1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_is_data_reloc_root(root)) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 pgoff_t index = offset >> PAGE_SHIFT; 399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 if (IS_ERR(folio)) { 405 index++; 406 continue; 407 } 408 409 index = folio_end(folio) >> PAGE_SHIFT; 410 /* 411 * Here we just clear all Ordered bits for every page in the 412 * range, then btrfs_mark_ordered_io_finished() will handle 413 * the ordered extent accounting for the range. 414 */ 415 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 416 offset, bytes); 417 folio_put(folio); 418 } 419 420 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 421 } 422 423 static int btrfs_dirty_inode(struct btrfs_inode *inode); 424 425 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 426 struct btrfs_new_inode_args *args) 427 { 428 int ret; 429 430 if (args->default_acl) { 431 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 432 ACL_TYPE_DEFAULT); 433 if (ret) 434 return ret; 435 } 436 if (args->acl) { 437 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 438 if (ret) 439 return ret; 440 } 441 if (!args->default_acl && !args->acl) 442 cache_no_acl(args->inode); 443 return btrfs_xattr_security_init(trans, args->inode, args->dir, 444 &args->dentry->d_name); 445 } 446 447 /* 448 * this does all the hard work for inserting an inline extent into 449 * the btree. The caller should have done a btrfs_drop_extents so that 450 * no overlapping inline items exist in the btree 451 */ 452 static int insert_inline_extent(struct btrfs_trans_handle *trans, 453 struct btrfs_path *path, 454 struct btrfs_inode *inode, bool extent_inserted, 455 size_t size, size_t compressed_size, 456 int compress_type, 457 struct folio *compressed_folio, 458 bool update_i_size) 459 { 460 struct btrfs_root *root = inode->root; 461 struct extent_buffer *leaf; 462 const u32 sectorsize = trans->fs_info->sectorsize; 463 char *kaddr; 464 unsigned long ptr; 465 struct btrfs_file_extent_item *ei; 466 int ret; 467 size_t cur_size = size; 468 u64 i_size; 469 470 /* 471 * The decompressed size must still be no larger than a sector. Under 472 * heavy race, we can have size == 0 passed in, but that shouldn't be a 473 * big deal and we can continue the insertion. 474 */ 475 ASSERT(size <= sectorsize); 476 477 /* 478 * The compressed size also needs to be no larger than a sector. 479 * That's also why we only need one page as the parameter. 480 */ 481 if (compressed_folio) 482 ASSERT(compressed_size <= sectorsize); 483 else 484 ASSERT(compressed_size == 0); 485 486 if (compressed_size && compressed_folio) 487 cur_size = compressed_size; 488 489 if (!extent_inserted) { 490 struct btrfs_key key; 491 size_t datasize; 492 493 key.objectid = btrfs_ino(inode); 494 key.type = BTRFS_EXTENT_DATA_KEY; 495 key.offset = 0; 496 497 datasize = btrfs_file_extent_calc_inline_size(cur_size); 498 ret = btrfs_insert_empty_item(trans, root, path, &key, 499 datasize); 500 if (ret) 501 goto fail; 502 } 503 leaf = path->nodes[0]; 504 ei = btrfs_item_ptr(leaf, path->slots[0], 505 struct btrfs_file_extent_item); 506 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 507 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 508 btrfs_set_file_extent_encryption(leaf, ei, 0); 509 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 510 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 511 ptr = btrfs_file_extent_inline_start(ei); 512 513 if (compress_type != BTRFS_COMPRESS_NONE) { 514 kaddr = kmap_local_folio(compressed_folio, 0); 515 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 516 kunmap_local(kaddr); 517 518 btrfs_set_file_extent_compression(leaf, ei, 519 compress_type); 520 } else { 521 struct folio *folio; 522 523 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 524 ASSERT(!IS_ERR(folio)); 525 btrfs_set_file_extent_compression(leaf, ei, 0); 526 kaddr = kmap_local_folio(folio, 0); 527 write_extent_buffer(leaf, kaddr, ptr, size); 528 kunmap_local(kaddr); 529 folio_put(folio); 530 } 531 btrfs_release_path(path); 532 533 /* 534 * We align size to sectorsize for inline extents just for simplicity 535 * sake. 536 */ 537 ret = btrfs_inode_set_file_extent_range(inode, 0, 538 ALIGN(size, root->fs_info->sectorsize)); 539 if (ret) 540 goto fail; 541 542 /* 543 * We're an inline extent, so nobody can extend the file past i_size 544 * without locking a page we already have locked. 545 * 546 * We must do any i_size and inode updates before we unlock the pages. 547 * Otherwise we could end up racing with unlink. 548 */ 549 i_size = i_size_read(&inode->vfs_inode); 550 if (update_i_size && size > i_size) { 551 i_size_write(&inode->vfs_inode, size); 552 i_size = size; 553 } 554 inode->disk_i_size = i_size; 555 556 fail: 557 return ret; 558 } 559 560 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 561 u64 offset, u64 size, 562 size_t compressed_size) 563 { 564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 565 u64 data_len = (compressed_size ?: size); 566 567 /* Inline extents must start at offset 0. */ 568 if (offset != 0) 569 return false; 570 571 /* Inline extents are limited to sectorsize. */ 572 if (size > fs_info->sectorsize) 573 return false; 574 575 /* We do not allow a non-compressed extent to be as large as block size. */ 576 if (data_len >= fs_info->sectorsize) 577 return false; 578 579 /* We cannot exceed the maximum inline data size. */ 580 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 581 return false; 582 583 /* We cannot exceed the user specified max_inline size. */ 584 if (data_len > fs_info->max_inline) 585 return false; 586 587 /* Inline extents must be the entirety of the file. */ 588 if (size < i_size_read(&inode->vfs_inode)) 589 return false; 590 591 return true; 592 } 593 594 /* 595 * conditionally insert an inline extent into the file. This 596 * does the checks required to make sure the data is small enough 597 * to fit as an inline extent. 598 * 599 * If being used directly, you must have already checked we're allowed to cow 600 * the range by getting true from can_cow_file_range_inline(). 601 */ 602 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 603 u64 size, size_t compressed_size, 604 int compress_type, 605 struct folio *compressed_folio, 606 bool update_i_size) 607 { 608 struct btrfs_drop_extents_args drop_args = { 0 }; 609 struct btrfs_root *root = inode->root; 610 struct btrfs_fs_info *fs_info = root->fs_info; 611 struct btrfs_trans_handle *trans; 612 u64 data_len = (compressed_size ?: size); 613 int ret; 614 struct btrfs_path *path; 615 616 path = btrfs_alloc_path(); 617 if (!path) 618 return -ENOMEM; 619 620 trans = btrfs_join_transaction(root); 621 if (IS_ERR(trans)) { 622 btrfs_free_path(path); 623 return PTR_ERR(trans); 624 } 625 trans->block_rsv = &inode->block_rsv; 626 627 drop_args.path = path; 628 drop_args.start = 0; 629 drop_args.end = fs_info->sectorsize; 630 drop_args.drop_cache = true; 631 drop_args.replace_extent = true; 632 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 633 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 634 if (ret) { 635 btrfs_abort_transaction(trans, ret); 636 goto out; 637 } 638 639 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 640 size, compressed_size, compress_type, 641 compressed_folio, update_i_size); 642 if (ret && ret != -ENOSPC) { 643 btrfs_abort_transaction(trans, ret); 644 goto out; 645 } else if (ret == -ENOSPC) { 646 ret = 1; 647 goto out; 648 } 649 650 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 651 ret = btrfs_update_inode(trans, inode); 652 if (ret && ret != -ENOSPC) { 653 btrfs_abort_transaction(trans, ret); 654 goto out; 655 } else if (ret == -ENOSPC) { 656 ret = 1; 657 goto out; 658 } 659 660 btrfs_set_inode_full_sync(inode); 661 out: 662 /* 663 * Don't forget to free the reserved space, as for inlined extent 664 * it won't count as data extent, free them directly here. 665 * And at reserve time, it's always aligned to page size, so 666 * just free one page here. 667 */ 668 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 669 btrfs_free_path(path); 670 btrfs_end_transaction(trans); 671 return ret; 672 } 673 674 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 675 struct folio *locked_folio, 676 u64 offset, u64 end, 677 size_t compressed_size, 678 int compress_type, 679 struct folio *compressed_folio, 680 bool update_i_size) 681 { 682 struct extent_state *cached = NULL; 683 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 684 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 685 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 686 int ret; 687 688 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 689 return 1; 690 691 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 692 ret = __cow_file_range_inline(inode, size, compressed_size, 693 compress_type, compressed_folio, 694 update_i_size); 695 if (ret > 0) { 696 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 697 return ret; 698 } 699 700 /* 701 * In the successful case (ret == 0 here), cow_file_range will return 1. 702 * 703 * Quite a bit further up the callstack in extent_writepage(), ret == 1 704 * is treated as a short circuited success and does not unlock the folio, 705 * so we must do it here. 706 * 707 * In the failure case, the locked_folio does get unlocked by 708 * btrfs_folio_end_all_writers, which asserts that it is still locked 709 * at that point, so we must *not* unlock it here. 710 * 711 * The other two callsites in compress_file_range do not have a 712 * locked_folio, so they are not relevant to this logic. 713 */ 714 if (ret == 0) 715 locked_folio = NULL; 716 717 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 718 clear_flags, PAGE_UNLOCK | 719 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 720 return ret; 721 } 722 723 struct async_extent { 724 u64 start; 725 u64 ram_size; 726 u64 compressed_size; 727 struct folio **folios; 728 unsigned long nr_folios; 729 int compress_type; 730 struct list_head list; 731 }; 732 733 struct async_chunk { 734 struct btrfs_inode *inode; 735 struct folio *locked_folio; 736 u64 start; 737 u64 end; 738 blk_opf_t write_flags; 739 struct list_head extents; 740 struct cgroup_subsys_state *blkcg_css; 741 struct btrfs_work work; 742 struct async_cow *async_cow; 743 }; 744 745 struct async_cow { 746 atomic_t num_chunks; 747 struct async_chunk chunks[]; 748 }; 749 750 static noinline int add_async_extent(struct async_chunk *cow, 751 u64 start, u64 ram_size, 752 u64 compressed_size, 753 struct folio **folios, 754 unsigned long nr_folios, 755 int compress_type) 756 { 757 struct async_extent *async_extent; 758 759 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 760 if (!async_extent) 761 return -ENOMEM; 762 async_extent->start = start; 763 async_extent->ram_size = ram_size; 764 async_extent->compressed_size = compressed_size; 765 async_extent->folios = folios; 766 async_extent->nr_folios = nr_folios; 767 async_extent->compress_type = compress_type; 768 list_add_tail(&async_extent->list, &cow->extents); 769 return 0; 770 } 771 772 /* 773 * Check if the inode needs to be submitted to compression, based on mount 774 * options, defragmentation, properties or heuristics. 775 */ 776 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 777 u64 end) 778 { 779 struct btrfs_fs_info *fs_info = inode->root->fs_info; 780 781 if (!btrfs_inode_can_compress(inode)) { 782 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 783 return 0; 784 } 785 786 /* Defrag ioctl takes precedence over mount options and properties. */ 787 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 788 return 0; 789 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 790 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 791 return 1; 792 /* force compress */ 793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 794 return 1; 795 /* bad compression ratios */ 796 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 797 return 0; 798 if (btrfs_test_opt(fs_info, COMPRESS) || 799 inode->flags & BTRFS_INODE_COMPRESS || 800 inode->prop_compress) 801 return btrfs_compress_heuristic(inode, start, end); 802 return 0; 803 } 804 805 static inline void inode_should_defrag(struct btrfs_inode *inode, 806 u64 start, u64 end, u64 num_bytes, u32 small_write) 807 { 808 /* If this is a small write inside eof, kick off a defrag */ 809 if (num_bytes < small_write && 810 (start > 0 || end + 1 < inode->disk_i_size)) 811 btrfs_add_inode_defrag(inode, small_write); 812 } 813 814 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 815 { 816 const pgoff_t end_index = end >> PAGE_SHIFT; 817 struct folio *folio; 818 int ret = 0; 819 820 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 821 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 822 if (IS_ERR(folio)) { 823 if (!ret) 824 ret = PTR_ERR(folio); 825 continue; 826 } 827 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 828 end + 1 - start); 829 folio_put(folio); 830 } 831 return ret; 832 } 833 834 /* 835 * Work queue call back to started compression on a file and pages. 836 * 837 * This is done inside an ordered work queue, and the compression is spread 838 * across many cpus. The actual IO submission is step two, and the ordered work 839 * queue takes care of making sure that happens in the same order things were 840 * put onto the queue by writepages and friends. 841 * 842 * If this code finds it can't get good compression, it puts an entry onto the 843 * work queue to write the uncompressed bytes. This makes sure that both 844 * compressed inodes and uncompressed inodes are written in the same order that 845 * the flusher thread sent them down. 846 */ 847 static void compress_file_range(struct btrfs_work *work) 848 { 849 struct async_chunk *async_chunk = 850 container_of(work, struct async_chunk, work); 851 struct btrfs_inode *inode = async_chunk->inode; 852 struct btrfs_fs_info *fs_info = inode->root->fs_info; 853 struct address_space *mapping = inode->vfs_inode.i_mapping; 854 u64 blocksize = fs_info->sectorsize; 855 u64 start = async_chunk->start; 856 u64 end = async_chunk->end; 857 u64 actual_end; 858 u64 i_size; 859 int ret = 0; 860 struct folio **folios; 861 unsigned long nr_folios; 862 unsigned long total_compressed = 0; 863 unsigned long total_in = 0; 864 unsigned int poff; 865 int i; 866 int compress_type = fs_info->compress_type; 867 int compress_level = fs_info->compress_level; 868 869 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 870 871 /* 872 * We need to call clear_page_dirty_for_io on each page in the range. 873 * Otherwise applications with the file mmap'd can wander in and change 874 * the page contents while we are compressing them. 875 */ 876 ret = extent_range_clear_dirty_for_io(inode, start, end); 877 878 /* 879 * All the folios should have been locked thus no failure. 880 * 881 * And even if some folios are missing, btrfs_compress_folios() 882 * would handle them correctly, so here just do an ASSERT() check for 883 * early logic errors. 884 */ 885 ASSERT(ret == 0); 886 887 /* 888 * We need to save i_size before now because it could change in between 889 * us evaluating the size and assigning it. This is because we lock and 890 * unlock the page in truncate and fallocate, and then modify the i_size 891 * later on. 892 * 893 * The barriers are to emulate READ_ONCE, remove that once i_size_read 894 * does that for us. 895 */ 896 barrier(); 897 i_size = i_size_read(&inode->vfs_inode); 898 barrier(); 899 actual_end = min_t(u64, i_size, end + 1); 900 again: 901 folios = NULL; 902 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 903 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 904 905 /* 906 * we don't want to send crud past the end of i_size through 907 * compression, that's just a waste of CPU time. So, if the 908 * end of the file is before the start of our current 909 * requested range of bytes, we bail out to the uncompressed 910 * cleanup code that can deal with all of this. 911 * 912 * It isn't really the fastest way to fix things, but this is a 913 * very uncommon corner. 914 */ 915 if (actual_end <= start) 916 goto cleanup_and_bail_uncompressed; 917 918 total_compressed = actual_end - start; 919 920 /* 921 * Skip compression for a small file range(<=blocksize) that 922 * isn't an inline extent, since it doesn't save disk space at all. 923 */ 924 if (total_compressed <= blocksize && 925 (start > 0 || end + 1 < inode->disk_i_size)) 926 goto cleanup_and_bail_uncompressed; 927 928 total_compressed = min_t(unsigned long, total_compressed, 929 BTRFS_MAX_UNCOMPRESSED); 930 total_in = 0; 931 ret = 0; 932 933 /* 934 * We do compression for mount -o compress and when the inode has not 935 * been flagged as NOCOMPRESS. This flag can change at any time if we 936 * discover bad compression ratios. 937 */ 938 if (!inode_need_compress(inode, start, end)) 939 goto cleanup_and_bail_uncompressed; 940 941 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 942 if (!folios) { 943 /* 944 * Memory allocation failure is not a fatal error, we can fall 945 * back to uncompressed code. 946 */ 947 goto cleanup_and_bail_uncompressed; 948 } 949 950 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 951 compress_type = inode->defrag_compress; 952 compress_level = inode->defrag_compress_level; 953 } else if (inode->prop_compress) { 954 compress_type = inode->prop_compress; 955 } 956 957 /* Compression level is applied here. */ 958 ret = btrfs_compress_folios(compress_type, compress_level, 959 mapping, start, folios, &nr_folios, &total_in, 960 &total_compressed); 961 if (ret) 962 goto mark_incompressible; 963 964 /* 965 * Zero the tail end of the last page, as we might be sending it down 966 * to disk. 967 */ 968 poff = offset_in_page(total_compressed); 969 if (poff) 970 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 971 972 /* 973 * Try to create an inline extent. 974 * 975 * If we didn't compress the entire range, try to create an uncompressed 976 * inline extent, else a compressed one. 977 * 978 * Check cow_file_range() for why we don't even try to create inline 979 * extent for the subpage case. 980 */ 981 if (total_in < actual_end) 982 ret = cow_file_range_inline(inode, NULL, start, end, 0, 983 BTRFS_COMPRESS_NONE, NULL, false); 984 else 985 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 986 compress_type, folios[0], false); 987 if (ret <= 0) { 988 if (ret < 0) 989 mapping_set_error(mapping, -EIO); 990 goto free_pages; 991 } 992 993 /* 994 * We aren't doing an inline extent. Round the compressed size up to a 995 * block size boundary so the allocator does sane things. 996 */ 997 total_compressed = ALIGN(total_compressed, blocksize); 998 999 /* 1000 * One last check to make sure the compression is really a win, compare 1001 * the page count read with the blocks on disk, compression must free at 1002 * least one sector. 1003 */ 1004 total_in = round_up(total_in, fs_info->sectorsize); 1005 if (total_compressed + blocksize > total_in) 1006 goto mark_incompressible; 1007 1008 /* 1009 * The async work queues will take care of doing actual allocation on 1010 * disk for these compressed pages, and will submit the bios. 1011 */ 1012 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1013 nr_folios, compress_type); 1014 BUG_ON(ret); 1015 if (start + total_in < end) { 1016 start += total_in; 1017 cond_resched(); 1018 goto again; 1019 } 1020 return; 1021 1022 mark_incompressible: 1023 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1024 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1025 cleanup_and_bail_uncompressed: 1026 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1027 BTRFS_COMPRESS_NONE); 1028 BUG_ON(ret); 1029 free_pages: 1030 if (folios) { 1031 for (i = 0; i < nr_folios; i++) { 1032 WARN_ON(folios[i]->mapping); 1033 btrfs_free_compr_folio(folios[i]); 1034 } 1035 kfree(folios); 1036 } 1037 } 1038 1039 static void free_async_extent_pages(struct async_extent *async_extent) 1040 { 1041 int i; 1042 1043 if (!async_extent->folios) 1044 return; 1045 1046 for (i = 0; i < async_extent->nr_folios; i++) { 1047 WARN_ON(async_extent->folios[i]->mapping); 1048 btrfs_free_compr_folio(async_extent->folios[i]); 1049 } 1050 kfree(async_extent->folios); 1051 async_extent->nr_folios = 0; 1052 async_extent->folios = NULL; 1053 } 1054 1055 static void submit_uncompressed_range(struct btrfs_inode *inode, 1056 struct async_extent *async_extent, 1057 struct folio *locked_folio) 1058 { 1059 u64 start = async_extent->start; 1060 u64 end = async_extent->start + async_extent->ram_size - 1; 1061 int ret; 1062 struct writeback_control wbc = { 1063 .sync_mode = WB_SYNC_ALL, 1064 .range_start = start, 1065 .range_end = end, 1066 .no_cgroup_owner = 1, 1067 }; 1068 1069 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1070 ret = run_delalloc_cow(inode, locked_folio, start, end, 1071 &wbc, false); 1072 wbc_detach_inode(&wbc); 1073 if (ret < 0) { 1074 if (locked_folio) 1075 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1076 start, async_extent->ram_size); 1077 btrfs_err_rl(inode->root->fs_info, 1078 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1079 __func__, btrfs_root_id(inode->root), 1080 btrfs_ino(inode), start, async_extent->ram_size, ret); 1081 } 1082 } 1083 1084 static void submit_one_async_extent(struct async_chunk *async_chunk, 1085 struct async_extent *async_extent, 1086 u64 *alloc_hint) 1087 { 1088 struct btrfs_inode *inode = async_chunk->inode; 1089 struct extent_io_tree *io_tree = &inode->io_tree; 1090 struct btrfs_root *root = inode->root; 1091 struct btrfs_fs_info *fs_info = root->fs_info; 1092 struct btrfs_ordered_extent *ordered; 1093 struct btrfs_file_extent file_extent; 1094 struct btrfs_key ins; 1095 struct folio *locked_folio = NULL; 1096 struct extent_state *cached = NULL; 1097 struct extent_map *em; 1098 int ret = 0; 1099 bool free_pages = false; 1100 u64 start = async_extent->start; 1101 u64 end = async_extent->start + async_extent->ram_size - 1; 1102 1103 if (async_chunk->blkcg_css) 1104 kthread_associate_blkcg(async_chunk->blkcg_css); 1105 1106 /* 1107 * If async_chunk->locked_folio is in the async_extent range, we need to 1108 * handle it. 1109 */ 1110 if (async_chunk->locked_folio) { 1111 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1112 u64 locked_folio_end = locked_folio_start + 1113 folio_size(async_chunk->locked_folio) - 1; 1114 1115 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1116 locked_folio = async_chunk->locked_folio; 1117 } 1118 1119 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1120 ASSERT(!async_extent->folios); 1121 ASSERT(async_extent->nr_folios == 0); 1122 submit_uncompressed_range(inode, async_extent, locked_folio); 1123 free_pages = true; 1124 goto done; 1125 } 1126 1127 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1128 async_extent->compressed_size, 1129 async_extent->compressed_size, 1130 0, *alloc_hint, &ins, 1, 1); 1131 if (ret) { 1132 /* 1133 * We can't reserve contiguous space for the compressed size. 1134 * Unlikely, but it's possible that we could have enough 1135 * non-contiguous space for the uncompressed size instead. So 1136 * fall back to uncompressed. 1137 */ 1138 submit_uncompressed_range(inode, async_extent, locked_folio); 1139 free_pages = true; 1140 goto done; 1141 } 1142 1143 btrfs_lock_extent(io_tree, start, end, &cached); 1144 1145 /* Here we're doing allocation and writeback of the compressed pages */ 1146 file_extent.disk_bytenr = ins.objectid; 1147 file_extent.disk_num_bytes = ins.offset; 1148 file_extent.ram_bytes = async_extent->ram_size; 1149 file_extent.num_bytes = async_extent->ram_size; 1150 file_extent.offset = 0; 1151 file_extent.compression = async_extent->compress_type; 1152 1153 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1154 if (IS_ERR(em)) { 1155 ret = PTR_ERR(em); 1156 goto out_free_reserve; 1157 } 1158 btrfs_free_extent_map(em); 1159 1160 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1161 1U << BTRFS_ORDERED_COMPRESSED); 1162 if (IS_ERR(ordered)) { 1163 btrfs_drop_extent_map_range(inode, start, end, false); 1164 ret = PTR_ERR(ordered); 1165 goto out_free_reserve; 1166 } 1167 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1168 1169 /* Clear dirty, set writeback and unlock the pages. */ 1170 extent_clear_unlock_delalloc(inode, start, end, 1171 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1172 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1173 btrfs_submit_compressed_write(ordered, 1174 async_extent->folios, /* compressed_folios */ 1175 async_extent->nr_folios, 1176 async_chunk->write_flags, true); 1177 *alloc_hint = ins.objectid + ins.offset; 1178 done: 1179 if (async_chunk->blkcg_css) 1180 kthread_associate_blkcg(NULL); 1181 if (free_pages) 1182 free_async_extent_pages(async_extent); 1183 kfree(async_extent); 1184 return; 1185 1186 out_free_reserve: 1187 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1189 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1190 extent_clear_unlock_delalloc(inode, start, end, 1191 NULL, &cached, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DELALLOC_NEW | 1194 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1195 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1196 PAGE_END_WRITEBACK); 1197 free_async_extent_pages(async_extent); 1198 if (async_chunk->blkcg_css) 1199 kthread_associate_blkcg(NULL); 1200 btrfs_debug(fs_info, 1201 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1202 btrfs_root_id(root), btrfs_ino(inode), start, 1203 async_extent->ram_size, ret); 1204 kfree(async_extent); 1205 } 1206 1207 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1208 u64 num_bytes) 1209 { 1210 struct extent_map_tree *em_tree = &inode->extent_tree; 1211 struct extent_map *em; 1212 u64 alloc_hint = 0; 1213 1214 read_lock(&em_tree->lock); 1215 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1216 if (em) { 1217 /* 1218 * if block start isn't an actual block number then find the 1219 * first block in this inode and use that as a hint. If that 1220 * block is also bogus then just don't worry about it. 1221 */ 1222 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1223 btrfs_free_extent_map(em); 1224 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1225 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1226 alloc_hint = btrfs_extent_map_block_start(em); 1227 if (em) 1228 btrfs_free_extent_map(em); 1229 } else { 1230 alloc_hint = btrfs_extent_map_block_start(em); 1231 btrfs_free_extent_map(em); 1232 } 1233 } 1234 read_unlock(&em_tree->lock); 1235 1236 return alloc_hint; 1237 } 1238 1239 /* 1240 * when extent_io.c finds a delayed allocation range in the file, 1241 * the call backs end up in this code. The basic idea is to 1242 * allocate extents on disk for the range, and create ordered data structs 1243 * in ram to track those extents. 1244 * 1245 * locked_folio is the folio that writepage had locked already. We use 1246 * it to make sure we don't do extra locks or unlocks. 1247 * 1248 * When this function fails, it unlocks all pages except @locked_folio. 1249 * 1250 * When this function successfully creates an inline extent, it returns 1 and 1251 * unlocks all pages including locked_folio and starts I/O on them. 1252 * (In reality inline extents are limited to a single page, so locked_folio is 1253 * the only page handled anyway). 1254 * 1255 * When this function succeed and creates a normal extent, the page locking 1256 * status depends on the passed in flags: 1257 * 1258 * - If @keep_locked is set, all pages are kept locked. 1259 * - Else all pages except for @locked_folio are unlocked. 1260 * 1261 * When a failure happens in the second or later iteration of the 1262 * while-loop, the ordered extents created in previous iterations are cleaned up. 1263 */ 1264 static noinline int cow_file_range(struct btrfs_inode *inode, 1265 struct folio *locked_folio, u64 start, 1266 u64 end, u64 *done_offset, 1267 bool keep_locked, bool no_inline) 1268 { 1269 struct btrfs_root *root = inode->root; 1270 struct btrfs_fs_info *fs_info = root->fs_info; 1271 struct extent_state *cached = NULL; 1272 u64 alloc_hint = 0; 1273 u64 orig_start = start; 1274 u64 num_bytes; 1275 u64 cur_alloc_size = 0; 1276 u64 min_alloc_size; 1277 u64 blocksize = fs_info->sectorsize; 1278 struct btrfs_key ins; 1279 struct extent_map *em; 1280 unsigned clear_bits; 1281 unsigned long page_ops; 1282 int ret = 0; 1283 1284 if (btrfs_is_free_space_inode(inode)) { 1285 ret = -EINVAL; 1286 goto out_unlock; 1287 } 1288 1289 num_bytes = ALIGN(end - start + 1, blocksize); 1290 num_bytes = max(blocksize, num_bytes); 1291 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1292 1293 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1294 1295 if (!no_inline) { 1296 /* lets try to make an inline extent */ 1297 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1298 BTRFS_COMPRESS_NONE, NULL, false); 1299 if (ret <= 0) { 1300 /* 1301 * We succeeded, return 1 so the caller knows we're done 1302 * with this page and already handled the IO. 1303 * 1304 * If there was an error then cow_file_range_inline() has 1305 * already done the cleanup. 1306 */ 1307 if (ret == 0) 1308 ret = 1; 1309 goto done; 1310 } 1311 } 1312 1313 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1314 1315 /* 1316 * We're not doing compressed IO, don't unlock the first page (which 1317 * the caller expects to stay locked), don't clear any dirty bits and 1318 * don't set any writeback bits. 1319 * 1320 * Do set the Ordered (Private2) bit so we know this page was properly 1321 * setup for writepage. 1322 */ 1323 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1324 page_ops |= PAGE_SET_ORDERED; 1325 1326 /* 1327 * Relocation relies on the relocated extents to have exactly the same 1328 * size as the original extents. Normally writeback for relocation data 1329 * extents follows a NOCOW path because relocation preallocates the 1330 * extents. However, due to an operation such as scrub turning a block 1331 * group to RO mode, it may fallback to COW mode, so we must make sure 1332 * an extent allocated during COW has exactly the requested size and can 1333 * not be split into smaller extents, otherwise relocation breaks and 1334 * fails during the stage where it updates the bytenr of file extent 1335 * items. 1336 */ 1337 if (btrfs_is_data_reloc_root(root)) 1338 min_alloc_size = num_bytes; 1339 else 1340 min_alloc_size = fs_info->sectorsize; 1341 1342 while (num_bytes > 0) { 1343 struct btrfs_ordered_extent *ordered; 1344 struct btrfs_file_extent file_extent; 1345 1346 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1347 min_alloc_size, 0, alloc_hint, 1348 &ins, 1, 1); 1349 if (ret == -EAGAIN) { 1350 /* 1351 * btrfs_reserve_extent only returns -EAGAIN for zoned 1352 * file systems, which is an indication that there are 1353 * no active zones to allocate from at the moment. 1354 * 1355 * If this is the first loop iteration, wait for at 1356 * least one zone to finish before retrying the 1357 * allocation. Otherwise ask the caller to write out 1358 * the already allocated blocks before coming back to 1359 * us, or return -ENOSPC if it can't handle retries. 1360 */ 1361 ASSERT(btrfs_is_zoned(fs_info)); 1362 if (start == orig_start) { 1363 wait_on_bit_io(&inode->root->fs_info->flags, 1364 BTRFS_FS_NEED_ZONE_FINISH, 1365 TASK_UNINTERRUPTIBLE); 1366 continue; 1367 } 1368 if (done_offset) { 1369 /* 1370 * Move @end to the end of the processed range, 1371 * and exit the loop to unlock the processed extents. 1372 */ 1373 end = start - 1; 1374 ret = 0; 1375 break; 1376 } 1377 ret = -ENOSPC; 1378 } 1379 if (ret < 0) 1380 goto out_unlock; 1381 cur_alloc_size = ins.offset; 1382 1383 file_extent.disk_bytenr = ins.objectid; 1384 file_extent.disk_num_bytes = ins.offset; 1385 file_extent.num_bytes = ins.offset; 1386 file_extent.ram_bytes = ins.offset; 1387 file_extent.offset = 0; 1388 file_extent.compression = BTRFS_COMPRESS_NONE; 1389 1390 /* 1391 * Locked range will be released either during error clean up or 1392 * after the whole range is finished. 1393 */ 1394 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1395 &cached); 1396 1397 em = btrfs_create_io_em(inode, start, &file_extent, 1398 BTRFS_ORDERED_REGULAR); 1399 if (IS_ERR(em)) { 1400 btrfs_unlock_extent(&inode->io_tree, start, 1401 start + cur_alloc_size - 1, &cached); 1402 ret = PTR_ERR(em); 1403 goto out_reserve; 1404 } 1405 btrfs_free_extent_map(em); 1406 1407 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1408 1U << BTRFS_ORDERED_REGULAR); 1409 if (IS_ERR(ordered)) { 1410 btrfs_unlock_extent(&inode->io_tree, start, 1411 start + cur_alloc_size - 1, &cached); 1412 ret = PTR_ERR(ordered); 1413 goto out_drop_extent_cache; 1414 } 1415 1416 if (btrfs_is_data_reloc_root(root)) { 1417 ret = btrfs_reloc_clone_csums(ordered); 1418 1419 /* 1420 * Only drop cache here, and process as normal. 1421 * 1422 * We must not allow extent_clear_unlock_delalloc() 1423 * at out_unlock label to free meta of this ordered 1424 * extent, as its meta should be freed by 1425 * btrfs_finish_ordered_io(). 1426 * 1427 * So we must continue until @start is increased to 1428 * skip current ordered extent. 1429 */ 1430 if (ret) 1431 btrfs_drop_extent_map_range(inode, start, 1432 start + cur_alloc_size - 1, 1433 false); 1434 } 1435 btrfs_put_ordered_extent(ordered); 1436 1437 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1438 1439 if (num_bytes < cur_alloc_size) 1440 num_bytes = 0; 1441 else 1442 num_bytes -= cur_alloc_size; 1443 alloc_hint = ins.objectid + ins.offset; 1444 start += cur_alloc_size; 1445 cur_alloc_size = 0; 1446 1447 /* 1448 * btrfs_reloc_clone_csums() error, since start is increased 1449 * extent_clear_unlock_delalloc() at out_unlock label won't 1450 * free metadata of current ordered extent, we're OK to exit. 1451 */ 1452 if (ret) 1453 goto out_unlock; 1454 } 1455 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1456 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1457 done: 1458 if (done_offset) 1459 *done_offset = end; 1460 return ret; 1461 1462 out_drop_extent_cache: 1463 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1464 out_reserve: 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1467 out_unlock: 1468 /* 1469 * Now, we have three regions to clean up: 1470 * 1471 * |-------(1)----|---(2)---|-------------(3)----------| 1472 * `- orig_start `- start `- start + cur_alloc_size `- end 1473 * 1474 * We process each region below. 1475 */ 1476 1477 /* 1478 * For the range (1). We have already instantiated the ordered extents 1479 * for this region, thus we need to cleanup those ordered extents. 1480 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1481 * are also handled by the ordered extents cleanup. 1482 * 1483 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1484 * finish the writeback of the involved folios, which will be never submitted. 1485 */ 1486 if (orig_start < start) { 1487 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1488 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1489 1490 if (!locked_folio) 1491 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1492 1493 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1494 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1495 locked_folio, NULL, clear_bits, page_ops); 1496 } 1497 1498 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1499 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1500 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1501 1502 /* 1503 * For the range (2). If we reserved an extent for our delalloc range 1504 * (or a subrange) and failed to create the respective ordered extent, 1505 * then it means that when we reserved the extent we decremented the 1506 * extent's size from the data space_info's bytes_may_use counter and 1507 * incremented the space_info's bytes_reserved counter by the same 1508 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1509 * to decrement again the data space_info's bytes_may_use counter, 1510 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1511 */ 1512 if (cur_alloc_size) { 1513 extent_clear_unlock_delalloc(inode, start, 1514 start + cur_alloc_size - 1, 1515 locked_folio, &cached, clear_bits, 1516 page_ops); 1517 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1518 } 1519 1520 /* 1521 * For the range (3). We never touched the region. In addition to the 1522 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1523 * space_info's bytes_may_use counter, reserved in 1524 * btrfs_check_data_free_space(). 1525 */ 1526 if (start + cur_alloc_size < end) { 1527 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1528 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1529 end, locked_folio, 1530 &cached, clear_bits, page_ops); 1531 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1532 end - start - cur_alloc_size + 1, NULL); 1533 } 1534 btrfs_err_rl(fs_info, 1535 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1536 __func__, btrfs_root_id(inode->root), 1537 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1538 return ret; 1539 } 1540 1541 /* 1542 * Phase two of compressed writeback. This is the ordered portion of the code, 1543 * which only gets called in the order the work was queued. We walk all the 1544 * async extents created by compress_file_range and send them down to the disk. 1545 * 1546 * If called with @do_free == true then it'll try to finish the work and free 1547 * the work struct eventually. 1548 */ 1549 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1550 { 1551 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1552 work); 1553 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1554 struct async_extent *async_extent; 1555 unsigned long nr_pages; 1556 u64 alloc_hint = 0; 1557 1558 if (do_free) { 1559 struct async_cow *async_cow; 1560 1561 btrfs_add_delayed_iput(async_chunk->inode); 1562 if (async_chunk->blkcg_css) 1563 css_put(async_chunk->blkcg_css); 1564 1565 async_cow = async_chunk->async_cow; 1566 if (atomic_dec_and_test(&async_cow->num_chunks)) 1567 kvfree(async_cow); 1568 return; 1569 } 1570 1571 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1572 PAGE_SHIFT; 1573 1574 while (!list_empty(&async_chunk->extents)) { 1575 async_extent = list_first_entry(&async_chunk->extents, 1576 struct async_extent, list); 1577 list_del(&async_extent->list); 1578 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1579 } 1580 1581 /* atomic_sub_return implies a barrier */ 1582 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1583 5 * SZ_1M) 1584 cond_wake_up_nomb(&fs_info->async_submit_wait); 1585 } 1586 1587 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1588 struct folio *locked_folio, u64 start, 1589 u64 end, struct writeback_control *wbc) 1590 { 1591 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1592 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1593 struct async_cow *ctx; 1594 struct async_chunk *async_chunk; 1595 unsigned long nr_pages; 1596 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1597 int i; 1598 unsigned nofs_flag; 1599 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1600 1601 nofs_flag = memalloc_nofs_save(); 1602 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1603 memalloc_nofs_restore(nofs_flag); 1604 if (!ctx) 1605 return false; 1606 1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1608 1609 async_chunk = ctx->chunks; 1610 atomic_set(&ctx->num_chunks, num_chunks); 1611 1612 for (i = 0; i < num_chunks; i++) { 1613 u64 cur_end = min(end, start + SZ_512K - 1); 1614 1615 /* 1616 * igrab is called higher up in the call chain, take only the 1617 * lightweight reference for the callback lifetime 1618 */ 1619 ihold(&inode->vfs_inode); 1620 async_chunk[i].async_cow = ctx; 1621 async_chunk[i].inode = inode; 1622 async_chunk[i].start = start; 1623 async_chunk[i].end = cur_end; 1624 async_chunk[i].write_flags = write_flags; 1625 INIT_LIST_HEAD(&async_chunk[i].extents); 1626 1627 /* 1628 * The locked_folio comes all the way from writepage and its 1629 * the original folio we were actually given. As we spread 1630 * this large delalloc region across multiple async_chunk 1631 * structs, only the first struct needs a pointer to 1632 * locked_folio. 