xref: /linux/fs/btrfs/inode.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "volumes.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
97 				struct btrfs_root *root, struct inode *inode);
98 
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100 				     struct inode *inode,  struct inode *dir,
101 				     const struct qstr *qstr)
102 {
103 	int err;
104 
105 	err = btrfs_init_acl(trans, inode, dir);
106 	if (!err)
107 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
108 	return err;
109 }
110 
111 /*
112  * this does all the hard work for inserting an inline extent into
113  * the btree.  The caller should have done a btrfs_drop_extents so that
114  * no overlapping inline items exist in the btree
115  */
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117 				struct btrfs_root *root, struct inode *inode,
118 				u64 start, size_t size, size_t compressed_size,
119 				int compress_type,
120 				struct page **compressed_pages)
121 {
122 	struct btrfs_key key;
123 	struct btrfs_path *path;
124 	struct extent_buffer *leaf;
125 	struct page *page = NULL;
126 	char *kaddr;
127 	unsigned long ptr;
128 	struct btrfs_file_extent_item *ei;
129 	int err = 0;
130 	int ret;
131 	size_t cur_size = size;
132 	size_t datasize;
133 	unsigned long offset;
134 
135 	if (compressed_size && compressed_pages)
136 		cur_size = compressed_size;
137 
138 	path = btrfs_alloc_path();
139 	if (!path)
140 		return -ENOMEM;
141 
142 	path->leave_spinning = 1;
143 
144 	key.objectid = btrfs_ino(inode);
145 	key.offset = start;
146 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
148 
149 	inode_add_bytes(inode, size);
150 	ret = btrfs_insert_empty_item(trans, root, path, &key,
151 				      datasize);
152 	BUG_ON(ret);
153 	if (ret) {
154 		err = ret;
155 		goto fail;
156 	}
157 	leaf = path->nodes[0];
158 	ei = btrfs_item_ptr(leaf, path->slots[0],
159 			    struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 	btrfs_set_file_extent_encryption(leaf, ei, 0);
163 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 	ptr = btrfs_file_extent_inline_start(ei);
166 
167 	if (compress_type != BTRFS_COMPRESS_NONE) {
168 		struct page *cpage;
169 		int i = 0;
170 		while (compressed_size > 0) {
171 			cpage = compressed_pages[i];
172 			cur_size = min_t(unsigned long, compressed_size,
173 				       PAGE_CACHE_SIZE);
174 
175 			kaddr = kmap_atomic(cpage, KM_USER0);
176 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 			kunmap_atomic(kaddr, KM_USER0);
178 
179 			i++;
180 			ptr += cur_size;
181 			compressed_size -= cur_size;
182 		}
183 		btrfs_set_file_extent_compression(leaf, ei,
184 						  compress_type);
185 	} else {
186 		page = find_get_page(inode->i_mapping,
187 				     start >> PAGE_CACHE_SHIFT);
188 		btrfs_set_file_extent_compression(leaf, ei, 0);
189 		kaddr = kmap_atomic(page, KM_USER0);
190 		offset = start & (PAGE_CACHE_SIZE - 1);
191 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 		kunmap_atomic(kaddr, KM_USER0);
193 		page_cache_release(page);
194 	}
195 	btrfs_mark_buffer_dirty(leaf);
196 	btrfs_free_path(path);
197 
198 	/*
199 	 * we're an inline extent, so nobody can
200 	 * extend the file past i_size without locking
201 	 * a page we already have locked.
202 	 *
203 	 * We must do any isize and inode updates
204 	 * before we unlock the pages.  Otherwise we
205 	 * could end up racing with unlink.
206 	 */
207 	BTRFS_I(inode)->disk_i_size = inode->i_size;
208 	btrfs_update_inode(trans, root, inode);
209 
210 	return 0;
211 fail:
212 	btrfs_free_path(path);
213 	return err;
214 }
215 
216 
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 				 struct btrfs_root *root,
224 				 struct inode *inode, u64 start, u64 end,
225 				 size_t compressed_size, int compress_type,
226 				 struct page **compressed_pages)
227 {
228 	u64 isize = i_size_read(inode);
229 	u64 actual_end = min(end + 1, isize);
230 	u64 inline_len = actual_end - start;
231 	u64 aligned_end = (end + root->sectorsize - 1) &
232 			~((u64)root->sectorsize - 1);
233 	u64 hint_byte;
234 	u64 data_len = inline_len;
235 	int ret;
236 
237 	if (compressed_size)
238 		data_len = compressed_size;
239 
240 	if (start > 0 ||
241 	    actual_end >= PAGE_CACHE_SIZE ||
242 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 	    (!compressed_size &&
244 	    (actual_end & (root->sectorsize - 1)) == 0) ||
245 	    end + 1 < isize ||
246 	    data_len > root->fs_info->max_inline) {
247 		return 1;
248 	}
249 
250 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 				 &hint_byte, 1);
252 	BUG_ON(ret);
253 
254 	if (isize > actual_end)
255 		inline_len = min_t(u64, isize, actual_end);
256 	ret = insert_inline_extent(trans, root, inode, start,
257 				   inline_len, compressed_size,
258 				   compress_type, compressed_pages);
259 	BUG_ON(ret);
260 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
261 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
262 	return 0;
263 }
264 
265 struct async_extent {
266 	u64 start;
267 	u64 ram_size;
268 	u64 compressed_size;
269 	struct page **pages;
270 	unsigned long nr_pages;
271 	int compress_type;
272 	struct list_head list;
273 };
274 
275 struct async_cow {
276 	struct inode *inode;
277 	struct btrfs_root *root;
278 	struct page *locked_page;
279 	u64 start;
280 	u64 end;
281 	struct list_head extents;
282 	struct btrfs_work work;
283 };
284 
285 static noinline int add_async_extent(struct async_cow *cow,
286 				     u64 start, u64 ram_size,
287 				     u64 compressed_size,
288 				     struct page **pages,
289 				     unsigned long nr_pages,
290 				     int compress_type)
291 {
292 	struct async_extent *async_extent;
293 
294 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
295 	BUG_ON(!async_extent);
296 	async_extent->start = start;
297 	async_extent->ram_size = ram_size;
298 	async_extent->compressed_size = compressed_size;
299 	async_extent->pages = pages;
300 	async_extent->nr_pages = nr_pages;
301 	async_extent->compress_type = compress_type;
302 	list_add_tail(&async_extent->list, &cow->extents);
303 	return 0;
304 }
305 
306 /*
307  * we create compressed extents in two phases.  The first
308  * phase compresses a range of pages that have already been
309  * locked (both pages and state bits are locked).
310  *
311  * This is done inside an ordered work queue, and the compression
312  * is spread across many cpus.  The actual IO submission is step
313  * two, and the ordered work queue takes care of making sure that
314  * happens in the same order things were put onto the queue by
315  * writepages and friends.
316  *
317  * If this code finds it can't get good compression, it puts an
318  * entry onto the work queue to write the uncompressed bytes.  This
319  * makes sure that both compressed inodes and uncompressed inodes
320  * are written in the same order that pdflush sent them down.
321  */
322 static noinline int compress_file_range(struct inode *inode,
323 					struct page *locked_page,
324 					u64 start, u64 end,
325 					struct async_cow *async_cow,
326 					int *num_added)
327 {
328 	struct btrfs_root *root = BTRFS_I(inode)->root;
329 	struct btrfs_trans_handle *trans;
330 	u64 num_bytes;
331 	u64 blocksize = root->sectorsize;
332 	u64 actual_end;
333 	u64 isize = i_size_read(inode);
334 	int ret = 0;
335 	struct page **pages = NULL;
336 	unsigned long nr_pages;
337 	unsigned long nr_pages_ret = 0;
338 	unsigned long total_compressed = 0;
339 	unsigned long total_in = 0;
340 	unsigned long max_compressed = 128 * 1024;
341 	unsigned long max_uncompressed = 128 * 1024;
342 	int i;
343 	int will_compress;
344 	int compress_type = root->fs_info->compress_type;
345 
346 	/* if this is a small write inside eof, kick off a defragbot */
347 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
348 		btrfs_add_inode_defrag(NULL, inode);
349 
350 	actual_end = min_t(u64, isize, end + 1);
351 again:
352 	will_compress = 0;
353 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
354 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
355 
356 	/*
357 	 * we don't want to send crud past the end of i_size through
358 	 * compression, that's just a waste of CPU time.  So, if the
359 	 * end of the file is before the start of our current
360 	 * requested range of bytes, we bail out to the uncompressed
361 	 * cleanup code that can deal with all of this.
362 	 *
363 	 * It isn't really the fastest way to fix things, but this is a
364 	 * very uncommon corner.
365 	 */
366 	if (actual_end <= start)
367 		goto cleanup_and_bail_uncompressed;
368 
369 	total_compressed = actual_end - start;
370 
371 	/* we want to make sure that amount of ram required to uncompress
372 	 * an extent is reasonable, so we limit the total size in ram
373 	 * of a compressed extent to 128k.  This is a crucial number
374 	 * because it also controls how easily we can spread reads across
375 	 * cpus for decompression.
376 	 *
377 	 * We also want to make sure the amount of IO required to do
378 	 * a random read is reasonably small, so we limit the size of
379 	 * a compressed extent to 128k.
380 	 */
381 	total_compressed = min(total_compressed, max_uncompressed);
382 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
383 	num_bytes = max(blocksize,  num_bytes);
384 	total_in = 0;
385 	ret = 0;
386 
387 	/*
388 	 * we do compression for mount -o compress and when the
389 	 * inode has not been flagged as nocompress.  This flag can
390 	 * change at any time if we discover bad compression ratios.
391 	 */
392 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
393 	    (btrfs_test_opt(root, COMPRESS) ||
394 	     (BTRFS_I(inode)->force_compress) ||
395 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
396 		WARN_ON(pages);
397 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
398 		if (!pages) {
399 			/* just bail out to the uncompressed code */
400 			goto cont;
401 		}
402 
403 		if (BTRFS_I(inode)->force_compress)
404 			compress_type = BTRFS_I(inode)->force_compress;
405 
406 		ret = btrfs_compress_pages(compress_type,
407 					   inode->i_mapping, start,
408 					   total_compressed, pages,
409 					   nr_pages, &nr_pages_ret,
410 					   &total_in,
411 					   &total_compressed,
412 					   max_compressed);
413 
414 		if (!ret) {
415 			unsigned long offset = total_compressed &
416 				(PAGE_CACHE_SIZE - 1);
417 			struct page *page = pages[nr_pages_ret - 1];
418 			char *kaddr;
419 
420 			/* zero the tail end of the last page, we might be
421 			 * sending it down to disk
422 			 */
423 			if (offset) {
424 				kaddr = kmap_atomic(page, KM_USER0);
425 				memset(kaddr + offset, 0,
426 				       PAGE_CACHE_SIZE - offset);
427 				kunmap_atomic(kaddr, KM_USER0);
428 			}
429 			will_compress = 1;
430 		}
431 	}
432 cont:
433 	if (start == 0) {
434 		trans = btrfs_join_transaction(root);
435 		BUG_ON(IS_ERR(trans));
436 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
437 
438 		/* lets try to make an inline extent */
439 		if (ret || total_in < (actual_end - start)) {
440 			/* we didn't compress the entire range, try
441 			 * to make an uncompressed inline extent.
442 			 */
443 			ret = cow_file_range_inline(trans, root, inode,
444 						    start, end, 0, 0, NULL);
445 		} else {
446 			/* try making a compressed inline extent */
447 			ret = cow_file_range_inline(trans, root, inode,
448 						    start, end,
449 						    total_compressed,
450 						    compress_type, pages);
451 		}
452 		if (ret == 0) {
453 			/*
454 			 * inline extent creation worked, we don't need
455 			 * to create any more async work items.  Unlock
456 			 * and free up our temp pages.
457 			 */
458 			extent_clear_unlock_delalloc(inode,
459 			     &BTRFS_I(inode)->io_tree,
460 			     start, end, NULL,
461 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
462 			     EXTENT_CLEAR_DELALLOC |
463 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
464 
465 			btrfs_end_transaction(trans, root);
466 			goto free_pages_out;
467 		}
468 		btrfs_end_transaction(trans, root);
469 	}
470 
471 	if (will_compress) {
472 		/*
473 		 * we aren't doing an inline extent round the compressed size
474 		 * up to a block size boundary so the allocator does sane
475 		 * things
476 		 */
477 		total_compressed = (total_compressed + blocksize - 1) &
478 			~(blocksize - 1);
479 
480 		/*
481 		 * one last check to make sure the compression is really a
482 		 * win, compare the page count read with the blocks on disk
483 		 */
484 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
485 			~(PAGE_CACHE_SIZE - 1);
486 		if (total_compressed >= total_in) {
487 			will_compress = 0;
488 		} else {
489 			num_bytes = total_in;
490 		}
491 	}
492 	if (!will_compress && pages) {
493 		/*
494 		 * the compression code ran but failed to make things smaller,
495 		 * free any pages it allocated and our page pointer array
496 		 */
497 		for (i = 0; i < nr_pages_ret; i++) {
498 			WARN_ON(pages[i]->mapping);
499 			page_cache_release(pages[i]);
500 		}
501 		kfree(pages);
502 		pages = NULL;
503 		total_compressed = 0;
504 		nr_pages_ret = 0;
505 
506 		/* flag the file so we don't compress in the future */
507 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
508 		    !(BTRFS_I(inode)->force_compress)) {
509 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
510 		}
511 	}
512 	if (will_compress) {
513 		*num_added += 1;
514 
515 		/* the async work queues will take care of doing actual
516 		 * allocation on disk for these compressed pages,
517 		 * and will submit them to the elevator.
