xref: /linux/fs/btrfs/inode.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, int *page_started,
109 				   unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 					   u64 len, u64 orig_start,
112 					   u64 block_start, u64 block_len,
113 					   u64 orig_block_len, u64 ram_bytes,
114 					   int type);
115 
116 static int btrfs_dirty_inode(struct inode *inode);
117 
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124 
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 				     struct inode *inode,  struct inode *dir,
127 				     const struct qstr *qstr)
128 {
129 	int err;
130 
131 	err = btrfs_init_acl(trans, inode, dir);
132 	if (!err)
133 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 	return err;
135 }
136 
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 				struct btrfs_path *path, int extent_inserted,
144 				struct btrfs_root *root, struct inode *inode,
145 				u64 start, size_t size, size_t compressed_size,
146 				int compress_type,
147 				struct page **compressed_pages)
148 {
149 	struct extent_buffer *leaf;
150 	struct page *page = NULL;
151 	char *kaddr;
152 	unsigned long ptr;
153 	struct btrfs_file_extent_item *ei;
154 	int err = 0;
155 	int ret;
156 	size_t cur_size = size;
157 	unsigned long offset;
158 
159 	if (compressed_size && compressed_pages)
160 		cur_size = compressed_size;
161 
162 	inode_add_bytes(inode, size);
163 
164 	if (!extent_inserted) {
165 		struct btrfs_key key;
166 		size_t datasize;
167 
168 		key.objectid = btrfs_ino(inode);
169 		key.offset = start;
170 		key.type = BTRFS_EXTENT_DATA_KEY;
171 
172 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 		path->leave_spinning = 1;
174 		ret = btrfs_insert_empty_item(trans, root, path, &key,
175 					      datasize);
176 		if (ret) {
177 			err = ret;
178 			goto fail;
179 		}
180 	}
181 	leaf = path->nodes[0];
182 	ei = btrfs_item_ptr(leaf, path->slots[0],
183 			    struct btrfs_file_extent_item);
184 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 	btrfs_set_file_extent_encryption(leaf, ei, 0);
187 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 	ptr = btrfs_file_extent_inline_start(ei);
190 
191 	if (compress_type != BTRFS_COMPRESS_NONE) {
192 		struct page *cpage;
193 		int i = 0;
194 		while (compressed_size > 0) {
195 			cpage = compressed_pages[i];
196 			cur_size = min_t(unsigned long, compressed_size,
197 				       PAGE_SIZE);
198 
199 			kaddr = kmap_atomic(cpage);
200 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 			kunmap_atomic(kaddr);
202 
203 			i++;
204 			ptr += cur_size;
205 			compressed_size -= cur_size;
206 		}
207 		btrfs_set_file_extent_compression(leaf, ei,
208 						  compress_type);
209 	} else {
210 		page = find_get_page(inode->i_mapping,
211 				     start >> PAGE_SHIFT);
212 		btrfs_set_file_extent_compression(leaf, ei, 0);
213 		kaddr = kmap_atomic(page);
214 		offset = start & (PAGE_SIZE - 1);
215 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 		kunmap_atomic(kaddr);
217 		put_page(page);
218 	}
219 	btrfs_mark_buffer_dirty(leaf);
220 	btrfs_release_path(path);
221 
222 	/*
223 	 * we're an inline extent, so nobody can
224 	 * extend the file past i_size without locking
225 	 * a page we already have locked.
226 	 *
227 	 * We must do any isize and inode updates
228 	 * before we unlock the pages.  Otherwise we
229 	 * could end up racing with unlink.
230 	 */
231 	BTRFS_I(inode)->disk_i_size = inode->i_size;
232 	ret = btrfs_update_inode(trans, root, inode);
233 
234 	return ret;
235 fail:
236 	return err;
237 }
238 
239 
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 					  struct inode *inode, u64 start,
247 					  u64 end, size_t compressed_size,
248 					  int compress_type,
249 					  struct page **compressed_pages)
250 {
251 	struct btrfs_trans_handle *trans;
252 	u64 isize = i_size_read(inode);
253 	u64 actual_end = min(end + 1, isize);
254 	u64 inline_len = actual_end - start;
255 	u64 aligned_end = ALIGN(end, root->sectorsize);
256 	u64 data_len = inline_len;
257 	int ret;
258 	struct btrfs_path *path;
259 	int extent_inserted = 0;
260 	u32 extent_item_size;
261 
262 	if (compressed_size)
263 		data_len = compressed_size;
264 
265 	if (start > 0 ||
266 	    actual_end > root->sectorsize ||
267 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 	    (!compressed_size &&
269 	    (actual_end & (root->sectorsize - 1)) == 0) ||
270 	    end + 1 < isize ||
271 	    data_len > root->fs_info->max_inline) {
272 		return 1;
273 	}
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return -ENOMEM;
278 
279 	trans = btrfs_join_transaction(root);
280 	if (IS_ERR(trans)) {
281 		btrfs_free_path(path);
282 		return PTR_ERR(trans);
283 	}
284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285 
286 	if (compressed_size && compressed_pages)
287 		extent_item_size = btrfs_file_extent_calc_inline_size(
288 		   compressed_size);
289 	else
290 		extent_item_size = btrfs_file_extent_calc_inline_size(
291 		    inline_len);
292 
293 	ret = __btrfs_drop_extents(trans, root, inode, path,
294 				   start, aligned_end, NULL,
295 				   1, 1, extent_item_size, &extent_inserted);
296 	if (ret) {
297 		btrfs_abort_transaction(trans, root, ret);
298 		goto out;
299 	}
300 
301 	if (isize > actual_end)
302 		inline_len = min_t(u64, isize, actual_end);
303 	ret = insert_inline_extent(trans, path, extent_inserted,
304 				   root, inode, start,
305 				   inline_len, compressed_size,
306 				   compress_type, compressed_pages);
307 	if (ret && ret != -ENOSPC) {
308 		btrfs_abort_transaction(trans, root, ret);
309 		goto out;
310 	} else if (ret == -ENOSPC) {
311 		ret = 1;
312 		goto out;
313 	}
314 
315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 	/*
320 	 * Don't forget to free the reserved space, as for inlined extent
321 	 * it won't count as data extent, free them directly here.
322 	 * And at reserve time, it's always aligned to page size, so
323 	 * just free one page here.
324 	 */
325 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 	btrfs_free_path(path);
327 	btrfs_end_transaction(trans, root);
328 	return ret;
329 }
330 
331 struct async_extent {
332 	u64 start;
333 	u64 ram_size;
334 	u64 compressed_size;
335 	struct page **pages;
336 	unsigned long nr_pages;
337 	int compress_type;
338 	struct list_head list;
339 };
340 
341 struct async_cow {
342 	struct inode *inode;
343 	struct btrfs_root *root;
344 	struct page *locked_page;
345 	u64 start;
346 	u64 end;
347 	struct list_head extents;
348 	struct btrfs_work work;
349 };
350 
351 static noinline int add_async_extent(struct async_cow *cow,
352 				     u64 start, u64 ram_size,
353 				     u64 compressed_size,
354 				     struct page **pages,
355 				     unsigned long nr_pages,
356 				     int compress_type)
357 {
358 	struct async_extent *async_extent;
359 
360 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 	BUG_ON(!async_extent); /* -ENOMEM */
362 	async_extent->start = start;
363 	async_extent->ram_size = ram_size;
364 	async_extent->compressed_size = compressed_size;
365 	async_extent->pages = pages;
366 	async_extent->nr_pages = nr_pages;
367 	async_extent->compress_type = compress_type;
368 	list_add_tail(&async_extent->list, &cow->extents);
369 	return 0;
370 }
371 
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 
376 	/* force compress */
377 	if (btrfs_test_opt(root, FORCE_COMPRESS))
378 		return 1;
379 	/* bad compression ratios */
380 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 		return 0;
382 	if (btrfs_test_opt(root, COMPRESS) ||
383 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 	    BTRFS_I(inode)->force_compress)
385 		return 1;
386 	return 0;
387 }
388 
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407 					struct page *locked_page,
408 					u64 start, u64 end,
409 					struct async_cow *async_cow,
410 					int *num_added)
411 {
412 	struct btrfs_root *root = BTRFS_I(inode)->root;
413 	u64 num_bytes;
414 	u64 blocksize = root->sectorsize;
415 	u64 actual_end;
416 	u64 isize = i_size_read(inode);
417 	int ret = 0;
418 	struct page **pages = NULL;
419 	unsigned long nr_pages;
420 	unsigned long nr_pages_ret = 0;
421 	unsigned long total_compressed = 0;
422 	unsigned long total_in = 0;
423 	unsigned long max_compressed = SZ_128K;
424 	unsigned long max_uncompressed = SZ_128K;
425 	int i;
426 	int will_compress;
427 	int compress_type = root->fs_info->compress_type;
428 	int redirty = 0;
429 
430 	/* if this is a small write inside eof, kick off a defrag */
431 	if ((end - start + 1) < SZ_16K &&
432 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 
435 	actual_end = min_t(u64, isize, end + 1);
436 again:
437 	will_compress = 0;
438 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440 
441 	/*
442 	 * we don't want to send crud past the end of i_size through
443 	 * compression, that's just a waste of CPU time.  So, if the
444 	 * end of the file is before the start of our current
445 	 * requested range of bytes, we bail out to the uncompressed
446 	 * cleanup code that can deal with all of this.
447 	 *
448 	 * It isn't really the fastest way to fix things, but this is a
449 	 * very uncommon corner.
450 	 */
451 	if (actual_end <= start)
452 		goto cleanup_and_bail_uncompressed;
453 
454 	total_compressed = actual_end - start;
455 
456 	/*
457 	 * skip compression for a small file range(<=blocksize) that
458 	 * isn't an inline extent, since it dosen't save disk space at all.
459 	 */
460 	if (total_compressed <= blocksize &&
461 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 		goto cleanup_and_bail_uncompressed;
463 
464 	/* we want to make sure that amount of ram required to uncompress
465 	 * an extent is reasonable, so we limit the total size in ram
466 	 * of a compressed extent to 128k.  This is a crucial number
467 	 * because it also controls how easily we can spread reads across
468 	 * cpus for decompression.
469 	 *
470 	 * We also want to make sure the amount of IO required to do
471 	 * a random read is reasonably small, so we limit the size of
472 	 * a compressed extent to 128k.
473 	 */
474 	total_compressed = min(total_compressed, max_uncompressed);
475 	num_bytes = ALIGN(end - start + 1, blocksize);
476 	num_bytes = max(blocksize,  num_bytes);
477 	total_in = 0;
478 	ret = 0;
479 
480 	/*
481 	 * we do compression for mount -o compress and when the
482 	 * inode has not been flagged as nocompress.  This flag can
483 	 * change at any time if we discover bad compression ratios.
484 	 */
485 	if (inode_need_compress(inode)) {
486 		WARN_ON(pages);
487 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 		if (!pages) {
489 			/* just bail out to the uncompressed code */
490 			goto cont;
491 		}
492 
493 		if (BTRFS_I(inode)->force_compress)
494 			compress_type = BTRFS_I(inode)->force_compress;
495 
496 		/*
497 		 * we need to call clear_page_dirty_for_io on each
498 		 * page in the range.  Otherwise applications with the file
499 		 * mmap'd can wander in and change the page contents while
500 		 * we are compressing them.
501 		 *
502 		 * If the compression fails for any reason, we set the pages
503 		 * dirty again later on.
504 		 */
505 		extent_range_clear_dirty_for_io(inode, start, end);
506 		redirty = 1;
507 		ret = btrfs_compress_pages(compress_type,
508 					   inode->i_mapping, start,
509 					   total_compressed, pages,
510 					   nr_pages, &nr_pages_ret,
511 					   &total_in,
512 					   &total_compressed,
513 					   max_compressed);
514 
515 		if (!ret) {
516 			unsigned long offset = total_compressed &
517 				(PAGE_SIZE - 1);
518 			struct page *page = pages[nr_pages_ret - 1];
519 			char *kaddr;
520 
521 			/* zero the tail end of the last page, we might be
522 			 * sending it down to disk
523 			 */
524 			if (offset) {
525 				kaddr = kmap_atomic(page);
526 				memset(kaddr + offset, 0,
527 				       PAGE_SIZE - offset);
528 				kunmap_atomic(kaddr);
529 			}
530 			will_compress = 1;
531 		}
532 	}
533 cont:
534 	if (start == 0) {
535 		/* lets try to make an inline extent */
536 		if (ret || total_in < (actual_end - start)) {
537 			/* we didn't compress the entire range, try
538 			 * to make an uncompressed inline extent.
539 			 */
540 			ret = cow_file_range_inline(root, inode, start, end,
541 						    0, 0, NULL);
542 		} else {
543 			/* try making a compressed inline extent */
544 			ret = cow_file_range_inline(root, inode, start, end,
545 						    total_compressed,
546 						    compress_type, pages);
547 		}
548 		if (ret <= 0) {
549 			unsigned long clear_flags = EXTENT_DELALLOC |
550 				EXTENT_DEFRAG;
551 			unsigned long page_error_op;
552 
553 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555 
556 			/*
557 			 * inline extent creation worked or returned error,
558 			 * we don't need to create any more async work items.
559 			 * Unlock and free up our temp pages.
560 			 */
561 			extent_clear_unlock_delalloc(inode, start, end, NULL,
562 						     clear_flags, PAGE_UNLOCK |
563 						     PAGE_CLEAR_DIRTY |
564 						     PAGE_SET_WRITEBACK |
565 						     page_error_op |
566 						     PAGE_END_WRITEBACK);
567 			goto free_pages_out;
568 		}
569 	}
570 
571 	if (will_compress) {
572 		/*
573 		 * we aren't doing an inline extent round the compressed size
574 		 * up to a block size boundary so the allocator does sane
575 		 * things
576 		 */
577 		total_compressed = ALIGN(total_compressed, blocksize);
578 
579 		/*
580 		 * one last check to make sure the compression is really a
581 		 * win, compare the page count read with the blocks on disk
582 		 */
583 		total_in = ALIGN(total_in, PAGE_SIZE);
584 		if (total_compressed >= total_in) {
585 			will_compress = 0;
586 		} else {
587 			num_bytes = total_in;
588 		}
589 	}
590 	if (!will_compress && pages) {
591 		/*
592 		 * the compression code ran but failed to make things smaller,
593 		 * free any pages it allocated and our page pointer array
594 		 */
595 		for (i = 0; i < nr_pages_ret; i++) {
596 			WARN_ON(pages[i]->mapping);
597 			put_page(pages[i]);
598 		}
599 		kfree(pages);
600 		pages = NULL;
601 		total_compressed = 0;
602 		nr_pages_ret = 0;
603 
604 		/* flag the file so we don't compress in the future */
605 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 		    !(BTRFS_I(inode)->force_compress)) {
607 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 		}
609 	}
610 	if (will_compress) {
611 		*num_added += 1;
612 
613 		/* the async work queues will take care of doing actual
614 		 * allocation on disk for these compressed pages,
615 		 * and will submit them to the elevator.
616 		 */
617 		add_async_extent(async_cow, start, num_bytes,
618 				 total_compressed, pages, nr_pages_ret,
619 				 compress_type);
620 
621 		if (start + num_bytes < end) {
622 			start += num_bytes;
623 			pages = NULL;
624 			cond_resched();
625 			goto again;
626 		}
627 	} else {
628 cleanup_and_bail_uncompressed:
629 		/*
630 		 * No compression, but we still need to write the pages in
631 		 * the file we've been given so far.  redirty the locked
632 		 * page if it corresponds to our extent and set things up
633 		 * for the async work queue to run cow_file_range to do
634 		 * the normal delalloc dance
635 		 */
636 		if (page_offset(locked_page) >= start &&
637 		    page_offset(locked_page) <= end) {
638 			__set_page_dirty_nobuffers(locked_page);
639 			/* unlocked later on in the async handlers */
640 		}
641 		if (redirty)
642 			extent_range_redirty_for_io(inode, start, end);
643 		add_async_extent(async_cow, start, end - start + 1,
644 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 		*num_added += 1;
646 	}
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     &page_started, &nr_written, 0);
716 
717 			/* JDM XXX */
718 
719 			/*
720 			 * if page_started, cow_file_range inserted an
721 			 * inline extent and took care of all the unlocking
722 			 * and IO for us.  Otherwise, we need to submit
723 			 * all those pages down to the drive.
724 			 */
725 			if (!page_started && !ret)
726 				extent_write_locked_range(io_tree,
727 						  inode, async_extent->start,
728 						  async_extent->start +
729 						  async_extent->ram_size - 1,
730 						  btrfs_get_extent,
731 						  WB_SYNC_ALL);
732 			else if (ret)
733 				unlock_page(async_cow->locked_page);
734 			kfree(async_extent);
735 			cond_resched();
736 			continue;
737 		}
738 
739 		lock_extent(io_tree, async_extent->start,
740 			    async_extent->start + async_extent->ram_size - 1);
741 
742 		ret = btrfs_reserve_extent(root,
743 					   async_extent->compressed_size,
744 					   async_extent->compressed_size,
745 					   0, alloc_hint, &ins, 1, 1);
746 		if (ret) {
747 			free_async_extent_pages(async_extent);
748 
749 			if (ret == -ENOSPC) {
750 				unlock_extent(io_tree, async_extent->start,
751 					      async_extent->start +
752 					      async_extent->ram_size - 1);
753 
754 				/*
755 				 * we need to redirty the pages if we decide to
756 				 * fallback to uncompressed IO, otherwise we
757 				 * will not submit these pages down to lower
758 				 * layers.
759 				 */
760 				extent_range_redirty_for_io(inode,
761 						async_extent->start,
762 						async_extent->start +
763 						async_extent->ram_size - 1);
764 
765 				goto retry;
766 			}
767 			goto out_free;
768 		}
769 		/*
770 		 * here we're doing allocation and writeback of the
771 		 * compressed pages
772 		 */
773 		btrfs_drop_extent_cache(inode, async_extent->start,
774 					async_extent->start +
775 					async_extent->ram_size - 1, 0);
776 
777 		em = alloc_extent_map();
778 		if (!em) {
779 			ret = -ENOMEM;
780 			goto out_free_reserve;
781 		}
782 		em->start = async_extent->start;
783 		em->len = async_extent->ram_size;
784 		em->orig_start = em->start;
785 		em->mod_start = em->start;
786 		em->mod_len = em->len;
787 
788 		em->block_start = ins.objectid;
789 		em->block_len = ins.offset;
790 		em->orig_block_len = ins.offset;
791 		em->ram_bytes = async_extent->ram_size;
792 		em->bdev = root->fs_info->fs_devices->latest_bdev;
793 		em->compress_type = async_extent->compress_type;
794 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 		em->generation = -1;
797 
798 		while (1) {
799 			write_lock(&em_tree->lock);
800 			ret = add_extent_mapping(em_tree, em, 1);
801 			write_unlock(&em_tree->lock);
802 			if (ret != -EEXIST) {
803 				free_extent_map(em);
804 				break;
805 			}
806 			btrfs_drop_extent_cache(inode, async_extent->start,
807 						async_extent->start +
808 						async_extent->ram_size - 1, 0);
809 		}
810 
811 		if (ret)
812 			goto out_free_reserve;
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(inode, async_extent->start,
823 						async_extent->start +
824 						async_extent->ram_size - 1, 0);
825 			goto out_free_reserve;
826 		}
827 
828 		/*
829 		 * clear dirty, set writeback and unlock the pages.
830 		 */
831 		extent_clear_unlock_delalloc(inode, async_extent->start,
832 				async_extent->start +
833 				async_extent->ram_size - 1,
834 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
836 				PAGE_SET_WRITEBACK);
837 		ret = btrfs_submit_compressed_write(inode,
838 				    async_extent->start,
839 				    async_extent->ram_size,
840 				    ins.objectid,
841 				    ins.offset, async_extent->pages,
842 				    async_extent->nr_pages);
843 		if (ret) {
844 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 			struct page *p = async_extent->pages[0];
846 			const u64 start = async_extent->start;
847 			const u64 end = start + async_extent->ram_size - 1;
848 
849 			p->mapping = inode->i_mapping;
850 			tree->ops->writepage_end_io_hook(p, start, end,
851 							 NULL, 0);
852 			p->mapping = NULL;
853 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 						     PAGE_END_WRITEBACK |
855 						     PAGE_SET_ERROR);
856 			free_async_extent_pages(async_extent);
857 		}
858 		alloc_hint = ins.objectid + ins.offset;
859 		kfree(async_extent);
860 		cond_resched();
861 	}
862 	return;
863 out_free_reserve:
864 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
865 out_free:
866 	extent_clear_unlock_delalloc(inode, async_extent->start,
867 				     async_extent->start +
868 				     async_extent->ram_size - 1,
869 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
870 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
872 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 				     PAGE_SET_ERROR);
874 	free_async_extent_pages(async_extent);
875 	kfree(async_extent);
876 	goto again;
877 }
878 
879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 				      u64 num_bytes)
881 {
882 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 	struct extent_map *em;
884 	u64 alloc_hint = 0;
885 
886 	read_lock(&em_tree->lock);
887 	em = search_extent_mapping(em_tree, start, num_bytes);
888 	if (em) {
889 		/*
890 		 * if block start isn't an actual block number then find the
891 		 * first block in this inode and use that as a hint.  If that
892 		 * block is also bogus then just don't worry about it.
893 		 */
894 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 			free_extent_map(em);
896 			em = search_extent_mapping(em_tree, 0, 0);
897 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 				alloc_hint = em->block_start;
899 			if (em)
900 				free_extent_map(em);
901 		} else {
902 			alloc_hint = em->block_start;
903 			free_extent_map(em);
904 		}
905 	}
906 	read_unlock(&em_tree->lock);
907 
908 	return alloc_hint;
909 }
910 
911 /*
912  * when extent_io.c finds a delayed allocation range in the file,
913  * the call backs end up in this code.  The basic idea is to
914  * allocate extents on disk for the range, and create ordered data structs
915  * in ram to track those extents.
916  *
917  * locked_page is the page that writepage had locked already.  We use
918  * it to make sure we don't do extra locks or unlocks.
919  *
920  * *page_started is set to one if we unlock locked_page and do everything
921  * required to start IO on it.  It may be clean and already done with
922  * IO when we return.
923  */
924 static noinline int cow_file_range(struct inode *inode,
925 				   struct page *locked_page,
926 				   u64 start, u64 end, int *page_started,
927 				   unsigned long *nr_written,
928 				   int unlock)
929 {
930 	struct btrfs_root *root = BTRFS_I(inode)->root;
931 	u64 alloc_hint = 0;
932 	u64 num_bytes;
933 	unsigned long ram_size;
934 	u64 disk_num_bytes;
935 	u64 cur_alloc_size;
936 	u64 blocksize = root->sectorsize;
937 	struct btrfs_key ins;
938 	struct extent_map *em;
939 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 	int ret = 0;
941 
942 	if (btrfs_is_free_space_inode(inode)) {
943 		WARN_ON_ONCE(1);
944 		ret = -EINVAL;
945 		goto out_unlock;
946 	}
947 
948 	num_bytes = ALIGN(end - start + 1, blocksize);
949 	num_bytes = max(blocksize,  num_bytes);
950 	disk_num_bytes = num_bytes;
951 
952 	/* if this is a small write inside eof, kick off defrag */
953 	if (num_bytes < SZ_64K &&
954 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
955 		btrfs_add_inode_defrag(NULL, inode);
956 
957 	if (start == 0) {
958 		/* lets try to make an inline extent */
959 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 					    NULL);
961 		if (ret == 0) {
962 			extent_clear_unlock_delalloc(inode, start, end, NULL,
963 				     EXTENT_LOCKED | EXTENT_DELALLOC |
964 				     EXTENT_DEFRAG, PAGE_UNLOCK |
965 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 				     PAGE_END_WRITEBACK);
967 
968 			*nr_written = *nr_written +
969 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
970 			*page_started = 1;
971 			goto out;
972 		} else if (ret < 0) {
973 			goto out_unlock;
974 		}
975 	}
976 
977 	BUG_ON(disk_num_bytes >
978 	       btrfs_super_total_bytes(root->fs_info->super_copy));
979 
980 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
981 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982 
983 	while (disk_num_bytes > 0) {
984 		unsigned long op;
985 
986 		cur_alloc_size = disk_num_bytes;
987 		ret = btrfs_reserve_extent(root, cur_alloc_size,
988 					   root->sectorsize, 0, alloc_hint,
989 					   &ins, 1, 1);
990 		if (ret < 0)
991 			goto out_unlock;
992 
993 		em = alloc_extent_map();
994 		if (!em) {
995 			ret = -ENOMEM;
996 			goto out_reserve;
997 		}
998 		em->start = start;
999 		em->orig_start = em->start;
1000 		ram_size = ins.offset;
1001 		em->len = ins.offset;
1002 		em->mod_start = em->start;
1003 		em->mod_len = em->len;
1004 
1005 		em->block_start = ins.objectid;
1006 		em->block_len = ins.offset;
1007 		em->orig_block_len = ins.offset;
1008 		em->ram_bytes = ram_size;
1009 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1010 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1011 		em->generation = -1;
1012 
1013 		while (1) {
1014 			write_lock(&em_tree->lock);
1015 			ret = add_extent_mapping(em_tree, em, 1);
1016 			write_unlock(&em_tree->lock);
1017 			if (ret != -EEXIST) {
1018 				free_extent_map(em);
1019 				break;
1020 			}
1021 			btrfs_drop_extent_cache(inode, start,
1022 						start + ram_size - 1, 0);
1023 		}
1024 		if (ret)
1025 			goto out_reserve;
1026 
1027 		cur_alloc_size = ins.offset;
1028 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 					       ram_size, cur_alloc_size, 0);
1030 		if (ret)
1031 			goto out_drop_extent_cache;
1032 
1033 		if (root->root_key.objectid ==
1034 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 			ret = btrfs_reloc_clone_csums(inode, start,
1036 						      cur_alloc_size);
1037 			if (ret)
1038 				goto out_drop_extent_cache;
1039 		}
1040 
1041 		if (disk_num_bytes < cur_alloc_size)
1042 			break;
1043 
1044 		/* we're not doing compressed IO, don't unlock the first
1045 		 * page (which the caller expects to stay locked), don't
1046 		 * clear any dirty bits and don't set any writeback bits
1047 		 *
1048 		 * Do set the Private2 bit so we know this page was properly
1049 		 * setup for writepage
1050 		 */
1051 		op = unlock ? PAGE_UNLOCK : 0;
1052 		op |= PAGE_SET_PRIVATE2;
1053 
1054 		extent_clear_unlock_delalloc(inode, start,
1055 					     start + ram_size - 1, locked_page,
1056 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1057 					     op);
1058 		disk_num_bytes -= cur_alloc_size;
1059 		num_bytes -= cur_alloc_size;
1060 		alloc_hint = ins.objectid + ins.offset;
1061 		start += cur_alloc_size;
1062 	}
1063 out:
1064 	return ret;
1065 
1066 out_drop_extent_cache:
1067 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1068 out_reserve:
1069 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1070 out_unlock:
1071 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1072 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1076 	goto out;
1077 }
1078 
1079 /*
1080  * work queue call back to started compression on a file and pages
1081  */
1082 static noinline void async_cow_start(struct btrfs_work *work)
1083 {
1084 	struct async_cow *async_cow;
1085 	int num_added = 0;
1086 	async_cow = container_of(work, struct async_cow, work);
1087 
1088 	compress_file_range(async_cow->inode, async_cow->locked_page,
1089 			    async_cow->start, async_cow->end, async_cow,
1090 			    &num_added);
1091 	if (num_added == 0) {
1092 		btrfs_add_delayed_iput(async_cow->inode);
1093 		async_cow->inode = NULL;
1094 	}
1095 }
1096 
1097 /*
1098  * work queue call back to submit previously compressed pages
1099  */
1100 static noinline void async_cow_submit(struct btrfs_work *work)
1101 {
1102 	struct async_cow *async_cow;
1103 	struct btrfs_root *root;
1104 	unsigned long nr_pages;
1105 
1106 	async_cow = container_of(work, struct async_cow, work);
1107 
1108 	root = async_cow->root;
1109 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1110 		PAGE_SHIFT;
1111 
1112 	/*
1113 	 * atomic_sub_return implies a barrier for waitqueue_active
1114 	 */
1115 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1116 	    5 * SZ_1M &&
1117 	    waitqueue_active(&root->fs_info->async_submit_wait))
1118 		wake_up(&root->fs_info->async_submit_wait);
1119 
1120 	if (async_cow->inode)
1121 		submit_compressed_extents(async_cow->inode, async_cow);
1122 }
1123 
1124 static noinline void async_cow_free(struct btrfs_work *work)
1125 {
1126 	struct async_cow *async_cow;
1127 	async_cow = container_of(work, struct async_cow, work);
1128 	if (async_cow->inode)
1129 		btrfs_add_delayed_iput(async_cow->inode);
1130 	kfree(async_cow);
1131 }
1132 
1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 				u64 start, u64 end, int *page_started,
1135 				unsigned long *nr_written)
1136 {
1137 	struct async_cow *async_cow;
1138 	struct btrfs_root *root = BTRFS_I(inode)->root;
1139 	unsigned long nr_pages;
1140 	u64 cur_end;
1141 	int limit = 10 * SZ_1M;
1142 
1143 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 			 1, 0, NULL, GFP_NOFS);
1145 	while (start < end) {
1146 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1147 		BUG_ON(!async_cow); /* -ENOMEM */
1148 		async_cow->inode = igrab(inode);
1149 		async_cow->root = root;
1150 		async_cow->locked_page = locked_page;
1151 		async_cow->start = start;
1152 
1153 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1155 			cur_end = end;
1156 		else
1157 			cur_end = min(end, start + SZ_512K - 1);
1158 
1159 		async_cow->end = cur_end;
1160 		INIT_LIST_HEAD(&async_cow->extents);
1161 
1162 		btrfs_init_work(&async_cow->work,
1163 				btrfs_delalloc_helper,
1164 				async_cow_start, async_cow_submit,
1165 				async_cow_free);
1166 
1167 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1168 			PAGE_SHIFT;
1169 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170 
1171 		btrfs_queue_work(root->fs_info->delalloc_workers,
1172 				 &async_cow->work);
1173 
1174 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 			wait_event(root->fs_info->async_submit_wait,
1176 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 			    limit));
1178 		}
1179 
1180 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1181 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 			wait_event(root->fs_info->async_submit_wait,
1183 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 			   0));
1185 		}
1186 
1187 		*nr_written += nr_pages;
1188 		start = cur_end + 1;
1189 	}
1190 	*page_started = 1;
1191 	return 0;
1192 }
1193 
1194 static noinline int csum_exist_in_range(struct btrfs_root *root,
1195 					u64 bytenr, u64 num_bytes)
1196 {
1197 	int ret;
1198 	struct btrfs_ordered_sum *sums;
1199 	LIST_HEAD(list);
1200 
1201 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1202 				       bytenr + num_bytes - 1, &list, 0);
1203 	if (ret == 0 && list_empty(&list))
1204 		return 0;
1205 
1206 	while (!list_empty(&list)) {
1207 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 		list_del(&sums->list);
1209 		kfree(sums);
1210 	}
1211 	return 1;
1212 }
1213 
1214 /*
1215  * when nowcow writeback call back.  This checks for snapshots or COW copies
1216  * of the extents that exist in the file, and COWs the file as required.
1217  *
1218  * If no cow copies or snapshots exist, we write directly to the existing
1219  * blocks on disk
1220  */
1221 static noinline int run_delalloc_nocow(struct inode *inode,
1222 				       struct page *locked_page,
1223 			      u64 start, u64 end, int *page_started, int force,
1224 			      unsigned long *nr_written)
1225 {
1226 	struct btrfs_root *root = BTRFS_I(inode)->root;
1227 	struct btrfs_trans_handle *trans;
1228 	struct extent_buffer *leaf;
1229 	struct btrfs_path *path;
1230 	struct btrfs_file_extent_item *fi;
1231 	struct btrfs_key found_key;
1232 	u64 cow_start;
1233 	u64 cur_offset;
1234 	u64 extent_end;
1235 	u64 extent_offset;
1236 	u64 disk_bytenr;
1237 	u64 num_bytes;
1238 	u64 disk_num_bytes;
1239 	u64 ram_bytes;
1240 	int extent_type;
1241 	int ret, err;
1242 	int type;
1243 	int nocow;
1244 	int check_prev = 1;
1245 	bool nolock;
1246 	u64 ino = btrfs_ino(inode);
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path) {
1250 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1252 					     EXTENT_DO_ACCOUNTING |
1253 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1254 					     PAGE_CLEAR_DIRTY |
1255 					     PAGE_SET_WRITEBACK |
1256 					     PAGE_END_WRITEBACK);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	nolock = btrfs_is_free_space_inode(inode);
1261 
1262 	if (nolock)
1263 		trans = btrfs_join_transaction_nolock(root);
1264 	else
1265 		trans = btrfs_join_transaction(root);
1266 
1267 	if (IS_ERR(trans)) {
1268 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1270 					     EXTENT_DO_ACCOUNTING |
1271 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1272 					     PAGE_CLEAR_DIRTY |
1273 					     PAGE_SET_WRITEBACK |
1274 					     PAGE_END_WRITEBACK);
1275 		btrfs_free_path(path);
1276 		return PTR_ERR(trans);
1277 	}
1278 
1279 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1280 
1281 	cow_start = (u64)-1;
1282 	cur_offset = start;
1283 	while (1) {
1284 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1285 					       cur_offset, 0);
1286 		if (ret < 0)
1287 			goto error;
1288 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 			leaf = path->nodes[0];
1290 			btrfs_item_key_to_cpu(leaf, &found_key,
1291 					      path->slots[0] - 1);
1292 			if (found_key.objectid == ino &&
1293 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 				path->slots[0]--;
1295 		}
1296 		check_prev = 0;
1297 next_slot:
1298 		leaf = path->nodes[0];
1299 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 			ret = btrfs_next_leaf(root, path);
1301 			if (ret < 0)
1302 				goto error;
1303 			if (ret > 0)
1304 				break;
1305 			leaf = path->nodes[0];
1306 		}
1307 
1308 		nocow = 0;
1309 		disk_bytenr = 0;
1310 		num_bytes = 0;
1311 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312 
1313 		if (found_key.objectid > ino)
1314 			break;
1315 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 			path->slots[0]++;
1318 			goto next_slot;
1319 		}
1320 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1321 		    found_key.offset > end)
1322 			break;
1323 
1324 		if (found_key.offset > cur_offset) {
1325 			extent_end = found_key.offset;
1326 			extent_type = 0;
1327 			goto out_check;
1328 		}
1329 
1330 		fi = btrfs_item_ptr(leaf, path->slots[0],
1331 				    struct btrfs_file_extent_item);
1332 		extent_type = btrfs_file_extent_type(leaf, fi);
1333 
1334 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1335 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1338 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1339 			extent_end = found_key.offset +
1340 				btrfs_file_extent_num_bytes(leaf, fi);
1341 			disk_num_bytes =
1342 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1343 			if (extent_end <= start) {
1344 				path->slots[0]++;
1345 				goto next_slot;
1346 			}
1347 			if (disk_bytenr == 0)
1348 				goto out_check;
1349 			if (btrfs_file_extent_compression(leaf, fi) ||
1350 			    btrfs_file_extent_encryption(leaf, fi) ||
1351 			    btrfs_file_extent_other_encoding(leaf, fi))
1352 				goto out_check;
1353 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 				goto out_check;
1355 			if (btrfs_extent_readonly(root, disk_bytenr))
1356 				goto out_check;
1357 			if (btrfs_cross_ref_exist(trans, root, ino,
1358 						  found_key.offset -
1359 						  extent_offset, disk_bytenr))
1360 				goto out_check;
1361 			disk_bytenr += extent_offset;
1362 			disk_bytenr += cur_offset - found_key.offset;
1363 			num_bytes = min(end + 1, extent_end) - cur_offset;
1364 			/*
1365 			 * if there are pending snapshots for this root,
1366 			 * we fall into common COW way.
1367 			 */
1368 			if (!nolock) {
1369 				err = btrfs_start_write_no_snapshoting(root);
1370 				if (!err)
1371 					goto out_check;
1372 			}
1373 			/*
1374 			 * force cow if csum exists in the range.
1375 			 * this ensure that csum for a given extent are
1376 			 * either valid or do not exist.
1377 			 */
1378 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 				goto out_check;
1380 			nocow = 1;
1381 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 			extent_end = found_key.offset +
1383 				btrfs_file_extent_inline_len(leaf,
1384 						     path->slots[0], fi);
1385 			extent_end = ALIGN(extent_end, root->sectorsize);
1386 		} else {
1387 			BUG_ON(1);
1388 		}
1389 out_check:
1390 		if (extent_end <= start) {
1391 			path->slots[0]++;
1392 			if (!nolock && nocow)
1393 				btrfs_end_write_no_snapshoting(root);
1394 			goto next_slot;
1395 		}
1396 		if (!nocow) {
1397 			if (cow_start == (u64)-1)
1398 				cow_start = cur_offset;
1399 			cur_offset = extent_end;
1400 			if (cur_offset > end)
1401 				break;
1402 			path->slots[0]++;
1403 			goto next_slot;
1404 		}
1405 
1406 		btrfs_release_path(path);
1407 		if (cow_start != (u64)-1) {
1408 			ret = cow_file_range(inode, locked_page,
1409 					     cow_start, found_key.offset - 1,
1410 					     page_started, nr_written, 1);
1411 			if (ret) {
1412 				if (!nolock && nocow)
1413 					btrfs_end_write_no_snapshoting(root);
1414 				goto error;
1415 			}
1416 			cow_start = (u64)-1;
1417 		}
1418 
1419 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 			struct extent_map *em;
1421 			struct extent_map_tree *em_tree;
1422 			em_tree = &BTRFS_I(inode)->extent_tree;
1423 			em = alloc_extent_map();
1424 			BUG_ON(!em); /* -ENOMEM */
1425 			em->start = cur_offset;
1426 			em->orig_start = found_key.offset - extent_offset;
1427 			em->len = num_bytes;
1428 			em->block_len = num_bytes;
1429 			em->block_start = disk_bytenr;
1430 			em->orig_block_len = disk_num_bytes;
1431 			em->ram_bytes = ram_bytes;
1432 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1433 			em->mod_start = em->start;
1434 			em->mod_len = em->len;
1435 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1436 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1437 			em->generation = -1;
1438 			while (1) {
1439 				write_lock(&em_tree->lock);
1440 				ret = add_extent_mapping(em_tree, em, 1);
1441 				write_unlock(&em_tree->lock);
1442 				if (ret != -EEXIST) {
1443 					free_extent_map(em);
1444 					break;
1445 				}
1446 				btrfs_drop_extent_cache(inode, em->start,
1447 						em->start + em->len - 1, 0);
1448 			}
1449 			type = BTRFS_ORDERED_PREALLOC;
1450 		} else {
1451 			type = BTRFS_ORDERED_NOCOW;
1452 		}
1453 
1454 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1455 					       num_bytes, num_bytes, type);
1456 		BUG_ON(ret); /* -ENOMEM */
1457 
1458 		if (root->root_key.objectid ==
1459 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 						      num_bytes);
1462 			if (ret) {
1463 				if (!nolock && nocow)
1464 					btrfs_end_write_no_snapshoting(root);
1465 				goto error;
1466 			}
1467 		}
1468 
1469 		extent_clear_unlock_delalloc(inode, cur_offset,
1470 					     cur_offset + num_bytes - 1,
1471 					     locked_page, EXTENT_LOCKED |
1472 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1473 					     PAGE_SET_PRIVATE2);
1474 		if (!nolock && nocow)
1475 			btrfs_end_write_no_snapshoting(root);
1476 		cur_offset = extent_end;
1477 		if (cur_offset > end)
1478 			break;
1479 	}
1480 	btrfs_release_path(path);
1481 
1482 	if (cur_offset <= end && cow_start == (u64)-1) {
1483 		cow_start = cur_offset;
1484 		cur_offset = end;
1485 	}
1486 
1487 	if (cow_start != (u64)-1) {
1488 		ret = cow_file_range(inode, locked_page, cow_start, end,
1489 				     page_started, nr_written, 1);
1490 		if (ret)
1491 			goto error;
1492 	}
1493 
1494 error:
1495 	err = btrfs_end_transaction(trans, root);
1496 	if (!ret)
1497 		ret = err;
1498 
1499 	if (ret && cur_offset < end)
1500 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 					     locked_page, EXTENT_LOCKED |
1502 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 					     PAGE_CLEAR_DIRTY |
1505 					     PAGE_SET_WRITEBACK |
1506 					     PAGE_END_WRITEBACK);
1507 	btrfs_free_path(path);
1508 	return ret;
1509 }
1510 
1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512 {
1513 
1514 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 		return 0;
1517 
1518 	/*
1519 	 * @defrag_bytes is a hint value, no spinlock held here,
1520 	 * if is not zero, it means the file is defragging.
