1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, int *page_started, 109 unsigned long *nr_written, int unlock); 110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 111 u64 len, u64 orig_start, 112 u64 block_start, u64 block_len, 113 u64 orig_block_len, u64 ram_bytes, 114 int type); 115 116 static int btrfs_dirty_inode(struct inode *inode); 117 118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 119 void btrfs_test_inode_set_ops(struct inode *inode) 120 { 121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 122 } 123 #endif 124 125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 126 struct inode *inode, struct inode *dir, 127 const struct qstr *qstr) 128 { 129 int err; 130 131 err = btrfs_init_acl(trans, inode, dir); 132 if (!err) 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 134 return err; 135 } 136 137 /* 138 * this does all the hard work for inserting an inline extent into 139 * the btree. The caller should have done a btrfs_drop_extents so that 140 * no overlapping inline items exist in the btree 141 */ 142 static int insert_inline_extent(struct btrfs_trans_handle *trans, 143 struct btrfs_path *path, int extent_inserted, 144 struct btrfs_root *root, struct inode *inode, 145 u64 start, size_t size, size_t compressed_size, 146 int compress_type, 147 struct page **compressed_pages) 148 { 149 struct extent_buffer *leaf; 150 struct page *page = NULL; 151 char *kaddr; 152 unsigned long ptr; 153 struct btrfs_file_extent_item *ei; 154 int err = 0; 155 int ret; 156 size_t cur_size = size; 157 unsigned long offset; 158 159 if (compressed_size && compressed_pages) 160 cur_size = compressed_size; 161 162 inode_add_bytes(inode, size); 163 164 if (!extent_inserted) { 165 struct btrfs_key key; 166 size_t datasize; 167 168 key.objectid = btrfs_ino(inode); 169 key.offset = start; 170 key.type = BTRFS_EXTENT_DATA_KEY; 171 172 datasize = btrfs_file_extent_calc_inline_size(cur_size); 173 path->leave_spinning = 1; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 datasize); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 } 181 leaf = path->nodes[0]; 182 ei = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 186 btrfs_set_file_extent_encryption(leaf, ei, 0); 187 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 188 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 189 ptr = btrfs_file_extent_inline_start(ei); 190 191 if (compress_type != BTRFS_COMPRESS_NONE) { 192 struct page *cpage; 193 int i = 0; 194 while (compressed_size > 0) { 195 cpage = compressed_pages[i]; 196 cur_size = min_t(unsigned long, compressed_size, 197 PAGE_SIZE); 198 199 kaddr = kmap_atomic(cpage); 200 write_extent_buffer(leaf, kaddr, ptr, cur_size); 201 kunmap_atomic(kaddr); 202 203 i++; 204 ptr += cur_size; 205 compressed_size -= cur_size; 206 } 207 btrfs_set_file_extent_compression(leaf, ei, 208 compress_type); 209 } else { 210 page = find_get_page(inode->i_mapping, 211 start >> PAGE_SHIFT); 212 btrfs_set_file_extent_compression(leaf, ei, 0); 213 kaddr = kmap_atomic(page); 214 offset = start & (PAGE_SIZE - 1); 215 write_extent_buffer(leaf, kaddr + offset, ptr, size); 216 kunmap_atomic(kaddr); 217 put_page(page); 218 } 219 btrfs_mark_buffer_dirty(leaf); 220 btrfs_release_path(path); 221 222 /* 223 * we're an inline extent, so nobody can 224 * extend the file past i_size without locking 225 * a page we already have locked. 226 * 227 * We must do any isize and inode updates 228 * before we unlock the pages. Otherwise we 229 * could end up racing with unlink. 230 */ 231 BTRFS_I(inode)->disk_i_size = inode->i_size; 232 ret = btrfs_update_inode(trans, root, inode); 233 234 return ret; 235 fail: 236 return err; 237 } 238 239 240 /* 241 * conditionally insert an inline extent into the file. This 242 * does the checks required to make sure the data is small enough 243 * to fit as an inline extent. 244 */ 245 static noinline int cow_file_range_inline(struct btrfs_root *root, 246 struct inode *inode, u64 start, 247 u64 end, size_t compressed_size, 248 int compress_type, 249 struct page **compressed_pages) 250 { 251 struct btrfs_trans_handle *trans; 252 u64 isize = i_size_read(inode); 253 u64 actual_end = min(end + 1, isize); 254 u64 inline_len = actual_end - start; 255 u64 aligned_end = ALIGN(end, root->sectorsize); 256 u64 data_len = inline_len; 257 int ret; 258 struct btrfs_path *path; 259 int extent_inserted = 0; 260 u32 extent_item_size; 261 262 if (compressed_size) 263 data_len = compressed_size; 264 265 if (start > 0 || 266 actual_end > root->sectorsize || 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 268 (!compressed_size && 269 (actual_end & (root->sectorsize - 1)) == 0) || 270 end + 1 < isize || 271 data_len > root->fs_info->max_inline) { 272 return 1; 273 } 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return -ENOMEM; 278 279 trans = btrfs_join_transaction(root); 280 if (IS_ERR(trans)) { 281 btrfs_free_path(path); 282 return PTR_ERR(trans); 283 } 284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 285 286 if (compressed_size && compressed_pages) 287 extent_item_size = btrfs_file_extent_calc_inline_size( 288 compressed_size); 289 else 290 extent_item_size = btrfs_file_extent_calc_inline_size( 291 inline_len); 292 293 ret = __btrfs_drop_extents(trans, root, inode, path, 294 start, aligned_end, NULL, 295 1, 1, extent_item_size, &extent_inserted); 296 if (ret) { 297 btrfs_abort_transaction(trans, root, ret); 298 goto out; 299 } 300 301 if (isize > actual_end) 302 inline_len = min_t(u64, isize, actual_end); 303 ret = insert_inline_extent(trans, path, extent_inserted, 304 root, inode, start, 305 inline_len, compressed_size, 306 compress_type, compressed_pages); 307 if (ret && ret != -ENOSPC) { 308 btrfs_abort_transaction(trans, root, ret); 309 goto out; 310 } else if (ret == -ENOSPC) { 311 ret = 1; 312 goto out; 313 } 314 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 316 btrfs_delalloc_release_metadata(inode, end + 1 - start); 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 318 out: 319 /* 320 * Don't forget to free the reserved space, as for inlined extent 321 * it won't count as data extent, free them directly here. 322 * And at reserve time, it's always aligned to page size, so 323 * just free one page here. 324 */ 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 326 btrfs_free_path(path); 327 btrfs_end_transaction(trans, root); 328 return ret; 329 } 330 331 struct async_extent { 332 u64 start; 333 u64 ram_size; 334 u64 compressed_size; 335 struct page **pages; 336 unsigned long nr_pages; 337 int compress_type; 338 struct list_head list; 339 }; 340 341 struct async_cow { 342 struct inode *inode; 343 struct btrfs_root *root; 344 struct page *locked_page; 345 u64 start; 346 u64 end; 347 struct list_head extents; 348 struct btrfs_work work; 349 }; 350 351 static noinline int add_async_extent(struct async_cow *cow, 352 u64 start, u64 ram_size, 353 u64 compressed_size, 354 struct page **pages, 355 unsigned long nr_pages, 356 int compress_type) 357 { 358 struct async_extent *async_extent; 359 360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 361 BUG_ON(!async_extent); /* -ENOMEM */ 362 async_extent->start = start; 363 async_extent->ram_size = ram_size; 364 async_extent->compressed_size = compressed_size; 365 async_extent->pages = pages; 366 async_extent->nr_pages = nr_pages; 367 async_extent->compress_type = compress_type; 368 list_add_tail(&async_extent->list, &cow->extents); 369 return 0; 370 } 371 372 static inline int inode_need_compress(struct inode *inode) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 376 /* force compress */ 377 if (btrfs_test_opt(root, FORCE_COMPRESS)) 378 return 1; 379 /* bad compression ratios */ 380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 381 return 0; 382 if (btrfs_test_opt(root, COMPRESS) || 383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 384 BTRFS_I(inode)->force_compress) 385 return 1; 386 return 0; 387 } 388 389 /* 390 * we create compressed extents in two phases. The first 391 * phase compresses a range of pages that have already been 392 * locked (both pages and state bits are locked). 393 * 394 * This is done inside an ordered work queue, and the compression 395 * is spread across many cpus. The actual IO submission is step 396 * two, and the ordered work queue takes care of making sure that 397 * happens in the same order things were put onto the queue by 398 * writepages and friends. 399 * 400 * If this code finds it can't get good compression, it puts an 401 * entry onto the work queue to write the uncompressed bytes. This 402 * makes sure that both compressed inodes and uncompressed inodes 403 * are written in the same order that the flusher thread sent them 404 * down. 405 */ 406 static noinline void compress_file_range(struct inode *inode, 407 struct page *locked_page, 408 u64 start, u64 end, 409 struct async_cow *async_cow, 410 int *num_added) 411 { 412 struct btrfs_root *root = BTRFS_I(inode)->root; 413 u64 num_bytes; 414 u64 blocksize = root->sectorsize; 415 u64 actual_end; 416 u64 isize = i_size_read(inode); 417 int ret = 0; 418 struct page **pages = NULL; 419 unsigned long nr_pages; 420 unsigned long nr_pages_ret = 0; 421 unsigned long total_compressed = 0; 422 unsigned long total_in = 0; 423 unsigned long max_compressed = SZ_128K; 424 unsigned long max_uncompressed = SZ_128K; 425 int i; 426 int will_compress; 427 int compress_type = root->fs_info->compress_type; 428 int redirty = 0; 429 430 /* if this is a small write inside eof, kick off a defrag */ 431 if ((end - start + 1) < SZ_16K && 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 435 actual_end = min_t(u64, isize, end + 1); 436 again: 437 will_compress = 0; 438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 440 441 /* 442 * we don't want to send crud past the end of i_size through 443 * compression, that's just a waste of CPU time. So, if the 444 * end of the file is before the start of our current 445 * requested range of bytes, we bail out to the uncompressed 446 * cleanup code that can deal with all of this. 447 * 448 * It isn't really the fastest way to fix things, but this is a 449 * very uncommon corner. 450 */ 451 if (actual_end <= start) 452 goto cleanup_and_bail_uncompressed; 453 454 total_compressed = actual_end - start; 455 456 /* 457 * skip compression for a small file range(<=blocksize) that 458 * isn't an inline extent, since it dosen't save disk space at all. 459 */ 460 if (total_compressed <= blocksize && 461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 462 goto cleanup_and_bail_uncompressed; 463 464 /* we want to make sure that amount of ram required to uncompress 465 * an extent is reasonable, so we limit the total size in ram 466 * of a compressed extent to 128k. This is a crucial number 467 * because it also controls how easily we can spread reads across 468 * cpus for decompression. 469 * 470 * We also want to make sure the amount of IO required to do 471 * a random read is reasonably small, so we limit the size of 472 * a compressed extent to 128k. 473 */ 474 total_compressed = min(total_compressed, max_uncompressed); 475 num_bytes = ALIGN(end - start + 1, blocksize); 476 num_bytes = max(blocksize, num_bytes); 477 total_in = 0; 478 ret = 0; 479 480 /* 481 * we do compression for mount -o compress and when the 482 * inode has not been flagged as nocompress. This flag can 483 * change at any time if we discover bad compression ratios. 484 */ 485 if (inode_need_compress(inode)) { 486 WARN_ON(pages); 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 488 if (!pages) { 489 /* just bail out to the uncompressed code */ 490 goto cont; 491 } 492 493 if (BTRFS_I(inode)->force_compress) 494 compress_type = BTRFS_I(inode)->force_compress; 495 496 /* 497 * we need to call clear_page_dirty_for_io on each 498 * page in the range. Otherwise applications with the file 499 * mmap'd can wander in and change the page contents while 500 * we are compressing them. 501 * 502 * If the compression fails for any reason, we set the pages 503 * dirty again later on. 504 */ 505 extent_range_clear_dirty_for_io(inode, start, end); 506 redirty = 1; 507 ret = btrfs_compress_pages(compress_type, 508 inode->i_mapping, start, 509 total_compressed, pages, 510 nr_pages, &nr_pages_ret, 511 &total_in, 512 &total_compressed, 513 max_compressed); 514 515 if (!ret) { 516 unsigned long offset = total_compressed & 517 (PAGE_SIZE - 1); 518 struct page *page = pages[nr_pages_ret - 1]; 519 char *kaddr; 520 521 /* zero the tail end of the last page, we might be 522 * sending it down to disk 523 */ 524 if (offset) { 525 kaddr = kmap_atomic(page); 526 memset(kaddr + offset, 0, 527 PAGE_SIZE - offset); 528 kunmap_atomic(kaddr); 529 } 530 will_compress = 1; 531 } 532 } 533 cont: 534 if (start == 0) { 535 /* lets try to make an inline extent */ 536 if (ret || total_in < (actual_end - start)) { 537 /* we didn't compress the entire range, try 538 * to make an uncompressed inline extent. 539 */ 540 ret = cow_file_range_inline(root, inode, start, end, 541 0, 0, NULL); 542 } else { 543 /* try making a compressed inline extent */ 544 ret = cow_file_range_inline(root, inode, start, end, 545 total_compressed, 546 compress_type, pages); 547 } 548 if (ret <= 0) { 549 unsigned long clear_flags = EXTENT_DELALLOC | 550 EXTENT_DEFRAG; 551 unsigned long page_error_op; 552 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 555 556 /* 557 * inline extent creation worked or returned error, 558 * we don't need to create any more async work items. 559 * Unlock and free up our temp pages. 560 */ 561 extent_clear_unlock_delalloc(inode, start, end, NULL, 562 clear_flags, PAGE_UNLOCK | 563 PAGE_CLEAR_DIRTY | 564 PAGE_SET_WRITEBACK | 565 page_error_op | 566 PAGE_END_WRITEBACK); 567 goto free_pages_out; 568 } 569 } 570 571 if (will_compress) { 572 /* 573 * we aren't doing an inline extent round the compressed size 574 * up to a block size boundary so the allocator does sane 575 * things 576 */ 577 total_compressed = ALIGN(total_compressed, blocksize); 578 579 /* 580 * one last check to make sure the compression is really a 581 * win, compare the page count read with the blocks on disk 582 */ 583 total_in = ALIGN(total_in, PAGE_SIZE); 584 if (total_compressed >= total_in) { 585 will_compress = 0; 586 } else { 587 num_bytes = total_in; 588 } 589 } 590 if (!will_compress && pages) { 591 /* 592 * the compression code ran but failed to make things smaller, 593 * free any pages it allocated and our page pointer array 594 */ 595 for (i = 0; i < nr_pages_ret; i++) { 596 WARN_ON(pages[i]->mapping); 597 put_page(pages[i]); 598 } 599 kfree(pages); 600 pages = NULL; 601 total_compressed = 0; 602 nr_pages_ret = 0; 603 604 /* flag the file so we don't compress in the future */ 605 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 606 !(BTRFS_I(inode)->force_compress)) { 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 608 } 609 } 610 if (will_compress) { 611 *num_added += 1; 612 613 /* the async work queues will take care of doing actual 614 * allocation on disk for these compressed pages, 615 * and will submit them to the elevator. 616 */ 617 add_async_extent(async_cow, start, num_bytes, 618 total_compressed, pages, nr_pages_ret, 619 compress_type); 620 621 if (start + num_bytes < end) { 622 start += num_bytes; 623 pages = NULL; 624 cond_resched(); 625 goto again; 626 } 627 } else { 628 cleanup_and_bail_uncompressed: 629 /* 630 * No compression, but we still need to write the pages in 631 * the file we've been given so far. redirty the locked 632 * page if it corresponds to our extent and set things up 633 * for the async work queue to run cow_file_range to do 634 * the normal delalloc dance 635 */ 636 if (page_offset(locked_page) >= start && 637 page_offset(locked_page) <= end) { 638 __set_page_dirty_nobuffers(locked_page); 639 /* unlocked later on in the async handlers */ 640 } 641 if (redirty) 642 extent_range_redirty_for_io(inode, start, end); 643 add_async_extent(async_cow, start, end - start + 1, 644 0, NULL, 0, BTRFS_COMPRESS_NONE); 645 *num_added += 1; 646 } 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 &page_started, &nr_written, 0); 716 717 /* JDM XXX */ 718 719 /* 720 * if page_started, cow_file_range inserted an 721 * inline extent and took care of all the unlocking 722 * and IO for us. Otherwise, we need to submit 723 * all those pages down to the drive. 724 */ 725 if (!page_started && !ret) 726 extent_write_locked_range(io_tree, 727 inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 730 btrfs_get_extent, 731 WB_SYNC_ALL); 732 else if (ret) 733 unlock_page(async_cow->locked_page); 734 kfree(async_extent); 735 cond_resched(); 736 continue; 737 } 738 739 lock_extent(io_tree, async_extent->start, 740 async_extent->start + async_extent->ram_size - 1); 741 742 ret = btrfs_reserve_extent(root, 743 async_extent->compressed_size, 744 async_extent->compressed_size, 745 0, alloc_hint, &ins, 1, 1); 746 if (ret) { 747 free_async_extent_pages(async_extent); 748 749 if (ret == -ENOSPC) { 750 unlock_extent(io_tree, async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1); 753 754 /* 755 * we need to redirty the pages if we decide to 756 * fallback to uncompressed IO, otherwise we 757 * will not submit these pages down to lower 758 * layers. 759 */ 760 extent_range_redirty_for_io(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1); 764 765 goto retry; 766 } 767 goto out_free; 768 } 769 /* 770 * here we're doing allocation and writeback of the 771 * compressed pages 772 */ 773 btrfs_drop_extent_cache(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 0); 776 777 em = alloc_extent_map(); 778 if (!em) { 779 ret = -ENOMEM; 780 goto out_free_reserve; 781 } 782 em->start = async_extent->start; 783 em->len = async_extent->ram_size; 784 em->orig_start = em->start; 785 em->mod_start = em->start; 786 em->mod_len = em->len; 787 788 em->block_start = ins.objectid; 789 em->block_len = ins.offset; 790 em->orig_block_len = ins.offset; 791 em->ram_bytes = async_extent->ram_size; 792 em->bdev = root->fs_info->fs_devices->latest_bdev; 793 em->compress_type = async_extent->compress_type; 794 set_bit(EXTENT_FLAG_PINNED, &em->flags); 795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 796 em->generation = -1; 797 798 while (1) { 799 write_lock(&em_tree->lock); 800 ret = add_extent_mapping(em_tree, em, 1); 801 write_unlock(&em_tree->lock); 802 if (ret != -EEXIST) { 803 free_extent_map(em); 804 break; 805 } 806 btrfs_drop_extent_cache(inode, async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 0); 809 } 810 811 if (ret) 812 goto out_free_reserve; 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(inode, async_extent->start, 823 async_extent->start + 824 async_extent->ram_size - 1, 0); 825 goto out_free_reserve; 826 } 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 828 829 /* 830 * clear dirty, set writeback and unlock the pages. 831 */ 832 extent_clear_unlock_delalloc(inode, async_extent->start, 833 async_extent->start + 834 async_extent->ram_size - 1, 835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 837 PAGE_SET_WRITEBACK); 838 ret = btrfs_submit_compressed_write(inode, 839 async_extent->start, 840 async_extent->ram_size, 841 ins.objectid, 842 ins.offset, async_extent->pages, 843 async_extent->nr_pages); 844 if (ret) { 845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 846 struct page *p = async_extent->pages[0]; 847 const u64 start = async_extent->start; 848 const u64 end = start + async_extent->ram_size - 1; 849 850 p->mapping = inode->i_mapping; 851 tree->ops->writepage_end_io_hook(p, start, end, 852 NULL, 0); 853 p->mapping = NULL; 854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 855 PAGE_END_WRITEBACK | 856 PAGE_SET_ERROR); 857 free_async_extent_pages(async_extent); 858 } 859 alloc_hint = ins.objectid + ins.offset; 860 kfree(async_extent); 861 cond_resched(); 862 } 863 return; 864 out_free_reserve: 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 867 out_free: 868 extent_clear_unlock_delalloc(inode, async_extent->start, 869 async_extent->start + 870 async_extent->ram_size - 1, 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 kfree(async_extent); 878 goto again; 879 } 880 881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 882 u64 num_bytes) 883 { 884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 885 struct extent_map *em; 886 u64 alloc_hint = 0; 887 888 read_lock(&em_tree->lock); 889 em = search_extent_mapping(em_tree, start, num_bytes); 890 if (em) { 891 /* 892 * if block start isn't an actual block number then find the 893 * first block in this inode and use that as a hint. If that 894 * block is also bogus then just don't worry about it. 895 */ 896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 897 free_extent_map(em); 898 em = search_extent_mapping(em_tree, 0, 0); 899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 900 alloc_hint = em->block_start; 901 if (em) 902 free_extent_map(em); 903 } else { 904 alloc_hint = em->block_start; 905 free_extent_map(em); 906 } 907 } 908 read_unlock(&em_tree->lock); 909 910 return alloc_hint; 911 } 912 913 /* 914 * when extent_io.c finds a delayed allocation range in the file, 915 * the call backs end up in this code. The basic idea is to 916 * allocate extents on disk for the range, and create ordered data structs 917 * in ram to track those extents. 918 * 919 * locked_page is the page that writepage had locked already. We use 920 * it to make sure we don't do extra locks or unlocks. 921 * 922 * *page_started is set to one if we unlock locked_page and do everything 923 * required to start IO on it. It may be clean and already done with 924 * IO when we return. 925 */ 926 static noinline int cow_file_range(struct inode *inode, 927 struct page *locked_page, 928 u64 start, u64 end, int *page_started, 929 unsigned long *nr_written, 930 int unlock) 931 { 932 struct btrfs_root *root = BTRFS_I(inode)->root; 933 u64 alloc_hint = 0; 934 u64 num_bytes; 935 unsigned long ram_size; 936 u64 disk_num_bytes; 937 u64 cur_alloc_size; 938 u64 blocksize = root->sectorsize; 939 struct btrfs_key ins; 940 struct extent_map *em; 941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 942 int ret = 0; 943 944 if (btrfs_is_free_space_inode(inode)) { 945 WARN_ON_ONCE(1); 946 ret = -EINVAL; 947 goto out_unlock; 948 } 949 950 num_bytes = ALIGN(end - start + 1, blocksize); 951 num_bytes = max(blocksize, num_bytes); 952 disk_num_bytes = num_bytes; 953 954 /* if this is a small write inside eof, kick off defrag */ 955 if (num_bytes < SZ_64K && 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 957 btrfs_add_inode_defrag(NULL, inode); 958 959 if (start == 0) { 960 /* lets try to make an inline extent */ 961 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 962 NULL); 963 if (ret == 0) { 964 extent_clear_unlock_delalloc(inode, start, end, NULL, 965 EXTENT_LOCKED | EXTENT_DELALLOC | 966 EXTENT_DEFRAG, PAGE_UNLOCK | 967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 968 PAGE_END_WRITEBACK); 969 970 *nr_written = *nr_written + 971 (end - start + PAGE_SIZE) / PAGE_SIZE; 972 *page_started = 1; 973 goto out; 974 } else if (ret < 0) { 975 goto out_unlock; 976 } 977 } 978 979 BUG_ON(disk_num_bytes > 980 btrfs_super_total_bytes(root->fs_info->super_copy)); 981 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 984 985 while (disk_num_bytes > 0) { 986 unsigned long op; 987 988 cur_alloc_size = disk_num_bytes; 989 ret = btrfs_reserve_extent(root, cur_alloc_size, 990 root->sectorsize, 0, alloc_hint, 991 &ins, 1, 1); 992 if (ret < 0) 993 goto out_unlock; 994 995 em = alloc_extent_map(); 996 if (!em) { 997 ret = -ENOMEM; 998 goto out_reserve; 999 } 1000 em->start = start; 1001 em->orig_start = em->start; 1002 ram_size = ins.offset; 1003 em->len = ins.offset; 1004 em->mod_start = em->start; 1005 em->mod_len = em->len; 1006 1007 em->block_start = ins.objectid; 1008 em->block_len = ins.offset; 1009 em->orig_block_len = ins.offset; 1010 em->ram_bytes = ram_size; 1011 em->bdev = root->fs_info->fs_devices->latest_bdev; 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1013 em->generation = -1; 1014 1015 while (1) { 1016 write_lock(&em_tree->lock); 1017 ret = add_extent_mapping(em_tree, em, 1); 1018 write_unlock(&em_tree->lock); 1019 if (ret != -EEXIST) { 1020 free_extent_map(em); 1021 break; 1022 } 1023 btrfs_drop_extent_cache(inode, start, 1024 start + ram_size - 1, 0); 1025 } 1026 if (ret) 1027 goto out_reserve; 1028 1029 cur_alloc_size = ins.offset; 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1031 ram_size, cur_alloc_size, 0); 1032 if (ret) 1033 goto out_drop_extent_cache; 1034 1035 if (root->root_key.objectid == 1036 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1037 ret = btrfs_reloc_clone_csums(inode, start, 1038 cur_alloc_size); 1039 if (ret) 1040 goto out_drop_extent_cache; 1041 } 1042 1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1044 1045 if (disk_num_bytes < cur_alloc_size) 1046 break; 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 op = unlock ? PAGE_UNLOCK : 0; 1056 op |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, locked_page, 1060 EXTENT_LOCKED | EXTENT_DELALLOC, 1061 op); 1062 disk_num_bytes -= cur_alloc_size; 1063 num_bytes -= cur_alloc_size; 1064 alloc_hint = ins.objectid + ins.offset; 1065 start += cur_alloc_size; 1066 } 1067 out: 1068 return ret; 1069 1070 out_drop_extent_cache: 1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1072 out_reserve: 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1075 out_unlock: 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1078 EXTENT_DELALLOC | EXTENT_DEFRAG, 1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1081 goto out; 1082 } 1083 1084 /* 1085 * work queue call back to started compression on a file and pages 1086 */ 1087 static noinline void async_cow_start(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 int num_added = 0; 1091 async_cow = container_of(work, struct async_cow, work); 1092 1093 compress_file_range(async_cow->inode, async_cow->locked_page, 1094 async_cow->start, async_cow->end, async_cow, 1095 &num_added); 1096 if (num_added == 0) { 1097 btrfs_add_delayed_iput(async_cow->inode); 1098 async_cow->inode = NULL; 1099 } 1100 } 1101 1102 /* 1103 * work queue call back to submit previously compressed pages 1104 */ 1105 static noinline void async_cow_submit(struct btrfs_work *work) 1106 { 1107 struct async_cow *async_cow; 1108 struct btrfs_root *root; 1109 unsigned long nr_pages; 1110 1111 async_cow = container_of(work, struct async_cow, work); 1112 1113 root = async_cow->root; 1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1115 PAGE_SHIFT; 1116 1117 /* 1118 * atomic_sub_return implies a barrier for waitqueue_active 1119 */ 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1121 5 * SZ_1M && 1122 waitqueue_active(&root->fs_info->async_submit_wait)) 1123 wake_up(&root->fs_info->async_submit_wait); 1124 1125 if (async_cow->inode) 1126 submit_compressed_extents(async_cow->inode, async_cow); 1127 } 1128 1129 static noinline void async_cow_free(struct btrfs_work *work) 1130 { 1131 struct async_cow *async_cow; 1132 async_cow = container_of(work, struct async_cow, work); 1133 if (async_cow->inode) 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 kfree(async_cow); 1136 } 1137 1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1139 u64 start, u64 end, int *page_started, 1140 unsigned long *nr_written) 1141 { 1142 struct async_cow *async_cow; 1143 struct btrfs_root *root = BTRFS_I(inode)->root; 1144 unsigned long nr_pages; 1145 u64 cur_end; 1146 int limit = 10 * SZ_1M; 1147 1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1149 1, 0, NULL, GFP_NOFS); 1150 while (start < end) { 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1152 BUG_ON(!async_cow); /* -ENOMEM */ 1153 async_cow->inode = igrab(inode); 1154 async_cow->root = root; 1155 async_cow->locked_page = locked_page; 1156 async_cow->start = start; 1157 1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1159 !btrfs_test_opt(root, FORCE_COMPRESS)) 1160 cur_end = end; 1161 else 1162 cur_end = min(end, start + SZ_512K - 1); 1163 1164 async_cow->end = cur_end; 1165 INIT_LIST_HEAD(&async_cow->extents); 1166 1167 btrfs_init_work(&async_cow->work, 1168 btrfs_delalloc_helper, 1169 async_cow_start, async_cow_submit, 1170 async_cow_free); 1171 1172 nr_pages = (cur_end - start + PAGE_SIZE) >> 1173 PAGE_SHIFT; 1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1175 1176 btrfs_queue_work(root->fs_info->delalloc_workers, 1177 &async_cow->work); 1178 1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1180 wait_event(root->fs_info->async_submit_wait, 1181 (atomic_read(&root->fs_info->async_delalloc_pages) < 1182 limit)); 1183 } 1184 1185 while (atomic_read(&root->fs_info->async_submit_draining) && 1186 atomic_read(&root->fs_info->async_delalloc_pages)) { 1187 wait_event(root->fs_info->async_submit_wait, 1188 (atomic_read(&root->fs_info->async_delalloc_pages) == 1189 0)); 1190 } 1191 1192 *nr_written += nr_pages; 1193 start = cur_end + 1; 1194 } 1195 *page_started = 1; 1196 return 0; 1197 } 1198 1199 static noinline int csum_exist_in_range(struct btrfs_root *root, 1200 u64 bytenr, u64 num_bytes) 1201 { 1202 int ret; 1203 struct btrfs_ordered_sum *sums; 1204 LIST_HEAD(list); 1205 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1207 bytenr + num_bytes - 1, &list, 0); 1208 if (ret == 0 && list_empty(&list)) 1209 return 0; 1210 1211 while (!list_empty(&list)) { 1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1213 list_del(&sums->list); 1214 kfree(sums); 1215 } 1216 return 1; 1217 } 1218 1219 /* 1220 * when nowcow writeback call back. This checks for snapshots or COW copies 1221 * of the extents that exist in the file, and COWs the file as required. 1222 * 1223 * If no cow copies or snapshots exist, we write directly to the existing 1224 * blocks on disk 1225 */ 1226 static noinline int run_delalloc_nocow(struct inode *inode, 1227 struct page *locked_page, 1228 u64 start, u64 end, int *page_started, int force, 1229 unsigned long *nr_written) 1230 { 1231 struct btrfs_root *root = BTRFS_I(inode)->root; 1232 struct btrfs_trans_handle *trans; 1233 struct extent_buffer *leaf; 1234 struct btrfs_path *path; 1235 struct btrfs_file_extent_item *fi; 1236 struct btrfs_key found_key; 1237 u64 cow_start; 1238 u64 cur_offset; 1239 u64 extent_end; 1240 u64 extent_offset; 1241 u64 disk_bytenr; 1242 u64 num_bytes; 1243 u64 disk_num_bytes; 1244 u64 ram_bytes; 1245 int extent_type; 1246 int ret, err; 1247 int type; 1248 int nocow; 1249 int check_prev = 1; 1250 bool nolock; 1251 u64 ino = btrfs_ino(inode); 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DO_ACCOUNTING | 1258 EXTENT_DEFRAG, PAGE_UNLOCK | 1259 PAGE_CLEAR_DIRTY | 1260 PAGE_SET_WRITEBACK | 1261 PAGE_END_WRITEBACK); 1262 return -ENOMEM; 1263 } 1264 1265 nolock = btrfs_is_free_space_inode(inode); 1266 1267 if (nolock) 1268 trans = btrfs_join_transaction_nolock(root); 1269 else 1270 trans = btrfs_join_transaction(root); 1271 1272 if (IS_ERR(trans)) { 1273 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1274 EXTENT_LOCKED | EXTENT_DELALLOC | 1275 EXTENT_DO_ACCOUNTING | 1276 EXTENT_DEFRAG, PAGE_UNLOCK | 1277 PAGE_CLEAR_DIRTY | 1278 PAGE_SET_WRITEBACK | 1279 PAGE_END_WRITEBACK); 1280 btrfs_free_path(path); 1281 return PTR_ERR(trans); 1282 } 1283 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1285 1286 cow_start = (u64)-1; 1287 cur_offset = start; 1288 while (1) { 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1290 cur_offset, 0); 1291 if (ret < 0) 1292 goto error; 1293 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1294 leaf = path->nodes[0]; 1295 btrfs_item_key_to_cpu(leaf, &found_key, 1296 path->slots[0] - 1); 1297 if (found_key.objectid == ino && 1298 found_key.type == BTRFS_EXTENT_DATA_KEY) 1299 path->slots[0]--; 1300 } 1301 check_prev = 0; 1302 next_slot: 1303 leaf = path->nodes[0]; 1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1305 ret = btrfs_next_leaf(root, path); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0) 1309 break; 1310 leaf = path->nodes[0]; 1311 } 1312 1313 nocow = 0; 1314 disk_bytenr = 0; 1315 num_bytes = 0; 1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1317 1318 if (found_key.objectid > ino) 1319 break; 1320 if (WARN_ON_ONCE(found_key.objectid < ino) || 1321 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1326 found_key.offset > end) 1327 break; 1328 1329 if (found_key.offset > cur_offset) { 1330 extent_end = found_key.offset; 1331 extent_type = 0; 1332 goto out_check; 1333 } 1334 1335 fi = btrfs_item_ptr(leaf, path->slots[0], 1336 struct btrfs_file_extent_item); 1337 extent_type = btrfs_file_extent_type(leaf, fi); 1338 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1340 if (extent_type == BTRFS_FILE_EXTENT_REG || 1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1343 extent_offset = btrfs_file_extent_offset(leaf, fi); 1344 extent_end = found_key.offset + 1345 btrfs_file_extent_num_bytes(leaf, fi); 1346 disk_num_bytes = 1347 btrfs_file_extent_disk_num_bytes(leaf, fi); 1348 if (extent_end <= start) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (disk_bytenr == 0) 1353 goto out_check; 1354 if (btrfs_file_extent_compression(leaf, fi) || 1355 btrfs_file_extent_encryption(leaf, fi) || 1356 btrfs_file_extent_other_encoding(leaf, fi)) 1357 goto out_check; 1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1359 goto out_check; 1360 if (btrfs_extent_readonly(root, disk_bytenr)) 1361 goto out_check; 1362 if (btrfs_cross_ref_exist(trans, root, ino, 1363 found_key.offset - 1364 extent_offset, disk_bytenr)) 1365 goto out_check; 1366 disk_bytenr += extent_offset; 1367 disk_bytenr += cur_offset - found_key.offset; 1368 num_bytes = min(end + 1, extent_end) - cur_offset; 1369 /* 1370 * if there are pending snapshots for this root, 1371 * we fall into common COW way. 1372 */ 1373 if (!nolock) { 1374 err = btrfs_start_write_no_snapshoting(root); 1375 if (!err) 1376 goto out_check; 1377 } 1378 /* 1379 * force cow if csum exists in the range. 1380 * this ensure that csum for a given extent are 1381 * either valid or do not exist. 1382 */ 1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1384 goto out_check; 1385 if (!btrfs_inc_nocow_writers(root->fs_info, 1386 disk_bytenr)) 1387 goto out_check; 1388 nocow = 1; 1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1390 extent_end = found_key.offset + 1391 btrfs_file_extent_inline_len(leaf, 1392 path->slots[0], fi); 1393 extent_end = ALIGN(extent_end, root->sectorsize); 1394 } else { 1395 BUG_ON(1); 1396 } 1397 out_check: 1398 if (extent_end <= start) { 1399 path->slots[0]++; 1400 if (!nolock && nocow) 1401 btrfs_end_write_no_snapshoting(root); 1402 if (nocow) 1403 btrfs_dec_nocow_writers(root->fs_info, 1404 disk_bytenr); 1405 goto next_slot; 1406 } 1407 if (!nocow) { 1408 if (cow_start == (u64)-1) 1409 cow_start = cur_offset; 1410 cur_offset = extent_end; 1411 if (cur_offset > end) 1412 break; 1413 path->slots[0]++; 1414 goto next_slot; 1415 } 1416 1417 btrfs_release_path(path); 1418 if (cow_start != (u64)-1) { 1419 ret = cow_file_range(inode, locked_page, 1420 cow_start, found_key.offset - 1, 1421 page_started, nr_written, 1); 1422 if (ret) { 1423 if (!nolock && nocow) 1424 btrfs_end_write_no_snapshoting(root); 1425 if (nocow) 1426 btrfs_dec_nocow_writers(root->fs_info, 1427 disk_bytenr); 1428 goto error; 1429 } 1430 cow_start = (u64)-1; 1431 } 1432 1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1434 struct extent_map *em; 1435 struct extent_map_tree *em_tree; 1436 em_tree = &BTRFS_I(inode)->extent_tree; 1437 em = alloc_extent_map(); 1438 BUG_ON(!em); /* -ENOMEM */ 1439 em->start = cur_offset; 1440 em->orig_start = found_key.offset - extent_offset; 1441 em->len = num_bytes; 1442 em->block_len = num_bytes; 1443 em->block_start = disk_bytenr; 1444 em->orig_block_len = disk_num_bytes; 1445 em->ram_bytes = ram_bytes; 1446 em->bdev = root->fs_info->fs_devices->latest_bdev; 1447 em->mod_start = em->start; 1448 em->mod_len = em->len; 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1451 em->generation = -1; 1452 while (1) { 1453 write_lock(&em_tree->lock); 1454 ret = add_extent_mapping(em_tree, em, 1); 1455 write_unlock(&em_tree->lock); 1456 if (ret != -EEXIST) { 1457 free_extent_map(em); 1458 break; 1459 } 1460 btrfs_drop_extent_cache(inode, em->start, 1461 em->start + em->len - 1, 0); 1462 } 1463 type = BTRFS_ORDERED_PREALLOC; 1464 } else { 1465 type = BTRFS_ORDERED_NOCOW; 1466 } 1467 1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1469 num_bytes, num_bytes, type); 1470 if (nocow) 1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1472 BUG_ON(ret); /* -ENOMEM */ 1473 1474 if (root->root_key.objectid == 1475 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1476 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1477 num_bytes); 1478 if (ret) { 1479 if (!nolock && nocow) 1480 btrfs_end_write_no_snapshoting(root); 1481 goto error; 1482 } 1483 } 1484 1485 extent_clear_unlock_delalloc(inode, cur_offset, 1486 cur_offset + num_bytes - 1, 1487 locked_page, EXTENT_LOCKED | 1488 EXTENT_DELALLOC, PAGE_UNLOCK | 1489 PAGE_SET_PRIVATE2); 1490 if (!nolock && nocow) 1491 btrfs_end_write_no_snapshoting(root); 1492 cur_offset = extent_end; 1493 if (cur_offset > end) 1494 break; 1495 } 1496 btrfs_release_path(path); 1497 1498 if (cur_offset <= end && cow_start == (u64)-1) { 1499 cow_start = cur_offset; 1500 cur_offset = end; 1501 } 1502 1503 if (cow_start != (u64)-1) { 1504 ret = cow_file_range(inode, locked_page, cow_start, end, 1505 page_started, nr_written, 1); 1506 if (ret) 1507 goto error; 1508 } 1509 1510 error: 1511 err = btrfs_end_transaction(trans, root); 1512 if (!ret) 1513 ret = err; 1514 1515 if (ret && cur_offset < end) 1516 extent_clear_unlock_delalloc(inode, cur_offset, end, 1517 locked_page, EXTENT_LOCKED | 1518 EXTENT_DELALLOC | EXTENT_DEFRAG | 1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1520 PAGE_CLEAR_DIRTY | 1521 PAGE_SET_WRITEBACK | 1522 PAGE_END_WRITEBACK); 1523 btrfs_free_path(path); 1524 return ret; 1525 } 1526 1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1528 { 1529 1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1532 return 0; 1533 1534 /* 1535 * @defrag_bytes is a hint value, no spinlock held here, 1536 * if is not zero, it means the file is defragging. 