1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "ref-cache.h" 52 #include "compression.h" 53 #include "locking.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 95 { 96 int err; 97 98 err = btrfs_init_acl(inode, dir); 99 if (!err) 100 err = btrfs_xattr_security_init(inode, dir); 101 return err; 102 } 103 104 /* 105 * this does all the hard work for inserting an inline extent into 106 * the btree. The caller should have done a btrfs_drop_extents so that 107 * no overlapping inline items exist in the btree 108 */ 109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 110 struct btrfs_root *root, struct inode *inode, 111 u64 start, size_t size, size_t compressed_size, 112 struct page **compressed_pages) 113 { 114 struct btrfs_key key; 115 struct btrfs_path *path; 116 struct extent_buffer *leaf; 117 struct page *page = NULL; 118 char *kaddr; 119 unsigned long ptr; 120 struct btrfs_file_extent_item *ei; 121 int err = 0; 122 int ret; 123 size_t cur_size = size; 124 size_t datasize; 125 unsigned long offset; 126 int use_compress = 0; 127 128 if (compressed_size && compressed_pages) { 129 use_compress = 1; 130 cur_size = compressed_size; 131 } 132 133 path = btrfs_alloc_path(); 134 if (!path) 135 return -ENOMEM; 136 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap(cpage); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap(cpage); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 BTRFS_I(inode)->disk_i_size = inode->i_size; 194 btrfs_update_inode(trans, root, inode); 195 return 0; 196 fail: 197 btrfs_free_path(path); 198 return err; 199 } 200 201 202 /* 203 * conditionally insert an inline extent into the file. This 204 * does the checks required to make sure the data is small enough 205 * to fit as an inline extent. 206 */ 207 static int cow_file_range_inline(struct btrfs_trans_handle *trans, 208 struct btrfs_root *root, 209 struct inode *inode, u64 start, u64 end, 210 size_t compressed_size, 211 struct page **compressed_pages) 212 { 213 u64 isize = i_size_read(inode); 214 u64 actual_end = min(end + 1, isize); 215 u64 inline_len = actual_end - start; 216 u64 aligned_end = (end + root->sectorsize - 1) & 217 ~((u64)root->sectorsize - 1); 218 u64 hint_byte; 219 u64 data_len = inline_len; 220 int ret; 221 222 if (compressed_size) 223 data_len = compressed_size; 224 225 if (start > 0 || 226 actual_end >= PAGE_CACHE_SIZE || 227 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 228 (!compressed_size && 229 (actual_end & (root->sectorsize - 1)) == 0) || 230 end + 1 < isize || 231 data_len > root->fs_info->max_inline) { 232 return 1; 233 } 234 235 ret = btrfs_drop_extents(trans, root, inode, start, 236 aligned_end, start, &hint_byte); 237 BUG_ON(ret); 238 239 if (isize > actual_end) 240 inline_len = min_t(u64, isize, actual_end); 241 ret = insert_inline_extent(trans, root, inode, start, 242 inline_len, compressed_size, 243 compressed_pages); 244 BUG_ON(ret); 245 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 246 return 0; 247 } 248 249 struct async_extent { 250 u64 start; 251 u64 ram_size; 252 u64 compressed_size; 253 struct page **pages; 254 unsigned long nr_pages; 255 struct list_head list; 256 }; 257 258 struct async_cow { 259 struct inode *inode; 260 struct btrfs_root *root; 261 struct page *locked_page; 262 u64 start; 263 u64 end; 264 struct list_head extents; 265 struct btrfs_work work; 266 }; 267 268 static noinline int add_async_extent(struct async_cow *cow, 269 u64 start, u64 ram_size, 270 u64 compressed_size, 271 struct page **pages, 272 unsigned long nr_pages) 273 { 274 struct async_extent *async_extent; 275 276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 277 async_extent->start = start; 278 async_extent->ram_size = ram_size; 279 async_extent->compressed_size = compressed_size; 280 async_extent->pages = pages; 281 async_extent->nr_pages = nr_pages; 282 list_add_tail(&async_extent->list, &cow->extents); 283 return 0; 284 } 285 286 /* 287 * we create compressed extents in two phases. The first 288 * phase compresses a range of pages that have already been 289 * locked (both pages and state bits are locked). 290 * 291 * This is done inside an ordered work queue, and the compression 292 * is spread across many cpus. The actual IO submission is step 293 * two, and the ordered work queue takes care of making sure that 294 * happens in the same order things were put onto the queue by 295 * writepages and friends. 296 * 297 * If this code finds it can't get good compression, it puts an 298 * entry onto the work queue to write the uncompressed bytes. This 299 * makes sure that both compressed inodes and uncompressed inodes 300 * are written in the same order that pdflush sent them down. 301 */ 302 static noinline int compress_file_range(struct inode *inode, 303 struct page *locked_page, 304 u64 start, u64 end, 305 struct async_cow *async_cow, 306 int *num_added) 307 { 308 struct btrfs_root *root = BTRFS_I(inode)->root; 309 struct btrfs_trans_handle *trans; 310 u64 num_bytes; 311 u64 orig_start; 312 u64 disk_num_bytes; 313 u64 blocksize = root->sectorsize; 314 u64 actual_end; 315 u64 isize = i_size_read(inode); 316 int ret = 0; 317 struct page **pages = NULL; 318 unsigned long nr_pages; 319 unsigned long nr_pages_ret = 0; 320 unsigned long total_compressed = 0; 321 unsigned long total_in = 0; 322 unsigned long max_compressed = 128 * 1024; 323 unsigned long max_uncompressed = 128 * 1024; 324 int i; 325 int will_compress; 326 327 orig_start = start; 328 329 actual_end = min_t(u64, isize, end + 1); 330 again: 331 will_compress = 0; 332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 334 335 /* 336 * we don't want to send crud past the end of i_size through 337 * compression, that's just a waste of CPU time. So, if the 338 * end of the file is before the start of our current 339 * requested range of bytes, we bail out to the uncompressed 340 * cleanup code that can deal with all of this. 341 * 342 * It isn't really the fastest way to fix things, but this is a 343 * very uncommon corner. 344 */ 345 if (actual_end <= start) 346 goto cleanup_and_bail_uncompressed; 347 348 total_compressed = actual_end - start; 349 350 /* we want to make sure that amount of ram required to uncompress 351 * an extent is reasonable, so we limit the total size in ram 352 * of a compressed extent to 128k. This is a crucial number 353 * because it also controls how easily we can spread reads across 354 * cpus for decompression. 355 * 356 * We also want to make sure the amount of IO required to do 357 * a random read is reasonably small, so we limit the size of 358 * a compressed extent to 128k. 359 */ 360 total_compressed = min(total_compressed, max_uncompressed); 361 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 362 num_bytes = max(blocksize, num_bytes); 363 disk_num_bytes = num_bytes; 364 total_in = 0; 365 ret = 0; 366 367 /* 368 * we do compression for mount -o compress and when the 369 * inode has not been flagged as nocompress. This flag can 370 * change at any time if we discover bad compression ratios. 371 */ 372 if (!btrfs_test_flag(inode, NOCOMPRESS) && 373 btrfs_test_opt(root, COMPRESS)) { 374 WARN_ON(pages); 375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 376 377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 378 total_compressed, pages, 379 nr_pages, &nr_pages_ret, 380 &total_in, 381 &total_compressed, 382 max_compressed); 383 384 if (!ret) { 385 unsigned long offset = total_compressed & 386 (PAGE_CACHE_SIZE - 1); 387 struct page *page = pages[nr_pages_ret - 1]; 388 char *kaddr; 389 390 /* zero the tail end of the last page, we might be 391 * sending it down to disk 392 */ 393 if (offset) { 394 kaddr = kmap_atomic(page, KM_USER0); 395 memset(kaddr + offset, 0, 396 PAGE_CACHE_SIZE - offset); 397 kunmap_atomic(kaddr, KM_USER0); 398 } 399 will_compress = 1; 400 } 401 } 402 if (start == 0) { 403 trans = btrfs_join_transaction(root, 1); 404 BUG_ON(!trans); 405 btrfs_set_trans_block_group(trans, inode); 406 407 /* lets try to make an inline extent */ 408 if (ret || total_in < (actual_end - start)) { 409 /* we didn't compress the entire range, try 410 * to make an uncompressed inline extent. 411 */ 412 ret = cow_file_range_inline(trans, root, inode, 413 start, end, 0, NULL); 414 } else { 415 /* try making a compressed inline extent */ 416 ret = cow_file_range_inline(trans, root, inode, 417 start, end, 418 total_compressed, pages); 419 } 420 btrfs_end_transaction(trans, root); 421 if (ret == 0) { 422 /* 423 * inline extent creation worked, we don't need 424 * to create any more async work items. Unlock 425 * and free up our temp pages. 426 */ 427 extent_clear_unlock_delalloc(inode, 428 &BTRFS_I(inode)->io_tree, 429 start, end, NULL, 1, 0, 430 0, 1, 1, 1); 431 ret = 0; 432 goto free_pages_out; 433 } 434 } 435 436 if (will_compress) { 437 /* 438 * we aren't doing an inline extent round the compressed size 439 * up to a block size boundary so the allocator does sane 440 * things 441 */ 442 total_compressed = (total_compressed + blocksize - 1) & 443 ~(blocksize - 1); 444 445 /* 446 * one last check to make sure the compression is really a 447 * win, compare the page count read with the blocks on disk 448 */ 449 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 450 ~(PAGE_CACHE_SIZE - 1); 451 if (total_compressed >= total_in) { 452 will_compress = 0; 453 } else { 454 disk_num_bytes = total_compressed; 455 num_bytes = total_in; 456 } 457 } 458 if (!will_compress && pages) { 459 /* 460 * the compression code ran but failed to make things smaller, 461 * free any pages it allocated and our page pointer array 462 */ 463 for (i = 0; i < nr_pages_ret; i++) { 464 WARN_ON(pages[i]->mapping); 465 page_cache_release(pages[i]); 466 } 467 kfree(pages); 468 pages = NULL; 469 total_compressed = 0; 470 nr_pages_ret = 0; 471 472 /* flag the file so we don't compress in the future */ 473 btrfs_set_flag(inode, NOCOMPRESS); 474 } 475 if (will_compress) { 476 *num_added += 1; 477 478 /* the async work queues will take care of doing actual 479 * allocation on disk for these compressed pages, 480 * and will submit them to the elevator. 481 */ 482 add_async_extent(async_cow, start, num_bytes, 483 total_compressed, pages, nr_pages_ret); 484 485 if (start + num_bytes < end && start + num_bytes < actual_end) { 486 start += num_bytes; 487 pages = NULL; 488 cond_resched(); 489 goto again; 490 } 491 } else { 492 cleanup_and_bail_uncompressed: 493 /* 494 * No compression, but we still need to write the pages in 495 * the file we've been given so far. redirty the locked 496 * page if it corresponds to our extent and set things up 497 * for the async work queue to run cow_file_range to do 498 * the normal delalloc dance 499 */ 500 if (page_offset(locked_page) >= start && 501 page_offset(locked_page) <= end) { 502 __set_page_dirty_nobuffers(locked_page); 503 /* unlocked later on in the async handlers */ 504 } 505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 506 *num_added += 1; 507 } 508 509 out: 510 return 0; 511 512 free_pages_out: 513 for (i = 0; i < nr_pages_ret; i++) { 514 WARN_ON(pages[i]->mapping); 515 page_cache_release(pages[i]); 516 } 517 kfree(pages); 518 519 goto out; 520 } 521 522 /* 523 * phase two of compressed writeback. This is the ordered portion 524 * of the code, which only gets called in the order the work was 525 * queued. We walk all the async extents created by compress_file_range 526 * and send them down to the disk. 527 */ 528 static noinline int submit_compressed_extents(struct inode *inode, 529 struct async_cow *async_cow) 530 { 531 struct async_extent *async_extent; 532 u64 alloc_hint = 0; 533 struct btrfs_trans_handle *trans; 534 struct btrfs_key ins; 535 struct extent_map *em; 536 struct btrfs_root *root = BTRFS_I(inode)->root; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 struct extent_io_tree *io_tree; 539 int ret; 540 541 if (list_empty(&async_cow->extents)) 542 return 0; 543 544 trans = btrfs_join_transaction(root, 1); 545 546 while (!list_empty(&async_cow->extents)) { 547 async_extent = list_entry(async_cow->extents.next, 548 struct async_extent, list); 549 list_del(&async_extent->list); 550 551 io_tree = &BTRFS_I(inode)->io_tree; 552 553 /* did the compression code fall back to uncompressed IO? */ 554 if (!async_extent->pages) { 555 int page_started = 0; 556 unsigned long nr_written = 0; 557 558 lock_extent(io_tree, async_extent->start, 559 async_extent->start + 560 async_extent->ram_size - 1, GFP_NOFS); 561 562 /* allocate blocks */ 563 cow_file_range(inode, async_cow->locked_page, 564 async_extent->start, 565 async_extent->start + 566 async_extent->ram_size - 1, 567 &page_started, &nr_written, 0); 568 569 /* 570 * if page_started, cow_file_range inserted an 571 * inline extent and took care of all the unlocking 572 * and IO for us. Otherwise, we need to submit 573 * all those pages down to the drive. 574 */ 575 if (!page_started) 576 extent_write_locked_range(io_tree, 577 inode, async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, 580 btrfs_get_extent, 581 WB_SYNC_ALL); 582 kfree(async_extent); 583 cond_resched(); 584 continue; 585 } 586 587 lock_extent(io_tree, async_extent->start, 588 async_extent->start + async_extent->ram_size - 1, 589 GFP_NOFS); 590 /* 591 * here we're doing allocation and writeback of the 592 * compressed pages 593 */ 594 btrfs_drop_extent_cache(inode, async_extent->start, 595 async_extent->start + 596 async_extent->ram_size - 1, 0); 597 598 ret = btrfs_reserve_extent(trans, root, 599 async_extent->compressed_size, 600 async_extent->compressed_size, 601 0, alloc_hint, 602 (u64)-1, &ins, 1); 603 BUG_ON(ret); 604 em = alloc_extent_map(GFP_NOFS); 605 em->start = async_extent->start; 606 em->len = async_extent->ram_size; 607 em->orig_start = em->start; 608 609 em->block_start = ins.objectid; 610 em->block_len = ins.offset; 611 em->bdev = root->fs_info->fs_devices->latest_bdev; 612 set_bit(EXTENT_FLAG_PINNED, &em->flags); 613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 614 615 while (1) { 616 spin_lock(&em_tree->lock); 617 ret = add_extent_mapping(em_tree, em); 618 spin_unlock(&em_tree->lock); 619 if (ret != -EEXIST) { 620 free_extent_map(em); 621 break; 622 } 623 btrfs_drop_extent_cache(inode, async_extent->start, 624 async_extent->start + 625 async_extent->ram_size - 1, 0); 626 } 627 628 ret = btrfs_add_ordered_extent(inode, async_extent->start, 629 ins.objectid, 630 async_extent->ram_size, 631 ins.offset, 632 BTRFS_ORDERED_COMPRESSED); 633 BUG_ON(ret); 634 635 btrfs_end_transaction(trans, root); 636 637 /* 638 * clear dirty, set writeback and unlock the pages. 639 */ 640 extent_clear_unlock_delalloc(inode, 641 &BTRFS_I(inode)->io_tree, 642 async_extent->start, 643 async_extent->start + 644 async_extent->ram_size - 1, 645 NULL, 1, 1, 0, 1, 1, 0); 646 647 ret = btrfs_submit_compressed_write(inode, 648 async_extent->start, 649 async_extent->ram_size, 650 ins.objectid, 651 ins.offset, async_extent->pages, 652 async_extent->nr_pages); 653 654 BUG_ON(ret); 655 trans = btrfs_join_transaction(root, 1); 656 alloc_hint = ins.objectid + ins.offset; 657 kfree(async_extent); 658 cond_resched(); 659 } 660 661 btrfs_end_transaction(trans, root); 662 return 0; 663 } 664 665 /* 666 * when extent_io.c finds a delayed allocation range in the file, 667 * the call backs end up in this code. The basic idea is to 668 * allocate extents on disk for the range, and create ordered data structs 669 * in ram to track those extents. 670 * 671 * locked_page is the page that writepage had locked already. We use 672 * it to make sure we don't do extra locks or unlocks. 673 * 674 * *page_started is set to one if we unlock locked_page and do everything 675 * required to start IO on it. It may be clean and already done with 676 * IO when we return. 