trans->block_rsv = &inode->block_rsv; 3138 ret = btrfs_update_inode_fallback(trans, root, inode); 3139 if (ret) /* -ENOMEM or corruption */ 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 3144 clear_bits |= EXTENT_LOCKED; 3145 lock_extent(io_tree, start, end, &cached_state); 3146 3147 if (freespace_inode) 3148 trans = btrfs_join_transaction_spacecache(root); 3149 else 3150 trans = btrfs_join_transaction(root); 3151 if (IS_ERR(trans)) { 3152 ret = PTR_ERR(trans); 3153 trans = NULL; 3154 goto out; 3155 } 3156 3157 trans->block_rsv = &inode->block_rsv; 3158 3159 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3160 compress_type = ordered_extent->compress_type; 3161 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3162 BUG_ON(compress_type); 3163 ret = btrfs_mark_extent_written(trans, inode, 3164 ordered_extent->file_offset, 3165 ordered_extent->file_offset + 3166 logical_len); 3167 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3168 ordered_extent->disk_num_bytes); 3169 } else { 3170 BUG_ON(root == fs_info->tree_root); 3171 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3172 if (!ret) { 3173 clear_reserved_extent = false; 3174 btrfs_release_delalloc_bytes(fs_info, 3175 ordered_extent->disk_bytenr, 3176 ordered_extent->disk_num_bytes); 3177 } 3178 } 3179 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3180 ordered_extent->num_bytes, trans->transid); 3181 if (ret < 0) { 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 3186 ret = add_pending_csums(trans, &ordered_extent->list); 3187 if (ret) { 3188 btrfs_abort_transaction(trans, ret); 3189 goto out; 3190 } 3191 3192 /* 3193 * If this is a new delalloc range, clear its new delalloc flag to 3194 * update the inode's number of bytes. This needs to be done first 3195 * before updating the inode item. 3196 */ 3197 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3198 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3199 clear_extent_bit(&inode->io_tree, start, end, 3200 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3201 &cached_state); 3202 3203 btrfs_inode_safe_disk_i_size_write(inode, 0); 3204 ret = btrfs_update_inode_fallback(trans, root, inode); 3205 if (ret) { /* -ENOMEM or corruption */ 3206 btrfs_abort_transaction(trans, ret); 3207 goto out; 3208 } 3209 ret = 0; 3210 out: 3211 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3212 &cached_state); 3213 3214 if (trans) 3215 btrfs_end_transaction(trans); 3216 3217 if (ret || truncated) { 3218 u64 unwritten_start = start; 3219 3220 /* 3221 * If we failed to finish this ordered extent for any reason we 3222 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3223 * extent, and mark the inode with the error if it wasn't 3224 * already set. Any error during writeback would have already 3225 * set the mapping error, so we need to set it if we're the ones 3226 * marking this ordered extent as failed. 3227 */ 3228 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3229 &ordered_extent->flags)) 3230 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3231 3232 if (truncated) 3233 unwritten_start += logical_len; 3234 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3235 3236 /* Drop extent maps for the part of the extent we didn't write. */ 3237 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3238 3239 /* 3240 * If the ordered extent had an IOERR or something else went 3241 * wrong we need to return the space for this ordered extent 3242 * back to the allocator. We only free the extent in the 3243 * truncated case if we didn't write out the extent at all. 3244 * 3245 * If we made it past insert_reserved_file_extent before we 3246 * errored out then we don't need to do this as the accounting 3247 * has already been done. 3248 */ 3249 if ((ret || !logical_len) && 3250 clear_reserved_extent && 3251 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3252 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3253 /* 3254 * Discard the range before returning it back to the 3255 * free space pool 3256 */ 3257 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3258 btrfs_discard_extent(fs_info, 3259 ordered_extent->disk_bytenr, 3260 ordered_extent->disk_num_bytes, 3261 NULL); 3262 btrfs_free_reserved_extent(fs_info, 3263 ordered_extent->disk_bytenr, 3264 ordered_extent->disk_num_bytes, 1); 3265 } 3266 } 3267 3268 /* 3269 * This needs to be done to make sure anybody waiting knows we are done 3270 * updating everything for this ordered extent. 3271 */ 3272 btrfs_remove_ordered_extent(inode, ordered_extent); 3273 3274 /* once for us */ 3275 btrfs_put_ordered_extent(ordered_extent); 3276 /* once for the tree */ 3277 btrfs_put_ordered_extent(ordered_extent); 3278 3279 return ret; 3280 } 3281 3282 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3283 struct page *page, u64 start, 3284 u64 end, bool uptodate) 3285 { 3286 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3287 3288 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); 3289 } 3290 3291 /* 3292 * Verify the checksum for a single sector without any extra action that depend 3293 * on the type of I/O. 3294 */ 3295 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3296 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3297 { 3298 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3299 char *kaddr; 3300 3301 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3302 3303 shash->tfm = fs_info->csum_shash; 3304 3305 kaddr = kmap_local_page(page) + pgoff; 3306 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3307 kunmap_local(kaddr); 3308 3309 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3310 return -EIO; 3311 return 0; 3312 } 3313 3314 /* 3315 * Verify the checksum of a single data sector. 3316 * 3317 * @bbio: btrfs_io_bio which contains the csum 3318 * @dev: device the sector is on 3319 * @bio_offset: offset to the beginning of the bio (in bytes) 3320 * @bv: bio_vec to check 3321 * 3322 * Check if the checksum on a data block is valid. When a checksum mismatch is 3323 * detected, report the error and fill the corrupted range with zero. 3324 * 3325 * Return %true if the sector is ok or had no checksum to start with, else %false. 3326 */ 3327 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3328 u32 bio_offset, struct bio_vec *bv) 3329 { 3330 struct btrfs_inode *inode = bbio->inode; 3331 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3332 u64 file_offset = bbio->file_offset + bio_offset; 3333 u64 end = file_offset + bv->bv_len - 1; 3334 u8 *csum_expected; 3335 u8 csum[BTRFS_CSUM_SIZE]; 3336 3337 ASSERT(bv->bv_len == fs_info->sectorsize); 3338 3339 if (!bbio->csum) 3340 return true; 3341 3342 if (btrfs_is_data_reloc_root(inode->root) && 3343 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3344 1, NULL)) { 3345 /* Skip the range without csum for data reloc inode */ 3346 clear_extent_bits(&inode->io_tree, file_offset, end, 3347 EXTENT_NODATASUM); 3348 return true; 3349 } 3350 3351 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3352 fs_info->csum_size; 3353 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3354 csum_expected)) 3355 goto zeroit; 3356 return true; 3357 3358 zeroit: 3359 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3360 bbio->mirror_num); 3361 if (dev) 3362 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3363 memzero_bvec(bv); 3364 return false; 3365 } 3366 3367 /* 3368 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3369 * 3370 * @inode: The inode we want to perform iput on 3371 * 3372 * This function uses the generic vfs_inode::i_count to track whether we should 3373 * just decrement it (in case it's > 1) or if this is the last iput then link 3374 * the inode to the delayed iput machinery. Delayed iputs are processed at 3375 * transaction commit time/superblock commit/cleaner kthread. 3376 */ 3377 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3378 { 3379 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3380 3381 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3382 return; 3383 3384 atomic_inc(&fs_info->nr_delayed_iputs); 3385 spin_lock(&fs_info->delayed_iput_lock); 3386 ASSERT(list_empty(&inode->delayed_iput)); 3387 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3388 spin_unlock(&fs_info->delayed_iput_lock); 3389 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3390 wake_up_process(fs_info->cleaner_kthread); 3391 } 3392 3393 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3394 struct btrfs_inode *inode) 3395 { 3396 list_del_init(&inode->delayed_iput); 3397 spin_unlock(&fs_info->delayed_iput_lock); 3398 iput(&inode->vfs_inode); 3399 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3400 wake_up(&fs_info->delayed_iputs_wait); 3401 spin_lock(&fs_info->delayed_iput_lock); 3402 } 3403 3404 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3405 struct btrfs_inode *inode) 3406 { 3407 if (!list_empty(&inode->delayed_iput)) { 3408 spin_lock(&fs_info->delayed_iput_lock); 3409 if (!list_empty(&inode->delayed_iput)) 3410 run_delayed_iput_locked(fs_info, inode); 3411 spin_unlock(&fs_info->delayed_iput_lock); 3412 } 3413 } 3414 3415 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3416 { 3417 3418 spin_lock(&fs_info->delayed_iput_lock); 3419 while (!list_empty(&fs_info->delayed_iputs)) { 3420 struct btrfs_inode *inode; 3421 3422 inode = list_first_entry(&fs_info->delayed_iputs, 3423 struct btrfs_inode, delayed_iput); 3424 run_delayed_iput_locked(fs_info, inode); 3425 cond_resched_lock(&fs_info->delayed_iput_lock); 3426 } 3427 spin_unlock(&fs_info->delayed_iput_lock); 3428 } 3429 3430 /* 3431 * Wait for flushing all delayed iputs 3432 * 3433 * @fs_info: the filesystem 3434 * 3435 * This will wait on any delayed iputs that are currently running with KILLABLE 3436 * set. Once they are all done running we will return, unless we are killed in 3437 * which case we return EINTR. This helps in user operations like fallocate etc 3438 * that might get blocked on the iputs. 3439 * 3440 * Return EINTR if we were killed, 0 if nothing's pending 3441 */ 3442 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3443 { 3444 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3445 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3446 if (ret) 3447 return -EINTR; 3448 return 0; 3449 } 3450 3451 /* 3452 * This creates an orphan entry for the given inode in case something goes wrong 3453 * in the middle of an unlink. 3454 */ 3455 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3456 struct btrfs_inode *inode) 3457 { 3458 int ret; 3459 3460 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3461 if (ret && ret != -EEXIST) { 3462 btrfs_abort_transaction(trans, ret); 3463 return ret; 3464 } 3465 3466 return 0; 3467 } 3468 3469 /* 3470 * We have done the delete so we can go ahead and remove the orphan item for 3471 * this particular inode. 3472 */ 3473 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3474 struct btrfs_inode *inode) 3475 { 3476 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3477 } 3478 3479 /* 3480 * this cleans up any orphans that may be left on the list from the last use 3481 * of this root. 3482 */ 3483 int btrfs_orphan_cleanup(struct btrfs_root *root) 3484 { 3485 struct btrfs_fs_info *fs_info = root->fs_info; 3486 struct btrfs_path *path; 3487 struct extent_buffer *leaf; 3488 struct btrfs_key key, found_key; 3489 struct btrfs_trans_handle *trans; 3490 struct inode *inode; 3491 u64 last_objectid = 0; 3492 int ret = 0, nr_unlink = 0; 3493 3494 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3495 return 0; 3496 3497 path = btrfs_alloc_path(); 3498 if (!path) { 3499 ret = -ENOMEM; 3500 goto out; 3501 } 3502 path->reada = READA_BACK; 3503 3504 key.objectid = BTRFS_ORPHAN_OBJECTID; 3505 key.type = BTRFS_ORPHAN_ITEM_KEY; 3506 key.offset = (u64)-1; 3507 3508 while (1) { 3509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3510 if (ret < 0) 3511 goto out; 3512 3513 /* 3514 * if ret == 0 means we found what we were searching for, which 3515 * is weird, but possible, so only screw with path if we didn't 3516 * find the key and see if we have stuff that matches 3517 */ 3518 if (ret > 0) { 3519 ret = 0; 3520 if (path->slots[0] == 0) 3521 break; 3522 path->slots[0]--; 3523 } 3524 3525 /* pull out the item */ 3526 leaf = path->nodes[0]; 3527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3528 3529 /* make sure the item matches what we want */ 3530 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3531 break; 3532 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3533 break; 3534 3535 /* release the path since we're done with it */ 3536 btrfs_release_path(path); 3537 3538 /* 3539 * this is where we are basically btrfs_lookup, without the 3540 * crossing root thing. we store the inode number in the 3541 * offset of the orphan item. 3542 */ 3543 3544 if (found_key.offset == last_objectid) { 3545 btrfs_err(fs_info, 3546 "Error removing orphan entry, stopping orphan cleanup"); 3547 ret = -EINVAL; 3548 goto out; 3549 } 3550 3551 last_objectid = found_key.offset; 3552 3553 found_key.objectid = found_key.offset; 3554 found_key.type = BTRFS_INODE_ITEM_KEY; 3555 found_key.offset = 0; 3556 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3557 ret = PTR_ERR_OR_ZERO(inode); 3558 if (ret && ret != -ENOENT) 3559 goto out; 3560 3561 if (ret == -ENOENT && root == fs_info->tree_root) { 3562 struct btrfs_root *dead_root; 3563 int is_dead_root = 0; 3564 3565 /* 3566 * This is an orphan in the tree root. Currently these 3567 * could come from 2 sources: 3568 * a) a root (snapshot/subvolume) deletion in progress 3569 * b) a free space cache inode 3570 * We need to distinguish those two, as the orphan item 3571 * for a root must not get deleted before the deletion 3572 * of the snapshot/subvolume's tree completes. 3573 * 3574 * btrfs_find_orphan_roots() ran before us, which has 3575 * found all deleted roots and loaded them into 3576 * fs_info->fs_roots_radix. So here we can find if an 3577 * orphan item corresponds to a deleted root by looking 3578 * up the root from that radix tree. 3579 */ 3580 3581 spin_lock(&fs_info->fs_roots_radix_lock); 3582 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3583 (unsigned long)found_key.objectid); 3584 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3585 is_dead_root = 1; 3586 spin_unlock(&fs_info->fs_roots_radix_lock); 3587 3588 if (is_dead_root) { 3589 /* prevent this orphan from being found again */ 3590 key.offset = found_key.objectid - 1; 3591 continue; 3592 } 3593 3594 } 3595 3596 /* 3597 * If we have an inode with links, there are a couple of 3598 * possibilities: 3599 * 3600 * 1. We were halfway through creating fsverity metadata for the 3601 * file. In that case, the orphan item represents incomplete 3602 * fsverity metadata which must be cleaned up with 3603 * btrfs_drop_verity_items and deleting the orphan item. 3604 3605 * 2. Old kernels (before v3.12) used to create an 3606 * orphan item for truncate indicating that there were possibly 3607 * extent items past i_size that needed to be deleted. In v3.12, 3608 * truncate was changed to update i_size in sync with the extent 3609 * items, but the (useless) orphan item was still created. Since 3610 * v4.18, we don't create the orphan item for truncate at all. 3611 * 3612 * So, this item could mean that we need to do a truncate, but 3613 * only if this filesystem was last used on a pre-v3.12 kernel 3614 * and was not cleanly unmounted. The odds of that are quite 3615 * slim, and it's a pain to do the truncate now, so just delete 3616 * the orphan item. 3617 * 3618 * It's also possible that this orphan item was supposed to be 3619 * deleted but wasn't. The inode number may have been reused, 3620 * but either way, we can delete the orphan item. 3621 */ 3622 if (ret == -ENOENT || inode->i_nlink) { 3623 if (!ret) { 3624 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3625 iput(inode); 3626 if (ret) 3627 goto out; 3628 } 3629 trans = btrfs_start_transaction(root, 1); 3630 if (IS_ERR(trans)) { 3631 ret = PTR_ERR(trans); 3632 iput(inode); 3633 goto out; 3634 } 3635 btrfs_debug(fs_info, "auto deleting %Lu", 3636 found_key.objectid); 3637 ret = btrfs_del_orphan_item(trans, root, 3638 found_key.objectid); 3639 btrfs_end_transaction(trans); 3640 if (ret) { 3641 iput(inode); 3642 goto out; 3643 } 3644 continue; 3645 } 3646 3647 nr_unlink++; 3648 3649 /* this will do delete_inode and everything for us */ 3650 iput(inode); 3651 } 3652 /* release the path since we're done with it */ 3653 btrfs_release_path(path); 3654 3655 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3656 trans = btrfs_join_transaction(root); 3657 if (!IS_ERR(trans)) 3658 btrfs_end_transaction(trans); 3659 } 3660 3661 if (nr_unlink) 3662 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3663 3664 out: 3665 if (ret) 3666 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3667 btrfs_free_path(path); 3668 return ret; 3669 } 3670 3671 /* 3672 * very simple check to peek ahead in the leaf looking for xattrs. If we 3673 * don't find any xattrs, we know there can't be any acls. 3674 * 3675 * slot is the slot the inode is in, objectid is the objectid of the inode 3676 */ 3677 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3678 int slot, u64 objectid, 3679 int *first_xattr_slot) 3680 { 3681 u32 nritems = btrfs_header_nritems(leaf); 3682 struct btrfs_key found_key; 3683 static u64 xattr_access = 0; 3684 static u64 xattr_default = 0; 3685 int scanned = 0; 3686 3687 if (!xattr_access) { 3688 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3689 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3690 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3691 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3692 } 3693 3694 slot++; 3695 *first_xattr_slot = -1; 3696 while (slot < nritems) { 3697 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3698 3699 /* we found a different objectid, there must not be acls */ 3700 if (found_key.objectid != objectid) 3701 return 0; 3702 3703 /* we found an xattr, assume we've got an acl */ 3704 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3705 if (*first_xattr_slot == -1) 3706 *first_xattr_slot = slot; 3707 if (found_key.offset == xattr_access || 3708 found_key.offset == xattr_default) 3709 return 1; 3710 } 3711 3712 /* 3713 * we found a key greater than an xattr key, there can't 3714 * be any acls later on 3715 */ 3716 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3717 return 0; 3718 3719 slot++; 3720 scanned++; 3721 3722 /* 3723 * it goes inode, inode backrefs, xattrs, extents, 3724 * so if there are a ton of hard links to an inode there can 3725 * be a lot of backrefs. Don't waste time searching too hard, 3726 * this is just an optimization 3727 */ 3728 if (scanned >= 8) 3729 break; 3730 } 3731 /* we hit the end of the leaf before we found an xattr or 3732 * something larger than an xattr. We have to assume the inode 3733 * has acls 3734 */ 3735 if (*first_xattr_slot == -1) 3736 *first_xattr_slot = slot; 3737 return 1; 3738 } 3739 3740 /* 3741 * read an inode from the btree into the in-memory inode 3742 */ 3743 static int btrfs_read_locked_inode(struct inode *inode, 3744 struct btrfs_path *in_path) 3745 { 3746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3747 struct btrfs_path *path = in_path; 3748 struct extent_buffer *leaf; 3749 struct btrfs_inode_item *inode_item; 3750 struct btrfs_root *root = BTRFS_I(inode)->root; 3751 struct btrfs_key location; 3752 unsigned long ptr; 3753 int maybe_acls; 3754 u32 rdev; 3755 int ret; 3756 bool filled = false; 3757 int first_xattr_slot; 3758 3759 ret = btrfs_fill_inode(inode, &rdev); 3760 if (!ret) 3761 filled = true; 3762 3763 if (!path) { 3764 path = btrfs_alloc_path(); 3765 if (!path) 3766 return -ENOMEM; 3767 } 3768 3769 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3770 3771 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3772 if (ret) { 3773 if (path != in_path) 3774 btrfs_free_path(path); 3775 return ret; 3776 } 3777 3778 leaf = path->nodes[0]; 3779 3780 if (filled) 3781 goto cache_index; 3782 3783 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3784 struct btrfs_inode_item); 3785 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3786 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3787 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3788 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3789 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3790 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3791 round_up(i_size_read(inode), fs_info->sectorsize)); 3792 3793 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3794 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3795 3796 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3797 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3798 3799 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3800 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3801 3802 BTRFS_I(inode)->i_otime.tv_sec = 3803 btrfs_timespec_sec(leaf, &inode_item->otime); 3804 BTRFS_I(inode)->i_otime.tv_nsec = 3805 btrfs_timespec_nsec(leaf, &inode_item->otime); 3806 3807 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3808 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3809 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3810 3811 inode_set_iversion_queried(inode, 3812 btrfs_inode_sequence(leaf, inode_item)); 3813 inode->i_generation = BTRFS_I(inode)->generation; 3814 inode->i_rdev = 0; 3815 rdev = btrfs_inode_rdev(leaf, inode_item); 3816 3817 BTRFS_I(inode)->index_cnt = (u64)-1; 3818 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3819 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3820 3821 cache_index: 3822 /* 3823 * If we were modified in the current generation and evicted from memory 3824 * and then re-read we need to do a full sync since we don't have any 3825 * idea about which extents were modified before we were evicted from 3826 * cache. 3827 * 3828 * This is required for both inode re-read from disk and delayed inode 3829 * in delayed_nodes_tree. 3830 */ 3831 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3832 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3833 &BTRFS_I(inode)->runtime_flags); 3834 3835 /* 3836 * We don't persist the id of the transaction where an unlink operation 3837 * against the inode was last made. So here we assume the inode might 3838 * have been evicted, and therefore the exact value of last_unlink_trans 3839 * lost, and set it to last_trans to avoid metadata inconsistencies 3840 * between the inode and its parent if the inode is fsync'ed and the log 3841 * replayed. For example, in the scenario: 3842 * 3843 * touch mydir/foo 3844 * ln mydir/foo mydir/bar 3845 * sync 3846 * unlink mydir/bar 3847 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3848 * xfs_io -c fsync mydir/foo 3849 * <power failure> 3850 * mount fs, triggers fsync log replay 3851 * 3852 * We must make sure that when we fsync our inode foo we also log its 3853 * parent inode, otherwise after log replay the parent still has the 3854 * dentry with the "bar" name but our inode foo has a link count of 1 3855 * and doesn't have an inode ref with the name "bar" anymore. 3856 * 3857 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3858 * but it guarantees correctness at the expense of occasional full 3859 * transaction commits on fsync if our inode is a directory, or if our 3860 * inode is not a directory, logging its parent unnecessarily. 3861 */ 3862 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3863 3864 /* 3865 * Same logic as for last_unlink_trans. We don't persist the generation 3866 * of the last transaction where this inode was used for a reflink 3867 * operation, so after eviction and reloading the inode we must be 3868 * pessimistic and assume the last transaction that modified the inode. 3869 */ 3870 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3871 3872 path->slots[0]++; 3873 if (inode->i_nlink != 1 || 3874 path->slots[0] >= btrfs_header_nritems(leaf)) 3875 goto cache_acl; 3876 3877 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3878 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3879 goto cache_acl; 3880 3881 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3882 if (location.type == BTRFS_INODE_REF_KEY) { 3883 struct btrfs_inode_ref *ref; 3884 3885 ref = (struct btrfs_inode_ref *)ptr; 3886 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3887 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3888 struct btrfs_inode_extref *extref; 3889 3890 extref = (struct btrfs_inode_extref *)ptr; 3891 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3892 extref); 3893 } 3894 cache_acl: 3895 /* 3896 * try to precache a NULL acl entry for files that don't have 3897 * any xattrs or acls 3898 */ 3899 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3900 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3901 if (first_xattr_slot != -1) { 3902 path->slots[0] = first_xattr_slot; 3903 ret = btrfs_load_inode_props(inode, path); 3904 if (ret) 3905 btrfs_err(fs_info, 3906 "error loading props for ino %llu (root %llu): %d", 3907 btrfs_ino(BTRFS_I(inode)), 3908 root->root_key.objectid, ret); 3909 } 3910 if (path != in_path) 3911 btrfs_free_path(path); 3912 3913 if (!maybe_acls) 3914 cache_no_acl(inode); 3915 3916 switch (inode->i_mode & S_IFMT) { 3917 case S_IFREG: 3918 inode->i_mapping->a_ops = &btrfs_aops; 3919 inode->i_fop = &btrfs_file_operations; 3920 inode->i_op = &btrfs_file_inode_operations; 3921 break; 3922 case S_IFDIR: 3923 inode->i_fop = &btrfs_dir_file_operations; 3924 inode->i_op = &btrfs_dir_inode_operations; 3925 break; 3926 case S_IFLNK: 3927 inode->i_op = &btrfs_symlink_inode_operations; 3928 inode_nohighmem(inode); 3929 inode->i_mapping->a_ops = &btrfs_aops; 3930 break; 3931 default: 3932 inode->i_op = &btrfs_special_inode_operations; 3933 init_special_inode(inode, inode->i_mode, rdev); 3934 break; 3935 } 3936 3937 btrfs_sync_inode_flags_to_i_flags(inode); 3938 return 0; 3939 } 3940 3941 /* 3942 * given a leaf and an inode, copy the inode fields into the leaf 3943 */ 3944 static void fill_inode_item(struct btrfs_trans_handle *trans, 3945 struct extent_buffer *leaf, 3946 struct btrfs_inode_item *item, 3947 struct inode *inode) 3948 { 3949 struct btrfs_map_token token; 3950 u64 flags; 3951 3952 btrfs_init_map_token(&token, leaf); 3953 3954 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3955 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3956 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3957 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3958 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3959 3960 btrfs_set_token_timespec_sec(&token, &item->atime, 3961 inode->i_atime.tv_sec); 3962 btrfs_set_token_timespec_nsec(&token, &item->atime, 3963 inode->i_atime.tv_nsec); 3964 3965 btrfs_set_token_timespec_sec(&token, &item->mtime, 3966 inode->i_mtime.tv_sec); 3967 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3968 inode->i_mtime.tv_nsec); 3969 3970 btrfs_set_token_timespec_sec(&token, &item->ctime, 3971 inode->i_ctime.tv_sec); 3972 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3973 inode->i_ctime.tv_nsec); 3974 3975 btrfs_set_token_timespec_sec(&token, &item->otime, 3976 BTRFS_I(inode)->i_otime.tv_sec); 3977 btrfs_set_token_timespec_nsec(&token, &item->otime, 3978 BTRFS_I(inode)->i_otime.tv_nsec); 3979 3980 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3981 btrfs_set_token_inode_generation(&token, item, 3982 BTRFS_I(inode)->generation); 3983 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3984 btrfs_set_token_inode_transid(&token, item, trans->transid); 3985 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3986 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3987 BTRFS_I(inode)->ro_flags); 3988 btrfs_set_token_inode_flags(&token, item, flags); 3989 btrfs_set_token_inode_block_group(&token, item, 0); 3990 } 3991 3992 /* 3993 * copy everything in the in-memory inode into the btree. 3994 */ 3995 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3996 struct btrfs_root *root, 3997 struct btrfs_inode *inode) 3998 { 3999 struct btrfs_inode_item *inode_item; 4000 struct btrfs_path *path; 4001 struct extent_buffer *leaf; 4002 int ret; 4003 4004 path = btrfs_alloc_path(); 4005 if (!path) 4006 return -ENOMEM; 4007 4008 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4009 if (ret) { 4010 if (ret > 0) 4011 ret = -ENOENT; 4012 goto failed; 4013 } 4014 4015 leaf = path->nodes[0]; 4016 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4017 struct btrfs_inode_item); 4018 4019 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4020 btrfs_mark_buffer_dirty(leaf); 4021 btrfs_set_inode_last_trans(trans, inode); 4022 ret = 0; 4023 failed: 4024 btrfs_free_path(path); 4025 return ret; 4026 } 4027 4028 /* 4029 * copy everything in the in-memory inode into the btree. 4030 */ 4031 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4032 struct btrfs_root *root, 4033 struct btrfs_inode *inode) 4034 { 4035 struct btrfs_fs_info *fs_info = root->fs_info; 4036 int ret; 4037 4038 /* 4039 * If the inode is a free space inode, we can deadlock during commit 4040 * if we put it into the delayed code. 4041 * 4042 * The data relocation inode should also be directly updated 4043 * without delay 4044 */ 4045 if (!btrfs_is_free_space_inode(inode) 4046 && !btrfs_is_data_reloc_root(root) 4047 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4048 btrfs_update_root_times(trans, root); 4049 4050 ret = btrfs_delayed_update_inode(trans, root, inode); 4051 if (!ret) 4052 btrfs_set_inode_last_trans(trans, inode); 4053 return ret; 4054 } 4055 4056 return btrfs_update_inode_item(trans, root, inode); 4057 } 4058 4059 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4060 struct btrfs_root *root, struct btrfs_inode *inode) 4061 { 4062 int ret; 4063 4064 ret = btrfs_update_inode(trans, root, inode); 4065 if (ret == -ENOSPC) 4066 return btrfs_update_inode_item(trans, root, inode); 4067 return ret; 4068 } 4069 4070 /* 4071 * unlink helper that gets used here in inode.c and in the tree logging 4072 * recovery code. It remove a link in a directory with a given name, and 4073 * also drops the back refs in the inode to the directory 4074 */ 4075 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4076 struct btrfs_inode *dir, 4077 struct btrfs_inode *inode, 4078 const struct fscrypt_str *name, 4079 struct btrfs_rename_ctx *rename_ctx) 4080 { 4081 struct btrfs_root *root = dir->root; 4082 struct btrfs_fs_info *fs_info = root->fs_info; 4083 struct btrfs_path *path; 4084 int ret = 0; 4085 struct btrfs_dir_item *di; 4086 u64 index; 4087 u64 ino = btrfs_ino(inode); 4088 u64 dir_ino = btrfs_ino(dir); 4089 4090 path = btrfs_alloc_path(); 4091 if (!path) { 4092 ret = -ENOMEM; 4093 goto out; 4094 } 4095 4096 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4097 if (IS_ERR_OR_NULL(di)) { 4098 ret = di ? PTR_ERR(di) : -ENOENT; 4099 goto err; 4100 } 4101 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4102 if (ret) 4103 goto err; 4104 btrfs_release_path(path); 4105 4106 /* 4107 * If we don't have dir index, we have to get it by looking up 4108 * the inode ref, since we get the inode ref, remove it directly, 4109 * it is unnecessary to do delayed deletion. 