xref: /linux/fs/btrfs/inode.c (revision 10fbe8c082fdde74b1f0814bc30e194cf330cdf7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct page *locked_page, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct page *locked_page,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct page *page;
403 
404 	if (locked_page) {
405 		page_start = page_offset(locked_page);
406 		page_end = page_start + PAGE_SIZE - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		page = find_get_page(inode->vfs_inode.i_mapping, index);
425 		index++;
426 		if (!page)
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
435 						page_folio(page), offset, bytes);
436 		put_page(page);
437 	}
438 
439 	if (locked_page) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + PAGE_SIZE)
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
451 			offset = page_offset(locked_page) + PAGE_SIZE;
452 		}
453 	}
454 
455 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
456 }
457 
458 static int btrfs_dirty_inode(struct btrfs_inode *inode);
459 
460 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
461 				     struct btrfs_new_inode_args *args)
462 {
463 	int err;
464 
465 	if (args->default_acl) {
466 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
467 				      ACL_TYPE_DEFAULT);
468 		if (err)
469 			return err;
470 	}
471 	if (args->acl) {
472 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
473 		if (err)
474 			return err;
475 	}
476 	if (!args->default_acl && !args->acl)
477 		cache_no_acl(args->inode);
478 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
479 					 &args->dentry->d_name);
480 }
481 
482 /*
483  * this does all the hard work for inserting an inline extent into
484  * the btree.  The caller should have done a btrfs_drop_extents so that
485  * no overlapping inline items exist in the btree
486  */
487 static int insert_inline_extent(struct btrfs_trans_handle *trans,
488 				struct btrfs_path *path,
489 				struct btrfs_inode *inode, bool extent_inserted,
490 				size_t size, size_t compressed_size,
491 				int compress_type,
492 				struct folio *compressed_folio,
493 				bool update_i_size)
494 {
495 	struct btrfs_root *root = inode->root;
496 	struct extent_buffer *leaf;
497 	struct page *page = NULL;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
558 		btrfs_set_file_extent_compression(leaf, ei, 0);
559 		kaddr = kmap_local_page(page);
560 		write_extent_buffer(leaf, kaddr, ptr, size);
561 		kunmap_local(kaddr);
562 		put_page(page);
563 	}
564 	btrfs_mark_buffer_dirty(trans, leaf);
565 	btrfs_release_path(path);
566 
567 	/*
568 	 * We align size to sectorsize for inline extents just for simplicity
569 	 * sake.
570 	 */
571 	ret = btrfs_inode_set_file_extent_range(inode, 0,
572 					ALIGN(size, root->fs_info->sectorsize));
573 	if (ret)
574 		goto fail;
575 
576 	/*
577 	 * We're an inline extent, so nobody can extend the file past i_size
578 	 * without locking a page we already have locked.
579 	 *
580 	 * We must do any i_size and inode updates before we unlock the pages.
581 	 * Otherwise we could end up racing with unlink.
582 	 */
583 	i_size = i_size_read(&inode->vfs_inode);
584 	if (update_i_size && size > i_size) {
585 		i_size_write(&inode->vfs_inode, size);
586 		i_size = size;
587 	}
588 	inode->disk_i_size = i_size;
589 
590 fail:
591 	return ret;
592 }
593 
594 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
595 				      u64 offset, u64 size,
596 				      size_t compressed_size)
597 {
598 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
599 	u64 data_len = (compressed_size ?: size);
600 
601 	/* Inline extents must start at offset 0. */
602 	if (offset != 0)
603 		return false;
604 
605 	/*
606 	 * Due to the page size limit, for subpage we can only trigger the
607 	 * writeback for the dirty sectors of page, that means data writeback
608 	 * is doing more writeback than what we want.
609 	 *
610 	 * This is especially unexpected for some call sites like fallocate,
611 	 * where we only increase i_size after everything is done.
612 	 * This means we can trigger inline extent even if we didn't want to.
613 	 * So here we skip inline extent creation completely.
614 	 */
615 	if (fs_info->sectorsize != PAGE_SIZE)
616 		return false;
617 
618 	/* Inline extents are limited to sectorsize. */
619 	if (size > fs_info->sectorsize)
620 		return false;
621 
622 	/* We cannot exceed the maximum inline data size. */
623 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
624 		return false;
625 
626 	/* We cannot exceed the user specified max_inline size. */
627 	if (data_len > fs_info->max_inline)
628 		return false;
629 
630 	/* Inline extents must be the entirety of the file. */
631 	if (size < i_size_read(&inode->vfs_inode))
632 		return false;
633 
634 	return true;
635 }
636 
637 /*
638  * conditionally insert an inline extent into the file.  This
639  * does the checks required to make sure the data is small enough
640  * to fit as an inline extent.
641  *
642  * If being used directly, you must have already checked we're allowed to cow
643  * the range by getting true from can_cow_file_range_inline().
644  */
645 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
646 					    u64 size, size_t compressed_size,
647 					    int compress_type,
648 					    struct folio *compressed_folio,
649 					    bool update_i_size)
650 {
651 	struct btrfs_drop_extents_args drop_args = { 0 };
652 	struct btrfs_root *root = inode->root;
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct btrfs_trans_handle *trans;
655 	u64 data_len = (compressed_size ?: size);
656 	int ret;
657 	struct btrfs_path *path;
658 
659 	path = btrfs_alloc_path();
660 	if (!path)
661 		return -ENOMEM;
662 
663 	trans = btrfs_join_transaction(root);
664 	if (IS_ERR(trans)) {
665 		btrfs_free_path(path);
666 		return PTR_ERR(trans);
667 	}
668 	trans->block_rsv = &inode->block_rsv;
669 
670 	drop_args.path = path;
671 	drop_args.start = 0;
672 	drop_args.end = fs_info->sectorsize;
673 	drop_args.drop_cache = true;
674 	drop_args.replace_extent = true;
675 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
676 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
677 	if (ret) {
678 		btrfs_abort_transaction(trans, ret);
679 		goto out;
680 	}
681 
682 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
683 				   size, compressed_size, compress_type,
684 				   compressed_folio, update_i_size);
685 	if (ret && ret != -ENOSPC) {
686 		btrfs_abort_transaction(trans, ret);
687 		goto out;
688 	} else if (ret == -ENOSPC) {
689 		ret = 1;
690 		goto out;
691 	}
692 
693 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
694 	ret = btrfs_update_inode(trans, inode);
695 	if (ret && ret != -ENOSPC) {
696 		btrfs_abort_transaction(trans, ret);
697 		goto out;
698 	} else if (ret == -ENOSPC) {
699 		ret = 1;
700 		goto out;
701 	}
702 
703 	btrfs_set_inode_full_sync(inode);
704 out:
705 	/*
706 	 * Don't forget to free the reserved space, as for inlined extent
707 	 * it won't count as data extent, free them directly here.
708 	 * And at reserve time, it's always aligned to page size, so
709 	 * just free one page here.
710 	 */
711 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
712 	btrfs_free_path(path);
713 	btrfs_end_transaction(trans);
714 	return ret;
715 }
716 
717 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
718 					  struct page *locked_page,
719 					  u64 offset, u64 end,
720 					  size_t compressed_size,
721 					  int compress_type,
722 					  struct folio *compressed_folio,
723 					  bool update_i_size)
724 {
725 	struct extent_state *cached = NULL;
726 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
727 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
728 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
729 	int ret;
730 
731 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
732 		return 1;
733 
734 	lock_extent(&inode->io_tree, offset, end, &cached);
735 	ret = __cow_file_range_inline(inode, offset, size, compressed_size,
736 				      compress_type, compressed_folio,
737 				      update_i_size);
738 	if (ret > 0) {
739 		unlock_extent(&inode->io_tree, offset, end, &cached);
740 		return ret;
741 	}
742 
743 	if (ret == 0)
744 		locked_page = NULL;
745 
746 	extent_clear_unlock_delalloc(inode, offset, end, locked_page, &cached,
747 				     clear_flags,
748 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
749 				     PAGE_END_WRITEBACK);
750 	return ret;
751 }
752 
753 struct async_extent {
754 	u64 start;
755 	u64 ram_size;
756 	u64 compressed_size;
757 	struct folio **folios;
758 	unsigned long nr_folios;
759 	int compress_type;
760 	struct list_head list;
761 };
762 
763 struct async_chunk {
764 	struct btrfs_inode *inode;
765 	struct page *locked_page;
766 	u64 start;
767 	u64 end;
768 	blk_opf_t write_flags;
769 	struct list_head extents;
770 	struct cgroup_subsys_state *blkcg_css;
771 	struct btrfs_work work;
772 	struct async_cow *async_cow;
773 };
774 
775 struct async_cow {
776 	atomic_t num_chunks;
777 	struct async_chunk chunks[];
778 };
779 
780 static noinline int add_async_extent(struct async_chunk *cow,
781 				     u64 start, u64 ram_size,
782 				     u64 compressed_size,
783 				     struct folio **folios,
784 				     unsigned long nr_folios,
785 				     int compress_type)
786 {
787 	struct async_extent *async_extent;
788 
789 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
790 	if (!async_extent)
791 		return -ENOMEM;
792 	async_extent->start = start;
793 	async_extent->ram_size = ram_size;
794 	async_extent->compressed_size = compressed_size;
795 	async_extent->folios = folios;
796 	async_extent->nr_folios = nr_folios;
797 	async_extent->compress_type = compress_type;
798 	list_add_tail(&async_extent->list, &cow->extents);
799 	return 0;
800 }
801 
802 /*
803  * Check if the inode needs to be submitted to compression, based on mount
804  * options, defragmentation, properties or heuristics.
805  */
806 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
807 				      u64 end)
808 {
809 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
810 
811 	if (!btrfs_inode_can_compress(inode)) {
812 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
813 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
814 			btrfs_ino(inode));
815 		return 0;
816 	}
817 	/*
818 	 * Special check for subpage.
819 	 *
820 	 * We lock the full page then run each delalloc range in the page, thus
821 	 * for the following case, we will hit some subpage specific corner case:
822 	 *
823 	 * 0		32K		64K
824 	 * |	|///////|	|///////|
825 	 *		\- A		\- B
826 	 *
827 	 * In above case, both range A and range B will try to unlock the full
828 	 * page [0, 64K), causing the one finished later will have page
829 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
830 	 *
831 	 * So here we add an artificial limit that subpage compression can only
832 	 * if the range is fully page aligned.
833 	 *
834 	 * In theory we only need to ensure the first page is fully covered, but
835 	 * the tailing partial page will be locked until the full compression
836 	 * finishes, delaying the write of other range.
837 	 *
838 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
839 	 * first to prevent any submitted async extent to unlock the full page.
840 	 * By this, we can ensure for subpage case that only the last async_cow
841 	 * will unlock the full page.
842 	 */
843 	if (fs_info->sectorsize < PAGE_SIZE) {
844 		if (!PAGE_ALIGNED(start) ||
845 		    !PAGE_ALIGNED(end + 1))
846 			return 0;
847 	}
848 
849 	/* force compress */
850 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
851 		return 1;
852 	/* defrag ioctl */
853 	if (inode->defrag_compress)
854 		return 1;
855 	/* bad compression ratios */
856 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
857 		return 0;
858 	if (btrfs_test_opt(fs_info, COMPRESS) ||
859 	    inode->flags & BTRFS_INODE_COMPRESS ||
860 	    inode->prop_compress)
861 		return btrfs_compress_heuristic(inode, start, end);
862 	return 0;
863 }
864 
865 static inline void inode_should_defrag(struct btrfs_inode *inode,
866 		u64 start, u64 end, u64 num_bytes, u32 small_write)
867 {
868 	/* If this is a small write inside eof, kick off a defrag */
869 	if (num_bytes < small_write &&
870 	    (start > 0 || end + 1 < inode->disk_i_size))
871 		btrfs_add_inode_defrag(NULL, inode, small_write);
872 }
873 
874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
875 {
876 	unsigned long end_index = end >> PAGE_SHIFT;
877 	struct page *page;
878 	int ret = 0;
879 
880 	for (unsigned long index = start >> PAGE_SHIFT;
881 	     index <= end_index; index++) {
882 		page = find_get_page(inode->i_mapping, index);
883 		if (unlikely(!page)) {
884 			if (!ret)
885 				ret = -ENOENT;
886 			continue;
887 		}
888 		clear_page_dirty_for_io(page);
889 		put_page(page);
890 	}
891 	return ret;
892 }
893 
894 /*
895  * Work queue call back to started compression on a file and pages.
896  *
897  * This is done inside an ordered work queue, and the compression is spread
898  * across many cpus.  The actual IO submission is step two, and the ordered work
899  * queue takes care of making sure that happens in the same order things were
900  * put onto the queue by writepages and friends.
901  *
902  * If this code finds it can't get good compression, it puts an entry onto the
903  * work queue to write the uncompressed bytes.  This makes sure that both
904  * compressed inodes and uncompressed inodes are written in the same order that
905  * the flusher thread sent them down.
906  */
907 static void compress_file_range(struct btrfs_work *work)
908 {
909 	struct async_chunk *async_chunk =
910 		container_of(work, struct async_chunk, work);
911 	struct btrfs_inode *inode = async_chunk->inode;
912 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
913 	struct address_space *mapping = inode->vfs_inode.i_mapping;
914 	u64 blocksize = fs_info->sectorsize;
915 	u64 start = async_chunk->start;
916 	u64 end = async_chunk->end;
917 	u64 actual_end;
918 	u64 i_size;
919 	int ret = 0;
920 	struct folio **folios;
921 	unsigned long nr_folios;
922 	unsigned long total_compressed = 0;
923 	unsigned long total_in = 0;
924 	unsigned int poff;
925 	int i;
926 	int compress_type = fs_info->compress_type;
927 
928 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
929 
930 	/*
931 	 * We need to call clear_page_dirty_for_io on each page in the range.
932 	 * Otherwise applications with the file mmap'd can wander in and change
933 	 * the page contents while we are compressing them.
934 	 */
935 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
936 
937 	/*
938 	 * All the folios should have been locked thus no failure.
939 	 *
940 	 * And even if some folios are missing, btrfs_compress_folios()
941 	 * would handle them correctly, so here just do an ASSERT() check for
942 	 * early logic errors.
943 	 */
944 	ASSERT(ret == 0);
945 
946 	/*
947 	 * We need to save i_size before now because it could change in between
948 	 * us evaluating the size and assigning it.  This is because we lock and
949 	 * unlock the page in truncate and fallocate, and then modify the i_size
950 	 * later on.
951 	 *
952 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
953 	 * does that for us.
954 	 */
955 	barrier();
956 	i_size = i_size_read(&inode->vfs_inode);
957 	barrier();
958 	actual_end = min_t(u64, i_size, end + 1);
959 again:
960 	folios = NULL;
961 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
962 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
963 
964 	/*
965 	 * we don't want to send crud past the end of i_size through
966 	 * compression, that's just a waste of CPU time.  So, if the
967 	 * end of the file is before the start of our current
968 	 * requested range of bytes, we bail out to the uncompressed
969 	 * cleanup code that can deal with all of this.
970 	 *
971 	 * It isn't really the fastest way to fix things, but this is a
972 	 * very uncommon corner.
973 	 */
974 	if (actual_end <= start)
975 		goto cleanup_and_bail_uncompressed;
976 
977 	total_compressed = actual_end - start;
978 
979 	/*
980 	 * Skip compression for a small file range(<=blocksize) that
981 	 * isn't an inline extent, since it doesn't save disk space at all.
982 	 */
983 	if (total_compressed <= blocksize &&
984 	   (start > 0 || end + 1 < inode->disk_i_size))
985 		goto cleanup_and_bail_uncompressed;
986 
987 	/*
988 	 * For subpage case, we require full page alignment for the sector
989 	 * aligned range.
990 	 * Thus we must also check against @actual_end, not just @end.
991 	 */
992 	if (blocksize < PAGE_SIZE) {
993 		if (!PAGE_ALIGNED(start) ||
994 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
995 			goto cleanup_and_bail_uncompressed;
996 	}
997 
998 	total_compressed = min_t(unsigned long, total_compressed,
999 			BTRFS_MAX_UNCOMPRESSED);
1000 	total_in = 0;
1001 	ret = 0;
1002 
1003 	/*
1004 	 * We do compression for mount -o compress and when the inode has not
1005 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
1006 	 * discover bad compression ratios.
1007 	 */
1008 	if (!inode_need_compress(inode, start, end))
1009 		goto cleanup_and_bail_uncompressed;
1010 
1011 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1012 	if (!folios) {
1013 		/*
1014 		 * Memory allocation failure is not a fatal error, we can fall
1015 		 * back to uncompressed code.
1016 		 */
1017 		goto cleanup_and_bail_uncompressed;
1018 	}
1019 
1020 	if (inode->defrag_compress)
1021 		compress_type = inode->defrag_compress;
1022 	else if (inode->prop_compress)
1023 		compress_type = inode->prop_compress;
1024 
1025 	/* Compression level is applied here. */
1026 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1027 				    mapping, start, folios, &nr_folios, &total_in,
1028 				    &total_compressed);
1029 	if (ret)
1030 		goto mark_incompressible;
1031 
1032 	/*
1033 	 * Zero the tail end of the last page, as we might be sending it down
1034 	 * to disk.
1035 	 */
1036 	poff = offset_in_page(total_compressed);
1037 	if (poff)
1038 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1039 
1040 	/*
1041 	 * Try to create an inline extent.
1042 	 *
1043 	 * If we didn't compress the entire range, try to create an uncompressed
1044 	 * inline extent, else a compressed one.
1045 	 *
1046 	 * Check cow_file_range() for why we don't even try to create inline
1047 	 * extent for the subpage case.
1048 	 */
1049 	if (total_in < actual_end)
1050 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1051 					    BTRFS_COMPRESS_NONE, NULL, false);
1052 	else
1053 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1054 					    compress_type, folios[0], false);
1055 	if (ret <= 0) {
1056 		if (ret < 0)
1057 			mapping_set_error(mapping, -EIO);
1058 		goto free_pages;
1059 	}
1060 
1061 	/*
1062 	 * We aren't doing an inline extent. Round the compressed size up to a
1063 	 * block size boundary so the allocator does sane things.
1064 	 */
1065 	total_compressed = ALIGN(total_compressed, blocksize);
1066 
1067 	/*
1068 	 * One last check to make sure the compression is really a win, compare
1069 	 * the page count read with the blocks on disk, compression must free at
1070 	 * least one sector.
1071 	 */
1072 	total_in = round_up(total_in, fs_info->sectorsize);
1073 	if (total_compressed + blocksize > total_in)
1074 		goto mark_incompressible;
1075 
1076 	/*
1077 	 * The async work queues will take care of doing actual allocation on
1078 	 * disk for these compressed pages, and will submit the bios.
1079 	 */
1080 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1081 			       nr_folios, compress_type);
1082 	BUG_ON(ret);
1083 	if (start + total_in < end) {
1084 		start += total_in;
1085 		cond_resched();
1086 		goto again;
1087 	}
1088 	return;
1089 
1090 mark_incompressible:
1091 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1092 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1093 cleanup_and_bail_uncompressed:
1094 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1095 			       BTRFS_COMPRESS_NONE);
1096 	BUG_ON(ret);
1097 free_pages:
1098 	if (folios) {
1099 		for (i = 0; i < nr_folios; i++) {
1100 			WARN_ON(folios[i]->mapping);
1101 			btrfs_free_compr_folio(folios[i]);
1102 		}
1103 		kfree(folios);
1104 	}
1105 }
1106 
1107 static void free_async_extent_pages(struct async_extent *async_extent)
1108 {
1109 	int i;
1110 
1111 	if (!async_extent->folios)
1112 		return;
1113 
1114 	for (i = 0; i < async_extent->nr_folios; i++) {
1115 		WARN_ON(async_extent->folios[i]->mapping);
1116 		btrfs_free_compr_folio(async_extent->folios[i]);
1117 	}
1118 	kfree(async_extent->folios);
1119 	async_extent->nr_folios = 0;
1120 	async_extent->folios = NULL;
1121 }
1122 
1123 static void submit_uncompressed_range(struct btrfs_inode *inode,
1124 				      struct async_extent *async_extent,
1125 				      struct page *locked_page)
1126 {
1127 	u64 start = async_extent->start;
1128 	u64 end = async_extent->start + async_extent->ram_size - 1;
1129 	int ret;
1130 	struct writeback_control wbc = {
1131 		.sync_mode		= WB_SYNC_ALL,
1132 		.range_start		= start,
1133 		.range_end		= end,
1134 		.no_cgroup_owner	= 1,
1135 	};
1136 
1137 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1138 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1139 	wbc_detach_inode(&wbc);
1140 	if (ret < 0) {
1141 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1142 		if (locked_page) {
1143 			const u64 page_start = page_offset(locked_page);
1144 
1145 			set_page_writeback(locked_page);
1146 			end_page_writeback(locked_page);
1147 			btrfs_mark_ordered_io_finished(inode, locked_page,
1148 						       page_start, PAGE_SIZE,
1149 						       !ret);
1150 			mapping_set_error(locked_page->mapping, ret);
1151 			unlock_page(locked_page);
1152 		}
1153 	}
1154 }
1155 
1156 static void submit_one_async_extent(struct async_chunk *async_chunk,
1157 				    struct async_extent *async_extent,
1158 				    u64 *alloc_hint)
1159 {
1160 	struct btrfs_inode *inode = async_chunk->inode;
1161 	struct extent_io_tree *io_tree = &inode->io_tree;
1162 	struct btrfs_root *root = inode->root;
1163 	struct btrfs_fs_info *fs_info = root->fs_info;
1164 	struct btrfs_ordered_extent *ordered;
1165 	struct btrfs_file_extent file_extent;
1166 	struct btrfs_key ins;
1167 	struct page *locked_page = NULL;
1168 	struct extent_state *cached = NULL;
1169 	struct extent_map *em;
1170 	int ret = 0;
1171 	u64 start = async_extent->start;
1172 	u64 end = async_extent->start + async_extent->ram_size - 1;
1173 
1174 	if (async_chunk->blkcg_css)
1175 		kthread_associate_blkcg(async_chunk->blkcg_css);
1176 
1177 	/*
1178 	 * If async_chunk->locked_page is in the async_extent range, we need to
1179 	 * handle it.
1180 	 */
1181 	if (async_chunk->locked_page) {
1182 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1183 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1184 
1185 		if (!(start >= locked_page_end || end <= locked_page_start))
1186 			locked_page = async_chunk->locked_page;
1187 	}
1188 
1189 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1190 		submit_uncompressed_range(inode, async_extent, locked_page);
1191 		goto done;
1192 	}
1193 
1194 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1195 				   async_extent->compressed_size,
1196 				   async_extent->compressed_size,
1197 				   0, *alloc_hint, &ins, 1, 1);
1198 	if (ret) {
1199 		/*
1200 		 * We can't reserve contiguous space for the compressed size.
1201 		 * Unlikely, but it's possible that we could have enough
1202 		 * non-contiguous space for the uncompressed size instead.  So
1203 		 * fall back to uncompressed.
1204 		 */
1205 		submit_uncompressed_range(inode, async_extent, locked_page);
1206 		goto done;
1207 	}
1208 
1209 	lock_extent(io_tree, start, end, &cached);
1210 
1211 	/* Here we're doing allocation and writeback of the compressed pages */
1212 	file_extent.disk_bytenr = ins.objectid;
1213 	file_extent.disk_num_bytes = ins.offset;
1214 	file_extent.ram_bytes = async_extent->ram_size;
1215 	file_extent.num_bytes = async_extent->ram_size;
1216 	file_extent.offset = 0;
1217 	file_extent.compression = async_extent->compress_type;
1218 
1219 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1220 	if (IS_ERR(em)) {
1221 		ret = PTR_ERR(em);
1222 		goto out_free_reserve;
1223 	}
1224 	free_extent_map(em);
1225 
1226 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1227 					     1 << BTRFS_ORDERED_COMPRESSED);
1228 	if (IS_ERR(ordered)) {
1229 		btrfs_drop_extent_map_range(inode, start, end, false);
1230 		ret = PTR_ERR(ordered);
1231 		goto out_free_reserve;
1232 	}
1233 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1234 
1235 	/* Clear dirty, set writeback and unlock the pages. */
1236 	extent_clear_unlock_delalloc(inode, start, end,
1237 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1238 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1239 	btrfs_submit_compressed_write(ordered,
1240 			    async_extent->folios,	/* compressed_folios */
1241 			    async_extent->nr_folios,
1242 			    async_chunk->write_flags, true);
1243 	*alloc_hint = ins.objectid + ins.offset;
1244 done:
1245 	if (async_chunk->blkcg_css)
1246 		kthread_associate_blkcg(NULL);
1247 	kfree(async_extent);
1248 	return;
1249 
1250 out_free_reserve:
1251 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1252 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1253 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1254 	extent_clear_unlock_delalloc(inode, start, end,
1255 				     NULL, &cached,
1256 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1257 				     EXTENT_DELALLOC_NEW |
1258 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1259 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1260 				     PAGE_END_WRITEBACK);
1261 	free_async_extent_pages(async_extent);
1262 	if (async_chunk->blkcg_css)
1263 		kthread_associate_blkcg(NULL);
1264 	btrfs_debug(fs_info,
1265 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1266 		    btrfs_root_id(root), btrfs_ino(inode), start,
1267 		    async_extent->ram_size, ret);
1268 	kfree(async_extent);
1269 }
1270 
1271 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1272 				     u64 num_bytes)
1273 {
1274 	struct extent_map_tree *em_tree = &inode->extent_tree;
1275 	struct extent_map *em;
1276 	u64 alloc_hint = 0;
1277 
1278 	read_lock(&em_tree->lock);
1279 	em = search_extent_mapping(em_tree, start, num_bytes);
1280 	if (em) {
1281 		/*
1282 		 * if block start isn't an actual block number then find the
1283 		 * first block in this inode and use that as a hint.  If that
1284 		 * block is also bogus then just don't worry about it.
1285 		 */
1286 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1287 			free_extent_map(em);
1288 			em = search_extent_mapping(em_tree, 0, 0);
1289 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1290 				alloc_hint = extent_map_block_start(em);
1291 			if (em)
1292 				free_extent_map(em);
1293 		} else {
1294 			alloc_hint = extent_map_block_start(em);
1295 			free_extent_map(em);
1296 		}
1297 	}
1298 	read_unlock(&em_tree->lock);
1299 
1300 	return alloc_hint;
1301 }
1302 
1303 /*
1304  * when extent_io.c finds a delayed allocation range in the file,
1305  * the call backs end up in this code.  The basic idea is to
1306  * allocate extents on disk for the range, and create ordered data structs
1307  * in ram to track those extents.
1308  *
1309  * locked_page is the page that writepage had locked already.  We use
1310  * it to make sure we don't do extra locks or unlocks.
1311  *
1312  * When this function fails, it unlocks all pages except @locked_page.
1313  *
1314  * When this function successfully creates an inline extent, it returns 1 and
1315  * unlocks all pages including locked_page and starts I/O on them.
1316  * (In reality inline extents are limited to a single page, so locked_page is
1317  * the only page handled anyway).
1318  *
1319  * When this function succeed and creates a normal extent, the page locking
1320  * status depends on the passed in flags:
1321  *
1322  * - If @keep_locked is set, all pages are kept locked.
1323  * - Else all pages except for @locked_page are unlocked.
1324  *
1325  * When a failure happens in the second or later iteration of the
1326  * while-loop, the ordered extents created in previous iterations are kept
1327  * intact. So, the caller must clean them up by calling
1328  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1329  * example.
1330  */
1331 static noinline int cow_file_range(struct btrfs_inode *inode,
1332 				   struct page *locked_page, u64 start, u64 end,
1333 				   u64 *done_offset,
1334 				   bool keep_locked, bool no_inline)
1335 {
1336 	struct btrfs_root *root = inode->root;
1337 	struct btrfs_fs_info *fs_info = root->fs_info;
1338 	struct extent_state *cached = NULL;
1339 	u64 alloc_hint = 0;
1340 	u64 orig_start = start;
1341 	u64 num_bytes;
1342 	unsigned long ram_size;
1343 	u64 cur_alloc_size = 0;
1344 	u64 min_alloc_size;
1345 	u64 blocksize = fs_info->sectorsize;
1346 	struct btrfs_key ins;
1347 	struct extent_map *em;
1348 	unsigned clear_bits;
1349 	unsigned long page_ops;
1350 	bool extent_reserved = false;
1351 	int ret = 0;
1352 
1353 	if (btrfs_is_free_space_inode(inode)) {
1354 		ret = -EINVAL;
1355 		goto out_unlock;
1356 	}
1357 
1358 	num_bytes = ALIGN(end - start + 1, blocksize);
1359 	num_bytes = max(blocksize,  num_bytes);
1360 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1361 
1362 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1363 
1364 	if (!no_inline) {
1365 		/* lets try to make an inline extent */
1366 		ret = cow_file_range_inline(inode, locked_page, start, end, 0,
1367 					    BTRFS_COMPRESS_NONE, NULL, false);
1368 		if (ret <= 0) {
1369 			/*
1370 			 * We succeeded, return 1 so the caller knows we're done
1371 			 * with this page and already handled the IO.
1372 			 *
1373 			 * If there was an error then cow_file_range_inline() has
1374 			 * already done the cleanup.
1375 			 */
1376 			if (ret == 0)
1377 				ret = 1;
1378 			goto done;
1379 		}
1380 	}
1381 
1382 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1383 
1384 	/*
1385 	 * Relocation relies on the relocated extents to have exactly the same
1386 	 * size as the original extents. Normally writeback for relocation data
1387 	 * extents follows a NOCOW path because relocation preallocates the
1388 	 * extents. However, due to an operation such as scrub turning a block
1389 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1390 	 * an extent allocated during COW has exactly the requested size and can
1391 	 * not be split into smaller extents, otherwise relocation breaks and
1392 	 * fails during the stage where it updates the bytenr of file extent
1393 	 * items.
1394 	 */
1395 	if (btrfs_is_data_reloc_root(root))
1396 		min_alloc_size = num_bytes;
1397 	else
1398 		min_alloc_size = fs_info->sectorsize;
1399 
1400 	while (num_bytes > 0) {
1401 		struct btrfs_ordered_extent *ordered;
1402 		struct btrfs_file_extent file_extent;
1403 
1404 		cur_alloc_size = num_bytes;
1405 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1406 					   min_alloc_size, 0, alloc_hint,
1407 					   &ins, 1, 1);
1408 		if (ret == -EAGAIN) {
1409 			/*
1410 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1411 			 * file systems, which is an indication that there are
1412 			 * no active zones to allocate from at the moment.
1413 			 *
1414 			 * If this is the first loop iteration, wait for at
1415 			 * least one zone to finish before retrying the
1416 			 * allocation.  Otherwise ask the caller to write out
1417 			 * the already allocated blocks before coming back to
1418 			 * us, or return -ENOSPC if it can't handle retries.
1419 			 */
1420 			ASSERT(btrfs_is_zoned(fs_info));
1421 			if (start == orig_start) {
1422 				wait_on_bit_io(&inode->root->fs_info->flags,
1423 					       BTRFS_FS_NEED_ZONE_FINISH,
1424 					       TASK_UNINTERRUPTIBLE);
1425 				continue;
1426 			}
1427 			if (done_offset) {
1428 				*done_offset = start - 1;
1429 				return 0;
1430 			}
1431 			ret = -ENOSPC;
1432 		}
1433 		if (ret < 0)
1434 			goto out_unlock;
1435 		cur_alloc_size = ins.offset;
1436 		extent_reserved = true;
1437 
1438 		ram_size = ins.offset;
1439 		file_extent.disk_bytenr = ins.objectid;
1440 		file_extent.disk_num_bytes = ins.offset;
1441 		file_extent.num_bytes = ins.offset;
1442 		file_extent.ram_bytes = ins.offset;
1443 		file_extent.offset = 0;
1444 		file_extent.compression = BTRFS_COMPRESS_NONE;
1445 
1446 		lock_extent(&inode->io_tree, start, start + ram_size - 1,
1447 			    &cached);
1448 
1449 		em = btrfs_create_io_em(inode, start, &file_extent,
1450 					BTRFS_ORDERED_REGULAR);
1451 		if (IS_ERR(em)) {
1452 			unlock_extent(&inode->io_tree, start,
1453 				      start + ram_size - 1, &cached);
1454 			ret = PTR_ERR(em);
1455 			goto out_reserve;
1456 		}
1457 		free_extent_map(em);
1458 
1459 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1460 						     1 << BTRFS_ORDERED_REGULAR);
1461 		if (IS_ERR(ordered)) {
1462 			unlock_extent(&inode->io_tree, start,
1463 				      start + ram_size - 1, &cached);
1464 			ret = PTR_ERR(ordered);
1465 			goto out_drop_extent_cache;
1466 		}
1467 
1468 		if (btrfs_is_data_reloc_root(root)) {
1469 			ret = btrfs_reloc_clone_csums(ordered);
1470 
1471 			/*
1472 			 * Only drop cache here, and process as normal.
1473 			 *
1474 			 * We must not allow extent_clear_unlock_delalloc()
1475 			 * at out_unlock label to free meta of this ordered
1476 			 * extent, as its meta should be freed by
1477 			 * btrfs_finish_ordered_io().
1478 			 *
1479 			 * So we must continue until @start is increased to
1480 			 * skip current ordered extent.
1481 			 */
1482 			if (ret)
1483 				btrfs_drop_extent_map_range(inode, start,
1484 							    start + ram_size - 1,
1485 							    false);
1486 		}
1487 		btrfs_put_ordered_extent(ordered);
1488 
1489 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1490 
1491 		/*
1492 		 * We're not doing compressed IO, don't unlock the first page
1493 		 * (which the caller expects to stay locked), don't clear any
1494 		 * dirty bits and don't set any writeback bits
1495 		 *
1496 		 * Do set the Ordered (Private2) bit so we know this page was
1497 		 * properly setup for writepage.
1498 		 */
1499 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1500 		page_ops |= PAGE_SET_ORDERED;
1501 
1502 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1503 					     locked_page, &cached,
1504 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1505 					     page_ops);
1506 		if (num_bytes < cur_alloc_size)
1507 			num_bytes = 0;
1508 		else
1509 			num_bytes -= cur_alloc_size;
1510 		alloc_hint = ins.objectid + ins.offset;
1511 		start += cur_alloc_size;
1512 		extent_reserved = false;
1513 
1514 		/*
1515 		 * btrfs_reloc_clone_csums() error, since start is increased
1516 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1517 		 * free metadata of current ordered extent, we're OK to exit.
1518 		 */
1519 		if (ret)
1520 			goto out_unlock;
1521 	}
1522 done:
1523 	if (done_offset)
1524 		*done_offset = end;
1525 	return ret;
1526 
1527 out_drop_extent_cache:
1528 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1529 out_reserve:
1530 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1531 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1532 out_unlock:
1533 	/*
1534 	 * Now, we have three regions to clean up:
1535 	 *
1536 	 * |-------(1)----|---(2)---|-------------(3)----------|
1537 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1538 	 *
1539 	 * We process each region below.
1540 	 */
1541 
1542 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1543 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1544 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1545 
1546 	/*
1547 	 * For the range (1). We have already instantiated the ordered extents
1548 	 * for this region. They are cleaned up by
1549 	 * btrfs_cleanup_ordered_extents() in e.g,
1550 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1551 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1552 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1553 	 * function.
1554 	 *
1555 	 * However, in case of @keep_locked, we still need to unlock the pages
1556 	 * (except @locked_page) to ensure all the pages are unlocked.
1557 	 */
1558 	if (keep_locked && orig_start < start) {
1559 		if (!locked_page)
1560 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1561 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1562 					     locked_page, NULL, 0, page_ops);
1563 	}
1564 
1565 	/*
1566 	 * At this point we're unlocked, we want to make sure we're only
1567 	 * clearing these flags under the extent lock, so lock the rest of the
1568 	 * range and clear everything up.
1569 	 */
1570 	lock_extent(&inode->io_tree, start, end, NULL);
1571 
1572 	/*
1573 	 * For the range (2). If we reserved an extent for our delalloc range
1574 	 * (or a subrange) and failed to create the respective ordered extent,
1575 	 * then it means that when we reserved the extent we decremented the
1576 	 * extent's size from the data space_info's bytes_may_use counter and
1577 	 * incremented the space_info's bytes_reserved counter by the same
1578 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1579 	 * to decrement again the data space_info's bytes_may_use counter,
1580 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1581 	 */
1582 	if (extent_reserved) {
1583 		extent_clear_unlock_delalloc(inode, start,
1584 					     start + cur_alloc_size - 1,
1585 					     locked_page, &cached,
1586 					     clear_bits,
1587 					     page_ops);
1588 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1589 		start += cur_alloc_size;
1590 	}
1591 
1592 	/*
1593 	 * For the range (3). We never touched the region. In addition to the
1594 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1595 	 * space_info's bytes_may_use counter, reserved in
1596 	 * btrfs_check_data_free_space().
1597 	 */
1598 	if (start < end) {
1599 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1600 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1601 					     &cached, clear_bits, page_ops);
1602 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1603 	}
1604 	return ret;
1605 }
1606 
1607 /*
1608  * Phase two of compressed writeback.  This is the ordered portion of the code,
1609  * which only gets called in the order the work was queued.  We walk all the
1610  * async extents created by compress_file_range and send them down to the disk.
1611  *
1612  * If called with @do_free == true then it'll try to finish the work and free
1613  * the work struct eventually.