1537 * Force cow if given extent needs to be defragged. 1538 */ 1539 if (BTRFS_I(inode)->defrag_bytes && 1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1541 EXTENT_DEFRAG, 0, NULL)) 1542 return 1; 1543 1544 return 0; 1545 } 1546 1547 /* 1548 * extent_io.c call back to do delayed allocation processing 1549 */ 1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1551 u64 start, u64 end, int *page_started, 1552 unsigned long *nr_written) 1553 { 1554 int ret; 1555 int force_cow = need_force_cow(inode, start, end); 1556 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1558 ret = run_delalloc_nocow(inode, locked_page, start, end, 1559 page_started, 1, nr_written); 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1561 ret = run_delalloc_nocow(inode, locked_page, start, end, 1562 page_started, 0, nr_written); 1563 } else if (!inode_need_compress(inode)) { 1564 ret = cow_file_range(inode, locked_page, start, end, 1565 page_started, nr_written, 1); 1566 } else { 1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags); 1569 ret = cow_file_range_async(inode, locked_page, start, end, 1570 page_started, nr_written); 1571 } 1572 return ret; 1573 } 1574 1575 static void btrfs_split_extent_hook(struct inode *inode, 1576 struct extent_state *orig, u64 split) 1577 { 1578 u64 size; 1579 1580 /* not delalloc, ignore it */ 1581 if (!(orig->state & EXTENT_DELALLOC)) 1582 return; 1583 1584 size = orig->end - orig->start + 1; 1585 if (size > BTRFS_MAX_EXTENT_SIZE) { 1586 u64 num_extents; 1587 u64 new_size; 1588 1589 /* 1590 * See the explanation in btrfs_merge_extent_hook, the same 1591 * applies here, just in reverse. 1592 */ 1593 new_size = orig->end - split + 1; 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1595 BTRFS_MAX_EXTENT_SIZE); 1596 new_size = split - orig->start; 1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1598 BTRFS_MAX_EXTENT_SIZE); 1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1601 return; 1602 } 1603 1604 spin_lock(&BTRFS_I(inode)->lock); 1605 BTRFS_I(inode)->outstanding_extents++; 1606 spin_unlock(&BTRFS_I(inode)->lock); 1607 } 1608 1609 /* 1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1611 * extents so we can keep track of new extents that are just merged onto old 1612 * extents, such as when we are doing sequential writes, so we can properly 1613 * account for the metadata space we'll need. 1614 */ 1615 static void btrfs_merge_extent_hook(struct inode *inode, 1616 struct extent_state *new, 1617 struct extent_state *other) 1618 { 1619 u64 new_size, old_size; 1620 u64 num_extents; 1621 1622 /* not delalloc, ignore it */ 1623 if (!(other->state & EXTENT_DELALLOC)) 1624 return; 1625 1626 if (new->start > other->start) 1627 new_size = new->end - other->start + 1; 1628 else 1629 new_size = other->end - new->start + 1; 1630 1631 /* we're not bigger than the max, unreserve the space and go */ 1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 BTRFS_I(inode)->outstanding_extents--; 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 return; 1637 } 1638 1639 /* 1640 * We have to add up either side to figure out how many extents were 1641 * accounted for before we merged into one big extent. If the number of 1642 * extents we accounted for is <= the amount we need for the new range 1643 * then we can return, otherwise drop. Think of it like this 1644 * 1645 * [ 4k][MAX_SIZE] 1646 * 1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1648 * need 2 outstanding extents, on one side we have 1 and the other side 1649 * we have 1 so they are == and we can return. But in this case 1650 * 1651 * [MAX_SIZE+4k][MAX_SIZE+4k] 1652 * 1653 * Each range on their own accounts for 2 extents, but merged together 1654 * they are only 3 extents worth of accounting, so we need to drop in 1655 * this case. 1656 */ 1657 old_size = other->end - other->start + 1; 1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1659 BTRFS_MAX_EXTENT_SIZE); 1660 old_size = new->end - new->start + 1; 1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1662 BTRFS_MAX_EXTENT_SIZE); 1663 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1666 return; 1667 1668 spin_lock(&BTRFS_I(inode)->lock); 1669 BTRFS_I(inode)->outstanding_extents--; 1670 spin_unlock(&BTRFS_I(inode)->lock); 1671 } 1672 1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1674 struct inode *inode) 1675 { 1676 spin_lock(&root->delalloc_lock); 1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1679 &root->delalloc_inodes); 1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1681 &BTRFS_I(inode)->runtime_flags); 1682 root->nr_delalloc_inodes++; 1683 if (root->nr_delalloc_inodes == 1) { 1684 spin_lock(&root->fs_info->delalloc_root_lock); 1685 BUG_ON(!list_empty(&root->delalloc_root)); 1686 list_add_tail(&root->delalloc_root, 1687 &root->fs_info->delalloc_roots); 1688 spin_unlock(&root->fs_info->delalloc_root_lock); 1689 } 1690 } 1691 spin_unlock(&root->delalloc_lock); 1692 } 1693 1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1695 struct inode *inode) 1696 { 1697 spin_lock(&root->delalloc_lock); 1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1701 &BTRFS_I(inode)->runtime_flags); 1702 root->nr_delalloc_inodes--; 1703 if (!root->nr_delalloc_inodes) { 1704 spin_lock(&root->fs_info->delalloc_root_lock); 1705 BUG_ON(list_empty(&root->delalloc_root)); 1706 list_del_init(&root->delalloc_root); 1707 spin_unlock(&root->fs_info->delalloc_root_lock); 1708 } 1709 } 1710 spin_unlock(&root->delalloc_lock); 1711 } 1712 1713 /* 1714 * extent_io.c set_bit_hook, used to track delayed allocation 1715 * bytes in this file, and to maintain the list of inodes that 1716 * have pending delalloc work to be done. 1717 */ 1718 static void btrfs_set_bit_hook(struct inode *inode, 1719 struct extent_state *state, unsigned *bits) 1720 { 1721 1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1723 WARN_ON(1); 1724 /* 1725 * set_bit and clear bit hooks normally require _irqsave/restore 1726 * but in this case, we are only testing for the DELALLOC 1727 * bit, which is only set or cleared with irqs on 1728 */ 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1730 struct btrfs_root *root = BTRFS_I(inode)->root; 1731 u64 len = state->end + 1 - state->start; 1732 bool do_list = !btrfs_is_free_space_inode(inode); 1733 1734 if (*bits & EXTENT_FIRST_DELALLOC) { 1735 *bits &= ~EXTENT_FIRST_DELALLOC; 1736 } else { 1737 spin_lock(&BTRFS_I(inode)->lock); 1738 BTRFS_I(inode)->outstanding_extents++; 1739 spin_unlock(&BTRFS_I(inode)->lock); 1740 } 1741 1742 /* For sanity tests */ 1743 if (btrfs_test_is_dummy_root(root)) 1744 return; 1745 1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1747 root->fs_info->delalloc_batch); 1748 spin_lock(&BTRFS_I(inode)->lock); 1749 BTRFS_I(inode)->delalloc_bytes += len; 1750 if (*bits & EXTENT_DEFRAG) 1751 BTRFS_I(inode)->defrag_bytes += len; 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1753 &BTRFS_I(inode)->runtime_flags)) 1754 btrfs_add_delalloc_inodes(root, inode); 1755 spin_unlock(&BTRFS_I(inode)->lock); 1756 } 1757 } 1758 1759 /* 1760 * extent_io.c clear_bit_hook, see set_bit_hook for why 1761 */ 1762 static void btrfs_clear_bit_hook(struct inode *inode, 1763 struct extent_state *state, 1764 unsigned *bits) 1765 { 1766 u64 len = state->end + 1 - state->start; 1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1768 BTRFS_MAX_EXTENT_SIZE); 1769 1770 spin_lock(&BTRFS_I(inode)->lock); 1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1772 BTRFS_I(inode)->defrag_bytes -= len; 1773 spin_unlock(&BTRFS_I(inode)->lock); 1774 1775 /* 1776 * set_bit and clear bit hooks normally require _irqsave/restore 1777 * but in this case, we are only testing for the DELALLOC 1778 * bit, which is only set or cleared with irqs on 1779 */ 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 bool do_list = !btrfs_is_free_space_inode(inode); 1783 1784 if (*bits & EXTENT_FIRST_DELALLOC) { 1785 *bits &= ~EXTENT_FIRST_DELALLOC; 1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 BTRFS_I(inode)->outstanding_extents -= num_extents; 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * We don't reserve metadata space for space cache inodes so we 1794 * don't need to call dellalloc_release_metadata if there is an 1795 * error. 1796 */ 1797 if (*bits & EXTENT_DO_ACCOUNTING && 1798 root != root->fs_info->tree_root) 1799 btrfs_delalloc_release_metadata(inode, len); 1800 1801 /* For sanity tests. */ 1802 if (btrfs_test_is_dummy_root(root)) 1803 return; 1804 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1806 && do_list && !(state->state & EXTENT_NORESERVE)) 1807 btrfs_free_reserved_data_space_noquota(inode, 1808 state->start, len); 1809 1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1811 root->fs_info->delalloc_batch); 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 BTRFS_I(inode)->delalloc_bytes -= len; 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1816 &BTRFS_I(inode)->runtime_flags)) 1817 btrfs_del_delalloc_inode(root, inode); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 } 1820 } 1821 1822 /* 1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1824 * we don't create bios that span stripes or chunks 1825 */ 1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1827 size_t size, struct bio *bio, 1828 unsigned long bio_flags) 1829 { 1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1832 u64 length = 0; 1833 u64 map_length; 1834 int ret; 1835 1836 if (bio_flags & EXTENT_BIO_COMPRESSED) 1837 return 0; 1838 1839 length = bio->bi_iter.bi_size; 1840 map_length = length; 1841 ret = btrfs_map_block(root->fs_info, rw, logical, 1842 &map_length, NULL, 0); 1843 /* Will always return 0 with map_multi == NULL */ 1844 BUG_ON(ret < 0); 1845 if (map_length < length + size) 1846 return 1; 1847 return 0; 1848 } 1849 1850 /* 1851 * in order to insert checksums into the metadata in large chunks, 1852 * we wait until bio submission time. All the pages in the bio are 1853 * checksummed and sums are attached onto the ordered extent record. 1854 * 1855 * At IO completion time the cums attached on the ordered extent record 1856 * are inserted into the btree 1857 */ 1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1859 struct bio *bio, int mirror_num, 1860 unsigned long bio_flags, 1861 u64 bio_offset) 1862 { 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1867 BUG_ON(ret); /* -ENOMEM */ 1868 return 0; 1869 } 1870 1871 /* 1872 * in order to insert checksums into the metadata in large chunks, 1873 * we wait until bio submission time. All the pages in the bio are 1874 * checksummed and sums are attached onto the ordered extent record. 1875 * 1876 * At IO completion time the cums attached on the ordered extent record 1877 * are inserted into the btree 1878 */ 1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1880 int mirror_num, unsigned long bio_flags, 1881 u64 bio_offset) 1882 { 1883 struct btrfs_root *root = BTRFS_I(inode)->root; 1884 int ret; 1885 1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1887 if (ret) { 1888 bio->bi_error = ret; 1889 bio_endio(bio); 1890 } 1891 return ret; 1892 } 1893 1894 /* 1895 * extent_io.c submission hook. This does the right thing for csum calculation 1896 * on write, or reading the csums from the tree before a read 1897 */ 1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1899 int mirror_num, unsigned long bio_flags, 1900 u64 bio_offset) 1901 { 1902 struct btrfs_root *root = BTRFS_I(inode)->root; 1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1904 int ret = 0; 1905 int skip_sum; 1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1907 1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1909 1910 if (btrfs_is_free_space_inode(inode)) 1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1912 1913 if (!(rw & REQ_WRITE)) { 1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1915 if (ret) 1916 goto out; 1917 1918 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1919 ret = btrfs_submit_compressed_read(inode, bio, 1920 mirror_num, 1921 bio_flags); 1922 goto out; 1923 } else if (!skip_sum) { 1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1925 if (ret) 1926 goto out; 1927 } 1928 goto mapit; 1929 } else if (async && !skip_sum) { 1930 /* csum items have already been cloned */ 1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1932 goto mapit; 1933 /* we're doing a write, do the async checksumming */ 1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1935 inode, rw, bio, mirror_num, 1936 bio_flags, bio_offset, 1937 __btrfs_submit_bio_start, 1938 __btrfs_submit_bio_done); 1939 goto out; 1940 } else if (!skip_sum) { 1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1942 if (ret) 1943 goto out; 1944 } 1945 1946 mapit: 1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1948 1949 out: 1950 if (ret < 0) { 1951 bio->bi_error = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * given a list of ordered sums record them in the inode. This happens 1959 * at IO completion time based on sums calculated at bio submission time. 1960 */ 1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1962 struct inode *inode, u64 file_offset, 1963 struct list_head *list) 1964 { 1965 struct btrfs_ordered_sum *sum; 1966 1967 list_for_each_entry(sum, list, list) { 1968 trans->adding_csums = 1; 1969 btrfs_csum_file_blocks(trans, 1970 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1971 trans->adding_csums = 0; 1972 } 1973 return 0; 1974 } 1975 1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1977 struct extent_state **cached_state) 1978 { 1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1981 cached_state, GFP_NOFS); 1982 } 1983 1984 /* see btrfs_writepage_start_hook for details on why this is required */ 1985 struct btrfs_writepage_fixup { 1986 struct page *page; 1987 struct btrfs_work work; 1988 }; 1989 1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1991 { 1992 struct btrfs_writepage_fixup *fixup; 1993 struct btrfs_ordered_extent *ordered; 1994 struct extent_state *cached_state = NULL; 1995 struct page *page; 1996 struct inode *inode; 1997 u64 page_start; 1998 u64 page_end; 1999 int ret; 2000 2001 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2002 page = fixup->page; 2003 again: 2004 lock_page(page); 2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2006 ClearPageChecked(page); 2007 goto out_page; 2008 } 2009 2010 inode = page->mapping->host; 2011 page_start = page_offset(page); 2012 page_end = page_offset(page) + PAGE_SIZE - 1; 2013 2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2015 &cached_state); 2016 2017 /* already ordered? We're done */ 2018 if (PagePrivate2(page)) 2019 goto out; 2020 2021 ordered = btrfs_lookup_ordered_range(inode, page_start, 2022 PAGE_SIZE); 2023 if (ordered) { 2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2025 page_end, &cached_state, GFP_NOFS); 2026 unlock_page(page); 2027 btrfs_start_ordered_extent(inode, ordered, 1); 2028 btrfs_put_ordered_extent(ordered); 2029 goto again; 2030 } 2031 2032 ret = btrfs_delalloc_reserve_space(inode, page_start, 2033 PAGE_SIZE); 2034 if (ret) { 2035 mapping_set_error(page->mapping, ret); 2036 end_extent_writepage(page, ret, page_start, page_end); 2037 ClearPageChecked(page); 2038 goto out; 2039 } 2040 2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2042 ClearPageChecked(page); 2043 set_page_dirty(page); 2044 out: 2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2046 &cached_state, GFP_NOFS); 2047 out_page: 2048 unlock_page(page); 2049 put_page(page); 2050 kfree(fixup); 2051 } 2052 2053 /* 2054 * There are a few paths in the higher layers of the kernel that directly 2055 * set the page dirty bit without asking the filesystem if it is a 2056 * good idea. This causes problems because we want to make sure COW 2057 * properly happens and the data=ordered rules are followed. 2058 * 2059 * In our case any range that doesn't have the ORDERED bit set 2060 * hasn't been properly setup for IO. We kick off an async process 2061 * to fix it up. The async helper will wait for ordered extents, set 2062 * the delalloc bit and make it safe to write the page. 2063 */ 2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2065 { 2066 struct inode *inode = page->mapping->host; 2067 struct btrfs_writepage_fixup *fixup; 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 2070 /* this page is properly in the ordered list */ 2071 if (TestClearPagePrivate2(page)) 2072 return 0; 2073 2074 if (PageChecked(page)) 2075 return -EAGAIN; 2076 2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2078 if (!fixup) 2079 return -EAGAIN; 2080 2081 SetPageChecked(page); 2082 get_page(page); 2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2084 btrfs_writepage_fixup_worker, NULL, NULL); 2085 fixup->page = page; 2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2087 return -EBUSY; 2088 } 2089 2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2091 struct inode *inode, u64 file_pos, 2092 u64 disk_bytenr, u64 disk_num_bytes, 2093 u64 num_bytes, u64 ram_bytes, 2094 u8 compression, u8 encryption, 2095 u16 other_encoding, int extent_type) 2096 { 2097 struct btrfs_root *root = BTRFS_I(inode)->root; 2098 struct btrfs_file_extent_item *fi; 2099 struct btrfs_path *path; 2100 struct extent_buffer *leaf; 2101 struct btrfs_key ins; 2102 int extent_inserted = 0; 2103 int ret; 2104 2105 path = btrfs_alloc_path(); 2106 if (!path) 2107 return -ENOMEM; 2108 2109 /* 2110 * we may be replacing one extent in the tree with another. 2111 * The new extent is pinned in the extent map, and we don't want 2112 * to drop it from the cache until it is completely in the btree. 2113 * 2114 * So, tell btrfs_drop_extents to leave this extent in the cache. 2115 * the caller is expected to unpin it and allow it to be merged 2116 * with the others. 2117 */ 2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2119 file_pos + num_bytes, NULL, 0, 2120 1, sizeof(*fi), &extent_inserted); 2121 if (ret) 2122 goto out; 2123 2124 if (!extent_inserted) { 2125 ins.objectid = btrfs_ino(inode); 2126 ins.offset = file_pos; 2127 ins.type = BTRFS_EXTENT_DATA_KEY; 2128 2129 path->leave_spinning = 1; 2130 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2131 sizeof(*fi)); 2132 if (ret) 2133 goto out; 2134 } 2135 leaf = path->nodes[0]; 2136 fi = btrfs_item_ptr(leaf, path->slots[0], 2137 struct btrfs_file_extent_item); 2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2139 btrfs_set_file_extent_type(leaf, fi, extent_type); 2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2142 btrfs_set_file_extent_offset(leaf, fi, 0); 2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2145 btrfs_set_file_extent_compression(leaf, fi, compression); 2146 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2148 2149 btrfs_mark_buffer_dirty(leaf); 2150 btrfs_release_path(path); 2151 2152 inode_add_bytes(inode, num_bytes); 2153 2154 ins.objectid = disk_bytenr; 2155 ins.offset = disk_num_bytes; 2156 ins.type = BTRFS_EXTENT_ITEM_KEY; 2157 ret = btrfs_alloc_reserved_file_extent(trans, root, 2158 root->root_key.objectid, 2159 btrfs_ino(inode), file_pos, 2160 ram_bytes, &ins); 2161 /* 2162 * Release the reserved range from inode dirty range map, as it is 2163 * already moved into delayed_ref_head 2164 */ 2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2166 out: 2167 btrfs_free_path(path); 2168 2169 return ret; 2170 } 2171 2172 /* snapshot-aware defrag */ 2173 struct sa_defrag_extent_backref { 2174 struct rb_node node; 2175 struct old_sa_defrag_extent *old; 2176 u64 root_id; 2177 u64 inum; 2178 u64 file_pos; 2179 u64 extent_offset; 2180 u64 num_bytes; 2181 u64 generation; 2182 }; 2183 2184 struct old_sa_defrag_extent { 2185 struct list_head list; 2186 struct new_sa_defrag_extent *new; 2187 2188 u64 extent_offset; 2189 u64 bytenr; 2190 u64 offset; 2191 u64 len; 2192 int count; 2193 }; 2194 2195 struct new_sa_defrag_extent { 2196 struct rb_root root; 2197 struct list_head head; 2198 struct btrfs_path *path; 2199 struct inode *inode; 2200 u64 file_pos; 2201 u64 len; 2202 u64 bytenr; 2203 u64 disk_len; 2204 u8 compress_type; 2205 }; 2206 2207 static int backref_comp(struct sa_defrag_extent_backref *b1, 2208 struct sa_defrag_extent_backref *b2) 2209 { 2210 if (b1->root_id < b2->root_id) 2211 return -1; 2212 else if (b1->root_id > b2->root_id) 2213 return 1; 2214 2215 if (b1->inum < b2->inum) 2216 return -1; 2217 else if (b1->inum > b2->inum) 2218 return 1; 2219 2220 if (b1->file_pos < b2->file_pos) 2221 return -1; 2222 else if (b1->file_pos > b2->file_pos) 2223 return 1; 2224 2225 /* 2226 * [------------------------------] ===> (a range of space) 2227 * |<--->| |<---->| =============> (fs/file tree A) 2228 * |<---------------------------->| ===> (fs/file tree B) 2229 * 2230 * A range of space can refer to two file extents in one tree while 2231 * refer to only one file extent in another tree. 2232 * 2233 * So we may process a disk offset more than one time(two extents in A) 2234 * and locate at the same extent(one extent in B), then insert two same 2235 * backrefs(both refer to the extent in B). 2236 */ 2237 return 0; 2238 } 2239 2240 static void backref_insert(struct rb_root *root, 2241 struct sa_defrag_extent_backref *backref) 2242 { 2243 struct rb_node **p = &root->rb_node; 2244 struct rb_node *parent = NULL; 2245 struct sa_defrag_extent_backref *entry; 2246 int ret; 2247 2248 while (*p) { 2249 parent = *p; 2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2251 2252 ret = backref_comp(backref, entry); 2253 if (ret < 0) 2254 p = &(*p)->rb_left; 2255 else 2256 p = &(*p)->rb_right; 2257 } 2258 2259 rb_link_node(&backref->node, parent, p); 2260 rb_insert_color(&backref->node, root); 2261 } 2262 2263 /* 2264 * Note the backref might has changed, and in this case we just return 0. 2265 */ 2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2267 void *ctx) 2268 { 2269 struct btrfs_file_extent_item *extent; 2270 struct btrfs_fs_info *fs_info; 2271 struct old_sa_defrag_extent *old = ctx; 2272 struct new_sa_defrag_extent *new = old->new; 2273 struct btrfs_path *path = new->path; 2274 struct btrfs_key key; 2275 struct btrfs_root *root; 2276 struct sa_defrag_extent_backref *backref; 2277 struct extent_buffer *leaf; 2278 struct inode *inode = new->inode; 2279 int slot; 2280 int ret; 2281 u64 extent_offset; 2282 u64 num_bytes; 2283 2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2285 inum == btrfs_ino(inode)) 2286 return 0; 2287 2288 key.objectid = root_id; 2289 key.type = BTRFS_ROOT_ITEM_KEY; 2290 key.offset = (u64)-1; 2291 2292 fs_info = BTRFS_I(inode)->root->fs_info; 2293 root = btrfs_read_fs_root_no_name(fs_info, &key); 2294 if (IS_ERR(root)) { 2295 if (PTR_ERR(root) == -ENOENT) 2296 return 0; 2297 WARN_ON(1); 2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2299 inum, offset, root_id); 2300 return PTR_ERR(root); 2301 } 2302 2303 key.objectid = inum; 2304 key.type = BTRFS_EXTENT_DATA_KEY; 2305 if (offset > (u64)-1 << 32) 2306 key.offset = 0; 2307 else 2308 key.offset = offset; 2309 2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2311 if (WARN_ON(ret < 0)) 2312 return ret; 2313 ret = 0; 2314 2315 while (1) { 2316 cond_resched(); 2317 2318 leaf = path->nodes[0]; 2319 slot = path->slots[0]; 2320 2321 if (slot >= btrfs_header_nritems(leaf)) { 2322 ret = btrfs_next_leaf(root, path); 2323 if (ret < 0) { 2324 goto out; 2325 } else if (ret > 0) { 2326 ret = 0; 2327 goto out; 2328 } 2329 continue; 2330 } 2331 2332 path->slots[0]++; 2333 2334 btrfs_item_key_to_cpu(leaf, &key, slot); 2335 2336 if (key.objectid > inum) 2337 goto out; 2338 2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2340 continue; 2341 2342 extent = btrfs_item_ptr(leaf, slot, 2343 struct btrfs_file_extent_item); 2344 2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2346 continue; 2347 2348 /* 2349 * 'offset' refers to the exact key.offset, 2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2351 * (key.offset - extent_offset). 2352 */ 2353 if (key.offset != offset) 2354 continue; 2355 2356 extent_offset = btrfs_file_extent_offset(leaf, extent); 2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2358 2359 if (extent_offset >= old->extent_offset + old->offset + 2360 old->len || extent_offset + num_bytes <= 2361 old->extent_offset + old->offset) 2362 continue; 2363 break; 2364 } 2365 2366 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2367 if (!backref) { 2368 ret = -ENOENT; 2369 goto out; 2370 } 2371 2372 backref->root_id = root_id; 2373 backref->inum = inum; 2374 backref->file_pos = offset; 2375 backref->num_bytes = num_bytes; 2376 backref->extent_offset = extent_offset; 2377 backref->generation = btrfs_file_extent_generation(leaf, extent); 2378 backref->old = old; 2379 backref_insert(&new->root, backref); 2380 old->count++; 2381 out: 2382 btrfs_release_path(path); 2383 WARN_ON(ret); 2384 return ret; 2385 } 2386 2387 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2388 struct new_sa_defrag_extent *new) 2389 { 2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2391 struct old_sa_defrag_extent *old, *tmp; 2392 int ret; 2393 2394 new->path = path; 2395 2396 list_for_each_entry_safe(old, tmp, &new->head, list) { 2397 ret = iterate_inodes_from_logical(old->bytenr + 2398 old->extent_offset, fs_info, 2399 path, record_one_backref, 2400 old); 2401 if (ret < 0 && ret != -ENOENT) 2402 return false; 2403 2404 /* no backref to be processed for this extent */ 2405 if (!old->count) { 2406 list_del(&old->list); 2407 kfree(old); 2408 } 2409 } 2410 2411 if (list_empty(&new->head)) 2412 return false; 2413 2414 return true; 2415 } 2416 2417 static int relink_is_mergable(struct extent_buffer *leaf, 2418 struct btrfs_file_extent_item *fi, 2419 struct new_sa_defrag_extent *new) 2420 { 2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2422 return 0; 2423 2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2425 return 0; 2426 2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2428 return 0; 2429 2430 if (btrfs_file_extent_encryption(leaf, fi) || 2431 btrfs_file_extent_other_encoding(leaf, fi)) 2432 return 0; 2433 2434 return 1; 2435 } 2436 2437 /* 2438 * Note the backref might has changed, and in this case we just return 0. 2439 */ 2440 static noinline int relink_extent_backref(struct btrfs_path *path, 2441 struct sa_defrag_extent_backref *prev, 2442 struct sa_defrag_extent_backref *backref) 2443 { 2444 struct btrfs_file_extent_item *extent; 2445 struct btrfs_file_extent_item *item; 2446 struct btrfs_ordered_extent *ordered; 2447 struct btrfs_trans_handle *trans; 2448 struct btrfs_fs_info *fs_info; 2449 struct btrfs_root *root; 2450 struct btrfs_key key; 2451 struct extent_buffer *leaf; 2452 struct old_sa_defrag_extent *old = backref->old; 2453 struct new_sa_defrag_extent *new = old->new; 2454 struct inode *src_inode = new->inode; 2455 struct inode *inode; 2456 struct extent_state *cached = NULL; 2457 int ret = 0; 2458 u64 start; 2459 u64 len; 2460 u64 lock_start; 2461 u64 lock_end; 2462 bool merge = false; 2463 int index; 2464 2465 if (prev && prev->root_id == backref->root_id && 2466 prev->inum == backref->inum && 2467 prev->file_pos + prev->num_bytes == backref->file_pos) 2468 merge = true; 2469 2470 /* step 1: get root */ 2471 key.objectid = backref->root_id; 2472 key.type = BTRFS_ROOT_ITEM_KEY; 2473 key.offset = (u64)-1; 2474 2475 fs_info = BTRFS_I(src_inode)->root->fs_info; 2476 index = srcu_read_lock(&fs_info->subvol_srcu); 2477 2478 root = btrfs_read_fs_root_no_name(fs_info, &key); 2479 if (IS_ERR(root)) { 2480 srcu_read_unlock(&fs_info->subvol_srcu, index); 2481 if (PTR_ERR(root) == -ENOENT) 2482 return 0; 2483 return PTR_ERR(root); 2484 } 2485 2486 if (btrfs_root_readonly(root)) { 2487 srcu_read_unlock(&fs_info->subvol_srcu, index); 2488 return 0; 2489 } 2490 2491 /* step 2: get inode */ 2492 key.objectid = backref->inum; 2493 key.type = BTRFS_INODE_ITEM_KEY; 2494 key.offset = 0; 2495 2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2497 if (IS_ERR(inode)) { 2498 srcu_read_unlock(&fs_info->subvol_srcu, index); 2499 return 0; 2500 } 2501 2502 srcu_read_unlock(&fs_info->subvol_srcu, index); 2503 2504 /* step 3: relink backref */ 2505 lock_start = backref->file_pos; 2506 lock_end = backref->file_pos + backref->num_bytes - 1; 2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2508 &cached); 2509 2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2511 if (ordered) { 2512 btrfs_put_ordered_extent(ordered); 2513 goto out_unlock; 2514 } 2515 2516 trans = btrfs_join_transaction(root); 2517 if (IS_ERR(trans)) { 2518 ret = PTR_ERR(trans); 2519 goto out_unlock; 2520 } 2521 2522 key.objectid = backref->inum; 2523 key.type = BTRFS_EXTENT_DATA_KEY; 2524 key.offset = backref->file_pos; 2525 2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2527 if (ret < 0) { 2528 goto out_free_path; 2529 } else if (ret > 0) { 2530 ret = 0; 2531 goto out_free_path; 2532 } 2533 2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2535 struct btrfs_file_extent_item); 2536 2537 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2538 backref->generation) 2539 goto out_free_path; 2540 2541 btrfs_release_path(path); 2542 2543 start = backref->file_pos; 2544 if (backref->extent_offset < old->extent_offset + old->offset) 2545 start += old->extent_offset + old->offset - 2546 backref->extent_offset; 2547 2548 len = min(backref->extent_offset + backref->num_bytes, 2549 old->extent_offset + old->offset + old->len); 2550 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2551 2552 ret = btrfs_drop_extents(trans, root, inode, start, 2553 start + len, 1); 2554 if (ret) 2555 goto out_free_path; 2556 again: 2557 key.objectid = btrfs_ino(inode); 2558 key.type = BTRFS_EXTENT_DATA_KEY; 2559 key.offset = start; 2560 2561 path->leave_spinning = 1; 2562 if (merge) { 2563 struct btrfs_file_extent_item *fi; 2564 u64 extent_len; 2565 struct btrfs_key found_key; 2566 2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2568 if (ret < 0) 2569 goto out_free_path; 2570 2571 path->slots[0]--; 2572 leaf = path->nodes[0]; 2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2574 2575 fi = btrfs_item_ptr(leaf, path->slots[0], 2576 struct btrfs_file_extent_item); 2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2578 2579 if (extent_len + found_key.offset == start && 2580 relink_is_mergable(leaf, fi, new)) { 2581 btrfs_set_file_extent_num_bytes(leaf, fi, 2582 extent_len + len); 2583 btrfs_mark_buffer_dirty(leaf); 2584 inode_add_bytes(inode, len); 2585 2586 ret = 1; 2587 goto out_free_path; 2588 } else { 2589 merge = false; 2590 btrfs_release_path(path); 2591 goto again; 2592 } 2593 } 2594 2595 ret = btrfs_insert_empty_item(trans, root, path, &key, 2596 sizeof(*extent)); 2597 if (ret) { 2598 btrfs_abort_transaction(trans, root, ret); 2599 goto out_free_path; 2600 } 2601 2602 leaf = path->nodes[0]; 2603 item = btrfs_item_ptr(leaf, path->slots[0], 2604 struct btrfs_file_extent_item); 2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2608 btrfs_set_file_extent_num_bytes(leaf, item, len); 2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2610 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2613 btrfs_set_file_extent_encryption(leaf, item, 0); 2614 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2615 2616 btrfs_mark_buffer_dirty(leaf); 2617 inode_add_bytes(inode, len); 2618 btrfs_release_path(path); 2619 2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2621 new->disk_len, 0, 2622 backref->root_id, backref->inum, 2623 new->file_pos); /* start - extent_offset */ 2624 if (ret) { 2625 btrfs_abort_transaction(trans, root, ret); 2626 goto out_free_path; 2627 } 2628 2629 ret = 1; 2630 out_free_path: 2631 btrfs_release_path(path); 2632 path->leave_spinning = 0; 2633 btrfs_end_transaction(trans, root); 2634 out_unlock: 2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2636 &cached, GFP_NOFS); 2637 iput(inode); 2638 return ret; 2639 } 2640 2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2642 { 2643 struct old_sa_defrag_extent *old, *tmp; 2644 2645 if (!new) 2646 return; 2647 2648 list_for_each_entry_safe(old, tmp, &new->head, list) { 2649 kfree(old); 2650 } 2651 kfree(new); 2652 } 2653 2654 static void relink_file_extents(struct new_sa_defrag_extent *new) 2655 { 2656 struct btrfs_path *path; 2657 struct sa_defrag_extent_backref *backref; 2658 struct sa_defrag_extent_backref *prev = NULL; 2659 struct inode *inode; 2660 struct btrfs_root *root; 2661 struct rb_node *node; 2662 int ret; 2663 2664 inode = new->inode; 2665 root = BTRFS_I(inode)->root; 2666 2667 path = btrfs_alloc_path(); 2668 if (!path) 2669 return; 2670 2671 if (!record_extent_backrefs(path, new)) { 2672 btrfs_free_path(path); 2673 goto out; 2674 } 2675 btrfs_release_path(path); 2676 2677 while (1) { 2678 node = rb_first(&new->root); 2679 if (!node) 2680 break; 2681 rb_erase(node, &new->root); 2682 2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2684 2685 ret = relink_extent_backref(path, prev, backref); 2686 WARN_ON(ret < 0); 2687 2688 kfree(prev); 2689 2690 if (ret == 1) 2691 prev = backref; 2692 else 2693 prev = NULL; 2694 cond_resched(); 2695 } 2696 kfree(prev); 2697 2698 btrfs_free_path(path); 2699 out: 2700 free_sa_defrag_extent(new); 2701 2702 atomic_dec(&root->fs_info->defrag_running); 2703 wake_up(&root->fs_info->transaction_wait); 2704 } 2705 2706 static struct new_sa_defrag_extent * 2707 record_old_file_extents(struct inode *inode, 2708 struct btrfs_ordered_extent *ordered) 2709 { 2710 struct btrfs_root *root = BTRFS_I(inode)->root; 2711 struct btrfs_path *path; 2712 struct btrfs_key key; 2713 struct old_sa_defrag_extent *old; 2714 struct new_sa_defrag_extent *new; 2715 int ret; 2716 2717 new = kmalloc(sizeof(*new), GFP_NOFS); 2718 if (!new) 2719 return NULL; 2720 2721 new->inode = inode; 2722 new->file_pos = ordered->file_offset; 2723 new->len = ordered->len; 2724 new->bytenr = ordered->start; 2725 new->disk_len = ordered->disk_len; 2726 new->compress_type = ordered->compress_type; 2727 new->root = RB_ROOT; 2728 INIT_LIST_HEAD(&new->head); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) 2732 goto out_kfree; 2733 2734 key.objectid = btrfs_ino(inode); 2735 key.type = BTRFS_EXTENT_DATA_KEY; 2736 key.offset = new->file_pos; 2737 2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2739 if (ret < 0) 2740 goto out_free_path; 2741 if (ret > 0 && path->slots[0] > 0) 2742 path->slots[0]--; 2743 2744 /* find out all the old extents for the file range */ 2745 while (1) { 2746 struct btrfs_file_extent_item *extent; 2747 struct extent_buffer *l; 2748 int slot; 2749 u64 num_bytes; 2750 u64 offset; 2751 u64 end; 2752 u64 disk_bytenr; 2753 u64 extent_offset; 2754 2755 l = path->nodes[0]; 2756 slot = path->slots[0]; 2757 2758 if (slot >= btrfs_header_nritems(l)) { 2759 ret = btrfs_next_leaf(root, path); 2760 if (ret < 0) 2761 goto out_free_path; 2762 else if (ret > 0) 2763 break; 2764 continue; 2765 } 2766 2767 btrfs_item_key_to_cpu(l, &key, slot); 2768 2769 if (key.objectid != btrfs_ino(inode)) 2770 break; 2771 if (key.type != BTRFS_EXTENT_DATA_KEY) 2772 break; 2773 if (key.offset >= new->file_pos + new->len) 2774 break; 2775 2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2777 2778 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2779 if (key.offset + num_bytes < new->file_pos) 2780 goto next; 2781 2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2783 if (!disk_bytenr) 2784 goto next; 2785 2786 extent_offset = btrfs_file_extent_offset(l, extent); 2787 2788 old = kmalloc(sizeof(*old), GFP_NOFS); 2789 if (!old) 2790 goto out_free_path; 2791 2792 offset = max(new->file_pos, key.offset); 2793 end = min(new->file_pos + new->len, key.offset + num_bytes); 2794 2795 old->bytenr = disk_bytenr; 2796 old->extent_offset = extent_offset; 2797 old->offset = offset - key.offset; 2798 old->len = end - offset; 2799 old->new = new; 2800 old->count = 0; 2801 list_add_tail(&old->list, &new->head); 2802 next: 2803 path->slots[0]++; 2804 cond_resched(); 2805 } 2806 2807 btrfs_free_path(path); 2808 atomic_inc(&root->fs_info->defrag_running); 2809 2810 return new; 2811 2812 out_free_path: 2813 btrfs_free_path(path); 2814 out_kfree: 2815 free_sa_defrag_extent(new); 2816 return NULL; 2817 } 2818 2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2820 u64 start, u64 len) 2821 { 2822 struct btrfs_block_group_cache *cache; 2823 2824 cache = btrfs_lookup_block_group(root->fs_info, start); 2825 ASSERT(cache); 2826 2827 spin_lock(&cache->lock); 2828 cache->delalloc_bytes -= len; 2829 spin_unlock(&cache->lock); 2830 2831 btrfs_put_block_group(cache); 2832 } 2833 2834 /* as ordered data IO finishes, this gets called so we can finish 2835 * an ordered extent if the range of bytes in the file it covers are 2836 * fully written. 2837 */ 2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2839 { 2840 struct inode *inode = ordered_extent->inode; 2841 struct btrfs_root *root = BTRFS_I(inode)->root; 2842 struct btrfs_trans_handle *trans = NULL; 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2844 struct extent_state *cached_state = NULL; 2845 struct new_sa_defrag_extent *new = NULL; 2846 int compress_type = 0; 2847 int ret = 0; 2848 u64 logical_len = ordered_extent->len; 2849 bool nolock; 2850 bool truncated = false; 2851 2852 nolock = btrfs_is_free_space_inode(inode); 2853 2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2855 ret = -EIO; 2856 goto out; 2857 } 2858 2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2860 ordered_extent->file_offset + 2861 ordered_extent->len - 1); 2862 2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2864 truncated = true; 2865 logical_len = ordered_extent->truncated_len; 2866 /* Truncated the entire extent, don't bother adding */ 2867 if (!logical_len) 2868 goto out; 2869 } 2870 2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2873 2874 /* 2875 * For mwrite(mmap + memset to write) case, we still reserve 2876 * space for NOCOW range. 