4110 * 4111 * But if we have dir index, needn't search inode ref to get it. 4112 * Since the inode ref is close to the inode item, it is better 4113 * that we delay to delete it, and just do this deletion when 4114 * we update the inode item. 4115 */ 4116 if (inode->dir_index) { 4117 ret = btrfs_delayed_delete_inode_ref(inode); 4118 if (!ret) { 4119 index = inode->dir_index; 4120 goto skip_backref; 4121 } 4122 } 4123 4124 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4125 if (ret) { 4126 btrfs_info(fs_info, 4127 "failed to delete reference to %.*s, inode %llu parent %llu", 4128 name->len, name->name, ino, dir_ino); 4129 btrfs_abort_transaction(trans, ret); 4130 goto err; 4131 } 4132 skip_backref: 4133 if (rename_ctx) 4134 rename_ctx->index = index; 4135 4136 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4137 if (ret) { 4138 btrfs_abort_transaction(trans, ret); 4139 goto err; 4140 } 4141 4142 /* 4143 * If we are in a rename context, we don't need to update anything in the 4144 * log. That will be done later during the rename by btrfs_log_new_name(). 4145 * Besides that, doing it here would only cause extra unnecessary btree 4146 * operations on the log tree, increasing latency for applications. 4147 */ 4148 if (!rename_ctx) { 4149 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4150 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4151 } 4152 4153 /* 4154 * If we have a pending delayed iput we could end up with the final iput 4155 * being run in btrfs-cleaner context. If we have enough of these built 4156 * up we can end up burning a lot of time in btrfs-cleaner without any 4157 * way to throttle the unlinks. Since we're currently holding a ref on 4158 * the inode we can run the delayed iput here without any issues as the 4159 * final iput won't be done until after we drop the ref we're currently 4160 * holding. 4161 */ 4162 btrfs_run_delayed_iput(fs_info, inode); 4163 err: 4164 btrfs_free_path(path); 4165 if (ret) 4166 goto out; 4167 4168 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4169 inode_inc_iversion(&inode->vfs_inode); 4170 inode_inc_iversion(&dir->vfs_inode); 4171 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4172 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; 4173 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; 4174 ret = btrfs_update_inode(trans, root, dir); 4175 out: 4176 return ret; 4177 } 4178 4179 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4180 struct btrfs_inode *dir, struct btrfs_inode *inode, 4181 const struct fscrypt_str *name) 4182 { 4183 int ret; 4184 4185 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4186 if (!ret) { 4187 drop_nlink(&inode->vfs_inode); 4188 ret = btrfs_update_inode(trans, inode->root, inode); 4189 } 4190 return ret; 4191 } 4192 4193 /* 4194 * helper to start transaction for unlink and rmdir. 4195 * 4196 * unlink and rmdir are special in btrfs, they do not always free space, so 4197 * if we cannot make our reservations the normal way try and see if there is 4198 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4199 * allow the unlink to occur. 4200 */ 4201 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4202 { 4203 struct btrfs_root *root = dir->root; 4204 4205 return btrfs_start_transaction_fallback_global_rsv(root, 4206 BTRFS_UNLINK_METADATA_UNITS); 4207 } 4208 4209 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4210 { 4211 struct btrfs_trans_handle *trans; 4212 struct inode *inode = d_inode(dentry); 4213 int ret; 4214 struct fscrypt_name fname; 4215 4216 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4217 if (ret) 4218 return ret; 4219 4220 /* This needs to handle no-key deletions later on */ 4221 4222 trans = __unlink_start_trans(BTRFS_I(dir)); 4223 if (IS_ERR(trans)) { 4224 ret = PTR_ERR(trans); 4225 goto fscrypt_free; 4226 } 4227 4228 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4229 0); 4230 4231 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4232 &fname.disk_name); 4233 if (ret) 4234 goto end_trans; 4235 4236 if (inode->i_nlink == 0) { 4237 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4238 if (ret) 4239 goto end_trans; 4240 } 4241 4242 end_trans: 4243 btrfs_end_transaction(trans); 4244 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4245 fscrypt_free: 4246 fscrypt_free_filename(&fname); 4247 return ret; 4248 } 4249 4250 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4251 struct btrfs_inode *dir, struct dentry *dentry) 4252 { 4253 struct btrfs_root *root = dir->root; 4254 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4255 struct btrfs_path *path; 4256 struct extent_buffer *leaf; 4257 struct btrfs_dir_item *di; 4258 struct btrfs_key key; 4259 u64 index; 4260 int ret; 4261 u64 objectid; 4262 u64 dir_ino = btrfs_ino(dir); 4263 struct fscrypt_name fname; 4264 4265 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4266 if (ret) 4267 return ret; 4268 4269 /* This needs to handle no-key deletions later on */ 4270 4271 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4272 objectid = inode->root->root_key.objectid; 4273 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4274 objectid = inode->location.objectid; 4275 } else { 4276 WARN_ON(1); 4277 fscrypt_free_filename(&fname); 4278 return -EINVAL; 4279 } 4280 4281 path = btrfs_alloc_path(); 4282 if (!path) { 4283 ret = -ENOMEM; 4284 goto out; 4285 } 4286 4287 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4288 &fname.disk_name, -1); 4289 if (IS_ERR_OR_NULL(di)) { 4290 ret = di ? PTR_ERR(di) : -ENOENT; 4291 goto out; 4292 } 4293 4294 leaf = path->nodes[0]; 4295 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4296 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4297 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4298 if (ret) { 4299 btrfs_abort_transaction(trans, ret); 4300 goto out; 4301 } 4302 btrfs_release_path(path); 4303 4304 /* 4305 * This is a placeholder inode for a subvolume we didn't have a 4306 * reference to at the time of the snapshot creation. In the meantime 4307 * we could have renamed the real subvol link into our snapshot, so 4308 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4309 * Instead simply lookup the dir_index_item for this entry so we can 4310 * remove it. Otherwise we know we have a ref to the root and we can 4311 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4312 */ 4313 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4314 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4315 if (IS_ERR_OR_NULL(di)) { 4316 if (!di) 4317 ret = -ENOENT; 4318 else 4319 ret = PTR_ERR(di); 4320 btrfs_abort_transaction(trans, ret); 4321 goto out; 4322 } 4323 4324 leaf = path->nodes[0]; 4325 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4326 index = key.offset; 4327 btrfs_release_path(path); 4328 } else { 4329 ret = btrfs_del_root_ref(trans, objectid, 4330 root->root_key.objectid, dir_ino, 4331 &index, &fname.disk_name); 4332 if (ret) { 4333 btrfs_abort_transaction(trans, ret); 4334 goto out; 4335 } 4336 } 4337 4338 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4339 if (ret) { 4340 btrfs_abort_transaction(trans, ret); 4341 goto out; 4342 } 4343 4344 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4345 inode_inc_iversion(&dir->vfs_inode); 4346 dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode); 4347 dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime; 4348 ret = btrfs_update_inode_fallback(trans, root, dir); 4349 if (ret) 4350 btrfs_abort_transaction(trans, ret); 4351 out: 4352 btrfs_free_path(path); 4353 fscrypt_free_filename(&fname); 4354 return ret; 4355 } 4356 4357 /* 4358 * Helper to check if the subvolume references other subvolumes or if it's 4359 * default. 4360 */ 4361 static noinline int may_destroy_subvol(struct btrfs_root *root) 4362 { 4363 struct btrfs_fs_info *fs_info = root->fs_info; 4364 struct btrfs_path *path; 4365 struct btrfs_dir_item *di; 4366 struct btrfs_key key; 4367 struct fscrypt_str name = FSTR_INIT("default", 7); 4368 u64 dir_id; 4369 int ret; 4370 4371 path = btrfs_alloc_path(); 4372 if (!path) 4373 return -ENOMEM; 4374 4375 /* Make sure this root isn't set as the default subvol */ 4376 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4377 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4378 dir_id, &name, 0); 4379 if (di && !IS_ERR(di)) { 4380 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4381 if (key.objectid == root->root_key.objectid) { 4382 ret = -EPERM; 4383 btrfs_err(fs_info, 4384 "deleting default subvolume %llu is not allowed", 4385 key.objectid); 4386 goto out; 4387 } 4388 btrfs_release_path(path); 4389 } 4390 4391 key.objectid = root->root_key.objectid; 4392 key.type = BTRFS_ROOT_REF_KEY; 4393 key.offset = (u64)-1; 4394 4395 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4396 if (ret < 0) 4397 goto out; 4398 BUG_ON(ret == 0); 4399 4400 ret = 0; 4401 if (path->slots[0] > 0) { 4402 path->slots[0]--; 4403 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4404 if (key.objectid == root->root_key.objectid && 4405 key.type == BTRFS_ROOT_REF_KEY) 4406 ret = -ENOTEMPTY; 4407 } 4408 out: 4409 btrfs_free_path(path); 4410 return ret; 4411 } 4412 4413 /* Delete all dentries for inodes belonging to the root */ 4414 static void btrfs_prune_dentries(struct btrfs_root *root) 4415 { 4416 struct btrfs_fs_info *fs_info = root->fs_info; 4417 struct rb_node *node; 4418 struct rb_node *prev; 4419 struct btrfs_inode *entry; 4420 struct inode *inode; 4421 u64 objectid = 0; 4422 4423 if (!BTRFS_FS_ERROR(fs_info)) 4424 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4425 4426 spin_lock(&root->inode_lock); 4427 again: 4428 node = root->inode_tree.rb_node; 4429 prev = NULL; 4430 while (node) { 4431 prev = node; 4432 entry = rb_entry(node, struct btrfs_inode, rb_node); 4433 4434 if (objectid < btrfs_ino(entry)) 4435 node = node->rb_left; 4436 else if (objectid > btrfs_ino(entry)) 4437 node = node->rb_right; 4438 else 4439 break; 4440 } 4441 if (!node) { 4442 while (prev) { 4443 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4444 if (objectid <= btrfs_ino(entry)) { 4445 node = prev; 4446 break; 4447 } 4448 prev = rb_next(prev); 4449 } 4450 } 4451 while (node) { 4452 entry = rb_entry(node, struct btrfs_inode, rb_node); 4453 objectid = btrfs_ino(entry) + 1; 4454 inode = igrab(&entry->vfs_inode); 4455 if (inode) { 4456 spin_unlock(&root->inode_lock); 4457 if (atomic_read(&inode->i_count) > 1) 4458 d_prune_aliases(inode); 4459 /* 4460 * btrfs_drop_inode will have it removed from the inode 4461 * cache when its usage count hits zero. 4462 */ 4463 iput(inode); 4464 cond_resched(); 4465 spin_lock(&root->inode_lock); 4466 goto again; 4467 } 4468 4469 if (cond_resched_lock(&root->inode_lock)) 4470 goto again; 4471 4472 node = rb_next(node); 4473 } 4474 spin_unlock(&root->inode_lock); 4475 } 4476 4477 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4478 { 4479 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4480 struct btrfs_root *root = dir->root; 4481 struct inode *inode = d_inode(dentry); 4482 struct btrfs_root *dest = BTRFS_I(inode)->root; 4483 struct btrfs_trans_handle *trans; 4484 struct btrfs_block_rsv block_rsv; 4485 u64 root_flags; 4486 int ret; 4487 4488 /* 4489 * Don't allow to delete a subvolume with send in progress. This is 4490 * inside the inode lock so the error handling that has to drop the bit 4491 * again is not run concurrently. 4492 */ 4493 spin_lock(&dest->root_item_lock); 4494 if (dest->send_in_progress) { 4495 spin_unlock(&dest->root_item_lock); 4496 btrfs_warn(fs_info, 4497 "attempt to delete subvolume %llu during send", 4498 dest->root_key.objectid); 4499 return -EPERM; 4500 } 4501 if (atomic_read(&dest->nr_swapfiles)) { 4502 spin_unlock(&dest->root_item_lock); 4503 btrfs_warn(fs_info, 4504 "attempt to delete subvolume %llu with active swapfile", 4505 root->root_key.objectid); 4506 return -EPERM; 4507 } 4508 root_flags = btrfs_root_flags(&dest->root_item); 4509 btrfs_set_root_flags(&dest->root_item, 4510 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4511 spin_unlock(&dest->root_item_lock); 4512 4513 down_write(&fs_info->subvol_sem); 4514 4515 ret = may_destroy_subvol(dest); 4516 if (ret) 4517 goto out_up_write; 4518 4519 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4520 /* 4521 * One for dir inode, 4522 * two for dir entries, 4523 * two for root ref/backref. 4524 */ 4525 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4526 if (ret) 4527 goto out_up_write; 4528 4529 trans = btrfs_start_transaction(root, 0); 4530 if (IS_ERR(trans)) { 4531 ret = PTR_ERR(trans); 4532 goto out_release; 4533 } 4534 trans->block_rsv = &block_rsv; 4535 trans->bytes_reserved = block_rsv.size; 4536 4537 btrfs_record_snapshot_destroy(trans, dir); 4538 4539 ret = btrfs_unlink_subvol(trans, dir, dentry); 4540 if (ret) { 4541 btrfs_abort_transaction(trans, ret); 4542 goto out_end_trans; 4543 } 4544 4545 ret = btrfs_record_root_in_trans(trans, dest); 4546 if (ret) { 4547 btrfs_abort_transaction(trans, ret); 4548 goto out_end_trans; 4549 } 4550 4551 memset(&dest->root_item.drop_progress, 0, 4552 sizeof(dest->root_item.drop_progress)); 4553 btrfs_set_root_drop_level(&dest->root_item, 0); 4554 btrfs_set_root_refs(&dest->root_item, 0); 4555 4556 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4557 ret = btrfs_insert_orphan_item(trans, 4558 fs_info->tree_root, 4559 dest->root_key.objectid); 4560 if (ret) { 4561 btrfs_abort_transaction(trans, ret); 4562 goto out_end_trans; 4563 } 4564 } 4565 4566 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4567 BTRFS_UUID_KEY_SUBVOL, 4568 dest->root_key.objectid); 4569 if (ret && ret != -ENOENT) { 4570 btrfs_abort_transaction(trans, ret); 4571 goto out_end_trans; 4572 } 4573 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4574 ret = btrfs_uuid_tree_remove(trans, 4575 dest->root_item.received_uuid, 4576 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4577 dest->root_key.objectid); 4578 if (ret && ret != -ENOENT) { 4579 btrfs_abort_transaction(trans, ret); 4580 goto out_end_trans; 4581 } 4582 } 4583 4584 free_anon_bdev(dest->anon_dev); 4585 dest->anon_dev = 0; 4586 out_end_trans: 4587 trans->block_rsv = NULL; 4588 trans->bytes_reserved = 0; 4589 ret = btrfs_end_transaction(trans); 4590 inode->i_flags |= S_DEAD; 4591 out_release: 4592 btrfs_subvolume_release_metadata(root, &block_rsv); 4593 out_up_write: 4594 up_write(&fs_info->subvol_sem); 4595 if (ret) { 4596 spin_lock(&dest->root_item_lock); 4597 root_flags = btrfs_root_flags(&dest->root_item); 4598 btrfs_set_root_flags(&dest->root_item, 4599 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4600 spin_unlock(&dest->root_item_lock); 4601 } else { 4602 d_invalidate(dentry); 4603 btrfs_prune_dentries(dest); 4604 ASSERT(dest->send_in_progress == 0); 4605 } 4606 4607 return ret; 4608 } 4609 4610 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4611 { 4612 struct inode *inode = d_inode(dentry); 4613 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4614 int err = 0; 4615 struct btrfs_trans_handle *trans; 4616 u64 last_unlink_trans; 4617 struct fscrypt_name fname; 4618 4619 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4620 return -ENOTEMPTY; 4621 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4622 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4623 btrfs_err(fs_info, 4624 "extent tree v2 doesn't support snapshot deletion yet"); 4625 return -EOPNOTSUPP; 4626 } 4627 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4628 } 4629 4630 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4631 if (err) 4632 return err; 4633 4634 /* This needs to handle no-key deletions later on */ 4635 4636 trans = __unlink_start_trans(BTRFS_I(dir)); 4637 if (IS_ERR(trans)) { 4638 err = PTR_ERR(trans); 4639 goto out_notrans; 4640 } 4641 4642 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4643 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4644 goto out; 4645 } 4646 4647 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4648 if (err) 4649 goto out; 4650 4651 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4652 4653 /* now the directory is empty */ 4654 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4655 &fname.disk_name); 4656 if (!err) { 4657 btrfs_i_size_write(BTRFS_I(inode), 0); 4658 /* 4659 * Propagate the last_unlink_trans value of the deleted dir to 4660 * its parent directory. This is to prevent an unrecoverable 4661 * log tree in the case we do something like this: 4662 * 1) create dir foo 4663 * 2) create snapshot under dir foo 4664 * 3) delete the snapshot 4665 * 4) rmdir foo 4666 * 5) mkdir foo 4667 * 6) fsync foo or some file inside foo 4668 */ 4669 if (last_unlink_trans >= trans->transid) 4670 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4671 } 4672 out: 4673 btrfs_end_transaction(trans); 4674 out_notrans: 4675 btrfs_btree_balance_dirty(fs_info); 4676 fscrypt_free_filename(&fname); 4677 4678 return err; 4679 } 4680 4681 /* 4682 * btrfs_truncate_block - read, zero a chunk and write a block 4683 * @inode - inode that we're zeroing 4684 * @from - the offset to start zeroing 4685 * @len - the length to zero, 0 to zero the entire range respective to the 4686 * offset 4687 * @front - zero up to the offset instead of from the offset on 4688 * 4689 * This will find the block for the "from" offset and cow the block and zero the 4690 * part we want to zero. This is used with truncate and hole punching. 4691 */ 4692 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4693 int front) 4694 { 4695 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4696 struct address_space *mapping = inode->vfs_inode.i_mapping; 4697 struct extent_io_tree *io_tree = &inode->io_tree; 4698 struct btrfs_ordered_extent *ordered; 4699 struct extent_state *cached_state = NULL; 4700 struct extent_changeset *data_reserved = NULL; 4701 bool only_release_metadata = false; 4702 u32 blocksize = fs_info->sectorsize; 4703 pgoff_t index = from >> PAGE_SHIFT; 4704 unsigned offset = from & (blocksize - 1); 4705 struct page *page; 4706 gfp_t mask = btrfs_alloc_write_mask(mapping); 4707 size_t write_bytes = blocksize; 4708 int ret = 0; 4709 u64 block_start; 4710 u64 block_end; 4711 4712 if (IS_ALIGNED(offset, blocksize) && 4713 (!len || IS_ALIGNED(len, blocksize))) 4714 goto out; 4715 4716 block_start = round_down(from, blocksize); 4717 block_end = block_start + blocksize - 1; 4718 4719 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4720 blocksize, false); 4721 if (ret < 0) { 4722 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4723 /* For nocow case, no need to reserve data space */ 4724 only_release_metadata = true; 4725 } else { 4726 goto out; 4727 } 4728 } 4729 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4730 if (ret < 0) { 4731 if (!only_release_metadata) 4732 btrfs_free_reserved_data_space(inode, data_reserved, 4733 block_start, blocksize); 4734 goto out; 4735 } 4736 again: 4737 page = find_or_create_page(mapping, index, mask); 4738 if (!page) { 4739 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4740 blocksize, true); 4741 btrfs_delalloc_release_extents(inode, blocksize); 4742 ret = -ENOMEM; 4743 goto out; 4744 } 4745 ret = set_page_extent_mapped(page); 4746 if (ret < 0) 4747 goto out_unlock; 4748 4749 if (!PageUptodate(page)) { 4750 ret = btrfs_read_folio(NULL, page_folio(page)); 4751 lock_page(page); 4752 if (page->mapping != mapping) { 4753 unlock_page(page); 4754 put_page(page); 4755 goto again; 4756 } 4757 if (!PageUptodate(page)) { 4758 ret = -EIO; 4759 goto out_unlock; 4760 } 4761 } 4762 wait_on_page_writeback(page); 4763 4764 lock_extent(io_tree, block_start, block_end, &cached_state); 4765 4766 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4767 if (ordered) { 4768 unlock_extent(io_tree, block_start, block_end, &cached_state); 4769 unlock_page(page); 4770 put_page(page); 4771 btrfs_start_ordered_extent(ordered); 4772 btrfs_put_ordered_extent(ordered); 4773 goto again; 4774 } 4775 4776 clear_extent_bit(&inode->io_tree, block_start, block_end, 4777 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4778 &cached_state); 4779 4780 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4781 &cached_state); 4782 if (ret) { 4783 unlock_extent(io_tree, block_start, block_end, &cached_state); 4784 goto out_unlock; 4785 } 4786 4787 if (offset != blocksize) { 4788 if (!len) 4789 len = blocksize - offset; 4790 if (front) 4791 memzero_page(page, (block_start - page_offset(page)), 4792 offset); 4793 else 4794 memzero_page(page, (block_start - page_offset(page)) + offset, 4795 len); 4796 } 4797 btrfs_page_clear_checked(fs_info, page, block_start, 4798 block_end + 1 - block_start); 4799 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4800 unlock_extent(io_tree, block_start, block_end, &cached_state); 4801 4802 if (only_release_metadata) 4803 set_extent_bit(&inode->io_tree, block_start, block_end, 4804 EXTENT_NORESERVE, NULL, GFP_NOFS); 4805 4806 out_unlock: 4807 if (ret) { 4808 if (only_release_metadata) 4809 btrfs_delalloc_release_metadata(inode, blocksize, true); 4810 else 4811 btrfs_delalloc_release_space(inode, data_reserved, 4812 block_start, blocksize, true); 4813 } 4814 btrfs_delalloc_release_extents(inode, blocksize); 4815 unlock_page(page); 4816 put_page(page); 4817 out: 4818 if (only_release_metadata) 4819 btrfs_check_nocow_unlock(inode); 4820 extent_changeset_free(data_reserved); 4821 return ret; 4822 } 4823 4824 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4825 u64 offset, u64 len) 4826 { 4827 struct btrfs_fs_info *fs_info = root->fs_info; 4828 struct btrfs_trans_handle *trans; 4829 struct btrfs_drop_extents_args drop_args = { 0 }; 4830 int ret; 4831 4832 /* 4833 * If NO_HOLES is enabled, we don't need to do anything. 4834 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4835 * or btrfs_update_inode() will be called, which guarantee that the next 4836 * fsync will know this inode was changed and needs to be logged. 4837 */ 4838 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4839 return 0; 4840 4841 /* 4842 * 1 - for the one we're dropping 4843 * 1 - for the one we're adding 4844 * 1 - for updating the inode. 4845 */ 4846 trans = btrfs_start_transaction(root, 3); 4847 if (IS_ERR(trans)) 4848 return PTR_ERR(trans); 4849 4850 drop_args.start = offset; 4851 drop_args.end = offset + len; 4852 drop_args.drop_cache = true; 4853 4854 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4855 if (ret) { 4856 btrfs_abort_transaction(trans, ret); 4857 btrfs_end_transaction(trans); 4858 return ret; 4859 } 4860 4861 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4862 if (ret) { 4863 btrfs_abort_transaction(trans, ret); 4864 } else { 4865 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4866 btrfs_update_inode(trans, root, inode); 4867 } 4868 btrfs_end_transaction(trans); 4869 return ret; 4870 } 4871 4872 /* 4873 * This function puts in dummy file extents for the area we're creating a hole 4874 * for. So if we are truncating this file to a larger size we need to insert 4875 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4876 * the range between oldsize and size 4877 */ 4878 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4879 { 4880 struct btrfs_root *root = inode->root; 4881 struct btrfs_fs_info *fs_info = root->fs_info; 4882 struct extent_io_tree *io_tree = &inode->io_tree; 4883 struct extent_map *em = NULL; 4884 struct extent_state *cached_state = NULL; 4885 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4886 u64 block_end = ALIGN(size, fs_info->sectorsize); 4887 u64 last_byte; 4888 u64 cur_offset; 4889 u64 hole_size; 4890 int err = 0; 4891 4892 /* 4893 * If our size started in the middle of a block we need to zero out the 4894 * rest of the block before we expand the i_size, otherwise we could 4895 * expose stale data. 4896 */ 4897 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4898 if (err) 4899 return err; 4900 4901 if (size <= hole_start) 4902 return 0; 4903 4904 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4905 &cached_state); 4906 cur_offset = hole_start; 4907 while (1) { 4908 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4909 block_end - cur_offset); 4910 if (IS_ERR(em)) { 4911 err = PTR_ERR(em); 4912 em = NULL; 4913 break; 4914 } 4915 last_byte = min(extent_map_end(em), block_end); 4916 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4917 hole_size = last_byte - cur_offset; 4918 4919 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4920 struct extent_map *hole_em; 4921 4922 err = maybe_insert_hole(root, inode, cur_offset, 4923 hole_size); 4924 if (err) 4925 break; 4926 4927 err = btrfs_inode_set_file_extent_range(inode, 4928 cur_offset, hole_size); 4929 if (err) 4930 break; 4931 4932 hole_em = alloc_extent_map(); 4933 if (!hole_em) { 4934 btrfs_drop_extent_map_range(inode, cur_offset, 4935 cur_offset + hole_size - 1, 4936 false); 4937 btrfs_set_inode_full_sync(inode); 4938 goto next; 4939 } 4940 hole_em->start = cur_offset; 4941 hole_em->len = hole_size; 4942 hole_em->orig_start = cur_offset; 4943 4944 hole_em->block_start = EXTENT_MAP_HOLE; 4945 hole_em->block_len = 0; 4946 hole_em->orig_block_len = 0; 4947 hole_em->ram_bytes = hole_size; 4948 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4949 hole_em->generation = fs_info->generation; 4950 4951 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4952 free_extent_map(hole_em); 4953 } else { 4954 err = btrfs_inode_set_file_extent_range(inode, 4955 cur_offset, hole_size); 4956 if (err) 4957 break; 4958 } 4959 next: 4960 free_extent_map(em); 4961 em = NULL; 4962 cur_offset = last_byte; 4963 if (cur_offset >= block_end) 4964 break; 4965 } 4966 free_extent_map(em); 4967 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4968 return err; 4969 } 4970 4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4972 { 4973 struct btrfs_root *root = BTRFS_I(inode)->root; 4974 struct btrfs_trans_handle *trans; 4975 loff_t oldsize = i_size_read(inode); 4976 loff_t newsize = attr->ia_size; 4977 int mask = attr->ia_valid; 4978 int ret; 4979 4980 /* 4981 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4982 * special case where we need to update the times despite not having 4983 * these flags set. For all other operations the VFS set these flags 4984 * explicitly if it wants a timestamp update. 4985 */ 4986 if (newsize != oldsize) { 4987 inode_inc_iversion(inode); 4988 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4989 inode->i_mtime = current_time(inode); 4990 inode->i_ctime = inode->i_mtime; 4991 } 4992 } 4993 4994 if (newsize > oldsize) { 4995 /* 4996 * Don't do an expanding truncate while snapshotting is ongoing. 4997 * This is to ensure the snapshot captures a fully consistent 4998 * state of this file - if the snapshot captures this expanding 4999 * truncation, it must capture all writes that happened before 5000 * this truncation. 5001 */ 5002 btrfs_drew_write_lock(&root->snapshot_lock); 5003 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5004 if (ret) { 5005 btrfs_drew_write_unlock(&root->snapshot_lock); 5006 return ret; 5007 } 5008 5009 trans = btrfs_start_transaction(root, 1); 5010 if (IS_ERR(trans)) { 5011 btrfs_drew_write_unlock(&root->snapshot_lock); 5012 return PTR_ERR(trans); 5013 } 5014 5015 i_size_write(inode, newsize); 5016 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5017 pagecache_isize_extended(inode, oldsize, newsize); 5018 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5019 btrfs_drew_write_unlock(&root->snapshot_lock); 5020 btrfs_end_transaction(trans); 5021 } else { 5022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5023 5024 if (btrfs_is_zoned(fs_info)) { 5025 ret = btrfs_wait_ordered_range(inode, 5026 ALIGN(newsize, fs_info->sectorsize), 5027 (u64)-1); 5028 if (ret) 5029 return ret; 5030 } 5031 5032 /* 5033 * We're truncating a file that used to have good data down to 5034 * zero. Make sure any new writes to the file get on disk 5035 * on close. 5036 */ 5037 if (newsize == 0) 5038 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5039 &BTRFS_I(inode)->runtime_flags); 5040 5041 truncate_setsize(inode, newsize); 5042 5043 inode_dio_wait(inode); 5044 5045 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5046 if (ret && inode->i_nlink) { 5047 int err; 5048 5049 /* 5050 * Truncate failed, so fix up the in-memory size. We 5051 * adjusted disk_i_size down as we removed extents, so 5052 * wait for disk_i_size to be stable and then update the 5053 * in-memory size to match. 5054 */ 5055 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5056 if (err) 5057 return err; 5058 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5059 } 5060 } 5061 5062 return ret; 5063 } 5064 5065 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5066 struct iattr *attr) 5067 { 5068 struct inode *inode = d_inode(dentry); 5069 struct btrfs_root *root = BTRFS_I(inode)->root; 5070 int err; 5071 5072 if (btrfs_root_readonly(root)) 5073 return -EROFS; 5074 5075 err = setattr_prepare(idmap, dentry, attr); 5076 if (err) 5077 return err; 5078 5079 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5080 err = btrfs_setsize(inode, attr); 5081 if (err) 5082 return err; 5083 } 5084 5085 if (attr->ia_valid) { 5086 setattr_copy(idmap, inode, attr); 5087 inode_inc_iversion(inode); 5088 err = btrfs_dirty_inode(BTRFS_I(inode)); 5089 5090 if (!err && attr->ia_valid & ATTR_MODE) 5091 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5092 } 5093 5094 return err; 5095 } 5096 5097 /* 5098 * While truncating the inode pages during eviction, we get the VFS 5099 * calling btrfs_invalidate_folio() against each folio of the inode. This 5100 * is slow because the calls to btrfs_invalidate_folio() result in a 5101 * huge amount of calls to lock_extent() and clear_extent_bit(), 5102 * which keep merging and splitting extent_state structures over and over, 5103 * wasting lots of time. 5104 * 5105 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5106 * skip all those expensive operations on a per folio basis and do only 5107 * the ordered io finishing, while we release here the extent_map and 5108 * extent_state structures, without the excessive merging and splitting. 