1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 76 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 77 78 struct btrfs_iget_args { 79 u64 ino; 80 struct btrfs_root *root; 81 }; 82 83 struct btrfs_rename_ctx { 84 /* Output field. Stores the index number of the old directory entry. */ 85 u64 index; 86 }; 87 88 /* 89 * Used by data_reloc_print_warning_inode() to pass needed info for filename 90 * resolution and output of error message. 91 */ 92 struct data_reloc_warn { 93 struct btrfs_path path; 94 struct btrfs_fs_info *fs_info; 95 u64 extent_item_size; 96 u64 logical; 97 int mirror_num; 98 }; 99 100 /* 101 * For the file_extent_tree, we want to hold the inode lock when we lookup and 102 * update the disk_i_size, but lockdep will complain because our io_tree we hold 103 * the tree lock and get the inode lock when setting delalloc. These two things 104 * are unrelated, so make a class for the file_extent_tree so we don't get the 105 * two locking patterns mixed up. 106 */ 107 static struct lock_class_key file_extent_tree_class; 108 109 static const struct inode_operations btrfs_dir_inode_operations; 110 static const struct inode_operations btrfs_symlink_inode_operations; 111 static const struct inode_operations btrfs_special_inode_operations; 112 static const struct inode_operations btrfs_file_inode_operations; 113 static const struct address_space_operations btrfs_aops; 114 static const struct file_operations btrfs_dir_file_operations; 115 116 static struct kmem_cache *btrfs_inode_cachep; 117 118 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 119 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 120 121 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 122 struct folio *locked_folio, u64 start, 123 u64 end, struct writeback_control *wbc, 124 bool pages_dirty); 125 126 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 127 u64 root, void *warn_ctx) 128 { 129 struct data_reloc_warn *warn = warn_ctx; 130 struct btrfs_fs_info *fs_info = warn->fs_info; 131 struct extent_buffer *eb; 132 struct btrfs_inode_item *inode_item; 133 struct inode_fs_paths *ipath = NULL; 134 struct btrfs_root *local_root; 135 struct btrfs_key key; 136 unsigned int nofs_flag; 137 u32 nlink; 138 int ret; 139 140 local_root = btrfs_get_fs_root(fs_info, root, true); 141 if (IS_ERR(local_root)) { 142 ret = PTR_ERR(local_root); 143 goto err; 144 } 145 146 /* This makes the path point to (inum INODE_ITEM ioff). */ 147 key.objectid = inum; 148 key.type = BTRFS_INODE_ITEM_KEY; 149 key.offset = 0; 150 151 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 152 if (ret) { 153 btrfs_put_root(local_root); 154 btrfs_release_path(&warn->path); 155 goto err; 156 } 157 158 eb = warn->path.nodes[0]; 159 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 160 nlink = btrfs_inode_nlink(eb, inode_item); 161 btrfs_release_path(&warn->path); 162 163 nofs_flag = memalloc_nofs_save(); 164 ipath = init_ipath(4096, local_root, &warn->path); 165 memalloc_nofs_restore(nofs_flag); 166 if (IS_ERR(ipath)) { 167 btrfs_put_root(local_root); 168 ret = PTR_ERR(ipath); 169 ipath = NULL; 170 /* 171 * -ENOMEM, not a critical error, just output an generic error 172 * without filename. 173 */ 174 btrfs_warn(fs_info, 175 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 176 warn->logical, warn->mirror_num, root, inum, offset); 177 return ret; 178 } 179 ret = paths_from_inode(inum, ipath); 180 if (ret < 0) 181 goto err; 182 183 /* 184 * We deliberately ignore the bit ipath might have been too small to 185 * hold all of the paths here 186 */ 187 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 188 btrfs_warn(fs_info, 189 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 190 warn->logical, warn->mirror_num, root, inum, offset, 191 fs_info->sectorsize, nlink, 192 (char *)(unsigned long)ipath->fspath->val[i]); 193 } 194 195 btrfs_put_root(local_root); 196 free_ipath(ipath); 197 return 0; 198 199 err: 200 btrfs_warn(fs_info, 201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 202 warn->logical, warn->mirror_num, root, inum, offset, ret); 203 204 free_ipath(ipath); 205 return ret; 206 } 207 208 /* 209 * Do extra user-friendly error output (e.g. lookup all the affected files). 210 * 211 * Return true if we succeeded doing the backref lookup. 212 * Return false if such lookup failed, and has to fallback to the old error message. 213 */ 214 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 215 const u8 *csum, const u8 *csum_expected, 216 int mirror_num) 217 { 218 struct btrfs_fs_info *fs_info = inode->root->fs_info; 219 struct btrfs_path path = { 0 }; 220 struct btrfs_key found_key = { 0 }; 221 struct extent_buffer *eb; 222 struct btrfs_extent_item *ei; 223 const u32 csum_size = fs_info->csum_size; 224 u64 logical; 225 u64 flags; 226 u32 item_size; 227 int ret; 228 229 mutex_lock(&fs_info->reloc_mutex); 230 logical = btrfs_get_reloc_bg_bytenr(fs_info); 231 mutex_unlock(&fs_info->reloc_mutex); 232 233 if (logical == U64_MAX) { 234 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 235 btrfs_warn_rl(fs_info, 236 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 237 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 238 CSUM_FMT_VALUE(csum_size, csum), 239 CSUM_FMT_VALUE(csum_size, csum_expected), 240 mirror_num); 241 return; 242 } 243 244 logical += file_off; 245 btrfs_warn_rl(fs_info, 246 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 247 btrfs_root_id(inode->root), 248 btrfs_ino(inode), file_off, logical, 249 CSUM_FMT_VALUE(csum_size, csum), 250 CSUM_FMT_VALUE(csum_size, csum_expected), 251 mirror_num); 252 253 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 254 if (ret < 0) { 255 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 256 logical, ret); 257 return; 258 } 259 eb = path.nodes[0]; 260 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 261 item_size = btrfs_item_size(eb, path.slots[0]); 262 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 263 unsigned long ptr = 0; 264 u64 ref_root; 265 u8 ref_level; 266 267 while (true) { 268 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 269 item_size, &ref_root, 270 &ref_level); 271 if (ret < 0) { 272 btrfs_warn_rl(fs_info, 273 "failed to resolve tree backref for logical %llu: %d", 274 logical, ret); 275 break; 276 } 277 if (ret > 0) 278 break; 279 280 btrfs_warn_rl(fs_info, 281 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 282 logical, mirror_num, 283 (ref_level ? "node" : "leaf"), 284 ref_level, ref_root); 285 } 286 btrfs_release_path(&path); 287 } else { 288 struct btrfs_backref_walk_ctx ctx = { 0 }; 289 struct data_reloc_warn reloc_warn = { 0 }; 290 291 btrfs_release_path(&path); 292 293 ctx.bytenr = found_key.objectid; 294 ctx.extent_item_pos = logical - found_key.objectid; 295 ctx.fs_info = fs_info; 296 297 reloc_warn.logical = logical; 298 reloc_warn.extent_item_size = found_key.offset; 299 reloc_warn.mirror_num = mirror_num; 300 reloc_warn.fs_info = fs_info; 301 302 iterate_extent_inodes(&ctx, true, 303 data_reloc_print_warning_inode, &reloc_warn); 304 } 305 } 306 307 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 308 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 309 { 310 struct btrfs_root *root = inode->root; 311 const u32 csum_size = root->fs_info->csum_size; 312 313 /* For data reloc tree, it's better to do a backref lookup instead. */ 314 if (btrfs_is_data_reloc_root(root)) 315 return print_data_reloc_error(inode, logical_start, csum, 316 csum_expected, mirror_num); 317 318 /* Output without objectid, which is more meaningful */ 319 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 320 btrfs_warn_rl(root->fs_info, 321 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 322 btrfs_root_id(root), btrfs_ino(inode), 323 logical_start, 324 CSUM_FMT_VALUE(csum_size, csum), 325 CSUM_FMT_VALUE(csum_size, csum_expected), 326 mirror_num); 327 } else { 328 btrfs_warn_rl(root->fs_info, 329 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 330 btrfs_root_id(root), btrfs_ino(inode), 331 logical_start, 332 CSUM_FMT_VALUE(csum_size, csum), 333 CSUM_FMT_VALUE(csum_size, csum_expected), 334 mirror_num); 335 } 336 } 337 338 /* 339 * Lock inode i_rwsem based on arguments passed. 340 * 341 * ilock_flags can have the following bit set: 342 * 343 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 344 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 345 * return -EAGAIN 346 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 347 */ 348 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 349 { 350 if (ilock_flags & BTRFS_ILOCK_SHARED) { 351 if (ilock_flags & BTRFS_ILOCK_TRY) { 352 if (!inode_trylock_shared(&inode->vfs_inode)) 353 return -EAGAIN; 354 else 355 return 0; 356 } 357 inode_lock_shared(&inode->vfs_inode); 358 } else { 359 if (ilock_flags & BTRFS_ILOCK_TRY) { 360 if (!inode_trylock(&inode->vfs_inode)) 361 return -EAGAIN; 362 else 363 return 0; 364 } 365 inode_lock(&inode->vfs_inode); 366 } 367 if (ilock_flags & BTRFS_ILOCK_MMAP) 368 down_write(&inode->i_mmap_lock); 369 return 0; 370 } 371 372 /* 373 * Unlock inode i_rwsem. 374 * 375 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 376 * to decide whether the lock acquired is shared or exclusive. 377 */ 378 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 379 { 380 if (ilock_flags & BTRFS_ILOCK_MMAP) 381 up_write(&inode->i_mmap_lock); 382 if (ilock_flags & BTRFS_ILOCK_SHARED) 383 inode_unlock_shared(&inode->vfs_inode); 384 else 385 inode_unlock(&inode->vfs_inode); 386 } 387 388 /* 389 * Cleanup all submitted ordered extents in specified range to handle errors 390 * from the btrfs_run_delalloc_range() callback. 391 * 392 * NOTE: caller must ensure that when an error happens, it can not call 393 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 394 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 395 * to be released, which we want to happen only when finishing the ordered 396 * extent (btrfs_finish_ordered_io()). 397 */ 398 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 399 u64 offset, u64 bytes) 400 { 401 pgoff_t index = offset >> PAGE_SHIFT; 402 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 403 struct folio *folio; 404 405 while (index <= end_index) { 406 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 407 if (IS_ERR(folio)) { 408 index++; 409 continue; 410 } 411 412 index = folio_end(folio) >> PAGE_SHIFT; 413 /* 414 * Here we just clear all Ordered bits for every page in the 415 * range, then btrfs_mark_ordered_io_finished() will handle 416 * the ordered extent accounting for the range. 417 */ 418 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 419 offset, bytes); 420 folio_put(folio); 421 } 422 423 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 424 } 425 426 static int btrfs_dirty_inode(struct btrfs_inode *inode); 427 428 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 429 struct btrfs_new_inode_args *args) 430 { 431 int ret; 432 433 if (args->default_acl) { 434 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 435 ACL_TYPE_DEFAULT); 436 if (ret) 437 return ret; 438 } 439 if (args->acl) { 440 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 441 if (ret) 442 return ret; 443 } 444 if (!args->default_acl && !args->acl) 445 cache_no_acl(args->inode); 446 return btrfs_xattr_security_init(trans, args->inode, args->dir, 447 &args->dentry->d_name); 448 } 449 450 /* 451 * this does all the hard work for inserting an inline extent into 452 * the btree. The caller should have done a btrfs_drop_extents so that 453 * no overlapping inline items exist in the btree 454 */ 455 static int insert_inline_extent(struct btrfs_trans_handle *trans, 456 struct btrfs_path *path, 457 struct btrfs_inode *inode, bool extent_inserted, 458 size_t size, size_t compressed_size, 459 int compress_type, 460 struct folio *compressed_folio, 461 bool update_i_size) 462 { 463 struct btrfs_root *root = inode->root; 464 struct extent_buffer *leaf; 465 const u32 sectorsize = trans->fs_info->sectorsize; 466 char *kaddr; 467 unsigned long ptr; 468 struct btrfs_file_extent_item *ei; 469 int ret; 470 size_t cur_size = size; 471 u64 i_size; 472 473 /* 474 * The decompressed size must still be no larger than a sector. Under 475 * heavy race, we can have size == 0 passed in, but that shouldn't be a 476 * big deal and we can continue the insertion. 477 */ 478 ASSERT(size <= sectorsize); 479 480 /* 481 * The compressed size also needs to be no larger than a sector. 482 * That's also why we only need one page as the parameter. 483 */ 484 if (compressed_folio) 485 ASSERT(compressed_size <= sectorsize); 486 else 487 ASSERT(compressed_size == 0); 488 489 if (compressed_size && compressed_folio) 490 cur_size = compressed_size; 491 492 if (!extent_inserted) { 493 struct btrfs_key key; 494 size_t datasize; 495 496 key.objectid = btrfs_ino(inode); 497 key.type = BTRFS_EXTENT_DATA_KEY; 498 key.offset = 0; 499 500 datasize = btrfs_file_extent_calc_inline_size(cur_size); 501 ret = btrfs_insert_empty_item(trans, root, path, &key, 502 datasize); 503 if (ret) 504 goto fail; 505 } 506 leaf = path->nodes[0]; 507 ei = btrfs_item_ptr(leaf, path->slots[0], 508 struct btrfs_file_extent_item); 509 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 510 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 511 btrfs_set_file_extent_encryption(leaf, ei, 0); 512 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 513 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 514 ptr = btrfs_file_extent_inline_start(ei); 515 516 if (compress_type != BTRFS_COMPRESS_NONE) { 517 kaddr = kmap_local_folio(compressed_folio, 0); 518 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 519 kunmap_local(kaddr); 520 521 btrfs_set_file_extent_compression(leaf, ei, 522 compress_type); 523 } else { 524 struct folio *folio; 525 526 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 527 ASSERT(!IS_ERR(folio)); 528 btrfs_set_file_extent_compression(leaf, ei, 0); 529 kaddr = kmap_local_folio(folio, 0); 530 write_extent_buffer(leaf, kaddr, ptr, size); 531 kunmap_local(kaddr); 532 folio_put(folio); 533 } 534 btrfs_release_path(path); 535 536 /* 537 * We align size to sectorsize for inline extents just for simplicity 538 * sake. 539 */ 540 ret = btrfs_inode_set_file_extent_range(inode, 0, 541 ALIGN(size, root->fs_info->sectorsize)); 542 if (ret) 543 goto fail; 544 545 /* 546 * We're an inline extent, so nobody can extend the file past i_size 547 * without locking a page we already have locked. 548 * 549 * We must do any i_size and inode updates before we unlock the pages. 550 * Otherwise we could end up racing with unlink. 551 */ 552 i_size = i_size_read(&inode->vfs_inode); 553 if (update_i_size && size > i_size) { 554 i_size_write(&inode->vfs_inode, size); 555 i_size = size; 556 } 557 inode->disk_i_size = i_size; 558 559 fail: 560 return ret; 561 } 562 563 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 564 u64 offset, u64 size, 565 size_t compressed_size) 566 { 567 struct btrfs_fs_info *fs_info = inode->root->fs_info; 568 u64 data_len = (compressed_size ?: size); 569 570 /* Inline extents must start at offset 0. */ 571 if (offset != 0) 572 return false; 573 574 /* Inline extents are limited to sectorsize. */ 575 if (size > fs_info->sectorsize) 576 return false; 577 578 /* We do not allow a non-compressed extent to be as large as block size. */ 579 if (data_len >= fs_info->sectorsize) 580 return false; 581 582 /* We cannot exceed the maximum inline data size. */ 583 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 584 return false; 585 586 /* We cannot exceed the user specified max_inline size. */ 587 if (data_len > fs_info->max_inline) 588 return false; 589 590 /* Inline extents must be the entirety of the file. */ 591 if (size < i_size_read(&inode->vfs_inode)) 592 return false; 593 594 return true; 595 } 596 597 /* 598 * conditionally insert an inline extent into the file. This 599 * does the checks required to make sure the data is small enough 600 * to fit as an inline extent. 601 * 602 * If being used directly, you must have already checked we're allowed to cow 603 * the range by getting true from can_cow_file_range_inline(). 604 */ 605 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 606 u64 size, size_t compressed_size, 607 int compress_type, 608 struct folio *compressed_folio, 609 bool update_i_size) 610 { 611 struct btrfs_drop_extents_args drop_args = { 0 }; 612 struct btrfs_root *root = inode->root; 613 struct btrfs_fs_info *fs_info = root->fs_info; 614 struct btrfs_trans_handle *trans; 615 u64 data_len = (compressed_size ?: size); 616 int ret; 617 struct btrfs_path *path; 618 619 path = btrfs_alloc_path(); 620 if (!path) 621 return -ENOMEM; 622 623 trans = btrfs_join_transaction(root); 624 if (IS_ERR(trans)) { 625 btrfs_free_path(path); 626 return PTR_ERR(trans); 627 } 628 trans->block_rsv = &inode->block_rsv; 629 630 drop_args.path = path; 631 drop_args.start = 0; 632 drop_args.end = fs_info->sectorsize; 633 drop_args.drop_cache = true; 634 drop_args.replace_extent = true; 635 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 636 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 637 if (unlikely(ret)) { 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 642 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 643 size, compressed_size, compress_type, 644 compressed_folio, update_i_size); 645 if (unlikely(ret && ret != -ENOSPC)) { 646 btrfs_abort_transaction(trans, ret); 647 goto out; 648 } else if (ret == -ENOSPC) { 649 ret = 1; 650 goto out; 651 } 652 653 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 654 ret = btrfs_update_inode(trans, inode); 655 if (unlikely(ret && ret != -ENOSPC)) { 656 btrfs_abort_transaction(trans, ret); 657 goto out; 658 } else if (ret == -ENOSPC) { 659 ret = 1; 660 goto out; 661 } 662 663 btrfs_set_inode_full_sync(inode); 664 out: 665 /* 666 * Don't forget to free the reserved space, as for inlined extent 667 * it won't count as data extent, free them directly here. 668 * And at reserve time, it's always aligned to page size, so 669 * just free one page here. 670 */ 671 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 672 btrfs_free_path(path); 673 btrfs_end_transaction(trans); 674 return ret; 675 } 676 677 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 678 struct folio *locked_folio, 679 u64 offset, u64 end, 680 size_t compressed_size, 681 int compress_type, 682 struct folio *compressed_folio, 683 bool update_i_size) 684 { 685 struct extent_state *cached = NULL; 686 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 687 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 688 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 689 int ret; 690 691 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 692 return 1; 693 694 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 695 ret = __cow_file_range_inline(inode, size, compressed_size, 696 compress_type, compressed_folio, 697 update_i_size); 698 if (ret > 0) { 699 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 700 return ret; 701 } 702 703 /* 704 * In the successful case (ret == 0 here), cow_file_range will return 1. 705 * 706 * Quite a bit further up the callstack in extent_writepage(), ret == 1 707 * is treated as a short circuited success and does not unlock the folio, 708 * so we must do it here. 709 * 710 * In the failure case, the locked_folio does get unlocked by 711 * btrfs_folio_end_all_writers, which asserts that it is still locked 712 * at that point, so we must *not* unlock it here. 713 * 714 * The other two callsites in compress_file_range do not have a 715 * locked_folio, so they are not relevant to this logic. 716 */ 717 if (ret == 0) 718 locked_folio = NULL; 719 720 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 721 clear_flags, PAGE_UNLOCK | 722 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 723 return ret; 724 } 725 726 struct async_extent { 727 u64 start; 728 u64 ram_size; 729 u64 compressed_size; 730 struct folio **folios; 731 unsigned long nr_folios; 732 int compress_type; 733 struct list_head list; 734 }; 735 736 struct async_chunk { 737 struct btrfs_inode *inode; 738 struct folio *locked_folio; 739 u64 start; 740 u64 end; 741 blk_opf_t write_flags; 742 struct list_head extents; 743 struct cgroup_subsys_state *blkcg_css; 744 struct btrfs_work work; 745 struct async_cow *async_cow; 746 }; 747 748 struct async_cow { 749 atomic_t num_chunks; 750 struct async_chunk chunks[]; 751 }; 752 753 static noinline int add_async_extent(struct async_chunk *cow, 754 u64 start, u64 ram_size, 755 u64 compressed_size, 756 struct folio **folios, 757 unsigned long nr_folios, 758 int compress_type) 759 { 760 struct async_extent *async_extent; 761 762 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 763 if (!async_extent) 764 return -ENOMEM; 765 async_extent->start = start; 766 async_extent->ram_size = ram_size; 767 async_extent->compressed_size = compressed_size; 768 async_extent->folios = folios; 769 async_extent->nr_folios = nr_folios; 770 async_extent->compress_type = compress_type; 771 list_add_tail(&async_extent->list, &cow->extents); 772 return 0; 773 } 774 775 /* 776 * Check if the inode needs to be submitted to compression, based on mount 777 * options, defragmentation, properties or heuristics. 778 */ 779 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 780 u64 end) 781 { 782 struct btrfs_fs_info *fs_info = inode->root->fs_info; 783 784 if (!btrfs_inode_can_compress(inode)) { 785 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 786 return 0; 787 } 788 789 /* Defrag ioctl takes precedence over mount options and properties. */ 790 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 791 return 0; 792 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 793 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 794 return 1; 795 /* force compress */ 796 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 797 return 1; 798 /* bad compression ratios */ 799 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 800 return 0; 801 if (btrfs_test_opt(fs_info, COMPRESS) || 802 inode->flags & BTRFS_INODE_COMPRESS || 803 inode->prop_compress) 804 return btrfs_compress_heuristic(inode, start, end); 805 return 0; 806 } 807 808 static inline void inode_should_defrag(struct btrfs_inode *inode, 809 u64 start, u64 end, u64 num_bytes, u32 small_write) 810 { 811 /* If this is a small write inside eof, kick off a defrag */ 812 if (num_bytes < small_write && 813 (start > 0 || end + 1 < inode->disk_i_size)) 814 btrfs_add_inode_defrag(inode, small_write); 815 } 816 817 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 818 { 819 const pgoff_t end_index = end >> PAGE_SHIFT; 820 struct folio *folio; 821 int ret = 0; 822 823 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 824 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 825 if (IS_ERR(folio)) { 826 if (!ret) 827 ret = PTR_ERR(folio); 828 continue; 829 } 830 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 831 end + 1 - start); 832 folio_put(folio); 833 } 834 return ret; 835 } 836 837 /* 838 * Work queue call back to started compression on a file and pages. 839 * 840 * This is done inside an ordered work queue, and the compression is spread 841 * across many cpus. The actual IO submission is step two, and the ordered work 842 * queue takes care of making sure that happens in the same order things were 843 * put onto the queue by writepages and friends. 844 * 845 * If this code finds it can't get good compression, it puts an entry onto the 846 * work queue to write the uncompressed bytes. This makes sure that both 847 * compressed inodes and uncompressed inodes are written in the same order that 848 * the flusher thread sent them down. 849 */ 850 static void compress_file_range(struct btrfs_work *work) 851 { 852 struct async_chunk *async_chunk = 853 container_of(work, struct async_chunk, work); 854 struct btrfs_inode *inode = async_chunk->inode; 855 struct btrfs_fs_info *fs_info = inode->root->fs_info; 856 struct address_space *mapping = inode->vfs_inode.i_mapping; 857 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 858 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 859 u64 blocksize = fs_info->sectorsize; 860 u64 start = async_chunk->start; 861 u64 end = async_chunk->end; 862 u64 actual_end; 863 u64 i_size; 864 int ret = 0; 865 struct folio **folios; 866 unsigned long nr_folios; 867 unsigned long total_compressed = 0; 868 unsigned long total_in = 0; 869 unsigned int loff; 870 int i; 871 int compress_type = fs_info->compress_type; 872 int compress_level = fs_info->compress_level; 873 874 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 875 876 /* 877 * We need to call clear_page_dirty_for_io on each page in the range. 878 * Otherwise applications with the file mmap'd can wander in and change 879 * the page contents while we are compressing them. 880 */ 881 ret = extent_range_clear_dirty_for_io(inode, start, end); 882 883 /* 884 * All the folios should have been locked thus no failure. 885 * 886 * And even if some folios are missing, btrfs_compress_folios() 887 * would handle them correctly, so here just do an ASSERT() check for 888 * early logic errors. 889 */ 890 ASSERT(ret == 0); 891 892 /* 893 * We need to save i_size before now because it could change in between 894 * us evaluating the size and assigning it. This is because we lock and 895 * unlock the page in truncate and fallocate, and then modify the i_size 896 * later on. 897 * 898 * The barriers are to emulate READ_ONCE, remove that once i_size_read 899 * does that for us. 900 */ 901 barrier(); 902 i_size = i_size_read(&inode->vfs_inode); 903 barrier(); 904 actual_end = min_t(u64, i_size, end + 1); 905 again: 906 folios = NULL; 907 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1; 908 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift); 909 910 /* 911 * we don't want to send crud past the end of i_size through 912 * compression, that's just a waste of CPU time. So, if the 913 * end of the file is before the start of our current 914 * requested range of bytes, we bail out to the uncompressed 915 * cleanup code that can deal with all of this. 916 * 917 * It isn't really the fastest way to fix things, but this is a 918 * very uncommon corner. 919 */ 920 if (actual_end <= start) 921 goto cleanup_and_bail_uncompressed; 922 923 total_compressed = actual_end - start; 924 925 /* 926 * Skip compression for a small file range(<=blocksize) that 927 * isn't an inline extent, since it doesn't save disk space at all. 928 */ 929 if (total_compressed <= blocksize && 930 (start > 0 || end + 1 < inode->disk_i_size)) 931 goto cleanup_and_bail_uncompressed; 932 933 total_compressed = min_t(unsigned long, total_compressed, 934 BTRFS_MAX_UNCOMPRESSED); 935 total_in = 0; 936 ret = 0; 937 938 /* 939 * We do compression for mount -o compress and when the inode has not 940 * been flagged as NOCOMPRESS. This flag can change at any time if we 941 * discover bad compression ratios. 942 */ 943 if (!inode_need_compress(inode, start, end)) 944 goto cleanup_and_bail_uncompressed; 945 946 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 947 if (!folios) { 948 /* 949 * Memory allocation failure is not a fatal error, we can fall 950 * back to uncompressed code. 951 */ 952 goto cleanup_and_bail_uncompressed; 953 } 954 955 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 956 compress_type = inode->defrag_compress; 957 compress_level = inode->defrag_compress_level; 958 } else if (inode->prop_compress) { 959 compress_type = inode->prop_compress; 960 } 961 962 /* Compression level is applied here. */ 963 ret = btrfs_compress_folios(compress_type, compress_level, 964 inode, start, folios, &nr_folios, &total_in, 965 &total_compressed); 966 if (ret) 967 goto mark_incompressible; 968 969 /* 970 * Zero the tail end of the last folio, as we might be sending it down 971 * to disk. 972 */ 973 loff = (total_compressed & (min_folio_size - 1)); 974 if (loff) 975 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff); 976 977 /* 978 * Try to create an inline extent. 979 * 980 * If we didn't compress the entire range, try to create an uncompressed 981 * inline extent, else a compressed one. 982 * 983 * Check cow_file_range() for why we don't even try to create inline 984 * extent for the subpage case. 985 */ 986 if (total_in < actual_end) 987 ret = cow_file_range_inline(inode, NULL, start, end, 0, 988 BTRFS_COMPRESS_NONE, NULL, false); 989 else 990 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 991 compress_type, folios[0], false); 992 if (ret <= 0) { 993 if (ret < 0) 994 mapping_set_error(mapping, -EIO); 995 goto free_pages; 996 } 997 998 /* 999 * We aren't doing an inline extent. Round the compressed size up to a 1000 * block size boundary so the allocator does sane things. 1001 */ 1002 total_compressed = ALIGN(total_compressed, blocksize); 1003 1004 /* 1005 * One last check to make sure the compression is really a win, compare 1006 * the page count read with the blocks on disk, compression must free at 1007 * least one sector. 1008 */ 1009 total_in = round_up(total_in, fs_info->sectorsize); 1010 if (total_compressed + blocksize > total_in) 1011 goto mark_incompressible; 1012 1013 /* 1014 * The async work queues will take care of doing actual allocation on 1015 * disk for these compressed pages, and will submit the bios. 1016 */ 1017 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1018 nr_folios, compress_type); 1019 BUG_ON(ret); 1020 if (start + total_in < end) { 1021 start += total_in; 1022 cond_resched(); 1023 goto again; 1024 } 1025 return; 1026 1027 mark_incompressible: 1028 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1029 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1030 cleanup_and_bail_uncompressed: 1031 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1032 BTRFS_COMPRESS_NONE); 1033 BUG_ON(ret); 1034 free_pages: 1035 if (folios) { 1036 for (i = 0; i < nr_folios; i++) { 1037 WARN_ON(folios[i]->mapping); 1038 btrfs_free_compr_folio(folios[i]); 1039 } 1040 kfree(folios); 1041 } 1042 } 1043 1044 static void free_async_extent_pages(struct async_extent *async_extent) 1045 { 1046 int i; 1047 1048 if (!async_extent->folios) 1049 return; 1050 1051 for (i = 0; i < async_extent->nr_folios; i++) { 1052 WARN_ON(async_extent->folios[i]->mapping); 1053 btrfs_free_compr_folio(async_extent->folios[i]); 1054 } 1055 kfree(async_extent->folios); 1056 async_extent->nr_folios = 0; 1057 async_extent->folios = NULL; 1058 } 1059 1060 static void submit_uncompressed_range(struct btrfs_inode *inode, 1061 struct async_extent *async_extent, 1062 struct folio *locked_folio) 1063 { 1064 u64 start = async_extent->start; 1065 u64 end = async_extent->start + async_extent->ram_size - 1; 1066 int ret; 1067 struct writeback_control wbc = { 1068 .sync_mode = WB_SYNC_ALL, 1069 .range_start = start, 1070 .range_end = end, 1071 .no_cgroup_owner = 1, 1072 }; 1073 1074 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1075 ret = run_delalloc_cow(inode, locked_folio, start, end, 1076 &wbc, false); 1077 wbc_detach_inode(&wbc); 1078 if (ret < 0) { 1079 if (locked_folio) 1080 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1081 start, async_extent->ram_size); 1082 btrfs_err_rl(inode->root->fs_info, 1083 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1084 __func__, btrfs_root_id(inode->root), 1085 btrfs_ino(inode), start, async_extent->ram_size, ret); 1086 } 1087 } 1088 1089 static void submit_one_async_extent(struct async_chunk *async_chunk, 1090 struct async_extent *async_extent, 1091 u64 *alloc_hint) 1092 { 1093 struct btrfs_inode *inode = async_chunk->inode; 1094 struct extent_io_tree *io_tree = &inode->io_tree; 1095 struct btrfs_root *root = inode->root; 1096 struct btrfs_fs_info *fs_info = root->fs_info; 1097 struct btrfs_ordered_extent *ordered; 1098 struct btrfs_file_extent file_extent; 1099 struct btrfs_key ins; 1100 struct folio *locked_folio = NULL; 1101 struct extent_state *cached = NULL; 1102 struct extent_map *em; 1103 int ret = 0; 1104 bool free_pages = false; 1105 u64 start = async_extent->start; 1106 u64 end = async_extent->start + async_extent->ram_size - 1; 1107 1108 if (async_chunk->blkcg_css) 1109 kthread_associate_blkcg(async_chunk->blkcg_css); 1110 1111 /* 1112 * If async_chunk->locked_folio is in the async_extent range, we need to 1113 * handle it. 1114 */ 1115 if (async_chunk->locked_folio) { 1116 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1117 u64 locked_folio_end = locked_folio_start + 1118 folio_size(async_chunk->locked_folio) - 1; 1119 1120 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1121 locked_folio = async_chunk->locked_folio; 1122 } 1123 1124 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1125 ASSERT(!async_extent->folios); 1126 ASSERT(async_extent->nr_folios == 0); 1127 submit_uncompressed_range(inode, async_extent, locked_folio); 1128 free_pages = true; 1129 goto done; 1130 } 1131 1132 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1133 async_extent->compressed_size, 1134 async_extent->compressed_size, 1135 0, *alloc_hint, &ins, 1, 1); 1136 if (ret) { 1137 /* 1138 * We can't reserve contiguous space for the compressed size. 1139 * Unlikely, but it's possible that we could have enough 1140 * non-contiguous space for the uncompressed size instead. So 1141 * fall back to uncompressed. 1142 */ 1143 submit_uncompressed_range(inode, async_extent, locked_folio); 1144 free_pages = true; 1145 goto done; 1146 } 1147 1148 btrfs_lock_extent(io_tree, start, end, &cached); 1149 1150 /* Here we're doing allocation and writeback of the compressed pages */ 1151 file_extent.disk_bytenr = ins.objectid; 1152 file_extent.disk_num_bytes = ins.offset; 1153 file_extent.ram_bytes = async_extent->ram_size; 1154 file_extent.num_bytes = async_extent->ram_size; 1155 file_extent.offset = 0; 1156 file_extent.compression = async_extent->compress_type; 1157 1158 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1159 if (IS_ERR(em)) { 1160 ret = PTR_ERR(em); 1161 goto out_free_reserve; 1162 } 1163 btrfs_free_extent_map(em); 1164 1165 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1166 1U << BTRFS_ORDERED_COMPRESSED); 1167 if (IS_ERR(ordered)) { 1168 btrfs_drop_extent_map_range(inode, start, end, false); 1169 ret = PTR_ERR(ordered); 1170 goto out_free_reserve; 1171 } 1172 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1173 1174 /* Clear dirty, set writeback and unlock the pages. */ 1175 extent_clear_unlock_delalloc(inode, start, end, 1176 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1177 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1178 btrfs_submit_compressed_write(ordered, 1179 async_extent->folios, /* compressed_folios */ 1180 async_extent->nr_folios, 1181 async_chunk->write_flags, true); 1182 *alloc_hint = ins.objectid + ins.offset; 1183 done: 1184 if (async_chunk->blkcg_css) 1185 kthread_associate_blkcg(NULL); 1186 if (free_pages) 1187 free_async_extent_pages(async_extent); 1188 kfree(async_extent); 1189 return; 1190 1191 out_free_reserve: 1192 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1193 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1194 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1195 extent_clear_unlock_delalloc(inode, start, end, 1196 NULL, &cached, 1197 EXTENT_LOCKED | EXTENT_DELALLOC | 1198 EXTENT_DELALLOC_NEW | 1199 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1200 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1201 PAGE_END_WRITEBACK); 1202 free_async_extent_pages(async_extent); 1203 if (async_chunk->blkcg_css) 1204 kthread_associate_blkcg(NULL); 1205 btrfs_debug(fs_info, 1206 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1207 btrfs_root_id(root), btrfs_ino(inode), start, 1208 async_extent->ram_size, ret); 1209 kfree(async_extent); 1210 } 1211 1212 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1213 u64 num_bytes) 1214 { 1215 struct extent_map_tree *em_tree = &inode->extent_tree; 1216 struct extent_map *em; 1217 u64 alloc_hint = 0; 1218 1219 read_lock(&em_tree->lock); 1220 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1221 if (em) { 1222 /* 1223 * if block start isn't an actual block number then find the 1224 * first block in this inode and use that as a hint. If that 1225 * block is also bogus then just don't worry about it. 1226 */ 1227 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1228 btrfs_free_extent_map(em); 1229 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1230 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1231 alloc_hint = btrfs_extent_map_block_start(em); 1232 if (em) 1233 btrfs_free_extent_map(em); 1234 } else { 1235 alloc_hint = btrfs_extent_map_block_start(em); 1236 btrfs_free_extent_map(em); 1237 } 1238 } 1239 read_unlock(&em_tree->lock); 1240 1241 return alloc_hint; 1242 } 1243 1244 /* 1245 * when extent_io.c finds a delayed allocation range in the file, 1246 * the call backs end up in this code. The basic idea is to 1247 * allocate extents on disk for the range, and create ordered data structs 1248 * in ram to track those extents. 1249 * 1250 * locked_folio is the folio that writepage had locked already. We use 1251 * it to make sure we don't do extra locks or unlocks. 1252 * 1253 * When this function fails, it unlocks all folios except @locked_folio. 1254 * 1255 * When this function successfully creates an inline extent, it returns 1 and 1256 * unlocks all folios including locked_folio and starts I/O on them. 1257 * (In reality inline extents are limited to a single block, so locked_folio is 1258 * the only folio handled anyway). 1259 * 1260 * When this function succeed and creates a normal extent, the folio locking 1261 * status depends on the passed in flags: 1262 * 1263 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1264 * - Else all folios except for @locked_folio are unlocked. 1265 * 1266 * When a failure happens in the second or later iteration of the 1267 * while-loop, the ordered extents created in previous iterations are cleaned up. 1268 */ 1269 static noinline int cow_file_range(struct btrfs_inode *inode, 1270 struct folio *locked_folio, u64 start, 1271 u64 end, u64 *done_offset, 1272 unsigned long flags) 1273 { 1274 struct btrfs_root *root = inode->root; 1275 struct btrfs_fs_info *fs_info = root->fs_info; 1276 struct extent_state *cached = NULL; 1277 u64 alloc_hint = 0; 1278 u64 orig_start = start; 1279 u64 num_bytes; 1280 u64 cur_alloc_size = 0; 1281 u64 min_alloc_size; 1282 u64 blocksize = fs_info->sectorsize; 1283 struct btrfs_key ins; 1284 struct extent_map *em; 1285 unsigned clear_bits; 1286 unsigned long page_ops; 1287 int ret = 0; 1288 1289 if (btrfs_is_free_space_inode(inode)) { 1290 ret = -EINVAL; 1291 goto out_unlock; 1292 } 1293 1294 num_bytes = ALIGN(end - start + 1, blocksize); 1295 num_bytes = max(blocksize, num_bytes); 1296 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1297 1298 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1299 1300 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1301 /* lets try to make an inline extent */ 1302 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1303 BTRFS_COMPRESS_NONE, NULL, false); 1304 if (ret <= 0) { 1305 /* 1306 * We succeeded, return 1 so the caller knows we're done 1307 * with this page and already handled the IO. 1308 * 1309 * If there was an error then cow_file_range_inline() has 1310 * already done the cleanup. 1311 */ 1312 if (ret == 0) 1313 ret = 1; 1314 goto done; 1315 } 1316 } 1317 1318 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1319 1320 /* 1321 * We're not doing compressed IO, don't unlock the first page (which 1322 * the caller expects to stay locked), don't clear any dirty bits and 1323 * don't set any writeback bits. 1324 * 1325 * Do set the Ordered (Private2) bit so we know this page was properly 1326 * setup for writepage. 1327 */ 1328 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1329 page_ops |= PAGE_SET_ORDERED; 1330 1331 /* 1332 * Relocation relies on the relocated extents to have exactly the same 1333 * size as the original extents. Normally writeback for relocation data 1334 * extents follows a NOCOW path because relocation preallocates the 1335 * extents. However, due to an operation such as scrub turning a block 1336 * group to RO mode, it may fallback to COW mode, so we must make sure 1337 * an extent allocated during COW has exactly the requested size and can 1338 * not be split into smaller extents, otherwise relocation breaks and 1339 * fails during the stage where it updates the bytenr of file extent 1340 * items. 1341 */ 1342 if (btrfs_is_data_reloc_root(root)) 1343 min_alloc_size = num_bytes; 1344 else 1345 min_alloc_size = fs_info->sectorsize; 1346 1347 while (num_bytes > 0) { 1348 struct btrfs_ordered_extent *ordered; 1349 struct btrfs_file_extent file_extent; 1350 1351 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1352 min_alloc_size, 0, alloc_hint, 1353 &ins, 1, 1); 1354 if (ret == -EAGAIN) { 1355 /* 1356 * btrfs_reserve_extent only returns -EAGAIN for zoned 1357 * file systems, which is an indication that there are 1358 * no active zones to allocate from at the moment. 1359 * 1360 * If this is the first loop iteration, wait for at 1361 * least one zone to finish before retrying the 1362 * allocation. Otherwise ask the caller to write out 1363 * the already allocated blocks before coming back to 1364 * us, or return -ENOSPC if it can't handle retries. 