1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct page *locked_page, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct page *locked_page, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct page *page; 403 404 if (locked_page) { 405 page_start = page_offset(locked_page); 406 page_end = page_start + PAGE_SIZE - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 page = find_get_page(inode->vfs_inode.i_mapping, index); 425 index++; 426 if (!page) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 435 page_folio(page), offset, bytes); 436 put_page(page); 437 } 438 439 if (locked_page) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + PAGE_SIZE) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 451 offset = page_offset(locked_page) + PAGE_SIZE; 452 } 453 } 454 455 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 456 } 457 458 static int btrfs_dirty_inode(struct btrfs_inode *inode); 459 460 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 461 struct btrfs_new_inode_args *args) 462 { 463 int err; 464 465 if (args->default_acl) { 466 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 467 ACL_TYPE_DEFAULT); 468 if (err) 469 return err; 470 } 471 if (args->acl) { 472 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 473 if (err) 474 return err; 475 } 476 if (!args->default_acl && !args->acl) 477 cache_no_acl(args->inode); 478 return btrfs_xattr_security_init(trans, args->inode, args->dir, 479 &args->dentry->d_name); 480 } 481 482 /* 483 * this does all the hard work for inserting an inline extent into 484 * the btree. The caller should have done a btrfs_drop_extents so that 485 * no overlapping inline items exist in the btree 486 */ 487 static int insert_inline_extent(struct btrfs_trans_handle *trans, 488 struct btrfs_path *path, 489 struct btrfs_inode *inode, bool extent_inserted, 490 size_t size, size_t compressed_size, 491 int compress_type, 492 struct folio *compressed_folio, 493 bool update_i_size) 494 { 495 struct btrfs_root *root = inode->root; 496 struct extent_buffer *leaf; 497 struct page *page = NULL; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 page = find_get_page(inode->vfs_inode.i_mapping, 0); 558 btrfs_set_file_extent_compression(leaf, ei, 0); 559 kaddr = kmap_local_page(page); 560 write_extent_buffer(leaf, kaddr, ptr, size); 561 kunmap_local(kaddr); 562 put_page(page); 563 } 564 btrfs_mark_buffer_dirty(trans, leaf); 565 btrfs_release_path(path); 566 567 /* 568 * We align size to sectorsize for inline extents just for simplicity 569 * sake. 570 */ 571 ret = btrfs_inode_set_file_extent_range(inode, 0, 572 ALIGN(size, root->fs_info->sectorsize)); 573 if (ret) 574 goto fail; 575 576 /* 577 * We're an inline extent, so nobody can extend the file past i_size 578 * without locking a page we already have locked. 579 * 580 * We must do any i_size and inode updates before we unlock the pages. 581 * Otherwise we could end up racing with unlink. 582 */ 583 i_size = i_size_read(&inode->vfs_inode); 584 if (update_i_size && size > i_size) { 585 i_size_write(&inode->vfs_inode, size); 586 i_size = size; 587 } 588 inode->disk_i_size = i_size; 589 590 fail: 591 return ret; 592 } 593 594 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 595 u64 offset, u64 size, 596 size_t compressed_size) 597 { 598 struct btrfs_fs_info *fs_info = inode->root->fs_info; 599 u64 data_len = (compressed_size ?: size); 600 601 /* Inline extents must start at offset 0. */ 602 if (offset != 0) 603 return false; 604 605 /* 606 * Due to the page size limit, for subpage we can only trigger the 607 * writeback for the dirty sectors of page, that means data writeback 608 * is doing more writeback than what we want. 609 * 610 * This is especially unexpected for some call sites like fallocate, 611 * where we only increase i_size after everything is done. 612 * This means we can trigger inline extent even if we didn't want to. 613 * So here we skip inline extent creation completely. 614 */ 615 if (fs_info->sectorsize != PAGE_SIZE) 616 return false; 617 618 /* Inline extents are limited to sectorsize. */ 619 if (size > fs_info->sectorsize) 620 return false; 621 622 /* We cannot exceed the maximum inline data size. */ 623 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 624 return false; 625 626 /* We cannot exceed the user specified max_inline size. */ 627 if (data_len > fs_info->max_inline) 628 return false; 629 630 /* Inline extents must be the entirety of the file. */ 631 if (size < i_size_read(&inode->vfs_inode)) 632 return false; 633 634 return true; 635 } 636 637 /* 638 * conditionally insert an inline extent into the file. This 639 * does the checks required to make sure the data is small enough 640 * to fit as an inline extent. 641 * 642 * If being used directly, you must have already checked we're allowed to cow 643 * the range by getting true from can_cow_file_range_inline(). 644 */ 645 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 646 u64 size, size_t compressed_size, 647 int compress_type, 648 struct folio *compressed_folio, 649 bool update_i_size) 650 { 651 struct btrfs_drop_extents_args drop_args = { 0 }; 652 struct btrfs_root *root = inode->root; 653 struct btrfs_fs_info *fs_info = root->fs_info; 654 struct btrfs_trans_handle *trans; 655 u64 data_len = (compressed_size ?: size); 656 int ret; 657 struct btrfs_path *path; 658 659 path = btrfs_alloc_path(); 660 if (!path) 661 return -ENOMEM; 662 663 trans = btrfs_join_transaction(root); 664 if (IS_ERR(trans)) { 665 btrfs_free_path(path); 666 return PTR_ERR(trans); 667 } 668 trans->block_rsv = &inode->block_rsv; 669 670 drop_args.path = path; 671 drop_args.start = 0; 672 drop_args.end = fs_info->sectorsize; 673 drop_args.drop_cache = true; 674 drop_args.replace_extent = true; 675 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 676 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 677 if (ret) { 678 btrfs_abort_transaction(trans, ret); 679 goto out; 680 } 681 682 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 683 size, compressed_size, compress_type, 684 compressed_folio, update_i_size); 685 if (ret && ret != -ENOSPC) { 686 btrfs_abort_transaction(trans, ret); 687 goto out; 688 } else if (ret == -ENOSPC) { 689 ret = 1; 690 goto out; 691 } 692 693 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 694 ret = btrfs_update_inode(trans, inode); 695 if (ret && ret != -ENOSPC) { 696 btrfs_abort_transaction(trans, ret); 697 goto out; 698 } else if (ret == -ENOSPC) { 699 ret = 1; 700 goto out; 701 } 702 703 btrfs_set_inode_full_sync(inode); 704 out: 705 /* 706 * Don't forget to free the reserved space, as for inlined extent 707 * it won't count as data extent, free them directly here. 708 * And at reserve time, it's always aligned to page size, so 709 * just free one page here. 710 */ 711 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 712 btrfs_free_path(path); 713 btrfs_end_transaction(trans); 714 return ret; 715 } 716 717 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 718 u64 end, 719 size_t compressed_size, 720 int compress_type, 721 struct folio *compressed_folio, 722 bool update_i_size) 723 { 724 struct extent_state *cached = NULL; 725 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 726 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 727 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 728 int ret; 729 730 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 731 return 1; 732 733 lock_extent(&inode->io_tree, offset, end, &cached); 734 ret = __cow_file_range_inline(inode, offset, size, compressed_size, 735 compress_type, compressed_folio, 736 update_i_size); 737 if (ret > 0) { 738 unlock_extent(&inode->io_tree, offset, end, &cached); 739 return ret; 740 } 741 742 extent_clear_unlock_delalloc(inode, offset, end, NULL, &cached, 743 clear_flags, 744 PAGE_UNLOCK | PAGE_START_WRITEBACK | 745 PAGE_END_WRITEBACK); 746 return ret; 747 } 748 749 struct async_extent { 750 u64 start; 751 u64 ram_size; 752 u64 compressed_size; 753 struct folio **folios; 754 unsigned long nr_folios; 755 int compress_type; 756 struct list_head list; 757 }; 758 759 struct async_chunk { 760 struct btrfs_inode *inode; 761 struct page *locked_page; 762 u64 start; 763 u64 end; 764 blk_opf_t write_flags; 765 struct list_head extents; 766 struct cgroup_subsys_state *blkcg_css; 767 struct btrfs_work work; 768 struct async_cow *async_cow; 769 }; 770 771 struct async_cow { 772 atomic_t num_chunks; 773 struct async_chunk chunks[]; 774 }; 775 776 static noinline int add_async_extent(struct async_chunk *cow, 777 u64 start, u64 ram_size, 778 u64 compressed_size, 779 struct folio **folios, 780 unsigned long nr_folios, 781 int compress_type) 782 { 783 struct async_extent *async_extent; 784 785 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 786 if (!async_extent) 787 return -ENOMEM; 788 async_extent->start = start; 789 async_extent->ram_size = ram_size; 790 async_extent->compressed_size = compressed_size; 791 async_extent->folios = folios; 792 async_extent->nr_folios = nr_folios; 793 async_extent->compress_type = compress_type; 794 list_add_tail(&async_extent->list, &cow->extents); 795 return 0; 796 } 797 798 /* 799 * Check if the inode needs to be submitted to compression, based on mount 800 * options, defragmentation, properties or heuristics. 801 */ 802 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 803 u64 end) 804 { 805 struct btrfs_fs_info *fs_info = inode->root->fs_info; 806 807 if (!btrfs_inode_can_compress(inode)) { 808 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 809 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 810 btrfs_ino(inode)); 811 return 0; 812 } 813 /* 814 * Special check for subpage. 815 * 816 * We lock the full page then run each delalloc range in the page, thus 817 * for the following case, we will hit some subpage specific corner case: 818 * 819 * 0 32K 64K 820 * | |///////| |///////| 821 * \- A \- B 822 * 823 * In above case, both range A and range B will try to unlock the full 824 * page [0, 64K), causing the one finished later will have page 825 * unlocked already, triggering various page lock requirement BUG_ON()s. 826 * 827 * So here we add an artificial limit that subpage compression can only 828 * if the range is fully page aligned. 829 * 830 * In theory we only need to ensure the first page is fully covered, but 831 * the tailing partial page will be locked until the full compression 832 * finishes, delaying the write of other range. 833 * 834 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 835 * first to prevent any submitted async extent to unlock the full page. 836 * By this, we can ensure for subpage case that only the last async_cow 837 * will unlock the full page. 838 */ 839 if (fs_info->sectorsize < PAGE_SIZE) { 840 if (!PAGE_ALIGNED(start) || 841 !PAGE_ALIGNED(end + 1)) 842 return 0; 843 } 844 845 /* force compress */ 846 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 847 return 1; 848 /* defrag ioctl */ 849 if (inode->defrag_compress) 850 return 1; 851 /* bad compression ratios */ 852 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 853 return 0; 854 if (btrfs_test_opt(fs_info, COMPRESS) || 855 inode->flags & BTRFS_INODE_COMPRESS || 856 inode->prop_compress) 857 return btrfs_compress_heuristic(inode, start, end); 858 return 0; 859 } 860 861 static inline void inode_should_defrag(struct btrfs_inode *inode, 862 u64 start, u64 end, u64 num_bytes, u32 small_write) 863 { 864 /* If this is a small write inside eof, kick off a defrag */ 865 if (num_bytes < small_write && 866 (start > 0 || end + 1 < inode->disk_i_size)) 867 btrfs_add_inode_defrag(NULL, inode, small_write); 868 } 869 870 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 871 { 872 unsigned long end_index = end >> PAGE_SHIFT; 873 struct page *page; 874 int ret = 0; 875 876 for (unsigned long index = start >> PAGE_SHIFT; 877 index <= end_index; index++) { 878 page = find_get_page(inode->i_mapping, index); 879 if (unlikely(!page)) { 880 if (!ret) 881 ret = -ENOENT; 882 continue; 883 } 884 clear_page_dirty_for_io(page); 885 put_page(page); 886 } 887 return ret; 888 } 889 890 /* 891 * Work queue call back to started compression on a file and pages. 892 * 893 * This is done inside an ordered work queue, and the compression is spread 894 * across many cpus. The actual IO submission is step two, and the ordered work 895 * queue takes care of making sure that happens in the same order things were 896 * put onto the queue by writepages and friends. 897 * 898 * If this code finds it can't get good compression, it puts an entry onto the 899 * work queue to write the uncompressed bytes. This makes sure that both 900 * compressed inodes and uncompressed inodes are written in the same order that 901 * the flusher thread sent them down. 902 */ 903 static void compress_file_range(struct btrfs_work *work) 904 { 905 struct async_chunk *async_chunk = 906 container_of(work, struct async_chunk, work); 907 struct btrfs_inode *inode = async_chunk->inode; 908 struct btrfs_fs_info *fs_info = inode->root->fs_info; 909 struct address_space *mapping = inode->vfs_inode.i_mapping; 910 u64 blocksize = fs_info->sectorsize; 911 u64 start = async_chunk->start; 912 u64 end = async_chunk->end; 913 u64 actual_end; 914 u64 i_size; 915 int ret = 0; 916 struct folio **folios; 917 unsigned long nr_folios; 918 unsigned long total_compressed = 0; 919 unsigned long total_in = 0; 920 unsigned int poff; 921 int i; 922 int compress_type = fs_info->compress_type; 923 924 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 925 926 /* 927 * We need to call clear_page_dirty_for_io on each page in the range. 928 * Otherwise applications with the file mmap'd can wander in and change 929 * the page contents while we are compressing them. 930 */ 931 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 932 933 /* 934 * All the folios should have been locked thus no failure. 935 * 936 * And even if some folios are missing, btrfs_compress_folios() 937 * would handle them correctly, so here just do an ASSERT() check for 938 * early logic errors. 939 */ 940 ASSERT(ret == 0); 941 942 /* 943 * We need to save i_size before now because it could change in between 944 * us evaluating the size and assigning it. This is because we lock and 945 * unlock the page in truncate and fallocate, and then modify the i_size 946 * later on. 947 * 948 * The barriers are to emulate READ_ONCE, remove that once i_size_read 949 * does that for us. 950 */ 951 barrier(); 952 i_size = i_size_read(&inode->vfs_inode); 953 barrier(); 954 actual_end = min_t(u64, i_size, end + 1); 955 again: 956 folios = NULL; 957 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 958 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 959 960 /* 961 * we don't want to send crud past the end of i_size through 962 * compression, that's just a waste of CPU time. So, if the 963 * end of the file is before the start of our current 964 * requested range of bytes, we bail out to the uncompressed 965 * cleanup code that can deal with all of this. 966 * 967 * It isn't really the fastest way to fix things, but this is a 968 * very uncommon corner. 969 */ 970 if (actual_end <= start) 971 goto cleanup_and_bail_uncompressed; 972 973 total_compressed = actual_end - start; 974 975 /* 976 * Skip compression for a small file range(<=blocksize) that 977 * isn't an inline extent, since it doesn't save disk space at all. 978 */ 979 if (total_compressed <= blocksize && 980 (start > 0 || end + 1 < inode->disk_i_size)) 981 goto cleanup_and_bail_uncompressed; 982 983 /* 984 * For subpage case, we require full page alignment for the sector 985 * aligned range. 986 * Thus we must also check against @actual_end, not just @end. 987 */ 988 if (blocksize < PAGE_SIZE) { 989 if (!PAGE_ALIGNED(start) || 990 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 991 goto cleanup_and_bail_uncompressed; 992 } 993 994 total_compressed = min_t(unsigned long, total_compressed, 995 BTRFS_MAX_UNCOMPRESSED); 996 total_in = 0; 997 ret = 0; 998 999 /* 1000 * We do compression for mount -o compress and when the inode has not 1001 * been flagged as NOCOMPRESS. This flag can change at any time if we 1002 * discover bad compression ratios. 1003 */ 1004 if (!inode_need_compress(inode, start, end)) 1005 goto cleanup_and_bail_uncompressed; 1006 1007 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1008 if (!folios) { 1009 /* 1010 * Memory allocation failure is not a fatal error, we can fall 1011 * back to uncompressed code. 1012 */ 1013 goto cleanup_and_bail_uncompressed; 1014 } 1015 1016 if (inode->defrag_compress) 1017 compress_type = inode->defrag_compress; 1018 else if (inode->prop_compress) 1019 compress_type = inode->prop_compress; 1020 1021 /* Compression level is applied here. */ 1022 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1023 mapping, start, folios, &nr_folios, &total_in, 1024 &total_compressed); 1025 if (ret) 1026 goto mark_incompressible; 1027 1028 /* 1029 * Zero the tail end of the last page, as we might be sending it down 1030 * to disk. 1031 */ 1032 poff = offset_in_page(total_compressed); 1033 if (poff) 1034 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1035 1036 /* 1037 * Try to create an inline extent. 1038 * 1039 * If we didn't compress the entire range, try to create an uncompressed 1040 * inline extent, else a compressed one. 1041 * 1042 * Check cow_file_range() for why we don't even try to create inline 1043 * extent for the subpage case. 1044 */ 1045 if (total_in < actual_end) 1046 ret = cow_file_range_inline(inode, start, end, 0, 1047 BTRFS_COMPRESS_NONE, NULL, false); 1048 else 1049 ret = cow_file_range_inline(inode, start, end, total_compressed, 1050 compress_type, folios[0], false); 1051 if (ret <= 0) { 1052 if (ret < 0) 1053 mapping_set_error(mapping, -EIO); 1054 goto free_pages; 1055 } 1056 1057 /* 1058 * We aren't doing an inline extent. Round the compressed size up to a 1059 * block size boundary so the allocator does sane things. 1060 */ 1061 total_compressed = ALIGN(total_compressed, blocksize); 1062 1063 /* 1064 * One last check to make sure the compression is really a win, compare 1065 * the page count read with the blocks on disk, compression must free at 1066 * least one sector. 1067 */ 1068 total_in = round_up(total_in, fs_info->sectorsize); 1069 if (total_compressed + blocksize > total_in) 1070 goto mark_incompressible; 1071 1072 /* 1073 * The async work queues will take care of doing actual allocation on 1074 * disk for these compressed pages, and will submit the bios. 1075 */ 1076 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1077 nr_folios, compress_type); 1078 BUG_ON(ret); 1079 if (start + total_in < end) { 1080 start += total_in; 1081 cond_resched(); 1082 goto again; 1083 } 1084 return; 1085 1086 mark_incompressible: 1087 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1088 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1089 cleanup_and_bail_uncompressed: 1090 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1091 BTRFS_COMPRESS_NONE); 1092 BUG_ON(ret); 1093 free_pages: 1094 if (folios) { 1095 for (i = 0; i < nr_folios; i++) { 1096 WARN_ON(folios[i]->mapping); 1097 btrfs_free_compr_folio(folios[i]); 1098 } 1099 kfree(folios); 1100 } 1101 } 1102 1103 static void free_async_extent_pages(struct async_extent *async_extent) 1104 { 1105 int i; 1106 1107 if (!async_extent->folios) 1108 return; 1109 1110 for (i = 0; i < async_extent->nr_folios; i++) { 1111 WARN_ON(async_extent->folios[i]->mapping); 1112 btrfs_free_compr_folio(async_extent->folios[i]); 1113 } 1114 kfree(async_extent->folios); 1115 async_extent->nr_folios = 0; 1116 async_extent->folios = NULL; 1117 } 1118 1119 static void submit_uncompressed_range(struct btrfs_inode *inode, 1120 struct async_extent *async_extent, 1121 struct page *locked_page) 1122 { 1123 u64 start = async_extent->start; 1124 u64 end = async_extent->start + async_extent->ram_size - 1; 1125 int ret; 1126 struct writeback_control wbc = { 1127 .sync_mode = WB_SYNC_ALL, 1128 .range_start = start, 1129 .range_end = end, 1130 .no_cgroup_owner = 1, 1131 }; 1132 1133 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1134 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1135 wbc_detach_inode(&wbc); 1136 if (ret < 0) { 1137 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1138 if (locked_page) { 1139 const u64 page_start = page_offset(locked_page); 1140 1141 set_page_writeback(locked_page); 1142 end_page_writeback(locked_page); 1143 btrfs_mark_ordered_io_finished(inode, locked_page, 1144 page_start, PAGE_SIZE, 1145 !ret); 1146 mapping_set_error(locked_page->mapping, ret); 1147 unlock_page(locked_page); 1148 } 1149 } 1150 } 1151 1152 static void submit_one_async_extent(struct async_chunk *async_chunk, 1153 struct async_extent *async_extent, 1154 u64 *alloc_hint) 1155 { 1156 struct btrfs_inode *inode = async_chunk->inode; 1157 struct extent_io_tree *io_tree = &inode->io_tree; 1158 struct btrfs_root *root = inode->root; 1159 struct btrfs_fs_info *fs_info = root->fs_info; 1160 struct btrfs_ordered_extent *ordered; 1161 struct btrfs_file_extent file_extent; 1162 struct btrfs_key ins; 1163 struct page *locked_page = NULL; 1164 struct extent_state *cached = NULL; 1165 struct extent_map *em; 1166 int ret = 0; 1167 u64 start = async_extent->start; 1168 u64 end = async_extent->start + async_extent->ram_size - 1; 1169 1170 if (async_chunk->blkcg_css) 1171 kthread_associate_blkcg(async_chunk->blkcg_css); 1172 1173 /* 1174 * If async_chunk->locked_page is in the async_extent range, we need to 1175 * handle it. 1176 */ 1177 if (async_chunk->locked_page) { 1178 u64 locked_page_start = page_offset(async_chunk->locked_page); 1179 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1180 1181 if (!(start >= locked_page_end || end <= locked_page_start)) 1182 locked_page = async_chunk->locked_page; 1183 } 1184 1185 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1186 submit_uncompressed_range(inode, async_extent, locked_page); 1187 goto done; 1188 } 1189 1190 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1191 async_extent->compressed_size, 1192 async_extent->compressed_size, 1193 0, *alloc_hint, &ins, 1, 1); 1194 if (ret) { 1195 /* 1196 * We can't reserve contiguous space for the compressed size. 1197 * Unlikely, but it's possible that we could have enough 1198 * non-contiguous space for the uncompressed size instead. So 1199 * fall back to uncompressed. 1200 */ 1201 submit_uncompressed_range(inode, async_extent, locked_page); 1202 goto done; 1203 } 1204 1205 lock_extent(io_tree, start, end, &cached); 1206 1207 /* Here we're doing allocation and writeback of the compressed pages */ 1208 file_extent.disk_bytenr = ins.objectid; 1209 file_extent.disk_num_bytes = ins.offset; 1210 file_extent.ram_bytes = async_extent->ram_size; 1211 file_extent.num_bytes = async_extent->ram_size; 1212 file_extent.offset = 0; 1213 file_extent.compression = async_extent->compress_type; 1214 1215 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1216 if (IS_ERR(em)) { 1217 ret = PTR_ERR(em); 1218 goto out_free_reserve; 1219 } 1220 free_extent_map(em); 1221 1222 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1223 1 << BTRFS_ORDERED_COMPRESSED); 1224 if (IS_ERR(ordered)) { 1225 btrfs_drop_extent_map_range(inode, start, end, false); 1226 ret = PTR_ERR(ordered); 1227 goto out_free_reserve; 1228 } 1229 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1230 1231 /* Clear dirty, set writeback and unlock the pages. */ 1232 extent_clear_unlock_delalloc(inode, start, end, 1233 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1234 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1235 btrfs_submit_compressed_write(ordered, 1236 async_extent->folios, /* compressed_folios */ 1237 async_extent->nr_folios, 1238 async_chunk->write_flags, true); 1239 *alloc_hint = ins.objectid + ins.offset; 1240 done: 1241 if (async_chunk->blkcg_css) 1242 kthread_associate_blkcg(NULL); 1243 kfree(async_extent); 1244 return; 1245 1246 out_free_reserve: 1247 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1248 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1249 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1250 extent_clear_unlock_delalloc(inode, start, end, 1251 NULL, &cached, 1252 EXTENT_LOCKED | EXTENT_DELALLOC | 1253 EXTENT_DELALLOC_NEW | 1254 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1255 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1256 PAGE_END_WRITEBACK); 1257 free_async_extent_pages(async_extent); 1258 if (async_chunk->blkcg_css) 1259 kthread_associate_blkcg(NULL); 1260 btrfs_debug(fs_info, 1261 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1262 btrfs_root_id(root), btrfs_ino(inode), start, 1263 async_extent->ram_size, ret); 1264 kfree(async_extent); 1265 } 1266 1267 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1268 u64 num_bytes) 1269 { 1270 struct extent_map_tree *em_tree = &inode->extent_tree; 1271 struct extent_map *em; 1272 u64 alloc_hint = 0; 1273 1274 read_lock(&em_tree->lock); 1275 em = search_extent_mapping(em_tree, start, num_bytes); 1276 if (em) { 1277 /* 1278 * if block start isn't an actual block number then find the 1279 * first block in this inode and use that as a hint. If that 1280 * block is also bogus then just don't worry about it. 1281 */ 1282 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1283 free_extent_map(em); 1284 em = search_extent_mapping(em_tree, 0, 0); 1285 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1286 alloc_hint = extent_map_block_start(em); 1287 if (em) 1288 free_extent_map(em); 1289 } else { 1290 alloc_hint = extent_map_block_start(em); 1291 free_extent_map(em); 1292 } 1293 } 1294 read_unlock(&em_tree->lock); 1295 1296 return alloc_hint; 1297 } 1298 1299 /* 1300 * when extent_io.c finds a delayed allocation range in the file, 1301 * the call backs end up in this code. The basic idea is to 1302 * allocate extents on disk for the range, and create ordered data structs 1303 * in ram to track those extents. 1304 * 1305 * locked_page is the page that writepage had locked already. We use 1306 * it to make sure we don't do extra locks or unlocks. 1307 * 1308 * When this function fails, it unlocks all pages except @locked_page. 1309 * 1310 * When this function successfully creates an inline extent, it returns 1 and 1311 * unlocks all pages including locked_page and starts I/O on them. 1312 * (In reality inline extents are limited to a single page, so locked_page is 1313 * the only page handled anyway). 1314 * 1315 * When this function succeed and creates a normal extent, the page locking 1316 * status depends on the passed in flags: 1317 * 1318 * - If @keep_locked is set, all pages are kept locked. 1319 * - Else all pages except for @locked_page are unlocked. 1320 * 1321 * When a failure happens in the second or later iteration of the 1322 * while-loop, the ordered extents created in previous iterations are kept 1323 * intact. So, the caller must clean them up by calling 1324 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1325 * example. 1326 */ 1327 static noinline int cow_file_range(struct btrfs_inode *inode, 1328 struct page *locked_page, u64 start, u64 end, 1329 u64 *done_offset, 1330 bool keep_locked, bool no_inline) 1331 { 1332 struct btrfs_root *root = inode->root; 1333 struct btrfs_fs_info *fs_info = root->fs_info; 1334 struct extent_state *cached = NULL; 1335 u64 alloc_hint = 0; 1336 u64 orig_start = start; 1337 u64 num_bytes; 1338 unsigned long ram_size; 1339 u64 cur_alloc_size = 0; 1340 u64 min_alloc_size; 1341 u64 blocksize = fs_info->sectorsize; 1342 struct btrfs_key ins; 1343 struct extent_map *em; 1344 unsigned clear_bits; 1345 unsigned long page_ops; 1346 bool extent_reserved = false; 1347 int ret = 0; 1348 1349 if (btrfs_is_free_space_inode(inode)) { 1350 ret = -EINVAL; 1351 goto out_unlock; 1352 } 1353 1354 num_bytes = ALIGN(end - start + 1, blocksize); 1355 num_bytes = max(blocksize, num_bytes); 1356 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1357 1358 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1359 1360 if (!no_inline) { 1361 /* lets try to make an inline extent */ 1362 ret = cow_file_range_inline(inode, start, end, 0, 1363 BTRFS_COMPRESS_NONE, NULL, false); 1364 if (ret <= 0) { 1365 /* 1366 * We succeeded, return 1 so the caller knows we're done 1367 * with this page and already handled the IO. 1368 * 1369 * If there was an error then cow_file_range_inline() has 1370 * already done the cleanup. 1371 */ 1372 if (ret == 0) 1373 ret = 1; 1374 goto done; 1375 } 1376 } 1377 1378 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1379 1380 /* 1381 * Relocation relies on the relocated extents to have exactly the same 1382 * size as the original extents. Normally writeback for relocation data 1383 * extents follows a NOCOW path because relocation preallocates the 1384 * extents. However, due to an operation such as scrub turning a block 1385 * group to RO mode, it may fallback to COW mode, so we must make sure 1386 * an extent allocated during COW has exactly the requested size and can 1387 * not be split into smaller extents, otherwise relocation breaks and 1388 * fails during the stage where it updates the bytenr of file extent 1389 * items. 1390 */ 1391 if (btrfs_is_data_reloc_root(root)) 1392 min_alloc_size = num_bytes; 1393 else 1394 min_alloc_size = fs_info->sectorsize; 1395 1396 while (num_bytes > 0) { 1397 struct btrfs_ordered_extent *ordered; 1398 struct btrfs_file_extent file_extent; 1399 1400 cur_alloc_size = num_bytes; 1401 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1402 min_alloc_size, 0, alloc_hint, 1403 &ins, 1, 1); 1404 if (ret == -EAGAIN) { 1405 /* 1406 * btrfs_reserve_extent only returns -EAGAIN for zoned 1407 * file systems, which is an indication that there are 1408 * no active zones to allocate from at the moment. 1409 * 1410 * If this is the first loop iteration, wait for at 1411 * least one zone to finish before retrying the 1412 * allocation. Otherwise ask the caller to write out 1413 * the already allocated blocks before coming back to 1414 * us, or return -ENOSPC if it can't handle retries. 1415 */ 1416 ASSERT(btrfs_is_zoned(fs_info)); 1417 if (start == orig_start) { 1418 wait_on_bit_io(&inode->root->fs_info->flags, 1419 BTRFS_FS_NEED_ZONE_FINISH, 1420 TASK_UNINTERRUPTIBLE); 1421 continue; 1422 } 1423 if (done_offset) { 1424 *done_offset = start - 1; 1425 return 0; 1426 } 1427 ret = -ENOSPC; 1428 } 1429 if (ret < 0) 1430 goto out_unlock; 1431 cur_alloc_size = ins.offset; 1432 extent_reserved = true; 1433 1434 ram_size = ins.offset; 1435 file_extent.disk_bytenr = ins.objectid; 1436 file_extent.disk_num_bytes = ins.offset; 1437 file_extent.num_bytes = ins.offset; 1438 file_extent.ram_bytes = ins.offset; 1439 file_extent.offset = 0; 1440 file_extent.compression = BTRFS_COMPRESS_NONE; 1441 1442 lock_extent(&inode->io_tree, start, start + ram_size - 1, 1443 &cached); 1444 1445 em = btrfs_create_io_em(inode, start, &file_extent, 1446 BTRFS_ORDERED_REGULAR); 1447 if (IS_ERR(em)) { 1448 unlock_extent(&inode->io_tree, start, 1449 start + ram_size - 1, &cached); 1450 ret = PTR_ERR(em); 1451 goto out_reserve; 1452 } 1453 free_extent_map(em); 1454 1455 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1456 1 << BTRFS_ORDERED_REGULAR); 1457 if (IS_ERR(ordered)) { 1458 unlock_extent(&inode->io_tree, start, 1459 start + ram_size - 1, &cached); 1460 ret = PTR_ERR(ordered); 1461 goto out_drop_extent_cache; 1462 } 1463 1464 if (btrfs_is_data_reloc_root(root)) { 1465 ret = btrfs_reloc_clone_csums(ordered); 1466 1467 /* 1468 * Only drop cache here, and process as normal. 1469 * 1470 * We must not allow extent_clear_unlock_delalloc() 1471 * at out_unlock label to free meta of this ordered 1472 * extent, as its meta should be freed by 1473 * btrfs_finish_ordered_io(). 1474 * 1475 * So we must continue until @start is increased to 1476 * skip current ordered extent. 1477 */ 1478 if (ret) 1479 btrfs_drop_extent_map_range(inode, start, 1480 start + ram_size - 1, 1481 false); 1482 } 1483 btrfs_put_ordered_extent(ordered); 1484 1485 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1486 1487 /* 1488 * We're not doing compressed IO, don't unlock the first page 1489 * (which the caller expects to stay locked), don't clear any 1490 * dirty bits and don't set any writeback bits 1491 * 1492 * Do set the Ordered (Private2) bit so we know this page was 1493 * properly setup for writepage. 1494 */ 1495 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1496 page_ops |= PAGE_SET_ORDERED; 1497 1498 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1499 locked_page, &cached, 1500 EXTENT_LOCKED | EXTENT_DELALLOC, 1501 page_ops); 1502 if (num_bytes < cur_alloc_size) 1503 num_bytes = 0; 1504 else 1505 num_bytes -= cur_alloc_size; 1506 alloc_hint = ins.objectid + ins.offset; 1507 start += cur_alloc_size; 1508 extent_reserved = false; 1509 1510 /* 1511 * btrfs_reloc_clone_csums() error, since start is increased 1512 * extent_clear_unlock_delalloc() at out_unlock label won't 1513 * free metadata of current ordered extent, we're OK to exit. 1514 */ 1515 if (ret) 1516 goto out_unlock; 1517 } 1518 done: 1519 if (done_offset) 1520 *done_offset = end; 1521 return ret; 1522 1523 out_drop_extent_cache: 1524 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1525 out_reserve: 1526 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1527 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1528 out_unlock: 1529 /* 1530 * Now, we have three regions to clean up: 1531 * 1532 * |-------(1)----|---(2)---|-------------(3)----------| 1533 * `- orig_start `- start `- start + cur_alloc_size `- end 1534 * 1535 * We process each region below. 1536 */ 1537 1538 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1539 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1540 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1541 1542 /* 1543 * For the range (1). We have already instantiated the ordered extents 1544 * for this region. They are cleaned up by 1545 * btrfs_cleanup_ordered_extents() in e.g, 1546 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1547 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1548 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1549 * function. 1550 * 1551 * However, in case of @keep_locked, we still need to unlock the pages 1552 * (except @locked_page) to ensure all the pages are unlocked. 1553 */ 1554 if (keep_locked && orig_start < start) { 1555 if (!locked_page) 1556 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1557 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1558 locked_page, NULL, 0, page_ops); 1559 } 1560 1561 /* 1562 * At this point we're unlocked, we want to make sure we're only 1563 * clearing these flags under the extent lock, so lock the rest of the 1564 * range and clear everything up. 1565 */ 1566 lock_extent(&inode->io_tree, start, end, NULL); 1567 1568 /* 1569 * For the range (2). If we reserved an extent for our delalloc range 1570 * (or a subrange) and failed to create the respective ordered extent, 1571 * then it means that when we reserved the extent we decremented the 1572 * extent's size from the data space_info's bytes_may_use counter and 1573 * incremented the space_info's bytes_reserved counter by the same 1574 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1575 * to decrement again the data space_info's bytes_may_use counter, 1576 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1577 */ 1578 if (extent_reserved) { 1579 extent_clear_unlock_delalloc(inode, start, 1580 start + cur_alloc_size - 1, 1581 locked_page, &cached, 1582 clear_bits, 1583 page_ops); 1584 start += cur_alloc_size; 1585 } 1586 1587 /* 1588 * For the range (3). We never touched the region. In addition to the 1589 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1590 * space_info's bytes_may_use counter, reserved in 1591 * btrfs_check_data_free_space(). 1592 */ 1593 if (start < end) { 1594 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1595 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1596 &cached, clear_bits, page_ops); 1597 } 1598 return ret; 1599 } 1600 1601 /* 1602 * Phase two of compressed writeback. This is the ordered portion of the code, 1603 * which only gets called in the order the work was queued. We walk all the 1604 * async extents created by compress_file_range and send them down to the disk. 1605 * 1606 * If called with @do_free == true then it'll try to finish the work and free 1607 * the work struct eventually. 