677 */ 678 static noinline int cow_file_range(struct inode *inode, 679 struct page *locked_page, 680 u64 start, u64 end, int *page_started, 681 unsigned long *nr_written, 682 int unlock) 683 { 684 struct btrfs_root *root = BTRFS_I(inode)->root; 685 struct btrfs_trans_handle *trans; 686 u64 alloc_hint = 0; 687 u64 num_bytes; 688 unsigned long ram_size; 689 u64 disk_num_bytes; 690 u64 cur_alloc_size; 691 u64 blocksize = root->sectorsize; 692 u64 actual_end; 693 u64 isize = i_size_read(inode); 694 struct btrfs_key ins; 695 struct extent_map *em; 696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 697 int ret = 0; 698 699 trans = btrfs_join_transaction(root, 1); 700 BUG_ON(!trans); 701 btrfs_set_trans_block_group(trans, inode); 702 703 actual_end = min_t(u64, isize, end + 1); 704 705 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 706 num_bytes = max(blocksize, num_bytes); 707 disk_num_bytes = num_bytes; 708 ret = 0; 709 710 if (start == 0) { 711 /* lets try to make an inline extent */ 712 ret = cow_file_range_inline(trans, root, inode, 713 start, end, 0, NULL); 714 if (ret == 0) { 715 extent_clear_unlock_delalloc(inode, 716 &BTRFS_I(inode)->io_tree, 717 start, end, NULL, 1, 1, 718 1, 1, 1, 1); 719 *nr_written = *nr_written + 720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 721 *page_started = 1; 722 ret = 0; 723 goto out; 724 } 725 } 726 727 BUG_ON(disk_num_bytes > 728 btrfs_super_total_bytes(&root->fs_info->super_copy)); 729 730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 731 732 while (disk_num_bytes > 0) { 733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 735 root->sectorsize, 0, alloc_hint, 736 (u64)-1, &ins, 1); 737 BUG_ON(ret); 738 739 em = alloc_extent_map(GFP_NOFS); 740 em->start = start; 741 em->orig_start = em->start; 742 743 ram_size = ins.offset; 744 em->len = ins.offset; 745 746 em->block_start = ins.objectid; 747 em->block_len = ins.offset; 748 em->bdev = root->fs_info->fs_devices->latest_bdev; 749 set_bit(EXTENT_FLAG_PINNED, &em->flags); 750 751 while (1) { 752 spin_lock(&em_tree->lock); 753 ret = add_extent_mapping(em_tree, em); 754 spin_unlock(&em_tree->lock); 755 if (ret != -EEXIST) { 756 free_extent_map(em); 757 break; 758 } 759 btrfs_drop_extent_cache(inode, start, 760 start + ram_size - 1, 0); 761 } 762 763 cur_alloc_size = ins.offset; 764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 765 ram_size, cur_alloc_size, 0); 766 BUG_ON(ret); 767 768 if (root->root_key.objectid == 769 BTRFS_DATA_RELOC_TREE_OBJECTID) { 770 ret = btrfs_reloc_clone_csums(inode, start, 771 cur_alloc_size); 772 BUG_ON(ret); 773 } 774 775 if (disk_num_bytes < cur_alloc_size) 776 break; 777 778 /* we're not doing compressed IO, don't unlock the first 779 * page (which the caller expects to stay locked), don't 780 * clear any dirty bits and don't set any writeback bits 781 */ 782 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 783 start, start + ram_size - 1, 784 locked_page, unlock, 1, 785 1, 0, 0, 0); 786 disk_num_bytes -= cur_alloc_size; 787 num_bytes -= cur_alloc_size; 788 alloc_hint = ins.objectid + ins.offset; 789 start += cur_alloc_size; 790 } 791 out: 792 ret = 0; 793 btrfs_end_transaction(trans, root); 794 795 return ret; 796 } 797 798 /* 799 * work queue call back to started compression on a file and pages 800 */ 801 static noinline void async_cow_start(struct btrfs_work *work) 802 { 803 struct async_cow *async_cow; 804 int num_added = 0; 805 async_cow = container_of(work, struct async_cow, work); 806 807 compress_file_range(async_cow->inode, async_cow->locked_page, 808 async_cow->start, async_cow->end, async_cow, 809 &num_added); 810 if (num_added == 0) 811 async_cow->inode = NULL; 812 } 813 814 /* 815 * work queue call back to submit previously compressed pages 816 */ 817 static noinline void async_cow_submit(struct btrfs_work *work) 818 { 819 struct async_cow *async_cow; 820 struct btrfs_root *root; 821 unsigned long nr_pages; 822 823 async_cow = container_of(work, struct async_cow, work); 824 825 root = async_cow->root; 826 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 827 PAGE_CACHE_SHIFT; 828 829 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 830 831 if (atomic_read(&root->fs_info->async_delalloc_pages) < 832 5 * 1042 * 1024 && 833 waitqueue_active(&root->fs_info->async_submit_wait)) 834 wake_up(&root->fs_info->async_submit_wait); 835 836 if (async_cow->inode) 837 submit_compressed_extents(async_cow->inode, async_cow); 838 } 839 840 static noinline void async_cow_free(struct btrfs_work *work) 841 { 842 struct async_cow *async_cow; 843 async_cow = container_of(work, struct async_cow, work); 844 kfree(async_cow); 845 } 846 847 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 848 u64 start, u64 end, int *page_started, 849 unsigned long *nr_written) 850 { 851 struct async_cow *async_cow; 852 struct btrfs_root *root = BTRFS_I(inode)->root; 853 unsigned long nr_pages; 854 u64 cur_end; 855 int limit = 10 * 1024 * 1042; 856 857 if (!btrfs_test_opt(root, COMPRESS)) { 858 return cow_file_range(inode, locked_page, start, end, 859 page_started, nr_written, 1); 860 } 861 862 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 863 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 864 while (start < end) { 865 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 866 async_cow->inode = inode; 867 async_cow->root = root; 868 async_cow->locked_page = locked_page; 869 async_cow->start = start; 870 871 if (btrfs_test_flag(inode, NOCOMPRESS)) 872 cur_end = end; 873 else 874 cur_end = min(end, start + 512 * 1024 - 1); 875 876 async_cow->end = cur_end; 877 INIT_LIST_HEAD(&async_cow->extents); 878 879 async_cow->work.func = async_cow_start; 880 async_cow->work.ordered_func = async_cow_submit; 881 async_cow->work.ordered_free = async_cow_free; 882 async_cow->work.flags = 0; 883 884 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 885 PAGE_CACHE_SHIFT; 886 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 887 888 btrfs_queue_worker(&root->fs_info->delalloc_workers, 889 &async_cow->work); 890 891 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 892 wait_event(root->fs_info->async_submit_wait, 893 (atomic_read(&root->fs_info->async_delalloc_pages) < 894 limit)); 895 } 896 897 while (atomic_read(&root->fs_info->async_submit_draining) && 898 atomic_read(&root->fs_info->async_delalloc_pages)) { 899 wait_event(root->fs_info->async_submit_wait, 900 (atomic_read(&root->fs_info->async_delalloc_pages) == 901 0)); 902 } 903 904 *nr_written += nr_pages; 905 start = cur_end + 1; 906 } 907 *page_started = 1; 908 return 0; 909 } 910 911 static noinline int csum_exist_in_range(struct btrfs_root *root, 912 u64 bytenr, u64 num_bytes) 913 { 914 int ret; 915 struct btrfs_ordered_sum *sums; 916 LIST_HEAD(list); 917 918 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 919 bytenr + num_bytes - 1, &list); 920 if (ret == 0 && list_empty(&list)) 921 return 0; 922 923 while (!list_empty(&list)) { 924 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 925 list_del(&sums->list); 926 kfree(sums); 927 } 928 return 1; 929 } 930 931 /* 932 * when nowcow writeback call back. This checks for snapshots or COW copies 933 * of the extents that exist in the file, and COWs the file as required. 934 * 935 * If no cow copies or snapshots exist, we write directly to the existing 936 * blocks on disk 937 */ 938 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, 939 u64 start, u64 end, int *page_started, int force, 940 unsigned long *nr_written) 941 { 942 struct btrfs_root *root = BTRFS_I(inode)->root; 943 struct btrfs_trans_handle *trans; 944 struct extent_buffer *leaf; 945 struct btrfs_path *path; 946 struct btrfs_file_extent_item *fi; 947 struct btrfs_key found_key; 948 u64 cow_start; 949 u64 cur_offset; 950 u64 extent_end; 951 u64 disk_bytenr; 952 u64 num_bytes; 953 int extent_type; 954 int ret; 955 int type; 956 int nocow; 957 int check_prev = 1; 958 959 path = btrfs_alloc_path(); 960 BUG_ON(!path); 961 trans = btrfs_join_transaction(root, 1); 962 BUG_ON(!trans); 963 964 cow_start = (u64)-1; 965 cur_offset = start; 966 while (1) { 967 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 968 cur_offset, 0); 969 BUG_ON(ret < 0); 970 if (ret > 0 && path->slots[0] > 0 && check_prev) { 971 leaf = path->nodes[0]; 972 btrfs_item_key_to_cpu(leaf, &found_key, 973 path->slots[0] - 1); 974 if (found_key.objectid == inode->i_ino && 975 found_key.type == BTRFS_EXTENT_DATA_KEY) 976 path->slots[0]--; 977 } 978 check_prev = 0; 979 next_slot: 980 leaf = path->nodes[0]; 981 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 982 ret = btrfs_next_leaf(root, path); 983 if (ret < 0) 984 BUG_ON(1); 985 if (ret > 0) 986 break; 987 leaf = path->nodes[0]; 988 } 989 990 nocow = 0; 991 disk_bytenr = 0; 992 num_bytes = 0; 993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 994 995 if (found_key.objectid > inode->i_ino || 996 found_key.type > BTRFS_EXTENT_DATA_KEY || 997 found_key.offset > end) 998 break; 999 1000 if (found_key.offset > cur_offset) { 1001 extent_end = found_key.offset; 1002 goto out_check; 1003 } 1004 1005 fi = btrfs_item_ptr(leaf, path->slots[0], 1006 struct btrfs_file_extent_item); 1007 extent_type = btrfs_file_extent_type(leaf, fi); 1008 1009 if (extent_type == BTRFS_FILE_EXTENT_REG || 1010 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1011 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1012 extent_end = found_key.offset + 1013 btrfs_file_extent_num_bytes(leaf, fi); 1014 if (extent_end <= start) { 1015 path->slots[0]++; 1016 goto next_slot; 1017 } 1018 if (disk_bytenr == 0) 1019 goto out_check; 1020 if (btrfs_file_extent_compression(leaf, fi) || 1021 btrfs_file_extent_encryption(leaf, fi) || 1022 btrfs_file_extent_other_encoding(leaf, fi)) 1023 goto out_check; 1024 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1025 goto out_check; 1026 if (btrfs_extent_readonly(root, disk_bytenr)) 1027 goto out_check; 1028 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1029 disk_bytenr)) 1030 goto out_check; 1031 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1032 disk_bytenr += cur_offset - found_key.offset; 1033 num_bytes = min(end + 1, extent_end) - cur_offset; 1034 /* 1035 * force cow if csum exists in the range. 1036 * this ensure that csum for a given extent are 1037 * either valid or do not exist. 1038 */ 1039 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1040 goto out_check; 1041 nocow = 1; 1042 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1043 extent_end = found_key.offset + 1044 btrfs_file_extent_inline_len(leaf, fi); 1045 extent_end = ALIGN(extent_end, root->sectorsize); 1046 } else { 1047 BUG_ON(1); 1048 } 1049 out_check: 1050 if (extent_end <= start) { 1051 path->slots[0]++; 1052 goto next_slot; 1053 } 1054 if (!nocow) { 1055 if (cow_start == (u64)-1) 1056 cow_start = cur_offset; 1057 cur_offset = extent_end; 1058 if (cur_offset > end) 1059 break; 1060 path->slots[0]++; 1061 goto next_slot; 1062 } 1063 1064 btrfs_release_path(root, path); 1065 if (cow_start != (u64)-1) { 1066 ret = cow_file_range(inode, locked_page, cow_start, 1067 found_key.offset - 1, page_started, 1068 nr_written, 1); 1069 BUG_ON(ret); 1070 cow_start = (u64)-1; 1071 } 1072 1073 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1074 struct extent_map *em; 1075 struct extent_map_tree *em_tree; 1076 em_tree = &BTRFS_I(inode)->extent_tree; 1077 em = alloc_extent_map(GFP_NOFS); 1078 em->start = cur_offset; 1079 em->orig_start = em->start; 1080 em->len = num_bytes; 1081 em->block_len = num_bytes; 1082 em->block_start = disk_bytenr; 1083 em->bdev = root->fs_info->fs_devices->latest_bdev; 1084 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1085 while (1) { 1086 spin_lock(&em_tree->lock); 1087 ret = add_extent_mapping(em_tree, em); 1088 spin_unlock(&em_tree->lock); 1089 if (ret != -EEXIST) { 1090 free_extent_map(em); 1091 break; 1092 } 1093 btrfs_drop_extent_cache(inode, em->start, 1094 em->start + em->len - 1, 0); 1095 } 1096 type = BTRFS_ORDERED_PREALLOC; 1097 } else { 1098 type = BTRFS_ORDERED_NOCOW; 1099 } 1100 1101 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1102 num_bytes, num_bytes, type); 1103 BUG_ON(ret); 1104 1105 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1106 cur_offset, cur_offset + num_bytes - 1, 1107 locked_page, 1, 1, 1, 0, 0, 0); 1108 cur_offset = extent_end; 1109 if (cur_offset > end) 1110 break; 1111 } 1112 btrfs_release_path(root, path); 1113 1114 if (cur_offset <= end && cow_start == (u64)-1) 1115 cow_start = cur_offset; 1116 if (cow_start != (u64)-1) { 1117 ret = cow_file_range(inode, locked_page, cow_start, end, 1118 page_started, nr_written, 1); 1119 BUG_ON(ret); 1120 } 1121 1122 ret = btrfs_end_transaction(trans, root); 1123 BUG_ON(ret); 1124 btrfs_free_path(path); 1125 return 0; 1126 } 1127 1128 /* 1129 * extent_io.c call back to do delayed allocation processing 1130 */ 1131 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1132 u64 start, u64 end, int *page_started, 1133 unsigned long *nr_written) 1134 { 1135 int ret; 1136 1137 if (btrfs_test_flag(inode, NODATACOW)) 1138 ret = run_delalloc_nocow(inode, locked_page, start, end, 1139 page_started, 1, nr_written); 1140 else if (btrfs_test_flag(inode, PREALLOC)) 1141 ret = run_delalloc_nocow(inode, locked_page, start, end, 1142 page_started, 0, nr_written); 1143 else 1144 ret = cow_file_range_async(inode, locked_page, start, end, 1145 page_started, nr_written); 1146 1147 return ret; 1148 } 1149 1150 /* 1151 * extent_io.c set_bit_hook, used to track delayed allocation 1152 * bytes in this file, and to maintain the list of inodes that 1153 * have pending delalloc work to be done. 1154 */ 1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1156 unsigned long old, unsigned long bits) 1157 { 1158 /* 1159 * set_bit and clear bit hooks normally require _irqsave/restore 1160 * but in this case, we are only testeing for the DELALLOC 1161 * bit, which is only set or cleared with irqs on 1162 */ 1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1164 struct btrfs_root *root = BTRFS_I(inode)->root; 1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1166 spin_lock(&root->fs_info->delalloc_lock); 1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1168 root->fs_info->delalloc_bytes += end - start + 1; 1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1171 &root->fs_info->delalloc_inodes); 1172 } 1173 spin_unlock(&root->fs_info->delalloc_lock); 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * extent_io.c clear_bit_hook, see set_bit_hook for why 1180 */ 1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1182 unsigned long old, unsigned long bits) 1183 { 1184 /* 1185 * set_bit and clear bit hooks normally require _irqsave/restore 1186 * but in this case, we are only testeing for the DELALLOC 1187 * bit, which is only set or cleared with irqs on 1188 */ 1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1190 struct btrfs_root *root = BTRFS_I(inode)->root; 1191 1192 spin_lock(&root->fs_info->delalloc_lock); 1193 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1194 printk(KERN_INFO "btrfs warning: delalloc account " 1195 "%llu %llu\n", 1196 (unsigned long long)end - start + 1, 1197 (unsigned long long) 1198 root->fs_info->delalloc_bytes); 1199 btrfs_delalloc_free_space(root, inode, (u64)-1); 1200 root->fs_info->delalloc_bytes = 0; 1201 BTRFS_I(inode)->delalloc_bytes = 0; 1202 } else { 1203 btrfs_delalloc_free_space(root, inode, 1204 end - start + 1); 1205 root->fs_info->delalloc_bytes -= end - start + 1; 1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1207 } 1208 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1211 } 1212 spin_unlock(&root->fs_info->delalloc_lock); 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1219 * we don't create bios that span stripes or chunks 1220 */ 1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1222 size_t size, struct bio *bio, 1223 unsigned long bio_flags) 1224 { 1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1226 struct btrfs_mapping_tree *map_tree; 1227 u64 logical = (u64)bio->bi_sector << 9; 1228 u64 length = 0; 1229 u64 map_length; 1230 int ret; 1231 1232 if (bio_flags & EXTENT_BIO_COMPRESSED) 1233 return 0; 1234 1235 length = bio->bi_size; 1236 map_tree = &root->fs_info->mapping_tree; 1237 map_length = length; 1238 ret = btrfs_map_block(map_tree, READ, logical, 1239 &map_length, NULL, 0); 1240 1241 if (map_length < length + size) 1242 return 1; 1243 return 0; 1244 } 1245 1246 /* 1247 * in order to insert checksums into the metadata in large chunks, 1248 * we wait until bio submission time. All the pages in the bio are 1249 * checksummed and sums are attached onto the ordered extent record. 1250 * 1251 * At IO completion time the cums attached on the ordered extent record 1252 * are inserted into the btree 1253 */ 1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1255 struct bio *bio, int mirror_num, 1256 unsigned long bio_flags) 1257 { 1258 struct btrfs_root *root = BTRFS_I(inode)->root; 1259 int ret = 0; 1260 1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1262 BUG_ON(ret); 1263 return 0; 1264 } 1265 1266 /* 1267 * in order to insert checksums into the metadata in large chunks, 1268 * we wait until bio submission time. All the pages in the bio are 1269 * checksummed and sums are attached onto the ordered extent record. 1270 * 1271 * At IO completion time the cums attached on the ordered extent record 1272 * are inserted into the btree 1273 */ 1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1275 int mirror_num, unsigned long bio_flags) 1276 { 1277 struct btrfs_root *root = BTRFS_I(inode)->root; 1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1279 } 1280 1281 /* 1282 * extent_io.c submission hook. This does the right thing for csum calculation 1283 * on write, or reading the csums from the tree before a read 1284 */ 1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1286 int mirror_num, unsigned long bio_flags) 1287 { 1288 struct btrfs_root *root = BTRFS_I(inode)->root; 1289 int ret = 0; 1290 int skip_sum; 1291 1292 skip_sum = btrfs_test_flag(inode, NODATASUM); 1293 1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1295 BUG_ON(ret); 1296 1297 if (!(rw & (1 << BIO_RW))) { 1298 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1299 return btrfs_submit_compressed_read(inode, bio, 1300 mirror_num, bio_flags); 1301 } else if (!skip_sum) 1302 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1303 goto mapit; 1304 } else if (!skip_sum) { 1305 /* csum items have already been cloned */ 1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1307 goto mapit; 1308 /* we're doing a write, do the async checksumming */ 1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1310 inode, rw, bio, mirror_num, 1311 bio_flags, __btrfs_submit_bio_start, 1312 __btrfs_submit_bio_done); 1313 } 1314 1315 mapit: 1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1317 } 1318 1319 /* 1320 * given a list of ordered sums record them in the inode. This happens 1321 * at IO completion time based on sums calculated at bio submission time. 1322 */ 1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1324 struct inode *inode, u64 file_offset, 1325 struct list_head *list) 1326 { 1327 struct btrfs_ordered_sum *sum; 1328 1329 btrfs_set_trans_block_group(trans, inode); 1330 1331 list_for_each_entry(sum, list, list) { 1332 btrfs_csum_file_blocks(trans, 1333 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1334 } 1335 return 0; 1336 } 1337 1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1339 { 1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1341 WARN_ON(1); 1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1343 GFP_NOFS); 1344 } 1345 1346 /* see btrfs_writepage_start_hook for details on why this is required */ 1347 struct btrfs_writepage_fixup { 1348 struct page *page; 1349 struct btrfs_work work; 1350 }; 1351 1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1353 { 1354 struct btrfs_writepage_fixup *fixup; 1355 struct btrfs_ordered_extent *ordered; 1356 struct page *page; 1357 struct inode *inode; 1358 u64 page_start; 1359 u64 page_end; 1360 1361 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1362 page = fixup->page; 1363 again: 1364 lock_page(page); 1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1366 ClearPageChecked(page); 1367 goto out_page; 1368 } 1369 1370 inode = page->mapping->host; 1371 page_start = page_offset(page); 1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1373 1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1375 1376 /* already ordered? We're done */ 1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1378 EXTENT_ORDERED, 0)) { 1379 goto out; 1380 } 1381 1382 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1383 if (ordered) { 1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1385 page_end, GFP_NOFS); 1386 unlock_page(page); 1387 btrfs_start_ordered_extent(inode, ordered, 1); 1388 goto again; 1389 } 1390 1391 btrfs_set_extent_delalloc(inode, page_start, page_end); 1392 ClearPageChecked(page); 1393 out: 1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1395 out_page: 1396 unlock_page(page); 1397 page_cache_release(page); 1398 } 1399 1400 /* 1401 * There are a few paths in the higher layers of the kernel that directly 1402 * set the page dirty bit without asking the filesystem if it is a 1403 * good idea. This causes problems because we want to make sure COW 1404 * properly happens and the data=ordered rules are followed. 