1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "volumes.h" 52 #include "compression.h" 53 #include "locking.h" 54 #include "free-space-cache.h" 55 #include "inode-map.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct address_space_operations btrfs_symlink_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_transaction_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 #define S_SHIFT 12 79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 87 }; 88 89 static int btrfs_setsize(struct inode *inode, loff_t newsize); 90 static int btrfs_truncate(struct inode *inode); 91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 92 static noinline int cow_file_range(struct inode *inode, 93 struct page *locked_page, 94 u64 start, u64 end, int *page_started, 95 unsigned long *nr_written, int unlock); 96 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct inode *inode); 98 99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 100 struct inode *inode, struct inode *dir, 101 const struct qstr *qstr) 102 { 103 int err; 104 105 err = btrfs_init_acl(trans, inode, dir); 106 if (!err) 107 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 108 return err; 109 } 110 111 /* 112 * this does all the hard work for inserting an inline extent into 113 * the btree. The caller should have done a btrfs_drop_extents so that 114 * no overlapping inline items exist in the btree 115 */ 116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 117 struct btrfs_root *root, struct inode *inode, 118 u64 start, size_t size, size_t compressed_size, 119 int compress_type, 120 struct page **compressed_pages) 121 { 122 struct btrfs_key key; 123 struct btrfs_path *path; 124 struct extent_buffer *leaf; 125 struct page *page = NULL; 126 char *kaddr; 127 unsigned long ptr; 128 struct btrfs_file_extent_item *ei; 129 int err = 0; 130 int ret; 131 size_t cur_size = size; 132 size_t datasize; 133 unsigned long offset; 134 135 if (compressed_size && compressed_pages) 136 cur_size = compressed_size; 137 138 path = btrfs_alloc_path(); 139 if (!path) 140 return -ENOMEM; 141 142 path->leave_spinning = 1; 143 144 key.objectid = btrfs_ino(inode); 145 key.offset = start; 146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 147 datasize = btrfs_file_extent_calc_inline_size(cur_size); 148 149 inode_add_bytes(inode, size); 150 ret = btrfs_insert_empty_item(trans, root, path, &key, 151 datasize); 152 BUG_ON(ret); 153 if (ret) { 154 err = ret; 155 goto fail; 156 } 157 leaf = path->nodes[0]; 158 ei = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 162 btrfs_set_file_extent_encryption(leaf, ei, 0); 163 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 164 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 165 ptr = btrfs_file_extent_inline_start(ei); 166 167 if (compress_type != BTRFS_COMPRESS_NONE) { 168 struct page *cpage; 169 int i = 0; 170 while (compressed_size > 0) { 171 cpage = compressed_pages[i]; 172 cur_size = min_t(unsigned long, compressed_size, 173 PAGE_CACHE_SIZE); 174 175 kaddr = kmap_atomic(cpage, KM_USER0); 176 write_extent_buffer(leaf, kaddr, ptr, cur_size); 177 kunmap_atomic(kaddr, KM_USER0); 178 179 i++; 180 ptr += cur_size; 181 compressed_size -= cur_size; 182 } 183 btrfs_set_file_extent_compression(leaf, ei, 184 compress_type); 185 } else { 186 page = find_get_page(inode->i_mapping, 187 start >> PAGE_CACHE_SHIFT); 188 btrfs_set_file_extent_compression(leaf, ei, 0); 189 kaddr = kmap_atomic(page, KM_USER0); 190 offset = start & (PAGE_CACHE_SIZE - 1); 191 write_extent_buffer(leaf, kaddr + offset, ptr, size); 192 kunmap_atomic(kaddr, KM_USER0); 193 page_cache_release(page); 194 } 195 btrfs_mark_buffer_dirty(leaf); 196 btrfs_free_path(path); 197 198 /* 199 * we're an inline extent, so nobody can 200 * extend the file past i_size without locking 201 * a page we already have locked. 202 * 203 * We must do any isize and inode updates 204 * before we unlock the pages. Otherwise we 205 * could end up racing with unlink. 206 */ 207 BTRFS_I(inode)->disk_i_size = inode->i_size; 208 btrfs_update_inode(trans, root, inode); 209 210 return 0; 211 fail: 212 btrfs_free_path(path); 213 return err; 214 } 215 216 217 /* 218 * conditionally insert an inline extent into the file. This 219 * does the checks required to make sure the data is small enough 220 * to fit as an inline extent. 221 */ 222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 223 struct btrfs_root *root, 224 struct inode *inode, u64 start, u64 end, 225 size_t compressed_size, int compress_type, 226 struct page **compressed_pages) 227 { 228 u64 isize = i_size_read(inode); 229 u64 actual_end = min(end + 1, isize); 230 u64 inline_len = actual_end - start; 231 u64 aligned_end = (end + root->sectorsize - 1) & 232 ~((u64)root->sectorsize - 1); 233 u64 hint_byte; 234 u64 data_len = inline_len; 235 int ret; 236 237 if (compressed_size) 238 data_len = compressed_size; 239 240 if (start > 0 || 241 actual_end >= PAGE_CACHE_SIZE || 242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 243 (!compressed_size && 244 (actual_end & (root->sectorsize - 1)) == 0) || 245 end + 1 < isize || 246 data_len > root->fs_info->max_inline) { 247 return 1; 248 } 249 250 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 251 &hint_byte, 1); 252 BUG_ON(ret); 253 254 if (isize > actual_end) 255 inline_len = min_t(u64, isize, actual_end); 256 ret = insert_inline_extent(trans, root, inode, start, 257 inline_len, compressed_size, 258 compress_type, compressed_pages); 259 BUG_ON(ret); 260 btrfs_delalloc_release_metadata(inode, end + 1 - start); 261 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 262 return 0; 263 } 264 265 struct async_extent { 266 u64 start; 267 u64 ram_size; 268 u64 compressed_size; 269 struct page **pages; 270 unsigned long nr_pages; 271 int compress_type; 272 struct list_head list; 273 }; 274 275 struct async_cow { 276 struct inode *inode; 277 struct btrfs_root *root; 278 struct page *locked_page; 279 u64 start; 280 u64 end; 281 struct list_head extents; 282 struct btrfs_work work; 283 }; 284 285 static noinline int add_async_extent(struct async_cow *cow, 286 u64 start, u64 ram_size, 287 u64 compressed_size, 288 struct page **pages, 289 unsigned long nr_pages, 290 int compress_type) 291 { 292 struct async_extent *async_extent; 293 294 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 295 BUG_ON(!async_extent); 296 async_extent->start = start; 297 async_extent->ram_size = ram_size; 298 async_extent->compressed_size = compressed_size; 299 async_extent->pages = pages; 300 async_extent->nr_pages = nr_pages; 301 async_extent->compress_type = compress_type; 302 list_add_tail(&async_extent->list, &cow->extents); 303 return 0; 304 } 305 306 /* 307 * we create compressed extents in two phases. The first 308 * phase compresses a range of pages that have already been 309 * locked (both pages and state bits are locked). 310 * 311 * This is done inside an ordered work queue, and the compression 312 * is spread across many cpus. The actual IO submission is step 313 * two, and the ordered work queue takes care of making sure that 314 * happens in the same order things were put onto the queue by 315 * writepages and friends. 316 * 317 * If this code finds it can't get good compression, it puts an 318 * entry onto the work queue to write the uncompressed bytes. This 319 * makes sure that both compressed inodes and uncompressed inodes 320 * are written in the same order that pdflush sent them down. 321 */ 322 static noinline int compress_file_range(struct inode *inode, 323 struct page *locked_page, 324 u64 start, u64 end, 325 struct async_cow *async_cow, 326 int *num_added) 327 { 328 struct btrfs_root *root = BTRFS_I(inode)->root; 329 struct btrfs_trans_handle *trans; 330 u64 num_bytes; 331 u64 blocksize = root->sectorsize; 332 u64 actual_end; 333 u64 isize = i_size_read(inode); 334 int ret = 0; 335 struct page **pages = NULL; 336 unsigned long nr_pages; 337 unsigned long nr_pages_ret = 0; 338 unsigned long total_compressed = 0; 339 unsigned long total_in = 0; 340 unsigned long max_compressed = 128 * 1024; 341 unsigned long max_uncompressed = 128 * 1024; 342 int i; 343 int will_compress; 344 int compress_type = root->fs_info->compress_type; 345 346 /* if this is a small write inside eof, kick off a defragbot */ 347 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 348 btrfs_add_inode_defrag(NULL, inode); 349 350 actual_end = min_t(u64, isize, end + 1); 351 again: 352 will_compress = 0; 353 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 354 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 355 356 /* 357 * we don't want to send crud past the end of i_size through 358 * compression, that's just a waste of CPU time. So, if the 359 * end of the file is before the start of our current 360 * requested range of bytes, we bail out to the uncompressed 361 * cleanup code that can deal with all of this. 362 * 363 * It isn't really the fastest way to fix things, but this is a 364 * very uncommon corner. 365 */ 366 if (actual_end <= start) 367 goto cleanup_and_bail_uncompressed; 368 369 total_compressed = actual_end - start; 370 371 /* we want to make sure that amount of ram required to uncompress 372 * an extent is reasonable, so we limit the total size in ram 373 * of a compressed extent to 128k. This is a crucial number 374 * because it also controls how easily we can spread reads across 375 * cpus for decompression. 376 * 377 * We also want to make sure the amount of IO required to do 378 * a random read is reasonably small, so we limit the size of 379 * a compressed extent to 128k. 380 */ 381 total_compressed = min(total_compressed, max_uncompressed); 382 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 383 num_bytes = max(blocksize, num_bytes); 384 total_in = 0; 385 ret = 0; 386 387 /* 388 * we do compression for mount -o compress and when the 389 * inode has not been flagged as nocompress. This flag can 390 * change at any time if we discover bad compression ratios. 391 */ 392 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 393 (btrfs_test_opt(root, COMPRESS) || 394 (BTRFS_I(inode)->force_compress) || 395 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 396 WARN_ON(pages); 397 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 398 if (!pages) { 399 /* just bail out to the uncompressed code */ 400 goto cont; 401 } 402 403 if (BTRFS_I(inode)->force_compress) 404 compress_type = BTRFS_I(inode)->force_compress; 405 406 ret = btrfs_compress_pages(compress_type, 407 inode->i_mapping, start, 408 total_compressed, pages, 409 nr_pages, &nr_pages_ret, 410 &total_in, 411 &total_compressed, 412 max_compressed); 413 414 if (!ret) { 415 unsigned long offset = total_compressed & 416 (PAGE_CACHE_SIZE - 1); 417 struct page *page = pages[nr_pages_ret - 1]; 418 char *kaddr; 419 420 /* zero the tail end of the last page, we might be 421 * sending it down to disk 422 */ 423 if (offset) { 424 kaddr = kmap_atomic(page, KM_USER0); 425 memset(kaddr + offset, 0, 426 PAGE_CACHE_SIZE - offset); 427 kunmap_atomic(kaddr, KM_USER0); 428 } 429 will_compress = 1; 430 } 431 } 432 cont: 433 if (start == 0) { 434 trans = btrfs_join_transaction(root); 435 BUG_ON(IS_ERR(trans)); 436 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 437 438 /* lets try to make an inline extent */ 439 if (ret || total_in < (actual_end - start)) { 440 /* we didn't compress the entire range, try 441 * to make an uncompressed inline extent. 442 */ 443 ret = cow_file_range_inline(trans, root, inode, 444 start, end, 0, 0, NULL); 445 } else { 446 /* try making a compressed inline extent */ 447 ret = cow_file_range_inline(trans, root, inode, 448 start, end, 449 total_compressed, 450 compress_type, pages); 451 } 452 if (ret == 0) { 453 /* 454 * inline extent creation worked, we don't need 455 * to create any more async work items. Unlock 456 * and free up our temp pages. 457 */ 458 extent_clear_unlock_delalloc(inode, 459 &BTRFS_I(inode)->io_tree, 460 start, end, NULL, 461 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 462 EXTENT_CLEAR_DELALLOC | 463 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 464 465 btrfs_end_transaction(trans, root); 466 goto free_pages_out; 467 } 468 btrfs_end_transaction(trans, root); 469 } 470 471 if (will_compress) { 472 /* 473 * we aren't doing an inline extent round the compressed size 474 * up to a block size boundary so the allocator does sane 475 * things 476 */ 477 total_compressed = (total_compressed + blocksize - 1) & 478 ~(blocksize - 1); 479 480 /* 481 * one last check to make sure the compression is really a 482 * win, compare the page count read with the blocks on disk 483 */ 484 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 485 ~(PAGE_CACHE_SIZE - 1); 486 if (total_compressed >= total_in) { 487 will_compress = 0; 488 } else { 489 num_bytes = total_in; 490 } 491 } 492 if (!will_compress && pages) { 493 /* 494 * the compression code ran but failed to make things smaller, 495 * free any pages it allocated and our page pointer array 496 */ 497 for (i = 0; i < nr_pages_ret; i++) { 498 WARN_ON(pages[i]->mapping); 499 page_cache_release(pages[i]); 500 } 501 kfree(pages); 502 pages = NULL; 503 total_compressed = 0; 504 nr_pages_ret = 0; 505 506 /* flag the file so we don't compress in the future */ 507 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 508 !(BTRFS_I(inode)->force_compress)) { 509 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 510 } 511 } 512 if (will_compress) { 513 *num_added += 1; 514 515 /* the async work queues will take care of doing actual 516 * allocation on disk for these compressed pages, 517 * and will submit them to the elevator. 518 */ 519 add_async_extent(async_cow, start, num_bytes, 520 total_compressed, pages, nr_pages_ret, 521 compress_type); 522 523 if (start + num_bytes < end) { 524 start += num_bytes; 525 pages = NULL; 526 cond_resched(); 527 goto again; 528 } 529 } else { 530 cleanup_and_bail_uncompressed: 531 /* 532 * No compression, but we still need to write the pages in 533 * the file we've been given so far. redirty the locked 534 * page if it corresponds to our extent and set things up 535 * for the async work queue to run cow_file_range to do 536 * the normal delalloc dance 537 */ 538 if (page_offset(locked_page) >= start && 539 page_offset(locked_page) <= end) { 540 __set_page_dirty_nobuffers(locked_page); 541 /* unlocked later on in the async handlers */ 542 } 543 add_async_extent(async_cow, start, end - start + 1, 544 0, NULL, 0, BTRFS_COMPRESS_NONE); 545 *num_added += 1; 546 } 547 548 out: 549 return 0; 550 551 free_pages_out: 552 for (i = 0; i < nr_pages_ret; i++) { 553 WARN_ON(pages[i]->mapping); 554 page_cache_release(pages[i]); 555 } 556 kfree(pages); 557 558 goto out; 559 } 560 561 /* 562 * phase two of compressed writeback. This is the ordered portion 563 * of the code, which only gets called in the order the work was 564 * queued. We walk all the async extents created by compress_file_range 565 * and send them down to the disk. 566 */ 567 static noinline int submit_compressed_extents(struct inode *inode, 568 struct async_cow *async_cow) 569 { 570 struct async_extent *async_extent; 571 u64 alloc_hint = 0; 572 struct btrfs_trans_handle *trans; 573 struct btrfs_key ins; 574 struct extent_map *em; 575 struct btrfs_root *root = BTRFS_I(inode)->root; 576 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 577 struct extent_io_tree *io_tree; 578 int ret = 0; 579 580 if (list_empty(&async_cow->extents)) 581 return 0; 582 583 584 while (!list_empty(&async_cow->extents)) { 585 async_extent = list_entry(async_cow->extents.next, 586 struct async_extent, list); 587 list_del(&async_extent->list); 588 589 io_tree = &BTRFS_I(inode)->io_tree; 590 591 retry: 592 /* did the compression code fall back to uncompressed IO? */ 593 if (!async_extent->pages) { 594 int page_started = 0; 595 unsigned long nr_written = 0; 596 597 lock_extent(io_tree, async_extent->start, 598 async_extent->start + 599 async_extent->ram_size - 1, GFP_NOFS); 600 601 /* allocate blocks */ 602 ret = cow_file_range(inode, async_cow->locked_page, 603 async_extent->start, 604 async_extent->start + 605 async_extent->ram_size - 1, 606 &page_started, &nr_written, 0); 607 608 /* 609 * if page_started, cow_file_range inserted an 610 * inline extent and took care of all the unlocking 611 * and IO for us. Otherwise, we need to submit 612 * all those pages down to the drive. 613 */ 614 if (!page_started && !ret) 615 extent_write_locked_range(io_tree, 616 inode, async_extent->start, 617 async_extent->start + 618 async_extent->ram_size - 1, 619 btrfs_get_extent, 620 WB_SYNC_ALL); 621 kfree(async_extent); 622 cond_resched(); 623 continue; 624 } 625 626 lock_extent(io_tree, async_extent->start, 627 async_extent->start + async_extent->ram_size - 1, 628 GFP_NOFS); 629 630 trans = btrfs_join_transaction(root); 631 BUG_ON(IS_ERR(trans)); 632 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 633 ret = btrfs_reserve_extent(trans, root, 634 async_extent->compressed_size, 635 async_extent->compressed_size, 636 0, alloc_hint, 637 (u64)-1, &ins, 1); 638 btrfs_end_transaction(trans, root); 639 640 if (ret) { 641 int i; 642 for (i = 0; i < async_extent->nr_pages; i++) { 643 WARN_ON(async_extent->pages[i]->mapping); 644 page_cache_release(async_extent->pages[i]); 645 } 646 kfree(async_extent->pages); 647 async_extent->nr_pages = 0; 648 async_extent->pages = NULL; 649 unlock_extent(io_tree, async_extent->start, 650 async_extent->start + 651 async_extent->ram_size - 1, GFP_NOFS); 652 goto retry; 653 } 654 655 /* 656 * here we're doing allocation and writeback of the 657 * compressed pages 658 */ 659 btrfs_drop_extent_cache(inode, async_extent->start, 660 async_extent->start + 661 async_extent->ram_size - 1, 0); 662 663 em = alloc_extent_map(); 664 BUG_ON(!em); 665 em->start = async_extent->start; 666 em->len = async_extent->ram_size; 667 em->orig_start = em->start; 668 669 em->block_start = ins.objectid; 670 em->block_len = ins.offset; 671 em->bdev = root->fs_info->fs_devices->latest_bdev; 672 em->compress_type = async_extent->compress_type; 673 set_bit(EXTENT_FLAG_PINNED, &em->flags); 674 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 675 676 while (1) { 677 write_lock(&em_tree->lock); 678 ret = add_extent_mapping(em_tree, em); 679 write_unlock(&em_tree->lock); 680 if (ret != -EEXIST) { 681 free_extent_map(em); 682 break; 683 } 684 btrfs_drop_extent_cache(inode, async_extent->start, 685 async_extent->start + 686 async_extent->ram_size - 1, 0); 687 } 688 689 ret = btrfs_add_ordered_extent_compress(inode, 690 async_extent->start, 691 ins.objectid, 692 async_extent->ram_size, 693 ins.offset, 694 BTRFS_ORDERED_COMPRESSED, 695 async_extent->compress_type); 696 BUG_ON(ret); 697 698 /* 699 * clear dirty, set writeback and unlock the pages. 700 */ 701 extent_clear_unlock_delalloc(inode, 702 &BTRFS_I(inode)->io_tree, 703 async_extent->start, 704 async_extent->start + 705 async_extent->ram_size - 1, 706 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 707 EXTENT_CLEAR_UNLOCK | 708 EXTENT_CLEAR_DELALLOC | 709 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 710 711 ret = btrfs_submit_compressed_write(inode, 712 async_extent->start, 713 async_extent->ram_size, 714 ins.objectid, 715 ins.offset, async_extent->pages, 716 async_extent->nr_pages); 717 718 BUG_ON(ret); 719 alloc_hint = ins.objectid + ins.offset; 720 kfree(async_extent); 721 cond_resched(); 722 } 723 724 return 0; 725 } 726 727 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 728 u64 num_bytes) 729 { 730 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 731 struct extent_map *em; 732 u64 alloc_hint = 0; 733 734 read_lock(&em_tree->lock); 735 em = search_extent_mapping(em_tree, start, num_bytes); 736 if (em) { 737 /* 738 * if block start isn't an actual block number then find the 739 * first block in this inode and use that as a hint. If that 740 * block is also bogus then just don't worry about it. 741 */ 742 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 743 free_extent_map(em); 744 em = search_extent_mapping(em_tree, 0, 0); 745 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 746 alloc_hint = em->block_start; 747 if (em) 748 free_extent_map(em); 749 } else { 750 alloc_hint = em->block_start; 751 free_extent_map(em); 752 } 753 } 754 read_unlock(&em_tree->lock); 755 756 return alloc_hint; 757 } 758 759 /* 760 * when extent_io.c finds a delayed allocation range in the file, 761 * the call backs end up in this code. The basic idea is to 762 * allocate extents on disk for the range, and create ordered data structs 763 * in ram to track those extents. 764 * 765 * locked_page is the page that writepage had locked already. We use 766 * it to make sure we don't do extra locks or unlocks. 767 * 768 * *page_started is set to one if we unlock locked_page and do everything 769 * required to start IO on it. It may be clean and already done with 770 * IO when we return. 771 */ 772 static noinline int cow_file_range(struct inode *inode, 773 struct page *locked_page, 774 u64 start, u64 end, int *page_started, 775 unsigned long *nr_written, 776 int unlock) 777 { 778 struct btrfs_root *root = BTRFS_I(inode)->root; 779 struct btrfs_trans_handle *trans; 780 u64 alloc_hint = 0; 781 u64 num_bytes; 782 unsigned long ram_size; 783 u64 disk_num_bytes; 784 u64 cur_alloc_size; 785 u64 blocksize = root->sectorsize; 786 struct btrfs_key ins; 787 struct extent_map *em; 788 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 789 int ret = 0; 790 791 BUG_ON(btrfs_is_free_space_inode(root, inode)); 792 trans = btrfs_join_transaction(root); 793 BUG_ON(IS_ERR(trans)); 794 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 795 796 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 797 num_bytes = max(blocksize, num_bytes); 798 disk_num_bytes = num_bytes; 799 ret = 0; 800 801 /* if this is a small write inside eof, kick off defrag */ 802 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 803 btrfs_add_inode_defrag(trans, inode); 804 805 if (start == 0) { 806 /* lets try to make an inline extent */ 807 ret = cow_file_range_inline(trans, root, inode, 808 start, end, 0, 0, NULL); 809 if (ret == 0) { 810 extent_clear_unlock_delalloc(inode, 811 &BTRFS_I(inode)->io_tree, 812 start, end, NULL, 813 EXTENT_CLEAR_UNLOCK_PAGE | 814 EXTENT_CLEAR_UNLOCK | 815 EXTENT_CLEAR_DELALLOC | 816 EXTENT_CLEAR_DIRTY | 817 EXTENT_SET_WRITEBACK | 818 EXTENT_END_WRITEBACK); 819 820 *nr_written = *nr_written + 821 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 822 *page_started = 1; 823 ret = 0; 824 goto out; 825 } 826 } 827 828 BUG_ON(disk_num_bytes > 829 btrfs_super_total_bytes(root->fs_info->super_copy)); 830 831 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 832 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 833 834 while (disk_num_bytes > 0) { 835 unsigned long op; 836 837 cur_alloc_size = disk_num_bytes; 838 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 839 root->sectorsize, 0, alloc_hint, 840 (u64)-1, &ins, 1); 841 BUG_ON(ret); 842 843 em = alloc_extent_map(); 844 BUG_ON(!em); 845 em->start = start; 846 em->orig_start = em->start; 847 ram_size = ins.offset; 848 em->len = ins.offset; 849 850 em->block_start = ins.objectid; 851 em->block_len = ins.offset; 852 em->bdev = root->fs_info->fs_devices->latest_bdev; 853 set_bit(EXTENT_FLAG_PINNED, &em->flags); 854 855 while (1) { 856 write_lock(&em_tree->lock); 857 ret = add_extent_mapping(em_tree, em); 858 write_unlock(&em_tree->lock); 859 if (ret != -EEXIST) { 860 free_extent_map(em); 861 break; 862 } 863 btrfs_drop_extent_cache(inode, start, 864 start + ram_size - 1, 0); 865 } 866 867 cur_alloc_size = ins.offset; 868 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 869 ram_size, cur_alloc_size, 0); 870 BUG_ON(ret); 871 872 if (root->root_key.objectid == 873 BTRFS_DATA_RELOC_TREE_OBJECTID) { 874 ret = btrfs_reloc_clone_csums(inode, start, 875 cur_alloc_size); 876 BUG_ON(ret); 877 } 878 879 if (disk_num_bytes < cur_alloc_size) 880 break; 881 882 /* we're not doing compressed IO, don't unlock the first 883 * page (which the caller expects to stay locked), don't 884 * clear any dirty bits and don't set any writeback bits 885 * 886 * Do set the Private2 bit so we know this page was properly 887 * setup for writepage 888 */ 889 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 890 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 891 EXTENT_SET_PRIVATE2; 892 893 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 894 start, start + ram_size - 1, 895 locked_page, op); 896 disk_num_bytes -= cur_alloc_size; 897 num_bytes -= cur_alloc_size; 898 alloc_hint = ins.objectid + ins.offset; 899 start += cur_alloc_size; 900 } 901 out: 902 ret = 0; 903 btrfs_end_transaction(trans, root); 904 905 return ret; 906 } 907 908 /* 909 * work queue call back to started compression on a file and pages 910 */ 911 static noinline void async_cow_start(struct btrfs_work *work) 912 { 913 struct async_cow *async_cow; 914 int num_added = 0; 915 async_cow = container_of(work, struct async_cow, work); 916 917 compress_file_range(async_cow->inode, async_cow->locked_page, 918 async_cow->start, async_cow->end, async_cow, 919 &num_added); 920 if (num_added == 0) 921 async_cow->inode = NULL; 922 } 923 924 /* 925 * work queue call back to submit previously compressed pages 926 */ 927 static noinline void async_cow_submit(struct btrfs_work *work) 928 { 929 struct async_cow *async_cow; 930 struct btrfs_root *root; 931 unsigned long nr_pages; 932 933 async_cow = container_of(work, struct async_cow, work); 934 935 root = async_cow->root; 936 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 937 PAGE_CACHE_SHIFT; 938 939 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 940 941 if (atomic_read(&root->fs_info->async_delalloc_pages) < 942 5 * 1042 * 1024 && 943 waitqueue_active(&root->fs_info->async_submit_wait)) 944 wake_up(&root->fs_info->async_submit_wait); 945 946 if (async_cow->inode) 947 submit_compressed_extents(async_cow->inode, async_cow); 948 } 949 950 static noinline void async_cow_free(struct btrfs_work *work) 951 { 952 struct async_cow *async_cow; 953 async_cow = container_of(work, struct async_cow, work); 954 kfree(async_cow); 955 } 956 957 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 958 u64 start, u64 end, int *page_started, 959 unsigned long *nr_written) 960 { 961 struct async_cow *async_cow; 962 struct btrfs_root *root = BTRFS_I(inode)->root; 963 unsigned long nr_pages; 964 u64 cur_end; 965 int limit = 10 * 1024 * 1042; 966 967 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 968 1, 0, NULL, GFP_NOFS); 969 while (start < end) { 970 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 971 BUG_ON(!async_cow); 972 async_cow->inode = inode; 973 async_cow->root = root; 974 async_cow->locked_page = locked_page; 975 async_cow->start = start; 976 977 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 978 cur_end = end; 979 else 980 cur_end = min(end, start + 512 * 1024 - 1); 981 982 async_cow->end = cur_end; 983 INIT_LIST_HEAD(&async_cow->extents); 984 985 async_cow->work.func = async_cow_start; 986 async_cow->work.ordered_func = async_cow_submit; 987 async_cow->work.ordered_free = async_cow_free; 988 async_cow->work.flags = 0; 989 990 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 991 PAGE_CACHE_SHIFT; 992 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 993 994 btrfs_queue_worker(&root->fs_info->delalloc_workers, 995 &async_cow->work); 996 997 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 998 wait_event(root->fs_info->async_submit_wait, 999 (atomic_read(&root->fs_info->async_delalloc_pages) < 1000 limit)); 1001 } 1002 1003 while (atomic_read(&root->fs_info->async_submit_draining) && 1004 atomic_read(&root->fs_info->async_delalloc_pages)) { 1005 wait_event(root->fs_info->async_submit_wait, 1006 (atomic_read(&root->fs_info->async_delalloc_pages) == 1007 0)); 1008 } 1009 1010 *nr_written += nr_pages; 1011 start = cur_end + 1; 1012 } 1013 *page_started = 1; 1014 return 0; 1015 } 1016 1017 static noinline int csum_exist_in_range(struct btrfs_root *root, 1018 u64 bytenr, u64 num_bytes) 1019 { 1020 int ret; 1021 struct btrfs_ordered_sum *sums; 1022 LIST_HEAD(list); 1023 1024 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1025 bytenr + num_bytes - 1, &list, 0); 1026 if (ret == 0 && list_empty(&list)) 1027 return 0; 1028 1029 while (!list_empty(&list)) { 1030 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1031 list_del(&sums->list); 1032 kfree(sums); 1033 } 1034 return 1; 1035 } 1036 1037 /* 1038 * when nowcow writeback call back. This checks for snapshots or COW copies 1039 * of the extents that exist in the file, and COWs the file as required. 