2877 * As NOCOW won't cause a new delayed ref, just free the space 2878 */ 2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2880 ordered_extent->len); 2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2882 if (nolock) 2883 trans = btrfs_join_transaction_nolock(root); 2884 else 2885 trans = btrfs_join_transaction(root); 2886 if (IS_ERR(trans)) { 2887 ret = PTR_ERR(trans); 2888 trans = NULL; 2889 goto out; 2890 } 2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2892 ret = btrfs_update_inode_fallback(trans, root, inode); 2893 if (ret) /* -ENOMEM or corruption */ 2894 btrfs_abort_transaction(trans, root, ret); 2895 goto out; 2896 } 2897 2898 lock_extent_bits(io_tree, ordered_extent->file_offset, 2899 ordered_extent->file_offset + ordered_extent->len - 1, 2900 &cached_state); 2901 2902 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2903 ordered_extent->file_offset + ordered_extent->len - 1, 2904 EXTENT_DEFRAG, 1, cached_state); 2905 if (ret) { 2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2908 /* the inode is shared */ 2909 new = record_old_file_extents(inode, ordered_extent); 2910 2911 clear_extent_bit(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + ordered_extent->len - 1, 2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2914 } 2915 2916 if (nolock) 2917 trans = btrfs_join_transaction_nolock(root); 2918 else 2919 trans = btrfs_join_transaction(root); 2920 if (IS_ERR(trans)) { 2921 ret = PTR_ERR(trans); 2922 trans = NULL; 2923 goto out_unlock; 2924 } 2925 2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2927 2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2929 compress_type = ordered_extent->compress_type; 2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2931 BUG_ON(compress_type); 2932 ret = btrfs_mark_extent_written(trans, inode, 2933 ordered_extent->file_offset, 2934 ordered_extent->file_offset + 2935 logical_len); 2936 } else { 2937 BUG_ON(root == root->fs_info->tree_root); 2938 ret = insert_reserved_file_extent(trans, inode, 2939 ordered_extent->file_offset, 2940 ordered_extent->start, 2941 ordered_extent->disk_len, 2942 logical_len, logical_len, 2943 compress_type, 0, 0, 2944 BTRFS_FILE_EXTENT_REG); 2945 if (!ret) 2946 btrfs_release_delalloc_bytes(root, 2947 ordered_extent->start, 2948 ordered_extent->disk_len); 2949 } 2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2951 ordered_extent->file_offset, ordered_extent->len, 2952 trans->transid); 2953 if (ret < 0) { 2954 btrfs_abort_transaction(trans, root, ret); 2955 goto out_unlock; 2956 } 2957 2958 add_pending_csums(trans, inode, ordered_extent->file_offset, 2959 &ordered_extent->list); 2960 2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2962 ret = btrfs_update_inode_fallback(trans, root, inode); 2963 if (ret) { /* -ENOMEM or corruption */ 2964 btrfs_abort_transaction(trans, root, ret); 2965 goto out_unlock; 2966 } 2967 ret = 0; 2968 out_unlock: 2969 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2970 ordered_extent->file_offset + 2971 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2972 out: 2973 if (root != root->fs_info->tree_root) 2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2975 if (trans) 2976 btrfs_end_transaction(trans, root); 2977 2978 if (ret || truncated) { 2979 u64 start, end; 2980 2981 if (truncated) 2982 start = ordered_extent->file_offset + logical_len; 2983 else 2984 start = ordered_extent->file_offset; 2985 end = ordered_extent->file_offset + ordered_extent->len - 1; 2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2987 2988 /* Drop the cache for the part of the extent we didn't write. */ 2989 btrfs_drop_extent_cache(inode, start, end, 0); 2990 2991 /* 2992 * If the ordered extent had an IOERR or something else went 2993 * wrong we need to return the space for this ordered extent 2994 * back to the allocator. We only free the extent in the 2995 * truncated case if we didn't write out the extent at all. 2996 */ 2997 if ((ret || !logical_len) && 2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3000 btrfs_free_reserved_extent(root, ordered_extent->start, 3001 ordered_extent->disk_len, 1); 3002 } 3003 3004 3005 /* 3006 * This needs to be done to make sure anybody waiting knows we are done 3007 * updating everything for this ordered extent. 3008 */ 3009 btrfs_remove_ordered_extent(inode, ordered_extent); 3010 3011 /* for snapshot-aware defrag */ 3012 if (new) { 3013 if (ret) { 3014 free_sa_defrag_extent(new); 3015 atomic_dec(&root->fs_info->defrag_running); 3016 } else { 3017 relink_file_extents(new); 3018 } 3019 } 3020 3021 /* once for us */ 3022 btrfs_put_ordered_extent(ordered_extent); 3023 /* once for the tree */ 3024 btrfs_put_ordered_extent(ordered_extent); 3025 3026 return ret; 3027 } 3028 3029 static void finish_ordered_fn(struct btrfs_work *work) 3030 { 3031 struct btrfs_ordered_extent *ordered_extent; 3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3033 btrfs_finish_ordered_io(ordered_extent); 3034 } 3035 3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3037 struct extent_state *state, int uptodate) 3038 { 3039 struct inode *inode = page->mapping->host; 3040 struct btrfs_root *root = BTRFS_I(inode)->root; 3041 struct btrfs_ordered_extent *ordered_extent = NULL; 3042 struct btrfs_workqueue *wq; 3043 btrfs_work_func_t func; 3044 3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3046 3047 ClearPagePrivate2(page); 3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3049 end - start + 1, uptodate)) 3050 return 0; 3051 3052 if (btrfs_is_free_space_inode(inode)) { 3053 wq = root->fs_info->endio_freespace_worker; 3054 func = btrfs_freespace_write_helper; 3055 } else { 3056 wq = root->fs_info->endio_write_workers; 3057 func = btrfs_endio_write_helper; 3058 } 3059 3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3061 NULL); 3062 btrfs_queue_work(wq, &ordered_extent->work); 3063 3064 return 0; 3065 } 3066 3067 static int __readpage_endio_check(struct inode *inode, 3068 struct btrfs_io_bio *io_bio, 3069 int icsum, struct page *page, 3070 int pgoff, u64 start, size_t len) 3071 { 3072 char *kaddr; 3073 u32 csum_expected; 3074 u32 csum = ~(u32)0; 3075 3076 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3077 3078 kaddr = kmap_atomic(page); 3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3080 btrfs_csum_final(csum, (char *)&csum); 3081 if (csum != csum_expected) 3082 goto zeroit; 3083 3084 kunmap_atomic(kaddr); 3085 return 0; 3086 zeroit: 3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3088 "csum failed ino %llu off %llu csum %u expected csum %u", 3089 btrfs_ino(inode), start, csum, csum_expected); 3090 memset(kaddr + pgoff, 1, len); 3091 flush_dcache_page(page); 3092 kunmap_atomic(kaddr); 3093 if (csum_expected == 0) 3094 return 0; 3095 return -EIO; 3096 } 3097 3098 /* 3099 * when reads are done, we need to check csums to verify the data is correct 3100 * if there's a match, we allow the bio to finish. If not, the code in 3101 * extent_io.c will try to find good copies for us. 3102 */ 3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3104 u64 phy_offset, struct page *page, 3105 u64 start, u64 end, int mirror) 3106 { 3107 size_t offset = start - page_offset(page); 3108 struct inode *inode = page->mapping->host; 3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3110 struct btrfs_root *root = BTRFS_I(inode)->root; 3111 3112 if (PageChecked(page)) { 3113 ClearPageChecked(page); 3114 return 0; 3115 } 3116 3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3118 return 0; 3119 3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3123 GFP_NOFS); 3124 return 0; 3125 } 3126 3127 phy_offset >>= inode->i_sb->s_blocksize_bits; 3128 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3129 start, (size_t)(end - start + 1)); 3130 } 3131 3132 void btrfs_add_delayed_iput(struct inode *inode) 3133 { 3134 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3135 struct btrfs_inode *binode = BTRFS_I(inode); 3136 3137 if (atomic_add_unless(&inode->i_count, -1, 1)) 3138 return; 3139 3140 spin_lock(&fs_info->delayed_iput_lock); 3141 if (binode->delayed_iput_count == 0) { 3142 ASSERT(list_empty(&binode->delayed_iput)); 3143 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3144 } else { 3145 binode->delayed_iput_count++; 3146 } 3147 spin_unlock(&fs_info->delayed_iput_lock); 3148 } 3149 3150 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3151 { 3152 struct btrfs_fs_info *fs_info = root->fs_info; 3153 3154 spin_lock(&fs_info->delayed_iput_lock); 3155 while (!list_empty(&fs_info->delayed_iputs)) { 3156 struct btrfs_inode *inode; 3157 3158 inode = list_first_entry(&fs_info->delayed_iputs, 3159 struct btrfs_inode, delayed_iput); 3160 if (inode->delayed_iput_count) { 3161 inode->delayed_iput_count--; 3162 list_move_tail(&inode->delayed_iput, 3163 &fs_info->delayed_iputs); 3164 } else { 3165 list_del_init(&inode->delayed_iput); 3166 } 3167 spin_unlock(&fs_info->delayed_iput_lock); 3168 iput(&inode->vfs_inode); 3169 spin_lock(&fs_info->delayed_iput_lock); 3170 } 3171 spin_unlock(&fs_info->delayed_iput_lock); 3172 } 3173 3174 /* 3175 * This is called in transaction commit time. If there are no orphan 3176 * files in the subvolume, it removes orphan item and frees block_rsv 3177 * structure. 3178 */ 3179 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3180 struct btrfs_root *root) 3181 { 3182 struct btrfs_block_rsv *block_rsv; 3183 int ret; 3184 3185 if (atomic_read(&root->orphan_inodes) || 3186 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3187 return; 3188 3189 spin_lock(&root->orphan_lock); 3190 if (atomic_read(&root->orphan_inodes)) { 3191 spin_unlock(&root->orphan_lock); 3192 return; 3193 } 3194 3195 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3196 spin_unlock(&root->orphan_lock); 3197 return; 3198 } 3199 3200 block_rsv = root->orphan_block_rsv; 3201 root->orphan_block_rsv = NULL; 3202 spin_unlock(&root->orphan_lock); 3203 3204 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3205 btrfs_root_refs(&root->root_item) > 0) { 3206 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3207 root->root_key.objectid); 3208 if (ret) 3209 btrfs_abort_transaction(trans, root, ret); 3210 else 3211 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3212 &root->state); 3213 } 3214 3215 if (block_rsv) { 3216 WARN_ON(block_rsv->size > 0); 3217 btrfs_free_block_rsv(root, block_rsv); 3218 } 3219 } 3220 3221 /* 3222 * This creates an orphan entry for the given inode in case something goes 3223 * wrong in the middle of an unlink/truncate. 3224 * 3225 * NOTE: caller of this function should reserve 5 units of metadata for 3226 * this function. 3227 */ 3228 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3229 { 3230 struct btrfs_root *root = BTRFS_I(inode)->root; 3231 struct btrfs_block_rsv *block_rsv = NULL; 3232 int reserve = 0; 3233 int insert = 0; 3234 int ret; 3235 3236 if (!root->orphan_block_rsv) { 3237 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3238 if (!block_rsv) 3239 return -ENOMEM; 3240 } 3241 3242 spin_lock(&root->orphan_lock); 3243 if (!root->orphan_block_rsv) { 3244 root->orphan_block_rsv = block_rsv; 3245 } else if (block_rsv) { 3246 btrfs_free_block_rsv(root, block_rsv); 3247 block_rsv = NULL; 3248 } 3249 3250 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3251 &BTRFS_I(inode)->runtime_flags)) { 3252 #if 0 3253 /* 3254 * For proper ENOSPC handling, we should do orphan 3255 * cleanup when mounting. But this introduces backward 3256 * compatibility issue. 3257 */ 3258 if (!xchg(&root->orphan_item_inserted, 1)) 3259 insert = 2; 3260 else 3261 insert = 1; 3262 #endif 3263 insert = 1; 3264 atomic_inc(&root->orphan_inodes); 3265 } 3266 3267 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3268 &BTRFS_I(inode)->runtime_flags)) 3269 reserve = 1; 3270 spin_unlock(&root->orphan_lock); 3271 3272 /* grab metadata reservation from transaction handle */ 3273 if (reserve) { 3274 ret = btrfs_orphan_reserve_metadata(trans, inode); 3275 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3276 } 3277 3278 /* insert an orphan item to track this unlinked/truncated file */ 3279 if (insert >= 1) { 3280 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3281 if (ret) { 3282 atomic_dec(&root->orphan_inodes); 3283 if (reserve) { 3284 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3285 &BTRFS_I(inode)->runtime_flags); 3286 btrfs_orphan_release_metadata(inode); 3287 } 3288 if (ret != -EEXIST) { 3289 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3290 &BTRFS_I(inode)->runtime_flags); 3291 btrfs_abort_transaction(trans, root, ret); 3292 return ret; 3293 } 3294 } 3295 ret = 0; 3296 } 3297 3298 /* insert an orphan item to track subvolume contains orphan files */ 3299 if (insert >= 2) { 3300 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3301 root->root_key.objectid); 3302 if (ret && ret != -EEXIST) { 3303 btrfs_abort_transaction(trans, root, ret); 3304 return ret; 3305 } 3306 } 3307 return 0; 3308 } 3309 3310 /* 3311 * We have done the truncate/delete so we can go ahead and remove the orphan 3312 * item for this particular inode. 3313 */ 3314 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3315 struct inode *inode) 3316 { 3317 struct btrfs_root *root = BTRFS_I(inode)->root; 3318 int delete_item = 0; 3319 int release_rsv = 0; 3320 int ret = 0; 3321 3322 spin_lock(&root->orphan_lock); 3323 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3324 &BTRFS_I(inode)->runtime_flags)) 3325 delete_item = 1; 3326 3327 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3328 &BTRFS_I(inode)->runtime_flags)) 3329 release_rsv = 1; 3330 spin_unlock(&root->orphan_lock); 3331 3332 if (delete_item) { 3333 atomic_dec(&root->orphan_inodes); 3334 if (trans) 3335 ret = btrfs_del_orphan_item(trans, root, 3336 btrfs_ino(inode)); 3337 } 3338 3339 if (release_rsv) 3340 btrfs_orphan_release_metadata(inode); 3341 3342 return ret; 3343 } 3344 3345 /* 3346 * this cleans up any orphans that may be left on the list from the last use 3347 * of this root. 3348 */ 3349 int btrfs_orphan_cleanup(struct btrfs_root *root) 3350 { 3351 struct btrfs_path *path; 3352 struct extent_buffer *leaf; 3353 struct btrfs_key key, found_key; 3354 struct btrfs_trans_handle *trans; 3355 struct inode *inode; 3356 u64 last_objectid = 0; 3357 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3358 3359 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3360 return 0; 3361 3362 path = btrfs_alloc_path(); 3363 if (!path) { 3364 ret = -ENOMEM; 3365 goto out; 3366 } 3367 path->reada = READA_BACK; 3368 3369 key.objectid = BTRFS_ORPHAN_OBJECTID; 3370 key.type = BTRFS_ORPHAN_ITEM_KEY; 3371 key.offset = (u64)-1; 3372 3373 while (1) { 3374 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3375 if (ret < 0) 3376 goto out; 3377 3378 /* 3379 * if ret == 0 means we found what we were searching for, which 3380 * is weird, but possible, so only screw with path if we didn't 3381 * find the key and see if we have stuff that matches 3382 */ 3383 if (ret > 0) { 3384 ret = 0; 3385 if (path->slots[0] == 0) 3386 break; 3387 path->slots[0]--; 3388 } 3389 3390 /* pull out the item */ 3391 leaf = path->nodes[0]; 3392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3393 3394 /* make sure the item matches what we want */ 3395 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3396 break; 3397 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3398 break; 3399 3400 /* release the path since we're done with it */ 3401 btrfs_release_path(path); 3402 3403 /* 3404 * this is where we are basically btrfs_lookup, without the 3405 * crossing root thing. we store the inode number in the 3406 * offset of the orphan item. 3407 */ 3408 3409 if (found_key.offset == last_objectid) { 3410 btrfs_err(root->fs_info, 3411 "Error removing orphan entry, stopping orphan cleanup"); 3412 ret = -EINVAL; 3413 goto out; 3414 } 3415 3416 last_objectid = found_key.offset; 3417 3418 found_key.objectid = found_key.offset; 3419 found_key.type = BTRFS_INODE_ITEM_KEY; 3420 found_key.offset = 0; 3421 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3422 ret = PTR_ERR_OR_ZERO(inode); 3423 if (ret && ret != -ESTALE) 3424 goto out; 3425 3426 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3427 struct btrfs_root *dead_root; 3428 struct btrfs_fs_info *fs_info = root->fs_info; 3429 int is_dead_root = 0; 3430 3431 /* 3432 * this is an orphan in the tree root. Currently these 3433 * could come from 2 sources: 3434 * a) a snapshot deletion in progress 3435 * b) a free space cache inode 3436 * We need to distinguish those two, as the snapshot 3437 * orphan must not get deleted. 3438 * find_dead_roots already ran before us, so if this 3439 * is a snapshot deletion, we should find the root 3440 * in the dead_roots list 3441 */ 3442 spin_lock(&fs_info->trans_lock); 3443 list_for_each_entry(dead_root, &fs_info->dead_roots, 3444 root_list) { 3445 if (dead_root->root_key.objectid == 3446 found_key.objectid) { 3447 is_dead_root = 1; 3448 break; 3449 } 3450 } 3451 spin_unlock(&fs_info->trans_lock); 3452 if (is_dead_root) { 3453 /* prevent this orphan from being found again */ 3454 key.offset = found_key.objectid - 1; 3455 continue; 3456 } 3457 } 3458 /* 3459 * Inode is already gone but the orphan item is still there, 3460 * kill the orphan item. 3461 */ 3462 if (ret == -ESTALE) { 3463 trans = btrfs_start_transaction(root, 1); 3464 if (IS_ERR(trans)) { 3465 ret = PTR_ERR(trans); 3466 goto out; 3467 } 3468 btrfs_debug(root->fs_info, "auto deleting %Lu", 3469 found_key.objectid); 3470 ret = btrfs_del_orphan_item(trans, root, 3471 found_key.objectid); 3472 btrfs_end_transaction(trans, root); 3473 if (ret) 3474 goto out; 3475 continue; 3476 } 3477 3478 /* 3479 * add this inode to the orphan list so btrfs_orphan_del does 3480 * the proper thing when we hit it 3481 */ 3482 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3483 &BTRFS_I(inode)->runtime_flags); 3484 atomic_inc(&root->orphan_inodes); 3485 3486 /* if we have links, this was a truncate, lets do that */ 3487 if (inode->i_nlink) { 3488 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3489 iput(inode); 3490 continue; 3491 } 3492 nr_truncate++; 3493 3494 /* 1 for the orphan item deletion. */ 3495 trans = btrfs_start_transaction(root, 1); 3496 if (IS_ERR(trans)) { 3497 iput(inode); 3498 ret = PTR_ERR(trans); 3499 goto out; 3500 } 3501 ret = btrfs_orphan_add(trans, inode); 3502 btrfs_end_transaction(trans, root); 3503 if (ret) { 3504 iput(inode); 3505 goto out; 3506 } 3507 3508 ret = btrfs_truncate(inode); 3509 if (ret) 3510 btrfs_orphan_del(NULL, inode); 3511 } else { 3512 nr_unlink++; 3513 } 3514 3515 /* this will do delete_inode and everything for us */ 3516 iput(inode); 3517 if (ret) 3518 goto out; 3519 } 3520 /* release the path since we're done with it */ 3521 btrfs_release_path(path); 3522 3523 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3524 3525 if (root->orphan_block_rsv) 3526 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3527 (u64)-1); 3528 3529 if (root->orphan_block_rsv || 3530 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3531 trans = btrfs_join_transaction(root); 3532 if (!IS_ERR(trans)) 3533 btrfs_end_transaction(trans, root); 3534 } 3535 3536 if (nr_unlink) 3537 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3538 if (nr_truncate) 3539 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3540 3541 out: 3542 if (ret) 3543 btrfs_err(root->fs_info, 3544 "could not do orphan cleanup %d", ret); 3545 btrfs_free_path(path); 3546 return ret; 3547 } 3548 3549 /* 3550 * very simple check to peek ahead in the leaf looking for xattrs. If we 3551 * don't find any xattrs, we know there can't be any acls. 3552 * 3553 * slot is the slot the inode is in, objectid is the objectid of the inode 3554 */ 3555 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3556 int slot, u64 objectid, 3557 int *first_xattr_slot) 3558 { 3559 u32 nritems = btrfs_header_nritems(leaf); 3560 struct btrfs_key found_key; 3561 static u64 xattr_access = 0; 3562 static u64 xattr_default = 0; 3563 int scanned = 0; 3564 3565 if (!xattr_access) { 3566 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3567 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3568 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3569 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3570 } 3571 3572 slot++; 3573 *first_xattr_slot = -1; 3574 while (slot < nritems) { 3575 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3576 3577 /* we found a different objectid, there must not be acls */ 3578 if (found_key.objectid != objectid) 3579 return 0; 3580 3581 /* we found an xattr, assume we've got an acl */ 3582 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3583 if (*first_xattr_slot == -1) 3584 *first_xattr_slot = slot; 3585 if (found_key.offset == xattr_access || 3586 found_key.offset == xattr_default) 3587 return 1; 3588 } 3589 3590 /* 3591 * we found a key greater than an xattr key, there can't 3592 * be any acls later on 3593 */ 3594 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3595 return 0; 3596 3597 slot++; 3598 scanned++; 3599 3600 /* 3601 * it goes inode, inode backrefs, xattrs, extents, 3602 * so if there are a ton of hard links to an inode there can 3603 * be a lot of backrefs. Don't waste time searching too hard, 3604 * this is just an optimization 3605 */ 3606 if (scanned >= 8) 3607 break; 3608 } 3609 /* we hit the end of the leaf before we found an xattr or 3610 * something larger than an xattr. We have to assume the inode 3611 * has acls 3612 */ 3613 if (*first_xattr_slot == -1) 3614 *first_xattr_slot = slot; 3615 return 1; 3616 } 3617 3618 /* 3619 * read an inode from the btree into the in-memory inode 3620 */ 3621 static void btrfs_read_locked_inode(struct inode *inode) 3622 { 3623 struct btrfs_path *path; 3624 struct extent_buffer *leaf; 3625 struct btrfs_inode_item *inode_item; 3626 struct btrfs_root *root = BTRFS_I(inode)->root; 3627 struct btrfs_key location; 3628 unsigned long ptr; 3629 int maybe_acls; 3630 u32 rdev; 3631 int ret; 3632 bool filled = false; 3633 int first_xattr_slot; 3634 3635 ret = btrfs_fill_inode(inode, &rdev); 3636 if (!ret) 3637 filled = true; 3638 3639 path = btrfs_alloc_path(); 3640 if (!path) 3641 goto make_bad; 3642 3643 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3644 3645 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3646 if (ret) 3647 goto make_bad; 3648 3649 leaf = path->nodes[0]; 3650 3651 if (filled) 3652 goto cache_index; 3653 3654 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3655 struct btrfs_inode_item); 3656 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3657 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3658 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3659 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3660 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3661 3662 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3663 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3664 3665 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3666 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3667 3668 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3669 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3670 3671 BTRFS_I(inode)->i_otime.tv_sec = 3672 btrfs_timespec_sec(leaf, &inode_item->otime); 3673 BTRFS_I(inode)->i_otime.tv_nsec = 3674 btrfs_timespec_nsec(leaf, &inode_item->otime); 3675 3676 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3677 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3678 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3679 3680 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3681 inode->i_generation = BTRFS_I(inode)->generation; 3682 inode->i_rdev = 0; 3683 rdev = btrfs_inode_rdev(leaf, inode_item); 3684 3685 BTRFS_I(inode)->index_cnt = (u64)-1; 3686 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3687 3688 cache_index: 3689 /* 3690 * If we were modified in the current generation and evicted from memory 3691 * and then re-read we need to do a full sync since we don't have any 3692 * idea about which extents were modified before we were evicted from 3693 * cache. 3694 * 3695 * This is required for both inode re-read from disk and delayed inode 3696 * in delayed_nodes_tree. 3697 */ 3698 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3699 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3700 &BTRFS_I(inode)->runtime_flags); 3701 3702 /* 3703 * We don't persist the id of the transaction where an unlink operation 3704 * against the inode was last made. So here we assume the inode might 3705 * have been evicted, and therefore the exact value of last_unlink_trans 3706 * lost, and set it to last_trans to avoid metadata inconsistencies 3707 * between the inode and its parent if the inode is fsync'ed and the log 3708 * replayed. For example, in the scenario: 3709 * 3710 * touch mydir/foo 3711 * ln mydir/foo mydir/bar 3712 * sync 3713 * unlink mydir/bar 3714 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3715 * xfs_io -c fsync mydir/foo 3716 * <power failure> 3717 * mount fs, triggers fsync log replay 3718 * 3719 * We must make sure that when we fsync our inode foo we also log its 3720 * parent inode, otherwise after log replay the parent still has the 3721 * dentry with the "bar" name but our inode foo has a link count of 1 3722 * and doesn't have an inode ref with the name "bar" anymore. 3723 * 3724 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3725 * but it guarantees correctness at the expense of ocassional full 3726 * transaction commits on fsync if our inode is a directory, or if our 3727 * inode is not a directory, logging its parent unnecessarily. 3728 */ 3729 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3730 3731 path->slots[0]++; 3732 if (inode->i_nlink != 1 || 3733 path->slots[0] >= btrfs_header_nritems(leaf)) 3734 goto cache_acl; 3735 3736 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3737 if (location.objectid != btrfs_ino(inode)) 3738 goto cache_acl; 3739 3740 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3741 if (location.type == BTRFS_INODE_REF_KEY) { 3742 struct btrfs_inode_ref *ref; 3743 3744 ref = (struct btrfs_inode_ref *)ptr; 3745 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3746 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3747 struct btrfs_inode_extref *extref; 3748 3749 extref = (struct btrfs_inode_extref *)ptr; 3750 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3751 extref); 3752 } 3753 cache_acl: 3754 /* 3755 * try to precache a NULL acl entry for files that don't have 3756 * any xattrs or acls 3757 */ 3758 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3759 btrfs_ino(inode), &first_xattr_slot); 3760 if (first_xattr_slot != -1) { 3761 path->slots[0] = first_xattr_slot; 3762 ret = btrfs_load_inode_props(inode, path); 3763 if (ret) 3764 btrfs_err(root->fs_info, 3765 "error loading props for ino %llu (root %llu): %d", 3766 btrfs_ino(inode), 3767 root->root_key.objectid, ret); 3768 } 3769 btrfs_free_path(path); 3770 3771 if (!maybe_acls) 3772 cache_no_acl(inode); 3773 3774 switch (inode->i_mode & S_IFMT) { 3775 case S_IFREG: 3776 inode->i_mapping->a_ops = &btrfs_aops; 3777 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3778 inode->i_fop = &btrfs_file_operations; 3779 inode->i_op = &btrfs_file_inode_operations; 3780 break; 3781 case S_IFDIR: 3782 inode->i_fop = &btrfs_dir_file_operations; 3783 if (root == root->fs_info->tree_root) 3784 inode->i_op = &btrfs_dir_ro_inode_operations; 3785 else 3786 inode->i_op = &btrfs_dir_inode_operations; 3787 break; 3788 case S_IFLNK: 3789 inode->i_op = &btrfs_symlink_inode_operations; 3790 inode_nohighmem(inode); 3791 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3792 break; 3793 default: 3794 inode->i_op = &btrfs_special_inode_operations; 3795 init_special_inode(inode, inode->i_mode, rdev); 3796 break; 3797 } 3798 3799 btrfs_update_iflags(inode); 3800 return; 3801 3802 make_bad: 3803 btrfs_free_path(path); 3804 make_bad_inode(inode); 3805 } 3806 3807 /* 3808 * given a leaf and an inode, copy the inode fields into the leaf 3809 */ 3810 static void fill_inode_item(struct btrfs_trans_handle *trans, 3811 struct extent_buffer *leaf, 3812 struct btrfs_inode_item *item, 3813 struct inode *inode) 3814 { 3815 struct btrfs_map_token token; 3816 3817 btrfs_init_map_token(&token); 3818 3819 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3820 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3821 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3822 &token); 3823 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3824 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3825 3826 btrfs_set_token_timespec_sec(leaf, &item->atime, 3827 inode->i_atime.tv_sec, &token); 3828 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3829 inode->i_atime.tv_nsec, &token); 3830 3831 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3832 inode->i_mtime.tv_sec, &token); 3833 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3834 inode->i_mtime.tv_nsec, &token); 3835 3836 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3837 inode->i_ctime.tv_sec, &token); 3838 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3839 inode->i_ctime.tv_nsec, &token); 3840 3841 btrfs_set_token_timespec_sec(leaf, &item->otime, 3842 BTRFS_I(inode)->i_otime.tv_sec, &token); 3843 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3844 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3845 3846 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3847 &token); 3848 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3849 &token); 3850 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3851 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3852 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3853 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3854 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3855 } 3856 3857 /* 3858 * copy everything in the in-memory inode into the btree. 3859 */ 3860 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3861 struct btrfs_root *root, struct inode *inode) 3862 { 3863 struct btrfs_inode_item *inode_item; 3864 struct btrfs_path *path; 3865 struct extent_buffer *leaf; 3866 int ret; 3867 3868 path = btrfs_alloc_path(); 3869 if (!path) 3870 return -ENOMEM; 3871 3872 path->leave_spinning = 1; 3873 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3874 1); 3875 if (ret) { 3876 if (ret > 0) 3877 ret = -ENOENT; 3878 goto failed; 3879 } 3880 3881 leaf = path->nodes[0]; 3882 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3883 struct btrfs_inode_item); 3884 3885 fill_inode_item(trans, leaf, inode_item, inode); 3886 btrfs_mark_buffer_dirty(leaf); 3887 btrfs_set_inode_last_trans(trans, inode); 3888 ret = 0; 3889 failed: 3890 btrfs_free_path(path); 3891 return ret; 3892 } 3893 3894 /* 3895 * copy everything in the in-memory inode into the btree. 3896 */ 3897 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3898 struct btrfs_root *root, struct inode *inode) 3899 { 3900 int ret; 3901 3902 /* 3903 * If the inode is a free space inode, we can deadlock during commit 3904 * if we put it into the delayed code. 3905 * 3906 * The data relocation inode should also be directly updated 3907 * without delay 3908 */ 3909 if (!btrfs_is_free_space_inode(inode) 3910 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3911 && !root->fs_info->log_root_recovering) { 3912 btrfs_update_root_times(trans, root); 3913 3914 ret = btrfs_delayed_update_inode(trans, root, inode); 3915 if (!ret) 3916 btrfs_set_inode_last_trans(trans, inode); 3917 return ret; 3918 } 3919 3920 return btrfs_update_inode_item(trans, root, inode); 3921 } 3922 3923 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3924 struct btrfs_root *root, 3925 struct inode *inode) 3926 { 3927 int ret; 3928 3929 ret = btrfs_update_inode(trans, root, inode); 3930 if (ret == -ENOSPC) 3931 return btrfs_update_inode_item(trans, root, inode); 3932 return ret; 3933 } 3934 3935 /* 3936 * unlink helper that gets used here in inode.c and in the tree logging 3937 * recovery code. It remove a link in a directory with a given name, and 3938 * also drops the back refs in the inode to the directory 3939 */ 3940 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3941 struct btrfs_root *root, 3942 struct inode *dir, struct inode *inode, 3943 const char *name, int name_len) 3944 { 3945 struct btrfs_path *path; 3946 int ret = 0; 3947 struct extent_buffer *leaf; 3948 struct btrfs_dir_item *di; 3949 struct btrfs_key key; 3950 u64 index; 3951 u64 ino = btrfs_ino(inode); 3952 u64 dir_ino = btrfs_ino(dir); 3953 3954 path = btrfs_alloc_path(); 3955 if (!path) { 3956 ret = -ENOMEM; 3957 goto out; 3958 } 3959 3960 path->leave_spinning = 1; 3961 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3962 name, name_len, -1); 3963 if (IS_ERR(di)) { 3964 ret = PTR_ERR(di); 3965 goto err; 3966 } 3967 if (!di) { 3968 ret = -ENOENT; 3969 goto err; 3970 } 3971 leaf = path->nodes[0]; 3972 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3973 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3974 if (ret) 3975 goto err; 3976 btrfs_release_path(path); 3977 3978 /* 3979 * If we don't have dir index, we have to get it by looking up 3980 * the inode ref, since we get the inode ref, remove it directly, 3981 * it is unnecessary to do delayed deletion. 3982 * 3983 * But if we have dir index, needn't search inode ref to get it. 3984 * Since the inode ref is close to the inode item, it is better 3985 * that we delay to delete it, and just do this deletion when 3986 * we update the inode item. 3987 */ 3988 if (BTRFS_I(inode)->dir_index) { 3989 ret = btrfs_delayed_delete_inode_ref(inode); 3990 if (!ret) { 3991 index = BTRFS_I(inode)->dir_index; 3992 goto skip_backref; 3993 } 3994 } 3995 3996 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3997 dir_ino, &index); 3998 if (ret) { 3999 btrfs_info(root->fs_info, 4000 "failed to delete reference to %.*s, inode %llu parent %llu", 4001 name_len, name, ino, dir_ino); 4002 btrfs_abort_transaction(trans, root, ret); 4003 goto err; 4004 } 4005 skip_backref: 4006 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4007 if (ret) { 4008 btrfs_abort_transaction(trans, root, ret); 4009 goto err; 4010 } 4011 4012 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4013 inode, dir_ino); 4014 if (ret != 0 && ret != -ENOENT) { 4015 btrfs_abort_transaction(trans, root, ret); 4016 goto err; 4017 } 4018 4019 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4020 dir, index); 4021 if (ret == -ENOENT) 4022 ret = 0; 4023 else if (ret) 4024 btrfs_abort_transaction(trans, root, ret); 4025 err: 4026 btrfs_free_path(path); 4027 if (ret) 4028 goto out; 4029 4030 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4031 inode_inc_iversion(inode); 4032 inode_inc_iversion(dir); 4033 inode->i_ctime = dir->i_mtime = 4034 dir->i_ctime = current_fs_time(inode->i_sb); 4035 ret = btrfs_update_inode(trans, root, dir); 4036 out: 4037 return ret; 4038 } 4039 4040 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4041 struct btrfs_root *root, 4042 struct inode *dir, struct inode *inode, 4043 const char *name, int name_len) 4044 { 4045 int ret; 4046 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4047 if (!ret) { 4048 drop_nlink(inode); 4049 ret = btrfs_update_inode(trans, root, inode); 4050 } 4051 return ret; 4052 } 4053 4054 /* 4055 * helper to start transaction for unlink and rmdir. 4056 * 4057 * unlink and rmdir are special in btrfs, they do not always free space, so 4058 * if we cannot make our reservations the normal way try and see if there is 4059 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4060 * allow the unlink to occur. 