1405 * 1406 * In our case any range that doesn't have the ORDERED bit set 1407 * hasn't been properly setup for IO. We kick off an async process 1408 * to fix it up. The async helper will wait for ordered extents, set 1409 * the delalloc bit and make it safe to write the page. 1410 */ 1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1412 { 1413 struct inode *inode = page->mapping->host; 1414 struct btrfs_writepage_fixup *fixup; 1415 struct btrfs_root *root = BTRFS_I(inode)->root; 1416 int ret; 1417 1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1419 EXTENT_ORDERED, 0); 1420 if (ret) 1421 return 0; 1422 1423 if (PageChecked(page)) 1424 return -EAGAIN; 1425 1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1427 if (!fixup) 1428 return -EAGAIN; 1429 1430 SetPageChecked(page); 1431 page_cache_get(page); 1432 fixup->work.func = btrfs_writepage_fixup_worker; 1433 fixup->page = page; 1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1435 return -EAGAIN; 1436 } 1437 1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1439 struct inode *inode, u64 file_pos, 1440 u64 disk_bytenr, u64 disk_num_bytes, 1441 u64 num_bytes, u64 ram_bytes, 1442 u8 compression, u8 encryption, 1443 u16 other_encoding, int extent_type) 1444 { 1445 struct btrfs_root *root = BTRFS_I(inode)->root; 1446 struct btrfs_file_extent_item *fi; 1447 struct btrfs_path *path; 1448 struct extent_buffer *leaf; 1449 struct btrfs_key ins; 1450 u64 hint; 1451 int ret; 1452 1453 path = btrfs_alloc_path(); 1454 BUG_ON(!path); 1455 1456 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1457 file_pos + num_bytes, file_pos, &hint); 1458 BUG_ON(ret); 1459 1460 ins.objectid = inode->i_ino; 1461 ins.offset = file_pos; 1462 ins.type = BTRFS_EXTENT_DATA_KEY; 1463 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1464 BUG_ON(ret); 1465 leaf = path->nodes[0]; 1466 fi = btrfs_item_ptr(leaf, path->slots[0], 1467 struct btrfs_file_extent_item); 1468 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1469 btrfs_set_file_extent_type(leaf, fi, extent_type); 1470 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1471 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1472 btrfs_set_file_extent_offset(leaf, fi, 0); 1473 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1474 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1475 btrfs_set_file_extent_compression(leaf, fi, compression); 1476 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1477 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1478 btrfs_mark_buffer_dirty(leaf); 1479 1480 inode_add_bytes(inode, num_bytes); 1481 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1482 1483 ins.objectid = disk_bytenr; 1484 ins.offset = disk_num_bytes; 1485 ins.type = BTRFS_EXTENT_ITEM_KEY; 1486 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1487 root->root_key.objectid, 1488 trans->transid, inode->i_ino, &ins); 1489 BUG_ON(ret); 1490 1491 btrfs_free_path(path); 1492 return 0; 1493 } 1494 1495 /* as ordered data IO finishes, this gets called so we can finish 1496 * an ordered extent if the range of bytes in the file it covers are 1497 * fully written. 1498 */ 1499 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1500 { 1501 struct btrfs_root *root = BTRFS_I(inode)->root; 1502 struct btrfs_trans_handle *trans; 1503 struct btrfs_ordered_extent *ordered_extent; 1504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1505 int compressed = 0; 1506 int ret; 1507 1508 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1509 if (!ret) 1510 return 0; 1511 1512 trans = btrfs_join_transaction(root, 1); 1513 1514 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1515 BUG_ON(!ordered_extent); 1516 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1517 goto nocow; 1518 1519 lock_extent(io_tree, ordered_extent->file_offset, 1520 ordered_extent->file_offset + ordered_extent->len - 1, 1521 GFP_NOFS); 1522 1523 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1524 compressed = 1; 1525 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1526 BUG_ON(compressed); 1527 ret = btrfs_mark_extent_written(trans, root, inode, 1528 ordered_extent->file_offset, 1529 ordered_extent->file_offset + 1530 ordered_extent->len); 1531 BUG_ON(ret); 1532 } else { 1533 ret = insert_reserved_file_extent(trans, inode, 1534 ordered_extent->file_offset, 1535 ordered_extent->start, 1536 ordered_extent->disk_len, 1537 ordered_extent->len, 1538 ordered_extent->len, 1539 compressed, 0, 0, 1540 BTRFS_FILE_EXTENT_REG); 1541 BUG_ON(ret); 1542 } 1543 unlock_extent(io_tree, ordered_extent->file_offset, 1544 ordered_extent->file_offset + ordered_extent->len - 1, 1545 GFP_NOFS); 1546 nocow: 1547 add_pending_csums(trans, inode, ordered_extent->file_offset, 1548 &ordered_extent->list); 1549 1550 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1551 btrfs_ordered_update_i_size(inode, ordered_extent); 1552 btrfs_update_inode(trans, root, inode); 1553 btrfs_remove_ordered_extent(inode, ordered_extent); 1554 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1555 1556 /* once for us */ 1557 btrfs_put_ordered_extent(ordered_extent); 1558 /* once for the tree */ 1559 btrfs_put_ordered_extent(ordered_extent); 1560 1561 btrfs_end_transaction(trans, root); 1562 return 0; 1563 } 1564 1565 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1566 struct extent_state *state, int uptodate) 1567 { 1568 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1569 } 1570 1571 /* 1572 * When IO fails, either with EIO or csum verification fails, we 1573 * try other mirrors that might have a good copy of the data. This 1574 * io_failure_record is used to record state as we go through all the 1575 * mirrors. If another mirror has good data, the page is set up to date 1576 * and things continue. If a good mirror can't be found, the original 1577 * bio end_io callback is called to indicate things have failed. 1578 */ 1579 struct io_failure_record { 1580 struct page *page; 1581 u64 start; 1582 u64 len; 1583 u64 logical; 1584 unsigned long bio_flags; 1585 int last_mirror; 1586 }; 1587 1588 static int btrfs_io_failed_hook(struct bio *failed_bio, 1589 struct page *page, u64 start, u64 end, 1590 struct extent_state *state) 1591 { 1592 struct io_failure_record *failrec = NULL; 1593 u64 private; 1594 struct extent_map *em; 1595 struct inode *inode = page->mapping->host; 1596 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1598 struct bio *bio; 1599 int num_copies; 1600 int ret; 1601 int rw; 1602 u64 logical; 1603 1604 ret = get_state_private(failure_tree, start, &private); 1605 if (ret) { 1606 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1607 if (!failrec) 1608 return -ENOMEM; 1609 failrec->start = start; 1610 failrec->len = end - start + 1; 1611 failrec->last_mirror = 0; 1612 failrec->bio_flags = 0; 1613 1614 spin_lock(&em_tree->lock); 1615 em = lookup_extent_mapping(em_tree, start, failrec->len); 1616 if (em->start > start || em->start + em->len < start) { 1617 free_extent_map(em); 1618 em = NULL; 1619 } 1620 spin_unlock(&em_tree->lock); 1621 1622 if (!em || IS_ERR(em)) { 1623 kfree(failrec); 1624 return -EIO; 1625 } 1626 logical = start - em->start; 1627 logical = em->block_start + logical; 1628 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1629 logical = em->block_start; 1630 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1631 } 1632 failrec->logical = logical; 1633 free_extent_map(em); 1634 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1635 EXTENT_DIRTY, GFP_NOFS); 1636 set_state_private(failure_tree, start, 1637 (u64)(unsigned long)failrec); 1638 } else { 1639 failrec = (struct io_failure_record *)(unsigned long)private; 1640 } 1641 num_copies = btrfs_num_copies( 1642 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1643 failrec->logical, failrec->len); 1644 failrec->last_mirror++; 1645 if (!state) { 1646 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1647 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1648 failrec->start, 1649 EXTENT_LOCKED); 1650 if (state && state->start != failrec->start) 1651 state = NULL; 1652 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1653 } 1654 if (!state || failrec->last_mirror > num_copies) { 1655 set_state_private(failure_tree, failrec->start, 0); 1656 clear_extent_bits(failure_tree, failrec->start, 1657 failrec->start + failrec->len - 1, 1658 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1659 kfree(failrec); 1660 return -EIO; 1661 } 1662 bio = bio_alloc(GFP_NOFS, 1); 1663 bio->bi_private = state; 1664 bio->bi_end_io = failed_bio->bi_end_io; 1665 bio->bi_sector = failrec->logical >> 9; 1666 bio->bi_bdev = failed_bio->bi_bdev; 1667 bio->bi_size = 0; 1668 1669 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1670 if (failed_bio->bi_rw & (1 << BIO_RW)) 1671 rw = WRITE; 1672 else 1673 rw = READ; 1674 1675 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1676 failrec->last_mirror, 1677 failrec->bio_flags); 1678 return 0; 1679 } 1680 1681 /* 1682 * each time an IO finishes, we do a fast check in the IO failure tree 1683 * to see if we need to process or clean up an io_failure_record 1684 */ 1685 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1686 { 1687 u64 private; 1688 u64 private_failure; 1689 struct io_failure_record *failure; 1690 int ret; 1691 1692 private = 0; 1693 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1694 (u64)-1, 1, EXTENT_DIRTY)) { 1695 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1696 start, &private_failure); 1697 if (ret == 0) { 1698 failure = (struct io_failure_record *)(unsigned long) 1699 private_failure; 1700 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1701 failure->start, 0); 1702 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1703 failure->start, 1704 failure->start + failure->len - 1, 1705 EXTENT_DIRTY | EXTENT_LOCKED, 1706 GFP_NOFS); 1707 kfree(failure); 1708 } 1709 } 1710 return 0; 1711 } 1712 1713 /* 1714 * when reads are done, we need to check csums to verify the data is correct 1715 * if there's a match, we allow the bio to finish. If not, we go through 1716 * the io_failure_record routines to find good copies 1717 */ 1718 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1719 struct extent_state *state) 1720 { 1721 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1722 struct inode *inode = page->mapping->host; 1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1724 char *kaddr; 1725 u64 private = ~(u32)0; 1726 int ret; 1727 struct btrfs_root *root = BTRFS_I(inode)->root; 1728 u32 csum = ~(u32)0; 1729 1730 if (PageChecked(page)) { 1731 ClearPageChecked(page); 1732 goto good; 1733 } 1734 if (btrfs_test_flag(inode, NODATASUM)) 1735 return 0; 1736 1737 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1738 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1739 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1740 GFP_NOFS); 1741 return 0; 1742 } 1743 1744 if (state && state->start == start) { 1745 private = state->private; 1746 ret = 0; 1747 } else { 1748 ret = get_state_private(io_tree, start, &private); 1749 } 1750 kaddr = kmap_atomic(page, KM_USER0); 1751 if (ret) 1752 goto zeroit; 1753 1754 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1755 btrfs_csum_final(csum, (char *)&csum); 1756 if (csum != private) 1757 goto zeroit; 1758 1759 kunmap_atomic(kaddr, KM_USER0); 1760 good: 1761 /* if the io failure tree for this inode is non-empty, 1762 * check to see if we've recovered from a failed IO 1763 */ 1764 btrfs_clean_io_failures(inode, start); 1765 return 0; 1766 1767 zeroit: 1768 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1769 "private %llu\n", page->mapping->host->i_ino, 1770 (unsigned long long)start, csum, 1771 (unsigned long long)private); 1772 memset(kaddr + offset, 1, end - start + 1); 1773 flush_dcache_page(page); 1774 kunmap_atomic(kaddr, KM_USER0); 1775 if (private == 0) 1776 return 0; 1777 return -EIO; 1778 } 1779 1780 /* 1781 * This creates an orphan entry for the given inode in case something goes 1782 * wrong in the middle of an unlink/truncate. 1783 */ 1784 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1785 { 1786 struct btrfs_root *root = BTRFS_I(inode)->root; 1787 int ret = 0; 1788 1789 spin_lock(&root->list_lock); 1790 1791 /* already on the orphan list, we're good */ 1792 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1793 spin_unlock(&root->list_lock); 1794 return 0; 1795 } 1796 1797 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1798 1799 spin_unlock(&root->list_lock); 1800 1801 /* 1802 * insert an orphan item to track this unlinked/truncated file 1803 */ 1804 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1805 1806 return ret; 1807 } 1808 1809 /* 1810 * We have done the truncate/delete so we can go ahead and remove the orphan 1811 * item for this particular inode. 1812 */ 1813 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1814 { 1815 struct btrfs_root *root = BTRFS_I(inode)->root; 1816 int ret = 0; 1817 1818 spin_lock(&root->list_lock); 1819 1820 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1821 spin_unlock(&root->list_lock); 1822 return 0; 1823 } 1824 1825 list_del_init(&BTRFS_I(inode)->i_orphan); 1826 if (!trans) { 1827 spin_unlock(&root->list_lock); 1828 return 0; 1829 } 1830 1831 spin_unlock(&root->list_lock); 1832 1833 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1834 1835 return ret; 1836 } 1837 1838 /* 1839 * this cleans up any orphans that may be left on the list from the last use 1840 * of this root. 1841 */ 1842 void btrfs_orphan_cleanup(struct btrfs_root *root) 1843 { 1844 struct btrfs_path *path; 1845 struct extent_buffer *leaf; 1846 struct btrfs_item *item; 1847 struct btrfs_key key, found_key; 1848 struct btrfs_trans_handle *trans; 1849 struct inode *inode; 1850 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1851 1852 path = btrfs_alloc_path(); 1853 if (!path) 1854 return; 1855 path->reada = -1; 1856 1857 key.objectid = BTRFS_ORPHAN_OBJECTID; 1858 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1859 key.offset = (u64)-1; 1860 1861 1862 while (1) { 1863 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1864 if (ret < 0) { 1865 printk(KERN_ERR "Error searching slot for orphan: %d" 1866 "\n", ret); 1867 break; 1868 } 1869 1870 /* 1871 * if ret == 0 means we found what we were searching for, which 1872 * is weird, but possible, so only screw with path if we didnt 1873 * find the key and see if we have stuff that matches 1874 */ 1875 if (ret > 0) { 1876 if (path->slots[0] == 0) 1877 break; 1878 path->slots[0]--; 1879 } 1880 1881 /* pull out the item */ 1882 leaf = path->nodes[0]; 1883 item = btrfs_item_nr(leaf, path->slots[0]); 1884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1885 1886 /* make sure the item matches what we want */ 1887 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1888 break; 1889 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1890 break; 1891 1892 /* release the path since we're done with it */ 1893 btrfs_release_path(root, path); 1894 1895 /* 1896 * this is where we are basically btrfs_lookup, without the 1897 * crossing root thing. we store the inode number in the 1898 * offset of the orphan item. 1899 */ 1900 inode = btrfs_iget_locked(root->fs_info->sb, 1901 found_key.offset, root); 1902 if (!inode) 1903 break; 1904 1905 if (inode->i_state & I_NEW) { 1906 BTRFS_I(inode)->root = root; 1907 1908 /* have to set the location manually */ 1909 BTRFS_I(inode)->location.objectid = inode->i_ino; 1910 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1911 BTRFS_I(inode)->location.offset = 0; 1912 1913 btrfs_read_locked_inode(inode); 1914 unlock_new_inode(inode); 1915 } 1916 1917 /* 1918 * add this inode to the orphan list so btrfs_orphan_del does 1919 * the proper thing when we hit it 1920 */ 1921 spin_lock(&root->list_lock); 1922 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1923 spin_unlock(&root->list_lock); 1924 1925 /* 1926 * if this is a bad inode, means we actually succeeded in 1927 * removing the inode, but not the orphan record, which means 1928 * we need to manually delete the orphan since iput will just 1929 * do a destroy_inode 1930 */ 1931 if (is_bad_inode(inode)) { 1932 trans = btrfs_start_transaction(root, 1); 1933 btrfs_orphan_del(trans, inode); 1934 btrfs_end_transaction(trans, root); 1935 iput(inode); 1936 continue; 1937 } 1938 1939 /* if we have links, this was a truncate, lets do that */ 1940 if (inode->i_nlink) { 1941 nr_truncate++; 1942 btrfs_truncate(inode); 1943 } else { 1944 nr_unlink++; 1945 } 1946 1947 /* this will do delete_inode and everything for us */ 1948 iput(inode); 1949 } 1950 1951 if (nr_unlink) 1952 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 1953 if (nr_truncate) 1954 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 1955 1956 btrfs_free_path(path); 1957 } 1958 1959 /* 1960 * read an inode from the btree into the in-memory inode 1961 */ 1962 void btrfs_read_locked_inode(struct inode *inode) 1963 { 1964 struct btrfs_path *path; 1965 struct extent_buffer *leaf; 1966 struct btrfs_inode_item *inode_item; 1967 struct btrfs_timespec *tspec; 1968 struct btrfs_root *root = BTRFS_I(inode)->root; 1969 struct btrfs_key location; 1970 u64 alloc_group_block; 1971 u32 rdev; 1972 int ret; 1973 1974 path = btrfs_alloc_path(); 1975 BUG_ON(!path); 1976 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 1977 1978 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 1979 if (ret) 1980 goto make_bad; 1981 1982 leaf = path->nodes[0]; 1983 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1984 struct btrfs_inode_item); 1985 1986 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 1987 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 1988 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 1989 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 1990 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 1991 1992 tspec = btrfs_inode_atime(inode_item); 1993 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 1994 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 1995 1996 tspec = btrfs_inode_mtime(inode_item); 1997 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 1998 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 1999 2000 tspec = btrfs_inode_ctime(inode_item); 2001 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2002 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2003 2004 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2005 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2006 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2007 inode->i_generation = BTRFS_I(inode)->generation; 2008 inode->i_rdev = 0; 2009 rdev = btrfs_inode_rdev(leaf, inode_item); 2010 2011 BTRFS_I(inode)->index_cnt = (u64)-1; 2012 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2013 2014 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2015 2016 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2017 alloc_group_block, 0); 2018 btrfs_free_path(path); 2019 inode_item = NULL; 2020 2021 switch (inode->i_mode & S_IFMT) { 2022 case S_IFREG: 2023 inode->i_mapping->a_ops = &btrfs_aops; 2024 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2025 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2026 inode->i_fop = &btrfs_file_operations; 2027 inode->i_op = &btrfs_file_inode_operations; 2028 break; 2029 case S_IFDIR: 2030 inode->i_fop = &btrfs_dir_file_operations; 2031 if (root == root->fs_info->tree_root) 2032 inode->i_op = &btrfs_dir_ro_inode_operations; 2033 else 2034 inode->i_op = &btrfs_dir_inode_operations; 2035 break; 2036 case S_IFLNK: 2037 inode->i_op = &btrfs_symlink_inode_operations; 2038 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2039 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2040 break; 2041 default: 2042 inode->i_op = &btrfs_special_inode_operations; 2043 init_special_inode(inode, inode->i_mode, rdev); 2044 break; 2045 } 2046 return; 2047 2048 make_bad: 2049 btrfs_free_path(path); 2050 make_bad_inode(inode); 2051 } 2052 2053 /* 2054 * given a leaf and an inode, copy the inode fields into the leaf 2055 */ 2056 static void fill_inode_item(struct btrfs_trans_handle *trans, 2057 struct extent_buffer *leaf, 2058 struct btrfs_inode_item *item, 2059 struct inode *inode) 2060 { 2061 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2062 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2063 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2064 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2065 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2066 2067 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2068 inode->i_atime.tv_sec); 2069 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2070 inode->i_atime.tv_nsec); 2071 2072 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2073 inode->i_mtime.tv_sec); 2074 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2075 inode->i_mtime.tv_nsec); 2076 2077 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2078 inode->i_ctime.tv_sec); 2079 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2080 inode->i_ctime.tv_nsec); 2081 2082 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2083 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2084 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2085 btrfs_set_inode_transid(leaf, item, trans->transid); 2086 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2087 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2088 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2089 } 2090 2091 /* 2092 * copy everything in the in-memory inode into the btree. 2093 */ 2094 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2095 struct btrfs_root *root, struct inode *inode) 2096 { 2097 struct btrfs_inode_item *inode_item; 2098 struct btrfs_path *path; 2099 struct extent_buffer *leaf; 2100 int ret; 2101 2102 path = btrfs_alloc_path(); 2103 BUG_ON(!path); 2104 ret = btrfs_lookup_inode(trans, root, path, 2105 &BTRFS_I(inode)->location, 1); 2106 if (ret) { 2107 if (ret > 0) 2108 ret = -ENOENT; 2109 goto failed; 2110 } 2111 2112 btrfs_unlock_up_safe(path, 1); 2113 leaf = path->nodes[0]; 2114 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2115 struct btrfs_inode_item); 2116 2117 fill_inode_item(trans, leaf, inode_item, inode); 2118 btrfs_mark_buffer_dirty(leaf); 2119 btrfs_set_inode_last_trans(trans, inode); 2120 ret = 0; 2121 failed: 2122 btrfs_free_path(path); 2123 return ret; 2124 } 2125 2126 2127 /* 2128 * unlink helper that gets used here in inode.c and in the tree logging 2129 * recovery code. It remove a link in a directory with a given name, and 2130 * also drops the back refs in the inode to the directory 2131 */ 2132 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct inode *dir, struct inode *inode, 2135 const char *name, int name_len) 2136 { 2137 struct btrfs_path *path; 2138 int ret = 0; 2139 struct extent_buffer *leaf; 2140 struct btrfs_dir_item *di; 2141 struct btrfs_key key; 2142 u64 index; 2143 2144 path = btrfs_alloc_path(); 2145 if (!path) { 2146 ret = -ENOMEM; 2147 goto err; 2148 } 2149 2150 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2151 name, name_len, -1); 2152 if (IS_ERR(di)) { 2153 ret = PTR_ERR(di); 2154 goto err; 2155 } 2156 if (!di) { 2157 ret = -ENOENT; 2158 goto err; 2159 } 2160 leaf = path->nodes[0]; 2161 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2162 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2163 if (ret) 2164 goto err; 2165 btrfs_release_path(root, path); 2166 2167 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2168 inode->i_ino, 2169 dir->i_ino, &index); 2170 if (ret) { 2171 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2172 "inode %lu parent %lu\n", name_len, name, 2173 inode->i_ino, dir->i_ino); 2174 goto err; 2175 } 2176 2177 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2178 index, name, name_len, -1); 2179 if (IS_ERR(di)) { 2180 ret = PTR_ERR(di); 2181 goto err; 2182 } 2183 if (!di) { 2184 ret = -ENOENT; 2185 goto err; 2186 } 2187 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2188 btrfs_release_path(root, path); 2189 2190 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2191 inode, dir->i_ino); 2192 BUG_ON(ret != 0 && ret != -ENOENT); 2193 if (ret != -ENOENT) 2194 BTRFS_I(dir)->log_dirty_trans = trans->transid; 2195 2196 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2197 dir, index); 2198 BUG_ON(ret); 2199 err: 2200 btrfs_free_path(path); 2201 if (ret) 2202 goto out; 2203 2204 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2205 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2206 btrfs_update_inode(trans, root, dir); 2207 btrfs_drop_nlink(inode); 2208 ret = btrfs_update_inode(trans, root, inode); 2209 dir->i_sb->s_dirt = 1; 2210 out: 2211 return ret; 2212 } 2213 2214 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2215 { 2216 struct btrfs_root *root; 2217 struct btrfs_trans_handle *trans; 2218 struct inode *inode = dentry->d_inode; 2219 int ret; 2220 unsigned long nr = 0; 2221 2222 root = BTRFS_I(dir)->root; 2223 2224 trans = btrfs_start_transaction(root, 1); 2225 2226 btrfs_set_trans_block_group(trans, dir); 2227 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2228 dentry->d_name.name, dentry->d_name.len); 2229 2230 if (inode->i_nlink == 0) 2231 ret = btrfs_orphan_add(trans, inode); 2232 2233 nr = trans->blocks_used; 2234 2235 btrfs_end_transaction_throttle(trans, root); 2236 btrfs_btree_balance_dirty(root, nr); 2237 return ret; 2238 } 2239 2240 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2241 { 2242 struct inode *inode = dentry->d_inode; 2243 int err = 0; 2244 int ret; 2245 struct btrfs_root *root = BTRFS_I(dir)->root; 2246 struct btrfs_trans_handle *trans; 2247 unsigned long nr = 0; 2248 2249 /* 2250 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2251 * the root of a subvolume or snapshot 2252 */ 2253 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2254 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2255 return -ENOTEMPTY; 2256 } 2257 2258 trans = btrfs_start_transaction(root, 1); 2259 btrfs_set_trans_block_group(trans, dir); 2260 2261 err = btrfs_orphan_add(trans, inode); 2262 if (err) 2263 goto fail_trans; 2264 2265 /* now the directory is empty */ 2266 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2267 dentry->d_name.name, dentry->d_name.len); 2268 if (!err) 2269 btrfs_i_size_write(inode, 0); 2270 2271 fail_trans: 2272 nr = trans->blocks_used; 2273 ret = btrfs_end_transaction_throttle(trans, root); 2274 btrfs_btree_balance_dirty(root, nr); 2275 2276 if (ret && !err) 2277 err = ret; 2278 return err; 2279 } 2280 2281 #if 0 2282 /* 2283 * when truncating bytes in a file, it is possible to avoid reading 2284 * the leaves that contain only checksum items. This can be the 2285 * majority of the IO required to delete a large file, but it must 2286 * be done carefully. 2287 * 2288 * The keys in the level just above the leaves are checked to make sure 2289 * the lowest key in a given leaf is a csum key, and starts at an offset 2290 * after the new size. 2291 * 2292 * Then the key for the next leaf is checked to make sure it also has 2293 * a checksum item for the same file. If it does, we know our target leaf 2294 * contains only checksum items, and it can be safely freed without reading 2295 * it. 2296 * 2297 * This is just an optimization targeted at large files. It may do 2298 * nothing. It will return 0 unless things went badly. 2299 */ 2300 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2301 struct btrfs_root *root, 2302 struct btrfs_path *path, 2303 struct inode *inode, u64 new_size) 2304 { 2305 struct btrfs_key key; 2306 int ret; 2307 int nritems; 2308 struct btrfs_key found_key; 2309 struct btrfs_key other_key; 2310 struct btrfs_leaf_ref *ref; 2311 u64 leaf_gen; 2312 u64 leaf_start; 2313 2314 path->lowest_level = 1; 2315 key.objectid = inode->i_ino; 2316 key.type = BTRFS_CSUM_ITEM_KEY; 2317 key.offset = new_size; 2318 again: 2319 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2320 if (ret < 0) 2321 goto out; 2322 2323 if (path->nodes[1] == NULL) { 2324 ret = 0; 2325 goto out; 2326 } 2327 ret = 0; 2328 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2329 nritems = btrfs_header_nritems(path->nodes[1]); 2330 2331 if (!nritems) 2332 goto out; 2333 2334 if (path->slots[1] >= nritems) 2335 goto next_node; 2336 2337 /* did we find a key greater than anything we want to delete? */ 2338 if (found_key.objectid > inode->i_ino || 2339 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2340 goto out; 2341 2342 /* we check the next key in the node to make sure the leave contains 2343 * only checksum items. This comparison doesn't work if our 2344 * leaf is the last one in the node 2345 */ 2346 if (path->slots[1] + 1 >= nritems) { 2347 next_node: 2348 /* search forward from the last key in the node, this 2349 * will bring us into the next node in the tree 2350 */ 2351 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2352 2353 /* unlikely, but we inc below, so check to be safe */ 2354 if (found_key.offset == (u64)-1) 2355 goto out; 2356 2357 /* search_forward needs a path with locks held, do the 2358 * search again for the original key. It is possible 2359 * this will race with a balance and return a path that 2360 * we could modify, but this drop is just an optimization 2361 * and is allowed to miss some leaves. 2362 */ 2363 btrfs_release_path(root, path); 2364 found_key.offset++; 2365 2366 /* setup a max key for search_forward */ 2367 other_key.offset = (u64)-1; 2368 other_key.type = key.type; 2369 other_key.objectid = key.objectid; 2370 2371 path->keep_locks = 1; 2372 ret = btrfs_search_forward(root, &found_key, &other_key, 2373 path, 0, 0); 2374 path->keep_locks = 0; 2375 if (ret || found_key.objectid != key.objectid || 2376 found_key.type != key.type) { 2377 ret = 0; 2378 goto out; 2379 } 2380 2381 key.offset = found_key.offset; 2382 btrfs_release_path(root, path); 2383 cond_resched(); 2384 goto again; 2385 } 2386 2387 /* we know there's one more slot after us in the tree, 2388 * read that key so we can verify it is also a checksum item 2389 */ 2390 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2391 2392 if (found_key.objectid < inode->i_ino) 2393 goto next_key; 2394 2395 if (found_key.type != key.type || found_key.offset < new_size) 2396 goto next_key; 2397 2398 /* 2399 * if the key for the next leaf isn't a csum key from this objectid, 2400 * we can't be sure there aren't good items inside this leaf. 2401 * Bail out 2402 */ 2403 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2404 goto out; 2405 2406 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2407 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2408 /* 2409 * it is safe to delete this leaf, it contains only 2410 * csum items from this inode at an offset >= new_size 2411 */ 2412 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2413 BUG_ON(ret); 2414 2415 if (root->ref_cows && leaf_gen < trans->transid) { 2416 ref = btrfs_alloc_leaf_ref(root, 0); 2417 if (ref) { 2418 ref->root_gen = root->root_key.offset; 2419 ref->bytenr = leaf_start; 2420 ref->owner = 0; 2421 ref->generation = leaf_gen; 2422 ref->nritems = 0; 2423 2424 btrfs_sort_leaf_ref(ref); 2425 2426 ret = btrfs_add_leaf_ref(root, ref, 0); 2427 WARN_ON(ret); 2428 btrfs_free_leaf_ref(root, ref); 2429 } else { 2430 WARN_ON(1); 2431 } 2432 } 2433 next_key: 2434 btrfs_release_path(root, path); 2435 2436 if (other_key.objectid == inode->i_ino && 2437 other_key.type == key.type && other_key.offset > key.offset) { 2438 key.offset = other_key.offset; 2439 cond_resched(); 2440 goto again; 2441 } 2442 ret = 0; 2443 out: 2444 /* fixup any changes we've made to the path */ 2445 path->lowest_level = 0; 2446 path->keep_locks = 0; 2447 btrfs_release_path(root, path); 2448 return ret; 2449 } 2450 2451 #endif 2452 2453 /* 2454 * this can truncate away extent items, csum items and directory items. 2455 * It starts at a high offset and removes keys until it can't find 2456 * any higher than new_size 2457 * 2458 * csum items that cross the new i_size are truncated to the new size 2459 * as well. 2460 * 2461 * min_type is the minimum key type to truncate down to. If set to 0, this 2462 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2463 */ 2464 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2465 struct btrfs_root *root, 2466 struct inode *inode, 2467 u64 new_size, u32 min_type) 2468 { 2469 int ret; 2470 struct btrfs_path *path; 2471 struct btrfs_key key; 2472 struct btrfs_key found_key; 2473 u32 found_type = (u8)-1; 2474 struct extent_buffer *leaf; 2475 struct btrfs_file_extent_item *fi; 2476 u64 extent_start = 0; 2477 u64 extent_num_bytes = 0; 2478 u64 item_end = 0; 2479 u64 root_gen = 0; 2480 u64 root_owner = 0; 2481 int found_extent; 2482 int del_item; 2483 int pending_del_nr = 0; 2484 int pending_del_slot = 0; 2485 int extent_type = -1; 2486 int encoding; 2487 u64 mask = root->sectorsize - 1; 2488 2489 if (root->ref_cows) 2490 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2491 path = btrfs_alloc_path(); 2492 path->reada = -1; 2493 BUG_ON(!path); 2494 2495 /* FIXME, add redo link to tree so we don't leak on crash */ 2496 key.objectid = inode->i_ino; 2497 key.offset = (u64)-1; 2498 key.type = (u8)-1; 2499 2500 search_again: 2501 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2502 if (ret < 0) 2503 goto error; 2504 2505 if (ret > 0) { 2506 /* there are no items in the tree for us to truncate, we're 2507 * done 2508 */ 2509 if (path->slots[0] == 0) { 2510 ret = 0; 2511 goto error; 2512 } 2513 path->slots[0]--; 2514 } 2515 2516 while (1) { 2517 fi = NULL; 2518 leaf = path->nodes[0]; 2519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2520 found_type = btrfs_key_type(&found_key); 2521 encoding = 0; 2522 2523 if (found_key.objectid != inode->i_ino) 2524 break; 2525 2526 if (found_type < min_type) 2527 break; 2528 2529 item_end = found_key.offset; 2530 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2531 fi = btrfs_item_ptr(leaf, path->slots[0], 2532 struct btrfs_file_extent_item); 2533 extent_type = btrfs_file_extent_type(leaf, fi); 2534 encoding = btrfs_file_extent_compression(leaf, fi); 2535 encoding |= btrfs_file_extent_encryption(leaf, fi); 2536 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2537 2538 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2539 item_end += 2540 btrfs_file_extent_num_bytes(leaf, fi); 2541 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2542 item_end += btrfs_file_extent_inline_len(leaf, 2543 fi); 2544 } 2545 item_end--; 2546 } 2547 if (item_end < new_size) { 2548 if (found_type == BTRFS_DIR_ITEM_KEY) 2549 found_type = BTRFS_INODE_ITEM_KEY; 2550 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2551 found_type = BTRFS_EXTENT_DATA_KEY; 2552 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2553 found_type = BTRFS_XATTR_ITEM_KEY; 2554 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2555 found_type = BTRFS_INODE_REF_KEY; 2556 else if (found_type) 2557 found_type--; 2558 else 2559 break; 2560 btrfs_set_key_type(&key, found_type); 2561 goto next; 2562 } 2563 if (found_key.offset >= new_size) 2564 del_item = 1; 2565 else 