1614  */
1615 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1616 {
1617 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1618 						     work);
1619 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1620 	struct async_extent *async_extent;
1621 	unsigned long nr_pages;
1622 	u64 alloc_hint = 0;
1623 
1624 	if (do_free) {
1625 		struct async_cow *async_cow;
1626 
1627 		btrfs_add_delayed_iput(async_chunk->inode);
1628 		if (async_chunk->blkcg_css)
1629 			css_put(async_chunk->blkcg_css);
1630 
1631 		async_cow = async_chunk->async_cow;
1632 		if (atomic_dec_and_test(&async_cow->num_chunks))
1633 			kvfree(async_cow);
1634 		return;
1635 	}
1636 
1637 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1638 		PAGE_SHIFT;
1639 
1640 	while (!list_empty(&async_chunk->extents)) {
1641 		async_extent = list_entry(async_chunk->extents.next,
1642 					  struct async_extent, list);
1643 		list_del(&async_extent->list);
1644 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1645 	}
1646 
1647 	/* atomic_sub_return implies a barrier */
1648 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1649 	    5 * SZ_1M)
1650 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1651 }
1652 
1653 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1654 				    struct page *locked_page, u64 start,
1655 				    u64 end, struct writeback_control *wbc)
1656 {
1657 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1658 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1659 	struct async_cow *ctx;
1660 	struct async_chunk *async_chunk;
1661 	unsigned long nr_pages;
1662 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1663 	int i;
1664 	unsigned nofs_flag;
1665 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1666 
1667 	nofs_flag = memalloc_nofs_save();
1668 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1669 	memalloc_nofs_restore(nofs_flag);
1670 	if (!ctx)
1671 		return false;
1672 
1673 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1674 
1675 	async_chunk = ctx->chunks;
1676 	atomic_set(&ctx->num_chunks, num_chunks);
1677 
1678 	for (i = 0; i < num_chunks; i++) {
1679 		u64 cur_end = min(end, start + SZ_512K - 1);
1680 
1681 		/*
1682 		 * igrab is called higher up in the call chain, take only the
1683 		 * lightweight reference for the callback lifetime
1684 		 */
1685 		ihold(&inode->vfs_inode);
1686 		async_chunk[i].async_cow = ctx;
1687 		async_chunk[i].inode = inode;
1688 		async_chunk[i].start = start;
1689 		async_chunk[i].end = cur_end;
1690 		async_chunk[i].write_flags = write_flags;
1691 		INIT_LIST_HEAD(&async_chunk[i].extents);
1692 
1693 		/*
1694 		 * The locked_page comes all the way from writepage and its
1695 		 * the original page we were actually given.  As we spread
1696 		 * this large delalloc region across multiple async_chunk
1697 		 * structs, only the first struct needs a pointer to locked_page
1698 		 *
1699 		 * This way we don't need racey decisions about who is supposed
1700 		 * to unlock it.
1701 		 */
1702 		if (locked_page) {
1703 			/*
1704 			 * Depending on the compressibility, the pages might or
1705 			 * might not go through async.  We want all of them to
1706 			 * be accounted against wbc once.  Let's do it here
1707 			 * before the paths diverge.  wbc accounting is used
1708 			 * only for foreign writeback detection and doesn't
1709 			 * need full accuracy.  Just account the whole thing
1710 			 * against the first page.
1711 			 */
1712 			wbc_account_cgroup_owner(wbc, locked_page,
1713 						 cur_end - start);
1714 			async_chunk[i].locked_page = locked_page;
1715 			locked_page = NULL;
1716 		} else {
1717 			async_chunk[i].locked_page = NULL;
1718 		}
1719 
1720 		if (blkcg_css != blkcg_root_css) {
1721 			css_get(blkcg_css);
1722 			async_chunk[i].blkcg_css = blkcg_css;
1723 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1724 		} else {
1725 			async_chunk[i].blkcg_css = NULL;
1726 		}
1727 
1728 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1729 				submit_compressed_extents);
1730 
1731 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1732 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1733 
1734 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1735 
1736 		start = cur_end + 1;
1737 	}
1738 	return true;
1739 }
1740 
1741 /*
1742  * Run the delalloc range from start to end, and write back any dirty pages
1743  * covered by the range.
1744  */
1745 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1746 				     struct page *locked_page, u64 start,
1747 				     u64 end, struct writeback_control *wbc,
1748 				     bool pages_dirty)
1749 {
1750 	u64 done_offset = end;
1751 	int ret;
1752 
1753 	while (start <= end) {
1754 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1755 				     true, false);
1756 		if (ret)
1757 			return ret;
1758 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1759 					  done_offset, wbc, pages_dirty);
1760 		start = done_offset + 1;
1761 	}
1762 
1763 	return 1;
1764 }
1765 
1766 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1767 			   const u64 start, const u64 end)
1768 {
1769 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1770 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1771 	const u64 range_bytes = end + 1 - start;
1772 	struct extent_io_tree *io_tree = &inode->io_tree;
1773 	struct extent_state *cached_state = NULL;
1774 	u64 range_start = start;
1775 	u64 count;
1776 	int ret;
1777 
1778 	/*
1779 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1780 	 * made we had not enough available data space and therefore we did not
1781 	 * reserve data space for it, since we though we could do NOCOW for the
1782 	 * respective file range (either there is prealloc extent or the inode
1783 	 * has the NOCOW bit set).
1784 	 *
1785 	 * However when we need to fallback to COW mode (because for example the
1786 	 * block group for the corresponding extent was turned to RO mode by a
1787 	 * scrub or relocation) we need to do the following:
1788 	 *
1789 	 * 1) We increment the bytes_may_use counter of the data space info.
1790 	 *    If COW succeeds, it allocates a new data extent and after doing
1791 	 *    that it decrements the space info's bytes_may_use counter and
1792 	 *    increments its bytes_reserved counter by the same amount (we do
1793 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1794 	 *    bytes_may_use counter to compensate (when space is reserved at
1795 	 *    buffered write time, the bytes_may_use counter is incremented);
1796 	 *
1797 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1798 	 *    that if the COW path fails for any reason, it decrements (through
1799 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1800 	 *    data space info, which we incremented in the step above.
1801 	 *
1802 	 * If we need to fallback to cow and the inode corresponds to a free
1803 	 * space cache inode or an inode of the data relocation tree, we must
1804 	 * also increment bytes_may_use of the data space_info for the same
1805 	 * reason. Space caches and relocated data extents always get a prealloc
1806 	 * extent for them, however scrub or balance may have set the block
1807 	 * group that contains that extent to RO mode and therefore force COW
1808 	 * when starting writeback.
1809 	 */
1810 	lock_extent(io_tree, start, end, &cached_state);
1811 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1812 				 EXTENT_NORESERVE, 0, NULL);
1813 	if (count > 0 || is_space_ino || is_reloc_ino) {
1814 		u64 bytes = count;
1815 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1816 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1817 
1818 		if (is_space_ino || is_reloc_ino)
1819 			bytes = range_bytes;
1820 
1821 		spin_lock(&sinfo->lock);
1822 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1823 		spin_unlock(&sinfo->lock);
1824 
1825 		if (count > 0)
1826 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1827 					 NULL);
1828 	}
1829 	unlock_extent(io_tree, start, end, &cached_state);
1830 
1831 	/*
1832 	 * Don't try to create inline extents, as a mix of inline extent that
1833 	 * is written out and unlocked directly and a normal NOCOW extent
1834 	 * doesn't work.
1835 	 */
1836 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1837 	ASSERT(ret != 1);
1838 	return ret;
1839 }
1840 
1841 struct can_nocow_file_extent_args {
1842 	/* Input fields. */
1843 
1844 	/* Start file offset of the range we want to NOCOW. */
1845 	u64 start;
1846 	/* End file offset (inclusive) of the range we want to NOCOW. */
1847 	u64 end;
1848 	bool writeback_path;
1849 	bool strict;
1850 	/*
1851 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1852 	 * anymore.
1853 	 */
1854 	bool free_path;
1855 
1856 	/*
1857 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1858 	 * The expected file extent for the NOCOW write.
1859 	 */
1860 	struct btrfs_file_extent file_extent;
1861 };
1862 
1863 /*
1864  * Check if we can NOCOW the file extent that the path points to.
1865  * This function may return with the path released, so the caller should check
1866  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1867  *
1868  * Returns: < 0 on error
1869  *            0 if we can not NOCOW
1870  *            1 if we can NOCOW
1871  */
1872 static int can_nocow_file_extent(struct btrfs_path *path,
1873 				 struct btrfs_key *key,
1874 				 struct btrfs_inode *inode,
1875 				 struct can_nocow_file_extent_args *args)
1876 {
1877 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1878 	struct extent_buffer *leaf = path->nodes[0];
1879 	struct btrfs_root *root = inode->root;
1880 	struct btrfs_file_extent_item *fi;
1881 	struct btrfs_root *csum_root;
1882 	u64 io_start;
1883 	u64 extent_end;
1884 	u8 extent_type;
1885 	int can_nocow = 0;
1886 	int ret = 0;
1887 	bool nowait = path->nowait;
1888 
1889 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1890 	extent_type = btrfs_file_extent_type(leaf, fi);
1891 
1892 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1893 		goto out;
1894 
1895 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1896 	    extent_type == BTRFS_FILE_EXTENT_REG)
1897 		goto out;
1898 
1899 	/*
1900 	 * If the extent was created before the generation where the last snapshot
1901 	 * for its subvolume was created, then this implies the extent is shared,
1902 	 * hence we must COW.
1903 	 */
1904 	if (!args->strict &&
1905 	    btrfs_file_extent_generation(leaf, fi) <=
1906 	    btrfs_root_last_snapshot(&root->root_item))
1907 		goto out;
1908 
1909 	/* An explicit hole, must COW. */
1910 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1911 		goto out;
1912 
1913 	/* Compressed/encrypted/encoded extents must be COWed. */
1914 	if (btrfs_file_extent_compression(leaf, fi) ||
1915 	    btrfs_file_extent_encryption(leaf, fi) ||
1916 	    btrfs_file_extent_other_encoding(leaf, fi))
1917 		goto out;
1918 
1919 	extent_end = btrfs_file_extent_end(path);
1920 
1921 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1922 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1923 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1924 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1925 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1926 
1927 	/*
1928 	 * The following checks can be expensive, as they need to take other
1929 	 * locks and do btree or rbtree searches, so release the path to avoid
1930 	 * blocking other tasks for too long.
1931 	 */
1932 	btrfs_release_path(path);
1933 
1934 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1935 				    key->offset - args->file_extent.offset,
1936 				    args->file_extent.disk_bytenr, args->strict, path);
1937 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1938 	if (ret != 0)
1939 		goto out;
1940 
1941 	if (args->free_path) {
1942 		/*
1943 		 * We don't need the path anymore, plus through the
1944 		 * btrfs_lookup_csums_list() call below we will end up allocating
1945 		 * another path. So free the path to avoid unnecessary extra
1946 		 * memory usage.
1947 		 */
1948 		btrfs_free_path(path);
1949 		path = NULL;
1950 	}
1951 
1952 	/* If there are pending snapshots for this root, we must COW. */
1953 	if (args->writeback_path && !is_freespace_inode &&
1954 	    atomic_read(&root->snapshot_force_cow))
1955 		goto out;
1956 
1957 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1958 	args->file_extent.offset += args->start - key->offset;
1959 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1960 
1961 	/*
1962 	 * Force COW if csums exist in the range. This ensures that csums for a
1963 	 * given extent are either valid or do not exist.
1964 	 */
1965 
1966 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1967 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1968 				      io_start + args->file_extent.num_bytes - 1,
1969 				      NULL, nowait);
1970 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1971 	if (ret != 0)
1972 		goto out;
1973 
1974 	can_nocow = 1;
1975  out:
1976 	if (args->free_path && path)
1977 		btrfs_free_path(path);
1978 
1979 	return ret < 0 ? ret : can_nocow;
1980 }
1981 
1982 /*
1983  * when nowcow writeback call back.  This checks for snapshots or COW copies
1984  * of the extents that exist in the file, and COWs the file as required.
1985  *
1986  * If no cow copies or snapshots exist, we write directly to the existing
1987  * blocks on disk
1988  */
1989 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1990 				       struct page *locked_page,
1991 				       const u64 start, const u64 end)
1992 {
1993 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1994 	struct btrfs_root *root = inode->root;
1995 	struct btrfs_path *path;
1996 	u64 cow_start = (u64)-1;
1997 	u64 cur_offset = start;
1998 	int ret;
1999 	bool check_prev = true;
2000 	u64 ino = btrfs_ino(inode);
2001 	struct can_nocow_file_extent_args nocow_args = { 0 };
2002 
2003 	/*
2004 	 * Normally on a zoned device we're only doing COW writes, but in case
2005 	 * of relocation on a zoned filesystem serializes I/O so that we're only
2006 	 * writing sequentially and can end up here as well.
2007 	 */
2008 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2009 
2010 	path = btrfs_alloc_path();
2011 	if (!path) {
2012 		ret = -ENOMEM;
2013 		goto error;
2014 	}
2015 
2016 	nocow_args.end = end;
2017 	nocow_args.writeback_path = true;
2018 
2019 	while (cur_offset <= end) {
2020 		struct btrfs_block_group *nocow_bg = NULL;
2021 		struct btrfs_ordered_extent *ordered;
2022 		struct btrfs_key found_key;
2023 		struct btrfs_file_extent_item *fi;
2024 		struct extent_buffer *leaf;
2025 		struct extent_state *cached_state = NULL;
2026 		u64 extent_end;
2027 		u64 nocow_end;
2028 		int extent_type;
2029 		bool is_prealloc;
2030 
2031 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2032 					       cur_offset, 0);
2033 		if (ret < 0)
2034 			goto error;
2035 
2036 		/*
2037 		 * If there is no extent for our range when doing the initial
2038 		 * search, then go back to the previous slot as it will be the
2039 		 * one containing the search offset
2040 		 */
2041 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2042 			leaf = path->nodes[0];
2043 			btrfs_item_key_to_cpu(leaf, &found_key,
2044 					      path->slots[0] - 1);
2045 			if (found_key.objectid == ino &&
2046 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2047 				path->slots[0]--;
2048 		}
2049 		check_prev = false;
2050 next_slot:
2051 		/* Go to next leaf if we have exhausted the current one */
2052 		leaf = path->nodes[0];
2053 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2054 			ret = btrfs_next_leaf(root, path);
2055 			if (ret < 0)
2056 				goto error;
2057 			if (ret > 0)
2058 				break;
2059 			leaf = path->nodes[0];
2060 		}
2061 
2062 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2063 
2064 		/* Didn't find anything for our INO */
2065 		if (found_key.objectid > ino)
2066 			break;
2067 		/*
2068 		 * Keep searching until we find an EXTENT_ITEM or there are no
2069 		 * more extents for this inode
2070 		 */
2071 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2072 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2073 			path->slots[0]++;
2074 			goto next_slot;
2075 		}
2076 
2077 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2078 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2079 		    found_key.offset > end)
2080 			break;
2081 
2082 		/*
2083 		 * If the found extent starts after requested offset, then
2084 		 * adjust extent_end to be right before this extent begins
2085 		 */
2086 		if (found_key.offset > cur_offset) {
2087 			extent_end = found_key.offset;
2088 			extent_type = 0;
2089 			goto must_cow;
2090 		}
2091 
2092 		/*
2093 		 * Found extent which begins before our range and potentially
2094 		 * intersect it
2095 		 */
2096 		fi = btrfs_item_ptr(leaf, path->slots[0],
2097 				    struct btrfs_file_extent_item);
2098 		extent_type = btrfs_file_extent_type(leaf, fi);
2099 		/* If this is triggered then we have a memory corruption. */
2100 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2101 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2102 			ret = -EUCLEAN;
2103 			goto error;
2104 		}
2105 		extent_end = btrfs_file_extent_end(path);
2106 
2107 		/*
2108 		 * If the extent we got ends before our current offset, skip to
2109 		 * the next extent.
2110 		 */
2111 		if (extent_end <= cur_offset) {
2112 			path->slots[0]++;
2113 			goto next_slot;
2114 		}
2115 
2116 		nocow_args.start = cur_offset;
2117 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2118 		if (ret < 0)
2119 			goto error;
2120 		if (ret == 0)
2121 			goto must_cow;
2122 
2123 		ret = 0;
2124 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2125 				nocow_args.file_extent.disk_bytenr +
2126 				nocow_args.file_extent.offset);
2127 		if (!nocow_bg) {
2128 must_cow:
2129 			/*
2130 			 * If we can't perform NOCOW writeback for the range,
2131 			 * then record the beginning of the range that needs to
2132 			 * be COWed.  It will be written out before the next
2133 			 * NOCOW range if we find one, or when exiting this
2134 			 * loop.
2135 			 */
2136 			if (cow_start == (u64)-1)
2137 				cow_start = cur_offset;
2138 			cur_offset = extent_end;
2139 			if (cur_offset > end)
2140 				break;
2141 			if (!path->nodes[0])
2142 				continue;
2143 			path->slots[0]++;
2144 			goto next_slot;
2145 		}
2146 
2147 		/*
2148 		 * COW range from cow_start to found_key.offset - 1. As the key
2149 		 * will contain the beginning of the first extent that can be
2150 		 * NOCOW, following one which needs to be COW'ed
2151 		 */
2152 		if (cow_start != (u64)-1) {
2153 			ret = fallback_to_cow(inode, locked_page,
2154 					      cow_start, found_key.offset - 1);
2155 			cow_start = (u64)-1;
2156 			if (ret) {
2157 				btrfs_dec_nocow_writers(nocow_bg);
2158 				goto error;
2159 			}
2160 		}
2161 
2162 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2163 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2164 
2165 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2166 		if (is_prealloc) {
2167 			struct extent_map *em;
2168 
2169 			em = btrfs_create_io_em(inode, cur_offset,
2170 						&nocow_args.file_extent,
2171 						BTRFS_ORDERED_PREALLOC);
2172 			if (IS_ERR(em)) {
2173 				unlock_extent(&inode->io_tree, cur_offset,
2174 					      nocow_end, &cached_state);
2175 				btrfs_dec_nocow_writers(nocow_bg);
2176 				ret = PTR_ERR(em);
2177 				goto error;
2178 			}
2179 			free_extent_map(em);
2180 		}
2181 
2182 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2183 				&nocow_args.file_extent,
2184 				is_prealloc
2185 				? (1 << BTRFS_ORDERED_PREALLOC)
2186 				: (1 << BTRFS_ORDERED_NOCOW));
2187 		btrfs_dec_nocow_writers(nocow_bg);
2188 		if (IS_ERR(ordered)) {
2189 			if (is_prealloc) {
2190 				btrfs_drop_extent_map_range(inode, cur_offset,
2191 							    nocow_end, false);
2192 			}
2193 			unlock_extent(&inode->io_tree, cur_offset,
2194 				      nocow_end, &cached_state);
2195 			ret = PTR_ERR(ordered);
2196 			goto error;
2197 		}
2198 
2199 		if (btrfs_is_data_reloc_root(root))
2200 			/*
2201 			 * Error handled later, as we must prevent
2202 			 * extent_clear_unlock_delalloc() in error handler
2203 			 * from freeing metadata of created ordered extent.
2204 			 */
2205 			ret = btrfs_reloc_clone_csums(ordered);
2206 		btrfs_put_ordered_extent(ordered);
2207 
2208 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2209 					     locked_page, &cached_state,
2210 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2211 					     EXTENT_CLEAR_DATA_RESV,
2212 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2213 
2214 		cur_offset = extent_end;
2215 
2216 		/*
2217 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2218 		 * handler, as metadata for created ordered extent will only
2219 		 * be freed by btrfs_finish_ordered_io().
2220 		 */
2221 		if (ret)
2222 			goto error;
2223 	}
2224 	btrfs_release_path(path);
2225 
2226 	if (cur_offset <= end && cow_start == (u64)-1)
2227 		cow_start = cur_offset;
2228 
2229 	if (cow_start != (u64)-1) {
2230 		cur_offset = end;
2231 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2232 		cow_start = (u64)-1;
2233 		if (ret)
2234 			goto error;
2235 	}
2236 
2237 	btrfs_free_path(path);
2238 	return 0;
2239 
2240 error:
2241 	/*
2242 	 * If an error happened while a COW region is outstanding, cur_offset
2243 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2244 	 * as well.
2245 	 */
2246 	if (cow_start != (u64)-1)
2247 		cur_offset = cow_start;
2248 
2249 	/*
2250 	 * We need to lock the extent here because we're clearing DELALLOC and
2251 	 * we're not locked at this point.
2252 	 */
2253 	if (cur_offset < end) {
2254 		struct extent_state *cached = NULL;
2255 
2256 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2257 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2258 					     locked_page, &cached,
2259 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2260 					     EXTENT_DEFRAG |
2261 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2262 					     PAGE_START_WRITEBACK |
2263 					     PAGE_END_WRITEBACK);
2264 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2265 	}
2266 	btrfs_free_path(path);
2267 	return ret;
2268 }
2269 
2270 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2271 {
2272 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2273 		if (inode->defrag_bytes &&
2274 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2275 			return false;
2276 		return true;
2277 	}
2278 	return false;
2279 }
2280 
2281 /*
2282  * Function to process delayed allocation (create CoW) for ranges which are
2283  * being touched for the first time.
2284  */
2285 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2286 			     u64 start, u64 end, struct writeback_control *wbc)
2287 {
2288 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2289 	int ret;
2290 
2291 	/*
2292 	 * The range must cover part of the @locked_page, or a return of 1
2293 	 * can confuse the caller.
2294 	 */
2295 	ASSERT(!(end <= page_offset(locked_page) ||
2296 		 start >= page_offset(locked_page) + PAGE_SIZE));
2297 
2298 	if (should_nocow(inode, start, end)) {
2299 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2300 		goto out;
2301 	}
2302 
2303 	if (btrfs_inode_can_compress(inode) &&
2304 	    inode_need_compress(inode, start, end) &&
2305 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2306 		return 1;
2307 
2308 	if (zoned)
2309 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2310 				       true);
2311 	else
2312 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2313 				     false, false);
2314 
2315 out:
2316 	if (ret < 0)
2317 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2318 					      end - start + 1);
2319 	return ret;
2320 }
2321 
2322 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2323 				 struct extent_state *orig, u64 split)
2324 {
2325 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2326 	u64 size;
2327 
2328 	lockdep_assert_held(&inode->io_tree.lock);
2329 
2330 	/* not delalloc, ignore it */
2331 	if (!(orig->state & EXTENT_DELALLOC))
2332 		return;
2333 
2334 	size = orig->end - orig->start + 1;
2335 	if (size > fs_info->max_extent_size) {
2336 		u32 num_extents;
2337 		u64 new_size;
2338 
2339 		/*
2340 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2341 		 * applies here, just in reverse.
2342 		 */
2343 		new_size = orig->end - split + 1;
2344 		num_extents = count_max_extents(fs_info, new_size);
2345 		new_size = split - orig->start;
2346 		num_extents += count_max_extents(fs_info, new_size);
2347 		if (count_max_extents(fs_info, size) >= num_extents)
2348 			return;
2349 	}
2350 
2351 	spin_lock(&inode->lock);
2352 	btrfs_mod_outstanding_extents(inode, 1);
2353 	spin_unlock(&inode->lock);
2354 }
2355 
2356 /*
2357  * Handle merged delayed allocation extents so we can keep track of new extents
2358  * that are just merged onto old extents, such as when we are doing sequential
2359  * writes, so we can properly account for the metadata space we'll need.
2360  */
2361 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2362 				 struct extent_state *other)
2363 {
2364 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2365 	u64 new_size, old_size;
2366 	u32 num_extents;
2367 
2368 	lockdep_assert_held(&inode->io_tree.lock);
2369 
2370 	/* not delalloc, ignore it */
2371 	if (!(other->state & EXTENT_DELALLOC))
2372 		return;
2373 
2374 	if (new->start > other->start)
2375 		new_size = new->end - other->start + 1;
2376 	else
2377 		new_size = other->end - new->start + 1;
2378 
2379 	/* we're not bigger than the max, unreserve the space and go */
2380 	if (new_size <= fs_info->max_extent_size) {
2381 		spin_lock(&inode->lock);
2382 		btrfs_mod_outstanding_extents(inode, -1);
2383 		spin_unlock(&inode->lock);
2384 		return;
2385 	}
2386 
2387 	/*
2388 	 * We have to add up either side to figure out how many extents were
2389 	 * accounted for before we merged into one big extent.  If the number of
2390 	 * extents we accounted for is <= the amount we need for the new range
2391 	 * then we can return, otherwise drop.  Think of it like this
2392 	 *
2393 	 * [ 4k][MAX_SIZE]
2394 	 *
2395 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2396 	 * need 2 outstanding extents, on one side we have 1 and the other side
2397 	 * we have 1 so they are == and we can return.  But in this case
2398 	 *
2399 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2400 	 *
2401 	 * Each range on their own accounts for 2 extents, but merged together
2402 	 * they are only 3 extents worth of accounting, so we need to drop in
2403 	 * this case.
2404 	 */
2405 	old_size = other->end - other->start + 1;
2406 	num_extents = count_max_extents(fs_info, old_size);
2407 	old_size = new->end - new->start + 1;
2408 	num_extents += count_max_extents(fs_info, old_size);
2409 	if (count_max_extents(fs_info, new_size) >= num_extents)
2410 		return;
2411 
2412 	spin_lock(&inode->lock);
2413 	btrfs_mod_outstanding_extents(inode, -1);
2414 	spin_unlock(&inode->lock);
2415 }
2416 
2417 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2418 {
2419 	struct btrfs_root *root = inode->root;
2420 	struct btrfs_fs_info *fs_info = root->fs_info;
2421 
2422 	spin_lock(&root->delalloc_lock);
2423 	ASSERT(list_empty(&inode->delalloc_inodes));
2424 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2425 	root->nr_delalloc_inodes++;
2426 	if (root->nr_delalloc_inodes == 1) {
2427 		spin_lock(&fs_info->delalloc_root_lock);
2428 		ASSERT(list_empty(&root->delalloc_root));
2429 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2430 		spin_unlock(&fs_info->delalloc_root_lock);
2431 	}
2432 	spin_unlock(&root->delalloc_lock);
2433 }
2434 
2435 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2436 {
2437 	struct btrfs_root *root = inode->root;
2438 	struct btrfs_fs_info *fs_info = root->fs_info;
2439 
2440 	lockdep_assert_held(&root->delalloc_lock);
2441 
2442 	/*
2443 	 * We may be called after the inode was already deleted from the list,
2444 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2445 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2446 	 * still has ->delalloc_bytes > 0.
2447 	 */
2448 	if (!list_empty(&inode->delalloc_inodes)) {
2449 		list_del_init(&inode->delalloc_inodes);
2450 		root->nr_delalloc_inodes--;
2451 		if (!root->nr_delalloc_inodes) {
2452 			ASSERT(list_empty(&root->delalloc_inodes));
2453 			spin_lock(&fs_info->delalloc_root_lock);
2454 			ASSERT(!list_empty(&root->delalloc_root));
2455 			list_del_init(&root->delalloc_root);
2456 			spin_unlock(&fs_info->delalloc_root_lock);
2457 		}
2458 	}
2459 }
2460 
2461 /*
2462  * Properly track delayed allocation bytes in the inode and to maintain the
2463  * list of inodes that have pending delalloc work to be done.
2464  */
2465 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2466 			       u32 bits)
2467 {
2468 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2469 
2470 	lockdep_assert_held(&inode->io_tree.lock);
2471 
2472 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2473 		WARN_ON(1);
2474 	/*
2475 	 * set_bit and clear bit hooks normally require _irqsave/restore
2476 	 * but in this case, we are only testing for the DELALLOC
2477 	 * bit, which is only set or cleared with irqs on
2478 	 */
2479 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2480 		u64 len = state->end + 1 - state->start;
2481 		u64 prev_delalloc_bytes;
2482 		u32 num_extents = count_max_extents(fs_info, len);
2483 
2484 		spin_lock(&inode->lock);
2485 		btrfs_mod_outstanding_extents(inode, num_extents);
2486 		spin_unlock(&inode->lock);
2487 
2488 		/* For sanity tests */
2489 		if (btrfs_is_testing(fs_info))
2490 			return;
2491 
2492 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2493 					 fs_info->delalloc_batch);
2494 		spin_lock(&inode->lock);
2495 		prev_delalloc_bytes = inode->delalloc_bytes;
2496 		inode->delalloc_bytes += len;
2497 		if (bits & EXTENT_DEFRAG)
2498 			inode->defrag_bytes += len;
2499 		spin_unlock(&inode->lock);
2500 
2501 		/*
2502 		 * We don't need to be under the protection of the inode's lock,
2503 		 * because we are called while holding the inode's io_tree lock
2504 		 * and are therefore protected against concurrent calls of this
2505 		 * function and btrfs_clear_delalloc_extent().
2506 		 */
2507 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2508 			btrfs_add_delalloc_inode(inode);
2509 	}
2510 
2511 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2512 	    (bits & EXTENT_DELALLOC_NEW)) {
2513 		spin_lock(&inode->lock);
2514 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2515 		spin_unlock(&inode->lock);
2516 	}
2517 }
2518 
2519 /*
2520  * Once a range is no longer delalloc this function ensures that proper
2521  * accounting happens.
2522  */
2523 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2524 				 struct extent_state *state, u32 bits)
2525 {
2526 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2527 	u64 len = state->end + 1 - state->start;
2528 	u32 num_extents = count_max_extents(fs_info, len);
2529 
2530 	lockdep_assert_held(&inode->io_tree.lock);
2531 
2532 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2533 		spin_lock(&inode->lock);
2534 		inode->defrag_bytes -= len;
2535 		spin_unlock(&inode->lock);
2536 	}
2537 
2538 	/*
2539 	 * set_bit and clear bit hooks normally require _irqsave/restore
2540 	 * but in this case, we are only testing for the DELALLOC
2541 	 * bit, which is only set or cleared with irqs on
2542 	 */
2543 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2544 		struct btrfs_root *root = inode->root;
2545 		u64 new_delalloc_bytes;
2546 
2547 		spin_lock(&inode->lock);
2548 		btrfs_mod_outstanding_extents(inode, -num_extents);
2549 		spin_unlock(&inode->lock);
2550 
2551 		/*
2552 		 * We don't reserve metadata space for space cache inodes so we
2553 		 * don't need to call delalloc_release_metadata if there is an
2554 		 * error.
2555 		 */
2556 		if (bits & EXTENT_CLEAR_META_RESV &&
2557 		    root != fs_info->tree_root)
2558 			btrfs_delalloc_release_metadata(inode, len, true);
2559 
2560 		/* For sanity tests. */
2561 		if (btrfs_is_testing(fs_info))
2562 			return;
2563 
2564 		if (!btrfs_is_data_reloc_root(root) &&
2565 		    !btrfs_is_free_space_inode(inode) &&
2566 		    !(state->state & EXTENT_NORESERVE) &&
2567 		    (bits & EXTENT_CLEAR_DATA_RESV))
2568 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2569 
2570 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2571 					 fs_info->delalloc_batch);
2572 		spin_lock(&inode->lock);
2573 		inode->delalloc_bytes -= len;
2574 		new_delalloc_bytes = inode->delalloc_bytes;
2575 		spin_unlock(&inode->lock);
2576 
2577 		/*
2578 		 * We don't need to be under the protection of the inode's lock,
2579 		 * because we are called while holding the inode's io_tree lock
2580 		 * and are therefore protected against concurrent calls of this
2581 		 * function and btrfs_set_delalloc_extent().
2582 		 */
2583 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2584 			spin_lock(&root->delalloc_lock);
2585 			btrfs_del_delalloc_inode(inode);
2586 			spin_unlock(&root->delalloc_lock);
2587 		}
2588 	}
2589 
2590 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2591 	    (bits & EXTENT_DELALLOC_NEW)) {
2592 		spin_lock(&inode->lock);
2593 		ASSERT(inode->new_delalloc_bytes >= len);
2594 		inode->new_delalloc_bytes -= len;
2595 		if (bits & EXTENT_ADD_INODE_BYTES)
2596 			inode_add_bytes(&inode->vfs_inode, len);
2597 		spin_unlock(&inode->lock);
2598 	}
2599 }
2600 
2601 /*
2602  * given a list of ordered sums record them in the inode.  This happens
2603  * at IO completion time based on sums calculated at bio submission time.
2604  */
2605 static int add_pending_csums(struct btrfs_trans_handle *trans,
2606 			     struct list_head *list)
2607 {
2608 	struct btrfs_ordered_sum *sum;
2609 	struct btrfs_root *csum_root = NULL;
2610 	int ret;
2611 
2612 	list_for_each_entry(sum, list, list) {
2613 		trans->adding_csums = true;
2614 		if (!csum_root)
2615 			csum_root = btrfs_csum_root(trans->fs_info,
2616 						    sum->logical);
2617 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2618 		trans->adding_csums = false;
2619 		if (ret)
2620 			return ret;
2621 	}
2622 	return 0;
2623 }
2624 
2625 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2626 					 const u64 start,
2627 					 const u64 len,
2628 					 struct extent_state **cached_state)
2629 {
2630 	u64 search_start = start;
2631 	const u64 end = start + len - 1;
2632 
2633 	while (search_start < end) {
2634 		const u64 search_len = end - search_start + 1;
2635 		struct extent_map *em;
2636 		u64 em_len;
2637 		int ret = 0;
2638 
2639 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2640 		if (IS_ERR(em))
2641 			return PTR_ERR(em);
2642 
2643 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2644 			goto next;
2645 
2646 		em_len = em->len;
2647 		if (em->start < search_start)
2648 			em_len -= search_start - em->start;
2649 		if (em_len > search_len)
2650 			em_len = search_len;
2651 
2652 		ret = set_extent_bit(&inode->io_tree, search_start,
2653 				     search_start + em_len - 1,
2654 				     EXTENT_DELALLOC_NEW, cached_state);
2655 next:
2656 		search_start = extent_map_end(em);
2657 		free_extent_map(em);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 	return 0;
2662 }
2663 
2664 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2665 			      unsigned int extra_bits,
2666 			      struct extent_state **cached_state)
2667 {
2668 	WARN_ON(PAGE_ALIGNED(end));
2669 
2670 	if (start >= i_size_read(&inode->vfs_inode) &&
2671 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2672 		/*
2673 		 * There can't be any extents following eof in this case so just
2674 		 * set the delalloc new bit for the range directly.
2675 		 */
2676 		extra_bits |= EXTENT_DELALLOC_NEW;
2677 	} else {
2678 		int ret;
2679 
2680 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2681 						    end + 1 - start,
2682 						    cached_state);
2683 		if (ret)
2684 			return ret;
2685 	}
2686 
2687 	return set_extent_bit(&inode->io_tree, start, end,
2688 			      EXTENT_DELALLOC | extra_bits, cached_state);
2689 }
2690 
2691 /* see btrfs_writepage_start_hook for details on why this is required */
2692 struct btrfs_writepage_fixup {
2693 	struct page *page;
2694 	struct btrfs_inode *inode;
2695 	struct btrfs_work work;
2696 };
2697 
2698 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2699 {
2700 	struct btrfs_writepage_fixup *fixup =
2701 		container_of(work, struct btrfs_writepage_fixup, work);
2702 	struct btrfs_ordered_extent *ordered;
2703 	struct extent_state *cached_state = NULL;
2704 	struct extent_changeset *data_reserved = NULL;
2705 	struct page *page = fixup->page;
2706 	struct btrfs_inode *inode = fixup->inode;
2707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2708 	u64 page_start = page_offset(page);
2709 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2710 	int ret = 0;
2711 	bool free_delalloc_space = true;
2712 
2713 	/*
2714 	 * This is similar to page_mkwrite, we need to reserve the space before
2715 	 * we take the page lock.
2716 	 */
2717 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2718 					   PAGE_SIZE);
2719 again:
2720 	lock_page(page);
2721 
2722 	/*
2723 	 * Before we queued this fixup, we took a reference on the page.
2724 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2725 	 * address space.
2726 	 */
2727 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2728 		/*
2729 		 * Unfortunately this is a little tricky, either
2730 		 *
2731 		 * 1) We got here and our page had already been dealt with and
2732 		 *    we reserved our space, thus ret == 0, so we need to just
2733 		 *    drop our space reservation and bail.  This can happen the
2734 		 *    first time we come into the fixup worker, or could happen
2735 		 *    while waiting for the ordered extent.
2736 		 * 2) Our page was already dealt with, but we happened to get an
2737 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2738 		 *    this case we obviously don't have anything to release, but
2739 		 *    because the page was already dealt with we don't want to
2740 		 *    mark the page with an error, so make sure we're resetting
2741 		 *    ret to 0.  This is why we have this check _before_ the ret
2742 		 *    check, because we do not want to have a surprise ENOSPC
2743 		 *    when the page was already properly dealt with.
2744 		 */
2745 		if (!ret) {
2746 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2747 			btrfs_delalloc_release_space(inode, data_reserved,
2748 						     page_start, PAGE_SIZE,
2749 						     true);
2750 		}
2751 		ret = 0;
2752 		goto out_page;
2753 	}
2754 
2755 	/*
2756 	 * We can't mess with the page state unless it is locked, so now that
2757 	 * it is locked bail if we failed to make our space reservation.
2758 	 */
2759 	if (ret)
2760 		goto out_page;
2761 
2762 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2763 
2764 	/* already ordered? We're done */
2765 	if (PageOrdered(page))
2766 		goto out_reserved;
2767 
2768 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2769 	if (ordered) {
2770 		unlock_extent(&inode->io_tree, page_start, page_end,
2771 			      &cached_state);
2772 		unlock_page(page);
2773 		btrfs_start_ordered_extent(ordered);
2774 		btrfs_put_ordered_extent(ordered);
2775 		goto again;
2776 	}
2777 
2778 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2779 					&cached_state);
2780 	if (ret)
2781 		goto out_reserved;
2782 
2783 	/*
2784 	 * Everything went as planned, we're now the owner of a dirty page with
2785 	 * delayed allocation bits set and space reserved for our COW
2786 	 * destination.
2787 	 *
2788 	 * The page was dirty when we started, nothing should have cleaned it.
2789 	 */
2790 	BUG_ON(!PageDirty(page));
2791 	free_delalloc_space = false;
2792 out_reserved:
2793 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2794 	if (free_delalloc_space)
2795 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2796 					     PAGE_SIZE, true);
2797 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2798 out_page:
2799 	if (ret) {
2800 		/*
2801 		 * We hit ENOSPC or other errors.  Update the mapping and page
2802 		 * to reflect the errors and clean the page.
2803 		 */
2804 		mapping_set_error(page->mapping, ret);
2805 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2806 					       PAGE_SIZE, !ret);
2807 		clear_page_dirty_for_io(page);
2808 	}
2809 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2810 	unlock_page(page);
2811 	put_page(page);
2812 	kfree(fixup);
2813 	extent_changeset_free(data_reserved);
2814 	/*
2815 	 * As a precaution, do a delayed iput in case it would be the last iput
2816 	 * that could need flushing space. Recursing back to fixup worker would
2817 	 * deadlock.
2818 	 */
2819 	btrfs_add_delayed_iput(inode);
2820 }
2821 
2822 /*
2823  * There are a few paths in the higher layers of the kernel that directly
2824  * set the page dirty bit without asking the filesystem if it is a
2825  * good idea.  This causes problems because we want to make sure COW
2826  * properly happens and the data=ordered rules are followed.
2827  *
2828  * In our case any range that doesn't have the ORDERED bit set
2829  * hasn't been properly setup for IO.  We kick off an async process
2830  * to fix it up.  The async helper will wait for ordered extents, set
2831  * the delalloc bit and make it safe to write the page.
