1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, int *page_started, 109 unsigned long *nr_written, int unlock); 110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 111 u64 len, u64 orig_start, 112 u64 block_start, u64 block_len, 113 u64 orig_block_len, u64 ram_bytes, 114 int type); 115 116 static int btrfs_dirty_inode(struct inode *inode); 117 118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 119 void btrfs_test_inode_set_ops(struct inode *inode) 120 { 121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 122 } 123 #endif 124 125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 126 struct inode *inode, struct inode *dir, 127 const struct qstr *qstr) 128 { 129 int err; 130 131 err = btrfs_init_acl(trans, inode, dir); 132 if (!err) 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 134 return err; 135 } 136 137 /* 138 * this does all the hard work for inserting an inline extent into 139 * the btree. The caller should have done a btrfs_drop_extents so that 140 * no overlapping inline items exist in the btree 141 */ 142 static int insert_inline_extent(struct btrfs_trans_handle *trans, 143 struct btrfs_path *path, int extent_inserted, 144 struct btrfs_root *root, struct inode *inode, 145 u64 start, size_t size, size_t compressed_size, 146 int compress_type, 147 struct page **compressed_pages) 148 { 149 struct extent_buffer *leaf; 150 struct page *page = NULL; 151 char *kaddr; 152 unsigned long ptr; 153 struct btrfs_file_extent_item *ei; 154 int err = 0; 155 int ret; 156 size_t cur_size = size; 157 unsigned long offset; 158 159 if (compressed_size && compressed_pages) 160 cur_size = compressed_size; 161 162 inode_add_bytes(inode, size); 163 164 if (!extent_inserted) { 165 struct btrfs_key key; 166 size_t datasize; 167 168 key.objectid = btrfs_ino(inode); 169 key.offset = start; 170 key.type = BTRFS_EXTENT_DATA_KEY; 171 172 datasize = btrfs_file_extent_calc_inline_size(cur_size); 173 path->leave_spinning = 1; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 datasize); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 } 181 leaf = path->nodes[0]; 182 ei = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 186 btrfs_set_file_extent_encryption(leaf, ei, 0); 187 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 188 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 189 ptr = btrfs_file_extent_inline_start(ei); 190 191 if (compress_type != BTRFS_COMPRESS_NONE) { 192 struct page *cpage; 193 int i = 0; 194 while (compressed_size > 0) { 195 cpage = compressed_pages[i]; 196 cur_size = min_t(unsigned long, compressed_size, 197 PAGE_SIZE); 198 199 kaddr = kmap_atomic(cpage); 200 write_extent_buffer(leaf, kaddr, ptr, cur_size); 201 kunmap_atomic(kaddr); 202 203 i++; 204 ptr += cur_size; 205 compressed_size -= cur_size; 206 } 207 btrfs_set_file_extent_compression(leaf, ei, 208 compress_type); 209 } else { 210 page = find_get_page(inode->i_mapping, 211 start >> PAGE_SHIFT); 212 btrfs_set_file_extent_compression(leaf, ei, 0); 213 kaddr = kmap_atomic(page); 214 offset = start & (PAGE_SIZE - 1); 215 write_extent_buffer(leaf, kaddr + offset, ptr, size); 216 kunmap_atomic(kaddr); 217 put_page(page); 218 } 219 btrfs_mark_buffer_dirty(leaf); 220 btrfs_release_path(path); 221 222 /* 223 * we're an inline extent, so nobody can 224 * extend the file past i_size without locking 225 * a page we already have locked. 226 * 227 * We must do any isize and inode updates 228 * before we unlock the pages. Otherwise we 229 * could end up racing with unlink. 230 */ 231 BTRFS_I(inode)->disk_i_size = inode->i_size; 232 ret = btrfs_update_inode(trans, root, inode); 233 234 return ret; 235 fail: 236 return err; 237 } 238 239 240 /* 241 * conditionally insert an inline extent into the file. This 242 * does the checks required to make sure the data is small enough 243 * to fit as an inline extent. 244 */ 245 static noinline int cow_file_range_inline(struct btrfs_root *root, 246 struct inode *inode, u64 start, 247 u64 end, size_t compressed_size, 248 int compress_type, 249 struct page **compressed_pages) 250 { 251 struct btrfs_trans_handle *trans; 252 u64 isize = i_size_read(inode); 253 u64 actual_end = min(end + 1, isize); 254 u64 inline_len = actual_end - start; 255 u64 aligned_end = ALIGN(end, root->sectorsize); 256 u64 data_len = inline_len; 257 int ret; 258 struct btrfs_path *path; 259 int extent_inserted = 0; 260 u32 extent_item_size; 261 262 if (compressed_size) 263 data_len = compressed_size; 264 265 if (start > 0 || 266 actual_end > root->sectorsize || 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 268 (!compressed_size && 269 (actual_end & (root->sectorsize - 1)) == 0) || 270 end + 1 < isize || 271 data_len > root->fs_info->max_inline) { 272 return 1; 273 } 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return -ENOMEM; 278 279 trans = btrfs_join_transaction(root); 280 if (IS_ERR(trans)) { 281 btrfs_free_path(path); 282 return PTR_ERR(trans); 283 } 284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 285 286 if (compressed_size && compressed_pages) 287 extent_item_size = btrfs_file_extent_calc_inline_size( 288 compressed_size); 289 else 290 extent_item_size = btrfs_file_extent_calc_inline_size( 291 inline_len); 292 293 ret = __btrfs_drop_extents(trans, root, inode, path, 294 start, aligned_end, NULL, 295 1, 1, extent_item_size, &extent_inserted); 296 if (ret) { 297 btrfs_abort_transaction(trans, root, ret); 298 goto out; 299 } 300 301 if (isize > actual_end) 302 inline_len = min_t(u64, isize, actual_end); 303 ret = insert_inline_extent(trans, path, extent_inserted, 304 root, inode, start, 305 inline_len, compressed_size, 306 compress_type, compressed_pages); 307 if (ret && ret != -ENOSPC) { 308 btrfs_abort_transaction(trans, root, ret); 309 goto out; 310 } else if (ret == -ENOSPC) { 311 ret = 1; 312 goto out; 313 } 314 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 316 btrfs_delalloc_release_metadata(inode, end + 1 - start); 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 318 out: 319 /* 320 * Don't forget to free the reserved space, as for inlined extent 321 * it won't count as data extent, free them directly here. 322 * And at reserve time, it's always aligned to page size, so 323 * just free one page here. 324 */ 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 326 btrfs_free_path(path); 327 btrfs_end_transaction(trans, root); 328 return ret; 329 } 330 331 struct async_extent { 332 u64 start; 333 u64 ram_size; 334 u64 compressed_size; 335 struct page **pages; 336 unsigned long nr_pages; 337 int compress_type; 338 struct list_head list; 339 }; 340 341 struct async_cow { 342 struct inode *inode; 343 struct btrfs_root *root; 344 struct page *locked_page; 345 u64 start; 346 u64 end; 347 struct list_head extents; 348 struct btrfs_work work; 349 }; 350 351 static noinline int add_async_extent(struct async_cow *cow, 352 u64 start, u64 ram_size, 353 u64 compressed_size, 354 struct page **pages, 355 unsigned long nr_pages, 356 int compress_type) 357 { 358 struct async_extent *async_extent; 359 360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 361 BUG_ON(!async_extent); /* -ENOMEM */ 362 async_extent->start = start; 363 async_extent->ram_size = ram_size; 364 async_extent->compressed_size = compressed_size; 365 async_extent->pages = pages; 366 async_extent->nr_pages = nr_pages; 367 async_extent->compress_type = compress_type; 368 list_add_tail(&async_extent->list, &cow->extents); 369 return 0; 370 } 371 372 static inline int inode_need_compress(struct inode *inode) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 376 /* force compress */ 377 if (btrfs_test_opt(root, FORCE_COMPRESS)) 378 return 1; 379 /* bad compression ratios */ 380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 381 return 0; 382 if (btrfs_test_opt(root, COMPRESS) || 383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 384 BTRFS_I(inode)->force_compress) 385 return 1; 386 return 0; 387 } 388 389 /* 390 * we create compressed extents in two phases. The first 391 * phase compresses a range of pages that have already been 392 * locked (both pages and state bits are locked). 393 * 394 * This is done inside an ordered work queue, and the compression 395 * is spread across many cpus. The actual IO submission is step 396 * two, and the ordered work queue takes care of making sure that 397 * happens in the same order things were put onto the queue by 398 * writepages and friends. 399 * 400 * If this code finds it can't get good compression, it puts an 401 * entry onto the work queue to write the uncompressed bytes. This 402 * makes sure that both compressed inodes and uncompressed inodes 403 * are written in the same order that the flusher thread sent them 404 * down. 405 */ 406 static noinline void compress_file_range(struct inode *inode, 407 struct page *locked_page, 408 u64 start, u64 end, 409 struct async_cow *async_cow, 410 int *num_added) 411 { 412 struct btrfs_root *root = BTRFS_I(inode)->root; 413 u64 num_bytes; 414 u64 blocksize = root->sectorsize; 415 u64 actual_end; 416 u64 isize = i_size_read(inode); 417 int ret = 0; 418 struct page **pages = NULL; 419 unsigned long nr_pages; 420 unsigned long nr_pages_ret = 0; 421 unsigned long total_compressed = 0; 422 unsigned long total_in = 0; 423 unsigned long max_compressed = SZ_128K; 424 unsigned long max_uncompressed = SZ_128K; 425 int i; 426 int will_compress; 427 int compress_type = root->fs_info->compress_type; 428 int redirty = 0; 429 430 /* if this is a small write inside eof, kick off a defrag */ 431 if ((end - start + 1) < SZ_16K && 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 435 actual_end = min_t(u64, isize, end + 1); 436 again: 437 will_compress = 0; 438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 440 441 /* 442 * we don't want to send crud past the end of i_size through 443 * compression, that's just a waste of CPU time. So, if the 444 * end of the file is before the start of our current 445 * requested range of bytes, we bail out to the uncompressed 446 * cleanup code that can deal with all of this. 447 * 448 * It isn't really the fastest way to fix things, but this is a 449 * very uncommon corner. 450 */ 451 if (actual_end <= start) 452 goto cleanup_and_bail_uncompressed; 453 454 total_compressed = actual_end - start; 455 456 /* 457 * skip compression for a small file range(<=blocksize) that 458 * isn't an inline extent, since it dosen't save disk space at all. 459 */ 460 if (total_compressed <= blocksize && 461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 462 goto cleanup_and_bail_uncompressed; 463 464 /* we want to make sure that amount of ram required to uncompress 465 * an extent is reasonable, so we limit the total size in ram 466 * of a compressed extent to 128k. This is a crucial number 467 * because it also controls how easily we can spread reads across 468 * cpus for decompression. 469 * 470 * We also want to make sure the amount of IO required to do 471 * a random read is reasonably small, so we limit the size of 472 * a compressed extent to 128k. 473 */ 474 total_compressed = min(total_compressed, max_uncompressed); 475 num_bytes = ALIGN(end - start + 1, blocksize); 476 num_bytes = max(blocksize, num_bytes); 477 total_in = 0; 478 ret = 0; 479 480 /* 481 * we do compression for mount -o compress and when the 482 * inode has not been flagged as nocompress. This flag can 483 * change at any time if we discover bad compression ratios. 484 */ 485 if (inode_need_compress(inode)) { 486 WARN_ON(pages); 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 488 if (!pages) { 489 /* just bail out to the uncompressed code */ 490 goto cont; 491 } 492 493 if (BTRFS_I(inode)->force_compress) 494 compress_type = BTRFS_I(inode)->force_compress; 495 496 /* 497 * we need to call clear_page_dirty_for_io on each 498 * page in the range. Otherwise applications with the file 499 * mmap'd can wander in and change the page contents while 500 * we are compressing them. 501 * 502 * If the compression fails for any reason, we set the pages 503 * dirty again later on. 504 */ 505 extent_range_clear_dirty_for_io(inode, start, end); 506 redirty = 1; 507 ret = btrfs_compress_pages(compress_type, 508 inode->i_mapping, start, 509 total_compressed, pages, 510 nr_pages, &nr_pages_ret, 511 &total_in, 512 &total_compressed, 513 max_compressed); 514 515 if (!ret) { 516 unsigned long offset = total_compressed & 517 (PAGE_SIZE - 1); 518 struct page *page = pages[nr_pages_ret - 1]; 519 char *kaddr; 520 521 /* zero the tail end of the last page, we might be 522 * sending it down to disk 523 */ 524 if (offset) { 525 kaddr = kmap_atomic(page); 526 memset(kaddr + offset, 0, 527 PAGE_SIZE - offset); 528 kunmap_atomic(kaddr); 529 } 530 will_compress = 1; 531 } 532 } 533 cont: 534 if (start == 0) { 535 /* lets try to make an inline extent */ 536 if (ret || total_in < (actual_end - start)) { 537 /* we didn't compress the entire range, try 538 * to make an uncompressed inline extent. 539 */ 540 ret = cow_file_range_inline(root, inode, start, end, 541 0, 0, NULL); 542 } else { 543 /* try making a compressed inline extent */ 544 ret = cow_file_range_inline(root, inode, start, end, 545 total_compressed, 546 compress_type, pages); 547 } 548 if (ret <= 0) { 549 unsigned long clear_flags = EXTENT_DELALLOC | 550 EXTENT_DEFRAG; 551 unsigned long page_error_op; 552 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 555 556 /* 557 * inline extent creation worked or returned error, 558 * we don't need to create any more async work items. 559 * Unlock and free up our temp pages. 560 */ 561 extent_clear_unlock_delalloc(inode, start, end, NULL, 562 clear_flags, PAGE_UNLOCK | 563 PAGE_CLEAR_DIRTY | 564 PAGE_SET_WRITEBACK | 565 page_error_op | 566 PAGE_END_WRITEBACK); 567 goto free_pages_out; 568 } 569 } 570 571 if (will_compress) { 572 /* 573 * we aren't doing an inline extent round the compressed size 574 * up to a block size boundary so the allocator does sane 575 * things 576 */ 577 total_compressed = ALIGN(total_compressed, blocksize); 578 579 /* 580 * one last check to make sure the compression is really a 581 * win, compare the page count read with the blocks on disk 582 */ 583 total_in = ALIGN(total_in, PAGE_SIZE); 584 if (total_compressed >= total_in) { 585 will_compress = 0; 586 } else { 587 num_bytes = total_in; 588 } 589 } 590 if (!will_compress && pages) { 591 /* 592 * the compression code ran but failed to make things smaller, 593 * free any pages it allocated and our page pointer array 594 */ 595 for (i = 0; i < nr_pages_ret; i++) { 596 WARN_ON(pages[i]->mapping); 597 put_page(pages[i]); 598 } 599 kfree(pages); 600 pages = NULL; 601 total_compressed = 0; 602 nr_pages_ret = 0; 603 604 /* flag the file so we don't compress in the future */ 605 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 606 !(BTRFS_I(inode)->force_compress)) { 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 608 } 609 } 610 if (will_compress) { 611 *num_added += 1; 612 613 /* the async work queues will take care of doing actual 614 * allocation on disk for these compressed pages, 615 * and will submit them to the elevator. 616 */ 617 add_async_extent(async_cow, start, num_bytes, 618 total_compressed, pages, nr_pages_ret, 619 compress_type); 620 621 if (start + num_bytes < end) { 622 start += num_bytes; 623 pages = NULL; 624 cond_resched(); 625 goto again; 626 } 627 } else { 628 cleanup_and_bail_uncompressed: 629 /* 630 * No compression, but we still need to write the pages in 631 * the file we've been given so far. redirty the locked 632 * page if it corresponds to our extent and set things up 633 * for the async work queue to run cow_file_range to do 634 * the normal delalloc dance 635 */ 636 if (page_offset(locked_page) >= start && 637 page_offset(locked_page) <= end) { 638 __set_page_dirty_nobuffers(locked_page); 639 /* unlocked later on in the async handlers */ 640 } 641 if (redirty) 642 extent_range_redirty_for_io(inode, start, end); 643 add_async_extent(async_cow, start, end - start + 1, 644 0, NULL, 0, BTRFS_COMPRESS_NONE); 645 *num_added += 1; 646 } 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 &page_started, &nr_written, 0); 716 717 /* JDM XXX */ 718 719 /* 720 * if page_started, cow_file_range inserted an 721 * inline extent and took care of all the unlocking 722 * and IO for us. Otherwise, we need to submit 723 * all those pages down to the drive. 724 */ 725 if (!page_started && !ret) 726 extent_write_locked_range(io_tree, 727 inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 730 btrfs_get_extent, 731 WB_SYNC_ALL); 732 else if (ret) 733 unlock_page(async_cow->locked_page); 734 kfree(async_extent); 735 cond_resched(); 736 continue; 737 } 738 739 lock_extent(io_tree, async_extent->start, 740 async_extent->start + async_extent->ram_size - 1); 741 742 ret = btrfs_reserve_extent(root, 743 async_extent->compressed_size, 744 async_extent->compressed_size, 745 0, alloc_hint, &ins, 1, 1); 746 if (ret) { 747 free_async_extent_pages(async_extent); 748 749 if (ret == -ENOSPC) { 750 unlock_extent(io_tree, async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1); 753 754 /* 755 * we need to redirty the pages if we decide to 756 * fallback to uncompressed IO, otherwise we 757 * will not submit these pages down to lower 758 * layers. 759 */ 760 extent_range_redirty_for_io(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1); 764 765 goto retry; 766 } 767 goto out_free; 768 } 769 /* 770 * here we're doing allocation and writeback of the 771 * compressed pages 772 */ 773 btrfs_drop_extent_cache(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 0); 776 777 em = alloc_extent_map(); 778 if (!em) { 779 ret = -ENOMEM; 780 goto out_free_reserve; 781 } 782 em->start = async_extent->start; 783 em->len = async_extent->ram_size; 784 em->orig_start = em->start; 785 em->mod_start = em->start; 786 em->mod_len = em->len; 787 788 em->block_start = ins.objectid; 789 em->block_len = ins.offset; 790 em->orig_block_len = ins.offset; 791 em->ram_bytes = async_extent->ram_size; 792 em->bdev = root->fs_info->fs_devices->latest_bdev; 793 em->compress_type = async_extent->compress_type; 794 set_bit(EXTENT_FLAG_PINNED, &em->flags); 795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 796 em->generation = -1; 797 798 while (1) { 799 write_lock(&em_tree->lock); 800 ret = add_extent_mapping(em_tree, em, 1); 801 write_unlock(&em_tree->lock); 802 if (ret != -EEXIST) { 803 free_extent_map(em); 804 break; 805 } 806 btrfs_drop_extent_cache(inode, async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 0); 809 } 810 811 if (ret) 812 goto out_free_reserve; 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(inode, async_extent->start, 823 async_extent->start + 824 async_extent->ram_size - 1, 0); 825 goto out_free_reserve; 826 } 827 828 /* 829 * clear dirty, set writeback and unlock the pages. 830 */ 831 extent_clear_unlock_delalloc(inode, async_extent->start, 832 async_extent->start + 833 async_extent->ram_size - 1, 834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 836 PAGE_SET_WRITEBACK); 837 ret = btrfs_submit_compressed_write(inode, 838 async_extent->start, 839 async_extent->ram_size, 840 ins.objectid, 841 ins.offset, async_extent->pages, 842 async_extent->nr_pages); 843 if (ret) { 844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 845 struct page *p = async_extent->pages[0]; 846 const u64 start = async_extent->start; 847 const u64 end = start + async_extent->ram_size - 1; 848 849 p->mapping = inode->i_mapping; 850 tree->ops->writepage_end_io_hook(p, start, end, 851 NULL, 0); 852 p->mapping = NULL; 853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 854 PAGE_END_WRITEBACK | 855 PAGE_SET_ERROR); 856 free_async_extent_pages(async_extent); 857 } 858 alloc_hint = ins.objectid + ins.offset; 859 kfree(async_extent); 860 cond_resched(); 861 } 862 return; 863 out_free_reserve: 864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 865 out_free: 866 extent_clear_unlock_delalloc(inode, async_extent->start, 867 async_extent->start + 868 async_extent->ram_size - 1, 869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 873 PAGE_SET_ERROR); 874 free_async_extent_pages(async_extent); 875 kfree(async_extent); 876 goto again; 877 } 878 879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 880 u64 num_bytes) 881 { 882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 883 struct extent_map *em; 884 u64 alloc_hint = 0; 885 886 read_lock(&em_tree->lock); 887 em = search_extent_mapping(em_tree, start, num_bytes); 888 if (em) { 889 /* 890 * if block start isn't an actual block number then find the 891 * first block in this inode and use that as a hint. If that 892 * block is also bogus then just don't worry about it. 893 */ 894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 895 free_extent_map(em); 896 em = search_extent_mapping(em_tree, 0, 0); 897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 898 alloc_hint = em->block_start; 899 if (em) 900 free_extent_map(em); 901 } else { 902 alloc_hint = em->block_start; 903 free_extent_map(em); 904 } 905 } 906 read_unlock(&em_tree->lock); 907 908 return alloc_hint; 909 } 910 911 /* 912 * when extent_io.c finds a delayed allocation range in the file, 913 * the call backs end up in this code. The basic idea is to 914 * allocate extents on disk for the range, and create ordered data structs 915 * in ram to track those extents. 916 * 917 * locked_page is the page that writepage had locked already. We use 918 * it to make sure we don't do extra locks or unlocks. 919 * 920 * *page_started is set to one if we unlock locked_page and do everything 921 * required to start IO on it. It may be clean and already done with 922 * IO when we return. 923 */ 924 static noinline int cow_file_range(struct inode *inode, 925 struct page *locked_page, 926 u64 start, u64 end, int *page_started, 927 unsigned long *nr_written, 928 int unlock) 929 { 930 struct btrfs_root *root = BTRFS_I(inode)->root; 931 u64 alloc_hint = 0; 932 u64 num_bytes; 933 unsigned long ram_size; 934 u64 disk_num_bytes; 935 u64 cur_alloc_size; 936 u64 blocksize = root->sectorsize; 937 struct btrfs_key ins; 938 struct extent_map *em; 939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 940 int ret = 0; 941 942 if (btrfs_is_free_space_inode(inode)) { 943 WARN_ON_ONCE(1); 944 ret = -EINVAL; 945 goto out_unlock; 946 } 947 948 num_bytes = ALIGN(end - start + 1, blocksize); 949 num_bytes = max(blocksize, num_bytes); 950 disk_num_bytes = num_bytes; 951 952 /* if this is a small write inside eof, kick off defrag */ 953 if (num_bytes < SZ_64K && 954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 955 btrfs_add_inode_defrag(NULL, inode); 956 957 if (start == 0) { 958 /* lets try to make an inline extent */ 959 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 960 NULL); 961 if (ret == 0) { 962 extent_clear_unlock_delalloc(inode, start, end, NULL, 963 EXTENT_LOCKED | EXTENT_DELALLOC | 964 EXTENT_DEFRAG, PAGE_UNLOCK | 965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 966 PAGE_END_WRITEBACK); 967 968 *nr_written = *nr_written + 969 (end - start + PAGE_SIZE) / PAGE_SIZE; 970 *page_started = 1; 971 goto out; 972 } else if (ret < 0) { 973 goto out_unlock; 974 } 975 } 976 977 BUG_ON(disk_num_bytes > 978 btrfs_super_total_bytes(root->fs_info->super_copy)); 979 980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 982 983 while (disk_num_bytes > 0) { 984 unsigned long op; 985 986 cur_alloc_size = disk_num_bytes; 987 ret = btrfs_reserve_extent(root, cur_alloc_size, 988 root->sectorsize, 0, alloc_hint, 989 &ins, 1, 1); 990 if (ret < 0) 991 goto out_unlock; 992 993 em = alloc_extent_map(); 994 if (!em) { 995 ret = -ENOMEM; 996 goto out_reserve; 997 } 998 em->start = start; 999 em->orig_start = em->start; 1000 ram_size = ins.offset; 1001 em->len = ins.offset; 1002 em->mod_start = em->start; 1003 em->mod_len = em->len; 1004 1005 em->block_start = ins.objectid; 1006 em->block_len = ins.offset; 1007 em->orig_block_len = ins.offset; 1008 em->ram_bytes = ram_size; 1009 em->bdev = root->fs_info->fs_devices->latest_bdev; 1010 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1011 em->generation = -1; 1012 1013 while (1) { 1014 write_lock(&em_tree->lock); 1015 ret = add_extent_mapping(em_tree, em, 1); 1016 write_unlock(&em_tree->lock); 1017 if (ret != -EEXIST) { 1018 free_extent_map(em); 1019 break; 1020 } 1021 btrfs_drop_extent_cache(inode, start, 1022 start + ram_size - 1, 0); 1023 } 1024 if (ret) 1025 goto out_reserve; 1026 1027 cur_alloc_size = ins.offset; 1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1029 ram_size, cur_alloc_size, 0); 1030 if (ret) 1031 goto out_drop_extent_cache; 1032 1033 if (root->root_key.objectid == 1034 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1035 ret = btrfs_reloc_clone_csums(inode, start, 1036 cur_alloc_size); 1037 if (ret) 1038 goto out_drop_extent_cache; 1039 } 1040 1041 if (disk_num_bytes < cur_alloc_size) 1042 break; 1043 1044 /* we're not doing compressed IO, don't unlock the first 1045 * page (which the caller expects to stay locked), don't 1046 * clear any dirty bits and don't set any writeback bits 1047 * 1048 * Do set the Private2 bit so we know this page was properly 1049 * setup for writepage 1050 */ 1051 op = unlock ? PAGE_UNLOCK : 0; 1052 op |= PAGE_SET_PRIVATE2; 1053 1054 extent_clear_unlock_delalloc(inode, start, 1055 start + ram_size - 1, locked_page, 1056 EXTENT_LOCKED | EXTENT_DELALLOC, 1057 op); 1058 disk_num_bytes -= cur_alloc_size; 1059 num_bytes -= cur_alloc_size; 1060 alloc_hint = ins.objectid + ins.offset; 1061 start += cur_alloc_size; 1062 } 1063 out: 1064 return ret; 1065 1066 out_drop_extent_cache: 1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1068 out_reserve: 1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1070 out_unlock: 1071 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1073 EXTENT_DELALLOC | EXTENT_DEFRAG, 1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1076 goto out; 1077 } 1078 1079 /* 1080 * work queue call back to started compression on a file and pages 1081 */ 1082 static noinline void async_cow_start(struct btrfs_work *work) 1083 { 1084 struct async_cow *async_cow; 1085 int num_added = 0; 1086 async_cow = container_of(work, struct async_cow, work); 1087 1088 compress_file_range(async_cow->inode, async_cow->locked_page, 1089 async_cow->start, async_cow->end, async_cow, 1090 &num_added); 1091 if (num_added == 0) { 1092 btrfs_add_delayed_iput(async_cow->inode); 1093 async_cow->inode = NULL; 1094 } 1095 } 1096 1097 /* 1098 * work queue call back to submit previously compressed pages 1099 */ 1100 static noinline void async_cow_submit(struct btrfs_work *work) 1101 { 1102 struct async_cow *async_cow; 1103 struct btrfs_root *root; 1104 unsigned long nr_pages; 1105 1106 async_cow = container_of(work, struct async_cow, work); 1107 1108 root = async_cow->root; 1109 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1110 PAGE_SHIFT; 1111 1112 /* 1113 * atomic_sub_return implies a barrier for waitqueue_active 1114 */ 1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1116 5 * SZ_1M && 1117 waitqueue_active(&root->fs_info->async_submit_wait)) 1118 wake_up(&root->fs_info->async_submit_wait); 1119 1120 if (async_cow->inode) 1121 submit_compressed_extents(async_cow->inode, async_cow); 1122 } 1123 1124 static noinline void async_cow_free(struct btrfs_work *work) 1125 { 1126 struct async_cow *async_cow; 1127 async_cow = container_of(work, struct async_cow, work); 1128 if (async_cow->inode) 1129 btrfs_add_delayed_iput(async_cow->inode); 1130 kfree(async_cow); 1131 } 1132 1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1134 u64 start, u64 end, int *page_started, 1135 unsigned long *nr_written) 1136 { 1137 struct async_cow *async_cow; 1138 struct btrfs_root *root = BTRFS_I(inode)->root; 1139 unsigned long nr_pages; 1140 u64 cur_end; 1141 int limit = 10 * SZ_1M; 1142 1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1144 1, 0, NULL, GFP_NOFS); 1145 while (start < end) { 1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1147 BUG_ON(!async_cow); /* -ENOMEM */ 1148 async_cow->inode = igrab(inode); 1149 async_cow->root = root; 1150 async_cow->locked_page = locked_page; 1151 async_cow->start = start; 1152 1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1154 !btrfs_test_opt(root, FORCE_COMPRESS)) 1155 cur_end = end; 1156 else 1157 cur_end = min(end, start + SZ_512K - 1); 1158 1159 async_cow->end = cur_end; 1160 INIT_LIST_HEAD(&async_cow->extents); 1161 1162 btrfs_init_work(&async_cow->work, 1163 btrfs_delalloc_helper, 1164 async_cow_start, async_cow_submit, 1165 async_cow_free); 1166 1167 nr_pages = (cur_end - start + PAGE_SIZE) >> 1168 PAGE_SHIFT; 1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1170 1171 btrfs_queue_work(root->fs_info->delalloc_workers, 1172 &async_cow->work); 1173 1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1175 wait_event(root->fs_info->async_submit_wait, 1176 (atomic_read(&root->fs_info->async_delalloc_pages) < 1177 limit)); 1178 } 1179 1180 while (atomic_read(&root->fs_info->async_submit_draining) && 1181 atomic_read(&root->fs_info->async_delalloc_pages)) { 1182 wait_event(root->fs_info->async_submit_wait, 1183 (atomic_read(&root->fs_info->async_delalloc_pages) == 1184 0)); 1185 } 1186 1187 *nr_written += nr_pages; 1188 start = cur_end + 1; 1189 } 1190 *page_started = 1; 1191 return 0; 1192 } 1193 1194 static noinline int csum_exist_in_range(struct btrfs_root *root, 1195 u64 bytenr, u64 num_bytes) 1196 { 1197 int ret; 1198 struct btrfs_ordered_sum *sums; 1199 LIST_HEAD(list); 1200 1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1202 bytenr + num_bytes - 1, &list, 0); 1203 if (ret == 0 && list_empty(&list)) 1204 return 0; 1205 1206 while (!list_empty(&list)) { 1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1208 list_del(&sums->list); 1209 kfree(sums); 1210 } 1211 return 1; 1212 } 1213 1214 /* 1215 * when nowcow writeback call back. This checks for snapshots or COW copies 1216 * of the extents that exist in the file, and COWs the file as required. 1217 * 1218 * If no cow copies or snapshots exist, we write directly to the existing 1219 * blocks on disk 1220 */ 1221 static noinline int run_delalloc_nocow(struct inode *inode, 1222 struct page *locked_page, 1223 u64 start, u64 end, int *page_started, int force, 1224 unsigned long *nr_written) 1225 { 1226 struct btrfs_root *root = BTRFS_I(inode)->root; 1227 struct btrfs_trans_handle *trans; 1228 struct extent_buffer *leaf; 1229 struct btrfs_path *path; 1230 struct btrfs_file_extent_item *fi; 1231 struct btrfs_key found_key; 1232 u64 cow_start; 1233 u64 cur_offset; 1234 u64 extent_end; 1235 u64 extent_offset; 1236 u64 disk_bytenr; 1237 u64 num_bytes; 1238 u64 disk_num_bytes; 1239 u64 ram_bytes; 1240 int extent_type; 1241 int ret, err; 1242 int type; 1243 int nocow; 1244 int check_prev = 1; 1245 bool nolock; 1246 u64 ino = btrfs_ino(inode); 1247 1248 path = btrfs_alloc_path(); 1249 if (!path) { 1250 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1251 EXTENT_LOCKED | EXTENT_DELALLOC | 1252 EXTENT_DO_ACCOUNTING | 1253 EXTENT_DEFRAG, PAGE_UNLOCK | 1254 PAGE_CLEAR_DIRTY | 1255 PAGE_SET_WRITEBACK | 1256 PAGE_END_WRITEBACK); 1257 return -ENOMEM; 1258 } 1259 1260 nolock = btrfs_is_free_space_inode(inode); 1261 1262 if (nolock) 1263 trans = btrfs_join_transaction_nolock(root); 1264 else 1265 trans = btrfs_join_transaction(root); 1266 1267 if (IS_ERR(trans)) { 1268 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1269 EXTENT_LOCKED | EXTENT_DELALLOC | 1270 EXTENT_DO_ACCOUNTING | 1271 EXTENT_DEFRAG, PAGE_UNLOCK | 1272 PAGE_CLEAR_DIRTY | 1273 PAGE_SET_WRITEBACK | 1274 PAGE_END_WRITEBACK); 1275 btrfs_free_path(path); 1276 return PTR_ERR(trans); 1277 } 1278 1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1280 1281 cow_start = (u64)-1; 1282 cur_offset = start; 1283 while (1) { 1284 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1285 cur_offset, 0); 1286 if (ret < 0) 1287 goto error; 1288 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1289 leaf = path->nodes[0]; 1290 btrfs_item_key_to_cpu(leaf, &found_key, 1291 path->slots[0] - 1); 1292 if (found_key.objectid == ino && 1293 found_key.type == BTRFS_EXTENT_DATA_KEY) 1294 path->slots[0]--; 1295 } 1296 check_prev = 0; 1297 next_slot: 1298 leaf = path->nodes[0]; 1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1300 ret = btrfs_next_leaf(root, path); 1301 if (ret < 0) 1302 goto error; 1303 if (ret > 0) 1304 break; 1305 leaf = path->nodes[0]; 1306 } 1307 1308 nocow = 0; 1309 disk_bytenr = 0; 1310 num_bytes = 0; 1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1312 1313 if (found_key.objectid > ino) 1314 break; 1315 if (WARN_ON_ONCE(found_key.objectid < ino) || 1316 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1317 path->slots[0]++; 1318 goto next_slot; 1319 } 1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1321 found_key.offset > end) 1322 break; 1323 1324 if (found_key.offset > cur_offset) { 1325 extent_end = found_key.offset; 1326 extent_type = 0; 1327 goto out_check; 1328 } 1329 1330 fi = btrfs_item_ptr(leaf, path->slots[0], 1331 struct btrfs_file_extent_item); 1332 extent_type = btrfs_file_extent_type(leaf, fi); 1333 1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1335 if (extent_type == BTRFS_FILE_EXTENT_REG || 1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1338 extent_offset = btrfs_file_extent_offset(leaf, fi); 1339 extent_end = found_key.offset + 1340 btrfs_file_extent_num_bytes(leaf, fi); 1341 disk_num_bytes = 1342 btrfs_file_extent_disk_num_bytes(leaf, fi); 1343 if (extent_end <= start) { 1344 path->slots[0]++; 1345 goto next_slot; 1346 } 1347 if (disk_bytenr == 0) 1348 goto out_check; 1349 if (btrfs_file_extent_compression(leaf, fi) || 1350 btrfs_file_extent_encryption(leaf, fi) || 1351 btrfs_file_extent_other_encoding(leaf, fi)) 1352 goto out_check; 1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1354 goto out_check; 1355 if (btrfs_extent_readonly(root, disk_bytenr)) 1356 goto out_check; 1357 if (btrfs_cross_ref_exist(trans, root, ino, 1358 found_key.offset - 1359 extent_offset, disk_bytenr)) 1360 goto out_check; 1361 disk_bytenr += extent_offset; 1362 disk_bytenr += cur_offset - found_key.offset; 1363 num_bytes = min(end + 1, extent_end) - cur_offset; 1364 /* 1365 * if there are pending snapshots for this root, 1366 * we fall into common COW way. 1367 */ 1368 if (!nolock) { 1369 err = btrfs_start_write_no_snapshoting(root); 1370 if (!err) 1371 goto out_check; 1372 } 1373 /* 1374 * force cow if csum exists in the range. 1375 * this ensure that csum for a given extent are 1376 * either valid or do not exist. 1377 */ 1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1379 goto out_check; 1380 nocow = 1; 1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1382 extent_end = found_key.offset + 1383 btrfs_file_extent_inline_len(leaf, 1384 path->slots[0], fi); 1385 extent_end = ALIGN(extent_end, root->sectorsize); 1386 } else { 1387 BUG_ON(1); 1388 } 1389 out_check: 1390 if (extent_end <= start) { 1391 path->slots[0]++; 1392 if (!nolock && nocow) 1393 btrfs_end_write_no_snapshoting(root); 1394 goto next_slot; 1395 } 1396 if (!nocow) { 1397 if (cow_start == (u64)-1) 1398 cow_start = cur_offset; 1399 cur_offset = extent_end; 1400 if (cur_offset > end) 1401 break; 1402 path->slots[0]++; 1403 goto next_slot; 1404 } 1405 1406 btrfs_release_path(path); 1407 if (cow_start != (u64)-1) { 1408 ret = cow_file_range(inode, locked_page, 1409 cow_start, found_key.offset - 1, 1410 page_started, nr_written, 1); 1411 if (ret) { 1412 if (!nolock && nocow) 1413 btrfs_end_write_no_snapshoting(root); 1414 goto error; 1415 } 1416 cow_start = (u64)-1; 1417 } 1418 1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1420 struct extent_map *em; 1421 struct extent_map_tree *em_tree; 1422 em_tree = &BTRFS_I(inode)->extent_tree; 1423 em = alloc_extent_map(); 1424 BUG_ON(!em); /* -ENOMEM */ 1425 em->start = cur_offset; 1426 em->orig_start = found_key.offset - extent_offset; 1427 em->len = num_bytes; 1428 em->block_len = num_bytes; 1429 em->block_start = disk_bytenr; 1430 em->orig_block_len = disk_num_bytes; 1431 em->ram_bytes = ram_bytes; 1432 em->bdev = root->fs_info->fs_devices->latest_bdev; 1433 em->mod_start = em->start; 1434 em->mod_len = em->len; 1435 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1436 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1437 em->generation = -1; 1438 while (1) { 1439 write_lock(&em_tree->lock); 1440 ret = add_extent_mapping(em_tree, em, 1); 1441 write_unlock(&em_tree->lock); 1442 if (ret != -EEXIST) { 1443 free_extent_map(em); 1444 break; 1445 } 1446 btrfs_drop_extent_cache(inode, em->start, 1447 em->start + em->len - 1, 0); 1448 } 1449 type = BTRFS_ORDERED_PREALLOC; 1450 } else { 1451 type = BTRFS_ORDERED_NOCOW; 1452 } 1453 1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1455 num_bytes, num_bytes, type); 1456 BUG_ON(ret); /* -ENOMEM */ 1457 1458 if (root->root_key.objectid == 1459 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1460 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1461 num_bytes); 1462 if (ret) { 1463 if (!nolock && nocow) 1464 btrfs_end_write_no_snapshoting(root); 1465 goto error; 1466 } 1467 } 1468 1469 extent_clear_unlock_delalloc(inode, cur_offset, 1470 cur_offset + num_bytes - 1, 1471 locked_page, EXTENT_LOCKED | 1472 EXTENT_DELALLOC, PAGE_UNLOCK | 1473 PAGE_SET_PRIVATE2); 1474 if (!nolock && nocow) 1475 btrfs_end_write_no_snapshoting(root); 1476 cur_offset = extent_end; 1477 if (cur_offset > end) 1478 break; 1479 } 1480 btrfs_release_path(path); 1481 1482 if (cur_offset <= end && cow_start == (u64)-1) { 1483 cow_start = cur_offset; 1484 cur_offset = end; 1485 } 1486 1487 if (cow_start != (u64)-1) { 1488 ret = cow_file_range(inode, locked_page, cow_start, end, 1489 page_started, nr_written, 1); 1490 if (ret) 1491 goto error; 1492 } 1493 1494 error: 1495 err = btrfs_end_transaction(trans, root); 1496 if (!ret) 1497 ret = err; 1498 1499 if (ret && cur_offset < end) 1500 extent_clear_unlock_delalloc(inode, cur_offset, end, 1501 locked_page, EXTENT_LOCKED | 1502 EXTENT_DELALLOC | EXTENT_DEFRAG | 1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1504 PAGE_CLEAR_DIRTY | 1505 PAGE_SET_WRITEBACK | 1506 PAGE_END_WRITEBACK); 1507 btrfs_free_path(path); 1508 return ret; 1509 } 1510 1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1512 { 1513 1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1516 return 0; 1517 1518 /* 1519 * @defrag_bytes is a hint value, no spinlock held here, 1520 * if is not zero, it means the file is defragging. 