1521 	 * Force cow if given extent needs to be defragged.
1522 	 */
1523 	if (BTRFS_I(inode)->defrag_bytes &&
1524 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 			   EXTENT_DEFRAG, 0, NULL))
1526 		return 1;
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * extent_io.c call back to do delayed allocation processing
1533  */
1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1535 			      u64 start, u64 end, int *page_started,
1536 			      unsigned long *nr_written)
1537 {
1538 	int ret;
1539 	int force_cow = need_force_cow(inode, start, end);
1540 
1541 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1542 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1543 					 page_started, 1, nr_written);
1544 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1545 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1546 					 page_started, 0, nr_written);
1547 	} else if (!inode_need_compress(inode)) {
1548 		ret = cow_file_range(inode, locked_page, start, end,
1549 				      page_started, nr_written, 1);
1550 	} else {
1551 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 			&BTRFS_I(inode)->runtime_flags);
1553 		ret = cow_file_range_async(inode, locked_page, start, end,
1554 					   page_started, nr_written);
1555 	}
1556 	return ret;
1557 }
1558 
1559 static void btrfs_split_extent_hook(struct inode *inode,
1560 				    struct extent_state *orig, u64 split)
1561 {
1562 	u64 size;
1563 
1564 	/* not delalloc, ignore it */
1565 	if (!(orig->state & EXTENT_DELALLOC))
1566 		return;
1567 
1568 	size = orig->end - orig->start + 1;
1569 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 		u64 num_extents;
1571 		u64 new_size;
1572 
1573 		/*
1574 		 * See the explanation in btrfs_merge_extent_hook, the same
1575 		 * applies here, just in reverse.
1576 		 */
1577 		new_size = orig->end - split + 1;
1578 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1579 					BTRFS_MAX_EXTENT_SIZE);
1580 		new_size = split - orig->start;
1581 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 					BTRFS_MAX_EXTENT_SIZE);
1583 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1585 			return;
1586 	}
1587 
1588 	spin_lock(&BTRFS_I(inode)->lock);
1589 	BTRFS_I(inode)->outstanding_extents++;
1590 	spin_unlock(&BTRFS_I(inode)->lock);
1591 }
1592 
1593 /*
1594  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595  * extents so we can keep track of new extents that are just merged onto old
1596  * extents, such as when we are doing sequential writes, so we can properly
1597  * account for the metadata space we'll need.
1598  */
1599 static void btrfs_merge_extent_hook(struct inode *inode,
1600 				    struct extent_state *new,
1601 				    struct extent_state *other)
1602 {
1603 	u64 new_size, old_size;
1604 	u64 num_extents;
1605 
1606 	/* not delalloc, ignore it */
1607 	if (!(other->state & EXTENT_DELALLOC))
1608 		return;
1609 
1610 	if (new->start > other->start)
1611 		new_size = new->end - other->start + 1;
1612 	else
1613 		new_size = other->end - new->start + 1;
1614 
1615 	/* we're not bigger than the max, unreserve the space and go */
1616 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 		spin_lock(&BTRFS_I(inode)->lock);
1618 		BTRFS_I(inode)->outstanding_extents--;
1619 		spin_unlock(&BTRFS_I(inode)->lock);
1620 		return;
1621 	}
1622 
1623 	/*
1624 	 * We have to add up either side to figure out how many extents were
1625 	 * accounted for before we merged into one big extent.  If the number of
1626 	 * extents we accounted for is <= the amount we need for the new range
1627 	 * then we can return, otherwise drop.  Think of it like this
1628 	 *
1629 	 * [ 4k][MAX_SIZE]
1630 	 *
1631 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 	 * need 2 outstanding extents, on one side we have 1 and the other side
1633 	 * we have 1 so they are == and we can return.  But in this case
1634 	 *
1635 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 	 *
1637 	 * Each range on their own accounts for 2 extents, but merged together
1638 	 * they are only 3 extents worth of accounting, so we need to drop in
1639 	 * this case.
1640 	 */
1641 	old_size = other->end - other->start + 1;
1642 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 				BTRFS_MAX_EXTENT_SIZE);
1644 	old_size = new->end - new->start + 1;
1645 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 				 BTRFS_MAX_EXTENT_SIZE);
1647 
1648 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1649 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1650 		return;
1651 
1652 	spin_lock(&BTRFS_I(inode)->lock);
1653 	BTRFS_I(inode)->outstanding_extents--;
1654 	spin_unlock(&BTRFS_I(inode)->lock);
1655 }
1656 
1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 				      struct inode *inode)
1659 {
1660 	spin_lock(&root->delalloc_lock);
1661 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 			      &root->delalloc_inodes);
1664 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 			&BTRFS_I(inode)->runtime_flags);
1666 		root->nr_delalloc_inodes++;
1667 		if (root->nr_delalloc_inodes == 1) {
1668 			spin_lock(&root->fs_info->delalloc_root_lock);
1669 			BUG_ON(!list_empty(&root->delalloc_root));
1670 			list_add_tail(&root->delalloc_root,
1671 				      &root->fs_info->delalloc_roots);
1672 			spin_unlock(&root->fs_info->delalloc_root_lock);
1673 		}
1674 	}
1675 	spin_unlock(&root->delalloc_lock);
1676 }
1677 
1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 				     struct inode *inode)
1680 {
1681 	spin_lock(&root->delalloc_lock);
1682 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 			  &BTRFS_I(inode)->runtime_flags);
1686 		root->nr_delalloc_inodes--;
1687 		if (!root->nr_delalloc_inodes) {
1688 			spin_lock(&root->fs_info->delalloc_root_lock);
1689 			BUG_ON(list_empty(&root->delalloc_root));
1690 			list_del_init(&root->delalloc_root);
1691 			spin_unlock(&root->fs_info->delalloc_root_lock);
1692 		}
1693 	}
1694 	spin_unlock(&root->delalloc_lock);
1695 }
1696 
1697 /*
1698  * extent_io.c set_bit_hook, used to track delayed allocation
1699  * bytes in this file, and to maintain the list of inodes that
1700  * have pending delalloc work to be done.
1701  */
1702 static void btrfs_set_bit_hook(struct inode *inode,
1703 			       struct extent_state *state, unsigned *bits)
1704 {
1705 
1706 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 		WARN_ON(1);
1708 	/*
1709 	 * set_bit and clear bit hooks normally require _irqsave/restore
1710 	 * but in this case, we are only testing for the DELALLOC
1711 	 * bit, which is only set or cleared with irqs on
1712 	 */
1713 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1714 		struct btrfs_root *root = BTRFS_I(inode)->root;
1715 		u64 len = state->end + 1 - state->start;
1716 		bool do_list = !btrfs_is_free_space_inode(inode);
1717 
1718 		if (*bits & EXTENT_FIRST_DELALLOC) {
1719 			*bits &= ~EXTENT_FIRST_DELALLOC;
1720 		} else {
1721 			spin_lock(&BTRFS_I(inode)->lock);
1722 			BTRFS_I(inode)->outstanding_extents++;
1723 			spin_unlock(&BTRFS_I(inode)->lock);
1724 		}
1725 
1726 		/* For sanity tests */
1727 		if (btrfs_test_is_dummy_root(root))
1728 			return;
1729 
1730 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 				     root->fs_info->delalloc_batch);
1732 		spin_lock(&BTRFS_I(inode)->lock);
1733 		BTRFS_I(inode)->delalloc_bytes += len;
1734 		if (*bits & EXTENT_DEFRAG)
1735 			BTRFS_I(inode)->defrag_bytes += len;
1736 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 					 &BTRFS_I(inode)->runtime_flags))
1738 			btrfs_add_delalloc_inodes(root, inode);
1739 		spin_unlock(&BTRFS_I(inode)->lock);
1740 	}
1741 }
1742 
1743 /*
1744  * extent_io.c clear_bit_hook, see set_bit_hook for why
1745  */
1746 static void btrfs_clear_bit_hook(struct inode *inode,
1747 				 struct extent_state *state,
1748 				 unsigned *bits)
1749 {
1750 	u64 len = state->end + 1 - state->start;
1751 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 				    BTRFS_MAX_EXTENT_SIZE);
1753 
1754 	spin_lock(&BTRFS_I(inode)->lock);
1755 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 		BTRFS_I(inode)->defrag_bytes -= len;
1757 	spin_unlock(&BTRFS_I(inode)->lock);
1758 
1759 	/*
1760 	 * set_bit and clear bit hooks normally require _irqsave/restore
1761 	 * but in this case, we are only testing for the DELALLOC
1762 	 * bit, which is only set or cleared with irqs on
1763 	 */
1764 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1765 		struct btrfs_root *root = BTRFS_I(inode)->root;
1766 		bool do_list = !btrfs_is_free_space_inode(inode);
1767 
1768 		if (*bits & EXTENT_FIRST_DELALLOC) {
1769 			*bits &= ~EXTENT_FIRST_DELALLOC;
1770 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 			spin_lock(&BTRFS_I(inode)->lock);
1772 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1773 			spin_unlock(&BTRFS_I(inode)->lock);
1774 		}
1775 
1776 		/*
1777 		 * We don't reserve metadata space for space cache inodes so we
1778 		 * don't need to call dellalloc_release_metadata if there is an
1779 		 * error.
1780 		 */
1781 		if (*bits & EXTENT_DO_ACCOUNTING &&
1782 		    root != root->fs_info->tree_root)
1783 			btrfs_delalloc_release_metadata(inode, len);
1784 
1785 		/* For sanity tests. */
1786 		if (btrfs_test_is_dummy_root(root))
1787 			return;
1788 
1789 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1790 		    && do_list && !(state->state & EXTENT_NORESERVE))
1791 			btrfs_free_reserved_data_space_noquota(inode,
1792 					state->start, len);
1793 
1794 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 				     root->fs_info->delalloc_batch);
1796 		spin_lock(&BTRFS_I(inode)->lock);
1797 		BTRFS_I(inode)->delalloc_bytes -= len;
1798 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1799 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1800 			     &BTRFS_I(inode)->runtime_flags))
1801 			btrfs_del_delalloc_inode(root, inode);
1802 		spin_unlock(&BTRFS_I(inode)->lock);
1803 	}
1804 }
1805 
1806 /*
1807  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808  * we don't create bios that span stripes or chunks
1809  */
1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1811 			 size_t size, struct bio *bio,
1812 			 unsigned long bio_flags)
1813 {
1814 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1815 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1816 	u64 length = 0;
1817 	u64 map_length;
1818 	int ret;
1819 
1820 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 		return 0;
1822 
1823 	length = bio->bi_iter.bi_size;
1824 	map_length = length;
1825 	ret = btrfs_map_block(root->fs_info, rw, logical,
1826 			      &map_length, NULL, 0);
1827 	/* Will always return 0 with map_multi == NULL */
1828 	BUG_ON(ret < 0);
1829 	if (map_length < length + size)
1830 		return 1;
1831 	return 0;
1832 }
1833 
1834 /*
1835  * in order to insert checksums into the metadata in large chunks,
1836  * we wait until bio submission time.   All the pages in the bio are
1837  * checksummed and sums are attached onto the ordered extent record.
1838  *
1839  * At IO completion time the cums attached on the ordered extent record
1840  * are inserted into the btree
1841  */
1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 				    struct bio *bio, int mirror_num,
1844 				    unsigned long bio_flags,
1845 				    u64 bio_offset)
1846 {
1847 	struct btrfs_root *root = BTRFS_I(inode)->root;
1848 	int ret = 0;
1849 
1850 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1851 	BUG_ON(ret); /* -ENOMEM */
1852 	return 0;
1853 }
1854 
1855 /*
1856  * in order to insert checksums into the metadata in large chunks,
1857  * we wait until bio submission time.   All the pages in the bio are
1858  * checksummed and sums are attached onto the ordered extent record.
1859  *
1860  * At IO completion time the cums attached on the ordered extent record
1861  * are inserted into the btree
1862  */
1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1864 			  int mirror_num, unsigned long bio_flags,
1865 			  u64 bio_offset)
1866 {
1867 	struct btrfs_root *root = BTRFS_I(inode)->root;
1868 	int ret;
1869 
1870 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1871 	if (ret) {
1872 		bio->bi_error = ret;
1873 		bio_endio(bio);
1874 	}
1875 	return ret;
1876 }
1877 
1878 /*
1879  * extent_io.c submission hook. This does the right thing for csum calculation
1880  * on write, or reading the csums from the tree before a read
1881  */
1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1883 			  int mirror_num, unsigned long bio_flags,
1884 			  u64 bio_offset)
1885 {
1886 	struct btrfs_root *root = BTRFS_I(inode)->root;
1887 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1888 	int ret = 0;
1889 	int skip_sum;
1890 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1891 
1892 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1893 
1894 	if (btrfs_is_free_space_inode(inode))
1895 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1896 
1897 	if (!(rw & REQ_WRITE)) {
1898 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 		if (ret)
1900 			goto out;
1901 
1902 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1903 			ret = btrfs_submit_compressed_read(inode, bio,
1904 							   mirror_num,
1905 							   bio_flags);
1906 			goto out;
1907 		} else if (!skip_sum) {
1908 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 			if (ret)
1910 				goto out;
1911 		}
1912 		goto mapit;
1913 	} else if (async && !skip_sum) {
1914 		/* csum items have already been cloned */
1915 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 			goto mapit;
1917 		/* we're doing a write, do the async checksumming */
1918 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1919 				   inode, rw, bio, mirror_num,
1920 				   bio_flags, bio_offset,
1921 				   __btrfs_submit_bio_start,
1922 				   __btrfs_submit_bio_done);
1923 		goto out;
1924 	} else if (!skip_sum) {
1925 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 		if (ret)
1927 			goto out;
1928 	}
1929 
1930 mapit:
1931 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932 
1933 out:
1934 	if (ret < 0) {
1935 		bio->bi_error = ret;
1936 		bio_endio(bio);
1937 	}
1938 	return ret;
1939 }
1940 
1941 /*
1942  * given a list of ordered sums record them in the inode.  This happens
1943  * at IO completion time based on sums calculated at bio submission time.
1944  */
1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1946 			     struct inode *inode, u64 file_offset,
1947 			     struct list_head *list)
1948 {
1949 	struct btrfs_ordered_sum *sum;
1950 
1951 	list_for_each_entry(sum, list, list) {
1952 		trans->adding_csums = 1;
1953 		btrfs_csum_file_blocks(trans,
1954 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1955 		trans->adding_csums = 0;
1956 	}
1957 	return 0;
1958 }
1959 
1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 			      struct extent_state **cached_state)
1962 {
1963 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1964 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1965 				   cached_state, GFP_NOFS);
1966 }
1967 
1968 /* see btrfs_writepage_start_hook for details on why this is required */
1969 struct btrfs_writepage_fixup {
1970 	struct page *page;
1971 	struct btrfs_work work;
1972 };
1973 
1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1975 {
1976 	struct btrfs_writepage_fixup *fixup;
1977 	struct btrfs_ordered_extent *ordered;
1978 	struct extent_state *cached_state = NULL;
1979 	struct page *page;
1980 	struct inode *inode;
1981 	u64 page_start;
1982 	u64 page_end;
1983 	int ret;
1984 
1985 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 	page = fixup->page;
1987 again:
1988 	lock_page(page);
1989 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 		ClearPageChecked(page);
1991 		goto out_page;
1992 	}
1993 
1994 	inode = page->mapping->host;
1995 	page_start = page_offset(page);
1996 	page_end = page_offset(page) + PAGE_SIZE - 1;
1997 
1998 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1999 			 &cached_state);
2000 
2001 	/* already ordered? We're done */
2002 	if (PagePrivate2(page))
2003 		goto out;
2004 
2005 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2006 					PAGE_SIZE);
2007 	if (ordered) {
2008 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2009 				     page_end, &cached_state, GFP_NOFS);
2010 		unlock_page(page);
2011 		btrfs_start_ordered_extent(inode, ordered, 1);
2012 		btrfs_put_ordered_extent(ordered);
2013 		goto again;
2014 	}
2015 
2016 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2017 					   PAGE_SIZE);
2018 	if (ret) {
2019 		mapping_set_error(page->mapping, ret);
2020 		end_extent_writepage(page, ret, page_start, page_end);
2021 		ClearPageChecked(page);
2022 		goto out;
2023 	 }
2024 
2025 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2026 	ClearPageChecked(page);
2027 	set_page_dirty(page);
2028 out:
2029 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2030 			     &cached_state, GFP_NOFS);
2031 out_page:
2032 	unlock_page(page);
2033 	put_page(page);
2034 	kfree(fixup);
2035 }
2036 
2037 /*
2038  * There are a few paths in the higher layers of the kernel that directly
2039  * set the page dirty bit without asking the filesystem if it is a
2040  * good idea.  This causes problems because we want to make sure COW
2041  * properly happens and the data=ordered rules are followed.
2042  *
2043  * In our case any range that doesn't have the ORDERED bit set
2044  * hasn't been properly setup for IO.  We kick off an async process
2045  * to fix it up.  The async helper will wait for ordered extents, set
2046  * the delalloc bit and make it safe to write the page.
2047  */
2048 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2049 {
2050 	struct inode *inode = page->mapping->host;
2051 	struct btrfs_writepage_fixup *fixup;
2052 	struct btrfs_root *root = BTRFS_I(inode)->root;
2053 
2054 	/* this page is properly in the ordered list */
2055 	if (TestClearPagePrivate2(page))
2056 		return 0;
2057 
2058 	if (PageChecked(page))
2059 		return -EAGAIN;
2060 
2061 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2062 	if (!fixup)
2063 		return -EAGAIN;
2064 
2065 	SetPageChecked(page);
2066 	get_page(page);
2067 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2068 			btrfs_writepage_fixup_worker, NULL, NULL);
2069 	fixup->page = page;
2070 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2071 	return -EBUSY;
2072 }
2073 
2074 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2075 				       struct inode *inode, u64 file_pos,
2076 				       u64 disk_bytenr, u64 disk_num_bytes,
2077 				       u64 num_bytes, u64 ram_bytes,
2078 				       u8 compression, u8 encryption,
2079 				       u16 other_encoding, int extent_type)
2080 {
2081 	struct btrfs_root *root = BTRFS_I(inode)->root;
2082 	struct btrfs_file_extent_item *fi;
2083 	struct btrfs_path *path;
2084 	struct extent_buffer *leaf;
2085 	struct btrfs_key ins;
2086 	int extent_inserted = 0;
2087 	int ret;
2088 
2089 	path = btrfs_alloc_path();
2090 	if (!path)
2091 		return -ENOMEM;
2092 
2093 	/*
2094 	 * we may be replacing one extent in the tree with another.
2095 	 * The new extent is pinned in the extent map, and we don't want
2096 	 * to drop it from the cache until it is completely in the btree.
2097 	 *
2098 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2099 	 * the caller is expected to unpin it and allow it to be merged
2100 	 * with the others.
2101 	 */
2102 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2103 				   file_pos + num_bytes, NULL, 0,
2104 				   1, sizeof(*fi), &extent_inserted);
2105 	if (ret)
2106 		goto out;
2107 
2108 	if (!extent_inserted) {
2109 		ins.objectid = btrfs_ino(inode);
2110 		ins.offset = file_pos;
2111 		ins.type = BTRFS_EXTENT_DATA_KEY;
2112 
2113 		path->leave_spinning = 1;
2114 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2115 					      sizeof(*fi));
2116 		if (ret)
2117 			goto out;
2118 	}
2119 	leaf = path->nodes[0];
2120 	fi = btrfs_item_ptr(leaf, path->slots[0],
2121 			    struct btrfs_file_extent_item);
2122 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2123 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2124 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2125 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2126 	btrfs_set_file_extent_offset(leaf, fi, 0);
2127 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2128 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2129 	btrfs_set_file_extent_compression(leaf, fi, compression);
2130 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2131 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2132 
2133 	btrfs_mark_buffer_dirty(leaf);
2134 	btrfs_release_path(path);
2135 
2136 	inode_add_bytes(inode, num_bytes);
2137 
2138 	ins.objectid = disk_bytenr;
2139 	ins.offset = disk_num_bytes;
2140 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2141 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2142 					root->root_key.objectid,
2143 					btrfs_ino(inode), file_pos,
2144 					ram_bytes, &ins);
2145 	/*
2146 	 * Release the reserved range from inode dirty range map, as it is
2147 	 * already moved into delayed_ref_head
2148 	 */
2149 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2150 out:
2151 	btrfs_free_path(path);
2152 
2153 	return ret;
2154 }
2155 
2156 /* snapshot-aware defrag */
2157 struct sa_defrag_extent_backref {
2158 	struct rb_node node;
2159 	struct old_sa_defrag_extent *old;
2160 	u64 root_id;
2161 	u64 inum;
2162 	u64 file_pos;
2163 	u64 extent_offset;
2164 	u64 num_bytes;
2165 	u64 generation;
2166 };
2167 
2168 struct old_sa_defrag_extent {
2169 	struct list_head list;
2170 	struct new_sa_defrag_extent *new;
2171 
2172 	u64 extent_offset;
2173 	u64 bytenr;
2174 	u64 offset;
2175 	u64 len;
2176 	int count;
2177 };
2178 
2179 struct new_sa_defrag_extent {
2180 	struct rb_root root;
2181 	struct list_head head;
2182 	struct btrfs_path *path;
2183 	struct inode *inode;
2184 	u64 file_pos;
2185 	u64 len;
2186 	u64 bytenr;
2187 	u64 disk_len;
2188 	u8 compress_type;
2189 };
2190 
2191 static int backref_comp(struct sa_defrag_extent_backref *b1,
2192 			struct sa_defrag_extent_backref *b2)
2193 {
2194 	if (b1->root_id < b2->root_id)
2195 		return -1;
2196 	else if (b1->root_id > b2->root_id)
2197 		return 1;
2198 
2199 	if (b1->inum < b2->inum)
2200 		return -1;
2201 	else if (b1->inum > b2->inum)
2202 		return 1;
2203 
2204 	if (b1->file_pos < b2->file_pos)
2205 		return -1;
2206 	else if (b1->file_pos > b2->file_pos)
2207 		return 1;
2208 
2209 	/*
2210 	 * [------------------------------] ===> (a range of space)
2211 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2212 	 * |<---------------------------->| ===> (fs/file tree B)
2213 	 *
2214 	 * A range of space can refer to two file extents in one tree while
2215 	 * refer to only one file extent in another tree.
2216 	 *
2217 	 * So we may process a disk offset more than one time(two extents in A)
2218 	 * and locate at the same extent(one extent in B), then insert two same
2219 	 * backrefs(both refer to the extent in B).
2220 	 */
2221 	return 0;
2222 }
2223 
2224 static void backref_insert(struct rb_root *root,
2225 			   struct sa_defrag_extent_backref *backref)
2226 {
2227 	struct rb_node **p = &root->rb_node;
2228 	struct rb_node *parent = NULL;
2229 	struct sa_defrag_extent_backref *entry;
2230 	int ret;
2231 
2232 	while (*p) {
2233 		parent = *p;
2234 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2235 
2236 		ret = backref_comp(backref, entry);
2237 		if (ret < 0)
2238 			p = &(*p)->rb_left;
2239 		else
2240 			p = &(*p)->rb_right;
2241 	}
2242 
2243 	rb_link_node(&backref->node, parent, p);
2244 	rb_insert_color(&backref->node, root);
2245 }
2246 
2247 /*
2248  * Note the backref might has changed, and in this case we just return 0.
2249  */
2250 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2251 				       void *ctx)
2252 {
2253 	struct btrfs_file_extent_item *extent;
2254 	struct btrfs_fs_info *fs_info;
2255 	struct old_sa_defrag_extent *old = ctx;
2256 	struct new_sa_defrag_extent *new = old->new;
2257 	struct btrfs_path *path = new->path;
2258 	struct btrfs_key key;
2259 	struct btrfs_root *root;
2260 	struct sa_defrag_extent_backref *backref;
2261 	struct extent_buffer *leaf;
2262 	struct inode *inode = new->inode;
2263 	int slot;
2264 	int ret;
2265 	u64 extent_offset;
2266 	u64 num_bytes;
2267 
2268 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2269 	    inum == btrfs_ino(inode))
2270 		return 0;
2271 
2272 	key.objectid = root_id;
2273 	key.type = BTRFS_ROOT_ITEM_KEY;
2274 	key.offset = (u64)-1;
2275 
2276 	fs_info = BTRFS_I(inode)->root->fs_info;
2277 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2278 	if (IS_ERR(root)) {
2279 		if (PTR_ERR(root) == -ENOENT)
2280 			return 0;
2281 		WARN_ON(1);
2282 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2283 			 inum, offset, root_id);
2284 		return PTR_ERR(root);
2285 	}
2286 
2287 	key.objectid = inum;
2288 	key.type = BTRFS_EXTENT_DATA_KEY;
2289 	if (offset > (u64)-1 << 32)
2290 		key.offset = 0;
2291 	else
2292 		key.offset = offset;
2293 
2294 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2295 	if (WARN_ON(ret < 0))
2296 		return ret;
2297 	ret = 0;
2298 
2299 	while (1) {
2300 		cond_resched();
2301 
2302 		leaf = path->nodes[0];
2303 		slot = path->slots[0];
2304 
2305 		if (slot >= btrfs_header_nritems(leaf)) {
2306 			ret = btrfs_next_leaf(root, path);
2307 			if (ret < 0) {
2308 				goto out;
2309 			} else if (ret > 0) {
2310 				ret = 0;
2311 				goto out;
2312 			}
2313 			continue;
2314 		}
2315 
2316 		path->slots[0]++;
2317 
2318 		btrfs_item_key_to_cpu(leaf, &key, slot);
2319 
2320 		if (key.objectid > inum)
2321 			goto out;
2322 
2323 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2324 			continue;
2325 
2326 		extent = btrfs_item_ptr(leaf, slot,
2327 					struct btrfs_file_extent_item);
2328 
2329 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2330 			continue;
2331 
2332 		/*
2333 		 * 'offset' refers to the exact key.offset,
2334 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2335 		 * (key.offset - extent_offset).
2336 		 */
2337 		if (key.offset != offset)
2338 			continue;
2339 
2340 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2341 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2342 
2343 		if (extent_offset >= old->extent_offset + old->offset +
2344 		    old->len || extent_offset + num_bytes <=
2345 		    old->extent_offset + old->offset)
2346 			continue;
2347 		break;
2348 	}
2349 
2350 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2351 	if (!backref) {
2352 		ret = -ENOENT;
2353 		goto out;
2354 	}
2355 
2356 	backref->root_id = root_id;
2357 	backref->inum = inum;
2358 	backref->file_pos = offset;
2359 	backref->num_bytes = num_bytes;
2360 	backref->extent_offset = extent_offset;
2361 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2362 	backref->old = old;
2363 	backref_insert(&new->root, backref);
2364 	old->count++;
2365 out:
2366 	btrfs_release_path(path);
2367 	WARN_ON(ret);
2368 	return ret;
2369 }
2370 
2371 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2372 				   struct new_sa_defrag_extent *new)
2373 {
2374 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2375 	struct old_sa_defrag_extent *old, *tmp;
2376 	int ret;
2377 
2378 	new->path = path;
2379 
2380 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2381 		ret = iterate_inodes_from_logical(old->bytenr +
2382 						  old->extent_offset, fs_info,
2383 						  path, record_one_backref,
2384 						  old);
2385 		if (ret < 0 && ret != -ENOENT)
2386 			return false;
2387 
2388 		/* no backref to be processed for this extent */
2389 		if (!old->count) {
2390 			list_del(&old->list);
2391 			kfree(old);
2392 		}
2393 	}
2394 
2395 	if (list_empty(&new->head))
2396 		return false;
2397 
2398 	return true;
2399 }
2400 
2401 static int relink_is_mergable(struct extent_buffer *leaf,
2402 			      struct btrfs_file_extent_item *fi,
2403 			      struct new_sa_defrag_extent *new)
2404 {
2405 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2406 		return 0;
2407 
2408 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2409 		return 0;
2410 
2411 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2412 		return 0;
2413 
2414 	if (btrfs_file_extent_encryption(leaf, fi) ||
2415 	    btrfs_file_extent_other_encoding(leaf, fi))
2416 		return 0;
2417 
2418 	return 1;
2419 }
2420 
2421 /*
2422  * Note the backref might has changed, and in this case we just return 0.
2423  */
2424 static noinline int relink_extent_backref(struct btrfs_path *path,
2425 				 struct sa_defrag_extent_backref *prev,
2426 				 struct sa_defrag_extent_backref *backref)
2427 {
2428 	struct btrfs_file_extent_item *extent;
2429 	struct btrfs_file_extent_item *item;
2430 	struct btrfs_ordered_extent *ordered;
2431 	struct btrfs_trans_handle *trans;
2432 	struct btrfs_fs_info *fs_info;
2433 	struct btrfs_root *root;
2434 	struct btrfs_key key;
2435 	struct extent_buffer *leaf;
2436 	struct old_sa_defrag_extent *old = backref->old;
2437 	struct new_sa_defrag_extent *new = old->new;
2438 	struct inode *src_inode = new->inode;
2439 	struct inode *inode;
2440 	struct extent_state *cached = NULL;
2441 	int ret = 0;
2442 	u64 start;
2443 	u64 len;
2444 	u64 lock_start;
2445 	u64 lock_end;
2446 	bool merge = false;
2447 	int index;
2448 
2449 	if (prev && prev->root_id == backref->root_id &&
2450 	    prev->inum == backref->inum &&
2451 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2452 		merge = true;
2453 
2454 	/* step 1: get root */
2455 	key.objectid = backref->root_id;
2456 	key.type = BTRFS_ROOT_ITEM_KEY;
2457 	key.offset = (u64)-1;
2458 
2459 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2460 	index = srcu_read_lock(&fs_info->subvol_srcu);
2461 
2462 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2463 	if (IS_ERR(root)) {
2464 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 		if (PTR_ERR(root) == -ENOENT)
2466 			return 0;
2467 		return PTR_ERR(root);
2468 	}
2469 
2470 	if (btrfs_root_readonly(root)) {
2471 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2472 		return 0;
2473 	}
2474 
2475 	/* step 2: get inode */
2476 	key.objectid = backref->inum;
2477 	key.type = BTRFS_INODE_ITEM_KEY;
2478 	key.offset = 0;
2479 
2480 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2481 	if (IS_ERR(inode)) {
2482 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2483 		return 0;
2484 	}
2485 
2486 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2487 
2488 	/* step 3: relink backref */
2489 	lock_start = backref->file_pos;
2490 	lock_end = backref->file_pos + backref->num_bytes - 1;
2491 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2492 			 &cached);
2493 
2494 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2495 	if (ordered) {
2496 		btrfs_put_ordered_extent(ordered);
2497 		goto out_unlock;
2498 	}
2499 
2500 	trans = btrfs_join_transaction(root);
2501 	if (IS_ERR(trans)) {
2502 		ret = PTR_ERR(trans);
2503 		goto out_unlock;
2504 	}
2505 
2506 	key.objectid = backref->inum;
2507 	key.type = BTRFS_EXTENT_DATA_KEY;
2508 	key.offset = backref->file_pos;
2509 
2510 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2511 	if (ret < 0) {
2512 		goto out_free_path;
2513 	} else if (ret > 0) {
2514 		ret = 0;
2515 		goto out_free_path;
2516 	}
2517 
2518 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2519 				struct btrfs_file_extent_item);
2520 
2521 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2522 	    backref->generation)
2523 		goto out_free_path;
2524 
2525 	btrfs_release_path(path);
2526 
2527 	start = backref->file_pos;
2528 	if (backref->extent_offset < old->extent_offset + old->offset)
2529 		start += old->extent_offset + old->offset -
2530 			 backref->extent_offset;
2531 
2532 	len = min(backref->extent_offset + backref->num_bytes,
2533 		  old->extent_offset + old->offset + old->len);
2534 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2535 
2536 	ret = btrfs_drop_extents(trans, root, inode, start,
2537 				 start + len, 1);
2538 	if (ret)
2539 		goto out_free_path;
2540 again:
2541 	key.objectid = btrfs_ino(inode);
2542 	key.type = BTRFS_EXTENT_DATA_KEY;
2543 	key.offset = start;
2544 
2545 	path->leave_spinning = 1;
2546 	if (merge) {
2547 		struct btrfs_file_extent_item *fi;
2548 		u64 extent_len;
2549 		struct btrfs_key found_key;
2550 
2551 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2552 		if (ret < 0)
2553 			goto out_free_path;
2554 
2555 		path->slots[0]--;
2556 		leaf = path->nodes[0];
2557 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2558 
2559 		fi = btrfs_item_ptr(leaf, path->slots[0],
2560 				    struct btrfs_file_extent_item);
2561 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2562 
2563 		if (extent_len + found_key.offset == start &&
2564 		    relink_is_mergable(leaf, fi, new)) {
2565 			btrfs_set_file_extent_num_bytes(leaf, fi,
2566 							extent_len + len);
2567 			btrfs_mark_buffer_dirty(leaf);
2568 			inode_add_bytes(inode, len);
2569 
2570 			ret = 1;
2571 			goto out_free_path;
2572 		} else {
2573 			merge = false;
2574 			btrfs_release_path(path);
2575 			goto again;
2576 		}
2577 	}
2578 
2579 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2580 					sizeof(*extent));
2581 	if (ret) {
2582 		btrfs_abort_transaction(trans, root, ret);
2583 		goto out_free_path;
2584 	}
2585 
2586 	leaf = path->nodes[0];
2587 	item = btrfs_item_ptr(leaf, path->slots[0],
2588 				struct btrfs_file_extent_item);
2589 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2590 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2591 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2592 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2593 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2594 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2595 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2596 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2597 	btrfs_set_file_extent_encryption(leaf, item, 0);
2598 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2599 
2600 	btrfs_mark_buffer_dirty(leaf);
2601 	inode_add_bytes(inode, len);
2602 	btrfs_release_path(path);
2603 
2604 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2605 			new->disk_len, 0,
2606 			backref->root_id, backref->inum,
2607 			new->file_pos);	/* start - extent_offset */
2608 	if (ret) {
2609 		btrfs_abort_transaction(trans, root, ret);
2610 		goto out_free_path;
2611 	}
2612 
2613 	ret = 1;
2614 out_free_path:
2615 	btrfs_release_path(path);
2616 	path->leave_spinning = 0;
2617 	btrfs_end_transaction(trans, root);
2618 out_unlock:
2619 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2620 			     &cached, GFP_NOFS);
2621 	iput(inode);
2622 	return ret;
2623 }
2624 
2625 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2626 {
2627 	struct old_sa_defrag_extent *old, *tmp;
2628 
2629 	if (!new)
2630 		return;
2631 
2632 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2633 		kfree(old);
2634 	}
2635 	kfree(new);
2636 }
2637 
2638 static void relink_file_extents(struct new_sa_defrag_extent *new)
2639 {
2640 	struct btrfs_path *path;
2641 	struct sa_defrag_extent_backref *backref;
2642 	struct sa_defrag_extent_backref *prev = NULL;
2643 	struct inode *inode;
2644 	struct btrfs_root *root;
2645 	struct rb_node *node;
2646 	int ret;
2647 
2648 	inode = new->inode;
2649 	root = BTRFS_I(inode)->root;
2650 
2651 	path = btrfs_alloc_path();
2652 	if (!path)
2653 		return;
2654 
2655 	if (!record_extent_backrefs(path, new)) {
2656 		btrfs_free_path(path);
2657 		goto out;
2658 	}
2659 	btrfs_release_path(path);
2660 
2661 	while (1) {
2662 		node = rb_first(&new->root);
2663 		if (!node)
2664 			break;
2665 		rb_erase(node, &new->root);
2666 
2667 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2668 
2669 		ret = relink_extent_backref(path, prev, backref);
2670 		WARN_ON(ret < 0);
2671 
2672 		kfree(prev);
2673 
2674 		if (ret == 1)
2675 			prev = backref;
2676 		else
2677 			prev = NULL;
2678 		cond_resched();
2679 	}
2680 	kfree(prev);
2681 
2682 	btrfs_free_path(path);
2683 out:
2684 	free_sa_defrag_extent(new);
2685 
2686 	atomic_dec(&root->fs_info->defrag_running);
2687 	wake_up(&root->fs_info->transaction_wait);
2688 }
2689 
2690 static struct new_sa_defrag_extent *
2691 record_old_file_extents(struct inode *inode,
2692 			struct btrfs_ordered_extent *ordered)
2693 {
2694 	struct btrfs_root *root = BTRFS_I(inode)->root;
2695 	struct btrfs_path *path;
2696 	struct btrfs_key key;
2697 	struct old_sa_defrag_extent *old;
2698 	struct new_sa_defrag_extent *new;
2699 	int ret;
2700 
2701 	new = kmalloc(sizeof(*new), GFP_NOFS);
2702 	if (!new)
2703 		return NULL;
2704 
2705 	new->inode = inode;
2706 	new->file_pos = ordered->file_offset;
2707 	new->len = ordered->len;
2708 	new->bytenr = ordered->start;
2709 	new->disk_len = ordered->disk_len;
2710 	new->compress_type = ordered->compress_type;
2711 	new->root = RB_ROOT;
2712 	INIT_LIST_HEAD(&new->head);
2713 
2714 	path = btrfs_alloc_path();
2715 	if (!path)
2716 		goto out_kfree;
2717 
2718 	key.objectid = btrfs_ino(inode);
2719 	key.type = BTRFS_EXTENT_DATA_KEY;
2720 	key.offset = new->file_pos;
2721 
2722 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2723 	if (ret < 0)
2724 		goto out_free_path;
2725 	if (ret > 0 && path->slots[0] > 0)
2726 		path->slots[0]--;
2727 
2728 	/* find out all the old extents for the file range */
2729 	while (1) {
2730 		struct btrfs_file_extent_item *extent;
2731 		struct extent_buffer *l;
2732 		int slot;
2733 		u64 num_bytes;
2734 		u64 offset;
2735 		u64 end;
2736 		u64 disk_bytenr;
2737 		u64 extent_offset;
2738 
2739 		l = path->nodes[0];
2740 		slot = path->slots[0];
2741 
2742 		if (slot >= btrfs_header_nritems(l)) {
2743 			ret = btrfs_next_leaf(root, path);
2744 			if (ret < 0)
2745 				goto out_free_path;
2746 			else if (ret > 0)
2747 				break;
2748 			continue;
2749 		}
2750 
2751 		btrfs_item_key_to_cpu(l, &key, slot);
2752 
2753 		if (key.objectid != btrfs_ino(inode))
2754 			break;
2755 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2756 			break;
2757 		if (key.offset >= new->file_pos + new->len)
2758 			break;
2759 
2760 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2761 
2762 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2763 		if (key.offset + num_bytes < new->file_pos)
2764 			goto next;
2765 
2766 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2767 		if (!disk_bytenr)
2768 			goto next;
2769 
2770 		extent_offset = btrfs_file_extent_offset(l, extent);
2771 
2772 		old = kmalloc(sizeof(*old), GFP_NOFS);
2773 		if (!old)
2774 			goto out_free_path;
2775 
2776 		offset = max(new->file_pos, key.offset);
2777 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2778 
2779 		old->bytenr = disk_bytenr;
2780 		old->extent_offset = extent_offset;
2781 		old->offset = offset - key.offset;
2782 		old->len = end - offset;
2783 		old->new = new;
2784 		old->count = 0;
2785 		list_add_tail(&old->list, &new->head);
2786 next:
2787 		path->slots[0]++;
2788 		cond_resched();
2789 	}
2790 
2791 	btrfs_free_path(path);
2792 	atomic_inc(&root->fs_info->defrag_running);
2793 
2794 	return new;
2795 
2796 out_free_path:
2797 	btrfs_free_path(path);
2798 out_kfree:
2799 	free_sa_defrag_extent(new);
2800 	return NULL;
2801 }
2802 
2803 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2804 					 u64 start, u64 len)
2805 {
2806 	struct btrfs_block_group_cache *cache;
2807 
2808 	cache = btrfs_lookup_block_group(root->fs_info, start);
2809 	ASSERT(cache);
2810 
2811 	spin_lock(&cache->lock);
2812 	cache->delalloc_bytes -= len;
2813 	spin_unlock(&cache->lock);
2814 
2815 	btrfs_put_block_group(cache);
2816 }
2817 
2818 /* as ordered data IO finishes, this gets called so we can finish
2819  * an ordered extent if the range of bytes in the file it covers are
2820  * fully written.