2832  */
2833 int btrfs_writepage_cow_fixup(struct page *page)
2834 {
2835 	struct inode *inode = page->mapping->host;
2836 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2837 	struct btrfs_writepage_fixup *fixup;
2838 
2839 	/* This page has ordered extent covering it already */
2840 	if (PageOrdered(page))
2841 		return 0;
2842 
2843 	/*
2844 	 * PageChecked is set below when we create a fixup worker for this page,
2845 	 * don't try to create another one if we're already PageChecked()
2846 	 *
2847 	 * The extent_io writepage code will redirty the page if we send back
2848 	 * EAGAIN.
2849 	 */
2850 	if (PageChecked(page))
2851 		return -EAGAIN;
2852 
2853 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2854 	if (!fixup)
2855 		return -EAGAIN;
2856 
2857 	/*
2858 	 * We are already holding a reference to this inode from
2859 	 * write_cache_pages.  We need to hold it because the space reservation
2860 	 * takes place outside of the page lock, and we can't trust
2861 	 * page->mapping outside of the page lock.
2862 	 */
2863 	ihold(inode);
2864 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2865 	get_page(page);
2866 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2867 	fixup->page = page;
2868 	fixup->inode = BTRFS_I(inode);
2869 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2870 
2871 	return -EAGAIN;
2872 }
2873 
2874 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2875 				       struct btrfs_inode *inode, u64 file_pos,
2876 				       struct btrfs_file_extent_item *stack_fi,
2877 				       const bool update_inode_bytes,
2878 				       u64 qgroup_reserved)
2879 {
2880 	struct btrfs_root *root = inode->root;
2881 	const u64 sectorsize = root->fs_info->sectorsize;
2882 	struct btrfs_path *path;
2883 	struct extent_buffer *leaf;
2884 	struct btrfs_key ins;
2885 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2886 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2887 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2888 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2889 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2890 	struct btrfs_drop_extents_args drop_args = { 0 };
2891 	int ret;
2892 
2893 	path = btrfs_alloc_path();
2894 	if (!path)
2895 		return -ENOMEM;
2896 
2897 	/*
2898 	 * we may be replacing one extent in the tree with another.
2899 	 * The new extent is pinned in the extent map, and we don't want
2900 	 * to drop it from the cache until it is completely in the btree.
2901 	 *
2902 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2903 	 * the caller is expected to unpin it and allow it to be merged
2904 	 * with the others.
2905 	 */
2906 	drop_args.path = path;
2907 	drop_args.start = file_pos;
2908 	drop_args.end = file_pos + num_bytes;
2909 	drop_args.replace_extent = true;
2910 	drop_args.extent_item_size = sizeof(*stack_fi);
2911 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2912 	if (ret)
2913 		goto out;
2914 
2915 	if (!drop_args.extent_inserted) {
2916 		ins.objectid = btrfs_ino(inode);
2917 		ins.offset = file_pos;
2918 		ins.type = BTRFS_EXTENT_DATA_KEY;
2919 
2920 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2921 					      sizeof(*stack_fi));
2922 		if (ret)
2923 			goto out;
2924 	}
2925 	leaf = path->nodes[0];
2926 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2927 	write_extent_buffer(leaf, stack_fi,
2928 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2929 			sizeof(struct btrfs_file_extent_item));
2930 
2931 	btrfs_mark_buffer_dirty(trans, leaf);
2932 	btrfs_release_path(path);
2933 
2934 	/*
2935 	 * If we dropped an inline extent here, we know the range where it is
2936 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2937 	 * number of bytes only for that range containing the inline extent.
2938 	 * The remaining of the range will be processed when clearning the
2939 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2940 	 */
2941 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2942 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2943 
2944 		inline_size = drop_args.bytes_found - inline_size;
2945 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2946 		drop_args.bytes_found -= inline_size;
2947 		num_bytes -= sectorsize;
2948 	}
2949 
2950 	if (update_inode_bytes)
2951 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2952 
2953 	ins.objectid = disk_bytenr;
2954 	ins.offset = disk_num_bytes;
2955 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2956 
2957 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2958 	if (ret)
2959 		goto out;
2960 
2961 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2962 					       file_pos - offset,
2963 					       qgroup_reserved, &ins);
2964 out:
2965 	btrfs_free_path(path);
2966 
2967 	return ret;
2968 }
2969 
2970 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2971 					 u64 start, u64 len)
2972 {
2973 	struct btrfs_block_group *cache;
2974 
2975 	cache = btrfs_lookup_block_group(fs_info, start);
2976 	ASSERT(cache);
2977 
2978 	spin_lock(&cache->lock);
2979 	cache->delalloc_bytes -= len;
2980 	spin_unlock(&cache->lock);
2981 
2982 	btrfs_put_block_group(cache);
2983 }
2984 
2985 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2986 					     struct btrfs_ordered_extent *oe)
2987 {
2988 	struct btrfs_file_extent_item stack_fi;
2989 	bool update_inode_bytes;
2990 	u64 num_bytes = oe->num_bytes;
2991 	u64 ram_bytes = oe->ram_bytes;
2992 
2993 	memset(&stack_fi, 0, sizeof(stack_fi));
2994 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2995 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2996 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2997 						   oe->disk_num_bytes);
2998 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2999 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3000 		num_bytes = oe->truncated_len;
3001 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3002 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3003 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3004 	/* Encryption and other encoding is reserved and all 0 */
3005 
3006 	/*
3007 	 * For delalloc, when completing an ordered extent we update the inode's
3008 	 * bytes when clearing the range in the inode's io tree, so pass false
3009 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3010 	 * except if the ordered extent was truncated.
3011 	 */
3012 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3013 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3014 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3015 
3016 	return insert_reserved_file_extent(trans, oe->inode,
3017 					   oe->file_offset, &stack_fi,
3018 					   update_inode_bytes, oe->qgroup_rsv);
3019 }
3020 
3021 /*
3022  * As ordered data IO finishes, this gets called so we can finish
3023  * an ordered extent if the range of bytes in the file it covers are
3024  * fully written.
3025  */
3026 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3027 {
3028 	struct btrfs_inode *inode = ordered_extent->inode;
3029 	struct btrfs_root *root = inode->root;
3030 	struct btrfs_fs_info *fs_info = root->fs_info;
3031 	struct btrfs_trans_handle *trans = NULL;
3032 	struct extent_io_tree *io_tree = &inode->io_tree;
3033 	struct extent_state *cached_state = NULL;
3034 	u64 start, end;
3035 	int compress_type = 0;
3036 	int ret = 0;
3037 	u64 logical_len = ordered_extent->num_bytes;
3038 	bool freespace_inode;
3039 	bool truncated = false;
3040 	bool clear_reserved_extent = true;
3041 	unsigned int clear_bits = EXTENT_DEFRAG;
3042 
3043 	start = ordered_extent->file_offset;
3044 	end = start + ordered_extent->num_bytes - 1;
3045 
3046 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3047 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3048 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3049 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3050 		clear_bits |= EXTENT_DELALLOC_NEW;
3051 
3052 	freespace_inode = btrfs_is_free_space_inode(inode);
3053 	if (!freespace_inode)
3054 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3055 
3056 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3057 		ret = -EIO;
3058 		goto out;
3059 	}
3060 
3061 	if (btrfs_is_zoned(fs_info))
3062 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3063 					ordered_extent->disk_num_bytes);
3064 
3065 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3066 		truncated = true;
3067 		logical_len = ordered_extent->truncated_len;
3068 		/* Truncated the entire extent, don't bother adding */
3069 		if (!logical_len)
3070 			goto out;
3071 	}
3072 
3073 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3074 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3075 
3076 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3077 		if (freespace_inode)
3078 			trans = btrfs_join_transaction_spacecache(root);
3079 		else
3080 			trans = btrfs_join_transaction(root);
3081 		if (IS_ERR(trans)) {
3082 			ret = PTR_ERR(trans);
3083 			trans = NULL;
3084 			goto out;
3085 		}
3086 		trans->block_rsv = &inode->block_rsv;
3087 		ret = btrfs_update_inode_fallback(trans, inode);
3088 		if (ret) /* -ENOMEM or corruption */
3089 			btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 
3093 	clear_bits |= EXTENT_LOCKED;
3094 	lock_extent(io_tree, start, end, &cached_state);
3095 
3096 	if (freespace_inode)
3097 		trans = btrfs_join_transaction_spacecache(root);
3098 	else
3099 		trans = btrfs_join_transaction(root);
3100 	if (IS_ERR(trans)) {
3101 		ret = PTR_ERR(trans);
3102 		trans = NULL;
3103 		goto out;
3104 	}
3105 
3106 	trans->block_rsv = &inode->block_rsv;
3107 
3108 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3109 	if (ret)
3110 		goto out;
3111 
3112 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3113 		compress_type = ordered_extent->compress_type;
3114 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3115 		BUG_ON(compress_type);
3116 		ret = btrfs_mark_extent_written(trans, inode,
3117 						ordered_extent->file_offset,
3118 						ordered_extent->file_offset +
3119 						logical_len);
3120 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3121 						  ordered_extent->disk_num_bytes);
3122 	} else {
3123 		BUG_ON(root == fs_info->tree_root);
3124 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3125 		if (!ret) {
3126 			clear_reserved_extent = false;
3127 			btrfs_release_delalloc_bytes(fs_info,
3128 						ordered_extent->disk_bytenr,
3129 						ordered_extent->disk_num_bytes);
3130 		}
3131 	}
3132 	if (ret < 0) {
3133 		btrfs_abort_transaction(trans, ret);
3134 		goto out;
3135 	}
3136 
3137 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3138 				 ordered_extent->num_bytes, trans->transid);
3139 	if (ret < 0) {
3140 		btrfs_abort_transaction(trans, ret);
3141 		goto out;
3142 	}
3143 
3144 	ret = add_pending_csums(trans, &ordered_extent->list);
3145 	if (ret) {
3146 		btrfs_abort_transaction(trans, ret);
3147 		goto out;
3148 	}
3149 
3150 	/*
3151 	 * If this is a new delalloc range, clear its new delalloc flag to
3152 	 * update the inode's number of bytes. This needs to be done first
3153 	 * before updating the inode item.
3154 	 */
3155 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3156 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3157 		clear_extent_bit(&inode->io_tree, start, end,
3158 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3159 				 &cached_state);
3160 
3161 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3162 	ret = btrfs_update_inode_fallback(trans, inode);
3163 	if (ret) { /* -ENOMEM or corruption */
3164 		btrfs_abort_transaction(trans, ret);
3165 		goto out;
3166 	}
3167 out:
3168 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3169 			 &cached_state);
3170 
3171 	if (trans)
3172 		btrfs_end_transaction(trans);
3173 
3174 	if (ret || truncated) {
3175 		u64 unwritten_start = start;
3176 
3177 		/*
3178 		 * If we failed to finish this ordered extent for any reason we
3179 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3180 		 * extent, and mark the inode with the error if it wasn't
3181 		 * already set.  Any error during writeback would have already
3182 		 * set the mapping error, so we need to set it if we're the ones
3183 		 * marking this ordered extent as failed.
3184 		 */
3185 		if (ret)
3186 			btrfs_mark_ordered_extent_error(ordered_extent);
3187 
3188 		if (truncated)
3189 			unwritten_start += logical_len;
3190 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3191 
3192 		/*
3193 		 * Drop extent maps for the part of the extent we didn't write.
3194 		 *
3195 		 * We have an exception here for the free_space_inode, this is
3196 		 * because when we do btrfs_get_extent() on the free space inode
3197 		 * we will search the commit root.  If this is a new block group
3198 		 * we won't find anything, and we will trip over the assert in
3199 		 * writepage where we do ASSERT(em->block_start !=
3200 		 * EXTENT_MAP_HOLE).
3201 		 *
3202 		 * Theoretically we could also skip this for any NOCOW extent as
3203 		 * we don't mess with the extent map tree in the NOCOW case, but
3204 		 * for now simply skip this if we are the free space inode.
3205 		 */
3206 		if (!btrfs_is_free_space_inode(inode))
3207 			btrfs_drop_extent_map_range(inode, unwritten_start,
3208 						    end, false);
3209 
3210 		/*
3211 		 * If the ordered extent had an IOERR or something else went
3212 		 * wrong we need to return the space for this ordered extent
3213 		 * back to the allocator.  We only free the extent in the
3214 		 * truncated case if we didn't write out the extent at all.
3215 		 *
3216 		 * If we made it past insert_reserved_file_extent before we
3217 		 * errored out then we don't need to do this as the accounting
3218 		 * has already been done.
3219 		 */
3220 		if ((ret || !logical_len) &&
3221 		    clear_reserved_extent &&
3222 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3223 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3224 			/*
3225 			 * Discard the range before returning it back to the
3226 			 * free space pool
3227 			 */
3228 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3229 				btrfs_discard_extent(fs_info,
3230 						ordered_extent->disk_bytenr,
3231 						ordered_extent->disk_num_bytes,
3232 						NULL);
3233 			btrfs_free_reserved_extent(fs_info,
3234 					ordered_extent->disk_bytenr,
3235 					ordered_extent->disk_num_bytes, 1);
3236 			/*
3237 			 * Actually free the qgroup rsv which was released when
3238 			 * the ordered extent was created.
3239 			 */
3240 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3241 						  ordered_extent->qgroup_rsv,
3242 						  BTRFS_QGROUP_RSV_DATA);
3243 		}
3244 	}
3245 
3246 	/*
3247 	 * This needs to be done to make sure anybody waiting knows we are done
3248 	 * updating everything for this ordered extent.
3249 	 */
3250 	btrfs_remove_ordered_extent(inode, ordered_extent);
3251 
3252 	/* once for us */
3253 	btrfs_put_ordered_extent(ordered_extent);
3254 	/* once for the tree */
3255 	btrfs_put_ordered_extent(ordered_extent);
3256 
3257 	return ret;
3258 }
3259 
3260 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3261 {
3262 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3263 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3264 	    list_empty(&ordered->bioc_list))
3265 		btrfs_finish_ordered_zoned(ordered);
3266 	return btrfs_finish_one_ordered(ordered);
3267 }
3268 
3269 /*
3270  * Verify the checksum for a single sector without any extra action that depend
3271  * on the type of I/O.
3272  */
3273 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3274 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3275 {
3276 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3277 	char *kaddr;
3278 
3279 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3280 
3281 	shash->tfm = fs_info->csum_shash;
3282 
3283 	kaddr = kmap_local_page(page) + pgoff;
3284 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3285 	kunmap_local(kaddr);
3286 
3287 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3288 		return -EIO;
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Verify the checksum of a single data sector.
3294  *
3295  * @bbio:	btrfs_io_bio which contains the csum
3296  * @dev:	device the sector is on
3297  * @bio_offset:	offset to the beginning of the bio (in bytes)
3298  * @bv:		bio_vec to check
3299  *
3300  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3301  * detected, report the error and fill the corrupted range with zero.
3302  *
3303  * Return %true if the sector is ok or had no checksum to start with, else %false.
3304  */
3305 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3306 			u32 bio_offset, struct bio_vec *bv)
3307 {
3308 	struct btrfs_inode *inode = bbio->inode;
3309 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3310 	u64 file_offset = bbio->file_offset + bio_offset;
3311 	u64 end = file_offset + bv->bv_len - 1;
3312 	u8 *csum_expected;
3313 	u8 csum[BTRFS_CSUM_SIZE];
3314 
3315 	ASSERT(bv->bv_len == fs_info->sectorsize);
3316 
3317 	if (!bbio->csum)
3318 		return true;
3319 
3320 	if (btrfs_is_data_reloc_root(inode->root) &&
3321 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3322 			   NULL)) {
3323 		/* Skip the range without csum for data reloc inode */
3324 		clear_extent_bits(&inode->io_tree, file_offset, end,
3325 				  EXTENT_NODATASUM);
3326 		return true;
3327 	}
3328 
3329 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3330 				fs_info->csum_size;
3331 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3332 				    csum_expected))
3333 		goto zeroit;
3334 	return true;
3335 
3336 zeroit:
3337 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3338 				    bbio->mirror_num);
3339 	if (dev)
3340 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3341 	memzero_bvec(bv);
3342 	return false;
3343 }
3344 
3345 /*
3346  * Perform a delayed iput on @inode.
3347  *
3348  * @inode: The inode we want to perform iput on
3349  *
3350  * This function uses the generic vfs_inode::i_count to track whether we should
3351  * just decrement it (in case it's > 1) or if this is the last iput then link
3352  * the inode to the delayed iput machinery. Delayed iputs are processed at
3353  * transaction commit time/superblock commit/cleaner kthread.
3354  */
3355 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3356 {
3357 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3358 	unsigned long flags;
3359 
3360 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3361 		return;
3362 
3363 	atomic_inc(&fs_info->nr_delayed_iputs);
3364 	/*
3365 	 * Need to be irq safe here because we can be called from either an irq
3366 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3367 	 * context.
3368 	 */
3369 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3370 	ASSERT(list_empty(&inode->delayed_iput));
3371 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3372 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3373 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3374 		wake_up_process(fs_info->cleaner_kthread);
3375 }
3376 
3377 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3378 				    struct btrfs_inode *inode)
3379 {
3380 	list_del_init(&inode->delayed_iput);
3381 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3382 	iput(&inode->vfs_inode);
3383 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3384 		wake_up(&fs_info->delayed_iputs_wait);
3385 	spin_lock_irq(&fs_info->delayed_iput_lock);
3386 }
3387 
3388 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3389 				   struct btrfs_inode *inode)
3390 {
3391 	if (!list_empty(&inode->delayed_iput)) {
3392 		spin_lock_irq(&fs_info->delayed_iput_lock);
3393 		if (!list_empty(&inode->delayed_iput))
3394 			run_delayed_iput_locked(fs_info, inode);
3395 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 	}
3397 }
3398 
3399 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3400 {
3401 	/*
3402 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3403 	 * calls btrfs_add_delayed_iput() and that needs to lock
3404 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3405 	 * prevent a deadlock.
3406 	 */
3407 	spin_lock_irq(&fs_info->delayed_iput_lock);
3408 	while (!list_empty(&fs_info->delayed_iputs)) {
3409 		struct btrfs_inode *inode;
3410 
3411 		inode = list_first_entry(&fs_info->delayed_iputs,
3412 				struct btrfs_inode, delayed_iput);
3413 		run_delayed_iput_locked(fs_info, inode);
3414 		if (need_resched()) {
3415 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3416 			cond_resched();
3417 			spin_lock_irq(&fs_info->delayed_iput_lock);
3418 		}
3419 	}
3420 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3421 }
3422 
3423 /*
3424  * Wait for flushing all delayed iputs
3425  *
3426  * @fs_info:  the filesystem
3427  *
3428  * This will wait on any delayed iputs that are currently running with KILLABLE
3429  * set.  Once they are all done running we will return, unless we are killed in
3430  * which case we return EINTR. This helps in user operations like fallocate etc
3431  * that might get blocked on the iputs.
3432  *
3433  * Return EINTR if we were killed, 0 if nothing's pending
3434  */
3435 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3436 {
3437 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3438 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3439 	if (ret)
3440 		return -EINTR;
3441 	return 0;
3442 }
3443 
3444 /*
3445  * This creates an orphan entry for the given inode in case something goes wrong
3446  * in the middle of an unlink.
3447  */
3448 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3449 		     struct btrfs_inode *inode)
3450 {
3451 	int ret;
3452 
3453 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3454 	if (ret && ret != -EEXIST) {
3455 		btrfs_abort_transaction(trans, ret);
3456 		return ret;
3457 	}
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * We have done the delete so we can go ahead and remove the orphan item for
3464  * this particular inode.
3465  */
3466 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3467 			    struct btrfs_inode *inode)
3468 {
3469 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3470 }
3471 
3472 /*
3473  * this cleans up any orphans that may be left on the list from the last use
3474  * of this root.
3475  */
3476 int btrfs_orphan_cleanup(struct btrfs_root *root)
3477 {
3478 	struct btrfs_fs_info *fs_info = root->fs_info;
3479 	struct btrfs_path *path;
3480 	struct extent_buffer *leaf;
3481 	struct btrfs_key key, found_key;
3482 	struct btrfs_trans_handle *trans;
3483 	struct inode *inode;
3484 	u64 last_objectid = 0;
3485 	int ret = 0, nr_unlink = 0;
3486 
3487 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3488 		return 0;
3489 
3490 	path = btrfs_alloc_path();
3491 	if (!path) {
3492 		ret = -ENOMEM;
3493 		goto out;
3494 	}
3495 	path->reada = READA_BACK;
3496 
3497 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3498 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3499 	key.offset = (u64)-1;
3500 
3501 	while (1) {
3502 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503 		if (ret < 0)
3504 			goto out;
3505 
3506 		/*
3507 		 * if ret == 0 means we found what we were searching for, which
3508 		 * is weird, but possible, so only screw with path if we didn't
3509 		 * find the key and see if we have stuff that matches
3510 		 */
3511 		if (ret > 0) {
3512 			ret = 0;
3513 			if (path->slots[0] == 0)
3514 				break;
3515 			path->slots[0]--;
3516 		}
3517 
3518 		/* pull out the item */
3519 		leaf = path->nodes[0];
3520 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3521 
3522 		/* make sure the item matches what we want */
3523 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3524 			break;
3525 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3526 			break;
3527 
3528 		/* release the path since we're done with it */
3529 		btrfs_release_path(path);
3530 
3531 		/*
3532 		 * this is where we are basically btrfs_lookup, without the
3533 		 * crossing root thing.  we store the inode number in the
3534 		 * offset of the orphan item.
3535 		 */
3536 
3537 		if (found_key.offset == last_objectid) {
3538 			/*
3539 			 * We found the same inode as before. This means we were
3540 			 * not able to remove its items via eviction triggered
3541 			 * by an iput(). A transaction abort may have happened,
3542 			 * due to -ENOSPC for example, so try to grab the error
3543 			 * that lead to a transaction abort, if any.
3544 			 */
3545 			btrfs_err(fs_info,
3546 				  "Error removing orphan entry, stopping orphan cleanup");
3547 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3548 			goto out;
3549 		}
3550 
3551 		last_objectid = found_key.offset;
3552 
3553 		found_key.objectid = found_key.offset;
3554 		found_key.type = BTRFS_INODE_ITEM_KEY;
3555 		found_key.offset = 0;
3556 		inode = btrfs_iget(last_objectid, root);
3557 		if (IS_ERR(inode)) {
3558 			ret = PTR_ERR(inode);
3559 			inode = NULL;
3560 			if (ret != -ENOENT)
3561 				goto out;
3562 		}
3563 
3564 		if (!inode && root == fs_info->tree_root) {
3565 			struct btrfs_root *dead_root;
3566 			int is_dead_root = 0;
3567 
3568 			/*
3569 			 * This is an orphan in the tree root. Currently these
3570 			 * could come from 2 sources:
3571 			 *  a) a root (snapshot/subvolume) deletion in progress
3572 			 *  b) a free space cache inode
3573 			 * We need to distinguish those two, as the orphan item
3574 			 * for a root must not get deleted before the deletion
3575 			 * of the snapshot/subvolume's tree completes.
3576 			 *
3577 			 * btrfs_find_orphan_roots() ran before us, which has
3578 			 * found all deleted roots and loaded them into
3579 			 * fs_info->fs_roots_radix. So here we can find if an
3580 			 * orphan item corresponds to a deleted root by looking
3581 			 * up the root from that radix tree.
3582 			 */
3583 
3584 			spin_lock(&fs_info->fs_roots_radix_lock);
3585 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3586 							 (unsigned long)found_key.objectid);
3587 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3588 				is_dead_root = 1;
3589 			spin_unlock(&fs_info->fs_roots_radix_lock);
3590 
3591 			if (is_dead_root) {
3592 				/* prevent this orphan from being found again */
3593 				key.offset = found_key.objectid - 1;
3594 				continue;
3595 			}
3596 
3597 		}
3598 
3599 		/*
3600 		 * If we have an inode with links, there are a couple of
3601 		 * possibilities:
3602 		 *
3603 		 * 1. We were halfway through creating fsverity metadata for the
3604 		 * file. In that case, the orphan item represents incomplete
3605 		 * fsverity metadata which must be cleaned up with
3606 		 * btrfs_drop_verity_items and deleting the orphan item.
3607 
3608 		 * 2. Old kernels (before v3.12) used to create an
3609 		 * orphan item for truncate indicating that there were possibly
3610 		 * extent items past i_size that needed to be deleted. In v3.12,
3611 		 * truncate was changed to update i_size in sync with the extent
3612 		 * items, but the (useless) orphan item was still created. Since
3613 		 * v4.18, we don't create the orphan item for truncate at all.
3614 		 *
3615 		 * So, this item could mean that we need to do a truncate, but
3616 		 * only if this filesystem was last used on a pre-v3.12 kernel
3617 		 * and was not cleanly unmounted. The odds of that are quite
3618 		 * slim, and it's a pain to do the truncate now, so just delete
3619 		 * the orphan item.
3620 		 *
3621 		 * It's also possible that this orphan item was supposed to be
3622 		 * deleted but wasn't. The inode number may have been reused,
3623 		 * but either way, we can delete the orphan item.
3624 		 */
3625 		if (!inode || inode->i_nlink) {
3626 			if (inode) {
3627 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3628 				iput(inode);
3629 				inode = NULL;
3630 				if (ret)
3631 					goto out;
3632 			}
3633 			trans = btrfs_start_transaction(root, 1);
3634 			if (IS_ERR(trans)) {
3635 				ret = PTR_ERR(trans);
3636 				goto out;
3637 			}
3638 			btrfs_debug(fs_info, "auto deleting %Lu",
3639 				    found_key.objectid);
3640 			ret = btrfs_del_orphan_item(trans, root,
3641 						    found_key.objectid);
3642 			btrfs_end_transaction(trans);
3643 			if (ret)
3644 				goto out;
3645 			continue;
3646 		}
3647 
3648 		nr_unlink++;
3649 
3650 		/* this will do delete_inode and everything for us */
3651 		iput(inode);
3652 	}
3653 	/* release the path since we're done with it */
3654 	btrfs_release_path(path);
3655 
3656 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3657 		trans = btrfs_join_transaction(root);
3658 		if (!IS_ERR(trans))
3659 			btrfs_end_transaction(trans);
3660 	}
3661 
3662 	if (nr_unlink)
3663 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3664 
3665 out:
3666 	if (ret)
3667 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3668 	btrfs_free_path(path);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3674  * don't find any xattrs, we know there can't be any acls.
3675  *
3676  * slot is the slot the inode is in, objectid is the objectid of the inode
3677  */
3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3679 					  int slot, u64 objectid,
3680 					  int *first_xattr_slot)
3681 {
3682 	u32 nritems = btrfs_header_nritems(leaf);
3683 	struct btrfs_key found_key;
3684 	static u64 xattr_access = 0;
3685 	static u64 xattr_default = 0;
3686 	int scanned = 0;
3687 
3688 	if (!xattr_access) {
3689 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3693 	}
3694 
3695 	slot++;
3696 	*first_xattr_slot = -1;
3697 	while (slot < nritems) {
3698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699 
3700 		/* we found a different objectid, there must not be acls */
3701 		if (found_key.objectid != objectid)
3702 			return 0;
3703 
3704 		/* we found an xattr, assume we've got an acl */
3705 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3706 			if (*first_xattr_slot == -1)
3707 				*first_xattr_slot = slot;
3708 			if (found_key.offset == xattr_access ||
3709 			    found_key.offset == xattr_default)
3710 				return 1;
3711 		}
3712 
3713 		/*
3714 		 * we found a key greater than an xattr key, there can't
3715 		 * be any acls later on
3716 		 */
3717 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 			return 0;
3719 
3720 		slot++;
3721 		scanned++;
3722 
3723 		/*
3724 		 * it goes inode, inode backrefs, xattrs, extents,
3725 		 * so if there are a ton of hard links to an inode there can
3726 		 * be a lot of backrefs.  Don't waste time searching too hard,
3727 		 * this is just an optimization
3728 		 */
3729 		if (scanned >= 8)
3730 			break;
3731 	}
3732 	/* we hit the end of the leaf before we found an xattr or
3733 	 * something larger than an xattr.  We have to assume the inode
3734 	 * has acls
3735 	 */
3736 	if (*first_xattr_slot == -1)
3737 		*first_xattr_slot = slot;
3738 	return 1;
3739 }
3740 
3741 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3742 {
3743 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3744 
3745 	if (WARN_ON_ONCE(inode->file_extent_tree))
3746 		return 0;
3747 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3748 		return 0;
3749 	if (!S_ISREG(inode->vfs_inode.i_mode))
3750 		return 0;
3751 	if (btrfs_is_free_space_inode(inode))
3752 		return 0;
3753 
3754 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3755 	if (!inode->file_extent_tree)
3756 		return -ENOMEM;
3757 
3758 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3759 	/* Lockdep class is set only for the file extent tree. */
3760 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3761 
3762 	return 0;
3763 }
3764 
3765 /*
3766  * read an inode from the btree into the in-memory inode
3767  */
3768 static int btrfs_read_locked_inode(struct inode *inode,
3769 				   struct btrfs_path *in_path)
3770 {
3771 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3772 	struct btrfs_path *path = in_path;
3773 	struct extent_buffer *leaf;
3774 	struct btrfs_inode_item *inode_item;
3775 	struct btrfs_root *root = BTRFS_I(inode)->root;
3776 	struct btrfs_key location;
3777 	unsigned long ptr;
3778 	int maybe_acls;
3779 	u32 rdev;
3780 	int ret;
3781 	bool filled = false;
3782 	int first_xattr_slot;
3783 
3784 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3785 	if (ret)
3786 		return ret;
3787 
3788 	ret = btrfs_fill_inode(inode, &rdev);
3789 	if (!ret)
3790 		filled = true;
3791 
3792 	if (!path) {
3793 		path = btrfs_alloc_path();
3794 		if (!path)
3795 			return -ENOMEM;
3796 	}
3797 
3798 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3799 
3800 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3801 	if (ret) {
3802 		if (path != in_path)
3803 			btrfs_free_path(path);
3804 		return ret;
3805 	}
3806 
3807 	leaf = path->nodes[0];
3808 
3809 	if (filled)
3810 		goto cache_index;
3811 
3812 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3813 				    struct btrfs_inode_item);
3814 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3815 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3816 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3817 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3818 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3819 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3820 			round_up(i_size_read(inode), fs_info->sectorsize));
3821 
3822 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3823 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3824 
3825 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3826 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3827 
3828 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3829 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3830 
3831 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3832 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3833 
3834 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3835 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3836 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3837 
3838 	inode_set_iversion_queried(inode,
3839 				   btrfs_inode_sequence(leaf, inode_item));
3840 	inode->i_generation = BTRFS_I(inode)->generation;
3841 	inode->i_rdev = 0;
3842 	rdev = btrfs_inode_rdev(leaf, inode_item);
3843 
3844 	if (S_ISDIR(inode->i_mode))
3845 		BTRFS_I(inode)->index_cnt = (u64)-1;
3846 
3847 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3848 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3849 
3850 cache_index:
3851 	/*
3852 	 * If we were modified in the current generation and evicted from memory
3853 	 * and then re-read we need to do a full sync since we don't have any
3854 	 * idea about which extents were modified before we were evicted from
3855 	 * cache.
3856 	 *
3857 	 * This is required for both inode re-read from disk and delayed inode
3858 	 * in the delayed_nodes xarray.
3859 	 */
3860 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3861 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3862 			&BTRFS_I(inode)->runtime_flags);
3863 
3864 	/*
3865 	 * We don't persist the id of the transaction where an unlink operation
3866 	 * against the inode was last made. So here we assume the inode might
3867 	 * have been evicted, and therefore the exact value of last_unlink_trans
3868 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3869 	 * between the inode and its parent if the inode is fsync'ed and the log
3870 	 * replayed. For example, in the scenario:
3871 	 *
3872 	 * touch mydir/foo
3873 	 * ln mydir/foo mydir/bar
3874 	 * sync
3875 	 * unlink mydir/bar
3876 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3877 	 * xfs_io -c fsync mydir/foo
3878 	 * <power failure>
3879 	 * mount fs, triggers fsync log replay
3880 	 *
3881 	 * We must make sure that when we fsync our inode foo we also log its
3882 	 * parent inode, otherwise after log replay the parent still has the
3883 	 * dentry with the "bar" name but our inode foo has a link count of 1
3884 	 * and doesn't have an inode ref with the name "bar" anymore.
3885 	 *
3886 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3887 	 * but it guarantees correctness at the expense of occasional full
3888 	 * transaction commits on fsync if our inode is a directory, or if our
3889 	 * inode is not a directory, logging its parent unnecessarily.
3890 	 */
3891 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3892 
3893 	/*
3894 	 * Same logic as for last_unlink_trans. We don't persist the generation
3895 	 * of the last transaction where this inode was used for a reflink
3896 	 * operation, so after eviction and reloading the inode we must be
3897 	 * pessimistic and assume the last transaction that modified the inode.
3898 	 */
3899 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3900 
3901 	path->slots[0]++;
3902 	if (inode->i_nlink != 1 ||
3903 	    path->slots[0] >= btrfs_header_nritems(leaf))
3904 		goto cache_acl;
3905 
3906 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3907 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3908 		goto cache_acl;
3909 
3910 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3911 	if (location.type == BTRFS_INODE_REF_KEY) {
3912 		struct btrfs_inode_ref *ref;
3913 
3914 		ref = (struct btrfs_inode_ref *)ptr;
3915 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3916 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3917 		struct btrfs_inode_extref *extref;
3918 
3919 		extref = (struct btrfs_inode_extref *)ptr;
3920 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3921 								     extref);
3922 	}
3923 cache_acl:
3924 	/*
3925 	 * try to precache a NULL acl entry for files that don't have
3926 	 * any xattrs or acls
3927 	 */
3928 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3929 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3930 	if (first_xattr_slot != -1) {
3931 		path->slots[0] = first_xattr_slot;
3932 		ret = btrfs_load_inode_props(inode, path);
3933 		if (ret)
3934 			btrfs_err(fs_info,
3935 				  "error loading props for ino %llu (root %llu): %d",
3936 				  btrfs_ino(BTRFS_I(inode)),
3937 				  btrfs_root_id(root), ret);
3938 	}
3939 	if (path != in_path)
3940 		btrfs_free_path(path);
3941 
3942 	if (!maybe_acls)
3943 		cache_no_acl(inode);
3944 
3945 	switch (inode->i_mode & S_IFMT) {
3946 	case S_IFREG:
3947 		inode->i_mapping->a_ops = &btrfs_aops;
3948 		inode->i_fop = &btrfs_file_operations;
3949 		inode->i_op = &btrfs_file_inode_operations;
3950 		break;
3951 	case S_IFDIR:
3952 		inode->i_fop = &btrfs_dir_file_operations;
3953 		inode->i_op = &btrfs_dir_inode_operations;
3954 		break;
3955 	case S_IFLNK:
3956 		inode->i_op = &btrfs_symlink_inode_operations;
3957 		inode_nohighmem(inode);
3958 		inode->i_mapping->a_ops = &btrfs_aops;
3959 		break;
3960 	default:
3961 		inode->i_op = &btrfs_special_inode_operations;
3962 		init_special_inode(inode, inode->i_mode, rdev);
3963 		break;
3964 	}
3965 
3966 	btrfs_sync_inode_flags_to_i_flags(inode);
3967 	return 0;
3968 }
3969 
3970 /*
3971  * given a leaf and an inode, copy the inode fields into the leaf
3972  */
3973 static void fill_inode_item(struct btrfs_trans_handle *trans,
3974 			    struct extent_buffer *leaf,
3975 			    struct btrfs_inode_item *item,
3976 			    struct inode *inode)
3977 {
3978 	struct btrfs_map_token token;
3979 	u64 flags;
3980 
3981 	btrfs_init_map_token(&token, leaf);
3982 
3983 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3984 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3985 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3986 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3987 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3988 
3989 	btrfs_set_token_timespec_sec(&token, &item->atime,
3990 				     inode_get_atime_sec(inode));
3991 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3992 				      inode_get_atime_nsec(inode));
3993 
3994 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3995 				     inode_get_mtime_sec(inode));
3996 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3997 				      inode_get_mtime_nsec(inode));
3998 
3999 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4000 				     inode_get_ctime_sec(inode));
4001 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4002 				      inode_get_ctime_nsec(inode));
4003 
4004 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4005 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4006 
4007 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4008 	btrfs_set_token_inode_generation(&token, item,
4009 					 BTRFS_I(inode)->generation);
4010 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4011 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4012 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4013 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4014 					  BTRFS_I(inode)->ro_flags);
4015 	btrfs_set_token_inode_flags(&token, item, flags);
4016 	btrfs_set_token_inode_block_group(&token, item, 0);
4017 }
4018 
4019 /*
4020  * copy everything in the in-memory inode into the btree.
4021  */
4022 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4023 					    struct btrfs_inode *inode)
4024 {
4025 	struct btrfs_inode_item *inode_item;
4026 	struct btrfs_path *path;
4027 	struct extent_buffer *leaf;
4028 	struct btrfs_key key;
4029 	int ret;
4030 
4031 	path = btrfs_alloc_path();
4032 	if (!path)
4033 		return -ENOMEM;
4034 
4035 	btrfs_get_inode_key(inode, &key);
4036 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4037 	if (ret) {
4038 		if (ret > 0)
4039 			ret = -ENOENT;
4040 		goto failed;
4041 	}
4042 
4043 	leaf = path->nodes[0];
4044 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4045 				    struct btrfs_inode_item);
4046 
4047 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4048 	btrfs_mark_buffer_dirty(trans, leaf);
4049 	btrfs_set_inode_last_trans(trans, inode);
4050 	ret = 0;
4051 failed:
4052 	btrfs_free_path(path);
4053 	return ret;
4054 }
4055 
4056 /*
4057  * copy everything in the in-memory inode into the btree.
4058  */
4059 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4060 		       struct btrfs_inode *inode)
4061 {
4062 	struct btrfs_root *root = inode->root;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	int ret;
4065 
4066 	/*
4067 	 * If the inode is a free space inode, we can deadlock during commit
4068 	 * if we put it into the delayed code.