1365 */ 1366 ASSERT(btrfs_is_zoned(fs_info)); 1367 if (start == orig_start) { 1368 wait_on_bit_io(&inode->root->fs_info->flags, 1369 BTRFS_FS_NEED_ZONE_FINISH, 1370 TASK_UNINTERRUPTIBLE); 1371 continue; 1372 } 1373 if (done_offset) { 1374 /* 1375 * Move @end to the end of the processed range, 1376 * and exit the loop to unlock the processed extents. 1377 */ 1378 end = start - 1; 1379 ret = 0; 1380 break; 1381 } 1382 ret = -ENOSPC; 1383 } 1384 if (ret < 0) 1385 goto out_unlock; 1386 cur_alloc_size = ins.offset; 1387 1388 file_extent.disk_bytenr = ins.objectid; 1389 file_extent.disk_num_bytes = ins.offset; 1390 file_extent.num_bytes = ins.offset; 1391 file_extent.ram_bytes = ins.offset; 1392 file_extent.offset = 0; 1393 file_extent.compression = BTRFS_COMPRESS_NONE; 1394 1395 /* 1396 * Locked range will be released either during error clean up or 1397 * after the whole range is finished. 1398 */ 1399 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1400 &cached); 1401 1402 em = btrfs_create_io_em(inode, start, &file_extent, 1403 BTRFS_ORDERED_REGULAR); 1404 if (IS_ERR(em)) { 1405 btrfs_unlock_extent(&inode->io_tree, start, 1406 start + cur_alloc_size - 1, &cached); 1407 ret = PTR_ERR(em); 1408 goto out_reserve; 1409 } 1410 btrfs_free_extent_map(em); 1411 1412 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1413 1U << BTRFS_ORDERED_REGULAR); 1414 if (IS_ERR(ordered)) { 1415 btrfs_unlock_extent(&inode->io_tree, start, 1416 start + cur_alloc_size - 1, &cached); 1417 ret = PTR_ERR(ordered); 1418 goto out_drop_extent_cache; 1419 } 1420 1421 if (btrfs_is_data_reloc_root(root)) { 1422 ret = btrfs_reloc_clone_csums(ordered); 1423 1424 /* 1425 * Only drop cache here, and process as normal. 1426 * 1427 * We must not allow extent_clear_unlock_delalloc() 1428 * at out_unlock label to free meta of this ordered 1429 * extent, as its meta should be freed by 1430 * btrfs_finish_ordered_io(). 1431 * 1432 * So we must continue until @start is increased to 1433 * skip current ordered extent. 1434 */ 1435 if (ret) 1436 btrfs_drop_extent_map_range(inode, start, 1437 start + cur_alloc_size - 1, 1438 false); 1439 } 1440 btrfs_put_ordered_extent(ordered); 1441 1442 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1443 1444 if (num_bytes < cur_alloc_size) 1445 num_bytes = 0; 1446 else 1447 num_bytes -= cur_alloc_size; 1448 alloc_hint = ins.objectid + ins.offset; 1449 start += cur_alloc_size; 1450 cur_alloc_size = 0; 1451 1452 /* 1453 * btrfs_reloc_clone_csums() error, since start is increased 1454 * extent_clear_unlock_delalloc() at out_unlock label won't 1455 * free metadata of current ordered extent, we're OK to exit. 1456 */ 1457 if (ret) 1458 goto out_unlock; 1459 } 1460 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1461 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1462 done: 1463 if (done_offset) 1464 *done_offset = end; 1465 return ret; 1466 1467 out_drop_extent_cache: 1468 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1469 out_reserve: 1470 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1471 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1472 out_unlock: 1473 /* 1474 * Now, we have three regions to clean up: 1475 * 1476 * |-------(1)----|---(2)---|-------------(3)----------| 1477 * `- orig_start `- start `- start + cur_alloc_size `- end 1478 * 1479 * We process each region below. 1480 */ 1481 1482 /* 1483 * For the range (1). We have already instantiated the ordered extents 1484 * for this region, thus we need to cleanup those ordered extents. 1485 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1486 * are also handled by the ordered extents cleanup. 1487 * 1488 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1489 * finish the writeback of the involved folios, which will be never submitted. 1490 */ 1491 if (orig_start < start) { 1492 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1493 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1494 1495 if (!locked_folio) 1496 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1497 1498 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1499 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1500 locked_folio, NULL, clear_bits, page_ops); 1501 } 1502 1503 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1504 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1505 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1506 1507 /* 1508 * For the range (2). If we reserved an extent for our delalloc range 1509 * (or a subrange) and failed to create the respective ordered extent, 1510 * then it means that when we reserved the extent we decremented the 1511 * extent's size from the data space_info's bytes_may_use counter and 1512 * incremented the space_info's bytes_reserved counter by the same 1513 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1514 * to decrement again the data space_info's bytes_may_use counter, 1515 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1516 */ 1517 if (cur_alloc_size) { 1518 extent_clear_unlock_delalloc(inode, start, 1519 start + cur_alloc_size - 1, 1520 locked_folio, &cached, clear_bits, 1521 page_ops); 1522 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1523 } 1524 1525 /* 1526 * For the range (3). We never touched the region. In addition to the 1527 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1528 * space_info's bytes_may_use counter, reserved in 1529 * btrfs_check_data_free_space(). 1530 */ 1531 if (start + cur_alloc_size < end) { 1532 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1533 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1534 end, locked_folio, 1535 &cached, clear_bits, page_ops); 1536 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1537 end - start - cur_alloc_size + 1, NULL); 1538 } 1539 btrfs_err(fs_info, 1540 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d", 1541 __func__, btrfs_root_id(inode->root), 1542 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1543 start, cur_alloc_size, ret); 1544 return ret; 1545 } 1546 1547 /* 1548 * Phase two of compressed writeback. This is the ordered portion of the code, 1549 * which only gets called in the order the work was queued. We walk all the 1550 * async extents created by compress_file_range and send them down to the disk. 1551 * 1552 * If called with @do_free == true then it'll try to finish the work and free 1553 * the work struct eventually. 1554 */ 1555 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1556 { 1557 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1558 work); 1559 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1560 struct async_extent *async_extent; 1561 unsigned long nr_pages; 1562 u64 alloc_hint = 0; 1563 1564 if (do_free) { 1565 struct async_cow *async_cow; 1566 1567 btrfs_add_delayed_iput(async_chunk->inode); 1568 if (async_chunk->blkcg_css) 1569 css_put(async_chunk->blkcg_css); 1570 1571 async_cow = async_chunk->async_cow; 1572 if (atomic_dec_and_test(&async_cow->num_chunks)) 1573 kvfree(async_cow); 1574 return; 1575 } 1576 1577 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1578 PAGE_SHIFT; 1579 1580 while (!list_empty(&async_chunk->extents)) { 1581 async_extent = list_first_entry(&async_chunk->extents, 1582 struct async_extent, list); 1583 list_del(&async_extent->list); 1584 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1585 } 1586 1587 /* atomic_sub_return implies a barrier */ 1588 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1589 5 * SZ_1M) 1590 cond_wake_up_nomb(&fs_info->async_submit_wait); 1591 } 1592 1593 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1594 struct folio *locked_folio, u64 start, 1595 u64 end, struct writeback_control *wbc) 1596 { 1597 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1598 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1599 struct async_cow *ctx; 1600 struct async_chunk *async_chunk; 1601 unsigned long nr_pages; 1602 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1603 int i; 1604 unsigned nofs_flag; 1605 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1606 1607 nofs_flag = memalloc_nofs_save(); 1608 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1609 memalloc_nofs_restore(nofs_flag); 1610 if (!ctx) 1611 return false; 1612 1613 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1614 1615 async_chunk = ctx->chunks; 1616 atomic_set(&ctx->num_chunks, num_chunks); 1617 1618 for (i = 0; i < num_chunks; i++) { 1619 u64 cur_end = min(end, start + SZ_512K - 1); 1620 1621 /* 1622 * igrab is called higher up in the call chain, take only the 1623 * lightweight reference for the callback lifetime 1624 */ 1625 ihold(&inode->vfs_inode); 1626 async_chunk[i].async_cow = ctx; 1627 async_chunk[i].inode = inode; 1628 async_chunk[i].start = start; 1629 async_chunk[i].end = cur_end; 1630 async_chunk[i].write_flags = write_flags; 1631 INIT_LIST_HEAD(&async_chunk[i].extents); 1632 1633 /* 1634 * The locked_folio comes all the way from writepage and its 1635 * the original folio we were actually given. As we spread 1636 * this large delalloc region across multiple async_chunk 1637 * structs, only the first struct needs a pointer to 1638 * locked_folio. 1639 * 1640 * This way we don't need racey decisions about who is supposed 1641 * to unlock it. 1642 */ 1643 if (locked_folio) { 1644 /* 1645 * Depending on the compressibility, the pages might or 1646 * might not go through async. We want all of them to 1647 * be accounted against wbc once. Let's do it here 1648 * before the paths diverge. wbc accounting is used 1649 * only for foreign writeback detection and doesn't 1650 * need full accuracy. Just account the whole thing 1651 * against the first page. 1652 */ 1653 wbc_account_cgroup_owner(wbc, locked_folio, 1654 cur_end - start); 1655 async_chunk[i].locked_folio = locked_folio; 1656 locked_folio = NULL; 1657 } else { 1658 async_chunk[i].locked_folio = NULL; 1659 } 1660 1661 if (blkcg_css != blkcg_root_css) { 1662 css_get(blkcg_css); 1663 async_chunk[i].blkcg_css = blkcg_css; 1664 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1665 } else { 1666 async_chunk[i].blkcg_css = NULL; 1667 } 1668 1669 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1670 submit_compressed_extents); 1671 1672 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1673 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1674 1675 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1676 1677 start = cur_end + 1; 1678 } 1679 return true; 1680 } 1681 1682 /* 1683 * Run the delalloc range from start to end, and write back any dirty pages 1684 * covered by the range. 1685 */ 1686 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1687 struct folio *locked_folio, u64 start, 1688 u64 end, struct writeback_control *wbc, 1689 bool pages_dirty) 1690 { 1691 u64 done_offset = end; 1692 int ret; 1693 1694 while (start <= end) { 1695 ret = cow_file_range(inode, locked_folio, start, end, 1696 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1697 if (ret) 1698 return ret; 1699 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1700 start, done_offset, wbc, pages_dirty); 1701 start = done_offset + 1; 1702 } 1703 1704 return 1; 1705 } 1706 1707 static int fallback_to_cow(struct btrfs_inode *inode, 1708 struct folio *locked_folio, const u64 start, 1709 const u64 end) 1710 { 1711 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1712 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1713 const u64 range_bytes = end + 1 - start; 1714 struct extent_io_tree *io_tree = &inode->io_tree; 1715 struct extent_state *cached_state = NULL; 1716 u64 range_start = start; 1717 u64 count; 1718 int ret; 1719 1720 /* 1721 * If EXTENT_NORESERVE is set it means that when the buffered write was 1722 * made we had not enough available data space and therefore we did not 1723 * reserve data space for it, since we though we could do NOCOW for the 1724 * respective file range (either there is prealloc extent or the inode 1725 * has the NOCOW bit set). 1726 * 1727 * However when we need to fallback to COW mode (because for example the 1728 * block group for the corresponding extent was turned to RO mode by a 1729 * scrub or relocation) we need to do the following: 1730 * 1731 * 1) We increment the bytes_may_use counter of the data space info. 1732 * If COW succeeds, it allocates a new data extent and after doing 1733 * that it decrements the space info's bytes_may_use counter and 1734 * increments its bytes_reserved counter by the same amount (we do 1735 * this at btrfs_add_reserved_bytes()). So we need to increment the 1736 * bytes_may_use counter to compensate (when space is reserved at 1737 * buffered write time, the bytes_may_use counter is incremented); 1738 * 1739 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1740 * that if the COW path fails for any reason, it decrements (through 1741 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1742 * data space info, which we incremented in the step above. 1743 * 1744 * If we need to fallback to cow and the inode corresponds to a free 1745 * space cache inode or an inode of the data relocation tree, we must 1746 * also increment bytes_may_use of the data space_info for the same 1747 * reason. Space caches and relocated data extents always get a prealloc 1748 * extent for them, however scrub or balance may have set the block 1749 * group that contains that extent to RO mode and therefore force COW 1750 * when starting writeback. 1751 */ 1752 btrfs_lock_extent(io_tree, start, end, &cached_state); 1753 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1754 EXTENT_NORESERVE, 0, NULL); 1755 if (count > 0 || is_space_ino || is_reloc_ino) { 1756 u64 bytes = count; 1757 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1758 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1759 1760 if (is_space_ino || is_reloc_ino) 1761 bytes = range_bytes; 1762 1763 spin_lock(&sinfo->lock); 1764 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1765 spin_unlock(&sinfo->lock); 1766 1767 if (count > 0) 1768 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1769 &cached_state); 1770 } 1771 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1772 1773 /* 1774 * Don't try to create inline extents, as a mix of inline extent that 1775 * is written out and unlocked directly and a normal NOCOW extent 1776 * doesn't work. 1777 * 1778 * And here we do not unlock the folio after a successful run. 1779 * The folios will be unlocked after everything is finished, or by error handling. 1780 * 1781 * This is to ensure error handling won't need to clear dirty/ordered flags without 1782 * a locked folio, which can race with writeback. 1783 */ 1784 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1785 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1786 ASSERT(ret != 1); 1787 return ret; 1788 } 1789 1790 struct can_nocow_file_extent_args { 1791 /* Input fields. */ 1792 1793 /* Start file offset of the range we want to NOCOW. */ 1794 u64 start; 1795 /* End file offset (inclusive) of the range we want to NOCOW. */ 1796 u64 end; 1797 bool writeback_path; 1798 /* 1799 * Free the path passed to can_nocow_file_extent() once it's not needed 1800 * anymore. 1801 */ 1802 bool free_path; 1803 1804 /* 1805 * Output fields. Only set when can_nocow_file_extent() returns 1. 1806 * The expected file extent for the NOCOW write. 1807 */ 1808 struct btrfs_file_extent file_extent; 1809 }; 1810 1811 /* 1812 * Check if we can NOCOW the file extent that the path points to. 1813 * This function may return with the path released, so the caller should check 1814 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1815 * 1816 * Returns: < 0 on error 1817 * 0 if we can not NOCOW 1818 * 1 if we can NOCOW 1819 */ 1820 static int can_nocow_file_extent(struct btrfs_path *path, 1821 struct btrfs_key *key, 1822 struct btrfs_inode *inode, 1823 struct can_nocow_file_extent_args *args) 1824 { 1825 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1826 struct extent_buffer *leaf = path->nodes[0]; 1827 struct btrfs_root *root = inode->root; 1828 struct btrfs_file_extent_item *fi; 1829 struct btrfs_root *csum_root; 1830 u64 io_start; 1831 u64 extent_end; 1832 u8 extent_type; 1833 int can_nocow = 0; 1834 int ret = 0; 1835 bool nowait = path->nowait; 1836 1837 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1838 extent_type = btrfs_file_extent_type(leaf, fi); 1839 1840 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1841 goto out; 1842 1843 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1844 extent_type == BTRFS_FILE_EXTENT_REG) 1845 goto out; 1846 1847 /* 1848 * If the extent was created before the generation where the last snapshot 1849 * for its subvolume was created, then this implies the extent is shared, 1850 * hence we must COW. 1851 */ 1852 if (btrfs_file_extent_generation(leaf, fi) <= 1853 btrfs_root_last_snapshot(&root->root_item)) 1854 goto out; 1855 1856 /* An explicit hole, must COW. */ 1857 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1858 goto out; 1859 1860 /* Compressed/encrypted/encoded extents must be COWed. */ 1861 if (btrfs_file_extent_compression(leaf, fi) || 1862 btrfs_file_extent_encryption(leaf, fi) || 1863 btrfs_file_extent_other_encoding(leaf, fi)) 1864 goto out; 1865 1866 extent_end = btrfs_file_extent_end(path); 1867 1868 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1869 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1870 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1871 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1872 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1873 1874 /* 1875 * The following checks can be expensive, as they need to take other 1876 * locks and do btree or rbtree searches, so release the path to avoid 1877 * blocking other tasks for too long. 1878 */ 1879 btrfs_release_path(path); 1880 1881 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1882 args->file_extent.disk_bytenr, path); 1883 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1884 if (ret != 0) 1885 goto out; 1886 1887 if (args->free_path) { 1888 /* 1889 * We don't need the path anymore, plus through the 1890 * btrfs_lookup_csums_list() call below we will end up allocating 1891 * another path. So free the path to avoid unnecessary extra 1892 * memory usage. 1893 */ 1894 btrfs_free_path(path); 1895 path = NULL; 1896 } 1897 1898 /* If there are pending snapshots for this root, we must COW. */ 1899 if (args->writeback_path && !is_freespace_inode && 1900 atomic_read(&root->snapshot_force_cow)) 1901 goto out; 1902 1903 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1904 args->file_extent.offset += args->start - key->offset; 1905 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1906 1907 /* 1908 * Force COW if csums exist in the range. This ensures that csums for a 1909 * given extent are either valid or do not exist. 1910 */ 1911 1912 csum_root = btrfs_csum_root(root->fs_info, io_start); 1913 ret = btrfs_lookup_csums_list(csum_root, io_start, 1914 io_start + args->file_extent.num_bytes - 1, 1915 NULL, nowait); 1916 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1917 if (ret != 0) 1918 goto out; 1919 1920 can_nocow = 1; 1921 out: 1922 if (args->free_path && path) 1923 btrfs_free_path(path); 1924 1925 return ret < 0 ? ret : can_nocow; 1926 } 1927 1928 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1929 struct extent_state **cached, 1930 struct can_nocow_file_extent_args *nocow_args, 1931 u64 file_pos, bool is_prealloc) 1932 { 1933 struct btrfs_ordered_extent *ordered; 1934 const u64 len = nocow_args->file_extent.num_bytes; 1935 const u64 end = file_pos + len - 1; 1936 int ret = 0; 1937 1938 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1939 1940 if (is_prealloc) { 1941 struct extent_map *em; 1942 1943 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1944 BTRFS_ORDERED_PREALLOC); 1945 if (IS_ERR(em)) { 1946 ret = PTR_ERR(em); 1947 goto error; 1948 } 1949 btrfs_free_extent_map(em); 1950 } 1951 1952 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1953 is_prealloc 1954 ? (1U << BTRFS_ORDERED_PREALLOC) 1955 : (1U << BTRFS_ORDERED_NOCOW)); 1956 if (IS_ERR(ordered)) { 1957 if (is_prealloc) 1958 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1959 ret = PTR_ERR(ordered); 1960 goto error; 1961 } 1962 1963 if (btrfs_is_data_reloc_root(inode->root)) 1964 /* 1965 * Errors are handled later, as we must prevent 1966 * extent_clear_unlock_delalloc() in error handler from freeing 1967 * metadata of the created ordered extent. 1968 */ 1969 ret = btrfs_reloc_clone_csums(ordered); 1970 btrfs_put_ordered_extent(ordered); 1971 1972 if (ret < 0) 1973 goto error; 1974 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1975 EXTENT_LOCKED | EXTENT_DELALLOC | 1976 EXTENT_CLEAR_DATA_RESV, 1977 PAGE_SET_ORDERED); 1978 return ret; 1979 1980 error: 1981 btrfs_cleanup_ordered_extents(inode, file_pos, len); 1982 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1983 EXTENT_LOCKED | EXTENT_DELALLOC | 1984 EXTENT_CLEAR_DATA_RESV, 1985 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1986 PAGE_END_WRITEBACK); 1987 btrfs_err(inode->root->fs_info, 1988 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 1989 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 1990 file_pos, len, ret); 1991 return ret; 1992 } 1993 1994 /* 1995 * When nocow writeback calls back. This checks for snapshots or COW copies 1996 * of the extents that exist in the file, and COWs the file as required. 1997 * 1998 * If no cow copies or snapshots exist, we write directly to the existing 1999 * blocks on disk 2000 */ 2001 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2002 struct folio *locked_folio, 2003 const u64 start, const u64 end) 2004 { 2005 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2006 struct btrfs_root *root = inode->root; 2007 struct btrfs_path *path; 2008 u64 cow_start = (u64)-1; 2009 /* 2010 * If not 0, represents the inclusive end of the last fallback_to_cow() 2011 * range. Only for error handling. 2012 * 2013 * The same for nocow_end, it's to avoid double cleaning up the range 2014 * already cleaned by nocow_one_range(). 2015 */ 2016 u64 cow_end = 0; 2017 u64 nocow_end = 0; 2018 u64 cur_offset = start; 2019 int ret; 2020 bool check_prev = true; 2021 u64 ino = btrfs_ino(inode); 2022 struct can_nocow_file_extent_args nocow_args = { 0 }; 2023 /* The range that has ordered extent(s). */ 2024 u64 oe_cleanup_start; 2025 u64 oe_cleanup_len = 0; 2026 /* The range that is untouched. */ 2027 u64 untouched_start; 2028 u64 untouched_len = 0; 2029 2030 /* 2031 * Normally on a zoned device we're only doing COW writes, but in case 2032 * of relocation on a zoned filesystem serializes I/O so that we're only 2033 * writing sequentially and can end up here as well. 2034 */ 2035 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2036 2037 path = btrfs_alloc_path(); 2038 if (!path) { 2039 ret = -ENOMEM; 2040 goto error; 2041 } 2042 2043 nocow_args.end = end; 2044 nocow_args.writeback_path = true; 2045 2046 while (cur_offset <= end) { 2047 struct btrfs_block_group *nocow_bg = NULL; 2048 struct btrfs_key found_key; 2049 struct btrfs_file_extent_item *fi; 2050 struct extent_buffer *leaf; 2051 struct extent_state *cached_state = NULL; 2052 u64 extent_end; 2053 int extent_type; 2054 2055 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2056 cur_offset, 0); 2057 if (ret < 0) 2058 goto error; 2059 2060 /* 2061 * If there is no extent for our range when doing the initial 2062 * search, then go back to the previous slot as it will be the 2063 * one containing the search offset 2064 */ 2065 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2066 leaf = path->nodes[0]; 2067 btrfs_item_key_to_cpu(leaf, &found_key, 2068 path->slots[0] - 1); 2069 if (found_key.objectid == ino && 2070 found_key.type == BTRFS_EXTENT_DATA_KEY) 2071 path->slots[0]--; 2072 } 2073 check_prev = false; 2074 next_slot: 2075 /* Go to next leaf if we have exhausted the current one */ 2076 leaf = path->nodes[0]; 2077 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2078 ret = btrfs_next_leaf(root, path); 2079 if (ret < 0) 2080 goto error; 2081 if (ret > 0) 2082 break; 2083 leaf = path->nodes[0]; 2084 } 2085 2086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2087 2088 /* Didn't find anything for our INO */ 2089 if (found_key.objectid > ino) 2090 break; 2091 /* 2092 * Keep searching until we find an EXTENT_ITEM or there are no 2093 * more extents for this inode 2094 */ 2095 if (WARN_ON_ONCE(found_key.objectid < ino) || 2096 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2097 path->slots[0]++; 2098 goto next_slot; 2099 } 2100 2101 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2102 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2103 found_key.offset > end) 2104 break; 2105 2106 /* 2107 * If the found extent starts after requested offset, then 2108 * adjust cur_offset to be right before this extent begins. 2109 */ 2110 if (found_key.offset > cur_offset) { 2111 if (cow_start == (u64)-1) 2112 cow_start = cur_offset; 2113 cur_offset = found_key.offset; 2114 goto next_slot; 2115 } 2116 2117 /* 2118 * Found extent which begins before our range and potentially 2119 * intersect it 2120 */ 2121 fi = btrfs_item_ptr(leaf, path->slots[0], 2122 struct btrfs_file_extent_item); 2123 extent_type = btrfs_file_extent_type(leaf, fi); 2124 /* If this is triggered then we have a memory corruption. */ 2125 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2126 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2127 ret = -EUCLEAN; 2128 goto error; 2129 } 2130 extent_end = btrfs_file_extent_end(path); 2131 2132 /* 2133 * If the extent we got ends before our current offset, skip to 2134 * the next extent. 2135 */ 2136 if (extent_end <= cur_offset) { 2137 path->slots[0]++; 2138 goto next_slot; 2139 } 2140 2141 nocow_args.start = cur_offset; 2142 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2143 if (ret < 0) 2144 goto error; 2145 if (ret == 0) 2146 goto must_cow; 2147 2148 ret = 0; 2149 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2150 nocow_args.file_extent.disk_bytenr + 2151 nocow_args.file_extent.offset); 2152 if (!nocow_bg) { 2153 must_cow: 2154 /* 2155 * If we can't perform NOCOW writeback for the range, 2156 * then record the beginning of the range that needs to 2157 * be COWed. It will be written out before the next 2158 * NOCOW range if we find one, or when exiting this 2159 * loop. 2160 */ 2161 if (cow_start == (u64)-1) 2162 cow_start = cur_offset; 2163 cur_offset = extent_end; 2164 if (cur_offset > end) 2165 break; 2166 if (!path->nodes[0]) 2167 continue; 2168 path->slots[0]++; 2169 goto next_slot; 2170 } 2171 2172 /* 2173 * COW range from cow_start to found_key.offset - 1. As the key 2174 * will contain the beginning of the first extent that can be 2175 * NOCOW, following one which needs to be COW'ed 2176 */ 2177 if (cow_start != (u64)-1) { 2178 ret = fallback_to_cow(inode, locked_folio, cow_start, 2179 found_key.offset - 1); 2180 if (ret) { 2181 cow_end = found_key.offset - 1; 2182 btrfs_dec_nocow_writers(nocow_bg); 2183 goto error; 2184 } 2185 cow_start = (u64)-1; 2186 } 2187 2188 ret = nocow_one_range(inode, locked_folio, &cached_state, 2189 &nocow_args, cur_offset, 2190 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2191 btrfs_dec_nocow_writers(nocow_bg); 2192 if (ret < 0) { 2193 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2194 goto error; 2195 } 2196 cur_offset = extent_end; 2197 } 2198 btrfs_release_path(path); 2199 2200 if (cur_offset <= end && cow_start == (u64)-1) 2201 cow_start = cur_offset; 2202 2203 if (cow_start != (u64)-1) { 2204 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2205 if (ret) { 2206 cow_end = end; 2207 goto error; 2208 } 2209 cow_start = (u64)-1; 2210 } 2211 2212 /* 2213 * Everything is finished without an error, can unlock the folios now. 2214 * 2215 * No need to touch the io tree range nor set folio ordered flag, as 2216 * fallback_to_cow() and nocow_one_range() have already handled them. 2217 */ 2218 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2219 2220 btrfs_free_path(path); 2221 return 0; 2222 2223 error: 2224 if (cow_start == (u64)-1) { 2225 /* 2226 * case a) 2227 * start cur_offset end 2228 * | OE cleanup | Untouched | 2229 * 2230 * We finished a fallback_to_cow() or nocow_one_range() call, 2231 * but failed to check the next range. 2232 * 2233 * or 2234 * start cur_offset nocow_end end 2235 * | OE cleanup | Skip | Untouched | 2236 * 2237 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2238 * already cleaned up. 2239 */ 2240 oe_cleanup_start = start; 2241 oe_cleanup_len = cur_offset - start; 2242 if (nocow_end) 2243 untouched_start = nocow_end + 1; 2244 else 2245 untouched_start = cur_offset; 2246 untouched_len = end + 1 - untouched_start; 2247 } else if (cow_start != (u64)-1 && cow_end == 0) { 2248 /* 2249 * case b) 2250 * start cow_start cur_offset end 2251 * | OE cleanup | Untouched | 2252 * 2253 * We got a range that needs COW, but before we hit the next NOCOW range, 2254 * thus [cow_start, cur_offset) doesn't yet have any OE. 2255 */ 2256 oe_cleanup_start = start; 2257 oe_cleanup_len = cow_start - start; 2258 untouched_start = cow_start; 2259 untouched_len = end + 1 - untouched_start; 2260 } else { 2261 /* 2262 * case c) 2263 * start cow_start cow_end end 2264 * | OE cleanup | Skip | Untouched | 2265 * 2266 * fallback_to_cow() failed, and fallback_to_cow() will do the 2267 * cleanup for its range, we shouldn't touch the range 2268 * [cow_start, cow_end]. 2269 */ 2270 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2271 oe_cleanup_start = start; 2272 oe_cleanup_len = cow_start - start; 2273 untouched_start = cow_end + 1; 2274 untouched_len = end + 1 - untouched_start; 2275 } 2276 2277 if (oe_cleanup_len) { 2278 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2279 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2280 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2281 locked_folio, NULL, 2282 EXTENT_LOCKED | EXTENT_DELALLOC, 2283 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2284 PAGE_END_WRITEBACK); 2285 } 2286 2287 if (untouched_len) { 2288 struct extent_state *cached = NULL; 2289 const u64 untouched_end = untouched_start + untouched_len - 1; 2290 2291 /* 2292 * We need to lock the extent here because we're clearing DELALLOC and 2293 * we're not locked at this point. 2294 */ 2295 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2296 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2297 locked_folio, &cached, 2298 EXTENT_LOCKED | EXTENT_DELALLOC | 2299 EXTENT_DEFRAG | 2300 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2301 PAGE_START_WRITEBACK | 2302 PAGE_END_WRITEBACK); 2303 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2304 } 2305 btrfs_free_path(path); 2306 btrfs_err(fs_info, 2307 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2308 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2309 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2310 untouched_start, untouched_len, ret); 2311 return ret; 2312 } 2313 2314 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2315 { 2316 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2317 if (inode->defrag_bytes && 2318 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2319 return false; 2320 return true; 2321 } 2322 return false; 2323 } 2324 2325 /* 2326 * Function to process delayed allocation (create CoW) for ranges which are 2327 * being touched for the first time. 2328 */ 2329 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2330 u64 start, u64 end, struct writeback_control *wbc) 2331 { 2332 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2333 int ret; 2334 2335 /* 2336 * The range must cover part of the @locked_folio, or a return of 1 2337 * can confuse the caller. 2338 */ 2339 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2340 2341 if (should_nocow(inode, start, end)) { 2342 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2343 return ret; 2344 } 2345 2346 if (btrfs_inode_can_compress(inode) && 2347 inode_need_compress(inode, start, end) && 2348 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2349 return 1; 2350 2351 if (zoned) 2352 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2353 true); 2354 else 2355 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0); 2356 return ret; 2357 } 2358 2359 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2360 struct extent_state *orig, u64 split) 2361 { 2362 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2363 u64 size; 2364 2365 lockdep_assert_held(&inode->io_tree.lock); 2366 2367 /* not delalloc, ignore it */ 2368 if (!(orig->state & EXTENT_DELALLOC)) 2369 return; 2370 2371 size = orig->end - orig->start + 1; 2372 if (size > fs_info->max_extent_size) { 2373 u32 num_extents; 2374 u64 new_size; 2375 2376 /* 2377 * See the explanation in btrfs_merge_delalloc_extent, the same 2378 * applies here, just in reverse. 2379 */ 2380 new_size = orig->end - split + 1; 2381 num_extents = count_max_extents(fs_info, new_size); 2382 new_size = split - orig->start; 2383 num_extents += count_max_extents(fs_info, new_size); 2384 if (count_max_extents(fs_info, size) >= num_extents) 2385 return; 2386 } 2387 2388 spin_lock(&inode->lock); 2389 btrfs_mod_outstanding_extents(inode, 1); 2390 spin_unlock(&inode->lock); 2391 } 2392 2393 /* 2394 * Handle merged delayed allocation extents so we can keep track of new extents 2395 * that are just merged onto old extents, such as when we are doing sequential 2396 * writes, so we can properly account for the metadata space we'll need. 2397 */ 2398 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2399 struct extent_state *other) 2400 { 2401 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2402 u64 new_size, old_size; 2403 u32 num_extents; 2404 2405 lockdep_assert_held(&inode->io_tree.lock); 2406 2407 /* not delalloc, ignore it */ 2408 if (!(other->state & EXTENT_DELALLOC)) 2409 return; 2410 2411 if (new->start > other->start) 2412 new_size = new->end - other->start + 1; 2413 else 2414 new_size = other->end - new->start + 1; 2415 2416 /* we're not bigger than the max, unreserve the space and go */ 2417 if (new_size <= fs_info->max_extent_size) { 2418 spin_lock(&inode->lock); 2419 btrfs_mod_outstanding_extents(inode, -1); 2420 spin_unlock(&inode->lock); 2421 return; 2422 } 2423 2424 /* 2425 * We have to add up either side to figure out how many extents were 2426 * accounted for before we merged into one big extent. If the number of 2427 * extents we accounted for is <= the amount we need for the new range 2428 * then we can return, otherwise drop. Think of it like this 2429 * 2430 * [ 4k][MAX_SIZE] 2431 * 2432 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2433 * need 2 outstanding extents, on one side we have 1 and the other side 2434 * we have 1 so they are == and we can return. But in this case 2435 * 2436 * [MAX_SIZE+4k][MAX_SIZE+4k] 2437 * 2438 * Each range on their own accounts for 2 extents, but merged together 2439 * they are only 3 extents worth of accounting, so we need to drop in 2440 * this case. 2441 */ 2442 old_size = other->end - other->start + 1; 2443 num_extents = count_max_extents(fs_info, old_size); 2444 old_size = new->end - new->start + 1; 2445 num_extents += count_max_extents(fs_info, old_size); 2446 if (count_max_extents(fs_info, new_size) >= num_extents) 2447 return; 2448 2449 spin_lock(&inode->lock); 2450 btrfs_mod_outstanding_extents(inode, -1); 2451 spin_unlock(&inode->lock); 2452 } 2453 2454 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2455 { 2456 struct btrfs_root *root = inode->root; 2457 struct btrfs_fs_info *fs_info = root->fs_info; 2458 2459 spin_lock(&root->delalloc_lock); 2460 ASSERT(list_empty(&inode->delalloc_inodes)); 2461 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2462 root->nr_delalloc_inodes++; 2463 if (root->nr_delalloc_inodes == 1) { 2464 spin_lock(&fs_info->delalloc_root_lock); 2465 ASSERT(list_empty(&root->delalloc_root)); 2466 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2467 spin_unlock(&fs_info->delalloc_root_lock); 2468 } 2469 spin_unlock(&root->delalloc_lock); 2470 } 2471 2472 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2473 { 2474 struct btrfs_root *root = inode->root; 2475 struct btrfs_fs_info *fs_info = root->fs_info; 2476 2477 lockdep_assert_held(&root->delalloc_lock); 2478 2479 /* 2480 * We may be called after the inode was already deleted from the list, 2481 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2482 * and then later through btrfs_clear_delalloc_extent() while the inode 2483 * still has ->delalloc_bytes > 0. 2484 */ 2485 if (!list_empty(&inode->delalloc_inodes)) { 2486 list_del_init(&inode->delalloc_inodes); 2487 root->nr_delalloc_inodes--; 2488 if (!root->nr_delalloc_inodes) { 2489 ASSERT(list_empty(&root->delalloc_inodes)); 2490 spin_lock(&fs_info->delalloc_root_lock); 2491 ASSERT(!list_empty(&root->delalloc_root)); 2492 list_del_init(&root->delalloc_root); 2493 spin_unlock(&fs_info->delalloc_root_lock); 2494 } 2495 } 2496 } 2497 2498 /* 2499 * Properly track delayed allocation bytes in the inode and to maintain the 2500 * list of inodes that have pending delalloc work to be done. 2501 */ 2502 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2503 u32 bits) 2504 { 2505 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2506 2507 lockdep_assert_held(&inode->io_tree.lock); 2508 2509 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2510 WARN_ON(1); 2511 /* 2512 * set_bit and clear bit hooks normally require _irqsave/restore 2513 * but in this case, we are only testing for the DELALLOC 2514 * bit, which is only set or cleared with irqs on 2515 */ 2516 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2517 u64 len = state->end + 1 - state->start; 2518 u64 prev_delalloc_bytes; 2519 u32 num_extents = count_max_extents(fs_info, len); 2520 2521 spin_lock(&inode->lock); 2522 btrfs_mod_outstanding_extents(inode, num_extents); 2523 spin_unlock(&inode->lock); 2524 2525 /* For sanity tests */ 2526 if (btrfs_is_testing(fs_info)) 2527 return; 2528 2529 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2530 fs_info->delalloc_batch); 2531 spin_lock(&inode->lock); 2532 prev_delalloc_bytes = inode->delalloc_bytes; 2533 inode->delalloc_bytes += len; 2534 if (bits & EXTENT_DEFRAG) 2535 inode->defrag_bytes += len; 2536 spin_unlock(&inode->lock); 2537 2538 /* 2539 * We don't need to be under the protection of the inode's lock, 2540 * because we are called while holding the inode's io_tree lock 2541 * and are therefore protected against concurrent calls of this 2542 * function and btrfs_clear_delalloc_extent(). 2543 */ 2544 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2545 btrfs_add_delalloc_inode(inode); 2546 } 2547 2548 if (!(state->state & EXTENT_DELALLOC_NEW) && 2549 (bits & EXTENT_DELALLOC_NEW)) { 2550 spin_lock(&inode->lock); 2551 inode->new_delalloc_bytes += state->end + 1 - state->start; 2552 spin_unlock(&inode->lock); 2553 } 2554 } 2555 2556 /* 2557 * Once a range is no longer delalloc this function ensures that proper 2558 * accounting happens. 2559 */ 2560 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2561 struct extent_state *state, u32 bits) 2562 { 2563 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2564 u64 len = state->end + 1 - state->start; 2565 u32 num_extents = count_max_extents(fs_info, len); 2566 2567 lockdep_assert_held(&inode->io_tree.lock); 2568 2569 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2570 spin_lock(&inode->lock); 2571 inode->defrag_bytes -= len; 2572 spin_unlock(&inode->lock); 2573 } 2574 2575 /* 2576 * set_bit and clear bit hooks normally require _irqsave/restore 2577 * but in this case, we are only testing for the DELALLOC 2578 * bit, which is only set or cleared with irqs on 2579 */ 2580 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2581 struct btrfs_root *root = inode->root; 2582 u64 new_delalloc_bytes; 2583 2584 spin_lock(&inode->lock); 2585 btrfs_mod_outstanding_extents(inode, -num_extents); 2586 spin_unlock(&inode->lock); 2587 2588 /* 2589 * We don't reserve metadata space for space cache inodes so we 2590 * don't need to call delalloc_release_metadata if there is an 2591 * error. 2592 */ 2593 if (bits & EXTENT_CLEAR_META_RESV && 2594 root != fs_info->tree_root) 2595 btrfs_delalloc_release_metadata(inode, len, true); 2596 2597 /* For sanity tests. */ 2598 if (btrfs_is_testing(fs_info)) 2599 return; 2600 2601 if (!btrfs_is_data_reloc_root(root) && 2602 !btrfs_is_free_space_inode(inode) && 2603 !(state->state & EXTENT_NORESERVE) && 2604 (bits & EXTENT_CLEAR_DATA_RESV)) 2605 btrfs_free_reserved_data_space_noquota(inode, len); 2606 2607 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2608 fs_info->delalloc_batch); 2609 spin_lock(&inode->lock); 2610 inode->delalloc_bytes -= len; 2611 new_delalloc_bytes = inode->delalloc_bytes; 2612 spin_unlock(&inode->lock); 2613 2614 /* 2615 * We don't need to be under the protection of the inode's lock, 2616 * because we are called while holding the inode's io_tree lock 2617 * and are therefore protected against concurrent calls of this 2618 * function and btrfs_set_delalloc_extent(). 