2821  */
2822 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2823 {
2824 	struct inode *inode = ordered_extent->inode;
2825 	struct btrfs_root *root = BTRFS_I(inode)->root;
2826 	struct btrfs_trans_handle *trans = NULL;
2827 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2828 	struct extent_state *cached_state = NULL;
2829 	struct new_sa_defrag_extent *new = NULL;
2830 	int compress_type = 0;
2831 	int ret = 0;
2832 	u64 logical_len = ordered_extent->len;
2833 	bool nolock;
2834 	bool truncated = false;
2835 
2836 	nolock = btrfs_is_free_space_inode(inode);
2837 
2838 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2839 		ret = -EIO;
2840 		goto out;
2841 	}
2842 
2843 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2844 				     ordered_extent->file_offset +
2845 				     ordered_extent->len - 1);
2846 
2847 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2848 		truncated = true;
2849 		logical_len = ordered_extent->truncated_len;
2850 		/* Truncated the entire extent, don't bother adding */
2851 		if (!logical_len)
2852 			goto out;
2853 	}
2854 
2855 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2856 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2857 
2858 		/*
2859 		 * For mwrite(mmap + memset to write) case, we still reserve
2860 		 * space for NOCOW range.
2861 		 * As NOCOW won't cause a new delayed ref, just free the space
2862 		 */
2863 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2864 				       ordered_extent->len);
2865 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2866 		if (nolock)
2867 			trans = btrfs_join_transaction_nolock(root);
2868 		else
2869 			trans = btrfs_join_transaction(root);
2870 		if (IS_ERR(trans)) {
2871 			ret = PTR_ERR(trans);
2872 			trans = NULL;
2873 			goto out;
2874 		}
2875 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2876 		ret = btrfs_update_inode_fallback(trans, root, inode);
2877 		if (ret) /* -ENOMEM or corruption */
2878 			btrfs_abort_transaction(trans, root, ret);
2879 		goto out;
2880 	}
2881 
2882 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2883 			 ordered_extent->file_offset + ordered_extent->len - 1,
2884 			 &cached_state);
2885 
2886 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2887 			ordered_extent->file_offset + ordered_extent->len - 1,
2888 			EXTENT_DEFRAG, 1, cached_state);
2889 	if (ret) {
2890 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2891 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2892 			/* the inode is shared */
2893 			new = record_old_file_extents(inode, ordered_extent);
2894 
2895 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2896 			ordered_extent->file_offset + ordered_extent->len - 1,
2897 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2898 	}
2899 
2900 	if (nolock)
2901 		trans = btrfs_join_transaction_nolock(root);
2902 	else
2903 		trans = btrfs_join_transaction(root);
2904 	if (IS_ERR(trans)) {
2905 		ret = PTR_ERR(trans);
2906 		trans = NULL;
2907 		goto out_unlock;
2908 	}
2909 
2910 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2911 
2912 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2913 		compress_type = ordered_extent->compress_type;
2914 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2915 		BUG_ON(compress_type);
2916 		ret = btrfs_mark_extent_written(trans, inode,
2917 						ordered_extent->file_offset,
2918 						ordered_extent->file_offset +
2919 						logical_len);
2920 	} else {
2921 		BUG_ON(root == root->fs_info->tree_root);
2922 		ret = insert_reserved_file_extent(trans, inode,
2923 						ordered_extent->file_offset,
2924 						ordered_extent->start,
2925 						ordered_extent->disk_len,
2926 						logical_len, logical_len,
2927 						compress_type, 0, 0,
2928 						BTRFS_FILE_EXTENT_REG);
2929 		if (!ret)
2930 			btrfs_release_delalloc_bytes(root,
2931 						     ordered_extent->start,
2932 						     ordered_extent->disk_len);
2933 	}
2934 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2935 			   ordered_extent->file_offset, ordered_extent->len,
2936 			   trans->transid);
2937 	if (ret < 0) {
2938 		btrfs_abort_transaction(trans, root, ret);
2939 		goto out_unlock;
2940 	}
2941 
2942 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2943 			  &ordered_extent->list);
2944 
2945 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2946 	ret = btrfs_update_inode_fallback(trans, root, inode);
2947 	if (ret) { /* -ENOMEM or corruption */
2948 		btrfs_abort_transaction(trans, root, ret);
2949 		goto out_unlock;
2950 	}
2951 	ret = 0;
2952 out_unlock:
2953 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2954 			     ordered_extent->file_offset +
2955 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2956 out:
2957 	if (root != root->fs_info->tree_root)
2958 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2959 	if (trans)
2960 		btrfs_end_transaction(trans, root);
2961 
2962 	if (ret || truncated) {
2963 		u64 start, end;
2964 
2965 		if (truncated)
2966 			start = ordered_extent->file_offset + logical_len;
2967 		else
2968 			start = ordered_extent->file_offset;
2969 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2970 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2971 
2972 		/* Drop the cache for the part of the extent we didn't write. */
2973 		btrfs_drop_extent_cache(inode, start, end, 0);
2974 
2975 		/*
2976 		 * If the ordered extent had an IOERR or something else went
2977 		 * wrong we need to return the space for this ordered extent
2978 		 * back to the allocator.  We only free the extent in the
2979 		 * truncated case if we didn't write out the extent at all.
2980 		 */
2981 		if ((ret || !logical_len) &&
2982 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2983 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2984 			btrfs_free_reserved_extent(root, ordered_extent->start,
2985 						   ordered_extent->disk_len, 1);
2986 	}
2987 
2988 
2989 	/*
2990 	 * This needs to be done to make sure anybody waiting knows we are done
2991 	 * updating everything for this ordered extent.
2992 	 */
2993 	btrfs_remove_ordered_extent(inode, ordered_extent);
2994 
2995 	/* for snapshot-aware defrag */
2996 	if (new) {
2997 		if (ret) {
2998 			free_sa_defrag_extent(new);
2999 			atomic_dec(&root->fs_info->defrag_running);
3000 		} else {
3001 			relink_file_extents(new);
3002 		}
3003 	}
3004 
3005 	/* once for us */
3006 	btrfs_put_ordered_extent(ordered_extent);
3007 	/* once for the tree */
3008 	btrfs_put_ordered_extent(ordered_extent);
3009 
3010 	return ret;
3011 }
3012 
3013 static void finish_ordered_fn(struct btrfs_work *work)
3014 {
3015 	struct btrfs_ordered_extent *ordered_extent;
3016 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3017 	btrfs_finish_ordered_io(ordered_extent);
3018 }
3019 
3020 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3021 				struct extent_state *state, int uptodate)
3022 {
3023 	struct inode *inode = page->mapping->host;
3024 	struct btrfs_root *root = BTRFS_I(inode)->root;
3025 	struct btrfs_ordered_extent *ordered_extent = NULL;
3026 	struct btrfs_workqueue *wq;
3027 	btrfs_work_func_t func;
3028 
3029 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3030 
3031 	ClearPagePrivate2(page);
3032 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3033 					    end - start + 1, uptodate))
3034 		return 0;
3035 
3036 	if (btrfs_is_free_space_inode(inode)) {
3037 		wq = root->fs_info->endio_freespace_worker;
3038 		func = btrfs_freespace_write_helper;
3039 	} else {
3040 		wq = root->fs_info->endio_write_workers;
3041 		func = btrfs_endio_write_helper;
3042 	}
3043 
3044 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3045 			NULL);
3046 	btrfs_queue_work(wq, &ordered_extent->work);
3047 
3048 	return 0;
3049 }
3050 
3051 static int __readpage_endio_check(struct inode *inode,
3052 				  struct btrfs_io_bio *io_bio,
3053 				  int icsum, struct page *page,
3054 				  int pgoff, u64 start, size_t len)
3055 {
3056 	char *kaddr;
3057 	u32 csum_expected;
3058 	u32 csum = ~(u32)0;
3059 
3060 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3061 
3062 	kaddr = kmap_atomic(page);
3063 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3064 	btrfs_csum_final(csum, (char *)&csum);
3065 	if (csum != csum_expected)
3066 		goto zeroit;
3067 
3068 	kunmap_atomic(kaddr);
3069 	return 0;
3070 zeroit:
3071 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3072 		"csum failed ino %llu off %llu csum %u expected csum %u",
3073 			   btrfs_ino(inode), start, csum, csum_expected);
3074 	memset(kaddr + pgoff, 1, len);
3075 	flush_dcache_page(page);
3076 	kunmap_atomic(kaddr);
3077 	if (csum_expected == 0)
3078 		return 0;
3079 	return -EIO;
3080 }
3081 
3082 /*
3083  * when reads are done, we need to check csums to verify the data is correct
3084  * if there's a match, we allow the bio to finish.  If not, the code in
3085  * extent_io.c will try to find good copies for us.
3086  */
3087 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3088 				      u64 phy_offset, struct page *page,
3089 				      u64 start, u64 end, int mirror)
3090 {
3091 	size_t offset = start - page_offset(page);
3092 	struct inode *inode = page->mapping->host;
3093 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3094 	struct btrfs_root *root = BTRFS_I(inode)->root;
3095 
3096 	if (PageChecked(page)) {
3097 		ClearPageChecked(page);
3098 		return 0;
3099 	}
3100 
3101 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3102 		return 0;
3103 
3104 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3105 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3106 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3107 				  GFP_NOFS);
3108 		return 0;
3109 	}
3110 
3111 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3112 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3113 				      start, (size_t)(end - start + 1));
3114 }
3115 
3116 void btrfs_add_delayed_iput(struct inode *inode)
3117 {
3118 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 	struct btrfs_inode *binode = BTRFS_I(inode);
3120 
3121 	if (atomic_add_unless(&inode->i_count, -1, 1))
3122 		return;
3123 
3124 	spin_lock(&fs_info->delayed_iput_lock);
3125 	if (binode->delayed_iput_count == 0) {
3126 		ASSERT(list_empty(&binode->delayed_iput));
3127 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3128 	} else {
3129 		binode->delayed_iput_count++;
3130 	}
3131 	spin_unlock(&fs_info->delayed_iput_lock);
3132 }
3133 
3134 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3135 {
3136 	struct btrfs_fs_info *fs_info = root->fs_info;
3137 
3138 	spin_lock(&fs_info->delayed_iput_lock);
3139 	while (!list_empty(&fs_info->delayed_iputs)) {
3140 		struct btrfs_inode *inode;
3141 
3142 		inode = list_first_entry(&fs_info->delayed_iputs,
3143 				struct btrfs_inode, delayed_iput);
3144 		if (inode->delayed_iput_count) {
3145 			inode->delayed_iput_count--;
3146 			list_move_tail(&inode->delayed_iput,
3147 					&fs_info->delayed_iputs);
3148 		} else {
3149 			list_del_init(&inode->delayed_iput);
3150 		}
3151 		spin_unlock(&fs_info->delayed_iput_lock);
3152 		iput(&inode->vfs_inode);
3153 		spin_lock(&fs_info->delayed_iput_lock);
3154 	}
3155 	spin_unlock(&fs_info->delayed_iput_lock);
3156 }
3157 
3158 /*
3159  * This is called in transaction commit time. If there are no orphan
3160  * files in the subvolume, it removes orphan item and frees block_rsv
3161  * structure.
3162  */
3163 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3164 			      struct btrfs_root *root)
3165 {
3166 	struct btrfs_block_rsv *block_rsv;
3167 	int ret;
3168 
3169 	if (atomic_read(&root->orphan_inodes) ||
3170 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3171 		return;
3172 
3173 	spin_lock(&root->orphan_lock);
3174 	if (atomic_read(&root->orphan_inodes)) {
3175 		spin_unlock(&root->orphan_lock);
3176 		return;
3177 	}
3178 
3179 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3180 		spin_unlock(&root->orphan_lock);
3181 		return;
3182 	}
3183 
3184 	block_rsv = root->orphan_block_rsv;
3185 	root->orphan_block_rsv = NULL;
3186 	spin_unlock(&root->orphan_lock);
3187 
3188 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3189 	    btrfs_root_refs(&root->root_item) > 0) {
3190 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3191 					    root->root_key.objectid);
3192 		if (ret)
3193 			btrfs_abort_transaction(trans, root, ret);
3194 		else
3195 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3196 				  &root->state);
3197 	}
3198 
3199 	if (block_rsv) {
3200 		WARN_ON(block_rsv->size > 0);
3201 		btrfs_free_block_rsv(root, block_rsv);
3202 	}
3203 }
3204 
3205 /*
3206  * This creates an orphan entry for the given inode in case something goes
3207  * wrong in the middle of an unlink/truncate.
3208  *
3209  * NOTE: caller of this function should reserve 5 units of metadata for
3210  *	 this function.
3211  */
3212 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3213 {
3214 	struct btrfs_root *root = BTRFS_I(inode)->root;
3215 	struct btrfs_block_rsv *block_rsv = NULL;
3216 	int reserve = 0;
3217 	int insert = 0;
3218 	int ret;
3219 
3220 	if (!root->orphan_block_rsv) {
3221 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3222 		if (!block_rsv)
3223 			return -ENOMEM;
3224 	}
3225 
3226 	spin_lock(&root->orphan_lock);
3227 	if (!root->orphan_block_rsv) {
3228 		root->orphan_block_rsv = block_rsv;
3229 	} else if (block_rsv) {
3230 		btrfs_free_block_rsv(root, block_rsv);
3231 		block_rsv = NULL;
3232 	}
3233 
3234 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3235 			      &BTRFS_I(inode)->runtime_flags)) {
3236 #if 0
3237 		/*
3238 		 * For proper ENOSPC handling, we should do orphan
3239 		 * cleanup when mounting. But this introduces backward
3240 		 * compatibility issue.
3241 		 */
3242 		if (!xchg(&root->orphan_item_inserted, 1))
3243 			insert = 2;
3244 		else
3245 			insert = 1;
3246 #endif
3247 		insert = 1;
3248 		atomic_inc(&root->orphan_inodes);
3249 	}
3250 
3251 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3252 			      &BTRFS_I(inode)->runtime_flags))
3253 		reserve = 1;
3254 	spin_unlock(&root->orphan_lock);
3255 
3256 	/* grab metadata reservation from transaction handle */
3257 	if (reserve) {
3258 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3259 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3260 	}
3261 
3262 	/* insert an orphan item to track this unlinked/truncated file */
3263 	if (insert >= 1) {
3264 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3265 		if (ret) {
3266 			atomic_dec(&root->orphan_inodes);
3267 			if (reserve) {
3268 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3269 					  &BTRFS_I(inode)->runtime_flags);
3270 				btrfs_orphan_release_metadata(inode);
3271 			}
3272 			if (ret != -EEXIST) {
3273 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3274 					  &BTRFS_I(inode)->runtime_flags);
3275 				btrfs_abort_transaction(trans, root, ret);
3276 				return ret;
3277 			}
3278 		}
3279 		ret = 0;
3280 	}
3281 
3282 	/* insert an orphan item to track subvolume contains orphan files */
3283 	if (insert >= 2) {
3284 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3285 					       root->root_key.objectid);
3286 		if (ret && ret != -EEXIST) {
3287 			btrfs_abort_transaction(trans, root, ret);
3288 			return ret;
3289 		}
3290 	}
3291 	return 0;
3292 }
3293 
3294 /*
3295  * We have done the truncate/delete so we can go ahead and remove the orphan
3296  * item for this particular inode.
3297  */
3298 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3299 			    struct inode *inode)
3300 {
3301 	struct btrfs_root *root = BTRFS_I(inode)->root;
3302 	int delete_item = 0;
3303 	int release_rsv = 0;
3304 	int ret = 0;
3305 
3306 	spin_lock(&root->orphan_lock);
3307 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3308 			       &BTRFS_I(inode)->runtime_flags))
3309 		delete_item = 1;
3310 
3311 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3312 			       &BTRFS_I(inode)->runtime_flags))
3313 		release_rsv = 1;
3314 	spin_unlock(&root->orphan_lock);
3315 
3316 	if (delete_item) {
3317 		atomic_dec(&root->orphan_inodes);
3318 		if (trans)
3319 			ret = btrfs_del_orphan_item(trans, root,
3320 						    btrfs_ino(inode));
3321 	}
3322 
3323 	if (release_rsv)
3324 		btrfs_orphan_release_metadata(inode);
3325 
3326 	return ret;
3327 }
3328 
3329 /*
3330  * this cleans up any orphans that may be left on the list from the last use
3331  * of this root.
3332  */
3333 int btrfs_orphan_cleanup(struct btrfs_root *root)
3334 {
3335 	struct btrfs_path *path;
3336 	struct extent_buffer *leaf;
3337 	struct btrfs_key key, found_key;
3338 	struct btrfs_trans_handle *trans;
3339 	struct inode *inode;
3340 	u64 last_objectid = 0;
3341 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3342 
3343 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3344 		return 0;
3345 
3346 	path = btrfs_alloc_path();
3347 	if (!path) {
3348 		ret = -ENOMEM;
3349 		goto out;
3350 	}
3351 	path->reada = READA_BACK;
3352 
3353 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3354 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3355 	key.offset = (u64)-1;
3356 
3357 	while (1) {
3358 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3359 		if (ret < 0)
3360 			goto out;
3361 
3362 		/*
3363 		 * if ret == 0 means we found what we were searching for, which
3364 		 * is weird, but possible, so only screw with path if we didn't
3365 		 * find the key and see if we have stuff that matches
3366 		 */
3367 		if (ret > 0) {
3368 			ret = 0;
3369 			if (path->slots[0] == 0)
3370 				break;
3371 			path->slots[0]--;
3372 		}
3373 
3374 		/* pull out the item */
3375 		leaf = path->nodes[0];
3376 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3377 
3378 		/* make sure the item matches what we want */
3379 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3380 			break;
3381 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3382 			break;
3383 
3384 		/* release the path since we're done with it */
3385 		btrfs_release_path(path);
3386 
3387 		/*
3388 		 * this is where we are basically btrfs_lookup, without the
3389 		 * crossing root thing.  we store the inode number in the
3390 		 * offset of the orphan item.
3391 		 */
3392 
3393 		if (found_key.offset == last_objectid) {
3394 			btrfs_err(root->fs_info,
3395 				"Error removing orphan entry, stopping orphan cleanup");
3396 			ret = -EINVAL;
3397 			goto out;
3398 		}
3399 
3400 		last_objectid = found_key.offset;
3401 
3402 		found_key.objectid = found_key.offset;
3403 		found_key.type = BTRFS_INODE_ITEM_KEY;
3404 		found_key.offset = 0;
3405 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3406 		ret = PTR_ERR_OR_ZERO(inode);
3407 		if (ret && ret != -ESTALE)
3408 			goto out;
3409 
3410 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3411 			struct btrfs_root *dead_root;
3412 			struct btrfs_fs_info *fs_info = root->fs_info;
3413 			int is_dead_root = 0;
3414 
3415 			/*
3416 			 * this is an orphan in the tree root. Currently these
3417 			 * could come from 2 sources:
3418 			 *  a) a snapshot deletion in progress
3419 			 *  b) a free space cache inode
3420 			 * We need to distinguish those two, as the snapshot
3421 			 * orphan must not get deleted.
3422 			 * find_dead_roots already ran before us, so if this
3423 			 * is a snapshot deletion, we should find the root
3424 			 * in the dead_roots list
3425 			 */
3426 			spin_lock(&fs_info->trans_lock);
3427 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3428 					    root_list) {
3429 				if (dead_root->root_key.objectid ==
3430 				    found_key.objectid) {
3431 					is_dead_root = 1;
3432 					break;
3433 				}
3434 			}
3435 			spin_unlock(&fs_info->trans_lock);
3436 			if (is_dead_root) {
3437 				/* prevent this orphan from being found again */
3438 				key.offset = found_key.objectid - 1;
3439 				continue;
3440 			}
3441 		}
3442 		/*
3443 		 * Inode is already gone but the orphan item is still there,
3444 		 * kill the orphan item.
3445 		 */
3446 		if (ret == -ESTALE) {
3447 			trans = btrfs_start_transaction(root, 1);
3448 			if (IS_ERR(trans)) {
3449 				ret = PTR_ERR(trans);
3450 				goto out;
3451 			}
3452 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3453 				found_key.objectid);
3454 			ret = btrfs_del_orphan_item(trans, root,
3455 						    found_key.objectid);
3456 			btrfs_end_transaction(trans, root);
3457 			if (ret)
3458 				goto out;
3459 			continue;
3460 		}
3461 
3462 		/*
3463 		 * add this inode to the orphan list so btrfs_orphan_del does
3464 		 * the proper thing when we hit it
3465 		 */
3466 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3467 			&BTRFS_I(inode)->runtime_flags);
3468 		atomic_inc(&root->orphan_inodes);
3469 
3470 		/* if we have links, this was a truncate, lets do that */
3471 		if (inode->i_nlink) {
3472 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3473 				iput(inode);
3474 				continue;
3475 			}
3476 			nr_truncate++;
3477 
3478 			/* 1 for the orphan item deletion. */
3479 			trans = btrfs_start_transaction(root, 1);
3480 			if (IS_ERR(trans)) {
3481 				iput(inode);
3482 				ret = PTR_ERR(trans);
3483 				goto out;
3484 			}
3485 			ret = btrfs_orphan_add(trans, inode);
3486 			btrfs_end_transaction(trans, root);
3487 			if (ret) {
3488 				iput(inode);
3489 				goto out;
3490 			}
3491 
3492 			ret = btrfs_truncate(inode);
3493 			if (ret)
3494 				btrfs_orphan_del(NULL, inode);
3495 		} else {
3496 			nr_unlink++;
3497 		}
3498 
3499 		/* this will do delete_inode and everything for us */
3500 		iput(inode);
3501 		if (ret)
3502 			goto out;
3503 	}
3504 	/* release the path since we're done with it */
3505 	btrfs_release_path(path);
3506 
3507 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3508 
3509 	if (root->orphan_block_rsv)
3510 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3511 					(u64)-1);
3512 
3513 	if (root->orphan_block_rsv ||
3514 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3515 		trans = btrfs_join_transaction(root);
3516 		if (!IS_ERR(trans))
3517 			btrfs_end_transaction(trans, root);
3518 	}
3519 
3520 	if (nr_unlink)
3521 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3522 	if (nr_truncate)
3523 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3524 
3525 out:
3526 	if (ret)
3527 		btrfs_err(root->fs_info,
3528 			"could not do orphan cleanup %d", ret);
3529 	btrfs_free_path(path);
3530 	return ret;
3531 }
3532 
3533 /*
3534  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3535  * don't find any xattrs, we know there can't be any acls.
3536  *
3537  * slot is the slot the inode is in, objectid is the objectid of the inode
3538  */
3539 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3540 					  int slot, u64 objectid,
3541 					  int *first_xattr_slot)
3542 {
3543 	u32 nritems = btrfs_header_nritems(leaf);
3544 	struct btrfs_key found_key;
3545 	static u64 xattr_access = 0;
3546 	static u64 xattr_default = 0;
3547 	int scanned = 0;
3548 
3549 	if (!xattr_access) {
3550 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3551 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3552 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3553 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3554 	}
3555 
3556 	slot++;
3557 	*first_xattr_slot = -1;
3558 	while (slot < nritems) {
3559 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3560 
3561 		/* we found a different objectid, there must not be acls */
3562 		if (found_key.objectid != objectid)
3563 			return 0;
3564 
3565 		/* we found an xattr, assume we've got an acl */
3566 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3567 			if (*first_xattr_slot == -1)
3568 				*first_xattr_slot = slot;
3569 			if (found_key.offset == xattr_access ||
3570 			    found_key.offset == xattr_default)
3571 				return 1;
3572 		}
3573 
3574 		/*
3575 		 * we found a key greater than an xattr key, there can't
3576 		 * be any acls later on
3577 		 */
3578 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3579 			return 0;
3580 
3581 		slot++;
3582 		scanned++;
3583 
3584 		/*
3585 		 * it goes inode, inode backrefs, xattrs, extents,
3586 		 * so if there are a ton of hard links to an inode there can
3587 		 * be a lot of backrefs.  Don't waste time searching too hard,
3588 		 * this is just an optimization
3589 		 */
3590 		if (scanned >= 8)
3591 			break;
3592 	}
3593 	/* we hit the end of the leaf before we found an xattr or
3594 	 * something larger than an xattr.  We have to assume the inode
3595 	 * has acls
3596 	 */
3597 	if (*first_xattr_slot == -1)
3598 		*first_xattr_slot = slot;
3599 	return 1;
3600 }
3601 
3602 /*
3603  * read an inode from the btree into the in-memory inode
3604  */
3605 static void btrfs_read_locked_inode(struct inode *inode)
3606 {
3607 	struct btrfs_path *path;
3608 	struct extent_buffer *leaf;
3609 	struct btrfs_inode_item *inode_item;
3610 	struct btrfs_root *root = BTRFS_I(inode)->root;
3611 	struct btrfs_key location;
3612 	unsigned long ptr;
3613 	int maybe_acls;
3614 	u32 rdev;
3615 	int ret;
3616 	bool filled = false;
3617 	int first_xattr_slot;
3618 
3619 	ret = btrfs_fill_inode(inode, &rdev);
3620 	if (!ret)
3621 		filled = true;
3622 
3623 	path = btrfs_alloc_path();
3624 	if (!path)
3625 		goto make_bad;
3626 
3627 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3628 
3629 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3630 	if (ret)
3631 		goto make_bad;
3632 
3633 	leaf = path->nodes[0];
3634 
3635 	if (filled)
3636 		goto cache_index;
3637 
3638 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3639 				    struct btrfs_inode_item);
3640 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3641 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3642 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3643 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3644 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3645 
3646 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3647 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3648 
3649 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3650 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3651 
3652 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3653 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3654 
3655 	BTRFS_I(inode)->i_otime.tv_sec =
3656 		btrfs_timespec_sec(leaf, &inode_item->otime);
3657 	BTRFS_I(inode)->i_otime.tv_nsec =
3658 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3659 
3660 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3661 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3662 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3663 
3664 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3665 	inode->i_generation = BTRFS_I(inode)->generation;
3666 	inode->i_rdev = 0;
3667 	rdev = btrfs_inode_rdev(leaf, inode_item);
3668 
3669 	BTRFS_I(inode)->index_cnt = (u64)-1;
3670 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3671 
3672 cache_index:
3673 	/*
3674 	 * If we were modified in the current generation and evicted from memory
3675 	 * and then re-read we need to do a full sync since we don't have any
3676 	 * idea about which extents were modified before we were evicted from
3677 	 * cache.
3678 	 *
3679 	 * This is required for both inode re-read from disk and delayed inode
3680 	 * in delayed_nodes_tree.
3681 	 */
3682 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3683 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3684 			&BTRFS_I(inode)->runtime_flags);
3685 
3686 	/*
3687 	 * We don't persist the id of the transaction where an unlink operation
3688 	 * against the inode was last made. So here we assume the inode might
3689 	 * have been evicted, and therefore the exact value of last_unlink_trans
3690 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3691 	 * between the inode and its parent if the inode is fsync'ed and the log
3692 	 * replayed. For example, in the scenario:
3693 	 *
3694 	 * touch mydir/foo
3695 	 * ln mydir/foo mydir/bar
3696 	 * sync
3697 	 * unlink mydir/bar
3698 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3699 	 * xfs_io -c fsync mydir/foo
3700 	 * <power failure>
3701 	 * mount fs, triggers fsync log replay
3702 	 *
3703 	 * We must make sure that when we fsync our inode foo we also log its
3704 	 * parent inode, otherwise after log replay the parent still has the
3705 	 * dentry with the "bar" name but our inode foo has a link count of 1
3706 	 * and doesn't have an inode ref with the name "bar" anymore.
3707 	 *
3708 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3709 	 * but it guarantees correctness at the expense of ocassional full
3710 	 * transaction commits on fsync if our inode is a directory, or if our
3711 	 * inode is not a directory, logging its parent unnecessarily.
3712 	 */
3713 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3714 
3715 	path->slots[0]++;
3716 	if (inode->i_nlink != 1 ||
3717 	    path->slots[0] >= btrfs_header_nritems(leaf))
3718 		goto cache_acl;
3719 
3720 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3721 	if (location.objectid != btrfs_ino(inode))
3722 		goto cache_acl;
3723 
3724 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3725 	if (location.type == BTRFS_INODE_REF_KEY) {
3726 		struct btrfs_inode_ref *ref;
3727 
3728 		ref = (struct btrfs_inode_ref *)ptr;
3729 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3730 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3731 		struct btrfs_inode_extref *extref;
3732 
3733 		extref = (struct btrfs_inode_extref *)ptr;
3734 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3735 								     extref);
3736 	}
3737 cache_acl:
3738 	/*
3739 	 * try to precache a NULL acl entry for files that don't have
3740 	 * any xattrs or acls
3741 	 */
3742 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3743 					   btrfs_ino(inode), &first_xattr_slot);
3744 	if (first_xattr_slot != -1) {
3745 		path->slots[0] = first_xattr_slot;
3746 		ret = btrfs_load_inode_props(inode, path);
3747 		if (ret)
3748 			btrfs_err(root->fs_info,
3749 				  "error loading props for ino %llu (root %llu): %d",
3750 				  btrfs_ino(inode),
3751 				  root->root_key.objectid, ret);
3752 	}
3753 	btrfs_free_path(path);
3754 
3755 	if (!maybe_acls)
3756 		cache_no_acl(inode);
3757 
3758 	switch (inode->i_mode & S_IFMT) {
3759 	case S_IFREG:
3760 		inode->i_mapping->a_ops = &btrfs_aops;
3761 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3762 		inode->i_fop = &btrfs_file_operations;
3763 		inode->i_op = &btrfs_file_inode_operations;
3764 		break;
3765 	case S_IFDIR:
3766 		inode->i_fop = &btrfs_dir_file_operations;
3767 		if (root == root->fs_info->tree_root)
3768 			inode->i_op = &btrfs_dir_ro_inode_operations;
3769 		else
3770 			inode->i_op = &btrfs_dir_inode_operations;
3771 		break;
3772 	case S_IFLNK:
3773 		inode->i_op = &btrfs_symlink_inode_operations;
3774 		inode_nohighmem(inode);
3775 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3776 		break;
3777 	default:
3778 		inode->i_op = &btrfs_special_inode_operations;
3779 		init_special_inode(inode, inode->i_mode, rdev);
3780 		break;
3781 	}
3782 
3783 	btrfs_update_iflags(inode);
3784 	return;
3785 
3786 make_bad:
3787 	btrfs_free_path(path);
3788 	make_bad_inode(inode);
3789 }
3790 
3791 /*
3792  * given a leaf and an inode, copy the inode fields into the leaf
3793  */
3794 static void fill_inode_item(struct btrfs_trans_handle *trans,
3795 			    struct extent_buffer *leaf,
3796 			    struct btrfs_inode_item *item,
3797 			    struct inode *inode)
3798 {
3799 	struct btrfs_map_token token;
3800 
3801 	btrfs_init_map_token(&token);
3802 
3803 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3804 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3805 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3806 				   &token);
3807 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3808 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3809 
3810 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3811 				     inode->i_atime.tv_sec, &token);
3812 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3813 				      inode->i_atime.tv_nsec, &token);
3814 
3815 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3816 				     inode->i_mtime.tv_sec, &token);
3817 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3818 				      inode->i_mtime.tv_nsec, &token);
3819 
3820 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3821 				     inode->i_ctime.tv_sec, &token);
3822 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3823 				      inode->i_ctime.tv_nsec, &token);
3824 
3825 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3826 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3827 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3828 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3829 
3830 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3831 				     &token);
3832 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3833 					 &token);
3834 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3835 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3836 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3837 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3838 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3839 }
3840 
3841 /*
3842  * copy everything in the in-memory inode into the btree.
3843  */
3844 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3845 				struct btrfs_root *root, struct inode *inode)
3846 {
3847 	struct btrfs_inode_item *inode_item;
3848 	struct btrfs_path *path;
3849 	struct extent_buffer *leaf;
3850 	int ret;
3851 
3852 	path = btrfs_alloc_path();
3853 	if (!path)
3854 		return -ENOMEM;
3855 
3856 	path->leave_spinning = 1;
3857 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3858 				 1);
3859 	if (ret) {
3860 		if (ret > 0)
3861 			ret = -ENOENT;
3862 		goto failed;
3863 	}
3864 
3865 	leaf = path->nodes[0];
3866 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3867 				    struct btrfs_inode_item);
3868 
3869 	fill_inode_item(trans, leaf, inode_item, inode);
3870 	btrfs_mark_buffer_dirty(leaf);
3871 	btrfs_set_inode_last_trans(trans, inode);
3872 	ret = 0;
3873 failed:
3874 	btrfs_free_path(path);
3875 	return ret;
3876 }
3877 
3878 /*
3879  * copy everything in the in-memory inode into the btree.
3880  */
3881 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3882 				struct btrfs_root *root, struct inode *inode)
3883 {
3884 	int ret;
3885 
3886 	/*
3887 	 * If the inode is a free space inode, we can deadlock during commit
3888 	 * if we put it into the delayed code.
3889 	 *
3890 	 * The data relocation inode should also be directly updated
3891 	 * without delay
3892 	 */
3893 	if (!btrfs_is_free_space_inode(inode)
3894 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3895 	    && !root->fs_info->log_root_recovering) {
3896 		btrfs_update_root_times(trans, root);
3897 
3898 		ret = btrfs_delayed_update_inode(trans, root, inode);
3899 		if (!ret)
3900 			btrfs_set_inode_last_trans(trans, inode);
3901 		return ret;
3902 	}
3903 
3904 	return btrfs_update_inode_item(trans, root, inode);
3905 }
3906 
3907 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3908 					 struct btrfs_root *root,
3909 					 struct inode *inode)
3910 {
3911 	int ret;
3912 
3913 	ret = btrfs_update_inode(trans, root, inode);
3914 	if (ret == -ENOSPC)
3915 		return btrfs_update_inode_item(trans, root, inode);
3916 	return ret;
3917 }
3918 
3919 /*
3920  * unlink helper that gets used here in inode.c and in the tree logging
3921  * recovery code.  It remove a link in a directory with a given name, and
3922  * also drops the back refs in the inode to the directory
3923  */
3924 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3925 				struct btrfs_root *root,
3926 				struct inode *dir, struct inode *inode,
3927 				const char *name, int name_len)
3928 {
3929 	struct btrfs_path *path;
3930 	int ret = 0;
3931 	struct extent_buffer *leaf;
3932 	struct btrfs_dir_item *di;
3933 	struct btrfs_key key;
3934 	u64 index;
3935 	u64 ino = btrfs_ino(inode);
3936 	u64 dir_ino = btrfs_ino(dir);
3937 
3938 	path = btrfs_alloc_path();
3939 	if (!path) {
3940 		ret = -ENOMEM;
3941 		goto out;
3942 	}
3943 
3944 	path->leave_spinning = 1;
3945 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3946 				    name, name_len, -1);
3947 	if (IS_ERR(di)) {
3948 		ret = PTR_ERR(di);
3949 		goto err;
3950 	}
3951 	if (!di) {
3952 		ret = -ENOENT;
3953 		goto err;
3954 	}
3955 	leaf = path->nodes[0];
3956 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3957 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3958 	if (ret)
3959 		goto err;
3960 	btrfs_release_path(path);
3961 
3962 	/*
3963 	 * If we don't have dir index, we have to get it by looking up
3964 	 * the inode ref, since we get the inode ref, remove it directly,
3965 	 * it is unnecessary to do delayed deletion.
3966 	 *
3967 	 * But if we have dir index, needn't search inode ref to get it.
3968 	 * Since the inode ref is close to the inode item, it is better
3969 	 * that we delay to delete it, and just do this deletion when
3970 	 * we update the inode item.
3971 	 */
3972 	if (BTRFS_I(inode)->dir_index) {
3973 		ret = btrfs_delayed_delete_inode_ref(inode);
3974 		if (!ret) {
3975 			index = BTRFS_I(inode)->dir_index;
3976 			goto skip_backref;
3977 		}
3978 	}
3979 
3980 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3981 				  dir_ino, &index);
3982 	if (ret) {
3983 		btrfs_info(root->fs_info,
3984 			"failed to delete reference to %.*s, inode %llu parent %llu",
3985 			name_len, name, ino, dir_ino);
3986 		btrfs_abort_transaction(trans, root, ret);
3987 		goto err;
3988 	}
3989 skip_backref:
3990 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3991 	if (ret) {
3992 		btrfs_abort_transaction(trans, root, ret);
3993 		goto err;
3994 	}
3995 
3996 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3997 					 inode, dir_ino);
3998 	if (ret != 0 && ret != -ENOENT) {
3999 		btrfs_abort_transaction(trans, root, ret);
4000 		goto err;
4001 	}
4002 
4003 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4004 					   dir, index);
4005 	if (ret == -ENOENT)
4006 		ret = 0;
4007 	else if (ret)
4008 		btrfs_abort_transaction(trans, root, ret);
4009 err:
4010 	btrfs_free_path(path);
4011 	if (ret)
4012 		goto out;
4013 
4014 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4015 	inode_inc_iversion(inode);
4016 	inode_inc_iversion(dir);
4017 	inode->i_ctime = dir->i_mtime =
4018 		dir->i_ctime = current_fs_time(inode->i_sb);
4019 	ret = btrfs_update_inode(trans, root, dir);
4020 out:
4021 	return ret;
4022 }
4023 
4024 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4025 		       struct btrfs_root *root,
4026 		       struct inode *dir, struct inode *inode,
4027 		       const char *name, int name_len)
4028 {
4029 	int ret;
4030 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4031 	if (!ret) {
4032 		drop_nlink(inode);
4033 		ret = btrfs_update_inode(trans, root, inode);
4034 	}
4035 	return ret;
4036 }
4037 
4038 /*
4039  * helper to start transaction for unlink and rmdir.