1040 * 1041 * If no cow copies or snapshots exist, we write directly to the existing 1042 * blocks on disk 1043 */ 1044 static noinline int run_delalloc_nocow(struct inode *inode, 1045 struct page *locked_page, 1046 u64 start, u64 end, int *page_started, int force, 1047 unsigned long *nr_written) 1048 { 1049 struct btrfs_root *root = BTRFS_I(inode)->root; 1050 struct btrfs_trans_handle *trans; 1051 struct extent_buffer *leaf; 1052 struct btrfs_path *path; 1053 struct btrfs_file_extent_item *fi; 1054 struct btrfs_key found_key; 1055 u64 cow_start; 1056 u64 cur_offset; 1057 u64 extent_end; 1058 u64 extent_offset; 1059 u64 disk_bytenr; 1060 u64 num_bytes; 1061 int extent_type; 1062 int ret; 1063 int type; 1064 int nocow; 1065 int check_prev = 1; 1066 bool nolock; 1067 u64 ino = btrfs_ino(inode); 1068 1069 path = btrfs_alloc_path(); 1070 if (!path) 1071 return -ENOMEM; 1072 1073 nolock = btrfs_is_free_space_inode(root, inode); 1074 1075 if (nolock) 1076 trans = btrfs_join_transaction_nolock(root); 1077 else 1078 trans = btrfs_join_transaction(root); 1079 1080 BUG_ON(IS_ERR(trans)); 1081 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1082 1083 cow_start = (u64)-1; 1084 cur_offset = start; 1085 while (1) { 1086 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1087 cur_offset, 0); 1088 BUG_ON(ret < 0); 1089 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1090 leaf = path->nodes[0]; 1091 btrfs_item_key_to_cpu(leaf, &found_key, 1092 path->slots[0] - 1); 1093 if (found_key.objectid == ino && 1094 found_key.type == BTRFS_EXTENT_DATA_KEY) 1095 path->slots[0]--; 1096 } 1097 check_prev = 0; 1098 next_slot: 1099 leaf = path->nodes[0]; 1100 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1101 ret = btrfs_next_leaf(root, path); 1102 if (ret < 0) 1103 BUG_ON(1); 1104 if (ret > 0) 1105 break; 1106 leaf = path->nodes[0]; 1107 } 1108 1109 nocow = 0; 1110 disk_bytenr = 0; 1111 num_bytes = 0; 1112 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1113 1114 if (found_key.objectid > ino || 1115 found_key.type > BTRFS_EXTENT_DATA_KEY || 1116 found_key.offset > end) 1117 break; 1118 1119 if (found_key.offset > cur_offset) { 1120 extent_end = found_key.offset; 1121 extent_type = 0; 1122 goto out_check; 1123 } 1124 1125 fi = btrfs_item_ptr(leaf, path->slots[0], 1126 struct btrfs_file_extent_item); 1127 extent_type = btrfs_file_extent_type(leaf, fi); 1128 1129 if (extent_type == BTRFS_FILE_EXTENT_REG || 1130 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1131 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1132 extent_offset = btrfs_file_extent_offset(leaf, fi); 1133 extent_end = found_key.offset + 1134 btrfs_file_extent_num_bytes(leaf, fi); 1135 if (extent_end <= start) { 1136 path->slots[0]++; 1137 goto next_slot; 1138 } 1139 if (disk_bytenr == 0) 1140 goto out_check; 1141 if (btrfs_file_extent_compression(leaf, fi) || 1142 btrfs_file_extent_encryption(leaf, fi) || 1143 btrfs_file_extent_other_encoding(leaf, fi)) 1144 goto out_check; 1145 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1146 goto out_check; 1147 if (btrfs_extent_readonly(root, disk_bytenr)) 1148 goto out_check; 1149 if (btrfs_cross_ref_exist(trans, root, ino, 1150 found_key.offset - 1151 extent_offset, disk_bytenr)) 1152 goto out_check; 1153 disk_bytenr += extent_offset; 1154 disk_bytenr += cur_offset - found_key.offset; 1155 num_bytes = min(end + 1, extent_end) - cur_offset; 1156 /* 1157 * force cow if csum exists in the range. 1158 * this ensure that csum for a given extent are 1159 * either valid or do not exist. 1160 */ 1161 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1162 goto out_check; 1163 nocow = 1; 1164 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1165 extent_end = found_key.offset + 1166 btrfs_file_extent_inline_len(leaf, fi); 1167 extent_end = ALIGN(extent_end, root->sectorsize); 1168 } else { 1169 BUG_ON(1); 1170 } 1171 out_check: 1172 if (extent_end <= start) { 1173 path->slots[0]++; 1174 goto next_slot; 1175 } 1176 if (!nocow) { 1177 if (cow_start == (u64)-1) 1178 cow_start = cur_offset; 1179 cur_offset = extent_end; 1180 if (cur_offset > end) 1181 break; 1182 path->slots[0]++; 1183 goto next_slot; 1184 } 1185 1186 btrfs_release_path(path); 1187 if (cow_start != (u64)-1) { 1188 ret = cow_file_range(inode, locked_page, cow_start, 1189 found_key.offset - 1, page_started, 1190 nr_written, 1); 1191 BUG_ON(ret); 1192 cow_start = (u64)-1; 1193 } 1194 1195 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1196 struct extent_map *em; 1197 struct extent_map_tree *em_tree; 1198 em_tree = &BTRFS_I(inode)->extent_tree; 1199 em = alloc_extent_map(); 1200 BUG_ON(!em); 1201 em->start = cur_offset; 1202 em->orig_start = em->start; 1203 em->len = num_bytes; 1204 em->block_len = num_bytes; 1205 em->block_start = disk_bytenr; 1206 em->bdev = root->fs_info->fs_devices->latest_bdev; 1207 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1208 while (1) { 1209 write_lock(&em_tree->lock); 1210 ret = add_extent_mapping(em_tree, em); 1211 write_unlock(&em_tree->lock); 1212 if (ret != -EEXIST) { 1213 free_extent_map(em); 1214 break; 1215 } 1216 btrfs_drop_extent_cache(inode, em->start, 1217 em->start + em->len - 1, 0); 1218 } 1219 type = BTRFS_ORDERED_PREALLOC; 1220 } else { 1221 type = BTRFS_ORDERED_NOCOW; 1222 } 1223 1224 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1225 num_bytes, num_bytes, type); 1226 BUG_ON(ret); 1227 1228 if (root->root_key.objectid == 1229 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1230 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1231 num_bytes); 1232 BUG_ON(ret); 1233 } 1234 1235 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1236 cur_offset, cur_offset + num_bytes - 1, 1237 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1238 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1239 EXTENT_SET_PRIVATE2); 1240 cur_offset = extent_end; 1241 if (cur_offset > end) 1242 break; 1243 } 1244 btrfs_release_path(path); 1245 1246 if (cur_offset <= end && cow_start == (u64)-1) 1247 cow_start = cur_offset; 1248 if (cow_start != (u64)-1) { 1249 ret = cow_file_range(inode, locked_page, cow_start, end, 1250 page_started, nr_written, 1); 1251 BUG_ON(ret); 1252 } 1253 1254 if (nolock) { 1255 ret = btrfs_end_transaction_nolock(trans, root); 1256 BUG_ON(ret); 1257 } else { 1258 ret = btrfs_end_transaction(trans, root); 1259 BUG_ON(ret); 1260 } 1261 btrfs_free_path(path); 1262 return 0; 1263 } 1264 1265 /* 1266 * extent_io.c call back to do delayed allocation processing 1267 */ 1268 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1269 u64 start, u64 end, int *page_started, 1270 unsigned long *nr_written) 1271 { 1272 int ret; 1273 struct btrfs_root *root = BTRFS_I(inode)->root; 1274 1275 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1276 ret = run_delalloc_nocow(inode, locked_page, start, end, 1277 page_started, 1, nr_written); 1278 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1279 ret = run_delalloc_nocow(inode, locked_page, start, end, 1280 page_started, 0, nr_written); 1281 else if (!btrfs_test_opt(root, COMPRESS) && 1282 !(BTRFS_I(inode)->force_compress) && 1283 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1284 ret = cow_file_range(inode, locked_page, start, end, 1285 page_started, nr_written, 1); 1286 else 1287 ret = cow_file_range_async(inode, locked_page, start, end, 1288 page_started, nr_written); 1289 return ret; 1290 } 1291 1292 static void btrfs_split_extent_hook(struct inode *inode, 1293 struct extent_state *orig, u64 split) 1294 { 1295 /* not delalloc, ignore it */ 1296 if (!(orig->state & EXTENT_DELALLOC)) 1297 return; 1298 1299 spin_lock(&BTRFS_I(inode)->lock); 1300 BTRFS_I(inode)->outstanding_extents++; 1301 spin_unlock(&BTRFS_I(inode)->lock); 1302 } 1303 1304 /* 1305 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1306 * extents so we can keep track of new extents that are just merged onto old 1307 * extents, such as when we are doing sequential writes, so we can properly 1308 * account for the metadata space we'll need. 1309 */ 1310 static void btrfs_merge_extent_hook(struct inode *inode, 1311 struct extent_state *new, 1312 struct extent_state *other) 1313 { 1314 /* not delalloc, ignore it */ 1315 if (!(other->state & EXTENT_DELALLOC)) 1316 return; 1317 1318 spin_lock(&BTRFS_I(inode)->lock); 1319 BTRFS_I(inode)->outstanding_extents--; 1320 spin_unlock(&BTRFS_I(inode)->lock); 1321 } 1322 1323 /* 1324 * extent_io.c set_bit_hook, used to track delayed allocation 1325 * bytes in this file, and to maintain the list of inodes that 1326 * have pending delalloc work to be done. 1327 */ 1328 static void btrfs_set_bit_hook(struct inode *inode, 1329 struct extent_state *state, int *bits) 1330 { 1331 1332 /* 1333 * set_bit and clear bit hooks normally require _irqsave/restore 1334 * but in this case, we are only testing for the DELALLOC 1335 * bit, which is only set or cleared with irqs on 1336 */ 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1338 struct btrfs_root *root = BTRFS_I(inode)->root; 1339 u64 len = state->end + 1 - state->start; 1340 bool do_list = !btrfs_is_free_space_inode(root, inode); 1341 1342 if (*bits & EXTENT_FIRST_DELALLOC) { 1343 *bits &= ~EXTENT_FIRST_DELALLOC; 1344 } else { 1345 spin_lock(&BTRFS_I(inode)->lock); 1346 BTRFS_I(inode)->outstanding_extents++; 1347 spin_unlock(&BTRFS_I(inode)->lock); 1348 } 1349 1350 spin_lock(&root->fs_info->delalloc_lock); 1351 BTRFS_I(inode)->delalloc_bytes += len; 1352 root->fs_info->delalloc_bytes += len; 1353 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1354 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1355 &root->fs_info->delalloc_inodes); 1356 } 1357 spin_unlock(&root->fs_info->delalloc_lock); 1358 } 1359 } 1360 1361 /* 1362 * extent_io.c clear_bit_hook, see set_bit_hook for why 1363 */ 1364 static void btrfs_clear_bit_hook(struct inode *inode, 1365 struct extent_state *state, int *bits) 1366 { 1367 /* 1368 * set_bit and clear bit hooks normally require _irqsave/restore 1369 * but in this case, we are only testing for the DELALLOC 1370 * bit, which is only set or cleared with irqs on 1371 */ 1372 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1373 struct btrfs_root *root = BTRFS_I(inode)->root; 1374 u64 len = state->end + 1 - state->start; 1375 bool do_list = !btrfs_is_free_space_inode(root, inode); 1376 1377 if (*bits & EXTENT_FIRST_DELALLOC) { 1378 *bits &= ~EXTENT_FIRST_DELALLOC; 1379 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1380 spin_lock(&BTRFS_I(inode)->lock); 1381 BTRFS_I(inode)->outstanding_extents--; 1382 spin_unlock(&BTRFS_I(inode)->lock); 1383 } 1384 1385 if (*bits & EXTENT_DO_ACCOUNTING) 1386 btrfs_delalloc_release_metadata(inode, len); 1387 1388 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1389 && do_list) 1390 btrfs_free_reserved_data_space(inode, len); 1391 1392 spin_lock(&root->fs_info->delalloc_lock); 1393 root->fs_info->delalloc_bytes -= len; 1394 BTRFS_I(inode)->delalloc_bytes -= len; 1395 1396 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1397 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1398 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1399 } 1400 spin_unlock(&root->fs_info->delalloc_lock); 1401 } 1402 } 1403 1404 /* 1405 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1406 * we don't create bios that span stripes or chunks 1407 */ 1408 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1409 size_t size, struct bio *bio, 1410 unsigned long bio_flags) 1411 { 1412 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1413 struct btrfs_mapping_tree *map_tree; 1414 u64 logical = (u64)bio->bi_sector << 9; 1415 u64 length = 0; 1416 u64 map_length; 1417 int ret; 1418 1419 if (bio_flags & EXTENT_BIO_COMPRESSED) 1420 return 0; 1421 1422 length = bio->bi_size; 1423 map_tree = &root->fs_info->mapping_tree; 1424 map_length = length; 1425 ret = btrfs_map_block(map_tree, READ, logical, 1426 &map_length, NULL, 0); 1427 1428 if (map_length < length + size) 1429 return 1; 1430 return ret; 1431 } 1432 1433 /* 1434 * in order to insert checksums into the metadata in large chunks, 1435 * we wait until bio submission time. All the pages in the bio are 1436 * checksummed and sums are attached onto the ordered extent record. 1437 * 1438 * At IO completion time the cums attached on the ordered extent record 1439 * are inserted into the btree 1440 */ 1441 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1442 struct bio *bio, int mirror_num, 1443 unsigned long bio_flags, 1444 u64 bio_offset) 1445 { 1446 struct btrfs_root *root = BTRFS_I(inode)->root; 1447 int ret = 0; 1448 1449 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1450 BUG_ON(ret); 1451 return 0; 1452 } 1453 1454 /* 1455 * in order to insert checksums into the metadata in large chunks, 1456 * we wait until bio submission time. All the pages in the bio are 1457 * checksummed and sums are attached onto the ordered extent record. 1458 * 1459 * At IO completion time the cums attached on the ordered extent record 1460 * are inserted into the btree 1461 */ 1462 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1463 int mirror_num, unsigned long bio_flags, 1464 u64 bio_offset) 1465 { 1466 struct btrfs_root *root = BTRFS_I(inode)->root; 1467 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1468 } 1469 1470 /* 1471 * extent_io.c submission hook. This does the right thing for csum calculation 1472 * on write, or reading the csums from the tree before a read 1473 */ 1474 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1475 int mirror_num, unsigned long bio_flags, 1476 u64 bio_offset) 1477 { 1478 struct btrfs_root *root = BTRFS_I(inode)->root; 1479 int ret = 0; 1480 int skip_sum; 1481 1482 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1483 1484 if (btrfs_is_free_space_inode(root, inode)) 1485 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1486 else 1487 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1488 BUG_ON(ret); 1489 1490 if (!(rw & REQ_WRITE)) { 1491 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1492 return btrfs_submit_compressed_read(inode, bio, 1493 mirror_num, bio_flags); 1494 } else if (!skip_sum) { 1495 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1496 if (ret) 1497 return ret; 1498 } 1499 goto mapit; 1500 } else if (!skip_sum) { 1501 /* csum items have already been cloned */ 1502 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1503 goto mapit; 1504 /* we're doing a write, do the async checksumming */ 1505 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1506 inode, rw, bio, mirror_num, 1507 bio_flags, bio_offset, 1508 __btrfs_submit_bio_start, 1509 __btrfs_submit_bio_done); 1510 } 1511 1512 mapit: 1513 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1514 } 1515 1516 /* 1517 * given a list of ordered sums record them in the inode. This happens 1518 * at IO completion time based on sums calculated at bio submission time. 1519 */ 1520 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1521 struct inode *inode, u64 file_offset, 1522 struct list_head *list) 1523 { 1524 struct btrfs_ordered_sum *sum; 1525 1526 list_for_each_entry(sum, list, list) { 1527 btrfs_csum_file_blocks(trans, 1528 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1529 } 1530 return 0; 1531 } 1532 1533 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1534 struct extent_state **cached_state) 1535 { 1536 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1537 WARN_ON(1); 1538 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1539 cached_state, GFP_NOFS); 1540 } 1541 1542 /* see btrfs_writepage_start_hook for details on why this is required */ 1543 struct btrfs_writepage_fixup { 1544 struct page *page; 1545 struct btrfs_work work; 1546 }; 1547 1548 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1549 { 1550 struct btrfs_writepage_fixup *fixup; 1551 struct btrfs_ordered_extent *ordered; 1552 struct extent_state *cached_state = NULL; 1553 struct page *page; 1554 struct inode *inode; 1555 u64 page_start; 1556 u64 page_end; 1557 1558 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1559 page = fixup->page; 1560 again: 1561 lock_page(page); 1562 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1563 ClearPageChecked(page); 1564 goto out_page; 1565 } 1566 1567 inode = page->mapping->host; 1568 page_start = page_offset(page); 1569 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1570 1571 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1572 &cached_state, GFP_NOFS); 1573 1574 /* already ordered? We're done */ 1575 if (PagePrivate2(page)) 1576 goto out; 1577 1578 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1579 if (ordered) { 1580 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1581 page_end, &cached_state, GFP_NOFS); 1582 unlock_page(page); 1583 btrfs_start_ordered_extent(inode, ordered, 1); 1584 goto again; 1585 } 1586 1587 BUG(); 1588 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1589 ClearPageChecked(page); 1590 out: 1591 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1592 &cached_state, GFP_NOFS); 1593 out_page: 1594 unlock_page(page); 1595 page_cache_release(page); 1596 kfree(fixup); 1597 } 1598 1599 /* 1600 * There are a few paths in the higher layers of the kernel that directly 1601 * set the page dirty bit without asking the filesystem if it is a 1602 * good idea. This causes problems because we want to make sure COW 1603 * properly happens and the data=ordered rules are followed. 1604 * 1605 * In our case any range that doesn't have the ORDERED bit set 1606 * hasn't been properly setup for IO. We kick off an async process 1607 * to fix it up. The async helper will wait for ordered extents, set 1608 * the delalloc bit and make it safe to write the page. 1609 */ 1610 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1611 { 1612 struct inode *inode = page->mapping->host; 1613 struct btrfs_writepage_fixup *fixup; 1614 struct btrfs_root *root = BTRFS_I(inode)->root; 1615 1616 /* this page is properly in the ordered list */ 1617 if (TestClearPagePrivate2(page)) 1618 return 0; 1619 1620 if (PageChecked(page)) 1621 return -EAGAIN; 1622 1623 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1624 if (!fixup) 1625 return -EAGAIN; 1626 1627 SetPageChecked(page); 1628 page_cache_get(page); 1629 fixup->work.func = btrfs_writepage_fixup_worker; 1630 fixup->page = page; 1631 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1632 return -EAGAIN; 1633 } 1634 1635 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1636 struct inode *inode, u64 file_pos, 1637 u64 disk_bytenr, u64 disk_num_bytes, 1638 u64 num_bytes, u64 ram_bytes, 1639 u8 compression, u8 encryption, 1640 u16 other_encoding, int extent_type) 1641 { 1642 struct btrfs_root *root = BTRFS_I(inode)->root; 1643 struct btrfs_file_extent_item *fi; 1644 struct btrfs_path *path; 1645 struct extent_buffer *leaf; 1646 struct btrfs_key ins; 1647 u64 hint; 1648 int ret; 1649 1650 path = btrfs_alloc_path(); 1651 if (!path) 1652 return -ENOMEM; 1653 1654 path->leave_spinning = 1; 1655 1656 /* 1657 * we may be replacing one extent in the tree with another. 1658 * The new extent is pinned in the extent map, and we don't want 1659 * to drop it from the cache until it is completely in the btree. 1660 * 1661 * So, tell btrfs_drop_extents to leave this extent in the cache. 1662 * the caller is expected to unpin it and allow it to be merged 1663 * with the others. 1664 */ 1665 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1666 &hint, 0); 1667 BUG_ON(ret); 1668 1669 ins.objectid = btrfs_ino(inode); 1670 ins.offset = file_pos; 1671 ins.type = BTRFS_EXTENT_DATA_KEY; 1672 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1673 BUG_ON(ret); 1674 leaf = path->nodes[0]; 1675 fi = btrfs_item_ptr(leaf, path->slots[0], 1676 struct btrfs_file_extent_item); 1677 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1678 btrfs_set_file_extent_type(leaf, fi, extent_type); 1679 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1680 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1681 btrfs_set_file_extent_offset(leaf, fi, 0); 1682 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1683 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1684 btrfs_set_file_extent_compression(leaf, fi, compression); 1685 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1686 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1687 1688 btrfs_unlock_up_safe(path, 1); 1689 btrfs_set_lock_blocking(leaf); 1690 1691 btrfs_mark_buffer_dirty(leaf); 1692 1693 inode_add_bytes(inode, num_bytes); 1694 1695 ins.objectid = disk_bytenr; 1696 ins.offset = disk_num_bytes; 1697 ins.type = BTRFS_EXTENT_ITEM_KEY; 1698 ret = btrfs_alloc_reserved_file_extent(trans, root, 1699 root->root_key.objectid, 1700 btrfs_ino(inode), file_pos, &ins); 1701 BUG_ON(ret); 1702 btrfs_free_path(path); 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * helper function for btrfs_finish_ordered_io, this 1709 * just reads in some of the csum leaves to prime them into ram 1710 * before we start the transaction. It limits the amount of btree 1711 * reads required while inside the transaction. 1712 */ 1713 /* as ordered data IO finishes, this gets called so we can finish 1714 * an ordered extent if the range of bytes in the file it covers are 1715 * fully written. 