518 		 */
519 		add_async_extent(async_cow, start, num_bytes,
520 				 total_compressed, pages, nr_pages_ret,
521 				 compress_type);
522 
523 		if (start + num_bytes < end) {
524 			start += num_bytes;
525 			pages = NULL;
526 			cond_resched();
527 			goto again;
528 		}
529 	} else {
530 cleanup_and_bail_uncompressed:
531 		/*
532 		 * No compression, but we still need to write the pages in
533 		 * the file we've been given so far.  redirty the locked
534 		 * page if it corresponds to our extent and set things up
535 		 * for the async work queue to run cow_file_range to do
536 		 * the normal delalloc dance
537 		 */
538 		if (page_offset(locked_page) >= start &&
539 		    page_offset(locked_page) <= end) {
540 			__set_page_dirty_nobuffers(locked_page);
541 			/* unlocked later on in the async handlers */
542 		}
543 		add_async_extent(async_cow, start, end - start + 1,
544 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
545 		*num_added += 1;
546 	}
547 
548 out:
549 	return 0;
550 
551 free_pages_out:
552 	for (i = 0; i < nr_pages_ret; i++) {
553 		WARN_ON(pages[i]->mapping);
554 		page_cache_release(pages[i]);
555 	}
556 	kfree(pages);
557 
558 	goto out;
559 }
560 
561 /*
562  * phase two of compressed writeback.  This is the ordered portion
563  * of the code, which only gets called in the order the work was
564  * queued.  We walk all the async extents created by compress_file_range
565  * and send them down to the disk.
566  */
567 static noinline int submit_compressed_extents(struct inode *inode,
568 					      struct async_cow *async_cow)
569 {
570 	struct async_extent *async_extent;
571 	u64 alloc_hint = 0;
572 	struct btrfs_trans_handle *trans;
573 	struct btrfs_key ins;
574 	struct extent_map *em;
575 	struct btrfs_root *root = BTRFS_I(inode)->root;
576 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
577 	struct extent_io_tree *io_tree;
578 	int ret = 0;
579 
580 	if (list_empty(&async_cow->extents))
581 		return 0;
582 
583 
584 	while (!list_empty(&async_cow->extents)) {
585 		async_extent = list_entry(async_cow->extents.next,
586 					  struct async_extent, list);
587 		list_del(&async_extent->list);
588 
589 		io_tree = &BTRFS_I(inode)->io_tree;
590 
591 retry:
592 		/* did the compression code fall back to uncompressed IO? */
593 		if (!async_extent->pages) {
594 			int page_started = 0;
595 			unsigned long nr_written = 0;
596 
597 			lock_extent(io_tree, async_extent->start,
598 					 async_extent->start +
599 					 async_extent->ram_size - 1, GFP_NOFS);
600 
601 			/* allocate blocks */
602 			ret = cow_file_range(inode, async_cow->locked_page,
603 					     async_extent->start,
604 					     async_extent->start +
605 					     async_extent->ram_size - 1,
606 					     &page_started, &nr_written, 0);
607 
608 			/*
609 			 * if page_started, cow_file_range inserted an
610 			 * inline extent and took care of all the unlocking
611 			 * and IO for us.  Otherwise, we need to submit
612 			 * all those pages down to the drive.
613 			 */
614 			if (!page_started && !ret)
615 				extent_write_locked_range(io_tree,
616 						  inode, async_extent->start,
617 						  async_extent->start +
618 						  async_extent->ram_size - 1,
619 						  btrfs_get_extent,
620 						  WB_SYNC_ALL);
621 			kfree(async_extent);
622 			cond_resched();
623 			continue;
624 		}
625 
626 		lock_extent(io_tree, async_extent->start,
627 			    async_extent->start + async_extent->ram_size - 1,
628 			    GFP_NOFS);
629 
630 		trans = btrfs_join_transaction(root);
631 		BUG_ON(IS_ERR(trans));
632 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
633 		ret = btrfs_reserve_extent(trans, root,
634 					   async_extent->compressed_size,
635 					   async_extent->compressed_size,
636 					   0, alloc_hint,
637 					   (u64)-1, &ins, 1);
638 		btrfs_end_transaction(trans, root);
639 
640 		if (ret) {
641 			int i;
642 			for (i = 0; i < async_extent->nr_pages; i++) {
643 				WARN_ON(async_extent->pages[i]->mapping);
644 				page_cache_release(async_extent->pages[i]);
645 			}
646 			kfree(async_extent->pages);
647 			async_extent->nr_pages = 0;
648 			async_extent->pages = NULL;
649 			unlock_extent(io_tree, async_extent->start,
650 				      async_extent->start +
651 				      async_extent->ram_size - 1, GFP_NOFS);
652 			goto retry;
653 		}
654 
655 		/*
656 		 * here we're doing allocation and writeback of the
657 		 * compressed pages
658 		 */
659 		btrfs_drop_extent_cache(inode, async_extent->start,
660 					async_extent->start +
661 					async_extent->ram_size - 1, 0);
662 
663 		em = alloc_extent_map();
664 		BUG_ON(!em);
665 		em->start = async_extent->start;
666 		em->len = async_extent->ram_size;
667 		em->orig_start = em->start;
668 
669 		em->block_start = ins.objectid;
670 		em->block_len = ins.offset;
671 		em->bdev = root->fs_info->fs_devices->latest_bdev;
672 		em->compress_type = async_extent->compress_type;
673 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
674 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
675 
676 		while (1) {
677 			write_lock(&em_tree->lock);
678 			ret = add_extent_mapping(em_tree, em);
679 			write_unlock(&em_tree->lock);
680 			if (ret != -EEXIST) {
681 				free_extent_map(em);
682 				break;
683 			}
684 			btrfs_drop_extent_cache(inode, async_extent->start,
685 						async_extent->start +
686 						async_extent->ram_size - 1, 0);
687 		}
688 
689 		ret = btrfs_add_ordered_extent_compress(inode,
690 						async_extent->start,
691 						ins.objectid,
692 						async_extent->ram_size,
693 						ins.offset,
694 						BTRFS_ORDERED_COMPRESSED,
695 						async_extent->compress_type);
696 		BUG_ON(ret);
697 
698 		/*
699 		 * clear dirty, set writeback and unlock the pages.
700 		 */
701 		extent_clear_unlock_delalloc(inode,
702 				&BTRFS_I(inode)->io_tree,
703 				async_extent->start,
704 				async_extent->start +
705 				async_extent->ram_size - 1,
706 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
707 				EXTENT_CLEAR_UNLOCK |
708 				EXTENT_CLEAR_DELALLOC |
709 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
710 
711 		ret = btrfs_submit_compressed_write(inode,
712 				    async_extent->start,
713 				    async_extent->ram_size,
714 				    ins.objectid,
715 				    ins.offset, async_extent->pages,
716 				    async_extent->nr_pages);
717 
718 		BUG_ON(ret);
719 		alloc_hint = ins.objectid + ins.offset;
720 		kfree(async_extent);
721 		cond_resched();
722 	}
723 
724 	return 0;
725 }
726 
727 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
728 				      u64 num_bytes)
729 {
730 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731 	struct extent_map *em;
732 	u64 alloc_hint = 0;
733 
734 	read_lock(&em_tree->lock);
735 	em = search_extent_mapping(em_tree, start, num_bytes);
736 	if (em) {
737 		/*
738 		 * if block start isn't an actual block number then find the
739 		 * first block in this inode and use that as a hint.  If that
740 		 * block is also bogus then just don't worry about it.
741 		 */
742 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
743 			free_extent_map(em);
744 			em = search_extent_mapping(em_tree, 0, 0);
745 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
746 				alloc_hint = em->block_start;
747 			if (em)
748 				free_extent_map(em);
749 		} else {
750 			alloc_hint = em->block_start;
751 			free_extent_map(em);
752 		}
753 	}
754 	read_unlock(&em_tree->lock);
755 
756 	return alloc_hint;
757 }
758 
759 /*
760  * when extent_io.c finds a delayed allocation range in the file,
761  * the call backs end up in this code.  The basic idea is to
762  * allocate extents on disk for the range, and create ordered data structs
763  * in ram to track those extents.
764  *
765  * locked_page is the page that writepage had locked already.  We use
766  * it to make sure we don't do extra locks or unlocks.
767  *
768  * *page_started is set to one if we unlock locked_page and do everything
769  * required to start IO on it.  It may be clean and already done with
770  * IO when we return.