2566 del_item = 0; 2567 found_extent = 0; 2568 2569 /* FIXME, shrink the extent if the ref count is only 1 */ 2570 if (found_type != BTRFS_EXTENT_DATA_KEY) 2571 goto delete; 2572 2573 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2574 u64 num_dec; 2575 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2576 if (!del_item && !encoding) { 2577 u64 orig_num_bytes = 2578 btrfs_file_extent_num_bytes(leaf, fi); 2579 extent_num_bytes = new_size - 2580 found_key.offset + root->sectorsize - 1; 2581 extent_num_bytes = extent_num_bytes & 2582 ~((u64)root->sectorsize - 1); 2583 btrfs_set_file_extent_num_bytes(leaf, fi, 2584 extent_num_bytes); 2585 num_dec = (orig_num_bytes - 2586 extent_num_bytes); 2587 if (root->ref_cows && extent_start != 0) 2588 inode_sub_bytes(inode, num_dec); 2589 btrfs_mark_buffer_dirty(leaf); 2590 } else { 2591 extent_num_bytes = 2592 btrfs_file_extent_disk_num_bytes(leaf, 2593 fi); 2594 /* FIXME blocksize != 4096 */ 2595 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2596 if (extent_start != 0) { 2597 found_extent = 1; 2598 if (root->ref_cows) 2599 inode_sub_bytes(inode, num_dec); 2600 } 2601 root_gen = btrfs_header_generation(leaf); 2602 root_owner = btrfs_header_owner(leaf); 2603 } 2604 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2605 /* 2606 * we can't truncate inline items that have had 2607 * special encodings 2608 */ 2609 if (!del_item && 2610 btrfs_file_extent_compression(leaf, fi) == 0 && 2611 btrfs_file_extent_encryption(leaf, fi) == 0 && 2612 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2613 u32 size = new_size - found_key.offset; 2614 2615 if (root->ref_cows) { 2616 inode_sub_bytes(inode, item_end + 1 - 2617 new_size); 2618 } 2619 size = 2620 btrfs_file_extent_calc_inline_size(size); 2621 ret = btrfs_truncate_item(trans, root, path, 2622 size, 1); 2623 BUG_ON(ret); 2624 } else if (root->ref_cows) { 2625 inode_sub_bytes(inode, item_end + 1 - 2626 found_key.offset); 2627 } 2628 } 2629 delete: 2630 if (del_item) { 2631 if (!pending_del_nr) { 2632 /* no pending yet, add ourselves */ 2633 pending_del_slot = path->slots[0]; 2634 pending_del_nr = 1; 2635 } else if (pending_del_nr && 2636 path->slots[0] + 1 == pending_del_slot) { 2637 /* hop on the pending chunk */ 2638 pending_del_nr++; 2639 pending_del_slot = path->slots[0]; 2640 } else { 2641 BUG(); 2642 } 2643 } else { 2644 break; 2645 } 2646 if (found_extent) { 2647 ret = btrfs_free_extent(trans, root, extent_start, 2648 extent_num_bytes, 2649 leaf->start, root_owner, 2650 root_gen, inode->i_ino, 0); 2651 BUG_ON(ret); 2652 } 2653 next: 2654 if (path->slots[0] == 0) { 2655 if (pending_del_nr) 2656 goto del_pending; 2657 btrfs_release_path(root, path); 2658 if (found_type == BTRFS_INODE_ITEM_KEY) 2659 break; 2660 goto search_again; 2661 } 2662 2663 path->slots[0]--; 2664 if (pending_del_nr && 2665 path->slots[0] + 1 != pending_del_slot) { 2666 struct btrfs_key debug; 2667 del_pending: 2668 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2669 pending_del_slot); 2670 ret = btrfs_del_items(trans, root, path, 2671 pending_del_slot, 2672 pending_del_nr); 2673 BUG_ON(ret); 2674 pending_del_nr = 0; 2675 btrfs_release_path(root, path); 2676 if (found_type == BTRFS_INODE_ITEM_KEY) 2677 break; 2678 goto search_again; 2679 } 2680 } 2681 ret = 0; 2682 error: 2683 if (pending_del_nr) { 2684 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2685 pending_del_nr); 2686 } 2687 btrfs_free_path(path); 2688 inode->i_sb->s_dirt = 1; 2689 return ret; 2690 } 2691 2692 /* 2693 * taken from block_truncate_page, but does cow as it zeros out 2694 * any bytes left in the last page in the file. 2695 */ 2696 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2697 { 2698 struct inode *inode = mapping->host; 2699 struct btrfs_root *root = BTRFS_I(inode)->root; 2700 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2701 struct btrfs_ordered_extent *ordered; 2702 char *kaddr; 2703 u32 blocksize = root->sectorsize; 2704 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2705 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2706 struct page *page; 2707 int ret = 0; 2708 u64 page_start; 2709 u64 page_end; 2710 2711 if ((offset & (blocksize - 1)) == 0) 2712 goto out; 2713 2714 ret = -ENOMEM; 2715 again: 2716 page = grab_cache_page(mapping, index); 2717 if (!page) 2718 goto out; 2719 2720 page_start = page_offset(page); 2721 page_end = page_start + PAGE_CACHE_SIZE - 1; 2722 2723 if (!PageUptodate(page)) { 2724 ret = btrfs_readpage(NULL, page); 2725 lock_page(page); 2726 if (page->mapping != mapping) { 2727 unlock_page(page); 2728 page_cache_release(page); 2729 goto again; 2730 } 2731 if (!PageUptodate(page)) { 2732 ret = -EIO; 2733 goto out_unlock; 2734 } 2735 } 2736 wait_on_page_writeback(page); 2737 2738 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2739 set_page_extent_mapped(page); 2740 2741 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2742 if (ordered) { 2743 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2744 unlock_page(page); 2745 page_cache_release(page); 2746 btrfs_start_ordered_extent(inode, ordered, 1); 2747 btrfs_put_ordered_extent(ordered); 2748 goto again; 2749 } 2750 2751 btrfs_set_extent_delalloc(inode, page_start, page_end); 2752 ret = 0; 2753 if (offset != PAGE_CACHE_SIZE) { 2754 kaddr = kmap(page); 2755 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2756 flush_dcache_page(page); 2757 kunmap(page); 2758 } 2759 ClearPageChecked(page); 2760 set_page_dirty(page); 2761 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2762 2763 out_unlock: 2764 unlock_page(page); 2765 page_cache_release(page); 2766 out: 2767 return ret; 2768 } 2769 2770 int btrfs_cont_expand(struct inode *inode, loff_t size) 2771 { 2772 struct btrfs_trans_handle *trans; 2773 struct btrfs_root *root = BTRFS_I(inode)->root; 2774 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2775 struct extent_map *em; 2776 u64 mask = root->sectorsize - 1; 2777 u64 hole_start = (inode->i_size + mask) & ~mask; 2778 u64 block_end = (size + mask) & ~mask; 2779 u64 last_byte; 2780 u64 cur_offset; 2781 u64 hole_size; 2782 int err; 2783 2784 if (size <= hole_start) 2785 return 0; 2786 2787 err = btrfs_check_metadata_free_space(root); 2788 if (err) 2789 return err; 2790 2791 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2792 2793 while (1) { 2794 struct btrfs_ordered_extent *ordered; 2795 btrfs_wait_ordered_range(inode, hole_start, 2796 block_end - hole_start); 2797 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2798 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2799 if (!ordered) 2800 break; 2801 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2802 btrfs_put_ordered_extent(ordered); 2803 } 2804 2805 trans = btrfs_start_transaction(root, 1); 2806 btrfs_set_trans_block_group(trans, inode); 2807 2808 cur_offset = hole_start; 2809 while (1) { 2810 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2811 block_end - cur_offset, 0); 2812 BUG_ON(IS_ERR(em) || !em); 2813 last_byte = min(extent_map_end(em), block_end); 2814 last_byte = (last_byte + mask) & ~mask; 2815 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2816 u64 hint_byte = 0; 2817 hole_size = last_byte - cur_offset; 2818 err = btrfs_drop_extents(trans, root, inode, 2819 cur_offset, 2820 cur_offset + hole_size, 2821 cur_offset, &hint_byte); 2822 if (err) 2823 break; 2824 err = btrfs_insert_file_extent(trans, root, 2825 inode->i_ino, cur_offset, 0, 2826 0, hole_size, 0, hole_size, 2827 0, 0, 0); 2828 btrfs_drop_extent_cache(inode, hole_start, 2829 last_byte - 1, 0); 2830 } 2831 free_extent_map(em); 2832 cur_offset = last_byte; 2833 if (err || cur_offset >= block_end) 2834 break; 2835 } 2836 2837 btrfs_end_transaction(trans, root); 2838 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2839 return err; 2840 } 2841 2842 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2843 { 2844 struct inode *inode = dentry->d_inode; 2845 int err; 2846 2847 err = inode_change_ok(inode, attr); 2848 if (err) 2849 return err; 2850 2851 if (S_ISREG(inode->i_mode) && 2852 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { 2853 err = btrfs_cont_expand(inode, attr->ia_size); 2854 if (err) 2855 return err; 2856 } 2857 2858 err = inode_setattr(inode, attr); 2859 2860 if (!err && ((attr->ia_valid & ATTR_MODE))) 2861 err = btrfs_acl_chmod(inode); 2862 return err; 2863 } 2864 2865 void btrfs_delete_inode(struct inode *inode) 2866 { 2867 struct btrfs_trans_handle *trans; 2868 struct btrfs_root *root = BTRFS_I(inode)->root; 2869 unsigned long nr; 2870 int ret; 2871 2872 truncate_inode_pages(&inode->i_data, 0); 2873 if (is_bad_inode(inode)) { 2874 btrfs_orphan_del(NULL, inode); 2875 goto no_delete; 2876 } 2877 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2878 2879 btrfs_i_size_write(inode, 0); 2880 trans = btrfs_join_transaction(root, 1); 2881 2882 btrfs_set_trans_block_group(trans, inode); 2883 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2884 if (ret) { 2885 btrfs_orphan_del(NULL, inode); 2886 goto no_delete_lock; 2887 } 2888 2889 btrfs_orphan_del(trans, inode); 2890 2891 nr = trans->blocks_used; 2892 clear_inode(inode); 2893 2894 btrfs_end_transaction(trans, root); 2895 btrfs_btree_balance_dirty(root, nr); 2896 return; 2897 2898 no_delete_lock: 2899 nr = trans->blocks_used; 2900 btrfs_end_transaction(trans, root); 2901 btrfs_btree_balance_dirty(root, nr); 2902 no_delete: 2903 clear_inode(inode); 2904 } 2905 2906 /* 2907 * this returns the key found in the dir entry in the location pointer. 2908 * If no dir entries were found, location->objectid is 0. 2909 */ 2910 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2911 struct btrfs_key *location) 2912 { 2913 const char *name = dentry->d_name.name; 2914 int namelen = dentry->d_name.len; 2915 struct btrfs_dir_item *di; 2916 struct btrfs_path *path; 2917 struct btrfs_root *root = BTRFS_I(dir)->root; 2918 int ret = 0; 2919 2920 path = btrfs_alloc_path(); 2921 BUG_ON(!path); 2922 2923 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2924 namelen, 0); 2925 if (IS_ERR(di)) 2926 ret = PTR_ERR(di); 2927 2928 if (!di || IS_ERR(di)) 2929 goto out_err; 2930 2931 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 2932 out: 2933 btrfs_free_path(path); 2934 return ret; 2935 out_err: 2936 location->objectid = 0; 2937 goto out; 2938 } 2939 2940 /* 2941 * when we hit a tree root in a directory, the btrfs part of the inode 2942 * needs to be changed to reflect the root directory of the tree root. This 2943 * is kind of like crossing a mount point. 2944 */ 2945 static int fixup_tree_root_location(struct btrfs_root *root, 2946 struct btrfs_key *location, 2947 struct btrfs_root **sub_root, 2948 struct dentry *dentry) 2949 { 2950 struct btrfs_root_item *ri; 2951 2952 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 2953 return 0; 2954 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 2955 return 0; 2956 2957 *sub_root = btrfs_read_fs_root(root->fs_info, location, 2958 dentry->d_name.name, 2959 dentry->d_name.len); 2960 if (IS_ERR(*sub_root)) 2961 return PTR_ERR(*sub_root); 2962 2963 ri = &(*sub_root)->root_item; 2964 location->objectid = btrfs_root_dirid(ri); 2965 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 2966 location->offset = 0; 2967 2968 return 0; 2969 } 2970 2971 static noinline void init_btrfs_i(struct inode *inode) 2972 { 2973 struct btrfs_inode *bi = BTRFS_I(inode); 2974 2975 bi->i_acl = NULL; 2976 bi->i_default_acl = NULL; 2977 2978 bi->generation = 0; 2979 bi->sequence = 0; 2980 bi->last_trans = 0; 2981 bi->logged_trans = 0; 2982 bi->delalloc_bytes = 0; 2983 bi->reserved_bytes = 0; 2984 bi->disk_i_size = 0; 2985 bi->flags = 0; 2986 bi->index_cnt = (u64)-1; 2987 bi->log_dirty_trans = 0; 2988 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 2989 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 2990 inode->i_mapping, GFP_NOFS); 2991 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 2992 inode->i_mapping, GFP_NOFS); 2993 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 2994 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 2995 mutex_init(&BTRFS_I(inode)->extent_mutex); 2996 mutex_init(&BTRFS_I(inode)->log_mutex); 2997 } 2998 2999 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3000 { 3001 struct btrfs_iget_args *args = p; 3002 inode->i_ino = args->ino; 3003 init_btrfs_i(inode); 3004 BTRFS_I(inode)->root = args->root; 3005 btrfs_set_inode_space_info(args->root, inode); 3006 return 0; 3007 } 3008 3009 static int btrfs_find_actor(struct inode *inode, void *opaque) 3010 { 3011 struct btrfs_iget_args *args = opaque; 3012 return args->ino == inode->i_ino && 3013 args->root == BTRFS_I(inode)->root; 3014 } 3015 3016 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3017 struct btrfs_root *root, int wait) 3018 { 3019 struct inode *inode; 3020 struct btrfs_iget_args args; 3021 args.ino = objectid; 3022 args.root = root; 3023 3024 if (wait) { 3025 inode = ilookup5(s, objectid, btrfs_find_actor, 3026 (void *)&args); 3027 } else { 3028 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3029 (void *)&args); 3030 } 3031 return inode; 3032 } 3033 3034 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3035 struct btrfs_root *root) 3036 { 3037 struct inode *inode; 3038 struct btrfs_iget_args args; 3039 args.ino = objectid; 3040 args.root = root; 3041 3042 inode = iget5_locked(s, objectid, btrfs_find_actor, 3043 btrfs_init_locked_inode, 3044 (void *)&args); 3045 return inode; 3046 } 3047 3048 /* Get an inode object given its location and corresponding root. 3049 * Returns in *is_new if the inode was read from disk 3050 */ 3051 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3052 struct btrfs_root *root, int *is_new) 3053 { 3054 struct inode *inode; 3055 3056 inode = btrfs_iget_locked(s, location->objectid, root); 3057 if (!inode) 3058 return ERR_PTR(-EACCES); 3059 3060 if (inode->i_state & I_NEW) { 3061 BTRFS_I(inode)->root = root; 3062 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3063 btrfs_read_locked_inode(inode); 3064 unlock_new_inode(inode); 3065 if (is_new) 3066 *is_new = 1; 3067 } else { 3068 if (is_new) 3069 *is_new = 0; 3070 } 3071 3072 return inode; 3073 } 3074 3075 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3076 { 3077 struct inode *inode; 3078 struct btrfs_inode *bi = BTRFS_I(dir); 3079 struct btrfs_root *root = bi->root; 3080 struct btrfs_root *sub_root = root; 3081 struct btrfs_key location; 3082 int ret, new; 3083 3084 if (dentry->d_name.len > BTRFS_NAME_LEN) 3085 return ERR_PTR(-ENAMETOOLONG); 3086 3087 ret = btrfs_inode_by_name(dir, dentry, &location); 3088 3089 if (ret < 0) 3090 return ERR_PTR(ret); 3091 3092 inode = NULL; 3093 if (location.objectid) { 3094 ret = fixup_tree_root_location(root, &location, &sub_root, 3095 dentry); 3096 if (ret < 0) 3097 return ERR_PTR(ret); 3098 if (ret > 0) 3099 return ERR_PTR(-ENOENT); 3100 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3101 if (IS_ERR(inode)) 3102 return ERR_CAST(inode); 3103 } 3104 return inode; 3105 } 3106 3107 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3108 struct nameidata *nd) 3109 { 3110 struct inode *inode; 3111 3112 if (dentry->d_name.len > BTRFS_NAME_LEN) 3113 return ERR_PTR(-ENAMETOOLONG); 3114 3115 inode = btrfs_lookup_dentry(dir, dentry); 3116 if (IS_ERR(inode)) 3117 return ERR_CAST(inode); 3118 3119 return d_splice_alias(inode, dentry); 3120 } 3121 3122 static unsigned char btrfs_filetype_table[] = { 3123 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3124 }; 3125 3126 static int btrfs_real_readdir(struct file *filp, void *dirent, 3127 filldir_t filldir) 3128 { 3129 struct inode *inode = filp->f_dentry->d_inode; 3130 struct btrfs_root *root = BTRFS_I(inode)->root; 3131 struct btrfs_item *item; 3132 struct btrfs_dir_item *di; 3133 struct btrfs_key key; 3134 struct btrfs_key found_key; 3135 struct btrfs_path *path; 3136 int ret; 3137 u32 nritems; 3138 struct extent_buffer *leaf; 3139 int slot; 3140 int advance; 3141 unsigned char d_type; 3142 int over = 0; 3143 u32 di_cur; 3144 u32 di_total; 3145 u32 di_len; 3146 int key_type = BTRFS_DIR_INDEX_KEY; 3147 char tmp_name[32]; 3148 char *name_ptr; 3149 int name_len; 3150 3151 /* FIXME, use a real flag for deciding about the key type */ 3152 if (root->fs_info->tree_root == root) 3153 key_type = BTRFS_DIR_ITEM_KEY; 3154 3155 /* special case for "." */ 3156 if (filp->f_pos == 0) { 3157 over = filldir(dirent, ".", 1, 3158 1, inode->i_ino, 3159 DT_DIR); 3160 if (over) 3161 return 0; 3162 filp->f_pos = 1; 3163 } 3164 /* special case for .., just use the back ref */ 3165 if (filp->f_pos == 1) { 3166 u64 pino = parent_ino(filp->f_path.dentry); 3167 over = filldir(dirent, "..", 2, 3168 2, pino, DT_DIR); 3169 if (over) 3170 return 0; 3171 filp->f_pos = 2; 3172 } 3173 path = btrfs_alloc_path(); 3174 path->reada = 2; 3175 3176 btrfs_set_key_type(&key, key_type); 3177 key.offset = filp->f_pos; 3178 key.objectid = inode->i_ino; 3179 3180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3181 if (ret < 0) 3182 goto err; 3183 advance = 0; 3184 3185 while (1) { 3186 leaf = path->nodes[0]; 3187 nritems = btrfs_header_nritems(leaf); 3188 slot = path->slots[0]; 3189 if (advance || slot >= nritems) { 3190 if (slot >= nritems - 1) { 3191 ret = btrfs_next_leaf(root, path); 3192 if (ret) 3193 break; 3194 leaf = path->nodes[0]; 3195 nritems = btrfs_header_nritems(leaf); 3196 slot = path->slots[0]; 3197 } else { 3198 slot++; 3199 path->slots[0]++; 3200 } 3201 } 3202 3203 advance = 1; 3204 item = btrfs_item_nr(leaf, slot); 3205 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3206 3207 if (found_key.objectid != key.objectid) 3208 break; 3209 if (btrfs_key_type(&found_key) != key_type) 3210 break; 3211 if (found_key.offset < filp->f_pos) 3212 continue; 3213 3214 filp->f_pos = found_key.offset; 3215 3216 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3217 di_cur = 0; 3218 di_total = btrfs_item_size(leaf, item); 3219 3220 while (di_cur < di_total) { 3221 struct btrfs_key location; 3222 3223 name_len = btrfs_dir_name_len(leaf, di); 3224 if (name_len <= sizeof(tmp_name)) { 3225 name_ptr = tmp_name; 3226 } else { 3227 name_ptr = kmalloc(name_len, GFP_NOFS); 3228 if (!name_ptr) { 3229 ret = -ENOMEM; 3230 goto err; 3231 } 3232 } 3233 read_extent_buffer(leaf, name_ptr, 3234 (unsigned long)(di + 1), name_len); 3235 3236 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3237 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3238 3239 /* is this a reference to our own snapshot? If so 3240 * skip it 3241 */ 3242 if (location.type == BTRFS_ROOT_ITEM_KEY && 3243 location.objectid == root->root_key.objectid) { 3244 over = 0; 3245 goto skip; 3246 } 3247 over = filldir(dirent, name_ptr, name_len, 3248 found_key.offset, location.objectid, 3249 d_type); 3250 3251 skip: 3252 if (name_ptr != tmp_name) 3253 kfree(name_ptr); 3254 3255 if (over) 3256 goto nopos; 3257 di_len = btrfs_dir_name_len(leaf, di) + 3258 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3259 di_cur += di_len; 3260 di = (struct btrfs_dir_item *)((char *)di + di_len); 3261 } 3262 } 3263 3264 /* Reached end of directory/root. Bump pos past the last item. */ 3265 if (key_type == BTRFS_DIR_INDEX_KEY) 3266 filp->f_pos = INT_LIMIT(off_t); 3267 else 3268 filp->f_pos++; 3269 nopos: 3270 ret = 0; 3271 err: 3272 btrfs_free_path(path); 3273 return ret; 3274 } 3275 3276 int btrfs_write_inode(struct inode *inode, int wait) 3277 { 3278 struct btrfs_root *root = BTRFS_I(inode)->root; 3279 struct btrfs_trans_handle *trans; 3280 int ret = 0; 3281 3282 if (root->fs_info->btree_inode == inode) 3283 return 0; 3284 3285 if (wait) { 3286 trans = btrfs_join_transaction(root, 1); 3287 btrfs_set_trans_block_group(trans, inode); 3288 ret = btrfs_commit_transaction(trans, root); 3289 } 3290 return ret; 3291 } 3292 3293 /* 3294 * This is somewhat expensive, updating the tree every time the 3295 * inode changes. But, it is most likely to find the inode in cache. 