1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 struct btrfs_iget_args { 53 struct btrfs_key *location; 54 struct btrfs_root *root; 55 }; 56 57 struct btrfs_dio_data { 58 u64 reserve; 59 u64 unsubmitted_oe_range_start; 60 u64 unsubmitted_oe_range_end; 61 int overwrite; 62 }; 63 64 static const struct inode_operations btrfs_dir_inode_operations; 65 static const struct inode_operations btrfs_symlink_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static const struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 struct kmem_cache *btrfs_free_space_cachep; 76 struct kmem_cache *btrfs_free_space_bitmap_cachep; 77 78 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 79 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 81 static noinline int cow_file_range(struct inode *inode, 82 struct page *locked_page, 83 u64 start, u64 end, int *page_started, 84 unsigned long *nr_written, int unlock); 85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 86 u64 orig_start, u64 block_start, 87 u64 block_len, u64 orig_block_len, 88 u64 ram_bytes, int compress_type, 89 int type); 90 91 static void __endio_write_update_ordered(struct inode *inode, 92 const u64 offset, const u64 bytes, 93 const bool uptodate); 94 95 /* 96 * Cleanup all submitted ordered extents in specified range to handle errors 97 * from the btrfs_run_delalloc_range() callback. 98 * 99 * NOTE: caller must ensure that when an error happens, it can not call 100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 102 * to be released, which we want to happen only when finishing the ordered 103 * extent (btrfs_finish_ordered_io()). 104 */ 105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 106 struct page *locked_page, 107 u64 offset, u64 bytes) 108 { 109 unsigned long index = offset >> PAGE_SHIFT; 110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 111 u64 page_start = page_offset(locked_page); 112 u64 page_end = page_start + PAGE_SIZE - 1; 113 114 struct page *page; 115 116 while (index <= end_index) { 117 page = find_get_page(inode->i_mapping, index); 118 index++; 119 if (!page) 120 continue; 121 ClearPagePrivate2(page); 122 put_page(page); 123 } 124 125 /* 126 * In case this page belongs to the delalloc range being instantiated 127 * then skip it, since the first page of a range is going to be 128 * properly cleaned up by the caller of run_delalloc_range 129 */ 130 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 131 offset += PAGE_SIZE; 132 bytes -= PAGE_SIZE; 133 } 134 135 return __endio_write_update_ordered(inode, offset, bytes, false); 136 } 137 138 static int btrfs_dirty_inode(struct inode *inode); 139 140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 141 void btrfs_test_inode_set_ops(struct inode *inode) 142 { 143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 144 } 145 #endif 146 147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 148 struct inode *inode, struct inode *dir, 149 const struct qstr *qstr) 150 { 151 int err; 152 153 err = btrfs_init_acl(trans, inode, dir); 154 if (!err) 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 156 return err; 157 } 158 159 /* 160 * this does all the hard work for inserting an inline extent into 161 * the btree. The caller should have done a btrfs_drop_extents so that 162 * no overlapping inline items exist in the btree 163 */ 164 static int insert_inline_extent(struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, int extent_inserted, 166 struct btrfs_root *root, struct inode *inode, 167 u64 start, size_t size, size_t compressed_size, 168 int compress_type, 169 struct page **compressed_pages) 170 { 171 struct extent_buffer *leaf; 172 struct page *page = NULL; 173 char *kaddr; 174 unsigned long ptr; 175 struct btrfs_file_extent_item *ei; 176 int ret; 177 size_t cur_size = size; 178 unsigned long offset; 179 180 ASSERT((compressed_size > 0 && compressed_pages) || 181 (compressed_size == 0 && !compressed_pages)); 182 183 if (compressed_size && compressed_pages) 184 cur_size = compressed_size; 185 186 inode_add_bytes(inode, size); 187 188 if (!extent_inserted) { 189 struct btrfs_key key; 190 size_t datasize; 191 192 key.objectid = btrfs_ino(BTRFS_I(inode)); 193 key.offset = start; 194 key.type = BTRFS_EXTENT_DATA_KEY; 195 196 datasize = btrfs_file_extent_calc_inline_size(cur_size); 197 path->leave_spinning = 1; 198 ret = btrfs_insert_empty_item(trans, root, path, &key, 199 datasize); 200 if (ret) 201 goto fail; 202 } 203 leaf = path->nodes[0]; 204 ei = btrfs_item_ptr(leaf, path->slots[0], 205 struct btrfs_file_extent_item); 206 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 207 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 208 btrfs_set_file_extent_encryption(leaf, ei, 0); 209 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 210 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 211 ptr = btrfs_file_extent_inline_start(ei); 212 213 if (compress_type != BTRFS_COMPRESS_NONE) { 214 struct page *cpage; 215 int i = 0; 216 while (compressed_size > 0) { 217 cpage = compressed_pages[i]; 218 cur_size = min_t(unsigned long, compressed_size, 219 PAGE_SIZE); 220 221 kaddr = kmap_atomic(cpage); 222 write_extent_buffer(leaf, kaddr, ptr, cur_size); 223 kunmap_atomic(kaddr); 224 225 i++; 226 ptr += cur_size; 227 compressed_size -= cur_size; 228 } 229 btrfs_set_file_extent_compression(leaf, ei, 230 compress_type); 231 } else { 232 page = find_get_page(inode->i_mapping, 233 start >> PAGE_SHIFT); 234 btrfs_set_file_extent_compression(leaf, ei, 0); 235 kaddr = kmap_atomic(page); 236 offset = offset_in_page(start); 237 write_extent_buffer(leaf, kaddr + offset, ptr, size); 238 kunmap_atomic(kaddr); 239 put_page(page); 240 } 241 btrfs_mark_buffer_dirty(leaf); 242 btrfs_release_path(path); 243 244 /* 245 * we're an inline extent, so nobody can 246 * extend the file past i_size without locking 247 * a page we already have locked. 248 * 249 * We must do any isize and inode updates 250 * before we unlock the pages. Otherwise we 251 * could end up racing with unlink. 252 */ 253 BTRFS_I(inode)->disk_i_size = inode->i_size; 254 ret = btrfs_update_inode(trans, root, inode); 255 256 fail: 257 return ret; 258 } 259 260 261 /* 262 * conditionally insert an inline extent into the file. This 263 * does the checks required to make sure the data is small enough 264 * to fit as an inline extent. 265 */ 266 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 267 u64 end, size_t compressed_size, 268 int compress_type, 269 struct page **compressed_pages) 270 { 271 struct btrfs_root *root = BTRFS_I(inode)->root; 272 struct btrfs_fs_info *fs_info = root->fs_info; 273 struct btrfs_trans_handle *trans; 274 u64 isize = i_size_read(inode); 275 u64 actual_end = min(end + 1, isize); 276 u64 inline_len = actual_end - start; 277 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 278 u64 data_len = inline_len; 279 int ret; 280 struct btrfs_path *path; 281 int extent_inserted = 0; 282 u32 extent_item_size; 283 284 if (compressed_size) 285 data_len = compressed_size; 286 287 if (start > 0 || 288 actual_end > fs_info->sectorsize || 289 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 290 (!compressed_size && 291 (actual_end & (fs_info->sectorsize - 1)) == 0) || 292 end + 1 < isize || 293 data_len > fs_info->max_inline) { 294 return 1; 295 } 296 297 path = btrfs_alloc_path(); 298 if (!path) 299 return -ENOMEM; 300 301 trans = btrfs_join_transaction(root); 302 if (IS_ERR(trans)) { 303 btrfs_free_path(path); 304 return PTR_ERR(trans); 305 } 306 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 307 308 if (compressed_size && compressed_pages) 309 extent_item_size = btrfs_file_extent_calc_inline_size( 310 compressed_size); 311 else 312 extent_item_size = btrfs_file_extent_calc_inline_size( 313 inline_len); 314 315 ret = __btrfs_drop_extents(trans, root, inode, path, 316 start, aligned_end, NULL, 317 1, 1, extent_item_size, &extent_inserted); 318 if (ret) { 319 btrfs_abort_transaction(trans, ret); 320 goto out; 321 } 322 323 if (isize > actual_end) 324 inline_len = min_t(u64, isize, actual_end); 325 ret = insert_inline_extent(trans, path, extent_inserted, 326 root, inode, start, 327 inline_len, compressed_size, 328 compress_type, compressed_pages); 329 if (ret && ret != -ENOSPC) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } else if (ret == -ENOSPC) { 333 ret = 1; 334 goto out; 335 } 336 337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 338 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 339 out: 340 /* 341 * Don't forget to free the reserved space, as for inlined extent 342 * it won't count as data extent, free them directly here. 343 * And at reserve time, it's always aligned to page size, so 344 * just free one page here. 345 */ 346 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 347 btrfs_free_path(path); 348 btrfs_end_transaction(trans); 349 return ret; 350 } 351 352 struct async_extent { 353 u64 start; 354 u64 ram_size; 355 u64 compressed_size; 356 struct page **pages; 357 unsigned long nr_pages; 358 int compress_type; 359 struct list_head list; 360 }; 361 362 struct async_chunk { 363 struct inode *inode; 364 struct page *locked_page; 365 u64 start; 366 u64 end; 367 unsigned int write_flags; 368 struct list_head extents; 369 struct cgroup_subsys_state *blkcg_css; 370 struct btrfs_work work; 371 atomic_t *pending; 372 }; 373 374 struct async_cow { 375 /* Number of chunks in flight; must be first in the structure */ 376 atomic_t num_chunks; 377 struct async_chunk chunks[]; 378 }; 379 380 static noinline int add_async_extent(struct async_chunk *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 /* 402 * Check if the inode has flags compatible with compression 403 */ 404 static inline bool inode_can_compress(struct inode *inode) 405 { 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 407 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 408 return false; 409 return true; 410 } 411 412 /* 413 * Check if the inode needs to be submitted to compression, based on mount 414 * options, defragmentation, properties or heuristics. 415 */ 416 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 420 if (!inode_can_compress(inode)) { 421 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 422 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 423 btrfs_ino(BTRFS_I(inode))); 424 return 0; 425 } 426 /* force compress */ 427 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 428 return 1; 429 /* defrag ioctl */ 430 if (BTRFS_I(inode)->defrag_compress) 431 return 1; 432 /* bad compression ratios */ 433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 434 return 0; 435 if (btrfs_test_opt(fs_info, COMPRESS) || 436 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 437 BTRFS_I(inode)->prop_compress) 438 return btrfs_compress_heuristic(inode, start, end); 439 return 0; 440 } 441 442 static inline void inode_should_defrag(struct btrfs_inode *inode, 443 u64 start, u64 end, u64 num_bytes, u64 small_write) 444 { 445 /* If this is a small write inside eof, kick off a defrag */ 446 if (num_bytes < small_write && 447 (start > 0 || end + 1 < inode->disk_i_size)) 448 btrfs_add_inode_defrag(NULL, inode); 449 } 450 451 /* 452 * we create compressed extents in two phases. The first 453 * phase compresses a range of pages that have already been 454 * locked (both pages and state bits are locked). 455 * 456 * This is done inside an ordered work queue, and the compression 457 * is spread across many cpus. The actual IO submission is step 458 * two, and the ordered work queue takes care of making sure that 459 * happens in the same order things were put onto the queue by 460 * writepages and friends. 461 * 462 * If this code finds it can't get good compression, it puts an 463 * entry onto the work queue to write the uncompressed bytes. This 464 * makes sure that both compressed inodes and uncompressed inodes 465 * are written in the same order that the flusher thread sent them 466 * down. 467 */ 468 static noinline int compress_file_range(struct async_chunk *async_chunk) 469 { 470 struct inode *inode = async_chunk->inode; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 u64 blocksize = fs_info->sectorsize; 473 u64 start = async_chunk->start; 474 u64 end = async_chunk->end; 475 u64 actual_end; 476 u64 i_size; 477 int ret = 0; 478 struct page **pages = NULL; 479 unsigned long nr_pages; 480 unsigned long total_compressed = 0; 481 unsigned long total_in = 0; 482 int i; 483 int will_compress; 484 int compress_type = fs_info->compress_type; 485 int compressed_extents = 0; 486 int redirty = 0; 487 488 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 489 SZ_16K); 490 491 /* 492 * We need to save i_size before now because it could change in between 493 * us evaluating the size and assigning it. This is because we lock and 494 * unlock the page in truncate and fallocate, and then modify the i_size 495 * later on. 496 * 497 * The barriers are to emulate READ_ONCE, remove that once i_size_read 498 * does that for us. 499 */ 500 barrier(); 501 i_size = i_size_read(inode); 502 barrier(); 503 actual_end = min_t(u64, i_size, end + 1); 504 again: 505 will_compress = 0; 506 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 507 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 508 nr_pages = min_t(unsigned long, nr_pages, 509 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 510 511 /* 512 * we don't want to send crud past the end of i_size through 513 * compression, that's just a waste of CPU time. So, if the 514 * end of the file is before the start of our current 515 * requested range of bytes, we bail out to the uncompressed 516 * cleanup code that can deal with all of this. 517 * 518 * It isn't really the fastest way to fix things, but this is a 519 * very uncommon corner. 520 */ 521 if (actual_end <= start) 522 goto cleanup_and_bail_uncompressed; 523 524 total_compressed = actual_end - start; 525 526 /* 527 * skip compression for a small file range(<=blocksize) that 528 * isn't an inline extent, since it doesn't save disk space at all. 529 */ 530 if (total_compressed <= blocksize && 531 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 532 goto cleanup_and_bail_uncompressed; 533 534 total_compressed = min_t(unsigned long, total_compressed, 535 BTRFS_MAX_UNCOMPRESSED); 536 total_in = 0; 537 ret = 0; 538 539 /* 540 * we do compression for mount -o compress and when the 541 * inode has not been flagged as nocompress. This flag can 542 * change at any time if we discover bad compression ratios. 543 */ 544 if (inode_need_compress(inode, start, end)) { 545 WARN_ON(pages); 546 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 547 if (!pages) { 548 /* just bail out to the uncompressed code */ 549 nr_pages = 0; 550 goto cont; 551 } 552 553 if (BTRFS_I(inode)->defrag_compress) 554 compress_type = BTRFS_I(inode)->defrag_compress; 555 else if (BTRFS_I(inode)->prop_compress) 556 compress_type = BTRFS_I(inode)->prop_compress; 557 558 /* 559 * we need to call clear_page_dirty_for_io on each 560 * page in the range. Otherwise applications with the file 561 * mmap'd can wander in and change the page contents while 562 * we are compressing them. 563 * 564 * If the compression fails for any reason, we set the pages 565 * dirty again later on. 566 * 567 * Note that the remaining part is redirtied, the start pointer 568 * has moved, the end is the original one. 569 */ 570 if (!redirty) { 571 extent_range_clear_dirty_for_io(inode, start, end); 572 redirty = 1; 573 } 574 575 /* Compression level is applied here and only here */ 576 ret = btrfs_compress_pages( 577 compress_type | (fs_info->compress_level << 4), 578 inode->i_mapping, start, 579 pages, 580 &nr_pages, 581 &total_in, 582 &total_compressed); 583 584 if (!ret) { 585 unsigned long offset = offset_in_page(total_compressed); 586 struct page *page = pages[nr_pages - 1]; 587 char *kaddr; 588 589 /* zero the tail end of the last page, we might be 590 * sending it down to disk 591 */ 592 if (offset) { 593 kaddr = kmap_atomic(page); 594 memset(kaddr + offset, 0, 595 PAGE_SIZE - offset); 596 kunmap_atomic(kaddr); 597 } 598 will_compress = 1; 599 } 600 } 601 cont: 602 if (start == 0) { 603 /* lets try to make an inline extent */ 604 if (ret || total_in < actual_end) { 605 /* we didn't compress the entire range, try 606 * to make an uncompressed inline extent. 607 */ 608 ret = cow_file_range_inline(inode, start, end, 0, 609 BTRFS_COMPRESS_NONE, NULL); 610 } else { 611 /* try making a compressed inline extent */ 612 ret = cow_file_range_inline(inode, start, end, 613 total_compressed, 614 compress_type, pages); 615 } 616 if (ret <= 0) { 617 unsigned long clear_flags = EXTENT_DELALLOC | 618 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 619 EXTENT_DO_ACCOUNTING; 620 unsigned long page_error_op; 621 622 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 623 624 /* 625 * inline extent creation worked or returned error, 626 * we don't need to create any more async work items. 627 * Unlock and free up our temp pages. 628 * 629 * We use DO_ACCOUNTING here because we need the 630 * delalloc_release_metadata to be done _after_ we drop 631 * our outstanding extent for clearing delalloc for this 632 * range. 633 */ 634 extent_clear_unlock_delalloc(inode, start, end, NULL, 635 clear_flags, 636 PAGE_UNLOCK | 637 PAGE_CLEAR_DIRTY | 638 PAGE_SET_WRITEBACK | 639 page_error_op | 640 PAGE_END_WRITEBACK); 641 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 648 return 0; 649 } 650 } 651 652 if (will_compress) { 653 /* 654 * we aren't doing an inline extent round the compressed size 655 * up to a block size boundary so the allocator does sane 656 * things 657 */ 658 total_compressed = ALIGN(total_compressed, blocksize); 659 660 /* 661 * one last check to make sure the compression is really a 662 * win, compare the page count read with the blocks on disk, 663 * compression must free at least one sector size 664 */ 665 total_in = ALIGN(total_in, PAGE_SIZE); 666 if (total_compressed + blocksize <= total_in) { 667 compressed_extents++; 668 669 /* 670 * The async work queues will take care of doing actual 671 * allocation on disk for these compressed pages, and 672 * will submit them to the elevator. 673 */ 674 add_async_extent(async_chunk, start, total_in, 675 total_compressed, pages, nr_pages, 676 compress_type); 677 678 if (start + total_in < end) { 679 start += total_in; 680 pages = NULL; 681 cond_resched(); 682 goto again; 683 } 684 return compressed_extents; 685 } 686 } 687 if (pages) { 688 /* 689 * the compression code ran but failed to make things smaller, 690 * free any pages it allocated and our page pointer array 691 */ 692 for (i = 0; i < nr_pages; i++) { 693 WARN_ON(pages[i]->mapping); 694 put_page(pages[i]); 695 } 696 kfree(pages); 697 pages = NULL; 698 total_compressed = 0; 699 nr_pages = 0; 700 701 /* flag the file so we don't compress in the future */ 702 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 703 !(BTRFS_I(inode)->prop_compress)) { 704 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 705 } 706 } 707 cleanup_and_bail_uncompressed: 708 /* 709 * No compression, but we still need to write the pages in the file 710 * we've been given so far. redirty the locked page if it corresponds 711 * to our extent and set things up for the async work queue to run 712 * cow_file_range to do the normal delalloc dance. 713 */ 714 if (async_chunk->locked_page && 715 (page_offset(async_chunk->locked_page) >= start && 716 page_offset(async_chunk->locked_page)) <= end) { 717 __set_page_dirty_nobuffers(async_chunk->locked_page); 718 /* unlocked later on in the async handlers */ 719 } 720 721 if (redirty) 722 extent_range_redirty_for_io(inode, start, end); 723 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 724 BTRFS_COMPRESS_NONE); 725 compressed_extents++; 726 727 return compressed_extents; 728 } 729 730 static void free_async_extent_pages(struct async_extent *async_extent) 731 { 732 int i; 733 734 if (!async_extent->pages) 735 return; 736 737 for (i = 0; i < async_extent->nr_pages; i++) { 738 WARN_ON(async_extent->pages[i]->mapping); 739 put_page(async_extent->pages[i]); 740 } 741 kfree(async_extent->pages); 742 async_extent->nr_pages = 0; 743 async_extent->pages = NULL; 744 } 745 746 /* 747 * phase two of compressed writeback. This is the ordered portion 748 * of the code, which only gets called in the order the work was 749 * queued. We walk all the async extents created by compress_file_range 750 * and send them down to the disk. 751 */ 752 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 753 { 754 struct inode *inode = async_chunk->inode; 755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 756 struct async_extent *async_extent; 757 u64 alloc_hint = 0; 758 struct btrfs_key ins; 759 struct extent_map *em; 760 struct btrfs_root *root = BTRFS_I(inode)->root; 761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 762 int ret = 0; 763 764 again: 765 while (!list_empty(&async_chunk->extents)) { 766 async_extent = list_entry(async_chunk->extents.next, 767 struct async_extent, list); 768 list_del(&async_extent->list); 769 770 retry: 771 lock_extent(io_tree, async_extent->start, 772 async_extent->start + async_extent->ram_size - 1); 773 /* did the compression code fall back to uncompressed IO? */ 774 if (!async_extent->pages) { 775 int page_started = 0; 776 unsigned long nr_written = 0; 777 778 /* allocate blocks */ 779 ret = cow_file_range(inode, async_chunk->locked_page, 780 async_extent->start, 781 async_extent->start + 782 async_extent->ram_size - 1, 783 &page_started, &nr_written, 0); 784 785 /* JDM XXX */ 786 787 /* 788 * if page_started, cow_file_range inserted an 789 * inline extent and took care of all the unlocking 790 * and IO for us. Otherwise, we need to submit 791 * all those pages down to the drive. 792 */ 793 if (!page_started && !ret) 794 extent_write_locked_range(inode, 795 async_extent->start, 796 async_extent->start + 797 async_extent->ram_size - 1, 798 WB_SYNC_ALL); 799 else if (ret && async_chunk->locked_page) 800 unlock_page(async_chunk->locked_page); 801 kfree(async_extent); 802 cond_resched(); 803 continue; 804 } 805 806 ret = btrfs_reserve_extent(root, async_extent->ram_size, 807 async_extent->compressed_size, 808 async_extent->compressed_size, 809 0, alloc_hint, &ins, 1, 1); 810 if (ret) { 811 free_async_extent_pages(async_extent); 812 813 if (ret == -ENOSPC) { 814 unlock_extent(io_tree, async_extent->start, 815 async_extent->start + 816 async_extent->ram_size - 1); 817 818 /* 819 * we need to redirty the pages if we decide to 820 * fallback to uncompressed IO, otherwise we 821 * will not submit these pages down to lower 822 * layers. 823 */ 824 extent_range_redirty_for_io(inode, 825 async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 goto retry; 830 } 831 goto out_free; 832 } 833 /* 834 * here we're doing allocation and writeback of the 835 * compressed pages 836 */ 837 em = create_io_em(inode, async_extent->start, 838 async_extent->ram_size, /* len */ 839 async_extent->start, /* orig_start */ 840 ins.objectid, /* block_start */ 841 ins.offset, /* block_len */ 842 ins.offset, /* orig_block_len */ 843 async_extent->ram_size, /* ram_bytes */ 844 async_extent->compress_type, 845 BTRFS_ORDERED_COMPRESSED); 846 if (IS_ERR(em)) 847 /* ret value is not necessary due to void function */ 848 goto out_free_reserve; 849 free_extent_map(em); 850 851 ret = btrfs_add_ordered_extent_compress(inode, 852 async_extent->start, 853 ins.objectid, 854 async_extent->ram_size, 855 ins.offset, 856 BTRFS_ORDERED_COMPRESSED, 857 async_extent->compress_type); 858 if (ret) { 859 btrfs_drop_extent_cache(BTRFS_I(inode), 860 async_extent->start, 861 async_extent->start + 862 async_extent->ram_size - 1, 0); 863 goto out_free_reserve; 864 } 865 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 866 867 /* 868 * clear dirty, set writeback and unlock the pages. 869 */ 870 extent_clear_unlock_delalloc(inode, async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 873 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 874 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 875 PAGE_SET_WRITEBACK); 876 if (btrfs_submit_compressed_write(inode, 877 async_extent->start, 878 async_extent->ram_size, 879 ins.objectid, 880 ins.offset, async_extent->pages, 881 async_extent->nr_pages, 882 async_chunk->write_flags, 883 async_chunk->blkcg_css)) { 884 struct page *p = async_extent->pages[0]; 885 const u64 start = async_extent->start; 886 const u64 end = start + async_extent->ram_size - 1; 887 888 p->mapping = inode->i_mapping; 889 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 890 891 p->mapping = NULL; 892 extent_clear_unlock_delalloc(inode, start, end, 893 NULL, 0, 894 PAGE_END_WRITEBACK | 895 PAGE_SET_ERROR); 896 free_async_extent_pages(async_extent); 897 } 898 alloc_hint = ins.objectid + ins.offset; 899 kfree(async_extent); 900 cond_resched(); 901 } 902 return; 903 out_free_reserve: 904 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 905 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 906 out_free: 907 extent_clear_unlock_delalloc(inode, async_extent->start, 908 async_extent->start + 909 async_extent->ram_size - 1, 910 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 911 EXTENT_DELALLOC_NEW | 912 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 913 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 914 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 915 PAGE_SET_ERROR); 916 free_async_extent_pages(async_extent); 917 kfree(async_extent); 918 goto again; 919 } 920 921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 922 u64 num_bytes) 923 { 924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 925 struct extent_map *em; 926 u64 alloc_hint = 0; 927 928 read_lock(&em_tree->lock); 929 em = search_extent_mapping(em_tree, start, num_bytes); 930 if (em) { 931 /* 932 * if block start isn't an actual block number then find the 933 * first block in this inode and use that as a hint. If that 934 * block is also bogus then just don't worry about it. 935 */ 936 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 937 free_extent_map(em); 938 em = search_extent_mapping(em_tree, 0, 0); 939 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 940 alloc_hint = em->block_start; 941 if (em) 942 free_extent_map(em); 943 } else { 944 alloc_hint = em->block_start; 945 free_extent_map(em); 946 } 947 } 948 read_unlock(&em_tree->lock); 949 950 return alloc_hint; 951 } 952 953 /* 954 * when extent_io.c finds a delayed allocation range in the file, 955 * the call backs end up in this code. The basic idea is to 956 * allocate extents on disk for the range, and create ordered data structs 957 * in ram to track those extents. 958 * 959 * locked_page is the page that writepage had locked already. We use 960 * it to make sure we don't do extra locks or unlocks. 961 * 962 * *page_started is set to one if we unlock locked_page and do everything 963 * required to start IO on it. It may be clean and already done with 964 * IO when we return. 965 */ 966 static noinline int cow_file_range(struct inode *inode, 967 struct page *locked_page, 968 u64 start, u64 end, int *page_started, 969 unsigned long *nr_written, int unlock) 970 { 971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 972 struct btrfs_root *root = BTRFS_I(inode)->root; 973 u64 alloc_hint = 0; 974 u64 num_bytes; 975 unsigned long ram_size; 976 u64 cur_alloc_size = 0; 977 u64 blocksize = fs_info->sectorsize; 978 struct btrfs_key ins; 979 struct extent_map *em; 980 unsigned clear_bits; 981 unsigned long page_ops; 982 bool extent_reserved = false; 983 int ret = 0; 984 985 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 986 WARN_ON_ONCE(1); 987 ret = -EINVAL; 988 goto out_unlock; 989 } 990 991 num_bytes = ALIGN(end - start + 1, blocksize); 992 num_bytes = max(blocksize, num_bytes); 993 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 994 995 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 996 997 if (start == 0) { 998 /* lets try to make an inline extent */ 999 ret = cow_file_range_inline(inode, start, end, 0, 1000 BTRFS_COMPRESS_NONE, NULL); 1001 if (ret == 0) { 1002 /* 1003 * We use DO_ACCOUNTING here because we need the 1004 * delalloc_release_metadata to be run _after_ we drop 1005 * our outstanding extent for clearing delalloc for this 1006 * range. 1007 */ 1008 extent_clear_unlock_delalloc(inode, start, end, NULL, 1009 EXTENT_LOCKED | EXTENT_DELALLOC | 1010 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1011 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1012 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1013 PAGE_END_WRITEBACK); 1014 *nr_written = *nr_written + 1015 (end - start + PAGE_SIZE) / PAGE_SIZE; 1016 *page_started = 1; 1017 goto out; 1018 } else if (ret < 0) { 1019 goto out_unlock; 1020 } 1021 } 1022 1023 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1024 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1025 start + num_bytes - 1, 0); 1026 1027 while (num_bytes > 0) { 1028 cur_alloc_size = num_bytes; 1029 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1030 fs_info->sectorsize, 0, alloc_hint, 1031 &ins, 1, 1); 1032 if (ret < 0) 1033 goto out_unlock; 1034 cur_alloc_size = ins.offset; 1035 extent_reserved = true; 1036 1037 ram_size = ins.offset; 1038 em = create_io_em(inode, start, ins.offset, /* len */ 1039 start, /* orig_start */ 1040 ins.objectid, /* block_start */ 1041 ins.offset, /* block_len */ 1042 ins.offset, /* orig_block_len */ 1043 ram_size, /* ram_bytes */ 1044 BTRFS_COMPRESS_NONE, /* compress_type */ 1045 BTRFS_ORDERED_REGULAR /* type */); 1046 if (IS_ERR(em)) { 1047 ret = PTR_ERR(em); 1048 goto out_reserve; 1049 } 1050 free_extent_map(em); 1051 1052 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1053 ram_size, cur_alloc_size, 0); 1054 if (ret) 1055 goto out_drop_extent_cache; 1056 1057 if (root->root_key.objectid == 1058 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1059 ret = btrfs_reloc_clone_csums(inode, start, 1060 cur_alloc_size); 1061 /* 1062 * Only drop cache here, and process as normal. 1063 * 1064 * We must not allow extent_clear_unlock_delalloc() 1065 * at out_unlock label to free meta of this ordered 1066 * extent, as its meta should be freed by 1067 * btrfs_finish_ordered_io(). 1068 * 1069 * So we must continue until @start is increased to 1070 * skip current ordered extent. 1071 */ 1072 if (ret) 1073 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1074 start + ram_size - 1, 0); 1075 } 1076 1077 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1078 1079 /* we're not doing compressed IO, don't unlock the first 1080 * page (which the caller expects to stay locked), don't 1081 * clear any dirty bits and don't set any writeback bits 1082 * 1083 * Do set the Private2 bit so we know this page was properly 1084 * setup for writepage 1085 */ 1086 page_ops = unlock ? PAGE_UNLOCK : 0; 1087 page_ops |= PAGE_SET_PRIVATE2; 1088 1089 extent_clear_unlock_delalloc(inode, start, 1090 start + ram_size - 1, 1091 locked_page, 1092 EXTENT_LOCKED | EXTENT_DELALLOC, 1093 page_ops); 1094 if (num_bytes < cur_alloc_size) 1095 num_bytes = 0; 1096 else 1097 num_bytes -= cur_alloc_size; 1098 alloc_hint = ins.objectid + ins.offset; 1099 start += cur_alloc_size; 1100 extent_reserved = false; 1101 1102 /* 1103 * btrfs_reloc_clone_csums() error, since start is increased 1104 * extent_clear_unlock_delalloc() at out_unlock label won't 1105 * free metadata of current ordered extent, we're OK to exit. 1106 */ 1107 if (ret) 1108 goto out_unlock; 1109 } 1110 out: 1111 return ret; 1112 1113 out_drop_extent_cache: 1114 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1115 out_reserve: 1116 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1117 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1118 out_unlock: 1119 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1120 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1121 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1122 PAGE_END_WRITEBACK; 1123 /* 1124 * If we reserved an extent for our delalloc range (or a subrange) and 1125 * failed to create the respective ordered extent, then it means that 1126 * when we reserved the extent we decremented the extent's size from 1127 * the data space_info's bytes_may_use counter and incremented the 1128 * space_info's bytes_reserved counter by the same amount. We must make 1129 * sure extent_clear_unlock_delalloc() does not try to decrement again 1130 * the data space_info's bytes_may_use counter, therefore we do not pass 1131 * it the flag EXTENT_CLEAR_DATA_RESV. 1132 */ 1133 if (extent_reserved) { 1134 extent_clear_unlock_delalloc(inode, start, 1135 start + cur_alloc_size, 1136 locked_page, 1137 clear_bits, 1138 page_ops); 1139 start += cur_alloc_size; 1140 if (start >= end) 1141 goto out; 1142 } 1143 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1144 clear_bits | EXTENT_CLEAR_DATA_RESV, 1145 page_ops); 1146 goto out; 1147 } 1148 1149 /* 1150 * work queue call back to started compression on a file and pages 1151 */ 1152 static noinline void async_cow_start(struct btrfs_work *work) 1153 { 1154 struct async_chunk *async_chunk; 1155 int compressed_extents; 1156 1157 async_chunk = container_of(work, struct async_chunk, work); 1158 1159 compressed_extents = compress_file_range(async_chunk); 1160 if (compressed_extents == 0) { 1161 btrfs_add_delayed_iput(async_chunk->inode); 1162 async_chunk->inode = NULL; 1163 } 1164 } 1165 1166 /* 1167 * work queue call back to submit previously compressed pages 1168 */ 1169 static noinline void async_cow_submit(struct btrfs_work *work) 1170 { 1171 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1172 work); 1173 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1174 unsigned long nr_pages; 1175 1176 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1177 PAGE_SHIFT; 1178 1179 /* atomic_sub_return implies a barrier */ 1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1181 5 * SZ_1M) 1182 cond_wake_up_nomb(&fs_info->async_submit_wait); 1183 1184 /* 1185 * ->inode could be NULL if async_chunk_start has failed to compress, 1186 * in which case we don't have anything to submit, yet we need to 1187 * always adjust ->async_delalloc_pages as its paired with the init 1188 * happening in cow_file_range_async 1189 */ 1190 if (async_chunk->inode) 1191 submit_compressed_extents(async_chunk); 1192 } 1193 1194 static noinline void async_cow_free(struct btrfs_work *work) 1195 { 1196 struct async_chunk *async_chunk; 1197 1198 async_chunk = container_of(work, struct async_chunk, work); 1199 if (async_chunk->inode) 1200 btrfs_add_delayed_iput(async_chunk->inode); 1201 if (async_chunk->blkcg_css) 1202 css_put(async_chunk->blkcg_css); 1203 /* 1204 * Since the pointer to 'pending' is at the beginning of the array of 1205 * async_chunk's, freeing it ensures the whole array has been freed. 1206 */ 1207 if (atomic_dec_and_test(async_chunk->pending)) 1208 kvfree(async_chunk->pending); 1209 } 1210 1211 static int cow_file_range_async(struct inode *inode, 1212 struct writeback_control *wbc, 1213 struct page *locked_page, 1214 u64 start, u64 end, int *page_started, 1215 unsigned long *nr_written) 1216 { 1217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1218 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1219 struct async_cow *ctx; 1220 struct async_chunk *async_chunk; 1221 unsigned long nr_pages; 1222 u64 cur_end; 1223 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1224 int i; 1225 bool should_compress; 1226 unsigned nofs_flag; 1227 const unsigned int write_flags = wbc_to_write_flags(wbc); 1228 1229 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1230 1231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1232 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1233 num_chunks = 1; 1234 should_compress = false; 1235 } else { 1236 should_compress = true; 1237 } 1238 1239 nofs_flag = memalloc_nofs_save(); 1240 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1241 memalloc_nofs_restore(nofs_flag); 1242 1243 if (!ctx) { 1244 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1245 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1246 EXTENT_DO_ACCOUNTING; 1247 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1248 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1249 PAGE_SET_ERROR; 1250 1251 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1252 clear_bits, page_ops); 1253 return -ENOMEM; 1254 } 1255 1256 async_chunk = ctx->chunks; 1257 atomic_set(&ctx->num_chunks, num_chunks); 1258 1259 for (i = 0; i < num_chunks; i++) { 1260 if (should_compress) 1261 cur_end = min(end, start + SZ_512K - 1); 1262 else 1263 cur_end = end; 1264 1265 /* 1266 * igrab is called higher up in the call chain, take only the 1267 * lightweight reference for the callback lifetime 1268 */ 1269 ihold(inode); 1270 async_chunk[i].pending = &ctx->num_chunks; 1271 async_chunk[i].inode = inode; 1272 async_chunk[i].start = start; 1273 async_chunk[i].end = cur_end; 1274 async_chunk[i].write_flags = write_flags; 1275 INIT_LIST_HEAD(&async_chunk[i].extents); 1276 1277 /* 1278 * The locked_page comes all the way from writepage and its 1279 * the original page we were actually given. As we spread 1280 * this large delalloc region across multiple async_chunk 1281 * structs, only the first struct needs a pointer to locked_page 1282 * 1283 * This way we don't need racey decisions about who is supposed 1284 * to unlock it. 1285 */ 1286 if (locked_page) { 1287 /* 1288 * Depending on the compressibility, the pages might or 1289 * might not go through async. We want all of them to 1290 * be accounted against wbc once. Let's do it here 1291 * before the paths diverge. wbc accounting is used 1292 * only for foreign writeback detection and doesn't 1293 * need full accuracy. Just account the whole thing 1294 * against the first page. 1295 */ 1296 wbc_account_cgroup_owner(wbc, locked_page, 1297 cur_end - start); 1298 async_chunk[i].locked_page = locked_page; 1299 locked_page = NULL; 1300 } else { 1301 async_chunk[i].locked_page = NULL; 1302 } 1303 1304 if (blkcg_css != blkcg_root_css) { 1305 css_get(blkcg_css); 1306 async_chunk[i].blkcg_css = blkcg_css; 1307 } else { 1308 async_chunk[i].blkcg_css = NULL; 1309 } 1310 1311 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1312 async_cow_submit, async_cow_free); 1313 1314 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1315 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1316 1317 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1318 1319 *nr_written += nr_pages; 1320 start = cur_end + 1; 1321 } 1322 *page_started = 1; 1323 return 0; 1324 } 1325 1326 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1327 u64 bytenr, u64 num_bytes) 1328 { 1329 int ret; 1330 struct btrfs_ordered_sum *sums; 1331 LIST_HEAD(list); 1332 1333 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1334 bytenr + num_bytes - 1, &list, 0); 1335 if (ret == 0 && list_empty(&list)) 1336 return 0; 1337 1338 while (!list_empty(&list)) { 1339 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1340 list_del(&sums->list); 1341 kfree(sums); 1342 } 1343 if (ret < 0) 1344 return ret; 1345 return 1; 1346 } 1347 1348 /* 1349 * when nowcow writeback call back. This checks for snapshots or COW copies 1350 * of the extents that exist in the file, and COWs the file as required. 