4040  *
4041  * unlink and rmdir are special in btrfs, they do not always free space, so
4042  * if we cannot make our reservations the normal way try and see if there is
4043  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4044  * allow the unlink to occur.
4045  */
4046 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4047 {
4048 	struct btrfs_root *root = BTRFS_I(dir)->root;
4049 
4050 	/*
4051 	 * 1 for the possible orphan item
4052 	 * 1 for the dir item
4053 	 * 1 for the dir index
4054 	 * 1 for the inode ref
4055 	 * 1 for the inode
4056 	 */
4057 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4058 }
4059 
4060 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4061 {
4062 	struct btrfs_root *root = BTRFS_I(dir)->root;
4063 	struct btrfs_trans_handle *trans;
4064 	struct inode *inode = d_inode(dentry);
4065 	int ret;
4066 
4067 	trans = __unlink_start_trans(dir);
4068 	if (IS_ERR(trans))
4069 		return PTR_ERR(trans);
4070 
4071 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4072 
4073 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4074 				 dentry->d_name.name, dentry->d_name.len);
4075 	if (ret)
4076 		goto out;
4077 
4078 	if (inode->i_nlink == 0) {
4079 		ret = btrfs_orphan_add(trans, inode);
4080 		if (ret)
4081 			goto out;
4082 	}
4083 
4084 out:
4085 	btrfs_end_transaction(trans, root);
4086 	btrfs_btree_balance_dirty(root);
4087 	return ret;
4088 }
4089 
4090 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4091 			struct btrfs_root *root,
4092 			struct inode *dir, u64 objectid,
4093 			const char *name, int name_len)
4094 {
4095 	struct btrfs_path *path;
4096 	struct extent_buffer *leaf;
4097 	struct btrfs_dir_item *di;
4098 	struct btrfs_key key;
4099 	u64 index;
4100 	int ret;
4101 	u64 dir_ino = btrfs_ino(dir);
4102 
4103 	path = btrfs_alloc_path();
4104 	if (!path)
4105 		return -ENOMEM;
4106 
4107 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4108 				   name, name_len, -1);
4109 	if (IS_ERR_OR_NULL(di)) {
4110 		if (!di)
4111 			ret = -ENOENT;
4112 		else
4113 			ret = PTR_ERR(di);
4114 		goto out;
4115 	}
4116 
4117 	leaf = path->nodes[0];
4118 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4119 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4120 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4121 	if (ret) {
4122 		btrfs_abort_transaction(trans, root, ret);
4123 		goto out;
4124 	}
4125 	btrfs_release_path(path);
4126 
4127 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4128 				 objectid, root->root_key.objectid,
4129 				 dir_ino, &index, name, name_len);
4130 	if (ret < 0) {
4131 		if (ret != -ENOENT) {
4132 			btrfs_abort_transaction(trans, root, ret);
4133 			goto out;
4134 		}
4135 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4136 						 name, name_len);
4137 		if (IS_ERR_OR_NULL(di)) {
4138 			if (!di)
4139 				ret = -ENOENT;
4140 			else
4141 				ret = PTR_ERR(di);
4142 			btrfs_abort_transaction(trans, root, ret);
4143 			goto out;
4144 		}
4145 
4146 		leaf = path->nodes[0];
4147 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4148 		btrfs_release_path(path);
4149 		index = key.offset;
4150 	}
4151 	btrfs_release_path(path);
4152 
4153 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4154 	if (ret) {
4155 		btrfs_abort_transaction(trans, root, ret);
4156 		goto out;
4157 	}
4158 
4159 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4160 	inode_inc_iversion(dir);
4161 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4162 	ret = btrfs_update_inode_fallback(trans, root, dir);
4163 	if (ret)
4164 		btrfs_abort_transaction(trans, root, ret);
4165 out:
4166 	btrfs_free_path(path);
4167 	return ret;
4168 }
4169 
4170 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4171 {
4172 	struct inode *inode = d_inode(dentry);
4173 	int err = 0;
4174 	struct btrfs_root *root = BTRFS_I(dir)->root;
4175 	struct btrfs_trans_handle *trans;
4176 
4177 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4178 		return -ENOTEMPTY;
4179 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4180 		return -EPERM;
4181 
4182 	trans = __unlink_start_trans(dir);
4183 	if (IS_ERR(trans))
4184 		return PTR_ERR(trans);
4185 
4186 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4187 		err = btrfs_unlink_subvol(trans, root, dir,
4188 					  BTRFS_I(inode)->location.objectid,
4189 					  dentry->d_name.name,
4190 					  dentry->d_name.len);
4191 		goto out;
4192 	}
4193 
4194 	err = btrfs_orphan_add(trans, inode);
4195 	if (err)
4196 		goto out;
4197 
4198 	/* now the directory is empty */
4199 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4200 				 dentry->d_name.name, dentry->d_name.len);
4201 	if (!err)
4202 		btrfs_i_size_write(inode, 0);
4203 out:
4204 	btrfs_end_transaction(trans, root);
4205 	btrfs_btree_balance_dirty(root);
4206 
4207 	return err;
4208 }
4209 
4210 static int truncate_space_check(struct btrfs_trans_handle *trans,
4211 				struct btrfs_root *root,
4212 				u64 bytes_deleted)
4213 {
4214 	int ret;
4215 
4216 	/*
4217 	 * This is only used to apply pressure to the enospc system, we don't
4218 	 * intend to use this reservation at all.
4219 	 */
4220 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4221 	bytes_deleted *= root->nodesize;
4222 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4223 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4224 	if (!ret) {
4225 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4226 					      trans->transid,
4227 					      bytes_deleted, 1);
4228 		trans->bytes_reserved += bytes_deleted;
4229 	}
4230 	return ret;
4231 
4232 }
4233 
4234 static int truncate_inline_extent(struct inode *inode,
4235 				  struct btrfs_path *path,
4236 				  struct btrfs_key *found_key,
4237 				  const u64 item_end,
4238 				  const u64 new_size)
4239 {
4240 	struct extent_buffer *leaf = path->nodes[0];
4241 	int slot = path->slots[0];
4242 	struct btrfs_file_extent_item *fi;
4243 	u32 size = (u32)(new_size - found_key->offset);
4244 	struct btrfs_root *root = BTRFS_I(inode)->root;
4245 
4246 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4247 
4248 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4249 		loff_t offset = new_size;
4250 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4251 
4252 		/*
4253 		 * Zero out the remaining of the last page of our inline extent,
4254 		 * instead of directly truncating our inline extent here - that
4255 		 * would be much more complex (decompressing all the data, then
4256 		 * compressing the truncated data, which might be bigger than
4257 		 * the size of the inline extent, resize the extent, etc).
4258 		 * We release the path because to get the page we might need to
4259 		 * read the extent item from disk (data not in the page cache).
4260 		 */
4261 		btrfs_release_path(path);
4262 		return btrfs_truncate_block(inode, offset, page_end - offset,
4263 					0);
4264 	}
4265 
4266 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4267 	size = btrfs_file_extent_calc_inline_size(size);
4268 	btrfs_truncate_item(root, path, size, 1);
4269 
4270 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4271 		inode_sub_bytes(inode, item_end + 1 - new_size);
4272 
4273 	return 0;
4274 }
4275 
4276 /*
4277  * this can truncate away extent items, csum items and directory items.
4278  * It starts at a high offset and removes keys until it can't find
4279  * any higher than new_size
4280  *
4281  * csum items that cross the new i_size are truncated to the new size
4282  * as well.
4283  *
4284  * min_type is the minimum key type to truncate down to.  If set to 0, this
4285  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4286  */
4287 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4288 			       struct btrfs_root *root,
4289 			       struct inode *inode,
4290 			       u64 new_size, u32 min_type)
4291 {
4292 	struct btrfs_path *path;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_file_extent_item *fi;
4295 	struct btrfs_key key;
4296 	struct btrfs_key found_key;
4297 	u64 extent_start = 0;
4298 	u64 extent_num_bytes = 0;
4299 	u64 extent_offset = 0;
4300 	u64 item_end = 0;
4301 	u64 last_size = new_size;
4302 	u32 found_type = (u8)-1;
4303 	int found_extent;
4304 	int del_item;
4305 	int pending_del_nr = 0;
4306 	int pending_del_slot = 0;
4307 	int extent_type = -1;
4308 	int ret;
4309 	int err = 0;
4310 	u64 ino = btrfs_ino(inode);
4311 	u64 bytes_deleted = 0;
4312 	bool be_nice = 0;
4313 	bool should_throttle = 0;
4314 	bool should_end = 0;
4315 
4316 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4317 
4318 	/*
4319 	 * for non-free space inodes and ref cows, we want to back off from
4320 	 * time to time
4321 	 */
4322 	if (!btrfs_is_free_space_inode(inode) &&
4323 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4324 		be_nice = 1;
4325 
4326 	path = btrfs_alloc_path();
4327 	if (!path)
4328 		return -ENOMEM;
4329 	path->reada = READA_BACK;
4330 
4331 	/*
4332 	 * We want to drop from the next block forward in case this new size is
4333 	 * not block aligned since we will be keeping the last block of the
4334 	 * extent just the way it is.
4335 	 */
4336 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4337 	    root == root->fs_info->tree_root)
4338 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4339 					root->sectorsize), (u64)-1, 0);
4340 
4341 	/*
4342 	 * This function is also used to drop the items in the log tree before
4343 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4344 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4345 	 * items.
4346 	 */
4347 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4348 		btrfs_kill_delayed_inode_items(inode);
4349 
4350 	key.objectid = ino;
4351 	key.offset = (u64)-1;
4352 	key.type = (u8)-1;
4353 
4354 search_again:
4355 	/*
4356 	 * with a 16K leaf size and 128MB extents, you can actually queue
4357 	 * up a huge file in a single leaf.  Most of the time that
4358 	 * bytes_deleted is > 0, it will be huge by the time we get here
4359 	 */
4360 	if (be_nice && bytes_deleted > SZ_32M) {
4361 		if (btrfs_should_end_transaction(trans, root)) {
4362 			err = -EAGAIN;
4363 			goto error;
4364 		}
4365 	}
4366 
4367 
4368 	path->leave_spinning = 1;
4369 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4370 	if (ret < 0) {
4371 		err = ret;
4372 		goto out;
4373 	}
4374 
4375 	if (ret > 0) {
4376 		/* there are no items in the tree for us to truncate, we're
4377 		 * done
4378 		 */
4379 		if (path->slots[0] == 0)
4380 			goto out;
4381 		path->slots[0]--;
4382 	}
4383 
4384 	while (1) {
4385 		fi = NULL;
4386 		leaf = path->nodes[0];
4387 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4388 		found_type = found_key.type;
4389 
4390 		if (found_key.objectid != ino)
4391 			break;
4392 
4393 		if (found_type < min_type)
4394 			break;
4395 
4396 		item_end = found_key.offset;
4397 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4398 			fi = btrfs_item_ptr(leaf, path->slots[0],
4399 					    struct btrfs_file_extent_item);
4400 			extent_type = btrfs_file_extent_type(leaf, fi);
4401 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4402 				item_end +=
4403 				    btrfs_file_extent_num_bytes(leaf, fi);
4404 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4405 				item_end += btrfs_file_extent_inline_len(leaf,
4406 							 path->slots[0], fi);
4407 			}
4408 			item_end--;
4409 		}
4410 		if (found_type > min_type) {
4411 			del_item = 1;
4412 		} else {
4413 			if (item_end < new_size)
4414 				break;
4415 			if (found_key.offset >= new_size)
4416 				del_item = 1;
4417 			else
4418 				del_item = 0;
4419 		}
4420 		found_extent = 0;
4421 		/* FIXME, shrink the extent if the ref count is only 1 */
4422 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4423 			goto delete;
4424 
4425 		if (del_item)
4426 			last_size = found_key.offset;
4427 		else
4428 			last_size = new_size;
4429 
4430 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4431 			u64 num_dec;
4432 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4433 			if (!del_item) {
4434 				u64 orig_num_bytes =
4435 					btrfs_file_extent_num_bytes(leaf, fi);
4436 				extent_num_bytes = ALIGN(new_size -
4437 						found_key.offset,
4438 						root->sectorsize);
4439 				btrfs_set_file_extent_num_bytes(leaf, fi,
4440 							 extent_num_bytes);
4441 				num_dec = (orig_num_bytes -
4442 					   extent_num_bytes);
4443 				if (test_bit(BTRFS_ROOT_REF_COWS,
4444 					     &root->state) &&
4445 				    extent_start != 0)
4446 					inode_sub_bytes(inode, num_dec);
4447 				btrfs_mark_buffer_dirty(leaf);
4448 			} else {
4449 				extent_num_bytes =
4450 					btrfs_file_extent_disk_num_bytes(leaf,
4451 									 fi);
4452 				extent_offset = found_key.offset -
4453 					btrfs_file_extent_offset(leaf, fi);
4454 
4455 				/* FIXME blocksize != 4096 */
4456 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4457 				if (extent_start != 0) {
4458 					found_extent = 1;
4459 					if (test_bit(BTRFS_ROOT_REF_COWS,
4460 						     &root->state))
4461 						inode_sub_bytes(inode, num_dec);
4462 				}
4463 			}
4464 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4465 			/*
4466 			 * we can't truncate inline items that have had
4467 			 * special encodings
4468 			 */
4469 			if (!del_item &&
4470 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4471 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4472 
4473 				/*
4474 				 * Need to release path in order to truncate a
4475 				 * compressed extent. So delete any accumulated
4476 				 * extent items so far.
4477 				 */
4478 				if (btrfs_file_extent_compression(leaf, fi) !=
4479 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4480 					err = btrfs_del_items(trans, root, path,
4481 							      pending_del_slot,
4482 							      pending_del_nr);
4483 					if (err) {
4484 						btrfs_abort_transaction(trans,
4485 									root,
4486 									err);
4487 						goto error;
4488 					}
4489 					pending_del_nr = 0;
4490 				}
4491 
4492 				err = truncate_inline_extent(inode, path,
4493 							     &found_key,
4494 							     item_end,
4495 							     new_size);
4496 				if (err) {
4497 					btrfs_abort_transaction(trans,
4498 								root, err);
4499 					goto error;
4500 				}
4501 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4502 					    &root->state)) {
4503 				inode_sub_bytes(inode, item_end + 1 - new_size);
4504 			}
4505 		}
4506 delete:
4507 		if (del_item) {
4508 			if (!pending_del_nr) {
4509 				/* no pending yet, add ourselves */
4510 				pending_del_slot = path->slots[0];
4511 				pending_del_nr = 1;
4512 			} else if (pending_del_nr &&
4513 				   path->slots[0] + 1 == pending_del_slot) {
4514 				/* hop on the pending chunk */
4515 				pending_del_nr++;
4516 				pending_del_slot = path->slots[0];
4517 			} else {
4518 				BUG();
4519 			}
4520 		} else {
4521 			break;
4522 		}
4523 		should_throttle = 0;
4524 
4525 		if (found_extent &&
4526 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4527 		     root == root->fs_info->tree_root)) {
4528 			btrfs_set_path_blocking(path);
4529 			bytes_deleted += extent_num_bytes;
4530 			ret = btrfs_free_extent(trans, root, extent_start,
4531 						extent_num_bytes, 0,
4532 						btrfs_header_owner(leaf),
4533 						ino, extent_offset);
4534 			BUG_ON(ret);
4535 			if (btrfs_should_throttle_delayed_refs(trans, root))
4536 				btrfs_async_run_delayed_refs(root,
4537 					trans->delayed_ref_updates * 2, 0);
4538 			if (be_nice) {
4539 				if (truncate_space_check(trans, root,
4540 							 extent_num_bytes)) {
4541 					should_end = 1;
4542 				}
4543 				if (btrfs_should_throttle_delayed_refs(trans,
4544 								       root)) {
4545 					should_throttle = 1;
4546 				}
4547 			}
4548 		}
4549 
4550 		if (found_type == BTRFS_INODE_ITEM_KEY)
4551 			break;
4552 
4553 		if (path->slots[0] == 0 ||
4554 		    path->slots[0] != pending_del_slot ||
4555 		    should_throttle || should_end) {
4556 			if (pending_del_nr) {
4557 				ret = btrfs_del_items(trans, root, path,
4558 						pending_del_slot,
4559 						pending_del_nr);
4560 				if (ret) {
4561 					btrfs_abort_transaction(trans,
4562 								root, ret);
4563 					goto error;
4564 				}
4565 				pending_del_nr = 0;
4566 			}
4567 			btrfs_release_path(path);
4568 			if (should_throttle) {
4569 				unsigned long updates = trans->delayed_ref_updates;
4570 				if (updates) {
4571 					trans->delayed_ref_updates = 0;
4572 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4573 					if (ret && !err)
4574 						err = ret;
4575 				}
4576 			}
4577 			/*
4578 			 * if we failed to refill our space rsv, bail out
4579 			 * and let the transaction restart
4580 			 */
4581 			if (should_end) {
4582 				err = -EAGAIN;
4583 				goto error;
4584 			}
4585 			goto search_again;
4586 		} else {
4587 			path->slots[0]--;
4588 		}
4589 	}
4590 out:
4591 	if (pending_del_nr) {
4592 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4593 				      pending_del_nr);
4594 		if (ret)
4595 			btrfs_abort_transaction(trans, root, ret);
4596 	}
4597 error:
4598 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4599 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4600 
4601 	btrfs_free_path(path);
4602 
4603 	if (be_nice && bytes_deleted > SZ_32M) {
4604 		unsigned long updates = trans->delayed_ref_updates;
4605 		if (updates) {
4606 			trans->delayed_ref_updates = 0;
4607 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4608 			if (ret && !err)
4609 				err = ret;
4610 		}
4611 	}
4612 	return err;
4613 }
4614 
4615 /*
4616  * btrfs_truncate_block - read, zero a chunk and write a block
4617  * @inode - inode that we're zeroing
4618  * @from - the offset to start zeroing
4619  * @len - the length to zero, 0 to zero the entire range respective to the
4620  *	offset
4621  * @front - zero up to the offset instead of from the offset on
4622  *
4623  * This will find the block for the "from" offset and cow the block and zero the
4624  * part we want to zero.  This is used with truncate and hole punching.
4625  */
4626 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4627 			int front)
4628 {
4629 	struct address_space *mapping = inode->i_mapping;
4630 	struct btrfs_root *root = BTRFS_I(inode)->root;
4631 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4632 	struct btrfs_ordered_extent *ordered;
4633 	struct extent_state *cached_state = NULL;
4634 	char *kaddr;
4635 	u32 blocksize = root->sectorsize;
4636 	pgoff_t index = from >> PAGE_SHIFT;
4637 	unsigned offset = from & (blocksize - 1);
4638 	struct page *page;
4639 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4640 	int ret = 0;
4641 	u64 block_start;
4642 	u64 block_end;
4643 
4644 	if ((offset & (blocksize - 1)) == 0 &&
4645 	    (!len || ((len & (blocksize - 1)) == 0)))
4646 		goto out;
4647 
4648 	ret = btrfs_delalloc_reserve_space(inode,
4649 			round_down(from, blocksize), blocksize);
4650 	if (ret)
4651 		goto out;
4652 
4653 again:
4654 	page = find_or_create_page(mapping, index, mask);
4655 	if (!page) {
4656 		btrfs_delalloc_release_space(inode,
4657 				round_down(from, blocksize),
4658 				blocksize);
4659 		ret = -ENOMEM;
4660 		goto out;
4661 	}
4662 
4663 	block_start = round_down(from, blocksize);
4664 	block_end = block_start + blocksize - 1;
4665 
4666 	if (!PageUptodate(page)) {
4667 		ret = btrfs_readpage(NULL, page);
4668 		lock_page(page);
4669 		if (page->mapping != mapping) {
4670 			unlock_page(page);
4671 			put_page(page);
4672 			goto again;
4673 		}
4674 		if (!PageUptodate(page)) {
4675 			ret = -EIO;
4676 			goto out_unlock;
4677 		}
4678 	}
4679 	wait_on_page_writeback(page);
4680 
4681 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4682 	set_page_extent_mapped(page);
4683 
4684 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4685 	if (ordered) {
4686 		unlock_extent_cached(io_tree, block_start, block_end,
4687 				     &cached_state, GFP_NOFS);
4688 		unlock_page(page);
4689 		put_page(page);
4690 		btrfs_start_ordered_extent(inode, ordered, 1);
4691 		btrfs_put_ordered_extent(ordered);
4692 		goto again;
4693 	}
4694 
4695 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4696 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4697 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4698 			  0, 0, &cached_state, GFP_NOFS);
4699 
4700 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4701 					&cached_state);
4702 	if (ret) {
4703 		unlock_extent_cached(io_tree, block_start, block_end,
4704 				     &cached_state, GFP_NOFS);
4705 		goto out_unlock;
4706 	}
4707 
4708 	if (offset != blocksize) {
4709 		if (!len)
4710 			len = blocksize - offset;
4711 		kaddr = kmap(page);
4712 		if (front)
4713 			memset(kaddr + (block_start - page_offset(page)),
4714 				0, offset);
4715 		else
4716 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4717 				0, len);
4718 		flush_dcache_page(page);
4719 		kunmap(page);
4720 	}
4721 	ClearPageChecked(page);
4722 	set_page_dirty(page);
4723 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4724 			     GFP_NOFS);
4725 
4726 out_unlock:
4727 	if (ret)
4728 		btrfs_delalloc_release_space(inode, block_start,
4729 					     blocksize);
4730 	unlock_page(page);
4731 	put_page(page);
4732 out:
4733 	return ret;
4734 }
4735 
4736 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4737 			     u64 offset, u64 len)
4738 {
4739 	struct btrfs_trans_handle *trans;
4740 	int ret;
4741 
4742 	/*
4743 	 * Still need to make sure the inode looks like it's been updated so
4744 	 * that any holes get logged if we fsync.
4745 	 */
4746 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4747 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4748 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4749 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4750 		return 0;
4751 	}
4752 
4753 	/*
4754 	 * 1 - for the one we're dropping
4755 	 * 1 - for the one we're adding
4756 	 * 1 - for updating the inode.
4757 	 */
4758 	trans = btrfs_start_transaction(root, 3);
4759 	if (IS_ERR(trans))
4760 		return PTR_ERR(trans);
4761 
4762 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4763 	if (ret) {
4764 		btrfs_abort_transaction(trans, root, ret);
4765 		btrfs_end_transaction(trans, root);
4766 		return ret;
4767 	}
4768 
4769 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4770 				       0, 0, len, 0, len, 0, 0, 0);
4771 	if (ret)
4772 		btrfs_abort_transaction(trans, root, ret);
4773 	else
4774 		btrfs_update_inode(trans, root, inode);
4775 	btrfs_end_transaction(trans, root);
4776 	return ret;
4777 }
4778 
4779 /*
4780  * This function puts in dummy file extents for the area we're creating a hole
4781  * for.  So if we are truncating this file to a larger size we need to insert
4782  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4783  * the range between oldsize and size
4784  */
4785 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4786 {
4787 	struct btrfs_root *root = BTRFS_I(inode)->root;
4788 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4789 	struct extent_map *em = NULL;
4790 	struct extent_state *cached_state = NULL;
4791 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4792 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4793 	u64 block_end = ALIGN(size, root->sectorsize);
4794 	u64 last_byte;
4795 	u64 cur_offset;
4796 	u64 hole_size;
4797 	int err = 0;
4798 
4799 	/*
4800 	 * If our size started in the middle of a block we need to zero out the
4801 	 * rest of the block before we expand the i_size, otherwise we could
4802 	 * expose stale data.
4803 	 */
4804 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4805 	if (err)
4806 		return err;
4807 
4808 	if (size <= hole_start)
4809 		return 0;
4810 
4811 	while (1) {
4812 		struct btrfs_ordered_extent *ordered;
4813 
4814 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4815 				 &cached_state);
4816 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4817 						     block_end - hole_start);
4818 		if (!ordered)
4819 			break;
4820 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4821 				     &cached_state, GFP_NOFS);
4822 		btrfs_start_ordered_extent(inode, ordered, 1);
4823 		btrfs_put_ordered_extent(ordered);
4824 	}
4825 
4826 	cur_offset = hole_start;
4827 	while (1) {
4828 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4829 				block_end - cur_offset, 0);
4830 		if (IS_ERR(em)) {
4831 			err = PTR_ERR(em);
4832 			em = NULL;
4833 			break;
4834 		}
4835 		last_byte = min(extent_map_end(em), block_end);
4836 		last_byte = ALIGN(last_byte , root->sectorsize);
4837 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4838 			struct extent_map *hole_em;
4839 			hole_size = last_byte - cur_offset;
4840 
4841 			err = maybe_insert_hole(root, inode, cur_offset,
4842 						hole_size);
4843 			if (err)
4844 				break;
4845 			btrfs_drop_extent_cache(inode, cur_offset,
4846 						cur_offset + hole_size - 1, 0);
4847 			hole_em = alloc_extent_map();
4848 			if (!hole_em) {
4849 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4850 					&BTRFS_I(inode)->runtime_flags);
4851 				goto next;
4852 			}
4853 			hole_em->start = cur_offset;
4854 			hole_em->len = hole_size;
4855 			hole_em->orig_start = cur_offset;
4856 
4857 			hole_em->block_start = EXTENT_MAP_HOLE;
4858 			hole_em->block_len = 0;
4859 			hole_em->orig_block_len = 0;
4860 			hole_em->ram_bytes = hole_size;
4861 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4862 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4863 			hole_em->generation = root->fs_info->generation;
4864 
4865 			while (1) {
4866 				write_lock(&em_tree->lock);
4867 				err = add_extent_mapping(em_tree, hole_em, 1);
4868 				write_unlock(&em_tree->lock);
4869 				if (err != -EEXIST)
4870 					break;
4871 				btrfs_drop_extent_cache(inode, cur_offset,
4872 							cur_offset +
4873 							hole_size - 1, 0);
4874 			}
4875 			free_extent_map(hole_em);
4876 		}
4877 next:
4878 		free_extent_map(em);
4879 		em = NULL;
4880 		cur_offset = last_byte;
4881 		if (cur_offset >= block_end)
4882 			break;
4883 	}
4884 	free_extent_map(em);
4885 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4886 			     GFP_NOFS);
4887 	return err;
4888 }
4889 
4890 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4891 {
4892 	struct btrfs_root *root = BTRFS_I(inode)->root;
4893 	struct btrfs_trans_handle *trans;
4894 	loff_t oldsize = i_size_read(inode);
4895 	loff_t newsize = attr->ia_size;
4896 	int mask = attr->ia_valid;
4897 	int ret;
4898 
4899 	/*
4900 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4901 	 * special case where we need to update the times despite not having
4902 	 * these flags set.  For all other operations the VFS set these flags
4903 	 * explicitly if it wants a timestamp update.
4904 	 */
4905 	if (newsize != oldsize) {
4906 		inode_inc_iversion(inode);
4907 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4908 			inode->i_ctime = inode->i_mtime =
4909 				current_fs_time(inode->i_sb);
4910 	}
4911 
4912 	if (newsize > oldsize) {
4913 		/*
4914 		 * Don't do an expanding truncate while snapshoting is ongoing.
4915 		 * This is to ensure the snapshot captures a fully consistent
4916 		 * state of this file - if the snapshot captures this expanding
4917 		 * truncation, it must capture all writes that happened before
4918 		 * this truncation.
4919 		 */
4920 		btrfs_wait_for_snapshot_creation(root);
4921 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4922 		if (ret) {
4923 			btrfs_end_write_no_snapshoting(root);
4924 			return ret;
4925 		}
4926 
4927 		trans = btrfs_start_transaction(root, 1);
4928 		if (IS_ERR(trans)) {
4929 			btrfs_end_write_no_snapshoting(root);
4930 			return PTR_ERR(trans);
4931 		}
4932 
4933 		i_size_write(inode, newsize);
4934 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4935 		pagecache_isize_extended(inode, oldsize, newsize);
4936 		ret = btrfs_update_inode(trans, root, inode);
4937 		btrfs_end_write_no_snapshoting(root);
4938 		btrfs_end_transaction(trans, root);
4939 	} else {
4940 
4941 		/*
4942 		 * We're truncating a file that used to have good data down to
4943 		 * zero. Make sure it gets into the ordered flush list so that
4944 		 * any new writes get down to disk quickly.
4945 		 */
4946 		if (newsize == 0)
4947 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4948 				&BTRFS_I(inode)->runtime_flags);
4949 
4950 		/*
4951 		 * 1 for the orphan item we're going to add
4952 		 * 1 for the orphan item deletion.
4953 		 */
4954 		trans = btrfs_start_transaction(root, 2);
4955 		if (IS_ERR(trans))
4956 			return PTR_ERR(trans);
4957 
4958 		/*
4959 		 * We need to do this in case we fail at _any_ point during the
4960 		 * actual truncate.  Once we do the truncate_setsize we could
4961 		 * invalidate pages which forces any outstanding ordered io to
4962 		 * be instantly completed which will give us extents that need
4963 		 * to be truncated.  If we fail to get an orphan inode down we
4964 		 * could have left over extents that were never meant to live,
4965 		 * so we need to garuntee from this point on that everything
4966 		 * will be consistent.
4967 		 */
4968 		ret = btrfs_orphan_add(trans, inode);
4969 		btrfs_end_transaction(trans, root);
4970 		if (ret)
4971 			return ret;
4972 
4973 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4974 		truncate_setsize(inode, newsize);
4975 
4976 		/* Disable nonlocked read DIO to avoid the end less truncate */
4977 		btrfs_inode_block_unlocked_dio(inode);
4978 		inode_dio_wait(inode);
4979 		btrfs_inode_resume_unlocked_dio(inode);
4980 
4981 		ret = btrfs_truncate(inode);
4982 		if (ret && inode->i_nlink) {
4983 			int err;
4984 
4985 			/*
4986 			 * failed to truncate, disk_i_size is only adjusted down
4987 			 * as we remove extents, so it should represent the true
4988 			 * size of the inode, so reset the in memory size and
4989 			 * delete our orphan entry.
4990 			 */
4991 			trans = btrfs_join_transaction(root);
4992 			if (IS_ERR(trans)) {
4993 				btrfs_orphan_del(NULL, inode);
4994 				return ret;
4995 			}
4996 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4997 			err = btrfs_orphan_del(trans, inode);
4998 			if (err)
4999 				btrfs_abort_transaction(trans, root, err);
5000 			btrfs_end_transaction(trans, root);
5001 		}
5002 	}
5003 
5004 	return ret;
5005 }
5006 
5007 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5008 {
5009 	struct inode *inode = d_inode(dentry);
5010 	struct btrfs_root *root = BTRFS_I(inode)->root;
5011 	int err;
5012 
5013 	if (btrfs_root_readonly(root))
5014 		return -EROFS;
5015 
5016 	err = inode_change_ok(inode, attr);
5017 	if (err)
5018 		return err;
5019 
5020 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5021 		err = btrfs_setsize(inode, attr);
5022 		if (err)
5023 			return err;
5024 	}
5025 
5026 	if (attr->ia_valid) {
5027 		setattr_copy(inode, attr);
5028 		inode_inc_iversion(inode);
5029 		err = btrfs_dirty_inode(inode);
5030 
5031 		if (!err && attr->ia_valid & ATTR_MODE)
5032 			err = posix_acl_chmod(inode, inode->i_mode);
5033 	}
5034 
5035 	return err;
5036 }
5037 
5038 /*
5039  * While truncating the inode pages during eviction, we get the VFS calling
5040  * btrfs_invalidatepage() against each page of the inode. This is slow because
5041  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5042  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5043  * extent_state structures over and over, wasting lots of time.
5044  *
5045  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5046  * those expensive operations on a per page basis and do only the ordered io
5047  * finishing, while we release here the extent_map and extent_state structures,
5048  * without the excessive merging and splitting.
5049  */
5050 static void evict_inode_truncate_pages(struct inode *inode)
5051 {
5052 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5053 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5054 	struct rb_node *node;
5055 
5056 	ASSERT(inode->i_state & I_FREEING);
5057 	truncate_inode_pages_final(&inode->i_data);
5058 
5059 	write_lock(&map_tree->lock);
5060 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5061 		struct extent_map *em;
5062 
5063 		node = rb_first(&map_tree->map);
5064 		em = rb_entry(node, struct extent_map, rb_node);
5065 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5066 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5067 		remove_extent_mapping(map_tree, em);
5068 		free_extent_map(em);
5069 		if (need_resched()) {
5070 			write_unlock(&map_tree->lock);
5071 			cond_resched();
5072 			write_lock(&map_tree->lock);
5073 		}
5074 	}
5075 	write_unlock(&map_tree->lock);
5076 
5077 	/*
5078 	 * Keep looping until we have no more ranges in the io tree.
5079 	 * We can have ongoing bios started by readpages (called from readahead)
5080 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5081 	 * still in progress (unlocked the pages in the bio but did not yet
5082 	 * unlocked the ranges in the io tree). Therefore this means some
5083 	 * ranges can still be locked and eviction started because before
5084 	 * submitting those bios, which are executed by a separate task (work
5085 	 * queue kthread), inode references (inode->i_count) were not taken
5086 	 * (which would be dropped in the end io callback of each bio).
5087 	 * Therefore here we effectively end up waiting for those bios and
5088 	 * anyone else holding locked ranges without having bumped the inode's
5089 	 * reference count - if we don't do it, when they access the inode's
5090 	 * io_tree to unlock a range it may be too late, leading to an
5091 	 * use-after-free issue.
5092 	 */
5093 	spin_lock(&io_tree->lock);
5094 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5095 		struct extent_state *state;
5096 		struct extent_state *cached_state = NULL;
5097 		u64 start;
5098 		u64 end;
5099 
5100 		node = rb_first(&io_tree->state);
5101 		state = rb_entry(node, struct extent_state, rb_node);
5102 		start = state->start;
5103 		end = state->end;
5104 		spin_unlock(&io_tree->lock);
5105 
5106 		lock_extent_bits(io_tree, start, end, &cached_state);
5107 
5108 		/*
5109 		 * If still has DELALLOC flag, the extent didn't reach disk,
5110 		 * and its reserved space won't be freed by delayed_ref.
5111 		 * So we need to free its reserved space here.
5112 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5113 		 *
5114 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5115 		 */
5116 		if (state->state & EXTENT_DELALLOC)
5117 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5118 
5119 		clear_extent_bit(io_tree, start, end,
5120 				 EXTENT_LOCKED | EXTENT_DIRTY |
5121 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5122 				 EXTENT_DEFRAG, 1, 1,
5123 				 &cached_state, GFP_NOFS);
5124 
5125 		cond_resched();
5126 		spin_lock(&io_tree->lock);
5127 	}
5128 	spin_unlock(&io_tree->lock);
5129 }
5130 
5131 void btrfs_evict_inode(struct inode *inode)
5132 {
5133 	struct btrfs_trans_handle *trans;
5134 	struct btrfs_root *root = BTRFS_I(inode)->root;
5135 	struct btrfs_block_rsv *rsv, *global_rsv;
5136 	int steal_from_global = 0;
5137 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5138 	int ret;
5139 
5140 	trace_btrfs_inode_evict(inode);
5141 
5142 	evict_inode_truncate_pages(inode);
5143 
5144 	if (inode->i_nlink &&
5145 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5146 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5147 	     btrfs_is_free_space_inode(inode)))
5148 		goto no_delete;
5149 
5150 	if (is_bad_inode(inode)) {
5151 		btrfs_orphan_del(NULL, inode);
5152 		goto no_delete;
5153 	}
5154 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5155 	if (!special_file(inode->i_mode))
5156 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5157 
5158 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5159 
5160 	if (root->fs_info->log_root_recovering) {
5161 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5162 				 &BTRFS_I(inode)->runtime_flags));
5163 		goto no_delete;
5164 	}
5165 
5166 	if (inode->i_nlink > 0) {
5167 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5168 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5169 		goto no_delete;
5170 	}
5171 
5172 	ret = btrfs_commit_inode_delayed_inode(inode);
5173 	if (ret) {
5174 		btrfs_orphan_del(NULL, inode);
5175 		goto no_delete;
5176 	}
5177 
5178 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5179 	if (!rsv) {
5180 		btrfs_orphan_del(NULL, inode);
5181 		goto no_delete;
5182 	}
5183 	rsv->size = min_size;
5184 	rsv->failfast = 1;
5185 	global_rsv = &root->fs_info->global_block_rsv;
5186 
5187 	btrfs_i_size_write(inode, 0);
5188 
5189 	/*
5190 	 * This is a bit simpler than btrfs_truncate since we've already
5191 	 * reserved our space for our orphan item in the unlink, so we just
5192 	 * need to reserve some slack space in case we add bytes and update
5193 	 * inode item when doing the truncate.
5194 	 */
5195 	while (1) {
5196 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5197 					     BTRFS_RESERVE_FLUSH_LIMIT);
5198 
5199 		/*
5200 		 * Try and steal from the global reserve since we will
5201 		 * likely not use this space anyway, we want to try as
5202 		 * hard as possible to get this to work.
5203 		 */
5204 		if (ret)
5205 			steal_from_global++;
5206 		else
5207 			steal_from_global = 0;
5208 		ret = 0;
5209 
5210 		/*
5211 		 * steal_from_global == 0: we reserved stuff, hooray!
5212 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5213 		 * steal_from_global == 2: we've committed, still not a lot of
5214 		 * room but maybe we'll have room in the global reserve this
5215 		 * time.
5216 		 * steal_from_global == 3: abandon all hope!
5217 		 */
5218 		if (steal_from_global > 2) {
5219 			btrfs_warn(root->fs_info,
5220 				"Could not get space for a delete, will truncate on mount %d",
5221 				ret);
5222 			btrfs_orphan_del(NULL, inode);
5223 			btrfs_free_block_rsv(root, rsv);
5224 			goto no_delete;
5225 		}
5226 
5227 		trans = btrfs_join_transaction(root);
5228 		if (IS_ERR(trans)) {
5229 			btrfs_orphan_del(NULL, inode);
5230 			btrfs_free_block_rsv(root, rsv);
5231 			goto no_delete;
5232 		}
5233 
5234 		/*
5235 		 * We can't just steal from the global reserve, we need tomake
5236 		 * sure there is room to do it, if not we need to commit and try
5237 		 * again.
5238 		 */
5239 		if (steal_from_global) {
5240 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5241 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5242 							      min_size);
5243 			else
5244 				ret = -ENOSPC;
5245 		}
5246 
5247 		/*
5248 		 * Couldn't steal from the global reserve, we have too much
5249 		 * pending stuff built up, commit the transaction and try it
5250 		 * again.
5251 		 */
5252 		if (ret) {
5253 			ret = btrfs_commit_transaction(trans, root);
5254 			if (ret) {
5255 				btrfs_orphan_del(NULL, inode);
5256 				btrfs_free_block_rsv(root, rsv);
5257 				goto no_delete;
5258 			}
5259 			continue;
5260 		} else {
5261 			steal_from_global = 0;
5262 		}
5263 
5264 		trans->block_rsv = rsv;
5265 
5266 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5267 		if (ret != -ENOSPC && ret != -EAGAIN)
5268 			break;
5269 
5270 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5271 		btrfs_end_transaction(trans, root);
5272 		trans = NULL;
5273 		btrfs_btree_balance_dirty(root);
5274 	}
5275 
5276 	btrfs_free_block_rsv(root, rsv);
5277 
5278 	/*
5279 	 * Errors here aren't a big deal, it just means we leave orphan items
5280 	 * in the tree.  They will be cleaned up on the next mount.