1521 * Force cow if given extent needs to be defragged. 1522 */ 1523 if (BTRFS_I(inode)->defrag_bytes && 1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1525 EXTENT_DEFRAG, 0, NULL)) 1526 return 1; 1527 1528 return 0; 1529 } 1530 1531 /* 1532 * extent_io.c call back to do delayed allocation processing 1533 */ 1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1535 u64 start, u64 end, int *page_started, 1536 unsigned long *nr_written) 1537 { 1538 int ret; 1539 int force_cow = need_force_cow(inode, start, end); 1540 1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1542 ret = run_delalloc_nocow(inode, locked_page, start, end, 1543 page_started, 1, nr_written); 1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1545 ret = run_delalloc_nocow(inode, locked_page, start, end, 1546 page_started, 0, nr_written); 1547 } else if (!inode_need_compress(inode)) { 1548 ret = cow_file_range(inode, locked_page, start, end, 1549 page_started, nr_written, 1); 1550 } else { 1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1552 &BTRFS_I(inode)->runtime_flags); 1553 ret = cow_file_range_async(inode, locked_page, start, end, 1554 page_started, nr_written); 1555 } 1556 return ret; 1557 } 1558 1559 static void btrfs_split_extent_hook(struct inode *inode, 1560 struct extent_state *orig, u64 split) 1561 { 1562 u64 size; 1563 1564 /* not delalloc, ignore it */ 1565 if (!(orig->state & EXTENT_DELALLOC)) 1566 return; 1567 1568 size = orig->end - orig->start + 1; 1569 if (size > BTRFS_MAX_EXTENT_SIZE) { 1570 u64 num_extents; 1571 u64 new_size; 1572 1573 /* 1574 * See the explanation in btrfs_merge_extent_hook, the same 1575 * applies here, just in reverse. 1576 */ 1577 new_size = orig->end - split + 1; 1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1579 BTRFS_MAX_EXTENT_SIZE); 1580 new_size = split - orig->start; 1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1582 BTRFS_MAX_EXTENT_SIZE); 1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1585 return; 1586 } 1587 1588 spin_lock(&BTRFS_I(inode)->lock); 1589 BTRFS_I(inode)->outstanding_extents++; 1590 spin_unlock(&BTRFS_I(inode)->lock); 1591 } 1592 1593 /* 1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1595 * extents so we can keep track of new extents that are just merged onto old 1596 * extents, such as when we are doing sequential writes, so we can properly 1597 * account for the metadata space we'll need. 1598 */ 1599 static void btrfs_merge_extent_hook(struct inode *inode, 1600 struct extent_state *new, 1601 struct extent_state *other) 1602 { 1603 u64 new_size, old_size; 1604 u64 num_extents; 1605 1606 /* not delalloc, ignore it */ 1607 if (!(other->state & EXTENT_DELALLOC)) 1608 return; 1609 1610 if (new->start > other->start) 1611 new_size = new->end - other->start + 1; 1612 else 1613 new_size = other->end - new->start + 1; 1614 1615 /* we're not bigger than the max, unreserve the space and go */ 1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1617 spin_lock(&BTRFS_I(inode)->lock); 1618 BTRFS_I(inode)->outstanding_extents--; 1619 spin_unlock(&BTRFS_I(inode)->lock); 1620 return; 1621 } 1622 1623 /* 1624 * We have to add up either side to figure out how many extents were 1625 * accounted for before we merged into one big extent. If the number of 1626 * extents we accounted for is <= the amount we need for the new range 1627 * then we can return, otherwise drop. Think of it like this 1628 * 1629 * [ 4k][MAX_SIZE] 1630 * 1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1632 * need 2 outstanding extents, on one side we have 1 and the other side 1633 * we have 1 so they are == and we can return. But in this case 1634 * 1635 * [MAX_SIZE+4k][MAX_SIZE+4k] 1636 * 1637 * Each range on their own accounts for 2 extents, but merged together 1638 * they are only 3 extents worth of accounting, so we need to drop in 1639 * this case. 1640 */ 1641 old_size = other->end - other->start + 1; 1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1643 BTRFS_MAX_EXTENT_SIZE); 1644 old_size = new->end - new->start + 1; 1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1646 BTRFS_MAX_EXTENT_SIZE); 1647 1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1650 return; 1651 1652 spin_lock(&BTRFS_I(inode)->lock); 1653 BTRFS_I(inode)->outstanding_extents--; 1654 spin_unlock(&BTRFS_I(inode)->lock); 1655 } 1656 1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1658 struct inode *inode) 1659 { 1660 spin_lock(&root->delalloc_lock); 1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1663 &root->delalloc_inodes); 1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1665 &BTRFS_I(inode)->runtime_flags); 1666 root->nr_delalloc_inodes++; 1667 if (root->nr_delalloc_inodes == 1) { 1668 spin_lock(&root->fs_info->delalloc_root_lock); 1669 BUG_ON(!list_empty(&root->delalloc_root)); 1670 list_add_tail(&root->delalloc_root, 1671 &root->fs_info->delalloc_roots); 1672 spin_unlock(&root->fs_info->delalloc_root_lock); 1673 } 1674 } 1675 spin_unlock(&root->delalloc_lock); 1676 } 1677 1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1679 struct inode *inode) 1680 { 1681 spin_lock(&root->delalloc_lock); 1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1685 &BTRFS_I(inode)->runtime_flags); 1686 root->nr_delalloc_inodes--; 1687 if (!root->nr_delalloc_inodes) { 1688 spin_lock(&root->fs_info->delalloc_root_lock); 1689 BUG_ON(list_empty(&root->delalloc_root)); 1690 list_del_init(&root->delalloc_root); 1691 spin_unlock(&root->fs_info->delalloc_root_lock); 1692 } 1693 } 1694 spin_unlock(&root->delalloc_lock); 1695 } 1696 1697 /* 1698 * extent_io.c set_bit_hook, used to track delayed allocation 1699 * bytes in this file, and to maintain the list of inodes that 1700 * have pending delalloc work to be done. 1701 */ 1702 static void btrfs_set_bit_hook(struct inode *inode, 1703 struct extent_state *state, unsigned *bits) 1704 { 1705 1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1707 WARN_ON(1); 1708 /* 1709 * set_bit and clear bit hooks normally require _irqsave/restore 1710 * but in this case, we are only testing for the DELALLOC 1711 * bit, which is only set or cleared with irqs on 1712 */ 1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1714 struct btrfs_root *root = BTRFS_I(inode)->root; 1715 u64 len = state->end + 1 - state->start; 1716 bool do_list = !btrfs_is_free_space_inode(inode); 1717 1718 if (*bits & EXTENT_FIRST_DELALLOC) { 1719 *bits &= ~EXTENT_FIRST_DELALLOC; 1720 } else { 1721 spin_lock(&BTRFS_I(inode)->lock); 1722 BTRFS_I(inode)->outstanding_extents++; 1723 spin_unlock(&BTRFS_I(inode)->lock); 1724 } 1725 1726 /* For sanity tests */ 1727 if (btrfs_test_is_dummy_root(root)) 1728 return; 1729 1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1731 root->fs_info->delalloc_batch); 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 BTRFS_I(inode)->delalloc_bytes += len; 1734 if (*bits & EXTENT_DEFRAG) 1735 BTRFS_I(inode)->defrag_bytes += len; 1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1737 &BTRFS_I(inode)->runtime_flags)) 1738 btrfs_add_delalloc_inodes(root, inode); 1739 spin_unlock(&BTRFS_I(inode)->lock); 1740 } 1741 } 1742 1743 /* 1744 * extent_io.c clear_bit_hook, see set_bit_hook for why 1745 */ 1746 static void btrfs_clear_bit_hook(struct inode *inode, 1747 struct extent_state *state, 1748 unsigned *bits) 1749 { 1750 u64 len = state->end + 1 - state->start; 1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1752 BTRFS_MAX_EXTENT_SIZE); 1753 1754 spin_lock(&BTRFS_I(inode)->lock); 1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1756 BTRFS_I(inode)->defrag_bytes -= len; 1757 spin_unlock(&BTRFS_I(inode)->lock); 1758 1759 /* 1760 * set_bit and clear bit hooks normally require _irqsave/restore 1761 * but in this case, we are only testing for the DELALLOC 1762 * bit, which is only set or cleared with irqs on 1763 */ 1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1765 struct btrfs_root *root = BTRFS_I(inode)->root; 1766 bool do_list = !btrfs_is_free_space_inode(inode); 1767 1768 if (*bits & EXTENT_FIRST_DELALLOC) { 1769 *bits &= ~EXTENT_FIRST_DELALLOC; 1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1771 spin_lock(&BTRFS_I(inode)->lock); 1772 BTRFS_I(inode)->outstanding_extents -= num_extents; 1773 spin_unlock(&BTRFS_I(inode)->lock); 1774 } 1775 1776 /* 1777 * We don't reserve metadata space for space cache inodes so we 1778 * don't need to call dellalloc_release_metadata if there is an 1779 * error. 1780 */ 1781 if (*bits & EXTENT_DO_ACCOUNTING && 1782 root != root->fs_info->tree_root) 1783 btrfs_delalloc_release_metadata(inode, len); 1784 1785 /* For sanity tests. */ 1786 if (btrfs_test_is_dummy_root(root)) 1787 return; 1788 1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1790 && do_list && !(state->state & EXTENT_NORESERVE)) 1791 btrfs_free_reserved_data_space_noquota(inode, 1792 state->start, len); 1793 1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1795 root->fs_info->delalloc_batch); 1796 spin_lock(&BTRFS_I(inode)->lock); 1797 BTRFS_I(inode)->delalloc_bytes -= len; 1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1800 &BTRFS_I(inode)->runtime_flags)) 1801 btrfs_del_delalloc_inode(root, inode); 1802 spin_unlock(&BTRFS_I(inode)->lock); 1803 } 1804 } 1805 1806 /* 1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1808 * we don't create bios that span stripes or chunks 1809 */ 1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1811 size_t size, struct bio *bio, 1812 unsigned long bio_flags) 1813 { 1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1816 u64 length = 0; 1817 u64 map_length; 1818 int ret; 1819 1820 if (bio_flags & EXTENT_BIO_COMPRESSED) 1821 return 0; 1822 1823 length = bio->bi_iter.bi_size; 1824 map_length = length; 1825 ret = btrfs_map_block(root->fs_info, rw, logical, 1826 &map_length, NULL, 0); 1827 /* Will always return 0 with map_multi == NULL */ 1828 BUG_ON(ret < 0); 1829 if (map_length < length + size) 1830 return 1; 1831 return 0; 1832 } 1833 1834 /* 1835 * in order to insert checksums into the metadata in large chunks, 1836 * we wait until bio submission time. All the pages in the bio are 1837 * checksummed and sums are attached onto the ordered extent record. 1838 * 1839 * At IO completion time the cums attached on the ordered extent record 1840 * are inserted into the btree 1841 */ 1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1843 struct bio *bio, int mirror_num, 1844 unsigned long bio_flags, 1845 u64 bio_offset) 1846 { 1847 struct btrfs_root *root = BTRFS_I(inode)->root; 1848 int ret = 0; 1849 1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1851 BUG_ON(ret); /* -ENOMEM */ 1852 return 0; 1853 } 1854 1855 /* 1856 * in order to insert checksums into the metadata in large chunks, 1857 * we wait until bio submission time. All the pages in the bio are 1858 * checksummed and sums are attached onto the ordered extent record. 1859 * 1860 * At IO completion time the cums attached on the ordered extent record 1861 * are inserted into the btree 1862 */ 1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1864 int mirror_num, unsigned long bio_flags, 1865 u64 bio_offset) 1866 { 1867 struct btrfs_root *root = BTRFS_I(inode)->root; 1868 int ret; 1869 1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1871 if (ret) { 1872 bio->bi_error = ret; 1873 bio_endio(bio); 1874 } 1875 return ret; 1876 } 1877 1878 /* 1879 * extent_io.c submission hook. This does the right thing for csum calculation 1880 * on write, or reading the csums from the tree before a read 1881 */ 1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1883 int mirror_num, unsigned long bio_flags, 1884 u64 bio_offset) 1885 { 1886 struct btrfs_root *root = BTRFS_I(inode)->root; 1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1888 int ret = 0; 1889 int skip_sum; 1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1891 1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1893 1894 if (btrfs_is_free_space_inode(inode)) 1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1896 1897 if (!(rw & REQ_WRITE)) { 1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1899 if (ret) 1900 goto out; 1901 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1903 ret = btrfs_submit_compressed_read(inode, bio, 1904 mirror_num, 1905 bio_flags); 1906 goto out; 1907 } else if (!skip_sum) { 1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1909 if (ret) 1910 goto out; 1911 } 1912 goto mapit; 1913 } else if (async && !skip_sum) { 1914 /* csum items have already been cloned */ 1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1916 goto mapit; 1917 /* we're doing a write, do the async checksumming */ 1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1919 inode, rw, bio, mirror_num, 1920 bio_flags, bio_offset, 1921 __btrfs_submit_bio_start, 1922 __btrfs_submit_bio_done); 1923 goto out; 1924 } else if (!skip_sum) { 1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1926 if (ret) 1927 goto out; 1928 } 1929 1930 mapit: 1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1932 1933 out: 1934 if (ret < 0) { 1935 bio->bi_error = ret; 1936 bio_endio(bio); 1937 } 1938 return ret; 1939 } 1940 1941 /* 1942 * given a list of ordered sums record them in the inode. This happens 1943 * at IO completion time based on sums calculated at bio submission time. 1944 */ 1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1946 struct inode *inode, u64 file_offset, 1947 struct list_head *list) 1948 { 1949 struct btrfs_ordered_sum *sum; 1950 1951 list_for_each_entry(sum, list, list) { 1952 trans->adding_csums = 1; 1953 btrfs_csum_file_blocks(trans, 1954 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1955 trans->adding_csums = 0; 1956 } 1957 return 0; 1958 } 1959 1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1961 struct extent_state **cached_state) 1962 { 1963 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1965 cached_state, GFP_NOFS); 1966 } 1967 1968 /* see btrfs_writepage_start_hook for details on why this is required */ 1969 struct btrfs_writepage_fixup { 1970 struct page *page; 1971 struct btrfs_work work; 1972 }; 1973 1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1975 { 1976 struct btrfs_writepage_fixup *fixup; 1977 struct btrfs_ordered_extent *ordered; 1978 struct extent_state *cached_state = NULL; 1979 struct page *page; 1980 struct inode *inode; 1981 u64 page_start; 1982 u64 page_end; 1983 int ret; 1984 1985 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1986 page = fixup->page; 1987 again: 1988 lock_page(page); 1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1990 ClearPageChecked(page); 1991 goto out_page; 1992 } 1993 1994 inode = page->mapping->host; 1995 page_start = page_offset(page); 1996 page_end = page_offset(page) + PAGE_SIZE - 1; 1997 1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 1999 &cached_state); 2000 2001 /* already ordered? We're done */ 2002 if (PagePrivate2(page)) 2003 goto out; 2004 2005 ordered = btrfs_lookup_ordered_range(inode, page_start, 2006 PAGE_SIZE); 2007 if (ordered) { 2008 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2009 page_end, &cached_state, GFP_NOFS); 2010 unlock_page(page); 2011 btrfs_start_ordered_extent(inode, ordered, 1); 2012 btrfs_put_ordered_extent(ordered); 2013 goto again; 2014 } 2015 2016 ret = btrfs_delalloc_reserve_space(inode, page_start, 2017 PAGE_SIZE); 2018 if (ret) { 2019 mapping_set_error(page->mapping, ret); 2020 end_extent_writepage(page, ret, page_start, page_end); 2021 ClearPageChecked(page); 2022 goto out; 2023 } 2024 2025 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2026 ClearPageChecked(page); 2027 set_page_dirty(page); 2028 out: 2029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2030 &cached_state, GFP_NOFS); 2031 out_page: 2032 unlock_page(page); 2033 put_page(page); 2034 kfree(fixup); 2035 } 2036 2037 /* 2038 * There are a few paths in the higher layers of the kernel that directly 2039 * set the page dirty bit without asking the filesystem if it is a 2040 * good idea. This causes problems because we want to make sure COW 2041 * properly happens and the data=ordered rules are followed. 2042 * 2043 * In our case any range that doesn't have the ORDERED bit set 2044 * hasn't been properly setup for IO. We kick off an async process 2045 * to fix it up. The async helper will wait for ordered extents, set 2046 * the delalloc bit and make it safe to write the page. 2047 */ 2048 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2049 { 2050 struct inode *inode = page->mapping->host; 2051 struct btrfs_writepage_fixup *fixup; 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 2054 /* this page is properly in the ordered list */ 2055 if (TestClearPagePrivate2(page)) 2056 return 0; 2057 2058 if (PageChecked(page)) 2059 return -EAGAIN; 2060 2061 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2062 if (!fixup) 2063 return -EAGAIN; 2064 2065 SetPageChecked(page); 2066 get_page(page); 2067 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2068 btrfs_writepage_fixup_worker, NULL, NULL); 2069 fixup->page = page; 2070 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2071 return -EBUSY; 2072 } 2073 2074 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2075 struct inode *inode, u64 file_pos, 2076 u64 disk_bytenr, u64 disk_num_bytes, 2077 u64 num_bytes, u64 ram_bytes, 2078 u8 compression, u8 encryption, 2079 u16 other_encoding, int extent_type) 2080 { 2081 struct btrfs_root *root = BTRFS_I(inode)->root; 2082 struct btrfs_file_extent_item *fi; 2083 struct btrfs_path *path; 2084 struct extent_buffer *leaf; 2085 struct btrfs_key ins; 2086 int extent_inserted = 0; 2087 int ret; 2088 2089 path = btrfs_alloc_path(); 2090 if (!path) 2091 return -ENOMEM; 2092 2093 /* 2094 * we may be replacing one extent in the tree with another. 2095 * The new extent is pinned in the extent map, and we don't want 2096 * to drop it from the cache until it is completely in the btree. 2097 * 2098 * So, tell btrfs_drop_extents to leave this extent in the cache. 2099 * the caller is expected to unpin it and allow it to be merged 2100 * with the others. 2101 */ 2102 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2103 file_pos + num_bytes, NULL, 0, 2104 1, sizeof(*fi), &extent_inserted); 2105 if (ret) 2106 goto out; 2107 2108 if (!extent_inserted) { 2109 ins.objectid = btrfs_ino(inode); 2110 ins.offset = file_pos; 2111 ins.type = BTRFS_EXTENT_DATA_KEY; 2112 2113 path->leave_spinning = 1; 2114 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2115 sizeof(*fi)); 2116 if (ret) 2117 goto out; 2118 } 2119 leaf = path->nodes[0]; 2120 fi = btrfs_item_ptr(leaf, path->slots[0], 2121 struct btrfs_file_extent_item); 2122 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2123 btrfs_set_file_extent_type(leaf, fi, extent_type); 2124 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2125 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2126 btrfs_set_file_extent_offset(leaf, fi, 0); 2127 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2128 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2129 btrfs_set_file_extent_compression(leaf, fi, compression); 2130 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2131 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2132 2133 btrfs_mark_buffer_dirty(leaf); 2134 btrfs_release_path(path); 2135 2136 inode_add_bytes(inode, num_bytes); 2137 2138 ins.objectid = disk_bytenr; 2139 ins.offset = disk_num_bytes; 2140 ins.type = BTRFS_EXTENT_ITEM_KEY; 2141 ret = btrfs_alloc_reserved_file_extent(trans, root, 2142 root->root_key.objectid, 2143 btrfs_ino(inode), file_pos, 2144 ram_bytes, &ins); 2145 /* 2146 * Release the reserved range from inode dirty range map, as it is 2147 * already moved into delayed_ref_head 2148 */ 2149 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2150 out: 2151 btrfs_free_path(path); 2152 2153 return ret; 2154 } 2155 2156 /* snapshot-aware defrag */ 2157 struct sa_defrag_extent_backref { 2158 struct rb_node node; 2159 struct old_sa_defrag_extent *old; 2160 u64 root_id; 2161 u64 inum; 2162 u64 file_pos; 2163 u64 extent_offset; 2164 u64 num_bytes; 2165 u64 generation; 2166 }; 2167 2168 struct old_sa_defrag_extent { 2169 struct list_head list; 2170 struct new_sa_defrag_extent *new; 2171 2172 u64 extent_offset; 2173 u64 bytenr; 2174 u64 offset; 2175 u64 len; 2176 int count; 2177 }; 2178 2179 struct new_sa_defrag_extent { 2180 struct rb_root root; 2181 struct list_head head; 2182 struct btrfs_path *path; 2183 struct inode *inode; 2184 u64 file_pos; 2185 u64 len; 2186 u64 bytenr; 2187 u64 disk_len; 2188 u8 compress_type; 2189 }; 2190 2191 static int backref_comp(struct sa_defrag_extent_backref *b1, 2192 struct sa_defrag_extent_backref *b2) 2193 { 2194 if (b1->root_id < b2->root_id) 2195 return -1; 2196 else if (b1->root_id > b2->root_id) 2197 return 1; 2198 2199 if (b1->inum < b2->inum) 2200 return -1; 2201 else if (b1->inum > b2->inum) 2202 return 1; 2203 2204 if (b1->file_pos < b2->file_pos) 2205 return -1; 2206 else if (b1->file_pos > b2->file_pos) 2207 return 1; 2208 2209 /* 2210 * [------------------------------] ===> (a range of space) 2211 * |<--->| |<---->| =============> (fs/file tree A) 2212 * |<---------------------------->| ===> (fs/file tree B) 2213 * 2214 * A range of space can refer to two file extents in one tree while 2215 * refer to only one file extent in another tree. 2216 * 2217 * So we may process a disk offset more than one time(two extents in A) 2218 * and locate at the same extent(one extent in B), then insert two same 2219 * backrefs(both refer to the extent in B). 2220 */ 2221 return 0; 2222 } 2223 2224 static void backref_insert(struct rb_root *root, 2225 struct sa_defrag_extent_backref *backref) 2226 { 2227 struct rb_node **p = &root->rb_node; 2228 struct rb_node *parent = NULL; 2229 struct sa_defrag_extent_backref *entry; 2230 int ret; 2231 2232 while (*p) { 2233 parent = *p; 2234 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2235 2236 ret = backref_comp(backref, entry); 2237 if (ret < 0) 2238 p = &(*p)->rb_left; 2239 else 2240 p = &(*p)->rb_right; 2241 } 2242 2243 rb_link_node(&backref->node, parent, p); 2244 rb_insert_color(&backref->node, root); 2245 } 2246 2247 /* 2248 * Note the backref might has changed, and in this case we just return 0. 2249 */ 2250 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2251 void *ctx) 2252 { 2253 struct btrfs_file_extent_item *extent; 2254 struct btrfs_fs_info *fs_info; 2255 struct old_sa_defrag_extent *old = ctx; 2256 struct new_sa_defrag_extent *new = old->new; 2257 struct btrfs_path *path = new->path; 2258 struct btrfs_key key; 2259 struct btrfs_root *root; 2260 struct sa_defrag_extent_backref *backref; 2261 struct extent_buffer *leaf; 2262 struct inode *inode = new->inode; 2263 int slot; 2264 int ret; 2265 u64 extent_offset; 2266 u64 num_bytes; 2267 2268 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2269 inum == btrfs_ino(inode)) 2270 return 0; 2271 2272 key.objectid = root_id; 2273 key.type = BTRFS_ROOT_ITEM_KEY; 2274 key.offset = (u64)-1; 2275 2276 fs_info = BTRFS_I(inode)->root->fs_info; 2277 root = btrfs_read_fs_root_no_name(fs_info, &key); 2278 if (IS_ERR(root)) { 2279 if (PTR_ERR(root) == -ENOENT) 2280 return 0; 2281 WARN_ON(1); 2282 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2283 inum, offset, root_id); 2284 return PTR_ERR(root); 2285 } 2286 2287 key.objectid = inum; 2288 key.type = BTRFS_EXTENT_DATA_KEY; 2289 if (offset > (u64)-1 << 32) 2290 key.offset = 0; 2291 else 2292 key.offset = offset; 2293 2294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2295 if (WARN_ON(ret < 0)) 2296 return ret; 2297 ret = 0; 2298 2299 while (1) { 2300 cond_resched(); 2301 2302 leaf = path->nodes[0]; 2303 slot = path->slots[0]; 2304 2305 if (slot >= btrfs_header_nritems(leaf)) { 2306 ret = btrfs_next_leaf(root, path); 2307 if (ret < 0) { 2308 goto out; 2309 } else if (ret > 0) { 2310 ret = 0; 2311 goto out; 2312 } 2313 continue; 2314 } 2315 2316 path->slots[0]++; 2317 2318 btrfs_item_key_to_cpu(leaf, &key, slot); 2319 2320 if (key.objectid > inum) 2321 goto out; 2322 2323 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2324 continue; 2325 2326 extent = btrfs_item_ptr(leaf, slot, 2327 struct btrfs_file_extent_item); 2328 2329 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2330 continue; 2331 2332 /* 2333 * 'offset' refers to the exact key.offset, 2334 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2335 * (key.offset - extent_offset). 2336 */ 2337 if (key.offset != offset) 2338 continue; 2339 2340 extent_offset = btrfs_file_extent_offset(leaf, extent); 2341 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2342 2343 if (extent_offset >= old->extent_offset + old->offset + 2344 old->len || extent_offset + num_bytes <= 2345 old->extent_offset + old->offset) 2346 continue; 2347 break; 2348 } 2349 2350 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2351 if (!backref) { 2352 ret = -ENOENT; 2353 goto out; 2354 } 2355 2356 backref->root_id = root_id; 2357 backref->inum = inum; 2358 backref->file_pos = offset; 2359 backref->num_bytes = num_bytes; 2360 backref->extent_offset = extent_offset; 2361 backref->generation = btrfs_file_extent_generation(leaf, extent); 2362 backref->old = old; 2363 backref_insert(&new->root, backref); 2364 old->count++; 2365 out: 2366 btrfs_release_path(path); 2367 WARN_ON(ret); 2368 return ret; 2369 } 2370 2371 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2372 struct new_sa_defrag_extent *new) 2373 { 2374 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2375 struct old_sa_defrag_extent *old, *tmp; 2376 int ret; 2377 2378 new->path = path; 2379 2380 list_for_each_entry_safe(old, tmp, &new->head, list) { 2381 ret = iterate_inodes_from_logical(old->bytenr + 2382 old->extent_offset, fs_info, 2383 path, record_one_backref, 2384 old); 2385 if (ret < 0 && ret != -ENOENT) 2386 return false; 2387 2388 /* no backref to be processed for this extent */ 2389 if (!old->count) { 2390 list_del(&old->list); 2391 kfree(old); 2392 } 2393 } 2394 2395 if (list_empty(&new->head)) 2396 return false; 2397 2398 return true; 2399 } 2400 2401 static int relink_is_mergable(struct extent_buffer *leaf, 2402 struct btrfs_file_extent_item *fi, 2403 struct new_sa_defrag_extent *new) 2404 { 2405 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2406 return 0; 2407 2408 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2409 return 0; 2410 2411 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2412 return 0; 2413 2414 if (btrfs_file_extent_encryption(leaf, fi) || 2415 btrfs_file_extent_other_encoding(leaf, fi)) 2416 return 0; 2417 2418 return 1; 2419 } 2420 2421 /* 2422 * Note the backref might has changed, and in this case we just return 0. 2423 */ 2424 static noinline int relink_extent_backref(struct btrfs_path *path, 2425 struct sa_defrag_extent_backref *prev, 2426 struct sa_defrag_extent_backref *backref) 2427 { 2428 struct btrfs_file_extent_item *extent; 2429 struct btrfs_file_extent_item *item; 2430 struct btrfs_ordered_extent *ordered; 2431 struct btrfs_trans_handle *trans; 2432 struct btrfs_fs_info *fs_info; 2433 struct btrfs_root *root; 2434 struct btrfs_key key; 2435 struct extent_buffer *leaf; 2436 struct old_sa_defrag_extent *old = backref->old; 2437 struct new_sa_defrag_extent *new = old->new; 2438 struct inode *src_inode = new->inode; 2439 struct inode *inode; 2440 struct extent_state *cached = NULL; 2441 int ret = 0; 2442 u64 start; 2443 u64 len; 2444 u64 lock_start; 2445 u64 lock_end; 2446 bool merge = false; 2447 int index; 2448 2449 if (prev && prev->root_id == backref->root_id && 2450 prev->inum == backref->inum && 2451 prev->file_pos + prev->num_bytes == backref->file_pos) 2452 merge = true; 2453 2454 /* step 1: get root */ 2455 key.objectid = backref->root_id; 2456 key.type = BTRFS_ROOT_ITEM_KEY; 2457 key.offset = (u64)-1; 2458 2459 fs_info = BTRFS_I(src_inode)->root->fs_info; 2460 index = srcu_read_lock(&fs_info->subvol_srcu); 2461 2462 root = btrfs_read_fs_root_no_name(fs_info, &key); 2463 if (IS_ERR(root)) { 2464 srcu_read_unlock(&fs_info->subvol_srcu, index); 2465 if (PTR_ERR(root) == -ENOENT) 2466 return 0; 2467 return PTR_ERR(root); 2468 } 2469 2470 if (btrfs_root_readonly(root)) { 2471 srcu_read_unlock(&fs_info->subvol_srcu, index); 2472 return 0; 2473 } 2474 2475 /* step 2: get inode */ 2476 key.objectid = backref->inum; 2477 key.type = BTRFS_INODE_ITEM_KEY; 2478 key.offset = 0; 2479 2480 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2481 if (IS_ERR(inode)) { 2482 srcu_read_unlock(&fs_info->subvol_srcu, index); 2483 return 0; 2484 } 2485 2486 srcu_read_unlock(&fs_info->subvol_srcu, index); 2487 2488 /* step 3: relink backref */ 2489 lock_start = backref->file_pos; 2490 lock_end = backref->file_pos + backref->num_bytes - 1; 2491 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2492 &cached); 2493 2494 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2495 if (ordered) { 2496 btrfs_put_ordered_extent(ordered); 2497 goto out_unlock; 2498 } 2499 2500 trans = btrfs_join_transaction(root); 2501 if (IS_ERR(trans)) { 2502 ret = PTR_ERR(trans); 2503 goto out_unlock; 2504 } 2505 2506 key.objectid = backref->inum; 2507 key.type = BTRFS_EXTENT_DATA_KEY; 2508 key.offset = backref->file_pos; 2509 2510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2511 if (ret < 0) { 2512 goto out_free_path; 2513 } else if (ret > 0) { 2514 ret = 0; 2515 goto out_free_path; 2516 } 2517 2518 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2519 struct btrfs_file_extent_item); 2520 2521 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2522 backref->generation) 2523 goto out_free_path; 2524 2525 btrfs_release_path(path); 2526 2527 start = backref->file_pos; 2528 if (backref->extent_offset < old->extent_offset + old->offset) 2529 start += old->extent_offset + old->offset - 2530 backref->extent_offset; 2531 2532 len = min(backref->extent_offset + backref->num_bytes, 2533 old->extent_offset + old->offset + old->len); 2534 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2535 2536 ret = btrfs_drop_extents(trans, root, inode, start, 2537 start + len, 1); 2538 if (ret) 2539 goto out_free_path; 2540 again: 2541 key.objectid = btrfs_ino(inode); 2542 key.type = BTRFS_EXTENT_DATA_KEY; 2543 key.offset = start; 2544 2545 path->leave_spinning = 1; 2546 if (merge) { 2547 struct btrfs_file_extent_item *fi; 2548 u64 extent_len; 2549 struct btrfs_key found_key; 2550 2551 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2552 if (ret < 0) 2553 goto out_free_path; 2554 2555 path->slots[0]--; 2556 leaf = path->nodes[0]; 2557 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2558 2559 fi = btrfs_item_ptr(leaf, path->slots[0], 2560 struct btrfs_file_extent_item); 2561 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2562 2563 if (extent_len + found_key.offset == start && 2564 relink_is_mergable(leaf, fi, new)) { 2565 btrfs_set_file_extent_num_bytes(leaf, fi, 2566 extent_len + len); 2567 btrfs_mark_buffer_dirty(leaf); 2568 inode_add_bytes(inode, len); 2569 2570 ret = 1; 2571 goto out_free_path; 2572 } else { 2573 merge = false; 2574 btrfs_release_path(path); 2575 goto again; 2576 } 2577 } 2578 2579 ret = btrfs_insert_empty_item(trans, root, path, &key, 2580 sizeof(*extent)); 2581 if (ret) { 2582 btrfs_abort_transaction(trans, root, ret); 2583 goto out_free_path; 2584 } 2585 2586 leaf = path->nodes[0]; 2587 item = btrfs_item_ptr(leaf, path->slots[0], 2588 struct btrfs_file_extent_item); 2589 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2590 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2591 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2592 btrfs_set_file_extent_num_bytes(leaf, item, len); 2593 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2594 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2595 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2596 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2597 btrfs_set_file_extent_encryption(leaf, item, 0); 2598 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2599 2600 btrfs_mark_buffer_dirty(leaf); 2601 inode_add_bytes(inode, len); 2602 btrfs_release_path(path); 2603 2604 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2605 new->disk_len, 0, 2606 backref->root_id, backref->inum, 2607 new->file_pos); /* start - extent_offset */ 2608 if (ret) { 2609 btrfs_abort_transaction(trans, root, ret); 2610 goto out_free_path; 2611 } 2612 2613 ret = 1; 2614 out_free_path: 2615 btrfs_release_path(path); 2616 path->leave_spinning = 0; 2617 btrfs_end_transaction(trans, root); 2618 out_unlock: 2619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2620 &cached, GFP_NOFS); 2621 iput(inode); 2622 return ret; 2623 } 2624 2625 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2626 { 2627 struct old_sa_defrag_extent *old, *tmp; 2628 2629 if (!new) 2630 return; 2631 2632 list_for_each_entry_safe(old, tmp, &new->head, list) { 2633 kfree(old); 2634 } 2635 kfree(new); 2636 } 2637 2638 static void relink_file_extents(struct new_sa_defrag_extent *new) 2639 { 2640 struct btrfs_path *path; 2641 struct sa_defrag_extent_backref *backref; 2642 struct sa_defrag_extent_backref *prev = NULL; 2643 struct inode *inode; 2644 struct btrfs_root *root; 2645 struct rb_node *node; 2646 int ret; 2647 2648 inode = new->inode; 2649 root = BTRFS_I(inode)->root; 2650 2651 path = btrfs_alloc_path(); 2652 if (!path) 2653 return; 2654 2655 if (!record_extent_backrefs(path, new)) { 2656 btrfs_free_path(path); 2657 goto out; 2658 } 2659 btrfs_release_path(path); 2660 2661 while (1) { 2662 node = rb_first(&new->root); 2663 if (!node) 2664 break; 2665 rb_erase(node, &new->root); 2666 2667 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2668 2669 ret = relink_extent_backref(path, prev, backref); 2670 WARN_ON(ret < 0); 2671 2672 kfree(prev); 2673 2674 if (ret == 1) 2675 prev = backref; 2676 else 2677 prev = NULL; 2678 cond_resched(); 2679 } 2680 kfree(prev); 2681 2682 btrfs_free_path(path); 2683 out: 2684 free_sa_defrag_extent(new); 2685 2686 atomic_dec(&root->fs_info->defrag_running); 2687 wake_up(&root->fs_info->transaction_wait); 2688 } 2689 2690 static struct new_sa_defrag_extent * 2691 record_old_file_extents(struct inode *inode, 2692 struct btrfs_ordered_extent *ordered) 2693 { 2694 struct btrfs_root *root = BTRFS_I(inode)->root; 2695 struct btrfs_path *path; 2696 struct btrfs_key key; 2697 struct old_sa_defrag_extent *old; 2698 struct new_sa_defrag_extent *new; 2699 int ret; 2700 2701 new = kmalloc(sizeof(*new), GFP_NOFS); 2702 if (!new) 2703 return NULL; 2704 2705 new->inode = inode; 2706 new->file_pos = ordered->file_offset; 2707 new->len = ordered->len; 2708 new->bytenr = ordered->start; 2709 new->disk_len = ordered->disk_len; 2710 new->compress_type = ordered->compress_type; 2711 new->root = RB_ROOT; 2712 INIT_LIST_HEAD(&new->head); 2713 2714 path = btrfs_alloc_path(); 2715 if (!path) 2716 goto out_kfree; 2717 2718 key.objectid = btrfs_ino(inode); 2719 key.type = BTRFS_EXTENT_DATA_KEY; 2720 key.offset = new->file_pos; 2721 2722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2723 if (ret < 0) 2724 goto out_free_path; 2725 if (ret > 0 && path->slots[0] > 0) 2726 path->slots[0]--; 2727 2728 /* find out all the old extents for the file range */ 2729 while (1) { 2730 struct btrfs_file_extent_item *extent; 2731 struct extent_buffer *l; 2732 int slot; 2733 u64 num_bytes; 2734 u64 offset; 2735 u64 end; 2736 u64 disk_bytenr; 2737 u64 extent_offset; 2738 2739 l = path->nodes[0]; 2740 slot = path->slots[0]; 2741 2742 if (slot >= btrfs_header_nritems(l)) { 2743 ret = btrfs_next_leaf(root, path); 2744 if (ret < 0) 2745 goto out_free_path; 2746 else if (ret > 0) 2747 break; 2748 continue; 2749 } 2750 2751 btrfs_item_key_to_cpu(l, &key, slot); 2752 2753 if (key.objectid != btrfs_ino(inode)) 2754 break; 2755 if (key.type != BTRFS_EXTENT_DATA_KEY) 2756 break; 2757 if (key.offset >= new->file_pos + new->len) 2758 break; 2759 2760 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2761 2762 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2763 if (key.offset + num_bytes < new->file_pos) 2764 goto next; 2765 2766 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2767 if (!disk_bytenr) 2768 goto next; 2769 2770 extent_offset = btrfs_file_extent_offset(l, extent); 2771 2772 old = kmalloc(sizeof(*old), GFP_NOFS); 2773 if (!old) 2774 goto out_free_path; 2775 2776 offset = max(new->file_pos, key.offset); 2777 end = min(new->file_pos + new->len, key.offset + num_bytes); 2778 2779 old->bytenr = disk_bytenr; 2780 old->extent_offset = extent_offset; 2781 old->offset = offset - key.offset; 2782 old->len = end - offset; 2783 old->new = new; 2784 old->count = 0; 2785 list_add_tail(&old->list, &new->head); 2786 next: 2787 path->slots[0]++; 2788 cond_resched(); 2789 } 2790 2791 btrfs_free_path(path); 2792 atomic_inc(&root->fs_info->defrag_running); 2793 2794 return new; 2795 2796 out_free_path: 2797 btrfs_free_path(path); 2798 out_kfree: 2799 free_sa_defrag_extent(new); 2800 return NULL; 2801 } 2802 2803 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2804 u64 start, u64 len) 2805 { 2806 struct btrfs_block_group_cache *cache; 2807 2808 cache = btrfs_lookup_block_group(root->fs_info, start); 2809 ASSERT(cache); 2810 2811 spin_lock(&cache->lock); 2812 cache->delalloc_bytes -= len; 2813 spin_unlock(&cache->lock); 2814 2815 btrfs_put_block_group(cache); 2816 } 2817 2818 /* as ordered data IO finishes, this gets called so we can finish 2819 * an ordered extent if the range of bytes in the file it covers are 2820 * fully written. 