1351 * 1352 * If no cow copies or snapshots exist, we write directly to the existing 1353 * blocks on disk 1354 */ 1355 static noinline int run_delalloc_nocow(struct inode *inode, 1356 struct page *locked_page, 1357 const u64 start, const u64 end, 1358 int *page_started, int force, 1359 unsigned long *nr_written) 1360 { 1361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1362 struct btrfs_root *root = BTRFS_I(inode)->root; 1363 struct btrfs_path *path; 1364 u64 cow_start = (u64)-1; 1365 u64 cur_offset = start; 1366 int ret; 1367 bool check_prev = true; 1368 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1369 u64 ino = btrfs_ino(BTRFS_I(inode)); 1370 bool nocow = false; 1371 u64 disk_bytenr = 0; 1372 1373 path = btrfs_alloc_path(); 1374 if (!path) { 1375 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1376 EXTENT_LOCKED | EXTENT_DELALLOC | 1377 EXTENT_DO_ACCOUNTING | 1378 EXTENT_DEFRAG, PAGE_UNLOCK | 1379 PAGE_CLEAR_DIRTY | 1380 PAGE_SET_WRITEBACK | 1381 PAGE_END_WRITEBACK); 1382 return -ENOMEM; 1383 } 1384 1385 while (1) { 1386 struct btrfs_key found_key; 1387 struct btrfs_file_extent_item *fi; 1388 struct extent_buffer *leaf; 1389 u64 extent_end; 1390 u64 extent_offset; 1391 u64 num_bytes = 0; 1392 u64 disk_num_bytes; 1393 u64 ram_bytes; 1394 int extent_type; 1395 1396 nocow = false; 1397 1398 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1399 cur_offset, 0); 1400 if (ret < 0) 1401 goto error; 1402 1403 /* 1404 * If there is no extent for our range when doing the initial 1405 * search, then go back to the previous slot as it will be the 1406 * one containing the search offset 1407 */ 1408 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1409 leaf = path->nodes[0]; 1410 btrfs_item_key_to_cpu(leaf, &found_key, 1411 path->slots[0] - 1); 1412 if (found_key.objectid == ino && 1413 found_key.type == BTRFS_EXTENT_DATA_KEY) 1414 path->slots[0]--; 1415 } 1416 check_prev = false; 1417 next_slot: 1418 /* Go to next leaf if we have exhausted the current one */ 1419 leaf = path->nodes[0]; 1420 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1421 ret = btrfs_next_leaf(root, path); 1422 if (ret < 0) { 1423 if (cow_start != (u64)-1) 1424 cur_offset = cow_start; 1425 goto error; 1426 } 1427 if (ret > 0) 1428 break; 1429 leaf = path->nodes[0]; 1430 } 1431 1432 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1433 1434 /* Didn't find anything for our INO */ 1435 if (found_key.objectid > ino) 1436 break; 1437 /* 1438 * Keep searching until we find an EXTENT_ITEM or there are no 1439 * more extents for this inode 1440 */ 1441 if (WARN_ON_ONCE(found_key.objectid < ino) || 1442 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1443 path->slots[0]++; 1444 goto next_slot; 1445 } 1446 1447 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1448 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1449 found_key.offset > end) 1450 break; 1451 1452 /* 1453 * If the found extent starts after requested offset, then 1454 * adjust extent_end to be right before this extent begins 1455 */ 1456 if (found_key.offset > cur_offset) { 1457 extent_end = found_key.offset; 1458 extent_type = 0; 1459 goto out_check; 1460 } 1461 1462 /* 1463 * Found extent which begins before our range and potentially 1464 * intersect it 1465 */ 1466 fi = btrfs_item_ptr(leaf, path->slots[0], 1467 struct btrfs_file_extent_item); 1468 extent_type = btrfs_file_extent_type(leaf, fi); 1469 1470 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1471 if (extent_type == BTRFS_FILE_EXTENT_REG || 1472 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1473 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1474 extent_offset = btrfs_file_extent_offset(leaf, fi); 1475 extent_end = found_key.offset + 1476 btrfs_file_extent_num_bytes(leaf, fi); 1477 disk_num_bytes = 1478 btrfs_file_extent_disk_num_bytes(leaf, fi); 1479 /* 1480 * If the extent we got ends before our current offset, 1481 * skip to the next extent. 1482 */ 1483 if (extent_end <= cur_offset) { 1484 path->slots[0]++; 1485 goto next_slot; 1486 } 1487 /* Skip holes */ 1488 if (disk_bytenr == 0) 1489 goto out_check; 1490 /* Skip compressed/encrypted/encoded extents */ 1491 if (btrfs_file_extent_compression(leaf, fi) || 1492 btrfs_file_extent_encryption(leaf, fi) || 1493 btrfs_file_extent_other_encoding(leaf, fi)) 1494 goto out_check; 1495 /* 1496 * If extent is created before the last volume's snapshot 1497 * this implies the extent is shared, hence we can't do 1498 * nocow. This is the same check as in 1499 * btrfs_cross_ref_exist but without calling 1500 * btrfs_search_slot. 1501 */ 1502 if (!freespace_inode && 1503 btrfs_file_extent_generation(leaf, fi) <= 1504 btrfs_root_last_snapshot(&root->root_item)) 1505 goto out_check; 1506 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1507 goto out_check; 1508 /* If extent is RO, we must COW it */ 1509 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1510 goto out_check; 1511 ret = btrfs_cross_ref_exist(root, ino, 1512 found_key.offset - 1513 extent_offset, disk_bytenr); 1514 if (ret) { 1515 /* 1516 * ret could be -EIO if the above fails to read 1517 * metadata. 1518 */ 1519 if (ret < 0) { 1520 if (cow_start != (u64)-1) 1521 cur_offset = cow_start; 1522 goto error; 1523 } 1524 1525 WARN_ON_ONCE(freespace_inode); 1526 goto out_check; 1527 } 1528 disk_bytenr += extent_offset; 1529 disk_bytenr += cur_offset - found_key.offset; 1530 num_bytes = min(end + 1, extent_end) - cur_offset; 1531 /* 1532 * If there are pending snapshots for this root, we 1533 * fall into common COW way 1534 */ 1535 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1536 goto out_check; 1537 /* 1538 * force cow if csum exists in the range. 1539 * this ensure that csum for a given extent are 1540 * either valid or do not exist. 1541 */ 1542 ret = csum_exist_in_range(fs_info, disk_bytenr, 1543 num_bytes); 1544 if (ret) { 1545 /* 1546 * ret could be -EIO if the above fails to read 1547 * metadata. 1548 */ 1549 if (ret < 0) { 1550 if (cow_start != (u64)-1) 1551 cur_offset = cow_start; 1552 goto error; 1553 } 1554 WARN_ON_ONCE(freespace_inode); 1555 goto out_check; 1556 } 1557 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1558 goto out_check; 1559 nocow = true; 1560 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1561 extent_end = found_key.offset + ram_bytes; 1562 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1563 /* Skip extents outside of our requested range */ 1564 if (extent_end <= start) { 1565 path->slots[0]++; 1566 goto next_slot; 1567 } 1568 } else { 1569 /* If this triggers then we have a memory corruption */ 1570 BUG(); 1571 } 1572 out_check: 1573 /* 1574 * If nocow is false then record the beginning of the range 1575 * that needs to be COWed 1576 */ 1577 if (!nocow) { 1578 if (cow_start == (u64)-1) 1579 cow_start = cur_offset; 1580 cur_offset = extent_end; 1581 if (cur_offset > end) 1582 break; 1583 path->slots[0]++; 1584 goto next_slot; 1585 } 1586 1587 btrfs_release_path(path); 1588 1589 /* 1590 * COW range from cow_start to found_key.offset - 1. As the key 1591 * will contain the beginning of the first extent that can be 1592 * NOCOW, following one which needs to be COW'ed 1593 */ 1594 if (cow_start != (u64)-1) { 1595 ret = cow_file_range(inode, locked_page, 1596 cow_start, found_key.offset - 1, 1597 page_started, nr_written, 1); 1598 if (ret) { 1599 if (nocow) 1600 btrfs_dec_nocow_writers(fs_info, 1601 disk_bytenr); 1602 goto error; 1603 } 1604 cow_start = (u64)-1; 1605 } 1606 1607 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1608 u64 orig_start = found_key.offset - extent_offset; 1609 struct extent_map *em; 1610 1611 em = create_io_em(inode, cur_offset, num_bytes, 1612 orig_start, 1613 disk_bytenr, /* block_start */ 1614 num_bytes, /* block_len */ 1615 disk_num_bytes, /* orig_block_len */ 1616 ram_bytes, BTRFS_COMPRESS_NONE, 1617 BTRFS_ORDERED_PREALLOC); 1618 if (IS_ERR(em)) { 1619 if (nocow) 1620 btrfs_dec_nocow_writers(fs_info, 1621 disk_bytenr); 1622 ret = PTR_ERR(em); 1623 goto error; 1624 } 1625 free_extent_map(em); 1626 ret = btrfs_add_ordered_extent(inode, cur_offset, 1627 disk_bytenr, num_bytes, 1628 num_bytes, 1629 BTRFS_ORDERED_PREALLOC); 1630 if (ret) { 1631 btrfs_drop_extent_cache(BTRFS_I(inode), 1632 cur_offset, 1633 cur_offset + num_bytes - 1, 1634 0); 1635 goto error; 1636 } 1637 } else { 1638 ret = btrfs_add_ordered_extent(inode, cur_offset, 1639 disk_bytenr, num_bytes, 1640 num_bytes, 1641 BTRFS_ORDERED_NOCOW); 1642 if (ret) 1643 goto error; 1644 } 1645 1646 if (nocow) 1647 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1648 nocow = false; 1649 1650 if (root->root_key.objectid == 1651 BTRFS_DATA_RELOC_TREE_OBJECTID) 1652 /* 1653 * Error handled later, as we must prevent 1654 * extent_clear_unlock_delalloc() in error handler 1655 * from freeing metadata of created ordered extent. 1656 */ 1657 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1658 num_bytes); 1659 1660 extent_clear_unlock_delalloc(inode, cur_offset, 1661 cur_offset + num_bytes - 1, 1662 locked_page, EXTENT_LOCKED | 1663 EXTENT_DELALLOC | 1664 EXTENT_CLEAR_DATA_RESV, 1665 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1666 1667 cur_offset = extent_end; 1668 1669 /* 1670 * btrfs_reloc_clone_csums() error, now we're OK to call error 1671 * handler, as metadata for created ordered extent will only 1672 * be freed by btrfs_finish_ordered_io(). 1673 */ 1674 if (ret) 1675 goto error; 1676 if (cur_offset > end) 1677 break; 1678 } 1679 btrfs_release_path(path); 1680 1681 if (cur_offset <= end && cow_start == (u64)-1) 1682 cow_start = cur_offset; 1683 1684 if (cow_start != (u64)-1) { 1685 cur_offset = end; 1686 ret = cow_file_range(inode, locked_page, cow_start, end, 1687 page_started, nr_written, 1); 1688 if (ret) 1689 goto error; 1690 } 1691 1692 error: 1693 if (nocow) 1694 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1695 1696 if (ret && cur_offset < end) 1697 extent_clear_unlock_delalloc(inode, cur_offset, end, 1698 locked_page, EXTENT_LOCKED | 1699 EXTENT_DELALLOC | EXTENT_DEFRAG | 1700 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1701 PAGE_CLEAR_DIRTY | 1702 PAGE_SET_WRITEBACK | 1703 PAGE_END_WRITEBACK); 1704 btrfs_free_path(path); 1705 return ret; 1706 } 1707 1708 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1709 { 1710 1711 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1712 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1713 return 0; 1714 1715 /* 1716 * @defrag_bytes is a hint value, no spinlock held here, 1717 * if is not zero, it means the file is defragging. 1718 * Force cow if given extent needs to be defragged. 1719 */ 1720 if (BTRFS_I(inode)->defrag_bytes && 1721 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1722 EXTENT_DEFRAG, 0, NULL)) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 /* 1729 * Function to process delayed allocation (create CoW) for ranges which are 1730 * being touched for the first time. 1731 */ 1732 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1733 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1734 struct writeback_control *wbc) 1735 { 1736 int ret; 1737 int force_cow = need_force_cow(inode, start, end); 1738 1739 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1740 ret = run_delalloc_nocow(inode, locked_page, start, end, 1741 page_started, 1, nr_written); 1742 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1743 ret = run_delalloc_nocow(inode, locked_page, start, end, 1744 page_started, 0, nr_written); 1745 } else if (!inode_can_compress(inode) || 1746 !inode_need_compress(inode, start, end)) { 1747 ret = cow_file_range(inode, locked_page, start, end, 1748 page_started, nr_written, 1); 1749 } else { 1750 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1751 &BTRFS_I(inode)->runtime_flags); 1752 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1753 page_started, nr_written); 1754 } 1755 if (ret) 1756 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1757 end - start + 1); 1758 return ret; 1759 } 1760 1761 void btrfs_split_delalloc_extent(struct inode *inode, 1762 struct extent_state *orig, u64 split) 1763 { 1764 u64 size; 1765 1766 /* not delalloc, ignore it */ 1767 if (!(orig->state & EXTENT_DELALLOC)) 1768 return; 1769 1770 size = orig->end - orig->start + 1; 1771 if (size > BTRFS_MAX_EXTENT_SIZE) { 1772 u32 num_extents; 1773 u64 new_size; 1774 1775 /* 1776 * See the explanation in btrfs_merge_delalloc_extent, the same 1777 * applies here, just in reverse. 1778 */ 1779 new_size = orig->end - split + 1; 1780 num_extents = count_max_extents(new_size); 1781 new_size = split - orig->start; 1782 num_extents += count_max_extents(new_size); 1783 if (count_max_extents(size) >= num_extents) 1784 return; 1785 } 1786 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * Handle merged delayed allocation extents so we can keep track of new extents 1794 * that are just merged onto old extents, such as when we are doing sequential 1795 * writes, so we can properly account for the metadata space we'll need. 1796 */ 1797 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1798 struct extent_state *other) 1799 { 1800 u64 new_size, old_size; 1801 u32 num_extents; 1802 1803 /* not delalloc, ignore it */ 1804 if (!(other->state & EXTENT_DELALLOC)) 1805 return; 1806 1807 if (new->start > other->start) 1808 new_size = new->end - other->start + 1; 1809 else 1810 new_size = other->end - new->start + 1; 1811 1812 /* we're not bigger than the max, unreserve the space and go */ 1813 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1814 spin_lock(&BTRFS_I(inode)->lock); 1815 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1816 spin_unlock(&BTRFS_I(inode)->lock); 1817 return; 1818 } 1819 1820 /* 1821 * We have to add up either side to figure out how many extents were 1822 * accounted for before we merged into one big extent. If the number of 1823 * extents we accounted for is <= the amount we need for the new range 1824 * then we can return, otherwise drop. Think of it like this 1825 * 1826 * [ 4k][MAX_SIZE] 1827 * 1828 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1829 * need 2 outstanding extents, on one side we have 1 and the other side 1830 * we have 1 so they are == and we can return. But in this case 1831 * 1832 * [MAX_SIZE+4k][MAX_SIZE+4k] 1833 * 1834 * Each range on their own accounts for 2 extents, but merged together 1835 * they are only 3 extents worth of accounting, so we need to drop in 1836 * this case. 1837 */ 1838 old_size = other->end - other->start + 1; 1839 num_extents = count_max_extents(old_size); 1840 old_size = new->end - new->start + 1; 1841 num_extents += count_max_extents(old_size); 1842 if (count_max_extents(new_size) >= num_extents) 1843 return; 1844 1845 spin_lock(&BTRFS_I(inode)->lock); 1846 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1847 spin_unlock(&BTRFS_I(inode)->lock); 1848 } 1849 1850 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1851 struct inode *inode) 1852 { 1853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1854 1855 spin_lock(&root->delalloc_lock); 1856 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1857 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1858 &root->delalloc_inodes); 1859 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1860 &BTRFS_I(inode)->runtime_flags); 1861 root->nr_delalloc_inodes++; 1862 if (root->nr_delalloc_inodes == 1) { 1863 spin_lock(&fs_info->delalloc_root_lock); 1864 BUG_ON(!list_empty(&root->delalloc_root)); 1865 list_add_tail(&root->delalloc_root, 1866 &fs_info->delalloc_roots); 1867 spin_unlock(&fs_info->delalloc_root_lock); 1868 } 1869 } 1870 spin_unlock(&root->delalloc_lock); 1871 } 1872 1873 1874 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1875 struct btrfs_inode *inode) 1876 { 1877 struct btrfs_fs_info *fs_info = root->fs_info; 1878 1879 if (!list_empty(&inode->delalloc_inodes)) { 1880 list_del_init(&inode->delalloc_inodes); 1881 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1882 &inode->runtime_flags); 1883 root->nr_delalloc_inodes--; 1884 if (!root->nr_delalloc_inodes) { 1885 ASSERT(list_empty(&root->delalloc_inodes)); 1886 spin_lock(&fs_info->delalloc_root_lock); 1887 BUG_ON(list_empty(&root->delalloc_root)); 1888 list_del_init(&root->delalloc_root); 1889 spin_unlock(&fs_info->delalloc_root_lock); 1890 } 1891 } 1892 } 1893 1894 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1895 struct btrfs_inode *inode) 1896 { 1897 spin_lock(&root->delalloc_lock); 1898 __btrfs_del_delalloc_inode(root, inode); 1899 spin_unlock(&root->delalloc_lock); 1900 } 1901 1902 /* 1903 * Properly track delayed allocation bytes in the inode and to maintain the 1904 * list of inodes that have pending delalloc work to be done. 1905 */ 1906 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1907 unsigned *bits) 1908 { 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1910 1911 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1912 WARN_ON(1); 1913 /* 1914 * set_bit and clear bit hooks normally require _irqsave/restore 1915 * but in this case, we are only testing for the DELALLOC 1916 * bit, which is only set or cleared with irqs on 1917 */ 1918 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1919 struct btrfs_root *root = BTRFS_I(inode)->root; 1920 u64 len = state->end + 1 - state->start; 1921 u32 num_extents = count_max_extents(len); 1922 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1923 1924 spin_lock(&BTRFS_I(inode)->lock); 1925 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1926 spin_unlock(&BTRFS_I(inode)->lock); 1927 1928 /* For sanity tests */ 1929 if (btrfs_is_testing(fs_info)) 1930 return; 1931 1932 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1933 fs_info->delalloc_batch); 1934 spin_lock(&BTRFS_I(inode)->lock); 1935 BTRFS_I(inode)->delalloc_bytes += len; 1936 if (*bits & EXTENT_DEFRAG) 1937 BTRFS_I(inode)->defrag_bytes += len; 1938 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1939 &BTRFS_I(inode)->runtime_flags)) 1940 btrfs_add_delalloc_inodes(root, inode); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 if (!(state->state & EXTENT_DELALLOC_NEW) && 1945 (*bits & EXTENT_DELALLOC_NEW)) { 1946 spin_lock(&BTRFS_I(inode)->lock); 1947 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1948 state->start; 1949 spin_unlock(&BTRFS_I(inode)->lock); 1950 } 1951 } 1952 1953 /* 1954 * Once a range is no longer delalloc this function ensures that proper 1955 * accounting happens. 1956 */ 1957 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1958 struct extent_state *state, unsigned *bits) 1959 { 1960 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1961 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1962 u64 len = state->end + 1 - state->start; 1963 u32 num_extents = count_max_extents(len); 1964 1965 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1966 spin_lock(&inode->lock); 1967 inode->defrag_bytes -= len; 1968 spin_unlock(&inode->lock); 1969 } 1970 1971 /* 1972 * set_bit and clear bit hooks normally require _irqsave/restore 1973 * but in this case, we are only testing for the DELALLOC 1974 * bit, which is only set or cleared with irqs on 1975 */ 1976 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1977 struct btrfs_root *root = inode->root; 1978 bool do_list = !btrfs_is_free_space_inode(inode); 1979 1980 spin_lock(&inode->lock); 1981 btrfs_mod_outstanding_extents(inode, -num_extents); 1982 spin_unlock(&inode->lock); 1983 1984 /* 1985 * We don't reserve metadata space for space cache inodes so we 1986 * don't need to call delalloc_release_metadata if there is an 1987 * error. 1988 */ 1989 if (*bits & EXTENT_CLEAR_META_RESV && 1990 root != fs_info->tree_root) 1991 btrfs_delalloc_release_metadata(inode, len, false); 1992 1993 /* For sanity tests. */ 1994 if (btrfs_is_testing(fs_info)) 1995 return; 1996 1997 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1998 do_list && !(state->state & EXTENT_NORESERVE) && 1999 (*bits & EXTENT_CLEAR_DATA_RESV)) 2000 btrfs_free_reserved_data_space_noquota( 2001 &inode->vfs_inode, 2002 state->start, len); 2003 2004 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2005 fs_info->delalloc_batch); 2006 spin_lock(&inode->lock); 2007 inode->delalloc_bytes -= len; 2008 if (do_list && inode->delalloc_bytes == 0 && 2009 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2010 &inode->runtime_flags)) 2011 btrfs_del_delalloc_inode(root, inode); 2012 spin_unlock(&inode->lock); 2013 } 2014 2015 if ((state->state & EXTENT_DELALLOC_NEW) && 2016 (*bits & EXTENT_DELALLOC_NEW)) { 2017 spin_lock(&inode->lock); 2018 ASSERT(inode->new_delalloc_bytes >= len); 2019 inode->new_delalloc_bytes -= len; 2020 spin_unlock(&inode->lock); 2021 } 2022 } 2023 2024 /* 2025 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2026 * in a chunk's stripe. This function ensures that bios do not span a 2027 * stripe/chunk 2028 * 2029 * @page - The page we are about to add to the bio 2030 * @size - size we want to add to the bio 2031 * @bio - bio we want to ensure is smaller than a stripe 2032 * @bio_flags - flags of the bio 2033 * 2034 * return 1 if page cannot be added to the bio 2035 * return 0 if page can be added to the bio 2036 * return error otherwise 2037 */ 2038 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2039 unsigned long bio_flags) 2040 { 2041 struct inode *inode = page->mapping->host; 2042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2043 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2044 u64 length = 0; 2045 u64 map_length; 2046 int ret; 2047 struct btrfs_io_geometry geom; 2048 2049 if (bio_flags & EXTENT_BIO_COMPRESSED) 2050 return 0; 2051 2052 length = bio->bi_iter.bi_size; 2053 map_length = length; 2054 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2055 &geom); 2056 if (ret < 0) 2057 return ret; 2058 2059 if (geom.len < length + size) 2060 return 1; 2061 return 0; 2062 } 2063 2064 /* 2065 * in order to insert checksums into the metadata in large chunks, 2066 * we wait until bio submission time. All the pages in the bio are 2067 * checksummed and sums are attached onto the ordered extent record. 2068 * 2069 * At IO completion time the cums attached on the ordered extent record 2070 * are inserted into the btree 2071 */ 2072 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2073 u64 bio_offset) 2074 { 2075 struct inode *inode = private_data; 2076 blk_status_t ret = 0; 2077 2078 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2079 BUG_ON(ret); /* -ENOMEM */ 2080 return 0; 2081 } 2082 2083 /* 2084 * extent_io.c submission hook. This does the right thing for csum calculation 2085 * on write, or reading the csums from the tree before a read. 2086 * 2087 * Rules about async/sync submit, 2088 * a) read: sync submit 2089 * 2090 * b) write without checksum: sync submit 2091 * 2092 * c) write with checksum: 2093 * c-1) if bio is issued by fsync: sync submit 2094 * (sync_writers != 0) 2095 * 2096 * c-2) if root is reloc root: sync submit 2097 * (only in case of buffered IO) 2098 * 2099 * c-3) otherwise: async submit 2100 */ 2101 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2102 int mirror_num, 2103 unsigned long bio_flags) 2104 2105 { 2106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2107 struct btrfs_root *root = BTRFS_I(inode)->root; 2108 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2109 blk_status_t ret = 0; 2110 int skip_sum; 2111 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2112 2113 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2114 2115 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2116 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2117 2118 if (bio_op(bio) != REQ_OP_WRITE) { 2119 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2120 if (ret) 2121 goto out; 2122 2123 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2124 ret = btrfs_submit_compressed_read(inode, bio, 2125 mirror_num, 2126 bio_flags); 2127 goto out; 2128 } else if (!skip_sum) { 2129 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2130 if (ret) 2131 goto out; 2132 } 2133 goto mapit; 2134 } else if (async && !skip_sum) { 2135 /* csum items have already been cloned */ 2136 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2137 goto mapit; 2138 /* we're doing a write, do the async checksumming */ 2139 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2140 0, inode, btrfs_submit_bio_start); 2141 goto out; 2142 } else if (!skip_sum) { 2143 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2144 if (ret) 2145 goto out; 2146 } 2147 2148 mapit: 2149 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2150 2151 out: 2152 if (ret) { 2153 bio->bi_status = ret; 2154 bio_endio(bio); 2155 } 2156 return ret; 2157 } 2158 2159 /* 2160 * given a list of ordered sums record them in the inode. This happens 2161 * at IO completion time based on sums calculated at bio submission time. 2162 */ 2163 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2164 struct inode *inode, struct list_head *list) 2165 { 2166 struct btrfs_ordered_sum *sum; 2167 int ret; 2168 2169 list_for_each_entry(sum, list, list) { 2170 trans->adding_csums = true; 2171 ret = btrfs_csum_file_blocks(trans, 2172 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2173 trans->adding_csums = false; 2174 if (ret) 2175 return ret; 2176 } 2177 return 0; 2178 } 2179 2180 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2181 unsigned int extra_bits, 2182 struct extent_state **cached_state) 2183 { 2184 WARN_ON(PAGE_ALIGNED(end)); 2185 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2186 extra_bits, cached_state); 2187 } 2188 2189 /* see btrfs_writepage_start_hook for details on why this is required */ 2190 struct btrfs_writepage_fixup { 2191 struct page *page; 2192 struct inode *inode; 2193 struct btrfs_work work; 2194 }; 2195 2196 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2197 { 2198 struct btrfs_writepage_fixup *fixup; 2199 struct btrfs_ordered_extent *ordered; 2200 struct extent_state *cached_state = NULL; 2201 struct extent_changeset *data_reserved = NULL; 2202 struct page *page; 2203 struct inode *inode; 2204 u64 page_start; 2205 u64 page_end; 2206 int ret = 0; 2207 bool free_delalloc_space = true; 2208 2209 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2210 page = fixup->page; 2211 inode = fixup->inode; 2212 page_start = page_offset(page); 2213 page_end = page_offset(page) + PAGE_SIZE - 1; 2214 2215 /* 2216 * This is similar to page_mkwrite, we need to reserve the space before 2217 * we take the page lock. 2218 */ 2219 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2220 PAGE_SIZE); 2221 again: 2222 lock_page(page); 2223 2224 /* 2225 * Before we queued this fixup, we took a reference on the page. 2226 * page->mapping may go NULL, but it shouldn't be moved to a different 2227 * address space. 2228 */ 2229 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2230 /* 2231 * Unfortunately this is a little tricky, either 2232 * 2233 * 1) We got here and our page had already been dealt with and 2234 * we reserved our space, thus ret == 0, so we need to just 2235 * drop our space reservation and bail. This can happen the 2236 * first time we come into the fixup worker, or could happen 2237 * while waiting for the ordered extent. 2238 * 2) Our page was already dealt with, but we happened to get an 2239 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2240 * this case we obviously don't have anything to release, but 2241 * because the page was already dealt with we don't want to 2242 * mark the page with an error, so make sure we're resetting 2243 * ret to 0. This is why we have this check _before_ the ret 2244 * check, because we do not want to have a surprise ENOSPC 2245 * when the page was already properly dealt with. 2246 */ 2247 if (!ret) { 2248 btrfs_delalloc_release_extents(BTRFS_I(inode), 2249 PAGE_SIZE); 2250 btrfs_delalloc_release_space(inode, data_reserved, 2251 page_start, PAGE_SIZE, 2252 true); 2253 } 2254 ret = 0; 2255 goto out_page; 2256 } 2257 2258 /* 2259 * We can't mess with the page state unless it is locked, so now that 2260 * it is locked bail if we failed to make our space reservation. 2261 */ 2262 if (ret) 2263 goto out_page; 2264 2265 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2266 &cached_state); 2267 2268 /* already ordered? We're done */ 2269 if (PagePrivate2(page)) 2270 goto out_reserved; 2271 2272 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2273 PAGE_SIZE); 2274 if (ordered) { 2275 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2276 page_end, &cached_state); 2277 unlock_page(page); 2278 btrfs_start_ordered_extent(inode, ordered, 1); 2279 btrfs_put_ordered_extent(ordered); 2280 goto again; 2281 } 2282 2283 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2284 &cached_state); 2285 if (ret) 2286 goto out_reserved; 2287 2288 /* 2289 * Everything went as planned, we're now the owner of a dirty page with 2290 * delayed allocation bits set and space reserved for our COW 2291 * destination. 2292 * 2293 * The page was dirty when we started, nothing should have cleaned it. 2294 */ 2295 BUG_ON(!PageDirty(page)); 2296 free_delalloc_space = false; 2297 out_reserved: 2298 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2299 if (free_delalloc_space) 2300 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2301 PAGE_SIZE, true); 2302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2303 &cached_state); 2304 out_page: 2305 if (ret) { 2306 /* 2307 * We hit ENOSPC or other errors. Update the mapping and page 2308 * to reflect the errors and clean the page. 2309 */ 2310 mapping_set_error(page->mapping, ret); 2311 end_extent_writepage(page, ret, page_start, page_end); 2312 clear_page_dirty_for_io(page); 2313 SetPageError(page); 2314 } 2315 ClearPageChecked(page); 2316 unlock_page(page); 2317 put_page(page); 2318 kfree(fixup); 2319 extent_changeset_free(data_reserved); 2320 /* 2321 * As a precaution, do a delayed iput in case it would be the last iput 2322 * that could need flushing space. Recursing back to fixup worker would 2323 * deadlock. 2324 */ 2325 btrfs_add_delayed_iput(inode); 2326 } 2327 2328 /* 2329 * There are a few paths in the higher layers of the kernel that directly 2330 * set the page dirty bit without asking the filesystem if it is a 2331 * good idea. This causes problems because we want to make sure COW 2332 * properly happens and the data=ordered rules are followed. 2333 * 2334 * In our case any range that doesn't have the ORDERED bit set 2335 * hasn't been properly setup for IO. We kick off an async process 2336 * to fix it up. The async helper will wait for ordered extents, set 2337 * the delalloc bit and make it safe to write the page. 2338 */ 2339 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2340 { 2341 struct inode *inode = page->mapping->host; 2342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2343 struct btrfs_writepage_fixup *fixup; 2344 2345 /* this page is properly in the ordered list */ 2346 if (TestClearPagePrivate2(page)) 2347 return 0; 2348 2349 /* 2350 * PageChecked is set below when we create a fixup worker for this page, 2351 * don't try to create another one if we're already PageChecked() 2352 * 2353 * The extent_io writepage code will redirty the page if we send back 2354 * EAGAIN. 2355 */ 2356 if (PageChecked(page)) 2357 return -EAGAIN; 2358 2359 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2360 if (!fixup) 2361 return -EAGAIN; 2362 2363 /* 2364 * We are already holding a reference to this inode from 2365 * write_cache_pages. We need to hold it because the space reservation 2366 * takes place outside of the page lock, and we can't trust 2367 * page->mapping outside of the page lock. 2368 */ 2369 ihold(inode); 2370 SetPageChecked(page); 2371 get_page(page); 2372 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2373 fixup->page = page; 2374 fixup->inode = inode; 2375 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2376 2377 return -EAGAIN; 2378 } 2379 2380 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2381 struct inode *inode, u64 file_pos, 2382 u64 disk_bytenr, u64 disk_num_bytes, 2383 u64 num_bytes, u64 ram_bytes, 2384 u8 compression, u8 encryption, 2385 u16 other_encoding, int extent_type) 2386 { 2387 struct btrfs_root *root = BTRFS_I(inode)->root; 2388 struct btrfs_file_extent_item *fi; 2389 struct btrfs_path *path; 2390 struct extent_buffer *leaf; 2391 struct btrfs_key ins; 2392 u64 qg_released; 2393 int extent_inserted = 0; 2394 int ret; 2395 2396 path = btrfs_alloc_path(); 2397 if (!path) 2398 return -ENOMEM; 2399 2400 /* 2401 * we may be replacing one extent in the tree with another. 2402 * The new extent is pinned in the extent map, and we don't want 2403 * to drop it from the cache until it is completely in the btree. 2404 * 2405 * So, tell btrfs_drop_extents to leave this extent in the cache. 2406 * the caller is expected to unpin it and allow it to be merged 2407 * with the others. 2408 */ 2409 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2410 file_pos + num_bytes, NULL, 0, 2411 1, sizeof(*fi), &extent_inserted); 2412 if (ret) 2413 goto out; 2414 2415 if (!extent_inserted) { 2416 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2417 ins.offset = file_pos; 2418 ins.type = BTRFS_EXTENT_DATA_KEY; 2419 2420 path->leave_spinning = 1; 2421 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2422 sizeof(*fi)); 2423 if (ret) 2424 goto out; 2425 } 2426 leaf = path->nodes[0]; 2427 fi = btrfs_item_ptr(leaf, path->slots[0], 2428 struct btrfs_file_extent_item); 2429 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2430 btrfs_set_file_extent_type(leaf, fi, extent_type); 2431 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2432 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2433 btrfs_set_file_extent_offset(leaf, fi, 0); 2434 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2435 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2436 btrfs_set_file_extent_compression(leaf, fi, compression); 2437 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2438 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2439 2440 btrfs_mark_buffer_dirty(leaf); 2441 btrfs_release_path(path); 2442 2443 inode_add_bytes(inode, num_bytes); 2444 2445 ins.objectid = disk_bytenr; 2446 ins.offset = disk_num_bytes; 2447 ins.type = BTRFS_EXTENT_ITEM_KEY; 2448 2449 /* 2450 * Release the reserved range from inode dirty range map, as it is 2451 * already moved into delayed_ref_head 2452 */ 2453 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2454 if (ret < 0) 2455 goto out; 2456 qg_released = ret; 2457 ret = btrfs_alloc_reserved_file_extent(trans, root, 2458 btrfs_ino(BTRFS_I(inode)), 2459 file_pos, qg_released, &ins); 2460 out: 2461 btrfs_free_path(path); 2462 2463 return ret; 2464 } 2465 2466 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2467 u64 start, u64 len) 2468 { 2469 struct btrfs_block_group *cache; 2470 2471 cache = btrfs_lookup_block_group(fs_info, start); 2472 ASSERT(cache); 2473 2474 spin_lock(&cache->lock); 2475 cache->delalloc_bytes -= len; 2476 spin_unlock(&cache->lock); 2477 2478 btrfs_put_block_group(cache); 2479 } 2480 2481 /* as ordered data IO finishes, this gets called so we can finish 2482 * an ordered extent if the range of bytes in the file it covers are 2483 * fully written. 2484 */ 2485 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2486 { 2487 struct inode *inode = ordered_extent->inode; 2488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2489 struct btrfs_root *root = BTRFS_I(inode)->root; 2490 struct btrfs_trans_handle *trans = NULL; 2491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2492 struct extent_state *cached_state = NULL; 2493 u64 start, end; 2494 int compress_type = 0; 2495 int ret = 0; 2496 u64 logical_len = ordered_extent->num_bytes; 2497 bool freespace_inode; 2498 bool truncated = false; 2499 bool range_locked = false; 2500 bool clear_new_delalloc_bytes = false; 2501 bool clear_reserved_extent = true; 2502 unsigned int clear_bits; 2503 2504 start = ordered_extent->file_offset; 2505 end = start + ordered_extent->num_bytes - 1; 2506 2507 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2508 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2509 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2510 clear_new_delalloc_bytes = true; 2511 2512 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2513 2514 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2515 ret = -EIO; 2516 goto out; 2517 } 2518 2519 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2520 2521 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2522 truncated = true; 2523 logical_len = ordered_extent->truncated_len; 2524 /* Truncated the entire extent, don't bother adding */ 2525 if (!logical_len) 2526 goto out; 2527 } 2528 2529 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2530 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2531 2532 /* 2533 * For mwrite(mmap + memset to write) case, we still reserve 2534 * space for NOCOW range. 2535 * As NOCOW won't cause a new delayed ref, just free the space 2536 */ 2537 btrfs_qgroup_free_data(inode, NULL, start, 2538 ordered_extent->num_bytes); 2539 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2540 if (freespace_inode) 2541 trans = btrfs_join_transaction_spacecache(root); 2542 else 2543 trans = btrfs_join_transaction(root); 2544 if (IS_ERR(trans)) { 2545 ret = PTR_ERR(trans); 2546 trans = NULL; 2547 goto out; 2548 } 2549 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2550 ret = btrfs_update_inode_fallback(trans, root, inode); 2551 if (ret) /* -ENOMEM or corruption */ 2552 btrfs_abort_transaction(trans, ret); 2553 goto out; 2554 } 2555 2556 range_locked = true; 2557 lock_extent_bits(io_tree, start, end, &cached_state); 2558 2559 if (freespace_inode) 2560 trans = btrfs_join_transaction_spacecache(root); 2561 else 2562 trans = btrfs_join_transaction(root); 2563 if (IS_ERR(trans)) { 2564 ret = PTR_ERR(trans); 2565 trans = NULL; 2566 goto out; 2567 } 2568 2569 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2570 2571 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2572 compress_type = ordered_extent->compress_type; 2573 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2574 BUG_ON(compress_type); 2575 btrfs_qgroup_free_data(inode, NULL, start, 2576 ordered_extent->num_bytes); 2577 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2578 ordered_extent->file_offset, 2579 ordered_extent->file_offset + 2580 logical_len); 2581 } else { 2582 BUG_ON(root == fs_info->tree_root); 2583 ret = insert_reserved_file_extent(trans, inode, start, 2584 ordered_extent->disk_bytenr, 2585 ordered_extent->disk_num_bytes, 2586 logical_len, logical_len, 2587 compress_type, 0, 0, 2588 BTRFS_FILE_EXTENT_REG); 2589 if (!ret) { 2590 clear_reserved_extent = false; 2591 btrfs_release_delalloc_bytes(fs_info, 2592 ordered_extent->disk_bytenr, 2593 ordered_extent->disk_num_bytes); 2594 } 2595 } 2596 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2597 ordered_extent->file_offset, 2598 ordered_extent->num_bytes, trans->transid); 2599 if (ret < 0) { 2600 btrfs_abort_transaction(trans, ret); 2601 goto out; 2602 } 2603 2604 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2605 if (ret) { 2606 btrfs_abort_transaction(trans, ret); 2607 goto out; 2608 } 2609 2610 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2611 ret = btrfs_update_inode_fallback(trans, root, inode); 2612 if (ret) { /* -ENOMEM or corruption */ 2613 btrfs_abort_transaction(trans, ret); 2614 goto out; 2615 } 2616 ret = 0; 2617 out: 2618 clear_bits = EXTENT_DEFRAG; 2619 if (range_locked) 2620 clear_bits |= EXTENT_LOCKED; 2621 if (clear_new_delalloc_bytes) 2622 clear_bits |= EXTENT_DELALLOC_NEW; 2623 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2624 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2625 &cached_state); 2626 2627 if (trans) 2628 btrfs_end_transaction(trans); 2629 2630 if (ret || truncated) { 2631 u64 unwritten_start = start; 2632 2633 if (truncated) 2634 unwritten_start += logical_len; 2635 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2636 2637 /* Drop the cache for the part of the extent we didn't write. */ 2638 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2639 2640 /* 2641 * If the ordered extent had an IOERR or something else went 2642 * wrong we need to return the space for this ordered extent 2643 * back to the allocator. We only free the extent in the 2644 * truncated case if we didn't write out the extent at all. 2645 * 2646 * If we made it past insert_reserved_file_extent before we 2647 * errored out then we don't need to do this as the accounting 2648 * has already been done. 2649 */ 2650 if ((ret || !logical_len) && 2651 clear_reserved_extent && 2652 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2653 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2654 /* 2655 * Discard the range before returning it back to the 2656 * free space pool 2657 */ 2658 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2659 btrfs_discard_extent(fs_info, 2660 ordered_extent->disk_bytenr, 2661 ordered_extent->disk_num_bytes, 2662 NULL); 2663 btrfs_free_reserved_extent(fs_info, 2664 ordered_extent->disk_bytenr, 2665 ordered_extent->disk_num_bytes, 1); 2666 } 2667 } 2668 2669 /* 2670 * This needs to be done to make sure anybody waiting knows we are done 2671 * updating everything for this ordered extent. 