5281 	 */
5282 	if (ret == 0) {
5283 		trans->block_rsv = root->orphan_block_rsv;
5284 		btrfs_orphan_del(trans, inode);
5285 	} else {
5286 		btrfs_orphan_del(NULL, inode);
5287 	}
5288 
5289 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5290 	if (!(root == root->fs_info->tree_root ||
5291 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5292 		btrfs_return_ino(root, btrfs_ino(inode));
5293 
5294 	btrfs_end_transaction(trans, root);
5295 	btrfs_btree_balance_dirty(root);
5296 no_delete:
5297 	btrfs_remove_delayed_node(inode);
5298 	clear_inode(inode);
5299 }
5300 
5301 /*
5302  * this returns the key found in the dir entry in the location pointer.
5303  * If no dir entries were found, location->objectid is 0.
5304  */
5305 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5306 			       struct btrfs_key *location)
5307 {
5308 	const char *name = dentry->d_name.name;
5309 	int namelen = dentry->d_name.len;
5310 	struct btrfs_dir_item *di;
5311 	struct btrfs_path *path;
5312 	struct btrfs_root *root = BTRFS_I(dir)->root;
5313 	int ret = 0;
5314 
5315 	path = btrfs_alloc_path();
5316 	if (!path)
5317 		return -ENOMEM;
5318 
5319 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5320 				    namelen, 0);
5321 	if (IS_ERR(di))
5322 		ret = PTR_ERR(di);
5323 
5324 	if (IS_ERR_OR_NULL(di))
5325 		goto out_err;
5326 
5327 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5328 out:
5329 	btrfs_free_path(path);
5330 	return ret;
5331 out_err:
5332 	location->objectid = 0;
5333 	goto out;
5334 }
5335 
5336 /*
5337  * when we hit a tree root in a directory, the btrfs part of the inode
5338  * needs to be changed to reflect the root directory of the tree root.  This
5339  * is kind of like crossing a mount point.
5340  */
5341 static int fixup_tree_root_location(struct btrfs_root *root,
5342 				    struct inode *dir,
5343 				    struct dentry *dentry,
5344 				    struct btrfs_key *location,
5345 				    struct btrfs_root **sub_root)
5346 {
5347 	struct btrfs_path *path;
5348 	struct btrfs_root *new_root;
5349 	struct btrfs_root_ref *ref;
5350 	struct extent_buffer *leaf;
5351 	struct btrfs_key key;
5352 	int ret;
5353 	int err = 0;
5354 
5355 	path = btrfs_alloc_path();
5356 	if (!path) {
5357 		err = -ENOMEM;
5358 		goto out;
5359 	}
5360 
5361 	err = -ENOENT;
5362 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5363 	key.type = BTRFS_ROOT_REF_KEY;
5364 	key.offset = location->objectid;
5365 
5366 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5367 				0, 0);
5368 	if (ret) {
5369 		if (ret < 0)
5370 			err = ret;
5371 		goto out;
5372 	}
5373 
5374 	leaf = path->nodes[0];
5375 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5376 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5377 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5378 		goto out;
5379 
5380 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5381 				   (unsigned long)(ref + 1),
5382 				   dentry->d_name.len);
5383 	if (ret)
5384 		goto out;
5385 
5386 	btrfs_release_path(path);
5387 
5388 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5389 	if (IS_ERR(new_root)) {
5390 		err = PTR_ERR(new_root);
5391 		goto out;
5392 	}
5393 
5394 	*sub_root = new_root;
5395 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5396 	location->type = BTRFS_INODE_ITEM_KEY;
5397 	location->offset = 0;
5398 	err = 0;
5399 out:
5400 	btrfs_free_path(path);
5401 	return err;
5402 }
5403 
5404 static void inode_tree_add(struct inode *inode)
5405 {
5406 	struct btrfs_root *root = BTRFS_I(inode)->root;
5407 	struct btrfs_inode *entry;
5408 	struct rb_node **p;
5409 	struct rb_node *parent;
5410 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5411 	u64 ino = btrfs_ino(inode);
5412 
5413 	if (inode_unhashed(inode))
5414 		return;
5415 	parent = NULL;
5416 	spin_lock(&root->inode_lock);
5417 	p = &root->inode_tree.rb_node;
5418 	while (*p) {
5419 		parent = *p;
5420 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5421 
5422 		if (ino < btrfs_ino(&entry->vfs_inode))
5423 			p = &parent->rb_left;
5424 		else if (ino > btrfs_ino(&entry->vfs_inode))
5425 			p = &parent->rb_right;
5426 		else {
5427 			WARN_ON(!(entry->vfs_inode.i_state &
5428 				  (I_WILL_FREE | I_FREEING)));
5429 			rb_replace_node(parent, new, &root->inode_tree);
5430 			RB_CLEAR_NODE(parent);
5431 			spin_unlock(&root->inode_lock);
5432 			return;
5433 		}
5434 	}
5435 	rb_link_node(new, parent, p);
5436 	rb_insert_color(new, &root->inode_tree);
5437 	spin_unlock(&root->inode_lock);
5438 }
5439 
5440 static void inode_tree_del(struct inode *inode)
5441 {
5442 	struct btrfs_root *root = BTRFS_I(inode)->root;
5443 	int empty = 0;
5444 
5445 	spin_lock(&root->inode_lock);
5446 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5447 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5448 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5449 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5450 	}
5451 	spin_unlock(&root->inode_lock);
5452 
5453 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5454 		synchronize_srcu(&root->fs_info->subvol_srcu);
5455 		spin_lock(&root->inode_lock);
5456 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5457 		spin_unlock(&root->inode_lock);
5458 		if (empty)
5459 			btrfs_add_dead_root(root);
5460 	}
5461 }
5462 
5463 void btrfs_invalidate_inodes(struct btrfs_root *root)
5464 {
5465 	struct rb_node *node;
5466 	struct rb_node *prev;
5467 	struct btrfs_inode *entry;
5468 	struct inode *inode;
5469 	u64 objectid = 0;
5470 
5471 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5472 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5473 
5474 	spin_lock(&root->inode_lock);
5475 again:
5476 	node = root->inode_tree.rb_node;
5477 	prev = NULL;
5478 	while (node) {
5479 		prev = node;
5480 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5481 
5482 		if (objectid < btrfs_ino(&entry->vfs_inode))
5483 			node = node->rb_left;
5484 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5485 			node = node->rb_right;
5486 		else
5487 			break;
5488 	}
5489 	if (!node) {
5490 		while (prev) {
5491 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5492 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5493 				node = prev;
5494 				break;
5495 			}
5496 			prev = rb_next(prev);
5497 		}
5498 	}
5499 	while (node) {
5500 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5501 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5502 		inode = igrab(&entry->vfs_inode);
5503 		if (inode) {
5504 			spin_unlock(&root->inode_lock);
5505 			if (atomic_read(&inode->i_count) > 1)
5506 				d_prune_aliases(inode);
5507 			/*
5508 			 * btrfs_drop_inode will have it removed from
5509 			 * the inode cache when its usage count
5510 			 * hits zero.
5511 			 */
5512 			iput(inode);
5513 			cond_resched();
5514 			spin_lock(&root->inode_lock);
5515 			goto again;
5516 		}
5517 
5518 		if (cond_resched_lock(&root->inode_lock))
5519 			goto again;
5520 
5521 		node = rb_next(node);
5522 	}
5523 	spin_unlock(&root->inode_lock);
5524 }
5525 
5526 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5527 {
5528 	struct btrfs_iget_args *args = p;
5529 	inode->i_ino = args->location->objectid;
5530 	memcpy(&BTRFS_I(inode)->location, args->location,
5531 	       sizeof(*args->location));
5532 	BTRFS_I(inode)->root = args->root;
5533 	return 0;
5534 }
5535 
5536 static int btrfs_find_actor(struct inode *inode, void *opaque)
5537 {
5538 	struct btrfs_iget_args *args = opaque;
5539 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5540 		args->root == BTRFS_I(inode)->root;
5541 }
5542 
5543 static struct inode *btrfs_iget_locked(struct super_block *s,
5544 				       struct btrfs_key *location,
5545 				       struct btrfs_root *root)
5546 {
5547 	struct inode *inode;
5548 	struct btrfs_iget_args args;
5549 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5550 
5551 	args.location = location;
5552 	args.root = root;
5553 
5554 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5555 			     btrfs_init_locked_inode,
5556 			     (void *)&args);
5557 	return inode;
5558 }
5559 
5560 /* Get an inode object given its location and corresponding root.
5561  * Returns in *is_new if the inode was read from disk
5562  */
5563 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5564 			 struct btrfs_root *root, int *new)
5565 {
5566 	struct inode *inode;
5567 
5568 	inode = btrfs_iget_locked(s, location, root);
5569 	if (!inode)
5570 		return ERR_PTR(-ENOMEM);
5571 
5572 	if (inode->i_state & I_NEW) {
5573 		btrfs_read_locked_inode(inode);
5574 		if (!is_bad_inode(inode)) {
5575 			inode_tree_add(inode);
5576 			unlock_new_inode(inode);
5577 			if (new)
5578 				*new = 1;
5579 		} else {
5580 			unlock_new_inode(inode);
5581 			iput(inode);
5582 			inode = ERR_PTR(-ESTALE);
5583 		}
5584 	}
5585 
5586 	return inode;
5587 }
5588 
5589 static struct inode *new_simple_dir(struct super_block *s,
5590 				    struct btrfs_key *key,
5591 				    struct btrfs_root *root)
5592 {
5593 	struct inode *inode = new_inode(s);
5594 
5595 	if (!inode)
5596 		return ERR_PTR(-ENOMEM);
5597 
5598 	BTRFS_I(inode)->root = root;
5599 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5600 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5601 
5602 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5603 	inode->i_op = &btrfs_dir_ro_inode_operations;
5604 	inode->i_fop = &simple_dir_operations;
5605 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5606 	inode->i_mtime = current_fs_time(inode->i_sb);
5607 	inode->i_atime = inode->i_mtime;
5608 	inode->i_ctime = inode->i_mtime;
5609 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5610 
5611 	return inode;
5612 }
5613 
5614 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5615 {
5616 	struct inode *inode;
5617 	struct btrfs_root *root = BTRFS_I(dir)->root;
5618 	struct btrfs_root *sub_root = root;
5619 	struct btrfs_key location;
5620 	int index;
5621 	int ret = 0;
5622 
5623 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5624 		return ERR_PTR(-ENAMETOOLONG);
5625 
5626 	ret = btrfs_inode_by_name(dir, dentry, &location);
5627 	if (ret < 0)
5628 		return ERR_PTR(ret);
5629 
5630 	if (location.objectid == 0)
5631 		return ERR_PTR(-ENOENT);
5632 
5633 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5634 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5635 		return inode;
5636 	}
5637 
5638 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5639 
5640 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5641 	ret = fixup_tree_root_location(root, dir, dentry,
5642 				       &location, &sub_root);
5643 	if (ret < 0) {
5644 		if (ret != -ENOENT)
5645 			inode = ERR_PTR(ret);
5646 		else
5647 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5648 	} else {
5649 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5650 	}
5651 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5652 
5653 	if (!IS_ERR(inode) && root != sub_root) {
5654 		down_read(&root->fs_info->cleanup_work_sem);
5655 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5656 			ret = btrfs_orphan_cleanup(sub_root);
5657 		up_read(&root->fs_info->cleanup_work_sem);
5658 		if (ret) {
5659 			iput(inode);
5660 			inode = ERR_PTR(ret);
5661 		}
5662 	}
5663 
5664 	return inode;
5665 }
5666 
5667 static int btrfs_dentry_delete(const struct dentry *dentry)
5668 {
5669 	struct btrfs_root *root;
5670 	struct inode *inode = d_inode(dentry);
5671 
5672 	if (!inode && !IS_ROOT(dentry))
5673 		inode = d_inode(dentry->d_parent);
5674 
5675 	if (inode) {
5676 		root = BTRFS_I(inode)->root;
5677 		if (btrfs_root_refs(&root->root_item) == 0)
5678 			return 1;
5679 
5680 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5681 			return 1;
5682 	}
5683 	return 0;
5684 }
5685 
5686 static void btrfs_dentry_release(struct dentry *dentry)
5687 {
5688 	kfree(dentry->d_fsdata);
5689 }
5690 
5691 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5692 				   unsigned int flags)
5693 {
5694 	struct inode *inode;
5695 
5696 	inode = btrfs_lookup_dentry(dir, dentry);
5697 	if (IS_ERR(inode)) {
5698 		if (PTR_ERR(inode) == -ENOENT)
5699 			inode = NULL;
5700 		else
5701 			return ERR_CAST(inode);
5702 	}
5703 
5704 	return d_splice_alias(inode, dentry);
5705 }
5706 
5707 unsigned char btrfs_filetype_table[] = {
5708 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5709 };
5710 
5711 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5712 {
5713 	struct inode *inode = file_inode(file);
5714 	struct btrfs_root *root = BTRFS_I(inode)->root;
5715 	struct btrfs_item *item;
5716 	struct btrfs_dir_item *di;
5717 	struct btrfs_key key;
5718 	struct btrfs_key found_key;
5719 	struct btrfs_path *path;
5720 	struct list_head ins_list;
5721 	struct list_head del_list;
5722 	int ret;
5723 	struct extent_buffer *leaf;
5724 	int slot;
5725 	unsigned char d_type;
5726 	int over = 0;
5727 	u32 di_cur;
5728 	u32 di_total;
5729 	u32 di_len;
5730 	int key_type = BTRFS_DIR_INDEX_KEY;
5731 	char tmp_name[32];
5732 	char *name_ptr;
5733 	int name_len;
5734 	int is_curr = 0;	/* ctx->pos points to the current index? */
5735 	bool emitted;
5736 
5737 	/* FIXME, use a real flag for deciding about the key type */
5738 	if (root->fs_info->tree_root == root)
5739 		key_type = BTRFS_DIR_ITEM_KEY;
5740 
5741 	if (!dir_emit_dots(file, ctx))
5742 		return 0;
5743 
5744 	path = btrfs_alloc_path();
5745 	if (!path)
5746 		return -ENOMEM;
5747 
5748 	path->reada = READA_FORWARD;
5749 
5750 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5751 		INIT_LIST_HEAD(&ins_list);
5752 		INIT_LIST_HEAD(&del_list);
5753 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5754 	}
5755 
5756 	key.type = key_type;
5757 	key.offset = ctx->pos;
5758 	key.objectid = btrfs_ino(inode);
5759 
5760 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5761 	if (ret < 0)
5762 		goto err;
5763 
5764 	emitted = false;
5765 	while (1) {
5766 		leaf = path->nodes[0];
5767 		slot = path->slots[0];
5768 		if (slot >= btrfs_header_nritems(leaf)) {
5769 			ret = btrfs_next_leaf(root, path);
5770 			if (ret < 0)
5771 				goto err;
5772 			else if (ret > 0)
5773 				break;
5774 			continue;
5775 		}
5776 
5777 		item = btrfs_item_nr(slot);
5778 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5779 
5780 		if (found_key.objectid != key.objectid)
5781 			break;
5782 		if (found_key.type != key_type)
5783 			break;
5784 		if (found_key.offset < ctx->pos)
5785 			goto next;
5786 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5787 		    btrfs_should_delete_dir_index(&del_list,
5788 						  found_key.offset))
5789 			goto next;
5790 
5791 		ctx->pos = found_key.offset;
5792 		is_curr = 1;
5793 
5794 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5795 		di_cur = 0;
5796 		di_total = btrfs_item_size(leaf, item);
5797 
5798 		while (di_cur < di_total) {
5799 			struct btrfs_key location;
5800 
5801 			if (verify_dir_item(root, leaf, di))
5802 				break;
5803 
5804 			name_len = btrfs_dir_name_len(leaf, di);
5805 			if (name_len <= sizeof(tmp_name)) {
5806 				name_ptr = tmp_name;
5807 			} else {
5808 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5809 				if (!name_ptr) {
5810 					ret = -ENOMEM;
5811 					goto err;
5812 				}
5813 			}
5814 			read_extent_buffer(leaf, name_ptr,
5815 					   (unsigned long)(di + 1), name_len);
5816 
5817 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5818 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5819 
5820 
5821 			/* is this a reference to our own snapshot? If so
5822 			 * skip it.
5823 			 *
5824 			 * In contrast to old kernels, we insert the snapshot's
5825 			 * dir item and dir index after it has been created, so
5826 			 * we won't find a reference to our own snapshot. We
5827 			 * still keep the following code for backward
5828 			 * compatibility.
5829 			 */
5830 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5831 			    location.objectid == root->root_key.objectid) {
5832 				over = 0;
5833 				goto skip;
5834 			}
5835 			over = !dir_emit(ctx, name_ptr, name_len,
5836 				       location.objectid, d_type);
5837 
5838 skip:
5839 			if (name_ptr != tmp_name)
5840 				kfree(name_ptr);
5841 
5842 			if (over)
5843 				goto nopos;
5844 			emitted = true;
5845 			di_len = btrfs_dir_name_len(leaf, di) +
5846 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5847 			di_cur += di_len;
5848 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5849 		}
5850 next:
5851 		path->slots[0]++;
5852 	}
5853 
5854 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5855 		if (is_curr)
5856 			ctx->pos++;
5857 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5858 		if (ret)
5859 			goto nopos;
5860 	}
5861 
5862 	/*
5863 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5864 	 * it was was set to the termination value in previous call. We assume
5865 	 * that "." and ".." were emitted if we reach this point and set the
5866 	 * termination value as well for an empty directory.
5867 	 */
5868 	if (ctx->pos > 2 && !emitted)
5869 		goto nopos;
5870 
5871 	/* Reached end of directory/root. Bump pos past the last item. */
5872 	ctx->pos++;
5873 
5874 	/*
5875 	 * Stop new entries from being returned after we return the last
5876 	 * entry.
5877 	 *
5878 	 * New directory entries are assigned a strictly increasing
5879 	 * offset.  This means that new entries created during readdir
5880 	 * are *guaranteed* to be seen in the future by that readdir.
5881 	 * This has broken buggy programs which operate on names as
5882 	 * they're returned by readdir.  Until we re-use freed offsets
5883 	 * we have this hack to stop new entries from being returned
5884 	 * under the assumption that they'll never reach this huge
5885 	 * offset.
5886 	 *
5887 	 * This is being careful not to overflow 32bit loff_t unless the
5888 	 * last entry requires it because doing so has broken 32bit apps
5889 	 * in the past.
5890 	 */
5891 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5892 		if (ctx->pos >= INT_MAX)
5893 			ctx->pos = LLONG_MAX;
5894 		else
5895 			ctx->pos = INT_MAX;
5896 	}
5897 nopos:
5898 	ret = 0;
5899 err:
5900 	if (key_type == BTRFS_DIR_INDEX_KEY)
5901 		btrfs_put_delayed_items(&ins_list, &del_list);
5902 	btrfs_free_path(path);
5903 	return ret;
5904 }
5905 
5906 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5907 {
5908 	struct btrfs_root *root = BTRFS_I(inode)->root;
5909 	struct btrfs_trans_handle *trans;
5910 	int ret = 0;
5911 	bool nolock = false;
5912 
5913 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5914 		return 0;
5915 
5916 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5917 		nolock = true;
5918 
5919 	if (wbc->sync_mode == WB_SYNC_ALL) {
5920 		if (nolock)
5921 			trans = btrfs_join_transaction_nolock(root);
5922 		else
5923 			trans = btrfs_join_transaction(root);
5924 		if (IS_ERR(trans))
5925 			return PTR_ERR(trans);
5926 		ret = btrfs_commit_transaction(trans, root);
5927 	}
5928 	return ret;
5929 }
5930 
5931 /*
5932  * This is somewhat expensive, updating the tree every time the
5933  * inode changes.  But, it is most likely to find the inode in cache.
5934  * FIXME, needs more benchmarking...there are no reasons other than performance
5935  * to keep or drop this code.
5936  */
5937 static int btrfs_dirty_inode(struct inode *inode)
5938 {
5939 	struct btrfs_root *root = BTRFS_I(inode)->root;
5940 	struct btrfs_trans_handle *trans;
5941 	int ret;
5942 
5943 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5944 		return 0;
5945 
5946 	trans = btrfs_join_transaction(root);
5947 	if (IS_ERR(trans))
5948 		return PTR_ERR(trans);
5949 
5950 	ret = btrfs_update_inode(trans, root, inode);
5951 	if (ret && ret == -ENOSPC) {
5952 		/* whoops, lets try again with the full transaction */
5953 		btrfs_end_transaction(trans, root);
5954 		trans = btrfs_start_transaction(root, 1);
5955 		if (IS_ERR(trans))
5956 			return PTR_ERR(trans);
5957 
5958 		ret = btrfs_update_inode(trans, root, inode);
5959 	}
5960 	btrfs_end_transaction(trans, root);
5961 	if (BTRFS_I(inode)->delayed_node)
5962 		btrfs_balance_delayed_items(root);
5963 
5964 	return ret;
5965 }
5966 
5967 /*
5968  * This is a copy of file_update_time.  We need this so we can return error on
5969  * ENOSPC for updating the inode in the case of file write and mmap writes.
5970  */
5971 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5972 			     int flags)
5973 {
5974 	struct btrfs_root *root = BTRFS_I(inode)->root;
5975 
5976 	if (btrfs_root_readonly(root))
5977 		return -EROFS;
5978 
5979 	if (flags & S_VERSION)
5980 		inode_inc_iversion(inode);
5981 	if (flags & S_CTIME)
5982 		inode->i_ctime = *now;
5983 	if (flags & S_MTIME)
5984 		inode->i_mtime = *now;
5985 	if (flags & S_ATIME)
5986 		inode->i_atime = *now;
5987 	return btrfs_dirty_inode(inode);
5988 }
5989 
5990 /*
5991  * find the highest existing sequence number in a directory
5992  * and then set the in-memory index_cnt variable to reflect
5993  * free sequence numbers
5994  */
5995 static int btrfs_set_inode_index_count(struct inode *inode)
5996 {
5997 	struct btrfs_root *root = BTRFS_I(inode)->root;
5998 	struct btrfs_key key, found_key;
5999 	struct btrfs_path *path;
6000 	struct extent_buffer *leaf;
6001 	int ret;
6002 
6003 	key.objectid = btrfs_ino(inode);
6004 	key.type = BTRFS_DIR_INDEX_KEY;
6005 	key.offset = (u64)-1;
6006 
6007 	path = btrfs_alloc_path();
6008 	if (!path)
6009 		return -ENOMEM;
6010 
6011 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6012 	if (ret < 0)
6013 		goto out;
6014 	/* FIXME: we should be able to handle this */
6015 	if (ret == 0)
6016 		goto out;
6017 	ret = 0;
6018 
6019 	/*
6020 	 * MAGIC NUMBER EXPLANATION:
6021 	 * since we search a directory based on f_pos we have to start at 2
6022 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6023 	 * else has to start at 2
6024 	 */
6025 	if (path->slots[0] == 0) {
6026 		BTRFS_I(inode)->index_cnt = 2;
6027 		goto out;
6028 	}
6029 
6030 	path->slots[0]--;
6031 
6032 	leaf = path->nodes[0];
6033 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6034 
6035 	if (found_key.objectid != btrfs_ino(inode) ||
6036 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6037 		BTRFS_I(inode)->index_cnt = 2;
6038 		goto out;
6039 	}
6040 
6041 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6042 out:
6043 	btrfs_free_path(path);
6044 	return ret;
6045 }
6046 
6047 /*
6048  * helper to find a free sequence number in a given directory.  This current
6049  * code is very simple, later versions will do smarter things in the btree
6050  */
6051 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6052 {
6053 	int ret = 0;
6054 
6055 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6056 		ret = btrfs_inode_delayed_dir_index_count(dir);
6057 		if (ret) {
6058 			ret = btrfs_set_inode_index_count(dir);
6059 			if (ret)
6060 				return ret;
6061 		}
6062 	}
6063 
6064 	*index = BTRFS_I(dir)->index_cnt;
6065 	BTRFS_I(dir)->index_cnt++;
6066 
6067 	return ret;
6068 }
6069 
6070 static int btrfs_insert_inode_locked(struct inode *inode)
6071 {
6072 	struct btrfs_iget_args args;
6073 	args.location = &BTRFS_I(inode)->location;
6074 	args.root = BTRFS_I(inode)->root;
6075 
6076 	return insert_inode_locked4(inode,
6077 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6078 		   btrfs_find_actor, &args);
6079 }
6080 
6081 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6082 				     struct btrfs_root *root,
6083 				     struct inode *dir,
6084 				     const char *name, int name_len,
6085 				     u64 ref_objectid, u64 objectid,
6086 				     umode_t mode, u64 *index)
6087 {
6088 	struct inode *inode;
6089 	struct btrfs_inode_item *inode_item;
6090 	struct btrfs_key *location;
6091 	struct btrfs_path *path;
6092 	struct btrfs_inode_ref *ref;
6093 	struct btrfs_key key[2];
6094 	u32 sizes[2];
6095 	int nitems = name ? 2 : 1;
6096 	unsigned long ptr;
6097 	int ret;
6098 
6099 	path = btrfs_alloc_path();
6100 	if (!path)
6101 		return ERR_PTR(-ENOMEM);
6102 
6103 	inode = new_inode(root->fs_info->sb);
6104 	if (!inode) {
6105 		btrfs_free_path(path);
6106 		return ERR_PTR(-ENOMEM);
6107 	}
6108 
6109 	/*
6110 	 * O_TMPFILE, set link count to 0, so that after this point,
6111 	 * we fill in an inode item with the correct link count.
6112 	 */
6113 	if (!name)
6114 		set_nlink(inode, 0);
6115 
6116 	/*
6117 	 * we have to initialize this early, so we can reclaim the inode
6118 	 * number if we fail afterwards in this function.
6119 	 */
6120 	inode->i_ino = objectid;
6121 
6122 	if (dir && name) {
6123 		trace_btrfs_inode_request(dir);
6124 
6125 		ret = btrfs_set_inode_index(dir, index);
6126 		if (ret) {
6127 			btrfs_free_path(path);
6128 			iput(inode);
6129 			return ERR_PTR(ret);
6130 		}
6131 	} else if (dir) {
6132 		*index = 0;
6133 	}
6134 	/*
6135 	 * index_cnt is ignored for everything but a dir,
6136 	 * btrfs_get_inode_index_count has an explanation for the magic
6137 	 * number
6138 	 */
6139 	BTRFS_I(inode)->index_cnt = 2;
6140 	BTRFS_I(inode)->dir_index = *index;
6141 	BTRFS_I(inode)->root = root;
6142 	BTRFS_I(inode)->generation = trans->transid;
6143 	inode->i_generation = BTRFS_I(inode)->generation;
6144 
6145 	/*
6146 	 * We could have gotten an inode number from somebody who was fsynced
6147 	 * and then removed in this same transaction, so let's just set full
6148 	 * sync since it will be a full sync anyway and this will blow away the
6149 	 * old info in the log.
6150 	 */
6151 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6152 
6153 	key[0].objectid = objectid;
6154 	key[0].type = BTRFS_INODE_ITEM_KEY;
6155 	key[0].offset = 0;
6156 
6157 	sizes[0] = sizeof(struct btrfs_inode_item);
6158 
6159 	if (name) {
6160 		/*
6161 		 * Start new inodes with an inode_ref. This is slightly more
6162 		 * efficient for small numbers of hard links since they will
6163 		 * be packed into one item. Extended refs will kick in if we
6164 		 * add more hard links than can fit in the ref item.
6165 		 */
6166 		key[1].objectid = objectid;
6167 		key[1].type = BTRFS_INODE_REF_KEY;
6168 		key[1].offset = ref_objectid;
6169 
6170 		sizes[1] = name_len + sizeof(*ref);
6171 	}
6172 
6173 	location = &BTRFS_I(inode)->location;
6174 	location->objectid = objectid;
6175 	location->offset = 0;
6176 	location->type = BTRFS_INODE_ITEM_KEY;
6177 
6178 	ret = btrfs_insert_inode_locked(inode);
6179 	if (ret < 0)
6180 		goto fail;
6181 
6182 	path->leave_spinning = 1;
6183 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6184 	if (ret != 0)
6185 		goto fail_unlock;
6186 
6187 	inode_init_owner(inode, dir, mode);
6188 	inode_set_bytes(inode, 0);
6189 
6190 	inode->i_mtime = current_fs_time(inode->i_sb);
6191 	inode->i_atime = inode->i_mtime;
6192 	inode->i_ctime = inode->i_mtime;
6193 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6194 
6195 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6196 				  struct btrfs_inode_item);
6197 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6198 			     sizeof(*inode_item));
6199 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6200 
6201 	if (name) {
6202 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6203 				     struct btrfs_inode_ref);
6204 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6205 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6206 		ptr = (unsigned long)(ref + 1);
6207 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6208 	}
6209 
6210 	btrfs_mark_buffer_dirty(path->nodes[0]);
6211 	btrfs_free_path(path);
6212 
6213 	btrfs_inherit_iflags(inode, dir);
6214 
6215 	if (S_ISREG(mode)) {
6216 		if (btrfs_test_opt(root, NODATASUM))
6217 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6218 		if (btrfs_test_opt(root, NODATACOW))
6219 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6220 				BTRFS_INODE_NODATASUM;
6221 	}
6222 
6223 	inode_tree_add(inode);
6224 
6225 	trace_btrfs_inode_new(inode);
6226 	btrfs_set_inode_last_trans(trans, inode);
6227 
6228 	btrfs_update_root_times(trans, root);
6229 
6230 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6231 	if (ret)
6232 		btrfs_err(root->fs_info,
6233 			  "error inheriting props for ino %llu (root %llu): %d",
6234 			  btrfs_ino(inode), root->root_key.objectid, ret);
6235 
6236 	return inode;
6237 
6238 fail_unlock:
6239 	unlock_new_inode(inode);
6240 fail:
6241 	if (dir && name)
6242 		BTRFS_I(dir)->index_cnt--;
6243 	btrfs_free_path(path);
6244 	iput(inode);
6245 	return ERR_PTR(ret);
6246 }
6247 
6248 static inline u8 btrfs_inode_type(struct inode *inode)
6249 {
6250 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6251 }
6252 
6253 /*
6254  * utility function to add 'inode' into 'parent_inode' with
6255  * a give name and a given sequence number.
6256  * if 'add_backref' is true, also insert a backref from the
6257  * inode to the parent directory.
6258  */
6259 int btrfs_add_link(struct btrfs_trans_handle *trans,
6260 		   struct inode *parent_inode, struct inode *inode,
6261 		   const char *name, int name_len, int add_backref, u64 index)
6262 {
6263 	int ret = 0;
6264 	struct btrfs_key key;
6265 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6266 	u64 ino = btrfs_ino(inode);
6267 	u64 parent_ino = btrfs_ino(parent_inode);
6268 
6269 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6270 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6271 	} else {
6272 		key.objectid = ino;
6273 		key.type = BTRFS_INODE_ITEM_KEY;
6274 		key.offset = 0;
6275 	}
6276 
6277 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6278 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6279 					 key.objectid, root->root_key.objectid,
6280 					 parent_ino, index, name, name_len);
6281 	} else if (add_backref) {
6282 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6283 					     parent_ino, index);
6284 	}
6285 
6286 	/* Nothing to clean up yet */
6287 	if (ret)
6288 		return ret;
6289 
6290 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6291 				    parent_inode, &key,
6292 				    btrfs_inode_type(inode), index);
6293 	if (ret == -EEXIST || ret == -EOVERFLOW)
6294 		goto fail_dir_item;
6295 	else if (ret) {
6296 		btrfs_abort_transaction(trans, root, ret);
6297 		return ret;
6298 	}
6299 
6300 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6301 			   name_len * 2);
6302 	inode_inc_iversion(parent_inode);
6303 	parent_inode->i_mtime = parent_inode->i_ctime =
6304 		current_fs_time(parent_inode->i_sb);
6305 	ret = btrfs_update_inode(trans, root, parent_inode);
6306 	if (ret)
6307 		btrfs_abort_transaction(trans, root, ret);
6308 	return ret;
6309 
6310 fail_dir_item:
6311 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6312 		u64 local_index;
6313 		int err;
6314 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6315 				 key.objectid, root->root_key.objectid,
6316 				 parent_ino, &local_index, name, name_len);
6317 
6318 	} else if (add_backref) {
6319 		u64 local_index;
6320 		int err;
6321 
6322 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6323 					  ino, parent_ino, &local_index);
6324 	}
6325 	return ret;
6326 }
6327 
6328 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6329 			    struct inode *dir, struct dentry *dentry,
6330 			    struct inode *inode, int backref, u64 index)
6331 {
6332 	int err = btrfs_add_link(trans, dir, inode,
6333 				 dentry->d_name.name, dentry->d_name.len,
6334 				 backref, index);
6335 	if (err > 0)
6336 		err = -EEXIST;
6337 	return err;
6338 }
6339 
6340 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6341 			umode_t mode, dev_t rdev)
6342 {
6343 	struct btrfs_trans_handle *trans;
6344 	struct btrfs_root *root = BTRFS_I(dir)->root;
6345 	struct inode *inode = NULL;
6346 	int err;
6347 	int drop_inode = 0;
6348 	u64 objectid;
6349 	u64 index = 0;
6350 
6351 	/*
6352 	 * 2 for inode item and ref
6353 	 * 2 for dir items
6354 	 * 1 for xattr if selinux is on
6355 	 */
6356 	trans = btrfs_start_transaction(root, 5);
6357 	if (IS_ERR(trans))
6358 		return PTR_ERR(trans);
6359 
6360 	err = btrfs_find_free_ino(root, &objectid);
6361 	if (err)
6362 		goto out_unlock;
6363 
6364 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6365 				dentry->d_name.len, btrfs_ino(dir), objectid,
6366 				mode, &index);
6367 	if (IS_ERR(inode)) {
6368 		err = PTR_ERR(inode);
6369 		goto out_unlock;
6370 	}
6371 
6372 	/*
6373 	* If the active LSM wants to access the inode during
6374 	* d_instantiate it needs these. Smack checks to see
6375 	* if the filesystem supports xattrs by looking at the
6376 	* ops vector.
6377 	*/
6378 	inode->i_op = &btrfs_special_inode_operations;
6379 	init_special_inode(inode, inode->i_mode, rdev);
6380 
6381 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6382 	if (err)
6383 		goto out_unlock_inode;
6384 
6385 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6386 	if (err) {
6387 		goto out_unlock_inode;
6388 	} else {
6389 		btrfs_update_inode(trans, root, inode);
6390 		unlock_new_inode(inode);
6391 		d_instantiate(dentry, inode);
6392 	}
6393 
6394 out_unlock:
6395 	btrfs_end_transaction(trans, root);
6396 	btrfs_balance_delayed_items(root);
6397 	btrfs_btree_balance_dirty(root);
6398 	if (drop_inode) {
6399 		inode_dec_link_count(inode);
6400 		iput(inode);
6401 	}
6402 	return err;
6403 
6404 out_unlock_inode:
6405 	drop_inode = 1;
6406 	unlock_new_inode(inode);
6407 	goto out_unlock;
6408 
6409 }
6410 
6411 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6412 			umode_t mode, bool excl)
6413 {
6414 	struct btrfs_trans_handle *trans;
6415 	struct btrfs_root *root = BTRFS_I(dir)->root;
6416 	struct inode *inode = NULL;
6417 	int drop_inode_on_err = 0;
6418 	int err;
6419 	u64 objectid;
6420 	u64 index = 0;
6421 
6422 	/*
6423 	 * 2 for inode item and ref
6424 	 * 2 for dir items
6425 	 * 1 for xattr if selinux is on
6426 	 */
6427 	trans = btrfs_start_transaction(root, 5);
6428 	if (IS_ERR(trans))
6429 		return PTR_ERR(trans);
6430 
6431 	err = btrfs_find_free_ino(root, &objectid);
6432 	if (err)
6433 		goto out_unlock;
6434 
6435 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6436 				dentry->d_name.len, btrfs_ino(dir), objectid,
6437 				mode, &index);
6438 	if (IS_ERR(inode)) {
6439 		err = PTR_ERR(inode);
6440 		goto out_unlock;
6441 	}
6442 	drop_inode_on_err = 1;
6443 	/*
6444 	* If the active LSM wants to access the inode during
6445 	* d_instantiate it needs these. Smack checks to see
6446 	* if the filesystem supports xattrs by looking at the
6447 	* ops vector.
6448 	*/
6449 	inode->i_fop = &btrfs_file_operations;
6450 	inode->i_op = &btrfs_file_inode_operations;
6451 	inode->i_mapping->a_ops = &btrfs_aops;
6452 
6453 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6454 	if (err)
6455 		goto out_unlock_inode;
6456 
6457 	err = btrfs_update_inode(trans, root, inode);
6458 	if (err)
6459 		goto out_unlock_inode;
6460 
6461 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6462 	if (err)
6463 		goto out_unlock_inode;
6464 
6465 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6466 	unlock_new_inode(inode);
6467 	d_instantiate(dentry, inode);
6468 
6469 out_unlock:
6470 	btrfs_end_transaction(trans, root);
6471 	if (err && drop_inode_on_err) {
6472 		inode_dec_link_count(inode);
6473 		iput(inode);
6474 	}
6475 	btrfs_balance_delayed_items(root);
6476 	btrfs_btree_balance_dirty(root);
6477 	return err;
6478 
6479 out_unlock_inode:
6480 	unlock_new_inode(inode);
6481 	goto out_unlock;
6482 
6483 }
6484 
6485 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6486 		      struct dentry *dentry)
6487 {
6488 	struct btrfs_trans_handle *trans = NULL;
6489 	struct btrfs_root *root = BTRFS_I(dir)->root;
6490 	struct inode *inode = d_inode(old_dentry);
6491 	u64 index;
6492 	int err;
6493 	int drop_inode = 0;
6494 
6495 	/* do not allow sys_link's with other subvols of the same device */
6496 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6497 		return -EXDEV;
6498 
6499 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6500 		return -EMLINK;
6501 
6502 	err = btrfs_set_inode_index(dir, &index);
6503 	if (err)
6504 		goto fail;
6505 
6506 	/*
6507 	 * 2 items for inode and inode ref
6508 	 * 2 items for dir items
6509 	 * 1 item for parent inode
6510 	 */
6511 	trans = btrfs_start_transaction(root, 5);
6512 	if (IS_ERR(trans)) {
6513 		err = PTR_ERR(trans);
6514 		trans = NULL;
6515 		goto fail;
6516 	}
6517 
6518 	/* There are several dir indexes for this inode, clear the cache. */
6519 	BTRFS_I(inode)->dir_index = 0ULL;
6520 	inc_nlink(inode);
6521 	inode_inc_iversion(inode);
6522 	inode->i_ctime = current_fs_time(inode->i_sb);
6523 	ihold(inode);
6524 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6525 
6526 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6527 
6528 	if (err) {
6529 		drop_inode = 1;
6530 	} else {
6531 		struct dentry *parent = dentry->d_parent;
6532 		err = btrfs_update_inode(trans, root, inode);
6533 		if (err)
6534 			goto fail;
6535 		if (inode->i_nlink == 1) {
6536 			/*
6537 			 * If new hard link count is 1, it's a file created
6538 			 * with open(2) O_TMPFILE flag.