4061 */ 4062 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4063 { 4064 struct btrfs_root *root = BTRFS_I(dir)->root; 4065 4066 /* 4067 * 1 for the possible orphan item 4068 * 1 for the dir item 4069 * 1 for the dir index 4070 * 1 for the inode ref 4071 * 1 for the inode 4072 */ 4073 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4074 } 4075 4076 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4077 { 4078 struct btrfs_root *root = BTRFS_I(dir)->root; 4079 struct btrfs_trans_handle *trans; 4080 struct inode *inode = d_inode(dentry); 4081 int ret; 4082 4083 trans = __unlink_start_trans(dir); 4084 if (IS_ERR(trans)) 4085 return PTR_ERR(trans); 4086 4087 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4088 4089 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4090 dentry->d_name.name, dentry->d_name.len); 4091 if (ret) 4092 goto out; 4093 4094 if (inode->i_nlink == 0) { 4095 ret = btrfs_orphan_add(trans, inode); 4096 if (ret) 4097 goto out; 4098 } 4099 4100 out: 4101 btrfs_end_transaction(trans, root); 4102 btrfs_btree_balance_dirty(root); 4103 return ret; 4104 } 4105 4106 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4107 struct btrfs_root *root, 4108 struct inode *dir, u64 objectid, 4109 const char *name, int name_len) 4110 { 4111 struct btrfs_path *path; 4112 struct extent_buffer *leaf; 4113 struct btrfs_dir_item *di; 4114 struct btrfs_key key; 4115 u64 index; 4116 int ret; 4117 u64 dir_ino = btrfs_ino(dir); 4118 4119 path = btrfs_alloc_path(); 4120 if (!path) 4121 return -ENOMEM; 4122 4123 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4124 name, name_len, -1); 4125 if (IS_ERR_OR_NULL(di)) { 4126 if (!di) 4127 ret = -ENOENT; 4128 else 4129 ret = PTR_ERR(di); 4130 goto out; 4131 } 4132 4133 leaf = path->nodes[0]; 4134 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4135 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4136 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4137 if (ret) { 4138 btrfs_abort_transaction(trans, root, ret); 4139 goto out; 4140 } 4141 btrfs_release_path(path); 4142 4143 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4144 objectid, root->root_key.objectid, 4145 dir_ino, &index, name, name_len); 4146 if (ret < 0) { 4147 if (ret != -ENOENT) { 4148 btrfs_abort_transaction(trans, root, ret); 4149 goto out; 4150 } 4151 di = btrfs_search_dir_index_item(root, path, dir_ino, 4152 name, name_len); 4153 if (IS_ERR_OR_NULL(di)) { 4154 if (!di) 4155 ret = -ENOENT; 4156 else 4157 ret = PTR_ERR(di); 4158 btrfs_abort_transaction(trans, root, ret); 4159 goto out; 4160 } 4161 4162 leaf = path->nodes[0]; 4163 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4164 btrfs_release_path(path); 4165 index = key.offset; 4166 } 4167 btrfs_release_path(path); 4168 4169 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4170 if (ret) { 4171 btrfs_abort_transaction(trans, root, ret); 4172 goto out; 4173 } 4174 4175 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4176 inode_inc_iversion(dir); 4177 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4178 ret = btrfs_update_inode_fallback(trans, root, dir); 4179 if (ret) 4180 btrfs_abort_transaction(trans, root, ret); 4181 out: 4182 btrfs_free_path(path); 4183 return ret; 4184 } 4185 4186 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4187 { 4188 struct inode *inode = d_inode(dentry); 4189 int err = 0; 4190 struct btrfs_root *root = BTRFS_I(dir)->root; 4191 struct btrfs_trans_handle *trans; 4192 4193 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4194 return -ENOTEMPTY; 4195 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4196 return -EPERM; 4197 4198 trans = __unlink_start_trans(dir); 4199 if (IS_ERR(trans)) 4200 return PTR_ERR(trans); 4201 4202 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4203 err = btrfs_unlink_subvol(trans, root, dir, 4204 BTRFS_I(inode)->location.objectid, 4205 dentry->d_name.name, 4206 dentry->d_name.len); 4207 goto out; 4208 } 4209 4210 err = btrfs_orphan_add(trans, inode); 4211 if (err) 4212 goto out; 4213 4214 /* now the directory is empty */ 4215 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4216 dentry->d_name.name, dentry->d_name.len); 4217 if (!err) 4218 btrfs_i_size_write(inode, 0); 4219 out: 4220 btrfs_end_transaction(trans, root); 4221 btrfs_btree_balance_dirty(root); 4222 4223 return err; 4224 } 4225 4226 static int truncate_space_check(struct btrfs_trans_handle *trans, 4227 struct btrfs_root *root, 4228 u64 bytes_deleted) 4229 { 4230 int ret; 4231 4232 /* 4233 * This is only used to apply pressure to the enospc system, we don't 4234 * intend to use this reservation at all. 4235 */ 4236 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4237 bytes_deleted *= root->nodesize; 4238 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4239 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4240 if (!ret) { 4241 trace_btrfs_space_reservation(root->fs_info, "transaction", 4242 trans->transid, 4243 bytes_deleted, 1); 4244 trans->bytes_reserved += bytes_deleted; 4245 } 4246 return ret; 4247 4248 } 4249 4250 static int truncate_inline_extent(struct inode *inode, 4251 struct btrfs_path *path, 4252 struct btrfs_key *found_key, 4253 const u64 item_end, 4254 const u64 new_size) 4255 { 4256 struct extent_buffer *leaf = path->nodes[0]; 4257 int slot = path->slots[0]; 4258 struct btrfs_file_extent_item *fi; 4259 u32 size = (u32)(new_size - found_key->offset); 4260 struct btrfs_root *root = BTRFS_I(inode)->root; 4261 4262 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4263 4264 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4265 loff_t offset = new_size; 4266 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4267 4268 /* 4269 * Zero out the remaining of the last page of our inline extent, 4270 * instead of directly truncating our inline extent here - that 4271 * would be much more complex (decompressing all the data, then 4272 * compressing the truncated data, which might be bigger than 4273 * the size of the inline extent, resize the extent, etc). 4274 * We release the path because to get the page we might need to 4275 * read the extent item from disk (data not in the page cache). 4276 */ 4277 btrfs_release_path(path); 4278 return btrfs_truncate_block(inode, offset, page_end - offset, 4279 0); 4280 } 4281 4282 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4283 size = btrfs_file_extent_calc_inline_size(size); 4284 btrfs_truncate_item(root, path, size, 1); 4285 4286 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4287 inode_sub_bytes(inode, item_end + 1 - new_size); 4288 4289 return 0; 4290 } 4291 4292 /* 4293 * this can truncate away extent items, csum items and directory items. 4294 * It starts at a high offset and removes keys until it can't find 4295 * any higher than new_size 4296 * 4297 * csum items that cross the new i_size are truncated to the new size 4298 * as well. 4299 * 4300 * min_type is the minimum key type to truncate down to. If set to 0, this 4301 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4302 */ 4303 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4304 struct btrfs_root *root, 4305 struct inode *inode, 4306 u64 new_size, u32 min_type) 4307 { 4308 struct btrfs_path *path; 4309 struct extent_buffer *leaf; 4310 struct btrfs_file_extent_item *fi; 4311 struct btrfs_key key; 4312 struct btrfs_key found_key; 4313 u64 extent_start = 0; 4314 u64 extent_num_bytes = 0; 4315 u64 extent_offset = 0; 4316 u64 item_end = 0; 4317 u64 last_size = new_size; 4318 u32 found_type = (u8)-1; 4319 int found_extent; 4320 int del_item; 4321 int pending_del_nr = 0; 4322 int pending_del_slot = 0; 4323 int extent_type = -1; 4324 int ret; 4325 int err = 0; 4326 u64 ino = btrfs_ino(inode); 4327 u64 bytes_deleted = 0; 4328 bool be_nice = 0; 4329 bool should_throttle = 0; 4330 bool should_end = 0; 4331 4332 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4333 4334 /* 4335 * for non-free space inodes and ref cows, we want to back off from 4336 * time to time 4337 */ 4338 if (!btrfs_is_free_space_inode(inode) && 4339 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4340 be_nice = 1; 4341 4342 path = btrfs_alloc_path(); 4343 if (!path) 4344 return -ENOMEM; 4345 path->reada = READA_BACK; 4346 4347 /* 4348 * We want to drop from the next block forward in case this new size is 4349 * not block aligned since we will be keeping the last block of the 4350 * extent just the way it is. 4351 */ 4352 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4353 root == root->fs_info->tree_root) 4354 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4355 root->sectorsize), (u64)-1, 0); 4356 4357 /* 4358 * This function is also used to drop the items in the log tree before 4359 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4360 * it is used to drop the loged items. So we shouldn't kill the delayed 4361 * items. 4362 */ 4363 if (min_type == 0 && root == BTRFS_I(inode)->root) 4364 btrfs_kill_delayed_inode_items(inode); 4365 4366 key.objectid = ino; 4367 key.offset = (u64)-1; 4368 key.type = (u8)-1; 4369 4370 search_again: 4371 /* 4372 * with a 16K leaf size and 128MB extents, you can actually queue 4373 * up a huge file in a single leaf. Most of the time that 4374 * bytes_deleted is > 0, it will be huge by the time we get here 4375 */ 4376 if (be_nice && bytes_deleted > SZ_32M) { 4377 if (btrfs_should_end_transaction(trans, root)) { 4378 err = -EAGAIN; 4379 goto error; 4380 } 4381 } 4382 4383 4384 path->leave_spinning = 1; 4385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4386 if (ret < 0) { 4387 err = ret; 4388 goto out; 4389 } 4390 4391 if (ret > 0) { 4392 /* there are no items in the tree for us to truncate, we're 4393 * done 4394 */ 4395 if (path->slots[0] == 0) 4396 goto out; 4397 path->slots[0]--; 4398 } 4399 4400 while (1) { 4401 fi = NULL; 4402 leaf = path->nodes[0]; 4403 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4404 found_type = found_key.type; 4405 4406 if (found_key.objectid != ino) 4407 break; 4408 4409 if (found_type < min_type) 4410 break; 4411 4412 item_end = found_key.offset; 4413 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4414 fi = btrfs_item_ptr(leaf, path->slots[0], 4415 struct btrfs_file_extent_item); 4416 extent_type = btrfs_file_extent_type(leaf, fi); 4417 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4418 item_end += 4419 btrfs_file_extent_num_bytes(leaf, fi); 4420 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4421 item_end += btrfs_file_extent_inline_len(leaf, 4422 path->slots[0], fi); 4423 } 4424 item_end--; 4425 } 4426 if (found_type > min_type) { 4427 del_item = 1; 4428 } else { 4429 if (item_end < new_size) 4430 break; 4431 if (found_key.offset >= new_size) 4432 del_item = 1; 4433 else 4434 del_item = 0; 4435 } 4436 found_extent = 0; 4437 /* FIXME, shrink the extent if the ref count is only 1 */ 4438 if (found_type != BTRFS_EXTENT_DATA_KEY) 4439 goto delete; 4440 4441 if (del_item) 4442 last_size = found_key.offset; 4443 else 4444 last_size = new_size; 4445 4446 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4447 u64 num_dec; 4448 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4449 if (!del_item) { 4450 u64 orig_num_bytes = 4451 btrfs_file_extent_num_bytes(leaf, fi); 4452 extent_num_bytes = ALIGN(new_size - 4453 found_key.offset, 4454 root->sectorsize); 4455 btrfs_set_file_extent_num_bytes(leaf, fi, 4456 extent_num_bytes); 4457 num_dec = (orig_num_bytes - 4458 extent_num_bytes); 4459 if (test_bit(BTRFS_ROOT_REF_COWS, 4460 &root->state) && 4461 extent_start != 0) 4462 inode_sub_bytes(inode, num_dec); 4463 btrfs_mark_buffer_dirty(leaf); 4464 } else { 4465 extent_num_bytes = 4466 btrfs_file_extent_disk_num_bytes(leaf, 4467 fi); 4468 extent_offset = found_key.offset - 4469 btrfs_file_extent_offset(leaf, fi); 4470 4471 /* FIXME blocksize != 4096 */ 4472 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4473 if (extent_start != 0) { 4474 found_extent = 1; 4475 if (test_bit(BTRFS_ROOT_REF_COWS, 4476 &root->state)) 4477 inode_sub_bytes(inode, num_dec); 4478 } 4479 } 4480 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4481 /* 4482 * we can't truncate inline items that have had 4483 * special encodings 4484 */ 4485 if (!del_item && 4486 btrfs_file_extent_encryption(leaf, fi) == 0 && 4487 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4488 4489 /* 4490 * Need to release path in order to truncate a 4491 * compressed extent. So delete any accumulated 4492 * extent items so far. 4493 */ 4494 if (btrfs_file_extent_compression(leaf, fi) != 4495 BTRFS_COMPRESS_NONE && pending_del_nr) { 4496 err = btrfs_del_items(trans, root, path, 4497 pending_del_slot, 4498 pending_del_nr); 4499 if (err) { 4500 btrfs_abort_transaction(trans, 4501 root, 4502 err); 4503 goto error; 4504 } 4505 pending_del_nr = 0; 4506 } 4507 4508 err = truncate_inline_extent(inode, path, 4509 &found_key, 4510 item_end, 4511 new_size); 4512 if (err) { 4513 btrfs_abort_transaction(trans, 4514 root, err); 4515 goto error; 4516 } 4517 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4518 &root->state)) { 4519 inode_sub_bytes(inode, item_end + 1 - new_size); 4520 } 4521 } 4522 delete: 4523 if (del_item) { 4524 if (!pending_del_nr) { 4525 /* no pending yet, add ourselves */ 4526 pending_del_slot = path->slots[0]; 4527 pending_del_nr = 1; 4528 } else if (pending_del_nr && 4529 path->slots[0] + 1 == pending_del_slot) { 4530 /* hop on the pending chunk */ 4531 pending_del_nr++; 4532 pending_del_slot = path->slots[0]; 4533 } else { 4534 BUG(); 4535 } 4536 } else { 4537 break; 4538 } 4539 should_throttle = 0; 4540 4541 if (found_extent && 4542 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4543 root == root->fs_info->tree_root)) { 4544 btrfs_set_path_blocking(path); 4545 bytes_deleted += extent_num_bytes; 4546 ret = btrfs_free_extent(trans, root, extent_start, 4547 extent_num_bytes, 0, 4548 btrfs_header_owner(leaf), 4549 ino, extent_offset); 4550 BUG_ON(ret); 4551 if (btrfs_should_throttle_delayed_refs(trans, root)) 4552 btrfs_async_run_delayed_refs(root, 4553 trans->delayed_ref_updates * 2, 0); 4554 if (be_nice) { 4555 if (truncate_space_check(trans, root, 4556 extent_num_bytes)) { 4557 should_end = 1; 4558 } 4559 if (btrfs_should_throttle_delayed_refs(trans, 4560 root)) { 4561 should_throttle = 1; 4562 } 4563 } 4564 } 4565 4566 if (found_type == BTRFS_INODE_ITEM_KEY) 4567 break; 4568 4569 if (path->slots[0] == 0 || 4570 path->slots[0] != pending_del_slot || 4571 should_throttle || should_end) { 4572 if (pending_del_nr) { 4573 ret = btrfs_del_items(trans, root, path, 4574 pending_del_slot, 4575 pending_del_nr); 4576 if (ret) { 4577 btrfs_abort_transaction(trans, 4578 root, ret); 4579 goto error; 4580 } 4581 pending_del_nr = 0; 4582 } 4583 btrfs_release_path(path); 4584 if (should_throttle) { 4585 unsigned long updates = trans->delayed_ref_updates; 4586 if (updates) { 4587 trans->delayed_ref_updates = 0; 4588 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4589 if (ret && !err) 4590 err = ret; 4591 } 4592 } 4593 /* 4594 * if we failed to refill our space rsv, bail out 4595 * and let the transaction restart 4596 */ 4597 if (should_end) { 4598 err = -EAGAIN; 4599 goto error; 4600 } 4601 goto search_again; 4602 } else { 4603 path->slots[0]--; 4604 } 4605 } 4606 out: 4607 if (pending_del_nr) { 4608 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4609 pending_del_nr); 4610 if (ret) 4611 btrfs_abort_transaction(trans, root, ret); 4612 } 4613 error: 4614 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4615 btrfs_ordered_update_i_size(inode, last_size, NULL); 4616 4617 btrfs_free_path(path); 4618 4619 if (be_nice && bytes_deleted > SZ_32M) { 4620 unsigned long updates = trans->delayed_ref_updates; 4621 if (updates) { 4622 trans->delayed_ref_updates = 0; 4623 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4624 if (ret && !err) 4625 err = ret; 4626 } 4627 } 4628 return err; 4629 } 4630 4631 /* 4632 * btrfs_truncate_block - read, zero a chunk and write a block 4633 * @inode - inode that we're zeroing 4634 * @from - the offset to start zeroing 4635 * @len - the length to zero, 0 to zero the entire range respective to the 4636 * offset 4637 * @front - zero up to the offset instead of from the offset on 4638 * 4639 * This will find the block for the "from" offset and cow the block and zero the 4640 * part we want to zero. This is used with truncate and hole punching. 4641 */ 4642 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4643 int front) 4644 { 4645 struct address_space *mapping = inode->i_mapping; 4646 struct btrfs_root *root = BTRFS_I(inode)->root; 4647 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4648 struct btrfs_ordered_extent *ordered; 4649 struct extent_state *cached_state = NULL; 4650 char *kaddr; 4651 u32 blocksize = root->sectorsize; 4652 pgoff_t index = from >> PAGE_SHIFT; 4653 unsigned offset = from & (blocksize - 1); 4654 struct page *page; 4655 gfp_t mask = btrfs_alloc_write_mask(mapping); 4656 int ret = 0; 4657 u64 block_start; 4658 u64 block_end; 4659 4660 if ((offset & (blocksize - 1)) == 0 && 4661 (!len || ((len & (blocksize - 1)) == 0))) 4662 goto out; 4663 4664 ret = btrfs_delalloc_reserve_space(inode, 4665 round_down(from, blocksize), blocksize); 4666 if (ret) 4667 goto out; 4668 4669 again: 4670 page = find_or_create_page(mapping, index, mask); 4671 if (!page) { 4672 btrfs_delalloc_release_space(inode, 4673 round_down(from, blocksize), 4674 blocksize); 4675 ret = -ENOMEM; 4676 goto out; 4677 } 4678 4679 block_start = round_down(from, blocksize); 4680 block_end = block_start + blocksize - 1; 4681 4682 if (!PageUptodate(page)) { 4683 ret = btrfs_readpage(NULL, page); 4684 lock_page(page); 4685 if (page->mapping != mapping) { 4686 unlock_page(page); 4687 put_page(page); 4688 goto again; 4689 } 4690 if (!PageUptodate(page)) { 4691 ret = -EIO; 4692 goto out_unlock; 4693 } 4694 } 4695 wait_on_page_writeback(page); 4696 4697 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4698 set_page_extent_mapped(page); 4699 4700 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4701 if (ordered) { 4702 unlock_extent_cached(io_tree, block_start, block_end, 4703 &cached_state, GFP_NOFS); 4704 unlock_page(page); 4705 put_page(page); 4706 btrfs_start_ordered_extent(inode, ordered, 1); 4707 btrfs_put_ordered_extent(ordered); 4708 goto again; 4709 } 4710 4711 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4712 EXTENT_DIRTY | EXTENT_DELALLOC | 4713 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4714 0, 0, &cached_state, GFP_NOFS); 4715 4716 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4717 &cached_state); 4718 if (ret) { 4719 unlock_extent_cached(io_tree, block_start, block_end, 4720 &cached_state, GFP_NOFS); 4721 goto out_unlock; 4722 } 4723 4724 if (offset != blocksize) { 4725 if (!len) 4726 len = blocksize - offset; 4727 kaddr = kmap(page); 4728 if (front) 4729 memset(kaddr + (block_start - page_offset(page)), 4730 0, offset); 4731 else 4732 memset(kaddr + (block_start - page_offset(page)) + offset, 4733 0, len); 4734 flush_dcache_page(page); 4735 kunmap(page); 4736 } 4737 ClearPageChecked(page); 4738 set_page_dirty(page); 4739 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4740 GFP_NOFS); 4741 4742 out_unlock: 4743 if (ret) 4744 btrfs_delalloc_release_space(inode, block_start, 4745 blocksize); 4746 unlock_page(page); 4747 put_page(page); 4748 out: 4749 return ret; 4750 } 4751 4752 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4753 u64 offset, u64 len) 4754 { 4755 struct btrfs_trans_handle *trans; 4756 int ret; 4757 4758 /* 4759 * Still need to make sure the inode looks like it's been updated so 4760 * that any holes get logged if we fsync. 4761 */ 4762 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4763 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4764 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4765 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4766 return 0; 4767 } 4768 4769 /* 4770 * 1 - for the one we're dropping 4771 * 1 - for the one we're adding 4772 * 1 - for updating the inode. 4773 */ 4774 trans = btrfs_start_transaction(root, 3); 4775 if (IS_ERR(trans)) 4776 return PTR_ERR(trans); 4777 4778 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4779 if (ret) { 4780 btrfs_abort_transaction(trans, root, ret); 4781 btrfs_end_transaction(trans, root); 4782 return ret; 4783 } 4784 4785 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4786 0, 0, len, 0, len, 0, 0, 0); 4787 if (ret) 4788 btrfs_abort_transaction(trans, root, ret); 4789 else 4790 btrfs_update_inode(trans, root, inode); 4791 btrfs_end_transaction(trans, root); 4792 return ret; 4793 } 4794 4795 /* 4796 * This function puts in dummy file extents for the area we're creating a hole 4797 * for. So if we are truncating this file to a larger size we need to insert 4798 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4799 * the range between oldsize and size 4800 */ 4801 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4802 { 4803 struct btrfs_root *root = BTRFS_I(inode)->root; 4804 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4805 struct extent_map *em = NULL; 4806 struct extent_state *cached_state = NULL; 4807 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4808 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4809 u64 block_end = ALIGN(size, root->sectorsize); 4810 u64 last_byte; 4811 u64 cur_offset; 4812 u64 hole_size; 4813 int err = 0; 4814 4815 /* 4816 * If our size started in the middle of a block we need to zero out the 4817 * rest of the block before we expand the i_size, otherwise we could 4818 * expose stale data. 4819 */ 4820 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4821 if (err) 4822 return err; 4823 4824 if (size <= hole_start) 4825 return 0; 4826 4827 while (1) { 4828 struct btrfs_ordered_extent *ordered; 4829 4830 lock_extent_bits(io_tree, hole_start, block_end - 1, 4831 &cached_state); 4832 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4833 block_end - hole_start); 4834 if (!ordered) 4835 break; 4836 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4837 &cached_state, GFP_NOFS); 4838 btrfs_start_ordered_extent(inode, ordered, 1); 4839 btrfs_put_ordered_extent(ordered); 4840 } 4841 4842 cur_offset = hole_start; 4843 while (1) { 4844 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4845 block_end - cur_offset, 0); 4846 if (IS_ERR(em)) { 4847 err = PTR_ERR(em); 4848 em = NULL; 4849 break; 4850 } 4851 last_byte = min(extent_map_end(em), block_end); 4852 last_byte = ALIGN(last_byte , root->sectorsize); 4853 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4854 struct extent_map *hole_em; 4855 hole_size = last_byte - cur_offset; 4856 4857 err = maybe_insert_hole(root, inode, cur_offset, 4858 hole_size); 4859 if (err) 4860 break; 4861 btrfs_drop_extent_cache(inode, cur_offset, 4862 cur_offset + hole_size - 1, 0); 4863 hole_em = alloc_extent_map(); 4864 if (!hole_em) { 4865 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4866 &BTRFS_I(inode)->runtime_flags); 4867 goto next; 4868 } 4869 hole_em->start = cur_offset; 4870 hole_em->len = hole_size; 4871 hole_em->orig_start = cur_offset; 4872 4873 hole_em->block_start = EXTENT_MAP_HOLE; 4874 hole_em->block_len = 0; 4875 hole_em->orig_block_len = 0; 4876 hole_em->ram_bytes = hole_size; 4877 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4878 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4879 hole_em->generation = root->fs_info->generation; 4880 4881 while (1) { 4882 write_lock(&em_tree->lock); 4883 err = add_extent_mapping(em_tree, hole_em, 1); 4884 write_unlock(&em_tree->lock); 4885 if (err != -EEXIST) 4886 break; 4887 btrfs_drop_extent_cache(inode, cur_offset, 4888 cur_offset + 4889 hole_size - 1, 0); 4890 } 4891 free_extent_map(hole_em); 4892 } 4893 next: 4894 free_extent_map(em); 4895 em = NULL; 4896 cur_offset = last_byte; 4897 if (cur_offset >= block_end) 4898 break; 4899 } 4900 free_extent_map(em); 4901 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4902 GFP_NOFS); 4903 return err; 4904 } 4905 4906 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4907 { 4908 struct btrfs_root *root = BTRFS_I(inode)->root; 4909 struct btrfs_trans_handle *trans; 4910 loff_t oldsize = i_size_read(inode); 4911 loff_t newsize = attr->ia_size; 4912 int mask = attr->ia_valid; 4913 int ret; 4914 4915 /* 4916 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4917 * special case where we need to update the times despite not having 4918 * these flags set. For all other operations the VFS set these flags 4919 * explicitly if it wants a timestamp update. 4920 */ 4921 if (newsize != oldsize) { 4922 inode_inc_iversion(inode); 4923 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4924 inode->i_ctime = inode->i_mtime = 4925 current_fs_time(inode->i_sb); 4926 } 4927 4928 if (newsize > oldsize) { 4929 /* 4930 * Don't do an expanding truncate while snapshoting is ongoing. 4931 * This is to ensure the snapshot captures a fully consistent 4932 * state of this file - if the snapshot captures this expanding 4933 * truncation, it must capture all writes that happened before 4934 * this truncation. 4935 */ 4936 btrfs_wait_for_snapshot_creation(root); 4937 ret = btrfs_cont_expand(inode, oldsize, newsize); 4938 if (ret) { 4939 btrfs_end_write_no_snapshoting(root); 4940 return ret; 4941 } 4942 4943 trans = btrfs_start_transaction(root, 1); 4944 if (IS_ERR(trans)) { 4945 btrfs_end_write_no_snapshoting(root); 4946 return PTR_ERR(trans); 4947 } 4948 4949 i_size_write(inode, newsize); 4950 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4951 pagecache_isize_extended(inode, oldsize, newsize); 4952 ret = btrfs_update_inode(trans, root, inode); 4953 btrfs_end_write_no_snapshoting(root); 4954 btrfs_end_transaction(trans, root); 4955 } else { 4956 4957 /* 4958 * We're truncating a file that used to have good data down to 4959 * zero. Make sure it gets into the ordered flush list so that 4960 * any new writes get down to disk quickly. 4961 */ 4962 if (newsize == 0) 4963 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4964 &BTRFS_I(inode)->runtime_flags); 4965 4966 /* 4967 * 1 for the orphan item we're going to add 4968 * 1 for the orphan item deletion. 4969 */ 4970 trans = btrfs_start_transaction(root, 2); 4971 if (IS_ERR(trans)) 4972 return PTR_ERR(trans); 4973 4974 /* 4975 * We need to do this in case we fail at _any_ point during the 4976 * actual truncate. Once we do the truncate_setsize we could 4977 * invalidate pages which forces any outstanding ordered io to 4978 * be instantly completed which will give us extents that need 4979 * to be truncated. If we fail to get an orphan inode down we 4980 * could have left over extents that were never meant to live, 4981 * so we need to garuntee from this point on that everything 4982 * will be consistent. 4983 */ 4984 ret = btrfs_orphan_add(trans, inode); 4985 btrfs_end_transaction(trans, root); 4986 if (ret) 4987 return ret; 4988 4989 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4990 truncate_setsize(inode, newsize); 4991 4992 /* Disable nonlocked read DIO to avoid the end less truncate */ 4993 btrfs_inode_block_unlocked_dio(inode); 4994 inode_dio_wait(inode); 4995 btrfs_inode_resume_unlocked_dio(inode); 4996 4997 ret = btrfs_truncate(inode); 4998 if (ret && inode->i_nlink) { 4999 int err; 5000 5001 /* 5002 * failed to truncate, disk_i_size is only adjusted down 5003 * as we remove extents, so it should represent the true 5004 * size of the inode, so reset the in memory size and 5005 * delete our orphan entry. 5006 */ 5007 trans = btrfs_join_transaction(root); 5008 if (IS_ERR(trans)) { 5009 btrfs_orphan_del(NULL, inode); 5010 return ret; 5011 } 5012 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5013 err = btrfs_orphan_del(trans, inode); 5014 if (err) 5015 btrfs_abort_transaction(trans, root, err); 5016 btrfs_end_transaction(trans, root); 5017 } 5018 } 5019 5020 return ret; 5021 } 5022 5023 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5024 { 5025 struct inode *inode = d_inode(dentry); 5026 struct btrfs_root *root = BTRFS_I(inode)->root; 5027 int err; 5028 5029 if (btrfs_root_readonly(root)) 5030 return -EROFS; 5031 5032 err = inode_change_ok(inode, attr); 5033 if (err) 5034 return err; 5035 5036 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5037 err = btrfs_setsize(inode, attr); 5038 if (err) 5039 return err; 5040 } 5041 5042 if (attr->ia_valid) { 5043 setattr_copy(inode, attr); 5044 inode_inc_iversion(inode); 5045 err = btrfs_dirty_inode(inode); 5046 5047 if (!err && attr->ia_valid & ATTR_MODE) 5048 err = posix_acl_chmod(inode, inode->i_mode); 5049 } 5050 5051 return err; 5052 } 5053 5054 /* 5055 * While truncating the inode pages during eviction, we get the VFS calling 5056 * btrfs_invalidatepage() against each page of the inode. This is slow because 5057 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5058 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5059 * extent_state structures over and over, wasting lots of time. 5060 * 5061 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5062 * those expensive operations on a per page basis and do only the ordered io 5063 * finishing, while we release here the extent_map and extent_state structures, 5064 * without the excessive merging and splitting. 5065 */ 5066 static void evict_inode_truncate_pages(struct inode *inode) 5067 { 5068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5069 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5070 struct rb_node *node; 5071 5072 ASSERT(inode->i_state & I_FREEING); 5073 truncate_inode_pages_final(&inode->i_data); 5074 5075 write_lock(&map_tree->lock); 5076 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5077 struct extent_map *em; 5078 5079 node = rb_first(&map_tree->map); 5080 em = rb_entry(node, struct extent_map, rb_node); 5081 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5082 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5083 remove_extent_mapping(map_tree, em); 5084 free_extent_map(em); 5085 if (need_resched()) { 5086 write_unlock(&map_tree->lock); 5087 cond_resched(); 5088 write_lock(&map_tree->lock); 5089 } 5090 } 5091 write_unlock(&map_tree->lock); 5092 5093 /* 5094 * Keep looping until we have no more ranges in the io tree. 5095 * We can have ongoing bios started by readpages (called from readahead) 5096 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5097 * still in progress (unlocked the pages in the bio but did not yet 5098 * unlocked the ranges in the io tree). Therefore this means some 5099 * ranges can still be locked and eviction started because before 5100 * submitting those bios, which are executed by a separate task (work 5101 * queue kthread), inode references (inode->i_count) were not taken 5102 * (which would be dropped in the end io callback of each bio). 5103 * Therefore here we effectively end up waiting for those bios and 5104 * anyone else holding locked ranges without having bumped the inode's 5105 * reference count - if we don't do it, when they access the inode's 5106 * io_tree to unlock a range it may be too late, leading to an 5107 * use-after-free issue. 5108 */ 5109 spin_lock(&io_tree->lock); 5110 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5111 struct extent_state *state; 5112 struct extent_state *cached_state = NULL; 5113 u64 start; 5114 u64 end; 5115 5116 node = rb_first(&io_tree->state); 5117 state = rb_entry(node, struct extent_state, rb_node); 5118 start = state->start; 5119 end = state->end; 5120 spin_unlock(&io_tree->lock); 5121 5122 lock_extent_bits(io_tree, start, end, &cached_state); 5123 5124 /* 5125 * If still has DELALLOC flag, the extent didn't reach disk, 5126 * and its reserved space won't be freed by delayed_ref. 5127 * So we need to free its reserved space here. 5128 * (Refer to comment in btrfs_invalidatepage, case 2) 5129 * 5130 * Note, end is the bytenr of last byte, so we need + 1 here. 5131 */ 5132 if (state->state & EXTENT_DELALLOC) 5133 btrfs_qgroup_free_data(inode, start, end - start + 1); 5134 5135 clear_extent_bit(io_tree, start, end, 5136 EXTENT_LOCKED | EXTENT_DIRTY | 5137 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5138 EXTENT_DEFRAG, 1, 1, 5139 &cached_state, GFP_NOFS); 5140 5141 cond_resched(); 5142 spin_lock(&io_tree->lock); 5143 } 5144 spin_unlock(&io_tree->lock); 5145 } 5146 5147 void btrfs_evict_inode(struct inode *inode) 5148 { 5149 struct btrfs_trans_handle *trans; 5150 struct btrfs_root *root = BTRFS_I(inode)->root; 5151 struct btrfs_block_rsv *rsv, *global_rsv; 5152 int steal_from_global = 0; 5153 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5154 int ret; 5155 5156 trace_btrfs_inode_evict(inode); 5157 5158 evict_inode_truncate_pages(inode); 5159 5160 if (inode->i_nlink && 5161 ((btrfs_root_refs(&root->root_item) != 0 && 5162 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5163 btrfs_is_free_space_inode(inode))) 5164 goto no_delete; 5165 5166 if (is_bad_inode(inode)) { 5167 btrfs_orphan_del(NULL, inode); 5168 goto no_delete; 5169 } 5170 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5171 if (!special_file(inode->i_mode)) 5172 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5173 5174 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5175 5176 if (root->fs_info->log_root_recovering) { 5177 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5178 &BTRFS_I(inode)->runtime_flags)); 5179 goto no_delete; 5180 } 5181 5182 if (inode->i_nlink > 0) { 5183 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5184 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5185 goto no_delete; 5186 } 5187 5188 ret = btrfs_commit_inode_delayed_inode(inode); 5189 if (ret) { 5190 btrfs_orphan_del(NULL, inode); 5191 goto no_delete; 5192 } 5193 5194 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5195 if (!rsv) { 5196 btrfs_orphan_del(NULL, inode); 5197 goto no_delete; 5198 } 5199 rsv->size = min_size; 5200 rsv->failfast = 1; 5201 global_rsv = &root->fs_info->global_block_rsv; 5202 5203 btrfs_i_size_write(inode, 0); 5204 5205 /* 5206 * This is a bit simpler than btrfs_truncate since we've already 5207 * reserved our space for our orphan item in the unlink, so we just 5208 * need to reserve some slack space in case we add bytes and update 5209 * inode item when doing the truncate. 5210 */ 5211 while (1) { 5212 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5213 BTRFS_RESERVE_FLUSH_LIMIT); 5214 5215 /* 5216 * Try and steal from the global reserve since we will 5217 * likely not use this space anyway, we want to try as 5218 * hard as possible to get this to work. 5219 */ 5220 if (ret) 5221 steal_from_global++; 5222 else 5223 steal_from_global = 0; 5224 ret = 0; 5225 5226 /* 5227 * steal_from_global == 0: we reserved stuff, hooray! 5228 * steal_from_global == 1: we didn't reserve stuff, boo! 5229 * steal_from_global == 2: we've committed, still not a lot of 5230 * room but maybe we'll have room in the global reserve this 5231 * time. 5232 * steal_from_global == 3: abandon all hope! 5233 */ 5234 if (steal_from_global > 2) { 5235 btrfs_warn(root->fs_info, 5236 "Could not get space for a delete, will truncate on mount %d", 5237 ret); 5238 btrfs_orphan_del(NULL, inode); 5239 btrfs_free_block_rsv(root, rsv); 5240 goto no_delete; 5241 } 5242 5243 trans = btrfs_join_transaction(root); 5244 if (IS_ERR(trans)) { 5245 btrfs_orphan_del(NULL, inode); 5246 btrfs_free_block_rsv(root, rsv); 5247 goto no_delete; 5248 } 5249 5250 /* 5251 * We can't just steal from the global reserve, we need tomake 5252 * sure there is room to do it, if not we need to commit and try 5253 * again. 5254 */ 5255 if (steal_from_global) { 5256 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5257 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5258 min_size); 5259 else 5260 ret = -ENOSPC; 5261 } 5262 5263 /* 5264 * Couldn't steal from the global reserve, we have too much 5265 * pending stuff built up, commit the transaction and try it 5266 * again. 5267 */ 5268 if (ret) { 5269 ret = btrfs_commit_transaction(trans, root); 5270 if (ret) { 5271 btrfs_orphan_del(NULL, inode); 5272 btrfs_free_block_rsv(root, rsv); 5273 goto no_delete; 5274 } 5275 continue; 5276 } else { 5277 steal_from_global = 0; 5278 } 5279 5280 trans->block_rsv = rsv; 5281 5282 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5283 if (ret != -ENOSPC && ret != -EAGAIN) 5284 break; 5285 5286 trans->block_rsv = &root->fs_info->trans_block_rsv; 5287 btrfs_end_transaction(trans, root); 5288 trans = NULL; 5289 btrfs_btree_balance_dirty(root); 5290 } 5291 5292 btrfs_free_block_rsv(root, rsv); 5293 5294 /* 5295 * Errors here aren't a big deal, it just means we leave orphan items 5296 * in the tree. They will be cleaned up on the next mount. 5297 */ 5298 if (ret == 0) { 5299 trans->block_rsv = root->orphan_block_rsv; 5300 btrfs_orphan_del(trans, inode); 5301 } else { 5302 btrfs_orphan_del(NULL, inode); 5303 } 5304 5305 trans->block_rsv = &root->fs_info->trans_block_rsv; 5306 if (!(root == root->fs_info->tree_root || 5307 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5308 btrfs_return_ino(root, btrfs_ino(inode)); 5309 5310 btrfs_end_transaction(trans, root); 5311 btrfs_btree_balance_dirty(root); 5312 no_delete: 5313 btrfs_remove_delayed_node(inode); 5314 clear_inode(inode); 5315 } 5316 5317 /* 5318 * this returns the key found in the dir entry in the location pointer. 5319 * If no dir entries were found, location->objectid is 0. 5320 */ 5321 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5322 struct btrfs_key *location) 5323 { 5324 const char *name = dentry->d_name.name; 5325 int namelen = dentry->d_name.len; 5326 struct btrfs_dir_item *di; 5327 struct btrfs_path *path; 5328 struct btrfs_root *root = BTRFS_I(dir)->root; 5329 int ret = 0; 5330 5331 path = btrfs_alloc_path(); 5332 if (!path) 5333 return -ENOMEM; 5334 5335 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5336 namelen, 0); 5337 if (IS_ERR(di)) 5338 ret = PTR_ERR(di); 5339 5340 if (IS_ERR_OR_NULL(di)) 5341 goto out_err; 5342 5343 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5344 out: 5345 btrfs_free_path(path); 5346 return ret; 5347 out_err: 5348 location->objectid = 0; 5349 goto out; 5350 } 5351 5352 /* 5353 * when we hit a tree root in a directory, the btrfs part of the inode 5354 * needs to be changed to reflect the root directory of the tree root. This 5355 * is kind of like crossing a mount point. 5356 */ 5357 static int fixup_tree_root_location(struct btrfs_root *root, 5358 struct inode *dir, 5359 struct dentry *dentry, 5360 struct btrfs_key *location, 5361 struct btrfs_root **sub_root) 5362 { 5363 struct btrfs_path *path; 5364 struct btrfs_root *new_root; 5365 struct btrfs_root_ref *ref; 5366 struct extent_buffer *leaf; 5367 struct btrfs_key key; 5368 int ret; 5369 int err = 0; 5370 5371 path = btrfs_alloc_path(); 5372 if (!path) { 5373 err = -ENOMEM; 5374 goto out; 5375 } 5376 5377 err = -ENOENT; 5378 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5379 key.type = BTRFS_ROOT_REF_KEY; 5380 key.offset = location->objectid; 5381 5382 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5383 0, 0); 5384 if (ret) { 5385 if (ret < 0) 5386 err = ret; 5387 goto out; 5388 } 5389 5390 leaf = path->nodes[0]; 5391 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5392 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5393 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5394 goto out; 5395 5396 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5397 (unsigned long)(ref + 1), 5398 dentry->d_name.len); 5399 if (ret) 5400 goto out; 5401 5402 btrfs_release_path(path); 5403 5404 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5405 if (IS_ERR(new_root)) { 5406 err = PTR_ERR(new_root); 5407 goto out; 5408 } 5409 5410 *sub_root = new_root; 5411 location->objectid = btrfs_root_dirid(&new_root->root_item); 5412 location->type = BTRFS_INODE_ITEM_KEY; 5413 location->offset = 0; 5414 err = 0; 5415 out: 5416 btrfs_free_path(path); 5417 return err; 5418 } 5419 5420 static void inode_tree_add(struct inode *inode) 5421 { 5422 struct btrfs_root *root = BTRFS_I(inode)->root; 5423 struct btrfs_inode *entry; 5424 struct rb_node **p; 5425 struct rb_node *parent; 5426 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5427 u64 ino = btrfs_ino(inode); 5428 5429 if (inode_unhashed(inode)) 5430 return; 5431 parent = NULL; 5432 spin_lock(&root->inode_lock); 5433 p = &root->inode_tree.rb_node; 5434 while (*p) { 5435 parent = *p; 5436 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5437 5438 if (ino < btrfs_ino(&entry->vfs_inode)) 5439 p = &parent->rb_left; 5440 else if (ino > btrfs_ino(&entry->vfs_inode)) 5441 p = &parent->rb_right; 5442 else { 5443 WARN_ON(!