4069 	 *
4070 	 * The data relocation inode should also be directly updated
4071 	 * without delay
4072 	 */
4073 	if (!btrfs_is_free_space_inode(inode)
4074 	    && !btrfs_is_data_reloc_root(root)
4075 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4076 		btrfs_update_root_times(trans, root);
4077 
4078 		ret = btrfs_delayed_update_inode(trans, inode);
4079 		if (!ret)
4080 			btrfs_set_inode_last_trans(trans, inode);
4081 		return ret;
4082 	}
4083 
4084 	return btrfs_update_inode_item(trans, inode);
4085 }
4086 
4087 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4088 				struct btrfs_inode *inode)
4089 {
4090 	int ret;
4091 
4092 	ret = btrfs_update_inode(trans, inode);
4093 	if (ret == -ENOSPC)
4094 		return btrfs_update_inode_item(trans, inode);
4095 	return ret;
4096 }
4097 
4098 /*
4099  * unlink helper that gets used here in inode.c and in the tree logging
4100  * recovery code.  It remove a link in a directory with a given name, and
4101  * also drops the back refs in the inode to the directory
4102  */
4103 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4104 				struct btrfs_inode *dir,
4105 				struct btrfs_inode *inode,
4106 				const struct fscrypt_str *name,
4107 				struct btrfs_rename_ctx *rename_ctx)
4108 {
4109 	struct btrfs_root *root = dir->root;
4110 	struct btrfs_fs_info *fs_info = root->fs_info;
4111 	struct btrfs_path *path;
4112 	int ret = 0;
4113 	struct btrfs_dir_item *di;
4114 	u64 index;
4115 	u64 ino = btrfs_ino(inode);
4116 	u64 dir_ino = btrfs_ino(dir);
4117 
4118 	path = btrfs_alloc_path();
4119 	if (!path) {
4120 		ret = -ENOMEM;
4121 		goto out;
4122 	}
4123 
4124 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4125 	if (IS_ERR_OR_NULL(di)) {
4126 		ret = di ? PTR_ERR(di) : -ENOENT;
4127 		goto err;
4128 	}
4129 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4130 	if (ret)
4131 		goto err;
4132 	btrfs_release_path(path);
4133 
4134 	/*
4135 	 * If we don't have dir index, we have to get it by looking up
4136 	 * the inode ref, since we get the inode ref, remove it directly,
4137 	 * it is unnecessary to do delayed deletion.
4138 	 *
4139 	 * But if we have dir index, needn't search inode ref to get it.
4140 	 * Since the inode ref is close to the inode item, it is better
4141 	 * that we delay to delete it, and just do this deletion when
4142 	 * we update the inode item.
4143 	 */
4144 	if (inode->dir_index) {
4145 		ret = btrfs_delayed_delete_inode_ref(inode);
4146 		if (!ret) {
4147 			index = inode->dir_index;
4148 			goto skip_backref;
4149 		}
4150 	}
4151 
4152 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4153 	if (ret) {
4154 		btrfs_info(fs_info,
4155 			"failed to delete reference to %.*s, inode %llu parent %llu",
4156 			name->len, name->name, ino, dir_ino);
4157 		btrfs_abort_transaction(trans, ret);
4158 		goto err;
4159 	}
4160 skip_backref:
4161 	if (rename_ctx)
4162 		rename_ctx->index = index;
4163 
4164 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4165 	if (ret) {
4166 		btrfs_abort_transaction(trans, ret);
4167 		goto err;
4168 	}
4169 
4170 	/*
4171 	 * If we are in a rename context, we don't need to update anything in the
4172 	 * log. That will be done later during the rename by btrfs_log_new_name().
4173 	 * Besides that, doing it here would only cause extra unnecessary btree
4174 	 * operations on the log tree, increasing latency for applications.
4175 	 */
4176 	if (!rename_ctx) {
4177 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4178 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4179 	}
4180 
4181 	/*
4182 	 * If we have a pending delayed iput we could end up with the final iput
4183 	 * being run in btrfs-cleaner context.  If we have enough of these built
4184 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4185 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4186 	 * the inode we can run the delayed iput here without any issues as the
4187 	 * final iput won't be done until after we drop the ref we're currently
4188 	 * holding.
4189 	 */
4190 	btrfs_run_delayed_iput(fs_info, inode);
4191 err:
4192 	btrfs_free_path(path);
4193 	if (ret)
4194 		goto out;
4195 
4196 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4197 	inode_inc_iversion(&inode->vfs_inode);
4198 	inode_inc_iversion(&dir->vfs_inode);
4199  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4200 	ret = btrfs_update_inode(trans, dir);
4201 out:
4202 	return ret;
4203 }
4204 
4205 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4206 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4207 		       const struct fscrypt_str *name)
4208 {
4209 	int ret;
4210 
4211 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4212 	if (!ret) {
4213 		drop_nlink(&inode->vfs_inode);
4214 		ret = btrfs_update_inode(trans, inode);
4215 	}
4216 	return ret;
4217 }
4218 
4219 /*
4220  * helper to start transaction for unlink and rmdir.
4221  *
4222  * unlink and rmdir are special in btrfs, they do not always free space, so
4223  * if we cannot make our reservations the normal way try and see if there is
4224  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4225  * allow the unlink to occur.
4226  */
4227 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4228 {
4229 	struct btrfs_root *root = dir->root;
4230 
4231 	return btrfs_start_transaction_fallback_global_rsv(root,
4232 						   BTRFS_UNLINK_METADATA_UNITS);
4233 }
4234 
4235 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4236 {
4237 	struct btrfs_trans_handle *trans;
4238 	struct inode *inode = d_inode(dentry);
4239 	int ret;
4240 	struct fscrypt_name fname;
4241 
4242 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4243 	if (ret)
4244 		return ret;
4245 
4246 	/* This needs to handle no-key deletions later on */
4247 
4248 	trans = __unlink_start_trans(BTRFS_I(dir));
4249 	if (IS_ERR(trans)) {
4250 		ret = PTR_ERR(trans);
4251 		goto fscrypt_free;
4252 	}
4253 
4254 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4255 				false);
4256 
4257 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4258 				 &fname.disk_name);
4259 	if (ret)
4260 		goto end_trans;
4261 
4262 	if (inode->i_nlink == 0) {
4263 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4264 		if (ret)
4265 			goto end_trans;
4266 	}
4267 
4268 end_trans:
4269 	btrfs_end_transaction(trans);
4270 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4271 fscrypt_free:
4272 	fscrypt_free_filename(&fname);
4273 	return ret;
4274 }
4275 
4276 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4277 			       struct btrfs_inode *dir, struct dentry *dentry)
4278 {
4279 	struct btrfs_root *root = dir->root;
4280 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4281 	struct btrfs_path *path;
4282 	struct extent_buffer *leaf;
4283 	struct btrfs_dir_item *di;
4284 	struct btrfs_key key;
4285 	u64 index;
4286 	int ret;
4287 	u64 objectid;
4288 	u64 dir_ino = btrfs_ino(dir);
4289 	struct fscrypt_name fname;
4290 
4291 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4292 	if (ret)
4293 		return ret;
4294 
4295 	/* This needs to handle no-key deletions later on */
4296 
4297 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4298 		objectid = btrfs_root_id(inode->root);
4299 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4300 		objectid = inode->ref_root_id;
4301 	} else {
4302 		WARN_ON(1);
4303 		fscrypt_free_filename(&fname);
4304 		return -EINVAL;
4305 	}
4306 
4307 	path = btrfs_alloc_path();
4308 	if (!path) {
4309 		ret = -ENOMEM;
4310 		goto out;
4311 	}
4312 
4313 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4314 				   &fname.disk_name, -1);
4315 	if (IS_ERR_OR_NULL(di)) {
4316 		ret = di ? PTR_ERR(di) : -ENOENT;
4317 		goto out;
4318 	}
4319 
4320 	leaf = path->nodes[0];
4321 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4322 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4323 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4324 	if (ret) {
4325 		btrfs_abort_transaction(trans, ret);
4326 		goto out;
4327 	}
4328 	btrfs_release_path(path);
4329 
4330 	/*
4331 	 * This is a placeholder inode for a subvolume we didn't have a
4332 	 * reference to at the time of the snapshot creation.  In the meantime
4333 	 * we could have renamed the real subvol link into our snapshot, so
4334 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4335 	 * Instead simply lookup the dir_index_item for this entry so we can
4336 	 * remove it.  Otherwise we know we have a ref to the root and we can
4337 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4338 	 */
4339 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4340 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4341 		if (IS_ERR_OR_NULL(di)) {
4342 			if (!di)
4343 				ret = -ENOENT;
4344 			else
4345 				ret = PTR_ERR(di);
4346 			btrfs_abort_transaction(trans, ret);
4347 			goto out;
4348 		}
4349 
4350 		leaf = path->nodes[0];
4351 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4352 		index = key.offset;
4353 		btrfs_release_path(path);
4354 	} else {
4355 		ret = btrfs_del_root_ref(trans, objectid,
4356 					 btrfs_root_id(root), dir_ino,
4357 					 &index, &fname.disk_name);
4358 		if (ret) {
4359 			btrfs_abort_transaction(trans, ret);
4360 			goto out;
4361 		}
4362 	}
4363 
4364 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4365 	if (ret) {
4366 		btrfs_abort_transaction(trans, ret);
4367 		goto out;
4368 	}
4369 
4370 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4371 	inode_inc_iversion(&dir->vfs_inode);
4372 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4373 	ret = btrfs_update_inode_fallback(trans, dir);
4374 	if (ret)
4375 		btrfs_abort_transaction(trans, ret);
4376 out:
4377 	btrfs_free_path(path);
4378 	fscrypt_free_filename(&fname);
4379 	return ret;
4380 }
4381 
4382 /*
4383  * Helper to check if the subvolume references other subvolumes or if it's
4384  * default.
4385  */
4386 static noinline int may_destroy_subvol(struct btrfs_root *root)
4387 {
4388 	struct btrfs_fs_info *fs_info = root->fs_info;
4389 	struct btrfs_path *path;
4390 	struct btrfs_dir_item *di;
4391 	struct btrfs_key key;
4392 	struct fscrypt_str name = FSTR_INIT("default", 7);
4393 	u64 dir_id;
4394 	int ret;
4395 
4396 	path = btrfs_alloc_path();
4397 	if (!path)
4398 		return -ENOMEM;
4399 
4400 	/* Make sure this root isn't set as the default subvol */
4401 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4402 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4403 				   dir_id, &name, 0);
4404 	if (di && !IS_ERR(di)) {
4405 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4406 		if (key.objectid == btrfs_root_id(root)) {
4407 			ret = -EPERM;
4408 			btrfs_err(fs_info,
4409 				  "deleting default subvolume %llu is not allowed",
4410 				  key.objectid);
4411 			goto out;
4412 		}
4413 		btrfs_release_path(path);
4414 	}
4415 
4416 	key.objectid = btrfs_root_id(root);
4417 	key.type = BTRFS_ROOT_REF_KEY;
4418 	key.offset = (u64)-1;
4419 
4420 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4421 	if (ret < 0)
4422 		goto out;
4423 	if (ret == 0) {
4424 		/*
4425 		 * Key with offset -1 found, there would have to exist a root
4426 		 * with such id, but this is out of valid range.
4427 		 */
4428 		ret = -EUCLEAN;
4429 		goto out;
4430 	}
4431 
4432 	ret = 0;
4433 	if (path->slots[0] > 0) {
4434 		path->slots[0]--;
4435 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4436 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4437 			ret = -ENOTEMPTY;
4438 	}
4439 out:
4440 	btrfs_free_path(path);
4441 	return ret;
4442 }
4443 
4444 /* Delete all dentries for inodes belonging to the root */
4445 static void btrfs_prune_dentries(struct btrfs_root *root)
4446 {
4447 	struct btrfs_fs_info *fs_info = root->fs_info;
4448 	struct btrfs_inode *inode;
4449 	u64 min_ino = 0;
4450 
4451 	if (!BTRFS_FS_ERROR(fs_info))
4452 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4453 
4454 	inode = btrfs_find_first_inode(root, min_ino);
4455 	while (inode) {
4456 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4457 			d_prune_aliases(&inode->vfs_inode);
4458 
4459 		min_ino = btrfs_ino(inode) + 1;
4460 		/*
4461 		 * btrfs_drop_inode() will have it removed from the inode
4462 		 * cache when its usage count hits zero.
4463 		 */
4464 		iput(&inode->vfs_inode);
4465 		cond_resched();
4466 		inode = btrfs_find_first_inode(root, min_ino);
4467 	}
4468 }
4469 
4470 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4471 {
4472 	struct btrfs_root *root = dir->root;
4473 	struct btrfs_fs_info *fs_info = root->fs_info;
4474 	struct inode *inode = d_inode(dentry);
4475 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4476 	struct btrfs_trans_handle *trans;
4477 	struct btrfs_block_rsv block_rsv;
4478 	u64 root_flags;
4479 	u64 qgroup_reserved = 0;
4480 	int ret;
4481 
4482 	down_write(&fs_info->subvol_sem);
4483 
4484 	/*
4485 	 * Don't allow to delete a subvolume with send in progress. This is
4486 	 * inside the inode lock so the error handling that has to drop the bit
4487 	 * again is not run concurrently.
4488 	 */
4489 	spin_lock(&dest->root_item_lock);
4490 	if (dest->send_in_progress) {
4491 		spin_unlock(&dest->root_item_lock);
4492 		btrfs_warn(fs_info,
4493 			   "attempt to delete subvolume %llu during send",
4494 			   btrfs_root_id(dest));
4495 		ret = -EPERM;
4496 		goto out_up_write;
4497 	}
4498 	if (atomic_read(&dest->nr_swapfiles)) {
4499 		spin_unlock(&dest->root_item_lock);
4500 		btrfs_warn(fs_info,
4501 			   "attempt to delete subvolume %llu with active swapfile",
4502 			   btrfs_root_id(root));
4503 		ret = -EPERM;
4504 		goto out_up_write;
4505 	}
4506 	root_flags = btrfs_root_flags(&dest->root_item);
4507 	btrfs_set_root_flags(&dest->root_item,
4508 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4509 	spin_unlock(&dest->root_item_lock);
4510 
4511 	ret = may_destroy_subvol(dest);
4512 	if (ret)
4513 		goto out_undead;
4514 
4515 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4516 	/*
4517 	 * One for dir inode,
4518 	 * two for dir entries,
4519 	 * two for root ref/backref.
4520 	 */
4521 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4522 	if (ret)
4523 		goto out_undead;
4524 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4525 
4526 	trans = btrfs_start_transaction(root, 0);
4527 	if (IS_ERR(trans)) {
4528 		ret = PTR_ERR(trans);
4529 		goto out_release;
4530 	}
4531 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4532 	qgroup_reserved = 0;
4533 	trans->block_rsv = &block_rsv;
4534 	trans->bytes_reserved = block_rsv.size;
4535 
4536 	btrfs_record_snapshot_destroy(trans, dir);
4537 
4538 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4539 	if (ret) {
4540 		btrfs_abort_transaction(trans, ret);
4541 		goto out_end_trans;
4542 	}
4543 
4544 	ret = btrfs_record_root_in_trans(trans, dest);
4545 	if (ret) {
4546 		btrfs_abort_transaction(trans, ret);
4547 		goto out_end_trans;
4548 	}
4549 
4550 	memset(&dest->root_item.drop_progress, 0,
4551 		sizeof(dest->root_item.drop_progress));
4552 	btrfs_set_root_drop_level(&dest->root_item, 0);
4553 	btrfs_set_root_refs(&dest->root_item, 0);
4554 
4555 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4556 		ret = btrfs_insert_orphan_item(trans,
4557 					fs_info->tree_root,
4558 					btrfs_root_id(dest));
4559 		if (ret) {
4560 			btrfs_abort_transaction(trans, ret);
4561 			goto out_end_trans;
4562 		}
4563 	}
4564 
4565 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4566 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4567 	if (ret && ret != -ENOENT) {
4568 		btrfs_abort_transaction(trans, ret);
4569 		goto out_end_trans;
4570 	}
4571 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4572 		ret = btrfs_uuid_tree_remove(trans,
4573 					  dest->root_item.received_uuid,
4574 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4575 					  btrfs_root_id(dest));
4576 		if (ret && ret != -ENOENT) {
4577 			btrfs_abort_transaction(trans, ret);
4578 			goto out_end_trans;
4579 		}
4580 	}
4581 
4582 	free_anon_bdev(dest->anon_dev);
4583 	dest->anon_dev = 0;
4584 out_end_trans:
4585 	trans->block_rsv = NULL;
4586 	trans->bytes_reserved = 0;
4587 	ret = btrfs_end_transaction(trans);
4588 	inode->i_flags |= S_DEAD;
4589 out_release:
4590 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4591 	if (qgroup_reserved)
4592 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4593 out_undead:
4594 	if (ret) {
4595 		spin_lock(&dest->root_item_lock);
4596 		root_flags = btrfs_root_flags(&dest->root_item);
4597 		btrfs_set_root_flags(&dest->root_item,
4598 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4599 		spin_unlock(&dest->root_item_lock);
4600 	}
4601 out_up_write:
4602 	up_write(&fs_info->subvol_sem);
4603 	if (!ret) {
4604 		d_invalidate(dentry);
4605 		btrfs_prune_dentries(dest);
4606 		ASSERT(dest->send_in_progress == 0);
4607 	}
4608 
4609 	return ret;
4610 }
4611 
4612 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4613 {
4614 	struct inode *inode = d_inode(dentry);
4615 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4616 	int ret = 0;
4617 	struct btrfs_trans_handle *trans;
4618 	u64 last_unlink_trans;
4619 	struct fscrypt_name fname;
4620 
4621 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4622 		return -ENOTEMPTY;
4623 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4624 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4625 			btrfs_err(fs_info,
4626 			"extent tree v2 doesn't support snapshot deletion yet");
4627 			return -EOPNOTSUPP;
4628 		}
4629 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4630 	}
4631 
4632 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4633 	if (ret)
4634 		return ret;
4635 
4636 	/* This needs to handle no-key deletions later on */
4637 
4638 	trans = __unlink_start_trans(BTRFS_I(dir));
4639 	if (IS_ERR(trans)) {
4640 		ret = PTR_ERR(trans);
4641 		goto out_notrans;
4642 	}
4643 
4644 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4645 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4646 		goto out;
4647 	}
4648 
4649 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4650 	if (ret)
4651 		goto out;
4652 
4653 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4654 
4655 	/* now the directory is empty */
4656 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4657 				 &fname.disk_name);
4658 	if (!ret) {
4659 		btrfs_i_size_write(BTRFS_I(inode), 0);
4660 		/*
4661 		 * Propagate the last_unlink_trans value of the deleted dir to
4662 		 * its parent directory. This is to prevent an unrecoverable
4663 		 * log tree in the case we do something like this:
4664 		 * 1) create dir foo
4665 		 * 2) create snapshot under dir foo
4666 		 * 3) delete the snapshot
4667 		 * 4) rmdir foo
4668 		 * 5) mkdir foo
4669 		 * 6) fsync foo or some file inside foo
4670 		 */
4671 		if (last_unlink_trans >= trans->transid)
4672 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4673 	}
4674 out:
4675 	btrfs_end_transaction(trans);
4676 out_notrans:
4677 	btrfs_btree_balance_dirty(fs_info);
4678 	fscrypt_free_filename(&fname);
4679 
4680 	return ret;
4681 }
4682 
4683 /*
4684  * Read, zero a chunk and write a block.
4685  *
4686  * @inode - inode that we're zeroing
4687  * @from - the offset to start zeroing
4688  * @len - the length to zero, 0 to zero the entire range respective to the
4689  *	offset
4690  * @front - zero up to the offset instead of from the offset on
4691  *
4692  * This will find the block for the "from" offset and cow the block and zero the
4693  * part we want to zero.  This is used with truncate and hole punching.
4694  */
4695 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4696 			 int front)
4697 {
4698 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4699 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4700 	struct extent_io_tree *io_tree = &inode->io_tree;
4701 	struct btrfs_ordered_extent *ordered;
4702 	struct extent_state *cached_state = NULL;
4703 	struct extent_changeset *data_reserved = NULL;
4704 	bool only_release_metadata = false;
4705 	u32 blocksize = fs_info->sectorsize;
4706 	pgoff_t index = from >> PAGE_SHIFT;
4707 	unsigned offset = from & (blocksize - 1);
4708 	struct folio *folio;
4709 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4710 	size_t write_bytes = blocksize;
4711 	int ret = 0;
4712 	u64 block_start;
4713 	u64 block_end;
4714 
4715 	if (IS_ALIGNED(offset, blocksize) &&
4716 	    (!len || IS_ALIGNED(len, blocksize)))
4717 		goto out;
4718 
4719 	block_start = round_down(from, blocksize);
4720 	block_end = block_start + blocksize - 1;
4721 
4722 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4723 					  blocksize, false);
4724 	if (ret < 0) {
4725 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4726 			/* For nocow case, no need to reserve data space */
4727 			only_release_metadata = true;
4728 		} else {
4729 			goto out;
4730 		}
4731 	}
4732 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4733 	if (ret < 0) {
4734 		if (!only_release_metadata)
4735 			btrfs_free_reserved_data_space(inode, data_reserved,
4736 						       block_start, blocksize);
4737 		goto out;
4738 	}
4739 again:
4740 	folio = __filemap_get_folio(mapping, index,
4741 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4742 	if (IS_ERR(folio)) {
4743 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4744 					     blocksize, true);
4745 		btrfs_delalloc_release_extents(inode, blocksize);
4746 		ret = -ENOMEM;
4747 		goto out;
4748 	}
4749 
4750 	if (!folio_test_uptodate(folio)) {
4751 		ret = btrfs_read_folio(NULL, folio);
4752 		folio_lock(folio);
4753 		if (folio->mapping != mapping) {
4754 			folio_unlock(folio);
4755 			folio_put(folio);
4756 			goto again;
4757 		}
4758 		if (!folio_test_uptodate(folio)) {
4759 			ret = -EIO;
4760 			goto out_unlock;
4761 		}
4762 	}
4763 
4764 	/*
4765 	 * We unlock the page after the io is completed and then re-lock it
4766 	 * above.  release_folio() could have come in between that and cleared
4767 	 * folio private, but left the page in the mapping.  Set the page mapped
4768 	 * here to make sure it's properly set for the subpage stuff.
4769 	 */
4770 	ret = set_folio_extent_mapped(folio);
4771 	if (ret < 0)
4772 		goto out_unlock;
4773 
4774 	folio_wait_writeback(folio);
4775 
4776 	lock_extent(io_tree, block_start, block_end, &cached_state);
4777 
4778 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4779 	if (ordered) {
4780 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4781 		folio_unlock(folio);
4782 		folio_put(folio);
4783 		btrfs_start_ordered_extent(ordered);
4784 		btrfs_put_ordered_extent(ordered);
4785 		goto again;
4786 	}
4787 
4788 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4789 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4790 			 &cached_state);
4791 
4792 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4793 					&cached_state);
4794 	if (ret) {
4795 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4796 		goto out_unlock;
4797 	}
4798 
4799 	if (offset != blocksize) {
4800 		if (!len)
4801 			len = blocksize - offset;
4802 		if (front)
4803 			folio_zero_range(folio, block_start - folio_pos(folio),
4804 					 offset);
4805 		else
4806 			folio_zero_range(folio,
4807 					 (block_start - folio_pos(folio)) + offset,
4808 					 len);
4809 	}
4810 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4811 				  block_end + 1 - block_start);
4812 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4813 			      block_end + 1 - block_start);
4814 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4815 
4816 	if (only_release_metadata)
4817 		set_extent_bit(&inode->io_tree, block_start, block_end,
4818 			       EXTENT_NORESERVE, NULL);
4819 
4820 out_unlock:
4821 	if (ret) {
4822 		if (only_release_metadata)
4823 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4824 		else
4825 			btrfs_delalloc_release_space(inode, data_reserved,
4826 					block_start, blocksize, true);
4827 	}
4828 	btrfs_delalloc_release_extents(inode, blocksize);
4829 	folio_unlock(folio);
4830 	folio_put(folio);
4831 out:
4832 	if (only_release_metadata)
4833 		btrfs_check_nocow_unlock(inode);
4834 	extent_changeset_free(data_reserved);
4835 	return ret;
4836 }
4837 
4838 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4839 {
4840 	struct btrfs_root *root = inode->root;
4841 	struct btrfs_fs_info *fs_info = root->fs_info;
4842 	struct btrfs_trans_handle *trans;
4843 	struct btrfs_drop_extents_args drop_args = { 0 };
4844 	int ret;
4845 
4846 	/*
4847 	 * If NO_HOLES is enabled, we don't need to do anything.
4848 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4849 	 * or btrfs_update_inode() will be called, which guarantee that the next
4850 	 * fsync will know this inode was changed and needs to be logged.
4851 	 */
4852 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4853 		return 0;
4854 
4855 	/*
4856 	 * 1 - for the one we're dropping
4857 	 * 1 - for the one we're adding
4858 	 * 1 - for updating the inode.
4859 	 */
4860 	trans = btrfs_start_transaction(root, 3);
4861 	if (IS_ERR(trans))
4862 		return PTR_ERR(trans);
4863 
4864 	drop_args.start = offset;
4865 	drop_args.end = offset + len;
4866 	drop_args.drop_cache = true;
4867 
4868 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4869 	if (ret) {
4870 		btrfs_abort_transaction(trans, ret);
4871 		btrfs_end_transaction(trans);
4872 		return ret;
4873 	}
4874 
4875 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4876 	if (ret) {
4877 		btrfs_abort_transaction(trans, ret);
4878 	} else {
4879 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4880 		btrfs_update_inode(trans, inode);
4881 	}
4882 	btrfs_end_transaction(trans);
4883 	return ret;
4884 }
4885 
4886 /*
4887  * This function puts in dummy file extents for the area we're creating a hole
4888  * for.  So if we are truncating this file to a larger size we need to insert
4889  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4890  * the range between oldsize and size
4891  */
4892 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4893 {
4894 	struct btrfs_root *root = inode->root;
4895 	struct btrfs_fs_info *fs_info = root->fs_info;
4896 	struct extent_io_tree *io_tree = &inode->io_tree;
4897 	struct extent_map *em = NULL;
4898 	struct extent_state *cached_state = NULL;
4899 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4900 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4901 	u64 last_byte;
4902 	u64 cur_offset;
4903 	u64 hole_size;
4904 	int ret = 0;
4905 
4906 	/*
4907 	 * If our size started in the middle of a block we need to zero out the
4908 	 * rest of the block before we expand the i_size, otherwise we could
4909 	 * expose stale data.
4910 	 */
4911 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4912 	if (ret)
4913 		return ret;
4914 
4915 	if (size <= hole_start)
4916 		return 0;
4917 
4918 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4919 					   &cached_state);
4920 	cur_offset = hole_start;
4921 	while (1) {
4922 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4923 		if (IS_ERR(em)) {
4924 			ret = PTR_ERR(em);
4925 			em = NULL;
4926 			break;
4927 		}
4928 		last_byte = min(extent_map_end(em), block_end);
4929 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4930 		hole_size = last_byte - cur_offset;
4931 
4932 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4933 			struct extent_map *hole_em;
4934 
4935 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4936 			if (ret)
4937 				break;
4938 
4939 			ret = btrfs_inode_set_file_extent_range(inode,
4940 							cur_offset, hole_size);
4941 			if (ret)
4942 				break;
4943 
4944 			hole_em = alloc_extent_map();
4945 			if (!hole_em) {
4946 				btrfs_drop_extent_map_range(inode, cur_offset,
4947 						    cur_offset + hole_size - 1,
4948 						    false);
4949 				btrfs_set_inode_full_sync(inode);
4950 				goto next;
4951 			}
4952 			hole_em->start = cur_offset;
4953 			hole_em->len = hole_size;
4954 
4955 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4956 			hole_em->disk_num_bytes = 0;
4957 			hole_em->ram_bytes = hole_size;
4958 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4959 
4960 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4961 			free_extent_map(hole_em);
4962 		} else {
4963 			ret = btrfs_inode_set_file_extent_range(inode,
4964 							cur_offset, hole_size);
4965 			if (ret)
4966 				break;
4967 		}
4968 next:
4969 		free_extent_map(em);
4970 		em = NULL;
4971 		cur_offset = last_byte;
4972 		if (cur_offset >= block_end)
4973 			break;
4974 	}
4975 	free_extent_map(em);
4976 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4977 	return ret;
4978 }
4979 
4980 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4981 {
4982 	struct btrfs_root *root = BTRFS_I(inode)->root;
4983 	struct btrfs_trans_handle *trans;
4984 	loff_t oldsize = i_size_read(inode);
4985 	loff_t newsize = attr->ia_size;
4986 	int mask = attr->ia_valid;
4987 	int ret;
4988 
4989 	/*
4990 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4991 	 * special case where we need to update the times despite not having
4992 	 * these flags set.  For all other operations the VFS set these flags
4993 	 * explicitly if it wants a timestamp update.
4994 	 */
4995 	if (newsize != oldsize) {
4996 		inode_inc_iversion(inode);
4997 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4998 			inode_set_mtime_to_ts(inode,
4999 					      inode_set_ctime_current(inode));
5000 		}
5001 	}
5002 
5003 	if (newsize > oldsize) {
5004 		/*
5005 		 * Don't do an expanding truncate while snapshotting is ongoing.
5006 		 * This is to ensure the snapshot captures a fully consistent
5007 		 * state of this file - if the snapshot captures this expanding
5008 		 * truncation, it must capture all writes that happened before
5009 		 * this truncation.
5010 		 */
5011 		btrfs_drew_write_lock(&root->snapshot_lock);
5012 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5013 		if (ret) {
5014 			btrfs_drew_write_unlock(&root->snapshot_lock);
5015 			return ret;
5016 		}
5017 
5018 		trans = btrfs_start_transaction(root, 1);
5019 		if (IS_ERR(trans)) {
5020 			btrfs_drew_write_unlock(&root->snapshot_lock);
5021 			return PTR_ERR(trans);
5022 		}
5023 
5024 		i_size_write(inode, newsize);
5025 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5026 		pagecache_isize_extended(inode, oldsize, newsize);
5027 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5028 		btrfs_drew_write_unlock(&root->snapshot_lock);
5029 		btrfs_end_transaction(trans);
5030 	} else {
5031 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5032 
5033 		if (btrfs_is_zoned(fs_info)) {
5034 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5035 					ALIGN(newsize, fs_info->sectorsize),
5036 					(u64)-1);
5037 			if (ret)
5038 				return ret;
5039 		}
5040 
5041 		/*
5042 		 * We're truncating a file that used to have good data down to
5043 		 * zero. Make sure any new writes to the file get on disk
5044 		 * on close.
5045 		 */
5046 		if (newsize == 0)
5047 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5048 				&BTRFS_I(inode)->runtime_flags);
5049 
5050 		truncate_setsize(inode, newsize);
5051 
5052 		inode_dio_wait(inode);
5053 
5054 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5055 		if (ret && inode->i_nlink) {
5056 			int err;
5057 
5058 			/*
5059 			 * Truncate failed, so fix up the in-memory size. We
5060 			 * adjusted disk_i_size down as we removed extents, so
5061 			 * wait for disk_i_size to be stable and then update the
5062 			 * in-memory size to match.
5063 			 */
5064 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5065 			if (err)
5066 				return err;
5067 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 		}
5069 	}
5070 
5071 	return ret;
5072 }
5073 
5074 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5075 			 struct iattr *attr)
5076 {
5077 	struct inode *inode = d_inode(dentry);
5078 	struct btrfs_root *root = BTRFS_I(inode)->root;
5079 	int err;
5080 
5081 	if (btrfs_root_readonly(root))
5082 		return -EROFS;
5083 
5084 	err = setattr_prepare(idmap, dentry, attr);
5085 	if (err)
5086 		return err;
5087 
5088 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5089 		err = btrfs_setsize(inode, attr);
5090 		if (err)
5091 			return err;
5092 	}
5093 
5094 	if (attr->ia_valid) {
5095 		setattr_copy(idmap, inode, attr);
5096 		inode_inc_iversion(inode);
5097 		err = btrfs_dirty_inode(BTRFS_I(inode));
5098 
5099 		if (!err && attr->ia_valid & ATTR_MODE)
5100 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5101 	}
5102 
5103 	return err;
5104 }
5105 
5106 /*
5107  * While truncating the inode pages during eviction, we get the VFS
5108  * calling btrfs_invalidate_folio() against each folio of the inode. This
5109  * is slow because the calls to btrfs_invalidate_folio() result in a
5110  * huge amount of calls to lock_extent() and clear_extent_bit(),
5111  * which keep merging and splitting extent_state structures over and over,
5112  * wasting lots of time.
5113  *
5114  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5115  * skip all those expensive operations on a per folio basis and do only
5116  * the ordered io finishing, while we release here the extent_map and
5117  * extent_state structures, without the excessive merging and splitting.
5118  */
5119 static void evict_inode_truncate_pages(struct inode *inode)
5120 {
5121 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5122 	struct rb_node *node;
5123 
5124 	ASSERT(inode->i_state & I_FREEING);
5125 	truncate_inode_pages_final(&inode->i_data);
5126 
5127 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5128 
5129 	/*
5130 	 * Keep looping until we have no more ranges in the io tree.
5131 	 * We can have ongoing bios started by readahead that have
5132 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5133 	 * still in progress (unlocked the pages in the bio but did not yet
5134 	 * unlocked the ranges in the io tree). Therefore this means some
5135 	 * ranges can still be locked and eviction started because before
5136 	 * submitting those bios, which are executed by a separate task (work
5137 	 * queue kthread), inode references (inode->i_count) were not taken
5138 	 * (which would be dropped in the end io callback of each bio).
5139 	 * Therefore here we effectively end up waiting for those bios and
5140 	 * anyone else holding locked ranges without having bumped the inode's
5141 	 * reference count - if we don't do it, when they access the inode's
5142 	 * io_tree to unlock a range it may be too late, leading to an
5143 	 * use-after-free issue.
5144 	 */
5145 	spin_lock(&io_tree->lock);
5146 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5147 		struct extent_state *state;
5148 		struct extent_state *cached_state = NULL;
5149 		u64 start;
5150 		u64 end;
5151 		unsigned state_flags;
5152 
5153 		node = rb_first(&io_tree->state);
5154 		state = rb_entry(node, struct extent_state, rb_node);
5155 		start = state->start;
5156 		end = state->end;
5157 		state_flags = state->state;
5158 		spin_unlock(&io_tree->lock);
5159 
5160 		lock_extent(io_tree, start, end, &cached_state);
5161 
5162 		/*
5163 		 * If still has DELALLOC flag, the extent didn't reach disk,
5164 		 * and its reserved space won't be freed by delayed_ref.
5165 		 * So we need to free its reserved space here.
5166 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5167 		 *
5168 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5169 		 */
5170 		if (state_flags & EXTENT_DELALLOC)
5171 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5172 					       end - start + 1, NULL);
5173 
5174 		clear_extent_bit(io_tree, start, end,
5175 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5176 				 &cached_state);
5177 
5178 		cond_resched();
5179 		spin_lock(&io_tree->lock);
5180 	}
5181 	spin_unlock(&io_tree->lock);
5182 }
5183 
5184 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5185 							struct btrfs_block_rsv *rsv)
5186 {
5187 	struct btrfs_fs_info *fs_info = root->fs_info;
5188 	struct btrfs_trans_handle *trans;
5189 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5190 	int ret;
5191 
5192 	/*
5193 	 * Eviction should be taking place at some place safe because of our
5194 	 * delayed iputs.  However the normal flushing code will run delayed
5195 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5196 	 *
5197 	 * We reserve the delayed_refs_extra here again because we can't use
5198 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5199 	 * above.  We reserve our extra bit here because we generate a ton of
5200 	 * delayed refs activity by truncating.
5201 	 *
5202 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5203 	 * if we fail to make this reservation we can re-try without the
5204 	 * delayed_refs_extra so we can make some forward progress.
5205 	 */
5206 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5207 				     BTRFS_RESERVE_FLUSH_EVICT);
5208 	if (ret) {
5209 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5210 					     BTRFS_RESERVE_FLUSH_EVICT);
5211 		if (ret) {
5212 			btrfs_warn(fs_info,
5213 				   "could not allocate space for delete; will truncate on mount");
5214 			return ERR_PTR(-ENOSPC);
5215 		}
5216 		delayed_refs_extra = 0;
5217 	}
5218 
5219 	trans = btrfs_join_transaction(root);
5220 	if (IS_ERR(trans))
5221 		return trans;
5222 
5223 	if (delayed_refs_extra) {
5224 		trans->block_rsv = &fs_info->trans_block_rsv;
5225 		trans->bytes_reserved = delayed_refs_extra;
5226 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5227 					delayed_refs_extra, true);
5228 	}
5229 	return trans;
5230 }
5231 
5232 void btrfs_evict_inode(struct inode *inode)
5233 {
5234 	struct btrfs_fs_info *fs_info;
5235 	struct btrfs_trans_handle *trans;
5236 	struct btrfs_root *root = BTRFS_I(inode)->root;
5237 	struct btrfs_block_rsv *rsv = NULL;
5238 	int ret;
5239 
5240 	trace_btrfs_inode_evict(inode);
5241 
5242 	if (!root) {
5243 		fsverity_cleanup_inode(inode);
5244 		clear_inode(inode);
5245 		return;
5246 	}
5247 
5248 	fs_info = inode_to_fs_info(inode);
5249 	evict_inode_truncate_pages(inode);
5250 
5251 	if (inode->i_nlink &&
5252 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5253 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5254 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5255 		goto out;
5256 
5257 	if (is_bad_inode(inode))
5258 		goto out;
5259 
5260 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5261 		goto out;
5262 
5263 	if (inode->i_nlink > 0) {
5264 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5265 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5266 		goto out;
5267 	}
5268 
5269 	/*
5270 	 * This makes sure the inode item in tree is uptodate and the space for
5271 	 * the inode update is released.
5272 	 */
5273 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5274 	if (ret)
5275 		goto out;
5276 
5277 	/*
5278 	 * This drops any pending insert or delete operations we have for this
5279 	 * inode.  We could have a delayed dir index deletion queued up, but
5280 	 * we're removing the inode completely so that'll be taken care of in
5281 	 * the truncate.
5282 	 */
5283 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5284 
5285 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5286 	if (!rsv)
5287 		goto out;
5288 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5289 	rsv->failfast = true;
5290 
5291 	btrfs_i_size_write(BTRFS_I(inode), 0);
5292 
5293 	while (1) {
5294 		struct btrfs_truncate_control control = {
5295 			.inode = BTRFS_I(inode),
5296 			.ino = btrfs_ino(BTRFS_I(inode)),
5297 			.new_size = 0,
5298 			.min_type = 0,
5299 		};
5300 
5301 		trans = evict_refill_and_join(root, rsv);
5302 		if (IS_ERR(trans))
5303 			goto out;
5304 
5305 		trans->block_rsv = rsv;
5306 
5307 		ret = btrfs_truncate_inode_items(trans, root, &control);
5308 		trans->block_rsv = &fs_info->trans_block_rsv;
5309 		btrfs_end_transaction(trans);
5310 		/*
5311 		 * We have not added new delayed items for our inode after we
5312 		 * have flushed its delayed items, so no need to throttle on
5313 		 * delayed items. However we have modified extent buffers.