1608 */ 1609 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1610 { 1611 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1612 work); 1613 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1614 struct async_extent *async_extent; 1615 unsigned long nr_pages; 1616 u64 alloc_hint = 0; 1617 1618 if (do_free) { 1619 struct async_cow *async_cow; 1620 1621 btrfs_add_delayed_iput(async_chunk->inode); 1622 if (async_chunk->blkcg_css) 1623 css_put(async_chunk->blkcg_css); 1624 1625 async_cow = async_chunk->async_cow; 1626 if (atomic_dec_and_test(&async_cow->num_chunks)) 1627 kvfree(async_cow); 1628 return; 1629 } 1630 1631 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1632 PAGE_SHIFT; 1633 1634 while (!list_empty(&async_chunk->extents)) { 1635 async_extent = list_entry(async_chunk->extents.next, 1636 struct async_extent, list); 1637 list_del(&async_extent->list); 1638 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1639 } 1640 1641 /* atomic_sub_return implies a barrier */ 1642 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1643 5 * SZ_1M) 1644 cond_wake_up_nomb(&fs_info->async_submit_wait); 1645 } 1646 1647 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1648 struct page *locked_page, u64 start, 1649 u64 end, struct writeback_control *wbc) 1650 { 1651 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1652 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1653 struct async_cow *ctx; 1654 struct async_chunk *async_chunk; 1655 unsigned long nr_pages; 1656 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1657 int i; 1658 unsigned nofs_flag; 1659 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1660 1661 nofs_flag = memalloc_nofs_save(); 1662 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1663 memalloc_nofs_restore(nofs_flag); 1664 if (!ctx) 1665 return false; 1666 1667 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1668 1669 async_chunk = ctx->chunks; 1670 atomic_set(&ctx->num_chunks, num_chunks); 1671 1672 for (i = 0; i < num_chunks; i++) { 1673 u64 cur_end = min(end, start + SZ_512K - 1); 1674 1675 /* 1676 * igrab is called higher up in the call chain, take only the 1677 * lightweight reference for the callback lifetime 1678 */ 1679 ihold(&inode->vfs_inode); 1680 async_chunk[i].async_cow = ctx; 1681 async_chunk[i].inode = inode; 1682 async_chunk[i].start = start; 1683 async_chunk[i].end = cur_end; 1684 async_chunk[i].write_flags = write_flags; 1685 INIT_LIST_HEAD(&async_chunk[i].extents); 1686 1687 /* 1688 * The locked_page comes all the way from writepage and its 1689 * the original page we were actually given. As we spread 1690 * this large delalloc region across multiple async_chunk 1691 * structs, only the first struct needs a pointer to locked_page 1692 * 1693 * This way we don't need racey decisions about who is supposed 1694 * to unlock it. 1695 */ 1696 if (locked_page) { 1697 /* 1698 * Depending on the compressibility, the pages might or 1699 * might not go through async. We want all of them to 1700 * be accounted against wbc once. Let's do it here 1701 * before the paths diverge. wbc accounting is used 1702 * only for foreign writeback detection and doesn't 1703 * need full accuracy. Just account the whole thing 1704 * against the first page. 1705 */ 1706 wbc_account_cgroup_owner(wbc, locked_page, 1707 cur_end - start); 1708 async_chunk[i].locked_page = locked_page; 1709 locked_page = NULL; 1710 } else { 1711 async_chunk[i].locked_page = NULL; 1712 } 1713 1714 if (blkcg_css != blkcg_root_css) { 1715 css_get(blkcg_css); 1716 async_chunk[i].blkcg_css = blkcg_css; 1717 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1718 } else { 1719 async_chunk[i].blkcg_css = NULL; 1720 } 1721 1722 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1723 submit_compressed_extents); 1724 1725 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1726 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1727 1728 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1729 1730 start = cur_end + 1; 1731 } 1732 return true; 1733 } 1734 1735 /* 1736 * Run the delalloc range from start to end, and write back any dirty pages 1737 * covered by the range. 1738 */ 1739 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1740 struct page *locked_page, u64 start, 1741 u64 end, struct writeback_control *wbc, 1742 bool pages_dirty) 1743 { 1744 u64 done_offset = end; 1745 int ret; 1746 1747 while (start <= end) { 1748 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1749 true, false); 1750 if (ret) 1751 return ret; 1752 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1753 done_offset, wbc, pages_dirty); 1754 start = done_offset + 1; 1755 } 1756 1757 return 1; 1758 } 1759 1760 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1761 const u64 start, const u64 end) 1762 { 1763 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1764 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1765 const u64 range_bytes = end + 1 - start; 1766 struct extent_io_tree *io_tree = &inode->io_tree; 1767 struct extent_state *cached_state = NULL; 1768 u64 range_start = start; 1769 u64 count; 1770 int ret; 1771 1772 /* 1773 * If EXTENT_NORESERVE is set it means that when the buffered write was 1774 * made we had not enough available data space and therefore we did not 1775 * reserve data space for it, since we though we could do NOCOW for the 1776 * respective file range (either there is prealloc extent or the inode 1777 * has the NOCOW bit set). 1778 * 1779 * However when we need to fallback to COW mode (because for example the 1780 * block group for the corresponding extent was turned to RO mode by a 1781 * scrub or relocation) we need to do the following: 1782 * 1783 * 1) We increment the bytes_may_use counter of the data space info. 1784 * If COW succeeds, it allocates a new data extent and after doing 1785 * that it decrements the space info's bytes_may_use counter and 1786 * increments its bytes_reserved counter by the same amount (we do 1787 * this at btrfs_add_reserved_bytes()). So we need to increment the 1788 * bytes_may_use counter to compensate (when space is reserved at 1789 * buffered write time, the bytes_may_use counter is incremented); 1790 * 1791 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1792 * that if the COW path fails for any reason, it decrements (through 1793 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1794 * data space info, which we incremented in the step above. 1795 * 1796 * If we need to fallback to cow and the inode corresponds to a free 1797 * space cache inode or an inode of the data relocation tree, we must 1798 * also increment bytes_may_use of the data space_info for the same 1799 * reason. Space caches and relocated data extents always get a prealloc 1800 * extent for them, however scrub or balance may have set the block 1801 * group that contains that extent to RO mode and therefore force COW 1802 * when starting writeback. 1803 */ 1804 lock_extent(io_tree, start, end, &cached_state); 1805 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1806 EXTENT_NORESERVE, 0, NULL); 1807 if (count > 0 || is_space_ino || is_reloc_ino) { 1808 u64 bytes = count; 1809 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1810 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1811 1812 if (is_space_ino || is_reloc_ino) 1813 bytes = range_bytes; 1814 1815 spin_lock(&sinfo->lock); 1816 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1817 spin_unlock(&sinfo->lock); 1818 1819 if (count > 0) 1820 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1821 NULL); 1822 } 1823 unlock_extent(io_tree, start, end, &cached_state); 1824 1825 /* 1826 * Don't try to create inline extents, as a mix of inline extent that 1827 * is written out and unlocked directly and a normal NOCOW extent 1828 * doesn't work. 1829 */ 1830 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1831 ASSERT(ret != 1); 1832 return ret; 1833 } 1834 1835 struct can_nocow_file_extent_args { 1836 /* Input fields. */ 1837 1838 /* Start file offset of the range we want to NOCOW. */ 1839 u64 start; 1840 /* End file offset (inclusive) of the range we want to NOCOW. */ 1841 u64 end; 1842 bool writeback_path; 1843 bool strict; 1844 /* 1845 * Free the path passed to can_nocow_file_extent() once it's not needed 1846 * anymore. 1847 */ 1848 bool free_path; 1849 1850 /* 1851 * Output fields. Only set when can_nocow_file_extent() returns 1. 1852 * The expected file extent for the NOCOW write. 1853 */ 1854 struct btrfs_file_extent file_extent; 1855 }; 1856 1857 /* 1858 * Check if we can NOCOW the file extent that the path points to. 1859 * This function may return with the path released, so the caller should check 1860 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1861 * 1862 * Returns: < 0 on error 1863 * 0 if we can not NOCOW 1864 * 1 if we can NOCOW 1865 */ 1866 static int can_nocow_file_extent(struct btrfs_path *path, 1867 struct btrfs_key *key, 1868 struct btrfs_inode *inode, 1869 struct can_nocow_file_extent_args *args) 1870 { 1871 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1872 struct extent_buffer *leaf = path->nodes[0]; 1873 struct btrfs_root *root = inode->root; 1874 struct btrfs_file_extent_item *fi; 1875 struct btrfs_root *csum_root; 1876 u64 io_start; 1877 u64 extent_end; 1878 u8 extent_type; 1879 int can_nocow = 0; 1880 int ret = 0; 1881 bool nowait = path->nowait; 1882 1883 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1884 extent_type = btrfs_file_extent_type(leaf, fi); 1885 1886 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1887 goto out; 1888 1889 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1890 extent_type == BTRFS_FILE_EXTENT_REG) 1891 goto out; 1892 1893 /* 1894 * If the extent was created before the generation where the last snapshot 1895 * for its subvolume was created, then this implies the extent is shared, 1896 * hence we must COW. 1897 */ 1898 if (!args->strict && 1899 btrfs_file_extent_generation(leaf, fi) <= 1900 btrfs_root_last_snapshot(&root->root_item)) 1901 goto out; 1902 1903 /* An explicit hole, must COW. */ 1904 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1905 goto out; 1906 1907 /* Compressed/encrypted/encoded extents must be COWed. */ 1908 if (btrfs_file_extent_compression(leaf, fi) || 1909 btrfs_file_extent_encryption(leaf, fi) || 1910 btrfs_file_extent_other_encoding(leaf, fi)) 1911 goto out; 1912 1913 extent_end = btrfs_file_extent_end(path); 1914 1915 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1916 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1917 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1918 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1919 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1920 1921 /* 1922 * The following checks can be expensive, as they need to take other 1923 * locks and do btree or rbtree searches, so release the path to avoid 1924 * blocking other tasks for too long. 1925 */ 1926 btrfs_release_path(path); 1927 1928 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1929 key->offset - args->file_extent.offset, 1930 args->file_extent.disk_bytenr, args->strict, path); 1931 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1932 if (ret != 0) 1933 goto out; 1934 1935 if (args->free_path) { 1936 /* 1937 * We don't need the path anymore, plus through the 1938 * btrfs_lookup_csums_list() call below we will end up allocating 1939 * another path. So free the path to avoid unnecessary extra 1940 * memory usage. 1941 */ 1942 btrfs_free_path(path); 1943 path = NULL; 1944 } 1945 1946 /* If there are pending snapshots for this root, we must COW. */ 1947 if (args->writeback_path && !is_freespace_inode && 1948 atomic_read(&root->snapshot_force_cow)) 1949 goto out; 1950 1951 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1952 args->file_extent.offset += args->start - key->offset; 1953 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1954 1955 /* 1956 * Force COW if csums exist in the range. This ensures that csums for a 1957 * given extent are either valid or do not exist. 1958 */ 1959 1960 csum_root = btrfs_csum_root(root->fs_info, io_start); 1961 ret = btrfs_lookup_csums_list(csum_root, io_start, 1962 io_start + args->file_extent.num_bytes - 1, 1963 NULL, nowait); 1964 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1965 if (ret != 0) 1966 goto out; 1967 1968 can_nocow = 1; 1969 out: 1970 if (args->free_path && path) 1971 btrfs_free_path(path); 1972 1973 return ret < 0 ? ret : can_nocow; 1974 } 1975 1976 /* 1977 * when nowcow writeback call back. This checks for snapshots or COW copies 1978 * of the extents that exist in the file, and COWs the file as required. 1979 * 1980 * If no cow copies or snapshots exist, we write directly to the existing 1981 * blocks on disk 1982 */ 1983 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1984 struct page *locked_page, 1985 const u64 start, const u64 end) 1986 { 1987 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1988 struct btrfs_root *root = inode->root; 1989 struct btrfs_path *path; 1990 u64 cow_start = (u64)-1; 1991 u64 cur_offset = start; 1992 int ret; 1993 bool check_prev = true; 1994 u64 ino = btrfs_ino(inode); 1995 struct can_nocow_file_extent_args nocow_args = { 0 }; 1996 1997 /* 1998 * Normally on a zoned device we're only doing COW writes, but in case 1999 * of relocation on a zoned filesystem serializes I/O so that we're only 2000 * writing sequentially and can end up here as well. 2001 */ 2002 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2003 2004 path = btrfs_alloc_path(); 2005 if (!path) { 2006 ret = -ENOMEM; 2007 goto error; 2008 } 2009 2010 nocow_args.end = end; 2011 nocow_args.writeback_path = true; 2012 2013 while (cur_offset <= end) { 2014 struct btrfs_block_group *nocow_bg = NULL; 2015 struct btrfs_ordered_extent *ordered; 2016 struct btrfs_key found_key; 2017 struct btrfs_file_extent_item *fi; 2018 struct extent_buffer *leaf; 2019 struct extent_state *cached_state = NULL; 2020 u64 extent_end; 2021 u64 nocow_end; 2022 int extent_type; 2023 bool is_prealloc; 2024 2025 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2026 cur_offset, 0); 2027 if (ret < 0) 2028 goto error; 2029 2030 /* 2031 * If there is no extent for our range when doing the initial 2032 * search, then go back to the previous slot as it will be the 2033 * one containing the search offset 2034 */ 2035 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2036 leaf = path->nodes[0]; 2037 btrfs_item_key_to_cpu(leaf, &found_key, 2038 path->slots[0] - 1); 2039 if (found_key.objectid == ino && 2040 found_key.type == BTRFS_EXTENT_DATA_KEY) 2041 path->slots[0]--; 2042 } 2043 check_prev = false; 2044 next_slot: 2045 /* Go to next leaf if we have exhausted the current one */ 2046 leaf = path->nodes[0]; 2047 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2048 ret = btrfs_next_leaf(root, path); 2049 if (ret < 0) 2050 goto error; 2051 if (ret > 0) 2052 break; 2053 leaf = path->nodes[0]; 2054 } 2055 2056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2057 2058 /* Didn't find anything for our INO */ 2059 if (found_key.objectid > ino) 2060 break; 2061 /* 2062 * Keep searching until we find an EXTENT_ITEM or there are no 2063 * more extents for this inode 2064 */ 2065 if (WARN_ON_ONCE(found_key.objectid < ino) || 2066 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2067 path->slots[0]++; 2068 goto next_slot; 2069 } 2070 2071 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2072 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2073 found_key.offset > end) 2074 break; 2075 2076 /* 2077 * If the found extent starts after requested offset, then 2078 * adjust extent_end to be right before this extent begins 2079 */ 2080 if (found_key.offset > cur_offset) { 2081 extent_end = found_key.offset; 2082 extent_type = 0; 2083 goto must_cow; 2084 } 2085 2086 /* 2087 * Found extent which begins before our range and potentially 2088 * intersect it 2089 */ 2090 fi = btrfs_item_ptr(leaf, path->slots[0], 2091 struct btrfs_file_extent_item); 2092 extent_type = btrfs_file_extent_type(leaf, fi); 2093 /* If this is triggered then we have a memory corruption. */ 2094 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2095 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2096 ret = -EUCLEAN; 2097 goto error; 2098 } 2099 extent_end = btrfs_file_extent_end(path); 2100 2101 /* 2102 * If the extent we got ends before our current offset, skip to 2103 * the next extent. 2104 */ 2105 if (extent_end <= cur_offset) { 2106 path->slots[0]++; 2107 goto next_slot; 2108 } 2109 2110 nocow_args.start = cur_offset; 2111 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2112 if (ret < 0) 2113 goto error; 2114 if (ret == 0) 2115 goto must_cow; 2116 2117 ret = 0; 2118 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2119 nocow_args.file_extent.disk_bytenr + 2120 nocow_args.file_extent.offset); 2121 if (!nocow_bg) { 2122 must_cow: 2123 /* 2124 * If we can't perform NOCOW writeback for the range, 2125 * then record the beginning of the range that needs to 2126 * be COWed. It will be written out before the next 2127 * NOCOW range if we find one, or when exiting this 2128 * loop. 2129 */ 2130 if (cow_start == (u64)-1) 2131 cow_start = cur_offset; 2132 cur_offset = extent_end; 2133 if (cur_offset > end) 2134 break; 2135 if (!path->nodes[0]) 2136 continue; 2137 path->slots[0]++; 2138 goto next_slot; 2139 } 2140 2141 /* 2142 * COW range from cow_start to found_key.offset - 1. As the key 2143 * will contain the beginning of the first extent that can be 2144 * NOCOW, following one which needs to be COW'ed 2145 */ 2146 if (cow_start != (u64)-1) { 2147 ret = fallback_to_cow(inode, locked_page, 2148 cow_start, found_key.offset - 1); 2149 cow_start = (u64)-1; 2150 if (ret) { 2151 btrfs_dec_nocow_writers(nocow_bg); 2152 goto error; 2153 } 2154 } 2155 2156 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2157 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2158 2159 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2160 if (is_prealloc) { 2161 struct extent_map *em; 2162 2163 em = btrfs_create_io_em(inode, cur_offset, 2164 &nocow_args.file_extent, 2165 BTRFS_ORDERED_PREALLOC); 2166 if (IS_ERR(em)) { 2167 unlock_extent(&inode->io_tree, cur_offset, 2168 nocow_end, &cached_state); 2169 btrfs_dec_nocow_writers(nocow_bg); 2170 ret = PTR_ERR(em); 2171 goto error; 2172 } 2173 free_extent_map(em); 2174 } 2175 2176 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2177 &nocow_args.file_extent, 2178 is_prealloc 2179 ? (1 << BTRFS_ORDERED_PREALLOC) 2180 : (1 << BTRFS_ORDERED_NOCOW)); 2181 btrfs_dec_nocow_writers(nocow_bg); 2182 if (IS_ERR(ordered)) { 2183 if (is_prealloc) { 2184 btrfs_drop_extent_map_range(inode, cur_offset, 2185 nocow_end, false); 2186 } 2187 unlock_extent(&inode->io_tree, cur_offset, 2188 nocow_end, &cached_state); 2189 ret = PTR_ERR(ordered); 2190 goto error; 2191 } 2192 2193 if (btrfs_is_data_reloc_root(root)) 2194 /* 2195 * Error handled later, as we must prevent 2196 * extent_clear_unlock_delalloc() in error handler 2197 * from freeing metadata of created ordered extent. 2198 */ 2199 ret = btrfs_reloc_clone_csums(ordered); 2200 btrfs_put_ordered_extent(ordered); 2201 2202 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2203 locked_page, &cached_state, 2204 EXTENT_LOCKED | EXTENT_DELALLOC | 2205 EXTENT_CLEAR_DATA_RESV, 2206 PAGE_UNLOCK | PAGE_SET_ORDERED); 2207 2208 cur_offset = extent_end; 2209 2210 /* 2211 * btrfs_reloc_clone_csums() error, now we're OK to call error 2212 * handler, as metadata for created ordered extent will only 2213 * be freed by btrfs_finish_ordered_io(). 2214 */ 2215 if (ret) 2216 goto error; 2217 } 2218 btrfs_release_path(path); 2219 2220 if (cur_offset <= end && cow_start == (u64)-1) 2221 cow_start = cur_offset; 2222 2223 if (cow_start != (u64)-1) { 2224 cur_offset = end; 2225 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2226 cow_start = (u64)-1; 2227 if (ret) 2228 goto error; 2229 } 2230 2231 btrfs_free_path(path); 2232 return 0; 2233 2234 error: 2235 /* 2236 * If an error happened while a COW region is outstanding, cur_offset 2237 * needs to be reset to cow_start to ensure the COW region is unlocked 2238 * as well. 2239 */ 2240 if (cow_start != (u64)-1) 2241 cur_offset = cow_start; 2242 2243 /* 2244 * We need to lock the extent here because we're clearing DELALLOC and 2245 * we're not locked at this point. 2246 */ 2247 if (cur_offset < end) { 2248 struct extent_state *cached = NULL; 2249 2250 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2251 extent_clear_unlock_delalloc(inode, cur_offset, end, 2252 locked_page, &cached, 2253 EXTENT_LOCKED | EXTENT_DELALLOC | 2254 EXTENT_DEFRAG | 2255 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2256 PAGE_START_WRITEBACK | 2257 PAGE_END_WRITEBACK); 2258 } 2259 btrfs_free_path(path); 2260 return ret; 2261 } 2262 2263 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2264 { 2265 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2266 if (inode->defrag_bytes && 2267 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2268 return false; 2269 return true; 2270 } 2271 return false; 2272 } 2273 2274 /* 2275 * Function to process delayed allocation (create CoW) for ranges which are 2276 * being touched for the first time. 2277 */ 2278 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2279 u64 start, u64 end, struct writeback_control *wbc) 2280 { 2281 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2282 int ret; 2283 2284 /* 2285 * The range must cover part of the @locked_page, or a return of 1 2286 * can confuse the caller. 2287 */ 2288 ASSERT(!(end <= page_offset(locked_page) || 2289 start >= page_offset(locked_page) + PAGE_SIZE)); 2290 2291 if (should_nocow(inode, start, end)) { 2292 ret = run_delalloc_nocow(inode, locked_page, start, end); 2293 goto out; 2294 } 2295 2296 if (btrfs_inode_can_compress(inode) && 2297 inode_need_compress(inode, start, end) && 2298 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2299 return 1; 2300 2301 if (zoned) 2302 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2303 true); 2304 else 2305 ret = cow_file_range(inode, locked_page, start, end, NULL, 2306 false, false); 2307 2308 out: 2309 if (ret < 0) 2310 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2311 end - start + 1); 2312 return ret; 2313 } 2314 2315 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2316 struct extent_state *orig, u64 split) 2317 { 2318 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2319 u64 size; 2320 2321 lockdep_assert_held(&inode->io_tree.lock); 2322 2323 /* not delalloc, ignore it */ 2324 if (!(orig->state & EXTENT_DELALLOC)) 2325 return; 2326 2327 size = orig->end - orig->start + 1; 2328 if (size > fs_info->max_extent_size) { 2329 u32 num_extents; 2330 u64 new_size; 2331 2332 /* 2333 * See the explanation in btrfs_merge_delalloc_extent, the same 2334 * applies here, just in reverse. 2335 */ 2336 new_size = orig->end - split + 1; 2337 num_extents = count_max_extents(fs_info, new_size); 2338 new_size = split - orig->start; 2339 num_extents += count_max_extents(fs_info, new_size); 2340 if (count_max_extents(fs_info, size) >= num_extents) 2341 return; 2342 } 2343 2344 spin_lock(&inode->lock); 2345 btrfs_mod_outstanding_extents(inode, 1); 2346 spin_unlock(&inode->lock); 2347 } 2348 2349 /* 2350 * Handle merged delayed allocation extents so we can keep track of new extents 2351 * that are just merged onto old extents, such as when we are doing sequential 2352 * writes, so we can properly account for the metadata space we'll need. 2353 */ 2354 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2355 struct extent_state *other) 2356 { 2357 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2358 u64 new_size, old_size; 2359 u32 num_extents; 2360 2361 lockdep_assert_held(&inode->io_tree.lock); 2362 2363 /* not delalloc, ignore it */ 2364 if (!(other->state & EXTENT_DELALLOC)) 2365 return; 2366 2367 if (new->start > other->start) 2368 new_size = new->end - other->start + 1; 2369 else 2370 new_size = other->end - new->start + 1; 2371 2372 /* we're not bigger than the max, unreserve the space and go */ 2373 if (new_size <= fs_info->max_extent_size) { 2374 spin_lock(&inode->lock); 2375 btrfs_mod_outstanding_extents(inode, -1); 2376 spin_unlock(&inode->lock); 2377 return; 2378 } 2379 2380 /* 2381 * We have to add up either side to figure out how many extents were 2382 * accounted for before we merged into one big extent. If the number of 2383 * extents we accounted for is <= the amount we need for the new range 2384 * then we can return, otherwise drop. Think of it like this 2385 * 2386 * [ 4k][MAX_SIZE] 2387 * 2388 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2389 * need 2 outstanding extents, on one side we have 1 and the other side 2390 * we have 1 so they are == and we can return. But in this case 2391 * 2392 * [MAX_SIZE+4k][MAX_SIZE+4k] 2393 * 2394 * Each range on their own accounts for 2 extents, but merged together 2395 * they are only 3 extents worth of accounting, so we need to drop in 2396 * this case. 2397 */ 2398 old_size = other->end - other->start + 1; 2399 num_extents = count_max_extents(fs_info, old_size); 2400 old_size = new->end - new->start + 1; 2401 num_extents += count_max_extents(fs_info, old_size); 2402 if (count_max_extents(fs_info, new_size) >= num_extents) 2403 return; 2404 2405 spin_lock(&inode->lock); 2406 btrfs_mod_outstanding_extents(inode, -1); 2407 spin_unlock(&inode->lock); 2408 } 2409 2410 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2411 { 2412 struct btrfs_root *root = inode->root; 2413 struct btrfs_fs_info *fs_info = root->fs_info; 2414 2415 spin_lock(&root->delalloc_lock); 2416 ASSERT(list_empty(&inode->delalloc_inodes)); 2417 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2418 root->nr_delalloc_inodes++; 2419 if (root->nr_delalloc_inodes == 1) { 2420 spin_lock(&fs_info->delalloc_root_lock); 2421 ASSERT(list_empty(&root->delalloc_root)); 2422 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2423 spin_unlock(&fs_info->delalloc_root_lock); 2424 } 2425 spin_unlock(&root->delalloc_lock); 2426 } 2427 2428 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2429 { 2430 struct btrfs_root *root = inode->root; 2431 struct btrfs_fs_info *fs_info = root->fs_info; 2432 2433 lockdep_assert_held(&root->delalloc_lock); 2434 2435 /* 2436 * We may be called after the inode was already deleted from the list, 2437 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2438 * and then later through btrfs_clear_delalloc_extent() while the inode 2439 * still has ->delalloc_bytes > 0. 2440 */ 2441 if (!list_empty(&inode->delalloc_inodes)) { 2442 list_del_init(&inode->delalloc_inodes); 2443 root->nr_delalloc_inodes--; 2444 if (!root->nr_delalloc_inodes) { 2445 ASSERT(list_empty(&root->delalloc_inodes)); 2446 spin_lock(&fs_info->delalloc_root_lock); 2447 ASSERT(!list_empty(&root->delalloc_root)); 2448 list_del_init(&root->delalloc_root); 2449 spin_unlock(&fs_info->delalloc_root_lock); 2450 } 2451 } 2452 } 2453 2454 /* 2455 * Properly track delayed allocation bytes in the inode and to maintain the 2456 * list of inodes that have pending delalloc work to be done. 2457 */ 2458 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2459 u32 bits) 2460 { 2461 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2462 2463 lockdep_assert_held(&inode->io_tree.lock); 2464 2465 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2466 WARN_ON(1); 2467 /* 2468 * set_bit and clear bit hooks normally require _irqsave/restore 2469 * but in this case, we are only testing for the DELALLOC 2470 * bit, which is only set or cleared with irqs on 2471 */ 2472 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2473 u64 len = state->end + 1 - state->start; 2474 u64 prev_delalloc_bytes; 2475 u32 num_extents = count_max_extents(fs_info, len); 2476 2477 spin_lock(&inode->lock); 2478 btrfs_mod_outstanding_extents(inode, num_extents); 2479 spin_unlock(&inode->lock); 2480 2481 /* For sanity tests */ 2482 if (btrfs_is_testing(fs_info)) 2483 return; 2484 2485 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2486 fs_info->delalloc_batch); 2487 spin_lock(&inode->lock); 2488 prev_delalloc_bytes = inode->delalloc_bytes; 2489 inode->delalloc_bytes += len; 2490 if (bits & EXTENT_DEFRAG) 2491 inode->defrag_bytes += len; 2492 spin_unlock(&inode->lock); 2493 2494 /* 2495 * We don't need to be under the protection of the inode's lock, 2496 * because we are called while holding the inode's io_tree lock 2497 * and are therefore protected against concurrent calls of this 2498 * function and btrfs_clear_delalloc_extent(). 2499 */ 2500 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2501 btrfs_add_delalloc_inode(inode); 2502 } 2503 2504 if (!(state->state & EXTENT_DELALLOC_NEW) && 2505 (bits & EXTENT_DELALLOC_NEW)) { 2506 spin_lock(&inode->lock); 2507 inode->new_delalloc_bytes += state->end + 1 - state->start; 2508 spin_unlock(&inode->lock); 2509 } 2510 } 2511 2512 /* 2513 * Once a range is no longer delalloc this function ensures that proper 2514 * accounting happens. 2515 */ 2516 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2517 struct extent_state *state, u32 bits) 2518 { 2519 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2520 u64 len = state->end + 1 - state->start; 2521 u32 num_extents = count_max_extents(fs_info, len); 2522 2523 lockdep_assert_held(&inode->io_tree.lock); 2524 2525 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2526 spin_lock(&inode->lock); 2527 inode->defrag_bytes -= len; 2528 spin_unlock(&inode->lock); 2529 } 2530 2531 /* 2532 * set_bit and clear bit hooks normally require _irqsave/restore 2533 * but in this case, we are only testing for the DELALLOC 2534 * bit, which is only set or cleared with irqs on 2535 */ 2536 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2537 struct btrfs_root *root = inode->root; 2538 u64 new_delalloc_bytes; 2539 2540 spin_lock(&inode->lock); 2541 btrfs_mod_outstanding_extents(inode, -num_extents); 2542 spin_unlock(&inode->lock); 2543 2544 /* 2545 * We don't reserve metadata space for space cache inodes so we 2546 * don't need to call delalloc_release_metadata if there is an 2547 * error. 2548 */ 2549 if (bits & EXTENT_CLEAR_META_RESV && 2550 root != fs_info->tree_root) 2551 btrfs_delalloc_release_metadata(inode, len, true); 2552 2553 /* For sanity tests. */ 2554 if (btrfs_is_testing(fs_info)) 2555 return; 2556 2557 if (!btrfs_is_data_reloc_root(root) && 2558 !btrfs_is_free_space_inode(inode) && 2559 !(state->state & EXTENT_NORESERVE) && 2560 (bits & EXTENT_CLEAR_DATA_RESV)) 2561 btrfs_free_reserved_data_space_noquota(fs_info, len); 2562 2563 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2564 fs_info->delalloc_batch); 2565 spin_lock(&inode->lock); 2566 inode->delalloc_bytes -= len; 2567 new_delalloc_bytes = inode->delalloc_bytes; 2568 spin_unlock(&inode->lock); 2569 2570 /* 2571 * We don't need to be under the protection of the inode's lock, 2572 * because we are called while holding the inode's io_tree lock 2573 * and are therefore protected against concurrent calls of this 2574 * function and btrfs_set_delalloc_extent(). 2575 */ 2576 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2577 spin_lock(&root->delalloc_lock); 2578 btrfs_del_delalloc_inode(inode); 2579 spin_unlock(&root->delalloc_lock); 2580 } 2581 } 2582 2583 if ((state->state & EXTENT_DELALLOC_NEW) && 2584 (bits & EXTENT_DELALLOC_NEW)) { 2585 spin_lock(&inode->lock); 2586 ASSERT(inode->new_delalloc_bytes >= len); 2587 inode->new_delalloc_bytes -= len; 2588 if (bits & EXTENT_ADD_INODE_BYTES) 2589 inode_add_bytes(&inode->vfs_inode, len); 2590 spin_unlock(&inode->lock); 2591 } 2592 } 2593 2594 /* 2595 * given a list of ordered sums record them in the inode. This happens 2596 * at IO completion time based on sums calculated at bio submission time. 2597 */ 2598 static int add_pending_csums(struct btrfs_trans_handle *trans, 2599 struct list_head *list) 2600 { 2601 struct btrfs_ordered_sum *sum; 2602 struct btrfs_root *csum_root = NULL; 2603 int ret; 2604 2605 list_for_each_entry(sum, list, list) { 2606 trans->adding_csums = true; 2607 if (!csum_root) 2608 csum_root = btrfs_csum_root(trans->fs_info, 2609 sum->logical); 2610 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2611 trans->adding_csums = false; 2612 if (ret) 2613 return ret; 2614 } 2615 return 0; 2616 } 2617 2618 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2619 const u64 start, 2620 const u64 len, 2621 struct extent_state **cached_state) 2622 { 2623 u64 search_start = start; 2624 const u64 end = start + len - 1; 2625 2626 while (search_start < end) { 2627 const u64 search_len = end - search_start + 1; 2628 struct extent_map *em; 2629 u64 em_len; 2630 int ret = 0; 2631 2632 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2633 if (IS_ERR(em)) 2634 return PTR_ERR(em); 2635 2636 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2637 goto next; 2638 2639 em_len = em->len; 2640 if (em->start < search_start) 2641 em_len -= search_start - em->start; 2642 if (em_len > search_len) 2643 em_len = search_len; 2644 2645 ret = set_extent_bit(&inode->io_tree, search_start, 2646 search_start + em_len - 1, 2647 EXTENT_DELALLOC_NEW, cached_state); 2648 next: 2649 search_start = extent_map_end(em); 2650 free_extent_map(em); 2651 if (ret) 2652 return ret; 2653 } 2654 return 0; 2655 } 2656 2657 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2658 unsigned int extra_bits, 2659 struct extent_state **cached_state) 2660 { 2661 WARN_ON(PAGE_ALIGNED(end)); 2662 2663 if (start >= i_size_read(&inode->vfs_inode) && 2664 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2665 /* 2666 * There can't be any extents following eof in this case so just 2667 * set the delalloc new bit for the range directly. 2668 */ 2669 extra_bits |= EXTENT_DELALLOC_NEW; 2670 } else { 2671 int ret; 2672 2673 ret = btrfs_find_new_delalloc_bytes(inode, start, 2674 end + 1 - start, 2675 cached_state); 2676 if (ret) 2677 return ret; 2678 } 2679 2680 return set_extent_bit(&inode->io_tree, start, end, 2681 EXTENT_DELALLOC | extra_bits, cached_state); 2682 } 2683 2684 /* see btrfs_writepage_start_hook for details on why this is required */ 2685 struct btrfs_writepage_fixup { 2686 struct page *page; 2687 struct btrfs_inode *inode; 2688 struct btrfs_work work; 2689 }; 2690 2691 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2692 { 2693 struct btrfs_writepage_fixup *fixup = 2694 container_of(work, struct btrfs_writepage_fixup, work); 2695 struct btrfs_ordered_extent *ordered; 2696 struct extent_state *cached_state = NULL; 2697 struct extent_changeset *data_reserved = NULL; 2698 struct page *page = fixup->page; 2699 struct btrfs_inode *inode = fixup->inode; 2700 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2701 u64 page_start = page_offset(page); 2702 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2703 int ret = 0; 2704 bool free_delalloc_space = true; 2705 2706 /* 2707 * This is similar to page_mkwrite, we need to reserve the space before 2708 * we take the page lock. 2709 */ 2710 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2711 PAGE_SIZE); 2712 again: 2713 lock_page(page); 2714 2715 /* 2716 * Before we queued this fixup, we took a reference on the page. 2717 * page->mapping may go NULL, but it shouldn't be moved to a different 2718 * address space. 2719 */ 2720 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2721 /* 2722 * Unfortunately this is a little tricky, either 2723 * 2724 * 1) We got here and our page had already been dealt with and 2725 * we reserved our space, thus ret == 0, so we need to just 2726 * drop our space reservation and bail. This can happen the 2727 * first time we come into the fixup worker, or could happen 2728 * while waiting for the ordered extent. 2729 * 2) Our page was already dealt with, but we happened to get an 2730 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2731 * this case we obviously don't have anything to release, but 2732 * because the page was already dealt with we don't want to 2733 * mark the page with an error, so make sure we're resetting 2734 * ret to 0. This is why we have this check _before_ the ret 2735 * check, because we do not want to have a surprise ENOSPC 2736 * when the page was already properly dealt with. 2737 */ 2738 if (!ret) { 2739 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2740 btrfs_delalloc_release_space(inode, data_reserved, 2741 page_start, PAGE_SIZE, 2742 true); 2743 } 2744 ret = 0; 2745 goto out_page; 2746 } 2747 2748 /* 2749 * We can't mess with the page state unless it is locked, so now that 2750 * it is locked bail if we failed to make our space reservation. 2751 */ 2752 if (ret) 2753 goto out_page; 2754 2755 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2756 2757 /* already ordered? We're done */ 2758 if (PageOrdered(page)) 2759 goto out_reserved; 2760 2761 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2762 if (ordered) { 2763 unlock_extent(&inode->io_tree, page_start, page_end, 2764 &cached_state); 2765 unlock_page(page); 2766 btrfs_start_ordered_extent(ordered); 2767 btrfs_put_ordered_extent(ordered); 2768 goto again; 2769 } 2770 2771 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2772 &cached_state); 2773 if (ret) 2774 goto out_reserved; 2775 2776 /* 2777 * Everything went as planned, we're now the owner of a dirty page with 2778 * delayed allocation bits set and space reserved for our COW 2779 * destination. 2780 * 2781 * The page was dirty when we started, nothing should have cleaned it. 2782 */ 2783 BUG_ON(!PageDirty(page)); 2784 free_delalloc_space = false; 2785 out_reserved: 2786 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2787 if (free_delalloc_space) 2788 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2789 PAGE_SIZE, true); 2790 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2791 out_page: 2792 if (ret) { 2793 /* 2794 * We hit ENOSPC or other errors. Update the mapping and page 2795 * to reflect the errors and clean the page. 2796 */ 2797 mapping_set_error(page->mapping, ret); 2798 btrfs_mark_ordered_io_finished(inode, page, page_start, 2799 PAGE_SIZE, !ret); 2800 clear_page_dirty_for_io(page); 2801 } 2802 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2803 unlock_page(page); 2804 put_page(page); 2805 kfree(fixup); 2806 extent_changeset_free(data_reserved); 2807 /* 2808 * As a precaution, do a delayed iput in case it would be the last iput 2809 * that could need flushing space. Recursing back to fixup worker would 2810 * deadlock. 2811 */ 2812 btrfs_add_delayed_iput(inode); 2813 } 2814 2815 /* 2816 * There are a few paths in the higher layers of the kernel that directly 2817 * set the page dirty bit without asking the filesystem if it is a 2818 * good idea. This causes problems because we want to make sure COW 2819 * properly happens and the data=ordered rules are followed. 