(entry->vfs_inode.i_state & 5444 (I_WILL_FREE | I_FREEING))); 5445 rb_replace_node(parent, new, &root->inode_tree); 5446 RB_CLEAR_NODE(parent); 5447 spin_unlock(&root->inode_lock); 5448 return; 5449 } 5450 } 5451 rb_link_node(new, parent, p); 5452 rb_insert_color(new, &root->inode_tree); 5453 spin_unlock(&root->inode_lock); 5454 } 5455 5456 static void inode_tree_del(struct inode *inode) 5457 { 5458 struct btrfs_root *root = BTRFS_I(inode)->root; 5459 int empty = 0; 5460 5461 spin_lock(&root->inode_lock); 5462 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5463 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5464 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5465 empty = RB_EMPTY_ROOT(&root->inode_tree); 5466 } 5467 spin_unlock(&root->inode_lock); 5468 5469 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5470 synchronize_srcu(&root->fs_info->subvol_srcu); 5471 spin_lock(&root->inode_lock); 5472 empty = RB_EMPTY_ROOT(&root->inode_tree); 5473 spin_unlock(&root->inode_lock); 5474 if (empty) 5475 btrfs_add_dead_root(root); 5476 } 5477 } 5478 5479 void btrfs_invalidate_inodes(struct btrfs_root *root) 5480 { 5481 struct rb_node *node; 5482 struct rb_node *prev; 5483 struct btrfs_inode *entry; 5484 struct inode *inode; 5485 u64 objectid = 0; 5486 5487 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5488 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5489 5490 spin_lock(&root->inode_lock); 5491 again: 5492 node = root->inode_tree.rb_node; 5493 prev = NULL; 5494 while (node) { 5495 prev = node; 5496 entry = rb_entry(node, struct btrfs_inode, rb_node); 5497 5498 if (objectid < btrfs_ino(&entry->vfs_inode)) 5499 node = node->rb_left; 5500 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5501 node = node->rb_right; 5502 else 5503 break; 5504 } 5505 if (!node) { 5506 while (prev) { 5507 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5508 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5509 node = prev; 5510 break; 5511 } 5512 prev = rb_next(prev); 5513 } 5514 } 5515 while (node) { 5516 entry = rb_entry(node, struct btrfs_inode, rb_node); 5517 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5518 inode = igrab(&entry->vfs_inode); 5519 if (inode) { 5520 spin_unlock(&root->inode_lock); 5521 if (atomic_read(&inode->i_count) > 1) 5522 d_prune_aliases(inode); 5523 /* 5524 * btrfs_drop_inode will have it removed from 5525 * the inode cache when its usage count 5526 * hits zero. 5527 */ 5528 iput(inode); 5529 cond_resched(); 5530 spin_lock(&root->inode_lock); 5531 goto again; 5532 } 5533 5534 if (cond_resched_lock(&root->inode_lock)) 5535 goto again; 5536 5537 node = rb_next(node); 5538 } 5539 spin_unlock(&root->inode_lock); 5540 } 5541 5542 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5543 { 5544 struct btrfs_iget_args *args = p; 5545 inode->i_ino = args->location->objectid; 5546 memcpy(&BTRFS_I(inode)->location, args->location, 5547 sizeof(*args->location)); 5548 BTRFS_I(inode)->root = args->root; 5549 return 0; 5550 } 5551 5552 static int btrfs_find_actor(struct inode *inode, void *opaque) 5553 { 5554 struct btrfs_iget_args *args = opaque; 5555 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5556 args->root == BTRFS_I(inode)->root; 5557 } 5558 5559 static struct inode *btrfs_iget_locked(struct super_block *s, 5560 struct btrfs_key *location, 5561 struct btrfs_root *root) 5562 { 5563 struct inode *inode; 5564 struct btrfs_iget_args args; 5565 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5566 5567 args.location = location; 5568 args.root = root; 5569 5570 inode = iget5_locked(s, hashval, btrfs_find_actor, 5571 btrfs_init_locked_inode, 5572 (void *)&args); 5573 return inode; 5574 } 5575 5576 /* Get an inode object given its location and corresponding root. 5577 * Returns in *is_new if the inode was read from disk 5578 */ 5579 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5580 struct btrfs_root *root, int *new) 5581 { 5582 struct inode *inode; 5583 5584 inode = btrfs_iget_locked(s, location, root); 5585 if (!inode) 5586 return ERR_PTR(-ENOMEM); 5587 5588 if (inode->i_state & I_NEW) { 5589 btrfs_read_locked_inode(inode); 5590 if (!is_bad_inode(inode)) { 5591 inode_tree_add(inode); 5592 unlock_new_inode(inode); 5593 if (new) 5594 *new = 1; 5595 } else { 5596 unlock_new_inode(inode); 5597 iput(inode); 5598 inode = ERR_PTR(-ESTALE); 5599 } 5600 } 5601 5602 return inode; 5603 } 5604 5605 static struct inode *new_simple_dir(struct super_block *s, 5606 struct btrfs_key *key, 5607 struct btrfs_root *root) 5608 { 5609 struct inode *inode = new_inode(s); 5610 5611 if (!inode) 5612 return ERR_PTR(-ENOMEM); 5613 5614 BTRFS_I(inode)->root = root; 5615 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5616 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5617 5618 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5619 inode->i_op = &btrfs_dir_ro_inode_operations; 5620 inode->i_fop = &simple_dir_operations; 5621 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5622 inode->i_mtime = current_fs_time(inode->i_sb); 5623 inode->i_atime = inode->i_mtime; 5624 inode->i_ctime = inode->i_mtime; 5625 BTRFS_I(inode)->i_otime = inode->i_mtime; 5626 5627 return inode; 5628 } 5629 5630 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5631 { 5632 struct inode *inode; 5633 struct btrfs_root *root = BTRFS_I(dir)->root; 5634 struct btrfs_root *sub_root = root; 5635 struct btrfs_key location; 5636 int index; 5637 int ret = 0; 5638 5639 if (dentry->d_name.len > BTRFS_NAME_LEN) 5640 return ERR_PTR(-ENAMETOOLONG); 5641 5642 ret = btrfs_inode_by_name(dir, dentry, &location); 5643 if (ret < 0) 5644 return ERR_PTR(ret); 5645 5646 if (location.objectid == 0) 5647 return ERR_PTR(-ENOENT); 5648 5649 if (location.type == BTRFS_INODE_ITEM_KEY) { 5650 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5651 return inode; 5652 } 5653 5654 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5655 5656 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5657 ret = fixup_tree_root_location(root, dir, dentry, 5658 &location, &sub_root); 5659 if (ret < 0) { 5660 if (ret != -ENOENT) 5661 inode = ERR_PTR(ret); 5662 else 5663 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5664 } else { 5665 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5666 } 5667 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5668 5669 if (!IS_ERR(inode) && root != sub_root) { 5670 down_read(&root->fs_info->cleanup_work_sem); 5671 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5672 ret = btrfs_orphan_cleanup(sub_root); 5673 up_read(&root->fs_info->cleanup_work_sem); 5674 if (ret) { 5675 iput(inode); 5676 inode = ERR_PTR(ret); 5677 } 5678 } 5679 5680 return inode; 5681 } 5682 5683 static int btrfs_dentry_delete(const struct dentry *dentry) 5684 { 5685 struct btrfs_root *root; 5686 struct inode *inode = d_inode(dentry); 5687 5688 if (!inode && !IS_ROOT(dentry)) 5689 inode = d_inode(dentry->d_parent); 5690 5691 if (inode) { 5692 root = BTRFS_I(inode)->root; 5693 if (btrfs_root_refs(&root->root_item) == 0) 5694 return 1; 5695 5696 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5697 return 1; 5698 } 5699 return 0; 5700 } 5701 5702 static void btrfs_dentry_release(struct dentry *dentry) 5703 { 5704 kfree(dentry->d_fsdata); 5705 } 5706 5707 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5708 unsigned int flags) 5709 { 5710 struct inode *inode; 5711 5712 inode = btrfs_lookup_dentry(dir, dentry); 5713 if (IS_ERR(inode)) { 5714 if (PTR_ERR(inode) == -ENOENT) 5715 inode = NULL; 5716 else 5717 return ERR_CAST(inode); 5718 } 5719 5720 return d_splice_alias(inode, dentry); 5721 } 5722 5723 unsigned char btrfs_filetype_table[] = { 5724 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5725 }; 5726 5727 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5728 { 5729 struct inode *inode = file_inode(file); 5730 struct btrfs_root *root = BTRFS_I(inode)->root; 5731 struct btrfs_item *item; 5732 struct btrfs_dir_item *di; 5733 struct btrfs_key key; 5734 struct btrfs_key found_key; 5735 struct btrfs_path *path; 5736 struct list_head ins_list; 5737 struct list_head del_list; 5738 int ret; 5739 struct extent_buffer *leaf; 5740 int slot; 5741 unsigned char d_type; 5742 int over = 0; 5743 u32 di_cur; 5744 u32 di_total; 5745 u32 di_len; 5746 int key_type = BTRFS_DIR_INDEX_KEY; 5747 char tmp_name[32]; 5748 char *name_ptr; 5749 int name_len; 5750 int is_curr = 0; /* ctx->pos points to the current index? */ 5751 bool emitted; 5752 5753 /* FIXME, use a real flag for deciding about the key type */ 5754 if (root->fs_info->tree_root == root) 5755 key_type = BTRFS_DIR_ITEM_KEY; 5756 5757 if (!dir_emit_dots(file, ctx)) 5758 return 0; 5759 5760 path = btrfs_alloc_path(); 5761 if (!path) 5762 return -ENOMEM; 5763 5764 path->reada = READA_FORWARD; 5765 5766 if (key_type == BTRFS_DIR_INDEX_KEY) { 5767 INIT_LIST_HEAD(&ins_list); 5768 INIT_LIST_HEAD(&del_list); 5769 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5770 } 5771 5772 key.type = key_type; 5773 key.offset = ctx->pos; 5774 key.objectid = btrfs_ino(inode); 5775 5776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5777 if (ret < 0) 5778 goto err; 5779 5780 emitted = false; 5781 while (1) { 5782 leaf = path->nodes[0]; 5783 slot = path->slots[0]; 5784 if (slot >= btrfs_header_nritems(leaf)) { 5785 ret = btrfs_next_leaf(root, path); 5786 if (ret < 0) 5787 goto err; 5788 else if (ret > 0) 5789 break; 5790 continue; 5791 } 5792 5793 item = btrfs_item_nr(slot); 5794 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5795 5796 if (found_key.objectid != key.objectid) 5797 break; 5798 if (found_key.type != key_type) 5799 break; 5800 if (found_key.offset < ctx->pos) 5801 goto next; 5802 if (key_type == BTRFS_DIR_INDEX_KEY && 5803 btrfs_should_delete_dir_index(&del_list, 5804 found_key.offset)) 5805 goto next; 5806 5807 ctx->pos = found_key.offset; 5808 is_curr = 1; 5809 5810 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5811 di_cur = 0; 5812 di_total = btrfs_item_size(leaf, item); 5813 5814 while (di_cur < di_total) { 5815 struct btrfs_key location; 5816 5817 if (verify_dir_item(root, leaf, di)) 5818 break; 5819 5820 name_len = btrfs_dir_name_len(leaf, di); 5821 if (name_len <= sizeof(tmp_name)) { 5822 name_ptr = tmp_name; 5823 } else { 5824 name_ptr = kmalloc(name_len, GFP_KERNEL); 5825 if (!name_ptr) { 5826 ret = -ENOMEM; 5827 goto err; 5828 } 5829 } 5830 read_extent_buffer(leaf, name_ptr, 5831 (unsigned long)(di + 1), name_len); 5832 5833 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5834 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5835 5836 5837 /* is this a reference to our own snapshot? If so 5838 * skip it. 5839 * 5840 * In contrast to old kernels, we insert the snapshot's 5841 * dir item and dir index after it has been created, so 5842 * we won't find a reference to our own snapshot. We 5843 * still keep the following code for backward 5844 * compatibility. 5845 */ 5846 if (location.type == BTRFS_ROOT_ITEM_KEY && 5847 location.objectid == root->root_key.objectid) { 5848 over = 0; 5849 goto skip; 5850 } 5851 over = !dir_emit(ctx, name_ptr, name_len, 5852 location.objectid, d_type); 5853 5854 skip: 5855 if (name_ptr != tmp_name) 5856 kfree(name_ptr); 5857 5858 if (over) 5859 goto nopos; 5860 emitted = true; 5861 di_len = btrfs_dir_name_len(leaf, di) + 5862 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5863 di_cur += di_len; 5864 di = (struct btrfs_dir_item *)((char *)di + di_len); 5865 } 5866 next: 5867 path->slots[0]++; 5868 } 5869 5870 if (key_type == BTRFS_DIR_INDEX_KEY) { 5871 if (is_curr) 5872 ctx->pos++; 5873 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5874 if (ret) 5875 goto nopos; 5876 } 5877 5878 /* 5879 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5880 * it was was set to the termination value in previous call. We assume 5881 * that "." and ".." were emitted if we reach this point and set the 5882 * termination value as well for an empty directory. 5883 */ 5884 if (ctx->pos > 2 && !emitted) 5885 goto nopos; 5886 5887 /* Reached end of directory/root. Bump pos past the last item. */ 5888 ctx->pos++; 5889 5890 /* 5891 * Stop new entries from being returned after we return the last 5892 * entry. 5893 * 5894 * New directory entries are assigned a strictly increasing 5895 * offset. This means that new entries created during readdir 5896 * are *guaranteed* to be seen in the future by that readdir. 5897 * This has broken buggy programs which operate on names as 5898 * they're returned by readdir. Until we re-use freed offsets 5899 * we have this hack to stop new entries from being returned 5900 * under the assumption that they'll never reach this huge 5901 * offset. 5902 * 5903 * This is being careful not to overflow 32bit loff_t unless the 5904 * last entry requires it because doing so has broken 32bit apps 5905 * in the past. 5906 */ 5907 if (key_type == BTRFS_DIR_INDEX_KEY) { 5908 if (ctx->pos >= INT_MAX) 5909 ctx->pos = LLONG_MAX; 5910 else 5911 ctx->pos = INT_MAX; 5912 } 5913 nopos: 5914 ret = 0; 5915 err: 5916 if (key_type == BTRFS_DIR_INDEX_KEY) 5917 btrfs_put_delayed_items(&ins_list, &del_list); 5918 btrfs_free_path(path); 5919 return ret; 5920 } 5921 5922 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5923 { 5924 struct btrfs_root *root = BTRFS_I(inode)->root; 5925 struct btrfs_trans_handle *trans; 5926 int ret = 0; 5927 bool nolock = false; 5928 5929 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5930 return 0; 5931 5932 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5933 nolock = true; 5934 5935 if (wbc->sync_mode == WB_SYNC_ALL) { 5936 if (nolock) 5937 trans = btrfs_join_transaction_nolock(root); 5938 else 5939 trans = btrfs_join_transaction(root); 5940 if (IS_ERR(trans)) 5941 return PTR_ERR(trans); 5942 ret = btrfs_commit_transaction(trans, root); 5943 } 5944 return ret; 5945 } 5946 5947 /* 5948 * This is somewhat expensive, updating the tree every time the 5949 * inode changes. But, it is most likely to find the inode in cache. 5950 * FIXME, needs more benchmarking...there are no reasons other than performance 5951 * to keep or drop this code. 5952 */ 5953 static int btrfs_dirty_inode(struct inode *inode) 5954 { 5955 struct btrfs_root *root = BTRFS_I(inode)->root; 5956 struct btrfs_trans_handle *trans; 5957 int ret; 5958 5959 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5960 return 0; 5961 5962 trans = btrfs_join_transaction(root); 5963 if (IS_ERR(trans)) 5964 return PTR_ERR(trans); 5965 5966 ret = btrfs_update_inode(trans, root, inode); 5967 if (ret && ret == -ENOSPC) { 5968 /* whoops, lets try again with the full transaction */ 5969 btrfs_end_transaction(trans, root); 5970 trans = btrfs_start_transaction(root, 1); 5971 if (IS_ERR(trans)) 5972 return PTR_ERR(trans); 5973 5974 ret = btrfs_update_inode(trans, root, inode); 5975 } 5976 btrfs_end_transaction(trans, root); 5977 if (BTRFS_I(inode)->delayed_node) 5978 btrfs_balance_delayed_items(root); 5979 5980 return ret; 5981 } 5982 5983 /* 5984 * This is a copy of file_update_time. We need this so we can return error on 5985 * ENOSPC for updating the inode in the case of file write and mmap writes. 5986 */ 5987 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5988 int flags) 5989 { 5990 struct btrfs_root *root = BTRFS_I(inode)->root; 5991 5992 if (btrfs_root_readonly(root)) 5993 return -EROFS; 5994 5995 if (flags & S_VERSION) 5996 inode_inc_iversion(inode); 5997 if (flags & S_CTIME) 5998 inode->i_ctime = *now; 5999 if (flags & S_MTIME) 6000 inode->i_mtime = *now; 6001 if (flags & S_ATIME) 6002 inode->i_atime = *now; 6003 return btrfs_dirty_inode(inode); 6004 } 6005 6006 /* 6007 * find the highest existing sequence number in a directory 6008 * and then set the in-memory index_cnt variable to reflect 6009 * free sequence numbers 6010 */ 6011 static int btrfs_set_inode_index_count(struct inode *inode) 6012 { 6013 struct btrfs_root *root = BTRFS_I(inode)->root; 6014 struct btrfs_key key, found_key; 6015 struct btrfs_path *path; 6016 struct extent_buffer *leaf; 6017 int ret; 6018 6019 key.objectid = btrfs_ino(inode); 6020 key.type = BTRFS_DIR_INDEX_KEY; 6021 key.offset = (u64)-1; 6022 6023 path = btrfs_alloc_path(); 6024 if (!path) 6025 return -ENOMEM; 6026 6027 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6028 if (ret < 0) 6029 goto out; 6030 /* FIXME: we should be able to handle this */ 6031 if (ret == 0) 6032 goto out; 6033 ret = 0; 6034 6035 /* 6036 * MAGIC NUMBER EXPLANATION: 6037 * since we search a directory based on f_pos we have to start at 2 6038 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6039 * else has to start at 2 6040 */ 6041 if (path->slots[0] == 0) { 6042 BTRFS_I(inode)->index_cnt = 2; 6043 goto out; 6044 } 6045 6046 path->slots[0]--; 6047 6048 leaf = path->nodes[0]; 6049 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6050 6051 if (found_key.objectid != btrfs_ino(inode) || 6052 found_key.type != BTRFS_DIR_INDEX_KEY) { 6053 BTRFS_I(inode)->index_cnt = 2; 6054 goto out; 6055 } 6056 6057 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6058 out: 6059 btrfs_free_path(path); 6060 return ret; 6061 } 6062 6063 /* 6064 * helper to find a free sequence number in a given directory. This current 6065 * code is very simple, later versions will do smarter things in the btree 6066 */ 6067 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6068 { 6069 int ret = 0; 6070 6071 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6072 ret = btrfs_inode_delayed_dir_index_count(dir); 6073 if (ret) { 6074 ret = btrfs_set_inode_index_count(dir); 6075 if (ret) 6076 return ret; 6077 } 6078 } 6079 6080 *index = BTRFS_I(dir)->index_cnt; 6081 BTRFS_I(dir)->index_cnt++; 6082 6083 return ret; 6084 } 6085 6086 static int btrfs_insert_inode_locked(struct inode *inode) 6087 { 6088 struct btrfs_iget_args args; 6089 args.location = &BTRFS_I(inode)->location; 6090 args.root = BTRFS_I(inode)->root; 6091 6092 return insert_inode_locked4(inode, 6093 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6094 btrfs_find_actor, &args); 6095 } 6096 6097 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6098 struct btrfs_root *root, 6099 struct inode *dir, 6100 const char *name, int name_len, 6101 u64 ref_objectid, u64 objectid, 6102 umode_t mode, u64 *index) 6103 { 6104 struct inode *inode; 6105 struct btrfs_inode_item *inode_item; 6106 struct btrfs_key *location; 6107 struct btrfs_path *path; 6108 struct btrfs_inode_ref *ref; 6109 struct btrfs_key key[2]; 6110 u32 sizes[2]; 6111 int nitems = name ? 2 : 1; 6112 unsigned long ptr; 6113 int ret; 6114 6115 path = btrfs_alloc_path(); 6116 if (!path) 6117 return ERR_PTR(-ENOMEM); 6118 6119 inode = new_inode(root->fs_info->sb); 6120 if (!inode) { 6121 btrfs_free_path(path); 6122 return ERR_PTR(-ENOMEM); 6123 } 6124 6125 /* 6126 * O_TMPFILE, set link count to 0, so that after this point, 6127 * we fill in an inode item with the correct link count. 6128 */ 6129 if (!name) 6130 set_nlink(inode, 0); 6131 6132 /* 6133 * we have to initialize this early, so we can reclaim the inode 6134 * number if we fail afterwards in this function. 6135 */ 6136 inode->i_ino = objectid; 6137 6138 if (dir && name) { 6139 trace_btrfs_inode_request(dir); 6140 6141 ret = btrfs_set_inode_index(dir, index); 6142 if (ret) { 6143 btrfs_free_path(path); 6144 iput(inode); 6145 return ERR_PTR(ret); 6146 } 6147 } else if (dir) { 6148 *index = 0; 6149 } 6150 /* 6151 * index_cnt is ignored for everything but a dir, 6152 * btrfs_get_inode_index_count has an explanation for the magic 6153 * number 6154 */ 6155 BTRFS_I(inode)->index_cnt = 2; 6156 BTRFS_I(inode)->dir_index = *index; 6157 BTRFS_I(inode)->root = root; 6158 BTRFS_I(inode)->generation = trans->transid; 6159 inode->i_generation = BTRFS_I(inode)->generation; 6160 6161 /* 6162 * We could have gotten an inode number from somebody who was fsynced 6163 * and then removed in this same transaction, so let's just set full 6164 * sync since it will be a full sync anyway and this will blow away the 6165 * old info in the log. 6166 */ 6167 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6168 6169 key[0].objectid = objectid; 6170 key[0].type = BTRFS_INODE_ITEM_KEY; 6171 key[0].offset = 0; 6172 6173 sizes[0] = sizeof(struct btrfs_inode_item); 6174 6175 if (name) { 6176 /* 6177 * Start new inodes with an inode_ref. This is slightly more 6178 * efficient for small numbers of hard links since they will 6179 * be packed into one item. Extended refs will kick in if we 6180 * add more hard links than can fit in the ref item. 6181 */ 6182 key[1].objectid = objectid; 6183 key[1].type = BTRFS_INODE_REF_KEY; 6184 key[1].offset = ref_objectid; 6185 6186 sizes[1] = name_len + sizeof(*ref); 6187 } 6188 6189 location = &BTRFS_I(inode)->location; 6190 location->objectid = objectid; 6191 location->offset = 0; 6192 location->type = BTRFS_INODE_ITEM_KEY; 6193 6194 ret = btrfs_insert_inode_locked(inode); 6195 if (ret < 0) 6196 goto fail; 6197 6198 path->leave_spinning = 1; 6199 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6200 if (ret != 0) 6201 goto fail_unlock; 6202 6203 inode_init_owner(inode, dir, mode); 6204 inode_set_bytes(inode, 0); 6205 6206 inode->i_mtime = current_fs_time(inode->i_sb); 6207 inode->i_atime = inode->i_mtime; 6208 inode->i_ctime = inode->i_mtime; 6209 BTRFS_I(inode)->i_otime = inode->i_mtime; 6210 6211 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6212 struct btrfs_inode_item); 6213 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6214 sizeof(*inode_item)); 6215 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6216 6217 if (name) { 6218 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6219 struct btrfs_inode_ref); 6220 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6221 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6222 ptr = (unsigned long)(ref + 1); 6223 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6224 } 6225 6226 btrfs_mark_buffer_dirty(path->nodes[0]); 6227 btrfs_free_path(path); 6228 6229 btrfs_inherit_iflags(inode, dir); 6230 6231 if (S_ISREG(mode)) { 6232 if (btrfs_test_opt(root, NODATASUM)) 6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6234 if (btrfs_test_opt(root, NODATACOW)) 6235 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6236 BTRFS_INODE_NODATASUM; 6237 } 6238 6239 inode_tree_add(inode); 6240 6241 trace_btrfs_inode_new(inode); 6242 btrfs_set_inode_last_trans(trans, inode); 6243 6244 btrfs_update_root_times(trans, root); 6245 6246 ret = btrfs_inode_inherit_props(trans, inode, dir); 6247 if (ret) 6248 btrfs_err(root->fs_info, 6249 "error inheriting props for ino %llu (root %llu): %d", 6250 btrfs_ino(inode), root->root_key.objectid, ret); 6251 6252 return inode; 6253 6254 fail_unlock: 6255 unlock_new_inode(inode); 6256 fail: 6257 if (dir && name) 6258 BTRFS_I(dir)->index_cnt--; 6259 btrfs_free_path(path); 6260 iput(inode); 6261 return ERR_PTR(ret); 6262 } 6263 6264 static inline u8 btrfs_inode_type(struct inode *inode) 6265 { 6266 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6267 } 6268 6269 /* 6270 * utility function to add 'inode' into 'parent_inode' with 6271 * a give name and a given sequence number. 6272 * if 'add_backref' is true, also insert a backref from the 6273 * inode to the parent directory. 6274 */ 6275 int btrfs_add_link(struct btrfs_trans_handle *trans, 6276 struct inode *parent_inode, struct inode *inode, 6277 const char *name, int name_len, int add_backref, u64 index) 6278 { 6279 int ret = 0; 6280 struct btrfs_key key; 6281 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6282 u64 ino = btrfs_ino(inode); 6283 u64 parent_ino = btrfs_ino(parent_inode); 6284 6285 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6286 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6287 } else { 6288 key.objectid = ino; 6289 key.type = BTRFS_INODE_ITEM_KEY; 6290 key.offset = 0; 6291 } 6292 6293 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6294 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6295 key.objectid, root->root_key.objectid, 6296 parent_ino, index, name, name_len); 6297 } else if (add_backref) { 6298 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6299 parent_ino, index); 6300 } 6301 6302 /* Nothing to clean up yet */ 6303 if (ret) 6304 return ret; 6305 6306 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6307 parent_inode, &key, 6308 btrfs_inode_type(inode), index); 6309 if (ret == -EEXIST || ret == -EOVERFLOW) 6310 goto fail_dir_item; 6311 else if (ret) { 6312 btrfs_abort_transaction(trans, root, ret); 6313 return ret; 6314 } 6315 6316 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6317 name_len * 2); 6318 inode_inc_iversion(parent_inode); 6319 parent_inode->i_mtime = parent_inode->i_ctime = 6320 current_fs_time(parent_inode->i_sb); 6321 ret = btrfs_update_inode(trans, root, parent_inode); 6322 if (ret) 6323 btrfs_abort_transaction(trans, root, ret); 6324 return ret; 6325 6326 fail_dir_item: 6327 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6328 u64 local_index; 6329 int err; 6330 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6331 key.objectid, root->root_key.objectid, 6332 parent_ino, &local_index, name, name_len); 6333 6334 } else if (add_backref) { 6335 u64 local_index; 6336 int err; 6337 6338 err = btrfs_del_inode_ref(trans, root, name, name_len, 6339 ino, parent_ino, &local_index); 6340 } 6341 return ret; 6342 } 6343 6344 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6345 struct inode *dir, struct dentry *dentry, 6346 struct inode *inode, int backref, u64 index) 6347 { 6348 int err = btrfs_add_link(trans, dir, inode, 6349 dentry->d_name.name, dentry->d_name.len, 6350 backref, index); 6351 if (err > 0) 6352 err = -EEXIST; 6353 return err; 6354 } 6355 6356 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6357 umode_t mode, dev_t rdev) 6358 { 6359 struct btrfs_trans_handle *trans; 6360 struct btrfs_root *root = BTRFS_I(dir)->root; 6361 struct inode *inode = NULL; 6362 int err; 6363 int drop_inode = 0; 6364 u64 objectid; 6365 u64 index = 0; 6366 6367 /* 6368 * 2 for inode item and ref 6369 * 2 for dir items 6370 * 1 for xattr if selinux is on 6371 */ 6372 trans = btrfs_start_transaction(root, 5); 6373 if (IS_ERR(trans)) 6374 return PTR_ERR(trans); 6375 6376 err = btrfs_find_free_ino(root, &objectid); 6377 if (err) 6378 goto out_unlock; 6379 6380 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6381 dentry->d_name.len, btrfs_ino(dir), objectid, 6382 mode, &index); 6383 if (IS_ERR(inode)) { 6384 err = PTR_ERR(inode); 6385 goto out_unlock; 6386 } 6387 6388 /* 6389 * If the active LSM wants to access the inode during 6390 * d_instantiate it needs these. Smack checks to see 6391 * if the filesystem supports xattrs by looking at the 6392 * ops vector. 6393 */ 6394 inode->i_op = &btrfs_special_inode_operations; 6395 init_special_inode(inode, inode->i_mode, rdev); 6396 6397 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6398 if (err) 6399 goto out_unlock_inode; 6400 6401 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6402 if (err) { 6403 goto out_unlock_inode; 6404 } else { 6405 btrfs_update_inode(trans, root, inode); 6406 unlock_new_inode(inode); 6407 d_instantiate(dentry, inode); 6408 } 6409 6410 out_unlock: 6411 btrfs_end_transaction(trans, root); 6412 btrfs_balance_delayed_items(root); 6413 btrfs_btree_balance_dirty(root); 6414 if (drop_inode) { 6415 inode_dec_link_count(inode); 6416 iput(inode); 6417 } 6418 return err; 6419 6420 out_unlock_inode: 6421 drop_inode = 1; 6422 unlock_new_inode(inode); 6423 goto out_unlock; 6424 6425 } 6426 6427 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6428 umode_t mode, bool excl) 6429 { 6430 struct btrfs_trans_handle *trans; 6431 struct btrfs_root *root = BTRFS_I(dir)->root; 6432 struct inode *inode = NULL; 6433 int drop_inode_on_err = 0; 6434 int err; 6435 u64 objectid; 6436 u64 index = 0; 6437 6438 /* 6439 * 2 for inode item and ref 6440 * 2 for dir items 6441 * 1 for xattr if selinux is on 6442 */ 6443 trans = btrfs_start_transaction(root, 5); 6444 if (IS_ERR(trans)) 6445 return PTR_ERR(trans); 6446 6447 err = btrfs_find_free_ino(root, &objectid); 6448 if (err) 6449 goto out_unlock; 6450 6451 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6452 dentry->d_name.len, btrfs_ino(dir), objectid, 6453 mode, &index); 6454 if (IS_ERR(inode)) { 6455 err = PTR_ERR(inode); 6456 goto out_unlock; 6457 } 6458 drop_inode_on_err = 1; 6459 /* 6460 * If the active LSM wants to access the inode during 6461 * d_instantiate it needs these. Smack checks to see 6462 * if the filesystem supports xattrs by looking at the 6463 * ops vector. 6464 */ 6465 inode->i_fop = &btrfs_file_operations; 6466 inode->i_op = &btrfs_file_inode_operations; 6467 inode->i_mapping->a_ops = &btrfs_aops; 6468 6469 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6470 if (err) 6471 goto out_unlock_inode; 6472 6473 err = btrfs_update_inode(trans, root, inode); 6474 if (err) 6475 goto out_unlock_inode; 6476 6477 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6478 if (err) 6479 goto out_unlock_inode; 6480 6481 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6482 unlock_new_inode(inode); 6483 d_instantiate(dentry, inode); 6484 6485 out_unlock: 6486 btrfs_end_transaction(trans, root); 6487 if (err && drop_inode_on_err) { 6488 inode_dec_link_count(inode); 6489 iput(inode); 6490 } 6491 btrfs_balance_delayed_items(root); 6492 btrfs_btree_balance_dirty(root); 6493 return err; 6494 6495 out_unlock_inode: 6496 unlock_new_inode(inode); 6497 goto out_unlock; 6498 6499 } 6500 6501 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6502 struct dentry *dentry) 6503 { 6504 struct btrfs_trans_handle *trans = NULL; 6505 struct btrfs_root *root = BTRFS_I(dir)->root; 6506 struct inode *inode = d_inode(old_dentry); 6507 u64 index; 6508 int err; 6509 int drop_inode = 0; 6510 6511 /* do not allow sys_link's with other subvols of the same device */ 6512 if (root->objectid != BTRFS_I(inode)->root->objectid) 6513 return -EXDEV; 6514 6515 if (inode->i_nlink >= BTRFS_LINK_MAX) 6516 return -EMLINK; 6517 6518 err = btrfs_set_inode_index(dir, &index); 6519 if (err) 6520 goto fail; 6521 6522 /* 6523 * 2 items for inode and inode ref 6524 * 2 items for dir items 6525 * 1 item for parent inode 6526 */ 6527 trans = btrfs_start_transaction(root, 5); 6528 if (IS_ERR(trans)) { 6529 err = PTR_ERR(trans); 6530 trans = NULL; 6531 goto fail; 6532 } 6533 6534 /* There are several dir indexes for this inode, clear the cache. */ 6535 BTRFS_I(inode)->dir_index = 0ULL; 6536 inc_nlink(inode); 6537 inode_inc_iversion(inode); 6538 inode->i_ctime = current_fs_time(inode->i_sb); 6539 ihold(inode); 6540 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6541 6542 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6543 6544 if (err) { 6545 drop_inode = 1; 6546 } else { 6547 struct dentry *parent = dentry->d_parent; 6548 err = btrfs_update_inode(trans, root, inode); 6549 if (err) 6550 goto fail; 6551 if (inode->i_nlink == 1) { 6552 /* 6553 * If new hard link count is 1, it's a file created 6554 * with open(2) O_TMPFILE flag. 6555 */ 6556 err = btrfs_orphan_del(trans, inode); 6557 if (err) 6558 goto fail; 6559 } 6560 d_instantiate(dentry, inode); 6561 btrfs_log_new_name(trans, inode, NULL, parent); 6562 } 6563 6564 btrfs_balance_delayed_items(root); 6565 fail: 6566 if (trans) 6567 btrfs_end_transaction(trans, root); 6568 if (drop_inode) { 6569 inode_dec_link_count(inode); 6570 iput(inode); 6571 } 6572 btrfs_btree_balance_dirty(root); 6573 return err; 6574 } 6575 6576 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6577 { 6578 struct inode *inode = NULL; 6579 struct btrfs_trans_handle *trans; 6580 struct btrfs_root *root = BTRFS_I(dir)->root; 6581 int err = 0; 6582 int drop_on_err = 0; 6583 u64 objectid = 0; 6584 u64 index = 0; 6585 6586 /* 6587 * 2 items for inode and ref 6588 * 2 items for dir items 6589 * 1 for xattr if selinux is on 6590 */ 6591 trans = btrfs_start_transaction(root, 5); 6592 if (IS_ERR(trans)) 6593 return PTR_ERR(trans); 6594 6595 err = btrfs_find_free_ino(root, &objectid); 6596 if (err) 6597 goto out_fail; 6598 6599 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6600 dentry->d_name.len, btrfs_ino(dir), objectid, 6601 S_IFDIR | mode, &index); 6602 if (IS_ERR(inode)) { 6603 err = PTR_ERR(inode); 6604 goto out_fail; 6605 } 6606 6607 drop_on_err = 1; 6608 /* these must be set before we unlock the inode */ 6609 inode->i_op = &btrfs_dir_inode_operations; 6610 inode->i_fop = &btrfs_dir_file_operations; 6611 6612 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6613 if (err) 6614 goto out_fail_inode; 6615 6616 btrfs_i_size_write(inode, 0); 6617 err = btrfs_update_inode(trans, root, inode); 6618 if (err) 6619 goto out_fail_inode; 6620 6621 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6622 dentry->d_name.len, 0, index); 6623 if (err) 6624 goto out_fail_inode; 6625 6626 d_instantiate(dentry, inode); 6627 /* 6628 * mkdir is special. We're unlocking after we call d_instantiate 6629 * to avoid a race with nfsd calling d_instantiate. 6630 */ 6631 unlock_new_inode(inode); 6632 drop_on_err = 0; 6633 6634 out_fail: 6635 btrfs_end_transaction(trans, root); 6636 if (drop_on_err) { 6637 inode_dec_link_count(inode); 6638 iput(inode); 6639 } 6640 btrfs_balance_delayed_items(root); 6641 btrfs_btree_balance_dirty(root); 6642 return err; 6643 6644 out_fail_inode: 6645 unlock_new_inode(inode); 6646 goto out_fail; 6647 } 6648 6649 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6650 static struct extent_map *next_extent_map(struct extent_map *em) 6651 { 6652 struct rb_node *next; 6653 6654 next = rb_next(&em->rb_node); 6655 if (!next) 6656 return NULL; 6657 return container_of(next, struct extent_map, rb_node); 6658 } 6659 6660 static struct extent_map *prev_extent_map(struct extent_map *em) 6661 { 6662 struct rb_node *prev; 6663 6664 prev = rb_prev(&em->rb_node); 6665 if (!prev) 6666 return NULL; 6667 return container_of(prev, struct extent_map, rb_node); 6668 } 6669 6670 /* helper for btfs_get_extent. Given an existing extent in the tree, 6671 * the existing extent is the nearest extent to map_start, 6672 * and an extent that you want to insert, deal with overlap and insert 6673 * the best fitted new extent into the tree. 6674 */ 6675 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6676 struct extent_map *existing, 6677 struct extent_map *em, 6678 u64 map_start) 6679 { 6680 struct extent_map *prev; 6681 struct extent_map *next; 6682 u64 start; 6683 u64 end; 6684 u64 start_diff; 6685 6686 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6687 6688 if (existing->start > map_start) { 6689 next = existing; 6690 prev = prev_extent_map(next); 6691 } else { 6692 prev = existing; 6693 next = next_extent_map(prev); 6694 } 6695 6696 start = prev ? extent_map_end(prev) : em->start; 6697 start = max_t(u64, start, em->start); 6698 end = next ? next->start : extent_map_end(em); 6699 end = min_t(u64, end, extent_map_end(em)); 6700 start_diff = start - em->start; 6701 em->start = start; 6702 em->len = end - start; 6703 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6704 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6705 em->block_start += start_diff; 6706 em->block_len -= start_diff; 6707 } 6708 return add_extent_mapping(em_tree, em, 0); 6709 } 6710 6711 static noinline int uncompress_inline(struct btrfs_path *path, 6712 struct page *page, 6713 size_t pg_offset, u64 extent_offset, 6714 struct btrfs_file_extent_item *item) 6715 { 6716 int ret; 6717 struct extent_buffer *leaf = path->nodes[0]; 6718 char *tmp; 6719 size_t max_size; 6720 unsigned long inline_size; 6721 unsigned long ptr; 6722 int compress_type; 6723 6724 WARN_ON(pg_offset != 0); 6725 compress_type = btrfs_file_extent_compression(leaf, item); 6726 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6727 inline_size = btrfs_file_extent_inline_item_len(leaf, 6728 btrfs_item_nr(path->slots[0])); 6729 tmp = kmalloc(inline_size, GFP_NOFS); 6730 if (!tmp) 6731 return -ENOMEM; 6732 ptr = btrfs_file_extent_inline_start(item); 6733 6734 read_extent_buffer(leaf, tmp, ptr, inline_size); 6735 6736 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6737 ret = btrfs_decompress(compress_type, tmp, page, 6738 extent_offset, inline_size, max_size); 6739 kfree(tmp); 6740 return ret; 6741 } 6742 6743 /* 6744 * a bit scary, this does extent mapping from logical file offset to the disk. 6745 * the ugly parts come from merging extents from the disk with the in-ram 6746 * representation. This gets more complex because of the data=ordered code, 6747 * where the in-ram extents might be locked pending data=ordered completion. 