1633 * 1634 * This way we don't need racey decisions about who is supposed 1635 * to unlock it. 1636 */ 1637 if (locked_folio) { 1638 /* 1639 * Depending on the compressibility, the pages might or 1640 * might not go through async. We want all of them to 1641 * be accounted against wbc once. Let's do it here 1642 * before the paths diverge. wbc accounting is used 1643 * only for foreign writeback detection and doesn't 1644 * need full accuracy. Just account the whole thing 1645 * against the first page. 1646 */ 1647 wbc_account_cgroup_owner(wbc, locked_folio, 1648 cur_end - start); 1649 async_chunk[i].locked_folio = locked_folio; 1650 locked_folio = NULL; 1651 } else { 1652 async_chunk[i].locked_folio = NULL; 1653 } 1654 1655 if (blkcg_css != blkcg_root_css) { 1656 css_get(blkcg_css); 1657 async_chunk[i].blkcg_css = blkcg_css; 1658 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1659 } else { 1660 async_chunk[i].blkcg_css = NULL; 1661 } 1662 1663 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1664 submit_compressed_extents); 1665 1666 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1667 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1668 1669 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1670 1671 start = cur_end + 1; 1672 } 1673 return true; 1674 } 1675 1676 /* 1677 * Run the delalloc range from start to end, and write back any dirty pages 1678 * covered by the range. 1679 */ 1680 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1681 struct folio *locked_folio, u64 start, 1682 u64 end, struct writeback_control *wbc, 1683 bool pages_dirty) 1684 { 1685 u64 done_offset = end; 1686 int ret; 1687 1688 while (start <= end) { 1689 ret = cow_file_range(inode, locked_folio, start, end, 1690 &done_offset, true, false); 1691 if (ret) 1692 return ret; 1693 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1694 start, done_offset, wbc, pages_dirty); 1695 start = done_offset + 1; 1696 } 1697 1698 return 1; 1699 } 1700 1701 static int fallback_to_cow(struct btrfs_inode *inode, 1702 struct folio *locked_folio, const u64 start, 1703 const u64 end) 1704 { 1705 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1706 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1707 const u64 range_bytes = end + 1 - start; 1708 struct extent_io_tree *io_tree = &inode->io_tree; 1709 struct extent_state *cached_state = NULL; 1710 u64 range_start = start; 1711 u64 count; 1712 int ret; 1713 1714 /* 1715 * If EXTENT_NORESERVE is set it means that when the buffered write was 1716 * made we had not enough available data space and therefore we did not 1717 * reserve data space for it, since we though we could do NOCOW for the 1718 * respective file range (either there is prealloc extent or the inode 1719 * has the NOCOW bit set). 1720 * 1721 * However when we need to fallback to COW mode (because for example the 1722 * block group for the corresponding extent was turned to RO mode by a 1723 * scrub or relocation) we need to do the following: 1724 * 1725 * 1) We increment the bytes_may_use counter of the data space info. 1726 * If COW succeeds, it allocates a new data extent and after doing 1727 * that it decrements the space info's bytes_may_use counter and 1728 * increments its bytes_reserved counter by the same amount (we do 1729 * this at btrfs_add_reserved_bytes()). So we need to increment the 1730 * bytes_may_use counter to compensate (when space is reserved at 1731 * buffered write time, the bytes_may_use counter is incremented); 1732 * 1733 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1734 * that if the COW path fails for any reason, it decrements (through 1735 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1736 * data space info, which we incremented in the step above. 1737 * 1738 * If we need to fallback to cow and the inode corresponds to a free 1739 * space cache inode or an inode of the data relocation tree, we must 1740 * also increment bytes_may_use of the data space_info for the same 1741 * reason. Space caches and relocated data extents always get a prealloc 1742 * extent for them, however scrub or balance may have set the block 1743 * group that contains that extent to RO mode and therefore force COW 1744 * when starting writeback. 1745 */ 1746 btrfs_lock_extent(io_tree, start, end, &cached_state); 1747 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1748 EXTENT_NORESERVE, 0, NULL); 1749 if (count > 0 || is_space_ino || is_reloc_ino) { 1750 u64 bytes = count; 1751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1752 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1753 1754 if (is_space_ino || is_reloc_ino) 1755 bytes = range_bytes; 1756 1757 spin_lock(&sinfo->lock); 1758 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1759 spin_unlock(&sinfo->lock); 1760 1761 if (count > 0) 1762 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1763 &cached_state); 1764 } 1765 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1766 1767 /* 1768 * Don't try to create inline extents, as a mix of inline extent that 1769 * is written out and unlocked directly and a normal NOCOW extent 1770 * doesn't work. 1771 */ 1772 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1773 true); 1774 ASSERT(ret != 1); 1775 return ret; 1776 } 1777 1778 struct can_nocow_file_extent_args { 1779 /* Input fields. */ 1780 1781 /* Start file offset of the range we want to NOCOW. */ 1782 u64 start; 1783 /* End file offset (inclusive) of the range we want to NOCOW. */ 1784 u64 end; 1785 bool writeback_path; 1786 /* 1787 * Free the path passed to can_nocow_file_extent() once it's not needed 1788 * anymore. 1789 */ 1790 bool free_path; 1791 1792 /* 1793 * Output fields. Only set when can_nocow_file_extent() returns 1. 1794 * The expected file extent for the NOCOW write. 1795 */ 1796 struct btrfs_file_extent file_extent; 1797 }; 1798 1799 /* 1800 * Check if we can NOCOW the file extent that the path points to. 1801 * This function may return with the path released, so the caller should check 1802 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1803 * 1804 * Returns: < 0 on error 1805 * 0 if we can not NOCOW 1806 * 1 if we can NOCOW 1807 */ 1808 static int can_nocow_file_extent(struct btrfs_path *path, 1809 struct btrfs_key *key, 1810 struct btrfs_inode *inode, 1811 struct can_nocow_file_extent_args *args) 1812 { 1813 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1814 struct extent_buffer *leaf = path->nodes[0]; 1815 struct btrfs_root *root = inode->root; 1816 struct btrfs_file_extent_item *fi; 1817 struct btrfs_root *csum_root; 1818 u64 io_start; 1819 u64 extent_end; 1820 u8 extent_type; 1821 int can_nocow = 0; 1822 int ret = 0; 1823 bool nowait = path->nowait; 1824 1825 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1826 extent_type = btrfs_file_extent_type(leaf, fi); 1827 1828 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1829 goto out; 1830 1831 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1832 extent_type == BTRFS_FILE_EXTENT_REG) 1833 goto out; 1834 1835 /* 1836 * If the extent was created before the generation where the last snapshot 1837 * for its subvolume was created, then this implies the extent is shared, 1838 * hence we must COW. 1839 */ 1840 if (btrfs_file_extent_generation(leaf, fi) <= 1841 btrfs_root_last_snapshot(&root->root_item)) 1842 goto out; 1843 1844 /* An explicit hole, must COW. */ 1845 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1846 goto out; 1847 1848 /* Compressed/encrypted/encoded extents must be COWed. */ 1849 if (btrfs_file_extent_compression(leaf, fi) || 1850 btrfs_file_extent_encryption(leaf, fi) || 1851 btrfs_file_extent_other_encoding(leaf, fi)) 1852 goto out; 1853 1854 extent_end = btrfs_file_extent_end(path); 1855 1856 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1857 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1858 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1859 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1860 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1861 1862 /* 1863 * The following checks can be expensive, as they need to take other 1864 * locks and do btree or rbtree searches, so release the path to avoid 1865 * blocking other tasks for too long. 1866 */ 1867 btrfs_release_path(path); 1868 1869 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1870 args->file_extent.disk_bytenr, path); 1871 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1872 if (ret != 0) 1873 goto out; 1874 1875 if (args->free_path) { 1876 /* 1877 * We don't need the path anymore, plus through the 1878 * btrfs_lookup_csums_list() call below we will end up allocating 1879 * another path. So free the path to avoid unnecessary extra 1880 * memory usage. 1881 */ 1882 btrfs_free_path(path); 1883 path = NULL; 1884 } 1885 1886 /* If there are pending snapshots for this root, we must COW. */ 1887 if (args->writeback_path && !is_freespace_inode && 1888 atomic_read(&root->snapshot_force_cow)) 1889 goto out; 1890 1891 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1892 args->file_extent.offset += args->start - key->offset; 1893 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1894 1895 /* 1896 * Force COW if csums exist in the range. This ensures that csums for a 1897 * given extent are either valid or do not exist. 1898 */ 1899 1900 csum_root = btrfs_csum_root(root->fs_info, io_start); 1901 ret = btrfs_lookup_csums_list(csum_root, io_start, 1902 io_start + args->file_extent.num_bytes - 1, 1903 NULL, nowait); 1904 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1905 if (ret != 0) 1906 goto out; 1907 1908 can_nocow = 1; 1909 out: 1910 if (args->free_path && path) 1911 btrfs_free_path(path); 1912 1913 return ret < 0 ? ret : can_nocow; 1914 } 1915 1916 /* 1917 * Cleanup the dirty folios which will never be submitted due to error. 1918 * 1919 * When running a delalloc range, we may need to split the ranges (due to 1920 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1921 * out and previously successfully executed range will never be submitted, thus 1922 * we have to cleanup those folios by clearing their dirty flag, starting and 1923 * finishing the writeback. 1924 */ 1925 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1926 struct folio *locked_folio, 1927 u64 start, u64 end, int error) 1928 { 1929 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1930 struct address_space *mapping = inode->vfs_inode.i_mapping; 1931 pgoff_t start_index = start >> PAGE_SHIFT; 1932 pgoff_t end_index = end >> PAGE_SHIFT; 1933 u32 len; 1934 1935 ASSERT(end + 1 - start < U32_MAX); 1936 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1937 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1938 len = end + 1 - start; 1939 1940 /* 1941 * Handle the locked folio first. 1942 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1943 */ 1944 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1945 1946 for (pgoff_t index = start_index; index <= end_index; index++) { 1947 struct folio *folio; 1948 1949 /* Already handled at the beginning. */ 1950 if (index == locked_folio->index) 1951 continue; 1952 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1953 /* Cache already dropped, no need to do any cleanup. */ 1954 if (IS_ERR(folio)) 1955 continue; 1956 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1957 folio_unlock(folio); 1958 folio_put(folio); 1959 } 1960 mapping_set_error(mapping, error); 1961 } 1962 1963 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1964 struct extent_state **cached, 1965 struct can_nocow_file_extent_args *nocow_args, 1966 u64 file_pos, bool is_prealloc) 1967 { 1968 struct btrfs_ordered_extent *ordered; 1969 u64 len = nocow_args->file_extent.num_bytes; 1970 u64 end = file_pos + len - 1; 1971 int ret = 0; 1972 1973 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1974 1975 if (is_prealloc) { 1976 struct extent_map *em; 1977 1978 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1979 BTRFS_ORDERED_PREALLOC); 1980 if (IS_ERR(em)) { 1981 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1982 return PTR_ERR(em); 1983 } 1984 btrfs_free_extent_map(em); 1985 } 1986 1987 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1988 is_prealloc 1989 ? (1U << BTRFS_ORDERED_PREALLOC) 1990 : (1U << BTRFS_ORDERED_NOCOW)); 1991 if (IS_ERR(ordered)) { 1992 if (is_prealloc) 1993 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1994 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1995 return PTR_ERR(ordered); 1996 } 1997 1998 if (btrfs_is_data_reloc_root(inode->root)) 1999 /* 2000 * Errors are handled later, as we must prevent 2001 * extent_clear_unlock_delalloc() in error handler from freeing 2002 * metadata of the created ordered extent. 2003 */ 2004 ret = btrfs_reloc_clone_csums(ordered); 2005 btrfs_put_ordered_extent(ordered); 2006 2007 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2008 EXTENT_LOCKED | EXTENT_DELALLOC | 2009 EXTENT_CLEAR_DATA_RESV, 2010 PAGE_UNLOCK | PAGE_SET_ORDERED); 2011 /* 2012 * On error, we need to cleanup the ordered extents we created. 2013 * 2014 * We do not clear the folio Dirty flags because they are set and 2015 * cleaered by the caller. 2016 */ 2017 if (ret < 0) 2018 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2019 return ret; 2020 } 2021 2022 /* 2023 * when nowcow writeback call back. This checks for snapshots or COW copies 2024 * of the extents that exist in the file, and COWs the file as required. 2025 * 2026 * If no cow copies or snapshots exist, we write directly to the existing 2027 * blocks on disk 2028 */ 2029 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2030 struct folio *locked_folio, 2031 const u64 start, const u64 end) 2032 { 2033 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2034 struct btrfs_root *root = inode->root; 2035 struct btrfs_path *path; 2036 u64 cow_start = (u64)-1; 2037 /* 2038 * If not 0, represents the inclusive end of the last fallback_to_cow() 2039 * range. Only for error handling. 2040 */ 2041 u64 cow_end = 0; 2042 u64 cur_offset = start; 2043 int ret; 2044 bool check_prev = true; 2045 u64 ino = btrfs_ino(inode); 2046 struct can_nocow_file_extent_args nocow_args = { 0 }; 2047 2048 /* 2049 * Normally on a zoned device we're only doing COW writes, but in case 2050 * of relocation on a zoned filesystem serializes I/O so that we're only 2051 * writing sequentially and can end up here as well. 2052 */ 2053 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2054 2055 path = btrfs_alloc_path(); 2056 if (!path) { 2057 ret = -ENOMEM; 2058 goto error; 2059 } 2060 2061 nocow_args.end = end; 2062 nocow_args.writeback_path = true; 2063 2064 while (cur_offset <= end) { 2065 struct btrfs_block_group *nocow_bg = NULL; 2066 struct btrfs_key found_key; 2067 struct btrfs_file_extent_item *fi; 2068 struct extent_buffer *leaf; 2069 struct extent_state *cached_state = NULL; 2070 u64 extent_end; 2071 int extent_type; 2072 2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2074 cur_offset, 0); 2075 if (ret < 0) 2076 goto error; 2077 2078 /* 2079 * If there is no extent for our range when doing the initial 2080 * search, then go back to the previous slot as it will be the 2081 * one containing the search offset 2082 */ 2083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2084 leaf = path->nodes[0]; 2085 btrfs_item_key_to_cpu(leaf, &found_key, 2086 path->slots[0] - 1); 2087 if (found_key.objectid == ino && 2088 found_key.type == BTRFS_EXTENT_DATA_KEY) 2089 path->slots[0]--; 2090 } 2091 check_prev = false; 2092 next_slot: 2093 /* Go to next leaf if we have exhausted the current one */ 2094 leaf = path->nodes[0]; 2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2096 ret = btrfs_next_leaf(root, path); 2097 if (ret < 0) 2098 goto error; 2099 if (ret > 0) 2100 break; 2101 leaf = path->nodes[0]; 2102 } 2103 2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2105 2106 /* Didn't find anything for our INO */ 2107 if (found_key.objectid > ino) 2108 break; 2109 /* 2110 * Keep searching until we find an EXTENT_ITEM or there are no 2111 * more extents for this inode 2112 */ 2113 if (WARN_ON_ONCE(found_key.objectid < ino) || 2114 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2121 found_key.offset > end) 2122 break; 2123 2124 /* 2125 * If the found extent starts after requested offset, then 2126 * adjust cur_offset to be right before this extent begins. 2127 */ 2128 if (found_key.offset > cur_offset) { 2129 if (cow_start == (u64)-1) 2130 cow_start = cur_offset; 2131 cur_offset = found_key.offset; 2132 goto next_slot; 2133 } 2134 2135 /* 2136 * Found extent which begins before our range and potentially 2137 * intersect it 2138 */ 2139 fi = btrfs_item_ptr(leaf, path->slots[0], 2140 struct btrfs_file_extent_item); 2141 extent_type = btrfs_file_extent_type(leaf, fi); 2142 /* If this is triggered then we have a memory corruption. */ 2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2145 ret = -EUCLEAN; 2146 goto error; 2147 } 2148 extent_end = btrfs_file_extent_end(path); 2149 2150 /* 2151 * If the extent we got ends before our current offset, skip to 2152 * the next extent. 2153 */ 2154 if (extent_end <= cur_offset) { 2155 path->slots[0]++; 2156 goto next_slot; 2157 } 2158 2159 nocow_args.start = cur_offset; 2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2161 if (ret < 0) 2162 goto error; 2163 if (ret == 0) 2164 goto must_cow; 2165 2166 ret = 0; 2167 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2168 nocow_args.file_extent.disk_bytenr + 2169 nocow_args.file_extent.offset); 2170 if (!nocow_bg) { 2171 must_cow: 2172 /* 2173 * If we can't perform NOCOW writeback for the range, 2174 * then record the beginning of the range that needs to 2175 * be COWed. It will be written out before the next 2176 * NOCOW range if we find one, or when exiting this 2177 * loop. 2178 */ 2179 if (cow_start == (u64)-1) 2180 cow_start = cur_offset; 2181 cur_offset = extent_end; 2182 if (cur_offset > end) 2183 break; 2184 if (!path->nodes[0]) 2185 continue; 2186 path->slots[0]++; 2187 goto next_slot; 2188 } 2189 2190 /* 2191 * COW range from cow_start to found_key.offset - 1. As the key 2192 * will contain the beginning of the first extent that can be 2193 * NOCOW, following one which needs to be COW'ed 2194 */ 2195 if (cow_start != (u64)-1) { 2196 ret = fallback_to_cow(inode, locked_folio, cow_start, 2197 found_key.offset - 1); 2198 if (ret) { 2199 cow_end = found_key.offset - 1; 2200 btrfs_dec_nocow_writers(nocow_bg); 2201 goto error; 2202 } 2203 cow_start = (u64)-1; 2204 } 2205 2206 ret = nocow_one_range(inode, locked_folio, &cached_state, 2207 &nocow_args, cur_offset, 2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (ret < 0) 2211 goto error; 2212 cur_offset = extent_end; 2213 } 2214 btrfs_release_path(path); 2215 2216 if (cur_offset <= end && cow_start == (u64)-1) 2217 cow_start = cur_offset; 2218 2219 if (cow_start != (u64)-1) { 2220 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2221 if (ret) { 2222 cow_end = end; 2223 goto error; 2224 } 2225 cow_start = (u64)-1; 2226 } 2227 2228 btrfs_free_path(path); 2229 return 0; 2230 2231 error: 2232 /* 2233 * There are several error cases: 2234 * 2235 * 1) Failed without falling back to COW 2236 * start cur_offset end 2237 * |/////////////| | 2238 * 2239 * In this case, cow_start should be (u64)-1. 2240 * 2241 * For range [start, cur_offset) the folios are already unlocked (except 2242 * @locked_folio), EXTENT_DELALLOC already removed. 2243 * Need to clear the dirty flags and finish the ordered extents. 2244 * 2245 * 2) Failed with error before calling fallback_to_cow() 2246 * 2247 * start cow_start end 2248 * |/////////////| | 2249 * 2250 * In this case, only @cow_start is set, @cur_offset is between 2251 * [cow_start, end) 2252 * 2253 * It's mostly the same as case 1), just replace @cur_offset with 2254 * @cow_start. 2255 * 2256 * 3) Failed with error from fallback_to_cow() 2257 * 2258 * start cow_start cow_end end 2259 * |/////////////|-----------| | 2260 * 2261 * In this case, both @cow_start and @cow_end is set. 2262 * 2263 * For range [start, cow_start) it's the same as case 1). 2264 * But for range [cow_start, cow_end), all the cleanup is handled by 2265 * cow_file_range(), we should not touch anything in that range. 2266 * 2267 * So for all above cases, if @cow_start is set, cleanup ordered extents 2268 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2269 */ 2270 if (cow_start != (u64)-1) 2271 cur_offset = cow_start; 2272 2273 if (cur_offset > start) { 2274 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2275 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2276 } 2277 2278 /* 2279 * If an error happened while a COW region is outstanding, cur_offset 2280 * needs to be reset to @cow_end + 1 to skip the COW range, as 2281 * cow_file_range() will do the proper cleanup at error. 2282 */ 2283 if (cow_end) 2284 cur_offset = cow_end + 1; 2285 2286 /* 2287 * We need to lock the extent here because we're clearing DELALLOC and 2288 * we're not locked at this point. 2289 */ 2290 if (cur_offset < end) { 2291 struct extent_state *cached = NULL; 2292 2293 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached); 2294 extent_clear_unlock_delalloc(inode, cur_offset, end, 2295 locked_folio, &cached, 2296 EXTENT_LOCKED | EXTENT_DELALLOC | 2297 EXTENT_DEFRAG | 2298 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2299 PAGE_START_WRITEBACK | 2300 PAGE_END_WRITEBACK); 2301 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2302 } 2303 btrfs_free_path(path); 2304 btrfs_err_rl(fs_info, 2305 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2306 __func__, btrfs_root_id(inode->root), 2307 btrfs_ino(inode), start, end + 1 - start, ret); 2308 return ret; 2309 } 2310 2311 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2312 { 2313 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2314 if (inode->defrag_bytes && 2315 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2316 return false; 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /* 2323 * Function to process delayed allocation (create CoW) for ranges which are 2324 * being touched for the first time. 2325 */ 2326 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2327 u64 start, u64 end, struct writeback_control *wbc) 2328 { 2329 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2330 int ret; 2331 2332 /* 2333 * The range must cover part of the @locked_folio, or a return of 1 2334 * can confuse the caller. 2335 */ 2336 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2337 2338 if (should_nocow(inode, start, end)) { 2339 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2340 return ret; 2341 } 2342 2343 if (btrfs_inode_can_compress(inode) && 2344 inode_need_compress(inode, start, end) && 2345 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2346 return 1; 2347 2348 if (zoned) 2349 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2350 true); 2351 else 2352 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2353 false, false); 2354 return ret; 2355 } 2356 2357 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2358 struct extent_state *orig, u64 split) 2359 { 2360 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2361 u64 size; 2362 2363 lockdep_assert_held(&inode->io_tree.lock); 2364 2365 /* not delalloc, ignore it */ 2366 if (!(orig->state & EXTENT_DELALLOC)) 2367 return; 2368 2369 size = orig->end - orig->start + 1; 2370 if (size > fs_info->max_extent_size) { 2371 u32 num_extents; 2372 u64 new_size; 2373 2374 /* 2375 * See the explanation in btrfs_merge_delalloc_extent, the same 2376 * applies here, just in reverse. 2377 */ 2378 new_size = orig->end - split + 1; 2379 num_extents = count_max_extents(fs_info, new_size); 2380 new_size = split - orig->start; 2381 num_extents += count_max_extents(fs_info, new_size); 2382 if (count_max_extents(fs_info, size) >= num_extents) 2383 return; 2384 } 2385 2386 spin_lock(&inode->lock); 2387 btrfs_mod_outstanding_extents(inode, 1); 2388 spin_unlock(&inode->lock); 2389 } 2390 2391 /* 2392 * Handle merged delayed allocation extents so we can keep track of new extents 2393 * that are just merged onto old extents, such as when we are doing sequential 2394 * writes, so we can properly account for the metadata space we'll need. 2395 */ 2396 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2397 struct extent_state *other) 2398 { 2399 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2400 u64 new_size, old_size; 2401 u32 num_extents; 2402 2403 lockdep_assert_held(&inode->io_tree.lock); 2404 2405 /* not delalloc, ignore it */ 2406 if (!(other->state & EXTENT_DELALLOC)) 2407 return; 2408 2409 if (new->start > other->start) 2410 new_size = new->end - other->start + 1; 2411 else 2412 new_size = other->end - new->start + 1; 2413 2414 /* we're not bigger than the max, unreserve the space and go */ 2415 if (new_size <= fs_info->max_extent_size) { 2416 spin_lock(&inode->lock); 2417 btrfs_mod_outstanding_extents(inode, -1); 2418 spin_unlock(&inode->lock); 2419 return; 2420 } 2421 2422 /* 2423 * We have to add up either side to figure out how many extents were 2424 * accounted for before we merged into one big extent. If the number of 2425 * extents we accounted for is <= the amount we need for the new range 2426 * then we can return, otherwise drop. Think of it like this 2427 * 2428 * [ 4k][MAX_SIZE] 2429 * 2430 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2431 * need 2 outstanding extents, on one side we have 1 and the other side 2432 * we have 1 so they are == and we can return. But in this case 2433 * 2434 * [MAX_SIZE+4k][MAX_SIZE+4k] 2435 * 2436 * Each range on their own accounts for 2 extents, but merged together 2437 * they are only 3 extents worth of accounting, so we need to drop in 2438 * this case. 2439 */ 2440 old_size = other->end - other->start + 1; 2441 num_extents = count_max_extents(fs_info, old_size); 2442 old_size = new->end - new->start + 1; 2443 num_extents += count_max_extents(fs_info, old_size); 2444 if (count_max_extents(fs_info, new_size) >= num_extents) 2445 return; 2446 2447 spin_lock(&inode->lock); 2448 btrfs_mod_outstanding_extents(inode, -1); 2449 spin_unlock(&inode->lock); 2450 } 2451 2452 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2453 { 2454 struct btrfs_root *root = inode->root; 2455 struct btrfs_fs_info *fs_info = root->fs_info; 2456 2457 spin_lock(&root->delalloc_lock); 2458 ASSERT(list_empty(&inode->delalloc_inodes)); 2459 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2460 root->nr_delalloc_inodes++; 2461 if (root->nr_delalloc_inodes == 1) { 2462 spin_lock(&fs_info->delalloc_root_lock); 2463 ASSERT(list_empty(&root->delalloc_root)); 2464 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2465 spin_unlock(&fs_info->delalloc_root_lock); 2466 } 2467 spin_unlock(&root->delalloc_lock); 2468 } 2469 2470 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2471 { 2472 struct btrfs_root *root = inode->root; 2473 struct btrfs_fs_info *fs_info = root->fs_info; 2474 2475 lockdep_assert_held(&root->delalloc_lock); 2476 2477 /* 2478 * We may be called after the inode was already deleted from the list, 2479 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2480 * and then later through btrfs_clear_delalloc_extent() while the inode 2481 * still has ->delalloc_bytes > 0. 2482 */ 2483 if (!list_empty(&inode->delalloc_inodes)) { 2484 list_del_init(&inode->delalloc_inodes); 2485 root->nr_delalloc_inodes--; 2486 if (!root->nr_delalloc_inodes) { 2487 ASSERT(list_empty(&root->delalloc_inodes)); 2488 spin_lock(&fs_info->delalloc_root_lock); 2489 ASSERT(!list_empty(&root->delalloc_root)); 2490 list_del_init(&root->delalloc_root); 2491 spin_unlock(&fs_info->delalloc_root_lock); 2492 } 2493 } 2494 } 2495 2496 /* 2497 * Properly track delayed allocation bytes in the inode and to maintain the 2498 * list of inodes that have pending delalloc work to be done. 2499 */ 2500 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2501 u32 bits) 2502 { 2503 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2504 2505 lockdep_assert_held(&inode->io_tree.lock); 2506 2507 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2508 WARN_ON(1); 2509 /* 2510 * set_bit and clear bit hooks normally require _irqsave/restore 2511 * but in this case, we are only testing for the DELALLOC 2512 * bit, which is only set or cleared with irqs on 2513 */ 2514 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2515 u64 len = state->end + 1 - state->start; 2516 u64 prev_delalloc_bytes; 2517 u32 num_extents = count_max_extents(fs_info, len); 2518 2519 spin_lock(&inode->lock); 2520 btrfs_mod_outstanding_extents(inode, num_extents); 2521 spin_unlock(&inode->lock); 2522 2523 /* For sanity tests */ 2524 if (btrfs_is_testing(fs_info)) 2525 return; 2526 2527 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2528 fs_info->delalloc_batch); 2529 spin_lock(&inode->lock); 2530 prev_delalloc_bytes = inode->delalloc_bytes; 2531 inode->delalloc_bytes += len; 2532 if (bits & EXTENT_DEFRAG) 2533 inode->defrag_bytes += len; 2534 spin_unlock(&inode->lock); 2535 2536 /* 2537 * We don't need to be under the protection of the inode's lock, 2538 * because we are called while holding the inode's io_tree lock 2539 * and are therefore protected against concurrent calls of this 2540 * function and btrfs_clear_delalloc_extent(). 2541 */ 2542 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2543 btrfs_add_delalloc_inode(inode); 2544 } 2545 2546 if (!(state->state & EXTENT_DELALLOC_NEW) && 2547 (bits & EXTENT_DELALLOC_NEW)) { 2548 spin_lock(&inode->lock); 2549 inode->new_delalloc_bytes += state->end + 1 - state->start; 2550 spin_unlock(&inode->lock); 2551 } 2552 } 2553 2554 /* 2555 * Once a range is no longer delalloc this function ensures that proper 2556 * accounting happens. 2557 */ 2558 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2559 struct extent_state *state, u32 bits) 2560 { 2561 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2562 u64 len = state->end + 1 - state->start; 2563 u32 num_extents = count_max_extents(fs_info, len); 2564 2565 lockdep_assert_held(&inode->io_tree.lock); 2566 2567 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2568 spin_lock(&inode->lock); 2569 inode->defrag_bytes -= len; 2570 spin_unlock(&inode->lock); 2571 } 2572 2573 /* 2574 * set_bit and clear bit hooks normally require _irqsave/restore 2575 * but in this case, we are only testing for the DELALLOC 2576 * bit, which is only set or cleared with irqs on 2577 */ 2578 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2579 struct btrfs_root *root = inode->root; 2580 u64 new_delalloc_bytes; 2581 2582 spin_lock(&inode->lock); 2583 btrfs_mod_outstanding_extents(inode, -num_extents); 2584 spin_unlock(&inode->lock); 2585 2586 /* 2587 * We don't reserve metadata space for space cache inodes so we 2588 * don't need to call delalloc_release_metadata if there is an 2589 * error. 2590 */ 2591 if (bits & EXTENT_CLEAR_META_RESV && 2592 root != fs_info->tree_root) 2593 btrfs_delalloc_release_metadata(inode, len, true); 2594 2595 /* For sanity tests. */ 2596 if (btrfs_is_testing(fs_info)) 2597 return; 2598 2599 if (!btrfs_is_data_reloc_root(root) && 2600 !btrfs_is_free_space_inode(inode) && 2601 !(state->state & EXTENT_NORESERVE) && 2602 (bits & EXTENT_CLEAR_DATA_RESV)) 2603 btrfs_free_reserved_data_space_noquota(inode, len); 2604 2605 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2606 fs_info->delalloc_batch); 2607 spin_lock(&inode->lock); 2608 inode->delalloc_bytes -= len; 2609 new_delalloc_bytes = inode->delalloc_bytes; 2610 spin_unlock(&inode->lock); 2611 2612 /* 2613 * We don't need to be under the protection of the inode's lock, 2614 * because we are called while holding the inode's io_tree lock 2615 * and are therefore protected against concurrent calls of this 2616 * function and btrfs_set_delalloc_extent(). 2617 */ 2618 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2619 spin_lock(&root->delalloc_lock); 2620 btrfs_del_delalloc_inode(inode); 2621 spin_unlock(&root->delalloc_lock); 2622 } 2623 } 2624 2625 if ((state->state & EXTENT_DELALLOC_NEW) && 2626 (bits & EXTENT_DELALLOC_NEW)) { 2627 spin_lock(&inode->lock); 2628 ASSERT(inode->new_delalloc_bytes >= len); 2629 inode->new_delalloc_bytes -= len; 2630 if (bits & EXTENT_ADD_INODE_BYTES) 2631 inode_add_bytes(&inode->vfs_inode, len); 2632 spin_unlock(&inode->lock); 2633 } 2634 } 2635 2636 /* 2637 * given a list of ordered sums record them in the inode. This happens 2638 * at IO completion time based on sums calculated at bio submission time. 2639 */ 2640 static int add_pending_csums(struct btrfs_trans_handle *trans, 2641 struct list_head *list) 2642 { 2643 struct btrfs_ordered_sum *sum; 2644 struct btrfs_root *csum_root = NULL; 2645 int ret; 2646 2647 list_for_each_entry(sum, list, list) { 2648 trans->adding_csums = true; 2649 if (!csum_root) 2650 csum_root = btrfs_csum_root(trans->fs_info, 2651 sum->logical); 2652 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2653 trans->adding_csums = false; 2654 if (ret) 2655 return ret; 2656 } 2657 return 0; 2658 } 2659 2660 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2661 const u64 start, 2662 const u64 len, 2663 struct extent_state **cached_state) 2664 { 2665 u64 search_start = start; 2666 const u64 end = start + len - 1; 2667 2668 while (search_start < end) { 2669 const u64 search_len = end - search_start + 1; 2670 struct extent_map *em; 2671 u64 em_len; 2672 int ret = 0; 2673 2674 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2675 if (IS_ERR(em)) 2676 return PTR_ERR(em); 2677 2678 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2679 goto next; 2680 2681 em_len = em->len; 2682 if (em->start < search_start) 2683 em_len -= search_start - em->start; 2684 if (em_len > search_len) 2685 em_len = search_len; 2686 2687 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2688 search_start + em_len - 1, 2689 EXTENT_DELALLOC_NEW, cached_state); 2690 next: 2691 search_start = btrfs_extent_map_end(em); 2692 btrfs_free_extent_map(em); 2693 if (ret) 2694 return ret; 2695 } 2696 return 0; 2697 } 2698 2699 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2700 unsigned int extra_bits, 2701 struct extent_state **cached_state) 2702 { 2703 WARN_ON(PAGE_ALIGNED(end)); 2704 2705 if (start >= i_size_read(&inode->vfs_inode) && 2706 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2707 /* 2708 * There can't be any extents following eof in this case so just 2709 * set the delalloc new bit for the range directly. 2710 */ 2711 extra_bits |= EXTENT_DELALLOC_NEW; 2712 } else { 2713 int ret; 2714 2715 ret = btrfs_find_new_delalloc_bytes(inode, start, 2716 end + 1 - start, 2717 cached_state); 2718 if (ret) 2719 return ret; 2720 } 2721 2722 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2723 EXTENT_DELALLOC | extra_bits, cached_state); 2724 } 2725 2726 /* see btrfs_writepage_start_hook for details on why this is required */ 2727 struct btrfs_writepage_fixup { 2728 struct folio *folio; 2729 struct btrfs_inode *inode; 2730 struct btrfs_work work; 2731 }; 2732 2733 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2734 { 2735 struct btrfs_writepage_fixup *fixup = 2736 container_of(work, struct btrfs_writepage_fixup, work); 2737 struct btrfs_ordered_extent *ordered; 2738 struct extent_state *cached_state = NULL; 2739 struct extent_changeset *data_reserved = NULL; 2740 struct folio *folio = fixup->folio; 2741 struct btrfs_inode *inode = fixup->inode; 2742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2743 u64 page_start = folio_pos(folio); 2744 u64 page_end = folio_end(folio) - 1; 2745 int ret = 0; 2746 bool free_delalloc_space = true; 2747 2748 /* 2749 * This is similar to page_mkwrite, we need to reserve the space before 2750 * we take the folio lock. 2751 */ 2752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2753 folio_size(folio)); 2754 again: 2755 folio_lock(folio); 2756 2757 /* 2758 * Before we queued this fixup, we took a reference on the folio. 2759 * folio->mapping may go NULL, but it shouldn't be moved to a different 2760 * address space. 2761 */ 2762 if (!folio->mapping || !folio_test_dirty(folio) || 2763 !folio_test_checked(folio)) { 2764 /* 2765 * Unfortunately this is a little tricky, either 2766 * 2767 * 1) We got here and our folio had already been dealt with and 2768 * we reserved our space, thus ret == 0, so we need to just 2769 * drop our space reservation and bail. This can happen the 2770 * first time we come into the fixup worker, or could happen 2771 * while waiting for the ordered extent. 2772 * 2) Our folio was already dealt with, but we happened to get an 2773 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2774 * this case we obviously don't have anything to release, but 2775 * because the folio was already dealt with we don't want to 2776 * mark the folio with an error, so make sure we're resetting 2777 * ret to 0. This is why we have this check _before_ the ret 2778 * check, because we do not want to have a surprise ENOSPC 2779 * when the folio was already properly dealt with. 2780 */ 2781 if (!ret) { 2782 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2783 btrfs_delalloc_release_space(inode, data_reserved, 2784 page_start, folio_size(folio), 2785 true); 2786 } 2787 ret = 0; 2788 goto out_page; 2789 } 2790 2791 /* 2792 * We can't mess with the folio state unless it is locked, so now that 2793 * it is locked bail if we failed to make our space reservation. 2794 */ 2795 if (ret) 2796 goto out_page; 2797 2798 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2799 2800 /* already ordered? We're done */ 2801 if (folio_test_ordered(folio)) 2802 goto out_reserved; 2803 2804 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2805 if (ordered) { 2806 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2807 &cached_state); 2808 folio_unlock(folio); 2809 btrfs_start_ordered_extent(ordered); 2810 btrfs_put_ordered_extent(ordered); 2811 goto again; 2812 } 2813 2814 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2815 &cached_state); 2816 if (ret) 2817 goto out_reserved; 2818 2819 /* 2820 * Everything went as planned, we're now the owner of a dirty page with 2821 * delayed allocation bits set and space reserved for our COW 2822 * destination. 2823 * 2824 * The page was dirty when we started, nothing should have cleaned it. 2825 */ 2826 BUG_ON(!folio_test_dirty(folio)); 2827 free_delalloc_space = false; 2828 out_reserved: 2829 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2830 if (free_delalloc_space) 2831 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2832 PAGE_SIZE, true); 2833 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2834 out_page: 2835 if (ret) { 2836 /* 2837 * We hit ENOSPC or other errors. Update the mapping and page 2838 * to reflect the errors and clean the page. 2839 */ 2840 mapping_set_error(folio->mapping, ret); 2841 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2842 folio_size(folio), !ret); 2843 folio_clear_dirty_for_io(folio); 2844 } 2845 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2846 folio_unlock(folio); 2847 folio_put(folio); 2848 kfree(fixup); 2849 extent_changeset_free(data_reserved); 2850 /* 2851 * As a precaution, do a delayed iput in case it would be the last iput 2852 * that could need flushing space. Recursing back to fixup worker would 2853 * deadlock. 