2820 * 2821 * In our case any range that doesn't have the ORDERED bit set 2822 * hasn't been properly setup for IO. We kick off an async process 2823 * to fix it up. The async helper will wait for ordered extents, set 2824 * the delalloc bit and make it safe to write the page. 2825 */ 2826 int btrfs_writepage_cow_fixup(struct page *page) 2827 { 2828 struct inode *inode = page->mapping->host; 2829 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2830 struct btrfs_writepage_fixup *fixup; 2831 2832 /* This page has ordered extent covering it already */ 2833 if (PageOrdered(page)) 2834 return 0; 2835 2836 /* 2837 * PageChecked is set below when we create a fixup worker for this page, 2838 * don't try to create another one if we're already PageChecked() 2839 * 2840 * The extent_io writepage code will redirty the page if we send back 2841 * EAGAIN. 2842 */ 2843 if (PageChecked(page)) 2844 return -EAGAIN; 2845 2846 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2847 if (!fixup) 2848 return -EAGAIN; 2849 2850 /* 2851 * We are already holding a reference to this inode from 2852 * write_cache_pages. We need to hold it because the space reservation 2853 * takes place outside of the page lock, and we can't trust 2854 * page->mapping outside of the page lock. 2855 */ 2856 ihold(inode); 2857 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2858 get_page(page); 2859 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2860 fixup->page = page; 2861 fixup->inode = BTRFS_I(inode); 2862 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2863 2864 return -EAGAIN; 2865 } 2866 2867 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2868 struct btrfs_inode *inode, u64 file_pos, 2869 struct btrfs_file_extent_item *stack_fi, 2870 const bool update_inode_bytes, 2871 u64 qgroup_reserved) 2872 { 2873 struct btrfs_root *root = inode->root; 2874 const u64 sectorsize = root->fs_info->sectorsize; 2875 struct btrfs_path *path; 2876 struct extent_buffer *leaf; 2877 struct btrfs_key ins; 2878 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2879 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2880 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2881 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2882 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2883 struct btrfs_drop_extents_args drop_args = { 0 }; 2884 int ret; 2885 2886 path = btrfs_alloc_path(); 2887 if (!path) 2888 return -ENOMEM; 2889 2890 /* 2891 * we may be replacing one extent in the tree with another. 2892 * The new extent is pinned in the extent map, and we don't want 2893 * to drop it from the cache until it is completely in the btree. 2894 * 2895 * So, tell btrfs_drop_extents to leave this extent in the cache. 2896 * the caller is expected to unpin it and allow it to be merged 2897 * with the others. 2898 */ 2899 drop_args.path = path; 2900 drop_args.start = file_pos; 2901 drop_args.end = file_pos + num_bytes; 2902 drop_args.replace_extent = true; 2903 drop_args.extent_item_size = sizeof(*stack_fi); 2904 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2905 if (ret) 2906 goto out; 2907 2908 if (!drop_args.extent_inserted) { 2909 ins.objectid = btrfs_ino(inode); 2910 ins.offset = file_pos; 2911 ins.type = BTRFS_EXTENT_DATA_KEY; 2912 2913 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2914 sizeof(*stack_fi)); 2915 if (ret) 2916 goto out; 2917 } 2918 leaf = path->nodes[0]; 2919 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2920 write_extent_buffer(leaf, stack_fi, 2921 btrfs_item_ptr_offset(leaf, path->slots[0]), 2922 sizeof(struct btrfs_file_extent_item)); 2923 2924 btrfs_mark_buffer_dirty(trans, leaf); 2925 btrfs_release_path(path); 2926 2927 /* 2928 * If we dropped an inline extent here, we know the range where it is 2929 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2930 * number of bytes only for that range containing the inline extent. 2931 * The remaining of the range will be processed when clearning the 2932 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2933 */ 2934 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2935 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2936 2937 inline_size = drop_args.bytes_found - inline_size; 2938 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2939 drop_args.bytes_found -= inline_size; 2940 num_bytes -= sectorsize; 2941 } 2942 2943 if (update_inode_bytes) 2944 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2945 2946 ins.objectid = disk_bytenr; 2947 ins.offset = disk_num_bytes; 2948 ins.type = BTRFS_EXTENT_ITEM_KEY; 2949 2950 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2951 if (ret) 2952 goto out; 2953 2954 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2955 file_pos - offset, 2956 qgroup_reserved, &ins); 2957 out: 2958 btrfs_free_path(path); 2959 2960 return ret; 2961 } 2962 2963 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2964 u64 start, u64 len) 2965 { 2966 struct btrfs_block_group *cache; 2967 2968 cache = btrfs_lookup_block_group(fs_info, start); 2969 ASSERT(cache); 2970 2971 spin_lock(&cache->lock); 2972 cache->delalloc_bytes -= len; 2973 spin_unlock(&cache->lock); 2974 2975 btrfs_put_block_group(cache); 2976 } 2977 2978 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2979 struct btrfs_ordered_extent *oe) 2980 { 2981 struct btrfs_file_extent_item stack_fi; 2982 bool update_inode_bytes; 2983 u64 num_bytes = oe->num_bytes; 2984 u64 ram_bytes = oe->ram_bytes; 2985 2986 memset(&stack_fi, 0, sizeof(stack_fi)); 2987 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2988 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2989 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2990 oe->disk_num_bytes); 2991 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2992 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2993 num_bytes = oe->truncated_len; 2994 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2995 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2996 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2997 /* Encryption and other encoding is reserved and all 0 */ 2998 2999 /* 3000 * For delalloc, when completing an ordered extent we update the inode's 3001 * bytes when clearing the range in the inode's io tree, so pass false 3002 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3003 * except if the ordered extent was truncated. 3004 */ 3005 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3006 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3007 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3008 3009 return insert_reserved_file_extent(trans, oe->inode, 3010 oe->file_offset, &stack_fi, 3011 update_inode_bytes, oe->qgroup_rsv); 3012 } 3013 3014 /* 3015 * As ordered data IO finishes, this gets called so we can finish 3016 * an ordered extent if the range of bytes in the file it covers are 3017 * fully written. 3018 */ 3019 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3020 { 3021 struct btrfs_inode *inode = ordered_extent->inode; 3022 struct btrfs_root *root = inode->root; 3023 struct btrfs_fs_info *fs_info = root->fs_info; 3024 struct btrfs_trans_handle *trans = NULL; 3025 struct extent_io_tree *io_tree = &inode->io_tree; 3026 struct extent_state *cached_state = NULL; 3027 u64 start, end; 3028 int compress_type = 0; 3029 int ret = 0; 3030 u64 logical_len = ordered_extent->num_bytes; 3031 bool freespace_inode; 3032 bool truncated = false; 3033 bool clear_reserved_extent = true; 3034 unsigned int clear_bits = EXTENT_DEFRAG; 3035 3036 start = ordered_extent->file_offset; 3037 end = start + ordered_extent->num_bytes - 1; 3038 3039 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3040 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3041 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3042 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3043 clear_bits |= EXTENT_DELALLOC_NEW; 3044 3045 freespace_inode = btrfs_is_free_space_inode(inode); 3046 if (!freespace_inode) 3047 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3048 3049 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3050 ret = -EIO; 3051 goto out; 3052 } 3053 3054 if (btrfs_is_zoned(fs_info)) 3055 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3056 ordered_extent->disk_num_bytes); 3057 3058 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3059 truncated = true; 3060 logical_len = ordered_extent->truncated_len; 3061 /* Truncated the entire extent, don't bother adding */ 3062 if (!logical_len) 3063 goto out; 3064 } 3065 3066 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3067 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3068 3069 btrfs_inode_safe_disk_i_size_write(inode, 0); 3070 if (freespace_inode) 3071 trans = btrfs_join_transaction_spacecache(root); 3072 else 3073 trans = btrfs_join_transaction(root); 3074 if (IS_ERR(trans)) { 3075 ret = PTR_ERR(trans); 3076 trans = NULL; 3077 goto out; 3078 } 3079 trans->block_rsv = &inode->block_rsv; 3080 ret = btrfs_update_inode_fallback(trans, inode); 3081 if (ret) /* -ENOMEM or corruption */ 3082 btrfs_abort_transaction(trans, ret); 3083 goto out; 3084 } 3085 3086 clear_bits |= EXTENT_LOCKED; 3087 lock_extent(io_tree, start, end, &cached_state); 3088 3089 if (freespace_inode) 3090 trans = btrfs_join_transaction_spacecache(root); 3091 else 3092 trans = btrfs_join_transaction(root); 3093 if (IS_ERR(trans)) { 3094 ret = PTR_ERR(trans); 3095 trans = NULL; 3096 goto out; 3097 } 3098 3099 trans->block_rsv = &inode->block_rsv; 3100 3101 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3102 if (ret) 3103 goto out; 3104 3105 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3106 compress_type = ordered_extent->compress_type; 3107 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3108 BUG_ON(compress_type); 3109 ret = btrfs_mark_extent_written(trans, inode, 3110 ordered_extent->file_offset, 3111 ordered_extent->file_offset + 3112 logical_len); 3113 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3114 ordered_extent->disk_num_bytes); 3115 } else { 3116 BUG_ON(root == fs_info->tree_root); 3117 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3118 if (!ret) { 3119 clear_reserved_extent = false; 3120 btrfs_release_delalloc_bytes(fs_info, 3121 ordered_extent->disk_bytenr, 3122 ordered_extent->disk_num_bytes); 3123 } 3124 } 3125 if (ret < 0) { 3126 btrfs_abort_transaction(trans, ret); 3127 goto out; 3128 } 3129 3130 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3131 ordered_extent->num_bytes, trans->transid); 3132 if (ret < 0) { 3133 btrfs_abort_transaction(trans, ret); 3134 goto out; 3135 } 3136 3137 ret = add_pending_csums(trans, &ordered_extent->list); 3138 if (ret) { 3139 btrfs_abort_transaction(trans, ret); 3140 goto out; 3141 } 3142 3143 /* 3144 * If this is a new delalloc range, clear its new delalloc flag to 3145 * update the inode's number of bytes. This needs to be done first 3146 * before updating the inode item. 3147 */ 3148 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3150 clear_extent_bit(&inode->io_tree, start, end, 3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3152 &cached_state); 3153 3154 btrfs_inode_safe_disk_i_size_write(inode, 0); 3155 ret = btrfs_update_inode_fallback(trans, inode); 3156 if (ret) { /* -ENOMEM or corruption */ 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 out: 3161 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3162 &cached_state); 3163 3164 if (trans) 3165 btrfs_end_transaction(trans); 3166 3167 if (ret || truncated) { 3168 u64 unwritten_start = start; 3169 3170 /* 3171 * If we failed to finish this ordered extent for any reason we 3172 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3173 * extent, and mark the inode with the error if it wasn't 3174 * already set. Any error during writeback would have already 3175 * set the mapping error, so we need to set it if we're the ones 3176 * marking this ordered extent as failed. 3177 */ 3178 if (ret) 3179 btrfs_mark_ordered_extent_error(ordered_extent); 3180 3181 if (truncated) 3182 unwritten_start += logical_len; 3183 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3184 3185 /* 3186 * Drop extent maps for the part of the extent we didn't write. 3187 * 3188 * We have an exception here for the free_space_inode, this is 3189 * because when we do btrfs_get_extent() on the free space inode 3190 * we will search the commit root. If this is a new block group 3191 * we won't find anything, and we will trip over the assert in 3192 * writepage where we do ASSERT(em->block_start != 3193 * EXTENT_MAP_HOLE). 3194 * 3195 * Theoretically we could also skip this for any NOCOW extent as 3196 * we don't mess with the extent map tree in the NOCOW case, but 3197 * for now simply skip this if we are the free space inode. 3198 */ 3199 if (!btrfs_is_free_space_inode(inode)) 3200 btrfs_drop_extent_map_range(inode, unwritten_start, 3201 end, false); 3202 3203 /* 3204 * If the ordered extent had an IOERR or something else went 3205 * wrong we need to return the space for this ordered extent 3206 * back to the allocator. We only free the extent in the 3207 * truncated case if we didn't write out the extent at all. 3208 * 3209 * If we made it past insert_reserved_file_extent before we 3210 * errored out then we don't need to do this as the accounting 3211 * has already been done. 3212 */ 3213 if ((ret || !logical_len) && 3214 clear_reserved_extent && 3215 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3216 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3217 /* 3218 * Discard the range before returning it back to the 3219 * free space pool 3220 */ 3221 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3222 btrfs_discard_extent(fs_info, 3223 ordered_extent->disk_bytenr, 3224 ordered_extent->disk_num_bytes, 3225 NULL); 3226 btrfs_free_reserved_extent(fs_info, 3227 ordered_extent->disk_bytenr, 3228 ordered_extent->disk_num_bytes, 1); 3229 /* 3230 * Actually free the qgroup rsv which was released when 3231 * the ordered extent was created. 3232 */ 3233 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3234 ordered_extent->qgroup_rsv, 3235 BTRFS_QGROUP_RSV_DATA); 3236 } 3237 } 3238 3239 /* 3240 * This needs to be done to make sure anybody waiting knows we are done 3241 * updating everything for this ordered extent. 3242 */ 3243 btrfs_remove_ordered_extent(inode, ordered_extent); 3244 3245 /* once for us */ 3246 btrfs_put_ordered_extent(ordered_extent); 3247 /* once for the tree */ 3248 btrfs_put_ordered_extent(ordered_extent); 3249 3250 return ret; 3251 } 3252 3253 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3254 { 3255 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3256 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3257 list_empty(&ordered->bioc_list)) 3258 btrfs_finish_ordered_zoned(ordered); 3259 return btrfs_finish_one_ordered(ordered); 3260 } 3261 3262 /* 3263 * Verify the checksum for a single sector without any extra action that depend 3264 * on the type of I/O. 3265 */ 3266 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3267 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3268 { 3269 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3270 char *kaddr; 3271 3272 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3273 3274 shash->tfm = fs_info->csum_shash; 3275 3276 kaddr = kmap_local_page(page) + pgoff; 3277 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3278 kunmap_local(kaddr); 3279 3280 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3281 return -EIO; 3282 return 0; 3283 } 3284 3285 /* 3286 * Verify the checksum of a single data sector. 3287 * 3288 * @bbio: btrfs_io_bio which contains the csum 3289 * @dev: device the sector is on 3290 * @bio_offset: offset to the beginning of the bio (in bytes) 3291 * @bv: bio_vec to check 3292 * 3293 * Check if the checksum on a data block is valid. When a checksum mismatch is 3294 * detected, report the error and fill the corrupted range with zero. 3295 * 3296 * Return %true if the sector is ok or had no checksum to start with, else %false. 3297 */ 3298 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3299 u32 bio_offset, struct bio_vec *bv) 3300 { 3301 struct btrfs_inode *inode = bbio->inode; 3302 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3303 u64 file_offset = bbio->file_offset + bio_offset; 3304 u64 end = file_offset + bv->bv_len - 1; 3305 u8 *csum_expected; 3306 u8 csum[BTRFS_CSUM_SIZE]; 3307 3308 ASSERT(bv->bv_len == fs_info->sectorsize); 3309 3310 if (!bbio->csum) 3311 return true; 3312 3313 if (btrfs_is_data_reloc_root(inode->root) && 3314 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3315 NULL)) { 3316 /* Skip the range without csum for data reloc inode */ 3317 clear_extent_bits(&inode->io_tree, file_offset, end, 3318 EXTENT_NODATASUM); 3319 return true; 3320 } 3321 3322 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3323 fs_info->csum_size; 3324 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3325 csum_expected)) 3326 goto zeroit; 3327 return true; 3328 3329 zeroit: 3330 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3331 bbio->mirror_num); 3332 if (dev) 3333 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3334 memzero_bvec(bv); 3335 return false; 3336 } 3337 3338 /* 3339 * Perform a delayed iput on @inode. 3340 * 3341 * @inode: The inode we want to perform iput on 3342 * 3343 * This function uses the generic vfs_inode::i_count to track whether we should 3344 * just decrement it (in case it's > 1) or if this is the last iput then link 3345 * the inode to the delayed iput machinery. Delayed iputs are processed at 3346 * transaction commit time/superblock commit/cleaner kthread. 3347 */ 3348 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3349 { 3350 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3351 unsigned long flags; 3352 3353 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3354 return; 3355 3356 atomic_inc(&fs_info->nr_delayed_iputs); 3357 /* 3358 * Need to be irq safe here because we can be called from either an irq 3359 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3360 * context. 3361 */ 3362 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3363 ASSERT(list_empty(&inode->delayed_iput)); 3364 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3365 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3366 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3367 wake_up_process(fs_info->cleaner_kthread); 3368 } 3369 3370 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3371 struct btrfs_inode *inode) 3372 { 3373 list_del_init(&inode->delayed_iput); 3374 spin_unlock_irq(&fs_info->delayed_iput_lock); 3375 iput(&inode->vfs_inode); 3376 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3377 wake_up(&fs_info->delayed_iputs_wait); 3378 spin_lock_irq(&fs_info->delayed_iput_lock); 3379 } 3380 3381 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3382 struct btrfs_inode *inode) 3383 { 3384 if (!list_empty(&inode->delayed_iput)) { 3385 spin_lock_irq(&fs_info->delayed_iput_lock); 3386 if (!list_empty(&inode->delayed_iput)) 3387 run_delayed_iput_locked(fs_info, inode); 3388 spin_unlock_irq(&fs_info->delayed_iput_lock); 3389 } 3390 } 3391 3392 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3393 { 3394 /* 3395 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3396 * calls btrfs_add_delayed_iput() and that needs to lock 3397 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3398 * prevent a deadlock. 3399 */ 3400 spin_lock_irq(&fs_info->delayed_iput_lock); 3401 while (!list_empty(&fs_info->delayed_iputs)) { 3402 struct btrfs_inode *inode; 3403 3404 inode = list_first_entry(&fs_info->delayed_iputs, 3405 struct btrfs_inode, delayed_iput); 3406 run_delayed_iput_locked(fs_info, inode); 3407 if (need_resched()) { 3408 spin_unlock_irq(&fs_info->delayed_iput_lock); 3409 cond_resched(); 3410 spin_lock_irq(&fs_info->delayed_iput_lock); 3411 } 3412 } 3413 spin_unlock_irq(&fs_info->delayed_iput_lock); 3414 } 3415 3416 /* 3417 * Wait for flushing all delayed iputs 3418 * 3419 * @fs_info: the filesystem 3420 * 3421 * This will wait on any delayed iputs that are currently running with KILLABLE 3422 * set. Once they are all done running we will return, unless we are killed in 3423 * which case we return EINTR. This helps in user operations like fallocate etc 3424 * that might get blocked on the iputs. 3425 * 3426 * Return EINTR if we were killed, 0 if nothing's pending 3427 */ 3428 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3429 { 3430 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3431 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3432 if (ret) 3433 return -EINTR; 3434 return 0; 3435 } 3436 3437 /* 3438 * This creates an orphan entry for the given inode in case something goes wrong 3439 * in the middle of an unlink. 3440 */ 3441 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3442 struct btrfs_inode *inode) 3443 { 3444 int ret; 3445 3446 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3447 if (ret && ret != -EEXIST) { 3448 btrfs_abort_transaction(trans, ret); 3449 return ret; 3450 } 3451 3452 return 0; 3453 } 3454 3455 /* 3456 * We have done the delete so we can go ahead and remove the orphan item for 3457 * this particular inode. 3458 */ 3459 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3460 struct btrfs_inode *inode) 3461 { 3462 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3463 } 3464 3465 /* 3466 * this cleans up any orphans that may be left on the list from the last use 3467 * of this root. 3468 */ 3469 int btrfs_orphan_cleanup(struct btrfs_root *root) 3470 { 3471 struct btrfs_fs_info *fs_info = root->fs_info; 3472 struct btrfs_path *path; 3473 struct extent_buffer *leaf; 3474 struct btrfs_key key, found_key; 3475 struct btrfs_trans_handle *trans; 3476 struct inode *inode; 3477 u64 last_objectid = 0; 3478 int ret = 0, nr_unlink = 0; 3479 3480 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3481 return 0; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) { 3485 ret = -ENOMEM; 3486 goto out; 3487 } 3488 path->reada = READA_BACK; 3489 3490 key.objectid = BTRFS_ORPHAN_OBJECTID; 3491 key.type = BTRFS_ORPHAN_ITEM_KEY; 3492 key.offset = (u64)-1; 3493 3494 while (1) { 3495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3496 if (ret < 0) 3497 goto out; 3498 3499 /* 3500 * if ret == 0 means we found what we were searching for, which 3501 * is weird, but possible, so only screw with path if we didn't 3502 * find the key and see if we have stuff that matches 3503 */ 3504 if (ret > 0) { 3505 ret = 0; 3506 if (path->slots[0] == 0) 3507 break; 3508 path->slots[0]--; 3509 } 3510 3511 /* pull out the item */ 3512 leaf = path->nodes[0]; 3513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3514 3515 /* make sure the item matches what we want */ 3516 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3517 break; 3518 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3519 break; 3520 3521 /* release the path since we're done with it */ 3522 btrfs_release_path(path); 3523 3524 /* 3525 * this is where we are basically btrfs_lookup, without the 3526 * crossing root thing. we store the inode number in the 3527 * offset of the orphan item. 3528 */ 3529 3530 if (found_key.offset == last_objectid) { 3531 /* 3532 * We found the same inode as before. This means we were 3533 * not able to remove its items via eviction triggered 3534 * by an iput(). A transaction abort may have happened, 3535 * due to -ENOSPC for example, so try to grab the error 3536 * that lead to a transaction abort, if any. 3537 */ 3538 btrfs_err(fs_info, 3539 "Error removing orphan entry, stopping orphan cleanup"); 3540 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3541 goto out; 3542 } 3543 3544 last_objectid = found_key.offset; 3545 3546 found_key.objectid = found_key.offset; 3547 found_key.type = BTRFS_INODE_ITEM_KEY; 3548 found_key.offset = 0; 3549 inode = btrfs_iget(last_objectid, root); 3550 if (IS_ERR(inode)) { 3551 ret = PTR_ERR(inode); 3552 inode = NULL; 3553 if (ret != -ENOENT) 3554 goto out; 3555 } 3556 3557 if (!inode && root == fs_info->tree_root) { 3558 struct btrfs_root *dead_root; 3559 int is_dead_root = 0; 3560 3561 /* 3562 * This is an orphan in the tree root. Currently these 3563 * could come from 2 sources: 3564 * a) a root (snapshot/subvolume) deletion in progress 3565 * b) a free space cache inode 3566 * We need to distinguish those two, as the orphan item 3567 * for a root must not get deleted before the deletion 3568 * of the snapshot/subvolume's tree completes. 3569 * 3570 * btrfs_find_orphan_roots() ran before us, which has 3571 * found all deleted roots and loaded them into 3572 * fs_info->fs_roots_radix. So here we can find if an 3573 * orphan item corresponds to a deleted root by looking 3574 * up the root from that radix tree. 3575 */ 3576 3577 spin_lock(&fs_info->fs_roots_radix_lock); 3578 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3579 (unsigned long)found_key.objectid); 3580 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3581 is_dead_root = 1; 3582 spin_unlock(&fs_info->fs_roots_radix_lock); 3583 3584 if (is_dead_root) { 3585 /* prevent this orphan from being found again */ 3586 key.offset = found_key.objectid - 1; 3587 continue; 3588 } 3589 3590 } 3591 3592 /* 3593 * If we have an inode with links, there are a couple of 3594 * possibilities: 3595 * 3596 * 1. We were halfway through creating fsverity metadata for the 3597 * file. In that case, the orphan item represents incomplete 3598 * fsverity metadata which must be cleaned up with 3599 * btrfs_drop_verity_items and deleting the orphan item. 3600 3601 * 2. Old kernels (before v3.12) used to create an 3602 * orphan item for truncate indicating that there were possibly 3603 * extent items past i_size that needed to be deleted. In v3.12, 3604 * truncate was changed to update i_size in sync with the extent 3605 * items, but the (useless) orphan item was still created. Since 3606 * v4.18, we don't create the orphan item for truncate at all. 3607 * 3608 * So, this item could mean that we need to do a truncate, but 3609 * only if this filesystem was last used on a pre-v3.12 kernel 3610 * and was not cleanly unmounted. The odds of that are quite 3611 * slim, and it's a pain to do the truncate now, so just delete 3612 * the orphan item. 3613 * 3614 * It's also possible that this orphan item was supposed to be 3615 * deleted but wasn't. The inode number may have been reused, 3616 * but either way, we can delete the orphan item. 3617 */ 3618 if (!inode || inode->i_nlink) { 3619 if (inode) { 3620 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3621 iput(inode); 3622 inode = NULL; 3623 if (ret) 3624 goto out; 3625 } 3626 trans = btrfs_start_transaction(root, 1); 3627 if (IS_ERR(trans)) { 3628 ret = PTR_ERR(trans); 3629 goto out; 3630 } 3631 btrfs_debug(fs_info, "auto deleting %Lu", 3632 found_key.objectid); 3633 ret = btrfs_del_orphan_item(trans, root, 3634 found_key.objectid); 3635 btrfs_end_transaction(trans); 3636 if (ret) 3637 goto out; 3638 continue; 3639 } 3640 3641 nr_unlink++; 3642 3643 /* this will do delete_inode and everything for us */ 3644 iput(inode); 3645 } 3646 /* release the path since we're done with it */ 3647 btrfs_release_path(path); 3648 3649 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3650 trans = btrfs_join_transaction(root); 3651 if (!IS_ERR(trans)) 3652 btrfs_end_transaction(trans); 3653 } 3654 3655 if (nr_unlink) 3656 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3657 3658 out: 3659 if (ret) 3660 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3661 btrfs_free_path(path); 3662 return ret; 3663 } 3664 3665 /* 3666 * very simple check to peek ahead in the leaf looking for xattrs. If we 3667 * don't find any xattrs, we know there can't be any acls. 3668 * 3669 * slot is the slot the inode is in, objectid is the objectid of the inode 3670 */ 3671 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3672 int slot, u64 objectid, 3673 int *first_xattr_slot) 3674 { 3675 u32 nritems = btrfs_header_nritems(leaf); 3676 struct btrfs_key found_key; 3677 static u64 xattr_access = 0; 3678 static u64 xattr_default = 0; 3679 int scanned = 0; 3680 3681 if (!xattr_access) { 3682 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3683 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3684 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3685 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3686 } 3687 3688 slot++; 3689 *first_xattr_slot = -1; 3690 while (slot < nritems) { 3691 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3692 3693 /* we found a different objectid, there must not be acls */ 3694 if (found_key.objectid != objectid) 3695 return 0; 3696 3697 /* we found an xattr, assume we've got an acl */ 3698 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3699 if (*first_xattr_slot == -1) 3700 *first_xattr_slot = slot; 3701 if (found_key.offset == xattr_access || 3702 found_key.offset == xattr_default) 3703 return 1; 3704 } 3705 3706 /* 3707 * we found a key greater than an xattr key, there can't 3708 * be any acls later on 3709 */ 3710 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3711 return 0; 3712 3713 slot++; 3714 scanned++; 3715 3716 /* 3717 * it goes inode, inode backrefs, xattrs, extents, 3718 * so if there are a ton of hard links to an inode there can 3719 * be a lot of backrefs. Don't waste time searching too hard, 3720 * this is just an optimization 3721 */ 3722 if (scanned >= 8) 3723 break; 3724 } 3725 /* we hit the end of the leaf before we found an xattr or 3726 * something larger than an xattr. We have to assume the inode 3727 * has acls 3728 */ 3729 if (*first_xattr_slot == -1) 3730 *first_xattr_slot = slot; 3731 return 1; 3732 } 3733 3734 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3735 { 3736 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3737 3738 if (WARN_ON_ONCE(inode->file_extent_tree)) 3739 return 0; 3740 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3741 return 0; 3742 if (!S_ISREG(inode->vfs_inode.i_mode)) 3743 return 0; 3744 if (btrfs_is_free_space_inode(inode)) 3745 return 0; 3746 3747 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3748 if (!inode->file_extent_tree) 3749 return -ENOMEM; 3750 3751 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3752 /* Lockdep class is set only for the file extent tree. */ 3753 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3754 3755 return 0; 3756 } 3757 3758 /* 3759 * read an inode from the btree into the in-memory inode 3760 */ 3761 static int btrfs_read_locked_inode(struct inode *inode, 3762 struct btrfs_path *in_path) 3763 { 3764 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3765 struct btrfs_path *path = in_path; 3766 struct extent_buffer *leaf; 3767 struct btrfs_inode_item *inode_item; 3768 struct btrfs_root *root = BTRFS_I(inode)->root; 3769 struct btrfs_key location; 3770 unsigned long ptr; 3771 int maybe_acls; 3772 u32 rdev; 3773 int ret; 3774 bool filled = false; 3775 int first_xattr_slot; 3776 3777 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3778 if (ret) 3779 return ret; 3780 3781 ret = btrfs_fill_inode(inode, &rdev); 3782 if (!ret) 3783 filled = true; 3784 3785 if (!path) { 3786 path = btrfs_alloc_path(); 3787 if (!path) 3788 return -ENOMEM; 3789 } 3790 3791 btrfs_get_inode_key(BTRFS_I(inode), &location); 3792 3793 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3794 if (ret) { 3795 if (path != in_path) 3796 btrfs_free_path(path); 3797 return ret; 3798 } 3799 3800 leaf = path->nodes[0]; 3801 3802 if (filled) 3803 goto cache_index; 3804 3805 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3806 struct btrfs_inode_item); 3807 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3808 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3809 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3810 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3811 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3812 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3813 round_up(i_size_read(inode), fs_info->sectorsize)); 3814 3815 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3816 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3817 3818 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3819 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3820 3821 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3822 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3823 3824 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3825 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3826 3827 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3828 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3829 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3830 3831 inode_set_iversion_queried(inode, 3832 btrfs_inode_sequence(leaf, inode_item)); 3833 inode->i_generation = BTRFS_I(inode)->generation; 3834 inode->i_rdev = 0; 3835 rdev = btrfs_inode_rdev(leaf, inode_item); 3836 3837 if (S_ISDIR(inode->i_mode)) 3838 BTRFS_I(inode)->index_cnt = (u64)-1; 3839 3840 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3841 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3842 3843 cache_index: 3844 /* 3845 * If we were modified in the current generation and evicted from memory 3846 * and then re-read we need to do a full sync since we don't have any 3847 * idea about which extents were modified before we were evicted from 3848 * cache. 3849 * 3850 * This is required for both inode re-read from disk and delayed inode 3851 * in the delayed_nodes xarray. 3852 */ 3853 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3854 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3855 &BTRFS_I(inode)->runtime_flags); 3856 3857 /* 3858 * We don't persist the id of the transaction where an unlink operation 3859 * against the inode was last made. So here we assume the inode might 3860 * have been evicted, and therefore the exact value of last_unlink_trans 3861 * lost, and set it to last_trans to avoid metadata inconsistencies 3862 * between the inode and its parent if the inode is fsync'ed and the log 3863 * replayed. For example, in the scenario: 3864 * 3865 * touch mydir/foo 3866 * ln mydir/foo mydir/bar 3867 * sync 3868 * unlink mydir/bar 3869 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3870 * xfs_io -c fsync mydir/foo 3871 * <power failure> 3872 * mount fs, triggers fsync log replay 3873 * 3874 * We must make sure that when we fsync our inode foo we also log its 3875 * parent inode, otherwise after log replay the parent still has the 3876 * dentry with the "bar" name but our inode foo has a link count of 1 3877 * and doesn't have an inode ref with the name "bar" anymore. 3878 * 3879 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3880 * but it guarantees correctness at the expense of occasional full 3881 * transaction commits on fsync if our inode is a directory, or if our 3882 * inode is not a directory, logging its parent unnecessarily. 3883 */ 3884 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3885 3886 /* 3887 * Same logic as for last_unlink_trans. We don't persist the generation 3888 * of the last transaction where this inode was used for a reflink 3889 * operation, so after eviction and reloading the inode we must be 3890 * pessimistic and assume the last transaction that modified the inode. 3891 */ 3892 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3893 3894 path->slots[0]++; 3895 if (inode->i_nlink != 1 || 3896 path->slots[0] >= btrfs_header_nritems(leaf)) 3897 goto cache_acl; 3898 3899 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3900 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3901 goto cache_acl; 3902 3903 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3904 if (location.type == BTRFS_INODE_REF_KEY) { 3905 struct btrfs_inode_ref *ref; 3906 3907 ref = (struct btrfs_inode_ref *)ptr; 3908 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3909 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3910 struct btrfs_inode_extref *extref; 3911 3912 extref = (struct btrfs_inode_extref *)ptr; 3913 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3914 extref); 3915 } 3916 cache_acl: 3917 /* 3918 * try to precache a NULL acl entry for files that don't have 3919 * any xattrs or acls 3920 */ 3921 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3922 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3923 if (first_xattr_slot != -1) { 3924 path->slots[0] = first_xattr_slot; 3925 ret = btrfs_load_inode_props(inode, path); 3926 if (ret) 3927 btrfs_err(fs_info, 3928 "error loading props for ino %llu (root %llu): %d", 3929 btrfs_ino(BTRFS_I(inode)), 3930 btrfs_root_id(root), ret); 3931 } 3932 if (path != in_path) 3933 btrfs_free_path(path); 3934 3935 if (!maybe_acls) 3936 cache_no_acl(inode); 3937 3938 switch (inode->i_mode & S_IFMT) { 3939 case S_IFREG: 3940 inode->i_mapping->a_ops = &btrfs_aops; 3941 inode->i_fop = &btrfs_file_operations; 3942 inode->i_op = &btrfs_file_inode_operations; 3943 break; 3944 case S_IFDIR: 3945 inode->i_fop = &btrfs_dir_file_operations; 3946 inode->i_op = &btrfs_dir_inode_operations; 3947 break; 3948 case S_IFLNK: 3949 inode->i_op = &btrfs_symlink_inode_operations; 3950 inode_nohighmem(inode); 3951 inode->i_mapping->a_ops = &btrfs_aops; 3952 break; 3953 default: 3954 inode->i_op = &btrfs_special_inode_operations; 3955 init_special_inode(inode, inode->i_mode, rdev); 3956 break; 3957 } 3958 3959 btrfs_sync_inode_flags_to_i_flags(inode); 3960 return 0; 3961 } 3962 3963 /* 3964 * given a leaf and an inode, copy the inode fields into the leaf 3965 */ 3966 static void fill_inode_item(struct btrfs_trans_handle *trans, 3967 struct extent_buffer *leaf, 3968 struct btrfs_inode_item *item, 3969 struct inode *inode) 3970 { 3971 struct btrfs_map_token token; 3972 u64 flags; 3973 3974 btrfs_init_map_token(&token, leaf); 3975 3976 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3977 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3978 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3979 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3980 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3981 3982 btrfs_set_token_timespec_sec(&token, &item->atime, 3983 inode_get_atime_sec(inode)); 3984 btrfs_set_token_timespec_nsec(&token, &item->atime, 3985 inode_get_atime_nsec(inode)); 3986 3987 btrfs_set_token_timespec_sec(&token, &item->mtime, 3988 inode_get_mtime_sec(inode)); 3989 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3990 inode_get_mtime_nsec(inode)); 3991 3992 btrfs_set_token_timespec_sec(&token, &item->ctime, 3993 inode_get_ctime_sec(inode)); 3994 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3995 inode_get_ctime_nsec(inode)); 3996 3997 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3998 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3999 4000 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4001 btrfs_set_token_inode_generation(&token, item, 4002 BTRFS_I(inode)->generation); 4003 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4004 btrfs_set_token_inode_transid(&token, item, trans->transid); 4005 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4006 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4007 BTRFS_I(inode)->ro_flags); 4008 btrfs_set_token_inode_flags(&token, item, flags); 4009 btrfs_set_token_inode_block_group(&token, item, 0); 4010 } 4011 4012 /* 4013 * copy everything in the in-memory inode into the btree. 