5109 */ 5110 static void evict_inode_truncate_pages(struct inode *inode) 5111 { 5112 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5113 struct rb_node *node; 5114 5115 ASSERT(inode->i_state & I_FREEING); 5116 truncate_inode_pages_final(&inode->i_data); 5117 5118 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5119 5120 /* 5121 * Keep looping until we have no more ranges in the io tree. 5122 * We can have ongoing bios started by readahead that have 5123 * their endio callback (extent_io.c:end_bio_extent_readpage) 5124 * still in progress (unlocked the pages in the bio but did not yet 5125 * unlocked the ranges in the io tree). Therefore this means some 5126 * ranges can still be locked and eviction started because before 5127 * submitting those bios, which are executed by a separate task (work 5128 * queue kthread), inode references (inode->i_count) were not taken 5129 * (which would be dropped in the end io callback of each bio). 5130 * Therefore here we effectively end up waiting for those bios and 5131 * anyone else holding locked ranges without having bumped the inode's 5132 * reference count - if we don't do it, when they access the inode's 5133 * io_tree to unlock a range it may be too late, leading to an 5134 * use-after-free issue. 5135 */ 5136 spin_lock(&io_tree->lock); 5137 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5138 struct extent_state *state; 5139 struct extent_state *cached_state = NULL; 5140 u64 start; 5141 u64 end; 5142 unsigned state_flags; 5143 5144 node = rb_first(&io_tree->state); 5145 state = rb_entry(node, struct extent_state, rb_node); 5146 start = state->start; 5147 end = state->end; 5148 state_flags = state->state; 5149 spin_unlock(&io_tree->lock); 5150 5151 lock_extent(io_tree, start, end, &cached_state); 5152 5153 /* 5154 * If still has DELALLOC flag, the extent didn't reach disk, 5155 * and its reserved space won't be freed by delayed_ref. 5156 * So we need to free its reserved space here. 5157 * (Refer to comment in btrfs_invalidate_folio, case 2) 5158 * 5159 * Note, end is the bytenr of last byte, so we need + 1 here. 5160 */ 5161 if (state_flags & EXTENT_DELALLOC) 5162 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5163 end - start + 1); 5164 5165 clear_extent_bit(io_tree, start, end, 5166 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5167 &cached_state); 5168 5169 cond_resched(); 5170 spin_lock(&io_tree->lock); 5171 } 5172 spin_unlock(&io_tree->lock); 5173 } 5174 5175 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5176 struct btrfs_block_rsv *rsv) 5177 { 5178 struct btrfs_fs_info *fs_info = root->fs_info; 5179 struct btrfs_trans_handle *trans; 5180 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5181 int ret; 5182 5183 /* 5184 * Eviction should be taking place at some place safe because of our 5185 * delayed iputs. However the normal flushing code will run delayed 5186 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5187 * 5188 * We reserve the delayed_refs_extra here again because we can't use 5189 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5190 * above. We reserve our extra bit here because we generate a ton of 5191 * delayed refs activity by truncating. 5192 * 5193 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5194 * if we fail to make this reservation we can re-try without the 5195 * delayed_refs_extra so we can make some forward progress. 5196 */ 5197 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5198 BTRFS_RESERVE_FLUSH_EVICT); 5199 if (ret) { 5200 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5201 BTRFS_RESERVE_FLUSH_EVICT); 5202 if (ret) { 5203 btrfs_warn(fs_info, 5204 "could not allocate space for delete; will truncate on mount"); 5205 return ERR_PTR(-ENOSPC); 5206 } 5207 delayed_refs_extra = 0; 5208 } 5209 5210 trans = btrfs_join_transaction(root); 5211 if (IS_ERR(trans)) 5212 return trans; 5213 5214 if (delayed_refs_extra) { 5215 trans->block_rsv = &fs_info->trans_block_rsv; 5216 trans->bytes_reserved = delayed_refs_extra; 5217 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5218 delayed_refs_extra, true); 5219 } 5220 return trans; 5221 } 5222 5223 void btrfs_evict_inode(struct inode *inode) 5224 { 5225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5226 struct btrfs_trans_handle *trans; 5227 struct btrfs_root *root = BTRFS_I(inode)->root; 5228 struct btrfs_block_rsv *rsv = NULL; 5229 int ret; 5230 5231 trace_btrfs_inode_evict(inode); 5232 5233 if (!root) { 5234 fsverity_cleanup_inode(inode); 5235 clear_inode(inode); 5236 return; 5237 } 5238 5239 evict_inode_truncate_pages(inode); 5240 5241 if (inode->i_nlink && 5242 ((btrfs_root_refs(&root->root_item) != 0 && 5243 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5244 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5245 goto out; 5246 5247 if (is_bad_inode(inode)) 5248 goto out; 5249 5250 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5251 goto out; 5252 5253 if (inode->i_nlink > 0) { 5254 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5255 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5256 goto out; 5257 } 5258 5259 /* 5260 * This makes sure the inode item in tree is uptodate and the space for 5261 * the inode update is released. 5262 */ 5263 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5264 if (ret) 5265 goto out; 5266 5267 /* 5268 * This drops any pending insert or delete operations we have for this 5269 * inode. We could have a delayed dir index deletion queued up, but 5270 * we're removing the inode completely so that'll be taken care of in 5271 * the truncate. 5272 */ 5273 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5274 5275 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5276 if (!rsv) 5277 goto out; 5278 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5279 rsv->failfast = true; 5280 5281 btrfs_i_size_write(BTRFS_I(inode), 0); 5282 5283 while (1) { 5284 struct btrfs_truncate_control control = { 5285 .inode = BTRFS_I(inode), 5286 .ino = btrfs_ino(BTRFS_I(inode)), 5287 .new_size = 0, 5288 .min_type = 0, 5289 }; 5290 5291 trans = evict_refill_and_join(root, rsv); 5292 if (IS_ERR(trans)) 5293 goto out; 5294 5295 trans->block_rsv = rsv; 5296 5297 ret = btrfs_truncate_inode_items(trans, root, &control); 5298 trans->block_rsv = &fs_info->trans_block_rsv; 5299 btrfs_end_transaction(trans); 5300 /* 5301 * We have not added new delayed items for our inode after we 5302 * have flushed its delayed items, so no need to throttle on 5303 * delayed items. However we have modified extent buffers. 5304 */ 5305 btrfs_btree_balance_dirty_nodelay(fs_info); 5306 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5307 goto out; 5308 else if (!ret) 5309 break; 5310 } 5311 5312 /* 5313 * Errors here aren't a big deal, it just means we leave orphan items in 5314 * the tree. They will be cleaned up on the next mount. If the inode 5315 * number gets reused, cleanup deletes the orphan item without doing 5316 * anything, and unlink reuses the existing orphan item. 5317 * 5318 * If it turns out that we are dropping too many of these, we might want 5319 * to add a mechanism for retrying these after a commit. 5320 */ 5321 trans = evict_refill_and_join(root, rsv); 5322 if (!IS_ERR(trans)) { 5323 trans->block_rsv = rsv; 5324 btrfs_orphan_del(trans, BTRFS_I(inode)); 5325 trans->block_rsv = &fs_info->trans_block_rsv; 5326 btrfs_end_transaction(trans); 5327 } 5328 5329 out: 5330 btrfs_free_block_rsv(fs_info, rsv); 5331 /* 5332 * If we didn't successfully delete, the orphan item will still be in 5333 * the tree and we'll retry on the next mount. Again, we might also want 5334 * to retry these periodically in the future. 5335 */ 5336 btrfs_remove_delayed_node(BTRFS_I(inode)); 5337 fsverity_cleanup_inode(inode); 5338 clear_inode(inode); 5339 } 5340 5341 /* 5342 * Return the key found in the dir entry in the location pointer, fill @type 5343 * with BTRFS_FT_*, and return 0. 5344 * 5345 * If no dir entries were found, returns -ENOENT. 5346 * If found a corrupted location in dir entry, returns -EUCLEAN. 5347 */ 5348 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5349 struct btrfs_key *location, u8 *type) 5350 { 5351 struct btrfs_dir_item *di; 5352 struct btrfs_path *path; 5353 struct btrfs_root *root = dir->root; 5354 int ret = 0; 5355 struct fscrypt_name fname; 5356 5357 path = btrfs_alloc_path(); 5358 if (!path) 5359 return -ENOMEM; 5360 5361 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5362 if (ret < 0) 5363 goto out; 5364 /* 5365 * fscrypt_setup_filename() should never return a positive value, but 5366 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5367 */ 5368 ASSERT(ret == 0); 5369 5370 /* This needs to handle no-key deletions later on */ 5371 5372 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5373 &fname.disk_name, 0); 5374 if (IS_ERR_OR_NULL(di)) { 5375 ret = di ? PTR_ERR(di) : -ENOENT; 5376 goto out; 5377 } 5378 5379 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5380 if (location->type != BTRFS_INODE_ITEM_KEY && 5381 location->type != BTRFS_ROOT_ITEM_KEY) { 5382 ret = -EUCLEAN; 5383 btrfs_warn(root->fs_info, 5384 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5385 __func__, fname.disk_name.name, btrfs_ino(dir), 5386 location->objectid, location->type, location->offset); 5387 } 5388 if (!ret) 5389 *type = btrfs_dir_ftype(path->nodes[0], di); 5390 out: 5391 fscrypt_free_filename(&fname); 5392 btrfs_free_path(path); 5393 return ret; 5394 } 5395 5396 /* 5397 * when we hit a tree root in a directory, the btrfs part of the inode 5398 * needs to be changed to reflect the root directory of the tree root. This 5399 * is kind of like crossing a mount point. 5400 */ 5401 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5402 struct btrfs_inode *dir, 5403 struct dentry *dentry, 5404 struct btrfs_key *location, 5405 struct btrfs_root **sub_root) 5406 { 5407 struct btrfs_path *path; 5408 struct btrfs_root *new_root; 5409 struct btrfs_root_ref *ref; 5410 struct extent_buffer *leaf; 5411 struct btrfs_key key; 5412 int ret; 5413 int err = 0; 5414 struct fscrypt_name fname; 5415 5416 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5417 if (ret) 5418 return ret; 5419 5420 path = btrfs_alloc_path(); 5421 if (!path) { 5422 err = -ENOMEM; 5423 goto out; 5424 } 5425 5426 err = -ENOENT; 5427 key.objectid = dir->root->root_key.objectid; 5428 key.type = BTRFS_ROOT_REF_KEY; 5429 key.offset = location->objectid; 5430 5431 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5432 if (ret) { 5433 if (ret < 0) 5434 err = ret; 5435 goto out; 5436 } 5437 5438 leaf = path->nodes[0]; 5439 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5440 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5441 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5442 goto out; 5443 5444 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5445 (unsigned long)(ref + 1), fname.disk_name.len); 5446 if (ret) 5447 goto out; 5448 5449 btrfs_release_path(path); 5450 5451 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5452 if (IS_ERR(new_root)) { 5453 err = PTR_ERR(new_root); 5454 goto out; 5455 } 5456 5457 *sub_root = new_root; 5458 location->objectid = btrfs_root_dirid(&new_root->root_item); 5459 location->type = BTRFS_INODE_ITEM_KEY; 5460 location->offset = 0; 5461 err = 0; 5462 out: 5463 btrfs_free_path(path); 5464 fscrypt_free_filename(&fname); 5465 return err; 5466 } 5467 5468 static void inode_tree_add(struct btrfs_inode *inode) 5469 { 5470 struct btrfs_root *root = inode->root; 5471 struct btrfs_inode *entry; 5472 struct rb_node **p; 5473 struct rb_node *parent; 5474 struct rb_node *new = &inode->rb_node; 5475 u64 ino = btrfs_ino(inode); 5476 5477 if (inode_unhashed(&inode->vfs_inode)) 5478 return; 5479 parent = NULL; 5480 spin_lock(&root->inode_lock); 5481 p = &root->inode_tree.rb_node; 5482 while (*p) { 5483 parent = *p; 5484 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5485 5486 if (ino < btrfs_ino(entry)) 5487 p = &parent->rb_left; 5488 else if (ino > btrfs_ino(entry)) 5489 p = &parent->rb_right; 5490 else { 5491 WARN_ON(!(entry->vfs_inode.i_state & 5492 (I_WILL_FREE | I_FREEING))); 5493 rb_replace_node(parent, new, &root->inode_tree); 5494 RB_CLEAR_NODE(parent); 5495 spin_unlock(&root->inode_lock); 5496 return; 5497 } 5498 } 5499 rb_link_node(new, parent, p); 5500 rb_insert_color(new, &root->inode_tree); 5501 spin_unlock(&root->inode_lock); 5502 } 5503 5504 static void inode_tree_del(struct btrfs_inode *inode) 5505 { 5506 struct btrfs_root *root = inode->root; 5507 int empty = 0; 5508 5509 spin_lock(&root->inode_lock); 5510 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5511 rb_erase(&inode->rb_node, &root->inode_tree); 5512 RB_CLEAR_NODE(&inode->rb_node); 5513 empty = RB_EMPTY_ROOT(&root->inode_tree); 5514 } 5515 spin_unlock(&root->inode_lock); 5516 5517 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5518 spin_lock(&root->inode_lock); 5519 empty = RB_EMPTY_ROOT(&root->inode_tree); 5520 spin_unlock(&root->inode_lock); 5521 if (empty) 5522 btrfs_add_dead_root(root); 5523 } 5524 } 5525 5526 5527 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5528 { 5529 struct btrfs_iget_args *args = p; 5530 5531 inode->i_ino = args->ino; 5532 BTRFS_I(inode)->location.objectid = args->ino; 5533 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5534 BTRFS_I(inode)->location.offset = 0; 5535 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5536 BUG_ON(args->root && !BTRFS_I(inode)->root); 5537 5538 if (args->root && args->root == args->root->fs_info->tree_root && 5539 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5540 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5541 &BTRFS_I(inode)->runtime_flags); 5542 return 0; 5543 } 5544 5545 static int btrfs_find_actor(struct inode *inode, void *opaque) 5546 { 5547 struct btrfs_iget_args *args = opaque; 5548 5549 return args->ino == BTRFS_I(inode)->location.objectid && 5550 args->root == BTRFS_I(inode)->root; 5551 } 5552 5553 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5554 struct btrfs_root *root) 5555 { 5556 struct inode *inode; 5557 struct btrfs_iget_args args; 5558 unsigned long hashval = btrfs_inode_hash(ino, root); 5559 5560 args.ino = ino; 5561 args.root = root; 5562 5563 inode = iget5_locked(s, hashval, btrfs_find_actor, 5564 btrfs_init_locked_inode, 5565 (void *)&args); 5566 return inode; 5567 } 5568 5569 /* 5570 * Get an inode object given its inode number and corresponding root. 5571 * Path can be preallocated to prevent recursing back to iget through 5572 * allocator. NULL is also valid but may require an additional allocation 5573 * later. 5574 */ 5575 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5576 struct btrfs_root *root, struct btrfs_path *path) 5577 { 5578 struct inode *inode; 5579 5580 inode = btrfs_iget_locked(s, ino, root); 5581 if (!inode) 5582 return ERR_PTR(-ENOMEM); 5583 5584 if (inode->i_state & I_NEW) { 5585 int ret; 5586 5587 ret = btrfs_read_locked_inode(inode, path); 5588 if (!ret) { 5589 inode_tree_add(BTRFS_I(inode)); 5590 unlock_new_inode(inode); 5591 } else { 5592 iget_failed(inode); 5593 /* 5594 * ret > 0 can come from btrfs_search_slot called by 5595 * btrfs_read_locked_inode, this means the inode item 5596 * was not found. 5597 */ 5598 if (ret > 0) 5599 ret = -ENOENT; 5600 inode = ERR_PTR(ret); 5601 } 5602 } 5603 5604 return inode; 5605 } 5606 5607 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5608 { 5609 return btrfs_iget_path(s, ino, root, NULL); 5610 } 5611 5612 static struct inode *new_simple_dir(struct super_block *s, 5613 struct btrfs_key *key, 5614 struct btrfs_root *root) 5615 { 5616 struct inode *inode = new_inode(s); 5617 5618 if (!inode) 5619 return ERR_PTR(-ENOMEM); 5620 5621 BTRFS_I(inode)->root = btrfs_grab_root(root); 5622 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5623 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5624 5625 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5626 /* 5627 * We only need lookup, the rest is read-only and there's no inode 5628 * associated with the dentry 5629 */ 5630 inode->i_op = &simple_dir_inode_operations; 5631 inode->i_opflags &= ~IOP_XATTR; 5632 inode->i_fop = &simple_dir_operations; 5633 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5634 inode->i_mtime = current_time(inode); 5635 inode->i_atime = inode->i_mtime; 5636 inode->i_ctime = inode->i_mtime; 5637 BTRFS_I(inode)->i_otime = inode->i_mtime; 5638 5639 return inode; 5640 } 5641 5642 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5643 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5644 static_assert(BTRFS_FT_DIR == FT_DIR); 5645 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5646 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5647 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5648 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5649 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5650 5651 static inline u8 btrfs_inode_type(struct inode *inode) 5652 { 5653 return fs_umode_to_ftype(inode->i_mode); 5654 } 5655 5656 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5657 { 5658 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5659 struct inode *inode; 5660 struct btrfs_root *root = BTRFS_I(dir)->root; 5661 struct btrfs_root *sub_root = root; 5662 struct btrfs_key location; 5663 u8 di_type = 0; 5664 int ret = 0; 5665 5666 if (dentry->d_name.len > BTRFS_NAME_LEN) 5667 return ERR_PTR(-ENAMETOOLONG); 5668 5669 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5670 if (ret < 0) 5671 return ERR_PTR(ret); 5672 5673 if (location.type == BTRFS_INODE_ITEM_KEY) { 5674 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5675 if (IS_ERR(inode)) 5676 return inode; 5677 5678 /* Do extra check against inode mode with di_type */ 5679 if (btrfs_inode_type(inode) != di_type) { 5680 btrfs_crit(fs_info, 5681 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5682 inode->i_mode, btrfs_inode_type(inode), 5683 di_type); 5684 iput(inode); 5685 return ERR_PTR(-EUCLEAN); 5686 } 5687 return inode; 5688 } 5689 5690 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5691 &location, &sub_root); 5692 if (ret < 0) { 5693 if (ret != -ENOENT) 5694 inode = ERR_PTR(ret); 5695 else 5696 inode = new_simple_dir(dir->i_sb, &location, root); 5697 } else { 5698 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5699 btrfs_put_root(sub_root); 5700 5701 if (IS_ERR(inode)) 5702 return inode; 5703 5704 down_read(&fs_info->cleanup_work_sem); 5705 if (!sb_rdonly(inode->i_sb)) 5706 ret = btrfs_orphan_cleanup(sub_root); 5707 up_read(&fs_info->cleanup_work_sem); 5708 if (ret) { 5709 iput(inode); 5710 inode = ERR_PTR(ret); 5711 } 5712 } 5713 5714 return inode; 5715 } 5716 5717 static int btrfs_dentry_delete(const struct dentry *dentry) 5718 { 5719 struct btrfs_root *root; 5720 struct inode *inode = d_inode(dentry); 5721 5722 if (!inode && !IS_ROOT(dentry)) 5723 inode = d_inode(dentry->d_parent); 5724 5725 if (inode) { 5726 root = BTRFS_I(inode)->root; 5727 if (btrfs_root_refs(&root->root_item) == 0) 5728 return 1; 5729 5730 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5731 return 1; 5732 } 5733 return 0; 5734 } 5735 5736 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5737 unsigned int flags) 5738 { 5739 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5740 5741 if (inode == ERR_PTR(-ENOENT)) 5742 inode = NULL; 5743 return d_splice_alias(inode, dentry); 5744 } 5745 5746 /* 5747 * All this infrastructure exists because dir_emit can fault, and we are holding 5748 * the tree lock when doing readdir. For now just allocate a buffer and copy 5749 * our information into that, and then dir_emit from the buffer. This is 5750 * similar to what NFS does, only we don't keep the buffer around in pagecache 5751 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5752 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5753 * tree lock. 5754 */ 5755 static int btrfs_opendir(struct inode *inode, struct file *file) 5756 { 5757 struct btrfs_file_private *private; 5758 5759 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5760 if (!private) 5761 return -ENOMEM; 5762 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5763 if (!private->filldir_buf) { 5764 kfree(private); 5765 return -ENOMEM; 5766 } 5767 file->private_data = private; 5768 return 0; 5769 } 5770 5771 struct dir_entry { 5772 u64 ino; 5773 u64 offset; 5774 unsigned type; 5775 int name_len; 5776 }; 5777 5778 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5779 { 5780 while (entries--) { 5781 struct dir_entry *entry = addr; 5782 char *name = (char *)(entry + 1); 5783 5784 ctx->pos = get_unaligned(&entry->offset); 5785 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5786 get_unaligned(&entry->ino), 5787 get_unaligned(&entry->type))) 5788 return 1; 5789 addr += sizeof(struct dir_entry) + 5790 get_unaligned(&entry->name_len); 5791 ctx->pos++; 5792 } 5793 return 0; 5794 } 5795 5796 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5797 { 5798 struct inode *inode = file_inode(file); 5799 struct btrfs_root *root = BTRFS_I(inode)->root; 5800 struct btrfs_file_private *private = file->private_data; 5801 struct btrfs_dir_item *di; 5802 struct btrfs_key key; 5803 struct btrfs_key found_key; 5804 struct btrfs_path *path; 5805 void *addr; 5806 struct list_head ins_list; 5807 struct list_head del_list; 5808 int ret; 5809 char *name_ptr; 5810 int name_len; 5811 int entries = 0; 5812 int total_len = 0; 5813 bool put = false; 5814 struct btrfs_key location; 5815 5816 if (!dir_emit_dots(file, ctx)) 5817 return 0; 5818 5819 path = btrfs_alloc_path(); 5820 if (!path) 5821 return -ENOMEM; 5822 5823 addr = private->filldir_buf; 5824 path->reada = READA_FORWARD; 5825 5826 INIT_LIST_HEAD(&ins_list); 5827 INIT_LIST_HEAD(&del_list); 5828 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5829 5830 again: 5831 key.type = BTRFS_DIR_INDEX_KEY; 5832 key.offset = ctx->pos; 5833 key.objectid = btrfs_ino(BTRFS_I(inode)); 5834 5835 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5836 struct dir_entry *entry; 5837 struct extent_buffer *leaf = path->nodes[0]; 5838 u8 ftype; 5839 5840 if (found_key.objectid != key.objectid) 5841 break; 5842 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5843 break; 5844 if (found_key.offset < ctx->pos) 5845 continue; 5846 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5847 continue; 5848 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5849 name_len = btrfs_dir_name_len(leaf, di); 5850 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5851 PAGE_SIZE) { 5852 btrfs_release_path(path); 5853 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5854 if (ret) 5855 goto nopos; 5856 addr = private->filldir_buf; 5857 entries = 0; 5858 total_len = 0; 5859 goto again; 5860 } 5861 5862 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5863 entry = addr; 5864 name_ptr = (char *)(entry + 1); 5865 read_extent_buffer(leaf, name_ptr, 5866 (unsigned long)(di + 1), name_len); 5867 put_unaligned(name_len, &entry->name_len); 5868 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5869 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5870 put_unaligned(location.objectid, &entry->ino); 5871 put_unaligned(found_key.offset, &entry->offset); 5872 entries++; 5873 addr += sizeof(struct dir_entry) + name_len; 5874 total_len += sizeof(struct dir_entry) + name_len; 5875 } 5876 /* Catch error encountered during iteration */ 5877 if (ret < 0) 5878 goto err; 5879 5880 btrfs_release_path(path); 5881 5882 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5883 if (ret) 5884 goto nopos; 5885 5886 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5887 if (ret) 5888 goto nopos; 5889 5890 /* 5891 * Stop new entries from being returned after we return the last 5892 * entry. 5893 * 5894 * New directory entries are assigned a strictly increasing 5895 * offset. This means that new entries created during readdir 5896 * are *guaranteed* to be seen in the future by that readdir. 5897 * This has broken buggy programs which operate on names as 5898 * they're returned by readdir. Until we re-use freed offsets 5899 * we have this hack to stop new entries from being returned 5900 * under the assumption that they'll never reach this huge 5901 * offset. 5902 * 5903 * This is being careful not to overflow 32bit loff_t unless the 5904 * last entry requires it because doing so has broken 32bit apps 5905 * in the past. 5906 */ 5907 if (ctx->pos >= INT_MAX) 5908 ctx->pos = LLONG_MAX; 5909 else 5910 ctx->pos = INT_MAX; 5911 nopos: 5912 ret = 0; 5913 err: 5914 if (put) 5915 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5916 btrfs_free_path(path); 5917 return ret; 5918 } 5919 5920 /* 5921 * This is somewhat expensive, updating the tree every time the 5922 * inode changes. But, it is most likely to find the inode in cache. 5923 * FIXME, needs more benchmarking...there are no reasons other than performance 5924 * to keep or drop this code. 5925 */ 5926 static int btrfs_dirty_inode(struct btrfs_inode *inode) 5927 { 5928 struct btrfs_root *root = inode->root; 5929 struct btrfs_fs_info *fs_info = root->fs_info; 5930 struct btrfs_trans_handle *trans; 5931 int ret; 5932 5933 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 5934 return 0; 5935 5936 trans = btrfs_join_transaction(root); 5937 if (IS_ERR(trans)) 5938 return PTR_ERR(trans); 5939 5940 ret = btrfs_update_inode(trans, root, inode); 5941 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 5942 /* whoops, lets try again with the full transaction */ 5943 btrfs_end_transaction(trans); 5944 trans = btrfs_start_transaction(root, 1); 5945 if (IS_ERR(trans)) 5946 return PTR_ERR(trans); 5947 5948 ret = btrfs_update_inode(trans, root, inode); 5949 } 5950 btrfs_end_transaction(trans); 5951 if (inode->delayed_node) 5952 btrfs_balance_delayed_items(fs_info); 5953 5954 return ret; 5955 } 5956 5957 /* 5958 * This is a copy of file_update_time. We need this so we can return error on 5959 * ENOSPC for updating the inode in the case of file write and mmap writes. 5960 */ 5961 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5962 int flags) 5963 { 5964 struct btrfs_root *root = BTRFS_I(inode)->root; 5965 bool dirty = flags & ~S_VERSION; 5966 5967 if (btrfs_root_readonly(root)) 5968 return -EROFS; 5969 5970 if (flags & S_VERSION) 5971 dirty |= inode_maybe_inc_iversion(inode, dirty); 5972 if (flags & S_CTIME) 5973 inode->i_ctime = *now; 5974 if (flags & S_MTIME) 5975 inode->i_mtime = *now; 5976 if (flags & S_ATIME) 5977 inode->i_atime = *now; 5978 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 5979 } 5980 5981 /* 5982 * find the highest existing sequence number in a directory 5983 * and then set the in-memory index_cnt variable to reflect 5984 * free sequence numbers 5985 */ 5986 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5987 { 5988 struct btrfs_root *root = inode->root; 5989 struct btrfs_key key, found_key; 5990 struct btrfs_path *path; 5991 struct extent_buffer *leaf; 5992 int ret; 5993 5994 key.objectid = btrfs_ino(inode); 5995 key.type = BTRFS_DIR_INDEX_KEY; 5996 key.offset = (u64)-1; 5997 5998 path = btrfs_alloc_path(); 5999 if (!path) 6000 return -ENOMEM; 6001 6002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6003 if (ret < 0) 6004 goto out; 6005 /* FIXME: we should be able to handle this */ 6006 if (ret == 0) 6007 goto out; 6008 ret = 0; 6009 6010 if (path->slots[0] == 0) { 6011 inode->index_cnt = BTRFS_DIR_START_INDEX; 6012 goto out; 6013 } 6014 6015 path->slots[0]--; 6016 6017 leaf = path->nodes[0]; 6018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6019 6020 if (found_key.objectid != btrfs_ino(inode) || 6021 found_key.type != BTRFS_DIR_INDEX_KEY) { 6022 inode->index_cnt = BTRFS_DIR_START_INDEX; 6023 goto out; 6024 } 6025 6026 inode->index_cnt = found_key.offset + 1; 6027 out: 6028 btrfs_free_path(path); 6029 return ret; 6030 } 6031 6032 /* 6033 * helper to find a free sequence number in a given directory. This current 6034 * code is very simple, later versions will do smarter things in the btree 6035 */ 6036 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6037 { 6038 int ret = 0; 6039 6040 if (dir->index_cnt == (u64)-1) { 6041 ret = btrfs_inode_delayed_dir_index_count(dir); 6042 if (ret) { 6043 ret = btrfs_set_inode_index_count(dir); 6044 if (ret) 6045 return ret; 6046 } 6047 } 6048 6049 *index = dir->index_cnt; 6050 dir->index_cnt++; 6051 6052 return ret; 6053 } 6054 6055 static int btrfs_insert_inode_locked(struct inode *inode) 6056 { 6057 struct btrfs_iget_args args; 6058 6059 args.ino = BTRFS_I(inode)->location.objectid; 6060 args.root = BTRFS_I(inode)->root; 6061 6062 return insert_inode_locked4(inode, 6063 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6064 btrfs_find_actor, &args); 6065 } 6066 6067 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6068 unsigned int *trans_num_items) 6069 { 6070 struct inode *dir = args->dir; 6071 struct inode *inode = args->inode; 6072 int ret; 6073 6074 if (!args->orphan) { 6075 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6076 &args->fname); 6077 if (ret) 6078 return ret; 6079 } 6080 6081 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6082 if (ret) { 6083 fscrypt_free_filename(&args->fname); 6084 return ret; 6085 } 6086 6087 /* 1 to add inode item */ 6088 *trans_num_items = 1; 6089 /* 1 to add compression property */ 6090 if (BTRFS_I(dir)->prop_compress) 6091 (*trans_num_items)++; 6092 /* 1 to add default ACL xattr */ 6093 if (args->default_acl) 6094 (*trans_num_items)++; 6095 /* 1 to add access ACL xattr */ 6096 if (args->acl) 6097 (*trans_num_items)++; 6098 #ifdef CONFIG_SECURITY 6099 /* 1 to add LSM xattr */ 6100 if (dir->i_security) 6101 (*trans_num_items)++; 6102 #endif 6103 if (args->orphan) { 6104 /* 1 to add orphan item */ 6105 (*trans_num_items)++; 6106 } else { 6107 /* 6108 * 1 to add dir item 6109 * 1 to add dir index 6110 * 1 to update parent inode item 6111 * 6112 * No need for 1 unit for the inode ref item because it is 6113 * inserted in a batch together with the inode item at 6114 * btrfs_create_new_inode(). 