2821 */ 2822 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2823 { 2824 struct inode *inode = ordered_extent->inode; 2825 struct btrfs_root *root = BTRFS_I(inode)->root; 2826 struct btrfs_trans_handle *trans = NULL; 2827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2828 struct extent_state *cached_state = NULL; 2829 struct new_sa_defrag_extent *new = NULL; 2830 int compress_type = 0; 2831 int ret = 0; 2832 u64 logical_len = ordered_extent->len; 2833 bool nolock; 2834 bool truncated = false; 2835 2836 nolock = btrfs_is_free_space_inode(inode); 2837 2838 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2839 ret = -EIO; 2840 goto out; 2841 } 2842 2843 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2844 ordered_extent->file_offset + 2845 ordered_extent->len - 1); 2846 2847 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2848 truncated = true; 2849 logical_len = ordered_extent->truncated_len; 2850 /* Truncated the entire extent, don't bother adding */ 2851 if (!logical_len) 2852 goto out; 2853 } 2854 2855 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2856 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2857 2858 /* 2859 * For mwrite(mmap + memset to write) case, we still reserve 2860 * space for NOCOW range. 2861 * As NOCOW won't cause a new delayed ref, just free the space 2862 */ 2863 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2864 ordered_extent->len); 2865 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2866 if (nolock) 2867 trans = btrfs_join_transaction_nolock(root); 2868 else 2869 trans = btrfs_join_transaction(root); 2870 if (IS_ERR(trans)) { 2871 ret = PTR_ERR(trans); 2872 trans = NULL; 2873 goto out; 2874 } 2875 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2876 ret = btrfs_update_inode_fallback(trans, root, inode); 2877 if (ret) /* -ENOMEM or corruption */ 2878 btrfs_abort_transaction(trans, root, ret); 2879 goto out; 2880 } 2881 2882 lock_extent_bits(io_tree, ordered_extent->file_offset, 2883 ordered_extent->file_offset + ordered_extent->len - 1, 2884 &cached_state); 2885 2886 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2887 ordered_extent->file_offset + ordered_extent->len - 1, 2888 EXTENT_DEFRAG, 1, cached_state); 2889 if (ret) { 2890 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2891 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2892 /* the inode is shared */ 2893 new = record_old_file_extents(inode, ordered_extent); 2894 2895 clear_extent_bit(io_tree, ordered_extent->file_offset, 2896 ordered_extent->file_offset + ordered_extent->len - 1, 2897 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2898 } 2899 2900 if (nolock) 2901 trans = btrfs_join_transaction_nolock(root); 2902 else 2903 trans = btrfs_join_transaction(root); 2904 if (IS_ERR(trans)) { 2905 ret = PTR_ERR(trans); 2906 trans = NULL; 2907 goto out_unlock; 2908 } 2909 2910 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2911 2912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2913 compress_type = ordered_extent->compress_type; 2914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2915 BUG_ON(compress_type); 2916 ret = btrfs_mark_extent_written(trans, inode, 2917 ordered_extent->file_offset, 2918 ordered_extent->file_offset + 2919 logical_len); 2920 } else { 2921 BUG_ON(root == root->fs_info->tree_root); 2922 ret = insert_reserved_file_extent(trans, inode, 2923 ordered_extent->file_offset, 2924 ordered_extent->start, 2925 ordered_extent->disk_len, 2926 logical_len, logical_len, 2927 compress_type, 0, 0, 2928 BTRFS_FILE_EXTENT_REG); 2929 if (!ret) 2930 btrfs_release_delalloc_bytes(root, 2931 ordered_extent->start, 2932 ordered_extent->disk_len); 2933 } 2934 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2935 ordered_extent->file_offset, ordered_extent->len, 2936 trans->transid); 2937 if (ret < 0) { 2938 btrfs_abort_transaction(trans, root, ret); 2939 goto out_unlock; 2940 } 2941 2942 add_pending_csums(trans, inode, ordered_extent->file_offset, 2943 &ordered_extent->list); 2944 2945 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2946 ret = btrfs_update_inode_fallback(trans, root, inode); 2947 if (ret) { /* -ENOMEM or corruption */ 2948 btrfs_abort_transaction(trans, root, ret); 2949 goto out_unlock; 2950 } 2951 ret = 0; 2952 out_unlock: 2953 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2954 ordered_extent->file_offset + 2955 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2956 out: 2957 if (root != root->fs_info->tree_root) 2958 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2959 if (trans) 2960 btrfs_end_transaction(trans, root); 2961 2962 if (ret || truncated) { 2963 u64 start, end; 2964 2965 if (truncated) 2966 start = ordered_extent->file_offset + logical_len; 2967 else 2968 start = ordered_extent->file_offset; 2969 end = ordered_extent->file_offset + ordered_extent->len - 1; 2970 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2971 2972 /* Drop the cache for the part of the extent we didn't write. */ 2973 btrfs_drop_extent_cache(inode, start, end, 0); 2974 2975 /* 2976 * If the ordered extent had an IOERR or something else went 2977 * wrong we need to return the space for this ordered extent 2978 * back to the allocator. We only free the extent in the 2979 * truncated case if we didn't write out the extent at all. 2980 */ 2981 if ((ret || !logical_len) && 2982 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2983 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2984 btrfs_free_reserved_extent(root, ordered_extent->start, 2985 ordered_extent->disk_len, 1); 2986 } 2987 2988 2989 /* 2990 * This needs to be done to make sure anybody waiting knows we are done 2991 * updating everything for this ordered extent. 2992 */ 2993 btrfs_remove_ordered_extent(inode, ordered_extent); 2994 2995 /* for snapshot-aware defrag */ 2996 if (new) { 2997 if (ret) { 2998 free_sa_defrag_extent(new); 2999 atomic_dec(&root->fs_info->defrag_running); 3000 } else { 3001 relink_file_extents(new); 3002 } 3003 } 3004 3005 /* once for us */ 3006 btrfs_put_ordered_extent(ordered_extent); 3007 /* once for the tree */ 3008 btrfs_put_ordered_extent(ordered_extent); 3009 3010 return ret; 3011 } 3012 3013 static void finish_ordered_fn(struct btrfs_work *work) 3014 { 3015 struct btrfs_ordered_extent *ordered_extent; 3016 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3017 btrfs_finish_ordered_io(ordered_extent); 3018 } 3019 3020 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3021 struct extent_state *state, int uptodate) 3022 { 3023 struct inode *inode = page->mapping->host; 3024 struct btrfs_root *root = BTRFS_I(inode)->root; 3025 struct btrfs_ordered_extent *ordered_extent = NULL; 3026 struct btrfs_workqueue *wq; 3027 btrfs_work_func_t func; 3028 3029 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3030 3031 ClearPagePrivate2(page); 3032 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3033 end - start + 1, uptodate)) 3034 return 0; 3035 3036 if (btrfs_is_free_space_inode(inode)) { 3037 wq = root->fs_info->endio_freespace_worker; 3038 func = btrfs_freespace_write_helper; 3039 } else { 3040 wq = root->fs_info->endio_write_workers; 3041 func = btrfs_endio_write_helper; 3042 } 3043 3044 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3045 NULL); 3046 btrfs_queue_work(wq, &ordered_extent->work); 3047 3048 return 0; 3049 } 3050 3051 static int __readpage_endio_check(struct inode *inode, 3052 struct btrfs_io_bio *io_bio, 3053 int icsum, struct page *page, 3054 int pgoff, u64 start, size_t len) 3055 { 3056 char *kaddr; 3057 u32 csum_expected; 3058 u32 csum = ~(u32)0; 3059 3060 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3061 3062 kaddr = kmap_atomic(page); 3063 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3064 btrfs_csum_final(csum, (char *)&csum); 3065 if (csum != csum_expected) 3066 goto zeroit; 3067 3068 kunmap_atomic(kaddr); 3069 return 0; 3070 zeroit: 3071 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3072 "csum failed ino %llu off %llu csum %u expected csum %u", 3073 btrfs_ino(inode), start, csum, csum_expected); 3074 memset(kaddr + pgoff, 1, len); 3075 flush_dcache_page(page); 3076 kunmap_atomic(kaddr); 3077 if (csum_expected == 0) 3078 return 0; 3079 return -EIO; 3080 } 3081 3082 /* 3083 * when reads are done, we need to check csums to verify the data is correct 3084 * if there's a match, we allow the bio to finish. If not, the code in 3085 * extent_io.c will try to find good copies for us. 3086 */ 3087 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3088 u64 phy_offset, struct page *page, 3089 u64 start, u64 end, int mirror) 3090 { 3091 size_t offset = start - page_offset(page); 3092 struct inode *inode = page->mapping->host; 3093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3094 struct btrfs_root *root = BTRFS_I(inode)->root; 3095 3096 if (PageChecked(page)) { 3097 ClearPageChecked(page); 3098 return 0; 3099 } 3100 3101 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3102 return 0; 3103 3104 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3105 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3106 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3107 GFP_NOFS); 3108 return 0; 3109 } 3110 3111 phy_offset >>= inode->i_sb->s_blocksize_bits; 3112 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3113 start, (size_t)(end - start + 1)); 3114 } 3115 3116 void btrfs_add_delayed_iput(struct inode *inode) 3117 { 3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3119 struct btrfs_inode *binode = BTRFS_I(inode); 3120 3121 if (atomic_add_unless(&inode->i_count, -1, 1)) 3122 return; 3123 3124 spin_lock(&fs_info->delayed_iput_lock); 3125 if (binode->delayed_iput_count == 0) { 3126 ASSERT(list_empty(&binode->delayed_iput)); 3127 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3128 } else { 3129 binode->delayed_iput_count++; 3130 } 3131 spin_unlock(&fs_info->delayed_iput_lock); 3132 } 3133 3134 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3135 { 3136 struct btrfs_fs_info *fs_info = root->fs_info; 3137 3138 spin_lock(&fs_info->delayed_iput_lock); 3139 while (!list_empty(&fs_info->delayed_iputs)) { 3140 struct btrfs_inode *inode; 3141 3142 inode = list_first_entry(&fs_info->delayed_iputs, 3143 struct btrfs_inode, delayed_iput); 3144 if (inode->delayed_iput_count) { 3145 inode->delayed_iput_count--; 3146 list_move_tail(&inode->delayed_iput, 3147 &fs_info->delayed_iputs); 3148 } else { 3149 list_del_init(&inode->delayed_iput); 3150 } 3151 spin_unlock(&fs_info->delayed_iput_lock); 3152 iput(&inode->vfs_inode); 3153 spin_lock(&fs_info->delayed_iput_lock); 3154 } 3155 spin_unlock(&fs_info->delayed_iput_lock); 3156 } 3157 3158 /* 3159 * This is called in transaction commit time. If there are no orphan 3160 * files in the subvolume, it removes orphan item and frees block_rsv 3161 * structure. 3162 */ 3163 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3164 struct btrfs_root *root) 3165 { 3166 struct btrfs_block_rsv *block_rsv; 3167 int ret; 3168 3169 if (atomic_read(&root->orphan_inodes) || 3170 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3171 return; 3172 3173 spin_lock(&root->orphan_lock); 3174 if (atomic_read(&root->orphan_inodes)) { 3175 spin_unlock(&root->orphan_lock); 3176 return; 3177 } 3178 3179 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3180 spin_unlock(&root->orphan_lock); 3181 return; 3182 } 3183 3184 block_rsv = root->orphan_block_rsv; 3185 root->orphan_block_rsv = NULL; 3186 spin_unlock(&root->orphan_lock); 3187 3188 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3189 btrfs_root_refs(&root->root_item) > 0) { 3190 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3191 root->root_key.objectid); 3192 if (ret) 3193 btrfs_abort_transaction(trans, root, ret); 3194 else 3195 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3196 &root->state); 3197 } 3198 3199 if (block_rsv) { 3200 WARN_ON(block_rsv->size > 0); 3201 btrfs_free_block_rsv(root, block_rsv); 3202 } 3203 } 3204 3205 /* 3206 * This creates an orphan entry for the given inode in case something goes 3207 * wrong in the middle of an unlink/truncate. 3208 * 3209 * NOTE: caller of this function should reserve 5 units of metadata for 3210 * this function. 3211 */ 3212 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3213 { 3214 struct btrfs_root *root = BTRFS_I(inode)->root; 3215 struct btrfs_block_rsv *block_rsv = NULL; 3216 int reserve = 0; 3217 int insert = 0; 3218 int ret; 3219 3220 if (!root->orphan_block_rsv) { 3221 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3222 if (!block_rsv) 3223 return -ENOMEM; 3224 } 3225 3226 spin_lock(&root->orphan_lock); 3227 if (!root->orphan_block_rsv) { 3228 root->orphan_block_rsv = block_rsv; 3229 } else if (block_rsv) { 3230 btrfs_free_block_rsv(root, block_rsv); 3231 block_rsv = NULL; 3232 } 3233 3234 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3235 &BTRFS_I(inode)->runtime_flags)) { 3236 #if 0 3237 /* 3238 * For proper ENOSPC handling, we should do orphan 3239 * cleanup when mounting. But this introduces backward 3240 * compatibility issue. 3241 */ 3242 if (!xchg(&root->orphan_item_inserted, 1)) 3243 insert = 2; 3244 else 3245 insert = 1; 3246 #endif 3247 insert = 1; 3248 atomic_inc(&root->orphan_inodes); 3249 } 3250 3251 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3252 &BTRFS_I(inode)->runtime_flags)) 3253 reserve = 1; 3254 spin_unlock(&root->orphan_lock); 3255 3256 /* grab metadata reservation from transaction handle */ 3257 if (reserve) { 3258 ret = btrfs_orphan_reserve_metadata(trans, inode); 3259 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3260 } 3261 3262 /* insert an orphan item to track this unlinked/truncated file */ 3263 if (insert >= 1) { 3264 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3265 if (ret) { 3266 atomic_dec(&root->orphan_inodes); 3267 if (reserve) { 3268 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3269 &BTRFS_I(inode)->runtime_flags); 3270 btrfs_orphan_release_metadata(inode); 3271 } 3272 if (ret != -EEXIST) { 3273 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3274 &BTRFS_I(inode)->runtime_flags); 3275 btrfs_abort_transaction(trans, root, ret); 3276 return ret; 3277 } 3278 } 3279 ret = 0; 3280 } 3281 3282 /* insert an orphan item to track subvolume contains orphan files */ 3283 if (insert >= 2) { 3284 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3285 root->root_key.objectid); 3286 if (ret && ret != -EEXIST) { 3287 btrfs_abort_transaction(trans, root, ret); 3288 return ret; 3289 } 3290 } 3291 return 0; 3292 } 3293 3294 /* 3295 * We have done the truncate/delete so we can go ahead and remove the orphan 3296 * item for this particular inode. 3297 */ 3298 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3299 struct inode *inode) 3300 { 3301 struct btrfs_root *root = BTRFS_I(inode)->root; 3302 int delete_item = 0; 3303 int release_rsv = 0; 3304 int ret = 0; 3305 3306 spin_lock(&root->orphan_lock); 3307 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3308 &BTRFS_I(inode)->runtime_flags)) 3309 delete_item = 1; 3310 3311 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3312 &BTRFS_I(inode)->runtime_flags)) 3313 release_rsv = 1; 3314 spin_unlock(&root->orphan_lock); 3315 3316 if (delete_item) { 3317 atomic_dec(&root->orphan_inodes); 3318 if (trans) 3319 ret = btrfs_del_orphan_item(trans, root, 3320 btrfs_ino(inode)); 3321 } 3322 3323 if (release_rsv) 3324 btrfs_orphan_release_metadata(inode); 3325 3326 return ret; 3327 } 3328 3329 /* 3330 * this cleans up any orphans that may be left on the list from the last use 3331 * of this root. 3332 */ 3333 int btrfs_orphan_cleanup(struct btrfs_root *root) 3334 { 3335 struct btrfs_path *path; 3336 struct extent_buffer *leaf; 3337 struct btrfs_key key, found_key; 3338 struct btrfs_trans_handle *trans; 3339 struct inode *inode; 3340 u64 last_objectid = 0; 3341 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3342 3343 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3344 return 0; 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) { 3348 ret = -ENOMEM; 3349 goto out; 3350 } 3351 path->reada = READA_BACK; 3352 3353 key.objectid = BTRFS_ORPHAN_OBJECTID; 3354 key.type = BTRFS_ORPHAN_ITEM_KEY; 3355 key.offset = (u64)-1; 3356 3357 while (1) { 3358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3359 if (ret < 0) 3360 goto out; 3361 3362 /* 3363 * if ret == 0 means we found what we were searching for, which 3364 * is weird, but possible, so only screw with path if we didn't 3365 * find the key and see if we have stuff that matches 3366 */ 3367 if (ret > 0) { 3368 ret = 0; 3369 if (path->slots[0] == 0) 3370 break; 3371 path->slots[0]--; 3372 } 3373 3374 /* pull out the item */ 3375 leaf = path->nodes[0]; 3376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3377 3378 /* make sure the item matches what we want */ 3379 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3380 break; 3381 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3382 break; 3383 3384 /* release the path since we're done with it */ 3385 btrfs_release_path(path); 3386 3387 /* 3388 * this is where we are basically btrfs_lookup, without the 3389 * crossing root thing. we store the inode number in the 3390 * offset of the orphan item. 3391 */ 3392 3393 if (found_key.offset == last_objectid) { 3394 btrfs_err(root->fs_info, 3395 "Error removing orphan entry, stopping orphan cleanup"); 3396 ret = -EINVAL; 3397 goto out; 3398 } 3399 3400 last_objectid = found_key.offset; 3401 3402 found_key.objectid = found_key.offset; 3403 found_key.type = BTRFS_INODE_ITEM_KEY; 3404 found_key.offset = 0; 3405 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3406 ret = PTR_ERR_OR_ZERO(inode); 3407 if (ret && ret != -ESTALE) 3408 goto out; 3409 3410 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3411 struct btrfs_root *dead_root; 3412 struct btrfs_fs_info *fs_info = root->fs_info; 3413 int is_dead_root = 0; 3414 3415 /* 3416 * this is an orphan in the tree root. Currently these 3417 * could come from 2 sources: 3418 * a) a snapshot deletion in progress 3419 * b) a free space cache inode 3420 * We need to distinguish those two, as the snapshot 3421 * orphan must not get deleted. 3422 * find_dead_roots already ran before us, so if this 3423 * is a snapshot deletion, we should find the root 3424 * in the dead_roots list 3425 */ 3426 spin_lock(&fs_info->trans_lock); 3427 list_for_each_entry(dead_root, &fs_info->dead_roots, 3428 root_list) { 3429 if (dead_root->root_key.objectid == 3430 found_key.objectid) { 3431 is_dead_root = 1; 3432 break; 3433 } 3434 } 3435 spin_unlock(&fs_info->trans_lock); 3436 if (is_dead_root) { 3437 /* prevent this orphan from being found again */ 3438 key.offset = found_key.objectid - 1; 3439 continue; 3440 } 3441 } 3442 /* 3443 * Inode is already gone but the orphan item is still there, 3444 * kill the orphan item. 3445 */ 3446 if (ret == -ESTALE) { 3447 trans = btrfs_start_transaction(root, 1); 3448 if (IS_ERR(trans)) { 3449 ret = PTR_ERR(trans); 3450 goto out; 3451 } 3452 btrfs_debug(root->fs_info, "auto deleting %Lu", 3453 found_key.objectid); 3454 ret = btrfs_del_orphan_item(trans, root, 3455 found_key.objectid); 3456 btrfs_end_transaction(trans, root); 3457 if (ret) 3458 goto out; 3459 continue; 3460 } 3461 3462 /* 3463 * add this inode to the orphan list so btrfs_orphan_del does 3464 * the proper thing when we hit it 3465 */ 3466 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3467 &BTRFS_I(inode)->runtime_flags); 3468 atomic_inc(&root->orphan_inodes); 3469 3470 /* if we have links, this was a truncate, lets do that */ 3471 if (inode->i_nlink) { 3472 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3473 iput(inode); 3474 continue; 3475 } 3476 nr_truncate++; 3477 3478 /* 1 for the orphan item deletion. */ 3479 trans = btrfs_start_transaction(root, 1); 3480 if (IS_ERR(trans)) { 3481 iput(inode); 3482 ret = PTR_ERR(trans); 3483 goto out; 3484 } 3485 ret = btrfs_orphan_add(trans, inode); 3486 btrfs_end_transaction(trans, root); 3487 if (ret) { 3488 iput(inode); 3489 goto out; 3490 } 3491 3492 ret = btrfs_truncate(inode); 3493 if (ret) 3494 btrfs_orphan_del(NULL, inode); 3495 } else { 3496 nr_unlink++; 3497 } 3498 3499 /* this will do delete_inode and everything for us */ 3500 iput(inode); 3501 if (ret) 3502 goto out; 3503 } 3504 /* release the path since we're done with it */ 3505 btrfs_release_path(path); 3506 3507 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3508 3509 if (root->orphan_block_rsv) 3510 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3511 (u64)-1); 3512 3513 if (root->orphan_block_rsv || 3514 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3515 trans = btrfs_join_transaction(root); 3516 if (!IS_ERR(trans)) 3517 btrfs_end_transaction(trans, root); 3518 } 3519 3520 if (nr_unlink) 3521 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3522 if (nr_truncate) 3523 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3524 3525 out: 3526 if (ret) 3527 btrfs_err(root->fs_info, 3528 "could not do orphan cleanup %d", ret); 3529 btrfs_free_path(path); 3530 return ret; 3531 } 3532 3533 /* 3534 * very simple check to peek ahead in the leaf looking for xattrs. If we 3535 * don't find any xattrs, we know there can't be any acls. 3536 * 3537 * slot is the slot the inode is in, objectid is the objectid of the inode 3538 */ 3539 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3540 int slot, u64 objectid, 3541 int *first_xattr_slot) 3542 { 3543 u32 nritems = btrfs_header_nritems(leaf); 3544 struct btrfs_key found_key; 3545 static u64 xattr_access = 0; 3546 static u64 xattr_default = 0; 3547 int scanned = 0; 3548 3549 if (!xattr_access) { 3550 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3551 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3552 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3553 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3554 } 3555 3556 slot++; 3557 *first_xattr_slot = -1; 3558 while (slot < nritems) { 3559 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3560 3561 /* we found a different objectid, there must not be acls */ 3562 if (found_key.objectid != objectid) 3563 return 0; 3564 3565 /* we found an xattr, assume we've got an acl */ 3566 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3567 if (*first_xattr_slot == -1) 3568 *first_xattr_slot = slot; 3569 if (found_key.offset == xattr_access || 3570 found_key.offset == xattr_default) 3571 return 1; 3572 } 3573 3574 /* 3575 * we found a key greater than an xattr key, there can't 3576 * be any acls later on 3577 */ 3578 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3579 return 0; 3580 3581 slot++; 3582 scanned++; 3583 3584 /* 3585 * it goes inode, inode backrefs, xattrs, extents, 3586 * so if there are a ton of hard links to an inode there can 3587 * be a lot of backrefs. Don't waste time searching too hard, 3588 * this is just an optimization 3589 */ 3590 if (scanned >= 8) 3591 break; 3592 } 3593 /* we hit the end of the leaf before we found an xattr or 3594 * something larger than an xattr. We have to assume the inode 3595 * has acls 3596 */ 3597 if (*first_xattr_slot == -1) 3598 *first_xattr_slot = slot; 3599 return 1; 3600 } 3601 3602 /* 3603 * read an inode from the btree into the in-memory inode 3604 */ 3605 static void btrfs_read_locked_inode(struct inode *inode) 3606 { 3607 struct btrfs_path *path; 3608 struct extent_buffer *leaf; 3609 struct btrfs_inode_item *inode_item; 3610 struct btrfs_root *root = BTRFS_I(inode)->root; 3611 struct btrfs_key location; 3612 unsigned long ptr; 3613 int maybe_acls; 3614 u32 rdev; 3615 int ret; 3616 bool filled = false; 3617 int first_xattr_slot; 3618 3619 ret = btrfs_fill_inode(inode, &rdev); 3620 if (!ret) 3621 filled = true; 3622 3623 path = btrfs_alloc_path(); 3624 if (!path) 3625 goto make_bad; 3626 3627 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3628 3629 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3630 if (ret) 3631 goto make_bad; 3632 3633 leaf = path->nodes[0]; 3634 3635 if (filled) 3636 goto cache_index; 3637 3638 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3639 struct btrfs_inode_item); 3640 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3641 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3642 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3643 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3644 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3645 3646 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3647 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3648 3649 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3650 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3651 3652 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3653 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3654 3655 BTRFS_I(inode)->i_otime.tv_sec = 3656 btrfs_timespec_sec(leaf, &inode_item->otime); 3657 BTRFS_I(inode)->i_otime.tv_nsec = 3658 btrfs_timespec_nsec(leaf, &inode_item->otime); 3659 3660 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3661 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3662 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3663 3664 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3665 inode->i_generation = BTRFS_I(inode)->generation; 3666 inode->i_rdev = 0; 3667 rdev = btrfs_inode_rdev(leaf, inode_item); 3668 3669 BTRFS_I(inode)->index_cnt = (u64)-1; 3670 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3671 3672 cache_index: 3673 /* 3674 * If we were modified in the current generation and evicted from memory 3675 * and then re-read we need to do a full sync since we don't have any 3676 * idea about which extents were modified before we were evicted from 3677 * cache. 3678 * 3679 * This is required for both inode re-read from disk and delayed inode 3680 * in delayed_nodes_tree. 3681 */ 3682 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3683 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3684 &BTRFS_I(inode)->runtime_flags); 3685 3686 /* 3687 * We don't persist the id of the transaction where an unlink operation 3688 * against the inode was last made. So here we assume the inode might 3689 * have been evicted, and therefore the exact value of last_unlink_trans 3690 * lost, and set it to last_trans to avoid metadata inconsistencies 3691 * between the inode and its parent if the inode is fsync'ed and the log 3692 * replayed. For example, in the scenario: 3693 * 3694 * touch mydir/foo 3695 * ln mydir/foo mydir/bar 3696 * sync 3697 * unlink mydir/bar 3698 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3699 * xfs_io -c fsync mydir/foo 3700 * <power failure> 3701 * mount fs, triggers fsync log replay 3702 * 3703 * We must make sure that when we fsync our inode foo we also log its 3704 * parent inode, otherwise after log replay the parent still has the 3705 * dentry with the "bar" name but our inode foo has a link count of 1 3706 * and doesn't have an inode ref with the name "bar" anymore. 3707 * 3708 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3709 * but it guarantees correctness at the expense of ocassional full 3710 * transaction commits on fsync if our inode is a directory, or if our 3711 * inode is not a directory, logging its parent unnecessarily. 3712 */ 3713 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3714 3715 path->slots[0]++; 3716 if (inode->i_nlink != 1 || 3717 path->slots[0] >= btrfs_header_nritems(leaf)) 3718 goto cache_acl; 3719 3720 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3721 if (location.objectid != btrfs_ino(inode)) 3722 goto cache_acl; 3723 3724 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3725 if (location.type == BTRFS_INODE_REF_KEY) { 3726 struct btrfs_inode_ref *ref; 3727 3728 ref = (struct btrfs_inode_ref *)ptr; 3729 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3730 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3731 struct btrfs_inode_extref *extref; 3732 3733 extref = (struct btrfs_inode_extref *)ptr; 3734 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3735 extref); 3736 } 3737 cache_acl: 3738 /* 3739 * try to precache a NULL acl entry for files that don't have 3740 * any xattrs or acls 3741 */ 3742 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3743 btrfs_ino(inode), &first_xattr_slot); 3744 if (first_xattr_slot != -1) { 3745 path->slots[0] = first_xattr_slot; 3746 ret = btrfs_load_inode_props(inode, path); 3747 if (ret) 3748 btrfs_err(root->fs_info, 3749 "error loading props for ino %llu (root %llu): %d", 3750 btrfs_ino(inode), 3751 root->root_key.objectid, ret); 3752 } 3753 btrfs_free_path(path); 3754 3755 if (!maybe_acls) 3756 cache_no_acl(inode); 3757 3758 switch (inode->i_mode & S_IFMT) { 3759 case S_IFREG: 3760 inode->i_mapping->a_ops = &btrfs_aops; 3761 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3762 inode->i_fop = &btrfs_file_operations; 3763 inode->i_op = &btrfs_file_inode_operations; 3764 break; 3765 case S_IFDIR: 3766 inode->i_fop = &btrfs_dir_file_operations; 3767 if (root == root->fs_info->tree_root) 3768 inode->i_op = &btrfs_dir_ro_inode_operations; 3769 else 3770 inode->i_op = &btrfs_dir_inode_operations; 3771 break; 3772 case S_IFLNK: 3773 inode->i_op = &btrfs_symlink_inode_operations; 3774 inode_nohighmem(inode); 3775 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3776 break; 3777 default: 3778 inode->i_op = &btrfs_special_inode_operations; 3779 init_special_inode(inode, inode->i_mode, rdev); 3780 break; 3781 } 3782 3783 btrfs_update_iflags(inode); 3784 return; 3785 3786 make_bad: 3787 btrfs_free_path(path); 3788 make_bad_inode(inode); 3789 } 3790 3791 /* 3792 * given a leaf and an inode, copy the inode fields into the leaf 3793 */ 3794 static void fill_inode_item(struct btrfs_trans_handle *trans, 3795 struct extent_buffer *leaf, 3796 struct btrfs_inode_item *item, 3797 struct inode *inode) 3798 { 3799 struct btrfs_map_token token; 3800 3801 btrfs_init_map_token(&token); 3802 3803 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3804 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3805 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3806 &token); 3807 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3808 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3809 3810 btrfs_set_token_timespec_sec(leaf, &item->atime, 3811 inode->i_atime.tv_sec, &token); 3812 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3813 inode->i_atime.tv_nsec, &token); 3814 3815 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3816 inode->i_mtime.tv_sec, &token); 3817 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3818 inode->i_mtime.tv_nsec, &token); 3819 3820 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3821 inode->i_ctime.tv_sec, &token); 3822 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3823 inode->i_ctime.tv_nsec, &token); 3824 3825 btrfs_set_token_timespec_sec(leaf, &item->otime, 3826 BTRFS_I(inode)->i_otime.tv_sec, &token); 3827 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3828 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3829 3830 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3831 &token); 3832 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3833 &token); 3834 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3835 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3836 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3837 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3838 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3839 } 3840 3841 /* 3842 * copy everything in the in-memory inode into the btree. 3843 */ 3844 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3845 struct btrfs_root *root, struct inode *inode) 3846 { 3847 struct btrfs_inode_item *inode_item; 3848 struct btrfs_path *path; 3849 struct extent_buffer *leaf; 3850 int ret; 3851 3852 path = btrfs_alloc_path(); 3853 if (!path) 3854 return -ENOMEM; 3855 3856 path->leave_spinning = 1; 3857 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3858 1); 3859 if (ret) { 3860 if (ret > 0) 3861 ret = -ENOENT; 3862 goto failed; 3863 } 3864 3865 leaf = path->nodes[0]; 3866 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3867 struct btrfs_inode_item); 3868 3869 fill_inode_item(trans, leaf, inode_item, inode); 3870 btrfs_mark_buffer_dirty(leaf); 3871 btrfs_set_inode_last_trans(trans, inode); 3872 ret = 0; 3873 failed: 3874 btrfs_free_path(path); 3875 return ret; 3876 } 3877 3878 /* 3879 * copy everything in the in-memory inode into the btree. 3880 */ 3881 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3882 struct btrfs_root *root, struct inode *inode) 3883 { 3884 int ret; 3885 3886 /* 3887 * If the inode is a free space inode, we can deadlock during commit 3888 * if we put it into the delayed code. 3889 * 3890 * The data relocation inode should also be directly updated 3891 * without delay 3892 */ 3893 if (!btrfs_is_free_space_inode(inode) 3894 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3895 && !root->fs_info->log_root_recovering) { 3896 btrfs_update_root_times(trans, root); 3897 3898 ret = btrfs_delayed_update_inode(trans, root, inode); 3899 if (!ret) 3900 btrfs_set_inode_last_trans(trans, inode); 3901 return ret; 3902 } 3903 3904 return btrfs_update_inode_item(trans, root, inode); 3905 } 3906 3907 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3908 struct btrfs_root *root, 3909 struct inode *inode) 3910 { 3911 int ret; 3912 3913 ret = btrfs_update_inode(trans, root, inode); 3914 if (ret == -ENOSPC) 3915 return btrfs_update_inode_item(trans, root, inode); 3916 return ret; 3917 } 3918 3919 /* 3920 * unlink helper that gets used here in inode.c and in the tree logging 3921 * recovery code. It remove a link in a directory with a given name, and 3922 * also drops the back refs in the inode to the directory 3923 */ 3924 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3925 struct btrfs_root *root, 3926 struct inode *dir, struct inode *inode, 3927 const char *name, int name_len) 3928 { 3929 struct btrfs_path *path; 3930 int ret = 0; 3931 struct extent_buffer *leaf; 3932 struct btrfs_dir_item *di; 3933 struct btrfs_key key; 3934 u64 index; 3935 u64 ino = btrfs_ino(inode); 3936 u64 dir_ino = btrfs_ino(dir); 3937 3938 path = btrfs_alloc_path(); 3939 if (!path) { 3940 ret = -ENOMEM; 3941 goto out; 3942 } 3943 3944 path->leave_spinning = 1; 3945 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3946 name, name_len, -1); 3947 if (IS_ERR(di)) { 3948 ret = PTR_ERR(di); 3949 goto err; 3950 } 3951 if (!di) { 3952 ret = -ENOENT; 3953 goto err; 3954 } 3955 leaf = path->nodes[0]; 3956 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3957 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3958 if (ret) 3959 goto err; 3960 btrfs_release_path(path); 3961 3962 /* 3963 * If we don't have dir index, we have to get it by looking up 3964 * the inode ref, since we get the inode ref, remove it directly, 3965 * it is unnecessary to do delayed deletion. 