2854 */ 2855 btrfs_add_delayed_iput(inode); 2856 } 2857 2858 /* 2859 * There are a few paths in the higher layers of the kernel that directly 2860 * set the folio dirty bit without asking the filesystem if it is a 2861 * good idea. This causes problems because we want to make sure COW 2862 * properly happens and the data=ordered rules are followed. 2863 * 2864 * In our case any range that doesn't have the ORDERED bit set 2865 * hasn't been properly setup for IO. We kick off an async process 2866 * to fix it up. The async helper will wait for ordered extents, set 2867 * the delalloc bit and make it safe to write the folio. 2868 */ 2869 int btrfs_writepage_cow_fixup(struct folio *folio) 2870 { 2871 struct inode *inode = folio->mapping->host; 2872 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2873 struct btrfs_writepage_fixup *fixup; 2874 2875 /* This folio has ordered extent covering it already */ 2876 if (folio_test_ordered(folio)) 2877 return 0; 2878 2879 /* 2880 * For experimental build, we error out instead of EAGAIN. 2881 * 2882 * We should not hit such out-of-band dirty folios anymore. 2883 */ 2884 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2885 DEBUG_WARN(); 2886 btrfs_err_rl(fs_info, 2887 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2888 btrfs_root_id(BTRFS_I(inode)->root), 2889 btrfs_ino(BTRFS_I(inode)), 2890 folio_pos(folio)); 2891 return -EUCLEAN; 2892 } 2893 2894 /* 2895 * folio_checked is set below when we create a fixup worker for this 2896 * folio, don't try to create another one if we're already 2897 * folio_test_checked. 2898 * 2899 * The extent_io writepage code will redirty the foio if we send back 2900 * EAGAIN. 2901 */ 2902 if (folio_test_checked(folio)) 2903 return -EAGAIN; 2904 2905 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2906 if (!fixup) 2907 return -EAGAIN; 2908 2909 /* 2910 * We are already holding a reference to this inode from 2911 * write_cache_pages. We need to hold it because the space reservation 2912 * takes place outside of the folio lock, and we can't trust 2913 * folio->mapping outside of the folio lock. 2914 */ 2915 ihold(inode); 2916 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2917 folio_get(folio); 2918 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2919 fixup->folio = folio; 2920 fixup->inode = BTRFS_I(inode); 2921 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2922 2923 return -EAGAIN; 2924 } 2925 2926 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2927 struct btrfs_inode *inode, u64 file_pos, 2928 struct btrfs_file_extent_item *stack_fi, 2929 const bool update_inode_bytes, 2930 u64 qgroup_reserved) 2931 { 2932 struct btrfs_root *root = inode->root; 2933 const u64 sectorsize = root->fs_info->sectorsize; 2934 BTRFS_PATH_AUTO_FREE(path); 2935 struct extent_buffer *leaf; 2936 struct btrfs_key ins; 2937 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2938 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2939 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2940 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2941 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2942 struct btrfs_drop_extents_args drop_args = { 0 }; 2943 int ret; 2944 2945 path = btrfs_alloc_path(); 2946 if (!path) 2947 return -ENOMEM; 2948 2949 /* 2950 * we may be replacing one extent in the tree with another. 2951 * The new extent is pinned in the extent map, and we don't want 2952 * to drop it from the cache until it is completely in the btree. 2953 * 2954 * So, tell btrfs_drop_extents to leave this extent in the cache. 2955 * the caller is expected to unpin it and allow it to be merged 2956 * with the others. 2957 */ 2958 drop_args.path = path; 2959 drop_args.start = file_pos; 2960 drop_args.end = file_pos + num_bytes; 2961 drop_args.replace_extent = true; 2962 drop_args.extent_item_size = sizeof(*stack_fi); 2963 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2964 if (ret) 2965 goto out; 2966 2967 if (!drop_args.extent_inserted) { 2968 ins.objectid = btrfs_ino(inode); 2969 ins.type = BTRFS_EXTENT_DATA_KEY; 2970 ins.offset = file_pos; 2971 2972 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2973 sizeof(*stack_fi)); 2974 if (ret) 2975 goto out; 2976 } 2977 leaf = path->nodes[0]; 2978 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2979 write_extent_buffer(leaf, stack_fi, 2980 btrfs_item_ptr_offset(leaf, path->slots[0]), 2981 sizeof(struct btrfs_file_extent_item)); 2982 2983 btrfs_release_path(path); 2984 2985 /* 2986 * If we dropped an inline extent here, we know the range where it is 2987 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2988 * number of bytes only for that range containing the inline extent. 2989 * The remaining of the range will be processed when clearning the 2990 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2991 */ 2992 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2993 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2994 2995 inline_size = drop_args.bytes_found - inline_size; 2996 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2997 drop_args.bytes_found -= inline_size; 2998 num_bytes -= sectorsize; 2999 } 3000 3001 if (update_inode_bytes) 3002 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3003 3004 ins.objectid = disk_bytenr; 3005 ins.type = BTRFS_EXTENT_ITEM_KEY; 3006 ins.offset = disk_num_bytes; 3007 3008 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3009 if (ret) 3010 goto out; 3011 3012 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3013 file_pos - offset, 3014 qgroup_reserved, &ins); 3015 out: 3016 return ret; 3017 } 3018 3019 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3020 u64 start, u64 len) 3021 { 3022 struct btrfs_block_group *cache; 3023 3024 cache = btrfs_lookup_block_group(fs_info, start); 3025 ASSERT(cache); 3026 3027 spin_lock(&cache->lock); 3028 cache->delalloc_bytes -= len; 3029 spin_unlock(&cache->lock); 3030 3031 btrfs_put_block_group(cache); 3032 } 3033 3034 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3035 struct btrfs_ordered_extent *oe) 3036 { 3037 struct btrfs_file_extent_item stack_fi; 3038 bool update_inode_bytes; 3039 u64 num_bytes = oe->num_bytes; 3040 u64 ram_bytes = oe->ram_bytes; 3041 3042 memset(&stack_fi, 0, sizeof(stack_fi)); 3043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3046 oe->disk_num_bytes); 3047 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3048 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3049 num_bytes = oe->truncated_len; 3050 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3051 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3052 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3053 /* Encryption and other encoding is reserved and all 0 */ 3054 3055 /* 3056 * For delalloc, when completing an ordered extent we update the inode's 3057 * bytes when clearing the range in the inode's io tree, so pass false 3058 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3059 * except if the ordered extent was truncated. 3060 */ 3061 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3062 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3063 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3064 3065 return insert_reserved_file_extent(trans, oe->inode, 3066 oe->file_offset, &stack_fi, 3067 update_inode_bytes, oe->qgroup_rsv); 3068 } 3069 3070 /* 3071 * As ordered data IO finishes, this gets called so we can finish 3072 * an ordered extent if the range of bytes in the file it covers are 3073 * fully written. 3074 */ 3075 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3076 { 3077 struct btrfs_inode *inode = ordered_extent->inode; 3078 struct btrfs_root *root = inode->root; 3079 struct btrfs_fs_info *fs_info = root->fs_info; 3080 struct btrfs_trans_handle *trans = NULL; 3081 struct extent_io_tree *io_tree = &inode->io_tree; 3082 struct extent_state *cached_state = NULL; 3083 u64 start, end; 3084 int compress_type = 0; 3085 int ret = 0; 3086 u64 logical_len = ordered_extent->num_bytes; 3087 bool freespace_inode; 3088 bool truncated = false; 3089 bool clear_reserved_extent = true; 3090 unsigned int clear_bits = EXTENT_DEFRAG; 3091 3092 start = ordered_extent->file_offset; 3093 end = start + ordered_extent->num_bytes - 1; 3094 3095 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3096 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3097 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3098 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3099 clear_bits |= EXTENT_DELALLOC_NEW; 3100 3101 freespace_inode = btrfs_is_free_space_inode(inode); 3102 if (!freespace_inode) 3103 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3104 3105 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3106 ret = -EIO; 3107 goto out; 3108 } 3109 3110 if (btrfs_is_zoned(fs_info)) 3111 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3112 ordered_extent->disk_num_bytes); 3113 3114 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3115 truncated = true; 3116 logical_len = ordered_extent->truncated_len; 3117 /* Truncated the entire extent, don't bother adding */ 3118 if (!logical_len) 3119 goto out; 3120 } 3121 3122 /* 3123 * If it's a COW write we need to lock the extent range as we will be 3124 * inserting/replacing file extent items and unpinning an extent map. 3125 * This must be taken before joining a transaction, as it's a higher 3126 * level lock (like the inode's VFS lock), otherwise we can run into an 3127 * ABBA deadlock with other tasks (transactions work like a lock, 3128 * depending on their current state). 3129 */ 3130 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3131 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3132 btrfs_lock_extent_bits(io_tree, start, end, 3133 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3134 &cached_state); 3135 } 3136 3137 if (freespace_inode) 3138 trans = btrfs_join_transaction_spacecache(root); 3139 else 3140 trans = btrfs_join_transaction(root); 3141 if (IS_ERR(trans)) { 3142 ret = PTR_ERR(trans); 3143 trans = NULL; 3144 goto out; 3145 } 3146 3147 trans->block_rsv = &inode->block_rsv; 3148 3149 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3150 if (ret) { 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3156 /* Logic error */ 3157 ASSERT(list_empty(&ordered_extent->list)); 3158 if (!list_empty(&ordered_extent->list)) { 3159 ret = -EINVAL; 3160 btrfs_abort_transaction(trans, ret); 3161 goto out; 3162 } 3163 3164 btrfs_inode_safe_disk_i_size_write(inode, 0); 3165 ret = btrfs_update_inode_fallback(trans, inode); 3166 if (ret) { 3167 /* -ENOMEM or corruption */ 3168 btrfs_abort_transaction(trans, ret); 3169 } 3170 goto out; 3171 } 3172 3173 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3174 compress_type = ordered_extent->compress_type; 3175 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3176 BUG_ON(compress_type); 3177 ret = btrfs_mark_extent_written(trans, inode, 3178 ordered_extent->file_offset, 3179 ordered_extent->file_offset + 3180 logical_len); 3181 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3182 ordered_extent->disk_num_bytes); 3183 } else { 3184 BUG_ON(root == fs_info->tree_root); 3185 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3186 if (!ret) { 3187 clear_reserved_extent = false; 3188 btrfs_release_delalloc_bytes(fs_info, 3189 ordered_extent->disk_bytenr, 3190 ordered_extent->disk_num_bytes); 3191 } 3192 } 3193 if (ret < 0) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 3198 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3199 ordered_extent->num_bytes, trans->transid); 3200 if (ret < 0) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 3205 ret = add_pending_csums(trans, &ordered_extent->list); 3206 if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 /* 3212 * If this is a new delalloc range, clear its new delalloc flag to 3213 * update the inode's number of bytes. This needs to be done first 3214 * before updating the inode item. 3215 */ 3216 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3217 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3218 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3219 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3220 &cached_state); 3221 3222 btrfs_inode_safe_disk_i_size_write(inode, 0); 3223 ret = btrfs_update_inode_fallback(trans, inode); 3224 if (ret) { /* -ENOMEM or corruption */ 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 out: 3229 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3230 &cached_state); 3231 3232 if (trans) 3233 btrfs_end_transaction(trans); 3234 3235 if (ret || truncated) { 3236 /* 3237 * If we failed to finish this ordered extent for any reason we 3238 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3239 * extent, and mark the inode with the error if it wasn't 3240 * already set. Any error during writeback would have already 3241 * set the mapping error, so we need to set it if we're the ones 3242 * marking this ordered extent as failed. 3243 */ 3244 if (ret) 3245 btrfs_mark_ordered_extent_error(ordered_extent); 3246 3247 /* 3248 * Drop extent maps for the part of the extent we didn't write. 3249 * 3250 * We have an exception here for the free_space_inode, this is 3251 * because when we do btrfs_get_extent() on the free space inode 3252 * we will search the commit root. If this is a new block group 3253 * we won't find anything, and we will trip over the assert in 3254 * writepage where we do ASSERT(em->block_start != 3255 * EXTENT_MAP_HOLE). 3256 * 3257 * Theoretically we could also skip this for any NOCOW extent as 3258 * we don't mess with the extent map tree in the NOCOW case, but 3259 * for now simply skip this if we are the free space inode. 3260 */ 3261 if (!btrfs_is_free_space_inode(inode)) { 3262 u64 unwritten_start = start; 3263 3264 if (truncated) 3265 unwritten_start += logical_len; 3266 3267 btrfs_drop_extent_map_range(inode, unwritten_start, 3268 end, false); 3269 } 3270 3271 /* 3272 * If the ordered extent had an IOERR or something else went 3273 * wrong we need to return the space for this ordered extent 3274 * back to the allocator. We only free the extent in the 3275 * truncated case if we didn't write out the extent at all. 3276 * 3277 * If we made it past insert_reserved_file_extent before we 3278 * errored out then we don't need to do this as the accounting 3279 * has already been done. 3280 */ 3281 if ((ret || !logical_len) && 3282 clear_reserved_extent && 3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3285 /* 3286 * Discard the range before returning it back to the 3287 * free space pool 3288 */ 3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3290 btrfs_discard_extent(fs_info, 3291 ordered_extent->disk_bytenr, 3292 ordered_extent->disk_num_bytes, 3293 NULL); 3294 btrfs_free_reserved_extent(fs_info, 3295 ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes, true); 3297 /* 3298 * Actually free the qgroup rsv which was released when 3299 * the ordered extent was created. 3300 */ 3301 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3302 ordered_extent->qgroup_rsv, 3303 BTRFS_QGROUP_RSV_DATA); 3304 } 3305 } 3306 3307 /* 3308 * This needs to be done to make sure anybody waiting knows we are done 3309 * updating everything for this ordered extent. 3310 */ 3311 btrfs_remove_ordered_extent(inode, ordered_extent); 3312 3313 /* once for us */ 3314 btrfs_put_ordered_extent(ordered_extent); 3315 /* once for the tree */ 3316 btrfs_put_ordered_extent(ordered_extent); 3317 3318 return ret; 3319 } 3320 3321 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3322 { 3323 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3324 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3325 list_empty(&ordered->bioc_list)) 3326 btrfs_finish_ordered_zoned(ordered); 3327 return btrfs_finish_one_ordered(ordered); 3328 } 3329 3330 /* 3331 * Verify the checksum for a single sector without any extra action that depend 3332 * on the type of I/O. 3333 * 3334 * @kaddr must be a properly kmapped address. 3335 */ 3336 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 3337 const u8 * const csum_expected) 3338 { 3339 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3340 3341 shash->tfm = fs_info->csum_shash; 3342 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3343 3344 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3345 return -EIO; 3346 return 0; 3347 } 3348 3349 /* 3350 * Verify the checksum of a single data sector. 3351 * 3352 * @bbio: btrfs_io_bio which contains the csum 3353 * @dev: device the sector is on 3354 * @bio_offset: offset to the beginning of the bio (in bytes) 3355 * @bv: bio_vec to check 3356 * 3357 * Check if the checksum on a data block is valid. When a checksum mismatch is 3358 * detected, report the error and fill the corrupted range with zero. 3359 * 3360 * Return %true if the sector is ok or had no checksum to start with, else %false. 3361 */ 3362 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3363 u32 bio_offset, struct bio_vec *bv) 3364 { 3365 struct btrfs_inode *inode = bbio->inode; 3366 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3367 u64 file_offset = bbio->file_offset + bio_offset; 3368 u64 end = file_offset + bv->bv_len - 1; 3369 u8 *csum_expected; 3370 u8 csum[BTRFS_CSUM_SIZE]; 3371 void *kaddr; 3372 3373 ASSERT(bv->bv_len == fs_info->sectorsize); 3374 3375 if (!bbio->csum) 3376 return true; 3377 3378 if (btrfs_is_data_reloc_root(inode->root) && 3379 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3380 NULL)) { 3381 /* Skip the range without csum for data reloc inode */ 3382 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3383 EXTENT_NODATASUM, NULL); 3384 return true; 3385 } 3386 3387 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3388 fs_info->csum_size; 3389 kaddr = bvec_kmap_local(bv); 3390 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) { 3391 kunmap_local(kaddr); 3392 goto zeroit; 3393 } 3394 kunmap_local(kaddr); 3395 return true; 3396 3397 zeroit: 3398 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3399 bbio->mirror_num); 3400 if (dev) 3401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3402 memzero_bvec(bv); 3403 return false; 3404 } 3405 3406 /* 3407 * Perform a delayed iput on @inode. 3408 * 3409 * @inode: The inode we want to perform iput on 3410 * 3411 * This function uses the generic vfs_inode::i_count to track whether we should 3412 * just decrement it (in case it's > 1) or if this is the last iput then link 3413 * the inode to the delayed iput machinery. Delayed iputs are processed at 3414 * transaction commit time/superblock commit/cleaner kthread. 3415 */ 3416 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3417 { 3418 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3419 unsigned long flags; 3420 3421 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3422 return; 3423 3424 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3425 atomic_inc(&fs_info->nr_delayed_iputs); 3426 /* 3427 * Need to be irq safe here because we can be called from either an irq 3428 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3429 * context. 3430 */ 3431 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3432 ASSERT(list_empty(&inode->delayed_iput)); 3433 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3434 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3435 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3436 wake_up_process(fs_info->cleaner_kthread); 3437 } 3438 3439 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3440 struct btrfs_inode *inode) 3441 { 3442 list_del_init(&inode->delayed_iput); 3443 spin_unlock_irq(&fs_info->delayed_iput_lock); 3444 iput(&inode->vfs_inode); 3445 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3446 wake_up(&fs_info->delayed_iputs_wait); 3447 spin_lock_irq(&fs_info->delayed_iput_lock); 3448 } 3449 3450 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3451 struct btrfs_inode *inode) 3452 { 3453 if (!list_empty(&inode->delayed_iput)) { 3454 spin_lock_irq(&fs_info->delayed_iput_lock); 3455 if (!list_empty(&inode->delayed_iput)) 3456 run_delayed_iput_locked(fs_info, inode); 3457 spin_unlock_irq(&fs_info->delayed_iput_lock); 3458 } 3459 } 3460 3461 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3462 { 3463 /* 3464 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3465 * calls btrfs_add_delayed_iput() and that needs to lock 3466 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3467 * prevent a deadlock. 3468 */ 3469 spin_lock_irq(&fs_info->delayed_iput_lock); 3470 while (!list_empty(&fs_info->delayed_iputs)) { 3471 struct btrfs_inode *inode; 3472 3473 inode = list_first_entry(&fs_info->delayed_iputs, 3474 struct btrfs_inode, delayed_iput); 3475 run_delayed_iput_locked(fs_info, inode); 3476 if (need_resched()) { 3477 spin_unlock_irq(&fs_info->delayed_iput_lock); 3478 cond_resched(); 3479 spin_lock_irq(&fs_info->delayed_iput_lock); 3480 } 3481 } 3482 spin_unlock_irq(&fs_info->delayed_iput_lock); 3483 } 3484 3485 /* 3486 * Wait for flushing all delayed iputs 3487 * 3488 * @fs_info: the filesystem 3489 * 3490 * This will wait on any delayed iputs that are currently running with KILLABLE 3491 * set. Once they are all done running we will return, unless we are killed in 3492 * which case we return EINTR. This helps in user operations like fallocate etc 3493 * that might get blocked on the iputs. 3494 * 3495 * Return EINTR if we were killed, 0 if nothing's pending 3496 */ 3497 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3498 { 3499 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3500 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3501 if (ret) 3502 return -EINTR; 3503 return 0; 3504 } 3505 3506 /* 3507 * This creates an orphan entry for the given inode in case something goes wrong 3508 * in the middle of an unlink. 3509 */ 3510 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3511 struct btrfs_inode *inode) 3512 { 3513 int ret; 3514 3515 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3516 if (ret && ret != -EEXIST) { 3517 btrfs_abort_transaction(trans, ret); 3518 return ret; 3519 } 3520 3521 return 0; 3522 } 3523 3524 /* 3525 * We have done the delete so we can go ahead and remove the orphan item for 3526 * this particular inode. 3527 */ 3528 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3529 struct btrfs_inode *inode) 3530 { 3531 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3532 } 3533 3534 /* 3535 * this cleans up any orphans that may be left on the list from the last use 3536 * of this root. 3537 */ 3538 int btrfs_orphan_cleanup(struct btrfs_root *root) 3539 { 3540 struct btrfs_fs_info *fs_info = root->fs_info; 3541 BTRFS_PATH_AUTO_FREE(path); 3542 struct extent_buffer *leaf; 3543 struct btrfs_key key, found_key; 3544 struct btrfs_trans_handle *trans; 3545 u64 last_objectid = 0; 3546 int ret = 0, nr_unlink = 0; 3547 3548 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3549 return 0; 3550 3551 path = btrfs_alloc_path(); 3552 if (!path) { 3553 ret = -ENOMEM; 3554 goto out; 3555 } 3556 path->reada = READA_BACK; 3557 3558 key.objectid = BTRFS_ORPHAN_OBJECTID; 3559 key.type = BTRFS_ORPHAN_ITEM_KEY; 3560 key.offset = (u64)-1; 3561 3562 while (1) { 3563 struct btrfs_inode *inode; 3564 3565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3566 if (ret < 0) 3567 goto out; 3568 3569 /* 3570 * if ret == 0 means we found what we were searching for, which 3571 * is weird, but possible, so only screw with path if we didn't 3572 * find the key and see if we have stuff that matches 3573 */ 3574 if (ret > 0) { 3575 ret = 0; 3576 if (path->slots[0] == 0) 3577 break; 3578 path->slots[0]--; 3579 } 3580 3581 /* pull out the item */ 3582 leaf = path->nodes[0]; 3583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3584 3585 /* make sure the item matches what we want */ 3586 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3587 break; 3588 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3589 break; 3590 3591 /* release the path since we're done with it */ 3592 btrfs_release_path(path); 3593 3594 /* 3595 * this is where we are basically btrfs_lookup, without the 3596 * crossing root thing. we store the inode number in the 3597 * offset of the orphan item. 3598 */ 3599 3600 if (found_key.offset == last_objectid) { 3601 /* 3602 * We found the same inode as before. This means we were 3603 * not able to remove its items via eviction triggered 3604 * by an iput(). A transaction abort may have happened, 3605 * due to -ENOSPC for example, so try to grab the error 3606 * that lead to a transaction abort, if any. 3607 */ 3608 btrfs_err(fs_info, 3609 "Error removing orphan entry, stopping orphan cleanup"); 3610 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3611 goto out; 3612 } 3613 3614 last_objectid = found_key.offset; 3615 3616 found_key.objectid = found_key.offset; 3617 found_key.type = BTRFS_INODE_ITEM_KEY; 3618 found_key.offset = 0; 3619 inode = btrfs_iget(last_objectid, root); 3620 if (IS_ERR(inode)) { 3621 ret = PTR_ERR(inode); 3622 inode = NULL; 3623 if (ret != -ENOENT) 3624 goto out; 3625 } 3626 3627 if (!inode && root == fs_info->tree_root) { 3628 struct btrfs_root *dead_root; 3629 int is_dead_root = 0; 3630 3631 /* 3632 * This is an orphan in the tree root. Currently these 3633 * could come from 2 sources: 3634 * a) a root (snapshot/subvolume) deletion in progress 3635 * b) a free space cache inode 3636 * We need to distinguish those two, as the orphan item 3637 * for a root must not get deleted before the deletion 3638 * of the snapshot/subvolume's tree completes. 3639 * 3640 * btrfs_find_orphan_roots() ran before us, which has 3641 * found all deleted roots and loaded them into 3642 * fs_info->fs_roots_radix. So here we can find if an 3643 * orphan item corresponds to a deleted root by looking 3644 * up the root from that radix tree. 3645 */ 3646 3647 spin_lock(&fs_info->fs_roots_radix_lock); 3648 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3649 (unsigned long)found_key.objectid); 3650 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3651 is_dead_root = 1; 3652 spin_unlock(&fs_info->fs_roots_radix_lock); 3653 3654 if (is_dead_root) { 3655 /* prevent this orphan from being found again */ 3656 key.offset = found_key.objectid - 1; 3657 continue; 3658 } 3659 3660 } 3661 3662 /* 3663 * If we have an inode with links, there are a couple of 3664 * possibilities: 3665 * 3666 * 1. We were halfway through creating fsverity metadata for the 3667 * file. In that case, the orphan item represents incomplete 3668 * fsverity metadata which must be cleaned up with 3669 * btrfs_drop_verity_items and deleting the orphan item. 3670 3671 * 2. Old kernels (before v3.12) used to create an 3672 * orphan item for truncate indicating that there were possibly 3673 * extent items past i_size that needed to be deleted. In v3.12, 3674 * truncate was changed to update i_size in sync with the extent 3675 * items, but the (useless) orphan item was still created. Since 3676 * v4.18, we don't create the orphan item for truncate at all. 3677 * 3678 * So, this item could mean that we need to do a truncate, but 3679 * only if this filesystem was last used on a pre-v3.12 kernel 3680 * and was not cleanly unmounted. The odds of that are quite 3681 * slim, and it's a pain to do the truncate now, so just delete 3682 * the orphan item. 3683 * 3684 * It's also possible that this orphan item was supposed to be 3685 * deleted but wasn't. The inode number may have been reused, 3686 * but either way, we can delete the orphan item. 3687 */ 3688 if (!inode || inode->vfs_inode.i_nlink) { 3689 if (inode) { 3690 ret = btrfs_drop_verity_items(inode); 3691 iput(&inode->vfs_inode); 3692 inode = NULL; 3693 if (ret) 3694 goto out; 3695 } 3696 trans = btrfs_start_transaction(root, 1); 3697 if (IS_ERR(trans)) { 3698 ret = PTR_ERR(trans); 3699 goto out; 3700 } 3701 btrfs_debug(fs_info, "auto deleting %Lu", 3702 found_key.objectid); 3703 ret = btrfs_del_orphan_item(trans, root, 3704 found_key.objectid); 3705 btrfs_end_transaction(trans); 3706 if (ret) 3707 goto out; 3708 continue; 3709 } 3710 3711 nr_unlink++; 3712 3713 /* this will do delete_inode and everything for us */ 3714 iput(&inode->vfs_inode); 3715 } 3716 /* release the path since we're done with it */ 3717 btrfs_release_path(path); 3718 3719 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3720 trans = btrfs_join_transaction(root); 3721 if (!IS_ERR(trans)) 3722 btrfs_end_transaction(trans); 3723 } 3724 3725 if (nr_unlink) 3726 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3727 3728 out: 3729 if (ret) 3730 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3731 return ret; 3732 } 3733 3734 /* 3735 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3736 * can't be any ACLs. 3737 * 3738 * @leaf: the eb leaf where to search 3739 * @slot: the slot the inode is in 3740 * @objectid: the objectid of the inode 3741 * 3742 * Return true if there is xattr/ACL, false otherwise. 3743 */ 3744 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3745 int slot, u64 objectid, 3746 int *first_xattr_slot) 3747 { 3748 u32 nritems = btrfs_header_nritems(leaf); 3749 struct btrfs_key found_key; 3750 static u64 xattr_access = 0; 3751 static u64 xattr_default = 0; 3752 int scanned = 0; 3753 3754 if (!xattr_access) { 3755 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3756 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3757 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3758 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3759 } 3760 3761 slot++; 3762 *first_xattr_slot = -1; 3763 while (slot < nritems) { 3764 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3765 3766 /* We found a different objectid, there must be no ACLs. */ 3767 if (found_key.objectid != objectid) 3768 return false; 3769 3770 /* We found an xattr, assume we've got an ACL. */ 3771 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3772 if (*first_xattr_slot == -1) 3773 *first_xattr_slot = slot; 3774 if (found_key.offset == xattr_access || 3775 found_key.offset == xattr_default) 3776 return true; 3777 } 3778 3779 /* 3780 * We found a key greater than an xattr key, there can't be any 3781 * ACLs later on. 3782 */ 3783 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3784 return false; 3785 3786 slot++; 3787 scanned++; 3788 3789 /* 3790 * The item order goes like: 3791 * - inode 3792 * - inode backrefs 3793 * - xattrs 3794 * - extents, 3795 * 3796 * so if there are lots of hard links to an inode there can be 3797 * a lot of backrefs. Don't waste time searching too hard, 3798 * this is just an optimization. 3799 */ 3800 if (scanned >= 8) 3801 break; 3802 } 3803 /* 3804 * We hit the end of the leaf before we found an xattr or something 3805 * larger than an xattr. We have to assume the inode has ACLs. 3806 */ 3807 if (*first_xattr_slot == -1) 3808 *first_xattr_slot = slot; 3809 return true; 3810 } 3811 3812 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3813 { 3814 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3815 3816 if (WARN_ON_ONCE(inode->file_extent_tree)) 3817 return 0; 3818 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3819 return 0; 3820 if (!S_ISREG(inode->vfs_inode.i_mode)) 3821 return 0; 3822 if (btrfs_is_free_space_inode(inode)) 3823 return 0; 3824 3825 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3826 if (!inode->file_extent_tree) 3827 return -ENOMEM; 3828 3829 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3830 IO_TREE_INODE_FILE_EXTENT); 3831 /* Lockdep class is set only for the file extent tree. */ 3832 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3833 3834 return 0; 3835 } 3836 3837 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3838 { 3839 struct btrfs_root *root = inode->root; 3840 struct btrfs_inode *existing; 3841 const u64 ino = btrfs_ino(inode); 3842 int ret; 3843 3844 if (inode_unhashed(&inode->vfs_inode)) 3845 return 0; 3846 3847 if (prealloc) { 3848 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3849 if (ret) 3850 return ret; 3851 } 3852 3853 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3854 3855 if (xa_is_err(existing)) { 3856 ret = xa_err(existing); 3857 ASSERT(ret != -EINVAL); 3858 ASSERT(ret != -ENOMEM); 3859 return ret; 3860 } else if (existing) { 3861 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3862 } 3863 3864 return 0; 3865 } 3866 3867 /* 3868 * Read a locked inode from the btree into the in-memory inode and add it to 3869 * its root list/tree. 3870 * 3871 * On failure clean up the inode. 3872 */ 3873 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3874 { 3875 struct btrfs_root *root = inode->root; 3876 struct btrfs_fs_info *fs_info = root->fs_info; 3877 struct extent_buffer *leaf; 3878 struct btrfs_inode_item *inode_item; 3879 struct inode *vfs_inode = &inode->vfs_inode; 3880 struct btrfs_key location; 3881 unsigned long ptr; 3882 int maybe_acls; 3883 u32 rdev; 3884 int ret; 3885 bool filled = false; 3886 int first_xattr_slot; 3887 3888 ret = btrfs_init_file_extent_tree(inode); 3889 if (ret) 3890 goto out; 3891 3892 ret = btrfs_fill_inode(inode, &rdev); 3893 if (!ret) 3894 filled = true; 3895 3896 ASSERT(path); 3897 3898 btrfs_get_inode_key(inode, &location); 3899 3900 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3901 if (ret) { 3902 /* 3903 * ret > 0 can come from btrfs_search_slot called by 3904 * btrfs_lookup_inode(), this means the inode was not found. 3905 */ 3906 if (ret > 0) 3907 ret = -ENOENT; 3908 goto out; 3909 } 3910 3911 leaf = path->nodes[0]; 3912 3913 if (filled) 3914 goto cache_index; 3915 3916 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3917 struct btrfs_inode_item); 3918 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3919 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3920 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3921 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3922 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3923 btrfs_inode_set_file_extent_range(inode, 0, 3924 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3925 3926 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3927 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3928 3929 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3930 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3931 3932 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3933 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3934 3935 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3936 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3937 3938 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3939 inode->generation = btrfs_inode_generation(leaf, inode_item); 3940 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3941 3942 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3943 vfs_inode->i_generation = inode->generation; 3944 vfs_inode->i_rdev = 0; 3945 rdev = btrfs_inode_rdev(leaf, inode_item); 3946 3947 if (S_ISDIR(vfs_inode->i_mode)) 3948 inode->index_cnt = (u64)-1; 3949 3950 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3951 &inode->flags, &inode->ro_flags); 3952 btrfs_update_inode_mapping_flags(inode); 3953 btrfs_set_inode_mapping_order(inode); 3954 3955 cache_index: 3956 /* 3957 * If we were modified in the current generation and evicted from memory 3958 * and then re-read we need to do a full sync since we don't have any 3959 * idea about which extents were modified before we were evicted from 3960 * cache. 3961 * 3962 * This is required for both inode re-read from disk and delayed inode 3963 * in the delayed_nodes xarray. 3964 */ 3965 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3967 3968 /* 3969 * We don't persist the id of the transaction where an unlink operation 3970 * against the inode was last made. So here we assume the inode might 3971 * have been evicted, and therefore the exact value of last_unlink_trans 3972 * lost, and set it to last_trans to avoid metadata inconsistencies 3973 * between the inode and its parent if the inode is fsync'ed and the log 3974 * replayed. For example, in the scenario: 3975 * 3976 * touch mydir/foo 3977 * ln mydir/foo mydir/bar 3978 * sync 3979 * unlink mydir/bar 3980 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3981 * xfs_io -c fsync mydir/foo 3982 * <power failure> 3983 * mount fs, triggers fsync log replay 3984 * 3985 * We must make sure that when we fsync our inode foo we also log its 3986 * parent inode, otherwise after log replay the parent still has the 3987 * dentry with the "bar" name but our inode foo has a link count of 1 3988 * and doesn't have an inode ref with the name "bar" anymore. 3989 * 3990 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3991 * but it guarantees correctness at the expense of occasional full 3992 * transaction commits on fsync if our inode is a directory, or if our 3993 * inode is not a directory, logging its parent unnecessarily. 3994 */ 3995 inode->last_unlink_trans = inode->last_trans; 3996 3997 /* 3998 * Same logic as for last_unlink_trans. We don't persist the generation 3999 * of the last transaction where this inode was used for a reflink 4000 * operation, so after eviction and reloading the inode we must be 4001 * pessimistic and assume the last transaction that modified the inode. 4002 */ 4003 inode->last_reflink_trans = inode->last_trans; 4004 4005 path->slots[0]++; 4006 if (vfs_inode->i_nlink != 1 || 4007 path->slots[0] >= btrfs_header_nritems(leaf)) 4008 goto cache_acl; 4009 4010 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4011 if (location.objectid != btrfs_ino(inode)) 4012 goto cache_acl; 4013 4014 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4015 if (location.type == BTRFS_INODE_REF_KEY) { 4016 struct btrfs_inode_ref *ref; 4017 4018 ref = (struct btrfs_inode_ref *)ptr; 4019 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4020 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4021 struct btrfs_inode_extref *extref; 4022 4023 extref = (struct btrfs_inode_extref *)ptr; 4024 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4025 } 4026 cache_acl: 4027 /* 4028 * try to precache a NULL acl entry for files that don't have 4029 * any xattrs or acls 4030 */ 4031 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4032 btrfs_ino(inode), &first_xattr_slot); 4033 if (first_xattr_slot != -1) { 4034 path->slots[0] = first_xattr_slot; 4035 ret = btrfs_load_inode_props(inode, path); 4036 if (ret) 4037 btrfs_err(fs_info, 4038 "error loading props for ino %llu (root %llu): %d", 4039 btrfs_ino(inode), btrfs_root_id(root), ret); 4040 } 4041 4042 if (!maybe_acls) 4043 cache_no_acl(vfs_inode); 4044 4045 switch (vfs_inode->i_mode & S_IFMT) { 4046 case S_IFREG: 4047 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4048 vfs_inode->i_fop = &btrfs_file_operations; 4049 vfs_inode->i_op = &btrfs_file_inode_operations; 4050 break; 4051 case S_IFDIR: 4052 vfs_inode->i_fop = &btrfs_dir_file_operations; 4053 vfs_inode->i_op = &btrfs_dir_inode_operations; 4054 break; 4055 case S_IFLNK: 4056 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4057 inode_nohighmem(vfs_inode); 4058 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4059 break; 4060 default: 4061 vfs_inode->i_op = &btrfs_special_inode_operations; 4062 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4063 break; 4064 } 4065 4066 btrfs_sync_inode_flags_to_i_flags(inode); 4067 4068 ret = btrfs_add_inode_to_root(inode, true); 4069 if (ret) 4070 goto out; 4071 4072 return 0; 4073 out: 4074 iget_failed(vfs_inode); 4075 return ret; 4076 } 4077 4078 /* 4079 * given a leaf and an inode, copy the inode fields into the leaf 4080 */ 4081 static void fill_inode_item(struct btrfs_trans_handle *trans, 4082 struct extent_buffer *leaf, 4083 struct btrfs_inode_item *item, 4084 struct inode *inode) 4085 { 4086 u64 flags; 4087 4088 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4089 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4090 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4091 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4092 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4093 4094 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4095 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4096 4097 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4098 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4099 4100 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4101 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4102 4103 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4104 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4105 4106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4108 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4109 btrfs_set_inode_transid(leaf, item, trans->transid); 4110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4111 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4112 BTRFS_I(inode)->ro_flags); 4113 btrfs_set_inode_flags(leaf, item, flags); 4114 btrfs_set_inode_block_group(leaf, item, 0); 4115 } 4116 4117 /* 4118 * copy everything in the in-memory inode into the btree. 