3296 * FIXME, needs more benchmarking...there are no reasons other than performance 3297 * to keep or drop this code. 3298 */ 3299 void btrfs_dirty_inode(struct inode *inode) 3300 { 3301 struct btrfs_root *root = BTRFS_I(inode)->root; 3302 struct btrfs_trans_handle *trans; 3303 3304 trans = btrfs_join_transaction(root, 1); 3305 btrfs_set_trans_block_group(trans, inode); 3306 btrfs_update_inode(trans, root, inode); 3307 btrfs_end_transaction(trans, root); 3308 } 3309 3310 /* 3311 * find the highest existing sequence number in a directory 3312 * and then set the in-memory index_cnt variable to reflect 3313 * free sequence numbers 3314 */ 3315 static int btrfs_set_inode_index_count(struct inode *inode) 3316 { 3317 struct btrfs_root *root = BTRFS_I(inode)->root; 3318 struct btrfs_key key, found_key; 3319 struct btrfs_path *path; 3320 struct extent_buffer *leaf; 3321 int ret; 3322 3323 key.objectid = inode->i_ino; 3324 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3325 key.offset = (u64)-1; 3326 3327 path = btrfs_alloc_path(); 3328 if (!path) 3329 return -ENOMEM; 3330 3331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3332 if (ret < 0) 3333 goto out; 3334 /* FIXME: we should be able to handle this */ 3335 if (ret == 0) 3336 goto out; 3337 ret = 0; 3338 3339 /* 3340 * MAGIC NUMBER EXPLANATION: 3341 * since we search a directory based on f_pos we have to start at 2 3342 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3343 * else has to start at 2 3344 */ 3345 if (path->slots[0] == 0) { 3346 BTRFS_I(inode)->index_cnt = 2; 3347 goto out; 3348 } 3349 3350 path->slots[0]--; 3351 3352 leaf = path->nodes[0]; 3353 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3354 3355 if (found_key.objectid != inode->i_ino || 3356 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3357 BTRFS_I(inode)->index_cnt = 2; 3358 goto out; 3359 } 3360 3361 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3362 out: 3363 btrfs_free_path(path); 3364 return ret; 3365 } 3366 3367 /* 3368 * helper to find a free sequence number in a given directory. This current 3369 * code is very simple, later versions will do smarter things in the btree 3370 */ 3371 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3372 { 3373 int ret = 0; 3374 3375 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3376 ret = btrfs_set_inode_index_count(dir); 3377 if (ret) 3378 return ret; 3379 } 3380 3381 *index = BTRFS_I(dir)->index_cnt; 3382 BTRFS_I(dir)->index_cnt++; 3383 3384 return ret; 3385 } 3386 3387 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3388 struct btrfs_root *root, 3389 struct inode *dir, 3390 const char *name, int name_len, 3391 u64 ref_objectid, u64 objectid, 3392 u64 alloc_hint, int mode, u64 *index) 3393 { 3394 struct inode *inode; 3395 struct btrfs_inode_item *inode_item; 3396 struct btrfs_key *location; 3397 struct btrfs_path *path; 3398 struct btrfs_inode_ref *ref; 3399 struct btrfs_key key[2]; 3400 u32 sizes[2]; 3401 unsigned long ptr; 3402 int ret; 3403 int owner; 3404 3405 path = btrfs_alloc_path(); 3406 BUG_ON(!path); 3407 3408 inode = new_inode(root->fs_info->sb); 3409 if (!inode) 3410 return ERR_PTR(-ENOMEM); 3411 3412 if (dir) { 3413 ret = btrfs_set_inode_index(dir, index); 3414 if (ret) 3415 return ERR_PTR(ret); 3416 } 3417 /* 3418 * index_cnt is ignored for everything but a dir, 3419 * btrfs_get_inode_index_count has an explanation for the magic 3420 * number 3421 */ 3422 init_btrfs_i(inode); 3423 BTRFS_I(inode)->index_cnt = 2; 3424 BTRFS_I(inode)->root = root; 3425 BTRFS_I(inode)->generation = trans->transid; 3426 btrfs_set_inode_space_info(root, inode); 3427 3428 if (mode & S_IFDIR) 3429 owner = 0; 3430 else 3431 owner = 1; 3432 BTRFS_I(inode)->block_group = 3433 btrfs_find_block_group(root, 0, alloc_hint, owner); 3434 if ((mode & S_IFREG)) { 3435 if (btrfs_test_opt(root, NODATASUM)) 3436 btrfs_set_flag(inode, NODATASUM); 3437 if (btrfs_test_opt(root, NODATACOW)) 3438 btrfs_set_flag(inode, NODATACOW); 3439 } 3440 3441 key[0].objectid = objectid; 3442 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3443 key[0].offset = 0; 3444 3445 key[1].objectid = objectid; 3446 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3447 key[1].offset = ref_objectid; 3448 3449 sizes[0] = sizeof(struct btrfs_inode_item); 3450 sizes[1] = name_len + sizeof(*ref); 3451 3452 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3453 if (ret != 0) 3454 goto fail; 3455 3456 if (objectid > root->highest_inode) 3457 root->highest_inode = objectid; 3458 3459 inode->i_uid = current_fsuid(); 3460 3461 if (dir && (dir->i_mode & S_ISGID)) { 3462 inode->i_gid = dir->i_gid; 3463 if (S_ISDIR(mode)) 3464 mode |= S_ISGID; 3465 } else 3466 inode->i_gid = current_fsgid(); 3467 3468 inode->i_mode = mode; 3469 inode->i_ino = objectid; 3470 inode_set_bytes(inode, 0); 3471 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3472 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3473 struct btrfs_inode_item); 3474 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3475 3476 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3477 struct btrfs_inode_ref); 3478 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3479 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3480 ptr = (unsigned long)(ref + 1); 3481 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3482 3483 btrfs_mark_buffer_dirty(path->nodes[0]); 3484 btrfs_free_path(path); 3485 3486 location = &BTRFS_I(inode)->location; 3487 location->objectid = objectid; 3488 location->offset = 0; 3489 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3490 3491 insert_inode_hash(inode); 3492 return inode; 3493 fail: 3494 if (dir) 3495 BTRFS_I(dir)->index_cnt--; 3496 btrfs_free_path(path); 3497 return ERR_PTR(ret); 3498 } 3499 3500 static inline u8 btrfs_inode_type(struct inode *inode) 3501 { 3502 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3503 } 3504 3505 /* 3506 * utility function to add 'inode' into 'parent_inode' with 3507 * a give name and a given sequence number. 3508 * if 'add_backref' is true, also insert a backref from the 3509 * inode to the parent directory. 3510 */ 3511 int btrfs_add_link(struct btrfs_trans_handle *trans, 3512 struct inode *parent_inode, struct inode *inode, 3513 const char *name, int name_len, int add_backref, u64 index) 3514 { 3515 int ret; 3516 struct btrfs_key key; 3517 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3518 3519 key.objectid = inode->i_ino; 3520 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3521 key.offset = 0; 3522 3523 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3524 parent_inode->i_ino, 3525 &key, btrfs_inode_type(inode), 3526 index); 3527 if (ret == 0) { 3528 if (add_backref) { 3529 ret = btrfs_insert_inode_ref(trans, root, 3530 name, name_len, 3531 inode->i_ino, 3532 parent_inode->i_ino, 3533 index); 3534 } 3535 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3536 name_len * 2); 3537 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3538 ret = btrfs_update_inode(trans, root, parent_inode); 3539 } 3540 return ret; 3541 } 3542 3543 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3544 struct dentry *dentry, struct inode *inode, 3545 int backref, u64 index) 3546 { 3547 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3548 inode, dentry->d_name.name, 3549 dentry->d_name.len, backref, index); 3550 if (!err) { 3551 d_instantiate(dentry, inode); 3552 return 0; 3553 } 3554 if (err > 0) 3555 err = -EEXIST; 3556 return err; 3557 } 3558 3559 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3560 int mode, dev_t rdev) 3561 { 3562 struct btrfs_trans_handle *trans; 3563 struct btrfs_root *root = BTRFS_I(dir)->root; 3564 struct inode *inode = NULL; 3565 int err; 3566 int drop_inode = 0; 3567 u64 objectid; 3568 unsigned long nr = 0; 3569 u64 index = 0; 3570 3571 if (!new_valid_dev(rdev)) 3572 return -EINVAL; 3573 3574 err = btrfs_check_metadata_free_space(root); 3575 if (err) 3576 goto fail; 3577 3578 trans = btrfs_start_transaction(root, 1); 3579 btrfs_set_trans_block_group(trans, dir); 3580 3581 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3582 if (err) { 3583 err = -ENOSPC; 3584 goto out_unlock; 3585 } 3586 3587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3588 dentry->d_name.len, 3589 dentry->d_parent->d_inode->i_ino, objectid, 3590 BTRFS_I(dir)->block_group, mode, &index); 3591 err = PTR_ERR(inode); 3592 if (IS_ERR(inode)) 3593 goto out_unlock; 3594 3595 err = btrfs_init_inode_security(inode, dir); 3596 if (err) { 3597 drop_inode = 1; 3598 goto out_unlock; 3599 } 3600 3601 btrfs_set_trans_block_group(trans, inode); 3602 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3603 if (err) 3604 drop_inode = 1; 3605 else { 3606 inode->i_op = &btrfs_special_inode_operations; 3607 init_special_inode(inode, inode->i_mode, rdev); 3608 btrfs_update_inode(trans, root, inode); 3609 } 3610 dir->i_sb->s_dirt = 1; 3611 btrfs_update_inode_block_group(trans, inode); 3612 btrfs_update_inode_block_group(trans, dir); 3613 out_unlock: 3614 nr = trans->blocks_used; 3615 btrfs_end_transaction_throttle(trans, root); 3616 fail: 3617 if (drop_inode) { 3618 inode_dec_link_count(inode); 3619 iput(inode); 3620 } 3621 btrfs_btree_balance_dirty(root, nr); 3622 return err; 3623 } 3624 3625 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3626 int mode, struct nameidata *nd) 3627 { 3628 struct btrfs_trans_handle *trans; 3629 struct btrfs_root *root = BTRFS_I(dir)->root; 3630 struct inode *inode = NULL; 3631 int err; 3632 int drop_inode = 0; 3633 unsigned long nr = 0; 3634 u64 objectid; 3635 u64 index = 0; 3636 3637 err = btrfs_check_metadata_free_space(root); 3638 if (err) 3639 goto fail; 3640 trans = btrfs_start_transaction(root, 1); 3641 btrfs_set_trans_block_group(trans, dir); 3642 3643 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3644 if (err) { 3645 err = -ENOSPC; 3646 goto out_unlock; 3647 } 3648 3649 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3650 dentry->d_name.len, 3651 dentry->d_parent->d_inode->i_ino, 3652 objectid, BTRFS_I(dir)->block_group, mode, 3653 &index); 3654 err = PTR_ERR(inode); 3655 if (IS_ERR(inode)) 3656 goto out_unlock; 3657 3658 err = btrfs_init_inode_security(inode, dir); 3659 if (err) { 3660 drop_inode = 1; 3661 goto out_unlock; 3662 } 3663 3664 btrfs_set_trans_block_group(trans, inode); 3665 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3666 if (err) 3667 drop_inode = 1; 3668 else { 3669 inode->i_mapping->a_ops = &btrfs_aops; 3670 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3671 inode->i_fop = &btrfs_file_operations; 3672 inode->i_op = &btrfs_file_inode_operations; 3673 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3674 } 3675 dir->i_sb->s_dirt = 1; 3676 btrfs_update_inode_block_group(trans, inode); 3677 btrfs_update_inode_block_group(trans, dir); 3678 out_unlock: 3679 nr = trans->blocks_used; 3680 btrfs_end_transaction_throttle(trans, root); 3681 fail: 3682 if (drop_inode) { 3683 inode_dec_link_count(inode); 3684 iput(inode); 3685 } 3686 btrfs_btree_balance_dirty(root, nr); 3687 return err; 3688 } 3689 3690 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3691 struct dentry *dentry) 3692 { 3693 struct btrfs_trans_handle *trans; 3694 struct btrfs_root *root = BTRFS_I(dir)->root; 3695 struct inode *inode = old_dentry->d_inode; 3696 u64 index; 3697 unsigned long nr = 0; 3698 int err; 3699 int drop_inode = 0; 3700 3701 if (inode->i_nlink == 0) 3702 return -ENOENT; 3703 3704 btrfs_inc_nlink(inode); 3705 err = btrfs_check_metadata_free_space(root); 3706 if (err) 3707 goto fail; 3708 err = btrfs_set_inode_index(dir, &index); 3709 if (err) 3710 goto fail; 3711 3712 trans = btrfs_start_transaction(root, 1); 3713 3714 btrfs_set_trans_block_group(trans, dir); 3715 atomic_inc(&inode->i_count); 3716 3717 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3718 3719 if (err) 3720 drop_inode = 1; 3721 3722 dir->i_sb->s_dirt = 1; 3723 btrfs_update_inode_block_group(trans, dir); 3724 err = btrfs_update_inode(trans, root, inode); 3725 3726 if (err) 3727 drop_inode = 1; 3728 3729 nr = trans->blocks_used; 3730 btrfs_end_transaction_throttle(trans, root); 3731 fail: 3732 if (drop_inode) { 3733 inode_dec_link_count(inode); 3734 iput(inode); 3735 } 3736 btrfs_btree_balance_dirty(root, nr); 3737 return err; 3738 } 3739 3740 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3741 { 3742 struct inode *inode = NULL; 3743 struct btrfs_trans_handle *trans; 3744 struct btrfs_root *root = BTRFS_I(dir)->root; 3745 int err = 0; 3746 int drop_on_err = 0; 3747 u64 objectid = 0; 3748 u64 index = 0; 3749 unsigned long nr = 1; 3750 3751 err = btrfs_check_metadata_free_space(root); 3752 if (err) 3753 goto out_unlock; 3754 3755 trans = btrfs_start_transaction(root, 1); 3756 btrfs_set_trans_block_group(trans, dir); 3757 3758 if (IS_ERR(trans)) { 3759 err = PTR_ERR(trans); 3760 goto out_unlock; 3761 } 3762 3763 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3764 if (err) { 3765 err = -ENOSPC; 3766 goto out_unlock; 3767 } 3768 3769 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3770 dentry->d_name.len, 3771 dentry->d_parent->d_inode->i_ino, objectid, 3772 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3773 &index); 3774 if (IS_ERR(inode)) { 3775 err = PTR_ERR(inode); 3776 goto out_fail; 3777 } 3778 3779 drop_on_err = 1; 3780 3781 err = btrfs_init_inode_security(inode, dir); 3782 if (err) 3783 goto out_fail; 3784 3785 inode->i_op = &btrfs_dir_inode_operations; 3786 inode->i_fop = &btrfs_dir_file_operations; 3787 btrfs_set_trans_block_group(trans, inode); 3788 3789 btrfs_i_size_write(inode, 0); 3790 err = btrfs_update_inode(trans, root, inode); 3791 if (err) 3792 goto out_fail; 3793 3794 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3795 inode, dentry->d_name.name, 3796 dentry->d_name.len, 0, index); 3797 if (err) 3798 goto out_fail; 3799 3800 d_instantiate(dentry, inode); 3801 drop_on_err = 0; 3802 dir->i_sb->s_dirt = 1; 3803 btrfs_update_inode_block_group(trans, inode); 3804 btrfs_update_inode_block_group(trans, dir); 3805 3806 out_fail: 3807 nr = trans->blocks_used; 3808 btrfs_end_transaction_throttle(trans, root); 3809 3810 out_unlock: 3811 if (drop_on_err) 3812 iput(inode); 3813 btrfs_btree_balance_dirty(root, nr); 3814 return err; 3815 } 3816 3817 /* helper for btfs_get_extent. Given an existing extent in the tree, 3818 * and an extent that you want to insert, deal with overlap and insert 3819 * the new extent into the tree. 3820 */ 3821 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3822 struct extent_map *existing, 3823 struct extent_map *em, 3824 u64 map_start, u64 map_len) 3825 { 3826 u64 start_diff; 3827 3828 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3829 start_diff = map_start - em->start; 3830 em->start = map_start; 3831 em->len = map_len; 3832 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3833 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3834 em->block_start += start_diff; 3835 em->block_len -= start_diff; 3836 } 3837 return add_extent_mapping(em_tree, em); 3838 } 3839 3840 static noinline int uncompress_inline(struct btrfs_path *path, 3841 struct inode *inode, struct page *page, 3842 size_t pg_offset, u64 extent_offset, 3843 struct btrfs_file_extent_item *item) 3844 { 3845 int ret; 3846 struct extent_buffer *leaf = path->nodes[0]; 3847 char *tmp; 3848 size_t max_size; 3849 unsigned long inline_size; 3850 unsigned long ptr; 3851 3852 WARN_ON(pg_offset != 0); 3853 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3854 inline_size = btrfs_file_extent_inline_item_len(leaf, 3855 btrfs_item_nr(leaf, path->slots[0])); 3856 tmp = kmalloc(inline_size, GFP_NOFS); 3857 ptr = btrfs_file_extent_inline_start(item); 3858 3859 read_extent_buffer(leaf, tmp, ptr, inline_size); 3860 3861 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3862 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3863 inline_size, max_size); 3864 if (ret) { 3865 char *kaddr = kmap_atomic(page, KM_USER0); 3866 unsigned long copy_size = min_t(u64, 3867 PAGE_CACHE_SIZE - pg_offset, 3868 max_size - extent_offset); 3869 memset(kaddr + pg_offset, 0, copy_size); 3870 kunmap_atomic(kaddr, KM_USER0); 3871 } 3872 kfree(tmp); 3873 return 0; 3874 } 3875 3876 /* 3877 * a bit scary, this does extent mapping from logical file offset to the disk. 3878 * the ugly parts come from merging extents from the disk with the in-ram 3879 * representation. This gets more complex because of the data=ordered code, 3880 * where the in-ram extents might be locked pending data=ordered completion. 