3966 * 3967 * But if we have dir index, needn't search inode ref to get it. 3968 * Since the inode ref is close to the inode item, it is better 3969 * that we delay to delete it, and just do this deletion when 3970 * we update the inode item. 3971 */ 3972 if (BTRFS_I(inode)->dir_index) { 3973 ret = btrfs_delayed_delete_inode_ref(inode); 3974 if (!ret) { 3975 index = BTRFS_I(inode)->dir_index; 3976 goto skip_backref; 3977 } 3978 } 3979 3980 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3981 dir_ino, &index); 3982 if (ret) { 3983 btrfs_info(root->fs_info, 3984 "failed to delete reference to %.*s, inode %llu parent %llu", 3985 name_len, name, ino, dir_ino); 3986 btrfs_abort_transaction(trans, root, ret); 3987 goto err; 3988 } 3989 skip_backref: 3990 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3991 if (ret) { 3992 btrfs_abort_transaction(trans, root, ret); 3993 goto err; 3994 } 3995 3996 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3997 inode, dir_ino); 3998 if (ret != 0 && ret != -ENOENT) { 3999 btrfs_abort_transaction(trans, root, ret); 4000 goto err; 4001 } 4002 4003 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4004 dir, index); 4005 if (ret == -ENOENT) 4006 ret = 0; 4007 else if (ret) 4008 btrfs_abort_transaction(trans, root, ret); 4009 err: 4010 btrfs_free_path(path); 4011 if (ret) 4012 goto out; 4013 4014 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4015 inode_inc_iversion(inode); 4016 inode_inc_iversion(dir); 4017 inode->i_ctime = dir->i_mtime = 4018 dir->i_ctime = current_fs_time(inode->i_sb); 4019 ret = btrfs_update_inode(trans, root, dir); 4020 out: 4021 return ret; 4022 } 4023 4024 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4025 struct btrfs_root *root, 4026 struct inode *dir, struct inode *inode, 4027 const char *name, int name_len) 4028 { 4029 int ret; 4030 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4031 if (!ret) { 4032 drop_nlink(inode); 4033 ret = btrfs_update_inode(trans, root, inode); 4034 } 4035 return ret; 4036 } 4037 4038 /* 4039 * helper to start transaction for unlink and rmdir. 4040 * 4041 * unlink and rmdir are special in btrfs, they do not always free space, so 4042 * if we cannot make our reservations the normal way try and see if there is 4043 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4044 * allow the unlink to occur. 4045 */ 4046 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4047 { 4048 struct btrfs_root *root = BTRFS_I(dir)->root; 4049 4050 /* 4051 * 1 for the possible orphan item 4052 * 1 for the dir item 4053 * 1 for the dir index 4054 * 1 for the inode ref 4055 * 1 for the inode 4056 */ 4057 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4058 } 4059 4060 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4061 { 4062 struct btrfs_root *root = BTRFS_I(dir)->root; 4063 struct btrfs_trans_handle *trans; 4064 struct inode *inode = d_inode(dentry); 4065 int ret; 4066 4067 trans = __unlink_start_trans(dir); 4068 if (IS_ERR(trans)) 4069 return PTR_ERR(trans); 4070 4071 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4072 4073 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4074 dentry->d_name.name, dentry->d_name.len); 4075 if (ret) 4076 goto out; 4077 4078 if (inode->i_nlink == 0) { 4079 ret = btrfs_orphan_add(trans, inode); 4080 if (ret) 4081 goto out; 4082 } 4083 4084 out: 4085 btrfs_end_transaction(trans, root); 4086 btrfs_btree_balance_dirty(root); 4087 return ret; 4088 } 4089 4090 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4091 struct btrfs_root *root, 4092 struct inode *dir, u64 objectid, 4093 const char *name, int name_len) 4094 { 4095 struct btrfs_path *path; 4096 struct extent_buffer *leaf; 4097 struct btrfs_dir_item *di; 4098 struct btrfs_key key; 4099 u64 index; 4100 int ret; 4101 u64 dir_ino = btrfs_ino(dir); 4102 4103 path = btrfs_alloc_path(); 4104 if (!path) 4105 return -ENOMEM; 4106 4107 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4108 name, name_len, -1); 4109 if (IS_ERR_OR_NULL(di)) { 4110 if (!di) 4111 ret = -ENOENT; 4112 else 4113 ret = PTR_ERR(di); 4114 goto out; 4115 } 4116 4117 leaf = path->nodes[0]; 4118 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4119 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4120 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4121 if (ret) { 4122 btrfs_abort_transaction(trans, root, ret); 4123 goto out; 4124 } 4125 btrfs_release_path(path); 4126 4127 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4128 objectid, root->root_key.objectid, 4129 dir_ino, &index, name, name_len); 4130 if (ret < 0) { 4131 if (ret != -ENOENT) { 4132 btrfs_abort_transaction(trans, root, ret); 4133 goto out; 4134 } 4135 di = btrfs_search_dir_index_item(root, path, dir_ino, 4136 name, name_len); 4137 if (IS_ERR_OR_NULL(di)) { 4138 if (!di) 4139 ret = -ENOENT; 4140 else 4141 ret = PTR_ERR(di); 4142 btrfs_abort_transaction(trans, root, ret); 4143 goto out; 4144 } 4145 4146 leaf = path->nodes[0]; 4147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4148 btrfs_release_path(path); 4149 index = key.offset; 4150 } 4151 btrfs_release_path(path); 4152 4153 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4154 if (ret) { 4155 btrfs_abort_transaction(trans, root, ret); 4156 goto out; 4157 } 4158 4159 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4160 inode_inc_iversion(dir); 4161 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4162 ret = btrfs_update_inode_fallback(trans, root, dir); 4163 if (ret) 4164 btrfs_abort_transaction(trans, root, ret); 4165 out: 4166 btrfs_free_path(path); 4167 return ret; 4168 } 4169 4170 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4171 { 4172 struct inode *inode = d_inode(dentry); 4173 int err = 0; 4174 struct btrfs_root *root = BTRFS_I(dir)->root; 4175 struct btrfs_trans_handle *trans; 4176 4177 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4178 return -ENOTEMPTY; 4179 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4180 return -EPERM; 4181 4182 trans = __unlink_start_trans(dir); 4183 if (IS_ERR(trans)) 4184 return PTR_ERR(trans); 4185 4186 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4187 err = btrfs_unlink_subvol(trans, root, dir, 4188 BTRFS_I(inode)->location.objectid, 4189 dentry->d_name.name, 4190 dentry->d_name.len); 4191 goto out; 4192 } 4193 4194 err = btrfs_orphan_add(trans, inode); 4195 if (err) 4196 goto out; 4197 4198 /* now the directory is empty */ 4199 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4200 dentry->d_name.name, dentry->d_name.len); 4201 if (!err) 4202 btrfs_i_size_write(inode, 0); 4203 out: 4204 btrfs_end_transaction(trans, root); 4205 btrfs_btree_balance_dirty(root); 4206 4207 return err; 4208 } 4209 4210 static int truncate_space_check(struct btrfs_trans_handle *trans, 4211 struct btrfs_root *root, 4212 u64 bytes_deleted) 4213 { 4214 int ret; 4215 4216 /* 4217 * This is only used to apply pressure to the enospc system, we don't 4218 * intend to use this reservation at all. 4219 */ 4220 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4221 bytes_deleted *= root->nodesize; 4222 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4223 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4224 if (!ret) { 4225 trace_btrfs_space_reservation(root->fs_info, "transaction", 4226 trans->transid, 4227 bytes_deleted, 1); 4228 trans->bytes_reserved += bytes_deleted; 4229 } 4230 return ret; 4231 4232 } 4233 4234 static int truncate_inline_extent(struct inode *inode, 4235 struct btrfs_path *path, 4236 struct btrfs_key *found_key, 4237 const u64 item_end, 4238 const u64 new_size) 4239 { 4240 struct extent_buffer *leaf = path->nodes[0]; 4241 int slot = path->slots[0]; 4242 struct btrfs_file_extent_item *fi; 4243 u32 size = (u32)(new_size - found_key->offset); 4244 struct btrfs_root *root = BTRFS_I(inode)->root; 4245 4246 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4247 4248 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4249 loff_t offset = new_size; 4250 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4251 4252 /* 4253 * Zero out the remaining of the last page of our inline extent, 4254 * instead of directly truncating our inline extent here - that 4255 * would be much more complex (decompressing all the data, then 4256 * compressing the truncated data, which might be bigger than 4257 * the size of the inline extent, resize the extent, etc). 4258 * We release the path because to get the page we might need to 4259 * read the extent item from disk (data not in the page cache). 4260 */ 4261 btrfs_release_path(path); 4262 return btrfs_truncate_block(inode, offset, page_end - offset, 4263 0); 4264 } 4265 4266 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4267 size = btrfs_file_extent_calc_inline_size(size); 4268 btrfs_truncate_item(root, path, size, 1); 4269 4270 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4271 inode_sub_bytes(inode, item_end + 1 - new_size); 4272 4273 return 0; 4274 } 4275 4276 /* 4277 * this can truncate away extent items, csum items and directory items. 4278 * It starts at a high offset and removes keys until it can't find 4279 * any higher than new_size 4280 * 4281 * csum items that cross the new i_size are truncated to the new size 4282 * as well. 4283 * 4284 * min_type is the minimum key type to truncate down to. If set to 0, this 4285 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4286 */ 4287 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4288 struct btrfs_root *root, 4289 struct inode *inode, 4290 u64 new_size, u32 min_type) 4291 { 4292 struct btrfs_path *path; 4293 struct extent_buffer *leaf; 4294 struct btrfs_file_extent_item *fi; 4295 struct btrfs_key key; 4296 struct btrfs_key found_key; 4297 u64 extent_start = 0; 4298 u64 extent_num_bytes = 0; 4299 u64 extent_offset = 0; 4300 u64 item_end = 0; 4301 u64 last_size = new_size; 4302 u32 found_type = (u8)-1; 4303 int found_extent; 4304 int del_item; 4305 int pending_del_nr = 0; 4306 int pending_del_slot = 0; 4307 int extent_type = -1; 4308 int ret; 4309 int err = 0; 4310 u64 ino = btrfs_ino(inode); 4311 u64 bytes_deleted = 0; 4312 bool be_nice = 0; 4313 bool should_throttle = 0; 4314 bool should_end = 0; 4315 4316 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4317 4318 /* 4319 * for non-free space inodes and ref cows, we want to back off from 4320 * time to time 4321 */ 4322 if (!btrfs_is_free_space_inode(inode) && 4323 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4324 be_nice = 1; 4325 4326 path = btrfs_alloc_path(); 4327 if (!path) 4328 return -ENOMEM; 4329 path->reada = READA_BACK; 4330 4331 /* 4332 * We want to drop from the next block forward in case this new size is 4333 * not block aligned since we will be keeping the last block of the 4334 * extent just the way it is. 4335 */ 4336 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4337 root == root->fs_info->tree_root) 4338 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4339 root->sectorsize), (u64)-1, 0); 4340 4341 /* 4342 * This function is also used to drop the items in the log tree before 4343 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4344 * it is used to drop the loged items. So we shouldn't kill the delayed 4345 * items. 4346 */ 4347 if (min_type == 0 && root == BTRFS_I(inode)->root) 4348 btrfs_kill_delayed_inode_items(inode); 4349 4350 key.objectid = ino; 4351 key.offset = (u64)-1; 4352 key.type = (u8)-1; 4353 4354 search_again: 4355 /* 4356 * with a 16K leaf size and 128MB extents, you can actually queue 4357 * up a huge file in a single leaf. Most of the time that 4358 * bytes_deleted is > 0, it will be huge by the time we get here 4359 */ 4360 if (be_nice && bytes_deleted > SZ_32M) { 4361 if (btrfs_should_end_transaction(trans, root)) { 4362 err = -EAGAIN; 4363 goto error; 4364 } 4365 } 4366 4367 4368 path->leave_spinning = 1; 4369 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4370 if (ret < 0) { 4371 err = ret; 4372 goto out; 4373 } 4374 4375 if (ret > 0) { 4376 /* there are no items in the tree for us to truncate, we're 4377 * done 4378 */ 4379 if (path->slots[0] == 0) 4380 goto out; 4381 path->slots[0]--; 4382 } 4383 4384 while (1) { 4385 fi = NULL; 4386 leaf = path->nodes[0]; 4387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4388 found_type = found_key.type; 4389 4390 if (found_key.objectid != ino) 4391 break; 4392 4393 if (found_type < min_type) 4394 break; 4395 4396 item_end = found_key.offset; 4397 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4398 fi = btrfs_item_ptr(leaf, path->slots[0], 4399 struct btrfs_file_extent_item); 4400 extent_type = btrfs_file_extent_type(leaf, fi); 4401 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4402 item_end += 4403 btrfs_file_extent_num_bytes(leaf, fi); 4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4405 item_end += btrfs_file_extent_inline_len(leaf, 4406 path->slots[0], fi); 4407 } 4408 item_end--; 4409 } 4410 if (found_type > min_type) { 4411 del_item = 1; 4412 } else { 4413 if (item_end < new_size) 4414 break; 4415 if (found_key.offset >= new_size) 4416 del_item = 1; 4417 else 4418 del_item = 0; 4419 } 4420 found_extent = 0; 4421 /* FIXME, shrink the extent if the ref count is only 1 */ 4422 if (found_type != BTRFS_EXTENT_DATA_KEY) 4423 goto delete; 4424 4425 if (del_item) 4426 last_size = found_key.offset; 4427 else 4428 last_size = new_size; 4429 4430 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4431 u64 num_dec; 4432 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4433 if (!del_item) { 4434 u64 orig_num_bytes = 4435 btrfs_file_extent_num_bytes(leaf, fi); 4436 extent_num_bytes = ALIGN(new_size - 4437 found_key.offset, 4438 root->sectorsize); 4439 btrfs_set_file_extent_num_bytes(leaf, fi, 4440 extent_num_bytes); 4441 num_dec = (orig_num_bytes - 4442 extent_num_bytes); 4443 if (test_bit(BTRFS_ROOT_REF_COWS, 4444 &root->state) && 4445 extent_start != 0) 4446 inode_sub_bytes(inode, num_dec); 4447 btrfs_mark_buffer_dirty(leaf); 4448 } else { 4449 extent_num_bytes = 4450 btrfs_file_extent_disk_num_bytes(leaf, 4451 fi); 4452 extent_offset = found_key.offset - 4453 btrfs_file_extent_offset(leaf, fi); 4454 4455 /* FIXME blocksize != 4096 */ 4456 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4457 if (extent_start != 0) { 4458 found_extent = 1; 4459 if (test_bit(BTRFS_ROOT_REF_COWS, 4460 &root->state)) 4461 inode_sub_bytes(inode, num_dec); 4462 } 4463 } 4464 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4465 /* 4466 * we can't truncate inline items that have had 4467 * special encodings 4468 */ 4469 if (!del_item && 4470 btrfs_file_extent_encryption(leaf, fi) == 0 && 4471 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4472 4473 /* 4474 * Need to release path in order to truncate a 4475 * compressed extent. So delete any accumulated 4476 * extent items so far. 4477 */ 4478 if (btrfs_file_extent_compression(leaf, fi) != 4479 BTRFS_COMPRESS_NONE && pending_del_nr) { 4480 err = btrfs_del_items(trans, root, path, 4481 pending_del_slot, 4482 pending_del_nr); 4483 if (err) { 4484 btrfs_abort_transaction(trans, 4485 root, 4486 err); 4487 goto error; 4488 } 4489 pending_del_nr = 0; 4490 } 4491 4492 err = truncate_inline_extent(inode, path, 4493 &found_key, 4494 item_end, 4495 new_size); 4496 if (err) { 4497 btrfs_abort_transaction(trans, 4498 root, err); 4499 goto error; 4500 } 4501 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4502 &root->state)) { 4503 inode_sub_bytes(inode, item_end + 1 - new_size); 4504 } 4505 } 4506 delete: 4507 if (del_item) { 4508 if (!pending_del_nr) { 4509 /* no pending yet, add ourselves */ 4510 pending_del_slot = path->slots[0]; 4511 pending_del_nr = 1; 4512 } else if (pending_del_nr && 4513 path->slots[0] + 1 == pending_del_slot) { 4514 /* hop on the pending chunk */ 4515 pending_del_nr++; 4516 pending_del_slot = path->slots[0]; 4517 } else { 4518 BUG(); 4519 } 4520 } else { 4521 break; 4522 } 4523 should_throttle = 0; 4524 4525 if (found_extent && 4526 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4527 root == root->fs_info->tree_root)) { 4528 btrfs_set_path_blocking(path); 4529 bytes_deleted += extent_num_bytes; 4530 ret = btrfs_free_extent(trans, root, extent_start, 4531 extent_num_bytes, 0, 4532 btrfs_header_owner(leaf), 4533 ino, extent_offset); 4534 BUG_ON(ret); 4535 if (btrfs_should_throttle_delayed_refs(trans, root)) 4536 btrfs_async_run_delayed_refs(root, 4537 trans->delayed_ref_updates * 2, 0); 4538 if (be_nice) { 4539 if (truncate_space_check(trans, root, 4540 extent_num_bytes)) { 4541 should_end = 1; 4542 } 4543 if (btrfs_should_throttle_delayed_refs(trans, 4544 root)) { 4545 should_throttle = 1; 4546 } 4547 } 4548 } 4549 4550 if (found_type == BTRFS_INODE_ITEM_KEY) 4551 break; 4552 4553 if (path->slots[0] == 0 || 4554 path->slots[0] != pending_del_slot || 4555 should_throttle || should_end) { 4556 if (pending_del_nr) { 4557 ret = btrfs_del_items(trans, root, path, 4558 pending_del_slot, 4559 pending_del_nr); 4560 if (ret) { 4561 btrfs_abort_transaction(trans, 4562 root, ret); 4563 goto error; 4564 } 4565 pending_del_nr = 0; 4566 } 4567 btrfs_release_path(path); 4568 if (should_throttle) { 4569 unsigned long updates = trans->delayed_ref_updates; 4570 if (updates) { 4571 trans->delayed_ref_updates = 0; 4572 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4573 if (ret && !err) 4574 err = ret; 4575 } 4576 } 4577 /* 4578 * if we failed to refill our space rsv, bail out 4579 * and let the transaction restart 4580 */ 4581 if (should_end) { 4582 err = -EAGAIN; 4583 goto error; 4584 } 4585 goto search_again; 4586 } else { 4587 path->slots[0]--; 4588 } 4589 } 4590 out: 4591 if (pending_del_nr) { 4592 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4593 pending_del_nr); 4594 if (ret) 4595 btrfs_abort_transaction(trans, root, ret); 4596 } 4597 error: 4598 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4599 btrfs_ordered_update_i_size(inode, last_size, NULL); 4600 4601 btrfs_free_path(path); 4602 4603 if (be_nice && bytes_deleted > SZ_32M) { 4604 unsigned long updates = trans->delayed_ref_updates; 4605 if (updates) { 4606 trans->delayed_ref_updates = 0; 4607 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4608 if (ret && !err) 4609 err = ret; 4610 } 4611 } 4612 return err; 4613 } 4614 4615 /* 4616 * btrfs_truncate_block - read, zero a chunk and write a block 4617 * @inode - inode that we're zeroing 4618 * @from - the offset to start zeroing 4619 * @len - the length to zero, 0 to zero the entire range respective to the 4620 * offset 4621 * @front - zero up to the offset instead of from the offset on 4622 * 4623 * This will find the block for the "from" offset and cow the block and zero the 4624 * part we want to zero. This is used with truncate and hole punching. 4625 */ 4626 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4627 int front) 4628 { 4629 struct address_space *mapping = inode->i_mapping; 4630 struct btrfs_root *root = BTRFS_I(inode)->root; 4631 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4632 struct btrfs_ordered_extent *ordered; 4633 struct extent_state *cached_state = NULL; 4634 char *kaddr; 4635 u32 blocksize = root->sectorsize; 4636 pgoff_t index = from >> PAGE_SHIFT; 4637 unsigned offset = from & (blocksize - 1); 4638 struct page *page; 4639 gfp_t mask = btrfs_alloc_write_mask(mapping); 4640 int ret = 0; 4641 u64 block_start; 4642 u64 block_end; 4643 4644 if ((offset & (blocksize - 1)) == 0 && 4645 (!len || ((len & (blocksize - 1)) == 0))) 4646 goto out; 4647 4648 ret = btrfs_delalloc_reserve_space(inode, 4649 round_down(from, blocksize), blocksize); 4650 if (ret) 4651 goto out; 4652 4653 again: 4654 page = find_or_create_page(mapping, index, mask); 4655 if (!page) { 4656 btrfs_delalloc_release_space(inode, 4657 round_down(from, blocksize), 4658 blocksize); 4659 ret = -ENOMEM; 4660 goto out; 4661 } 4662 4663 block_start = round_down(from, blocksize); 4664 block_end = block_start + blocksize - 1; 4665 4666 if (!PageUptodate(page)) { 4667 ret = btrfs_readpage(NULL, page); 4668 lock_page(page); 4669 if (page->mapping != mapping) { 4670 unlock_page(page); 4671 put_page(page); 4672 goto again; 4673 } 4674 if (!PageUptodate(page)) { 4675 ret = -EIO; 4676 goto out_unlock; 4677 } 4678 } 4679 wait_on_page_writeback(page); 4680 4681 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4682 set_page_extent_mapped(page); 4683 4684 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4685 if (ordered) { 4686 unlock_extent_cached(io_tree, block_start, block_end, 4687 &cached_state, GFP_NOFS); 4688 unlock_page(page); 4689 put_page(page); 4690 btrfs_start_ordered_extent(inode, ordered, 1); 4691 btrfs_put_ordered_extent(ordered); 4692 goto again; 4693 } 4694 4695 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4696 EXTENT_DIRTY | EXTENT_DELALLOC | 4697 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4698 0, 0, &cached_state, GFP_NOFS); 4699 4700 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4701 &cached_state); 4702 if (ret) { 4703 unlock_extent_cached(io_tree, block_start, block_end, 4704 &cached_state, GFP_NOFS); 4705 goto out_unlock; 4706 } 4707 4708 if (offset != blocksize) { 4709 if (!len) 4710 len = blocksize - offset; 4711 kaddr = kmap(page); 4712 if (front) 4713 memset(kaddr + (block_start - page_offset(page)), 4714 0, offset); 4715 else 4716 memset(kaddr + (block_start - page_offset(page)) + offset, 4717 0, len); 4718 flush_dcache_page(page); 4719 kunmap(page); 4720 } 4721 ClearPageChecked(page); 4722 set_page_dirty(page); 4723 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4724 GFP_NOFS); 4725 4726 out_unlock: 4727 if (ret) 4728 btrfs_delalloc_release_space(inode, block_start, 4729 blocksize); 4730 unlock_page(page); 4731 put_page(page); 4732 out: 4733 return ret; 4734 } 4735 4736 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4737 u64 offset, u64 len) 4738 { 4739 struct btrfs_trans_handle *trans; 4740 int ret; 4741 4742 /* 4743 * Still need to make sure the inode looks like it's been updated so 4744 * that any holes get logged if we fsync. 4745 */ 4746 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4747 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4748 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4749 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4750 return 0; 4751 } 4752 4753 /* 4754 * 1 - for the one we're dropping 4755 * 1 - for the one we're adding 4756 * 1 - for updating the inode. 4757 */ 4758 trans = btrfs_start_transaction(root, 3); 4759 if (IS_ERR(trans)) 4760 return PTR_ERR(trans); 4761 4762 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4763 if (ret) { 4764 btrfs_abort_transaction(trans, root, ret); 4765 btrfs_end_transaction(trans, root); 4766 return ret; 4767 } 4768 4769 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4770 0, 0, len, 0, len, 0, 0, 0); 4771 if (ret) 4772 btrfs_abort_transaction(trans, root, ret); 4773 else 4774 btrfs_update_inode(trans, root, inode); 4775 btrfs_end_transaction(trans, root); 4776 return ret; 4777 } 4778 4779 /* 4780 * This function puts in dummy file extents for the area we're creating a hole 4781 * for. So if we are truncating this file to a larger size we need to insert 4782 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4783 * the range between oldsize and size 4784 */ 4785 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4786 { 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4789 struct extent_map *em = NULL; 4790 struct extent_state *cached_state = NULL; 4791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4792 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4793 u64 block_end = ALIGN(size, root->sectorsize); 4794 u64 last_byte; 4795 u64 cur_offset; 4796 u64 hole_size; 4797 int err = 0; 4798 4799 /* 4800 * If our size started in the middle of a block we need to zero out the 4801 * rest of the block before we expand the i_size, otherwise we could 4802 * expose stale data. 4803 */ 4804 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4805 if (err) 4806 return err; 4807 4808 if (size <= hole_start) 4809 return 0; 4810 4811 while (1) { 4812 struct btrfs_ordered_extent *ordered; 4813 4814 lock_extent_bits(io_tree, hole_start, block_end - 1, 4815 &cached_state); 4816 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4817 block_end - hole_start); 4818 if (!ordered) 4819 break; 4820 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4821 &cached_state, GFP_NOFS); 4822 btrfs_start_ordered_extent(inode, ordered, 1); 4823 btrfs_put_ordered_extent(ordered); 4824 } 4825 4826 cur_offset = hole_start; 4827 while (1) { 4828 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4829 block_end - cur_offset, 0); 4830 if (IS_ERR(em)) { 4831 err = PTR_ERR(em); 4832 em = NULL; 4833 break; 4834 } 4835 last_byte = min(extent_map_end(em), block_end); 4836 last_byte = ALIGN(last_byte , root->sectorsize); 4837 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4838 struct extent_map *hole_em; 4839 hole_size = last_byte - cur_offset; 4840 4841 err = maybe_insert_hole(root, inode, cur_offset, 4842 hole_size); 4843 if (err) 4844 break; 4845 btrfs_drop_extent_cache(inode, cur_offset, 4846 cur_offset + hole_size - 1, 0); 4847 hole_em = alloc_extent_map(); 4848 if (!hole_em) { 4849 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4850 &BTRFS_I(inode)->runtime_flags); 4851 goto next; 4852 } 4853 hole_em->start = cur_offset; 4854 hole_em->len = hole_size; 4855 hole_em->orig_start = cur_offset; 4856 4857 hole_em->block_start = EXTENT_MAP_HOLE; 4858 hole_em->block_len = 0; 4859 hole_em->orig_block_len = 0; 4860 hole_em->ram_bytes = hole_size; 4861 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4862 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4863 hole_em->generation = root->fs_info->generation; 4864 4865 while (1) { 4866 write_lock(&em_tree->lock); 4867 err = add_extent_mapping(em_tree, hole_em, 1); 4868 write_unlock(&em_tree->lock); 4869 if (err != -EEXIST) 4870 break; 4871 btrfs_drop_extent_cache(inode, cur_offset, 4872 cur_offset + 4873 hole_size - 1, 0); 4874 } 4875 free_extent_map(hole_em); 4876 } 4877 next: 4878 free_extent_map(em); 4879 em = NULL; 4880 cur_offset = last_byte; 4881 if (cur_offset >= block_end) 4882 break; 4883 } 4884 free_extent_map(em); 4885 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4886 GFP_NOFS); 4887 return err; 4888 } 4889 4890 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4891 { 4892 struct btrfs_root *root = BTRFS_I(inode)->root; 4893 struct btrfs_trans_handle *trans; 4894 loff_t oldsize = i_size_read(inode); 4895 loff_t newsize = attr->ia_size; 4896 int mask = attr->ia_valid; 4897 int ret; 4898 4899 /* 4900 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4901 * special case where we need to update the times despite not having 4902 * these flags set. For all other operations the VFS set these flags 4903 * explicitly if it wants a timestamp update. 4904 */ 4905 if (newsize != oldsize) { 4906 inode_inc_iversion(inode); 4907 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4908 inode->i_ctime = inode->i_mtime = 4909 current_fs_time(inode->i_sb); 4910 } 4911 4912 if (newsize > oldsize) { 4913 /* 4914 * Don't do an expanding truncate while snapshoting is ongoing. 4915 * This is to ensure the snapshot captures a fully consistent 4916 * state of this file - if the snapshot captures this expanding 4917 * truncation, it must capture all writes that happened before 4918 * this truncation. 4919 */ 4920 btrfs_wait_for_snapshot_creation(root); 4921 ret = btrfs_cont_expand(inode, oldsize, newsize); 4922 if (ret) { 4923 btrfs_end_write_no_snapshoting(root); 4924 return ret; 4925 } 4926 4927 trans = btrfs_start_transaction(root, 1); 4928 if (IS_ERR(trans)) { 4929 btrfs_end_write_no_snapshoting(root); 4930 return PTR_ERR(trans); 4931 } 4932 4933 i_size_write(inode, newsize); 4934 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4935 pagecache_isize_extended(inode, oldsize, newsize); 4936 ret = btrfs_update_inode(trans, root, inode); 4937 btrfs_end_write_no_snapshoting(root); 4938 btrfs_end_transaction(trans, root); 4939 } else { 4940 4941 /* 4942 * We're truncating a file that used to have good data down to 4943 * zero. Make sure it gets into the ordered flush list so that 4944 * any new writes get down to disk quickly. 4945 */ 4946 if (newsize == 0) 4947 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4948 &BTRFS_I(inode)->runtime_flags); 4949 4950 /* 4951 * 1 for the orphan item we're going to add 4952 * 1 for the orphan item deletion. 4953 */ 4954 trans = btrfs_start_transaction(root, 2); 4955 if (IS_ERR(trans)) 4956 return PTR_ERR(trans); 4957 4958 /* 4959 * We need to do this in case we fail at _any_ point during the 4960 * actual truncate. Once we do the truncate_setsize we could 4961 * invalidate pages which forces any outstanding ordered io to 4962 * be instantly completed which will give us extents that need 4963 * to be truncated. If we fail to get an orphan inode down we 4964 * could have left over extents that were never meant to live, 4965 * so we need to garuntee from this point on that everything 4966 * will be consistent. 4967 */ 4968 ret = btrfs_orphan_add(trans, inode); 4969 btrfs_end_transaction(trans, root); 4970 if (ret) 4971 return ret; 4972 4973 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4974 truncate_setsize(inode, newsize); 4975 4976 /* Disable nonlocked read DIO to avoid the end less truncate */ 4977 btrfs_inode_block_unlocked_dio(inode); 4978 inode_dio_wait(inode); 4979 btrfs_inode_resume_unlocked_dio(inode); 4980 4981 ret = btrfs_truncate(inode); 4982 if (ret && inode->i_nlink) { 4983 int err; 4984 4985 /* 4986 * failed to truncate, disk_i_size is only adjusted down 4987 * as we remove extents, so it should represent the true 4988 * size of the inode, so reset the in memory size and 4989 * delete our orphan entry. 4990 */ 4991 trans = btrfs_join_transaction(root); 4992 if (IS_ERR(trans)) { 4993 btrfs_orphan_del(NULL, inode); 4994 return ret; 4995 } 4996 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4997 err = btrfs_orphan_del(trans, inode); 4998 if (err) 4999 btrfs_abort_transaction(trans, root, err); 5000 btrfs_end_transaction(trans, root); 5001 } 5002 } 5003 5004 return ret; 5005 } 5006 5007 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5008 { 5009 struct inode *inode = d_inode(dentry); 5010 struct btrfs_root *root = BTRFS_I(inode)->root; 5011 int err; 5012 5013 if (btrfs_root_readonly(root)) 5014 return -EROFS; 5015 5016 err = inode_change_ok(inode, attr); 5017 if (err) 5018 return err; 5019 5020 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5021 err = btrfs_setsize(inode, attr); 5022 if (err) 5023 return err; 5024 } 5025 5026 if (attr->ia_valid) { 5027 setattr_copy(inode, attr); 5028 inode_inc_iversion(inode); 5029 err = btrfs_dirty_inode(inode); 5030 5031 if (!err && attr->ia_valid & ATTR_MODE) 5032 err = posix_acl_chmod(inode, inode->i_mode); 5033 } 5034 5035 return err; 5036 } 5037 5038 /* 5039 * While truncating the inode pages during eviction, we get the VFS calling 5040 * btrfs_invalidatepage() against each page of the inode. This is slow because 5041 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5042 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5043 * extent_state structures over and over, wasting lots of time. 5044 * 5045 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5046 * those expensive operations on a per page basis and do only the ordered io 5047 * finishing, while we release here the extent_map and extent_state structures, 5048 * without the excessive merging and splitting. 5049 */ 5050 static void evict_inode_truncate_pages(struct inode *inode) 5051 { 5052 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5053 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5054 struct rb_node *node; 5055 5056 ASSERT(inode->i_state & I_FREEING); 5057 truncate_inode_pages_final(&inode->i_data); 5058 5059 write_lock(&map_tree->lock); 5060 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5061 struct extent_map *em; 5062 5063 node = rb_first(&map_tree->map); 5064 em = rb_entry(node, struct extent_map, rb_node); 5065 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5066 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5067 remove_extent_mapping(map_tree, em); 5068 free_extent_map(em); 5069 if (need_resched()) { 5070 write_unlock(&map_tree->lock); 5071 cond_resched(); 5072 write_lock(&map_tree->lock); 5073 } 5074 } 5075 write_unlock(&map_tree->lock); 5076 5077 /* 5078 * Keep looping until we have no more ranges in the io tree. 5079 * We can have ongoing bios started by readpages (called from readahead) 5080 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5081 * still in progress (unlocked the pages in the bio but did not yet 5082 * unlocked the ranges in the io tree). Therefore this means some 5083 * ranges can still be locked and eviction started because before 5084 * submitting those bios, which are executed by a separate task (work 5085 * queue kthread), inode references (inode->i_count) were not taken 5086 * (which would be dropped in the end io callback of each bio). 5087 * Therefore here we effectively end up waiting for those bios and 5088 * anyone else holding locked ranges without having bumped the inode's 5089 * reference count - if we don't do it, when they access the inode's 5090 * io_tree to unlock a range it may be too late, leading to an 5091 * use-after-free issue. 5092 */ 5093 spin_lock(&io_tree->lock); 5094 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5095 struct extent_state *state; 5096 struct extent_state *cached_state = NULL; 5097 u64 start; 5098 u64 end; 5099 5100 node = rb_first(&io_tree->state); 5101 state = rb_entry(node, struct extent_state, rb_node); 5102 start = state->start; 5103 end = state->end; 5104 spin_unlock(&io_tree->lock); 5105 5106 lock_extent_bits(io_tree, start, end, &cached_state); 5107 5108 /* 5109 * If still has DELALLOC flag, the extent didn't reach disk, 5110 * and its reserved space won't be freed by delayed_ref. 5111 * So we need to free its reserved space here. 5112 * (Refer to comment in btrfs_invalidatepage, case 2) 5113 * 5114 * Note, end is the bytenr of last byte, so we need + 1 here. 5115 */ 5116 if (state->state & EXTENT_DELALLOC) 5117 btrfs_qgroup_free_data(inode, start, end - start + 1); 5118 5119 clear_extent_bit(io_tree, start, end, 5120 EXTENT_LOCKED | EXTENT_DIRTY | 5121 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5122 EXTENT_DEFRAG, 1, 1, 5123 &cached_state, GFP_NOFS); 5124 5125 cond_resched(); 5126 spin_lock(&io_tree->lock); 5127 } 5128 spin_unlock(&io_tree->lock); 5129 } 5130 5131 void btrfs_evict_inode(struct inode *inode) 5132 { 5133 struct btrfs_trans_handle *trans; 5134 struct btrfs_root *root = BTRFS_I(inode)->root; 5135 struct btrfs_block_rsv *rsv, *global_rsv; 5136 int steal_from_global = 0; 5137 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5138 int ret; 5139 5140 trace_btrfs_inode_evict(inode); 5141 5142 evict_inode_truncate_pages(inode); 5143 5144 if (inode->i_nlink && 5145 ((btrfs_root_refs(&root->root_item) != 0 && 5146 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5147 btrfs_is_free_space_inode(inode))) 5148 goto no_delete; 5149 5150 if (is_bad_inode(inode)) { 5151 btrfs_orphan_del(NULL, inode); 5152 goto no_delete; 5153 } 5154 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5155 if (!special_file(inode->i_mode)) 5156 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5157 5158 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5159 5160 if (root->fs_info->log_root_recovering) { 5161 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5162 &BTRFS_I(inode)->runtime_flags)); 5163 goto no_delete; 5164 } 5165 5166 if (inode->i_nlink > 0) { 5167 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5168 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5169 goto no_delete; 5170 } 5171 5172 ret = btrfs_commit_inode_delayed_inode(inode); 5173 if (ret) { 5174 btrfs_orphan_del(NULL, inode); 5175 goto no_delete; 5176 } 5177 5178 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5179 if (!rsv) { 5180 btrfs_orphan_del(NULL, inode); 5181 goto no_delete; 5182 } 5183 rsv->size = min_size; 5184 rsv->failfast = 1; 5185 global_rsv = &root->fs_info->global_block_rsv; 5186 5187 btrfs_i_size_write(inode, 0); 5188 5189 /* 5190 * This is a bit simpler than btrfs_truncate since we've already 5191 * reserved our space for our orphan item in the unlink, so we just 5192 * need to reserve some slack space in case we add bytes and update 5193 * inode item when doing the truncate. 