1716 */ 1717 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1718 { 1719 struct btrfs_root *root = BTRFS_I(inode)->root; 1720 struct btrfs_trans_handle *trans = NULL; 1721 struct btrfs_ordered_extent *ordered_extent = NULL; 1722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1723 struct extent_state *cached_state = NULL; 1724 int compress_type = 0; 1725 int ret; 1726 bool nolock; 1727 1728 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1729 end - start + 1); 1730 if (!ret) 1731 return 0; 1732 BUG_ON(!ordered_extent); 1733 1734 nolock = btrfs_is_free_space_inode(root, inode); 1735 1736 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1737 BUG_ON(!list_empty(&ordered_extent->list)); 1738 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1739 if (!ret) { 1740 if (nolock) 1741 trans = btrfs_join_transaction_nolock(root); 1742 else 1743 trans = btrfs_join_transaction(root); 1744 BUG_ON(IS_ERR(trans)); 1745 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1746 ret = btrfs_update_inode_fallback(trans, root, inode); 1747 BUG_ON(ret); 1748 } 1749 goto out; 1750 } 1751 1752 lock_extent_bits(io_tree, ordered_extent->file_offset, 1753 ordered_extent->file_offset + ordered_extent->len - 1, 1754 0, &cached_state, GFP_NOFS); 1755 1756 if (nolock) 1757 trans = btrfs_join_transaction_nolock(root); 1758 else 1759 trans = btrfs_join_transaction(root); 1760 BUG_ON(IS_ERR(trans)); 1761 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1762 1763 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1764 compress_type = ordered_extent->compress_type; 1765 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1766 BUG_ON(compress_type); 1767 ret = btrfs_mark_extent_written(trans, inode, 1768 ordered_extent->file_offset, 1769 ordered_extent->file_offset + 1770 ordered_extent->len); 1771 BUG_ON(ret); 1772 } else { 1773 BUG_ON(root == root->fs_info->tree_root); 1774 ret = insert_reserved_file_extent(trans, inode, 1775 ordered_extent->file_offset, 1776 ordered_extent->start, 1777 ordered_extent->disk_len, 1778 ordered_extent->len, 1779 ordered_extent->len, 1780 compress_type, 0, 0, 1781 BTRFS_FILE_EXTENT_REG); 1782 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1783 ordered_extent->file_offset, 1784 ordered_extent->len); 1785 BUG_ON(ret); 1786 } 1787 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1788 ordered_extent->file_offset + 1789 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1790 1791 add_pending_csums(trans, inode, ordered_extent->file_offset, 1792 &ordered_extent->list); 1793 1794 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1795 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1796 ret = btrfs_update_inode_fallback(trans, root, inode); 1797 BUG_ON(ret); 1798 } 1799 ret = 0; 1800 out: 1801 if (root != root->fs_info->tree_root) 1802 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1803 if (trans) { 1804 if (nolock) 1805 btrfs_end_transaction_nolock(trans, root); 1806 else 1807 btrfs_end_transaction(trans, root); 1808 } 1809 1810 /* once for us */ 1811 btrfs_put_ordered_extent(ordered_extent); 1812 /* once for the tree */ 1813 btrfs_put_ordered_extent(ordered_extent); 1814 1815 return 0; 1816 } 1817 1818 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1819 struct extent_state *state, int uptodate) 1820 { 1821 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1822 1823 ClearPagePrivate2(page); 1824 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1825 } 1826 1827 /* 1828 * when reads are done, we need to check csums to verify the data is correct 1829 * if there's a match, we allow the bio to finish. If not, the code in 1830 * extent_io.c will try to find good copies for us. 1831 */ 1832 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1833 struct extent_state *state) 1834 { 1835 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1836 struct inode *inode = page->mapping->host; 1837 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1838 char *kaddr; 1839 u64 private = ~(u32)0; 1840 int ret; 1841 struct btrfs_root *root = BTRFS_I(inode)->root; 1842 u32 csum = ~(u32)0; 1843 1844 if (PageChecked(page)) { 1845 ClearPageChecked(page); 1846 goto good; 1847 } 1848 1849 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1850 goto good; 1851 1852 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1853 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1854 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1855 GFP_NOFS); 1856 return 0; 1857 } 1858 1859 if (state && state->start == start) { 1860 private = state->private; 1861 ret = 0; 1862 } else { 1863 ret = get_state_private(io_tree, start, &private); 1864 } 1865 kaddr = kmap_atomic(page, KM_USER0); 1866 if (ret) 1867 goto zeroit; 1868 1869 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1870 btrfs_csum_final(csum, (char *)&csum); 1871 if (csum != private) 1872 goto zeroit; 1873 1874 kunmap_atomic(kaddr, KM_USER0); 1875 good: 1876 return 0; 1877 1878 zeroit: 1879 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 1880 "private %llu\n", 1881 (unsigned long long)btrfs_ino(page->mapping->host), 1882 (unsigned long long)start, csum, 1883 (unsigned long long)private); 1884 memset(kaddr + offset, 1, end - start + 1); 1885 flush_dcache_page(page); 1886 kunmap_atomic(kaddr, KM_USER0); 1887 if (private == 0) 1888 return 0; 1889 return -EIO; 1890 } 1891 1892 struct delayed_iput { 1893 struct list_head list; 1894 struct inode *inode; 1895 }; 1896 1897 void btrfs_add_delayed_iput(struct inode *inode) 1898 { 1899 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1900 struct delayed_iput *delayed; 1901 1902 if (atomic_add_unless(&inode->i_count, -1, 1)) 1903 return; 1904 1905 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1906 delayed->inode = inode; 1907 1908 spin_lock(&fs_info->delayed_iput_lock); 1909 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1910 spin_unlock(&fs_info->delayed_iput_lock); 1911 } 1912 1913 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1914 { 1915 LIST_HEAD(list); 1916 struct btrfs_fs_info *fs_info = root->fs_info; 1917 struct delayed_iput *delayed; 1918 int empty; 1919 1920 spin_lock(&fs_info->delayed_iput_lock); 1921 empty = list_empty(&fs_info->delayed_iputs); 1922 spin_unlock(&fs_info->delayed_iput_lock); 1923 if (empty) 1924 return; 1925 1926 down_read(&root->fs_info->cleanup_work_sem); 1927 spin_lock(&fs_info->delayed_iput_lock); 1928 list_splice_init(&fs_info->delayed_iputs, &list); 1929 spin_unlock(&fs_info->delayed_iput_lock); 1930 1931 while (!list_empty(&list)) { 1932 delayed = list_entry(list.next, struct delayed_iput, list); 1933 list_del(&delayed->list); 1934 iput(delayed->inode); 1935 kfree(delayed); 1936 } 1937 up_read(&root->fs_info->cleanup_work_sem); 1938 } 1939 1940 enum btrfs_orphan_cleanup_state { 1941 ORPHAN_CLEANUP_STARTED = 1, 1942 ORPHAN_CLEANUP_DONE = 2, 1943 }; 1944 1945 /* 1946 * This is called in transaction commmit time. If there are no orphan 1947 * files in the subvolume, it removes orphan item and frees block_rsv 1948 * structure. 1949 */ 1950 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 1951 struct btrfs_root *root) 1952 { 1953 int ret; 1954 1955 if (!list_empty(&root->orphan_list) || 1956 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 1957 return; 1958 1959 if (root->orphan_item_inserted && 1960 btrfs_root_refs(&root->root_item) > 0) { 1961 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 1962 root->root_key.objectid); 1963 BUG_ON(ret); 1964 root->orphan_item_inserted = 0; 1965 } 1966 1967 if (root->orphan_block_rsv) { 1968 WARN_ON(root->orphan_block_rsv->size > 0); 1969 btrfs_free_block_rsv(root, root->orphan_block_rsv); 1970 root->orphan_block_rsv = NULL; 1971 } 1972 } 1973 1974 /* 1975 * This creates an orphan entry for the given inode in case something goes 1976 * wrong in the middle of an unlink/truncate. 1977 * 1978 * NOTE: caller of this function should reserve 5 units of metadata for 1979 * this function. 1980 */ 1981 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1982 { 1983 struct btrfs_root *root = BTRFS_I(inode)->root; 1984 struct btrfs_block_rsv *block_rsv = NULL; 1985 int reserve = 0; 1986 int insert = 0; 1987 int ret; 1988 1989 if (!root->orphan_block_rsv) { 1990 block_rsv = btrfs_alloc_block_rsv(root); 1991 if (!block_rsv) 1992 return -ENOMEM; 1993 } 1994 1995 spin_lock(&root->orphan_lock); 1996 if (!root->orphan_block_rsv) { 1997 root->orphan_block_rsv = block_rsv; 1998 } else if (block_rsv) { 1999 btrfs_free_block_rsv(root, block_rsv); 2000 block_rsv = NULL; 2001 } 2002 2003 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2004 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2005 #if 0 2006 /* 2007 * For proper ENOSPC handling, we should do orphan 2008 * cleanup when mounting. But this introduces backward 2009 * compatibility issue. 2010 */ 2011 if (!xchg(&root->orphan_item_inserted, 1)) 2012 insert = 2; 2013 else 2014 insert = 1; 2015 #endif 2016 insert = 1; 2017 } 2018 2019 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2020 BTRFS_I(inode)->orphan_meta_reserved = 1; 2021 reserve = 1; 2022 } 2023 spin_unlock(&root->orphan_lock); 2024 2025 /* grab metadata reservation from transaction handle */ 2026 if (reserve) { 2027 ret = btrfs_orphan_reserve_metadata(trans, inode); 2028 BUG_ON(ret); 2029 } 2030 2031 /* insert an orphan item to track this unlinked/truncated file */ 2032 if (insert >= 1) { 2033 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2034 BUG_ON(ret); 2035 } 2036 2037 /* insert an orphan item to track subvolume contains orphan files */ 2038 if (insert >= 2) { 2039 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2040 root->root_key.objectid); 2041 BUG_ON(ret); 2042 } 2043 return 0; 2044 } 2045 2046 /* 2047 * We have done the truncate/delete so we can go ahead and remove the orphan 2048 * item for this particular inode. 2049 */ 2050 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2051 { 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 int delete_item = 0; 2054 int release_rsv = 0; 2055 int ret = 0; 2056 2057 spin_lock(&root->orphan_lock); 2058 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2059 list_del_init(&BTRFS_I(inode)->i_orphan); 2060 delete_item = 1; 2061 } 2062 2063 if (BTRFS_I(inode)->orphan_meta_reserved) { 2064 BTRFS_I(inode)->orphan_meta_reserved = 0; 2065 release_rsv = 1; 2066 } 2067 spin_unlock(&root->orphan_lock); 2068 2069 if (trans && delete_item) { 2070 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2071 BUG_ON(ret); 2072 } 2073 2074 if (release_rsv) 2075 btrfs_orphan_release_metadata(inode); 2076 2077 return 0; 2078 } 2079 2080 /* 2081 * this cleans up any orphans that may be left on the list from the last use 2082 * of this root. 2083 */ 2084 int btrfs_orphan_cleanup(struct btrfs_root *root) 2085 { 2086 struct btrfs_path *path; 2087 struct extent_buffer *leaf; 2088 struct btrfs_key key, found_key; 2089 struct btrfs_trans_handle *trans; 2090 struct inode *inode; 2091 u64 last_objectid = 0; 2092 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2093 2094 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2095 return 0; 2096 2097 path = btrfs_alloc_path(); 2098 if (!path) { 2099 ret = -ENOMEM; 2100 goto out; 2101 } 2102 path->reada = -1; 2103 2104 key.objectid = BTRFS_ORPHAN_OBJECTID; 2105 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2106 key.offset = (u64)-1; 2107 2108 while (1) { 2109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2110 if (ret < 0) 2111 goto out; 2112 2113 /* 2114 * if ret == 0 means we found what we were searching for, which 2115 * is weird, but possible, so only screw with path if we didn't 2116 * find the key and see if we have stuff that matches 2117 */ 2118 if (ret > 0) { 2119 ret = 0; 2120 if (path->slots[0] == 0) 2121 break; 2122 path->slots[0]--; 2123 } 2124 2125 /* pull out the item */ 2126 leaf = path->nodes[0]; 2127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2128 2129 /* make sure the item matches what we want */ 2130 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2131 break; 2132 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2133 break; 2134 2135 /* release the path since we're done with it */ 2136 btrfs_release_path(path); 2137 2138 /* 2139 * this is where we are basically btrfs_lookup, without the 2140 * crossing root thing. we store the inode number in the 2141 * offset of the orphan item. 2142 */ 2143 2144 if (found_key.offset == last_objectid) { 2145 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2146 "stopping orphan cleanup\n"); 2147 ret = -EINVAL; 2148 goto out; 2149 } 2150 2151 last_objectid = found_key.offset; 2152 2153 found_key.objectid = found_key.offset; 2154 found_key.type = BTRFS_INODE_ITEM_KEY; 2155 found_key.offset = 0; 2156 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2157 ret = PTR_RET(inode); 2158 if (ret && ret != -ESTALE) 2159 goto out; 2160 2161 /* 2162 * Inode is already gone but the orphan item is still there, 2163 * kill the orphan item. 2164 */ 2165 if (ret == -ESTALE) { 2166 trans = btrfs_start_transaction(root, 1); 2167 if (IS_ERR(trans)) { 2168 ret = PTR_ERR(trans); 2169 goto out; 2170 } 2171 ret = btrfs_del_orphan_item(trans, root, 2172 found_key.objectid); 2173 BUG_ON(ret); 2174 btrfs_end_transaction(trans, root); 2175 continue; 2176 } 2177 2178 /* 2179 * add this inode to the orphan list so btrfs_orphan_del does 2180 * the proper thing when we hit it 2181 */ 2182 spin_lock(&root->orphan_lock); 2183 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2184 spin_unlock(&root->orphan_lock); 2185 2186 /* if we have links, this was a truncate, lets do that */ 2187 if (inode->i_nlink) { 2188 if (!S_ISREG(inode->i_mode)) { 2189 WARN_ON(1); 2190 iput(inode); 2191 continue; 2192 } 2193 nr_truncate++; 2194 ret = btrfs_truncate(inode); 2195 } else { 2196 nr_unlink++; 2197 } 2198 2199 /* this will do delete_inode and everything for us */ 2200 iput(inode); 2201 if (ret) 2202 goto out; 2203 } 2204 /* release the path since we're done with it */ 2205 btrfs_release_path(path); 2206 2207 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2208 2209 if (root->orphan_block_rsv) 2210 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2211 (u64)-1); 2212 2213 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2214 trans = btrfs_join_transaction(root); 2215 if (!IS_ERR(trans)) 2216 btrfs_end_transaction(trans, root); 2217 } 2218 2219 if (nr_unlink) 2220 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2221 if (nr_truncate) 2222 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2223 2224 out: 2225 if (ret) 2226 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2227 btrfs_free_path(path); 2228 return ret; 2229 } 2230 2231 /* 2232 * very simple check to peek ahead in the leaf looking for xattrs. If we 2233 * don't find any xattrs, we know there can't be any acls. 2234 * 2235 * slot is the slot the inode is in, objectid is the objectid of the inode 2236 */ 2237 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2238 int slot, u64 objectid) 2239 { 2240 u32 nritems = btrfs_header_nritems(leaf); 2241 struct btrfs_key found_key; 2242 int scanned = 0; 2243 2244 slot++; 2245 while (slot < nritems) { 2246 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2247 2248 /* we found a different objectid, there must not be acls */ 2249 if (found_key.objectid != objectid) 2250 return 0; 2251 2252 /* we found an xattr, assume we've got an acl */ 2253 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2254 return 1; 2255 2256 /* 2257 * we found a key greater than an xattr key, there can't 2258 * be any acls later on 2259 */ 2260 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2261 return 0; 2262 2263 slot++; 2264 scanned++; 2265 2266 /* 2267 * it goes inode, inode backrefs, xattrs, extents, 2268 * so if there are a ton of hard links to an inode there can 2269 * be a lot of backrefs. Don't waste time searching too hard, 2270 * this is just an optimization 2271 */ 2272 if (scanned >= 8) 2273 break; 2274 } 2275 /* we hit the end of the leaf before we found an xattr or 2276 * something larger than an xattr. We have to assume the inode 2277 * has acls 2278 */ 2279 return 1; 2280 } 2281 2282 /* 2283 * read an inode from the btree into the in-memory inode 2284 */ 2285 static void btrfs_read_locked_inode(struct inode *inode) 2286 { 2287 struct btrfs_path *path; 2288 struct extent_buffer *leaf; 2289 struct btrfs_inode_item *inode_item; 2290 struct btrfs_timespec *tspec; 2291 struct btrfs_root *root = BTRFS_I(inode)->root; 2292 struct btrfs_key location; 2293 int maybe_acls; 2294 u32 rdev; 2295 int ret; 2296 bool filled = false; 2297 2298 ret = btrfs_fill_inode(inode, &rdev); 2299 if (!ret) 2300 filled = true; 2301 2302 path = btrfs_alloc_path(); 2303 if (!path) 2304 goto make_bad; 2305 2306 path->leave_spinning = 1; 2307 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2308 2309 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2310 if (ret) 2311 goto make_bad; 2312 2313 leaf = path->nodes[0]; 2314 2315 if (filled) 2316 goto cache_acl; 2317 2318 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2319 struct btrfs_inode_item); 2320 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2321 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2322 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2323 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2324 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2325 2326 tspec = btrfs_inode_atime(inode_item); 2327 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2328 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2329 2330 tspec = btrfs_inode_mtime(inode_item); 2331 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2332 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2333 2334 tspec = btrfs_inode_ctime(inode_item); 2335 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2336 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2337 2338 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2339 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2340 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2341 inode->i_generation = BTRFS_I(inode)->generation; 2342 inode->i_rdev = 0; 2343 rdev = btrfs_inode_rdev(leaf, inode_item); 2344 2345 BTRFS_I(inode)->index_cnt = (u64)-1; 2346 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2347 cache_acl: 2348 /* 2349 * try to precache a NULL acl entry for files that don't have 2350 * any xattrs or acls 2351 */ 2352 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2353 btrfs_ino(inode)); 2354 if (!maybe_acls) 2355 cache_no_acl(inode); 2356 2357 btrfs_free_path(path); 2358 2359 switch (inode->i_mode & S_IFMT) { 2360 case S_IFREG: 2361 inode->i_mapping->a_ops = &btrfs_aops; 2362 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2363 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2364 inode->i_fop = &btrfs_file_operations; 2365 inode->i_op = &btrfs_file_inode_operations; 2366 break; 2367 case S_IFDIR: 2368 inode->i_fop = &btrfs_dir_file_operations; 2369 if (root == root->fs_info->tree_root) 2370 inode->i_op = &btrfs_dir_ro_inode_operations; 2371 else 2372 inode->i_op = &btrfs_dir_inode_operations; 2373 break; 2374 case S_IFLNK: 2375 inode->i_op = &btrfs_symlink_inode_operations; 2376 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2377 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2378 break; 2379 default: 2380 inode->i_op = &btrfs_special_inode_operations; 2381 init_special_inode(inode, inode->i_mode, rdev); 2382 break; 2383 } 2384 2385 btrfs_update_iflags(inode); 2386 return; 2387 2388 make_bad: 2389 btrfs_free_path(path); 2390 make_bad_inode(inode); 2391 } 2392 2393 /* 2394 * given a leaf and an inode, copy the inode fields into the leaf 2395 */ 2396 static void fill_inode_item(struct btrfs_trans_handle *trans, 2397 struct extent_buffer *leaf, 2398 struct btrfs_inode_item *item, 2399 struct inode *inode) 2400 { 2401 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2402 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2403 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2404 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2405 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2406 2407 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2408 inode->i_atime.tv_sec); 2409 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2410 inode->i_atime.tv_nsec); 2411 2412 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2413 inode->i_mtime.tv_sec); 2414 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2415 inode->i_mtime.tv_nsec); 2416 2417 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2418 inode->i_ctime.tv_sec); 2419 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2420 inode->i_ctime.tv_nsec); 2421 2422 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2423 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2424 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2425 btrfs_set_inode_transid(leaf, item, trans->transid); 2426 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2427 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2428 btrfs_set_inode_block_group(leaf, item, 0); 2429 } 2430 2431 /* 2432 * copy everything in the in-memory inode into the btree. 2433 */ 2434 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2435 struct btrfs_root *root, struct inode *inode) 2436 { 2437 struct btrfs_inode_item *inode_item; 2438 struct btrfs_path *path; 2439 struct extent_buffer *leaf; 2440 int ret; 2441 2442 path = btrfs_alloc_path(); 2443 if (!path) 2444 return -ENOMEM; 2445 2446 path->leave_spinning = 1; 2447 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2448 1); 2449 if (ret) { 2450 if (ret > 0) 2451 ret = -ENOENT; 2452 goto failed; 2453 } 2454 2455 btrfs_unlock_up_safe(path, 1); 2456 leaf = path->nodes[0]; 2457 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2458 struct btrfs_inode_item); 2459 2460 fill_inode_item(trans, leaf, inode_item, inode); 2461 btrfs_mark_buffer_dirty(leaf); 2462 btrfs_set_inode_last_trans(trans, inode); 2463 ret = 0; 2464 failed: 2465 btrfs_free_path(path); 2466 return ret; 2467 } 2468 2469 /* 2470 * copy everything in the in-memory inode into the btree. 2471 */ 2472 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2473 struct btrfs_root *root, struct inode *inode) 2474 { 2475 int ret; 2476 2477 /* 2478 * If the inode is a free space inode, we can deadlock during commit 2479 * if we put it into the delayed code. 2480 * 2481 * The data relocation inode should also be directly updated 2482 * without delay 2483 */ 2484 if (!btrfs_is_free_space_inode(root, inode) 2485 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2486 ret = btrfs_delayed_update_inode(trans, root, inode); 2487 if (!ret) 2488 btrfs_set_inode_last_trans(trans, inode); 2489 return ret; 2490 } 2491 2492 return btrfs_update_inode_item(trans, root, inode); 2493 } 2494 2495 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2496 struct btrfs_root *root, struct inode *inode) 2497 { 2498 int ret; 2499 2500 ret = btrfs_update_inode(trans, root, inode); 2501 if (ret == -ENOSPC) 2502 return btrfs_update_inode_item(trans, root, inode); 2503 return ret; 2504 } 2505 2506 /* 2507 * unlink helper that gets used here in inode.c and in the tree logging 2508 * recovery code. It remove a link in a directory with a given name, and 2509 * also drops the back refs in the inode to the directory 2510 */ 2511 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2512 struct btrfs_root *root, 2513 struct inode *dir, struct inode *inode, 2514 const char *name, int name_len) 2515 { 2516 struct btrfs_path *path; 2517 int ret = 0; 2518 struct extent_buffer *leaf; 2519 struct btrfs_dir_item *di; 2520 struct btrfs_key key; 2521 u64 index; 2522 u64 ino = btrfs_ino(inode); 2523 u64 dir_ino = btrfs_ino(dir); 2524 2525 path = btrfs_alloc_path(); 2526 if (!path) { 2527 ret = -ENOMEM; 2528 goto out; 2529 } 2530 2531 path->leave_spinning = 1; 2532 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2533 name, name_len, -1); 2534 if (IS_ERR(di)) { 2535 ret = PTR_ERR(di); 2536 goto err; 2537 } 2538 if (!di) { 2539 ret = -ENOENT; 2540 goto err; 2541 } 2542 leaf = path->nodes[0]; 2543 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2544 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2545 if (ret) 2546 goto err; 2547 btrfs_release_path(path); 2548 2549 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2550 dir_ino, &index); 2551 if (ret) { 2552 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2553 "inode %llu parent %llu\n", name_len, name, 2554 (unsigned long long)ino, (unsigned long long)dir_ino); 2555 goto err; 2556 } 2557 2558 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2559 if (ret) 2560 goto err; 2561 2562 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2563 inode, dir_ino); 2564 BUG_ON(ret != 0 && ret != -ENOENT); 2565 2566 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2567 dir, index); 2568 if (ret == -ENOENT) 2569 ret = 0; 2570 err: 2571 btrfs_free_path(path); 2572 if (ret) 2573 goto out; 2574 2575 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2576 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2577 btrfs_update_inode(trans, root, dir); 2578 out: 2579 return ret; 2580 } 2581 2582 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2583 struct btrfs_root *root, 2584 struct inode *dir, struct inode *inode, 2585 const char *name, int name_len) 2586 { 2587 int ret; 2588 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2589 if (!ret) { 2590 btrfs_drop_nlink(inode); 2591 ret = btrfs_update_inode(trans, root, inode); 2592 } 2593 return ret; 2594 } 2595 2596 2597 /* helper to check if there is any shared block in the path */ 2598 static int check_path_shared(struct btrfs_root *root, 2599 struct btrfs_path *path) 2600 { 2601 struct extent_buffer *eb; 2602 int level; 2603 u64 refs = 1; 2604 2605 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2606 int ret; 2607 2608 if (!path->nodes[level]) 2609 break; 2610 eb = path->nodes[level]; 2611 if (!btrfs_block_can_be_shared(root, eb)) 2612 continue; 2613 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2614 &refs, NULL); 2615 if (refs > 1) 2616 return 1; 2617 } 2618 return 0; 2619 } 2620 2621 /* 2622 * helper to start transaction for unlink and rmdir. 2623 * 2624 * unlink and rmdir are special in btrfs, they do not always free space. 2625 * so in enospc case, we should make sure they will free space before 2626 * allowing them to use the global metadata reservation. 