2672 */ 2673 btrfs_remove_ordered_extent(inode, ordered_extent); 2674 2675 /* once for us */ 2676 btrfs_put_ordered_extent(ordered_extent); 2677 /* once for the tree */ 2678 btrfs_put_ordered_extent(ordered_extent); 2679 2680 return ret; 2681 } 2682 2683 static void finish_ordered_fn(struct btrfs_work *work) 2684 { 2685 struct btrfs_ordered_extent *ordered_extent; 2686 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2687 btrfs_finish_ordered_io(ordered_extent); 2688 } 2689 2690 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2691 u64 end, int uptodate) 2692 { 2693 struct inode *inode = page->mapping->host; 2694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2695 struct btrfs_ordered_extent *ordered_extent = NULL; 2696 struct btrfs_workqueue *wq; 2697 2698 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2699 2700 ClearPagePrivate2(page); 2701 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2702 end - start + 1, uptodate)) 2703 return; 2704 2705 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2706 wq = fs_info->endio_freespace_worker; 2707 else 2708 wq = fs_info->endio_write_workers; 2709 2710 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2711 btrfs_queue_work(wq, &ordered_extent->work); 2712 } 2713 2714 static int __readpage_endio_check(struct inode *inode, 2715 struct btrfs_io_bio *io_bio, 2716 int icsum, struct page *page, 2717 int pgoff, u64 start, size_t len) 2718 { 2719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2720 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2721 char *kaddr; 2722 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2723 u8 *csum_expected; 2724 u8 csum[BTRFS_CSUM_SIZE]; 2725 2726 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2727 2728 kaddr = kmap_atomic(page); 2729 shash->tfm = fs_info->csum_shash; 2730 2731 crypto_shash_init(shash); 2732 crypto_shash_update(shash, kaddr + pgoff, len); 2733 crypto_shash_final(shash, csum); 2734 2735 if (memcmp(csum, csum_expected, csum_size)) 2736 goto zeroit; 2737 2738 kunmap_atomic(kaddr); 2739 return 0; 2740 zeroit: 2741 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2742 io_bio->mirror_num); 2743 memset(kaddr + pgoff, 1, len); 2744 flush_dcache_page(page); 2745 kunmap_atomic(kaddr); 2746 return -EIO; 2747 } 2748 2749 /* 2750 * when reads are done, we need to check csums to verify the data is correct 2751 * if there's a match, we allow the bio to finish. If not, the code in 2752 * extent_io.c will try to find good copies for us. 2753 */ 2754 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2755 u64 phy_offset, struct page *page, 2756 u64 start, u64 end, int mirror) 2757 { 2758 size_t offset = start - page_offset(page); 2759 struct inode *inode = page->mapping->host; 2760 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2761 struct btrfs_root *root = BTRFS_I(inode)->root; 2762 2763 if (PageChecked(page)) { 2764 ClearPageChecked(page); 2765 return 0; 2766 } 2767 2768 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2769 return 0; 2770 2771 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2772 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2773 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2774 return 0; 2775 } 2776 2777 phy_offset >>= inode->i_sb->s_blocksize_bits; 2778 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 2779 start, (size_t)(end - start + 1)); 2780 } 2781 2782 /* 2783 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2784 * 2785 * @inode: The inode we want to perform iput on 2786 * 2787 * This function uses the generic vfs_inode::i_count to track whether we should 2788 * just decrement it (in case it's > 1) or if this is the last iput then link 2789 * the inode to the delayed iput machinery. Delayed iputs are processed at 2790 * transaction commit time/superblock commit/cleaner kthread. 2791 */ 2792 void btrfs_add_delayed_iput(struct inode *inode) 2793 { 2794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2795 struct btrfs_inode *binode = BTRFS_I(inode); 2796 2797 if (atomic_add_unless(&inode->i_count, -1, 1)) 2798 return; 2799 2800 atomic_inc(&fs_info->nr_delayed_iputs); 2801 spin_lock(&fs_info->delayed_iput_lock); 2802 ASSERT(list_empty(&binode->delayed_iput)); 2803 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2804 spin_unlock(&fs_info->delayed_iput_lock); 2805 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2806 wake_up_process(fs_info->cleaner_kthread); 2807 } 2808 2809 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2810 struct btrfs_inode *inode) 2811 { 2812 list_del_init(&inode->delayed_iput); 2813 spin_unlock(&fs_info->delayed_iput_lock); 2814 iput(&inode->vfs_inode); 2815 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2816 wake_up(&fs_info->delayed_iputs_wait); 2817 spin_lock(&fs_info->delayed_iput_lock); 2818 } 2819 2820 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2821 struct btrfs_inode *inode) 2822 { 2823 if (!list_empty(&inode->delayed_iput)) { 2824 spin_lock(&fs_info->delayed_iput_lock); 2825 if (!list_empty(&inode->delayed_iput)) 2826 run_delayed_iput_locked(fs_info, inode); 2827 spin_unlock(&fs_info->delayed_iput_lock); 2828 } 2829 } 2830 2831 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2832 { 2833 2834 spin_lock(&fs_info->delayed_iput_lock); 2835 while (!list_empty(&fs_info->delayed_iputs)) { 2836 struct btrfs_inode *inode; 2837 2838 inode = list_first_entry(&fs_info->delayed_iputs, 2839 struct btrfs_inode, delayed_iput); 2840 run_delayed_iput_locked(fs_info, inode); 2841 } 2842 spin_unlock(&fs_info->delayed_iput_lock); 2843 } 2844 2845 /** 2846 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2847 * @fs_info - the fs_info for this fs 2848 * @return - EINTR if we were killed, 0 if nothing's pending 2849 * 2850 * This will wait on any delayed iputs that are currently running with KILLABLE 2851 * set. Once they are all done running we will return, unless we are killed in 2852 * which case we return EINTR. This helps in user operations like fallocate etc 2853 * that might get blocked on the iputs. 2854 */ 2855 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2856 { 2857 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2858 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2859 if (ret) 2860 return -EINTR; 2861 return 0; 2862 } 2863 2864 /* 2865 * This creates an orphan entry for the given inode in case something goes wrong 2866 * in the middle of an unlink. 2867 */ 2868 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2869 struct btrfs_inode *inode) 2870 { 2871 int ret; 2872 2873 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2874 if (ret && ret != -EEXIST) { 2875 btrfs_abort_transaction(trans, ret); 2876 return ret; 2877 } 2878 2879 return 0; 2880 } 2881 2882 /* 2883 * We have done the delete so we can go ahead and remove the orphan item for 2884 * this particular inode. 2885 */ 2886 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2887 struct btrfs_inode *inode) 2888 { 2889 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2890 } 2891 2892 /* 2893 * this cleans up any orphans that may be left on the list from the last use 2894 * of this root. 2895 */ 2896 int btrfs_orphan_cleanup(struct btrfs_root *root) 2897 { 2898 struct btrfs_fs_info *fs_info = root->fs_info; 2899 struct btrfs_path *path; 2900 struct extent_buffer *leaf; 2901 struct btrfs_key key, found_key; 2902 struct btrfs_trans_handle *trans; 2903 struct inode *inode; 2904 u64 last_objectid = 0; 2905 int ret = 0, nr_unlink = 0; 2906 2907 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2908 return 0; 2909 2910 path = btrfs_alloc_path(); 2911 if (!path) { 2912 ret = -ENOMEM; 2913 goto out; 2914 } 2915 path->reada = READA_BACK; 2916 2917 key.objectid = BTRFS_ORPHAN_OBJECTID; 2918 key.type = BTRFS_ORPHAN_ITEM_KEY; 2919 key.offset = (u64)-1; 2920 2921 while (1) { 2922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2923 if (ret < 0) 2924 goto out; 2925 2926 /* 2927 * if ret == 0 means we found what we were searching for, which 2928 * is weird, but possible, so only screw with path if we didn't 2929 * find the key and see if we have stuff that matches 2930 */ 2931 if (ret > 0) { 2932 ret = 0; 2933 if (path->slots[0] == 0) 2934 break; 2935 path->slots[0]--; 2936 } 2937 2938 /* pull out the item */ 2939 leaf = path->nodes[0]; 2940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2941 2942 /* make sure the item matches what we want */ 2943 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2944 break; 2945 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 2946 break; 2947 2948 /* release the path since we're done with it */ 2949 btrfs_release_path(path); 2950 2951 /* 2952 * this is where we are basically btrfs_lookup, without the 2953 * crossing root thing. we store the inode number in the 2954 * offset of the orphan item. 2955 */ 2956 2957 if (found_key.offset == last_objectid) { 2958 btrfs_err(fs_info, 2959 "Error removing orphan entry, stopping orphan cleanup"); 2960 ret = -EINVAL; 2961 goto out; 2962 } 2963 2964 last_objectid = found_key.offset; 2965 2966 found_key.objectid = found_key.offset; 2967 found_key.type = BTRFS_INODE_ITEM_KEY; 2968 found_key.offset = 0; 2969 inode = btrfs_iget(fs_info->sb, &found_key, root); 2970 ret = PTR_ERR_OR_ZERO(inode); 2971 if (ret && ret != -ENOENT) 2972 goto out; 2973 2974 if (ret == -ENOENT && root == fs_info->tree_root) { 2975 struct btrfs_root *dead_root; 2976 struct btrfs_fs_info *fs_info = root->fs_info; 2977 int is_dead_root = 0; 2978 2979 /* 2980 * this is an orphan in the tree root. Currently these 2981 * could come from 2 sources: 2982 * a) a snapshot deletion in progress 2983 * b) a free space cache inode 2984 * We need to distinguish those two, as the snapshot 2985 * orphan must not get deleted. 2986 * find_dead_roots already ran before us, so if this 2987 * is a snapshot deletion, we should find the root 2988 * in the dead_roots list 2989 */ 2990 spin_lock(&fs_info->trans_lock); 2991 list_for_each_entry(dead_root, &fs_info->dead_roots, 2992 root_list) { 2993 if (dead_root->root_key.objectid == 2994 found_key.objectid) { 2995 is_dead_root = 1; 2996 break; 2997 } 2998 } 2999 spin_unlock(&fs_info->trans_lock); 3000 if (is_dead_root) { 3001 /* prevent this orphan from being found again */ 3002 key.offset = found_key.objectid - 1; 3003 continue; 3004 } 3005 3006 } 3007 3008 /* 3009 * If we have an inode with links, there are a couple of 3010 * possibilities. Old kernels (before v3.12) used to create an 3011 * orphan item for truncate indicating that there were possibly 3012 * extent items past i_size that needed to be deleted. In v3.12, 3013 * truncate was changed to update i_size in sync with the extent 3014 * items, but the (useless) orphan item was still created. Since 3015 * v4.18, we don't create the orphan item for truncate at all. 3016 * 3017 * So, this item could mean that we need to do a truncate, but 3018 * only if this filesystem was last used on a pre-v3.12 kernel 3019 * and was not cleanly unmounted. The odds of that are quite 3020 * slim, and it's a pain to do the truncate now, so just delete 3021 * the orphan item. 3022 * 3023 * It's also possible that this orphan item was supposed to be 3024 * deleted but wasn't. The inode number may have been reused, 3025 * but either way, we can delete the orphan item. 3026 */ 3027 if (ret == -ENOENT || inode->i_nlink) { 3028 if (!ret) 3029 iput(inode); 3030 trans = btrfs_start_transaction(root, 1); 3031 if (IS_ERR(trans)) { 3032 ret = PTR_ERR(trans); 3033 goto out; 3034 } 3035 btrfs_debug(fs_info, "auto deleting %Lu", 3036 found_key.objectid); 3037 ret = btrfs_del_orphan_item(trans, root, 3038 found_key.objectid); 3039 btrfs_end_transaction(trans); 3040 if (ret) 3041 goto out; 3042 continue; 3043 } 3044 3045 nr_unlink++; 3046 3047 /* this will do delete_inode and everything for us */ 3048 iput(inode); 3049 } 3050 /* release the path since we're done with it */ 3051 btrfs_release_path(path); 3052 3053 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3054 3055 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3056 trans = btrfs_join_transaction(root); 3057 if (!IS_ERR(trans)) 3058 btrfs_end_transaction(trans); 3059 } 3060 3061 if (nr_unlink) 3062 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3063 3064 out: 3065 if (ret) 3066 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3067 btrfs_free_path(path); 3068 return ret; 3069 } 3070 3071 /* 3072 * very simple check to peek ahead in the leaf looking for xattrs. If we 3073 * don't find any xattrs, we know there can't be any acls. 3074 * 3075 * slot is the slot the inode is in, objectid is the objectid of the inode 3076 */ 3077 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3078 int slot, u64 objectid, 3079 int *first_xattr_slot) 3080 { 3081 u32 nritems = btrfs_header_nritems(leaf); 3082 struct btrfs_key found_key; 3083 static u64 xattr_access = 0; 3084 static u64 xattr_default = 0; 3085 int scanned = 0; 3086 3087 if (!xattr_access) { 3088 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3089 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3090 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3091 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3092 } 3093 3094 slot++; 3095 *first_xattr_slot = -1; 3096 while (slot < nritems) { 3097 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3098 3099 /* we found a different objectid, there must not be acls */ 3100 if (found_key.objectid != objectid) 3101 return 0; 3102 3103 /* we found an xattr, assume we've got an acl */ 3104 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3105 if (*first_xattr_slot == -1) 3106 *first_xattr_slot = slot; 3107 if (found_key.offset == xattr_access || 3108 found_key.offset == xattr_default) 3109 return 1; 3110 } 3111 3112 /* 3113 * we found a key greater than an xattr key, there can't 3114 * be any acls later on 3115 */ 3116 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3117 return 0; 3118 3119 slot++; 3120 scanned++; 3121 3122 /* 3123 * it goes inode, inode backrefs, xattrs, extents, 3124 * so if there are a ton of hard links to an inode there can 3125 * be a lot of backrefs. Don't waste time searching too hard, 3126 * this is just an optimization 3127 */ 3128 if (scanned >= 8) 3129 break; 3130 } 3131 /* we hit the end of the leaf before we found an xattr or 3132 * something larger than an xattr. We have to assume the inode 3133 * has acls 3134 */ 3135 if (*first_xattr_slot == -1) 3136 *first_xattr_slot = slot; 3137 return 1; 3138 } 3139 3140 /* 3141 * read an inode from the btree into the in-memory inode 3142 */ 3143 static int btrfs_read_locked_inode(struct inode *inode, 3144 struct btrfs_path *in_path) 3145 { 3146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3147 struct btrfs_path *path = in_path; 3148 struct extent_buffer *leaf; 3149 struct btrfs_inode_item *inode_item; 3150 struct btrfs_root *root = BTRFS_I(inode)->root; 3151 struct btrfs_key location; 3152 unsigned long ptr; 3153 int maybe_acls; 3154 u32 rdev; 3155 int ret; 3156 bool filled = false; 3157 int first_xattr_slot; 3158 3159 ret = btrfs_fill_inode(inode, &rdev); 3160 if (!ret) 3161 filled = true; 3162 3163 if (!path) { 3164 path = btrfs_alloc_path(); 3165 if (!path) 3166 return -ENOMEM; 3167 } 3168 3169 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3170 3171 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3172 if (ret) { 3173 if (path != in_path) 3174 btrfs_free_path(path); 3175 return ret; 3176 } 3177 3178 leaf = path->nodes[0]; 3179 3180 if (filled) 3181 goto cache_index; 3182 3183 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3184 struct btrfs_inode_item); 3185 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3186 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3187 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3188 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3189 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3190 3191 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3192 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3193 3194 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3195 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3196 3197 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3198 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3199 3200 BTRFS_I(inode)->i_otime.tv_sec = 3201 btrfs_timespec_sec(leaf, &inode_item->otime); 3202 BTRFS_I(inode)->i_otime.tv_nsec = 3203 btrfs_timespec_nsec(leaf, &inode_item->otime); 3204 3205 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3206 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3207 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3208 3209 inode_set_iversion_queried(inode, 3210 btrfs_inode_sequence(leaf, inode_item)); 3211 inode->i_generation = BTRFS_I(inode)->generation; 3212 inode->i_rdev = 0; 3213 rdev = btrfs_inode_rdev(leaf, inode_item); 3214 3215 BTRFS_I(inode)->index_cnt = (u64)-1; 3216 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3217 3218 cache_index: 3219 /* 3220 * If we were modified in the current generation and evicted from memory 3221 * and then re-read we need to do a full sync since we don't have any 3222 * idea about which extents were modified before we were evicted from 3223 * cache. 3224 * 3225 * This is required for both inode re-read from disk and delayed inode 3226 * in delayed_nodes_tree. 3227 */ 3228 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3229 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3230 &BTRFS_I(inode)->runtime_flags); 3231 3232 /* 3233 * We don't persist the id of the transaction where an unlink operation 3234 * against the inode was last made. So here we assume the inode might 3235 * have been evicted, and therefore the exact value of last_unlink_trans 3236 * lost, and set it to last_trans to avoid metadata inconsistencies 3237 * between the inode and its parent if the inode is fsync'ed and the log 3238 * replayed. For example, in the scenario: 3239 * 3240 * touch mydir/foo 3241 * ln mydir/foo mydir/bar 3242 * sync 3243 * unlink mydir/bar 3244 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3245 * xfs_io -c fsync mydir/foo 3246 * <power failure> 3247 * mount fs, triggers fsync log replay 3248 * 3249 * We must make sure that when we fsync our inode foo we also log its 3250 * parent inode, otherwise after log replay the parent still has the 3251 * dentry with the "bar" name but our inode foo has a link count of 1 3252 * and doesn't have an inode ref with the name "bar" anymore. 3253 * 3254 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3255 * but it guarantees correctness at the expense of occasional full 3256 * transaction commits on fsync if our inode is a directory, or if our 3257 * inode is not a directory, logging its parent unnecessarily. 3258 */ 3259 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3260 3261 path->slots[0]++; 3262 if (inode->i_nlink != 1 || 3263 path->slots[0] >= btrfs_header_nritems(leaf)) 3264 goto cache_acl; 3265 3266 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3267 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3268 goto cache_acl; 3269 3270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3271 if (location.type == BTRFS_INODE_REF_KEY) { 3272 struct btrfs_inode_ref *ref; 3273 3274 ref = (struct btrfs_inode_ref *)ptr; 3275 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3276 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3277 struct btrfs_inode_extref *extref; 3278 3279 extref = (struct btrfs_inode_extref *)ptr; 3280 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3281 extref); 3282 } 3283 cache_acl: 3284 /* 3285 * try to precache a NULL acl entry for files that don't have 3286 * any xattrs or acls 3287 */ 3288 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3289 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3290 if (first_xattr_slot != -1) { 3291 path->slots[0] = first_xattr_slot; 3292 ret = btrfs_load_inode_props(inode, path); 3293 if (ret) 3294 btrfs_err(fs_info, 3295 "error loading props for ino %llu (root %llu): %d", 3296 btrfs_ino(BTRFS_I(inode)), 3297 root->root_key.objectid, ret); 3298 } 3299 if (path != in_path) 3300 btrfs_free_path(path); 3301 3302 if (!maybe_acls) 3303 cache_no_acl(inode); 3304 3305 switch (inode->i_mode & S_IFMT) { 3306 case S_IFREG: 3307 inode->i_mapping->a_ops = &btrfs_aops; 3308 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3309 inode->i_fop = &btrfs_file_operations; 3310 inode->i_op = &btrfs_file_inode_operations; 3311 break; 3312 case S_IFDIR: 3313 inode->i_fop = &btrfs_dir_file_operations; 3314 inode->i_op = &btrfs_dir_inode_operations; 3315 break; 3316 case S_IFLNK: 3317 inode->i_op = &btrfs_symlink_inode_operations; 3318 inode_nohighmem(inode); 3319 inode->i_mapping->a_ops = &btrfs_aops; 3320 break; 3321 default: 3322 inode->i_op = &btrfs_special_inode_operations; 3323 init_special_inode(inode, inode->i_mode, rdev); 3324 break; 3325 } 3326 3327 btrfs_sync_inode_flags_to_i_flags(inode); 3328 return 0; 3329 } 3330 3331 /* 3332 * given a leaf and an inode, copy the inode fields into the leaf 3333 */ 3334 static void fill_inode_item(struct btrfs_trans_handle *trans, 3335 struct extent_buffer *leaf, 3336 struct btrfs_inode_item *item, 3337 struct inode *inode) 3338 { 3339 struct btrfs_map_token token; 3340 3341 btrfs_init_map_token(&token, leaf); 3342 3343 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3344 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3345 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3346 &token); 3347 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3348 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3349 3350 btrfs_set_token_timespec_sec(leaf, &item->atime, 3351 inode->i_atime.tv_sec, &token); 3352 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3353 inode->i_atime.tv_nsec, &token); 3354 3355 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3356 inode->i_mtime.tv_sec, &token); 3357 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3358 inode->i_mtime.tv_nsec, &token); 3359 3360 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3361 inode->i_ctime.tv_sec, &token); 3362 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3363 inode->i_ctime.tv_nsec, &token); 3364 3365 btrfs_set_token_timespec_sec(leaf, &item->otime, 3366 BTRFS_I(inode)->i_otime.tv_sec, &token); 3367 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3368 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3369 3370 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3371 &token); 3372 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3373 &token); 3374 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3375 &token); 3376 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3377 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3378 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3379 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3380 } 3381 3382 /* 3383 * copy everything in the in-memory inode into the btree. 3384 */ 3385 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3386 struct btrfs_root *root, struct inode *inode) 3387 { 3388 struct btrfs_inode_item *inode_item; 3389 struct btrfs_path *path; 3390 struct extent_buffer *leaf; 3391 int ret; 3392 3393 path = btrfs_alloc_path(); 3394 if (!path) 3395 return -ENOMEM; 3396 3397 path->leave_spinning = 1; 3398 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3399 1); 3400 if (ret) { 3401 if (ret > 0) 3402 ret = -ENOENT; 3403 goto failed; 3404 } 3405 3406 leaf = path->nodes[0]; 3407 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3408 struct btrfs_inode_item); 3409 3410 fill_inode_item(trans, leaf, inode_item, inode); 3411 btrfs_mark_buffer_dirty(leaf); 3412 btrfs_set_inode_last_trans(trans, inode); 3413 ret = 0; 3414 failed: 3415 btrfs_free_path(path); 3416 return ret; 3417 } 3418 3419 /* 3420 * copy everything in the in-memory inode into the btree. 3421 */ 3422 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3423 struct btrfs_root *root, struct inode *inode) 3424 { 3425 struct btrfs_fs_info *fs_info = root->fs_info; 3426 int ret; 3427 3428 /* 3429 * If the inode is a free space inode, we can deadlock during commit 3430 * if we put it into the delayed code. 3431 * 3432 * The data relocation inode should also be directly updated 3433 * without delay 3434 */ 3435 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3436 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3437 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3438 btrfs_update_root_times(trans, root); 3439 3440 ret = btrfs_delayed_update_inode(trans, root, inode); 3441 if (!ret) 3442 btrfs_set_inode_last_trans(trans, inode); 3443 return ret; 3444 } 3445 3446 return btrfs_update_inode_item(trans, root, inode); 3447 } 3448 3449 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3450 struct btrfs_root *root, 3451 struct inode *inode) 3452 { 3453 int ret; 3454 3455 ret = btrfs_update_inode(trans, root, inode); 3456 if (ret == -ENOSPC) 3457 return btrfs_update_inode_item(trans, root, inode); 3458 return ret; 3459 } 3460 3461 /* 3462 * unlink helper that gets used here in inode.c and in the tree logging 3463 * recovery code. It remove a link in a directory with a given name, and 3464 * also drops the back refs in the inode to the directory 3465 */ 3466 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, 3468 struct btrfs_inode *dir, 3469 struct btrfs_inode *inode, 3470 const char *name, int name_len) 3471 { 3472 struct btrfs_fs_info *fs_info = root->fs_info; 3473 struct btrfs_path *path; 3474 int ret = 0; 3475 struct btrfs_dir_item *di; 3476 u64 index; 3477 u64 ino = btrfs_ino(inode); 3478 u64 dir_ino = btrfs_ino(dir); 3479 3480 path = btrfs_alloc_path(); 3481 if (!path) { 3482 ret = -ENOMEM; 3483 goto out; 3484 } 3485 3486 path->leave_spinning = 1; 3487 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3488 name, name_len, -1); 3489 if (IS_ERR_OR_NULL(di)) { 3490 ret = di ? PTR_ERR(di) : -ENOENT; 3491 goto err; 3492 } 3493 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3494 if (ret) 3495 goto err; 3496 btrfs_release_path(path); 3497 3498 /* 3499 * If we don't have dir index, we have to get it by looking up 3500 * the inode ref, since we get the inode ref, remove it directly, 3501 * it is unnecessary to do delayed deletion. 3502 * 3503 * But if we have dir index, needn't search inode ref to get it. 3504 * Since the inode ref is close to the inode item, it is better 3505 * that we delay to delete it, and just do this deletion when 3506 * we update the inode item. 3507 */ 3508 if (inode->dir_index) { 3509 ret = btrfs_delayed_delete_inode_ref(inode); 3510 if (!ret) { 3511 index = inode->dir_index; 3512 goto skip_backref; 3513 } 3514 } 3515 3516 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3517 dir_ino, &index); 3518 if (ret) { 3519 btrfs_info(fs_info, 3520 "failed to delete reference to %.*s, inode %llu parent %llu", 3521 name_len, name, ino, dir_ino); 3522 btrfs_abort_transaction(trans, ret); 3523 goto err; 3524 } 3525 skip_backref: 3526 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3527 if (ret) { 3528 btrfs_abort_transaction(trans, ret); 3529 goto err; 3530 } 3531 3532 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3533 dir_ino); 3534 if (ret != 0 && ret != -ENOENT) { 3535 btrfs_abort_transaction(trans, ret); 3536 goto err; 3537 } 3538 3539 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3540 index); 3541 if (ret == -ENOENT) 3542 ret = 0; 3543 else if (ret) 3544 btrfs_abort_transaction(trans, ret); 3545 3546 /* 3547 * If we have a pending delayed iput we could end up with the final iput 3548 * being run in btrfs-cleaner context. If we have enough of these built 3549 * up we can end up burning a lot of time in btrfs-cleaner without any 3550 * way to throttle the unlinks. Since we're currently holding a ref on 3551 * the inode we can run the delayed iput here without any issues as the 3552 * final iput won't be done until after we drop the ref we're currently 3553 * holding. 3554 */ 3555 btrfs_run_delayed_iput(fs_info, inode); 3556 err: 3557 btrfs_free_path(path); 3558 if (ret) 3559 goto out; 3560 3561 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3562 inode_inc_iversion(&inode->vfs_inode); 3563 inode_inc_iversion(&dir->vfs_inode); 3564 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3565 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3566 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3567 out: 3568 return ret; 3569 } 3570 3571 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3572 struct btrfs_root *root, 3573 struct btrfs_inode *dir, struct btrfs_inode *inode, 3574 const char *name, int name_len) 3575 { 3576 int ret; 3577 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3578 if (!ret) { 3579 drop_nlink(&inode->vfs_inode); 3580 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3581 } 3582 return ret; 3583 } 3584 3585 /* 3586 * helper to start transaction for unlink and rmdir. 3587 * 3588 * unlink and rmdir are special in btrfs, they do not always free space, so 3589 * if we cannot make our reservations the normal way try and see if there is 3590 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3591 * allow the unlink to occur. 3592 */ 3593 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3594 { 3595 struct btrfs_root *root = BTRFS_I(dir)->root; 3596 3597 /* 3598 * 1 for the possible orphan item 3599 * 1 for the dir item 3600 * 1 for the dir index 3601 * 1 for the inode ref 3602 * 1 for the inode 3603 */ 3604 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 3605 } 3606 3607 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3608 { 3609 struct btrfs_root *root = BTRFS_I(dir)->root; 3610 struct btrfs_trans_handle *trans; 3611 struct inode *inode = d_inode(dentry); 3612 int ret; 3613 3614 trans = __unlink_start_trans(dir); 3615 if (IS_ERR(trans)) 3616 return PTR_ERR(trans); 3617 3618 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3619 0); 3620 3621 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3622 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3623 dentry->d_name.len); 3624 if (ret) 3625 goto out; 3626 3627 if (inode->i_nlink == 0) { 3628 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3629 if (ret) 3630 goto out; 3631 } 3632 3633 out: 3634 btrfs_end_transaction(trans); 3635 btrfs_btree_balance_dirty(root->fs_info); 3636 return ret; 3637 } 3638 3639 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3640 struct inode *dir, struct dentry *dentry) 3641 { 3642 struct btrfs_root *root = BTRFS_I(dir)->root; 3643 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3644 struct btrfs_path *path; 3645 struct extent_buffer *leaf; 3646 struct btrfs_dir_item *di; 3647 struct btrfs_key key; 3648 const char *name = dentry->d_name.name; 3649 int name_len = dentry->d_name.len; 3650 u64 index; 3651 int ret; 3652 u64 objectid; 3653 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3654 3655 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3656 objectid = inode->root->root_key.objectid; 3657 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3658 objectid = inode->location.objectid; 3659 } else { 3660 WARN_ON(1); 3661 return -EINVAL; 3662 } 3663 3664 path = btrfs_alloc_path(); 3665 if (!path) 3666 return -ENOMEM; 3667 3668 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3669 name, name_len, -1); 3670 if (IS_ERR_OR_NULL(di)) { 3671 ret = di ? PTR_ERR(di) : -ENOENT; 3672 goto out; 3673 } 3674 3675 leaf = path->nodes[0]; 3676 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3677 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3678 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3679 if (ret) { 3680 btrfs_abort_transaction(trans, ret); 3681 goto out; 3682 } 3683 btrfs_release_path(path); 3684 3685 /* 3686 * This is a placeholder inode for a subvolume we didn't have a 3687 * reference to at the time of the snapshot creation. In the meantime 3688 * we could have renamed the real subvol link into our snapshot, so 3689 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3690 * Instead simply lookup the dir_index_item for this entry so we can 3691 * remove it. Otherwise we know we have a ref to the root and we can 3692 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3693 */ 3694 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3695 di = btrfs_search_dir_index_item(root, path, dir_ino, 3696 name, name_len); 3697 if (IS_ERR_OR_NULL(di)) { 3698 if (!di) 3699 ret = -ENOENT; 3700 else 3701 ret = PTR_ERR(di); 3702 btrfs_abort_transaction(trans, ret); 3703 goto out; 3704 } 3705 3706 leaf = path->nodes[0]; 3707 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3708 index = key.offset; 3709 btrfs_release_path(path); 3710 } else { 3711 ret = btrfs_del_root_ref(trans, objectid, 3712 root->root_key.objectid, dir_ino, 3713 &index, name, name_len); 3714 if (ret) { 3715 btrfs_abort_transaction(trans, ret); 3716 goto out; 3717 } 3718 } 3719 3720 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3721 if (ret) { 3722 btrfs_abort_transaction(trans, ret); 3723 goto out; 3724 } 3725 3726 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3727 inode_inc_iversion(dir); 3728 dir->i_mtime = dir->i_ctime = current_time(dir); 3729 ret = btrfs_update_inode_fallback(trans, root, dir); 3730 if (ret) 3731 btrfs_abort_transaction(trans, ret); 3732 out: 3733 btrfs_free_path(path); 3734 return ret; 3735 } 3736 3737 /* 3738 * Helper to check if the subvolume references other subvolumes or if it's 3739 * default. 3740 */ 3741 static noinline int may_destroy_subvol(struct btrfs_root *root) 3742 { 3743 struct btrfs_fs_info *fs_info = root->fs_info; 3744 struct btrfs_path *path; 3745 struct btrfs_dir_item *di; 3746 struct btrfs_key key; 3747 u64 dir_id; 3748 int ret; 3749 3750 path = btrfs_alloc_path(); 3751 if (!path) 3752 return -ENOMEM; 3753 3754 /* Make sure this root isn't set as the default subvol */ 3755 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3756 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3757 dir_id, "default", 7, 0); 3758 if (di && !IS_ERR(di)) { 3759 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3760 if (key.objectid == root->root_key.objectid) { 3761 ret = -EPERM; 3762 btrfs_err(fs_info, 3763 "deleting default subvolume %llu is not allowed", 3764 key.objectid); 3765 goto out; 3766 } 3767 btrfs_release_path(path); 3768 } 3769 3770 key.objectid = root->root_key.objectid; 3771 key.type = BTRFS_ROOT_REF_KEY; 3772 key.offset = (u64)-1; 3773 3774 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3775 if (ret < 0) 3776 goto out; 3777 BUG_ON(ret == 0); 3778 3779 ret = 0; 3780 if (path->slots[0] > 0) { 3781 path->slots[0]--; 3782 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3783 if (key.objectid == root->root_key.objectid && 3784 key.type == BTRFS_ROOT_REF_KEY) 3785 ret = -ENOTEMPTY; 3786 } 3787 out: 3788 btrfs_free_path(path); 3789 return ret; 3790 } 3791 3792 /* Delete all dentries for inodes belonging to the root */ 3793 static void btrfs_prune_dentries(struct btrfs_root *root) 3794 { 3795 struct btrfs_fs_info *fs_info = root->fs_info; 3796 struct rb_node *node; 3797 struct rb_node *prev; 3798 struct btrfs_inode *entry; 3799 struct inode *inode; 3800 u64 objectid = 0; 3801 3802 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3803 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3804 3805 spin_lock(&root->inode_lock); 3806 again: 3807 node = root->inode_tree.rb_node; 3808 prev = NULL; 3809 while (node) { 3810 prev = node; 3811 entry = rb_entry(node, struct btrfs_inode, rb_node); 3812 3813 if (objectid < btrfs_ino(entry)) 3814 node = node->rb_left; 3815 else if (objectid > btrfs_ino(entry)) 3816 node = node->rb_right; 3817 else 3818 break; 3819 } 3820 if (!node) { 3821 while (prev) { 3822 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3823 if (objectid <= btrfs_ino(entry)) { 3824 node = prev; 3825 break; 3826 } 3827 prev = rb_next(prev); 3828 } 3829 } 3830 while (node) { 3831 entry = rb_entry(node, struct btrfs_inode, rb_node); 3832 objectid = btrfs_ino(entry) + 1; 3833 inode = igrab(&entry->vfs_inode); 3834 if (inode) { 3835 spin_unlock(&root->inode_lock); 3836 if (atomic_read(&inode->i_count) > 1) 3837 d_prune_aliases(inode); 3838 /* 3839 * btrfs_drop_inode will have it removed from the inode 3840 * cache when its usage count hits zero. 3841 */ 3842 iput(inode); 3843 cond_resched(); 3844 spin_lock(&root->inode_lock); 3845 goto again; 3846 } 3847 3848 if (cond_resched_lock(&root->inode_lock)) 3849 goto again; 3850 3851 node = rb_next(node); 3852 } 3853 spin_unlock(&root->inode_lock); 3854 } 3855 3856 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3857 { 3858 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3859 struct btrfs_root *root = BTRFS_I(dir)->root; 3860 struct inode *inode = d_inode(dentry); 3861 struct btrfs_root *dest = BTRFS_I(inode)->root; 3862 struct btrfs_trans_handle *trans; 3863 struct btrfs_block_rsv block_rsv; 3864 u64 root_flags; 3865 int ret; 3866 int err; 3867 3868 /* 3869 * Don't allow to delete a subvolume with send in progress. This is 3870 * inside the inode lock so the error handling that has to drop the bit 3871 * again is not run concurrently. 3872 */ 3873 spin_lock(&dest->root_item_lock); 3874 if (dest->send_in_progress) { 3875 spin_unlock(&dest->root_item_lock); 3876 btrfs_warn(fs_info, 3877 "attempt to delete subvolume %llu during send", 3878 dest->root_key.objectid); 3879 return -EPERM; 3880 } 3881 root_flags = btrfs_root_flags(&dest->root_item); 3882 btrfs_set_root_flags(&dest->root_item, 3883 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3884 spin_unlock(&dest->root_item_lock); 3885 3886 down_write(&fs_info->subvol_sem); 3887 3888 err = may_destroy_subvol(dest); 3889 if (err) 3890 goto out_up_write; 3891 3892 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3893 /* 3894 * One for dir inode, 3895 * two for dir entries, 3896 * two for root ref/backref. 