5314 		 */
5315 		btrfs_btree_balance_dirty_nodelay(fs_info);
5316 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5317 			goto out;
5318 		else if (!ret)
5319 			break;
5320 	}
5321 
5322 	/*
5323 	 * Errors here aren't a big deal, it just means we leave orphan items in
5324 	 * the tree. They will be cleaned up on the next mount. If the inode
5325 	 * number gets reused, cleanup deletes the orphan item without doing
5326 	 * anything, and unlink reuses the existing orphan item.
5327 	 *
5328 	 * If it turns out that we are dropping too many of these, we might want
5329 	 * to add a mechanism for retrying these after a commit.
5330 	 */
5331 	trans = evict_refill_and_join(root, rsv);
5332 	if (!IS_ERR(trans)) {
5333 		trans->block_rsv = rsv;
5334 		btrfs_orphan_del(trans, BTRFS_I(inode));
5335 		trans->block_rsv = &fs_info->trans_block_rsv;
5336 		btrfs_end_transaction(trans);
5337 	}
5338 
5339 out:
5340 	btrfs_free_block_rsv(fs_info, rsv);
5341 	/*
5342 	 * If we didn't successfully delete, the orphan item will still be in
5343 	 * the tree and we'll retry on the next mount. Again, we might also want
5344 	 * to retry these periodically in the future.
5345 	 */
5346 	btrfs_remove_delayed_node(BTRFS_I(inode));
5347 	fsverity_cleanup_inode(inode);
5348 	clear_inode(inode);
5349 }
5350 
5351 /*
5352  * Return the key found in the dir entry in the location pointer, fill @type
5353  * with BTRFS_FT_*, and return 0.
5354  *
5355  * If no dir entries were found, returns -ENOENT.
5356  * If found a corrupted location in dir entry, returns -EUCLEAN.
5357  */
5358 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5359 			       struct btrfs_key *location, u8 *type)
5360 {
5361 	struct btrfs_dir_item *di;
5362 	struct btrfs_path *path;
5363 	struct btrfs_root *root = dir->root;
5364 	int ret = 0;
5365 	struct fscrypt_name fname;
5366 
5367 	path = btrfs_alloc_path();
5368 	if (!path)
5369 		return -ENOMEM;
5370 
5371 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5372 	if (ret < 0)
5373 		goto out;
5374 	/*
5375 	 * fscrypt_setup_filename() should never return a positive value, but
5376 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5377 	 */
5378 	ASSERT(ret == 0);
5379 
5380 	/* This needs to handle no-key deletions later on */
5381 
5382 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5383 				   &fname.disk_name, 0);
5384 	if (IS_ERR_OR_NULL(di)) {
5385 		ret = di ? PTR_ERR(di) : -ENOENT;
5386 		goto out;
5387 	}
5388 
5389 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5390 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5391 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5392 		ret = -EUCLEAN;
5393 		btrfs_warn(root->fs_info,
5394 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5395 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5396 			   location->objectid, location->type, location->offset);
5397 	}
5398 	if (!ret)
5399 		*type = btrfs_dir_ftype(path->nodes[0], di);
5400 out:
5401 	fscrypt_free_filename(&fname);
5402 	btrfs_free_path(path);
5403 	return ret;
5404 }
5405 
5406 /*
5407  * when we hit a tree root in a directory, the btrfs part of the inode
5408  * needs to be changed to reflect the root directory of the tree root.  This
5409  * is kind of like crossing a mount point.
5410  */
5411 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5412 				    struct btrfs_inode *dir,
5413 				    struct dentry *dentry,
5414 				    struct btrfs_key *location,
5415 				    struct btrfs_root **sub_root)
5416 {
5417 	struct btrfs_path *path;
5418 	struct btrfs_root *new_root;
5419 	struct btrfs_root_ref *ref;
5420 	struct extent_buffer *leaf;
5421 	struct btrfs_key key;
5422 	int ret;
5423 	int err = 0;
5424 	struct fscrypt_name fname;
5425 
5426 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5427 	if (ret)
5428 		return ret;
5429 
5430 	path = btrfs_alloc_path();
5431 	if (!path) {
5432 		err = -ENOMEM;
5433 		goto out;
5434 	}
5435 
5436 	err = -ENOENT;
5437 	key.objectid = btrfs_root_id(dir->root);
5438 	key.type = BTRFS_ROOT_REF_KEY;
5439 	key.offset = location->objectid;
5440 
5441 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5442 	if (ret) {
5443 		if (ret < 0)
5444 			err = ret;
5445 		goto out;
5446 	}
5447 
5448 	leaf = path->nodes[0];
5449 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5450 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5451 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5452 		goto out;
5453 
5454 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5455 				   (unsigned long)(ref + 1), fname.disk_name.len);
5456 	if (ret)
5457 		goto out;
5458 
5459 	btrfs_release_path(path);
5460 
5461 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5462 	if (IS_ERR(new_root)) {
5463 		err = PTR_ERR(new_root);
5464 		goto out;
5465 	}
5466 
5467 	*sub_root = new_root;
5468 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5469 	location->type = BTRFS_INODE_ITEM_KEY;
5470 	location->offset = 0;
5471 	err = 0;
5472 out:
5473 	btrfs_free_path(path);
5474 	fscrypt_free_filename(&fname);
5475 	return err;
5476 }
5477 
5478 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5479 {
5480 	struct btrfs_root *root = inode->root;
5481 	struct btrfs_inode *existing;
5482 	const u64 ino = btrfs_ino(inode);
5483 	int ret;
5484 
5485 	if (inode_unhashed(&inode->vfs_inode))
5486 		return 0;
5487 
5488 	if (prealloc) {
5489 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5490 		if (ret)
5491 			return ret;
5492 	}
5493 
5494 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5495 
5496 	if (xa_is_err(existing)) {
5497 		ret = xa_err(existing);
5498 		ASSERT(ret != -EINVAL);
5499 		ASSERT(ret != -ENOMEM);
5500 		return ret;
5501 	} else if (existing) {
5502 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5503 	}
5504 
5505 	return 0;
5506 }
5507 
5508 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5509 {
5510 	struct btrfs_root *root = inode->root;
5511 	struct btrfs_inode *entry;
5512 	bool empty = false;
5513 
5514 	xa_lock(&root->inodes);
5515 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5516 	if (entry == inode)
5517 		empty = xa_empty(&root->inodes);
5518 	xa_unlock(&root->inodes);
5519 
5520 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5521 		xa_lock(&root->inodes);
5522 		empty = xa_empty(&root->inodes);
5523 		xa_unlock(&root->inodes);
5524 		if (empty)
5525 			btrfs_add_dead_root(root);
5526 	}
5527 }
5528 
5529 
5530 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5531 {
5532 	struct btrfs_iget_args *args = p;
5533 
5534 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5535 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5536 
5537 	if (args->root && args->root == args->root->fs_info->tree_root &&
5538 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5539 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5540 			&BTRFS_I(inode)->runtime_flags);
5541 	return 0;
5542 }
5543 
5544 static int btrfs_find_actor(struct inode *inode, void *opaque)
5545 {
5546 	struct btrfs_iget_args *args = opaque;
5547 
5548 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5549 		args->root == BTRFS_I(inode)->root;
5550 }
5551 
5552 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5553 {
5554 	struct inode *inode;
5555 	struct btrfs_iget_args args;
5556 	unsigned long hashval = btrfs_inode_hash(ino, root);
5557 
5558 	args.ino = ino;
5559 	args.root = root;
5560 
5561 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5562 			     btrfs_init_locked_inode,
5563 			     (void *)&args);
5564 	return inode;
5565 }
5566 
5567 /*
5568  * Get an inode object given its inode number and corresponding root.
5569  * Path can be preallocated to prevent recursing back to iget through
5570  * allocator. NULL is also valid but may require an additional allocation
5571  * later.
5572  */
5573 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5574 			      struct btrfs_path *path)
5575 {
5576 	struct inode *inode;
5577 	int ret;
5578 
5579 	inode = btrfs_iget_locked(ino, root);
5580 	if (!inode)
5581 		return ERR_PTR(-ENOMEM);
5582 
5583 	if (!(inode->i_state & I_NEW))
5584 		return inode;
5585 
5586 	ret = btrfs_read_locked_inode(inode, path);
5587 	/*
5588 	 * ret > 0 can come from btrfs_search_slot called by
5589 	 * btrfs_read_locked_inode(), this means the inode item was not found.
5590 	 */
5591 	if (ret > 0)
5592 		ret = -ENOENT;
5593 	if (ret < 0)
5594 		goto error;
5595 
5596 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5597 	if (ret < 0)
5598 		goto error;
5599 
5600 	unlock_new_inode(inode);
5601 
5602 	return inode;
5603 error:
5604 	iget_failed(inode);
5605 	return ERR_PTR(ret);
5606 }
5607 
5608 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5609 {
5610 	return btrfs_iget_path(ino, root, NULL);
5611 }
5612 
5613 static struct inode *new_simple_dir(struct inode *dir,
5614 				    struct btrfs_key *key,
5615 				    struct btrfs_root *root)
5616 {
5617 	struct timespec64 ts;
5618 	struct inode *inode = new_inode(dir->i_sb);
5619 
5620 	if (!inode)
5621 		return ERR_PTR(-ENOMEM);
5622 
5623 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5624 	BTRFS_I(inode)->ref_root_id = key->objectid;
5625 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5626 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5627 
5628 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5629 	/*
5630 	 * We only need lookup, the rest is read-only and there's no inode
5631 	 * associated with the dentry
5632 	 */
5633 	inode->i_op = &simple_dir_inode_operations;
5634 	inode->i_opflags &= ~IOP_XATTR;
5635 	inode->i_fop = &simple_dir_operations;
5636 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5637 
5638 	ts = inode_set_ctime_current(inode);
5639 	inode_set_mtime_to_ts(inode, ts);
5640 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5641 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5642 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5643 
5644 	inode->i_uid = dir->i_uid;
5645 	inode->i_gid = dir->i_gid;
5646 
5647 	return inode;
5648 }
5649 
5650 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5651 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5652 static_assert(BTRFS_FT_DIR == FT_DIR);
5653 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5654 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5655 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5656 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5657 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5658 
5659 static inline u8 btrfs_inode_type(struct inode *inode)
5660 {
5661 	return fs_umode_to_ftype(inode->i_mode);
5662 }
5663 
5664 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5665 {
5666 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5667 	struct inode *inode;
5668 	struct btrfs_root *root = BTRFS_I(dir)->root;
5669 	struct btrfs_root *sub_root = root;
5670 	struct btrfs_key location = { 0 };
5671 	u8 di_type = 0;
5672 	int ret = 0;
5673 
5674 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5675 		return ERR_PTR(-ENAMETOOLONG);
5676 
5677 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5678 	if (ret < 0)
5679 		return ERR_PTR(ret);
5680 
5681 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5682 		inode = btrfs_iget(location.objectid, root);
5683 		if (IS_ERR(inode))
5684 			return inode;
5685 
5686 		/* Do extra check against inode mode with di_type */
5687 		if (btrfs_inode_type(inode) != di_type) {
5688 			btrfs_crit(fs_info,
5689 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5690 				  inode->i_mode, btrfs_inode_type(inode),
5691 				  di_type);
5692 			iput(inode);
5693 			return ERR_PTR(-EUCLEAN);
5694 		}
5695 		return inode;
5696 	}
5697 
5698 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5699 				       &location, &sub_root);
5700 	if (ret < 0) {
5701 		if (ret != -ENOENT)
5702 			inode = ERR_PTR(ret);
5703 		else
5704 			inode = new_simple_dir(dir, &location, root);
5705 	} else {
5706 		inode = btrfs_iget(location.objectid, sub_root);
5707 		btrfs_put_root(sub_root);
5708 
5709 		if (IS_ERR(inode))
5710 			return inode;
5711 
5712 		down_read(&fs_info->cleanup_work_sem);
5713 		if (!sb_rdonly(inode->i_sb))
5714 			ret = btrfs_orphan_cleanup(sub_root);
5715 		up_read(&fs_info->cleanup_work_sem);
5716 		if (ret) {
5717 			iput(inode);
5718 			inode = ERR_PTR(ret);
5719 		}
5720 	}
5721 
5722 	return inode;
5723 }
5724 
5725 static int btrfs_dentry_delete(const struct dentry *dentry)
5726 {
5727 	struct btrfs_root *root;
5728 	struct inode *inode = d_inode(dentry);
5729 
5730 	if (!inode && !IS_ROOT(dentry))
5731 		inode = d_inode(dentry->d_parent);
5732 
5733 	if (inode) {
5734 		root = BTRFS_I(inode)->root;
5735 		if (btrfs_root_refs(&root->root_item) == 0)
5736 			return 1;
5737 
5738 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5739 			return 1;
5740 	}
5741 	return 0;
5742 }
5743 
5744 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5745 				   unsigned int flags)
5746 {
5747 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5748 
5749 	if (inode == ERR_PTR(-ENOENT))
5750 		inode = NULL;
5751 	return d_splice_alias(inode, dentry);
5752 }
5753 
5754 /*
5755  * Find the highest existing sequence number in a directory and then set the
5756  * in-memory index_cnt variable to the first free sequence number.
5757  */
5758 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5759 {
5760 	struct btrfs_root *root = inode->root;
5761 	struct btrfs_key key, found_key;
5762 	struct btrfs_path *path;
5763 	struct extent_buffer *leaf;
5764 	int ret;
5765 
5766 	key.objectid = btrfs_ino(inode);
5767 	key.type = BTRFS_DIR_INDEX_KEY;
5768 	key.offset = (u64)-1;
5769 
5770 	path = btrfs_alloc_path();
5771 	if (!path)
5772 		return -ENOMEM;
5773 
5774 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5775 	if (ret < 0)
5776 		goto out;
5777 	/* FIXME: we should be able to handle this */
5778 	if (ret == 0)
5779 		goto out;
5780 	ret = 0;
5781 
5782 	if (path->slots[0] == 0) {
5783 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5784 		goto out;
5785 	}
5786 
5787 	path->slots[0]--;
5788 
5789 	leaf = path->nodes[0];
5790 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5791 
5792 	if (found_key.objectid != btrfs_ino(inode) ||
5793 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5794 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5795 		goto out;
5796 	}
5797 
5798 	inode->index_cnt = found_key.offset + 1;
5799 out:
5800 	btrfs_free_path(path);
5801 	return ret;
5802 }
5803 
5804 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5805 {
5806 	int ret = 0;
5807 
5808 	btrfs_inode_lock(dir, 0);
5809 	if (dir->index_cnt == (u64)-1) {
5810 		ret = btrfs_inode_delayed_dir_index_count(dir);
5811 		if (ret) {
5812 			ret = btrfs_set_inode_index_count(dir);
5813 			if (ret)
5814 				goto out;
5815 		}
5816 	}
5817 
5818 	/* index_cnt is the index number of next new entry, so decrement it. */
5819 	*index = dir->index_cnt - 1;
5820 out:
5821 	btrfs_inode_unlock(dir, 0);
5822 
5823 	return ret;
5824 }
5825 
5826 /*
5827  * All this infrastructure exists because dir_emit can fault, and we are holding
5828  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5829  * our information into that, and then dir_emit from the buffer.  This is
5830  * similar to what NFS does, only we don't keep the buffer around in pagecache
5831  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5832  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5833  * tree lock.
5834  */
5835 static int btrfs_opendir(struct inode *inode, struct file *file)
5836 {
5837 	struct btrfs_file_private *private;
5838 	u64 last_index;
5839 	int ret;
5840 
5841 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5842 	if (ret)
5843 		return ret;
5844 
5845 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5846 	if (!private)
5847 		return -ENOMEM;
5848 	private->last_index = last_index;
5849 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5850 	if (!private->filldir_buf) {
5851 		kfree(private);
5852 		return -ENOMEM;
5853 	}
5854 	file->private_data = private;
5855 	return 0;
5856 }
5857 
5858 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5859 {
5860 	struct btrfs_file_private *private = file->private_data;
5861 	int ret;
5862 
5863 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5864 				       &private->last_index);
5865 	if (ret)
5866 		return ret;
5867 
5868 	return generic_file_llseek(file, offset, whence);
5869 }
5870 
5871 struct dir_entry {
5872 	u64 ino;
5873 	u64 offset;
5874 	unsigned type;
5875 	int name_len;
5876 };
5877 
5878 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5879 {
5880 	while (entries--) {
5881 		struct dir_entry *entry = addr;
5882 		char *name = (char *)(entry + 1);
5883 
5884 		ctx->pos = get_unaligned(&entry->offset);
5885 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5886 					 get_unaligned(&entry->ino),
5887 					 get_unaligned(&entry->type)))
5888 			return 1;
5889 		addr += sizeof(struct dir_entry) +
5890 			get_unaligned(&entry->name_len);
5891 		ctx->pos++;
5892 	}
5893 	return 0;
5894 }
5895 
5896 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5897 {
5898 	struct inode *inode = file_inode(file);
5899 	struct btrfs_root *root = BTRFS_I(inode)->root;
5900 	struct btrfs_file_private *private = file->private_data;
5901 	struct btrfs_dir_item *di;
5902 	struct btrfs_key key;
5903 	struct btrfs_key found_key;
5904 	struct btrfs_path *path;
5905 	void *addr;
5906 	LIST_HEAD(ins_list);
5907 	LIST_HEAD(del_list);
5908 	int ret;
5909 	char *name_ptr;
5910 	int name_len;
5911 	int entries = 0;
5912 	int total_len = 0;
5913 	bool put = false;
5914 	struct btrfs_key location;
5915 
5916 	if (!dir_emit_dots(file, ctx))
5917 		return 0;
5918 
5919 	path = btrfs_alloc_path();
5920 	if (!path)
5921 		return -ENOMEM;
5922 
5923 	addr = private->filldir_buf;
5924 	path->reada = READA_FORWARD;
5925 
5926 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5927 					      &ins_list, &del_list);
5928 
5929 again:
5930 	key.type = BTRFS_DIR_INDEX_KEY;
5931 	key.offset = ctx->pos;
5932 	key.objectid = btrfs_ino(BTRFS_I(inode));
5933 
5934 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5935 		struct dir_entry *entry;
5936 		struct extent_buffer *leaf = path->nodes[0];
5937 		u8 ftype;
5938 
5939 		if (found_key.objectid != key.objectid)
5940 			break;
5941 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5942 			break;
5943 		if (found_key.offset < ctx->pos)
5944 			continue;
5945 		if (found_key.offset > private->last_index)
5946 			break;
5947 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5948 			continue;
5949 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5950 		name_len = btrfs_dir_name_len(leaf, di);
5951 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5952 		    PAGE_SIZE) {
5953 			btrfs_release_path(path);
5954 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5955 			if (ret)
5956 				goto nopos;
5957 			addr = private->filldir_buf;
5958 			entries = 0;
5959 			total_len = 0;
5960 			goto again;
5961 		}
5962 
5963 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5964 		entry = addr;
5965 		name_ptr = (char *)(entry + 1);
5966 		read_extent_buffer(leaf, name_ptr,
5967 				   (unsigned long)(di + 1), name_len);
5968 		put_unaligned(name_len, &entry->name_len);
5969 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5970 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5971 		put_unaligned(location.objectid, &entry->ino);
5972 		put_unaligned(found_key.offset, &entry->offset);
5973 		entries++;
5974 		addr += sizeof(struct dir_entry) + name_len;
5975 		total_len += sizeof(struct dir_entry) + name_len;
5976 	}
5977 	/* Catch error encountered during iteration */
5978 	if (ret < 0)
5979 		goto err;
5980 
5981 	btrfs_release_path(path);
5982 
5983 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5984 	if (ret)
5985 		goto nopos;
5986 
5987 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5988 	if (ret)
5989 		goto nopos;
5990 
5991 	/*
5992 	 * Stop new entries from being returned after we return the last
5993 	 * entry.
5994 	 *
5995 	 * New directory entries are assigned a strictly increasing
5996 	 * offset.  This means that new entries created during readdir
5997 	 * are *guaranteed* to be seen in the future by that readdir.
5998 	 * This has broken buggy programs which operate on names as
5999 	 * they're returned by readdir.  Until we re-use freed offsets
6000 	 * we have this hack to stop new entries from being returned
6001 	 * under the assumption that they'll never reach this huge
6002 	 * offset.
6003 	 *
6004 	 * This is being careful not to overflow 32bit loff_t unless the
6005 	 * last entry requires it because doing so has broken 32bit apps
6006 	 * in the past.
6007 	 */
6008 	if (ctx->pos >= INT_MAX)
6009 		ctx->pos = LLONG_MAX;
6010 	else
6011 		ctx->pos = INT_MAX;
6012 nopos:
6013 	ret = 0;
6014 err:
6015 	if (put)
6016 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6017 	btrfs_free_path(path);
6018 	return ret;
6019 }
6020 
6021 /*
6022  * This is somewhat expensive, updating the tree every time the
6023  * inode changes.  But, it is most likely to find the inode in cache.
6024  * FIXME, needs more benchmarking...there are no reasons other than performance
6025  * to keep or drop this code.
6026  */
6027 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6028 {
6029 	struct btrfs_root *root = inode->root;
6030 	struct btrfs_fs_info *fs_info = root->fs_info;
6031 	struct btrfs_trans_handle *trans;
6032 	int ret;
6033 
6034 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6035 		return 0;
6036 
6037 	trans = btrfs_join_transaction(root);
6038 	if (IS_ERR(trans))
6039 		return PTR_ERR(trans);
6040 
6041 	ret = btrfs_update_inode(trans, inode);
6042 	if (ret == -ENOSPC || ret == -EDQUOT) {
6043 		/* whoops, lets try again with the full transaction */
6044 		btrfs_end_transaction(trans);
6045 		trans = btrfs_start_transaction(root, 1);
6046 		if (IS_ERR(trans))
6047 			return PTR_ERR(trans);
6048 
6049 		ret = btrfs_update_inode(trans, inode);
6050 	}
6051 	btrfs_end_transaction(trans);
6052 	if (inode->delayed_node)
6053 		btrfs_balance_delayed_items(fs_info);
6054 
6055 	return ret;
6056 }
6057 
6058 /*
6059  * This is a copy of file_update_time.  We need this so we can return error on
6060  * ENOSPC for updating the inode in the case of file write and mmap writes.
6061  */
6062 static int btrfs_update_time(struct inode *inode, int flags)
6063 {
6064 	struct btrfs_root *root = BTRFS_I(inode)->root;
6065 	bool dirty;
6066 
6067 	if (btrfs_root_readonly(root))
6068 		return -EROFS;
6069 
6070 	dirty = inode_update_timestamps(inode, flags);
6071 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6072 }
6073 
6074 /*
6075  * helper to find a free sequence number in a given directory.  This current
6076  * code is very simple, later versions will do smarter things in the btree
6077  */
6078 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6079 {
6080 	int ret = 0;
6081 
6082 	if (dir->index_cnt == (u64)-1) {
6083 		ret = btrfs_inode_delayed_dir_index_count(dir);
6084 		if (ret) {
6085 			ret = btrfs_set_inode_index_count(dir);
6086 			if (ret)
6087 				return ret;
6088 		}
6089 	}
6090 
6091 	*index = dir->index_cnt;
6092 	dir->index_cnt++;
6093 
6094 	return ret;
6095 }
6096 
6097 static int btrfs_insert_inode_locked(struct inode *inode)
6098 {
6099 	struct btrfs_iget_args args;
6100 
6101 	args.ino = btrfs_ino(BTRFS_I(inode));
6102 	args.root = BTRFS_I(inode)->root;
6103 
6104 	return insert_inode_locked4(inode,
6105 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6106 		   btrfs_find_actor, &args);
6107 }
6108 
6109 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6110 			    unsigned int *trans_num_items)
6111 {
6112 	struct inode *dir = args->dir;
6113 	struct inode *inode = args->inode;
6114 	int ret;
6115 
6116 	if (!args->orphan) {
6117 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6118 					     &args->fname);
6119 		if (ret)
6120 			return ret;
6121 	}
6122 
6123 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6124 	if (ret) {
6125 		fscrypt_free_filename(&args->fname);
6126 		return ret;
6127 	}
6128 
6129 	/* 1 to add inode item */
6130 	*trans_num_items = 1;
6131 	/* 1 to add compression property */
6132 	if (BTRFS_I(dir)->prop_compress)
6133 		(*trans_num_items)++;
6134 	/* 1 to add default ACL xattr */
6135 	if (args->default_acl)
6136 		(*trans_num_items)++;
6137 	/* 1 to add access ACL xattr */
6138 	if (args->acl)
6139 		(*trans_num_items)++;
6140 #ifdef CONFIG_SECURITY
6141 	/* 1 to add LSM xattr */
6142 	if (dir->i_security)
6143 		(*trans_num_items)++;
6144 #endif
6145 	if (args->orphan) {
6146 		/* 1 to add orphan item */
6147 		(*trans_num_items)++;
6148 	} else {
6149 		/*
6150 		 * 1 to add dir item
6151 		 * 1 to add dir index
6152 		 * 1 to update parent inode item
6153 		 *
6154 		 * No need for 1 unit for the inode ref item because it is
6155 		 * inserted in a batch together with the inode item at
6156 		 * btrfs_create_new_inode().
6157 		 */
6158 		*trans_num_items += 3;
6159 	}
6160 	return 0;
6161 }
6162 
6163 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6164 {
6165 	posix_acl_release(args->acl);
6166 	posix_acl_release(args->default_acl);
6167 	fscrypt_free_filename(&args->fname);
6168 }
6169 
6170 /*
6171  * Inherit flags from the parent inode.
6172  *
6173  * Currently only the compression flags and the cow flags are inherited.
6174  */
6175 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6176 {
6177 	unsigned int flags;
6178 
6179 	flags = dir->flags;
6180 
6181 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6182 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6183 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6184 	} else if (flags & BTRFS_INODE_COMPRESS) {
6185 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6186 		inode->flags |= BTRFS_INODE_COMPRESS;
6187 	}
6188 
6189 	if (flags & BTRFS_INODE_NODATACOW) {
6190 		inode->flags |= BTRFS_INODE_NODATACOW;
6191 		if (S_ISREG(inode->vfs_inode.i_mode))
6192 			inode->flags |= BTRFS_INODE_NODATASUM;
6193 	}
6194 
6195 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6196 }
6197 
6198 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6199 			   struct btrfs_new_inode_args *args)
6200 {
6201 	struct timespec64 ts;
6202 	struct inode *dir = args->dir;
6203 	struct inode *inode = args->inode;
6204 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6205 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6206 	struct btrfs_root *root;
6207 	struct btrfs_inode_item *inode_item;
6208 	struct btrfs_path *path;
6209 	u64 objectid;
6210 	struct btrfs_inode_ref *ref;
6211 	struct btrfs_key key[2];
6212 	u32 sizes[2];
6213 	struct btrfs_item_batch batch;
6214 	unsigned long ptr;
6215 	int ret;
6216 	bool xa_reserved = false;
6217 
6218 	path = btrfs_alloc_path();
6219 	if (!path)
6220 		return -ENOMEM;
6221 
6222 	if (!args->subvol)
6223 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6224 	root = BTRFS_I(inode)->root;
6225 
6226 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6227 	if (ret)
6228 		goto out;
6229 
6230 	ret = btrfs_get_free_objectid(root, &objectid);
6231 	if (ret)
6232 		goto out;
6233 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6234 
6235 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6236 	if (ret)
6237 		goto out;
6238 	xa_reserved = true;
6239 
6240 	if (args->orphan) {
6241 		/*
6242 		 * O_TMPFILE, set link count to 0, so that after this point, we
6243 		 * fill in an inode item with the correct link count.
6244 		 */
6245 		set_nlink(inode, 0);
6246 	} else {
6247 		trace_btrfs_inode_request(dir);
6248 
6249 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6250 		if (ret)
6251 			goto out;
6252 	}
6253 
6254 	if (S_ISDIR(inode->i_mode))
6255 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6256 
6257 	BTRFS_I(inode)->generation = trans->transid;
6258 	inode->i_generation = BTRFS_I(inode)->generation;
6259 
6260 	/*
6261 	 * We don't have any capability xattrs set here yet, shortcut any
6262 	 * queries for the xattrs here.  If we add them later via the inode
6263 	 * security init path or any other path this flag will be cleared.
6264 	 */
6265 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6266 
6267 	/*
6268 	 * Subvolumes don't inherit flags from their parent directory.
6269 	 * Originally this was probably by accident, but we probably can't
6270 	 * change it now without compatibility issues.
6271 	 */
6272 	if (!args->subvol)
6273 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6274 
6275 	if (S_ISREG(inode->i_mode)) {
6276 		if (btrfs_test_opt(fs_info, NODATASUM))
6277 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6278 		if (btrfs_test_opt(fs_info, NODATACOW))
6279 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6280 				BTRFS_INODE_NODATASUM;
6281 	}
6282 
6283 	ret = btrfs_insert_inode_locked(inode);
6284 	if (ret < 0) {
6285 		if (!args->orphan)
6286 			BTRFS_I(dir)->index_cnt--;
6287 		goto out;
6288 	}
6289 
6290 	/*
6291 	 * We could have gotten an inode number from somebody who was fsynced
6292 	 * and then removed in this same transaction, so let's just set full
6293 	 * sync since it will be a full sync anyway and this will blow away the
6294 	 * old info in the log.
6295 	 */
6296 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6297 
6298 	key[0].objectid = objectid;
6299 	key[0].type = BTRFS_INODE_ITEM_KEY;
6300 	key[0].offset = 0;
6301 
6302 	sizes[0] = sizeof(struct btrfs_inode_item);
6303 
6304 	if (!args->orphan) {
6305 		/*
6306 		 * Start new inodes with an inode_ref. This is slightly more
6307 		 * efficient for small numbers of hard links since they will
6308 		 * be packed into one item. Extended refs will kick in if we
6309 		 * add more hard links than can fit in the ref item.
6310 		 */
6311 		key[1].objectid = objectid;
6312 		key[1].type = BTRFS_INODE_REF_KEY;
6313 		if (args->subvol) {
6314 			key[1].offset = objectid;
6315 			sizes[1] = 2 + sizeof(*ref);
6316 		} else {
6317 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6318 			sizes[1] = name->len + sizeof(*ref);
6319 		}
6320 	}
6321 
6322 	batch.keys = &key[0];
6323 	batch.data_sizes = &sizes[0];
6324 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6325 	batch.nr = args->orphan ? 1 : 2;
6326 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6327 	if (ret != 0) {
6328 		btrfs_abort_transaction(trans, ret);
6329 		goto discard;
6330 	}
6331 
6332 	ts = simple_inode_init_ts(inode);
6333 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6334 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6335 
6336 	/*
6337 	 * We're going to fill the inode item now, so at this point the inode
6338 	 * must be fully initialized.
6339 	 */
6340 
6341 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6342 				  struct btrfs_inode_item);
6343 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6344 			     sizeof(*inode_item));
6345 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6346 
6347 	if (!args->orphan) {
6348 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6349 				     struct btrfs_inode_ref);
6350 		ptr = (unsigned long)(ref + 1);
6351 		if (args->subvol) {
6352 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6353 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6354 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6355 		} else {
6356 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6357 						     name->len);
6358 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6359 						  BTRFS_I(inode)->dir_index);
6360 			write_extent_buffer(path->nodes[0], name->name, ptr,
6361 					    name->len);
6362 		}
6363 	}
6364 
6365 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6366 	/*
6367 	 * We don't need the path anymore, plus inheriting properties, adding
6368 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6369 	 * allocating yet another path. So just free our path.
6370 	 */
6371 	btrfs_free_path(path);
6372 	path = NULL;
6373 
6374 	if (args->subvol) {
6375 		struct inode *parent;
6376 
6377 		/*
6378 		 * Subvolumes inherit properties from their parent subvolume,
6379 		 * not the directory they were created in.
6380 		 */
6381 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6382 		if (IS_ERR(parent)) {
6383 			ret = PTR_ERR(parent);
6384 		} else {
6385 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6386 			iput(parent);
6387 		}
6388 	} else {
6389 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6390 	}
6391 	if (ret) {
6392 		btrfs_err(fs_info,
6393 			  "error inheriting props for ino %llu (root %llu): %d",
6394 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6395 	}
6396 
6397 	/*
6398 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6399 	 * probably a bug.
6400 	 */
6401 	if (!args->subvol) {
6402 		ret = btrfs_init_inode_security(trans, args);
6403 		if (ret) {
6404 			btrfs_abort_transaction(trans, ret);
6405 			goto discard;
6406 		}
6407 	}
6408 
6409 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6410 	if (WARN_ON(ret)) {
6411 		/* Shouldn't happen, we used xa_reserve() before. */
6412 		btrfs_abort_transaction(trans, ret);
6413 		goto discard;
6414 	}
6415 
6416 	trace_btrfs_inode_new(inode);
6417 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6418 
6419 	btrfs_update_root_times(trans, root);
6420 
6421 	if (args->orphan) {
6422 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6423 	} else {
6424 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6425 				     0, BTRFS_I(inode)->dir_index);
6426 	}
6427 	if (ret) {
6428 		btrfs_abort_transaction(trans, ret);
6429 		goto discard;
6430 	}
6431 
6432 	return 0;
6433 
6434 discard:
6435 	/*
6436 	 * discard_new_inode() calls iput(), but the caller owns the reference
6437 	 * to the inode.
6438 	 */
6439 	ihold(inode);
6440 	discard_new_inode(inode);
6441 out:
6442 	if (xa_reserved)
6443 		xa_release(&root->inodes, objectid);
6444 
6445 	btrfs_free_path(path);
6446 	return ret;
6447 }
6448 
6449 /*
6450  * utility function to add 'inode' into 'parent_inode' with
6451  * a give name and a given sequence number.
6452  * if 'add_backref' is true, also insert a backref from the
6453  * inode to the parent directory.
6454  */
6455 int btrfs_add_link(struct btrfs_trans_handle *trans,
6456 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6457 		   const struct fscrypt_str *name, int add_backref, u64 index)
6458 {
6459 	int ret = 0;
6460 	struct btrfs_key key;
6461 	struct btrfs_root *root = parent_inode->root;
6462 	u64 ino = btrfs_ino(inode);
6463 	u64 parent_ino = btrfs_ino(parent_inode);
6464 
6465 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6466 		memcpy(&key, &inode->root->root_key, sizeof(key));
6467 	} else {
6468 		key.objectid = ino;
6469 		key.type = BTRFS_INODE_ITEM_KEY;
6470 		key.offset = 0;
6471 	}
6472 
6473 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6474 		ret = btrfs_add_root_ref(trans, key.objectid,
6475 					 btrfs_root_id(root), parent_ino,
6476 					 index, name);
6477 	} else if (add_backref) {
6478 		ret = btrfs_insert_inode_ref(trans, root, name,
6479 					     ino, parent_ino, index);
6480 	}
6481 
6482 	/* Nothing to clean up yet */
6483 	if (ret)
6484 		return ret;
6485 
6486 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6487 				    btrfs_inode_type(&inode->vfs_inode), index);
6488 	if (ret == -EEXIST || ret == -EOVERFLOW)
6489 		goto fail_dir_item;
6490 	else if (ret) {
6491 		btrfs_abort_transaction(trans, ret);
6492 		return ret;
6493 	}
6494 
6495 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6496 			   name->len * 2);
6497 	inode_inc_iversion(&parent_inode->vfs_inode);
6498 	/*
6499 	 * If we are replaying a log tree, we do not want to update the mtime
6500 	 * and ctime of the parent directory with the current time, since the
6501 	 * log replay procedure is responsible for setting them to their correct
6502 	 * values (the ones it had when the fsync was done).
6503 	 */
6504 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6505 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6506 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6507 
6508 	ret = btrfs_update_inode(trans, parent_inode);
6509 	if (ret)
6510 		btrfs_abort_transaction(trans, ret);
6511 	return ret;
6512 
6513 fail_dir_item:
6514 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6515 		u64 local_index;
6516 		int err;
6517 		err = btrfs_del_root_ref(trans, key.objectid,
6518 					 btrfs_root_id(root), parent_ino,
6519 					 &local_index, name);
6520 		if (err)
6521 			btrfs_abort_transaction(trans, err);
6522 	} else if (add_backref) {
6523 		u64 local_index;
6524 		int err;
6525 
6526 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6527 					  &local_index);
6528 		if (err)
6529 			btrfs_abort_transaction(trans, err);
6530 	}
6531 
6532 	/* Return the original error code */
6533 	return ret;
6534 }
6535 
6536 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6537 			       struct inode *inode)
6538 {
6539 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6540 	struct btrfs_root *root = BTRFS_I(dir)->root;
6541 	struct btrfs_new_inode_args new_inode_args = {
6542 		.dir = dir,
6543 		.dentry = dentry,
6544 		.inode = inode,
6545 	};
6546 	unsigned int trans_num_items;
6547 	struct btrfs_trans_handle *trans;
6548 	int err;
6549 
6550 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6551 	if (err)
6552 		goto out_inode;
6553 
6554 	trans = btrfs_start_transaction(root, trans_num_items);
6555 	if (IS_ERR(trans)) {
6556 		err = PTR_ERR(trans);
6557 		goto out_new_inode_args;
6558 	}
6559 
6560 	err = btrfs_create_new_inode(trans, &new_inode_args);
6561 	if (!err)
6562 		d_instantiate_new(dentry, inode);
6563 
6564 	btrfs_end_transaction(trans);
6565 	btrfs_btree_balance_dirty(fs_info);
6566 out_new_inode_args:
6567 	btrfs_new_inode_args_destroy(&new_inode_args);
6568 out_inode:
6569 	if (err)
6570 		iput(inode);
6571 	return err;
6572 }
6573 
6574 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6575 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6576 {
6577 	struct inode *inode;
6578 
6579 	inode = new_inode(dir->i_sb);
6580 	if (!inode)
6581 		return -ENOMEM;
6582 	inode_init_owner(idmap, inode, dir, mode);
6583 	inode->i_op = &btrfs_special_inode_operations;
6584 	init_special_inode(inode, inode->i_mode, rdev);
6585 	return btrfs_create_common(dir, dentry, inode);
6586 }
6587 
6588 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6589 			struct dentry *dentry, umode_t mode, bool excl)
6590 {
6591 	struct inode *inode;
6592 
6593 	inode = new_inode(dir->i_sb);
6594 	if (!inode)
6595 		return -ENOMEM;
6596 	inode_init_owner(idmap, inode, dir, mode);
6597 	inode->i_fop = &btrfs_file_operations;
6598 	inode->i_op = &btrfs_file_inode_operations;
6599 	inode->i_mapping->a_ops = &btrfs_aops;
6600 	return btrfs_create_common(dir, dentry, inode);
6601 }
6602 
6603 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6604 		      struct dentry *dentry)
6605 {
6606 	struct btrfs_trans_handle *trans = NULL;
6607 	struct btrfs_root *root = BTRFS_I(dir)->root;
6608 	struct inode *inode = d_inode(old_dentry);
6609 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6610 	struct fscrypt_name fname;
6611 	u64 index;
6612 	int err;
6613 	int drop_inode = 0;
6614 
6615 	/* do not allow sys_link's with other subvols of the same device */
6616 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6617 		return -EXDEV;
6618 
6619 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6620 		return -EMLINK;
6621 
6622 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6623 	if (err)
6624 		goto fail;
6625 
6626 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6627 	if (err)
6628 		goto fail;
6629 
6630 	/*
6631 	 * 2 items for inode and inode ref
6632 	 * 2 items for dir items
6633 	 * 1 item for parent inode
6634 	 * 1 item for orphan item deletion if O_TMPFILE
6635 	 */
6636 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6637 	if (IS_ERR(trans)) {
6638 		err = PTR_ERR(trans);
6639 		trans = NULL;
6640 		goto fail;
6641 	}
6642 
6643 	/* There are several dir indexes for this inode, clear the cache. */
6644 	BTRFS_I(inode)->dir_index = 0ULL;
6645 	inc_nlink(inode);
6646 	inode_inc_iversion(inode);
6647 	inode_set_ctime_current(inode);
6648 	ihold(inode);
6649 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6650 
6651 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6652 			     &fname.disk_name, 1, index);
6653 
6654 	if (err) {
6655 		drop_inode = 1;
6656 	} else {
6657 		struct dentry *parent = dentry->d_parent;
6658 
6659 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6660 		if (err)
6661 			goto fail;
6662 		if (inode->i_nlink == 1) {
6663 			/*
6664 			 * If new hard link count is 1, it's a file created
6665 			 * with open(2) O_TMPFILE flag.