3881 * 3882 * This also copies inline extents directly into the page. 3883 */ 3884 3885 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3886 size_t pg_offset, u64 start, u64 len, 3887 int create) 3888 { 3889 int ret; 3890 int err = 0; 3891 u64 bytenr; 3892 u64 extent_start = 0; 3893 u64 extent_end = 0; 3894 u64 objectid = inode->i_ino; 3895 u32 found_type; 3896 struct btrfs_path *path = NULL; 3897 struct btrfs_root *root = BTRFS_I(inode)->root; 3898 struct btrfs_file_extent_item *item; 3899 struct extent_buffer *leaf; 3900 struct btrfs_key found_key; 3901 struct extent_map *em = NULL; 3902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3904 struct btrfs_trans_handle *trans = NULL; 3905 int compressed; 3906 3907 again: 3908 spin_lock(&em_tree->lock); 3909 em = lookup_extent_mapping(em_tree, start, len); 3910 if (em) 3911 em->bdev = root->fs_info->fs_devices->latest_bdev; 3912 spin_unlock(&em_tree->lock); 3913 3914 if (em) { 3915 if (em->start > start || em->start + em->len <= start) 3916 free_extent_map(em); 3917 else if (em->block_start == EXTENT_MAP_INLINE && page) 3918 free_extent_map(em); 3919 else 3920 goto out; 3921 } 3922 em = alloc_extent_map(GFP_NOFS); 3923 if (!em) { 3924 err = -ENOMEM; 3925 goto out; 3926 } 3927 em->bdev = root->fs_info->fs_devices->latest_bdev; 3928 em->start = EXTENT_MAP_HOLE; 3929 em->orig_start = EXTENT_MAP_HOLE; 3930 em->len = (u64)-1; 3931 em->block_len = (u64)-1; 3932 3933 if (!path) { 3934 path = btrfs_alloc_path(); 3935 BUG_ON(!path); 3936 } 3937 3938 ret = btrfs_lookup_file_extent(trans, root, path, 3939 objectid, start, trans != NULL); 3940 if (ret < 0) { 3941 err = ret; 3942 goto out; 3943 } 3944 3945 if (ret != 0) { 3946 if (path->slots[0] == 0) 3947 goto not_found; 3948 path->slots[0]--; 3949 } 3950 3951 leaf = path->nodes[0]; 3952 item = btrfs_item_ptr(leaf, path->slots[0], 3953 struct btrfs_file_extent_item); 3954 /* are we inside the extent that was found? */ 3955 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3956 found_type = btrfs_key_type(&found_key); 3957 if (found_key.objectid != objectid || 3958 found_type != BTRFS_EXTENT_DATA_KEY) { 3959 goto not_found; 3960 } 3961 3962 found_type = btrfs_file_extent_type(leaf, item); 3963 extent_start = found_key.offset; 3964 compressed = btrfs_file_extent_compression(leaf, item); 3965 if (found_type == BTRFS_FILE_EXTENT_REG || 3966 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 3967 extent_end = extent_start + 3968 btrfs_file_extent_num_bytes(leaf, item); 3969 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 3970 size_t size; 3971 size = btrfs_file_extent_inline_len(leaf, item); 3972 extent_end = (extent_start + size + root->sectorsize - 1) & 3973 ~((u64)root->sectorsize - 1); 3974 } 3975 3976 if (start >= extent_end) { 3977 path->slots[0]++; 3978 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3979 ret = btrfs_next_leaf(root, path); 3980 if (ret < 0) { 3981 err = ret; 3982 goto out; 3983 } 3984 if (ret > 0) 3985 goto not_found; 3986 leaf = path->nodes[0]; 3987 } 3988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3989 if (found_key.objectid != objectid || 3990 found_key.type != BTRFS_EXTENT_DATA_KEY) 3991 goto not_found; 3992 if (start + len <= found_key.offset) 3993 goto not_found; 3994 em->start = start; 3995 em->len = found_key.offset - start; 3996 goto not_found_em; 3997 } 3998 3999 if (found_type == BTRFS_FILE_EXTENT_REG || 4000 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4001 em->start = extent_start; 4002 em->len = extent_end - extent_start; 4003 em->orig_start = extent_start - 4004 btrfs_file_extent_offset(leaf, item); 4005 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4006 if (bytenr == 0) { 4007 em->block_start = EXTENT_MAP_HOLE; 4008 goto insert; 4009 } 4010 if (compressed) { 4011 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4012 em->block_start = bytenr; 4013 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4014 item); 4015 } else { 4016 bytenr += btrfs_file_extent_offset(leaf, item); 4017 em->block_start = bytenr; 4018 em->block_len = em->len; 4019 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4020 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4021 } 4022 goto insert; 4023 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4024 unsigned long ptr; 4025 char *map; 4026 size_t size; 4027 size_t extent_offset; 4028 size_t copy_size; 4029 4030 em->block_start = EXTENT_MAP_INLINE; 4031 if (!page || create) { 4032 em->start = extent_start; 4033 em->len = extent_end - extent_start; 4034 goto out; 4035 } 4036 4037 size = btrfs_file_extent_inline_len(leaf, item); 4038 extent_offset = page_offset(page) + pg_offset - extent_start; 4039 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4040 size - extent_offset); 4041 em->start = extent_start + extent_offset; 4042 em->len = (copy_size + root->sectorsize - 1) & 4043 ~((u64)root->sectorsize - 1); 4044 em->orig_start = EXTENT_MAP_INLINE; 4045 if (compressed) 4046 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4047 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4048 if (create == 0 && !PageUptodate(page)) { 4049 if (btrfs_file_extent_compression(leaf, item) == 4050 BTRFS_COMPRESS_ZLIB) { 4051 ret = uncompress_inline(path, inode, page, 4052 pg_offset, 4053 extent_offset, item); 4054 BUG_ON(ret); 4055 } else { 4056 map = kmap(page); 4057 read_extent_buffer(leaf, map + pg_offset, ptr, 4058 copy_size); 4059 kunmap(page); 4060 } 4061 flush_dcache_page(page); 4062 } else if (create && PageUptodate(page)) { 4063 if (!trans) { 4064 kunmap(page); 4065 free_extent_map(em); 4066 em = NULL; 4067 btrfs_release_path(root, path); 4068 trans = btrfs_join_transaction(root, 1); 4069 goto again; 4070 } 4071 map = kmap(page); 4072 write_extent_buffer(leaf, map + pg_offset, ptr, 4073 copy_size); 4074 kunmap(page); 4075 btrfs_mark_buffer_dirty(leaf); 4076 } 4077 set_extent_uptodate(io_tree, em->start, 4078 extent_map_end(em) - 1, GFP_NOFS); 4079 goto insert; 4080 } else { 4081 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4082 WARN_ON(1); 4083 } 4084 not_found: 4085 em->start = start; 4086 em->len = len; 4087 not_found_em: 4088 em->block_start = EXTENT_MAP_HOLE; 4089 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4090 insert: 4091 btrfs_release_path(root, path); 4092 if (em->start > start || extent_map_end(em) <= start) { 4093 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4094 "[%llu %llu]\n", (unsigned long long)em->start, 4095 (unsigned long long)em->len, 4096 (unsigned long long)start, 4097 (unsigned long long)len); 4098 err = -EIO; 4099 goto out; 4100 } 4101 4102 err = 0; 4103 spin_lock(&em_tree->lock); 4104 ret = add_extent_mapping(em_tree, em); 4105 /* it is possible that someone inserted the extent into the tree 4106 * while we had the lock dropped. It is also possible that 4107 * an overlapping map exists in the tree 4108 */ 4109 if (ret == -EEXIST) { 4110 struct extent_map *existing; 4111 4112 ret = 0; 4113 4114 existing = lookup_extent_mapping(em_tree, start, len); 4115 if (existing && (existing->start > start || 4116 existing->start + existing->len <= start)) { 4117 free_extent_map(existing); 4118 existing = NULL; 4119 } 4120 if (!existing) { 4121 existing = lookup_extent_mapping(em_tree, em->start, 4122 em->len); 4123 if (existing) { 4124 err = merge_extent_mapping(em_tree, existing, 4125 em, start, 4126 root->sectorsize); 4127 free_extent_map(existing); 4128 if (err) { 4129 free_extent_map(em); 4130 em = NULL; 4131 } 4132 } else { 4133 err = -EIO; 4134 free_extent_map(em); 4135 em = NULL; 4136 } 4137 } else { 4138 free_extent_map(em); 4139 em = existing; 4140 err = 0; 4141 } 4142 } 4143 spin_unlock(&em_tree->lock); 4144 out: 4145 if (path) 4146 btrfs_free_path(path); 4147 if (trans) { 4148 ret = btrfs_end_transaction(trans, root); 4149 if (!err) 4150 err = ret; 4151 } 4152 if (err) { 4153 free_extent_map(em); 4154 WARN_ON(1); 4155 return ERR_PTR(err); 4156 } 4157 return em; 4158 } 4159 4160 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4161 const struct iovec *iov, loff_t offset, 4162 unsigned long nr_segs) 4163 { 4164 return -EINVAL; 4165 } 4166 4167 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4168 __u64 start, __u64 len) 4169 { 4170 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4171 } 4172 4173 int btrfs_readpage(struct file *file, struct page *page) 4174 { 4175 struct extent_io_tree *tree; 4176 tree = &BTRFS_I(page->mapping->host)->io_tree; 4177 return extent_read_full_page(tree, page, btrfs_get_extent); 4178 } 4179 4180 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4181 { 4182 struct extent_io_tree *tree; 4183 4184 4185 if (current->flags & PF_MEMALLOC) { 4186 redirty_page_for_writepage(wbc, page); 4187 unlock_page(page); 4188 return 0; 4189 } 4190 tree = &BTRFS_I(page->mapping->host)->io_tree; 4191 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4192 } 4193 4194 int btrfs_writepages(struct address_space *mapping, 4195 struct writeback_control *wbc) 4196 { 4197 struct extent_io_tree *tree; 4198 4199 tree = &BTRFS_I(mapping->host)->io_tree; 4200 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4201 } 4202 4203 static int 4204 btrfs_readpages(struct file *file, struct address_space *mapping, 4205 struct list_head *pages, unsigned nr_pages) 4206 { 4207 struct extent_io_tree *tree; 4208 tree = &BTRFS_I(mapping->host)->io_tree; 4209 return extent_readpages(tree, mapping, pages, nr_pages, 4210 btrfs_get_extent); 4211 } 4212 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4213 { 4214 struct extent_io_tree *tree; 4215 struct extent_map_tree *map; 4216 int ret; 4217 4218 tree = &BTRFS_I(page->mapping->host)->io_tree; 4219 map = &BTRFS_I(page->mapping->host)->extent_tree; 4220 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4221 if (ret == 1) { 4222 ClearPagePrivate(page); 4223 set_page_private(page, 0); 4224 page_cache_release(page); 4225 } 4226 return ret; 4227 } 4228 4229 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4230 { 4231 if (PageWriteback(page) || PageDirty(page)) 4232 return 0; 4233 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4234 } 4235 4236 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4237 { 4238 struct extent_io_tree *tree; 4239 struct btrfs_ordered_extent *ordered; 4240 u64 page_start = page_offset(page); 4241 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4242 4243 wait_on_page_writeback(page); 4244 tree = &BTRFS_I(page->mapping->host)->io_tree; 4245 if (offset) { 4246 btrfs_releasepage(page, GFP_NOFS); 4247 return; 4248 } 4249 4250 lock_extent(tree, page_start, page_end, GFP_NOFS); 4251 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4252 page_offset(page)); 4253 if (ordered) { 4254 /* 4255 * IO on this page will never be started, so we need 4256 * to account for any ordered extents now 4257 */ 4258 clear_extent_bit(tree, page_start, page_end, 4259 EXTENT_DIRTY | EXTENT_DELALLOC | 4260 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4261 btrfs_finish_ordered_io(page->mapping->host, 4262 page_start, page_end); 4263 btrfs_put_ordered_extent(ordered); 4264 lock_extent(tree, page_start, page_end, GFP_NOFS); 4265 } 4266 clear_extent_bit(tree, page_start, page_end, 4267 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4268 EXTENT_ORDERED, 4269 1, 1, GFP_NOFS); 4270 __btrfs_releasepage(page, GFP_NOFS); 4271 4272 ClearPageChecked(page); 4273 if (PagePrivate(page)) { 4274 ClearPagePrivate(page); 4275 set_page_private(page, 0); 4276 page_cache_release(page); 4277 } 4278 } 4279 4280 /* 4281 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4282 * called from a page fault handler when a page is first dirtied. Hence we must 4283 * be careful to check for EOF conditions here. We set the page up correctly 4284 * for a written page which means we get ENOSPC checking when writing into 4285 * holes and correct delalloc and unwritten extent mapping on filesystems that 4286 * support these features. 4287 * 4288 * We are not allowed to take the i_mutex here so we have to play games to 4289 * protect against truncate races as the page could now be beyond EOF. Because 4290 * vmtruncate() writes the inode size before removing pages, once we have the 4291 * page lock we can determine safely if the page is beyond EOF. If it is not 4292 * beyond EOF, then the page is guaranteed safe against truncation until we 4293 * unlock the page. 4294 */ 4295 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4296 { 4297 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4298 struct btrfs_root *root = BTRFS_I(inode)->root; 4299 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4300 struct btrfs_ordered_extent *ordered; 4301 char *kaddr; 4302 unsigned long zero_start; 4303 loff_t size; 4304 int ret; 4305 u64 page_start; 4306 u64 page_end; 4307 4308 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 4309 if (ret) 4310 goto out; 4311 4312 ret = -EINVAL; 4313 again: 4314 lock_page(page); 4315 size = i_size_read(inode); 4316 page_start = page_offset(page); 4317 page_end = page_start + PAGE_CACHE_SIZE - 1; 4318 4319 if ((page->mapping != inode->i_mapping) || 4320 (page_start >= size)) { 4321 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 4322 /* page got truncated out from underneath us */ 4323 goto out_unlock; 4324 } 4325 wait_on_page_writeback(page); 4326 4327 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4328 set_page_extent_mapped(page); 4329 4330 /* 4331 * we can't set the delalloc bits if there are pending ordered 4332 * extents. Drop our locks and wait for them to finish 4333 */ 4334 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4335 if (ordered) { 4336 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4337 unlock_page(page); 4338 btrfs_start_ordered_extent(inode, ordered, 1); 4339 btrfs_put_ordered_extent(ordered); 4340 goto again; 4341 } 4342 4343 btrfs_set_extent_delalloc(inode, page_start, page_end); 4344 ret = 0; 4345 4346 /* page is wholly or partially inside EOF */ 4347 if (page_start + PAGE_CACHE_SIZE > size) 4348 zero_start = size & ~PAGE_CACHE_MASK; 4349 else 4350 zero_start = PAGE_CACHE_SIZE; 4351 4352 if (zero_start != PAGE_CACHE_SIZE) { 4353 kaddr = kmap(page); 4354 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4355 flush_dcache_page(page); 4356 kunmap(page); 4357 } 4358 ClearPageChecked(page); 4359 set_page_dirty(page); 4360 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4361 4362 out_unlock: 4363 unlock_page(page); 4364 out: 4365 return ret; 4366 } 4367 4368 static void btrfs_truncate(struct inode *inode) 4369 { 4370 struct btrfs_root *root = BTRFS_I(inode)->root; 4371 int ret; 4372 struct btrfs_trans_handle *trans; 4373 unsigned long nr; 4374 u64 mask = root->sectorsize - 1; 4375 4376 if (!S_ISREG(inode->i_mode)) 4377 return; 4378 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4379 return; 4380 4381 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4382 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4383 4384 trans = btrfs_start_transaction(root, 1); 4385 btrfs_set_trans_block_group(trans, inode); 4386 btrfs_i_size_write(inode, inode->i_size); 4387 4388 ret = btrfs_orphan_add(trans, inode); 4389 if (ret) 4390 goto out; 4391 /* FIXME, add redo link to tree so we don't leak on crash */ 4392 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4393 BTRFS_EXTENT_DATA_KEY); 4394 btrfs_update_inode(trans, root, inode); 4395 4396 ret = btrfs_orphan_del(trans, inode); 4397 BUG_ON(ret); 4398 4399 out: 4400 nr = trans->blocks_used; 4401 ret = btrfs_end_transaction_throttle(trans, root); 4402 BUG_ON(ret); 4403 btrfs_btree_balance_dirty(root, nr); 4404 } 4405 4406 /* 4407 * create a new subvolume directory/inode (helper for the ioctl). 