4119 */ 4120 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4121 struct btrfs_inode *inode) 4122 { 4123 struct btrfs_inode_item *inode_item; 4124 BTRFS_PATH_AUTO_FREE(path); 4125 struct extent_buffer *leaf; 4126 struct btrfs_key key; 4127 int ret; 4128 4129 path = btrfs_alloc_path(); 4130 if (!path) 4131 return -ENOMEM; 4132 4133 btrfs_get_inode_key(inode, &key); 4134 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4135 if (ret) { 4136 if (ret > 0) 4137 ret = -ENOENT; 4138 return ret; 4139 } 4140 4141 leaf = path->nodes[0]; 4142 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4143 struct btrfs_inode_item); 4144 4145 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4146 btrfs_set_inode_last_trans(trans, inode); 4147 return 0; 4148 } 4149 4150 /* 4151 * copy everything in the in-memory inode into the btree. 4152 */ 4153 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4154 struct btrfs_inode *inode) 4155 { 4156 struct btrfs_root *root = inode->root; 4157 struct btrfs_fs_info *fs_info = root->fs_info; 4158 int ret; 4159 4160 /* 4161 * If the inode is a free space inode, we can deadlock during commit 4162 * if we put it into the delayed code. 4163 * 4164 * The data relocation inode should also be directly updated 4165 * without delay 4166 */ 4167 if (!btrfs_is_free_space_inode(inode) 4168 && !btrfs_is_data_reloc_root(root) 4169 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4170 btrfs_update_root_times(trans, root); 4171 4172 ret = btrfs_delayed_update_inode(trans, inode); 4173 if (!ret) 4174 btrfs_set_inode_last_trans(trans, inode); 4175 return ret; 4176 } 4177 4178 return btrfs_update_inode_item(trans, inode); 4179 } 4180 4181 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4182 struct btrfs_inode *inode) 4183 { 4184 int ret; 4185 4186 ret = btrfs_update_inode(trans, inode); 4187 if (ret == -ENOSPC) 4188 return btrfs_update_inode_item(trans, inode); 4189 return ret; 4190 } 4191 4192 /* 4193 * unlink helper that gets used here in inode.c and in the tree logging 4194 * recovery code. It remove a link in a directory with a given name, and 4195 * also drops the back refs in the inode to the directory 4196 */ 4197 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4198 struct btrfs_inode *dir, 4199 struct btrfs_inode *inode, 4200 const struct fscrypt_str *name, 4201 struct btrfs_rename_ctx *rename_ctx) 4202 { 4203 struct btrfs_root *root = dir->root; 4204 struct btrfs_fs_info *fs_info = root->fs_info; 4205 struct btrfs_path *path; 4206 int ret = 0; 4207 struct btrfs_dir_item *di; 4208 u64 index; 4209 u64 ino = btrfs_ino(inode); 4210 u64 dir_ino = btrfs_ino(dir); 4211 4212 path = btrfs_alloc_path(); 4213 if (!path) 4214 return -ENOMEM; 4215 4216 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4217 if (IS_ERR_OR_NULL(di)) { 4218 btrfs_free_path(path); 4219 return di ? PTR_ERR(di) : -ENOENT; 4220 } 4221 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4222 /* 4223 * Down the call chains below we'll also need to allocate a path, so no 4224 * need to hold on to this one for longer than necessary. 4225 */ 4226 btrfs_free_path(path); 4227 if (ret) 4228 return ret; 4229 4230 /* 4231 * If we don't have dir index, we have to get it by looking up 4232 * the inode ref, since we get the inode ref, remove it directly, 4233 * it is unnecessary to do delayed deletion. 4234 * 4235 * But if we have dir index, needn't search inode ref to get it. 4236 * Since the inode ref is close to the inode item, it is better 4237 * that we delay to delete it, and just do this deletion when 4238 * we update the inode item. 4239 */ 4240 if (inode->dir_index) { 4241 ret = btrfs_delayed_delete_inode_ref(inode); 4242 if (!ret) { 4243 index = inode->dir_index; 4244 goto skip_backref; 4245 } 4246 } 4247 4248 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4249 if (ret) { 4250 btrfs_crit(fs_info, 4251 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4252 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4253 btrfs_abort_transaction(trans, ret); 4254 return ret; 4255 } 4256 skip_backref: 4257 if (rename_ctx) 4258 rename_ctx->index = index; 4259 4260 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4261 if (ret) { 4262 btrfs_abort_transaction(trans, ret); 4263 return ret; 4264 } 4265 4266 /* 4267 * If we are in a rename context, we don't need to update anything in the 4268 * log. That will be done later during the rename by btrfs_log_new_name(). 4269 * Besides that, doing it here would only cause extra unnecessary btree 4270 * operations on the log tree, increasing latency for applications. 4271 */ 4272 if (!rename_ctx) { 4273 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4274 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4275 } 4276 4277 /* 4278 * If we have a pending delayed iput we could end up with the final iput 4279 * being run in btrfs-cleaner context. If we have enough of these built 4280 * up we can end up burning a lot of time in btrfs-cleaner without any 4281 * way to throttle the unlinks. Since we're currently holding a ref on 4282 * the inode we can run the delayed iput here without any issues as the 4283 * final iput won't be done until after we drop the ref we're currently 4284 * holding. 4285 */ 4286 btrfs_run_delayed_iput(fs_info, inode); 4287 4288 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4289 inode_inc_iversion(&inode->vfs_inode); 4290 inode_set_ctime_current(&inode->vfs_inode); 4291 inode_inc_iversion(&dir->vfs_inode); 4292 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4293 4294 return btrfs_update_inode(trans, dir); 4295 } 4296 4297 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4298 struct btrfs_inode *dir, struct btrfs_inode *inode, 4299 const struct fscrypt_str *name) 4300 { 4301 int ret; 4302 4303 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4304 if (!ret) { 4305 drop_nlink(&inode->vfs_inode); 4306 ret = btrfs_update_inode(trans, inode); 4307 } 4308 return ret; 4309 } 4310 4311 /* 4312 * helper to start transaction for unlink and rmdir. 4313 * 4314 * unlink and rmdir are special in btrfs, they do not always free space, so 4315 * if we cannot make our reservations the normal way try and see if there is 4316 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4317 * allow the unlink to occur. 4318 */ 4319 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4320 { 4321 struct btrfs_root *root = dir->root; 4322 4323 return btrfs_start_transaction_fallback_global_rsv(root, 4324 BTRFS_UNLINK_METADATA_UNITS); 4325 } 4326 4327 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4328 { 4329 struct btrfs_trans_handle *trans; 4330 struct inode *inode = d_inode(dentry); 4331 int ret; 4332 struct fscrypt_name fname; 4333 4334 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4335 if (ret) 4336 return ret; 4337 4338 /* This needs to handle no-key deletions later on */ 4339 4340 trans = __unlink_start_trans(BTRFS_I(dir)); 4341 if (IS_ERR(trans)) { 4342 ret = PTR_ERR(trans); 4343 goto fscrypt_free; 4344 } 4345 4346 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4347 false); 4348 4349 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4350 &fname.disk_name); 4351 if (ret) 4352 goto end_trans; 4353 4354 if (inode->i_nlink == 0) { 4355 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4356 if (ret) 4357 goto end_trans; 4358 } 4359 4360 end_trans: 4361 btrfs_end_transaction(trans); 4362 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4363 fscrypt_free: 4364 fscrypt_free_filename(&fname); 4365 return ret; 4366 } 4367 4368 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4369 struct btrfs_inode *dir, struct dentry *dentry) 4370 { 4371 struct btrfs_root *root = dir->root; 4372 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4373 struct btrfs_path *path; 4374 struct extent_buffer *leaf; 4375 struct btrfs_dir_item *di; 4376 struct btrfs_key key; 4377 u64 index; 4378 int ret; 4379 u64 objectid; 4380 u64 dir_ino = btrfs_ino(dir); 4381 struct fscrypt_name fname; 4382 4383 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4384 if (ret) 4385 return ret; 4386 4387 /* This needs to handle no-key deletions later on */ 4388 4389 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4390 objectid = btrfs_root_id(inode->root); 4391 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4392 objectid = inode->ref_root_id; 4393 } else { 4394 WARN_ON(1); 4395 fscrypt_free_filename(&fname); 4396 return -EINVAL; 4397 } 4398 4399 path = btrfs_alloc_path(); 4400 if (!path) { 4401 ret = -ENOMEM; 4402 goto out; 4403 } 4404 4405 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4406 &fname.disk_name, -1); 4407 if (IS_ERR_OR_NULL(di)) { 4408 ret = di ? PTR_ERR(di) : -ENOENT; 4409 goto out; 4410 } 4411 4412 leaf = path->nodes[0]; 4413 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4414 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4415 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4416 if (ret) { 4417 btrfs_abort_transaction(trans, ret); 4418 goto out; 4419 } 4420 btrfs_release_path(path); 4421 4422 /* 4423 * This is a placeholder inode for a subvolume we didn't have a 4424 * reference to at the time of the snapshot creation. In the meantime 4425 * we could have renamed the real subvol link into our snapshot, so 4426 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4427 * Instead simply lookup the dir_index_item for this entry so we can 4428 * remove it. Otherwise we know we have a ref to the root and we can 4429 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4430 */ 4431 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4432 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4433 if (IS_ERR(di)) { 4434 ret = PTR_ERR(di); 4435 btrfs_abort_transaction(trans, ret); 4436 goto out; 4437 } 4438 4439 leaf = path->nodes[0]; 4440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4441 index = key.offset; 4442 btrfs_release_path(path); 4443 } else { 4444 ret = btrfs_del_root_ref(trans, objectid, 4445 btrfs_root_id(root), dir_ino, 4446 &index, &fname.disk_name); 4447 if (ret) { 4448 btrfs_abort_transaction(trans, ret); 4449 goto out; 4450 } 4451 } 4452 4453 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4454 if (ret) { 4455 btrfs_abort_transaction(trans, ret); 4456 goto out; 4457 } 4458 4459 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4460 inode_inc_iversion(&dir->vfs_inode); 4461 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4462 ret = btrfs_update_inode_fallback(trans, dir); 4463 if (ret) 4464 btrfs_abort_transaction(trans, ret); 4465 out: 4466 btrfs_free_path(path); 4467 fscrypt_free_filename(&fname); 4468 return ret; 4469 } 4470 4471 /* 4472 * Helper to check if the subvolume references other subvolumes or if it's 4473 * default. 4474 */ 4475 static noinline int may_destroy_subvol(struct btrfs_root *root) 4476 { 4477 struct btrfs_fs_info *fs_info = root->fs_info; 4478 BTRFS_PATH_AUTO_FREE(path); 4479 struct btrfs_dir_item *di; 4480 struct btrfs_key key; 4481 struct fscrypt_str name = FSTR_INIT("default", 7); 4482 u64 dir_id; 4483 int ret; 4484 4485 path = btrfs_alloc_path(); 4486 if (!path) 4487 return -ENOMEM; 4488 4489 /* Make sure this root isn't set as the default subvol */ 4490 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4491 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4492 dir_id, &name, 0); 4493 if (di && !IS_ERR(di)) { 4494 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4495 if (key.objectid == btrfs_root_id(root)) { 4496 ret = -EPERM; 4497 btrfs_err(fs_info, 4498 "deleting default subvolume %llu is not allowed", 4499 key.objectid); 4500 return ret; 4501 } 4502 btrfs_release_path(path); 4503 } 4504 4505 key.objectid = btrfs_root_id(root); 4506 key.type = BTRFS_ROOT_REF_KEY; 4507 key.offset = (u64)-1; 4508 4509 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4510 if (ret < 0) 4511 return ret; 4512 if (ret == 0) { 4513 /* 4514 * Key with offset -1 found, there would have to exist a root 4515 * with such id, but this is out of valid range. 4516 */ 4517 return -EUCLEAN; 4518 } 4519 4520 ret = 0; 4521 if (path->slots[0] > 0) { 4522 path->slots[0]--; 4523 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4524 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4525 ret = -ENOTEMPTY; 4526 } 4527 4528 return ret; 4529 } 4530 4531 /* Delete all dentries for inodes belonging to the root */ 4532 static void btrfs_prune_dentries(struct btrfs_root *root) 4533 { 4534 struct btrfs_fs_info *fs_info = root->fs_info; 4535 struct btrfs_inode *inode; 4536 u64 min_ino = 0; 4537 4538 if (!BTRFS_FS_ERROR(fs_info)) 4539 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4540 4541 inode = btrfs_find_first_inode(root, min_ino); 4542 while (inode) { 4543 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4544 d_prune_aliases(&inode->vfs_inode); 4545 4546 min_ino = btrfs_ino(inode) + 1; 4547 /* 4548 * btrfs_drop_inode() will have it removed from the inode 4549 * cache when its usage count hits zero. 4550 */ 4551 iput(&inode->vfs_inode); 4552 cond_resched(); 4553 inode = btrfs_find_first_inode(root, min_ino); 4554 } 4555 } 4556 4557 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4558 { 4559 struct btrfs_root *root = dir->root; 4560 struct btrfs_fs_info *fs_info = root->fs_info; 4561 struct inode *inode = d_inode(dentry); 4562 struct btrfs_root *dest = BTRFS_I(inode)->root; 4563 struct btrfs_trans_handle *trans; 4564 struct btrfs_block_rsv block_rsv; 4565 u64 root_flags; 4566 u64 qgroup_reserved = 0; 4567 int ret; 4568 4569 down_write(&fs_info->subvol_sem); 4570 4571 /* 4572 * Don't allow to delete a subvolume with send in progress. This is 4573 * inside the inode lock so the error handling that has to drop the bit 4574 * again is not run concurrently. 4575 */ 4576 spin_lock(&dest->root_item_lock); 4577 if (dest->send_in_progress) { 4578 spin_unlock(&dest->root_item_lock); 4579 btrfs_warn(fs_info, 4580 "attempt to delete subvolume %llu during send", 4581 btrfs_root_id(dest)); 4582 ret = -EPERM; 4583 goto out_up_write; 4584 } 4585 if (atomic_read(&dest->nr_swapfiles)) { 4586 spin_unlock(&dest->root_item_lock); 4587 btrfs_warn(fs_info, 4588 "attempt to delete subvolume %llu with active swapfile", 4589 btrfs_root_id(root)); 4590 ret = -EPERM; 4591 goto out_up_write; 4592 } 4593 root_flags = btrfs_root_flags(&dest->root_item); 4594 btrfs_set_root_flags(&dest->root_item, 4595 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4596 spin_unlock(&dest->root_item_lock); 4597 4598 ret = may_destroy_subvol(dest); 4599 if (ret) 4600 goto out_undead; 4601 4602 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4603 /* 4604 * One for dir inode, 4605 * two for dir entries, 4606 * two for root ref/backref. 4607 */ 4608 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4609 if (ret) 4610 goto out_undead; 4611 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4612 4613 trans = btrfs_start_transaction(root, 0); 4614 if (IS_ERR(trans)) { 4615 ret = PTR_ERR(trans); 4616 goto out_release; 4617 } 4618 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4619 qgroup_reserved = 0; 4620 trans->block_rsv = &block_rsv; 4621 trans->bytes_reserved = block_rsv.size; 4622 4623 btrfs_record_snapshot_destroy(trans, dir); 4624 4625 ret = btrfs_unlink_subvol(trans, dir, dentry); 4626 if (ret) { 4627 btrfs_abort_transaction(trans, ret); 4628 goto out_end_trans; 4629 } 4630 4631 ret = btrfs_record_root_in_trans(trans, dest); 4632 if (ret) { 4633 btrfs_abort_transaction(trans, ret); 4634 goto out_end_trans; 4635 } 4636 4637 memset(&dest->root_item.drop_progress, 0, 4638 sizeof(dest->root_item.drop_progress)); 4639 btrfs_set_root_drop_level(&dest->root_item, 0); 4640 btrfs_set_root_refs(&dest->root_item, 0); 4641 4642 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4643 ret = btrfs_insert_orphan_item(trans, 4644 fs_info->tree_root, 4645 btrfs_root_id(dest)); 4646 if (ret) { 4647 btrfs_abort_transaction(trans, ret); 4648 goto out_end_trans; 4649 } 4650 } 4651 4652 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4653 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4654 if (ret && ret != -ENOENT) { 4655 btrfs_abort_transaction(trans, ret); 4656 goto out_end_trans; 4657 } 4658 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4659 ret = btrfs_uuid_tree_remove(trans, 4660 dest->root_item.received_uuid, 4661 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4662 btrfs_root_id(dest)); 4663 if (ret && ret != -ENOENT) { 4664 btrfs_abort_transaction(trans, ret); 4665 goto out_end_trans; 4666 } 4667 } 4668 4669 free_anon_bdev(dest->anon_dev); 4670 dest->anon_dev = 0; 4671 out_end_trans: 4672 trans->block_rsv = NULL; 4673 trans->bytes_reserved = 0; 4674 ret = btrfs_end_transaction(trans); 4675 inode->i_flags |= S_DEAD; 4676 out_release: 4677 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4678 if (qgroup_reserved) 4679 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4680 out_undead: 4681 if (ret) { 4682 spin_lock(&dest->root_item_lock); 4683 root_flags = btrfs_root_flags(&dest->root_item); 4684 btrfs_set_root_flags(&dest->root_item, 4685 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4686 spin_unlock(&dest->root_item_lock); 4687 } 4688 out_up_write: 4689 up_write(&fs_info->subvol_sem); 4690 if (!ret) { 4691 d_invalidate(dentry); 4692 btrfs_prune_dentries(dest); 4693 ASSERT(dest->send_in_progress == 0); 4694 } 4695 4696 return ret; 4697 } 4698 4699 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4700 { 4701 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4702 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4703 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4704 int ret = 0; 4705 struct btrfs_trans_handle *trans; 4706 struct fscrypt_name fname; 4707 4708 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4709 return -ENOTEMPTY; 4710 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4711 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4712 btrfs_err(fs_info, 4713 "extent tree v2 doesn't support snapshot deletion yet"); 4714 return -EOPNOTSUPP; 4715 } 4716 return btrfs_delete_subvolume(dir, dentry); 4717 } 4718 4719 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4720 if (ret) 4721 return ret; 4722 4723 /* This needs to handle no-key deletions later on */ 4724 4725 trans = __unlink_start_trans(dir); 4726 if (IS_ERR(trans)) { 4727 ret = PTR_ERR(trans); 4728 goto out_notrans; 4729 } 4730 4731 /* 4732 * Propagate the last_unlink_trans value of the deleted dir to its 4733 * parent directory. This is to prevent an unrecoverable log tree in the 4734 * case we do something like this: 4735 * 1) create dir foo 4736 * 2) create snapshot under dir foo 4737 * 3) delete the snapshot 4738 * 4) rmdir foo 4739 * 5) mkdir foo 4740 * 6) fsync foo or some file inside foo 4741 * 4742 * This is because we can't unlink other roots when replaying the dir 4743 * deletes for directory foo. 4744 */ 4745 if (inode->last_unlink_trans >= trans->transid) 4746 btrfs_record_snapshot_destroy(trans, dir); 4747 4748 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4749 ret = btrfs_unlink_subvol(trans, dir, dentry); 4750 goto out; 4751 } 4752 4753 ret = btrfs_orphan_add(trans, inode); 4754 if (ret) 4755 goto out; 4756 4757 /* now the directory is empty */ 4758 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4759 if (!ret) 4760 btrfs_i_size_write(inode, 0); 4761 out: 4762 btrfs_end_transaction(trans); 4763 out_notrans: 4764 btrfs_btree_balance_dirty(fs_info); 4765 fscrypt_free_filename(&fname); 4766 4767 return ret; 4768 } 4769 4770 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4771 { 4772 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4773 blockstart, blocksize); 4774 4775 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4776 return true; 4777 return false; 4778 } 4779 4780 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4781 { 4782 const pgoff_t index = (start >> PAGE_SHIFT); 4783 struct address_space *mapping = inode->vfs_inode.i_mapping; 4784 struct folio *folio; 4785 u64 zero_start; 4786 u64 zero_end; 4787 int ret = 0; 4788 4789 again: 4790 folio = filemap_lock_folio(mapping, index); 4791 /* No folio present. */ 4792 if (IS_ERR(folio)) 4793 return 0; 4794 4795 if (!folio_test_uptodate(folio)) { 4796 ret = btrfs_read_folio(NULL, folio); 4797 folio_lock(folio); 4798 if (folio->mapping != mapping) { 4799 folio_unlock(folio); 4800 folio_put(folio); 4801 goto again; 4802 } 4803 if (!folio_test_uptodate(folio)) { 4804 ret = -EIO; 4805 goto out_unlock; 4806 } 4807 } 4808 folio_wait_writeback(folio); 4809 4810 /* 4811 * We do not need to lock extents nor wait for OE, as it's already 4812 * beyond EOF. 4813 */ 4814 4815 zero_start = max_t(u64, folio_pos(folio), start); 4816 zero_end = folio_end(folio); 4817 folio_zero_range(folio, zero_start - folio_pos(folio), 4818 zero_end - zero_start); 4819 4820 out_unlock: 4821 folio_unlock(folio); 4822 folio_put(folio); 4823 return ret; 4824 } 4825 4826 /* 4827 * Handle the truncation of a fs block. 4828 * 4829 * @inode - inode that we're zeroing 4830 * @offset - the file offset of the block to truncate 4831 * The value must be inside [@start, @end], and the function will do 4832 * extra checks if the block that covers @offset needs to be zeroed. 4833 * @start - the start file offset of the range we want to zero 4834 * @end - the end (inclusive) file offset of the range we want to zero. 4835 * 4836 * If the range is not block aligned, read out the folio that covers @offset, 4837 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4838 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4839 * for writeback. 4840 * 4841 * This is utilized by hole punch, zero range, file expansion. 4842 */ 4843 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4844 { 4845 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4846 struct address_space *mapping = inode->vfs_inode.i_mapping; 4847 struct extent_io_tree *io_tree = &inode->io_tree; 4848 struct btrfs_ordered_extent *ordered; 4849 struct extent_state *cached_state = NULL; 4850 struct extent_changeset *data_reserved = NULL; 4851 bool only_release_metadata = false; 4852 u32 blocksize = fs_info->sectorsize; 4853 pgoff_t index = (offset >> PAGE_SHIFT); 4854 struct folio *folio; 4855 gfp_t mask = btrfs_alloc_write_mask(mapping); 4856 int ret = 0; 4857 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4858 blocksize); 4859 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4860 blocksize); 4861 bool need_truncate_head = false; 4862 bool need_truncate_tail = false; 4863 u64 zero_start; 4864 u64 zero_end; 4865 u64 block_start; 4866 u64 block_end; 4867 4868 /* @offset should be inside the range. */ 4869 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4870 offset, start, end); 4871 4872 /* The range is aligned at both ends. */ 4873 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4874 /* 4875 * For block size < page size case, we may have polluted blocks 4876 * beyond EOF. So we also need to zero them out. 4877 */ 4878 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4879 ret = truncate_block_zero_beyond_eof(inode, start); 4880 goto out; 4881 } 4882 4883 /* 4884 * @offset may not be inside the head nor tail block. In that case we 4885 * don't need to do anything. 4886 */ 4887 if (!in_head_block && !in_tail_block) 4888 goto out; 4889 4890 /* 4891 * Skip the truncatioin if the range in the target block is already aligned. 4892 * The seemingly complex check will also handle the same block case. 4893 */ 4894 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4895 need_truncate_head = true; 4896 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4897 need_truncate_tail = true; 4898 if (!need_truncate_head && !need_truncate_tail) 4899 goto out; 4900 4901 block_start = round_down(offset, blocksize); 4902 block_end = block_start + blocksize - 1; 4903 4904 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4905 blocksize, false); 4906 if (ret < 0) { 4907 size_t write_bytes = blocksize; 4908 4909 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4910 /* For nocow case, no need to reserve data space. */ 4911 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4912 write_bytes, blocksize); 4913 only_release_metadata = true; 4914 } else { 4915 goto out; 4916 } 4917 } 4918 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4919 if (ret < 0) { 4920 if (!only_release_metadata) 4921 btrfs_free_reserved_data_space(inode, data_reserved, 4922 block_start, blocksize); 4923 goto out; 4924 } 4925 again: 4926 folio = __filemap_get_folio(mapping, index, 4927 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4928 if (IS_ERR(folio)) { 4929 if (only_release_metadata) 4930 btrfs_delalloc_release_metadata(inode, blocksize, true); 4931 else 4932 btrfs_delalloc_release_space(inode, data_reserved, 4933 block_start, blocksize, true); 4934 btrfs_delalloc_release_extents(inode, blocksize); 4935 ret = PTR_ERR(folio); 4936 goto out; 4937 } 4938 4939 if (!folio_test_uptodate(folio)) { 4940 ret = btrfs_read_folio(NULL, folio); 4941 folio_lock(folio); 4942 if (folio->mapping != mapping) { 4943 folio_unlock(folio); 4944 folio_put(folio); 4945 goto again; 4946 } 4947 if (!folio_test_uptodate(folio)) { 4948 ret = -EIO; 4949 goto out_unlock; 4950 } 4951 } 4952 4953 /* 4954 * We unlock the page after the io is completed and then re-lock it 4955 * above. release_folio() could have come in between that and cleared 4956 * folio private, but left the page in the mapping. Set the page mapped 4957 * here to make sure it's properly set for the subpage stuff. 4958 */ 4959 ret = set_folio_extent_mapped(folio); 4960 if (ret < 0) 4961 goto out_unlock; 4962 4963 folio_wait_writeback(folio); 4964 4965 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 4966 4967 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4968 if (ordered) { 4969 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4970 folio_unlock(folio); 4971 folio_put(folio); 4972 btrfs_start_ordered_extent(ordered); 4973 btrfs_put_ordered_extent(ordered); 4974 goto again; 4975 } 4976 4977 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 4978 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4979 &cached_state); 4980 4981 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4982 &cached_state); 4983 if (ret) { 4984 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4985 goto out_unlock; 4986 } 4987 4988 if (end == (u64)-1) { 4989 /* 4990 * We're truncating beyond EOF, the remaining blocks normally are 4991 * already holes thus no need to zero again, but it's possible for 4992 * fs block size < page size cases to have memory mapped writes 4993 * to pollute ranges beyond EOF. 4994 * 4995 * In that case although such polluted blocks beyond EOF will 4996 * not reach disk, it still affects our page caches. 4997 */ 4998 zero_start = max_t(u64, folio_pos(folio), start); 4999 zero_end = min_t(u64, folio_end(folio) - 1, end); 5000 } else { 5001 zero_start = max_t(u64, block_start, start); 5002 zero_end = min_t(u64, block_end, end); 5003 } 5004 folio_zero_range(folio, zero_start - folio_pos(folio), 5005 zero_end - zero_start + 1); 5006 5007 btrfs_folio_clear_checked(fs_info, folio, block_start, 5008 block_end + 1 - block_start); 5009 btrfs_folio_set_dirty(fs_info, folio, block_start, 5010 block_end + 1 - block_start); 5011 5012 if (only_release_metadata) 5013 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5014 EXTENT_NORESERVE, &cached_state); 5015 5016 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5017 5018 out_unlock: 5019 if (ret) { 5020 if (only_release_metadata) 5021 btrfs_delalloc_release_metadata(inode, blocksize, true); 5022 else 5023 btrfs_delalloc_release_space(inode, data_reserved, 5024 block_start, blocksize, true); 5025 } 5026 btrfs_delalloc_release_extents(inode, blocksize); 5027 folio_unlock(folio); 5028 folio_put(folio); 5029 out: 5030 if (only_release_metadata) 5031 btrfs_check_nocow_unlock(inode); 5032 extent_changeset_free(data_reserved); 5033 return ret; 5034 } 5035 5036 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5037 { 5038 struct btrfs_root *root = inode->root; 5039 struct btrfs_fs_info *fs_info = root->fs_info; 5040 struct btrfs_trans_handle *trans; 5041 struct btrfs_drop_extents_args drop_args = { 0 }; 5042 int ret; 5043 5044 /* 5045 * If NO_HOLES is enabled, we don't need to do anything. 5046 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5047 * or btrfs_update_inode() will be called, which guarantee that the next 5048 * fsync will know this inode was changed and needs to be logged. 5049 */ 5050 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5051 return 0; 5052 5053 /* 5054 * 1 - for the one we're dropping 5055 * 1 - for the one we're adding 5056 * 1 - for updating the inode. 5057 */ 5058 trans = btrfs_start_transaction(root, 3); 5059 if (IS_ERR(trans)) 5060 return PTR_ERR(trans); 5061 5062 drop_args.start = offset; 5063 drop_args.end = offset + len; 5064 drop_args.drop_cache = true; 5065 5066 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5067 if (ret) { 5068 btrfs_abort_transaction(trans, ret); 5069 btrfs_end_transaction(trans); 5070 return ret; 5071 } 5072 5073 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5074 if (ret) { 5075 btrfs_abort_transaction(trans, ret); 5076 } else { 5077 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5078 btrfs_update_inode(trans, inode); 5079 } 5080 btrfs_end_transaction(trans); 5081 return ret; 5082 } 5083 5084 /* 5085 * This function puts in dummy file extents for the area we're creating a hole 5086 * for. So if we are truncating this file to a larger size we need to insert 5087 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5088 * the range between oldsize and size 5089 */ 5090 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5091 { 5092 struct btrfs_root *root = inode->root; 5093 struct btrfs_fs_info *fs_info = root->fs_info; 5094 struct extent_io_tree *io_tree = &inode->io_tree; 5095 struct extent_map *em = NULL; 5096 struct extent_state *cached_state = NULL; 5097 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5098 u64 block_end = ALIGN(size, fs_info->sectorsize); 5099 u64 last_byte; 5100 u64 cur_offset; 5101 u64 hole_size; 5102 int ret = 0; 5103 5104 /* 5105 * If our size started in the middle of a block we need to zero out the 5106 * rest of the block before we expand the i_size, otherwise we could 5107 * expose stale data. 5108 */ 5109 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5110 if (ret) 5111 return ret; 5112 5113 if (size <= hole_start) 5114 return 0; 5115 5116 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5117 &cached_state); 5118 cur_offset = hole_start; 5119 while (1) { 5120 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5121 if (IS_ERR(em)) { 5122 ret = PTR_ERR(em); 5123 em = NULL; 5124 break; 5125 } 5126 last_byte = min(btrfs_extent_map_end(em), block_end); 5127 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5128 hole_size = last_byte - cur_offset; 5129 5130 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5131 struct extent_map *hole_em; 5132 5133 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5134 if (ret) 5135 break; 5136 5137 ret = btrfs_inode_set_file_extent_range(inode, 5138 cur_offset, hole_size); 5139 if (ret) 5140 break; 5141 5142 hole_em = btrfs_alloc_extent_map(); 5143 if (!hole_em) { 5144 btrfs_drop_extent_map_range(inode, cur_offset, 5145 cur_offset + hole_size - 1, 5146 false); 5147 btrfs_set_inode_full_sync(inode); 5148 goto next; 5149 } 5150 hole_em->start = cur_offset; 5151 hole_em->len = hole_size; 5152 5153 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5154 hole_em->disk_num_bytes = 0; 5155 hole_em->ram_bytes = hole_size; 5156 hole_em->generation = btrfs_get_fs_generation(fs_info); 5157 5158 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5159 btrfs_free_extent_map(hole_em); 5160 } else { 5161 ret = btrfs_inode_set_file_extent_range(inode, 5162 cur_offset, hole_size); 5163 if (ret) 5164 break; 5165 } 5166 next: 5167 btrfs_free_extent_map(em); 5168 em = NULL; 5169 cur_offset = last_byte; 5170 if (cur_offset >= block_end) 5171 break; 5172 } 5173 btrfs_free_extent_map(em); 5174 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5175 return ret; 5176 } 5177 5178 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5179 { 5180 struct btrfs_root *root = BTRFS_I(inode)->root; 5181 struct btrfs_trans_handle *trans; 5182 loff_t oldsize = i_size_read(inode); 5183 loff_t newsize = attr->ia_size; 5184 int mask = attr->ia_valid; 5185 int ret; 5186 5187 /* 5188 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5189 * special case where we need to update the times despite not having 5190 * these flags set. For all other operations the VFS set these flags 5191 * explicitly if it wants a timestamp update. 5192 */ 5193 if (newsize != oldsize) { 5194 inode_inc_iversion(inode); 5195 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5196 inode_set_mtime_to_ts(inode, 5197 inode_set_ctime_current(inode)); 5198 } 5199 } 5200 5201 if (newsize > oldsize) { 5202 /* 5203 * Don't do an expanding truncate while snapshotting is ongoing. 5204 * This is to ensure the snapshot captures a fully consistent 5205 * state of this file - if the snapshot captures this expanding 5206 * truncation, it must capture all writes that happened before 5207 * this truncation. 5208 */ 5209 btrfs_drew_write_lock(&root->snapshot_lock); 5210 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5211 if (ret) { 5212 btrfs_drew_write_unlock(&root->snapshot_lock); 5213 return ret; 5214 } 5215 5216 trans = btrfs_start_transaction(root, 1); 5217 if (IS_ERR(trans)) { 5218 btrfs_drew_write_unlock(&root->snapshot_lock); 5219 return PTR_ERR(trans); 5220 } 5221 5222 i_size_write(inode, newsize); 5223 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5224 pagecache_isize_extended(inode, oldsize, newsize); 5225 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5226 btrfs_drew_write_unlock(&root->snapshot_lock); 5227 btrfs_end_transaction(trans); 5228 } else { 5229 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5230 5231 if (btrfs_is_zoned(fs_info)) { 5232 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5233 ALIGN(newsize, fs_info->sectorsize), 5234 (u64)-1); 5235 if (ret) 5236 return ret; 5237 } 5238 5239 /* 5240 * We're truncating a file that used to have good data down to 5241 * zero. Make sure any new writes to the file get on disk 5242 * on close. 5243 */ 5244 if (newsize == 0) 5245 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5246 &BTRFS_I(inode)->runtime_flags); 5247 5248 truncate_setsize(inode, newsize); 5249 5250 inode_dio_wait(inode); 5251 5252 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5253 if (ret && inode->i_nlink) { 5254 int ret2; 5255 5256 /* 5257 * Truncate failed, so fix up the in-memory size. We 5258 * adjusted disk_i_size down as we removed extents, so 5259 * wait for disk_i_size to be stable and then update the 5260 * in-memory size to match. 5261 */ 5262 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5263 if (ret2) 5264 return ret2; 5265 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5266 } 5267 } 5268 5269 return ret; 5270 } 5271 5272 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5273 struct iattr *attr) 5274 { 5275 struct inode *inode = d_inode(dentry); 5276 struct btrfs_root *root = BTRFS_I(inode)->root; 5277 int ret; 5278 5279 if (btrfs_root_readonly(root)) 5280 return -EROFS; 5281 5282 ret = setattr_prepare(idmap, dentry, attr); 5283 if (ret) 5284 return ret; 5285 5286 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5287 ret = btrfs_setsize(inode, attr); 5288 if (ret) 5289 return ret; 5290 } 5291 5292 if (attr->ia_valid) { 5293 setattr_copy(idmap, inode, attr); 5294 inode_inc_iversion(inode); 5295 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5296 5297 if (!ret && attr->ia_valid & ATTR_MODE) 5298 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5299 } 5300 5301 return ret; 5302 } 5303 5304 /* 5305 * While truncating the inode pages during eviction, we get the VFS 5306 * calling btrfs_invalidate_folio() against each folio of the inode. This 5307 * is slow because the calls to btrfs_invalidate_folio() result in a 5308 * huge amount of calls to lock_extent() and clear_extent_bit(), 5309 * which keep merging and splitting extent_state structures over and over, 5310 * wasting lots of time. 5311 * 5312 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5313 * skip all those expensive operations on a per folio basis and do only 5314 * the ordered io finishing, while we release here the extent_map and 5315 * extent_state structures, without the excessive merging and splitting. 5316 */ 5317 static void evict_inode_truncate_pages(struct inode *inode) 5318 { 5319 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5320 struct rb_node *node; 5321 5322 ASSERT(inode->i_state & I_FREEING); 5323 truncate_inode_pages_final(&inode->i_data); 5324 5325 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5326 5327 /* 5328 * Keep looping until we have no more ranges in the io tree. 5329 * We can have ongoing bios started by readahead that have 5330 * their endio callback (extent_io.c:end_bio_extent_readpage) 5331 * still in progress (unlocked the pages in the bio but did not yet 5332 * unlocked the ranges in the io tree). Therefore this means some 5333 * ranges can still be locked and eviction started because before 5334 * submitting those bios, which are executed by a separate task (work 5335 * queue kthread), inode references (inode->i_count) were not taken 5336 * (which would be dropped in the end io callback of each bio). 5337 * Therefore here we effectively end up waiting for those bios and 5338 * anyone else holding locked ranges without having bumped the inode's 5339 * reference count - if we don't do it, when they access the inode's 5340 * io_tree to unlock a range it may be too late, leading to an 5341 * use-after-free issue. 