2619 */ 2620 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2621 spin_lock(&root->delalloc_lock); 2622 btrfs_del_delalloc_inode(inode); 2623 spin_unlock(&root->delalloc_lock); 2624 } 2625 } 2626 2627 if ((state->state & EXTENT_DELALLOC_NEW) && 2628 (bits & EXTENT_DELALLOC_NEW)) { 2629 spin_lock(&inode->lock); 2630 ASSERT(inode->new_delalloc_bytes >= len); 2631 inode->new_delalloc_bytes -= len; 2632 if (bits & EXTENT_ADD_INODE_BYTES) 2633 inode_add_bytes(&inode->vfs_inode, len); 2634 spin_unlock(&inode->lock); 2635 } 2636 } 2637 2638 /* 2639 * given a list of ordered sums record them in the inode. This happens 2640 * at IO completion time based on sums calculated at bio submission time. 2641 */ 2642 static int add_pending_csums(struct btrfs_trans_handle *trans, 2643 struct list_head *list) 2644 { 2645 struct btrfs_ordered_sum *sum; 2646 struct btrfs_root *csum_root = NULL; 2647 int ret; 2648 2649 list_for_each_entry(sum, list, list) { 2650 trans->adding_csums = true; 2651 if (!csum_root) 2652 csum_root = btrfs_csum_root(trans->fs_info, 2653 sum->logical); 2654 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2655 trans->adding_csums = false; 2656 if (ret) 2657 return ret; 2658 } 2659 return 0; 2660 } 2661 2662 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2663 const u64 start, 2664 const u64 len, 2665 struct extent_state **cached_state) 2666 { 2667 u64 search_start = start; 2668 const u64 end = start + len - 1; 2669 2670 while (search_start < end) { 2671 const u64 search_len = end - search_start + 1; 2672 struct extent_map *em; 2673 u64 em_len; 2674 int ret = 0; 2675 2676 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2677 if (IS_ERR(em)) 2678 return PTR_ERR(em); 2679 2680 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2681 goto next; 2682 2683 em_len = em->len; 2684 if (em->start < search_start) 2685 em_len -= search_start - em->start; 2686 if (em_len > search_len) 2687 em_len = search_len; 2688 2689 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2690 search_start + em_len - 1, 2691 EXTENT_DELALLOC_NEW, cached_state); 2692 next: 2693 search_start = btrfs_extent_map_end(em); 2694 btrfs_free_extent_map(em); 2695 if (ret) 2696 return ret; 2697 } 2698 return 0; 2699 } 2700 2701 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2702 unsigned int extra_bits, 2703 struct extent_state **cached_state) 2704 { 2705 WARN_ON(PAGE_ALIGNED(end)); 2706 2707 if (start >= i_size_read(&inode->vfs_inode) && 2708 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2709 /* 2710 * There can't be any extents following eof in this case so just 2711 * set the delalloc new bit for the range directly. 2712 */ 2713 extra_bits |= EXTENT_DELALLOC_NEW; 2714 } else { 2715 int ret; 2716 2717 ret = btrfs_find_new_delalloc_bytes(inode, start, 2718 end + 1 - start, 2719 cached_state); 2720 if (ret) 2721 return ret; 2722 } 2723 2724 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2725 EXTENT_DELALLOC | extra_bits, cached_state); 2726 } 2727 2728 /* see btrfs_writepage_start_hook for details on why this is required */ 2729 struct btrfs_writepage_fixup { 2730 struct folio *folio; 2731 struct btrfs_inode *inode; 2732 struct btrfs_work work; 2733 }; 2734 2735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2736 { 2737 struct btrfs_writepage_fixup *fixup = 2738 container_of(work, struct btrfs_writepage_fixup, work); 2739 struct btrfs_ordered_extent *ordered; 2740 struct extent_state *cached_state = NULL; 2741 struct extent_changeset *data_reserved = NULL; 2742 struct folio *folio = fixup->folio; 2743 struct btrfs_inode *inode = fixup->inode; 2744 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2745 u64 page_start = folio_pos(folio); 2746 u64 page_end = folio_end(folio) - 1; 2747 int ret = 0; 2748 bool free_delalloc_space = true; 2749 2750 /* 2751 * This is similar to page_mkwrite, we need to reserve the space before 2752 * we take the folio lock. 2753 */ 2754 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2755 folio_size(folio)); 2756 again: 2757 folio_lock(folio); 2758 2759 /* 2760 * Before we queued this fixup, we took a reference on the folio. 2761 * folio->mapping may go NULL, but it shouldn't be moved to a different 2762 * address space. 2763 */ 2764 if (!folio->mapping || !folio_test_dirty(folio) || 2765 !folio_test_checked(folio)) { 2766 /* 2767 * Unfortunately this is a little tricky, either 2768 * 2769 * 1) We got here and our folio had already been dealt with and 2770 * we reserved our space, thus ret == 0, so we need to just 2771 * drop our space reservation and bail. This can happen the 2772 * first time we come into the fixup worker, or could happen 2773 * while waiting for the ordered extent. 2774 * 2) Our folio was already dealt with, but we happened to get an 2775 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2776 * this case we obviously don't have anything to release, but 2777 * because the folio was already dealt with we don't want to 2778 * mark the folio with an error, so make sure we're resetting 2779 * ret to 0. This is why we have this check _before_ the ret 2780 * check, because we do not want to have a surprise ENOSPC 2781 * when the folio was already properly dealt with. 2782 */ 2783 if (!ret) { 2784 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2785 btrfs_delalloc_release_space(inode, data_reserved, 2786 page_start, folio_size(folio), 2787 true); 2788 } 2789 ret = 0; 2790 goto out_page; 2791 } 2792 2793 /* 2794 * We can't mess with the folio state unless it is locked, so now that 2795 * it is locked bail if we failed to make our space reservation. 2796 */ 2797 if (ret) 2798 goto out_page; 2799 2800 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2801 2802 /* already ordered? We're done */ 2803 if (folio_test_ordered(folio)) 2804 goto out_reserved; 2805 2806 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2807 if (ordered) { 2808 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2809 &cached_state); 2810 folio_unlock(folio); 2811 btrfs_start_ordered_extent(ordered); 2812 btrfs_put_ordered_extent(ordered); 2813 goto again; 2814 } 2815 2816 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2817 &cached_state); 2818 if (ret) 2819 goto out_reserved; 2820 2821 /* 2822 * Everything went as planned, we're now the owner of a dirty page with 2823 * delayed allocation bits set and space reserved for our COW 2824 * destination. 2825 * 2826 * The page was dirty when we started, nothing should have cleaned it. 2827 */ 2828 BUG_ON(!folio_test_dirty(folio)); 2829 free_delalloc_space = false; 2830 out_reserved: 2831 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2832 if (free_delalloc_space) 2833 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2834 PAGE_SIZE, true); 2835 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2836 out_page: 2837 if (ret) { 2838 /* 2839 * We hit ENOSPC or other errors. Update the mapping and page 2840 * to reflect the errors and clean the page. 2841 */ 2842 mapping_set_error(folio->mapping, ret); 2843 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2844 folio_size(folio), !ret); 2845 folio_clear_dirty_for_io(folio); 2846 } 2847 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2848 folio_unlock(folio); 2849 folio_put(folio); 2850 kfree(fixup); 2851 extent_changeset_free(data_reserved); 2852 /* 2853 * As a precaution, do a delayed iput in case it would be the last iput 2854 * that could need flushing space. Recursing back to fixup worker would 2855 * deadlock. 2856 */ 2857 btrfs_add_delayed_iput(inode); 2858 } 2859 2860 /* 2861 * There are a few paths in the higher layers of the kernel that directly 2862 * set the folio dirty bit without asking the filesystem if it is a 2863 * good idea. This causes problems because we want to make sure COW 2864 * properly happens and the data=ordered rules are followed. 2865 * 2866 * In our case any range that doesn't have the ORDERED bit set 2867 * hasn't been properly setup for IO. We kick off an async process 2868 * to fix it up. The async helper will wait for ordered extents, set 2869 * the delalloc bit and make it safe to write the folio. 2870 */ 2871 int btrfs_writepage_cow_fixup(struct folio *folio) 2872 { 2873 struct inode *inode = folio->mapping->host; 2874 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2875 struct btrfs_writepage_fixup *fixup; 2876 2877 /* This folio has ordered extent covering it already */ 2878 if (folio_test_ordered(folio)) 2879 return 0; 2880 2881 /* 2882 * For experimental build, we error out instead of EAGAIN. 2883 * 2884 * We should not hit such out-of-band dirty folios anymore. 2885 */ 2886 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2887 DEBUG_WARN(); 2888 btrfs_err_rl(fs_info, 2889 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2890 btrfs_root_id(BTRFS_I(inode)->root), 2891 btrfs_ino(BTRFS_I(inode)), 2892 folio_pos(folio)); 2893 return -EUCLEAN; 2894 } 2895 2896 /* 2897 * folio_checked is set below when we create a fixup worker for this 2898 * folio, don't try to create another one if we're already 2899 * folio_test_checked. 2900 * 2901 * The extent_io writepage code will redirty the foio if we send back 2902 * EAGAIN. 2903 */ 2904 if (folio_test_checked(folio)) 2905 return -EAGAIN; 2906 2907 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2908 if (!fixup) 2909 return -EAGAIN; 2910 2911 /* 2912 * We are already holding a reference to this inode from 2913 * write_cache_pages. We need to hold it because the space reservation 2914 * takes place outside of the folio lock, and we can't trust 2915 * folio->mapping outside of the folio lock. 2916 */ 2917 ihold(inode); 2918 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2919 folio_get(folio); 2920 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2921 fixup->folio = folio; 2922 fixup->inode = BTRFS_I(inode); 2923 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2924 2925 return -EAGAIN; 2926 } 2927 2928 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2929 struct btrfs_inode *inode, u64 file_pos, 2930 struct btrfs_file_extent_item *stack_fi, 2931 const bool update_inode_bytes, 2932 u64 qgroup_reserved) 2933 { 2934 struct btrfs_root *root = inode->root; 2935 const u64 sectorsize = root->fs_info->sectorsize; 2936 BTRFS_PATH_AUTO_FREE(path); 2937 struct extent_buffer *leaf; 2938 struct btrfs_key ins; 2939 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2940 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2941 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2942 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2943 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2944 struct btrfs_drop_extents_args drop_args = { 0 }; 2945 int ret; 2946 2947 path = btrfs_alloc_path(); 2948 if (!path) 2949 return -ENOMEM; 2950 2951 /* 2952 * we may be replacing one extent in the tree with another. 2953 * The new extent is pinned in the extent map, and we don't want 2954 * to drop it from the cache until it is completely in the btree. 2955 * 2956 * So, tell btrfs_drop_extents to leave this extent in the cache. 2957 * the caller is expected to unpin it and allow it to be merged 2958 * with the others. 2959 */ 2960 drop_args.path = path; 2961 drop_args.start = file_pos; 2962 drop_args.end = file_pos + num_bytes; 2963 drop_args.replace_extent = true; 2964 drop_args.extent_item_size = sizeof(*stack_fi); 2965 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2966 if (ret) 2967 goto out; 2968 2969 if (!drop_args.extent_inserted) { 2970 ins.objectid = btrfs_ino(inode); 2971 ins.type = BTRFS_EXTENT_DATA_KEY; 2972 ins.offset = file_pos; 2973 2974 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2975 sizeof(*stack_fi)); 2976 if (ret) 2977 goto out; 2978 } 2979 leaf = path->nodes[0]; 2980 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2981 write_extent_buffer(leaf, stack_fi, 2982 btrfs_item_ptr_offset(leaf, path->slots[0]), 2983 sizeof(struct btrfs_file_extent_item)); 2984 2985 btrfs_release_path(path); 2986 2987 /* 2988 * If we dropped an inline extent here, we know the range where it is 2989 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2990 * number of bytes only for that range containing the inline extent. 2991 * The remaining of the range will be processed when clearing the 2992 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2993 */ 2994 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2995 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2996 2997 inline_size = drop_args.bytes_found - inline_size; 2998 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2999 drop_args.bytes_found -= inline_size; 3000 num_bytes -= sectorsize; 3001 } 3002 3003 if (update_inode_bytes) 3004 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3005 3006 ins.objectid = disk_bytenr; 3007 ins.type = BTRFS_EXTENT_ITEM_KEY; 3008 ins.offset = disk_num_bytes; 3009 3010 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3011 if (ret) 3012 goto out; 3013 3014 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3015 file_pos - offset, 3016 qgroup_reserved, &ins); 3017 out: 3018 return ret; 3019 } 3020 3021 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3022 u64 start, u64 len) 3023 { 3024 struct btrfs_block_group *cache; 3025 3026 cache = btrfs_lookup_block_group(fs_info, start); 3027 ASSERT(cache); 3028 3029 spin_lock(&cache->lock); 3030 cache->delalloc_bytes -= len; 3031 spin_unlock(&cache->lock); 3032 3033 btrfs_put_block_group(cache); 3034 } 3035 3036 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3037 struct btrfs_ordered_extent *oe) 3038 { 3039 struct btrfs_file_extent_item stack_fi; 3040 bool update_inode_bytes; 3041 u64 num_bytes = oe->num_bytes; 3042 u64 ram_bytes = oe->ram_bytes; 3043 3044 memset(&stack_fi, 0, sizeof(stack_fi)); 3045 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3046 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3047 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3048 oe->disk_num_bytes); 3049 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3050 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3051 num_bytes = oe->truncated_len; 3052 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3053 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3054 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3055 /* Encryption and other encoding is reserved and all 0 */ 3056 3057 /* 3058 * For delalloc, when completing an ordered extent we update the inode's 3059 * bytes when clearing the range in the inode's io tree, so pass false 3060 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3061 * except if the ordered extent was truncated. 3062 */ 3063 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3064 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3065 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3066 3067 return insert_reserved_file_extent(trans, oe->inode, 3068 oe->file_offset, &stack_fi, 3069 update_inode_bytes, oe->qgroup_rsv); 3070 } 3071 3072 /* 3073 * As ordered data IO finishes, this gets called so we can finish 3074 * an ordered extent if the range of bytes in the file it covers are 3075 * fully written. 3076 */ 3077 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3078 { 3079 struct btrfs_inode *inode = ordered_extent->inode; 3080 struct btrfs_root *root = inode->root; 3081 struct btrfs_fs_info *fs_info = root->fs_info; 3082 struct btrfs_trans_handle *trans = NULL; 3083 struct extent_io_tree *io_tree = &inode->io_tree; 3084 struct extent_state *cached_state = NULL; 3085 u64 start, end; 3086 int compress_type = 0; 3087 int ret = 0; 3088 u64 logical_len = ordered_extent->num_bytes; 3089 bool freespace_inode; 3090 bool truncated = false; 3091 bool clear_reserved_extent = true; 3092 unsigned int clear_bits = EXTENT_DEFRAG; 3093 3094 start = ordered_extent->file_offset; 3095 end = start + ordered_extent->num_bytes - 1; 3096 3097 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3098 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3099 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3100 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3101 clear_bits |= EXTENT_DELALLOC_NEW; 3102 3103 freespace_inode = btrfs_is_free_space_inode(inode); 3104 if (!freespace_inode) 3105 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3106 3107 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3108 ret = -EIO; 3109 goto out; 3110 } 3111 3112 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3113 ordered_extent->disk_num_bytes); 3114 if (ret) 3115 goto out; 3116 3117 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3118 truncated = true; 3119 logical_len = ordered_extent->truncated_len; 3120 /* Truncated the entire extent, don't bother adding */ 3121 if (!logical_len) 3122 goto out; 3123 } 3124 3125 /* 3126 * If it's a COW write we need to lock the extent range as we will be 3127 * inserting/replacing file extent items and unpinning an extent map. 3128 * This must be taken before joining a transaction, as it's a higher 3129 * level lock (like the inode's VFS lock), otherwise we can run into an 3130 * ABBA deadlock with other tasks (transactions work like a lock, 3131 * depending on their current state). 3132 */ 3133 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3134 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3135 btrfs_lock_extent_bits(io_tree, start, end, 3136 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3137 &cached_state); 3138 } 3139 3140 if (freespace_inode) 3141 trans = btrfs_join_transaction_spacecache(root); 3142 else 3143 trans = btrfs_join_transaction(root); 3144 if (IS_ERR(trans)) { 3145 ret = PTR_ERR(trans); 3146 trans = NULL; 3147 goto out; 3148 } 3149 3150 trans->block_rsv = &inode->block_rsv; 3151 3152 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3153 if (unlikely(ret)) { 3154 btrfs_abort_transaction(trans, ret); 3155 goto out; 3156 } 3157 3158 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3159 /* Logic error */ 3160 ASSERT(list_empty(&ordered_extent->list)); 3161 if (unlikely(!list_empty(&ordered_extent->list))) { 3162 ret = -EINVAL; 3163 btrfs_abort_transaction(trans, ret); 3164 goto out; 3165 } 3166 3167 btrfs_inode_safe_disk_i_size_write(inode, 0); 3168 ret = btrfs_update_inode_fallback(trans, inode); 3169 if (unlikely(ret)) { 3170 /* -ENOMEM or corruption */ 3171 btrfs_abort_transaction(trans, ret); 3172 } 3173 goto out; 3174 } 3175 3176 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3177 compress_type = ordered_extent->compress_type; 3178 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3179 BUG_ON(compress_type); 3180 ret = btrfs_mark_extent_written(trans, inode, 3181 ordered_extent->file_offset, 3182 ordered_extent->file_offset + 3183 logical_len); 3184 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3185 ordered_extent->disk_num_bytes); 3186 } else { 3187 BUG_ON(root == fs_info->tree_root); 3188 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3189 if (!ret) { 3190 clear_reserved_extent = false; 3191 btrfs_release_delalloc_bytes(fs_info, 3192 ordered_extent->disk_bytenr, 3193 ordered_extent->disk_num_bytes); 3194 } 3195 } 3196 if (unlikely(ret < 0)) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 3201 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3202 ordered_extent->num_bytes, trans->transid); 3203 if (unlikely(ret < 0)) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 3208 ret = add_pending_csums(trans, &ordered_extent->list); 3209 if (unlikely(ret)) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 3214 /* 3215 * If this is a new delalloc range, clear its new delalloc flag to 3216 * update the inode's number of bytes. This needs to be done first 3217 * before updating the inode item. 3218 */ 3219 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3220 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3221 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3222 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3223 &cached_state); 3224 3225 btrfs_inode_safe_disk_i_size_write(inode, 0); 3226 ret = btrfs_update_inode_fallback(trans, inode); 3227 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3228 btrfs_abort_transaction(trans, ret); 3229 goto out; 3230 } 3231 out: 3232 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3233 &cached_state); 3234 3235 if (trans) 3236 btrfs_end_transaction(trans); 3237 3238 if (ret || truncated) { 3239 /* 3240 * If we failed to finish this ordered extent for any reason we 3241 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3242 * extent, and mark the inode with the error if it wasn't 3243 * already set. Any error during writeback would have already 3244 * set the mapping error, so we need to set it if we're the ones 3245 * marking this ordered extent as failed. 3246 */ 3247 if (ret) 3248 btrfs_mark_ordered_extent_error(ordered_extent); 3249 3250 /* 3251 * Drop extent maps for the part of the extent we didn't write. 3252 * 3253 * We have an exception here for the free_space_inode, this is 3254 * because when we do btrfs_get_extent() on the free space inode 3255 * we will search the commit root. If this is a new block group 3256 * we won't find anything, and we will trip over the assert in 3257 * writepage where we do ASSERT(em->block_start != 3258 * EXTENT_MAP_HOLE). 3259 * 3260 * Theoretically we could also skip this for any NOCOW extent as 3261 * we don't mess with the extent map tree in the NOCOW case, but 3262 * for now simply skip this if we are the free space inode. 3263 */ 3264 if (!btrfs_is_free_space_inode(inode)) { 3265 u64 unwritten_start = start; 3266 3267 if (truncated) 3268 unwritten_start += logical_len; 3269 3270 btrfs_drop_extent_map_range(inode, unwritten_start, 3271 end, false); 3272 } 3273 3274 /* 3275 * If the ordered extent had an IOERR or something else went 3276 * wrong we need to return the space for this ordered extent 3277 * back to the allocator. We only free the extent in the 3278 * truncated case if we didn't write out the extent at all. 3279 * 3280 * If we made it past insert_reserved_file_extent before we 3281 * errored out then we don't need to do this as the accounting 3282 * has already been done. 3283 */ 3284 if ((ret || !logical_len) && 3285 clear_reserved_extent && 3286 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3287 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3288 /* 3289 * Discard the range before returning it back to the 3290 * free space pool 3291 */ 3292 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3293 btrfs_discard_extent(fs_info, 3294 ordered_extent->disk_bytenr, 3295 ordered_extent->disk_num_bytes, 3296 NULL); 3297 btrfs_free_reserved_extent(fs_info, 3298 ordered_extent->disk_bytenr, 3299 ordered_extent->disk_num_bytes, true); 3300 /* 3301 * Actually free the qgroup rsv which was released when 3302 * the ordered extent was created. 3303 */ 3304 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3305 ordered_extent->qgroup_rsv, 3306 BTRFS_QGROUP_RSV_DATA); 3307 } 3308 } 3309 3310 /* 3311 * This needs to be done to make sure anybody waiting knows we are done 3312 * updating everything for this ordered extent. 3313 */ 3314 btrfs_remove_ordered_extent(inode, ordered_extent); 3315 3316 /* once for us */ 3317 btrfs_put_ordered_extent(ordered_extent); 3318 /* once for the tree */ 3319 btrfs_put_ordered_extent(ordered_extent); 3320 3321 return ret; 3322 } 3323 3324 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3325 { 3326 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3327 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3328 list_empty(&ordered->bioc_list)) 3329 btrfs_finish_ordered_zoned(ordered); 3330 return btrfs_finish_one_ordered(ordered); 3331 } 3332 3333 void btrfs_calculate_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, 3334 u8 *dest) 3335 { 3336 struct folio *folio = page_folio(phys_to_page(paddr)); 3337 const u32 blocksize = fs_info->sectorsize; 3338 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3339 3340 shash->tfm = fs_info->csum_shash; 3341 /* The full block must be inside the folio. */ 3342 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3343 3344 if (folio_test_partial_kmap(folio)) { 3345 size_t cur = paddr; 3346 3347 crypto_shash_init(shash); 3348 while (cur < paddr + blocksize) { 3349 void *kaddr; 3350 size_t len = min(paddr + blocksize - cur, 3351 PAGE_SIZE - offset_in_page(cur)); 3352 3353 kaddr = kmap_local_folio(folio, offset_in_folio(folio, cur)); 3354 crypto_shash_update(shash, kaddr, len); 3355 kunmap_local(kaddr); 3356 cur += len; 3357 } 3358 crypto_shash_final(shash, dest); 3359 } else { 3360 crypto_shash_digest(shash, phys_to_virt(paddr), blocksize, dest); 3361 } 3362 } 3363 /* 3364 * Verify the checksum for a single sector without any extra action that depend 3365 * on the type of I/O. 3366 * 3367 * @kaddr must be a properly kmapped address. 3368 */ 3369 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3370 const u8 * const csum_expected) 3371 { 3372 btrfs_calculate_block_csum(fs_info, paddr, csum); 3373 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3374 return -EIO; 3375 return 0; 3376 } 3377 3378 /* 3379 * Verify the checksum of a single data sector. 3380 * 3381 * @bbio: btrfs_io_bio which contains the csum 3382 * @dev: device the sector is on 3383 * @bio_offset: offset to the beginning of the bio (in bytes) 3384 * @bv: bio_vec to check 3385 * 3386 * Check if the checksum on a data block is valid. When a checksum mismatch is 3387 * detected, report the error and fill the corrupted range with zero. 3388 * 3389 * Return %true if the sector is ok or had no checksum to start with, else %false. 3390 */ 3391 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3392 u32 bio_offset, phys_addr_t paddr) 3393 { 3394 struct btrfs_inode *inode = bbio->inode; 3395 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3396 const u32 blocksize = fs_info->sectorsize; 3397 struct folio *folio; 3398 u64 file_offset = bbio->file_offset + bio_offset; 3399 u64 end = file_offset + blocksize - 1; 3400 u8 *csum_expected; 3401 u8 csum[BTRFS_CSUM_SIZE]; 3402 3403 if (!bbio->csum) 3404 return true; 3405 3406 if (btrfs_is_data_reloc_root(inode->root) && 3407 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3408 NULL)) { 3409 /* Skip the range without csum for data reloc inode */ 3410 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3411 EXTENT_NODATASUM, NULL); 3412 return true; 3413 } 3414 3415 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3416 fs_info->csum_size; 3417 if (btrfs_check_block_csum(fs_info, paddr, csum, csum_expected)) 3418 goto zeroit; 3419 return true; 3420 3421 zeroit: 3422 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3423 bbio->mirror_num); 3424 if (dev) 3425 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3426 folio = page_folio(phys_to_page(paddr)); 3427 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3428 folio_zero_range(folio, offset_in_folio(folio, paddr), blocksize); 3429 return false; 3430 } 3431 3432 /* 3433 * Perform a delayed iput on @inode. 3434 * 3435 * @inode: The inode we want to perform iput on 3436 * 3437 * This function uses the generic vfs_inode::i_count to track whether we should 3438 * just decrement it (in case it's > 1) or if this is the last iput then link 3439 * the inode to the delayed iput machinery. Delayed iputs are processed at 3440 * transaction commit time/superblock commit/cleaner kthread. 3441 */ 3442 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3443 { 3444 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3445 unsigned long flags; 3446 3447 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3448 return; 3449 3450 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3451 atomic_inc(&fs_info->nr_delayed_iputs); 3452 /* 3453 * Need to be irq safe here because we can be called from either an irq 3454 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3455 * context. 3456 */ 3457 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3458 ASSERT(list_empty(&inode->delayed_iput)); 3459 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3460 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3461 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3462 wake_up_process(fs_info->cleaner_kthread); 3463 } 3464 3465 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3466 struct btrfs_inode *inode) 3467 { 3468 list_del_init(&inode->delayed_iput); 3469 spin_unlock_irq(&fs_info->delayed_iput_lock); 3470 iput(&inode->vfs_inode); 3471 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3472 wake_up(&fs_info->delayed_iputs_wait); 3473 spin_lock_irq(&fs_info->delayed_iput_lock); 3474 } 3475 3476 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3477 struct btrfs_inode *inode) 3478 { 3479 if (!list_empty(&inode->delayed_iput)) { 3480 spin_lock_irq(&fs_info->delayed_iput_lock); 3481 if (!list_empty(&inode->delayed_iput)) 3482 run_delayed_iput_locked(fs_info, inode); 3483 spin_unlock_irq(&fs_info->delayed_iput_lock); 3484 } 3485 } 3486 3487 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3488 { 3489 /* 3490 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3491 * calls btrfs_add_delayed_iput() and that needs to lock 3492 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3493 * prevent a deadlock. 3494 */ 3495 spin_lock_irq(&fs_info->delayed_iput_lock); 3496 while (!list_empty(&fs_info->delayed_iputs)) { 3497 struct btrfs_inode *inode; 3498 3499 inode = list_first_entry(&fs_info->delayed_iputs, 3500 struct btrfs_inode, delayed_iput); 3501 run_delayed_iput_locked(fs_info, inode); 3502 if (need_resched()) { 3503 spin_unlock_irq(&fs_info->delayed_iput_lock); 3504 cond_resched(); 3505 spin_lock_irq(&fs_info->delayed_iput_lock); 3506 } 3507 } 3508 spin_unlock_irq(&fs_info->delayed_iput_lock); 3509 } 3510 3511 /* 3512 * Wait for flushing all delayed iputs 3513 * 3514 * @fs_info: the filesystem 3515 * 3516 * This will wait on any delayed iputs that are currently running with KILLABLE 3517 * set. Once they are all done running we will return, unless we are killed in 3518 * which case we return EINTR. This helps in user operations like fallocate etc 3519 * that might get blocked on the iputs. 3520 * 3521 * Return EINTR if we were killed, 0 if nothing's pending 3522 */ 3523 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3524 { 3525 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3526 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3527 if (ret) 3528 return -EINTR; 3529 return 0; 3530 } 3531 3532 /* 3533 * This creates an orphan entry for the given inode in case something goes wrong 3534 * in the middle of an unlink. 3535 */ 3536 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3537 struct btrfs_inode *inode) 3538 { 3539 int ret; 3540 3541 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3542 if (unlikely(ret && ret != -EEXIST)) { 3543 btrfs_abort_transaction(trans, ret); 3544 return ret; 3545 } 3546 3547 return 0; 3548 } 3549 3550 /* 3551 * We have done the delete so we can go ahead and remove the orphan item for 3552 * this particular inode. 3553 */ 3554 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3555 struct btrfs_inode *inode) 3556 { 3557 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3558 } 3559 3560 /* 3561 * this cleans up any orphans that may be left on the list from the last use 3562 * of this root. 3563 */ 3564 int btrfs_orphan_cleanup(struct btrfs_root *root) 3565 { 3566 struct btrfs_fs_info *fs_info = root->fs_info; 3567 BTRFS_PATH_AUTO_FREE(path); 3568 struct extent_buffer *leaf; 3569 struct btrfs_key key, found_key; 3570 struct btrfs_trans_handle *trans; 3571 u64 last_objectid = 0; 3572 int ret = 0, nr_unlink = 0; 3573 3574 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3575 return 0; 3576 3577 path = btrfs_alloc_path(); 3578 if (!path) { 3579 ret = -ENOMEM; 3580 goto out; 3581 } 3582 path->reada = READA_BACK; 3583 3584 key.objectid = BTRFS_ORPHAN_OBJECTID; 3585 key.type = BTRFS_ORPHAN_ITEM_KEY; 3586 key.offset = (u64)-1; 3587 3588 while (1) { 3589 struct btrfs_inode *inode; 3590 3591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3592 if (ret < 0) 3593 goto out; 3594 3595 /* 3596 * if ret == 0 means we found what we were searching for, which 3597 * is weird, but possible, so only screw with path if we didn't 3598 * find the key and see if we have stuff that matches 3599 */ 3600 if (ret > 0) { 3601 ret = 0; 3602 if (path->slots[0] == 0) 3603 break; 3604 path->slots[0]--; 3605 } 3606 3607 /* pull out the item */ 3608 leaf = path->nodes[0]; 3609 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3610 3611 /* make sure the item matches what we want */ 3612 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3613 break; 3614 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3615 break; 3616 3617 /* release the path since we're done with it */ 3618 btrfs_release_path(path); 3619 3620 /* 3621 * this is where we are basically btrfs_lookup, without the 3622 * crossing root thing. we store the inode number in the 3623 * offset of the orphan item. 3624 */ 3625 3626 if (found_key.offset == last_objectid) { 3627 /* 3628 * We found the same inode as before. This means we were 3629 * not able to remove its items via eviction triggered 3630 * by an iput(). A transaction abort may have happened, 3631 * due to -ENOSPC for example, so try to grab the error 3632 * that lead to a transaction abort, if any. 3633 */ 3634 btrfs_err(fs_info, 3635 "Error removing orphan entry, stopping orphan cleanup"); 3636 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3637 goto out; 3638 } 3639 3640 last_objectid = found_key.offset; 3641 3642 found_key.objectid = found_key.offset; 3643 found_key.type = BTRFS_INODE_ITEM_KEY; 3644 found_key.offset = 0; 3645 inode = btrfs_iget(last_objectid, root); 3646 if (IS_ERR(inode)) { 3647 ret = PTR_ERR(inode); 3648 inode = NULL; 3649 if (ret != -ENOENT) 3650 goto out; 3651 } 3652 3653 if (!inode && root == fs_info->tree_root) { 3654 struct btrfs_root *dead_root; 3655 int is_dead_root = 0; 3656 3657 /* 3658 * This is an orphan in the tree root. Currently these 3659 * could come from 2 sources: 3660 * a) a root (snapshot/subvolume) deletion in progress 3661 * b) a free space cache inode 3662 * We need to distinguish those two, as the orphan item 3663 * for a root must not get deleted before the deletion 3664 * of the snapshot/subvolume's tree completes. 3665 * 3666 * btrfs_find_orphan_roots() ran before us, which has 3667 * found all deleted roots and loaded them into 3668 * fs_info->fs_roots_radix. So here we can find if an 3669 * orphan item corresponds to a deleted root by looking 3670 * up the root from that radix tree. 3671 */ 3672 3673 spin_lock(&fs_info->fs_roots_radix_lock); 3674 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3675 (unsigned long)found_key.objectid); 3676 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3677 is_dead_root = 1; 3678 spin_unlock(&fs_info->fs_roots_radix_lock); 3679 3680 if (is_dead_root) { 3681 /* prevent this orphan from being found again */ 3682 key.offset = found_key.objectid - 1; 3683 continue; 3684 } 3685 3686 } 3687 3688 /* 3689 * If we have an inode with links, there are a couple of 3690 * possibilities: 3691 * 3692 * 1. We were halfway through creating fsverity metadata for the 3693 * file. In that case, the orphan item represents incomplete 3694 * fsverity metadata which must be cleaned up with 3695 * btrfs_drop_verity_items and deleting the orphan item. 3696 3697 * 2. Old kernels (before v3.12) used to create an 3698 * orphan item for truncate indicating that there were possibly 3699 * extent items past i_size that needed to be deleted. In v3.12, 3700 * truncate was changed to update i_size in sync with the extent 3701 * items, but the (useless) orphan item was still created. Since 3702 * v4.18, we don't create the orphan item for truncate at all. 3703 * 3704 * So, this item could mean that we need to do a truncate, but 3705 * only if this filesystem was last used on a pre-v3.12 kernel 3706 * and was not cleanly unmounted. The odds of that are quite 3707 * slim, and it's a pain to do the truncate now, so just delete 3708 * the orphan item. 3709 * 3710 * It's also possible that this orphan item was supposed to be 3711 * deleted but wasn't. The inode number may have been reused, 3712 * but either way, we can delete the orphan item. 3713 */ 3714 if (!inode || inode->vfs_inode.i_nlink) { 3715 if (inode) { 3716 ret = btrfs_drop_verity_items(inode); 3717 iput(&inode->vfs_inode); 3718 inode = NULL; 3719 if (ret) 3720 goto out; 3721 } 3722 trans = btrfs_start_transaction(root, 1); 3723 if (IS_ERR(trans)) { 3724 ret = PTR_ERR(trans); 3725 goto out; 3726 } 3727 btrfs_debug(fs_info, "auto deleting %Lu", 3728 found_key.objectid); 3729 ret = btrfs_del_orphan_item(trans, root, 3730 found_key.objectid); 3731 btrfs_end_transaction(trans); 3732 if (ret) 3733 goto out; 3734 continue; 3735 } 3736 3737 nr_unlink++; 3738 3739 /* this will do delete_inode and everything for us */ 3740 iput(&inode->vfs_inode); 3741 } 3742 /* release the path since we're done with it */ 3743 btrfs_release_path(path); 3744 3745 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3746 trans = btrfs_join_transaction(root); 3747 if (!IS_ERR(trans)) 3748 btrfs_end_transaction(trans); 3749 } 3750 3751 if (nr_unlink) 3752 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3753 3754 out: 3755 if (ret) 3756 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3757 return ret; 3758 } 3759 3760 /* 3761 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3762 * can't be any ACLs. 3763 * 3764 * @leaf: the eb leaf where to search 3765 * @slot: the slot the inode is in 3766 * @objectid: the objectid of the inode 3767 * 3768 * Return true if there is xattr/ACL, false otherwise. 3769 */ 3770 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3771 int slot, u64 objectid, 3772 int *first_xattr_slot) 3773 { 3774 u32 nritems = btrfs_header_nritems(leaf); 3775 struct btrfs_key found_key; 3776 static u64 xattr_access = 0; 3777 static u64 xattr_default = 0; 3778 int scanned = 0; 3779 3780 if (!xattr_access) { 3781 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3782 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3783 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3784 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3785 } 3786 3787 slot++; 3788 *first_xattr_slot = -1; 3789 while (slot < nritems) { 3790 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3791 3792 /* We found a different objectid, there must be no ACLs. */ 3793 if (found_key.objectid != objectid) 3794 return false; 3795 3796 /* We found an xattr, assume we've got an ACL. */ 3797 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3798 if (*first_xattr_slot == -1) 3799 *first_xattr_slot = slot; 3800 if (found_key.offset == xattr_access || 3801 found_key.offset == xattr_default) 3802 return true; 3803 } 3804 3805 /* 3806 * We found a key greater than an xattr key, there can't be any 3807 * ACLs later on. 3808 */ 3809 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3810 return false; 3811 3812 slot++; 3813 scanned++; 3814 3815 /* 3816 * The item order goes like: 3817 * - inode 3818 * - inode backrefs 3819 * - xattrs 3820 * - extents, 3821 * 3822 * so if there are lots of hard links to an inode there can be 3823 * a lot of backrefs. Don't waste time searching too hard, 3824 * this is just an optimization. 3825 */ 3826 if (scanned >= 8) 3827 break; 3828 } 3829 /* 3830 * We hit the end of the leaf before we found an xattr or something 3831 * larger than an xattr. We have to assume the inode has ACLs. 3832 */ 3833 if (*first_xattr_slot == -1) 3834 *first_xattr_slot = slot; 3835 return true; 3836 } 3837 3838 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3839 { 3840 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3841 3842 if (WARN_ON_ONCE(inode->file_extent_tree)) 3843 return 0; 3844 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3845 return 0; 3846 if (!S_ISREG(inode->vfs_inode.i_mode)) 3847 return 0; 3848 if (btrfs_is_free_space_inode(inode)) 3849 return 0; 3850 3851 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3852 if (!inode->file_extent_tree) 3853 return -ENOMEM; 3854 3855 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3856 IO_TREE_INODE_FILE_EXTENT); 3857 /* Lockdep class is set only for the file extent tree. */ 3858 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3859 3860 return 0; 3861 } 3862 3863 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3864 { 3865 struct btrfs_root *root = inode->root; 3866 struct btrfs_inode *existing; 3867 const u64 ino = btrfs_ino(inode); 3868 int ret; 3869 3870 if (inode_unhashed(&inode->vfs_inode)) 3871 return 0; 3872 3873 if (prealloc) { 3874 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3875 if (ret) 3876 return ret; 3877 } 3878 3879 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3880 3881 if (xa_is_err(existing)) { 3882 ret = xa_err(existing); 3883 ASSERT(ret != -EINVAL); 3884 ASSERT(ret != -ENOMEM); 3885 return ret; 3886 } else if (existing) { 3887 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3888 } 3889 3890 return 0; 3891 } 3892 3893 /* 3894 * Read a locked inode from the btree into the in-memory inode and add it to 3895 * its root list/tree. 3896 * 3897 * On failure clean up the inode. 