5194 */ 5195 while (1) { 5196 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5197 BTRFS_RESERVE_FLUSH_LIMIT); 5198 5199 /* 5200 * Try and steal from the global reserve since we will 5201 * likely not use this space anyway, we want to try as 5202 * hard as possible to get this to work. 5203 */ 5204 if (ret) 5205 steal_from_global++; 5206 else 5207 steal_from_global = 0; 5208 ret = 0; 5209 5210 /* 5211 * steal_from_global == 0: we reserved stuff, hooray! 5212 * steal_from_global == 1: we didn't reserve stuff, boo! 5213 * steal_from_global == 2: we've committed, still not a lot of 5214 * room but maybe we'll have room in the global reserve this 5215 * time. 5216 * steal_from_global == 3: abandon all hope! 5217 */ 5218 if (steal_from_global > 2) { 5219 btrfs_warn(root->fs_info, 5220 "Could not get space for a delete, will truncate on mount %d", 5221 ret); 5222 btrfs_orphan_del(NULL, inode); 5223 btrfs_free_block_rsv(root, rsv); 5224 goto no_delete; 5225 } 5226 5227 trans = btrfs_join_transaction(root); 5228 if (IS_ERR(trans)) { 5229 btrfs_orphan_del(NULL, inode); 5230 btrfs_free_block_rsv(root, rsv); 5231 goto no_delete; 5232 } 5233 5234 /* 5235 * We can't just steal from the global reserve, we need tomake 5236 * sure there is room to do it, if not we need to commit and try 5237 * again. 5238 */ 5239 if (steal_from_global) { 5240 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5241 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5242 min_size); 5243 else 5244 ret = -ENOSPC; 5245 } 5246 5247 /* 5248 * Couldn't steal from the global reserve, we have too much 5249 * pending stuff built up, commit the transaction and try it 5250 * again. 5251 */ 5252 if (ret) { 5253 ret = btrfs_commit_transaction(trans, root); 5254 if (ret) { 5255 btrfs_orphan_del(NULL, inode); 5256 btrfs_free_block_rsv(root, rsv); 5257 goto no_delete; 5258 } 5259 continue; 5260 } else { 5261 steal_from_global = 0; 5262 } 5263 5264 trans->block_rsv = rsv; 5265 5266 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5267 if (ret != -ENOSPC && ret != -EAGAIN) 5268 break; 5269 5270 trans->block_rsv = &root->fs_info->trans_block_rsv; 5271 btrfs_end_transaction(trans, root); 5272 trans = NULL; 5273 btrfs_btree_balance_dirty(root); 5274 } 5275 5276 btrfs_free_block_rsv(root, rsv); 5277 5278 /* 5279 * Errors here aren't a big deal, it just means we leave orphan items 5280 * in the tree. They will be cleaned up on the next mount. 5281 */ 5282 if (ret == 0) { 5283 trans->block_rsv = root->orphan_block_rsv; 5284 btrfs_orphan_del(trans, inode); 5285 } else { 5286 btrfs_orphan_del(NULL, inode); 5287 } 5288 5289 trans->block_rsv = &root->fs_info->trans_block_rsv; 5290 if (!(root == root->fs_info->tree_root || 5291 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5292 btrfs_return_ino(root, btrfs_ino(inode)); 5293 5294 btrfs_end_transaction(trans, root); 5295 btrfs_btree_balance_dirty(root); 5296 no_delete: 5297 btrfs_remove_delayed_node(inode); 5298 clear_inode(inode); 5299 } 5300 5301 /* 5302 * this returns the key found in the dir entry in the location pointer. 5303 * If no dir entries were found, location->objectid is 0. 5304 */ 5305 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5306 struct btrfs_key *location) 5307 { 5308 const char *name = dentry->d_name.name; 5309 int namelen = dentry->d_name.len; 5310 struct btrfs_dir_item *di; 5311 struct btrfs_path *path; 5312 struct btrfs_root *root = BTRFS_I(dir)->root; 5313 int ret = 0; 5314 5315 path = btrfs_alloc_path(); 5316 if (!path) 5317 return -ENOMEM; 5318 5319 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5320 namelen, 0); 5321 if (IS_ERR(di)) 5322 ret = PTR_ERR(di); 5323 5324 if (IS_ERR_OR_NULL(di)) 5325 goto out_err; 5326 5327 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5328 out: 5329 btrfs_free_path(path); 5330 return ret; 5331 out_err: 5332 location->objectid = 0; 5333 goto out; 5334 } 5335 5336 /* 5337 * when we hit a tree root in a directory, the btrfs part of the inode 5338 * needs to be changed to reflect the root directory of the tree root. This 5339 * is kind of like crossing a mount point. 5340 */ 5341 static int fixup_tree_root_location(struct btrfs_root *root, 5342 struct inode *dir, 5343 struct dentry *dentry, 5344 struct btrfs_key *location, 5345 struct btrfs_root **sub_root) 5346 { 5347 struct btrfs_path *path; 5348 struct btrfs_root *new_root; 5349 struct btrfs_root_ref *ref; 5350 struct extent_buffer *leaf; 5351 struct btrfs_key key; 5352 int ret; 5353 int err = 0; 5354 5355 path = btrfs_alloc_path(); 5356 if (!path) { 5357 err = -ENOMEM; 5358 goto out; 5359 } 5360 5361 err = -ENOENT; 5362 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5363 key.type = BTRFS_ROOT_REF_KEY; 5364 key.offset = location->objectid; 5365 5366 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5367 0, 0); 5368 if (ret) { 5369 if (ret < 0) 5370 err = ret; 5371 goto out; 5372 } 5373 5374 leaf = path->nodes[0]; 5375 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5376 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5377 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5378 goto out; 5379 5380 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5381 (unsigned long)(ref + 1), 5382 dentry->d_name.len); 5383 if (ret) 5384 goto out; 5385 5386 btrfs_release_path(path); 5387 5388 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5389 if (IS_ERR(new_root)) { 5390 err = PTR_ERR(new_root); 5391 goto out; 5392 } 5393 5394 *sub_root = new_root; 5395 location->objectid = btrfs_root_dirid(&new_root->root_item); 5396 location->type = BTRFS_INODE_ITEM_KEY; 5397 location->offset = 0; 5398 err = 0; 5399 out: 5400 btrfs_free_path(path); 5401 return err; 5402 } 5403 5404 static void inode_tree_add(struct inode *inode) 5405 { 5406 struct btrfs_root *root = BTRFS_I(inode)->root; 5407 struct btrfs_inode *entry; 5408 struct rb_node **p; 5409 struct rb_node *parent; 5410 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5411 u64 ino = btrfs_ino(inode); 5412 5413 if (inode_unhashed(inode)) 5414 return; 5415 parent = NULL; 5416 spin_lock(&root->inode_lock); 5417 p = &root->inode_tree.rb_node; 5418 while (*p) { 5419 parent = *p; 5420 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5421 5422 if (ino < btrfs_ino(&entry->vfs_inode)) 5423 p = &parent->rb_left; 5424 else if (ino > btrfs_ino(&entry->vfs_inode)) 5425 p = &parent->rb_right; 5426 else { 5427 WARN_ON(!(entry->vfs_inode.i_state & 5428 (I_WILL_FREE | I_FREEING))); 5429 rb_replace_node(parent, new, &root->inode_tree); 5430 RB_CLEAR_NODE(parent); 5431 spin_unlock(&root->inode_lock); 5432 return; 5433 } 5434 } 5435 rb_link_node(new, parent, p); 5436 rb_insert_color(new, &root->inode_tree); 5437 spin_unlock(&root->inode_lock); 5438 } 5439 5440 static void inode_tree_del(struct inode *inode) 5441 { 5442 struct btrfs_root *root = BTRFS_I(inode)->root; 5443 int empty = 0; 5444 5445 spin_lock(&root->inode_lock); 5446 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5447 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5448 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5449 empty = RB_EMPTY_ROOT(&root->inode_tree); 5450 } 5451 spin_unlock(&root->inode_lock); 5452 5453 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5454 synchronize_srcu(&root->fs_info->subvol_srcu); 5455 spin_lock(&root->inode_lock); 5456 empty = RB_EMPTY_ROOT(&root->inode_tree); 5457 spin_unlock(&root->inode_lock); 5458 if (empty) 5459 btrfs_add_dead_root(root); 5460 } 5461 } 5462 5463 void btrfs_invalidate_inodes(struct btrfs_root *root) 5464 { 5465 struct rb_node *node; 5466 struct rb_node *prev; 5467 struct btrfs_inode *entry; 5468 struct inode *inode; 5469 u64 objectid = 0; 5470 5471 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5472 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5473 5474 spin_lock(&root->inode_lock); 5475 again: 5476 node = root->inode_tree.rb_node; 5477 prev = NULL; 5478 while (node) { 5479 prev = node; 5480 entry = rb_entry(node, struct btrfs_inode, rb_node); 5481 5482 if (objectid < btrfs_ino(&entry->vfs_inode)) 5483 node = node->rb_left; 5484 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5485 node = node->rb_right; 5486 else 5487 break; 5488 } 5489 if (!node) { 5490 while (prev) { 5491 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5492 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5493 node = prev; 5494 break; 5495 } 5496 prev = rb_next(prev); 5497 } 5498 } 5499 while (node) { 5500 entry = rb_entry(node, struct btrfs_inode, rb_node); 5501 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5502 inode = igrab(&entry->vfs_inode); 5503 if (inode) { 5504 spin_unlock(&root->inode_lock); 5505 if (atomic_read(&inode->i_count) > 1) 5506 d_prune_aliases(inode); 5507 /* 5508 * btrfs_drop_inode will have it removed from 5509 * the inode cache when its usage count 5510 * hits zero. 5511 */ 5512 iput(inode); 5513 cond_resched(); 5514 spin_lock(&root->inode_lock); 5515 goto again; 5516 } 5517 5518 if (cond_resched_lock(&root->inode_lock)) 5519 goto again; 5520 5521 node = rb_next(node); 5522 } 5523 spin_unlock(&root->inode_lock); 5524 } 5525 5526 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5527 { 5528 struct btrfs_iget_args *args = p; 5529 inode->i_ino = args->location->objectid; 5530 memcpy(&BTRFS_I(inode)->location, args->location, 5531 sizeof(*args->location)); 5532 BTRFS_I(inode)->root = args->root; 5533 return 0; 5534 } 5535 5536 static int btrfs_find_actor(struct inode *inode, void *opaque) 5537 { 5538 struct btrfs_iget_args *args = opaque; 5539 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5540 args->root == BTRFS_I(inode)->root; 5541 } 5542 5543 static struct inode *btrfs_iget_locked(struct super_block *s, 5544 struct btrfs_key *location, 5545 struct btrfs_root *root) 5546 { 5547 struct inode *inode; 5548 struct btrfs_iget_args args; 5549 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5550 5551 args.location = location; 5552 args.root = root; 5553 5554 inode = iget5_locked(s, hashval, btrfs_find_actor, 5555 btrfs_init_locked_inode, 5556 (void *)&args); 5557 return inode; 5558 } 5559 5560 /* Get an inode object given its location and corresponding root. 5561 * Returns in *is_new if the inode was read from disk 5562 */ 5563 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5564 struct btrfs_root *root, int *new) 5565 { 5566 struct inode *inode; 5567 5568 inode = btrfs_iget_locked(s, location, root); 5569 if (!inode) 5570 return ERR_PTR(-ENOMEM); 5571 5572 if (inode->i_state & I_NEW) { 5573 btrfs_read_locked_inode(inode); 5574 if (!is_bad_inode(inode)) { 5575 inode_tree_add(inode); 5576 unlock_new_inode(inode); 5577 if (new) 5578 *new = 1; 5579 } else { 5580 unlock_new_inode(inode); 5581 iput(inode); 5582 inode = ERR_PTR(-ESTALE); 5583 } 5584 } 5585 5586 return inode; 5587 } 5588 5589 static struct inode *new_simple_dir(struct super_block *s, 5590 struct btrfs_key *key, 5591 struct btrfs_root *root) 5592 { 5593 struct inode *inode = new_inode(s); 5594 5595 if (!inode) 5596 return ERR_PTR(-ENOMEM); 5597 5598 BTRFS_I(inode)->root = root; 5599 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5600 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5601 5602 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5603 inode->i_op = &btrfs_dir_ro_inode_operations; 5604 inode->i_fop = &simple_dir_operations; 5605 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5606 inode->i_mtime = current_fs_time(inode->i_sb); 5607 inode->i_atime = inode->i_mtime; 5608 inode->i_ctime = inode->i_mtime; 5609 BTRFS_I(inode)->i_otime = inode->i_mtime; 5610 5611 return inode; 5612 } 5613 5614 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5615 { 5616 struct inode *inode; 5617 struct btrfs_root *root = BTRFS_I(dir)->root; 5618 struct btrfs_root *sub_root = root; 5619 struct btrfs_key location; 5620 int index; 5621 int ret = 0; 5622 5623 if (dentry->d_name.len > BTRFS_NAME_LEN) 5624 return ERR_PTR(-ENAMETOOLONG); 5625 5626 ret = btrfs_inode_by_name(dir, dentry, &location); 5627 if (ret < 0) 5628 return ERR_PTR(ret); 5629 5630 if (location.objectid == 0) 5631 return ERR_PTR(-ENOENT); 5632 5633 if (location.type == BTRFS_INODE_ITEM_KEY) { 5634 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5635 return inode; 5636 } 5637 5638 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5639 5640 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5641 ret = fixup_tree_root_location(root, dir, dentry, 5642 &location, &sub_root); 5643 if (ret < 0) { 5644 if (ret != -ENOENT) 5645 inode = ERR_PTR(ret); 5646 else 5647 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5648 } else { 5649 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5650 } 5651 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5652 5653 if (!IS_ERR(inode) && root != sub_root) { 5654 down_read(&root->fs_info->cleanup_work_sem); 5655 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5656 ret = btrfs_orphan_cleanup(sub_root); 5657 up_read(&root->fs_info->cleanup_work_sem); 5658 if (ret) { 5659 iput(inode); 5660 inode = ERR_PTR(ret); 5661 } 5662 } 5663 5664 return inode; 5665 } 5666 5667 static int btrfs_dentry_delete(const struct dentry *dentry) 5668 { 5669 struct btrfs_root *root; 5670 struct inode *inode = d_inode(dentry); 5671 5672 if (!inode && !IS_ROOT(dentry)) 5673 inode = d_inode(dentry->d_parent); 5674 5675 if (inode) { 5676 root = BTRFS_I(inode)->root; 5677 if (btrfs_root_refs(&root->root_item) == 0) 5678 return 1; 5679 5680 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5681 return 1; 5682 } 5683 return 0; 5684 } 5685 5686 static void btrfs_dentry_release(struct dentry *dentry) 5687 { 5688 kfree(dentry->d_fsdata); 5689 } 5690 5691 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5692 unsigned int flags) 5693 { 5694 struct inode *inode; 5695 5696 inode = btrfs_lookup_dentry(dir, dentry); 5697 if (IS_ERR(inode)) { 5698 if (PTR_ERR(inode) == -ENOENT) 5699 inode = NULL; 5700 else 5701 return ERR_CAST(inode); 5702 } 5703 5704 return d_splice_alias(inode, dentry); 5705 } 5706 5707 unsigned char btrfs_filetype_table[] = { 5708 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5709 }; 5710 5711 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5712 { 5713 struct inode *inode = file_inode(file); 5714 struct btrfs_root *root = BTRFS_I(inode)->root; 5715 struct btrfs_item *item; 5716 struct btrfs_dir_item *di; 5717 struct btrfs_key key; 5718 struct btrfs_key found_key; 5719 struct btrfs_path *path; 5720 struct list_head ins_list; 5721 struct list_head del_list; 5722 int ret; 5723 struct extent_buffer *leaf; 5724 int slot; 5725 unsigned char d_type; 5726 int over = 0; 5727 u32 di_cur; 5728 u32 di_total; 5729 u32 di_len; 5730 int key_type = BTRFS_DIR_INDEX_KEY; 5731 char tmp_name[32]; 5732 char *name_ptr; 5733 int name_len; 5734 int is_curr = 0; /* ctx->pos points to the current index? */ 5735 bool emitted; 5736 5737 /* FIXME, use a real flag for deciding about the key type */ 5738 if (root->fs_info->tree_root == root) 5739 key_type = BTRFS_DIR_ITEM_KEY; 5740 5741 if (!dir_emit_dots(file, ctx)) 5742 return 0; 5743 5744 path = btrfs_alloc_path(); 5745 if (!path) 5746 return -ENOMEM; 5747 5748 path->reada = READA_FORWARD; 5749 5750 if (key_type == BTRFS_DIR_INDEX_KEY) { 5751 INIT_LIST_HEAD(&ins_list); 5752 INIT_LIST_HEAD(&del_list); 5753 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5754 } 5755 5756 key.type = key_type; 5757 key.offset = ctx->pos; 5758 key.objectid = btrfs_ino(inode); 5759 5760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5761 if (ret < 0) 5762 goto err; 5763 5764 emitted = false; 5765 while (1) { 5766 leaf = path->nodes[0]; 5767 slot = path->slots[0]; 5768 if (slot >= btrfs_header_nritems(leaf)) { 5769 ret = btrfs_next_leaf(root, path); 5770 if (ret < 0) 5771 goto err; 5772 else if (ret > 0) 5773 break; 5774 continue; 5775 } 5776 5777 item = btrfs_item_nr(slot); 5778 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5779 5780 if (found_key.objectid != key.objectid) 5781 break; 5782 if (found_key.type != key_type) 5783 break; 5784 if (found_key.offset < ctx->pos) 5785 goto next; 5786 if (key_type == BTRFS_DIR_INDEX_KEY && 5787 btrfs_should_delete_dir_index(&del_list, 5788 found_key.offset)) 5789 goto next; 5790 5791 ctx->pos = found_key.offset; 5792 is_curr = 1; 5793 5794 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5795 di_cur = 0; 5796 di_total = btrfs_item_size(leaf, item); 5797 5798 while (di_cur < di_total) { 5799 struct btrfs_key location; 5800 5801 if (verify_dir_item(root, leaf, di)) 5802 break; 5803 5804 name_len = btrfs_dir_name_len(leaf, di); 5805 if (name_len <= sizeof(tmp_name)) { 5806 name_ptr = tmp_name; 5807 } else { 5808 name_ptr = kmalloc(name_len, GFP_KERNEL); 5809 if (!name_ptr) { 5810 ret = -ENOMEM; 5811 goto err; 5812 } 5813 } 5814 read_extent_buffer(leaf, name_ptr, 5815 (unsigned long)(di + 1), name_len); 5816 5817 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5818 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5819 5820 5821 /* is this a reference to our own snapshot? If so 5822 * skip it. 5823 * 5824 * In contrast to old kernels, we insert the snapshot's 5825 * dir item and dir index after it has been created, so 5826 * we won't find a reference to our own snapshot. We 5827 * still keep the following code for backward 5828 * compatibility. 5829 */ 5830 if (location.type == BTRFS_ROOT_ITEM_KEY && 5831 location.objectid == root->root_key.objectid) { 5832 over = 0; 5833 goto skip; 5834 } 5835 over = !dir_emit(ctx, name_ptr, name_len, 5836 location.objectid, d_type); 5837 5838 skip: 5839 if (name_ptr != tmp_name) 5840 kfree(name_ptr); 5841 5842 if (over) 5843 goto nopos; 5844 emitted = true; 5845 di_len = btrfs_dir_name_len(leaf, di) + 5846 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5847 di_cur += di_len; 5848 di = (struct btrfs_dir_item *)((char *)di + di_len); 5849 } 5850 next: 5851 path->slots[0]++; 5852 } 5853 5854 if (key_type == BTRFS_DIR_INDEX_KEY) { 5855 if (is_curr) 5856 ctx->pos++; 5857 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5858 if (ret) 5859 goto nopos; 5860 } 5861 5862 /* 5863 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5864 * it was was set to the termination value in previous call. We assume 5865 * that "." and ".." were emitted if we reach this point and set the 5866 * termination value as well for an empty directory. 5867 */ 5868 if (ctx->pos > 2 && !emitted) 5869 goto nopos; 5870 5871 /* Reached end of directory/root. Bump pos past the last item. */ 5872 ctx->pos++; 5873 5874 /* 5875 * Stop new entries from being returned after we return the last 5876 * entry. 5877 * 5878 * New directory entries are assigned a strictly increasing 5879 * offset. This means that new entries created during readdir 5880 * are *guaranteed* to be seen in the future by that readdir. 5881 * This has broken buggy programs which operate on names as 5882 * they're returned by readdir. Until we re-use freed offsets 5883 * we have this hack to stop new entries from being returned 5884 * under the assumption that they'll never reach this huge 5885 * offset. 5886 * 5887 * This is being careful not to overflow 32bit loff_t unless the 5888 * last entry requires it because doing so has broken 32bit apps 5889 * in the past. 5890 */ 5891 if (key_type == BTRFS_DIR_INDEX_KEY) { 5892 if (ctx->pos >= INT_MAX) 5893 ctx->pos = LLONG_MAX; 5894 else 5895 ctx->pos = INT_MAX; 5896 } 5897 nopos: 5898 ret = 0; 5899 err: 5900 if (key_type == BTRFS_DIR_INDEX_KEY) 5901 btrfs_put_delayed_items(&ins_list, &del_list); 5902 btrfs_free_path(path); 5903 return ret; 5904 } 5905 5906 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5907 { 5908 struct btrfs_root *root = BTRFS_I(inode)->root; 5909 struct btrfs_trans_handle *trans; 5910 int ret = 0; 5911 bool nolock = false; 5912 5913 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5914 return 0; 5915 5916 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5917 nolock = true; 5918 5919 if (wbc->sync_mode == WB_SYNC_ALL) { 5920 if (nolock) 5921 trans = btrfs_join_transaction_nolock(root); 5922 else 5923 trans = btrfs_join_transaction(root); 5924 if (IS_ERR(trans)) 5925 return PTR_ERR(trans); 5926 ret = btrfs_commit_transaction(trans, root); 5927 } 5928 return ret; 5929 } 5930 5931 /* 5932 * This is somewhat expensive, updating the tree every time the 5933 * inode changes. But, it is most likely to find the inode in cache. 5934 * FIXME, needs more benchmarking...there are no reasons other than performance 5935 * to keep or drop this code. 5936 */ 5937 static int btrfs_dirty_inode(struct inode *inode) 5938 { 5939 struct btrfs_root *root = BTRFS_I(inode)->root; 5940 struct btrfs_trans_handle *trans; 5941 int ret; 5942 5943 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5944 return 0; 5945 5946 trans = btrfs_join_transaction(root); 5947 if (IS_ERR(trans)) 5948 return PTR_ERR(trans); 5949 5950 ret = btrfs_update_inode(trans, root, inode); 5951 if (ret && ret == -ENOSPC) { 5952 /* whoops, lets try again with the full transaction */ 5953 btrfs_end_transaction(trans, root); 5954 trans = btrfs_start_transaction(root, 1); 5955 if (IS_ERR(trans)) 5956 return PTR_ERR(trans); 5957 5958 ret = btrfs_update_inode(trans, root, inode); 5959 } 5960 btrfs_end_transaction(trans, root); 5961 if (BTRFS_I(inode)->delayed_node) 5962 btrfs_balance_delayed_items(root); 5963 5964 return ret; 5965 } 5966 5967 /* 5968 * This is a copy of file_update_time. We need this so we can return error on 5969 * ENOSPC for updating the inode in the case of file write and mmap writes. 5970 */ 5971 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5972 int flags) 5973 { 5974 struct btrfs_root *root = BTRFS_I(inode)->root; 5975 5976 if (btrfs_root_readonly(root)) 5977 return -EROFS; 5978 5979 if (flags & S_VERSION) 5980 inode_inc_iversion(inode); 5981 if (flags & S_CTIME) 5982 inode->i_ctime = *now; 5983 if (flags & S_MTIME) 5984 inode->i_mtime = *now; 5985 if (flags & S_ATIME) 5986 inode->i_atime = *now; 5987 return btrfs_dirty_inode(inode); 5988 } 5989 5990 /* 5991 * find the highest existing sequence number in a directory 5992 * and then set the in-memory index_cnt variable to reflect 5993 * free sequence numbers 5994 */ 5995 static int btrfs_set_inode_index_count(struct inode *inode) 5996 { 5997 struct btrfs_root *root = BTRFS_I(inode)->root; 5998 struct btrfs_key key, found_key; 5999 struct btrfs_path *path; 6000 struct extent_buffer *leaf; 6001 int ret; 6002 6003 key.objectid = btrfs_ino(inode); 6004 key.type = BTRFS_DIR_INDEX_KEY; 6005 key.offset = (u64)-1; 6006 6007 path = btrfs_alloc_path(); 6008 if (!path) 6009 return -ENOMEM; 6010 6011 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6012 if (ret < 0) 6013 goto out; 6014 /* FIXME: we should be able to handle this */ 6015 if (ret == 0) 6016 goto out; 6017 ret = 0; 6018 6019 /* 6020 * MAGIC NUMBER EXPLANATION: 6021 * since we search a directory based on f_pos we have to start at 2 6022 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6023 * else has to start at 2 6024 */ 6025 if (path->slots[0] == 0) { 6026 BTRFS_I(inode)->index_cnt = 2; 6027 goto out; 6028 } 6029 6030 path->slots[0]--; 6031 6032 leaf = path->nodes[0]; 6033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6034 6035 if (found_key.objectid != btrfs_ino(inode) || 6036 found_key.type != BTRFS_DIR_INDEX_KEY) { 6037 BTRFS_I(inode)->index_cnt = 2; 6038 goto out; 6039 } 6040 6041 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6042 out: 6043 btrfs_free_path(path); 6044 return ret; 6045 } 6046 6047 /* 6048 * helper to find a free sequence number in a given directory. This current 6049 * code is very simple, later versions will do smarter things in the btree 6050 */ 6051 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6052 { 6053 int ret = 0; 6054 6055 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6056 ret = btrfs_inode_delayed_dir_index_count(dir); 6057 if (ret) { 6058 ret = btrfs_set_inode_index_count(dir); 6059 if (ret) 6060 return ret; 6061 } 6062 } 6063 6064 *index = BTRFS_I(dir)->index_cnt; 6065 BTRFS_I(dir)->index_cnt++; 6066 6067 return ret; 6068 } 6069 6070 static int btrfs_insert_inode_locked(struct inode *inode) 6071 { 6072 struct btrfs_iget_args args; 6073 args.location = &BTRFS_I(inode)->location; 6074 args.root = BTRFS_I(inode)->root; 6075 6076 return insert_inode_locked4(inode, 6077 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6078 btrfs_find_actor, &args); 6079 } 6080 6081 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6082 struct btrfs_root *root, 6083 struct inode *dir, 6084 const char *name, int name_len, 6085 u64 ref_objectid, u64 objectid, 6086 umode_t mode, u64 *index) 6087 { 6088 struct inode *inode; 6089 struct btrfs_inode_item *inode_item; 6090 struct btrfs_key *location; 6091 struct btrfs_path *path; 6092 struct btrfs_inode_ref *ref; 6093 struct btrfs_key key[2]; 6094 u32 sizes[2]; 6095 int nitems = name ? 2 : 1; 6096 unsigned long ptr; 6097 int ret; 6098 6099 path = btrfs_alloc_path(); 6100 if (!path) 6101 return ERR_PTR(-ENOMEM); 6102 6103 inode = new_inode(root->fs_info->sb); 6104 if (!inode) { 6105 btrfs_free_path(path); 6106 return ERR_PTR(-ENOMEM); 6107 } 6108 6109 /* 6110 * O_TMPFILE, set link count to 0, so that after this point, 6111 * we fill in an inode item with the correct link count. 6112 */ 6113 if (!name) 6114 set_nlink(inode, 0); 6115 6116 /* 6117 * we have to initialize this early, so we can reclaim the inode 6118 * number if we fail afterwards in this function. 6119 */ 6120 inode->i_ino = objectid; 6121 6122 if (dir && name) { 6123 trace_btrfs_inode_request(dir); 6124 6125 ret = btrfs_set_inode_index(dir, index); 6126 if (ret) { 6127 btrfs_free_path(path); 6128 iput(inode); 6129 return ERR_PTR(ret); 6130 } 6131 } else if (dir) { 6132 *index = 0; 6133 } 6134 /* 6135 * index_cnt is ignored for everything but a dir, 6136 * btrfs_get_inode_index_count has an explanation for the magic 6137 * number 6138 */ 6139 BTRFS_I(inode)->index_cnt = 2; 6140 BTRFS_I(inode)->dir_index = *index; 6141 BTRFS_I(inode)->root = root; 6142 BTRFS_I(inode)->generation = trans->transid; 6143 inode->i_generation = BTRFS_I(inode)->generation; 6144 6145 /* 6146 * We could have gotten an inode number from somebody who was fsynced 6147 * and then removed in this same transaction, so let's just set full 6148 * sync since it will be a full sync anyway and this will blow away the 6149 * old info in the log. 6150 */ 6151 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6152 6153 key[0].objectid = objectid; 6154 key[0].type = BTRFS_INODE_ITEM_KEY; 6155 key[0].offset = 0; 6156 6157 sizes[0] = sizeof(struct btrfs_inode_item); 6158 6159 if (name) { 6160 /* 6161 * Start new inodes with an inode_ref. This is slightly more 6162 * efficient for small numbers of hard links since they will 6163 * be packed into one item. Extended refs will kick in if we 6164 * add more hard links than can fit in the ref item. 6165 */ 6166 key[1].objectid = objectid; 6167 key[1].type = BTRFS_INODE_REF_KEY; 6168 key[1].offset = ref_objectid; 6169 6170 sizes[1] = name_len + sizeof(*ref); 6171 } 6172 6173 location = &BTRFS_I(inode)->location; 6174 location->objectid = objectid; 6175 location->offset = 0; 6176 location->type = BTRFS_INODE_ITEM_KEY; 6177 6178 ret = btrfs_insert_inode_locked(inode); 6179 if (ret < 0) 6180 goto fail; 6181 6182 path->leave_spinning = 1; 6183 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6184 if (ret != 0) 6185 goto fail_unlock; 6186 6187 inode_init_owner(inode, dir, mode); 6188 inode_set_bytes(inode, 0); 6189 6190 inode->i_mtime = current_fs_time(inode->i_sb); 6191 inode->i_atime = inode->i_mtime; 6192 inode->i_ctime = inode->i_mtime; 6193 BTRFS_I(inode)->i_otime = inode->i_mtime; 6194 6195 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6196 struct btrfs_inode_item); 6197 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6198 sizeof(*inode_item)); 6199 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6200 6201 if (name) { 6202 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6203 struct btrfs_inode_ref); 6204 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6205 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6206 ptr = (unsigned long)(ref + 1); 6207 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6208 } 6209 6210 btrfs_mark_buffer_dirty(path->nodes[0]); 6211 btrfs_free_path(path); 6212 6213 btrfs_inherit_iflags(inode, dir); 6214 6215 if (S_ISREG(mode)) { 6216 if (btrfs_test_opt(root, NODATASUM)) 6217 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6218 if (btrfs_test_opt(root, NODATACOW)) 6219 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6220 BTRFS_INODE_NODATASUM; 6221 } 6222 6223 inode_tree_add(inode); 6224 6225 trace_btrfs_inode_new(inode); 6226 btrfs_set_inode_last_trans(trans, inode); 6227 6228 btrfs_update_root_times(trans, root); 6229 6230 ret = btrfs_inode_inherit_props(trans, inode, dir); 6231 if (ret) 6232 btrfs_err(root->fs_info, 6233 "error inheriting props for ino %llu (root %llu): %d", 6234 btrfs_ino(inode), root->root_key.objectid, ret); 6235 6236 return inode; 6237 6238 fail_unlock: 6239 unlock_new_inode(inode); 6240 fail: 6241 if (dir && name) 6242 BTRFS_I(dir)->index_cnt--; 6243 btrfs_free_path(path); 6244 iput(inode); 6245 return ERR_PTR(ret); 6246 } 6247 6248 static inline u8 btrfs_inode_type(struct inode *inode) 6249 { 6250 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6251 } 6252 6253 /* 6254 * utility function to add 'inode' into 'parent_inode' with 6255 * a give name and a given sequence number. 6256 * if 'add_backref' is true, also insert a backref from the 6257 * inode to the parent directory. 6258 */ 6259 int btrfs_add_link(struct btrfs_trans_handle *trans, 6260 struct inode *parent_inode, struct inode *inode, 6261 const char *name, int name_len, int add_backref, u64 index) 6262 { 6263 int ret = 0; 6264 struct btrfs_key key; 6265 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6266 u64 ino = btrfs_ino(inode); 6267 u64 parent_ino = btrfs_ino(parent_inode); 6268 6269 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6270 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6271 } else { 6272 key.objectid = ino; 6273 key.type = BTRFS_INODE_ITEM_KEY; 6274 key.offset = 0; 6275 } 6276 6277 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6278 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6279 key.objectid, root->root_key.objectid, 6280 parent_ino, index, name, name_len); 6281 } else if (add_backref) { 6282 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6283 parent_ino, index); 6284 } 6285 6286 /* Nothing to clean up yet */ 6287 if (ret) 6288 return ret; 6289 6290 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6291 parent_inode, &key, 6292 btrfs_inode_type(inode), index); 6293 if (ret == -EEXIST || ret == -EOVERFLOW) 6294 goto fail_dir_item; 6295 else if (ret) { 6296 btrfs_abort_transaction(trans, root, ret); 6297 return ret; 6298 } 6299 6300 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6301 name_len * 2); 6302 inode_inc_iversion(parent_inode); 6303 parent_inode->i_mtime = parent_inode->i_ctime = 6304 current_fs_time(parent_inode->i_sb); 6305 ret = btrfs_update_inode(trans, root, parent_inode); 6306 if (ret) 6307 btrfs_abort_transaction(trans, root, ret); 6308 return ret; 6309 6310 fail_dir_item: 6311 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6312 u64 local_index; 6313 int err; 6314 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6315 key.objectid, root->root_key.objectid, 6316 parent_ino, &local_index, name, name_len); 6317 6318 } else if (add_backref) { 6319 u64 local_index; 6320 int err; 6321 6322 err = btrfs_del_inode_ref(trans, root, name, name_len, 6323 ino, parent_ino, &local_index); 6324 } 6325 return ret; 6326 } 6327 6328 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6329 struct inode *dir, struct dentry *dentry, 6330 struct inode *inode, int backref, u64 index) 6331 { 6332 int err = btrfs_add_link(trans, dir, inode, 6333 dentry->d_name.name, dentry->d_name.len, 6334 backref, index); 6335 if (err > 0) 6336 err = -EEXIST; 6337 return err; 6338 } 6339 6340 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6341 umode_t mode, dev_t rdev) 6342 { 6343 struct btrfs_trans_handle *trans; 6344 struct btrfs_root *root = BTRFS_I(dir)->root; 6345 struct inode *inode = NULL; 6346 int err; 6347 int drop_inode = 0; 6348 u64 objectid; 6349 u64 index = 0; 6350 6351 /* 6352 * 2 for inode item and ref 6353 * 2 for dir items 6354 * 1 for xattr if selinux is on 6355 */ 6356 trans = btrfs_start_transaction(root, 5); 6357 if (IS_ERR(trans)) 6358 return PTR_ERR(trans); 6359 6360 err = btrfs_find_free_ino(root, &objectid); 6361 if (err) 6362 goto out_unlock; 6363 6364 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6365 dentry->d_name.len, btrfs_ino(dir), objectid, 6366 mode, &index); 6367 if (IS_ERR(inode)) { 6368 err = PTR_ERR(inode); 6369 goto out_unlock; 6370 } 6371 6372 /* 6373 * If the active LSM wants to access the inode during 6374 * d_instantiate it needs these. Smack checks to see 6375 * if the filesystem supports xattrs by looking at the 6376 * ops vector. 6377 */ 6378 inode->i_op = &btrfs_special_inode_operations; 6379 init_special_inode(inode, inode->i_mode, rdev); 6380 6381 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6382 if (err) 6383 goto out_unlock_inode; 6384 6385 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6386 if (err) { 6387 goto out_unlock_inode; 6388 } else { 6389 btrfs_update_inode(trans, root, inode); 6390 unlock_new_inode(inode); 6391 d_instantiate(dentry, inode); 6392 } 6393 6394 out_unlock: 6395 btrfs_end_transaction(trans, root); 6396 btrfs_balance_delayed_items(root); 6397 btrfs_btree_balance_dirty(root); 6398 if (drop_inode) { 6399 inode_dec_link_count(inode); 6400 iput(inode); 6401 } 6402 return err; 6403 6404 out_unlock_inode: 6405 drop_inode = 1; 6406 unlock_new_inode(inode); 6407 goto out_unlock; 6408 6409 } 6410 6411 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6412 umode_t mode, bool excl) 6413 { 6414 struct btrfs_trans_handle *trans; 6415 struct btrfs_root *root = BTRFS_I(dir)->root; 6416 struct inode *inode = NULL; 6417 int drop_inode_on_err = 0; 6418 int err; 6419 u64 objectid; 6420 u64 index = 0; 6421 6422 /* 6423 * 2 for inode item and ref 6424 * 2 for dir items 6425 * 1 for xattr if selinux is on 6426 */ 6427 trans = btrfs_start_transaction(root, 5); 6428 if (IS_ERR(trans)) 6429 return PTR_ERR(trans); 6430 6431 err = btrfs_find_free_ino(root, &objectid); 6432 if (err) 6433 goto out_unlock; 6434 6435 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6436 dentry->d_name.len, btrfs_ino(dir), objectid, 6437 mode, &index); 6438 if (IS_ERR(inode)) { 6439 err = PTR_ERR(inode); 6440 goto out_unlock; 6441 } 6442 drop_inode_on_err = 1; 6443 /* 6444 * If the active LSM wants to access the inode during 6445 * d_instantiate it needs these. Smack checks to see 6446 * if the filesystem supports xattrs by looking at the 6447 * ops vector. 