5342 */ 5343 spin_lock(&io_tree->lock); 5344 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5345 struct extent_state *state; 5346 struct extent_state *cached_state = NULL; 5347 u64 start; 5348 u64 end; 5349 unsigned state_flags; 5350 5351 node = rb_first(&io_tree->state); 5352 state = rb_entry(node, struct extent_state, rb_node); 5353 start = state->start; 5354 end = state->end; 5355 state_flags = state->state; 5356 spin_unlock(&io_tree->lock); 5357 5358 btrfs_lock_extent(io_tree, start, end, &cached_state); 5359 5360 /* 5361 * If still has DELALLOC flag, the extent didn't reach disk, 5362 * and its reserved space won't be freed by delayed_ref. 5363 * So we need to free its reserved space here. 5364 * (Refer to comment in btrfs_invalidate_folio, case 2) 5365 * 5366 * Note, end is the bytenr of last byte, so we need + 1 here. 5367 */ 5368 if (state_flags & EXTENT_DELALLOC) 5369 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5370 end - start + 1, NULL); 5371 5372 btrfs_clear_extent_bit(io_tree, start, end, 5373 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5374 &cached_state); 5375 5376 cond_resched(); 5377 spin_lock(&io_tree->lock); 5378 } 5379 spin_unlock(&io_tree->lock); 5380 } 5381 5382 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5383 struct btrfs_block_rsv *rsv) 5384 { 5385 struct btrfs_fs_info *fs_info = root->fs_info; 5386 struct btrfs_trans_handle *trans; 5387 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5388 int ret; 5389 5390 /* 5391 * Eviction should be taking place at some place safe because of our 5392 * delayed iputs. However the normal flushing code will run delayed 5393 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5394 * 5395 * We reserve the delayed_refs_extra here again because we can't use 5396 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5397 * above. We reserve our extra bit here because we generate a ton of 5398 * delayed refs activity by truncating. 5399 * 5400 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5401 * if we fail to make this reservation we can re-try without the 5402 * delayed_refs_extra so we can make some forward progress. 5403 */ 5404 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5405 BTRFS_RESERVE_FLUSH_EVICT); 5406 if (ret) { 5407 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5408 BTRFS_RESERVE_FLUSH_EVICT); 5409 if (ret) { 5410 btrfs_warn(fs_info, 5411 "could not allocate space for delete; will truncate on mount"); 5412 return ERR_PTR(-ENOSPC); 5413 } 5414 delayed_refs_extra = 0; 5415 } 5416 5417 trans = btrfs_join_transaction(root); 5418 if (IS_ERR(trans)) 5419 return trans; 5420 5421 if (delayed_refs_extra) { 5422 trans->block_rsv = &fs_info->trans_block_rsv; 5423 trans->bytes_reserved = delayed_refs_extra; 5424 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5425 delayed_refs_extra, true); 5426 } 5427 return trans; 5428 } 5429 5430 void btrfs_evict_inode(struct inode *inode) 5431 { 5432 struct btrfs_fs_info *fs_info; 5433 struct btrfs_trans_handle *trans; 5434 struct btrfs_root *root = BTRFS_I(inode)->root; 5435 struct btrfs_block_rsv rsv; 5436 int ret; 5437 5438 trace_btrfs_inode_evict(inode); 5439 5440 if (!root) { 5441 fsverity_cleanup_inode(inode); 5442 clear_inode(inode); 5443 return; 5444 } 5445 5446 fs_info = inode_to_fs_info(inode); 5447 evict_inode_truncate_pages(inode); 5448 5449 if (inode->i_nlink && 5450 ((btrfs_root_refs(&root->root_item) != 0 && 5451 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5452 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5453 goto out; 5454 5455 if (is_bad_inode(inode)) 5456 goto out; 5457 5458 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5459 goto out; 5460 5461 if (inode->i_nlink > 0) { 5462 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5463 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5464 goto out; 5465 } 5466 5467 /* 5468 * This makes sure the inode item in tree is uptodate and the space for 5469 * the inode update is released. 5470 */ 5471 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5472 if (ret) 5473 goto out; 5474 5475 /* 5476 * This drops any pending insert or delete operations we have for this 5477 * inode. We could have a delayed dir index deletion queued up, but 5478 * we're removing the inode completely so that'll be taken care of in 5479 * the truncate. 5480 */ 5481 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5482 5483 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5484 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5485 rsv.failfast = true; 5486 5487 btrfs_i_size_write(BTRFS_I(inode), 0); 5488 5489 while (1) { 5490 struct btrfs_truncate_control control = { 5491 .inode = BTRFS_I(inode), 5492 .ino = btrfs_ino(BTRFS_I(inode)), 5493 .new_size = 0, 5494 .min_type = 0, 5495 }; 5496 5497 trans = evict_refill_and_join(root, &rsv); 5498 if (IS_ERR(trans)) 5499 goto out_release; 5500 5501 trans->block_rsv = &rsv; 5502 5503 ret = btrfs_truncate_inode_items(trans, root, &control); 5504 trans->block_rsv = &fs_info->trans_block_rsv; 5505 btrfs_end_transaction(trans); 5506 /* 5507 * We have not added new delayed items for our inode after we 5508 * have flushed its delayed items, so no need to throttle on 5509 * delayed items. However we have modified extent buffers. 5510 */ 5511 btrfs_btree_balance_dirty_nodelay(fs_info); 5512 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5513 goto out_release; 5514 else if (!ret) 5515 break; 5516 } 5517 5518 /* 5519 * Errors here aren't a big deal, it just means we leave orphan items in 5520 * the tree. They will be cleaned up on the next mount. If the inode 5521 * number gets reused, cleanup deletes the orphan item without doing 5522 * anything, and unlink reuses the existing orphan item. 5523 * 5524 * If it turns out that we are dropping too many of these, we might want 5525 * to add a mechanism for retrying these after a commit. 5526 */ 5527 trans = evict_refill_and_join(root, &rsv); 5528 if (!IS_ERR(trans)) { 5529 trans->block_rsv = &rsv; 5530 btrfs_orphan_del(trans, BTRFS_I(inode)); 5531 trans->block_rsv = &fs_info->trans_block_rsv; 5532 btrfs_end_transaction(trans); 5533 } 5534 5535 out_release: 5536 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5537 out: 5538 /* 5539 * If we didn't successfully delete, the orphan item will still be in 5540 * the tree and we'll retry on the next mount. Again, we might also want 5541 * to retry these periodically in the future. 5542 */ 5543 btrfs_remove_delayed_node(BTRFS_I(inode)); 5544 fsverity_cleanup_inode(inode); 5545 clear_inode(inode); 5546 } 5547 5548 /* 5549 * Return the key found in the dir entry in the location pointer, fill @type 5550 * with BTRFS_FT_*, and return 0. 5551 * 5552 * If no dir entries were found, returns -ENOENT. 5553 * If found a corrupted location in dir entry, returns -EUCLEAN. 5554 */ 5555 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5556 struct btrfs_key *location, u8 *type) 5557 { 5558 struct btrfs_dir_item *di; 5559 BTRFS_PATH_AUTO_FREE(path); 5560 struct btrfs_root *root = dir->root; 5561 int ret = 0; 5562 struct fscrypt_name fname; 5563 5564 path = btrfs_alloc_path(); 5565 if (!path) 5566 return -ENOMEM; 5567 5568 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5569 if (ret < 0) 5570 return ret; 5571 /* 5572 * fscrypt_setup_filename() should never return a positive value, but 5573 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5574 */ 5575 ASSERT(ret == 0); 5576 5577 /* This needs to handle no-key deletions later on */ 5578 5579 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5580 &fname.disk_name, 0); 5581 if (IS_ERR_OR_NULL(di)) { 5582 ret = di ? PTR_ERR(di) : -ENOENT; 5583 goto out; 5584 } 5585 5586 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5587 if (location->type != BTRFS_INODE_ITEM_KEY && 5588 location->type != BTRFS_ROOT_ITEM_KEY) { 5589 ret = -EUCLEAN; 5590 btrfs_warn(root->fs_info, 5591 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5592 __func__, fname.disk_name.name, btrfs_ino(dir), 5593 location->objectid, location->type, location->offset); 5594 } 5595 if (!ret) 5596 *type = btrfs_dir_ftype(path->nodes[0], di); 5597 out: 5598 fscrypt_free_filename(&fname); 5599 return ret; 5600 } 5601 5602 /* 5603 * when we hit a tree root in a directory, the btrfs part of the inode 5604 * needs to be changed to reflect the root directory of the tree root. This 5605 * is kind of like crossing a mount point. 5606 */ 5607 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5608 struct btrfs_inode *dir, 5609 struct dentry *dentry, 5610 struct btrfs_key *location, 5611 struct btrfs_root **sub_root) 5612 { 5613 BTRFS_PATH_AUTO_FREE(path); 5614 struct btrfs_root *new_root; 5615 struct btrfs_root_ref *ref; 5616 struct extent_buffer *leaf; 5617 struct btrfs_key key; 5618 int ret; 5619 int err = 0; 5620 struct fscrypt_name fname; 5621 5622 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5623 if (ret) 5624 return ret; 5625 5626 path = btrfs_alloc_path(); 5627 if (!path) { 5628 err = -ENOMEM; 5629 goto out; 5630 } 5631 5632 err = -ENOENT; 5633 key.objectid = btrfs_root_id(dir->root); 5634 key.type = BTRFS_ROOT_REF_KEY; 5635 key.offset = location->objectid; 5636 5637 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5638 if (ret) { 5639 if (ret < 0) 5640 err = ret; 5641 goto out; 5642 } 5643 5644 leaf = path->nodes[0]; 5645 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5646 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5647 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5648 goto out; 5649 5650 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5651 (unsigned long)(ref + 1), fname.disk_name.len); 5652 if (ret) 5653 goto out; 5654 5655 btrfs_release_path(path); 5656 5657 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5658 if (IS_ERR(new_root)) { 5659 err = PTR_ERR(new_root); 5660 goto out; 5661 } 5662 5663 *sub_root = new_root; 5664 location->objectid = btrfs_root_dirid(&new_root->root_item); 5665 location->type = BTRFS_INODE_ITEM_KEY; 5666 location->offset = 0; 5667 err = 0; 5668 out: 5669 fscrypt_free_filename(&fname); 5670 return err; 5671 } 5672 5673 5674 5675 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5676 { 5677 struct btrfs_root *root = inode->root; 5678 struct btrfs_inode *entry; 5679 bool empty = false; 5680 5681 xa_lock(&root->inodes); 5682 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5683 if (entry == inode) 5684 empty = xa_empty(&root->inodes); 5685 xa_unlock(&root->inodes); 5686 5687 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5688 xa_lock(&root->inodes); 5689 empty = xa_empty(&root->inodes); 5690 xa_unlock(&root->inodes); 5691 if (empty) 5692 btrfs_add_dead_root(root); 5693 } 5694 } 5695 5696 5697 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5698 { 5699 struct btrfs_iget_args *args = p; 5700 5701 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5702 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5703 5704 if (args->root && args->root == args->root->fs_info->tree_root && 5705 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5706 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5707 &BTRFS_I(inode)->runtime_flags); 5708 return 0; 5709 } 5710 5711 static int btrfs_find_actor(struct inode *inode, void *opaque) 5712 { 5713 struct btrfs_iget_args *args = opaque; 5714 5715 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5716 args->root == BTRFS_I(inode)->root; 5717 } 5718 5719 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5720 { 5721 struct inode *inode; 5722 struct btrfs_iget_args args; 5723 unsigned long hashval = btrfs_inode_hash(ino, root); 5724 5725 args.ino = ino; 5726 args.root = root; 5727 5728 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5729 btrfs_init_locked_inode, 5730 (void *)&args); 5731 if (!inode) 5732 return NULL; 5733 return BTRFS_I(inode); 5734 } 5735 5736 /* 5737 * Get an inode object given its inode number and corresponding root. Path is 5738 * preallocated to prevent recursing back to iget through allocator. 5739 */ 5740 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5741 struct btrfs_path *path) 5742 { 5743 struct btrfs_inode *inode; 5744 int ret; 5745 5746 inode = btrfs_iget_locked(ino, root); 5747 if (!inode) 5748 return ERR_PTR(-ENOMEM); 5749 5750 if (!(inode->vfs_inode.i_state & I_NEW)) 5751 return inode; 5752 5753 ret = btrfs_read_locked_inode(inode, path); 5754 if (ret) 5755 return ERR_PTR(ret); 5756 5757 unlock_new_inode(&inode->vfs_inode); 5758 return inode; 5759 } 5760 5761 /* 5762 * Get an inode object given its inode number and corresponding root. 5763 */ 5764 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5765 { 5766 struct btrfs_inode *inode; 5767 struct btrfs_path *path; 5768 int ret; 5769 5770 inode = btrfs_iget_locked(ino, root); 5771 if (!inode) 5772 return ERR_PTR(-ENOMEM); 5773 5774 if (!(inode->vfs_inode.i_state & I_NEW)) 5775 return inode; 5776 5777 path = btrfs_alloc_path(); 5778 if (!path) { 5779 iget_failed(&inode->vfs_inode); 5780 return ERR_PTR(-ENOMEM); 5781 } 5782 5783 ret = btrfs_read_locked_inode(inode, path); 5784 btrfs_free_path(path); 5785 if (ret) 5786 return ERR_PTR(ret); 5787 5788 unlock_new_inode(&inode->vfs_inode); 5789 return inode; 5790 } 5791 5792 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5793 struct btrfs_key *key, 5794 struct btrfs_root *root) 5795 { 5796 struct timespec64 ts; 5797 struct inode *vfs_inode; 5798 struct btrfs_inode *inode; 5799 5800 vfs_inode = new_inode(dir->i_sb); 5801 if (!vfs_inode) 5802 return ERR_PTR(-ENOMEM); 5803 5804 inode = BTRFS_I(vfs_inode); 5805 inode->root = btrfs_grab_root(root); 5806 inode->ref_root_id = key->objectid; 5807 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5808 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5809 5810 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5811 /* 5812 * We only need lookup, the rest is read-only and there's no inode 5813 * associated with the dentry 5814 */ 5815 vfs_inode->i_op = &simple_dir_inode_operations; 5816 vfs_inode->i_opflags &= ~IOP_XATTR; 5817 vfs_inode->i_fop = &simple_dir_operations; 5818 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5819 5820 ts = inode_set_ctime_current(vfs_inode); 5821 inode_set_mtime_to_ts(vfs_inode, ts); 5822 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5823 inode->i_otime_sec = ts.tv_sec; 5824 inode->i_otime_nsec = ts.tv_nsec; 5825 5826 vfs_inode->i_uid = dir->i_uid; 5827 vfs_inode->i_gid = dir->i_gid; 5828 5829 return inode; 5830 } 5831 5832 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5833 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5834 static_assert(BTRFS_FT_DIR == FT_DIR); 5835 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5836 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5837 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5838 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5839 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5840 5841 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5842 { 5843 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5844 } 5845 5846 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5847 { 5848 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5849 struct btrfs_inode *inode; 5850 struct btrfs_root *root = BTRFS_I(dir)->root; 5851 struct btrfs_root *sub_root = root; 5852 struct btrfs_key location = { 0 }; 5853 u8 di_type = 0; 5854 int ret = 0; 5855 5856 if (dentry->d_name.len > BTRFS_NAME_LEN) 5857 return ERR_PTR(-ENAMETOOLONG); 5858 5859 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5860 if (ret < 0) 5861 return ERR_PTR(ret); 5862 5863 if (location.type == BTRFS_INODE_ITEM_KEY) { 5864 inode = btrfs_iget(location.objectid, root); 5865 if (IS_ERR(inode)) 5866 return ERR_CAST(inode); 5867 5868 /* Do extra check against inode mode with di_type */ 5869 if (btrfs_inode_type(inode) != di_type) { 5870 btrfs_crit(fs_info, 5871 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5872 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5873 di_type); 5874 iput(&inode->vfs_inode); 5875 return ERR_PTR(-EUCLEAN); 5876 } 5877 return &inode->vfs_inode; 5878 } 5879 5880 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5881 &location, &sub_root); 5882 if (ret < 0) { 5883 if (ret != -ENOENT) 5884 inode = ERR_PTR(ret); 5885 else 5886 inode = new_simple_dir(dir, &location, root); 5887 } else { 5888 inode = btrfs_iget(location.objectid, sub_root); 5889 btrfs_put_root(sub_root); 5890 5891 if (IS_ERR(inode)) 5892 return ERR_CAST(inode); 5893 5894 down_read(&fs_info->cleanup_work_sem); 5895 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5896 ret = btrfs_orphan_cleanup(sub_root); 5897 up_read(&fs_info->cleanup_work_sem); 5898 if (ret) { 5899 iput(&inode->vfs_inode); 5900 inode = ERR_PTR(ret); 5901 } 5902 } 5903 5904 if (IS_ERR(inode)) 5905 return ERR_CAST(inode); 5906 5907 return &inode->vfs_inode; 5908 } 5909 5910 static int btrfs_dentry_delete(const struct dentry *dentry) 5911 { 5912 struct btrfs_root *root; 5913 struct inode *inode = d_inode(dentry); 5914 5915 if (!inode && !IS_ROOT(dentry)) 5916 inode = d_inode(dentry->d_parent); 5917 5918 if (inode) { 5919 root = BTRFS_I(inode)->root; 5920 if (btrfs_root_refs(&root->root_item) == 0) 5921 return 1; 5922 5923 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5924 return 1; 5925 } 5926 return 0; 5927 } 5928 5929 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5930 unsigned int flags) 5931 { 5932 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5933 5934 if (inode == ERR_PTR(-ENOENT)) 5935 inode = NULL; 5936 return d_splice_alias(inode, dentry); 5937 } 5938 5939 /* 5940 * Find the highest existing sequence number in a directory and then set the 5941 * in-memory index_cnt variable to the first free sequence number. 5942 */ 5943 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5944 { 5945 struct btrfs_root *root = inode->root; 5946 struct btrfs_key key, found_key; 5947 BTRFS_PATH_AUTO_FREE(path); 5948 struct extent_buffer *leaf; 5949 int ret; 5950 5951 key.objectid = btrfs_ino(inode); 5952 key.type = BTRFS_DIR_INDEX_KEY; 5953 key.offset = (u64)-1; 5954 5955 path = btrfs_alloc_path(); 5956 if (!path) 5957 return -ENOMEM; 5958 5959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5960 if (ret < 0) 5961 return ret; 5962 /* FIXME: we should be able to handle this */ 5963 if (ret == 0) 5964 return ret; 5965 5966 if (path->slots[0] == 0) { 5967 inode->index_cnt = BTRFS_DIR_START_INDEX; 5968 return 0; 5969 } 5970 5971 path->slots[0]--; 5972 5973 leaf = path->nodes[0]; 5974 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5975 5976 if (found_key.objectid != btrfs_ino(inode) || 5977 found_key.type != BTRFS_DIR_INDEX_KEY) { 5978 inode->index_cnt = BTRFS_DIR_START_INDEX; 5979 return 0; 5980 } 5981 5982 inode->index_cnt = found_key.offset + 1; 5983 5984 return 0; 5985 } 5986 5987 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5988 { 5989 int ret = 0; 5990 5991 btrfs_inode_lock(dir, 0); 5992 if (dir->index_cnt == (u64)-1) { 5993 ret = btrfs_inode_delayed_dir_index_count(dir); 5994 if (ret) { 5995 ret = btrfs_set_inode_index_count(dir); 5996 if (ret) 5997 goto out; 5998 } 5999 } 6000 6001 /* index_cnt is the index number of next new entry, so decrement it. */ 6002 *index = dir->index_cnt - 1; 6003 out: 6004 btrfs_inode_unlock(dir, 0); 6005 6006 return ret; 6007 } 6008 6009 /* 6010 * All this infrastructure exists because dir_emit can fault, and we are holding 6011 * the tree lock when doing readdir. For now just allocate a buffer and copy 6012 * our information into that, and then dir_emit from the buffer. This is 6013 * similar to what NFS does, only we don't keep the buffer around in pagecache 6014 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6015 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6016 * tree lock. 6017 */ 6018 static int btrfs_opendir(struct inode *inode, struct file *file) 6019 { 6020 struct btrfs_file_private *private; 6021 u64 last_index; 6022 int ret; 6023 6024 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6025 if (ret) 6026 return ret; 6027 6028 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6029 if (!private) 6030 return -ENOMEM; 6031 private->last_index = last_index; 6032 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6033 if (!private->filldir_buf) { 6034 kfree(private); 6035 return -ENOMEM; 6036 } 6037 file->private_data = private; 6038 return 0; 6039 } 6040 6041 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6042 { 6043 struct btrfs_file_private *private = file->private_data; 6044 int ret; 6045 6046 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6047 &private->last_index); 6048 if (ret) 6049 return ret; 6050 6051 return generic_file_llseek(file, offset, whence); 6052 } 6053 6054 struct dir_entry { 6055 u64 ino; 6056 u64 offset; 6057 unsigned type; 6058 int name_len; 6059 }; 6060 6061 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6062 { 6063 while (entries--) { 6064 struct dir_entry *entry = addr; 6065 char *name = (char *)(entry + 1); 6066 6067 ctx->pos = get_unaligned(&entry->offset); 6068 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6069 get_unaligned(&entry->ino), 6070 get_unaligned(&entry->type))) 6071 return 1; 6072 addr += sizeof(struct dir_entry) + 6073 get_unaligned(&entry->name_len); 6074 ctx->pos++; 6075 } 6076 return 0; 6077 } 6078 6079 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6080 { 6081 struct inode *inode = file_inode(file); 6082 struct btrfs_root *root = BTRFS_I(inode)->root; 6083 struct btrfs_file_private *private = file->private_data; 6084 struct btrfs_dir_item *di; 6085 struct btrfs_key key; 6086 struct btrfs_key found_key; 6087 BTRFS_PATH_AUTO_FREE(path); 6088 void *addr; 6089 LIST_HEAD(ins_list); 6090 LIST_HEAD(del_list); 6091 int ret; 6092 char *name_ptr; 6093 int name_len; 6094 int entries = 0; 6095 int total_len = 0; 6096 bool put = false; 6097 struct btrfs_key location; 6098 6099 if (!dir_emit_dots(file, ctx)) 6100 return 0; 6101 6102 path = btrfs_alloc_path(); 6103 if (!path) 6104 return -ENOMEM; 6105 6106 addr = private->filldir_buf; 6107 path->reada = READA_FORWARD; 6108 6109 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6110 &ins_list, &del_list); 6111 6112 again: 6113 key.type = BTRFS_DIR_INDEX_KEY; 6114 key.offset = ctx->pos; 6115 key.objectid = btrfs_ino(BTRFS_I(inode)); 6116 6117 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6118 struct dir_entry *entry; 6119 struct extent_buffer *leaf = path->nodes[0]; 6120 u8 ftype; 6121 6122 if (found_key.objectid != key.objectid) 6123 break; 6124 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6125 break; 6126 if (found_key.offset < ctx->pos) 6127 continue; 6128 if (found_key.offset > private->last_index) 6129 break; 6130 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6131 continue; 6132 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6133 name_len = btrfs_dir_name_len(leaf, di); 6134 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6135 PAGE_SIZE) { 6136 btrfs_release_path(path); 6137 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6138 if (ret) 6139 goto nopos; 6140 addr = private->filldir_buf; 6141 entries = 0; 6142 total_len = 0; 6143 goto again; 6144 } 6145 6146 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6147 entry = addr; 6148 name_ptr = (char *)(entry + 1); 6149 read_extent_buffer(leaf, name_ptr, 6150 (unsigned long)(di + 1), name_len); 6151 put_unaligned(name_len, &entry->name_len); 6152 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6153 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6154 put_unaligned(location.objectid, &entry->ino); 6155 put_unaligned(found_key.offset, &entry->offset); 6156 entries++; 6157 addr += sizeof(struct dir_entry) + name_len; 6158 total_len += sizeof(struct dir_entry) + name_len; 6159 } 6160 /* Catch error encountered during iteration */ 6161 if (ret < 0) 6162 goto err; 6163 6164 btrfs_release_path(path); 6165 6166 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6167 if (ret) 6168 goto nopos; 6169 6170 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6171 goto nopos; 6172 6173 /* 6174 * Stop new entries from being returned after we return the last 6175 * entry. 6176 * 6177 * New directory entries are assigned a strictly increasing 6178 * offset. This means that new entries created during readdir 6179 * are *guaranteed* to be seen in the future by that readdir. 6180 * This has broken buggy programs which operate on names as 6181 * they're returned by readdir. Until we reuse freed offsets 6182 * we have this hack to stop new entries from being returned 6183 * under the assumption that they'll never reach this huge 6184 * offset. 6185 * 6186 * This is being careful not to overflow 32bit loff_t unless the 6187 * last entry requires it because doing so has broken 32bit apps 6188 * in the past. 6189 */ 6190 if (ctx->pos >= INT_MAX) 6191 ctx->pos = LLONG_MAX; 6192 else 6193 ctx->pos = INT_MAX; 6194 nopos: 6195 ret = 0; 6196 err: 6197 if (put) 6198 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6199 return ret; 6200 } 6201 6202 /* 6203 * This is somewhat expensive, updating the tree every time the 6204 * inode changes. But, it is most likely to find the inode in cache. 6205 * FIXME, needs more benchmarking...there are no reasons other than performance 6206 * to keep or drop this code. 6207 */ 6208 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6209 { 6210 struct btrfs_root *root = inode->root; 6211 struct btrfs_fs_info *fs_info = root->fs_info; 6212 struct btrfs_trans_handle *trans; 6213 int ret; 6214 6215 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6216 return 0; 6217 6218 trans = btrfs_join_transaction(root); 6219 if (IS_ERR(trans)) 6220 return PTR_ERR(trans); 6221 6222 ret = btrfs_update_inode(trans, inode); 6223 if (ret == -ENOSPC || ret == -EDQUOT) { 6224 /* whoops, lets try again with the full transaction */ 6225 btrfs_end_transaction(trans); 6226 trans = btrfs_start_transaction(root, 1); 6227 if (IS_ERR(trans)) 6228 return PTR_ERR(trans); 6229 6230 ret = btrfs_update_inode(trans, inode); 6231 } 6232 btrfs_end_transaction(trans); 6233 if (inode->delayed_node) 6234 btrfs_balance_delayed_items(fs_info); 6235 6236 return ret; 6237 } 6238 6239 /* 6240 * This is a copy of file_update_time. We need this so we can return error on 6241 * ENOSPC for updating the inode in the case of file write and mmap writes. 6242 */ 6243 static int btrfs_update_time(struct inode *inode, int flags) 6244 { 6245 struct btrfs_root *root = BTRFS_I(inode)->root; 6246 bool dirty; 6247 6248 if (btrfs_root_readonly(root)) 6249 return -EROFS; 6250 6251 dirty = inode_update_timestamps(inode, flags); 6252 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6253 } 6254 6255 /* 6256 * helper to find a free sequence number in a given directory. This current 6257 * code is very simple, later versions will do smarter things in the btree 6258 */ 6259 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6260 { 6261 int ret = 0; 6262 6263 if (dir->index_cnt == (u64)-1) { 6264 ret = btrfs_inode_delayed_dir_index_count(dir); 6265 if (ret) { 6266 ret = btrfs_set_inode_index_count(dir); 6267 if (ret) 6268 return ret; 6269 } 6270 } 6271 6272 *index = dir->index_cnt; 6273 dir->index_cnt++; 6274 6275 return ret; 6276 } 6277 6278 static int btrfs_insert_inode_locked(struct inode *inode) 6279 { 6280 struct btrfs_iget_args args; 6281 6282 args.ino = btrfs_ino(BTRFS_I(inode)); 6283 args.root = BTRFS_I(inode)->root; 6284 6285 return insert_inode_locked4(inode, 6286 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6287 btrfs_find_actor, &args); 6288 } 6289 6290 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6291 unsigned int *trans_num_items) 6292 { 6293 struct inode *dir = args->dir; 6294 struct inode *inode = args->inode; 6295 int ret; 6296 6297 if (!args->orphan) { 6298 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6299 &args->fname); 6300 if (ret) 6301 return ret; 6302 } 6303 6304 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6305 if (ret) { 6306 fscrypt_free_filename(&args->fname); 6307 return ret; 6308 } 6309 6310 /* 1 to add inode item */ 6311 *trans_num_items = 1; 6312 /* 1 to add compression property */ 6313 if (BTRFS_I(dir)->prop_compress) 6314 (*trans_num_items)++; 6315 /* 1 to add default ACL xattr */ 6316 if (args->default_acl) 6317 (*trans_num_items)++; 6318 /* 1 to add access ACL xattr */ 6319 if (args->acl) 6320 (*trans_num_items)++; 6321 #ifdef CONFIG_SECURITY 6322 /* 1 to add LSM xattr */ 6323 if (dir->i_security) 6324 (*trans_num_items)++; 6325 #endif 6326 if (args->orphan) { 6327 /* 1 to add orphan item */ 6328 (*trans_num_items)++; 6329 } else { 6330 /* 6331 * 1 to add dir item 6332 * 1 to add dir index 6333 * 1 to update parent inode item 6334 * 6335 * No need for 1 unit for the inode ref item because it is 6336 * inserted in a batch together with the inode item at 6337 * btrfs_create_new_inode(). 6338 */ 6339 *trans_num_items += 3; 6340 } 6341 return 0; 6342 } 6343 6344 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6345 { 6346 posix_acl_release(args->acl); 6347 posix_acl_release(args->default_acl); 6348 fscrypt_free_filename(&args->fname); 6349 } 6350 6351 /* 6352 * Inherit flags from the parent inode. 6353 * 6354 * Currently only the compression flags and the cow flags are inherited. 6355 */ 6356 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6357 { 6358 unsigned int flags; 6359 6360 flags = dir->flags; 6361 6362 if (flags & BTRFS_INODE_NOCOMPRESS) { 6363 inode->flags &= ~BTRFS_INODE_COMPRESS; 6364 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6365 } else if (flags & BTRFS_INODE_COMPRESS) { 6366 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6367 inode->flags |= BTRFS_INODE_COMPRESS; 6368 } 6369 6370 if (flags & BTRFS_INODE_NODATACOW) { 6371 inode->flags |= BTRFS_INODE_NODATACOW; 6372 if (S_ISREG(inode->vfs_inode.i_mode)) 6373 inode->flags |= BTRFS_INODE_NODATASUM; 6374 } 6375 6376 btrfs_sync_inode_flags_to_i_flags(inode); 6377 } 6378 6379 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6380 struct btrfs_new_inode_args *args) 6381 { 6382 struct timespec64 ts; 6383 struct inode *dir = args->dir; 6384 struct inode *inode = args->inode; 6385 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6386 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6387 struct btrfs_root *root; 6388 struct btrfs_inode_item *inode_item; 6389 struct btrfs_path *path; 6390 u64 objectid; 6391 struct btrfs_inode_ref *ref; 6392 struct btrfs_key key[2]; 6393 u32 sizes[2]; 6394 struct btrfs_item_batch batch; 6395 unsigned long ptr; 6396 int ret; 6397 bool xa_reserved = false; 6398 6399 path = btrfs_alloc_path(); 6400 if (!path) 6401 return -ENOMEM; 6402 6403 if (!args->subvol) 6404 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6405 root = BTRFS_I(inode)->root; 6406 6407 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6408 if (ret) 6409 goto out; 6410 6411 ret = btrfs_get_free_objectid(root, &objectid); 6412 if (ret) 6413 goto out; 6414 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6415 6416 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6417 if (ret) 6418 goto out; 6419 xa_reserved = true; 6420 6421 if (args->orphan) { 6422 /* 6423 * O_TMPFILE, set link count to 0, so that after this point, we 6424 * fill in an inode item with the correct link count. 6425 */ 6426 set_nlink(inode, 0); 6427 } else { 6428 trace_btrfs_inode_request(dir); 6429 6430 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6431 if (ret) 6432 goto out; 6433 } 6434 6435 if (S_ISDIR(inode->i_mode)) 6436 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6437 6438 BTRFS_I(inode)->generation = trans->transid; 6439 inode->i_generation = BTRFS_I(inode)->generation; 6440 6441 /* 6442 * We don't have any capability xattrs set here yet, shortcut any 6443 * queries for the xattrs here. If we add them later via the inode 6444 * security init path or any other path this flag will be cleared. 6445 */ 6446 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6447 6448 /* 6449 * Subvolumes don't inherit flags from their parent directory. 6450 * Originally this was probably by accident, but we probably can't 6451 * change it now without compatibility issues. 6452 */ 6453 if (!args->subvol) 6454 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6455 6456 if (S_ISREG(inode->i_mode)) { 6457 if (btrfs_test_opt(fs_info, NODATASUM)) 6458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6459 if (btrfs_test_opt(fs_info, NODATACOW)) 6460 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6461 BTRFS_INODE_NODATASUM; 6462 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6463 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6464 } 6465 6466 ret = btrfs_insert_inode_locked(inode); 6467 if (ret < 0) { 6468 if (!args->orphan) 6469 BTRFS_I(dir)->index_cnt--; 6470 goto out; 6471 } 6472 6473 /* 6474 * We could have gotten an inode number from somebody who was fsynced 6475 * and then removed in this same transaction, so let's just set full 6476 * sync since it will be a full sync anyway and this will blow away the 6477 * old info in the log. 6478 */ 6479 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6480 6481 key[0].objectid = objectid; 6482 key[0].type = BTRFS_INODE_ITEM_KEY; 6483 key[0].offset = 0; 6484 6485 sizes[0] = sizeof(struct btrfs_inode_item); 6486 6487 if (!args->orphan) { 6488 /* 6489 * Start new inodes with an inode_ref. This is slightly more 6490 * efficient for small numbers of hard links since they will 6491 * be packed into one item. Extended refs will kick in if we 6492 * add more hard links than can fit in the ref item. 6493 */ 6494 key[1].objectid = objectid; 6495 key[1].type = BTRFS_INODE_REF_KEY; 6496 if (args->subvol) { 6497 key[1].offset = objectid; 6498 sizes[1] = 2 + sizeof(*ref); 6499 } else { 6500 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6501 sizes[1] = name->len + sizeof(*ref); 6502 } 6503 } 6504 6505 batch.keys = &key[0]; 6506 batch.data_sizes = &sizes[0]; 6507 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6508 batch.nr = args->orphan ? 1 : 2; 6509 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6510 if (ret != 0) { 6511 btrfs_abort_transaction(trans, ret); 6512 goto discard; 6513 } 6514 6515 ts = simple_inode_init_ts(inode); 6516 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6517 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6518 6519 /* 6520 * We're going to fill the inode item now, so at this point the inode 6521 * must be fully initialized. 6522 */ 6523 6524 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6525 struct btrfs_inode_item); 6526 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6527 sizeof(*inode_item)); 6528 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6529 6530 if (!args->orphan) { 6531 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6532 struct btrfs_inode_ref); 6533 ptr = (unsigned long)(ref + 1); 6534 if (args->subvol) { 6535 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6536 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6537 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6538 } else { 6539 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6540 name->len); 6541 btrfs_set_inode_ref_index(path->nodes[0], ref, 6542 BTRFS_I(inode)->dir_index); 6543 write_extent_buffer(path->nodes[0], name->name, ptr, 6544 name->len); 6545 } 6546 } 6547 6548 /* 6549 * We don't need the path anymore, plus inheriting properties, adding 6550 * ACLs, security xattrs, orphan item or adding the link, will result in 6551 * allocating yet another path. So just free our path. 6552 */ 6553 btrfs_free_path(path); 6554 path = NULL; 6555 6556 if (args->subvol) { 6557 struct btrfs_inode *parent; 6558 6559 /* 6560 * Subvolumes inherit properties from their parent subvolume, 6561 * not the directory they were created in. 6562 */ 6563 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6564 if (IS_ERR(parent)) { 6565 ret = PTR_ERR(parent); 6566 } else { 6567 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6568 parent); 6569 iput(&parent->vfs_inode); 6570 } 6571 } else { 6572 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6573 BTRFS_I(dir)); 6574 } 6575 if (ret) { 6576 btrfs_err(fs_info, 6577 "error inheriting props for ino %llu (root %llu): %d", 6578 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6579 } 6580 6581 /* 6582 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6583 * probably a bug. 6584 */ 6585 if (!args->subvol) { 6586 ret = btrfs_init_inode_security(trans, args); 6587 if (ret) { 6588 btrfs_abort_transaction(trans, ret); 6589 goto discard; 6590 } 6591 } 6592 6593 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6594 if (WARN_ON(ret)) { 6595 /* Shouldn't happen, we used xa_reserve() before. */ 6596 btrfs_abort_transaction(trans, ret); 6597 goto discard; 6598 } 6599 6600 trace_btrfs_inode_new(inode); 6601 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6602 6603 btrfs_update_root_times(trans, root); 6604 6605 if (args->orphan) { 6606 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6607 if (ret) { 6608 btrfs_abort_transaction(trans, ret); 6609 goto discard; 6610 } 6611 } else { 6612 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6613 0, BTRFS_I(inode)->dir_index); 6614 if (ret) { 6615 btrfs_abort_transaction(trans, ret); 6616 goto discard; 6617 } 6618 } 6619 6620 return 0; 6621 6622 discard: 6623 /* 6624 * discard_new_inode() calls iput(), but the caller owns the reference 6625 * to the inode. 6626 */ 6627 ihold(inode); 6628 discard_new_inode(inode); 6629 out: 6630 if (xa_reserved) 6631 xa_release(&root->inodes, objectid); 6632 6633 btrfs_free_path(path); 6634 return ret; 6635 } 6636 6637 /* 6638 * utility function to add 'inode' into 'parent_inode' with 6639 * a give name and a given sequence number. 6640 * if 'add_backref' is true, also insert a backref from the 6641 * inode to the parent directory. 6642 */ 6643 int btrfs_add_link(struct btrfs_trans_handle *trans, 6644 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6645 const struct fscrypt_str *name, int add_backref, u64 index) 6646 { 6647 int ret = 0; 6648 struct btrfs_key key; 6649 struct btrfs_root *root = parent_inode->root; 6650 u64 ino = btrfs_ino(inode); 6651 u64 parent_ino = btrfs_ino(parent_inode); 6652 6653 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6654 memcpy(&key, &inode->root->root_key, sizeof(key)); 6655 } else { 6656 key.objectid = ino; 6657 key.type = BTRFS_INODE_ITEM_KEY; 6658 key.offset = 0; 6659 } 6660 6661 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6662 ret = btrfs_add_root_ref(trans, key.objectid, 6663 btrfs_root_id(root), parent_ino, 6664 index, name); 6665 } else if (add_backref) { 6666 ret = btrfs_insert_inode_ref(trans, root, name, 6667 ino, parent_ino, index); 6668 } 6669 6670 /* Nothing to clean up yet */ 6671 if (ret) 6672 return ret; 6673 6674 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6675 btrfs_inode_type(inode), index); 6676 if (ret == -EEXIST || ret == -EOVERFLOW) 6677 goto fail_dir_item; 6678 else if (ret) { 6679 btrfs_abort_transaction(trans, ret); 6680 return ret; 6681 } 6682 6683 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6684 name->len * 2); 6685 inode_inc_iversion(&parent_inode->vfs_inode); 6686 /* 6687 * If we are replaying a log tree, we do not want to update the mtime 6688 * and ctime of the parent directory with the current time, since the 6689 * log replay procedure is responsible for setting them to their correct 6690 * values (the ones it had when the fsync was done). 