3898 */ 3899 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3900 { 3901 struct btrfs_root *root = inode->root; 3902 struct btrfs_fs_info *fs_info = root->fs_info; 3903 struct extent_buffer *leaf; 3904 struct btrfs_inode_item *inode_item; 3905 struct inode *vfs_inode = &inode->vfs_inode; 3906 struct btrfs_key location; 3907 unsigned long ptr; 3908 int maybe_acls; 3909 u32 rdev; 3910 int ret; 3911 bool filled = false; 3912 int first_xattr_slot; 3913 3914 ret = btrfs_fill_inode(inode, &rdev); 3915 if (!ret) 3916 filled = true; 3917 3918 ASSERT(path); 3919 3920 btrfs_get_inode_key(inode, &location); 3921 3922 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3923 if (ret) { 3924 /* 3925 * ret > 0 can come from btrfs_search_slot called by 3926 * btrfs_lookup_inode(), this means the inode was not found. 3927 */ 3928 if (ret > 0) 3929 ret = -ENOENT; 3930 goto out; 3931 } 3932 3933 leaf = path->nodes[0]; 3934 3935 if (filled) 3936 goto cache_index; 3937 3938 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3939 struct btrfs_inode_item); 3940 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3941 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3942 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3943 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3944 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3945 3946 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3947 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3948 3949 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3950 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3951 3952 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3953 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3954 3955 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3956 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3957 3958 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3959 inode->generation = btrfs_inode_generation(leaf, inode_item); 3960 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3961 3962 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3963 vfs_inode->i_generation = inode->generation; 3964 vfs_inode->i_rdev = 0; 3965 rdev = btrfs_inode_rdev(leaf, inode_item); 3966 3967 if (S_ISDIR(vfs_inode->i_mode)) 3968 inode->index_cnt = (u64)-1; 3969 3970 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3971 &inode->flags, &inode->ro_flags); 3972 btrfs_update_inode_mapping_flags(inode); 3973 btrfs_set_inode_mapping_order(inode); 3974 3975 cache_index: 3976 ret = btrfs_init_file_extent_tree(inode); 3977 if (ret) 3978 goto out; 3979 btrfs_inode_set_file_extent_range(inode, 0, 3980 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3981 /* 3982 * If we were modified in the current generation and evicted from memory 3983 * and then re-read we need to do a full sync since we don't have any 3984 * idea about which extents were modified before we were evicted from 3985 * cache. 3986 * 3987 * This is required for both inode re-read from disk and delayed inode 3988 * in the delayed_nodes xarray. 3989 */ 3990 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3991 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3992 3993 /* 3994 * We don't persist the id of the transaction where an unlink operation 3995 * against the inode was last made. So here we assume the inode might 3996 * have been evicted, and therefore the exact value of last_unlink_trans 3997 * lost, and set it to last_trans to avoid metadata inconsistencies 3998 * between the inode and its parent if the inode is fsync'ed and the log 3999 * replayed. For example, in the scenario: 4000 * 4001 * touch mydir/foo 4002 * ln mydir/foo mydir/bar 4003 * sync 4004 * unlink mydir/bar 4005 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4006 * xfs_io -c fsync mydir/foo 4007 * <power failure> 4008 * mount fs, triggers fsync log replay 4009 * 4010 * We must make sure that when we fsync our inode foo we also log its 4011 * parent inode, otherwise after log replay the parent still has the 4012 * dentry with the "bar" name but our inode foo has a link count of 1 4013 * and doesn't have an inode ref with the name "bar" anymore. 4014 * 4015 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4016 * but it guarantees correctness at the expense of occasional full 4017 * transaction commits on fsync if our inode is a directory, or if our 4018 * inode is not a directory, logging its parent unnecessarily. 4019 */ 4020 inode->last_unlink_trans = inode->last_trans; 4021 4022 /* 4023 * Same logic as for last_unlink_trans. We don't persist the generation 4024 * of the last transaction where this inode was used for a reflink 4025 * operation, so after eviction and reloading the inode we must be 4026 * pessimistic and assume the last transaction that modified the inode. 4027 */ 4028 inode->last_reflink_trans = inode->last_trans; 4029 4030 path->slots[0]++; 4031 if (vfs_inode->i_nlink != 1 || 4032 path->slots[0] >= btrfs_header_nritems(leaf)) 4033 goto cache_acl; 4034 4035 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4036 if (location.objectid != btrfs_ino(inode)) 4037 goto cache_acl; 4038 4039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4040 if (location.type == BTRFS_INODE_REF_KEY) { 4041 struct btrfs_inode_ref *ref; 4042 4043 ref = (struct btrfs_inode_ref *)ptr; 4044 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4045 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4046 struct btrfs_inode_extref *extref; 4047 4048 extref = (struct btrfs_inode_extref *)ptr; 4049 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4050 } 4051 cache_acl: 4052 /* 4053 * try to precache a NULL acl entry for files that don't have 4054 * any xattrs or acls 4055 */ 4056 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4057 btrfs_ino(inode), &first_xattr_slot); 4058 if (first_xattr_slot != -1) { 4059 path->slots[0] = first_xattr_slot; 4060 ret = btrfs_load_inode_props(inode, path); 4061 if (ret) 4062 btrfs_err(fs_info, 4063 "error loading props for ino %llu (root %llu): %d", 4064 btrfs_ino(inode), btrfs_root_id(root), ret); 4065 } 4066 4067 if (!maybe_acls) 4068 cache_no_acl(vfs_inode); 4069 4070 switch (vfs_inode->i_mode & S_IFMT) { 4071 case S_IFREG: 4072 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4073 vfs_inode->i_fop = &btrfs_file_operations; 4074 vfs_inode->i_op = &btrfs_file_inode_operations; 4075 break; 4076 case S_IFDIR: 4077 vfs_inode->i_fop = &btrfs_dir_file_operations; 4078 vfs_inode->i_op = &btrfs_dir_inode_operations; 4079 break; 4080 case S_IFLNK: 4081 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4082 inode_nohighmem(vfs_inode); 4083 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4084 break; 4085 default: 4086 vfs_inode->i_op = &btrfs_special_inode_operations; 4087 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4088 break; 4089 } 4090 4091 btrfs_sync_inode_flags_to_i_flags(inode); 4092 4093 ret = btrfs_add_inode_to_root(inode, true); 4094 if (ret) 4095 goto out; 4096 4097 return 0; 4098 out: 4099 iget_failed(vfs_inode); 4100 return ret; 4101 } 4102 4103 /* 4104 * given a leaf and an inode, copy the inode fields into the leaf 4105 */ 4106 static void fill_inode_item(struct btrfs_trans_handle *trans, 4107 struct extent_buffer *leaf, 4108 struct btrfs_inode_item *item, 4109 struct inode *inode) 4110 { 4111 u64 flags; 4112 4113 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4114 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4115 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4116 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4117 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4118 4119 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4120 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4121 4122 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4123 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4124 4125 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4126 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4127 4128 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4129 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4130 4131 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4132 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4133 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4134 btrfs_set_inode_transid(leaf, item, trans->transid); 4135 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4136 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4137 BTRFS_I(inode)->ro_flags); 4138 btrfs_set_inode_flags(leaf, item, flags); 4139 btrfs_set_inode_block_group(leaf, item, 0); 4140 } 4141 4142 /* 4143 * copy everything in the in-memory inode into the btree. 4144 */ 4145 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4146 struct btrfs_inode *inode) 4147 { 4148 struct btrfs_inode_item *inode_item; 4149 BTRFS_PATH_AUTO_FREE(path); 4150 struct extent_buffer *leaf; 4151 struct btrfs_key key; 4152 int ret; 4153 4154 path = btrfs_alloc_path(); 4155 if (!path) 4156 return -ENOMEM; 4157 4158 btrfs_get_inode_key(inode, &key); 4159 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4160 if (ret) { 4161 if (ret > 0) 4162 ret = -ENOENT; 4163 return ret; 4164 } 4165 4166 leaf = path->nodes[0]; 4167 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4168 struct btrfs_inode_item); 4169 4170 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4171 btrfs_set_inode_last_trans(trans, inode); 4172 return 0; 4173 } 4174 4175 /* 4176 * copy everything in the in-memory inode into the btree. 4177 */ 4178 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4179 struct btrfs_inode *inode) 4180 { 4181 struct btrfs_root *root = inode->root; 4182 struct btrfs_fs_info *fs_info = root->fs_info; 4183 int ret; 4184 4185 /* 4186 * If the inode is a free space inode, we can deadlock during commit 4187 * if we put it into the delayed code. 4188 * 4189 * The data relocation inode should also be directly updated 4190 * without delay 4191 */ 4192 if (!btrfs_is_free_space_inode(inode) 4193 && !btrfs_is_data_reloc_root(root) 4194 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4195 btrfs_update_root_times(trans, root); 4196 4197 ret = btrfs_delayed_update_inode(trans, inode); 4198 if (!ret) 4199 btrfs_set_inode_last_trans(trans, inode); 4200 return ret; 4201 } 4202 4203 return btrfs_update_inode_item(trans, inode); 4204 } 4205 4206 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4207 struct btrfs_inode *inode) 4208 { 4209 int ret; 4210 4211 ret = btrfs_update_inode(trans, inode); 4212 if (ret == -ENOSPC) 4213 return btrfs_update_inode_item(trans, inode); 4214 return ret; 4215 } 4216 4217 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4218 { 4219 struct timespec64 now; 4220 4221 /* 4222 * If we are replaying a log tree, we do not want to update the mtime 4223 * and ctime of the parent directory with the current time, since the 4224 * log replay procedure is responsible for setting them to their correct 4225 * values (the ones it had when the fsync was done). 4226 */ 4227 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4228 return; 4229 4230 now = inode_set_ctime_current(&dir->vfs_inode); 4231 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4232 } 4233 4234 /* 4235 * unlink helper that gets used here in inode.c and in the tree logging 4236 * recovery code. It remove a link in a directory with a given name, and 4237 * also drops the back refs in the inode to the directory 4238 */ 4239 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4240 struct btrfs_inode *dir, 4241 struct btrfs_inode *inode, 4242 const struct fscrypt_str *name, 4243 struct btrfs_rename_ctx *rename_ctx) 4244 { 4245 struct btrfs_root *root = dir->root; 4246 struct btrfs_fs_info *fs_info = root->fs_info; 4247 struct btrfs_path *path; 4248 int ret = 0; 4249 struct btrfs_dir_item *di; 4250 u64 index; 4251 u64 ino = btrfs_ino(inode); 4252 u64 dir_ino = btrfs_ino(dir); 4253 4254 path = btrfs_alloc_path(); 4255 if (!path) 4256 return -ENOMEM; 4257 4258 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4259 if (IS_ERR_OR_NULL(di)) { 4260 btrfs_free_path(path); 4261 return di ? PTR_ERR(di) : -ENOENT; 4262 } 4263 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4264 /* 4265 * Down the call chains below we'll also need to allocate a path, so no 4266 * need to hold on to this one for longer than necessary. 4267 */ 4268 btrfs_free_path(path); 4269 if (ret) 4270 return ret; 4271 4272 /* 4273 * If we don't have dir index, we have to get it by looking up 4274 * the inode ref, since we get the inode ref, remove it directly, 4275 * it is unnecessary to do delayed deletion. 4276 * 4277 * But if we have dir index, needn't search inode ref to get it. 4278 * Since the inode ref is close to the inode item, it is better 4279 * that we delay to delete it, and just do this deletion when 4280 * we update the inode item. 4281 */ 4282 if (inode->dir_index) { 4283 ret = btrfs_delayed_delete_inode_ref(inode); 4284 if (!ret) { 4285 index = inode->dir_index; 4286 goto skip_backref; 4287 } 4288 } 4289 4290 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4291 if (unlikely(ret)) { 4292 btrfs_crit(fs_info, 4293 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4294 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4295 btrfs_abort_transaction(trans, ret); 4296 return ret; 4297 } 4298 skip_backref: 4299 if (rename_ctx) 4300 rename_ctx->index = index; 4301 4302 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4303 if (unlikely(ret)) { 4304 btrfs_abort_transaction(trans, ret); 4305 return ret; 4306 } 4307 4308 /* 4309 * If we are in a rename context, we don't need to update anything in the 4310 * log. That will be done later during the rename by btrfs_log_new_name(). 4311 * Besides that, doing it here would only cause extra unnecessary btree 4312 * operations on the log tree, increasing latency for applications. 4313 */ 4314 if (!rename_ctx) { 4315 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4316 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4317 } 4318 4319 /* 4320 * If we have a pending delayed iput we could end up with the final iput 4321 * being run in btrfs-cleaner context. If we have enough of these built 4322 * up we can end up burning a lot of time in btrfs-cleaner without any 4323 * way to throttle the unlinks. Since we're currently holding a ref on 4324 * the inode we can run the delayed iput here without any issues as the 4325 * final iput won't be done until after we drop the ref we're currently 4326 * holding. 4327 */ 4328 btrfs_run_delayed_iput(fs_info, inode); 4329 4330 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4331 inode_inc_iversion(&inode->vfs_inode); 4332 inode_set_ctime_current(&inode->vfs_inode); 4333 inode_inc_iversion(&dir->vfs_inode); 4334 update_time_after_link_or_unlink(dir); 4335 4336 return btrfs_update_inode(trans, dir); 4337 } 4338 4339 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4340 struct btrfs_inode *dir, struct btrfs_inode *inode, 4341 const struct fscrypt_str *name) 4342 { 4343 int ret; 4344 4345 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4346 if (!ret) { 4347 drop_nlink(&inode->vfs_inode); 4348 ret = btrfs_update_inode(trans, inode); 4349 } 4350 return ret; 4351 } 4352 4353 /* 4354 * helper to start transaction for unlink and rmdir. 4355 * 4356 * unlink and rmdir are special in btrfs, they do not always free space, so 4357 * if we cannot make our reservations the normal way try and see if there is 4358 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4359 * allow the unlink to occur. 4360 */ 4361 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4362 { 4363 struct btrfs_root *root = dir->root; 4364 4365 return btrfs_start_transaction_fallback_global_rsv(root, 4366 BTRFS_UNLINK_METADATA_UNITS); 4367 } 4368 4369 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4370 { 4371 struct btrfs_trans_handle *trans; 4372 struct inode *inode = d_inode(dentry); 4373 int ret; 4374 struct fscrypt_name fname; 4375 4376 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4377 if (ret) 4378 return ret; 4379 4380 /* This needs to handle no-key deletions later on */ 4381 4382 trans = __unlink_start_trans(BTRFS_I(dir)); 4383 if (IS_ERR(trans)) { 4384 ret = PTR_ERR(trans); 4385 goto fscrypt_free; 4386 } 4387 4388 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4389 false); 4390 4391 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4392 &fname.disk_name); 4393 if (ret) 4394 goto end_trans; 4395 4396 if (inode->i_nlink == 0) { 4397 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4398 if (ret) 4399 goto end_trans; 4400 } 4401 4402 end_trans: 4403 btrfs_end_transaction(trans); 4404 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4405 fscrypt_free: 4406 fscrypt_free_filename(&fname); 4407 return ret; 4408 } 4409 4410 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4411 struct btrfs_inode *dir, struct dentry *dentry) 4412 { 4413 struct btrfs_root *root = dir->root; 4414 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4415 struct btrfs_path *path; 4416 struct extent_buffer *leaf; 4417 struct btrfs_dir_item *di; 4418 struct btrfs_key key; 4419 u64 index; 4420 int ret; 4421 u64 objectid; 4422 u64 dir_ino = btrfs_ino(dir); 4423 struct fscrypt_name fname; 4424 4425 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4426 if (ret) 4427 return ret; 4428 4429 /* This needs to handle no-key deletions later on */ 4430 4431 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4432 objectid = btrfs_root_id(inode->root); 4433 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4434 objectid = inode->ref_root_id; 4435 } else { 4436 WARN_ON(1); 4437 fscrypt_free_filename(&fname); 4438 return -EINVAL; 4439 } 4440 4441 path = btrfs_alloc_path(); 4442 if (!path) { 4443 ret = -ENOMEM; 4444 goto out; 4445 } 4446 4447 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4448 &fname.disk_name, -1); 4449 if (IS_ERR_OR_NULL(di)) { 4450 ret = di ? PTR_ERR(di) : -ENOENT; 4451 goto out; 4452 } 4453 4454 leaf = path->nodes[0]; 4455 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4456 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4457 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4458 if (unlikely(ret)) { 4459 btrfs_abort_transaction(trans, ret); 4460 goto out; 4461 } 4462 btrfs_release_path(path); 4463 4464 /* 4465 * This is a placeholder inode for a subvolume we didn't have a 4466 * reference to at the time of the snapshot creation. In the meantime 4467 * we could have renamed the real subvol link into our snapshot, so 4468 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4469 * Instead simply lookup the dir_index_item for this entry so we can 4470 * remove it. Otherwise we know we have a ref to the root and we can 4471 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4472 */ 4473 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4474 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4475 if (IS_ERR(di)) { 4476 ret = PTR_ERR(di); 4477 btrfs_abort_transaction(trans, ret); 4478 goto out; 4479 } 4480 4481 leaf = path->nodes[0]; 4482 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4483 index = key.offset; 4484 btrfs_release_path(path); 4485 } else { 4486 ret = btrfs_del_root_ref(trans, objectid, 4487 btrfs_root_id(root), dir_ino, 4488 &index, &fname.disk_name); 4489 if (unlikely(ret)) { 4490 btrfs_abort_transaction(trans, ret); 4491 goto out; 4492 } 4493 } 4494 4495 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4496 if (unlikely(ret)) { 4497 btrfs_abort_transaction(trans, ret); 4498 goto out; 4499 } 4500 4501 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4502 inode_inc_iversion(&dir->vfs_inode); 4503 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4504 ret = btrfs_update_inode_fallback(trans, dir); 4505 if (ret) 4506 btrfs_abort_transaction(trans, ret); 4507 out: 4508 btrfs_free_path(path); 4509 fscrypt_free_filename(&fname); 4510 return ret; 4511 } 4512 4513 /* 4514 * Helper to check if the subvolume references other subvolumes or if it's 4515 * default. 4516 */ 4517 static noinline int may_destroy_subvol(struct btrfs_root *root) 4518 { 4519 struct btrfs_fs_info *fs_info = root->fs_info; 4520 BTRFS_PATH_AUTO_FREE(path); 4521 struct btrfs_dir_item *di; 4522 struct btrfs_key key; 4523 struct fscrypt_str name = FSTR_INIT("default", 7); 4524 u64 dir_id; 4525 int ret; 4526 4527 path = btrfs_alloc_path(); 4528 if (!path) 4529 return -ENOMEM; 4530 4531 /* Make sure this root isn't set as the default subvol */ 4532 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4533 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4534 dir_id, &name, 0); 4535 if (di && !IS_ERR(di)) { 4536 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4537 if (key.objectid == btrfs_root_id(root)) { 4538 ret = -EPERM; 4539 btrfs_err(fs_info, 4540 "deleting default subvolume %llu is not allowed", 4541 key.objectid); 4542 return ret; 4543 } 4544 btrfs_release_path(path); 4545 } 4546 4547 key.objectid = btrfs_root_id(root); 4548 key.type = BTRFS_ROOT_REF_KEY; 4549 key.offset = (u64)-1; 4550 4551 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4552 if (ret < 0) 4553 return ret; 4554 if (unlikely(ret == 0)) { 4555 /* 4556 * Key with offset -1 found, there would have to exist a root 4557 * with such id, but this is out of valid range. 4558 */ 4559 return -EUCLEAN; 4560 } 4561 4562 ret = 0; 4563 if (path->slots[0] > 0) { 4564 path->slots[0]--; 4565 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4566 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4567 ret = -ENOTEMPTY; 4568 } 4569 4570 return ret; 4571 } 4572 4573 /* Delete all dentries for inodes belonging to the root */ 4574 static void btrfs_prune_dentries(struct btrfs_root *root) 4575 { 4576 struct btrfs_fs_info *fs_info = root->fs_info; 4577 struct btrfs_inode *inode; 4578 u64 min_ino = 0; 4579 4580 if (!BTRFS_FS_ERROR(fs_info)) 4581 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4582 4583 inode = btrfs_find_first_inode(root, min_ino); 4584 while (inode) { 4585 if (icount_read(&inode->vfs_inode) > 1) 4586 d_prune_aliases(&inode->vfs_inode); 4587 4588 min_ino = btrfs_ino(inode) + 1; 4589 /* 4590 * btrfs_drop_inode() will have it removed from the inode 4591 * cache when its usage count hits zero. 4592 */ 4593 iput(&inode->vfs_inode); 4594 cond_resched(); 4595 inode = btrfs_find_first_inode(root, min_ino); 4596 } 4597 } 4598 4599 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4600 { 4601 struct btrfs_root *root = dir->root; 4602 struct btrfs_fs_info *fs_info = root->fs_info; 4603 struct inode *inode = d_inode(dentry); 4604 struct btrfs_root *dest = BTRFS_I(inode)->root; 4605 struct btrfs_trans_handle *trans; 4606 struct btrfs_block_rsv block_rsv; 4607 u64 root_flags; 4608 u64 qgroup_reserved = 0; 4609 int ret; 4610 4611 down_write(&fs_info->subvol_sem); 4612 4613 /* 4614 * Don't allow to delete a subvolume with send in progress. This is 4615 * inside the inode lock so the error handling that has to drop the bit 4616 * again is not run concurrently. 4617 */ 4618 spin_lock(&dest->root_item_lock); 4619 if (dest->send_in_progress) { 4620 spin_unlock(&dest->root_item_lock); 4621 btrfs_warn(fs_info, 4622 "attempt to delete subvolume %llu during send", 4623 btrfs_root_id(dest)); 4624 ret = -EPERM; 4625 goto out_up_write; 4626 } 4627 if (atomic_read(&dest->nr_swapfiles)) { 4628 spin_unlock(&dest->root_item_lock); 4629 btrfs_warn(fs_info, 4630 "attempt to delete subvolume %llu with active swapfile", 4631 btrfs_root_id(root)); 4632 ret = -EPERM; 4633 goto out_up_write; 4634 } 4635 root_flags = btrfs_root_flags(&dest->root_item); 4636 btrfs_set_root_flags(&dest->root_item, 4637 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4638 spin_unlock(&dest->root_item_lock); 4639 4640 ret = may_destroy_subvol(dest); 4641 if (ret) 4642 goto out_undead; 4643 4644 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4645 /* 4646 * One for dir inode, 4647 * two for dir entries, 4648 * two for root ref/backref. 4649 */ 4650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4651 if (ret) 4652 goto out_undead; 4653 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4654 4655 trans = btrfs_start_transaction(root, 0); 4656 if (IS_ERR(trans)) { 4657 ret = PTR_ERR(trans); 4658 goto out_release; 4659 } 4660 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4661 qgroup_reserved = 0; 4662 trans->block_rsv = &block_rsv; 4663 trans->bytes_reserved = block_rsv.size; 4664 4665 btrfs_record_snapshot_destroy(trans, dir); 4666 4667 ret = btrfs_unlink_subvol(trans, dir, dentry); 4668 if (unlikely(ret)) { 4669 btrfs_abort_transaction(trans, ret); 4670 goto out_end_trans; 4671 } 4672 4673 ret = btrfs_record_root_in_trans(trans, dest); 4674 if (unlikely(ret)) { 4675 btrfs_abort_transaction(trans, ret); 4676 goto out_end_trans; 4677 } 4678 4679 memset(&dest->root_item.drop_progress, 0, 4680 sizeof(dest->root_item.drop_progress)); 4681 btrfs_set_root_drop_level(&dest->root_item, 0); 4682 btrfs_set_root_refs(&dest->root_item, 0); 4683 4684 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4685 ret = btrfs_insert_orphan_item(trans, 4686 fs_info->tree_root, 4687 btrfs_root_id(dest)); 4688 if (unlikely(ret)) { 4689 btrfs_abort_transaction(trans, ret); 4690 goto out_end_trans; 4691 } 4692 } 4693 4694 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4695 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4696 if (unlikely(ret && ret != -ENOENT)) { 4697 btrfs_abort_transaction(trans, ret); 4698 goto out_end_trans; 4699 } 4700 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4701 ret = btrfs_uuid_tree_remove(trans, 4702 dest->root_item.received_uuid, 4703 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4704 btrfs_root_id(dest)); 4705 if (unlikely(ret && ret != -ENOENT)) { 4706 btrfs_abort_transaction(trans, ret); 4707 goto out_end_trans; 4708 } 4709 } 4710 4711 free_anon_bdev(dest->anon_dev); 4712 dest->anon_dev = 0; 4713 out_end_trans: 4714 trans->block_rsv = NULL; 4715 trans->bytes_reserved = 0; 4716 ret = btrfs_end_transaction(trans); 4717 inode->i_flags |= S_DEAD; 4718 out_release: 4719 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4720 if (qgroup_reserved) 4721 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4722 out_undead: 4723 if (ret) { 4724 spin_lock(&dest->root_item_lock); 4725 root_flags = btrfs_root_flags(&dest->root_item); 4726 btrfs_set_root_flags(&dest->root_item, 4727 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4728 spin_unlock(&dest->root_item_lock); 4729 } 4730 out_up_write: 4731 up_write(&fs_info->subvol_sem); 4732 if (!ret) { 4733 d_invalidate(dentry); 4734 btrfs_prune_dentries(dest); 4735 ASSERT(dest->send_in_progress == 0); 4736 } 4737 4738 return ret; 4739 } 4740 4741 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4742 { 4743 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4744 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4745 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4746 int ret = 0; 4747 struct btrfs_trans_handle *trans; 4748 struct fscrypt_name fname; 4749 4750 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4751 return -ENOTEMPTY; 4752 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4753 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4754 btrfs_err(fs_info, 4755 "extent tree v2 doesn't support snapshot deletion yet"); 4756 return -EOPNOTSUPP; 4757 } 4758 return btrfs_delete_subvolume(dir, dentry); 4759 } 4760 4761 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4762 if (ret) 4763 return ret; 4764 4765 /* This needs to handle no-key deletions later on */ 4766 4767 trans = __unlink_start_trans(dir); 4768 if (IS_ERR(trans)) { 4769 ret = PTR_ERR(trans); 4770 goto out_notrans; 4771 } 4772 4773 /* 4774 * Propagate the last_unlink_trans value of the deleted dir to its 4775 * parent directory. This is to prevent an unrecoverable log tree in the 4776 * case we do something like this: 4777 * 1) create dir foo 4778 * 2) create snapshot under dir foo 4779 * 3) delete the snapshot 4780 * 4) rmdir foo 4781 * 5) mkdir foo 4782 * 6) fsync foo or some file inside foo 4783 * 4784 * This is because we can't unlink other roots when replaying the dir 4785 * deletes for directory foo. 4786 */ 4787 if (inode->last_unlink_trans >= trans->transid) 4788 btrfs_record_snapshot_destroy(trans, dir); 4789 4790 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4791 ret = btrfs_unlink_subvol(trans, dir, dentry); 4792 goto out; 4793 } 4794 4795 ret = btrfs_orphan_add(trans, inode); 4796 if (ret) 4797 goto out; 4798 4799 /* now the directory is empty */ 4800 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4801 if (!ret) 4802 btrfs_i_size_write(inode, 0); 4803 out: 4804 btrfs_end_transaction(trans); 4805 out_notrans: 4806 btrfs_btree_balance_dirty(fs_info); 4807 fscrypt_free_filename(&fname); 4808 4809 return ret; 4810 } 4811 4812 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4813 { 4814 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4815 blockstart, blocksize); 4816 4817 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4818 return true; 4819 return false; 4820 } 4821 4822 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4823 { 4824 const pgoff_t index = (start >> PAGE_SHIFT); 4825 struct address_space *mapping = inode->vfs_inode.i_mapping; 4826 struct folio *folio; 4827 u64 zero_start; 4828 u64 zero_end; 4829 int ret = 0; 4830 4831 again: 4832 folio = filemap_lock_folio(mapping, index); 4833 /* No folio present. */ 4834 if (IS_ERR(folio)) 4835 return 0; 4836 4837 if (!folio_test_uptodate(folio)) { 4838 ret = btrfs_read_folio(NULL, folio); 4839 folio_lock(folio); 4840 if (folio->mapping != mapping) { 4841 folio_unlock(folio); 4842 folio_put(folio); 4843 goto again; 4844 } 4845 if (unlikely(!folio_test_uptodate(folio))) { 4846 ret = -EIO; 4847 goto out_unlock; 4848 } 4849 } 4850 folio_wait_writeback(folio); 4851 4852 /* 4853 * We do not need to lock extents nor wait for OE, as it's already 4854 * beyond EOF. 4855 */ 4856 4857 zero_start = max_t(u64, folio_pos(folio), start); 4858 zero_end = folio_end(folio); 4859 folio_zero_range(folio, zero_start - folio_pos(folio), 4860 zero_end - zero_start); 4861 4862 out_unlock: 4863 folio_unlock(folio); 4864 folio_put(folio); 4865 return ret; 4866 } 4867 4868 /* 4869 * Handle the truncation of a fs block. 4870 * 4871 * @inode - inode that we're zeroing 4872 * @offset - the file offset of the block to truncate 4873 * The value must be inside [@start, @end], and the function will do 4874 * extra checks if the block that covers @offset needs to be zeroed. 4875 * @start - the start file offset of the range we want to zero 4876 * @end - the end (inclusive) file offset of the range we want to zero. 4877 * 4878 * If the range is not block aligned, read out the folio that covers @offset, 4879 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4880 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4881 * for writeback. 4882 * 4883 * This is utilized by hole punch, zero range, file expansion. 4884 */ 4885 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4886 { 4887 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4888 struct address_space *mapping = inode->vfs_inode.i_mapping; 4889 struct extent_io_tree *io_tree = &inode->io_tree; 4890 struct btrfs_ordered_extent *ordered; 4891 struct extent_state *cached_state = NULL; 4892 struct extent_changeset *data_reserved = NULL; 4893 bool only_release_metadata = false; 4894 u32 blocksize = fs_info->sectorsize; 4895 pgoff_t index = (offset >> PAGE_SHIFT); 4896 struct folio *folio; 4897 gfp_t mask = btrfs_alloc_write_mask(mapping); 4898 int ret = 0; 4899 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4900 blocksize); 4901 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4902 blocksize); 4903 bool need_truncate_head = false; 4904 bool need_truncate_tail = false; 4905 u64 zero_start; 4906 u64 zero_end; 4907 u64 block_start; 4908 u64 block_end; 4909 4910 /* @offset should be inside the range. */ 4911 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4912 offset, start, end); 4913 4914 /* The range is aligned at both ends. */ 4915 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4916 /* 4917 * For block size < page size case, we may have polluted blocks 4918 * beyond EOF. So we also need to zero them out. 4919 */ 4920 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4921 ret = truncate_block_zero_beyond_eof(inode, start); 4922 goto out; 4923 } 4924 4925 /* 4926 * @offset may not be inside the head nor tail block. In that case we 4927 * don't need to do anything. 4928 */ 4929 if (!in_head_block && !in_tail_block) 4930 goto out; 4931 4932 /* 4933 * Skip the truncation if the range in the target block is already aligned. 4934 * The seemingly complex check will also handle the same block case. 4935 */ 4936 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4937 need_truncate_head = true; 4938 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4939 need_truncate_tail = true; 4940 if (!need_truncate_head && !need_truncate_tail) 4941 goto out; 4942 4943 block_start = round_down(offset, blocksize); 4944 block_end = block_start + blocksize - 1; 4945 4946 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4947 blocksize, false); 4948 if (ret < 0) { 4949 size_t write_bytes = blocksize; 4950 4951 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4952 /* For nocow case, no need to reserve data space. */ 4953 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4954 write_bytes, blocksize); 4955 only_release_metadata = true; 4956 } else { 4957 goto out; 4958 } 4959 } 4960 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4961 if (ret < 0) { 4962 if (!only_release_metadata) 4963 btrfs_free_reserved_data_space(inode, data_reserved, 4964 block_start, blocksize); 4965 goto out; 4966 } 4967 again: 4968 folio = __filemap_get_folio(mapping, index, 4969 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4970 if (IS_ERR(folio)) { 4971 if (only_release_metadata) 4972 btrfs_delalloc_release_metadata(inode, blocksize, true); 4973 else 4974 btrfs_delalloc_release_space(inode, data_reserved, 4975 block_start, blocksize, true); 4976 btrfs_delalloc_release_extents(inode, blocksize); 4977 ret = PTR_ERR(folio); 4978 goto out; 4979 } 4980 4981 if (!folio_test_uptodate(folio)) { 4982 ret = btrfs_read_folio(NULL, folio); 4983 folio_lock(folio); 4984 if (folio->mapping != mapping) { 4985 folio_unlock(folio); 4986 folio_put(folio); 4987 goto again; 4988 } 4989 if (unlikely(!folio_test_uptodate(folio))) { 4990 ret = -EIO; 4991 goto out_unlock; 4992 } 4993 } 4994 4995 /* 4996 * We unlock the page after the io is completed and then re-lock it 4997 * above. release_folio() could have come in between that and cleared 4998 * folio private, but left the page in the mapping. Set the page mapped 4999 * here to make sure it's properly set for the subpage stuff. 5000 */ 5001 ret = set_folio_extent_mapped(folio); 5002 if (ret < 0) 5003 goto out_unlock; 5004 5005 folio_wait_writeback(folio); 5006 5007 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5008 5009 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5010 if (ordered) { 5011 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5012 folio_unlock(folio); 5013 folio_put(folio); 5014 btrfs_start_ordered_extent(ordered); 5015 btrfs_put_ordered_extent(ordered); 5016 goto again; 5017 } 5018 5019 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5020 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5021 &cached_state); 5022 5023 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5024 &cached_state); 5025 if (ret) { 5026 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5027 goto out_unlock; 5028 } 5029 5030 if (end == (u64)-1) { 5031 /* 5032 * We're truncating beyond EOF, the remaining blocks normally are 5033 * already holes thus no need to zero again, but it's possible for 5034 * fs block size < page size cases to have memory mapped writes 5035 * to pollute ranges beyond EOF. 5036 * 5037 * In that case although such polluted blocks beyond EOF will 5038 * not reach disk, it still affects our page caches. 5039 */ 5040 zero_start = max_t(u64, folio_pos(folio), start); 5041 zero_end = min_t(u64, folio_end(folio) - 1, end); 5042 } else { 5043 zero_start = max_t(u64, block_start, start); 5044 zero_end = min_t(u64, block_end, end); 5045 } 5046 folio_zero_range(folio, zero_start - folio_pos(folio), 5047 zero_end - zero_start + 1); 5048 5049 btrfs_folio_clear_checked(fs_info, folio, block_start, 5050 block_end + 1 - block_start); 5051 btrfs_folio_set_dirty(fs_info, folio, block_start, 5052 block_end + 1 - block_start); 5053 5054 if (only_release_metadata) 5055 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5056 EXTENT_NORESERVE, &cached_state); 5057 5058 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5059 5060 out_unlock: 5061 if (ret) { 5062 if (only_release_metadata) 5063 btrfs_delalloc_release_metadata(inode, blocksize, true); 5064 else 5065 btrfs_delalloc_release_space(inode, data_reserved, 5066 block_start, blocksize, true); 5067 } 5068 btrfs_delalloc_release_extents(inode, blocksize); 5069 folio_unlock(folio); 5070 folio_put(folio); 5071 out: 5072 if (only_release_metadata) 5073 btrfs_check_nocow_unlock(inode); 5074 extent_changeset_free(data_reserved); 5075 return ret; 5076 } 5077 5078 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5079 { 5080 struct btrfs_root *root = inode->root; 5081 struct btrfs_fs_info *fs_info = root->fs_info; 5082 struct btrfs_trans_handle *trans; 5083 struct btrfs_drop_extents_args drop_args = { 0 }; 5084 int ret; 5085 5086 /* 5087 * If NO_HOLES is enabled, we don't need to do anything. 5088 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5089 * or btrfs_update_inode() will be called, which guarantee that the next 5090 * fsync will know this inode was changed and needs to be logged. 5091 */ 5092 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5093 return 0; 5094 5095 /* 5096 * 1 - for the one we're dropping 5097 * 1 - for the one we're adding 5098 * 1 - for updating the inode. 5099 */ 5100 trans = btrfs_start_transaction(root, 3); 5101 if (IS_ERR(trans)) 5102 return PTR_ERR(trans); 5103 5104 drop_args.start = offset; 5105 drop_args.end = offset + len; 5106 drop_args.drop_cache = true; 5107 5108 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5109 if (unlikely(ret)) { 5110 btrfs_abort_transaction(trans, ret); 5111 btrfs_end_transaction(trans); 5112 return ret; 5113 } 5114 5115 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5116 if (ret) { 5117 btrfs_abort_transaction(trans, ret); 5118 } else { 5119 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5120 btrfs_update_inode(trans, inode); 5121 } 5122 btrfs_end_transaction(trans); 5123 return ret; 5124 } 5125 5126 /* 5127 * This function puts in dummy file extents for the area we're creating a hole 5128 * for. So if we are truncating this file to a larger size we need to insert 5129 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5130 * the range between oldsize and size 5131 */ 5132 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5133 { 5134 struct btrfs_root *root = inode->root; 5135 struct btrfs_fs_info *fs_info = root->fs_info; 5136 struct extent_io_tree *io_tree = &inode->io_tree; 5137 struct extent_map *em = NULL; 5138 struct extent_state *cached_state = NULL; 5139 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5140 u64 block_end = ALIGN(size, fs_info->sectorsize); 5141 u64 last_byte; 5142 u64 cur_offset; 5143 u64 hole_size; 5144 int ret = 0; 5145 5146 /* 5147 * If our size started in the middle of a block we need to zero out the 5148 * rest of the block before we expand the i_size, otherwise we could 5149 * expose stale data. 5150 */ 5151 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5152 if (ret) 5153 return ret; 5154 5155 if (size <= hole_start) 5156 return 0; 5157 5158 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5159 &cached_state); 5160 cur_offset = hole_start; 5161 while (1) { 5162 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5163 if (IS_ERR(em)) { 5164 ret = PTR_ERR(em); 5165 em = NULL; 5166 break; 5167 } 5168 last_byte = min(btrfs_extent_map_end(em), block_end); 5169 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5170 hole_size = last_byte - cur_offset; 5171 5172 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5173 struct extent_map *hole_em; 5174 5175 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5176 if (ret) 5177 break; 5178 5179 ret = btrfs_inode_set_file_extent_range(inode, 5180 cur_offset, hole_size); 5181 if (ret) 5182 break; 5183 5184 hole_em = btrfs_alloc_extent_map(); 5185 if (!hole_em) { 5186 btrfs_drop_extent_map_range(inode, cur_offset, 5187 cur_offset + hole_size - 1, 5188 false); 5189 btrfs_set_inode_full_sync(inode); 5190 goto next; 5191 } 5192 hole_em->start = cur_offset; 5193 hole_em->len = hole_size; 5194 5195 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5196 hole_em->disk_num_bytes = 0; 5197 hole_em->ram_bytes = hole_size; 5198 hole_em->generation = btrfs_get_fs_generation(fs_info); 5199 5200 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5201 btrfs_free_extent_map(hole_em); 5202 } else { 5203 ret = btrfs_inode_set_file_extent_range(inode, 5204 cur_offset, hole_size); 5205 if (ret) 5206 break; 5207 } 5208 next: 5209 btrfs_free_extent_map(em); 5210 em = NULL; 5211 cur_offset = last_byte; 5212 if (cur_offset >= block_end) 5213 break; 5214 } 5215 btrfs_free_extent_map(em); 5216 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5217 return ret; 5218 } 5219 5220 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5221 { 5222 struct btrfs_root *root = BTRFS_I(inode)->root; 5223 struct btrfs_trans_handle *trans; 5224 loff_t oldsize = i_size_read(inode); 5225 loff_t newsize = attr->ia_size; 5226 int mask = attr->ia_valid; 5227 int ret; 5228 5229 /* 5230 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5231 * special case where we need to update the times despite not having 5232 * these flags set. For all other operations the VFS set these flags 5233 * explicitly if it wants a timestamp update. 