6539 			 */
6540 			err = btrfs_orphan_del(trans, inode);
6541 			if (err)
6542 				goto fail;
6543 		}
6544 		d_instantiate(dentry, inode);
6545 		btrfs_log_new_name(trans, inode, NULL, parent);
6546 	}
6547 
6548 	btrfs_balance_delayed_items(root);
6549 fail:
6550 	if (trans)
6551 		btrfs_end_transaction(trans, root);
6552 	if (drop_inode) {
6553 		inode_dec_link_count(inode);
6554 		iput(inode);
6555 	}
6556 	btrfs_btree_balance_dirty(root);
6557 	return err;
6558 }
6559 
6560 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6561 {
6562 	struct inode *inode = NULL;
6563 	struct btrfs_trans_handle *trans;
6564 	struct btrfs_root *root = BTRFS_I(dir)->root;
6565 	int err = 0;
6566 	int drop_on_err = 0;
6567 	u64 objectid = 0;
6568 	u64 index = 0;
6569 
6570 	/*
6571 	 * 2 items for inode and ref
6572 	 * 2 items for dir items
6573 	 * 1 for xattr if selinux is on
6574 	 */
6575 	trans = btrfs_start_transaction(root, 5);
6576 	if (IS_ERR(trans))
6577 		return PTR_ERR(trans);
6578 
6579 	err = btrfs_find_free_ino(root, &objectid);
6580 	if (err)
6581 		goto out_fail;
6582 
6583 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6584 				dentry->d_name.len, btrfs_ino(dir), objectid,
6585 				S_IFDIR | mode, &index);
6586 	if (IS_ERR(inode)) {
6587 		err = PTR_ERR(inode);
6588 		goto out_fail;
6589 	}
6590 
6591 	drop_on_err = 1;
6592 	/* these must be set before we unlock the inode */
6593 	inode->i_op = &btrfs_dir_inode_operations;
6594 	inode->i_fop = &btrfs_dir_file_operations;
6595 
6596 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6597 	if (err)
6598 		goto out_fail_inode;
6599 
6600 	btrfs_i_size_write(inode, 0);
6601 	err = btrfs_update_inode(trans, root, inode);
6602 	if (err)
6603 		goto out_fail_inode;
6604 
6605 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6606 			     dentry->d_name.len, 0, index);
6607 	if (err)
6608 		goto out_fail_inode;
6609 
6610 	d_instantiate(dentry, inode);
6611 	/*
6612 	 * mkdir is special.  We're unlocking after we call d_instantiate
6613 	 * to avoid a race with nfsd calling d_instantiate.
6614 	 */
6615 	unlock_new_inode(inode);
6616 	drop_on_err = 0;
6617 
6618 out_fail:
6619 	btrfs_end_transaction(trans, root);
6620 	if (drop_on_err) {
6621 		inode_dec_link_count(inode);
6622 		iput(inode);
6623 	}
6624 	btrfs_balance_delayed_items(root);
6625 	btrfs_btree_balance_dirty(root);
6626 	return err;
6627 
6628 out_fail_inode:
6629 	unlock_new_inode(inode);
6630 	goto out_fail;
6631 }
6632 
6633 /* Find next extent map of a given extent map, caller needs to ensure locks */
6634 static struct extent_map *next_extent_map(struct extent_map *em)
6635 {
6636 	struct rb_node *next;
6637 
6638 	next = rb_next(&em->rb_node);
6639 	if (!next)
6640 		return NULL;
6641 	return container_of(next, struct extent_map, rb_node);
6642 }
6643 
6644 static struct extent_map *prev_extent_map(struct extent_map *em)
6645 {
6646 	struct rb_node *prev;
6647 
6648 	prev = rb_prev(&em->rb_node);
6649 	if (!prev)
6650 		return NULL;
6651 	return container_of(prev, struct extent_map, rb_node);
6652 }
6653 
6654 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6655  * the existing extent is the nearest extent to map_start,
6656  * and an extent that you want to insert, deal with overlap and insert
6657  * the best fitted new extent into the tree.
6658  */
6659 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6660 				struct extent_map *existing,
6661 				struct extent_map *em,
6662 				u64 map_start)
6663 {
6664 	struct extent_map *prev;
6665 	struct extent_map *next;
6666 	u64 start;
6667 	u64 end;
6668 	u64 start_diff;
6669 
6670 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6671 
6672 	if (existing->start > map_start) {
6673 		next = existing;
6674 		prev = prev_extent_map(next);
6675 	} else {
6676 		prev = existing;
6677 		next = next_extent_map(prev);
6678 	}
6679 
6680 	start = prev ? extent_map_end(prev) : em->start;
6681 	start = max_t(u64, start, em->start);
6682 	end = next ? next->start : extent_map_end(em);
6683 	end = min_t(u64, end, extent_map_end(em));
6684 	start_diff = start - em->start;
6685 	em->start = start;
6686 	em->len = end - start;
6687 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6688 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6689 		em->block_start += start_diff;
6690 		em->block_len -= start_diff;
6691 	}
6692 	return add_extent_mapping(em_tree, em, 0);
6693 }
6694 
6695 static noinline int uncompress_inline(struct btrfs_path *path,
6696 				      struct page *page,
6697 				      size_t pg_offset, u64 extent_offset,
6698 				      struct btrfs_file_extent_item *item)
6699 {
6700 	int ret;
6701 	struct extent_buffer *leaf = path->nodes[0];
6702 	char *tmp;
6703 	size_t max_size;
6704 	unsigned long inline_size;
6705 	unsigned long ptr;
6706 	int compress_type;
6707 
6708 	WARN_ON(pg_offset != 0);
6709 	compress_type = btrfs_file_extent_compression(leaf, item);
6710 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6711 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6712 					btrfs_item_nr(path->slots[0]));
6713 	tmp = kmalloc(inline_size, GFP_NOFS);
6714 	if (!tmp)
6715 		return -ENOMEM;
6716 	ptr = btrfs_file_extent_inline_start(item);
6717 
6718 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6719 
6720 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6721 	ret = btrfs_decompress(compress_type, tmp, page,
6722 			       extent_offset, inline_size, max_size);
6723 	kfree(tmp);
6724 	return ret;
6725 }
6726 
6727 /*
6728  * a bit scary, this does extent mapping from logical file offset to the disk.
6729  * the ugly parts come from merging extents from the disk with the in-ram
6730  * representation.  This gets more complex because of the data=ordered code,
6731  * where the in-ram extents might be locked pending data=ordered completion.
6732  *
6733  * This also copies inline extents directly into the page.
6734  */
6735 
6736 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6737 				    size_t pg_offset, u64 start, u64 len,
6738 				    int create)
6739 {
6740 	int ret;
6741 	int err = 0;
6742 	u64 extent_start = 0;
6743 	u64 extent_end = 0;
6744 	u64 objectid = btrfs_ino(inode);
6745 	u32 found_type;
6746 	struct btrfs_path *path = NULL;
6747 	struct btrfs_root *root = BTRFS_I(inode)->root;
6748 	struct btrfs_file_extent_item *item;
6749 	struct extent_buffer *leaf;
6750 	struct btrfs_key found_key;
6751 	struct extent_map *em = NULL;
6752 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6753 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6754 	struct btrfs_trans_handle *trans = NULL;
6755 	const bool new_inline = !page || create;
6756 
6757 again:
6758 	read_lock(&em_tree->lock);
6759 	em = lookup_extent_mapping(em_tree, start, len);
6760 	if (em)
6761 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6762 	read_unlock(&em_tree->lock);
6763 
6764 	if (em) {
6765 		if (em->start > start || em->start + em->len <= start)
6766 			free_extent_map(em);
6767 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6768 			free_extent_map(em);
6769 		else
6770 			goto out;
6771 	}
6772 	em = alloc_extent_map();
6773 	if (!em) {
6774 		err = -ENOMEM;
6775 		goto out;
6776 	}
6777 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6778 	em->start = EXTENT_MAP_HOLE;
6779 	em->orig_start = EXTENT_MAP_HOLE;
6780 	em->len = (u64)-1;
6781 	em->block_len = (u64)-1;
6782 
6783 	if (!path) {
6784 		path = btrfs_alloc_path();
6785 		if (!path) {
6786 			err = -ENOMEM;
6787 			goto out;
6788 		}
6789 		/*
6790 		 * Chances are we'll be called again, so go ahead and do
6791 		 * readahead
6792 		 */
6793 		path->reada = READA_FORWARD;
6794 	}
6795 
6796 	ret = btrfs_lookup_file_extent(trans, root, path,
6797 				       objectid, start, trans != NULL);
6798 	if (ret < 0) {
6799 		err = ret;
6800 		goto out;
6801 	}
6802 
6803 	if (ret != 0) {
6804 		if (path->slots[0] == 0)
6805 			goto not_found;
6806 		path->slots[0]--;
6807 	}
6808 
6809 	leaf = path->nodes[0];
6810 	item = btrfs_item_ptr(leaf, path->slots[0],
6811 			      struct btrfs_file_extent_item);
6812 	/* are we inside the extent that was found? */
6813 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6814 	found_type = found_key.type;
6815 	if (found_key.objectid != objectid ||
6816 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6817 		/*
6818 		 * If we backup past the first extent we want to move forward
6819 		 * and see if there is an extent in front of us, otherwise we'll
6820 		 * say there is a hole for our whole search range which can
6821 		 * cause problems.
6822 		 */
6823 		extent_end = start;
6824 		goto next;
6825 	}
6826 
6827 	found_type = btrfs_file_extent_type(leaf, item);
6828 	extent_start = found_key.offset;
6829 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6830 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6831 		extent_end = extent_start +
6832 		       btrfs_file_extent_num_bytes(leaf, item);
6833 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6834 		size_t size;
6835 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6836 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6837 	}
6838 next:
6839 	if (start >= extent_end) {
6840 		path->slots[0]++;
6841 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6842 			ret = btrfs_next_leaf(root, path);
6843 			if (ret < 0) {
6844 				err = ret;
6845 				goto out;
6846 			}
6847 			if (ret > 0)
6848 				goto not_found;
6849 			leaf = path->nodes[0];
6850 		}
6851 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6852 		if (found_key.objectid != objectid ||
6853 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6854 			goto not_found;
6855 		if (start + len <= found_key.offset)
6856 			goto not_found;
6857 		if (start > found_key.offset)
6858 			goto next;
6859 		em->start = start;
6860 		em->orig_start = start;
6861 		em->len = found_key.offset - start;
6862 		goto not_found_em;
6863 	}
6864 
6865 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6866 
6867 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6868 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6869 		goto insert;
6870 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6871 		unsigned long ptr;
6872 		char *map;
6873 		size_t size;
6874 		size_t extent_offset;
6875 		size_t copy_size;
6876 
6877 		if (new_inline)
6878 			goto out;
6879 
6880 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6881 		extent_offset = page_offset(page) + pg_offset - extent_start;
6882 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6883 				  size - extent_offset);
6884 		em->start = extent_start + extent_offset;
6885 		em->len = ALIGN(copy_size, root->sectorsize);
6886 		em->orig_block_len = em->len;
6887 		em->orig_start = em->start;
6888 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6889 		if (create == 0 && !PageUptodate(page)) {
6890 			if (btrfs_file_extent_compression(leaf, item) !=
6891 			    BTRFS_COMPRESS_NONE) {
6892 				ret = uncompress_inline(path, page, pg_offset,
6893 							extent_offset, item);
6894 				if (ret) {
6895 					err = ret;
6896 					goto out;
6897 				}
6898 			} else {
6899 				map = kmap(page);
6900 				read_extent_buffer(leaf, map + pg_offset, ptr,
6901 						   copy_size);
6902 				if (pg_offset + copy_size < PAGE_SIZE) {
6903 					memset(map + pg_offset + copy_size, 0,
6904 					       PAGE_SIZE - pg_offset -
6905 					       copy_size);
6906 				}
6907 				kunmap(page);
6908 			}
6909 			flush_dcache_page(page);
6910 		} else if (create && PageUptodate(page)) {
6911 			BUG();
6912 			if (!trans) {
6913 				kunmap(page);
6914 				free_extent_map(em);
6915 				em = NULL;
6916 
6917 				btrfs_release_path(path);
6918 				trans = btrfs_join_transaction(root);
6919 
6920 				if (IS_ERR(trans))
6921 					return ERR_CAST(trans);
6922 				goto again;
6923 			}
6924 			map = kmap(page);
6925 			write_extent_buffer(leaf, map + pg_offset, ptr,
6926 					    copy_size);
6927 			kunmap(page);
6928 			btrfs_mark_buffer_dirty(leaf);
6929 		}
6930 		set_extent_uptodate(io_tree, em->start,
6931 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6932 		goto insert;
6933 	}
6934 not_found:
6935 	em->start = start;
6936 	em->orig_start = start;
6937 	em->len = len;
6938 not_found_em:
6939 	em->block_start = EXTENT_MAP_HOLE;
6940 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6941 insert:
6942 	btrfs_release_path(path);
6943 	if (em->start > start || extent_map_end(em) <= start) {
6944 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6945 			em->start, em->len, start, len);
6946 		err = -EIO;
6947 		goto out;
6948 	}
6949 
6950 	err = 0;
6951 	write_lock(&em_tree->lock);
6952 	ret = add_extent_mapping(em_tree, em, 0);
6953 	/* it is possible that someone inserted the extent into the tree
6954 	 * while we had the lock dropped.  It is also possible that
6955 	 * an overlapping map exists in the tree
6956 	 */
6957 	if (ret == -EEXIST) {
6958 		struct extent_map *existing;
6959 
6960 		ret = 0;
6961 
6962 		existing = search_extent_mapping(em_tree, start, len);
6963 		/*
6964 		 * existing will always be non-NULL, since there must be
6965 		 * extent causing the -EEXIST.
6966 		 */
6967 		if (start >= extent_map_end(existing) ||
6968 		    start <= existing->start) {
6969 			/*
6970 			 * The existing extent map is the one nearest to
6971 			 * the [start, start + len) range which overlaps
6972 			 */
6973 			err = merge_extent_mapping(em_tree, existing,
6974 						   em, start);
6975 			free_extent_map(existing);
6976 			if (err) {
6977 				free_extent_map(em);
6978 				em = NULL;
6979 			}
6980 		} else {
6981 			free_extent_map(em);
6982 			em = existing;
6983 			err = 0;
6984 		}
6985 	}
6986 	write_unlock(&em_tree->lock);
6987 out:
6988 
6989 	trace_btrfs_get_extent(root, em);
6990 
6991 	btrfs_free_path(path);
6992 	if (trans) {
6993 		ret = btrfs_end_transaction(trans, root);
6994 		if (!err)
6995 			err = ret;
6996 	}
6997 	if (err) {
6998 		free_extent_map(em);
6999 		return ERR_PTR(err);
7000 	}
7001 	BUG_ON(!em); /* Error is always set */
7002 	return em;
7003 }
7004 
7005 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7006 					   size_t pg_offset, u64 start, u64 len,
7007 					   int create)
7008 {
7009 	struct extent_map *em;
7010 	struct extent_map *hole_em = NULL;
7011 	u64 range_start = start;
7012 	u64 end;
7013 	u64 found;
7014 	u64 found_end;
7015 	int err = 0;
7016 
7017 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7018 	if (IS_ERR(em))
7019 		return em;
7020 	if (em) {
7021 		/*
7022 		 * if our em maps to
7023 		 * -  a hole or
7024 		 * -  a pre-alloc extent,
7025 		 * there might actually be delalloc bytes behind it.
7026 		 */
7027 		if (em->block_start != EXTENT_MAP_HOLE &&
7028 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7029 			return em;
7030 		else
7031 			hole_em = em;
7032 	}
7033 
7034 	/* check to see if we've wrapped (len == -1 or similar) */
7035 	end = start + len;
7036 	if (end < start)
7037 		end = (u64)-1;
7038 	else
7039 		end -= 1;
7040 
7041 	em = NULL;
7042 
7043 	/* ok, we didn't find anything, lets look for delalloc */
7044 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7045 				 end, len, EXTENT_DELALLOC, 1);
7046 	found_end = range_start + found;
7047 	if (found_end < range_start)
7048 		found_end = (u64)-1;
7049 
7050 	/*
7051 	 * we didn't find anything useful, return
7052 	 * the original results from get_extent()
7053 	 */
7054 	if (range_start > end || found_end <= start) {
7055 		em = hole_em;
7056 		hole_em = NULL;
7057 		goto out;
7058 	}
7059 
7060 	/* adjust the range_start to make sure it doesn't
7061 	 * go backwards from the start they passed in
7062 	 */
7063 	range_start = max(start, range_start);
7064 	found = found_end - range_start;
7065 
7066 	if (found > 0) {
7067 		u64 hole_start = start;
7068 		u64 hole_len = len;
7069 
7070 		em = alloc_extent_map();
7071 		if (!em) {
7072 			err = -ENOMEM;
7073 			goto out;
7074 		}
7075 		/*
7076 		 * when btrfs_get_extent can't find anything it
7077 		 * returns one huge hole
7078 		 *
7079 		 * make sure what it found really fits our range, and
7080 		 * adjust to make sure it is based on the start from
7081 		 * the caller
7082 		 */
7083 		if (hole_em) {
7084 			u64 calc_end = extent_map_end(hole_em);
7085 
7086 			if (calc_end <= start || (hole_em->start > end)) {
7087 				free_extent_map(hole_em);
7088 				hole_em = NULL;
7089 			} else {
7090 				hole_start = max(hole_em->start, start);
7091 				hole_len = calc_end - hole_start;
7092 			}
7093 		}
7094 		em->bdev = NULL;
7095 		if (hole_em && range_start > hole_start) {
7096 			/* our hole starts before our delalloc, so we
7097 			 * have to return just the parts of the hole
7098 			 * that go until  the delalloc starts
7099 			 */
7100 			em->len = min(hole_len,
7101 				      range_start - hole_start);
7102 			em->start = hole_start;
7103 			em->orig_start = hole_start;
7104 			/*
7105 			 * don't adjust block start at all,
7106 			 * it is fixed at EXTENT_MAP_HOLE
7107 			 */
7108 			em->block_start = hole_em->block_start;
7109 			em->block_len = hole_len;
7110 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7111 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7112 		} else {
7113 			em->start = range_start;
7114 			em->len = found;
7115 			em->orig_start = range_start;
7116 			em->block_start = EXTENT_MAP_DELALLOC;
7117 			em->block_len = found;
7118 		}
7119 	} else if (hole_em) {
7120 		return hole_em;
7121 	}
7122 out:
7123 
7124 	free_extent_map(hole_em);
7125 	if (err) {
7126 		free_extent_map(em);
7127 		return ERR_PTR(err);
7128 	}
7129 	return em;
7130 }
7131 
7132 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7133 						  u64 start, u64 len)
7134 {
7135 	struct btrfs_root *root = BTRFS_I(inode)->root;
7136 	struct extent_map *em;
7137 	struct btrfs_key ins;
7138 	u64 alloc_hint;
7139 	int ret;
7140 
7141 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7142 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7143 				   alloc_hint, &ins, 1, 1);
7144 	if (ret)
7145 		return ERR_PTR(ret);
7146 
7147 	/*
7148 	 * Create the ordered extent before the extent map. This is to avoid
7149 	 * races with the fast fsync path that would lead to it logging file
7150 	 * extent items that point to disk extents that were not yet written to.
7151 	 * The fast fsync path collects ordered extents into a local list and
7152 	 * then collects all the new extent maps, so we must create the ordered
7153 	 * extent first and make sure the fast fsync path collects any new
7154 	 * ordered extents after collecting new extent maps as well.
7155 	 * The fsync path simply can not rely on inode_dio_wait() because it
7156 	 * causes deadlock with AIO.
7157 	 */
7158 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7159 					   ins.offset, ins.offset, 0);
7160 	if (ret) {
7161 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7162 		return ERR_PTR(ret);
7163 	}
7164 
7165 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7166 			      ins.offset, ins.offset, ins.offset, 0);
7167 	if (IS_ERR(em)) {
7168 		struct btrfs_ordered_extent *oe;
7169 
7170 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7171 		oe = btrfs_lookup_ordered_extent(inode, start);
7172 		ASSERT(oe);
7173 		if (WARN_ON(!oe))
7174 			return em;
7175 		set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7176 		set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7177 		btrfs_remove_ordered_extent(inode, oe);
7178 		/* Once for our lookup and once for the ordered extents tree. */
7179 		btrfs_put_ordered_extent(oe);
7180 		btrfs_put_ordered_extent(oe);
7181 	}
7182 	return em;
7183 }
7184 
7185 /*
7186  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7187  * block must be cow'd
7188  */
7189 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7190 			      u64 *orig_start, u64 *orig_block_len,
7191 			      u64 *ram_bytes)
7192 {
7193 	struct btrfs_trans_handle *trans;
7194 	struct btrfs_path *path;
7195 	int ret;
7196 	struct extent_buffer *leaf;
7197 	struct btrfs_root *root = BTRFS_I(inode)->root;
7198 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7199 	struct btrfs_file_extent_item *fi;
7200 	struct btrfs_key key;
7201 	u64 disk_bytenr;
7202 	u64 backref_offset;
7203 	u64 extent_end;
7204 	u64 num_bytes;
7205 	int slot;
7206 	int found_type;
7207 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7208 
7209 	path = btrfs_alloc_path();
7210 	if (!path)
7211 		return -ENOMEM;
7212 
7213 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7214 				       offset, 0);
7215 	if (ret < 0)
7216 		goto out;
7217 
7218 	slot = path->slots[0];
7219 	if (ret == 1) {
7220 		if (slot == 0) {
7221 			/* can't find the item, must cow */
7222 			ret = 0;
7223 			goto out;
7224 		}
7225 		slot--;
7226 	}
7227 	ret = 0;
7228 	leaf = path->nodes[0];
7229 	btrfs_item_key_to_cpu(leaf, &key, slot);
7230 	if (key.objectid != btrfs_ino(inode) ||
7231 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7232 		/* not our file or wrong item type, must cow */
7233 		goto out;
7234 	}
7235 
7236 	if (key.offset > offset) {
7237 		/* Wrong offset, must cow */
7238 		goto out;
7239 	}
7240 
7241 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7242 	found_type = btrfs_file_extent_type(leaf, fi);
7243 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7244 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7245 		/* not a regular extent, must cow */
7246 		goto out;
7247 	}
7248 
7249 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7250 		goto out;
7251 
7252 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7253 	if (extent_end <= offset)
7254 		goto out;
7255 
7256 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7257 	if (disk_bytenr == 0)
7258 		goto out;
7259 
7260 	if (btrfs_file_extent_compression(leaf, fi) ||
7261 	    btrfs_file_extent_encryption(leaf, fi) ||
7262 	    btrfs_file_extent_other_encoding(leaf, fi))
7263 		goto out;
7264 
7265 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7266 
7267 	if (orig_start) {
7268 		*orig_start = key.offset - backref_offset;
7269 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7270 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7271 	}
7272 
7273 	if (btrfs_extent_readonly(root, disk_bytenr))
7274 		goto out;
7275 
7276 	num_bytes = min(offset + *len, extent_end) - offset;
7277 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7278 		u64 range_end;
7279 
7280 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7281 		ret = test_range_bit(io_tree, offset, range_end,
7282 				     EXTENT_DELALLOC, 0, NULL);
7283 		if (ret) {
7284 			ret = -EAGAIN;
7285 			goto out;
7286 		}
7287 	}
7288 
7289 	btrfs_release_path(path);
7290 
7291 	/*
7292 	 * look for other files referencing this extent, if we
7293 	 * find any we must cow
7294 	 */
7295 	trans = btrfs_join_transaction(root);
7296 	if (IS_ERR(trans)) {
7297 		ret = 0;
7298 		goto out;
7299 	}
7300 
7301 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7302 				    key.offset - backref_offset, disk_bytenr);
7303 	btrfs_end_transaction(trans, root);
7304 	if (ret) {
7305 		ret = 0;
7306 		goto out;
7307 	}
7308 
7309 	/*
7310 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7311 	 * in this extent we are about to write.  If there
7312 	 * are any csums in that range we have to cow in order
7313 	 * to keep the csums correct
7314 	 */
7315 	disk_bytenr += backref_offset;
7316 	disk_bytenr += offset - key.offset;
7317 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7318 				goto out;
7319 	/*
7320 	 * all of the above have passed, it is safe to overwrite this extent
7321 	 * without cow
7322 	 */
7323 	*len = num_bytes;
7324 	ret = 1;
7325 out:
7326 	btrfs_free_path(path);
7327 	return ret;
7328 }
7329 
7330 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7331 {
7332 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7333 	int found = false;
7334 	void **pagep = NULL;
7335 	struct page *page = NULL;
7336 	int start_idx;
7337 	int end_idx;
7338 
7339 	start_idx = start >> PAGE_SHIFT;
7340 
7341 	/*
7342 	 * end is the last byte in the last page.  end == start is legal
7343 	 */
7344 	end_idx = end >> PAGE_SHIFT;
7345 
7346 	rcu_read_lock();
7347 
7348 	/* Most of the code in this while loop is lifted from
7349 	 * find_get_page.  It's been modified to begin searching from a
7350 	 * page and return just the first page found in that range.  If the
7351 	 * found idx is less than or equal to the end idx then we know that
7352 	 * a page exists.  If no pages are found or if those pages are
7353 	 * outside of the range then we're fine (yay!) */
7354 	while (page == NULL &&
7355 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7356 		page = radix_tree_deref_slot(pagep);
7357 		if (unlikely(!page))
7358 			break;
7359 
7360 		if (radix_tree_exception(page)) {
7361 			if (radix_tree_deref_retry(page)) {
7362 				page = NULL;
7363 				continue;
7364 			}
7365 			/*
7366 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7367 			 * here as an exceptional entry: so return it without
7368 			 * attempting to raise page count.
7369 			 */
7370 			page = NULL;
7371 			break; /* TODO: Is this relevant for this use case? */
7372 		}
7373 
7374 		if (!page_cache_get_speculative(page)) {
7375 			page = NULL;
7376 			continue;
7377 		}
7378 
7379 		/*
7380 		 * Has the page moved?
7381 		 * This is part of the lockless pagecache protocol. See
7382 		 * include/linux/pagemap.h for details.
7383 		 */
7384 		if (unlikely(page != *pagep)) {
7385 			put_page(page);
7386 			page = NULL;
7387 		}
7388 	}
7389 
7390 	if (page) {
7391 		if (page->index <= end_idx)
7392 			found = true;
7393 		put_page(page);
7394 	}
7395 
7396 	rcu_read_unlock();
7397 	return found;
7398 }
7399 
7400 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7401 			      struct extent_state **cached_state, int writing)
7402 {
7403 	struct btrfs_ordered_extent *ordered;
7404 	int ret = 0;
7405 
7406 	while (1) {
7407 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7408 				 cached_state);
7409 		/*
7410 		 * We're concerned with the entire range that we're going to be
7411 		 * doing DIO to, so we need to make sure theres no ordered
7412 		 * extents in this range.
7413 		 */
7414 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7415 						     lockend - lockstart + 1);
7416 
7417 		/*
7418 		 * We need to make sure there are no buffered pages in this
7419 		 * range either, we could have raced between the invalidate in
7420 		 * generic_file_direct_write and locking the extent.  The
7421 		 * invalidate needs to happen so that reads after a write do not
7422 		 * get stale data.
7423 		 */
7424 		if (!ordered &&
7425 		    (!writing ||
7426 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7427 			break;
7428 
7429 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7430 				     cached_state, GFP_NOFS);
7431 
7432 		if (ordered) {
7433 			/*
7434 			 * If we are doing a DIO read and the ordered extent we
7435 			 * found is for a buffered write, we can not wait for it
7436 			 * to complete and retry, because if we do so we can
7437 			 * deadlock with concurrent buffered writes on page
7438 			 * locks. This happens only if our DIO read covers more
7439 			 * than one extent map, if at this point has already
7440 			 * created an ordered extent for a previous extent map
7441 			 * and locked its range in the inode's io tree, and a
7442 			 * concurrent write against that previous extent map's
7443 			 * range and this range started (we unlock the ranges
7444 			 * in the io tree only when the bios complete and
7445 			 * buffered writes always lock pages before attempting
7446 			 * to lock range in the io tree).
7447 			 */
7448 			if (writing ||
7449 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7450 				btrfs_start_ordered_extent(inode, ordered, 1);
7451 			else
7452 				ret = -ENOTBLK;
7453 			btrfs_put_ordered_extent(ordered);
7454 		} else {
7455 			/*
7456 			 * We could trigger writeback for this range (and wait
7457 			 * for it to complete) and then invalidate the pages for
7458 			 * this range (through invalidate_inode_pages2_range()),
7459 			 * but that can lead us to a deadlock with a concurrent
7460 			 * call to readpages() (a buffered read or a defrag call
7461 			 * triggered a readahead) on a page lock due to an
7462 			 * ordered dio extent we created before but did not have
7463 			 * yet a corresponding bio submitted (whence it can not
7464 			 * complete), which makes readpages() wait for that
7465 			 * ordered extent to complete while holding a lock on
7466 			 * that page.
7467 			 */
7468 			ret = -ENOTBLK;
7469 		}
7470 
7471 		if (ret)
7472 			break;
7473 
7474 		cond_resched();
7475 	}
7476 
7477 	return ret;
7478 }
7479 
7480 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7481 					   u64 len, u64 orig_start,
7482 					   u64 block_start, u64 block_len,
7483 					   u64 orig_block_len, u64 ram_bytes,
7484 					   int type)
7485 {
7486 	struct extent_map_tree *em_tree;
7487 	struct extent_map *em;
7488 	struct btrfs_root *root = BTRFS_I(inode)->root;
7489 	int ret;
7490 
7491 	em_tree = &BTRFS_I(inode)->extent_tree;
7492 	em = alloc_extent_map();
7493 	if (!em)
7494 		return ERR_PTR(-ENOMEM);
7495 
7496 	em->start = start;
7497 	em->orig_start = orig_start;
7498 	em->mod_start = start;
7499 	em->mod_len = len;
7500 	em->len = len;
7501 	em->block_len = block_len;
7502 	em->block_start = block_start;
7503 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7504 	em->orig_block_len = orig_block_len;
7505 	em->ram_bytes = ram_bytes;
7506 	em->generation = -1;
7507 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7508 	if (type == BTRFS_ORDERED_PREALLOC)
7509 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7510 
7511 	do {
7512 		btrfs_drop_extent_cache(inode, em->start,
7513 				em->start + em->len - 1, 0);
7514 		write_lock(&em_tree->lock);
7515 		ret = add_extent_mapping(em_tree, em, 1);
7516 		write_unlock(&em_tree->lock);
7517 	} while (ret == -EEXIST);
7518 
7519 	if (ret) {
7520 		free_extent_map(em);
7521 		return ERR_PTR(ret);
7522 	}
7523 
7524 	return em;
7525 }
7526 
7527 static void adjust_dio_outstanding_extents(struct inode *inode,
7528 					   struct btrfs_dio_data *dio_data,
7529 					   const u64 len)
7530 {
7531 	unsigned num_extents;
7532 
7533 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7534 					   BTRFS_MAX_EXTENT_SIZE);
7535 	/*
7536 	 * If we have an outstanding_extents count still set then we're
7537 	 * within our reservation, otherwise we need to adjust our inode
7538 	 * counter appropriately.
7539 	 */
7540 	if (dio_data->outstanding_extents) {
7541 		dio_data->outstanding_extents -= num_extents;
7542 	} else {
7543 		spin_lock(&BTRFS_I(inode)->lock);
7544 		BTRFS_I(inode)->outstanding_extents += num_extents;
7545 		spin_unlock(&BTRFS_I(inode)->lock);
7546 	}
7547 }
7548 
7549 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7550 				   struct buffer_head *bh_result, int create)
7551 {
7552 	struct extent_map *em;
7553 	struct btrfs_root *root = BTRFS_I(inode)->root;
7554 	struct extent_state *cached_state = NULL;
7555 	struct btrfs_dio_data *dio_data = NULL;
7556 	u64 start = iblock << inode->i_blkbits;
7557 	u64 lockstart, lockend;
7558 	u64 len = bh_result->b_size;
7559 	int unlock_bits = EXTENT_LOCKED;
7560 	int ret = 0;
7561 
7562 	if (create)
7563 		unlock_bits |= EXTENT_DIRTY;
7564 	else
7565 		len = min_t(u64, len, root->sectorsize);
7566 
7567 	lockstart = start;
7568 	lockend = start + len - 1;
7569 
7570 	if (current->journal_info) {
7571 		/*
7572 		 * Need to pull our outstanding extents and set journal_info to NULL so
7573 		 * that anything that needs to check if there's a transction doesn't get
7574 		 * confused.
7575 		 */
7576 		dio_data = current->journal_info;
7577 		current->journal_info = NULL;
7578 	}
7579 
7580 	/*
7581 	 * If this errors out it's because we couldn't invalidate pagecache for
7582 	 * this range and we need to fallback to buffered.
7583 	 */
7584 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7585 			       create)) {
7586 		ret = -ENOTBLK;
7587 		goto err;
7588 	}
7589 
7590 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7591 	if (IS_ERR(em)) {
7592 		ret = PTR_ERR(em);
7593 		goto unlock_err;
7594 	}
7595 
7596 	/*
7597 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7598 	 * io.  INLINE is special, and we could probably kludge it in here, but
7599 	 * it's still buffered so for safety lets just fall back to the generic
7600 	 * buffered path.
7601 	 *
7602 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7603 	 * decompress it, so there will be buffering required no matter what we
7604 	 * do, so go ahead and fallback to buffered.
7605 	 *
7606 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7607 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7608 	 * the generic code.
7609 	 */
7610 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7611 	    em->block_start == EXTENT_MAP_INLINE) {
7612 		free_extent_map(em);
7613 		ret = -ENOTBLK;
7614 		goto unlock_err;
7615 	}
7616 
7617 	/* Just a good old fashioned hole, return */
7618 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7619 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7620 		free_extent_map(em);
7621 		goto unlock_err;
7622 	}
7623 
7624 	/*
7625 	 * We don't allocate a new extent in the following cases
7626 	 *
7627 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7628 	 * existing extent.
7629 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7630 	 * just use the extent.
7631 	 *
7632 	 */
7633 	if (!create) {
7634 		len = min(len, em->len - (start - em->start));
7635 		lockstart = start + len;
7636 		goto unlock;
7637 	}
7638 
7639 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7640 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7641 	     em->block_start != EXTENT_MAP_HOLE)) {
7642 		int type;
7643 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7644 
7645 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7646 			type = BTRFS_ORDERED_PREALLOC;
7647 		else
7648 			type = BTRFS_ORDERED_NOCOW;
7649 		len = min(len, em->len - (start - em->start));
7650 		block_start = em->block_start + (start - em->start);
7651 
7652 		if (can_nocow_extent(inode, start, &len, &orig_start,
7653 				     &orig_block_len, &ram_bytes) == 1) {
7654 			if (type == BTRFS_ORDERED_PREALLOC) {
7655 				free_extent_map(em);
7656 				em = create_pinned_em(inode, start, len,
7657 						       orig_start,
7658 						       block_start, len,
7659 						       orig_block_len,
7660 						       ram_bytes, type);
7661 				if (IS_ERR(em)) {
7662 					ret = PTR_ERR(em);
7663 					goto unlock_err;
7664 				}
7665 			}
7666 
7667 			ret = btrfs_add_ordered_extent_dio(inode, start,
7668 					   block_start, len, len, type);
7669 			if (ret) {
7670 				free_extent_map(em);
7671 				goto unlock_err;
7672 			}
7673 			goto unlock;
7674 		}
7675 	}
7676 
7677 	/*
7678 	 * this will cow the extent, reset the len in case we changed
7679 	 * it above
7680 	 */
7681 	len = bh_result->b_size;
7682 	free_extent_map(em);
7683 	em = btrfs_new_extent_direct(inode, start, len);
7684 	if (IS_ERR(em)) {
7685 		ret = PTR_ERR(em);
7686 		goto unlock_err;
7687 	}
7688 	len = min(len, em->len - (start - em->start));
7689 unlock:
7690 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7691 		inode->i_blkbits;
7692 	bh_result->b_size = len;
7693 	bh_result->b_bdev = em->bdev;
7694 	set_buffer_mapped(bh_result);
7695 	if (create) {
7696 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7697 			set_buffer_new(bh_result);
7698 
7699 		/*
7700 		 * Need to update the i_size under the extent lock so buffered
7701 		 * readers will get the updated i_size when we unlock.
7702 		 */
7703 		if (start + len > i_size_read(inode))
7704 			i_size_write(inode, start + len);
7705 
7706 		adjust_dio_outstanding_extents(inode, dio_data, len);
7707 		btrfs_free_reserved_data_space(inode, start, len);
7708 		WARN_ON(dio_data->reserve < len);
7709 		dio_data->reserve -= len;
7710 		dio_data->unsubmitted_oe_range_end = start + len;
7711 		current->journal_info = dio_data;
7712 	}
7713 
7714 	/*
7715 	 * In the case of write we need to clear and unlock the entire range,
7716 	 * in the case of read we need to unlock only the end area that we
7717 	 * aren't using if there is any left over space.
7718 	 */
7719 	if (lockstart < lockend) {
7720 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7721 				 lockend, unlock_bits, 1, 0,
7722 				 &cached_state, GFP_NOFS);
7723 	} else {
7724 		free_extent_state(cached_state);
7725 	}
7726 
7727 	free_extent_map(em);
7728 
7729 	return 0;
7730 
7731 unlock_err:
7732 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7733 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7734 err:
7735 	if (dio_data)
7736 		current->journal_info = dio_data;
7737 	/*
7738 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7739 	 * write less data then expected, so that we don't underflow our inode's
7740 	 * outstanding extents counter.
7741 	 */
7742 	if (create && dio_data)
7743 		adjust_dio_outstanding_extents(inode, dio_data, len);
7744 
7745 	return ret;
7746 }
7747 
7748 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7749 					int rw, int mirror_num)
7750 {
7751 	struct btrfs_root *root = BTRFS_I(inode)->root;
7752 	int ret;
7753 
7754 	BUG_ON(rw & REQ_WRITE);
7755 
7756 	bio_get(bio);
7757 
7758 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7759 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7760 	if (ret)
7761 		goto err;
7762 
7763 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7764 err:
7765 	bio_put(bio);
7766 	return ret;
7767 }
7768 
7769 static int btrfs_check_dio_repairable(struct inode *inode,
7770 				      struct bio *failed_bio,
7771 				      struct io_failure_record *failrec,
7772 				      int failed_mirror)
7773 {
7774 	int num_copies;
7775 
7776 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7777 				      failrec->logical, failrec->len);
7778 	if (num_copies == 1) {
7779 		/*
7780 		 * we only have a single copy of the data, so don't bother with
7781 		 * all the retry and error correction code that follows. no
7782 		 * matter what the error is, it is very likely to persist.