2627 */ 2628 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2629 struct dentry *dentry) 2630 { 2631 struct btrfs_trans_handle *trans; 2632 struct btrfs_root *root = BTRFS_I(dir)->root; 2633 struct btrfs_path *path; 2634 struct btrfs_inode_ref *ref; 2635 struct btrfs_dir_item *di; 2636 struct inode *inode = dentry->d_inode; 2637 u64 index; 2638 int check_link = 1; 2639 int err = -ENOSPC; 2640 int ret; 2641 u64 ino = btrfs_ino(inode); 2642 u64 dir_ino = btrfs_ino(dir); 2643 2644 /* 2645 * 1 for the possible orphan item 2646 * 1 for the dir item 2647 * 1 for the dir index 2648 * 1 for the inode ref 2649 * 1 for the inode ref in the tree log 2650 * 2 for the dir entries in the log 2651 * 1 for the inode 2652 */ 2653 trans = btrfs_start_transaction(root, 8); 2654 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2655 return trans; 2656 2657 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2658 return ERR_PTR(-ENOSPC); 2659 2660 /* check if there is someone else holds reference */ 2661 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2662 return ERR_PTR(-ENOSPC); 2663 2664 if (atomic_read(&inode->i_count) > 2) 2665 return ERR_PTR(-ENOSPC); 2666 2667 if (xchg(&root->fs_info->enospc_unlink, 1)) 2668 return ERR_PTR(-ENOSPC); 2669 2670 path = btrfs_alloc_path(); 2671 if (!path) { 2672 root->fs_info->enospc_unlink = 0; 2673 return ERR_PTR(-ENOMEM); 2674 } 2675 2676 /* 1 for the orphan item */ 2677 trans = btrfs_start_transaction(root, 1); 2678 if (IS_ERR(trans)) { 2679 btrfs_free_path(path); 2680 root->fs_info->enospc_unlink = 0; 2681 return trans; 2682 } 2683 2684 path->skip_locking = 1; 2685 path->search_commit_root = 1; 2686 2687 ret = btrfs_lookup_inode(trans, root, path, 2688 &BTRFS_I(dir)->location, 0); 2689 if (ret < 0) { 2690 err = ret; 2691 goto out; 2692 } 2693 if (ret == 0) { 2694 if (check_path_shared(root, path)) 2695 goto out; 2696 } else { 2697 check_link = 0; 2698 } 2699 btrfs_release_path(path); 2700 2701 ret = btrfs_lookup_inode(trans, root, path, 2702 &BTRFS_I(inode)->location, 0); 2703 if (ret < 0) { 2704 err = ret; 2705 goto out; 2706 } 2707 if (ret == 0) { 2708 if (check_path_shared(root, path)) 2709 goto out; 2710 } else { 2711 check_link = 0; 2712 } 2713 btrfs_release_path(path); 2714 2715 if (ret == 0 && S_ISREG(inode->i_mode)) { 2716 ret = btrfs_lookup_file_extent(trans, root, path, 2717 ino, (u64)-1, 0); 2718 if (ret < 0) { 2719 err = ret; 2720 goto out; 2721 } 2722 BUG_ON(ret == 0); 2723 if (check_path_shared(root, path)) 2724 goto out; 2725 btrfs_release_path(path); 2726 } 2727 2728 if (!check_link) { 2729 err = 0; 2730 goto out; 2731 } 2732 2733 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2734 dentry->d_name.name, dentry->d_name.len, 0); 2735 if (IS_ERR(di)) { 2736 err = PTR_ERR(di); 2737 goto out; 2738 } 2739 if (di) { 2740 if (check_path_shared(root, path)) 2741 goto out; 2742 } else { 2743 err = 0; 2744 goto out; 2745 } 2746 btrfs_release_path(path); 2747 2748 ref = btrfs_lookup_inode_ref(trans, root, path, 2749 dentry->d_name.name, dentry->d_name.len, 2750 ino, dir_ino, 0); 2751 if (IS_ERR(ref)) { 2752 err = PTR_ERR(ref); 2753 goto out; 2754 } 2755 BUG_ON(!ref); 2756 if (check_path_shared(root, path)) 2757 goto out; 2758 index = btrfs_inode_ref_index(path->nodes[0], ref); 2759 btrfs_release_path(path); 2760 2761 /* 2762 * This is a commit root search, if we can lookup inode item and other 2763 * relative items in the commit root, it means the transaction of 2764 * dir/file creation has been committed, and the dir index item that we 2765 * delay to insert has also been inserted into the commit root. So 2766 * we needn't worry about the delayed insertion of the dir index item 2767 * here. 2768 */ 2769 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2770 dentry->d_name.name, dentry->d_name.len, 0); 2771 if (IS_ERR(di)) { 2772 err = PTR_ERR(di); 2773 goto out; 2774 } 2775 BUG_ON(ret == -ENOENT); 2776 if (check_path_shared(root, path)) 2777 goto out; 2778 2779 err = 0; 2780 out: 2781 btrfs_free_path(path); 2782 /* Migrate the orphan reservation over */ 2783 if (!err) 2784 err = btrfs_block_rsv_migrate(trans->block_rsv, 2785 &root->fs_info->global_block_rsv, 2786 trans->bytes_reserved); 2787 2788 if (err) { 2789 btrfs_end_transaction(trans, root); 2790 root->fs_info->enospc_unlink = 0; 2791 return ERR_PTR(err); 2792 } 2793 2794 trans->block_rsv = &root->fs_info->global_block_rsv; 2795 return trans; 2796 } 2797 2798 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2799 struct btrfs_root *root) 2800 { 2801 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2802 btrfs_block_rsv_release(root, trans->block_rsv, 2803 trans->bytes_reserved); 2804 trans->block_rsv = &root->fs_info->trans_block_rsv; 2805 BUG_ON(!root->fs_info->enospc_unlink); 2806 root->fs_info->enospc_unlink = 0; 2807 } 2808 btrfs_end_transaction_throttle(trans, root); 2809 } 2810 2811 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2812 { 2813 struct btrfs_root *root = BTRFS_I(dir)->root; 2814 struct btrfs_trans_handle *trans; 2815 struct inode *inode = dentry->d_inode; 2816 int ret; 2817 unsigned long nr = 0; 2818 2819 trans = __unlink_start_trans(dir, dentry); 2820 if (IS_ERR(trans)) 2821 return PTR_ERR(trans); 2822 2823 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2824 2825 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2826 dentry->d_name.name, dentry->d_name.len); 2827 if (ret) 2828 goto out; 2829 2830 if (inode->i_nlink == 0) { 2831 ret = btrfs_orphan_add(trans, inode); 2832 if (ret) 2833 goto out; 2834 } 2835 2836 out: 2837 nr = trans->blocks_used; 2838 __unlink_end_trans(trans, root); 2839 btrfs_btree_balance_dirty(root, nr); 2840 return ret; 2841 } 2842 2843 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct inode *dir, u64 objectid, 2846 const char *name, int name_len) 2847 { 2848 struct btrfs_path *path; 2849 struct extent_buffer *leaf; 2850 struct btrfs_dir_item *di; 2851 struct btrfs_key key; 2852 u64 index; 2853 int ret; 2854 u64 dir_ino = btrfs_ino(dir); 2855 2856 path = btrfs_alloc_path(); 2857 if (!path) 2858 return -ENOMEM; 2859 2860 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2861 name, name_len, -1); 2862 BUG_ON(IS_ERR_OR_NULL(di)); 2863 2864 leaf = path->nodes[0]; 2865 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2866 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2867 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2868 BUG_ON(ret); 2869 btrfs_release_path(path); 2870 2871 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2872 objectid, root->root_key.objectid, 2873 dir_ino, &index, name, name_len); 2874 if (ret < 0) { 2875 BUG_ON(ret != -ENOENT); 2876 di = btrfs_search_dir_index_item(root, path, dir_ino, 2877 name, name_len); 2878 BUG_ON(IS_ERR_OR_NULL(di)); 2879 2880 leaf = path->nodes[0]; 2881 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2882 btrfs_release_path(path); 2883 index = key.offset; 2884 } 2885 btrfs_release_path(path); 2886 2887 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2888 BUG_ON(ret); 2889 2890 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2891 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2892 ret = btrfs_update_inode(trans, root, dir); 2893 BUG_ON(ret); 2894 2895 btrfs_free_path(path); 2896 return 0; 2897 } 2898 2899 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2900 { 2901 struct inode *inode = dentry->d_inode; 2902 int err = 0; 2903 struct btrfs_root *root = BTRFS_I(dir)->root; 2904 struct btrfs_trans_handle *trans; 2905 unsigned long nr = 0; 2906 2907 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2908 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 2909 return -ENOTEMPTY; 2910 2911 trans = __unlink_start_trans(dir, dentry); 2912 if (IS_ERR(trans)) 2913 return PTR_ERR(trans); 2914 2915 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2916 err = btrfs_unlink_subvol(trans, root, dir, 2917 BTRFS_I(inode)->location.objectid, 2918 dentry->d_name.name, 2919 dentry->d_name.len); 2920 goto out; 2921 } 2922 2923 err = btrfs_orphan_add(trans, inode); 2924 if (err) 2925 goto out; 2926 2927 /* now the directory is empty */ 2928 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2929 dentry->d_name.name, dentry->d_name.len); 2930 if (!err) 2931 btrfs_i_size_write(inode, 0); 2932 out: 2933 nr = trans->blocks_used; 2934 __unlink_end_trans(trans, root); 2935 btrfs_btree_balance_dirty(root, nr); 2936 2937 return err; 2938 } 2939 2940 /* 2941 * this can truncate away extent items, csum items and directory items. 2942 * It starts at a high offset and removes keys until it can't find 2943 * any higher than new_size 2944 * 2945 * csum items that cross the new i_size are truncated to the new size 2946 * as well. 2947 * 2948 * min_type is the minimum key type to truncate down to. If set to 0, this 2949 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2950 */ 2951 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2952 struct btrfs_root *root, 2953 struct inode *inode, 2954 u64 new_size, u32 min_type) 2955 { 2956 struct btrfs_path *path; 2957 struct extent_buffer *leaf; 2958 struct btrfs_file_extent_item *fi; 2959 struct btrfs_key key; 2960 struct btrfs_key found_key; 2961 u64 extent_start = 0; 2962 u64 extent_num_bytes = 0; 2963 u64 extent_offset = 0; 2964 u64 item_end = 0; 2965 u64 mask = root->sectorsize - 1; 2966 u32 found_type = (u8)-1; 2967 int found_extent; 2968 int del_item; 2969 int pending_del_nr = 0; 2970 int pending_del_slot = 0; 2971 int extent_type = -1; 2972 int encoding; 2973 int ret; 2974 int err = 0; 2975 u64 ino = btrfs_ino(inode); 2976 2977 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 2978 2979 path = btrfs_alloc_path(); 2980 if (!path) 2981 return -ENOMEM; 2982 path->reada = -1; 2983 2984 if (root->ref_cows || root == root->fs_info->tree_root) 2985 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2986 2987 /* 2988 * This function is also used to drop the items in the log tree before 2989 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 2990 * it is used to drop the loged items. So we shouldn't kill the delayed 2991 * items. 2992 */ 2993 if (min_type == 0 && root == BTRFS_I(inode)->root) 2994 btrfs_kill_delayed_inode_items(inode); 2995 2996 key.objectid = ino; 2997 key.offset = (u64)-1; 2998 key.type = (u8)-1; 2999 3000 search_again: 3001 path->leave_spinning = 1; 3002 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3003 if (ret < 0) { 3004 err = ret; 3005 goto out; 3006 } 3007 3008 if (ret > 0) { 3009 /* there are no items in the tree for us to truncate, we're 3010 * done 3011 */ 3012 if (path->slots[0] == 0) 3013 goto out; 3014 path->slots[0]--; 3015 } 3016 3017 while (1) { 3018 fi = NULL; 3019 leaf = path->nodes[0]; 3020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3021 found_type = btrfs_key_type(&found_key); 3022 encoding = 0; 3023 3024 if (found_key.objectid != ino) 3025 break; 3026 3027 if (found_type < min_type) 3028 break; 3029 3030 item_end = found_key.offset; 3031 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3032 fi = btrfs_item_ptr(leaf, path->slots[0], 3033 struct btrfs_file_extent_item); 3034 extent_type = btrfs_file_extent_type(leaf, fi); 3035 encoding = btrfs_file_extent_compression(leaf, fi); 3036 encoding |= btrfs_file_extent_encryption(leaf, fi); 3037 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3038 3039 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3040 item_end += 3041 btrfs_file_extent_num_bytes(leaf, fi); 3042 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3043 item_end += btrfs_file_extent_inline_len(leaf, 3044 fi); 3045 } 3046 item_end--; 3047 } 3048 if (found_type > min_type) { 3049 del_item = 1; 3050 } else { 3051 if (item_end < new_size) 3052 break; 3053 if (found_key.offset >= new_size) 3054 del_item = 1; 3055 else 3056 del_item = 0; 3057 } 3058 found_extent = 0; 3059 /* FIXME, shrink the extent if the ref count is only 1 */ 3060 if (found_type != BTRFS_EXTENT_DATA_KEY) 3061 goto delete; 3062 3063 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3064 u64 num_dec; 3065 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3066 if (!del_item && !encoding) { 3067 u64 orig_num_bytes = 3068 btrfs_file_extent_num_bytes(leaf, fi); 3069 extent_num_bytes = new_size - 3070 found_key.offset + root->sectorsize - 1; 3071 extent_num_bytes = extent_num_bytes & 3072 ~((u64)root->sectorsize - 1); 3073 btrfs_set_file_extent_num_bytes(leaf, fi, 3074 extent_num_bytes); 3075 num_dec = (orig_num_bytes - 3076 extent_num_bytes); 3077 if (root->ref_cows && extent_start != 0) 3078 inode_sub_bytes(inode, num_dec); 3079 btrfs_mark_buffer_dirty(leaf); 3080 } else { 3081 extent_num_bytes = 3082 btrfs_file_extent_disk_num_bytes(leaf, 3083 fi); 3084 extent_offset = found_key.offset - 3085 btrfs_file_extent_offset(leaf, fi); 3086 3087 /* FIXME blocksize != 4096 */ 3088 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3089 if (extent_start != 0) { 3090 found_extent = 1; 3091 if (root->ref_cows) 3092 inode_sub_bytes(inode, num_dec); 3093 } 3094 } 3095 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3096 /* 3097 * we can't truncate inline items that have had 3098 * special encodings 3099 */ 3100 if (!del_item && 3101 btrfs_file_extent_compression(leaf, fi) == 0 && 3102 btrfs_file_extent_encryption(leaf, fi) == 0 && 3103 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3104 u32 size = new_size - found_key.offset; 3105 3106 if (root->ref_cows) { 3107 inode_sub_bytes(inode, item_end + 1 - 3108 new_size); 3109 } 3110 size = 3111 btrfs_file_extent_calc_inline_size(size); 3112 ret = btrfs_truncate_item(trans, root, path, 3113 size, 1); 3114 } else if (root->ref_cows) { 3115 inode_sub_bytes(inode, item_end + 1 - 3116 found_key.offset); 3117 } 3118 } 3119 delete: 3120 if (del_item) { 3121 if (!pending_del_nr) { 3122 /* no pending yet, add ourselves */ 3123 pending_del_slot = path->slots[0]; 3124 pending_del_nr = 1; 3125 } else if (pending_del_nr && 3126 path->slots[0] + 1 == pending_del_slot) { 3127 /* hop on the pending chunk */ 3128 pending_del_nr++; 3129 pending_del_slot = path->slots[0]; 3130 } else { 3131 BUG(); 3132 } 3133 } else { 3134 break; 3135 } 3136 if (found_extent && (root->ref_cows || 3137 root == root->fs_info->tree_root)) { 3138 btrfs_set_path_blocking(path); 3139 ret = btrfs_free_extent(trans, root, extent_start, 3140 extent_num_bytes, 0, 3141 btrfs_header_owner(leaf), 3142 ino, extent_offset); 3143 BUG_ON(ret); 3144 } 3145 3146 if (found_type == BTRFS_INODE_ITEM_KEY) 3147 break; 3148 3149 if (path->slots[0] == 0 || 3150 path->slots[0] != pending_del_slot) { 3151 if (root->ref_cows && 3152 BTRFS_I(inode)->location.objectid != 3153 BTRFS_FREE_INO_OBJECTID) { 3154 err = -EAGAIN; 3155 goto out; 3156 } 3157 if (pending_del_nr) { 3158 ret = btrfs_del_items(trans, root, path, 3159 pending_del_slot, 3160 pending_del_nr); 3161 BUG_ON(ret); 3162 pending_del_nr = 0; 3163 } 3164 btrfs_release_path(path); 3165 goto search_again; 3166 } else { 3167 path->slots[0]--; 3168 } 3169 } 3170 out: 3171 if (pending_del_nr) { 3172 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3173 pending_del_nr); 3174 BUG_ON(ret); 3175 } 3176 btrfs_free_path(path); 3177 return err; 3178 } 3179 3180 /* 3181 * taken from block_truncate_page, but does cow as it zeros out 3182 * any bytes left in the last page in the file. 3183 */ 3184 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3185 { 3186 struct inode *inode = mapping->host; 3187 struct btrfs_root *root = BTRFS_I(inode)->root; 3188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3189 struct btrfs_ordered_extent *ordered; 3190 struct extent_state *cached_state = NULL; 3191 char *kaddr; 3192 u32 blocksize = root->sectorsize; 3193 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3194 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3195 struct page *page; 3196 gfp_t mask = btrfs_alloc_write_mask(mapping); 3197 int ret = 0; 3198 u64 page_start; 3199 u64 page_end; 3200 3201 if ((offset & (blocksize - 1)) == 0) 3202 goto out; 3203 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3204 if (ret) 3205 goto out; 3206 3207 ret = -ENOMEM; 3208 again: 3209 page = find_or_create_page(mapping, index, mask); 3210 if (!page) { 3211 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3212 goto out; 3213 } 3214 3215 page_start = page_offset(page); 3216 page_end = page_start + PAGE_CACHE_SIZE - 1; 3217 3218 if (!PageUptodate(page)) { 3219 ret = btrfs_readpage(NULL, page); 3220 lock_page(page); 3221 if (page->mapping != mapping) { 3222 unlock_page(page); 3223 page_cache_release(page); 3224 goto again; 3225 } 3226 if (!PageUptodate(page)) { 3227 ret = -EIO; 3228 goto out_unlock; 3229 } 3230 } 3231 wait_on_page_writeback(page); 3232 3233 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3234 GFP_NOFS); 3235 set_page_extent_mapped(page); 3236 3237 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3238 if (ordered) { 3239 unlock_extent_cached(io_tree, page_start, page_end, 3240 &cached_state, GFP_NOFS); 3241 unlock_page(page); 3242 page_cache_release(page); 3243 btrfs_start_ordered_extent(inode, ordered, 1); 3244 btrfs_put_ordered_extent(ordered); 3245 goto again; 3246 } 3247 3248 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3249 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3250 0, 0, &cached_state, GFP_NOFS); 3251 3252 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3253 &cached_state); 3254 if (ret) { 3255 unlock_extent_cached(io_tree, page_start, page_end, 3256 &cached_state, GFP_NOFS); 3257 goto out_unlock; 3258 } 3259 3260 ret = 0; 3261 if (offset != PAGE_CACHE_SIZE) { 3262 kaddr = kmap(page); 3263 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3264 flush_dcache_page(page); 3265 kunmap(page); 3266 } 3267 ClearPageChecked(page); 3268 set_page_dirty(page); 3269 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3270 GFP_NOFS); 3271 3272 out_unlock: 3273 if (ret) 3274 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3275 unlock_page(page); 3276 page_cache_release(page); 3277 out: 3278 return ret; 3279 } 3280 3281 /* 3282 * This function puts in dummy file extents for the area we're creating a hole 3283 * for. So if we are truncating this file to a larger size we need to insert 3284 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3285 * the range between oldsize and size 3286 */ 3287 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3288 { 3289 struct btrfs_trans_handle *trans; 3290 struct btrfs_root *root = BTRFS_I(inode)->root; 3291 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3292 struct extent_map *em = NULL; 3293 struct extent_state *cached_state = NULL; 3294 u64 mask = root->sectorsize - 1; 3295 u64 hole_start = (oldsize + mask) & ~mask; 3296 u64 block_end = (size + mask) & ~mask; 3297 u64 last_byte; 3298 u64 cur_offset; 3299 u64 hole_size; 3300 int err = 0; 3301 3302 if (size <= hole_start) 3303 return 0; 3304 3305 while (1) { 3306 struct btrfs_ordered_extent *ordered; 3307 btrfs_wait_ordered_range(inode, hole_start, 3308 block_end - hole_start); 3309 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3310 &cached_state, GFP_NOFS); 3311 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3312 if (!ordered) 3313 break; 3314 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3315 &cached_state, GFP_NOFS); 3316 btrfs_put_ordered_extent(ordered); 3317 } 3318 3319 cur_offset = hole_start; 3320 while (1) { 3321 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3322 block_end - cur_offset, 0); 3323 BUG_ON(IS_ERR_OR_NULL(em)); 3324 last_byte = min(extent_map_end(em), block_end); 3325 last_byte = (last_byte + mask) & ~mask; 3326 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3327 u64 hint_byte = 0; 3328 hole_size = last_byte - cur_offset; 3329 3330 trans = btrfs_start_transaction(root, 2); 3331 if (IS_ERR(trans)) { 3332 err = PTR_ERR(trans); 3333 break; 3334 } 3335 3336 err = btrfs_drop_extents(trans, inode, cur_offset, 3337 cur_offset + hole_size, 3338 &hint_byte, 1); 3339 if (err) { 3340 btrfs_end_transaction(trans, root); 3341 break; 3342 } 3343 3344 err = btrfs_insert_file_extent(trans, root, 3345 btrfs_ino(inode), cur_offset, 0, 3346 0, hole_size, 0, hole_size, 3347 0, 0, 0); 3348 if (err) { 3349 btrfs_end_transaction(trans, root); 3350 break; 3351 } 3352 3353 btrfs_drop_extent_cache(inode, hole_start, 3354 last_byte - 1, 0); 3355 3356 btrfs_end_transaction(trans, root); 3357 } 3358 free_extent_map(em); 3359 em = NULL; 3360 cur_offset = last_byte; 3361 if (cur_offset >= block_end) 3362 break; 3363 } 3364 3365 free_extent_map(em); 3366 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3367 GFP_NOFS); 3368 return err; 3369 } 3370 3371 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3372 { 3373 loff_t oldsize = i_size_read(inode); 3374 int ret; 3375 3376 if (newsize == oldsize) 3377 return 0; 3378 3379 if (newsize > oldsize) { 3380 i_size_write(inode, newsize); 3381 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3382 truncate_pagecache(inode, oldsize, newsize); 3383 ret = btrfs_cont_expand(inode, oldsize, newsize); 3384 if (ret) { 3385 btrfs_setsize(inode, oldsize); 3386 return ret; 3387 } 3388 3389 mark_inode_dirty(inode); 3390 } else { 3391 3392 /* 3393 * We're truncating a file that used to have good data down to 3394 * zero. Make sure it gets into the ordered flush list so that 3395 * any new writes get down to disk quickly. 3396 */ 3397 if (newsize == 0) 3398 BTRFS_I(inode)->ordered_data_close = 1; 3399 3400 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3401 truncate_setsize(inode, newsize); 3402 ret = btrfs_truncate(inode); 3403 } 3404 3405 return ret; 3406 } 3407 3408 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3409 { 3410 struct inode *inode = dentry->d_inode; 3411 struct btrfs_root *root = BTRFS_I(inode)->root; 3412 int err; 3413 3414 if (btrfs_root_readonly(root)) 3415 return -EROFS; 3416 3417 err = inode_change_ok(inode, attr); 3418 if (err) 3419 return err; 3420 3421 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3422 err = btrfs_setsize(inode, attr->ia_size); 3423 if (err) 3424 return err; 3425 } 3426 3427 if (attr->ia_valid) { 3428 setattr_copy(inode, attr); 3429 mark_inode_dirty(inode); 3430 3431 if (attr->ia_valid & ATTR_MODE) 3432 err = btrfs_acl_chmod(inode); 3433 } 3434 3435 return err; 3436 } 3437 3438 void btrfs_evict_inode(struct inode *inode) 3439 { 3440 struct btrfs_trans_handle *trans; 3441 struct btrfs_root *root = BTRFS_I(inode)->root; 3442 struct btrfs_block_rsv *rsv, *global_rsv; 3443 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3444 unsigned long nr; 3445 int ret; 3446 3447 trace_btrfs_inode_evict(inode); 3448 3449 truncate_inode_pages(&inode->i_data, 0); 3450 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3451 btrfs_is_free_space_inode(root, inode))) 3452 goto no_delete; 3453 3454 if (is_bad_inode(inode)) { 3455 btrfs_orphan_del(NULL, inode); 3456 goto no_delete; 3457 } 3458 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3459 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3460 3461 if (root->fs_info->log_root_recovering) { 3462 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3463 goto no_delete; 3464 } 3465 3466 if (inode->i_nlink > 0) { 3467 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3468 goto no_delete; 3469 } 3470 3471 rsv = btrfs_alloc_block_rsv(root); 3472 if (!rsv) { 3473 btrfs_orphan_del(NULL, inode); 3474 goto no_delete; 3475 } 3476 rsv->size = min_size; 3477 global_rsv = &root->fs_info->global_block_rsv; 3478 3479 btrfs_i_size_write(inode, 0); 3480 3481 /* 3482 * This is a bit simpler than btrfs_truncate since 3483 * 3484 * 1) We've already reserved our space for our orphan item in the 3485 * unlink. 3486 * 2) We're going to delete the inode item, so we don't need to update 3487 * it at all. 3488 * 3489 * So we just need to reserve some slack space in case we add bytes when 3490 * doing the truncate. 3491 */ 3492 while (1) { 3493 ret = btrfs_block_rsv_refill(root, rsv, min_size); 3494 3495 /* 3496 * Try and steal from the global reserve since we will 3497 * likely not use this space anyway, we want to try as 3498 * hard as possible to get this to work. 3499 */ 3500 if (ret) 3501 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3502 3503 if (ret) { 3504 printk(KERN_WARNING "Could not get space for a " 3505 "delete, will truncate on mount %d\n", ret); 3506 btrfs_orphan_del(NULL, inode); 3507 btrfs_free_block_rsv(root, rsv); 3508 goto no_delete; 3509 } 3510 3511 trans = btrfs_start_transaction(root, 0); 3512 if (IS_ERR(trans)) { 3513 btrfs_orphan_del(NULL, inode); 3514 btrfs_free_block_rsv(root, rsv); 3515 goto no_delete; 3516 } 3517 3518 trans->block_rsv = rsv; 3519 3520 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3521 if (ret != -EAGAIN) 3522 break; 3523 3524 nr = trans->blocks_used; 3525 btrfs_end_transaction(trans, root); 3526 trans = NULL; 3527 btrfs_btree_balance_dirty(root, nr); 3528 } 3529 3530 btrfs_free_block_rsv(root, rsv); 3531 3532 if (ret == 0) { 3533 trans->block_rsv = root->orphan_block_rsv; 3534 ret = btrfs_orphan_del(trans, inode); 3535 BUG_ON(ret); 3536 } 3537 3538 trans->block_rsv = &root->fs_info->trans_block_rsv; 3539 if (!(root == root->fs_info->tree_root || 3540 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3541 btrfs_return_ino(root, btrfs_ino(inode)); 3542 3543 nr = trans->blocks_used; 3544 btrfs_end_transaction(trans, root); 3545 btrfs_btree_balance_dirty(root, nr); 3546 no_delete: 3547 end_writeback(inode); 3548 return; 3549 } 3550 3551 /* 3552 * this returns the key found in the dir entry in the location pointer. 3553 * If no dir entries were found, location->objectid is 0. 3554 */ 3555 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3556 struct btrfs_key *location) 3557 { 3558 const char *name = dentry->d_name.name; 3559 int namelen = dentry->d_name.len; 3560 struct btrfs_dir_item *di; 3561 struct btrfs_path *path; 3562 struct btrfs_root *root = BTRFS_I(dir)->root; 3563 int ret = 0; 3564 3565 path = btrfs_alloc_path(); 3566 if (!path) 3567 return -ENOMEM; 3568 3569 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3570 namelen, 0); 3571 if (IS_ERR(di)) 3572 ret = PTR_ERR(di); 3573 3574 if (IS_ERR_OR_NULL(di)) 3575 goto out_err; 3576 3577 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3578 out: 3579 btrfs_free_path(path); 3580 return ret; 3581 out_err: 3582 location->objectid = 0; 3583 goto out; 3584 } 3585 3586 /* 3587 * when we hit a tree root in a directory, the btrfs part of the inode 3588 * needs to be changed to reflect the root directory of the tree root. This 3589 * is kind of like crossing a mount point. 3590 */ 3591 static int fixup_tree_root_location(struct btrfs_root *root, 3592 struct inode *dir, 3593 struct dentry *dentry, 3594 struct btrfs_key *location, 3595 struct btrfs_root **sub_root) 3596 { 3597 struct btrfs_path *path; 3598 struct btrfs_root *new_root; 3599 struct btrfs_root_ref *ref; 3600 struct extent_buffer *leaf; 3601 int ret; 3602 int err = 0; 3603 3604 path = btrfs_alloc_path(); 3605 if (!path) { 3606 err = -ENOMEM; 3607 goto out; 3608 } 3609 3610 err = -ENOENT; 3611 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3612 BTRFS_I(dir)->root->root_key.objectid, 3613 location->objectid); 3614 if (ret) { 3615 if (ret < 0) 3616 err = ret; 3617 goto out; 3618 } 3619 3620 leaf = path->nodes[0]; 3621 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3622 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3623 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3624 goto out; 3625 3626 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3627 (unsigned long)(ref + 1), 3628 dentry->d_name.len); 3629 if (ret) 3630 goto out; 3631 3632 btrfs_release_path(path); 3633 3634 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3635 if (IS_ERR(new_root)) { 3636 err = PTR_ERR(new_root); 3637 goto out; 3638 } 3639 3640 if (btrfs_root_refs(&new_root->root_item) == 0) { 3641 err = -ENOENT; 3642 goto out; 3643 } 3644 3645 *sub_root = new_root; 3646 location->objectid = btrfs_root_dirid(&new_root->root_item); 3647 location->type = BTRFS_INODE_ITEM_KEY; 3648 location->offset = 0; 3649 err = 0; 3650 out: 3651 btrfs_free_path(path); 3652 return err; 3653 } 3654 3655 static void inode_tree_add(struct inode *inode) 3656 { 3657 struct btrfs_root *root = BTRFS_I(inode)->root; 3658 struct btrfs_inode *entry; 3659 struct rb_node **p; 3660 struct rb_node *parent; 3661 u64 ino = btrfs_ino(inode); 3662 again: 3663 p = &root->inode_tree.rb_node; 3664 parent = NULL; 3665 3666 if (inode_unhashed(inode)) 3667 return; 3668 3669 spin_lock(&root->inode_lock); 3670 while (*p) { 3671 parent = *p; 3672 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3673 3674 if (ino < btrfs_ino(&entry->vfs_inode)) 3675 p = &parent->rb_left; 3676 else if (ino > btrfs_ino(&entry->vfs_inode)) 3677 p = &parent->rb_right; 3678 else { 3679 WARN_ON(!