5234 */ 5235 if (newsize != oldsize) { 5236 inode_inc_iversion(inode); 5237 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5238 inode_set_mtime_to_ts(inode, 5239 inode_set_ctime_current(inode)); 5240 } 5241 } 5242 5243 if (newsize > oldsize) { 5244 /* 5245 * Don't do an expanding truncate while snapshotting is ongoing. 5246 * This is to ensure the snapshot captures a fully consistent 5247 * state of this file - if the snapshot captures this expanding 5248 * truncation, it must capture all writes that happened before 5249 * this truncation. 5250 */ 5251 btrfs_drew_write_lock(&root->snapshot_lock); 5252 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5253 if (ret) { 5254 btrfs_drew_write_unlock(&root->snapshot_lock); 5255 return ret; 5256 } 5257 5258 trans = btrfs_start_transaction(root, 1); 5259 if (IS_ERR(trans)) { 5260 btrfs_drew_write_unlock(&root->snapshot_lock); 5261 return PTR_ERR(trans); 5262 } 5263 5264 i_size_write(inode, newsize); 5265 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5266 pagecache_isize_extended(inode, oldsize, newsize); 5267 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5268 btrfs_drew_write_unlock(&root->snapshot_lock); 5269 btrfs_end_transaction(trans); 5270 } else { 5271 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5272 5273 if (btrfs_is_zoned(fs_info)) { 5274 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5275 ALIGN(newsize, fs_info->sectorsize), 5276 (u64)-1); 5277 if (ret) 5278 return ret; 5279 } 5280 5281 /* 5282 * We're truncating a file that used to have good data down to 5283 * zero. Make sure any new writes to the file get on disk 5284 * on close. 5285 */ 5286 if (newsize == 0) 5287 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5288 &BTRFS_I(inode)->runtime_flags); 5289 5290 truncate_setsize(inode, newsize); 5291 5292 inode_dio_wait(inode); 5293 5294 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5295 if (ret && inode->i_nlink) { 5296 int ret2; 5297 5298 /* 5299 * Truncate failed, so fix up the in-memory size. We 5300 * adjusted disk_i_size down as we removed extents, so 5301 * wait for disk_i_size to be stable and then update the 5302 * in-memory size to match. 5303 */ 5304 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5305 if (ret2) 5306 return ret2; 5307 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5308 } 5309 } 5310 5311 return ret; 5312 } 5313 5314 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5315 struct iattr *attr) 5316 { 5317 struct inode *inode = d_inode(dentry); 5318 struct btrfs_root *root = BTRFS_I(inode)->root; 5319 int ret; 5320 5321 if (btrfs_root_readonly(root)) 5322 return -EROFS; 5323 5324 ret = setattr_prepare(idmap, dentry, attr); 5325 if (ret) 5326 return ret; 5327 5328 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5329 ret = btrfs_setsize(inode, attr); 5330 if (ret) 5331 return ret; 5332 } 5333 5334 if (attr->ia_valid) { 5335 setattr_copy(idmap, inode, attr); 5336 inode_inc_iversion(inode); 5337 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5338 5339 if (!ret && attr->ia_valid & ATTR_MODE) 5340 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5341 } 5342 5343 return ret; 5344 } 5345 5346 /* 5347 * While truncating the inode pages during eviction, we get the VFS 5348 * calling btrfs_invalidate_folio() against each folio of the inode. This 5349 * is slow because the calls to btrfs_invalidate_folio() result in a 5350 * huge amount of calls to lock_extent() and clear_extent_bit(), 5351 * which keep merging and splitting extent_state structures over and over, 5352 * wasting lots of time. 5353 * 5354 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5355 * skip all those expensive operations on a per folio basis and do only 5356 * the ordered io finishing, while we release here the extent_map and 5357 * extent_state structures, without the excessive merging and splitting. 5358 */ 5359 static void evict_inode_truncate_pages(struct inode *inode) 5360 { 5361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5362 struct rb_node *node; 5363 5364 ASSERT(inode->i_state & I_FREEING); 5365 truncate_inode_pages_final(&inode->i_data); 5366 5367 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5368 5369 /* 5370 * Keep looping until we have no more ranges in the io tree. 5371 * We can have ongoing bios started by readahead that have 5372 * their endio callback (extent_io.c:end_bio_extent_readpage) 5373 * still in progress (unlocked the pages in the bio but did not yet 5374 * unlocked the ranges in the io tree). Therefore this means some 5375 * ranges can still be locked and eviction started because before 5376 * submitting those bios, which are executed by a separate task (work 5377 * queue kthread), inode references (inode->i_count) were not taken 5378 * (which would be dropped in the end io callback of each bio). 5379 * Therefore here we effectively end up waiting for those bios and 5380 * anyone else holding locked ranges without having bumped the inode's 5381 * reference count - if we don't do it, when they access the inode's 5382 * io_tree to unlock a range it may be too late, leading to an 5383 * use-after-free issue. 5384 */ 5385 spin_lock(&io_tree->lock); 5386 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5387 struct extent_state *state; 5388 struct extent_state *cached_state = NULL; 5389 u64 start; 5390 u64 end; 5391 unsigned state_flags; 5392 5393 node = rb_first(&io_tree->state); 5394 state = rb_entry(node, struct extent_state, rb_node); 5395 start = state->start; 5396 end = state->end; 5397 state_flags = state->state; 5398 spin_unlock(&io_tree->lock); 5399 5400 btrfs_lock_extent(io_tree, start, end, &cached_state); 5401 5402 /* 5403 * If still has DELALLOC flag, the extent didn't reach disk, 5404 * and its reserved space won't be freed by delayed_ref. 5405 * So we need to free its reserved space here. 5406 * (Refer to comment in btrfs_invalidate_folio, case 2) 5407 * 5408 * Note, end is the bytenr of last byte, so we need + 1 here. 5409 */ 5410 if (state_flags & EXTENT_DELALLOC) 5411 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5412 end - start + 1, NULL); 5413 5414 btrfs_clear_extent_bit(io_tree, start, end, 5415 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5416 &cached_state); 5417 5418 cond_resched(); 5419 spin_lock(&io_tree->lock); 5420 } 5421 spin_unlock(&io_tree->lock); 5422 } 5423 5424 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5425 struct btrfs_block_rsv *rsv) 5426 { 5427 struct btrfs_fs_info *fs_info = root->fs_info; 5428 struct btrfs_trans_handle *trans; 5429 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5430 int ret; 5431 5432 /* 5433 * Eviction should be taking place at some place safe because of our 5434 * delayed iputs. However the normal flushing code will run delayed 5435 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5436 * 5437 * We reserve the delayed_refs_extra here again because we can't use 5438 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5439 * above. We reserve our extra bit here because we generate a ton of 5440 * delayed refs activity by truncating. 5441 * 5442 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5443 * if we fail to make this reservation we can re-try without the 5444 * delayed_refs_extra so we can make some forward progress. 5445 */ 5446 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5447 BTRFS_RESERVE_FLUSH_EVICT); 5448 if (ret) { 5449 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5450 BTRFS_RESERVE_FLUSH_EVICT); 5451 if (ret) { 5452 btrfs_warn(fs_info, 5453 "could not allocate space for delete; will truncate on mount"); 5454 return ERR_PTR(-ENOSPC); 5455 } 5456 delayed_refs_extra = 0; 5457 } 5458 5459 trans = btrfs_join_transaction(root); 5460 if (IS_ERR(trans)) 5461 return trans; 5462 5463 if (delayed_refs_extra) { 5464 trans->block_rsv = &fs_info->trans_block_rsv; 5465 trans->bytes_reserved = delayed_refs_extra; 5466 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5467 delayed_refs_extra, true); 5468 } 5469 return trans; 5470 } 5471 5472 void btrfs_evict_inode(struct inode *inode) 5473 { 5474 struct btrfs_fs_info *fs_info; 5475 struct btrfs_trans_handle *trans; 5476 struct btrfs_root *root = BTRFS_I(inode)->root; 5477 struct btrfs_block_rsv rsv; 5478 int ret; 5479 5480 trace_btrfs_inode_evict(inode); 5481 5482 if (!root) { 5483 fsverity_cleanup_inode(inode); 5484 clear_inode(inode); 5485 return; 5486 } 5487 5488 fs_info = inode_to_fs_info(inode); 5489 evict_inode_truncate_pages(inode); 5490 5491 if (inode->i_nlink && 5492 ((btrfs_root_refs(&root->root_item) != 0 && 5493 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5494 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5495 goto out; 5496 5497 if (is_bad_inode(inode)) 5498 goto out; 5499 5500 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5501 goto out; 5502 5503 if (inode->i_nlink > 0) { 5504 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5505 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5506 goto out; 5507 } 5508 5509 /* 5510 * This makes sure the inode item in tree is uptodate and the space for 5511 * the inode update is released. 5512 */ 5513 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5514 if (ret) 5515 goto out; 5516 5517 /* 5518 * This drops any pending insert or delete operations we have for this 5519 * inode. We could have a delayed dir index deletion queued up, but 5520 * we're removing the inode completely so that'll be taken care of in 5521 * the truncate. 5522 */ 5523 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5524 5525 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5526 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5527 rsv.failfast = true; 5528 5529 btrfs_i_size_write(BTRFS_I(inode), 0); 5530 5531 while (1) { 5532 struct btrfs_truncate_control control = { 5533 .inode = BTRFS_I(inode), 5534 .ino = btrfs_ino(BTRFS_I(inode)), 5535 .new_size = 0, 5536 .min_type = 0, 5537 }; 5538 5539 trans = evict_refill_and_join(root, &rsv); 5540 if (IS_ERR(trans)) 5541 goto out_release; 5542 5543 trans->block_rsv = &rsv; 5544 5545 ret = btrfs_truncate_inode_items(trans, root, &control); 5546 trans->block_rsv = &fs_info->trans_block_rsv; 5547 btrfs_end_transaction(trans); 5548 /* 5549 * We have not added new delayed items for our inode after we 5550 * have flushed its delayed items, so no need to throttle on 5551 * delayed items. However we have modified extent buffers. 5552 */ 5553 btrfs_btree_balance_dirty_nodelay(fs_info); 5554 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5555 goto out_release; 5556 else if (!ret) 5557 break; 5558 } 5559 5560 /* 5561 * Errors here aren't a big deal, it just means we leave orphan items in 5562 * the tree. They will be cleaned up on the next mount. If the inode 5563 * number gets reused, cleanup deletes the orphan item without doing 5564 * anything, and unlink reuses the existing orphan item. 5565 * 5566 * If it turns out that we are dropping too many of these, we might want 5567 * to add a mechanism for retrying these after a commit. 5568 */ 5569 trans = evict_refill_and_join(root, &rsv); 5570 if (!IS_ERR(trans)) { 5571 trans->block_rsv = &rsv; 5572 btrfs_orphan_del(trans, BTRFS_I(inode)); 5573 trans->block_rsv = &fs_info->trans_block_rsv; 5574 btrfs_end_transaction(trans); 5575 } 5576 5577 out_release: 5578 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5579 out: 5580 /* 5581 * If we didn't successfully delete, the orphan item will still be in 5582 * the tree and we'll retry on the next mount. Again, we might also want 5583 * to retry these periodically in the future. 5584 */ 5585 btrfs_remove_delayed_node(BTRFS_I(inode)); 5586 fsverity_cleanup_inode(inode); 5587 clear_inode(inode); 5588 } 5589 5590 /* 5591 * Return the key found in the dir entry in the location pointer, fill @type 5592 * with BTRFS_FT_*, and return 0. 5593 * 5594 * If no dir entries were found, returns -ENOENT. 5595 * If found a corrupted location in dir entry, returns -EUCLEAN. 5596 */ 5597 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5598 struct btrfs_key *location, u8 *type) 5599 { 5600 struct btrfs_dir_item *di; 5601 BTRFS_PATH_AUTO_FREE(path); 5602 struct btrfs_root *root = dir->root; 5603 int ret = 0; 5604 struct fscrypt_name fname; 5605 5606 path = btrfs_alloc_path(); 5607 if (!path) 5608 return -ENOMEM; 5609 5610 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5611 if (ret < 0) 5612 return ret; 5613 /* 5614 * fscrypt_setup_filename() should never return a positive value, but 5615 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5616 */ 5617 ASSERT(ret == 0); 5618 5619 /* This needs to handle no-key deletions later on */ 5620 5621 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5622 &fname.disk_name, 0); 5623 if (IS_ERR_OR_NULL(di)) { 5624 ret = di ? PTR_ERR(di) : -ENOENT; 5625 goto out; 5626 } 5627 5628 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5629 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5630 location->type != BTRFS_ROOT_ITEM_KEY)) { 5631 ret = -EUCLEAN; 5632 btrfs_warn(root->fs_info, 5633 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5634 __func__, fname.disk_name.name, btrfs_ino(dir), 5635 location->objectid, location->type, location->offset); 5636 } 5637 if (!ret) 5638 *type = btrfs_dir_ftype(path->nodes[0], di); 5639 out: 5640 fscrypt_free_filename(&fname); 5641 return ret; 5642 } 5643 5644 /* 5645 * when we hit a tree root in a directory, the btrfs part of the inode 5646 * needs to be changed to reflect the root directory of the tree root. This 5647 * is kind of like crossing a mount point. 5648 */ 5649 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5650 struct btrfs_inode *dir, 5651 struct dentry *dentry, 5652 struct btrfs_key *location, 5653 struct btrfs_root **sub_root) 5654 { 5655 BTRFS_PATH_AUTO_FREE(path); 5656 struct btrfs_root *new_root; 5657 struct btrfs_root_ref *ref; 5658 struct extent_buffer *leaf; 5659 struct btrfs_key key; 5660 int ret; 5661 int err = 0; 5662 struct fscrypt_name fname; 5663 5664 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5665 if (ret) 5666 return ret; 5667 5668 path = btrfs_alloc_path(); 5669 if (!path) { 5670 err = -ENOMEM; 5671 goto out; 5672 } 5673 5674 err = -ENOENT; 5675 key.objectid = btrfs_root_id(dir->root); 5676 key.type = BTRFS_ROOT_REF_KEY; 5677 key.offset = location->objectid; 5678 5679 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5680 if (ret) { 5681 if (ret < 0) 5682 err = ret; 5683 goto out; 5684 } 5685 5686 leaf = path->nodes[0]; 5687 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5688 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5689 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5690 goto out; 5691 5692 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5693 (unsigned long)(ref + 1), fname.disk_name.len); 5694 if (ret) 5695 goto out; 5696 5697 btrfs_release_path(path); 5698 5699 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5700 if (IS_ERR(new_root)) { 5701 err = PTR_ERR(new_root); 5702 goto out; 5703 } 5704 5705 *sub_root = new_root; 5706 location->objectid = btrfs_root_dirid(&new_root->root_item); 5707 location->type = BTRFS_INODE_ITEM_KEY; 5708 location->offset = 0; 5709 err = 0; 5710 out: 5711 fscrypt_free_filename(&fname); 5712 return err; 5713 } 5714 5715 5716 5717 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5718 { 5719 struct btrfs_root *root = inode->root; 5720 struct btrfs_inode *entry; 5721 bool empty = false; 5722 5723 xa_lock(&root->inodes); 5724 /* 5725 * This btrfs_inode is being freed and has already been unhashed at this 5726 * point. It's possible that another btrfs_inode has already been 5727 * allocated for the same inode and inserted itself into the root, so 5728 * don't delete it in that case. 5729 * 5730 * Note that this shouldn't need to allocate memory, so the gfp flags 5731 * don't really matter. 5732 */ 5733 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5734 GFP_ATOMIC); 5735 if (entry == inode) 5736 empty = xa_empty(&root->inodes); 5737 xa_unlock(&root->inodes); 5738 5739 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5740 xa_lock(&root->inodes); 5741 empty = xa_empty(&root->inodes); 5742 xa_unlock(&root->inodes); 5743 if (empty) 5744 btrfs_add_dead_root(root); 5745 } 5746 } 5747 5748 5749 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5750 { 5751 struct btrfs_iget_args *args = p; 5752 5753 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5754 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5755 5756 if (args->root && args->root == args->root->fs_info->tree_root && 5757 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5758 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5759 &BTRFS_I(inode)->runtime_flags); 5760 return 0; 5761 } 5762 5763 static int btrfs_find_actor(struct inode *inode, void *opaque) 5764 { 5765 struct btrfs_iget_args *args = opaque; 5766 5767 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5768 args->root == BTRFS_I(inode)->root; 5769 } 5770 5771 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5772 { 5773 struct inode *inode; 5774 struct btrfs_iget_args args; 5775 unsigned long hashval = btrfs_inode_hash(ino, root); 5776 5777 args.ino = ino; 5778 args.root = root; 5779 5780 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5781 btrfs_init_locked_inode, 5782 (void *)&args); 5783 if (!inode) 5784 return NULL; 5785 return BTRFS_I(inode); 5786 } 5787 5788 /* 5789 * Get an inode object given its inode number and corresponding root. Path is 5790 * preallocated to prevent recursing back to iget through allocator. 5791 */ 5792 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5793 struct btrfs_path *path) 5794 { 5795 struct btrfs_inode *inode; 5796 int ret; 5797 5798 inode = btrfs_iget_locked(ino, root); 5799 if (!inode) 5800 return ERR_PTR(-ENOMEM); 5801 5802 if (!(inode->vfs_inode.i_state & I_NEW)) 5803 return inode; 5804 5805 ret = btrfs_read_locked_inode(inode, path); 5806 if (ret) 5807 return ERR_PTR(ret); 5808 5809 unlock_new_inode(&inode->vfs_inode); 5810 return inode; 5811 } 5812 5813 /* 5814 * Get an inode object given its inode number and corresponding root. 5815 */ 5816 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5817 { 5818 struct btrfs_inode *inode; 5819 struct btrfs_path *path; 5820 int ret; 5821 5822 inode = btrfs_iget_locked(ino, root); 5823 if (!inode) 5824 return ERR_PTR(-ENOMEM); 5825 5826 if (!(inode->vfs_inode.i_state & I_NEW)) 5827 return inode; 5828 5829 path = btrfs_alloc_path(); 5830 if (!path) { 5831 iget_failed(&inode->vfs_inode); 5832 return ERR_PTR(-ENOMEM); 5833 } 5834 5835 ret = btrfs_read_locked_inode(inode, path); 5836 btrfs_free_path(path); 5837 if (ret) 5838 return ERR_PTR(ret); 5839 5840 unlock_new_inode(&inode->vfs_inode); 5841 return inode; 5842 } 5843 5844 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5845 struct btrfs_key *key, 5846 struct btrfs_root *root) 5847 { 5848 struct timespec64 ts; 5849 struct inode *vfs_inode; 5850 struct btrfs_inode *inode; 5851 5852 vfs_inode = new_inode(dir->i_sb); 5853 if (!vfs_inode) 5854 return ERR_PTR(-ENOMEM); 5855 5856 inode = BTRFS_I(vfs_inode); 5857 inode->root = btrfs_grab_root(root); 5858 inode->ref_root_id = key->objectid; 5859 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5860 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5861 5862 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5863 /* 5864 * We only need lookup, the rest is read-only and there's no inode 5865 * associated with the dentry 5866 */ 5867 vfs_inode->i_op = &simple_dir_inode_operations; 5868 vfs_inode->i_opflags &= ~IOP_XATTR; 5869 vfs_inode->i_fop = &simple_dir_operations; 5870 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5871 5872 ts = inode_set_ctime_current(vfs_inode); 5873 inode_set_mtime_to_ts(vfs_inode, ts); 5874 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5875 inode->i_otime_sec = ts.tv_sec; 5876 inode->i_otime_nsec = ts.tv_nsec; 5877 5878 vfs_inode->i_uid = dir->i_uid; 5879 vfs_inode->i_gid = dir->i_gid; 5880 5881 return inode; 5882 } 5883 5884 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5885 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5886 static_assert(BTRFS_FT_DIR == FT_DIR); 5887 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5888 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5889 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5890 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5891 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5892 5893 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5894 { 5895 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5896 } 5897 5898 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5899 { 5900 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5901 struct btrfs_inode *inode; 5902 struct btrfs_root *root = BTRFS_I(dir)->root; 5903 struct btrfs_root *sub_root = root; 5904 struct btrfs_key location = { 0 }; 5905 u8 di_type = 0; 5906 int ret = 0; 5907 5908 if (dentry->d_name.len > BTRFS_NAME_LEN) 5909 return ERR_PTR(-ENAMETOOLONG); 5910 5911 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5912 if (ret < 0) 5913 return ERR_PTR(ret); 5914 5915 if (location.type == BTRFS_INODE_ITEM_KEY) { 5916 inode = btrfs_iget(location.objectid, root); 5917 if (IS_ERR(inode)) 5918 return ERR_CAST(inode); 5919 5920 /* Do extra check against inode mode with di_type */ 5921 if (unlikely(btrfs_inode_type(inode) != di_type)) { 5922 btrfs_crit(fs_info, 5923 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5924 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5925 di_type); 5926 iput(&inode->vfs_inode); 5927 return ERR_PTR(-EUCLEAN); 5928 } 5929 return &inode->vfs_inode; 5930 } 5931 5932 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5933 &location, &sub_root); 5934 if (ret < 0) { 5935 if (ret != -ENOENT) 5936 inode = ERR_PTR(ret); 5937 else 5938 inode = new_simple_dir(dir, &location, root); 5939 } else { 5940 inode = btrfs_iget(location.objectid, sub_root); 5941 btrfs_put_root(sub_root); 5942 5943 if (IS_ERR(inode)) 5944 return ERR_CAST(inode); 5945 5946 down_read(&fs_info->cleanup_work_sem); 5947 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5948 ret = btrfs_orphan_cleanup(sub_root); 5949 up_read(&fs_info->cleanup_work_sem); 5950 if (ret) { 5951 iput(&inode->vfs_inode); 5952 inode = ERR_PTR(ret); 5953 } 5954 } 5955 5956 if (IS_ERR(inode)) 5957 return ERR_CAST(inode); 5958 5959 return &inode->vfs_inode; 5960 } 5961 5962 static int btrfs_dentry_delete(const struct dentry *dentry) 5963 { 5964 struct btrfs_root *root; 5965 struct inode *inode = d_inode(dentry); 5966 5967 if (!inode && !IS_ROOT(dentry)) 5968 inode = d_inode(dentry->d_parent); 5969 5970 if (inode) { 5971 root = BTRFS_I(inode)->root; 5972 if (btrfs_root_refs(&root->root_item) == 0) 5973 return 1; 5974 5975 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5976 return 1; 5977 } 5978 return 0; 5979 } 5980 5981 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5982 unsigned int flags) 5983 { 5984 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5985 5986 if (inode == ERR_PTR(-ENOENT)) 5987 inode = NULL; 5988 return d_splice_alias(inode, dentry); 5989 } 5990 5991 /* 5992 * Find the highest existing sequence number in a directory and then set the 5993 * in-memory index_cnt variable to the first free sequence number. 5994 */ 5995 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5996 { 5997 struct btrfs_root *root = inode->root; 5998 struct btrfs_key key, found_key; 5999 BTRFS_PATH_AUTO_FREE(path); 6000 struct extent_buffer *leaf; 6001 int ret; 6002 6003 key.objectid = btrfs_ino(inode); 6004 key.type = BTRFS_DIR_INDEX_KEY; 6005 key.offset = (u64)-1; 6006 6007 path = btrfs_alloc_path(); 6008 if (!path) 6009 return -ENOMEM; 6010 6011 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6012 if (ret < 0) 6013 return ret; 6014 /* FIXME: we should be able to handle this */ 6015 if (ret == 0) 6016 return ret; 6017 6018 if (path->slots[0] == 0) { 6019 inode->index_cnt = BTRFS_DIR_START_INDEX; 6020 return 0; 6021 } 6022 6023 path->slots[0]--; 6024 6025 leaf = path->nodes[0]; 6026 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6027 6028 if (found_key.objectid != btrfs_ino(inode) || 6029 found_key.type != BTRFS_DIR_INDEX_KEY) { 6030 inode->index_cnt = BTRFS_DIR_START_INDEX; 6031 return 0; 6032 } 6033 6034 inode->index_cnt = found_key.offset + 1; 6035 6036 return 0; 6037 } 6038 6039 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6040 { 6041 int ret = 0; 6042 6043 btrfs_inode_lock(dir, 0); 6044 if (dir->index_cnt == (u64)-1) { 6045 ret = btrfs_inode_delayed_dir_index_count(dir); 6046 if (ret) { 6047 ret = btrfs_set_inode_index_count(dir); 6048 if (ret) 6049 goto out; 6050 } 6051 } 6052 6053 /* index_cnt is the index number of next new entry, so decrement it. */ 6054 *index = dir->index_cnt - 1; 6055 out: 6056 btrfs_inode_unlock(dir, 0); 6057 6058 return ret; 6059 } 6060 6061 /* 6062 * All this infrastructure exists because dir_emit can fault, and we are holding 6063 * the tree lock when doing readdir. For now just allocate a buffer and copy 6064 * our information into that, and then dir_emit from the buffer. This is 6065 * similar to what NFS does, only we don't keep the buffer around in pagecache 6066 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6067 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6068 * tree lock. 6069 */ 6070 static int btrfs_opendir(struct inode *inode, struct file *file) 6071 { 6072 struct btrfs_file_private *private; 6073 u64 last_index; 6074 int ret; 6075 6076 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6077 if (ret) 6078 return ret; 6079 6080 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6081 if (!private) 6082 return -ENOMEM; 6083 private->last_index = last_index; 6084 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6085 if (!private->filldir_buf) { 6086 kfree(private); 6087 return -ENOMEM; 6088 } 6089 file->private_data = private; 6090 return 0; 6091 } 6092 6093 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6094 { 6095 struct btrfs_file_private *private = file->private_data; 6096 int ret; 6097 6098 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6099 &private->last_index); 6100 if (ret) 6101 return ret; 6102 6103 return generic_file_llseek(file, offset, whence); 6104 } 6105 6106 struct dir_entry { 6107 u64 ino; 6108 u64 offset; 6109 unsigned type; 6110 int name_len; 6111 }; 6112 6113 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6114 { 6115 while (entries--) { 6116 struct dir_entry *entry = addr; 6117 char *name = (char *)(entry + 1); 6118 6119 ctx->pos = get_unaligned(&entry->offset); 6120 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6121 get_unaligned(&entry->ino), 6122 get_unaligned(&entry->type))) 6123 return 1; 6124 addr += sizeof(struct dir_entry) + 6125 get_unaligned(&entry->name_len); 6126 ctx->pos++; 6127 } 6128 return 0; 6129 } 6130 6131 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6132 { 6133 struct inode *inode = file_inode(file); 6134 struct btrfs_root *root = BTRFS_I(inode)->root; 6135 struct btrfs_file_private *private = file->private_data; 6136 struct btrfs_dir_item *di; 6137 struct btrfs_key key; 6138 struct btrfs_key found_key; 6139 BTRFS_PATH_AUTO_FREE(path); 6140 void *addr; 6141 LIST_HEAD(ins_list); 6142 LIST_HEAD(del_list); 6143 int ret; 6144 char *name_ptr; 6145 int name_len; 6146 int entries = 0; 6147 int total_len = 0; 6148 bool put = false; 6149 struct btrfs_key location; 6150 6151 if (!dir_emit_dots(file, ctx)) 6152 return 0; 6153 6154 path = btrfs_alloc_path(); 6155 if (!path) 6156 return -ENOMEM; 6157 6158 addr = private->filldir_buf; 6159 path->reada = READA_FORWARD; 6160 6161 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6162 &ins_list, &del_list); 6163 6164 again: 6165 key.type = BTRFS_DIR_INDEX_KEY; 6166 key.offset = ctx->pos; 6167 key.objectid = btrfs_ino(BTRFS_I(inode)); 6168 6169 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6170 struct dir_entry *entry; 6171 struct extent_buffer *leaf = path->nodes[0]; 6172 u8 ftype; 6173 6174 if (found_key.objectid != key.objectid) 6175 break; 6176 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6177 break; 6178 if (found_key.offset < ctx->pos) 6179 continue; 6180 if (found_key.offset > private->last_index) 6181 break; 6182 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6183 continue; 6184 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6185 name_len = btrfs_dir_name_len(leaf, di); 6186 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6187 PAGE_SIZE) { 6188 btrfs_release_path(path); 6189 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6190 if (ret) 6191 goto nopos; 6192 addr = private->filldir_buf; 6193 entries = 0; 6194 total_len = 0; 6195 goto again; 6196 } 6197 6198 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6199 entry = addr; 6200 name_ptr = (char *)(entry + 1); 6201 read_extent_buffer(leaf, name_ptr, 6202 (unsigned long)(di + 1), name_len); 6203 put_unaligned(name_len, &entry->name_len); 6204 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6205 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6206 put_unaligned(location.objectid, &entry->ino); 6207 put_unaligned(found_key.offset, &entry->offset); 6208 entries++; 6209 addr += sizeof(struct dir_entry) + name_len; 6210 total_len += sizeof(struct dir_entry) + name_len; 6211 } 6212 /* Catch error encountered during iteration */ 6213 if (ret < 0) 6214 goto err; 6215 6216 btrfs_release_path(path); 6217 6218 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6219 if (ret) 6220 goto nopos; 6221 6222 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6223 goto nopos; 6224 6225 /* 6226 * Stop new entries from being returned after we return the last 6227 * entry. 6228 * 6229 * New directory entries are assigned a strictly increasing 6230 * offset. This means that new entries created during readdir 6231 * are *guaranteed* to be seen in the future by that readdir. 6232 * This has broken buggy programs which operate on names as 6233 * they're returned by readdir. Until we reuse freed offsets 6234 * we have this hack to stop new entries from being returned 6235 * under the assumption that they'll never reach this huge 6236 * offset. 6237 * 6238 * This is being careful not to overflow 32bit loff_t unless the 6239 * last entry requires it because doing so has broken 32bit apps 6240 * in the past. 6241 */ 6242 if (ctx->pos >= INT_MAX) 6243 ctx->pos = LLONG_MAX; 6244 else 6245 ctx->pos = INT_MAX; 6246 nopos: 6247 ret = 0; 6248 err: 6249 if (put) 6250 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6251 return ret; 6252 } 6253 6254 /* 6255 * This is somewhat expensive, updating the tree every time the 6256 * inode changes. But, it is most likely to find the inode in cache. 6257 * FIXME, needs more benchmarking...there are no reasons other than performance 6258 * to keep or drop this code. 6259 */ 6260 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6261 { 6262 struct btrfs_root *root = inode->root; 6263 struct btrfs_fs_info *fs_info = root->fs_info; 6264 struct btrfs_trans_handle *trans; 6265 int ret; 6266 6267 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6268 return 0; 6269 6270 trans = btrfs_join_transaction(root); 6271 if (IS_ERR(trans)) 6272 return PTR_ERR(trans); 6273 6274 ret = btrfs_update_inode(trans, inode); 6275 if (ret == -ENOSPC || ret == -EDQUOT) { 6276 /* whoops, lets try again with the full transaction */ 6277 btrfs_end_transaction(trans); 6278 trans = btrfs_start_transaction(root, 1); 6279 if (IS_ERR(trans)) 6280 return PTR_ERR(trans); 6281 6282 ret = btrfs_update_inode(trans, inode); 6283 } 6284 btrfs_end_transaction(trans); 6285 if (inode->delayed_node) 6286 btrfs_balance_delayed_items(fs_info); 6287 6288 return ret; 6289 } 6290 6291 /* 6292 * This is a copy of file_update_time. We need this so we can return error on 6293 * ENOSPC for updating the inode in the case of file write and mmap writes. 6294 */ 6295 static int btrfs_update_time(struct inode *inode, int flags) 6296 { 6297 struct btrfs_root *root = BTRFS_I(inode)->root; 6298 bool dirty; 6299 6300 if (btrfs_root_readonly(root)) 6301 return -EROFS; 6302 6303 dirty = inode_update_timestamps(inode, flags); 6304 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6305 } 6306 6307 /* 6308 * helper to find a free sequence number in a given directory. This current 6309 * code is very simple, later versions will do smarter things in the btree 6310 */ 6311 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6312 { 6313 int ret = 0; 6314 6315 if (dir->index_cnt == (u64)-1) { 6316 ret = btrfs_inode_delayed_dir_index_count(dir); 6317 if (ret) { 6318 ret = btrfs_set_inode_index_count(dir); 6319 if (ret) 6320 return ret; 6321 } 6322 } 6323 6324 *index = dir->index_cnt; 6325 dir->index_cnt++; 6326 6327 return ret; 6328 } 6329 6330 static int btrfs_insert_inode_locked(struct inode *inode) 6331 { 6332 struct btrfs_iget_args args; 6333 6334 args.ino = btrfs_ino(BTRFS_I(inode)); 6335 args.root = BTRFS_I(inode)->root; 6336 6337 return insert_inode_locked4(inode, 6338 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6339 btrfs_find_actor, &args); 6340 } 6341 6342 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6343 unsigned int *trans_num_items) 6344 { 6345 struct inode *dir = args->dir; 6346 struct inode *inode = args->inode; 6347 int ret; 6348 6349 if (!args->orphan) { 6350 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6351 &args->fname); 6352 if (ret) 6353 return ret; 6354 } 6355 6356 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6357 if (ret) { 6358 fscrypt_free_filename(&args->fname); 6359 return ret; 6360 } 6361 6362 /* 1 to add inode item */ 6363 *trans_num_items = 1; 6364 /* 1 to add compression property */ 6365 if (BTRFS_I(dir)->prop_compress) 6366 (*trans_num_items)++; 6367 /* 1 to add default ACL xattr */ 6368 if (args->default_acl) 6369 (*trans_num_items)++; 6370 /* 1 to add access ACL xattr */ 6371 if (args->acl) 6372 (*trans_num_items)++; 6373 #ifdef CONFIG_SECURITY 6374 /* 1 to add LSM xattr */ 6375 if (dir->i_security) 6376 (*trans_num_items)++; 6377 #endif 6378 if (args->orphan) { 6379 /* 1 to add orphan item */ 6380 (*trans_num_items)++; 6381 } else { 6382 /* 6383 * 1 to add dir item 6384 * 1 to add dir index 6385 * 1 to update parent inode item 6386 * 6387 * No need for 1 unit for the inode ref item because it is 6388 * inserted in a batch together with the inode item at 6389 * btrfs_create_new_inode(). 6390 */ 6391 *trans_num_items += 3; 6392 } 6393 return 0; 6394 } 6395 6396 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6397 { 6398 posix_acl_release(args->acl); 6399 posix_acl_release(args->default_acl); 6400 fscrypt_free_filename(&args->fname); 6401 } 6402 6403 /* 6404 * Inherit flags from the parent inode. 6405 * 6406 * Currently only the compression flags and the cow flags are inherited. 6407 */ 6408 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6409 { 6410 unsigned int flags; 6411 6412 flags = dir->flags; 6413 6414 if (flags & BTRFS_INODE_NOCOMPRESS) { 6415 inode->flags &= ~BTRFS_INODE_COMPRESS; 6416 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6417 } else if (flags & BTRFS_INODE_COMPRESS) { 6418 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6419 inode->flags |= BTRFS_INODE_COMPRESS; 6420 } 6421 6422 if (flags & BTRFS_INODE_NODATACOW) { 6423 inode->flags |= BTRFS_INODE_NODATACOW; 6424 if (S_ISREG(inode->vfs_inode.i_mode)) 6425 inode->flags |= BTRFS_INODE_NODATASUM; 6426 } 6427 6428 btrfs_sync_inode_flags_to_i_flags(inode); 6429 } 6430 6431 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6432 struct btrfs_new_inode_args *args) 6433 { 6434 struct timespec64 ts; 6435 struct inode *dir = args->dir; 6436 struct inode *inode = args->inode; 6437 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6438 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6439 struct btrfs_root *root; 6440 struct btrfs_inode_item *inode_item; 6441 struct btrfs_path *path; 6442 u64 objectid; 6443 struct btrfs_inode_ref *ref; 6444 struct btrfs_key key[2]; 6445 u32 sizes[2]; 6446 struct btrfs_item_batch batch; 6447 unsigned long ptr; 6448 int ret; 6449 bool xa_reserved = false; 6450 6451 path = btrfs_alloc_path(); 6452 if (!path) 6453 return -ENOMEM; 6454 6455 if (!args->subvol) 6456 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6457 root = BTRFS_I(inode)->root; 6458 6459 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6460 if (ret) 6461 goto out; 6462 6463 ret = btrfs_get_free_objectid(root, &objectid); 6464 if (ret) 6465 goto out; 6466 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6467 6468 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6469 if (ret) 6470 goto out; 6471 xa_reserved = true; 6472 6473 if (args->orphan) { 6474 /* 6475 * O_TMPFILE, set link count to 0, so that after this point, we 6476 * fill in an inode item with the correct link count. 6477 */ 6478 set_nlink(inode, 0); 6479 } else { 6480 trace_btrfs_inode_request(dir); 6481 6482 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6483 if (ret) 6484 goto out; 6485 } 6486 6487 if (S_ISDIR(inode->i_mode)) 6488 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6489 6490 BTRFS_I(inode)->generation = trans->transid; 6491 inode->i_generation = BTRFS_I(inode)->generation; 6492 6493 /* 6494 * We don't have any capability xattrs set here yet, shortcut any 6495 * queries for the xattrs here. If we add them later via the inode 6496 * security init path or any other path this flag will be cleared. 6497 */ 6498 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6499 6500 /* 6501 * Subvolumes don't inherit flags from their parent directory. 6502 * Originally this was probably by accident, but we probably can't 6503 * change it now without compatibility issues. 6504 */ 6505 if (!args->subvol) 6506 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6507 6508 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6509 if (S_ISREG(inode->i_mode)) { 6510 if (btrfs_test_opt(fs_info, NODATASUM)) 6511 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6512 if (btrfs_test_opt(fs_info, NODATACOW)) 6513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6514 BTRFS_INODE_NODATASUM; 6515 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6516 } 6517 6518 ret = btrfs_insert_inode_locked(inode); 6519 if (ret < 0) { 6520 if (!args->orphan) 6521 BTRFS_I(dir)->index_cnt--; 6522 goto out; 6523 } 6524 6525 /* 6526 * We could have gotten an inode number from somebody who was fsynced 6527 * and then removed in this same transaction, so let's just set full 6528 * sync since it will be a full sync anyway and this will blow away the 6529 * old info in the log. 6530 */ 6531 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6532 6533 key[0].objectid = objectid; 6534 key[0].type = BTRFS_INODE_ITEM_KEY; 6535 key[0].offset = 0; 6536 6537 sizes[0] = sizeof(struct btrfs_inode_item); 6538 6539 if (!args->orphan) { 6540 /* 6541 * Start new inodes with an inode_ref. This is slightly more 6542 * efficient for small numbers of hard links since they will 6543 * be packed into one item. Extended refs will kick in if we 6544 * add more hard links than can fit in the ref item. 6545 */ 6546 key[1].objectid = objectid; 6547 key[1].type = BTRFS_INODE_REF_KEY; 6548 if (args->subvol) { 6549 key[1].offset = objectid; 6550 sizes[1] = 2 + sizeof(*ref); 6551 } else { 6552 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6553 sizes[1] = name->len + sizeof(*ref); 6554 } 6555 } 6556 6557 batch.keys = &key[0]; 6558 batch.data_sizes = &sizes[0]; 6559 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6560 batch.nr = args->orphan ? 1 : 2; 6561 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6562 if (unlikely(ret != 0)) { 6563 btrfs_abort_transaction(trans, ret); 6564 goto discard; 6565 } 6566 6567 ts = simple_inode_init_ts(inode); 6568 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6569 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6570 6571 /* 6572 * We're going to fill the inode item now, so at this point the inode 6573 * must be fully initialized. 