6115 */ 6116 *trans_num_items += 3; 6117 } 6118 return 0; 6119 } 6120 6121 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6122 { 6123 posix_acl_release(args->acl); 6124 posix_acl_release(args->default_acl); 6125 fscrypt_free_filename(&args->fname); 6126 } 6127 6128 /* 6129 * Inherit flags from the parent inode. 6130 * 6131 * Currently only the compression flags and the cow flags are inherited. 6132 */ 6133 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6134 { 6135 unsigned int flags; 6136 6137 flags = dir->flags; 6138 6139 if (flags & BTRFS_INODE_NOCOMPRESS) { 6140 inode->flags &= ~BTRFS_INODE_COMPRESS; 6141 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6142 } else if (flags & BTRFS_INODE_COMPRESS) { 6143 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6144 inode->flags |= BTRFS_INODE_COMPRESS; 6145 } 6146 6147 if (flags & BTRFS_INODE_NODATACOW) { 6148 inode->flags |= BTRFS_INODE_NODATACOW; 6149 if (S_ISREG(inode->vfs_inode.i_mode)) 6150 inode->flags |= BTRFS_INODE_NODATASUM; 6151 } 6152 6153 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6154 } 6155 6156 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6157 struct btrfs_new_inode_args *args) 6158 { 6159 struct inode *dir = args->dir; 6160 struct inode *inode = args->inode; 6161 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6162 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6163 struct btrfs_root *root; 6164 struct btrfs_inode_item *inode_item; 6165 struct btrfs_key *location; 6166 struct btrfs_path *path; 6167 u64 objectid; 6168 struct btrfs_inode_ref *ref; 6169 struct btrfs_key key[2]; 6170 u32 sizes[2]; 6171 struct btrfs_item_batch batch; 6172 unsigned long ptr; 6173 int ret; 6174 6175 path = btrfs_alloc_path(); 6176 if (!path) 6177 return -ENOMEM; 6178 6179 if (!args->subvol) 6180 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6181 root = BTRFS_I(inode)->root; 6182 6183 ret = btrfs_get_free_objectid(root, &objectid); 6184 if (ret) 6185 goto out; 6186 inode->i_ino = objectid; 6187 6188 if (args->orphan) { 6189 /* 6190 * O_TMPFILE, set link count to 0, so that after this point, we 6191 * fill in an inode item with the correct link count. 6192 */ 6193 set_nlink(inode, 0); 6194 } else { 6195 trace_btrfs_inode_request(dir); 6196 6197 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6198 if (ret) 6199 goto out; 6200 } 6201 /* index_cnt is ignored for everything but a dir. */ 6202 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6203 BTRFS_I(inode)->generation = trans->transid; 6204 inode->i_generation = BTRFS_I(inode)->generation; 6205 6206 /* 6207 * Subvolumes don't inherit flags from their parent directory. 6208 * Originally this was probably by accident, but we probably can't 6209 * change it now without compatibility issues. 6210 */ 6211 if (!args->subvol) 6212 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6213 6214 if (S_ISREG(inode->i_mode)) { 6215 if (btrfs_test_opt(fs_info, NODATASUM)) 6216 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6217 if (btrfs_test_opt(fs_info, NODATACOW)) 6218 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6219 BTRFS_INODE_NODATASUM; 6220 } 6221 6222 location = &BTRFS_I(inode)->location; 6223 location->objectid = objectid; 6224 location->offset = 0; 6225 location->type = BTRFS_INODE_ITEM_KEY; 6226 6227 ret = btrfs_insert_inode_locked(inode); 6228 if (ret < 0) { 6229 if (!args->orphan) 6230 BTRFS_I(dir)->index_cnt--; 6231 goto out; 6232 } 6233 6234 /* 6235 * We could have gotten an inode number from somebody who was fsynced 6236 * and then removed in this same transaction, so let's just set full 6237 * sync since it will be a full sync anyway and this will blow away the 6238 * old info in the log. 6239 */ 6240 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6241 6242 key[0].objectid = objectid; 6243 key[0].type = BTRFS_INODE_ITEM_KEY; 6244 key[0].offset = 0; 6245 6246 sizes[0] = sizeof(struct btrfs_inode_item); 6247 6248 if (!args->orphan) { 6249 /* 6250 * Start new inodes with an inode_ref. This is slightly more 6251 * efficient for small numbers of hard links since they will 6252 * be packed into one item. Extended refs will kick in if we 6253 * add more hard links than can fit in the ref item. 6254 */ 6255 key[1].objectid = objectid; 6256 key[1].type = BTRFS_INODE_REF_KEY; 6257 if (args->subvol) { 6258 key[1].offset = objectid; 6259 sizes[1] = 2 + sizeof(*ref); 6260 } else { 6261 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6262 sizes[1] = name->len + sizeof(*ref); 6263 } 6264 } 6265 6266 batch.keys = &key[0]; 6267 batch.data_sizes = &sizes[0]; 6268 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6269 batch.nr = args->orphan ? 1 : 2; 6270 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6271 if (ret != 0) { 6272 btrfs_abort_transaction(trans, ret); 6273 goto discard; 6274 } 6275 6276 inode->i_mtime = current_time(inode); 6277 inode->i_atime = inode->i_mtime; 6278 inode->i_ctime = inode->i_mtime; 6279 BTRFS_I(inode)->i_otime = inode->i_mtime; 6280 6281 /* 6282 * We're going to fill the inode item now, so at this point the inode 6283 * must be fully initialized. 6284 */ 6285 6286 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6287 struct btrfs_inode_item); 6288 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6289 sizeof(*inode_item)); 6290 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6291 6292 if (!args->orphan) { 6293 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6294 struct btrfs_inode_ref); 6295 ptr = (unsigned long)(ref + 1); 6296 if (args->subvol) { 6297 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6298 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6299 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6300 } else { 6301 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6302 name->len); 6303 btrfs_set_inode_ref_index(path->nodes[0], ref, 6304 BTRFS_I(inode)->dir_index); 6305 write_extent_buffer(path->nodes[0], name->name, ptr, 6306 name->len); 6307 } 6308 } 6309 6310 btrfs_mark_buffer_dirty(path->nodes[0]); 6311 /* 6312 * We don't need the path anymore, plus inheriting properties, adding 6313 * ACLs, security xattrs, orphan item or adding the link, will result in 6314 * allocating yet another path. So just free our path. 6315 */ 6316 btrfs_free_path(path); 6317 path = NULL; 6318 6319 if (args->subvol) { 6320 struct inode *parent; 6321 6322 /* 6323 * Subvolumes inherit properties from their parent subvolume, 6324 * not the directory they were created in. 6325 */ 6326 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6327 BTRFS_I(dir)->root); 6328 if (IS_ERR(parent)) { 6329 ret = PTR_ERR(parent); 6330 } else { 6331 ret = btrfs_inode_inherit_props(trans, inode, parent); 6332 iput(parent); 6333 } 6334 } else { 6335 ret = btrfs_inode_inherit_props(trans, inode, dir); 6336 } 6337 if (ret) { 6338 btrfs_err(fs_info, 6339 "error inheriting props for ino %llu (root %llu): %d", 6340 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6341 ret); 6342 } 6343 6344 /* 6345 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6346 * probably a bug. 6347 */ 6348 if (!args->subvol) { 6349 ret = btrfs_init_inode_security(trans, args); 6350 if (ret) { 6351 btrfs_abort_transaction(trans, ret); 6352 goto discard; 6353 } 6354 } 6355 6356 inode_tree_add(BTRFS_I(inode)); 6357 6358 trace_btrfs_inode_new(inode); 6359 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6360 6361 btrfs_update_root_times(trans, root); 6362 6363 if (args->orphan) { 6364 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6365 } else { 6366 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6367 0, BTRFS_I(inode)->dir_index); 6368 } 6369 if (ret) { 6370 btrfs_abort_transaction(trans, ret); 6371 goto discard; 6372 } 6373 6374 return 0; 6375 6376 discard: 6377 /* 6378 * discard_new_inode() calls iput(), but the caller owns the reference 6379 * to the inode. 6380 */ 6381 ihold(inode); 6382 discard_new_inode(inode); 6383 out: 6384 btrfs_free_path(path); 6385 return ret; 6386 } 6387 6388 /* 6389 * utility function to add 'inode' into 'parent_inode' with 6390 * a give name and a given sequence number. 6391 * if 'add_backref' is true, also insert a backref from the 6392 * inode to the parent directory. 6393 */ 6394 int btrfs_add_link(struct btrfs_trans_handle *trans, 6395 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6396 const struct fscrypt_str *name, int add_backref, u64 index) 6397 { 6398 int ret = 0; 6399 struct btrfs_key key; 6400 struct btrfs_root *root = parent_inode->root; 6401 u64 ino = btrfs_ino(inode); 6402 u64 parent_ino = btrfs_ino(parent_inode); 6403 6404 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6405 memcpy(&key, &inode->root->root_key, sizeof(key)); 6406 } else { 6407 key.objectid = ino; 6408 key.type = BTRFS_INODE_ITEM_KEY; 6409 key.offset = 0; 6410 } 6411 6412 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6413 ret = btrfs_add_root_ref(trans, key.objectid, 6414 root->root_key.objectid, parent_ino, 6415 index, name); 6416 } else if (add_backref) { 6417 ret = btrfs_insert_inode_ref(trans, root, name, 6418 ino, parent_ino, index); 6419 } 6420 6421 /* Nothing to clean up yet */ 6422 if (ret) 6423 return ret; 6424 6425 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6426 btrfs_inode_type(&inode->vfs_inode), index); 6427 if (ret == -EEXIST || ret == -EOVERFLOW) 6428 goto fail_dir_item; 6429 else if (ret) { 6430 btrfs_abort_transaction(trans, ret); 6431 return ret; 6432 } 6433 6434 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6435 name->len * 2); 6436 inode_inc_iversion(&parent_inode->vfs_inode); 6437 /* 6438 * If we are replaying a log tree, we do not want to update the mtime 6439 * and ctime of the parent directory with the current time, since the 6440 * log replay procedure is responsible for setting them to their correct 6441 * values (the ones it had when the fsync was done). 6442 */ 6443 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6444 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6445 6446 parent_inode->vfs_inode.i_mtime = now; 6447 parent_inode->vfs_inode.i_ctime = now; 6448 } 6449 ret = btrfs_update_inode(trans, root, parent_inode); 6450 if (ret) 6451 btrfs_abort_transaction(trans, ret); 6452 return ret; 6453 6454 fail_dir_item: 6455 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6456 u64 local_index; 6457 int err; 6458 err = btrfs_del_root_ref(trans, key.objectid, 6459 root->root_key.objectid, parent_ino, 6460 &local_index, name); 6461 if (err) 6462 btrfs_abort_transaction(trans, err); 6463 } else if (add_backref) { 6464 u64 local_index; 6465 int err; 6466 6467 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6468 &local_index); 6469 if (err) 6470 btrfs_abort_transaction(trans, err); 6471 } 6472 6473 /* Return the original error code */ 6474 return ret; 6475 } 6476 6477 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6478 struct inode *inode) 6479 { 6480 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6481 struct btrfs_root *root = BTRFS_I(dir)->root; 6482 struct btrfs_new_inode_args new_inode_args = { 6483 .dir = dir, 6484 .dentry = dentry, 6485 .inode = inode, 6486 }; 6487 unsigned int trans_num_items; 6488 struct btrfs_trans_handle *trans; 6489 int err; 6490 6491 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6492 if (err) 6493 goto out_inode; 6494 6495 trans = btrfs_start_transaction(root, trans_num_items); 6496 if (IS_ERR(trans)) { 6497 err = PTR_ERR(trans); 6498 goto out_new_inode_args; 6499 } 6500 6501 err = btrfs_create_new_inode(trans, &new_inode_args); 6502 if (!err) 6503 d_instantiate_new(dentry, inode); 6504 6505 btrfs_end_transaction(trans); 6506 btrfs_btree_balance_dirty(fs_info); 6507 out_new_inode_args: 6508 btrfs_new_inode_args_destroy(&new_inode_args); 6509 out_inode: 6510 if (err) 6511 iput(inode); 6512 return err; 6513 } 6514 6515 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6516 struct dentry *dentry, umode_t mode, dev_t rdev) 6517 { 6518 struct inode *inode; 6519 6520 inode = new_inode(dir->i_sb); 6521 if (!inode) 6522 return -ENOMEM; 6523 inode_init_owner(idmap, inode, dir, mode); 6524 inode->i_op = &btrfs_special_inode_operations; 6525 init_special_inode(inode, inode->i_mode, rdev); 6526 return btrfs_create_common(dir, dentry, inode); 6527 } 6528 6529 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6530 struct dentry *dentry, umode_t mode, bool excl) 6531 { 6532 struct inode *inode; 6533 6534 inode = new_inode(dir->i_sb); 6535 if (!inode) 6536 return -ENOMEM; 6537 inode_init_owner(idmap, inode, dir, mode); 6538 inode->i_fop = &btrfs_file_operations; 6539 inode->i_op = &btrfs_file_inode_operations; 6540 inode->i_mapping->a_ops = &btrfs_aops; 6541 return btrfs_create_common(dir, dentry, inode); 6542 } 6543 6544 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6545 struct dentry *dentry) 6546 { 6547 struct btrfs_trans_handle *trans = NULL; 6548 struct btrfs_root *root = BTRFS_I(dir)->root; 6549 struct inode *inode = d_inode(old_dentry); 6550 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6551 struct fscrypt_name fname; 6552 u64 index; 6553 int err; 6554 int drop_inode = 0; 6555 6556 /* do not allow sys_link's with other subvols of the same device */ 6557 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6558 return -EXDEV; 6559 6560 if (inode->i_nlink >= BTRFS_LINK_MAX) 6561 return -EMLINK; 6562 6563 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6564 if (err) 6565 goto fail; 6566 6567 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6568 if (err) 6569 goto fail; 6570 6571 /* 6572 * 2 items for inode and inode ref 6573 * 2 items for dir items 6574 * 1 item for parent inode 6575 * 1 item for orphan item deletion if O_TMPFILE 6576 */ 6577 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6578 if (IS_ERR(trans)) { 6579 err = PTR_ERR(trans); 6580 trans = NULL; 6581 goto fail; 6582 } 6583 6584 /* There are several dir indexes for this inode, clear the cache. */ 6585 BTRFS_I(inode)->dir_index = 0ULL; 6586 inc_nlink(inode); 6587 inode_inc_iversion(inode); 6588 inode->i_ctime = current_time(inode); 6589 ihold(inode); 6590 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6591 6592 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6593 &fname.disk_name, 1, index); 6594 6595 if (err) { 6596 drop_inode = 1; 6597 } else { 6598 struct dentry *parent = dentry->d_parent; 6599 6600 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6601 if (err) 6602 goto fail; 6603 if (inode->i_nlink == 1) { 6604 /* 6605 * If new hard link count is 1, it's a file created 6606 * with open(2) O_TMPFILE flag. 6607 */ 6608 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6609 if (err) 6610 goto fail; 6611 } 6612 d_instantiate(dentry, inode); 6613 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6614 } 6615 6616 fail: 6617 fscrypt_free_filename(&fname); 6618 if (trans) 6619 btrfs_end_transaction(trans); 6620 if (drop_inode) { 6621 inode_dec_link_count(inode); 6622 iput(inode); 6623 } 6624 btrfs_btree_balance_dirty(fs_info); 6625 return err; 6626 } 6627 6628 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6629 struct dentry *dentry, umode_t mode) 6630 { 6631 struct inode *inode; 6632 6633 inode = new_inode(dir->i_sb); 6634 if (!inode) 6635 return -ENOMEM; 6636 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6637 inode->i_op = &btrfs_dir_inode_operations; 6638 inode->i_fop = &btrfs_dir_file_operations; 6639 return btrfs_create_common(dir, dentry, inode); 6640 } 6641 6642 static noinline int uncompress_inline(struct btrfs_path *path, 6643 struct page *page, 6644 struct btrfs_file_extent_item *item) 6645 { 6646 int ret; 6647 struct extent_buffer *leaf = path->nodes[0]; 6648 char *tmp; 6649 size_t max_size; 6650 unsigned long inline_size; 6651 unsigned long ptr; 6652 int compress_type; 6653 6654 compress_type = btrfs_file_extent_compression(leaf, item); 6655 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6656 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6657 tmp = kmalloc(inline_size, GFP_NOFS); 6658 if (!tmp) 6659 return -ENOMEM; 6660 ptr = btrfs_file_extent_inline_start(item); 6661 6662 read_extent_buffer(leaf, tmp, ptr, inline_size); 6663 6664 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6665 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6666 6667 /* 6668 * decompression code contains a memset to fill in any space between the end 6669 * of the uncompressed data and the end of max_size in case the decompressed 6670 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6671 * the end of an inline extent and the beginning of the next block, so we 6672 * cover that region here. 6673 */ 6674 6675 if (max_size < PAGE_SIZE) 6676 memzero_page(page, max_size, PAGE_SIZE - max_size); 6677 kfree(tmp); 6678 return ret; 6679 } 6680 6681 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6682 struct page *page) 6683 { 6684 struct btrfs_file_extent_item *fi; 6685 void *kaddr; 6686 size_t copy_size; 6687 6688 if (!page || PageUptodate(page)) 6689 return 0; 6690 6691 ASSERT(page_offset(page) == 0); 6692 6693 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6694 struct btrfs_file_extent_item); 6695 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6696 return uncompress_inline(path, page, fi); 6697 6698 copy_size = min_t(u64, PAGE_SIZE, 6699 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6700 kaddr = kmap_local_page(page); 6701 read_extent_buffer(path->nodes[0], kaddr, 6702 btrfs_file_extent_inline_start(fi), copy_size); 6703 kunmap_local(kaddr); 6704 if (copy_size < PAGE_SIZE) 6705 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6706 return 0; 6707 } 6708 6709 /* 6710 * Lookup the first extent overlapping a range in a file. 6711 * 6712 * @inode: file to search in 6713 * @page: page to read extent data into if the extent is inline 6714 * @pg_offset: offset into @page to copy to 6715 * @start: file offset 6716 * @len: length of range starting at @start 6717 * 6718 * Return the first &struct extent_map which overlaps the given range, reading 6719 * it from the B-tree and caching it if necessary. Note that there may be more 6720 * extents which overlap the given range after the returned extent_map. 6721 * 6722 * If @page is not NULL and the extent is inline, this also reads the extent 6723 * data directly into the page and marks the extent up to date in the io_tree. 6724 * 6725 * Return: ERR_PTR on error, non-NULL extent_map on success. 6726 */ 6727 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6728 struct page *page, size_t pg_offset, 6729 u64 start, u64 len) 6730 { 6731 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6732 int ret = 0; 6733 u64 extent_start = 0; 6734 u64 extent_end = 0; 6735 u64 objectid = btrfs_ino(inode); 6736 int extent_type = -1; 6737 struct btrfs_path *path = NULL; 6738 struct btrfs_root *root = inode->root; 6739 struct btrfs_file_extent_item *item; 6740 struct extent_buffer *leaf; 6741 struct btrfs_key found_key; 6742 struct extent_map *em = NULL; 6743 struct extent_map_tree *em_tree = &inode->extent_tree; 6744 6745 read_lock(&em_tree->lock); 6746 em = lookup_extent_mapping(em_tree, start, len); 6747 read_unlock(&em_tree->lock); 6748 6749 if (em) { 6750 if (em->start > start || em->start + em->len <= start) 6751 free_extent_map(em); 6752 else if (em->block_start == EXTENT_MAP_INLINE && page) 6753 free_extent_map(em); 6754 else 6755 goto out; 6756 } 6757 em = alloc_extent_map(); 6758 if (!em) { 6759 ret = -ENOMEM; 6760 goto out; 6761 } 6762 em->start = EXTENT_MAP_HOLE; 6763 em->orig_start = EXTENT_MAP_HOLE; 6764 em->len = (u64)-1; 6765 em->block_len = (u64)-1; 6766 6767 path = btrfs_alloc_path(); 6768 if (!path) { 6769 ret = -ENOMEM; 6770 goto out; 6771 } 6772 6773 /* Chances are we'll be called again, so go ahead and do readahead */ 6774 path->reada = READA_FORWARD; 6775 6776 /* 6777 * The same explanation in load_free_space_cache applies here as well, 6778 * we only read when we're loading the free space cache, and at that 6779 * point the commit_root has everything we need. 6780 */ 6781 if (btrfs_is_free_space_inode(inode)) { 6782 path->search_commit_root = 1; 6783 path->skip_locking = 1; 6784 } 6785 6786 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6787 if (ret < 0) { 6788 goto out; 6789 } else if (ret > 0) { 6790 if (path->slots[0] == 0) 6791 goto not_found; 6792 path->slots[0]--; 6793 ret = 0; 6794 } 6795 6796 leaf = path->nodes[0]; 6797 item = btrfs_item_ptr(leaf, path->slots[0], 6798 struct btrfs_file_extent_item); 6799 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6800 if (found_key.objectid != objectid || 6801 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6802 /* 6803 * If we backup past the first extent we want to move forward 6804 * and see if there is an extent in front of us, otherwise we'll 6805 * say there is a hole for our whole search range which can 6806 * cause problems. 6807 */ 6808 extent_end = start; 6809 goto next; 6810 } 6811 6812 extent_type = btrfs_file_extent_type(leaf, item); 6813 extent_start = found_key.offset; 6814 extent_end = btrfs_file_extent_end(path); 6815 if (extent_type == BTRFS_FILE_EXTENT_REG || 6816 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6817 /* Only regular file could have regular/prealloc extent */ 6818 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6819 ret = -EUCLEAN; 6820 btrfs_crit(fs_info, 6821 "regular/prealloc extent found for non-regular inode %llu", 6822 btrfs_ino(inode)); 6823 goto out; 6824 } 6825 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6826 extent_start); 6827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6828 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6829 path->slots[0], 6830 extent_start); 6831 } 6832 next: 6833 if (start >= extent_end) { 6834 path->slots[0]++; 6835 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6836 ret = btrfs_next_leaf(root, path); 6837 if (ret < 0) 6838 goto out; 6839 else if (ret > 0) 6840 goto not_found; 6841 6842 leaf = path->nodes[0]; 6843 } 6844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6845 if (found_key.objectid != objectid || 6846 found_key.type != BTRFS_EXTENT_DATA_KEY) 6847 goto not_found; 6848 if (start + len <= found_key.offset) 6849 goto not_found; 6850 if (start > found_key.offset) 6851 goto next; 6852 6853 /* New extent overlaps with existing one */ 6854 em->start = start; 6855 em->orig_start = start; 6856 em->len = found_key.offset - start; 6857 em->block_start = EXTENT_MAP_HOLE; 6858 goto insert; 6859 } 6860 6861 btrfs_extent_item_to_extent_map(inode, path, item, em); 6862 6863 if (extent_type == BTRFS_FILE_EXTENT_REG || 6864 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6865 goto insert; 6866 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6867 /* 6868 * Inline extent can only exist at file offset 0. This is 6869 * ensured by tree-checker and inline extent creation path. 6870 * Thus all members representing file offsets should be zero. 6871 */ 6872 ASSERT(pg_offset == 0); 6873 ASSERT(extent_start == 0); 6874 ASSERT(em->start == 0); 6875 6876 /* 6877 * btrfs_extent_item_to_extent_map() should have properly 6878 * initialized em members already. 6879 * 6880 * Other members are not utilized for inline extents. 6881 */ 6882 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6883 ASSERT(em->len == fs_info->sectorsize); 6884 6885 ret = read_inline_extent(inode, path, page); 6886 if (ret < 0) 6887 goto out; 6888 goto insert; 6889 } 6890 not_found: 6891 em->start = start; 6892 em->orig_start = start; 6893 em->len = len; 6894 em->block_start = EXTENT_MAP_HOLE; 6895 insert: 6896 ret = 0; 6897 btrfs_release_path(path); 6898 if (em->start > start || extent_map_end(em) <= start) { 6899 btrfs_err(fs_info, 6900 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6901 em->start, em->len, start, len); 6902 ret = -EIO; 6903 goto out; 6904 } 6905 6906 write_lock(&em_tree->lock); 6907 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6908 write_unlock(&em_tree->lock); 6909 out: 6910 btrfs_free_path(path); 6911 6912 trace_btrfs_get_extent(root, inode, em); 6913 6914 if (ret) { 6915 free_extent_map(em); 6916 return ERR_PTR(ret); 6917 } 6918 return em; 6919 } 6920 6921 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6922 struct btrfs_dio_data *dio_data, 6923 const u64 start, 6924 const u64 len, 6925 const u64 orig_start, 6926 const u64 block_start, 6927 const u64 block_len, 6928 const u64 orig_block_len, 6929 const u64 ram_bytes, 6930 const int type) 6931 { 6932 struct extent_map *em = NULL; 6933 struct btrfs_ordered_extent *ordered; 6934 6935 if (type != BTRFS_ORDERED_NOCOW) { 6936 em = create_io_em(inode, start, len, orig_start, block_start, 6937 block_len, orig_block_len, ram_bytes, 6938 BTRFS_COMPRESS_NONE, /* compress_type */ 6939 type); 6940 if (IS_ERR(em)) 6941 goto out; 6942 } 6943 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6944 block_start, block_len, 0, 6945 (1 << type) | 6946 (1 << BTRFS_ORDERED_DIRECT), 6947 BTRFS_COMPRESS_NONE); 6948 if (IS_ERR(ordered)) { 6949 if (em) { 6950 free_extent_map(em); 6951 btrfs_drop_extent_map_range(inode, start, 6952 start + len - 1, false); 6953 } 6954 em = ERR_CAST(ordered); 6955 } else { 6956 ASSERT(!dio_data->ordered); 6957 dio_data->ordered = ordered; 6958 } 6959 out: 6960 6961 return em; 6962 } 6963 6964 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6965 struct btrfs_dio_data *dio_data, 6966 u64 start, u64 len) 6967 { 6968 struct btrfs_root *root = inode->root; 6969 struct btrfs_fs_info *fs_info = root->fs_info; 6970 struct extent_map *em; 6971 struct btrfs_key ins; 6972 u64 alloc_hint; 6973 int ret; 6974 6975 alloc_hint = get_extent_allocation_hint(inode, start, len); 6976 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6977 0, alloc_hint, &ins, 1, 1); 6978 if (ret) 6979 return ERR_PTR(ret); 6980 6981 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 6982 ins.objectid, ins.offset, ins.offset, 6983 ins.offset, BTRFS_ORDERED_REGULAR); 6984 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6985 if (IS_ERR(em)) 6986 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 6987 1); 6988 6989 return em; 6990 } 6991 6992 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 6993 { 6994 struct btrfs_block_group *block_group; 6995 bool readonly = false; 6996 6997 block_group = btrfs_lookup_block_group(fs_info, bytenr); 6998 if (!block_group || block_group->ro) 6999 readonly = true; 7000 if (block_group) 7001 btrfs_put_block_group(block_group); 7002 return readonly; 7003 } 7004 7005 /* 7006 * Check if we can do nocow write into the range [@offset, @offset + @len) 7007 * 7008 * @offset: File offset 7009 * @len: The length to write, will be updated to the nocow writeable 7010 * range 7011 * @orig_start: (optional) Return the original file offset of the file extent 7012 * @orig_len: (optional) Return the original on-disk length of the file extent 7013 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7014 * @strict: if true, omit optimizations that might force us into unnecessary 7015 * cow. e.g., don't trust generation number. 7016 * 7017 * Return: 7018 * >0 and update @len if we can do nocow write 7019 * 0 if we can't do nocow write 7020 * <0 if error happened 7021 * 7022 * NOTE: This only checks the file extents, caller is responsible to wait for 7023 * any ordered extents. 7024 */ 7025 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7026 u64 *orig_start, u64 *orig_block_len, 7027 u64 *ram_bytes, bool nowait, bool strict) 7028 { 7029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7030 struct can_nocow_file_extent_args nocow_args = { 0 }; 7031 struct btrfs_path *path; 7032 int ret; 7033 struct extent_buffer *leaf; 7034 struct btrfs_root *root = BTRFS_I(inode)->root; 7035 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7036 struct btrfs_file_extent_item *fi; 7037 struct btrfs_key key; 7038 int found_type; 7039 7040 path = btrfs_alloc_path(); 7041 if (!path) 7042 return -ENOMEM; 7043 path->nowait = nowait; 7044 7045 ret = btrfs_lookup_file_extent(NULL, root, path, 7046 btrfs_ino(BTRFS_I(inode)), offset, 0); 7047 if (ret < 0) 7048 goto out; 7049 7050 if (ret == 1) { 7051 if (path->slots[0] == 0) { 7052 /* can't find the item, must cow */ 7053 ret = 0; 7054 goto out; 7055 } 7056 path->slots[0]--; 7057 } 7058 ret = 0; 7059 leaf = path->nodes[0]; 7060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7061 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7062 key.type != BTRFS_EXTENT_DATA_KEY) { 7063 /* not our file or wrong item type, must cow */ 7064 goto out; 7065 } 7066 7067 if (key.offset > offset) { 7068 /* Wrong offset, must cow */ 7069 goto out; 7070 } 7071 7072 if (btrfs_file_extent_end(path) <= offset) 7073 goto out; 7074 7075 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7076 found_type = btrfs_file_extent_type(leaf, fi); 7077 if (ram_bytes) 7078 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7079 7080 nocow_args.start = offset; 7081 nocow_args.end = offset + *len - 1; 7082 nocow_args.strict = strict; 7083 nocow_args.free_path = true; 7084 7085 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7086 /* can_nocow_file_extent() has freed the path. */ 7087 path = NULL; 7088 7089 if (ret != 1) { 7090 /* Treat errors as not being able to NOCOW. */ 7091 ret = 0; 7092 goto out; 7093 } 7094 7095 ret = 0; 7096 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7097 goto out; 7098 7099 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7100 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7101 u64 range_end; 7102 7103 range_end = round_up(offset + nocow_args.num_bytes, 7104 root->fs_info->sectorsize) - 1; 7105 ret = test_range_bit(io_tree, offset, range_end, 7106 EXTENT_DELALLOC, 0, NULL); 7107 if (ret) { 7108 ret = -EAGAIN; 7109 goto out; 7110 } 7111 } 7112 7113 if (orig_start) 7114 *orig_start = key.offset - nocow_args.extent_offset; 7115 if (orig_block_len) 7116 *orig_block_len = nocow_args.disk_num_bytes; 7117 7118 *len = nocow_args.num_bytes; 7119 ret = 1; 7120 out: 7121 btrfs_free_path(path); 7122 return ret; 7123 } 7124 7125 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7126 struct extent_state **cached_state, 7127 unsigned int iomap_flags) 7128 { 7129 const bool writing = (iomap_flags & IOMAP_WRITE); 7130 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7131 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7132 struct btrfs_ordered_extent *ordered; 7133 int ret = 0; 7134 7135 while (1) { 7136 if (nowait) { 7137 if (!try_lock_extent(io_tree, lockstart, lockend, 7138 cached_state)) 7139 return -EAGAIN; 7140 } else { 7141 lock_extent(io_tree, lockstart, lockend, cached_state); 7142 } 7143 /* 7144 * We're concerned with the entire range that we're going to be 7145 * doing DIO to, so we need to make sure there's no ordered 7146 * extents in this range. 