6748 * 6749 * This also copies inline extents directly into the page. 6750 */ 6751 6752 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6753 size_t pg_offset, u64 start, u64 len, 6754 int create) 6755 { 6756 int ret; 6757 int err = 0; 6758 u64 extent_start = 0; 6759 u64 extent_end = 0; 6760 u64 objectid = btrfs_ino(inode); 6761 u32 found_type; 6762 struct btrfs_path *path = NULL; 6763 struct btrfs_root *root = BTRFS_I(inode)->root; 6764 struct btrfs_file_extent_item *item; 6765 struct extent_buffer *leaf; 6766 struct btrfs_key found_key; 6767 struct extent_map *em = NULL; 6768 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6770 struct btrfs_trans_handle *trans = NULL; 6771 const bool new_inline = !page || create; 6772 6773 again: 6774 read_lock(&em_tree->lock); 6775 em = lookup_extent_mapping(em_tree, start, len); 6776 if (em) 6777 em->bdev = root->fs_info->fs_devices->latest_bdev; 6778 read_unlock(&em_tree->lock); 6779 6780 if (em) { 6781 if (em->start > start || em->start + em->len <= start) 6782 free_extent_map(em); 6783 else if (em->block_start == EXTENT_MAP_INLINE && page) 6784 free_extent_map(em); 6785 else 6786 goto out; 6787 } 6788 em = alloc_extent_map(); 6789 if (!em) { 6790 err = -ENOMEM; 6791 goto out; 6792 } 6793 em->bdev = root->fs_info->fs_devices->latest_bdev; 6794 em->start = EXTENT_MAP_HOLE; 6795 em->orig_start = EXTENT_MAP_HOLE; 6796 em->len = (u64)-1; 6797 em->block_len = (u64)-1; 6798 6799 if (!path) { 6800 path = btrfs_alloc_path(); 6801 if (!path) { 6802 err = -ENOMEM; 6803 goto out; 6804 } 6805 /* 6806 * Chances are we'll be called again, so go ahead and do 6807 * readahead 6808 */ 6809 path->reada = READA_FORWARD; 6810 } 6811 6812 ret = btrfs_lookup_file_extent(trans, root, path, 6813 objectid, start, trans != NULL); 6814 if (ret < 0) { 6815 err = ret; 6816 goto out; 6817 } 6818 6819 if (ret != 0) { 6820 if (path->slots[0] == 0) 6821 goto not_found; 6822 path->slots[0]--; 6823 } 6824 6825 leaf = path->nodes[0]; 6826 item = btrfs_item_ptr(leaf, path->slots[0], 6827 struct btrfs_file_extent_item); 6828 /* are we inside the extent that was found? */ 6829 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6830 found_type = found_key.type; 6831 if (found_key.objectid != objectid || 6832 found_type != BTRFS_EXTENT_DATA_KEY) { 6833 /* 6834 * If we backup past the first extent we want to move forward 6835 * and see if there is an extent in front of us, otherwise we'll 6836 * say there is a hole for our whole search range which can 6837 * cause problems. 6838 */ 6839 extent_end = start; 6840 goto next; 6841 } 6842 6843 found_type = btrfs_file_extent_type(leaf, item); 6844 extent_start = found_key.offset; 6845 if (found_type == BTRFS_FILE_EXTENT_REG || 6846 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6847 extent_end = extent_start + 6848 btrfs_file_extent_num_bytes(leaf, item); 6849 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6850 size_t size; 6851 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6852 extent_end = ALIGN(extent_start + size, root->sectorsize); 6853 } 6854 next: 6855 if (start >= extent_end) { 6856 path->slots[0]++; 6857 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6858 ret = btrfs_next_leaf(root, path); 6859 if (ret < 0) { 6860 err = ret; 6861 goto out; 6862 } 6863 if (ret > 0) 6864 goto not_found; 6865 leaf = path->nodes[0]; 6866 } 6867 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6868 if (found_key.objectid != objectid || 6869 found_key.type != BTRFS_EXTENT_DATA_KEY) 6870 goto not_found; 6871 if (start + len <= found_key.offset) 6872 goto not_found; 6873 if (start > found_key.offset) 6874 goto next; 6875 em->start = start; 6876 em->orig_start = start; 6877 em->len = found_key.offset - start; 6878 goto not_found_em; 6879 } 6880 6881 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6882 6883 if (found_type == BTRFS_FILE_EXTENT_REG || 6884 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6885 goto insert; 6886 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6887 unsigned long ptr; 6888 char *map; 6889 size_t size; 6890 size_t extent_offset; 6891 size_t copy_size; 6892 6893 if (new_inline) 6894 goto out; 6895 6896 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6897 extent_offset = page_offset(page) + pg_offset - extent_start; 6898 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6899 size - extent_offset); 6900 em->start = extent_start + extent_offset; 6901 em->len = ALIGN(copy_size, root->sectorsize); 6902 em->orig_block_len = em->len; 6903 em->orig_start = em->start; 6904 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6905 if (create == 0 && !PageUptodate(page)) { 6906 if (btrfs_file_extent_compression(leaf, item) != 6907 BTRFS_COMPRESS_NONE) { 6908 ret = uncompress_inline(path, page, pg_offset, 6909 extent_offset, item); 6910 if (ret) { 6911 err = ret; 6912 goto out; 6913 } 6914 } else { 6915 map = kmap(page); 6916 read_extent_buffer(leaf, map + pg_offset, ptr, 6917 copy_size); 6918 if (pg_offset + copy_size < PAGE_SIZE) { 6919 memset(map + pg_offset + copy_size, 0, 6920 PAGE_SIZE - pg_offset - 6921 copy_size); 6922 } 6923 kunmap(page); 6924 } 6925 flush_dcache_page(page); 6926 } else if (create && PageUptodate(page)) { 6927 BUG(); 6928 if (!trans) { 6929 kunmap(page); 6930 free_extent_map(em); 6931 em = NULL; 6932 6933 btrfs_release_path(path); 6934 trans = btrfs_join_transaction(root); 6935 6936 if (IS_ERR(trans)) 6937 return ERR_CAST(trans); 6938 goto again; 6939 } 6940 map = kmap(page); 6941 write_extent_buffer(leaf, map + pg_offset, ptr, 6942 copy_size); 6943 kunmap(page); 6944 btrfs_mark_buffer_dirty(leaf); 6945 } 6946 set_extent_uptodate(io_tree, em->start, 6947 extent_map_end(em) - 1, NULL, GFP_NOFS); 6948 goto insert; 6949 } 6950 not_found: 6951 em->start = start; 6952 em->orig_start = start; 6953 em->len = len; 6954 not_found_em: 6955 em->block_start = EXTENT_MAP_HOLE; 6956 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6957 insert: 6958 btrfs_release_path(path); 6959 if (em->start > start || extent_map_end(em) <= start) { 6960 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6961 em->start, em->len, start, len); 6962 err = -EIO; 6963 goto out; 6964 } 6965 6966 err = 0; 6967 write_lock(&em_tree->lock); 6968 ret = add_extent_mapping(em_tree, em, 0); 6969 /* it is possible that someone inserted the extent into the tree 6970 * while we had the lock dropped. It is also possible that 6971 * an overlapping map exists in the tree 6972 */ 6973 if (ret == -EEXIST) { 6974 struct extent_map *existing; 6975 6976 ret = 0; 6977 6978 existing = search_extent_mapping(em_tree, start, len); 6979 /* 6980 * existing will always be non-NULL, since there must be 6981 * extent causing the -EEXIST. 6982 */ 6983 if (start >= extent_map_end(existing) || 6984 start <= existing->start) { 6985 /* 6986 * The existing extent map is the one nearest to 6987 * the [start, start + len) range which overlaps 6988 */ 6989 err = merge_extent_mapping(em_tree, existing, 6990 em, start); 6991 free_extent_map(existing); 6992 if (err) { 6993 free_extent_map(em); 6994 em = NULL; 6995 } 6996 } else { 6997 free_extent_map(em); 6998 em = existing; 6999 err = 0; 7000 } 7001 } 7002 write_unlock(&em_tree->lock); 7003 out: 7004 7005 trace_btrfs_get_extent(root, em); 7006 7007 btrfs_free_path(path); 7008 if (trans) { 7009 ret = btrfs_end_transaction(trans, root); 7010 if (!err) 7011 err = ret; 7012 } 7013 if (err) { 7014 free_extent_map(em); 7015 return ERR_PTR(err); 7016 } 7017 BUG_ON(!em); /* Error is always set */ 7018 return em; 7019 } 7020 7021 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7022 size_t pg_offset, u64 start, u64 len, 7023 int create) 7024 { 7025 struct extent_map *em; 7026 struct extent_map *hole_em = NULL; 7027 u64 range_start = start; 7028 u64 end; 7029 u64 found; 7030 u64 found_end; 7031 int err = 0; 7032 7033 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7034 if (IS_ERR(em)) 7035 return em; 7036 if (em) { 7037 /* 7038 * if our em maps to 7039 * - a hole or 7040 * - a pre-alloc extent, 7041 * there might actually be delalloc bytes behind it. 7042 */ 7043 if (em->block_start != EXTENT_MAP_HOLE && 7044 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7045 return em; 7046 else 7047 hole_em = em; 7048 } 7049 7050 /* check to see if we've wrapped (len == -1 or similar) */ 7051 end = start + len; 7052 if (end < start) 7053 end = (u64)-1; 7054 else 7055 end -= 1; 7056 7057 em = NULL; 7058 7059 /* ok, we didn't find anything, lets look for delalloc */ 7060 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7061 end, len, EXTENT_DELALLOC, 1); 7062 found_end = range_start + found; 7063 if (found_end < range_start) 7064 found_end = (u64)-1; 7065 7066 /* 7067 * we didn't find anything useful, return 7068 * the original results from get_extent() 7069 */ 7070 if (range_start > end || found_end <= start) { 7071 em = hole_em; 7072 hole_em = NULL; 7073 goto out; 7074 } 7075 7076 /* adjust the range_start to make sure it doesn't 7077 * go backwards from the start they passed in 7078 */ 7079 range_start = max(start, range_start); 7080 found = found_end - range_start; 7081 7082 if (found > 0) { 7083 u64 hole_start = start; 7084 u64 hole_len = len; 7085 7086 em = alloc_extent_map(); 7087 if (!em) { 7088 err = -ENOMEM; 7089 goto out; 7090 } 7091 /* 7092 * when btrfs_get_extent can't find anything it 7093 * returns one huge hole 7094 * 7095 * make sure what it found really fits our range, and 7096 * adjust to make sure it is based on the start from 7097 * the caller 7098 */ 7099 if (hole_em) { 7100 u64 calc_end = extent_map_end(hole_em); 7101 7102 if (calc_end <= start || (hole_em->start > end)) { 7103 free_extent_map(hole_em); 7104 hole_em = NULL; 7105 } else { 7106 hole_start = max(hole_em->start, start); 7107 hole_len = calc_end - hole_start; 7108 } 7109 } 7110 em->bdev = NULL; 7111 if (hole_em && range_start > hole_start) { 7112 /* our hole starts before our delalloc, so we 7113 * have to return just the parts of the hole 7114 * that go until the delalloc starts 7115 */ 7116 em->len = min(hole_len, 7117 range_start - hole_start); 7118 em->start = hole_start; 7119 em->orig_start = hole_start; 7120 /* 7121 * don't adjust block start at all, 7122 * it is fixed at EXTENT_MAP_HOLE 7123 */ 7124 em->block_start = hole_em->block_start; 7125 em->block_len = hole_len; 7126 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7127 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7128 } else { 7129 em->start = range_start; 7130 em->len = found; 7131 em->orig_start = range_start; 7132 em->block_start = EXTENT_MAP_DELALLOC; 7133 em->block_len = found; 7134 } 7135 } else if (hole_em) { 7136 return hole_em; 7137 } 7138 out: 7139 7140 free_extent_map(hole_em); 7141 if (err) { 7142 free_extent_map(em); 7143 return ERR_PTR(err); 7144 } 7145 return em; 7146 } 7147 7148 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7149 const u64 start, 7150 const u64 len, 7151 const u64 orig_start, 7152 const u64 block_start, 7153 const u64 block_len, 7154 const u64 orig_block_len, 7155 const u64 ram_bytes, 7156 const int type) 7157 { 7158 struct extent_map *em = NULL; 7159 int ret; 7160 7161 down_read(&BTRFS_I(inode)->dio_sem); 7162 if (type != BTRFS_ORDERED_NOCOW) { 7163 em = create_pinned_em(inode, start, len, orig_start, 7164 block_start, block_len, orig_block_len, 7165 ram_bytes, type); 7166 if (IS_ERR(em)) 7167 goto out; 7168 } 7169 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7170 len, block_len, type); 7171 if (ret) { 7172 if (em) { 7173 free_extent_map(em); 7174 btrfs_drop_extent_cache(inode, start, 7175 start + len - 1, 0); 7176 } 7177 em = ERR_PTR(ret); 7178 } 7179 out: 7180 up_read(&BTRFS_I(inode)->dio_sem); 7181 7182 return em; 7183 } 7184 7185 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7186 u64 start, u64 len) 7187 { 7188 struct btrfs_root *root = BTRFS_I(inode)->root; 7189 struct extent_map *em; 7190 struct btrfs_key ins; 7191 u64 alloc_hint; 7192 int ret; 7193 7194 alloc_hint = get_extent_allocation_hint(inode, start, len); 7195 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7196 alloc_hint, &ins, 1, 1); 7197 if (ret) 7198 return ERR_PTR(ret); 7199 7200 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7201 ins.objectid, ins.offset, ins.offset, 7202 ins.offset, 0); 7203 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7204 if (IS_ERR(em)) 7205 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7206 7207 return em; 7208 } 7209 7210 /* 7211 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7212 * block must be cow'd 7213 */ 7214 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7215 u64 *orig_start, u64 *orig_block_len, 7216 u64 *ram_bytes) 7217 { 7218 struct btrfs_trans_handle *trans; 7219 struct btrfs_path *path; 7220 int ret; 7221 struct extent_buffer *leaf; 7222 struct btrfs_root *root = BTRFS_I(inode)->root; 7223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7224 struct btrfs_file_extent_item *fi; 7225 struct btrfs_key key; 7226 u64 disk_bytenr; 7227 u64 backref_offset; 7228 u64 extent_end; 7229 u64 num_bytes; 7230 int slot; 7231 int found_type; 7232 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7233 7234 path = btrfs_alloc_path(); 7235 if (!path) 7236 return -ENOMEM; 7237 7238 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7239 offset, 0); 7240 if (ret < 0) 7241 goto out; 7242 7243 slot = path->slots[0]; 7244 if (ret == 1) { 7245 if (slot == 0) { 7246 /* can't find the item, must cow */ 7247 ret = 0; 7248 goto out; 7249 } 7250 slot--; 7251 } 7252 ret = 0; 7253 leaf = path->nodes[0]; 7254 btrfs_item_key_to_cpu(leaf, &key, slot); 7255 if (key.objectid != btrfs_ino(inode) || 7256 key.type != BTRFS_EXTENT_DATA_KEY) { 7257 /* not our file or wrong item type, must cow */ 7258 goto out; 7259 } 7260 7261 if (key.offset > offset) { 7262 /* Wrong offset, must cow */ 7263 goto out; 7264 } 7265 7266 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7267 found_type = btrfs_file_extent_type(leaf, fi); 7268 if (found_type != BTRFS_FILE_EXTENT_REG && 7269 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7270 /* not a regular extent, must cow */ 7271 goto out; 7272 } 7273 7274 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7275 goto out; 7276 7277 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7278 if (extent_end <= offset) 7279 goto out; 7280 7281 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7282 if (disk_bytenr == 0) 7283 goto out; 7284 7285 if (btrfs_file_extent_compression(leaf, fi) || 7286 btrfs_file_extent_encryption(leaf, fi) || 7287 btrfs_file_extent_other_encoding(leaf, fi)) 7288 goto out; 7289 7290 backref_offset = btrfs_file_extent_offset(leaf, fi); 7291 7292 if (orig_start) { 7293 *orig_start = key.offset - backref_offset; 7294 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7295 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7296 } 7297 7298 if (btrfs_extent_readonly(root, disk_bytenr)) 7299 goto out; 7300 7301 num_bytes = min(offset + *len, extent_end) - offset; 7302 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7303 u64 range_end; 7304 7305 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7306 ret = test_range_bit(io_tree, offset, range_end, 7307 EXTENT_DELALLOC, 0, NULL); 7308 if (ret) { 7309 ret = -EAGAIN; 7310 goto out; 7311 } 7312 } 7313 7314 btrfs_release_path(path); 7315 7316 /* 7317 * look for other files referencing this extent, if we 7318 * find any we must cow 7319 */ 7320 trans = btrfs_join_transaction(root); 7321 if (IS_ERR(trans)) { 7322 ret = 0; 7323 goto out; 7324 } 7325 7326 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7327 key.offset - backref_offset, disk_bytenr); 7328 btrfs_end_transaction(trans, root); 7329 if (ret) { 7330 ret = 0; 7331 goto out; 7332 } 7333 7334 /* 7335 * adjust disk_bytenr and num_bytes to cover just the bytes 7336 * in this extent we are about to write. If there 7337 * are any csums in that range we have to cow in order 7338 * to keep the csums correct 7339 */ 7340 disk_bytenr += backref_offset; 7341 disk_bytenr += offset - key.offset; 7342 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7343 goto out; 7344 /* 7345 * all of the above have passed, it is safe to overwrite this extent 7346 * without cow 7347 */ 7348 *len = num_bytes; 7349 ret = 1; 7350 out: 7351 btrfs_free_path(path); 7352 return ret; 7353 } 7354 7355 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7356 { 7357 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7358 int found = false; 7359 void **pagep = NULL; 7360 struct page *page = NULL; 7361 int start_idx; 7362 int end_idx; 7363 7364 start_idx = start >> PAGE_SHIFT; 7365 7366 /* 7367 * end is the last byte in the last page. end == start is legal 7368 */ 7369 end_idx = end >> PAGE_SHIFT; 7370 7371 rcu_read_lock(); 7372 7373 /* Most of the code in this while loop is lifted from 7374 * find_get_page. It's been modified to begin searching from a 7375 * page and return just the first page found in that range. If the 7376 * found idx is less than or equal to the end idx then we know that 7377 * a page exists. If no pages are found or if those pages are 7378 * outside of the range then we're fine (yay!) */ 7379 while (page == NULL && 7380 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7381 page = radix_tree_deref_slot(pagep); 7382 if (unlikely(!page)) 7383 break; 7384 7385 if (radix_tree_exception(page)) { 7386 if (radix_tree_deref_retry(page)) { 7387 page = NULL; 7388 continue; 7389 } 7390 /* 7391 * Otherwise, shmem/tmpfs must be storing a swap entry 7392 * here as an exceptional entry: so return it without 7393 * attempting to raise page count. 7394 */ 7395 page = NULL; 7396 break; /* TODO: Is this relevant for this use case? */ 7397 } 7398 7399 if (!page_cache_get_speculative(page)) { 7400 page = NULL; 7401 continue; 7402 } 7403 7404 /* 7405 * Has the page moved? 7406 * This is part of the lockless pagecache protocol. See 7407 * include/linux/pagemap.h for details. 7408 */ 7409 if (unlikely(page != *pagep)) { 7410 put_page(page); 7411 page = NULL; 7412 } 7413 } 7414 7415 if (page) { 7416 if (page->index <= end_idx) 7417 found = true; 7418 put_page(page); 7419 } 7420 7421 rcu_read_unlock(); 7422 return found; 7423 } 7424 7425 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7426 struct extent_state **cached_state, int writing) 7427 { 7428 struct btrfs_ordered_extent *ordered; 7429 int ret = 0; 7430 7431 while (1) { 7432 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7433 cached_state); 7434 /* 7435 * We're concerned with the entire range that we're going to be 7436 * doing DIO to, so we need to make sure theres no ordered 7437 * extents in this range. 7438 */ 7439 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7440 lockend - lockstart + 1); 7441 7442 /* 7443 * We need to make sure there are no buffered pages in this 7444 * range either, we could have raced between the invalidate in 7445 * generic_file_direct_write and locking the extent. The 7446 * invalidate needs to happen so that reads after a write do not 7447 * get stale data. 7448 */ 7449 if (!ordered && 7450 (!writing || 7451 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7452 break; 7453 7454 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7455 cached_state, GFP_NOFS); 7456 7457 if (ordered) { 7458 /* 7459 * If we are doing a DIO read and the ordered extent we 7460 * found is for a buffered write, we can not wait for it 7461 * to complete and retry, because if we do so we can 7462 * deadlock with concurrent buffered writes on page 7463 * locks. This happens only if our DIO read covers more 7464 * than one extent map, if at this point has already 7465 * created an ordered extent for a previous extent map 7466 * and locked its range in the inode's io tree, and a 7467 * concurrent write against that previous extent map's 7468 * range and this range started (we unlock the ranges 7469 * in the io tree only when the bios complete and 7470 * buffered writes always lock pages before attempting 7471 * to lock range in the io tree). 7472 */ 7473 if (writing || 7474 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7475 btrfs_start_ordered_extent(inode, ordered, 1); 7476 else 7477 ret = -ENOTBLK; 7478 btrfs_put_ordered_extent(ordered); 7479 } else { 7480 /* 7481 * We could trigger writeback for this range (and wait 7482 * for it to complete) and then invalidate the pages for 7483 * this range (through invalidate_inode_pages2_range()), 7484 * but that can lead us to a deadlock with a concurrent 7485 * call to readpages() (a buffered read or a defrag call 7486 * triggered a readahead) on a page lock due to an 7487 * ordered dio extent we created before but did not have 7488 * yet a corresponding bio submitted (whence it can not 7489 * complete), which makes readpages() wait for that 7490 * ordered extent to complete while holding a lock on 7491 * that page. 7492 */ 7493 ret = -ENOTBLK; 7494 } 7495 7496 if (ret) 7497 break; 7498 7499 cond_resched(); 7500 } 7501 7502 return ret; 7503 } 7504 7505 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7506 u64 len, u64 orig_start, 7507 u64 block_start, u64 block_len, 7508 u64 orig_block_len, u64 ram_bytes, 7509 int type) 7510 { 7511 struct extent_map_tree *em_tree; 7512 struct extent_map *em; 7513 struct btrfs_root *root = BTRFS_I(inode)->root; 7514 int ret; 7515 7516 em_tree = &BTRFS_I(inode)->extent_tree; 7517 em = alloc_extent_map(); 7518 if (!em) 7519 return ERR_PTR(-ENOMEM); 7520 7521 em->start = start; 7522 em->orig_start = orig_start; 7523 em->mod_start = start; 7524 em->mod_len = len; 7525 em->len = len; 7526 em->block_len = block_len; 7527 em->block_start = block_start; 7528 em->bdev = root->fs_info->fs_devices->latest_bdev; 7529 em->orig_block_len = orig_block_len; 7530 em->ram_bytes = ram_bytes; 7531 em->generation = -1; 7532 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7533 if (type == BTRFS_ORDERED_PREALLOC) 7534 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7535 7536 do { 7537 btrfs_drop_extent_cache(inode, em->start, 7538 em->start + em->len - 1, 0); 7539 write_lock(&em_tree->lock); 7540 ret = add_extent_mapping(em_tree, em, 1); 7541 write_unlock(&em_tree->lock); 7542 } while (ret == -EEXIST); 7543 7544 if (ret) { 7545 free_extent_map(em); 7546 return ERR_PTR(ret); 7547 } 7548 7549 return em; 7550 } 7551 7552 static void adjust_dio_outstanding_extents(struct inode *inode, 7553 struct btrfs_dio_data *dio_data, 7554 const u64 len) 7555 { 7556 unsigned num_extents; 7557 7558 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7559 BTRFS_MAX_EXTENT_SIZE); 7560 /* 7561 * If we have an outstanding_extents count still set then we're 7562 * within our reservation, otherwise we need to adjust our inode 7563 * counter appropriately. 7564 */ 7565 if (dio_data->outstanding_extents) { 7566 dio_data->outstanding_extents -= num_extents; 7567 } else { 7568 spin_lock(&BTRFS_I(inode)->lock); 7569 BTRFS_I(inode)->outstanding_extents += num_extents; 7570 spin_unlock(&BTRFS_I(inode)->lock); 7571 } 7572 } 7573 7574 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7575 struct buffer_head *bh_result, int create) 7576 { 7577 struct extent_map *em; 7578 struct btrfs_root *root = BTRFS_I(inode)->root; 7579 struct extent_state *cached_state = NULL; 7580 struct btrfs_dio_data *dio_data = NULL; 7581 u64 start = iblock << inode->i_blkbits; 7582 u64 lockstart, lockend; 7583 u64 len = bh_result->b_size; 7584 int unlock_bits = EXTENT_LOCKED; 7585 int ret = 0; 7586 7587 if (create) 7588 unlock_bits |= EXTENT_DIRTY; 7589 else 7590 len = min_t(u64, len, root->sectorsize); 7591 7592 lockstart = start; 7593 lockend = start + len - 1; 7594 7595 if (current->journal_info) { 7596 /* 7597 * Need to pull our outstanding extents and set journal_info to NULL so 7598 * that anything that needs to check if there's a transction doesn't get 7599 * confused. 7600 */ 7601 dio_data = current->journal_info; 7602 current->journal_info = NULL; 7603 } 7604 7605 /* 7606 * If this errors out it's because we couldn't invalidate pagecache for 7607 * this range and we need to fallback to buffered. 7608 */ 7609 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7610 create)) { 7611 ret = -ENOTBLK; 7612 goto err; 7613 } 7614 7615 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7616 if (IS_ERR(em)) { 7617 ret = PTR_ERR(em); 7618 goto unlock_err; 7619 } 7620 7621 /* 7622 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7623 * io. INLINE is special, and we could probably kludge it in here, but 7624 * it's still buffered so for safety lets just fall back to the generic 7625 * buffered path. 7626 * 7627 * For COMPRESSED we _have_ to read the entire extent in so we can 7628 * decompress it, so there will be buffering required no matter what we 7629 * do, so go ahead and fallback to buffered. 7630 * 7631 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7632 * to buffered IO. Don't blame me, this is the price we pay for using 7633 * the generic code. 7634 */ 7635 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7636 em->block_start == EXTENT_MAP_INLINE) { 7637 free_extent_map(em); 7638 ret = -ENOTBLK; 7639 goto unlock_err; 7640 } 7641 7642 /* Just a good old fashioned hole, return */ 7643 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7644 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7645 free_extent_map(em); 7646 goto unlock_err; 7647 } 7648 7649 /* 7650 * We don't allocate a new extent in the following cases 7651 * 7652 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7653 * existing extent. 7654 * 2) The extent is marked as PREALLOC. We're good to go here and can 7655 * just use the extent. 7656 * 7657 */ 7658 if (!create) { 7659 len = min(len, em->len - (start - em->start)); 7660 lockstart = start + len; 7661 goto unlock; 7662 } 7663 7664 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7665 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7666 em->block_start != EXTENT_MAP_HOLE)) { 7667 int type; 7668 u64 block_start, orig_start, orig_block_len, ram_bytes; 7669 7670 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7671 type = BTRFS_ORDERED_PREALLOC; 7672 else 7673 type = BTRFS_ORDERED_NOCOW; 7674 len = min(len, em->len - (start - em->start)); 7675 block_start = em->block_start + (start - em->start); 7676 7677 if (can_nocow_extent(inode, start, &len, &orig_start, 7678 &orig_block_len, &ram_bytes) == 1 && 7679 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7680 struct extent_map *em2; 7681 7682 em2 = btrfs_create_dio_extent(inode, start, len, 7683 orig_start, block_start, 7684 len, orig_block_len, 7685 ram_bytes, type); 7686 btrfs_dec_nocow_writers(root->fs_info, block_start); 7687 if (type == BTRFS_ORDERED_PREALLOC) { 7688 free_extent_map(em); 7689 em = em2; 7690 } 7691 if (em2 && IS_ERR(em2)) { 7692 ret = PTR_ERR(em2); 7693 goto unlock_err; 7694 } 7695 goto unlock; 7696 } 7697 } 7698 7699 /* 7700 * this will cow the extent, reset the len in case we changed 7701 * it above 7702 */ 7703 len = bh_result->b_size; 7704 free_extent_map(em); 7705 em = btrfs_new_extent_direct(inode, start, len); 7706 if (IS_ERR(em)) { 7707 ret = PTR_ERR(em); 7708 goto unlock_err; 7709 } 7710 len = min(len, em->len - (start - em->start)); 7711 unlock: 7712 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7713 inode->i_blkbits; 7714 bh_result->b_size = len; 7715 bh_result->b_bdev = em->bdev; 7716 set_buffer_mapped(bh_result); 7717 if (create) { 7718 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7719 set_buffer_new(bh_result); 7720 7721 /* 7722 * Need to update the i_size under the extent lock so buffered 7723 * readers will get the updated i_size when we unlock. 7724 */ 7725 if (start + len > i_size_read(inode)) 7726 i_size_write(inode, start + len); 7727 7728 adjust_dio_outstanding_extents(inode, dio_data, len); 7729 btrfs_free_reserved_data_space(inode, start, len); 7730 WARN_ON(dio_data->reserve < len); 7731 dio_data->reserve -= len; 7732 dio_data->unsubmitted_oe_range_end = start + len; 7733 current->journal_info = dio_data; 7734 } 7735 7736 /* 7737 * In the case of write we need to clear and unlock the entire range, 7738 * in the case of read we need to unlock only the end area that we 7739 * aren't using if there is any left over space. 7740 */ 7741 if (lockstart < lockend) { 7742 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7743 lockend, unlock_bits, 1, 0, 7744 &cached_state, GFP_NOFS); 7745 } else { 7746 free_extent_state(cached_state); 7747 } 7748 7749 free_extent_map(em); 7750 7751 return 0; 7752 7753 unlock_err: 7754 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7755 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7756 err: 7757 if (dio_data) 7758 current->journal_info = dio_data; 7759 /* 7760 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7761 * write less data then expected, so that we don't underflow our inode's 7762 * outstanding extents counter. 7763 */ 7764 if (create && dio_data) 7765 adjust_dio_outstanding_extents(inode, dio_data, len); 7766 7767 return ret; 7768 } 7769 7770 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7771 int rw, int mirror_num) 7772 { 7773 struct btrfs_root *root = BTRFS_I(inode)->root; 7774 int ret; 7775 7776 BUG_ON(rw & REQ_WRITE); 7777 7778 bio_get(bio); 7779 7780 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7781 BTRFS_WQ_ENDIO_DIO_REPAIR); 7782 if (ret) 7783 goto err; 7784 7785 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7786 err: 7787 bio_put(bio); 7788 return ret; 7789 } 7790 7791 static int btrfs_check_dio_repairable(struct inode *inode, 7792 struct bio *failed_bio, 7793 struct io_failure_record *failrec, 7794 int failed_mirror) 7795 { 7796 int num_copies; 7797 7798 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7799 failrec->logical, failrec->len); 7800 if (num_copies == 1) { 7801 /* 7802 * we only have a single copy of the data, so don't bother with 7803 * all the retry and error correction code that follows. no 7804 * matter what the error is, it is very likely to persist. 7805 */ 7806 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7807 num_copies, failrec->this_mirror, failed_mirror); 7808 return 0; 7809 } 7810 7811 failrec->failed_mirror = failed_mirror; 7812 failrec->this_mirror++; 7813 if (failrec->this_mirror == failed_mirror) 7814 failrec->this_mirror++; 7815 7816 if (failrec->this_mirror > num_copies) { 7817 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7818 num_copies, failrec->this_mirror, failed_mirror); 7819 return 0; 7820 } 7821 7822 return 1; 7823 } 7824 7825 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7826 struct page *page, unsigned int pgoff, 7827 u64 start, u64 end, int failed_mirror, 7828 bio_end_io_t *repair_endio, void *repair_arg) 7829 { 7830 struct io_failure_record *failrec; 7831 struct bio *bio; 7832 int isector; 7833 int read_mode; 7834 int ret; 7835 7836 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7837 7838 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7839 if (ret) 7840 return ret; 7841 7842 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7843 failed_mirror); 7844 if (!ret) { 7845 free_io_failure(inode, failrec); 7846 return -EIO; 7847 } 7848 7849 if ((failed_bio->bi_vcnt > 1) 7850 || (failed_bio->bi_io_vec->bv_len 7851 > BTRFS_I(inode)->root->sectorsize)) 7852 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7853 else 7854 read_mode = READ_SYNC; 7855 7856 isector = start - btrfs_io_bio(failed_bio)->logical; 7857 isector >>= inode->i_sb->s_blocksize_bits; 7858 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7859 pgoff, isector, repair_endio, repair_arg); 7860 if (!bio) { 7861 free_io_failure(inode, failrec); 7862 return -EIO; 7863 } 7864 7865 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7866 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7867 read_mode, failrec->this_mirror, failrec->in_validation); 7868 7869 ret = submit_dio_repair_bio(inode, bio, read_mode, 7870 failrec->this_mirror); 7871 if (ret) { 7872 free_io_failure(inode, failrec); 7873 bio_put(bio); 7874 } 7875 7876 return ret; 7877 } 7878 7879 struct btrfs_retry_complete { 7880 struct completion done; 7881 struct inode *inode; 7882 u64 start; 7883 int uptodate; 7884 }; 7885 7886 static void btrfs_retry_endio_nocsum(struct bio *bio) 7887 { 7888 struct btrfs_retry_complete *done = bio->bi_private; 7889 struct inode *inode; 7890 struct bio_vec *bvec; 7891 int i; 7892 7893 if (bio->bi_error) 7894 goto end; 7895 7896 ASSERT(bio->bi_vcnt == 1); 7897 inode = bio->bi_io_vec->bv_page->mapping->host; 7898 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7899 7900 done->uptodate = 1; 7901 bio_for_each_segment_all(bvec, bio, i) 7902 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7903 end: 7904 complete(&done->done); 7905 bio_put(bio); 7906 } 7907 7908 static int __btrfs_correct_data_nocsum(struct inode *inode, 7909 struct btrfs_io_bio *io_bio) 7910 { 7911 struct btrfs_fs_info *fs_info; 7912 struct bio_vec *bvec; 7913 struct btrfs_retry_complete done; 7914 u64 start; 7915 unsigned int pgoff; 7916 u32 sectorsize; 7917 int nr_sectors; 7918 int i; 7919 int ret; 7920 7921 fs_info = BTRFS_I(inode)->root->fs_info; 7922 sectorsize = BTRFS_I(inode)->root->sectorsize; 7923 7924 start = io_bio->logical; 7925 done.inode = inode; 7926 7927 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7928 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7929 pgoff = bvec->bv_offset; 7930 7931 next_block_or_try_again: 7932 done.uptodate = 0; 7933 done.start = start; 7934 init_completion(&done.done); 7935 7936 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7937 pgoff, start, start + sectorsize - 1, 7938 io_bio->mirror_num, 7939 btrfs_retry_endio_nocsum, &done); 7940 if (ret) 7941 return ret; 7942 7943 wait_for_completion(&done.done); 7944 7945 if (!done.uptodate) { 7946 /* We might have another mirror, so try again */ 7947 goto next_block_or_try_again; 7948 } 7949 7950 start += sectorsize; 7951 7952 if (nr_sectors--) { 7953 pgoff += sectorsize; 7954 goto next_block_or_try_again; 7955 } 7956 } 7957 7958 return 0; 7959 } 7960 7961 static void btrfs_retry_endio(struct bio *bio) 7962 { 7963 struct btrfs_retry_complete *done = bio->bi_private; 7964 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7965 struct inode *inode; 7966 struct bio_vec *bvec; 7967 u64 start; 7968 int uptodate; 7969 int ret; 7970 int i; 7971 7972 if (bio->bi_error) 7973 goto end; 7974 7975 uptodate = 1; 7976 7977 start = done->start; 7978 7979 ASSERT(bio->bi_vcnt == 1); 7980 inode = bio->bi_io_vec->bv_page->mapping->host; 7981 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7982 7983 bio_for_each_segment_all(bvec, bio, i) { 7984 ret = __readpage_endio_check(done->inode, io_bio, i, 7985 bvec->bv_page, bvec->bv_offset, 7986 done->start, bvec->bv_len); 7987 if (!ret) 7988 clean_io_failure(done->inode, done->start, 7989 bvec->bv_page, bvec->bv_offset); 7990 else 7991 uptodate = 0; 7992 } 7993 7994 done->uptodate = uptodate; 7995 end: 7996 complete(&done->done); 7997 bio_put(bio); 7998 } 7999 8000 static int __btrfs_subio_endio_read(struct inode *inode, 8001 struct btrfs_io_bio *io_bio, int err) 8002 { 8003 struct btrfs_fs_info *fs_info; 8004 struct bio_vec *bvec; 8005 struct btrfs_retry_complete done; 8006 u64 start; 8007 u64 offset = 0; 8008 u32 sectorsize; 8009 int nr_sectors; 8010 unsigned int pgoff; 8011 int csum_pos; 8012 int i; 8013 int ret; 8014 8015 fs_info = BTRFS_I(inode)->root->fs_info; 8016 sectorsize = BTRFS_I(inode)->root->sectorsize; 8017 8018 err = 0; 8019 start = io_bio->logical; 8020 done.inode = inode; 8021 8022 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8023 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8024 8025 pgoff = bvec->bv_offset; 8026 next_block: 8027 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8028 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8029 bvec->bv_page, pgoff, start, 8030 sectorsize); 8031 if (likely(!ret)) 8032 goto next; 8033 try_again: 8034 done.uptodate = 0; 8035 done.start = start; 8036 init_completion(&done.done); 8037 8038 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8039 pgoff, start, start + sectorsize - 1, 8040 io_bio->mirror_num, 8041 btrfs_retry_endio, &done); 8042 if (ret) { 8043 err = ret; 8044 goto next; 8045 } 8046 8047 wait_for_completion(&done.done); 8048 8049 if (!done.uptodate) { 8050 /* We might have another mirror, so try again */ 8051 goto try_again; 8052 } 8053 next: 8054 offset += sectorsize; 8055 start += sectorsize; 8056 8057 ASSERT(nr_sectors); 8058 8059 if (--nr_sectors) { 8060 pgoff += sectorsize; 8061 goto next_block; 8062 } 8063 } 8064 8065 return err; 8066 } 8067 8068 static int btrfs_subio_endio_read(struct inode *inode, 8069 struct btrfs_io_bio *io_bio, int err) 8070 { 8071 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8072 8073 if (skip_csum) { 8074 if (unlikely(err)) 8075 return __btrfs_correct_data_nocsum(inode, io_bio); 8076 else 8077 return 0; 8078 } else { 8079 return __btrfs_subio_endio_read(inode, io_bio, err); 8080 } 8081 } 8082 8083 static void btrfs_endio_direct_read(struct bio *bio) 8084 { 8085 struct btrfs_dio_private *dip = bio->bi_private; 8086 struct inode *inode = dip->inode; 8087 struct bio *dio_bio; 8088 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8089 int err = bio->bi_error; 8090 8091 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8092 err = btrfs_subio_endio_read(inode, io_bio, err); 8093 8094 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8095 dip->logical_offset + dip->bytes - 1); 8096 dio_bio = dip->dio_bio; 8097 8098 kfree(dip); 8099 8100 dio_bio->bi_error = bio->bi_error; 8101 dio_end_io(dio_bio, bio->bi_error); 8102 8103 if (io_bio->end_io) 8104 io_bio->end_io(io_bio, err); 8105 bio_put(bio); 8106 } 8107 8108 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8109 const u64 offset, 8110 const u64 bytes, 8111 const int uptodate) 8112 { 8113 struct btrfs_root *root = BTRFS_I(inode)->root; 8114 struct btrfs_ordered_extent *ordered = NULL; 8115 u64 ordered_offset = offset; 8116 u64 ordered_bytes = bytes; 8117 int ret; 8118 8119 again: 8120 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8121 &ordered_offset, 8122 ordered_bytes, 8123 uptodate); 8124 if (!ret) 8125 goto out_test; 8126 8127 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8128 finish_ordered_fn, NULL, NULL); 8129 btrfs_queue_work(root->fs_info->endio_write_workers, 8130 &ordered->work); 8131 out_test: 8132 /* 8133 * our bio might span multiple ordered extents. If we haven't 8134 * completed the accounting for the whole dio, go back and try again 8135 */ 8136 if (ordered_offset < offset + bytes) { 8137 ordered_bytes = offset + bytes - ordered_offset; 8138 ordered = NULL; 8139 goto again; 8140 } 8141 } 8142 8143 static void btrfs_endio_direct_write(struct bio *bio) 8144 { 8145 struct btrfs_dio_private *dip = bio->bi_private; 8146 struct bio *dio_bio = dip->dio_bio; 8147 8148 btrfs_endio_direct_write_update_ordered(dip->inode, 8149 dip->logical_offset, 8150 dip->bytes, 8151 !bio->bi_error); 8152 8153 kfree(dip); 8154 8155 dio_bio->bi_error = bio->bi_error; 8156 dio_end_io(dio_bio, bio->bi_error); 8157 bio_put(bio); 8158 } 8159 8160 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 8161 struct bio *bio, int mirror_num, 8162 unsigned long bio_flags, u64 offset) 8163 { 8164 int ret; 8165 struct btrfs_root *root = BTRFS_I(inode)->root; 8166 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8167 BUG_ON(ret); /* -ENOMEM */ 8168 return 0; 8169 } 8170 8171 static void btrfs_end_dio_bio(struct bio *bio) 8172 { 8173 struct btrfs_dio_private *dip = bio->bi_private; 8174 int err = bio->bi_error; 8175 8176 if (err) 8177 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8178 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 8179 btrfs_ino(dip->inode), bio->bi_rw, 8180 (unsigned long long)bio->bi_iter.bi_sector, 8181 bio->bi_iter.bi_size, err); 8182 8183 if (dip->subio_endio) 8184 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8185 8186 if (err) { 8187 dip->errors = 1; 8188 8189 /* 8190 * before atomic variable goto zero, we must make sure 8191 * dip->errors is perceived to be set. 8192 */ 8193 smp_mb__before_atomic(); 8194 } 8195 8196 /* if there are more bios still pending for this dio, just exit */ 8197 if (!atomic_dec_and_test(&dip->pending_bios)) 8198 goto out; 8199 8200 if (dip->errors) { 8201 bio_io_error(dip->orig_bio); 8202 } else { 8203 dip->dio_bio->bi_error = 0; 8204 bio_endio(dip->orig_bio); 8205 } 8206 out: 8207 bio_put(bio); 8208 } 8209 8210 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8211 u64 first_sector, gfp_t gfp_flags) 8212 { 8213 struct bio *bio; 8214 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8215 if (bio) 8216 bio_associate_current(bio); 8217 return bio; 8218 } 8219 8220 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8221 struct inode *inode, 8222 struct btrfs_dio_private *dip, 8223 struct bio *bio, 8224 u64 file_offset) 8225 { 8226 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8227 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8228 int ret; 8229 8230 /* 8231 * We load all the csum data we need when we submit 8232 * the first bio to reduce the csum tree search and 8233 * contention. 