7783 		 */
7784 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7785 			 num_copies, failrec->this_mirror, failed_mirror);
7786 		return 0;
7787 	}
7788 
7789 	failrec->failed_mirror = failed_mirror;
7790 	failrec->this_mirror++;
7791 	if (failrec->this_mirror == failed_mirror)
7792 		failrec->this_mirror++;
7793 
7794 	if (failrec->this_mirror > num_copies) {
7795 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7796 			 num_copies, failrec->this_mirror, failed_mirror);
7797 		return 0;
7798 	}
7799 
7800 	return 1;
7801 }
7802 
7803 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7804 			struct page *page, unsigned int pgoff,
7805 			u64 start, u64 end, int failed_mirror,
7806 			bio_end_io_t *repair_endio, void *repair_arg)
7807 {
7808 	struct io_failure_record *failrec;
7809 	struct bio *bio;
7810 	int isector;
7811 	int read_mode;
7812 	int ret;
7813 
7814 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7815 
7816 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7817 	if (ret)
7818 		return ret;
7819 
7820 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7821 					 failed_mirror);
7822 	if (!ret) {
7823 		free_io_failure(inode, failrec);
7824 		return -EIO;
7825 	}
7826 
7827 	if ((failed_bio->bi_vcnt > 1)
7828 		|| (failed_bio->bi_io_vec->bv_len
7829 			> BTRFS_I(inode)->root->sectorsize))
7830 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7831 	else
7832 		read_mode = READ_SYNC;
7833 
7834 	isector = start - btrfs_io_bio(failed_bio)->logical;
7835 	isector >>= inode->i_sb->s_blocksize_bits;
7836 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7837 				pgoff, isector, repair_endio, repair_arg);
7838 	if (!bio) {
7839 		free_io_failure(inode, failrec);
7840 		return -EIO;
7841 	}
7842 
7843 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7844 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7845 		    read_mode, failrec->this_mirror, failrec->in_validation);
7846 
7847 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7848 				    failrec->this_mirror);
7849 	if (ret) {
7850 		free_io_failure(inode, failrec);
7851 		bio_put(bio);
7852 	}
7853 
7854 	return ret;
7855 }
7856 
7857 struct btrfs_retry_complete {
7858 	struct completion done;
7859 	struct inode *inode;
7860 	u64 start;
7861 	int uptodate;
7862 };
7863 
7864 static void btrfs_retry_endio_nocsum(struct bio *bio)
7865 {
7866 	struct btrfs_retry_complete *done = bio->bi_private;
7867 	struct inode *inode;
7868 	struct bio_vec *bvec;
7869 	int i;
7870 
7871 	if (bio->bi_error)
7872 		goto end;
7873 
7874 	ASSERT(bio->bi_vcnt == 1);
7875 	inode = bio->bi_io_vec->bv_page->mapping->host;
7876 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7877 
7878 	done->uptodate = 1;
7879 	bio_for_each_segment_all(bvec, bio, i)
7880 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7881 end:
7882 	complete(&done->done);
7883 	bio_put(bio);
7884 }
7885 
7886 static int __btrfs_correct_data_nocsum(struct inode *inode,
7887 				       struct btrfs_io_bio *io_bio)
7888 {
7889 	struct btrfs_fs_info *fs_info;
7890 	struct bio_vec *bvec;
7891 	struct btrfs_retry_complete done;
7892 	u64 start;
7893 	unsigned int pgoff;
7894 	u32 sectorsize;
7895 	int nr_sectors;
7896 	int i;
7897 	int ret;
7898 
7899 	fs_info = BTRFS_I(inode)->root->fs_info;
7900 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7901 
7902 	start = io_bio->logical;
7903 	done.inode = inode;
7904 
7905 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7906 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7907 		pgoff = bvec->bv_offset;
7908 
7909 next_block_or_try_again:
7910 		done.uptodate = 0;
7911 		done.start = start;
7912 		init_completion(&done.done);
7913 
7914 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7915 				pgoff, start, start + sectorsize - 1,
7916 				io_bio->mirror_num,
7917 				btrfs_retry_endio_nocsum, &done);
7918 		if (ret)
7919 			return ret;
7920 
7921 		wait_for_completion(&done.done);
7922 
7923 		if (!done.uptodate) {
7924 			/* We might have another mirror, so try again */
7925 			goto next_block_or_try_again;
7926 		}
7927 
7928 		start += sectorsize;
7929 
7930 		if (nr_sectors--) {
7931 			pgoff += sectorsize;
7932 			goto next_block_or_try_again;
7933 		}
7934 	}
7935 
7936 	return 0;
7937 }
7938 
7939 static void btrfs_retry_endio(struct bio *bio)
7940 {
7941 	struct btrfs_retry_complete *done = bio->bi_private;
7942 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7943 	struct inode *inode;
7944 	struct bio_vec *bvec;
7945 	u64 start;
7946 	int uptodate;
7947 	int ret;
7948 	int i;
7949 
7950 	if (bio->bi_error)
7951 		goto end;
7952 
7953 	uptodate = 1;
7954 
7955 	start = done->start;
7956 
7957 	ASSERT(bio->bi_vcnt == 1);
7958 	inode = bio->bi_io_vec->bv_page->mapping->host;
7959 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7960 
7961 	bio_for_each_segment_all(bvec, bio, i) {
7962 		ret = __readpage_endio_check(done->inode, io_bio, i,
7963 					bvec->bv_page, bvec->bv_offset,
7964 					done->start, bvec->bv_len);
7965 		if (!ret)
7966 			clean_io_failure(done->inode, done->start,
7967 					bvec->bv_page, bvec->bv_offset);
7968 		else
7969 			uptodate = 0;
7970 	}
7971 
7972 	done->uptodate = uptodate;
7973 end:
7974 	complete(&done->done);
7975 	bio_put(bio);
7976 }
7977 
7978 static int __btrfs_subio_endio_read(struct inode *inode,
7979 				    struct btrfs_io_bio *io_bio, int err)
7980 {
7981 	struct btrfs_fs_info *fs_info;
7982 	struct bio_vec *bvec;
7983 	struct btrfs_retry_complete done;
7984 	u64 start;
7985 	u64 offset = 0;
7986 	u32 sectorsize;
7987 	int nr_sectors;
7988 	unsigned int pgoff;
7989 	int csum_pos;
7990 	int i;
7991 	int ret;
7992 
7993 	fs_info = BTRFS_I(inode)->root->fs_info;
7994 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7995 
7996 	err = 0;
7997 	start = io_bio->logical;
7998 	done.inode = inode;
7999 
8000 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8001 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8002 
8003 		pgoff = bvec->bv_offset;
8004 next_block:
8005 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8006 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8007 					bvec->bv_page, pgoff, start,
8008 					sectorsize);
8009 		if (likely(!ret))
8010 			goto next;
8011 try_again:
8012 		done.uptodate = 0;
8013 		done.start = start;
8014 		init_completion(&done.done);
8015 
8016 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8017 				pgoff, start, start + sectorsize - 1,
8018 				io_bio->mirror_num,
8019 				btrfs_retry_endio, &done);
8020 		if (ret) {
8021 			err = ret;
8022 			goto next;
8023 		}
8024 
8025 		wait_for_completion(&done.done);
8026 
8027 		if (!done.uptodate) {
8028 			/* We might have another mirror, so try again */
8029 			goto try_again;
8030 		}
8031 next:
8032 		offset += sectorsize;
8033 		start += sectorsize;
8034 
8035 		ASSERT(nr_sectors);
8036 
8037 		if (--nr_sectors) {
8038 			pgoff += sectorsize;
8039 			goto next_block;
8040 		}
8041 	}
8042 
8043 	return err;
8044 }
8045 
8046 static int btrfs_subio_endio_read(struct inode *inode,
8047 				  struct btrfs_io_bio *io_bio, int err)
8048 {
8049 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8050 
8051 	if (skip_csum) {
8052 		if (unlikely(err))
8053 			return __btrfs_correct_data_nocsum(inode, io_bio);
8054 		else
8055 			return 0;
8056 	} else {
8057 		return __btrfs_subio_endio_read(inode, io_bio, err);
8058 	}
8059 }
8060 
8061 static void btrfs_endio_direct_read(struct bio *bio)
8062 {
8063 	struct btrfs_dio_private *dip = bio->bi_private;
8064 	struct inode *inode = dip->inode;
8065 	struct bio *dio_bio;
8066 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8067 	int err = bio->bi_error;
8068 
8069 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8070 		err = btrfs_subio_endio_read(inode, io_bio, err);
8071 
8072 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8073 		      dip->logical_offset + dip->bytes - 1);
8074 	dio_bio = dip->dio_bio;
8075 
8076 	kfree(dip);
8077 
8078 	dio_bio->bi_error = bio->bi_error;
8079 	dio_end_io(dio_bio, bio->bi_error);
8080 
8081 	if (io_bio->end_io)
8082 		io_bio->end_io(io_bio, err);
8083 	bio_put(bio);
8084 }
8085 
8086 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8087 						    const u64 offset,
8088 						    const u64 bytes,
8089 						    const int uptodate)
8090 {
8091 	struct btrfs_root *root = BTRFS_I(inode)->root;
8092 	struct btrfs_ordered_extent *ordered = NULL;
8093 	u64 ordered_offset = offset;
8094 	u64 ordered_bytes = bytes;
8095 	int ret;
8096 
8097 again:
8098 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8099 						   &ordered_offset,
8100 						   ordered_bytes,
8101 						   uptodate);
8102 	if (!ret)
8103 		goto out_test;
8104 
8105 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8106 			finish_ordered_fn, NULL, NULL);
8107 	btrfs_queue_work(root->fs_info->endio_write_workers,
8108 			 &ordered->work);
8109 out_test:
8110 	/*
8111 	 * our bio might span multiple ordered extents.  If we haven't
8112 	 * completed the accounting for the whole dio, go back and try again
8113 	 */
8114 	if (ordered_offset < offset + bytes) {
8115 		ordered_bytes = offset + bytes - ordered_offset;
8116 		ordered = NULL;
8117 		goto again;
8118 	}
8119 }
8120 
8121 static void btrfs_endio_direct_write(struct bio *bio)
8122 {
8123 	struct btrfs_dio_private *dip = bio->bi_private;
8124 	struct bio *dio_bio = dip->dio_bio;
8125 
8126 	btrfs_endio_direct_write_update_ordered(dip->inode,
8127 						dip->logical_offset,
8128 						dip->bytes,
8129 						!bio->bi_error);
8130 
8131 	kfree(dip);
8132 
8133 	dio_bio->bi_error = bio->bi_error;
8134 	dio_end_io(dio_bio, bio->bi_error);
8135 	bio_put(bio);
8136 }
8137 
8138 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8139 				    struct bio *bio, int mirror_num,
8140 				    unsigned long bio_flags, u64 offset)
8141 {
8142 	int ret;
8143 	struct btrfs_root *root = BTRFS_I(inode)->root;
8144 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8145 	BUG_ON(ret); /* -ENOMEM */
8146 	return 0;
8147 }
8148 
8149 static void btrfs_end_dio_bio(struct bio *bio)
8150 {
8151 	struct btrfs_dio_private *dip = bio->bi_private;
8152 	int err = bio->bi_error;
8153 
8154 	if (err)
8155 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8156 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8157 			   btrfs_ino(dip->inode), bio->bi_rw,
8158 			   (unsigned long long)bio->bi_iter.bi_sector,
8159 			   bio->bi_iter.bi_size, err);
8160 
8161 	if (dip->subio_endio)
8162 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8163 
8164 	if (err) {
8165 		dip->errors = 1;
8166 
8167 		/*
8168 		 * before atomic variable goto zero, we must make sure
8169 		 * dip->errors is perceived to be set.
8170 		 */
8171 		smp_mb__before_atomic();
8172 	}
8173 
8174 	/* if there are more bios still pending for this dio, just exit */
8175 	if (!atomic_dec_and_test(&dip->pending_bios))
8176 		goto out;
8177 
8178 	if (dip->errors) {
8179 		bio_io_error(dip->orig_bio);
8180 	} else {
8181 		dip->dio_bio->bi_error = 0;
8182 		bio_endio(dip->orig_bio);
8183 	}
8184 out:
8185 	bio_put(bio);
8186 }
8187 
8188 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8189 				       u64 first_sector, gfp_t gfp_flags)
8190 {
8191 	struct bio *bio;
8192 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8193 	if (bio)
8194 		bio_associate_current(bio);
8195 	return bio;
8196 }
8197 
8198 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8199 						 struct inode *inode,
8200 						 struct btrfs_dio_private *dip,
8201 						 struct bio *bio,
8202 						 u64 file_offset)
8203 {
8204 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8205 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8206 	int ret;
8207 
8208 	/*
8209 	 * We load all the csum data we need when we submit
8210 	 * the first bio to reduce the csum tree search and
8211 	 * contention.
8212 	 */
8213 	if (dip->logical_offset == file_offset) {
8214 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8215 						file_offset);
8216 		if (ret)
8217 			return ret;
8218 	}
8219 
8220 	if (bio == dip->orig_bio)
8221 		return 0;
8222 
8223 	file_offset -= dip->logical_offset;
8224 	file_offset >>= inode->i_sb->s_blocksize_bits;
8225 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8226 
8227 	return 0;
8228 }
8229 
8230 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8231 					 int rw, u64 file_offset, int skip_sum,
8232 					 int async_submit)
8233 {
8234 	struct btrfs_dio_private *dip = bio->bi_private;
8235 	int write = rw & REQ_WRITE;
8236 	struct btrfs_root *root = BTRFS_I(inode)->root;
8237 	int ret;
8238 
8239 	if (async_submit)
8240 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8241 
8242 	bio_get(bio);
8243 
8244 	if (!write) {
8245 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8246 				BTRFS_WQ_ENDIO_DATA);
8247 		if (ret)
8248 			goto err;
8249 	}
8250 
8251 	if (skip_sum)
8252 		goto map;
8253 
8254 	if (write && async_submit) {
8255 		ret = btrfs_wq_submit_bio(root->fs_info,
8256 				   inode, rw, bio, 0, 0,
8257 				   file_offset,
8258 				   __btrfs_submit_bio_start_direct_io,
8259 				   __btrfs_submit_bio_done);
8260 		goto err;
8261 	} else if (write) {
8262 		/*
8263 		 * If we aren't doing async submit, calculate the csum of the
8264 		 * bio now.
8265 		 */
8266 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8267 		if (ret)
8268 			goto err;
8269 	} else {
8270 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8271 						     file_offset);
8272 		if (ret)
8273 			goto err;
8274 	}
8275 map:
8276 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8277 err:
8278 	bio_put(bio);
8279 	return ret;
8280 }
8281 
8282 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8283 				    int skip_sum)
8284 {
8285 	struct inode *inode = dip->inode;
8286 	struct btrfs_root *root = BTRFS_I(inode)->root;
8287 	struct bio *bio;
8288 	struct bio *orig_bio = dip->orig_bio;
8289 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8290 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8291 	u64 file_offset = dip->logical_offset;
8292 	u64 submit_len = 0;
8293 	u64 map_length;
8294 	u32 blocksize = root->sectorsize;
8295 	int async_submit = 0;
8296 	int nr_sectors;
8297 	int ret;
8298 	int i;
8299 
8300 	map_length = orig_bio->bi_iter.bi_size;
8301 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8302 			      &map_length, NULL, 0);
8303 	if (ret)
8304 		return -EIO;
8305 
8306 	if (map_length >= orig_bio->bi_iter.bi_size) {
8307 		bio = orig_bio;
8308 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8309 		goto submit;
8310 	}
8311 
8312 	/* async crcs make it difficult to collect full stripe writes. */
8313 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8314 		async_submit = 0;
8315 	else
8316 		async_submit = 1;
8317 
8318 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8319 	if (!bio)
8320 		return -ENOMEM;
8321 
8322 	bio->bi_private = dip;
8323 	bio->bi_end_io = btrfs_end_dio_bio;
8324 	btrfs_io_bio(bio)->logical = file_offset;
8325 	atomic_inc(&dip->pending_bios);
8326 
8327 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8328 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8329 		i = 0;
8330 next_block:
8331 		if (unlikely(map_length < submit_len + blocksize ||
8332 		    bio_add_page(bio, bvec->bv_page, blocksize,
8333 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8334 			/*
8335 			 * inc the count before we submit the bio so
8336 			 * we know the end IO handler won't happen before
8337 			 * we inc the count. Otherwise, the dip might get freed
8338 			 * before we're done setting it up
8339 			 */
8340 			atomic_inc(&dip->pending_bios);
8341 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8342 						     file_offset, skip_sum,
8343 						     async_submit);
8344 			if (ret) {
8345 				bio_put(bio);
8346 				atomic_dec(&dip->pending_bios);
8347 				goto out_err;
8348 			}
8349 
8350 			start_sector += submit_len >> 9;
8351 			file_offset += submit_len;
8352 
8353 			submit_len = 0;
8354 
8355 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8356 						  start_sector, GFP_NOFS);
8357 			if (!bio)
8358 				goto out_err;
8359 			bio->bi_private = dip;
8360 			bio->bi_end_io = btrfs_end_dio_bio;
8361 			btrfs_io_bio(bio)->logical = file_offset;
8362 
8363 			map_length = orig_bio->bi_iter.bi_size;
8364 			ret = btrfs_map_block(root->fs_info, rw,
8365 					      start_sector << 9,
8366 					      &map_length, NULL, 0);
8367 			if (ret) {
8368 				bio_put(bio);
8369 				goto out_err;
8370 			}
8371 
8372 			goto next_block;
8373 		} else {
8374 			submit_len += blocksize;
8375 			if (--nr_sectors) {
8376 				i++;
8377 				goto next_block;
8378 			}
8379 			bvec++;
8380 		}
8381 	}
8382 
8383 submit:
8384 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8385 				     async_submit);
8386 	if (!ret)
8387 		return 0;
8388 
8389 	bio_put(bio);
8390 out_err:
8391 	dip->errors = 1;
8392 	/*
8393 	 * before atomic variable goto zero, we must
8394 	 * make sure dip->errors is perceived to be set.
8395 	 */
8396 	smp_mb__before_atomic();
8397 	if (atomic_dec_and_test(&dip->pending_bios))
8398 		bio_io_error(dip->orig_bio);
8399 
8400 	/* bio_end_io() will handle error, so we needn't return it */
8401 	return 0;
8402 }
8403 
8404 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8405 				struct inode *inode, loff_t file_offset)
8406 {
8407 	struct btrfs_dio_private *dip = NULL;
8408 	struct bio *io_bio = NULL;
8409 	struct btrfs_io_bio *btrfs_bio;
8410 	int skip_sum;
8411 	int write = rw & REQ_WRITE;
8412 	int ret = 0;
8413 
8414 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8415 
8416 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8417 	if (!io_bio) {
8418 		ret = -ENOMEM;
8419 		goto free_ordered;
8420 	}
8421 
8422 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8423 	if (!dip) {
8424 		ret = -ENOMEM;
8425 		goto free_ordered;
8426 	}
8427 
8428 	dip->private = dio_bio->bi_private;
8429 	dip->inode = inode;
8430 	dip->logical_offset = file_offset;
8431 	dip->bytes = dio_bio->bi_iter.bi_size;
8432 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8433 	io_bio->bi_private = dip;
8434 	dip->orig_bio = io_bio;
8435 	dip->dio_bio = dio_bio;
8436 	atomic_set(&dip->pending_bios, 0);
8437 	btrfs_bio = btrfs_io_bio(io_bio);
8438 	btrfs_bio->logical = file_offset;
8439 
8440 	if (write) {
8441 		io_bio->bi_end_io = btrfs_endio_direct_write;
8442 	} else {
8443 		io_bio->bi_end_io = btrfs_endio_direct_read;
8444 		dip->subio_endio = btrfs_subio_endio_read;
8445 	}
8446 
8447 	/*
8448 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8449 	 * even if we fail to submit a bio, because in such case we do the
8450 	 * corresponding error handling below and it must not be done a second
8451 	 * time by btrfs_direct_IO().
8452 	 */
8453 	if (write) {
8454 		struct btrfs_dio_data *dio_data = current->journal_info;
8455 
8456 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8457 			dip->bytes;
8458 		dio_data->unsubmitted_oe_range_start =
8459 			dio_data->unsubmitted_oe_range_end;
8460 	}
8461 
8462 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8463 	if (!ret)
8464 		return;
8465 
8466 	if (btrfs_bio->end_io)
8467 		btrfs_bio->end_io(btrfs_bio, ret);
8468 
8469 free_ordered:
8470 	/*
8471 	 * If we arrived here it means either we failed to submit the dip
8472 	 * or we either failed to clone the dio_bio or failed to allocate the
8473 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8474 	 * call bio_endio against our io_bio so that we get proper resource
8475 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8476 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8477 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8478 	 */
8479 	if (io_bio && dip) {
8480 		io_bio->bi_error = -EIO;
8481 		bio_endio(io_bio);
8482 		/*
8483 		 * The end io callbacks free our dip, do the final put on io_bio
8484 		 * and all the cleanup and final put for dio_bio (through
8485 		 * dio_end_io()).
8486 		 */
8487 		dip = NULL;
8488 		io_bio = NULL;
8489 	} else {
8490 		if (write)
8491 			btrfs_endio_direct_write_update_ordered(inode,
8492 						file_offset,
8493 						dio_bio->bi_iter.bi_size,
8494 						0);
8495 		else
8496 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8497 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8498 
8499 		dio_bio->bi_error = -EIO;
8500 		/*
8501 		 * Releases and cleans up our dio_bio, no need to bio_put()
8502 		 * nor bio_endio()/bio_io_error() against dio_bio.
8503 		 */
8504 		dio_end_io(dio_bio, ret);
8505 	}
8506 	if (io_bio)
8507 		bio_put(io_bio);
8508 	kfree(dip);
8509 }
8510 
8511 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8512 			const struct iov_iter *iter, loff_t offset)
8513 {
8514 	int seg;
8515 	int i;
8516 	unsigned blocksize_mask = root->sectorsize - 1;
8517 	ssize_t retval = -EINVAL;
8518 
8519 	if (offset & blocksize_mask)
8520 		goto out;
8521 
8522 	if (iov_iter_alignment(iter) & blocksize_mask)
8523 		goto out;
8524 
8525 	/* If this is a write we don't need to check anymore */
8526 	if (iov_iter_rw(iter) == WRITE)
8527 		return 0;
8528 	/*
8529 	 * Check to make sure we don't have duplicate iov_base's in this
8530 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8531 	 * when reading back.
8532 	 */
8533 	for (seg = 0; seg < iter->nr_segs; seg++) {
8534 		for (i = seg + 1; i < iter->nr_segs; i++) {
8535 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8536 				goto out;
8537 		}
8538 	}
8539 	retval = 0;
8540 out:
8541 	return retval;
8542 }
8543 
8544 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8545 			       loff_t offset)
8546 {
8547 	struct file *file = iocb->ki_filp;
8548 	struct inode *inode = file->f_mapping->host;
8549 	struct btrfs_root *root = BTRFS_I(inode)->root;
8550 	struct btrfs_dio_data dio_data = { 0 };
8551 	size_t count = 0;
8552 	int flags = 0;
8553 	bool wakeup = true;
8554 	bool relock = false;
8555 	ssize_t ret;
8556 
8557 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8558 		return 0;
8559 
8560 	inode_dio_begin(inode);
8561 	smp_mb__after_atomic();
8562 
8563 	/*
8564 	 * The generic stuff only does filemap_write_and_wait_range, which
8565 	 * isn't enough if we've written compressed pages to this area, so
8566 	 * we need to flush the dirty pages again to make absolutely sure
8567 	 * that any outstanding dirty pages are on disk.
8568 	 */
8569 	count = iov_iter_count(iter);
8570 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8571 		     &BTRFS_I(inode)->runtime_flags))
8572 		filemap_fdatawrite_range(inode->i_mapping, offset,
8573 					 offset + count - 1);
8574 
8575 	if (iov_iter_rw(iter) == WRITE) {
8576 		/*
8577 		 * If the write DIO is beyond the EOF, we need update
8578 		 * the isize, but it is protected by i_mutex. So we can
8579 		 * not unlock the i_mutex at this case.
8580 		 */
8581 		if (offset + count <= inode->i_size) {
8582 			inode_unlock(inode);
8583 			relock = true;
8584 		}
8585 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8586 		if (ret)
8587 			goto out;
8588 		dio_data.outstanding_extents = div64_u64(count +
8589 						BTRFS_MAX_EXTENT_SIZE - 1,
8590 						BTRFS_MAX_EXTENT_SIZE);
8591 
8592 		/*
8593 		 * We need to know how many extents we reserved so that we can
8594 		 * do the accounting properly if we go over the number we
8595 		 * originally calculated.  Abuse current->journal_info for this.
8596 		 */
8597 		dio_data.reserve = round_up(count, root->sectorsize);
8598 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8599 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8600 		current->journal_info = &dio_data;
8601 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8602 				     &BTRFS_I(inode)->runtime_flags)) {
8603 		inode_dio_end(inode);
8604 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8605 		wakeup = false;
8606 	}
8607 
8608 	ret = __blockdev_direct_IO(iocb, inode,
8609 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8610 				   iter, offset, btrfs_get_blocks_direct, NULL,
8611 				   btrfs_submit_direct, flags);
8612 	if (iov_iter_rw(iter) == WRITE) {
8613 		current->journal_info = NULL;
8614 		if (ret < 0 && ret != -EIOCBQUEUED) {
8615 			if (dio_data.reserve)
8616 				btrfs_delalloc_release_space(inode, offset,
8617 							     dio_data.reserve);
8618 			/*
8619 			 * On error we might have left some ordered extents
8620 			 * without submitting corresponding bios for them, so
8621 			 * cleanup them up to avoid other tasks getting them
8622 			 * and waiting for them to complete forever.
8623 			 */
8624 			if (dio_data.unsubmitted_oe_range_start <
8625 			    dio_data.unsubmitted_oe_range_end)
8626 				btrfs_endio_direct_write_update_ordered(inode,
8627 					dio_data.unsubmitted_oe_range_start,
8628 					dio_data.unsubmitted_oe_range_end -
8629 					dio_data.unsubmitted_oe_range_start,
8630 					0);
8631 		} else if (ret >= 0 && (size_t)ret < count)
8632 			btrfs_delalloc_release_space(inode, offset,
8633 						     count - (size_t)ret);
8634 	}
8635 out:
8636 	if (wakeup)
8637 		inode_dio_end(inode);
8638 	if (relock)
8639 		inode_lock(inode);
8640 
8641 	return ret;
8642 }
8643 
8644 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8645 
8646 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8647 		__u64 start, __u64 len)
8648 {
8649 	int	ret;
8650 
8651 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8652 	if (ret)
8653 		return ret;
8654 
8655 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8656 }
8657 
8658 int btrfs_readpage(struct file *file, struct page *page)
8659 {
8660 	struct extent_io_tree *tree;
8661 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8662 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8663 }
8664 
8665 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8666 {
8667 	struct extent_io_tree *tree;
8668 	struct inode *inode = page->mapping->host;
8669 	int ret;
8670 
8671 	if (current->flags & PF_MEMALLOC) {
8672 		redirty_page_for_writepage(wbc, page);
8673 		unlock_page(page);
8674 		return 0;
8675 	}
8676 
8677 	/*
8678 	 * If we are under memory pressure we will call this directly from the
8679 	 * VM, we need to make sure we have the inode referenced for the ordered
8680 	 * extent.  If not just return like we didn't do anything.
8681 	 */
8682 	if (!igrab(inode)) {
8683 		redirty_page_for_writepage(wbc, page);
8684 		return AOP_WRITEPAGE_ACTIVATE;
8685 	}
8686 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8687 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8688 	btrfs_add_delayed_iput(inode);
8689 	return ret;
8690 }
8691 
8692 static int btrfs_writepages(struct address_space *mapping,
8693 			    struct writeback_control *wbc)
8694 {
8695 	struct extent_io_tree *tree;
8696 
8697 	tree = &BTRFS_I(mapping->host)->io_tree;
8698 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8699 }
8700 
8701 static int
8702 btrfs_readpages(struct file *file, struct address_space *mapping,
8703 		struct list_head *pages, unsigned nr_pages)
8704 {
8705 	struct extent_io_tree *tree;
8706 	tree = &BTRFS_I(mapping->host)->io_tree;
8707 	return extent_readpages(tree, mapping, pages, nr_pages,
8708 				btrfs_get_extent);
8709 }
8710 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8711 {
8712 	struct extent_io_tree *tree;
8713 	struct extent_map_tree *map;
8714 	int ret;
8715 
8716 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8717 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8718 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8719 	if (ret == 1) {
8720 		ClearPagePrivate(page);
8721 		set_page_private(page, 0);
8722 		put_page(page);
8723 	}
8724 	return ret;
8725 }
8726 
8727 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8728 {
8729 	if (PageWriteback(page) || PageDirty(page))
8730 		return 0;
8731 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8732 }
8733 
8734 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8735 				 unsigned int length)
8736 {
8737 	struct inode *inode = page->mapping->host;
8738 	struct extent_io_tree *tree;
8739 	struct btrfs_ordered_extent *ordered;
8740 	struct extent_state *cached_state = NULL;
8741 	u64 page_start = page_offset(page);
8742 	u64 page_end = page_start + PAGE_SIZE - 1;
8743 	u64 start;
8744 	u64 end;
8745 	int inode_evicting = inode->i_state & I_FREEING;
8746 
8747 	/*
8748 	 * we have the page locked, so new writeback can't start,
8749 	 * and the dirty bit won't be cleared while we are here.
8750 	 *
8751 	 * Wait for IO on this page so that we can safely clear
8752 	 * the PagePrivate2 bit and do ordered accounting
8753 	 */
8754 	wait_on_page_writeback(page);
8755 
8756 	tree = &BTRFS_I(inode)->io_tree;
8757 	if (offset) {
8758 		btrfs_releasepage(page, GFP_NOFS);
8759 		return;
8760 	}
8761 
8762 	if (!inode_evicting)
8763 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8764 again:
8765 	start = page_start;
8766 	ordered = btrfs_lookup_ordered_range(inode, start,
8767 					page_end - start + 1);
8768 	if (ordered) {
8769 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8770 		/*
8771 		 * IO on this page will never be started, so we need
8772 		 * to account for any ordered extents now
8773 		 */
8774 		if (!inode_evicting)
8775 			clear_extent_bit(tree, start, end,
8776 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8777 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8778 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8779 					 GFP_NOFS);
8780 		/*
8781 		 * whoever cleared the private bit is responsible
8782 		 * for the finish_ordered_io
8783 		 */
8784 		if (TestClearPagePrivate2(page)) {
8785 			struct btrfs_ordered_inode_tree *tree;
8786 			u64 new_len;
8787 
8788 			tree = &BTRFS_I(inode)->ordered_tree;
8789 
8790 			spin_lock_irq(&tree->lock);
8791 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8792 			new_len = start - ordered->file_offset;
8793 			if (new_len < ordered->truncated_len)
8794 				ordered->truncated_len = new_len;
8795 			spin_unlock_irq(&tree->lock);
8796 
8797 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8798 							   start,
8799 							   end - start + 1, 1))
8800 				btrfs_finish_ordered_io(ordered);
8801 		}
8802 		btrfs_put_ordered_extent(ordered);
8803 		if (!inode_evicting) {
8804 			cached_state = NULL;
8805 			lock_extent_bits(tree, start, end,
8806 					 &cached_state);
8807 		}
8808 
8809 		start = end + 1;
8810 		if (start < page_end)
8811 			goto again;
8812 	}
8813 
8814 	/*
8815 	 * Qgroup reserved space handler
8816 	 * Page here will be either
8817 	 * 1) Already written to disk
8818 	 *    In this case, its reserved space is released from data rsv map
8819 	 *    and will be freed by delayed_ref handler finally.
8820 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8821 	 *    space.
8822 	 * 2) Not written to disk
8823 	 *    This means the reserved space should be freed here.
8824 	 */
8825 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8826 	if (!inode_evicting) {
8827 		clear_extent_bit(tree, page_start, page_end,
8828 				 EXTENT_LOCKED | EXTENT_DIRTY |
8829 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8830 				 EXTENT_DEFRAG, 1, 1,
8831 				 &cached_state, GFP_NOFS);
8832 
8833 		__btrfs_releasepage(page, GFP_NOFS);
8834 	}
8835 
8836 	ClearPageChecked(page);
8837 	if (PagePrivate(page)) {
8838 		ClearPagePrivate(page);
8839 		set_page_private(page, 0);
8840 		put_page(page);
8841 	}
8842 }
8843 
8844 /*
8845  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8846  * called from a page fault handler when a page is first dirtied. Hence we must
8847  * be careful to check for EOF conditions here. We set the page up correctly
8848  * for a written page which means we get ENOSPC checking when writing into
8849  * holes and correct delalloc and unwritten extent mapping on filesystems that
8850  * support these features.
8851  *
8852  * We are not allowed to take the i_mutex here so we have to play games to
8853  * protect against truncate races as the page could now be beyond EOF.  Because
8854  * vmtruncate() writes the inode size before removing pages, once we have the
8855  * page lock we can determine safely if the page is beyond EOF. If it is not
8856  * beyond EOF, then the page is guaranteed safe against truncation until we
8857  * unlock the page.
8858  */
8859 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8860 {
8861 	struct page *page = vmf->page;
8862 	struct inode *inode = file_inode(vma->vm_file);
8863 	struct btrfs_root *root = BTRFS_I(inode)->root;
8864 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8865 	struct btrfs_ordered_extent *ordered;
8866 	struct extent_state *cached_state = NULL;
8867 	char *kaddr;
8868 	unsigned long zero_start;
8869 	loff_t size;
8870 	int ret;
8871 	int reserved = 0;
8872 	u64 reserved_space;
8873 	u64 page_start;
8874 	u64 page_end;
8875 	u64 end;
8876 
8877 	reserved_space = PAGE_SIZE;
8878 
8879 	sb_start_pagefault(inode->i_sb);
8880 	page_start = page_offset(page);
8881 	page_end = page_start + PAGE_SIZE - 1;
8882 	end = page_end;
8883 
8884 	/*
8885 	 * Reserving delalloc space after obtaining the page lock can lead to
8886 	 * deadlock. For example, if a dirty page is locked by this function
8887 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8888 	 * dirty page write out, then the btrfs_writepage() function could
8889 	 * end up waiting indefinitely to get a lock on the page currently
8890 	 * being processed by btrfs_page_mkwrite() function.
8891 	 */
8892 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8893 					   reserved_space);
8894 	if (!ret) {
8895 		ret = file_update_time(vma->vm_file);
8896 		reserved = 1;
8897 	}
8898 	if (ret) {
8899 		if (ret == -ENOMEM)
8900 			ret = VM_FAULT_OOM;
8901 		else /* -ENOSPC, -EIO, etc */
8902 			ret = VM_FAULT_SIGBUS;
8903 		if (reserved)
8904 			goto out;
8905 		goto out_noreserve;
8906 	}
8907 
8908 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8909 again:
8910 	lock_page(page);
8911 	size = i_size_read(inode);
8912 
8913 	if ((page->mapping != inode->i_mapping) ||
8914 	    (page_start >= size)) {
8915 		/* page got truncated out from underneath us */
8916 		goto out_unlock;
8917 	}
8918 	wait_on_page_writeback(page);
8919 
8920 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8921 	set_page_extent_mapped(page);
8922 
8923 	/*
8924 	 * we can't set the delalloc bits if there are pending ordered
8925 	 * extents.  Drop our locks and wait for them to finish
8926 	 */
8927 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8928 	if (ordered) {
8929 		unlock_extent_cached(io_tree, page_start, page_end,
8930 				     &cached_state, GFP_NOFS);
8931 		unlock_page(page);
8932 		btrfs_start_ordered_extent(inode, ordered, 1);
8933 		btrfs_put_ordered_extent(ordered);
8934 		goto again;
8935 	}
8936 
8937 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8938 		reserved_space = round_up(size - page_start, root->sectorsize);
8939 		if (reserved_space < PAGE_SIZE) {
8940 			end = page_start + reserved_space - 1;
8941 			spin_lock(&BTRFS_I(inode)->lock);
8942 			BTRFS_I(inode)->outstanding_extents++;
8943 			spin_unlock(&BTRFS_I(inode)->lock);
8944 			btrfs_delalloc_release_space(inode, page_start,
8945 						PAGE_SIZE - reserved_space);
8946 		}
8947 	}
8948 
8949 	/*
8950 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8951 	 * if it was already dirty, so for space accounting reasons we need to
8952 	 * clear any delalloc bits for the range we are fixing to save.  There
8953 	 * is probably a better way to do this, but for now keep consistent with
8954 	 * prepare_pages in the normal write path.
8955 	 */
8956 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8957 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8958 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8959 			  0, 0, &cached_state, GFP_NOFS);
8960 
8961 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
8962 					&cached_state);
8963 	if (ret) {
8964 		unlock_extent_cached(io_tree, page_start, page_end,
8965 				     &cached_state, GFP_NOFS);
8966 		ret = VM_FAULT_SIGBUS;
8967 		goto out_unlock;
8968 	}
8969 	ret = 0;
8970 
8971 	/* page is wholly or partially inside EOF */
8972 	if (page_start + PAGE_SIZE > size)
8973 		zero_start = size & ~PAGE_MASK;
8974 	else
8975 		zero_start = PAGE_SIZE;
8976 
8977 	if (zero_start != PAGE_SIZE) {
8978 		kaddr = kmap(page);
8979 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8980 		flush_dcache_page(page);
8981 		kunmap(page);
8982 	}
8983 	ClearPageChecked(page);
8984 	set_page_dirty(page);
8985 	SetPageUptodate(page);
8986 
8987 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8988 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8989 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8990 
8991 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8992 
8993 out_unlock:
8994 	if (!ret) {
8995 		sb_end_pagefault(inode->i_sb);
8996 		return VM_FAULT_LOCKED;
8997 	}
8998 	unlock_page(page);
8999 out:
9000 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9001 out_noreserve:
9002 	sb_end_pagefault(inode->i_sb);
9003 	return ret;
9004 }
9005 
9006 static int btrfs_truncate(struct inode *inode)
9007 {
9008 	struct btrfs_root *root = BTRFS_I(inode)->root;
9009 	struct btrfs_block_rsv *rsv;
9010 	int ret = 0;
9011 	int err = 0;
9012 	struct btrfs_trans_handle *trans;
9013 	u64 mask = root->sectorsize - 1;
9014 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9015 
9016 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9017 				       (u64)-1);
9018 	if (ret)
9019 		return ret;
9020 
9021 	/*
9022 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
9023 	 * 3 things going on here
9024 	 *
9025 	 * 1) We need to reserve space for our orphan item and the space to
9026 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9027 	 * orphan item because we didn't reserve space to remove it.
9028 	 *
9029 	 * 2) We need to reserve space to update our inode.
9030 	 *
9031 	 * 3) We need to have something to cache all the space that is going to
9032 	 * be free'd up by the truncate operation, but also have some slack
9033 	 * space reserved in case it uses space during the truncate (thank you
9034 	 * very much snapshotting).
9035 	 *
9036 	 * And we need these to all be seperate.  The fact is we can use alot of
9037 	 * space doing the truncate, and we have no earthly idea how much space
9038 	 * we will use, so we need the truncate reservation to be seperate so it
9039 	 * doesn't end up using space reserved for updating the inode or
9040 	 * removing the orphan item.  We also need to be able to stop the
9041 	 * transaction and start a new one, which means we need to be able to
9042 	 * update the inode several times, and we have no idea of knowing how
9043 	 * many times that will be, so we can't just reserve 1 item for the
9044 	 * entirety of the opration, so that has to be done seperately as well.
9045 	 * Then there is the orphan item, which does indeed need to be held on
9046 	 * to for the whole operation, and we need nobody to touch this reserved
9047 	 * space except the orphan code.
9048 	 *
9049 	 * So that leaves us with
9050 	 *
9051 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9052 	 * 2) rsv - for the truncate reservation, which we will steal from the
9053 	 * transaction reservation.
9054 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9055 	 * updating the inode.
9056 	 */
9057 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9058 	if (!rsv)
9059 		return -ENOMEM;
9060 	rsv->size = min_size;
9061 	rsv->failfast = 1;
9062 
9063 	/*
9064 	 * 1 for the truncate slack space
9065 	 * 1 for updating the inode.
9066 	 */
9067 	trans = btrfs_start_transaction(root, 2);
9068 	if (IS_ERR(trans)) {
9069 		err = PTR_ERR(trans);
9070 		goto out;
9071 	}
9072 
9073 	/* Migrate the slack space for the truncate to our reserve */
9074 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9075 				      min_size);
9076 	BUG_ON(ret);
9077 
9078 	/*
9079 	 * So if we truncate and then write and fsync we normally would just
9080 	 * write the extents that changed, which is a problem if we need to
9081 	 * first truncate that entire inode.  So set this flag so we write out
9082 	 * all of the extents in the inode to the sync log so we're completely
9083 	 * safe.