3897 */ 3898 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3899 if (err) 3900 goto out_up_write; 3901 3902 trans = btrfs_start_transaction(root, 0); 3903 if (IS_ERR(trans)) { 3904 err = PTR_ERR(trans); 3905 goto out_release; 3906 } 3907 trans->block_rsv = &block_rsv; 3908 trans->bytes_reserved = block_rsv.size; 3909 3910 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3911 3912 ret = btrfs_unlink_subvol(trans, dir, dentry); 3913 if (ret) { 3914 err = ret; 3915 btrfs_abort_transaction(trans, ret); 3916 goto out_end_trans; 3917 } 3918 3919 btrfs_record_root_in_trans(trans, dest); 3920 3921 memset(&dest->root_item.drop_progress, 0, 3922 sizeof(dest->root_item.drop_progress)); 3923 dest->root_item.drop_level = 0; 3924 btrfs_set_root_refs(&dest->root_item, 0); 3925 3926 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3927 ret = btrfs_insert_orphan_item(trans, 3928 fs_info->tree_root, 3929 dest->root_key.objectid); 3930 if (ret) { 3931 btrfs_abort_transaction(trans, ret); 3932 err = ret; 3933 goto out_end_trans; 3934 } 3935 } 3936 3937 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 3938 BTRFS_UUID_KEY_SUBVOL, 3939 dest->root_key.objectid); 3940 if (ret && ret != -ENOENT) { 3941 btrfs_abort_transaction(trans, ret); 3942 err = ret; 3943 goto out_end_trans; 3944 } 3945 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 3946 ret = btrfs_uuid_tree_remove(trans, 3947 dest->root_item.received_uuid, 3948 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3949 dest->root_key.objectid); 3950 if (ret && ret != -ENOENT) { 3951 btrfs_abort_transaction(trans, ret); 3952 err = ret; 3953 goto out_end_trans; 3954 } 3955 } 3956 3957 out_end_trans: 3958 trans->block_rsv = NULL; 3959 trans->bytes_reserved = 0; 3960 ret = btrfs_end_transaction(trans); 3961 if (ret && !err) 3962 err = ret; 3963 inode->i_flags |= S_DEAD; 3964 out_release: 3965 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 3966 out_up_write: 3967 up_write(&fs_info->subvol_sem); 3968 if (err) { 3969 spin_lock(&dest->root_item_lock); 3970 root_flags = btrfs_root_flags(&dest->root_item); 3971 btrfs_set_root_flags(&dest->root_item, 3972 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 3973 spin_unlock(&dest->root_item_lock); 3974 } else { 3975 d_invalidate(dentry); 3976 btrfs_prune_dentries(dest); 3977 ASSERT(dest->send_in_progress == 0); 3978 3979 /* the last ref */ 3980 if (dest->ino_cache_inode) { 3981 iput(dest->ino_cache_inode); 3982 dest->ino_cache_inode = NULL; 3983 } 3984 } 3985 3986 return err; 3987 } 3988 3989 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3990 { 3991 struct inode *inode = d_inode(dentry); 3992 int err = 0; 3993 struct btrfs_root *root = BTRFS_I(dir)->root; 3994 struct btrfs_trans_handle *trans; 3995 u64 last_unlink_trans; 3996 3997 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3998 return -ENOTEMPTY; 3999 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4000 return btrfs_delete_subvolume(dir, dentry); 4001 4002 trans = __unlink_start_trans(dir); 4003 if (IS_ERR(trans)) 4004 return PTR_ERR(trans); 4005 4006 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4007 err = btrfs_unlink_subvol(trans, dir, dentry); 4008 goto out; 4009 } 4010 4011 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4012 if (err) 4013 goto out; 4014 4015 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4016 4017 /* now the directory is empty */ 4018 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4019 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4020 dentry->d_name.len); 4021 if (!err) { 4022 btrfs_i_size_write(BTRFS_I(inode), 0); 4023 /* 4024 * Propagate the last_unlink_trans value of the deleted dir to 4025 * its parent directory. This is to prevent an unrecoverable 4026 * log tree in the case we do something like this: 4027 * 1) create dir foo 4028 * 2) create snapshot under dir foo 4029 * 3) delete the snapshot 4030 * 4) rmdir foo 4031 * 5) mkdir foo 4032 * 6) fsync foo or some file inside foo 4033 */ 4034 if (last_unlink_trans >= trans->transid) 4035 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4036 } 4037 out: 4038 btrfs_end_transaction(trans); 4039 btrfs_btree_balance_dirty(root->fs_info); 4040 4041 return err; 4042 } 4043 4044 /* 4045 * Return this if we need to call truncate_block for the last bit of the 4046 * truncate. 4047 */ 4048 #define NEED_TRUNCATE_BLOCK 1 4049 4050 /* 4051 * this can truncate away extent items, csum items and directory items. 4052 * It starts at a high offset and removes keys until it can't find 4053 * any higher than new_size 4054 * 4055 * csum items that cross the new i_size are truncated to the new size 4056 * as well. 4057 * 4058 * min_type is the minimum key type to truncate down to. If set to 0, this 4059 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4060 */ 4061 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct inode *inode, 4064 u64 new_size, u32 min_type) 4065 { 4066 struct btrfs_fs_info *fs_info = root->fs_info; 4067 struct btrfs_path *path; 4068 struct extent_buffer *leaf; 4069 struct btrfs_file_extent_item *fi; 4070 struct btrfs_key key; 4071 struct btrfs_key found_key; 4072 u64 extent_start = 0; 4073 u64 extent_num_bytes = 0; 4074 u64 extent_offset = 0; 4075 u64 item_end = 0; 4076 u64 last_size = new_size; 4077 u32 found_type = (u8)-1; 4078 int found_extent; 4079 int del_item; 4080 int pending_del_nr = 0; 4081 int pending_del_slot = 0; 4082 int extent_type = -1; 4083 int ret; 4084 u64 ino = btrfs_ino(BTRFS_I(inode)); 4085 u64 bytes_deleted = 0; 4086 bool be_nice = false; 4087 bool should_throttle = false; 4088 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4089 struct extent_state *cached_state = NULL; 4090 4091 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4092 4093 /* 4094 * for non-free space inodes and ref cows, we want to back off from 4095 * time to time 4096 */ 4097 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4098 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4099 be_nice = true; 4100 4101 path = btrfs_alloc_path(); 4102 if (!path) 4103 return -ENOMEM; 4104 path->reada = READA_BACK; 4105 4106 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4107 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4108 &cached_state); 4109 4110 /* 4111 * We want to drop from the next block forward in case this new size is 4112 * not block aligned since we will be keeping the last block of the 4113 * extent just the way it is. 4114 */ 4115 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4116 root == fs_info->tree_root) 4117 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4118 fs_info->sectorsize), 4119 (u64)-1, 0); 4120 4121 /* 4122 * This function is also used to drop the items in the log tree before 4123 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4124 * it is used to drop the logged items. So we shouldn't kill the delayed 4125 * items. 4126 */ 4127 if (min_type == 0 && root == BTRFS_I(inode)->root) 4128 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4129 4130 key.objectid = ino; 4131 key.offset = (u64)-1; 4132 key.type = (u8)-1; 4133 4134 search_again: 4135 /* 4136 * with a 16K leaf size and 128MB extents, you can actually queue 4137 * up a huge file in a single leaf. Most of the time that 4138 * bytes_deleted is > 0, it will be huge by the time we get here 4139 */ 4140 if (be_nice && bytes_deleted > SZ_32M && 4141 btrfs_should_end_transaction(trans)) { 4142 ret = -EAGAIN; 4143 goto out; 4144 } 4145 4146 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4147 if (ret < 0) 4148 goto out; 4149 4150 if (ret > 0) { 4151 ret = 0; 4152 /* there are no items in the tree for us to truncate, we're 4153 * done 4154 */ 4155 if (path->slots[0] == 0) 4156 goto out; 4157 path->slots[0]--; 4158 } 4159 4160 while (1) { 4161 fi = NULL; 4162 leaf = path->nodes[0]; 4163 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4164 found_type = found_key.type; 4165 4166 if (found_key.objectid != ino) 4167 break; 4168 4169 if (found_type < min_type) 4170 break; 4171 4172 item_end = found_key.offset; 4173 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4174 fi = btrfs_item_ptr(leaf, path->slots[0], 4175 struct btrfs_file_extent_item); 4176 extent_type = btrfs_file_extent_type(leaf, fi); 4177 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4178 item_end += 4179 btrfs_file_extent_num_bytes(leaf, fi); 4180 4181 trace_btrfs_truncate_show_fi_regular( 4182 BTRFS_I(inode), leaf, fi, 4183 found_key.offset); 4184 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4185 item_end += btrfs_file_extent_ram_bytes(leaf, 4186 fi); 4187 4188 trace_btrfs_truncate_show_fi_inline( 4189 BTRFS_I(inode), leaf, fi, path->slots[0], 4190 found_key.offset); 4191 } 4192 item_end--; 4193 } 4194 if (found_type > min_type) { 4195 del_item = 1; 4196 } else { 4197 if (item_end < new_size) 4198 break; 4199 if (found_key.offset >= new_size) 4200 del_item = 1; 4201 else 4202 del_item = 0; 4203 } 4204 found_extent = 0; 4205 /* FIXME, shrink the extent if the ref count is only 1 */ 4206 if (found_type != BTRFS_EXTENT_DATA_KEY) 4207 goto delete; 4208 4209 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4210 u64 num_dec; 4211 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4212 if (!del_item) { 4213 u64 orig_num_bytes = 4214 btrfs_file_extent_num_bytes(leaf, fi); 4215 extent_num_bytes = ALIGN(new_size - 4216 found_key.offset, 4217 fs_info->sectorsize); 4218 btrfs_set_file_extent_num_bytes(leaf, fi, 4219 extent_num_bytes); 4220 num_dec = (orig_num_bytes - 4221 extent_num_bytes); 4222 if (test_bit(BTRFS_ROOT_REF_COWS, 4223 &root->state) && 4224 extent_start != 0) 4225 inode_sub_bytes(inode, num_dec); 4226 btrfs_mark_buffer_dirty(leaf); 4227 } else { 4228 extent_num_bytes = 4229 btrfs_file_extent_disk_num_bytes(leaf, 4230 fi); 4231 extent_offset = found_key.offset - 4232 btrfs_file_extent_offset(leaf, fi); 4233 4234 /* FIXME blocksize != 4096 */ 4235 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4236 if (extent_start != 0) { 4237 found_extent = 1; 4238 if (test_bit(BTRFS_ROOT_REF_COWS, 4239 &root->state)) 4240 inode_sub_bytes(inode, num_dec); 4241 } 4242 } 4243 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4244 /* 4245 * we can't truncate inline items that have had 4246 * special encodings 4247 */ 4248 if (!del_item && 4249 btrfs_file_extent_encryption(leaf, fi) == 0 && 4250 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4251 btrfs_file_extent_compression(leaf, fi) == 0) { 4252 u32 size = (u32)(new_size - found_key.offset); 4253 4254 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4255 size = btrfs_file_extent_calc_inline_size(size); 4256 btrfs_truncate_item(path, size, 1); 4257 } else if (!del_item) { 4258 /* 4259 * We have to bail so the last_size is set to 4260 * just before this extent. 4261 */ 4262 ret = NEED_TRUNCATE_BLOCK; 4263 break; 4264 } 4265 4266 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4267 inode_sub_bytes(inode, item_end + 1 - new_size); 4268 } 4269 delete: 4270 if (del_item) 4271 last_size = found_key.offset; 4272 else 4273 last_size = new_size; 4274 if (del_item) { 4275 if (!pending_del_nr) { 4276 /* no pending yet, add ourselves */ 4277 pending_del_slot = path->slots[0]; 4278 pending_del_nr = 1; 4279 } else if (pending_del_nr && 4280 path->slots[0] + 1 == pending_del_slot) { 4281 /* hop on the pending chunk */ 4282 pending_del_nr++; 4283 pending_del_slot = path->slots[0]; 4284 } else { 4285 BUG(); 4286 } 4287 } else { 4288 break; 4289 } 4290 should_throttle = false; 4291 4292 if (found_extent && 4293 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4294 root == fs_info->tree_root)) { 4295 struct btrfs_ref ref = { 0 }; 4296 4297 bytes_deleted += extent_num_bytes; 4298 4299 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4300 extent_start, extent_num_bytes, 0); 4301 ref.real_root = root->root_key.objectid; 4302 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4303 ino, extent_offset); 4304 ret = btrfs_free_extent(trans, &ref); 4305 if (ret) { 4306 btrfs_abort_transaction(trans, ret); 4307 break; 4308 } 4309 if (be_nice) { 4310 if (btrfs_should_throttle_delayed_refs(trans)) 4311 should_throttle = true; 4312 } 4313 } 4314 4315 if (found_type == BTRFS_INODE_ITEM_KEY) 4316 break; 4317 4318 if (path->slots[0] == 0 || 4319 path->slots[0] != pending_del_slot || 4320 should_throttle) { 4321 if (pending_del_nr) { 4322 ret = btrfs_del_items(trans, root, path, 4323 pending_del_slot, 4324 pending_del_nr); 4325 if (ret) { 4326 btrfs_abort_transaction(trans, ret); 4327 break; 4328 } 4329 pending_del_nr = 0; 4330 } 4331 btrfs_release_path(path); 4332 4333 /* 4334 * We can generate a lot of delayed refs, so we need to 4335 * throttle every once and a while and make sure we're 4336 * adding enough space to keep up with the work we are 4337 * generating. Since we hold a transaction here we 4338 * can't flush, and we don't want to FLUSH_LIMIT because 4339 * we could have generated too many delayed refs to 4340 * actually allocate, so just bail if we're short and 4341 * let the normal reservation dance happen higher up. 4342 */ 4343 if (should_throttle) { 4344 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4345 BTRFS_RESERVE_NO_FLUSH); 4346 if (ret) { 4347 ret = -EAGAIN; 4348 break; 4349 } 4350 } 4351 goto search_again; 4352 } else { 4353 path->slots[0]--; 4354 } 4355 } 4356 out: 4357 if (ret >= 0 && pending_del_nr) { 4358 int err; 4359 4360 err = btrfs_del_items(trans, root, path, pending_del_slot, 4361 pending_del_nr); 4362 if (err) { 4363 btrfs_abort_transaction(trans, err); 4364 ret = err; 4365 } 4366 } 4367 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4368 ASSERT(last_size >= new_size); 4369 if (!ret && last_size > new_size) 4370 last_size = new_size; 4371 btrfs_ordered_update_i_size(inode, last_size, NULL); 4372 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4373 (u64)-1, &cached_state); 4374 } 4375 4376 btrfs_free_path(path); 4377 return ret; 4378 } 4379 4380 /* 4381 * btrfs_truncate_block - read, zero a chunk and write a block 4382 * @inode - inode that we're zeroing 4383 * @from - the offset to start zeroing 4384 * @len - the length to zero, 0 to zero the entire range respective to the 4385 * offset 4386 * @front - zero up to the offset instead of from the offset on 4387 * 4388 * This will find the block for the "from" offset and cow the block and zero the 4389 * part we want to zero. This is used with truncate and hole punching. 4390 */ 4391 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4392 int front) 4393 { 4394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4395 struct address_space *mapping = inode->i_mapping; 4396 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4397 struct btrfs_ordered_extent *ordered; 4398 struct extent_state *cached_state = NULL; 4399 struct extent_changeset *data_reserved = NULL; 4400 char *kaddr; 4401 u32 blocksize = fs_info->sectorsize; 4402 pgoff_t index = from >> PAGE_SHIFT; 4403 unsigned offset = from & (blocksize - 1); 4404 struct page *page; 4405 gfp_t mask = btrfs_alloc_write_mask(mapping); 4406 int ret = 0; 4407 u64 block_start; 4408 u64 block_end; 4409 4410 if (IS_ALIGNED(offset, blocksize) && 4411 (!len || IS_ALIGNED(len, blocksize))) 4412 goto out; 4413 4414 block_start = round_down(from, blocksize); 4415 block_end = block_start + blocksize - 1; 4416 4417 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4418 block_start, blocksize); 4419 if (ret) 4420 goto out; 4421 4422 again: 4423 page = find_or_create_page(mapping, index, mask); 4424 if (!page) { 4425 btrfs_delalloc_release_space(inode, data_reserved, 4426 block_start, blocksize, true); 4427 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4428 ret = -ENOMEM; 4429 goto out; 4430 } 4431 4432 if (!PageUptodate(page)) { 4433 ret = btrfs_readpage(NULL, page); 4434 lock_page(page); 4435 if (page->mapping != mapping) { 4436 unlock_page(page); 4437 put_page(page); 4438 goto again; 4439 } 4440 if (!PageUptodate(page)) { 4441 ret = -EIO; 4442 goto out_unlock; 4443 } 4444 } 4445 wait_on_page_writeback(page); 4446 4447 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4448 set_page_extent_mapped(page); 4449 4450 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4451 if (ordered) { 4452 unlock_extent_cached(io_tree, block_start, block_end, 4453 &cached_state); 4454 unlock_page(page); 4455 put_page(page); 4456 btrfs_start_ordered_extent(inode, ordered, 1); 4457 btrfs_put_ordered_extent(ordered); 4458 goto again; 4459 } 4460 4461 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4462 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4463 0, 0, &cached_state); 4464 4465 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4466 &cached_state); 4467 if (ret) { 4468 unlock_extent_cached(io_tree, block_start, block_end, 4469 &cached_state); 4470 goto out_unlock; 4471 } 4472 4473 if (offset != blocksize) { 4474 if (!len) 4475 len = blocksize - offset; 4476 kaddr = kmap(page); 4477 if (front) 4478 memset(kaddr + (block_start - page_offset(page)), 4479 0, offset); 4480 else 4481 memset(kaddr + (block_start - page_offset(page)) + offset, 4482 0, len); 4483 flush_dcache_page(page); 4484 kunmap(page); 4485 } 4486 ClearPageChecked(page); 4487 set_page_dirty(page); 4488 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4489 4490 out_unlock: 4491 if (ret) 4492 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4493 blocksize, true); 4494 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4495 unlock_page(page); 4496 put_page(page); 4497 out: 4498 extent_changeset_free(data_reserved); 4499 return ret; 4500 } 4501 4502 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4503 u64 offset, u64 len) 4504 { 4505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4506 struct btrfs_trans_handle *trans; 4507 int ret; 4508 4509 /* 4510 * Still need to make sure the inode looks like it's been updated so 4511 * that any holes get logged if we fsync. 4512 */ 4513 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4514 BTRFS_I(inode)->last_trans = fs_info->generation; 4515 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4516 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4517 return 0; 4518 } 4519 4520 /* 4521 * 1 - for the one we're dropping 4522 * 1 - for the one we're adding 4523 * 1 - for updating the inode. 4524 */ 4525 trans = btrfs_start_transaction(root, 3); 4526 if (IS_ERR(trans)) 4527 return PTR_ERR(trans); 4528 4529 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4530 if (ret) { 4531 btrfs_abort_transaction(trans, ret); 4532 btrfs_end_transaction(trans); 4533 return ret; 4534 } 4535 4536 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4537 offset, 0, 0, len, 0, len, 0, 0, 0); 4538 if (ret) 4539 btrfs_abort_transaction(trans, ret); 4540 else 4541 btrfs_update_inode(trans, root, inode); 4542 btrfs_end_transaction(trans); 4543 return ret; 4544 } 4545 4546 /* 4547 * This function puts in dummy file extents for the area we're creating a hole 4548 * for. So if we are truncating this file to a larger size we need to insert 4549 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4550 * the range between oldsize and size 4551 */ 4552 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4553 { 4554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4555 struct btrfs_root *root = BTRFS_I(inode)->root; 4556 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4557 struct extent_map *em = NULL; 4558 struct extent_state *cached_state = NULL; 4559 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4560 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4561 u64 block_end = ALIGN(size, fs_info->sectorsize); 4562 u64 last_byte; 4563 u64 cur_offset; 4564 u64 hole_size; 4565 int err = 0; 4566 4567 /* 4568 * If our size started in the middle of a block we need to zero out the 4569 * rest of the block before we expand the i_size, otherwise we could 4570 * expose stale data. 4571 */ 4572 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4573 if (err) 4574 return err; 4575 4576 if (size <= hole_start) 4577 return 0; 4578 4579 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 4580 block_end - 1, &cached_state); 4581 cur_offset = hole_start; 4582 while (1) { 4583 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4584 block_end - cur_offset); 4585 if (IS_ERR(em)) { 4586 err = PTR_ERR(em); 4587 em = NULL; 4588 break; 4589 } 4590 last_byte = min(extent_map_end(em), block_end); 4591 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4592 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4593 struct extent_map *hole_em; 4594 hole_size = last_byte - cur_offset; 4595 4596 err = maybe_insert_hole(root, inode, cur_offset, 4597 hole_size); 4598 if (err) 4599 break; 4600 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4601 cur_offset + hole_size - 1, 0); 4602 hole_em = alloc_extent_map(); 4603 if (!hole_em) { 4604 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4605 &BTRFS_I(inode)->runtime_flags); 4606 goto next; 4607 } 4608 hole_em->start = cur_offset; 4609 hole_em->len = hole_size; 4610 hole_em->orig_start = cur_offset; 4611 4612 hole_em->block_start = EXTENT_MAP_HOLE; 4613 hole_em->block_len = 0; 4614 hole_em->orig_block_len = 0; 4615 hole_em->ram_bytes = hole_size; 4616 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4617 hole_em->generation = fs_info->generation; 4618 4619 while (1) { 4620 write_lock(&em_tree->lock); 4621 err = add_extent_mapping(em_tree, hole_em, 1); 4622 write_unlock(&em_tree->lock); 4623 if (err != -EEXIST) 4624 break; 4625 btrfs_drop_extent_cache(BTRFS_I(inode), 4626 cur_offset, 4627 cur_offset + 4628 hole_size - 1, 0); 4629 } 4630 free_extent_map(hole_em); 4631 } 4632 next: 4633 free_extent_map(em); 4634 em = NULL; 4635 cur_offset = last_byte; 4636 if (cur_offset >= block_end) 4637 break; 4638 } 4639 free_extent_map(em); 4640 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4641 return err; 4642 } 4643 4644 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4645 { 4646 struct btrfs_root *root = BTRFS_I(inode)->root; 4647 struct btrfs_trans_handle *trans; 4648 loff_t oldsize = i_size_read(inode); 4649 loff_t newsize = attr->ia_size; 4650 int mask = attr->ia_valid; 4651 int ret; 4652 4653 /* 4654 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4655 * special case where we need to update the times despite not having 4656 * these flags set. For all other operations the VFS set these flags 4657 * explicitly if it wants a timestamp update. 4658 */ 4659 if (newsize != oldsize) { 4660 inode_inc_iversion(inode); 4661 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4662 inode->i_ctime = inode->i_mtime = 4663 current_time(inode); 4664 } 4665 4666 if (newsize > oldsize) { 4667 /* 4668 * Don't do an expanding truncate while snapshotting is ongoing. 4669 * This is to ensure the snapshot captures a fully consistent 4670 * state of this file - if the snapshot captures this expanding 4671 * truncation, it must capture all writes that happened before 4672 * this truncation. 4673 */ 4674 btrfs_wait_for_snapshot_creation(root); 4675 ret = btrfs_cont_expand(inode, oldsize, newsize); 4676 if (ret) { 4677 btrfs_end_write_no_snapshotting(root); 4678 return ret; 4679 } 4680 4681 trans = btrfs_start_transaction(root, 1); 4682 if (IS_ERR(trans)) { 4683 btrfs_end_write_no_snapshotting(root); 4684 return PTR_ERR(trans); 4685 } 4686 4687 i_size_write(inode, newsize); 4688 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4689 pagecache_isize_extended(inode, oldsize, newsize); 4690 ret = btrfs_update_inode(trans, root, inode); 4691 btrfs_end_write_no_snapshotting(root); 4692 btrfs_end_transaction(trans); 4693 } else { 4694 4695 /* 4696 * We're truncating a file that used to have good data down to 4697 * zero. Make sure it gets into the ordered flush list so that 4698 * any new writes get down to disk quickly. 4699 */ 4700 if (newsize == 0) 4701 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4702 &BTRFS_I(inode)->runtime_flags); 4703 4704 truncate_setsize(inode, newsize); 4705 4706 /* Disable nonlocked read DIO to avoid the endless truncate */ 4707 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4708 inode_dio_wait(inode); 4709 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4710 4711 ret = btrfs_truncate(inode, newsize == oldsize); 4712 if (ret && inode->i_nlink) { 4713 int err; 4714 4715 /* 4716 * Truncate failed, so fix up the in-memory size. We 4717 * adjusted disk_i_size down as we removed extents, so 4718 * wait for disk_i_size to be stable and then update the 4719 * in-memory size to match. 4720 */ 4721 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4722 if (err) 4723 return err; 4724 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4725 } 4726 } 4727 4728 return ret; 4729 } 4730 4731 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4732 { 4733 struct inode *inode = d_inode(dentry); 4734 struct btrfs_root *root = BTRFS_I(inode)->root; 4735 int err; 4736 4737 if (btrfs_root_readonly(root)) 4738 return -EROFS; 4739 4740 err = setattr_prepare(dentry, attr); 4741 if (err) 4742 return err; 4743 4744 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4745 err = btrfs_setsize(inode, attr); 4746 if (err) 4747 return err; 4748 } 4749 4750 if (attr->ia_valid) { 4751 setattr_copy(inode, attr); 4752 inode_inc_iversion(inode); 4753 err = btrfs_dirty_inode(inode); 4754 4755 if (!err && attr->ia_valid & ATTR_MODE) 4756 err = posix_acl_chmod(inode, inode->i_mode); 4757 } 4758 4759 return err; 4760 } 4761 4762 /* 4763 * While truncating the inode pages during eviction, we get the VFS calling 4764 * btrfs_invalidatepage() against each page of the inode. This is slow because 4765 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4766 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4767 * extent_state structures over and over, wasting lots of time. 4768 * 4769 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4770 * those expensive operations on a per page basis and do only the ordered io 4771 * finishing, while we release here the extent_map and extent_state structures, 4772 * without the excessive merging and splitting. 4773 */ 4774 static void evict_inode_truncate_pages(struct inode *inode) 4775 { 4776 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4777 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4778 struct rb_node *node; 4779 4780 ASSERT(inode->i_state & I_FREEING); 4781 truncate_inode_pages_final(&inode->i_data); 4782 4783 write_lock(&map_tree->lock); 4784 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4785 struct extent_map *em; 4786 4787 node = rb_first_cached(&map_tree->map); 4788 em = rb_entry(node, struct extent_map, rb_node); 4789 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4790 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4791 remove_extent_mapping(map_tree, em); 4792 free_extent_map(em); 4793 if (need_resched()) { 4794 write_unlock(&map_tree->lock); 4795 cond_resched(); 4796 write_lock(&map_tree->lock); 4797 } 4798 } 4799 write_unlock(&map_tree->lock); 4800 4801 /* 4802 * Keep looping until we have no more ranges in the io tree. 4803 * We can have ongoing bios started by readpages (called from readahead) 4804 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4805 * still in progress (unlocked the pages in the bio but did not yet 4806 * unlocked the ranges in the io tree). Therefore this means some 4807 * ranges can still be locked and eviction started because before 4808 * submitting those bios, which are executed by a separate task (work 4809 * queue kthread), inode references (inode->i_count) were not taken 4810 * (which would be dropped in the end io callback of each bio). 4811 * Therefore here we effectively end up waiting for those bios and 4812 * anyone else holding locked ranges without having bumped the inode's 4813 * reference count - if we don't do it, when they access the inode's 4814 * io_tree to unlock a range it may be too late, leading to an 4815 * use-after-free issue. 4816 */ 4817 spin_lock(&io_tree->lock); 4818 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4819 struct extent_state *state; 4820 struct extent_state *cached_state = NULL; 4821 u64 start; 4822 u64 end; 4823 unsigned state_flags; 4824 4825 node = rb_first(&io_tree->state); 4826 state = rb_entry(node, struct extent_state, rb_node); 4827 start = state->start; 4828 end = state->end; 4829 state_flags = state->state; 4830 spin_unlock(&io_tree->lock); 4831 4832 lock_extent_bits(io_tree, start, end, &cached_state); 4833 4834 /* 4835 * If still has DELALLOC flag, the extent didn't reach disk, 4836 * and its reserved space won't be freed by delayed_ref. 4837 * So we need to free its reserved space here. 4838 * (Refer to comment in btrfs_invalidatepage, case 2) 4839 * 4840 * Note, end is the bytenr of last byte, so we need + 1 here. 4841 */ 4842 if (state_flags & EXTENT_DELALLOC) 4843 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4844 4845 clear_extent_bit(io_tree, start, end, 4846 EXTENT_LOCKED | EXTENT_DELALLOC | 4847 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4848 &cached_state); 4849 4850 cond_resched(); 4851 spin_lock(&io_tree->lock); 4852 } 4853 spin_unlock(&io_tree->lock); 4854 } 4855 4856 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4857 struct btrfs_block_rsv *rsv) 4858 { 4859 struct btrfs_fs_info *fs_info = root->fs_info; 4860 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4861 struct btrfs_trans_handle *trans; 4862 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4863 int ret; 4864 4865 /* 4866 * Eviction should be taking place at some place safe because of our 4867 * delayed iputs. However the normal flushing code will run delayed 4868 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4869 * 4870 * We reserve the delayed_refs_extra here again because we can't use 4871 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4872 * above. We reserve our extra bit here because we generate a ton of 4873 * delayed refs activity by truncating. 4874 * 4875 * If we cannot make our reservation we'll attempt to steal from the 4876 * global reserve, because we really want to be able to free up space. 4877 */ 4878 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4879 BTRFS_RESERVE_FLUSH_EVICT); 4880 if (ret) { 4881 /* 4882 * Try to steal from the global reserve if there is space for 4883 * it. 4884 */ 4885 if (btrfs_check_space_for_delayed_refs(fs_info) || 4886 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4887 btrfs_warn(fs_info, 4888 "could not allocate space for delete; will truncate on mount"); 4889 return ERR_PTR(-ENOSPC); 4890 } 4891 delayed_refs_extra = 0; 4892 } 4893 4894 trans = btrfs_join_transaction(root); 4895 if (IS_ERR(trans)) 4896 return trans; 4897 4898 if (delayed_refs_extra) { 4899 trans->block_rsv = &fs_info->trans_block_rsv; 4900 trans->bytes_reserved = delayed_refs_extra; 4901 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 4902 delayed_refs_extra, 1); 4903 } 4904 return trans; 4905 } 4906 4907 void btrfs_evict_inode(struct inode *inode) 4908 { 4909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4910 struct btrfs_trans_handle *trans; 4911 struct btrfs_root *root = BTRFS_I(inode)->root; 4912 struct btrfs_block_rsv *rsv; 4913 int ret; 4914 4915 trace_btrfs_inode_evict(inode); 4916 4917 if (!root) { 4918 clear_inode(inode); 4919 return; 4920 } 4921 4922 evict_inode_truncate_pages(inode); 4923 4924 if (inode->i_nlink && 4925 ((btrfs_root_refs(&root->root_item) != 0 && 4926 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4927 btrfs_is_free_space_inode(BTRFS_I(inode)))) 4928 goto no_delete; 4929 4930 if (is_bad_inode(inode)) 4931 goto no_delete; 4932 4933 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 4934 4935 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 4936 goto no_delete; 4937 4938 if (inode->i_nlink > 0) { 4939 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4940 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4941 goto no_delete; 4942 } 4943 4944 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 4945 if (ret) 4946 goto no_delete; 4947 4948 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 4949 if (!rsv) 4950 goto no_delete; 4951 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 4952 rsv->failfast = 1; 4953 4954 btrfs_i_size_write(BTRFS_I(inode), 0); 4955 4956 while (1) { 4957 trans = evict_refill_and_join(root, rsv); 4958 if (IS_ERR(trans)) 4959 goto free_rsv; 4960 4961 trans->block_rsv = rsv; 4962 4963 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4964 trans->block_rsv = &fs_info->trans_block_rsv; 4965 btrfs_end_transaction(trans); 4966 btrfs_btree_balance_dirty(fs_info); 4967 if (ret && ret != -ENOSPC && ret != -EAGAIN) 4968 goto free_rsv; 4969 else if (!ret) 4970 break; 4971 } 4972 4973 /* 4974 * Errors here aren't a big deal, it just means we leave orphan items in 4975 * the tree. They will be cleaned up on the next mount. If the inode 4976 * number gets reused, cleanup deletes the orphan item without doing 4977 * anything, and unlink reuses the existing orphan item. 4978 * 4979 * If it turns out that we are dropping too many of these, we might want 4980 * to add a mechanism for retrying these after a commit. 4981 */ 4982 trans = evict_refill_and_join(root, rsv); 4983 if (!IS_ERR(trans)) { 4984 trans->block_rsv = rsv; 4985 btrfs_orphan_del(trans, BTRFS_I(inode)); 4986 trans->block_rsv = &fs_info->trans_block_rsv; 4987 btrfs_end_transaction(trans); 4988 } 4989 4990 if (!(root == fs_info->tree_root || 4991 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4992 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 4993 4994 free_rsv: 4995 btrfs_free_block_rsv(fs_info, rsv); 4996 no_delete: 4997 /* 4998 * If we didn't successfully delete, the orphan item will still be in 4999 * the tree and we'll retry on the next mount. Again, we might also want 5000 * to retry these periodically in the future. 5001 */ 5002 btrfs_remove_delayed_node(BTRFS_I(inode)); 5003 clear_inode(inode); 5004 } 5005 5006 /* 5007 * Return the key found in the dir entry in the location pointer, fill @type 5008 * with BTRFS_FT_*, and return 0. 5009 * 5010 * If no dir entries were found, returns -ENOENT. 5011 * If found a corrupted location in dir entry, returns -EUCLEAN. 5012 */ 5013 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5014 struct btrfs_key *location, u8 *type) 5015 { 5016 const char *name = dentry->d_name.name; 5017 int namelen = dentry->d_name.len; 5018 struct btrfs_dir_item *di; 5019 struct btrfs_path *path; 5020 struct btrfs_root *root = BTRFS_I(dir)->root; 5021 int ret = 0; 5022 5023 path = btrfs_alloc_path(); 5024 if (!path) 5025 return -ENOMEM; 5026 5027 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5028 name, namelen, 0); 5029 if (IS_ERR_OR_NULL(di)) { 5030 ret = di ? PTR_ERR(di) : -ENOENT; 5031 goto out; 5032 } 5033 5034 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5035 if (location->type != BTRFS_INODE_ITEM_KEY && 5036 location->type != BTRFS_ROOT_ITEM_KEY) { 5037 ret = -EUCLEAN; 5038 btrfs_warn(root->fs_info, 5039 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5040 __func__, name, btrfs_ino(BTRFS_I(dir)), 5041 location->objectid, location->type, location->offset); 5042 } 5043 if (!ret) 5044 *type = btrfs_dir_type(path->nodes[0], di); 5045 out: 5046 btrfs_free_path(path); 5047 return ret; 5048 } 5049 5050 /* 5051 * when we hit a tree root in a directory, the btrfs part of the inode 5052 * needs to be changed to reflect the root directory of the tree root. This 5053 * is kind of like crossing a mount point. 5054 */ 5055 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5056 struct inode *dir, 5057 struct dentry *dentry, 5058 struct btrfs_key *location, 5059 struct btrfs_root **sub_root) 5060 { 5061 struct btrfs_path *path; 5062 struct btrfs_root *new_root; 5063 struct btrfs_root_ref *ref; 5064 struct extent_buffer *leaf; 5065 struct btrfs_key key; 5066 int ret; 5067 int err = 0; 5068 5069 path = btrfs_alloc_path(); 5070 if (!path) { 5071 err = -ENOMEM; 5072 goto out; 5073 } 5074 5075 err = -ENOENT; 5076 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5077 key.type = BTRFS_ROOT_REF_KEY; 5078 key.offset = location->objectid; 5079 5080 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5081 if (ret) { 5082 if (ret < 0) 5083 err = ret; 5084 goto out; 5085 } 5086 5087 leaf = path->nodes[0]; 5088 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5089 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5090 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5091 goto out; 5092 5093 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5094 (unsigned long)(ref + 1), 5095 dentry->d_name.len); 5096 if (ret) 5097 goto out; 5098 5099 btrfs_release_path(path); 5100 5101 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5102 if (IS_ERR(new_root)) { 5103 err = PTR_ERR(new_root); 5104 goto out; 5105 } 5106 5107 *sub_root = new_root; 5108 location->objectid = btrfs_root_dirid(&new_root->root_item); 5109 location->type = BTRFS_INODE_ITEM_KEY; 5110 location->offset = 0; 5111 err = 0; 5112 out: 5113 btrfs_free_path(path); 5114 return err; 5115 } 5116 5117 static void inode_tree_add(struct inode *inode) 5118 { 5119 struct btrfs_root *root = BTRFS_I(inode)->root; 5120 struct btrfs_inode *entry; 5121 struct rb_node **p; 5122 struct rb_node *parent; 5123 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5124 u64 ino = btrfs_ino(BTRFS_I(inode)); 5125 5126 if (inode_unhashed(inode)) 5127 return; 5128 parent = NULL; 5129 spin_lock(&root->inode_lock); 5130 p = &root->inode_tree.rb_node; 5131 while (*p) { 5132 parent = *p; 5133 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5134 5135 if (ino < btrfs_ino(entry)) 5136 p = &parent->rb_left; 5137 else if (ino > btrfs_ino(entry)) 5138 p = &parent->rb_right; 5139 else { 5140 WARN_ON(!(entry->vfs_inode.i_state & 5141 (I_WILL_FREE | I_FREEING))); 5142 rb_replace_node(parent, new, &root->inode_tree); 5143 RB_CLEAR_NODE(parent); 5144 spin_unlock(&root->inode_lock); 5145 return; 5146 } 5147 } 5148 rb_link_node(new, parent, p); 5149 rb_insert_color(new, &root->inode_tree); 5150 spin_unlock(&root->inode_lock); 5151 } 5152 5153 static void inode_tree_del(struct inode *inode) 5154 { 5155 struct btrfs_root *root = BTRFS_I(inode)->root; 5156 int empty = 0; 5157 5158 spin_lock(&root->inode_lock); 5159 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5160 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5161 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5162 empty = RB_EMPTY_ROOT(&root->inode_tree); 5163 } 5164 spin_unlock(&root->inode_lock); 5165 5166 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5167 spin_lock(&root->inode_lock); 5168 empty = RB_EMPTY_ROOT(&root->inode_tree); 5169 spin_unlock(&root->inode_lock); 5170 if (empty) 5171 btrfs_add_dead_root(root); 5172 } 5173 } 5174 5175 5176 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5177 { 5178 struct btrfs_iget_args *args = p; 5179 inode->i_ino = args->location->objectid; 5180 memcpy(&BTRFS_I(inode)->location, args->location, 5181 sizeof(*args->location)); 5182 BTRFS_I(inode)->root = args->root; 5183 return 0; 5184 } 5185 5186 static int btrfs_find_actor(struct inode *inode, void *opaque) 5187 { 5188 struct btrfs_iget_args *args = opaque; 5189 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5190 args->root == BTRFS_I(inode)->root; 5191 } 5192 5193 static struct inode *btrfs_iget_locked(struct super_block *s, 5194 struct btrfs_key *location, 5195 struct btrfs_root *root) 5196 { 5197 struct inode *inode; 5198 struct btrfs_iget_args args; 5199 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5200 5201 args.location = location; 5202 args.root = root; 5203 5204 inode = iget5_locked(s, hashval, btrfs_find_actor, 5205 btrfs_init_locked_inode, 5206 (void *)&args); 5207 return inode; 5208 } 5209 5210 /* 5211 * Get an inode object given its location and corresponding root. 5212 * Path can be preallocated to prevent recursing back to iget through 5213 * allocator. NULL is also valid but may require an additional allocation 5214 * later. 