6448 */ 6449 inode->i_fop = &btrfs_file_operations; 6450 inode->i_op = &btrfs_file_inode_operations; 6451 inode->i_mapping->a_ops = &btrfs_aops; 6452 6453 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6454 if (err) 6455 goto out_unlock_inode; 6456 6457 err = btrfs_update_inode(trans, root, inode); 6458 if (err) 6459 goto out_unlock_inode; 6460 6461 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6462 if (err) 6463 goto out_unlock_inode; 6464 6465 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6466 unlock_new_inode(inode); 6467 d_instantiate(dentry, inode); 6468 6469 out_unlock: 6470 btrfs_end_transaction(trans, root); 6471 if (err && drop_inode_on_err) { 6472 inode_dec_link_count(inode); 6473 iput(inode); 6474 } 6475 btrfs_balance_delayed_items(root); 6476 btrfs_btree_balance_dirty(root); 6477 return err; 6478 6479 out_unlock_inode: 6480 unlock_new_inode(inode); 6481 goto out_unlock; 6482 6483 } 6484 6485 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6486 struct dentry *dentry) 6487 { 6488 struct btrfs_trans_handle *trans = NULL; 6489 struct btrfs_root *root = BTRFS_I(dir)->root; 6490 struct inode *inode = d_inode(old_dentry); 6491 u64 index; 6492 int err; 6493 int drop_inode = 0; 6494 6495 /* do not allow sys_link's with other subvols of the same device */ 6496 if (root->objectid != BTRFS_I(inode)->root->objectid) 6497 return -EXDEV; 6498 6499 if (inode->i_nlink >= BTRFS_LINK_MAX) 6500 return -EMLINK; 6501 6502 err = btrfs_set_inode_index(dir, &index); 6503 if (err) 6504 goto fail; 6505 6506 /* 6507 * 2 items for inode and inode ref 6508 * 2 items for dir items 6509 * 1 item for parent inode 6510 */ 6511 trans = btrfs_start_transaction(root, 5); 6512 if (IS_ERR(trans)) { 6513 err = PTR_ERR(trans); 6514 trans = NULL; 6515 goto fail; 6516 } 6517 6518 /* There are several dir indexes for this inode, clear the cache. */ 6519 BTRFS_I(inode)->dir_index = 0ULL; 6520 inc_nlink(inode); 6521 inode_inc_iversion(inode); 6522 inode->i_ctime = current_fs_time(inode->i_sb); 6523 ihold(inode); 6524 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6525 6526 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6527 6528 if (err) { 6529 drop_inode = 1; 6530 } else { 6531 struct dentry *parent = dentry->d_parent; 6532 err = btrfs_update_inode(trans, root, inode); 6533 if (err) 6534 goto fail; 6535 if (inode->i_nlink == 1) { 6536 /* 6537 * If new hard link count is 1, it's a file created 6538 * with open(2) O_TMPFILE flag. 6539 */ 6540 err = btrfs_orphan_del(trans, inode); 6541 if (err) 6542 goto fail; 6543 } 6544 d_instantiate(dentry, inode); 6545 btrfs_log_new_name(trans, inode, NULL, parent); 6546 } 6547 6548 btrfs_balance_delayed_items(root); 6549 fail: 6550 if (trans) 6551 btrfs_end_transaction(trans, root); 6552 if (drop_inode) { 6553 inode_dec_link_count(inode); 6554 iput(inode); 6555 } 6556 btrfs_btree_balance_dirty(root); 6557 return err; 6558 } 6559 6560 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6561 { 6562 struct inode *inode = NULL; 6563 struct btrfs_trans_handle *trans; 6564 struct btrfs_root *root = BTRFS_I(dir)->root; 6565 int err = 0; 6566 int drop_on_err = 0; 6567 u64 objectid = 0; 6568 u64 index = 0; 6569 6570 /* 6571 * 2 items for inode and ref 6572 * 2 items for dir items 6573 * 1 for xattr if selinux is on 6574 */ 6575 trans = btrfs_start_transaction(root, 5); 6576 if (IS_ERR(trans)) 6577 return PTR_ERR(trans); 6578 6579 err = btrfs_find_free_ino(root, &objectid); 6580 if (err) 6581 goto out_fail; 6582 6583 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6584 dentry->d_name.len, btrfs_ino(dir), objectid, 6585 S_IFDIR | mode, &index); 6586 if (IS_ERR(inode)) { 6587 err = PTR_ERR(inode); 6588 goto out_fail; 6589 } 6590 6591 drop_on_err = 1; 6592 /* these must be set before we unlock the inode */ 6593 inode->i_op = &btrfs_dir_inode_operations; 6594 inode->i_fop = &btrfs_dir_file_operations; 6595 6596 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6597 if (err) 6598 goto out_fail_inode; 6599 6600 btrfs_i_size_write(inode, 0); 6601 err = btrfs_update_inode(trans, root, inode); 6602 if (err) 6603 goto out_fail_inode; 6604 6605 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6606 dentry->d_name.len, 0, index); 6607 if (err) 6608 goto out_fail_inode; 6609 6610 d_instantiate(dentry, inode); 6611 /* 6612 * mkdir is special. We're unlocking after we call d_instantiate 6613 * to avoid a race with nfsd calling d_instantiate. 6614 */ 6615 unlock_new_inode(inode); 6616 drop_on_err = 0; 6617 6618 out_fail: 6619 btrfs_end_transaction(trans, root); 6620 if (drop_on_err) { 6621 inode_dec_link_count(inode); 6622 iput(inode); 6623 } 6624 btrfs_balance_delayed_items(root); 6625 btrfs_btree_balance_dirty(root); 6626 return err; 6627 6628 out_fail_inode: 6629 unlock_new_inode(inode); 6630 goto out_fail; 6631 } 6632 6633 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6634 static struct extent_map *next_extent_map(struct extent_map *em) 6635 { 6636 struct rb_node *next; 6637 6638 next = rb_next(&em->rb_node); 6639 if (!next) 6640 return NULL; 6641 return container_of(next, struct extent_map, rb_node); 6642 } 6643 6644 static struct extent_map *prev_extent_map(struct extent_map *em) 6645 { 6646 struct rb_node *prev; 6647 6648 prev = rb_prev(&em->rb_node); 6649 if (!prev) 6650 return NULL; 6651 return container_of(prev, struct extent_map, rb_node); 6652 } 6653 6654 /* helper for btfs_get_extent. Given an existing extent in the tree, 6655 * the existing extent is the nearest extent to map_start, 6656 * and an extent that you want to insert, deal with overlap and insert 6657 * the best fitted new extent into the tree. 6658 */ 6659 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6660 struct extent_map *existing, 6661 struct extent_map *em, 6662 u64 map_start) 6663 { 6664 struct extent_map *prev; 6665 struct extent_map *next; 6666 u64 start; 6667 u64 end; 6668 u64 start_diff; 6669 6670 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6671 6672 if (existing->start > map_start) { 6673 next = existing; 6674 prev = prev_extent_map(next); 6675 } else { 6676 prev = existing; 6677 next = next_extent_map(prev); 6678 } 6679 6680 start = prev ? extent_map_end(prev) : em->start; 6681 start = max_t(u64, start, em->start); 6682 end = next ? next->start : extent_map_end(em); 6683 end = min_t(u64, end, extent_map_end(em)); 6684 start_diff = start - em->start; 6685 em->start = start; 6686 em->len = end - start; 6687 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6688 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6689 em->block_start += start_diff; 6690 em->block_len -= start_diff; 6691 } 6692 return add_extent_mapping(em_tree, em, 0); 6693 } 6694 6695 static noinline int uncompress_inline(struct btrfs_path *path, 6696 struct page *page, 6697 size_t pg_offset, u64 extent_offset, 6698 struct btrfs_file_extent_item *item) 6699 { 6700 int ret; 6701 struct extent_buffer *leaf = path->nodes[0]; 6702 char *tmp; 6703 size_t max_size; 6704 unsigned long inline_size; 6705 unsigned long ptr; 6706 int compress_type; 6707 6708 WARN_ON(pg_offset != 0); 6709 compress_type = btrfs_file_extent_compression(leaf, item); 6710 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6711 inline_size = btrfs_file_extent_inline_item_len(leaf, 6712 btrfs_item_nr(path->slots[0])); 6713 tmp = kmalloc(inline_size, GFP_NOFS); 6714 if (!tmp) 6715 return -ENOMEM; 6716 ptr = btrfs_file_extent_inline_start(item); 6717 6718 read_extent_buffer(leaf, tmp, ptr, inline_size); 6719 6720 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6721 ret = btrfs_decompress(compress_type, tmp, page, 6722 extent_offset, inline_size, max_size); 6723 kfree(tmp); 6724 return ret; 6725 } 6726 6727 /* 6728 * a bit scary, this does extent mapping from logical file offset to the disk. 6729 * the ugly parts come from merging extents from the disk with the in-ram 6730 * representation. This gets more complex because of the data=ordered code, 6731 * where the in-ram extents might be locked pending data=ordered completion. 6732 * 6733 * This also copies inline extents directly into the page. 6734 */ 6735 6736 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6737 size_t pg_offset, u64 start, u64 len, 6738 int create) 6739 { 6740 int ret; 6741 int err = 0; 6742 u64 extent_start = 0; 6743 u64 extent_end = 0; 6744 u64 objectid = btrfs_ino(inode); 6745 u32 found_type; 6746 struct btrfs_path *path = NULL; 6747 struct btrfs_root *root = BTRFS_I(inode)->root; 6748 struct btrfs_file_extent_item *item; 6749 struct extent_buffer *leaf; 6750 struct btrfs_key found_key; 6751 struct extent_map *em = NULL; 6752 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6753 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6754 struct btrfs_trans_handle *trans = NULL; 6755 const bool new_inline = !page || create; 6756 6757 again: 6758 read_lock(&em_tree->lock); 6759 em = lookup_extent_mapping(em_tree, start, len); 6760 if (em) 6761 em->bdev = root->fs_info->fs_devices->latest_bdev; 6762 read_unlock(&em_tree->lock); 6763 6764 if (em) { 6765 if (em->start > start || em->start + em->len <= start) 6766 free_extent_map(em); 6767 else if (em->block_start == EXTENT_MAP_INLINE && page) 6768 free_extent_map(em); 6769 else 6770 goto out; 6771 } 6772 em = alloc_extent_map(); 6773 if (!em) { 6774 err = -ENOMEM; 6775 goto out; 6776 } 6777 em->bdev = root->fs_info->fs_devices->latest_bdev; 6778 em->start = EXTENT_MAP_HOLE; 6779 em->orig_start = EXTENT_MAP_HOLE; 6780 em->len = (u64)-1; 6781 em->block_len = (u64)-1; 6782 6783 if (!path) { 6784 path = btrfs_alloc_path(); 6785 if (!path) { 6786 err = -ENOMEM; 6787 goto out; 6788 } 6789 /* 6790 * Chances are we'll be called again, so go ahead and do 6791 * readahead 6792 */ 6793 path->reada = READA_FORWARD; 6794 } 6795 6796 ret = btrfs_lookup_file_extent(trans, root, path, 6797 objectid, start, trans != NULL); 6798 if (ret < 0) { 6799 err = ret; 6800 goto out; 6801 } 6802 6803 if (ret != 0) { 6804 if (path->slots[0] == 0) 6805 goto not_found; 6806 path->slots[0]--; 6807 } 6808 6809 leaf = path->nodes[0]; 6810 item = btrfs_item_ptr(leaf, path->slots[0], 6811 struct btrfs_file_extent_item); 6812 /* are we inside the extent that was found? */ 6813 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6814 found_type = found_key.type; 6815 if (found_key.objectid != objectid || 6816 found_type != BTRFS_EXTENT_DATA_KEY) { 6817 /* 6818 * If we backup past the first extent we want to move forward 6819 * and see if there is an extent in front of us, otherwise we'll 6820 * say there is a hole for our whole search range which can 6821 * cause problems. 6822 */ 6823 extent_end = start; 6824 goto next; 6825 } 6826 6827 found_type = btrfs_file_extent_type(leaf, item); 6828 extent_start = found_key.offset; 6829 if (found_type == BTRFS_FILE_EXTENT_REG || 6830 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6831 extent_end = extent_start + 6832 btrfs_file_extent_num_bytes(leaf, item); 6833 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6834 size_t size; 6835 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6836 extent_end = ALIGN(extent_start + size, root->sectorsize); 6837 } 6838 next: 6839 if (start >= extent_end) { 6840 path->slots[0]++; 6841 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6842 ret = btrfs_next_leaf(root, path); 6843 if (ret < 0) { 6844 err = ret; 6845 goto out; 6846 } 6847 if (ret > 0) 6848 goto not_found; 6849 leaf = path->nodes[0]; 6850 } 6851 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6852 if (found_key.objectid != objectid || 6853 found_key.type != BTRFS_EXTENT_DATA_KEY) 6854 goto not_found; 6855 if (start + len <= found_key.offset) 6856 goto not_found; 6857 if (start > found_key.offset) 6858 goto next; 6859 em->start = start; 6860 em->orig_start = start; 6861 em->len = found_key.offset - start; 6862 goto not_found_em; 6863 } 6864 6865 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6866 6867 if (found_type == BTRFS_FILE_EXTENT_REG || 6868 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6869 goto insert; 6870 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6871 unsigned long ptr; 6872 char *map; 6873 size_t size; 6874 size_t extent_offset; 6875 size_t copy_size; 6876 6877 if (new_inline) 6878 goto out; 6879 6880 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6881 extent_offset = page_offset(page) + pg_offset - extent_start; 6882 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6883 size - extent_offset); 6884 em->start = extent_start + extent_offset; 6885 em->len = ALIGN(copy_size, root->sectorsize); 6886 em->orig_block_len = em->len; 6887 em->orig_start = em->start; 6888 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6889 if (create == 0 && !PageUptodate(page)) { 6890 if (btrfs_file_extent_compression(leaf, item) != 6891 BTRFS_COMPRESS_NONE) { 6892 ret = uncompress_inline(path, page, pg_offset, 6893 extent_offset, item); 6894 if (ret) { 6895 err = ret; 6896 goto out; 6897 } 6898 } else { 6899 map = kmap(page); 6900 read_extent_buffer(leaf, map + pg_offset, ptr, 6901 copy_size); 6902 if (pg_offset + copy_size < PAGE_SIZE) { 6903 memset(map + pg_offset + copy_size, 0, 6904 PAGE_SIZE - pg_offset - 6905 copy_size); 6906 } 6907 kunmap(page); 6908 } 6909 flush_dcache_page(page); 6910 } else if (create && PageUptodate(page)) { 6911 BUG(); 6912 if (!trans) { 6913 kunmap(page); 6914 free_extent_map(em); 6915 em = NULL; 6916 6917 btrfs_release_path(path); 6918 trans = btrfs_join_transaction(root); 6919 6920 if (IS_ERR(trans)) 6921 return ERR_CAST(trans); 6922 goto again; 6923 } 6924 map = kmap(page); 6925 write_extent_buffer(leaf, map + pg_offset, ptr, 6926 copy_size); 6927 kunmap(page); 6928 btrfs_mark_buffer_dirty(leaf); 6929 } 6930 set_extent_uptodate(io_tree, em->start, 6931 extent_map_end(em) - 1, NULL, GFP_NOFS); 6932 goto insert; 6933 } 6934 not_found: 6935 em->start = start; 6936 em->orig_start = start; 6937 em->len = len; 6938 not_found_em: 6939 em->block_start = EXTENT_MAP_HOLE; 6940 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6941 insert: 6942 btrfs_release_path(path); 6943 if (em->start > start || extent_map_end(em) <= start) { 6944 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6945 em->start, em->len, start, len); 6946 err = -EIO; 6947 goto out; 6948 } 6949 6950 err = 0; 6951 write_lock(&em_tree->lock); 6952 ret = add_extent_mapping(em_tree, em, 0); 6953 /* it is possible that someone inserted the extent into the tree 6954 * while we had the lock dropped. It is also possible that 6955 * an overlapping map exists in the tree 6956 */ 6957 if (ret == -EEXIST) { 6958 struct extent_map *existing; 6959 6960 ret = 0; 6961 6962 existing = search_extent_mapping(em_tree, start, len); 6963 /* 6964 * existing will always be non-NULL, since there must be 6965 * extent causing the -EEXIST. 6966 */ 6967 if (start >= extent_map_end(existing) || 6968 start <= existing->start) { 6969 /* 6970 * The existing extent map is the one nearest to 6971 * the [start, start + len) range which overlaps 6972 */ 6973 err = merge_extent_mapping(em_tree, existing, 6974 em, start); 6975 free_extent_map(existing); 6976 if (err) { 6977 free_extent_map(em); 6978 em = NULL; 6979 } 6980 } else { 6981 free_extent_map(em); 6982 em = existing; 6983 err = 0; 6984 } 6985 } 6986 write_unlock(&em_tree->lock); 6987 out: 6988 6989 trace_btrfs_get_extent(root, em); 6990 6991 btrfs_free_path(path); 6992 if (trans) { 6993 ret = btrfs_end_transaction(trans, root); 6994 if (!err) 6995 err = ret; 6996 } 6997 if (err) { 6998 free_extent_map(em); 6999 return ERR_PTR(err); 7000 } 7001 BUG_ON(!em); /* Error is always set */ 7002 return em; 7003 } 7004 7005 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7006 size_t pg_offset, u64 start, u64 len, 7007 int create) 7008 { 7009 struct extent_map *em; 7010 struct extent_map *hole_em = NULL; 7011 u64 range_start = start; 7012 u64 end; 7013 u64 found; 7014 u64 found_end; 7015 int err = 0; 7016 7017 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7018 if (IS_ERR(em)) 7019 return em; 7020 if (em) { 7021 /* 7022 * if our em maps to 7023 * - a hole or 7024 * - a pre-alloc extent, 7025 * there might actually be delalloc bytes behind it. 7026 */ 7027 if (em->block_start != EXTENT_MAP_HOLE && 7028 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7029 return em; 7030 else 7031 hole_em = em; 7032 } 7033 7034 /* check to see if we've wrapped (len == -1 or similar) */ 7035 end = start + len; 7036 if (end < start) 7037 end = (u64)-1; 7038 else 7039 end -= 1; 7040 7041 em = NULL; 7042 7043 /* ok, we didn't find anything, lets look for delalloc */ 7044 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7045 end, len, EXTENT_DELALLOC, 1); 7046 found_end = range_start + found; 7047 if (found_end < range_start) 7048 found_end = (u64)-1; 7049 7050 /* 7051 * we didn't find anything useful, return 7052 * the original results from get_extent() 7053 */ 7054 if (range_start > end || found_end <= start) { 7055 em = hole_em; 7056 hole_em = NULL; 7057 goto out; 7058 } 7059 7060 /* adjust the range_start to make sure it doesn't 7061 * go backwards from the start they passed in 7062 */ 7063 range_start = max(start, range_start); 7064 found = found_end - range_start; 7065 7066 if (found > 0) { 7067 u64 hole_start = start; 7068 u64 hole_len = len; 7069 7070 em = alloc_extent_map(); 7071 if (!em) { 7072 err = -ENOMEM; 7073 goto out; 7074 } 7075 /* 7076 * when btrfs_get_extent can't find anything it 7077 * returns one huge hole 7078 * 7079 * make sure what it found really fits our range, and 7080 * adjust to make sure it is based on the start from 7081 * the caller 7082 */ 7083 if (hole_em) { 7084 u64 calc_end = extent_map_end(hole_em); 7085 7086 if (calc_end <= start || (hole_em->start > end)) { 7087 free_extent_map(hole_em); 7088 hole_em = NULL; 7089 } else { 7090 hole_start = max(hole_em->start, start); 7091 hole_len = calc_end - hole_start; 7092 } 7093 } 7094 em->bdev = NULL; 7095 if (hole_em && range_start > hole_start) { 7096 /* our hole starts before our delalloc, so we 7097 * have to return just the parts of the hole 7098 * that go until the delalloc starts 7099 */ 7100 em->len = min(hole_len, 7101 range_start - hole_start); 7102 em->start = hole_start; 7103 em->orig_start = hole_start; 7104 /* 7105 * don't adjust block start at all, 7106 * it is fixed at EXTENT_MAP_HOLE 7107 */ 7108 em->block_start = hole_em->block_start; 7109 em->block_len = hole_len; 7110 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7111 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7112 } else { 7113 em->start = range_start; 7114 em->len = found; 7115 em->orig_start = range_start; 7116 em->block_start = EXTENT_MAP_DELALLOC; 7117 em->block_len = found; 7118 } 7119 } else if (hole_em) { 7120 return hole_em; 7121 } 7122 out: 7123 7124 free_extent_map(hole_em); 7125 if (err) { 7126 free_extent_map(em); 7127 return ERR_PTR(err); 7128 } 7129 return em; 7130 } 7131 7132 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7133 u64 start, u64 len) 7134 { 7135 struct btrfs_root *root = BTRFS_I(inode)->root; 7136 struct extent_map *em; 7137 struct btrfs_key ins; 7138 u64 alloc_hint; 7139 int ret; 7140 7141 alloc_hint = get_extent_allocation_hint(inode, start, len); 7142 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7143 alloc_hint, &ins, 1, 1); 7144 if (ret) 7145 return ERR_PTR(ret); 7146 7147 /* 7148 * Create the ordered extent before the extent map. This is to avoid 7149 * races with the fast fsync path that would lead to it logging file 7150 * extent items that point to disk extents that were not yet written to. 7151 * The fast fsync path collects ordered extents into a local list and 7152 * then collects all the new extent maps, so we must create the ordered 7153 * extent first and make sure the fast fsync path collects any new 7154 * ordered extents after collecting new extent maps as well. 7155 * The fsync path simply can not rely on inode_dio_wait() because it 7156 * causes deadlock with AIO. 7157 */ 7158 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7159 ins.offset, ins.offset, 0); 7160 if (ret) { 7161 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7162 return ERR_PTR(ret); 7163 } 7164 7165 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7166 ins.offset, ins.offset, ins.offset, 0); 7167 if (IS_ERR(em)) { 7168 struct btrfs_ordered_extent *oe; 7169 7170 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7171 oe = btrfs_lookup_ordered_extent(inode, start); 7172 ASSERT(oe); 7173 if (WARN_ON(!oe)) 7174 return em; 7175 set_bit(BTRFS_ORDERED_IOERR, &oe->flags); 7176 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags); 7177 btrfs_remove_ordered_extent(inode, oe); 7178 /* Once for our lookup and once for the ordered extents tree. */ 7179 btrfs_put_ordered_extent(oe); 7180 btrfs_put_ordered_extent(oe); 7181 } 7182 return em; 7183 } 7184 7185 /* 7186 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7187 * block must be cow'd 7188 */ 7189 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7190 u64 *orig_start, u64 *orig_block_len, 7191 u64 *ram_bytes) 7192 { 7193 struct btrfs_trans_handle *trans; 7194 struct btrfs_path *path; 7195 int ret; 7196 struct extent_buffer *leaf; 7197 struct btrfs_root *root = BTRFS_I(inode)->root; 7198 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7199 struct btrfs_file_extent_item *fi; 7200 struct btrfs_key key; 7201 u64 disk_bytenr; 7202 u64 backref_offset; 7203 u64 extent_end; 7204 u64 num_bytes; 7205 int slot; 7206 int found_type; 7207 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7208 7209 path = btrfs_alloc_path(); 7210 if (!path) 7211 return -ENOMEM; 7212 7213 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7214 offset, 0); 7215 if (ret < 0) 7216 goto out; 7217 7218 slot = path->slots[0]; 7219 if (ret == 1) { 7220 if (slot == 0) { 7221 /* can't find the item, must cow */ 7222 ret = 0; 7223 goto out; 7224 } 7225 slot--; 7226 } 7227 ret = 0; 7228 leaf = path->nodes[0]; 7229 btrfs_item_key_to_cpu(leaf, &key, slot); 7230 if (key.objectid != btrfs_ino(inode) || 7231 key.type != BTRFS_EXTENT_DATA_KEY) { 7232 /* not our file or wrong item type, must cow */ 7233 goto out; 7234 } 7235 7236 if (key.offset > offset) { 7237 /* Wrong offset, must cow */ 7238 goto out; 7239 } 7240 7241 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7242 found_type = btrfs_file_extent_type(leaf, fi); 7243 if (found_type != BTRFS_FILE_EXTENT_REG && 7244 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7245 /* not a regular extent, must cow */ 7246 goto out; 7247 } 7248 7249 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7250 goto out; 7251 7252 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7253 if (extent_end <= offset) 7254 goto out; 7255 7256 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7257 if (disk_bytenr == 0) 7258 goto out; 7259 7260 if (btrfs_file_extent_compression(leaf, fi) || 7261 btrfs_file_extent_encryption(leaf, fi) || 7262 btrfs_file_extent_other_encoding(leaf, fi)) 7263 goto out; 7264 7265 backref_offset = btrfs_file_extent_offset(leaf, fi); 7266 7267 if (orig_start) { 7268 *orig_start = key.offset - backref_offset; 7269 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7270 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7271 } 7272 7273 if (btrfs_extent_readonly(root, disk_bytenr)) 7274 goto out; 7275 7276 num_bytes = min(offset + *len, extent_end) - offset; 7277 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7278 u64 range_end; 7279 7280 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7281 ret = test_range_bit(io_tree, offset, range_end, 7282 EXTENT_DELALLOC, 0, NULL); 7283 if (ret) { 7284 ret = -EAGAIN; 7285 goto out; 7286 } 7287 } 7288 7289 btrfs_release_path(path); 7290 7291 /* 7292 * look for other files referencing this extent, if we 7293 * find any we must cow 7294 */ 7295 trans = btrfs_join_transaction(root); 7296 if (IS_ERR(trans)) { 7297 ret = 0; 7298 goto out; 7299 } 7300 7301 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7302 key.offset - backref_offset, disk_bytenr); 7303 btrfs_end_transaction(trans, root); 7304 if (ret) { 7305 ret = 0; 7306 goto out; 7307 } 7308 7309 /* 7310 * adjust disk_bytenr and num_bytes to cover just the bytes 7311 * in this extent we are about to write. If there 7312 * are any csums in that range we have to cow in order 7313 * to keep the csums correct 7314 */ 7315 disk_bytenr += backref_offset; 7316 disk_bytenr += offset - key.offset; 7317 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7318 goto out; 7319 /* 7320 * all of the above have passed, it is safe to overwrite this extent 7321 * without cow 7322 */ 7323 *len = num_bytes; 7324 ret = 1; 7325 out: 7326 btrfs_free_path(path); 7327 return ret; 7328 } 7329 7330 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7331 { 7332 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7333 int found = false; 7334 void **pagep = NULL; 7335 struct page *page = NULL; 7336 int start_idx; 7337 int end_idx; 7338 7339 start_idx = start >> PAGE_SHIFT; 7340 7341 /* 7342 * end is the last byte in the last page. end == start is legal 7343 */ 7344 end_idx = end >> PAGE_SHIFT; 7345 7346 rcu_read_lock(); 7347 7348 /* Most of the code in this while loop is lifted from 7349 * find_get_page. It's been modified to begin searching from a 7350 * page and return just the first page found in that range. If the 7351 * found idx is less than or equal to the end idx then we know that 7352 * a page exists. If no pages are found or if those pages are 7353 * outside of the range then we're fine (yay!) */ 7354 while (page == NULL && 7355 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7356 page = radix_tree_deref_slot(pagep); 7357 if (unlikely(!page)) 7358 break; 7359 7360 if (radix_tree_exception(page)) { 7361 if (radix_tree_deref_retry(page)) { 7362 page = NULL; 7363 continue; 7364 } 7365 /* 7366 * Otherwise, shmem/tmpfs must be storing a swap entry 7367 * here as an exceptional entry: so return it without 7368 * attempting to raise page count. 7369 */ 7370 page = NULL; 7371 break; /* TODO: Is this relevant for this use case? */ 7372 } 7373 7374 if (!page_cache_get_speculative(page)) { 7375 page = NULL; 7376 continue; 7377 } 7378 7379 /* 7380 * Has the page moved? 7381 * This is part of the lockless pagecache protocol. See 7382 * include/linux/pagemap.h for details. 7383 */ 7384 if (unlikely(page != *pagep)) { 7385 put_page(page); 7386 page = NULL; 7387 } 7388 } 7389 7390 if (page) { 7391 if (page->index <= end_idx) 7392 found = true; 7393 put_page(page); 7394 } 7395 7396 rcu_read_unlock(); 7397 return found; 7398 } 7399 7400 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7401 struct extent_state **cached_state, int writing) 7402 { 7403 struct btrfs_ordered_extent *ordered; 7404 int ret = 0; 7405 7406 while (1) { 7407 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7408 cached_state); 7409 /* 7410 * We're concerned with the entire range that we're going to be 7411 * doing DIO to, so we need to make sure theres no ordered 7412 * extents in this range. 7413 */ 7414 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7415 lockend - lockstart + 1); 7416 7417 /* 7418 * We need to make sure there are no buffered pages in this 7419 * range either, we could have raced between the invalidate in 7420 * generic_file_direct_write and locking the extent. The 7421 * invalidate needs to happen so that reads after a write do not 7422 * get stale data. 7423 */ 7424 if (!ordered && 7425 (!writing || 7426 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7427 break; 7428 7429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7430 cached_state, GFP_NOFS); 7431 7432 if (ordered) { 7433 /* 7434 * If we are doing a DIO read and the ordered extent we 7435 * found is for a buffered write, we can not wait for it 7436 * to complete and retry, because if we do so we can 7437 * deadlock with concurrent buffered writes on page 7438 * locks. This happens only if our DIO read covers more 7439 * than one extent map, if at this point has already 7440 * created an ordered extent for a previous extent map 7441 * and locked its range in the inode's io tree, and a 7442 * concurrent write against that previous extent map's 7443 * range and this range started (we unlock the ranges 7444 * in the io tree only when the bios complete and 7445 * buffered writes always lock pages before attempting 7446 * to lock range in the io tree). 7447 */ 7448 if (writing || 7449 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7450 btrfs_start_ordered_extent(inode, ordered, 1); 7451 else 7452 ret = -ENOTBLK; 7453 btrfs_put_ordered_extent(ordered); 7454 } else { 7455 /* 7456 * We could trigger writeback for this range (and wait 7457 * for it to complete) and then invalidate the pages for 7458 * this range (through invalidate_inode_pages2_range()), 7459 * but that can lead us to a deadlock with a concurrent 7460 * call to readpages() (a buffered read or a defrag call 7461 * triggered a readahead) on a page lock due to an 7462 * ordered dio extent we created before but did not have 7463 * yet a corresponding bio submitted (whence it can not 7464 * complete), which makes readpages() wait for that 7465 * ordered extent to complete while holding a lock on 7466 * that page. 7467 */ 7468 ret = -ENOTBLK; 7469 } 7470 7471 if (ret) 7472 break; 7473 7474 cond_resched(); 7475 } 7476 7477 return ret; 7478 } 7479 7480 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7481 u64 len, u64 orig_start, 7482 u64 block_start, u64 block_len, 7483 u64 orig_block_len, u64 ram_bytes, 7484 int type) 7485 { 7486 struct extent_map_tree *em_tree; 7487 struct extent_map *em; 7488 struct btrfs_root *root = BTRFS_I(inode)->root; 7489 int ret; 7490 7491 em_tree = &BTRFS_I(inode)->extent_tree; 7492 em = alloc_extent_map(); 7493 if (!em) 7494 return ERR_PTR(-ENOMEM); 7495 7496 em->start = start; 7497 em->orig_start = orig_start; 7498 em->mod_start = start; 7499 em->mod_len = len; 7500 em->len = len; 7501 em->block_len = block_len; 7502 em->block_start = block_start; 7503 em->bdev = root->fs_info->fs_devices->latest_bdev; 7504 em->orig_block_len = orig_block_len; 7505 em->ram_bytes = ram_bytes; 7506 em->generation = -1; 7507 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7508 if (type == BTRFS_ORDERED_PREALLOC) 7509 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7510 7511 do { 7512 btrfs_drop_extent_cache(inode, em->start, 7513 em->start + em->len - 1, 0); 7514 write_lock(&em_tree->lock); 7515 ret = add_extent_mapping(em_tree, em, 1); 7516 write_unlock(&em_tree->lock); 7517 } while (ret == -EEXIST); 7518 7519 if (ret) { 7520 free_extent_map(em); 7521 return ERR_PTR(ret); 7522 } 7523 7524 return em; 7525 } 7526 7527 static void adjust_dio_outstanding_extents(struct inode *inode, 7528 struct btrfs_dio_data *dio_data, 7529 const u64 len) 7530 { 7531 unsigned num_extents; 7532 7533 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7534 BTRFS_MAX_EXTENT_SIZE); 7535 /* 7536 * If we have an outstanding_extents count still set then we're 7537 * within our reservation, otherwise we need to adjust our inode 7538 * counter appropriately. 7539 */ 7540 if (dio_data->outstanding_extents) { 7541 dio_data->outstanding_extents -= num_extents; 7542 } else { 7543 spin_lock(&BTRFS_I(inode)->lock); 7544 BTRFS_I(inode)->outstanding_extents += num_extents; 7545 spin_unlock(&BTRFS_I(inode)->lock); 7546 } 7547 } 7548 7549 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7550 struct buffer_head *bh_result, int create) 7551 { 7552 struct extent_map *em; 7553 struct btrfs_root *root = BTRFS_I(inode)->root; 7554 struct extent_state *cached_state = NULL; 7555 struct btrfs_dio_data *dio_data = NULL; 7556 u64 start = iblock << inode->i_blkbits; 7557 u64 lockstart, lockend; 7558 u64 len = bh_result->b_size; 7559 int unlock_bits = EXTENT_LOCKED; 7560 int ret = 0; 7561 7562 if (create) 7563 unlock_bits |= EXTENT_DIRTY; 7564 else 7565 len = min_t(u64, len, root->sectorsize); 7566 7567 lockstart = start; 7568 lockend = start + len - 1; 7569 7570 if (current->journal_info) { 7571 /* 7572 * Need to pull our outstanding extents and set journal_info to NULL so 7573 * that anything that needs to check if there's a transction doesn't get 7574 * confused. 7575 */ 7576 dio_data = current->journal_info; 7577 current->journal_info = NULL; 7578 } 7579 7580 /* 7581 * If this errors out it's because we couldn't invalidate pagecache for 7582 * this range and we need to fallback to buffered. 7583 */ 7584 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7585 create)) { 7586 ret = -ENOTBLK; 7587 goto err; 7588 } 7589 7590 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7591 if (IS_ERR(em)) { 7592 ret = PTR_ERR(em); 7593 goto unlock_err; 7594 } 7595 7596 /* 7597 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7598 * io. INLINE is special, and we could probably kludge it in here, but 7599 * it's still buffered so for safety lets just fall back to the generic 7600 * buffered path. 7601 * 7602 * For COMPRESSED we _have_ to read the entire extent in so we can 7603 * decompress it, so there will be buffering required no matter what we 7604 * do, so go ahead and fallback to buffered. 7605 * 7606 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7607 * to buffered IO. Don't blame me, this is the price we pay for using 7608 * the generic code. 7609 */ 7610 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7611 em->block_start == EXTENT_MAP_INLINE) { 7612 free_extent_map(em); 7613 ret = -ENOTBLK; 7614 goto unlock_err; 7615 } 7616 7617 /* Just a good old fashioned hole, return */ 7618 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7619 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7620 free_extent_map(em); 7621 goto unlock_err; 7622 } 7623 7624 /* 7625 * We don't allocate a new extent in the following cases 7626 * 7627 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7628 * existing extent. 7629 * 2) The extent is marked as PREALLOC. We're good to go here and can 7630 * just use the extent. 7631 * 7632 */ 7633 if (!create) { 7634 len = min(len, em->len - (start - em->start)); 7635 lockstart = start + len; 7636 goto unlock; 7637 } 7638 7639 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7640 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7641 em->block_start != EXTENT_MAP_HOLE)) { 7642 int type; 7643 u64 block_start, orig_start, orig_block_len, ram_bytes; 7644 7645 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7646 type = BTRFS_ORDERED_PREALLOC; 7647 else 7648 type = BTRFS_ORDERED_NOCOW; 7649 len = min(len, em->len - (start - em->start)); 7650 block_start = em->block_start + (start - em->start); 7651 7652 if (can_nocow_extent(inode, start, &len, &orig_start, 7653 &orig_block_len, &ram_bytes) == 1) { 7654 if (type == BTRFS_ORDERED_PREALLOC) { 7655 free_extent_map(em); 7656 em = create_pinned_em(inode, start, len, 7657 orig_start, 7658 block_start, len, 7659 orig_block_len, 7660 ram_bytes, type); 7661 if (IS_ERR(em)) { 7662 ret = PTR_ERR(em); 7663 goto unlock_err; 7664 } 7665 } 7666 7667 ret = btrfs_add_ordered_extent_dio(inode, start, 7668 block_start, len, len, type); 7669 if (ret) { 7670 free_extent_map(em); 7671 goto unlock_err; 7672 } 7673 goto unlock; 7674 } 7675 } 7676 7677 /* 7678 * this will cow the extent, reset the len in case we changed 7679 * it above 7680 */ 7681 len = bh_result->b_size; 7682 free_extent_map(em); 7683 em = btrfs_new_extent_direct(inode, start, len); 7684 if (IS_ERR(em)) { 7685 ret = PTR_ERR(em); 7686 goto unlock_err; 7687 } 7688 len = min(len, em->len - (start - em->start)); 7689 unlock: 7690 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7691 inode->i_blkbits; 7692 bh_result->b_size = len; 7693 bh_result->b_bdev = em->bdev; 7694 set_buffer_mapped(bh_result); 7695 if (create) { 7696 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7697 set_buffer_new(bh_result); 7698 7699 /* 7700 * Need to update the i_size under the extent lock so buffered 7701 * readers will get the updated i_size when we unlock. 7702 */ 7703 if (start + len > i_size_read(inode)) 7704 i_size_write(inode, start + len); 7705 7706 adjust_dio_outstanding_extents(inode, dio_data, len); 7707 btrfs_free_reserved_data_space(inode, start, len); 7708 WARN_ON(dio_data->reserve < len); 7709 dio_data->reserve -= len; 7710 dio_data->unsubmitted_oe_range_end = start + len; 7711 current->journal_info = dio_data; 7712 } 7713 7714 /* 7715 * In the case of write we need to clear and unlock the entire range, 7716 * in the case of read we need to unlock only the end area that we 7717 * aren't using if there is any left over space. 7718 */ 7719 if (lockstart < lockend) { 7720 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7721 lockend, unlock_bits, 1, 0, 7722 &cached_state, GFP_NOFS); 7723 } else { 7724 free_extent_state(cached_state); 7725 } 7726 7727 free_extent_map(em); 7728 7729 return 0; 7730 7731 unlock_err: 7732 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7733 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7734 err: 7735 if (dio_data) 7736 current->journal_info = dio_data; 7737 /* 7738 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7739 * write less data then expected, so that we don't underflow our inode's 7740 * outstanding extents counter. 7741 */ 7742 if (create && dio_data) 7743 adjust_dio_outstanding_extents(inode, dio_data, len); 7744 7745 return ret; 7746 } 7747 7748 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7749 int rw, int mirror_num) 7750 { 7751 struct btrfs_root *root = BTRFS_I(inode)->root; 7752 int ret; 7753 7754 BUG_ON(rw & REQ_WRITE); 7755 7756 bio_get(bio); 7757 7758 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7759 BTRFS_WQ_ENDIO_DIO_REPAIR); 7760 if (ret) 7761 goto err; 7762 7763 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7764 err: 7765 bio_put(bio); 7766 return ret; 7767 } 7768 7769 static int btrfs_check_dio_repairable(struct inode *inode, 7770 struct bio *failed_bio, 7771 struct io_failure_record *failrec, 7772 int failed_mirror) 7773 { 7774 int num_copies; 7775 7776 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7777 failrec->logical, failrec->len); 7778 if (num_copies == 1) { 7779 /* 7780 * we only have a single copy of the data, so don't bother with 7781 * all the retry and error correction code that follows. no 7782 * matter what the error is, it is very likely to persist. 