9084 	 */
9085 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9086 	trans->block_rsv = rsv;
9087 
9088 	while (1) {
9089 		ret = btrfs_truncate_inode_items(trans, root, inode,
9090 						 inode->i_size,
9091 						 BTRFS_EXTENT_DATA_KEY);
9092 		if (ret != -ENOSPC && ret != -EAGAIN) {
9093 			err = ret;
9094 			break;
9095 		}
9096 
9097 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9098 		ret = btrfs_update_inode(trans, root, inode);
9099 		if (ret) {
9100 			err = ret;
9101 			break;
9102 		}
9103 
9104 		btrfs_end_transaction(trans, root);
9105 		btrfs_btree_balance_dirty(root);
9106 
9107 		trans = btrfs_start_transaction(root, 2);
9108 		if (IS_ERR(trans)) {
9109 			ret = err = PTR_ERR(trans);
9110 			trans = NULL;
9111 			break;
9112 		}
9113 
9114 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9115 					      rsv, min_size);
9116 		BUG_ON(ret);	/* shouldn't happen */
9117 		trans->block_rsv = rsv;
9118 	}
9119 
9120 	if (ret == 0 && inode->i_nlink > 0) {
9121 		trans->block_rsv = root->orphan_block_rsv;
9122 		ret = btrfs_orphan_del(trans, inode);
9123 		if (ret)
9124 			err = ret;
9125 	}
9126 
9127 	if (trans) {
9128 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9129 		ret = btrfs_update_inode(trans, root, inode);
9130 		if (ret && !err)
9131 			err = ret;
9132 
9133 		ret = btrfs_end_transaction(trans, root);
9134 		btrfs_btree_balance_dirty(root);
9135 	}
9136 
9137 out:
9138 	btrfs_free_block_rsv(root, rsv);
9139 
9140 	if (ret && !err)
9141 		err = ret;
9142 
9143 	return err;
9144 }
9145 
9146 /*
9147  * create a new subvolume directory/inode (helper for the ioctl).
9148  */
9149 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9150 			     struct btrfs_root *new_root,
9151 			     struct btrfs_root *parent_root,
9152 			     u64 new_dirid)
9153 {
9154 	struct inode *inode;
9155 	int err;
9156 	u64 index = 0;
9157 
9158 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9159 				new_dirid, new_dirid,
9160 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9161 				&index);
9162 	if (IS_ERR(inode))
9163 		return PTR_ERR(inode);
9164 	inode->i_op = &btrfs_dir_inode_operations;
9165 	inode->i_fop = &btrfs_dir_file_operations;
9166 
9167 	set_nlink(inode, 1);
9168 	btrfs_i_size_write(inode, 0);
9169 	unlock_new_inode(inode);
9170 
9171 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9172 	if (err)
9173 		btrfs_err(new_root->fs_info,
9174 			  "error inheriting subvolume %llu properties: %d",
9175 			  new_root->root_key.objectid, err);
9176 
9177 	err = btrfs_update_inode(trans, new_root, inode);
9178 
9179 	iput(inode);
9180 	return err;
9181 }
9182 
9183 struct inode *btrfs_alloc_inode(struct super_block *sb)
9184 {
9185 	struct btrfs_inode *ei;
9186 	struct inode *inode;
9187 
9188 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9189 	if (!ei)
9190 		return NULL;
9191 
9192 	ei->root = NULL;
9193 	ei->generation = 0;
9194 	ei->last_trans = 0;
9195 	ei->last_sub_trans = 0;
9196 	ei->logged_trans = 0;
9197 	ei->delalloc_bytes = 0;
9198 	ei->defrag_bytes = 0;
9199 	ei->disk_i_size = 0;
9200 	ei->flags = 0;
9201 	ei->csum_bytes = 0;
9202 	ei->index_cnt = (u64)-1;
9203 	ei->dir_index = 0;
9204 	ei->last_unlink_trans = 0;
9205 	ei->last_log_commit = 0;
9206 	ei->delayed_iput_count = 0;
9207 
9208 	spin_lock_init(&ei->lock);
9209 	ei->outstanding_extents = 0;
9210 	ei->reserved_extents = 0;
9211 
9212 	ei->runtime_flags = 0;
9213 	ei->force_compress = BTRFS_COMPRESS_NONE;
9214 
9215 	ei->delayed_node = NULL;
9216 
9217 	ei->i_otime.tv_sec = 0;
9218 	ei->i_otime.tv_nsec = 0;
9219 
9220 	inode = &ei->vfs_inode;
9221 	extent_map_tree_init(&ei->extent_tree);
9222 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9223 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9224 	ei->io_tree.track_uptodate = 1;
9225 	ei->io_failure_tree.track_uptodate = 1;
9226 	atomic_set(&ei->sync_writers, 0);
9227 	mutex_init(&ei->log_mutex);
9228 	mutex_init(&ei->delalloc_mutex);
9229 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9230 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9231 	INIT_LIST_HEAD(&ei->delayed_iput);
9232 	RB_CLEAR_NODE(&ei->rb_node);
9233 
9234 	return inode;
9235 }
9236 
9237 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9238 void btrfs_test_destroy_inode(struct inode *inode)
9239 {
9240 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9241 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9242 }
9243 #endif
9244 
9245 static void btrfs_i_callback(struct rcu_head *head)
9246 {
9247 	struct inode *inode = container_of(head, struct inode, i_rcu);
9248 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9249 }
9250 
9251 void btrfs_destroy_inode(struct inode *inode)
9252 {
9253 	struct btrfs_ordered_extent *ordered;
9254 	struct btrfs_root *root = BTRFS_I(inode)->root;
9255 
9256 	WARN_ON(!hlist_empty(&inode->i_dentry));
9257 	WARN_ON(inode->i_data.nrpages);
9258 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9259 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9260 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9261 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9262 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9263 
9264 	/*
9265 	 * This can happen where we create an inode, but somebody else also
9266 	 * created the same inode and we need to destroy the one we already
9267 	 * created.
9268 	 */
9269 	if (!root)
9270 		goto free;
9271 
9272 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9273 		     &BTRFS_I(inode)->runtime_flags)) {
9274 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9275 			btrfs_ino(inode));
9276 		atomic_dec(&root->orphan_inodes);
9277 	}
9278 
9279 	while (1) {
9280 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9281 		if (!ordered)
9282 			break;
9283 		else {
9284 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9285 				ordered->file_offset, ordered->len);
9286 			btrfs_remove_ordered_extent(inode, ordered);
9287 			btrfs_put_ordered_extent(ordered);
9288 			btrfs_put_ordered_extent(ordered);
9289 		}
9290 	}
9291 	btrfs_qgroup_check_reserved_leak(inode);
9292 	inode_tree_del(inode);
9293 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9294 free:
9295 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9296 }
9297 
9298 int btrfs_drop_inode(struct inode *inode)
9299 {
9300 	struct btrfs_root *root = BTRFS_I(inode)->root;
9301 
9302 	if (root == NULL)
9303 		return 1;
9304 
9305 	/* the snap/subvol tree is on deleting */
9306 	if (btrfs_root_refs(&root->root_item) == 0)
9307 		return 1;
9308 	else
9309 		return generic_drop_inode(inode);
9310 }
9311 
9312 static void init_once(void *foo)
9313 {
9314 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9315 
9316 	inode_init_once(&ei->vfs_inode);
9317 }
9318 
9319 void btrfs_destroy_cachep(void)
9320 {
9321 	/*
9322 	 * Make sure all delayed rcu free inodes are flushed before we
9323 	 * destroy cache.
9324 	 */
9325 	rcu_barrier();
9326 	kmem_cache_destroy(btrfs_inode_cachep);
9327 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9328 	kmem_cache_destroy(btrfs_transaction_cachep);
9329 	kmem_cache_destroy(btrfs_path_cachep);
9330 	kmem_cache_destroy(btrfs_free_space_cachep);
9331 }
9332 
9333 int btrfs_init_cachep(void)
9334 {
9335 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9336 			sizeof(struct btrfs_inode), 0,
9337 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9338 			init_once);
9339 	if (!btrfs_inode_cachep)
9340 		goto fail;
9341 
9342 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9343 			sizeof(struct btrfs_trans_handle), 0,
9344 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9345 	if (!btrfs_trans_handle_cachep)
9346 		goto fail;
9347 
9348 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9349 			sizeof(struct btrfs_transaction), 0,
9350 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9351 	if (!btrfs_transaction_cachep)
9352 		goto fail;
9353 
9354 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9355 			sizeof(struct btrfs_path), 0,
9356 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9357 	if (!btrfs_path_cachep)
9358 		goto fail;
9359 
9360 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9361 			sizeof(struct btrfs_free_space), 0,
9362 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9363 	if (!btrfs_free_space_cachep)
9364 		goto fail;
9365 
9366 	return 0;
9367 fail:
9368 	btrfs_destroy_cachep();
9369 	return -ENOMEM;
9370 }
9371 
9372 static int btrfs_getattr(struct vfsmount *mnt,
9373 			 struct dentry *dentry, struct kstat *stat)
9374 {
9375 	u64 delalloc_bytes;
9376 	struct inode *inode = d_inode(dentry);
9377 	u32 blocksize = inode->i_sb->s_blocksize;
9378 
9379 	generic_fillattr(inode, stat);
9380 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9381 
9382 	spin_lock(&BTRFS_I(inode)->lock);
9383 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9384 	spin_unlock(&BTRFS_I(inode)->lock);
9385 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9386 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9387 	return 0;
9388 }
9389 
9390 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9391 			   struct inode *new_dir, struct dentry *new_dentry)
9392 {
9393 	struct btrfs_trans_handle *trans;
9394 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9395 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9396 	struct inode *new_inode = d_inode(new_dentry);
9397 	struct inode *old_inode = d_inode(old_dentry);
9398 	u64 index = 0;
9399 	u64 root_objectid;
9400 	int ret;
9401 	u64 old_ino = btrfs_ino(old_inode);
9402 
9403 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9404 		return -EPERM;
9405 
9406 	/* we only allow rename subvolume link between subvolumes */
9407 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9408 		return -EXDEV;
9409 
9410 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9411 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9412 		return -ENOTEMPTY;
9413 
9414 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9415 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9416 		return -ENOTEMPTY;
9417 
9418 
9419 	/* check for collisions, even if the  name isn't there */
9420 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9421 			     new_dentry->d_name.name,
9422 			     new_dentry->d_name.len);
9423 
9424 	if (ret) {
9425 		if (ret == -EEXIST) {
9426 			/* we shouldn't get
9427 			 * eexist without a new_inode */
9428 			if (WARN_ON(!new_inode)) {
9429 				return ret;
9430 			}
9431 		} else {
9432 			/* maybe -EOVERFLOW */
9433 			return ret;
9434 		}
9435 	}
9436 	ret = 0;
9437 
9438 	/*
9439 	 * we're using rename to replace one file with another.  Start IO on it
9440 	 * now so  we don't add too much work to the end of the transaction
9441 	 */
9442 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9443 		filemap_flush(old_inode->i_mapping);
9444 
9445 	/* close the racy window with snapshot create/destroy ioctl */
9446 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9447 		down_read(&root->fs_info->subvol_sem);
9448 	/*
9449 	 * We want to reserve the absolute worst case amount of items.  So if
9450 	 * both inodes are subvols and we need to unlink them then that would
9451 	 * require 4 item modifications, but if they are both normal inodes it
9452 	 * would require 5 item modifications, so we'll assume their normal
9453 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9454 	 * should cover the worst case number of items we'll modify.
9455 	 */
9456 	trans = btrfs_start_transaction(root, 11);
9457 	if (IS_ERR(trans)) {
9458                 ret = PTR_ERR(trans);
9459                 goto out_notrans;
9460         }
9461 
9462 	if (dest != root)
9463 		btrfs_record_root_in_trans(trans, dest);
9464 
9465 	ret = btrfs_set_inode_index(new_dir, &index);
9466 	if (ret)
9467 		goto out_fail;
9468 
9469 	BTRFS_I(old_inode)->dir_index = 0ULL;
9470 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9471 		/* force full log commit if subvolume involved. */
9472 		btrfs_set_log_full_commit(root->fs_info, trans);
9473 	} else {
9474 		ret = btrfs_insert_inode_ref(trans, dest,
9475 					     new_dentry->d_name.name,
9476 					     new_dentry->d_name.len,
9477 					     old_ino,
9478 					     btrfs_ino(new_dir), index);
9479 		if (ret)
9480 			goto out_fail;
9481 		/*
9482 		 * this is an ugly little race, but the rename is required
9483 		 * to make sure that if we crash, the inode is either at the
9484 		 * old name or the new one.  pinning the log transaction lets
9485 		 * us make sure we don't allow a log commit to come in after
9486 		 * we unlink the name but before we add the new name back in.
9487 		 */
9488 		btrfs_pin_log_trans(root);
9489 	}
9490 
9491 	inode_inc_iversion(old_dir);
9492 	inode_inc_iversion(new_dir);
9493 	inode_inc_iversion(old_inode);
9494 	old_dir->i_ctime = old_dir->i_mtime =
9495 	new_dir->i_ctime = new_dir->i_mtime =
9496 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9497 
9498 	if (old_dentry->d_parent != new_dentry->d_parent)
9499 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9500 
9501 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9502 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9503 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9504 					old_dentry->d_name.name,
9505 					old_dentry->d_name.len);
9506 	} else {
9507 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9508 					d_inode(old_dentry),
9509 					old_dentry->d_name.name,
9510 					old_dentry->d_name.len);
9511 		if (!ret)
9512 			ret = btrfs_update_inode(trans, root, old_inode);
9513 	}
9514 	if (ret) {
9515 		btrfs_abort_transaction(trans, root, ret);
9516 		goto out_fail;
9517 	}
9518 
9519 	if (new_inode) {
9520 		inode_inc_iversion(new_inode);
9521 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9522 		if (unlikely(btrfs_ino(new_inode) ==
9523 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9524 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9525 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9526 						root_objectid,
9527 						new_dentry->d_name.name,
9528 						new_dentry->d_name.len);
9529 			BUG_ON(new_inode->i_nlink == 0);
9530 		} else {
9531 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9532 						 d_inode(new_dentry),
9533 						 new_dentry->d_name.name,
9534 						 new_dentry->d_name.len);
9535 		}
9536 		if (!ret && new_inode->i_nlink == 0)
9537 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9538 		if (ret) {
9539 			btrfs_abort_transaction(trans, root, ret);
9540 			goto out_fail;
9541 		}
9542 	}
9543 
9544 	ret = btrfs_add_link(trans, new_dir, old_inode,
9545 			     new_dentry->d_name.name,
9546 			     new_dentry->d_name.len, 0, index);
9547 	if (ret) {
9548 		btrfs_abort_transaction(trans, root, ret);
9549 		goto out_fail;
9550 	}
9551 
9552 	if (old_inode->i_nlink == 1)
9553 		BTRFS_I(old_inode)->dir_index = index;
9554 
9555 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9556 		struct dentry *parent = new_dentry->d_parent;
9557 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9558 		btrfs_end_log_trans(root);
9559 	}
9560 out_fail:
9561 	btrfs_end_transaction(trans, root);
9562 out_notrans:
9563 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9564 		up_read(&root->fs_info->subvol_sem);
9565 
9566 	return ret;
9567 }
9568 
9569 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9570 			 struct inode *new_dir, struct dentry *new_dentry,
9571 			 unsigned int flags)
9572 {
9573 	if (flags & ~RENAME_NOREPLACE)
9574 		return -EINVAL;
9575 
9576 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9577 }
9578 
9579 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9580 {
9581 	struct btrfs_delalloc_work *delalloc_work;
9582 	struct inode *inode;
9583 
9584 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9585 				     work);
9586 	inode = delalloc_work->inode;
9587 	filemap_flush(inode->i_mapping);
9588 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9589 				&BTRFS_I(inode)->runtime_flags))
9590 		filemap_flush(inode->i_mapping);
9591 
9592 	if (delalloc_work->delay_iput)
9593 		btrfs_add_delayed_iput(inode);
9594 	else
9595 		iput(inode);
9596 	complete(&delalloc_work->completion);
9597 }
9598 
9599 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9600 						    int delay_iput)
9601 {
9602 	struct btrfs_delalloc_work *work;
9603 
9604 	work = kmalloc(sizeof(*work), GFP_NOFS);
9605 	if (!work)
9606 		return NULL;
9607 
9608 	init_completion(&work->completion);
9609 	INIT_LIST_HEAD(&work->list);
9610 	work->inode = inode;
9611 	work->delay_iput = delay_iput;
9612 	WARN_ON_ONCE(!inode);
9613 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9614 			btrfs_run_delalloc_work, NULL, NULL);
9615 
9616 	return work;
9617 }
9618 
9619 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9620 {
9621 	wait_for_completion(&work->completion);
9622 	kfree(work);
9623 }
9624 
9625 /*
9626  * some fairly slow code that needs optimization. This walks the list
9627  * of all the inodes with pending delalloc and forces them to disk.
9628  */
9629 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9630 				   int nr)
9631 {
9632 	struct btrfs_inode *binode;
9633 	struct inode *inode;
9634 	struct btrfs_delalloc_work *work, *next;
9635 	struct list_head works;
9636 	struct list_head splice;
9637 	int ret = 0;
9638 
9639 	INIT_LIST_HEAD(&works);
9640 	INIT_LIST_HEAD(&splice);
9641 
9642 	mutex_lock(&root->delalloc_mutex);
9643 	spin_lock(&root->delalloc_lock);
9644 	list_splice_init(&root->delalloc_inodes, &splice);
9645 	while (!list_empty(&splice)) {
9646 		binode = list_entry(splice.next, struct btrfs_inode,
9647 				    delalloc_inodes);
9648 
9649 		list_move_tail(&binode->delalloc_inodes,
9650 			       &root->delalloc_inodes);
9651 		inode = igrab(&binode->vfs_inode);
9652 		if (!inode) {
9653 			cond_resched_lock(&root->delalloc_lock);
9654 			continue;
9655 		}
9656 		spin_unlock(&root->delalloc_lock);
9657 
9658 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
9659 		if (!work) {
9660 			if (delay_iput)
9661 				btrfs_add_delayed_iput(inode);
9662 			else
9663 				iput(inode);
9664 			ret = -ENOMEM;
9665 			goto out;
9666 		}
9667 		list_add_tail(&work->list, &works);
9668 		btrfs_queue_work(root->fs_info->flush_workers,
9669 				 &work->work);
9670 		ret++;
9671 		if (nr != -1 && ret >= nr)
9672 			goto out;
9673 		cond_resched();
9674 		spin_lock(&root->delalloc_lock);
9675 	}
9676 	spin_unlock(&root->delalloc_lock);
9677 
9678 out:
9679 	list_for_each_entry_safe(work, next, &works, list) {
9680 		list_del_init(&work->list);
9681 		btrfs_wait_and_free_delalloc_work(work);
9682 	}
9683 
9684 	if (!list_empty_careful(&splice)) {
9685 		spin_lock(&root->delalloc_lock);
9686 		list_splice_tail(&splice, &root->delalloc_inodes);
9687 		spin_unlock(&root->delalloc_lock);
9688 	}
9689 	mutex_unlock(&root->delalloc_mutex);
9690 	return ret;
9691 }
9692 
9693 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9694 {
9695 	int ret;
9696 
9697 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9698 		return -EROFS;
9699 
9700 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9701 	if (ret > 0)
9702 		ret = 0;
9703 	/*
9704 	 * the filemap_flush will queue IO into the worker threads, but
9705 	 * we have to make sure the IO is actually started and that
9706 	 * ordered extents get created before we return
9707 	 */
9708 	atomic_inc(&root->fs_info->async_submit_draining);
9709 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9710 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9711 		wait_event(root->fs_info->async_submit_wait,
9712 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9713 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9714 	}
9715 	atomic_dec(&root->fs_info->async_submit_draining);
9716 	return ret;
9717 }
9718 
9719 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9720 			       int nr)
9721 {
9722 	struct btrfs_root *root;
9723 	struct list_head splice;
9724 	int ret;
9725 
9726 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9727 		return -EROFS;
9728 
9729 	INIT_LIST_HEAD(&splice);
9730 
9731 	mutex_lock(&fs_info->delalloc_root_mutex);
9732 	spin_lock(&fs_info->delalloc_root_lock);
9733 	list_splice_init(&fs_info->delalloc_roots, &splice);
9734 	while (!list_empty(&splice) && nr) {
9735 		root = list_first_entry(&splice, struct btrfs_root,
9736 					delalloc_root);
9737 		root = btrfs_grab_fs_root(root);
9738 		BUG_ON(!root);
9739 		list_move_tail(&root->delalloc_root,
9740 			       &fs_info->delalloc_roots);
9741 		spin_unlock(&fs_info->delalloc_root_lock);
9742 
9743 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9744 		btrfs_put_fs_root(root);
9745 		if (ret < 0)
9746 			goto out;
9747 
9748 		if (nr != -1) {
9749 			nr -= ret;
9750 			WARN_ON(nr < 0);
9751 		}
9752 		spin_lock(&fs_info->delalloc_root_lock);
9753 	}
9754 	spin_unlock(&fs_info->delalloc_root_lock);
9755 
9756 	ret = 0;
9757 	atomic_inc(&fs_info->async_submit_draining);
9758 	while (atomic_read(&fs_info->nr_async_submits) ||
9759 	      atomic_read(&fs_info->async_delalloc_pages)) {
9760 		wait_event(fs_info->async_submit_wait,
9761 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9762 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9763 	}
9764 	atomic_dec(&fs_info->async_submit_draining);
9765 out:
9766 	if (!list_empty_careful(&splice)) {
9767 		spin_lock(&fs_info->delalloc_root_lock);
9768 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9769 		spin_unlock(&fs_info->delalloc_root_lock);
9770 	}
9771 	mutex_unlock(&fs_info->delalloc_root_mutex);
9772 	return ret;
9773 }
9774 
9775 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9776 			 const char *symname)
9777 {
9778 	struct btrfs_trans_handle *trans;
9779 	struct btrfs_root *root = BTRFS_I(dir)->root;
9780 	struct btrfs_path *path;
9781 	struct btrfs_key key;
9782 	struct inode *inode = NULL;
9783 	int err;
9784 	int drop_inode = 0;
9785 	u64 objectid;
9786 	u64 index = 0;
9787 	int name_len;
9788 	int datasize;
9789 	unsigned long ptr;
9790 	struct btrfs_file_extent_item *ei;
9791 	struct extent_buffer *leaf;
9792 
9793 	name_len = strlen(symname);
9794 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9795 		return -ENAMETOOLONG;
9796 
9797 	/*
9798 	 * 2 items for inode item and ref
9799 	 * 2 items for dir items
9800 	 * 1 item for updating parent inode item
9801 	 * 1 item for the inline extent item
9802 	 * 1 item for xattr if selinux is on
9803 	 */
9804 	trans = btrfs_start_transaction(root, 7);
9805 	if (IS_ERR(trans))
9806 		return PTR_ERR(trans);
9807 
9808 	err = btrfs_find_free_ino(root, &objectid);
9809 	if (err)
9810 		goto out_unlock;
9811 
9812 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9813 				dentry->d_name.len, btrfs_ino(dir), objectid,
9814 				S_IFLNK|S_IRWXUGO, &index);
9815 	if (IS_ERR(inode)) {
9816 		err = PTR_ERR(inode);
9817 		goto out_unlock;
9818 	}
9819 
9820 	/*
9821 	* If the active LSM wants to access the inode during
9822 	* d_instantiate it needs these. Smack checks to see
9823 	* if the filesystem supports xattrs by looking at the
9824 	* ops vector.
9825 	*/
9826 	inode->i_fop = &btrfs_file_operations;
9827 	inode->i_op = &btrfs_file_inode_operations;
9828 	inode->i_mapping->a_ops = &btrfs_aops;
9829 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9830 
9831 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9832 	if (err)
9833 		goto out_unlock_inode;
9834 
9835 	path = btrfs_alloc_path();
9836 	if (!path) {
9837 		err = -ENOMEM;
9838 		goto out_unlock_inode;
9839 	}
9840 	key.objectid = btrfs_ino(inode);
9841 	key.offset = 0;
9842 	key.type = BTRFS_EXTENT_DATA_KEY;
9843 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9844 	err = btrfs_insert_empty_item(trans, root, path, &key,
9845 				      datasize);
9846 	if (err) {
9847 		btrfs_free_path(path);
9848 		goto out_unlock_inode;
9849 	}
9850 	leaf = path->nodes[0];
9851 	ei = btrfs_item_ptr(leaf, path->slots[0],
9852 			    struct btrfs_file_extent_item);
9853 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9854 	btrfs_set_file_extent_type(leaf, ei,
9855 				   BTRFS_FILE_EXTENT_INLINE);
9856 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9857 	btrfs_set_file_extent_compression(leaf, ei, 0);
9858 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9859 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9860 
9861 	ptr = btrfs_file_extent_inline_start(ei);
9862 	write_extent_buffer(leaf, symname, ptr, name_len);
9863 	btrfs_mark_buffer_dirty(leaf);
9864 	btrfs_free_path(path);
9865 
9866 	inode->i_op = &btrfs_symlink_inode_operations;
9867 	inode_nohighmem(inode);
9868 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9869 	inode_set_bytes(inode, name_len);
9870 	btrfs_i_size_write(inode, name_len);
9871 	err = btrfs_update_inode(trans, root, inode);
9872 	/*
9873 	 * Last step, add directory indexes for our symlink inode. This is the
9874 	 * last step to avoid extra cleanup of these indexes if an error happens
9875 	 * elsewhere above.
9876 	 */
9877 	if (!err)
9878 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9879 	if (err) {
9880 		drop_inode = 1;
9881 		goto out_unlock_inode;
9882 	}
9883 
9884 	unlock_new_inode(inode);
9885 	d_instantiate(dentry, inode);
9886 
9887 out_unlock:
9888 	btrfs_end_transaction(trans, root);
9889 	if (drop_inode) {
9890 		inode_dec_link_count(inode);
9891 		iput(inode);
9892 	}
9893 	btrfs_btree_balance_dirty(root);
9894 	return err;
9895 
9896 out_unlock_inode:
9897 	drop_inode = 1;
9898 	unlock_new_inode(inode);
9899 	goto out_unlock;
9900 }
9901 
9902 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9903 				       u64 start, u64 num_bytes, u64 min_size,
9904 				       loff_t actual_len, u64 *alloc_hint,
9905 				       struct btrfs_trans_handle *trans)
9906 {
9907 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9908 	struct extent_map *em;
9909 	struct btrfs_root *root = BTRFS_I(inode)->root;
9910 	struct btrfs_key ins;
9911 	u64 cur_offset = start;
9912 	u64 i_size;
9913 	u64 cur_bytes;
9914 	u64 last_alloc = (u64)-1;
9915 	int ret = 0;
9916 	bool own_trans = true;
9917 
9918 	if (trans)
9919 		own_trans = false;
9920 	while (num_bytes > 0) {
9921 		if (own_trans) {
9922 			trans = btrfs_start_transaction(root, 3);
9923 			if (IS_ERR(trans)) {
9924 				ret = PTR_ERR(trans);
9925 				break;
9926 			}
9927 		}
9928 
9929 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9930 		cur_bytes = max(cur_bytes, min_size);
9931 		/*
9932 		 * If we are severely fragmented we could end up with really
9933 		 * small allocations, so if the allocator is returning small
9934 		 * chunks lets make its job easier by only searching for those
9935 		 * sized chunks.
9936 		 */
9937 		cur_bytes = min(cur_bytes, last_alloc);
9938 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9939 					   *alloc_hint, &ins, 1, 0);
9940 		if (ret) {
9941 			if (own_trans)
9942 				btrfs_end_transaction(trans, root);
9943 			break;
9944 		}
9945 
9946 		last_alloc = ins.offset;
9947 		ret = insert_reserved_file_extent(trans, inode,
9948 						  cur_offset, ins.objectid,
9949 						  ins.offset, ins.offset,
9950 						  ins.offset, 0, 0, 0,
9951 						  BTRFS_FILE_EXTENT_PREALLOC);
9952 		if (ret) {
9953 			btrfs_free_reserved_extent(root, ins.objectid,
9954 						   ins.offset, 0);
9955 			btrfs_abort_transaction(trans, root, ret);
9956 			if (own_trans)
9957 				btrfs_end_transaction(trans, root);
9958 			break;
9959 		}
9960 
9961 		btrfs_drop_extent_cache(inode, cur_offset,
9962 					cur_offset + ins.offset -1, 0);
9963 
9964 		em = alloc_extent_map();
9965 		if (!em) {
9966 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9967 				&BTRFS_I(inode)->runtime_flags);
9968 			goto next;
9969 		}
9970 
9971 		em->start = cur_offset;
9972 		em->orig_start = cur_offset;
9973 		em->len = ins.offset;
9974 		em->block_start = ins.objectid;
9975 		em->block_len = ins.offset;
9976 		em->orig_block_len = ins.offset;
9977 		em->ram_bytes = ins.offset;
9978 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9979 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9980 		em->generation = trans->transid;
9981 
9982 		while (1) {
9983 			write_lock(&em_tree->lock);
9984 			ret = add_extent_mapping(em_tree, em, 1);
9985 			write_unlock(&em_tree->lock);
9986 			if (ret != -EEXIST)
9987 				break;
9988 			btrfs_drop_extent_cache(inode, cur_offset,
9989 						cur_offset + ins.offset - 1,
9990 						0);
9991 		}
9992 		free_extent_map(em);
9993 next:
9994 		num_bytes -= ins.offset;
9995 		cur_offset += ins.offset;
9996 		*alloc_hint = ins.objectid + ins.offset;
9997 
9998 		inode_inc_iversion(inode);
9999 		inode->i_ctime = current_fs_time(inode->i_sb);
10000 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10001 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10002 		    (actual_len > inode->i_size) &&
10003 		    (cur_offset > inode->i_size)) {
10004 			if (cur_offset > actual_len)
10005 				i_size = actual_len;
10006 			else
10007 				i_size = cur_offset;
10008 			i_size_write(inode, i_size);
10009 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10010 		}
10011 
10012 		ret = btrfs_update_inode(trans, root, inode);
10013 
10014 		if (ret) {
10015 			btrfs_abort_transaction(trans, root, ret);
10016 			if (own_trans)
10017 				btrfs_end_transaction(trans, root);
10018 			break;
10019 		}
10020 
10021 		if (own_trans)
10022 			btrfs_end_transaction(trans, root);
10023 	}
10024 	return ret;
10025 }
10026 
10027 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10028 			      u64 start, u64 num_bytes, u64 min_size,
10029 			      loff_t actual_len, u64 *alloc_hint)
10030 {
10031 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10032 					   min_size, actual_len, alloc_hint,
10033 					   NULL);
10034 }
10035 
10036 int btrfs_prealloc_file_range_trans(struct inode *inode,
10037 				    struct btrfs_trans_handle *trans, int mode,
10038 				    u64 start, u64 num_bytes, u64 min_size,
10039 				    loff_t actual_len, u64 *alloc_hint)
10040 {
10041 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10042 					   min_size, actual_len, alloc_hint, trans);
10043 }
10044 
10045 static int btrfs_set_page_dirty(struct page *page)
10046 {
10047 	return __set_page_dirty_nobuffers(page);
10048 }
10049 
10050 static int btrfs_permission(struct inode *inode, int mask)
10051 {
10052 	struct btrfs_root *root = BTRFS_I(inode)->root;
10053 	umode_t mode = inode->i_mode;
10054 
10055 	if (mask & MAY_WRITE &&
10056 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10057 		if (btrfs_root_readonly(root))
10058 			return -EROFS;
10059 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10060 			return -EACCES;
10061 	}
10062 	return generic_permission(inode, mask);
10063 }
10064 
10065 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10066 {
10067 	struct btrfs_trans_handle *trans;
10068 	struct btrfs_root *root = BTRFS_I(dir)->root;
10069 	struct inode *inode = NULL;
10070 	u64 objectid;
10071 	u64 index;
10072 	int ret = 0;
10073 
10074 	/*
10075 	 * 5 units required for adding orphan entry
10076 	 */
10077 	trans = btrfs_start_transaction(root, 5);
10078 	if (IS_ERR(trans))
10079 		return PTR_ERR(trans);
10080 
10081 	ret = btrfs_find_free_ino(root, &objectid);
10082 	if (ret)
10083 		goto out;
10084 
10085 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10086 				btrfs_ino(dir), objectid, mode, &index);
10087 	if (IS_ERR(inode)) {
10088 		ret = PTR_ERR(inode);
10089 		inode = NULL;
10090 		goto out;
10091 	}
10092 
10093 	inode->i_fop = &btrfs_file_operations;
10094 	inode->i_op = &btrfs_file_inode_operations;
10095 
10096 	inode->i_mapping->a_ops = &btrfs_aops;
10097 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10098 
10099 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10100 	if (ret)
10101 		goto out_inode;
10102 
10103 	ret = btrfs_update_inode(trans, root, inode);
10104 	if (ret)
10105 		goto out_inode;
10106 	ret = btrfs_orphan_add(trans, inode);
10107 	if (ret)
10108 		goto out_inode;
10109 
10110 	/*
10111 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10112 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10113 	 * through:
10114 	 *
10115 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10116 	 */
10117 	set_nlink(inode, 1);
10118 	unlock_new_inode(inode);
10119 	d_tmpfile(dentry, inode);
10120 	mark_inode_dirty(inode);
10121 
10122 out:
10123 	btrfs_end_transaction(trans, root);
10124 	if (ret)
10125 		iput(inode);
10126 	btrfs_balance_delayed_items(root);
10127 	btrfs_btree_balance_dirty(root);
10128 	return ret;
10129 
10130 out_inode:
10131 	unlock_new_inode(inode);
10132 	goto out;
10133 
10134 }
10135 
10136 /* Inspired by filemap_check_errors() */
10137 int btrfs_inode_check_errors(struct inode *inode)
10138 {
10139 	int ret = 0;
10140 
10141 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10142 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10143 		ret = -ENOSPC;
10144 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10145 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10146 		ret = -EIO;
10147 
10148 	return ret;
10149 }
10150 
10151 static const struct inode_operations btrfs_dir_inode_operations = {
10152 	.getattr	= btrfs_getattr,
10153 	.lookup		= btrfs_lookup,
10154 	.create		= btrfs_create,
10155 	.unlink		= btrfs_unlink,
10156 	.link		= btrfs_link,
10157 	.mkdir		= btrfs_mkdir,
10158 	.rmdir		= btrfs_rmdir,
10159 	.rename2	= btrfs_rename2,
10160 	.symlink	= btrfs_symlink,
10161 	.setattr	= btrfs_setattr,
10162 	.mknod		= btrfs_mknod,
10163 	.setxattr	= btrfs_setxattr,
10164 	.getxattr	= generic_getxattr,
10165 	.listxattr	= btrfs_listxattr,
10166 	.removexattr	= btrfs_removexattr,
10167 	.permission	= btrfs_permission,
10168 	.get_acl	= btrfs_get_acl,
10169 	.set_acl	= btrfs_set_acl,
10170 	.update_time	= btrfs_update_time,
10171 	.tmpfile        = btrfs_tmpfile,
10172 };
10173 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10174 	.lookup		= btrfs_lookup,
10175 	.permission	= btrfs_permission,
10176 	.get_acl	= btrfs_get_acl,
10177 	.set_acl	= btrfs_set_acl,
10178 	.update_time	= btrfs_update_time,
10179 };
10180 
10181 static const struct file_operations btrfs_dir_file_operations = {
10182 	.llseek		= generic_file_llseek,
10183 	.read		= generic_read_dir,
10184 	.iterate	= btrfs_real_readdir,
10185 	.unlocked_ioctl	= btrfs_ioctl,
10186 #ifdef CONFIG_COMPAT
10187 	.compat_ioctl	= btrfs_ioctl,
10188 #endif
10189 	.release        = btrfs_release_file,
10190 	.fsync		= btrfs_sync_file,
10191 };
10192 
10193 static const struct extent_io_ops btrfs_extent_io_ops = {
10194 	.fill_delalloc = run_delalloc_range,
10195 	.submit_bio_hook = btrfs_submit_bio_hook,
10196 	.merge_bio_hook = btrfs_merge_bio_hook,
10197 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10198 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10199 	.writepage_start_hook = btrfs_writepage_start_hook,
10200 	.set_bit_hook = btrfs_set_bit_hook,
10201 	.clear_bit_hook = btrfs_clear_bit_hook,
10202 	.merge_extent_hook = btrfs_merge_extent_hook,
10203 	.split_extent_hook = btrfs_split_extent_hook,
10204 };
10205 
10206 /*
10207  * btrfs doesn't support the bmap operation because swapfiles
10208  * use bmap to make a mapping of extents in the file.  They assume
10209  * these extents won't change over the life of the file and they
10210  * use the bmap result to do IO directly to the drive.
10211  *
10212  * the btrfs bmap call would return logical addresses that aren't
10213  * suitable for IO and they also will change frequently as COW
10214  * operations happen.  So, swapfile + btrfs == corruption.
10215  *
10216  * For now we're avoiding this by dropping bmap.
10217  */
10218 static const struct address_space_operations btrfs_aops = {
10219 	.readpage	= btrfs_readpage,
10220 	.writepage	= btrfs_writepage,
10221 	.writepages	= btrfs_writepages,
10222 	.readpages	= btrfs_readpages,
10223 	.direct_IO	= btrfs_direct_IO,
10224 	.invalidatepage = btrfs_invalidatepage,
10225 	.releasepage	= btrfs_releasepage,
10226 	.set_page_dirty	= btrfs_set_page_dirty,
10227 	.error_remove_page = generic_error_remove_page,
10228 };
10229 
10230 static const struct address_space_operations btrfs_symlink_aops = {
10231 	.readpage	= btrfs_readpage,
10232 	.writepage	= btrfs_writepage,
10233 	.invalidatepage = btrfs_invalidatepage,
10234 	.releasepage	= btrfs_releasepage,
10235 };
10236 
10237 static const struct inode_operations btrfs_file_inode_operations = {
10238 	.getattr	= btrfs_getattr,
10239 	.setattr	= btrfs_setattr,
10240 	.setxattr	= btrfs_setxattr,
10241 	.getxattr	= generic_getxattr,
10242 	.listxattr      = btrfs_listxattr,
10243 	.removexattr	= btrfs_removexattr,
10244 	.permission	= btrfs_permission,
10245 	.fiemap		= btrfs_fiemap,
10246 	.get_acl	= btrfs_get_acl,
10247 	.set_acl	= btrfs_set_acl,
10248 	.update_time	= btrfs_update_time,
10249 };
10250 static const struct inode_operations btrfs_special_inode_operations = {
10251 	.getattr	= btrfs_getattr,
10252 	.setattr	= btrfs_setattr,
10253 	.permission	= btrfs_permission,
10254 	.setxattr	= btrfs_setxattr,
10255 	.getxattr	= generic_getxattr,
10256 	.listxattr	= btrfs_listxattr,
10257 	.removexattr	= btrfs_removexattr,
10258 	.get_acl	= btrfs_get_acl,
10259 	.set_acl	= btrfs_set_acl,
10260 	.update_time	= btrfs_update_time,
10261 };
10262 static const struct inode_operations btrfs_symlink_inode_operations = {
10263 	.readlink	= generic_readlink,
10264 	.get_link	= page_get_link,
10265 	.getattr	= btrfs_getattr,
10266 	.setattr	= btrfs_setattr,
10267 	.permission	= btrfs_permission,
10268 	.setxattr	= btrfs_setxattr,
10269 	.getxattr	= generic_getxattr,
10270 	.listxattr	= btrfs_listxattr,
10271 	.removexattr	= btrfs_removexattr,
10272 	.update_time	= btrfs_update_time,
10273 };
10274 
10275 const struct dentry_operations btrfs_dentry_operations = {
10276 	.d_delete	= btrfs_dentry_delete,
10277 	.d_release	= btrfs_dentry_release,
10278 };
10279