6574 */ 6575 6576 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6577 struct btrfs_inode_item); 6578 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6579 sizeof(*inode_item)); 6580 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6581 6582 if (!args->orphan) { 6583 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6584 struct btrfs_inode_ref); 6585 ptr = (unsigned long)(ref + 1); 6586 if (args->subvol) { 6587 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6588 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6589 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6590 } else { 6591 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6592 name->len); 6593 btrfs_set_inode_ref_index(path->nodes[0], ref, 6594 BTRFS_I(inode)->dir_index); 6595 write_extent_buffer(path->nodes[0], name->name, ptr, 6596 name->len); 6597 } 6598 } 6599 6600 /* 6601 * We don't need the path anymore, plus inheriting properties, adding 6602 * ACLs, security xattrs, orphan item or adding the link, will result in 6603 * allocating yet another path. So just free our path. 6604 */ 6605 btrfs_free_path(path); 6606 path = NULL; 6607 6608 if (args->subvol) { 6609 struct btrfs_inode *parent; 6610 6611 /* 6612 * Subvolumes inherit properties from their parent subvolume, 6613 * not the directory they were created in. 6614 */ 6615 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6616 if (IS_ERR(parent)) { 6617 ret = PTR_ERR(parent); 6618 } else { 6619 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6620 parent); 6621 iput(&parent->vfs_inode); 6622 } 6623 } else { 6624 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6625 BTRFS_I(dir)); 6626 } 6627 if (ret) { 6628 btrfs_err(fs_info, 6629 "error inheriting props for ino %llu (root %llu): %d", 6630 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6631 } 6632 6633 /* 6634 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6635 * probably a bug. 6636 */ 6637 if (!args->subvol) { 6638 ret = btrfs_init_inode_security(trans, args); 6639 if (unlikely(ret)) { 6640 btrfs_abort_transaction(trans, ret); 6641 goto discard; 6642 } 6643 } 6644 6645 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6646 if (WARN_ON(ret)) { 6647 /* Shouldn't happen, we used xa_reserve() before. */ 6648 btrfs_abort_transaction(trans, ret); 6649 goto discard; 6650 } 6651 6652 trace_btrfs_inode_new(inode); 6653 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6654 6655 btrfs_update_root_times(trans, root); 6656 6657 if (args->orphan) { 6658 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6659 if (unlikely(ret)) { 6660 btrfs_abort_transaction(trans, ret); 6661 goto discard; 6662 } 6663 } else { 6664 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6665 0, BTRFS_I(inode)->dir_index); 6666 if (unlikely(ret)) { 6667 btrfs_abort_transaction(trans, ret); 6668 goto discard; 6669 } 6670 } 6671 6672 return 0; 6673 6674 discard: 6675 /* 6676 * discard_new_inode() calls iput(), but the caller owns the reference 6677 * to the inode. 6678 */ 6679 ihold(inode); 6680 discard_new_inode(inode); 6681 out: 6682 if (xa_reserved) 6683 xa_release(&root->inodes, objectid); 6684 6685 btrfs_free_path(path); 6686 return ret; 6687 } 6688 6689 /* 6690 * utility function to add 'inode' into 'parent_inode' with 6691 * a give name and a given sequence number. 6692 * if 'add_backref' is true, also insert a backref from the 6693 * inode to the parent directory. 6694 */ 6695 int btrfs_add_link(struct btrfs_trans_handle *trans, 6696 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6697 const struct fscrypt_str *name, bool add_backref, u64 index) 6698 { 6699 int ret = 0; 6700 struct btrfs_key key; 6701 struct btrfs_root *root = parent_inode->root; 6702 u64 ino = btrfs_ino(inode); 6703 u64 parent_ino = btrfs_ino(parent_inode); 6704 6705 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6706 memcpy(&key, &inode->root->root_key, sizeof(key)); 6707 } else { 6708 key.objectid = ino; 6709 key.type = BTRFS_INODE_ITEM_KEY; 6710 key.offset = 0; 6711 } 6712 6713 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6714 ret = btrfs_add_root_ref(trans, key.objectid, 6715 btrfs_root_id(root), parent_ino, 6716 index, name); 6717 } else if (add_backref) { 6718 ret = btrfs_insert_inode_ref(trans, root, name, 6719 ino, parent_ino, index); 6720 } 6721 6722 /* Nothing to clean up yet */ 6723 if (ret) 6724 return ret; 6725 6726 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6727 btrfs_inode_type(inode), index); 6728 if (ret == -EEXIST || ret == -EOVERFLOW) 6729 goto fail_dir_item; 6730 else if (unlikely(ret)) { 6731 btrfs_abort_transaction(trans, ret); 6732 return ret; 6733 } 6734 6735 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6736 name->len * 2); 6737 inode_inc_iversion(&parent_inode->vfs_inode); 6738 update_time_after_link_or_unlink(parent_inode); 6739 6740 ret = btrfs_update_inode(trans, parent_inode); 6741 if (ret) 6742 btrfs_abort_transaction(trans, ret); 6743 return ret; 6744 6745 fail_dir_item: 6746 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6747 u64 local_index; 6748 int ret2; 6749 6750 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6751 parent_ino, &local_index, name); 6752 if (ret2) 6753 btrfs_abort_transaction(trans, ret2); 6754 } else if (add_backref) { 6755 int ret2; 6756 6757 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6758 if (ret2) 6759 btrfs_abort_transaction(trans, ret2); 6760 } 6761 6762 /* Return the original error code */ 6763 return ret; 6764 } 6765 6766 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6767 struct inode *inode) 6768 { 6769 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6770 struct btrfs_root *root = BTRFS_I(dir)->root; 6771 struct btrfs_new_inode_args new_inode_args = { 6772 .dir = dir, 6773 .dentry = dentry, 6774 .inode = inode, 6775 }; 6776 unsigned int trans_num_items; 6777 struct btrfs_trans_handle *trans; 6778 int ret; 6779 6780 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6781 if (ret) 6782 goto out_inode; 6783 6784 trans = btrfs_start_transaction(root, trans_num_items); 6785 if (IS_ERR(trans)) { 6786 ret = PTR_ERR(trans); 6787 goto out_new_inode_args; 6788 } 6789 6790 ret = btrfs_create_new_inode(trans, &new_inode_args); 6791 if (!ret) 6792 d_instantiate_new(dentry, inode); 6793 6794 btrfs_end_transaction(trans); 6795 btrfs_btree_balance_dirty(fs_info); 6796 out_new_inode_args: 6797 btrfs_new_inode_args_destroy(&new_inode_args); 6798 out_inode: 6799 if (ret) 6800 iput(inode); 6801 return ret; 6802 } 6803 6804 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6805 struct dentry *dentry, umode_t mode, dev_t rdev) 6806 { 6807 struct inode *inode; 6808 6809 inode = new_inode(dir->i_sb); 6810 if (!inode) 6811 return -ENOMEM; 6812 inode_init_owner(idmap, inode, dir, mode); 6813 inode->i_op = &btrfs_special_inode_operations; 6814 init_special_inode(inode, inode->i_mode, rdev); 6815 return btrfs_create_common(dir, dentry, inode); 6816 } 6817 6818 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6819 struct dentry *dentry, umode_t mode, bool excl) 6820 { 6821 struct inode *inode; 6822 6823 inode = new_inode(dir->i_sb); 6824 if (!inode) 6825 return -ENOMEM; 6826 inode_init_owner(idmap, inode, dir, mode); 6827 inode->i_fop = &btrfs_file_operations; 6828 inode->i_op = &btrfs_file_inode_operations; 6829 inode->i_mapping->a_ops = &btrfs_aops; 6830 return btrfs_create_common(dir, dentry, inode); 6831 } 6832 6833 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6834 struct dentry *dentry) 6835 { 6836 struct btrfs_trans_handle *trans = NULL; 6837 struct btrfs_root *root = BTRFS_I(dir)->root; 6838 struct inode *inode = d_inode(old_dentry); 6839 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6840 struct fscrypt_name fname; 6841 u64 index; 6842 int ret; 6843 6844 /* do not allow sys_link's with other subvols of the same device */ 6845 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6846 return -EXDEV; 6847 6848 if (inode->i_nlink >= BTRFS_LINK_MAX) 6849 return -EMLINK; 6850 6851 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6852 if (ret) 6853 goto fail; 6854 6855 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6856 if (ret) 6857 goto fail; 6858 6859 /* 6860 * 2 items for inode and inode ref 6861 * 2 items for dir items 6862 * 1 item for parent inode 6863 * 1 item for orphan item deletion if O_TMPFILE 6864 */ 6865 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6866 if (IS_ERR(trans)) { 6867 ret = PTR_ERR(trans); 6868 trans = NULL; 6869 goto fail; 6870 } 6871 6872 /* There are several dir indexes for this inode, clear the cache. */ 6873 BTRFS_I(inode)->dir_index = 0ULL; 6874 inode_inc_iversion(inode); 6875 inode_set_ctime_current(inode); 6876 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6877 6878 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6879 &fname.disk_name, 1, index); 6880 if (ret) 6881 goto fail; 6882 6883 /* Link added now we update the inode item with the new link count. */ 6884 inc_nlink(inode); 6885 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6886 if (unlikely(ret)) { 6887 btrfs_abort_transaction(trans, ret); 6888 goto fail; 6889 } 6890 6891 if (inode->i_nlink == 1) { 6892 /* 6893 * If the new hard link count is 1, it's a file created with the 6894 * open(2) O_TMPFILE flag. 6895 */ 6896 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6897 if (unlikely(ret)) { 6898 btrfs_abort_transaction(trans, ret); 6899 goto fail; 6900 } 6901 } 6902 6903 /* Grab reference for the new dentry passed to d_instantiate(). */ 6904 ihold(inode); 6905 d_instantiate(dentry, inode); 6906 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 6907 6908 fail: 6909 fscrypt_free_filename(&fname); 6910 if (trans) 6911 btrfs_end_transaction(trans); 6912 btrfs_btree_balance_dirty(fs_info); 6913 return ret; 6914 } 6915 6916 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6917 struct dentry *dentry, umode_t mode) 6918 { 6919 struct inode *inode; 6920 6921 inode = new_inode(dir->i_sb); 6922 if (!inode) 6923 return ERR_PTR(-ENOMEM); 6924 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6925 inode->i_op = &btrfs_dir_inode_operations; 6926 inode->i_fop = &btrfs_dir_file_operations; 6927 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6928 } 6929 6930 static noinline int uncompress_inline(struct btrfs_path *path, 6931 struct folio *folio, 6932 struct btrfs_file_extent_item *item) 6933 { 6934 int ret; 6935 struct extent_buffer *leaf = path->nodes[0]; 6936 const u32 blocksize = leaf->fs_info->sectorsize; 6937 char *tmp; 6938 size_t max_size; 6939 unsigned long inline_size; 6940 unsigned long ptr; 6941 int compress_type; 6942 6943 compress_type = btrfs_file_extent_compression(leaf, item); 6944 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6945 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6946 tmp = kmalloc(inline_size, GFP_NOFS); 6947 if (!tmp) 6948 return -ENOMEM; 6949 ptr = btrfs_file_extent_inline_start(item); 6950 6951 read_extent_buffer(leaf, tmp, ptr, inline_size); 6952 6953 max_size = min_t(unsigned long, blocksize, max_size); 6954 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6955 max_size); 6956 6957 /* 6958 * decompression code contains a memset to fill in any space between the end 6959 * of the uncompressed data and the end of max_size in case the decompressed 6960 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6961 * the end of an inline extent and the beginning of the next block, so we 6962 * cover that region here. 6963 */ 6964 6965 if (max_size < blocksize) 6966 folio_zero_range(folio, max_size, blocksize - max_size); 6967 kfree(tmp); 6968 return ret; 6969 } 6970 6971 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6972 { 6973 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6974 struct btrfs_file_extent_item *fi; 6975 void *kaddr; 6976 size_t copy_size; 6977 6978 if (!folio || folio_test_uptodate(folio)) 6979 return 0; 6980 6981 ASSERT(folio_pos(folio) == 0); 6982 6983 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6984 struct btrfs_file_extent_item); 6985 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6986 return uncompress_inline(path, folio, fi); 6987 6988 copy_size = min_t(u64, blocksize, 6989 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6990 kaddr = kmap_local_folio(folio, 0); 6991 read_extent_buffer(path->nodes[0], kaddr, 6992 btrfs_file_extent_inline_start(fi), copy_size); 6993 kunmap_local(kaddr); 6994 if (copy_size < blocksize) 6995 folio_zero_range(folio, copy_size, blocksize - copy_size); 6996 return 0; 6997 } 6998 6999 /* 7000 * Lookup the first extent overlapping a range in a file. 7001 * 7002 * @inode: file to search in 7003 * @page: page to read extent data into if the extent is inline 7004 * @start: file offset 7005 * @len: length of range starting at @start 7006 * 7007 * Return the first &struct extent_map which overlaps the given range, reading 7008 * it from the B-tree and caching it if necessary. Note that there may be more 7009 * extents which overlap the given range after the returned extent_map. 7010 * 7011 * If @page is not NULL and the extent is inline, this also reads the extent 7012 * data directly into the page and marks the extent up to date in the io_tree. 7013 * 7014 * Return: ERR_PTR on error, non-NULL extent_map on success. 7015 */ 7016 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7017 struct folio *folio, u64 start, u64 len) 7018 { 7019 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7020 int ret = 0; 7021 u64 extent_start = 0; 7022 u64 extent_end = 0; 7023 u64 objectid = btrfs_ino(inode); 7024 int extent_type = -1; 7025 struct btrfs_path *path = NULL; 7026 struct btrfs_root *root = inode->root; 7027 struct btrfs_file_extent_item *item; 7028 struct extent_buffer *leaf; 7029 struct btrfs_key found_key; 7030 struct extent_map *em = NULL; 7031 struct extent_map_tree *em_tree = &inode->extent_tree; 7032 7033 read_lock(&em_tree->lock); 7034 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7035 read_unlock(&em_tree->lock); 7036 7037 if (em) { 7038 if (em->start > start || em->start + em->len <= start) 7039 btrfs_free_extent_map(em); 7040 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7041 btrfs_free_extent_map(em); 7042 else 7043 goto out; 7044 } 7045 em = btrfs_alloc_extent_map(); 7046 if (!em) { 7047 ret = -ENOMEM; 7048 goto out; 7049 } 7050 em->start = EXTENT_MAP_HOLE; 7051 em->disk_bytenr = EXTENT_MAP_HOLE; 7052 em->len = (u64)-1; 7053 7054 path = btrfs_alloc_path(); 7055 if (!path) { 7056 ret = -ENOMEM; 7057 goto out; 7058 } 7059 7060 /* Chances are we'll be called again, so go ahead and do readahead */ 7061 path->reada = READA_FORWARD; 7062 7063 /* 7064 * The same explanation in load_free_space_cache applies here as well, 7065 * we only read when we're loading the free space cache, and at that 7066 * point the commit_root has everything we need. 7067 */ 7068 if (btrfs_is_free_space_inode(inode)) { 7069 path->search_commit_root = 1; 7070 path->skip_locking = 1; 7071 } 7072 7073 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7074 if (ret < 0) { 7075 goto out; 7076 } else if (ret > 0) { 7077 if (path->slots[0] == 0) 7078 goto not_found; 7079 path->slots[0]--; 7080 ret = 0; 7081 } 7082 7083 leaf = path->nodes[0]; 7084 item = btrfs_item_ptr(leaf, path->slots[0], 7085 struct btrfs_file_extent_item); 7086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7087 if (found_key.objectid != objectid || 7088 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7089 /* 7090 * If we backup past the first extent we want to move forward 7091 * and see if there is an extent in front of us, otherwise we'll 7092 * say there is a hole for our whole search range which can 7093 * cause problems. 7094 */ 7095 extent_end = start; 7096 goto next; 7097 } 7098 7099 extent_type = btrfs_file_extent_type(leaf, item); 7100 extent_start = found_key.offset; 7101 extent_end = btrfs_file_extent_end(path); 7102 if (extent_type == BTRFS_FILE_EXTENT_REG || 7103 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7104 /* Only regular file could have regular/prealloc extent */ 7105 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7106 ret = -EUCLEAN; 7107 btrfs_crit(fs_info, 7108 "regular/prealloc extent found for non-regular inode %llu", 7109 btrfs_ino(inode)); 7110 goto out; 7111 } 7112 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7113 extent_start); 7114 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7115 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7116 path->slots[0], 7117 extent_start); 7118 } 7119 next: 7120 if (start >= extent_end) { 7121 path->slots[0]++; 7122 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7123 ret = btrfs_next_leaf(root, path); 7124 if (ret < 0) 7125 goto out; 7126 else if (ret > 0) 7127 goto not_found; 7128 7129 leaf = path->nodes[0]; 7130 } 7131 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7132 if (found_key.objectid != objectid || 7133 found_key.type != BTRFS_EXTENT_DATA_KEY) 7134 goto not_found; 7135 if (start + len <= found_key.offset) 7136 goto not_found; 7137 if (start > found_key.offset) 7138 goto next; 7139 7140 /* New extent overlaps with existing one */ 7141 em->start = start; 7142 em->len = found_key.offset - start; 7143 em->disk_bytenr = EXTENT_MAP_HOLE; 7144 goto insert; 7145 } 7146 7147 btrfs_extent_item_to_extent_map(inode, path, item, em); 7148 7149 if (extent_type == BTRFS_FILE_EXTENT_REG || 7150 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7151 goto insert; 7152 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7153 /* 7154 * Inline extent can only exist at file offset 0. This is 7155 * ensured by tree-checker and inline extent creation path. 7156 * Thus all members representing file offsets should be zero. 7157 */ 7158 ASSERT(extent_start == 0); 7159 ASSERT(em->start == 0); 7160 7161 /* 7162 * btrfs_extent_item_to_extent_map() should have properly 7163 * initialized em members already. 7164 * 7165 * Other members are not utilized for inline extents. 7166 */ 7167 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7168 ASSERT(em->len == fs_info->sectorsize); 7169 7170 ret = read_inline_extent(path, folio); 7171 if (ret < 0) 7172 goto out; 7173 goto insert; 7174 } 7175 not_found: 7176 em->start = start; 7177 em->len = len; 7178 em->disk_bytenr = EXTENT_MAP_HOLE; 7179 insert: 7180 ret = 0; 7181 btrfs_release_path(path); 7182 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7183 btrfs_err(fs_info, 7184 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7185 em->start, em->len, start, len); 7186 ret = -EIO; 7187 goto out; 7188 } 7189 7190 write_lock(&em_tree->lock); 7191 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7192 write_unlock(&em_tree->lock); 7193 out: 7194 btrfs_free_path(path); 7195 7196 trace_btrfs_get_extent(root, inode, em); 7197 7198 if (ret) { 7199 btrfs_free_extent_map(em); 7200 return ERR_PTR(ret); 7201 } 7202 return em; 7203 } 7204 7205 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7206 { 7207 struct btrfs_block_group *block_group; 7208 bool readonly = false; 7209 7210 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7211 if (!block_group || block_group->ro) 7212 readonly = true; 7213 if (block_group) 7214 btrfs_put_block_group(block_group); 7215 return readonly; 7216 } 7217 7218 /* 7219 * Check if we can do nocow write into the range [@offset, @offset + @len) 7220 * 7221 * @offset: File offset 7222 * @len: The length to write, will be updated to the nocow writeable 7223 * range 7224 * @orig_start: (optional) Return the original file offset of the file extent 7225 * @orig_len: (optional) Return the original on-disk length of the file extent 7226 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7227 * 7228 * Return: 7229 * >0 and update @len if we can do nocow write 7230 * 0 if we can't do nocow write 7231 * <0 if error happened 7232 * 7233 * NOTE: This only checks the file extents, caller is responsible to wait for 7234 * any ordered extents. 7235 */ 7236 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7237 struct btrfs_file_extent *file_extent, 7238 bool nowait) 7239 { 7240 struct btrfs_root *root = inode->root; 7241 struct btrfs_fs_info *fs_info = root->fs_info; 7242 struct can_nocow_file_extent_args nocow_args = { 0 }; 7243 BTRFS_PATH_AUTO_FREE(path); 7244 int ret; 7245 struct extent_buffer *leaf; 7246 struct extent_io_tree *io_tree = &inode->io_tree; 7247 struct btrfs_file_extent_item *fi; 7248 struct btrfs_key key; 7249 int found_type; 7250 7251 path = btrfs_alloc_path(); 7252 if (!path) 7253 return -ENOMEM; 7254 path->nowait = nowait; 7255 7256 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7257 offset, 0); 7258 if (ret < 0) 7259 return ret; 7260 7261 if (ret == 1) { 7262 if (path->slots[0] == 0) { 7263 /* Can't find the item, must COW. */ 7264 return 0; 7265 } 7266 path->slots[0]--; 7267 } 7268 ret = 0; 7269 leaf = path->nodes[0]; 7270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7271 if (key.objectid != btrfs_ino(inode) || 7272 key.type != BTRFS_EXTENT_DATA_KEY) { 7273 /* Not our file or wrong item type, must COW. */ 7274 return 0; 7275 } 7276 7277 if (key.offset > offset) { 7278 /* Wrong offset, must COW. */ 7279 return 0; 7280 } 7281 7282 if (btrfs_file_extent_end(path) <= offset) 7283 return 0; 7284 7285 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7286 found_type = btrfs_file_extent_type(leaf, fi); 7287 7288 nocow_args.start = offset; 7289 nocow_args.end = offset + *len - 1; 7290 nocow_args.free_path = true; 7291 7292 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7293 /* can_nocow_file_extent() has freed the path. */ 7294 path = NULL; 7295 7296 if (ret != 1) { 7297 /* Treat errors as not being able to NOCOW. */ 7298 return 0; 7299 } 7300 7301 if (btrfs_extent_readonly(fs_info, 7302 nocow_args.file_extent.disk_bytenr + 7303 nocow_args.file_extent.offset)) 7304 return 0; 7305 7306 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7307 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7308 u64 range_end; 7309 7310 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7311 root->fs_info->sectorsize) - 1; 7312 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7313 EXTENT_DELALLOC); 7314 if (ret) 7315 return -EAGAIN; 7316 } 7317 7318 if (file_extent) 7319 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7320 7321 *len = nocow_args.file_extent.num_bytes; 7322 7323 return 1; 7324 } 7325 7326 /* The callers of this must take lock_extent() */ 7327 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7328 const struct btrfs_file_extent *file_extent, 7329 int type) 7330 { 7331 struct extent_map *em; 7332 int ret; 7333 7334 /* 7335 * Note the missing NOCOW type. 7336 * 7337 * For pure NOCOW writes, we should not create an io extent map, but 7338 * just reusing the existing one. 7339 * Only PREALLOC writes (NOCOW write into preallocated range) can 7340 * create an io extent map. 7341 */ 7342 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7343 type == BTRFS_ORDERED_COMPRESSED || 7344 type == BTRFS_ORDERED_REGULAR); 7345 7346 switch (type) { 7347 case BTRFS_ORDERED_PREALLOC: 7348 /* We're only referring part of a larger preallocated extent. */ 7349 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7350 break; 7351 case BTRFS_ORDERED_REGULAR: 7352 /* COW results a new extent matching our file extent size. */ 7353 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7354 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7355 7356 /* Since it's a new extent, we should not have any offset. */ 7357 ASSERT(file_extent->offset == 0); 7358 break; 7359 case BTRFS_ORDERED_COMPRESSED: 7360 /* Must be compressed. */ 7361 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7362 7363 /* 7364 * Encoded write can make us to refer to part of the 7365 * uncompressed extent. 7366 */ 7367 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7368 break; 7369 } 7370 7371 em = btrfs_alloc_extent_map(); 7372 if (!em) 7373 return ERR_PTR(-ENOMEM); 7374 7375 em->start = start; 7376 em->len = file_extent->num_bytes; 7377 em->disk_bytenr = file_extent->disk_bytenr; 7378 em->disk_num_bytes = file_extent->disk_num_bytes; 7379 em->ram_bytes = file_extent->ram_bytes; 7380 em->generation = -1; 7381 em->offset = file_extent->offset; 7382 em->flags |= EXTENT_FLAG_PINNED; 7383 if (type == BTRFS_ORDERED_COMPRESSED) 7384 btrfs_extent_map_set_compression(em, file_extent->compression); 7385 7386 ret = btrfs_replace_extent_map_range(inode, em, true); 7387 if (ret) { 7388 btrfs_free_extent_map(em); 7389 return ERR_PTR(ret); 7390 } 7391 7392 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7393 return em; 7394 } 7395 7396 /* 7397 * For release_folio() and invalidate_folio() we have a race window where 7398 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7399 * If we continue to release/invalidate the page, we could cause use-after-free 7400 * for subpage spinlock. So this function is to spin and wait for subpage 7401 * spinlock. 7402 */ 7403 static void wait_subpage_spinlock(struct folio *folio) 7404 { 7405 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7406 struct btrfs_folio_state *bfs; 7407 7408 if (!btrfs_is_subpage(fs_info, folio)) 7409 return; 7410 7411 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7412 bfs = folio_get_private(folio); 7413 7414 /* 7415 * This may look insane as we just acquire the spinlock and release it, 7416 * without doing anything. But we just want to make sure no one is 7417 * still holding the subpage spinlock. 7418 * And since the page is not dirty nor writeback, and we have page 7419 * locked, the only possible way to hold a spinlock is from the endio 7420 * function to clear page writeback. 7421 * 7422 * Here we just acquire the spinlock so that all existing callers 7423 * should exit and we're safe to release/invalidate the page. 7424 */ 7425 spin_lock_irq(&bfs->lock); 7426 spin_unlock_irq(&bfs->lock); 7427 } 7428 7429 static int btrfs_launder_folio(struct folio *folio) 7430 { 7431 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7432 folio_size(folio), NULL); 7433 } 7434 7435 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7436 { 7437 if (try_release_extent_mapping(folio, gfp_flags)) { 7438 wait_subpage_spinlock(folio); 7439 clear_folio_extent_mapped(folio); 7440 return true; 7441 } 7442 return false; 7443 } 7444 7445 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7446 { 7447 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7448 return false; 7449 return __btrfs_release_folio(folio, gfp_flags); 7450 } 7451 7452 #ifdef CONFIG_MIGRATION 7453 static int btrfs_migrate_folio(struct address_space *mapping, 7454 struct folio *dst, struct folio *src, 7455 enum migrate_mode mode) 7456 { 7457 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7458 7459 if (ret != MIGRATEPAGE_SUCCESS) 7460 return ret; 7461 7462 if (folio_test_ordered(src)) { 7463 folio_clear_ordered(src); 7464 folio_set_ordered(dst); 7465 } 7466 7467 return MIGRATEPAGE_SUCCESS; 7468 } 7469 #else 7470 #define btrfs_migrate_folio NULL 7471 #endif 7472 7473 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7474 size_t length) 7475 { 7476 struct btrfs_inode *inode = folio_to_inode(folio); 7477 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7478 struct extent_io_tree *tree = &inode->io_tree; 7479 struct extent_state *cached_state = NULL; 7480 u64 page_start = folio_pos(folio); 7481 u64 page_end = page_start + folio_size(folio) - 1; 7482 u64 cur; 7483 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7484 7485 /* 7486 * We have folio locked so no new ordered extent can be created on this 7487 * page, nor bio can be submitted for this folio. 7488 * 7489 * But already submitted bio can still be finished on this folio. 7490 * Furthermore, endio function won't skip folio which has Ordered 7491 * already cleared, so it's possible for endio and 7492 * invalidate_folio to do the same ordered extent accounting twice 7493 * on one folio. 7494 * 7495 * So here we wait for any submitted bios to finish, so that we won't 7496 * do double ordered extent accounting on the same folio. 7497 */ 7498 folio_wait_writeback(folio); 7499 wait_subpage_spinlock(folio); 7500 7501 /* 7502 * For subpage case, we have call sites like 7503 * btrfs_punch_hole_lock_range() which passes range not aligned to 7504 * sectorsize. 7505 * If the range doesn't cover the full folio, we don't need to and 7506 * shouldn't clear page extent mapped, as folio->private can still 7507 * record subpage dirty bits for other part of the range. 7508 * 7509 * For cases that invalidate the full folio even the range doesn't 7510 * cover the full folio, like invalidating the last folio, we're 7511 * still safe to wait for ordered extent to finish. 7512 */ 7513 if (!(offset == 0 && length == folio_size(folio))) { 7514 btrfs_release_folio(folio, GFP_NOFS); 7515 return; 7516 } 7517 7518 if (!inode_evicting) 7519 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7520 7521 cur = page_start; 7522 while (cur < page_end) { 7523 struct btrfs_ordered_extent *ordered; 7524 u64 range_end; 7525 u32 range_len; 7526 u32 extra_flags = 0; 7527 7528 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7529 page_end + 1 - cur); 7530 if (!ordered) { 7531 range_end = page_end; 7532 /* 7533 * No ordered extent covering this range, we are safe 7534 * to delete all extent states in the range. 7535 */ 7536 extra_flags = EXTENT_CLEAR_ALL_BITS; 7537 goto next; 7538 } 7539 if (ordered->file_offset > cur) { 7540 /* 7541 * There is a range between [cur, oe->file_offset) not 7542 * covered by any ordered extent. 7543 * We are safe to delete all extent states, and handle 7544 * the ordered extent in the next iteration. 7545 */ 7546 range_end = ordered->file_offset - 1; 7547 extra_flags = EXTENT_CLEAR_ALL_BITS; 7548 goto next; 7549 } 7550 7551 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7552 page_end); 7553 ASSERT(range_end + 1 - cur < U32_MAX); 7554 range_len = range_end + 1 - cur; 7555 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7556 /* 7557 * If Ordered is cleared, it means endio has 7558 * already been executed for the range. 7559 * We can't delete the extent states as 7560 * btrfs_finish_ordered_io() may still use some of them. 7561 */ 7562 goto next; 7563 } 7564 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7565 7566 /* 7567 * IO on this page will never be started, so we need to account 7568 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7569 * here, must leave that up for the ordered extent completion. 7570 * 7571 * This will also unlock the range for incoming 7572 * btrfs_finish_ordered_io(). 7573 */ 7574 if (!inode_evicting) 7575 btrfs_clear_extent_bit(tree, cur, range_end, 7576 EXTENT_DELALLOC | 7577 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7578 EXTENT_DEFRAG, &cached_state); 7579 7580 spin_lock_irq(&inode->ordered_tree_lock); 7581 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7582 ordered->truncated_len = min(ordered->truncated_len, 7583 cur - ordered->file_offset); 7584 spin_unlock_irq(&inode->ordered_tree_lock); 7585 7586 /* 7587 * If the ordered extent has finished, we're safe to delete all 7588 * the extent states of the range, otherwise 7589 * btrfs_finish_ordered_io() will get executed by endio for 7590 * other pages, so we can't delete extent states. 7591 */ 7592 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7593 cur, range_end + 1 - cur)) { 7594 btrfs_finish_ordered_io(ordered); 7595 /* 7596 * The ordered extent has finished, now we're again 7597 * safe to delete all extent states of the range. 7598 */ 7599 extra_flags = EXTENT_CLEAR_ALL_BITS; 7600 } 7601 next: 7602 if (ordered) 7603 btrfs_put_ordered_extent(ordered); 7604 /* 7605 * Qgroup reserved space handler 7606 * Sector(s) here will be either: 7607 * 7608 * 1) Already written to disk or bio already finished 7609 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7610 * Qgroup will be handled by its qgroup_record then. 7611 * btrfs_qgroup_free_data() call will do nothing here. 7612 * 7613 * 2) Not written to disk yet 7614 * Then btrfs_qgroup_free_data() call will clear the 7615 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7616 * reserved data space. 7617 * Since the IO will never happen for this page. 7618 */ 7619 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7620 if (!inode_evicting) 7621 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7622 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7623 EXTENT_DEFRAG | extra_flags, 7624 &cached_state); 7625 cur = range_end + 1; 7626 } 7627 /* 7628 * We have iterated through all ordered extents of the page, the page 7629 * should not have Ordered anymore, or the above iteration 7630 * did something wrong. 7631 */ 7632 ASSERT(!folio_test_ordered(folio)); 7633 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7634 if (!inode_evicting) 7635 __btrfs_release_folio(folio, GFP_NOFS); 7636 clear_folio_extent_mapped(folio); 7637 } 7638 7639 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7640 { 7641 struct btrfs_truncate_control control = { 7642 .inode = inode, 7643 .ino = btrfs_ino(inode), 7644 .min_type = BTRFS_EXTENT_DATA_KEY, 7645 .clear_extent_range = true, 7646 }; 7647 struct btrfs_root *root = inode->root; 7648 struct btrfs_fs_info *fs_info = root->fs_info; 7649 struct btrfs_block_rsv rsv; 7650 int ret; 7651 struct btrfs_trans_handle *trans; 7652 u64 mask = fs_info->sectorsize - 1; 7653 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7654 7655 if (!skip_writeback) { 7656 ret = btrfs_wait_ordered_range(inode, 7657 inode->vfs_inode.i_size & (~mask), 7658 (u64)-1); 7659 if (ret) 7660 return ret; 7661 } 7662 7663 /* 7664 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7665 * things going on here: 7666 * 7667 * 1) We need to reserve space to update our inode. 7668 * 7669 * 2) We need to have something to cache all the space that is going to 7670 * be free'd up by the truncate operation, but also have some slack 7671 * space reserved in case it uses space during the truncate (thank you 7672 * very much snapshotting). 7673 * 7674 * And we need these to be separate. The fact is we can use a lot of 7675 * space doing the truncate, and we have no earthly idea how much space 7676 * we will use, so we need the truncate reservation to be separate so it 7677 * doesn't end up using space reserved for updating the inode. We also 7678 * need to be able to stop the transaction and start a new one, which 7679 * means we need to be able to update the inode several times, and we 7680 * have no idea of knowing how many times that will be, so we can't just 7681 * reserve 1 item for the entirety of the operation, so that has to be 7682 * done separately as well. 7683 * 7684 * So that leaves us with 7685 * 7686 * 1) rsv - for the truncate reservation, which we will steal from the 7687 * transaction reservation. 7688 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7689 * updating the inode. 7690 */ 7691 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7692 rsv.size = min_size; 7693 rsv.failfast = true; 7694 7695 /* 7696 * 1 for the truncate slack space 7697 * 1 for updating the inode. 7698 */ 7699 trans = btrfs_start_transaction(root, 2); 7700 if (IS_ERR(trans)) { 7701 ret = PTR_ERR(trans); 7702 goto out; 7703 } 7704 7705 /* Migrate the slack space for the truncate to our reserve */ 7706 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7707 min_size, false); 7708 /* 7709 * We have reserved 2 metadata units when we started the transaction and 7710 * min_size matches 1 unit, so this should never fail, but if it does, 7711 * it's not critical we just fail truncation. 7712 */ 7713 if (WARN_ON(ret)) { 7714 btrfs_end_transaction(trans); 7715 goto out; 7716 } 7717 7718 trans->block_rsv = &rsv; 7719 7720 while (1) { 7721 struct extent_state *cached_state = NULL; 7722 const u64 new_size = inode->vfs_inode.i_size; 7723 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7724 7725 control.new_size = new_size; 7726 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7727 /* 7728 * We want to drop from the next block forward in case this new 7729 * size is not block aligned since we will be keeping the last 7730 * block of the extent just the way it is. 7731 */ 7732 btrfs_drop_extent_map_range(inode, 7733 ALIGN(new_size, fs_info->sectorsize), 7734 (u64)-1, false); 7735 7736 ret = btrfs_truncate_inode_items(trans, root, &control); 7737 7738 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7739 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7740 7741 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7742 7743 trans->block_rsv = &fs_info->trans_block_rsv; 7744 if (ret != -ENOSPC && ret != -EAGAIN) 7745 break; 7746 7747 ret = btrfs_update_inode(trans, inode); 7748 if (ret) 7749 break; 7750 7751 btrfs_end_transaction(trans); 7752 btrfs_btree_balance_dirty(fs_info); 7753 7754 trans = btrfs_start_transaction(root, 2); 7755 if (IS_ERR(trans)) { 7756 ret = PTR_ERR(trans); 7757 trans = NULL; 7758 break; 7759 } 7760 7761 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7762 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7763 &rsv, min_size, false); 7764 /* 7765 * We have reserved 2 metadata units when we started the 7766 * transaction and min_size matches 1 unit, so this should never 7767 * fail, but if it does, it's not critical we just fail truncation. 7768 */ 7769 if (WARN_ON(ret)) 7770 break; 7771 7772 trans->block_rsv = &rsv; 7773 } 7774 7775 /* 7776 * We can't call btrfs_truncate_block inside a trans handle as we could 7777 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7778 * know we've truncated everything except the last little bit, and can 7779 * do btrfs_truncate_block and then update the disk_i_size. 7780 */ 7781 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7782 btrfs_end_transaction(trans); 7783 btrfs_btree_balance_dirty(fs_info); 7784 7785 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7786 inode->vfs_inode.i_size, (u64)-1); 7787 if (ret) 7788 goto out; 7789 trans = btrfs_start_transaction(root, 1); 7790 if (IS_ERR(trans)) { 7791 ret = PTR_ERR(trans); 7792 goto out; 7793 } 7794 btrfs_inode_safe_disk_i_size_write(inode, 0); 7795 } 7796 7797 if (trans) { 7798 int ret2; 7799 7800 trans->block_rsv = &fs_info->trans_block_rsv; 7801 ret2 = btrfs_update_inode(trans, inode); 7802 if (ret2 && !ret) 7803 ret = ret2; 7804 7805 ret2 = btrfs_end_transaction(trans); 7806 if (ret2 && !ret) 7807 ret = ret2; 7808 btrfs_btree_balance_dirty(fs_info); 7809 } 7810 out: 7811 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7812 /* 7813 * So if we truncate and then write and fsync we normally would just 7814 * write the extents that changed, which is a problem if we need to 7815 * first truncate that entire inode. So set this flag so we write out 7816 * all of the extents in the inode to the sync log so we're completely 7817 * safe. 7818 * 7819 * If no extents were dropped or trimmed we don't need to force the next 7820 * fsync to truncate all the inode's items from the log and re-log them 7821 * all. This means the truncate operation did not change the file size, 7822 * or changed it to a smaller size but there was only an implicit hole 7823 * between the old i_size and the new i_size, and there were no prealloc 7824 * extents beyond i_size to drop. 7825 */ 7826 if (control.extents_found > 0) 7827 btrfs_set_inode_full_sync(inode); 7828 7829 return ret; 7830 } 7831 7832 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7833 struct inode *dir) 7834 { 7835 struct inode *inode; 7836 7837 inode = new_inode(dir->i_sb); 7838 if (inode) { 7839 /* 7840 * Subvolumes don't inherit the sgid bit or the parent's gid if 7841 * the parent's sgid bit is set. This is probably a bug. 7842 */ 7843 inode_init_owner(idmap, inode, NULL, 7844 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7845 inode->i_op = &btrfs_dir_inode_operations; 7846 inode->i_fop = &btrfs_dir_file_operations; 7847 } 7848 return inode; 7849 } 7850 7851 struct inode *btrfs_alloc_inode(struct super_block *sb) 7852 { 7853 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7854 struct btrfs_inode *ei; 7855 struct inode *inode; 7856 7857 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7858 if (!ei) 7859 return NULL; 7860 7861 ei->root = NULL; 7862 ei->generation = 0; 7863 ei->last_trans = 0; 7864 ei->last_sub_trans = 0; 7865 ei->logged_trans = 0; 7866 ei->delalloc_bytes = 0; 7867 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7868 ei->new_delalloc_bytes = 0; 7869 ei->defrag_bytes = 0; 7870 ei->disk_i_size = 0; 7871 ei->flags = 0; 7872 ei->ro_flags = 0; 7873 /* 7874 * ->index_cnt will be properly initialized later when creating a new 7875 * inode (btrfs_create_new_inode()) or when reading an existing inode 7876 * from disk (btrfs_read_locked_inode()). 