6691 */ 6692 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6693 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6694 inode_set_ctime_current(&parent_inode->vfs_inode)); 6695 6696 ret = btrfs_update_inode(trans, parent_inode); 6697 if (ret) 6698 btrfs_abort_transaction(trans, ret); 6699 return ret; 6700 6701 fail_dir_item: 6702 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6703 u64 local_index; 6704 int ret2; 6705 6706 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6707 parent_ino, &local_index, name); 6708 if (ret2) 6709 btrfs_abort_transaction(trans, ret2); 6710 } else if (add_backref) { 6711 int ret2; 6712 6713 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6714 if (ret2) 6715 btrfs_abort_transaction(trans, ret2); 6716 } 6717 6718 /* Return the original error code */ 6719 return ret; 6720 } 6721 6722 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6723 struct inode *inode) 6724 { 6725 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6726 struct btrfs_root *root = BTRFS_I(dir)->root; 6727 struct btrfs_new_inode_args new_inode_args = { 6728 .dir = dir, 6729 .dentry = dentry, 6730 .inode = inode, 6731 }; 6732 unsigned int trans_num_items; 6733 struct btrfs_trans_handle *trans; 6734 int ret; 6735 6736 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6737 if (ret) 6738 goto out_inode; 6739 6740 trans = btrfs_start_transaction(root, trans_num_items); 6741 if (IS_ERR(trans)) { 6742 ret = PTR_ERR(trans); 6743 goto out_new_inode_args; 6744 } 6745 6746 ret = btrfs_create_new_inode(trans, &new_inode_args); 6747 if (!ret) 6748 d_instantiate_new(dentry, inode); 6749 6750 btrfs_end_transaction(trans); 6751 btrfs_btree_balance_dirty(fs_info); 6752 out_new_inode_args: 6753 btrfs_new_inode_args_destroy(&new_inode_args); 6754 out_inode: 6755 if (ret) 6756 iput(inode); 6757 return ret; 6758 } 6759 6760 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6761 struct dentry *dentry, umode_t mode, dev_t rdev) 6762 { 6763 struct inode *inode; 6764 6765 inode = new_inode(dir->i_sb); 6766 if (!inode) 6767 return -ENOMEM; 6768 inode_init_owner(idmap, inode, dir, mode); 6769 inode->i_op = &btrfs_special_inode_operations; 6770 init_special_inode(inode, inode->i_mode, rdev); 6771 return btrfs_create_common(dir, dentry, inode); 6772 } 6773 6774 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6775 struct dentry *dentry, umode_t mode, bool excl) 6776 { 6777 struct inode *inode; 6778 6779 inode = new_inode(dir->i_sb); 6780 if (!inode) 6781 return -ENOMEM; 6782 inode_init_owner(idmap, inode, dir, mode); 6783 inode->i_fop = &btrfs_file_operations; 6784 inode->i_op = &btrfs_file_inode_operations; 6785 inode->i_mapping->a_ops = &btrfs_aops; 6786 return btrfs_create_common(dir, dentry, inode); 6787 } 6788 6789 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6790 struct dentry *dentry) 6791 { 6792 struct btrfs_trans_handle *trans = NULL; 6793 struct btrfs_root *root = BTRFS_I(dir)->root; 6794 struct inode *inode = d_inode(old_dentry); 6795 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6796 struct fscrypt_name fname; 6797 u64 index; 6798 int ret; 6799 int drop_inode = 0; 6800 6801 /* do not allow sys_link's with other subvols of the same device */ 6802 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6803 return -EXDEV; 6804 6805 if (inode->i_nlink >= BTRFS_LINK_MAX) 6806 return -EMLINK; 6807 6808 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6809 if (ret) 6810 goto fail; 6811 6812 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6813 if (ret) 6814 goto fail; 6815 6816 /* 6817 * 2 items for inode and inode ref 6818 * 2 items for dir items 6819 * 1 item for parent inode 6820 * 1 item for orphan item deletion if O_TMPFILE 6821 */ 6822 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6823 if (IS_ERR(trans)) { 6824 ret = PTR_ERR(trans); 6825 trans = NULL; 6826 goto fail; 6827 } 6828 6829 /* There are several dir indexes for this inode, clear the cache. */ 6830 BTRFS_I(inode)->dir_index = 0ULL; 6831 inc_nlink(inode); 6832 inode_inc_iversion(inode); 6833 inode_set_ctime_current(inode); 6834 ihold(inode); 6835 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6836 6837 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6838 &fname.disk_name, 1, index); 6839 6840 if (ret) { 6841 drop_inode = 1; 6842 } else { 6843 struct dentry *parent = dentry->d_parent; 6844 6845 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6846 if (ret) 6847 goto fail; 6848 if (inode->i_nlink == 1) { 6849 /* 6850 * If new hard link count is 1, it's a file created 6851 * with open(2) O_TMPFILE flag. 6852 */ 6853 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6854 if (ret) 6855 goto fail; 6856 } 6857 d_instantiate(dentry, inode); 6858 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6859 } 6860 6861 fail: 6862 fscrypt_free_filename(&fname); 6863 if (trans) 6864 btrfs_end_transaction(trans); 6865 if (drop_inode) { 6866 inode_dec_link_count(inode); 6867 iput(inode); 6868 } 6869 btrfs_btree_balance_dirty(fs_info); 6870 return ret; 6871 } 6872 6873 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6874 struct dentry *dentry, umode_t mode) 6875 { 6876 struct inode *inode; 6877 6878 inode = new_inode(dir->i_sb); 6879 if (!inode) 6880 return ERR_PTR(-ENOMEM); 6881 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6882 inode->i_op = &btrfs_dir_inode_operations; 6883 inode->i_fop = &btrfs_dir_file_operations; 6884 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6885 } 6886 6887 static noinline int uncompress_inline(struct btrfs_path *path, 6888 struct folio *folio, 6889 struct btrfs_file_extent_item *item) 6890 { 6891 int ret; 6892 struct extent_buffer *leaf = path->nodes[0]; 6893 const u32 blocksize = leaf->fs_info->sectorsize; 6894 char *tmp; 6895 size_t max_size; 6896 unsigned long inline_size; 6897 unsigned long ptr; 6898 int compress_type; 6899 6900 compress_type = btrfs_file_extent_compression(leaf, item); 6901 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6902 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6903 tmp = kmalloc(inline_size, GFP_NOFS); 6904 if (!tmp) 6905 return -ENOMEM; 6906 ptr = btrfs_file_extent_inline_start(item); 6907 6908 read_extent_buffer(leaf, tmp, ptr, inline_size); 6909 6910 max_size = min_t(unsigned long, blocksize, max_size); 6911 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6912 max_size); 6913 6914 /* 6915 * decompression code contains a memset to fill in any space between the end 6916 * of the uncompressed data and the end of max_size in case the decompressed 6917 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6918 * the end of an inline extent and the beginning of the next block, so we 6919 * cover that region here. 6920 */ 6921 6922 if (max_size < blocksize) 6923 folio_zero_range(folio, max_size, blocksize - max_size); 6924 kfree(tmp); 6925 return ret; 6926 } 6927 6928 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6929 { 6930 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6931 struct btrfs_file_extent_item *fi; 6932 void *kaddr; 6933 size_t copy_size; 6934 6935 if (!folio || folio_test_uptodate(folio)) 6936 return 0; 6937 6938 ASSERT(folio_pos(folio) == 0); 6939 6940 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6941 struct btrfs_file_extent_item); 6942 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6943 return uncompress_inline(path, folio, fi); 6944 6945 copy_size = min_t(u64, blocksize, 6946 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6947 kaddr = kmap_local_folio(folio, 0); 6948 read_extent_buffer(path->nodes[0], kaddr, 6949 btrfs_file_extent_inline_start(fi), copy_size); 6950 kunmap_local(kaddr); 6951 if (copy_size < blocksize) 6952 folio_zero_range(folio, copy_size, blocksize - copy_size); 6953 return 0; 6954 } 6955 6956 /* 6957 * Lookup the first extent overlapping a range in a file. 6958 * 6959 * @inode: file to search in 6960 * @page: page to read extent data into if the extent is inline 6961 * @start: file offset 6962 * @len: length of range starting at @start 6963 * 6964 * Return the first &struct extent_map which overlaps the given range, reading 6965 * it from the B-tree and caching it if necessary. Note that there may be more 6966 * extents which overlap the given range after the returned extent_map. 6967 * 6968 * If @page is not NULL and the extent is inline, this also reads the extent 6969 * data directly into the page and marks the extent up to date in the io_tree. 6970 * 6971 * Return: ERR_PTR on error, non-NULL extent_map on success. 6972 */ 6973 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6974 struct folio *folio, u64 start, u64 len) 6975 { 6976 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6977 int ret = 0; 6978 u64 extent_start = 0; 6979 u64 extent_end = 0; 6980 u64 objectid = btrfs_ino(inode); 6981 int extent_type = -1; 6982 struct btrfs_path *path = NULL; 6983 struct btrfs_root *root = inode->root; 6984 struct btrfs_file_extent_item *item; 6985 struct extent_buffer *leaf; 6986 struct btrfs_key found_key; 6987 struct extent_map *em = NULL; 6988 struct extent_map_tree *em_tree = &inode->extent_tree; 6989 6990 read_lock(&em_tree->lock); 6991 em = btrfs_lookup_extent_mapping(em_tree, start, len); 6992 read_unlock(&em_tree->lock); 6993 6994 if (em) { 6995 if (em->start > start || em->start + em->len <= start) 6996 btrfs_free_extent_map(em); 6997 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6998 btrfs_free_extent_map(em); 6999 else 7000 goto out; 7001 } 7002 em = btrfs_alloc_extent_map(); 7003 if (!em) { 7004 ret = -ENOMEM; 7005 goto out; 7006 } 7007 em->start = EXTENT_MAP_HOLE; 7008 em->disk_bytenr = EXTENT_MAP_HOLE; 7009 em->len = (u64)-1; 7010 7011 path = btrfs_alloc_path(); 7012 if (!path) { 7013 ret = -ENOMEM; 7014 goto out; 7015 } 7016 7017 /* Chances are we'll be called again, so go ahead and do readahead */ 7018 path->reada = READA_FORWARD; 7019 7020 /* 7021 * The same explanation in load_free_space_cache applies here as well, 7022 * we only read when we're loading the free space cache, and at that 7023 * point the commit_root has everything we need. 7024 */ 7025 if (btrfs_is_free_space_inode(inode)) { 7026 path->search_commit_root = 1; 7027 path->skip_locking = 1; 7028 } 7029 7030 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7031 if (ret < 0) { 7032 goto out; 7033 } else if (ret > 0) { 7034 if (path->slots[0] == 0) 7035 goto not_found; 7036 path->slots[0]--; 7037 ret = 0; 7038 } 7039 7040 leaf = path->nodes[0]; 7041 item = btrfs_item_ptr(leaf, path->slots[0], 7042 struct btrfs_file_extent_item); 7043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7044 if (found_key.objectid != objectid || 7045 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7046 /* 7047 * If we backup past the first extent we want to move forward 7048 * and see if there is an extent in front of us, otherwise we'll 7049 * say there is a hole for our whole search range which can 7050 * cause problems. 7051 */ 7052 extent_end = start; 7053 goto next; 7054 } 7055 7056 extent_type = btrfs_file_extent_type(leaf, item); 7057 extent_start = found_key.offset; 7058 extent_end = btrfs_file_extent_end(path); 7059 if (extent_type == BTRFS_FILE_EXTENT_REG || 7060 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7061 /* Only regular file could have regular/prealloc extent */ 7062 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7063 ret = -EUCLEAN; 7064 btrfs_crit(fs_info, 7065 "regular/prealloc extent found for non-regular inode %llu", 7066 btrfs_ino(inode)); 7067 goto out; 7068 } 7069 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7070 extent_start); 7071 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7072 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7073 path->slots[0], 7074 extent_start); 7075 } 7076 next: 7077 if (start >= extent_end) { 7078 path->slots[0]++; 7079 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7080 ret = btrfs_next_leaf(root, path); 7081 if (ret < 0) 7082 goto out; 7083 else if (ret > 0) 7084 goto not_found; 7085 7086 leaf = path->nodes[0]; 7087 } 7088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7089 if (found_key.objectid != objectid || 7090 found_key.type != BTRFS_EXTENT_DATA_KEY) 7091 goto not_found; 7092 if (start + len <= found_key.offset) 7093 goto not_found; 7094 if (start > found_key.offset) 7095 goto next; 7096 7097 /* New extent overlaps with existing one */ 7098 em->start = start; 7099 em->len = found_key.offset - start; 7100 em->disk_bytenr = EXTENT_MAP_HOLE; 7101 goto insert; 7102 } 7103 7104 btrfs_extent_item_to_extent_map(inode, path, item, em); 7105 7106 if (extent_type == BTRFS_FILE_EXTENT_REG || 7107 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7108 goto insert; 7109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7110 /* 7111 * Inline extent can only exist at file offset 0. This is 7112 * ensured by tree-checker and inline extent creation path. 7113 * Thus all members representing file offsets should be zero. 7114 */ 7115 ASSERT(extent_start == 0); 7116 ASSERT(em->start == 0); 7117 7118 /* 7119 * btrfs_extent_item_to_extent_map() should have properly 7120 * initialized em members already. 7121 * 7122 * Other members are not utilized for inline extents. 7123 */ 7124 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7125 ASSERT(em->len == fs_info->sectorsize); 7126 7127 ret = read_inline_extent(path, folio); 7128 if (ret < 0) 7129 goto out; 7130 goto insert; 7131 } 7132 not_found: 7133 em->start = start; 7134 em->len = len; 7135 em->disk_bytenr = EXTENT_MAP_HOLE; 7136 insert: 7137 ret = 0; 7138 btrfs_release_path(path); 7139 if (em->start > start || btrfs_extent_map_end(em) <= start) { 7140 btrfs_err(fs_info, 7141 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7142 em->start, em->len, start, len); 7143 ret = -EIO; 7144 goto out; 7145 } 7146 7147 write_lock(&em_tree->lock); 7148 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7149 write_unlock(&em_tree->lock); 7150 out: 7151 btrfs_free_path(path); 7152 7153 trace_btrfs_get_extent(root, inode, em); 7154 7155 if (ret) { 7156 btrfs_free_extent_map(em); 7157 return ERR_PTR(ret); 7158 } 7159 return em; 7160 } 7161 7162 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7163 { 7164 struct btrfs_block_group *block_group; 7165 bool readonly = false; 7166 7167 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7168 if (!block_group || block_group->ro) 7169 readonly = true; 7170 if (block_group) 7171 btrfs_put_block_group(block_group); 7172 return readonly; 7173 } 7174 7175 /* 7176 * Check if we can do nocow write into the range [@offset, @offset + @len) 7177 * 7178 * @offset: File offset 7179 * @len: The length to write, will be updated to the nocow writeable 7180 * range 7181 * @orig_start: (optional) Return the original file offset of the file extent 7182 * @orig_len: (optional) Return the original on-disk length of the file extent 7183 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7184 * 7185 * Return: 7186 * >0 and update @len if we can do nocow write 7187 * 0 if we can't do nocow write 7188 * <0 if error happened 7189 * 7190 * NOTE: This only checks the file extents, caller is responsible to wait for 7191 * any ordered extents. 7192 */ 7193 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7194 struct btrfs_file_extent *file_extent, 7195 bool nowait) 7196 { 7197 struct btrfs_root *root = inode->root; 7198 struct btrfs_fs_info *fs_info = root->fs_info; 7199 struct can_nocow_file_extent_args nocow_args = { 0 }; 7200 BTRFS_PATH_AUTO_FREE(path); 7201 int ret; 7202 struct extent_buffer *leaf; 7203 struct extent_io_tree *io_tree = &inode->io_tree; 7204 struct btrfs_file_extent_item *fi; 7205 struct btrfs_key key; 7206 int found_type; 7207 7208 path = btrfs_alloc_path(); 7209 if (!path) 7210 return -ENOMEM; 7211 path->nowait = nowait; 7212 7213 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7214 offset, 0); 7215 if (ret < 0) 7216 return ret; 7217 7218 if (ret == 1) { 7219 if (path->slots[0] == 0) { 7220 /* Can't find the item, must COW. */ 7221 return 0; 7222 } 7223 path->slots[0]--; 7224 } 7225 ret = 0; 7226 leaf = path->nodes[0]; 7227 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7228 if (key.objectid != btrfs_ino(inode) || 7229 key.type != BTRFS_EXTENT_DATA_KEY) { 7230 /* Not our file or wrong item type, must COW. */ 7231 return 0; 7232 } 7233 7234 if (key.offset > offset) { 7235 /* Wrong offset, must COW. */ 7236 return 0; 7237 } 7238 7239 if (btrfs_file_extent_end(path) <= offset) 7240 return 0; 7241 7242 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7243 found_type = btrfs_file_extent_type(leaf, fi); 7244 7245 nocow_args.start = offset; 7246 nocow_args.end = offset + *len - 1; 7247 nocow_args.free_path = true; 7248 7249 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7250 /* can_nocow_file_extent() has freed the path. */ 7251 path = NULL; 7252 7253 if (ret != 1) { 7254 /* Treat errors as not being able to NOCOW. */ 7255 return 0; 7256 } 7257 7258 if (btrfs_extent_readonly(fs_info, 7259 nocow_args.file_extent.disk_bytenr + 7260 nocow_args.file_extent.offset)) 7261 return 0; 7262 7263 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7264 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7265 u64 range_end; 7266 7267 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7268 root->fs_info->sectorsize) - 1; 7269 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7270 EXTENT_DELALLOC); 7271 if (ret) 7272 return -EAGAIN; 7273 } 7274 7275 if (file_extent) 7276 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7277 7278 *len = nocow_args.file_extent.num_bytes; 7279 7280 return 1; 7281 } 7282 7283 /* The callers of this must take lock_extent() */ 7284 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7285 const struct btrfs_file_extent *file_extent, 7286 int type) 7287 { 7288 struct extent_map *em; 7289 int ret; 7290 7291 /* 7292 * Note the missing NOCOW type. 7293 * 7294 * For pure NOCOW writes, we should not create an io extent map, but 7295 * just reusing the existing one. 7296 * Only PREALLOC writes (NOCOW write into preallocated range) can 7297 * create an io extent map. 7298 */ 7299 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7300 type == BTRFS_ORDERED_COMPRESSED || 7301 type == BTRFS_ORDERED_REGULAR); 7302 7303 switch (type) { 7304 case BTRFS_ORDERED_PREALLOC: 7305 /* We're only referring part of a larger preallocated extent. */ 7306 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7307 break; 7308 case BTRFS_ORDERED_REGULAR: 7309 /* COW results a new extent matching our file extent size. */ 7310 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7311 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7312 7313 /* Since it's a new extent, we should not have any offset. */ 7314 ASSERT(file_extent->offset == 0); 7315 break; 7316 case BTRFS_ORDERED_COMPRESSED: 7317 /* Must be compressed. */ 7318 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7319 7320 /* 7321 * Encoded write can make us to refer to part of the 7322 * uncompressed extent. 7323 */ 7324 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7325 break; 7326 } 7327 7328 em = btrfs_alloc_extent_map(); 7329 if (!em) 7330 return ERR_PTR(-ENOMEM); 7331 7332 em->start = start; 7333 em->len = file_extent->num_bytes; 7334 em->disk_bytenr = file_extent->disk_bytenr; 7335 em->disk_num_bytes = file_extent->disk_num_bytes; 7336 em->ram_bytes = file_extent->ram_bytes; 7337 em->generation = -1; 7338 em->offset = file_extent->offset; 7339 em->flags |= EXTENT_FLAG_PINNED; 7340 if (type == BTRFS_ORDERED_COMPRESSED) 7341 btrfs_extent_map_set_compression(em, file_extent->compression); 7342 7343 ret = btrfs_replace_extent_map_range(inode, em, true); 7344 if (ret) { 7345 btrfs_free_extent_map(em); 7346 return ERR_PTR(ret); 7347 } 7348 7349 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7350 return em; 7351 } 7352 7353 /* 7354 * For release_folio() and invalidate_folio() we have a race window where 7355 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7356 * If we continue to release/invalidate the page, we could cause use-after-free 7357 * for subpage spinlock. So this function is to spin and wait for subpage 7358 * spinlock. 7359 */ 7360 static void wait_subpage_spinlock(struct folio *folio) 7361 { 7362 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7363 struct btrfs_folio_state *bfs; 7364 7365 if (!btrfs_is_subpage(fs_info, folio)) 7366 return; 7367 7368 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7369 bfs = folio_get_private(folio); 7370 7371 /* 7372 * This may look insane as we just acquire the spinlock and release it, 7373 * without doing anything. But we just want to make sure no one is 7374 * still holding the subpage spinlock. 7375 * And since the page is not dirty nor writeback, and we have page 7376 * locked, the only possible way to hold a spinlock is from the endio 7377 * function to clear page writeback. 7378 * 7379 * Here we just acquire the spinlock so that all existing callers 7380 * should exit and we're safe to release/invalidate the page. 7381 */ 7382 spin_lock_irq(&bfs->lock); 7383 spin_unlock_irq(&bfs->lock); 7384 } 7385 7386 static int btrfs_launder_folio(struct folio *folio) 7387 { 7388 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7389 folio_size(folio), NULL); 7390 } 7391 7392 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7393 { 7394 if (try_release_extent_mapping(folio, gfp_flags)) { 7395 wait_subpage_spinlock(folio); 7396 clear_folio_extent_mapped(folio); 7397 return true; 7398 } 7399 return false; 7400 } 7401 7402 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7403 { 7404 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7405 return false; 7406 return __btrfs_release_folio(folio, gfp_flags); 7407 } 7408 7409 #ifdef CONFIG_MIGRATION 7410 static int btrfs_migrate_folio(struct address_space *mapping, 7411 struct folio *dst, struct folio *src, 7412 enum migrate_mode mode) 7413 { 7414 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7415 7416 if (ret != MIGRATEPAGE_SUCCESS) 7417 return ret; 7418 7419 if (folio_test_ordered(src)) { 7420 folio_clear_ordered(src); 7421 folio_set_ordered(dst); 7422 } 7423 7424 return MIGRATEPAGE_SUCCESS; 7425 } 7426 #else 7427 #define btrfs_migrate_folio NULL 7428 #endif 7429 7430 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7431 size_t length) 7432 { 7433 struct btrfs_inode *inode = folio_to_inode(folio); 7434 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7435 struct extent_io_tree *tree = &inode->io_tree; 7436 struct extent_state *cached_state = NULL; 7437 u64 page_start = folio_pos(folio); 7438 u64 page_end = page_start + folio_size(folio) - 1; 7439 u64 cur; 7440 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7441 7442 /* 7443 * We have folio locked so no new ordered extent can be created on this 7444 * page, nor bio can be submitted for this folio. 7445 * 7446 * But already submitted bio can still be finished on this folio. 7447 * Furthermore, endio function won't skip folio which has Ordered 7448 * already cleared, so it's possible for endio and 7449 * invalidate_folio to do the same ordered extent accounting twice 7450 * on one folio. 7451 * 7452 * So here we wait for any submitted bios to finish, so that we won't 7453 * do double ordered extent accounting on the same folio. 7454 */ 7455 folio_wait_writeback(folio); 7456 wait_subpage_spinlock(folio); 7457 7458 /* 7459 * For subpage case, we have call sites like 7460 * btrfs_punch_hole_lock_range() which passes range not aligned to 7461 * sectorsize. 7462 * If the range doesn't cover the full folio, we don't need to and 7463 * shouldn't clear page extent mapped, as folio->private can still 7464 * record subpage dirty bits for other part of the range. 7465 * 7466 * For cases that invalidate the full folio even the range doesn't 7467 * cover the full folio, like invalidating the last folio, we're 7468 * still safe to wait for ordered extent to finish. 7469 */ 7470 if (!(offset == 0 && length == folio_size(folio))) { 7471 btrfs_release_folio(folio, GFP_NOFS); 7472 return; 7473 } 7474 7475 if (!inode_evicting) 7476 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7477 7478 cur = page_start; 7479 while (cur < page_end) { 7480 struct btrfs_ordered_extent *ordered; 7481 u64 range_end; 7482 u32 range_len; 7483 u32 extra_flags = 0; 7484 7485 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7486 page_end + 1 - cur); 7487 if (!ordered) { 7488 range_end = page_end; 7489 /* 7490 * No ordered extent covering this range, we are safe 7491 * to delete all extent states in the range. 7492 */ 7493 extra_flags = EXTENT_CLEAR_ALL_BITS; 7494 goto next; 7495 } 7496 if (ordered->file_offset > cur) { 7497 /* 7498 * There is a range between [cur, oe->file_offset) not 7499 * covered by any ordered extent. 7500 * We are safe to delete all extent states, and handle 7501 * the ordered extent in the next iteration. 7502 */ 7503 range_end = ordered->file_offset - 1; 7504 extra_flags = EXTENT_CLEAR_ALL_BITS; 7505 goto next; 7506 } 7507 7508 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7509 page_end); 7510 ASSERT(range_end + 1 - cur < U32_MAX); 7511 range_len = range_end + 1 - cur; 7512 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7513 /* 7514 * If Ordered is cleared, it means endio has 7515 * already been executed for the range. 7516 * We can't delete the extent states as 7517 * btrfs_finish_ordered_io() may still use some of them. 7518 */ 7519 goto next; 7520 } 7521 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7522 7523 /* 7524 * IO on this page will never be started, so we need to account 7525 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7526 * here, must leave that up for the ordered extent completion. 7527 * 7528 * This will also unlock the range for incoming 7529 * btrfs_finish_ordered_io(). 7530 */ 7531 if (!inode_evicting) 7532 btrfs_clear_extent_bit(tree, cur, range_end, 7533 EXTENT_DELALLOC | 7534 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7535 EXTENT_DEFRAG, &cached_state); 7536 7537 spin_lock_irq(&inode->ordered_tree_lock); 7538 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7539 ordered->truncated_len = min(ordered->truncated_len, 7540 cur - ordered->file_offset); 7541 spin_unlock_irq(&inode->ordered_tree_lock); 7542 7543 /* 7544 * If the ordered extent has finished, we're safe to delete all 7545 * the extent states of the range, otherwise 7546 * btrfs_finish_ordered_io() will get executed by endio for 7547 * other pages, so we can't delete extent states. 7548 */ 7549 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7550 cur, range_end + 1 - cur)) { 7551 btrfs_finish_ordered_io(ordered); 7552 /* 7553 * The ordered extent has finished, now we're again 7554 * safe to delete all extent states of the range. 7555 */ 7556 extra_flags = EXTENT_CLEAR_ALL_BITS; 7557 } 7558 next: 7559 if (ordered) 7560 btrfs_put_ordered_extent(ordered); 7561 /* 7562 * Qgroup reserved space handler 7563 * Sector(s) here will be either: 7564 * 7565 * 1) Already written to disk or bio already finished 7566 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7567 * Qgroup will be handled by its qgroup_record then. 7568 * btrfs_qgroup_free_data() call will do nothing here. 7569 * 7570 * 2) Not written to disk yet 7571 * Then btrfs_qgroup_free_data() call will clear the 7572 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7573 * reserved data space. 7574 * Since the IO will never happen for this page. 7575 */ 7576 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7577 if (!inode_evicting) 7578 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7579 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7580 EXTENT_DEFRAG | extra_flags, 7581 &cached_state); 7582 cur = range_end + 1; 7583 } 7584 /* 7585 * We have iterated through all ordered extents of the page, the page 7586 * should not have Ordered anymore, or the above iteration 7587 * did something wrong. 7588 */ 7589 ASSERT(!folio_test_ordered(folio)); 7590 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7591 if (!inode_evicting) 7592 __btrfs_release_folio(folio, GFP_NOFS); 7593 clear_folio_extent_mapped(folio); 7594 } 7595 7596 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7597 { 7598 struct btrfs_truncate_control control = { 7599 .inode = inode, 7600 .ino = btrfs_ino(inode), 7601 .min_type = BTRFS_EXTENT_DATA_KEY, 7602 .clear_extent_range = true, 7603 }; 7604 struct btrfs_root *root = inode->root; 7605 struct btrfs_fs_info *fs_info = root->fs_info; 7606 struct btrfs_block_rsv rsv; 7607 int ret; 7608 struct btrfs_trans_handle *trans; 7609 u64 mask = fs_info->sectorsize - 1; 7610 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7611 7612 if (!skip_writeback) { 7613 ret = btrfs_wait_ordered_range(inode, 7614 inode->vfs_inode.i_size & (~mask), 7615 (u64)-1); 7616 if (ret) 7617 return ret; 7618 } 7619 7620 /* 7621 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7622 * things going on here: 7623 * 7624 * 1) We need to reserve space to update our inode. 7625 * 7626 * 2) We need to have something to cache all the space that is going to 7627 * be free'd up by the truncate operation, but also have some slack 7628 * space reserved in case it uses space during the truncate (thank you 7629 * very much snapshotting). 7630 * 7631 * And we need these to be separate. The fact is we can use a lot of 7632 * space doing the truncate, and we have no earthly idea how much space 7633 * we will use, so we need the truncate reservation to be separate so it 7634 * doesn't end up using space reserved for updating the inode. We also 7635 * need to be able to stop the transaction and start a new one, which 7636 * means we need to be able to update the inode several times, and we 7637 * have no idea of knowing how many times that will be, so we can't just 7638 * reserve 1 item for the entirety of the operation, so that has to be 7639 * done separately as well. 7640 * 7641 * So that leaves us with 7642 * 7643 * 1) rsv - for the truncate reservation, which we will steal from the 7644 * transaction reservation. 7645 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7646 * updating the inode. 7647 */ 7648 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7649 rsv.size = min_size; 7650 rsv.failfast = true; 7651 7652 /* 7653 * 1 for the truncate slack space 7654 * 1 for updating the inode. 7655 */ 7656 trans = btrfs_start_transaction(root, 2); 7657 if (IS_ERR(trans)) { 7658 ret = PTR_ERR(trans); 7659 goto out; 7660 } 7661 7662 /* Migrate the slack space for the truncate to our reserve */ 7663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7664 min_size, false); 7665 /* 7666 * We have reserved 2 metadata units when we started the transaction and 7667 * min_size matches 1 unit, so this should never fail, but if it does, 7668 * it's not critical we just fail truncation. 7669 */ 7670 if (WARN_ON(ret)) { 7671 btrfs_end_transaction(trans); 7672 goto out; 7673 } 7674 7675 trans->block_rsv = &rsv; 7676 7677 while (1) { 7678 struct extent_state *cached_state = NULL; 7679 const u64 new_size = inode->vfs_inode.i_size; 7680 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7681 7682 control.new_size = new_size; 7683 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7684 /* 7685 * We want to drop from the next block forward in case this new 7686 * size is not block aligned since we will be keeping the last 7687 * block of the extent just the way it is. 7688 */ 7689 btrfs_drop_extent_map_range(inode, 7690 ALIGN(new_size, fs_info->sectorsize), 7691 (u64)-1, false); 7692 7693 ret = btrfs_truncate_inode_items(trans, root, &control); 7694 7695 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7696 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7697 7698 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7699 7700 trans->block_rsv = &fs_info->trans_block_rsv; 7701 if (ret != -ENOSPC && ret != -EAGAIN) 7702 break; 7703 7704 ret = btrfs_update_inode(trans, inode); 7705 if (ret) 7706 break; 7707 7708 btrfs_end_transaction(trans); 7709 btrfs_btree_balance_dirty(fs_info); 7710 7711 trans = btrfs_start_transaction(root, 2); 7712 if (IS_ERR(trans)) { 7713 ret = PTR_ERR(trans); 7714 trans = NULL; 7715 break; 7716 } 7717 7718 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7719 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7720 &rsv, min_size, false); 7721 /* 7722 * We have reserved 2 metadata units when we started the 7723 * transaction and min_size matches 1 unit, so this should never 7724 * fail, but if it does, it's not critical we just fail truncation. 7725 */ 7726 if (WARN_ON(ret)) 7727 break; 7728 7729 trans->block_rsv = &rsv; 7730 } 7731 7732 /* 7733 * We can't call btrfs_truncate_block inside a trans handle as we could 7734 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7735 * know we've truncated everything except the last little bit, and can 7736 * do btrfs_truncate_block and then update the disk_i_size. 7737 */ 7738 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7739 btrfs_end_transaction(trans); 7740 btrfs_btree_balance_dirty(fs_info); 7741 7742 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7743 inode->vfs_inode.i_size, (u64)-1); 7744 if (ret) 7745 goto out; 7746 trans = btrfs_start_transaction(root, 1); 7747 if (IS_ERR(trans)) { 7748 ret = PTR_ERR(trans); 7749 goto out; 7750 } 7751 btrfs_inode_safe_disk_i_size_write(inode, 0); 7752 } 7753 7754 if (trans) { 7755 int ret2; 7756 7757 trans->block_rsv = &fs_info->trans_block_rsv; 7758 ret2 = btrfs_update_inode(trans, inode); 7759 if (ret2 && !ret) 7760 ret = ret2; 7761 7762 ret2 = btrfs_end_transaction(trans); 7763 if (ret2 && !ret) 7764 ret = ret2; 7765 btrfs_btree_balance_dirty(fs_info); 7766 } 7767 out: 7768 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7769 /* 7770 * So if we truncate and then write and fsync we normally would just 7771 * write the extents that changed, which is a problem if we need to 7772 * first truncate that entire inode. So set this flag so we write out 7773 * all of the extents in the inode to the sync log so we're completely 7774 * safe. 7775 * 7776 * If no extents were dropped or trimmed we don't need to force the next 7777 * fsync to truncate all the inode's items from the log and re-log them 7778 * all. This means the truncate operation did not change the file size, 7779 * or changed it to a smaller size but there was only an implicit hole 7780 * between the old i_size and the new i_size, and there were no prealloc 7781 * extents beyond i_size to drop. 7782 */ 7783 if (control.extents_found > 0) 7784 btrfs_set_inode_full_sync(inode); 7785 7786 return ret; 7787 } 7788 7789 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7790 struct inode *dir) 7791 { 7792 struct inode *inode; 7793 7794 inode = new_inode(dir->i_sb); 7795 if (inode) { 7796 /* 7797 * Subvolumes don't inherit the sgid bit or the parent's gid if 7798 * the parent's sgid bit is set. This is probably a bug. 7799 */ 7800 inode_init_owner(idmap, inode, NULL, 7801 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7802 inode->i_op = &btrfs_dir_inode_operations; 7803 inode->i_fop = &btrfs_dir_file_operations; 7804 } 7805 return inode; 7806 } 7807 7808 struct inode *btrfs_alloc_inode(struct super_block *sb) 7809 { 7810 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7811 struct btrfs_inode *ei; 7812 struct inode *inode; 7813 7814 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7815 if (!ei) 7816 return NULL; 7817 7818 ei->root = NULL; 7819 ei->generation = 0; 7820 ei->last_trans = 0; 7821 ei->last_sub_trans = 0; 7822 ei->logged_trans = 0; 7823 ei->delalloc_bytes = 0; 7824 ei->new_delalloc_bytes = 0; 7825 ei->defrag_bytes = 0; 7826 ei->disk_i_size = 0; 7827 ei->flags = 0; 7828 ei->ro_flags = 0; 7829 /* 7830 * ->index_cnt will be properly initialized later when creating a new 7831 * inode (btrfs_create_new_inode()) or when reading an existing inode 7832 * from disk (btrfs_read_locked_inode()). 7833 */ 7834 ei->csum_bytes = 0; 7835 ei->dir_index = 0; 7836 ei->last_unlink_trans = 0; 7837 ei->last_reflink_trans = 0; 7838 ei->last_log_commit = 0; 7839 7840 spin_lock_init(&ei->lock); 7841 ei->outstanding_extents = 0; 7842 if (sb->s_magic != BTRFS_TEST_MAGIC) 7843 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7844 BTRFS_BLOCK_RSV_DELALLOC); 7845 ei->runtime_flags = 0; 7846 ei->prop_compress = BTRFS_COMPRESS_NONE; 7847 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7848 7849 ei->delayed_node = NULL; 7850 7851 ei->i_otime_sec = 0; 7852 ei->i_otime_nsec = 0; 7853 7854 inode = &ei->vfs_inode; 7855 btrfs_extent_map_tree_init(&ei->extent_tree); 7856 7857 /* This io tree sets the valid inode. */ 7858 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7859 ei->io_tree.inode = ei; 7860 7861 ei->file_extent_tree = NULL; 7862 7863 mutex_init(&ei->log_mutex); 7864 spin_lock_init(&ei->ordered_tree_lock); 7865 ei->ordered_tree = RB_ROOT; 7866 ei->ordered_tree_last = NULL; 7867 INIT_LIST_HEAD(&ei->delalloc_inodes); 7868 INIT_LIST_HEAD(&ei->delayed_iput); 7869 init_rwsem(&ei->i_mmap_lock); 7870 7871 return inode; 7872 } 7873 7874 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7875 void btrfs_test_destroy_inode(struct inode *inode) 7876 { 7877 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7878 kfree(BTRFS_I(inode)->file_extent_tree); 7879 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7880 } 7881 #endif 7882 7883 void btrfs_free_inode(struct inode *inode) 7884 { 7885 kfree(BTRFS_I(inode)->file_extent_tree); 7886 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7887 } 7888 7889 void btrfs_destroy_inode(struct inode *vfs_inode) 7890 { 7891 struct btrfs_ordered_extent *ordered; 7892 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7893 struct btrfs_root *root = inode->root; 7894 bool freespace_inode; 7895 7896 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7897 WARN_ON(vfs_inode->i_data.nrpages); 7898 WARN_ON(inode->block_rsv.reserved); 7899 WARN_ON(inode->block_rsv.size); 7900 WARN_ON(inode->outstanding_extents); 7901 if (!S_ISDIR(vfs_inode->i_mode)) { 7902 WARN_ON(inode->delalloc_bytes); 7903 WARN_ON(inode->new_delalloc_bytes); 7904 WARN_ON(inode->csum_bytes); 7905 } 7906 if (!root || !btrfs_is_data_reloc_root(root)) 7907 WARN_ON(inode->defrag_bytes); 7908 7909 /* 7910 * This can happen where we create an inode, but somebody else also 7911 * created the same inode and we need to destroy the one we already 7912 * created. 7913 */ 7914 if (!root) 7915 return; 7916 7917 /* 7918 * If this is a free space inode do not take the ordered extents lockdep 7919 * map. 7920 */ 7921 freespace_inode = btrfs_is_free_space_inode(inode); 7922 7923 while (1) { 7924 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7925 if (!ordered) 7926 break; 7927 else { 7928 btrfs_err(root->fs_info, 7929 "found ordered extent %llu %llu on inode cleanup", 7930 ordered->file_offset, ordered->num_bytes); 7931 7932 if (!freespace_inode) 7933 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7934 7935 btrfs_remove_ordered_extent(inode, ordered); 7936 btrfs_put_ordered_extent(ordered); 7937 btrfs_put_ordered_extent(ordered); 7938 } 7939 } 7940 btrfs_qgroup_check_reserved_leak(inode); 7941 btrfs_del_inode_from_root(inode); 7942 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7943 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7944 btrfs_put_root(inode->root); 7945 } 7946 7947 int btrfs_drop_inode(struct inode *inode) 7948 { 7949 struct btrfs_root *root = BTRFS_I(inode)->root; 7950 7951 if (root == NULL) 7952 return 1; 7953 7954 /* the snap/subvol tree is on deleting */ 7955 if (btrfs_root_refs(&root->root_item) == 0) 7956 return 1; 7957 else 7958 return generic_drop_inode(inode); 7959 } 7960 7961 static void init_once(void *foo) 7962 { 7963 struct btrfs_inode *ei = foo; 7964 7965 inode_init_once(&ei->vfs_inode); 7966 } 7967 7968 void __cold btrfs_destroy_cachep(void) 7969 { 7970 /* 7971 * Make sure all delayed rcu free inodes are flushed before we 7972 * destroy cache. 