771  */
772 static noinline int cow_file_range(struct inode *inode,
773 				   struct page *locked_page,
774 				   u64 start, u64 end, int *page_started,
775 				   unsigned long *nr_written,
776 				   int unlock)
777 {
778 	struct btrfs_root *root = BTRFS_I(inode)->root;
779 	struct btrfs_trans_handle *trans;
780 	u64 alloc_hint = 0;
781 	u64 num_bytes;
782 	unsigned long ram_size;
783 	u64 disk_num_bytes;
784 	u64 cur_alloc_size;
785 	u64 blocksize = root->sectorsize;
786 	struct btrfs_key ins;
787 	struct extent_map *em;
788 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
789 	int ret = 0;
790 
791 	BUG_ON(btrfs_is_free_space_inode(root, inode));
792 	trans = btrfs_join_transaction(root);
793 	BUG_ON(IS_ERR(trans));
794 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
795 
796 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
797 	num_bytes = max(blocksize,  num_bytes);
798 	disk_num_bytes = num_bytes;
799 	ret = 0;
800 
801 	/* if this is a small write inside eof, kick off defrag */
802 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
803 		btrfs_add_inode_defrag(trans, inode);
804 
805 	if (start == 0) {
806 		/* lets try to make an inline extent */
807 		ret = cow_file_range_inline(trans, root, inode,
808 					    start, end, 0, 0, NULL);
809 		if (ret == 0) {
810 			extent_clear_unlock_delalloc(inode,
811 				     &BTRFS_I(inode)->io_tree,
812 				     start, end, NULL,
813 				     EXTENT_CLEAR_UNLOCK_PAGE |
814 				     EXTENT_CLEAR_UNLOCK |
815 				     EXTENT_CLEAR_DELALLOC |
816 				     EXTENT_CLEAR_DIRTY |
817 				     EXTENT_SET_WRITEBACK |
818 				     EXTENT_END_WRITEBACK);
819 
820 			*nr_written = *nr_written +
821 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
822 			*page_started = 1;
823 			ret = 0;
824 			goto out;
825 		}
826 	}
827 
828 	BUG_ON(disk_num_bytes >
829 	       btrfs_super_total_bytes(root->fs_info->super_copy));
830 
831 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
832 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
833 
834 	while (disk_num_bytes > 0) {
835 		unsigned long op;
836 
837 		cur_alloc_size = disk_num_bytes;
838 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
839 					   root->sectorsize, 0, alloc_hint,
840 					   (u64)-1, &ins, 1);
841 		BUG_ON(ret);
842 
843 		em = alloc_extent_map();
844 		BUG_ON(!em);
845 		em->start = start;
846 		em->orig_start = em->start;
847 		ram_size = ins.offset;
848 		em->len = ins.offset;
849 
850 		em->block_start = ins.objectid;
851 		em->block_len = ins.offset;
852 		em->bdev = root->fs_info->fs_devices->latest_bdev;
853 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
854 
855 		while (1) {
856 			write_lock(&em_tree->lock);
857 			ret = add_extent_mapping(em_tree, em);
858 			write_unlock(&em_tree->lock);
859 			if (ret != -EEXIST) {
860 				free_extent_map(em);
861 				break;
862 			}
863 			btrfs_drop_extent_cache(inode, start,
864 						start + ram_size - 1, 0);
865 		}
866 
867 		cur_alloc_size = ins.offset;
868 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
869 					       ram_size, cur_alloc_size, 0);
870 		BUG_ON(ret);
871 
872 		if (root->root_key.objectid ==
873 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
874 			ret = btrfs_reloc_clone_csums(inode, start,
875 						      cur_alloc_size);
876 			BUG_ON(ret);
877 		}
878 
879 		if (disk_num_bytes < cur_alloc_size)
880 			break;
881 
882 		/* we're not doing compressed IO, don't unlock the first
883 		 * page (which the caller expects to stay locked), don't
884 		 * clear any dirty bits and don't set any writeback bits
885 		 *
886 		 * Do set the Private2 bit so we know this page was properly
887 		 * setup for writepage
888 		 */
889 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
890 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
891 			EXTENT_SET_PRIVATE2;
892 
893 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
894 					     start, start + ram_size - 1,
895 					     locked_page, op);
896 		disk_num_bytes -= cur_alloc_size;
897 		num_bytes -= cur_alloc_size;
898 		alloc_hint = ins.objectid + ins.offset;
899 		start += cur_alloc_size;
900 	}
901 out:
902 	ret = 0;
903 	btrfs_end_transaction(trans, root);
904 
905 	return ret;
906 }
907 
908 /*
909  * work queue call back to started compression on a file and pages
910  */
911 static noinline void async_cow_start(struct btrfs_work *work)
912 {
913 	struct async_cow *async_cow;
914 	int num_added = 0;
915 	async_cow = container_of(work, struct async_cow, work);
916 
917 	compress_file_range(async_cow->inode, async_cow->locked_page,
918 			    async_cow->start, async_cow->end, async_cow,
919 			    &num_added);
920 	if (num_added == 0)
921 		async_cow->inode = NULL;
922 }
923 
924 /*
925  * work queue call back to submit previously compressed pages
926  */
927 static noinline void async_cow_submit(struct btrfs_work *work)
928 {
929 	struct async_cow *async_cow;
930 	struct btrfs_root *root;
931 	unsigned long nr_pages;
932 
933 	async_cow = container_of(work, struct async_cow, work);
934 
935 	root = async_cow->root;
936 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
937 		PAGE_CACHE_SHIFT;
938 
939 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
940 
941 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
942 	    5 * 1042 * 1024 &&
943 	    waitqueue_active(&root->fs_info->async_submit_wait))
944 		wake_up(&root->fs_info->async_submit_wait);
945 
946 	if (async_cow->inode)
947 		submit_compressed_extents(async_cow->inode, async_cow);
948 }
949 
950 static noinline void async_cow_free(struct btrfs_work *work)
951 {
952 	struct async_cow *async_cow;
953 	async_cow = container_of(work, struct async_cow, work);
954 	kfree(async_cow);
955 }
956 
957 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
958 				u64 start, u64 end, int *page_started,
959 				unsigned long *nr_written)
960 {
961 	struct async_cow *async_cow;
962 	struct btrfs_root *root = BTRFS_I(inode)->root;
963 	unsigned long nr_pages;
964 	u64 cur_end;
965 	int limit = 10 * 1024 * 1042;
966 
967 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
968 			 1, 0, NULL, GFP_NOFS);
969 	while (start < end) {
970 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
971 		BUG_ON(!async_cow);
972 		async_cow->inode = inode;
973 		async_cow->root = root;
974 		async_cow->locked_page = locked_page;
975 		async_cow->start = start;
976 
977 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
978 			cur_end = end;
979 		else
980 			cur_end = min(end, start + 512 * 1024 - 1);
981 
982 		async_cow->end = cur_end;
983 		INIT_LIST_HEAD(&async_cow->extents);
984 
985 		async_cow->work.func = async_cow_start;
986 		async_cow->work.ordered_func = async_cow_submit;
987 		async_cow->work.ordered_free = async_cow_free;
988 		async_cow->work.flags = 0;
989 
990 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
991 			PAGE_CACHE_SHIFT;
992 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
993 
994 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
995 				   &async_cow->work);
996 
997 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
998 			wait_event(root->fs_info->async_submit_wait,
999 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1000 			    limit));
1001 		}
1002 
1003 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1004 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1005 			wait_event(root->fs_info->async_submit_wait,
1006 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1007 			   0));
1008 		}
1009 
1010 		*nr_written += nr_pages;
1011 		start = cur_end + 1;
1012 	}
1013 	*page_started = 1;
1014 	return 0;
1015 }
1016 
1017 static noinline int csum_exist_in_range(struct btrfs_root *root,
1018 					u64 bytenr, u64 num_bytes)
1019 {
1020 	int ret;
1021 	struct btrfs_ordered_sum *sums;
1022 	LIST_HEAD(list);
1023 
1024 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1025 				       bytenr + num_bytes - 1, &list, 0);
1026 	if (ret == 0 && list_empty(&list))
1027 		return 0;
1028 
1029 	while (!list_empty(&list)) {
1030 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1031 		list_del(&sums->list);
1032 		kfree(sums);
1033 	}
1034 	return 1;
1035 }
1036 
1037 /*
1038  * when nowcow writeback call back.  This checks for snapshots or COW copies
1039  * of the extents that exist in the file, and COWs the file as required.
1040  *
1041  * If no cow copies or snapshots exist, we write directly to the existing
1042  * blocks on disk
1043  */
1044 static noinline int run_delalloc_nocow(struct inode *inode,
1045 				       struct page *locked_page,
1046 			      u64 start, u64 end, int *page_started, int force,
1047 			      unsigned long *nr_written)
1048 {
1049 	struct btrfs_root *root = BTRFS_I(inode)->root;
1050 	struct btrfs_trans_handle *trans;
1051 	struct extent_buffer *leaf;
1052 	struct btrfs_path *path;
1053 	struct btrfs_file_extent_item *fi;
1054 	struct btrfs_key found_key;
1055 	u64 cow_start;
1056 	u64 cur_offset;
1057 	u64 extent_end;
1058 	u64 extent_offset;
1059 	u64 disk_bytenr;
1060 	u64 num_bytes;
1061 	int extent_type;
1062 	int ret;
1063 	int type;
1064 	int nocow;
1065 	int check_prev = 1;
1066 	bool nolock;
1067 	u64 ino = btrfs_ino(inode);
1068 
1069 	path = btrfs_alloc_path();
1070 	if (!path)
1071 		return -ENOMEM;
1072 
1073 	nolock = btrfs_is_free_space_inode(root, inode);
1074 
1075 	if (nolock)
1076 		trans = btrfs_join_transaction_nolock(root);
1077 	else
1078 		trans = btrfs_join_transaction(root);
1079 
1080 	BUG_ON(IS_ERR(trans));
1081 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1082 
1083 	cow_start = (u64)-1;
1084 	cur_offset = start;
1085 	while (1) {
1086 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1087 					       cur_offset, 0);
1088 		BUG_ON(ret < 0);
1089 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1090 			leaf = path->nodes[0];
1091 			btrfs_item_key_to_cpu(leaf, &found_key,
1092 					      path->slots[0] - 1);
1093 			if (found_key.objectid == ino &&
1094 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1095 				path->slots[0]--;
1096 		}
1097 		check_prev = 0;
1098 next_slot:
1099 		leaf = path->nodes[0];
1100 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1101 			ret = btrfs_next_leaf(root, path);
1102 			if (ret < 0)
1103 				BUG_ON(1);
1104 			if (ret > 0)
1105 				break;
1106 			leaf = path->nodes[0];
1107 		}
1108 
1109 		nocow = 0;
1110 		disk_bytenr = 0;
1111 		num_bytes = 0;
1112 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1113 
1114 		if (found_key.objectid > ino ||
1115 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1116 		    found_key.offset > end)
1117 			break;
1118 
1119 		if (found_key.offset > cur_offset) {
1120 			extent_end = found_key.offset;
1121 			extent_type = 0;
1122 			goto out_check;
1123 		}
1124 
1125 		fi = btrfs_item_ptr(leaf, path->slots[0],
1126 				    struct btrfs_file_extent_item);
1127 		extent_type = btrfs_file_extent_type(leaf, fi);
1128 
1129 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1130 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1131 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1132 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1133 			extent_end = found_key.offset +
1134 				btrfs_file_extent_num_bytes(leaf, fi);
1135 			if (extent_end <= start) {
1136 				path->slots[0]++;
1137 				goto next_slot;
1138 			}
1139 			if (disk_bytenr == 0)
1140 				goto out_check;
1141 			if (btrfs_file_extent_compression(leaf, fi) ||
1142 			    btrfs_file_extent_encryption(leaf, fi) ||
1143 			    btrfs_file_extent_other_encoding(leaf, fi))
1144 				goto out_check;
1145 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1146 				goto out_check;
1147 			if (btrfs_extent_readonly(root, disk_bytenr))
1148 				goto out_check;
1149 			if (btrfs_cross_ref_exist(trans, root, ino,
1150 						  found_key.offset -
1151 						  extent_offset, disk_bytenr))
1152 				goto out_check;
1153 			disk_bytenr += extent_offset;
1154 			disk_bytenr += cur_offset - found_key.offset;
1155 			num_bytes = min(end + 1, extent_end) - cur_offset;
1156 			/*
1157 			 * force cow if csum exists in the range.
1158 			 * this ensure that csum for a given extent are
1159 			 * either valid or do not exist.
1160 			 */
1161 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1162 				goto out_check;
1163 			nocow = 1;
1164 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1165 			extent_end = found_key.offset +
1166 				btrfs_file_extent_inline_len(leaf, fi);
1167 			extent_end = ALIGN(extent_end, root->sectorsize);
1168 		} else {
1169 			BUG_ON(1);
1170 		}
1171 out_check:
1172 		if (extent_end <= start) {
1173 			path->slots[0]++;
1174 			goto next_slot;
1175 		}
1176 		if (!nocow) {
1177 			if (cow_start == (u64)-1)
1178 				cow_start = cur_offset;
1179 			cur_offset = extent_end;
1180 			if (cur_offset > end)
1181 				break;
1182 			path->slots[0]++;
1183 			goto next_slot;
1184 		}
1185 
1186 		btrfs_release_path(path);
1187 		if (cow_start != (u64)-1) {
1188 			ret = cow_file_range(inode, locked_page, cow_start,
1189 					found_key.offset - 1, page_started,
1190 					nr_written, 1);
1191 			BUG_ON(ret);
1192 			cow_start = (u64)-1;
1193 		}
1194 
1195 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1196 			struct extent_map *em;
1197 			struct extent_map_tree *em_tree;
1198 			em_tree = &BTRFS_I(inode)->extent_tree;
1199 			em = alloc_extent_map();
1200 			BUG_ON(!em);
1201 			em->start = cur_offset;
1202 			em->orig_start = em->start;
1203 			em->len = num_bytes;
1204 			em->block_len = num_bytes;
1205 			em->block_start = disk_bytenr;
1206 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1207 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1208 			while (1) {
1209 				write_lock(&em_tree->lock);
1210 				ret = add_extent_mapping(em_tree, em);
1211 				write_unlock(&em_tree->lock);
1212 				if (ret != -EEXIST) {
1213 					free_extent_map(em);
1214 					break;
1215 				}
1216 				btrfs_drop_extent_cache(inode, em->start,
1217 						em->start + em->len - 1, 0);
1218 			}
1219 			type = BTRFS_ORDERED_PREALLOC;
1220 		} else {
1221 			type = BTRFS_ORDERED_NOCOW;
1222 		}
1223 
1224 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1225 					       num_bytes, num_bytes, type);
1226 		BUG_ON(ret);
1227 
1228 		if (root->root_key.objectid ==
1229 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1230 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1231 						      num_bytes);
1232 			BUG_ON(ret);
1233 		}
1234 
1235 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1236 				cur_offset, cur_offset + num_bytes - 1,
1237 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1238 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1239 				EXTENT_SET_PRIVATE2);
1240 		cur_offset = extent_end;
1241 		if (cur_offset > end)
1242 			break;
1243 	}
1244 	btrfs_release_path(path);
1245 
1246 	if (cur_offset <= end && cow_start == (u64)-1)
1247 		cow_start = cur_offset;
1248 	if (cow_start != (u64)-1) {
1249 		ret = cow_file_range(inode, locked_page, cow_start, end,
1250 				     page_started, nr_written, 1);
1251 		BUG_ON(ret);
1252 	}
1253 
1254 	if (nolock) {
1255 		ret = btrfs_end_transaction_nolock(trans, root);
1256 		BUG_ON(ret);
1257 	} else {
1258 		ret = btrfs_end_transaction(trans, root);
1259 		BUG_ON(ret);
1260 	}
1261 	btrfs_free_path(path);
1262 	return 0;
1263 }
1264 
1265 /*
1266  * extent_io.c call back to do delayed allocation processing
1267  */
1268 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1269 			      u64 start, u64 end, int *page_started,
1270 			      unsigned long *nr_written)
1271 {
1272 	int ret;
1273 	struct btrfs_root *root = BTRFS_I(inode)->root;
1274 
1275 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1276 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1277 					 page_started, 1, nr_written);
1278 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1279 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1280 					 page_started, 0, nr_written);
1281 	else if (!btrfs_test_opt(root, COMPRESS) &&
1282 		 !(BTRFS_I(inode)->force_compress) &&
1283 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1284 		ret = cow_file_range(inode, locked_page, start, end,
1285 				      page_started, nr_written, 1);
1286 	else
1287 		ret = cow_file_range_async(inode, locked_page, start, end,
1288 					   page_started, nr_written);
1289 	return ret;
1290 }
1291 
1292 static void btrfs_split_extent_hook(struct inode *inode,
1293 				    struct extent_state *orig, u64 split)
1294 {
1295 	/* not delalloc, ignore it */
1296 	if (!(orig->state & EXTENT_DELALLOC))
1297 		return;
1298 
1299 	spin_lock(&BTRFS_I(inode)->lock);
1300 	BTRFS_I(inode)->outstanding_extents++;
1301 	spin_unlock(&BTRFS_I(inode)->lock);
1302 }
1303 
1304 /*
1305  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1306  * extents so we can keep track of new extents that are just merged onto old
1307  * extents, such as when we are doing sequential writes, so we can properly
1308  * account for the metadata space we'll need.