7877 */ 7878 ei->csum_bytes = 0; 7879 ei->dir_index = 0; 7880 ei->last_unlink_trans = 0; 7881 ei->last_reflink_trans = 0; 7882 ei->last_log_commit = 0; 7883 7884 spin_lock_init(&ei->lock); 7885 ei->outstanding_extents = 0; 7886 if (sb->s_magic != BTRFS_TEST_MAGIC) 7887 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7888 BTRFS_BLOCK_RSV_DELALLOC); 7889 ei->runtime_flags = 0; 7890 ei->prop_compress = BTRFS_COMPRESS_NONE; 7891 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7892 7893 ei->delayed_node = NULL; 7894 7895 ei->i_otime_sec = 0; 7896 ei->i_otime_nsec = 0; 7897 7898 inode = &ei->vfs_inode; 7899 btrfs_extent_map_tree_init(&ei->extent_tree); 7900 7901 /* This io tree sets the valid inode. */ 7902 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7903 ei->io_tree.inode = ei; 7904 7905 ei->file_extent_tree = NULL; 7906 7907 mutex_init(&ei->log_mutex); 7908 spin_lock_init(&ei->ordered_tree_lock); 7909 ei->ordered_tree = RB_ROOT; 7910 ei->ordered_tree_last = NULL; 7911 INIT_LIST_HEAD(&ei->delalloc_inodes); 7912 INIT_LIST_HEAD(&ei->delayed_iput); 7913 init_rwsem(&ei->i_mmap_lock); 7914 7915 return inode; 7916 } 7917 7918 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7919 void btrfs_test_destroy_inode(struct inode *inode) 7920 { 7921 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7922 kfree(BTRFS_I(inode)->file_extent_tree); 7923 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7924 } 7925 #endif 7926 7927 void btrfs_free_inode(struct inode *inode) 7928 { 7929 kfree(BTRFS_I(inode)->file_extent_tree); 7930 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7931 } 7932 7933 void btrfs_destroy_inode(struct inode *vfs_inode) 7934 { 7935 struct btrfs_ordered_extent *ordered; 7936 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7937 struct btrfs_root *root = inode->root; 7938 bool freespace_inode; 7939 7940 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7941 WARN_ON(vfs_inode->i_data.nrpages); 7942 WARN_ON(inode->block_rsv.reserved); 7943 WARN_ON(inode->block_rsv.size); 7944 WARN_ON(inode->outstanding_extents); 7945 if (!S_ISDIR(vfs_inode->i_mode)) { 7946 WARN_ON(inode->delalloc_bytes); 7947 WARN_ON(inode->new_delalloc_bytes); 7948 WARN_ON(inode->csum_bytes); 7949 } 7950 if (!root || !btrfs_is_data_reloc_root(root)) 7951 WARN_ON(inode->defrag_bytes); 7952 7953 /* 7954 * This can happen where we create an inode, but somebody else also 7955 * created the same inode and we need to destroy the one we already 7956 * created. 7957 */ 7958 if (!root) 7959 return; 7960 7961 /* 7962 * If this is a free space inode do not take the ordered extents lockdep 7963 * map. 7964 */ 7965 freespace_inode = btrfs_is_free_space_inode(inode); 7966 7967 while (1) { 7968 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7969 if (!ordered) 7970 break; 7971 else { 7972 btrfs_err(root->fs_info, 7973 "found ordered extent %llu %llu on inode cleanup", 7974 ordered->file_offset, ordered->num_bytes); 7975 7976 if (!freespace_inode) 7977 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7978 7979 btrfs_remove_ordered_extent(inode, ordered); 7980 btrfs_put_ordered_extent(ordered); 7981 btrfs_put_ordered_extent(ordered); 7982 } 7983 } 7984 btrfs_qgroup_check_reserved_leak(inode); 7985 btrfs_del_inode_from_root(inode); 7986 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7987 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7988 btrfs_put_root(inode->root); 7989 } 7990 7991 int btrfs_drop_inode(struct inode *inode) 7992 { 7993 struct btrfs_root *root = BTRFS_I(inode)->root; 7994 7995 if (root == NULL) 7996 return 1; 7997 7998 /* the snap/subvol tree is on deleting */ 7999 if (btrfs_root_refs(&root->root_item) == 0) 8000 return 1; 8001 else 8002 return inode_generic_drop(inode); 8003 } 8004 8005 static void init_once(void *foo) 8006 { 8007 struct btrfs_inode *ei = foo; 8008 8009 inode_init_once(&ei->vfs_inode); 8010 #ifdef CONFIG_FS_VERITY 8011 ei->i_verity_info = NULL; 8012 #endif 8013 } 8014 8015 void __cold btrfs_destroy_cachep(void) 8016 { 8017 /* 8018 * Make sure all delayed rcu free inodes are flushed before we 8019 * destroy cache. 8020 */ 8021 rcu_barrier(); 8022 kmem_cache_destroy(btrfs_inode_cachep); 8023 } 8024 8025 int __init btrfs_init_cachep(void) 8026 { 8027 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8028 sizeof(struct btrfs_inode), 0, 8029 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8030 init_once); 8031 if (!btrfs_inode_cachep) 8032 return -ENOMEM; 8033 8034 return 0; 8035 } 8036 8037 static int btrfs_getattr(struct mnt_idmap *idmap, 8038 const struct path *path, struct kstat *stat, 8039 u32 request_mask, unsigned int flags) 8040 { 8041 u64 delalloc_bytes; 8042 u64 inode_bytes; 8043 struct inode *inode = d_inode(path->dentry); 8044 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8045 u32 bi_flags = BTRFS_I(inode)->flags; 8046 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8047 8048 stat->result_mask |= STATX_BTIME; 8049 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8050 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8051 if (bi_flags & BTRFS_INODE_APPEND) 8052 stat->attributes |= STATX_ATTR_APPEND; 8053 if (bi_flags & BTRFS_INODE_COMPRESS) 8054 stat->attributes |= STATX_ATTR_COMPRESSED; 8055 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8056 stat->attributes |= STATX_ATTR_IMMUTABLE; 8057 if (bi_flags & BTRFS_INODE_NODUMP) 8058 stat->attributes |= STATX_ATTR_NODUMP; 8059 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8060 stat->attributes |= STATX_ATTR_VERITY; 8061 8062 stat->attributes_mask |= (STATX_ATTR_APPEND | 8063 STATX_ATTR_COMPRESSED | 8064 STATX_ATTR_IMMUTABLE | 8065 STATX_ATTR_NODUMP); 8066 8067 generic_fillattr(idmap, request_mask, inode, stat); 8068 stat->dev = BTRFS_I(inode)->root->anon_dev; 8069 8070 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8071 stat->result_mask |= STATX_SUBVOL; 8072 8073 spin_lock(&BTRFS_I(inode)->lock); 8074 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8075 inode_bytes = inode_get_bytes(inode); 8076 spin_unlock(&BTRFS_I(inode)->lock); 8077 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8078 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8079 return 0; 8080 } 8081 8082 static int btrfs_rename_exchange(struct inode *old_dir, 8083 struct dentry *old_dentry, 8084 struct inode *new_dir, 8085 struct dentry *new_dentry) 8086 { 8087 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8088 struct btrfs_trans_handle *trans; 8089 unsigned int trans_num_items; 8090 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8091 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8092 struct inode *new_inode = new_dentry->d_inode; 8093 struct inode *old_inode = old_dentry->d_inode; 8094 struct btrfs_rename_ctx old_rename_ctx; 8095 struct btrfs_rename_ctx new_rename_ctx; 8096 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8097 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8098 u64 old_idx = 0; 8099 u64 new_idx = 0; 8100 int ret; 8101 int ret2; 8102 bool need_abort = false; 8103 bool logs_pinned = false; 8104 struct fscrypt_name old_fname, new_fname; 8105 struct fscrypt_str *old_name, *new_name; 8106 8107 /* 8108 * For non-subvolumes allow exchange only within one subvolume, in the 8109 * same inode namespace. Two subvolumes (represented as directory) can 8110 * be exchanged as they're a logical link and have a fixed inode number. 8111 */ 8112 if (root != dest && 8113 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8114 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8115 return -EXDEV; 8116 8117 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8118 if (ret) 8119 return ret; 8120 8121 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8122 if (ret) { 8123 fscrypt_free_filename(&old_fname); 8124 return ret; 8125 } 8126 8127 old_name = &old_fname.disk_name; 8128 new_name = &new_fname.disk_name; 8129 8130 /* close the race window with snapshot create/destroy ioctl */ 8131 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8132 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8133 down_read(&fs_info->subvol_sem); 8134 8135 /* 8136 * For each inode: 8137 * 1 to remove old dir item 8138 * 1 to remove old dir index 8139 * 1 to add new dir item 8140 * 1 to add new dir index 8141 * 1 to update parent inode 8142 * 8143 * If the parents are the same, we only need to account for one 8144 */ 8145 trans_num_items = (old_dir == new_dir ? 9 : 10); 8146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8147 /* 8148 * 1 to remove old root ref 8149 * 1 to remove old root backref 8150 * 1 to add new root ref 8151 * 1 to add new root backref 8152 */ 8153 trans_num_items += 4; 8154 } else { 8155 /* 8156 * 1 to update inode item 8157 * 1 to remove old inode ref 8158 * 1 to add new inode ref 8159 */ 8160 trans_num_items += 3; 8161 } 8162 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8163 trans_num_items += 4; 8164 else 8165 trans_num_items += 3; 8166 trans = btrfs_start_transaction(root, trans_num_items); 8167 if (IS_ERR(trans)) { 8168 ret = PTR_ERR(trans); 8169 goto out_notrans; 8170 } 8171 8172 if (dest != root) { 8173 ret = btrfs_record_root_in_trans(trans, dest); 8174 if (ret) 8175 goto out_fail; 8176 } 8177 8178 /* 8179 * We need to find a free sequence number both in the source and 8180 * in the destination directory for the exchange. 8181 */ 8182 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8183 if (ret) 8184 goto out_fail; 8185 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8186 if (ret) 8187 goto out_fail; 8188 8189 BTRFS_I(old_inode)->dir_index = 0ULL; 8190 BTRFS_I(new_inode)->dir_index = 0ULL; 8191 8192 /* Reference for the source. */ 8193 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8194 /* force full log commit if subvolume involved. */ 8195 btrfs_set_log_full_commit(trans); 8196 } else { 8197 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8198 btrfs_ino(BTRFS_I(new_dir)), 8199 old_idx); 8200 if (ret) 8201 goto out_fail; 8202 need_abort = true; 8203 } 8204 8205 /* And now for the dest. */ 8206 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8207 /* force full log commit if subvolume involved. */ 8208 btrfs_set_log_full_commit(trans); 8209 } else { 8210 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8211 btrfs_ino(BTRFS_I(old_dir)), 8212 new_idx); 8213 if (ret) { 8214 if (unlikely(need_abort)) 8215 btrfs_abort_transaction(trans, ret); 8216 goto out_fail; 8217 } 8218 } 8219 8220 /* Update inode version and ctime/mtime. */ 8221 inode_inc_iversion(old_dir); 8222 inode_inc_iversion(new_dir); 8223 inode_inc_iversion(old_inode); 8224 inode_inc_iversion(new_inode); 8225 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8226 8227 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8228 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8229 /* 8230 * If we are renaming in the same directory (and it's not for 8231 * root entries) pin the log early to prevent any concurrent 8232 * task from logging the directory after we removed the old 8233 * entries and before we add the new entries, otherwise that 8234 * task can sync a log without any entry for the inodes we are 8235 * renaming and therefore replaying that log, if a power failure 8236 * happens after syncing the log, would result in deleting the 8237 * inodes. 8238 * 8239 * If the rename affects two different directories, we want to 8240 * make sure the that there's no log commit that contains 8241 * updates for only one of the directories but not for the 8242 * other. 8243 * 8244 * If we are renaming an entry for a root, we don't care about 8245 * log updates since we called btrfs_set_log_full_commit(). 8246 */ 8247 btrfs_pin_log_trans(root); 8248 btrfs_pin_log_trans(dest); 8249 logs_pinned = true; 8250 } 8251 8252 if (old_dentry->d_parent != new_dentry->d_parent) { 8253 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8254 BTRFS_I(old_inode), true); 8255 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8256 BTRFS_I(new_inode), true); 8257 } 8258 8259 /* src is a subvolume */ 8260 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8261 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8262 if (unlikely(ret)) { 8263 btrfs_abort_transaction(trans, ret); 8264 goto out_fail; 8265 } 8266 } else { /* src is an inode */ 8267 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8268 BTRFS_I(old_dentry->d_inode), 8269 old_name, &old_rename_ctx); 8270 if (unlikely(ret)) { 8271 btrfs_abort_transaction(trans, ret); 8272 goto out_fail; 8273 } 8274 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8275 if (unlikely(ret)) { 8276 btrfs_abort_transaction(trans, ret); 8277 goto out_fail; 8278 } 8279 } 8280 8281 /* dest is a subvolume */ 8282 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8283 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8284 if (unlikely(ret)) { 8285 btrfs_abort_transaction(trans, ret); 8286 goto out_fail; 8287 } 8288 } else { /* dest is an inode */ 8289 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8290 BTRFS_I(new_dentry->d_inode), 8291 new_name, &new_rename_ctx); 8292 if (unlikely(ret)) { 8293 btrfs_abort_transaction(trans, ret); 8294 goto out_fail; 8295 } 8296 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8297 if (unlikely(ret)) { 8298 btrfs_abort_transaction(trans, ret); 8299 goto out_fail; 8300 } 8301 } 8302 8303 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8304 new_name, 0, old_idx); 8305 if (unlikely(ret)) { 8306 btrfs_abort_transaction(trans, ret); 8307 goto out_fail; 8308 } 8309 8310 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8311 old_name, 0, new_idx); 8312 if (unlikely(ret)) { 8313 btrfs_abort_transaction(trans, ret); 8314 goto out_fail; 8315 } 8316 8317 if (old_inode->i_nlink == 1) 8318 BTRFS_I(old_inode)->dir_index = old_idx; 8319 if (new_inode->i_nlink == 1) 8320 BTRFS_I(new_inode)->dir_index = new_idx; 8321 8322 /* 8323 * Do the log updates for all inodes. 8324 * 8325 * If either entry is for a root we don't need to update the logs since 8326 * we've called btrfs_set_log_full_commit() before. 8327 */ 8328 if (logs_pinned) { 8329 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8330 old_rename_ctx.index, new_dentry->d_parent); 8331 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8332 new_rename_ctx.index, old_dentry->d_parent); 8333 } 8334 8335 out_fail: 8336 if (logs_pinned) { 8337 btrfs_end_log_trans(root); 8338 btrfs_end_log_trans(dest); 8339 } 8340 ret2 = btrfs_end_transaction(trans); 8341 ret = ret ? ret : ret2; 8342 out_notrans: 8343 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8344 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8345 up_read(&fs_info->subvol_sem); 8346 8347 fscrypt_free_filename(&new_fname); 8348 fscrypt_free_filename(&old_fname); 8349 return ret; 8350 } 8351 8352 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8353 struct inode *dir) 8354 { 8355 struct inode *inode; 8356 8357 inode = new_inode(dir->i_sb); 8358 if (inode) { 8359 inode_init_owner(idmap, inode, dir, 8360 S_IFCHR | WHITEOUT_MODE); 8361 inode->i_op = &btrfs_special_inode_operations; 8362 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8363 } 8364 return inode; 8365 } 8366 8367 static int btrfs_rename(struct mnt_idmap *idmap, 8368 struct inode *old_dir, struct dentry *old_dentry, 8369 struct inode *new_dir, struct dentry *new_dentry, 8370 unsigned int flags) 8371 { 8372 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8373 struct btrfs_new_inode_args whiteout_args = { 8374 .dir = old_dir, 8375 .dentry = old_dentry, 8376 }; 8377 struct btrfs_trans_handle *trans; 8378 unsigned int trans_num_items; 8379 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8380 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8381 struct inode *new_inode = d_inode(new_dentry); 8382 struct inode *old_inode = d_inode(old_dentry); 8383 struct btrfs_rename_ctx rename_ctx; 8384 u64 index = 0; 8385 int ret; 8386 int ret2; 8387 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8388 struct fscrypt_name old_fname, new_fname; 8389 bool logs_pinned = false; 8390 8391 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8392 return -EPERM; 8393 8394 /* we only allow rename subvolume link between subvolumes */ 8395 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8396 return -EXDEV; 8397 8398 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8399 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8400 return -ENOTEMPTY; 8401 8402 if (S_ISDIR(old_inode->i_mode) && new_inode && 8403 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8404 return -ENOTEMPTY; 8405 8406 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8407 if (ret) 8408 return ret; 8409 8410 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8411 if (ret) { 8412 fscrypt_free_filename(&old_fname); 8413 return ret; 8414 } 8415 8416 /* check for collisions, even if the name isn't there */ 8417 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8418 if (ret) { 8419 if (ret == -EEXIST) { 8420 /* we shouldn't get 8421 * eexist without a new_inode */ 8422 if (WARN_ON(!new_inode)) { 8423 goto out_fscrypt_names; 8424 } 8425 } else { 8426 /* maybe -EOVERFLOW */ 8427 goto out_fscrypt_names; 8428 } 8429 } 8430 ret = 0; 8431 8432 /* 8433 * we're using rename to replace one file with another. Start IO on it 8434 * now so we don't add too much work to the end of the transaction 8435 */ 8436 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8437 filemap_flush(old_inode->i_mapping); 8438 8439 if (flags & RENAME_WHITEOUT) { 8440 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8441 if (!whiteout_args.inode) { 8442 ret = -ENOMEM; 8443 goto out_fscrypt_names; 8444 } 8445 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8446 if (ret) 8447 goto out_whiteout_inode; 8448 } else { 8449 /* 1 to update the old parent inode. */ 8450 trans_num_items = 1; 8451 } 8452 8453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8454 /* Close the race window with snapshot create/destroy ioctl */ 8455 down_read(&fs_info->subvol_sem); 8456 /* 8457 * 1 to remove old root ref 8458 * 1 to remove old root backref 8459 * 1 to add new root ref 8460 * 1 to add new root backref 8461 */ 8462 trans_num_items += 4; 8463 } else { 8464 /* 8465 * 1 to update inode 8466 * 1 to remove old inode ref 8467 * 1 to add new inode ref 8468 */ 8469 trans_num_items += 3; 8470 } 8471 /* 8472 * 1 to remove old dir item 8473 * 1 to remove old dir index 8474 * 1 to add new dir item 8475 * 1 to add new dir index 8476 */ 8477 trans_num_items += 4; 8478 /* 1 to update new parent inode if it's not the same as the old parent */ 8479 if (new_dir != old_dir) 8480 trans_num_items++; 8481 if (new_inode) { 8482 /* 8483 * 1 to update inode 8484 * 1 to remove inode ref 8485 * 1 to remove dir item 8486 * 1 to remove dir index 8487 * 1 to possibly add orphan item 8488 */ 8489 trans_num_items += 5; 8490 } 8491 trans = btrfs_start_transaction(root, trans_num_items); 8492 if (IS_ERR(trans)) { 8493 ret = PTR_ERR(trans); 8494 goto out_notrans; 8495 } 8496 8497 if (dest != root) { 8498 ret = btrfs_record_root_in_trans(trans, dest); 8499 if (ret) 8500 goto out_fail; 8501 } 8502 8503 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8504 if (ret) 8505 goto out_fail; 8506 8507 BTRFS_I(old_inode)->dir_index = 0ULL; 8508 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8509 /* force full log commit if subvolume involved. */ 8510 btrfs_set_log_full_commit(trans); 8511 } else { 8512 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8513 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8514 index); 8515 if (ret) 8516 goto out_fail; 8517 } 8518 8519 inode_inc_iversion(old_dir); 8520 inode_inc_iversion(new_dir); 8521 inode_inc_iversion(old_inode); 8522 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8523 8524 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8525 /* 8526 * If we are renaming in the same directory (and it's not a 8527 * root entry) pin the log to prevent any concurrent task from 8528 * logging the directory after we removed the old entry and 8529 * before we add the new entry, otherwise that task can sync 8530 * a log without any entry for the inode we are renaming and 8531 * therefore replaying that log, if a power failure happens 8532 * after syncing the log, would result in deleting the inode. 8533 * 8534 * If the rename affects two different directories, we want to 8535 * make sure the that there's no log commit that contains 8536 * updates for only one of the directories but not for the 8537 * other. 8538 * 8539 * If we are renaming an entry for a root, we don't care about 8540 * log updates since we called btrfs_set_log_full_commit(). 8541 */ 8542 btrfs_pin_log_trans(root); 8543 btrfs_pin_log_trans(dest); 8544 logs_pinned = true; 8545 } 8546 8547 if (old_dentry->d_parent != new_dentry->d_parent) 8548 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8549 BTRFS_I(old_inode), true); 8550 8551 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8552 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8553 if (unlikely(ret)) { 8554 btrfs_abort_transaction(trans, ret); 8555 goto out_fail; 8556 } 8557 } else { 8558 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8559 BTRFS_I(d_inode(old_dentry)), 8560 &old_fname.disk_name, &rename_ctx); 8561 if (unlikely(ret)) { 8562 btrfs_abort_transaction(trans, ret); 8563 goto out_fail; 8564 } 8565 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8566 if (unlikely(ret)) { 8567 btrfs_abort_transaction(trans, ret); 8568 goto out_fail; 8569 } 8570 } 8571 8572 if (new_inode) { 8573 inode_inc_iversion(new_inode); 8574 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8575 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8576 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8577 if (unlikely(ret)) { 8578 btrfs_abort_transaction(trans, ret); 8579 goto out_fail; 8580 } 8581 BUG_ON(new_inode->i_nlink == 0); 8582 } else { 8583 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8584 BTRFS_I(d_inode(new_dentry)), 8585 &new_fname.disk_name); 8586 if (unlikely(ret)) { 8587 btrfs_abort_transaction(trans, ret); 8588 goto out_fail; 8589 } 8590 } 8591 if (new_inode->i_nlink == 0) { 8592 ret = btrfs_orphan_add(trans, 8593 BTRFS_I(d_inode(new_dentry))); 8594 if (unlikely(ret)) { 8595 btrfs_abort_transaction(trans, ret); 8596 goto out_fail; 8597 } 8598 } 8599 } 8600 8601 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8602 &new_fname.disk_name, 0, index); 8603 if (unlikely(ret)) { 8604 btrfs_abort_transaction(trans, ret); 8605 goto out_fail; 8606 } 8607 8608 if (old_inode->i_nlink == 1) 8609 BTRFS_I(old_inode)->dir_index = index; 8610 8611 if (logs_pinned) 8612 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8613 rename_ctx.index, new_dentry->d_parent); 8614 8615 if (flags & RENAME_WHITEOUT) { 8616 ret = btrfs_create_new_inode(trans, &whiteout_args); 8617 if (unlikely(ret)) { 8618 btrfs_abort_transaction(trans, ret); 8619 goto out_fail; 8620 } else { 8621 unlock_new_inode(whiteout_args.inode); 8622 iput(whiteout_args.inode); 8623 whiteout_args.inode = NULL; 8624 } 8625 } 8626 out_fail: 8627 if (logs_pinned) { 8628 btrfs_end_log_trans(root); 8629 btrfs_end_log_trans(dest); 8630 } 8631 ret2 = btrfs_end_transaction(trans); 8632 ret = ret ? ret : ret2; 8633 out_notrans: 8634 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8635 up_read(&fs_info->subvol_sem); 8636 if (flags & RENAME_WHITEOUT) 8637 btrfs_new_inode_args_destroy(&whiteout_args); 8638 out_whiteout_inode: 8639 if (flags & RENAME_WHITEOUT) 8640 iput(whiteout_args.inode); 8641 out_fscrypt_names: 8642 fscrypt_free_filename(&old_fname); 8643 fscrypt_free_filename(&new_fname); 8644 return ret; 8645 } 8646 8647 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8648 struct dentry *old_dentry, struct inode *new_dir, 8649 struct dentry *new_dentry, unsigned int flags) 8650 { 8651 int ret; 8652 8653 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8654 return -EINVAL; 8655 8656 if (flags & RENAME_EXCHANGE) 8657 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8658 new_dentry); 8659 else 8660 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8661 new_dentry, flags); 8662 8663 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8664 8665 return ret; 8666 } 8667 8668 struct btrfs_delalloc_work { 8669 struct inode *inode; 8670 struct completion completion; 8671 struct list_head list; 8672 struct btrfs_work work; 8673 }; 8674 8675 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8676 { 8677 struct btrfs_delalloc_work *delalloc_work; 8678 struct inode *inode; 8679 8680 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8681 work); 8682 inode = delalloc_work->inode; 8683 filemap_flush(inode->i_mapping); 8684 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8685 &BTRFS_I(inode)->runtime_flags)) 8686 filemap_flush(inode->i_mapping); 8687 8688 iput(inode); 8689 complete(&delalloc_work->completion); 8690 } 8691 8692 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8693 { 8694 struct btrfs_delalloc_work *work; 8695 8696 work = kmalloc(sizeof(*work), GFP_NOFS); 8697 if (!work) 8698 return NULL; 8699 8700 init_completion(&work->completion); 8701 INIT_LIST_HEAD(&work->list); 8702 work->inode = inode; 8703 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8704 8705 return work; 8706 } 8707 8708 /* 8709 * some fairly slow code that needs optimization. This walks the list 8710 * of all the inodes with pending delalloc and forces them to disk. 8711 */ 8712 static int start_delalloc_inodes(struct btrfs_root *root, 8713 struct writeback_control *wbc, bool snapshot, 8714 bool in_reclaim_context) 8715 { 8716 struct btrfs_delalloc_work *work, *next; 8717 LIST_HEAD(works); 8718 LIST_HEAD(splice); 8719 int ret = 0; 8720 bool full_flush = wbc->nr_to_write == LONG_MAX; 8721 8722 mutex_lock(&root->delalloc_mutex); 8723 spin_lock(&root->delalloc_lock); 8724 list_splice_init(&root->delalloc_inodes, &splice); 8725 while (!list_empty(&splice)) { 8726 struct btrfs_inode *inode; 8727 struct inode *tmp_inode; 8728 8729 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8730 8731 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8732 8733 if (in_reclaim_context && 8734 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8735 continue; 8736 8737 tmp_inode = igrab(&inode->vfs_inode); 8738 if (!tmp_inode) { 8739 cond_resched_lock(&root->delalloc_lock); 8740 continue; 8741 } 8742 spin_unlock(&root->delalloc_lock); 8743 8744 if (snapshot) 8745 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8746 if (full_flush) { 8747 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8748 if (!work) { 8749 iput(&inode->vfs_inode); 8750 ret = -ENOMEM; 8751 goto out; 8752 } 8753 list_add_tail(&work->list, &works); 8754 btrfs_queue_work(root->fs_info->flush_workers, 8755 &work->work); 8756 } else { 8757 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8758 btrfs_add_delayed_iput(inode); 8759 if (ret || wbc->nr_to_write <= 0) 8760 goto out; 8761 } 8762 cond_resched(); 8763 spin_lock(&root->delalloc_lock); 8764 } 8765 spin_unlock(&root->delalloc_lock); 8766 8767 out: 8768 list_for_each_entry_safe(work, next, &works, list) { 8769 list_del_init(&work->list); 8770 wait_for_completion(&work->completion); 8771 kfree(work); 8772 } 8773 8774 if (!list_empty(&splice)) { 8775 spin_lock(&root->delalloc_lock); 8776 list_splice_tail(&splice, &root->delalloc_inodes); 8777 spin_unlock(&root->delalloc_lock); 8778 } 8779 mutex_unlock(&root->delalloc_mutex); 8780 return ret; 8781 } 8782 8783 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8784 { 8785 struct writeback_control wbc = { 8786 .nr_to_write = LONG_MAX, 8787 .sync_mode = WB_SYNC_NONE, 8788 .range_start = 0, 8789 .range_end = LLONG_MAX, 8790 }; 8791 struct btrfs_fs_info *fs_info = root->fs_info; 8792 8793 if (BTRFS_FS_ERROR(fs_info)) 8794 return -EROFS; 8795 8796 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8797 } 8798 8799 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8800 bool in_reclaim_context) 8801 { 8802 struct writeback_control wbc = { 8803 .nr_to_write = nr, 8804 .sync_mode = WB_SYNC_NONE, 8805 .range_start = 0, 8806 .range_end = LLONG_MAX, 8807 }; 8808 struct btrfs_root *root; 8809 LIST_HEAD(splice); 8810 int ret; 8811 8812 if (BTRFS_FS_ERROR(fs_info)) 8813 return -EROFS; 8814 8815 mutex_lock(&fs_info->delalloc_root_mutex); 8816 spin_lock(&fs_info->delalloc_root_lock); 8817 list_splice_init(&fs_info->delalloc_roots, &splice); 8818 while (!list_empty(&splice)) { 8819 /* 8820 * Reset nr_to_write here so we know that we're doing a full 8821 * flush. 8822 */ 8823 if (nr == LONG_MAX) 8824 wbc.nr_to_write = LONG_MAX; 8825 8826 root = list_first_entry(&splice, struct btrfs_root, 8827 delalloc_root); 8828 root = btrfs_grab_root(root); 8829 BUG_ON(!root); 8830 list_move_tail(&root->delalloc_root, 8831 &fs_info->delalloc_roots); 8832 spin_unlock(&fs_info->delalloc_root_lock); 8833 8834 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8835 btrfs_put_root(root); 8836 if (ret < 0 || wbc.nr_to_write <= 0) 8837 goto out; 8838 spin_lock(&fs_info->delalloc_root_lock); 8839 } 8840 spin_unlock(&fs_info->delalloc_root_lock); 8841 8842 ret = 0; 8843 out: 8844 if (!list_empty(&splice)) { 8845 spin_lock(&fs_info->delalloc_root_lock); 8846 list_splice_tail(&splice, &fs_info->delalloc_roots); 8847 spin_unlock(&fs_info->delalloc_root_lock); 8848 } 8849 mutex_unlock(&fs_info->delalloc_root_mutex); 8850 return ret; 8851 } 8852 8853 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8854 struct dentry *dentry, const char *symname) 8855 { 8856 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8857 struct btrfs_trans_handle *trans; 8858 struct btrfs_root *root = BTRFS_I(dir)->root; 8859 struct btrfs_path *path; 8860 struct btrfs_key key; 8861 struct inode *inode; 8862 struct btrfs_new_inode_args new_inode_args = { 8863 .dir = dir, 8864 .dentry = dentry, 8865 }; 8866 unsigned int trans_num_items; 8867 int ret; 8868 int name_len; 8869 int datasize; 8870 unsigned long ptr; 8871 struct btrfs_file_extent_item *ei; 8872 struct extent_buffer *leaf; 8873 8874 name_len = strlen(symname); 8875 /* 8876 * Symlinks utilize uncompressed inline extent data, which should not 8877 * reach block size. 8878 */ 8879 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8880 name_len >= fs_info->sectorsize) 8881 return -ENAMETOOLONG; 8882 8883 inode = new_inode(dir->i_sb); 8884 if (!inode) 8885 return -ENOMEM; 8886 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8887 inode->i_op = &btrfs_symlink_inode_operations; 8888 inode_nohighmem(inode); 8889 inode->i_mapping->a_ops = &btrfs_aops; 8890 btrfs_i_size_write(BTRFS_I(inode), name_len); 8891 inode_set_bytes(inode, name_len); 8892 8893 new_inode_args.inode = inode; 8894 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8895 if (ret) 8896 goto out_inode; 8897 /* 1 additional item for the inline extent */ 8898 trans_num_items++; 8899 8900 trans = btrfs_start_transaction(root, trans_num_items); 8901 if (IS_ERR(trans)) { 8902 ret = PTR_ERR(trans); 8903 goto out_new_inode_args; 8904 } 8905 8906 ret = btrfs_create_new_inode(trans, &new_inode_args); 8907 if (ret) 8908 goto out; 8909 8910 path = btrfs_alloc_path(); 8911 if (unlikely(!path)) { 8912 ret = -ENOMEM; 8913 btrfs_abort_transaction(trans, ret); 8914 discard_new_inode(inode); 8915 inode = NULL; 8916 goto out; 8917 } 8918 key.objectid = btrfs_ino(BTRFS_I(inode)); 8919 key.type = BTRFS_EXTENT_DATA_KEY; 8920 key.offset = 0; 8921 datasize = btrfs_file_extent_calc_inline_size(name_len); 8922 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8923 if (unlikely(ret)) { 8924 btrfs_abort_transaction(trans, ret); 8925 btrfs_free_path(path); 8926 discard_new_inode(inode); 8927 inode = NULL; 8928 goto out; 8929 } 8930 leaf = path->nodes[0]; 8931 ei = btrfs_item_ptr(leaf, path->slots[0], 8932 struct btrfs_file_extent_item); 8933 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8934 btrfs_set_file_extent_type(leaf, ei, 8935 BTRFS_FILE_EXTENT_INLINE); 8936 btrfs_set_file_extent_encryption(leaf, ei, 0); 8937 btrfs_set_file_extent_compression(leaf, ei, 0); 8938 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8939 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8940 8941 ptr = btrfs_file_extent_inline_start(ei); 8942 write_extent_buffer(leaf, symname, ptr, name_len); 8943 btrfs_free_path(path); 8944 8945 d_instantiate_new(dentry, inode); 8946 ret = 0; 8947 out: 8948 btrfs_end_transaction(trans); 8949 btrfs_btree_balance_dirty(fs_info); 8950 out_new_inode_args: 8951 btrfs_new_inode_args_destroy(&new_inode_args); 8952 out_inode: 8953 if (ret) 8954 iput(inode); 8955 return ret; 8956 } 8957 8958 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8959 struct btrfs_trans_handle *trans_in, 8960 struct btrfs_inode *inode, 8961 struct btrfs_key *ins, 8962 u64 file_offset) 8963 { 8964 struct btrfs_file_extent_item stack_fi; 8965 struct btrfs_replace_extent_info extent_info; 8966 struct btrfs_trans_handle *trans = trans_in; 8967 struct btrfs_path *path; 8968 u64 start = ins->objectid; 8969 u64 len = ins->offset; 8970 u64 qgroup_released = 0; 8971 int ret; 8972 8973 memset(&stack_fi, 0, sizeof(stack_fi)); 8974 8975 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8976 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8977 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8978 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8979 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8980 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8981 /* Encryption and other encoding is reserved and all 0 */ 8982 8983 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8984 if (ret < 0) 8985 return ERR_PTR(ret); 8986 8987 if (trans) { 8988 ret = insert_reserved_file_extent(trans, inode, 8989 file_offset, &stack_fi, 8990 true, qgroup_released); 8991 if (ret) 8992 goto free_qgroup; 8993 return trans; 8994 } 8995 8996 extent_info.disk_offset = start; 8997 extent_info.disk_len = len; 8998 extent_info.data_offset = 0; 8999 extent_info.data_len = len; 9000 extent_info.file_offset = file_offset; 9001 extent_info.extent_buf = (char *)&stack_fi; 9002 extent_info.is_new_extent = true; 9003 extent_info.update_times = true; 9004 extent_info.qgroup_reserved = qgroup_released; 9005 extent_info.insertions = 0; 9006 9007 path = btrfs_alloc_path(); 9008 if (!path) { 9009 ret = -ENOMEM; 9010 goto free_qgroup; 9011 } 9012 9013 ret = btrfs_replace_file_extents(inode, path, file_offset, 9014 file_offset + len - 1, &extent_info, 9015 &trans); 9016 btrfs_free_path(path); 9017 if (ret) 9018 goto free_qgroup; 9019 return trans; 9020 9021 free_qgroup: 9022 /* 9023 * We have released qgroup data range at the beginning of the function, 9024 * and normally qgroup_released bytes will be freed when committing 9025 * transaction. 9026 * But if we error out early, we have to free what we have released 9027 * or we leak qgroup data reservation. 9028 */ 9029 btrfs_qgroup_free_refroot(inode->root->fs_info, 9030 btrfs_root_id(inode->root), qgroup_released, 9031 BTRFS_QGROUP_RSV_DATA); 9032 return ERR_PTR(ret); 9033 } 9034 9035 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9036 u64 start, u64 num_bytes, u64 min_size, 9037 loff_t actual_len, u64 *alloc_hint, 9038 struct btrfs_trans_handle *trans) 9039 { 9040 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9041 struct extent_map *em; 9042 struct btrfs_root *root = BTRFS_I(inode)->root; 9043 struct btrfs_key ins; 9044 u64 cur_offset = start; 9045 u64 clear_offset = start; 9046 u64 i_size; 9047 u64 cur_bytes; 9048 u64 last_alloc = (u64)-1; 9049 int ret = 0; 9050 bool own_trans = true; 9051 u64 end = start + num_bytes - 1; 9052 9053 if (trans) 9054 own_trans = false; 9055 while (num_bytes > 0) { 9056 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9057 cur_bytes = max(cur_bytes, min_size); 9058 /* 9059 * If we are severely fragmented we could end up with really 9060 * small allocations, so if the allocator is returning small 9061 * chunks lets make its job easier by only searching for those 9062 * sized chunks. 9063 */ 9064 cur_bytes = min(cur_bytes, last_alloc); 9065 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9066 min_size, 0, *alloc_hint, &ins, 1, 0); 9067 if (ret) 9068 break; 9069 9070 /* 9071 * We've reserved this space, and thus converted it from 9072 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9073 * from here on out we will only need to clear our reservation 9074 * for the remaining unreserved area, so advance our 9075 * clear_offset by our extent size. 9076 */ 9077 clear_offset += ins.offset; 9078 9079 last_alloc = ins.offset; 9080 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9081 &ins, cur_offset); 9082 /* 9083 * Now that we inserted the prealloc extent we can finally 9084 * decrement the number of reservations in the block group. 9085 * If we did it before, we could race with relocation and have 9086 * relocation miss the reserved extent, making it fail later. 9087 */ 9088 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9089 if (IS_ERR(trans)) { 9090 ret = PTR_ERR(trans); 9091 btrfs_free_reserved_extent(fs_info, ins.objectid, 9092 ins.offset, false); 9093 break; 9094 } 9095 9096 em = btrfs_alloc_extent_map(); 9097 if (!em) { 9098 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9099 cur_offset + ins.offset - 1, false); 9100 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9101 goto next; 9102 } 9103 9104 em->start = cur_offset; 9105 em->len = ins.offset; 9106 em->disk_bytenr = ins.objectid; 9107 em->offset = 0; 9108 em->disk_num_bytes = ins.offset; 9109 em->ram_bytes = ins.offset; 9110 em->flags |= EXTENT_FLAG_PREALLOC; 9111 em->generation = trans->transid; 9112 9113 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9114 btrfs_free_extent_map(em); 9115 next: 9116 num_bytes -= ins.offset; 9117 cur_offset += ins.offset; 9118 *alloc_hint = ins.objectid + ins.offset; 9119 9120 inode_inc_iversion(inode); 9121 inode_set_ctime_current(inode); 9122 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9123 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9124 (actual_len > inode->i_size) && 9125 (cur_offset > inode->i_size)) { 9126 if (cur_offset > actual_len) 9127 i_size = actual_len; 9128 else 9129 i_size = cur_offset; 9130 i_size_write(inode, i_size); 9131 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9132 } 9133 9134 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9135 9136 if (unlikely(ret)) { 9137 btrfs_abort_transaction(trans, ret); 9138 if (own_trans) 9139 btrfs_end_transaction(trans); 9140 break; 9141 } 9142 9143 if (own_trans) { 9144 btrfs_end_transaction(trans); 9145 trans = NULL; 9146 } 9147 } 9148 if (clear_offset < end) 9149 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9150 end - clear_offset + 1); 9151 return ret; 9152 } 9153 9154 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9155 u64 start, u64 num_bytes, u64 min_size, 9156 loff_t actual_len, u64 *alloc_hint) 9157 { 9158 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9159 min_size, actual_len, alloc_hint, 9160 NULL); 9161 } 9162 9163 int btrfs_prealloc_file_range_trans(struct inode *inode, 9164 struct btrfs_trans_handle *trans, int mode, 9165 u64 start, u64 num_bytes, u64 min_size, 9166 loff_t actual_len, u64 *alloc_hint) 9167 { 9168 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9169 min_size, actual_len, alloc_hint, trans); 9170 } 9171 9172 static int btrfs_permission(struct mnt_idmap *idmap, 9173 struct inode *inode, int mask) 9174 { 9175 struct btrfs_root *root = BTRFS_I(inode)->root; 9176 umode_t mode = inode->i_mode; 9177 9178 if (mask & MAY_WRITE && 9179 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9180 if (btrfs_root_readonly(root)) 9181 return -EROFS; 9182 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9183 return -EACCES; 9184 } 9185 return generic_permission(idmap, inode, mask); 9186 } 9187 9188 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9189 struct file *file, umode_t mode) 9190 { 9191 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9192 struct btrfs_trans_handle *trans; 9193 struct btrfs_root *root = BTRFS_I(dir)->root; 9194 struct inode *inode; 9195 struct btrfs_new_inode_args new_inode_args = { 9196 .dir = dir, 9197 .dentry = file->f_path.dentry, 9198 .orphan = true, 9199 }; 9200 unsigned int trans_num_items; 9201 int ret; 9202 9203 inode = new_inode(dir->i_sb); 9204 if (!inode) 9205 return -ENOMEM; 9206 inode_init_owner(idmap, inode, dir, mode); 9207 inode->i_fop = &btrfs_file_operations; 9208 inode->i_op = &btrfs_file_inode_operations; 9209 inode->i_mapping->a_ops = &btrfs_aops; 9210 9211 new_inode_args.inode = inode; 9212 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9213 if (ret) 9214 goto out_inode; 9215 9216 trans = btrfs_start_transaction(root, trans_num_items); 9217 if (IS_ERR(trans)) { 9218 ret = PTR_ERR(trans); 9219 goto out_new_inode_args; 9220 } 9221 9222 ret = btrfs_create_new_inode(trans, &new_inode_args); 9223 9224 /* 9225 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9226 * set it to 1 because d_tmpfile() will issue a warning if the count is 9227 * 0, through: 9228 * 9229 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9230 */ 9231 set_nlink(inode, 1); 9232 9233 if (!ret) { 9234 d_tmpfile(file, inode); 9235 unlock_new_inode(inode); 9236 mark_inode_dirty(inode); 9237 } 9238 9239 btrfs_end_transaction(trans); 9240 btrfs_btree_balance_dirty(fs_info); 9241 out_new_inode_args: 9242 btrfs_new_inode_args_destroy(&new_inode_args); 9243 out_inode: 9244 if (ret) 9245 iput(inode); 9246 return finish_open_simple(file, ret); 9247 } 9248 9249 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9250 int compress_type) 9251 { 9252 switch (compress_type) { 9253 case BTRFS_COMPRESS_NONE: 9254 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9255 case BTRFS_COMPRESS_ZLIB: 9256 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9257 case BTRFS_COMPRESS_LZO: 9258 /* 9259 * The LZO format depends on the sector size. 64K is the maximum 9260 * sector size that we support. 