5215 */ 5216 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5217 struct btrfs_root *root, struct btrfs_path *path) 5218 { 5219 struct inode *inode; 5220 5221 inode = btrfs_iget_locked(s, location, root); 5222 if (!inode) 5223 return ERR_PTR(-ENOMEM); 5224 5225 if (inode->i_state & I_NEW) { 5226 int ret; 5227 5228 ret = btrfs_read_locked_inode(inode, path); 5229 if (!ret) { 5230 inode_tree_add(inode); 5231 unlock_new_inode(inode); 5232 } else { 5233 iget_failed(inode); 5234 /* 5235 * ret > 0 can come from btrfs_search_slot called by 5236 * btrfs_read_locked_inode, this means the inode item 5237 * was not found. 5238 */ 5239 if (ret > 0) 5240 ret = -ENOENT; 5241 inode = ERR_PTR(ret); 5242 } 5243 } 5244 5245 return inode; 5246 } 5247 5248 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5249 struct btrfs_root *root) 5250 { 5251 return btrfs_iget_path(s, location, root, NULL); 5252 } 5253 5254 static struct inode *new_simple_dir(struct super_block *s, 5255 struct btrfs_key *key, 5256 struct btrfs_root *root) 5257 { 5258 struct inode *inode = new_inode(s); 5259 5260 if (!inode) 5261 return ERR_PTR(-ENOMEM); 5262 5263 BTRFS_I(inode)->root = root; 5264 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5265 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5266 5267 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5268 /* 5269 * We only need lookup, the rest is read-only and there's no inode 5270 * associated with the dentry 5271 */ 5272 inode->i_op = &simple_dir_inode_operations; 5273 inode->i_opflags &= ~IOP_XATTR; 5274 inode->i_fop = &simple_dir_operations; 5275 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5276 inode->i_mtime = current_time(inode); 5277 inode->i_atime = inode->i_mtime; 5278 inode->i_ctime = inode->i_mtime; 5279 BTRFS_I(inode)->i_otime = inode->i_mtime; 5280 5281 return inode; 5282 } 5283 5284 static inline u8 btrfs_inode_type(struct inode *inode) 5285 { 5286 /* 5287 * Compile-time asserts that generic FT_* types still match 5288 * BTRFS_FT_* types 5289 */ 5290 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5291 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5292 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5293 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5294 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5295 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5296 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5297 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5298 5299 return fs_umode_to_ftype(inode->i_mode); 5300 } 5301 5302 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5303 { 5304 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5305 struct inode *inode; 5306 struct btrfs_root *root = BTRFS_I(dir)->root; 5307 struct btrfs_root *sub_root = root; 5308 struct btrfs_key location; 5309 u8 di_type = 0; 5310 int index; 5311 int ret = 0; 5312 5313 if (dentry->d_name.len > BTRFS_NAME_LEN) 5314 return ERR_PTR(-ENAMETOOLONG); 5315 5316 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5317 if (ret < 0) 5318 return ERR_PTR(ret); 5319 5320 if (location.type == BTRFS_INODE_ITEM_KEY) { 5321 inode = btrfs_iget(dir->i_sb, &location, root); 5322 if (IS_ERR(inode)) 5323 return inode; 5324 5325 /* Do extra check against inode mode with di_type */ 5326 if (btrfs_inode_type(inode) != di_type) { 5327 btrfs_crit(fs_info, 5328 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5329 inode->i_mode, btrfs_inode_type(inode), 5330 di_type); 5331 iput(inode); 5332 return ERR_PTR(-EUCLEAN); 5333 } 5334 return inode; 5335 } 5336 5337 index = srcu_read_lock(&fs_info->subvol_srcu); 5338 ret = fixup_tree_root_location(fs_info, dir, dentry, 5339 &location, &sub_root); 5340 if (ret < 0) { 5341 if (ret != -ENOENT) 5342 inode = ERR_PTR(ret); 5343 else 5344 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5345 } else { 5346 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5347 } 5348 srcu_read_unlock(&fs_info->subvol_srcu, index); 5349 5350 if (!IS_ERR(inode) && root != sub_root) { 5351 down_read(&fs_info->cleanup_work_sem); 5352 if (!sb_rdonly(inode->i_sb)) 5353 ret = btrfs_orphan_cleanup(sub_root); 5354 up_read(&fs_info->cleanup_work_sem); 5355 if (ret) { 5356 iput(inode); 5357 inode = ERR_PTR(ret); 5358 } 5359 } 5360 5361 return inode; 5362 } 5363 5364 static int btrfs_dentry_delete(const struct dentry *dentry) 5365 { 5366 struct btrfs_root *root; 5367 struct inode *inode = d_inode(dentry); 5368 5369 if (!inode && !IS_ROOT(dentry)) 5370 inode = d_inode(dentry->d_parent); 5371 5372 if (inode) { 5373 root = BTRFS_I(inode)->root; 5374 if (btrfs_root_refs(&root->root_item) == 0) 5375 return 1; 5376 5377 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5378 return 1; 5379 } 5380 return 0; 5381 } 5382 5383 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5384 unsigned int flags) 5385 { 5386 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5387 5388 if (inode == ERR_PTR(-ENOENT)) 5389 inode = NULL; 5390 return d_splice_alias(inode, dentry); 5391 } 5392 5393 /* 5394 * All this infrastructure exists because dir_emit can fault, and we are holding 5395 * the tree lock when doing readdir. For now just allocate a buffer and copy 5396 * our information into that, and then dir_emit from the buffer. This is 5397 * similar to what NFS does, only we don't keep the buffer around in pagecache 5398 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5399 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5400 * tree lock. 5401 */ 5402 static int btrfs_opendir(struct inode *inode, struct file *file) 5403 { 5404 struct btrfs_file_private *private; 5405 5406 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5407 if (!private) 5408 return -ENOMEM; 5409 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5410 if (!private->filldir_buf) { 5411 kfree(private); 5412 return -ENOMEM; 5413 } 5414 file->private_data = private; 5415 return 0; 5416 } 5417 5418 struct dir_entry { 5419 u64 ino; 5420 u64 offset; 5421 unsigned type; 5422 int name_len; 5423 }; 5424 5425 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5426 { 5427 while (entries--) { 5428 struct dir_entry *entry = addr; 5429 char *name = (char *)(entry + 1); 5430 5431 ctx->pos = get_unaligned(&entry->offset); 5432 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5433 get_unaligned(&entry->ino), 5434 get_unaligned(&entry->type))) 5435 return 1; 5436 addr += sizeof(struct dir_entry) + 5437 get_unaligned(&entry->name_len); 5438 ctx->pos++; 5439 } 5440 return 0; 5441 } 5442 5443 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5444 { 5445 struct inode *inode = file_inode(file); 5446 struct btrfs_root *root = BTRFS_I(inode)->root; 5447 struct btrfs_file_private *private = file->private_data; 5448 struct btrfs_dir_item *di; 5449 struct btrfs_key key; 5450 struct btrfs_key found_key; 5451 struct btrfs_path *path; 5452 void *addr; 5453 struct list_head ins_list; 5454 struct list_head del_list; 5455 int ret; 5456 struct extent_buffer *leaf; 5457 int slot; 5458 char *name_ptr; 5459 int name_len; 5460 int entries = 0; 5461 int total_len = 0; 5462 bool put = false; 5463 struct btrfs_key location; 5464 5465 if (!dir_emit_dots(file, ctx)) 5466 return 0; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) 5470 return -ENOMEM; 5471 5472 addr = private->filldir_buf; 5473 path->reada = READA_FORWARD; 5474 5475 INIT_LIST_HEAD(&ins_list); 5476 INIT_LIST_HEAD(&del_list); 5477 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5478 5479 again: 5480 key.type = BTRFS_DIR_INDEX_KEY; 5481 key.offset = ctx->pos; 5482 key.objectid = btrfs_ino(BTRFS_I(inode)); 5483 5484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5485 if (ret < 0) 5486 goto err; 5487 5488 while (1) { 5489 struct dir_entry *entry; 5490 5491 leaf = path->nodes[0]; 5492 slot = path->slots[0]; 5493 if (slot >= btrfs_header_nritems(leaf)) { 5494 ret = btrfs_next_leaf(root, path); 5495 if (ret < 0) 5496 goto err; 5497 else if (ret > 0) 5498 break; 5499 continue; 5500 } 5501 5502 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5503 5504 if (found_key.objectid != key.objectid) 5505 break; 5506 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5507 break; 5508 if (found_key.offset < ctx->pos) 5509 goto next; 5510 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5511 goto next; 5512 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5513 name_len = btrfs_dir_name_len(leaf, di); 5514 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5515 PAGE_SIZE) { 5516 btrfs_release_path(path); 5517 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5518 if (ret) 5519 goto nopos; 5520 addr = private->filldir_buf; 5521 entries = 0; 5522 total_len = 0; 5523 goto again; 5524 } 5525 5526 entry = addr; 5527 put_unaligned(name_len, &entry->name_len); 5528 name_ptr = (char *)(entry + 1); 5529 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5530 name_len); 5531 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5532 &entry->type); 5533 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5534 put_unaligned(location.objectid, &entry->ino); 5535 put_unaligned(found_key.offset, &entry->offset); 5536 entries++; 5537 addr += sizeof(struct dir_entry) + name_len; 5538 total_len += sizeof(struct dir_entry) + name_len; 5539 next: 5540 path->slots[0]++; 5541 } 5542 btrfs_release_path(path); 5543 5544 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5545 if (ret) 5546 goto nopos; 5547 5548 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5549 if (ret) 5550 goto nopos; 5551 5552 /* 5553 * Stop new entries from being returned after we return the last 5554 * entry. 5555 * 5556 * New directory entries are assigned a strictly increasing 5557 * offset. This means that new entries created during readdir 5558 * are *guaranteed* to be seen in the future by that readdir. 5559 * This has broken buggy programs which operate on names as 5560 * they're returned by readdir. Until we re-use freed offsets 5561 * we have this hack to stop new entries from being returned 5562 * under the assumption that they'll never reach this huge 5563 * offset. 5564 * 5565 * This is being careful not to overflow 32bit loff_t unless the 5566 * last entry requires it because doing so has broken 32bit apps 5567 * in the past. 5568 */ 5569 if (ctx->pos >= INT_MAX) 5570 ctx->pos = LLONG_MAX; 5571 else 5572 ctx->pos = INT_MAX; 5573 nopos: 5574 ret = 0; 5575 err: 5576 if (put) 5577 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5578 btrfs_free_path(path); 5579 return ret; 5580 } 5581 5582 /* 5583 * This is somewhat expensive, updating the tree every time the 5584 * inode changes. But, it is most likely to find the inode in cache. 5585 * FIXME, needs more benchmarking...there are no reasons other than performance 5586 * to keep or drop this code. 5587 */ 5588 static int btrfs_dirty_inode(struct inode *inode) 5589 { 5590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5591 struct btrfs_root *root = BTRFS_I(inode)->root; 5592 struct btrfs_trans_handle *trans; 5593 int ret; 5594 5595 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5596 return 0; 5597 5598 trans = btrfs_join_transaction(root); 5599 if (IS_ERR(trans)) 5600 return PTR_ERR(trans); 5601 5602 ret = btrfs_update_inode(trans, root, inode); 5603 if (ret && ret == -ENOSPC) { 5604 /* whoops, lets try again with the full transaction */ 5605 btrfs_end_transaction(trans); 5606 trans = btrfs_start_transaction(root, 1); 5607 if (IS_ERR(trans)) 5608 return PTR_ERR(trans); 5609 5610 ret = btrfs_update_inode(trans, root, inode); 5611 } 5612 btrfs_end_transaction(trans); 5613 if (BTRFS_I(inode)->delayed_node) 5614 btrfs_balance_delayed_items(fs_info); 5615 5616 return ret; 5617 } 5618 5619 /* 5620 * This is a copy of file_update_time. We need this so we can return error on 5621 * ENOSPC for updating the inode in the case of file write and mmap writes. 5622 */ 5623 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5624 int flags) 5625 { 5626 struct btrfs_root *root = BTRFS_I(inode)->root; 5627 bool dirty = flags & ~S_VERSION; 5628 5629 if (btrfs_root_readonly(root)) 5630 return -EROFS; 5631 5632 if (flags & S_VERSION) 5633 dirty |= inode_maybe_inc_iversion(inode, dirty); 5634 if (flags & S_CTIME) 5635 inode->i_ctime = *now; 5636 if (flags & S_MTIME) 5637 inode->i_mtime = *now; 5638 if (flags & S_ATIME) 5639 inode->i_atime = *now; 5640 return dirty ? btrfs_dirty_inode(inode) : 0; 5641 } 5642 5643 /* 5644 * find the highest existing sequence number in a directory 5645 * and then set the in-memory index_cnt variable to reflect 5646 * free sequence numbers 5647 */ 5648 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5649 { 5650 struct btrfs_root *root = inode->root; 5651 struct btrfs_key key, found_key; 5652 struct btrfs_path *path; 5653 struct extent_buffer *leaf; 5654 int ret; 5655 5656 key.objectid = btrfs_ino(inode); 5657 key.type = BTRFS_DIR_INDEX_KEY; 5658 key.offset = (u64)-1; 5659 5660 path = btrfs_alloc_path(); 5661 if (!path) 5662 return -ENOMEM; 5663 5664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5665 if (ret < 0) 5666 goto out; 5667 /* FIXME: we should be able to handle this */ 5668 if (ret == 0) 5669 goto out; 5670 ret = 0; 5671 5672 /* 5673 * MAGIC NUMBER EXPLANATION: 5674 * since we search a directory based on f_pos we have to start at 2 5675 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5676 * else has to start at 2 5677 */ 5678 if (path->slots[0] == 0) { 5679 inode->index_cnt = 2; 5680 goto out; 5681 } 5682 5683 path->slots[0]--; 5684 5685 leaf = path->nodes[0]; 5686 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5687 5688 if (found_key.objectid != btrfs_ino(inode) || 5689 found_key.type != BTRFS_DIR_INDEX_KEY) { 5690 inode->index_cnt = 2; 5691 goto out; 5692 } 5693 5694 inode->index_cnt = found_key.offset + 1; 5695 out: 5696 btrfs_free_path(path); 5697 return ret; 5698 } 5699 5700 /* 5701 * helper to find a free sequence number in a given directory. This current 5702 * code is very simple, later versions will do smarter things in the btree 5703 */ 5704 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5705 { 5706 int ret = 0; 5707 5708 if (dir->index_cnt == (u64)-1) { 5709 ret = btrfs_inode_delayed_dir_index_count(dir); 5710 if (ret) { 5711 ret = btrfs_set_inode_index_count(dir); 5712 if (ret) 5713 return ret; 5714 } 5715 } 5716 5717 *index = dir->index_cnt; 5718 dir->index_cnt++; 5719 5720 return ret; 5721 } 5722 5723 static int btrfs_insert_inode_locked(struct inode *inode) 5724 { 5725 struct btrfs_iget_args args; 5726 args.location = &BTRFS_I(inode)->location; 5727 args.root = BTRFS_I(inode)->root; 5728 5729 return insert_inode_locked4(inode, 5730 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5731 btrfs_find_actor, &args); 5732 } 5733 5734 /* 5735 * Inherit flags from the parent inode. 5736 * 5737 * Currently only the compression flags and the cow flags are inherited. 5738 */ 5739 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5740 { 5741 unsigned int flags; 5742 5743 if (!dir) 5744 return; 5745 5746 flags = BTRFS_I(dir)->flags; 5747 5748 if (flags & BTRFS_INODE_NOCOMPRESS) { 5749 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5750 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5751 } else if (flags & BTRFS_INODE_COMPRESS) { 5752 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5753 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5754 } 5755 5756 if (flags & BTRFS_INODE_NODATACOW) { 5757 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5758 if (S_ISREG(inode->i_mode)) 5759 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5760 } 5761 5762 btrfs_sync_inode_flags_to_i_flags(inode); 5763 } 5764 5765 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5766 struct btrfs_root *root, 5767 struct inode *dir, 5768 const char *name, int name_len, 5769 u64 ref_objectid, u64 objectid, 5770 umode_t mode, u64 *index) 5771 { 5772 struct btrfs_fs_info *fs_info = root->fs_info; 5773 struct inode *inode; 5774 struct btrfs_inode_item *inode_item; 5775 struct btrfs_key *location; 5776 struct btrfs_path *path; 5777 struct btrfs_inode_ref *ref; 5778 struct btrfs_key key[2]; 5779 u32 sizes[2]; 5780 int nitems = name ? 2 : 1; 5781 unsigned long ptr; 5782 unsigned int nofs_flag; 5783 int ret; 5784 5785 path = btrfs_alloc_path(); 5786 if (!path) 5787 return ERR_PTR(-ENOMEM); 5788 5789 nofs_flag = memalloc_nofs_save(); 5790 inode = new_inode(fs_info->sb); 5791 memalloc_nofs_restore(nofs_flag); 5792 if (!inode) { 5793 btrfs_free_path(path); 5794 return ERR_PTR(-ENOMEM); 5795 } 5796 5797 /* 5798 * O_TMPFILE, set link count to 0, so that after this point, 5799 * we fill in an inode item with the correct link count. 5800 */ 5801 if (!name) 5802 set_nlink(inode, 0); 5803 5804 /* 5805 * we have to initialize this early, so we can reclaim the inode 5806 * number if we fail afterwards in this function. 5807 */ 5808 inode->i_ino = objectid; 5809 5810 if (dir && name) { 5811 trace_btrfs_inode_request(dir); 5812 5813 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5814 if (ret) { 5815 btrfs_free_path(path); 5816 iput(inode); 5817 return ERR_PTR(ret); 5818 } 5819 } else if (dir) { 5820 *index = 0; 5821 } 5822 /* 5823 * index_cnt is ignored for everything but a dir, 5824 * btrfs_set_inode_index_count has an explanation for the magic 5825 * number 5826 */ 5827 BTRFS_I(inode)->index_cnt = 2; 5828 BTRFS_I(inode)->dir_index = *index; 5829 BTRFS_I(inode)->root = root; 5830 BTRFS_I(inode)->generation = trans->transid; 5831 inode->i_generation = BTRFS_I(inode)->generation; 5832 5833 /* 5834 * We could have gotten an inode number from somebody who was fsynced 5835 * and then removed in this same transaction, so let's just set full 5836 * sync since it will be a full sync anyway and this will blow away the 5837 * old info in the log. 5838 */ 5839 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5840 5841 key[0].objectid = objectid; 5842 key[0].type = BTRFS_INODE_ITEM_KEY; 5843 key[0].offset = 0; 5844 5845 sizes[0] = sizeof(struct btrfs_inode_item); 5846 5847 if (name) { 5848 /* 5849 * Start new inodes with an inode_ref. This is slightly more 5850 * efficient for small numbers of hard links since they will 5851 * be packed into one item. Extended refs will kick in if we 5852 * add more hard links than can fit in the ref item. 5853 */ 5854 key[1].objectid = objectid; 5855 key[1].type = BTRFS_INODE_REF_KEY; 5856 key[1].offset = ref_objectid; 5857 5858 sizes[1] = name_len + sizeof(*ref); 5859 } 5860 5861 location = &BTRFS_I(inode)->location; 5862 location->objectid = objectid; 5863 location->offset = 0; 5864 location->type = BTRFS_INODE_ITEM_KEY; 5865 5866 ret = btrfs_insert_inode_locked(inode); 5867 if (ret < 0) { 5868 iput(inode); 5869 goto fail; 5870 } 5871 5872 path->leave_spinning = 1; 5873 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5874 if (ret != 0) 5875 goto fail_unlock; 5876 5877 inode_init_owner(inode, dir, mode); 5878 inode_set_bytes(inode, 0); 5879 5880 inode->i_mtime = current_time(inode); 5881 inode->i_atime = inode->i_mtime; 5882 inode->i_ctime = inode->i_mtime; 5883 BTRFS_I(inode)->i_otime = inode->i_mtime; 5884 5885 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5886 struct btrfs_inode_item); 5887 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5888 sizeof(*inode_item)); 5889 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5890 5891 if (name) { 5892 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5893 struct btrfs_inode_ref); 5894 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5895 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5896 ptr = (unsigned long)(ref + 1); 5897 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5898 } 5899 5900 btrfs_mark_buffer_dirty(path->nodes[0]); 5901 btrfs_free_path(path); 5902 5903 btrfs_inherit_iflags(inode, dir); 5904 5905 if (S_ISREG(mode)) { 5906 if (btrfs_test_opt(fs_info, NODATASUM)) 5907 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5908 if (btrfs_test_opt(fs_info, NODATACOW)) 5909 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5910 BTRFS_INODE_NODATASUM; 5911 } 5912 5913 inode_tree_add(inode); 5914 5915 trace_btrfs_inode_new(inode); 5916 btrfs_set_inode_last_trans(trans, inode); 5917 5918 btrfs_update_root_times(trans, root); 5919 5920 ret = btrfs_inode_inherit_props(trans, inode, dir); 5921 if (ret) 5922 btrfs_err(fs_info, 5923 "error inheriting props for ino %llu (root %llu): %d", 5924 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 5925 5926 return inode; 5927 5928 fail_unlock: 5929 discard_new_inode(inode); 5930 fail: 5931 if (dir && name) 5932 BTRFS_I(dir)->index_cnt--; 5933 btrfs_free_path(path); 5934 return ERR_PTR(ret); 5935 } 5936 5937 /* 5938 * utility function to add 'inode' into 'parent_inode' with 5939 * a give name and a given sequence number. 5940 * if 'add_backref' is true, also insert a backref from the 5941 * inode to the parent directory. 5942 */ 5943 int btrfs_add_link(struct btrfs_trans_handle *trans, 5944 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 5945 const char *name, int name_len, int add_backref, u64 index) 5946 { 5947 int ret = 0; 5948 struct btrfs_key key; 5949 struct btrfs_root *root = parent_inode->root; 5950 u64 ino = btrfs_ino(inode); 5951 u64 parent_ino = btrfs_ino(parent_inode); 5952 5953 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5954 memcpy(&key, &inode->root->root_key, sizeof(key)); 5955 } else { 5956 key.objectid = ino; 5957 key.type = BTRFS_INODE_ITEM_KEY; 5958 key.offset = 0; 5959 } 5960 5961 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5962 ret = btrfs_add_root_ref(trans, key.objectid, 5963 root->root_key.objectid, parent_ino, 5964 index, name, name_len); 5965 } else if (add_backref) { 5966 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5967 parent_ino, index); 5968 } 5969 5970 /* Nothing to clean up yet */ 5971 if (ret) 5972 return ret; 5973 5974 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 5975 btrfs_inode_type(&inode->vfs_inode), index); 5976 if (ret == -EEXIST || ret == -EOVERFLOW) 5977 goto fail_dir_item; 5978 else if (ret) { 5979 btrfs_abort_transaction(trans, ret); 5980 return ret; 5981 } 5982 5983 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 5984 name_len * 2); 5985 inode_inc_iversion(&parent_inode->vfs_inode); 5986 /* 5987 * If we are replaying a log tree, we do not want to update the mtime 5988 * and ctime of the parent directory with the current time, since the 5989 * log replay procedure is responsible for setting them to their correct 5990 * values (the ones it had when the fsync was done). 5991 */ 5992 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 5993 struct timespec64 now = current_time(&parent_inode->vfs_inode); 5994 5995 parent_inode->vfs_inode.i_mtime = now; 5996 parent_inode->vfs_inode.i_ctime = now; 5997 } 5998 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 5999 if (ret) 6000 btrfs_abort_transaction(trans, ret); 6001 return ret; 6002 6003 fail_dir_item: 6004 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6005 u64 local_index; 6006 int err; 6007 err = btrfs_del_root_ref(trans, key.objectid, 6008 root->root_key.objectid, parent_ino, 6009 &local_index, name, name_len); 6010 if (err) 6011 btrfs_abort_transaction(trans, err); 6012 } else if (add_backref) { 6013 u64 local_index; 6014 int err; 6015 6016 err = btrfs_del_inode_ref(trans, root, name, name_len, 6017 ino, parent_ino, &local_index); 6018 if (err) 6019 btrfs_abort_transaction(trans, err); 6020 } 6021 6022 /* Return the original error code */ 6023 return ret; 6024 } 6025 6026 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6027 struct btrfs_inode *dir, struct dentry *dentry, 6028 struct btrfs_inode *inode, int backref, u64 index) 6029 { 6030 int err = btrfs_add_link(trans, dir, inode, 6031 dentry->d_name.name, dentry->d_name.len, 6032 backref, index); 6033 if (err > 0) 6034 err = -EEXIST; 6035 return err; 6036 } 6037 6038 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6039 umode_t mode, dev_t rdev) 6040 { 6041 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6042 struct btrfs_trans_handle *trans; 6043 struct btrfs_root *root = BTRFS_I(dir)->root; 6044 struct inode *inode = NULL; 6045 int err; 6046 u64 objectid; 6047 u64 index = 0; 6048 6049 /* 6050 * 2 for inode item and ref 6051 * 2 for dir items 6052 * 1 for xattr if selinux is on 6053 */ 6054 trans = btrfs_start_transaction(root, 5); 6055 if (IS_ERR(trans)) 6056 return PTR_ERR(trans); 6057 6058 err = btrfs_find_free_ino(root, &objectid); 6059 if (err) 6060 goto out_unlock; 6061 6062 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6063 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6064 mode, &index); 6065 if (IS_ERR(inode)) { 6066 err = PTR_ERR(inode); 6067 inode = NULL; 6068 goto out_unlock; 6069 } 6070 6071 /* 6072 * If the active LSM wants to access the inode during 6073 * d_instantiate it needs these. Smack checks to see 6074 * if the filesystem supports xattrs by looking at the 6075 * ops vector. 6076 */ 6077 inode->i_op = &btrfs_special_inode_operations; 6078 init_special_inode(inode, inode->i_mode, rdev); 6079 6080 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6081 if (err) 6082 goto out_unlock; 6083 6084 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6085 0, index); 6086 if (err) 6087 goto out_unlock; 6088 6089 btrfs_update_inode(trans, root, inode); 6090 d_instantiate_new(dentry, inode); 6091 6092 out_unlock: 6093 btrfs_end_transaction(trans); 6094 btrfs_btree_balance_dirty(fs_info); 6095 if (err && inode) { 6096 inode_dec_link_count(inode); 6097 discard_new_inode(inode); 6098 } 6099 return err; 6100 } 6101 6102 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6103 umode_t mode, bool excl) 6104 { 6105 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6106 struct btrfs_trans_handle *trans; 6107 struct btrfs_root *root = BTRFS_I(dir)->root; 6108 struct inode *inode = NULL; 6109 int err; 6110 u64 objectid; 6111 u64 index = 0; 6112 6113 /* 6114 * 2 for inode item and ref 6115 * 2 for dir items 6116 * 1 for xattr if selinux is on 6117 */ 6118 trans = btrfs_start_transaction(root, 5); 6119 if (IS_ERR(trans)) 6120 return PTR_ERR(trans); 6121 6122 err = btrfs_find_free_ino(root, &objectid); 6123 if (err) 6124 goto out_unlock; 6125 6126 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6127 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6128 mode, &index); 6129 if (IS_ERR(inode)) { 6130 err = PTR_ERR(inode); 6131 inode = NULL; 6132 goto out_unlock; 6133 } 6134 /* 6135 * If the active LSM wants to access the inode during 6136 * d_instantiate it needs these. Smack checks to see 6137 * if the filesystem supports xattrs by looking at the 6138 * ops vector. 6139 */ 6140 inode->i_fop = &btrfs_file_operations; 6141 inode->i_op = &btrfs_file_inode_operations; 6142 inode->i_mapping->a_ops = &btrfs_aops; 6143 6144 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6145 if (err) 6146 goto out_unlock; 6147 6148 err = btrfs_update_inode(trans, root, inode); 6149 if (err) 6150 goto out_unlock; 6151 6152 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6153 0, index); 6154 if (err) 6155 goto out_unlock; 6156 6157 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6158 d_instantiate_new(dentry, inode); 6159 6160 out_unlock: 6161 btrfs_end_transaction(trans); 6162 if (err && inode) { 6163 inode_dec_link_count(inode); 6164 discard_new_inode(inode); 6165 } 6166 btrfs_btree_balance_dirty(fs_info); 6167 return err; 6168 } 6169 6170 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6171 struct dentry *dentry) 6172 { 6173 struct btrfs_trans_handle *trans = NULL; 6174 struct btrfs_root *root = BTRFS_I(dir)->root; 6175 struct inode *inode = d_inode(old_dentry); 6176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6177 u64 index; 6178 int err; 6179 int drop_inode = 0; 6180 6181 /* do not allow sys_link's with other subvols of the same device */ 6182 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6183 return -EXDEV; 6184 6185 if (inode->i_nlink >= BTRFS_LINK_MAX) 6186 return -EMLINK; 6187 6188 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6189 if (err) 6190 goto fail; 6191 6192 /* 6193 * 2 items for inode and inode ref 6194 * 2 items for dir items 6195 * 1 item for parent inode 6196 * 1 item for orphan item deletion if O_TMPFILE 6197 */ 6198 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6199 if (IS_ERR(trans)) { 6200 err = PTR_ERR(trans); 6201 trans = NULL; 6202 goto fail; 6203 } 6204 6205 /* There are several dir indexes for this inode, clear the cache. */ 6206 BTRFS_I(inode)->dir_index = 0ULL; 6207 inc_nlink(inode); 6208 inode_inc_iversion(inode); 6209 inode->i_ctime = current_time(inode); 6210 ihold(inode); 6211 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6212 6213 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6214 1, index); 6215 6216 if (err) { 6217 drop_inode = 1; 6218 } else { 6219 struct dentry *parent = dentry->d_parent; 6220 int ret; 6221 6222 err = btrfs_update_inode(trans, root, inode); 6223 if (err) 6224 goto fail; 6225 if (inode->i_nlink == 1) { 6226 /* 6227 * If new hard link count is 1, it's a file created 6228 * with open(2) O_TMPFILE flag. 6229 */ 6230 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6231 if (err) 6232 goto fail; 6233 } 6234 d_instantiate(dentry, inode); 6235 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6236 true, NULL); 6237 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6238 err = btrfs_commit_transaction(trans); 6239 trans = NULL; 6240 } 6241 } 6242 6243 fail: 6244 if (trans) 6245 btrfs_end_transaction(trans); 6246 if (drop_inode) { 6247 inode_dec_link_count(inode); 6248 iput(inode); 6249 } 6250 btrfs_btree_balance_dirty(fs_info); 6251 return err; 6252 } 6253 6254 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6255 { 6256 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6257 struct inode *inode = NULL; 6258 struct btrfs_trans_handle *trans; 6259 struct btrfs_root *root = BTRFS_I(dir)->root; 6260 int err = 0; 6261 u64 objectid = 0; 6262 u64 index = 0; 6263 6264 /* 6265 * 2 items for inode and ref 6266 * 2 items for dir items 6267 * 1 for xattr if selinux is on 6268 */ 6269 trans = btrfs_start_transaction(root, 5); 6270 if (IS_ERR(trans)) 6271 return PTR_ERR(trans); 6272 6273 err = btrfs_find_free_ino(root, &objectid); 6274 if (err) 6275 goto out_fail; 6276 6277 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6278 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6279 S_IFDIR | mode, &index); 6280 if (IS_ERR(inode)) { 6281 err = PTR_ERR(inode); 6282 inode = NULL; 6283 goto out_fail; 6284 } 6285 6286 /* these must be set before we unlock the inode */ 6287 inode->i_op = &btrfs_dir_inode_operations; 6288 inode->i_fop = &btrfs_dir_file_operations; 6289 6290 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6291 if (err) 6292 goto out_fail; 6293 6294 btrfs_i_size_write(BTRFS_I(inode), 0); 6295 err = btrfs_update_inode(trans, root, inode); 6296 if (err) 6297 goto out_fail; 6298 6299 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6300 dentry->d_name.name, 6301 dentry->d_name.len, 0, index); 6302 if (err) 6303 goto out_fail; 6304 6305 d_instantiate_new(dentry, inode); 6306 6307 out_fail: 6308 btrfs_end_transaction(trans); 6309 if (err && inode) { 6310 inode_dec_link_count(inode); 6311 discard_new_inode(inode); 6312 } 6313 btrfs_btree_balance_dirty(fs_info); 6314 return err; 6315 } 6316 6317 static noinline int uncompress_inline(struct btrfs_path *path, 6318 struct page *page, 6319 size_t pg_offset, u64 extent_offset, 6320 struct btrfs_file_extent_item *item) 6321 { 6322 int ret; 6323 struct extent_buffer *leaf = path->nodes[0]; 6324 char *tmp; 6325 size_t max_size; 6326 unsigned long inline_size; 6327 unsigned long ptr; 6328 int compress_type; 6329 6330 WARN_ON(pg_offset != 0); 6331 compress_type = btrfs_file_extent_compression(leaf, item); 6332 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6333 inline_size = btrfs_file_extent_inline_item_len(leaf, 6334 btrfs_item_nr(path->slots[0])); 6335 tmp = kmalloc(inline_size, GFP_NOFS); 6336 if (!tmp) 6337 return -ENOMEM; 6338 ptr = btrfs_file_extent_inline_start(item); 6339 6340 read_extent_buffer(leaf, tmp, ptr, inline_size); 6341 6342 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6343 ret = btrfs_decompress(compress_type, tmp, page, 6344 extent_offset, inline_size, max_size); 6345 6346 /* 6347 * decompression code contains a memset to fill in any space between the end 6348 * of the uncompressed data and the end of max_size in case the decompressed 6349 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6350 * the end of an inline extent and the beginning of the next block, so we 6351 * cover that region here. 6352 */ 6353 6354 if (max_size + pg_offset < PAGE_SIZE) { 6355 char *map = kmap(page); 6356 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6357 kunmap(page); 6358 } 6359 kfree(tmp); 6360 return ret; 6361 } 6362 6363 /** 6364 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6365 * @inode: file to search in 6366 * @page: page to read extent data into if the extent is inline 6367 * @pg_offset: offset into @page to copy to 6368 * @start: file offset 6369 * @len: length of range starting at @start 6370 * 6371 * This returns the first &struct extent_map which overlaps with the given 6372 * range, reading it from the B-tree and caching it if necessary. Note that 6373 * there may be more extents which overlap the given range after the returned 6374 * extent_map. 6375 * 6376 * If @page is not NULL and the extent is inline, this also reads the extent 6377 * data directly into the page and marks the extent up to date in the io_tree. 6378 * 6379 * Return: ERR_PTR on error, non-NULL extent_map on success. 6380 */ 6381 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6382 struct page *page, size_t pg_offset, 6383 u64 start, u64 len) 6384 { 6385 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6386 int ret; 6387 int err = 0; 6388 u64 extent_start = 0; 6389 u64 extent_end = 0; 6390 u64 objectid = btrfs_ino(inode); 6391 int extent_type = -1; 6392 struct btrfs_path *path = NULL; 6393 struct btrfs_root *root = inode->root; 6394 struct btrfs_file_extent_item *item; 6395 struct extent_buffer *leaf; 6396 struct btrfs_key found_key; 6397 struct extent_map *em = NULL; 6398 struct extent_map_tree *em_tree = &inode->extent_tree; 6399 struct extent_io_tree *io_tree = &inode->io_tree; 6400 6401 read_lock(&em_tree->lock); 6402 em = lookup_extent_mapping(em_tree, start, len); 6403 read_unlock(&em_tree->lock); 6404 6405 if (em) { 6406 if (em->start > start || em->start + em->len <= start) 6407 free_extent_map(em); 6408 else if (em->block_start == EXTENT_MAP_INLINE && page) 6409 free_extent_map(em); 6410 else 6411 goto out; 6412 } 6413 em = alloc_extent_map(); 6414 if (!em) { 6415 err = -ENOMEM; 6416 goto out; 6417 } 6418 em->start = EXTENT_MAP_HOLE; 6419 em->orig_start = EXTENT_MAP_HOLE; 6420 em->len = (u64)-1; 6421 em->block_len = (u64)-1; 6422 6423 path = btrfs_alloc_path(); 6424 if (!path) { 6425 err = -ENOMEM; 6426 goto out; 6427 } 6428 6429 /* Chances are we'll be called again, so go ahead and do readahead */ 6430 path->reada = READA_FORWARD; 6431 6432 /* 6433 * Unless we're going to uncompress the inline extent, no sleep would 6434 * happen. 6435 */ 6436 path->leave_spinning = 1; 6437 6438 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6439 if (ret < 0) { 6440 err = ret; 6441 goto out; 6442 } else if (ret > 0) { 6443 if (path->slots[0] == 0) 6444 goto not_found; 6445 path->slots[0]--; 6446 } 6447 6448 leaf = path->nodes[0]; 6449 item = btrfs_item_ptr(leaf, path->slots[0], 6450 struct btrfs_file_extent_item); 6451 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6452 if (found_key.objectid != objectid || 6453 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6454 /* 6455 * If we backup past the first extent we want to move forward 6456 * and see if there is an extent in front of us, otherwise we'll 6457 * say there is a hole for our whole search range which can 6458 * cause problems. 