7147 */ 7148 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7149 lockend - lockstart + 1); 7150 7151 /* 7152 * We need to make sure there are no buffered pages in this 7153 * range either, we could have raced between the invalidate in 7154 * generic_file_direct_write and locking the extent. The 7155 * invalidate needs to happen so that reads after a write do not 7156 * get stale data. 7157 */ 7158 if (!ordered && 7159 (!writing || !filemap_range_has_page(inode->i_mapping, 7160 lockstart, lockend))) 7161 break; 7162 7163 unlock_extent(io_tree, lockstart, lockend, cached_state); 7164 7165 if (ordered) { 7166 if (nowait) { 7167 btrfs_put_ordered_extent(ordered); 7168 ret = -EAGAIN; 7169 break; 7170 } 7171 /* 7172 * If we are doing a DIO read and the ordered extent we 7173 * found is for a buffered write, we can not wait for it 7174 * to complete and retry, because if we do so we can 7175 * deadlock with concurrent buffered writes on page 7176 * locks. This happens only if our DIO read covers more 7177 * than one extent map, if at this point has already 7178 * created an ordered extent for a previous extent map 7179 * and locked its range in the inode's io tree, and a 7180 * concurrent write against that previous extent map's 7181 * range and this range started (we unlock the ranges 7182 * in the io tree only when the bios complete and 7183 * buffered writes always lock pages before attempting 7184 * to lock range in the io tree). 7185 */ 7186 if (writing || 7187 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7188 btrfs_start_ordered_extent(ordered); 7189 else 7190 ret = nowait ? -EAGAIN : -ENOTBLK; 7191 btrfs_put_ordered_extent(ordered); 7192 } else { 7193 /* 7194 * We could trigger writeback for this range (and wait 7195 * for it to complete) and then invalidate the pages for 7196 * this range (through invalidate_inode_pages2_range()), 7197 * but that can lead us to a deadlock with a concurrent 7198 * call to readahead (a buffered read or a defrag call 7199 * triggered a readahead) on a page lock due to an 7200 * ordered dio extent we created before but did not have 7201 * yet a corresponding bio submitted (whence it can not 7202 * complete), which makes readahead wait for that 7203 * ordered extent to complete while holding a lock on 7204 * that page. 7205 */ 7206 ret = nowait ? -EAGAIN : -ENOTBLK; 7207 } 7208 7209 if (ret) 7210 break; 7211 7212 cond_resched(); 7213 } 7214 7215 return ret; 7216 } 7217 7218 /* The callers of this must take lock_extent() */ 7219 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7220 u64 len, u64 orig_start, u64 block_start, 7221 u64 block_len, u64 orig_block_len, 7222 u64 ram_bytes, int compress_type, 7223 int type) 7224 { 7225 struct extent_map *em; 7226 int ret; 7227 7228 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7229 type == BTRFS_ORDERED_COMPRESSED || 7230 type == BTRFS_ORDERED_NOCOW || 7231 type == BTRFS_ORDERED_REGULAR); 7232 7233 em = alloc_extent_map(); 7234 if (!em) 7235 return ERR_PTR(-ENOMEM); 7236 7237 em->start = start; 7238 em->orig_start = orig_start; 7239 em->len = len; 7240 em->block_len = block_len; 7241 em->block_start = block_start; 7242 em->orig_block_len = orig_block_len; 7243 em->ram_bytes = ram_bytes; 7244 em->generation = -1; 7245 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7246 if (type == BTRFS_ORDERED_PREALLOC) { 7247 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7248 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7249 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7250 em->compress_type = compress_type; 7251 } 7252 7253 ret = btrfs_replace_extent_map_range(inode, em, true); 7254 if (ret) { 7255 free_extent_map(em); 7256 return ERR_PTR(ret); 7257 } 7258 7259 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7260 return em; 7261 } 7262 7263 7264 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7265 struct inode *inode, 7266 struct btrfs_dio_data *dio_data, 7267 u64 start, u64 len, 7268 unsigned int iomap_flags) 7269 { 7270 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7272 struct extent_map *em = *map; 7273 int type; 7274 u64 block_start, orig_start, orig_block_len, ram_bytes; 7275 struct btrfs_block_group *bg; 7276 bool can_nocow = false; 7277 bool space_reserved = false; 7278 u64 prev_len; 7279 int ret = 0; 7280 7281 /* 7282 * We don't allocate a new extent in the following cases 7283 * 7284 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7285 * existing extent. 7286 * 2) The extent is marked as PREALLOC. We're good to go here and can 7287 * just use the extent. 7288 * 7289 */ 7290 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7291 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7292 em->block_start != EXTENT_MAP_HOLE)) { 7293 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7294 type = BTRFS_ORDERED_PREALLOC; 7295 else 7296 type = BTRFS_ORDERED_NOCOW; 7297 len = min(len, em->len - (start - em->start)); 7298 block_start = em->block_start + (start - em->start); 7299 7300 if (can_nocow_extent(inode, start, &len, &orig_start, 7301 &orig_block_len, &ram_bytes, false, false) == 1) { 7302 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7303 if (bg) 7304 can_nocow = true; 7305 } 7306 } 7307 7308 prev_len = len; 7309 if (can_nocow) { 7310 struct extent_map *em2; 7311 7312 /* We can NOCOW, so only need to reserve metadata space. */ 7313 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7314 nowait); 7315 if (ret < 0) { 7316 /* Our caller expects us to free the input extent map. */ 7317 free_extent_map(em); 7318 *map = NULL; 7319 btrfs_dec_nocow_writers(bg); 7320 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7321 ret = -EAGAIN; 7322 goto out; 7323 } 7324 space_reserved = true; 7325 7326 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7327 orig_start, block_start, 7328 len, orig_block_len, 7329 ram_bytes, type); 7330 btrfs_dec_nocow_writers(bg); 7331 if (type == BTRFS_ORDERED_PREALLOC) { 7332 free_extent_map(em); 7333 *map = em2; 7334 em = em2; 7335 } 7336 7337 if (IS_ERR(em2)) { 7338 ret = PTR_ERR(em2); 7339 goto out; 7340 } 7341 7342 dio_data->nocow_done = true; 7343 } else { 7344 /* Our caller expects us to free the input extent map. */ 7345 free_extent_map(em); 7346 *map = NULL; 7347 7348 if (nowait) 7349 return -EAGAIN; 7350 7351 /* 7352 * If we could not allocate data space before locking the file 7353 * range and we can't do a NOCOW write, then we have to fail. 7354 */ 7355 if (!dio_data->data_space_reserved) 7356 return -ENOSPC; 7357 7358 /* 7359 * We have to COW and we have already reserved data space before, 7360 * so now we reserve only metadata. 7361 */ 7362 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7363 false); 7364 if (ret < 0) 7365 goto out; 7366 space_reserved = true; 7367 7368 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7369 if (IS_ERR(em)) { 7370 ret = PTR_ERR(em); 7371 goto out; 7372 } 7373 *map = em; 7374 len = min(len, em->len - (start - em->start)); 7375 if (len < prev_len) 7376 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7377 prev_len - len, true); 7378 } 7379 7380 /* 7381 * We have created our ordered extent, so we can now release our reservation 7382 * for an outstanding extent. 7383 */ 7384 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7385 7386 /* 7387 * Need to update the i_size under the extent lock so buffered 7388 * readers will get the updated i_size when we unlock. 7389 */ 7390 if (start + len > i_size_read(inode)) 7391 i_size_write(inode, start + len); 7392 out: 7393 if (ret && space_reserved) { 7394 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7395 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7396 } 7397 return ret; 7398 } 7399 7400 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7401 loff_t length, unsigned int flags, struct iomap *iomap, 7402 struct iomap *srcmap) 7403 { 7404 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7405 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7406 struct extent_map *em; 7407 struct extent_state *cached_state = NULL; 7408 struct btrfs_dio_data *dio_data = iter->private; 7409 u64 lockstart, lockend; 7410 const bool write = !!(flags & IOMAP_WRITE); 7411 int ret = 0; 7412 u64 len = length; 7413 const u64 data_alloc_len = length; 7414 bool unlock_extents = false; 7415 7416 /* 7417 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7418 * we're NOWAIT we may submit a bio for a partial range and return 7419 * EIOCBQUEUED, which would result in an errant short read. 7420 * 7421 * The best way to handle this would be to allow for partial completions 7422 * of iocb's, so we could submit the partial bio, return and fault in 7423 * the rest of the pages, and then submit the io for the rest of the 7424 * range. However we don't have that currently, so simply return 7425 * -EAGAIN at this point so that the normal path is used. 7426 */ 7427 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7428 return -EAGAIN; 7429 7430 /* 7431 * Cap the size of reads to that usually seen in buffered I/O as we need 7432 * to allocate a contiguous array for the checksums. 7433 */ 7434 if (!write) 7435 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7436 7437 lockstart = start; 7438 lockend = start + len - 1; 7439 7440 /* 7441 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7442 * enough if we've written compressed pages to this area, so we need to 7443 * flush the dirty pages again to make absolutely sure that any 7444 * outstanding dirty pages are on disk - the first flush only starts 7445 * compression on the data, while keeping the pages locked, so by the 7446 * time the second flush returns we know bios for the compressed pages 7447 * were submitted and finished, and the pages no longer under writeback. 7448 * 7449 * If we have a NOWAIT request and we have any pages in the range that 7450 * are locked, likely due to compression still in progress, we don't want 7451 * to block on page locks. We also don't want to block on pages marked as 7452 * dirty or under writeback (same as for the non-compression case). 7453 * iomap_dio_rw() did the same check, but after that and before we got 7454 * here, mmap'ed writes may have happened or buffered reads started 7455 * (readpage() and readahead(), which lock pages), as we haven't locked 7456 * the file range yet. 7457 */ 7458 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7459 &BTRFS_I(inode)->runtime_flags)) { 7460 if (flags & IOMAP_NOWAIT) { 7461 if (filemap_range_needs_writeback(inode->i_mapping, 7462 lockstart, lockend)) 7463 return -EAGAIN; 7464 } else { 7465 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7466 start + length - 1); 7467 if (ret) 7468 return ret; 7469 } 7470 } 7471 7472 memset(dio_data, 0, sizeof(*dio_data)); 7473 7474 /* 7475 * We always try to allocate data space and must do it before locking 7476 * the file range, to avoid deadlocks with concurrent writes to the same 7477 * range if the range has several extents and the writes don't expand the 7478 * current i_size (the inode lock is taken in shared mode). If we fail to 7479 * allocate data space here we continue and later, after locking the 7480 * file range, we fail with ENOSPC only if we figure out we can not do a 7481 * NOCOW write. 7482 */ 7483 if (write && !(flags & IOMAP_NOWAIT)) { 7484 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7485 &dio_data->data_reserved, 7486 start, data_alloc_len, false); 7487 if (!ret) 7488 dio_data->data_space_reserved = true; 7489 else if (ret && !(BTRFS_I(inode)->flags & 7490 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7491 goto err; 7492 } 7493 7494 /* 7495 * If this errors out it's because we couldn't invalidate pagecache for 7496 * this range and we need to fallback to buffered IO, or we are doing a 7497 * NOWAIT read/write and we need to block. 7498 */ 7499 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7500 if (ret < 0) 7501 goto err; 7502 7503 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7504 if (IS_ERR(em)) { 7505 ret = PTR_ERR(em); 7506 goto unlock_err; 7507 } 7508 7509 /* 7510 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7511 * io. INLINE is special, and we could probably kludge it in here, but 7512 * it's still buffered so for safety lets just fall back to the generic 7513 * buffered path. 7514 * 7515 * For COMPRESSED we _have_ to read the entire extent in so we can 7516 * decompress it, so there will be buffering required no matter what we 7517 * do, so go ahead and fallback to buffered. 7518 * 7519 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7520 * to buffered IO. Don't blame me, this is the price we pay for using 7521 * the generic code. 7522 */ 7523 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7524 em->block_start == EXTENT_MAP_INLINE) { 7525 free_extent_map(em); 7526 /* 7527 * If we are in a NOWAIT context, return -EAGAIN in order to 7528 * fallback to buffered IO. This is not only because we can 7529 * block with buffered IO (no support for NOWAIT semantics at 7530 * the moment) but also to avoid returning short reads to user 7531 * space - this happens if we were able to read some data from 7532 * previous non-compressed extents and then when we fallback to 7533 * buffered IO, at btrfs_file_read_iter() by calling 7534 * filemap_read(), we fail to fault in pages for the read buffer, 7535 * in which case filemap_read() returns a short read (the number 7536 * of bytes previously read is > 0, so it does not return -EFAULT). 7537 */ 7538 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7539 goto unlock_err; 7540 } 7541 7542 len = min(len, em->len - (start - em->start)); 7543 7544 /* 7545 * If we have a NOWAIT request and the range contains multiple extents 7546 * (or a mix of extents and holes), then we return -EAGAIN to make the 7547 * caller fallback to a context where it can do a blocking (without 7548 * NOWAIT) request. This way we avoid doing partial IO and returning 7549 * success to the caller, which is not optimal for writes and for reads 7550 * it can result in unexpected behaviour for an application. 7551 * 7552 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7553 * iomap_dio_rw(), we can end up returning less data then what the caller 7554 * asked for, resulting in an unexpected, and incorrect, short read. 7555 * That is, the caller asked to read N bytes and we return less than that, 7556 * which is wrong unless we are crossing EOF. This happens if we get a 7557 * page fault error when trying to fault in pages for the buffer that is 7558 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7559 * have previously submitted bios for other extents in the range, in 7560 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7561 * those bios have completed by the time we get the page fault error, 7562 * which we return back to our caller - we should only return EIOCBQUEUED 7563 * after we have submitted bios for all the extents in the range. 7564 */ 7565 if ((flags & IOMAP_NOWAIT) && len < length) { 7566 free_extent_map(em); 7567 ret = -EAGAIN; 7568 goto unlock_err; 7569 } 7570 7571 if (write) { 7572 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7573 start, len, flags); 7574 if (ret < 0) 7575 goto unlock_err; 7576 unlock_extents = true; 7577 /* Recalc len in case the new em is smaller than requested */ 7578 len = min(len, em->len - (start - em->start)); 7579 if (dio_data->data_space_reserved) { 7580 u64 release_offset; 7581 u64 release_len = 0; 7582 7583 if (dio_data->nocow_done) { 7584 release_offset = start; 7585 release_len = data_alloc_len; 7586 } else if (len < data_alloc_len) { 7587 release_offset = start + len; 7588 release_len = data_alloc_len - len; 7589 } 7590 7591 if (release_len > 0) 7592 btrfs_free_reserved_data_space(BTRFS_I(inode), 7593 dio_data->data_reserved, 7594 release_offset, 7595 release_len); 7596 } 7597 } else { 7598 /* 7599 * We need to unlock only the end area that we aren't using. 7600 * The rest is going to be unlocked by the endio routine. 7601 */ 7602 lockstart = start + len; 7603 if (lockstart < lockend) 7604 unlock_extents = true; 7605 } 7606 7607 if (unlock_extents) 7608 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7609 &cached_state); 7610 else 7611 free_extent_state(cached_state); 7612 7613 /* 7614 * Translate extent map information to iomap. 7615 * We trim the extents (and move the addr) even though iomap code does 7616 * that, since we have locked only the parts we are performing I/O in. 7617 */ 7618 if ((em->block_start == EXTENT_MAP_HOLE) || 7619 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7620 iomap->addr = IOMAP_NULL_ADDR; 7621 iomap->type = IOMAP_HOLE; 7622 } else { 7623 iomap->addr = em->block_start + (start - em->start); 7624 iomap->type = IOMAP_MAPPED; 7625 } 7626 iomap->offset = start; 7627 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7628 iomap->length = len; 7629 free_extent_map(em); 7630 7631 return 0; 7632 7633 unlock_err: 7634 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7635 &cached_state); 7636 err: 7637 if (dio_data->data_space_reserved) { 7638 btrfs_free_reserved_data_space(BTRFS_I(inode), 7639 dio_data->data_reserved, 7640 start, data_alloc_len); 7641 extent_changeset_free(dio_data->data_reserved); 7642 } 7643 7644 return ret; 7645 } 7646 7647 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7648 ssize_t written, unsigned int flags, struct iomap *iomap) 7649 { 7650 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7651 struct btrfs_dio_data *dio_data = iter->private; 7652 size_t submitted = dio_data->submitted; 7653 const bool write = !!(flags & IOMAP_WRITE); 7654 int ret = 0; 7655 7656 if (!write && (iomap->type == IOMAP_HOLE)) { 7657 /* If reading from a hole, unlock and return */ 7658 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7659 NULL); 7660 return 0; 7661 } 7662 7663 if (submitted < length) { 7664 pos += submitted; 7665 length -= submitted; 7666 if (write) 7667 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 7668 pos, length, false); 7669 else 7670 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7671 pos + length - 1, NULL); 7672 ret = -ENOTBLK; 7673 } 7674 if (write) { 7675 btrfs_put_ordered_extent(dio_data->ordered); 7676 dio_data->ordered = NULL; 7677 } 7678 7679 if (write) 7680 extent_changeset_free(dio_data->data_reserved); 7681 return ret; 7682 } 7683 7684 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7685 { 7686 struct btrfs_dio_private *dip = 7687 container_of(bbio, struct btrfs_dio_private, bbio); 7688 struct btrfs_inode *inode = bbio->inode; 7689 struct bio *bio = &bbio->bio; 7690 7691 if (bio->bi_status) { 7692 btrfs_warn(inode->root->fs_info, 7693 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7694 btrfs_ino(inode), bio->bi_opf, 7695 dip->file_offset, dip->bytes, bio->bi_status); 7696 } 7697 7698 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 7699 btrfs_mark_ordered_io_finished(inode, NULL, dip->file_offset, 7700 dip->bytes, !bio->bi_status); 7701 else 7702 unlock_extent(&inode->io_tree, dip->file_offset, 7703 dip->file_offset + dip->bytes - 1, NULL); 7704 7705 bbio->bio.bi_private = bbio->private; 7706 iomap_dio_bio_end_io(bio); 7707 } 7708 7709 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7710 loff_t file_offset) 7711 { 7712 struct btrfs_bio *bbio = btrfs_bio(bio); 7713 struct btrfs_dio_private *dip = 7714 container_of(bbio, struct btrfs_dio_private, bbio); 7715 struct btrfs_dio_data *dio_data = iter->private; 7716 7717 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7718 btrfs_dio_end_io, bio->bi_private); 7719 bbio->inode = BTRFS_I(iter->inode); 7720 bbio->file_offset = file_offset; 7721 7722 dip->file_offset = file_offset; 7723 dip->bytes = bio->bi_iter.bi_size; 7724 7725 dio_data->submitted += bio->bi_iter.bi_size; 7726 7727 /* 7728 * Check if we are doing a partial write. If we are, we need to split 7729 * the ordered extent to match the submitted bio. Hang on to the 7730 * remaining unfinishable ordered_extent in dio_data so that it can be 7731 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7732 * remaining pages is blocked on the outstanding ordered extent. 7733 */ 7734 if (iter->flags & IOMAP_WRITE) { 7735 int ret; 7736 7737 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7738 if (ret) { 7739 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 7740 return; 7741 } 7742 } 7743 7744 btrfs_submit_bio(bbio, 0); 7745 } 7746 7747 static const struct iomap_ops btrfs_dio_iomap_ops = { 7748 .iomap_begin = btrfs_dio_iomap_begin, 7749 .iomap_end = btrfs_dio_iomap_end, 7750 }; 7751 7752 static const struct iomap_dio_ops btrfs_dio_ops = { 7753 .submit_io = btrfs_dio_submit_io, 7754 .bio_set = &btrfs_dio_bioset, 7755 }; 7756 7757 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7758 { 7759 struct btrfs_dio_data data = { 0 }; 7760 7761 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7762 IOMAP_DIO_PARTIAL, &data, done_before); 7763 } 7764 7765 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7766 size_t done_before) 7767 { 7768 struct btrfs_dio_data data = { 0 }; 7769 7770 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7771 IOMAP_DIO_PARTIAL, &data, done_before); 7772 } 7773 7774 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7775 u64 start, u64 len) 7776 { 7777 int ret; 7778 7779 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7780 if (ret) 7781 return ret; 7782 7783 /* 7784 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7785 * file range (0 to LLONG_MAX), but that is not enough if we have 7786 * compression enabled. The first filemap_fdatawrite_range() only kicks 7787 * in the compression of data (in an async thread) and will return 7788 * before the compression is done and writeback is started. A second 7789 * filemap_fdatawrite_range() is needed to wait for the compression to 7790 * complete and writeback to start. We also need to wait for ordered 7791 * extents to complete, because our fiemap implementation uses mainly 7792 * file extent items to list the extents, searching for extent maps 7793 * only for file ranges with holes or prealloc extents to figure out 7794 * if we have delalloc in those ranges. 7795 */ 7796 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7797 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7798 if (ret) 7799 return ret; 7800 } 7801 7802 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 7803 } 7804 7805 static int btrfs_writepages(struct address_space *mapping, 7806 struct writeback_control *wbc) 7807 { 7808 return extent_writepages(mapping, wbc); 7809 } 7810 7811 static void btrfs_readahead(struct readahead_control *rac) 7812 { 7813 extent_readahead(rac); 7814 } 7815 7816 /* 7817 * For release_folio() and invalidate_folio() we have a race window where 7818 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7819 * If we continue to release/invalidate the page, we could cause use-after-free 7820 * for subpage spinlock. So this function is to spin and wait for subpage 7821 * spinlock. 7822 */ 7823 static void wait_subpage_spinlock(struct page *page) 7824 { 7825 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7826 struct btrfs_subpage *subpage; 7827 7828 if (!btrfs_is_subpage(fs_info, page)) 7829 return; 7830 7831 ASSERT(PagePrivate(page) && page->private); 7832 subpage = (struct btrfs_subpage *)page->private; 7833 7834 /* 7835 * This may look insane as we just acquire the spinlock and release it, 7836 * without doing anything. But we just want to make sure no one is 7837 * still holding the subpage spinlock. 7838 * And since the page is not dirty nor writeback, and we have page 7839 * locked, the only possible way to hold a spinlock is from the endio 7840 * function to clear page writeback. 7841 * 7842 * Here we just acquire the spinlock so that all existing callers 7843 * should exit and we're safe to release/invalidate the page. 7844 */ 7845 spin_lock_irq(&subpage->lock); 7846 spin_unlock_irq(&subpage->lock); 7847 } 7848 7849 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7850 { 7851 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7852 7853 if (ret == 1) { 7854 wait_subpage_spinlock(&folio->page); 7855 clear_page_extent_mapped(&folio->page); 7856 } 7857 return ret; 7858 } 7859 7860 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7861 { 7862 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7863 return false; 7864 return __btrfs_release_folio(folio, gfp_flags); 7865 } 7866 7867 #ifdef CONFIG_MIGRATION 7868 static int btrfs_migrate_folio(struct address_space *mapping, 7869 struct folio *dst, struct folio *src, 7870 enum migrate_mode mode) 7871 { 7872 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7873 7874 if (ret != MIGRATEPAGE_SUCCESS) 7875 return ret; 7876 7877 if (folio_test_ordered(src)) { 7878 folio_clear_ordered(src); 7879 folio_set_ordered(dst); 7880 } 7881 7882 return MIGRATEPAGE_SUCCESS; 7883 } 7884 #else 7885 #define btrfs_migrate_folio NULL 7886 #endif 7887 7888 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7889 size_t length) 7890 { 7891 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7892 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7893 struct extent_io_tree *tree = &inode->io_tree; 7894 struct extent_state *cached_state = NULL; 7895 u64 page_start = folio_pos(folio); 7896 u64 page_end = page_start + folio_size(folio) - 1; 7897 u64 cur; 7898 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7899 7900 /* 7901 * We have folio locked so no new ordered extent can be created on this 7902 * page, nor bio can be submitted for this folio. 7903 * 7904 * But already submitted bio can still be finished on this folio. 7905 * Furthermore, endio function won't skip folio which has Ordered 7906 * (Private2) already cleared, so it's possible for endio and 7907 * invalidate_folio to do the same ordered extent accounting twice 7908 * on one folio. 7909 * 7910 * So here we wait for any submitted bios to finish, so that we won't 7911 * do double ordered extent accounting on the same folio. 7912 */ 7913 folio_wait_writeback(folio); 7914 wait_subpage_spinlock(&folio->page); 7915 7916 /* 7917 * For subpage case, we have call sites like 7918 * btrfs_punch_hole_lock_range() which passes range not aligned to 7919 * sectorsize. 7920 * If the range doesn't cover the full folio, we don't need to and 7921 * shouldn't clear page extent mapped, as folio->private can still 7922 * record subpage dirty bits for other part of the range. 7923 * 7924 * For cases that invalidate the full folio even the range doesn't 7925 * cover the full folio, like invalidating the last folio, we're 7926 * still safe to wait for ordered extent to finish. 7927 */ 7928 if (!(offset == 0 && length == folio_size(folio))) { 7929 btrfs_release_folio(folio, GFP_NOFS); 7930 return; 7931 } 7932 7933 if (!inode_evicting) 7934 lock_extent(tree, page_start, page_end, &cached_state); 7935 7936 cur = page_start; 7937 while (cur < page_end) { 7938 struct btrfs_ordered_extent *ordered; 7939 u64 range_end; 7940 u32 range_len; 7941 u32 extra_flags = 0; 7942 7943 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7944 page_end + 1 - cur); 7945 if (!ordered) { 7946 range_end = page_end; 7947 /* 7948 * No ordered extent covering this range, we are safe 7949 * to delete all extent states in the range. 7950 */ 7951 extra_flags = EXTENT_CLEAR_ALL_BITS; 7952 goto next; 7953 } 7954 if (ordered->file_offset > cur) { 7955 /* 7956 * There is a range between [cur, oe->file_offset) not 7957 * covered by any ordered extent. 7958 * We are safe to delete all extent states, and handle 7959 * the ordered extent in the next iteration. 7960 */ 7961 range_end = ordered->file_offset - 1; 7962 extra_flags = EXTENT_CLEAR_ALL_BITS; 7963 goto next; 7964 } 7965 7966 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7967 page_end); 7968 ASSERT(range_end + 1 - cur < U32_MAX); 7969 range_len = range_end + 1 - cur; 7970 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 7971 /* 7972 * If Ordered (Private2) is cleared, it means endio has 7973 * already been executed for the range. 7974 * We can't delete the extent states as 7975 * btrfs_finish_ordered_io() may still use some of them. 7976 */ 7977 goto next; 7978 } 7979 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 7980 7981 /* 7982 * IO on this page will never be started, so we need to account 7983 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7984 * here, must leave that up for the ordered extent completion. 7985 * 7986 * This will also unlock the range for incoming 7987 * btrfs_finish_ordered_io(). 7988 */ 7989 if (!inode_evicting) 7990 clear_extent_bit(tree, cur, range_end, 7991 EXTENT_DELALLOC | 7992 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7993 EXTENT_DEFRAG, &cached_state); 7994 7995 spin_lock_irq(&inode->ordered_tree.lock); 7996 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7997 ordered->truncated_len = min(ordered->truncated_len, 7998 cur - ordered->file_offset); 7999 spin_unlock_irq(&inode->ordered_tree.lock); 8000 8001 /* 8002 * If the ordered extent has finished, we're safe to delete all 8003 * the extent states of the range, otherwise 8004 * btrfs_finish_ordered_io() will get executed by endio for 8005 * other pages, so we can't delete extent states. 8006 */ 8007 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8008 cur, range_end + 1 - cur)) { 8009 btrfs_finish_ordered_io(ordered); 8010 /* 8011 * The ordered extent has finished, now we're again 8012 * safe to delete all extent states of the range. 8013 */ 8014 extra_flags = EXTENT_CLEAR_ALL_BITS; 8015 } 8016 next: 8017 if (ordered) 8018 btrfs_put_ordered_extent(ordered); 8019 /* 8020 * Qgroup reserved space handler 8021 * Sector(s) here will be either: 8022 * 8023 * 1) Already written to disk or bio already finished 8024 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8025 * Qgroup will be handled by its qgroup_record then. 8026 * btrfs_qgroup_free_data() call will do nothing here. 8027 * 8028 * 2) Not written to disk yet 8029 * Then btrfs_qgroup_free_data() call will clear the 8030 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8031 * reserved data space. 