4014 */ 4015 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4016 struct btrfs_inode *inode) 4017 { 4018 struct btrfs_inode_item *inode_item; 4019 struct btrfs_path *path; 4020 struct extent_buffer *leaf; 4021 struct btrfs_key key; 4022 int ret; 4023 4024 path = btrfs_alloc_path(); 4025 if (!path) 4026 return -ENOMEM; 4027 4028 btrfs_get_inode_key(inode, &key); 4029 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4030 if (ret) { 4031 if (ret > 0) 4032 ret = -ENOENT; 4033 goto failed; 4034 } 4035 4036 leaf = path->nodes[0]; 4037 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4038 struct btrfs_inode_item); 4039 4040 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4041 btrfs_mark_buffer_dirty(trans, leaf); 4042 btrfs_set_inode_last_trans(trans, inode); 4043 ret = 0; 4044 failed: 4045 btrfs_free_path(path); 4046 return ret; 4047 } 4048 4049 /* 4050 * copy everything in the in-memory inode into the btree. 4051 */ 4052 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4053 struct btrfs_inode *inode) 4054 { 4055 struct btrfs_root *root = inode->root; 4056 struct btrfs_fs_info *fs_info = root->fs_info; 4057 int ret; 4058 4059 /* 4060 * If the inode is a free space inode, we can deadlock during commit 4061 * if we put it into the delayed code. 4062 * 4063 * The data relocation inode should also be directly updated 4064 * without delay 4065 */ 4066 if (!btrfs_is_free_space_inode(inode) 4067 && !btrfs_is_data_reloc_root(root) 4068 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4069 btrfs_update_root_times(trans, root); 4070 4071 ret = btrfs_delayed_update_inode(trans, inode); 4072 if (!ret) 4073 btrfs_set_inode_last_trans(trans, inode); 4074 return ret; 4075 } 4076 4077 return btrfs_update_inode_item(trans, inode); 4078 } 4079 4080 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4081 struct btrfs_inode *inode) 4082 { 4083 int ret; 4084 4085 ret = btrfs_update_inode(trans, inode); 4086 if (ret == -ENOSPC) 4087 return btrfs_update_inode_item(trans, inode); 4088 return ret; 4089 } 4090 4091 /* 4092 * unlink helper that gets used here in inode.c and in the tree logging 4093 * recovery code. It remove a link in a directory with a given name, and 4094 * also drops the back refs in the inode to the directory 4095 */ 4096 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4097 struct btrfs_inode *dir, 4098 struct btrfs_inode *inode, 4099 const struct fscrypt_str *name, 4100 struct btrfs_rename_ctx *rename_ctx) 4101 { 4102 struct btrfs_root *root = dir->root; 4103 struct btrfs_fs_info *fs_info = root->fs_info; 4104 struct btrfs_path *path; 4105 int ret = 0; 4106 struct btrfs_dir_item *di; 4107 u64 index; 4108 u64 ino = btrfs_ino(inode); 4109 u64 dir_ino = btrfs_ino(dir); 4110 4111 path = btrfs_alloc_path(); 4112 if (!path) { 4113 ret = -ENOMEM; 4114 goto out; 4115 } 4116 4117 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4118 if (IS_ERR_OR_NULL(di)) { 4119 ret = di ? PTR_ERR(di) : -ENOENT; 4120 goto err; 4121 } 4122 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4123 if (ret) 4124 goto err; 4125 btrfs_release_path(path); 4126 4127 /* 4128 * If we don't have dir index, we have to get it by looking up 4129 * the inode ref, since we get the inode ref, remove it directly, 4130 * it is unnecessary to do delayed deletion. 4131 * 4132 * But if we have dir index, needn't search inode ref to get it. 4133 * Since the inode ref is close to the inode item, it is better 4134 * that we delay to delete it, and just do this deletion when 4135 * we update the inode item. 4136 */ 4137 if (inode->dir_index) { 4138 ret = btrfs_delayed_delete_inode_ref(inode); 4139 if (!ret) { 4140 index = inode->dir_index; 4141 goto skip_backref; 4142 } 4143 } 4144 4145 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4146 if (ret) { 4147 btrfs_info(fs_info, 4148 "failed to delete reference to %.*s, inode %llu parent %llu", 4149 name->len, name->name, ino, dir_ino); 4150 btrfs_abort_transaction(trans, ret); 4151 goto err; 4152 } 4153 skip_backref: 4154 if (rename_ctx) 4155 rename_ctx->index = index; 4156 4157 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4158 if (ret) { 4159 btrfs_abort_transaction(trans, ret); 4160 goto err; 4161 } 4162 4163 /* 4164 * If we are in a rename context, we don't need to update anything in the 4165 * log. That will be done later during the rename by btrfs_log_new_name(). 4166 * Besides that, doing it here would only cause extra unnecessary btree 4167 * operations on the log tree, increasing latency for applications. 4168 */ 4169 if (!rename_ctx) { 4170 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4171 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4172 } 4173 4174 /* 4175 * If we have a pending delayed iput we could end up with the final iput 4176 * being run in btrfs-cleaner context. If we have enough of these built 4177 * up we can end up burning a lot of time in btrfs-cleaner without any 4178 * way to throttle the unlinks. Since we're currently holding a ref on 4179 * the inode we can run the delayed iput here without any issues as the 4180 * final iput won't be done until after we drop the ref we're currently 4181 * holding. 4182 */ 4183 btrfs_run_delayed_iput(fs_info, inode); 4184 err: 4185 btrfs_free_path(path); 4186 if (ret) 4187 goto out; 4188 4189 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4190 inode_inc_iversion(&inode->vfs_inode); 4191 inode_inc_iversion(&dir->vfs_inode); 4192 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4193 ret = btrfs_update_inode(trans, dir); 4194 out: 4195 return ret; 4196 } 4197 4198 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4199 struct btrfs_inode *dir, struct btrfs_inode *inode, 4200 const struct fscrypt_str *name) 4201 { 4202 int ret; 4203 4204 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4205 if (!ret) { 4206 drop_nlink(&inode->vfs_inode); 4207 ret = btrfs_update_inode(trans, inode); 4208 } 4209 return ret; 4210 } 4211 4212 /* 4213 * helper to start transaction for unlink and rmdir. 4214 * 4215 * unlink and rmdir are special in btrfs, they do not always free space, so 4216 * if we cannot make our reservations the normal way try and see if there is 4217 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4218 * allow the unlink to occur. 4219 */ 4220 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4221 { 4222 struct btrfs_root *root = dir->root; 4223 4224 return btrfs_start_transaction_fallback_global_rsv(root, 4225 BTRFS_UNLINK_METADATA_UNITS); 4226 } 4227 4228 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4229 { 4230 struct btrfs_trans_handle *trans; 4231 struct inode *inode = d_inode(dentry); 4232 int ret; 4233 struct fscrypt_name fname; 4234 4235 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4236 if (ret) 4237 return ret; 4238 4239 /* This needs to handle no-key deletions later on */ 4240 4241 trans = __unlink_start_trans(BTRFS_I(dir)); 4242 if (IS_ERR(trans)) { 4243 ret = PTR_ERR(trans); 4244 goto fscrypt_free; 4245 } 4246 4247 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4248 false); 4249 4250 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4251 &fname.disk_name); 4252 if (ret) 4253 goto end_trans; 4254 4255 if (inode->i_nlink == 0) { 4256 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4257 if (ret) 4258 goto end_trans; 4259 } 4260 4261 end_trans: 4262 btrfs_end_transaction(trans); 4263 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4264 fscrypt_free: 4265 fscrypt_free_filename(&fname); 4266 return ret; 4267 } 4268 4269 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4270 struct btrfs_inode *dir, struct dentry *dentry) 4271 { 4272 struct btrfs_root *root = dir->root; 4273 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4274 struct btrfs_path *path; 4275 struct extent_buffer *leaf; 4276 struct btrfs_dir_item *di; 4277 struct btrfs_key key; 4278 u64 index; 4279 int ret; 4280 u64 objectid; 4281 u64 dir_ino = btrfs_ino(dir); 4282 struct fscrypt_name fname; 4283 4284 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4285 if (ret) 4286 return ret; 4287 4288 /* This needs to handle no-key deletions later on */ 4289 4290 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4291 objectid = btrfs_root_id(inode->root); 4292 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4293 objectid = inode->ref_root_id; 4294 } else { 4295 WARN_ON(1); 4296 fscrypt_free_filename(&fname); 4297 return -EINVAL; 4298 } 4299 4300 path = btrfs_alloc_path(); 4301 if (!path) { 4302 ret = -ENOMEM; 4303 goto out; 4304 } 4305 4306 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4307 &fname.disk_name, -1); 4308 if (IS_ERR_OR_NULL(di)) { 4309 ret = di ? PTR_ERR(di) : -ENOENT; 4310 goto out; 4311 } 4312 4313 leaf = path->nodes[0]; 4314 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4315 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4316 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4317 if (ret) { 4318 btrfs_abort_transaction(trans, ret); 4319 goto out; 4320 } 4321 btrfs_release_path(path); 4322 4323 /* 4324 * This is a placeholder inode for a subvolume we didn't have a 4325 * reference to at the time of the snapshot creation. In the meantime 4326 * we could have renamed the real subvol link into our snapshot, so 4327 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4328 * Instead simply lookup the dir_index_item for this entry so we can 4329 * remove it. Otherwise we know we have a ref to the root and we can 4330 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4331 */ 4332 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4333 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4334 if (IS_ERR_OR_NULL(di)) { 4335 if (!di) 4336 ret = -ENOENT; 4337 else 4338 ret = PTR_ERR(di); 4339 btrfs_abort_transaction(trans, ret); 4340 goto out; 4341 } 4342 4343 leaf = path->nodes[0]; 4344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4345 index = key.offset; 4346 btrfs_release_path(path); 4347 } else { 4348 ret = btrfs_del_root_ref(trans, objectid, 4349 btrfs_root_id(root), dir_ino, 4350 &index, &fname.disk_name); 4351 if (ret) { 4352 btrfs_abort_transaction(trans, ret); 4353 goto out; 4354 } 4355 } 4356 4357 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4358 if (ret) { 4359 btrfs_abort_transaction(trans, ret); 4360 goto out; 4361 } 4362 4363 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4364 inode_inc_iversion(&dir->vfs_inode); 4365 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4366 ret = btrfs_update_inode_fallback(trans, dir); 4367 if (ret) 4368 btrfs_abort_transaction(trans, ret); 4369 out: 4370 btrfs_free_path(path); 4371 fscrypt_free_filename(&fname); 4372 return ret; 4373 } 4374 4375 /* 4376 * Helper to check if the subvolume references other subvolumes or if it's 4377 * default. 4378 */ 4379 static noinline int may_destroy_subvol(struct btrfs_root *root) 4380 { 4381 struct btrfs_fs_info *fs_info = root->fs_info; 4382 struct btrfs_path *path; 4383 struct btrfs_dir_item *di; 4384 struct btrfs_key key; 4385 struct fscrypt_str name = FSTR_INIT("default", 7); 4386 u64 dir_id; 4387 int ret; 4388 4389 path = btrfs_alloc_path(); 4390 if (!path) 4391 return -ENOMEM; 4392 4393 /* Make sure this root isn't set as the default subvol */ 4394 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4395 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4396 dir_id, &name, 0); 4397 if (di && !IS_ERR(di)) { 4398 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4399 if (key.objectid == btrfs_root_id(root)) { 4400 ret = -EPERM; 4401 btrfs_err(fs_info, 4402 "deleting default subvolume %llu is not allowed", 4403 key.objectid); 4404 goto out; 4405 } 4406 btrfs_release_path(path); 4407 } 4408 4409 key.objectid = btrfs_root_id(root); 4410 key.type = BTRFS_ROOT_REF_KEY; 4411 key.offset = (u64)-1; 4412 4413 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4414 if (ret < 0) 4415 goto out; 4416 if (ret == 0) { 4417 /* 4418 * Key with offset -1 found, there would have to exist a root 4419 * with such id, but this is out of valid range. 4420 */ 4421 ret = -EUCLEAN; 4422 goto out; 4423 } 4424 4425 ret = 0; 4426 if (path->slots[0] > 0) { 4427 path->slots[0]--; 4428 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4429 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4430 ret = -ENOTEMPTY; 4431 } 4432 out: 4433 btrfs_free_path(path); 4434 return ret; 4435 } 4436 4437 /* Delete all dentries for inodes belonging to the root */ 4438 static void btrfs_prune_dentries(struct btrfs_root *root) 4439 { 4440 struct btrfs_fs_info *fs_info = root->fs_info; 4441 struct btrfs_inode *inode; 4442 u64 min_ino = 0; 4443 4444 if (!BTRFS_FS_ERROR(fs_info)) 4445 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4446 4447 inode = btrfs_find_first_inode(root, min_ino); 4448 while (inode) { 4449 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4450 d_prune_aliases(&inode->vfs_inode); 4451 4452 min_ino = btrfs_ino(inode) + 1; 4453 /* 4454 * btrfs_drop_inode() will have it removed from the inode 4455 * cache when its usage count hits zero. 4456 */ 4457 iput(&inode->vfs_inode); 4458 cond_resched(); 4459 inode = btrfs_find_first_inode(root, min_ino); 4460 } 4461 } 4462 4463 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4464 { 4465 struct btrfs_root *root = dir->root; 4466 struct btrfs_fs_info *fs_info = root->fs_info; 4467 struct inode *inode = d_inode(dentry); 4468 struct btrfs_root *dest = BTRFS_I(inode)->root; 4469 struct btrfs_trans_handle *trans; 4470 struct btrfs_block_rsv block_rsv; 4471 u64 root_flags; 4472 u64 qgroup_reserved = 0; 4473 int ret; 4474 4475 down_write(&fs_info->subvol_sem); 4476 4477 /* 4478 * Don't allow to delete a subvolume with send in progress. This is 4479 * inside the inode lock so the error handling that has to drop the bit 4480 * again is not run concurrently. 4481 */ 4482 spin_lock(&dest->root_item_lock); 4483 if (dest->send_in_progress) { 4484 spin_unlock(&dest->root_item_lock); 4485 btrfs_warn(fs_info, 4486 "attempt to delete subvolume %llu during send", 4487 btrfs_root_id(dest)); 4488 ret = -EPERM; 4489 goto out_up_write; 4490 } 4491 if (atomic_read(&dest->nr_swapfiles)) { 4492 spin_unlock(&dest->root_item_lock); 4493 btrfs_warn(fs_info, 4494 "attempt to delete subvolume %llu with active swapfile", 4495 btrfs_root_id(root)); 4496 ret = -EPERM; 4497 goto out_up_write; 4498 } 4499 root_flags = btrfs_root_flags(&dest->root_item); 4500 btrfs_set_root_flags(&dest->root_item, 4501 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4502 spin_unlock(&dest->root_item_lock); 4503 4504 ret = may_destroy_subvol(dest); 4505 if (ret) 4506 goto out_undead; 4507 4508 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4509 /* 4510 * One for dir inode, 4511 * two for dir entries, 4512 * two for root ref/backref. 4513 */ 4514 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4515 if (ret) 4516 goto out_undead; 4517 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4518 4519 trans = btrfs_start_transaction(root, 0); 4520 if (IS_ERR(trans)) { 4521 ret = PTR_ERR(trans); 4522 goto out_release; 4523 } 4524 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4525 qgroup_reserved = 0; 4526 trans->block_rsv = &block_rsv; 4527 trans->bytes_reserved = block_rsv.size; 4528 4529 btrfs_record_snapshot_destroy(trans, dir); 4530 4531 ret = btrfs_unlink_subvol(trans, dir, dentry); 4532 if (ret) { 4533 btrfs_abort_transaction(trans, ret); 4534 goto out_end_trans; 4535 } 4536 4537 ret = btrfs_record_root_in_trans(trans, dest); 4538 if (ret) { 4539 btrfs_abort_transaction(trans, ret); 4540 goto out_end_trans; 4541 } 4542 4543 memset(&dest->root_item.drop_progress, 0, 4544 sizeof(dest->root_item.drop_progress)); 4545 btrfs_set_root_drop_level(&dest->root_item, 0); 4546 btrfs_set_root_refs(&dest->root_item, 0); 4547 4548 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4549 ret = btrfs_insert_orphan_item(trans, 4550 fs_info->tree_root, 4551 btrfs_root_id(dest)); 4552 if (ret) { 4553 btrfs_abort_transaction(trans, ret); 4554 goto out_end_trans; 4555 } 4556 } 4557 4558 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4559 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4560 if (ret && ret != -ENOENT) { 4561 btrfs_abort_transaction(trans, ret); 4562 goto out_end_trans; 4563 } 4564 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4565 ret = btrfs_uuid_tree_remove(trans, 4566 dest->root_item.received_uuid, 4567 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4568 btrfs_root_id(dest)); 4569 if (ret && ret != -ENOENT) { 4570 btrfs_abort_transaction(trans, ret); 4571 goto out_end_trans; 4572 } 4573 } 4574 4575 free_anon_bdev(dest->anon_dev); 4576 dest->anon_dev = 0; 4577 out_end_trans: 4578 trans->block_rsv = NULL; 4579 trans->bytes_reserved = 0; 4580 ret = btrfs_end_transaction(trans); 4581 inode->i_flags |= S_DEAD; 4582 out_release: 4583 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4584 if (qgroup_reserved) 4585 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4586 out_undead: 4587 if (ret) { 4588 spin_lock(&dest->root_item_lock); 4589 root_flags = btrfs_root_flags(&dest->root_item); 4590 btrfs_set_root_flags(&dest->root_item, 4591 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4592 spin_unlock(&dest->root_item_lock); 4593 } 4594 out_up_write: 4595 up_write(&fs_info->subvol_sem); 4596 if (!ret) { 4597 d_invalidate(dentry); 4598 btrfs_prune_dentries(dest); 4599 ASSERT(dest->send_in_progress == 0); 4600 } 4601 4602 return ret; 4603 } 4604 4605 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4606 { 4607 struct inode *inode = d_inode(dentry); 4608 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4609 int ret = 0; 4610 struct btrfs_trans_handle *trans; 4611 u64 last_unlink_trans; 4612 struct fscrypt_name fname; 4613 4614 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4615 return -ENOTEMPTY; 4616 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4617 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4618 btrfs_err(fs_info, 4619 "extent tree v2 doesn't support snapshot deletion yet"); 4620 return -EOPNOTSUPP; 4621 } 4622 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4623 } 4624 4625 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4626 if (ret) 4627 return ret; 4628 4629 /* This needs to handle no-key deletions later on */ 4630 4631 trans = __unlink_start_trans(BTRFS_I(dir)); 4632 if (IS_ERR(trans)) { 4633 ret = PTR_ERR(trans); 4634 goto out_notrans; 4635 } 4636 4637 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4638 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4639 goto out; 4640 } 4641 4642 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4643 if (ret) 4644 goto out; 4645 4646 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4647 4648 /* now the directory is empty */ 4649 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4650 &fname.disk_name); 4651 if (!ret) { 4652 btrfs_i_size_write(BTRFS_I(inode), 0); 4653 /* 4654 * Propagate the last_unlink_trans value of the deleted dir to 4655 * its parent directory. This is to prevent an unrecoverable 4656 * log tree in the case we do something like this: 4657 * 1) create dir foo 4658 * 2) create snapshot under dir foo 4659 * 3) delete the snapshot 4660 * 4) rmdir foo 4661 * 5) mkdir foo 4662 * 6) fsync foo or some file inside foo 4663 */ 4664 if (last_unlink_trans >= trans->transid) 4665 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4666 } 4667 out: 4668 btrfs_end_transaction(trans); 4669 out_notrans: 4670 btrfs_btree_balance_dirty(fs_info); 4671 fscrypt_free_filename(&fname); 4672 4673 return ret; 4674 } 4675 4676 /* 4677 * Read, zero a chunk and write a block. 4678 * 4679 * @inode - inode that we're zeroing 4680 * @from - the offset to start zeroing 4681 * @len - the length to zero, 0 to zero the entire range respective to the 4682 * offset 4683 * @front - zero up to the offset instead of from the offset on 4684 * 4685 * This will find the block for the "from" offset and cow the block and zero the 4686 * part we want to zero. This is used with truncate and hole punching. 4687 */ 4688 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4689 int front) 4690 { 4691 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4692 struct address_space *mapping = inode->vfs_inode.i_mapping; 4693 struct extent_io_tree *io_tree = &inode->io_tree; 4694 struct btrfs_ordered_extent *ordered; 4695 struct extent_state *cached_state = NULL; 4696 struct extent_changeset *data_reserved = NULL; 4697 bool only_release_metadata = false; 4698 u32 blocksize = fs_info->sectorsize; 4699 pgoff_t index = from >> PAGE_SHIFT; 4700 unsigned offset = from & (blocksize - 1); 4701 struct folio *folio; 4702 gfp_t mask = btrfs_alloc_write_mask(mapping); 4703 size_t write_bytes = blocksize; 4704 int ret = 0; 4705 u64 block_start; 4706 u64 block_end; 4707 4708 if (IS_ALIGNED(offset, blocksize) && 4709 (!len || IS_ALIGNED(len, blocksize))) 4710 goto out; 4711 4712 block_start = round_down(from, blocksize); 4713 block_end = block_start + blocksize - 1; 4714 4715 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4716 blocksize, false); 4717 if (ret < 0) { 4718 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4719 /* For nocow case, no need to reserve data space */ 4720 only_release_metadata = true; 4721 } else { 4722 goto out; 4723 } 4724 } 4725 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4726 if (ret < 0) { 4727 if (!only_release_metadata) 4728 btrfs_free_reserved_data_space(inode, data_reserved, 4729 block_start, blocksize); 4730 goto out; 4731 } 4732 again: 4733 folio = __filemap_get_folio(mapping, index, 4734 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4735 if (IS_ERR(folio)) { 4736 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4737 blocksize, true); 4738 btrfs_delalloc_release_extents(inode, blocksize); 4739 ret = -ENOMEM; 4740 goto out; 4741 } 4742 4743 if (!folio_test_uptodate(folio)) { 4744 ret = btrfs_read_folio(NULL, folio); 4745 folio_lock(folio); 4746 if (folio->mapping != mapping) { 4747 folio_unlock(folio); 4748 folio_put(folio); 4749 goto again; 4750 } 4751 if (!folio_test_uptodate(folio)) { 4752 ret = -EIO; 4753 goto out_unlock; 4754 } 4755 } 4756 4757 /* 4758 * We unlock the page after the io is completed and then re-lock it 4759 * above. release_folio() could have come in between that and cleared 4760 * folio private, but left the page in the mapping. Set the page mapped 4761 * here to make sure it's properly set for the subpage stuff. 4762 */ 4763 ret = set_folio_extent_mapped(folio); 4764 if (ret < 0) 4765 goto out_unlock; 4766 4767 folio_wait_writeback(folio); 4768 4769 lock_extent(io_tree, block_start, block_end, &cached_state); 4770 4771 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4772 if (ordered) { 4773 unlock_extent(io_tree, block_start, block_end, &cached_state); 4774 folio_unlock(folio); 4775 folio_put(folio); 4776 btrfs_start_ordered_extent(ordered); 4777 btrfs_put_ordered_extent(ordered); 4778 goto again; 4779 } 4780 4781 clear_extent_bit(&inode->io_tree, block_start, block_end, 4782 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4783 &cached_state); 4784 4785 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4786 &cached_state); 4787 if (ret) { 4788 unlock_extent(io_tree, block_start, block_end, &cached_state); 4789 goto out_unlock; 4790 } 4791 4792 if (offset != blocksize) { 4793 if (!len) 4794 len = blocksize - offset; 4795 if (front) 4796 folio_zero_range(folio, block_start - folio_pos(folio), 4797 offset); 4798 else 4799 folio_zero_range(folio, 4800 (block_start - folio_pos(folio)) + offset, 4801 len); 4802 } 4803 btrfs_folio_clear_checked(fs_info, folio, block_start, 4804 block_end + 1 - block_start); 4805 btrfs_folio_set_dirty(fs_info, folio, block_start, 4806 block_end + 1 - block_start); 4807 unlock_extent(io_tree, block_start, block_end, &cached_state); 4808 4809 if (only_release_metadata) 4810 set_extent_bit(&inode->io_tree, block_start, block_end, 4811 EXTENT_NORESERVE, NULL); 4812 4813 out_unlock: 4814 if (ret) { 4815 if (only_release_metadata) 4816 btrfs_delalloc_release_metadata(inode, blocksize, true); 4817 else 4818 btrfs_delalloc_release_space(inode, data_reserved, 4819 block_start, blocksize, true); 4820 } 4821 btrfs_delalloc_release_extents(inode, blocksize); 4822 folio_unlock(folio); 4823 folio_put(folio); 4824 out: 4825 if (only_release_metadata) 4826 btrfs_check_nocow_unlock(inode); 4827 extent_changeset_free(data_reserved); 4828 return ret; 4829 } 4830 4831 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4832 { 4833 struct btrfs_root *root = inode->root; 4834 struct btrfs_fs_info *fs_info = root->fs_info; 4835 struct btrfs_trans_handle *trans; 4836 struct btrfs_drop_extents_args drop_args = { 0 }; 4837 int ret; 4838 4839 /* 4840 * If NO_HOLES is enabled, we don't need to do anything. 4841 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4842 * or btrfs_update_inode() will be called, which guarantee that the next 4843 * fsync will know this inode was changed and needs to be logged. 4844 */ 4845 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4846 return 0; 4847 4848 /* 4849 * 1 - for the one we're dropping 4850 * 1 - for the one we're adding 4851 * 1 - for updating the inode. 4852 */ 4853 trans = btrfs_start_transaction(root, 3); 4854 if (IS_ERR(trans)) 4855 return PTR_ERR(trans); 4856 4857 drop_args.start = offset; 4858 drop_args.end = offset + len; 4859 drop_args.drop_cache = true; 4860 4861 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4862 if (ret) { 4863 btrfs_abort_transaction(trans, ret); 4864 btrfs_end_transaction(trans); 4865 return ret; 4866 } 4867 4868 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4869 if (ret) { 4870 btrfs_abort_transaction(trans, ret); 4871 } else { 4872 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4873 btrfs_update_inode(trans, inode); 4874 } 4875 btrfs_end_transaction(trans); 4876 return ret; 4877 } 4878 4879 /* 4880 * This function puts in dummy file extents for the area we're creating a hole 4881 * for. So if we are truncating this file to a larger size we need to insert 4882 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4883 * the range between oldsize and size 4884 */ 4885 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4886 { 4887 struct btrfs_root *root = inode->root; 4888 struct btrfs_fs_info *fs_info = root->fs_info; 4889 struct extent_io_tree *io_tree = &inode->io_tree; 4890 struct extent_map *em = NULL; 4891 struct extent_state *cached_state = NULL; 4892 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4893 u64 block_end = ALIGN(size, fs_info->sectorsize); 4894 u64 last_byte; 4895 u64 cur_offset; 4896 u64 hole_size; 4897 int ret = 0; 4898 4899 /* 4900 * If our size started in the middle of a block we need to zero out the 4901 * rest of the block before we expand the i_size, otherwise we could 4902 * expose stale data. 4903 */ 4904 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4905 if (ret) 4906 return ret; 4907 4908 if (size <= hole_start) 4909 return 0; 4910 4911 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4912 &cached_state); 4913 cur_offset = hole_start; 4914 while (1) { 4915 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4916 if (IS_ERR(em)) { 4917 ret = PTR_ERR(em); 4918 em = NULL; 4919 break; 4920 } 4921 last_byte = min(extent_map_end(em), block_end); 4922 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4923 hole_size = last_byte - cur_offset; 4924 4925 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4926 struct extent_map *hole_em; 4927 4928 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4929 if (ret) 4930 break; 4931 4932 ret = btrfs_inode_set_file_extent_range(inode, 4933 cur_offset, hole_size); 4934 if (ret) 4935 break; 4936 4937 hole_em = alloc_extent_map(); 4938 if (!hole_em) { 4939 btrfs_drop_extent_map_range(inode, cur_offset, 4940 cur_offset + hole_size - 1, 4941 false); 4942 btrfs_set_inode_full_sync(inode); 4943 goto next; 4944 } 4945 hole_em->start = cur_offset; 4946 hole_em->len = hole_size; 4947 4948 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4949 hole_em->disk_num_bytes = 0; 4950 hole_em->ram_bytes = hole_size; 4951 hole_em->generation = btrfs_get_fs_generation(fs_info); 4952 4953 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4954 free_extent_map(hole_em); 4955 } else { 4956 ret = btrfs_inode_set_file_extent_range(inode, 4957 cur_offset, hole_size); 4958 if (ret) 4959 break; 4960 } 4961 next: 4962 free_extent_map(em); 4963 em = NULL; 4964 cur_offset = last_byte; 4965 if (cur_offset >= block_end) 4966 break; 4967 } 4968 free_extent_map(em); 4969 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4970 return ret; 4971 } 4972 4973 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4974 { 4975 struct btrfs_root *root = BTRFS_I(inode)->root; 4976 struct btrfs_trans_handle *trans; 4977 loff_t oldsize = i_size_read(inode); 4978 loff_t newsize = attr->ia_size; 4979 int mask = attr->ia_valid; 4980 int ret; 4981 4982 /* 4983 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4984 * special case where we need to update the times despite not having 4985 * these flags set. For all other operations the VFS set these flags 4986 * explicitly if it wants a timestamp update. 4987 */ 4988 if (newsize != oldsize) { 4989 inode_inc_iversion(inode); 4990 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4991 inode_set_mtime_to_ts(inode, 4992 inode_set_ctime_current(inode)); 4993 } 4994 } 4995 4996 if (newsize > oldsize) { 4997 /* 4998 * Don't do an expanding truncate while snapshotting is ongoing. 4999 * This is to ensure the snapshot captures a fully consistent 5000 * state of this file - if the snapshot captures this expanding 5001 * truncation, it must capture all writes that happened before 5002 * this truncation. 5003 */ 5004 btrfs_drew_write_lock(&root->snapshot_lock); 5005 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5006 if (ret) { 5007 btrfs_drew_write_unlock(&root->snapshot_lock); 5008 return ret; 5009 } 5010 5011 trans = btrfs_start_transaction(root, 1); 5012 if (IS_ERR(trans)) { 5013 btrfs_drew_write_unlock(&root->snapshot_lock); 5014 return PTR_ERR(trans); 5015 } 5016 5017 i_size_write(inode, newsize); 5018 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5019 pagecache_isize_extended(inode, oldsize, newsize); 5020 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5021 btrfs_drew_write_unlock(&root->snapshot_lock); 5022 btrfs_end_transaction(trans); 5023 } else { 5024 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5025 5026 if (btrfs_is_zoned(fs_info)) { 5027 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5028 ALIGN(newsize, fs_info->sectorsize), 5029 (u64)-1); 5030 if (ret) 5031 return ret; 5032 } 5033 5034 /* 5035 * We're truncating a file that used to have good data down to 5036 * zero. Make sure any new writes to the file get on disk 5037 * on close. 5038 */ 5039 if (newsize == 0) 5040 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5041 &BTRFS_I(inode)->runtime_flags); 5042 5043 truncate_setsize(inode, newsize); 5044 5045 inode_dio_wait(inode); 5046 5047 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5048 if (ret && inode->i_nlink) { 5049 int err; 5050 5051 /* 5052 * Truncate failed, so fix up the in-memory size. We 5053 * adjusted disk_i_size down as we removed extents, so 5054 * wait for disk_i_size to be stable and then update the 5055 * in-memory size to match. 5056 */ 5057 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5058 if (err) 5059 return err; 5060 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5061 } 5062 } 5063 5064 return ret; 5065 } 5066 5067 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5068 struct iattr *attr) 5069 { 5070 struct inode *inode = d_inode(dentry); 5071 struct btrfs_root *root = BTRFS_I(inode)->root; 5072 int err; 5073 5074 if (btrfs_root_readonly(root)) 5075 return -EROFS; 5076 5077 err = setattr_prepare(idmap, dentry, attr); 5078 if (err) 5079 return err; 5080 5081 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5082 err = btrfs_setsize(inode, attr); 5083 if (err) 5084 return err; 5085 } 5086 5087 if (attr->ia_valid) { 5088 setattr_copy(idmap, inode, attr); 5089 inode_inc_iversion(inode); 5090 err = btrfs_dirty_inode(BTRFS_I(inode)); 5091 5092 if (!err && attr->ia_valid & ATTR_MODE) 5093 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5094 } 5095 5096 return err; 5097 } 5098 5099 /* 5100 * While truncating the inode pages during eviction, we get the VFS 5101 * calling btrfs_invalidate_folio() against each folio of the inode. This 5102 * is slow because the calls to btrfs_invalidate_folio() result in a 5103 * huge amount of calls to lock_extent() and clear_extent_bit(), 5104 * which keep merging and splitting extent_state structures over and over, 5105 * wasting lots of time. 5106 * 5107 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5108 * skip all those expensive operations on a per folio basis and do only 5109 * the ordered io finishing, while we release here the extent_map and 5110 * extent_state structures, without the excessive merging and splitting. 5111 */ 5112 static void evict_inode_truncate_pages(struct inode *inode) 5113 { 5114 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5115 struct rb_node *node; 5116 5117 ASSERT(inode->i_state & I_FREEING); 5118 truncate_inode_pages_final(&inode->i_data); 5119 5120 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5121 5122 /* 5123 * Keep looping until we have no more ranges in the io tree. 5124 * We can have ongoing bios started by readahead that have 5125 * their endio callback (extent_io.c:end_bio_extent_readpage) 5126 * still in progress (unlocked the pages in the bio but did not yet 5127 * unlocked the ranges in the io tree). Therefore this means some 5128 * ranges can still be locked and eviction started because before 5129 * submitting those bios, which are executed by a separate task (work 5130 * queue kthread), inode references (inode->i_count) were not taken 5131 * (which would be dropped in the end io callback of each bio). 5132 * Therefore here we effectively end up waiting for those bios and 5133 * anyone else holding locked ranges without having bumped the inode's 5134 * reference count - if we don't do it, when they access the inode's 5135 * io_tree to unlock a range it may be too late, leading to an 5136 * use-after-free issue. 5137 */ 5138 spin_lock(&io_tree->lock); 5139 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5140 struct extent_state *state; 5141 struct extent_state *cached_state = NULL; 5142 u64 start; 5143 u64 end; 5144 unsigned state_flags; 5145 5146 node = rb_first(&io_tree->state); 5147 state = rb_entry(node, struct extent_state, rb_node); 5148 start = state->start; 5149 end = state->end; 5150 state_flags = state->state; 5151 spin_unlock(&io_tree->lock); 5152 5153 lock_extent(io_tree, start, end, &cached_state); 5154 5155 /* 5156 * If still has DELALLOC flag, the extent didn't reach disk, 5157 * and its reserved space won't be freed by delayed_ref. 5158 * So we need to free its reserved space here. 5159 * (Refer to comment in btrfs_invalidate_folio, case 2) 5160 * 5161 * Note, end is the bytenr of last byte, so we need + 1 here. 5162 */ 5163 if (state_flags & EXTENT_DELALLOC) 5164 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5165 end - start + 1, NULL); 5166 5167 clear_extent_bit(io_tree, start, end, 5168 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5169 &cached_state); 5170 5171 cond_resched(); 5172 spin_lock(&io_tree->lock); 5173 } 5174 spin_unlock(&io_tree->lock); 5175 } 5176 5177 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5178 struct btrfs_block_rsv *rsv) 5179 { 5180 struct btrfs_fs_info *fs_info = root->fs_info; 5181 struct btrfs_trans_handle *trans; 5182 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5183 int ret; 5184 5185 /* 5186 * Eviction should be taking place at some place safe because of our 5187 * delayed iputs. However the normal flushing code will run delayed 5188 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5189 * 5190 * We reserve the delayed_refs_extra here again because we can't use 5191 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5192 * above. We reserve our extra bit here because we generate a ton of 5193 * delayed refs activity by truncating. 5194 * 5195 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5196 * if we fail to make this reservation we can re-try without the 5197 * delayed_refs_extra so we can make some forward progress. 