6666 			 */
6667 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6668 			if (err)
6669 				goto fail;
6670 		}
6671 		d_instantiate(dentry, inode);
6672 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6673 	}
6674 
6675 fail:
6676 	fscrypt_free_filename(&fname);
6677 	if (trans)
6678 		btrfs_end_transaction(trans);
6679 	if (drop_inode) {
6680 		inode_dec_link_count(inode);
6681 		iput(inode);
6682 	}
6683 	btrfs_btree_balance_dirty(fs_info);
6684 	return err;
6685 }
6686 
6687 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6688 		       struct dentry *dentry, umode_t mode)
6689 {
6690 	struct inode *inode;
6691 
6692 	inode = new_inode(dir->i_sb);
6693 	if (!inode)
6694 		return -ENOMEM;
6695 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6696 	inode->i_op = &btrfs_dir_inode_operations;
6697 	inode->i_fop = &btrfs_dir_file_operations;
6698 	return btrfs_create_common(dir, dentry, inode);
6699 }
6700 
6701 static noinline int uncompress_inline(struct btrfs_path *path,
6702 				      struct page *page,
6703 				      struct btrfs_file_extent_item *item)
6704 {
6705 	int ret;
6706 	struct extent_buffer *leaf = path->nodes[0];
6707 	char *tmp;
6708 	size_t max_size;
6709 	unsigned long inline_size;
6710 	unsigned long ptr;
6711 	int compress_type;
6712 
6713 	compress_type = btrfs_file_extent_compression(leaf, item);
6714 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6715 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6716 	tmp = kmalloc(inline_size, GFP_NOFS);
6717 	if (!tmp)
6718 		return -ENOMEM;
6719 	ptr = btrfs_file_extent_inline_start(item);
6720 
6721 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6722 
6723 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6724 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6725 
6726 	/*
6727 	 * decompression code contains a memset to fill in any space between the end
6728 	 * of the uncompressed data and the end of max_size in case the decompressed
6729 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6730 	 * the end of an inline extent and the beginning of the next block, so we
6731 	 * cover that region here.
6732 	 */
6733 
6734 	if (max_size < PAGE_SIZE)
6735 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6736 	kfree(tmp);
6737 	return ret;
6738 }
6739 
6740 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6741 			      struct page *page)
6742 {
6743 	struct btrfs_file_extent_item *fi;
6744 	void *kaddr;
6745 	size_t copy_size;
6746 
6747 	if (!page || PageUptodate(page))
6748 		return 0;
6749 
6750 	ASSERT(page_offset(page) == 0);
6751 
6752 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6753 			    struct btrfs_file_extent_item);
6754 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6755 		return uncompress_inline(path, page, fi);
6756 
6757 	copy_size = min_t(u64, PAGE_SIZE,
6758 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6759 	kaddr = kmap_local_page(page);
6760 	read_extent_buffer(path->nodes[0], kaddr,
6761 			   btrfs_file_extent_inline_start(fi), copy_size);
6762 	kunmap_local(kaddr);
6763 	if (copy_size < PAGE_SIZE)
6764 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6765 	return 0;
6766 }
6767 
6768 /*
6769  * Lookup the first extent overlapping a range in a file.
6770  *
6771  * @inode:	file to search in
6772  * @page:	page to read extent data into if the extent is inline
6773  * @start:	file offset
6774  * @len:	length of range starting at @start
6775  *
6776  * Return the first &struct extent_map which overlaps the given range, reading
6777  * it from the B-tree and caching it if necessary. Note that there may be more
6778  * extents which overlap the given range after the returned extent_map.
6779  *
6780  * If @page is not NULL and the extent is inline, this also reads the extent
6781  * data directly into the page and marks the extent up to date in the io_tree.
6782  *
6783  * Return: ERR_PTR on error, non-NULL extent_map on success.
6784  */
6785 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6786 				    struct page *page, u64 start, u64 len)
6787 {
6788 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6789 	int ret = 0;
6790 	u64 extent_start = 0;
6791 	u64 extent_end = 0;
6792 	u64 objectid = btrfs_ino(inode);
6793 	int extent_type = -1;
6794 	struct btrfs_path *path = NULL;
6795 	struct btrfs_root *root = inode->root;
6796 	struct btrfs_file_extent_item *item;
6797 	struct extent_buffer *leaf;
6798 	struct btrfs_key found_key;
6799 	struct extent_map *em = NULL;
6800 	struct extent_map_tree *em_tree = &inode->extent_tree;
6801 
6802 	read_lock(&em_tree->lock);
6803 	em = lookup_extent_mapping(em_tree, start, len);
6804 	read_unlock(&em_tree->lock);
6805 
6806 	if (em) {
6807 		if (em->start > start || em->start + em->len <= start)
6808 			free_extent_map(em);
6809 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && page)
6810 			free_extent_map(em);
6811 		else
6812 			goto out;
6813 	}
6814 	em = alloc_extent_map();
6815 	if (!em) {
6816 		ret = -ENOMEM;
6817 		goto out;
6818 	}
6819 	em->start = EXTENT_MAP_HOLE;
6820 	em->disk_bytenr = EXTENT_MAP_HOLE;
6821 	em->len = (u64)-1;
6822 
6823 	path = btrfs_alloc_path();
6824 	if (!path) {
6825 		ret = -ENOMEM;
6826 		goto out;
6827 	}
6828 
6829 	/* Chances are we'll be called again, so go ahead and do readahead */
6830 	path->reada = READA_FORWARD;
6831 
6832 	/*
6833 	 * The same explanation in load_free_space_cache applies here as well,
6834 	 * we only read when we're loading the free space cache, and at that
6835 	 * point the commit_root has everything we need.
6836 	 */
6837 	if (btrfs_is_free_space_inode(inode)) {
6838 		path->search_commit_root = 1;
6839 		path->skip_locking = 1;
6840 	}
6841 
6842 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6843 	if (ret < 0) {
6844 		goto out;
6845 	} else if (ret > 0) {
6846 		if (path->slots[0] == 0)
6847 			goto not_found;
6848 		path->slots[0]--;
6849 		ret = 0;
6850 	}
6851 
6852 	leaf = path->nodes[0];
6853 	item = btrfs_item_ptr(leaf, path->slots[0],
6854 			      struct btrfs_file_extent_item);
6855 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6856 	if (found_key.objectid != objectid ||
6857 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6858 		/*
6859 		 * If we backup past the first extent we want to move forward
6860 		 * and see if there is an extent in front of us, otherwise we'll
6861 		 * say there is a hole for our whole search range which can
6862 		 * cause problems.
6863 		 */
6864 		extent_end = start;
6865 		goto next;
6866 	}
6867 
6868 	extent_type = btrfs_file_extent_type(leaf, item);
6869 	extent_start = found_key.offset;
6870 	extent_end = btrfs_file_extent_end(path);
6871 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6872 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6873 		/* Only regular file could have regular/prealloc extent */
6874 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6875 			ret = -EUCLEAN;
6876 			btrfs_crit(fs_info,
6877 		"regular/prealloc extent found for non-regular inode %llu",
6878 				   btrfs_ino(inode));
6879 			goto out;
6880 		}
6881 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6882 						       extent_start);
6883 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6884 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6885 						      path->slots[0],
6886 						      extent_start);
6887 	}
6888 next:
6889 	if (start >= extent_end) {
6890 		path->slots[0]++;
6891 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6892 			ret = btrfs_next_leaf(root, path);
6893 			if (ret < 0)
6894 				goto out;
6895 			else if (ret > 0)
6896 				goto not_found;
6897 
6898 			leaf = path->nodes[0];
6899 		}
6900 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6901 		if (found_key.objectid != objectid ||
6902 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6903 			goto not_found;
6904 		if (start + len <= found_key.offset)
6905 			goto not_found;
6906 		if (start > found_key.offset)
6907 			goto next;
6908 
6909 		/* New extent overlaps with existing one */
6910 		em->start = start;
6911 		em->len = found_key.offset - start;
6912 		em->disk_bytenr = EXTENT_MAP_HOLE;
6913 		goto insert;
6914 	}
6915 
6916 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6917 
6918 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6919 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6920 		goto insert;
6921 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6922 		/*
6923 		 * Inline extent can only exist at file offset 0. This is
6924 		 * ensured by tree-checker and inline extent creation path.
6925 		 * Thus all members representing file offsets should be zero.
6926 		 */
6927 		ASSERT(extent_start == 0);
6928 		ASSERT(em->start == 0);
6929 
6930 		/*
6931 		 * btrfs_extent_item_to_extent_map() should have properly
6932 		 * initialized em members already.
6933 		 *
6934 		 * Other members are not utilized for inline extents.
6935 		 */
6936 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6937 		ASSERT(em->len == fs_info->sectorsize);
6938 
6939 		ret = read_inline_extent(inode, path, page);
6940 		if (ret < 0)
6941 			goto out;
6942 		goto insert;
6943 	}
6944 not_found:
6945 	em->start = start;
6946 	em->len = len;
6947 	em->disk_bytenr = EXTENT_MAP_HOLE;
6948 insert:
6949 	ret = 0;
6950 	btrfs_release_path(path);
6951 	if (em->start > start || extent_map_end(em) <= start) {
6952 		btrfs_err(fs_info,
6953 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6954 			  em->start, em->len, start, len);
6955 		ret = -EIO;
6956 		goto out;
6957 	}
6958 
6959 	write_lock(&em_tree->lock);
6960 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6961 	write_unlock(&em_tree->lock);
6962 out:
6963 	btrfs_free_path(path);
6964 
6965 	trace_btrfs_get_extent(root, inode, em);
6966 
6967 	if (ret) {
6968 		free_extent_map(em);
6969 		return ERR_PTR(ret);
6970 	}
6971 	return em;
6972 }
6973 
6974 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6975 {
6976 	struct btrfs_block_group *block_group;
6977 	bool readonly = false;
6978 
6979 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6980 	if (!block_group || block_group->ro)
6981 		readonly = true;
6982 	if (block_group)
6983 		btrfs_put_block_group(block_group);
6984 	return readonly;
6985 }
6986 
6987 /*
6988  * Check if we can do nocow write into the range [@offset, @offset + @len)
6989  *
6990  * @offset:	File offset
6991  * @len:	The length to write, will be updated to the nocow writeable
6992  *		range
6993  * @orig_start:	(optional) Return the original file offset of the file extent
6994  * @orig_len:	(optional) Return the original on-disk length of the file extent
6995  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
6996  * @strict:	if true, omit optimizations that might force us into unnecessary
6997  *		cow. e.g., don't trust generation number.
6998  *
6999  * Return:
7000  * >0	and update @len if we can do nocow write
7001  *  0	if we can't do nocow write
7002  * <0	if error happened
7003  *
7004  * NOTE: This only checks the file extents, caller is responsible to wait for
7005  *	 any ordered extents.
7006  */
7007 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7008 			      struct btrfs_file_extent *file_extent,
7009 			      bool nowait, bool strict)
7010 {
7011 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7012 	struct can_nocow_file_extent_args nocow_args = { 0 };
7013 	struct btrfs_path *path;
7014 	int ret;
7015 	struct extent_buffer *leaf;
7016 	struct btrfs_root *root = BTRFS_I(inode)->root;
7017 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7018 	struct btrfs_file_extent_item *fi;
7019 	struct btrfs_key key;
7020 	int found_type;
7021 
7022 	path = btrfs_alloc_path();
7023 	if (!path)
7024 		return -ENOMEM;
7025 	path->nowait = nowait;
7026 
7027 	ret = btrfs_lookup_file_extent(NULL, root, path,
7028 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7029 	if (ret < 0)
7030 		goto out;
7031 
7032 	if (ret == 1) {
7033 		if (path->slots[0] == 0) {
7034 			/* can't find the item, must cow */
7035 			ret = 0;
7036 			goto out;
7037 		}
7038 		path->slots[0]--;
7039 	}
7040 	ret = 0;
7041 	leaf = path->nodes[0];
7042 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7043 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7044 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7045 		/* not our file or wrong item type, must cow */
7046 		goto out;
7047 	}
7048 
7049 	if (key.offset > offset) {
7050 		/* Wrong offset, must cow */
7051 		goto out;
7052 	}
7053 
7054 	if (btrfs_file_extent_end(path) <= offset)
7055 		goto out;
7056 
7057 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7058 	found_type = btrfs_file_extent_type(leaf, fi);
7059 
7060 	nocow_args.start = offset;
7061 	nocow_args.end = offset + *len - 1;
7062 	nocow_args.strict = strict;
7063 	nocow_args.free_path = true;
7064 
7065 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7066 	/* can_nocow_file_extent() has freed the path. */
7067 	path = NULL;
7068 
7069 	if (ret != 1) {
7070 		/* Treat errors as not being able to NOCOW. */
7071 		ret = 0;
7072 		goto out;
7073 	}
7074 
7075 	ret = 0;
7076 	if (btrfs_extent_readonly(fs_info,
7077 				  nocow_args.file_extent.disk_bytenr +
7078 				  nocow_args.file_extent.offset))
7079 		goto out;
7080 
7081 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7082 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7083 		u64 range_end;
7084 
7085 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7086 				     root->fs_info->sectorsize) - 1;
7087 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7088 		if (ret) {
7089 			ret = -EAGAIN;
7090 			goto out;
7091 		}
7092 	}
7093 
7094 	if (file_extent)
7095 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7096 
7097 	*len = nocow_args.file_extent.num_bytes;
7098 	ret = 1;
7099 out:
7100 	btrfs_free_path(path);
7101 	return ret;
7102 }
7103 
7104 /* The callers of this must take lock_extent() */
7105 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7106 				      const struct btrfs_file_extent *file_extent,
7107 				      int type)
7108 {
7109 	struct extent_map *em;
7110 	int ret;
7111 
7112 	/*
7113 	 * Note the missing NOCOW type.
7114 	 *
7115 	 * For pure NOCOW writes, we should not create an io extent map, but
7116 	 * just reusing the existing one.
7117 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7118 	 * create an io extent map.
7119 	 */
7120 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7121 	       type == BTRFS_ORDERED_COMPRESSED ||
7122 	       type == BTRFS_ORDERED_REGULAR);
7123 
7124 	switch (type) {
7125 	case BTRFS_ORDERED_PREALLOC:
7126 		/* We're only referring part of a larger preallocated extent. */
7127 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7128 		break;
7129 	case BTRFS_ORDERED_REGULAR:
7130 		/* COW results a new extent matching our file extent size. */
7131 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7132 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7133 
7134 		/* Since it's a new extent, we should not have any offset. */
7135 		ASSERT(file_extent->offset == 0);
7136 		break;
7137 	case BTRFS_ORDERED_COMPRESSED:
7138 		/* Must be compressed. */
7139 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7140 
7141 		/*
7142 		 * Encoded write can make us to refer to part of the
7143 		 * uncompressed extent.
7144 		 */
7145 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7146 		break;
7147 	}
7148 
7149 	em = alloc_extent_map();
7150 	if (!em)
7151 		return ERR_PTR(-ENOMEM);
7152 
7153 	em->start = start;
7154 	em->len = file_extent->num_bytes;
7155 	em->disk_bytenr = file_extent->disk_bytenr;
7156 	em->disk_num_bytes = file_extent->disk_num_bytes;
7157 	em->ram_bytes = file_extent->ram_bytes;
7158 	em->generation = -1;
7159 	em->offset = file_extent->offset;
7160 	em->flags |= EXTENT_FLAG_PINNED;
7161 	if (type == BTRFS_ORDERED_COMPRESSED)
7162 		extent_map_set_compression(em, file_extent->compression);
7163 
7164 	ret = btrfs_replace_extent_map_range(inode, em, true);
7165 	if (ret) {
7166 		free_extent_map(em);
7167 		return ERR_PTR(ret);
7168 	}
7169 
7170 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7171 	return em;
7172 }
7173 
7174 /*
7175  * For release_folio() and invalidate_folio() we have a race window where
7176  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7177  * If we continue to release/invalidate the page, we could cause use-after-free
7178  * for subpage spinlock.  So this function is to spin and wait for subpage
7179  * spinlock.
7180  */
7181 static void wait_subpage_spinlock(struct page *page)
7182 {
7183 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7184 	struct folio *folio = page_folio(page);
7185 	struct btrfs_subpage *subpage;
7186 
7187 	if (!btrfs_is_subpage(fs_info, page->mapping))
7188 		return;
7189 
7190 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7191 	subpage = folio_get_private(folio);
7192 
7193 	/*
7194 	 * This may look insane as we just acquire the spinlock and release it,
7195 	 * without doing anything.  But we just want to make sure no one is
7196 	 * still holding the subpage spinlock.
7197 	 * And since the page is not dirty nor writeback, and we have page
7198 	 * locked, the only possible way to hold a spinlock is from the endio
7199 	 * function to clear page writeback.
7200 	 *
7201 	 * Here we just acquire the spinlock so that all existing callers
7202 	 * should exit and we're safe to release/invalidate the page.
7203 	 */
7204 	spin_lock_irq(&subpage->lock);
7205 	spin_unlock_irq(&subpage->lock);
7206 }
7207 
7208 static int btrfs_launder_folio(struct folio *folio)
7209 {
7210 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7211 				      PAGE_SIZE, NULL);
7212 }
7213 
7214 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7215 {
7216 	if (try_release_extent_mapping(&folio->page, gfp_flags)) {
7217 		wait_subpage_spinlock(&folio->page);
7218 		clear_page_extent_mapped(&folio->page);
7219 		return true;
7220 	}
7221 	return false;
7222 }
7223 
7224 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7225 {
7226 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7227 		return false;
7228 	return __btrfs_release_folio(folio, gfp_flags);
7229 }
7230 
7231 #ifdef CONFIG_MIGRATION
7232 static int btrfs_migrate_folio(struct address_space *mapping,
7233 			     struct folio *dst, struct folio *src,
7234 			     enum migrate_mode mode)
7235 {
7236 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7237 
7238 	if (ret != MIGRATEPAGE_SUCCESS)
7239 		return ret;
7240 
7241 	if (folio_test_ordered(src)) {
7242 		folio_clear_ordered(src);
7243 		folio_set_ordered(dst);
7244 	}
7245 
7246 	return MIGRATEPAGE_SUCCESS;
7247 }
7248 #else
7249 #define btrfs_migrate_folio NULL
7250 #endif
7251 
7252 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7253 				 size_t length)
7254 {
7255 	struct btrfs_inode *inode = folio_to_inode(folio);
7256 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7257 	struct extent_io_tree *tree = &inode->io_tree;
7258 	struct extent_state *cached_state = NULL;
7259 	u64 page_start = folio_pos(folio);
7260 	u64 page_end = page_start + folio_size(folio) - 1;
7261 	u64 cur;
7262 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7263 
7264 	/*
7265 	 * We have folio locked so no new ordered extent can be created on this
7266 	 * page, nor bio can be submitted for this folio.
7267 	 *
7268 	 * But already submitted bio can still be finished on this folio.
7269 	 * Furthermore, endio function won't skip folio which has Ordered
7270 	 * (Private2) already cleared, so it's possible for endio and
7271 	 * invalidate_folio to do the same ordered extent accounting twice
7272 	 * on one folio.
7273 	 *
7274 	 * So here we wait for any submitted bios to finish, so that we won't
7275 	 * do double ordered extent accounting on the same folio.
7276 	 */
7277 	folio_wait_writeback(folio);
7278 	wait_subpage_spinlock(&folio->page);
7279 
7280 	/*
7281 	 * For subpage case, we have call sites like
7282 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7283 	 * sectorsize.
7284 	 * If the range doesn't cover the full folio, we don't need to and
7285 	 * shouldn't clear page extent mapped, as folio->private can still
7286 	 * record subpage dirty bits for other part of the range.
7287 	 *
7288 	 * For cases that invalidate the full folio even the range doesn't
7289 	 * cover the full folio, like invalidating the last folio, we're
7290 	 * still safe to wait for ordered extent to finish.
7291 	 */
7292 	if (!(offset == 0 && length == folio_size(folio))) {
7293 		btrfs_release_folio(folio, GFP_NOFS);
7294 		return;
7295 	}
7296 
7297 	if (!inode_evicting)
7298 		lock_extent(tree, page_start, page_end, &cached_state);
7299 
7300 	cur = page_start;
7301 	while (cur < page_end) {
7302 		struct btrfs_ordered_extent *ordered;
7303 		u64 range_end;
7304 		u32 range_len;
7305 		u32 extra_flags = 0;
7306 
7307 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7308 							   page_end + 1 - cur);
7309 		if (!ordered) {
7310 			range_end = page_end;
7311 			/*
7312 			 * No ordered extent covering this range, we are safe
7313 			 * to delete all extent states in the range.
7314 			 */
7315 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7316 			goto next;
7317 		}
7318 		if (ordered->file_offset > cur) {
7319 			/*
7320 			 * There is a range between [cur, oe->file_offset) not
7321 			 * covered by any ordered extent.
7322 			 * We are safe to delete all extent states, and handle
7323 			 * the ordered extent in the next iteration.
7324 			 */
7325 			range_end = ordered->file_offset - 1;
7326 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7327 			goto next;
7328 		}
7329 
7330 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7331 				page_end);
7332 		ASSERT(range_end + 1 - cur < U32_MAX);
7333 		range_len = range_end + 1 - cur;
7334 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7335 			/*
7336 			 * If Ordered (Private2) is cleared, it means endio has
7337 			 * already been executed for the range.
7338 			 * We can't delete the extent states as
7339 			 * btrfs_finish_ordered_io() may still use some of them.
7340 			 */
7341 			goto next;
7342 		}
7343 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7344 
7345 		/*
7346 		 * IO on this page will never be started, so we need to account
7347 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7348 		 * here, must leave that up for the ordered extent completion.
7349 		 *
7350 		 * This will also unlock the range for incoming
7351 		 * btrfs_finish_ordered_io().
7352 		 */
7353 		if (!inode_evicting)
7354 			clear_extent_bit(tree, cur, range_end,
7355 					 EXTENT_DELALLOC |
7356 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7357 					 EXTENT_DEFRAG, &cached_state);
7358 
7359 		spin_lock_irq(&inode->ordered_tree_lock);
7360 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7361 		ordered->truncated_len = min(ordered->truncated_len,
7362 					     cur - ordered->file_offset);
7363 		spin_unlock_irq(&inode->ordered_tree_lock);
7364 
7365 		/*
7366 		 * If the ordered extent has finished, we're safe to delete all
7367 		 * the extent states of the range, otherwise
7368 		 * btrfs_finish_ordered_io() will get executed by endio for
7369 		 * other pages, so we can't delete extent states.
7370 		 */
7371 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7372 						   cur, range_end + 1 - cur)) {
7373 			btrfs_finish_ordered_io(ordered);
7374 			/*
7375 			 * The ordered extent has finished, now we're again
7376 			 * safe to delete all extent states of the range.
7377 			 */
7378 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7379 		}
7380 next:
7381 		if (ordered)
7382 			btrfs_put_ordered_extent(ordered);
7383 		/*
7384 		 * Qgroup reserved space handler
7385 		 * Sector(s) here will be either:
7386 		 *
7387 		 * 1) Already written to disk or bio already finished
7388 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7389 		 *    Qgroup will be handled by its qgroup_record then.
7390 		 *    btrfs_qgroup_free_data() call will do nothing here.
7391 		 *
7392 		 * 2) Not written to disk yet
7393 		 *    Then btrfs_qgroup_free_data() call will clear the
7394 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7395 		 *    reserved data space.
7396 		 *    Since the IO will never happen for this page.
7397 		 */
7398 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7399 		if (!inode_evicting) {
7400 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7401 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7402 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7403 				 extra_flags, &cached_state);
7404 		}
7405 		cur = range_end + 1;
7406 	}
7407 	/*
7408 	 * We have iterated through all ordered extents of the page, the page
7409 	 * should not have Ordered (Private2) anymore, or the above iteration
7410 	 * did something wrong.
7411 	 */
7412 	ASSERT(!folio_test_ordered(folio));
7413 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7414 	if (!inode_evicting)
7415 		__btrfs_release_folio(folio, GFP_NOFS);
7416 	clear_page_extent_mapped(&folio->page);
7417 }
7418 
7419 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7420 {
7421 	struct btrfs_truncate_control control = {
7422 		.inode = inode,
7423 		.ino = btrfs_ino(inode),
7424 		.min_type = BTRFS_EXTENT_DATA_KEY,
7425 		.clear_extent_range = true,
7426 	};
7427 	struct btrfs_root *root = inode->root;
7428 	struct btrfs_fs_info *fs_info = root->fs_info;
7429 	struct btrfs_block_rsv *rsv;
7430 	int ret;
7431 	struct btrfs_trans_handle *trans;
7432 	u64 mask = fs_info->sectorsize - 1;
7433 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7434 
7435 	if (!skip_writeback) {
7436 		ret = btrfs_wait_ordered_range(inode,
7437 					       inode->vfs_inode.i_size & (~mask),
7438 					       (u64)-1);
7439 		if (ret)
7440 			return ret;
7441 	}
7442 
7443 	/*
7444 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7445 	 * things going on here:
7446 	 *
7447 	 * 1) We need to reserve space to update our inode.
7448 	 *
7449 	 * 2) We need to have something to cache all the space that is going to
7450 	 * be free'd up by the truncate operation, but also have some slack
7451 	 * space reserved in case it uses space during the truncate (thank you
7452 	 * very much snapshotting).
7453 	 *
7454 	 * And we need these to be separate.  The fact is we can use a lot of
7455 	 * space doing the truncate, and we have no earthly idea how much space
7456 	 * we will use, so we need the truncate reservation to be separate so it
7457 	 * doesn't end up using space reserved for updating the inode.  We also
7458 	 * need to be able to stop the transaction and start a new one, which
7459 	 * means we need to be able to update the inode several times, and we
7460 	 * have no idea of knowing how many times that will be, so we can't just
7461 	 * reserve 1 item for the entirety of the operation, so that has to be
7462 	 * done separately as well.
7463 	 *
7464 	 * So that leaves us with
7465 	 *
7466 	 * 1) rsv - for the truncate reservation, which we will steal from the
7467 	 * transaction reservation.
7468 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7469 	 * updating the inode.
7470 	 */
7471 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7472 	if (!rsv)
7473 		return -ENOMEM;
7474 	rsv->size = min_size;
7475 	rsv->failfast = true;
7476 
7477 	/*
7478 	 * 1 for the truncate slack space
7479 	 * 1 for updating the inode.
7480 	 */
7481 	trans = btrfs_start_transaction(root, 2);
7482 	if (IS_ERR(trans)) {
7483 		ret = PTR_ERR(trans);
7484 		goto out;
7485 	}
7486 
7487 	/* Migrate the slack space for the truncate to our reserve */
7488 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7489 				      min_size, false);
7490 	/*
7491 	 * We have reserved 2 metadata units when we started the transaction and
7492 	 * min_size matches 1 unit, so this should never fail, but if it does,
7493 	 * it's not critical we just fail truncation.
7494 	 */
7495 	if (WARN_ON(ret)) {
7496 		btrfs_end_transaction(trans);
7497 		goto out;
7498 	}
7499 
7500 	trans->block_rsv = rsv;
7501 
7502 	while (1) {
7503 		struct extent_state *cached_state = NULL;
7504 		const u64 new_size = inode->vfs_inode.i_size;
7505 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7506 
7507 		control.new_size = new_size;
7508 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7509 		/*
7510 		 * We want to drop from the next block forward in case this new
7511 		 * size is not block aligned since we will be keeping the last
7512 		 * block of the extent just the way it is.
7513 		 */
7514 		btrfs_drop_extent_map_range(inode,
7515 					    ALIGN(new_size, fs_info->sectorsize),
7516 					    (u64)-1, false);
7517 
7518 		ret = btrfs_truncate_inode_items(trans, root, &control);
7519 
7520 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7521 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7522 
7523 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7524 
7525 		trans->block_rsv = &fs_info->trans_block_rsv;
7526 		if (ret != -ENOSPC && ret != -EAGAIN)
7527 			break;
7528 
7529 		ret = btrfs_update_inode(trans, inode);
7530 		if (ret)
7531 			break;
7532 
7533 		btrfs_end_transaction(trans);
7534 		btrfs_btree_balance_dirty(fs_info);
7535 
7536 		trans = btrfs_start_transaction(root, 2);
7537 		if (IS_ERR(trans)) {
7538 			ret = PTR_ERR(trans);
7539 			trans = NULL;
7540 			break;
7541 		}
7542 
7543 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7544 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7545 					      rsv, min_size, false);
7546 		/*
7547 		 * We have reserved 2 metadata units when we started the
7548 		 * transaction and min_size matches 1 unit, so this should never
7549 		 * fail, but if it does, it's not critical we just fail truncation.
7550 		 */
7551 		if (WARN_ON(ret))
7552 			break;
7553 
7554 		trans->block_rsv = rsv;
7555 	}
7556 
7557 	/*
7558 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7559 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7560 	 * know we've truncated everything except the last little bit, and can
7561 	 * do btrfs_truncate_block and then update the disk_i_size.
7562 	 */
7563 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7564 		btrfs_end_transaction(trans);
7565 		btrfs_btree_balance_dirty(fs_info);
7566 
7567 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7568 		if (ret)
7569 			goto out;
7570 		trans = btrfs_start_transaction(root, 1);
7571 		if (IS_ERR(trans)) {
7572 			ret = PTR_ERR(trans);
7573 			goto out;
7574 		}
7575 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7576 	}
7577 
7578 	if (trans) {
7579 		int ret2;
7580 
7581 		trans->block_rsv = &fs_info->trans_block_rsv;
7582 		ret2 = btrfs_update_inode(trans, inode);
7583 		if (ret2 && !ret)
7584 			ret = ret2;
7585 
7586 		ret2 = btrfs_end_transaction(trans);
7587 		if (ret2 && !ret)
7588 			ret = ret2;
7589 		btrfs_btree_balance_dirty(fs_info);
7590 	}
7591 out:
7592 	btrfs_free_block_rsv(fs_info, rsv);
7593 	/*
7594 	 * So if we truncate and then write and fsync we normally would just
7595 	 * write the extents that changed, which is a problem if we need to
7596 	 * first truncate that entire inode.  So set this flag so we write out
7597 	 * all of the extents in the inode to the sync log so we're completely
7598 	 * safe.
7599 	 *
7600 	 * If no extents were dropped or trimmed we don't need to force the next
7601 	 * fsync to truncate all the inode's items from the log and re-log them
7602 	 * all. This means the truncate operation did not change the file size,
7603 	 * or changed it to a smaller size but there was only an implicit hole
7604 	 * between the old i_size and the new i_size, and there were no prealloc
7605 	 * extents beyond i_size to drop.
7606 	 */
7607 	if (control.extents_found > 0)
7608 		btrfs_set_inode_full_sync(inode);
7609 
7610 	return ret;
7611 }
7612 
7613 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7614 				     struct inode *dir)
7615 {
7616 	struct inode *inode;
7617 
7618 	inode = new_inode(dir->i_sb);
7619 	if (inode) {
7620 		/*
7621 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7622 		 * the parent's sgid bit is set. This is probably a bug.
7623 		 */
7624 		inode_init_owner(idmap, inode, NULL,
7625 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7626 		inode->i_op = &btrfs_dir_inode_operations;
7627 		inode->i_fop = &btrfs_dir_file_operations;
7628 	}
7629 	return inode;
7630 }
7631 
7632 struct inode *btrfs_alloc_inode(struct super_block *sb)
7633 {
7634 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7635 	struct btrfs_inode *ei;
7636 	struct inode *inode;
7637 
7638 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7639 	if (!ei)
7640 		return NULL;
7641 
7642 	ei->root = NULL;
7643 	ei->generation = 0;
7644 	ei->last_trans = 0;
7645 	ei->last_sub_trans = 0;
7646 	ei->logged_trans = 0;
7647 	ei->delalloc_bytes = 0;
7648 	ei->new_delalloc_bytes = 0;
7649 	ei->defrag_bytes = 0;
7650 	ei->disk_i_size = 0;
7651 	ei->flags = 0;
7652 	ei->ro_flags = 0;
7653 	/*
7654 	 * ->index_cnt will be properly initialized later when creating a new
7655 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7656 	 * from disk (btrfs_read_locked_inode()).
7657 	 */
7658 	ei->csum_bytes = 0;
7659 	ei->dir_index = 0;
7660 	ei->last_unlink_trans = 0;
7661 	ei->last_reflink_trans = 0;
7662 	ei->last_log_commit = 0;
7663 
7664 	spin_lock_init(&ei->lock);
7665 	ei->outstanding_extents = 0;
7666 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7667 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7668 					      BTRFS_BLOCK_RSV_DELALLOC);
7669 	ei->runtime_flags = 0;
7670 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7671 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7672 
7673 	ei->delayed_node = NULL;
7674 
7675 	ei->i_otime_sec = 0;
7676 	ei->i_otime_nsec = 0;
7677 
7678 	inode = &ei->vfs_inode;
7679 	extent_map_tree_init(&ei->extent_tree);
7680 
7681 	/* This io tree sets the valid inode. */
7682 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7683 	ei->io_tree.inode = ei;
7684 
7685 	ei->file_extent_tree = NULL;
7686 
7687 	mutex_init(&ei->log_mutex);
7688 	spin_lock_init(&ei->ordered_tree_lock);
7689 	ei->ordered_tree = RB_ROOT;
7690 	ei->ordered_tree_last = NULL;
7691 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7692 	INIT_LIST_HEAD(&ei->delayed_iput);
7693 	init_rwsem(&ei->i_mmap_lock);
7694 
7695 	return inode;
7696 }
7697 
7698 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7699 void btrfs_test_destroy_inode(struct inode *inode)
7700 {
7701 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7702 	kfree(BTRFS_I(inode)->file_extent_tree);
7703 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7704 }
7705 #endif
7706 
7707 void btrfs_free_inode(struct inode *inode)
7708 {
7709 	kfree(BTRFS_I(inode)->file_extent_tree);
7710 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7711 }
7712 
7713 void btrfs_destroy_inode(struct inode *vfs_inode)
7714 {
7715 	struct btrfs_ordered_extent *ordered;
7716 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7717 	struct btrfs_root *root = inode->root;
7718 	bool freespace_inode;
7719 
7720 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7721 	WARN_ON(vfs_inode->i_data.nrpages);
7722 	WARN_ON(inode->block_rsv.reserved);
7723 	WARN_ON(inode->block_rsv.size);
7724 	WARN_ON(inode->outstanding_extents);
7725 	if (!S_ISDIR(vfs_inode->i_mode)) {
7726 		WARN_ON(inode->delalloc_bytes);
7727 		WARN_ON(inode->new_delalloc_bytes);
7728 		WARN_ON(inode->csum_bytes);
7729 	}
7730 	if (!root || !btrfs_is_data_reloc_root(root))
7731 		WARN_ON(inode->defrag_bytes);
7732 
7733 	/*
7734 	 * This can happen where we create an inode, but somebody else also
7735 	 * created the same inode and we need to destroy the one we already
7736 	 * created.
7737 	 */
7738 	if (!root)
7739 		return;
7740 
7741 	/*
7742 	 * If this is a free space inode do not take the ordered extents lockdep
7743 	 * map.
7744 	 */
7745 	freespace_inode = btrfs_is_free_space_inode(inode);
7746 
7747 	while (1) {
7748 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7749 		if (!ordered)
7750 			break;
7751 		else {
7752 			btrfs_err(root->fs_info,
7753 				  "found ordered extent %llu %llu on inode cleanup",
7754 				  ordered->file_offset, ordered->num_bytes);
7755 
7756 			if (!freespace_inode)
7757 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7758 
7759 			btrfs_remove_ordered_extent(inode, ordered);
7760 			btrfs_put_ordered_extent(ordered);
7761 			btrfs_put_ordered_extent(ordered);
7762 		}
7763 	}
7764 	btrfs_qgroup_check_reserved_leak(inode);
7765 	btrfs_del_inode_from_root(inode);
7766 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7767 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7768 	btrfs_put_root(inode->root);
7769 }
7770 
7771 int btrfs_drop_inode(struct inode *inode)
7772 {
7773 	struct btrfs_root *root = BTRFS_I(inode)->root;
7774 
7775 	if (root == NULL)
7776 		return 1;
7777 
7778 	/* the snap/subvol tree is on deleting */
7779 	if (btrfs_root_refs(&root->root_item) == 0)
7780 		return 1;
7781 	else
7782 		return generic_drop_inode(inode);
7783 }
7784 
7785 static void init_once(void *foo)
7786 {
7787 	struct btrfs_inode *ei = foo;
7788 
7789 	inode_init_once(&ei->vfs_inode);
7790 }
7791 
7792 void __cold btrfs_destroy_cachep(void)
7793 {
7794 	/*
7795 	 * Make sure all delayed rcu free inodes are flushed before we
7796 	 * destroy cache.