8032 * Since the IO will never happen for this page. 8033 */ 8034 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8035 if (!inode_evicting) { 8036 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8037 EXTENT_DELALLOC | EXTENT_UPTODATE | 8038 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8039 extra_flags, &cached_state); 8040 } 8041 cur = range_end + 1; 8042 } 8043 /* 8044 * We have iterated through all ordered extents of the page, the page 8045 * should not have Ordered (Private2) anymore, or the above iteration 8046 * did something wrong. 8047 */ 8048 ASSERT(!folio_test_ordered(folio)); 8049 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8050 if (!inode_evicting) 8051 __btrfs_release_folio(folio, GFP_NOFS); 8052 clear_page_extent_mapped(&folio->page); 8053 } 8054 8055 /* 8056 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8057 * called from a page fault handler when a page is first dirtied. Hence we must 8058 * be careful to check for EOF conditions here. We set the page up correctly 8059 * for a written page which means we get ENOSPC checking when writing into 8060 * holes and correct delalloc and unwritten extent mapping on filesystems that 8061 * support these features. 8062 * 8063 * We are not allowed to take the i_mutex here so we have to play games to 8064 * protect against truncate races as the page could now be beyond EOF. Because 8065 * truncate_setsize() writes the inode size before removing pages, once we have 8066 * the page lock we can determine safely if the page is beyond EOF. If it is not 8067 * beyond EOF, then the page is guaranteed safe against truncation until we 8068 * unlock the page. 8069 */ 8070 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8071 { 8072 struct page *page = vmf->page; 8073 struct inode *inode = file_inode(vmf->vma->vm_file); 8074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8076 struct btrfs_ordered_extent *ordered; 8077 struct extent_state *cached_state = NULL; 8078 struct extent_changeset *data_reserved = NULL; 8079 unsigned long zero_start; 8080 loff_t size; 8081 vm_fault_t ret; 8082 int ret2; 8083 int reserved = 0; 8084 u64 reserved_space; 8085 u64 page_start; 8086 u64 page_end; 8087 u64 end; 8088 8089 reserved_space = PAGE_SIZE; 8090 8091 sb_start_pagefault(inode->i_sb); 8092 page_start = page_offset(page); 8093 page_end = page_start + PAGE_SIZE - 1; 8094 end = page_end; 8095 8096 /* 8097 * Reserving delalloc space after obtaining the page lock can lead to 8098 * deadlock. For example, if a dirty page is locked by this function 8099 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8100 * dirty page write out, then the btrfs_writepages() function could 8101 * end up waiting indefinitely to get a lock on the page currently 8102 * being processed by btrfs_page_mkwrite() function. 8103 */ 8104 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8105 page_start, reserved_space); 8106 if (!ret2) { 8107 ret2 = file_update_time(vmf->vma->vm_file); 8108 reserved = 1; 8109 } 8110 if (ret2) { 8111 ret = vmf_error(ret2); 8112 if (reserved) 8113 goto out; 8114 goto out_noreserve; 8115 } 8116 8117 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8118 again: 8119 down_read(&BTRFS_I(inode)->i_mmap_lock); 8120 lock_page(page); 8121 size = i_size_read(inode); 8122 8123 if ((page->mapping != inode->i_mapping) || 8124 (page_start >= size)) { 8125 /* page got truncated out from underneath us */ 8126 goto out_unlock; 8127 } 8128 wait_on_page_writeback(page); 8129 8130 lock_extent(io_tree, page_start, page_end, &cached_state); 8131 ret2 = set_page_extent_mapped(page); 8132 if (ret2 < 0) { 8133 ret = vmf_error(ret2); 8134 unlock_extent(io_tree, page_start, page_end, &cached_state); 8135 goto out_unlock; 8136 } 8137 8138 /* 8139 * we can't set the delalloc bits if there are pending ordered 8140 * extents. Drop our locks and wait for them to finish 8141 */ 8142 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8143 PAGE_SIZE); 8144 if (ordered) { 8145 unlock_extent(io_tree, page_start, page_end, &cached_state); 8146 unlock_page(page); 8147 up_read(&BTRFS_I(inode)->i_mmap_lock); 8148 btrfs_start_ordered_extent(ordered); 8149 btrfs_put_ordered_extent(ordered); 8150 goto again; 8151 } 8152 8153 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8154 reserved_space = round_up(size - page_start, 8155 fs_info->sectorsize); 8156 if (reserved_space < PAGE_SIZE) { 8157 end = page_start + reserved_space - 1; 8158 btrfs_delalloc_release_space(BTRFS_I(inode), 8159 data_reserved, page_start, 8160 PAGE_SIZE - reserved_space, true); 8161 } 8162 } 8163 8164 /* 8165 * page_mkwrite gets called when the page is firstly dirtied after it's 8166 * faulted in, but write(2) could also dirty a page and set delalloc 8167 * bits, thus in this case for space account reason, we still need to 8168 * clear any delalloc bits within this page range since we have to 8169 * reserve data&meta space before lock_page() (see above comments). 8170 */ 8171 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8172 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8173 EXTENT_DEFRAG, &cached_state); 8174 8175 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8176 &cached_state); 8177 if (ret2) { 8178 unlock_extent(io_tree, page_start, page_end, &cached_state); 8179 ret = VM_FAULT_SIGBUS; 8180 goto out_unlock; 8181 } 8182 8183 /* page is wholly or partially inside EOF */ 8184 if (page_start + PAGE_SIZE > size) 8185 zero_start = offset_in_page(size); 8186 else 8187 zero_start = PAGE_SIZE; 8188 8189 if (zero_start != PAGE_SIZE) 8190 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8191 8192 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8193 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8194 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8195 8196 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8197 8198 unlock_extent(io_tree, page_start, page_end, &cached_state); 8199 up_read(&BTRFS_I(inode)->i_mmap_lock); 8200 8201 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8202 sb_end_pagefault(inode->i_sb); 8203 extent_changeset_free(data_reserved); 8204 return VM_FAULT_LOCKED; 8205 8206 out_unlock: 8207 unlock_page(page); 8208 up_read(&BTRFS_I(inode)->i_mmap_lock); 8209 out: 8210 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8211 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8212 reserved_space, (ret != 0)); 8213 out_noreserve: 8214 sb_end_pagefault(inode->i_sb); 8215 extent_changeset_free(data_reserved); 8216 return ret; 8217 } 8218 8219 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8220 { 8221 struct btrfs_truncate_control control = { 8222 .inode = inode, 8223 .ino = btrfs_ino(inode), 8224 .min_type = BTRFS_EXTENT_DATA_KEY, 8225 .clear_extent_range = true, 8226 }; 8227 struct btrfs_root *root = inode->root; 8228 struct btrfs_fs_info *fs_info = root->fs_info; 8229 struct btrfs_block_rsv *rsv; 8230 int ret; 8231 struct btrfs_trans_handle *trans; 8232 u64 mask = fs_info->sectorsize - 1; 8233 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8234 8235 if (!skip_writeback) { 8236 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8237 inode->vfs_inode.i_size & (~mask), 8238 (u64)-1); 8239 if (ret) 8240 return ret; 8241 } 8242 8243 /* 8244 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8245 * things going on here: 8246 * 8247 * 1) We need to reserve space to update our inode. 8248 * 8249 * 2) We need to have something to cache all the space that is going to 8250 * be free'd up by the truncate operation, but also have some slack 8251 * space reserved in case it uses space during the truncate (thank you 8252 * very much snapshotting). 8253 * 8254 * And we need these to be separate. The fact is we can use a lot of 8255 * space doing the truncate, and we have no earthly idea how much space 8256 * we will use, so we need the truncate reservation to be separate so it 8257 * doesn't end up using space reserved for updating the inode. We also 8258 * need to be able to stop the transaction and start a new one, which 8259 * means we need to be able to update the inode several times, and we 8260 * have no idea of knowing how many times that will be, so we can't just 8261 * reserve 1 item for the entirety of the operation, so that has to be 8262 * done separately as well. 8263 * 8264 * So that leaves us with 8265 * 8266 * 1) rsv - for the truncate reservation, which we will steal from the 8267 * transaction reservation. 8268 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8269 * updating the inode. 8270 */ 8271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8272 if (!rsv) 8273 return -ENOMEM; 8274 rsv->size = min_size; 8275 rsv->failfast = true; 8276 8277 /* 8278 * 1 for the truncate slack space 8279 * 1 for updating the inode. 8280 */ 8281 trans = btrfs_start_transaction(root, 2); 8282 if (IS_ERR(trans)) { 8283 ret = PTR_ERR(trans); 8284 goto out; 8285 } 8286 8287 /* Migrate the slack space for the truncate to our reserve */ 8288 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8289 min_size, false); 8290 BUG_ON(ret); 8291 8292 trans->block_rsv = rsv; 8293 8294 while (1) { 8295 struct extent_state *cached_state = NULL; 8296 const u64 new_size = inode->vfs_inode.i_size; 8297 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8298 8299 control.new_size = new_size; 8300 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8301 /* 8302 * We want to drop from the next block forward in case this new 8303 * size is not block aligned since we will be keeping the last 8304 * block of the extent just the way it is. 8305 */ 8306 btrfs_drop_extent_map_range(inode, 8307 ALIGN(new_size, fs_info->sectorsize), 8308 (u64)-1, false); 8309 8310 ret = btrfs_truncate_inode_items(trans, root, &control); 8311 8312 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8313 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8314 8315 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8316 8317 trans->block_rsv = &fs_info->trans_block_rsv; 8318 if (ret != -ENOSPC && ret != -EAGAIN) 8319 break; 8320 8321 ret = btrfs_update_inode(trans, root, inode); 8322 if (ret) 8323 break; 8324 8325 btrfs_end_transaction(trans); 8326 btrfs_btree_balance_dirty(fs_info); 8327 8328 trans = btrfs_start_transaction(root, 2); 8329 if (IS_ERR(trans)) { 8330 ret = PTR_ERR(trans); 8331 trans = NULL; 8332 break; 8333 } 8334 8335 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8336 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8337 rsv, min_size, false); 8338 BUG_ON(ret); /* shouldn't happen */ 8339 trans->block_rsv = rsv; 8340 } 8341 8342 /* 8343 * We can't call btrfs_truncate_block inside a trans handle as we could 8344 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8345 * know we've truncated everything except the last little bit, and can 8346 * do btrfs_truncate_block and then update the disk_i_size. 8347 */ 8348 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8349 btrfs_end_transaction(trans); 8350 btrfs_btree_balance_dirty(fs_info); 8351 8352 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8353 if (ret) 8354 goto out; 8355 trans = btrfs_start_transaction(root, 1); 8356 if (IS_ERR(trans)) { 8357 ret = PTR_ERR(trans); 8358 goto out; 8359 } 8360 btrfs_inode_safe_disk_i_size_write(inode, 0); 8361 } 8362 8363 if (trans) { 8364 int ret2; 8365 8366 trans->block_rsv = &fs_info->trans_block_rsv; 8367 ret2 = btrfs_update_inode(trans, root, inode); 8368 if (ret2 && !ret) 8369 ret = ret2; 8370 8371 ret2 = btrfs_end_transaction(trans); 8372 if (ret2 && !ret) 8373 ret = ret2; 8374 btrfs_btree_balance_dirty(fs_info); 8375 } 8376 out: 8377 btrfs_free_block_rsv(fs_info, rsv); 8378 /* 8379 * So if we truncate and then write and fsync we normally would just 8380 * write the extents that changed, which is a problem if we need to 8381 * first truncate that entire inode. So set this flag so we write out 8382 * all of the extents in the inode to the sync log so we're completely 8383 * safe. 8384 * 8385 * If no extents were dropped or trimmed we don't need to force the next 8386 * fsync to truncate all the inode's items from the log and re-log them 8387 * all. This means the truncate operation did not change the file size, 8388 * or changed it to a smaller size but there was only an implicit hole 8389 * between the old i_size and the new i_size, and there were no prealloc 8390 * extents beyond i_size to drop. 8391 */ 8392 if (control.extents_found > 0) 8393 btrfs_set_inode_full_sync(inode); 8394 8395 return ret; 8396 } 8397 8398 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8399 struct inode *dir) 8400 { 8401 struct inode *inode; 8402 8403 inode = new_inode(dir->i_sb); 8404 if (inode) { 8405 /* 8406 * Subvolumes don't inherit the sgid bit or the parent's gid if 8407 * the parent's sgid bit is set. This is probably a bug. 8408 */ 8409 inode_init_owner(idmap, inode, NULL, 8410 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8411 inode->i_op = &btrfs_dir_inode_operations; 8412 inode->i_fop = &btrfs_dir_file_operations; 8413 } 8414 return inode; 8415 } 8416 8417 struct inode *btrfs_alloc_inode(struct super_block *sb) 8418 { 8419 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8420 struct btrfs_inode *ei; 8421 struct inode *inode; 8422 8423 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8424 if (!ei) 8425 return NULL; 8426 8427 ei->root = NULL; 8428 ei->generation = 0; 8429 ei->last_trans = 0; 8430 ei->last_sub_trans = 0; 8431 ei->logged_trans = 0; 8432 ei->delalloc_bytes = 0; 8433 ei->new_delalloc_bytes = 0; 8434 ei->defrag_bytes = 0; 8435 ei->disk_i_size = 0; 8436 ei->flags = 0; 8437 ei->ro_flags = 0; 8438 ei->csum_bytes = 0; 8439 ei->index_cnt = (u64)-1; 8440 ei->dir_index = 0; 8441 ei->last_unlink_trans = 0; 8442 ei->last_reflink_trans = 0; 8443 ei->last_log_commit = 0; 8444 8445 spin_lock_init(&ei->lock); 8446 ei->outstanding_extents = 0; 8447 if (sb->s_magic != BTRFS_TEST_MAGIC) 8448 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8449 BTRFS_BLOCK_RSV_DELALLOC); 8450 ei->runtime_flags = 0; 8451 ei->prop_compress = BTRFS_COMPRESS_NONE; 8452 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8453 8454 ei->delayed_node = NULL; 8455 8456 ei->i_otime.tv_sec = 0; 8457 ei->i_otime.tv_nsec = 0; 8458 8459 inode = &ei->vfs_inode; 8460 extent_map_tree_init(&ei->extent_tree); 8461 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8462 ei->io_tree.inode = ei; 8463 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8464 IO_TREE_INODE_FILE_EXTENT); 8465 atomic_set(&ei->sync_writers, 0); 8466 mutex_init(&ei->log_mutex); 8467 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8468 INIT_LIST_HEAD(&ei->delalloc_inodes); 8469 INIT_LIST_HEAD(&ei->delayed_iput); 8470 RB_CLEAR_NODE(&ei->rb_node); 8471 init_rwsem(&ei->i_mmap_lock); 8472 8473 return inode; 8474 } 8475 8476 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8477 void btrfs_test_destroy_inode(struct inode *inode) 8478 { 8479 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8480 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8481 } 8482 #endif 8483 8484 void btrfs_free_inode(struct inode *inode) 8485 { 8486 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8487 } 8488 8489 void btrfs_destroy_inode(struct inode *vfs_inode) 8490 { 8491 struct btrfs_ordered_extent *ordered; 8492 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8493 struct btrfs_root *root = inode->root; 8494 bool freespace_inode; 8495 8496 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8497 WARN_ON(vfs_inode->i_data.nrpages); 8498 WARN_ON(inode->block_rsv.reserved); 8499 WARN_ON(inode->block_rsv.size); 8500 WARN_ON(inode->outstanding_extents); 8501 if (!S_ISDIR(vfs_inode->i_mode)) { 8502 WARN_ON(inode->delalloc_bytes); 8503 WARN_ON(inode->new_delalloc_bytes); 8504 } 8505 WARN_ON(inode->csum_bytes); 8506 WARN_ON(inode->defrag_bytes); 8507 8508 /* 8509 * This can happen where we create an inode, but somebody else also 8510 * created the same inode and we need to destroy the one we already 8511 * created. 8512 */ 8513 if (!root) 8514 return; 8515 8516 /* 8517 * If this is a free space inode do not take the ordered extents lockdep 8518 * map. 8519 */ 8520 freespace_inode = btrfs_is_free_space_inode(inode); 8521 8522 while (1) { 8523 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8524 if (!ordered) 8525 break; 8526 else { 8527 btrfs_err(root->fs_info, 8528 "found ordered extent %llu %llu on inode cleanup", 8529 ordered->file_offset, ordered->num_bytes); 8530 8531 if (!freespace_inode) 8532 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8533 8534 btrfs_remove_ordered_extent(inode, ordered); 8535 btrfs_put_ordered_extent(ordered); 8536 btrfs_put_ordered_extent(ordered); 8537 } 8538 } 8539 btrfs_qgroup_check_reserved_leak(inode); 8540 inode_tree_del(inode); 8541 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8542 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8543 btrfs_put_root(inode->root); 8544 } 8545 8546 int btrfs_drop_inode(struct inode *inode) 8547 { 8548 struct btrfs_root *root = BTRFS_I(inode)->root; 8549 8550 if (root == NULL) 8551 return 1; 8552 8553 /* the snap/subvol tree is on deleting */ 8554 if (btrfs_root_refs(&root->root_item) == 0) 8555 return 1; 8556 else 8557 return generic_drop_inode(inode); 8558 } 8559 8560 static void init_once(void *foo) 8561 { 8562 struct btrfs_inode *ei = foo; 8563 8564 inode_init_once(&ei->vfs_inode); 8565 } 8566 8567 void __cold btrfs_destroy_cachep(void) 8568 { 8569 /* 8570 * Make sure all delayed rcu free inodes are flushed before we 8571 * destroy cache. 8572 */ 8573 rcu_barrier(); 8574 bioset_exit(&btrfs_dio_bioset); 8575 kmem_cache_destroy(btrfs_inode_cachep); 8576 } 8577 8578 int __init btrfs_init_cachep(void) 8579 { 8580 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8581 sizeof(struct btrfs_inode), 0, 8582 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8583 init_once); 8584 if (!btrfs_inode_cachep) 8585 goto fail; 8586 8587 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8588 offsetof(struct btrfs_dio_private, bbio.bio), 8589 BIOSET_NEED_BVECS)) 8590 goto fail; 8591 8592 return 0; 8593 fail: 8594 btrfs_destroy_cachep(); 8595 return -ENOMEM; 8596 } 8597 8598 static int btrfs_getattr(struct mnt_idmap *idmap, 8599 const struct path *path, struct kstat *stat, 8600 u32 request_mask, unsigned int flags) 8601 { 8602 u64 delalloc_bytes; 8603 u64 inode_bytes; 8604 struct inode *inode = d_inode(path->dentry); 8605 u32 blocksize = inode->i_sb->s_blocksize; 8606 u32 bi_flags = BTRFS_I(inode)->flags; 8607 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8608 8609 stat->result_mask |= STATX_BTIME; 8610 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8611 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8612 if (bi_flags & BTRFS_INODE_APPEND) 8613 stat->attributes |= STATX_ATTR_APPEND; 8614 if (bi_flags & BTRFS_INODE_COMPRESS) 8615 stat->attributes |= STATX_ATTR_COMPRESSED; 8616 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8617 stat->attributes |= STATX_ATTR_IMMUTABLE; 8618 if (bi_flags & BTRFS_INODE_NODUMP) 8619 stat->attributes |= STATX_ATTR_NODUMP; 8620 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8621 stat->attributes |= STATX_ATTR_VERITY; 8622 8623 stat->attributes_mask |= (STATX_ATTR_APPEND | 8624 STATX_ATTR_COMPRESSED | 8625 STATX_ATTR_IMMUTABLE | 8626 STATX_ATTR_NODUMP); 8627 8628 generic_fillattr(idmap, inode, stat); 8629 stat->dev = BTRFS_I(inode)->root->anon_dev; 8630 8631 spin_lock(&BTRFS_I(inode)->lock); 8632 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8633 inode_bytes = inode_get_bytes(inode); 8634 spin_unlock(&BTRFS_I(inode)->lock); 8635 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8636 ALIGN(delalloc_bytes, blocksize)) >> 9; 8637 return 0; 8638 } 8639 8640 static int btrfs_rename_exchange(struct inode *old_dir, 8641 struct dentry *old_dentry, 8642 struct inode *new_dir, 8643 struct dentry *new_dentry) 8644 { 8645 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8646 struct btrfs_trans_handle *trans; 8647 unsigned int trans_num_items; 8648 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8649 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8650 struct inode *new_inode = new_dentry->d_inode; 8651 struct inode *old_inode = old_dentry->d_inode; 8652 struct timespec64 ctime = current_time(old_inode); 8653 struct btrfs_rename_ctx old_rename_ctx; 8654 struct btrfs_rename_ctx new_rename_ctx; 8655 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8656 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8657 u64 old_idx = 0; 8658 u64 new_idx = 0; 8659 int ret; 8660 int ret2; 8661 bool need_abort = false; 8662 struct fscrypt_name old_fname, new_fname; 8663 struct fscrypt_str *old_name, *new_name; 8664 8665 /* 8666 * For non-subvolumes allow exchange only within one subvolume, in the 8667 * same inode namespace. Two subvolumes (represented as directory) can 8668 * be exchanged as they're a logical link and have a fixed inode number. 8669 */ 8670 if (root != dest && 8671 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8672 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8673 return -EXDEV; 8674 8675 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8676 if (ret) 8677 return ret; 8678 8679 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8680 if (ret) { 8681 fscrypt_free_filename(&old_fname); 8682 return ret; 8683 } 8684 8685 old_name = &old_fname.disk_name; 8686 new_name = &new_fname.disk_name; 8687 8688 /* close the race window with snapshot create/destroy ioctl */ 8689 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8690 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8691 down_read(&fs_info->subvol_sem); 8692 8693 /* 8694 * For each inode: 8695 * 1 to remove old dir item 8696 * 1 to remove old dir index 8697 * 1 to add new dir item 8698 * 1 to add new dir index 8699 * 1 to update parent inode 8700 * 8701 * If the parents are the same, we only need to account for one 8702 */ 8703 trans_num_items = (old_dir == new_dir ? 9 : 10); 8704 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8705 /* 8706 * 1 to remove old root ref 8707 * 1 to remove old root backref 8708 * 1 to add new root ref 8709 * 1 to add new root backref 8710 */ 8711 trans_num_items += 4; 8712 } else { 8713 /* 8714 * 1 to update inode item 8715 * 1 to remove old inode ref 8716 * 1 to add new inode ref 8717 */ 8718 trans_num_items += 3; 8719 } 8720 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8721 trans_num_items += 4; 8722 else 8723 trans_num_items += 3; 8724 trans = btrfs_start_transaction(root, trans_num_items); 8725 if (IS_ERR(trans)) { 8726 ret = PTR_ERR(trans); 8727 goto out_notrans; 8728 } 8729 8730 if (dest != root) { 8731 ret = btrfs_record_root_in_trans(trans, dest); 8732 if (ret) 8733 goto out_fail; 8734 } 8735 8736 /* 8737 * We need to find a free sequence number both in the source and 8738 * in the destination directory for the exchange. 8739 */ 8740 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8741 if (ret) 8742 goto out_fail; 8743 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8744 if (ret) 8745 goto out_fail; 8746 8747 BTRFS_I(old_inode)->dir_index = 0ULL; 8748 BTRFS_I(new_inode)->dir_index = 0ULL; 8749 8750 /* Reference for the source. */ 8751 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8752 /* force full log commit if subvolume involved. */ 8753 btrfs_set_log_full_commit(trans); 8754 } else { 8755 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8756 btrfs_ino(BTRFS_I(new_dir)), 8757 old_idx); 8758 if (ret) 8759 goto out_fail; 8760 need_abort = true; 8761 } 8762 8763 /* And now for the dest. */ 8764 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8765 /* force full log commit if subvolume involved. */ 8766 btrfs_set_log_full_commit(trans); 8767 } else { 8768 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8769 btrfs_ino(BTRFS_I(old_dir)), 8770 new_idx); 8771 if (ret) { 8772 if (need_abort) 8773 btrfs_abort_transaction(trans, ret); 8774 goto out_fail; 8775 } 8776 } 8777 8778 /* Update inode version and ctime/mtime. */ 8779 inode_inc_iversion(old_dir); 8780 inode_inc_iversion(new_dir); 8781 inode_inc_iversion(old_inode); 8782 inode_inc_iversion(new_inode); 8783 old_dir->i_mtime = ctime; 8784 old_dir->i_ctime = ctime; 8785 new_dir->i_mtime = ctime; 8786 new_dir->i_ctime = ctime; 8787 old_inode->i_ctime = ctime; 8788 new_inode->i_ctime = ctime; 8789 8790 if (old_dentry->d_parent != new_dentry->d_parent) { 8791 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8792 BTRFS_I(old_inode), 1); 8793 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8794 BTRFS_I(new_inode), 1); 8795 } 8796 8797 /* src is a subvolume */ 8798 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8799 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8800 } else { /* src is an inode */ 8801 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8802 BTRFS_I(old_dentry->d_inode), 8803 old_name, &old_rename_ctx); 8804 if (!ret) 8805 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8806 } 8807 if (ret) { 8808 btrfs_abort_transaction(trans, ret); 8809 goto out_fail; 8810 } 8811 8812 /* dest is a subvolume */ 8813 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8814 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8815 } else { /* dest is an inode */ 8816 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8817 BTRFS_I(new_dentry->d_inode), 8818 new_name, &new_rename_ctx); 8819 if (!ret) 8820 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8821 } 8822 if (ret) { 8823 btrfs_abort_transaction(trans, ret); 8824 goto out_fail; 8825 } 8826 8827 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8828 new_name, 0, old_idx); 8829 if (ret) { 8830 btrfs_abort_transaction(trans, ret); 8831 goto out_fail; 8832 } 8833 8834 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8835 old_name, 0, new_idx); 8836 if (ret) { 8837 btrfs_abort_transaction(trans, ret); 8838 goto out_fail; 8839 } 8840 8841 if (old_inode->i_nlink == 1) 8842 BTRFS_I(old_inode)->dir_index = old_idx; 8843 if (new_inode->i_nlink == 1) 8844 BTRFS_I(new_inode)->dir_index = new_idx; 8845 8846 /* 8847 * Now pin the logs of the roots. We do it to ensure that no other task 8848 * can sync the logs while we are in progress with the rename, because 8849 * that could result in an inconsistency in case any of the inodes that 8850 * are part of this rename operation were logged before. 