5198 */ 5199 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5200 BTRFS_RESERVE_FLUSH_EVICT); 5201 if (ret) { 5202 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5203 BTRFS_RESERVE_FLUSH_EVICT); 5204 if (ret) { 5205 btrfs_warn(fs_info, 5206 "could not allocate space for delete; will truncate on mount"); 5207 return ERR_PTR(-ENOSPC); 5208 } 5209 delayed_refs_extra = 0; 5210 } 5211 5212 trans = btrfs_join_transaction(root); 5213 if (IS_ERR(trans)) 5214 return trans; 5215 5216 if (delayed_refs_extra) { 5217 trans->block_rsv = &fs_info->trans_block_rsv; 5218 trans->bytes_reserved = delayed_refs_extra; 5219 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5220 delayed_refs_extra, true); 5221 } 5222 return trans; 5223 } 5224 5225 void btrfs_evict_inode(struct inode *inode) 5226 { 5227 struct btrfs_fs_info *fs_info; 5228 struct btrfs_trans_handle *trans; 5229 struct btrfs_root *root = BTRFS_I(inode)->root; 5230 struct btrfs_block_rsv *rsv = NULL; 5231 int ret; 5232 5233 trace_btrfs_inode_evict(inode); 5234 5235 if (!root) { 5236 fsverity_cleanup_inode(inode); 5237 clear_inode(inode); 5238 return; 5239 } 5240 5241 fs_info = inode_to_fs_info(inode); 5242 evict_inode_truncate_pages(inode); 5243 5244 if (inode->i_nlink && 5245 ((btrfs_root_refs(&root->root_item) != 0 && 5246 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5247 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5248 goto out; 5249 5250 if (is_bad_inode(inode)) 5251 goto out; 5252 5253 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5254 goto out; 5255 5256 if (inode->i_nlink > 0) { 5257 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5258 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5259 goto out; 5260 } 5261 5262 /* 5263 * This makes sure the inode item in tree is uptodate and the space for 5264 * the inode update is released. 5265 */ 5266 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5267 if (ret) 5268 goto out; 5269 5270 /* 5271 * This drops any pending insert or delete operations we have for this 5272 * inode. We could have a delayed dir index deletion queued up, but 5273 * we're removing the inode completely so that'll be taken care of in 5274 * the truncate. 5275 */ 5276 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5277 5278 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5279 if (!rsv) 5280 goto out; 5281 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5282 rsv->failfast = true; 5283 5284 btrfs_i_size_write(BTRFS_I(inode), 0); 5285 5286 while (1) { 5287 struct btrfs_truncate_control control = { 5288 .inode = BTRFS_I(inode), 5289 .ino = btrfs_ino(BTRFS_I(inode)), 5290 .new_size = 0, 5291 .min_type = 0, 5292 }; 5293 5294 trans = evict_refill_and_join(root, rsv); 5295 if (IS_ERR(trans)) 5296 goto out; 5297 5298 trans->block_rsv = rsv; 5299 5300 ret = btrfs_truncate_inode_items(trans, root, &control); 5301 trans->block_rsv = &fs_info->trans_block_rsv; 5302 btrfs_end_transaction(trans); 5303 /* 5304 * We have not added new delayed items for our inode after we 5305 * have flushed its delayed items, so no need to throttle on 5306 * delayed items. However we have modified extent buffers. 5307 */ 5308 btrfs_btree_balance_dirty_nodelay(fs_info); 5309 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5310 goto out; 5311 else if (!ret) 5312 break; 5313 } 5314 5315 /* 5316 * Errors here aren't a big deal, it just means we leave orphan items in 5317 * the tree. They will be cleaned up on the next mount. If the inode 5318 * number gets reused, cleanup deletes the orphan item without doing 5319 * anything, and unlink reuses the existing orphan item. 5320 * 5321 * If it turns out that we are dropping too many of these, we might want 5322 * to add a mechanism for retrying these after a commit. 5323 */ 5324 trans = evict_refill_and_join(root, rsv); 5325 if (!IS_ERR(trans)) { 5326 trans->block_rsv = rsv; 5327 btrfs_orphan_del(trans, BTRFS_I(inode)); 5328 trans->block_rsv = &fs_info->trans_block_rsv; 5329 btrfs_end_transaction(trans); 5330 } 5331 5332 out: 5333 btrfs_free_block_rsv(fs_info, rsv); 5334 /* 5335 * If we didn't successfully delete, the orphan item will still be in 5336 * the tree and we'll retry on the next mount. Again, we might also want 5337 * to retry these periodically in the future. 5338 */ 5339 btrfs_remove_delayed_node(BTRFS_I(inode)); 5340 fsverity_cleanup_inode(inode); 5341 clear_inode(inode); 5342 } 5343 5344 /* 5345 * Return the key found in the dir entry in the location pointer, fill @type 5346 * with BTRFS_FT_*, and return 0. 5347 * 5348 * If no dir entries were found, returns -ENOENT. 5349 * If found a corrupted location in dir entry, returns -EUCLEAN. 5350 */ 5351 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5352 struct btrfs_key *location, u8 *type) 5353 { 5354 struct btrfs_dir_item *di; 5355 struct btrfs_path *path; 5356 struct btrfs_root *root = dir->root; 5357 int ret = 0; 5358 struct fscrypt_name fname; 5359 5360 path = btrfs_alloc_path(); 5361 if (!path) 5362 return -ENOMEM; 5363 5364 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5365 if (ret < 0) 5366 goto out; 5367 /* 5368 * fscrypt_setup_filename() should never return a positive value, but 5369 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5370 */ 5371 ASSERT(ret == 0); 5372 5373 /* This needs to handle no-key deletions later on */ 5374 5375 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5376 &fname.disk_name, 0); 5377 if (IS_ERR_OR_NULL(di)) { 5378 ret = di ? PTR_ERR(di) : -ENOENT; 5379 goto out; 5380 } 5381 5382 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5383 if (location->type != BTRFS_INODE_ITEM_KEY && 5384 location->type != BTRFS_ROOT_ITEM_KEY) { 5385 ret = -EUCLEAN; 5386 btrfs_warn(root->fs_info, 5387 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5388 __func__, fname.disk_name.name, btrfs_ino(dir), 5389 location->objectid, location->type, location->offset); 5390 } 5391 if (!ret) 5392 *type = btrfs_dir_ftype(path->nodes[0], di); 5393 out: 5394 fscrypt_free_filename(&fname); 5395 btrfs_free_path(path); 5396 return ret; 5397 } 5398 5399 /* 5400 * when we hit a tree root in a directory, the btrfs part of the inode 5401 * needs to be changed to reflect the root directory of the tree root. This 5402 * is kind of like crossing a mount point. 5403 */ 5404 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5405 struct btrfs_inode *dir, 5406 struct dentry *dentry, 5407 struct btrfs_key *location, 5408 struct btrfs_root **sub_root) 5409 { 5410 struct btrfs_path *path; 5411 struct btrfs_root *new_root; 5412 struct btrfs_root_ref *ref; 5413 struct extent_buffer *leaf; 5414 struct btrfs_key key; 5415 int ret; 5416 int err = 0; 5417 struct fscrypt_name fname; 5418 5419 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5420 if (ret) 5421 return ret; 5422 5423 path = btrfs_alloc_path(); 5424 if (!path) { 5425 err = -ENOMEM; 5426 goto out; 5427 } 5428 5429 err = -ENOENT; 5430 key.objectid = btrfs_root_id(dir->root); 5431 key.type = BTRFS_ROOT_REF_KEY; 5432 key.offset = location->objectid; 5433 5434 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5435 if (ret) { 5436 if (ret < 0) 5437 err = ret; 5438 goto out; 5439 } 5440 5441 leaf = path->nodes[0]; 5442 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5443 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5444 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5445 goto out; 5446 5447 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5448 (unsigned long)(ref + 1), fname.disk_name.len); 5449 if (ret) 5450 goto out; 5451 5452 btrfs_release_path(path); 5453 5454 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5455 if (IS_ERR(new_root)) { 5456 err = PTR_ERR(new_root); 5457 goto out; 5458 } 5459 5460 *sub_root = new_root; 5461 location->objectid = btrfs_root_dirid(&new_root->root_item); 5462 location->type = BTRFS_INODE_ITEM_KEY; 5463 location->offset = 0; 5464 err = 0; 5465 out: 5466 btrfs_free_path(path); 5467 fscrypt_free_filename(&fname); 5468 return err; 5469 } 5470 5471 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 5472 { 5473 struct btrfs_root *root = inode->root; 5474 struct btrfs_inode *existing; 5475 const u64 ino = btrfs_ino(inode); 5476 int ret; 5477 5478 if (inode_unhashed(&inode->vfs_inode)) 5479 return 0; 5480 5481 if (prealloc) { 5482 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 5483 if (ret) 5484 return ret; 5485 } 5486 5487 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 5488 5489 if (xa_is_err(existing)) { 5490 ret = xa_err(existing); 5491 ASSERT(ret != -EINVAL); 5492 ASSERT(ret != -ENOMEM); 5493 return ret; 5494 } else if (existing) { 5495 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 5496 } 5497 5498 return 0; 5499 } 5500 5501 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5502 { 5503 struct btrfs_root *root = inode->root; 5504 struct btrfs_inode *entry; 5505 bool empty = false; 5506 5507 xa_lock(&root->inodes); 5508 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5509 if (entry == inode) 5510 empty = xa_empty(&root->inodes); 5511 xa_unlock(&root->inodes); 5512 5513 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5514 xa_lock(&root->inodes); 5515 empty = xa_empty(&root->inodes); 5516 xa_unlock(&root->inodes); 5517 if (empty) 5518 btrfs_add_dead_root(root); 5519 } 5520 } 5521 5522 5523 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5524 { 5525 struct btrfs_iget_args *args = p; 5526 5527 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5528 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5529 5530 if (args->root && args->root == args->root->fs_info->tree_root && 5531 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5532 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5533 &BTRFS_I(inode)->runtime_flags); 5534 return 0; 5535 } 5536 5537 static int btrfs_find_actor(struct inode *inode, void *opaque) 5538 { 5539 struct btrfs_iget_args *args = opaque; 5540 5541 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5542 args->root == BTRFS_I(inode)->root; 5543 } 5544 5545 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5546 { 5547 struct inode *inode; 5548 struct btrfs_iget_args args; 5549 unsigned long hashval = btrfs_inode_hash(ino, root); 5550 5551 args.ino = ino; 5552 args.root = root; 5553 5554 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5555 btrfs_init_locked_inode, 5556 (void *)&args); 5557 return inode; 5558 } 5559 5560 /* 5561 * Get an inode object given its inode number and corresponding root. 5562 * Path can be preallocated to prevent recursing back to iget through 5563 * allocator. NULL is also valid but may require an additional allocation 5564 * later. 5565 */ 5566 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5567 struct btrfs_path *path) 5568 { 5569 struct inode *inode; 5570 int ret; 5571 5572 inode = btrfs_iget_locked(ino, root); 5573 if (!inode) 5574 return ERR_PTR(-ENOMEM); 5575 5576 if (!(inode->i_state & I_NEW)) 5577 return inode; 5578 5579 ret = btrfs_read_locked_inode(inode, path); 5580 /* 5581 * ret > 0 can come from btrfs_search_slot called by 5582 * btrfs_read_locked_inode(), this means the inode item was not found. 5583 */ 5584 if (ret > 0) 5585 ret = -ENOENT; 5586 if (ret < 0) 5587 goto error; 5588 5589 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 5590 if (ret < 0) 5591 goto error; 5592 5593 unlock_new_inode(inode); 5594 5595 return inode; 5596 error: 5597 iget_failed(inode); 5598 return ERR_PTR(ret); 5599 } 5600 5601 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5602 { 5603 return btrfs_iget_path(ino, root, NULL); 5604 } 5605 5606 static struct inode *new_simple_dir(struct inode *dir, 5607 struct btrfs_key *key, 5608 struct btrfs_root *root) 5609 { 5610 struct timespec64 ts; 5611 struct inode *inode = new_inode(dir->i_sb); 5612 5613 if (!inode) 5614 return ERR_PTR(-ENOMEM); 5615 5616 BTRFS_I(inode)->root = btrfs_grab_root(root); 5617 BTRFS_I(inode)->ref_root_id = key->objectid; 5618 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5619 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5620 5621 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5622 /* 5623 * We only need lookup, the rest is read-only and there's no inode 5624 * associated with the dentry 5625 */ 5626 inode->i_op = &simple_dir_inode_operations; 5627 inode->i_opflags &= ~IOP_XATTR; 5628 inode->i_fop = &simple_dir_operations; 5629 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5630 5631 ts = inode_set_ctime_current(inode); 5632 inode_set_mtime_to_ts(inode, ts); 5633 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5634 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5635 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5636 5637 inode->i_uid = dir->i_uid; 5638 inode->i_gid = dir->i_gid; 5639 5640 return inode; 5641 } 5642 5643 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5644 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5645 static_assert(BTRFS_FT_DIR == FT_DIR); 5646 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5647 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5648 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5649 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5650 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5651 5652 static inline u8 btrfs_inode_type(struct inode *inode) 5653 { 5654 return fs_umode_to_ftype(inode->i_mode); 5655 } 5656 5657 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5658 { 5659 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5660 struct inode *inode; 5661 struct btrfs_root *root = BTRFS_I(dir)->root; 5662 struct btrfs_root *sub_root = root; 5663 struct btrfs_key location; 5664 u8 di_type = 0; 5665 int ret = 0; 5666 5667 if (dentry->d_name.len > BTRFS_NAME_LEN) 5668 return ERR_PTR(-ENAMETOOLONG); 5669 5670 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5671 if (ret < 0) 5672 return ERR_PTR(ret); 5673 5674 if (location.type == BTRFS_INODE_ITEM_KEY) { 5675 inode = btrfs_iget(location.objectid, root); 5676 if (IS_ERR(inode)) 5677 return inode; 5678 5679 /* Do extra check against inode mode with di_type */ 5680 if (btrfs_inode_type(inode) != di_type) { 5681 btrfs_crit(fs_info, 5682 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5683 inode->i_mode, btrfs_inode_type(inode), 5684 di_type); 5685 iput(inode); 5686 return ERR_PTR(-EUCLEAN); 5687 } 5688 return inode; 5689 } 5690 5691 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5692 &location, &sub_root); 5693 if (ret < 0) { 5694 if (ret != -ENOENT) 5695 inode = ERR_PTR(ret); 5696 else 5697 inode = new_simple_dir(dir, &location, root); 5698 } else { 5699 inode = btrfs_iget(location.objectid, sub_root); 5700 btrfs_put_root(sub_root); 5701 5702 if (IS_ERR(inode)) 5703 return inode; 5704 5705 down_read(&fs_info->cleanup_work_sem); 5706 if (!sb_rdonly(inode->i_sb)) 5707 ret = btrfs_orphan_cleanup(sub_root); 5708 up_read(&fs_info->cleanup_work_sem); 5709 if (ret) { 5710 iput(inode); 5711 inode = ERR_PTR(ret); 5712 } 5713 } 5714 5715 return inode; 5716 } 5717 5718 static int btrfs_dentry_delete(const struct dentry *dentry) 5719 { 5720 struct btrfs_root *root; 5721 struct inode *inode = d_inode(dentry); 5722 5723 if (!inode && !IS_ROOT(dentry)) 5724 inode = d_inode(dentry->d_parent); 5725 5726 if (inode) { 5727 root = BTRFS_I(inode)->root; 5728 if (btrfs_root_refs(&root->root_item) == 0) 5729 return 1; 5730 5731 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5732 return 1; 5733 } 5734 return 0; 5735 } 5736 5737 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5738 unsigned int flags) 5739 { 5740 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5741 5742 if (inode == ERR_PTR(-ENOENT)) 5743 inode = NULL; 5744 return d_splice_alias(inode, dentry); 5745 } 5746 5747 /* 5748 * Find the highest existing sequence number in a directory and then set the 5749 * in-memory index_cnt variable to the first free sequence number. 5750 */ 5751 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5752 { 5753 struct btrfs_root *root = inode->root; 5754 struct btrfs_key key, found_key; 5755 struct btrfs_path *path; 5756 struct extent_buffer *leaf; 5757 int ret; 5758 5759 key.objectid = btrfs_ino(inode); 5760 key.type = BTRFS_DIR_INDEX_KEY; 5761 key.offset = (u64)-1; 5762 5763 path = btrfs_alloc_path(); 5764 if (!path) 5765 return -ENOMEM; 5766 5767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5768 if (ret < 0) 5769 goto out; 5770 /* FIXME: we should be able to handle this */ 5771 if (ret == 0) 5772 goto out; 5773 ret = 0; 5774 5775 if (path->slots[0] == 0) { 5776 inode->index_cnt = BTRFS_DIR_START_INDEX; 5777 goto out; 5778 } 5779 5780 path->slots[0]--; 5781 5782 leaf = path->nodes[0]; 5783 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5784 5785 if (found_key.objectid != btrfs_ino(inode) || 5786 found_key.type != BTRFS_DIR_INDEX_KEY) { 5787 inode->index_cnt = BTRFS_DIR_START_INDEX; 5788 goto out; 5789 } 5790 5791 inode->index_cnt = found_key.offset + 1; 5792 out: 5793 btrfs_free_path(path); 5794 return ret; 5795 } 5796 5797 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5798 { 5799 int ret = 0; 5800 5801 btrfs_inode_lock(dir, 0); 5802 if (dir->index_cnt == (u64)-1) { 5803 ret = btrfs_inode_delayed_dir_index_count(dir); 5804 if (ret) { 5805 ret = btrfs_set_inode_index_count(dir); 5806 if (ret) 5807 goto out; 5808 } 5809 } 5810 5811 /* index_cnt is the index number of next new entry, so decrement it. */ 5812 *index = dir->index_cnt - 1; 5813 out: 5814 btrfs_inode_unlock(dir, 0); 5815 5816 return ret; 5817 } 5818 5819 /* 5820 * All this infrastructure exists because dir_emit can fault, and we are holding 5821 * the tree lock when doing readdir. For now just allocate a buffer and copy 5822 * our information into that, and then dir_emit from the buffer. This is 5823 * similar to what NFS does, only we don't keep the buffer around in pagecache 5824 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5825 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5826 * tree lock. 5827 */ 5828 static int btrfs_opendir(struct inode *inode, struct file *file) 5829 { 5830 struct btrfs_file_private *private; 5831 u64 last_index; 5832 int ret; 5833 5834 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5835 if (ret) 5836 return ret; 5837 5838 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5839 if (!private) 5840 return -ENOMEM; 5841 private->last_index = last_index; 5842 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5843 if (!private->filldir_buf) { 5844 kfree(private); 5845 return -ENOMEM; 5846 } 5847 file->private_data = private; 5848 return 0; 5849 } 5850 5851 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5852 { 5853 struct btrfs_file_private *private = file->private_data; 5854 int ret; 5855 5856 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5857 &private->last_index); 5858 if (ret) 5859 return ret; 5860 5861 return generic_file_llseek(file, offset, whence); 5862 } 5863 5864 struct dir_entry { 5865 u64 ino; 5866 u64 offset; 5867 unsigned type; 5868 int name_len; 5869 }; 5870 5871 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5872 { 5873 while (entries--) { 5874 struct dir_entry *entry = addr; 5875 char *name = (char *)(entry + 1); 5876 5877 ctx->pos = get_unaligned(&entry->offset); 5878 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5879 get_unaligned(&entry->ino), 5880 get_unaligned(&entry->type))) 5881 return 1; 5882 addr += sizeof(struct dir_entry) + 5883 get_unaligned(&entry->name_len); 5884 ctx->pos++; 5885 } 5886 return 0; 5887 } 5888 5889 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5890 { 5891 struct inode *inode = file_inode(file); 5892 struct btrfs_root *root = BTRFS_I(inode)->root; 5893 struct btrfs_file_private *private = file->private_data; 5894 struct btrfs_dir_item *di; 5895 struct btrfs_key key; 5896 struct btrfs_key found_key; 5897 struct btrfs_path *path; 5898 void *addr; 5899 LIST_HEAD(ins_list); 5900 LIST_HEAD(del_list); 5901 int ret; 5902 char *name_ptr; 5903 int name_len; 5904 int entries = 0; 5905 int total_len = 0; 5906 bool put = false; 5907 struct btrfs_key location; 5908 5909 if (!dir_emit_dots(file, ctx)) 5910 return 0; 5911 5912 path = btrfs_alloc_path(); 5913 if (!path) 5914 return -ENOMEM; 5915 5916 addr = private->filldir_buf; 5917 path->reada = READA_FORWARD; 5918 5919 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5920 &ins_list, &del_list); 5921 5922 again: 5923 key.type = BTRFS_DIR_INDEX_KEY; 5924 key.offset = ctx->pos; 5925 key.objectid = btrfs_ino(BTRFS_I(inode)); 5926 5927 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5928 struct dir_entry *entry; 5929 struct extent_buffer *leaf = path->nodes[0]; 5930 u8 ftype; 5931 5932 if (found_key.objectid != key.objectid) 5933 break; 5934 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5935 break; 5936 if (found_key.offset < ctx->pos) 5937 continue; 5938 if (found_key.offset > private->last_index) 5939 break; 5940 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5941 continue; 5942 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5943 name_len = btrfs_dir_name_len(leaf, di); 5944 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5945 PAGE_SIZE) { 5946 btrfs_release_path(path); 5947 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5948 if (ret) 5949 goto nopos; 5950 addr = private->filldir_buf; 5951 entries = 0; 5952 total_len = 0; 5953 goto again; 5954 } 5955 5956 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5957 entry = addr; 5958 name_ptr = (char *)(entry + 1); 5959 read_extent_buffer(leaf, name_ptr, 5960 (unsigned long)(di + 1), name_len); 5961 put_unaligned(name_len, &entry->name_len); 5962 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5963 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5964 put_unaligned(location.objectid, &entry->ino); 5965 put_unaligned(found_key.offset, &entry->offset); 5966 entries++; 5967 addr += sizeof(struct dir_entry) + name_len; 5968 total_len += sizeof(struct dir_entry) + name_len; 5969 } 5970 /* Catch error encountered during iteration */ 5971 if (ret < 0) 5972 goto err; 5973 5974 btrfs_release_path(path); 5975 5976 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5977 if (ret) 5978 goto nopos; 5979 5980 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5981 if (ret) 5982 goto nopos; 5983 5984 /* 5985 * Stop new entries from being returned after we return the last 5986 * entry. 5987 * 5988 * New directory entries are assigned a strictly increasing 5989 * offset. This means that new entries created during readdir 5990 * are *guaranteed* to be seen in the future by that readdir. 5991 * This has broken buggy programs which operate on names as 5992 * they're returned by readdir. Until we re-use freed offsets 5993 * we have this hack to stop new entries from being returned 5994 * under the assumption that they'll never reach this huge 5995 * offset. 5996 * 5997 * This is being careful not to overflow 32bit loff_t unless the 5998 * last entry requires it because doing so has broken 32bit apps 5999 * in the past. 6000 */ 6001 if (ctx->pos >= INT_MAX) 6002 ctx->pos = LLONG_MAX; 6003 else 6004 ctx->pos = INT_MAX; 6005 nopos: 6006 ret = 0; 6007 err: 6008 if (put) 6009 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6010 btrfs_free_path(path); 6011 return ret; 6012 } 6013 6014 /* 6015 * This is somewhat expensive, updating the tree every time the 6016 * inode changes. But, it is most likely to find the inode in cache. 6017 * FIXME, needs more benchmarking...there are no reasons other than performance 6018 * to keep or drop this code. 6019 */ 6020 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6021 { 6022 struct btrfs_root *root = inode->root; 6023 struct btrfs_fs_info *fs_info = root->fs_info; 6024 struct btrfs_trans_handle *trans; 6025 int ret; 6026 6027 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6028 return 0; 6029 6030 trans = btrfs_join_transaction(root); 6031 if (IS_ERR(trans)) 6032 return PTR_ERR(trans); 6033 6034 ret = btrfs_update_inode(trans, inode); 6035 if (ret == -ENOSPC || ret == -EDQUOT) { 6036 /* whoops, lets try again with the full transaction */ 6037 btrfs_end_transaction(trans); 6038 trans = btrfs_start_transaction(root, 1); 6039 if (IS_ERR(trans)) 6040 return PTR_ERR(trans); 6041 6042 ret = btrfs_update_inode(trans, inode); 6043 } 6044 btrfs_end_transaction(trans); 6045 if (inode->delayed_node) 6046 btrfs_balance_delayed_items(fs_info); 6047 6048 return ret; 6049 } 6050 6051 /* 6052 * This is a copy of file_update_time. We need this so we can return error on 6053 * ENOSPC for updating the inode in the case of file write and mmap writes. 6054 */ 6055 static int btrfs_update_time(struct inode *inode, int flags) 6056 { 6057 struct btrfs_root *root = BTRFS_I(inode)->root; 6058 bool dirty; 6059 6060 if (btrfs_root_readonly(root)) 6061 return -EROFS; 6062 6063 dirty = inode_update_timestamps(inode, flags); 6064 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6065 } 6066 6067 /* 6068 * helper to find a free sequence number in a given directory. This current 6069 * code is very simple, later versions will do smarter things in the btree 6070 */ 6071 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6072 { 6073 int ret = 0; 6074 6075 if (dir->index_cnt == (u64)-1) { 6076 ret = btrfs_inode_delayed_dir_index_count(dir); 6077 if (ret) { 6078 ret = btrfs_set_inode_index_count(dir); 6079 if (ret) 6080 return ret; 6081 } 6082 } 6083 6084 *index = dir->index_cnt; 6085 dir->index_cnt++; 6086 6087 return ret; 6088 } 6089 6090 static int btrfs_insert_inode_locked(struct inode *inode) 6091 { 6092 struct btrfs_iget_args args; 6093 6094 args.ino = btrfs_ino(BTRFS_I(inode)); 6095 args.root = BTRFS_I(inode)->root; 6096 6097 return insert_inode_locked4(inode, 6098 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6099 btrfs_find_actor, &args); 6100 } 6101 6102 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6103 unsigned int *trans_num_items) 6104 { 6105 struct inode *dir = args->dir; 6106 struct inode *inode = args->inode; 6107 int ret; 6108 6109 if (!args->orphan) { 6110 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6111 &args->fname); 6112 if (ret) 6113 return ret; 6114 } 6115 6116 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6117 if (ret) { 6118 fscrypt_free_filename(&args->fname); 6119 return ret; 6120 } 6121 6122 /* 1 to add inode item */ 6123 *trans_num_items = 1; 6124 /* 1 to add compression property */ 6125 if (BTRFS_I(dir)->prop_compress) 6126 (*trans_num_items)++; 6127 /* 1 to add default ACL xattr */ 6128 if (args->default_acl) 6129 (*trans_num_items)++; 6130 /* 1 to add access ACL xattr */ 6131 if (args->acl) 6132 (*trans_num_items)++; 6133 #ifdef CONFIG_SECURITY 6134 /* 1 to add LSM xattr */ 6135 if (dir->i_security) 6136 (*trans_num_items)++; 6137 #endif 6138 if (args->orphan) { 6139 /* 1 to add orphan item */ 6140 (*trans_num_items)++; 6141 } else { 6142 /* 6143 * 1 to add dir item 6144 * 1 to add dir index 6145 * 1 to update parent inode item 6146 * 6147 * No need for 1 unit for the inode ref item because it is 6148 * inserted in a batch together with the inode item at 6149 * btrfs_create_new_inode(). 6150 */ 6151 *trans_num_items += 3; 6152 } 6153 return 0; 6154 } 6155 6156 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6157 { 6158 posix_acl_release(args->acl); 6159 posix_acl_release(args->default_acl); 6160 fscrypt_free_filename(&args->fname); 6161 } 6162 6163 /* 6164 * Inherit flags from the parent inode. 6165 * 6166 * Currently only the compression flags and the cow flags are inherited. 6167 */ 6168 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6169 { 6170 unsigned int flags; 6171 6172 flags = dir->flags; 6173 6174 if (flags & BTRFS_INODE_NOCOMPRESS) { 6175 inode->flags &= ~BTRFS_INODE_COMPRESS; 6176 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6177 } else if (flags & BTRFS_INODE_COMPRESS) { 6178 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6179 inode->flags |= BTRFS_INODE_COMPRESS; 6180 } 6181 6182 if (flags & BTRFS_INODE_NODATACOW) { 6183 inode->flags |= BTRFS_INODE_NODATACOW; 6184 if (S_ISREG(inode->vfs_inode.i_mode)) 6185 inode->flags |= BTRFS_INODE_NODATASUM; 6186 } 6187 6188 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6189 } 6190 6191 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6192 struct btrfs_new_inode_args *args) 6193 { 6194 struct timespec64 ts; 6195 struct inode *dir = args->dir; 6196 struct inode *inode = args->inode; 6197 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6198 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6199 struct btrfs_root *root; 6200 struct btrfs_inode_item *inode_item; 6201 struct btrfs_path *path; 6202 u64 objectid; 6203 struct btrfs_inode_ref *ref; 6204 struct btrfs_key key[2]; 6205 u32 sizes[2]; 6206 struct btrfs_item_batch batch; 6207 unsigned long ptr; 6208 int ret; 6209 bool xa_reserved = false; 6210 6211 path = btrfs_alloc_path(); 6212 if (!path) 6213 return -ENOMEM; 6214 6215 if (!args->subvol) 6216 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6217 root = BTRFS_I(inode)->root; 6218 6219 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6220 if (ret) 6221 goto out; 6222 6223 ret = btrfs_get_free_objectid(root, &objectid); 6224 if (ret) 6225 goto out; 6226 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6227 6228 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6229 if (ret) 6230 goto out; 6231 xa_reserved = true; 6232 6233 if (args->orphan) { 6234 /* 6235 * O_TMPFILE, set link count to 0, so that after this point, we 6236 * fill in an inode item with the correct link count. 6237 */ 6238 set_nlink(inode, 0); 6239 } else { 6240 trace_btrfs_inode_request(dir); 6241 6242 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6243 if (ret) 6244 goto out; 6245 } 6246 6247 if (S_ISDIR(inode->i_mode)) 6248 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6249 6250 BTRFS_I(inode)->generation = trans->transid; 6251 inode->i_generation = BTRFS_I(inode)->generation; 6252 6253 /* 6254 * We don't have any capability xattrs set here yet, shortcut any 6255 * queries for the xattrs here. If we add them later via the inode 6256 * security init path or any other path this flag will be cleared. 6257 */ 6258 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6259 6260 /* 6261 * Subvolumes don't inherit flags from their parent directory. 6262 * Originally this was probably by accident, but we probably can't 6263 * change it now without compatibility issues. 6264 */ 6265 if (!args->subvol) 6266 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6267 6268 if (S_ISREG(inode->i_mode)) { 6269 if (btrfs_test_opt(fs_info, NODATASUM)) 6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6271 if (btrfs_test_opt(fs_info, NODATACOW)) 6272 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6273 BTRFS_INODE_NODATASUM; 6274 } 6275 6276 ret = btrfs_insert_inode_locked(inode); 6277 if (ret < 0) { 6278 if (!args->orphan) 6279 BTRFS_I(dir)->index_cnt--; 6280 goto out; 6281 } 6282 6283 /* 6284 * We could have gotten an inode number from somebody who was fsynced 6285 * and then removed in this same transaction, so let's just set full 6286 * sync since it will be a full sync anyway and this will blow away the 6287 * old info in the log. 6288 */ 6289 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6290 6291 key[0].objectid = objectid; 6292 key[0].type = BTRFS_INODE_ITEM_KEY; 6293 key[0].offset = 0; 6294 6295 sizes[0] = sizeof(struct btrfs_inode_item); 6296 6297 if (!args->orphan) { 6298 /* 6299 * Start new inodes with an inode_ref. This is slightly more 6300 * efficient for small numbers of hard links since they will 6301 * be packed into one item. Extended refs will kick in if we 6302 * add more hard links than can fit in the ref item. 6303 */ 6304 key[1].objectid = objectid; 6305 key[1].type = BTRFS_INODE_REF_KEY; 6306 if (args->subvol) { 6307 key[1].offset = objectid; 6308 sizes[1] = 2 + sizeof(*ref); 6309 } else { 6310 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6311 sizes[1] = name->len + sizeof(*ref); 6312 } 6313 } 6314 6315 batch.keys = &key[0]; 6316 batch.data_sizes = &sizes[0]; 6317 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6318 batch.nr = args->orphan ? 1 : 2; 6319 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6320 if (ret != 0) { 6321 btrfs_abort_transaction(trans, ret); 6322 goto discard; 6323 } 6324 6325 ts = simple_inode_init_ts(inode); 6326 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6327 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6328 6329 /* 6330 * We're going to fill the inode item now, so at this point the inode 6331 * must be fully initialized. 6332 */ 6333 6334 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6335 struct btrfs_inode_item); 6336 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6337 sizeof(*inode_item)); 6338 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6339 6340 if (!args->orphan) { 6341 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6342 struct btrfs_inode_ref); 6343 ptr = (unsigned long)(ref + 1); 6344 if (args->subvol) { 6345 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6346 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6347 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6348 } else { 6349 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6350 name->len); 6351 btrfs_set_inode_ref_index(path->nodes[0], ref, 6352 BTRFS_I(inode)->dir_index); 6353 write_extent_buffer(path->nodes[0], name->name, ptr, 6354 name->len); 6355 } 6356 } 6357 6358 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6359 /* 6360 * We don't need the path anymore, plus inheriting properties, adding 6361 * ACLs, security xattrs, orphan item or adding the link, will result in 6362 * allocating yet another path. So just free our path. 6363 */ 6364 btrfs_free_path(path); 6365 path = NULL; 6366 6367 if (args->subvol) { 6368 struct inode *parent; 6369 6370 /* 6371 * Subvolumes inherit properties from their parent subvolume, 6372 * not the directory they were created in. 6373 */ 6374 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6375 if (IS_ERR(parent)) { 6376 ret = PTR_ERR(parent); 6377 } else { 6378 ret = btrfs_inode_inherit_props(trans, inode, parent); 6379 iput(parent); 6380 } 6381 } else { 6382 ret = btrfs_inode_inherit_props(trans, inode, dir); 6383 } 6384 if (ret) { 6385 btrfs_err(fs_info, 6386 "error inheriting props for ino %llu (root %llu): %d", 6387 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6388 } 6389 6390 /* 6391 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6392 * probably a bug. 6393 */ 6394 if (!args->subvol) { 6395 ret = btrfs_init_inode_security(trans, args); 6396 if (ret) { 6397 btrfs_abort_transaction(trans, ret); 6398 goto discard; 6399 } 6400 } 6401 6402 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6403 if (WARN_ON(ret)) { 6404 /* Shouldn't happen, we used xa_reserve() before. */ 6405 btrfs_abort_transaction(trans, ret); 6406 goto discard; 6407 } 6408 6409 trace_btrfs_inode_new(inode); 6410 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6411 6412 btrfs_update_root_times(trans, root); 6413 6414 if (args->orphan) { 6415 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6416 } else { 6417 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6418 0, BTRFS_I(inode)->dir_index); 6419 } 6420 if (ret) { 6421 btrfs_abort_transaction(trans, ret); 6422 goto discard; 6423 } 6424 6425 return 0; 6426 6427 discard: 6428 /* 6429 * discard_new_inode() calls iput(), but the caller owns the reference 6430 * to the inode. 6431 */ 6432 ihold(inode); 6433 discard_new_inode(inode); 6434 out: 6435 if (xa_reserved) 6436 xa_release(&root->inodes, objectid); 6437 6438 btrfs_free_path(path); 6439 return ret; 6440 } 6441 6442 /* 6443 * utility function to add 'inode' into 'parent_inode' with 6444 * a give name and a given sequence number. 6445 * if 'add_backref' is true, also insert a backref from the 6446 * inode to the parent directory. 6447 */ 6448 int btrfs_add_link(struct btrfs_trans_handle *trans, 6449 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6450 const struct fscrypt_str *name, int add_backref, u64 index) 6451 { 6452 int ret = 0; 6453 struct btrfs_key key; 6454 struct btrfs_root *root = parent_inode->root; 6455 u64 ino = btrfs_ino(inode); 6456 u64 parent_ino = btrfs_ino(parent_inode); 6457 6458 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6459 memcpy(&key, &inode->root->root_key, sizeof(key)); 6460 } else { 6461 key.objectid = ino; 6462 key.type = BTRFS_INODE_ITEM_KEY; 6463 key.offset = 0; 6464 } 6465 6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6467 ret = btrfs_add_root_ref(trans, key.objectid, 6468 btrfs_root_id(root), parent_ino, 6469 index, name); 6470 } else if (add_backref) { 6471 ret = btrfs_insert_inode_ref(trans, root, name, 6472 ino, parent_ino, index); 6473 } 6474 6475 /* Nothing to clean up yet */ 6476 if (ret) 6477 return ret; 6478 6479 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6480 btrfs_inode_type(&inode->vfs_inode), index); 6481 if (ret == -EEXIST || ret == -EOVERFLOW) 6482 goto fail_dir_item; 6483 else if (ret) { 6484 btrfs_abort_transaction(trans, ret); 6485 return ret; 6486 } 6487 6488 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6489 name->len * 2); 6490 inode_inc_iversion(&parent_inode->vfs_inode); 6491 /* 6492 * If we are replaying a log tree, we do not want to update the mtime 6493 * and ctime of the parent directory with the current time, since the 6494 * log replay procedure is responsible for setting them to their correct 6495 * values (the ones it had when the fsync was done). 