1309  */
1310 static void btrfs_merge_extent_hook(struct inode *inode,
1311 				    struct extent_state *new,
1312 				    struct extent_state *other)
1313 {
1314 	/* not delalloc, ignore it */
1315 	if (!(other->state & EXTENT_DELALLOC))
1316 		return;
1317 
1318 	spin_lock(&BTRFS_I(inode)->lock);
1319 	BTRFS_I(inode)->outstanding_extents--;
1320 	spin_unlock(&BTRFS_I(inode)->lock);
1321 }
1322 
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static void btrfs_set_bit_hook(struct inode *inode,
1329 			       struct extent_state *state, int *bits)
1330 {
1331 
1332 	/*
1333 	 * set_bit and clear bit hooks normally require _irqsave/restore
1334 	 * but in this case, we are only testing for the DELALLOC
1335 	 * bit, which is only set or cleared with irqs on
1336 	 */
1337 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338 		struct btrfs_root *root = BTRFS_I(inode)->root;
1339 		u64 len = state->end + 1 - state->start;
1340 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1341 
1342 		if (*bits & EXTENT_FIRST_DELALLOC) {
1343 			*bits &= ~EXTENT_FIRST_DELALLOC;
1344 		} else {
1345 			spin_lock(&BTRFS_I(inode)->lock);
1346 			BTRFS_I(inode)->outstanding_extents++;
1347 			spin_unlock(&BTRFS_I(inode)->lock);
1348 		}
1349 
1350 		spin_lock(&root->fs_info->delalloc_lock);
1351 		BTRFS_I(inode)->delalloc_bytes += len;
1352 		root->fs_info->delalloc_bytes += len;
1353 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1354 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1355 				      &root->fs_info->delalloc_inodes);
1356 		}
1357 		spin_unlock(&root->fs_info->delalloc_lock);
1358 	}
1359 }
1360 
1361 /*
1362  * extent_io.c clear_bit_hook, see set_bit_hook for why
1363  */
1364 static void btrfs_clear_bit_hook(struct inode *inode,
1365 				 struct extent_state *state, int *bits)
1366 {
1367 	/*
1368 	 * set_bit and clear bit hooks normally require _irqsave/restore
1369 	 * but in this case, we are only testing for the DELALLOC
1370 	 * bit, which is only set or cleared with irqs on
1371 	 */
1372 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1373 		struct btrfs_root *root = BTRFS_I(inode)->root;
1374 		u64 len = state->end + 1 - state->start;
1375 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1376 
1377 		if (*bits & EXTENT_FIRST_DELALLOC) {
1378 			*bits &= ~EXTENT_FIRST_DELALLOC;
1379 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1380 			spin_lock(&BTRFS_I(inode)->lock);
1381 			BTRFS_I(inode)->outstanding_extents--;
1382 			spin_unlock(&BTRFS_I(inode)->lock);
1383 		}
1384 
1385 		if (*bits & EXTENT_DO_ACCOUNTING)
1386 			btrfs_delalloc_release_metadata(inode, len);
1387 
1388 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1389 		    && do_list)
1390 			btrfs_free_reserved_data_space(inode, len);
1391 
1392 		spin_lock(&root->fs_info->delalloc_lock);
1393 		root->fs_info->delalloc_bytes -= len;
1394 		BTRFS_I(inode)->delalloc_bytes -= len;
1395 
1396 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1397 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1398 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1399 		}
1400 		spin_unlock(&root->fs_info->delalloc_lock);
1401 	}
1402 }
1403 
1404 /*
1405  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1406  * we don't create bios that span stripes or chunks
1407  */
1408 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1409 			 size_t size, struct bio *bio,
1410 			 unsigned long bio_flags)
1411 {
1412 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1413 	struct btrfs_mapping_tree *map_tree;
1414 	u64 logical = (u64)bio->bi_sector << 9;
1415 	u64 length = 0;
1416 	u64 map_length;
1417 	int ret;
1418 
1419 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1420 		return 0;
1421 
1422 	length = bio->bi_size;
1423 	map_tree = &root->fs_info->mapping_tree;
1424 	map_length = length;
1425 	ret = btrfs_map_block(map_tree, READ, logical,
1426 			      &map_length, NULL, 0);
1427 
1428 	if (map_length < length + size)
1429 		return 1;
1430 	return ret;
1431 }
1432 
1433 /*
1434  * in order to insert checksums into the metadata in large chunks,
1435  * we wait until bio submission time.   All the pages in the bio are
1436  * checksummed and sums are attached onto the ordered extent record.
1437  *
1438  * At IO completion time the cums attached on the ordered extent record
1439  * are inserted into the btree
1440  */
1441 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1442 				    struct bio *bio, int mirror_num,
1443 				    unsigned long bio_flags,
1444 				    u64 bio_offset)
1445 {
1446 	struct btrfs_root *root = BTRFS_I(inode)->root;
1447 	int ret = 0;
1448 
1449 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1450 	BUG_ON(ret);
1451 	return 0;
1452 }
1453 
1454 /*
1455  * in order to insert checksums into the metadata in large chunks,
1456  * we wait until bio submission time.   All the pages in the bio are
1457  * checksummed and sums are attached onto the ordered extent record.
1458  *
1459  * At IO completion time the cums attached on the ordered extent record
1460  * are inserted into the btree
1461  */
1462 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1463 			  int mirror_num, unsigned long bio_flags,
1464 			  u64 bio_offset)
1465 {
1466 	struct btrfs_root *root = BTRFS_I(inode)->root;
1467 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1468 }
1469 
1470 /*
1471  * extent_io.c submission hook. This does the right thing for csum calculation
1472  * on write, or reading the csums from the tree before a read
1473  */
1474 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1475 			  int mirror_num, unsigned long bio_flags,
1476 			  u64 bio_offset)
1477 {
1478 	struct btrfs_root *root = BTRFS_I(inode)->root;
1479 	int ret = 0;
1480 	int skip_sum;
1481 
1482 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1483 
1484 	if (btrfs_is_free_space_inode(root, inode))
1485 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1486 	else
1487 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1488 	BUG_ON(ret);
1489 
1490 	if (!(rw & REQ_WRITE)) {
1491 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1492 			return btrfs_submit_compressed_read(inode, bio,
1493 						    mirror_num, bio_flags);
1494 		} else if (!skip_sum) {
1495 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1496 			if (ret)
1497 				return ret;
1498 		}
1499 		goto mapit;
1500 	} else if (!skip_sum) {
1501 		/* csum items have already been cloned */
1502 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1503 			goto mapit;
1504 		/* we're doing a write, do the async checksumming */
1505 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1506 				   inode, rw, bio, mirror_num,
1507 				   bio_flags, bio_offset,
1508 				   __btrfs_submit_bio_start,
1509 				   __btrfs_submit_bio_done);
1510 	}
1511 
1512 mapit:
1513 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1514 }
1515 
1516 /*
1517  * given a list of ordered sums record them in the inode.  This happens
1518  * at IO completion time based on sums calculated at bio submission time.
1519  */
1520 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1521 			     struct inode *inode, u64 file_offset,
1522 			     struct list_head *list)
1523 {
1524 	struct btrfs_ordered_sum *sum;
1525 
1526 	list_for_each_entry(sum, list, list) {
1527 		btrfs_csum_file_blocks(trans,
1528 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1529 	}
1530 	return 0;
1531 }
1532 
1533 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1534 			      struct extent_state **cached_state)
1535 {
1536 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1537 		WARN_ON(1);
1538 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1539 				   cached_state, GFP_NOFS);
1540 }
1541 
1542 /* see btrfs_writepage_start_hook for details on why this is required */
1543 struct btrfs_writepage_fixup {
1544 	struct page *page;
1545 	struct btrfs_work work;
1546 };
1547 
1548 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1549 {
1550 	struct btrfs_writepage_fixup *fixup;
1551 	struct btrfs_ordered_extent *ordered;
1552 	struct extent_state *cached_state = NULL;
1553 	struct page *page;
1554 	struct inode *inode;
1555 	u64 page_start;
1556 	u64 page_end;
1557 
1558 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1559 	page = fixup->page;
1560 again:
1561 	lock_page(page);
1562 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1563 		ClearPageChecked(page);
1564 		goto out_page;
1565 	}
1566 
1567 	inode = page->mapping->host;
1568 	page_start = page_offset(page);
1569 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1570 
1571 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1572 			 &cached_state, GFP_NOFS);
1573 
1574 	/* already ordered? We're done */
1575 	if (PagePrivate2(page))
1576 		goto out;
1577 
1578 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1579 	if (ordered) {
1580 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1581 				     page_end, &cached_state, GFP_NOFS);
1582 		unlock_page(page);
1583 		btrfs_start_ordered_extent(inode, ordered, 1);
1584 		goto again;
1585 	}
1586 
1587 	BUG();
1588 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1589 	ClearPageChecked(page);
1590 out:
1591 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1592 			     &cached_state, GFP_NOFS);
1593 out_page:
1594 	unlock_page(page);
1595 	page_cache_release(page);
1596 	kfree(fixup);
1597 }
1598 
1599 /*
1600  * There are a few paths in the higher layers of the kernel that directly
1601  * set the page dirty bit without asking the filesystem if it is a
1602  * good idea.  This causes problems because we want to make sure COW
1603  * properly happens and the data=ordered rules are followed.
1604  *
1605  * In our case any range that doesn't have the ORDERED bit set
1606  * hasn't been properly setup for IO.  We kick off an async process
1607  * to fix it up.  The async helper will wait for ordered extents, set
1608  * the delalloc bit and make it safe to write the page.
1609  */
1610 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1611 {
1612 	struct inode *inode = page->mapping->host;
1613 	struct btrfs_writepage_fixup *fixup;
1614 	struct btrfs_root *root = BTRFS_I(inode)->root;
1615 
1616 	/* this page is properly in the ordered list */
1617 	if (TestClearPagePrivate2(page))
1618 		return 0;
1619 
1620 	if (PageChecked(page))
1621 		return -EAGAIN;
1622 
1623 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1624 	if (!fixup)
1625 		return -EAGAIN;
1626 
1627 	SetPageChecked(page);
1628 	page_cache_get(page);
1629 	fixup->work.func = btrfs_writepage_fixup_worker;
1630 	fixup->page = page;
1631 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1632 	return -EAGAIN;
1633 }
1634 
1635 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1636 				       struct inode *inode, u64 file_pos,
1637 				       u64 disk_bytenr, u64 disk_num_bytes,
1638 				       u64 num_bytes, u64 ram_bytes,
1639 				       u8 compression, u8 encryption,
1640 				       u16 other_encoding, int extent_type)
1641 {
1642 	struct btrfs_root *root = BTRFS_I(inode)->root;
1643 	struct btrfs_file_extent_item *fi;
1644 	struct btrfs_path *path;
1645 	struct extent_buffer *leaf;
1646 	struct btrfs_key ins;
1647 	u64 hint;
1648 	int ret;
1649 
1650 	path = btrfs_alloc_path();
1651 	if (!path)
1652 		return -ENOMEM;
1653 
1654 	path->leave_spinning = 1;
1655 
1656 	/*
1657 	 * we may be replacing one extent in the tree with another.
1658 	 * The new extent is pinned in the extent map, and we don't want
1659 	 * to drop it from the cache until it is completely in the btree.
1660 	 *
1661 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1662 	 * the caller is expected to unpin it and allow it to be merged
1663 	 * with the others.