6459 */ 6460 extent_end = start; 6461 goto next; 6462 } 6463 6464 extent_type = btrfs_file_extent_type(leaf, item); 6465 extent_start = found_key.offset; 6466 if (extent_type == BTRFS_FILE_EXTENT_REG || 6467 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6468 /* Only regular file could have regular/prealloc extent */ 6469 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6470 ret = -EUCLEAN; 6471 btrfs_crit(fs_info, 6472 "regular/prealloc extent found for non-regular inode %llu", 6473 btrfs_ino(inode)); 6474 goto out; 6475 } 6476 extent_end = extent_start + 6477 btrfs_file_extent_num_bytes(leaf, item); 6478 6479 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6480 extent_start); 6481 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6482 size_t size; 6483 6484 size = btrfs_file_extent_ram_bytes(leaf, item); 6485 extent_end = ALIGN(extent_start + size, 6486 fs_info->sectorsize); 6487 6488 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6489 path->slots[0], 6490 extent_start); 6491 } 6492 next: 6493 if (start >= extent_end) { 6494 path->slots[0]++; 6495 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6496 ret = btrfs_next_leaf(root, path); 6497 if (ret < 0) { 6498 err = ret; 6499 goto out; 6500 } else if (ret > 0) { 6501 goto not_found; 6502 } 6503 leaf = path->nodes[0]; 6504 } 6505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6506 if (found_key.objectid != objectid || 6507 found_key.type != BTRFS_EXTENT_DATA_KEY) 6508 goto not_found; 6509 if (start + len <= found_key.offset) 6510 goto not_found; 6511 if (start > found_key.offset) 6512 goto next; 6513 6514 /* New extent overlaps with existing one */ 6515 em->start = start; 6516 em->orig_start = start; 6517 em->len = found_key.offset - start; 6518 em->block_start = EXTENT_MAP_HOLE; 6519 goto insert; 6520 } 6521 6522 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6523 6524 if (extent_type == BTRFS_FILE_EXTENT_REG || 6525 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6526 goto insert; 6527 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6528 unsigned long ptr; 6529 char *map; 6530 size_t size; 6531 size_t extent_offset; 6532 size_t copy_size; 6533 6534 if (!page) 6535 goto out; 6536 6537 size = btrfs_file_extent_ram_bytes(leaf, item); 6538 extent_offset = page_offset(page) + pg_offset - extent_start; 6539 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6540 size - extent_offset); 6541 em->start = extent_start + extent_offset; 6542 em->len = ALIGN(copy_size, fs_info->sectorsize); 6543 em->orig_block_len = em->len; 6544 em->orig_start = em->start; 6545 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6546 6547 btrfs_set_path_blocking(path); 6548 if (!PageUptodate(page)) { 6549 if (btrfs_file_extent_compression(leaf, item) != 6550 BTRFS_COMPRESS_NONE) { 6551 ret = uncompress_inline(path, page, pg_offset, 6552 extent_offset, item); 6553 if (ret) { 6554 err = ret; 6555 goto out; 6556 } 6557 } else { 6558 map = kmap(page); 6559 read_extent_buffer(leaf, map + pg_offset, ptr, 6560 copy_size); 6561 if (pg_offset + copy_size < PAGE_SIZE) { 6562 memset(map + pg_offset + copy_size, 0, 6563 PAGE_SIZE - pg_offset - 6564 copy_size); 6565 } 6566 kunmap(page); 6567 } 6568 flush_dcache_page(page); 6569 } 6570 set_extent_uptodate(io_tree, em->start, 6571 extent_map_end(em) - 1, NULL, GFP_NOFS); 6572 goto insert; 6573 } 6574 not_found: 6575 em->start = start; 6576 em->orig_start = start; 6577 em->len = len; 6578 em->block_start = EXTENT_MAP_HOLE; 6579 insert: 6580 btrfs_release_path(path); 6581 if (em->start > start || extent_map_end(em) <= start) { 6582 btrfs_err(fs_info, 6583 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6584 em->start, em->len, start, len); 6585 err = -EIO; 6586 goto out; 6587 } 6588 6589 err = 0; 6590 write_lock(&em_tree->lock); 6591 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6592 write_unlock(&em_tree->lock); 6593 out: 6594 btrfs_free_path(path); 6595 6596 trace_btrfs_get_extent(root, inode, em); 6597 6598 if (err) { 6599 free_extent_map(em); 6600 return ERR_PTR(err); 6601 } 6602 BUG_ON(!em); /* Error is always set */ 6603 return em; 6604 } 6605 6606 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6607 u64 start, u64 len) 6608 { 6609 struct extent_map *em; 6610 struct extent_map *hole_em = NULL; 6611 u64 delalloc_start = start; 6612 u64 end; 6613 u64 delalloc_len; 6614 u64 delalloc_end; 6615 int err = 0; 6616 6617 em = btrfs_get_extent(inode, NULL, 0, start, len); 6618 if (IS_ERR(em)) 6619 return em; 6620 /* 6621 * If our em maps to: 6622 * - a hole or 6623 * - a pre-alloc extent, 6624 * there might actually be delalloc bytes behind it. 6625 */ 6626 if (em->block_start != EXTENT_MAP_HOLE && 6627 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6628 return em; 6629 else 6630 hole_em = em; 6631 6632 /* check to see if we've wrapped (len == -1 or similar) */ 6633 end = start + len; 6634 if (end < start) 6635 end = (u64)-1; 6636 else 6637 end -= 1; 6638 6639 em = NULL; 6640 6641 /* ok, we didn't find anything, lets look for delalloc */ 6642 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6643 end, len, EXTENT_DELALLOC, 1); 6644 delalloc_end = delalloc_start + delalloc_len; 6645 if (delalloc_end < delalloc_start) 6646 delalloc_end = (u64)-1; 6647 6648 /* 6649 * We didn't find anything useful, return the original results from 6650 * get_extent() 6651 */ 6652 if (delalloc_start > end || delalloc_end <= start) { 6653 em = hole_em; 6654 hole_em = NULL; 6655 goto out; 6656 } 6657 6658 /* 6659 * Adjust the delalloc_start to make sure it doesn't go backwards from 6660 * the start they passed in 6661 */ 6662 delalloc_start = max(start, delalloc_start); 6663 delalloc_len = delalloc_end - delalloc_start; 6664 6665 if (delalloc_len > 0) { 6666 u64 hole_start; 6667 u64 hole_len; 6668 const u64 hole_end = extent_map_end(hole_em); 6669 6670 em = alloc_extent_map(); 6671 if (!em) { 6672 err = -ENOMEM; 6673 goto out; 6674 } 6675 6676 ASSERT(hole_em); 6677 /* 6678 * When btrfs_get_extent can't find anything it returns one 6679 * huge hole 6680 * 6681 * Make sure what it found really fits our range, and adjust to 6682 * make sure it is based on the start from the caller 6683 */ 6684 if (hole_end <= start || hole_em->start > end) { 6685 free_extent_map(hole_em); 6686 hole_em = NULL; 6687 } else { 6688 hole_start = max(hole_em->start, start); 6689 hole_len = hole_end - hole_start; 6690 } 6691 6692 if (hole_em && delalloc_start > hole_start) { 6693 /* 6694 * Our hole starts before our delalloc, so we have to 6695 * return just the parts of the hole that go until the 6696 * delalloc starts 6697 */ 6698 em->len = min(hole_len, delalloc_start - hole_start); 6699 em->start = hole_start; 6700 em->orig_start = hole_start; 6701 /* 6702 * Don't adjust block start at all, it is fixed at 6703 * EXTENT_MAP_HOLE 6704 */ 6705 em->block_start = hole_em->block_start; 6706 em->block_len = hole_len; 6707 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6708 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6709 } else { 6710 /* 6711 * Hole is out of passed range or it starts after 6712 * delalloc range 6713 */ 6714 em->start = delalloc_start; 6715 em->len = delalloc_len; 6716 em->orig_start = delalloc_start; 6717 em->block_start = EXTENT_MAP_DELALLOC; 6718 em->block_len = delalloc_len; 6719 } 6720 } else { 6721 return hole_em; 6722 } 6723 out: 6724 6725 free_extent_map(hole_em); 6726 if (err) { 6727 free_extent_map(em); 6728 return ERR_PTR(err); 6729 } 6730 return em; 6731 } 6732 6733 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6734 const u64 start, 6735 const u64 len, 6736 const u64 orig_start, 6737 const u64 block_start, 6738 const u64 block_len, 6739 const u64 orig_block_len, 6740 const u64 ram_bytes, 6741 const int type) 6742 { 6743 struct extent_map *em = NULL; 6744 int ret; 6745 6746 if (type != BTRFS_ORDERED_NOCOW) { 6747 em = create_io_em(inode, start, len, orig_start, 6748 block_start, block_len, orig_block_len, 6749 ram_bytes, 6750 BTRFS_COMPRESS_NONE, /* compress_type */ 6751 type); 6752 if (IS_ERR(em)) 6753 goto out; 6754 } 6755 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6756 len, block_len, type); 6757 if (ret) { 6758 if (em) { 6759 free_extent_map(em); 6760 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6761 start + len - 1, 0); 6762 } 6763 em = ERR_PTR(ret); 6764 } 6765 out: 6766 6767 return em; 6768 } 6769 6770 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6771 u64 start, u64 len) 6772 { 6773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6774 struct btrfs_root *root = BTRFS_I(inode)->root; 6775 struct extent_map *em; 6776 struct btrfs_key ins; 6777 u64 alloc_hint; 6778 int ret; 6779 6780 alloc_hint = get_extent_allocation_hint(inode, start, len); 6781 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6782 0, alloc_hint, &ins, 1, 1); 6783 if (ret) 6784 return ERR_PTR(ret); 6785 6786 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6787 ins.objectid, ins.offset, ins.offset, 6788 ins.offset, BTRFS_ORDERED_REGULAR); 6789 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6790 if (IS_ERR(em)) 6791 btrfs_free_reserved_extent(fs_info, ins.objectid, 6792 ins.offset, 1); 6793 6794 return em; 6795 } 6796 6797 /* 6798 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6799 * block must be cow'd 6800 */ 6801 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6802 u64 *orig_start, u64 *orig_block_len, 6803 u64 *ram_bytes) 6804 { 6805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6806 struct btrfs_path *path; 6807 int ret; 6808 struct extent_buffer *leaf; 6809 struct btrfs_root *root = BTRFS_I(inode)->root; 6810 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6811 struct btrfs_file_extent_item *fi; 6812 struct btrfs_key key; 6813 u64 disk_bytenr; 6814 u64 backref_offset; 6815 u64 extent_end; 6816 u64 num_bytes; 6817 int slot; 6818 int found_type; 6819 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6820 6821 path = btrfs_alloc_path(); 6822 if (!path) 6823 return -ENOMEM; 6824 6825 ret = btrfs_lookup_file_extent(NULL, root, path, 6826 btrfs_ino(BTRFS_I(inode)), offset, 0); 6827 if (ret < 0) 6828 goto out; 6829 6830 slot = path->slots[0]; 6831 if (ret == 1) { 6832 if (slot == 0) { 6833 /* can't find the item, must cow */ 6834 ret = 0; 6835 goto out; 6836 } 6837 slot--; 6838 } 6839 ret = 0; 6840 leaf = path->nodes[0]; 6841 btrfs_item_key_to_cpu(leaf, &key, slot); 6842 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6843 key.type != BTRFS_EXTENT_DATA_KEY) { 6844 /* not our file or wrong item type, must cow */ 6845 goto out; 6846 } 6847 6848 if (key.offset > offset) { 6849 /* Wrong offset, must cow */ 6850 goto out; 6851 } 6852 6853 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6854 found_type = btrfs_file_extent_type(leaf, fi); 6855 if (found_type != BTRFS_FILE_EXTENT_REG && 6856 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6857 /* not a regular extent, must cow */ 6858 goto out; 6859 } 6860 6861 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6862 goto out; 6863 6864 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6865 if (extent_end <= offset) 6866 goto out; 6867 6868 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6869 if (disk_bytenr == 0) 6870 goto out; 6871 6872 if (btrfs_file_extent_compression(leaf, fi) || 6873 btrfs_file_extent_encryption(leaf, fi) || 6874 btrfs_file_extent_other_encoding(leaf, fi)) 6875 goto out; 6876 6877 /* 6878 * Do the same check as in btrfs_cross_ref_exist but without the 6879 * unnecessary search. 6880 */ 6881 if (btrfs_file_extent_generation(leaf, fi) <= 6882 btrfs_root_last_snapshot(&root->root_item)) 6883 goto out; 6884 6885 backref_offset = btrfs_file_extent_offset(leaf, fi); 6886 6887 if (orig_start) { 6888 *orig_start = key.offset - backref_offset; 6889 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6890 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6891 } 6892 6893 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6894 goto out; 6895 6896 num_bytes = min(offset + *len, extent_end) - offset; 6897 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6898 u64 range_end; 6899 6900 range_end = round_up(offset + num_bytes, 6901 root->fs_info->sectorsize) - 1; 6902 ret = test_range_bit(io_tree, offset, range_end, 6903 EXTENT_DELALLOC, 0, NULL); 6904 if (ret) { 6905 ret = -EAGAIN; 6906 goto out; 6907 } 6908 } 6909 6910 btrfs_release_path(path); 6911 6912 /* 6913 * look for other files referencing this extent, if we 6914 * find any we must cow 6915 */ 6916 6917 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 6918 key.offset - backref_offset, disk_bytenr); 6919 if (ret) { 6920 ret = 0; 6921 goto out; 6922 } 6923 6924 /* 6925 * adjust disk_bytenr and num_bytes to cover just the bytes 6926 * in this extent we are about to write. If there 6927 * are any csums in that range we have to cow in order 6928 * to keep the csums correct 6929 */ 6930 disk_bytenr += backref_offset; 6931 disk_bytenr += offset - key.offset; 6932 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 6933 goto out; 6934 /* 6935 * all of the above have passed, it is safe to overwrite this extent 6936 * without cow 6937 */ 6938 *len = num_bytes; 6939 ret = 1; 6940 out: 6941 btrfs_free_path(path); 6942 return ret; 6943 } 6944 6945 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6946 struct extent_state **cached_state, int writing) 6947 { 6948 struct btrfs_ordered_extent *ordered; 6949 int ret = 0; 6950 6951 while (1) { 6952 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6953 cached_state); 6954 /* 6955 * We're concerned with the entire range that we're going to be 6956 * doing DIO to, so we need to make sure there's no ordered 6957 * extents in this range. 6958 */ 6959 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 6960 lockend - lockstart + 1); 6961 6962 /* 6963 * We need to make sure there are no buffered pages in this 6964 * range either, we could have raced between the invalidate in 6965 * generic_file_direct_write and locking the extent. The 6966 * invalidate needs to happen so that reads after a write do not 6967 * get stale data. 6968 */ 6969 if (!ordered && 6970 (!writing || !filemap_range_has_page(inode->i_mapping, 6971 lockstart, lockend))) 6972 break; 6973 6974 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6975 cached_state); 6976 6977 if (ordered) { 6978 /* 6979 * If we are doing a DIO read and the ordered extent we 6980 * found is for a buffered write, we can not wait for it 6981 * to complete and retry, because if we do so we can 6982 * deadlock with concurrent buffered writes on page 6983 * locks. This happens only if our DIO read covers more 6984 * than one extent map, if at this point has already 6985 * created an ordered extent for a previous extent map 6986 * and locked its range in the inode's io tree, and a 6987 * concurrent write against that previous extent map's 6988 * range and this range started (we unlock the ranges 6989 * in the io tree only when the bios complete and 6990 * buffered writes always lock pages before attempting 6991 * to lock range in the io tree). 6992 */ 6993 if (writing || 6994 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 6995 btrfs_start_ordered_extent(inode, ordered, 1); 6996 else 6997 ret = -ENOTBLK; 6998 btrfs_put_ordered_extent(ordered); 6999 } else { 7000 /* 7001 * We could trigger writeback for this range (and wait 7002 * for it to complete) and then invalidate the pages for 7003 * this range (through invalidate_inode_pages2_range()), 7004 * but that can lead us to a deadlock with a concurrent 7005 * call to readpages() (a buffered read or a defrag call 7006 * triggered a readahead) on a page lock due to an 7007 * ordered dio extent we created before but did not have 7008 * yet a corresponding bio submitted (whence it can not 7009 * complete), which makes readpages() wait for that 7010 * ordered extent to complete while holding a lock on 7011 * that page. 7012 */ 7013 ret = -ENOTBLK; 7014 } 7015 7016 if (ret) 7017 break; 7018 7019 cond_resched(); 7020 } 7021 7022 return ret; 7023 } 7024 7025 /* The callers of this must take lock_extent() */ 7026 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7027 u64 orig_start, u64 block_start, 7028 u64 block_len, u64 orig_block_len, 7029 u64 ram_bytes, int compress_type, 7030 int type) 7031 { 7032 struct extent_map_tree *em_tree; 7033 struct extent_map *em; 7034 int ret; 7035 7036 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7037 type == BTRFS_ORDERED_COMPRESSED || 7038 type == BTRFS_ORDERED_NOCOW || 7039 type == BTRFS_ORDERED_REGULAR); 7040 7041 em_tree = &BTRFS_I(inode)->extent_tree; 7042 em = alloc_extent_map(); 7043 if (!em) 7044 return ERR_PTR(-ENOMEM); 7045 7046 em->start = start; 7047 em->orig_start = orig_start; 7048 em->len = len; 7049 em->block_len = block_len; 7050 em->block_start = block_start; 7051 em->orig_block_len = orig_block_len; 7052 em->ram_bytes = ram_bytes; 7053 em->generation = -1; 7054 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7055 if (type == BTRFS_ORDERED_PREALLOC) { 7056 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7057 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7058 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7059 em->compress_type = compress_type; 7060 } 7061 7062 do { 7063 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7064 em->start + em->len - 1, 0); 7065 write_lock(&em_tree->lock); 7066 ret = add_extent_mapping(em_tree, em, 1); 7067 write_unlock(&em_tree->lock); 7068 /* 7069 * The caller has taken lock_extent(), who could race with us 7070 * to add em? 7071 */ 7072 } while (ret == -EEXIST); 7073 7074 if (ret) { 7075 free_extent_map(em); 7076 return ERR_PTR(ret); 7077 } 7078 7079 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7080 return em; 7081 } 7082 7083 7084 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7085 struct buffer_head *bh_result, 7086 struct inode *inode, 7087 u64 start, u64 len) 7088 { 7089 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7090 7091 if (em->block_start == EXTENT_MAP_HOLE || 7092 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7093 return -ENOENT; 7094 7095 len = min(len, em->len - (start - em->start)); 7096 7097 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7098 inode->i_blkbits; 7099 bh_result->b_size = len; 7100 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7101 set_buffer_mapped(bh_result); 7102 7103 return 0; 7104 } 7105 7106 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7107 struct buffer_head *bh_result, 7108 struct inode *inode, 7109 struct btrfs_dio_data *dio_data, 7110 u64 start, u64 len) 7111 { 7112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7113 struct extent_map *em = *map; 7114 int ret = 0; 7115 7116 /* 7117 * We don't allocate a new extent in the following cases 7118 * 7119 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7120 * existing extent. 7121 * 2) The extent is marked as PREALLOC. We're good to go here and can 7122 * just use the extent. 7123 * 7124 */ 7125 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7126 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7127 em->block_start != EXTENT_MAP_HOLE)) { 7128 int type; 7129 u64 block_start, orig_start, orig_block_len, ram_bytes; 7130 7131 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7132 type = BTRFS_ORDERED_PREALLOC; 7133 else 7134 type = BTRFS_ORDERED_NOCOW; 7135 len = min(len, em->len - (start - em->start)); 7136 block_start = em->block_start + (start - em->start); 7137 7138 if (can_nocow_extent(inode, start, &len, &orig_start, 7139 &orig_block_len, &ram_bytes) == 1 && 7140 btrfs_inc_nocow_writers(fs_info, block_start)) { 7141 struct extent_map *em2; 7142 7143 em2 = btrfs_create_dio_extent(inode, start, len, 7144 orig_start, block_start, 7145 len, orig_block_len, 7146 ram_bytes, type); 7147 btrfs_dec_nocow_writers(fs_info, block_start); 7148 if (type == BTRFS_ORDERED_PREALLOC) { 7149 free_extent_map(em); 7150 *map = em = em2; 7151 } 7152 7153 if (em2 && IS_ERR(em2)) { 7154 ret = PTR_ERR(em2); 7155 goto out; 7156 } 7157 /* 7158 * For inode marked NODATACOW or extent marked PREALLOC, 7159 * use the existing or preallocated extent, so does not 7160 * need to adjust btrfs_space_info's bytes_may_use. 7161 */ 7162 btrfs_free_reserved_data_space_noquota(inode, start, 7163 len); 7164 goto skip_cow; 7165 } 7166 } 7167 7168 /* this will cow the extent */ 7169 len = bh_result->b_size; 7170 free_extent_map(em); 7171 *map = em = btrfs_new_extent_direct(inode, start, len); 7172 if (IS_ERR(em)) { 7173 ret = PTR_ERR(em); 7174 goto out; 7175 } 7176 7177 len = min(len, em->len - (start - em->start)); 7178 7179 skip_cow: 7180 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7181 inode->i_blkbits; 7182 bh_result->b_size = len; 7183 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7184 set_buffer_mapped(bh_result); 7185 7186 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7187 set_buffer_new(bh_result); 7188 7189 /* 7190 * Need to update the i_size under the extent lock so buffered 7191 * readers will get the updated i_size when we unlock. 7192 */ 7193 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7194 i_size_write(inode, start + len); 7195 7196 WARN_ON(dio_data->reserve < len); 7197 dio_data->reserve -= len; 7198 dio_data->unsubmitted_oe_range_end = start + len; 7199 current->journal_info = dio_data; 7200 out: 7201 return ret; 7202 } 7203 7204 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7205 struct buffer_head *bh_result, int create) 7206 { 7207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7208 struct extent_map *em; 7209 struct extent_state *cached_state = NULL; 7210 struct btrfs_dio_data *dio_data = NULL; 7211 u64 start = iblock << inode->i_blkbits; 7212 u64 lockstart, lockend; 7213 u64 len = bh_result->b_size; 7214 int ret = 0; 7215 7216 if (!create) 7217 len = min_t(u64, len, fs_info->sectorsize); 7218 7219 lockstart = start; 7220 lockend = start + len - 1; 7221 7222 if (current->journal_info) { 7223 /* 7224 * Need to pull our outstanding extents and set journal_info to NULL so 7225 * that anything that needs to check if there's a transaction doesn't get 7226 * confused. 7227 */ 7228 dio_data = current->journal_info; 7229 current->journal_info = NULL; 7230 } 7231 7232 /* 7233 * If this errors out it's because we couldn't invalidate pagecache for 7234 * this range and we need to fallback to buffered. 7235 */ 7236 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7237 create)) { 7238 ret = -ENOTBLK; 7239 goto err; 7240 } 7241 7242 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7243 if (IS_ERR(em)) { 7244 ret = PTR_ERR(em); 7245 goto unlock_err; 7246 } 7247 7248 /* 7249 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7250 * io. INLINE is special, and we could probably kludge it in here, but 7251 * it's still buffered so for safety lets just fall back to the generic 7252 * buffered path. 7253 * 7254 * For COMPRESSED we _have_ to read the entire extent in so we can 7255 * decompress it, so there will be buffering required no matter what we 7256 * do, so go ahead and fallback to buffered. 7257 * 7258 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7259 * to buffered IO. Don't blame me, this is the price we pay for using 7260 * the generic code. 7261 */ 7262 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7263 em->block_start == EXTENT_MAP_INLINE) { 7264 free_extent_map(em); 7265 ret = -ENOTBLK; 7266 goto unlock_err; 7267 } 7268 7269 if (create) { 7270 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7271 dio_data, start, len); 7272 if (ret < 0) 7273 goto unlock_err; 7274 7275 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7276 lockend, &cached_state); 7277 } else { 7278 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7279 start, len); 7280 /* Can be negative only if we read from a hole */ 7281 if (ret < 0) { 7282 ret = 0; 7283 free_extent_map(em); 7284 goto unlock_err; 7285 } 7286 /* 7287 * We need to unlock only the end area that we aren't using. 7288 * The rest is going to be unlocked by the endio routine. 7289 */ 7290 lockstart = start + bh_result->b_size; 7291 if (lockstart < lockend) { 7292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7293 lockstart, lockend, &cached_state); 7294 } else { 7295 free_extent_state(cached_state); 7296 } 7297 } 7298 7299 free_extent_map(em); 7300 7301 return 0; 7302 7303 unlock_err: 7304 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7305 &cached_state); 7306 err: 7307 if (dio_data) 7308 current->journal_info = dio_data; 7309 return ret; 7310 } 7311 7312 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7313 struct bio *bio, 7314 int mirror_num) 7315 { 7316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7317 blk_status_t ret; 7318 7319 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7320 7321 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7322 if (ret) 7323 return ret; 7324 7325 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7326 7327 return ret; 7328 } 7329 7330 static int btrfs_check_dio_repairable(struct inode *inode, 7331 struct bio *failed_bio, 7332 struct io_failure_record *failrec, 7333 int failed_mirror) 7334 { 7335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7336 int num_copies; 7337 7338 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7339 if (num_copies == 1) { 7340 /* 7341 * we only have a single copy of the data, so don't bother with 7342 * all the retry and error correction code that follows. no 7343 * matter what the error is, it is very likely to persist. 7344 */ 7345 btrfs_debug(fs_info, 7346 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7347 num_copies, failrec->this_mirror, failed_mirror); 7348 return 0; 7349 } 7350 7351 failrec->failed_mirror = failed_mirror; 7352 failrec->this_mirror++; 7353 if (failrec->this_mirror == failed_mirror) 7354 failrec->this_mirror++; 7355 7356 if (failrec->this_mirror > num_copies) { 7357 btrfs_debug(fs_info, 7358 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7359 num_copies, failrec->this_mirror, failed_mirror); 7360 return 0; 7361 } 7362 7363 return 1; 7364 } 7365 7366 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7367 struct page *page, unsigned int pgoff, 7368 u64 start, u64 end, int failed_mirror, 7369 bio_end_io_t *repair_endio, void *repair_arg) 7370 { 7371 struct io_failure_record *failrec; 7372 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7374 struct bio *bio; 7375 int isector; 7376 unsigned int read_mode = 0; 7377 int segs; 7378 int ret; 7379 blk_status_t status; 7380 struct bio_vec bvec; 7381 7382 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7383 7384 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7385 if (ret) 7386 return errno_to_blk_status(ret); 7387 7388 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7389 failed_mirror); 7390 if (!ret) { 7391 free_io_failure(failure_tree, io_tree, failrec); 7392 return BLK_STS_IOERR; 7393 } 7394 7395 segs = bio_segments(failed_bio); 7396 bio_get_first_bvec(failed_bio, &bvec); 7397 if (segs > 1 || 7398 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7399 read_mode |= REQ_FAILFAST_DEV; 7400 7401 isector = start - btrfs_io_bio(failed_bio)->logical; 7402 isector >>= inode->i_sb->s_blocksize_bits; 7403 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7404 pgoff, isector, repair_endio, repair_arg); 7405 bio->bi_opf = REQ_OP_READ | read_mode; 7406 7407 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7408 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7409 read_mode, failrec->this_mirror, failrec->in_validation); 7410 7411 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7412 if (status) { 7413 free_io_failure(failure_tree, io_tree, failrec); 7414 bio_put(bio); 7415 } 7416 7417 return status; 7418 } 7419 7420 struct btrfs_retry_complete { 7421 struct completion done; 7422 struct inode *inode; 7423 u64 start; 7424 int uptodate; 7425 }; 7426 7427 static void btrfs_retry_endio_nocsum(struct bio *bio) 7428 { 7429 struct btrfs_retry_complete *done = bio->bi_private; 7430 struct inode *inode = done->inode; 7431 struct bio_vec *bvec; 7432 struct extent_io_tree *io_tree, *failure_tree; 7433 struct bvec_iter_all iter_all; 7434 7435 if (bio->bi_status) 7436 goto end; 7437 7438 ASSERT(bio->bi_vcnt == 1); 7439 io_tree = &BTRFS_I(inode)->io_tree; 7440 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7441 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7442 7443 done->uptodate = 1; 7444 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7445 bio_for_each_segment_all(bvec, bio, iter_all) 7446 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7447 io_tree, done->start, bvec->bv_page, 7448 btrfs_ino(BTRFS_I(inode)), 0); 7449 end: 7450 complete(&done->done); 7451 bio_put(bio); 7452 } 7453 7454 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7455 struct btrfs_io_bio *io_bio) 7456 { 7457 struct btrfs_fs_info *fs_info; 7458 struct bio_vec bvec; 7459 struct bvec_iter iter; 7460 struct btrfs_retry_complete done; 7461 u64 start; 7462 unsigned int pgoff; 7463 u32 sectorsize; 7464 int nr_sectors; 7465 blk_status_t ret; 7466 blk_status_t err = BLK_STS_OK; 7467 7468 fs_info = BTRFS_I(inode)->root->fs_info; 7469 sectorsize = fs_info->sectorsize; 7470 7471 start = io_bio->logical; 7472 done.inode = inode; 7473 io_bio->bio.bi_iter = io_bio->iter; 7474 7475 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7476 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7477 pgoff = bvec.bv_offset; 7478 7479 next_block_or_try_again: 7480 done.uptodate = 0; 7481 done.start = start; 7482 init_completion(&done.done); 7483 7484 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7485 pgoff, start, start + sectorsize - 1, 7486 io_bio->mirror_num, 7487 btrfs_retry_endio_nocsum, &done); 7488 if (ret) { 7489 err = ret; 7490 goto next; 7491 } 7492 7493 wait_for_completion_io(&done.done); 7494 7495 if (!done.uptodate) { 7496 /* We might have another mirror, so try again */ 7497 goto next_block_or_try_again; 7498 } 7499 7500 next: 7501 start += sectorsize; 7502 7503 nr_sectors--; 7504 if (nr_sectors) { 7505 pgoff += sectorsize; 7506 ASSERT(pgoff < PAGE_SIZE); 7507 goto next_block_or_try_again; 7508 } 7509 } 7510 7511 return err; 7512 } 7513 7514 static void btrfs_retry_endio(struct bio *bio) 7515 { 7516 struct btrfs_retry_complete *done = bio->bi_private; 7517 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7518 struct extent_io_tree *io_tree, *failure_tree; 7519 struct inode *inode = done->inode; 7520 struct bio_vec *bvec; 7521 int uptodate; 7522 int ret; 7523 int i = 0; 7524 struct bvec_iter_all iter_all; 7525 7526 if (bio->bi_status) 7527 goto end; 7528 7529 uptodate = 1; 7530 7531 ASSERT(bio->bi_vcnt == 1); 7532 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7533 7534 io_tree = &BTRFS_I(inode)->io_tree; 7535 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7536 7537 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7538 bio_for_each_segment_all(bvec, bio, iter_all) { 7539 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7540 bvec->bv_offset, done->start, 7541 bvec->bv_len); 7542 if (!ret) 7543 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7544 failure_tree, io_tree, done->start, 7545 bvec->bv_page, 7546 btrfs_ino(BTRFS_I(inode)), 7547 bvec->bv_offset); 7548 else 7549 uptodate = 0; 7550 i++; 7551 } 7552 7553 done->uptodate = uptodate; 7554 end: 7555 complete(&done->done); 7556 bio_put(bio); 7557 } 7558 7559 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7560 struct btrfs_io_bio *io_bio, blk_status_t err) 7561 { 7562 struct btrfs_fs_info *fs_info; 7563 struct bio_vec bvec; 7564 struct bvec_iter iter; 7565 struct btrfs_retry_complete done; 7566 u64 start; 7567 u64 offset = 0; 7568 u32 sectorsize; 7569 int nr_sectors; 7570 unsigned int pgoff; 7571 int csum_pos; 7572 bool uptodate = (err == 0); 7573 int ret; 7574 blk_status_t status; 7575 7576 fs_info = BTRFS_I(inode)->root->fs_info; 7577 sectorsize = fs_info->sectorsize; 7578 7579 err = BLK_STS_OK; 7580 start = io_bio->logical; 7581 done.inode = inode; 7582 io_bio->bio.bi_iter = io_bio->iter; 7583 7584 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7585 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7586 7587 pgoff = bvec.bv_offset; 7588 next_block: 7589 if (uptodate) { 7590 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7591 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7592 bvec.bv_page, pgoff, start, sectorsize); 7593 if (likely(!ret)) 7594 goto next; 7595 } 7596 try_again: 7597 done.uptodate = 0; 7598 done.start = start; 7599 init_completion(&done.done); 7600 7601 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7602 pgoff, start, start + sectorsize - 1, 7603 io_bio->mirror_num, btrfs_retry_endio, 7604 &done); 7605 if (status) { 7606 err = status; 7607 goto next; 7608 } 7609 7610 wait_for_completion_io(&done.done); 7611 7612 if (!done.uptodate) { 7613 /* We might have another mirror, so try again */ 7614 goto try_again; 7615 } 7616 next: 7617 offset += sectorsize; 7618 start += sectorsize; 7619 7620 ASSERT(nr_sectors); 7621 7622 nr_sectors--; 7623 if (nr_sectors) { 7624 pgoff += sectorsize; 7625 ASSERT(pgoff < PAGE_SIZE); 7626 goto next_block; 7627 } 7628 } 7629 7630 return err; 7631 } 7632 7633 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7634 struct btrfs_io_bio *io_bio, blk_status_t err) 7635 { 7636 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7637 7638 if (skip_csum) { 7639 if (unlikely(err)) 7640 return __btrfs_correct_data_nocsum(inode, io_bio); 7641 else 7642 return BLK_STS_OK; 7643 } else { 7644 return __btrfs_subio_endio_read(inode, io_bio, err); 7645 } 7646 } 7647 7648 static void btrfs_endio_direct_read(struct bio *bio) 7649 { 7650 struct btrfs_dio_private *dip = bio->bi_private; 7651 struct inode *inode = dip->inode; 7652 struct bio *dio_bio; 7653 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7654 blk_status_t err = bio->bi_status; 7655 7656 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7657 err = btrfs_subio_endio_read(inode, io_bio, err); 7658 7659 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7660 dip->logical_offset + dip->bytes - 1); 7661 dio_bio = dip->dio_bio; 7662 7663 kfree(dip); 7664 7665 dio_bio->bi_status = err; 7666 dio_end_io(dio_bio); 7667 btrfs_io_bio_free_csum(io_bio); 7668 bio_put(bio); 7669 } 7670 7671 static void __endio_write_update_ordered(struct inode *inode, 7672 const u64 offset, const u64 bytes, 7673 const bool uptodate) 7674 { 7675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7676 struct btrfs_ordered_extent *ordered = NULL; 7677 struct btrfs_workqueue *wq; 7678 u64 ordered_offset = offset; 7679 u64 ordered_bytes = bytes; 7680 u64 last_offset; 7681 7682 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7683 wq = fs_info->endio_freespace_worker; 7684 else 7685 wq = fs_info->endio_write_workers; 7686 7687 while (ordered_offset < offset + bytes) { 7688 last_offset = ordered_offset; 7689 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7690 &ordered_offset, 7691 ordered_bytes, 7692 uptodate)) { 7693 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7694 NULL); 7695 btrfs_queue_work(wq, &ordered->work); 7696 } 7697 /* 7698 * If btrfs_dec_test_ordered_pending does not find any ordered 7699 * extent in the range, we can exit. 7700 */ 7701 if (ordered_offset == last_offset) 7702 return; 7703 /* 7704 * Our bio might span multiple ordered extents. In this case 7705 * we keep going until we have accounted the whole dio. 7706 */ 7707 if (ordered_offset < offset + bytes) { 7708 ordered_bytes = offset + bytes - ordered_offset; 7709 ordered = NULL; 7710 } 7711 } 7712 } 7713 7714 static void btrfs_endio_direct_write(struct bio *bio) 7715 { 7716 struct btrfs_dio_private *dip = bio->bi_private; 7717 struct bio *dio_bio = dip->dio_bio; 7718 7719 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7720 dip->bytes, !bio->bi_status); 7721 7722 kfree(dip); 7723 7724 dio_bio->bi_status = bio->bi_status; 7725 dio_end_io(dio_bio); 7726 bio_put(bio); 7727 } 7728 7729 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7730 struct bio *bio, u64 offset) 7731 { 7732 struct inode *inode = private_data; 7733 blk_status_t ret; 7734 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7735 BUG_ON(ret); /* -ENOMEM */ 7736 return 0; 7737 } 7738 7739 static void btrfs_end_dio_bio(struct bio *bio) 7740 { 7741 struct btrfs_dio_private *dip = bio->bi_private; 7742 blk_status_t err = bio->bi_status; 7743 7744 if (err) 7745 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7746 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7747 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7748 bio->bi_opf, 7749 (unsigned long long)bio->bi_iter.bi_sector, 7750 bio->bi_iter.bi_size, err); 7751 7752 if (dip->subio_endio) 7753 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7754 7755 if (err) { 7756 /* 7757 * We want to perceive the errors flag being set before 7758 * decrementing the reference count. We don't need a barrier 7759 * since atomic operations with a return value are fully 7760 * ordered as per atomic_t.txt 7761 */ 7762 dip->errors = 1; 7763 } 7764 7765 /* if there are more bios still pending for this dio, just exit */ 7766 if (!atomic_dec_and_test(&dip->pending_bios)) 7767 goto out; 7768 7769 if (dip->errors) { 7770 bio_io_error(dip->orig_bio); 7771 } else { 7772 dip->dio_bio->bi_status = BLK_STS_OK; 7773 bio_endio(dip->orig_bio); 7774 } 7775 out: 7776 bio_put(bio); 7777 } 7778 7779 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 7780 struct btrfs_dio_private *dip, 7781 struct bio *bio, 7782 u64 file_offset) 7783 { 7784 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7785 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7786 blk_status_t ret; 7787 7788 /* 7789 * We load all the csum data we need when we submit 7790 * the first bio to reduce the csum tree search and 7791 * contention. 7792 */ 7793 if (dip->logical_offset == file_offset) { 7794 ret = btrfs_lookup_bio_sums(inode, dip->orig_bio, file_offset, 7795 NULL); 7796 if (ret) 7797 return ret; 7798 } 7799 7800 if (bio == dip->orig_bio) 7801 return 0; 7802 7803 file_offset -= dip->logical_offset; 7804 file_offset >>= inode->i_sb->s_blocksize_bits; 7805 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7806 7807 return 0; 7808 } 7809 7810 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7811 struct inode *inode, u64 file_offset, int async_submit) 7812 { 7813 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7814 struct btrfs_dio_private *dip = bio->bi_private; 7815 bool write = bio_op(bio) == REQ_OP_WRITE; 7816 blk_status_t ret; 7817 7818 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7819 if (async_submit) 7820 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7821 7822 if (!write) { 7823 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7824 if (ret) 7825 goto err; 7826 } 7827 7828 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7829 goto map; 7830 7831 if (write && async_submit) { 7832 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7833 file_offset, inode, 7834 btrfs_submit_bio_start_direct_io); 7835 goto err; 7836 } else if (write) { 7837 /* 7838 * If we aren't doing async submit, calculate the csum of the 7839 * bio now. 7840 */ 7841 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7842 if (ret) 7843 goto err; 7844 } else { 7845 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 7846 file_offset); 7847 if (ret) 7848 goto err; 7849 } 7850 map: 7851 ret = btrfs_map_bio(fs_info, bio, 0); 7852 err: 7853 return ret; 7854 } 7855 7856 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 7857 { 7858 struct inode *inode = dip->inode; 7859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7860 struct bio *bio; 7861 struct bio *orig_bio = dip->orig_bio; 7862 u64 start_sector = orig_bio->bi_iter.bi_sector; 7863 u64 file_offset = dip->logical_offset; 7864 int async_submit = 0; 7865 u64 submit_len; 7866 int clone_offset = 0; 7867 int clone_len; 7868 int ret; 7869 blk_status_t status; 7870 struct btrfs_io_geometry geom; 7871 7872 submit_len = orig_bio->bi_iter.bi_size; 7873 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7874 start_sector << 9, submit_len, &geom); 7875 if (ret) 7876 return -EIO; 7877 7878 if (geom.len >= submit_len) { 7879 bio = orig_bio; 7880 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7881 goto submit; 7882 } 7883 7884 /* async crcs make it difficult to collect full stripe writes. */ 7885 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7886 async_submit = 0; 7887 else 7888 async_submit = 1; 7889 7890 /* bio split */ 7891 ASSERT(geom.len <= INT_MAX); 7892 atomic_inc(&dip->pending_bios); 7893 do { 7894 clone_len = min_t(int, submit_len, geom.len); 7895 7896 /* 7897 * This will never fail as it's passing GPF_NOFS and 7898 * the allocation is backed by btrfs_bioset. 7899 */ 7900 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 7901 clone_len); 7902 bio->bi_private = dip; 7903 bio->bi_end_io = btrfs_end_dio_bio; 7904 btrfs_io_bio(bio)->logical = file_offset; 7905 7906 ASSERT(submit_len >= clone_len); 7907 submit_len -= clone_len; 7908 if (submit_len == 0) 7909 break; 7910 7911 /* 7912 * Increase the count before we submit the bio so we know 7913 * the end IO handler won't happen before we increase the 7914 * count. Otherwise, the dip might get freed before we're 7915 * done setting it up. 7916 */ 7917 atomic_inc(&dip->pending_bios); 7918 7919 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7920 async_submit); 7921 if (status) { 7922 bio_put(bio); 7923 atomic_dec(&dip->pending_bios); 7924 goto out_err; 7925 } 7926 7927 clone_offset += clone_len; 7928 start_sector += clone_len >> 9; 7929 file_offset += clone_len; 7930 7931 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7932 start_sector << 9, submit_len, &geom); 7933 if (ret) 7934 goto out_err; 7935 } while (submit_len > 0); 7936 7937 submit: 7938 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 7939 if (!status) 7940 return 0; 7941 7942 bio_put(bio); 7943 out_err: 7944 dip->errors = 1; 7945 /* 7946 * Before atomic variable goto zero, we must make sure dip->errors is 7947 * perceived to be set. This ordering is ensured by the fact that an 7948 * atomic operations with a return value are fully ordered as per 7949 * atomic_t.txt 7950 */ 7951 if (atomic_dec_and_test(&dip->pending_bios)) 7952 bio_io_error(dip->orig_bio); 7953 7954 /* bio_end_io() will handle error, so we needn't return it */ 7955 return 0; 7956 } 7957 7958 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7959 loff_t file_offset) 7960 { 7961 struct btrfs_dio_private *dip = NULL; 7962 struct bio *bio = NULL; 7963 struct btrfs_io_bio *io_bio; 7964 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7965 int ret = 0; 7966 7967 bio = btrfs_bio_clone(dio_bio); 7968 7969 dip = kzalloc(sizeof(*dip), GFP_NOFS); 7970 if (!dip) { 7971 ret = -ENOMEM; 7972 goto free_ordered; 7973 } 7974 7975 dip->private = dio_bio->bi_private; 7976 dip->inode = inode; 7977 dip->logical_offset = file_offset; 7978 dip->bytes = dio_bio->bi_iter.bi_size; 7979 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7980 bio->bi_private = dip; 7981 dip->orig_bio = bio; 7982 dip->dio_bio = dio_bio; 7983 atomic_set(&dip->pending_bios, 0); 7984 io_bio = btrfs_io_bio(bio); 7985 io_bio->logical = file_offset; 7986 7987 if (write) { 7988 bio->bi_end_io = btrfs_endio_direct_write; 7989 } else { 7990 bio->bi_end_io = btrfs_endio_direct_read; 7991 dip->subio_endio = btrfs_subio_endio_read; 7992 } 7993 7994 /* 7995 * Reset the range for unsubmitted ordered extents (to a 0 length range) 7996 * even if we fail to submit a bio, because in such case we do the 7997 * corresponding error handling below and it must not be done a second 7998 * time by btrfs_direct_IO(). 