6496 */ 6497 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6498 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6499 inode_set_ctime_current(&parent_inode->vfs_inode)); 6500 6501 ret = btrfs_update_inode(trans, parent_inode); 6502 if (ret) 6503 btrfs_abort_transaction(trans, ret); 6504 return ret; 6505 6506 fail_dir_item: 6507 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6508 u64 local_index; 6509 int err; 6510 err = btrfs_del_root_ref(trans, key.objectid, 6511 btrfs_root_id(root), parent_ino, 6512 &local_index, name); 6513 if (err) 6514 btrfs_abort_transaction(trans, err); 6515 } else if (add_backref) { 6516 u64 local_index; 6517 int err; 6518 6519 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6520 &local_index); 6521 if (err) 6522 btrfs_abort_transaction(trans, err); 6523 } 6524 6525 /* Return the original error code */ 6526 return ret; 6527 } 6528 6529 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6530 struct inode *inode) 6531 { 6532 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6533 struct btrfs_root *root = BTRFS_I(dir)->root; 6534 struct btrfs_new_inode_args new_inode_args = { 6535 .dir = dir, 6536 .dentry = dentry, 6537 .inode = inode, 6538 }; 6539 unsigned int trans_num_items; 6540 struct btrfs_trans_handle *trans; 6541 int err; 6542 6543 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6544 if (err) 6545 goto out_inode; 6546 6547 trans = btrfs_start_transaction(root, trans_num_items); 6548 if (IS_ERR(trans)) { 6549 err = PTR_ERR(trans); 6550 goto out_new_inode_args; 6551 } 6552 6553 err = btrfs_create_new_inode(trans, &new_inode_args); 6554 if (!err) 6555 d_instantiate_new(dentry, inode); 6556 6557 btrfs_end_transaction(trans); 6558 btrfs_btree_balance_dirty(fs_info); 6559 out_new_inode_args: 6560 btrfs_new_inode_args_destroy(&new_inode_args); 6561 out_inode: 6562 if (err) 6563 iput(inode); 6564 return err; 6565 } 6566 6567 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6568 struct dentry *dentry, umode_t mode, dev_t rdev) 6569 { 6570 struct inode *inode; 6571 6572 inode = new_inode(dir->i_sb); 6573 if (!inode) 6574 return -ENOMEM; 6575 inode_init_owner(idmap, inode, dir, mode); 6576 inode->i_op = &btrfs_special_inode_operations; 6577 init_special_inode(inode, inode->i_mode, rdev); 6578 return btrfs_create_common(dir, dentry, inode); 6579 } 6580 6581 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6582 struct dentry *dentry, umode_t mode, bool excl) 6583 { 6584 struct inode *inode; 6585 6586 inode = new_inode(dir->i_sb); 6587 if (!inode) 6588 return -ENOMEM; 6589 inode_init_owner(idmap, inode, dir, mode); 6590 inode->i_fop = &btrfs_file_operations; 6591 inode->i_op = &btrfs_file_inode_operations; 6592 inode->i_mapping->a_ops = &btrfs_aops; 6593 return btrfs_create_common(dir, dentry, inode); 6594 } 6595 6596 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6597 struct dentry *dentry) 6598 { 6599 struct btrfs_trans_handle *trans = NULL; 6600 struct btrfs_root *root = BTRFS_I(dir)->root; 6601 struct inode *inode = d_inode(old_dentry); 6602 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6603 struct fscrypt_name fname; 6604 u64 index; 6605 int err; 6606 int drop_inode = 0; 6607 6608 /* do not allow sys_link's with other subvols of the same device */ 6609 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6610 return -EXDEV; 6611 6612 if (inode->i_nlink >= BTRFS_LINK_MAX) 6613 return -EMLINK; 6614 6615 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6616 if (err) 6617 goto fail; 6618 6619 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6620 if (err) 6621 goto fail; 6622 6623 /* 6624 * 2 items for inode and inode ref 6625 * 2 items for dir items 6626 * 1 item for parent inode 6627 * 1 item for orphan item deletion if O_TMPFILE 6628 */ 6629 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6630 if (IS_ERR(trans)) { 6631 err = PTR_ERR(trans); 6632 trans = NULL; 6633 goto fail; 6634 } 6635 6636 /* There are several dir indexes for this inode, clear the cache. */ 6637 BTRFS_I(inode)->dir_index = 0ULL; 6638 inc_nlink(inode); 6639 inode_inc_iversion(inode); 6640 inode_set_ctime_current(inode); 6641 ihold(inode); 6642 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6643 6644 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6645 &fname.disk_name, 1, index); 6646 6647 if (err) { 6648 drop_inode = 1; 6649 } else { 6650 struct dentry *parent = dentry->d_parent; 6651 6652 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6653 if (err) 6654 goto fail; 6655 if (inode->i_nlink == 1) { 6656 /* 6657 * If new hard link count is 1, it's a file created 6658 * with open(2) O_TMPFILE flag. 6659 */ 6660 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6661 if (err) 6662 goto fail; 6663 } 6664 d_instantiate(dentry, inode); 6665 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6666 } 6667 6668 fail: 6669 fscrypt_free_filename(&fname); 6670 if (trans) 6671 btrfs_end_transaction(trans); 6672 if (drop_inode) { 6673 inode_dec_link_count(inode); 6674 iput(inode); 6675 } 6676 btrfs_btree_balance_dirty(fs_info); 6677 return err; 6678 } 6679 6680 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6681 struct dentry *dentry, umode_t mode) 6682 { 6683 struct inode *inode; 6684 6685 inode = new_inode(dir->i_sb); 6686 if (!inode) 6687 return -ENOMEM; 6688 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6689 inode->i_op = &btrfs_dir_inode_operations; 6690 inode->i_fop = &btrfs_dir_file_operations; 6691 return btrfs_create_common(dir, dentry, inode); 6692 } 6693 6694 static noinline int uncompress_inline(struct btrfs_path *path, 6695 struct page *page, 6696 struct btrfs_file_extent_item *item) 6697 { 6698 int ret; 6699 struct extent_buffer *leaf = path->nodes[0]; 6700 char *tmp; 6701 size_t max_size; 6702 unsigned long inline_size; 6703 unsigned long ptr; 6704 int compress_type; 6705 6706 compress_type = btrfs_file_extent_compression(leaf, item); 6707 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6708 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6709 tmp = kmalloc(inline_size, GFP_NOFS); 6710 if (!tmp) 6711 return -ENOMEM; 6712 ptr = btrfs_file_extent_inline_start(item); 6713 6714 read_extent_buffer(leaf, tmp, ptr, inline_size); 6715 6716 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6717 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6718 6719 /* 6720 * decompression code contains a memset to fill in any space between the end 6721 * of the uncompressed data and the end of max_size in case the decompressed 6722 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6723 * the end of an inline extent and the beginning of the next block, so we 6724 * cover that region here. 6725 */ 6726 6727 if (max_size < PAGE_SIZE) 6728 memzero_page(page, max_size, PAGE_SIZE - max_size); 6729 kfree(tmp); 6730 return ret; 6731 } 6732 6733 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6734 struct page *page) 6735 { 6736 struct btrfs_file_extent_item *fi; 6737 void *kaddr; 6738 size_t copy_size; 6739 6740 if (!page || PageUptodate(page)) 6741 return 0; 6742 6743 ASSERT(page_offset(page) == 0); 6744 6745 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6746 struct btrfs_file_extent_item); 6747 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6748 return uncompress_inline(path, page, fi); 6749 6750 copy_size = min_t(u64, PAGE_SIZE, 6751 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6752 kaddr = kmap_local_page(page); 6753 read_extent_buffer(path->nodes[0], kaddr, 6754 btrfs_file_extent_inline_start(fi), copy_size); 6755 kunmap_local(kaddr); 6756 if (copy_size < PAGE_SIZE) 6757 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6758 return 0; 6759 } 6760 6761 /* 6762 * Lookup the first extent overlapping a range in a file. 6763 * 6764 * @inode: file to search in 6765 * @page: page to read extent data into if the extent is inline 6766 * @start: file offset 6767 * @len: length of range starting at @start 6768 * 6769 * Return the first &struct extent_map which overlaps the given range, reading 6770 * it from the B-tree and caching it if necessary. Note that there may be more 6771 * extents which overlap the given range after the returned extent_map. 6772 * 6773 * If @page is not NULL and the extent is inline, this also reads the extent 6774 * data directly into the page and marks the extent up to date in the io_tree. 6775 * 6776 * Return: ERR_PTR on error, non-NULL extent_map on success. 6777 */ 6778 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6779 struct page *page, u64 start, u64 len) 6780 { 6781 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6782 int ret = 0; 6783 u64 extent_start = 0; 6784 u64 extent_end = 0; 6785 u64 objectid = btrfs_ino(inode); 6786 int extent_type = -1; 6787 struct btrfs_path *path = NULL; 6788 struct btrfs_root *root = inode->root; 6789 struct btrfs_file_extent_item *item; 6790 struct extent_buffer *leaf; 6791 struct btrfs_key found_key; 6792 struct extent_map *em = NULL; 6793 struct extent_map_tree *em_tree = &inode->extent_tree; 6794 6795 read_lock(&em_tree->lock); 6796 em = lookup_extent_mapping(em_tree, start, len); 6797 read_unlock(&em_tree->lock); 6798 6799 if (em) { 6800 if (em->start > start || em->start + em->len <= start) 6801 free_extent_map(em); 6802 else if (em->disk_bytenr == EXTENT_MAP_INLINE && page) 6803 free_extent_map(em); 6804 else 6805 goto out; 6806 } 6807 em = alloc_extent_map(); 6808 if (!em) { 6809 ret = -ENOMEM; 6810 goto out; 6811 } 6812 em->start = EXTENT_MAP_HOLE; 6813 em->disk_bytenr = EXTENT_MAP_HOLE; 6814 em->len = (u64)-1; 6815 6816 path = btrfs_alloc_path(); 6817 if (!path) { 6818 ret = -ENOMEM; 6819 goto out; 6820 } 6821 6822 /* Chances are we'll be called again, so go ahead and do readahead */ 6823 path->reada = READA_FORWARD; 6824 6825 /* 6826 * The same explanation in load_free_space_cache applies here as well, 6827 * we only read when we're loading the free space cache, and at that 6828 * point the commit_root has everything we need. 6829 */ 6830 if (btrfs_is_free_space_inode(inode)) { 6831 path->search_commit_root = 1; 6832 path->skip_locking = 1; 6833 } 6834 6835 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6836 if (ret < 0) { 6837 goto out; 6838 } else if (ret > 0) { 6839 if (path->slots[0] == 0) 6840 goto not_found; 6841 path->slots[0]--; 6842 ret = 0; 6843 } 6844 6845 leaf = path->nodes[0]; 6846 item = btrfs_item_ptr(leaf, path->slots[0], 6847 struct btrfs_file_extent_item); 6848 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6849 if (found_key.objectid != objectid || 6850 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6851 /* 6852 * If we backup past the first extent we want to move forward 6853 * and see if there is an extent in front of us, otherwise we'll 6854 * say there is a hole for our whole search range which can 6855 * cause problems. 6856 */ 6857 extent_end = start; 6858 goto next; 6859 } 6860 6861 extent_type = btrfs_file_extent_type(leaf, item); 6862 extent_start = found_key.offset; 6863 extent_end = btrfs_file_extent_end(path); 6864 if (extent_type == BTRFS_FILE_EXTENT_REG || 6865 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6866 /* Only regular file could have regular/prealloc extent */ 6867 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6868 ret = -EUCLEAN; 6869 btrfs_crit(fs_info, 6870 "regular/prealloc extent found for non-regular inode %llu", 6871 btrfs_ino(inode)); 6872 goto out; 6873 } 6874 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6875 extent_start); 6876 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6877 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6878 path->slots[0], 6879 extent_start); 6880 } 6881 next: 6882 if (start >= extent_end) { 6883 path->slots[0]++; 6884 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6885 ret = btrfs_next_leaf(root, path); 6886 if (ret < 0) 6887 goto out; 6888 else if (ret > 0) 6889 goto not_found; 6890 6891 leaf = path->nodes[0]; 6892 } 6893 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6894 if (found_key.objectid != objectid || 6895 found_key.type != BTRFS_EXTENT_DATA_KEY) 6896 goto not_found; 6897 if (start + len <= found_key.offset) 6898 goto not_found; 6899 if (start > found_key.offset) 6900 goto next; 6901 6902 /* New extent overlaps with existing one */ 6903 em->start = start; 6904 em->len = found_key.offset - start; 6905 em->disk_bytenr = EXTENT_MAP_HOLE; 6906 goto insert; 6907 } 6908 6909 btrfs_extent_item_to_extent_map(inode, path, item, em); 6910 6911 if (extent_type == BTRFS_FILE_EXTENT_REG || 6912 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6913 goto insert; 6914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6915 /* 6916 * Inline extent can only exist at file offset 0. This is 6917 * ensured by tree-checker and inline extent creation path. 6918 * Thus all members representing file offsets should be zero. 6919 */ 6920 ASSERT(extent_start == 0); 6921 ASSERT(em->start == 0); 6922 6923 /* 6924 * btrfs_extent_item_to_extent_map() should have properly 6925 * initialized em members already. 6926 * 6927 * Other members are not utilized for inline extents. 6928 */ 6929 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6930 ASSERT(em->len == fs_info->sectorsize); 6931 6932 ret = read_inline_extent(inode, path, page); 6933 if (ret < 0) 6934 goto out; 6935 goto insert; 6936 } 6937 not_found: 6938 em->start = start; 6939 em->len = len; 6940 em->disk_bytenr = EXTENT_MAP_HOLE; 6941 insert: 6942 ret = 0; 6943 btrfs_release_path(path); 6944 if (em->start > start || extent_map_end(em) <= start) { 6945 btrfs_err(fs_info, 6946 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6947 em->start, em->len, start, len); 6948 ret = -EIO; 6949 goto out; 6950 } 6951 6952 write_lock(&em_tree->lock); 6953 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6954 write_unlock(&em_tree->lock); 6955 out: 6956 btrfs_free_path(path); 6957 6958 trace_btrfs_get_extent(root, inode, em); 6959 6960 if (ret) { 6961 free_extent_map(em); 6962 return ERR_PTR(ret); 6963 } 6964 return em; 6965 } 6966 6967 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 6968 { 6969 struct btrfs_block_group *block_group; 6970 bool readonly = false; 6971 6972 block_group = btrfs_lookup_block_group(fs_info, bytenr); 6973 if (!block_group || block_group->ro) 6974 readonly = true; 6975 if (block_group) 6976 btrfs_put_block_group(block_group); 6977 return readonly; 6978 } 6979 6980 /* 6981 * Check if we can do nocow write into the range [@offset, @offset + @len) 6982 * 6983 * @offset: File offset 6984 * @len: The length to write, will be updated to the nocow writeable 6985 * range 6986 * @orig_start: (optional) Return the original file offset of the file extent 6987 * @orig_len: (optional) Return the original on-disk length of the file extent 6988 * @ram_bytes: (optional) Return the ram_bytes of the file extent 6989 * @strict: if true, omit optimizations that might force us into unnecessary 6990 * cow. e.g., don't trust generation number. 6991 * 6992 * Return: 6993 * >0 and update @len if we can do nocow write 6994 * 0 if we can't do nocow write 6995 * <0 if error happened 6996 * 6997 * NOTE: This only checks the file extents, caller is responsible to wait for 6998 * any ordered extents. 6999 */ 7000 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7001 struct btrfs_file_extent *file_extent, 7002 bool nowait, bool strict) 7003 { 7004 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7005 struct can_nocow_file_extent_args nocow_args = { 0 }; 7006 struct btrfs_path *path; 7007 int ret; 7008 struct extent_buffer *leaf; 7009 struct btrfs_root *root = BTRFS_I(inode)->root; 7010 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7011 struct btrfs_file_extent_item *fi; 7012 struct btrfs_key key; 7013 int found_type; 7014 7015 path = btrfs_alloc_path(); 7016 if (!path) 7017 return -ENOMEM; 7018 path->nowait = nowait; 7019 7020 ret = btrfs_lookup_file_extent(NULL, root, path, 7021 btrfs_ino(BTRFS_I(inode)), offset, 0); 7022 if (ret < 0) 7023 goto out; 7024 7025 if (ret == 1) { 7026 if (path->slots[0] == 0) { 7027 /* can't find the item, must cow */ 7028 ret = 0; 7029 goto out; 7030 } 7031 path->slots[0]--; 7032 } 7033 ret = 0; 7034 leaf = path->nodes[0]; 7035 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7036 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7037 key.type != BTRFS_EXTENT_DATA_KEY) { 7038 /* not our file or wrong item type, must cow */ 7039 goto out; 7040 } 7041 7042 if (key.offset > offset) { 7043 /* Wrong offset, must cow */ 7044 goto out; 7045 } 7046 7047 if (btrfs_file_extent_end(path) <= offset) 7048 goto out; 7049 7050 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7051 found_type = btrfs_file_extent_type(leaf, fi); 7052 7053 nocow_args.start = offset; 7054 nocow_args.end = offset + *len - 1; 7055 nocow_args.strict = strict; 7056 nocow_args.free_path = true; 7057 7058 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7059 /* can_nocow_file_extent() has freed the path. */ 7060 path = NULL; 7061 7062 if (ret != 1) { 7063 /* Treat errors as not being able to NOCOW. */ 7064 ret = 0; 7065 goto out; 7066 } 7067 7068 ret = 0; 7069 if (btrfs_extent_readonly(fs_info, 7070 nocow_args.file_extent.disk_bytenr + 7071 nocow_args.file_extent.offset)) 7072 goto out; 7073 7074 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7075 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7076 u64 range_end; 7077 7078 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7079 root->fs_info->sectorsize) - 1; 7080 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7081 if (ret) { 7082 ret = -EAGAIN; 7083 goto out; 7084 } 7085 } 7086 7087 if (file_extent) 7088 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7089 7090 *len = nocow_args.file_extent.num_bytes; 7091 ret = 1; 7092 out: 7093 btrfs_free_path(path); 7094 return ret; 7095 } 7096 7097 /* The callers of this must take lock_extent() */ 7098 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7099 const struct btrfs_file_extent *file_extent, 7100 int type) 7101 { 7102 struct extent_map *em; 7103 int ret; 7104 7105 /* 7106 * Note the missing NOCOW type. 7107 * 7108 * For pure NOCOW writes, we should not create an io extent map, but 7109 * just reusing the existing one. 7110 * Only PREALLOC writes (NOCOW write into preallocated range) can 7111 * create an io extent map. 7112 */ 7113 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7114 type == BTRFS_ORDERED_COMPRESSED || 7115 type == BTRFS_ORDERED_REGULAR); 7116 7117 switch (type) { 7118 case BTRFS_ORDERED_PREALLOC: 7119 /* We're only referring part of a larger preallocated extent. */ 7120 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7121 break; 7122 case BTRFS_ORDERED_REGULAR: 7123 /* COW results a new extent matching our file extent size. */ 7124 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7125 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7126 7127 /* Since it's a new extent, we should not have any offset. */ 7128 ASSERT(file_extent->offset == 0); 7129 break; 7130 case BTRFS_ORDERED_COMPRESSED: 7131 /* Must be compressed. */ 7132 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7133 7134 /* 7135 * Encoded write can make us to refer to part of the 7136 * uncompressed extent. 7137 */ 7138 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7139 break; 7140 } 7141 7142 em = alloc_extent_map(); 7143 if (!em) 7144 return ERR_PTR(-ENOMEM); 7145 7146 em->start = start; 7147 em->len = file_extent->num_bytes; 7148 em->disk_bytenr = file_extent->disk_bytenr; 7149 em->disk_num_bytes = file_extent->disk_num_bytes; 7150 em->ram_bytes = file_extent->ram_bytes; 7151 em->generation = -1; 7152 em->offset = file_extent->offset; 7153 em->flags |= EXTENT_FLAG_PINNED; 7154 if (type == BTRFS_ORDERED_COMPRESSED) 7155 extent_map_set_compression(em, file_extent->compression); 7156 7157 ret = btrfs_replace_extent_map_range(inode, em, true); 7158 if (ret) { 7159 free_extent_map(em); 7160 return ERR_PTR(ret); 7161 } 7162 7163 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7164 return em; 7165 } 7166 7167 /* 7168 * For release_folio() and invalidate_folio() we have a race window where 7169 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7170 * If we continue to release/invalidate the page, we could cause use-after-free 7171 * for subpage spinlock. So this function is to spin and wait for subpage 7172 * spinlock. 7173 */ 7174 static void wait_subpage_spinlock(struct page *page) 7175 { 7176 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 7177 struct folio *folio = page_folio(page); 7178 struct btrfs_subpage *subpage; 7179 7180 if (!btrfs_is_subpage(fs_info, page->mapping)) 7181 return; 7182 7183 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7184 subpage = folio_get_private(folio); 7185 7186 /* 7187 * This may look insane as we just acquire the spinlock and release it, 7188 * without doing anything. But we just want to make sure no one is 7189 * still holding the subpage spinlock. 7190 * And since the page is not dirty nor writeback, and we have page 7191 * locked, the only possible way to hold a spinlock is from the endio 7192 * function to clear page writeback. 7193 * 7194 * Here we just acquire the spinlock so that all existing callers 7195 * should exit and we're safe to release/invalidate the page. 7196 */ 7197 spin_lock_irq(&subpage->lock); 7198 spin_unlock_irq(&subpage->lock); 7199 } 7200 7201 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7202 { 7203 if (try_release_extent_mapping(&folio->page, gfp_flags)) { 7204 wait_subpage_spinlock(&folio->page); 7205 clear_page_extent_mapped(&folio->page); 7206 return true; 7207 } 7208 return false; 7209 } 7210 7211 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7212 { 7213 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7214 return false; 7215 return __btrfs_release_folio(folio, gfp_flags); 7216 } 7217 7218 #ifdef CONFIG_MIGRATION 7219 static int btrfs_migrate_folio(struct address_space *mapping, 7220 struct folio *dst, struct folio *src, 7221 enum migrate_mode mode) 7222 { 7223 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7224 7225 if (ret != MIGRATEPAGE_SUCCESS) 7226 return ret; 7227 7228 if (folio_test_ordered(src)) { 7229 folio_clear_ordered(src); 7230 folio_set_ordered(dst); 7231 } 7232 7233 return MIGRATEPAGE_SUCCESS; 7234 } 7235 #else 7236 #define btrfs_migrate_folio NULL 7237 #endif 7238 7239 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7240 size_t length) 7241 { 7242 struct btrfs_inode *inode = folio_to_inode(folio); 7243 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7244 struct extent_io_tree *tree = &inode->io_tree; 7245 struct extent_state *cached_state = NULL; 7246 u64 page_start = folio_pos(folio); 7247 u64 page_end = page_start + folio_size(folio) - 1; 7248 u64 cur; 7249 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7250 7251 /* 7252 * We have folio locked so no new ordered extent can be created on this 7253 * page, nor bio can be submitted for this folio. 7254 * 7255 * But already submitted bio can still be finished on this folio. 7256 * Furthermore, endio function won't skip folio which has Ordered 7257 * (Private2) already cleared, so it's possible for endio and 7258 * invalidate_folio to do the same ordered extent accounting twice 7259 * on one folio. 7260 * 7261 * So here we wait for any submitted bios to finish, so that we won't 7262 * do double ordered extent accounting on the same folio. 7263 */ 7264 folio_wait_writeback(folio); 7265 wait_subpage_spinlock(&folio->page); 7266 7267 /* 7268 * For subpage case, we have call sites like 7269 * btrfs_punch_hole_lock_range() which passes range not aligned to 7270 * sectorsize. 7271 * If the range doesn't cover the full folio, we don't need to and 7272 * shouldn't clear page extent mapped, as folio->private can still 7273 * record subpage dirty bits for other part of the range. 7274 * 7275 * For cases that invalidate the full folio even the range doesn't 7276 * cover the full folio, like invalidating the last folio, we're 7277 * still safe to wait for ordered extent to finish. 7278 */ 7279 if (!(offset == 0 && length == folio_size(folio))) { 7280 btrfs_release_folio(folio, GFP_NOFS); 7281 return; 7282 } 7283 7284 if (!inode_evicting) 7285 lock_extent(tree, page_start, page_end, &cached_state); 7286 7287 cur = page_start; 7288 while (cur < page_end) { 7289 struct btrfs_ordered_extent *ordered; 7290 u64 range_end; 7291 u32 range_len; 7292 u32 extra_flags = 0; 7293 7294 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7295 page_end + 1 - cur); 7296 if (!ordered) { 7297 range_end = page_end; 7298 /* 7299 * No ordered extent covering this range, we are safe 7300 * to delete all extent states in the range. 7301 */ 7302 extra_flags = EXTENT_CLEAR_ALL_BITS; 7303 goto next; 7304 } 7305 if (ordered->file_offset > cur) { 7306 /* 7307 * There is a range between [cur, oe->file_offset) not 7308 * covered by any ordered extent. 7309 * We are safe to delete all extent states, and handle 7310 * the ordered extent in the next iteration. 7311 */ 7312 range_end = ordered->file_offset - 1; 7313 extra_flags = EXTENT_CLEAR_ALL_BITS; 7314 goto next; 7315 } 7316 7317 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7318 page_end); 7319 ASSERT(range_end + 1 - cur < U32_MAX); 7320 range_len = range_end + 1 - cur; 7321 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7322 /* 7323 * If Ordered (Private2) is cleared, it means endio has 7324 * already been executed for the range. 7325 * We can't delete the extent states as 7326 * btrfs_finish_ordered_io() may still use some of them. 7327 */ 7328 goto next; 7329 } 7330 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7331 7332 /* 7333 * IO on this page will never be started, so we need to account 7334 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7335 * here, must leave that up for the ordered extent completion. 7336 * 7337 * This will also unlock the range for incoming 7338 * btrfs_finish_ordered_io(). 7339 */ 7340 if (!inode_evicting) 7341 clear_extent_bit(tree, cur, range_end, 7342 EXTENT_DELALLOC | 7343 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7344 EXTENT_DEFRAG, &cached_state); 7345 7346 spin_lock_irq(&inode->ordered_tree_lock); 7347 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7348 ordered->truncated_len = min(ordered->truncated_len, 7349 cur - ordered->file_offset); 7350 spin_unlock_irq(&inode->ordered_tree_lock); 7351 7352 /* 7353 * If the ordered extent has finished, we're safe to delete all 7354 * the extent states of the range, otherwise 7355 * btrfs_finish_ordered_io() will get executed by endio for 7356 * other pages, so we can't delete extent states. 7357 */ 7358 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7359 cur, range_end + 1 - cur)) { 7360 btrfs_finish_ordered_io(ordered); 7361 /* 7362 * The ordered extent has finished, now we're again 7363 * safe to delete all extent states of the range. 7364 */ 7365 extra_flags = EXTENT_CLEAR_ALL_BITS; 7366 } 7367 next: 7368 if (ordered) 7369 btrfs_put_ordered_extent(ordered); 7370 /* 7371 * Qgroup reserved space handler 7372 * Sector(s) here will be either: 7373 * 7374 * 1) Already written to disk or bio already finished 7375 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7376 * Qgroup will be handled by its qgroup_record then. 7377 * btrfs_qgroup_free_data() call will do nothing here. 7378 * 7379 * 2) Not written to disk yet 7380 * Then btrfs_qgroup_free_data() call will clear the 7381 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7382 * reserved data space. 7383 * Since the IO will never happen for this page. 7384 */ 7385 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7386 if (!inode_evicting) { 7387 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7388 EXTENT_DELALLOC | EXTENT_UPTODATE | 7389 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7390 extra_flags, &cached_state); 7391 } 7392 cur = range_end + 1; 7393 } 7394 /* 7395 * We have iterated through all ordered extents of the page, the page 7396 * should not have Ordered (Private2) anymore, or the above iteration 7397 * did something wrong. 7398 */ 7399 ASSERT(!folio_test_ordered(folio)); 7400 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7401 if (!inode_evicting) 7402 __btrfs_release_folio(folio, GFP_NOFS); 7403 clear_page_extent_mapped(&folio->page); 7404 } 7405 7406 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7407 { 7408 struct btrfs_truncate_control control = { 7409 .inode = inode, 7410 .ino = btrfs_ino(inode), 7411 .min_type = BTRFS_EXTENT_DATA_KEY, 7412 .clear_extent_range = true, 7413 }; 7414 struct btrfs_root *root = inode->root; 7415 struct btrfs_fs_info *fs_info = root->fs_info; 7416 struct btrfs_block_rsv *rsv; 7417 int ret; 7418 struct btrfs_trans_handle *trans; 7419 u64 mask = fs_info->sectorsize - 1; 7420 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7421 7422 if (!skip_writeback) { 7423 ret = btrfs_wait_ordered_range(inode, 7424 inode->vfs_inode.i_size & (~mask), 7425 (u64)-1); 7426 if (ret) 7427 return ret; 7428 } 7429 7430 /* 7431 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7432 * things going on here: 7433 * 7434 * 1) We need to reserve space to update our inode. 7435 * 7436 * 2) We need to have something to cache all the space that is going to 7437 * be free'd up by the truncate operation, but also have some slack 7438 * space reserved in case it uses space during the truncate (thank you 7439 * very much snapshotting). 7440 * 7441 * And we need these to be separate. The fact is we can use a lot of 7442 * space doing the truncate, and we have no earthly idea how much space 7443 * we will use, so we need the truncate reservation to be separate so it 7444 * doesn't end up using space reserved for updating the inode. We also 7445 * need to be able to stop the transaction and start a new one, which 7446 * means we need to be able to update the inode several times, and we 7447 * have no idea of knowing how many times that will be, so we can't just 7448 * reserve 1 item for the entirety of the operation, so that has to be 7449 * done separately as well. 7450 * 7451 * So that leaves us with 7452 * 7453 * 1) rsv - for the truncate reservation, which we will steal from the 7454 * transaction reservation. 7455 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7456 * updating the inode. 7457 */ 7458 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7459 if (!rsv) 7460 return -ENOMEM; 7461 rsv->size = min_size; 7462 rsv->failfast = true; 7463 7464 /* 7465 * 1 for the truncate slack space 7466 * 1 for updating the inode. 7467 */ 7468 trans = btrfs_start_transaction(root, 2); 7469 if (IS_ERR(trans)) { 7470 ret = PTR_ERR(trans); 7471 goto out; 7472 } 7473 7474 /* Migrate the slack space for the truncate to our reserve */ 7475 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7476 min_size, false); 7477 /* 7478 * We have reserved 2 metadata units when we started the transaction and 7479 * min_size matches 1 unit, so this should never fail, but if it does, 7480 * it's not critical we just fail truncation. 7481 */ 7482 if (WARN_ON(ret)) { 7483 btrfs_end_transaction(trans); 7484 goto out; 7485 } 7486 7487 trans->block_rsv = rsv; 7488 7489 while (1) { 7490 struct extent_state *cached_state = NULL; 7491 const u64 new_size = inode->vfs_inode.i_size; 7492 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7493 7494 control.new_size = new_size; 7495 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7496 /* 7497 * We want to drop from the next block forward in case this new 7498 * size is not block aligned since we will be keeping the last 7499 * block of the extent just the way it is. 7500 */ 7501 btrfs_drop_extent_map_range(inode, 7502 ALIGN(new_size, fs_info->sectorsize), 7503 (u64)-1, false); 7504 7505 ret = btrfs_truncate_inode_items(trans, root, &control); 7506 7507 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7508 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7509 7510 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7511 7512 trans->block_rsv = &fs_info->trans_block_rsv; 7513 if (ret != -ENOSPC && ret != -EAGAIN) 7514 break; 7515 7516 ret = btrfs_update_inode(trans, inode); 7517 if (ret) 7518 break; 7519 7520 btrfs_end_transaction(trans); 7521 btrfs_btree_balance_dirty(fs_info); 7522 7523 trans = btrfs_start_transaction(root, 2); 7524 if (IS_ERR(trans)) { 7525 ret = PTR_ERR(trans); 7526 trans = NULL; 7527 break; 7528 } 7529 7530 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7531 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7532 rsv, min_size, false); 7533 /* 7534 * We have reserved 2 metadata units when we started the 7535 * transaction and min_size matches 1 unit, so this should never 7536 * fail, but if it does, it's not critical we just fail truncation. 7537 */ 7538 if (WARN_ON(ret)) 7539 break; 7540 7541 trans->block_rsv = rsv; 7542 } 7543 7544 /* 7545 * We can't call btrfs_truncate_block inside a trans handle as we could 7546 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7547 * know we've truncated everything except the last little bit, and can 7548 * do btrfs_truncate_block and then update the disk_i_size. 7549 */ 7550 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7551 btrfs_end_transaction(trans); 7552 btrfs_btree_balance_dirty(fs_info); 7553 7554 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7555 if (ret) 7556 goto out; 7557 trans = btrfs_start_transaction(root, 1); 7558 if (IS_ERR(trans)) { 7559 ret = PTR_ERR(trans); 7560 goto out; 7561 } 7562 btrfs_inode_safe_disk_i_size_write(inode, 0); 7563 } 7564 7565 if (trans) { 7566 int ret2; 7567 7568 trans->block_rsv = &fs_info->trans_block_rsv; 7569 ret2 = btrfs_update_inode(trans, inode); 7570 if (ret2 && !ret) 7571 ret = ret2; 7572 7573 ret2 = btrfs_end_transaction(trans); 7574 if (ret2 && !ret) 7575 ret = ret2; 7576 btrfs_btree_balance_dirty(fs_info); 7577 } 7578 out: 7579 btrfs_free_block_rsv(fs_info, rsv); 7580 /* 7581 * So if we truncate and then write and fsync we normally would just 7582 * write the extents that changed, which is a problem if we need to 7583 * first truncate that entire inode. So set this flag so we write out 7584 * all of the extents in the inode to the sync log so we're completely 7585 * safe. 7586 * 7587 * If no extents were dropped or trimmed we don't need to force the next 7588 * fsync to truncate all the inode's items from the log and re-log them 7589 * all. This means the truncate operation did not change the file size, 7590 * or changed it to a smaller size but there was only an implicit hole 7591 * between the old i_size and the new i_size, and there were no prealloc 7592 * extents beyond i_size to drop. 7593 */ 7594 if (control.extents_found > 0) 7595 btrfs_set_inode_full_sync(inode); 7596 7597 return ret; 7598 } 7599 7600 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7601 struct inode *dir) 7602 { 7603 struct inode *inode; 7604 7605 inode = new_inode(dir->i_sb); 7606 if (inode) { 7607 /* 7608 * Subvolumes don't inherit the sgid bit or the parent's gid if 7609 * the parent's sgid bit is set. This is probably a bug. 7610 */ 7611 inode_init_owner(idmap, inode, NULL, 7612 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7613 inode->i_op = &btrfs_dir_inode_operations; 7614 inode->i_fop = &btrfs_dir_file_operations; 7615 } 7616 return inode; 7617 } 7618 7619 struct inode *btrfs_alloc_inode(struct super_block *sb) 7620 { 7621 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7622 struct btrfs_inode *ei; 7623 struct inode *inode; 7624 7625 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7626 if (!ei) 7627 return NULL; 7628 7629 ei->root = NULL; 7630 ei->generation = 0; 7631 ei->last_trans = 0; 7632 ei->last_sub_trans = 0; 7633 ei->logged_trans = 0; 7634 ei->delalloc_bytes = 0; 7635 ei->new_delalloc_bytes = 0; 7636 ei->defrag_bytes = 0; 7637 ei->disk_i_size = 0; 7638 ei->flags = 0; 7639 ei->ro_flags = 0; 7640 /* 7641 * ->index_cnt will be properly initialized later when creating a new 7642 * inode (btrfs_create_new_inode()) or when reading an existing inode 7643 * from disk (btrfs_read_locked_inode()). 7644 */ 7645 ei->csum_bytes = 0; 7646 ei->dir_index = 0; 7647 ei->last_unlink_trans = 0; 7648 ei->last_reflink_trans = 0; 7649 ei->last_log_commit = 0; 7650 7651 spin_lock_init(&ei->lock); 7652 ei->outstanding_extents = 0; 7653 if (sb->s_magic != BTRFS_TEST_MAGIC) 7654 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7655 BTRFS_BLOCK_RSV_DELALLOC); 7656 ei->runtime_flags = 0; 7657 ei->prop_compress = BTRFS_COMPRESS_NONE; 7658 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7659 7660 ei->delayed_node = NULL; 7661 7662 ei->i_otime_sec = 0; 7663 ei->i_otime_nsec = 0; 7664 7665 inode = &ei->vfs_inode; 7666 extent_map_tree_init(&ei->extent_tree); 7667 7668 /* This io tree sets the valid inode. */ 7669 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7670 ei->io_tree.inode = ei; 7671 7672 ei->file_extent_tree = NULL; 7673 7674 mutex_init(&ei->log_mutex); 7675 spin_lock_init(&ei->ordered_tree_lock); 7676 ei->ordered_tree = RB_ROOT; 7677 ei->ordered_tree_last = NULL; 7678 INIT_LIST_HEAD(&ei->delalloc_inodes); 7679 INIT_LIST_HEAD(&ei->delayed_iput); 7680 init_rwsem(&ei->i_mmap_lock); 7681 7682 return inode; 7683 } 7684 7685 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7686 void btrfs_test_destroy_inode(struct inode *inode) 7687 { 7688 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7689 kfree(BTRFS_I(inode)->file_extent_tree); 7690 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7691 } 7692 #endif 7693 7694 void btrfs_free_inode(struct inode *inode) 7695 { 7696 kfree(BTRFS_I(inode)->file_extent_tree); 7697 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7698 } 7699 7700 void btrfs_destroy_inode(struct inode *vfs_inode) 7701 { 7702 struct btrfs_ordered_extent *ordered; 7703 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7704 struct btrfs_root *root = inode->root; 7705 bool freespace_inode; 7706 7707 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7708 WARN_ON(vfs_inode->i_data.nrpages); 7709 WARN_ON(inode->block_rsv.reserved); 7710 WARN_ON(inode->block_rsv.size); 7711 WARN_ON(inode->outstanding_extents); 7712 if (!S_ISDIR(vfs_inode->i_mode)) { 7713 WARN_ON(inode->delalloc_bytes); 7714 WARN_ON(inode->new_delalloc_bytes); 7715 WARN_ON(inode->csum_bytes); 7716 } 7717 if (!root || !btrfs_is_data_reloc_root(root)) 7718 WARN_ON(inode->defrag_bytes); 7719 7720 /* 7721 * This can happen where we create an inode, but somebody else also 7722 * created the same inode and we need to destroy the one we already 7723 * created. 