4408 */ 4409 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4410 struct btrfs_root *new_root, struct dentry *dentry, 4411 u64 new_dirid, u64 alloc_hint) 4412 { 4413 struct inode *inode; 4414 int error; 4415 u64 index = 0; 4416 4417 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4418 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4419 if (IS_ERR(inode)) 4420 return PTR_ERR(inode); 4421 inode->i_op = &btrfs_dir_inode_operations; 4422 inode->i_fop = &btrfs_dir_file_operations; 4423 4424 inode->i_nlink = 1; 4425 btrfs_i_size_write(inode, 0); 4426 4427 error = btrfs_update_inode(trans, new_root, inode); 4428 if (error) 4429 return error; 4430 4431 d_instantiate(dentry, inode); 4432 return 0; 4433 } 4434 4435 /* helper function for file defrag and space balancing. This 4436 * forces readahead on a given range of bytes in an inode 4437 */ 4438 unsigned long btrfs_force_ra(struct address_space *mapping, 4439 struct file_ra_state *ra, struct file *file, 4440 pgoff_t offset, pgoff_t last_index) 4441 { 4442 pgoff_t req_size = last_index - offset + 1; 4443 4444 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4445 return offset + req_size; 4446 } 4447 4448 struct inode *btrfs_alloc_inode(struct super_block *sb) 4449 { 4450 struct btrfs_inode *ei; 4451 4452 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4453 if (!ei) 4454 return NULL; 4455 ei->last_trans = 0; 4456 ei->logged_trans = 0; 4457 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4458 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4459 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4460 INIT_LIST_HEAD(&ei->i_orphan); 4461 return &ei->vfs_inode; 4462 } 4463 4464 void btrfs_destroy_inode(struct inode *inode) 4465 { 4466 struct btrfs_ordered_extent *ordered; 4467 WARN_ON(!list_empty(&inode->i_dentry)); 4468 WARN_ON(inode->i_data.nrpages); 4469 4470 if (BTRFS_I(inode)->i_acl && 4471 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4472 posix_acl_release(BTRFS_I(inode)->i_acl); 4473 if (BTRFS_I(inode)->i_default_acl && 4474 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4475 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4476 4477 spin_lock(&BTRFS_I(inode)->root->list_lock); 4478 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4479 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4480 " list\n", inode->i_ino); 4481 dump_stack(); 4482 } 4483 spin_unlock(&BTRFS_I(inode)->root->list_lock); 4484 4485 while (1) { 4486 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4487 if (!ordered) 4488 break; 4489 else { 4490 printk(KERN_ERR "btrfs found ordered " 4491 "extent %llu %llu on inode cleanup\n", 4492 (unsigned long long)ordered->file_offset, 4493 (unsigned long long)ordered->len); 4494 btrfs_remove_ordered_extent(inode, ordered); 4495 btrfs_put_ordered_extent(ordered); 4496 btrfs_put_ordered_extent(ordered); 4497 } 4498 } 4499 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4500 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4501 } 4502 4503 static void init_once(void *foo) 4504 { 4505 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4506 4507 inode_init_once(&ei->vfs_inode); 4508 } 4509 4510 void btrfs_destroy_cachep(void) 4511 { 4512 if (btrfs_inode_cachep) 4513 kmem_cache_destroy(btrfs_inode_cachep); 4514 if (btrfs_trans_handle_cachep) 4515 kmem_cache_destroy(btrfs_trans_handle_cachep); 4516 if (btrfs_transaction_cachep) 4517 kmem_cache_destroy(btrfs_transaction_cachep); 4518 if (btrfs_bit_radix_cachep) 4519 kmem_cache_destroy(btrfs_bit_radix_cachep); 4520 if (btrfs_path_cachep) 4521 kmem_cache_destroy(btrfs_path_cachep); 4522 } 4523 4524 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4525 unsigned long extra_flags, 4526 void (*ctor)(void *)) 4527 { 4528 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4529 SLAB_MEM_SPREAD | extra_flags), ctor); 4530 } 4531 4532 int btrfs_init_cachep(void) 4533 { 4534 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4535 sizeof(struct btrfs_inode), 4536 0, init_once); 4537 if (!btrfs_inode_cachep) 4538 goto fail; 4539 btrfs_trans_handle_cachep = 4540 btrfs_cache_create("btrfs_trans_handle_cache", 4541 sizeof(struct btrfs_trans_handle), 4542 0, NULL); 4543 if (!btrfs_trans_handle_cachep) 4544 goto fail; 4545 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4546 sizeof(struct btrfs_transaction), 4547 0, NULL); 4548 if (!btrfs_transaction_cachep) 4549 goto fail; 4550 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4551 sizeof(struct btrfs_path), 4552 0, NULL); 4553 if (!btrfs_path_cachep) 4554 goto fail; 4555 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4556 SLAB_DESTROY_BY_RCU, NULL); 4557 if (!btrfs_bit_radix_cachep) 4558 goto fail; 4559 return 0; 4560 fail: 4561 btrfs_destroy_cachep(); 4562 return -ENOMEM; 4563 } 4564 4565 static int btrfs_getattr(struct vfsmount *mnt, 4566 struct dentry *dentry, struct kstat *stat) 4567 { 4568 struct inode *inode = dentry->d_inode; 4569 generic_fillattr(inode, stat); 4570 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4571 stat->blksize = PAGE_CACHE_SIZE; 4572 stat->blocks = (inode_get_bytes(inode) + 4573 BTRFS_I(inode)->delalloc_bytes) >> 9; 4574 return 0; 4575 } 4576 4577 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4578 struct inode *new_dir, struct dentry *new_dentry) 4579 { 4580 struct btrfs_trans_handle *trans; 4581 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4582 struct inode *new_inode = new_dentry->d_inode; 4583 struct inode *old_inode = old_dentry->d_inode; 4584 struct timespec ctime = CURRENT_TIME; 4585 u64 index = 0; 4586 int ret; 4587 4588 /* we're not allowed to rename between subvolumes */ 4589 if (BTRFS_I(old_inode)->root->root_key.objectid != 4590 BTRFS_I(new_dir)->root->root_key.objectid) 4591 return -EXDEV; 4592 4593 if (S_ISDIR(old_inode->i_mode) && new_inode && 4594 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4595 return -ENOTEMPTY; 4596 } 4597 4598 /* to rename a snapshot or subvolume, we need to juggle the 4599 * backrefs. This isn't coded yet 4600 */ 4601 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4602 return -EXDEV; 4603 4604 ret = btrfs_check_metadata_free_space(root); 4605 if (ret) 4606 goto out_unlock; 4607 4608 trans = btrfs_start_transaction(root, 1); 4609 4610 btrfs_set_trans_block_group(trans, new_dir); 4611 4612 btrfs_inc_nlink(old_dentry->d_inode); 4613 old_dir->i_ctime = old_dir->i_mtime = ctime; 4614 new_dir->i_ctime = new_dir->i_mtime = ctime; 4615 old_inode->i_ctime = ctime; 4616 4617 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4618 old_dentry->d_name.name, 4619 old_dentry->d_name.len); 4620 if (ret) 4621 goto out_fail; 4622 4623 if (new_inode) { 4624 new_inode->i_ctime = CURRENT_TIME; 4625 ret = btrfs_unlink_inode(trans, root, new_dir, 4626 new_dentry->d_inode, 4627 new_dentry->d_name.name, 4628 new_dentry->d_name.len); 4629 if (ret) 4630 goto out_fail; 4631 if (new_inode->i_nlink == 0) { 4632 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4633 if (ret) 4634 goto out_fail; 4635 } 4636 4637 } 4638 ret = btrfs_set_inode_index(new_dir, &index); 4639 if (ret) 4640 goto out_fail; 4641 4642 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4643 old_inode, new_dentry->d_name.name, 4644 new_dentry->d_name.len, 1, index); 4645 if (ret) 4646 goto out_fail; 4647 4648 out_fail: 4649 btrfs_end_transaction_throttle(trans, root); 4650 out_unlock: 4651 return ret; 4652 } 4653 4654 /* 4655 * some fairly slow code that needs optimization. This walks the list 4656 * of all the inodes with pending delalloc and forces them to disk. 4657 */ 4658 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4659 { 4660 struct list_head *head = &root->fs_info->delalloc_inodes; 4661 struct btrfs_inode *binode; 4662 struct inode *inode; 4663 4664 if (root->fs_info->sb->s_flags & MS_RDONLY) 4665 return -EROFS; 4666 4667 spin_lock(&root->fs_info->delalloc_lock); 4668 while (!list_empty(head)) { 4669 binode = list_entry(head->next, struct btrfs_inode, 4670 delalloc_inodes); 4671 inode = igrab(&binode->vfs_inode); 4672 if (!inode) 4673 list_del_init(&binode->delalloc_inodes); 4674 spin_unlock(&root->fs_info->delalloc_lock); 4675 if (inode) { 4676 filemap_flush(inode->i_mapping); 4677 iput(inode); 4678 } 4679 cond_resched(); 4680 spin_lock(&root->fs_info->delalloc_lock); 4681 } 4682 spin_unlock(&root->fs_info->delalloc_lock); 4683 4684 /* the filemap_flush will queue IO into the worker threads, but 4685 * we have to make sure the IO is actually started and that 4686 * ordered extents get created before we return 4687 */ 4688 atomic_inc(&root->fs_info->async_submit_draining); 4689 while (atomic_read(&root->fs_info->nr_async_submits) || 4690 atomic_read(&root->fs_info->async_delalloc_pages)) { 4691 wait_event(root->fs_info->async_submit_wait, 4692 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4693 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4694 } 4695 atomic_dec(&root->fs_info->async_submit_draining); 4696 return 0; 4697 } 4698 4699 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4700 const char *symname) 4701 { 4702 struct btrfs_trans_handle *trans; 4703 struct btrfs_root *root = BTRFS_I(dir)->root; 4704 struct btrfs_path *path; 4705 struct btrfs_key key; 4706 struct inode *inode = NULL; 4707 int err; 4708 int drop_inode = 0; 4709 u64 objectid; 4710 u64 index = 0 ; 4711 int name_len; 4712 int datasize; 4713 unsigned long ptr; 4714 struct btrfs_file_extent_item *ei; 4715 struct extent_buffer *leaf; 4716 unsigned long nr = 0; 4717 4718 name_len = strlen(symname) + 1; 4719 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4720 return -ENAMETOOLONG; 4721 4722 err = btrfs_check_metadata_free_space(root); 4723 if (err) 4724 goto out_fail; 4725 4726 trans = btrfs_start_transaction(root, 1); 4727 btrfs_set_trans_block_group(trans, dir); 4728 4729 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4730 if (err) { 4731 err = -ENOSPC; 4732 goto out_unlock; 4733 } 4734 4735 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4736 dentry->d_name.len, 4737 dentry->d_parent->d_inode->i_ino, objectid, 4738 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4739 &index); 4740 err = PTR_ERR(inode); 4741 if (IS_ERR(inode)) 4742 goto out_unlock; 4743 4744 err = btrfs_init_inode_security(inode, dir); 4745 if (err) { 4746 drop_inode = 1; 4747 goto out_unlock; 4748 } 4749 4750 btrfs_set_trans_block_group(trans, inode); 4751 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4752 if (err) 4753 drop_inode = 1; 4754 else { 4755 inode->i_mapping->a_ops = &btrfs_aops; 4756 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4757 inode->i_fop = &btrfs_file_operations; 4758 inode->i_op = &btrfs_file_inode_operations; 4759 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4760 } 4761 dir->i_sb->s_dirt = 1; 4762 btrfs_update_inode_block_group(trans, inode); 4763 btrfs_update_inode_block_group(trans, dir); 4764 if (drop_inode) 4765 goto out_unlock; 4766 4767 path = btrfs_alloc_path(); 4768 BUG_ON(!path); 4769 key.objectid = inode->i_ino; 4770 key.offset = 0; 4771 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4772 datasize = btrfs_file_extent_calc_inline_size(name_len); 4773 err = btrfs_insert_empty_item(trans, root, path, &key, 4774 datasize); 4775 if (err) { 4776 drop_inode = 1; 4777 goto out_unlock; 4778 } 4779 leaf = path->nodes[0]; 4780 ei = btrfs_item_ptr(leaf, path->slots[0], 4781 struct btrfs_file_extent_item); 4782 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4783 btrfs_set_file_extent_type(leaf, ei, 4784 BTRFS_FILE_EXTENT_INLINE); 4785 btrfs_set_file_extent_encryption(leaf, ei, 0); 4786 btrfs_set_file_extent_compression(leaf, ei, 0); 4787 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4788 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4789 4790 ptr = btrfs_file_extent_inline_start(ei); 4791 write_extent_buffer(leaf, symname, ptr, name_len); 4792 btrfs_mark_buffer_dirty(leaf); 4793 btrfs_free_path(path); 4794 4795 inode->i_op = &btrfs_symlink_inode_operations; 4796 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4797 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4798 inode_set_bytes(inode, name_len); 4799 btrfs_i_size_write(inode, name_len - 1); 4800 err = btrfs_update_inode(trans, root, inode); 4801 if (err) 4802 drop_inode = 1; 4803 4804 out_unlock: 4805 nr = trans->blocks_used; 4806 btrfs_end_transaction_throttle(trans, root); 4807 out_fail: 4808 if (drop_inode) { 4809 inode_dec_link_count(inode); 4810 iput(inode); 4811 } 4812 btrfs_btree_balance_dirty(root, nr); 4813 return err; 4814 } 4815 4816 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4817 u64 alloc_hint, int mode) 4818 { 4819 struct btrfs_trans_handle *trans; 4820 struct btrfs_root *root = BTRFS_I(inode)->root; 4821 struct btrfs_key ins; 4822 u64 alloc_size; 4823 u64 cur_offset = start; 4824 u64 num_bytes = end - start; 4825 int ret = 0; 4826 4827 trans = btrfs_join_transaction(root, 1); 4828 BUG_ON(!trans); 4829 btrfs_set_trans_block_group(trans, inode); 4830 4831 while (num_bytes > 0) { 4832 alloc_size = min(num_bytes, root->fs_info->max_extent); 4833 ret = btrfs_reserve_extent(trans, root, alloc_size, 4834 root->sectorsize, 0, alloc_hint, 4835 (u64)-1, &ins, 1); 4836 if (ret) { 4837 WARN_ON(1); 4838 goto out; 4839 } 4840 ret = insert_reserved_file_extent(trans, inode, 4841 cur_offset, ins.objectid, 4842 ins.offset, ins.offset, 4843 ins.offset, 0, 0, 0, 4844 BTRFS_FILE_EXTENT_PREALLOC); 4845 BUG_ON(ret); 4846 num_bytes -= ins.offset; 4847 cur_offset += ins.offset; 4848 alloc_hint = ins.objectid + ins.offset; 4849 } 4850 out: 4851 if (cur_offset > start) { 4852 inode->i_ctime = CURRENT_TIME; 4853 btrfs_set_flag(inode, PREALLOC); 4854 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4855 cur_offset > i_size_read(inode)) 4856 btrfs_i_size_write(inode, cur_offset); 4857 ret = btrfs_update_inode(trans, root, inode); 4858 BUG_ON(ret); 4859 } 4860 4861 btrfs_end_transaction(trans, root); 4862 return ret; 4863 } 4864 4865 static long btrfs_fallocate(struct inode *inode, int mode, 4866 loff_t offset, loff_t len) 4867 { 4868 u64 cur_offset; 4869 u64 last_byte; 4870 u64 alloc_start; 4871 u64 alloc_end; 4872 u64 alloc_hint = 0; 4873 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 4874 struct extent_map *em; 4875 int ret; 4876 4877 alloc_start = offset & ~mask; 4878 alloc_end = (offset + len + mask) & ~mask; 4879 4880 mutex_lock(&inode->i_mutex); 4881 if (alloc_start > inode->i_size) { 4882 ret = btrfs_cont_expand(inode, alloc_start); 4883 if (ret) 4884 goto out; 4885 } 4886 4887 while (1) { 4888 struct btrfs_ordered_extent *ordered; 4889 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 4890 alloc_end - 1, GFP_NOFS); 4891 ordered = btrfs_lookup_first_ordered_extent(inode, 4892 alloc_end - 1); 4893 if (ordered && 4894 ordered->file_offset + ordered->len > alloc_start && 4895 ordered->file_offset < alloc_end) { 4896 btrfs_put_ordered_extent(ordered); 4897 unlock_extent(&BTRFS_I(inode)->io_tree, 4898 alloc_start, alloc_end - 1, GFP_NOFS); 4899 btrfs_wait_ordered_range(inode, alloc_start, 4900 alloc_end - alloc_start); 4901 } else { 4902 if (ordered) 4903 btrfs_put_ordered_extent(ordered); 4904 break; 4905 } 4906 } 4907 4908 cur_offset = alloc_start; 4909 while (1) { 4910 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4911 alloc_end - cur_offset, 0); 4912 BUG_ON(IS_ERR(em) || !em); 4913 last_byte = min(extent_map_end(em), alloc_end); 4914 last_byte = (last_byte + mask) & ~mask; 4915 if (em->block_start == EXTENT_MAP_HOLE) { 4916 ret = prealloc_file_range(inode, cur_offset, 4917 last_byte, alloc_hint, mode); 4918 if (ret < 0) { 4919 free_extent_map(em); 4920 break; 4921 } 4922 } 4923 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 4924 alloc_hint = em->block_start; 4925 free_extent_map(em); 4926 4927 cur_offset = last_byte; 4928 if (cur_offset >= alloc_end) { 4929 ret = 0; 4930 break; 4931 } 4932 } 4933 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 4934 GFP_NOFS); 4935 out: 4936 mutex_unlock(&inode->i_mutex); 4937 return ret; 4938 } 4939 4940 static int btrfs_set_page_dirty(struct page *page) 4941 { 4942 return __set_page_dirty_nobuffers(page); 4943 } 4944 4945 static int btrfs_permission(struct inode *inode, int mask) 4946 { 4947 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 4948 return -EACCES; 4949 return generic_permission(inode, mask, btrfs_check_acl); 4950 } 4951 4952 static struct inode_operations btrfs_dir_inode_operations = { 4953 .getattr = btrfs_getattr, 4954 .lookup = btrfs_lookup, 4955 .create = btrfs_create, 4956 .unlink = btrfs_unlink, 4957 .link = btrfs_link, 4958 .mkdir = btrfs_mkdir, 4959 .rmdir = btrfs_rmdir, 4960 .rename = btrfs_rename, 4961 .symlink = btrfs_symlink, 4962 .setattr = btrfs_setattr, 4963 .mknod = btrfs_mknod, 4964 .setxattr = btrfs_setxattr, 4965 .getxattr = btrfs_getxattr, 4966 .listxattr = btrfs_listxattr, 4967 .removexattr = btrfs_removexattr, 4968 .permission = btrfs_permission, 4969 }; 4970 static struct inode_operations btrfs_dir_ro_inode_operations = { 4971 .lookup = btrfs_lookup, 4972 .permission = btrfs_permission, 4973 }; 4974 static struct file_operations btrfs_dir_file_operations = { 4975 .llseek = generic_file_llseek, 4976 .read = generic_read_dir, 4977 .readdir = btrfs_real_readdir, 4978 .unlocked_ioctl = btrfs_ioctl, 4979 #ifdef CONFIG_COMPAT 4980 .compat_ioctl = btrfs_ioctl, 4981 #endif 4982 .release = btrfs_release_file, 4983 .fsync = btrfs_sync_file, 4984 }; 4985 4986 static struct extent_io_ops btrfs_extent_io_ops = { 4987 .fill_delalloc = run_delalloc_range, 4988 .submit_bio_hook = btrfs_submit_bio_hook, 4989 .merge_bio_hook = btrfs_merge_bio_hook, 4990 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 4991 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 4992 .writepage_start_hook = btrfs_writepage_start_hook, 4993 .readpage_io_failed_hook = btrfs_io_failed_hook, 4994 .set_bit_hook = btrfs_set_bit_hook, 4995 .clear_bit_hook = btrfs_clear_bit_hook, 4996 }; 4997 4998 /* 4999 * btrfs doesn't support the bmap operation because swapfiles 5000 * use bmap to make a mapping of extents in the file. They assume 5001 * these extents won't change over the life of the file and they 5002 * use the bmap result to do IO directly to the drive. 5003 * 5004 * the btrfs bmap call would return logical addresses that aren't 5005 * suitable for IO and they also will change frequently as COW 5006 * operations happen. So, swapfile + btrfs == corruption. 5007 * 5008 * For now we're avoiding this by dropping bmap. 5009 */ 5010 static struct address_space_operations btrfs_aops = { 5011 .readpage = btrfs_readpage, 5012 .writepage = btrfs_writepage, 5013 .writepages = btrfs_writepages, 5014 .readpages = btrfs_readpages, 5015 .sync_page = block_sync_page, 5016 .direct_IO = btrfs_direct_IO, 5017 .invalidatepage = btrfs_invalidatepage, 5018 .releasepage = btrfs_releasepage, 5019 .set_page_dirty = btrfs_set_page_dirty, 5020 }; 5021 5022 static struct address_space_operations btrfs_symlink_aops = { 5023 .readpage = btrfs_readpage, 5024 .writepage = btrfs_writepage, 5025 .invalidatepage = btrfs_invalidatepage, 5026 .releasepage = btrfs_releasepage, 5027 }; 5028 5029 static struct inode_operations btrfs_file_inode_operations = { 5030 .truncate = btrfs_truncate, 5031 .getattr = btrfs_getattr, 5032 .setattr = btrfs_setattr, 5033 .setxattr = btrfs_setxattr, 5034 .getxattr = btrfs_getxattr, 5035 .listxattr = btrfs_listxattr, 5036 .removexattr = btrfs_removexattr, 5037 .permission = btrfs_permission, 5038 .fallocate = btrfs_fallocate, 5039 .fiemap = btrfs_fiemap, 5040 }; 5041 static struct inode_operations btrfs_special_inode_operations = { 5042 .getattr = btrfs_getattr, 5043 .setattr = btrfs_setattr, 5044 .permission = btrfs_permission, 5045 .setxattr = btrfs_setxattr, 5046 .getxattr = btrfs_getxattr, 5047 .listxattr = btrfs_listxattr, 5048 .removexattr = btrfs_removexattr, 5049 }; 5050 static struct inode_operations btrfs_symlink_inode_operations = { 5051 .readlink = generic_readlink, 5052 .follow_link = page_follow_link_light, 5053 .put_link = page_put_link, 5054 .permission = btrfs_permission, 5055 .setxattr = btrfs_setxattr, 5056 .getxattr = btrfs_getxattr, 5057 .listxattr = btrfs_listxattr, 5058 .removexattr = btrfs_removexattr, 5059 }; 5060