7999 */ 8000 if (write) { 8001 struct btrfs_dio_data *dio_data = current->journal_info; 8002 8003 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8004 dip->bytes; 8005 dio_data->unsubmitted_oe_range_start = 8006 dio_data->unsubmitted_oe_range_end; 8007 } 8008 8009 ret = btrfs_submit_direct_hook(dip); 8010 if (!ret) 8011 return; 8012 8013 btrfs_io_bio_free_csum(io_bio); 8014 8015 free_ordered: 8016 /* 8017 * If we arrived here it means either we failed to submit the dip 8018 * or we either failed to clone the dio_bio or failed to allocate the 8019 * dip. If we cloned the dio_bio and allocated the dip, we can just 8020 * call bio_endio against our io_bio so that we get proper resource 8021 * cleanup if we fail to submit the dip, otherwise, we must do the 8022 * same as btrfs_endio_direct_[write|read] because we can't call these 8023 * callbacks - they require an allocated dip and a clone of dio_bio. 8024 */ 8025 if (bio && dip) { 8026 bio_io_error(bio); 8027 /* 8028 * The end io callbacks free our dip, do the final put on bio 8029 * and all the cleanup and final put for dio_bio (through 8030 * dio_end_io()). 8031 */ 8032 dip = NULL; 8033 bio = NULL; 8034 } else { 8035 if (write) 8036 __endio_write_update_ordered(inode, 8037 file_offset, 8038 dio_bio->bi_iter.bi_size, 8039 false); 8040 else 8041 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8042 file_offset + dio_bio->bi_iter.bi_size - 1); 8043 8044 dio_bio->bi_status = BLK_STS_IOERR; 8045 /* 8046 * Releases and cleans up our dio_bio, no need to bio_put() 8047 * nor bio_endio()/bio_io_error() against dio_bio. 8048 */ 8049 dio_end_io(dio_bio); 8050 } 8051 if (bio) 8052 bio_put(bio); 8053 kfree(dip); 8054 } 8055 8056 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8057 const struct iov_iter *iter, loff_t offset) 8058 { 8059 int seg; 8060 int i; 8061 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8062 ssize_t retval = -EINVAL; 8063 8064 if (offset & blocksize_mask) 8065 goto out; 8066 8067 if (iov_iter_alignment(iter) & blocksize_mask) 8068 goto out; 8069 8070 /* If this is a write we don't need to check anymore */ 8071 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8072 return 0; 8073 /* 8074 * Check to make sure we don't have duplicate iov_base's in this 8075 * iovec, if so return EINVAL, otherwise we'll get csum errors 8076 * when reading back. 8077 */ 8078 for (seg = 0; seg < iter->nr_segs; seg++) { 8079 for (i = seg + 1; i < iter->nr_segs; i++) { 8080 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8081 goto out; 8082 } 8083 } 8084 retval = 0; 8085 out: 8086 return retval; 8087 } 8088 8089 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8090 { 8091 struct file *file = iocb->ki_filp; 8092 struct inode *inode = file->f_mapping->host; 8093 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8094 struct btrfs_dio_data dio_data = { 0 }; 8095 struct extent_changeset *data_reserved = NULL; 8096 loff_t offset = iocb->ki_pos; 8097 size_t count = 0; 8098 int flags = 0; 8099 bool wakeup = true; 8100 bool relock = false; 8101 ssize_t ret; 8102 8103 if (check_direct_IO(fs_info, iter, offset)) 8104 return 0; 8105 8106 inode_dio_begin(inode); 8107 8108 /* 8109 * The generic stuff only does filemap_write_and_wait_range, which 8110 * isn't enough if we've written compressed pages to this area, so 8111 * we need to flush the dirty pages again to make absolutely sure 8112 * that any outstanding dirty pages are on disk. 8113 */ 8114 count = iov_iter_count(iter); 8115 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8116 &BTRFS_I(inode)->runtime_flags)) 8117 filemap_fdatawrite_range(inode->i_mapping, offset, 8118 offset + count - 1); 8119 8120 if (iov_iter_rw(iter) == WRITE) { 8121 /* 8122 * If the write DIO is beyond the EOF, we need update 8123 * the isize, but it is protected by i_mutex. So we can 8124 * not unlock the i_mutex at this case. 8125 */ 8126 if (offset + count <= inode->i_size) { 8127 dio_data.overwrite = 1; 8128 inode_unlock(inode); 8129 relock = true; 8130 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8131 ret = -EAGAIN; 8132 goto out; 8133 } 8134 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8135 offset, count); 8136 if (ret) 8137 goto out; 8138 8139 /* 8140 * We need to know how many extents we reserved so that we can 8141 * do the accounting properly if we go over the number we 8142 * originally calculated. Abuse current->journal_info for this. 8143 */ 8144 dio_data.reserve = round_up(count, 8145 fs_info->sectorsize); 8146 dio_data.unsubmitted_oe_range_start = (u64)offset; 8147 dio_data.unsubmitted_oe_range_end = (u64)offset; 8148 current->journal_info = &dio_data; 8149 down_read(&BTRFS_I(inode)->dio_sem); 8150 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8151 &BTRFS_I(inode)->runtime_flags)) { 8152 inode_dio_end(inode); 8153 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8154 wakeup = false; 8155 } 8156 8157 ret = __blockdev_direct_IO(iocb, inode, 8158 fs_info->fs_devices->latest_bdev, 8159 iter, btrfs_get_blocks_direct, NULL, 8160 btrfs_submit_direct, flags); 8161 if (iov_iter_rw(iter) == WRITE) { 8162 up_read(&BTRFS_I(inode)->dio_sem); 8163 current->journal_info = NULL; 8164 if (ret < 0 && ret != -EIOCBQUEUED) { 8165 if (dio_data.reserve) 8166 btrfs_delalloc_release_space(inode, data_reserved, 8167 offset, dio_data.reserve, true); 8168 /* 8169 * On error we might have left some ordered extents 8170 * without submitting corresponding bios for them, so 8171 * cleanup them up to avoid other tasks getting them 8172 * and waiting for them to complete forever. 8173 */ 8174 if (dio_data.unsubmitted_oe_range_start < 8175 dio_data.unsubmitted_oe_range_end) 8176 __endio_write_update_ordered(inode, 8177 dio_data.unsubmitted_oe_range_start, 8178 dio_data.unsubmitted_oe_range_end - 8179 dio_data.unsubmitted_oe_range_start, 8180 false); 8181 } else if (ret >= 0 && (size_t)ret < count) 8182 btrfs_delalloc_release_space(inode, data_reserved, 8183 offset, count - (size_t)ret, true); 8184 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8185 } 8186 out: 8187 if (wakeup) 8188 inode_dio_end(inode); 8189 if (relock) 8190 inode_lock(inode); 8191 8192 extent_changeset_free(data_reserved); 8193 return ret; 8194 } 8195 8196 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8197 8198 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8199 __u64 start, __u64 len) 8200 { 8201 int ret; 8202 8203 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8204 if (ret) 8205 return ret; 8206 8207 return extent_fiemap(inode, fieinfo, start, len); 8208 } 8209 8210 int btrfs_readpage(struct file *file, struct page *page) 8211 { 8212 struct extent_io_tree *tree; 8213 tree = &BTRFS_I(page->mapping->host)->io_tree; 8214 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8215 } 8216 8217 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8218 { 8219 struct inode *inode = page->mapping->host; 8220 int ret; 8221 8222 if (current->flags & PF_MEMALLOC) { 8223 redirty_page_for_writepage(wbc, page); 8224 unlock_page(page); 8225 return 0; 8226 } 8227 8228 /* 8229 * If we are under memory pressure we will call this directly from the 8230 * VM, we need to make sure we have the inode referenced for the ordered 8231 * extent. If not just return like we didn't do anything. 8232 */ 8233 if (!igrab(inode)) { 8234 redirty_page_for_writepage(wbc, page); 8235 return AOP_WRITEPAGE_ACTIVATE; 8236 } 8237 ret = extent_write_full_page(page, wbc); 8238 btrfs_add_delayed_iput(inode); 8239 return ret; 8240 } 8241 8242 static int btrfs_writepages(struct address_space *mapping, 8243 struct writeback_control *wbc) 8244 { 8245 return extent_writepages(mapping, wbc); 8246 } 8247 8248 static int 8249 btrfs_readpages(struct file *file, struct address_space *mapping, 8250 struct list_head *pages, unsigned nr_pages) 8251 { 8252 return extent_readpages(mapping, pages, nr_pages); 8253 } 8254 8255 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8256 { 8257 int ret = try_release_extent_mapping(page, gfp_flags); 8258 if (ret == 1) { 8259 ClearPagePrivate(page); 8260 set_page_private(page, 0); 8261 put_page(page); 8262 } 8263 return ret; 8264 } 8265 8266 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8267 { 8268 if (PageWriteback(page) || PageDirty(page)) 8269 return 0; 8270 return __btrfs_releasepage(page, gfp_flags); 8271 } 8272 8273 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8274 unsigned int length) 8275 { 8276 struct inode *inode = page->mapping->host; 8277 struct extent_io_tree *tree; 8278 struct btrfs_ordered_extent *ordered; 8279 struct extent_state *cached_state = NULL; 8280 u64 page_start = page_offset(page); 8281 u64 page_end = page_start + PAGE_SIZE - 1; 8282 u64 start; 8283 u64 end; 8284 int inode_evicting = inode->i_state & I_FREEING; 8285 8286 /* 8287 * we have the page locked, so new writeback can't start, 8288 * and the dirty bit won't be cleared while we are here. 8289 * 8290 * Wait for IO on this page so that we can safely clear 8291 * the PagePrivate2 bit and do ordered accounting 8292 */ 8293 wait_on_page_writeback(page); 8294 8295 tree = &BTRFS_I(inode)->io_tree; 8296 if (offset) { 8297 btrfs_releasepage(page, GFP_NOFS); 8298 return; 8299 } 8300 8301 if (!inode_evicting) 8302 lock_extent_bits(tree, page_start, page_end, &cached_state); 8303 again: 8304 start = page_start; 8305 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8306 page_end - start + 1); 8307 if (ordered) { 8308 end = min(page_end, 8309 ordered->file_offset + ordered->num_bytes - 1); 8310 /* 8311 * IO on this page will never be started, so we need 8312 * to account for any ordered extents now 8313 */ 8314 if (!inode_evicting) 8315 clear_extent_bit(tree, start, end, 8316 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8317 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8318 EXTENT_DEFRAG, 1, 0, &cached_state); 8319 /* 8320 * whoever cleared the private bit is responsible 8321 * for the finish_ordered_io 8322 */ 8323 if (TestClearPagePrivate2(page)) { 8324 struct btrfs_ordered_inode_tree *tree; 8325 u64 new_len; 8326 8327 tree = &BTRFS_I(inode)->ordered_tree; 8328 8329 spin_lock_irq(&tree->lock); 8330 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8331 new_len = start - ordered->file_offset; 8332 if (new_len < ordered->truncated_len) 8333 ordered->truncated_len = new_len; 8334 spin_unlock_irq(&tree->lock); 8335 8336 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8337 start, 8338 end - start + 1, 1)) 8339 btrfs_finish_ordered_io(ordered); 8340 } 8341 btrfs_put_ordered_extent(ordered); 8342 if (!inode_evicting) { 8343 cached_state = NULL; 8344 lock_extent_bits(tree, start, end, 8345 &cached_state); 8346 } 8347 8348 start = end + 1; 8349 if (start < page_end) 8350 goto again; 8351 } 8352 8353 /* 8354 * Qgroup reserved space handler 8355 * Page here will be either 8356 * 1) Already written to disk 8357 * In this case, its reserved space is released from data rsv map 8358 * and will be freed by delayed_ref handler finally. 8359 * So even we call qgroup_free_data(), it won't decrease reserved 8360 * space. 8361 * 2) Not written to disk 8362 * This means the reserved space should be freed here. However, 8363 * if a truncate invalidates the page (by clearing PageDirty) 8364 * and the page is accounted for while allocating extent 8365 * in btrfs_check_data_free_space() we let delayed_ref to 8366 * free the entire extent. 8367 */ 8368 if (PageDirty(page)) 8369 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8370 if (!inode_evicting) { 8371 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8372 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8373 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8374 &cached_state); 8375 8376 __btrfs_releasepage(page, GFP_NOFS); 8377 } 8378 8379 ClearPageChecked(page); 8380 if (PagePrivate(page)) { 8381 ClearPagePrivate(page); 8382 set_page_private(page, 0); 8383 put_page(page); 8384 } 8385 } 8386 8387 /* 8388 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8389 * called from a page fault handler when a page is first dirtied. Hence we must 8390 * be careful to check for EOF conditions here. We set the page up correctly 8391 * for a written page which means we get ENOSPC checking when writing into 8392 * holes and correct delalloc and unwritten extent mapping on filesystems that 8393 * support these features. 8394 * 8395 * We are not allowed to take the i_mutex here so we have to play games to 8396 * protect against truncate races as the page could now be beyond EOF. Because 8397 * truncate_setsize() writes the inode size before removing pages, once we have 8398 * the page lock we can determine safely if the page is beyond EOF. If it is not 8399 * beyond EOF, then the page is guaranteed safe against truncation until we 8400 * unlock the page. 8401 */ 8402 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8403 { 8404 struct page *page = vmf->page; 8405 struct inode *inode = file_inode(vmf->vma->vm_file); 8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8407 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8408 struct btrfs_ordered_extent *ordered; 8409 struct extent_state *cached_state = NULL; 8410 struct extent_changeset *data_reserved = NULL; 8411 char *kaddr; 8412 unsigned long zero_start; 8413 loff_t size; 8414 vm_fault_t ret; 8415 int ret2; 8416 int reserved = 0; 8417 u64 reserved_space; 8418 u64 page_start; 8419 u64 page_end; 8420 u64 end; 8421 8422 reserved_space = PAGE_SIZE; 8423 8424 sb_start_pagefault(inode->i_sb); 8425 page_start = page_offset(page); 8426 page_end = page_start + PAGE_SIZE - 1; 8427 end = page_end; 8428 8429 /* 8430 * Reserving delalloc space after obtaining the page lock can lead to 8431 * deadlock. For example, if a dirty page is locked by this function 8432 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8433 * dirty page write out, then the btrfs_writepage() function could 8434 * end up waiting indefinitely to get a lock on the page currently 8435 * being processed by btrfs_page_mkwrite() function. 8436 */ 8437 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8438 reserved_space); 8439 if (!ret2) { 8440 ret2 = file_update_time(vmf->vma->vm_file); 8441 reserved = 1; 8442 } 8443 if (ret2) { 8444 ret = vmf_error(ret2); 8445 if (reserved) 8446 goto out; 8447 goto out_noreserve; 8448 } 8449 8450 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8451 again: 8452 lock_page(page); 8453 size = i_size_read(inode); 8454 8455 if ((page->mapping != inode->i_mapping) || 8456 (page_start >= size)) { 8457 /* page got truncated out from underneath us */ 8458 goto out_unlock; 8459 } 8460 wait_on_page_writeback(page); 8461 8462 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8463 set_page_extent_mapped(page); 8464 8465 /* 8466 * we can't set the delalloc bits if there are pending ordered 8467 * extents. Drop our locks and wait for them to finish 8468 */ 8469 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8470 PAGE_SIZE); 8471 if (ordered) { 8472 unlock_extent_cached(io_tree, page_start, page_end, 8473 &cached_state); 8474 unlock_page(page); 8475 btrfs_start_ordered_extent(inode, ordered, 1); 8476 btrfs_put_ordered_extent(ordered); 8477 goto again; 8478 } 8479 8480 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8481 reserved_space = round_up(size - page_start, 8482 fs_info->sectorsize); 8483 if (reserved_space < PAGE_SIZE) { 8484 end = page_start + reserved_space - 1; 8485 btrfs_delalloc_release_space(inode, data_reserved, 8486 page_start, PAGE_SIZE - reserved_space, 8487 true); 8488 } 8489 } 8490 8491 /* 8492 * page_mkwrite gets called when the page is firstly dirtied after it's 8493 * faulted in, but write(2) could also dirty a page and set delalloc 8494 * bits, thus in this case for space account reason, we still need to 8495 * clear any delalloc bits within this page range since we have to 8496 * reserve data&meta space before lock_page() (see above comments). 8497 */ 8498 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8499 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8500 EXTENT_DEFRAG, 0, 0, &cached_state); 8501 8502 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8503 &cached_state); 8504 if (ret2) { 8505 unlock_extent_cached(io_tree, page_start, page_end, 8506 &cached_state); 8507 ret = VM_FAULT_SIGBUS; 8508 goto out_unlock; 8509 } 8510 8511 /* page is wholly or partially inside EOF */ 8512 if (page_start + PAGE_SIZE > size) 8513 zero_start = offset_in_page(size); 8514 else 8515 zero_start = PAGE_SIZE; 8516 8517 if (zero_start != PAGE_SIZE) { 8518 kaddr = kmap(page); 8519 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8520 flush_dcache_page(page); 8521 kunmap(page); 8522 } 8523 ClearPageChecked(page); 8524 set_page_dirty(page); 8525 SetPageUptodate(page); 8526 8527 BTRFS_I(inode)->last_trans = fs_info->generation; 8528 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8529 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8530 8531 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8532 8533 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8534 sb_end_pagefault(inode->i_sb); 8535 extent_changeset_free(data_reserved); 8536 return VM_FAULT_LOCKED; 8537 8538 out_unlock: 8539 unlock_page(page); 8540 out: 8541 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8542 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8543 reserved_space, (ret != 0)); 8544 out_noreserve: 8545 sb_end_pagefault(inode->i_sb); 8546 extent_changeset_free(data_reserved); 8547 return ret; 8548 } 8549 8550 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8551 { 8552 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8553 struct btrfs_root *root = BTRFS_I(inode)->root; 8554 struct btrfs_block_rsv *rsv; 8555 int ret; 8556 struct btrfs_trans_handle *trans; 8557 u64 mask = fs_info->sectorsize - 1; 8558 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8559 8560 if (!skip_writeback) { 8561 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8562 (u64)-1); 8563 if (ret) 8564 return ret; 8565 } 8566 8567 /* 8568 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8569 * things going on here: 8570 * 8571 * 1) We need to reserve space to update our inode. 8572 * 8573 * 2) We need to have something to cache all the space that is going to 8574 * be free'd up by the truncate operation, but also have some slack 8575 * space reserved in case it uses space during the truncate (thank you 8576 * very much snapshotting). 8577 * 8578 * And we need these to be separate. The fact is we can use a lot of 8579 * space doing the truncate, and we have no earthly idea how much space 8580 * we will use, so we need the truncate reservation to be separate so it 8581 * doesn't end up using space reserved for updating the inode. We also 8582 * need to be able to stop the transaction and start a new one, which 8583 * means we need to be able to update the inode several times, and we 8584 * have no idea of knowing how many times that will be, so we can't just 8585 * reserve 1 item for the entirety of the operation, so that has to be 8586 * done separately as well. 8587 * 8588 * So that leaves us with 8589 * 8590 * 1) rsv - for the truncate reservation, which we will steal from the 8591 * transaction reservation. 8592 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8593 * updating the inode. 8594 */ 8595 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8596 if (!rsv) 8597 return -ENOMEM; 8598 rsv->size = min_size; 8599 rsv->failfast = 1; 8600 8601 /* 8602 * 1 for the truncate slack space 8603 * 1 for updating the inode. 8604 */ 8605 trans = btrfs_start_transaction(root, 2); 8606 if (IS_ERR(trans)) { 8607 ret = PTR_ERR(trans); 8608 goto out; 8609 } 8610 8611 /* Migrate the slack space for the truncate to our reserve */ 8612 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8613 min_size, false); 8614 BUG_ON(ret); 8615 8616 /* 8617 * So if we truncate and then write and fsync we normally would just 8618 * write the extents that changed, which is a problem if we need to 8619 * first truncate that entire inode. So set this flag so we write out 8620 * all of the extents in the inode to the sync log so we're completely 8621 * safe. 8622 */ 8623 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8624 trans->block_rsv = rsv; 8625 8626 while (1) { 8627 ret = btrfs_truncate_inode_items(trans, root, inode, 8628 inode->i_size, 8629 BTRFS_EXTENT_DATA_KEY); 8630 trans->block_rsv = &fs_info->trans_block_rsv; 8631 if (ret != -ENOSPC && ret != -EAGAIN) 8632 break; 8633 8634 ret = btrfs_update_inode(trans, root, inode); 8635 if (ret) 8636 break; 8637 8638 btrfs_end_transaction(trans); 8639 btrfs_btree_balance_dirty(fs_info); 8640 8641 trans = btrfs_start_transaction(root, 2); 8642 if (IS_ERR(trans)) { 8643 ret = PTR_ERR(trans); 8644 trans = NULL; 8645 break; 8646 } 8647 8648 btrfs_block_rsv_release(fs_info, rsv, -1); 8649 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8650 rsv, min_size, false); 8651 BUG_ON(ret); /* shouldn't happen */ 8652 trans->block_rsv = rsv; 8653 } 8654 8655 /* 8656 * We can't call btrfs_truncate_block inside a trans handle as we could 8657 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8658 * we've truncated everything except the last little bit, and can do 8659 * btrfs_truncate_block and then update the disk_i_size. 8660 */ 8661 if (ret == NEED_TRUNCATE_BLOCK) { 8662 btrfs_end_transaction(trans); 8663 btrfs_btree_balance_dirty(fs_info); 8664 8665 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8666 if (ret) 8667 goto out; 8668 trans = btrfs_start_transaction(root, 1); 8669 if (IS_ERR(trans)) { 8670 ret = PTR_ERR(trans); 8671 goto out; 8672 } 8673 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 8674 } 8675 8676 if (trans) { 8677 int ret2; 8678 8679 trans->block_rsv = &fs_info->trans_block_rsv; 8680 ret2 = btrfs_update_inode(trans, root, inode); 8681 if (ret2 && !ret) 8682 ret = ret2; 8683 8684 ret2 = btrfs_end_transaction(trans); 8685 if (ret2 && !ret) 8686 ret = ret2; 8687 btrfs_btree_balance_dirty(fs_info); 8688 } 8689 out: 8690 btrfs_free_block_rsv(fs_info, rsv); 8691 8692 return ret; 8693 } 8694 8695 /* 8696 * create a new subvolume directory/inode (helper for the ioctl). 8697 */ 8698 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8699 struct btrfs_root *new_root, 8700 struct btrfs_root *parent_root, 8701 u64 new_dirid) 8702 { 8703 struct inode *inode; 8704 int err; 8705 u64 index = 0; 8706 8707 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8708 new_dirid, new_dirid, 8709 S_IFDIR | (~current_umask() & S_IRWXUGO), 8710 &index); 8711 if (IS_ERR(inode)) 8712 return PTR_ERR(inode); 8713 inode->i_op = &btrfs_dir_inode_operations; 8714 inode->i_fop = &btrfs_dir_file_operations; 8715 8716 set_nlink(inode, 1); 8717 btrfs_i_size_write(BTRFS_I(inode), 0); 8718 unlock_new_inode(inode); 8719 8720 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8721 if (err) 8722 btrfs_err(new_root->fs_info, 8723 "error inheriting subvolume %llu properties: %d", 8724 new_root->root_key.objectid, err); 8725 8726 err = btrfs_update_inode(trans, new_root, inode); 8727 8728 iput(inode); 8729 return err; 8730 } 8731 8732 struct inode *btrfs_alloc_inode(struct super_block *sb) 8733 { 8734 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8735 struct btrfs_inode *ei; 8736 struct inode *inode; 8737 8738 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8739 if (!ei) 8740 return NULL; 8741 8742 ei->root = NULL; 8743 ei->generation = 0; 8744 ei->last_trans = 0; 8745 ei->last_sub_trans = 0; 8746 ei->logged_trans = 0; 8747 ei->delalloc_bytes = 0; 8748 ei->new_delalloc_bytes = 0; 8749 ei->defrag_bytes = 0; 8750 ei->disk_i_size = 0; 8751 ei->flags = 0; 8752 ei->csum_bytes = 0; 8753 ei->index_cnt = (u64)-1; 8754 ei->dir_index = 0; 8755 ei->last_unlink_trans = 0; 8756 ei->last_log_commit = 0; 8757 8758 spin_lock_init(&ei->lock); 8759 ei->outstanding_extents = 0; 8760 if (sb->s_magic != BTRFS_TEST_MAGIC) 8761 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8762 BTRFS_BLOCK_RSV_DELALLOC); 8763 ei->runtime_flags = 0; 8764 ei->prop_compress = BTRFS_COMPRESS_NONE; 8765 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8766 8767 ei->delayed_node = NULL; 8768 8769 ei->i_otime.tv_sec = 0; 8770 ei->i_otime.tv_nsec = 0; 8771 8772 inode = &ei->vfs_inode; 8773 extent_map_tree_init(&ei->extent_tree); 8774 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8775 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8776 IO_TREE_INODE_IO_FAILURE, inode); 8777 ei->io_tree.track_uptodate = true; 8778 ei->io_failure_tree.track_uptodate = true; 8779 atomic_set(&ei->sync_writers, 0); 8780 mutex_init(&ei->log_mutex); 8781 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8782 INIT_LIST_HEAD(&ei->delalloc_inodes); 8783 INIT_LIST_HEAD(&ei->delayed_iput); 8784 RB_CLEAR_NODE(&ei->rb_node); 8785 init_rwsem(&ei->dio_sem); 8786 8787 return inode; 8788 } 8789 8790 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8791 void btrfs_test_destroy_inode(struct inode *inode) 8792 { 8793 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8794 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8795 } 8796 #endif 8797 8798 void btrfs_free_inode(struct inode *inode) 8799 { 8800 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8801 } 8802 8803 void btrfs_destroy_inode(struct inode *inode) 8804 { 8805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8806 struct btrfs_ordered_extent *ordered; 8807 struct btrfs_root *root = BTRFS_I(inode)->root; 8808 8809 WARN_ON(!hlist_empty(&inode->i_dentry)); 8810 WARN_ON(inode->i_data.nrpages); 8811 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8812 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8813 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8814 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8815 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8816 WARN_ON(BTRFS_I(inode)->csum_bytes); 8817 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8818 8819 /* 8820 * This can happen where we create an inode, but somebody else also 8821 * created the same inode and we need to destroy the one we already 8822 * created. 8823 */ 8824 if (!root) 8825 return; 8826 8827 while (1) { 8828 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8829 if (!ordered) 8830 break; 8831 else { 8832 btrfs_err(fs_info, 8833 "found ordered extent %llu %llu on inode cleanup", 8834 ordered->file_offset, ordered->num_bytes); 8835 btrfs_remove_ordered_extent(inode, ordered); 8836 btrfs_put_ordered_extent(ordered); 8837 btrfs_put_ordered_extent(ordered); 8838 } 8839 } 8840 btrfs_qgroup_check_reserved_leak(inode); 8841 inode_tree_del(inode); 8842 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8843 } 8844 8845 int btrfs_drop_inode(struct inode *inode) 8846 { 8847 struct btrfs_root *root = BTRFS_I(inode)->root; 8848 8849 if (root == NULL) 8850 return 1; 8851 8852 /* the snap/subvol tree is on deleting */ 8853 if (btrfs_root_refs(&root->root_item) == 0) 8854 return 1; 8855 else 8856 return generic_drop_inode(inode); 8857 } 8858 8859 static void init_once(void *foo) 8860 { 8861 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8862 8863 inode_init_once(&ei->vfs_inode); 8864 } 8865 8866 void __cold btrfs_destroy_cachep(void) 8867 { 8868 /* 8869 * Make sure all delayed rcu free inodes are flushed before we 8870 * destroy cache. 8871 */ 8872 rcu_barrier(); 8873 kmem_cache_destroy(btrfs_inode_cachep); 8874 kmem_cache_destroy(btrfs_trans_handle_cachep); 8875 kmem_cache_destroy(btrfs_path_cachep); 8876 kmem_cache_destroy(btrfs_free_space_cachep); 8877 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8878 } 8879 8880 int __init btrfs_init_cachep(void) 8881 { 8882 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8883 sizeof(struct btrfs_inode), 0, 8884 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8885 init_once); 8886 if (!btrfs_inode_cachep) 8887 goto fail; 8888 8889 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8890 sizeof(struct btrfs_trans_handle), 0, 8891 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8892 if (!btrfs_trans_handle_cachep) 8893 goto fail; 8894 8895 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8896 sizeof(struct btrfs_path), 0, 8897 SLAB_MEM_SPREAD, NULL); 8898 if (!btrfs_path_cachep) 8899 goto fail; 8900 8901 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8902 sizeof(struct btrfs_free_space), 0, 8903 SLAB_MEM_SPREAD, NULL); 8904 if (!btrfs_free_space_cachep) 8905 goto fail; 8906 8907 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8908 PAGE_SIZE, PAGE_SIZE, 8909 SLAB_RED_ZONE, NULL); 8910 if (!btrfs_free_space_bitmap_cachep) 8911 goto fail; 8912 8913 return 0; 8914 fail: 8915 btrfs_destroy_cachep(); 8916 return -ENOMEM; 8917 } 8918 8919 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8920 u32 request_mask, unsigned int flags) 8921 { 8922 u64 delalloc_bytes; 8923 struct inode *inode = d_inode(path->dentry); 8924 u32 blocksize = inode->i_sb->s_blocksize; 8925 u32 bi_flags = BTRFS_I(inode)->flags; 8926 8927 stat->result_mask |= STATX_BTIME; 8928 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8929 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8930 if (bi_flags & BTRFS_INODE_APPEND) 8931 stat->attributes |= STATX_ATTR_APPEND; 8932 if (bi_flags & BTRFS_INODE_COMPRESS) 8933 stat->attributes |= STATX_ATTR_COMPRESSED; 8934 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8935 stat->attributes |= STATX_ATTR_IMMUTABLE; 8936 if (bi_flags & BTRFS_INODE_NODUMP) 8937 stat->attributes |= STATX_ATTR_NODUMP; 8938 8939 stat->attributes_mask |= (STATX_ATTR_APPEND | 8940 STATX_ATTR_COMPRESSED | 8941 STATX_ATTR_IMMUTABLE | 8942 STATX_ATTR_NODUMP); 8943 8944 generic_fillattr(inode, stat); 8945 stat->dev = BTRFS_I(inode)->root->anon_dev; 8946 8947 spin_lock(&BTRFS_I(inode)->lock); 8948 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8949 spin_unlock(&BTRFS_I(inode)->lock); 8950 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8951 ALIGN(delalloc_bytes, blocksize)) >> 9; 8952 return 0; 8953 } 8954 8955 static int btrfs_rename_exchange(struct inode *old_dir, 8956 struct dentry *old_dentry, 8957 struct inode *new_dir, 8958 struct dentry *new_dentry) 8959 { 8960 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8961 struct btrfs_trans_handle *trans; 8962 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8963 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8964 struct inode *new_inode = new_dentry->d_inode; 8965 struct inode *old_inode = old_dentry->d_inode; 8966 struct timespec64 ctime = current_time(old_inode); 8967 struct dentry *parent; 8968 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8969 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8970 u64 old_idx = 0; 8971 u64 new_idx = 0; 8972 int ret; 8973 bool root_log_pinned = false; 8974 bool dest_log_pinned = false; 8975 struct btrfs_log_ctx ctx_root; 8976 struct btrfs_log_ctx ctx_dest; 8977 bool sync_log_root = false; 8978 bool sync_log_dest = false; 8979 bool commit_transaction = false; 8980 8981 /* we only allow rename subvolume link between subvolumes */ 8982 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8983 return -EXDEV; 8984 8985 btrfs_init_log_ctx(&ctx_root, old_inode); 8986 btrfs_init_log_ctx(&ctx_dest, new_inode); 8987 8988 /* close the race window with snapshot create/destroy ioctl */ 8989 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8990 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8991 down_read(&fs_info->subvol_sem); 8992 8993 /* 8994 * We want to reserve the absolute worst case amount of items. So if 8995 * both inodes are subvols and we need to unlink them then that would 8996 * require 4 item modifications, but if they are both normal inodes it 8997 * would require 5 item modifications, so we'll assume their normal 8998 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8999 * should cover the worst case number of items we'll modify. 9000 */ 9001 trans = btrfs_start_transaction(root, 12); 9002 if (IS_ERR(trans)) { 9003 ret = PTR_ERR(trans); 9004 goto out_notrans; 9005 } 9006 9007 if (dest != root) 9008 btrfs_record_root_in_trans(trans, dest); 9009 9010 /* 9011 * We need to find a free sequence number both in the source and 9012 * in the destination directory for the exchange. 9013 */ 9014 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9015 if (ret) 9016 goto out_fail; 9017 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9018 if (ret) 9019 goto out_fail; 9020 9021 BTRFS_I(old_inode)->dir_index = 0ULL; 9022 BTRFS_I(new_inode)->dir_index = 0ULL; 9023 9024 /* Reference for the source. */ 9025 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9026 /* force full log commit if subvolume involved. */ 9027 btrfs_set_log_full_commit(trans); 9028 } else { 9029 btrfs_pin_log_trans(root); 9030 root_log_pinned = true; 9031 ret = btrfs_insert_inode_ref(trans, dest, 9032 new_dentry->d_name.name, 9033 new_dentry->d_name.len, 9034 old_ino, 9035 btrfs_ino(BTRFS_I(new_dir)), 9036 old_idx); 9037 if (ret) 9038 goto out_fail; 9039 } 9040 9041 /* And now for the dest. */ 9042 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9043 /* force full log commit if subvolume involved. */ 9044 btrfs_set_log_full_commit(trans); 9045 } else { 9046 btrfs_pin_log_trans(dest); 9047 dest_log_pinned = true; 9048 ret = btrfs_insert_inode_ref(trans, root, 9049 old_dentry->d_name.name, 9050 old_dentry->d_name.len, 9051 new_ino, 9052 btrfs_ino(BTRFS_I(old_dir)), 9053 new_idx); 9054 if (ret) 9055 goto out_fail; 9056 } 9057 9058 /* Update inode version and ctime/mtime. */ 9059 inode_inc_iversion(old_dir); 9060 inode_inc_iversion(new_dir); 9061 inode_inc_iversion(old_inode); 9062 inode_inc_iversion(new_inode); 9063 old_dir->i_ctime = old_dir->i_mtime = ctime; 9064 new_dir->i_ctime = new_dir->i_mtime = ctime; 9065 old_inode->i_ctime = ctime; 9066 new_inode->i_ctime = ctime; 9067 9068 if (old_dentry->d_parent != new_dentry->d_parent) { 9069 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9070 BTRFS_I(old_inode), 1); 9071 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9072 BTRFS_I(new_inode), 1); 9073 } 9074 9075 /* src is a subvolume */ 9076 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9077 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9078 } else { /* src is an inode */ 9079 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9080 BTRFS_I(old_dentry->d_inode), 9081 old_dentry->d_name.name, 9082 old_dentry->d_name.len); 9083 if (!ret) 9084 ret = btrfs_update_inode(trans, root, old_inode); 9085 } 9086 if (ret) { 9087 btrfs_abort_transaction(trans, ret); 9088 goto out_fail; 9089 } 9090 9091 /* dest is a subvolume */ 9092 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9093 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9094 } else { /* dest is an inode */ 9095 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9096 BTRFS_I(new_dentry->d_inode), 9097 new_dentry->d_name.name, 9098 new_dentry->d_name.len); 9099 if (!ret) 9100 ret = btrfs_update_inode(trans, dest, new_inode); 9101 } 9102 if (ret) { 9103 btrfs_abort_transaction(trans, ret); 9104 goto out_fail; 9105 } 9106 9107 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9108 new_dentry->d_name.name, 9109 new_dentry->d_name.len, 0, old_idx); 9110 if (ret) { 9111 btrfs_abort_transaction(trans, ret); 9112 goto out_fail; 9113 } 9114 9115 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9116 old_dentry->d_name.name, 9117 old_dentry->d_name.len, 0, new_idx); 9118 if (ret) { 9119 btrfs_abort_transaction(trans, ret); 9120 goto out_fail; 9121 } 9122 9123 if (old_inode->i_nlink == 1) 9124 BTRFS_I(old_inode)->dir_index = old_idx; 9125 if (new_inode->i_nlink == 1) 9126 BTRFS_I(new_inode)->dir_index = new_idx; 9127 9128 if (root_log_pinned) { 9129 parent = new_dentry->d_parent; 9130 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9131 BTRFS_I(old_dir), parent, 9132 false, &ctx_root); 9133 if (ret == BTRFS_NEED_LOG_SYNC) 9134 sync_log_root = true; 9135 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9136 commit_transaction = true; 9137 ret = 0; 9138 btrfs_end_log_trans(root); 9139 root_log_pinned = false; 9140 } 9141 if (dest_log_pinned) { 9142 if (!commit_transaction) { 9143 parent = old_dentry->d_parent; 9144 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9145 BTRFS_I(new_dir), parent, 9146 false, &ctx_dest); 9147 if (ret == BTRFS_NEED_LOG_SYNC) 9148 sync_log_dest = true; 9149 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9150 commit_transaction = true; 9151 ret = 0; 9152 } 9153 btrfs_end_log_trans(dest); 9154 dest_log_pinned = false; 9155 } 9156 out_fail: 9157 /* 9158 * If we have pinned a log and an error happened, we unpin tasks 9159 * trying to sync the log and force them to fallback to a transaction 9160 * commit if the log currently contains any of the inodes involved in 9161 * this rename operation (to ensure we do not persist a log with an 9162 * inconsistent state for any of these inodes or leading to any 9163 * inconsistencies when replayed). If the transaction was aborted, the 9164 * abortion reason is propagated to userspace when attempting to commit 9165 * the transaction. If the log does not contain any of these inodes, we 9166 * allow the tasks to sync it. 9167 */ 9168 if (ret && (root_log_pinned || dest_log_pinned)) { 9169 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9170 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9171 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9172 (new_inode && 9173 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9174 btrfs_set_log_full_commit(trans); 9175 9176 if (root_log_pinned) { 9177 btrfs_end_log_trans(root); 9178 root_log_pinned = false; 9179 } 9180 if (dest_log_pinned) { 9181 btrfs_end_log_trans(dest); 9182 dest_log_pinned = false; 9183 } 9184 } 9185 if (!ret && sync_log_root && !commit_transaction) { 9186 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9187 &ctx_root); 9188 if (ret) 9189 commit_transaction = true; 9190 } 9191 if (!ret && sync_log_dest && !commit_transaction) { 9192 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9193 &ctx_dest); 9194 if (ret) 9195 commit_transaction = true; 9196 } 9197 if (commit_transaction) { 9198 /* 9199 * We may have set commit_transaction when logging the new name 9200 * in the destination root, in which case we left the source 9201 * root context in the list of log contextes. So make sure we 9202 * remove it to avoid invalid memory accesses, since the context 9203 * was allocated in our stack frame. 