7973 */ 7974 rcu_barrier(); 7975 kmem_cache_destroy(btrfs_inode_cachep); 7976 } 7977 7978 int __init btrfs_init_cachep(void) 7979 { 7980 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7981 sizeof(struct btrfs_inode), 0, 7982 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7983 init_once); 7984 if (!btrfs_inode_cachep) 7985 return -ENOMEM; 7986 7987 return 0; 7988 } 7989 7990 static int btrfs_getattr(struct mnt_idmap *idmap, 7991 const struct path *path, struct kstat *stat, 7992 u32 request_mask, unsigned int flags) 7993 { 7994 u64 delalloc_bytes; 7995 u64 inode_bytes; 7996 struct inode *inode = d_inode(path->dentry); 7997 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7998 u32 bi_flags = BTRFS_I(inode)->flags; 7999 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8000 8001 stat->result_mask |= STATX_BTIME; 8002 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8003 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8004 if (bi_flags & BTRFS_INODE_APPEND) 8005 stat->attributes |= STATX_ATTR_APPEND; 8006 if (bi_flags & BTRFS_INODE_COMPRESS) 8007 stat->attributes |= STATX_ATTR_COMPRESSED; 8008 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8009 stat->attributes |= STATX_ATTR_IMMUTABLE; 8010 if (bi_flags & BTRFS_INODE_NODUMP) 8011 stat->attributes |= STATX_ATTR_NODUMP; 8012 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8013 stat->attributes |= STATX_ATTR_VERITY; 8014 8015 stat->attributes_mask |= (STATX_ATTR_APPEND | 8016 STATX_ATTR_COMPRESSED | 8017 STATX_ATTR_IMMUTABLE | 8018 STATX_ATTR_NODUMP); 8019 8020 generic_fillattr(idmap, request_mask, inode, stat); 8021 stat->dev = BTRFS_I(inode)->root->anon_dev; 8022 8023 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8024 stat->result_mask |= STATX_SUBVOL; 8025 8026 spin_lock(&BTRFS_I(inode)->lock); 8027 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8028 inode_bytes = inode_get_bytes(inode); 8029 spin_unlock(&BTRFS_I(inode)->lock); 8030 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8031 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8032 return 0; 8033 } 8034 8035 static int btrfs_rename_exchange(struct inode *old_dir, 8036 struct dentry *old_dentry, 8037 struct inode *new_dir, 8038 struct dentry *new_dentry) 8039 { 8040 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8041 struct btrfs_trans_handle *trans; 8042 unsigned int trans_num_items; 8043 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8044 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8045 struct inode *new_inode = new_dentry->d_inode; 8046 struct inode *old_inode = old_dentry->d_inode; 8047 struct btrfs_rename_ctx old_rename_ctx; 8048 struct btrfs_rename_ctx new_rename_ctx; 8049 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8050 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8051 u64 old_idx = 0; 8052 u64 new_idx = 0; 8053 int ret; 8054 int ret2; 8055 bool need_abort = false; 8056 bool logs_pinned = false; 8057 struct fscrypt_name old_fname, new_fname; 8058 struct fscrypt_str *old_name, *new_name; 8059 8060 /* 8061 * For non-subvolumes allow exchange only within one subvolume, in the 8062 * same inode namespace. Two subvolumes (represented as directory) can 8063 * be exchanged as they're a logical link and have a fixed inode number. 8064 */ 8065 if (root != dest && 8066 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8067 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8068 return -EXDEV; 8069 8070 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8071 if (ret) 8072 return ret; 8073 8074 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8075 if (ret) { 8076 fscrypt_free_filename(&old_fname); 8077 return ret; 8078 } 8079 8080 old_name = &old_fname.disk_name; 8081 new_name = &new_fname.disk_name; 8082 8083 /* close the race window with snapshot create/destroy ioctl */ 8084 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8085 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8086 down_read(&fs_info->subvol_sem); 8087 8088 /* 8089 * For each inode: 8090 * 1 to remove old dir item 8091 * 1 to remove old dir index 8092 * 1 to add new dir item 8093 * 1 to add new dir index 8094 * 1 to update parent inode 8095 * 8096 * If the parents are the same, we only need to account for one 8097 */ 8098 trans_num_items = (old_dir == new_dir ? 9 : 10); 8099 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8100 /* 8101 * 1 to remove old root ref 8102 * 1 to remove old root backref 8103 * 1 to add new root ref 8104 * 1 to add new root backref 8105 */ 8106 trans_num_items += 4; 8107 } else { 8108 /* 8109 * 1 to update inode item 8110 * 1 to remove old inode ref 8111 * 1 to add new inode ref 8112 */ 8113 trans_num_items += 3; 8114 } 8115 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8116 trans_num_items += 4; 8117 else 8118 trans_num_items += 3; 8119 trans = btrfs_start_transaction(root, trans_num_items); 8120 if (IS_ERR(trans)) { 8121 ret = PTR_ERR(trans); 8122 goto out_notrans; 8123 } 8124 8125 if (dest != root) { 8126 ret = btrfs_record_root_in_trans(trans, dest); 8127 if (ret) 8128 goto out_fail; 8129 } 8130 8131 /* 8132 * We need to find a free sequence number both in the source and 8133 * in the destination directory for the exchange. 8134 */ 8135 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8136 if (ret) 8137 goto out_fail; 8138 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8139 if (ret) 8140 goto out_fail; 8141 8142 BTRFS_I(old_inode)->dir_index = 0ULL; 8143 BTRFS_I(new_inode)->dir_index = 0ULL; 8144 8145 /* Reference for the source. */ 8146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8147 /* force full log commit if subvolume involved. */ 8148 btrfs_set_log_full_commit(trans); 8149 } else { 8150 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8151 btrfs_ino(BTRFS_I(new_dir)), 8152 old_idx); 8153 if (ret) 8154 goto out_fail; 8155 need_abort = true; 8156 } 8157 8158 /* And now for the dest. */ 8159 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8160 /* force full log commit if subvolume involved. */ 8161 btrfs_set_log_full_commit(trans); 8162 } else { 8163 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8164 btrfs_ino(BTRFS_I(old_dir)), 8165 new_idx); 8166 if (ret) { 8167 if (need_abort) 8168 btrfs_abort_transaction(trans, ret); 8169 goto out_fail; 8170 } 8171 } 8172 8173 /* Update inode version and ctime/mtime. */ 8174 inode_inc_iversion(old_dir); 8175 inode_inc_iversion(new_dir); 8176 inode_inc_iversion(old_inode); 8177 inode_inc_iversion(new_inode); 8178 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8179 8180 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8181 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8182 /* 8183 * If we are renaming in the same directory (and it's not for 8184 * root entries) pin the log early to prevent any concurrent 8185 * task from logging the directory after we removed the old 8186 * entries and before we add the new entries, otherwise that 8187 * task can sync a log without any entry for the inodes we are 8188 * renaming and therefore replaying that log, if a power failure 8189 * happens after syncing the log, would result in deleting the 8190 * inodes. 8191 * 8192 * If the rename affects two different directories, we want to 8193 * make sure the that there's no log commit that contains 8194 * updates for only one of the directories but not for the 8195 * other. 8196 * 8197 * If we are renaming an entry for a root, we don't care about 8198 * log updates since we called btrfs_set_log_full_commit(). 8199 */ 8200 btrfs_pin_log_trans(root); 8201 btrfs_pin_log_trans(dest); 8202 logs_pinned = true; 8203 } 8204 8205 if (old_dentry->d_parent != new_dentry->d_parent) { 8206 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8207 BTRFS_I(old_inode), true); 8208 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8209 BTRFS_I(new_inode), true); 8210 } 8211 8212 /* src is a subvolume */ 8213 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8214 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8215 if (ret) { 8216 btrfs_abort_transaction(trans, ret); 8217 goto out_fail; 8218 } 8219 } else { /* src is an inode */ 8220 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8221 BTRFS_I(old_dentry->d_inode), 8222 old_name, &old_rename_ctx); 8223 if (ret) { 8224 btrfs_abort_transaction(trans, ret); 8225 goto out_fail; 8226 } 8227 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8228 if (ret) { 8229 btrfs_abort_transaction(trans, ret); 8230 goto out_fail; 8231 } 8232 } 8233 8234 /* dest is a subvolume */ 8235 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8236 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8237 if (ret) { 8238 btrfs_abort_transaction(trans, ret); 8239 goto out_fail; 8240 } 8241 } else { /* dest is an inode */ 8242 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8243 BTRFS_I(new_dentry->d_inode), 8244 new_name, &new_rename_ctx); 8245 if (ret) { 8246 btrfs_abort_transaction(trans, ret); 8247 goto out_fail; 8248 } 8249 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8250 if (ret) { 8251 btrfs_abort_transaction(trans, ret); 8252 goto out_fail; 8253 } 8254 } 8255 8256 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8257 new_name, 0, old_idx); 8258 if (ret) { 8259 btrfs_abort_transaction(trans, ret); 8260 goto out_fail; 8261 } 8262 8263 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8264 old_name, 0, new_idx); 8265 if (ret) { 8266 btrfs_abort_transaction(trans, ret); 8267 goto out_fail; 8268 } 8269 8270 if (old_inode->i_nlink == 1) 8271 BTRFS_I(old_inode)->dir_index = old_idx; 8272 if (new_inode->i_nlink == 1) 8273 BTRFS_I(new_inode)->dir_index = new_idx; 8274 8275 /* 8276 * Do the log updates for all inodes. 8277 * 8278 * If either entry is for a root we don't need to update the logs since 8279 * we've called btrfs_set_log_full_commit() before. 8280 */ 8281 if (logs_pinned) { 8282 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8283 old_rename_ctx.index, new_dentry->d_parent); 8284 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8285 new_rename_ctx.index, old_dentry->d_parent); 8286 } 8287 8288 out_fail: 8289 if (logs_pinned) { 8290 btrfs_end_log_trans(root); 8291 btrfs_end_log_trans(dest); 8292 } 8293 ret2 = btrfs_end_transaction(trans); 8294 ret = ret ? ret : ret2; 8295 out_notrans: 8296 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8297 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8298 up_read(&fs_info->subvol_sem); 8299 8300 fscrypt_free_filename(&new_fname); 8301 fscrypt_free_filename(&old_fname); 8302 return ret; 8303 } 8304 8305 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8306 struct inode *dir) 8307 { 8308 struct inode *inode; 8309 8310 inode = new_inode(dir->i_sb); 8311 if (inode) { 8312 inode_init_owner(idmap, inode, dir, 8313 S_IFCHR | WHITEOUT_MODE); 8314 inode->i_op = &btrfs_special_inode_operations; 8315 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8316 } 8317 return inode; 8318 } 8319 8320 static int btrfs_rename(struct mnt_idmap *idmap, 8321 struct inode *old_dir, struct dentry *old_dentry, 8322 struct inode *new_dir, struct dentry *new_dentry, 8323 unsigned int flags) 8324 { 8325 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8326 struct btrfs_new_inode_args whiteout_args = { 8327 .dir = old_dir, 8328 .dentry = old_dentry, 8329 }; 8330 struct btrfs_trans_handle *trans; 8331 unsigned int trans_num_items; 8332 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8333 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8334 struct inode *new_inode = d_inode(new_dentry); 8335 struct inode *old_inode = d_inode(old_dentry); 8336 struct btrfs_rename_ctx rename_ctx; 8337 u64 index = 0; 8338 int ret; 8339 int ret2; 8340 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8341 struct fscrypt_name old_fname, new_fname; 8342 bool logs_pinned = false; 8343 8344 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8345 return -EPERM; 8346 8347 /* we only allow rename subvolume link between subvolumes */ 8348 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8349 return -EXDEV; 8350 8351 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8352 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8353 return -ENOTEMPTY; 8354 8355 if (S_ISDIR(old_inode->i_mode) && new_inode && 8356 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8357 return -ENOTEMPTY; 8358 8359 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8360 if (ret) 8361 return ret; 8362 8363 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8364 if (ret) { 8365 fscrypt_free_filename(&old_fname); 8366 return ret; 8367 } 8368 8369 /* check for collisions, even if the name isn't there */ 8370 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8371 if (ret) { 8372 if (ret == -EEXIST) { 8373 /* we shouldn't get 8374 * eexist without a new_inode */ 8375 if (WARN_ON(!new_inode)) { 8376 goto out_fscrypt_names; 8377 } 8378 } else { 8379 /* maybe -EOVERFLOW */ 8380 goto out_fscrypt_names; 8381 } 8382 } 8383 ret = 0; 8384 8385 /* 8386 * we're using rename to replace one file with another. Start IO on it 8387 * now so we don't add too much work to the end of the transaction 8388 */ 8389 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8390 filemap_flush(old_inode->i_mapping); 8391 8392 if (flags & RENAME_WHITEOUT) { 8393 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8394 if (!whiteout_args.inode) { 8395 ret = -ENOMEM; 8396 goto out_fscrypt_names; 8397 } 8398 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8399 if (ret) 8400 goto out_whiteout_inode; 8401 } else { 8402 /* 1 to update the old parent inode. */ 8403 trans_num_items = 1; 8404 } 8405 8406 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8407 /* Close the race window with snapshot create/destroy ioctl */ 8408 down_read(&fs_info->subvol_sem); 8409 /* 8410 * 1 to remove old root ref 8411 * 1 to remove old root backref 8412 * 1 to add new root ref 8413 * 1 to add new root backref 8414 */ 8415 trans_num_items += 4; 8416 } else { 8417 /* 8418 * 1 to update inode 8419 * 1 to remove old inode ref 8420 * 1 to add new inode ref 8421 */ 8422 trans_num_items += 3; 8423 } 8424 /* 8425 * 1 to remove old dir item 8426 * 1 to remove old dir index 8427 * 1 to add new dir item 8428 * 1 to add new dir index 8429 */ 8430 trans_num_items += 4; 8431 /* 1 to update new parent inode if it's not the same as the old parent */ 8432 if (new_dir != old_dir) 8433 trans_num_items++; 8434 if (new_inode) { 8435 /* 8436 * 1 to update inode 8437 * 1 to remove inode ref 8438 * 1 to remove dir item 8439 * 1 to remove dir index 8440 * 1 to possibly add orphan item 8441 */ 8442 trans_num_items += 5; 8443 } 8444 trans = btrfs_start_transaction(root, trans_num_items); 8445 if (IS_ERR(trans)) { 8446 ret = PTR_ERR(trans); 8447 goto out_notrans; 8448 } 8449 8450 if (dest != root) { 8451 ret = btrfs_record_root_in_trans(trans, dest); 8452 if (ret) 8453 goto out_fail; 8454 } 8455 8456 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8457 if (ret) 8458 goto out_fail; 8459 8460 BTRFS_I(old_inode)->dir_index = 0ULL; 8461 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8462 /* force full log commit if subvolume involved. */ 8463 btrfs_set_log_full_commit(trans); 8464 } else { 8465 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8466 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8467 index); 8468 if (ret) 8469 goto out_fail; 8470 } 8471 8472 inode_inc_iversion(old_dir); 8473 inode_inc_iversion(new_dir); 8474 inode_inc_iversion(old_inode); 8475 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8476 8477 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8478 /* 8479 * If we are renaming in the same directory (and it's not a 8480 * root entry) pin the log to prevent any concurrent task from 8481 * logging the directory after we removed the old entry and 8482 * before we add the new entry, otherwise that task can sync 8483 * a log without any entry for the inode we are renaming and 8484 * therefore replaying that log, if a power failure happens 8485 * after syncing the log, would result in deleting the inode. 8486 * 8487 * If the rename affects two different directories, we want to 8488 * make sure the that there's no log commit that contains 8489 * updates for only one of the directories but not for the 8490 * other. 8491 * 8492 * If we are renaming an entry for a root, we don't care about 8493 * log updates since we called btrfs_set_log_full_commit(). 8494 */ 8495 btrfs_pin_log_trans(root); 8496 btrfs_pin_log_trans(dest); 8497 logs_pinned = true; 8498 } 8499 8500 if (old_dentry->d_parent != new_dentry->d_parent) 8501 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8502 BTRFS_I(old_inode), true); 8503 8504 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8505 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8506 if (ret) { 8507 btrfs_abort_transaction(trans, ret); 8508 goto out_fail; 8509 } 8510 } else { 8511 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8512 BTRFS_I(d_inode(old_dentry)), 8513 &old_fname.disk_name, &rename_ctx); 8514 if (ret) { 8515 btrfs_abort_transaction(trans, ret); 8516 goto out_fail; 8517 } 8518 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8519 if (ret) { 8520 btrfs_abort_transaction(trans, ret); 8521 goto out_fail; 8522 } 8523 } 8524 8525 if (new_inode) { 8526 inode_inc_iversion(new_inode); 8527 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8528 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8529 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8530 if (ret) { 8531 btrfs_abort_transaction(trans, ret); 8532 goto out_fail; 8533 } 8534 BUG_ON(new_inode->i_nlink == 0); 8535 } else { 8536 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8537 BTRFS_I(d_inode(new_dentry)), 8538 &new_fname.disk_name); 8539 if (ret) { 8540 btrfs_abort_transaction(trans, ret); 8541 goto out_fail; 8542 } 8543 } 8544 if (new_inode->i_nlink == 0) { 8545 ret = btrfs_orphan_add(trans, 8546 BTRFS_I(d_inode(new_dentry))); 8547 if (ret) { 8548 btrfs_abort_transaction(trans, ret); 8549 goto out_fail; 8550 } 8551 } 8552 } 8553 8554 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8555 &new_fname.disk_name, 0, index); 8556 if (ret) { 8557 btrfs_abort_transaction(trans, ret); 8558 goto out_fail; 8559 } 8560 8561 if (old_inode->i_nlink == 1) 8562 BTRFS_I(old_inode)->dir_index = index; 8563 8564 if (logs_pinned) 8565 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8566 rename_ctx.index, new_dentry->d_parent); 8567 8568 if (flags & RENAME_WHITEOUT) { 8569 ret = btrfs_create_new_inode(trans, &whiteout_args); 8570 if (ret) { 8571 btrfs_abort_transaction(trans, ret); 8572 goto out_fail; 8573 } else { 8574 unlock_new_inode(whiteout_args.inode); 8575 iput(whiteout_args.inode); 8576 whiteout_args.inode = NULL; 8577 } 8578 } 8579 out_fail: 8580 if (logs_pinned) { 8581 btrfs_end_log_trans(root); 8582 btrfs_end_log_trans(dest); 8583 } 8584 ret2 = btrfs_end_transaction(trans); 8585 ret = ret ? ret : ret2; 8586 out_notrans: 8587 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8588 up_read(&fs_info->subvol_sem); 8589 if (flags & RENAME_WHITEOUT) 8590 btrfs_new_inode_args_destroy(&whiteout_args); 8591 out_whiteout_inode: 8592 if (flags & RENAME_WHITEOUT) 8593 iput(whiteout_args.inode); 8594 out_fscrypt_names: 8595 fscrypt_free_filename(&old_fname); 8596 fscrypt_free_filename(&new_fname); 8597 return ret; 8598 } 8599 8600 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8601 struct dentry *old_dentry, struct inode *new_dir, 8602 struct dentry *new_dentry, unsigned int flags) 8603 { 8604 int ret; 8605 8606 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8607 return -EINVAL; 8608 8609 if (flags & RENAME_EXCHANGE) 8610 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8611 new_dentry); 8612 else 8613 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8614 new_dentry, flags); 8615 8616 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8617 8618 return ret; 8619 } 8620 8621 struct btrfs_delalloc_work { 8622 struct inode *inode; 8623 struct completion completion; 8624 struct list_head list; 8625 struct btrfs_work work; 8626 }; 8627 8628 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8629 { 8630 struct btrfs_delalloc_work *delalloc_work; 8631 struct inode *inode; 8632 8633 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8634 work); 8635 inode = delalloc_work->inode; 8636 filemap_flush(inode->i_mapping); 8637 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8638 &BTRFS_I(inode)->runtime_flags)) 8639 filemap_flush(inode->i_mapping); 8640 8641 iput(inode); 8642 complete(&delalloc_work->completion); 8643 } 8644 8645 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8646 { 8647 struct btrfs_delalloc_work *work; 8648 8649 work = kmalloc(sizeof(*work), GFP_NOFS); 8650 if (!work) 8651 return NULL; 8652 8653 init_completion(&work->completion); 8654 INIT_LIST_HEAD(&work->list); 8655 work->inode = inode; 8656 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8657 8658 return work; 8659 } 8660 8661 /* 8662 * some fairly slow code that needs optimization. This walks the list 8663 * of all the inodes with pending delalloc and forces them to disk. 8664 */ 8665 static int start_delalloc_inodes(struct btrfs_root *root, 8666 struct writeback_control *wbc, bool snapshot, 8667 bool in_reclaim_context) 8668 { 8669 struct btrfs_delalloc_work *work, *next; 8670 LIST_HEAD(works); 8671 LIST_HEAD(splice); 8672 int ret = 0; 8673 bool full_flush = wbc->nr_to_write == LONG_MAX; 8674 8675 mutex_lock(&root->delalloc_mutex); 8676 spin_lock(&root->delalloc_lock); 8677 list_splice_init(&root->delalloc_inodes, &splice); 8678 while (!list_empty(&splice)) { 8679 struct btrfs_inode *inode; 8680 struct inode *tmp_inode; 8681 8682 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8683 8684 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8685 8686 if (in_reclaim_context && 8687 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8688 continue; 8689 8690 tmp_inode = igrab(&inode->vfs_inode); 8691 if (!tmp_inode) { 8692 cond_resched_lock(&root->delalloc_lock); 8693 continue; 8694 } 8695 spin_unlock(&root->delalloc_lock); 8696 8697 if (snapshot) 8698 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8699 if (full_flush) { 8700 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8701 if (!work) { 8702 iput(&inode->vfs_inode); 8703 ret = -ENOMEM; 8704 goto out; 8705 } 8706 list_add_tail(&work->list, &works); 8707 btrfs_queue_work(root->fs_info->flush_workers, 8708 &work->work); 8709 } else { 8710 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8711 btrfs_add_delayed_iput(inode); 8712 if (ret || wbc->nr_to_write <= 0) 8713 goto out; 8714 } 8715 cond_resched(); 8716 spin_lock(&root->delalloc_lock); 8717 } 8718 spin_unlock(&root->delalloc_lock); 8719 8720 out: 8721 list_for_each_entry_safe(work, next, &works, list) { 8722 list_del_init(&work->list); 8723 wait_for_completion(&work->completion); 8724 kfree(work); 8725 } 8726 8727 if (!list_empty(&splice)) { 8728 spin_lock(&root->delalloc_lock); 8729 list_splice_tail(&splice, &root->delalloc_inodes); 8730 spin_unlock(&root->delalloc_lock); 8731 } 8732 mutex_unlock(&root->delalloc_mutex); 8733 return ret; 8734 } 8735 8736 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8737 { 8738 struct writeback_control wbc = { 8739 .nr_to_write = LONG_MAX, 8740 .sync_mode = WB_SYNC_NONE, 8741 .range_start = 0, 8742 .range_end = LLONG_MAX, 8743 }; 8744 struct btrfs_fs_info *fs_info = root->fs_info; 8745 8746 if (BTRFS_FS_ERROR(fs_info)) 8747 return -EROFS; 8748 8749 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8750 } 8751 8752 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8753 bool in_reclaim_context) 8754 { 8755 struct writeback_control wbc = { 8756 .nr_to_write = nr, 8757 .sync_mode = WB_SYNC_NONE, 8758 .range_start = 0, 8759 .range_end = LLONG_MAX, 8760 }; 8761 struct btrfs_root *root; 8762 LIST_HEAD(splice); 8763 int ret; 8764 8765 if (BTRFS_FS_ERROR(fs_info)) 8766 return -EROFS; 8767 8768 mutex_lock(&fs_info->delalloc_root_mutex); 8769 spin_lock(&fs_info->delalloc_root_lock); 8770 list_splice_init(&fs_info->delalloc_roots, &splice); 8771 while (!list_empty(&splice)) { 8772 /* 8773 * Reset nr_to_write here so we know that we're doing a full 8774 * flush. 8775 */ 8776 if (nr == LONG_MAX) 8777 wbc.nr_to_write = LONG_MAX; 8778 8779 root = list_first_entry(&splice, struct btrfs_root, 8780 delalloc_root); 8781 root = btrfs_grab_root(root); 8782 BUG_ON(!root); 8783 list_move_tail(&root->delalloc_root, 8784 &fs_info->delalloc_roots); 8785 spin_unlock(&fs_info->delalloc_root_lock); 8786 8787 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8788 btrfs_put_root(root); 8789 if (ret < 0 || wbc.nr_to_write <= 0) 8790 goto out; 8791 spin_lock(&fs_info->delalloc_root_lock); 8792 } 8793 spin_unlock(&fs_info->delalloc_root_lock); 8794 8795 ret = 0; 8796 out: 8797 if (!list_empty(&splice)) { 8798 spin_lock(&fs_info->delalloc_root_lock); 8799 list_splice_tail(&splice, &fs_info->delalloc_roots); 8800 spin_unlock(&fs_info->delalloc_root_lock); 8801 } 8802 mutex_unlock(&fs_info->delalloc_root_mutex); 8803 return ret; 8804 } 8805 8806 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8807 struct dentry *dentry, const char *symname) 8808 { 8809 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8810 struct btrfs_trans_handle *trans; 8811 struct btrfs_root *root = BTRFS_I(dir)->root; 8812 struct btrfs_path *path; 8813 struct btrfs_key key; 8814 struct inode *inode; 8815 struct btrfs_new_inode_args new_inode_args = { 8816 .dir = dir, 8817 .dentry = dentry, 8818 }; 8819 unsigned int trans_num_items; 8820 int ret; 8821 int name_len; 8822 int datasize; 8823 unsigned long ptr; 8824 struct btrfs_file_extent_item *ei; 8825 struct extent_buffer *leaf; 8826 8827 name_len = strlen(symname); 8828 /* 8829 * Symlinks utilize uncompressed inline extent data, which should not 8830 * reach block size. 8831 */ 8832 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8833 name_len >= fs_info->sectorsize) 8834 return -ENAMETOOLONG; 8835 8836 inode = new_inode(dir->i_sb); 8837 if (!inode) 8838 return -ENOMEM; 8839 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8840 inode->i_op = &btrfs_symlink_inode_operations; 8841 inode_nohighmem(inode); 8842 inode->i_mapping->a_ops = &btrfs_aops; 8843 btrfs_i_size_write(BTRFS_I(inode), name_len); 8844 inode_set_bytes(inode, name_len); 8845 8846 new_inode_args.inode = inode; 8847 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8848 if (ret) 8849 goto out_inode; 8850 /* 1 additional item for the inline extent */ 8851 trans_num_items++; 8852 8853 trans = btrfs_start_transaction(root, trans_num_items); 8854 if (IS_ERR(trans)) { 8855 ret = PTR_ERR(trans); 8856 goto out_new_inode_args; 8857 } 8858 8859 ret = btrfs_create_new_inode(trans, &new_inode_args); 8860 if (ret) 8861 goto out; 8862 8863 path = btrfs_alloc_path(); 8864 if (!path) { 8865 ret = -ENOMEM; 8866 btrfs_abort_transaction(trans, ret); 8867 discard_new_inode(inode); 8868 inode = NULL; 8869 goto out; 8870 } 8871 key.objectid = btrfs_ino(BTRFS_I(inode)); 8872 key.type = BTRFS_EXTENT_DATA_KEY; 8873 key.offset = 0; 8874 datasize = btrfs_file_extent_calc_inline_size(name_len); 8875 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8876 if (ret) { 8877 btrfs_abort_transaction(trans, ret); 8878 btrfs_free_path(path); 8879 discard_new_inode(inode); 8880 inode = NULL; 8881 goto out; 8882 } 8883 leaf = path->nodes[0]; 8884 ei = btrfs_item_ptr(leaf, path->slots[0], 8885 struct btrfs_file_extent_item); 8886 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8887 btrfs_set_file_extent_type(leaf, ei, 8888 BTRFS_FILE_EXTENT_INLINE); 8889 btrfs_set_file_extent_encryption(leaf, ei, 0); 8890 btrfs_set_file_extent_compression(leaf, ei, 0); 8891 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8892 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8893 8894 ptr = btrfs_file_extent_inline_start(ei); 8895 write_extent_buffer(leaf, symname, ptr, name_len); 8896 btrfs_free_path(path); 8897 8898 d_instantiate_new(dentry, inode); 8899 ret = 0; 8900 out: 8901 btrfs_end_transaction(trans); 8902 btrfs_btree_balance_dirty(fs_info); 8903 out_new_inode_args: 8904 btrfs_new_inode_args_destroy(&new_inode_args); 8905 out_inode: 8906 if (ret) 8907 iput(inode); 8908 return ret; 8909 } 8910 8911 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8912 struct btrfs_trans_handle *trans_in, 8913 struct btrfs_inode *inode, 8914 struct btrfs_key *ins, 8915 u64 file_offset) 8916 { 8917 struct btrfs_file_extent_item stack_fi; 8918 struct btrfs_replace_extent_info extent_info; 8919 struct btrfs_trans_handle *trans = trans_in; 8920 struct btrfs_path *path; 8921 u64 start = ins->objectid; 8922 u64 len = ins->offset; 8923 u64 qgroup_released = 0; 8924 int ret; 8925 8926 memset(&stack_fi, 0, sizeof(stack_fi)); 8927 8928 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8929 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8930 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8931 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8932 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8933 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8934 /* Encryption and other encoding is reserved and all 0 */ 8935 8936 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8937 if (ret < 0) 8938 return ERR_PTR(ret); 8939 8940 if (trans) { 8941 ret = insert_reserved_file_extent(trans, inode, 8942 file_offset, &stack_fi, 8943 true, qgroup_released); 8944 if (ret) 8945 goto free_qgroup; 8946 return trans; 8947 } 8948 8949 extent_info.disk_offset = start; 8950 extent_info.disk_len = len; 8951 extent_info.data_offset = 0; 8952 extent_info.data_len = len; 8953 extent_info.file_offset = file_offset; 8954 extent_info.extent_buf = (char *)&stack_fi; 8955 extent_info.is_new_extent = true; 8956 extent_info.update_times = true; 8957 extent_info.qgroup_reserved = qgroup_released; 8958 extent_info.insertions = 0; 8959 8960 path = btrfs_alloc_path(); 8961 if (!path) { 8962 ret = -ENOMEM; 8963 goto free_qgroup; 8964 } 8965 8966 ret = btrfs_replace_file_extents(inode, path, file_offset, 8967 file_offset + len - 1, &extent_info, 8968 &trans); 8969 btrfs_free_path(path); 8970 if (ret) 8971 goto free_qgroup; 8972 return trans; 8973 8974 free_qgroup: 8975 /* 8976 * We have released qgroup data range at the beginning of the function, 8977 * and normally qgroup_released bytes will be freed when committing 8978 * transaction. 8979 * But if we error out early, we have to free what we have released 8980 * or we leak qgroup data reservation. 8981 */ 8982 btrfs_qgroup_free_refroot(inode->root->fs_info, 8983 btrfs_root_id(inode->root), qgroup_released, 8984 BTRFS_QGROUP_RSV_DATA); 8985 return ERR_PTR(ret); 8986 } 8987 8988 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8989 u64 start, u64 num_bytes, u64 min_size, 8990 loff_t actual_len, u64 *alloc_hint, 8991 struct btrfs_trans_handle *trans) 8992 { 8993 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8994 struct extent_map *em; 8995 struct btrfs_root *root = BTRFS_I(inode)->root; 8996 struct btrfs_key ins; 8997 u64 cur_offset = start; 8998 u64 clear_offset = start; 8999 u64 i_size; 9000 u64 cur_bytes; 9001 u64 last_alloc = (u64)-1; 9002 int ret = 0; 9003 bool own_trans = true; 9004 u64 end = start + num_bytes - 1; 9005 9006 if (trans) 9007 own_trans = false; 9008 while (num_bytes > 0) { 9009 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9010 cur_bytes = max(cur_bytes, min_size); 9011 /* 9012 * If we are severely fragmented we could end up with really 9013 * small allocations, so if the allocator is returning small 9014 * chunks lets make its job easier by only searching for those 9015 * sized chunks. 9016 */ 9017 cur_bytes = min(cur_bytes, last_alloc); 9018 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9019 min_size, 0, *alloc_hint, &ins, 1, 0); 9020 if (ret) 9021 break; 9022 9023 /* 9024 * We've reserved this space, and thus converted it from 9025 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9026 * from here on out we will only need to clear our reservation 9027 * for the remaining unreserved area, so advance our 9028 * clear_offset by our extent size. 9029 */ 9030 clear_offset += ins.offset; 9031 9032 last_alloc = ins.offset; 9033 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9034 &ins, cur_offset); 9035 /* 9036 * Now that we inserted the prealloc extent we can finally 9037 * decrement the number of reservations in the block group. 9038 * If we did it before, we could race with relocation and have 9039 * relocation miss the reserved extent, making it fail later. 9040 */ 9041 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9042 if (IS_ERR(trans)) { 9043 ret = PTR_ERR(trans); 9044 btrfs_free_reserved_extent(fs_info, ins.objectid, 9045 ins.offset, false); 9046 break; 9047 } 9048 9049 em = btrfs_alloc_extent_map(); 9050 if (!em) { 9051 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9052 cur_offset + ins.offset - 1, false); 9053 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9054 goto next; 9055 } 9056 9057 em->start = cur_offset; 9058 em->len = ins.offset; 9059 em->disk_bytenr = ins.objectid; 9060 em->offset = 0; 9061 em->disk_num_bytes = ins.offset; 9062 em->ram_bytes = ins.offset; 9063 em->flags |= EXTENT_FLAG_PREALLOC; 9064 em->generation = trans->transid; 9065 9066 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9067 btrfs_free_extent_map(em); 9068 next: 9069 num_bytes -= ins.offset; 9070 cur_offset += ins.offset; 9071 *alloc_hint = ins.objectid + ins.offset; 9072 9073 inode_inc_iversion(inode); 9074 inode_set_ctime_current(inode); 9075 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9076 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9077 (actual_len > inode->i_size) && 9078 (cur_offset > inode->i_size)) { 9079 if (cur_offset > actual_len) 9080 i_size = actual_len; 9081 else 9082 i_size = cur_offset; 9083 i_size_write(inode, i_size); 9084 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9085 } 9086 9087 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9088 9089 if (ret) { 9090 btrfs_abort_transaction(trans, ret); 9091 if (own_trans) 9092 btrfs_end_transaction(trans); 9093 break; 9094 } 9095 9096 if (own_trans) { 9097 btrfs_end_transaction(trans); 9098 trans = NULL; 9099 } 9100 } 9101 if (clear_offset < end) 9102 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9103 end - clear_offset + 1); 9104 return ret; 9105 } 9106 9107 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9108 u64 start, u64 num_bytes, u64 min_size, 9109 loff_t actual_len, u64 *alloc_hint) 9110 { 9111 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9112 min_size, actual_len, alloc_hint, 9113 NULL); 9114 } 9115 9116 int btrfs_prealloc_file_range_trans(struct inode *inode, 9117 struct btrfs_trans_handle *trans, int mode, 9118 u64 start, u64 num_bytes, u64 min_size, 9119 loff_t actual_len, u64 *alloc_hint) 9120 { 9121 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9122 min_size, actual_len, alloc_hint, trans); 9123 } 9124 9125 static int btrfs_permission(struct mnt_idmap *idmap, 9126 struct inode *inode, int mask) 9127 { 9128 struct btrfs_root *root = BTRFS_I(inode)->root; 9129 umode_t mode = inode->i_mode; 9130 9131 if (mask & MAY_WRITE && 9132 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9133 if (btrfs_root_readonly(root)) 9134 return -EROFS; 9135 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9136 return -EACCES; 9137 } 9138 return generic_permission(idmap, inode, mask); 9139 } 9140 9141 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9142 struct file *file, umode_t mode) 9143 { 9144 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9145 struct btrfs_trans_handle *trans; 9146 struct btrfs_root *root = BTRFS_I(dir)->root; 9147 struct inode *inode; 9148 struct btrfs_new_inode_args new_inode_args = { 9149 .dir = dir, 9150 .dentry = file->f_path.dentry, 9151 .orphan = true, 9152 }; 9153 unsigned int trans_num_items; 9154 int ret; 9155 9156 inode = new_inode(dir->i_sb); 9157 if (!inode) 9158 return -ENOMEM; 9159 inode_init_owner(idmap, inode, dir, mode); 9160 inode->i_fop = &btrfs_file_operations; 9161 inode->i_op = &btrfs_file_inode_operations; 9162 inode->i_mapping->a_ops = &btrfs_aops; 9163 9164 new_inode_args.inode = inode; 9165 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9166 if (ret) 9167 goto out_inode; 9168 9169 trans = btrfs_start_transaction(root, trans_num_items); 9170 if (IS_ERR(trans)) { 9171 ret = PTR_ERR(trans); 9172 goto out_new_inode_args; 9173 } 9174 9175 ret = btrfs_create_new_inode(trans, &new_inode_args); 9176 9177 /* 9178 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9179 * set it to 1 because d_tmpfile() will issue a warning if the count is 9180 * 0, through: 9181 * 9182 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9183 */ 9184 set_nlink(inode, 1); 9185 9186 if (!ret) { 9187 d_tmpfile(file, inode); 9188 unlock_new_inode(inode); 9189 mark_inode_dirty(inode); 9190 } 9191 9192 btrfs_end_transaction(trans); 9193 btrfs_btree_balance_dirty(fs_info); 9194 out_new_inode_args: 9195 btrfs_new_inode_args_destroy(&new_inode_args); 9196 out_inode: 9197 if (ret) 9198 iput(inode); 9199 return finish_open_simple(file, ret); 9200 } 9201 9202 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9203 int compress_type) 9204 { 9205 switch (compress_type) { 9206 case BTRFS_COMPRESS_NONE: 9207 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9208 case BTRFS_COMPRESS_ZLIB: 9209 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9210 case BTRFS_COMPRESS_LZO: 9211 /* 9212 * The LZO format depends on the sector size. 64K is the maximum 9213 * sector size that we support. 9214 */ 9215 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9216 return -EINVAL; 9217 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9218 (fs_info->sectorsize_bits - 12); 9219 case BTRFS_COMPRESS_ZSTD: 9220 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9221 default: 9222 return -EUCLEAN; 9223 } 9224 } 9225 9226 static ssize_t btrfs_encoded_read_inline( 9227 struct kiocb *iocb, 9228 struct iov_iter *iter, u64 start, 9229 u64 lockend, 9230 struct extent_state **cached_state, 9231 u64 extent_start, size_t count, 9232 struct btrfs_ioctl_encoded_io_args *encoded, 9233 bool *unlocked) 9234 { 9235 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9236 struct btrfs_root *root = inode->root; 9237 struct btrfs_fs_info *fs_info = root->fs_info; 9238 struct extent_io_tree *io_tree = &inode->io_tree; 9239 BTRFS_PATH_AUTO_FREE(path); 9240 struct extent_buffer *leaf; 9241 struct btrfs_file_extent_item *item; 9242 u64 ram_bytes; 9243 unsigned long ptr; 9244 void *tmp; 9245 ssize_t ret; 9246 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9247 9248 path = btrfs_alloc_path(); 9249 if (!path) 9250 return -ENOMEM; 9251 9252 path->nowait = nowait; 9253 9254 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9255 extent_start, 0); 9256 if (ret) { 9257 if (ret > 0) { 9258 /* The extent item disappeared? */ 9259 return -EIO; 9260 } 9261 return ret; 9262 } 9263 leaf = path->nodes[0]; 9264 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9265 9266 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9267 ptr = btrfs_file_extent_inline_start(item); 9268 9269 encoded->len = min_t(u64, extent_start + ram_bytes, 9270 inode->vfs_inode.i_size) - iocb->ki_pos; 9271 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9272 btrfs_file_extent_compression(leaf, item)); 9273 if (ret < 0) 9274 return ret; 9275 encoded->compression = ret; 9276 if (encoded->compression) { 9277 size_t inline_size; 9278 9279 inline_size = btrfs_file_extent_inline_item_len(leaf, 9280 path->slots[0]); 9281 if (inline_size > count) 9282 return -ENOBUFS; 9283 9284 count = inline_size; 9285 encoded->unencoded_len = ram_bytes; 9286 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9287 } else { 9288 count = min_t(u64, count, encoded->len); 9289 encoded->len = count; 9290 encoded->unencoded_len = count; 9291 ptr += iocb->ki_pos - extent_start; 9292 } 9293 9294 tmp = kmalloc(count, GFP_NOFS); 9295 if (!tmp) 9296 return -ENOMEM; 9297 9298 read_extent_buffer(leaf, tmp, ptr, count); 9299 btrfs_release_path(path); 9300 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9301 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9302 *unlocked = true; 9303 9304 ret = copy_to_iter(tmp, count, iter); 9305 if (ret != count) 9306 ret = -EFAULT; 9307 kfree(tmp); 9308 9309 return ret; 9310 } 9311 9312 struct btrfs_encoded_read_private { 9313 struct completion *sync_reads; 9314 void *uring_ctx; 9315 refcount_t pending_refs; 9316 blk_status_t status; 9317 }; 9318 9319 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9320 { 9321 struct btrfs_encoded_read_private *priv = bbio->private; 9322 9323 if (bbio->bio.bi_status) { 9324 /* 9325 * The memory barrier implied by the refcount_dec_and_test() here 9326 * pairs with the memory barrier implied by the refcount_dec_and_test() 9327 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9328 * this write is observed before the load of status in 9329 * btrfs_encoded_read_regular_fill_pages(). 