1664 	 */
1665 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1666 				 &hint, 0);
1667 	BUG_ON(ret);
1668 
1669 	ins.objectid = btrfs_ino(inode);
1670 	ins.offset = file_pos;
1671 	ins.type = BTRFS_EXTENT_DATA_KEY;
1672 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1673 	BUG_ON(ret);
1674 	leaf = path->nodes[0];
1675 	fi = btrfs_item_ptr(leaf, path->slots[0],
1676 			    struct btrfs_file_extent_item);
1677 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1678 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1679 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1680 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1681 	btrfs_set_file_extent_offset(leaf, fi, 0);
1682 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1683 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1684 	btrfs_set_file_extent_compression(leaf, fi, compression);
1685 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1686 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1687 
1688 	btrfs_unlock_up_safe(path, 1);
1689 	btrfs_set_lock_blocking(leaf);
1690 
1691 	btrfs_mark_buffer_dirty(leaf);
1692 
1693 	inode_add_bytes(inode, num_bytes);
1694 
1695 	ins.objectid = disk_bytenr;
1696 	ins.offset = disk_num_bytes;
1697 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1698 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1699 					root->root_key.objectid,
1700 					btrfs_ino(inode), file_pos, &ins);
1701 	BUG_ON(ret);
1702 	btrfs_free_path(path);
1703 
1704 	return 0;
1705 }
1706 
1707 /*
1708  * helper function for btrfs_finish_ordered_io, this
1709  * just reads in some of the csum leaves to prime them into ram
1710  * before we start the transaction.  It limits the amount of btree
1711  * reads required while inside the transaction.
1712  */
1713 /* as ordered data IO finishes, this gets called so we can finish
1714  * an ordered extent if the range of bytes in the file it covers are
1715  * fully written.
1716  */
1717 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1718 {
1719 	struct btrfs_root *root = BTRFS_I(inode)->root;
1720 	struct btrfs_trans_handle *trans = NULL;
1721 	struct btrfs_ordered_extent *ordered_extent = NULL;
1722 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1723 	struct extent_state *cached_state = NULL;
1724 	int compress_type = 0;
1725 	int ret;
1726 	bool nolock;
1727 
1728 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1729 					     end - start + 1);
1730 	if (!ret)
1731 		return 0;
1732 	BUG_ON(!ordered_extent);
1733 
1734 	nolock = btrfs_is_free_space_inode(root, inode);
1735 
1736 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1737 		BUG_ON(!list_empty(&ordered_extent->list));
1738 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1739 		if (!ret) {
1740 			if (nolock)
1741 				trans = btrfs_join_transaction_nolock(root);
1742 			else
1743 				trans = btrfs_join_transaction(root);
1744 			BUG_ON(IS_ERR(trans));
1745 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1746 			ret = btrfs_update_inode_fallback(trans, root, inode);
1747 			BUG_ON(ret);
1748 		}
1749 		goto out;
1750 	}
1751 
1752 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1753 			 ordered_extent->file_offset + ordered_extent->len - 1,
1754 			 0, &cached_state, GFP_NOFS);
1755 
1756 	if (nolock)
1757 		trans = btrfs_join_transaction_nolock(root);
1758 	else
1759 		trans = btrfs_join_transaction(root);
1760 	BUG_ON(IS_ERR(trans));
1761 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1762 
1763 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1764 		compress_type = ordered_extent->compress_type;
1765 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766 		BUG_ON(compress_type);
1767 		ret = btrfs_mark_extent_written(trans, inode,
1768 						ordered_extent->file_offset,
1769 						ordered_extent->file_offset +
1770 						ordered_extent->len);
1771 		BUG_ON(ret);
1772 	} else {
1773 		BUG_ON(root == root->fs_info->tree_root);
1774 		ret = insert_reserved_file_extent(trans, inode,
1775 						ordered_extent->file_offset,
1776 						ordered_extent->start,
1777 						ordered_extent->disk_len,
1778 						ordered_extent->len,
1779 						ordered_extent->len,
1780 						compress_type, 0, 0,
1781 						BTRFS_FILE_EXTENT_REG);
1782 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783 				   ordered_extent->file_offset,
1784 				   ordered_extent->len);
1785 		BUG_ON(ret);
1786 	}
1787 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1788 			     ordered_extent->file_offset +
1789 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1790 
1791 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1792 			  &ordered_extent->list);
1793 
1794 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1796 		ret = btrfs_update_inode_fallback(trans, root, inode);
1797 		BUG_ON(ret);
1798 	}
1799 	ret = 0;
1800 out:
1801 	if (root != root->fs_info->tree_root)
1802 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1803 	if (trans) {
1804 		if (nolock)
1805 			btrfs_end_transaction_nolock(trans, root);
1806 		else
1807 			btrfs_end_transaction(trans, root);
1808 	}
1809 
1810 	/* once for us */
1811 	btrfs_put_ordered_extent(ordered_extent);
1812 	/* once for the tree */
1813 	btrfs_put_ordered_extent(ordered_extent);
1814 
1815 	return 0;
1816 }
1817 
1818 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1819 				struct extent_state *state, int uptodate)
1820 {
1821 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1822 
1823 	ClearPagePrivate2(page);
1824 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1825 }
1826 
1827 /*
1828  * when reads are done, we need to check csums to verify the data is correct
1829  * if there's a match, we allow the bio to finish.  If not, the code in
1830  * extent_io.c will try to find good copies for us.
1831  */
1832 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1833 			       struct extent_state *state)
1834 {
1835 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1836 	struct inode *inode = page->mapping->host;
1837 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1838 	char *kaddr;
1839 	u64 private = ~(u32)0;
1840 	int ret;
1841 	struct btrfs_root *root = BTRFS_I(inode)->root;
1842 	u32 csum = ~(u32)0;
1843 
1844 	if (PageChecked(page)) {
1845 		ClearPageChecked(page);
1846 		goto good;
1847 	}
1848 
1849 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1850 		goto good;
1851 
1852 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1853 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1854 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1855 				  GFP_NOFS);
1856 		return 0;
1857 	}
1858 
1859 	if (state && state->start == start) {
1860 		private = state->private;
1861 		ret = 0;
1862 	} else {
1863 		ret = get_state_private(io_tree, start, &private);
1864 	}
1865 	kaddr = kmap_atomic(page, KM_USER0);
1866 	if (ret)
1867 		goto zeroit;
1868 
1869 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1870 	btrfs_csum_final(csum, (char *)&csum);
1871 	if (csum != private)
1872 		goto zeroit;
1873 
1874 	kunmap_atomic(kaddr, KM_USER0);
1875 good:
1876 	return 0;
1877 
1878 zeroit:
1879 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1880 		       "private %llu\n",
1881 		       (unsigned long long)btrfs_ino(page->mapping->host),
1882 		       (unsigned long long)start, csum,
1883 		       (unsigned long long)private);
1884 	memset(kaddr + offset, 1, end - start + 1);
1885 	flush_dcache_page(page);
1886 	kunmap_atomic(kaddr, KM_USER0);
1887 	if (private == 0)
1888 		return 0;
1889 	return -EIO;
1890 }
1891 
1892 struct delayed_iput {
1893 	struct list_head list;
1894 	struct inode *inode;
1895 };
1896 
1897 void btrfs_add_delayed_iput(struct inode *inode)
1898 {
1899 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1900 	struct delayed_iput *delayed;
1901 
1902 	if (atomic_add_unless(&inode->i_count, -1, 1))
1903 		return;
1904 
1905 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1906 	delayed->inode = inode;
1907 
1908 	spin_lock(&fs_info->delayed_iput_lock);
1909 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1910 	spin_unlock(&fs_info->delayed_iput_lock);
1911 }
1912 
1913 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1914 {
1915 	LIST_HEAD(list);
1916 	struct btrfs_fs_info *fs_info = root->fs_info;
1917 	struct delayed_iput *delayed;
1918 	int empty;
1919 
1920 	spin_lock(&fs_info->delayed_iput_lock);
1921 	empty = list_empty(&fs_info->delayed_iputs);
1922 	spin_unlock(&fs_info->delayed_iput_lock);
1923 	if (empty)
1924 		return;
1925 
1926 	down_read(&root->fs_info->cleanup_work_sem);
1927 	spin_lock(&fs_info->delayed_iput_lock);
1928 	list_splice_init(&fs_info->delayed_iputs, &list);
1929 	spin_unlock(&fs_info->delayed_iput_lock);
1930 
1931 	while (!list_empty(&list)) {
1932 		delayed = list_entry(list.next, struct delayed_iput, list);
1933 		list_del(&delayed->list);
1934 		iput(delayed->inode);
1935 		kfree(delayed);
1936 	}
1937 	up_read(&root->fs_info->cleanup_work_sem);
1938 }
1939 
1940 enum btrfs_orphan_cleanup_state {
1941 	ORPHAN_CLEANUP_STARTED	= 1,
1942 	ORPHAN_CLEANUP_DONE	= 2,
1943 };
1944 
1945 /*
1946  * This is called in transaction commmit time. If there are no orphan
1947  * files in the subvolume, it removes orphan item and frees block_rsv
1948  * structure.
1949  */
1950 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1951 			      struct btrfs_root *root)
1952 {
1953 	int ret;
1954 
1955 	if (!list_empty(&root->orphan_list) ||
1956 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1957 		return;
1958 
1959 	if (root->orphan_item_inserted &&
1960 	    btrfs_root_refs(&root->root_item) > 0) {
1961 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1962 					    root->root_key.objectid);
1963 		BUG_ON(ret);
1964 		root->orphan_item_inserted = 0;
1965 	}
1966 
1967 	if (root->orphan_block_rsv) {
1968 		WARN_ON(root->orphan_block_rsv->size > 0);
1969 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
1970 		root->orphan_block_rsv = NULL;
1971 	}
1972 }
1973 
1974 /*
1975  * This creates an orphan entry for the given inode in case something goes
1976  * wrong in the middle of an unlink/truncate.
1977  *
1978  * NOTE: caller of this function should reserve 5 units of metadata for
1979  *	 this function.
1980  */
1981 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1982 {
1983 	struct btrfs_root *root = BTRFS_I(inode)->root;
1984 	struct btrfs_block_rsv *block_rsv = NULL;
1985 	int reserve = 0;
1986 	int insert = 0;
1987 	int ret;
1988 
1989 	if (!root->orphan_block_rsv) {
1990 		block_rsv = btrfs_alloc_block_rsv(root);
1991 		if (!block_rsv)
1992 			return -ENOMEM;
1993 	}
1994 
1995 	spin_lock(&root->orphan_lock);
1996 	if (!root->orphan_block_rsv) {
1997 		root->orphan_block_rsv = block_rsv;
1998 	} else if (block_rsv) {
1999 		btrfs_free_block_rsv(root, block_rsv);
2000 		block_rsv = NULL;
2001 	}
2002 
2003 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2004 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2005 #if 0
2006 		/*
2007 		 * For proper ENOSPC handling, we should do orphan
2008 		 * cleanup when mounting. But this introduces backward
2009 		 * compatibility issue.
2010 		 */
2011 		if (!xchg(&root->orphan_item_inserted, 1))
2012 			insert = 2;
2013 		else
2014 			insert = 1;
2015 #endif
2016 		insert = 1;
2017 	}
2018 
2019 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2020 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2021 		reserve = 1;
2022 	}
2023 	spin_unlock(&root->orphan_lock);
2024 
2025 	/* grab metadata reservation from transaction handle */
2026 	if (reserve) {
2027 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2028 		BUG_ON(ret);
2029 	}
2030 
2031 	/* insert an orphan item to track this unlinked/truncated file */
2032 	if (insert >= 1) {
2033 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2034 		BUG_ON(ret);
2035 	}
2036 
2037 	/* insert an orphan item to track subvolume contains orphan files */
2038 	if (insert >= 2) {
2039 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2040 					       root->root_key.objectid);
2041 		BUG_ON(ret);
2042 	}
2043 	return 0;
2044 }
2045 
2046 /*
2047  * We have done the truncate/delete so we can go ahead and remove the orphan
2048  * item for this particular inode.
2049  */
2050 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2051 {
2052 	struct btrfs_root *root = BTRFS_I(inode)->root;
2053 	int delete_item = 0;
2054 	int release_rsv = 0;
2055 	int ret = 0;
2056 
2057 	spin_lock(&root->orphan_lock);
2058 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2059 		list_del_init(&BTRFS_I(inode)->i_orphan);
2060 		delete_item = 1;
2061 	}
2062 
2063 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2064 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2065 		release_rsv = 1;
2066 	}
2067 	spin_unlock(&root->orphan_lock);
2068 
2069 	if (trans && delete_item) {
2070 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2071 		BUG_ON(ret);
2072 	}
2073 
2074 	if (release_rsv)
2075 		btrfs_orphan_release_metadata(inode);
2076 
2077 	return 0;
2078 }
2079 
2080 /*
2081  * this cleans up any orphans that may be left on the list from the last use
2082  * of this root.