8851 */ 8852 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8853 btrfs_pin_log_trans(root); 8854 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8855 btrfs_pin_log_trans(dest); 8856 8857 /* Do the log updates for all inodes. */ 8858 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8859 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8860 old_rename_ctx.index, new_dentry->d_parent); 8861 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8862 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8863 new_rename_ctx.index, old_dentry->d_parent); 8864 8865 /* Now unpin the logs. */ 8866 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8867 btrfs_end_log_trans(root); 8868 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8869 btrfs_end_log_trans(dest); 8870 out_fail: 8871 ret2 = btrfs_end_transaction(trans); 8872 ret = ret ? ret : ret2; 8873 out_notrans: 8874 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8875 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8876 up_read(&fs_info->subvol_sem); 8877 8878 fscrypt_free_filename(&new_fname); 8879 fscrypt_free_filename(&old_fname); 8880 return ret; 8881 } 8882 8883 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8884 struct inode *dir) 8885 { 8886 struct inode *inode; 8887 8888 inode = new_inode(dir->i_sb); 8889 if (inode) { 8890 inode_init_owner(idmap, inode, dir, 8891 S_IFCHR | WHITEOUT_MODE); 8892 inode->i_op = &btrfs_special_inode_operations; 8893 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8894 } 8895 return inode; 8896 } 8897 8898 static int btrfs_rename(struct mnt_idmap *idmap, 8899 struct inode *old_dir, struct dentry *old_dentry, 8900 struct inode *new_dir, struct dentry *new_dentry, 8901 unsigned int flags) 8902 { 8903 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8904 struct btrfs_new_inode_args whiteout_args = { 8905 .dir = old_dir, 8906 .dentry = old_dentry, 8907 }; 8908 struct btrfs_trans_handle *trans; 8909 unsigned int trans_num_items; 8910 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8911 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8912 struct inode *new_inode = d_inode(new_dentry); 8913 struct inode *old_inode = d_inode(old_dentry); 8914 struct btrfs_rename_ctx rename_ctx; 8915 u64 index = 0; 8916 int ret; 8917 int ret2; 8918 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8919 struct fscrypt_name old_fname, new_fname; 8920 8921 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8922 return -EPERM; 8923 8924 /* we only allow rename subvolume link between subvolumes */ 8925 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8926 return -EXDEV; 8927 8928 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8929 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8930 return -ENOTEMPTY; 8931 8932 if (S_ISDIR(old_inode->i_mode) && new_inode && 8933 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8934 return -ENOTEMPTY; 8935 8936 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8937 if (ret) 8938 return ret; 8939 8940 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8941 if (ret) { 8942 fscrypt_free_filename(&old_fname); 8943 return ret; 8944 } 8945 8946 /* check for collisions, even if the name isn't there */ 8947 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8948 if (ret) { 8949 if (ret == -EEXIST) { 8950 /* we shouldn't get 8951 * eexist without a new_inode */ 8952 if (WARN_ON(!new_inode)) { 8953 goto out_fscrypt_names; 8954 } 8955 } else { 8956 /* maybe -EOVERFLOW */ 8957 goto out_fscrypt_names; 8958 } 8959 } 8960 ret = 0; 8961 8962 /* 8963 * we're using rename to replace one file with another. Start IO on it 8964 * now so we don't add too much work to the end of the transaction 8965 */ 8966 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8967 filemap_flush(old_inode->i_mapping); 8968 8969 if (flags & RENAME_WHITEOUT) { 8970 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8971 if (!whiteout_args.inode) { 8972 ret = -ENOMEM; 8973 goto out_fscrypt_names; 8974 } 8975 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8976 if (ret) 8977 goto out_whiteout_inode; 8978 } else { 8979 /* 1 to update the old parent inode. */ 8980 trans_num_items = 1; 8981 } 8982 8983 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8984 /* Close the race window with snapshot create/destroy ioctl */ 8985 down_read(&fs_info->subvol_sem); 8986 /* 8987 * 1 to remove old root ref 8988 * 1 to remove old root backref 8989 * 1 to add new root ref 8990 * 1 to add new root backref 8991 */ 8992 trans_num_items += 4; 8993 } else { 8994 /* 8995 * 1 to update inode 8996 * 1 to remove old inode ref 8997 * 1 to add new inode ref 8998 */ 8999 trans_num_items += 3; 9000 } 9001 /* 9002 * 1 to remove old dir item 9003 * 1 to remove old dir index 9004 * 1 to add new dir item 9005 * 1 to add new dir index 9006 */ 9007 trans_num_items += 4; 9008 /* 1 to update new parent inode if it's not the same as the old parent */ 9009 if (new_dir != old_dir) 9010 trans_num_items++; 9011 if (new_inode) { 9012 /* 9013 * 1 to update inode 9014 * 1 to remove inode ref 9015 * 1 to remove dir item 9016 * 1 to remove dir index 9017 * 1 to possibly add orphan item 9018 */ 9019 trans_num_items += 5; 9020 } 9021 trans = btrfs_start_transaction(root, trans_num_items); 9022 if (IS_ERR(trans)) { 9023 ret = PTR_ERR(trans); 9024 goto out_notrans; 9025 } 9026 9027 if (dest != root) { 9028 ret = btrfs_record_root_in_trans(trans, dest); 9029 if (ret) 9030 goto out_fail; 9031 } 9032 9033 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9034 if (ret) 9035 goto out_fail; 9036 9037 BTRFS_I(old_inode)->dir_index = 0ULL; 9038 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9039 /* force full log commit if subvolume involved. */ 9040 btrfs_set_log_full_commit(trans); 9041 } else { 9042 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9043 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9044 index); 9045 if (ret) 9046 goto out_fail; 9047 } 9048 9049 inode_inc_iversion(old_dir); 9050 inode_inc_iversion(new_dir); 9051 inode_inc_iversion(old_inode); 9052 old_dir->i_mtime = current_time(old_dir); 9053 old_dir->i_ctime = old_dir->i_mtime; 9054 new_dir->i_mtime = old_dir->i_mtime; 9055 new_dir->i_ctime = old_dir->i_mtime; 9056 old_inode->i_ctime = old_dir->i_mtime; 9057 9058 if (old_dentry->d_parent != new_dentry->d_parent) 9059 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9060 BTRFS_I(old_inode), 1); 9061 9062 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9063 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9064 } else { 9065 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9066 BTRFS_I(d_inode(old_dentry)), 9067 &old_fname.disk_name, &rename_ctx); 9068 if (!ret) 9069 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9070 } 9071 if (ret) { 9072 btrfs_abort_transaction(trans, ret); 9073 goto out_fail; 9074 } 9075 9076 if (new_inode) { 9077 inode_inc_iversion(new_inode); 9078 new_inode->i_ctime = current_time(new_inode); 9079 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9080 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9081 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9082 BUG_ON(new_inode->i_nlink == 0); 9083 } else { 9084 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9085 BTRFS_I(d_inode(new_dentry)), 9086 &new_fname.disk_name); 9087 } 9088 if (!ret && new_inode->i_nlink == 0) 9089 ret = btrfs_orphan_add(trans, 9090 BTRFS_I(d_inode(new_dentry))); 9091 if (ret) { 9092 btrfs_abort_transaction(trans, ret); 9093 goto out_fail; 9094 } 9095 } 9096 9097 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9098 &new_fname.disk_name, 0, index); 9099 if (ret) { 9100 btrfs_abort_transaction(trans, ret); 9101 goto out_fail; 9102 } 9103 9104 if (old_inode->i_nlink == 1) 9105 BTRFS_I(old_inode)->dir_index = index; 9106 9107 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9108 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9109 rename_ctx.index, new_dentry->d_parent); 9110 9111 if (flags & RENAME_WHITEOUT) { 9112 ret = btrfs_create_new_inode(trans, &whiteout_args); 9113 if (ret) { 9114 btrfs_abort_transaction(trans, ret); 9115 goto out_fail; 9116 } else { 9117 unlock_new_inode(whiteout_args.inode); 9118 iput(whiteout_args.inode); 9119 whiteout_args.inode = NULL; 9120 } 9121 } 9122 out_fail: 9123 ret2 = btrfs_end_transaction(trans); 9124 ret = ret ? ret : ret2; 9125 out_notrans: 9126 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9127 up_read(&fs_info->subvol_sem); 9128 if (flags & RENAME_WHITEOUT) 9129 btrfs_new_inode_args_destroy(&whiteout_args); 9130 out_whiteout_inode: 9131 if (flags & RENAME_WHITEOUT) 9132 iput(whiteout_args.inode); 9133 out_fscrypt_names: 9134 fscrypt_free_filename(&old_fname); 9135 fscrypt_free_filename(&new_fname); 9136 return ret; 9137 } 9138 9139 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9140 struct dentry *old_dentry, struct inode *new_dir, 9141 struct dentry *new_dentry, unsigned int flags) 9142 { 9143 int ret; 9144 9145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9146 return -EINVAL; 9147 9148 if (flags & RENAME_EXCHANGE) 9149 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9150 new_dentry); 9151 else 9152 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9153 new_dentry, flags); 9154 9155 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9156 9157 return ret; 9158 } 9159 9160 struct btrfs_delalloc_work { 9161 struct inode *inode; 9162 struct completion completion; 9163 struct list_head list; 9164 struct btrfs_work work; 9165 }; 9166 9167 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9168 { 9169 struct btrfs_delalloc_work *delalloc_work; 9170 struct inode *inode; 9171 9172 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9173 work); 9174 inode = delalloc_work->inode; 9175 filemap_flush(inode->i_mapping); 9176 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9177 &BTRFS_I(inode)->runtime_flags)) 9178 filemap_flush(inode->i_mapping); 9179 9180 iput(inode); 9181 complete(&delalloc_work->completion); 9182 } 9183 9184 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9185 { 9186 struct btrfs_delalloc_work *work; 9187 9188 work = kmalloc(sizeof(*work), GFP_NOFS); 9189 if (!work) 9190 return NULL; 9191 9192 init_completion(&work->completion); 9193 INIT_LIST_HEAD(&work->list); 9194 work->inode = inode; 9195 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9196 9197 return work; 9198 } 9199 9200 /* 9201 * some fairly slow code that needs optimization. This walks the list 9202 * of all the inodes with pending delalloc and forces them to disk. 9203 */ 9204 static int start_delalloc_inodes(struct btrfs_root *root, 9205 struct writeback_control *wbc, bool snapshot, 9206 bool in_reclaim_context) 9207 { 9208 struct btrfs_inode *binode; 9209 struct inode *inode; 9210 struct btrfs_delalloc_work *work, *next; 9211 struct list_head works; 9212 struct list_head splice; 9213 int ret = 0; 9214 bool full_flush = wbc->nr_to_write == LONG_MAX; 9215 9216 INIT_LIST_HEAD(&works); 9217 INIT_LIST_HEAD(&splice); 9218 9219 mutex_lock(&root->delalloc_mutex); 9220 spin_lock(&root->delalloc_lock); 9221 list_splice_init(&root->delalloc_inodes, &splice); 9222 while (!list_empty(&splice)) { 9223 binode = list_entry(splice.next, struct btrfs_inode, 9224 delalloc_inodes); 9225 9226 list_move_tail(&binode->delalloc_inodes, 9227 &root->delalloc_inodes); 9228 9229 if (in_reclaim_context && 9230 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9231 continue; 9232 9233 inode = igrab(&binode->vfs_inode); 9234 if (!inode) { 9235 cond_resched_lock(&root->delalloc_lock); 9236 continue; 9237 } 9238 spin_unlock(&root->delalloc_lock); 9239 9240 if (snapshot) 9241 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9242 &binode->runtime_flags); 9243 if (full_flush) { 9244 work = btrfs_alloc_delalloc_work(inode); 9245 if (!work) { 9246 iput(inode); 9247 ret = -ENOMEM; 9248 goto out; 9249 } 9250 list_add_tail(&work->list, &works); 9251 btrfs_queue_work(root->fs_info->flush_workers, 9252 &work->work); 9253 } else { 9254 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9255 btrfs_add_delayed_iput(BTRFS_I(inode)); 9256 if (ret || wbc->nr_to_write <= 0) 9257 goto out; 9258 } 9259 cond_resched(); 9260 spin_lock(&root->delalloc_lock); 9261 } 9262 spin_unlock(&root->delalloc_lock); 9263 9264 out: 9265 list_for_each_entry_safe(work, next, &works, list) { 9266 list_del_init(&work->list); 9267 wait_for_completion(&work->completion); 9268 kfree(work); 9269 } 9270 9271 if (!list_empty(&splice)) { 9272 spin_lock(&root->delalloc_lock); 9273 list_splice_tail(&splice, &root->delalloc_inodes); 9274 spin_unlock(&root->delalloc_lock); 9275 } 9276 mutex_unlock(&root->delalloc_mutex); 9277 return ret; 9278 } 9279 9280 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9281 { 9282 struct writeback_control wbc = { 9283 .nr_to_write = LONG_MAX, 9284 .sync_mode = WB_SYNC_NONE, 9285 .range_start = 0, 9286 .range_end = LLONG_MAX, 9287 }; 9288 struct btrfs_fs_info *fs_info = root->fs_info; 9289 9290 if (BTRFS_FS_ERROR(fs_info)) 9291 return -EROFS; 9292 9293 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9294 } 9295 9296 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9297 bool in_reclaim_context) 9298 { 9299 struct writeback_control wbc = { 9300 .nr_to_write = nr, 9301 .sync_mode = WB_SYNC_NONE, 9302 .range_start = 0, 9303 .range_end = LLONG_MAX, 9304 }; 9305 struct btrfs_root *root; 9306 struct list_head splice; 9307 int ret; 9308 9309 if (BTRFS_FS_ERROR(fs_info)) 9310 return -EROFS; 9311 9312 INIT_LIST_HEAD(&splice); 9313 9314 mutex_lock(&fs_info->delalloc_root_mutex); 9315 spin_lock(&fs_info->delalloc_root_lock); 9316 list_splice_init(&fs_info->delalloc_roots, &splice); 9317 while (!list_empty(&splice)) { 9318 /* 9319 * Reset nr_to_write here so we know that we're doing a full 9320 * flush. 9321 */ 9322 if (nr == LONG_MAX) 9323 wbc.nr_to_write = LONG_MAX; 9324 9325 root = list_first_entry(&splice, struct btrfs_root, 9326 delalloc_root); 9327 root = btrfs_grab_root(root); 9328 BUG_ON(!root); 9329 list_move_tail(&root->delalloc_root, 9330 &fs_info->delalloc_roots); 9331 spin_unlock(&fs_info->delalloc_root_lock); 9332 9333 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9334 btrfs_put_root(root); 9335 if (ret < 0 || wbc.nr_to_write <= 0) 9336 goto out; 9337 spin_lock(&fs_info->delalloc_root_lock); 9338 } 9339 spin_unlock(&fs_info->delalloc_root_lock); 9340 9341 ret = 0; 9342 out: 9343 if (!list_empty(&splice)) { 9344 spin_lock(&fs_info->delalloc_root_lock); 9345 list_splice_tail(&splice, &fs_info->delalloc_roots); 9346 spin_unlock(&fs_info->delalloc_root_lock); 9347 } 9348 mutex_unlock(&fs_info->delalloc_root_mutex); 9349 return ret; 9350 } 9351 9352 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9353 struct dentry *dentry, const char *symname) 9354 { 9355 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9356 struct btrfs_trans_handle *trans; 9357 struct btrfs_root *root = BTRFS_I(dir)->root; 9358 struct btrfs_path *path; 9359 struct btrfs_key key; 9360 struct inode *inode; 9361 struct btrfs_new_inode_args new_inode_args = { 9362 .dir = dir, 9363 .dentry = dentry, 9364 }; 9365 unsigned int trans_num_items; 9366 int err; 9367 int name_len; 9368 int datasize; 9369 unsigned long ptr; 9370 struct btrfs_file_extent_item *ei; 9371 struct extent_buffer *leaf; 9372 9373 name_len = strlen(symname); 9374 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9375 return -ENAMETOOLONG; 9376 9377 inode = new_inode(dir->i_sb); 9378 if (!inode) 9379 return -ENOMEM; 9380 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9381 inode->i_op = &btrfs_symlink_inode_operations; 9382 inode_nohighmem(inode); 9383 inode->i_mapping->a_ops = &btrfs_aops; 9384 btrfs_i_size_write(BTRFS_I(inode), name_len); 9385 inode_set_bytes(inode, name_len); 9386 9387 new_inode_args.inode = inode; 9388 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9389 if (err) 9390 goto out_inode; 9391 /* 1 additional item for the inline extent */ 9392 trans_num_items++; 9393 9394 trans = btrfs_start_transaction(root, trans_num_items); 9395 if (IS_ERR(trans)) { 9396 err = PTR_ERR(trans); 9397 goto out_new_inode_args; 9398 } 9399 9400 err = btrfs_create_new_inode(trans, &new_inode_args); 9401 if (err) 9402 goto out; 9403 9404 path = btrfs_alloc_path(); 9405 if (!path) { 9406 err = -ENOMEM; 9407 btrfs_abort_transaction(trans, err); 9408 discard_new_inode(inode); 9409 inode = NULL; 9410 goto out; 9411 } 9412 key.objectid = btrfs_ino(BTRFS_I(inode)); 9413 key.offset = 0; 9414 key.type = BTRFS_EXTENT_DATA_KEY; 9415 datasize = btrfs_file_extent_calc_inline_size(name_len); 9416 err = btrfs_insert_empty_item(trans, root, path, &key, 9417 datasize); 9418 if (err) { 9419 btrfs_abort_transaction(trans, err); 9420 btrfs_free_path(path); 9421 discard_new_inode(inode); 9422 inode = NULL; 9423 goto out; 9424 } 9425 leaf = path->nodes[0]; 9426 ei = btrfs_item_ptr(leaf, path->slots[0], 9427 struct btrfs_file_extent_item); 9428 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9429 btrfs_set_file_extent_type(leaf, ei, 9430 BTRFS_FILE_EXTENT_INLINE); 9431 btrfs_set_file_extent_encryption(leaf, ei, 0); 9432 btrfs_set_file_extent_compression(leaf, ei, 0); 9433 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9434 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9435 9436 ptr = btrfs_file_extent_inline_start(ei); 9437 write_extent_buffer(leaf, symname, ptr, name_len); 9438 btrfs_mark_buffer_dirty(leaf); 9439 btrfs_free_path(path); 9440 9441 d_instantiate_new(dentry, inode); 9442 err = 0; 9443 out: 9444 btrfs_end_transaction(trans); 9445 btrfs_btree_balance_dirty(fs_info); 9446 out_new_inode_args: 9447 btrfs_new_inode_args_destroy(&new_inode_args); 9448 out_inode: 9449 if (err) 9450 iput(inode); 9451 return err; 9452 } 9453 9454 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9455 struct btrfs_trans_handle *trans_in, 9456 struct btrfs_inode *inode, 9457 struct btrfs_key *ins, 9458 u64 file_offset) 9459 { 9460 struct btrfs_file_extent_item stack_fi; 9461 struct btrfs_replace_extent_info extent_info; 9462 struct btrfs_trans_handle *trans = trans_in; 9463 struct btrfs_path *path; 9464 u64 start = ins->objectid; 9465 u64 len = ins->offset; 9466 int qgroup_released; 9467 int ret; 9468 9469 memset(&stack_fi, 0, sizeof(stack_fi)); 9470 9471 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9472 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9473 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9474 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9475 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9476 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9477 /* Encryption and other encoding is reserved and all 0 */ 9478 9479 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9480 if (qgroup_released < 0) 9481 return ERR_PTR(qgroup_released); 9482 9483 if (trans) { 9484 ret = insert_reserved_file_extent(trans, inode, 9485 file_offset, &stack_fi, 9486 true, qgroup_released); 9487 if (ret) 9488 goto free_qgroup; 9489 return trans; 9490 } 9491 9492 extent_info.disk_offset = start; 9493 extent_info.disk_len = len; 9494 extent_info.data_offset = 0; 9495 extent_info.data_len = len; 9496 extent_info.file_offset = file_offset; 9497 extent_info.extent_buf = (char *)&stack_fi; 9498 extent_info.is_new_extent = true; 9499 extent_info.update_times = true; 9500 extent_info.qgroup_reserved = qgroup_released; 9501 extent_info.insertions = 0; 9502 9503 path = btrfs_alloc_path(); 9504 if (!path) { 9505 ret = -ENOMEM; 9506 goto free_qgroup; 9507 } 9508 9509 ret = btrfs_replace_file_extents(inode, path, file_offset, 9510 file_offset + len - 1, &extent_info, 9511 &trans); 9512 btrfs_free_path(path); 9513 if (ret) 9514 goto free_qgroup; 9515 return trans; 9516 9517 free_qgroup: 9518 /* 9519 * We have released qgroup data range at the beginning of the function, 9520 * and normally qgroup_released bytes will be freed when committing 9521 * transaction. 9522 * But if we error out early, we have to free what we have released 9523 * or we leak qgroup data reservation. 9524 */ 9525 btrfs_qgroup_free_refroot(inode->root->fs_info, 9526 inode->root->root_key.objectid, qgroup_released, 9527 BTRFS_QGROUP_RSV_DATA); 9528 return ERR_PTR(ret); 9529 } 9530 9531 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9532 u64 start, u64 num_bytes, u64 min_size, 9533 loff_t actual_len, u64 *alloc_hint, 9534 struct btrfs_trans_handle *trans) 9535 { 9536 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9537 struct extent_map *em; 9538 struct btrfs_root *root = BTRFS_I(inode)->root; 9539 struct btrfs_key ins; 9540 u64 cur_offset = start; 9541 u64 clear_offset = start; 9542 u64 i_size; 9543 u64 cur_bytes; 9544 u64 last_alloc = (u64)-1; 9545 int ret = 0; 9546 bool own_trans = true; 9547 u64 end = start + num_bytes - 1; 9548 9549 if (trans) 9550 own_trans = false; 9551 while (num_bytes > 0) { 9552 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9553 cur_bytes = max(cur_bytes, min_size); 9554 /* 9555 * If we are severely fragmented we could end up with really 9556 * small allocations, so if the allocator is returning small 9557 * chunks lets make its job easier by only searching for those 9558 * sized chunks. 9559 */ 9560 cur_bytes = min(cur_bytes, last_alloc); 9561 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9562 min_size, 0, *alloc_hint, &ins, 1, 0); 9563 if (ret) 9564 break; 9565 9566 /* 9567 * We've reserved this space, and thus converted it from 9568 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9569 * from here on out we will only need to clear our reservation 9570 * for the remaining unreserved area, so advance our 9571 * clear_offset by our extent size. 9572 */ 9573 clear_offset += ins.offset; 9574 9575 last_alloc = ins.offset; 9576 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9577 &ins, cur_offset); 9578 /* 9579 * Now that we inserted the prealloc extent we can finally 9580 * decrement the number of reservations in the block group. 9581 * If we did it before, we could race with relocation and have 9582 * relocation miss the reserved extent, making it fail later. 9583 */ 9584 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9585 if (IS_ERR(trans)) { 9586 ret = PTR_ERR(trans); 9587 btrfs_free_reserved_extent(fs_info, ins.objectid, 9588 ins.offset, 0); 9589 break; 9590 } 9591 9592 em = alloc_extent_map(); 9593 if (!em) { 9594 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9595 cur_offset + ins.offset - 1, false); 9596 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9597 goto next; 9598 } 9599 9600 em->start = cur_offset; 9601 em->orig_start = cur_offset; 9602 em->len = ins.offset; 9603 em->block_start = ins.objectid; 9604 em->block_len = ins.offset; 9605 em->orig_block_len = ins.offset; 9606 em->ram_bytes = ins.offset; 9607 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9608 em->generation = trans->transid; 9609 9610 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9611 free_extent_map(em); 9612 next: 9613 num_bytes -= ins.offset; 9614 cur_offset += ins.offset; 9615 *alloc_hint = ins.objectid + ins.offset; 9616 9617 inode_inc_iversion(inode); 9618 inode->i_ctime = current_time(inode); 9619 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9620 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9621 (actual_len > inode->i_size) && 9622 (cur_offset > inode->i_size)) { 9623 if (cur_offset > actual_len) 9624 i_size = actual_len; 9625 else 9626 i_size = cur_offset; 9627 i_size_write(inode, i_size); 9628 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9629 } 9630 9631 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9632 9633 if (ret) { 9634 btrfs_abort_transaction(trans, ret); 9635 if (own_trans) 9636 btrfs_end_transaction(trans); 9637 break; 9638 } 9639 9640 if (own_trans) { 9641 btrfs_end_transaction(trans); 9642 trans = NULL; 9643 } 9644 } 9645 if (clear_offset < end) 9646 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9647 end - clear_offset + 1); 9648 return ret; 9649 } 9650 9651 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9652 u64 start, u64 num_bytes, u64 min_size, 9653 loff_t actual_len, u64 *alloc_hint) 9654 { 9655 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9656 min_size, actual_len, alloc_hint, 9657 NULL); 9658 } 9659 9660 int btrfs_prealloc_file_range_trans(struct inode *inode, 9661 struct btrfs_trans_handle *trans, int mode, 9662 u64 start, u64 num_bytes, u64 min_size, 9663 loff_t actual_len, u64 *alloc_hint) 9664 { 9665 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9666 min_size, actual_len, alloc_hint, trans); 9667 } 9668 9669 static int btrfs_permission(struct mnt_idmap *idmap, 9670 struct inode *inode, int mask) 9671 { 9672 struct btrfs_root *root = BTRFS_I(inode)->root; 9673 umode_t mode = inode->i_mode; 9674 9675 if (mask & MAY_WRITE && 9676 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9677 if (btrfs_root_readonly(root)) 9678 return -EROFS; 9679 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9680 return -EACCES; 9681 } 9682 return generic_permission(idmap, inode, mask); 9683 } 9684 9685 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9686 struct file *file, umode_t mode) 9687 { 9688 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9689 struct btrfs_trans_handle *trans; 9690 struct btrfs_root *root = BTRFS_I(dir)->root; 9691 struct inode *inode; 9692 struct btrfs_new_inode_args new_inode_args = { 9693 .dir = dir, 9694 .dentry = file->f_path.dentry, 9695 .orphan = true, 9696 }; 9697 unsigned int trans_num_items; 9698 int ret; 9699 9700 inode = new_inode(dir->i_sb); 9701 if (!inode) 9702 return -ENOMEM; 9703 inode_init_owner(idmap, inode, dir, mode); 9704 inode->i_fop = &btrfs_file_operations; 9705 inode->i_op = &btrfs_file_inode_operations; 9706 inode->i_mapping->a_ops = &btrfs_aops; 9707 9708 new_inode_args.inode = inode; 9709 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9710 if (ret) 9711 goto out_inode; 9712 9713 trans = btrfs_start_transaction(root, trans_num_items); 9714 if (IS_ERR(trans)) { 9715 ret = PTR_ERR(trans); 9716 goto out_new_inode_args; 9717 } 9718 9719 ret = btrfs_create_new_inode(trans, &new_inode_args); 9720 9721 /* 9722 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9723 * set it to 1 because d_tmpfile() will issue a warning if the count is 9724 * 0, through: 9725 * 9726 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9727 */ 9728 set_nlink(inode, 1); 9729 9730 if (!ret) { 9731 d_tmpfile(file, inode); 9732 unlock_new_inode(inode); 9733 mark_inode_dirty(inode); 9734 } 9735 9736 btrfs_end_transaction(trans); 9737 btrfs_btree_balance_dirty(fs_info); 9738 out_new_inode_args: 9739 btrfs_new_inode_args_destroy(&new_inode_args); 9740 out_inode: 9741 if (ret) 9742 iput(inode); 9743 return finish_open_simple(file, ret); 9744 } 9745 9746 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9747 { 9748 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9749 unsigned long index = start >> PAGE_SHIFT; 9750 unsigned long end_index = end >> PAGE_SHIFT; 9751 struct page *page; 9752 u32 len; 9753 9754 ASSERT(end + 1 - start <= U32_MAX); 9755 len = end + 1 - start; 9756 while (index <= end_index) { 9757 page = find_get_page(inode->vfs_inode.i_mapping, index); 9758 ASSERT(page); /* Pages should be in the extent_io_tree */ 9759 9760 btrfs_page_set_writeback(fs_info, page, start, len); 9761 put_page(page); 9762 index++; 9763 } 9764 } 9765 9766 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9767 int compress_type) 9768 { 9769 switch (compress_type) { 9770 case BTRFS_COMPRESS_NONE: 9771 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9772 case BTRFS_COMPRESS_ZLIB: 9773 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9774 case BTRFS_COMPRESS_LZO: 9775 /* 9776 * The LZO format depends on the sector size. 64K is the maximum 9777 * sector size that we support. 9778 */ 9779 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9780 return -EINVAL; 9781 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9782 (fs_info->sectorsize_bits - 12); 9783 case BTRFS_COMPRESS_ZSTD: 9784 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9785 default: 9786 return -EUCLEAN; 9787 } 9788 } 9789 9790 static ssize_t btrfs_encoded_read_inline( 9791 struct kiocb *iocb, 9792 struct iov_iter *iter, u64 start, 9793 u64 lockend, 9794 struct extent_state **cached_state, 9795 u64 extent_start, size_t count, 9796 struct btrfs_ioctl_encoded_io_args *encoded, 9797 bool *unlocked) 9798 { 9799 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9800 struct btrfs_root *root = inode->root; 9801 struct btrfs_fs_info *fs_info = root->fs_info; 9802 struct extent_io_tree *io_tree = &inode->io_tree; 9803 struct btrfs_path *path; 9804 struct extent_buffer *leaf; 9805 struct btrfs_file_extent_item *item; 9806 u64 ram_bytes; 9807 unsigned long ptr; 9808 void *tmp; 9809 ssize_t ret; 9810 9811 path = btrfs_alloc_path(); 9812 if (!path) { 9813 ret = -ENOMEM; 9814 goto out; 9815 } 9816 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9817 extent_start, 0); 9818 if (ret) { 9819 if (ret > 0) { 9820 /* The extent item disappeared? */ 9821 ret = -EIO; 9822 } 9823 goto out; 9824 } 9825 leaf = path->nodes[0]; 9826 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9827 9828 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9829 ptr = btrfs_file_extent_inline_start(item); 9830 9831 encoded->len = min_t(u64, extent_start + ram_bytes, 9832 inode->vfs_inode.i_size) - iocb->ki_pos; 9833 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9834 btrfs_file_extent_compression(leaf, item)); 9835 if (ret < 0) 9836 goto out; 9837 encoded->compression = ret; 9838 if (encoded->compression) { 9839 size_t inline_size; 9840 9841 inline_size = btrfs_file_extent_inline_item_len(leaf, 9842 path->slots[0]); 9843 if (inline_size > count) { 9844 ret = -ENOBUFS; 9845 goto out; 9846 } 9847 count = inline_size; 9848 encoded->unencoded_len = ram_bytes; 9849 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9850 } else { 9851 count = min_t(u64, count, encoded->len); 9852 encoded->len = count; 9853 encoded->unencoded_len = count; 9854 ptr += iocb->ki_pos - extent_start; 9855 } 9856 9857 tmp = kmalloc(count, GFP_NOFS); 9858 if (!tmp) { 9859 ret = -ENOMEM; 9860 goto out; 9861 } 9862 read_extent_buffer(leaf, tmp, ptr, count); 9863 btrfs_release_path(path); 9864 unlock_extent(io_tree, start, lockend, cached_state); 9865 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9866 *unlocked = true; 9867 9868 ret = copy_to_iter(tmp, count, iter); 9869 if (ret != count) 9870 ret = -EFAULT; 9871 kfree(tmp); 9872 out: 9873 btrfs_free_path(path); 9874 return ret; 9875 } 9876 9877 struct btrfs_encoded_read_private { 9878 wait_queue_head_t wait; 9879 atomic_t pending; 9880 blk_status_t status; 9881 }; 9882 9883 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9884 { 9885 struct btrfs_encoded_read_private *priv = bbio->private; 9886 9887 if (bbio->bio.bi_status) { 9888 /* 9889 * The memory barrier implied by the atomic_dec_return() here 9890 * pairs with the memory barrier implied by the 9891 * atomic_dec_return() or io_wait_event() in 9892 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9893 * write is observed before the load of status in 9894 * btrfs_encoded_read_regular_fill_pages(). 9895 */ 9896 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9897 } 9898 if (!atomic_dec_return(&priv->pending)) 9899 wake_up(&priv->wait); 9900 bio_put(&bbio->bio); 9901 } 9902 9903 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9904 u64 file_offset, u64 disk_bytenr, 9905 u64 disk_io_size, struct page **pages) 9906 { 9907 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9908 struct btrfs_encoded_read_private priv = { 9909 .pending = ATOMIC_INIT(1), 9910 }; 9911 unsigned long i = 0; 9912 struct btrfs_bio *bbio; 9913 9914 init_waitqueue_head(&priv.wait); 9915 9916 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9917 btrfs_encoded_read_endio, &priv); 9918 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9919 bbio->inode = inode; 9920 9921 do { 9922 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9923 9924 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9925 atomic_inc(&priv.pending); 9926 btrfs_submit_bio(bbio, 0); 9927 9928 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9929 btrfs_encoded_read_endio, &priv); 9930 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9931 bbio->inode = inode; 9932 continue; 9933 } 9934 9935 i++; 9936 disk_bytenr += bytes; 9937 disk_io_size -= bytes; 9938 } while (disk_io_size); 9939 9940 atomic_inc(&priv.pending); 9941 btrfs_submit_bio(bbio, 0); 9942 9943 if (atomic_dec_return(&priv.pending)) 9944 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9945 /* See btrfs_encoded_read_endio() for ordering. */ 9946 return blk_status_to_errno(READ_ONCE(priv.status)); 9947 } 9948 9949 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9950 struct iov_iter *iter, 9951 u64 start, u64 lockend, 9952 struct extent_state **cached_state, 9953 u64 disk_bytenr, u64 disk_io_size, 9954 size_t count, bool compressed, 9955 bool *unlocked) 9956 { 9957 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9958 struct extent_io_tree *io_tree = &inode->io_tree; 9959 struct page **pages; 9960 unsigned long nr_pages, i; 9961 u64 cur; 9962 size_t page_offset; 9963 ssize_t ret; 9964 9965 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9966 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9967 if (!pages) 9968 return -ENOMEM; 9969 ret = btrfs_alloc_page_array(nr_pages, pages); 9970 if (ret) { 9971 ret = -ENOMEM; 9972 goto out; 9973 } 9974 9975 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9976 disk_io_size, pages); 9977 if (ret) 9978 goto out; 9979 9980 unlock_extent(io_tree, start, lockend, cached_state); 9981 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9982 *unlocked = true; 9983 9984 if (compressed) { 9985 i = 0; 9986 page_offset = 0; 9987 } else { 9988 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9989 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9990 } 9991 cur = 0; 9992 while (cur < count) { 9993 size_t bytes = min_t(size_t, count - cur, 9994 PAGE_SIZE - page_offset); 9995 9996 if (copy_page_to_iter(pages[i], page_offset, bytes, 9997 iter) != bytes) { 9998 ret = -EFAULT; 9999 goto out; 10000 } 10001 i++; 10002 cur += bytes; 10003 page_offset = 0; 10004 } 10005 ret = count; 10006 out: 10007 for (i = 0; i < nr_pages; i++) { 10008 if (pages[i]) 10009 __free_page(pages[i]); 10010 } 10011 kfree(pages); 10012 return ret; 10013 } 10014 10015 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10016 struct btrfs_ioctl_encoded_io_args *encoded) 10017 { 10018 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10019 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10020 struct extent_io_tree *io_tree = &inode->io_tree; 10021 ssize_t ret; 10022 size_t count = iov_iter_count(iter); 10023 u64 start, lockend, disk_bytenr, disk_io_size; 10024 struct extent_state *cached_state = NULL; 10025 struct extent_map *em; 10026 bool unlocked = false; 10027 10028 file_accessed(iocb->ki_filp); 10029 10030 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10031 10032 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10033 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10034 return 0; 10035 } 10036 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10037 /* 10038 * We don't know how long the extent containing iocb->ki_pos is, but if 10039 * it's compressed we know that it won't be longer than this. 10040 */ 10041 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10042 10043 for (;;) { 10044 struct btrfs_ordered_extent *ordered; 10045 10046 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10047 lockend - start + 1); 10048 if (ret) 10049 goto out_unlock_inode; 10050 lock_extent(io_tree, start, lockend, &cached_state); 10051 ordered = btrfs_lookup_ordered_range(inode, start, 10052 lockend - start + 1); 10053 if (!ordered) 10054 break; 10055 btrfs_put_ordered_extent(ordered); 10056 unlock_extent(io_tree, start, lockend, &cached_state); 10057 cond_resched(); 10058 } 10059 10060 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10061 if (IS_ERR(em)) { 10062 ret = PTR_ERR(em); 10063 goto out_unlock_extent; 10064 } 10065 10066 if (em->block_start == EXTENT_MAP_INLINE) { 10067 u64 extent_start = em->start; 10068 10069 /* 10070 * For inline extents we get everything we need out of the 10071 * extent item. 10072 */ 10073 free_extent_map(em); 10074 em = NULL; 10075 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10076 &cached_state, extent_start, 10077 count, encoded, &unlocked); 10078 goto out; 10079 } 10080 10081 /* 10082 * We only want to return up to EOF even if the extent extends beyond 10083 * that. 10084 */ 10085 encoded->len = min_t(u64, extent_map_end(em), 10086 inode->vfs_inode.i_size) - iocb->ki_pos; 10087 if (em->block_start == EXTENT_MAP_HOLE || 10088 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10089 disk_bytenr = EXTENT_MAP_HOLE; 10090 count = min_t(u64, count, encoded->len); 10091 encoded->len = count; 10092 encoded->unencoded_len = count; 10093 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10094 disk_bytenr = em->block_start; 10095 /* 10096 * Bail if the buffer isn't large enough to return the whole 10097 * compressed extent. 