7783 */ 7784 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7785 num_copies, failrec->this_mirror, failed_mirror); 7786 return 0; 7787 } 7788 7789 failrec->failed_mirror = failed_mirror; 7790 failrec->this_mirror++; 7791 if (failrec->this_mirror == failed_mirror) 7792 failrec->this_mirror++; 7793 7794 if (failrec->this_mirror > num_copies) { 7795 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7796 num_copies, failrec->this_mirror, failed_mirror); 7797 return 0; 7798 } 7799 7800 return 1; 7801 } 7802 7803 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7804 struct page *page, unsigned int pgoff, 7805 u64 start, u64 end, int failed_mirror, 7806 bio_end_io_t *repair_endio, void *repair_arg) 7807 { 7808 struct io_failure_record *failrec; 7809 struct bio *bio; 7810 int isector; 7811 int read_mode; 7812 int ret; 7813 7814 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7815 7816 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7817 if (ret) 7818 return ret; 7819 7820 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7821 failed_mirror); 7822 if (!ret) { 7823 free_io_failure(inode, failrec); 7824 return -EIO; 7825 } 7826 7827 if ((failed_bio->bi_vcnt > 1) 7828 || (failed_bio->bi_io_vec->bv_len 7829 > BTRFS_I(inode)->root->sectorsize)) 7830 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7831 else 7832 read_mode = READ_SYNC; 7833 7834 isector = start - btrfs_io_bio(failed_bio)->logical; 7835 isector >>= inode->i_sb->s_blocksize_bits; 7836 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7837 pgoff, isector, repair_endio, repair_arg); 7838 if (!bio) { 7839 free_io_failure(inode, failrec); 7840 return -EIO; 7841 } 7842 7843 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7844 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7845 read_mode, failrec->this_mirror, failrec->in_validation); 7846 7847 ret = submit_dio_repair_bio(inode, bio, read_mode, 7848 failrec->this_mirror); 7849 if (ret) { 7850 free_io_failure(inode, failrec); 7851 bio_put(bio); 7852 } 7853 7854 return ret; 7855 } 7856 7857 struct btrfs_retry_complete { 7858 struct completion done; 7859 struct inode *inode; 7860 u64 start; 7861 int uptodate; 7862 }; 7863 7864 static void btrfs_retry_endio_nocsum(struct bio *bio) 7865 { 7866 struct btrfs_retry_complete *done = bio->bi_private; 7867 struct inode *inode; 7868 struct bio_vec *bvec; 7869 int i; 7870 7871 if (bio->bi_error) 7872 goto end; 7873 7874 ASSERT(bio->bi_vcnt == 1); 7875 inode = bio->bi_io_vec->bv_page->mapping->host; 7876 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7877 7878 done->uptodate = 1; 7879 bio_for_each_segment_all(bvec, bio, i) 7880 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7881 end: 7882 complete(&done->done); 7883 bio_put(bio); 7884 } 7885 7886 static int __btrfs_correct_data_nocsum(struct inode *inode, 7887 struct btrfs_io_bio *io_bio) 7888 { 7889 struct btrfs_fs_info *fs_info; 7890 struct bio_vec *bvec; 7891 struct btrfs_retry_complete done; 7892 u64 start; 7893 unsigned int pgoff; 7894 u32 sectorsize; 7895 int nr_sectors; 7896 int i; 7897 int ret; 7898 7899 fs_info = BTRFS_I(inode)->root->fs_info; 7900 sectorsize = BTRFS_I(inode)->root->sectorsize; 7901 7902 start = io_bio->logical; 7903 done.inode = inode; 7904 7905 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7906 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7907 pgoff = bvec->bv_offset; 7908 7909 next_block_or_try_again: 7910 done.uptodate = 0; 7911 done.start = start; 7912 init_completion(&done.done); 7913 7914 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7915 pgoff, start, start + sectorsize - 1, 7916 io_bio->mirror_num, 7917 btrfs_retry_endio_nocsum, &done); 7918 if (ret) 7919 return ret; 7920 7921 wait_for_completion(&done.done); 7922 7923 if (!done.uptodate) { 7924 /* We might have another mirror, so try again */ 7925 goto next_block_or_try_again; 7926 } 7927 7928 start += sectorsize; 7929 7930 if (nr_sectors--) { 7931 pgoff += sectorsize; 7932 goto next_block_or_try_again; 7933 } 7934 } 7935 7936 return 0; 7937 } 7938 7939 static void btrfs_retry_endio(struct bio *bio) 7940 { 7941 struct btrfs_retry_complete *done = bio->bi_private; 7942 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7943 struct inode *inode; 7944 struct bio_vec *bvec; 7945 u64 start; 7946 int uptodate; 7947 int ret; 7948 int i; 7949 7950 if (bio->bi_error) 7951 goto end; 7952 7953 uptodate = 1; 7954 7955 start = done->start; 7956 7957 ASSERT(bio->bi_vcnt == 1); 7958 inode = bio->bi_io_vec->bv_page->mapping->host; 7959 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7960 7961 bio_for_each_segment_all(bvec, bio, i) { 7962 ret = __readpage_endio_check(done->inode, io_bio, i, 7963 bvec->bv_page, bvec->bv_offset, 7964 done->start, bvec->bv_len); 7965 if (!ret) 7966 clean_io_failure(done->inode, done->start, 7967 bvec->bv_page, bvec->bv_offset); 7968 else 7969 uptodate = 0; 7970 } 7971 7972 done->uptodate = uptodate; 7973 end: 7974 complete(&done->done); 7975 bio_put(bio); 7976 } 7977 7978 static int __btrfs_subio_endio_read(struct inode *inode, 7979 struct btrfs_io_bio *io_bio, int err) 7980 { 7981 struct btrfs_fs_info *fs_info; 7982 struct bio_vec *bvec; 7983 struct btrfs_retry_complete done; 7984 u64 start; 7985 u64 offset = 0; 7986 u32 sectorsize; 7987 int nr_sectors; 7988 unsigned int pgoff; 7989 int csum_pos; 7990 int i; 7991 int ret; 7992 7993 fs_info = BTRFS_I(inode)->root->fs_info; 7994 sectorsize = BTRFS_I(inode)->root->sectorsize; 7995 7996 err = 0; 7997 start = io_bio->logical; 7998 done.inode = inode; 7999 8000 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8001 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8002 8003 pgoff = bvec->bv_offset; 8004 next_block: 8005 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8006 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8007 bvec->bv_page, pgoff, start, 8008 sectorsize); 8009 if (likely(!ret)) 8010 goto next; 8011 try_again: 8012 done.uptodate = 0; 8013 done.start = start; 8014 init_completion(&done.done); 8015 8016 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8017 pgoff, start, start + sectorsize - 1, 8018 io_bio->mirror_num, 8019 btrfs_retry_endio, &done); 8020 if (ret) { 8021 err = ret; 8022 goto next; 8023 } 8024 8025 wait_for_completion(&done.done); 8026 8027 if (!done.uptodate) { 8028 /* We might have another mirror, so try again */ 8029 goto try_again; 8030 } 8031 next: 8032 offset += sectorsize; 8033 start += sectorsize; 8034 8035 ASSERT(nr_sectors); 8036 8037 if (--nr_sectors) { 8038 pgoff += sectorsize; 8039 goto next_block; 8040 } 8041 } 8042 8043 return err; 8044 } 8045 8046 static int btrfs_subio_endio_read(struct inode *inode, 8047 struct btrfs_io_bio *io_bio, int err) 8048 { 8049 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8050 8051 if (skip_csum) { 8052 if (unlikely(err)) 8053 return __btrfs_correct_data_nocsum(inode, io_bio); 8054 else 8055 return 0; 8056 } else { 8057 return __btrfs_subio_endio_read(inode, io_bio, err); 8058 } 8059 } 8060 8061 static void btrfs_endio_direct_read(struct bio *bio) 8062 { 8063 struct btrfs_dio_private *dip = bio->bi_private; 8064 struct inode *inode = dip->inode; 8065 struct bio *dio_bio; 8066 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8067 int err = bio->bi_error; 8068 8069 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8070 err = btrfs_subio_endio_read(inode, io_bio, err); 8071 8072 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8073 dip->logical_offset + dip->bytes - 1); 8074 dio_bio = dip->dio_bio; 8075 8076 kfree(dip); 8077 8078 dio_bio->bi_error = bio->bi_error; 8079 dio_end_io(dio_bio, bio->bi_error); 8080 8081 if (io_bio->end_io) 8082 io_bio->end_io(io_bio, err); 8083 bio_put(bio); 8084 } 8085 8086 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8087 const u64 offset, 8088 const u64 bytes, 8089 const int uptodate) 8090 { 8091 struct btrfs_root *root = BTRFS_I(inode)->root; 8092 struct btrfs_ordered_extent *ordered = NULL; 8093 u64 ordered_offset = offset; 8094 u64 ordered_bytes = bytes; 8095 int ret; 8096 8097 again: 8098 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8099 &ordered_offset, 8100 ordered_bytes, 8101 uptodate); 8102 if (!ret) 8103 goto out_test; 8104 8105 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8106 finish_ordered_fn, NULL, NULL); 8107 btrfs_queue_work(root->fs_info->endio_write_workers, 8108 &ordered->work); 8109 out_test: 8110 /* 8111 * our bio might span multiple ordered extents. If we haven't 8112 * completed the accounting for the whole dio, go back and try again 8113 */ 8114 if (ordered_offset < offset + bytes) { 8115 ordered_bytes = offset + bytes - ordered_offset; 8116 ordered = NULL; 8117 goto again; 8118 } 8119 } 8120 8121 static void btrfs_endio_direct_write(struct bio *bio) 8122 { 8123 struct btrfs_dio_private *dip = bio->bi_private; 8124 struct bio *dio_bio = dip->dio_bio; 8125 8126 btrfs_endio_direct_write_update_ordered(dip->inode, 8127 dip->logical_offset, 8128 dip->bytes, 8129 !bio->bi_error); 8130 8131 kfree(dip); 8132 8133 dio_bio->bi_error = bio->bi_error; 8134 dio_end_io(dio_bio, bio->bi_error); 8135 bio_put(bio); 8136 } 8137 8138 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 8139 struct bio *bio, int mirror_num, 8140 unsigned long bio_flags, u64 offset) 8141 { 8142 int ret; 8143 struct btrfs_root *root = BTRFS_I(inode)->root; 8144 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8145 BUG_ON(ret); /* -ENOMEM */ 8146 return 0; 8147 } 8148 8149 static void btrfs_end_dio_bio(struct bio *bio) 8150 { 8151 struct btrfs_dio_private *dip = bio->bi_private; 8152 int err = bio->bi_error; 8153 8154 if (err) 8155 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8156 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 8157 btrfs_ino(dip->inode), bio->bi_rw, 8158 (unsigned long long)bio->bi_iter.bi_sector, 8159 bio->bi_iter.bi_size, err); 8160 8161 if (dip->subio_endio) 8162 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8163 8164 if (err) { 8165 dip->errors = 1; 8166 8167 /* 8168 * before atomic variable goto zero, we must make sure 8169 * dip->errors is perceived to be set. 8170 */ 8171 smp_mb__before_atomic(); 8172 } 8173 8174 /* if there are more bios still pending for this dio, just exit */ 8175 if (!atomic_dec_and_test(&dip->pending_bios)) 8176 goto out; 8177 8178 if (dip->errors) { 8179 bio_io_error(dip->orig_bio); 8180 } else { 8181 dip->dio_bio->bi_error = 0; 8182 bio_endio(dip->orig_bio); 8183 } 8184 out: 8185 bio_put(bio); 8186 } 8187 8188 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8189 u64 first_sector, gfp_t gfp_flags) 8190 { 8191 struct bio *bio; 8192 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8193 if (bio) 8194 bio_associate_current(bio); 8195 return bio; 8196 } 8197 8198 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8199 struct inode *inode, 8200 struct btrfs_dio_private *dip, 8201 struct bio *bio, 8202 u64 file_offset) 8203 { 8204 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8205 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8206 int ret; 8207 8208 /* 8209 * We load all the csum data we need when we submit 8210 * the first bio to reduce the csum tree search and 8211 * contention. 8212 */ 8213 if (dip->logical_offset == file_offset) { 8214 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8215 file_offset); 8216 if (ret) 8217 return ret; 8218 } 8219 8220 if (bio == dip->orig_bio) 8221 return 0; 8222 8223 file_offset -= dip->logical_offset; 8224 file_offset >>= inode->i_sb->s_blocksize_bits; 8225 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8226 8227 return 0; 8228 } 8229 8230 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8231 int rw, u64 file_offset, int skip_sum, 8232 int async_submit) 8233 { 8234 struct btrfs_dio_private *dip = bio->bi_private; 8235 int write = rw & REQ_WRITE; 8236 struct btrfs_root *root = BTRFS_I(inode)->root; 8237 int ret; 8238 8239 if (async_submit) 8240 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8241 8242 bio_get(bio); 8243 8244 if (!write) { 8245 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8246 BTRFS_WQ_ENDIO_DATA); 8247 if (ret) 8248 goto err; 8249 } 8250 8251 if (skip_sum) 8252 goto map; 8253 8254 if (write && async_submit) { 8255 ret = btrfs_wq_submit_bio(root->fs_info, 8256 inode, rw, bio, 0, 0, 8257 file_offset, 8258 __btrfs_submit_bio_start_direct_io, 8259 __btrfs_submit_bio_done); 8260 goto err; 8261 } else if (write) { 8262 /* 8263 * If we aren't doing async submit, calculate the csum of the 8264 * bio now. 8265 */ 8266 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8267 if (ret) 8268 goto err; 8269 } else { 8270 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8271 file_offset); 8272 if (ret) 8273 goto err; 8274 } 8275 map: 8276 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8277 err: 8278 bio_put(bio); 8279 return ret; 8280 } 8281 8282 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8283 int skip_sum) 8284 { 8285 struct inode *inode = dip->inode; 8286 struct btrfs_root *root = BTRFS_I(inode)->root; 8287 struct bio *bio; 8288 struct bio *orig_bio = dip->orig_bio; 8289 struct bio_vec *bvec = orig_bio->bi_io_vec; 8290 u64 start_sector = orig_bio->bi_iter.bi_sector; 8291 u64 file_offset = dip->logical_offset; 8292 u64 submit_len = 0; 8293 u64 map_length; 8294 u32 blocksize = root->sectorsize; 8295 int async_submit = 0; 8296 int nr_sectors; 8297 int ret; 8298 int i; 8299 8300 map_length = orig_bio->bi_iter.bi_size; 8301 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8302 &map_length, NULL, 0); 8303 if (ret) 8304 return -EIO; 8305 8306 if (map_length >= orig_bio->bi_iter.bi_size) { 8307 bio = orig_bio; 8308 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8309 goto submit; 8310 } 8311 8312 /* async crcs make it difficult to collect full stripe writes. */ 8313 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8314 async_submit = 0; 8315 else 8316 async_submit = 1; 8317 8318 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8319 if (!bio) 8320 return -ENOMEM; 8321 8322 bio->bi_private = dip; 8323 bio->bi_end_io = btrfs_end_dio_bio; 8324 btrfs_io_bio(bio)->logical = file_offset; 8325 atomic_inc(&dip->pending_bios); 8326 8327 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8328 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8329 i = 0; 8330 next_block: 8331 if (unlikely(map_length < submit_len + blocksize || 8332 bio_add_page(bio, bvec->bv_page, blocksize, 8333 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8334 /* 8335 * inc the count before we submit the bio so 8336 * we know the end IO handler won't happen before 8337 * we inc the count. Otherwise, the dip might get freed 8338 * before we're done setting it up 8339 */ 8340 atomic_inc(&dip->pending_bios); 8341 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8342 file_offset, skip_sum, 8343 async_submit); 8344 if (ret) { 8345 bio_put(bio); 8346 atomic_dec(&dip->pending_bios); 8347 goto out_err; 8348 } 8349 8350 start_sector += submit_len >> 9; 8351 file_offset += submit_len; 8352 8353 submit_len = 0; 8354 8355 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8356 start_sector, GFP_NOFS); 8357 if (!bio) 8358 goto out_err; 8359 bio->bi_private = dip; 8360 bio->bi_end_io = btrfs_end_dio_bio; 8361 btrfs_io_bio(bio)->logical = file_offset; 8362 8363 map_length = orig_bio->bi_iter.bi_size; 8364 ret = btrfs_map_block(root->fs_info, rw, 8365 start_sector << 9, 8366 &map_length, NULL, 0); 8367 if (ret) { 8368 bio_put(bio); 8369 goto out_err; 8370 } 8371 8372 goto next_block; 8373 } else { 8374 submit_len += blocksize; 8375 if (--nr_sectors) { 8376 i++; 8377 goto next_block; 8378 } 8379 bvec++; 8380 } 8381 } 8382 8383 submit: 8384 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8385 async_submit); 8386 if (!ret) 8387 return 0; 8388 8389 bio_put(bio); 8390 out_err: 8391 dip->errors = 1; 8392 /* 8393 * before atomic variable goto zero, we must 8394 * make sure dip->errors is perceived to be set. 8395 */ 8396 smp_mb__before_atomic(); 8397 if (atomic_dec_and_test(&dip->pending_bios)) 8398 bio_io_error(dip->orig_bio); 8399 8400 /* bio_end_io() will handle error, so we needn't return it */ 8401 return 0; 8402 } 8403 8404 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8405 struct inode *inode, loff_t file_offset) 8406 { 8407 struct btrfs_dio_private *dip = NULL; 8408 struct bio *io_bio = NULL; 8409 struct btrfs_io_bio *btrfs_bio; 8410 int skip_sum; 8411 int write = rw & REQ_WRITE; 8412 int ret = 0; 8413 8414 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8415 8416 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8417 if (!io_bio) { 8418 ret = -ENOMEM; 8419 goto free_ordered; 8420 } 8421 8422 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8423 if (!dip) { 8424 ret = -ENOMEM; 8425 goto free_ordered; 8426 } 8427 8428 dip->private = dio_bio->bi_private; 8429 dip->inode = inode; 8430 dip->logical_offset = file_offset; 8431 dip->bytes = dio_bio->bi_iter.bi_size; 8432 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8433 io_bio->bi_private = dip; 8434 dip->orig_bio = io_bio; 8435 dip->dio_bio = dio_bio; 8436 atomic_set(&dip->pending_bios, 0); 8437 btrfs_bio = btrfs_io_bio(io_bio); 8438 btrfs_bio->logical = file_offset; 8439 8440 if (write) { 8441 io_bio->bi_end_io = btrfs_endio_direct_write; 8442 } else { 8443 io_bio->bi_end_io = btrfs_endio_direct_read; 8444 dip->subio_endio = btrfs_subio_endio_read; 8445 } 8446 8447 /* 8448 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8449 * even if we fail to submit a bio, because in such case we do the 8450 * corresponding error handling below and it must not be done a second 8451 * time by btrfs_direct_IO(). 8452 */ 8453 if (write) { 8454 struct btrfs_dio_data *dio_data = current->journal_info; 8455 8456 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8457 dip->bytes; 8458 dio_data->unsubmitted_oe_range_start = 8459 dio_data->unsubmitted_oe_range_end; 8460 } 8461 8462 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8463 if (!ret) 8464 return; 8465 8466 if (btrfs_bio->end_io) 8467 btrfs_bio->end_io(btrfs_bio, ret); 8468 8469 free_ordered: 8470 /* 8471 * If we arrived here it means either we failed to submit the dip 8472 * or we either failed to clone the dio_bio or failed to allocate the 8473 * dip. If we cloned the dio_bio and allocated the dip, we can just 8474 * call bio_endio against our io_bio so that we get proper resource 8475 * cleanup if we fail to submit the dip, otherwise, we must do the 8476 * same as btrfs_endio_direct_[write|read] because we can't call these 8477 * callbacks - they require an allocated dip and a clone of dio_bio. 8478 */ 8479 if (io_bio && dip) { 8480 io_bio->bi_error = -EIO; 8481 bio_endio(io_bio); 8482 /* 8483 * The end io callbacks free our dip, do the final put on io_bio 8484 * and all the cleanup and final put for dio_bio (through 8485 * dio_end_io()). 8486 */ 8487 dip = NULL; 8488 io_bio = NULL; 8489 } else { 8490 if (write) 8491 btrfs_endio_direct_write_update_ordered(inode, 8492 file_offset, 8493 dio_bio->bi_iter.bi_size, 8494 0); 8495 else 8496 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8497 file_offset + dio_bio->bi_iter.bi_size - 1); 8498 8499 dio_bio->bi_error = -EIO; 8500 /* 8501 * Releases and cleans up our dio_bio, no need to bio_put() 8502 * nor bio_endio()/bio_io_error() against dio_bio. 8503 */ 8504 dio_end_io(dio_bio, ret); 8505 } 8506 if (io_bio) 8507 bio_put(io_bio); 8508 kfree(dip); 8509 } 8510 8511 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8512 const struct iov_iter *iter, loff_t offset) 8513 { 8514 int seg; 8515 int i; 8516 unsigned blocksize_mask = root->sectorsize - 1; 8517 ssize_t retval = -EINVAL; 8518 8519 if (offset & blocksize_mask) 8520 goto out; 8521 8522 if (iov_iter_alignment(iter) & blocksize_mask) 8523 goto out; 8524 8525 /* If this is a write we don't need to check anymore */ 8526 if (iov_iter_rw(iter) == WRITE) 8527 return 0; 8528 /* 8529 * Check to make sure we don't have duplicate iov_base's in this 8530 * iovec, if so return EINVAL, otherwise we'll get csum errors 8531 * when reading back. 8532 */ 8533 for (seg = 0; seg < iter->nr_segs; seg++) { 8534 for (i = seg + 1; i < iter->nr_segs; i++) { 8535 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8536 goto out; 8537 } 8538 } 8539 retval = 0; 8540 out: 8541 return retval; 8542 } 8543 8544 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8545 loff_t offset) 8546 { 8547 struct file *file = iocb->ki_filp; 8548 struct inode *inode = file->f_mapping->host; 8549 struct btrfs_root *root = BTRFS_I(inode)->root; 8550 struct btrfs_dio_data dio_data = { 0 }; 8551 size_t count = 0; 8552 int flags = 0; 8553 bool wakeup = true; 8554 bool relock = false; 8555 ssize_t ret; 8556 8557 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8558 return 0; 8559 8560 inode_dio_begin(inode); 8561 smp_mb__after_atomic(); 8562 8563 /* 8564 * The generic stuff only does filemap_write_and_wait_range, which 8565 * isn't enough if we've written compressed pages to this area, so 8566 * we need to flush the dirty pages again to make absolutely sure 8567 * that any outstanding dirty pages are on disk. 8568 */ 8569 count = iov_iter_count(iter); 8570 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8571 &BTRFS_I(inode)->runtime_flags)) 8572 filemap_fdatawrite_range(inode->i_mapping, offset, 8573 offset + count - 1); 8574 8575 if (iov_iter_rw(iter) == WRITE) { 8576 /* 8577 * If the write DIO is beyond the EOF, we need update 8578 * the isize, but it is protected by i_mutex. So we can 8579 * not unlock the i_mutex at this case. 8580 */ 8581 if (offset + count <= inode->i_size) { 8582 inode_unlock(inode); 8583 relock = true; 8584 } 8585 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8586 if (ret) 8587 goto out; 8588 dio_data.outstanding_extents = div64_u64(count + 8589 BTRFS_MAX_EXTENT_SIZE - 1, 8590 BTRFS_MAX_EXTENT_SIZE); 8591 8592 /* 8593 * We need to know how many extents we reserved so that we can 8594 * do the accounting properly if we go over the number we 8595 * originally calculated. Abuse current->journal_info for this. 8596 */ 8597 dio_data.reserve = round_up(count, root->sectorsize); 8598 dio_data.unsubmitted_oe_range_start = (u64)offset; 8599 dio_data.unsubmitted_oe_range_end = (u64)offset; 8600 current->journal_info = &dio_data; 8601 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8602 &BTRFS_I(inode)->runtime_flags)) { 8603 inode_dio_end(inode); 8604 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8605 wakeup = false; 8606 } 8607 8608 ret = __blockdev_direct_IO(iocb, inode, 8609 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8610 iter, offset, btrfs_get_blocks_direct, NULL, 8611 btrfs_submit_direct, flags); 8612 if (iov_iter_rw(iter) == WRITE) { 8613 current->journal_info = NULL; 8614 if (ret < 0 && ret != -EIOCBQUEUED) { 8615 if (dio_data.reserve) 8616 btrfs_delalloc_release_space(inode, offset, 8617 dio_data.reserve); 8618 /* 8619 * On error we might have left some ordered extents 8620 * without submitting corresponding bios for them, so 8621 * cleanup them up to avoid other tasks getting them 8622 * and waiting for them to complete forever. 8623 */ 8624 if (dio_data.unsubmitted_oe_range_start < 8625 dio_data.unsubmitted_oe_range_end) 8626 btrfs_endio_direct_write_update_ordered(inode, 8627 dio_data.unsubmitted_oe_range_start, 8628 dio_data.unsubmitted_oe_range_end - 8629 dio_data.unsubmitted_oe_range_start, 8630 0); 8631 } else if (ret >= 0 && (size_t)ret < count) 8632 btrfs_delalloc_release_space(inode, offset, 8633 count - (size_t)ret); 8634 } 8635 out: 8636 if (wakeup) 8637 inode_dio_end(inode); 8638 if (relock) 8639 inode_lock(inode); 8640 8641 return ret; 8642 } 8643 8644 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8645 8646 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8647 __u64 start, __u64 len) 8648 { 8649 int ret; 8650 8651 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8652 if (ret) 8653 return ret; 8654 8655 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8656 } 8657 8658 int btrfs_readpage(struct file *file, struct page *page) 8659 { 8660 struct extent_io_tree *tree; 8661 tree = &BTRFS_I(page->mapping->host)->io_tree; 8662 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8663 } 8664 8665 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8666 { 8667 struct extent_io_tree *tree; 8668 struct inode *inode = page->mapping->host; 8669 int ret; 8670 8671 if (current->flags & PF_MEMALLOC) { 8672 redirty_page_for_writepage(wbc, page); 8673 unlock_page(page); 8674 return 0; 8675 } 8676 8677 /* 8678 * If we are under memory pressure we will call this directly from the 8679 * VM, we need to make sure we have the inode referenced for the ordered 8680 * extent. If not just return like we didn't do anything. 8681 */ 8682 if (!igrab(inode)) { 8683 redirty_page_for_writepage(wbc, page); 8684 return AOP_WRITEPAGE_ACTIVATE; 8685 } 8686 tree = &BTRFS_I(page->mapping->host)->io_tree; 8687 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8688 btrfs_add_delayed_iput(inode); 8689 return ret; 8690 } 8691 8692 static int btrfs_writepages(struct address_space *mapping, 8693 struct writeback_control *wbc) 8694 { 8695 struct extent_io_tree *tree; 8696 8697 tree = &BTRFS_I(mapping->host)->io_tree; 8698 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8699 } 8700 8701 static int 8702 btrfs_readpages(struct file *file, struct address_space *mapping, 8703 struct list_head *pages, unsigned nr_pages) 8704 { 8705 struct extent_io_tree *tree; 8706 tree = &BTRFS_I(mapping->host)->io_tree; 8707 return extent_readpages(tree, mapping, pages, nr_pages, 8708 btrfs_get_extent); 8709 } 8710 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8711 { 8712 struct extent_io_tree *tree; 8713 struct extent_map_tree *map; 8714 int ret; 8715 8716 tree = &BTRFS_I(page->mapping->host)->io_tree; 8717 map = &BTRFS_I(page->mapping->host)->extent_tree; 8718 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8719 if (ret == 1) { 8720 ClearPagePrivate(page); 8721 set_page_private(page, 0); 8722 put_page(page); 8723 } 8724 return ret; 8725 } 8726 8727 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8728 { 8729 if (PageWriteback(page) || PageDirty(page)) 8730 return 0; 8731 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8732 } 8733 8734 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8735 unsigned int length) 8736 { 8737 struct inode *inode = page->mapping->host; 8738 struct extent_io_tree *tree; 8739 struct btrfs_ordered_extent *ordered; 8740 struct extent_state *cached_state = NULL; 8741 u64 page_start = page_offset(page); 8742 u64 page_end = page_start + PAGE_SIZE - 1; 8743 u64 start; 8744 u64 end; 8745 int inode_evicting = inode->i_state & I_FREEING; 8746 8747 /* 8748 * we have the page locked, so new writeback can't start, 8749 * and the dirty bit won't be cleared while we are here. 8750 * 8751 * Wait for IO on this page so that we can safely clear 8752 * the PagePrivate2 bit and do ordered accounting 8753 */ 8754 wait_on_page_writeback(page); 8755 8756 tree = &BTRFS_I(inode)->io_tree; 8757 if (offset) { 8758 btrfs_releasepage(page, GFP_NOFS); 8759 return; 8760 } 8761 8762 if (!inode_evicting) 8763 lock_extent_bits(tree, page_start, page_end, &cached_state); 8764 again: 8765 start = page_start; 8766 ordered = btrfs_lookup_ordered_range(inode, start, 8767 page_end - start + 1); 8768 if (ordered) { 8769 end = min(page_end, ordered->file_offset + ordered->len - 1); 8770 /* 8771 * IO on this page will never be started, so we need 8772 * to account for any ordered extents now 8773 */ 8774 if (!inode_evicting) 8775 clear_extent_bit(tree, start, end, 8776 EXTENT_DIRTY | EXTENT_DELALLOC | 8777 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8778 EXTENT_DEFRAG, 1, 0, &cached_state, 8779 GFP_NOFS); 8780 /* 8781 * whoever cleared the private bit is responsible 8782 * for the finish_ordered_io 8783 */ 8784 if (TestClearPagePrivate2(page)) { 8785 struct btrfs_ordered_inode_tree *tree; 8786 u64 new_len; 8787 8788 tree = &BTRFS_I(inode)->ordered_tree; 8789 8790 spin_lock_irq(&tree->lock); 8791 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8792 new_len = start - ordered->file_offset; 8793 if (new_len < ordered->truncated_len) 8794 ordered->truncated_len = new_len; 8795 spin_unlock_irq(&tree->lock); 8796 8797 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8798 start, 8799 end - start + 1, 1)) 8800 btrfs_finish_ordered_io(ordered); 8801 } 8802 btrfs_put_ordered_extent(ordered); 8803 if (!inode_evicting) { 8804 cached_state = NULL; 8805 lock_extent_bits(tree, start, end, 8806 &cached_state); 8807 } 8808 8809 start = end + 1; 8810 if (start < page_end) 8811 goto again; 8812 } 8813 8814 /* 8815 * Qgroup reserved space handler 8816 * Page here will be either 8817 * 1) Already written to disk 8818 * In this case, its reserved space is released from data rsv map 8819 * and will be freed by delayed_ref handler finally. 8820 * So even we call qgroup_free_data(), it won't decrease reserved 8821 * space. 8822 * 2) Not written to disk 8823 * This means the reserved space should be freed here. 8824 */ 8825 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8826 if (!inode_evicting) { 8827 clear_extent_bit(tree, page_start, page_end, 8828 EXTENT_LOCKED | EXTENT_DIRTY | 8829 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8830 EXTENT_DEFRAG, 1, 1, 8831 &cached_state, GFP_NOFS); 8832 8833 __btrfs_releasepage(page, GFP_NOFS); 8834 } 8835 8836 ClearPageChecked(page); 8837 if (PagePrivate(page)) { 8838 ClearPagePrivate(page); 8839 set_page_private(page, 0); 8840 put_page(page); 8841 } 8842 } 8843 8844 /* 8845 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8846 * called from a page fault handler when a page is first dirtied. Hence we must 8847 * be careful to check for EOF conditions here. We set the page up correctly 8848 * for a written page which means we get ENOSPC checking when writing into 8849 * holes and correct delalloc and unwritten extent mapping on filesystems that 8850 * support these features. 8851 * 8852 * We are not allowed to take the i_mutex here so we have to play games to 8853 * protect against truncate races as the page could now be beyond EOF. Because 8854 * vmtruncate() writes the inode size before removing pages, once we have the 8855 * page lock we can determine safely if the page is beyond EOF. If it is not 8856 * beyond EOF, then the page is guaranteed safe against truncation until we 8857 * unlock the page. 8858 */ 8859 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8860 { 8861 struct page *page = vmf->page; 8862 struct inode *inode = file_inode(vma->vm_file); 8863 struct btrfs_root *root = BTRFS_I(inode)->root; 8864 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8865 struct btrfs_ordered_extent *ordered; 8866 struct extent_state *cached_state = NULL; 8867 char *kaddr; 8868 unsigned long zero_start; 8869 loff_t size; 8870 int ret; 8871 int reserved = 0; 8872 u64 reserved_space; 8873 u64 page_start; 8874 u64 page_end; 8875 u64 end; 8876 8877 reserved_space = PAGE_SIZE; 8878 8879 sb_start_pagefault(inode->i_sb); 8880 page_start = page_offset(page); 8881 page_end = page_start + PAGE_SIZE - 1; 8882 end = page_end; 8883 8884 /* 8885 * Reserving delalloc space after obtaining the page lock can lead to 8886 * deadlock. For example, if a dirty page is locked by this function 8887 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8888 * dirty page write out, then the btrfs_writepage() function could 8889 * end up waiting indefinitely to get a lock on the page currently 8890 * being processed by btrfs_page_mkwrite() function. 8891 */ 8892 ret = btrfs_delalloc_reserve_space(inode, page_start, 8893 reserved_space); 8894 if (!ret) { 8895 ret = file_update_time(vma->vm_file); 8896 reserved = 1; 8897 } 8898 if (ret) { 8899 if (ret == -ENOMEM) 8900 ret = VM_FAULT_OOM; 8901 else /* -ENOSPC, -EIO, etc */ 8902 ret = VM_FAULT_SIGBUS; 8903 if (reserved) 8904 goto out; 8905 goto out_noreserve; 8906 } 8907 8908 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8909 again: 8910 lock_page(page); 8911 size = i_size_read(inode); 8912 8913 if ((page->mapping != inode->i_mapping) || 8914 (page_start >= size)) { 8915 /* page got truncated out from underneath us */ 8916 goto out_unlock; 8917 } 8918 wait_on_page_writeback(page); 8919 8920 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8921 set_page_extent_mapped(page); 8922 8923 /* 8924 * we can't set the delalloc bits if there are pending ordered 8925 * extents. Drop our locks and wait for them to finish 8926 */ 8927 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8928 if (ordered) { 8929 unlock_extent_cached(io_tree, page_start, page_end, 8930 &cached_state, GFP_NOFS); 8931 unlock_page(page); 8932 btrfs_start_ordered_extent(inode, ordered, 1); 8933 btrfs_put_ordered_extent(ordered); 8934 goto again; 8935 } 8936 8937 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8938 reserved_space = round_up(size - page_start, root->sectorsize); 8939 if (reserved_space < PAGE_SIZE) { 8940 end = page_start + reserved_space - 1; 8941 spin_lock(&BTRFS_I(inode)->lock); 8942 BTRFS_I(inode)->outstanding_extents++; 8943 spin_unlock(&BTRFS_I(inode)->lock); 8944 btrfs_delalloc_release_space(inode, page_start, 8945 PAGE_SIZE - reserved_space); 8946 } 8947 } 8948 8949 /* 8950 * XXX - page_mkwrite gets called every time the page is dirtied, even 8951 * if it was already dirty, so for space accounting reasons we need to 8952 * clear any delalloc bits for the range we are fixing to save. There 8953 * is probably a better way to do this, but for now keep consistent with 8954 * prepare_pages in the normal write path. 8955 */ 8956 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8957 EXTENT_DIRTY | EXTENT_DELALLOC | 8958 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8959 0, 0, &cached_state, GFP_NOFS); 8960 8961 ret = btrfs_set_extent_delalloc(inode, page_start, end, 8962 &cached_state); 8963 if (ret) { 8964 unlock_extent_cached(io_tree, page_start, page_end, 8965 &cached_state, GFP_NOFS); 8966 ret = VM_FAULT_SIGBUS; 8967 goto out_unlock; 8968 } 8969 ret = 0; 8970 8971 /* page is wholly or partially inside EOF */ 8972 if (page_start + PAGE_SIZE > size) 8973 zero_start = size & ~PAGE_MASK; 8974 else 8975 zero_start = PAGE_SIZE; 8976 8977 if (zero_start != PAGE_SIZE) { 8978 kaddr = kmap(page); 8979 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8980 flush_dcache_page(page); 8981 kunmap(page); 8982 } 8983 ClearPageChecked(page); 8984 set_page_dirty(page); 8985 SetPageUptodate(page); 8986 8987 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8988 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8989 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8990 8991 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8992 8993 out_unlock: 8994 if (!ret) { 8995 sb_end_pagefault(inode->i_sb); 8996 return VM_FAULT_LOCKED; 8997 } 8998 unlock_page(page); 8999 out: 9000 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9001 out_noreserve: 9002 sb_end_pagefault(inode->i_sb); 9003 return ret; 9004 } 9005 9006 static int btrfs_truncate(struct inode *inode) 9007 { 9008 struct btrfs_root *root = BTRFS_I(inode)->root; 9009 struct btrfs_block_rsv *rsv; 9010 int ret = 0; 9011 int err = 0; 9012 struct btrfs_trans_handle *trans; 9013 u64 mask = root->sectorsize - 1; 9014 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9015 9016 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9017 (u64)-1); 9018 if (ret) 9019 return ret; 9020 9021 /* 9022 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 9023 * 3 things going on here 9024 * 9025 * 1) We need to reserve space for our orphan item and the space to 9026 * delete our orphan item. Lord knows we don't want to have a dangling 9027 * orphan item because we didn't reserve space to remove it. 9028 * 9029 * 2) We need to reserve space to update our inode. 9030 * 9031 * 3) We need to have something to cache all the space that is going to 9032 * be free'd up by the truncate operation, but also have some slack 9033 * space reserved in case it uses space during the truncate (thank you 9034 * very much snapshotting). 9035 * 9036 * And we need these to all be seperate. The fact is we can use alot of 9037 * space doing the truncate, and we have no earthly idea how much space 9038 * we will use, so we need the truncate reservation to be seperate so it 9039 * doesn't end up using space reserved for updating the inode or 9040 * removing the orphan item. We also need to be able to stop the 9041 * transaction and start a new one, which means we need to be able to 9042 * update the inode several times, and we have no idea of knowing how 9043 * many times that will be, so we can't just reserve 1 item for the 9044 * entirety of the opration, so that has to be done seperately as well. 9045 * Then there is the orphan item, which does indeed need to be held on 9046 * to for the whole operation, and we need nobody to touch this reserved 9047 * space except the orphan code. 9048 * 9049 * So that leaves us with 9050 * 9051 * 1) root->orphan_block_rsv - for the orphan deletion. 9052 * 2) rsv - for the truncate reservation, which we will steal from the 9053 * transaction reservation. 9054 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9055 * updating the inode. 