7724 */ 7725 if (!root) 7726 return; 7727 7728 /* 7729 * If this is a free space inode do not take the ordered extents lockdep 7730 * map. 7731 */ 7732 freespace_inode = btrfs_is_free_space_inode(inode); 7733 7734 while (1) { 7735 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7736 if (!ordered) 7737 break; 7738 else { 7739 btrfs_err(root->fs_info, 7740 "found ordered extent %llu %llu on inode cleanup", 7741 ordered->file_offset, ordered->num_bytes); 7742 7743 if (!freespace_inode) 7744 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7745 7746 btrfs_remove_ordered_extent(inode, ordered); 7747 btrfs_put_ordered_extent(ordered); 7748 btrfs_put_ordered_extent(ordered); 7749 } 7750 } 7751 btrfs_qgroup_check_reserved_leak(inode); 7752 btrfs_del_inode_from_root(inode); 7753 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7754 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7755 btrfs_put_root(inode->root); 7756 } 7757 7758 int btrfs_drop_inode(struct inode *inode) 7759 { 7760 struct btrfs_root *root = BTRFS_I(inode)->root; 7761 7762 if (root == NULL) 7763 return 1; 7764 7765 /* the snap/subvol tree is on deleting */ 7766 if (btrfs_root_refs(&root->root_item) == 0) 7767 return 1; 7768 else 7769 return generic_drop_inode(inode); 7770 } 7771 7772 static void init_once(void *foo) 7773 { 7774 struct btrfs_inode *ei = foo; 7775 7776 inode_init_once(&ei->vfs_inode); 7777 } 7778 7779 void __cold btrfs_destroy_cachep(void) 7780 { 7781 /* 7782 * Make sure all delayed rcu free inodes are flushed before we 7783 * destroy cache. 7784 */ 7785 rcu_barrier(); 7786 kmem_cache_destroy(btrfs_inode_cachep); 7787 } 7788 7789 int __init btrfs_init_cachep(void) 7790 { 7791 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7792 sizeof(struct btrfs_inode), 0, 7793 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7794 init_once); 7795 if (!btrfs_inode_cachep) 7796 return -ENOMEM; 7797 7798 return 0; 7799 } 7800 7801 static int btrfs_getattr(struct mnt_idmap *idmap, 7802 const struct path *path, struct kstat *stat, 7803 u32 request_mask, unsigned int flags) 7804 { 7805 u64 delalloc_bytes; 7806 u64 inode_bytes; 7807 struct inode *inode = d_inode(path->dentry); 7808 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7809 u32 bi_flags = BTRFS_I(inode)->flags; 7810 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7811 7812 stat->result_mask |= STATX_BTIME; 7813 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7814 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7815 if (bi_flags & BTRFS_INODE_APPEND) 7816 stat->attributes |= STATX_ATTR_APPEND; 7817 if (bi_flags & BTRFS_INODE_COMPRESS) 7818 stat->attributes |= STATX_ATTR_COMPRESSED; 7819 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7820 stat->attributes |= STATX_ATTR_IMMUTABLE; 7821 if (bi_flags & BTRFS_INODE_NODUMP) 7822 stat->attributes |= STATX_ATTR_NODUMP; 7823 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7824 stat->attributes |= STATX_ATTR_VERITY; 7825 7826 stat->attributes_mask |= (STATX_ATTR_APPEND | 7827 STATX_ATTR_COMPRESSED | 7828 STATX_ATTR_IMMUTABLE | 7829 STATX_ATTR_NODUMP); 7830 7831 generic_fillattr(idmap, request_mask, inode, stat); 7832 stat->dev = BTRFS_I(inode)->root->anon_dev; 7833 7834 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7835 stat->result_mask |= STATX_SUBVOL; 7836 7837 spin_lock(&BTRFS_I(inode)->lock); 7838 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7839 inode_bytes = inode_get_bytes(inode); 7840 spin_unlock(&BTRFS_I(inode)->lock); 7841 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7842 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7843 return 0; 7844 } 7845 7846 static int btrfs_rename_exchange(struct inode *old_dir, 7847 struct dentry *old_dentry, 7848 struct inode *new_dir, 7849 struct dentry *new_dentry) 7850 { 7851 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7852 struct btrfs_trans_handle *trans; 7853 unsigned int trans_num_items; 7854 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7855 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7856 struct inode *new_inode = new_dentry->d_inode; 7857 struct inode *old_inode = old_dentry->d_inode; 7858 struct btrfs_rename_ctx old_rename_ctx; 7859 struct btrfs_rename_ctx new_rename_ctx; 7860 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7861 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7862 u64 old_idx = 0; 7863 u64 new_idx = 0; 7864 int ret; 7865 int ret2; 7866 bool need_abort = false; 7867 struct fscrypt_name old_fname, new_fname; 7868 struct fscrypt_str *old_name, *new_name; 7869 7870 /* 7871 * For non-subvolumes allow exchange only within one subvolume, in the 7872 * same inode namespace. Two subvolumes (represented as directory) can 7873 * be exchanged as they're a logical link and have a fixed inode number. 7874 */ 7875 if (root != dest && 7876 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7877 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7878 return -EXDEV; 7879 7880 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7881 if (ret) 7882 return ret; 7883 7884 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7885 if (ret) { 7886 fscrypt_free_filename(&old_fname); 7887 return ret; 7888 } 7889 7890 old_name = &old_fname.disk_name; 7891 new_name = &new_fname.disk_name; 7892 7893 /* close the race window with snapshot create/destroy ioctl */ 7894 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7895 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7896 down_read(&fs_info->subvol_sem); 7897 7898 /* 7899 * For each inode: 7900 * 1 to remove old dir item 7901 * 1 to remove old dir index 7902 * 1 to add new dir item 7903 * 1 to add new dir index 7904 * 1 to update parent inode 7905 * 7906 * If the parents are the same, we only need to account for one 7907 */ 7908 trans_num_items = (old_dir == new_dir ? 9 : 10); 7909 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7910 /* 7911 * 1 to remove old root ref 7912 * 1 to remove old root backref 7913 * 1 to add new root ref 7914 * 1 to add new root backref 7915 */ 7916 trans_num_items += 4; 7917 } else { 7918 /* 7919 * 1 to update inode item 7920 * 1 to remove old inode ref 7921 * 1 to add new inode ref 7922 */ 7923 trans_num_items += 3; 7924 } 7925 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7926 trans_num_items += 4; 7927 else 7928 trans_num_items += 3; 7929 trans = btrfs_start_transaction(root, trans_num_items); 7930 if (IS_ERR(trans)) { 7931 ret = PTR_ERR(trans); 7932 goto out_notrans; 7933 } 7934 7935 if (dest != root) { 7936 ret = btrfs_record_root_in_trans(trans, dest); 7937 if (ret) 7938 goto out_fail; 7939 } 7940 7941 /* 7942 * We need to find a free sequence number both in the source and 7943 * in the destination directory for the exchange. 7944 */ 7945 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7946 if (ret) 7947 goto out_fail; 7948 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7949 if (ret) 7950 goto out_fail; 7951 7952 BTRFS_I(old_inode)->dir_index = 0ULL; 7953 BTRFS_I(new_inode)->dir_index = 0ULL; 7954 7955 /* Reference for the source. */ 7956 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7957 /* force full log commit if subvolume involved. */ 7958 btrfs_set_log_full_commit(trans); 7959 } else { 7960 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 7961 btrfs_ino(BTRFS_I(new_dir)), 7962 old_idx); 7963 if (ret) 7964 goto out_fail; 7965 need_abort = true; 7966 } 7967 7968 /* And now for the dest. */ 7969 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 7970 /* force full log commit if subvolume involved. */ 7971 btrfs_set_log_full_commit(trans); 7972 } else { 7973 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 7974 btrfs_ino(BTRFS_I(old_dir)), 7975 new_idx); 7976 if (ret) { 7977 if (need_abort) 7978 btrfs_abort_transaction(trans, ret); 7979 goto out_fail; 7980 } 7981 } 7982 7983 /* Update inode version and ctime/mtime. */ 7984 inode_inc_iversion(old_dir); 7985 inode_inc_iversion(new_dir); 7986 inode_inc_iversion(old_inode); 7987 inode_inc_iversion(new_inode); 7988 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 7989 7990 if (old_dentry->d_parent != new_dentry->d_parent) { 7991 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 7992 BTRFS_I(old_inode), true); 7993 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 7994 BTRFS_I(new_inode), true); 7995 } 7996 7997 /* src is a subvolume */ 7998 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7999 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8000 } else { /* src is an inode */ 8001 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8002 BTRFS_I(old_dentry->d_inode), 8003 old_name, &old_rename_ctx); 8004 if (!ret) 8005 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8006 } 8007 if (ret) { 8008 btrfs_abort_transaction(trans, ret); 8009 goto out_fail; 8010 } 8011 8012 /* dest is a subvolume */ 8013 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8014 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8015 } else { /* dest is an inode */ 8016 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8017 BTRFS_I(new_dentry->d_inode), 8018 new_name, &new_rename_ctx); 8019 if (!ret) 8020 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8021 } 8022 if (ret) { 8023 btrfs_abort_transaction(trans, ret); 8024 goto out_fail; 8025 } 8026 8027 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8028 new_name, 0, old_idx); 8029 if (ret) { 8030 btrfs_abort_transaction(trans, ret); 8031 goto out_fail; 8032 } 8033 8034 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8035 old_name, 0, new_idx); 8036 if (ret) { 8037 btrfs_abort_transaction(trans, ret); 8038 goto out_fail; 8039 } 8040 8041 if (old_inode->i_nlink == 1) 8042 BTRFS_I(old_inode)->dir_index = old_idx; 8043 if (new_inode->i_nlink == 1) 8044 BTRFS_I(new_inode)->dir_index = new_idx; 8045 8046 /* 8047 * Now pin the logs of the roots. We do it to ensure that no other task 8048 * can sync the logs while we are in progress with the rename, because 8049 * that could result in an inconsistency in case any of the inodes that 8050 * are part of this rename operation were logged before. 8051 */ 8052 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8053 btrfs_pin_log_trans(root); 8054 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8055 btrfs_pin_log_trans(dest); 8056 8057 /* Do the log updates for all inodes. */ 8058 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8059 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8060 old_rename_ctx.index, new_dentry->d_parent); 8061 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8062 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8063 new_rename_ctx.index, old_dentry->d_parent); 8064 8065 /* Now unpin the logs. */ 8066 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8067 btrfs_end_log_trans(root); 8068 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8069 btrfs_end_log_trans(dest); 8070 out_fail: 8071 ret2 = btrfs_end_transaction(trans); 8072 ret = ret ? ret : ret2; 8073 out_notrans: 8074 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8075 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8076 up_read(&fs_info->subvol_sem); 8077 8078 fscrypt_free_filename(&new_fname); 8079 fscrypt_free_filename(&old_fname); 8080 return ret; 8081 } 8082 8083 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8084 struct inode *dir) 8085 { 8086 struct inode *inode; 8087 8088 inode = new_inode(dir->i_sb); 8089 if (inode) { 8090 inode_init_owner(idmap, inode, dir, 8091 S_IFCHR | WHITEOUT_MODE); 8092 inode->i_op = &btrfs_special_inode_operations; 8093 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8094 } 8095 return inode; 8096 } 8097 8098 static int btrfs_rename(struct mnt_idmap *idmap, 8099 struct inode *old_dir, struct dentry *old_dentry, 8100 struct inode *new_dir, struct dentry *new_dentry, 8101 unsigned int flags) 8102 { 8103 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8104 struct btrfs_new_inode_args whiteout_args = { 8105 .dir = old_dir, 8106 .dentry = old_dentry, 8107 }; 8108 struct btrfs_trans_handle *trans; 8109 unsigned int trans_num_items; 8110 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8111 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8112 struct inode *new_inode = d_inode(new_dentry); 8113 struct inode *old_inode = d_inode(old_dentry); 8114 struct btrfs_rename_ctx rename_ctx; 8115 u64 index = 0; 8116 int ret; 8117 int ret2; 8118 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8119 struct fscrypt_name old_fname, new_fname; 8120 8121 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8122 return -EPERM; 8123 8124 /* we only allow rename subvolume link between subvolumes */ 8125 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8126 return -EXDEV; 8127 8128 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8129 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8130 return -ENOTEMPTY; 8131 8132 if (S_ISDIR(old_inode->i_mode) && new_inode && 8133 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8134 return -ENOTEMPTY; 8135 8136 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8137 if (ret) 8138 return ret; 8139 8140 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8141 if (ret) { 8142 fscrypt_free_filename(&old_fname); 8143 return ret; 8144 } 8145 8146 /* check for collisions, even if the name isn't there */ 8147 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8148 if (ret) { 8149 if (ret == -EEXIST) { 8150 /* we shouldn't get 8151 * eexist without a new_inode */ 8152 if (WARN_ON(!new_inode)) { 8153 goto out_fscrypt_names; 8154 } 8155 } else { 8156 /* maybe -EOVERFLOW */ 8157 goto out_fscrypt_names; 8158 } 8159 } 8160 ret = 0; 8161 8162 /* 8163 * we're using rename to replace one file with another. Start IO on it 8164 * now so we don't add too much work to the end of the transaction 8165 */ 8166 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8167 filemap_flush(old_inode->i_mapping); 8168 8169 if (flags & RENAME_WHITEOUT) { 8170 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8171 if (!whiteout_args.inode) { 8172 ret = -ENOMEM; 8173 goto out_fscrypt_names; 8174 } 8175 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8176 if (ret) 8177 goto out_whiteout_inode; 8178 } else { 8179 /* 1 to update the old parent inode. */ 8180 trans_num_items = 1; 8181 } 8182 8183 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8184 /* Close the race window with snapshot create/destroy ioctl */ 8185 down_read(&fs_info->subvol_sem); 8186 /* 8187 * 1 to remove old root ref 8188 * 1 to remove old root backref 8189 * 1 to add new root ref 8190 * 1 to add new root backref 8191 */ 8192 trans_num_items += 4; 8193 } else { 8194 /* 8195 * 1 to update inode 8196 * 1 to remove old inode ref 8197 * 1 to add new inode ref 8198 */ 8199 trans_num_items += 3; 8200 } 8201 /* 8202 * 1 to remove old dir item 8203 * 1 to remove old dir index 8204 * 1 to add new dir item 8205 * 1 to add new dir index 8206 */ 8207 trans_num_items += 4; 8208 /* 1 to update new parent inode if it's not the same as the old parent */ 8209 if (new_dir != old_dir) 8210 trans_num_items++; 8211 if (new_inode) { 8212 /* 8213 * 1 to update inode 8214 * 1 to remove inode ref 8215 * 1 to remove dir item 8216 * 1 to remove dir index 8217 * 1 to possibly add orphan item 8218 */ 8219 trans_num_items += 5; 8220 } 8221 trans = btrfs_start_transaction(root, trans_num_items); 8222 if (IS_ERR(trans)) { 8223 ret = PTR_ERR(trans); 8224 goto out_notrans; 8225 } 8226 8227 if (dest != root) { 8228 ret = btrfs_record_root_in_trans(trans, dest); 8229 if (ret) 8230 goto out_fail; 8231 } 8232 8233 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8234 if (ret) 8235 goto out_fail; 8236 8237 BTRFS_I(old_inode)->dir_index = 0ULL; 8238 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8239 /* force full log commit if subvolume involved. */ 8240 btrfs_set_log_full_commit(trans); 8241 } else { 8242 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8243 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8244 index); 8245 if (ret) 8246 goto out_fail; 8247 } 8248 8249 inode_inc_iversion(old_dir); 8250 inode_inc_iversion(new_dir); 8251 inode_inc_iversion(old_inode); 8252 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8253 8254 if (old_dentry->d_parent != new_dentry->d_parent) 8255 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8256 BTRFS_I(old_inode), true); 8257 8258 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8259 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8260 } else { 8261 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8262 BTRFS_I(d_inode(old_dentry)), 8263 &old_fname.disk_name, &rename_ctx); 8264 if (!ret) 8265 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8266 } 8267 if (ret) { 8268 btrfs_abort_transaction(trans, ret); 8269 goto out_fail; 8270 } 8271 8272 if (new_inode) { 8273 inode_inc_iversion(new_inode); 8274 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8275 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8276 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8277 BUG_ON(new_inode->i_nlink == 0); 8278 } else { 8279 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8280 BTRFS_I(d_inode(new_dentry)), 8281 &new_fname.disk_name); 8282 } 8283 if (!ret && new_inode->i_nlink == 0) 8284 ret = btrfs_orphan_add(trans, 8285 BTRFS_I(d_inode(new_dentry))); 8286 if (ret) { 8287 btrfs_abort_transaction(trans, ret); 8288 goto out_fail; 8289 } 8290 } 8291 8292 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8293 &new_fname.disk_name, 0, index); 8294 if (ret) { 8295 btrfs_abort_transaction(trans, ret); 8296 goto out_fail; 8297 } 8298 8299 if (old_inode->i_nlink == 1) 8300 BTRFS_I(old_inode)->dir_index = index; 8301 8302 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8303 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8304 rename_ctx.index, new_dentry->d_parent); 8305 8306 if (flags & RENAME_WHITEOUT) { 8307 ret = btrfs_create_new_inode(trans, &whiteout_args); 8308 if (ret) { 8309 btrfs_abort_transaction(trans, ret); 8310 goto out_fail; 8311 } else { 8312 unlock_new_inode(whiteout_args.inode); 8313 iput(whiteout_args.inode); 8314 whiteout_args.inode = NULL; 8315 } 8316 } 8317 out_fail: 8318 ret2 = btrfs_end_transaction(trans); 8319 ret = ret ? ret : ret2; 8320 out_notrans: 8321 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8322 up_read(&fs_info->subvol_sem); 8323 if (flags & RENAME_WHITEOUT) 8324 btrfs_new_inode_args_destroy(&whiteout_args); 8325 out_whiteout_inode: 8326 if (flags & RENAME_WHITEOUT) 8327 iput(whiteout_args.inode); 8328 out_fscrypt_names: 8329 fscrypt_free_filename(&old_fname); 8330 fscrypt_free_filename(&new_fname); 8331 return ret; 8332 } 8333 8334 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8335 struct dentry *old_dentry, struct inode *new_dir, 8336 struct dentry *new_dentry, unsigned int flags) 8337 { 8338 int ret; 8339 8340 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8341 return -EINVAL; 8342 8343 if (flags & RENAME_EXCHANGE) 8344 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8345 new_dentry); 8346 else 8347 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8348 new_dentry, flags); 8349 8350 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8351 8352 return ret; 8353 } 8354 8355 struct btrfs_delalloc_work { 8356 struct inode *inode; 8357 struct completion completion; 8358 struct list_head list; 8359 struct btrfs_work work; 8360 }; 8361 8362 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8363 { 8364 struct btrfs_delalloc_work *delalloc_work; 8365 struct inode *inode; 8366 8367 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8368 work); 8369 inode = delalloc_work->inode; 8370 filemap_flush(inode->i_mapping); 8371 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8372 &BTRFS_I(inode)->runtime_flags)) 8373 filemap_flush(inode->i_mapping); 8374 8375 iput(inode); 8376 complete(&delalloc_work->completion); 8377 } 8378 8379 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8380 { 8381 struct btrfs_delalloc_work *work; 8382 8383 work = kmalloc(sizeof(*work), GFP_NOFS); 8384 if (!work) 8385 return NULL; 8386 8387 init_completion(&work->completion); 8388 INIT_LIST_HEAD(&work->list); 8389 work->inode = inode; 8390 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8391 8392 return work; 8393 } 8394 8395 /* 8396 * some fairly slow code that needs optimization. This walks the list 8397 * of all the inodes with pending delalloc and forces them to disk. 8398 */ 8399 static int start_delalloc_inodes(struct btrfs_root *root, 8400 struct writeback_control *wbc, bool snapshot, 8401 bool in_reclaim_context) 8402 { 8403 struct btrfs_inode *binode; 8404 struct inode *inode; 8405 struct btrfs_delalloc_work *work, *next; 8406 LIST_HEAD(works); 8407 LIST_HEAD(splice); 8408 int ret = 0; 8409 bool full_flush = wbc->nr_to_write == LONG_MAX; 8410 8411 mutex_lock(&root->delalloc_mutex); 8412 spin_lock(&root->delalloc_lock); 8413 list_splice_init(&root->delalloc_inodes, &splice); 8414 while (!list_empty(&splice)) { 8415 binode = list_entry(splice.next, struct btrfs_inode, 8416 delalloc_inodes); 8417 8418 list_move_tail(&binode->delalloc_inodes, 8419 &root->delalloc_inodes); 8420 8421 if (in_reclaim_context && 8422 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8423 continue; 8424 8425 inode = igrab(&binode->vfs_inode); 8426 if (!inode) { 8427 cond_resched_lock(&root->delalloc_lock); 8428 continue; 8429 } 8430 spin_unlock(&root->delalloc_lock); 8431 8432 if (snapshot) 8433 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8434 &binode->runtime_flags); 8435 if (full_flush) { 8436 work = btrfs_alloc_delalloc_work(inode); 8437 if (!work) { 8438 iput(inode); 8439 ret = -ENOMEM; 8440 goto out; 8441 } 8442 list_add_tail(&work->list, &works); 8443 btrfs_queue_work(root->fs_info->flush_workers, 8444 &work->work); 8445 } else { 8446 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8447 btrfs_add_delayed_iput(BTRFS_I(inode)); 8448 if (ret || wbc->nr_to_write <= 0) 8449 goto out; 8450 } 8451 cond_resched(); 8452 spin_lock(&root->delalloc_lock); 8453 } 8454 spin_unlock(&root->delalloc_lock); 8455 8456 out: 8457 list_for_each_entry_safe(work, next, &works, list) { 8458 list_del_init(&work->list); 8459 wait_for_completion(&work->completion); 8460 kfree(work); 8461 } 8462 8463 if (!list_empty(&splice)) { 8464 spin_lock(&root->delalloc_lock); 8465 list_splice_tail(&splice, &root->delalloc_inodes); 8466 spin_unlock(&root->delalloc_lock); 8467 } 8468 mutex_unlock(&root->delalloc_mutex); 8469 return ret; 8470 } 8471 8472 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8473 { 8474 struct writeback_control wbc = { 8475 .nr_to_write = LONG_MAX, 8476 .sync_mode = WB_SYNC_NONE, 8477 .range_start = 0, 8478 .range_end = LLONG_MAX, 8479 }; 8480 struct btrfs_fs_info *fs_info = root->fs_info; 8481 8482 if (BTRFS_FS_ERROR(fs_info)) 8483 return -EROFS; 8484 8485 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8486 } 8487 8488 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8489 bool in_reclaim_context) 8490 { 8491 struct writeback_control wbc = { 8492 .nr_to_write = nr, 8493 .sync_mode = WB_SYNC_NONE, 8494 .range_start = 0, 8495 .range_end = LLONG_MAX, 8496 }; 8497 struct btrfs_root *root; 8498 LIST_HEAD(splice); 8499 int ret; 8500 8501 if (BTRFS_FS_ERROR(fs_info)) 8502 return -EROFS; 8503 8504 mutex_lock(&fs_info->delalloc_root_mutex); 8505 spin_lock(&fs_info->delalloc_root_lock); 8506 list_splice_init(&fs_info->delalloc_roots, &splice); 8507 while (!list_empty(&splice)) { 8508 /* 8509 * Reset nr_to_write here so we know that we're doing a full 8510 * flush. 8511 */ 8512 if (nr == LONG_MAX) 8513 wbc.nr_to_write = LONG_MAX; 8514 8515 root = list_first_entry(&splice, struct btrfs_root, 8516 delalloc_root); 8517 root = btrfs_grab_root(root); 8518 BUG_ON(!root); 8519 list_move_tail(&root->delalloc_root, 8520 &fs_info->delalloc_roots); 8521 spin_unlock(&fs_info->delalloc_root_lock); 8522 8523 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8524 btrfs_put_root(root); 8525 if (ret < 0 || wbc.nr_to_write <= 0) 8526 goto out; 8527 spin_lock(&fs_info->delalloc_root_lock); 8528 } 8529 spin_unlock(&fs_info->delalloc_root_lock); 8530 8531 ret = 0; 8532 out: 8533 if (!list_empty(&splice)) { 8534 spin_lock(&fs_info->delalloc_root_lock); 8535 list_splice_tail(&splice, &fs_info->delalloc_roots); 8536 spin_unlock(&fs_info->delalloc_root_lock); 8537 } 8538 mutex_unlock(&fs_info->delalloc_root_mutex); 8539 return ret; 8540 } 8541 8542 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8543 struct dentry *dentry, const char *symname) 8544 { 8545 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8546 struct btrfs_trans_handle *trans; 8547 struct btrfs_root *root = BTRFS_I(dir)->root; 8548 struct btrfs_path *path; 8549 struct btrfs_key key; 8550 struct inode *inode; 8551 struct btrfs_new_inode_args new_inode_args = { 8552 .dir = dir, 8553 .dentry = dentry, 8554 }; 8555 unsigned int trans_num_items; 8556 int err; 8557 int name_len; 8558 int datasize; 8559 unsigned long ptr; 8560 struct btrfs_file_extent_item *ei; 8561 struct extent_buffer *leaf; 8562 8563 name_len = strlen(symname); 8564 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8565 return -ENAMETOOLONG; 8566 8567 inode = new_inode(dir->i_sb); 8568 if (!inode) 8569 return -ENOMEM; 8570 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8571 inode->i_op = &btrfs_symlink_inode_operations; 8572 inode_nohighmem(inode); 8573 inode->i_mapping->a_ops = &btrfs_aops; 8574 btrfs_i_size_write(BTRFS_I(inode), name_len); 8575 inode_set_bytes(inode, name_len); 8576 8577 new_inode_args.inode = inode; 8578 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8579 if (err) 8580 goto out_inode; 8581 /* 1 additional item for the inline extent */ 8582 trans_num_items++; 8583 8584 trans = btrfs_start_transaction(root, trans_num_items); 8585 if (IS_ERR(trans)) { 8586 err = PTR_ERR(trans); 8587 goto out_new_inode_args; 8588 } 8589 8590 err = btrfs_create_new_inode(trans, &new_inode_args); 8591 if (err) 8592 goto out; 8593 8594 path = btrfs_alloc_path(); 8595 if (!path) { 8596 err = -ENOMEM; 8597 btrfs_abort_transaction(trans, err); 8598 discard_new_inode(inode); 8599 inode = NULL; 8600 goto out; 8601 } 8602 key.objectid = btrfs_ino(BTRFS_I(inode)); 8603 key.offset = 0; 8604 key.type = BTRFS_EXTENT_DATA_KEY; 8605 datasize = btrfs_file_extent_calc_inline_size(name_len); 8606 err = btrfs_insert_empty_item(trans, root, path, &key, 8607 datasize); 8608 if (err) { 8609 btrfs_abort_transaction(trans, err); 8610 btrfs_free_path(path); 8611 discard_new_inode(inode); 8612 inode = NULL; 8613 goto out; 8614 } 8615 leaf = path->nodes[0]; 8616 ei = btrfs_item_ptr(leaf, path->slots[0], 8617 struct btrfs_file_extent_item); 8618 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8619 btrfs_set_file_extent_type(leaf, ei, 8620 BTRFS_FILE_EXTENT_INLINE); 8621 btrfs_set_file_extent_encryption(leaf, ei, 0); 8622 btrfs_set_file_extent_compression(leaf, ei, 0); 8623 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8624 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8625 8626 ptr = btrfs_file_extent_inline_start(ei); 8627 write_extent_buffer(leaf, symname, ptr, name_len); 8628 btrfs_mark_buffer_dirty(trans, leaf); 8629 btrfs_free_path(path); 8630 8631 d_instantiate_new(dentry, inode); 8632 err = 0; 8633 out: 8634 btrfs_end_transaction(trans); 8635 btrfs_btree_balance_dirty(fs_info); 8636 out_new_inode_args: 8637 btrfs_new_inode_args_destroy(&new_inode_args); 8638 out_inode: 8639 if (err) 8640 iput(inode); 8641 return err; 8642 } 8643 8644 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8645 struct btrfs_trans_handle *trans_in, 8646 struct btrfs_inode *inode, 8647 struct btrfs_key *ins, 8648 u64 file_offset) 8649 { 8650 struct btrfs_file_extent_item stack_fi; 8651 struct btrfs_replace_extent_info extent_info; 8652 struct btrfs_trans_handle *trans = trans_in; 8653 struct btrfs_path *path; 8654 u64 start = ins->objectid; 8655 u64 len = ins->offset; 8656 u64 qgroup_released = 0; 8657 int ret; 8658 8659 memset(&stack_fi, 0, sizeof(stack_fi)); 8660 8661 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8662 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8663 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8664 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8665 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8666 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8667 /* Encryption and other encoding is reserved and all 0 */ 8668 8669 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8670 if (ret < 0) 8671 return ERR_PTR(ret); 8672 8673 if (trans) { 8674 ret = insert_reserved_file_extent(trans, inode, 8675 file_offset, &stack_fi, 8676 true, qgroup_released); 8677 if (ret) 8678 goto free_qgroup; 8679 return trans; 8680 } 8681 8682 extent_info.disk_offset = start; 8683 extent_info.disk_len = len; 8684 extent_info.data_offset = 0; 8685 extent_info.data_len = len; 8686 extent_info.file_offset = file_offset; 8687 extent_info.extent_buf = (char *)&stack_fi; 8688 extent_info.is_new_extent = true; 8689 extent_info.update_times = true; 8690 extent_info.qgroup_reserved = qgroup_released; 8691 extent_info.insertions = 0; 8692 8693 path = btrfs_alloc_path(); 8694 if (!path) { 8695 ret = -ENOMEM; 8696 goto free_qgroup; 8697 } 8698 8699 ret = btrfs_replace_file_extents(inode, path, file_offset, 8700 file_offset + len - 1, &extent_info, 8701 &trans); 8702 btrfs_free_path(path); 8703 if (ret) 8704 goto free_qgroup; 8705 return trans; 8706 8707 free_qgroup: 8708 /* 8709 * We have released qgroup data range at the beginning of the function, 8710 * and normally qgroup_released bytes will be freed when committing 8711 * transaction. 8712 * But if we error out early, we have to free what we have released 8713 * or we leak qgroup data reservation. 8714 */ 8715 btrfs_qgroup_free_refroot(inode->root->fs_info, 8716 btrfs_root_id(inode->root), qgroup_released, 8717 BTRFS_QGROUP_RSV_DATA); 8718 return ERR_PTR(ret); 8719 } 8720 8721 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8722 u64 start, u64 num_bytes, u64 min_size, 8723 loff_t actual_len, u64 *alloc_hint, 8724 struct btrfs_trans_handle *trans) 8725 { 8726 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8727 struct extent_map *em; 8728 struct btrfs_root *root = BTRFS_I(inode)->root; 8729 struct btrfs_key ins; 8730 u64 cur_offset = start; 8731 u64 clear_offset = start; 8732 u64 i_size; 8733 u64 cur_bytes; 8734 u64 last_alloc = (u64)-1; 8735 int ret = 0; 8736 bool own_trans = true; 8737 u64 end = start + num_bytes - 1; 8738 8739 if (trans) 8740 own_trans = false; 8741 while (num_bytes > 0) { 8742 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8743 cur_bytes = max(cur_bytes, min_size); 8744 /* 8745 * If we are severely fragmented we could end up with really 8746 * small allocations, so if the allocator is returning small 8747 * chunks lets make its job easier by only searching for those 8748 * sized chunks. 8749 */ 8750 cur_bytes = min(cur_bytes, last_alloc); 8751 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8752 min_size, 0, *alloc_hint, &ins, 1, 0); 8753 if (ret) 8754 break; 8755 8756 /* 8757 * We've reserved this space, and thus converted it from 8758 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8759 * from here on out we will only need to clear our reservation 8760 * for the remaining unreserved area, so advance our 8761 * clear_offset by our extent size. 8762 */ 8763 clear_offset += ins.offset; 8764 8765 last_alloc = ins.offset; 8766 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8767 &ins, cur_offset); 8768 /* 8769 * Now that we inserted the prealloc extent we can finally 8770 * decrement the number of reservations in the block group. 8771 * If we did it before, we could race with relocation and have 8772 * relocation miss the reserved extent, making it fail later. 8773 */ 8774 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8775 if (IS_ERR(trans)) { 8776 ret = PTR_ERR(trans); 8777 btrfs_free_reserved_extent(fs_info, ins.objectid, 8778 ins.offset, 0); 8779 break; 8780 } 8781 8782 em = alloc_extent_map(); 8783 if (!em) { 8784 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8785 cur_offset + ins.offset - 1, false); 8786 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8787 goto next; 8788 } 8789 8790 em->start = cur_offset; 8791 em->len = ins.offset; 8792 em->disk_bytenr = ins.objectid; 8793 em->offset = 0; 8794 em->disk_num_bytes = ins.offset; 8795 em->ram_bytes = ins.offset; 8796 em->flags |= EXTENT_FLAG_PREALLOC; 8797 em->generation = trans->transid; 8798 8799 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8800 free_extent_map(em); 8801 next: 8802 num_bytes -= ins.offset; 8803 cur_offset += ins.offset; 8804 *alloc_hint = ins.objectid + ins.offset; 8805 8806 inode_inc_iversion(inode); 8807 inode_set_ctime_current(inode); 8808 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8809 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8810 (actual_len > inode->i_size) && 8811 (cur_offset > inode->i_size)) { 8812 if (cur_offset > actual_len) 8813 i_size = actual_len; 8814 else 8815 i_size = cur_offset; 8816 i_size_write(inode, i_size); 8817 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8818 } 8819 8820 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8821 8822 if (ret) { 8823 btrfs_abort_transaction(trans, ret); 8824 if (own_trans) 8825 btrfs_end_transaction(trans); 8826 break; 8827 } 8828 8829 if (own_trans) { 8830 btrfs_end_transaction(trans); 8831 trans = NULL; 8832 } 8833 } 8834 if (clear_offset < end) 8835 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8836 end - clear_offset + 1); 8837 return ret; 8838 } 8839 8840 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8841 u64 start, u64 num_bytes, u64 min_size, 8842 loff_t actual_len, u64 *alloc_hint) 8843 { 8844 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8845 min_size, actual_len, alloc_hint, 8846 NULL); 8847 } 8848 8849 int btrfs_prealloc_file_range_trans(struct inode *inode, 8850 struct btrfs_trans_handle *trans, int mode, 8851 u64 start, u64 num_bytes, u64 min_size, 8852 loff_t actual_len, u64 *alloc_hint) 8853 { 8854 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8855 min_size, actual_len, alloc_hint, trans); 8856 } 8857 8858 static int btrfs_permission(struct mnt_idmap *idmap, 8859 struct inode *inode, int mask) 8860 { 8861 struct btrfs_root *root = BTRFS_I(inode)->root; 8862 umode_t mode = inode->i_mode; 8863 8864 if (mask & MAY_WRITE && 8865 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8866 if (btrfs_root_readonly(root)) 8867 return -EROFS; 8868 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8869 return -EACCES; 8870 } 8871 return generic_permission(idmap, inode, mask); 8872 } 8873 8874 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8875 struct file *file, umode_t mode) 8876 { 8877 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8878 struct btrfs_trans_handle *trans; 8879 struct btrfs_root *root = BTRFS_I(dir)->root; 8880 struct inode *inode; 8881 struct btrfs_new_inode_args new_inode_args = { 8882 .dir = dir, 8883 .dentry = file->f_path.dentry, 8884 .orphan = true, 8885 }; 8886 unsigned int trans_num_items; 8887 int ret; 8888 8889 inode = new_inode(dir->i_sb); 8890 if (!inode) 8891 return -ENOMEM; 8892 inode_init_owner(idmap, inode, dir, mode); 8893 inode->i_fop = &btrfs_file_operations; 8894 inode->i_op = &btrfs_file_inode_operations; 8895 inode->i_mapping->a_ops = &btrfs_aops; 8896 8897 new_inode_args.inode = inode; 8898 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8899 if (ret) 8900 goto out_inode; 8901 8902 trans = btrfs_start_transaction(root, trans_num_items); 8903 if (IS_ERR(trans)) { 8904 ret = PTR_ERR(trans); 8905 goto out_new_inode_args; 8906 } 8907 8908 ret = btrfs_create_new_inode(trans, &new_inode_args); 8909 8910 /* 8911 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8912 * set it to 1 because d_tmpfile() will issue a warning if the count is 8913 * 0, through: 8914 * 8915 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8916 */ 8917 set_nlink(inode, 1); 8918 8919 if (!ret) { 8920 d_tmpfile(file, inode); 8921 unlock_new_inode(inode); 8922 mark_inode_dirty(inode); 8923 } 8924 8925 btrfs_end_transaction(trans); 8926 btrfs_btree_balance_dirty(fs_info); 8927 out_new_inode_args: 8928 btrfs_new_inode_args_destroy(&new_inode_args); 8929 out_inode: 8930 if (ret) 8931 iput(inode); 8932 return finish_open_simple(file, ret); 8933 } 8934 8935 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 8936 { 8937 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8938 unsigned long index = start >> PAGE_SHIFT; 8939 unsigned long end_index = end >> PAGE_SHIFT; 8940 struct page *page; 8941 u32 len; 8942 8943 ASSERT(end + 1 - start <= U32_MAX); 8944 len = end + 1 - start; 8945 while (index <= end_index) { 8946 page = find_get_page(inode->vfs_inode.i_mapping, index); 8947 ASSERT(page); /* Pages should be in the extent_io_tree */ 8948 8949 /* This is for data, which doesn't yet support larger folio. */ 8950 ASSERT(folio_order(page_folio(page)) == 0); 8951 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 8952 put_page(page); 8953 index++; 8954 } 8955 } 8956 8957 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8958 int compress_type) 8959 { 8960 switch (compress_type) { 8961 case BTRFS_COMPRESS_NONE: 8962 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 8963 case BTRFS_COMPRESS_ZLIB: 8964 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 8965 case BTRFS_COMPRESS_LZO: 8966 /* 8967 * The LZO format depends on the sector size. 64K is the maximum 8968 * sector size that we support. 