(entry->vfs_inode.i_state & 3680 (I_WILL_FREE | I_FREEING))); 3681 rb_erase(parent, &root->inode_tree); 3682 RB_CLEAR_NODE(parent); 3683 spin_unlock(&root->inode_lock); 3684 goto again; 3685 } 3686 } 3687 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3688 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3689 spin_unlock(&root->inode_lock); 3690 } 3691 3692 static void inode_tree_del(struct inode *inode) 3693 { 3694 struct btrfs_root *root = BTRFS_I(inode)->root; 3695 int empty = 0; 3696 3697 spin_lock(&root->inode_lock); 3698 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3699 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3700 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3701 empty = RB_EMPTY_ROOT(&root->inode_tree); 3702 } 3703 spin_unlock(&root->inode_lock); 3704 3705 /* 3706 * Free space cache has inodes in the tree root, but the tree root has a 3707 * root_refs of 0, so this could end up dropping the tree root as a 3708 * snapshot, so we need the extra !root->fs_info->tree_root check to 3709 * make sure we don't drop it. 3710 */ 3711 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3712 root != root->fs_info->tree_root) { 3713 synchronize_srcu(&root->fs_info->subvol_srcu); 3714 spin_lock(&root->inode_lock); 3715 empty = RB_EMPTY_ROOT(&root->inode_tree); 3716 spin_unlock(&root->inode_lock); 3717 if (empty) 3718 btrfs_add_dead_root(root); 3719 } 3720 } 3721 3722 int btrfs_invalidate_inodes(struct btrfs_root *root) 3723 { 3724 struct rb_node *node; 3725 struct rb_node *prev; 3726 struct btrfs_inode *entry; 3727 struct inode *inode; 3728 u64 objectid = 0; 3729 3730 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3731 3732 spin_lock(&root->inode_lock); 3733 again: 3734 node = root->inode_tree.rb_node; 3735 prev = NULL; 3736 while (node) { 3737 prev = node; 3738 entry = rb_entry(node, struct btrfs_inode, rb_node); 3739 3740 if (objectid < btrfs_ino(&entry->vfs_inode)) 3741 node = node->rb_left; 3742 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3743 node = node->rb_right; 3744 else 3745 break; 3746 } 3747 if (!node) { 3748 while (prev) { 3749 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3750 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3751 node = prev; 3752 break; 3753 } 3754 prev = rb_next(prev); 3755 } 3756 } 3757 while (node) { 3758 entry = rb_entry(node, struct btrfs_inode, rb_node); 3759 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3760 inode = igrab(&entry->vfs_inode); 3761 if (inode) { 3762 spin_unlock(&root->inode_lock); 3763 if (atomic_read(&inode->i_count) > 1) 3764 d_prune_aliases(inode); 3765 /* 3766 * btrfs_drop_inode will have it removed from 3767 * the inode cache when its usage count 3768 * hits zero. 3769 */ 3770 iput(inode); 3771 cond_resched(); 3772 spin_lock(&root->inode_lock); 3773 goto again; 3774 } 3775 3776 if (cond_resched_lock(&root->inode_lock)) 3777 goto again; 3778 3779 node = rb_next(node); 3780 } 3781 spin_unlock(&root->inode_lock); 3782 return 0; 3783 } 3784 3785 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3786 { 3787 struct btrfs_iget_args *args = p; 3788 inode->i_ino = args->ino; 3789 BTRFS_I(inode)->root = args->root; 3790 btrfs_set_inode_space_info(args->root, inode); 3791 return 0; 3792 } 3793 3794 static int btrfs_find_actor(struct inode *inode, void *opaque) 3795 { 3796 struct btrfs_iget_args *args = opaque; 3797 return args->ino == btrfs_ino(inode) && 3798 args->root == BTRFS_I(inode)->root; 3799 } 3800 3801 static struct inode *btrfs_iget_locked(struct super_block *s, 3802 u64 objectid, 3803 struct btrfs_root *root) 3804 { 3805 struct inode *inode; 3806 struct btrfs_iget_args args; 3807 args.ino = objectid; 3808 args.root = root; 3809 3810 inode = iget5_locked(s, objectid, btrfs_find_actor, 3811 btrfs_init_locked_inode, 3812 (void *)&args); 3813 return inode; 3814 } 3815 3816 /* Get an inode object given its location and corresponding root. 3817 * Returns in *is_new if the inode was read from disk 3818 */ 3819 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3820 struct btrfs_root *root, int *new) 3821 { 3822 struct inode *inode; 3823 3824 inode = btrfs_iget_locked(s, location->objectid, root); 3825 if (!inode) 3826 return ERR_PTR(-ENOMEM); 3827 3828 if (inode->i_state & I_NEW) { 3829 BTRFS_I(inode)->root = root; 3830 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3831 btrfs_read_locked_inode(inode); 3832 if (!is_bad_inode(inode)) { 3833 inode_tree_add(inode); 3834 unlock_new_inode(inode); 3835 if (new) 3836 *new = 1; 3837 } else { 3838 unlock_new_inode(inode); 3839 iput(inode); 3840 inode = ERR_PTR(-ESTALE); 3841 } 3842 } 3843 3844 return inode; 3845 } 3846 3847 static struct inode *new_simple_dir(struct super_block *s, 3848 struct btrfs_key *key, 3849 struct btrfs_root *root) 3850 { 3851 struct inode *inode = new_inode(s); 3852 3853 if (!inode) 3854 return ERR_PTR(-ENOMEM); 3855 3856 BTRFS_I(inode)->root = root; 3857 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3858 BTRFS_I(inode)->dummy_inode = 1; 3859 3860 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3861 inode->i_op = &simple_dir_inode_operations; 3862 inode->i_fop = &simple_dir_operations; 3863 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3864 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3865 3866 return inode; 3867 } 3868 3869 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3870 { 3871 struct inode *inode; 3872 struct btrfs_root *root = BTRFS_I(dir)->root; 3873 struct btrfs_root *sub_root = root; 3874 struct btrfs_key location; 3875 int index; 3876 int ret = 0; 3877 3878 if (dentry->d_name.len > BTRFS_NAME_LEN) 3879 return ERR_PTR(-ENAMETOOLONG); 3880 3881 if (unlikely(d_need_lookup(dentry))) { 3882 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 3883 kfree(dentry->d_fsdata); 3884 dentry->d_fsdata = NULL; 3885 /* This thing is hashed, drop it for now */ 3886 d_drop(dentry); 3887 } else { 3888 ret = btrfs_inode_by_name(dir, dentry, &location); 3889 } 3890 3891 if (ret < 0) 3892 return ERR_PTR(ret); 3893 3894 if (location.objectid == 0) 3895 return NULL; 3896 3897 if (location.type == BTRFS_INODE_ITEM_KEY) { 3898 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 3899 return inode; 3900 } 3901 3902 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3903 3904 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3905 ret = fixup_tree_root_location(root, dir, dentry, 3906 &location, &sub_root); 3907 if (ret < 0) { 3908 if (ret != -ENOENT) 3909 inode = ERR_PTR(ret); 3910 else 3911 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3912 } else { 3913 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 3914 } 3915 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3916 3917 if (!IS_ERR(inode) && root != sub_root) { 3918 down_read(&root->fs_info->cleanup_work_sem); 3919 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3920 ret = btrfs_orphan_cleanup(sub_root); 3921 up_read(&root->fs_info->cleanup_work_sem); 3922 if (ret) 3923 inode = ERR_PTR(ret); 3924 } 3925 3926 return inode; 3927 } 3928 3929 static int btrfs_dentry_delete(const struct dentry *dentry) 3930 { 3931 struct btrfs_root *root; 3932 3933 if (!dentry->d_inode && !IS_ROOT(dentry)) 3934 dentry = dentry->d_parent; 3935 3936 if (dentry->d_inode) { 3937 root = BTRFS_I(dentry->d_inode)->root; 3938 if (btrfs_root_refs(&root->root_item) == 0) 3939 return 1; 3940 } 3941 return 0; 3942 } 3943 3944 static void btrfs_dentry_release(struct dentry *dentry) 3945 { 3946 if (dentry->d_fsdata) 3947 kfree(dentry->d_fsdata); 3948 } 3949 3950 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3951 struct nameidata *nd) 3952 { 3953 struct dentry *ret; 3954 3955 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 3956 if (unlikely(d_need_lookup(dentry))) { 3957 spin_lock(&dentry->d_lock); 3958 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 3959 spin_unlock(&dentry->d_lock); 3960 } 3961 return ret; 3962 } 3963 3964 unsigned char btrfs_filetype_table[] = { 3965 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3966 }; 3967 3968 static int btrfs_real_readdir(struct file *filp, void *dirent, 3969 filldir_t filldir) 3970 { 3971 struct inode *inode = filp->f_dentry->d_inode; 3972 struct btrfs_root *root = BTRFS_I(inode)->root; 3973 struct btrfs_item *item; 3974 struct btrfs_dir_item *di; 3975 struct btrfs_key key; 3976 struct btrfs_key found_key; 3977 struct btrfs_path *path; 3978 struct list_head ins_list; 3979 struct list_head del_list; 3980 struct qstr q; 3981 int ret; 3982 struct extent_buffer *leaf; 3983 int slot; 3984 unsigned char d_type; 3985 int over = 0; 3986 u32 di_cur; 3987 u32 di_total; 3988 u32 di_len; 3989 int key_type = BTRFS_DIR_INDEX_KEY; 3990 char tmp_name[32]; 3991 char *name_ptr; 3992 int name_len; 3993 int is_curr = 0; /* filp->f_pos points to the current index? */ 3994 3995 /* FIXME, use a real flag for deciding about the key type */ 3996 if (root->fs_info->tree_root == root) 3997 key_type = BTRFS_DIR_ITEM_KEY; 3998 3999 /* special case for "." */ 4000 if (filp->f_pos == 0) { 4001 over = filldir(dirent, ".", 1, 4002 filp->f_pos, btrfs_ino(inode), DT_DIR); 4003 if (over) 4004 return 0; 4005 filp->f_pos = 1; 4006 } 4007 /* special case for .., just use the back ref */ 4008 if (filp->f_pos == 1) { 4009 u64 pino = parent_ino(filp->f_path.dentry); 4010 over = filldir(dirent, "..", 2, 4011 filp->f_pos, pino, DT_DIR); 4012 if (over) 4013 return 0; 4014 filp->f_pos = 2; 4015 } 4016 path = btrfs_alloc_path(); 4017 if (!path) 4018 return -ENOMEM; 4019 4020 path->reada = 1; 4021 4022 if (key_type == BTRFS_DIR_INDEX_KEY) { 4023 INIT_LIST_HEAD(&ins_list); 4024 INIT_LIST_HEAD(&del_list); 4025 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4026 } 4027 4028 btrfs_set_key_type(&key, key_type); 4029 key.offset = filp->f_pos; 4030 key.objectid = btrfs_ino(inode); 4031 4032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4033 if (ret < 0) 4034 goto err; 4035 4036 while (1) { 4037 leaf = path->nodes[0]; 4038 slot = path->slots[0]; 4039 if (slot >= btrfs_header_nritems(leaf)) { 4040 ret = btrfs_next_leaf(root, path); 4041 if (ret < 0) 4042 goto err; 4043 else if (ret > 0) 4044 break; 4045 continue; 4046 } 4047 4048 item = btrfs_item_nr(leaf, slot); 4049 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4050 4051 if (found_key.objectid != key.objectid) 4052 break; 4053 if (btrfs_key_type(&found_key) != key_type) 4054 break; 4055 if (found_key.offset < filp->f_pos) 4056 goto next; 4057 if (key_type == BTRFS_DIR_INDEX_KEY && 4058 btrfs_should_delete_dir_index(&del_list, 4059 found_key.offset)) 4060 goto next; 4061 4062 filp->f_pos = found_key.offset; 4063 is_curr = 1; 4064 4065 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4066 di_cur = 0; 4067 di_total = btrfs_item_size(leaf, item); 4068 4069 while (di_cur < di_total) { 4070 struct btrfs_key location; 4071 struct dentry *tmp; 4072 4073 if (verify_dir_item(root, leaf, di)) 4074 break; 4075 4076 name_len = btrfs_dir_name_len(leaf, di); 4077 if (name_len <= sizeof(tmp_name)) { 4078 name_ptr = tmp_name; 4079 } else { 4080 name_ptr = kmalloc(name_len, GFP_NOFS); 4081 if (!name_ptr) { 4082 ret = -ENOMEM; 4083 goto err; 4084 } 4085 } 4086 read_extent_buffer(leaf, name_ptr, 4087 (unsigned long)(di + 1), name_len); 4088 4089 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4090 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4091 4092 q.name = name_ptr; 4093 q.len = name_len; 4094 q.hash = full_name_hash(q.name, q.len); 4095 tmp = d_lookup(filp->f_dentry, &q); 4096 if (!tmp) { 4097 struct btrfs_key *newkey; 4098 4099 newkey = kzalloc(sizeof(struct btrfs_key), 4100 GFP_NOFS); 4101 if (!newkey) 4102 goto no_dentry; 4103 tmp = d_alloc(filp->f_dentry, &q); 4104 if (!tmp) { 4105 kfree(newkey); 4106 dput(tmp); 4107 goto no_dentry; 4108 } 4109 memcpy(newkey, &location, 4110 sizeof(struct btrfs_key)); 4111 tmp->d_fsdata = newkey; 4112 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4113 d_rehash(tmp); 4114 dput(tmp); 4115 } else { 4116 dput(tmp); 4117 } 4118 no_dentry: 4119 /* is this a reference to our own snapshot? If so 4120 * skip it 4121 */ 4122 if (location.type == BTRFS_ROOT_ITEM_KEY && 4123 location.objectid == root->root_key.objectid) { 4124 over = 0; 4125 goto skip; 4126 } 4127 over = filldir(dirent, name_ptr, name_len, 4128 found_key.offset, location.objectid, 4129 d_type); 4130 4131 skip: 4132 if (name_ptr != tmp_name) 4133 kfree(name_ptr); 4134 4135 if (over) 4136 goto nopos; 4137 di_len = btrfs_dir_name_len(leaf, di) + 4138 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4139 di_cur += di_len; 4140 di = (struct btrfs_dir_item *)((char *)di + di_len); 4141 } 4142 next: 4143 path->slots[0]++; 4144 } 4145 4146 if (key_type == BTRFS_DIR_INDEX_KEY) { 4147 if (is_curr) 4148 filp->f_pos++; 4149 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4150 &ins_list); 4151 if (ret) 4152 goto nopos; 4153 } 4154 4155 /* Reached end of directory/root. Bump pos past the last item. */ 4156 if (key_type == BTRFS_DIR_INDEX_KEY) 4157 /* 4158 * 32-bit glibc will use getdents64, but then strtol - 4159 * so the last number we can serve is this. 4160 */ 4161 filp->f_pos = 0x7fffffff; 4162 else 4163 filp->f_pos++; 4164 nopos: 4165 ret = 0; 4166 err: 4167 if (key_type == BTRFS_DIR_INDEX_KEY) 4168 btrfs_put_delayed_items(&ins_list, &del_list); 4169 btrfs_free_path(path); 4170 return ret; 4171 } 4172 4173 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4174 { 4175 struct btrfs_root *root = BTRFS_I(inode)->root; 4176 struct btrfs_trans_handle *trans; 4177 int ret = 0; 4178 bool nolock = false; 4179 4180 if (BTRFS_I(inode)->dummy_inode) 4181 return 0; 4182 4183 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4184 nolock = true; 4185 4186 if (wbc->sync_mode == WB_SYNC_ALL) { 4187 if (nolock) 4188 trans = btrfs_join_transaction_nolock(root); 4189 else 4190 trans = btrfs_join_transaction(root); 4191 if (IS_ERR(trans)) 4192 return PTR_ERR(trans); 4193 if (nolock) 4194 ret = btrfs_end_transaction_nolock(trans, root); 4195 else 4196 ret = btrfs_commit_transaction(trans, root); 4197 } 4198 return ret; 4199 } 4200 4201 /* 4202 * This is somewhat expensive, updating the tree every time the 4203 * inode changes. But, it is most likely to find the inode in cache. 4204 * FIXME, needs more benchmarking...there are no reasons other than performance 4205 * to keep or drop this code. 4206 */ 4207 void btrfs_dirty_inode(struct inode *inode, int flags) 4208 { 4209 struct btrfs_root *root = BTRFS_I(inode)->root; 4210 struct btrfs_trans_handle *trans; 4211 int ret; 4212 4213 if (BTRFS_I(inode)->dummy_inode) 4214 return; 4215 4216 trans = btrfs_join_transaction(root); 4217 BUG_ON(IS_ERR(trans)); 4218 4219 ret = btrfs_update_inode(trans, root, inode); 4220 if (ret && ret == -ENOSPC) { 4221 /* whoops, lets try again with the full transaction */ 4222 btrfs_end_transaction(trans, root); 4223 trans = btrfs_start_transaction(root, 1); 4224 if (IS_ERR(trans)) { 4225 printk_ratelimited(KERN_ERR "btrfs: fail to " 4226 "dirty inode %llu error %ld\n", 4227 (unsigned long long)btrfs_ino(inode), 4228 PTR_ERR(trans)); 4229 return; 4230 } 4231 4232 ret = btrfs_update_inode(trans, root, inode); 4233 if (ret) { 4234 printk_ratelimited(KERN_ERR "btrfs: fail to " 4235 "dirty inode %llu error %d\n", 4236 (unsigned long long)btrfs_ino(inode), 4237 ret); 4238 } 4239 } 4240 btrfs_end_transaction(trans, root); 4241 if (BTRFS_I(inode)->delayed_node) 4242 btrfs_balance_delayed_items(root); 4243 } 4244 4245 /* 4246 * find the highest existing sequence number in a directory 4247 * and then set the in-memory index_cnt variable to reflect 4248 * free sequence numbers 4249 */ 4250 static int btrfs_set_inode_index_count(struct inode *inode) 4251 { 4252 struct btrfs_root *root = BTRFS_I(inode)->root; 4253 struct btrfs_key key, found_key; 4254 struct btrfs_path *path; 4255 struct extent_buffer *leaf; 4256 int ret; 4257 4258 key.objectid = btrfs_ino(inode); 4259 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4260 key.offset = (u64)-1; 4261 4262 path = btrfs_alloc_path(); 4263 if (!path) 4264 return -ENOMEM; 4265 4266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4267 if (ret < 0) 4268 goto out; 4269 /* FIXME: we should be able to handle this */ 4270 if (ret == 0) 4271 goto out; 4272 ret = 0; 4273 4274 /* 4275 * MAGIC NUMBER EXPLANATION: 4276 * since we search a directory based on f_pos we have to start at 2 4277 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4278 * else has to start at 2 4279 */ 4280 if (path->slots[0] == 0) { 4281 BTRFS_I(inode)->index_cnt = 2; 4282 goto out; 4283 } 4284 4285 path->slots[0]--; 4286 4287 leaf = path->nodes[0]; 4288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4289 4290 if (found_key.objectid != btrfs_ino(inode) || 4291 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4292 BTRFS_I(inode)->index_cnt = 2; 4293 goto out; 4294 } 4295 4296 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4297 out: 4298 btrfs_free_path(path); 4299 return ret; 4300 } 4301 4302 /* 4303 * helper to find a free sequence number in a given directory. This current 4304 * code is very simple, later versions will do smarter things in the btree 4305 */ 4306 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4307 { 4308 int ret = 0; 4309 4310 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4311 ret = btrfs_inode_delayed_dir_index_count(dir); 4312 if (ret) { 4313 ret = btrfs_set_inode_index_count(dir); 4314 if (ret) 4315 return ret; 4316 } 4317 } 4318 4319 *index = BTRFS_I(dir)->index_cnt; 4320 BTRFS_I(dir)->index_cnt++; 4321 4322 return ret; 4323 } 4324 4325 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4326 struct btrfs_root *root, 4327 struct inode *dir, 4328 const char *name, int name_len, 4329 u64 ref_objectid, u64 objectid, int mode, 4330 u64 *index) 4331 { 4332 struct inode *inode; 4333 struct btrfs_inode_item *inode_item; 4334 struct btrfs_key *location; 4335 struct btrfs_path *path; 4336 struct btrfs_inode_ref *ref; 4337 struct btrfs_key key[2]; 4338 u32 sizes[2]; 4339 unsigned long ptr; 4340 int ret; 4341 int owner; 4342 4343 path = btrfs_alloc_path(); 4344 if (!path) 4345 return ERR_PTR(-ENOMEM); 4346 4347 inode = new_inode(root->fs_info->sb); 4348 if (!inode) { 4349 btrfs_free_path(path); 4350 return ERR_PTR(-ENOMEM); 4351 } 4352 4353 /* 4354 * we have to initialize this early, so we can reclaim the inode 4355 * number if we fail afterwards in this function. 4356 */ 4357 inode->i_ino = objectid; 4358 4359 if (dir) { 4360 trace_btrfs_inode_request(dir); 4361 4362 ret = btrfs_set_inode_index(dir, index); 4363 if (ret) { 4364 btrfs_free_path(path); 4365 iput(inode); 4366 return ERR_PTR(ret); 4367 } 4368 } 4369 /* 4370 * index_cnt is ignored for everything but a dir, 4371 * btrfs_get_inode_index_count has an explanation for the magic 4372 * number 4373 */ 4374 BTRFS_I(inode)->index_cnt = 2; 4375 BTRFS_I(inode)->root = root; 4376 BTRFS_I(inode)->generation = trans->transid; 4377 inode->i_generation = BTRFS_I(inode)->generation; 4378 btrfs_set_inode_space_info(root, inode); 4379 4380 if (S_ISDIR(mode)) 4381 owner = 0; 4382 else 4383 owner = 1; 4384 4385 key[0].objectid = objectid; 4386 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4387 key[0].offset = 0; 4388 4389 key[1].objectid = objectid; 4390 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4391 key[1].offset = ref_objectid; 4392 4393 sizes[0] = sizeof(struct btrfs_inode_item); 4394 sizes[1] = name_len + sizeof(*ref); 4395 4396 path->leave_spinning = 1; 4397 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4398 if (ret != 0) 4399 goto fail; 4400 4401 inode_init_owner(inode, dir, mode); 4402 inode_set_bytes(inode, 0); 4403 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4404 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4405 struct btrfs_inode_item); 4406 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4407 4408 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4409 struct btrfs_inode_ref); 4410 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4411 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4412 ptr = (unsigned long)(ref + 1); 4413 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4414 4415 btrfs_mark_buffer_dirty(path->nodes[0]); 4416 btrfs_free_path(path); 4417 4418 location = &BTRFS_I(inode)->location; 4419 location->objectid = objectid; 4420 location->offset = 0; 4421 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4422 4423 btrfs_inherit_iflags(inode, dir); 4424 4425 if (S_ISREG(mode)) { 4426 if (btrfs_test_opt(root, NODATASUM)) 4427 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4428 if (btrfs_test_opt(root, NODATACOW) || 4429 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4430 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4431 } 4432 4433 insert_inode_hash(inode); 4434 inode_tree_add(inode); 4435 4436 trace_btrfs_inode_new(inode); 4437 btrfs_set_inode_last_trans(trans, inode); 4438 4439 return inode; 4440 fail: 4441 if (dir) 4442 BTRFS_I(dir)->index_cnt--; 4443 btrfs_free_path(path); 4444 iput(inode); 4445 return ERR_PTR(ret); 4446 } 4447 4448 static inline u8 btrfs_inode_type(struct inode *inode) 4449 { 4450 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4451 } 4452 4453 /* 4454 * utility function to add 'inode' into 'parent_inode' with 4455 * a give name and a given sequence number. 4456 * if 'add_backref' is true, also insert a backref from the 4457 * inode to the parent directory. 4458 */ 4459 int btrfs_add_link(struct btrfs_trans_handle *trans, 4460 struct inode *parent_inode, struct inode *inode, 4461 const char *name, int name_len, int add_backref, u64 index) 4462 { 4463 int ret = 0; 4464 struct btrfs_key key; 4465 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4466 u64 ino = btrfs_ino(inode); 4467 u64 parent_ino = btrfs_ino(parent_inode); 4468 4469 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4470 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4471 } else { 4472 key.objectid = ino; 4473 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4474 key.offset = 0; 4475 } 4476 4477 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4478 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4479 key.objectid, root->root_key.objectid, 4480 parent_ino, index, name, name_len); 4481 } else if (add_backref) { 4482 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4483 parent_ino, index); 4484 } 4485 4486 if (ret == 0) { 4487 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4488 parent_inode, &key, 4489 btrfs_inode_type(inode), index); 4490 BUG_ON(ret); 4491 4492 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4493 name_len * 2); 4494 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4495 ret = btrfs_update_inode(trans, root, parent_inode); 4496 } 4497 return ret; 4498 } 4499 4500 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4501 struct inode *dir, struct dentry *dentry, 4502 struct inode *inode, int backref, u64 index) 4503 { 4504 int err = btrfs_add_link(trans, dir, inode, 4505 dentry->d_name.name, dentry->d_name.len, 4506 backref, index); 4507 if (!err) { 4508 d_instantiate(dentry, inode); 4509 return 0; 4510 } 4511 if (err > 0) 4512 err = -EEXIST; 4513 return err; 4514 } 4515 4516 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4517 int mode, dev_t rdev) 4518 { 4519 struct btrfs_trans_handle *trans; 4520 struct btrfs_root *root = BTRFS_I(dir)->root; 4521 struct inode *inode = NULL; 4522 int err; 4523 int drop_inode = 0; 4524 u64 objectid; 4525 unsigned long nr = 0; 4526 u64 index = 0; 4527 4528 if (!new_valid_dev(rdev)) 4529 return -EINVAL; 4530 4531 /* 4532 * 2 for inode item and ref 4533 * 2 for dir items 4534 * 1 for xattr if selinux is on 4535 */ 4536 trans = btrfs_start_transaction(root, 5); 4537 if (IS_ERR(trans)) 4538 return PTR_ERR(trans); 4539 4540 err = btrfs_find_free_ino(root, &objectid); 4541 if (err) 4542 goto out_unlock; 4543 4544 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4545 dentry->d_name.len, btrfs_ino(dir), objectid, 4546 mode, &index); 4547 if (IS_ERR(inode)) { 4548 err = PTR_ERR(inode); 4549 goto out_unlock; 4550 } 4551 4552 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4553 if (err) { 4554 drop_inode = 1; 4555 goto out_unlock; 4556 } 4557 4558 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4559 if (err) 4560 drop_inode = 1; 4561 else { 4562 inode->i_op = &btrfs_special_inode_operations; 4563 init_special_inode(inode, inode->i_mode, rdev); 4564 btrfs_update_inode(trans, root, inode); 4565 } 4566 out_unlock: 4567 nr = trans->blocks_used; 4568 btrfs_end_transaction_throttle(trans, root); 4569 btrfs_btree_balance_dirty(root, nr); 4570 if (drop_inode) { 4571 inode_dec_link_count(inode); 4572 iput(inode); 4573 } 4574 return err; 4575 } 4576 4577 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4578 int mode, struct nameidata *nd) 4579 { 4580 struct btrfs_trans_handle *trans; 4581 struct btrfs_root *root = BTRFS_I(dir)->root; 4582 struct inode *inode = NULL; 4583 int drop_inode = 0; 4584 int err; 4585 unsigned long nr = 0; 4586 u64 objectid; 4587 u64 index = 0; 4588 4589 /* 4590 * 2 for inode item and ref 4591 * 2 for dir items 4592 * 1 for xattr if selinux is on 4593 */ 4594 trans = btrfs_start_transaction(root, 5); 4595 if (IS_ERR(trans)) 4596 return PTR_ERR(trans); 4597 4598 err = btrfs_find_free_ino(root, &objectid); 4599 if (err) 4600 goto out_unlock; 4601 4602 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4603 dentry->d_name.len, btrfs_ino(dir), objectid, 4604 mode, &index); 4605 if (IS_ERR(inode)) { 4606 err = PTR_ERR(inode); 4607 goto out_unlock; 4608 } 4609 4610 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4611 if (err) { 4612 drop_inode = 1; 4613 goto out_unlock; 4614 } 4615 4616 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4617 if (err) 4618 drop_inode = 1; 4619 else { 4620 inode->i_mapping->a_ops = &btrfs_aops; 4621 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4622 inode->i_fop = &btrfs_file_operations; 4623 inode->i_op = &btrfs_file_inode_operations; 4624 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4625 } 4626 out_unlock: 4627 nr = trans->blocks_used; 4628 btrfs_end_transaction_throttle(trans, root); 4629 if (drop_inode) { 4630 inode_dec_link_count(inode); 4631 iput(inode); 4632 } 4633 btrfs_btree_balance_dirty(root, nr); 4634 return err; 4635 } 4636 4637 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4638 struct dentry *dentry) 4639 { 4640 struct btrfs_trans_handle *trans; 4641 struct btrfs_root *root = BTRFS_I(dir)->root; 4642 struct inode *inode = old_dentry->d_inode; 4643 u64 index; 4644 unsigned long nr = 0; 4645 int err; 4646 int drop_inode = 0; 4647 4648 /* do not allow sys_link's with other subvols of the same device */ 4649 if (root->objectid != BTRFS_I(inode)->root->objectid) 4650 return -EXDEV; 4651 4652 if (inode->i_nlink == ~0U) 4653 return -EMLINK; 4654 4655 err = btrfs_set_inode_index(dir, &index); 4656 if (err) 4657 goto fail; 4658 4659 /* 4660 * 2 items for inode and inode ref 4661 * 2 items for dir items 4662 * 1 item for parent inode 4663 */ 4664 trans = btrfs_start_transaction(root, 5); 4665 if (IS_ERR(trans)) { 4666 err = PTR_ERR(trans); 4667 goto fail; 4668 } 4669 4670 btrfs_inc_nlink(inode); 4671 inode->i_ctime = CURRENT_TIME; 4672 ihold(inode); 4673 4674 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4675 4676 if (err) { 4677 drop_inode = 1; 4678 } else { 4679 struct dentry *parent = dentry->d_parent; 4680 err = btrfs_update_inode(trans, root, inode); 4681 BUG_ON(err); 4682 btrfs_log_new_name(trans, inode, NULL, parent); 4683 } 4684 4685 nr = trans->blocks_used; 4686 btrfs_end_transaction_throttle(trans, root); 4687 fail: 4688 if (drop_inode) { 4689 inode_dec_link_count(inode); 4690 iput(inode); 4691 } 4692 btrfs_btree_balance_dirty(root, nr); 4693 return err; 4694 } 4695 4696 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4697 { 4698 struct inode *inode = NULL; 4699 struct btrfs_trans_handle *trans; 4700 struct btrfs_root *root = BTRFS_I(dir)->root; 4701 int err = 0; 4702 int drop_on_err = 0; 4703 u64 objectid = 0; 4704 u64 index = 0; 4705 unsigned long nr = 1; 4706 4707 /* 4708 * 2 items for inode and ref 4709 * 2 items for dir items 4710 * 1 for xattr if selinux is on 4711 */ 4712 trans = btrfs_start_transaction(root, 5); 4713 if (IS_ERR(trans)) 4714 return PTR_ERR(trans); 4715 4716 err = btrfs_find_free_ino(root, &objectid); 4717 if (err) 4718 goto out_fail; 4719 4720 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4721 dentry->d_name.len, btrfs_ino(dir), objectid, 4722 S_IFDIR | mode, &index); 4723 if (IS_ERR(inode)) { 4724 err = PTR_ERR(inode); 4725 goto out_fail; 4726 } 4727 4728 drop_on_err = 1; 4729 4730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4731 if (err) 4732 goto out_fail; 4733 4734 inode->i_op = &btrfs_dir_inode_operations; 4735 inode->i_fop = &btrfs_dir_file_operations; 4736 4737 btrfs_i_size_write(inode, 0); 4738 err = btrfs_update_inode(trans, root, inode); 4739 if (err) 4740 goto out_fail; 4741 4742 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4743 dentry->d_name.len, 0, index); 4744 if (err) 4745 goto out_fail; 4746 4747 d_instantiate(dentry, inode); 4748 drop_on_err = 0; 4749 4750 out_fail: 4751 nr = trans->blocks_used; 4752 btrfs_end_transaction_throttle(trans, root); 4753 if (drop_on_err) 4754 iput(inode); 4755 btrfs_btree_balance_dirty(root, nr); 4756 return err; 4757 } 4758 4759 /* helper for btfs_get_extent. Given an existing extent in the tree, 4760 * and an extent that you want to insert, deal with overlap and insert 4761 * the new extent into the tree. 4762 */ 4763 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4764 struct extent_map *existing, 4765 struct extent_map *em, 4766 u64 map_start, u64 map_len) 4767 { 4768 u64 start_diff; 4769 4770 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4771 start_diff = map_start - em->start; 4772 em->start = map_start; 4773 em->len = map_len; 4774 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4775 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4776 em->block_start += start_diff; 4777 em->block_len -= start_diff; 4778 } 4779 return add_extent_mapping(em_tree, em); 4780 } 4781 4782 static noinline int uncompress_inline(struct btrfs_path *path, 4783 struct inode *inode, struct page *page, 4784 size_t pg_offset, u64 extent_offset, 4785 struct btrfs_file_extent_item *item) 4786 { 4787 int ret; 4788 struct extent_buffer *leaf = path->nodes[0]; 4789 char *tmp; 4790 size_t max_size; 4791 unsigned long inline_size; 4792 unsigned long ptr; 4793 int compress_type; 4794 4795 WARN_ON(pg_offset != 0); 4796 compress_type = btrfs_file_extent_compression(leaf, item); 4797 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4798 inline_size = btrfs_file_extent_inline_item_len(leaf, 4799 btrfs_item_nr(leaf, path->slots[0])); 4800 tmp = kmalloc(inline_size, GFP_NOFS); 4801 if (!tmp) 4802 return -ENOMEM; 4803 ptr = btrfs_file_extent_inline_start(item); 4804 4805 read_extent_buffer(leaf, tmp, ptr, inline_size); 4806 4807 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4808 ret = btrfs_decompress(compress_type, tmp, page, 4809 extent_offset, inline_size, max_size); 4810 if (ret) { 4811 char *kaddr = kmap_atomic(page, KM_USER0); 4812 unsigned long copy_size = min_t(u64, 4813 PAGE_CACHE_SIZE - pg_offset, 4814 max_size - extent_offset); 4815 memset(kaddr + pg_offset, 0, copy_size); 4816 kunmap_atomic(kaddr, KM_USER0); 4817 } 4818 kfree(tmp); 4819 return 0; 4820 } 4821 4822 /* 4823 * a bit scary, this does extent mapping from logical file offset to the disk. 4824 * the ugly parts come from merging extents from the disk with the in-ram 4825 * representation. This gets more complex because of the data=ordered code, 4826 * where the in-ram extents might be locked pending data=ordered completion. 