7797 	 */
7798 	rcu_barrier();
7799 	kmem_cache_destroy(btrfs_inode_cachep);
7800 }
7801 
7802 int __init btrfs_init_cachep(void)
7803 {
7804 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7805 			sizeof(struct btrfs_inode), 0,
7806 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7807 			init_once);
7808 	if (!btrfs_inode_cachep)
7809 		return -ENOMEM;
7810 
7811 	return 0;
7812 }
7813 
7814 static int btrfs_getattr(struct mnt_idmap *idmap,
7815 			 const struct path *path, struct kstat *stat,
7816 			 u32 request_mask, unsigned int flags)
7817 {
7818 	u64 delalloc_bytes;
7819 	u64 inode_bytes;
7820 	struct inode *inode = d_inode(path->dentry);
7821 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7822 	u32 bi_flags = BTRFS_I(inode)->flags;
7823 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7824 
7825 	stat->result_mask |= STATX_BTIME;
7826 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7827 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7828 	if (bi_flags & BTRFS_INODE_APPEND)
7829 		stat->attributes |= STATX_ATTR_APPEND;
7830 	if (bi_flags & BTRFS_INODE_COMPRESS)
7831 		stat->attributes |= STATX_ATTR_COMPRESSED;
7832 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7833 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7834 	if (bi_flags & BTRFS_INODE_NODUMP)
7835 		stat->attributes |= STATX_ATTR_NODUMP;
7836 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7837 		stat->attributes |= STATX_ATTR_VERITY;
7838 
7839 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7840 				  STATX_ATTR_COMPRESSED |
7841 				  STATX_ATTR_IMMUTABLE |
7842 				  STATX_ATTR_NODUMP);
7843 
7844 	generic_fillattr(idmap, request_mask, inode, stat);
7845 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7846 
7847 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7848 	stat->result_mask |= STATX_SUBVOL;
7849 
7850 	spin_lock(&BTRFS_I(inode)->lock);
7851 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7852 	inode_bytes = inode_get_bytes(inode);
7853 	spin_unlock(&BTRFS_I(inode)->lock);
7854 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7855 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7856 	return 0;
7857 }
7858 
7859 static int btrfs_rename_exchange(struct inode *old_dir,
7860 			      struct dentry *old_dentry,
7861 			      struct inode *new_dir,
7862 			      struct dentry *new_dentry)
7863 {
7864 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7865 	struct btrfs_trans_handle *trans;
7866 	unsigned int trans_num_items;
7867 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7868 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7869 	struct inode *new_inode = new_dentry->d_inode;
7870 	struct inode *old_inode = old_dentry->d_inode;
7871 	struct btrfs_rename_ctx old_rename_ctx;
7872 	struct btrfs_rename_ctx new_rename_ctx;
7873 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7874 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7875 	u64 old_idx = 0;
7876 	u64 new_idx = 0;
7877 	int ret;
7878 	int ret2;
7879 	bool need_abort = false;
7880 	struct fscrypt_name old_fname, new_fname;
7881 	struct fscrypt_str *old_name, *new_name;
7882 
7883 	/*
7884 	 * For non-subvolumes allow exchange only within one subvolume, in the
7885 	 * same inode namespace. Two subvolumes (represented as directory) can
7886 	 * be exchanged as they're a logical link and have a fixed inode number.
7887 	 */
7888 	if (root != dest &&
7889 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7890 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7891 		return -EXDEV;
7892 
7893 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7894 	if (ret)
7895 		return ret;
7896 
7897 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7898 	if (ret) {
7899 		fscrypt_free_filename(&old_fname);
7900 		return ret;
7901 	}
7902 
7903 	old_name = &old_fname.disk_name;
7904 	new_name = &new_fname.disk_name;
7905 
7906 	/* close the race window with snapshot create/destroy ioctl */
7907 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7908 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7909 		down_read(&fs_info->subvol_sem);
7910 
7911 	/*
7912 	 * For each inode:
7913 	 * 1 to remove old dir item
7914 	 * 1 to remove old dir index
7915 	 * 1 to add new dir item
7916 	 * 1 to add new dir index
7917 	 * 1 to update parent inode
7918 	 *
7919 	 * If the parents are the same, we only need to account for one
7920 	 */
7921 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7922 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7923 		/*
7924 		 * 1 to remove old root ref
7925 		 * 1 to remove old root backref
7926 		 * 1 to add new root ref
7927 		 * 1 to add new root backref
7928 		 */
7929 		trans_num_items += 4;
7930 	} else {
7931 		/*
7932 		 * 1 to update inode item
7933 		 * 1 to remove old inode ref
7934 		 * 1 to add new inode ref
7935 		 */
7936 		trans_num_items += 3;
7937 	}
7938 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7939 		trans_num_items += 4;
7940 	else
7941 		trans_num_items += 3;
7942 	trans = btrfs_start_transaction(root, trans_num_items);
7943 	if (IS_ERR(trans)) {
7944 		ret = PTR_ERR(trans);
7945 		goto out_notrans;
7946 	}
7947 
7948 	if (dest != root) {
7949 		ret = btrfs_record_root_in_trans(trans, dest);
7950 		if (ret)
7951 			goto out_fail;
7952 	}
7953 
7954 	/*
7955 	 * We need to find a free sequence number both in the source and
7956 	 * in the destination directory for the exchange.
7957 	 */
7958 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7959 	if (ret)
7960 		goto out_fail;
7961 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7962 	if (ret)
7963 		goto out_fail;
7964 
7965 	BTRFS_I(old_inode)->dir_index = 0ULL;
7966 	BTRFS_I(new_inode)->dir_index = 0ULL;
7967 
7968 	/* Reference for the source. */
7969 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7970 		/* force full log commit if subvolume involved. */
7971 		btrfs_set_log_full_commit(trans);
7972 	} else {
7973 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7974 					     btrfs_ino(BTRFS_I(new_dir)),
7975 					     old_idx);
7976 		if (ret)
7977 			goto out_fail;
7978 		need_abort = true;
7979 	}
7980 
7981 	/* And now for the dest. */
7982 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
7983 		/* force full log commit if subvolume involved. */
7984 		btrfs_set_log_full_commit(trans);
7985 	} else {
7986 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
7987 					     btrfs_ino(BTRFS_I(old_dir)),
7988 					     new_idx);
7989 		if (ret) {
7990 			if (need_abort)
7991 				btrfs_abort_transaction(trans, ret);
7992 			goto out_fail;
7993 		}
7994 	}
7995 
7996 	/* Update inode version and ctime/mtime. */
7997 	inode_inc_iversion(old_dir);
7998 	inode_inc_iversion(new_dir);
7999 	inode_inc_iversion(old_inode);
8000 	inode_inc_iversion(new_inode);
8001 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8002 
8003 	if (old_dentry->d_parent != new_dentry->d_parent) {
8004 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8005 					BTRFS_I(old_inode), true);
8006 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8007 					BTRFS_I(new_inode), true);
8008 	}
8009 
8010 	/* src is a subvolume */
8011 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8012 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8013 	} else { /* src is an inode */
8014 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8015 					   BTRFS_I(old_dentry->d_inode),
8016 					   old_name, &old_rename_ctx);
8017 		if (!ret)
8018 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8019 	}
8020 	if (ret) {
8021 		btrfs_abort_transaction(trans, ret);
8022 		goto out_fail;
8023 	}
8024 
8025 	/* dest is a subvolume */
8026 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8027 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8028 	} else { /* dest is an inode */
8029 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8030 					   BTRFS_I(new_dentry->d_inode),
8031 					   new_name, &new_rename_ctx);
8032 		if (!ret)
8033 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8034 	}
8035 	if (ret) {
8036 		btrfs_abort_transaction(trans, ret);
8037 		goto out_fail;
8038 	}
8039 
8040 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8041 			     new_name, 0, old_idx);
8042 	if (ret) {
8043 		btrfs_abort_transaction(trans, ret);
8044 		goto out_fail;
8045 	}
8046 
8047 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8048 			     old_name, 0, new_idx);
8049 	if (ret) {
8050 		btrfs_abort_transaction(trans, ret);
8051 		goto out_fail;
8052 	}
8053 
8054 	if (old_inode->i_nlink == 1)
8055 		BTRFS_I(old_inode)->dir_index = old_idx;
8056 	if (new_inode->i_nlink == 1)
8057 		BTRFS_I(new_inode)->dir_index = new_idx;
8058 
8059 	/*
8060 	 * Now pin the logs of the roots. We do it to ensure that no other task
8061 	 * can sync the logs while we are in progress with the rename, because
8062 	 * that could result in an inconsistency in case any of the inodes that
8063 	 * are part of this rename operation were logged before.
8064 	 */
8065 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8066 		btrfs_pin_log_trans(root);
8067 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8068 		btrfs_pin_log_trans(dest);
8069 
8070 	/* Do the log updates for all inodes. */
8071 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8072 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8073 				   old_rename_ctx.index, new_dentry->d_parent);
8074 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8075 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8076 				   new_rename_ctx.index, old_dentry->d_parent);
8077 
8078 	/* Now unpin the logs. */
8079 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8080 		btrfs_end_log_trans(root);
8081 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8082 		btrfs_end_log_trans(dest);
8083 out_fail:
8084 	ret2 = btrfs_end_transaction(trans);
8085 	ret = ret ? ret : ret2;
8086 out_notrans:
8087 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8088 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8089 		up_read(&fs_info->subvol_sem);
8090 
8091 	fscrypt_free_filename(&new_fname);
8092 	fscrypt_free_filename(&old_fname);
8093 	return ret;
8094 }
8095 
8096 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8097 					struct inode *dir)
8098 {
8099 	struct inode *inode;
8100 
8101 	inode = new_inode(dir->i_sb);
8102 	if (inode) {
8103 		inode_init_owner(idmap, inode, dir,
8104 				 S_IFCHR | WHITEOUT_MODE);
8105 		inode->i_op = &btrfs_special_inode_operations;
8106 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8107 	}
8108 	return inode;
8109 }
8110 
8111 static int btrfs_rename(struct mnt_idmap *idmap,
8112 			struct inode *old_dir, struct dentry *old_dentry,
8113 			struct inode *new_dir, struct dentry *new_dentry,
8114 			unsigned int flags)
8115 {
8116 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8117 	struct btrfs_new_inode_args whiteout_args = {
8118 		.dir = old_dir,
8119 		.dentry = old_dentry,
8120 	};
8121 	struct btrfs_trans_handle *trans;
8122 	unsigned int trans_num_items;
8123 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8124 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8125 	struct inode *new_inode = d_inode(new_dentry);
8126 	struct inode *old_inode = d_inode(old_dentry);
8127 	struct btrfs_rename_ctx rename_ctx;
8128 	u64 index = 0;
8129 	int ret;
8130 	int ret2;
8131 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8132 	struct fscrypt_name old_fname, new_fname;
8133 
8134 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8135 		return -EPERM;
8136 
8137 	/* we only allow rename subvolume link between subvolumes */
8138 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8139 		return -EXDEV;
8140 
8141 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8142 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8143 		return -ENOTEMPTY;
8144 
8145 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8146 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8147 		return -ENOTEMPTY;
8148 
8149 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8150 	if (ret)
8151 		return ret;
8152 
8153 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8154 	if (ret) {
8155 		fscrypt_free_filename(&old_fname);
8156 		return ret;
8157 	}
8158 
8159 	/* check for collisions, even if the  name isn't there */
8160 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8161 	if (ret) {
8162 		if (ret == -EEXIST) {
8163 			/* we shouldn't get
8164 			 * eexist without a new_inode */
8165 			if (WARN_ON(!new_inode)) {
8166 				goto out_fscrypt_names;
8167 			}
8168 		} else {
8169 			/* maybe -EOVERFLOW */
8170 			goto out_fscrypt_names;
8171 		}
8172 	}
8173 	ret = 0;
8174 
8175 	/*
8176 	 * we're using rename to replace one file with another.  Start IO on it
8177 	 * now so  we don't add too much work to the end of the transaction
8178 	 */
8179 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8180 		filemap_flush(old_inode->i_mapping);
8181 
8182 	if (flags & RENAME_WHITEOUT) {
8183 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8184 		if (!whiteout_args.inode) {
8185 			ret = -ENOMEM;
8186 			goto out_fscrypt_names;
8187 		}
8188 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8189 		if (ret)
8190 			goto out_whiteout_inode;
8191 	} else {
8192 		/* 1 to update the old parent inode. */
8193 		trans_num_items = 1;
8194 	}
8195 
8196 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8197 		/* Close the race window with snapshot create/destroy ioctl */
8198 		down_read(&fs_info->subvol_sem);
8199 		/*
8200 		 * 1 to remove old root ref
8201 		 * 1 to remove old root backref
8202 		 * 1 to add new root ref
8203 		 * 1 to add new root backref
8204 		 */
8205 		trans_num_items += 4;
8206 	} else {
8207 		/*
8208 		 * 1 to update inode
8209 		 * 1 to remove old inode ref
8210 		 * 1 to add new inode ref
8211 		 */
8212 		trans_num_items += 3;
8213 	}
8214 	/*
8215 	 * 1 to remove old dir item
8216 	 * 1 to remove old dir index
8217 	 * 1 to add new dir item
8218 	 * 1 to add new dir index
8219 	 */
8220 	trans_num_items += 4;
8221 	/* 1 to update new parent inode if it's not the same as the old parent */
8222 	if (new_dir != old_dir)
8223 		trans_num_items++;
8224 	if (new_inode) {
8225 		/*
8226 		 * 1 to update inode
8227 		 * 1 to remove inode ref
8228 		 * 1 to remove dir item
8229 		 * 1 to remove dir index
8230 		 * 1 to possibly add orphan item
8231 		 */
8232 		trans_num_items += 5;
8233 	}
8234 	trans = btrfs_start_transaction(root, trans_num_items);
8235 	if (IS_ERR(trans)) {
8236 		ret = PTR_ERR(trans);
8237 		goto out_notrans;
8238 	}
8239 
8240 	if (dest != root) {
8241 		ret = btrfs_record_root_in_trans(trans, dest);
8242 		if (ret)
8243 			goto out_fail;
8244 	}
8245 
8246 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8247 	if (ret)
8248 		goto out_fail;
8249 
8250 	BTRFS_I(old_inode)->dir_index = 0ULL;
8251 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8252 		/* force full log commit if subvolume involved. */
8253 		btrfs_set_log_full_commit(trans);
8254 	} else {
8255 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8256 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8257 					     index);
8258 		if (ret)
8259 			goto out_fail;
8260 	}
8261 
8262 	inode_inc_iversion(old_dir);
8263 	inode_inc_iversion(new_dir);
8264 	inode_inc_iversion(old_inode);
8265 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8266 
8267 	if (old_dentry->d_parent != new_dentry->d_parent)
8268 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8269 					BTRFS_I(old_inode), true);
8270 
8271 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8272 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8273 	} else {
8274 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8275 					   BTRFS_I(d_inode(old_dentry)),
8276 					   &old_fname.disk_name, &rename_ctx);
8277 		if (!ret)
8278 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8279 	}
8280 	if (ret) {
8281 		btrfs_abort_transaction(trans, ret);
8282 		goto out_fail;
8283 	}
8284 
8285 	if (new_inode) {
8286 		inode_inc_iversion(new_inode);
8287 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8288 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8289 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8290 			BUG_ON(new_inode->i_nlink == 0);
8291 		} else {
8292 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8293 						 BTRFS_I(d_inode(new_dentry)),
8294 						 &new_fname.disk_name);
8295 		}
8296 		if (!ret && new_inode->i_nlink == 0)
8297 			ret = btrfs_orphan_add(trans,
8298 					BTRFS_I(d_inode(new_dentry)));
8299 		if (ret) {
8300 			btrfs_abort_transaction(trans, ret);
8301 			goto out_fail;
8302 		}
8303 	}
8304 
8305 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8306 			     &new_fname.disk_name, 0, index);
8307 	if (ret) {
8308 		btrfs_abort_transaction(trans, ret);
8309 		goto out_fail;
8310 	}
8311 
8312 	if (old_inode->i_nlink == 1)
8313 		BTRFS_I(old_inode)->dir_index = index;
8314 
8315 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8316 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8317 				   rename_ctx.index, new_dentry->d_parent);
8318 
8319 	if (flags & RENAME_WHITEOUT) {
8320 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8321 		if (ret) {
8322 			btrfs_abort_transaction(trans, ret);
8323 			goto out_fail;
8324 		} else {
8325 			unlock_new_inode(whiteout_args.inode);
8326 			iput(whiteout_args.inode);
8327 			whiteout_args.inode = NULL;
8328 		}
8329 	}
8330 out_fail:
8331 	ret2 = btrfs_end_transaction(trans);
8332 	ret = ret ? ret : ret2;
8333 out_notrans:
8334 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8335 		up_read(&fs_info->subvol_sem);
8336 	if (flags & RENAME_WHITEOUT)
8337 		btrfs_new_inode_args_destroy(&whiteout_args);
8338 out_whiteout_inode:
8339 	if (flags & RENAME_WHITEOUT)
8340 		iput(whiteout_args.inode);
8341 out_fscrypt_names:
8342 	fscrypt_free_filename(&old_fname);
8343 	fscrypt_free_filename(&new_fname);
8344 	return ret;
8345 }
8346 
8347 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8348 			 struct dentry *old_dentry, struct inode *new_dir,
8349 			 struct dentry *new_dentry, unsigned int flags)
8350 {
8351 	int ret;
8352 
8353 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8354 		return -EINVAL;
8355 
8356 	if (flags & RENAME_EXCHANGE)
8357 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8358 					    new_dentry);
8359 	else
8360 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8361 				   new_dentry, flags);
8362 
8363 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8364 
8365 	return ret;
8366 }
8367 
8368 struct btrfs_delalloc_work {
8369 	struct inode *inode;
8370 	struct completion completion;
8371 	struct list_head list;
8372 	struct btrfs_work work;
8373 };
8374 
8375 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8376 {
8377 	struct btrfs_delalloc_work *delalloc_work;
8378 	struct inode *inode;
8379 
8380 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8381 				     work);
8382 	inode = delalloc_work->inode;
8383 	filemap_flush(inode->i_mapping);
8384 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8385 				&BTRFS_I(inode)->runtime_flags))
8386 		filemap_flush(inode->i_mapping);
8387 
8388 	iput(inode);
8389 	complete(&delalloc_work->completion);
8390 }
8391 
8392 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8393 {
8394 	struct btrfs_delalloc_work *work;
8395 
8396 	work = kmalloc(sizeof(*work), GFP_NOFS);
8397 	if (!work)
8398 		return NULL;
8399 
8400 	init_completion(&work->completion);
8401 	INIT_LIST_HEAD(&work->list);
8402 	work->inode = inode;
8403 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8404 
8405 	return work;
8406 }
8407 
8408 /*
8409  * some fairly slow code that needs optimization. This walks the list
8410  * of all the inodes with pending delalloc and forces them to disk.
8411  */
8412 static int start_delalloc_inodes(struct btrfs_root *root,
8413 				 struct writeback_control *wbc, bool snapshot,
8414 				 bool in_reclaim_context)
8415 {
8416 	struct btrfs_inode *binode;
8417 	struct inode *inode;
8418 	struct btrfs_delalloc_work *work, *next;
8419 	LIST_HEAD(works);
8420 	LIST_HEAD(splice);
8421 	int ret = 0;
8422 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8423 
8424 	mutex_lock(&root->delalloc_mutex);
8425 	spin_lock(&root->delalloc_lock);
8426 	list_splice_init(&root->delalloc_inodes, &splice);
8427 	while (!list_empty(&splice)) {
8428 		binode = list_entry(splice.next, struct btrfs_inode,
8429 				    delalloc_inodes);
8430 
8431 		list_move_tail(&binode->delalloc_inodes,
8432 			       &root->delalloc_inodes);
8433 
8434 		if (in_reclaim_context &&
8435 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8436 			continue;
8437 
8438 		inode = igrab(&binode->vfs_inode);
8439 		if (!inode) {
8440 			cond_resched_lock(&root->delalloc_lock);
8441 			continue;
8442 		}
8443 		spin_unlock(&root->delalloc_lock);
8444 
8445 		if (snapshot)
8446 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8447 				&binode->runtime_flags);
8448 		if (full_flush) {
8449 			work = btrfs_alloc_delalloc_work(inode);
8450 			if (!work) {
8451 				iput(inode);
8452 				ret = -ENOMEM;
8453 				goto out;
8454 			}
8455 			list_add_tail(&work->list, &works);
8456 			btrfs_queue_work(root->fs_info->flush_workers,
8457 					 &work->work);
8458 		} else {
8459 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8460 			btrfs_add_delayed_iput(BTRFS_I(inode));
8461 			if (ret || wbc->nr_to_write <= 0)
8462 				goto out;
8463 		}
8464 		cond_resched();
8465 		spin_lock(&root->delalloc_lock);
8466 	}
8467 	spin_unlock(&root->delalloc_lock);
8468 
8469 out:
8470 	list_for_each_entry_safe(work, next, &works, list) {
8471 		list_del_init(&work->list);
8472 		wait_for_completion(&work->completion);
8473 		kfree(work);
8474 	}
8475 
8476 	if (!list_empty(&splice)) {
8477 		spin_lock(&root->delalloc_lock);
8478 		list_splice_tail(&splice, &root->delalloc_inodes);
8479 		spin_unlock(&root->delalloc_lock);
8480 	}
8481 	mutex_unlock(&root->delalloc_mutex);
8482 	return ret;
8483 }
8484 
8485 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8486 {
8487 	struct writeback_control wbc = {
8488 		.nr_to_write = LONG_MAX,
8489 		.sync_mode = WB_SYNC_NONE,
8490 		.range_start = 0,
8491 		.range_end = LLONG_MAX,
8492 	};
8493 	struct btrfs_fs_info *fs_info = root->fs_info;
8494 
8495 	if (BTRFS_FS_ERROR(fs_info))
8496 		return -EROFS;
8497 
8498 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8499 }
8500 
8501 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8502 			       bool in_reclaim_context)
8503 {
8504 	struct writeback_control wbc = {
8505 		.nr_to_write = nr,
8506 		.sync_mode = WB_SYNC_NONE,
8507 		.range_start = 0,
8508 		.range_end = LLONG_MAX,
8509 	};
8510 	struct btrfs_root *root;
8511 	LIST_HEAD(splice);
8512 	int ret;
8513 
8514 	if (BTRFS_FS_ERROR(fs_info))
8515 		return -EROFS;
8516 
8517 	mutex_lock(&fs_info->delalloc_root_mutex);
8518 	spin_lock(&fs_info->delalloc_root_lock);
8519 	list_splice_init(&fs_info->delalloc_roots, &splice);
8520 	while (!list_empty(&splice)) {
8521 		/*
8522 		 * Reset nr_to_write here so we know that we're doing a full
8523 		 * flush.
8524 		 */
8525 		if (nr == LONG_MAX)
8526 			wbc.nr_to_write = LONG_MAX;
8527 
8528 		root = list_first_entry(&splice, struct btrfs_root,
8529 					delalloc_root);
8530 		root = btrfs_grab_root(root);
8531 		BUG_ON(!root);
8532 		list_move_tail(&root->delalloc_root,
8533 			       &fs_info->delalloc_roots);
8534 		spin_unlock(&fs_info->delalloc_root_lock);
8535 
8536 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8537 		btrfs_put_root(root);
8538 		if (ret < 0 || wbc.nr_to_write <= 0)
8539 			goto out;
8540 		spin_lock(&fs_info->delalloc_root_lock);
8541 	}
8542 	spin_unlock(&fs_info->delalloc_root_lock);
8543 
8544 	ret = 0;
8545 out:
8546 	if (!list_empty(&splice)) {
8547 		spin_lock(&fs_info->delalloc_root_lock);
8548 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8549 		spin_unlock(&fs_info->delalloc_root_lock);
8550 	}
8551 	mutex_unlock(&fs_info->delalloc_root_mutex);
8552 	return ret;
8553 }
8554 
8555 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8556 			 struct dentry *dentry, const char *symname)
8557 {
8558 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8559 	struct btrfs_trans_handle *trans;
8560 	struct btrfs_root *root = BTRFS_I(dir)->root;
8561 	struct btrfs_path *path;
8562 	struct btrfs_key key;
8563 	struct inode *inode;
8564 	struct btrfs_new_inode_args new_inode_args = {
8565 		.dir = dir,
8566 		.dentry = dentry,
8567 	};
8568 	unsigned int trans_num_items;
8569 	int err;
8570 	int name_len;
8571 	int datasize;
8572 	unsigned long ptr;
8573 	struct btrfs_file_extent_item *ei;
8574 	struct extent_buffer *leaf;
8575 
8576 	name_len = strlen(symname);
8577 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8578 		return -ENAMETOOLONG;
8579 
8580 	inode = new_inode(dir->i_sb);
8581 	if (!inode)
8582 		return -ENOMEM;
8583 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8584 	inode->i_op = &btrfs_symlink_inode_operations;
8585 	inode_nohighmem(inode);
8586 	inode->i_mapping->a_ops = &btrfs_aops;
8587 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8588 	inode_set_bytes(inode, name_len);
8589 
8590 	new_inode_args.inode = inode;
8591 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8592 	if (err)
8593 		goto out_inode;
8594 	/* 1 additional item for the inline extent */
8595 	trans_num_items++;
8596 
8597 	trans = btrfs_start_transaction(root, trans_num_items);
8598 	if (IS_ERR(trans)) {
8599 		err = PTR_ERR(trans);
8600 		goto out_new_inode_args;
8601 	}
8602 
8603 	err = btrfs_create_new_inode(trans, &new_inode_args);
8604 	if (err)
8605 		goto out;
8606 
8607 	path = btrfs_alloc_path();
8608 	if (!path) {
8609 		err = -ENOMEM;
8610 		btrfs_abort_transaction(trans, err);
8611 		discard_new_inode(inode);
8612 		inode = NULL;
8613 		goto out;
8614 	}
8615 	key.objectid = btrfs_ino(BTRFS_I(inode));
8616 	key.offset = 0;
8617 	key.type = BTRFS_EXTENT_DATA_KEY;
8618 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8619 	err = btrfs_insert_empty_item(trans, root, path, &key,
8620 				      datasize);
8621 	if (err) {
8622 		btrfs_abort_transaction(trans, err);
8623 		btrfs_free_path(path);
8624 		discard_new_inode(inode);
8625 		inode = NULL;
8626 		goto out;
8627 	}
8628 	leaf = path->nodes[0];
8629 	ei = btrfs_item_ptr(leaf, path->slots[0],
8630 			    struct btrfs_file_extent_item);
8631 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8632 	btrfs_set_file_extent_type(leaf, ei,
8633 				   BTRFS_FILE_EXTENT_INLINE);
8634 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8635 	btrfs_set_file_extent_compression(leaf, ei, 0);
8636 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8637 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8638 
8639 	ptr = btrfs_file_extent_inline_start(ei);
8640 	write_extent_buffer(leaf, symname, ptr, name_len);
8641 	btrfs_mark_buffer_dirty(trans, leaf);
8642 	btrfs_free_path(path);
8643 
8644 	d_instantiate_new(dentry, inode);
8645 	err = 0;
8646 out:
8647 	btrfs_end_transaction(trans);
8648 	btrfs_btree_balance_dirty(fs_info);
8649 out_new_inode_args:
8650 	btrfs_new_inode_args_destroy(&new_inode_args);
8651 out_inode:
8652 	if (err)
8653 		iput(inode);
8654 	return err;
8655 }
8656 
8657 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8658 				       struct btrfs_trans_handle *trans_in,
8659 				       struct btrfs_inode *inode,
8660 				       struct btrfs_key *ins,
8661 				       u64 file_offset)
8662 {
8663 	struct btrfs_file_extent_item stack_fi;
8664 	struct btrfs_replace_extent_info extent_info;
8665 	struct btrfs_trans_handle *trans = trans_in;
8666 	struct btrfs_path *path;
8667 	u64 start = ins->objectid;
8668 	u64 len = ins->offset;
8669 	u64 qgroup_released = 0;
8670 	int ret;
8671 
8672 	memset(&stack_fi, 0, sizeof(stack_fi));
8673 
8674 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8675 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8676 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8677 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8678 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8679 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8680 	/* Encryption and other encoding is reserved and all 0 */
8681 
8682 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8683 	if (ret < 0)
8684 		return ERR_PTR(ret);
8685 
8686 	if (trans) {
8687 		ret = insert_reserved_file_extent(trans, inode,
8688 						  file_offset, &stack_fi,
8689 						  true, qgroup_released);
8690 		if (ret)
8691 			goto free_qgroup;
8692 		return trans;
8693 	}
8694 
8695 	extent_info.disk_offset = start;
8696 	extent_info.disk_len = len;
8697 	extent_info.data_offset = 0;
8698 	extent_info.data_len = len;
8699 	extent_info.file_offset = file_offset;
8700 	extent_info.extent_buf = (char *)&stack_fi;
8701 	extent_info.is_new_extent = true;
8702 	extent_info.update_times = true;
8703 	extent_info.qgroup_reserved = qgroup_released;
8704 	extent_info.insertions = 0;
8705 
8706 	path = btrfs_alloc_path();
8707 	if (!path) {
8708 		ret = -ENOMEM;
8709 		goto free_qgroup;
8710 	}
8711 
8712 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8713 				     file_offset + len - 1, &extent_info,
8714 				     &trans);
8715 	btrfs_free_path(path);
8716 	if (ret)
8717 		goto free_qgroup;
8718 	return trans;
8719 
8720 free_qgroup:
8721 	/*
8722 	 * We have released qgroup data range at the beginning of the function,
8723 	 * and normally qgroup_released bytes will be freed when committing
8724 	 * transaction.
8725 	 * But if we error out early, we have to free what we have released
8726 	 * or we leak qgroup data reservation.
8727 	 */
8728 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8729 			btrfs_root_id(inode->root), qgroup_released,
8730 			BTRFS_QGROUP_RSV_DATA);
8731 	return ERR_PTR(ret);
8732 }
8733 
8734 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8735 				       u64 start, u64 num_bytes, u64 min_size,
8736 				       loff_t actual_len, u64 *alloc_hint,
8737 				       struct btrfs_trans_handle *trans)
8738 {
8739 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8740 	struct extent_map *em;
8741 	struct btrfs_root *root = BTRFS_I(inode)->root;
8742 	struct btrfs_key ins;
8743 	u64 cur_offset = start;
8744 	u64 clear_offset = start;
8745 	u64 i_size;
8746 	u64 cur_bytes;
8747 	u64 last_alloc = (u64)-1;
8748 	int ret = 0;
8749 	bool own_trans = true;
8750 	u64 end = start + num_bytes - 1;
8751 
8752 	if (trans)
8753 		own_trans = false;
8754 	while (num_bytes > 0) {
8755 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8756 		cur_bytes = max(cur_bytes, min_size);
8757 		/*
8758 		 * If we are severely fragmented we could end up with really
8759 		 * small allocations, so if the allocator is returning small
8760 		 * chunks lets make its job easier by only searching for those
8761 		 * sized chunks.
8762 		 */
8763 		cur_bytes = min(cur_bytes, last_alloc);
8764 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8765 				min_size, 0, *alloc_hint, &ins, 1, 0);
8766 		if (ret)
8767 			break;
8768 
8769 		/*
8770 		 * We've reserved this space, and thus converted it from
8771 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8772 		 * from here on out we will only need to clear our reservation
8773 		 * for the remaining unreserved area, so advance our
8774 		 * clear_offset by our extent size.
8775 		 */
8776 		clear_offset += ins.offset;
8777 
8778 		last_alloc = ins.offset;
8779 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8780 						    &ins, cur_offset);
8781 		/*
8782 		 * Now that we inserted the prealloc extent we can finally
8783 		 * decrement the number of reservations in the block group.
8784 		 * If we did it before, we could race with relocation and have
8785 		 * relocation miss the reserved extent, making it fail later.
8786 		 */
8787 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8788 		if (IS_ERR(trans)) {
8789 			ret = PTR_ERR(trans);
8790 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8791 						   ins.offset, 0);
8792 			break;
8793 		}
8794 
8795 		em = alloc_extent_map();
8796 		if (!em) {
8797 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8798 					    cur_offset + ins.offset - 1, false);
8799 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8800 			goto next;
8801 		}
8802 
8803 		em->start = cur_offset;
8804 		em->len = ins.offset;
8805 		em->disk_bytenr = ins.objectid;
8806 		em->offset = 0;
8807 		em->disk_num_bytes = ins.offset;
8808 		em->ram_bytes = ins.offset;
8809 		em->flags |= EXTENT_FLAG_PREALLOC;
8810 		em->generation = trans->transid;
8811 
8812 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8813 		free_extent_map(em);
8814 next:
8815 		num_bytes -= ins.offset;
8816 		cur_offset += ins.offset;
8817 		*alloc_hint = ins.objectid + ins.offset;
8818 
8819 		inode_inc_iversion(inode);
8820 		inode_set_ctime_current(inode);
8821 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8822 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8823 		    (actual_len > inode->i_size) &&
8824 		    (cur_offset > inode->i_size)) {
8825 			if (cur_offset > actual_len)
8826 				i_size = actual_len;
8827 			else
8828 				i_size = cur_offset;
8829 			i_size_write(inode, i_size);
8830 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8831 		}
8832 
8833 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8834 
8835 		if (ret) {
8836 			btrfs_abort_transaction(trans, ret);
8837 			if (own_trans)
8838 				btrfs_end_transaction(trans);
8839 			break;
8840 		}
8841 
8842 		if (own_trans) {
8843 			btrfs_end_transaction(trans);
8844 			trans = NULL;
8845 		}
8846 	}
8847 	if (clear_offset < end)
8848 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8849 			end - clear_offset + 1);
8850 	return ret;
8851 }
8852 
8853 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8854 			      u64 start, u64 num_bytes, u64 min_size,
8855 			      loff_t actual_len, u64 *alloc_hint)
8856 {
8857 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8858 					   min_size, actual_len, alloc_hint,
8859 					   NULL);
8860 }
8861 
8862 int btrfs_prealloc_file_range_trans(struct inode *inode,
8863 				    struct btrfs_trans_handle *trans, int mode,
8864 				    u64 start, u64 num_bytes, u64 min_size,
8865 				    loff_t actual_len, u64 *alloc_hint)
8866 {
8867 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8868 					   min_size, actual_len, alloc_hint, trans);
8869 }
8870 
8871 static int btrfs_permission(struct mnt_idmap *idmap,
8872 			    struct inode *inode, int mask)
8873 {
8874 	struct btrfs_root *root = BTRFS_I(inode)->root;
8875 	umode_t mode = inode->i_mode;
8876 
8877 	if (mask & MAY_WRITE &&
8878 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8879 		if (btrfs_root_readonly(root))
8880 			return -EROFS;
8881 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8882 			return -EACCES;
8883 	}
8884 	return generic_permission(idmap, inode, mask);
8885 }
8886 
8887 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8888 			 struct file *file, umode_t mode)
8889 {
8890 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8891 	struct btrfs_trans_handle *trans;
8892 	struct btrfs_root *root = BTRFS_I(dir)->root;
8893 	struct inode *inode;
8894 	struct btrfs_new_inode_args new_inode_args = {
8895 		.dir = dir,
8896 		.dentry = file->f_path.dentry,
8897 		.orphan = true,
8898 	};
8899 	unsigned int trans_num_items;
8900 	int ret;
8901 
8902 	inode = new_inode(dir->i_sb);
8903 	if (!inode)
8904 		return -ENOMEM;
8905 	inode_init_owner(idmap, inode, dir, mode);
8906 	inode->i_fop = &btrfs_file_operations;
8907 	inode->i_op = &btrfs_file_inode_operations;
8908 	inode->i_mapping->a_ops = &btrfs_aops;
8909 
8910 	new_inode_args.inode = inode;
8911 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8912 	if (ret)
8913 		goto out_inode;
8914 
8915 	trans = btrfs_start_transaction(root, trans_num_items);
8916 	if (IS_ERR(trans)) {
8917 		ret = PTR_ERR(trans);
8918 		goto out_new_inode_args;
8919 	}
8920 
8921 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8922 
8923 	/*
8924 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8925 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8926 	 * 0, through:
8927 	 *
8928 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8929 	 */
8930 	set_nlink(inode, 1);
8931 
8932 	if (!ret) {
8933 		d_tmpfile(file, inode);
8934 		unlock_new_inode(inode);
8935 		mark_inode_dirty(inode);
8936 	}
8937 
8938 	btrfs_end_transaction(trans);
8939 	btrfs_btree_balance_dirty(fs_info);
8940 out_new_inode_args:
8941 	btrfs_new_inode_args_destroy(&new_inode_args);
8942 out_inode:
8943 	if (ret)
8944 		iput(inode);
8945 	return finish_open_simple(file, ret);
8946 }
8947 
8948 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8949 {
8950 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8951 	unsigned long index = start >> PAGE_SHIFT;
8952 	unsigned long end_index = end >> PAGE_SHIFT;
8953 	struct page *page;
8954 	u32 len;
8955 
8956 	ASSERT(end + 1 - start <= U32_MAX);
8957 	len = end + 1 - start;
8958 	while (index <= end_index) {
8959 		page = find_get_page(inode->vfs_inode.i_mapping, index);
8960 		ASSERT(page); /* Pages should be in the extent_io_tree */
8961 
8962 		/* This is for data, which doesn't yet support larger folio. */
8963 		ASSERT(folio_order(page_folio(page)) == 0);
8964 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
8965 		put_page(page);
8966 		index++;
8967 	}
8968 }
8969 
8970 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8971 					     int compress_type)
8972 {
8973 	switch (compress_type) {
8974 	case BTRFS_COMPRESS_NONE:
8975 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
8976 	case BTRFS_COMPRESS_ZLIB:
8977 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
8978 	case BTRFS_COMPRESS_LZO:
8979 		/*
8980 		 * The LZO format depends on the sector size. 64K is the maximum
8981 		 * sector size that we support.