8969 */ 8970 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 8971 return -EINVAL; 8972 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 8973 (fs_info->sectorsize_bits - 12); 8974 case BTRFS_COMPRESS_ZSTD: 8975 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 8976 default: 8977 return -EUCLEAN; 8978 } 8979 } 8980 8981 static ssize_t btrfs_encoded_read_inline( 8982 struct kiocb *iocb, 8983 struct iov_iter *iter, u64 start, 8984 u64 lockend, 8985 struct extent_state **cached_state, 8986 u64 extent_start, size_t count, 8987 struct btrfs_ioctl_encoded_io_args *encoded, 8988 bool *unlocked) 8989 { 8990 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 8991 struct btrfs_root *root = inode->root; 8992 struct btrfs_fs_info *fs_info = root->fs_info; 8993 struct extent_io_tree *io_tree = &inode->io_tree; 8994 struct btrfs_path *path; 8995 struct extent_buffer *leaf; 8996 struct btrfs_file_extent_item *item; 8997 u64 ram_bytes; 8998 unsigned long ptr; 8999 void *tmp; 9000 ssize_t ret; 9001 9002 path = btrfs_alloc_path(); 9003 if (!path) { 9004 ret = -ENOMEM; 9005 goto out; 9006 } 9007 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9008 extent_start, 0); 9009 if (ret) { 9010 if (ret > 0) { 9011 /* The extent item disappeared? */ 9012 ret = -EIO; 9013 } 9014 goto out; 9015 } 9016 leaf = path->nodes[0]; 9017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9018 9019 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9020 ptr = btrfs_file_extent_inline_start(item); 9021 9022 encoded->len = min_t(u64, extent_start + ram_bytes, 9023 inode->vfs_inode.i_size) - iocb->ki_pos; 9024 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9025 btrfs_file_extent_compression(leaf, item)); 9026 if (ret < 0) 9027 goto out; 9028 encoded->compression = ret; 9029 if (encoded->compression) { 9030 size_t inline_size; 9031 9032 inline_size = btrfs_file_extent_inline_item_len(leaf, 9033 path->slots[0]); 9034 if (inline_size > count) { 9035 ret = -ENOBUFS; 9036 goto out; 9037 } 9038 count = inline_size; 9039 encoded->unencoded_len = ram_bytes; 9040 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9041 } else { 9042 count = min_t(u64, count, encoded->len); 9043 encoded->len = count; 9044 encoded->unencoded_len = count; 9045 ptr += iocb->ki_pos - extent_start; 9046 } 9047 9048 tmp = kmalloc(count, GFP_NOFS); 9049 if (!tmp) { 9050 ret = -ENOMEM; 9051 goto out; 9052 } 9053 read_extent_buffer(leaf, tmp, ptr, count); 9054 btrfs_release_path(path); 9055 unlock_extent(io_tree, start, lockend, cached_state); 9056 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9057 *unlocked = true; 9058 9059 ret = copy_to_iter(tmp, count, iter); 9060 if (ret != count) 9061 ret = -EFAULT; 9062 kfree(tmp); 9063 out: 9064 btrfs_free_path(path); 9065 return ret; 9066 } 9067 9068 struct btrfs_encoded_read_private { 9069 wait_queue_head_t wait; 9070 atomic_t pending; 9071 blk_status_t status; 9072 }; 9073 9074 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9075 { 9076 struct btrfs_encoded_read_private *priv = bbio->private; 9077 9078 if (bbio->bio.bi_status) { 9079 /* 9080 * The memory barrier implied by the atomic_dec_return() here 9081 * pairs with the memory barrier implied by the 9082 * atomic_dec_return() or io_wait_event() in 9083 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9084 * write is observed before the load of status in 9085 * btrfs_encoded_read_regular_fill_pages(). 9086 */ 9087 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9088 } 9089 if (!atomic_dec_return(&priv->pending)) 9090 wake_up(&priv->wait); 9091 bio_put(&bbio->bio); 9092 } 9093 9094 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9095 u64 file_offset, u64 disk_bytenr, 9096 u64 disk_io_size, struct page **pages) 9097 { 9098 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9099 struct btrfs_encoded_read_private priv = { 9100 .pending = ATOMIC_INIT(1), 9101 }; 9102 unsigned long i = 0; 9103 struct btrfs_bio *bbio; 9104 9105 init_waitqueue_head(&priv.wait); 9106 9107 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9108 btrfs_encoded_read_endio, &priv); 9109 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9110 bbio->inode = inode; 9111 9112 do { 9113 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9114 9115 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9116 atomic_inc(&priv.pending); 9117 btrfs_submit_bio(bbio, 0); 9118 9119 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9120 btrfs_encoded_read_endio, &priv); 9121 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9122 bbio->inode = inode; 9123 continue; 9124 } 9125 9126 i++; 9127 disk_bytenr += bytes; 9128 disk_io_size -= bytes; 9129 } while (disk_io_size); 9130 9131 atomic_inc(&priv.pending); 9132 btrfs_submit_bio(bbio, 0); 9133 9134 if (atomic_dec_return(&priv.pending)) 9135 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9136 /* See btrfs_encoded_read_endio() for ordering. */ 9137 return blk_status_to_errno(READ_ONCE(priv.status)); 9138 } 9139 9140 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9141 struct iov_iter *iter, 9142 u64 start, u64 lockend, 9143 struct extent_state **cached_state, 9144 u64 disk_bytenr, u64 disk_io_size, 9145 size_t count, bool compressed, 9146 bool *unlocked) 9147 { 9148 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9149 struct extent_io_tree *io_tree = &inode->io_tree; 9150 struct page **pages; 9151 unsigned long nr_pages, i; 9152 u64 cur; 9153 size_t page_offset; 9154 ssize_t ret; 9155 9156 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9157 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9158 if (!pages) 9159 return -ENOMEM; 9160 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9161 if (ret) { 9162 ret = -ENOMEM; 9163 goto out; 9164 } 9165 9166 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9167 disk_io_size, pages); 9168 if (ret) 9169 goto out; 9170 9171 unlock_extent(io_tree, start, lockend, cached_state); 9172 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9173 *unlocked = true; 9174 9175 if (compressed) { 9176 i = 0; 9177 page_offset = 0; 9178 } else { 9179 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9180 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9181 } 9182 cur = 0; 9183 while (cur < count) { 9184 size_t bytes = min_t(size_t, count - cur, 9185 PAGE_SIZE - page_offset); 9186 9187 if (copy_page_to_iter(pages[i], page_offset, bytes, 9188 iter) != bytes) { 9189 ret = -EFAULT; 9190 goto out; 9191 } 9192 i++; 9193 cur += bytes; 9194 page_offset = 0; 9195 } 9196 ret = count; 9197 out: 9198 for (i = 0; i < nr_pages; i++) { 9199 if (pages[i]) 9200 __free_page(pages[i]); 9201 } 9202 kfree(pages); 9203 return ret; 9204 } 9205 9206 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9207 struct btrfs_ioctl_encoded_io_args *encoded) 9208 { 9209 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9210 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9211 struct extent_io_tree *io_tree = &inode->io_tree; 9212 ssize_t ret; 9213 size_t count = iov_iter_count(iter); 9214 u64 start, lockend, disk_bytenr, disk_io_size; 9215 struct extent_state *cached_state = NULL; 9216 struct extent_map *em; 9217 bool unlocked = false; 9218 9219 file_accessed(iocb->ki_filp); 9220 9221 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 9222 9223 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9224 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9225 return 0; 9226 } 9227 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9228 /* 9229 * We don't know how long the extent containing iocb->ki_pos is, but if 9230 * it's compressed we know that it won't be longer than this. 9231 */ 9232 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9233 9234 for (;;) { 9235 struct btrfs_ordered_extent *ordered; 9236 9237 ret = btrfs_wait_ordered_range(inode, start, 9238 lockend - start + 1); 9239 if (ret) 9240 goto out_unlock_inode; 9241 lock_extent(io_tree, start, lockend, &cached_state); 9242 ordered = btrfs_lookup_ordered_range(inode, start, 9243 lockend - start + 1); 9244 if (!ordered) 9245 break; 9246 btrfs_put_ordered_extent(ordered); 9247 unlock_extent(io_tree, start, lockend, &cached_state); 9248 cond_resched(); 9249 } 9250 9251 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9252 if (IS_ERR(em)) { 9253 ret = PTR_ERR(em); 9254 goto out_unlock_extent; 9255 } 9256 9257 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9258 u64 extent_start = em->start; 9259 9260 /* 9261 * For inline extents we get everything we need out of the 9262 * extent item. 9263 */ 9264 free_extent_map(em); 9265 em = NULL; 9266 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9267 &cached_state, extent_start, 9268 count, encoded, &unlocked); 9269 goto out; 9270 } 9271 9272 /* 9273 * We only want to return up to EOF even if the extent extends beyond 9274 * that. 9275 */ 9276 encoded->len = min_t(u64, extent_map_end(em), 9277 inode->vfs_inode.i_size) - iocb->ki_pos; 9278 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9279 (em->flags & EXTENT_FLAG_PREALLOC)) { 9280 disk_bytenr = EXTENT_MAP_HOLE; 9281 count = min_t(u64, count, encoded->len); 9282 encoded->len = count; 9283 encoded->unencoded_len = count; 9284 } else if (extent_map_is_compressed(em)) { 9285 disk_bytenr = em->disk_bytenr; 9286 /* 9287 * Bail if the buffer isn't large enough to return the whole 9288 * compressed extent. 9289 */ 9290 if (em->disk_num_bytes > count) { 9291 ret = -ENOBUFS; 9292 goto out_em; 9293 } 9294 disk_io_size = em->disk_num_bytes; 9295 count = em->disk_num_bytes; 9296 encoded->unencoded_len = em->ram_bytes; 9297 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9298 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9299 extent_map_compression(em)); 9300 if (ret < 0) 9301 goto out_em; 9302 encoded->compression = ret; 9303 } else { 9304 disk_bytenr = extent_map_block_start(em) + (start - em->start); 9305 if (encoded->len > count) 9306 encoded->len = count; 9307 /* 9308 * Don't read beyond what we locked. This also limits the page 9309 * allocations that we'll do. 9310 */ 9311 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9312 count = start + disk_io_size - iocb->ki_pos; 9313 encoded->len = count; 9314 encoded->unencoded_len = count; 9315 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 9316 } 9317 free_extent_map(em); 9318 em = NULL; 9319 9320 if (disk_bytenr == EXTENT_MAP_HOLE) { 9321 unlock_extent(io_tree, start, lockend, &cached_state); 9322 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9323 unlocked = true; 9324 ret = iov_iter_zero(count, iter); 9325 if (ret != count) 9326 ret = -EFAULT; 9327 } else { 9328 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 9329 &cached_state, disk_bytenr, 9330 disk_io_size, count, 9331 encoded->compression, 9332 &unlocked); 9333 } 9334 9335 out: 9336 if (ret >= 0) 9337 iocb->ki_pos += encoded->len; 9338 out_em: 9339 free_extent_map(em); 9340 out_unlock_extent: 9341 if (!unlocked) 9342 unlock_extent(io_tree, start, lockend, &cached_state); 9343 out_unlock_inode: 9344 if (!unlocked) 9345 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9346 return ret; 9347 } 9348 9349 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9350 const struct btrfs_ioctl_encoded_io_args *encoded) 9351 { 9352 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9353 struct btrfs_root *root = inode->root; 9354 struct btrfs_fs_info *fs_info = root->fs_info; 9355 struct extent_io_tree *io_tree = &inode->io_tree; 9356 struct extent_changeset *data_reserved = NULL; 9357 struct extent_state *cached_state = NULL; 9358 struct btrfs_ordered_extent *ordered; 9359 struct btrfs_file_extent file_extent; 9360 int compression; 9361 size_t orig_count; 9362 u64 start, end; 9363 u64 num_bytes, ram_bytes, disk_num_bytes; 9364 unsigned long nr_folios, i; 9365 struct folio **folios; 9366 struct btrfs_key ins; 9367 bool extent_reserved = false; 9368 struct extent_map *em; 9369 ssize_t ret; 9370 9371 switch (encoded->compression) { 9372 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9373 compression = BTRFS_COMPRESS_ZLIB; 9374 break; 9375 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9376 compression = BTRFS_COMPRESS_ZSTD; 9377 break; 9378 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9379 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9380 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9381 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9382 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9383 /* The sector size must match for LZO. */ 9384 if (encoded->compression - 9385 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9386 fs_info->sectorsize_bits) 9387 return -EINVAL; 9388 compression = BTRFS_COMPRESS_LZO; 9389 break; 9390 default: 9391 return -EINVAL; 9392 } 9393 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9394 return -EINVAL; 9395 9396 /* 9397 * Compressed extents should always have checksums, so error out if we 9398 * have a NOCOW file or inode was created while mounted with NODATASUM. 9399 */ 9400 if (inode->flags & BTRFS_INODE_NODATASUM) 9401 return -EINVAL; 9402 9403 orig_count = iov_iter_count(from); 9404 9405 /* The extent size must be sane. */ 9406 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9407 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9408 return -EINVAL; 9409 9410 /* 9411 * The compressed data must be smaller than the decompressed data. 9412 * 9413 * It's of course possible for data to compress to larger or the same 9414 * size, but the buffered I/O path falls back to no compression for such 9415 * data, and we don't want to break any assumptions by creating these 9416 * extents. 9417 * 9418 * Note that this is less strict than the current check we have that the 9419 * compressed data must be at least one sector smaller than the 9420 * decompressed data. We only want to enforce the weaker requirement 9421 * from old kernels that it is at least one byte smaller. 9422 */ 9423 if (orig_count >= encoded->unencoded_len) 9424 return -EINVAL; 9425 9426 /* The extent must start on a sector boundary. */ 9427 start = iocb->ki_pos; 9428 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9429 return -EINVAL; 9430 9431 /* 9432 * The extent must end on a sector boundary. However, we allow a write 9433 * which ends at or extends i_size to have an unaligned length; we round 9434 * up the extent size and set i_size to the unaligned end. 9435 */ 9436 if (start + encoded->len < inode->vfs_inode.i_size && 9437 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9438 return -EINVAL; 9439 9440 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9441 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9442 return -EINVAL; 9443 9444 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9445 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9446 end = start + num_bytes - 1; 9447 9448 /* 9449 * If the extent cannot be inline, the compressed data on disk must be 9450 * sector-aligned. For convenience, we extend it with zeroes if it 9451 * isn't. 9452 */ 9453 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9454 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9455 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 9456 if (!folios) 9457 return -ENOMEM; 9458 for (i = 0; i < nr_folios; i++) { 9459 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9460 char *kaddr; 9461 9462 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9463 if (!folios[i]) { 9464 ret = -ENOMEM; 9465 goto out_folios; 9466 } 9467 kaddr = kmap_local_folio(folios[i], 0); 9468 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9469 kunmap_local(kaddr); 9470 ret = -EFAULT; 9471 goto out_folios; 9472 } 9473 if (bytes < PAGE_SIZE) 9474 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9475 kunmap_local(kaddr); 9476 } 9477 9478 for (;;) { 9479 struct btrfs_ordered_extent *ordered; 9480 9481 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9482 if (ret) 9483 goto out_folios; 9484 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9485 start >> PAGE_SHIFT, 9486 end >> PAGE_SHIFT); 9487 if (ret) 9488 goto out_folios; 9489 lock_extent(io_tree, start, end, &cached_state); 9490 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9491 if (!ordered && 9492 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9493 break; 9494 if (ordered) 9495 btrfs_put_ordered_extent(ordered); 9496 unlock_extent(io_tree, start, end, &cached_state); 9497 cond_resched(); 9498 } 9499 9500 /* 9501 * We don't use the higher-level delalloc space functions because our 9502 * num_bytes and disk_num_bytes are different. 9503 */ 9504 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9505 if (ret) 9506 goto out_unlock; 9507 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9508 if (ret) 9509 goto out_free_data_space; 9510 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9511 false); 9512 if (ret) 9513 goto out_qgroup_free_data; 9514 9515 /* Try an inline extent first. */ 9516 if (encoded->unencoded_len == encoded->len && 9517 encoded->unencoded_offset == 0 && 9518 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9519 ret = __cow_file_range_inline(inode, start, encoded->len, 9520 orig_count, compression, folios[0], 9521 true); 9522 if (ret <= 0) { 9523 if (ret == 0) 9524 ret = orig_count; 9525 goto out_delalloc_release; 9526 } 9527 } 9528 9529 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9530 disk_num_bytes, 0, 0, &ins, 1, 1); 9531 if (ret) 9532 goto out_delalloc_release; 9533 extent_reserved = true; 9534 9535 file_extent.disk_bytenr = ins.objectid; 9536 file_extent.disk_num_bytes = ins.offset; 9537 file_extent.num_bytes = num_bytes; 9538 file_extent.ram_bytes = ram_bytes; 9539 file_extent.offset = encoded->unencoded_offset; 9540 file_extent.compression = compression; 9541 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9542 if (IS_ERR(em)) { 9543 ret = PTR_ERR(em); 9544 goto out_free_reserved; 9545 } 9546 free_extent_map(em); 9547 9548 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9549 (1 << BTRFS_ORDERED_ENCODED) | 9550 (1 << BTRFS_ORDERED_COMPRESSED)); 9551 if (IS_ERR(ordered)) { 9552 btrfs_drop_extent_map_range(inode, start, end, false); 9553 ret = PTR_ERR(ordered); 9554 goto out_free_reserved; 9555 } 9556 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9557 9558 if (start + encoded->len > inode->vfs_inode.i_size) 9559 i_size_write(&inode->vfs_inode, start + encoded->len); 9560 9561 unlock_extent(io_tree, start, end, &cached_state); 9562 9563 btrfs_delalloc_release_extents(inode, num_bytes); 9564 9565 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9566 ret = orig_count; 9567 goto out; 9568 9569 out_free_reserved: 9570 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9571 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9572 out_delalloc_release: 9573 btrfs_delalloc_release_extents(inode, num_bytes); 9574 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9575 out_qgroup_free_data: 9576 if (ret < 0) 9577 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9578 out_free_data_space: 9579 /* 9580 * If btrfs_reserve_extent() succeeded, then we already decremented 9581 * bytes_may_use. 9582 */ 9583 if (!extent_reserved) 9584 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9585 out_unlock: 9586 unlock_extent(io_tree, start, end, &cached_state); 9587 out_folios: 9588 for (i = 0; i < nr_folios; i++) { 9589 if (folios[i]) 9590 folio_put(folios[i]); 9591 } 9592 kvfree(folios); 9593 out: 9594 if (ret >= 0) 9595 iocb->ki_pos += encoded->len; 9596 return ret; 9597 } 9598 9599 #ifdef CONFIG_SWAP 9600 /* 9601 * Add an entry indicating a block group or device which is pinned by a 9602 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9603 * negative errno on failure. 9604 */ 9605 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9606 bool is_block_group) 9607 { 9608 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9609 struct btrfs_swapfile_pin *sp, *entry; 9610 struct rb_node **p; 9611 struct rb_node *parent = NULL; 9612 9613 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9614 if (!sp) 9615 return -ENOMEM; 9616 sp->ptr = ptr; 9617 sp->inode = inode; 9618 sp->is_block_group = is_block_group; 9619 sp->bg_extent_count = 1; 9620 9621 spin_lock(&fs_info->swapfile_pins_lock); 9622 p = &fs_info->swapfile_pins.rb_node; 9623 while (*p) { 9624 parent = *p; 9625 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9626 if (sp->ptr < entry->ptr || 9627 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9628 p = &(*p)->rb_left; 9629 } else if (sp->ptr > entry->ptr || 9630 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9631 p = &(*p)->rb_right; 9632 } else { 9633 if (is_block_group) 9634 entry->bg_extent_count++; 9635 spin_unlock(&fs_info->swapfile_pins_lock); 9636 kfree(sp); 9637 return 1; 9638 } 9639 } 9640 rb_link_node(&sp->node, parent, p); 9641 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9642 spin_unlock(&fs_info->swapfile_pins_lock); 9643 return 0; 9644 } 9645 9646 /* Free all of the entries pinned by this swapfile. */ 9647 static void btrfs_free_swapfile_pins(struct inode *inode) 9648 { 9649 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9650 struct btrfs_swapfile_pin *sp; 9651 struct rb_node *node, *next; 9652 9653 spin_lock(&fs_info->swapfile_pins_lock); 9654 node = rb_first(&fs_info->swapfile_pins); 9655 while (node) { 9656 next = rb_next(node); 9657 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9658 if (sp->inode == inode) { 9659 rb_erase(&sp->node, &fs_info->swapfile_pins); 9660 if (sp->is_block_group) { 9661 btrfs_dec_block_group_swap_extents(sp->ptr, 9662 sp->bg_extent_count); 9663 btrfs_put_block_group(sp->ptr); 9664 } 9665 kfree(sp); 9666 } 9667 node = next; 9668 } 9669 spin_unlock(&fs_info->swapfile_pins_lock); 9670 } 9671 9672 struct btrfs_swap_info { 9673 u64 start; 9674 u64 block_start; 9675 u64 block_len; 9676 u64 lowest_ppage; 9677 u64 highest_ppage; 9678 unsigned long nr_pages; 9679 int nr_extents; 9680 }; 9681 9682 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9683 struct btrfs_swap_info *bsi) 9684 { 9685 unsigned long nr_pages; 9686 unsigned long max_pages; 9687 u64 first_ppage, first_ppage_reported, next_ppage; 9688 int ret; 9689 9690 /* 9691 * Our swapfile may have had its size extended after the swap header was 9692 * written. In that case activating the swapfile should not go beyond 9693 * the max size set in the swap header. 9694 */ 9695 if (bsi->nr_pages >= sis->max) 9696 return 0; 9697 9698 max_pages = sis->max - bsi->nr_pages; 9699 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9700 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9701 9702 if (first_ppage >= next_ppage) 9703 return 0; 9704 nr_pages = next_ppage - first_ppage; 9705 nr_pages = min(nr_pages, max_pages); 9706 9707 first_ppage_reported = first_ppage; 9708 if (bsi->start == 0) 9709 first_ppage_reported++; 9710 if (bsi->lowest_ppage > first_ppage_reported) 9711 bsi->lowest_ppage = first_ppage_reported; 9712 if (bsi->highest_ppage < (next_ppage - 1)) 9713 bsi->highest_ppage = next_ppage - 1; 9714 9715 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9716 if (ret < 0) 9717 return ret; 9718 bsi->nr_extents += ret; 9719 bsi->nr_pages += nr_pages; 9720 return 0; 9721 } 9722 9723 static void btrfs_swap_deactivate(struct file *file) 9724 { 9725 struct inode *inode = file_inode(file); 9726 9727 btrfs_free_swapfile_pins(inode); 9728 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9729 } 9730 9731 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9732 sector_t *span) 9733 { 9734 struct inode *inode = file_inode(file); 9735 struct btrfs_root *root = BTRFS_I(inode)->root; 9736 struct btrfs_fs_info *fs_info = root->fs_info; 9737 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9738 struct extent_state *cached_state = NULL; 9739 struct extent_map *em = NULL; 9740 struct btrfs_chunk_map *map = NULL; 9741 struct btrfs_device *device = NULL; 9742 struct btrfs_swap_info bsi = { 9743 .lowest_ppage = (sector_t)-1ULL, 9744 }; 9745 int ret = 0; 9746 u64 isize; 9747 u64 start; 9748 9749 /* 9750 * If the swap file was just created, make sure delalloc is done. If the 9751 * file changes again after this, the user is doing something stupid and 9752 * we don't really care. 9753 */ 9754 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9755 if (ret) 9756 return ret; 9757 9758 /* 9759 * The inode is locked, so these flags won't change after we check them. 9760 */ 9761 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9762 btrfs_warn(fs_info, "swapfile must not be compressed"); 9763 return -EINVAL; 9764 } 9765 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9766 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9767 return -EINVAL; 9768 } 9769 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9770 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9771 return -EINVAL; 9772 } 9773 9774 /* 9775 * Balance or device remove/replace/resize can move stuff around from 9776 * under us. The exclop protection makes sure they aren't running/won't 9777 * run concurrently while we are mapping the swap extents, and 9778 * fs_info->swapfile_pins prevents them from running while the swap 9779 * file is active and moving the extents. Note that this also prevents 9780 * a concurrent device add which isn't actually necessary, but it's not 9781 * really worth the trouble to allow it. 9782 */ 9783 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9784 btrfs_warn(fs_info, 9785 "cannot activate swapfile while exclusive operation is running"); 9786 return -EBUSY; 9787 } 9788 9789 /* 9790 * Prevent snapshot creation while we are activating the swap file. 9791 * We do not want to race with snapshot creation. If snapshot creation 9792 * already started before we bumped nr_swapfiles from 0 to 1 and 9793 * completes before the first write into the swap file after it is 9794 * activated, than that write would fallback to COW. 9795 */ 9796 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9797 btrfs_exclop_finish(fs_info); 9798 btrfs_warn(fs_info, 9799 "cannot activate swapfile because snapshot creation is in progress"); 9800 return -EINVAL; 9801 } 9802 /* 9803 * Snapshots can create extents which require COW even if NODATACOW is 9804 * set. We use this counter to prevent snapshots. We must increment it 9805 * before walking the extents because we don't want a concurrent 9806 * snapshot to run after we've already checked the extents. 9807 * 9808 * It is possible that subvolume is marked for deletion but still not 9809 * removed yet. To prevent this race, we check the root status before 9810 * activating the swapfile. 9811 */ 9812 spin_lock(&root->root_item_lock); 9813 if (btrfs_root_dead(root)) { 9814 spin_unlock(&root->root_item_lock); 9815 9816 btrfs_exclop_finish(fs_info); 9817 btrfs_warn(fs_info, 9818 "cannot activate swapfile because subvolume %llu is being deleted", 9819 btrfs_root_id(root)); 9820 return -EPERM; 9821 } 9822 atomic_inc(&root->nr_swapfiles); 9823 spin_unlock(&root->root_item_lock); 9824 9825 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9826 9827 lock_extent(io_tree, 0, isize - 1, &cached_state); 9828 start = 0; 9829 while (start < isize) { 9830 u64 logical_block_start, physical_block_start; 9831 struct btrfs_block_group *bg; 9832 u64 len = isize - start; 9833 9834 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9835 if (IS_ERR(em)) { 9836 ret = PTR_ERR(em); 9837 goto out; 9838 } 9839 9840 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9841 btrfs_warn(fs_info, "swapfile must not have holes"); 9842 ret = -EINVAL; 9843 goto out; 9844 } 9845 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9846 /* 9847 * It's unlikely we'll ever actually find ourselves 9848 * here, as a file small enough to fit inline won't be 9849 * big enough to store more than the swap header, but in 9850 * case something changes in the future, let's catch it 9851 * here rather than later. 9852 */ 9853 btrfs_warn(fs_info, "swapfile must not be inline"); 9854 ret = -EINVAL; 9855 goto out; 9856 } 9857 if (extent_map_is_compressed(em)) { 9858 btrfs_warn(fs_info, "swapfile must not be compressed"); 9859 ret = -EINVAL; 9860 goto out; 9861 } 9862 9863 logical_block_start = extent_map_block_start(em) + (start - em->start); 9864 len = min(len, em->len - (start - em->start)); 9865 free_extent_map(em); 9866 em = NULL; 9867 9868 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9869 if (ret < 0) { 9870 goto out; 9871 } else if (ret) { 9872 ret = 0; 9873 } else { 9874 btrfs_warn(fs_info, 9875 "swapfile must not be copy-on-write"); 9876 ret = -EINVAL; 9877 goto out; 9878 } 9879 9880 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9881 if (IS_ERR(map)) { 9882 ret = PTR_ERR(map); 9883 goto out; 9884 } 9885 9886 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9887 btrfs_warn(fs_info, 9888 "swapfile must have single data profile"); 9889 ret = -EINVAL; 9890 goto out; 9891 } 9892 9893 if (device == NULL) { 9894 device = map->stripes[0].dev; 9895 ret = btrfs_add_swapfile_pin(inode, device, false); 9896 if (ret == 1) 9897 ret = 0; 9898 else if (ret) 9899 goto out; 9900 } else if (device != map->stripes[0].dev) { 9901 btrfs_warn(fs_info, "swapfile must be on one device"); 9902 ret = -EINVAL; 9903 goto out; 9904 } 9905 9906 physical_block_start = (map->stripes[0].physical + 9907 (logical_block_start - map->start)); 9908 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9909 btrfs_free_chunk_map(map); 9910 map = NULL; 9911 9912 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9913 if (!bg) { 9914 btrfs_warn(fs_info, 9915 "could not find block group containing swapfile"); 9916 ret = -EINVAL; 9917 goto out; 9918 } 9919 9920 if (!btrfs_inc_block_group_swap_extents(bg)) { 9921 btrfs_warn(fs_info, 9922 "block group for swapfile at %llu is read-only%s", 9923 bg->start, 9924 atomic_read(&fs_info->scrubs_running) ? 9925 " (scrub running)" : ""); 9926 btrfs_put_block_group(bg); 9927 ret = -EINVAL; 9928 goto out; 9929 } 9930 9931 ret = btrfs_add_swapfile_pin(inode, bg, true); 9932 if (ret) { 9933 btrfs_put_block_group(bg); 9934 if (ret == 1) 9935 ret = 0; 9936 else 9937 goto out; 9938 } 9939 9940 if (bsi.block_len && 9941 bsi.block_start + bsi.block_len == physical_block_start) { 9942 bsi.block_len += len; 9943 } else { 9944 if (bsi.block_len) { 9945 ret = btrfs_add_swap_extent(sis, &bsi); 9946 if (ret) 9947 goto out; 9948 } 9949 bsi.start = start; 9950 bsi.block_start = physical_block_start; 9951 bsi.block_len = len; 9952 } 9953 9954 start += len; 9955 } 9956 9957 if (bsi.block_len) 9958 ret = btrfs_add_swap_extent(sis, &bsi); 9959 9960 out: 9961 if (!IS_ERR_OR_NULL(em)) 9962 free_extent_map(em); 9963 if (!IS_ERR_OR_NULL(map)) 9964 btrfs_free_chunk_map(map); 9965 9966 unlock_extent(io_tree, 0, isize - 1, &cached_state); 9967 9968 if (ret) 9969 btrfs_swap_deactivate(file); 9970 9971 btrfs_drew_write_unlock(&root->snapshot_lock); 9972 9973 btrfs_exclop_finish(fs_info); 9974 9975 if (ret) 9976 return ret; 9977 9978 if (device) 9979 sis->bdev = device->bdev; 9980 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 9981 sis->max = bsi.nr_pages; 9982 sis->pages = bsi.nr_pages - 1; 9983 sis->highest_bit = bsi.nr_pages - 1; 9984 return bsi.nr_extents; 9985 } 9986 #else 9987 static void btrfs_swap_deactivate(struct file *file) 9988 { 9989 } 9990 9991 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9992 sector_t *span) 9993 { 9994 return -EOPNOTSUPP; 9995 } 9996 #endif 9997 9998 /* 9999 * Update the number of bytes used in the VFS' inode. When we replace extents in 10000 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10001 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10002 * always get a correct value. 10003 */ 10004 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10005 const u64 add_bytes, 10006 const u64 del_bytes) 10007 { 10008 if (add_bytes == del_bytes) 10009 return; 10010 10011 spin_lock(&inode->lock); 10012 if (del_bytes > 0) 10013 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10014 if (add_bytes > 0) 10015 inode_add_bytes(&inode->vfs_inode, add_bytes); 10016 spin_unlock(&inode->lock); 10017 } 10018 10019 /* 10020 * Verify that there are no ordered extents for a given file range. 10021 * 10022 * @inode: The target inode. 10023 * @start: Start offset of the file range, should be sector size aligned. 10024 * @end: End offset (inclusive) of the file range, its value +1 should be 10025 * sector size aligned. 10026 * 10027 * This should typically be used for cases where we locked an inode's VFS lock in 10028 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10029 * we have flushed all delalloc in the range, we have waited for all ordered 10030 * extents in the range to complete and finally we have locked the file range in 10031 * the inode's io_tree. 10032 */ 10033 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10034 { 10035 struct btrfs_root *root = inode->root; 10036 struct btrfs_ordered_extent *ordered; 10037 10038 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10039 return; 10040 10041 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10042 if (ordered) { 10043 btrfs_err(root->fs_info, 10044 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10045 start, end, btrfs_ino(inode), btrfs_root_id(root), 10046 ordered->file_offset, 10047 ordered->file_offset + ordered->num_bytes - 1); 10048 btrfs_put_ordered_extent(ordered); 10049 } 10050 10051 ASSERT(ordered == NULL); 10052 } 10053 10054 /* 10055 * Find the first inode with a minimum number. 10056 * 10057 * @root: The root to search for. 10058 * @min_ino: The minimum inode number. 10059 * 10060 * Find the first inode in the @root with a number >= @min_ino and return it. 10061 * Returns NULL if no such inode found. 10062 */ 10063 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10064 { 10065 struct btrfs_inode *inode; 10066 unsigned long from = min_ino; 10067 10068 xa_lock(&root->inodes); 10069 while (true) { 10070 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10071 if (!inode) 10072 break; 10073 if (igrab(&inode->vfs_inode)) 10074 break; 10075 10076 from = btrfs_ino(inode) + 1; 10077 cond_resched_lock(&root->inodes.xa_lock); 10078 } 10079 xa_unlock(&root->inodes); 10080 10081 return inode; 10082 } 10083 10084 static const struct inode_operations btrfs_dir_inode_operations = { 10085 .getattr = btrfs_getattr, 10086 .lookup = btrfs_lookup, 10087 .create = btrfs_create, 10088 .unlink = btrfs_unlink, 10089 .link = btrfs_link, 10090 .mkdir = btrfs_mkdir, 10091 .rmdir = btrfs_rmdir, 10092 .rename = btrfs_rename2, 10093 .symlink = btrfs_symlink, 10094 .setattr = btrfs_setattr, 10095 .mknod = btrfs_mknod, 10096 .listxattr = btrfs_listxattr, 10097 .permission = btrfs_permission, 10098 .get_inode_acl = btrfs_get_acl, 10099 .set_acl = btrfs_set_acl, 10100 .update_time = btrfs_update_time, 10101 .tmpfile = btrfs_tmpfile, 10102 .fileattr_get = btrfs_fileattr_get, 10103 .fileattr_set = btrfs_fileattr_set, 10104 }; 10105 10106 static const struct file_operations btrfs_dir_file_operations = { 10107 .llseek = btrfs_dir_llseek, 10108 .read = generic_read_dir, 10109 .iterate_shared = btrfs_real_readdir, 10110 .open = btrfs_opendir, 10111 .unlocked_ioctl = btrfs_ioctl, 10112 #ifdef CONFIG_COMPAT 10113 .compat_ioctl = btrfs_compat_ioctl, 10114 #endif 10115 .release = btrfs_release_file, 10116 .fsync = btrfs_sync_file, 10117 }; 10118 10119 /* 10120 * btrfs doesn't support the bmap operation because swapfiles 10121 * use bmap to make a mapping of extents in the file. They assume 10122 * these extents won't change over the life of the file and they 10123 * use the bmap result to do IO directly to the drive. 10124 * 10125 * the btrfs bmap call would return logical addresses that aren't 10126 * suitable for IO and they also will change frequently as COW 10127 * operations happen. So, swapfile + btrfs == corruption. 10128 * 10129 * For now we're avoiding this by dropping bmap. 10130 */ 10131 static const struct address_space_operations btrfs_aops = { 10132 .read_folio = btrfs_read_folio, 10133 .writepages = btrfs_writepages, 10134 .readahead = btrfs_readahead, 10135 .invalidate_folio = btrfs_invalidate_folio, 10136 .release_folio = btrfs_release_folio, 10137 .migrate_folio = btrfs_migrate_folio, 10138 .dirty_folio = filemap_dirty_folio, 10139 .error_remove_folio = generic_error_remove_folio, 10140 .swap_activate = btrfs_swap_activate, 10141 .swap_deactivate = btrfs_swap_deactivate, 10142 }; 10143 10144 static const struct inode_operations btrfs_file_inode_operations = { 10145 .getattr = btrfs_getattr, 10146 .setattr = btrfs_setattr, 10147 .listxattr = btrfs_listxattr, 10148 .permission = btrfs_permission, 10149 .fiemap = btrfs_fiemap, 10150 .get_inode_acl = btrfs_get_acl, 10151 .set_acl = btrfs_set_acl, 10152 .update_time = btrfs_update_time, 10153 .fileattr_get = btrfs_fileattr_get, 10154 .fileattr_set = btrfs_fileattr_set, 10155 }; 10156 static const struct inode_operations btrfs_special_inode_operations = { 10157 .getattr = btrfs_getattr, 10158 .setattr = btrfs_setattr, 10159 .permission = btrfs_permission, 10160 .listxattr = btrfs_listxattr, 10161 .get_inode_acl = btrfs_get_acl, 10162 .set_acl = btrfs_set_acl, 10163 .update_time = btrfs_update_time, 10164 }; 10165 static const struct inode_operations btrfs_symlink_inode_operations = { 10166 .get_link = page_get_link, 10167 .getattr = btrfs_getattr, 10168 .setattr = btrfs_setattr, 10169 .permission = btrfs_permission, 10170 .listxattr = btrfs_listxattr, 10171 .update_time = btrfs_update_time, 10172 }; 10173 10174 const struct dentry_operations btrfs_dentry_operations = { 10175 .d_delete = btrfs_dentry_delete, 10176 }; 10177