4827 * 4828 * This also copies inline extents directly into the page. 4829 */ 4830 4831 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4832 size_t pg_offset, u64 start, u64 len, 4833 int create) 4834 { 4835 int ret; 4836 int err = 0; 4837 u64 bytenr; 4838 u64 extent_start = 0; 4839 u64 extent_end = 0; 4840 u64 objectid = btrfs_ino(inode); 4841 u32 found_type; 4842 struct btrfs_path *path = NULL; 4843 struct btrfs_root *root = BTRFS_I(inode)->root; 4844 struct btrfs_file_extent_item *item; 4845 struct extent_buffer *leaf; 4846 struct btrfs_key found_key; 4847 struct extent_map *em = NULL; 4848 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4849 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4850 struct btrfs_trans_handle *trans = NULL; 4851 int compress_type; 4852 4853 again: 4854 read_lock(&em_tree->lock); 4855 em = lookup_extent_mapping(em_tree, start, len); 4856 if (em) 4857 em->bdev = root->fs_info->fs_devices->latest_bdev; 4858 read_unlock(&em_tree->lock); 4859 4860 if (em) { 4861 if (em->start > start || em->start + em->len <= start) 4862 free_extent_map(em); 4863 else if (em->block_start == EXTENT_MAP_INLINE && page) 4864 free_extent_map(em); 4865 else 4866 goto out; 4867 } 4868 em = alloc_extent_map(); 4869 if (!em) { 4870 err = -ENOMEM; 4871 goto out; 4872 } 4873 em->bdev = root->fs_info->fs_devices->latest_bdev; 4874 em->start = EXTENT_MAP_HOLE; 4875 em->orig_start = EXTENT_MAP_HOLE; 4876 em->len = (u64)-1; 4877 em->block_len = (u64)-1; 4878 4879 if (!path) { 4880 path = btrfs_alloc_path(); 4881 if (!path) { 4882 err = -ENOMEM; 4883 goto out; 4884 } 4885 /* 4886 * Chances are we'll be called again, so go ahead and do 4887 * readahead 4888 */ 4889 path->reada = 1; 4890 } 4891 4892 ret = btrfs_lookup_file_extent(trans, root, path, 4893 objectid, start, trans != NULL); 4894 if (ret < 0) { 4895 err = ret; 4896 goto out; 4897 } 4898 4899 if (ret != 0) { 4900 if (path->slots[0] == 0) 4901 goto not_found; 4902 path->slots[0]--; 4903 } 4904 4905 leaf = path->nodes[0]; 4906 item = btrfs_item_ptr(leaf, path->slots[0], 4907 struct btrfs_file_extent_item); 4908 /* are we inside the extent that was found? */ 4909 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4910 found_type = btrfs_key_type(&found_key); 4911 if (found_key.objectid != objectid || 4912 found_type != BTRFS_EXTENT_DATA_KEY) { 4913 goto not_found; 4914 } 4915 4916 found_type = btrfs_file_extent_type(leaf, item); 4917 extent_start = found_key.offset; 4918 compress_type = btrfs_file_extent_compression(leaf, item); 4919 if (found_type == BTRFS_FILE_EXTENT_REG || 4920 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4921 extent_end = extent_start + 4922 btrfs_file_extent_num_bytes(leaf, item); 4923 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4924 size_t size; 4925 size = btrfs_file_extent_inline_len(leaf, item); 4926 extent_end = (extent_start + size + root->sectorsize - 1) & 4927 ~((u64)root->sectorsize - 1); 4928 } 4929 4930 if (start >= extent_end) { 4931 path->slots[0]++; 4932 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4933 ret = btrfs_next_leaf(root, path); 4934 if (ret < 0) { 4935 err = ret; 4936 goto out; 4937 } 4938 if (ret > 0) 4939 goto not_found; 4940 leaf = path->nodes[0]; 4941 } 4942 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4943 if (found_key.objectid != objectid || 4944 found_key.type != BTRFS_EXTENT_DATA_KEY) 4945 goto not_found; 4946 if (start + len <= found_key.offset) 4947 goto not_found; 4948 em->start = start; 4949 em->len = found_key.offset - start; 4950 goto not_found_em; 4951 } 4952 4953 if (found_type == BTRFS_FILE_EXTENT_REG || 4954 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4955 em->start = extent_start; 4956 em->len = extent_end - extent_start; 4957 em->orig_start = extent_start - 4958 btrfs_file_extent_offset(leaf, item); 4959 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4960 if (bytenr == 0) { 4961 em->block_start = EXTENT_MAP_HOLE; 4962 goto insert; 4963 } 4964 if (compress_type != BTRFS_COMPRESS_NONE) { 4965 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4966 em->compress_type = compress_type; 4967 em->block_start = bytenr; 4968 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4969 item); 4970 } else { 4971 bytenr += btrfs_file_extent_offset(leaf, item); 4972 em->block_start = bytenr; 4973 em->block_len = em->len; 4974 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4975 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4976 } 4977 goto insert; 4978 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4979 unsigned long ptr; 4980 char *map; 4981 size_t size; 4982 size_t extent_offset; 4983 size_t copy_size; 4984 4985 em->block_start = EXTENT_MAP_INLINE; 4986 if (!page || create) { 4987 em->start = extent_start; 4988 em->len = extent_end - extent_start; 4989 goto out; 4990 } 4991 4992 size = btrfs_file_extent_inline_len(leaf, item); 4993 extent_offset = page_offset(page) + pg_offset - extent_start; 4994 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4995 size - extent_offset); 4996 em->start = extent_start + extent_offset; 4997 em->len = (copy_size + root->sectorsize - 1) & 4998 ~((u64)root->sectorsize - 1); 4999 em->orig_start = EXTENT_MAP_INLINE; 5000 if (compress_type) { 5001 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5002 em->compress_type = compress_type; 5003 } 5004 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5005 if (create == 0 && !PageUptodate(page)) { 5006 if (btrfs_file_extent_compression(leaf, item) != 5007 BTRFS_COMPRESS_NONE) { 5008 ret = uncompress_inline(path, inode, page, 5009 pg_offset, 5010 extent_offset, item); 5011 BUG_ON(ret); 5012 } else { 5013 map = kmap(page); 5014 read_extent_buffer(leaf, map + pg_offset, ptr, 5015 copy_size); 5016 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5017 memset(map + pg_offset + copy_size, 0, 5018 PAGE_CACHE_SIZE - pg_offset - 5019 copy_size); 5020 } 5021 kunmap(page); 5022 } 5023 flush_dcache_page(page); 5024 } else if (create && PageUptodate(page)) { 5025 WARN_ON(1); 5026 if (!trans) { 5027 kunmap(page); 5028 free_extent_map(em); 5029 em = NULL; 5030 5031 btrfs_release_path(path); 5032 trans = btrfs_join_transaction(root); 5033 5034 if (IS_ERR(trans)) 5035 return ERR_CAST(trans); 5036 goto again; 5037 } 5038 map = kmap(page); 5039 write_extent_buffer(leaf, map + pg_offset, ptr, 5040 copy_size); 5041 kunmap(page); 5042 btrfs_mark_buffer_dirty(leaf); 5043 } 5044 set_extent_uptodate(io_tree, em->start, 5045 extent_map_end(em) - 1, NULL, GFP_NOFS); 5046 goto insert; 5047 } else { 5048 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5049 WARN_ON(1); 5050 } 5051 not_found: 5052 em->start = start; 5053 em->len = len; 5054 not_found_em: 5055 em->block_start = EXTENT_MAP_HOLE; 5056 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5057 insert: 5058 btrfs_release_path(path); 5059 if (em->start > start || extent_map_end(em) <= start) { 5060 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5061 "[%llu %llu]\n", (unsigned long long)em->start, 5062 (unsigned long long)em->len, 5063 (unsigned long long)start, 5064 (unsigned long long)len); 5065 err = -EIO; 5066 goto out; 5067 } 5068 5069 err = 0; 5070 write_lock(&em_tree->lock); 5071 ret = add_extent_mapping(em_tree, em); 5072 /* it is possible that someone inserted the extent into the tree 5073 * while we had the lock dropped. It is also possible that 5074 * an overlapping map exists in the tree 5075 */ 5076 if (ret == -EEXIST) { 5077 struct extent_map *existing; 5078 5079 ret = 0; 5080 5081 existing = lookup_extent_mapping(em_tree, start, len); 5082 if (existing && (existing->start > start || 5083 existing->start + existing->len <= start)) { 5084 free_extent_map(existing); 5085 existing = NULL; 5086 } 5087 if (!existing) { 5088 existing = lookup_extent_mapping(em_tree, em->start, 5089 em->len); 5090 if (existing) { 5091 err = merge_extent_mapping(em_tree, existing, 5092 em, start, 5093 root->sectorsize); 5094 free_extent_map(existing); 5095 if (err) { 5096 free_extent_map(em); 5097 em = NULL; 5098 } 5099 } else { 5100 err = -EIO; 5101 free_extent_map(em); 5102 em = NULL; 5103 } 5104 } else { 5105 free_extent_map(em); 5106 em = existing; 5107 err = 0; 5108 } 5109 } 5110 write_unlock(&em_tree->lock); 5111 out: 5112 5113 trace_btrfs_get_extent(root, em); 5114 5115 if (path) 5116 btrfs_free_path(path); 5117 if (trans) { 5118 ret = btrfs_end_transaction(trans, root); 5119 if (!err) 5120 err = ret; 5121 } 5122 if (err) { 5123 free_extent_map(em); 5124 return ERR_PTR(err); 5125 } 5126 return em; 5127 } 5128 5129 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5130 size_t pg_offset, u64 start, u64 len, 5131 int create) 5132 { 5133 struct extent_map *em; 5134 struct extent_map *hole_em = NULL; 5135 u64 range_start = start; 5136 u64 end; 5137 u64 found; 5138 u64 found_end; 5139 int err = 0; 5140 5141 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5142 if (IS_ERR(em)) 5143 return em; 5144 if (em) { 5145 /* 5146 * if our em maps to a hole, there might 5147 * actually be delalloc bytes behind it 5148 */ 5149 if (em->block_start != EXTENT_MAP_HOLE) 5150 return em; 5151 else 5152 hole_em = em; 5153 } 5154 5155 /* check to see if we've wrapped (len == -1 or similar) */ 5156 end = start + len; 5157 if (end < start) 5158 end = (u64)-1; 5159 else 5160 end -= 1; 5161 5162 em = NULL; 5163 5164 /* ok, we didn't find anything, lets look for delalloc */ 5165 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5166 end, len, EXTENT_DELALLOC, 1); 5167 found_end = range_start + found; 5168 if (found_end < range_start) 5169 found_end = (u64)-1; 5170 5171 /* 5172 * we didn't find anything useful, return 5173 * the original results from get_extent() 5174 */ 5175 if (range_start > end || found_end <= start) { 5176 em = hole_em; 5177 hole_em = NULL; 5178 goto out; 5179 } 5180 5181 /* adjust the range_start to make sure it doesn't 5182 * go backwards from the start they passed in 5183 */ 5184 range_start = max(start,range_start); 5185 found = found_end - range_start; 5186 5187 if (found > 0) { 5188 u64 hole_start = start; 5189 u64 hole_len = len; 5190 5191 em = alloc_extent_map(); 5192 if (!em) { 5193 err = -ENOMEM; 5194 goto out; 5195 } 5196 /* 5197 * when btrfs_get_extent can't find anything it 5198 * returns one huge hole 5199 * 5200 * make sure what it found really fits our range, and 5201 * adjust to make sure it is based on the start from 5202 * the caller 5203 */ 5204 if (hole_em) { 5205 u64 calc_end = extent_map_end(hole_em); 5206 5207 if (calc_end <= start || (hole_em->start > end)) { 5208 free_extent_map(hole_em); 5209 hole_em = NULL; 5210 } else { 5211 hole_start = max(hole_em->start, start); 5212 hole_len = calc_end - hole_start; 5213 } 5214 } 5215 em->bdev = NULL; 5216 if (hole_em && range_start > hole_start) { 5217 /* our hole starts before our delalloc, so we 5218 * have to return just the parts of the hole 5219 * that go until the delalloc starts 5220 */ 5221 em->len = min(hole_len, 5222 range_start - hole_start); 5223 em->start = hole_start; 5224 em->orig_start = hole_start; 5225 /* 5226 * don't adjust block start at all, 5227 * it is fixed at EXTENT_MAP_HOLE 5228 */ 5229 em->block_start = hole_em->block_start; 5230 em->block_len = hole_len; 5231 } else { 5232 em->start = range_start; 5233 em->len = found; 5234 em->orig_start = range_start; 5235 em->block_start = EXTENT_MAP_DELALLOC; 5236 em->block_len = found; 5237 } 5238 } else if (hole_em) { 5239 return hole_em; 5240 } 5241 out: 5242 5243 free_extent_map(hole_em); 5244 if (err) { 5245 free_extent_map(em); 5246 return ERR_PTR(err); 5247 } 5248 return em; 5249 } 5250 5251 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5252 struct extent_map *em, 5253 u64 start, u64 len) 5254 { 5255 struct btrfs_root *root = BTRFS_I(inode)->root; 5256 struct btrfs_trans_handle *trans; 5257 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5258 struct btrfs_key ins; 5259 u64 alloc_hint; 5260 int ret; 5261 bool insert = false; 5262 5263 /* 5264 * Ok if the extent map we looked up is a hole and is for the exact 5265 * range we want, there is no reason to allocate a new one, however if 5266 * it is not right then we need to free this one and drop the cache for 5267 * our range. 5268 */ 5269 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5270 em->len != len) { 5271 free_extent_map(em); 5272 em = NULL; 5273 insert = true; 5274 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5275 } 5276 5277 trans = btrfs_join_transaction(root); 5278 if (IS_ERR(trans)) 5279 return ERR_CAST(trans); 5280 5281 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5282 btrfs_add_inode_defrag(trans, inode); 5283 5284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5285 5286 alloc_hint = get_extent_allocation_hint(inode, start, len); 5287 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5288 alloc_hint, (u64)-1, &ins, 1); 5289 if (ret) { 5290 em = ERR_PTR(ret); 5291 goto out; 5292 } 5293 5294 if (!em) { 5295 em = alloc_extent_map(); 5296 if (!em) { 5297 em = ERR_PTR(-ENOMEM); 5298 goto out; 5299 } 5300 } 5301 5302 em->start = start; 5303 em->orig_start = em->start; 5304 em->len = ins.offset; 5305 5306 em->block_start = ins.objectid; 5307 em->block_len = ins.offset; 5308 em->bdev = root->fs_info->fs_devices->latest_bdev; 5309 5310 /* 5311 * We need to do this because if we're using the original em we searched 5312 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5313 */ 5314 em->flags = 0; 5315 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5316 5317 while (insert) { 5318 write_lock(&em_tree->lock); 5319 ret = add_extent_mapping(em_tree, em); 5320 write_unlock(&em_tree->lock); 5321 if (ret != -EEXIST) 5322 break; 5323 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5324 } 5325 5326 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5327 ins.offset, ins.offset, 0); 5328 if (ret) { 5329 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5330 em = ERR_PTR(ret); 5331 } 5332 out: 5333 btrfs_end_transaction(trans, root); 5334 return em; 5335 } 5336 5337 /* 5338 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5339 * block must be cow'd 5340 */ 5341 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5342 struct inode *inode, u64 offset, u64 len) 5343 { 5344 struct btrfs_path *path; 5345 int ret; 5346 struct extent_buffer *leaf; 5347 struct btrfs_root *root = BTRFS_I(inode)->root; 5348 struct btrfs_file_extent_item *fi; 5349 struct btrfs_key key; 5350 u64 disk_bytenr; 5351 u64 backref_offset; 5352 u64 extent_end; 5353 u64 num_bytes; 5354 int slot; 5355 int found_type; 5356 5357 path = btrfs_alloc_path(); 5358 if (!path) 5359 return -ENOMEM; 5360 5361 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5362 offset, 0); 5363 if (ret < 0) 5364 goto out; 5365 5366 slot = path->slots[0]; 5367 if (ret == 1) { 5368 if (slot == 0) { 5369 /* can't find the item, must cow */ 5370 ret = 0; 5371 goto out; 5372 } 5373 slot--; 5374 } 5375 ret = 0; 5376 leaf = path->nodes[0]; 5377 btrfs_item_key_to_cpu(leaf, &key, slot); 5378 if (key.objectid != btrfs_ino(inode) || 5379 key.type != BTRFS_EXTENT_DATA_KEY) { 5380 /* not our file or wrong item type, must cow */ 5381 goto out; 5382 } 5383 5384 if (key.offset > offset) { 5385 /* Wrong offset, must cow */ 5386 goto out; 5387 } 5388 5389 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5390 found_type = btrfs_file_extent_type(leaf, fi); 5391 if (found_type != BTRFS_FILE_EXTENT_REG && 5392 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5393 /* not a regular extent, must cow */ 5394 goto out; 5395 } 5396 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5397 backref_offset = btrfs_file_extent_offset(leaf, fi); 5398 5399 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5400 if (extent_end < offset + len) { 5401 /* extent doesn't include our full range, must cow */ 5402 goto out; 5403 } 5404 5405 if (btrfs_extent_readonly(root, disk_bytenr)) 5406 goto out; 5407 5408 /* 5409 * look for other files referencing this extent, if we 5410 * find any we must cow 5411 */ 5412 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5413 key.offset - backref_offset, disk_bytenr)) 5414 goto out; 5415 5416 /* 5417 * adjust disk_bytenr and num_bytes to cover just the bytes 5418 * in this extent we are about to write. If there 5419 * are any csums in that range we have to cow in order 5420 * to keep the csums correct 5421 */ 5422 disk_bytenr += backref_offset; 5423 disk_bytenr += offset - key.offset; 5424 num_bytes = min(offset + len, extent_end) - offset; 5425 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5426 goto out; 5427 /* 5428 * all of the above have passed, it is safe to overwrite this extent 5429 * without cow 5430 */ 5431 ret = 1; 5432 out: 5433 btrfs_free_path(path); 5434 return ret; 5435 } 5436 5437 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5438 struct buffer_head *bh_result, int create) 5439 { 5440 struct extent_map *em; 5441 struct btrfs_root *root = BTRFS_I(inode)->root; 5442 u64 start = iblock << inode->i_blkbits; 5443 u64 len = bh_result->b_size; 5444 struct btrfs_trans_handle *trans; 5445 5446 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5447 if (IS_ERR(em)) 5448 return PTR_ERR(em); 5449 5450 /* 5451 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5452 * io. INLINE is special, and we could probably kludge it in here, but 5453 * it's still buffered so for safety lets just fall back to the generic 5454 * buffered path. 5455 * 5456 * For COMPRESSED we _have_ to read the entire extent in so we can 5457 * decompress it, so there will be buffering required no matter what we 5458 * do, so go ahead and fallback to buffered. 5459 * 5460 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5461 * to buffered IO. Don't blame me, this is the price we pay for using 5462 * the generic code. 5463 */ 5464 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5465 em->block_start == EXTENT_MAP_INLINE) { 5466 free_extent_map(em); 5467 return -ENOTBLK; 5468 } 5469 5470 /* Just a good old fashioned hole, return */ 5471 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5472 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5473 free_extent_map(em); 5474 /* DIO will do one hole at a time, so just unlock a sector */ 5475 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5476 start + root->sectorsize - 1, GFP_NOFS); 5477 return 0; 5478 } 5479 5480 /* 5481 * We don't allocate a new extent in the following cases 5482 * 5483 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5484 * existing extent. 5485 * 2) The extent is marked as PREALLOC. We're good to go here and can 5486 * just use the extent. 5487 * 5488 */ 5489 if (!create) { 5490 len = em->len - (start - em->start); 5491 goto map; 5492 } 5493 5494 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5495 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5496 em->block_start != EXTENT_MAP_HOLE)) { 5497 int type; 5498 int ret; 5499 u64 block_start; 5500 5501 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5502 type = BTRFS_ORDERED_PREALLOC; 5503 else 5504 type = BTRFS_ORDERED_NOCOW; 5505 len = min(len, em->len - (start - em->start)); 5506 block_start = em->block_start + (start - em->start); 5507 5508 /* 5509 * we're not going to log anything, but we do need 5510 * to make sure the current transaction stays open 5511 * while we look for nocow cross refs 5512 */ 5513 trans = btrfs_join_transaction(root); 5514 if (IS_ERR(trans)) 5515 goto must_cow; 5516 5517 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5518 ret = btrfs_add_ordered_extent_dio(inode, start, 5519 block_start, len, len, type); 5520 btrfs_end_transaction(trans, root); 5521 if (ret) { 5522 free_extent_map(em); 5523 return ret; 5524 } 5525 goto unlock; 5526 } 5527 btrfs_end_transaction(trans, root); 5528 } 5529 must_cow: 5530 /* 5531 * this will cow the extent, reset the len in case we changed 5532 * it above 5533 */ 5534 len = bh_result->b_size; 5535 em = btrfs_new_extent_direct(inode, em, start, len); 5536 if (IS_ERR(em)) 5537 return PTR_ERR(em); 5538 len = min(len, em->len - (start - em->start)); 5539 unlock: 5540 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5541 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5542 0, NULL, GFP_NOFS); 5543 map: 5544 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5545 inode->i_blkbits; 5546 bh_result->b_size = len; 5547 bh_result->b_bdev = em->bdev; 5548 set_buffer_mapped(bh_result); 5549 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5550 set_buffer_new(bh_result); 5551 5552 free_extent_map(em); 5553 5554 return 0; 5555 } 5556 5557 struct btrfs_dio_private { 5558 struct inode *inode; 5559 u64 logical_offset; 5560 u64 disk_bytenr; 5561 u64 bytes; 5562 u32 *csums; 5563 void *private; 5564 5565 /* number of bios pending for this dio */ 5566 atomic_t pending_bios; 5567 5568 /* IO errors */ 5569 int errors; 5570 5571 struct bio *orig_bio; 5572 }; 5573 5574 static void btrfs_endio_direct_read(struct bio *bio, int err) 5575 { 5576 struct btrfs_dio_private *dip = bio->bi_private; 5577 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5578 struct bio_vec *bvec = bio->bi_io_vec; 5579 struct inode *inode = dip->inode; 5580 struct btrfs_root *root = BTRFS_I(inode)->root; 5581 u64 start; 5582 u32 *private = dip->csums; 5583 5584 start = dip->logical_offset; 5585 do { 5586 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5587 struct page *page = bvec->bv_page; 5588 char *kaddr; 5589 u32 csum = ~(u32)0; 5590 unsigned long flags; 5591 5592 local_irq_save(flags); 5593 kaddr = kmap_atomic(page, KM_IRQ0); 5594 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5595 csum, bvec->bv_len); 5596 btrfs_csum_final(csum, (char *)&csum); 5597 kunmap_atomic(kaddr, KM_IRQ0); 5598 local_irq_restore(flags); 5599 5600 flush_dcache_page(bvec->bv_page); 5601 if (csum != *private) { 5602 printk(KERN_ERR "btrfs csum failed ino %llu off" 5603 " %llu csum %u private %u\n", 5604 (unsigned long long)btrfs_ino(inode), 5605 (unsigned long long)start, 5606 csum, *private); 5607 err = -EIO; 5608 } 5609 } 5610 5611 start += bvec->bv_len; 5612 private++; 5613 bvec++; 5614 } while (bvec <= bvec_end); 5615 5616 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5617 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5618 bio->bi_private = dip->private; 5619 5620 kfree(dip->csums); 5621 kfree(dip); 5622 5623 /* If we had a csum failure make sure to clear the uptodate flag */ 5624 if (err) 5625 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5626 dio_end_io(bio, err); 5627 } 5628 5629 static void btrfs_endio_direct_write(struct bio *bio, int err) 5630 { 5631 struct btrfs_dio_private *dip = bio->bi_private; 5632 struct inode *inode = dip->inode; 5633 struct btrfs_root *root = BTRFS_I(inode)->root; 5634 struct btrfs_trans_handle *trans; 5635 struct btrfs_ordered_extent *ordered = NULL; 5636 struct extent_state *cached_state = NULL; 5637 u64 ordered_offset = dip->logical_offset; 5638 u64 ordered_bytes = dip->bytes; 5639 int ret; 5640 5641 if (err) 5642 goto out_done; 5643 again: 5644 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5645 &ordered_offset, 5646 ordered_bytes); 5647 if (!ret) 5648 goto out_test; 5649 5650 BUG_ON(!ordered); 5651 5652 trans = btrfs_join_transaction(root); 5653 if (IS_ERR(trans)) { 5654 err = -ENOMEM; 5655 goto out; 5656 } 5657 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5658 5659 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5660 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5661 if (!ret) 5662 err = btrfs_update_inode_fallback(trans, root, inode); 5663 goto out; 5664 } 5665 5666 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5667 ordered->file_offset + ordered->len - 1, 0, 5668 &cached_state, GFP_NOFS); 5669 5670 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5671 ret = btrfs_mark_extent_written(trans, inode, 5672 ordered->file_offset, 5673 ordered->file_offset + 5674 ordered->len); 5675 if (ret) { 5676 err = ret; 5677 goto out_unlock; 5678 } 5679 } else { 5680 ret = insert_reserved_file_extent(trans, inode, 5681 ordered->file_offset, 5682 ordered->start, 5683 ordered->disk_len, 5684 ordered->len, 5685 ordered->len, 5686 0, 0, 0, 5687 BTRFS_FILE_EXTENT_REG); 5688 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5689 ordered->file_offset, ordered->len); 5690 if (ret) { 5691 err = ret; 5692 WARN_ON(1); 5693 goto out_unlock; 5694 } 5695 } 5696 5697 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5698 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5699 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 5700 btrfs_update_inode_fallback(trans, root, inode); 5701 ret = 0; 5702 out_unlock: 5703 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5704 ordered->file_offset + ordered->len - 1, 5705 &cached_state, GFP_NOFS); 5706 out: 5707 btrfs_delalloc_release_metadata(inode, ordered->len); 5708 btrfs_end_transaction(trans, root); 5709 ordered_offset = ordered->file_offset + ordered->len; 5710 btrfs_put_ordered_extent(ordered); 5711 btrfs_put_ordered_extent(ordered); 5712 5713 out_test: 5714 /* 5715 * our bio might span multiple ordered extents. If we haven't 5716 * completed the accounting for the whole dio, go back and try again 5717 */ 5718 if (ordered_offset < dip->logical_offset + dip->bytes) { 5719 ordered_bytes = dip->logical_offset + dip->bytes - 5720 ordered_offset; 5721 goto again; 5722 } 5723 out_done: 5724 bio->bi_private = dip->private; 5725 5726 kfree(dip->csums); 5727 kfree(dip); 5728 5729 /* If we had an error make sure to clear the uptodate flag */ 5730 if (err) 5731 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5732 dio_end_io(bio, err); 5733 } 5734 5735 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5736 struct bio *bio, int mirror_num, 5737 unsigned long bio_flags, u64 offset) 5738 { 5739 int ret; 5740 struct btrfs_root *root = BTRFS_I(inode)->root; 5741 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5742 BUG_ON(ret); 5743 return 0; 5744 } 5745 5746 static void btrfs_end_dio_bio(struct bio *bio, int err) 5747 { 5748 struct btrfs_dio_private *dip = bio->bi_private; 5749 5750 if (err) { 5751 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5752 "sector %#Lx len %u err no %d\n", 5753 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5754 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5755 dip->errors = 1; 5756 5757 /* 5758 * before atomic variable goto zero, we must make sure 5759 * dip->errors is perceived to be set. 5760 */ 5761 smp_mb__before_atomic_dec(); 5762 } 5763 5764 /* if there are more bios still pending for this dio, just exit */ 5765 if (!atomic_dec_and_test(&dip->pending_bios)) 5766 goto out; 5767 5768 if (dip->errors) 5769 bio_io_error(dip->orig_bio); 5770 else { 5771 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5772 bio_endio(dip->orig_bio, 0); 5773 } 5774 out: 5775 bio_put(bio); 5776 } 5777 5778 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5779 u64 first_sector, gfp_t gfp_flags) 5780 { 5781 int nr_vecs = bio_get_nr_vecs(bdev); 5782 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5783 } 5784 5785 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5786 int rw, u64 file_offset, int skip_sum, 5787 u32 *csums, int async_submit) 5788 { 5789 int write = rw & REQ_WRITE; 5790 struct btrfs_root *root = BTRFS_I(inode)->root; 5791 int ret; 5792 5793 bio_get(bio); 5794 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5795 if (ret) 5796 goto err; 5797 5798 if (skip_sum) 5799 goto map; 5800 5801 if (write && async_submit) { 5802 ret = btrfs_wq_submit_bio(root->fs_info, 5803 inode, rw, bio, 0, 0, 5804 file_offset, 5805 __btrfs_submit_bio_start_direct_io, 5806 __btrfs_submit_bio_done); 5807 goto err; 5808 } else if (write) { 5809 /* 5810 * If we aren't doing async submit, calculate the csum of the 5811 * bio now. 5812 */ 5813 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5814 if (ret) 5815 goto err; 5816 } else if (!skip_sum) { 5817 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5818 file_offset, csums); 5819 if (ret) 5820 goto err; 5821 } 5822 5823 map: 5824 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5825 err: 5826 bio_put(bio); 5827 return ret; 5828 } 5829 5830 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5831 int skip_sum) 5832 { 5833 struct inode *inode = dip->inode; 5834 struct btrfs_root *root = BTRFS_I(inode)->root; 5835 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5836 struct bio *bio; 5837 struct bio *orig_bio = dip->orig_bio; 5838 struct bio_vec *bvec = orig_bio->bi_io_vec; 5839 u64 start_sector = orig_bio->bi_sector; 5840 u64 file_offset = dip->logical_offset; 5841 u64 submit_len = 0; 5842 u64 map_length; 5843 int nr_pages = 0; 5844 u32 *csums = dip->csums; 5845 int ret = 0; 5846 int async_submit = 0; 5847 int write = rw & REQ_WRITE; 5848 5849 map_length = orig_bio->bi_size; 5850 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5851 &map_length, NULL, 0); 5852 if (ret) { 5853 bio_put(orig_bio); 5854 return -EIO; 5855 } 5856 5857 if (map_length >= orig_bio->bi_size) { 5858 bio = orig_bio; 5859 goto submit; 5860 } 5861 5862 async_submit = 1; 5863 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5864 if (!bio) 5865 return -ENOMEM; 5866 bio->bi_private = dip; 5867 bio->bi_end_io = btrfs_end_dio_bio; 5868 atomic_inc(&dip->pending_bios); 5869 5870 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5871 if (unlikely(map_length < submit_len + bvec->bv_len || 5872 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5873 bvec->bv_offset) < bvec->bv_len)) { 5874 /* 5875 * inc the count before we submit the bio so 5876 * we know the end IO handler won't happen before 5877 * we inc the count. Otherwise, the dip might get freed 5878 * before we're done setting it up 5879 */ 5880 atomic_inc(&dip->pending_bios); 5881 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5882 file_offset, skip_sum, 5883 csums, async_submit); 5884 if (ret) { 5885 bio_put(bio); 5886 atomic_dec(&dip->pending_bios); 5887 goto out_err; 5888 } 5889 5890 /* Write's use the ordered csums */ 5891 if (!write && !skip_sum) 5892 csums = csums + nr_pages; 5893 start_sector += submit_len >> 9; 5894 file_offset += submit_len; 5895 5896 submit_len = 0; 5897 nr_pages = 0; 5898 5899 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5900 start_sector, GFP_NOFS); 5901 if (!bio) 5902 goto out_err; 5903 bio->bi_private = dip; 5904 bio->bi_end_io = btrfs_end_dio_bio; 5905 5906 map_length = orig_bio->bi_size; 5907 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5908 &map_length, NULL, 0); 5909 if (ret) { 5910 bio_put(bio); 5911 goto out_err; 5912 } 5913 } else { 5914 submit_len += bvec->bv_len; 5915 nr_pages ++; 5916 bvec++; 5917 } 5918 } 5919 5920 submit: 5921 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 5922 csums, async_submit); 5923 if (!ret) 5924 return 0; 5925 5926 bio_put(bio); 5927 out_err: 5928 dip->errors = 1; 5929 /* 5930 * before atomic variable goto zero, we must 5931 * make sure dip->errors is perceived to be set. 5932 */ 5933 smp_mb__before_atomic_dec(); 5934 if (atomic_dec_and_test(&dip->pending_bios)) 5935 bio_io_error(dip->orig_bio); 5936 5937 /* bio_end_io() will handle error, so we needn't return it */ 5938 return 0; 5939 } 5940 5941 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 5942 loff_t file_offset) 5943 { 5944 struct btrfs_root *root = BTRFS_I(inode)->root; 5945 struct btrfs_dio_private *dip; 5946 struct bio_vec *bvec = bio->bi_io_vec; 5947 int skip_sum; 5948 int write = rw & REQ_WRITE; 5949 int ret = 0; 5950 5951 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 5952 5953 dip = kmalloc(sizeof(*dip), GFP_NOFS); 5954 if (!dip) { 5955 ret = -ENOMEM; 5956 goto free_ordered; 5957 } 5958 dip->csums = NULL; 5959 5960 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 5961 if (!write && !skip_sum) { 5962 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 5963 if (!dip->csums) { 5964 kfree(dip); 5965 ret = -ENOMEM; 5966 goto free_ordered; 5967 } 5968 } 5969 5970 dip->private = bio->bi_private; 5971 dip->inode = inode; 5972 dip->logical_offset = file_offset; 5973 5974 dip->bytes = 0; 5975 do { 5976 dip->bytes += bvec->bv_len; 5977 bvec++; 5978 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 5979 5980 dip->disk_bytenr = (u64)bio->bi_sector << 9; 5981 bio->bi_private = dip; 5982 dip->errors = 0; 5983 dip->orig_bio = bio; 5984 atomic_set(&dip->pending_bios, 0); 5985 5986 if (write) 5987 bio->bi_end_io = btrfs_endio_direct_write; 5988 else 5989 bio->bi_end_io = btrfs_endio_direct_read; 5990 5991 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 5992 if (!ret) 5993 return; 5994 free_ordered: 5995 /* 5996 * If this is a write, we need to clean up the reserved space and kill 5997 * the ordered extent. 5998 */ 5999 if (write) { 6000 struct btrfs_ordered_extent *ordered; 6001 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6002 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6003 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6004 btrfs_free_reserved_extent(root, ordered->start, 6005 ordered->disk_len); 6006 btrfs_put_ordered_extent(ordered); 6007 btrfs_put_ordered_extent(ordered); 6008 } 6009 bio_endio(bio, ret); 6010 } 6011 6012 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6013 const struct iovec *iov, loff_t offset, 6014 unsigned long nr_segs) 6015 { 6016 int seg; 6017 int i; 6018 size_t size; 6019 unsigned long addr; 6020 unsigned blocksize_mask = root->sectorsize - 1; 6021 ssize_t retval = -EINVAL; 6022 loff_t end = offset; 6023 6024 if (offset & blocksize_mask) 6025 goto out; 6026 6027 /* Check the memory alignment. Blocks cannot straddle pages */ 6028 for (seg = 0; seg < nr_segs; seg++) { 6029 addr = (unsigned long)iov[seg].iov_base; 6030 size = iov[seg].iov_len; 6031 end += size; 6032 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6033 goto out; 6034 6035 /* If this is a write we don't need to check anymore */ 6036 if (rw & WRITE) 6037 continue; 6038 6039 /* 6040 * Check to make sure we don't have duplicate iov_base's in this 6041 * iovec, if so return EINVAL, otherwise we'll get csum errors 6042 * when reading back. 6043 */ 6044 for (i = seg + 1; i < nr_segs; i++) { 6045 if (iov[seg].iov_base == iov[i].iov_base) 6046 goto out; 6047 } 6048 } 6049 retval = 0; 6050 out: 6051 return retval; 6052 } 6053 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6054 const struct iovec *iov, loff_t offset, 6055 unsigned long nr_segs) 6056 { 6057 struct file *file = iocb->ki_filp; 6058 struct inode *inode = file->f_mapping->host; 6059 struct btrfs_ordered_extent *ordered; 6060 struct extent_state *cached_state = NULL; 6061 u64 lockstart, lockend; 6062 ssize_t ret; 6063 int writing = rw & WRITE; 6064 int write_bits = 0; 6065 size_t count = iov_length(iov, nr_segs); 6066 6067 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6068 offset, nr_segs)) { 6069 return 0; 6070 } 6071 6072 lockstart = offset; 6073 lockend = offset + count - 1; 6074 6075 if (writing) { 6076 ret = btrfs_delalloc_reserve_space(inode, count); 6077 if (ret) 6078 goto out; 6079 } 6080 6081 while (1) { 6082 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6083 0, &cached_state, GFP_NOFS); 6084 /* 6085 * We're concerned with the entire range that we're going to be 6086 * doing DIO to, so we need to make sure theres no ordered 6087 * extents in this range. 6088 */ 6089 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6090 lockend - lockstart + 1); 6091 if (!ordered) 6092 break; 6093 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6094 &cached_state, GFP_NOFS); 6095 btrfs_start_ordered_extent(inode, ordered, 1); 6096 btrfs_put_ordered_extent(ordered); 6097 cond_resched(); 6098 } 6099 6100 /* 6101 * we don't use btrfs_set_extent_delalloc because we don't want 6102 * the dirty or uptodate bits 6103 */ 6104 if (writing) { 6105 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6106 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6107 EXTENT_DELALLOC, 0, NULL, &cached_state, 6108 GFP_NOFS); 6109 if (ret) { 6110 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6111 lockend, EXTENT_LOCKED | write_bits, 6112 1, 0, &cached_state, GFP_NOFS); 6113 goto out; 6114 } 6115 } 6116 6117 free_extent_state(cached_state); 6118 cached_state = NULL; 6119 6120 ret = __blockdev_direct_IO(rw, iocb, inode, 6121 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6122 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6123 btrfs_submit_direct, 0); 6124 6125 if (ret < 0 && ret != -EIOCBQUEUED) { 6126 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6127 offset + iov_length(iov, nr_segs) - 1, 6128 EXTENT_LOCKED | write_bits, 1, 0, 6129 &cached_state, GFP_NOFS); 6130 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6131 /* 6132 * We're falling back to buffered, unlock the section we didn't 6133 * do IO on. 6134 */ 6135 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6136 offset + iov_length(iov, nr_segs) - 1, 6137 EXTENT_LOCKED | write_bits, 1, 0, 6138 &cached_state, GFP_NOFS); 6139 } 6140 out: 6141 free_extent_state(cached_state); 6142 return ret; 6143 } 6144 6145 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6146 __u64 start, __u64 len) 6147 { 6148 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6149 } 6150 6151 int btrfs_readpage(struct file *file, struct page *page) 6152 { 6153 struct extent_io_tree *tree; 6154 tree = &BTRFS_I(page->mapping->host)->io_tree; 6155 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6156 } 6157 6158 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6159 { 6160 struct extent_io_tree *tree; 6161 6162 6163 if (current->flags & PF_MEMALLOC) { 6164 redirty_page_for_writepage(wbc, page); 6165 unlock_page(page); 6166 return 0; 6167 } 6168 tree = &BTRFS_I(page->mapping->host)->io_tree; 6169 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6170 } 6171 6172 int btrfs_writepages(struct address_space *mapping, 6173 struct writeback_control *wbc) 6174 { 6175 struct extent_io_tree *tree; 6176 6177 tree = &BTRFS_I(mapping->host)->io_tree; 6178 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6179 } 6180 6181 static int 6182 btrfs_readpages(struct file *file, struct address_space *mapping, 6183 struct list_head *pages, unsigned nr_pages) 6184 { 6185 struct extent_io_tree *tree; 6186 tree = &BTRFS_I(mapping->host)->io_tree; 6187 return extent_readpages(tree, mapping, pages, nr_pages, 6188 btrfs_get_extent); 6189 } 6190 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6191 { 6192 struct extent_io_tree *tree; 6193 struct extent_map_tree *map; 6194 int ret; 6195 6196 tree = &BTRFS_I(page->mapping->host)->io_tree; 6197 map = &BTRFS_I(page->mapping->host)->extent_tree; 6198 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6199 if (ret == 1) { 6200 ClearPagePrivate(page); 6201 set_page_private(page, 0); 6202 page_cache_release(page); 6203 } 6204 return ret; 6205 } 6206 6207 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6208 { 6209 if (PageWriteback(page) || PageDirty(page)) 6210 return 0; 6211 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6212 } 6213 6214 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6215 { 6216 struct extent_io_tree *tree; 6217 struct btrfs_ordered_extent *ordered; 6218 struct extent_state *cached_state = NULL; 6219 u64 page_start = page_offset(page); 6220 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6221 6222 6223 /* 6224 * we have the page locked, so new writeback can't start, 6225 * and the dirty bit won't be cleared while we are here. 6226 * 6227 * Wait for IO on this page so that we can safely clear 6228 * the PagePrivate2 bit and do ordered accounting 6229 */ 6230 wait_on_page_writeback(page); 6231 6232 tree = &BTRFS_I(page->mapping->host)->io_tree; 6233 if (offset) { 6234 btrfs_releasepage(page, GFP_NOFS); 6235 return; 6236 } 6237 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6238 GFP_NOFS); 6239 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6240 page_offset(page)); 6241 if (ordered) { 6242 /* 6243 * IO on this page will never be started, so we need 6244 * to account for any ordered extents now 6245 */ 6246 clear_extent_bit(tree, page_start, page_end, 6247 EXTENT_DIRTY | EXTENT_DELALLOC | 6248 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6249 &cached_state, GFP_NOFS); 6250 /* 6251 * whoever cleared the private bit is responsible 6252 * for the finish_ordered_io 6253 */ 6254 if (TestClearPagePrivate2(page)) { 6255 btrfs_finish_ordered_io(page->mapping->host, 6256 page_start, page_end); 6257 } 6258 btrfs_put_ordered_extent(ordered); 6259 cached_state = NULL; 6260 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6261 GFP_NOFS); 6262 } 6263 clear_extent_bit(tree, page_start, page_end, 6264 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6265 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6266 __btrfs_releasepage(page, GFP_NOFS); 6267 6268 ClearPageChecked(page); 6269 if (PagePrivate(page)) { 6270 ClearPagePrivate(page); 6271 set_page_private(page, 0); 6272 page_cache_release(page); 6273 } 6274 } 6275 6276 /* 6277 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6278 * called from a page fault handler when a page is first dirtied. Hence we must 6279 * be careful to check for EOF conditions here. We set the page up correctly 6280 * for a written page which means we get ENOSPC checking when writing into 6281 * holes and correct delalloc and unwritten extent mapping on filesystems that 6282 * support these features. 6283 * 6284 * We are not allowed to take the i_mutex here so we have to play games to 6285 * protect against truncate races as the page could now be beyond EOF. Because 6286 * vmtruncate() writes the inode size before removing pages, once we have the 6287 * page lock we can determine safely if the page is beyond EOF. If it is not 6288 * beyond EOF, then the page is guaranteed safe against truncation until we 6289 * unlock the page. 6290 */ 6291 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6292 { 6293 struct page *page = vmf->page; 6294 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6295 struct btrfs_root *root = BTRFS_I(inode)->root; 6296 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6297 struct btrfs_ordered_extent *ordered; 6298 struct extent_state *cached_state = NULL; 6299 char *kaddr; 6300 unsigned long zero_start; 6301 loff_t size; 6302 int ret; 6303 u64 page_start; 6304 u64 page_end; 6305 6306 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6307 if (ret) { 6308 if (ret == -ENOMEM) 6309 ret = VM_FAULT_OOM; 6310 else /* -ENOSPC, -EIO, etc */ 6311 ret = VM_FAULT_SIGBUS; 6312 goto out; 6313 } 6314 6315 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6316 again: 6317 lock_page(page); 6318 size = i_size_read(inode); 6319 page_start = page_offset(page); 6320 page_end = page_start + PAGE_CACHE_SIZE - 1; 6321 6322 if ((page->mapping != inode->i_mapping) || 6323 (page_start >= size)) { 6324 /* page got truncated out from underneath us */ 6325 goto out_unlock; 6326 } 6327 wait_on_page_writeback(page); 6328 6329 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6330 GFP_NOFS); 6331 set_page_extent_mapped(page); 6332 6333 /* 6334 * we can't set the delalloc bits if there are pending ordered 6335 * extents. Drop our locks and wait for them to finish 6336 */ 6337 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6338 if (ordered) { 6339 unlock_extent_cached(io_tree, page_start, page_end, 6340 &cached_state, GFP_NOFS); 6341 unlock_page(page); 6342 btrfs_start_ordered_extent(inode, ordered, 1); 6343 btrfs_put_ordered_extent(ordered); 6344 goto again; 6345 } 6346 6347 /* 6348 * XXX - page_mkwrite gets called every time the page is dirtied, even 6349 * if it was already dirty, so for space accounting reasons we need to 6350 * clear any delalloc bits for the range we are fixing to save. There 6351 * is probably a better way to do this, but for now keep consistent with 6352 * prepare_pages in the normal write path. 6353 */ 6354 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6355 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6356 0, 0, &cached_state, GFP_NOFS); 6357 6358 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6359 &cached_state); 6360 if (ret) { 6361 unlock_extent_cached(io_tree, page_start, page_end, 6362 &cached_state, GFP_NOFS); 6363 ret = VM_FAULT_SIGBUS; 6364 goto out_unlock; 6365 } 6366 ret = 0; 6367 6368 /* page is wholly or partially inside EOF */ 6369 if (page_start + PAGE_CACHE_SIZE > size) 6370 zero_start = size & ~PAGE_CACHE_MASK; 6371 else 6372 zero_start = PAGE_CACHE_SIZE; 6373 6374 if (zero_start != PAGE_CACHE_SIZE) { 6375 kaddr = kmap(page); 6376 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6377 flush_dcache_page(page); 6378 kunmap(page); 6379 } 6380 ClearPageChecked(page); 6381 set_page_dirty(page); 6382 SetPageUptodate(page); 6383 6384 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6385 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6386 6387 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6388 6389 out_unlock: 6390 if (!ret) 6391 return VM_FAULT_LOCKED; 6392 unlock_page(page); 6393 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6394 out: 6395 return ret; 6396 } 6397 6398 static int btrfs_truncate(struct inode *inode) 6399 { 6400 struct btrfs_root *root = BTRFS_I(inode)->root; 6401 struct btrfs_block_rsv *rsv; 6402 int ret; 6403 int err = 0; 6404 struct btrfs_trans_handle *trans; 6405 unsigned long nr; 6406 u64 mask = root->sectorsize - 1; 6407 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6408 6409 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6410 if (ret) 6411 return ret; 6412 6413 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6414 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6415 6416 /* 6417 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6418 * 3 things going on here 6419 * 6420 * 1) We need to reserve space for our orphan item and the space to 6421 * delete our orphan item. Lord knows we don't want to have a dangling 6422 * orphan item because we didn't reserve space to remove it. 6423 * 6424 * 2) We need to reserve space to update our inode. 6425 * 6426 * 3) We need to have something to cache all the space that is going to 6427 * be free'd up by the truncate operation, but also have some slack 6428 * space reserved in case it uses space during the truncate (thank you 6429 * very much snapshotting). 6430 * 6431 * And we need these to all be seperate. The fact is we can use alot of 6432 * space doing the truncate, and we have no earthly idea how much space 6433 * we will use, so we need the truncate reservation to be seperate so it 6434 * doesn't end up using space reserved for updating the inode or 6435 * removing the orphan item. We also need to be able to stop the 6436 * transaction and start a new one, which means we need to be able to 6437 * update the inode several times, and we have no idea of knowing how 6438 * many times that will be, so we can't just reserve 1 item for the 6439 * entirety of the opration, so that has to be done seperately as well. 6440 * Then there is the orphan item, which does indeed need to be held on 6441 * to for the whole operation, and we need nobody to touch this reserved 6442 * space except the orphan code. 6443 * 6444 * So that leaves us with 6445 * 6446 * 1) root->orphan_block_rsv - for the orphan deletion. 6447 * 2) rsv - for the truncate reservation, which we will steal from the 6448 * transaction reservation. 6449 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6450 * updating the inode. 6451 */ 6452 rsv = btrfs_alloc_block_rsv(root); 6453 if (!rsv) 6454 return -ENOMEM; 6455 rsv->size = min_size; 6456 6457 /* 6458 * 1 for the truncate slack space 6459 * 1 for the orphan item we're going to add 6460 * 1 for the orphan item deletion 6461 * 1 for updating the inode. 6462 */ 6463 trans = btrfs_start_transaction(root, 4); 6464 if (IS_ERR(trans)) { 6465 err = PTR_ERR(trans); 6466 goto out; 6467 } 6468 6469 /* Migrate the slack space for the truncate to our reserve */ 6470 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6471 min_size); 6472 BUG_ON(ret); 6473 6474 ret = btrfs_orphan_add(trans, inode); 6475 if (ret) { 6476 btrfs_end_transaction(trans, root); 6477 goto out; 6478 } 6479 6480 /* 6481 * setattr is responsible for setting the ordered_data_close flag, 6482 * but that is only tested during the last file release. That 6483 * could happen well after the next commit, leaving a great big 6484 * window where new writes may get lost if someone chooses to write 6485 * to this file after truncating to zero 6486 * 6487 * The inode doesn't have any dirty data here, and so if we commit 6488 * this is a noop. If someone immediately starts writing to the inode 6489 * it is very likely we'll catch some of their writes in this 6490 * transaction, and the commit will find this file on the ordered 6491 * data list with good things to send down. 6492 * 6493 * This is a best effort solution, there is still a window where 6494 * using truncate to replace the contents of the file will 6495 * end up with a zero length file after a crash. 