2083  */
2084 int btrfs_orphan_cleanup(struct btrfs_root *root)
2085 {
2086 	struct btrfs_path *path;
2087 	struct extent_buffer *leaf;
2088 	struct btrfs_key key, found_key;
2089 	struct btrfs_trans_handle *trans;
2090 	struct inode *inode;
2091 	u64 last_objectid = 0;
2092 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2093 
2094 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2095 		return 0;
2096 
2097 	path = btrfs_alloc_path();
2098 	if (!path) {
2099 		ret = -ENOMEM;
2100 		goto out;
2101 	}
2102 	path->reada = -1;
2103 
2104 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2105 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2106 	key.offset = (u64)-1;
2107 
2108 	while (1) {
2109 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2110 		if (ret < 0)
2111 			goto out;
2112 
2113 		/*
2114 		 * if ret == 0 means we found what we were searching for, which
2115 		 * is weird, but possible, so only screw with path if we didn't
2116 		 * find the key and see if we have stuff that matches
2117 		 */
2118 		if (ret > 0) {
2119 			ret = 0;
2120 			if (path->slots[0] == 0)
2121 				break;
2122 			path->slots[0]--;
2123 		}
2124 
2125 		/* pull out the item */
2126 		leaf = path->nodes[0];
2127 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2128 
2129 		/* make sure the item matches what we want */
2130 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2131 			break;
2132 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2133 			break;
2134 
2135 		/* release the path since we're done with it */
2136 		btrfs_release_path(path);
2137 
2138 		/*
2139 		 * this is where we are basically btrfs_lookup, without the
2140 		 * crossing root thing.  we store the inode number in the
2141 		 * offset of the orphan item.
2142 		 */
2143 
2144 		if (found_key.offset == last_objectid) {
2145 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2146 			       "stopping orphan cleanup\n");
2147 			ret = -EINVAL;
2148 			goto out;
2149 		}
2150 
2151 		last_objectid = found_key.offset;
2152 
2153 		found_key.objectid = found_key.offset;
2154 		found_key.type = BTRFS_INODE_ITEM_KEY;
2155 		found_key.offset = 0;
2156 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2157 		ret = PTR_RET(inode);
2158 		if (ret && ret != -ESTALE)
2159 			goto out;
2160 
2161 		/*
2162 		 * Inode is already gone but the orphan item is still there,
2163 		 * kill the orphan item.
2164 		 */
2165 		if (ret == -ESTALE) {
2166 			trans = btrfs_start_transaction(root, 1);
2167 			if (IS_ERR(trans)) {
2168 				ret = PTR_ERR(trans);
2169 				goto out;
2170 			}
2171 			ret = btrfs_del_orphan_item(trans, root,
2172 						    found_key.objectid);
2173 			BUG_ON(ret);
2174 			btrfs_end_transaction(trans, root);
2175 			continue;
2176 		}
2177 
2178 		/*
2179 		 * add this inode to the orphan list so btrfs_orphan_del does
2180 		 * the proper thing when we hit it
2181 		 */
2182 		spin_lock(&root->orphan_lock);
2183 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2184 		spin_unlock(&root->orphan_lock);
2185 
2186 		/* if we have links, this was a truncate, lets do that */
2187 		if (inode->i_nlink) {
2188 			if (!S_ISREG(inode->i_mode)) {
2189 				WARN_ON(1);
2190 				iput(inode);
2191 				continue;
2192 			}
2193 			nr_truncate++;
2194 			ret = btrfs_truncate(inode);
2195 		} else {
2196 			nr_unlink++;
2197 		}
2198 
2199 		/* this will do delete_inode and everything for us */
2200 		iput(inode);
2201 		if (ret)
2202 			goto out;
2203 	}
2204 	/* release the path since we're done with it */
2205 	btrfs_release_path(path);
2206 
2207 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2208 
2209 	if (root->orphan_block_rsv)
2210 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2211 					(u64)-1);
2212 
2213 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2214 		trans = btrfs_join_transaction(root);
2215 		if (!IS_ERR(trans))
2216 			btrfs_end_transaction(trans, root);
2217 	}
2218 
2219 	if (nr_unlink)
2220 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2221 	if (nr_truncate)
2222 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2223 
2224 out:
2225 	if (ret)
2226 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2227 	btrfs_free_path(path);
2228 	return ret;
2229 }
2230 
2231 /*
2232  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2233  * don't find any xattrs, we know there can't be any acls.
2234  *
2235  * slot is the slot the inode is in, objectid is the objectid of the inode
2236  */
2237 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2238 					  int slot, u64 objectid)
2239 {
2240 	u32 nritems = btrfs_header_nritems(leaf);
2241 	struct btrfs_key found_key;
2242 	int scanned = 0;
2243 
2244 	slot++;
2245 	while (slot < nritems) {
2246 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2247 
2248 		/* we found a different objectid, there must not be acls */
2249 		if (found_key.objectid != objectid)
2250 			return 0;
2251 
2252 		/* we found an xattr, assume we've got an acl */
2253 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2254 			return 1;
2255 
2256 		/*
2257 		 * we found a key greater than an xattr key, there can't
2258 		 * be any acls later on
2259 		 */
2260 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2261 			return 0;
2262 
2263 		slot++;
2264 		scanned++;
2265 
2266 		/*
2267 		 * it goes inode, inode backrefs, xattrs, extents,
2268 		 * so if there are a ton of hard links to an inode there can
2269 		 * be a lot of backrefs.  Don't waste time searching too hard,
2270 		 * this is just an optimization
2271 		 */
2272 		if (scanned >= 8)
2273 			break;
2274 	}
2275 	/* we hit the end of the leaf before we found an xattr or
2276 	 * something larger than an xattr.  We have to assume the inode
2277 	 * has acls
2278 	 */
2279 	return 1;
2280 }
2281 
2282 /*
2283  * read an inode from the btree into the in-memory inode
2284  */
2285 static void btrfs_read_locked_inode(struct inode *inode)
2286 {
2287 	struct btrfs_path *path;
2288 	struct extent_buffer *leaf;
2289 	struct btrfs_inode_item *inode_item;
2290 	struct btrfs_timespec *tspec;
2291 	struct btrfs_root *root = BTRFS_I(inode)->root;
2292 	struct btrfs_key location;
2293 	int maybe_acls;
2294 	u32 rdev;
2295 	int ret;
2296 	bool filled = false;
2297 
2298 	ret = btrfs_fill_inode(inode, &rdev);
2299 	if (!ret)
2300 		filled = true;
2301 
2302 	path = btrfs_alloc_path();
2303 	if (!path)
2304 		goto make_bad;
2305 
2306 	path->leave_spinning = 1;
2307 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2308 
2309 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2310 	if (ret)
2311 		goto make_bad;
2312 
2313 	leaf = path->nodes[0];
2314 
2315 	if (filled)
2316 		goto cache_acl;
2317 
2318 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2319 				    struct btrfs_inode_item);
2320 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2321 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2322 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2323 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2324 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2325 
2326 	tspec = btrfs_inode_atime(inode_item);
2327 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2328 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2329 
2330 	tspec = btrfs_inode_mtime(inode_item);
2331 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2332 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2333 
2334 	tspec = btrfs_inode_ctime(inode_item);
2335 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2336 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2337 
2338 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2339 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2340 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2341 	inode->i_generation = BTRFS_I(inode)->generation;
2342 	inode->i_rdev = 0;
2343 	rdev = btrfs_inode_rdev(leaf, inode_item);
2344 
2345 	BTRFS_I(inode)->index_cnt = (u64)-1;
2346 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2347 cache_acl:
2348 	/*
2349 	 * try to precache a NULL acl entry for files that don't have
2350 	 * any xattrs or acls
2351 	 */
2352 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2353 					   btrfs_ino(inode));
2354 	if (!maybe_acls)
2355 		cache_no_acl(inode);
2356 
2357 	btrfs_free_path(path);
2358 
2359 	switch (inode->i_mode & S_IFMT) {
2360 	case S_IFREG:
2361 		inode->i_mapping->a_ops = &btrfs_aops;
2362 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2363 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2364 		inode->i_fop = &btrfs_file_operations;
2365 		inode->i_op = &btrfs_file_inode_operations;
2366 		break;
2367 	case S_IFDIR:
2368 		inode->i_fop = &btrfs_dir_file_operations;
2369 		if (root == root->fs_info->tree_root)
2370 			inode->i_op = &btrfs_dir_ro_inode_operations;
2371 		else
2372 			inode->i_op = &btrfs_dir_inode_operations;
2373 		break;
2374 	case S_IFLNK:
2375 		inode->i_op = &btrfs_symlink_inode_operations;
2376 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2377 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2378 		break;
2379 	default:
2380 		inode->i_op = &btrfs_special_inode_operations;
2381 		init_special_inode(inode, inode->i_mode, rdev);
2382 		break;
2383 	}
2384 
2385 	btrfs_update_iflags(inode);
2386 	return;
2387 
2388 make_bad:
2389 	btrfs_free_path(path);
2390 	make_bad_inode(inode);
2391 }
2392 
2393 /*
2394  * given a leaf and an inode, copy the inode fields into the leaf
2395  */
2396 static void fill_inode_item(struct btrfs_trans_handle *trans,
2397 			    struct extent_buffer *leaf,
2398 			    struct btrfs_inode_item *item,
2399 			    struct inode *inode)
2400 {
2401 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2402 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2403 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2404 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2405 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2406 
2407 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2408 			       inode->i_atime.tv_sec);
2409 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2410 				inode->i_atime.tv_nsec);
2411 
2412 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2413 			       inode->i_mtime.tv_sec);
2414 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2415 				inode->i_mtime.tv_nsec);
2416 
2417 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2418 			       inode->i_ctime.tv_sec);
2419 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2420 				inode->i_ctime.tv_nsec);
2421 
2422 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2423 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2424 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2425 	btrfs_set_inode_transid(leaf, item, trans->transid);
2426 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2427 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2428 	btrfs_set_inode_block_group(leaf, item, 0);
2429 }
2430 
2431 /*
2432  * copy everything in the in-memory inode into the btree.
2433  */
2434 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2435 				struct btrfs_root *root, struct inode *inode)
2436 {
2437 	struct btrfs_inode_item *inode_item;
2438 	struct btrfs_path *path;
2439 	struct extent_buffer *leaf;
2440 	int ret;
2441 
2442 	path = btrfs_alloc_path();
2443 	if (!path)
2444 		return -ENOMEM;
2445 
2446 	path->leave_spinning = 1;
2447 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2448 				 1);
2449 	if (ret) {
2450 		if (ret > 0)
2451 			ret = -ENOENT;
2452 		goto failed;
2453 	}
2454 
2455 	btrfs_unlock_up_safe(path, 1);
2456 	leaf = path->nodes[0];
2457 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2458 				    struct btrfs_inode_item);
2459 
2460 	fill_inode_item(trans, leaf, inode_item, inode);
2461 	btrfs_mark_buffer_dirty(leaf);
2462 	btrfs_set_inode_last_trans(trans, inode);
2463 	ret = 0;
2464 failed:
2465 	btrfs_free_path(path);
2466 	return ret;
2467 }
2468 
2469 /*
2470  * copy everything in the in-memory inode into the btree.
2471  */
2472 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2473 				struct btrfs_root *root, struct inode *inode)
2474 {
2475 	int ret;
2476 
2477 	/*
2478 	 * If the inode is a free space inode, we can deadlock during commit
2479 	 * if we put it into the delayed code.