9056 */ 9057 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9058 if (!rsv) 9059 return -ENOMEM; 9060 rsv->size = min_size; 9061 rsv->failfast = 1; 9062 9063 /* 9064 * 1 for the truncate slack space 9065 * 1 for updating the inode. 9066 */ 9067 trans = btrfs_start_transaction(root, 2); 9068 if (IS_ERR(trans)) { 9069 err = PTR_ERR(trans); 9070 goto out; 9071 } 9072 9073 /* Migrate the slack space for the truncate to our reserve */ 9074 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9075 min_size); 9076 BUG_ON(ret); 9077 9078 /* 9079 * So if we truncate and then write and fsync we normally would just 9080 * write the extents that changed, which is a problem if we need to 9081 * first truncate that entire inode. So set this flag so we write out 9082 * all of the extents in the inode to the sync log so we're completely 9083 * safe. 9084 */ 9085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9086 trans->block_rsv = rsv; 9087 9088 while (1) { 9089 ret = btrfs_truncate_inode_items(trans, root, inode, 9090 inode->i_size, 9091 BTRFS_EXTENT_DATA_KEY); 9092 if (ret != -ENOSPC && ret != -EAGAIN) { 9093 err = ret; 9094 break; 9095 } 9096 9097 trans->block_rsv = &root->fs_info->trans_block_rsv; 9098 ret = btrfs_update_inode(trans, root, inode); 9099 if (ret) { 9100 err = ret; 9101 break; 9102 } 9103 9104 btrfs_end_transaction(trans, root); 9105 btrfs_btree_balance_dirty(root); 9106 9107 trans = btrfs_start_transaction(root, 2); 9108 if (IS_ERR(trans)) { 9109 ret = err = PTR_ERR(trans); 9110 trans = NULL; 9111 break; 9112 } 9113 9114 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9115 rsv, min_size); 9116 BUG_ON(ret); /* shouldn't happen */ 9117 trans->block_rsv = rsv; 9118 } 9119 9120 if (ret == 0 && inode->i_nlink > 0) { 9121 trans->block_rsv = root->orphan_block_rsv; 9122 ret = btrfs_orphan_del(trans, inode); 9123 if (ret) 9124 err = ret; 9125 } 9126 9127 if (trans) { 9128 trans->block_rsv = &root->fs_info->trans_block_rsv; 9129 ret = btrfs_update_inode(trans, root, inode); 9130 if (ret && !err) 9131 err = ret; 9132 9133 ret = btrfs_end_transaction(trans, root); 9134 btrfs_btree_balance_dirty(root); 9135 } 9136 9137 out: 9138 btrfs_free_block_rsv(root, rsv); 9139 9140 if (ret && !err) 9141 err = ret; 9142 9143 return err; 9144 } 9145 9146 /* 9147 * create a new subvolume directory/inode (helper for the ioctl). 9148 */ 9149 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9150 struct btrfs_root *new_root, 9151 struct btrfs_root *parent_root, 9152 u64 new_dirid) 9153 { 9154 struct inode *inode; 9155 int err; 9156 u64 index = 0; 9157 9158 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9159 new_dirid, new_dirid, 9160 S_IFDIR | (~current_umask() & S_IRWXUGO), 9161 &index); 9162 if (IS_ERR(inode)) 9163 return PTR_ERR(inode); 9164 inode->i_op = &btrfs_dir_inode_operations; 9165 inode->i_fop = &btrfs_dir_file_operations; 9166 9167 set_nlink(inode, 1); 9168 btrfs_i_size_write(inode, 0); 9169 unlock_new_inode(inode); 9170 9171 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9172 if (err) 9173 btrfs_err(new_root->fs_info, 9174 "error inheriting subvolume %llu properties: %d", 9175 new_root->root_key.objectid, err); 9176 9177 err = btrfs_update_inode(trans, new_root, inode); 9178 9179 iput(inode); 9180 return err; 9181 } 9182 9183 struct inode *btrfs_alloc_inode(struct super_block *sb) 9184 { 9185 struct btrfs_inode *ei; 9186 struct inode *inode; 9187 9188 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9189 if (!ei) 9190 return NULL; 9191 9192 ei->root = NULL; 9193 ei->generation = 0; 9194 ei->last_trans = 0; 9195 ei->last_sub_trans = 0; 9196 ei->logged_trans = 0; 9197 ei->delalloc_bytes = 0; 9198 ei->defrag_bytes = 0; 9199 ei->disk_i_size = 0; 9200 ei->flags = 0; 9201 ei->csum_bytes = 0; 9202 ei->index_cnt = (u64)-1; 9203 ei->dir_index = 0; 9204 ei->last_unlink_trans = 0; 9205 ei->last_log_commit = 0; 9206 ei->delayed_iput_count = 0; 9207 9208 spin_lock_init(&ei->lock); 9209 ei->outstanding_extents = 0; 9210 ei->reserved_extents = 0; 9211 9212 ei->runtime_flags = 0; 9213 ei->force_compress = BTRFS_COMPRESS_NONE; 9214 9215 ei->delayed_node = NULL; 9216 9217 ei->i_otime.tv_sec = 0; 9218 ei->i_otime.tv_nsec = 0; 9219 9220 inode = &ei->vfs_inode; 9221 extent_map_tree_init(&ei->extent_tree); 9222 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9223 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9224 ei->io_tree.track_uptodate = 1; 9225 ei->io_failure_tree.track_uptodate = 1; 9226 atomic_set(&ei->sync_writers, 0); 9227 mutex_init(&ei->log_mutex); 9228 mutex_init(&ei->delalloc_mutex); 9229 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9230 INIT_LIST_HEAD(&ei->delalloc_inodes); 9231 INIT_LIST_HEAD(&ei->delayed_iput); 9232 RB_CLEAR_NODE(&ei->rb_node); 9233 9234 return inode; 9235 } 9236 9237 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9238 void btrfs_test_destroy_inode(struct inode *inode) 9239 { 9240 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9241 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9242 } 9243 #endif 9244 9245 static void btrfs_i_callback(struct rcu_head *head) 9246 { 9247 struct inode *inode = container_of(head, struct inode, i_rcu); 9248 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9249 } 9250 9251 void btrfs_destroy_inode(struct inode *inode) 9252 { 9253 struct btrfs_ordered_extent *ordered; 9254 struct btrfs_root *root = BTRFS_I(inode)->root; 9255 9256 WARN_ON(!hlist_empty(&inode->i_dentry)); 9257 WARN_ON(inode->i_data.nrpages); 9258 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9259 WARN_ON(BTRFS_I(inode)->reserved_extents); 9260 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9261 WARN_ON(BTRFS_I(inode)->csum_bytes); 9262 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9263 9264 /* 9265 * This can happen where we create an inode, but somebody else also 9266 * created the same inode and we need to destroy the one we already 9267 * created. 9268 */ 9269 if (!root) 9270 goto free; 9271 9272 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9273 &BTRFS_I(inode)->runtime_flags)) { 9274 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9275 btrfs_ino(inode)); 9276 atomic_dec(&root->orphan_inodes); 9277 } 9278 9279 while (1) { 9280 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9281 if (!ordered) 9282 break; 9283 else { 9284 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9285 ordered->file_offset, ordered->len); 9286 btrfs_remove_ordered_extent(inode, ordered); 9287 btrfs_put_ordered_extent(ordered); 9288 btrfs_put_ordered_extent(ordered); 9289 } 9290 } 9291 btrfs_qgroup_check_reserved_leak(inode); 9292 inode_tree_del(inode); 9293 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9294 free: 9295 call_rcu(&inode->i_rcu, btrfs_i_callback); 9296 } 9297 9298 int btrfs_drop_inode(struct inode *inode) 9299 { 9300 struct btrfs_root *root = BTRFS_I(inode)->root; 9301 9302 if (root == NULL) 9303 return 1; 9304 9305 /* the snap/subvol tree is on deleting */ 9306 if (btrfs_root_refs(&root->root_item) == 0) 9307 return 1; 9308 else 9309 return generic_drop_inode(inode); 9310 } 9311 9312 static void init_once(void *foo) 9313 { 9314 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9315 9316 inode_init_once(&ei->vfs_inode); 9317 } 9318 9319 void btrfs_destroy_cachep(void) 9320 { 9321 /* 9322 * Make sure all delayed rcu free inodes are flushed before we 9323 * destroy cache. 9324 */ 9325 rcu_barrier(); 9326 kmem_cache_destroy(btrfs_inode_cachep); 9327 kmem_cache_destroy(btrfs_trans_handle_cachep); 9328 kmem_cache_destroy(btrfs_transaction_cachep); 9329 kmem_cache_destroy(btrfs_path_cachep); 9330 kmem_cache_destroy(btrfs_free_space_cachep); 9331 } 9332 9333 int btrfs_init_cachep(void) 9334 { 9335 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9336 sizeof(struct btrfs_inode), 0, 9337 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9338 init_once); 9339 if (!btrfs_inode_cachep) 9340 goto fail; 9341 9342 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9343 sizeof(struct btrfs_trans_handle), 0, 9344 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9345 if (!btrfs_trans_handle_cachep) 9346 goto fail; 9347 9348 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9349 sizeof(struct btrfs_transaction), 0, 9350 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9351 if (!btrfs_transaction_cachep) 9352 goto fail; 9353 9354 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9355 sizeof(struct btrfs_path), 0, 9356 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9357 if (!btrfs_path_cachep) 9358 goto fail; 9359 9360 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9361 sizeof(struct btrfs_free_space), 0, 9362 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9363 if (!btrfs_free_space_cachep) 9364 goto fail; 9365 9366 return 0; 9367 fail: 9368 btrfs_destroy_cachep(); 9369 return -ENOMEM; 9370 } 9371 9372 static int btrfs_getattr(struct vfsmount *mnt, 9373 struct dentry *dentry, struct kstat *stat) 9374 { 9375 u64 delalloc_bytes; 9376 struct inode *inode = d_inode(dentry); 9377 u32 blocksize = inode->i_sb->s_blocksize; 9378 9379 generic_fillattr(inode, stat); 9380 stat->dev = BTRFS_I(inode)->root->anon_dev; 9381 9382 spin_lock(&BTRFS_I(inode)->lock); 9383 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9384 spin_unlock(&BTRFS_I(inode)->lock); 9385 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9386 ALIGN(delalloc_bytes, blocksize)) >> 9; 9387 return 0; 9388 } 9389 9390 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9391 struct inode *new_dir, struct dentry *new_dentry) 9392 { 9393 struct btrfs_trans_handle *trans; 9394 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9395 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9396 struct inode *new_inode = d_inode(new_dentry); 9397 struct inode *old_inode = d_inode(old_dentry); 9398 u64 index = 0; 9399 u64 root_objectid; 9400 int ret; 9401 u64 old_ino = btrfs_ino(old_inode); 9402 9403 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9404 return -EPERM; 9405 9406 /* we only allow rename subvolume link between subvolumes */ 9407 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9408 return -EXDEV; 9409 9410 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9411 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9412 return -ENOTEMPTY; 9413 9414 if (S_ISDIR(old_inode->i_mode) && new_inode && 9415 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9416 return -ENOTEMPTY; 9417 9418 9419 /* check for collisions, even if the name isn't there */ 9420 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9421 new_dentry->d_name.name, 9422 new_dentry->d_name.len); 9423 9424 if (ret) { 9425 if (ret == -EEXIST) { 9426 /* we shouldn't get 9427 * eexist without a new_inode */ 9428 if (WARN_ON(!new_inode)) { 9429 return ret; 9430 } 9431 } else { 9432 /* maybe -EOVERFLOW */ 9433 return ret; 9434 } 9435 } 9436 ret = 0; 9437 9438 /* 9439 * we're using rename to replace one file with another. Start IO on it 9440 * now so we don't add too much work to the end of the transaction 9441 */ 9442 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9443 filemap_flush(old_inode->i_mapping); 9444 9445 /* close the racy window with snapshot create/destroy ioctl */ 9446 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9447 down_read(&root->fs_info->subvol_sem); 9448 /* 9449 * We want to reserve the absolute worst case amount of items. So if 9450 * both inodes are subvols and we need to unlink them then that would 9451 * require 4 item modifications, but if they are both normal inodes it 9452 * would require 5 item modifications, so we'll assume their normal 9453 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9454 * should cover the worst case number of items we'll modify. 9455 */ 9456 trans = btrfs_start_transaction(root, 11); 9457 if (IS_ERR(trans)) { 9458 ret = PTR_ERR(trans); 9459 goto out_notrans; 9460 } 9461 9462 if (dest != root) 9463 btrfs_record_root_in_trans(trans, dest); 9464 9465 ret = btrfs_set_inode_index(new_dir, &index); 9466 if (ret) 9467 goto out_fail; 9468 9469 BTRFS_I(old_inode)->dir_index = 0ULL; 9470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9471 /* force full log commit if subvolume involved. */ 9472 btrfs_set_log_full_commit(root->fs_info, trans); 9473 } else { 9474 ret = btrfs_insert_inode_ref(trans, dest, 9475 new_dentry->d_name.name, 9476 new_dentry->d_name.len, 9477 old_ino, 9478 btrfs_ino(new_dir), index); 9479 if (ret) 9480 goto out_fail; 9481 /* 9482 * this is an ugly little race, but the rename is required 9483 * to make sure that if we crash, the inode is either at the 9484 * old name or the new one. pinning the log transaction lets 9485 * us make sure we don't allow a log commit to come in after 9486 * we unlink the name but before we add the new name back in. 9487 */ 9488 btrfs_pin_log_trans(root); 9489 } 9490 9491 inode_inc_iversion(old_dir); 9492 inode_inc_iversion(new_dir); 9493 inode_inc_iversion(old_inode); 9494 old_dir->i_ctime = old_dir->i_mtime = 9495 new_dir->i_ctime = new_dir->i_mtime = 9496 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9497 9498 if (old_dentry->d_parent != new_dentry->d_parent) 9499 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9500 9501 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9502 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9503 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9504 old_dentry->d_name.name, 9505 old_dentry->d_name.len); 9506 } else { 9507 ret = __btrfs_unlink_inode(trans, root, old_dir, 9508 d_inode(old_dentry), 9509 old_dentry->d_name.name, 9510 old_dentry->d_name.len); 9511 if (!ret) 9512 ret = btrfs_update_inode(trans, root, old_inode); 9513 } 9514 if (ret) { 9515 btrfs_abort_transaction(trans, root, ret); 9516 goto out_fail; 9517 } 9518 9519 if (new_inode) { 9520 inode_inc_iversion(new_inode); 9521 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9522 if (unlikely(btrfs_ino(new_inode) == 9523 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9524 root_objectid = BTRFS_I(new_inode)->location.objectid; 9525 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9526 root_objectid, 9527 new_dentry->d_name.name, 9528 new_dentry->d_name.len); 9529 BUG_ON(new_inode->i_nlink == 0); 9530 } else { 9531 ret = btrfs_unlink_inode(trans, dest, new_dir, 9532 d_inode(new_dentry), 9533 new_dentry->d_name.name, 9534 new_dentry->d_name.len); 9535 } 9536 if (!ret && new_inode->i_nlink == 0) 9537 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9538 if (ret) { 9539 btrfs_abort_transaction(trans, root, ret); 9540 goto out_fail; 9541 } 9542 } 9543 9544 ret = btrfs_add_link(trans, new_dir, old_inode, 9545 new_dentry->d_name.name, 9546 new_dentry->d_name.len, 0, index); 9547 if (ret) { 9548 btrfs_abort_transaction(trans, root, ret); 9549 goto out_fail; 9550 } 9551 9552 if (old_inode->i_nlink == 1) 9553 BTRFS_I(old_inode)->dir_index = index; 9554 9555 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9556 struct dentry *parent = new_dentry->d_parent; 9557 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9558 btrfs_end_log_trans(root); 9559 } 9560 out_fail: 9561 btrfs_end_transaction(trans, root); 9562 out_notrans: 9563 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9564 up_read(&root->fs_info->subvol_sem); 9565 9566 return ret; 9567 } 9568 9569 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9570 struct inode *new_dir, struct dentry *new_dentry, 9571 unsigned int flags) 9572 { 9573 if (flags & ~RENAME_NOREPLACE) 9574 return -EINVAL; 9575 9576 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9577 } 9578 9579 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9580 { 9581 struct btrfs_delalloc_work *delalloc_work; 9582 struct inode *inode; 9583 9584 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9585 work); 9586 inode = delalloc_work->inode; 9587 filemap_flush(inode->i_mapping); 9588 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9589 &BTRFS_I(inode)->runtime_flags)) 9590 filemap_flush(inode->i_mapping); 9591 9592 if (delalloc_work->delay_iput) 9593 btrfs_add_delayed_iput(inode); 9594 else 9595 iput(inode); 9596 complete(&delalloc_work->completion); 9597 } 9598 9599 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9600 int delay_iput) 9601 { 9602 struct btrfs_delalloc_work *work; 9603 9604 work = kmalloc(sizeof(*work), GFP_NOFS); 9605 if (!work) 9606 return NULL; 9607 9608 init_completion(&work->completion); 9609 INIT_LIST_HEAD(&work->list); 9610 work->inode = inode; 9611 work->delay_iput = delay_iput; 9612 WARN_ON_ONCE(!inode); 9613 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9614 btrfs_run_delalloc_work, NULL, NULL); 9615 9616 return work; 9617 } 9618 9619 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9620 { 9621 wait_for_completion(&work->completion); 9622 kfree(work); 9623 } 9624 9625 /* 9626 * some fairly slow code that needs optimization. This walks the list 9627 * of all the inodes with pending delalloc and forces them to disk. 9628 */ 9629 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9630 int nr) 9631 { 9632 struct btrfs_inode *binode; 9633 struct inode *inode; 9634 struct btrfs_delalloc_work *work, *next; 9635 struct list_head works; 9636 struct list_head splice; 9637 int ret = 0; 9638 9639 INIT_LIST_HEAD(&works); 9640 INIT_LIST_HEAD(&splice); 9641 9642 mutex_lock(&root->delalloc_mutex); 9643 spin_lock(&root->delalloc_lock); 9644 list_splice_init(&root->delalloc_inodes, &splice); 9645 while (!list_empty(&splice)) { 9646 binode = list_entry(splice.next, struct btrfs_inode, 9647 delalloc_inodes); 9648 9649 list_move_tail(&binode->delalloc_inodes, 9650 &root->delalloc_inodes); 9651 inode = igrab(&binode->vfs_inode); 9652 if (!inode) { 9653 cond_resched_lock(&root->delalloc_lock); 9654 continue; 9655 } 9656 spin_unlock(&root->delalloc_lock); 9657 9658 work = btrfs_alloc_delalloc_work(inode, delay_iput); 9659 if (!work) { 9660 if (delay_iput) 9661 btrfs_add_delayed_iput(inode); 9662 else 9663 iput(inode); 9664 ret = -ENOMEM; 9665 goto out; 9666 } 9667 list_add_tail(&work->list, &works); 9668 btrfs_queue_work(root->fs_info->flush_workers, 9669 &work->work); 9670 ret++; 9671 if (nr != -1 && ret >= nr) 9672 goto out; 9673 cond_resched(); 9674 spin_lock(&root->delalloc_lock); 9675 } 9676 spin_unlock(&root->delalloc_lock); 9677 9678 out: 9679 list_for_each_entry_safe(work, next, &works, list) { 9680 list_del_init(&work->list); 9681 btrfs_wait_and_free_delalloc_work(work); 9682 } 9683 9684 if (!list_empty_careful(&splice)) { 9685 spin_lock(&root->delalloc_lock); 9686 list_splice_tail(&splice, &root->delalloc_inodes); 9687 spin_unlock(&root->delalloc_lock); 9688 } 9689 mutex_unlock(&root->delalloc_mutex); 9690 return ret; 9691 } 9692 9693 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9694 { 9695 int ret; 9696 9697 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9698 return -EROFS; 9699 9700 ret = __start_delalloc_inodes(root, delay_iput, -1); 9701 if (ret > 0) 9702 ret = 0; 9703 /* 9704 * the filemap_flush will queue IO into the worker threads, but 9705 * we have to make sure the IO is actually started and that 9706 * ordered extents get created before we return 9707 */ 9708 atomic_inc(&root->fs_info->async_submit_draining); 9709 while (atomic_read(&root->fs_info->nr_async_submits) || 9710 atomic_read(&root->fs_info->async_delalloc_pages)) { 9711 wait_event(root->fs_info->async_submit_wait, 9712 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9713 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9714 } 9715 atomic_dec(&root->fs_info->async_submit_draining); 9716 return ret; 9717 } 9718 9719 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9720 int nr) 9721 { 9722 struct btrfs_root *root; 9723 struct list_head splice; 9724 int ret; 9725 9726 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9727 return -EROFS; 9728 9729 INIT_LIST_HEAD(&splice); 9730 9731 mutex_lock(&fs_info->delalloc_root_mutex); 9732 spin_lock(&fs_info->delalloc_root_lock); 9733 list_splice_init(&fs_info->delalloc_roots, &splice); 9734 while (!list_empty(&splice) && nr) { 9735 root = list_first_entry(&splice, struct btrfs_root, 9736 delalloc_root); 9737 root = btrfs_grab_fs_root(root); 9738 BUG_ON(!root); 9739 list_move_tail(&root->delalloc_root, 9740 &fs_info->delalloc_roots); 9741 spin_unlock(&fs_info->delalloc_root_lock); 9742 9743 ret = __start_delalloc_inodes(root, delay_iput, nr); 9744 btrfs_put_fs_root(root); 9745 if (ret < 0) 9746 goto out; 9747 9748 if (nr != -1) { 9749 nr -= ret; 9750 WARN_ON(nr < 0); 9751 } 9752 spin_lock(&fs_info->delalloc_root_lock); 9753 } 9754 spin_unlock(&fs_info->delalloc_root_lock); 9755 9756 ret = 0; 9757 atomic_inc(&fs_info->async_submit_draining); 9758 while (atomic_read(&fs_info->nr_async_submits) || 9759 atomic_read(&fs_info->async_delalloc_pages)) { 9760 wait_event(fs_info->async_submit_wait, 9761 (atomic_read(&fs_info->nr_async_submits) == 0 && 9762 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9763 } 9764 atomic_dec(&fs_info->async_submit_draining); 9765 out: 9766 if (!list_empty_careful(&splice)) { 9767 spin_lock(&fs_info->delalloc_root_lock); 9768 list_splice_tail(&splice, &fs_info->delalloc_roots); 9769 spin_unlock(&fs_info->delalloc_root_lock); 9770 } 9771 mutex_unlock(&fs_info->delalloc_root_mutex); 9772 return ret; 9773 } 9774 9775 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9776 const char *symname) 9777 { 9778 struct btrfs_trans_handle *trans; 9779 struct btrfs_root *root = BTRFS_I(dir)->root; 9780 struct btrfs_path *path; 9781 struct btrfs_key key; 9782 struct inode *inode = NULL; 9783 int err; 9784 int drop_inode = 0; 9785 u64 objectid; 9786 u64 index = 0; 9787 int name_len; 9788 int datasize; 9789 unsigned long ptr; 9790 struct btrfs_file_extent_item *ei; 9791 struct extent_buffer *leaf; 9792 9793 name_len = strlen(symname); 9794 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9795 return -ENAMETOOLONG; 9796 9797 /* 9798 * 2 items for inode item and ref 9799 * 2 items for dir items 9800 * 1 item for updating parent inode item 9801 * 1 item for the inline extent item 9802 * 1 item for xattr if selinux is on 9803 */ 9804 trans = btrfs_start_transaction(root, 7); 9805 if (IS_ERR(trans)) 9806 return PTR_ERR(trans); 9807 9808 err = btrfs_find_free_ino(root, &objectid); 9809 if (err) 9810 goto out_unlock; 9811 9812 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9813 dentry->d_name.len, btrfs_ino(dir), objectid, 9814 S_IFLNK|S_IRWXUGO, &index); 9815 if (IS_ERR(inode)) { 9816 err = PTR_ERR(inode); 9817 goto out_unlock; 9818 } 9819 9820 /* 9821 * If the active LSM wants to access the inode during 9822 * d_instantiate it needs these. Smack checks to see 9823 * if the filesystem supports xattrs by looking at the 9824 * ops vector. 9825 */ 9826 inode->i_fop = &btrfs_file_operations; 9827 inode->i_op = &btrfs_file_inode_operations; 9828 inode->i_mapping->a_ops = &btrfs_aops; 9829 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9830 9831 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9832 if (err) 9833 goto out_unlock_inode; 9834 9835 path = btrfs_alloc_path(); 9836 if (!path) { 9837 err = -ENOMEM; 9838 goto out_unlock_inode; 9839 } 9840 key.objectid = btrfs_ino(inode); 9841 key.offset = 0; 9842 key.type = BTRFS_EXTENT_DATA_KEY; 9843 datasize = btrfs_file_extent_calc_inline_size(name_len); 9844 err = btrfs_insert_empty_item(trans, root, path, &key, 9845 datasize); 9846 if (err) { 9847 btrfs_free_path(path); 9848 goto out_unlock_inode; 9849 } 9850 leaf = path->nodes[0]; 9851 ei = btrfs_item_ptr(leaf, path->slots[0], 9852 struct btrfs_file_extent_item); 9853 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9854 btrfs_set_file_extent_type(leaf, ei, 9855 BTRFS_FILE_EXTENT_INLINE); 9856 btrfs_set_file_extent_encryption(leaf, ei, 0); 9857 btrfs_set_file_extent_compression(leaf, ei, 0); 9858 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9859 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9860 9861 ptr = btrfs_file_extent_inline_start(ei); 9862 write_extent_buffer(leaf, symname, ptr, name_len); 9863 btrfs_mark_buffer_dirty(leaf); 9864 btrfs_free_path(path); 9865 9866 inode->i_op = &btrfs_symlink_inode_operations; 9867 inode_nohighmem(inode); 9868 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9869 inode_set_bytes(inode, name_len); 9870 btrfs_i_size_write(inode, name_len); 9871 err = btrfs_update_inode(trans, root, inode); 9872 /* 9873 * Last step, add directory indexes for our symlink inode. This is the 9874 * last step to avoid extra cleanup of these indexes if an error happens 9875 * elsewhere above. 9876 */ 9877 if (!err) 9878 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9879 if (err) { 9880 drop_inode = 1; 9881 goto out_unlock_inode; 9882 } 9883 9884 unlock_new_inode(inode); 9885 d_instantiate(dentry, inode); 9886 9887 out_unlock: 9888 btrfs_end_transaction(trans, root); 9889 if (drop_inode) { 9890 inode_dec_link_count(inode); 9891 iput(inode); 9892 } 9893 btrfs_btree_balance_dirty(root); 9894 return err; 9895 9896 out_unlock_inode: 9897 drop_inode = 1; 9898 unlock_new_inode(inode); 9899 goto out_unlock; 9900 } 9901 9902 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9903 u64 start, u64 num_bytes, u64 min_size, 9904 loff_t actual_len, u64 *alloc_hint, 9905 struct btrfs_trans_handle *trans) 9906 { 9907 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9908 struct extent_map *em; 9909 struct btrfs_root *root = BTRFS_I(inode)->root; 9910 struct btrfs_key ins; 9911 u64 cur_offset = start; 9912 u64 i_size; 9913 u64 cur_bytes; 9914 u64 last_alloc = (u64)-1; 9915 int ret = 0; 9916 bool own_trans = true; 9917 9918 if (trans) 9919 own_trans = false; 9920 while (num_bytes > 0) { 9921 if (own_trans) { 9922 trans = btrfs_start_transaction(root, 3); 9923 if (IS_ERR(trans)) { 9924 ret = PTR_ERR(trans); 9925 break; 9926 } 9927 } 9928 9929 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9930 cur_bytes = max(cur_bytes, min_size); 9931 /* 9932 * If we are severely fragmented we could end up with really 9933 * small allocations, so if the allocator is returning small 9934 * chunks lets make its job easier by only searching for those 9935 * sized chunks. 9936 */ 9937 cur_bytes = min(cur_bytes, last_alloc); 9938 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9939 *alloc_hint, &ins, 1, 0); 9940 if (ret) { 9941 if (own_trans) 9942 btrfs_end_transaction(trans, root); 9943 break; 9944 } 9945 9946 last_alloc = ins.offset; 9947 ret = insert_reserved_file_extent(trans, inode, 9948 cur_offset, ins.objectid, 9949 ins.offset, ins.offset, 9950 ins.offset, 0, 0, 0, 9951 BTRFS_FILE_EXTENT_PREALLOC); 9952 if (ret) { 9953 btrfs_free_reserved_extent(root, ins.objectid, 9954 ins.offset, 0); 9955 btrfs_abort_transaction(trans, root, ret); 9956 if (own_trans) 9957 btrfs_end_transaction(trans, root); 9958 break; 9959 } 9960 9961 btrfs_drop_extent_cache(inode, cur_offset, 9962 cur_offset + ins.offset -1, 0); 9963 9964 em = alloc_extent_map(); 9965 if (!em) { 9966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9967 &BTRFS_I(inode)->runtime_flags); 9968 goto next; 9969 } 9970 9971 em->start = cur_offset; 9972 em->orig_start = cur_offset; 9973 em->len = ins.offset; 9974 em->block_start = ins.objectid; 9975 em->block_len = ins.offset; 9976 em->orig_block_len = ins.offset; 9977 em->ram_bytes = ins.offset; 9978 em->bdev = root->fs_info->fs_devices->latest_bdev; 9979 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9980 em->generation = trans->transid; 9981 9982 while (1) { 9983 write_lock(&em_tree->lock); 9984 ret = add_extent_mapping(em_tree, em, 1); 9985 write_unlock(&em_tree->lock); 9986 if (ret != -EEXIST) 9987 break; 9988 btrfs_drop_extent_cache(inode, cur_offset, 9989 cur_offset + ins.offset - 1, 9990 0); 9991 } 9992 free_extent_map(em); 9993 next: 9994 num_bytes -= ins.offset; 9995 cur_offset += ins.offset; 9996 *alloc_hint = ins.objectid + ins.offset; 9997 9998 inode_inc_iversion(inode); 9999 inode->i_ctime = current_fs_time(inode->i_sb); 10000 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10001 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10002 (actual_len > inode->i_size) && 10003 (cur_offset > inode->i_size)) { 10004 if (cur_offset > actual_len) 10005 i_size = actual_len; 10006 else 10007 i_size = cur_offset; 10008 i_size_write(inode, i_size); 10009 btrfs_ordered_update_i_size(inode, i_size, NULL); 10010 } 10011 10012 ret = btrfs_update_inode(trans, root, inode); 10013 10014 if (ret) { 10015 btrfs_abort_transaction(trans, root, ret); 10016 if (own_trans) 10017 btrfs_end_transaction(trans, root); 10018 break; 10019 } 10020 10021 if (own_trans) 10022 btrfs_end_transaction(trans, root); 10023 } 10024 return ret; 10025 } 10026 10027 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10028 u64 start, u64 num_bytes, u64 min_size, 10029 loff_t actual_len, u64 *alloc_hint) 10030 { 10031 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10032 min_size, actual_len, alloc_hint, 10033 NULL); 10034 } 10035 10036 int btrfs_prealloc_file_range_trans(struct inode *inode, 10037 struct btrfs_trans_handle *trans, int mode, 10038 u64 start, u64 num_bytes, u64 min_size, 10039 loff_t actual_len, u64 *alloc_hint) 10040 { 10041 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10042 min_size, actual_len, alloc_hint, trans); 10043 } 10044 10045 static int btrfs_set_page_dirty(struct page *page) 10046 { 10047 return __set_page_dirty_nobuffers(page); 10048 } 10049 10050 static int btrfs_permission(struct inode *inode, int mask) 10051 { 10052 struct btrfs_root *root = BTRFS_I(inode)->root; 10053 umode_t mode = inode->i_mode; 10054 10055 if (mask & MAY_WRITE && 10056 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10057 if (btrfs_root_readonly(root)) 10058 return -EROFS; 10059 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10060 return -EACCES; 10061 } 10062 return generic_permission(inode, mask); 10063 } 10064 10065 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10066 { 10067 struct btrfs_trans_handle *trans; 10068 struct btrfs_root *root = BTRFS_I(dir)->root; 10069 struct inode *inode = NULL; 10070 u64 objectid; 10071 u64 index; 10072 int ret = 0; 10073 10074 /* 10075 * 5 units required for adding orphan entry 10076 */ 10077 trans = btrfs_start_transaction(root, 5); 10078 if (IS_ERR(trans)) 10079 return PTR_ERR(trans); 10080 10081 ret = btrfs_find_free_ino(root, &objectid); 10082 if (ret) 10083 goto out; 10084 10085 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10086 btrfs_ino(dir), objectid, mode, &index); 10087 if (IS_ERR(inode)) { 10088 ret = PTR_ERR(inode); 10089 inode = NULL; 10090 goto out; 10091 } 10092 10093 inode->i_fop = &btrfs_file_operations; 10094 inode->i_op = &btrfs_file_inode_operations; 10095 10096 inode->i_mapping->a_ops = &btrfs_aops; 10097 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10098 10099 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10100 if (ret) 10101 goto out_inode; 10102 10103 ret = btrfs_update_inode(trans, root, inode); 10104 if (ret) 10105 goto out_inode; 10106 ret = btrfs_orphan_add(trans, inode); 10107 if (ret) 10108 goto out_inode; 10109 10110 /* 10111 * We set number of links to 0 in btrfs_new_inode(), and here we set 10112 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10113 * through: 10114 * 10115 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10116 */ 10117 set_nlink(inode, 1); 10118 unlock_new_inode(inode); 10119 d_tmpfile(dentry, inode); 10120 mark_inode_dirty(inode); 10121 10122 out: 10123 btrfs_end_transaction(trans, root); 10124 if (ret) 10125 iput(inode); 10126 btrfs_balance_delayed_items(root); 10127 btrfs_btree_balance_dirty(root); 10128 return ret; 10129 10130 out_inode: 10131 unlock_new_inode(inode); 10132 goto out; 10133 10134 } 10135 10136 /* Inspired by filemap_check_errors() */ 10137 int btrfs_inode_check_errors(struct inode *inode) 10138 { 10139 int ret = 0; 10140 10141 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10142 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10143 ret = -ENOSPC; 10144 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10145 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10146 ret = -EIO; 10147 10148 return ret; 10149 } 10150 10151 static const struct inode_operations btrfs_dir_inode_operations = { 10152 .getattr = btrfs_getattr, 10153 .lookup = btrfs_lookup, 10154 .create = btrfs_create, 10155 .unlink = btrfs_unlink, 10156 .link = btrfs_link, 10157 .mkdir = btrfs_mkdir, 10158 .rmdir = btrfs_rmdir, 10159 .rename2 = btrfs_rename2, 10160 .symlink = btrfs_symlink, 10161 .setattr = btrfs_setattr, 10162 .mknod = btrfs_mknod, 10163 .setxattr = btrfs_setxattr, 10164 .getxattr = generic_getxattr, 10165 .listxattr = btrfs_listxattr, 10166 .removexattr = btrfs_removexattr, 10167 .permission = btrfs_permission, 10168 .get_acl = btrfs_get_acl, 10169 .set_acl = btrfs_set_acl, 10170 .update_time = btrfs_update_time, 10171 .tmpfile = btrfs_tmpfile, 10172 }; 10173 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10174 .lookup = btrfs_lookup, 10175 .permission = btrfs_permission, 10176 .get_acl = btrfs_get_acl, 10177 .set_acl = btrfs_set_acl, 10178 .update_time = btrfs_update_time, 10179 }; 10180 10181 static const struct file_operations btrfs_dir_file_operations = { 10182 .llseek = generic_file_llseek, 10183 .read = generic_read_dir, 10184 .iterate = btrfs_real_readdir, 10185 .unlocked_ioctl = btrfs_ioctl, 10186 #ifdef CONFIG_COMPAT 10187 .compat_ioctl = btrfs_ioctl, 10188 #endif 10189 .release = btrfs_release_file, 10190 .fsync = btrfs_sync_file, 10191 }; 10192 10193 static const struct extent_io_ops btrfs_extent_io_ops = { 10194 .fill_delalloc = run_delalloc_range, 10195 .submit_bio_hook = btrfs_submit_bio_hook, 10196 .merge_bio_hook = btrfs_merge_bio_hook, 10197 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10198 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10199 .writepage_start_hook = btrfs_writepage_start_hook, 10200 .set_bit_hook = btrfs_set_bit_hook, 10201 .clear_bit_hook = btrfs_clear_bit_hook, 10202 .merge_extent_hook = btrfs_merge_extent_hook, 10203 .split_extent_hook = btrfs_split_extent_hook, 10204 }; 10205 10206 /* 10207 * btrfs doesn't support the bmap operation because swapfiles 10208 * use bmap to make a mapping of extents in the file. They assume 10209 * these extents won't change over the life of the file and they 10210 * use the bmap result to do IO directly to the drive. 10211 * 10212 * the btrfs bmap call would return logical addresses that aren't 10213 * suitable for IO and they also will change frequently as COW 10214 * operations happen. So, swapfile + btrfs == corruption. 10215 * 10216 * For now we're avoiding this by dropping bmap. 10217 */ 10218 static const struct address_space_operations btrfs_aops = { 10219 .readpage = btrfs_readpage, 10220 .writepage = btrfs_writepage, 10221 .writepages = btrfs_writepages, 10222 .readpages = btrfs_readpages, 10223 .direct_IO = btrfs_direct_IO, 10224 .invalidatepage = btrfs_invalidatepage, 10225 .releasepage = btrfs_releasepage, 10226 .set_page_dirty = btrfs_set_page_dirty, 10227 .error_remove_page = generic_error_remove_page, 10228 }; 10229 10230 static const struct address_space_operations btrfs_symlink_aops = { 10231 .readpage = btrfs_readpage, 10232 .writepage = btrfs_writepage, 10233 .invalidatepage = btrfs_invalidatepage, 10234 .releasepage = btrfs_releasepage, 10235 }; 10236 10237 static const struct inode_operations btrfs_file_inode_operations = { 10238 .getattr = btrfs_getattr, 10239 .setattr = btrfs_setattr, 10240 .setxattr = btrfs_setxattr, 10241 .getxattr = generic_getxattr, 10242 .listxattr = btrfs_listxattr, 10243 .removexattr = btrfs_removexattr, 10244 .permission = btrfs_permission, 10245 .fiemap = btrfs_fiemap, 10246 .get_acl = btrfs_get_acl, 10247 .set_acl = btrfs_set_acl, 10248 .update_time = btrfs_update_time, 10249 }; 10250 static const struct inode_operations btrfs_special_inode_operations = { 10251 .getattr = btrfs_getattr, 10252 .setattr = btrfs_setattr, 10253 .permission = btrfs_permission, 10254 .setxattr = btrfs_setxattr, 10255 .getxattr = generic_getxattr, 10256 .listxattr = btrfs_listxattr, 10257 .removexattr = btrfs_removexattr, 10258 .get_acl = btrfs_get_acl, 10259 .set_acl = btrfs_set_acl, 10260 .update_time = btrfs_update_time, 10261 }; 10262 static const struct inode_operations btrfs_symlink_inode_operations = { 10263 .readlink = generic_readlink, 10264 .get_link = page_get_link, 10265 .getattr = btrfs_getattr, 10266 .setattr = btrfs_setattr, 10267 .permission = btrfs_permission, 10268 .setxattr = btrfs_setxattr, 10269 .getxattr = generic_getxattr, 10270 .listxattr = btrfs_listxattr, 10271 .removexattr = btrfs_removexattr, 10272 .update_time = btrfs_update_time, 10273 }; 10274 10275 const struct dentry_operations btrfs_dentry_operations = { 10276 .d_delete = btrfs_dentry_delete, 10277 .d_release = btrfs_dentry_release, 10278 }; 10279