9330 */ 9331 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9332 } 9333 if (refcount_dec_and_test(&priv->pending_refs)) { 9334 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9335 9336 if (priv->uring_ctx) { 9337 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9338 kfree(priv); 9339 } else { 9340 complete(priv->sync_reads); 9341 } 9342 } 9343 bio_put(&bbio->bio); 9344 } 9345 9346 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9347 u64 disk_bytenr, u64 disk_io_size, 9348 struct page **pages, void *uring_ctx) 9349 { 9350 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9351 struct btrfs_encoded_read_private *priv, sync_priv; 9352 struct completion sync_reads; 9353 unsigned long i = 0; 9354 struct btrfs_bio *bbio; 9355 int ret; 9356 9357 /* 9358 * Fast path for synchronous reads which completes in this call, io_uring 9359 * needs longer time span. 9360 */ 9361 if (uring_ctx) { 9362 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9363 if (!priv) 9364 return -ENOMEM; 9365 } else { 9366 priv = &sync_priv; 9367 init_completion(&sync_reads); 9368 priv->sync_reads = &sync_reads; 9369 } 9370 9371 refcount_set(&priv->pending_refs, 1); 9372 priv->status = 0; 9373 priv->uring_ctx = uring_ctx; 9374 9375 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9376 btrfs_encoded_read_endio, priv); 9377 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9378 bbio->inode = inode; 9379 9380 do { 9381 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9382 9383 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9384 refcount_inc(&priv->pending_refs); 9385 btrfs_submit_bbio(bbio, 0); 9386 9387 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9388 btrfs_encoded_read_endio, priv); 9389 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9390 bbio->inode = inode; 9391 continue; 9392 } 9393 9394 i++; 9395 disk_bytenr += bytes; 9396 disk_io_size -= bytes; 9397 } while (disk_io_size); 9398 9399 refcount_inc(&priv->pending_refs); 9400 btrfs_submit_bbio(bbio, 0); 9401 9402 if (uring_ctx) { 9403 if (refcount_dec_and_test(&priv->pending_refs)) { 9404 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9405 btrfs_uring_read_extent_endio(uring_ctx, ret); 9406 kfree(priv); 9407 return ret; 9408 } 9409 9410 return -EIOCBQUEUED; 9411 } else { 9412 if (!refcount_dec_and_test(&priv->pending_refs)) 9413 wait_for_completion_io(&sync_reads); 9414 /* See btrfs_encoded_read_endio() for ordering. */ 9415 return blk_status_to_errno(READ_ONCE(priv->status)); 9416 } 9417 } 9418 9419 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9420 u64 start, u64 lockend, 9421 struct extent_state **cached_state, 9422 u64 disk_bytenr, u64 disk_io_size, 9423 size_t count, bool compressed, bool *unlocked) 9424 { 9425 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9426 struct extent_io_tree *io_tree = &inode->io_tree; 9427 struct page **pages; 9428 unsigned long nr_pages, i; 9429 u64 cur; 9430 size_t page_offset; 9431 ssize_t ret; 9432 9433 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9434 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9435 if (!pages) 9436 return -ENOMEM; 9437 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9438 if (ret) { 9439 ret = -ENOMEM; 9440 goto out; 9441 } 9442 9443 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9444 disk_io_size, pages, NULL); 9445 if (ret) 9446 goto out; 9447 9448 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9449 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9450 *unlocked = true; 9451 9452 if (compressed) { 9453 i = 0; 9454 page_offset = 0; 9455 } else { 9456 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9457 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9458 } 9459 cur = 0; 9460 while (cur < count) { 9461 size_t bytes = min_t(size_t, count - cur, 9462 PAGE_SIZE - page_offset); 9463 9464 if (copy_page_to_iter(pages[i], page_offset, bytes, 9465 iter) != bytes) { 9466 ret = -EFAULT; 9467 goto out; 9468 } 9469 i++; 9470 cur += bytes; 9471 page_offset = 0; 9472 } 9473 ret = count; 9474 out: 9475 for (i = 0; i < nr_pages; i++) { 9476 if (pages[i]) 9477 __free_page(pages[i]); 9478 } 9479 kfree(pages); 9480 return ret; 9481 } 9482 9483 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9484 struct btrfs_ioctl_encoded_io_args *encoded, 9485 struct extent_state **cached_state, 9486 u64 *disk_bytenr, u64 *disk_io_size) 9487 { 9488 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9489 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9490 struct extent_io_tree *io_tree = &inode->io_tree; 9491 ssize_t ret; 9492 size_t count = iov_iter_count(iter); 9493 u64 start, lockend; 9494 struct extent_map *em; 9495 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9496 bool unlocked = false; 9497 9498 file_accessed(iocb->ki_filp); 9499 9500 ret = btrfs_inode_lock(inode, 9501 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9502 if (ret) 9503 return ret; 9504 9505 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9506 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9507 return 0; 9508 } 9509 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9510 /* 9511 * We don't know how long the extent containing iocb->ki_pos is, but if 9512 * it's compressed we know that it won't be longer than this. 9513 */ 9514 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9515 9516 if (nowait) { 9517 struct btrfs_ordered_extent *ordered; 9518 9519 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9520 start, lockend)) { 9521 ret = -EAGAIN; 9522 goto out_unlock_inode; 9523 } 9524 9525 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9526 ret = -EAGAIN; 9527 goto out_unlock_inode; 9528 } 9529 9530 ordered = btrfs_lookup_ordered_range(inode, start, 9531 lockend - start + 1); 9532 if (ordered) { 9533 btrfs_put_ordered_extent(ordered); 9534 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9535 ret = -EAGAIN; 9536 goto out_unlock_inode; 9537 } 9538 } else { 9539 for (;;) { 9540 struct btrfs_ordered_extent *ordered; 9541 9542 ret = btrfs_wait_ordered_range(inode, start, 9543 lockend - start + 1); 9544 if (ret) 9545 goto out_unlock_inode; 9546 9547 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9548 ordered = btrfs_lookup_ordered_range(inode, start, 9549 lockend - start + 1); 9550 if (!ordered) 9551 break; 9552 btrfs_put_ordered_extent(ordered); 9553 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9554 cond_resched(); 9555 } 9556 } 9557 9558 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9559 if (IS_ERR(em)) { 9560 ret = PTR_ERR(em); 9561 goto out_unlock_extent; 9562 } 9563 9564 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9565 u64 extent_start = em->start; 9566 9567 /* 9568 * For inline extents we get everything we need out of the 9569 * extent item. 9570 */ 9571 btrfs_free_extent_map(em); 9572 em = NULL; 9573 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9574 cached_state, extent_start, 9575 count, encoded, &unlocked); 9576 goto out_unlock_extent; 9577 } 9578 9579 /* 9580 * We only want to return up to EOF even if the extent extends beyond 9581 * that. 9582 */ 9583 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9584 inode->vfs_inode.i_size) - iocb->ki_pos; 9585 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9586 (em->flags & EXTENT_FLAG_PREALLOC)) { 9587 *disk_bytenr = EXTENT_MAP_HOLE; 9588 count = min_t(u64, count, encoded->len); 9589 encoded->len = count; 9590 encoded->unencoded_len = count; 9591 } else if (btrfs_extent_map_is_compressed(em)) { 9592 *disk_bytenr = em->disk_bytenr; 9593 /* 9594 * Bail if the buffer isn't large enough to return the whole 9595 * compressed extent. 9596 */ 9597 if (em->disk_num_bytes > count) { 9598 ret = -ENOBUFS; 9599 goto out_em; 9600 } 9601 *disk_io_size = em->disk_num_bytes; 9602 count = em->disk_num_bytes; 9603 encoded->unencoded_len = em->ram_bytes; 9604 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9605 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9606 btrfs_extent_map_compression(em)); 9607 if (ret < 0) 9608 goto out_em; 9609 encoded->compression = ret; 9610 } else { 9611 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9612 if (encoded->len > count) 9613 encoded->len = count; 9614 /* 9615 * Don't read beyond what we locked. This also limits the page 9616 * allocations that we'll do. 9617 */ 9618 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9619 count = start + *disk_io_size - iocb->ki_pos; 9620 encoded->len = count; 9621 encoded->unencoded_len = count; 9622 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9623 } 9624 btrfs_free_extent_map(em); 9625 em = NULL; 9626 9627 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9628 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9629 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9630 unlocked = true; 9631 ret = iov_iter_zero(count, iter); 9632 if (ret != count) 9633 ret = -EFAULT; 9634 } else { 9635 ret = -EIOCBQUEUED; 9636 goto out_unlock_extent; 9637 } 9638 9639 out_em: 9640 btrfs_free_extent_map(em); 9641 out_unlock_extent: 9642 /* Leave inode and extent locked if we need to do a read. */ 9643 if (!unlocked && ret != -EIOCBQUEUED) 9644 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9645 out_unlock_inode: 9646 if (!unlocked && ret != -EIOCBQUEUED) 9647 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9648 return ret; 9649 } 9650 9651 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9652 const struct btrfs_ioctl_encoded_io_args *encoded) 9653 { 9654 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9655 struct btrfs_root *root = inode->root; 9656 struct btrfs_fs_info *fs_info = root->fs_info; 9657 struct extent_io_tree *io_tree = &inode->io_tree; 9658 struct extent_changeset *data_reserved = NULL; 9659 struct extent_state *cached_state = NULL; 9660 struct btrfs_ordered_extent *ordered; 9661 struct btrfs_file_extent file_extent; 9662 int compression; 9663 size_t orig_count; 9664 u64 start, end; 9665 u64 num_bytes, ram_bytes, disk_num_bytes; 9666 unsigned long nr_folios, i; 9667 struct folio **folios; 9668 struct btrfs_key ins; 9669 bool extent_reserved = false; 9670 struct extent_map *em; 9671 ssize_t ret; 9672 9673 switch (encoded->compression) { 9674 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9675 compression = BTRFS_COMPRESS_ZLIB; 9676 break; 9677 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9678 compression = BTRFS_COMPRESS_ZSTD; 9679 break; 9680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9683 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9684 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9685 /* The sector size must match for LZO. */ 9686 if (encoded->compression - 9687 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9688 fs_info->sectorsize_bits) 9689 return -EINVAL; 9690 compression = BTRFS_COMPRESS_LZO; 9691 break; 9692 default: 9693 return -EINVAL; 9694 } 9695 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9696 return -EINVAL; 9697 9698 /* 9699 * Compressed extents should always have checksums, so error out if we 9700 * have a NOCOW file or inode was created while mounted with NODATASUM. 9701 */ 9702 if (inode->flags & BTRFS_INODE_NODATASUM) 9703 return -EINVAL; 9704 9705 orig_count = iov_iter_count(from); 9706 9707 /* The extent size must be sane. */ 9708 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9709 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9710 return -EINVAL; 9711 9712 /* 9713 * The compressed data must be smaller than the decompressed data. 9714 * 9715 * It's of course possible for data to compress to larger or the same 9716 * size, but the buffered I/O path falls back to no compression for such 9717 * data, and we don't want to break any assumptions by creating these 9718 * extents. 9719 * 9720 * Note that this is less strict than the current check we have that the 9721 * compressed data must be at least one sector smaller than the 9722 * decompressed data. We only want to enforce the weaker requirement 9723 * from old kernels that it is at least one byte smaller. 9724 */ 9725 if (orig_count >= encoded->unencoded_len) 9726 return -EINVAL; 9727 9728 /* The extent must start on a sector boundary. */ 9729 start = iocb->ki_pos; 9730 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9731 return -EINVAL; 9732 9733 /* 9734 * The extent must end on a sector boundary. However, we allow a write 9735 * which ends at or extends i_size to have an unaligned length; we round 9736 * up the extent size and set i_size to the unaligned end. 9737 */ 9738 if (start + encoded->len < inode->vfs_inode.i_size && 9739 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9740 return -EINVAL; 9741 9742 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9743 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9744 return -EINVAL; 9745 9746 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9747 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9748 end = start + num_bytes - 1; 9749 9750 /* 9751 * If the extent cannot be inline, the compressed data on disk must be 9752 * sector-aligned. For convenience, we extend it with zeroes if it 9753 * isn't. 9754 */ 9755 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9756 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9757 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9758 if (!folios) 9759 return -ENOMEM; 9760 for (i = 0; i < nr_folios; i++) { 9761 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9762 char *kaddr; 9763 9764 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9765 if (!folios[i]) { 9766 ret = -ENOMEM; 9767 goto out_folios; 9768 } 9769 kaddr = kmap_local_folio(folios[i], 0); 9770 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9771 kunmap_local(kaddr); 9772 ret = -EFAULT; 9773 goto out_folios; 9774 } 9775 if (bytes < PAGE_SIZE) 9776 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9777 kunmap_local(kaddr); 9778 } 9779 9780 for (;;) { 9781 struct btrfs_ordered_extent *ordered; 9782 9783 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9784 if (ret) 9785 goto out_folios; 9786 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9787 start >> PAGE_SHIFT, 9788 end >> PAGE_SHIFT); 9789 if (ret) 9790 goto out_folios; 9791 btrfs_lock_extent(io_tree, start, end, &cached_state); 9792 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9793 if (!ordered && 9794 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9795 break; 9796 if (ordered) 9797 btrfs_put_ordered_extent(ordered); 9798 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9799 cond_resched(); 9800 } 9801 9802 /* 9803 * We don't use the higher-level delalloc space functions because our 9804 * num_bytes and disk_num_bytes are different. 9805 */ 9806 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9807 if (ret) 9808 goto out_unlock; 9809 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9810 if (ret) 9811 goto out_free_data_space; 9812 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9813 false); 9814 if (ret) 9815 goto out_qgroup_free_data; 9816 9817 /* Try an inline extent first. */ 9818 if (encoded->unencoded_len == encoded->len && 9819 encoded->unencoded_offset == 0 && 9820 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9821 ret = __cow_file_range_inline(inode, encoded->len, 9822 orig_count, compression, folios[0], 9823 true); 9824 if (ret <= 0) { 9825 if (ret == 0) 9826 ret = orig_count; 9827 goto out_delalloc_release; 9828 } 9829 } 9830 9831 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9832 disk_num_bytes, 0, 0, &ins, 1, 1); 9833 if (ret) 9834 goto out_delalloc_release; 9835 extent_reserved = true; 9836 9837 file_extent.disk_bytenr = ins.objectid; 9838 file_extent.disk_num_bytes = ins.offset; 9839 file_extent.num_bytes = num_bytes; 9840 file_extent.ram_bytes = ram_bytes; 9841 file_extent.offset = encoded->unencoded_offset; 9842 file_extent.compression = compression; 9843 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9844 if (IS_ERR(em)) { 9845 ret = PTR_ERR(em); 9846 goto out_free_reserved; 9847 } 9848 btrfs_free_extent_map(em); 9849 9850 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9851 (1U << BTRFS_ORDERED_ENCODED) | 9852 (1U << BTRFS_ORDERED_COMPRESSED)); 9853 if (IS_ERR(ordered)) { 9854 btrfs_drop_extent_map_range(inode, start, end, false); 9855 ret = PTR_ERR(ordered); 9856 goto out_free_reserved; 9857 } 9858 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9859 9860 if (start + encoded->len > inode->vfs_inode.i_size) 9861 i_size_write(&inode->vfs_inode, start + encoded->len); 9862 9863 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9864 9865 btrfs_delalloc_release_extents(inode, num_bytes); 9866 9867 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9868 ret = orig_count; 9869 goto out; 9870 9871 out_free_reserved: 9872 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9873 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9874 out_delalloc_release: 9875 btrfs_delalloc_release_extents(inode, num_bytes); 9876 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9877 out_qgroup_free_data: 9878 if (ret < 0) 9879 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9880 out_free_data_space: 9881 /* 9882 * If btrfs_reserve_extent() succeeded, then we already decremented 9883 * bytes_may_use. 9884 */ 9885 if (!extent_reserved) 9886 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9887 out_unlock: 9888 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9889 out_folios: 9890 for (i = 0; i < nr_folios; i++) { 9891 if (folios[i]) 9892 folio_put(folios[i]); 9893 } 9894 kvfree(folios); 9895 out: 9896 if (ret >= 0) 9897 iocb->ki_pos += encoded->len; 9898 return ret; 9899 } 9900 9901 #ifdef CONFIG_SWAP 9902 /* 9903 * Add an entry indicating a block group or device which is pinned by a 9904 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9905 * negative errno on failure. 9906 */ 9907 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9908 bool is_block_group) 9909 { 9910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9911 struct btrfs_swapfile_pin *sp, *entry; 9912 struct rb_node **p; 9913 struct rb_node *parent = NULL; 9914 9915 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9916 if (!sp) 9917 return -ENOMEM; 9918 sp->ptr = ptr; 9919 sp->inode = inode; 9920 sp->is_block_group = is_block_group; 9921 sp->bg_extent_count = 1; 9922 9923 spin_lock(&fs_info->swapfile_pins_lock); 9924 p = &fs_info->swapfile_pins.rb_node; 9925 while (*p) { 9926 parent = *p; 9927 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9928 if (sp->ptr < entry->ptr || 9929 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9930 p = &(*p)->rb_left; 9931 } else if (sp->ptr > entry->ptr || 9932 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9933 p = &(*p)->rb_right; 9934 } else { 9935 if (is_block_group) 9936 entry->bg_extent_count++; 9937 spin_unlock(&fs_info->swapfile_pins_lock); 9938 kfree(sp); 9939 return 1; 9940 } 9941 } 9942 rb_link_node(&sp->node, parent, p); 9943 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9944 spin_unlock(&fs_info->swapfile_pins_lock); 9945 return 0; 9946 } 9947 9948 /* Free all of the entries pinned by this swapfile. */ 9949 static void btrfs_free_swapfile_pins(struct inode *inode) 9950 { 9951 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9952 struct btrfs_swapfile_pin *sp; 9953 struct rb_node *node, *next; 9954 9955 spin_lock(&fs_info->swapfile_pins_lock); 9956 node = rb_first(&fs_info->swapfile_pins); 9957 while (node) { 9958 next = rb_next(node); 9959 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9960 if (sp->inode == inode) { 9961 rb_erase(&sp->node, &fs_info->swapfile_pins); 9962 if (sp->is_block_group) { 9963 btrfs_dec_block_group_swap_extents(sp->ptr, 9964 sp->bg_extent_count); 9965 btrfs_put_block_group(sp->ptr); 9966 } 9967 kfree(sp); 9968 } 9969 node = next; 9970 } 9971 spin_unlock(&fs_info->swapfile_pins_lock); 9972 } 9973 9974 struct btrfs_swap_info { 9975 u64 start; 9976 u64 block_start; 9977 u64 block_len; 9978 u64 lowest_ppage; 9979 u64 highest_ppage; 9980 unsigned long nr_pages; 9981 int nr_extents; 9982 }; 9983 9984 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9985 struct btrfs_swap_info *bsi) 9986 { 9987 unsigned long nr_pages; 9988 unsigned long max_pages; 9989 u64 first_ppage, first_ppage_reported, next_ppage; 9990 int ret; 9991 9992 /* 9993 * Our swapfile may have had its size extended after the swap header was 9994 * written. In that case activating the swapfile should not go beyond 9995 * the max size set in the swap header. 9996 */ 9997 if (bsi->nr_pages >= sis->max) 9998 return 0; 9999 10000 max_pages = sis->max - bsi->nr_pages; 10001 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10002 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10003 10004 if (first_ppage >= next_ppage) 10005 return 0; 10006 nr_pages = next_ppage - first_ppage; 10007 nr_pages = min(nr_pages, max_pages); 10008 10009 first_ppage_reported = first_ppage; 10010 if (bsi->start == 0) 10011 first_ppage_reported++; 10012 if (bsi->lowest_ppage > first_ppage_reported) 10013 bsi->lowest_ppage = first_ppage_reported; 10014 if (bsi->highest_ppage < (next_ppage - 1)) 10015 bsi->highest_ppage = next_ppage - 1; 10016 10017 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10018 if (ret < 0) 10019 return ret; 10020 bsi->nr_extents += ret; 10021 bsi->nr_pages += nr_pages; 10022 return 0; 10023 } 10024 10025 static void btrfs_swap_deactivate(struct file *file) 10026 { 10027 struct inode *inode = file_inode(file); 10028 10029 btrfs_free_swapfile_pins(inode); 10030 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10031 } 10032 10033 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10034 sector_t *span) 10035 { 10036 struct inode *inode = file_inode(file); 10037 struct btrfs_root *root = BTRFS_I(inode)->root; 10038 struct btrfs_fs_info *fs_info = root->fs_info; 10039 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10040 struct extent_state *cached_state = NULL; 10041 struct btrfs_chunk_map *map = NULL; 10042 struct btrfs_device *device = NULL; 10043 struct btrfs_swap_info bsi = { 10044 .lowest_ppage = (sector_t)-1ULL, 10045 }; 10046 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10047 struct btrfs_path *path = NULL; 10048 int ret = 0; 10049 u64 isize; 10050 u64 prev_extent_end = 0; 10051 10052 /* 10053 * Acquire the inode's mmap lock to prevent races with memory mapped 10054 * writes, as they could happen after we flush delalloc below and before 10055 * we lock the extent range further below. The inode was already locked 10056 * up in the call chain. 10057 */ 10058 btrfs_assert_inode_locked(BTRFS_I(inode)); 10059 down_write(&BTRFS_I(inode)->i_mmap_lock); 10060 10061 /* 10062 * If the swap file was just created, make sure delalloc is done. If the 10063 * file changes again after this, the user is doing something stupid and 10064 * we don't really care. 10065 */ 10066 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10067 if (ret) 10068 goto out_unlock_mmap; 10069 10070 /* 10071 * The inode is locked, so these flags won't change after we check them. 10072 */ 10073 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10074 btrfs_warn(fs_info, "swapfile must not be compressed"); 10075 ret = -EINVAL; 10076 goto out_unlock_mmap; 10077 } 10078 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10079 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10080 ret = -EINVAL; 10081 goto out_unlock_mmap; 10082 } 10083 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10084 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10085 ret = -EINVAL; 10086 goto out_unlock_mmap; 10087 } 10088 10089 path = btrfs_alloc_path(); 10090 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10091 if (!path || !backref_ctx) { 10092 ret = -ENOMEM; 10093 goto out_unlock_mmap; 10094 } 10095 10096 /* 10097 * Balance or device remove/replace/resize can move stuff around from 10098 * under us. The exclop protection makes sure they aren't running/won't 10099 * run concurrently while we are mapping the swap extents, and 10100 * fs_info->swapfile_pins prevents them from running while the swap 10101 * file is active and moving the extents. Note that this also prevents 10102 * a concurrent device add which isn't actually necessary, but it's not 10103 * really worth the trouble to allow it. 10104 */ 10105 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10106 btrfs_warn(fs_info, 10107 "cannot activate swapfile while exclusive operation is running"); 10108 ret = -EBUSY; 10109 goto out_unlock_mmap; 10110 } 10111 10112 /* 10113 * Prevent snapshot creation while we are activating the swap file. 10114 * We do not want to race with snapshot creation. If snapshot creation 10115 * already started before we bumped nr_swapfiles from 0 to 1 and 10116 * completes before the first write into the swap file after it is 10117 * activated, than that write would fallback to COW. 10118 */ 10119 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10120 btrfs_exclop_finish(fs_info); 10121 btrfs_warn(fs_info, 10122 "cannot activate swapfile because snapshot creation is in progress"); 10123 ret = -EINVAL; 10124 goto out_unlock_mmap; 10125 } 10126 /* 10127 * Snapshots can create extents which require COW even if NODATACOW is 10128 * set. We use this counter to prevent snapshots. We must increment it 10129 * before walking the extents because we don't want a concurrent 10130 * snapshot to run after we've already checked the extents. 10131 * 10132 * It is possible that subvolume is marked for deletion but still not 10133 * removed yet. To prevent this race, we check the root status before 10134 * activating the swapfile. 10135 */ 10136 spin_lock(&root->root_item_lock); 10137 if (btrfs_root_dead(root)) { 10138 spin_unlock(&root->root_item_lock); 10139 10140 btrfs_drew_write_unlock(&root->snapshot_lock); 10141 btrfs_exclop_finish(fs_info); 10142 btrfs_warn(fs_info, 10143 "cannot activate swapfile because subvolume %llu is being deleted", 10144 btrfs_root_id(root)); 10145 ret = -EPERM; 10146 goto out_unlock_mmap; 10147 } 10148 atomic_inc(&root->nr_swapfiles); 10149 spin_unlock(&root->root_item_lock); 10150 10151 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10152 10153 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10154 while (prev_extent_end < isize) { 10155 struct btrfs_key key; 10156 struct extent_buffer *leaf; 10157 struct btrfs_file_extent_item *ei; 10158 struct btrfs_block_group *bg; 10159 u64 logical_block_start; 10160 u64 physical_block_start; 10161 u64 extent_gen; 10162 u64 disk_bytenr; 10163 u64 len; 10164 10165 key.objectid = btrfs_ino(BTRFS_I(inode)); 10166 key.type = BTRFS_EXTENT_DATA_KEY; 10167 key.offset = prev_extent_end; 10168 10169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10170 if (ret < 0) 10171 goto out; 10172 10173 /* 10174 * If key not found it means we have an implicit hole (NO_HOLES 10175 * is enabled). 10176 */ 10177 if (ret > 0) { 10178 btrfs_warn(fs_info, "swapfile must not have holes"); 10179 ret = -EINVAL; 10180 goto out; 10181 } 10182 10183 leaf = path->nodes[0]; 10184 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10185 10186 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10187 /* 10188 * It's unlikely we'll ever actually find ourselves 10189 * here, as a file small enough to fit inline won't be 10190 * big enough to store more than the swap header, but in 10191 * case something changes in the future, let's catch it 10192 * here rather than later. 10193 */ 10194 btrfs_warn(fs_info, "swapfile must not be inline"); 10195 ret = -EINVAL; 10196 goto out; 10197 } 10198 10199 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10200 btrfs_warn(fs_info, "swapfile must not be compressed"); 10201 ret = -EINVAL; 10202 goto out; 10203 } 10204 10205 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10206 if (disk_bytenr == 0) { 10207 btrfs_warn(fs_info, "swapfile must not have holes"); 10208 ret = -EINVAL; 10209 goto out; 10210 } 10211 10212 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10213 extent_gen = btrfs_file_extent_generation(leaf, ei); 10214 prev_extent_end = btrfs_file_extent_end(path); 10215 10216 if (prev_extent_end > isize) 10217 len = isize - key.offset; 10218 else 10219 len = btrfs_file_extent_num_bytes(leaf, ei); 10220 10221 backref_ctx->curr_leaf_bytenr = leaf->start; 10222 10223 /* 10224 * Don't need the path anymore, release to avoid deadlocks when 10225 * calling btrfs_is_data_extent_shared() because when joining a 10226 * transaction it can block waiting for the current one's commit 10227 * which in turn may be trying to lock the same leaf to flush 10228 * delayed items for example. 10229 */ 10230 btrfs_release_path(path); 10231 10232 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10233 extent_gen, backref_ctx); 10234 if (ret < 0) { 10235 goto out; 10236 } else if (ret > 0) { 10237 btrfs_warn(fs_info, 10238 "swapfile must not be copy-on-write"); 10239 ret = -EINVAL; 10240 goto out; 10241 } 10242 10243 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10244 if (IS_ERR(map)) { 10245 ret = PTR_ERR(map); 10246 goto out; 10247 } 10248 10249 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10250 btrfs_warn(fs_info, 10251 "swapfile must have single data profile"); 10252 ret = -EINVAL; 10253 goto out; 10254 } 10255 10256 if (device == NULL) { 10257 device = map->stripes[0].dev; 10258 ret = btrfs_add_swapfile_pin(inode, device, false); 10259 if (ret == 1) 10260 ret = 0; 10261 else if (ret) 10262 goto out; 10263 } else if (device != map->stripes[0].dev) { 10264 btrfs_warn(fs_info, "swapfile must be on one device"); 10265 ret = -EINVAL; 10266 goto out; 10267 } 10268 10269 physical_block_start = (map->stripes[0].physical + 10270 (logical_block_start - map->start)); 10271 btrfs_free_chunk_map(map); 10272 map = NULL; 10273 10274 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10275 if (!bg) { 10276 btrfs_warn(fs_info, 10277 "could not find block group containing swapfile"); 10278 ret = -EINVAL; 10279 goto out; 10280 } 10281 10282 if (!btrfs_inc_block_group_swap_extents(bg)) { 10283 btrfs_warn(fs_info, 10284 "block group for swapfile at %llu is read-only%s", 10285 bg->start, 10286 atomic_read(&fs_info->scrubs_running) ? 10287 " (scrub running)" : ""); 10288 btrfs_put_block_group(bg); 10289 ret = -EINVAL; 10290 goto out; 10291 } 10292 10293 ret = btrfs_add_swapfile_pin(inode, bg, true); 10294 if (ret) { 10295 btrfs_put_block_group(bg); 10296 if (ret == 1) 10297 ret = 0; 10298 else 10299 goto out; 10300 } 10301 10302 if (bsi.block_len && 10303 bsi.block_start + bsi.block_len == physical_block_start) { 10304 bsi.block_len += len; 10305 } else { 10306 if (bsi.block_len) { 10307 ret = btrfs_add_swap_extent(sis, &bsi); 10308 if (ret) 10309 goto out; 10310 } 10311 bsi.start = key.offset; 10312 bsi.block_start = physical_block_start; 10313 bsi.block_len = len; 10314 } 10315 10316 if (fatal_signal_pending(current)) { 10317 ret = -EINTR; 10318 goto out; 10319 } 10320 10321 cond_resched(); 10322 } 10323 10324 if (bsi.block_len) 10325 ret = btrfs_add_swap_extent(sis, &bsi); 10326 10327 out: 10328 if (!IS_ERR_OR_NULL(map)) 10329 btrfs_free_chunk_map(map); 10330 10331 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10332 10333 if (ret) 10334 btrfs_swap_deactivate(file); 10335 10336 btrfs_drew_write_unlock(&root->snapshot_lock); 10337 10338 btrfs_exclop_finish(fs_info); 10339 10340 out_unlock_mmap: 10341 up_write(&BTRFS_I(inode)->i_mmap_lock); 10342 btrfs_free_backref_share_ctx(backref_ctx); 10343 btrfs_free_path(path); 10344 if (ret) 10345 return ret; 10346 10347 if (device) 10348 sis->bdev = device->bdev; 10349 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10350 sis->max = bsi.nr_pages; 10351 sis->pages = bsi.nr_pages - 1; 10352 return bsi.nr_extents; 10353 } 10354 #else 10355 static void btrfs_swap_deactivate(struct file *file) 10356 { 10357 } 10358 10359 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10360 sector_t *span) 10361 { 10362 return -EOPNOTSUPP; 10363 } 10364 #endif 10365 10366 /* 10367 * Update the number of bytes used in the VFS' inode. When we replace extents in 10368 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10369 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10370 * always get a correct value. 10371 */ 10372 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10373 const u64 add_bytes, 10374 const u64 del_bytes) 10375 { 10376 if (add_bytes == del_bytes) 10377 return; 10378 10379 spin_lock(&inode->lock); 10380 if (del_bytes > 0) 10381 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10382 if (add_bytes > 0) 10383 inode_add_bytes(&inode->vfs_inode, add_bytes); 10384 spin_unlock(&inode->lock); 10385 } 10386 10387 /* 10388 * Verify that there are no ordered extents for a given file range. 10389 * 10390 * @inode: The target inode. 10391 * @start: Start offset of the file range, should be sector size aligned. 10392 * @end: End offset (inclusive) of the file range, its value +1 should be 10393 * sector size aligned. 10394 * 10395 * This should typically be used for cases where we locked an inode's VFS lock in 10396 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10397 * we have flushed all delalloc in the range, we have waited for all ordered 10398 * extents in the range to complete and finally we have locked the file range in 10399 * the inode's io_tree. 10400 */ 10401 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10402 { 10403 struct btrfs_root *root = inode->root; 10404 struct btrfs_ordered_extent *ordered; 10405 10406 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10407 return; 10408 10409 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10410 if (ordered) { 10411 btrfs_err(root->fs_info, 10412 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10413 start, end, btrfs_ino(inode), btrfs_root_id(root), 10414 ordered->file_offset, 10415 ordered->file_offset + ordered->num_bytes - 1); 10416 btrfs_put_ordered_extent(ordered); 10417 } 10418 10419 ASSERT(ordered == NULL); 10420 } 10421 10422 /* 10423 * Find the first inode with a minimum number. 10424 * 10425 * @root: The root to search for. 10426 * @min_ino: The minimum inode number. 10427 * 10428 * Find the first inode in the @root with a number >= @min_ino and return it. 10429 * Returns NULL if no such inode found. 10430 */ 10431 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10432 { 10433 struct btrfs_inode *inode; 10434 unsigned long from = min_ino; 10435 10436 xa_lock(&root->inodes); 10437 while (true) { 10438 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10439 if (!inode) 10440 break; 10441 if (igrab(&inode->vfs_inode)) 10442 break; 10443 10444 from = btrfs_ino(inode) + 1; 10445 cond_resched_lock(&root->inodes.xa_lock); 10446 } 10447 xa_unlock(&root->inodes); 10448 10449 return inode; 10450 } 10451 10452 static const struct inode_operations btrfs_dir_inode_operations = { 10453 .getattr = btrfs_getattr, 10454 .lookup = btrfs_lookup, 10455 .create = btrfs_create, 10456 .unlink = btrfs_unlink, 10457 .link = btrfs_link, 10458 .mkdir = btrfs_mkdir, 10459 .rmdir = btrfs_rmdir, 10460 .rename = btrfs_rename2, 10461 .symlink = btrfs_symlink, 10462 .setattr = btrfs_setattr, 10463 .mknod = btrfs_mknod, 10464 .listxattr = btrfs_listxattr, 10465 .permission = btrfs_permission, 10466 .get_inode_acl = btrfs_get_acl, 10467 .set_acl = btrfs_set_acl, 10468 .update_time = btrfs_update_time, 10469 .tmpfile = btrfs_tmpfile, 10470 .fileattr_get = btrfs_fileattr_get, 10471 .fileattr_set = btrfs_fileattr_set, 10472 }; 10473 10474 static const struct file_operations btrfs_dir_file_operations = { 10475 .llseek = btrfs_dir_llseek, 10476 .read = generic_read_dir, 10477 .iterate_shared = btrfs_real_readdir, 10478 .open = btrfs_opendir, 10479 .unlocked_ioctl = btrfs_ioctl, 10480 #ifdef CONFIG_COMPAT 10481 .compat_ioctl = btrfs_compat_ioctl, 10482 #endif 10483 .release = btrfs_release_file, 10484 .fsync = btrfs_sync_file, 10485 }; 10486 10487 /* 10488 * btrfs doesn't support the bmap operation because swapfiles 10489 * use bmap to make a mapping of extents in the file. They assume 10490 * these extents won't change over the life of the file and they 10491 * use the bmap result to do IO directly to the drive. 10492 * 10493 * the btrfs bmap call would return logical addresses that aren't 10494 * suitable for IO and they also will change frequently as COW 10495 * operations happen. So, swapfile + btrfs == corruption. 10496 * 10497 * For now we're avoiding this by dropping bmap. 10498 */ 10499 static const struct address_space_operations btrfs_aops = { 10500 .read_folio = btrfs_read_folio, 10501 .writepages = btrfs_writepages, 10502 .readahead = btrfs_readahead, 10503 .invalidate_folio = btrfs_invalidate_folio, 10504 .launder_folio = btrfs_launder_folio, 10505 .release_folio = btrfs_release_folio, 10506 .migrate_folio = btrfs_migrate_folio, 10507 .dirty_folio = filemap_dirty_folio, 10508 .error_remove_folio = generic_error_remove_folio, 10509 .swap_activate = btrfs_swap_activate, 10510 .swap_deactivate = btrfs_swap_deactivate, 10511 }; 10512 10513 static const struct inode_operations btrfs_file_inode_operations = { 10514 .getattr = btrfs_getattr, 10515 .setattr = btrfs_setattr, 10516 .listxattr = btrfs_listxattr, 10517 .permission = btrfs_permission, 10518 .fiemap = btrfs_fiemap, 10519 .get_inode_acl = btrfs_get_acl, 10520 .set_acl = btrfs_set_acl, 10521 .update_time = btrfs_update_time, 10522 .fileattr_get = btrfs_fileattr_get, 10523 .fileattr_set = btrfs_fileattr_set, 10524 }; 10525 static const struct inode_operations btrfs_special_inode_operations = { 10526 .getattr = btrfs_getattr, 10527 .setattr = btrfs_setattr, 10528 .permission = btrfs_permission, 10529 .listxattr = btrfs_listxattr, 10530 .get_inode_acl = btrfs_get_acl, 10531 .set_acl = btrfs_set_acl, 10532 .update_time = btrfs_update_time, 10533 }; 10534 static const struct inode_operations btrfs_symlink_inode_operations = { 10535 .get_link = page_get_link, 10536 .getattr = btrfs_getattr, 10537 .setattr = btrfs_setattr, 10538 .permission = btrfs_permission, 10539 .listxattr = btrfs_listxattr, 10540 .update_time = btrfs_update_time, 10541 }; 10542 10543 const struct dentry_operations btrfs_dentry_operations = { 10544 .d_delete = btrfs_dentry_delete, 10545 }; 10546