8982 		 */
8983 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
8984 			return -EINVAL;
8985 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
8986 		       (fs_info->sectorsize_bits - 12);
8987 	case BTRFS_COMPRESS_ZSTD:
8988 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
8989 	default:
8990 		return -EUCLEAN;
8991 	}
8992 }
8993 
8994 static ssize_t btrfs_encoded_read_inline(
8995 				struct kiocb *iocb,
8996 				struct iov_iter *iter, u64 start,
8997 				u64 lockend,
8998 				struct extent_state **cached_state,
8999 				u64 extent_start, size_t count,
9000 				struct btrfs_ioctl_encoded_io_args *encoded,
9001 				bool *unlocked)
9002 {
9003 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9004 	struct btrfs_root *root = inode->root;
9005 	struct btrfs_fs_info *fs_info = root->fs_info;
9006 	struct extent_io_tree *io_tree = &inode->io_tree;
9007 	struct btrfs_path *path;
9008 	struct extent_buffer *leaf;
9009 	struct btrfs_file_extent_item *item;
9010 	u64 ram_bytes;
9011 	unsigned long ptr;
9012 	void *tmp;
9013 	ssize_t ret;
9014 
9015 	path = btrfs_alloc_path();
9016 	if (!path) {
9017 		ret = -ENOMEM;
9018 		goto out;
9019 	}
9020 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9021 				       extent_start, 0);
9022 	if (ret) {
9023 		if (ret > 0) {
9024 			/* The extent item disappeared? */
9025 			ret = -EIO;
9026 		}
9027 		goto out;
9028 	}
9029 	leaf = path->nodes[0];
9030 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9031 
9032 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9033 	ptr = btrfs_file_extent_inline_start(item);
9034 
9035 	encoded->len = min_t(u64, extent_start + ram_bytes,
9036 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9037 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9038 				 btrfs_file_extent_compression(leaf, item));
9039 	if (ret < 0)
9040 		goto out;
9041 	encoded->compression = ret;
9042 	if (encoded->compression) {
9043 		size_t inline_size;
9044 
9045 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9046 								path->slots[0]);
9047 		if (inline_size > count) {
9048 			ret = -ENOBUFS;
9049 			goto out;
9050 		}
9051 		count = inline_size;
9052 		encoded->unencoded_len = ram_bytes;
9053 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9054 	} else {
9055 		count = min_t(u64, count, encoded->len);
9056 		encoded->len = count;
9057 		encoded->unencoded_len = count;
9058 		ptr += iocb->ki_pos - extent_start;
9059 	}
9060 
9061 	tmp = kmalloc(count, GFP_NOFS);
9062 	if (!tmp) {
9063 		ret = -ENOMEM;
9064 		goto out;
9065 	}
9066 	read_extent_buffer(leaf, tmp, ptr, count);
9067 	btrfs_release_path(path);
9068 	unlock_extent(io_tree, start, lockend, cached_state);
9069 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9070 	*unlocked = true;
9071 
9072 	ret = copy_to_iter(tmp, count, iter);
9073 	if (ret != count)
9074 		ret = -EFAULT;
9075 	kfree(tmp);
9076 out:
9077 	btrfs_free_path(path);
9078 	return ret;
9079 }
9080 
9081 struct btrfs_encoded_read_private {
9082 	wait_queue_head_t wait;
9083 	atomic_t pending;
9084 	blk_status_t status;
9085 };
9086 
9087 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9088 {
9089 	struct btrfs_encoded_read_private *priv = bbio->private;
9090 
9091 	if (bbio->bio.bi_status) {
9092 		/*
9093 		 * The memory barrier implied by the atomic_dec_return() here
9094 		 * pairs with the memory barrier implied by the
9095 		 * atomic_dec_return() or io_wait_event() in
9096 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9097 		 * write is observed before the load of status in
9098 		 * btrfs_encoded_read_regular_fill_pages().
9099 		 */
9100 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9101 	}
9102 	if (!atomic_dec_return(&priv->pending))
9103 		wake_up(&priv->wait);
9104 	bio_put(&bbio->bio);
9105 }
9106 
9107 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9108 					  u64 file_offset, u64 disk_bytenr,
9109 					  u64 disk_io_size, struct page **pages)
9110 {
9111 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9112 	struct btrfs_encoded_read_private priv = {
9113 		.pending = ATOMIC_INIT(1),
9114 	};
9115 	unsigned long i = 0;
9116 	struct btrfs_bio *bbio;
9117 
9118 	init_waitqueue_head(&priv.wait);
9119 
9120 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9121 			       btrfs_encoded_read_endio, &priv);
9122 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9123 	bbio->inode = inode;
9124 
9125 	do {
9126 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9127 
9128 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9129 			atomic_inc(&priv.pending);
9130 			btrfs_submit_bio(bbio, 0);
9131 
9132 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9133 					       btrfs_encoded_read_endio, &priv);
9134 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9135 			bbio->inode = inode;
9136 			continue;
9137 		}
9138 
9139 		i++;
9140 		disk_bytenr += bytes;
9141 		disk_io_size -= bytes;
9142 	} while (disk_io_size);
9143 
9144 	atomic_inc(&priv.pending);
9145 	btrfs_submit_bio(bbio, 0);
9146 
9147 	if (atomic_dec_return(&priv.pending))
9148 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9149 	/* See btrfs_encoded_read_endio() for ordering. */
9150 	return blk_status_to_errno(READ_ONCE(priv.status));
9151 }
9152 
9153 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9154 					  struct iov_iter *iter,
9155 					  u64 start, u64 lockend,
9156 					  struct extent_state **cached_state,
9157 					  u64 disk_bytenr, u64 disk_io_size,
9158 					  size_t count, bool compressed,
9159 					  bool *unlocked)
9160 {
9161 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9162 	struct extent_io_tree *io_tree = &inode->io_tree;
9163 	struct page **pages;
9164 	unsigned long nr_pages, i;
9165 	u64 cur;
9166 	size_t page_offset;
9167 	ssize_t ret;
9168 
9169 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9170 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9171 	if (!pages)
9172 		return -ENOMEM;
9173 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9174 	if (ret) {
9175 		ret = -ENOMEM;
9176 		goto out;
9177 		}
9178 
9179 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9180 						    disk_io_size, pages);
9181 	if (ret)
9182 		goto out;
9183 
9184 	unlock_extent(io_tree, start, lockend, cached_state);
9185 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9186 	*unlocked = true;
9187 
9188 	if (compressed) {
9189 		i = 0;
9190 		page_offset = 0;
9191 	} else {
9192 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9193 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9194 	}
9195 	cur = 0;
9196 	while (cur < count) {
9197 		size_t bytes = min_t(size_t, count - cur,
9198 				     PAGE_SIZE - page_offset);
9199 
9200 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9201 				      iter) != bytes) {
9202 			ret = -EFAULT;
9203 			goto out;
9204 		}
9205 		i++;
9206 		cur += bytes;
9207 		page_offset = 0;
9208 	}
9209 	ret = count;
9210 out:
9211 	for (i = 0; i < nr_pages; i++) {
9212 		if (pages[i])
9213 			__free_page(pages[i]);
9214 	}
9215 	kfree(pages);
9216 	return ret;
9217 }
9218 
9219 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9220 			   struct btrfs_ioctl_encoded_io_args *encoded)
9221 {
9222 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9223 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9224 	struct extent_io_tree *io_tree = &inode->io_tree;
9225 	ssize_t ret;
9226 	size_t count = iov_iter_count(iter);
9227 	u64 start, lockend, disk_bytenr, disk_io_size;
9228 	struct extent_state *cached_state = NULL;
9229 	struct extent_map *em;
9230 	bool unlocked = false;
9231 
9232 	file_accessed(iocb->ki_filp);
9233 
9234 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9235 
9236 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9237 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9238 		return 0;
9239 	}
9240 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9241 	/*
9242 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9243 	 * it's compressed we know that it won't be longer than this.
9244 	 */
9245 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9246 
9247 	for (;;) {
9248 		struct btrfs_ordered_extent *ordered;
9249 
9250 		ret = btrfs_wait_ordered_range(inode, start,
9251 					       lockend - start + 1);
9252 		if (ret)
9253 			goto out_unlock_inode;
9254 		lock_extent(io_tree, start, lockend, &cached_state);
9255 		ordered = btrfs_lookup_ordered_range(inode, start,
9256 						     lockend - start + 1);
9257 		if (!ordered)
9258 			break;
9259 		btrfs_put_ordered_extent(ordered);
9260 		unlock_extent(io_tree, start, lockend, &cached_state);
9261 		cond_resched();
9262 	}
9263 
9264 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9265 	if (IS_ERR(em)) {
9266 		ret = PTR_ERR(em);
9267 		goto out_unlock_extent;
9268 	}
9269 
9270 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9271 		u64 extent_start = em->start;
9272 
9273 		/*
9274 		 * For inline extents we get everything we need out of the
9275 		 * extent item.
9276 		 */
9277 		free_extent_map(em);
9278 		em = NULL;
9279 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9280 						&cached_state, extent_start,
9281 						count, encoded, &unlocked);
9282 		goto out;
9283 	}
9284 
9285 	/*
9286 	 * We only want to return up to EOF even if the extent extends beyond
9287 	 * that.
9288 	 */
9289 	encoded->len = min_t(u64, extent_map_end(em),
9290 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9291 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9292 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9293 		disk_bytenr = EXTENT_MAP_HOLE;
9294 		count = min_t(u64, count, encoded->len);
9295 		encoded->len = count;
9296 		encoded->unencoded_len = count;
9297 	} else if (extent_map_is_compressed(em)) {
9298 		disk_bytenr = em->disk_bytenr;
9299 		/*
9300 		 * Bail if the buffer isn't large enough to return the whole
9301 		 * compressed extent.
9302 		 */
9303 		if (em->disk_num_bytes > count) {
9304 			ret = -ENOBUFS;
9305 			goto out_em;
9306 		}
9307 		disk_io_size = em->disk_num_bytes;
9308 		count = em->disk_num_bytes;
9309 		encoded->unencoded_len = em->ram_bytes;
9310 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9311 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9312 							       extent_map_compression(em));
9313 		if (ret < 0)
9314 			goto out_em;
9315 		encoded->compression = ret;
9316 	} else {
9317 		disk_bytenr = extent_map_block_start(em) + (start - em->start);
9318 		if (encoded->len > count)
9319 			encoded->len = count;
9320 		/*
9321 		 * Don't read beyond what we locked. This also limits the page
9322 		 * allocations that we'll do.
9323 		 */
9324 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9325 		count = start + disk_io_size - iocb->ki_pos;
9326 		encoded->len = count;
9327 		encoded->unencoded_len = count;
9328 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9329 	}
9330 	free_extent_map(em);
9331 	em = NULL;
9332 
9333 	if (disk_bytenr == EXTENT_MAP_HOLE) {
9334 		unlock_extent(io_tree, start, lockend, &cached_state);
9335 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9336 		unlocked = true;
9337 		ret = iov_iter_zero(count, iter);
9338 		if (ret != count)
9339 			ret = -EFAULT;
9340 	} else {
9341 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9342 						 &cached_state, disk_bytenr,
9343 						 disk_io_size, count,
9344 						 encoded->compression,
9345 						 &unlocked);
9346 	}
9347 
9348 out:
9349 	if (ret >= 0)
9350 		iocb->ki_pos += encoded->len;
9351 out_em:
9352 	free_extent_map(em);
9353 out_unlock_extent:
9354 	if (!unlocked)
9355 		unlock_extent(io_tree, start, lockend, &cached_state);
9356 out_unlock_inode:
9357 	if (!unlocked)
9358 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9359 	return ret;
9360 }
9361 
9362 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9363 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9364 {
9365 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9366 	struct btrfs_root *root = inode->root;
9367 	struct btrfs_fs_info *fs_info = root->fs_info;
9368 	struct extent_io_tree *io_tree = &inode->io_tree;
9369 	struct extent_changeset *data_reserved = NULL;
9370 	struct extent_state *cached_state = NULL;
9371 	struct btrfs_ordered_extent *ordered;
9372 	struct btrfs_file_extent file_extent;
9373 	int compression;
9374 	size_t orig_count;
9375 	u64 start, end;
9376 	u64 num_bytes, ram_bytes, disk_num_bytes;
9377 	unsigned long nr_folios, i;
9378 	struct folio **folios;
9379 	struct btrfs_key ins;
9380 	bool extent_reserved = false;
9381 	struct extent_map *em;
9382 	ssize_t ret;
9383 
9384 	switch (encoded->compression) {
9385 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9386 		compression = BTRFS_COMPRESS_ZLIB;
9387 		break;
9388 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9389 		compression = BTRFS_COMPRESS_ZSTD;
9390 		break;
9391 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9392 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9393 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9394 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9395 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9396 		/* The sector size must match for LZO. */
9397 		if (encoded->compression -
9398 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9399 		    fs_info->sectorsize_bits)
9400 			return -EINVAL;
9401 		compression = BTRFS_COMPRESS_LZO;
9402 		break;
9403 	default:
9404 		return -EINVAL;
9405 	}
9406 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9407 		return -EINVAL;
9408 
9409 	/*
9410 	 * Compressed extents should always have checksums, so error out if we
9411 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9412 	 */
9413 	if (inode->flags & BTRFS_INODE_NODATASUM)
9414 		return -EINVAL;
9415 
9416 	orig_count = iov_iter_count(from);
9417 
9418 	/* The extent size must be sane. */
9419 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9420 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9421 		return -EINVAL;
9422 
9423 	/*
9424 	 * The compressed data must be smaller than the decompressed data.
9425 	 *
9426 	 * It's of course possible for data to compress to larger or the same
9427 	 * size, but the buffered I/O path falls back to no compression for such
9428 	 * data, and we don't want to break any assumptions by creating these
9429 	 * extents.
9430 	 *
9431 	 * Note that this is less strict than the current check we have that the
9432 	 * compressed data must be at least one sector smaller than the
9433 	 * decompressed data. We only want to enforce the weaker requirement
9434 	 * from old kernels that it is at least one byte smaller.
9435 	 */
9436 	if (orig_count >= encoded->unencoded_len)
9437 		return -EINVAL;
9438 
9439 	/* The extent must start on a sector boundary. */
9440 	start = iocb->ki_pos;
9441 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9442 		return -EINVAL;
9443 
9444 	/*
9445 	 * The extent must end on a sector boundary. However, we allow a write
9446 	 * which ends at or extends i_size to have an unaligned length; we round
9447 	 * up the extent size and set i_size to the unaligned end.
9448 	 */
9449 	if (start + encoded->len < inode->vfs_inode.i_size &&
9450 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9451 		return -EINVAL;
9452 
9453 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9454 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9455 		return -EINVAL;
9456 
9457 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9458 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9459 	end = start + num_bytes - 1;
9460 
9461 	/*
9462 	 * If the extent cannot be inline, the compressed data on disk must be
9463 	 * sector-aligned. For convenience, we extend it with zeroes if it
9464 	 * isn't.
9465 	 */
9466 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9467 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9468 	folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9469 	if (!folios)
9470 		return -ENOMEM;
9471 	for (i = 0; i < nr_folios; i++) {
9472 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9473 		char *kaddr;
9474 
9475 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9476 		if (!folios[i]) {
9477 			ret = -ENOMEM;
9478 			goto out_folios;
9479 		}
9480 		kaddr = kmap_local_folio(folios[i], 0);
9481 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9482 			kunmap_local(kaddr);
9483 			ret = -EFAULT;
9484 			goto out_folios;
9485 		}
9486 		if (bytes < PAGE_SIZE)
9487 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9488 		kunmap_local(kaddr);
9489 	}
9490 
9491 	for (;;) {
9492 		struct btrfs_ordered_extent *ordered;
9493 
9494 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9495 		if (ret)
9496 			goto out_folios;
9497 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9498 						    start >> PAGE_SHIFT,
9499 						    end >> PAGE_SHIFT);
9500 		if (ret)
9501 			goto out_folios;
9502 		lock_extent(io_tree, start, end, &cached_state);
9503 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9504 		if (!ordered &&
9505 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9506 			break;
9507 		if (ordered)
9508 			btrfs_put_ordered_extent(ordered);
9509 		unlock_extent(io_tree, start, end, &cached_state);
9510 		cond_resched();
9511 	}
9512 
9513 	/*
9514 	 * We don't use the higher-level delalloc space functions because our
9515 	 * num_bytes and disk_num_bytes are different.
9516 	 */
9517 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9518 	if (ret)
9519 		goto out_unlock;
9520 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9521 	if (ret)
9522 		goto out_free_data_space;
9523 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9524 					      false);
9525 	if (ret)
9526 		goto out_qgroup_free_data;
9527 
9528 	/* Try an inline extent first. */
9529 	if (encoded->unencoded_len == encoded->len &&
9530 	    encoded->unencoded_offset == 0 &&
9531 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9532 		ret = __cow_file_range_inline(inode, start, encoded->len,
9533 					      orig_count, compression, folios[0],
9534 					      true);
9535 		if (ret <= 0) {
9536 			if (ret == 0)
9537 				ret = orig_count;
9538 			goto out_delalloc_release;
9539 		}
9540 	}
9541 
9542 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9543 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9544 	if (ret)
9545 		goto out_delalloc_release;
9546 	extent_reserved = true;
9547 
9548 	file_extent.disk_bytenr = ins.objectid;
9549 	file_extent.disk_num_bytes = ins.offset;
9550 	file_extent.num_bytes = num_bytes;
9551 	file_extent.ram_bytes = ram_bytes;
9552 	file_extent.offset = encoded->unencoded_offset;
9553 	file_extent.compression = compression;
9554 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9555 	if (IS_ERR(em)) {
9556 		ret = PTR_ERR(em);
9557 		goto out_free_reserved;
9558 	}
9559 	free_extent_map(em);
9560 
9561 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9562 				       (1 << BTRFS_ORDERED_ENCODED) |
9563 				       (1 << BTRFS_ORDERED_COMPRESSED));
9564 	if (IS_ERR(ordered)) {
9565 		btrfs_drop_extent_map_range(inode, start, end, false);
9566 		ret = PTR_ERR(ordered);
9567 		goto out_free_reserved;
9568 	}
9569 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9570 
9571 	if (start + encoded->len > inode->vfs_inode.i_size)
9572 		i_size_write(&inode->vfs_inode, start + encoded->len);
9573 
9574 	unlock_extent(io_tree, start, end, &cached_state);
9575 
9576 	btrfs_delalloc_release_extents(inode, num_bytes);
9577 
9578 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9579 	ret = orig_count;
9580 	goto out;
9581 
9582 out_free_reserved:
9583 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9584 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9585 out_delalloc_release:
9586 	btrfs_delalloc_release_extents(inode, num_bytes);
9587 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9588 out_qgroup_free_data:
9589 	if (ret < 0)
9590 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9591 out_free_data_space:
9592 	/*
9593 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9594 	 * bytes_may_use.
9595 	 */
9596 	if (!extent_reserved)
9597 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9598 out_unlock:
9599 	unlock_extent(io_tree, start, end, &cached_state);
9600 out_folios:
9601 	for (i = 0; i < nr_folios; i++) {
9602 		if (folios[i])
9603 			folio_put(folios[i]);
9604 	}
9605 	kvfree(folios);
9606 out:
9607 	if (ret >= 0)
9608 		iocb->ki_pos += encoded->len;
9609 	return ret;
9610 }
9611 
9612 #ifdef CONFIG_SWAP
9613 /*
9614  * Add an entry indicating a block group or device which is pinned by a
9615  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9616  * negative errno on failure.
9617  */
9618 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9619 				  bool is_block_group)
9620 {
9621 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9622 	struct btrfs_swapfile_pin *sp, *entry;
9623 	struct rb_node **p;
9624 	struct rb_node *parent = NULL;
9625 
9626 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9627 	if (!sp)
9628 		return -ENOMEM;
9629 	sp->ptr = ptr;
9630 	sp->inode = inode;
9631 	sp->is_block_group = is_block_group;
9632 	sp->bg_extent_count = 1;
9633 
9634 	spin_lock(&fs_info->swapfile_pins_lock);
9635 	p = &fs_info->swapfile_pins.rb_node;
9636 	while (*p) {
9637 		parent = *p;
9638 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9639 		if (sp->ptr < entry->ptr ||
9640 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9641 			p = &(*p)->rb_left;
9642 		} else if (sp->ptr > entry->ptr ||
9643 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9644 			p = &(*p)->rb_right;
9645 		} else {
9646 			if (is_block_group)
9647 				entry->bg_extent_count++;
9648 			spin_unlock(&fs_info->swapfile_pins_lock);
9649 			kfree(sp);
9650 			return 1;
9651 		}
9652 	}
9653 	rb_link_node(&sp->node, parent, p);
9654 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9655 	spin_unlock(&fs_info->swapfile_pins_lock);
9656 	return 0;
9657 }
9658 
9659 /* Free all of the entries pinned by this swapfile. */
9660 static void btrfs_free_swapfile_pins(struct inode *inode)
9661 {
9662 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9663 	struct btrfs_swapfile_pin *sp;
9664 	struct rb_node *node, *next;
9665 
9666 	spin_lock(&fs_info->swapfile_pins_lock);
9667 	node = rb_first(&fs_info->swapfile_pins);
9668 	while (node) {
9669 		next = rb_next(node);
9670 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9671 		if (sp->inode == inode) {
9672 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9673 			if (sp->is_block_group) {
9674 				btrfs_dec_block_group_swap_extents(sp->ptr,
9675 							   sp->bg_extent_count);
9676 				btrfs_put_block_group(sp->ptr);
9677 			}
9678 			kfree(sp);
9679 		}
9680 		node = next;
9681 	}
9682 	spin_unlock(&fs_info->swapfile_pins_lock);
9683 }
9684 
9685 struct btrfs_swap_info {
9686 	u64 start;
9687 	u64 block_start;
9688 	u64 block_len;
9689 	u64 lowest_ppage;
9690 	u64 highest_ppage;
9691 	unsigned long nr_pages;
9692 	int nr_extents;
9693 };
9694 
9695 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9696 				 struct btrfs_swap_info *bsi)
9697 {
9698 	unsigned long nr_pages;
9699 	unsigned long max_pages;
9700 	u64 first_ppage, first_ppage_reported, next_ppage;
9701 	int ret;
9702 
9703 	/*
9704 	 * Our swapfile may have had its size extended after the swap header was
9705 	 * written. In that case activating the swapfile should not go beyond
9706 	 * the max size set in the swap header.
9707 	 */
9708 	if (bsi->nr_pages >= sis->max)
9709 		return 0;
9710 
9711 	max_pages = sis->max - bsi->nr_pages;
9712 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9713 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9714 
9715 	if (first_ppage >= next_ppage)
9716 		return 0;
9717 	nr_pages = next_ppage - first_ppage;
9718 	nr_pages = min(nr_pages, max_pages);
9719 
9720 	first_ppage_reported = first_ppage;
9721 	if (bsi->start == 0)
9722 		first_ppage_reported++;
9723 	if (bsi->lowest_ppage > first_ppage_reported)
9724 		bsi->lowest_ppage = first_ppage_reported;
9725 	if (bsi->highest_ppage < (next_ppage - 1))
9726 		bsi->highest_ppage = next_ppage - 1;
9727 
9728 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9729 	if (ret < 0)
9730 		return ret;
9731 	bsi->nr_extents += ret;
9732 	bsi->nr_pages += nr_pages;
9733 	return 0;
9734 }
9735 
9736 static void btrfs_swap_deactivate(struct file *file)
9737 {
9738 	struct inode *inode = file_inode(file);
9739 
9740 	btrfs_free_swapfile_pins(inode);
9741 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9742 }
9743 
9744 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9745 			       sector_t *span)
9746 {
9747 	struct inode *inode = file_inode(file);
9748 	struct btrfs_root *root = BTRFS_I(inode)->root;
9749 	struct btrfs_fs_info *fs_info = root->fs_info;
9750 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9751 	struct extent_state *cached_state = NULL;
9752 	struct extent_map *em = NULL;
9753 	struct btrfs_chunk_map *map = NULL;
9754 	struct btrfs_device *device = NULL;
9755 	struct btrfs_swap_info bsi = {
9756 		.lowest_ppage = (sector_t)-1ULL,
9757 	};
9758 	int ret = 0;
9759 	u64 isize;
9760 	u64 start;
9761 
9762 	/*
9763 	 * If the swap file was just created, make sure delalloc is done. If the
9764 	 * file changes again after this, the user is doing something stupid and
9765 	 * we don't really care.
9766 	 */
9767 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9768 	if (ret)
9769 		return ret;
9770 
9771 	/*
9772 	 * The inode is locked, so these flags won't change after we check them.
9773 	 */
9774 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9775 		btrfs_warn(fs_info, "swapfile must not be compressed");
9776 		return -EINVAL;
9777 	}
9778 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9779 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9780 		return -EINVAL;
9781 	}
9782 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9783 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9784 		return -EINVAL;
9785 	}
9786 
9787 	/*
9788 	 * Balance or device remove/replace/resize can move stuff around from
9789 	 * under us. The exclop protection makes sure they aren't running/won't
9790 	 * run concurrently while we are mapping the swap extents, and
9791 	 * fs_info->swapfile_pins prevents them from running while the swap
9792 	 * file is active and moving the extents. Note that this also prevents
9793 	 * a concurrent device add which isn't actually necessary, but it's not
9794 	 * really worth the trouble to allow it.
9795 	 */
9796 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9797 		btrfs_warn(fs_info,
9798 	   "cannot activate swapfile while exclusive operation is running");
9799 		return -EBUSY;
9800 	}
9801 
9802 	/*
9803 	 * Prevent snapshot creation while we are activating the swap file.
9804 	 * We do not want to race with snapshot creation. If snapshot creation
9805 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9806 	 * completes before the first write into the swap file after it is
9807 	 * activated, than that write would fallback to COW.
9808 	 */
9809 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9810 		btrfs_exclop_finish(fs_info);
9811 		btrfs_warn(fs_info,
9812 	   "cannot activate swapfile because snapshot creation is in progress");
9813 		return -EINVAL;
9814 	}
9815 	/*
9816 	 * Snapshots can create extents which require COW even if NODATACOW is
9817 	 * set. We use this counter to prevent snapshots. We must increment it
9818 	 * before walking the extents because we don't want a concurrent
9819 	 * snapshot to run after we've already checked the extents.
9820 	 *
9821 	 * It is possible that subvolume is marked for deletion but still not
9822 	 * removed yet. To prevent this race, we check the root status before
9823 	 * activating the swapfile.
9824 	 */
9825 	spin_lock(&root->root_item_lock);
9826 	if (btrfs_root_dead(root)) {
9827 		spin_unlock(&root->root_item_lock);
9828 
9829 		btrfs_exclop_finish(fs_info);
9830 		btrfs_warn(fs_info,
9831 		"cannot activate swapfile because subvolume %llu is being deleted",
9832 			btrfs_root_id(root));
9833 		return -EPERM;
9834 	}
9835 	atomic_inc(&root->nr_swapfiles);
9836 	spin_unlock(&root->root_item_lock);
9837 
9838 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9839 
9840 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9841 	start = 0;
9842 	while (start < isize) {
9843 		u64 logical_block_start, physical_block_start;
9844 		struct btrfs_block_group *bg;
9845 		u64 len = isize - start;
9846 
9847 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9848 		if (IS_ERR(em)) {
9849 			ret = PTR_ERR(em);
9850 			goto out;
9851 		}
9852 
9853 		if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9854 			btrfs_warn(fs_info, "swapfile must not have holes");
9855 			ret = -EINVAL;
9856 			goto out;
9857 		}
9858 		if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9859 			/*
9860 			 * It's unlikely we'll ever actually find ourselves
9861 			 * here, as a file small enough to fit inline won't be
9862 			 * big enough to store more than the swap header, but in
9863 			 * case something changes in the future, let's catch it
9864 			 * here rather than later.
9865 			 */
9866 			btrfs_warn(fs_info, "swapfile must not be inline");
9867 			ret = -EINVAL;
9868 			goto out;
9869 		}
9870 		if (extent_map_is_compressed(em)) {
9871 			btrfs_warn(fs_info, "swapfile must not be compressed");
9872 			ret = -EINVAL;
9873 			goto out;
9874 		}
9875 
9876 		logical_block_start = extent_map_block_start(em) + (start - em->start);
9877 		len = min(len, em->len - (start - em->start));
9878 		free_extent_map(em);
9879 		em = NULL;
9880 
9881 		ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9882 		if (ret < 0) {
9883 			goto out;
9884 		} else if (ret) {
9885 			ret = 0;
9886 		} else {
9887 			btrfs_warn(fs_info,
9888 				   "swapfile must not be copy-on-write");
9889 			ret = -EINVAL;
9890 			goto out;
9891 		}
9892 
9893 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9894 		if (IS_ERR(map)) {
9895 			ret = PTR_ERR(map);
9896 			goto out;
9897 		}
9898 
9899 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9900 			btrfs_warn(fs_info,
9901 				   "swapfile must have single data profile");
9902 			ret = -EINVAL;
9903 			goto out;
9904 		}
9905 
9906 		if (device == NULL) {
9907 			device = map->stripes[0].dev;
9908 			ret = btrfs_add_swapfile_pin(inode, device, false);
9909 			if (ret == 1)
9910 				ret = 0;
9911 			else if (ret)
9912 				goto out;
9913 		} else if (device != map->stripes[0].dev) {
9914 			btrfs_warn(fs_info, "swapfile must be on one device");
9915 			ret = -EINVAL;
9916 			goto out;
9917 		}
9918 
9919 		physical_block_start = (map->stripes[0].physical +
9920 					(logical_block_start - map->start));
9921 		len = min(len, map->chunk_len - (logical_block_start - map->start));
9922 		btrfs_free_chunk_map(map);
9923 		map = NULL;
9924 
9925 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9926 		if (!bg) {
9927 			btrfs_warn(fs_info,
9928 			   "could not find block group containing swapfile");
9929 			ret = -EINVAL;
9930 			goto out;
9931 		}
9932 
9933 		if (!btrfs_inc_block_group_swap_extents(bg)) {
9934 			btrfs_warn(fs_info,
9935 			   "block group for swapfile at %llu is read-only%s",
9936 			   bg->start,
9937 			   atomic_read(&fs_info->scrubs_running) ?
9938 				       " (scrub running)" : "");
9939 			btrfs_put_block_group(bg);
9940 			ret = -EINVAL;
9941 			goto out;
9942 		}
9943 
9944 		ret = btrfs_add_swapfile_pin(inode, bg, true);
9945 		if (ret) {
9946 			btrfs_put_block_group(bg);
9947 			if (ret == 1)
9948 				ret = 0;
9949 			else
9950 				goto out;
9951 		}
9952 
9953 		if (bsi.block_len &&
9954 		    bsi.block_start + bsi.block_len == physical_block_start) {
9955 			bsi.block_len += len;
9956 		} else {
9957 			if (bsi.block_len) {
9958 				ret = btrfs_add_swap_extent(sis, &bsi);
9959 				if (ret)
9960 					goto out;
9961 			}
9962 			bsi.start = start;
9963 			bsi.block_start = physical_block_start;
9964 			bsi.block_len = len;
9965 		}
9966 
9967 		start += len;
9968 	}
9969 
9970 	if (bsi.block_len)
9971 		ret = btrfs_add_swap_extent(sis, &bsi);
9972 
9973 out:
9974 	if (!IS_ERR_OR_NULL(em))
9975 		free_extent_map(em);
9976 	if (!IS_ERR_OR_NULL(map))
9977 		btrfs_free_chunk_map(map);
9978 
9979 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
9980 
9981 	if (ret)
9982 		btrfs_swap_deactivate(file);
9983 
9984 	btrfs_drew_write_unlock(&root->snapshot_lock);
9985 
9986 	btrfs_exclop_finish(fs_info);
9987 
9988 	if (ret)
9989 		return ret;
9990 
9991 	if (device)
9992 		sis->bdev = device->bdev;
9993 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
9994 	sis->max = bsi.nr_pages;
9995 	sis->pages = bsi.nr_pages - 1;
9996 	sis->highest_bit = bsi.nr_pages - 1;
9997 	return bsi.nr_extents;
9998 }
9999 #else
10000 static void btrfs_swap_deactivate(struct file *file)
10001 {
10002 }
10003 
10004 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10005 			       sector_t *span)
10006 {
10007 	return -EOPNOTSUPP;
10008 }
10009 #endif
10010 
10011 /*
10012  * Update the number of bytes used in the VFS' inode. When we replace extents in
10013  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10014  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10015  * always get a correct value.
10016  */
10017 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10018 			      const u64 add_bytes,
10019 			      const u64 del_bytes)
10020 {
10021 	if (add_bytes == del_bytes)
10022 		return;
10023 
10024 	spin_lock(&inode->lock);
10025 	if (del_bytes > 0)
10026 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10027 	if (add_bytes > 0)
10028 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10029 	spin_unlock(&inode->lock);
10030 }
10031 
10032 /*
10033  * Verify that there are no ordered extents for a given file range.
10034  *
10035  * @inode:   The target inode.
10036  * @start:   Start offset of the file range, should be sector size aligned.
10037  * @end:     End offset (inclusive) of the file range, its value +1 should be
10038  *           sector size aligned.
10039  *
10040  * This should typically be used for cases where we locked an inode's VFS lock in
10041  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10042  * we have flushed all delalloc in the range, we have waited for all ordered
10043  * extents in the range to complete and finally we have locked the file range in
10044  * the inode's io_tree.
10045  */
10046 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10047 {
10048 	struct btrfs_root *root = inode->root;
10049 	struct btrfs_ordered_extent *ordered;
10050 
10051 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10052 		return;
10053 
10054 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10055 	if (ordered) {
10056 		btrfs_err(root->fs_info,
10057 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10058 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10059 			  ordered->file_offset,
10060 			  ordered->file_offset + ordered->num_bytes - 1);
10061 		btrfs_put_ordered_extent(ordered);
10062 	}
10063 
10064 	ASSERT(ordered == NULL);
10065 }
10066 
10067 /*
10068  * Find the first inode with a minimum number.
10069  *
10070  * @root:	The root to search for.
10071  * @min_ino:	The minimum inode number.
10072  *
10073  * Find the first inode in the @root with a number >= @min_ino and return it.
10074  * Returns NULL if no such inode found.
10075  */
10076 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10077 {
10078 	struct btrfs_inode *inode;
10079 	unsigned long from = min_ino;
10080 
10081 	xa_lock(&root->inodes);
10082 	while (true) {
10083 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10084 		if (!inode)
10085 			break;
10086 		if (igrab(&inode->vfs_inode))
10087 			break;
10088 
10089 		from = btrfs_ino(inode) + 1;
10090 		cond_resched_lock(&root->inodes.xa_lock);
10091 	}
10092 	xa_unlock(&root->inodes);
10093 
10094 	return inode;
10095 }
10096 
10097 static const struct inode_operations btrfs_dir_inode_operations = {
10098 	.getattr	= btrfs_getattr,
10099 	.lookup		= btrfs_lookup,
10100 	.create		= btrfs_create,
10101 	.unlink		= btrfs_unlink,
10102 	.link		= btrfs_link,
10103 	.mkdir		= btrfs_mkdir,
10104 	.rmdir		= btrfs_rmdir,
10105 	.rename		= btrfs_rename2,
10106 	.symlink	= btrfs_symlink,
10107 	.setattr	= btrfs_setattr,
10108 	.mknod		= btrfs_mknod,
10109 	.listxattr	= btrfs_listxattr,
10110 	.permission	= btrfs_permission,
10111 	.get_inode_acl	= btrfs_get_acl,
10112 	.set_acl	= btrfs_set_acl,
10113 	.update_time	= btrfs_update_time,
10114 	.tmpfile        = btrfs_tmpfile,
10115 	.fileattr_get	= btrfs_fileattr_get,
10116 	.fileattr_set	= btrfs_fileattr_set,
10117 };
10118 
10119 static const struct file_operations btrfs_dir_file_operations = {
10120 	.llseek		= btrfs_dir_llseek,
10121 	.read		= generic_read_dir,
10122 	.iterate_shared	= btrfs_real_readdir,
10123 	.open		= btrfs_opendir,
10124 	.unlocked_ioctl	= btrfs_ioctl,
10125 #ifdef CONFIG_COMPAT
10126 	.compat_ioctl	= btrfs_compat_ioctl,
10127 #endif
10128 	.release        = btrfs_release_file,
10129 	.fsync		= btrfs_sync_file,
10130 };
10131 
10132 /*
10133  * btrfs doesn't support the bmap operation because swapfiles
10134  * use bmap to make a mapping of extents in the file.  They assume
10135  * these extents won't change over the life of the file and they
10136  * use the bmap result to do IO directly to the drive.
10137  *
10138  * the btrfs bmap call would return logical addresses that aren't
10139  * suitable for IO and they also will change frequently as COW
10140  * operations happen.  So, swapfile + btrfs == corruption.
10141  *
10142  * For now we're avoiding this by dropping bmap.
10143  */
10144 static const struct address_space_operations btrfs_aops = {
10145 	.read_folio	= btrfs_read_folio,
10146 	.writepages	= btrfs_writepages,
10147 	.readahead	= btrfs_readahead,
10148 	.invalidate_folio = btrfs_invalidate_folio,
10149 	.launder_folio	= btrfs_launder_folio,
10150 	.release_folio	= btrfs_release_folio,
10151 	.migrate_folio	= btrfs_migrate_folio,
10152 	.dirty_folio	= filemap_dirty_folio,
10153 	.error_remove_folio = generic_error_remove_folio,
10154 	.swap_activate	= btrfs_swap_activate,
10155 	.swap_deactivate = btrfs_swap_deactivate,
10156 };
10157 
10158 static const struct inode_operations btrfs_file_inode_operations = {
10159 	.getattr	= btrfs_getattr,
10160 	.setattr	= btrfs_setattr,
10161 	.listxattr      = btrfs_listxattr,
10162 	.permission	= btrfs_permission,
10163 	.fiemap		= btrfs_fiemap,
10164 	.get_inode_acl	= btrfs_get_acl,
10165 	.set_acl	= btrfs_set_acl,
10166 	.update_time	= btrfs_update_time,
10167 	.fileattr_get	= btrfs_fileattr_get,
10168 	.fileattr_set	= btrfs_fileattr_set,
10169 };
10170 static const struct inode_operations btrfs_special_inode_operations = {
10171 	.getattr	= btrfs_getattr,
10172 	.setattr	= btrfs_setattr,
10173 	.permission	= btrfs_permission,
10174 	.listxattr	= btrfs_listxattr,
10175 	.get_inode_acl	= btrfs_get_acl,
10176 	.set_acl	= btrfs_set_acl,
10177 	.update_time	= btrfs_update_time,
10178 };
10179 static const struct inode_operations btrfs_symlink_inode_operations = {
10180 	.get_link	= page_get_link,
10181 	.getattr	= btrfs_getattr,
10182 	.setattr	= btrfs_setattr,
10183 	.permission	= btrfs_permission,
10184 	.listxattr	= btrfs_listxattr,
10185 	.update_time	= btrfs_update_time,
10186 };
10187 
10188 const struct dentry_operations btrfs_dentry_operations = {
10189 	.d_delete	= btrfs_dentry_delete,
10190 };
10191