2480 	 *
2481 	 * The data relocation inode should also be directly updated
2482 	 * without delay
2483 	 */
2484 	if (!btrfs_is_free_space_inode(root, inode)
2485 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2486 		ret = btrfs_delayed_update_inode(trans, root, inode);
2487 		if (!ret)
2488 			btrfs_set_inode_last_trans(trans, inode);
2489 		return ret;
2490 	}
2491 
2492 	return btrfs_update_inode_item(trans, root, inode);
2493 }
2494 
2495 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2496 				struct btrfs_root *root, struct inode *inode)
2497 {
2498 	int ret;
2499 
2500 	ret = btrfs_update_inode(trans, root, inode);
2501 	if (ret == -ENOSPC)
2502 		return btrfs_update_inode_item(trans, root, inode);
2503 	return ret;
2504 }
2505 
2506 /*
2507  * unlink helper that gets used here in inode.c and in the tree logging
2508  * recovery code.  It remove a link in a directory with a given name, and
2509  * also drops the back refs in the inode to the directory
2510  */
2511 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2512 				struct btrfs_root *root,
2513 				struct inode *dir, struct inode *inode,
2514 				const char *name, int name_len)
2515 {
2516 	struct btrfs_path *path;
2517 	int ret = 0;
2518 	struct extent_buffer *leaf;
2519 	struct btrfs_dir_item *di;
2520 	struct btrfs_key key;
2521 	u64 index;
2522 	u64 ino = btrfs_ino(inode);
2523 	u64 dir_ino = btrfs_ino(dir);
2524 
2525 	path = btrfs_alloc_path();
2526 	if (!path) {
2527 		ret = -ENOMEM;
2528 		goto out;
2529 	}
2530 
2531 	path->leave_spinning = 1;
2532 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2533 				    name, name_len, -1);
2534 	if (IS_ERR(di)) {
2535 		ret = PTR_ERR(di);
2536 		goto err;
2537 	}
2538 	if (!di) {
2539 		ret = -ENOENT;
2540 		goto err;
2541 	}
2542 	leaf = path->nodes[0];
2543 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2544 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2545 	if (ret)
2546 		goto err;
2547 	btrfs_release_path(path);
2548 
2549 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2550 				  dir_ino, &index);
2551 	if (ret) {
2552 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2553 		       "inode %llu parent %llu\n", name_len, name,
2554 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2555 		goto err;
2556 	}
2557 
2558 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2559 	if (ret)
2560 		goto err;
2561 
2562 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2563 					 inode, dir_ino);
2564 	BUG_ON(ret != 0 && ret != -ENOENT);
2565 
2566 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2567 					   dir, index);
2568 	if (ret == -ENOENT)
2569 		ret = 0;
2570 err:
2571 	btrfs_free_path(path);
2572 	if (ret)
2573 		goto out;
2574 
2575 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2576 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2577 	btrfs_update_inode(trans, root, dir);
2578 out:
2579 	return ret;
2580 }
2581 
2582 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2583 		       struct btrfs_root *root,
2584 		       struct inode *dir, struct inode *inode,
2585 		       const char *name, int name_len)
2586 {
2587 	int ret;
2588 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2589 	if (!ret) {
2590 		btrfs_drop_nlink(inode);
2591 		ret = btrfs_update_inode(trans, root, inode);
2592 	}
2593 	return ret;
2594 }
2595 
2596 
2597 /* helper to check if there is any shared block in the path */
2598 static int check_path_shared(struct btrfs_root *root,
2599 			     struct btrfs_path *path)
2600 {
2601 	struct extent_buffer *eb;
2602 	int level;
2603 	u64 refs = 1;
2604 
2605 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2606 		int ret;
2607 
2608 		if (!path->nodes[level])
2609 			break;
2610 		eb = path->nodes[level];
2611 		if (!btrfs_block_can_be_shared(root, eb))
2612 			continue;
2613 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2614 					       &refs, NULL);
2615 		if (refs > 1)
2616 			return 1;
2617 	}
2618 	return 0;
2619 }
2620 
2621 /*
2622  * helper to start transaction for unlink and rmdir.
2623  *
2624  * unlink and rmdir are special in btrfs, they do not always free space.
2625  * so in enospc case, we should make sure they will free space before
2626  * allowing them to use the global metadata reservation.
2627  */
2628 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2629 						       struct dentry *dentry)
2630 {
2631 	struct btrfs_trans_handle *trans;
2632 	struct btrfs_root *root = BTRFS_I(dir)->root;
2633 	struct btrfs_path *path;
2634 	struct btrfs_inode_ref *ref;
2635 	struct btrfs_dir_item *di;
2636 	struct inode *inode = dentry->d_inode;
2637 	u64 index;
2638 	int check_link = 1;
2639 	int err = -ENOSPC;
2640 	int ret;
2641 	u64 ino = btrfs_ino(inode);
2642 	u64 dir_ino = btrfs_ino(dir);
2643 
2644 	/*
2645 	 * 1 for the possible orphan item
2646 	 * 1 for the dir item
2647 	 * 1 for the dir index
2648 	 * 1 for the inode ref
2649 	 * 1 for the inode ref in the tree log
2650 	 * 2 for the dir entries in the log
2651 	 * 1 for the inode
2652 	 */
2653 	trans = btrfs_start_transaction(root, 8);
2654 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2655 		return trans;
2656 
2657 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2658 		return ERR_PTR(-ENOSPC);
2659 
2660 	/* check if there is someone else holds reference */
2661 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2662 		return ERR_PTR(-ENOSPC);
2663 
2664 	if (atomic_read(&inode->i_count) > 2)
2665 		return ERR_PTR(-ENOSPC);
2666 
2667 	if (xchg(&root->fs_info->enospc_unlink, 1))
2668 		return ERR_PTR(-ENOSPC);
2669 
2670 	path = btrfs_alloc_path();
2671 	if (!path) {
2672 		root->fs_info->enospc_unlink = 0;
2673 		return ERR_PTR(-ENOMEM);
2674 	}
2675 
2676 	/* 1 for the orphan item */
2677 	trans = btrfs_start_transaction(root, 1);
2678 	if (IS_ERR(trans)) {
2679 		btrfs_free_path(path);
2680 		root->fs_info->enospc_unlink = 0;
2681 		return trans;
2682 	}
2683 
2684 	path->skip_locking = 1;
2685 	path->search_commit_root = 1;
2686 
2687 	ret = btrfs_lookup_inode(trans, root, path,
2688 				&BTRFS_I(dir)->location, 0);
2689 	if (ret < 0) {
2690 		err = ret;
2691 		goto out;
2692 	}
2693 	if (ret == 0) {
2694 		if (check_path_shared(root, path))
2695 			goto out;
2696 	} else {
2697 		check_link = 0;
2698 	}
2699 	btrfs_release_path(path);
2700 
2701 	ret = btrfs_lookup_inode(trans, root, path,
2702 				&BTRFS_I(inode)->location, 0);
2703 	if (ret < 0) {
2704 		err = ret;
2705 		goto out;
2706 	}
2707 	if (ret == 0) {
2708 		if (check_path_shared(root, path))
2709 			goto out;
2710 	} else {
2711 		check_link = 0;
2712 	}
2713 	btrfs_release_path(path);
2714 
2715 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2716 		ret = btrfs_lookup_file_extent(trans, root, path,
2717 					       ino, (u64)-1, 0);
2718 		if (ret < 0) {
2719 			err = ret;
2720 			goto out;
2721 		}
2722 		BUG_ON(ret == 0);
2723 		if (check_path_shared(root, path))
2724 			goto out;
2725 		btrfs_release_path(path);
2726 	}
2727 
2728 	if (!check_link) {
2729 		err = 0;
2730 		goto out;
2731 	}
2732 
2733 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2734 				dentry->d_name.name, dentry->d_name.len, 0);
2735 	if (IS_ERR(di)) {
2736 		err = PTR_ERR(di);
2737 		goto out;
2738 	}
2739 	if (di) {
2740 		if (check_path_shared(root, path))
2741 			goto out;
2742 	} else {
2743 		err = 0;
2744 		goto out;
2745 	}
2746 	btrfs_release_path(path);
2747 
2748 	ref = btrfs_lookup_inode_ref(trans, root, path,
2749 				dentry->d_name.name, dentry->d_name.len,
2750 				ino, dir_ino, 0);
2751 	if (IS_ERR(ref)) {
2752 		err = PTR_ERR(ref);
2753 		goto out;
2754 	}
2755 	BUG_ON(!ref);
2756 	if (check_path_shared(root, path))
2757 		goto out;
2758 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2759 	btrfs_release_path(path);
2760 
2761 	/*
2762 	 * This is a commit root search, if we can lookup inode item and other
2763 	 * relative items in the commit root, it means the transaction of
2764 	 * dir/file creation has been committed, and the dir index item that we
2765 	 * delay to insert has also been inserted into the commit root. So
2766 	 * we needn't worry about the delayed insertion of the dir index item
2767 	 * here.
2768 	 */
2769 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2770 				dentry->d_name.name, dentry->d_name.len, 0);
2771 	if (IS_ERR(di)) {
2772 		err = PTR_ERR(di);
2773 		goto out;
2774 	}
2775 	BUG_ON(ret == -ENOENT);
2776 	if (check_path_shared(root, path))
2777 		goto out;
2778 
2779 	err = 0;
2780 out:
2781 	btrfs_free_path(path);
2782 	/* Migrate the orphan reservation over */
2783 	if (!err)
2784 		err = btrfs_block_rsv_migrate(trans->block_rsv,
2785 				&root->fs_info->global_block_rsv,
2786 				trans->bytes_reserved);
2787 
2788 	if (err) {
2789 		btrfs_end_transaction(trans, root);
2790 		root->fs_info->enospc_unlink = 0;
2791 		return ERR_PTR(err);
2792 	}
2793 
2794 	trans->block_rsv = &root->fs_info->global_block_rsv;
2795 	return trans;
2796 }
2797 
2798 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2799 			       struct btrfs_root *root)
2800 {
2801 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2802 		btrfs_block_rsv_release(root, trans->block_rsv,
2803 					trans->bytes_reserved);
2804 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2805 		BUG_ON(!root->fs_info->enospc_unlink);
2806 		root->fs_info->enospc_unlink = 0;
2807 	}
2808 	btrfs_end_transaction_throttle(trans, root);
2809 }
2810 
2811 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2812 {
2813 	struct btrfs_root *root = BTRFS_I(dir)->root;
2814 	struct btrfs_trans_handle *trans;
2815 	struct inode *inode = dentry->d_inode;
2816 	int ret;
2817 	unsigned long nr = 0;
2818 
2819 	trans = __unlink_start_trans(dir, dentry);
2820 	if (IS_ERR(trans))
2821 		return PTR_ERR(trans);
2822 
2823 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2824 
2825 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2826 				 dentry->d_name.name, dentry->d_name.len);
2827 	if (ret)
2828 		goto out;
2829 
2830 	if (inode->i_nlink == 0) {
2831 		ret = btrfs_orphan_add(trans, inode);
2832 		if (ret)
2833 			goto out;
2834 	}
2835 
2836 out:
2837 	nr = trans->blocks_used;
2838 	__unlink_end_trans(trans, root);
2839 	btrfs_btree_balance_dirty(root, nr);
2840 	return ret;
2841 }
2842 
2843 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2844 			struct btrfs_root *root,
2845 			struct inode *dir, u64 objectid,
2846 			const char *name, int name_len)
2847 {
2848 	struct btrfs_path *path;
2849 	struct extent_buffer *leaf;
2850 	struct btrfs_dir_item *di;
2851 	struct btrfs_key key;
2852 	u64 index;
2853 	int ret;
2854 	u64 dir_ino = btrfs_ino(dir);
2855 
2856 	path = btrfs_alloc_path();
2857 	if (!path)
2858 		return -ENOMEM;
2859 
2860 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2861 				   name, name_len, -1);
2862 	BUG_ON(IS_ERR_OR_NULL(di));
2863 
2864 	leaf = path->nodes[0];
2865 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2866 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2867 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2868 	BUG_ON(ret);
2869 	btrfs_release_path(path);
2870 
2871 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2872 				 objectid, root->root_key.objectid,
2873 				 dir_ino, &index, name, name_len);
2874 	if (ret < 0) {
2875 		BUG_ON(ret != -ENOENT);
2876 		di = btrfs_search_dir_index_item(root, path, dir_ino,
2877 						 name, name_len);
2878 		BUG_ON(IS_ERR_OR_NULL(di));
2879 
2880 		leaf = path->nodes[0];
2881 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2882 		btrfs_release_path(path);
2883 		index = key.offset;
2884 	}
2885 	btrfs_release_path(path);
2886 
2887 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2888 	BUG_ON(ret);
2889 
2890 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2891 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2892 	ret = btrfs_update_inode(trans, root, dir);
2893 	BUG_ON(ret);
2894 
2895 	btrfs_free_path(path);
2896 	return 0;
2897 }
2898 
2899 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2900 {
2901 	struct inode *inode = dentry->d_inode;
2902 	int err = 0;
2903 	struct btrfs_root *root = BTRFS_I(dir)->root;
2904 	struct btrfs_trans_handle *trans;
2905 	unsigned long nr = 0;
2906 
2907 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2908 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2909 		return -ENOTEMPTY;
2910 
2911 	trans = __unlink_start_trans(dir, dentry);
2912 	if (IS_ERR(trans))
2913 		return PTR_ERR(trans);
2914 
2915 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2916 		err = btrfs_unlink_subvol(trans, root, dir,
2917 					  BTRFS_I(inode)->location.objectid,
2918 					  dentry->d_name.name,
2919 					  dentry->d_name.len);
2920 		goto out;
2921 	}
2922 
2923 	err = btrfs_orphan_add(trans, inode);
2924 	if (err)
2925 		goto out;
2926 
2927 	/* now the directory is empty */
2928 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2929 				 dentry->d_name.name, dentry->d_name.len);
2930 	if (!err)
2931 		btrfs_i_size_write(inode, 0);
2932 out:
2933 	nr = trans->blocks_used;
2934 	__unlink_end_trans(trans, root);
2935 	btrfs_btree_balance_dirty(root, nr);
2936 
2937 	return err;
2938 }
2939 
2940 /*
2941  * this can truncate away extent items, csum items and directory items.
2942  * It starts at a high offset and removes keys until it can't find
2943  * any higher than new_size
2944  *
2945  * csum items that cross the new i_size are truncated to the new size
2946  * as well.