8234 */ 8235 if (dip->logical_offset == file_offset) { 8236 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8237 file_offset); 8238 if (ret) 8239 return ret; 8240 } 8241 8242 if (bio == dip->orig_bio) 8243 return 0; 8244 8245 file_offset -= dip->logical_offset; 8246 file_offset >>= inode->i_sb->s_blocksize_bits; 8247 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8248 8249 return 0; 8250 } 8251 8252 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8253 int rw, u64 file_offset, int skip_sum, 8254 int async_submit) 8255 { 8256 struct btrfs_dio_private *dip = bio->bi_private; 8257 int write = rw & REQ_WRITE; 8258 struct btrfs_root *root = BTRFS_I(inode)->root; 8259 int ret; 8260 8261 if (async_submit) 8262 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8263 8264 bio_get(bio); 8265 8266 if (!write) { 8267 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8268 BTRFS_WQ_ENDIO_DATA); 8269 if (ret) 8270 goto err; 8271 } 8272 8273 if (skip_sum) 8274 goto map; 8275 8276 if (write && async_submit) { 8277 ret = btrfs_wq_submit_bio(root->fs_info, 8278 inode, rw, bio, 0, 0, 8279 file_offset, 8280 __btrfs_submit_bio_start_direct_io, 8281 __btrfs_submit_bio_done); 8282 goto err; 8283 } else if (write) { 8284 /* 8285 * If we aren't doing async submit, calculate the csum of the 8286 * bio now. 8287 */ 8288 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8289 if (ret) 8290 goto err; 8291 } else { 8292 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8293 file_offset); 8294 if (ret) 8295 goto err; 8296 } 8297 map: 8298 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8299 err: 8300 bio_put(bio); 8301 return ret; 8302 } 8303 8304 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8305 int skip_sum) 8306 { 8307 struct inode *inode = dip->inode; 8308 struct btrfs_root *root = BTRFS_I(inode)->root; 8309 struct bio *bio; 8310 struct bio *orig_bio = dip->orig_bio; 8311 struct bio_vec *bvec = orig_bio->bi_io_vec; 8312 u64 start_sector = orig_bio->bi_iter.bi_sector; 8313 u64 file_offset = dip->logical_offset; 8314 u64 submit_len = 0; 8315 u64 map_length; 8316 u32 blocksize = root->sectorsize; 8317 int async_submit = 0; 8318 int nr_sectors; 8319 int ret; 8320 int i; 8321 8322 map_length = orig_bio->bi_iter.bi_size; 8323 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8324 &map_length, NULL, 0); 8325 if (ret) 8326 return -EIO; 8327 8328 if (map_length >= orig_bio->bi_iter.bi_size) { 8329 bio = orig_bio; 8330 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8331 goto submit; 8332 } 8333 8334 /* async crcs make it difficult to collect full stripe writes. */ 8335 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8336 async_submit = 0; 8337 else 8338 async_submit = 1; 8339 8340 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8341 if (!bio) 8342 return -ENOMEM; 8343 8344 bio->bi_private = dip; 8345 bio->bi_end_io = btrfs_end_dio_bio; 8346 btrfs_io_bio(bio)->logical = file_offset; 8347 atomic_inc(&dip->pending_bios); 8348 8349 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8350 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8351 i = 0; 8352 next_block: 8353 if (unlikely(map_length < submit_len + blocksize || 8354 bio_add_page(bio, bvec->bv_page, blocksize, 8355 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8356 /* 8357 * inc the count before we submit the bio so 8358 * we know the end IO handler won't happen before 8359 * we inc the count. Otherwise, the dip might get freed 8360 * before we're done setting it up 8361 */ 8362 atomic_inc(&dip->pending_bios); 8363 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8364 file_offset, skip_sum, 8365 async_submit); 8366 if (ret) { 8367 bio_put(bio); 8368 atomic_dec(&dip->pending_bios); 8369 goto out_err; 8370 } 8371 8372 start_sector += submit_len >> 9; 8373 file_offset += submit_len; 8374 8375 submit_len = 0; 8376 8377 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8378 start_sector, GFP_NOFS); 8379 if (!bio) 8380 goto out_err; 8381 bio->bi_private = dip; 8382 bio->bi_end_io = btrfs_end_dio_bio; 8383 btrfs_io_bio(bio)->logical = file_offset; 8384 8385 map_length = orig_bio->bi_iter.bi_size; 8386 ret = btrfs_map_block(root->fs_info, rw, 8387 start_sector << 9, 8388 &map_length, NULL, 0); 8389 if (ret) { 8390 bio_put(bio); 8391 goto out_err; 8392 } 8393 8394 goto next_block; 8395 } else { 8396 submit_len += blocksize; 8397 if (--nr_sectors) { 8398 i++; 8399 goto next_block; 8400 } 8401 bvec++; 8402 } 8403 } 8404 8405 submit: 8406 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8407 async_submit); 8408 if (!ret) 8409 return 0; 8410 8411 bio_put(bio); 8412 out_err: 8413 dip->errors = 1; 8414 /* 8415 * before atomic variable goto zero, we must 8416 * make sure dip->errors is perceived to be set. 8417 */ 8418 smp_mb__before_atomic(); 8419 if (atomic_dec_and_test(&dip->pending_bios)) 8420 bio_io_error(dip->orig_bio); 8421 8422 /* bio_end_io() will handle error, so we needn't return it */ 8423 return 0; 8424 } 8425 8426 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8427 struct inode *inode, loff_t file_offset) 8428 { 8429 struct btrfs_dio_private *dip = NULL; 8430 struct bio *io_bio = NULL; 8431 struct btrfs_io_bio *btrfs_bio; 8432 int skip_sum; 8433 int write = rw & REQ_WRITE; 8434 int ret = 0; 8435 8436 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8437 8438 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8439 if (!io_bio) { 8440 ret = -ENOMEM; 8441 goto free_ordered; 8442 } 8443 8444 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8445 if (!dip) { 8446 ret = -ENOMEM; 8447 goto free_ordered; 8448 } 8449 8450 dip->private = dio_bio->bi_private; 8451 dip->inode = inode; 8452 dip->logical_offset = file_offset; 8453 dip->bytes = dio_bio->bi_iter.bi_size; 8454 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8455 io_bio->bi_private = dip; 8456 dip->orig_bio = io_bio; 8457 dip->dio_bio = dio_bio; 8458 atomic_set(&dip->pending_bios, 0); 8459 btrfs_bio = btrfs_io_bio(io_bio); 8460 btrfs_bio->logical = file_offset; 8461 8462 if (write) { 8463 io_bio->bi_end_io = btrfs_endio_direct_write; 8464 } else { 8465 io_bio->bi_end_io = btrfs_endio_direct_read; 8466 dip->subio_endio = btrfs_subio_endio_read; 8467 } 8468 8469 /* 8470 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8471 * even if we fail to submit a bio, because in such case we do the 8472 * corresponding error handling below and it must not be done a second 8473 * time by btrfs_direct_IO(). 8474 */ 8475 if (write) { 8476 struct btrfs_dio_data *dio_data = current->journal_info; 8477 8478 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8479 dip->bytes; 8480 dio_data->unsubmitted_oe_range_start = 8481 dio_data->unsubmitted_oe_range_end; 8482 } 8483 8484 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8485 if (!ret) 8486 return; 8487 8488 if (btrfs_bio->end_io) 8489 btrfs_bio->end_io(btrfs_bio, ret); 8490 8491 free_ordered: 8492 /* 8493 * If we arrived here it means either we failed to submit the dip 8494 * or we either failed to clone the dio_bio or failed to allocate the 8495 * dip. If we cloned the dio_bio and allocated the dip, we can just 8496 * call bio_endio against our io_bio so that we get proper resource 8497 * cleanup if we fail to submit the dip, otherwise, we must do the 8498 * same as btrfs_endio_direct_[write|read] because we can't call these 8499 * callbacks - they require an allocated dip and a clone of dio_bio. 8500 */ 8501 if (io_bio && dip) { 8502 io_bio->bi_error = -EIO; 8503 bio_endio(io_bio); 8504 /* 8505 * The end io callbacks free our dip, do the final put on io_bio 8506 * and all the cleanup and final put for dio_bio (through 8507 * dio_end_io()). 8508 */ 8509 dip = NULL; 8510 io_bio = NULL; 8511 } else { 8512 if (write) 8513 btrfs_endio_direct_write_update_ordered(inode, 8514 file_offset, 8515 dio_bio->bi_iter.bi_size, 8516 0); 8517 else 8518 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8519 file_offset + dio_bio->bi_iter.bi_size - 1); 8520 8521 dio_bio->bi_error = -EIO; 8522 /* 8523 * Releases and cleans up our dio_bio, no need to bio_put() 8524 * nor bio_endio()/bio_io_error() against dio_bio. 8525 */ 8526 dio_end_io(dio_bio, ret); 8527 } 8528 if (io_bio) 8529 bio_put(io_bio); 8530 kfree(dip); 8531 } 8532 8533 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8534 const struct iov_iter *iter, loff_t offset) 8535 { 8536 int seg; 8537 int i; 8538 unsigned blocksize_mask = root->sectorsize - 1; 8539 ssize_t retval = -EINVAL; 8540 8541 if (offset & blocksize_mask) 8542 goto out; 8543 8544 if (iov_iter_alignment(iter) & blocksize_mask) 8545 goto out; 8546 8547 /* If this is a write we don't need to check anymore */ 8548 if (iov_iter_rw(iter) == WRITE) 8549 return 0; 8550 /* 8551 * Check to make sure we don't have duplicate iov_base's in this 8552 * iovec, if so return EINVAL, otherwise we'll get csum errors 8553 * when reading back. 8554 */ 8555 for (seg = 0; seg < iter->nr_segs; seg++) { 8556 for (i = seg + 1; i < iter->nr_segs; i++) { 8557 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8558 goto out; 8559 } 8560 } 8561 retval = 0; 8562 out: 8563 return retval; 8564 } 8565 8566 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8567 { 8568 struct file *file = iocb->ki_filp; 8569 struct inode *inode = file->f_mapping->host; 8570 struct btrfs_root *root = BTRFS_I(inode)->root; 8571 struct btrfs_dio_data dio_data = { 0 }; 8572 loff_t offset = iocb->ki_pos; 8573 size_t count = 0; 8574 int flags = 0; 8575 bool wakeup = true; 8576 bool relock = false; 8577 ssize_t ret; 8578 8579 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8580 return 0; 8581 8582 inode_dio_begin(inode); 8583 smp_mb__after_atomic(); 8584 8585 /* 8586 * The generic stuff only does filemap_write_and_wait_range, which 8587 * isn't enough if we've written compressed pages to this area, so 8588 * we need to flush the dirty pages again to make absolutely sure 8589 * that any outstanding dirty pages are on disk. 8590 */ 8591 count = iov_iter_count(iter); 8592 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8593 &BTRFS_I(inode)->runtime_flags)) 8594 filemap_fdatawrite_range(inode->i_mapping, offset, 8595 offset + count - 1); 8596 8597 if (iov_iter_rw(iter) == WRITE) { 8598 /* 8599 * If the write DIO is beyond the EOF, we need update 8600 * the isize, but it is protected by i_mutex. So we can 8601 * not unlock the i_mutex at this case. 8602 */ 8603 if (offset + count <= inode->i_size) { 8604 inode_unlock(inode); 8605 relock = true; 8606 } 8607 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8608 if (ret) 8609 goto out; 8610 dio_data.outstanding_extents = div64_u64(count + 8611 BTRFS_MAX_EXTENT_SIZE - 1, 8612 BTRFS_MAX_EXTENT_SIZE); 8613 8614 /* 8615 * We need to know how many extents we reserved so that we can 8616 * do the accounting properly if we go over the number we 8617 * originally calculated. Abuse current->journal_info for this. 8618 */ 8619 dio_data.reserve = round_up(count, root->sectorsize); 8620 dio_data.unsubmitted_oe_range_start = (u64)offset; 8621 dio_data.unsubmitted_oe_range_end = (u64)offset; 8622 current->journal_info = &dio_data; 8623 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8624 &BTRFS_I(inode)->runtime_flags)) { 8625 inode_dio_end(inode); 8626 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8627 wakeup = false; 8628 } 8629 8630 ret = __blockdev_direct_IO(iocb, inode, 8631 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8632 iter, btrfs_get_blocks_direct, NULL, 8633 btrfs_submit_direct, flags); 8634 if (iov_iter_rw(iter) == WRITE) { 8635 current->journal_info = NULL; 8636 if (ret < 0 && ret != -EIOCBQUEUED) { 8637 if (dio_data.reserve) 8638 btrfs_delalloc_release_space(inode, offset, 8639 dio_data.reserve); 8640 /* 8641 * On error we might have left some ordered extents 8642 * without submitting corresponding bios for them, so 8643 * cleanup them up to avoid other tasks getting them 8644 * and waiting for them to complete forever. 8645 */ 8646 if (dio_data.unsubmitted_oe_range_start < 8647 dio_data.unsubmitted_oe_range_end) 8648 btrfs_endio_direct_write_update_ordered(inode, 8649 dio_data.unsubmitted_oe_range_start, 8650 dio_data.unsubmitted_oe_range_end - 8651 dio_data.unsubmitted_oe_range_start, 8652 0); 8653 } else if (ret >= 0 && (size_t)ret < count) 8654 btrfs_delalloc_release_space(inode, offset, 8655 count - (size_t)ret); 8656 } 8657 out: 8658 if (wakeup) 8659 inode_dio_end(inode); 8660 if (relock) 8661 inode_lock(inode); 8662 8663 return ret; 8664 } 8665 8666 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8667 8668 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8669 __u64 start, __u64 len) 8670 { 8671 int ret; 8672 8673 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8674 if (ret) 8675 return ret; 8676 8677 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8678 } 8679 8680 int btrfs_readpage(struct file *file, struct page *page) 8681 { 8682 struct extent_io_tree *tree; 8683 tree = &BTRFS_I(page->mapping->host)->io_tree; 8684 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8685 } 8686 8687 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8688 { 8689 struct extent_io_tree *tree; 8690 struct inode *inode = page->mapping->host; 8691 int ret; 8692 8693 if (current->flags & PF_MEMALLOC) { 8694 redirty_page_for_writepage(wbc, page); 8695 unlock_page(page); 8696 return 0; 8697 } 8698 8699 /* 8700 * If we are under memory pressure we will call this directly from the 8701 * VM, we need to make sure we have the inode referenced for the ordered 8702 * extent. If not just return like we didn't do anything. 8703 */ 8704 if (!igrab(inode)) { 8705 redirty_page_for_writepage(wbc, page); 8706 return AOP_WRITEPAGE_ACTIVATE; 8707 } 8708 tree = &BTRFS_I(page->mapping->host)->io_tree; 8709 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8710 btrfs_add_delayed_iput(inode); 8711 return ret; 8712 } 8713 8714 static int btrfs_writepages(struct address_space *mapping, 8715 struct writeback_control *wbc) 8716 { 8717 struct extent_io_tree *tree; 8718 8719 tree = &BTRFS_I(mapping->host)->io_tree; 8720 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8721 } 8722 8723 static int 8724 btrfs_readpages(struct file *file, struct address_space *mapping, 8725 struct list_head *pages, unsigned nr_pages) 8726 { 8727 struct extent_io_tree *tree; 8728 tree = &BTRFS_I(mapping->host)->io_tree; 8729 return extent_readpages(tree, mapping, pages, nr_pages, 8730 btrfs_get_extent); 8731 } 8732 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8733 { 8734 struct extent_io_tree *tree; 8735 struct extent_map_tree *map; 8736 int ret; 8737 8738 tree = &BTRFS_I(page->mapping->host)->io_tree; 8739 map = &BTRFS_I(page->mapping->host)->extent_tree; 8740 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8741 if (ret == 1) { 8742 ClearPagePrivate(page); 8743 set_page_private(page, 0); 8744 put_page(page); 8745 } 8746 return ret; 8747 } 8748 8749 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8750 { 8751 if (PageWriteback(page) || PageDirty(page)) 8752 return 0; 8753 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8754 } 8755 8756 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8757 unsigned int length) 8758 { 8759 struct inode *inode = page->mapping->host; 8760 struct extent_io_tree *tree; 8761 struct btrfs_ordered_extent *ordered; 8762 struct extent_state *cached_state = NULL; 8763 u64 page_start = page_offset(page); 8764 u64 page_end = page_start + PAGE_SIZE - 1; 8765 u64 start; 8766 u64 end; 8767 int inode_evicting = inode->i_state & I_FREEING; 8768 8769 /* 8770 * we have the page locked, so new writeback can't start, 8771 * and the dirty bit won't be cleared while we are here. 8772 * 8773 * Wait for IO on this page so that we can safely clear 8774 * the PagePrivate2 bit and do ordered accounting 8775 */ 8776 wait_on_page_writeback(page); 8777 8778 tree = &BTRFS_I(inode)->io_tree; 8779 if (offset) { 8780 btrfs_releasepage(page, GFP_NOFS); 8781 return; 8782 } 8783 8784 if (!inode_evicting) 8785 lock_extent_bits(tree, page_start, page_end, &cached_state); 8786 again: 8787 start = page_start; 8788 ordered = btrfs_lookup_ordered_range(inode, start, 8789 page_end - start + 1); 8790 if (ordered) { 8791 end = min(page_end, ordered->file_offset + ordered->len - 1); 8792 /* 8793 * IO on this page will never be started, so we need 8794 * to account for any ordered extents now 8795 */ 8796 if (!inode_evicting) 8797 clear_extent_bit(tree, start, end, 8798 EXTENT_DIRTY | EXTENT_DELALLOC | 8799 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8800 EXTENT_DEFRAG, 1, 0, &cached_state, 8801 GFP_NOFS); 8802 /* 8803 * whoever cleared the private bit is responsible 8804 * for the finish_ordered_io 8805 */ 8806 if (TestClearPagePrivate2(page)) { 8807 struct btrfs_ordered_inode_tree *tree; 8808 u64 new_len; 8809 8810 tree = &BTRFS_I(inode)->ordered_tree; 8811 8812 spin_lock_irq(&tree->lock); 8813 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8814 new_len = start - ordered->file_offset; 8815 if (new_len < ordered->truncated_len) 8816 ordered->truncated_len = new_len; 8817 spin_unlock_irq(&tree->lock); 8818 8819 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8820 start, 8821 end - start + 1, 1)) 8822 btrfs_finish_ordered_io(ordered); 8823 } 8824 btrfs_put_ordered_extent(ordered); 8825 if (!inode_evicting) { 8826 cached_state = NULL; 8827 lock_extent_bits(tree, start, end, 8828 &cached_state); 8829 } 8830 8831 start = end + 1; 8832 if (start < page_end) 8833 goto again; 8834 } 8835 8836 /* 8837 * Qgroup reserved space handler 8838 * Page here will be either 8839 * 1) Already written to disk 8840 * In this case, its reserved space is released from data rsv map 8841 * and will be freed by delayed_ref handler finally. 8842 * So even we call qgroup_free_data(), it won't decrease reserved 8843 * space. 8844 * 2) Not written to disk 8845 * This means the reserved space should be freed here. 8846 */ 8847 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8848 if (!inode_evicting) { 8849 clear_extent_bit(tree, page_start, page_end, 8850 EXTENT_LOCKED | EXTENT_DIRTY | 8851 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8852 EXTENT_DEFRAG, 1, 1, 8853 &cached_state, GFP_NOFS); 8854 8855 __btrfs_releasepage(page, GFP_NOFS); 8856 } 8857 8858 ClearPageChecked(page); 8859 if (PagePrivate(page)) { 8860 ClearPagePrivate(page); 8861 set_page_private(page, 0); 8862 put_page(page); 8863 } 8864 } 8865 8866 /* 8867 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8868 * called from a page fault handler when a page is first dirtied. Hence we must 8869 * be careful to check for EOF conditions here. We set the page up correctly 8870 * for a written page which means we get ENOSPC checking when writing into 8871 * holes and correct delalloc and unwritten extent mapping on filesystems that 8872 * support these features. 8873 * 8874 * We are not allowed to take the i_mutex here so we have to play games to 8875 * protect against truncate races as the page could now be beyond EOF. Because 8876 * vmtruncate() writes the inode size before removing pages, once we have the 8877 * page lock we can determine safely if the page is beyond EOF. If it is not 8878 * beyond EOF, then the page is guaranteed safe against truncation until we 8879 * unlock the page. 8880 */ 8881 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8882 { 8883 struct page *page = vmf->page; 8884 struct inode *inode = file_inode(vma->vm_file); 8885 struct btrfs_root *root = BTRFS_I(inode)->root; 8886 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8887 struct btrfs_ordered_extent *ordered; 8888 struct extent_state *cached_state = NULL; 8889 char *kaddr; 8890 unsigned long zero_start; 8891 loff_t size; 8892 int ret; 8893 int reserved = 0; 8894 u64 reserved_space; 8895 u64 page_start; 8896 u64 page_end; 8897 u64 end; 8898 8899 reserved_space = PAGE_SIZE; 8900 8901 sb_start_pagefault(inode->i_sb); 8902 page_start = page_offset(page); 8903 page_end = page_start + PAGE_SIZE - 1; 8904 end = page_end; 8905 8906 /* 8907 * Reserving delalloc space after obtaining the page lock can lead to 8908 * deadlock. For example, if a dirty page is locked by this function 8909 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8910 * dirty page write out, then the btrfs_writepage() function could 8911 * end up waiting indefinitely to get a lock on the page currently 8912 * being processed by btrfs_page_mkwrite() function. 8913 */ 8914 ret = btrfs_delalloc_reserve_space(inode, page_start, 8915 reserved_space); 8916 if (!ret) { 8917 ret = file_update_time(vma->vm_file); 8918 reserved = 1; 8919 } 8920 if (ret) { 8921 if (ret == -ENOMEM) 8922 ret = VM_FAULT_OOM; 8923 else /* -ENOSPC, -EIO, etc */ 8924 ret = VM_FAULT_SIGBUS; 8925 if (reserved) 8926 goto out; 8927 goto out_noreserve; 8928 } 8929 8930 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8931 again: 8932 lock_page(page); 8933 size = i_size_read(inode); 8934 8935 if ((page->mapping != inode->i_mapping) || 8936 (page_start >= size)) { 8937 /* page got truncated out from underneath us */ 8938 goto out_unlock; 8939 } 8940 wait_on_page_writeback(page); 8941 8942 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8943 set_page_extent_mapped(page); 8944 8945 /* 8946 * we can't set the delalloc bits if there are pending ordered 8947 * extents. Drop our locks and wait for them to finish 8948 */ 8949 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8950 if (ordered) { 8951 unlock_extent_cached(io_tree, page_start, page_end, 8952 &cached_state, GFP_NOFS); 8953 unlock_page(page); 8954 btrfs_start_ordered_extent(inode, ordered, 1); 8955 btrfs_put_ordered_extent(ordered); 8956 goto again; 8957 } 8958 8959 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8960 reserved_space = round_up(size - page_start, root->sectorsize); 8961 if (reserved_space < PAGE_SIZE) { 8962 end = page_start + reserved_space - 1; 8963 spin_lock(&BTRFS_I(inode)->lock); 8964 BTRFS_I(inode)->outstanding_extents++; 8965 spin_unlock(&BTRFS_I(inode)->lock); 8966 btrfs_delalloc_release_space(inode, page_start, 8967 PAGE_SIZE - reserved_space); 8968 } 8969 } 8970 8971 /* 8972 * XXX - page_mkwrite gets called every time the page is dirtied, even 8973 * if it was already dirty, so for space accounting reasons we need to 8974 * clear any delalloc bits for the range we are fixing to save. There 8975 * is probably a better way to do this, but for now keep consistent with 8976 * prepare_pages in the normal write path. 8977 */ 8978 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8979 EXTENT_DIRTY | EXTENT_DELALLOC | 8980 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8981 0, 0, &cached_state, GFP_NOFS); 8982 8983 ret = btrfs_set_extent_delalloc(inode, page_start, end, 8984 &cached_state); 8985 if (ret) { 8986 unlock_extent_cached(io_tree, page_start, page_end, 8987 &cached_state, GFP_NOFS); 8988 ret = VM_FAULT_SIGBUS; 8989 goto out_unlock; 8990 } 8991 ret = 0; 8992 8993 /* page is wholly or partially inside EOF */ 8994 if (page_start + PAGE_SIZE > size) 8995 zero_start = size & ~PAGE_MASK; 8996 else 8997 zero_start = PAGE_SIZE; 8998 8999 if (zero_start != PAGE_SIZE) { 9000 kaddr = kmap(page); 9001 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9002 flush_dcache_page(page); 9003 kunmap(page); 9004 } 9005 ClearPageChecked(page); 9006 set_page_dirty(page); 9007 SetPageUptodate(page); 9008 9009 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9010 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9011 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9012 9013 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9014 9015 out_unlock: 9016 if (!ret) { 9017 sb_end_pagefault(inode->i_sb); 9018 return VM_FAULT_LOCKED; 9019 } 9020 unlock_page(page); 9021 out: 9022 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9023 out_noreserve: 9024 sb_end_pagefault(inode->i_sb); 9025 return ret; 9026 } 9027 9028 static int btrfs_truncate(struct inode *inode) 9029 { 9030 struct btrfs_root *root = BTRFS_I(inode)->root; 9031 struct btrfs_block_rsv *rsv; 9032 int ret = 0; 9033 int err = 0; 9034 struct btrfs_trans_handle *trans; 9035 u64 mask = root->sectorsize - 1; 9036 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9037 9038 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9039 (u64)-1); 9040 if (ret) 9041 return ret; 9042 9043 /* 9044 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 9045 * 3 things going on here 9046 * 9047 * 1) We need to reserve space for our orphan item and the space to 9048 * delete our orphan item. Lord knows we don't want to have a dangling 9049 * orphan item because we didn't reserve space to remove it. 9050 * 9051 * 2) We need to reserve space to update our inode. 9052 * 9053 * 3) We need to have something to cache all the space that is going to 9054 * be free'd up by the truncate operation, but also have some slack 9055 * space reserved in case it uses space during the truncate (thank you 9056 * very much snapshotting). 9057 * 9058 * And we need these to all be seperate. The fact is we can use alot of 9059 * space doing the truncate, and we have no earthly idea how much space 9060 * we will use, so we need the truncate reservation to be seperate so it 9061 * doesn't end up using space reserved for updating the inode or 9062 * removing the orphan item. We also need to be able to stop the 9063 * transaction and start a new one, which means we need to be able to 9064 * update the inode several times, and we have no idea of knowing how 9065 * many times that will be, so we can't just reserve 1 item for the 9066 * entirety of the opration, so that has to be done seperately as well. 9067 * Then there is the orphan item, which does indeed need to be held on 9068 * to for the whole operation, and we need nobody to touch this reserved 9069 * space except the orphan code. 9070 * 9071 * So that leaves us with 9072 * 9073 * 1) root->orphan_block_rsv - for the orphan deletion. 9074 * 2) rsv - for the truncate reservation, which we will steal from the 9075 * transaction reservation. 9076 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9077 * updating the inode. 9078 */ 9079 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9080 if (!rsv) 9081 return -ENOMEM; 9082 rsv->size = min_size; 9083 rsv->failfast = 1; 9084 9085 /* 9086 * 1 for the truncate slack space 9087 * 1 for updating the inode. 9088 */ 9089 trans = btrfs_start_transaction(root, 2); 9090 if (IS_ERR(trans)) { 9091 err = PTR_ERR(trans); 9092 goto out; 9093 } 9094 9095 /* Migrate the slack space for the truncate to our reserve */ 9096 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9097 min_size); 9098 BUG_ON(ret); 9099 9100 /* 9101 * So if we truncate and then write and fsync we normally would just 9102 * write the extents that changed, which is a problem if we need to 9103 * first truncate that entire inode. So set this flag so we write out 9104 * all of the extents in the inode to the sync log so we're completely 9105 * safe. 9106 */ 9107 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9108 trans->block_rsv = rsv; 9109 9110 while (1) { 9111 ret = btrfs_truncate_inode_items(trans, root, inode, 9112 inode->i_size, 9113 BTRFS_EXTENT_DATA_KEY); 9114 if (ret != -ENOSPC && ret != -EAGAIN) { 9115 err = ret; 9116 break; 9117 } 9118 9119 trans->block_rsv = &root->fs_info->trans_block_rsv; 9120 ret = btrfs_update_inode(trans, root, inode); 9121 if (ret) { 9122 err = ret; 9123 break; 9124 } 9125 9126 btrfs_end_transaction(trans, root); 9127 btrfs_btree_balance_dirty(root); 9128 9129 trans = btrfs_start_transaction(root, 2); 9130 if (IS_ERR(trans)) { 9131 ret = err = PTR_ERR(trans); 9132 trans = NULL; 9133 break; 9134 } 9135 9136 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9137 rsv, min_size); 9138 BUG_ON(ret); /* shouldn't happen */ 9139 trans->block_rsv = rsv; 9140 } 9141 9142 if (ret == 0 && inode->i_nlink > 0) { 9143 trans->block_rsv = root->orphan_block_rsv; 9144 ret = btrfs_orphan_del(trans, inode); 9145 if (ret) 9146 err = ret; 9147 } 9148 9149 if (trans) { 9150 trans->block_rsv = &root->fs_info->trans_block_rsv; 9151 ret = btrfs_update_inode(trans, root, inode); 9152 if (ret && !err) 9153 err = ret; 9154 9155 ret = btrfs_end_transaction(trans, root); 9156 btrfs_btree_balance_dirty(root); 9157 } 9158 9159 out: 9160 btrfs_free_block_rsv(root, rsv); 9161 9162 if (ret && !err) 9163 err = ret; 9164 9165 return err; 9166 } 9167 9168 /* 9169 * create a new subvolume directory/inode (helper for the ioctl). 9170 */ 9171 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9172 struct btrfs_root *new_root, 9173 struct btrfs_root *parent_root, 9174 u64 new_dirid) 9175 { 9176 struct inode *inode; 9177 int err; 9178 u64 index = 0; 9179 9180 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9181 new_dirid, new_dirid, 9182 S_IFDIR | (~current_umask() & S_IRWXUGO), 9183 &index); 9184 if (IS_ERR(inode)) 9185 return PTR_ERR(inode); 9186 inode->i_op = &btrfs_dir_inode_operations; 9187 inode->i_fop = &btrfs_dir_file_operations; 9188 9189 set_nlink(inode, 1); 9190 btrfs_i_size_write(inode, 0); 9191 unlock_new_inode(inode); 9192 9193 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9194 if (err) 9195 btrfs_err(new_root->fs_info, 9196 "error inheriting subvolume %llu properties: %d", 9197 new_root->root_key.objectid, err); 9198 9199 err = btrfs_update_inode(trans, new_root, inode); 9200 9201 iput(inode); 9202 return err; 9203 } 9204 9205 struct inode *btrfs_alloc_inode(struct super_block *sb) 9206 { 9207 struct btrfs_inode *ei; 9208 struct inode *inode; 9209 9210 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9211 if (!ei) 9212 return NULL; 9213 9214 ei->root = NULL; 9215 ei->generation = 0; 9216 ei->last_trans = 0; 9217 ei->last_sub_trans = 0; 9218 ei->logged_trans = 0; 9219 ei->delalloc_bytes = 0; 9220 ei->defrag_bytes = 0; 9221 ei->disk_i_size = 0; 9222 ei->flags = 0; 9223 ei->csum_bytes = 0; 9224 ei->index_cnt = (u64)-1; 9225 ei->dir_index = 0; 9226 ei->last_unlink_trans = 0; 9227 ei->last_log_commit = 0; 9228 ei->delayed_iput_count = 0; 9229 9230 spin_lock_init(&ei->lock); 9231 ei->outstanding_extents = 0; 9232 ei->reserved_extents = 0; 9233 9234 ei->runtime_flags = 0; 9235 ei->force_compress = BTRFS_COMPRESS_NONE; 9236 9237 ei->delayed_node = NULL; 9238 9239 ei->i_otime.tv_sec = 0; 9240 ei->i_otime.tv_nsec = 0; 9241 9242 inode = &ei->vfs_inode; 9243 extent_map_tree_init(&ei->extent_tree); 9244 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9245 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9246 ei->io_tree.track_uptodate = 1; 9247 ei->io_failure_tree.track_uptodate = 1; 9248 atomic_set(&ei->sync_writers, 0); 9249 mutex_init(&ei->log_mutex); 9250 mutex_init(&ei->delalloc_mutex); 9251 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9252 INIT_LIST_HEAD(&ei->delalloc_inodes); 9253 INIT_LIST_HEAD(&ei->delayed_iput); 9254 RB_CLEAR_NODE(&ei->rb_node); 9255 init_rwsem(&ei->dio_sem); 9256 9257 return inode; 9258 } 9259 9260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9261 void btrfs_test_destroy_inode(struct inode *inode) 9262 { 9263 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9264 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9265 } 9266 #endif 9267 9268 static void btrfs_i_callback(struct rcu_head *head) 9269 { 9270 struct inode *inode = container_of(head, struct inode, i_rcu); 9271 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9272 } 9273 9274 void btrfs_destroy_inode(struct inode *inode) 9275 { 9276 struct btrfs_ordered_extent *ordered; 9277 struct btrfs_root *root = BTRFS_I(inode)->root; 9278 9279 WARN_ON(!hlist_empty(&inode->i_dentry)); 9280 WARN_ON(inode->i_data.nrpages); 9281 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9282 WARN_ON(BTRFS_I(inode)->reserved_extents); 9283 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9284 WARN_ON(BTRFS_I(inode)->csum_bytes); 9285 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9286 9287 /* 9288 * This can happen where we create an inode, but somebody else also 9289 * created the same inode and we need to destroy the one we already 9290 * created. 9291 */ 9292 if (!root) 9293 goto free; 9294 9295 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9296 &BTRFS_I(inode)->runtime_flags)) { 9297 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9298 btrfs_ino(inode)); 9299 atomic_dec(&root->orphan_inodes); 9300 } 9301 9302 while (1) { 9303 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9304 if (!ordered) 9305 break; 9306 else { 9307 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9308 ordered->file_offset, ordered->len); 9309 btrfs_remove_ordered_extent(inode, ordered); 9310 btrfs_put_ordered_extent(ordered); 9311 btrfs_put_ordered_extent(ordered); 9312 } 9313 } 9314 btrfs_qgroup_check_reserved_leak(inode); 9315 inode_tree_del(inode); 9316 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9317 free: 9318 call_rcu(&inode->i_rcu, btrfs_i_callback); 9319 } 9320 9321 int btrfs_drop_inode(struct inode *inode) 9322 { 9323 struct btrfs_root *root = BTRFS_I(inode)->root; 9324 9325 if (root == NULL) 9326 return 1; 9327 9328 /* the snap/subvol tree is on deleting */ 9329 if (btrfs_root_refs(&root->root_item) == 0) 9330 return 1; 9331 else 9332 return generic_drop_inode(inode); 9333 } 9334 9335 static void init_once(void *foo) 9336 { 9337 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9338 9339 inode_init_once(&ei->vfs_inode); 9340 } 9341 9342 void btrfs_destroy_cachep(void) 9343 { 9344 /* 9345 * Make sure all delayed rcu free inodes are flushed before we 9346 * destroy cache. 9347 */ 9348 rcu_barrier(); 9349 kmem_cache_destroy(btrfs_inode_cachep); 9350 kmem_cache_destroy(btrfs_trans_handle_cachep); 9351 kmem_cache_destroy(btrfs_transaction_cachep); 9352 kmem_cache_destroy(btrfs_path_cachep); 9353 kmem_cache_destroy(btrfs_free_space_cachep); 9354 } 9355 9356 int btrfs_init_cachep(void) 9357 { 9358 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9359 sizeof(struct btrfs_inode), 0, 9360 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9361 init_once); 9362 if (!btrfs_inode_cachep) 9363 goto fail; 9364 9365 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9366 sizeof(struct btrfs_trans_handle), 0, 9367 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9368 if (!btrfs_trans_handle_cachep) 9369 goto fail; 9370 9371 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9372 sizeof(struct btrfs_transaction), 0, 9373 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9374 if (!btrfs_transaction_cachep) 9375 goto fail; 9376 9377 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9378 sizeof(struct btrfs_path), 0, 9379 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9380 if (!btrfs_path_cachep) 9381 goto fail; 9382 9383 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9384 sizeof(struct btrfs_free_space), 0, 9385 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9386 if (!btrfs_free_space_cachep) 9387 goto fail; 9388 9389 return 0; 9390 fail: 9391 btrfs_destroy_cachep(); 9392 return -ENOMEM; 9393 } 9394 9395 static int btrfs_getattr(struct vfsmount *mnt, 9396 struct dentry *dentry, struct kstat *stat) 9397 { 9398 u64 delalloc_bytes; 9399 struct inode *inode = d_inode(dentry); 9400 u32 blocksize = inode->i_sb->s_blocksize; 9401 9402 generic_fillattr(inode, stat); 9403 stat->dev = BTRFS_I(inode)->root->anon_dev; 9404 9405 spin_lock(&BTRFS_I(inode)->lock); 9406 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9407 spin_unlock(&BTRFS_I(inode)->lock); 9408 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9409 ALIGN(delalloc_bytes, blocksize)) >> 9; 9410 return 0; 9411 } 9412 9413 static int btrfs_rename_exchange(struct inode *old_dir, 9414 struct dentry *old_dentry, 9415 struct inode *new_dir, 9416 struct dentry *new_dentry) 9417 { 9418 struct btrfs_trans_handle *trans; 9419 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9420 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9421 struct inode *new_inode = new_dentry->d_inode; 9422 struct inode *old_inode = old_dentry->d_inode; 9423 struct timespec ctime = CURRENT_TIME; 9424 struct dentry *parent; 9425 u64 old_ino = btrfs_ino(old_inode); 9426 u64 new_ino = btrfs_ino(new_inode); 9427 u64 old_idx = 0; 9428 u64 new_idx = 0; 9429 u64 root_objectid; 9430 int ret; 9431 bool root_log_pinned = false; 9432 bool dest_log_pinned = false; 9433 9434 /* we only allow rename subvolume link between subvolumes */ 9435 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9436 return -EXDEV; 9437 9438 /* close the race window with snapshot create/destroy ioctl */ 9439 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9440 down_read(&root->fs_info->subvol_sem); 9441 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9442 down_read(&dest->fs_info->subvol_sem); 9443 9444 /* 9445 * We want to reserve the absolute worst case amount of items. So if 9446 * both inodes are subvols and we need to unlink them then that would 9447 * require 4 item modifications, but if they are both normal inodes it 9448 * would require 5 item modifications, so we'll assume their normal 9449 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9450 * should cover the worst case number of items we'll modify. 