9261 */ 9262 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9263 return -EINVAL; 9264 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9265 (fs_info->sectorsize_bits - 12); 9266 case BTRFS_COMPRESS_ZSTD: 9267 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9268 default: 9269 return -EUCLEAN; 9270 } 9271 } 9272 9273 static ssize_t btrfs_encoded_read_inline( 9274 struct kiocb *iocb, 9275 struct iov_iter *iter, u64 start, 9276 u64 lockend, 9277 struct extent_state **cached_state, 9278 u64 extent_start, size_t count, 9279 struct btrfs_ioctl_encoded_io_args *encoded, 9280 bool *unlocked) 9281 { 9282 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9283 struct btrfs_root *root = inode->root; 9284 struct btrfs_fs_info *fs_info = root->fs_info; 9285 struct extent_io_tree *io_tree = &inode->io_tree; 9286 BTRFS_PATH_AUTO_FREE(path); 9287 struct extent_buffer *leaf; 9288 struct btrfs_file_extent_item *item; 9289 u64 ram_bytes; 9290 unsigned long ptr; 9291 void *tmp; 9292 ssize_t ret; 9293 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9294 9295 path = btrfs_alloc_path(); 9296 if (!path) 9297 return -ENOMEM; 9298 9299 path->nowait = nowait; 9300 9301 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9302 extent_start, 0); 9303 if (ret) { 9304 if (unlikely(ret > 0)) { 9305 /* The extent item disappeared? */ 9306 return -EIO; 9307 } 9308 return ret; 9309 } 9310 leaf = path->nodes[0]; 9311 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9312 9313 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9314 ptr = btrfs_file_extent_inline_start(item); 9315 9316 encoded->len = min_t(u64, extent_start + ram_bytes, 9317 inode->vfs_inode.i_size) - iocb->ki_pos; 9318 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9319 btrfs_file_extent_compression(leaf, item)); 9320 if (ret < 0) 9321 return ret; 9322 encoded->compression = ret; 9323 if (encoded->compression) { 9324 size_t inline_size; 9325 9326 inline_size = btrfs_file_extent_inline_item_len(leaf, 9327 path->slots[0]); 9328 if (inline_size > count) 9329 return -ENOBUFS; 9330 9331 count = inline_size; 9332 encoded->unencoded_len = ram_bytes; 9333 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9334 } else { 9335 count = min_t(u64, count, encoded->len); 9336 encoded->len = count; 9337 encoded->unencoded_len = count; 9338 ptr += iocb->ki_pos - extent_start; 9339 } 9340 9341 tmp = kmalloc(count, GFP_NOFS); 9342 if (!tmp) 9343 return -ENOMEM; 9344 9345 read_extent_buffer(leaf, tmp, ptr, count); 9346 btrfs_release_path(path); 9347 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9348 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9349 *unlocked = true; 9350 9351 ret = copy_to_iter(tmp, count, iter); 9352 if (ret != count) 9353 ret = -EFAULT; 9354 kfree(tmp); 9355 9356 return ret; 9357 } 9358 9359 struct btrfs_encoded_read_private { 9360 struct completion *sync_reads; 9361 void *uring_ctx; 9362 refcount_t pending_refs; 9363 blk_status_t status; 9364 }; 9365 9366 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9367 { 9368 struct btrfs_encoded_read_private *priv = bbio->private; 9369 9370 if (bbio->bio.bi_status) { 9371 /* 9372 * The memory barrier implied by the refcount_dec_and_test() here 9373 * pairs with the memory barrier implied by the refcount_dec_and_test() 9374 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9375 * this write is observed before the load of status in 9376 * btrfs_encoded_read_regular_fill_pages(). 9377 */ 9378 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9379 } 9380 if (refcount_dec_and_test(&priv->pending_refs)) { 9381 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9382 9383 if (priv->uring_ctx) { 9384 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9385 kfree(priv); 9386 } else { 9387 complete(priv->sync_reads); 9388 } 9389 } 9390 bio_put(&bbio->bio); 9391 } 9392 9393 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9394 u64 disk_bytenr, u64 disk_io_size, 9395 struct page **pages, void *uring_ctx) 9396 { 9397 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9398 struct btrfs_encoded_read_private *priv, sync_priv; 9399 struct completion sync_reads; 9400 unsigned long i = 0; 9401 struct btrfs_bio *bbio; 9402 int ret; 9403 9404 /* 9405 * Fast path for synchronous reads which completes in this call, io_uring 9406 * needs longer time span. 9407 */ 9408 if (uring_ctx) { 9409 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9410 if (!priv) 9411 return -ENOMEM; 9412 } else { 9413 priv = &sync_priv; 9414 init_completion(&sync_reads); 9415 priv->sync_reads = &sync_reads; 9416 } 9417 9418 refcount_set(&priv->pending_refs, 1); 9419 priv->status = 0; 9420 priv->uring_ctx = uring_ctx; 9421 9422 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9423 btrfs_encoded_read_endio, priv); 9424 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9425 bbio->inode = inode; 9426 9427 do { 9428 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9429 9430 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9431 refcount_inc(&priv->pending_refs); 9432 btrfs_submit_bbio(bbio, 0); 9433 9434 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9435 btrfs_encoded_read_endio, priv); 9436 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9437 bbio->inode = inode; 9438 continue; 9439 } 9440 9441 i++; 9442 disk_bytenr += bytes; 9443 disk_io_size -= bytes; 9444 } while (disk_io_size); 9445 9446 refcount_inc(&priv->pending_refs); 9447 btrfs_submit_bbio(bbio, 0); 9448 9449 if (uring_ctx) { 9450 if (refcount_dec_and_test(&priv->pending_refs)) { 9451 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9452 btrfs_uring_read_extent_endio(uring_ctx, ret); 9453 kfree(priv); 9454 return ret; 9455 } 9456 9457 return -EIOCBQUEUED; 9458 } else { 9459 if (!refcount_dec_and_test(&priv->pending_refs)) 9460 wait_for_completion_io(&sync_reads); 9461 /* See btrfs_encoded_read_endio() for ordering. */ 9462 return blk_status_to_errno(READ_ONCE(priv->status)); 9463 } 9464 } 9465 9466 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9467 u64 start, u64 lockend, 9468 struct extent_state **cached_state, 9469 u64 disk_bytenr, u64 disk_io_size, 9470 size_t count, bool compressed, bool *unlocked) 9471 { 9472 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9473 struct extent_io_tree *io_tree = &inode->io_tree; 9474 struct page **pages; 9475 unsigned long nr_pages, i; 9476 u64 cur; 9477 size_t page_offset; 9478 ssize_t ret; 9479 9480 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9482 if (!pages) 9483 return -ENOMEM; 9484 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9485 if (ret) { 9486 ret = -ENOMEM; 9487 goto out; 9488 } 9489 9490 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9491 disk_io_size, pages, NULL); 9492 if (ret) 9493 goto out; 9494 9495 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9496 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9497 *unlocked = true; 9498 9499 if (compressed) { 9500 i = 0; 9501 page_offset = 0; 9502 } else { 9503 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9504 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9505 } 9506 cur = 0; 9507 while (cur < count) { 9508 size_t bytes = min_t(size_t, count - cur, 9509 PAGE_SIZE - page_offset); 9510 9511 if (copy_page_to_iter(pages[i], page_offset, bytes, 9512 iter) != bytes) { 9513 ret = -EFAULT; 9514 goto out; 9515 } 9516 i++; 9517 cur += bytes; 9518 page_offset = 0; 9519 } 9520 ret = count; 9521 out: 9522 for (i = 0; i < nr_pages; i++) { 9523 if (pages[i]) 9524 __free_page(pages[i]); 9525 } 9526 kfree(pages); 9527 return ret; 9528 } 9529 9530 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9531 struct btrfs_ioctl_encoded_io_args *encoded, 9532 struct extent_state **cached_state, 9533 u64 *disk_bytenr, u64 *disk_io_size) 9534 { 9535 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9536 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9537 struct extent_io_tree *io_tree = &inode->io_tree; 9538 ssize_t ret; 9539 size_t count = iov_iter_count(iter); 9540 u64 start, lockend; 9541 struct extent_map *em; 9542 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9543 bool unlocked = false; 9544 9545 file_accessed(iocb->ki_filp); 9546 9547 ret = btrfs_inode_lock(inode, 9548 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9549 if (ret) 9550 return ret; 9551 9552 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9553 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9554 return 0; 9555 } 9556 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9557 /* 9558 * We don't know how long the extent containing iocb->ki_pos is, but if 9559 * it's compressed we know that it won't be longer than this. 9560 */ 9561 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9562 9563 if (nowait) { 9564 struct btrfs_ordered_extent *ordered; 9565 9566 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9567 start, lockend)) { 9568 ret = -EAGAIN; 9569 goto out_unlock_inode; 9570 } 9571 9572 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9573 ret = -EAGAIN; 9574 goto out_unlock_inode; 9575 } 9576 9577 ordered = btrfs_lookup_ordered_range(inode, start, 9578 lockend - start + 1); 9579 if (ordered) { 9580 btrfs_put_ordered_extent(ordered); 9581 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9582 ret = -EAGAIN; 9583 goto out_unlock_inode; 9584 } 9585 } else { 9586 for (;;) { 9587 struct btrfs_ordered_extent *ordered; 9588 9589 ret = btrfs_wait_ordered_range(inode, start, 9590 lockend - start + 1); 9591 if (ret) 9592 goto out_unlock_inode; 9593 9594 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9595 ordered = btrfs_lookup_ordered_range(inode, start, 9596 lockend - start + 1); 9597 if (!ordered) 9598 break; 9599 btrfs_put_ordered_extent(ordered); 9600 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9601 cond_resched(); 9602 } 9603 } 9604 9605 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9606 if (IS_ERR(em)) { 9607 ret = PTR_ERR(em); 9608 goto out_unlock_extent; 9609 } 9610 9611 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9612 u64 extent_start = em->start; 9613 9614 /* 9615 * For inline extents we get everything we need out of the 9616 * extent item. 9617 */ 9618 btrfs_free_extent_map(em); 9619 em = NULL; 9620 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9621 cached_state, extent_start, 9622 count, encoded, &unlocked); 9623 goto out_unlock_extent; 9624 } 9625 9626 /* 9627 * We only want to return up to EOF even if the extent extends beyond 9628 * that. 9629 */ 9630 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9631 inode->vfs_inode.i_size) - iocb->ki_pos; 9632 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9633 (em->flags & EXTENT_FLAG_PREALLOC)) { 9634 *disk_bytenr = EXTENT_MAP_HOLE; 9635 count = min_t(u64, count, encoded->len); 9636 encoded->len = count; 9637 encoded->unencoded_len = count; 9638 } else if (btrfs_extent_map_is_compressed(em)) { 9639 *disk_bytenr = em->disk_bytenr; 9640 /* 9641 * Bail if the buffer isn't large enough to return the whole 9642 * compressed extent. 9643 */ 9644 if (em->disk_num_bytes > count) { 9645 ret = -ENOBUFS; 9646 goto out_em; 9647 } 9648 *disk_io_size = em->disk_num_bytes; 9649 count = em->disk_num_bytes; 9650 encoded->unencoded_len = em->ram_bytes; 9651 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9652 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9653 btrfs_extent_map_compression(em)); 9654 if (ret < 0) 9655 goto out_em; 9656 encoded->compression = ret; 9657 } else { 9658 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9659 if (encoded->len > count) 9660 encoded->len = count; 9661 /* 9662 * Don't read beyond what we locked. This also limits the page 9663 * allocations that we'll do. 9664 */ 9665 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9666 count = start + *disk_io_size - iocb->ki_pos; 9667 encoded->len = count; 9668 encoded->unencoded_len = count; 9669 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9670 } 9671 btrfs_free_extent_map(em); 9672 em = NULL; 9673 9674 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9675 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9676 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9677 unlocked = true; 9678 ret = iov_iter_zero(count, iter); 9679 if (ret != count) 9680 ret = -EFAULT; 9681 } else { 9682 ret = -EIOCBQUEUED; 9683 goto out_unlock_extent; 9684 } 9685 9686 out_em: 9687 btrfs_free_extent_map(em); 9688 out_unlock_extent: 9689 /* Leave inode and extent locked if we need to do a read. */ 9690 if (!unlocked && ret != -EIOCBQUEUED) 9691 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9692 out_unlock_inode: 9693 if (!unlocked && ret != -EIOCBQUEUED) 9694 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9695 return ret; 9696 } 9697 9698 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9699 const struct btrfs_ioctl_encoded_io_args *encoded) 9700 { 9701 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9702 struct btrfs_root *root = inode->root; 9703 struct btrfs_fs_info *fs_info = root->fs_info; 9704 struct extent_io_tree *io_tree = &inode->io_tree; 9705 struct extent_changeset *data_reserved = NULL; 9706 struct extent_state *cached_state = NULL; 9707 struct btrfs_ordered_extent *ordered; 9708 struct btrfs_file_extent file_extent; 9709 int compression; 9710 size_t orig_count; 9711 u64 start, end; 9712 u64 num_bytes, ram_bytes, disk_num_bytes; 9713 unsigned long nr_folios, i; 9714 struct folio **folios; 9715 struct btrfs_key ins; 9716 bool extent_reserved = false; 9717 struct extent_map *em; 9718 ssize_t ret; 9719 9720 switch (encoded->compression) { 9721 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9722 compression = BTRFS_COMPRESS_ZLIB; 9723 break; 9724 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9725 compression = BTRFS_COMPRESS_ZSTD; 9726 break; 9727 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9728 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9729 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9730 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9731 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9732 /* The sector size must match for LZO. */ 9733 if (encoded->compression - 9734 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9735 fs_info->sectorsize_bits) 9736 return -EINVAL; 9737 compression = BTRFS_COMPRESS_LZO; 9738 break; 9739 default: 9740 return -EINVAL; 9741 } 9742 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9743 return -EINVAL; 9744 9745 /* 9746 * Compressed extents should always have checksums, so error out if we 9747 * have a NOCOW file or inode was created while mounted with NODATASUM. 9748 */ 9749 if (inode->flags & BTRFS_INODE_NODATASUM) 9750 return -EINVAL; 9751 9752 orig_count = iov_iter_count(from); 9753 9754 /* The extent size must be sane. */ 9755 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9756 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9757 return -EINVAL; 9758 9759 /* 9760 * The compressed data must be smaller than the decompressed data. 9761 * 9762 * It's of course possible for data to compress to larger or the same 9763 * size, but the buffered I/O path falls back to no compression for such 9764 * data, and we don't want to break any assumptions by creating these 9765 * extents. 9766 * 9767 * Note that this is less strict than the current check we have that the 9768 * compressed data must be at least one sector smaller than the 9769 * decompressed data. We only want to enforce the weaker requirement 9770 * from old kernels that it is at least one byte smaller. 9771 */ 9772 if (orig_count >= encoded->unencoded_len) 9773 return -EINVAL; 9774 9775 /* The extent must start on a sector boundary. */ 9776 start = iocb->ki_pos; 9777 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9778 return -EINVAL; 9779 9780 /* 9781 * The extent must end on a sector boundary. However, we allow a write 9782 * which ends at or extends i_size to have an unaligned length; we round 9783 * up the extent size and set i_size to the unaligned end. 9784 */ 9785 if (start + encoded->len < inode->vfs_inode.i_size && 9786 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9787 return -EINVAL; 9788 9789 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9790 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9791 return -EINVAL; 9792 9793 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9794 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9795 end = start + num_bytes - 1; 9796 9797 /* 9798 * If the extent cannot be inline, the compressed data on disk must be 9799 * sector-aligned. For convenience, we extend it with zeroes if it 9800 * isn't. 9801 */ 9802 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9803 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9804 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9805 if (!folios) 9806 return -ENOMEM; 9807 for (i = 0; i < nr_folios; i++) { 9808 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9809 char *kaddr; 9810 9811 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9812 if (!folios[i]) { 9813 ret = -ENOMEM; 9814 goto out_folios; 9815 } 9816 kaddr = kmap_local_folio(folios[i], 0); 9817 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9818 kunmap_local(kaddr); 9819 ret = -EFAULT; 9820 goto out_folios; 9821 } 9822 if (bytes < PAGE_SIZE) 9823 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9824 kunmap_local(kaddr); 9825 } 9826 9827 for (;;) { 9828 struct btrfs_ordered_extent *ordered; 9829 9830 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9831 if (ret) 9832 goto out_folios; 9833 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9834 start >> PAGE_SHIFT, 9835 end >> PAGE_SHIFT); 9836 if (ret) 9837 goto out_folios; 9838 btrfs_lock_extent(io_tree, start, end, &cached_state); 9839 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9840 if (!ordered && 9841 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9842 break; 9843 if (ordered) 9844 btrfs_put_ordered_extent(ordered); 9845 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9846 cond_resched(); 9847 } 9848 9849 /* 9850 * We don't use the higher-level delalloc space functions because our 9851 * num_bytes and disk_num_bytes are different. 9852 */ 9853 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9854 if (ret) 9855 goto out_unlock; 9856 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9857 if (ret) 9858 goto out_free_data_space; 9859 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9860 false); 9861 if (ret) 9862 goto out_qgroup_free_data; 9863 9864 /* Try an inline extent first. */ 9865 if (encoded->unencoded_len == encoded->len && 9866 encoded->unencoded_offset == 0 && 9867 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9868 ret = __cow_file_range_inline(inode, encoded->len, 9869 orig_count, compression, folios[0], 9870 true); 9871 if (ret <= 0) { 9872 if (ret == 0) 9873 ret = orig_count; 9874 goto out_delalloc_release; 9875 } 9876 } 9877 9878 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9879 disk_num_bytes, 0, 0, &ins, 1, 1); 9880 if (ret) 9881 goto out_delalloc_release; 9882 extent_reserved = true; 9883 9884 file_extent.disk_bytenr = ins.objectid; 9885 file_extent.disk_num_bytes = ins.offset; 9886 file_extent.num_bytes = num_bytes; 9887 file_extent.ram_bytes = ram_bytes; 9888 file_extent.offset = encoded->unencoded_offset; 9889 file_extent.compression = compression; 9890 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9891 if (IS_ERR(em)) { 9892 ret = PTR_ERR(em); 9893 goto out_free_reserved; 9894 } 9895 btrfs_free_extent_map(em); 9896 9897 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9898 (1U << BTRFS_ORDERED_ENCODED) | 9899 (1U << BTRFS_ORDERED_COMPRESSED)); 9900 if (IS_ERR(ordered)) { 9901 btrfs_drop_extent_map_range(inode, start, end, false); 9902 ret = PTR_ERR(ordered); 9903 goto out_free_reserved; 9904 } 9905 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9906 9907 if (start + encoded->len > inode->vfs_inode.i_size) 9908 i_size_write(&inode->vfs_inode, start + encoded->len); 9909 9910 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9911 9912 btrfs_delalloc_release_extents(inode, num_bytes); 9913 9914 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9915 ret = orig_count; 9916 goto out; 9917 9918 out_free_reserved: 9919 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9920 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9921 out_delalloc_release: 9922 btrfs_delalloc_release_extents(inode, num_bytes); 9923 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9924 out_qgroup_free_data: 9925 if (ret < 0) 9926 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9927 out_free_data_space: 9928 /* 9929 * If btrfs_reserve_extent() succeeded, then we already decremented 9930 * bytes_may_use. 9931 */ 9932 if (!extent_reserved) 9933 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9934 out_unlock: 9935 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9936 out_folios: 9937 for (i = 0; i < nr_folios; i++) { 9938 if (folios[i]) 9939 folio_put(folios[i]); 9940 } 9941 kvfree(folios); 9942 out: 9943 if (ret >= 0) 9944 iocb->ki_pos += encoded->len; 9945 return ret; 9946 } 9947 9948 #ifdef CONFIG_SWAP 9949 /* 9950 * Add an entry indicating a block group or device which is pinned by a 9951 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9952 * negative errno on failure. 9953 */ 9954 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9955 bool is_block_group) 9956 { 9957 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9958 struct btrfs_swapfile_pin *sp, *entry; 9959 struct rb_node **p; 9960 struct rb_node *parent = NULL; 9961 9962 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9963 if (!sp) 9964 return -ENOMEM; 9965 sp->ptr = ptr; 9966 sp->inode = inode; 9967 sp->is_block_group = is_block_group; 9968 sp->bg_extent_count = 1; 9969 9970 spin_lock(&fs_info->swapfile_pins_lock); 9971 p = &fs_info->swapfile_pins.rb_node; 9972 while (*p) { 9973 parent = *p; 9974 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9975 if (sp->ptr < entry->ptr || 9976 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9977 p = &(*p)->rb_left; 9978 } else if (sp->ptr > entry->ptr || 9979 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9980 p = &(*p)->rb_right; 9981 } else { 9982 if (is_block_group) 9983 entry->bg_extent_count++; 9984 spin_unlock(&fs_info->swapfile_pins_lock); 9985 kfree(sp); 9986 return 1; 9987 } 9988 } 9989 rb_link_node(&sp->node, parent, p); 9990 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9991 spin_unlock(&fs_info->swapfile_pins_lock); 9992 return 0; 9993 } 9994 9995 /* Free all of the entries pinned by this swapfile. */ 9996 static void btrfs_free_swapfile_pins(struct inode *inode) 9997 { 9998 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9999 struct btrfs_swapfile_pin *sp; 10000 struct rb_node *node, *next; 10001 10002 spin_lock(&fs_info->swapfile_pins_lock); 10003 node = rb_first(&fs_info->swapfile_pins); 10004 while (node) { 10005 next = rb_next(node); 10006 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10007 if (sp->inode == inode) { 10008 rb_erase(&sp->node, &fs_info->swapfile_pins); 10009 if (sp->is_block_group) { 10010 btrfs_dec_block_group_swap_extents(sp->ptr, 10011 sp->bg_extent_count); 10012 btrfs_put_block_group(sp->ptr); 10013 } 10014 kfree(sp); 10015 } 10016 node = next; 10017 } 10018 spin_unlock(&fs_info->swapfile_pins_lock); 10019 } 10020 10021 struct btrfs_swap_info { 10022 u64 start; 10023 u64 block_start; 10024 u64 block_len; 10025 u64 lowest_ppage; 10026 u64 highest_ppage; 10027 unsigned long nr_pages; 10028 int nr_extents; 10029 }; 10030 10031 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10032 struct btrfs_swap_info *bsi) 10033 { 10034 unsigned long nr_pages; 10035 unsigned long max_pages; 10036 u64 first_ppage, first_ppage_reported, next_ppage; 10037 int ret; 10038 10039 /* 10040 * Our swapfile may have had its size extended after the swap header was 10041 * written. In that case activating the swapfile should not go beyond 10042 * the max size set in the swap header. 10043 */ 10044 if (bsi->nr_pages >= sis->max) 10045 return 0; 10046 10047 max_pages = sis->max - bsi->nr_pages; 10048 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10049 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10050 10051 if (first_ppage >= next_ppage) 10052 return 0; 10053 nr_pages = next_ppage - first_ppage; 10054 nr_pages = min(nr_pages, max_pages); 10055 10056 first_ppage_reported = first_ppage; 10057 if (bsi->start == 0) 10058 first_ppage_reported++; 10059 if (bsi->lowest_ppage > first_ppage_reported) 10060 bsi->lowest_ppage = first_ppage_reported; 10061 if (bsi->highest_ppage < (next_ppage - 1)) 10062 bsi->highest_ppage = next_ppage - 1; 10063 10064 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10065 if (ret < 0) 10066 return ret; 10067 bsi->nr_extents += ret; 10068 bsi->nr_pages += nr_pages; 10069 return 0; 10070 } 10071 10072 static void btrfs_swap_deactivate(struct file *file) 10073 { 10074 struct inode *inode = file_inode(file); 10075 10076 btrfs_free_swapfile_pins(inode); 10077 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10078 } 10079 10080 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10081 sector_t *span) 10082 { 10083 struct inode *inode = file_inode(file); 10084 struct btrfs_root *root = BTRFS_I(inode)->root; 10085 struct btrfs_fs_info *fs_info = root->fs_info; 10086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10087 struct extent_state *cached_state = NULL; 10088 struct btrfs_chunk_map *map = NULL; 10089 struct btrfs_device *device = NULL; 10090 struct btrfs_swap_info bsi = { 10091 .lowest_ppage = (sector_t)-1ULL, 10092 }; 10093 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10094 struct btrfs_path *path = NULL; 10095 int ret = 0; 10096 u64 isize; 10097 u64 prev_extent_end = 0; 10098 10099 /* 10100 * Acquire the inode's mmap lock to prevent races with memory mapped 10101 * writes, as they could happen after we flush delalloc below and before 10102 * we lock the extent range further below. The inode was already locked 10103 * up in the call chain. 10104 */ 10105 btrfs_assert_inode_locked(BTRFS_I(inode)); 10106 down_write(&BTRFS_I(inode)->i_mmap_lock); 10107 10108 /* 10109 * If the swap file was just created, make sure delalloc is done. If the 10110 * file changes again after this, the user is doing something stupid and 10111 * we don't really care. 10112 */ 10113 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10114 if (ret) 10115 goto out_unlock_mmap; 10116 10117 /* 10118 * The inode is locked, so these flags won't change after we check them. 10119 */ 10120 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10121 btrfs_warn(fs_info, "swapfile must not be compressed"); 10122 ret = -EINVAL; 10123 goto out_unlock_mmap; 10124 } 10125 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10126 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10127 ret = -EINVAL; 10128 goto out_unlock_mmap; 10129 } 10130 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10131 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10132 ret = -EINVAL; 10133 goto out_unlock_mmap; 10134 } 10135 10136 path = btrfs_alloc_path(); 10137 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10138 if (!path || !backref_ctx) { 10139 ret = -ENOMEM; 10140 goto out_unlock_mmap; 10141 } 10142 10143 /* 10144 * Balance or device remove/replace/resize can move stuff around from 10145 * under us. The exclop protection makes sure they aren't running/won't 10146 * run concurrently while we are mapping the swap extents, and 10147 * fs_info->swapfile_pins prevents them from running while the swap 10148 * file is active and moving the extents. Note that this also prevents 10149 * a concurrent device add which isn't actually necessary, but it's not 10150 * really worth the trouble to allow it. 10151 */ 10152 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10153 btrfs_warn(fs_info, 10154 "cannot activate swapfile while exclusive operation is running"); 10155 ret = -EBUSY; 10156 goto out_unlock_mmap; 10157 } 10158 10159 /* 10160 * Prevent snapshot creation while we are activating the swap file. 10161 * We do not want to race with snapshot creation. If snapshot creation 10162 * already started before we bumped nr_swapfiles from 0 to 1 and 10163 * completes before the first write into the swap file after it is 10164 * activated, than that write would fallback to COW. 10165 */ 10166 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10167 btrfs_exclop_finish(fs_info); 10168 btrfs_warn(fs_info, 10169 "cannot activate swapfile because snapshot creation is in progress"); 10170 ret = -EINVAL; 10171 goto out_unlock_mmap; 10172 } 10173 /* 10174 * Snapshots can create extents which require COW even if NODATACOW is 10175 * set. We use this counter to prevent snapshots. We must increment it 10176 * before walking the extents because we don't want a concurrent 10177 * snapshot to run after we've already checked the extents. 10178 * 10179 * It is possible that subvolume is marked for deletion but still not 10180 * removed yet. To prevent this race, we check the root status before 10181 * activating the swapfile. 10182 */ 10183 spin_lock(&root->root_item_lock); 10184 if (btrfs_root_dead(root)) { 10185 spin_unlock(&root->root_item_lock); 10186 10187 btrfs_drew_write_unlock(&root->snapshot_lock); 10188 btrfs_exclop_finish(fs_info); 10189 btrfs_warn(fs_info, 10190 "cannot activate swapfile because subvolume %llu is being deleted", 10191 btrfs_root_id(root)); 10192 ret = -EPERM; 10193 goto out_unlock_mmap; 10194 } 10195 atomic_inc(&root->nr_swapfiles); 10196 spin_unlock(&root->root_item_lock); 10197 10198 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10199 10200 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10201 while (prev_extent_end < isize) { 10202 struct btrfs_key key; 10203 struct extent_buffer *leaf; 10204 struct btrfs_file_extent_item *ei; 10205 struct btrfs_block_group *bg; 10206 u64 logical_block_start; 10207 u64 physical_block_start; 10208 u64 extent_gen; 10209 u64 disk_bytenr; 10210 u64 len; 10211 10212 key.objectid = btrfs_ino(BTRFS_I(inode)); 10213 key.type = BTRFS_EXTENT_DATA_KEY; 10214 key.offset = prev_extent_end; 10215 10216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10217 if (ret < 0) 10218 goto out; 10219 10220 /* 10221 * If key not found it means we have an implicit hole (NO_HOLES 10222 * is enabled). 10223 */ 10224 if (ret > 0) { 10225 btrfs_warn(fs_info, "swapfile must not have holes"); 10226 ret = -EINVAL; 10227 goto out; 10228 } 10229 10230 leaf = path->nodes[0]; 10231 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10232 10233 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10234 /* 10235 * It's unlikely we'll ever actually find ourselves 10236 * here, as a file small enough to fit inline won't be 10237 * big enough to store more than the swap header, but in 10238 * case something changes in the future, let's catch it 10239 * here rather than later. 10240 */ 10241 btrfs_warn(fs_info, "swapfile must not be inline"); 10242 ret = -EINVAL; 10243 goto out; 10244 } 10245 10246 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10247 btrfs_warn(fs_info, "swapfile must not be compressed"); 10248 ret = -EINVAL; 10249 goto out; 10250 } 10251 10252 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10253 if (disk_bytenr == 0) { 10254 btrfs_warn(fs_info, "swapfile must not have holes"); 10255 ret = -EINVAL; 10256 goto out; 10257 } 10258 10259 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10260 extent_gen = btrfs_file_extent_generation(leaf, ei); 10261 prev_extent_end = btrfs_file_extent_end(path); 10262 10263 if (prev_extent_end > isize) 10264 len = isize - key.offset; 10265 else 10266 len = btrfs_file_extent_num_bytes(leaf, ei); 10267 10268 backref_ctx->curr_leaf_bytenr = leaf->start; 10269 10270 /* 10271 * Don't need the path anymore, release to avoid deadlocks when 10272 * calling btrfs_is_data_extent_shared() because when joining a 10273 * transaction it can block waiting for the current one's commit 10274 * which in turn may be trying to lock the same leaf to flush 10275 * delayed items for example. 10276 */ 10277 btrfs_release_path(path); 10278 10279 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10280 extent_gen, backref_ctx); 10281 if (ret < 0) { 10282 goto out; 10283 } else if (ret > 0) { 10284 btrfs_warn(fs_info, 10285 "swapfile must not be copy-on-write"); 10286 ret = -EINVAL; 10287 goto out; 10288 } 10289 10290 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10291 if (IS_ERR(map)) { 10292 ret = PTR_ERR(map); 10293 goto out; 10294 } 10295 10296 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10297 btrfs_warn(fs_info, 10298 "swapfile must have single data profile"); 10299 ret = -EINVAL; 10300 goto out; 10301 } 10302 10303 if (device == NULL) { 10304 device = map->stripes[0].dev; 10305 ret = btrfs_add_swapfile_pin(inode, device, false); 10306 if (ret == 1) 10307 ret = 0; 10308 else if (ret) 10309 goto out; 10310 } else if (device != map->stripes[0].dev) { 10311 btrfs_warn(fs_info, "swapfile must be on one device"); 10312 ret = -EINVAL; 10313 goto out; 10314 } 10315 10316 physical_block_start = (map->stripes[0].physical + 10317 (logical_block_start - map->start)); 10318 btrfs_free_chunk_map(map); 10319 map = NULL; 10320 10321 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10322 if (!bg) { 10323 btrfs_warn(fs_info, 10324 "could not find block group containing swapfile"); 10325 ret = -EINVAL; 10326 goto out; 10327 } 10328 10329 if (!btrfs_inc_block_group_swap_extents(bg)) { 10330 btrfs_warn(fs_info, 10331 "block group for swapfile at %llu is read-only%s", 10332 bg->start, 10333 atomic_read(&fs_info->scrubs_running) ? 10334 " (scrub running)" : ""); 10335 btrfs_put_block_group(bg); 10336 ret = -EINVAL; 10337 goto out; 10338 } 10339 10340 ret = btrfs_add_swapfile_pin(inode, bg, true); 10341 if (ret) { 10342 btrfs_put_block_group(bg); 10343 if (ret == 1) 10344 ret = 0; 10345 else 10346 goto out; 10347 } 10348 10349 if (bsi.block_len && 10350 bsi.block_start + bsi.block_len == physical_block_start) { 10351 bsi.block_len += len; 10352 } else { 10353 if (bsi.block_len) { 10354 ret = btrfs_add_swap_extent(sis, &bsi); 10355 if (ret) 10356 goto out; 10357 } 10358 bsi.start = key.offset; 10359 bsi.block_start = physical_block_start; 10360 bsi.block_len = len; 10361 } 10362 10363 if (fatal_signal_pending(current)) { 10364 ret = -EINTR; 10365 goto out; 10366 } 10367 10368 cond_resched(); 10369 } 10370 10371 if (bsi.block_len) 10372 ret = btrfs_add_swap_extent(sis, &bsi); 10373 10374 out: 10375 if (!IS_ERR_OR_NULL(map)) 10376 btrfs_free_chunk_map(map); 10377 10378 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10379 10380 if (ret) 10381 btrfs_swap_deactivate(file); 10382 10383 btrfs_drew_write_unlock(&root->snapshot_lock); 10384 10385 btrfs_exclop_finish(fs_info); 10386 10387 out_unlock_mmap: 10388 up_write(&BTRFS_I(inode)->i_mmap_lock); 10389 btrfs_free_backref_share_ctx(backref_ctx); 10390 btrfs_free_path(path); 10391 if (ret) 10392 return ret; 10393 10394 if (device) 10395 sis->bdev = device->bdev; 10396 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10397 sis->max = bsi.nr_pages; 10398 sis->pages = bsi.nr_pages - 1; 10399 return bsi.nr_extents; 10400 } 10401 #else 10402 static void btrfs_swap_deactivate(struct file *file) 10403 { 10404 } 10405 10406 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10407 sector_t *span) 10408 { 10409 return -EOPNOTSUPP; 10410 } 10411 #endif 10412 10413 /* 10414 * Update the number of bytes used in the VFS' inode. When we replace extents in 10415 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10416 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10417 * always get a correct value. 10418 */ 10419 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10420 const u64 add_bytes, 10421 const u64 del_bytes) 10422 { 10423 if (add_bytes == del_bytes) 10424 return; 10425 10426 spin_lock(&inode->lock); 10427 if (del_bytes > 0) 10428 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10429 if (add_bytes > 0) 10430 inode_add_bytes(&inode->vfs_inode, add_bytes); 10431 spin_unlock(&inode->lock); 10432 } 10433 10434 /* 10435 * Verify that there are no ordered extents for a given file range. 10436 * 10437 * @inode: The target inode. 10438 * @start: Start offset of the file range, should be sector size aligned. 10439 * @end: End offset (inclusive) of the file range, its value +1 should be 10440 * sector size aligned. 10441 * 10442 * This should typically be used for cases where we locked an inode's VFS lock in 10443 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10444 * we have flushed all delalloc in the range, we have waited for all ordered 10445 * extents in the range to complete and finally we have locked the file range in 10446 * the inode's io_tree. 10447 */ 10448 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10449 { 10450 struct btrfs_root *root = inode->root; 10451 struct btrfs_ordered_extent *ordered; 10452 10453 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10454 return; 10455 10456 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10457 if (ordered) { 10458 btrfs_err(root->fs_info, 10459 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10460 start, end, btrfs_ino(inode), btrfs_root_id(root), 10461 ordered->file_offset, 10462 ordered->file_offset + ordered->num_bytes - 1); 10463 btrfs_put_ordered_extent(ordered); 10464 } 10465 10466 ASSERT(ordered == NULL); 10467 } 10468 10469 /* 10470 * Find the first inode with a minimum number. 10471 * 10472 * @root: The root to search for. 10473 * @min_ino: The minimum inode number. 10474 * 10475 * Find the first inode in the @root with a number >= @min_ino and return it. 10476 * Returns NULL if no such inode found. 10477 */ 10478 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10479 { 10480 struct btrfs_inode *inode; 10481 unsigned long from = min_ino; 10482 10483 xa_lock(&root->inodes); 10484 while (true) { 10485 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10486 if (!inode) 10487 break; 10488 if (igrab(&inode->vfs_inode)) 10489 break; 10490 10491 from = btrfs_ino(inode) + 1; 10492 cond_resched_lock(&root->inodes.xa_lock); 10493 } 10494 xa_unlock(&root->inodes); 10495 10496 return inode; 10497 } 10498 10499 static const struct inode_operations btrfs_dir_inode_operations = { 10500 .getattr = btrfs_getattr, 10501 .lookup = btrfs_lookup, 10502 .create = btrfs_create, 10503 .unlink = btrfs_unlink, 10504 .link = btrfs_link, 10505 .mkdir = btrfs_mkdir, 10506 .rmdir = btrfs_rmdir, 10507 .rename = btrfs_rename2, 10508 .symlink = btrfs_symlink, 10509 .setattr = btrfs_setattr, 10510 .mknod = btrfs_mknod, 10511 .listxattr = btrfs_listxattr, 10512 .permission = btrfs_permission, 10513 .get_inode_acl = btrfs_get_acl, 10514 .set_acl = btrfs_set_acl, 10515 .update_time = btrfs_update_time, 10516 .tmpfile = btrfs_tmpfile, 10517 .fileattr_get = btrfs_fileattr_get, 10518 .fileattr_set = btrfs_fileattr_set, 10519 }; 10520 10521 static const struct file_operations btrfs_dir_file_operations = { 10522 .llseek = btrfs_dir_llseek, 10523 .read = generic_read_dir, 10524 .iterate_shared = btrfs_real_readdir, 10525 .open = btrfs_opendir, 10526 .unlocked_ioctl = btrfs_ioctl, 10527 #ifdef CONFIG_COMPAT 10528 .compat_ioctl = btrfs_compat_ioctl, 10529 #endif 10530 .release = btrfs_release_file, 10531 .fsync = btrfs_sync_file, 10532 }; 10533 10534 /* 10535 * btrfs doesn't support the bmap operation because swapfiles 10536 * use bmap to make a mapping of extents in the file. They assume 10537 * these extents won't change over the life of the file and they 10538 * use the bmap result to do IO directly to the drive. 10539 * 10540 * the btrfs bmap call would return logical addresses that aren't 10541 * suitable for IO and they also will change frequently as COW 10542 * operations happen. So, swapfile + btrfs == corruption. 10543 * 10544 * For now we're avoiding this by dropping bmap. 10545 */ 10546 static const struct address_space_operations btrfs_aops = { 10547 .read_folio = btrfs_read_folio, 10548 .writepages = btrfs_writepages, 10549 .readahead = btrfs_readahead, 10550 .invalidate_folio = btrfs_invalidate_folio, 10551 .launder_folio = btrfs_launder_folio, 10552 .release_folio = btrfs_release_folio, 10553 .migrate_folio = btrfs_migrate_folio, 10554 .dirty_folio = filemap_dirty_folio, 10555 .error_remove_folio = generic_error_remove_folio, 10556 .swap_activate = btrfs_swap_activate, 10557 .swap_deactivate = btrfs_swap_deactivate, 10558 }; 10559 10560 static const struct inode_operations btrfs_file_inode_operations = { 10561 .getattr = btrfs_getattr, 10562 .setattr = btrfs_setattr, 10563 .listxattr = btrfs_listxattr, 10564 .permission = btrfs_permission, 10565 .fiemap = btrfs_fiemap, 10566 .get_inode_acl = btrfs_get_acl, 10567 .set_acl = btrfs_set_acl, 10568 .update_time = btrfs_update_time, 10569 .fileattr_get = btrfs_fileattr_get, 10570 .fileattr_set = btrfs_fileattr_set, 10571 }; 10572 static const struct inode_operations btrfs_special_inode_operations = { 10573 .getattr = btrfs_getattr, 10574 .setattr = btrfs_setattr, 10575 .permission = btrfs_permission, 10576 .listxattr = btrfs_listxattr, 10577 .get_inode_acl = btrfs_get_acl, 10578 .set_acl = btrfs_set_acl, 10579 .update_time = btrfs_update_time, 10580 }; 10581 static const struct inode_operations btrfs_symlink_inode_operations = { 10582 .get_link = page_get_link, 10583 .getattr = btrfs_getattr, 10584 .setattr = btrfs_setattr, 10585 .permission = btrfs_permission, 10586 .listxattr = btrfs_listxattr, 10587 .update_time = btrfs_update_time, 10588 }; 10589 10590 const struct dentry_operations btrfs_dentry_operations = { 10591 .d_delete = btrfs_dentry_delete, 10592 }; 10593