10098 */ 10099 if (em->block_len > count) { 10100 ret = -ENOBUFS; 10101 goto out_em; 10102 } 10103 disk_io_size = em->block_len; 10104 count = em->block_len; 10105 encoded->unencoded_len = em->ram_bytes; 10106 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10107 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10108 em->compress_type); 10109 if (ret < 0) 10110 goto out_em; 10111 encoded->compression = ret; 10112 } else { 10113 disk_bytenr = em->block_start + (start - em->start); 10114 if (encoded->len > count) 10115 encoded->len = count; 10116 /* 10117 * Don't read beyond what we locked. This also limits the page 10118 * allocations that we'll do. 10119 */ 10120 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10121 count = start + disk_io_size - iocb->ki_pos; 10122 encoded->len = count; 10123 encoded->unencoded_len = count; 10124 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10125 } 10126 free_extent_map(em); 10127 em = NULL; 10128 10129 if (disk_bytenr == EXTENT_MAP_HOLE) { 10130 unlock_extent(io_tree, start, lockend, &cached_state); 10131 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10132 unlocked = true; 10133 ret = iov_iter_zero(count, iter); 10134 if (ret != count) 10135 ret = -EFAULT; 10136 } else { 10137 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10138 &cached_state, disk_bytenr, 10139 disk_io_size, count, 10140 encoded->compression, 10141 &unlocked); 10142 } 10143 10144 out: 10145 if (ret >= 0) 10146 iocb->ki_pos += encoded->len; 10147 out_em: 10148 free_extent_map(em); 10149 out_unlock_extent: 10150 if (!unlocked) 10151 unlock_extent(io_tree, start, lockend, &cached_state); 10152 out_unlock_inode: 10153 if (!unlocked) 10154 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10155 return ret; 10156 } 10157 10158 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10159 const struct btrfs_ioctl_encoded_io_args *encoded) 10160 { 10161 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10162 struct btrfs_root *root = inode->root; 10163 struct btrfs_fs_info *fs_info = root->fs_info; 10164 struct extent_io_tree *io_tree = &inode->io_tree; 10165 struct extent_changeset *data_reserved = NULL; 10166 struct extent_state *cached_state = NULL; 10167 int compression; 10168 size_t orig_count; 10169 u64 start, end; 10170 u64 num_bytes, ram_bytes, disk_num_bytes; 10171 unsigned long nr_pages, i; 10172 struct page **pages; 10173 struct btrfs_key ins; 10174 bool extent_reserved = false; 10175 struct extent_map *em; 10176 ssize_t ret; 10177 10178 switch (encoded->compression) { 10179 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10180 compression = BTRFS_COMPRESS_ZLIB; 10181 break; 10182 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10183 compression = BTRFS_COMPRESS_ZSTD; 10184 break; 10185 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10186 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10187 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10188 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10189 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10190 /* The sector size must match for LZO. */ 10191 if (encoded->compression - 10192 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10193 fs_info->sectorsize_bits) 10194 return -EINVAL; 10195 compression = BTRFS_COMPRESS_LZO; 10196 break; 10197 default: 10198 return -EINVAL; 10199 } 10200 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10201 return -EINVAL; 10202 10203 orig_count = iov_iter_count(from); 10204 10205 /* The extent size must be sane. */ 10206 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10207 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10208 return -EINVAL; 10209 10210 /* 10211 * The compressed data must be smaller than the decompressed data. 10212 * 10213 * It's of course possible for data to compress to larger or the same 10214 * size, but the buffered I/O path falls back to no compression for such 10215 * data, and we don't want to break any assumptions by creating these 10216 * extents. 10217 * 10218 * Note that this is less strict than the current check we have that the 10219 * compressed data must be at least one sector smaller than the 10220 * decompressed data. We only want to enforce the weaker requirement 10221 * from old kernels that it is at least one byte smaller. 10222 */ 10223 if (orig_count >= encoded->unencoded_len) 10224 return -EINVAL; 10225 10226 /* The extent must start on a sector boundary. */ 10227 start = iocb->ki_pos; 10228 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10229 return -EINVAL; 10230 10231 /* 10232 * The extent must end on a sector boundary. However, we allow a write 10233 * which ends at or extends i_size to have an unaligned length; we round 10234 * up the extent size and set i_size to the unaligned end. 10235 */ 10236 if (start + encoded->len < inode->vfs_inode.i_size && 10237 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10238 return -EINVAL; 10239 10240 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10241 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10242 return -EINVAL; 10243 10244 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10245 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10246 end = start + num_bytes - 1; 10247 10248 /* 10249 * If the extent cannot be inline, the compressed data on disk must be 10250 * sector-aligned. For convenience, we extend it with zeroes if it 10251 * isn't. 10252 */ 10253 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10254 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10255 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10256 if (!pages) 10257 return -ENOMEM; 10258 for (i = 0; i < nr_pages; i++) { 10259 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10260 char *kaddr; 10261 10262 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10263 if (!pages[i]) { 10264 ret = -ENOMEM; 10265 goto out_pages; 10266 } 10267 kaddr = kmap_local_page(pages[i]); 10268 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10269 kunmap_local(kaddr); 10270 ret = -EFAULT; 10271 goto out_pages; 10272 } 10273 if (bytes < PAGE_SIZE) 10274 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10275 kunmap_local(kaddr); 10276 } 10277 10278 for (;;) { 10279 struct btrfs_ordered_extent *ordered; 10280 10281 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10282 if (ret) 10283 goto out_pages; 10284 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10285 start >> PAGE_SHIFT, 10286 end >> PAGE_SHIFT); 10287 if (ret) 10288 goto out_pages; 10289 lock_extent(io_tree, start, end, &cached_state); 10290 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10291 if (!ordered && 10292 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10293 break; 10294 if (ordered) 10295 btrfs_put_ordered_extent(ordered); 10296 unlock_extent(io_tree, start, end, &cached_state); 10297 cond_resched(); 10298 } 10299 10300 /* 10301 * We don't use the higher-level delalloc space functions because our 10302 * num_bytes and disk_num_bytes are different. 10303 */ 10304 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10305 if (ret) 10306 goto out_unlock; 10307 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10308 if (ret) 10309 goto out_free_data_space; 10310 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10311 false); 10312 if (ret) 10313 goto out_qgroup_free_data; 10314 10315 /* Try an inline extent first. */ 10316 if (start == 0 && encoded->unencoded_len == encoded->len && 10317 encoded->unencoded_offset == 0) { 10318 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10319 compression, pages, true); 10320 if (ret <= 0) { 10321 if (ret == 0) 10322 ret = orig_count; 10323 goto out_delalloc_release; 10324 } 10325 } 10326 10327 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10328 disk_num_bytes, 0, 0, &ins, 1, 1); 10329 if (ret) 10330 goto out_delalloc_release; 10331 extent_reserved = true; 10332 10333 em = create_io_em(inode, start, num_bytes, 10334 start - encoded->unencoded_offset, ins.objectid, 10335 ins.offset, ins.offset, ram_bytes, compression, 10336 BTRFS_ORDERED_COMPRESSED); 10337 if (IS_ERR(em)) { 10338 ret = PTR_ERR(em); 10339 goto out_free_reserved; 10340 } 10341 free_extent_map(em); 10342 10343 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10344 ins.objectid, ins.offset, 10345 encoded->unencoded_offset, 10346 (1 << BTRFS_ORDERED_ENCODED) | 10347 (1 << BTRFS_ORDERED_COMPRESSED), 10348 compression); 10349 if (ret) { 10350 btrfs_drop_extent_map_range(inode, start, end, false); 10351 goto out_free_reserved; 10352 } 10353 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10354 10355 if (start + encoded->len > inode->vfs_inode.i_size) 10356 i_size_write(&inode->vfs_inode, start + encoded->len); 10357 10358 unlock_extent(io_tree, start, end, &cached_state); 10359 10360 btrfs_delalloc_release_extents(inode, num_bytes); 10361 10362 btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10363 ins.offset, pages, nr_pages, 0, false); 10364 ret = orig_count; 10365 goto out; 10366 10367 out_free_reserved: 10368 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10369 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10370 out_delalloc_release: 10371 btrfs_delalloc_release_extents(inode, num_bytes); 10372 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10373 out_qgroup_free_data: 10374 if (ret < 0) 10375 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10376 out_free_data_space: 10377 /* 10378 * If btrfs_reserve_extent() succeeded, then we already decremented 10379 * bytes_may_use. 10380 */ 10381 if (!extent_reserved) 10382 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10383 out_unlock: 10384 unlock_extent(io_tree, start, end, &cached_state); 10385 out_pages: 10386 for (i = 0; i < nr_pages; i++) { 10387 if (pages[i]) 10388 __free_page(pages[i]); 10389 } 10390 kvfree(pages); 10391 out: 10392 if (ret >= 0) 10393 iocb->ki_pos += encoded->len; 10394 return ret; 10395 } 10396 10397 #ifdef CONFIG_SWAP 10398 /* 10399 * Add an entry indicating a block group or device which is pinned by a 10400 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10401 * negative errno on failure. 10402 */ 10403 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10404 bool is_block_group) 10405 { 10406 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10407 struct btrfs_swapfile_pin *sp, *entry; 10408 struct rb_node **p; 10409 struct rb_node *parent = NULL; 10410 10411 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10412 if (!sp) 10413 return -ENOMEM; 10414 sp->ptr = ptr; 10415 sp->inode = inode; 10416 sp->is_block_group = is_block_group; 10417 sp->bg_extent_count = 1; 10418 10419 spin_lock(&fs_info->swapfile_pins_lock); 10420 p = &fs_info->swapfile_pins.rb_node; 10421 while (*p) { 10422 parent = *p; 10423 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10424 if (sp->ptr < entry->ptr || 10425 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10426 p = &(*p)->rb_left; 10427 } else if (sp->ptr > entry->ptr || 10428 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10429 p = &(*p)->rb_right; 10430 } else { 10431 if (is_block_group) 10432 entry->bg_extent_count++; 10433 spin_unlock(&fs_info->swapfile_pins_lock); 10434 kfree(sp); 10435 return 1; 10436 } 10437 } 10438 rb_link_node(&sp->node, parent, p); 10439 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10440 spin_unlock(&fs_info->swapfile_pins_lock); 10441 return 0; 10442 } 10443 10444 /* Free all of the entries pinned by this swapfile. */ 10445 static void btrfs_free_swapfile_pins(struct inode *inode) 10446 { 10447 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10448 struct btrfs_swapfile_pin *sp; 10449 struct rb_node *node, *next; 10450 10451 spin_lock(&fs_info->swapfile_pins_lock); 10452 node = rb_first(&fs_info->swapfile_pins); 10453 while (node) { 10454 next = rb_next(node); 10455 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10456 if (sp->inode == inode) { 10457 rb_erase(&sp->node, &fs_info->swapfile_pins); 10458 if (sp->is_block_group) { 10459 btrfs_dec_block_group_swap_extents(sp->ptr, 10460 sp->bg_extent_count); 10461 btrfs_put_block_group(sp->ptr); 10462 } 10463 kfree(sp); 10464 } 10465 node = next; 10466 } 10467 spin_unlock(&fs_info->swapfile_pins_lock); 10468 } 10469 10470 struct btrfs_swap_info { 10471 u64 start; 10472 u64 block_start; 10473 u64 block_len; 10474 u64 lowest_ppage; 10475 u64 highest_ppage; 10476 unsigned long nr_pages; 10477 int nr_extents; 10478 }; 10479 10480 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10481 struct btrfs_swap_info *bsi) 10482 { 10483 unsigned long nr_pages; 10484 unsigned long max_pages; 10485 u64 first_ppage, first_ppage_reported, next_ppage; 10486 int ret; 10487 10488 /* 10489 * Our swapfile may have had its size extended after the swap header was 10490 * written. In that case activating the swapfile should not go beyond 10491 * the max size set in the swap header. 10492 */ 10493 if (bsi->nr_pages >= sis->max) 10494 return 0; 10495 10496 max_pages = sis->max - bsi->nr_pages; 10497 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10498 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10499 10500 if (first_ppage >= next_ppage) 10501 return 0; 10502 nr_pages = next_ppage - first_ppage; 10503 nr_pages = min(nr_pages, max_pages); 10504 10505 first_ppage_reported = first_ppage; 10506 if (bsi->start == 0) 10507 first_ppage_reported++; 10508 if (bsi->lowest_ppage > first_ppage_reported) 10509 bsi->lowest_ppage = first_ppage_reported; 10510 if (bsi->highest_ppage < (next_ppage - 1)) 10511 bsi->highest_ppage = next_ppage - 1; 10512 10513 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10514 if (ret < 0) 10515 return ret; 10516 bsi->nr_extents += ret; 10517 bsi->nr_pages += nr_pages; 10518 return 0; 10519 } 10520 10521 static void btrfs_swap_deactivate(struct file *file) 10522 { 10523 struct inode *inode = file_inode(file); 10524 10525 btrfs_free_swapfile_pins(inode); 10526 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10527 } 10528 10529 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10530 sector_t *span) 10531 { 10532 struct inode *inode = file_inode(file); 10533 struct btrfs_root *root = BTRFS_I(inode)->root; 10534 struct btrfs_fs_info *fs_info = root->fs_info; 10535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10536 struct extent_state *cached_state = NULL; 10537 struct extent_map *em = NULL; 10538 struct btrfs_device *device = NULL; 10539 struct btrfs_swap_info bsi = { 10540 .lowest_ppage = (sector_t)-1ULL, 10541 }; 10542 int ret = 0; 10543 u64 isize; 10544 u64 start; 10545 10546 /* 10547 * If the swap file was just created, make sure delalloc is done. If the 10548 * file changes again after this, the user is doing something stupid and 10549 * we don't really care. 10550 */ 10551 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10552 if (ret) 10553 return ret; 10554 10555 /* 10556 * The inode is locked, so these flags won't change after we check them. 10557 */ 10558 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10559 btrfs_warn(fs_info, "swapfile must not be compressed"); 10560 return -EINVAL; 10561 } 10562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10563 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10564 return -EINVAL; 10565 } 10566 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10567 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10568 return -EINVAL; 10569 } 10570 10571 /* 10572 * Balance or device remove/replace/resize can move stuff around from 10573 * under us. The exclop protection makes sure they aren't running/won't 10574 * run concurrently while we are mapping the swap extents, and 10575 * fs_info->swapfile_pins prevents them from running while the swap 10576 * file is active and moving the extents. Note that this also prevents 10577 * a concurrent device add which isn't actually necessary, but it's not 10578 * really worth the trouble to allow it. 10579 */ 10580 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10581 btrfs_warn(fs_info, 10582 "cannot activate swapfile while exclusive operation is running"); 10583 return -EBUSY; 10584 } 10585 10586 /* 10587 * Prevent snapshot creation while we are activating the swap file. 10588 * We do not want to race with snapshot creation. If snapshot creation 10589 * already started before we bumped nr_swapfiles from 0 to 1 and 10590 * completes before the first write into the swap file after it is 10591 * activated, than that write would fallback to COW. 10592 */ 10593 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10594 btrfs_exclop_finish(fs_info); 10595 btrfs_warn(fs_info, 10596 "cannot activate swapfile because snapshot creation is in progress"); 10597 return -EINVAL; 10598 } 10599 /* 10600 * Snapshots can create extents which require COW even if NODATACOW is 10601 * set. We use this counter to prevent snapshots. We must increment it 10602 * before walking the extents because we don't want a concurrent 10603 * snapshot to run after we've already checked the extents. 10604 * 10605 * It is possible that subvolume is marked for deletion but still not 10606 * removed yet. To prevent this race, we check the root status before 10607 * activating the swapfile. 10608 */ 10609 spin_lock(&root->root_item_lock); 10610 if (btrfs_root_dead(root)) { 10611 spin_unlock(&root->root_item_lock); 10612 10613 btrfs_exclop_finish(fs_info); 10614 btrfs_warn(fs_info, 10615 "cannot activate swapfile because subvolume %llu is being deleted", 10616 root->root_key.objectid); 10617 return -EPERM; 10618 } 10619 atomic_inc(&root->nr_swapfiles); 10620 spin_unlock(&root->root_item_lock); 10621 10622 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10623 10624 lock_extent(io_tree, 0, isize - 1, &cached_state); 10625 start = 0; 10626 while (start < isize) { 10627 u64 logical_block_start, physical_block_start; 10628 struct btrfs_block_group *bg; 10629 u64 len = isize - start; 10630 10631 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10632 if (IS_ERR(em)) { 10633 ret = PTR_ERR(em); 10634 goto out; 10635 } 10636 10637 if (em->block_start == EXTENT_MAP_HOLE) { 10638 btrfs_warn(fs_info, "swapfile must not have holes"); 10639 ret = -EINVAL; 10640 goto out; 10641 } 10642 if (em->block_start == EXTENT_MAP_INLINE) { 10643 /* 10644 * It's unlikely we'll ever actually find ourselves 10645 * here, as a file small enough to fit inline won't be 10646 * big enough to store more than the swap header, but in 10647 * case something changes in the future, let's catch it 10648 * here rather than later. 10649 */ 10650 btrfs_warn(fs_info, "swapfile must not be inline"); 10651 ret = -EINVAL; 10652 goto out; 10653 } 10654 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10655 btrfs_warn(fs_info, "swapfile must not be compressed"); 10656 ret = -EINVAL; 10657 goto out; 10658 } 10659 10660 logical_block_start = em->block_start + (start - em->start); 10661 len = min(len, em->len - (start - em->start)); 10662 free_extent_map(em); 10663 em = NULL; 10664 10665 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10666 if (ret < 0) { 10667 goto out; 10668 } else if (ret) { 10669 ret = 0; 10670 } else { 10671 btrfs_warn(fs_info, 10672 "swapfile must not be copy-on-write"); 10673 ret = -EINVAL; 10674 goto out; 10675 } 10676 10677 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10678 if (IS_ERR(em)) { 10679 ret = PTR_ERR(em); 10680 goto out; 10681 } 10682 10683 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10684 btrfs_warn(fs_info, 10685 "swapfile must have single data profile"); 10686 ret = -EINVAL; 10687 goto out; 10688 } 10689 10690 if (device == NULL) { 10691 device = em->map_lookup->stripes[0].dev; 10692 ret = btrfs_add_swapfile_pin(inode, device, false); 10693 if (ret == 1) 10694 ret = 0; 10695 else if (ret) 10696 goto out; 10697 } else if (device != em->map_lookup->stripes[0].dev) { 10698 btrfs_warn(fs_info, "swapfile must be on one device"); 10699 ret = -EINVAL; 10700 goto out; 10701 } 10702 10703 physical_block_start = (em->map_lookup->stripes[0].physical + 10704 (logical_block_start - em->start)); 10705 len = min(len, em->len - (logical_block_start - em->start)); 10706 free_extent_map(em); 10707 em = NULL; 10708 10709 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10710 if (!bg) { 10711 btrfs_warn(fs_info, 10712 "could not find block group containing swapfile"); 10713 ret = -EINVAL; 10714 goto out; 10715 } 10716 10717 if (!btrfs_inc_block_group_swap_extents(bg)) { 10718 btrfs_warn(fs_info, 10719 "block group for swapfile at %llu is read-only%s", 10720 bg->start, 10721 atomic_read(&fs_info->scrubs_running) ? 10722 " (scrub running)" : ""); 10723 btrfs_put_block_group(bg); 10724 ret = -EINVAL; 10725 goto out; 10726 } 10727 10728 ret = btrfs_add_swapfile_pin(inode, bg, true); 10729 if (ret) { 10730 btrfs_put_block_group(bg); 10731 if (ret == 1) 10732 ret = 0; 10733 else 10734 goto out; 10735 } 10736 10737 if (bsi.block_len && 10738 bsi.block_start + bsi.block_len == physical_block_start) { 10739 bsi.block_len += len; 10740 } else { 10741 if (bsi.block_len) { 10742 ret = btrfs_add_swap_extent(sis, &bsi); 10743 if (ret) 10744 goto out; 10745 } 10746 bsi.start = start; 10747 bsi.block_start = physical_block_start; 10748 bsi.block_len = len; 10749 } 10750 10751 start += len; 10752 } 10753 10754 if (bsi.block_len) 10755 ret = btrfs_add_swap_extent(sis, &bsi); 10756 10757 out: 10758 if (!IS_ERR_OR_NULL(em)) 10759 free_extent_map(em); 10760 10761 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10762 10763 if (ret) 10764 btrfs_swap_deactivate(file); 10765 10766 btrfs_drew_write_unlock(&root->snapshot_lock); 10767 10768 btrfs_exclop_finish(fs_info); 10769 10770 if (ret) 10771 return ret; 10772 10773 if (device) 10774 sis->bdev = device->bdev; 10775 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10776 sis->max = bsi.nr_pages; 10777 sis->pages = bsi.nr_pages - 1; 10778 sis->highest_bit = bsi.nr_pages - 1; 10779 return bsi.nr_extents; 10780 } 10781 #else 10782 static void btrfs_swap_deactivate(struct file *file) 10783 { 10784 } 10785 10786 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10787 sector_t *span) 10788 { 10789 return -EOPNOTSUPP; 10790 } 10791 #endif 10792 10793 /* 10794 * Update the number of bytes used in the VFS' inode. When we replace extents in 10795 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10796 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10797 * always get a correct value. 10798 */ 10799 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10800 const u64 add_bytes, 10801 const u64 del_bytes) 10802 { 10803 if (add_bytes == del_bytes) 10804 return; 10805 10806 spin_lock(&inode->lock); 10807 if (del_bytes > 0) 10808 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10809 if (add_bytes > 0) 10810 inode_add_bytes(&inode->vfs_inode, add_bytes); 10811 spin_unlock(&inode->lock); 10812 } 10813 10814 /* 10815 * Verify that there are no ordered extents for a given file range. 10816 * 10817 * @inode: The target inode. 10818 * @start: Start offset of the file range, should be sector size aligned. 10819 * @end: End offset (inclusive) of the file range, its value +1 should be 10820 * sector size aligned. 10821 * 10822 * This should typically be used for cases where we locked an inode's VFS lock in 10823 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10824 * we have flushed all delalloc in the range, we have waited for all ordered 10825 * extents in the range to complete and finally we have locked the file range in 10826 * the inode's io_tree. 10827 */ 10828 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10829 { 10830 struct btrfs_root *root = inode->root; 10831 struct btrfs_ordered_extent *ordered; 10832 10833 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10834 return; 10835 10836 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10837 if (ordered) { 10838 btrfs_err(root->fs_info, 10839 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10840 start, end, btrfs_ino(inode), root->root_key.objectid, 10841 ordered->file_offset, 10842 ordered->file_offset + ordered->num_bytes - 1); 10843 btrfs_put_ordered_extent(ordered); 10844 } 10845 10846 ASSERT(ordered == NULL); 10847 } 10848 10849 static const struct inode_operations btrfs_dir_inode_operations = { 10850 .getattr = btrfs_getattr, 10851 .lookup = btrfs_lookup, 10852 .create = btrfs_create, 10853 .unlink = btrfs_unlink, 10854 .link = btrfs_link, 10855 .mkdir = btrfs_mkdir, 10856 .rmdir = btrfs_rmdir, 10857 .rename = btrfs_rename2, 10858 .symlink = btrfs_symlink, 10859 .setattr = btrfs_setattr, 10860 .mknod = btrfs_mknod, 10861 .listxattr = btrfs_listxattr, 10862 .permission = btrfs_permission, 10863 .get_inode_acl = btrfs_get_acl, 10864 .set_acl = btrfs_set_acl, 10865 .update_time = btrfs_update_time, 10866 .tmpfile = btrfs_tmpfile, 10867 .fileattr_get = btrfs_fileattr_get, 10868 .fileattr_set = btrfs_fileattr_set, 10869 }; 10870 10871 static const struct file_operations btrfs_dir_file_operations = { 10872 .llseek = generic_file_llseek, 10873 .read = generic_read_dir, 10874 .iterate_shared = btrfs_real_readdir, 10875 .open = btrfs_opendir, 10876 .unlocked_ioctl = btrfs_ioctl, 10877 #ifdef CONFIG_COMPAT 10878 .compat_ioctl = btrfs_compat_ioctl, 10879 #endif 10880 .release = btrfs_release_file, 10881 .fsync = btrfs_sync_file, 10882 }; 10883 10884 /* 10885 * btrfs doesn't support the bmap operation because swapfiles 10886 * use bmap to make a mapping of extents in the file. They assume 10887 * these extents won't change over the life of the file and they 10888 * use the bmap result to do IO directly to the drive. 10889 * 10890 * the btrfs bmap call would return logical addresses that aren't 10891 * suitable for IO and they also will change frequently as COW 10892 * operations happen. So, swapfile + btrfs == corruption. 10893 * 10894 * For now we're avoiding this by dropping bmap. 10895 */ 10896 static const struct address_space_operations btrfs_aops = { 10897 .read_folio = btrfs_read_folio, 10898 .writepages = btrfs_writepages, 10899 .readahead = btrfs_readahead, 10900 .direct_IO = noop_direct_IO, 10901 .invalidate_folio = btrfs_invalidate_folio, 10902 .release_folio = btrfs_release_folio, 10903 .migrate_folio = btrfs_migrate_folio, 10904 .dirty_folio = filemap_dirty_folio, 10905 .error_remove_page = generic_error_remove_page, 10906 .swap_activate = btrfs_swap_activate, 10907 .swap_deactivate = btrfs_swap_deactivate, 10908 }; 10909 10910 static const struct inode_operations btrfs_file_inode_operations = { 10911 .getattr = btrfs_getattr, 10912 .setattr = btrfs_setattr, 10913 .listxattr = btrfs_listxattr, 10914 .permission = btrfs_permission, 10915 .fiemap = btrfs_fiemap, 10916 .get_inode_acl = btrfs_get_acl, 10917 .set_acl = btrfs_set_acl, 10918 .update_time = btrfs_update_time, 10919 .fileattr_get = btrfs_fileattr_get, 10920 .fileattr_set = btrfs_fileattr_set, 10921 }; 10922 static const struct inode_operations btrfs_special_inode_operations = { 10923 .getattr = btrfs_getattr, 10924 .setattr = btrfs_setattr, 10925 .permission = btrfs_permission, 10926 .listxattr = btrfs_listxattr, 10927 .get_inode_acl = btrfs_get_acl, 10928 .set_acl = btrfs_set_acl, 10929 .update_time = btrfs_update_time, 10930 }; 10931 static const struct inode_operations btrfs_symlink_inode_operations = { 10932 .get_link = page_get_link, 10933 .getattr = btrfs_getattr, 10934 .setattr = btrfs_setattr, 10935 .permission = btrfs_permission, 10936 .listxattr = btrfs_listxattr, 10937 .update_time = btrfs_update_time, 10938 }; 10939 10940 const struct dentry_operations btrfs_dentry_operations = { 10941 .d_delete = btrfs_dentry_delete, 10942 }; 10943