9451 */ 9452 trans = btrfs_start_transaction(root, 12); 9453 if (IS_ERR(trans)) { 9454 ret = PTR_ERR(trans); 9455 goto out_notrans; 9456 } 9457 9458 /* 9459 * We need to find a free sequence number both in the source and 9460 * in the destination directory for the exchange. 9461 */ 9462 ret = btrfs_set_inode_index(new_dir, &old_idx); 9463 if (ret) 9464 goto out_fail; 9465 ret = btrfs_set_inode_index(old_dir, &new_idx); 9466 if (ret) 9467 goto out_fail; 9468 9469 BTRFS_I(old_inode)->dir_index = 0ULL; 9470 BTRFS_I(new_inode)->dir_index = 0ULL; 9471 9472 /* Reference for the source. */ 9473 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9474 /* force full log commit if subvolume involved. */ 9475 btrfs_set_log_full_commit(root->fs_info, trans); 9476 } else { 9477 btrfs_pin_log_trans(root); 9478 root_log_pinned = true; 9479 ret = btrfs_insert_inode_ref(trans, dest, 9480 new_dentry->d_name.name, 9481 new_dentry->d_name.len, 9482 old_ino, 9483 btrfs_ino(new_dir), old_idx); 9484 if (ret) 9485 goto out_fail; 9486 } 9487 9488 /* And now for the dest. */ 9489 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9490 /* force full log commit if subvolume involved. */ 9491 btrfs_set_log_full_commit(dest->fs_info, trans); 9492 } else { 9493 btrfs_pin_log_trans(dest); 9494 dest_log_pinned = true; 9495 ret = btrfs_insert_inode_ref(trans, root, 9496 old_dentry->d_name.name, 9497 old_dentry->d_name.len, 9498 new_ino, 9499 btrfs_ino(old_dir), new_idx); 9500 if (ret) 9501 goto out_fail; 9502 } 9503 9504 /* Update inode version and ctime/mtime. */ 9505 inode_inc_iversion(old_dir); 9506 inode_inc_iversion(new_dir); 9507 inode_inc_iversion(old_inode); 9508 inode_inc_iversion(new_inode); 9509 old_dir->i_ctime = old_dir->i_mtime = ctime; 9510 new_dir->i_ctime = new_dir->i_mtime = ctime; 9511 old_inode->i_ctime = ctime; 9512 new_inode->i_ctime = ctime; 9513 9514 if (old_dentry->d_parent != new_dentry->d_parent) { 9515 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9516 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9517 } 9518 9519 /* src is a subvolume */ 9520 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9521 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9522 ret = btrfs_unlink_subvol(trans, root, old_dir, 9523 root_objectid, 9524 old_dentry->d_name.name, 9525 old_dentry->d_name.len); 9526 } else { /* src is an inode */ 9527 ret = __btrfs_unlink_inode(trans, root, old_dir, 9528 old_dentry->d_inode, 9529 old_dentry->d_name.name, 9530 old_dentry->d_name.len); 9531 if (!ret) 9532 ret = btrfs_update_inode(trans, root, old_inode); 9533 } 9534 if (ret) { 9535 btrfs_abort_transaction(trans, root, ret); 9536 goto out_fail; 9537 } 9538 9539 /* dest is a subvolume */ 9540 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9541 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9542 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9543 root_objectid, 9544 new_dentry->d_name.name, 9545 new_dentry->d_name.len); 9546 } else { /* dest is an inode */ 9547 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9548 new_dentry->d_inode, 9549 new_dentry->d_name.name, 9550 new_dentry->d_name.len); 9551 if (!ret) 9552 ret = btrfs_update_inode(trans, dest, new_inode); 9553 } 9554 if (ret) { 9555 btrfs_abort_transaction(trans, root, ret); 9556 goto out_fail; 9557 } 9558 9559 ret = btrfs_add_link(trans, new_dir, old_inode, 9560 new_dentry->d_name.name, 9561 new_dentry->d_name.len, 0, old_idx); 9562 if (ret) { 9563 btrfs_abort_transaction(trans, root, ret); 9564 goto out_fail; 9565 } 9566 9567 ret = btrfs_add_link(trans, old_dir, new_inode, 9568 old_dentry->d_name.name, 9569 old_dentry->d_name.len, 0, new_idx); 9570 if (ret) { 9571 btrfs_abort_transaction(trans, root, ret); 9572 goto out_fail; 9573 } 9574 9575 if (old_inode->i_nlink == 1) 9576 BTRFS_I(old_inode)->dir_index = old_idx; 9577 if (new_inode->i_nlink == 1) 9578 BTRFS_I(new_inode)->dir_index = new_idx; 9579 9580 if (root_log_pinned) { 9581 parent = new_dentry->d_parent; 9582 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9583 btrfs_end_log_trans(root); 9584 root_log_pinned = false; 9585 } 9586 if (dest_log_pinned) { 9587 parent = old_dentry->d_parent; 9588 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9589 btrfs_end_log_trans(dest); 9590 dest_log_pinned = false; 9591 } 9592 out_fail: 9593 /* 9594 * If we have pinned a log and an error happened, we unpin tasks 9595 * trying to sync the log and force them to fallback to a transaction 9596 * commit if the log currently contains any of the inodes involved in 9597 * this rename operation (to ensure we do not persist a log with an 9598 * inconsistent state for any of these inodes or leading to any 9599 * inconsistencies when replayed). If the transaction was aborted, the 9600 * abortion reason is propagated to userspace when attempting to commit 9601 * the transaction. If the log does not contain any of these inodes, we 9602 * allow the tasks to sync it. 9603 */ 9604 if (ret && (root_log_pinned || dest_log_pinned)) { 9605 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9606 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9607 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9608 (new_inode && 9609 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9610 btrfs_set_log_full_commit(root->fs_info, trans); 9611 9612 if (root_log_pinned) { 9613 btrfs_end_log_trans(root); 9614 root_log_pinned = false; 9615 } 9616 if (dest_log_pinned) { 9617 btrfs_end_log_trans(dest); 9618 dest_log_pinned = false; 9619 } 9620 } 9621 ret = btrfs_end_transaction(trans, root); 9622 out_notrans: 9623 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9624 up_read(&dest->fs_info->subvol_sem); 9625 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9626 up_read(&root->fs_info->subvol_sem); 9627 9628 return ret; 9629 } 9630 9631 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9632 struct btrfs_root *root, 9633 struct inode *dir, 9634 struct dentry *dentry) 9635 { 9636 int ret; 9637 struct inode *inode; 9638 u64 objectid; 9639 u64 index; 9640 9641 ret = btrfs_find_free_ino(root, &objectid); 9642 if (ret) 9643 return ret; 9644 9645 inode = btrfs_new_inode(trans, root, dir, 9646 dentry->d_name.name, 9647 dentry->d_name.len, 9648 btrfs_ino(dir), 9649 objectid, 9650 S_IFCHR | WHITEOUT_MODE, 9651 &index); 9652 9653 if (IS_ERR(inode)) { 9654 ret = PTR_ERR(inode); 9655 return ret; 9656 } 9657 9658 inode->i_op = &btrfs_special_inode_operations; 9659 init_special_inode(inode, inode->i_mode, 9660 WHITEOUT_DEV); 9661 9662 ret = btrfs_init_inode_security(trans, inode, dir, 9663 &dentry->d_name); 9664 if (ret) 9665 goto out; 9666 9667 ret = btrfs_add_nondir(trans, dir, dentry, 9668 inode, 0, index); 9669 if (ret) 9670 goto out; 9671 9672 ret = btrfs_update_inode(trans, root, inode); 9673 out: 9674 unlock_new_inode(inode); 9675 if (ret) 9676 inode_dec_link_count(inode); 9677 iput(inode); 9678 9679 return ret; 9680 } 9681 9682 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9683 struct inode *new_dir, struct dentry *new_dentry, 9684 unsigned int flags) 9685 { 9686 struct btrfs_trans_handle *trans; 9687 unsigned int trans_num_items; 9688 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9689 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9690 struct inode *new_inode = d_inode(new_dentry); 9691 struct inode *old_inode = d_inode(old_dentry); 9692 u64 index = 0; 9693 u64 root_objectid; 9694 int ret; 9695 u64 old_ino = btrfs_ino(old_inode); 9696 bool log_pinned = false; 9697 9698 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9699 return -EPERM; 9700 9701 /* we only allow rename subvolume link between subvolumes */ 9702 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9703 return -EXDEV; 9704 9705 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9706 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9707 return -ENOTEMPTY; 9708 9709 if (S_ISDIR(old_inode->i_mode) && new_inode && 9710 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9711 return -ENOTEMPTY; 9712 9713 9714 /* check for collisions, even if the name isn't there */ 9715 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9716 new_dentry->d_name.name, 9717 new_dentry->d_name.len); 9718 9719 if (ret) { 9720 if (ret == -EEXIST) { 9721 /* we shouldn't get 9722 * eexist without a new_inode */ 9723 if (WARN_ON(!new_inode)) { 9724 return ret; 9725 } 9726 } else { 9727 /* maybe -EOVERFLOW */ 9728 return ret; 9729 } 9730 } 9731 ret = 0; 9732 9733 /* 9734 * we're using rename to replace one file with another. Start IO on it 9735 * now so we don't add too much work to the end of the transaction 9736 */ 9737 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9738 filemap_flush(old_inode->i_mapping); 9739 9740 /* close the racy window with snapshot create/destroy ioctl */ 9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9742 down_read(&root->fs_info->subvol_sem); 9743 /* 9744 * We want to reserve the absolute worst case amount of items. So if 9745 * both inodes are subvols and we need to unlink them then that would 9746 * require 4 item modifications, but if they are both normal inodes it 9747 * would require 5 item modifications, so we'll assume they are normal 9748 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9749 * should cover the worst case number of items we'll modify. 9750 * If our rename has the whiteout flag, we need more 5 units for the 9751 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9752 * when selinux is enabled). 9753 */ 9754 trans_num_items = 11; 9755 if (flags & RENAME_WHITEOUT) 9756 trans_num_items += 5; 9757 trans = btrfs_start_transaction(root, trans_num_items); 9758 if (IS_ERR(trans)) { 9759 ret = PTR_ERR(trans); 9760 goto out_notrans; 9761 } 9762 9763 if (dest != root) 9764 btrfs_record_root_in_trans(trans, dest); 9765 9766 ret = btrfs_set_inode_index(new_dir, &index); 9767 if (ret) 9768 goto out_fail; 9769 9770 BTRFS_I(old_inode)->dir_index = 0ULL; 9771 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9772 /* force full log commit if subvolume involved. */ 9773 btrfs_set_log_full_commit(root->fs_info, trans); 9774 } else { 9775 btrfs_pin_log_trans(root); 9776 log_pinned = true; 9777 ret = btrfs_insert_inode_ref(trans, dest, 9778 new_dentry->d_name.name, 9779 new_dentry->d_name.len, 9780 old_ino, 9781 btrfs_ino(new_dir), index); 9782 if (ret) 9783 goto out_fail; 9784 } 9785 9786 inode_inc_iversion(old_dir); 9787 inode_inc_iversion(new_dir); 9788 inode_inc_iversion(old_inode); 9789 old_dir->i_ctime = old_dir->i_mtime = 9790 new_dir->i_ctime = new_dir->i_mtime = 9791 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9792 9793 if (old_dentry->d_parent != new_dentry->d_parent) 9794 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9795 9796 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9797 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9798 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9799 old_dentry->d_name.name, 9800 old_dentry->d_name.len); 9801 } else { 9802 ret = __btrfs_unlink_inode(trans, root, old_dir, 9803 d_inode(old_dentry), 9804 old_dentry->d_name.name, 9805 old_dentry->d_name.len); 9806 if (!ret) 9807 ret = btrfs_update_inode(trans, root, old_inode); 9808 } 9809 if (ret) { 9810 btrfs_abort_transaction(trans, root, ret); 9811 goto out_fail; 9812 } 9813 9814 if (new_inode) { 9815 inode_inc_iversion(new_inode); 9816 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9817 if (unlikely(btrfs_ino(new_inode) == 9818 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9819 root_objectid = BTRFS_I(new_inode)->location.objectid; 9820 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9821 root_objectid, 9822 new_dentry->d_name.name, 9823 new_dentry->d_name.len); 9824 BUG_ON(new_inode->i_nlink == 0); 9825 } else { 9826 ret = btrfs_unlink_inode(trans, dest, new_dir, 9827 d_inode(new_dentry), 9828 new_dentry->d_name.name, 9829 new_dentry->d_name.len); 9830 } 9831 if (!ret && new_inode->i_nlink == 0) 9832 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9833 if (ret) { 9834 btrfs_abort_transaction(trans, root, ret); 9835 goto out_fail; 9836 } 9837 } 9838 9839 ret = btrfs_add_link(trans, new_dir, old_inode, 9840 new_dentry->d_name.name, 9841 new_dentry->d_name.len, 0, index); 9842 if (ret) { 9843 btrfs_abort_transaction(trans, root, ret); 9844 goto out_fail; 9845 } 9846 9847 if (old_inode->i_nlink == 1) 9848 BTRFS_I(old_inode)->dir_index = index; 9849 9850 if (log_pinned) { 9851 struct dentry *parent = new_dentry->d_parent; 9852 9853 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9854 btrfs_end_log_trans(root); 9855 log_pinned = false; 9856 } 9857 9858 if (flags & RENAME_WHITEOUT) { 9859 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9860 old_dentry); 9861 9862 if (ret) { 9863 btrfs_abort_transaction(trans, root, ret); 9864 goto out_fail; 9865 } 9866 } 9867 out_fail: 9868 /* 9869 * If we have pinned the log and an error happened, we unpin tasks 9870 * trying to sync the log and force them to fallback to a transaction 9871 * commit if the log currently contains any of the inodes involved in 9872 * this rename operation (to ensure we do not persist a log with an 9873 * inconsistent state for any of these inodes or leading to any 9874 * inconsistencies when replayed). If the transaction was aborted, the 9875 * abortion reason is propagated to userspace when attempting to commit 9876 * the transaction. If the log does not contain any of these inodes, we 9877 * allow the tasks to sync it. 9878 */ 9879 if (ret && log_pinned) { 9880 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9881 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9882 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9883 (new_inode && 9884 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9885 btrfs_set_log_full_commit(root->fs_info, trans); 9886 9887 btrfs_end_log_trans(root); 9888 log_pinned = false; 9889 } 9890 btrfs_end_transaction(trans, root); 9891 out_notrans: 9892 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9893 up_read(&root->fs_info->subvol_sem); 9894 9895 return ret; 9896 } 9897 9898 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9899 struct inode *new_dir, struct dentry *new_dentry, 9900 unsigned int flags) 9901 { 9902 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9903 return -EINVAL; 9904 9905 if (flags & RENAME_EXCHANGE) 9906 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9907 new_dentry); 9908 9909 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9910 } 9911 9912 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9913 { 9914 struct btrfs_delalloc_work *delalloc_work; 9915 struct inode *inode; 9916 9917 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9918 work); 9919 inode = delalloc_work->inode; 9920 filemap_flush(inode->i_mapping); 9921 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9922 &BTRFS_I(inode)->runtime_flags)) 9923 filemap_flush(inode->i_mapping); 9924 9925 if (delalloc_work->delay_iput) 9926 btrfs_add_delayed_iput(inode); 9927 else 9928 iput(inode); 9929 complete(&delalloc_work->completion); 9930 } 9931 9932 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9933 int delay_iput) 9934 { 9935 struct btrfs_delalloc_work *work; 9936 9937 work = kmalloc(sizeof(*work), GFP_NOFS); 9938 if (!work) 9939 return NULL; 9940 9941 init_completion(&work->completion); 9942 INIT_LIST_HEAD(&work->list); 9943 work->inode = inode; 9944 work->delay_iput = delay_iput; 9945 WARN_ON_ONCE(!inode); 9946 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9947 btrfs_run_delalloc_work, NULL, NULL); 9948 9949 return work; 9950 } 9951 9952 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9953 { 9954 wait_for_completion(&work->completion); 9955 kfree(work); 9956 } 9957 9958 /* 9959 * some fairly slow code that needs optimization. This walks the list 9960 * of all the inodes with pending delalloc and forces them to disk. 9961 */ 9962 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9963 int nr) 9964 { 9965 struct btrfs_inode *binode; 9966 struct inode *inode; 9967 struct btrfs_delalloc_work *work, *next; 9968 struct list_head works; 9969 struct list_head splice; 9970 int ret = 0; 9971 9972 INIT_LIST_HEAD(&works); 9973 INIT_LIST_HEAD(&splice); 9974 9975 mutex_lock(&root->delalloc_mutex); 9976 spin_lock(&root->delalloc_lock); 9977 list_splice_init(&root->delalloc_inodes, &splice); 9978 while (!list_empty(&splice)) { 9979 binode = list_entry(splice.next, struct btrfs_inode, 9980 delalloc_inodes); 9981 9982 list_move_tail(&binode->delalloc_inodes, 9983 &root->delalloc_inodes); 9984 inode = igrab(&binode->vfs_inode); 9985 if (!inode) { 9986 cond_resched_lock(&root->delalloc_lock); 9987 continue; 9988 } 9989 spin_unlock(&root->delalloc_lock); 9990 9991 work = btrfs_alloc_delalloc_work(inode, delay_iput); 9992 if (!work) { 9993 if (delay_iput) 9994 btrfs_add_delayed_iput(inode); 9995 else 9996 iput(inode); 9997 ret = -ENOMEM; 9998 goto out; 9999 } 10000 list_add_tail(&work->list, &works); 10001 btrfs_queue_work(root->fs_info->flush_workers, 10002 &work->work); 10003 ret++; 10004 if (nr != -1 && ret >= nr) 10005 goto out; 10006 cond_resched(); 10007 spin_lock(&root->delalloc_lock); 10008 } 10009 spin_unlock(&root->delalloc_lock); 10010 10011 out: 10012 list_for_each_entry_safe(work, next, &works, list) { 10013 list_del_init(&work->list); 10014 btrfs_wait_and_free_delalloc_work(work); 10015 } 10016 10017 if (!list_empty_careful(&splice)) { 10018 spin_lock(&root->delalloc_lock); 10019 list_splice_tail(&splice, &root->delalloc_inodes); 10020 spin_unlock(&root->delalloc_lock); 10021 } 10022 mutex_unlock(&root->delalloc_mutex); 10023 return ret; 10024 } 10025 10026 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10027 { 10028 int ret; 10029 10030 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10031 return -EROFS; 10032 10033 ret = __start_delalloc_inodes(root, delay_iput, -1); 10034 if (ret > 0) 10035 ret = 0; 10036 /* 10037 * the filemap_flush will queue IO into the worker threads, but 10038 * we have to make sure the IO is actually started and that 10039 * ordered extents get created before we return 10040 */ 10041 atomic_inc(&root->fs_info->async_submit_draining); 10042 while (atomic_read(&root->fs_info->nr_async_submits) || 10043 atomic_read(&root->fs_info->async_delalloc_pages)) { 10044 wait_event(root->fs_info->async_submit_wait, 10045 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10046 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10047 } 10048 atomic_dec(&root->fs_info->async_submit_draining); 10049 return ret; 10050 } 10051 10052 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10053 int nr) 10054 { 10055 struct btrfs_root *root; 10056 struct list_head splice; 10057 int ret; 10058 10059 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10060 return -EROFS; 10061 10062 INIT_LIST_HEAD(&splice); 10063 10064 mutex_lock(&fs_info->delalloc_root_mutex); 10065 spin_lock(&fs_info->delalloc_root_lock); 10066 list_splice_init(&fs_info->delalloc_roots, &splice); 10067 while (!list_empty(&splice) && nr) { 10068 root = list_first_entry(&splice, struct btrfs_root, 10069 delalloc_root); 10070 root = btrfs_grab_fs_root(root); 10071 BUG_ON(!root); 10072 list_move_tail(&root->delalloc_root, 10073 &fs_info->delalloc_roots); 10074 spin_unlock(&fs_info->delalloc_root_lock); 10075 10076 ret = __start_delalloc_inodes(root, delay_iput, nr); 10077 btrfs_put_fs_root(root); 10078 if (ret < 0) 10079 goto out; 10080 10081 if (nr != -1) { 10082 nr -= ret; 10083 WARN_ON(nr < 0); 10084 } 10085 spin_lock(&fs_info->delalloc_root_lock); 10086 } 10087 spin_unlock(&fs_info->delalloc_root_lock); 10088 10089 ret = 0; 10090 atomic_inc(&fs_info->async_submit_draining); 10091 while (atomic_read(&fs_info->nr_async_submits) || 10092 atomic_read(&fs_info->async_delalloc_pages)) { 10093 wait_event(fs_info->async_submit_wait, 10094 (atomic_read(&fs_info->nr_async_submits) == 0 && 10095 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10096 } 10097 atomic_dec(&fs_info->async_submit_draining); 10098 out: 10099 if (!list_empty_careful(&splice)) { 10100 spin_lock(&fs_info->delalloc_root_lock); 10101 list_splice_tail(&splice, &fs_info->delalloc_roots); 10102 spin_unlock(&fs_info->delalloc_root_lock); 10103 } 10104 mutex_unlock(&fs_info->delalloc_root_mutex); 10105 return ret; 10106 } 10107 10108 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10109 const char *symname) 10110 { 10111 struct btrfs_trans_handle *trans; 10112 struct btrfs_root *root = BTRFS_I(dir)->root; 10113 struct btrfs_path *path; 10114 struct btrfs_key key; 10115 struct inode *inode = NULL; 10116 int err; 10117 int drop_inode = 0; 10118 u64 objectid; 10119 u64 index = 0; 10120 int name_len; 10121 int datasize; 10122 unsigned long ptr; 10123 struct btrfs_file_extent_item *ei; 10124 struct extent_buffer *leaf; 10125 10126 name_len = strlen(symname); 10127 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10128 return -ENAMETOOLONG; 10129 10130 /* 10131 * 2 items for inode item and ref 10132 * 2 items for dir items 10133 * 1 item for updating parent inode item 10134 * 1 item for the inline extent item 10135 * 1 item for xattr if selinux is on 10136 */ 10137 trans = btrfs_start_transaction(root, 7); 10138 if (IS_ERR(trans)) 10139 return PTR_ERR(trans); 10140 10141 err = btrfs_find_free_ino(root, &objectid); 10142 if (err) 10143 goto out_unlock; 10144 10145 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10146 dentry->d_name.len, btrfs_ino(dir), objectid, 10147 S_IFLNK|S_IRWXUGO, &index); 10148 if (IS_ERR(inode)) { 10149 err = PTR_ERR(inode); 10150 goto out_unlock; 10151 } 10152 10153 /* 10154 * If the active LSM wants to access the inode during 10155 * d_instantiate it needs these. Smack checks to see 10156 * if the filesystem supports xattrs by looking at the 10157 * ops vector. 10158 */ 10159 inode->i_fop = &btrfs_file_operations; 10160 inode->i_op = &btrfs_file_inode_operations; 10161 inode->i_mapping->a_ops = &btrfs_aops; 10162 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10163 10164 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10165 if (err) 10166 goto out_unlock_inode; 10167 10168 path = btrfs_alloc_path(); 10169 if (!path) { 10170 err = -ENOMEM; 10171 goto out_unlock_inode; 10172 } 10173 key.objectid = btrfs_ino(inode); 10174 key.offset = 0; 10175 key.type = BTRFS_EXTENT_DATA_KEY; 10176 datasize = btrfs_file_extent_calc_inline_size(name_len); 10177 err = btrfs_insert_empty_item(trans, root, path, &key, 10178 datasize); 10179 if (err) { 10180 btrfs_free_path(path); 10181 goto out_unlock_inode; 10182 } 10183 leaf = path->nodes[0]; 10184 ei = btrfs_item_ptr(leaf, path->slots[0], 10185 struct btrfs_file_extent_item); 10186 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10187 btrfs_set_file_extent_type(leaf, ei, 10188 BTRFS_FILE_EXTENT_INLINE); 10189 btrfs_set_file_extent_encryption(leaf, ei, 0); 10190 btrfs_set_file_extent_compression(leaf, ei, 0); 10191 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10192 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10193 10194 ptr = btrfs_file_extent_inline_start(ei); 10195 write_extent_buffer(leaf, symname, ptr, name_len); 10196 btrfs_mark_buffer_dirty(leaf); 10197 btrfs_free_path(path); 10198 10199 inode->i_op = &btrfs_symlink_inode_operations; 10200 inode_nohighmem(inode); 10201 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10202 inode_set_bytes(inode, name_len); 10203 btrfs_i_size_write(inode, name_len); 10204 err = btrfs_update_inode(trans, root, inode); 10205 /* 10206 * Last step, add directory indexes for our symlink inode. This is the 10207 * last step to avoid extra cleanup of these indexes if an error happens 10208 * elsewhere above. 10209 */ 10210 if (!err) 10211 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10212 if (err) { 10213 drop_inode = 1; 10214 goto out_unlock_inode; 10215 } 10216 10217 unlock_new_inode(inode); 10218 d_instantiate(dentry, inode); 10219 10220 out_unlock: 10221 btrfs_end_transaction(trans, root); 10222 if (drop_inode) { 10223 inode_dec_link_count(inode); 10224 iput(inode); 10225 } 10226 btrfs_btree_balance_dirty(root); 10227 return err; 10228 10229 out_unlock_inode: 10230 drop_inode = 1; 10231 unlock_new_inode(inode); 10232 goto out_unlock; 10233 } 10234 10235 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10236 u64 start, u64 num_bytes, u64 min_size, 10237 loff_t actual_len, u64 *alloc_hint, 10238 struct btrfs_trans_handle *trans) 10239 { 10240 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10241 struct extent_map *em; 10242 struct btrfs_root *root = BTRFS_I(inode)->root; 10243 struct btrfs_key ins; 10244 u64 cur_offset = start; 10245 u64 i_size; 10246 u64 cur_bytes; 10247 u64 last_alloc = (u64)-1; 10248 int ret = 0; 10249 bool own_trans = true; 10250 10251 if (trans) 10252 own_trans = false; 10253 while (num_bytes > 0) { 10254 if (own_trans) { 10255 trans = btrfs_start_transaction(root, 3); 10256 if (IS_ERR(trans)) { 10257 ret = PTR_ERR(trans); 10258 break; 10259 } 10260 } 10261 10262 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10263 cur_bytes = max(cur_bytes, min_size); 10264 /* 10265 * If we are severely fragmented we could end up with really 10266 * small allocations, so if the allocator is returning small 10267 * chunks lets make its job easier by only searching for those 10268 * sized chunks. 10269 */ 10270 cur_bytes = min(cur_bytes, last_alloc); 10271 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10272 *alloc_hint, &ins, 1, 0); 10273 if (ret) { 10274 if (own_trans) 10275 btrfs_end_transaction(trans, root); 10276 break; 10277 } 10278 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10279 10280 last_alloc = ins.offset; 10281 ret = insert_reserved_file_extent(trans, inode, 10282 cur_offset, ins.objectid, 10283 ins.offset, ins.offset, 10284 ins.offset, 0, 0, 0, 10285 BTRFS_FILE_EXTENT_PREALLOC); 10286 if (ret) { 10287 btrfs_free_reserved_extent(root, ins.objectid, 10288 ins.offset, 0); 10289 btrfs_abort_transaction(trans, root, ret); 10290 if (own_trans) 10291 btrfs_end_transaction(trans, root); 10292 break; 10293 } 10294 10295 btrfs_drop_extent_cache(inode, cur_offset, 10296 cur_offset + ins.offset -1, 0); 10297 10298 em = alloc_extent_map(); 10299 if (!em) { 10300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10301 &BTRFS_I(inode)->runtime_flags); 10302 goto next; 10303 } 10304 10305 em->start = cur_offset; 10306 em->orig_start = cur_offset; 10307 em->len = ins.offset; 10308 em->block_start = ins.objectid; 10309 em->block_len = ins.offset; 10310 em->orig_block_len = ins.offset; 10311 em->ram_bytes = ins.offset; 10312 em->bdev = root->fs_info->fs_devices->latest_bdev; 10313 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10314 em->generation = trans->transid; 10315 10316 while (1) { 10317 write_lock(&em_tree->lock); 10318 ret = add_extent_mapping(em_tree, em, 1); 10319 write_unlock(&em_tree->lock); 10320 if (ret != -EEXIST) 10321 break; 10322 btrfs_drop_extent_cache(inode, cur_offset, 10323 cur_offset + ins.offset - 1, 10324 0); 10325 } 10326 free_extent_map(em); 10327 next: 10328 num_bytes -= ins.offset; 10329 cur_offset += ins.offset; 10330 *alloc_hint = ins.objectid + ins.offset; 10331 10332 inode_inc_iversion(inode); 10333 inode->i_ctime = current_fs_time(inode->i_sb); 10334 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10335 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10336 (actual_len > inode->i_size) && 10337 (cur_offset > inode->i_size)) { 10338 if (cur_offset > actual_len) 10339 i_size = actual_len; 10340 else 10341 i_size = cur_offset; 10342 i_size_write(inode, i_size); 10343 btrfs_ordered_update_i_size(inode, i_size, NULL); 10344 } 10345 10346 ret = btrfs_update_inode(trans, root, inode); 10347 10348 if (ret) { 10349 btrfs_abort_transaction(trans, root, ret); 10350 if (own_trans) 10351 btrfs_end_transaction(trans, root); 10352 break; 10353 } 10354 10355 if (own_trans) 10356 btrfs_end_transaction(trans, root); 10357 } 10358 return ret; 10359 } 10360 10361 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10362 u64 start, u64 num_bytes, u64 min_size, 10363 loff_t actual_len, u64 *alloc_hint) 10364 { 10365 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10366 min_size, actual_len, alloc_hint, 10367 NULL); 10368 } 10369 10370 int btrfs_prealloc_file_range_trans(struct inode *inode, 10371 struct btrfs_trans_handle *trans, int mode, 10372 u64 start, u64 num_bytes, u64 min_size, 10373 loff_t actual_len, u64 *alloc_hint) 10374 { 10375 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10376 min_size, actual_len, alloc_hint, trans); 10377 } 10378 10379 static int btrfs_set_page_dirty(struct page *page) 10380 { 10381 return __set_page_dirty_nobuffers(page); 10382 } 10383 10384 static int btrfs_permission(struct inode *inode, int mask) 10385 { 10386 struct btrfs_root *root = BTRFS_I(inode)->root; 10387 umode_t mode = inode->i_mode; 10388 10389 if (mask & MAY_WRITE && 10390 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10391 if (btrfs_root_readonly(root)) 10392 return -EROFS; 10393 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10394 return -EACCES; 10395 } 10396 return generic_permission(inode, mask); 10397 } 10398 10399 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10400 { 10401 struct btrfs_trans_handle *trans; 10402 struct btrfs_root *root = BTRFS_I(dir)->root; 10403 struct inode *inode = NULL; 10404 u64 objectid; 10405 u64 index; 10406 int ret = 0; 10407 10408 /* 10409 * 5 units required for adding orphan entry 10410 */ 10411 trans = btrfs_start_transaction(root, 5); 10412 if (IS_ERR(trans)) 10413 return PTR_ERR(trans); 10414 10415 ret = btrfs_find_free_ino(root, &objectid); 10416 if (ret) 10417 goto out; 10418 10419 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10420 btrfs_ino(dir), objectid, mode, &index); 10421 if (IS_ERR(inode)) { 10422 ret = PTR_ERR(inode); 10423 inode = NULL; 10424 goto out; 10425 } 10426 10427 inode->i_fop = &btrfs_file_operations; 10428 inode->i_op = &btrfs_file_inode_operations; 10429 10430 inode->i_mapping->a_ops = &btrfs_aops; 10431 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10432 10433 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10434 if (ret) 10435 goto out_inode; 10436 10437 ret = btrfs_update_inode(trans, root, inode); 10438 if (ret) 10439 goto out_inode; 10440 ret = btrfs_orphan_add(trans, inode); 10441 if (ret) 10442 goto out_inode; 10443 10444 /* 10445 * We set number of links to 0 in btrfs_new_inode(), and here we set 10446 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10447 * through: 10448 * 10449 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10450 */ 10451 set_nlink(inode, 1); 10452 unlock_new_inode(inode); 10453 d_tmpfile(dentry, inode); 10454 mark_inode_dirty(inode); 10455 10456 out: 10457 btrfs_end_transaction(trans, root); 10458 if (ret) 10459 iput(inode); 10460 btrfs_balance_delayed_items(root); 10461 btrfs_btree_balance_dirty(root); 10462 return ret; 10463 10464 out_inode: 10465 unlock_new_inode(inode); 10466 goto out; 10467 10468 } 10469 10470 /* Inspired by filemap_check_errors() */ 10471 int btrfs_inode_check_errors(struct inode *inode) 10472 { 10473 int ret = 0; 10474 10475 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10476 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10477 ret = -ENOSPC; 10478 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10479 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10480 ret = -EIO; 10481 10482 return ret; 10483 } 10484 10485 static const struct inode_operations btrfs_dir_inode_operations = { 10486 .getattr = btrfs_getattr, 10487 .lookup = btrfs_lookup, 10488 .create = btrfs_create, 10489 .unlink = btrfs_unlink, 10490 .link = btrfs_link, 10491 .mkdir = btrfs_mkdir, 10492 .rmdir = btrfs_rmdir, 10493 .rename2 = btrfs_rename2, 10494 .symlink = btrfs_symlink, 10495 .setattr = btrfs_setattr, 10496 .mknod = btrfs_mknod, 10497 .setxattr = generic_setxattr, 10498 .getxattr = generic_getxattr, 10499 .listxattr = btrfs_listxattr, 10500 .removexattr = generic_removexattr, 10501 .permission = btrfs_permission, 10502 .get_acl = btrfs_get_acl, 10503 .set_acl = btrfs_set_acl, 10504 .update_time = btrfs_update_time, 10505 .tmpfile = btrfs_tmpfile, 10506 }; 10507 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10508 .lookup = btrfs_lookup, 10509 .permission = btrfs_permission, 10510 .get_acl = btrfs_get_acl, 10511 .set_acl = btrfs_set_acl, 10512 .update_time = btrfs_update_time, 10513 }; 10514 10515 static const struct file_operations btrfs_dir_file_operations = { 10516 .llseek = generic_file_llseek, 10517 .read = generic_read_dir, 10518 .iterate = btrfs_real_readdir, 10519 .unlocked_ioctl = btrfs_ioctl, 10520 #ifdef CONFIG_COMPAT 10521 .compat_ioctl = btrfs_compat_ioctl, 10522 #endif 10523 .release = btrfs_release_file, 10524 .fsync = btrfs_sync_file, 10525 }; 10526 10527 static const struct extent_io_ops btrfs_extent_io_ops = { 10528 .fill_delalloc = run_delalloc_range, 10529 .submit_bio_hook = btrfs_submit_bio_hook, 10530 .merge_bio_hook = btrfs_merge_bio_hook, 10531 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10532 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10533 .writepage_start_hook = btrfs_writepage_start_hook, 10534 .set_bit_hook = btrfs_set_bit_hook, 10535 .clear_bit_hook = btrfs_clear_bit_hook, 10536 .merge_extent_hook = btrfs_merge_extent_hook, 10537 .split_extent_hook = btrfs_split_extent_hook, 10538 }; 10539 10540 /* 10541 * btrfs doesn't support the bmap operation because swapfiles 10542 * use bmap to make a mapping of extents in the file. They assume 10543 * these extents won't change over the life of the file and they 10544 * use the bmap result to do IO directly to the drive. 10545 * 10546 * the btrfs bmap call would return logical addresses that aren't 10547 * suitable for IO and they also will change frequently as COW 10548 * operations happen. So, swapfile + btrfs == corruption. 10549 * 10550 * For now we're avoiding this by dropping bmap. 10551 */ 10552 static const struct address_space_operations btrfs_aops = { 10553 .readpage = btrfs_readpage, 10554 .writepage = btrfs_writepage, 10555 .writepages = btrfs_writepages, 10556 .readpages = btrfs_readpages, 10557 .direct_IO = btrfs_direct_IO, 10558 .invalidatepage = btrfs_invalidatepage, 10559 .releasepage = btrfs_releasepage, 10560 .set_page_dirty = btrfs_set_page_dirty, 10561 .error_remove_page = generic_error_remove_page, 10562 }; 10563 10564 static const struct address_space_operations btrfs_symlink_aops = { 10565 .readpage = btrfs_readpage, 10566 .writepage = btrfs_writepage, 10567 .invalidatepage = btrfs_invalidatepage, 10568 .releasepage = btrfs_releasepage, 10569 }; 10570 10571 static const struct inode_operations btrfs_file_inode_operations = { 10572 .getattr = btrfs_getattr, 10573 .setattr = btrfs_setattr, 10574 .setxattr = generic_setxattr, 10575 .getxattr = generic_getxattr, 10576 .listxattr = btrfs_listxattr, 10577 .removexattr = generic_removexattr, 10578 .permission = btrfs_permission, 10579 .fiemap = btrfs_fiemap, 10580 .get_acl = btrfs_get_acl, 10581 .set_acl = btrfs_set_acl, 10582 .update_time = btrfs_update_time, 10583 }; 10584 static const struct inode_operations btrfs_special_inode_operations = { 10585 .getattr = btrfs_getattr, 10586 .setattr = btrfs_setattr, 10587 .permission = btrfs_permission, 10588 .setxattr = generic_setxattr, 10589 .getxattr = generic_getxattr, 10590 .listxattr = btrfs_listxattr, 10591 .removexattr = generic_removexattr, 10592 .get_acl = btrfs_get_acl, 10593 .set_acl = btrfs_set_acl, 10594 .update_time = btrfs_update_time, 10595 }; 10596 static const struct inode_operations btrfs_symlink_inode_operations = { 10597 .readlink = generic_readlink, 10598 .get_link = page_get_link, 10599 .getattr = btrfs_getattr, 10600 .setattr = btrfs_setattr, 10601 .permission = btrfs_permission, 10602 .setxattr = generic_setxattr, 10603 .getxattr = generic_getxattr, 10604 .listxattr = btrfs_listxattr, 10605 .removexattr = generic_removexattr, 10606 .update_time = btrfs_update_time, 10607 }; 10608 10609 const struct dentry_operations btrfs_dentry_operations = { 10610 .d_delete = btrfs_dentry_delete, 10611 .d_release = btrfs_dentry_release, 10612 }; 10613