6496 */ 6497 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6498 btrfs_add_ordered_operation(trans, root, inode); 6499 6500 while (1) { 6501 ret = btrfs_block_rsv_refill(root, rsv, min_size); 6502 if (ret) { 6503 /* 6504 * This can only happen with the original transaction we 6505 * started above, every other time we shouldn't have a 6506 * transaction started yet. 6507 */ 6508 if (ret == -EAGAIN) 6509 goto end_trans; 6510 err = ret; 6511 break; 6512 } 6513 6514 if (!trans) { 6515 /* Just need the 1 for updating the inode */ 6516 trans = btrfs_start_transaction(root, 1); 6517 if (IS_ERR(trans)) { 6518 err = PTR_ERR(trans); 6519 goto out; 6520 } 6521 } 6522 6523 trans->block_rsv = rsv; 6524 6525 ret = btrfs_truncate_inode_items(trans, root, inode, 6526 inode->i_size, 6527 BTRFS_EXTENT_DATA_KEY); 6528 if (ret != -EAGAIN) { 6529 err = ret; 6530 break; 6531 } 6532 6533 trans->block_rsv = &root->fs_info->trans_block_rsv; 6534 ret = btrfs_update_inode(trans, root, inode); 6535 if (ret) { 6536 err = ret; 6537 break; 6538 } 6539 end_trans: 6540 nr = trans->blocks_used; 6541 btrfs_end_transaction(trans, root); 6542 trans = NULL; 6543 btrfs_btree_balance_dirty(root, nr); 6544 } 6545 6546 if (ret == 0 && inode->i_nlink > 0) { 6547 trans->block_rsv = root->orphan_block_rsv; 6548 ret = btrfs_orphan_del(trans, inode); 6549 if (ret) 6550 err = ret; 6551 } else if (ret && inode->i_nlink > 0) { 6552 /* 6553 * Failed to do the truncate, remove us from the in memory 6554 * orphan list. 6555 */ 6556 ret = btrfs_orphan_del(NULL, inode); 6557 } 6558 6559 if (trans) { 6560 trans->block_rsv = &root->fs_info->trans_block_rsv; 6561 ret = btrfs_update_inode(trans, root, inode); 6562 if (ret && !err) 6563 err = ret; 6564 6565 nr = trans->blocks_used; 6566 ret = btrfs_end_transaction_throttle(trans, root); 6567 btrfs_btree_balance_dirty(root, nr); 6568 } 6569 6570 out: 6571 btrfs_free_block_rsv(root, rsv); 6572 6573 if (ret && !err) 6574 err = ret; 6575 6576 return err; 6577 } 6578 6579 /* 6580 * create a new subvolume directory/inode (helper for the ioctl). 6581 */ 6582 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6583 struct btrfs_root *new_root, u64 new_dirid) 6584 { 6585 struct inode *inode; 6586 int err; 6587 u64 index = 0; 6588 6589 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6590 new_dirid, S_IFDIR | 0700, &index); 6591 if (IS_ERR(inode)) 6592 return PTR_ERR(inode); 6593 inode->i_op = &btrfs_dir_inode_operations; 6594 inode->i_fop = &btrfs_dir_file_operations; 6595 6596 set_nlink(inode, 1); 6597 btrfs_i_size_write(inode, 0); 6598 6599 err = btrfs_update_inode(trans, new_root, inode); 6600 BUG_ON(err); 6601 6602 iput(inode); 6603 return 0; 6604 } 6605 6606 struct inode *btrfs_alloc_inode(struct super_block *sb) 6607 { 6608 struct btrfs_inode *ei; 6609 struct inode *inode; 6610 6611 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6612 if (!ei) 6613 return NULL; 6614 6615 ei->root = NULL; 6616 ei->space_info = NULL; 6617 ei->generation = 0; 6618 ei->sequence = 0; 6619 ei->last_trans = 0; 6620 ei->last_sub_trans = 0; 6621 ei->logged_trans = 0; 6622 ei->delalloc_bytes = 0; 6623 ei->disk_i_size = 0; 6624 ei->flags = 0; 6625 ei->csum_bytes = 0; 6626 ei->index_cnt = (u64)-1; 6627 ei->last_unlink_trans = 0; 6628 6629 spin_lock_init(&ei->lock); 6630 ei->outstanding_extents = 0; 6631 ei->reserved_extents = 0; 6632 6633 ei->ordered_data_close = 0; 6634 ei->orphan_meta_reserved = 0; 6635 ei->dummy_inode = 0; 6636 ei->in_defrag = 0; 6637 ei->delalloc_meta_reserved = 0; 6638 ei->force_compress = BTRFS_COMPRESS_NONE; 6639 6640 ei->delayed_node = NULL; 6641 6642 inode = &ei->vfs_inode; 6643 extent_map_tree_init(&ei->extent_tree); 6644 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6645 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6646 mutex_init(&ei->log_mutex); 6647 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6648 INIT_LIST_HEAD(&ei->i_orphan); 6649 INIT_LIST_HEAD(&ei->delalloc_inodes); 6650 INIT_LIST_HEAD(&ei->ordered_operations); 6651 RB_CLEAR_NODE(&ei->rb_node); 6652 6653 return inode; 6654 } 6655 6656 static void btrfs_i_callback(struct rcu_head *head) 6657 { 6658 struct inode *inode = container_of(head, struct inode, i_rcu); 6659 INIT_LIST_HEAD(&inode->i_dentry); 6660 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6661 } 6662 6663 void btrfs_destroy_inode(struct inode *inode) 6664 { 6665 struct btrfs_ordered_extent *ordered; 6666 struct btrfs_root *root = BTRFS_I(inode)->root; 6667 6668 WARN_ON(!list_empty(&inode->i_dentry)); 6669 WARN_ON(inode->i_data.nrpages); 6670 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6671 WARN_ON(BTRFS_I(inode)->reserved_extents); 6672 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 6673 WARN_ON(BTRFS_I(inode)->csum_bytes); 6674 6675 /* 6676 * This can happen where we create an inode, but somebody else also 6677 * created the same inode and we need to destroy the one we already 6678 * created. 6679 */ 6680 if (!root) 6681 goto free; 6682 6683 /* 6684 * Make sure we're properly removed from the ordered operation 6685 * lists. 6686 */ 6687 smp_mb(); 6688 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6689 spin_lock(&root->fs_info->ordered_extent_lock); 6690 list_del_init(&BTRFS_I(inode)->ordered_operations); 6691 spin_unlock(&root->fs_info->ordered_extent_lock); 6692 } 6693 6694 spin_lock(&root->orphan_lock); 6695 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6696 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6697 (unsigned long long)btrfs_ino(inode)); 6698 list_del_init(&BTRFS_I(inode)->i_orphan); 6699 } 6700 spin_unlock(&root->orphan_lock); 6701 6702 while (1) { 6703 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6704 if (!ordered) 6705 break; 6706 else { 6707 printk(KERN_ERR "btrfs found ordered " 6708 "extent %llu %llu on inode cleanup\n", 6709 (unsigned long long)ordered->file_offset, 6710 (unsigned long long)ordered->len); 6711 btrfs_remove_ordered_extent(inode, ordered); 6712 btrfs_put_ordered_extent(ordered); 6713 btrfs_put_ordered_extent(ordered); 6714 } 6715 } 6716 inode_tree_del(inode); 6717 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6718 free: 6719 btrfs_remove_delayed_node(inode); 6720 call_rcu(&inode->i_rcu, btrfs_i_callback); 6721 } 6722 6723 int btrfs_drop_inode(struct inode *inode) 6724 { 6725 struct btrfs_root *root = BTRFS_I(inode)->root; 6726 6727 if (btrfs_root_refs(&root->root_item) == 0 && 6728 !btrfs_is_free_space_inode(root, inode)) 6729 return 1; 6730 else 6731 return generic_drop_inode(inode); 6732 } 6733 6734 static void init_once(void *foo) 6735 { 6736 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6737 6738 inode_init_once(&ei->vfs_inode); 6739 } 6740 6741 void btrfs_destroy_cachep(void) 6742 { 6743 if (btrfs_inode_cachep) 6744 kmem_cache_destroy(btrfs_inode_cachep); 6745 if (btrfs_trans_handle_cachep) 6746 kmem_cache_destroy(btrfs_trans_handle_cachep); 6747 if (btrfs_transaction_cachep) 6748 kmem_cache_destroy(btrfs_transaction_cachep); 6749 if (btrfs_path_cachep) 6750 kmem_cache_destroy(btrfs_path_cachep); 6751 if (btrfs_free_space_cachep) 6752 kmem_cache_destroy(btrfs_free_space_cachep); 6753 } 6754 6755 int btrfs_init_cachep(void) 6756 { 6757 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6758 sizeof(struct btrfs_inode), 0, 6759 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6760 if (!btrfs_inode_cachep) 6761 goto fail; 6762 6763 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6764 sizeof(struct btrfs_trans_handle), 0, 6765 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6766 if (!btrfs_trans_handle_cachep) 6767 goto fail; 6768 6769 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6770 sizeof(struct btrfs_transaction), 0, 6771 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6772 if (!btrfs_transaction_cachep) 6773 goto fail; 6774 6775 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6776 sizeof(struct btrfs_path), 0, 6777 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6778 if (!btrfs_path_cachep) 6779 goto fail; 6780 6781 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6782 sizeof(struct btrfs_free_space), 0, 6783 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6784 if (!btrfs_free_space_cachep) 6785 goto fail; 6786 6787 return 0; 6788 fail: 6789 btrfs_destroy_cachep(); 6790 return -ENOMEM; 6791 } 6792 6793 static int btrfs_getattr(struct vfsmount *mnt, 6794 struct dentry *dentry, struct kstat *stat) 6795 { 6796 struct inode *inode = dentry->d_inode; 6797 generic_fillattr(inode, stat); 6798 stat->dev = BTRFS_I(inode)->root->anon_dev; 6799 stat->blksize = PAGE_CACHE_SIZE; 6800 stat->blocks = (inode_get_bytes(inode) + 6801 BTRFS_I(inode)->delalloc_bytes) >> 9; 6802 return 0; 6803 } 6804 6805 /* 6806 * If a file is moved, it will inherit the cow and compression flags of the new 6807 * directory. 6808 */ 6809 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6810 { 6811 struct btrfs_inode *b_dir = BTRFS_I(dir); 6812 struct btrfs_inode *b_inode = BTRFS_I(inode); 6813 6814 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6815 b_inode->flags |= BTRFS_INODE_NODATACOW; 6816 else 6817 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6818 6819 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6820 b_inode->flags |= BTRFS_INODE_COMPRESS; 6821 else 6822 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6823 } 6824 6825 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6826 struct inode *new_dir, struct dentry *new_dentry) 6827 { 6828 struct btrfs_trans_handle *trans; 6829 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6830 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6831 struct inode *new_inode = new_dentry->d_inode; 6832 struct inode *old_inode = old_dentry->d_inode; 6833 struct timespec ctime = CURRENT_TIME; 6834 u64 index = 0; 6835 u64 root_objectid; 6836 int ret; 6837 u64 old_ino = btrfs_ino(old_inode); 6838 6839 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6840 return -EPERM; 6841 6842 /* we only allow rename subvolume link between subvolumes */ 6843 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6844 return -EXDEV; 6845 6846 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6847 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6848 return -ENOTEMPTY; 6849 6850 if (S_ISDIR(old_inode->i_mode) && new_inode && 6851 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6852 return -ENOTEMPTY; 6853 /* 6854 * we're using rename to replace one file with another. 6855 * and the replacement file is large. Start IO on it now so 6856 * we don't add too much work to the end of the transaction 6857 */ 6858 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6859 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6860 filemap_flush(old_inode->i_mapping); 6861 6862 /* close the racy window with snapshot create/destroy ioctl */ 6863 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6864 down_read(&root->fs_info->subvol_sem); 6865 /* 6866 * We want to reserve the absolute worst case amount of items. So if 6867 * both inodes are subvols and we need to unlink them then that would 6868 * require 4 item modifications, but if they are both normal inodes it 6869 * would require 5 item modifications, so we'll assume their normal 6870 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6871 * should cover the worst case number of items we'll modify. 6872 */ 6873 trans = btrfs_start_transaction(root, 20); 6874 if (IS_ERR(trans)) { 6875 ret = PTR_ERR(trans); 6876 goto out_notrans; 6877 } 6878 6879 if (dest != root) 6880 btrfs_record_root_in_trans(trans, dest); 6881 6882 ret = btrfs_set_inode_index(new_dir, &index); 6883 if (ret) 6884 goto out_fail; 6885 6886 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6887 /* force full log commit if subvolume involved. */ 6888 root->fs_info->last_trans_log_full_commit = trans->transid; 6889 } else { 6890 ret = btrfs_insert_inode_ref(trans, dest, 6891 new_dentry->d_name.name, 6892 new_dentry->d_name.len, 6893 old_ino, 6894 btrfs_ino(new_dir), index); 6895 if (ret) 6896 goto out_fail; 6897 /* 6898 * this is an ugly little race, but the rename is required 6899 * to make sure that if we crash, the inode is either at the 6900 * old name or the new one. pinning the log transaction lets 6901 * us make sure we don't allow a log commit to come in after 6902 * we unlink the name but before we add the new name back in. 6903 */ 6904 btrfs_pin_log_trans(root); 6905 } 6906 /* 6907 * make sure the inode gets flushed if it is replacing 6908 * something. 6909 */ 6910 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 6911 btrfs_add_ordered_operation(trans, root, old_inode); 6912 6913 old_dir->i_ctime = old_dir->i_mtime = ctime; 6914 new_dir->i_ctime = new_dir->i_mtime = ctime; 6915 old_inode->i_ctime = ctime; 6916 6917 if (old_dentry->d_parent != new_dentry->d_parent) 6918 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6919 6920 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6921 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6922 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6923 old_dentry->d_name.name, 6924 old_dentry->d_name.len); 6925 } else { 6926 ret = __btrfs_unlink_inode(trans, root, old_dir, 6927 old_dentry->d_inode, 6928 old_dentry->d_name.name, 6929 old_dentry->d_name.len); 6930 if (!ret) 6931 ret = btrfs_update_inode(trans, root, old_inode); 6932 } 6933 BUG_ON(ret); 6934 6935 if (new_inode) { 6936 new_inode->i_ctime = CURRENT_TIME; 6937 if (unlikely(btrfs_ino(new_inode) == 6938 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6939 root_objectid = BTRFS_I(new_inode)->location.objectid; 6940 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6941 root_objectid, 6942 new_dentry->d_name.name, 6943 new_dentry->d_name.len); 6944 BUG_ON(new_inode->i_nlink == 0); 6945 } else { 6946 ret = btrfs_unlink_inode(trans, dest, new_dir, 6947 new_dentry->d_inode, 6948 new_dentry->d_name.name, 6949 new_dentry->d_name.len); 6950 } 6951 BUG_ON(ret); 6952 if (new_inode->i_nlink == 0) { 6953 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6954 BUG_ON(ret); 6955 } 6956 } 6957 6958 fixup_inode_flags(new_dir, old_inode); 6959 6960 ret = btrfs_add_link(trans, new_dir, old_inode, 6961 new_dentry->d_name.name, 6962 new_dentry->d_name.len, 0, index); 6963 BUG_ON(ret); 6964 6965 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 6966 struct dentry *parent = new_dentry->d_parent; 6967 btrfs_log_new_name(trans, old_inode, old_dir, parent); 6968 btrfs_end_log_trans(root); 6969 } 6970 out_fail: 6971 btrfs_end_transaction_throttle(trans, root); 6972 out_notrans: 6973 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6974 up_read(&root->fs_info->subvol_sem); 6975 6976 return ret; 6977 } 6978 6979 /* 6980 * some fairly slow code that needs optimization. This walks the list 6981 * of all the inodes with pending delalloc and forces them to disk. 6982 */ 6983 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6984 { 6985 struct list_head *head = &root->fs_info->delalloc_inodes; 6986 struct btrfs_inode *binode; 6987 struct inode *inode; 6988 6989 if (root->fs_info->sb->s_flags & MS_RDONLY) 6990 return -EROFS; 6991 6992 spin_lock(&root->fs_info->delalloc_lock); 6993 while (!list_empty(head)) { 6994 binode = list_entry(head->next, struct btrfs_inode, 6995 delalloc_inodes); 6996 inode = igrab(&binode->vfs_inode); 6997 if (!inode) 6998 list_del_init(&binode->delalloc_inodes); 6999 spin_unlock(&root->fs_info->delalloc_lock); 7000 if (inode) { 7001 filemap_flush(inode->i_mapping); 7002 if (delay_iput) 7003 btrfs_add_delayed_iput(inode); 7004 else 7005 iput(inode); 7006 } 7007 cond_resched(); 7008 spin_lock(&root->fs_info->delalloc_lock); 7009 } 7010 spin_unlock(&root->fs_info->delalloc_lock); 7011 7012 /* the filemap_flush will queue IO into the worker threads, but 7013 * we have to make sure the IO is actually started and that 7014 * ordered extents get created before we return 7015 */ 7016 atomic_inc(&root->fs_info->async_submit_draining); 7017 while (atomic_read(&root->fs_info->nr_async_submits) || 7018 atomic_read(&root->fs_info->async_delalloc_pages)) { 7019 wait_event(root->fs_info->async_submit_wait, 7020 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7021 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7022 } 7023 atomic_dec(&root->fs_info->async_submit_draining); 7024 return 0; 7025 } 7026 7027 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7028 const char *symname) 7029 { 7030 struct btrfs_trans_handle *trans; 7031 struct btrfs_root *root = BTRFS_I(dir)->root; 7032 struct btrfs_path *path; 7033 struct btrfs_key key; 7034 struct inode *inode = NULL; 7035 int err; 7036 int drop_inode = 0; 7037 u64 objectid; 7038 u64 index = 0 ; 7039 int name_len; 7040 int datasize; 7041 unsigned long ptr; 7042 struct btrfs_file_extent_item *ei; 7043 struct extent_buffer *leaf; 7044 unsigned long nr = 0; 7045 7046 name_len = strlen(symname) + 1; 7047 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7048 return -ENAMETOOLONG; 7049 7050 /* 7051 * 2 items for inode item and ref 7052 * 2 items for dir items 7053 * 1 item for xattr if selinux is on 7054 */ 7055 trans = btrfs_start_transaction(root, 5); 7056 if (IS_ERR(trans)) 7057 return PTR_ERR(trans); 7058 7059 err = btrfs_find_free_ino(root, &objectid); 7060 if (err) 7061 goto out_unlock; 7062 7063 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7064 dentry->d_name.len, btrfs_ino(dir), objectid, 7065 S_IFLNK|S_IRWXUGO, &index); 7066 if (IS_ERR(inode)) { 7067 err = PTR_ERR(inode); 7068 goto out_unlock; 7069 } 7070 7071 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7072 if (err) { 7073 drop_inode = 1; 7074 goto out_unlock; 7075 } 7076 7077 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7078 if (err) 7079 drop_inode = 1; 7080 else { 7081 inode->i_mapping->a_ops = &btrfs_aops; 7082 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7083 inode->i_fop = &btrfs_file_operations; 7084 inode->i_op = &btrfs_file_inode_operations; 7085 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7086 } 7087 if (drop_inode) 7088 goto out_unlock; 7089 7090 path = btrfs_alloc_path(); 7091 if (!path) { 7092 err = -ENOMEM; 7093 drop_inode = 1; 7094 goto out_unlock; 7095 } 7096 key.objectid = btrfs_ino(inode); 7097 key.offset = 0; 7098 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7099 datasize = btrfs_file_extent_calc_inline_size(name_len); 7100 err = btrfs_insert_empty_item(trans, root, path, &key, 7101 datasize); 7102 if (err) { 7103 drop_inode = 1; 7104 btrfs_free_path(path); 7105 goto out_unlock; 7106 } 7107 leaf = path->nodes[0]; 7108 ei = btrfs_item_ptr(leaf, path->slots[0], 7109 struct btrfs_file_extent_item); 7110 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7111 btrfs_set_file_extent_type(leaf, ei, 7112 BTRFS_FILE_EXTENT_INLINE); 7113 btrfs_set_file_extent_encryption(leaf, ei, 0); 7114 btrfs_set_file_extent_compression(leaf, ei, 0); 7115 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7116 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7117 7118 ptr = btrfs_file_extent_inline_start(ei); 7119 write_extent_buffer(leaf, symname, ptr, name_len); 7120 btrfs_mark_buffer_dirty(leaf); 7121 btrfs_free_path(path); 7122 7123 inode->i_op = &btrfs_symlink_inode_operations; 7124 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7125 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7126 inode_set_bytes(inode, name_len); 7127 btrfs_i_size_write(inode, name_len - 1); 7128 err = btrfs_update_inode(trans, root, inode); 7129 if (err) 7130 drop_inode = 1; 7131 7132 out_unlock: 7133 nr = trans->blocks_used; 7134 btrfs_end_transaction_throttle(trans, root); 7135 if (drop_inode) { 7136 inode_dec_link_count(inode); 7137 iput(inode); 7138 } 7139 btrfs_btree_balance_dirty(root, nr); 7140 return err; 7141 } 7142 7143 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7144 u64 start, u64 num_bytes, u64 min_size, 7145 loff_t actual_len, u64 *alloc_hint, 7146 struct btrfs_trans_handle *trans) 7147 { 7148 struct btrfs_root *root = BTRFS_I(inode)->root; 7149 struct btrfs_key ins; 7150 u64 cur_offset = start; 7151 u64 i_size; 7152 int ret = 0; 7153 bool own_trans = true; 7154 7155 if (trans) 7156 own_trans = false; 7157 while (num_bytes > 0) { 7158 if (own_trans) { 7159 trans = btrfs_start_transaction(root, 3); 7160 if (IS_ERR(trans)) { 7161 ret = PTR_ERR(trans); 7162 break; 7163 } 7164 } 7165 7166 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7167 0, *alloc_hint, (u64)-1, &ins, 1); 7168 if (ret) { 7169 if (own_trans) 7170 btrfs_end_transaction(trans, root); 7171 break; 7172 } 7173 7174 ret = insert_reserved_file_extent(trans, inode, 7175 cur_offset, ins.objectid, 7176 ins.offset, ins.offset, 7177 ins.offset, 0, 0, 0, 7178 BTRFS_FILE_EXTENT_PREALLOC); 7179 BUG_ON(ret); 7180 btrfs_drop_extent_cache(inode, cur_offset, 7181 cur_offset + ins.offset -1, 0); 7182 7183 num_bytes -= ins.offset; 7184 cur_offset += ins.offset; 7185 *alloc_hint = ins.objectid + ins.offset; 7186 7187 inode->i_ctime = CURRENT_TIME; 7188 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7189 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7190 (actual_len > inode->i_size) && 7191 (cur_offset > inode->i_size)) { 7192 if (cur_offset > actual_len) 7193 i_size = actual_len; 7194 else 7195 i_size = cur_offset; 7196 i_size_write(inode, i_size); 7197 btrfs_ordered_update_i_size(inode, i_size, NULL); 7198 } 7199 7200 ret = btrfs_update_inode(trans, root, inode); 7201 BUG_ON(ret); 7202 7203 if (own_trans) 7204 btrfs_end_transaction(trans, root); 7205 } 7206 return ret; 7207 } 7208 7209 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7210 u64 start, u64 num_bytes, u64 min_size, 7211 loff_t actual_len, u64 *alloc_hint) 7212 { 7213 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7214 min_size, actual_len, alloc_hint, 7215 NULL); 7216 } 7217 7218 int btrfs_prealloc_file_range_trans(struct inode *inode, 7219 struct btrfs_trans_handle *trans, int mode, 7220 u64 start, u64 num_bytes, u64 min_size, 7221 loff_t actual_len, u64 *alloc_hint) 7222 { 7223 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7224 min_size, actual_len, alloc_hint, trans); 7225 } 7226 7227 static int btrfs_set_page_dirty(struct page *page) 7228 { 7229 return __set_page_dirty_nobuffers(page); 7230 } 7231 7232 static int btrfs_permission(struct inode *inode, int mask) 7233 { 7234 struct btrfs_root *root = BTRFS_I(inode)->root; 7235 umode_t mode = inode->i_mode; 7236 7237 if (mask & MAY_WRITE && 7238 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7239 if (btrfs_root_readonly(root)) 7240 return -EROFS; 7241 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7242 return -EACCES; 7243 } 7244 return generic_permission(inode, mask); 7245 } 7246 7247 static const struct inode_operations btrfs_dir_inode_operations = { 7248 .getattr = btrfs_getattr, 7249 .lookup = btrfs_lookup, 7250 .create = btrfs_create, 7251 .unlink = btrfs_unlink, 7252 .link = btrfs_link, 7253 .mkdir = btrfs_mkdir, 7254 .rmdir = btrfs_rmdir, 7255 .rename = btrfs_rename, 7256 .symlink = btrfs_symlink, 7257 .setattr = btrfs_setattr, 7258 .mknod = btrfs_mknod, 7259 .setxattr = btrfs_setxattr, 7260 .getxattr = btrfs_getxattr, 7261 .listxattr = btrfs_listxattr, 7262 .removexattr = btrfs_removexattr, 7263 .permission = btrfs_permission, 7264 .get_acl = btrfs_get_acl, 7265 }; 7266 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7267 .lookup = btrfs_lookup, 7268 .permission = btrfs_permission, 7269 .get_acl = btrfs_get_acl, 7270 }; 7271 7272 static const struct file_operations btrfs_dir_file_operations = { 7273 .llseek = generic_file_llseek, 7274 .read = generic_read_dir, 7275 .readdir = btrfs_real_readdir, 7276 .unlocked_ioctl = btrfs_ioctl, 7277 #ifdef CONFIG_COMPAT 7278 .compat_ioctl = btrfs_ioctl, 7279 #endif 7280 .release = btrfs_release_file, 7281 .fsync = btrfs_sync_file, 7282 }; 7283 7284 static struct extent_io_ops btrfs_extent_io_ops = { 7285 .fill_delalloc = run_delalloc_range, 7286 .submit_bio_hook = btrfs_submit_bio_hook, 7287 .merge_bio_hook = btrfs_merge_bio_hook, 7288 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7289 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7290 .writepage_start_hook = btrfs_writepage_start_hook, 7291 .set_bit_hook = btrfs_set_bit_hook, 7292 .clear_bit_hook = btrfs_clear_bit_hook, 7293 .merge_extent_hook = btrfs_merge_extent_hook, 7294 .split_extent_hook = btrfs_split_extent_hook, 7295 }; 7296 7297 /* 7298 * btrfs doesn't support the bmap operation because swapfiles 7299 * use bmap to make a mapping of extents in the file. They assume 7300 * these extents won't change over the life of the file and they 7301 * use the bmap result to do IO directly to the drive. 7302 * 7303 * the btrfs bmap call would return logical addresses that aren't 7304 * suitable for IO and they also will change frequently as COW 7305 * operations happen. So, swapfile + btrfs == corruption. 7306 * 7307 * For now we're avoiding this by dropping bmap. 7308 */ 7309 static const struct address_space_operations btrfs_aops = { 7310 .readpage = btrfs_readpage, 7311 .writepage = btrfs_writepage, 7312 .writepages = btrfs_writepages, 7313 .readpages = btrfs_readpages, 7314 .direct_IO = btrfs_direct_IO, 7315 .invalidatepage = btrfs_invalidatepage, 7316 .releasepage = btrfs_releasepage, 7317 .set_page_dirty = btrfs_set_page_dirty, 7318 .error_remove_page = generic_error_remove_page, 7319 }; 7320 7321 static const struct address_space_operations btrfs_symlink_aops = { 7322 .readpage = btrfs_readpage, 7323 .writepage = btrfs_writepage, 7324 .invalidatepage = btrfs_invalidatepage, 7325 .releasepage = btrfs_releasepage, 7326 }; 7327 7328 static const struct inode_operations btrfs_file_inode_operations = { 7329 .getattr = btrfs_getattr, 7330 .setattr = btrfs_setattr, 7331 .setxattr = btrfs_setxattr, 7332 .getxattr = btrfs_getxattr, 7333 .listxattr = btrfs_listxattr, 7334 .removexattr = btrfs_removexattr, 7335 .permission = btrfs_permission, 7336 .fiemap = btrfs_fiemap, 7337 .get_acl = btrfs_get_acl, 7338 }; 7339 static const struct inode_operations btrfs_special_inode_operations = { 7340 .getattr = btrfs_getattr, 7341 .setattr = btrfs_setattr, 7342 .permission = btrfs_permission, 7343 .setxattr = btrfs_setxattr, 7344 .getxattr = btrfs_getxattr, 7345 .listxattr = btrfs_listxattr, 7346 .removexattr = btrfs_removexattr, 7347 .get_acl = btrfs_get_acl, 7348 }; 7349 static const struct inode_operations btrfs_symlink_inode_operations = { 7350 .readlink = generic_readlink, 7351 .follow_link = page_follow_link_light, 7352 .put_link = page_put_link, 7353 .getattr = btrfs_getattr, 7354 .permission = btrfs_permission, 7355 .setxattr = btrfs_setxattr, 7356 .getxattr = btrfs_getxattr, 7357 .listxattr = btrfs_listxattr, 7358 .removexattr = btrfs_removexattr, 7359 .get_acl = btrfs_get_acl, 7360 }; 7361 7362 const struct dentry_operations btrfs_dentry_operations = { 7363 .d_delete = btrfs_dentry_delete, 7364 .d_release = btrfs_dentry_release, 7365 }; 7366