9204 */ 9205 if (sync_log_root) { 9206 mutex_lock(&root->log_mutex); 9207 list_del_init(&ctx_root.list); 9208 mutex_unlock(&root->log_mutex); 9209 } 9210 ret = btrfs_commit_transaction(trans); 9211 } else { 9212 int ret2; 9213 9214 ret2 = btrfs_end_transaction(trans); 9215 ret = ret ? ret : ret2; 9216 } 9217 out_notrans: 9218 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9219 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9220 up_read(&fs_info->subvol_sem); 9221 9222 ASSERT(list_empty(&ctx_root.list)); 9223 ASSERT(list_empty(&ctx_dest.list)); 9224 9225 return ret; 9226 } 9227 9228 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9229 struct btrfs_root *root, 9230 struct inode *dir, 9231 struct dentry *dentry) 9232 { 9233 int ret; 9234 struct inode *inode; 9235 u64 objectid; 9236 u64 index; 9237 9238 ret = btrfs_find_free_ino(root, &objectid); 9239 if (ret) 9240 return ret; 9241 9242 inode = btrfs_new_inode(trans, root, dir, 9243 dentry->d_name.name, 9244 dentry->d_name.len, 9245 btrfs_ino(BTRFS_I(dir)), 9246 objectid, 9247 S_IFCHR | WHITEOUT_MODE, 9248 &index); 9249 9250 if (IS_ERR(inode)) { 9251 ret = PTR_ERR(inode); 9252 return ret; 9253 } 9254 9255 inode->i_op = &btrfs_special_inode_operations; 9256 init_special_inode(inode, inode->i_mode, 9257 WHITEOUT_DEV); 9258 9259 ret = btrfs_init_inode_security(trans, inode, dir, 9260 &dentry->d_name); 9261 if (ret) 9262 goto out; 9263 9264 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9265 BTRFS_I(inode), 0, index); 9266 if (ret) 9267 goto out; 9268 9269 ret = btrfs_update_inode(trans, root, inode); 9270 out: 9271 unlock_new_inode(inode); 9272 if (ret) 9273 inode_dec_link_count(inode); 9274 iput(inode); 9275 9276 return ret; 9277 } 9278 9279 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9280 struct inode *new_dir, struct dentry *new_dentry, 9281 unsigned int flags) 9282 { 9283 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9284 struct btrfs_trans_handle *trans; 9285 unsigned int trans_num_items; 9286 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9287 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9288 struct inode *new_inode = d_inode(new_dentry); 9289 struct inode *old_inode = d_inode(old_dentry); 9290 u64 index = 0; 9291 int ret; 9292 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9293 bool log_pinned = false; 9294 struct btrfs_log_ctx ctx; 9295 bool sync_log = false; 9296 bool commit_transaction = false; 9297 9298 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9299 return -EPERM; 9300 9301 /* we only allow rename subvolume link between subvolumes */ 9302 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9303 return -EXDEV; 9304 9305 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9306 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9307 return -ENOTEMPTY; 9308 9309 if (S_ISDIR(old_inode->i_mode) && new_inode && 9310 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9311 return -ENOTEMPTY; 9312 9313 9314 /* check for collisions, even if the name isn't there */ 9315 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9316 new_dentry->d_name.name, 9317 new_dentry->d_name.len); 9318 9319 if (ret) { 9320 if (ret == -EEXIST) { 9321 /* we shouldn't get 9322 * eexist without a new_inode */ 9323 if (WARN_ON(!new_inode)) { 9324 return ret; 9325 } 9326 } else { 9327 /* maybe -EOVERFLOW */ 9328 return ret; 9329 } 9330 } 9331 ret = 0; 9332 9333 /* 9334 * we're using rename to replace one file with another. Start IO on it 9335 * now so we don't add too much work to the end of the transaction 9336 */ 9337 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9338 filemap_flush(old_inode->i_mapping); 9339 9340 /* close the racy window with snapshot create/destroy ioctl */ 9341 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9342 down_read(&fs_info->subvol_sem); 9343 /* 9344 * We want to reserve the absolute worst case amount of items. So if 9345 * both inodes are subvols and we need to unlink them then that would 9346 * require 4 item modifications, but if they are both normal inodes it 9347 * would require 5 item modifications, so we'll assume they are normal 9348 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9349 * should cover the worst case number of items we'll modify. 9350 * If our rename has the whiteout flag, we need more 5 units for the 9351 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9352 * when selinux is enabled). 9353 */ 9354 trans_num_items = 11; 9355 if (flags & RENAME_WHITEOUT) 9356 trans_num_items += 5; 9357 trans = btrfs_start_transaction(root, trans_num_items); 9358 if (IS_ERR(trans)) { 9359 ret = PTR_ERR(trans); 9360 goto out_notrans; 9361 } 9362 9363 if (dest != root) 9364 btrfs_record_root_in_trans(trans, dest); 9365 9366 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9367 if (ret) 9368 goto out_fail; 9369 9370 BTRFS_I(old_inode)->dir_index = 0ULL; 9371 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9372 /* force full log commit if subvolume involved. */ 9373 btrfs_set_log_full_commit(trans); 9374 } else { 9375 btrfs_pin_log_trans(root); 9376 log_pinned = true; 9377 ret = btrfs_insert_inode_ref(trans, dest, 9378 new_dentry->d_name.name, 9379 new_dentry->d_name.len, 9380 old_ino, 9381 btrfs_ino(BTRFS_I(new_dir)), index); 9382 if (ret) 9383 goto out_fail; 9384 } 9385 9386 inode_inc_iversion(old_dir); 9387 inode_inc_iversion(new_dir); 9388 inode_inc_iversion(old_inode); 9389 old_dir->i_ctime = old_dir->i_mtime = 9390 new_dir->i_ctime = new_dir->i_mtime = 9391 old_inode->i_ctime = current_time(old_dir); 9392 9393 if (old_dentry->d_parent != new_dentry->d_parent) 9394 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9395 BTRFS_I(old_inode), 1); 9396 9397 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9398 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9399 } else { 9400 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9401 BTRFS_I(d_inode(old_dentry)), 9402 old_dentry->d_name.name, 9403 old_dentry->d_name.len); 9404 if (!ret) 9405 ret = btrfs_update_inode(trans, root, old_inode); 9406 } 9407 if (ret) { 9408 btrfs_abort_transaction(trans, ret); 9409 goto out_fail; 9410 } 9411 9412 if (new_inode) { 9413 inode_inc_iversion(new_inode); 9414 new_inode->i_ctime = current_time(new_inode); 9415 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9416 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9417 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9418 BUG_ON(new_inode->i_nlink == 0); 9419 } else { 9420 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9421 BTRFS_I(d_inode(new_dentry)), 9422 new_dentry->d_name.name, 9423 new_dentry->d_name.len); 9424 } 9425 if (!ret && new_inode->i_nlink == 0) 9426 ret = btrfs_orphan_add(trans, 9427 BTRFS_I(d_inode(new_dentry))); 9428 if (ret) { 9429 btrfs_abort_transaction(trans, ret); 9430 goto out_fail; 9431 } 9432 } 9433 9434 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9435 new_dentry->d_name.name, 9436 new_dentry->d_name.len, 0, index); 9437 if (ret) { 9438 btrfs_abort_transaction(trans, ret); 9439 goto out_fail; 9440 } 9441 9442 if (old_inode->i_nlink == 1) 9443 BTRFS_I(old_inode)->dir_index = index; 9444 9445 if (log_pinned) { 9446 struct dentry *parent = new_dentry->d_parent; 9447 9448 btrfs_init_log_ctx(&ctx, old_inode); 9449 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9450 BTRFS_I(old_dir), parent, 9451 false, &ctx); 9452 if (ret == BTRFS_NEED_LOG_SYNC) 9453 sync_log = true; 9454 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9455 commit_transaction = true; 9456 ret = 0; 9457 btrfs_end_log_trans(root); 9458 log_pinned = false; 9459 } 9460 9461 if (flags & RENAME_WHITEOUT) { 9462 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9463 old_dentry); 9464 9465 if (ret) { 9466 btrfs_abort_transaction(trans, ret); 9467 goto out_fail; 9468 } 9469 } 9470 out_fail: 9471 /* 9472 * If we have pinned the log and an error happened, we unpin tasks 9473 * trying to sync the log and force them to fallback to a transaction 9474 * commit if the log currently contains any of the inodes involved in 9475 * this rename operation (to ensure we do not persist a log with an 9476 * inconsistent state for any of these inodes or leading to any 9477 * inconsistencies when replayed). If the transaction was aborted, the 9478 * abortion reason is propagated to userspace when attempting to commit 9479 * the transaction. If the log does not contain any of these inodes, we 9480 * allow the tasks to sync it. 9481 */ 9482 if (ret && log_pinned) { 9483 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9484 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9485 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9486 (new_inode && 9487 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9488 btrfs_set_log_full_commit(trans); 9489 9490 btrfs_end_log_trans(root); 9491 log_pinned = false; 9492 } 9493 if (!ret && sync_log) { 9494 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9495 if (ret) 9496 commit_transaction = true; 9497 } 9498 if (commit_transaction) { 9499 ret = btrfs_commit_transaction(trans); 9500 } else { 9501 int ret2; 9502 9503 ret2 = btrfs_end_transaction(trans); 9504 ret = ret ? ret : ret2; 9505 } 9506 out_notrans: 9507 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9508 up_read(&fs_info->subvol_sem); 9509 9510 return ret; 9511 } 9512 9513 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9514 struct inode *new_dir, struct dentry *new_dentry, 9515 unsigned int flags) 9516 { 9517 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9518 return -EINVAL; 9519 9520 if (flags & RENAME_EXCHANGE) 9521 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9522 new_dentry); 9523 9524 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9525 } 9526 9527 struct btrfs_delalloc_work { 9528 struct inode *inode; 9529 struct completion completion; 9530 struct list_head list; 9531 struct btrfs_work work; 9532 }; 9533 9534 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9535 { 9536 struct btrfs_delalloc_work *delalloc_work; 9537 struct inode *inode; 9538 9539 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9540 work); 9541 inode = delalloc_work->inode; 9542 filemap_flush(inode->i_mapping); 9543 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9544 &BTRFS_I(inode)->runtime_flags)) 9545 filemap_flush(inode->i_mapping); 9546 9547 iput(inode); 9548 complete(&delalloc_work->completion); 9549 } 9550 9551 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9552 { 9553 struct btrfs_delalloc_work *work; 9554 9555 work = kmalloc(sizeof(*work), GFP_NOFS); 9556 if (!work) 9557 return NULL; 9558 9559 init_completion(&work->completion); 9560 INIT_LIST_HEAD(&work->list); 9561 work->inode = inode; 9562 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9563 9564 return work; 9565 } 9566 9567 /* 9568 * some fairly slow code that needs optimization. This walks the list 9569 * of all the inodes with pending delalloc and forces them to disk. 9570 */ 9571 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9572 { 9573 struct btrfs_inode *binode; 9574 struct inode *inode; 9575 struct btrfs_delalloc_work *work, *next; 9576 struct list_head works; 9577 struct list_head splice; 9578 int ret = 0; 9579 9580 INIT_LIST_HEAD(&works); 9581 INIT_LIST_HEAD(&splice); 9582 9583 mutex_lock(&root->delalloc_mutex); 9584 spin_lock(&root->delalloc_lock); 9585 list_splice_init(&root->delalloc_inodes, &splice); 9586 while (!list_empty(&splice)) { 9587 binode = list_entry(splice.next, struct btrfs_inode, 9588 delalloc_inodes); 9589 9590 list_move_tail(&binode->delalloc_inodes, 9591 &root->delalloc_inodes); 9592 inode = igrab(&binode->vfs_inode); 9593 if (!inode) { 9594 cond_resched_lock(&root->delalloc_lock); 9595 continue; 9596 } 9597 spin_unlock(&root->delalloc_lock); 9598 9599 if (snapshot) 9600 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9601 &binode->runtime_flags); 9602 work = btrfs_alloc_delalloc_work(inode); 9603 if (!work) { 9604 iput(inode); 9605 ret = -ENOMEM; 9606 goto out; 9607 } 9608 list_add_tail(&work->list, &works); 9609 btrfs_queue_work(root->fs_info->flush_workers, 9610 &work->work); 9611 ret++; 9612 if (nr != -1 && ret >= nr) 9613 goto out; 9614 cond_resched(); 9615 spin_lock(&root->delalloc_lock); 9616 } 9617 spin_unlock(&root->delalloc_lock); 9618 9619 out: 9620 list_for_each_entry_safe(work, next, &works, list) { 9621 list_del_init(&work->list); 9622 wait_for_completion(&work->completion); 9623 kfree(work); 9624 } 9625 9626 if (!list_empty(&splice)) { 9627 spin_lock(&root->delalloc_lock); 9628 list_splice_tail(&splice, &root->delalloc_inodes); 9629 spin_unlock(&root->delalloc_lock); 9630 } 9631 mutex_unlock(&root->delalloc_mutex); 9632 return ret; 9633 } 9634 9635 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9636 { 9637 struct btrfs_fs_info *fs_info = root->fs_info; 9638 int ret; 9639 9640 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9641 return -EROFS; 9642 9643 ret = start_delalloc_inodes(root, -1, true); 9644 if (ret > 0) 9645 ret = 0; 9646 return ret; 9647 } 9648 9649 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9650 { 9651 struct btrfs_root *root; 9652 struct list_head splice; 9653 int ret; 9654 9655 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9656 return -EROFS; 9657 9658 INIT_LIST_HEAD(&splice); 9659 9660 mutex_lock(&fs_info->delalloc_root_mutex); 9661 spin_lock(&fs_info->delalloc_root_lock); 9662 list_splice_init(&fs_info->delalloc_roots, &splice); 9663 while (!list_empty(&splice) && nr) { 9664 root = list_first_entry(&splice, struct btrfs_root, 9665 delalloc_root); 9666 root = btrfs_grab_fs_root(root); 9667 BUG_ON(!root); 9668 list_move_tail(&root->delalloc_root, 9669 &fs_info->delalloc_roots); 9670 spin_unlock(&fs_info->delalloc_root_lock); 9671 9672 ret = start_delalloc_inodes(root, nr, false); 9673 btrfs_put_fs_root(root); 9674 if (ret < 0) 9675 goto out; 9676 9677 if (nr != -1) { 9678 nr -= ret; 9679 WARN_ON(nr < 0); 9680 } 9681 spin_lock(&fs_info->delalloc_root_lock); 9682 } 9683 spin_unlock(&fs_info->delalloc_root_lock); 9684 9685 ret = 0; 9686 out: 9687 if (!list_empty(&splice)) { 9688 spin_lock(&fs_info->delalloc_root_lock); 9689 list_splice_tail(&splice, &fs_info->delalloc_roots); 9690 spin_unlock(&fs_info->delalloc_root_lock); 9691 } 9692 mutex_unlock(&fs_info->delalloc_root_mutex); 9693 return ret; 9694 } 9695 9696 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9697 const char *symname) 9698 { 9699 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9700 struct btrfs_trans_handle *trans; 9701 struct btrfs_root *root = BTRFS_I(dir)->root; 9702 struct btrfs_path *path; 9703 struct btrfs_key key; 9704 struct inode *inode = NULL; 9705 int err; 9706 u64 objectid; 9707 u64 index = 0; 9708 int name_len; 9709 int datasize; 9710 unsigned long ptr; 9711 struct btrfs_file_extent_item *ei; 9712 struct extent_buffer *leaf; 9713 9714 name_len = strlen(symname); 9715 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9716 return -ENAMETOOLONG; 9717 9718 /* 9719 * 2 items for inode item and ref 9720 * 2 items for dir items 9721 * 1 item for updating parent inode item 9722 * 1 item for the inline extent item 9723 * 1 item for xattr if selinux is on 9724 */ 9725 trans = btrfs_start_transaction(root, 7); 9726 if (IS_ERR(trans)) 9727 return PTR_ERR(trans); 9728 9729 err = btrfs_find_free_ino(root, &objectid); 9730 if (err) 9731 goto out_unlock; 9732 9733 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9734 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9735 objectid, S_IFLNK|S_IRWXUGO, &index); 9736 if (IS_ERR(inode)) { 9737 err = PTR_ERR(inode); 9738 inode = NULL; 9739 goto out_unlock; 9740 } 9741 9742 /* 9743 * If the active LSM wants to access the inode during 9744 * d_instantiate it needs these. Smack checks to see 9745 * if the filesystem supports xattrs by looking at the 9746 * ops vector. 9747 */ 9748 inode->i_fop = &btrfs_file_operations; 9749 inode->i_op = &btrfs_file_inode_operations; 9750 inode->i_mapping->a_ops = &btrfs_aops; 9751 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9752 9753 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9754 if (err) 9755 goto out_unlock; 9756 9757 path = btrfs_alloc_path(); 9758 if (!path) { 9759 err = -ENOMEM; 9760 goto out_unlock; 9761 } 9762 key.objectid = btrfs_ino(BTRFS_I(inode)); 9763 key.offset = 0; 9764 key.type = BTRFS_EXTENT_DATA_KEY; 9765 datasize = btrfs_file_extent_calc_inline_size(name_len); 9766 err = btrfs_insert_empty_item(trans, root, path, &key, 9767 datasize); 9768 if (err) { 9769 btrfs_free_path(path); 9770 goto out_unlock; 9771 } 9772 leaf = path->nodes[0]; 9773 ei = btrfs_item_ptr(leaf, path->slots[0], 9774 struct btrfs_file_extent_item); 9775 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9776 btrfs_set_file_extent_type(leaf, ei, 9777 BTRFS_FILE_EXTENT_INLINE); 9778 btrfs_set_file_extent_encryption(leaf, ei, 0); 9779 btrfs_set_file_extent_compression(leaf, ei, 0); 9780 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9781 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9782 9783 ptr = btrfs_file_extent_inline_start(ei); 9784 write_extent_buffer(leaf, symname, ptr, name_len); 9785 btrfs_mark_buffer_dirty(leaf); 9786 btrfs_free_path(path); 9787 9788 inode->i_op = &btrfs_symlink_inode_operations; 9789 inode_nohighmem(inode); 9790 inode_set_bytes(inode, name_len); 9791 btrfs_i_size_write(BTRFS_I(inode), name_len); 9792 err = btrfs_update_inode(trans, root, inode); 9793 /* 9794 * Last step, add directory indexes for our symlink inode. This is the 9795 * last step to avoid extra cleanup of these indexes if an error happens 9796 * elsewhere above. 9797 */ 9798 if (!err) 9799 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9800 BTRFS_I(inode), 0, index); 9801 if (err) 9802 goto out_unlock; 9803 9804 d_instantiate_new(dentry, inode); 9805 9806 out_unlock: 9807 btrfs_end_transaction(trans); 9808 if (err && inode) { 9809 inode_dec_link_count(inode); 9810 discard_new_inode(inode); 9811 } 9812 btrfs_btree_balance_dirty(fs_info); 9813 return err; 9814 } 9815 9816 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9817 u64 start, u64 num_bytes, u64 min_size, 9818 loff_t actual_len, u64 *alloc_hint, 9819 struct btrfs_trans_handle *trans) 9820 { 9821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9823 struct extent_map *em; 9824 struct btrfs_root *root = BTRFS_I(inode)->root; 9825 struct btrfs_key ins; 9826 u64 cur_offset = start; 9827 u64 clear_offset = start; 9828 u64 i_size; 9829 u64 cur_bytes; 9830 u64 last_alloc = (u64)-1; 9831 int ret = 0; 9832 bool own_trans = true; 9833 u64 end = start + num_bytes - 1; 9834 9835 if (trans) 9836 own_trans = false; 9837 while (num_bytes > 0) { 9838 if (own_trans) { 9839 trans = btrfs_start_transaction(root, 3); 9840 if (IS_ERR(trans)) { 9841 ret = PTR_ERR(trans); 9842 break; 9843 } 9844 } 9845 9846 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9847 cur_bytes = max(cur_bytes, min_size); 9848 /* 9849 * If we are severely fragmented we could end up with really 9850 * small allocations, so if the allocator is returning small 9851 * chunks lets make its job easier by only searching for those 9852 * sized chunks. 9853 */ 9854 cur_bytes = min(cur_bytes, last_alloc); 9855 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9856 min_size, 0, *alloc_hint, &ins, 1, 0); 9857 if (ret) { 9858 if (own_trans) 9859 btrfs_end_transaction(trans); 9860 break; 9861 } 9862 9863 /* 9864 * We've reserved this space, and thus converted it from 9865 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9866 * from here on out we will only need to clear our reservation 9867 * for the remaining unreserved area, so advance our 9868 * clear_offset by our extent size. 9869 */ 9870 clear_offset += ins.offset; 9871 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9872 9873 last_alloc = ins.offset; 9874 ret = insert_reserved_file_extent(trans, inode, 9875 cur_offset, ins.objectid, 9876 ins.offset, ins.offset, 9877 ins.offset, 0, 0, 0, 9878 BTRFS_FILE_EXTENT_PREALLOC); 9879 if (ret) { 9880 btrfs_free_reserved_extent(fs_info, ins.objectid, 9881 ins.offset, 0); 9882 btrfs_abort_transaction(trans, ret); 9883 if (own_trans) 9884 btrfs_end_transaction(trans); 9885 break; 9886 } 9887 9888 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9889 cur_offset + ins.offset -1, 0); 9890 9891 em = alloc_extent_map(); 9892 if (!em) { 9893 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9894 &BTRFS_I(inode)->runtime_flags); 9895 goto next; 9896 } 9897 9898 em->start = cur_offset; 9899 em->orig_start = cur_offset; 9900 em->len = ins.offset; 9901 em->block_start = ins.objectid; 9902 em->block_len = ins.offset; 9903 em->orig_block_len = ins.offset; 9904 em->ram_bytes = ins.offset; 9905 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9906 em->generation = trans->transid; 9907 9908 while (1) { 9909 write_lock(&em_tree->lock); 9910 ret = add_extent_mapping(em_tree, em, 1); 9911 write_unlock(&em_tree->lock); 9912 if (ret != -EEXIST) 9913 break; 9914 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9915 cur_offset + ins.offset - 1, 9916 0); 9917 } 9918 free_extent_map(em); 9919 next: 9920 num_bytes -= ins.offset; 9921 cur_offset += ins.offset; 9922 *alloc_hint = ins.objectid + ins.offset; 9923 9924 inode_inc_iversion(inode); 9925 inode->i_ctime = current_time(inode); 9926 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9927 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9928 (actual_len > inode->i_size) && 9929 (cur_offset > inode->i_size)) { 9930 if (cur_offset > actual_len) 9931 i_size = actual_len; 9932 else 9933 i_size = cur_offset; 9934 i_size_write(inode, i_size); 9935 btrfs_ordered_update_i_size(inode, i_size, NULL); 9936 } 9937 9938 ret = btrfs_update_inode(trans, root, inode); 9939 9940 if (ret) { 9941 btrfs_abort_transaction(trans, ret); 9942 if (own_trans) 9943 btrfs_end_transaction(trans); 9944 break; 9945 } 9946 9947 if (own_trans) 9948 btrfs_end_transaction(trans); 9949 } 9950 if (clear_offset < end) 9951 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 9952 end - clear_offset + 1); 9953 return ret; 9954 } 9955 9956 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9957 u64 start, u64 num_bytes, u64 min_size, 9958 loff_t actual_len, u64 *alloc_hint) 9959 { 9960 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9961 min_size, actual_len, alloc_hint, 9962 NULL); 9963 } 9964 9965 int btrfs_prealloc_file_range_trans(struct inode *inode, 9966 struct btrfs_trans_handle *trans, int mode, 9967 u64 start, u64 num_bytes, u64 min_size, 9968 loff_t actual_len, u64 *alloc_hint) 9969 { 9970 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9971 min_size, actual_len, alloc_hint, trans); 9972 } 9973 9974 static int btrfs_set_page_dirty(struct page *page) 9975 { 9976 return __set_page_dirty_nobuffers(page); 9977 } 9978 9979 static int btrfs_permission(struct inode *inode, int mask) 9980 { 9981 struct btrfs_root *root = BTRFS_I(inode)->root; 9982 umode_t mode = inode->i_mode; 9983 9984 if (mask & MAY_WRITE && 9985 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9986 if (btrfs_root_readonly(root)) 9987 return -EROFS; 9988 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9989 return -EACCES; 9990 } 9991 return generic_permission(inode, mask); 9992 } 9993 9994 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9995 { 9996 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9997 struct btrfs_trans_handle *trans; 9998 struct btrfs_root *root = BTRFS_I(dir)->root; 9999 struct inode *inode = NULL; 10000 u64 objectid; 10001 u64 index; 10002 int ret = 0; 10003 10004 /* 10005 * 5 units required for adding orphan entry 10006 */ 10007 trans = btrfs_start_transaction(root, 5); 10008 if (IS_ERR(trans)) 10009 return PTR_ERR(trans); 10010 10011 ret = btrfs_find_free_ino(root, &objectid); 10012 if (ret) 10013 goto out; 10014 10015 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10016 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10017 if (IS_ERR(inode)) { 10018 ret = PTR_ERR(inode); 10019 inode = NULL; 10020 goto out; 10021 } 10022 10023 inode->i_fop = &btrfs_file_operations; 10024 inode->i_op = &btrfs_file_inode_operations; 10025 10026 inode->i_mapping->a_ops = &btrfs_aops; 10027 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10028 10029 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10030 if (ret) 10031 goto out; 10032 10033 ret = btrfs_update_inode(trans, root, inode); 10034 if (ret) 10035 goto out; 10036 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10037 if (ret) 10038 goto out; 10039 10040 /* 10041 * We set number of links to 0 in btrfs_new_inode(), and here we set 10042 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10043 * through: 10044 * 10045 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10046 */ 10047 set_nlink(inode, 1); 10048 d_tmpfile(dentry, inode); 10049 unlock_new_inode(inode); 10050 mark_inode_dirty(inode); 10051 out: 10052 btrfs_end_transaction(trans); 10053 if (ret && inode) 10054 discard_new_inode(inode); 10055 btrfs_btree_balance_dirty(fs_info); 10056 return ret; 10057 } 10058 10059 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10060 { 10061 struct inode *inode = tree->private_data; 10062 unsigned long index = start >> PAGE_SHIFT; 10063 unsigned long end_index = end >> PAGE_SHIFT; 10064 struct page *page; 10065 10066 while (index <= end_index) { 10067 page = find_get_page(inode->i_mapping, index); 10068 ASSERT(page); /* Pages should be in the extent_io_tree */ 10069 set_page_writeback(page); 10070 put_page(page); 10071 index++; 10072 } 10073 } 10074 10075 #ifdef CONFIG_SWAP 10076 /* 10077 * Add an entry indicating a block group or device which is pinned by a 10078 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10079 * negative errno on failure. 10080 */ 10081 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10082 bool is_block_group) 10083 { 10084 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10085 struct btrfs_swapfile_pin *sp, *entry; 10086 struct rb_node **p; 10087 struct rb_node *parent = NULL; 10088 10089 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10090 if (!sp) 10091 return -ENOMEM; 10092 sp->ptr = ptr; 10093 sp->inode = inode; 10094 sp->is_block_group = is_block_group; 10095 10096 spin_lock(&fs_info->swapfile_pins_lock); 10097 p = &fs_info->swapfile_pins.rb_node; 10098 while (*p) { 10099 parent = *p; 10100 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10101 if (sp->ptr < entry->ptr || 10102 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10103 p = &(*p)->rb_left; 10104 } else if (sp->ptr > entry->ptr || 10105 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10106 p = &(*p)->rb_right; 10107 } else { 10108 spin_unlock(&fs_info->swapfile_pins_lock); 10109 kfree(sp); 10110 return 1; 10111 } 10112 } 10113 rb_link_node(&sp->node, parent, p); 10114 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10115 spin_unlock(&fs_info->swapfile_pins_lock); 10116 return 0; 10117 } 10118 10119 /* Free all of the entries pinned by this swapfile. */ 10120 static void btrfs_free_swapfile_pins(struct inode *inode) 10121 { 10122 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10123 struct btrfs_swapfile_pin *sp; 10124 struct rb_node *node, *next; 10125 10126 spin_lock(&fs_info->swapfile_pins_lock); 10127 node = rb_first(&fs_info->swapfile_pins); 10128 while (node) { 10129 next = rb_next(node); 10130 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10131 if (sp->inode == inode) { 10132 rb_erase(&sp->node, &fs_info->swapfile_pins); 10133 if (sp->is_block_group) 10134 btrfs_put_block_group(sp->ptr); 10135 kfree(sp); 10136 } 10137 node = next; 10138 } 10139 spin_unlock(&fs_info->swapfile_pins_lock); 10140 } 10141 10142 struct btrfs_swap_info { 10143 u64 start; 10144 u64 block_start; 10145 u64 block_len; 10146 u64 lowest_ppage; 10147 u64 highest_ppage; 10148 unsigned long nr_pages; 10149 int nr_extents; 10150 }; 10151 10152 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10153 struct btrfs_swap_info *bsi) 10154 { 10155 unsigned long nr_pages; 10156 u64 first_ppage, first_ppage_reported, next_ppage; 10157 int ret; 10158 10159 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10160 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10161 PAGE_SIZE) >> PAGE_SHIFT; 10162 10163 if (first_ppage >= next_ppage) 10164 return 0; 10165 nr_pages = next_ppage - first_ppage; 10166 10167 first_ppage_reported = first_ppage; 10168 if (bsi->start == 0) 10169 first_ppage_reported++; 10170 if (bsi->lowest_ppage > first_ppage_reported) 10171 bsi->lowest_ppage = first_ppage_reported; 10172 if (bsi->highest_ppage < (next_ppage - 1)) 10173 bsi->highest_ppage = next_ppage - 1; 10174 10175 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10176 if (ret < 0) 10177 return ret; 10178 bsi->nr_extents += ret; 10179 bsi->nr_pages += nr_pages; 10180 return 0; 10181 } 10182 10183 static void btrfs_swap_deactivate(struct file *file) 10184 { 10185 struct inode *inode = file_inode(file); 10186 10187 btrfs_free_swapfile_pins(inode); 10188 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10189 } 10190 10191 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10192 sector_t *span) 10193 { 10194 struct inode *inode = file_inode(file); 10195 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10196 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10197 struct extent_state *cached_state = NULL; 10198 struct extent_map *em = NULL; 10199 struct btrfs_device *device = NULL; 10200 struct btrfs_swap_info bsi = { 10201 .lowest_ppage = (sector_t)-1ULL, 10202 }; 10203 int ret = 0; 10204 u64 isize; 10205 u64 start; 10206 10207 /* 10208 * If the swap file was just created, make sure delalloc is done. If the 10209 * file changes again after this, the user is doing something stupid and 10210 * we don't really care. 10211 */ 10212 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10213 if (ret) 10214 return ret; 10215 10216 /* 10217 * The inode is locked, so these flags won't change after we check them. 10218 */ 10219 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10220 btrfs_warn(fs_info, "swapfile must not be compressed"); 10221 return -EINVAL; 10222 } 10223 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10224 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10225 return -EINVAL; 10226 } 10227 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10228 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10229 return -EINVAL; 10230 } 10231 10232 /* 10233 * Balance or device remove/replace/resize can move stuff around from 10234 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10235 * concurrently while we are mapping the swap extents, and 10236 * fs_info->swapfile_pins prevents them from running while the swap file 10237 * is active and moving the extents. Note that this also prevents a 10238 * concurrent device add which isn't actually necessary, but it's not 10239 * really worth the trouble to allow it. 10240 */ 10241 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10242 btrfs_warn(fs_info, 10243 "cannot activate swapfile while exclusive operation is running"); 10244 return -EBUSY; 10245 } 10246 /* 10247 * Snapshots can create extents which require COW even if NODATACOW is 10248 * set. We use this counter to prevent snapshots. We must increment it 10249 * before walking the extents because we don't want a concurrent 10250 * snapshot to run after we've already checked the extents. 10251 */ 10252 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10253 10254 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10255 10256 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10257 start = 0; 10258 while (start < isize) { 10259 u64 logical_block_start, physical_block_start; 10260 struct btrfs_block_group *bg; 10261 u64 len = isize - start; 10262 10263 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10264 if (IS_ERR(em)) { 10265 ret = PTR_ERR(em); 10266 goto out; 10267 } 10268 10269 if (em->block_start == EXTENT_MAP_HOLE) { 10270 btrfs_warn(fs_info, "swapfile must not have holes"); 10271 ret = -EINVAL; 10272 goto out; 10273 } 10274 if (em->block_start == EXTENT_MAP_INLINE) { 10275 /* 10276 * It's unlikely we'll ever actually find ourselves 10277 * here, as a file small enough to fit inline won't be 10278 * big enough to store more than the swap header, but in 10279 * case something changes in the future, let's catch it 10280 * here rather than later. 10281 */ 10282 btrfs_warn(fs_info, "swapfile must not be inline"); 10283 ret = -EINVAL; 10284 goto out; 10285 } 10286 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10287 btrfs_warn(fs_info, "swapfile must not be compressed"); 10288 ret = -EINVAL; 10289 goto out; 10290 } 10291 10292 logical_block_start = em->block_start + (start - em->start); 10293 len = min(len, em->len - (start - em->start)); 10294 free_extent_map(em); 10295 em = NULL; 10296 10297 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10298 if (ret < 0) { 10299 goto out; 10300 } else if (ret) { 10301 ret = 0; 10302 } else { 10303 btrfs_warn(fs_info, 10304 "swapfile must not be copy-on-write"); 10305 ret = -EINVAL; 10306 goto out; 10307 } 10308 10309 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10310 if (IS_ERR(em)) { 10311 ret = PTR_ERR(em); 10312 goto out; 10313 } 10314 10315 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10316 btrfs_warn(fs_info, 10317 "swapfile must have single data profile"); 10318 ret = -EINVAL; 10319 goto out; 10320 } 10321 10322 if (device == NULL) { 10323 device = em->map_lookup->stripes[0].dev; 10324 ret = btrfs_add_swapfile_pin(inode, device, false); 10325 if (ret == 1) 10326 ret = 0; 10327 else if (ret) 10328 goto out; 10329 } else if (device != em->map_lookup->stripes[0].dev) { 10330 btrfs_warn(fs_info, "swapfile must be on one device"); 10331 ret = -EINVAL; 10332 goto out; 10333 } 10334 10335 physical_block_start = (em->map_lookup->stripes[0].physical + 10336 (logical_block_start - em->start)); 10337 len = min(len, em->len - (logical_block_start - em->start)); 10338 free_extent_map(em); 10339 em = NULL; 10340 10341 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10342 if (!bg) { 10343 btrfs_warn(fs_info, 10344 "could not find block group containing swapfile"); 10345 ret = -EINVAL; 10346 goto out; 10347 } 10348 10349 ret = btrfs_add_swapfile_pin(inode, bg, true); 10350 if (ret) { 10351 btrfs_put_block_group(bg); 10352 if (ret == 1) 10353 ret = 0; 10354 else 10355 goto out; 10356 } 10357 10358 if (bsi.block_len && 10359 bsi.block_start + bsi.block_len == physical_block_start) { 10360 bsi.block_len += len; 10361 } else { 10362 if (bsi.block_len) { 10363 ret = btrfs_add_swap_extent(sis, &bsi); 10364 if (ret) 10365 goto out; 10366 } 10367 bsi.start = start; 10368 bsi.block_start = physical_block_start; 10369 bsi.block_len = len; 10370 } 10371 10372 start += len; 10373 } 10374 10375 if (bsi.block_len) 10376 ret = btrfs_add_swap_extent(sis, &bsi); 10377 10378 out: 10379 if (!IS_ERR_OR_NULL(em)) 10380 free_extent_map(em); 10381 10382 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10383 10384 if (ret) 10385 btrfs_swap_deactivate(file); 10386 10387 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10388 10389 if (ret) 10390 return ret; 10391 10392 if (device) 10393 sis->bdev = device->bdev; 10394 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10395 sis->max = bsi.nr_pages; 10396 sis->pages = bsi.nr_pages - 1; 10397 sis->highest_bit = bsi.nr_pages - 1; 10398 return bsi.nr_extents; 10399 } 10400 #else 10401 static void btrfs_swap_deactivate(struct file *file) 10402 { 10403 } 10404 10405 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10406 sector_t *span) 10407 { 10408 return -EOPNOTSUPP; 10409 } 10410 #endif 10411 10412 static const struct inode_operations btrfs_dir_inode_operations = { 10413 .getattr = btrfs_getattr, 10414 .lookup = btrfs_lookup, 10415 .create = btrfs_create, 10416 .unlink = btrfs_unlink, 10417 .link = btrfs_link, 10418 .mkdir = btrfs_mkdir, 10419 .rmdir = btrfs_rmdir, 10420 .rename = btrfs_rename2, 10421 .symlink = btrfs_symlink, 10422 .setattr = btrfs_setattr, 10423 .mknod = btrfs_mknod, 10424 .listxattr = btrfs_listxattr, 10425 .permission = btrfs_permission, 10426 .get_acl = btrfs_get_acl, 10427 .set_acl = btrfs_set_acl, 10428 .update_time = btrfs_update_time, 10429 .tmpfile = btrfs_tmpfile, 10430 }; 10431 10432 static const struct file_operations btrfs_dir_file_operations = { 10433 .llseek = generic_file_llseek, 10434 .read = generic_read_dir, 10435 .iterate_shared = btrfs_real_readdir, 10436 .open = btrfs_opendir, 10437 .unlocked_ioctl = btrfs_ioctl, 10438 #ifdef CONFIG_COMPAT 10439 .compat_ioctl = btrfs_compat_ioctl, 10440 #endif 10441 .release = btrfs_release_file, 10442 .fsync = btrfs_sync_file, 10443 }; 10444 10445 static const struct extent_io_ops btrfs_extent_io_ops = { 10446 /* mandatory callbacks */ 10447 .submit_bio_hook = btrfs_submit_bio_hook, 10448 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10449 }; 10450 10451 /* 10452 * btrfs doesn't support the bmap operation because swapfiles 10453 * use bmap to make a mapping of extents in the file. They assume 10454 * these extents won't change over the life of the file and they 10455 * use the bmap result to do IO directly to the drive. 10456 * 10457 * the btrfs bmap call would return logical addresses that aren't 10458 * suitable for IO and they also will change frequently as COW 10459 * operations happen. So, swapfile + btrfs == corruption. 10460 * 10461 * For now we're avoiding this by dropping bmap. 10462 */ 10463 static const struct address_space_operations btrfs_aops = { 10464 .readpage = btrfs_readpage, 10465 .writepage = btrfs_writepage, 10466 .writepages = btrfs_writepages, 10467 .readpages = btrfs_readpages, 10468 .direct_IO = btrfs_direct_IO, 10469 .invalidatepage = btrfs_invalidatepage, 10470 .releasepage = btrfs_releasepage, 10471 .set_page_dirty = btrfs_set_page_dirty, 10472 .error_remove_page = generic_error_remove_page, 10473 .swap_activate = btrfs_swap_activate, 10474 .swap_deactivate = btrfs_swap_deactivate, 10475 }; 10476 10477 static const struct inode_operations btrfs_file_inode_operations = { 10478 .getattr = btrfs_getattr, 10479 .setattr = btrfs_setattr, 10480 .listxattr = btrfs_listxattr, 10481 .permission = btrfs_permission, 10482 .fiemap = btrfs_fiemap, 10483 .get_acl = btrfs_get_acl, 10484 .set_acl = btrfs_set_acl, 10485 .update_time = btrfs_update_time, 10486 }; 10487 static const struct inode_operations btrfs_special_inode_operations = { 10488 .getattr = btrfs_getattr, 10489 .setattr = btrfs_setattr, 10490 .permission = btrfs_permission, 10491 .listxattr = btrfs_listxattr, 10492 .get_acl = btrfs_get_acl, 10493 .set_acl = btrfs_set_acl, 10494 .update_time = btrfs_update_time, 10495 }; 10496 static const struct inode_operations btrfs_symlink_inode_operations = { 10497 .get_link = page_get_link, 10498 .getattr = btrfs_getattr, 10499 .setattr = btrfs_setattr, 10500 .permission = btrfs_permission, 10501 .listxattr = btrfs_listxattr, 10502 .update_time = btrfs_update_time, 10503 }; 10504 10505 const struct dentry_operations btrfs_dentry_operations = { 10506 .d_delete = btrfs_dentry_delete, 10507 }; 10508