2947  *
2948  * min_type is the minimum key type to truncate down to.  If set to 0, this
2949  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2950  */
2951 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2952 			       struct btrfs_root *root,
2953 			       struct inode *inode,
2954 			       u64 new_size, u32 min_type)
2955 {
2956 	struct btrfs_path *path;
2957 	struct extent_buffer *leaf;
2958 	struct btrfs_file_extent_item *fi;
2959 	struct btrfs_key key;
2960 	struct btrfs_key found_key;
2961 	u64 extent_start = 0;
2962 	u64 extent_num_bytes = 0;
2963 	u64 extent_offset = 0;
2964 	u64 item_end = 0;
2965 	u64 mask = root->sectorsize - 1;
2966 	u32 found_type = (u8)-1;
2967 	int found_extent;
2968 	int del_item;
2969 	int pending_del_nr = 0;
2970 	int pending_del_slot = 0;
2971 	int extent_type = -1;
2972 	int encoding;
2973 	int ret;
2974 	int err = 0;
2975 	u64 ino = btrfs_ino(inode);
2976 
2977 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2978 
2979 	path = btrfs_alloc_path();
2980 	if (!path)
2981 		return -ENOMEM;
2982 	path->reada = -1;
2983 
2984 	if (root->ref_cows || root == root->fs_info->tree_root)
2985 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2986 
2987 	/*
2988 	 * This function is also used to drop the items in the log tree before
2989 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
2990 	 * it is used to drop the loged items. So we shouldn't kill the delayed
2991 	 * items.
2992 	 */
2993 	if (min_type == 0 && root == BTRFS_I(inode)->root)
2994 		btrfs_kill_delayed_inode_items(inode);
2995 
2996 	key.objectid = ino;
2997 	key.offset = (u64)-1;
2998 	key.type = (u8)-1;
2999 
3000 search_again:
3001 	path->leave_spinning = 1;
3002 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3003 	if (ret < 0) {
3004 		err = ret;
3005 		goto out;
3006 	}
3007 
3008 	if (ret > 0) {
3009 		/* there are no items in the tree for us to truncate, we're
3010 		 * done
3011 		 */
3012 		if (path->slots[0] == 0)
3013 			goto out;
3014 		path->slots[0]--;
3015 	}
3016 
3017 	while (1) {
3018 		fi = NULL;
3019 		leaf = path->nodes[0];
3020 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3021 		found_type = btrfs_key_type(&found_key);
3022 		encoding = 0;
3023 
3024 		if (found_key.objectid != ino)
3025 			break;
3026 
3027 		if (found_type < min_type)
3028 			break;
3029 
3030 		item_end = found_key.offset;
3031 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3032 			fi = btrfs_item_ptr(leaf, path->slots[0],
3033 					    struct btrfs_file_extent_item);
3034 			extent_type = btrfs_file_extent_type(leaf, fi);
3035 			encoding = btrfs_file_extent_compression(leaf, fi);
3036 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3037 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3038 
3039 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3040 				item_end +=
3041 				    btrfs_file_extent_num_bytes(leaf, fi);
3042 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3043 				item_end += btrfs_file_extent_inline_len(leaf,
3044 									 fi);
3045 			}
3046 			item_end--;
3047 		}
3048 		if (found_type > min_type) {
3049 			del_item = 1;
3050 		} else {
3051 			if (item_end < new_size)
3052 				break;
3053 			if (found_key.offset >= new_size)
3054 				del_item = 1;
3055 			else
3056 				del_item = 0;
3057 		}
3058 		found_extent = 0;
3059 		/* FIXME, shrink the extent if the ref count is only 1 */
3060 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3061 			goto delete;
3062 
3063 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3064 			u64 num_dec;
3065 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3066 			if (!del_item && !encoding) {
3067 				u64 orig_num_bytes =
3068 					btrfs_file_extent_num_bytes(leaf, fi);
3069 				extent_num_bytes = new_size -
3070 					found_key.offset + root->sectorsize - 1;
3071 				extent_num_bytes = extent_num_bytes &
3072 					~((u64)root->sectorsize - 1);
3073 				btrfs_set_file_extent_num_bytes(leaf, fi,
3074 							 extent_num_bytes);
3075 				num_dec = (orig_num_bytes -
3076 					   extent_num_bytes);
3077 				if (root->ref_cows && extent_start != 0)
3078 					inode_sub_bytes(inode, num_dec);
3079 				btrfs_mark_buffer_dirty(leaf);
3080 			} else {
3081 				extent_num_bytes =
3082 					btrfs_file_extent_disk_num_bytes(leaf,
3083 									 fi);
3084 				extent_offset = found_key.offset -
3085 					btrfs_file_extent_offset(leaf, fi);
3086 
3087 				/* FIXME blocksize != 4096 */
3088 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3089 				if (extent_start != 0) {
3090 					found_extent = 1;
3091 					if (root->ref_cows)
3092 						inode_sub_bytes(inode, num_dec);
3093 				}
3094 			}
3095 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3096 			/*
3097 			 * we can't truncate inline items that have had
3098 			 * special encodings
3099 			 */
3100 			if (!del_item &&
3101 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3102 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3103 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3104 				u32 size = new_size - found_key.offset;
3105 
3106 				if (root->ref_cows) {
3107 					inode_sub_bytes(inode, item_end + 1 -
3108 							new_size);
3109 				}
3110 				size =
3111 				    btrfs_file_extent_calc_inline_size(size);
3112 				ret = btrfs_truncate_item(trans, root, path,
3113 							  size, 1);
3114 			} else if (root->ref_cows) {
3115 				inode_sub_bytes(inode, item_end + 1 -
3116 						found_key.offset);
3117 			}
3118 		}
3119 delete:
3120 		if (del_item) {
3121 			if (!pending_del_nr) {
3122 				/* no pending yet, add ourselves */
3123 				pending_del_slot = path->slots[0];
3124 				pending_del_nr = 1;
3125 			} else if (pending_del_nr &&
3126 				   path->slots[0] + 1 == pending_del_slot) {
3127 				/* hop on the pending chunk */
3128 				pending_del_nr++;
3129 				pending_del_slot = path->slots[0];
3130 			} else {
3131 				BUG();
3132 			}
3133 		} else {
3134 			break;
3135 		}
3136 		if (found_extent && (root->ref_cows ||
3137 				     root == root->fs_info->tree_root)) {
3138 			btrfs_set_path_blocking(path);
3139 			ret = btrfs_free_extent(trans, root, extent_start,
3140 						extent_num_bytes, 0,
3141 						btrfs_header_owner(leaf),
3142 						ino, extent_offset);
3143 			BUG_ON(ret);
3144 		}
3145 
3146 		if (found_type == BTRFS_INODE_ITEM_KEY)
3147 			break;
3148 
3149 		if (path->slots[0] == 0 ||
3150 		    path->slots[0] != pending_del_slot) {
3151 			if (root->ref_cows &&
3152 			    BTRFS_I(inode)->location.objectid !=
3153 						BTRFS_FREE_INO_OBJECTID) {
3154 				err = -EAGAIN;
3155 				goto out;
3156 			}
3157 			if (pending_del_nr) {
3158 				ret = btrfs_del_items(trans, root, path,
3159 						pending_del_slot,
3160 						pending_del_nr);
3161 				BUG_ON(ret);
3162 				pending_del_nr = 0;
3163 			}
3164 			btrfs_release_path(path);
3165 			goto search_again;
3166 		} else {
3167 			path->slots[0]--;
3168 		}
3169 	}
3170 out:
3171 	if (pending_del_nr) {
3172 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3173 				      pending_del_nr);
3174 		BUG_ON(ret);
3175 	}
3176 	btrfs_free_path(path);
3177 	return err;
3178 }
3179 
3180 /*
3181  * taken from block_truncate_page, but does cow as it zeros out
3182  * any bytes left in the last page in the file.
3183  */
3184 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3185 {
3186 	struct inode *inode = mapping->host;
3187 	struct btrfs_root *root = BTRFS_I(inode)->root;
3188 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3189 	struct btrfs_ordered_extent *ordered;
3190 	struct extent_state *cached_state = NULL;
3191 	char *kaddr;
3192 	u32 blocksize = root->sectorsize;
3193 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3194 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3195 	struct page *page;
3196 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3197 	int ret = 0;
3198 	u64 page_start;
3199 	u64 page_end;
3200 
3201 	if ((offset & (blocksize - 1)) == 0)
3202 		goto out;
3203 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3204 	if (ret)
3205 		goto out;
3206 
3207 	ret = -ENOMEM;
3208 again:
3209 	page = find_or_create_page(mapping, index, mask);
3210 	if (!page) {
3211 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3212 		goto out;
3213 	}
3214 
3215 	page_start = page_offset(page);
3216 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3217 
3218 	if (!PageUptodate(page)) {
3219 		ret = btrfs_readpage(NULL, page);
3220 		lock_page(page);
3221 		if (page->mapping != mapping) {
3222 			unlock_page(page);
3223 			page_cache_release(page);
3224 			goto again;
3225 		}
3226 		if (!PageUptodate(page)) {
3227 			ret = -EIO;
3228 			goto out_unlock;
3229 		}
3230 	}
3231 	wait_on_page_writeback(page);
3232 
3233 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3234 			 GFP_NOFS);
3235 	set_page_extent_mapped(page);
3236 
3237 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3238 	if (ordered) {
3239 		unlock_extent_cached(io_tree, page_start, page_end,
3240 				     &cached_state, GFP_NOFS);
3241 		unlock_page(page);
3242 		page_cache_release(page);
3243 		btrfs_start_ordered_extent(inode, ordered, 1);
3244 		btrfs_put_ordered_extent(ordered);
3245 		goto again;
3246 	}
3247 
3248 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3249 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3250 			  0, 0, &cached_state, GFP_NOFS);
3251 
3252 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3253 					&cached_state);
3254 	if (ret) {
3255 		unlock_extent_cached(io_tree, page_start, page_end,
3256 				     &cached_state, GFP_NOFS);
3257 		goto out_unlock;
3258 	}
3259 
3260 	ret = 0;
3261 	if (offset != PAGE_CACHE_SIZE) {
3262 		kaddr = kmap(page);
3263 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3264 		flush_dcache_page(page);
3265 		kunmap(page);
3266 	}
3267 	ClearPageChecked(page);
3268 	set_page_dirty(page);
3269 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3270 			     GFP_NOFS);
3271 
3272 out_unlock:
3273 	if (ret)
3274 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3275 	unlock_page(page);
3276 	page_cache_release(page);
3277 out:
3278 	return ret;
3279 }
3280 
3281 /*
3282  * This function puts in dummy file extents for the area we're creating a hole
3283  * for.  So if we are truncating this file to a larger size we need to insert
3284  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3285  * the range between oldsize and size
3286  */
3287 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3288 {
3289 	struct btrfs_trans_handle *trans;
3290 	struct btrfs_root *root = BTRFS_I(inode)->root;
3291 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3292 	struct extent_map *em = NULL;
3293 	struct extent_state *cached_state = NULL;
3294 	u64 mask = root->sectorsize - 1;
3295 	u64 hole_start = (oldsize + mask) & ~mask;
3296 	u64 block_end = (size + mask) & ~mask;
3297 	u64 last_byte;
3298 	u64 cur_offset;
3299 	u64 hole_size;
3300 	int err = 0;
3301 
3302 	if (size <= hole_start)
3303 		return 0;
3304 
3305 	while (1) {
3306 		struct btrfs_ordered_extent *ordered;
3307 		btrfs_wait_ordered_range(inode, hole_start,
3308 					 block_end - hole_start);
3309 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3310 				 &cached_state, GFP_NOFS);
3311 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3312 		if (!ordered)
3313 			break;
3314 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3315 				     &cached_state, GFP_NOFS);
3316 		btrfs_put_ordered_extent(ordered);
3317 	}
3318 
3319 	cur_offset = hole_start;
3320 	while (1) {
3321 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3322 				block_end - cur_offset, 0);
3323 		BUG_ON(IS_ERR_OR_NULL(em));
3324 		last_byte = min(extent_map_end(em), block_end);
3325 		last_byte = (last_byte + mask) & ~mask;
3326 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3327 			u64 hint_byte = 0;
3328 			hole_size = last_byte - cur_offset;
3329 
3330 			trans = btrfs_start_transaction(root, 2);
3331 			if (IS_ERR(trans)) {
3332 				err = PTR_ERR(trans);
3333 				break;
3334 			}
3335 
3336 			err = btrfs_drop_extents(trans, inode, cur_offset,
3337 						 cur_offset + hole_size,
3338 						 &hint_byte, 1);
3339 			if (err) {
3340 				btrfs_end_transaction(trans, root);
3341 				break;
3342 			}
3343 
3344 			err = btrfs_insert_file_extent(trans, root,
3345 					btrfs_ino(inode), cur_offset, 0,
3346 					0, hole_size, 0, hole_size,
3347 					0, 0, 0);
3348 			if (err) {
3349 				btrfs_end_transaction(trans, root);
3350 				break;
3351 			}
3352 
3353 			btrfs_drop_extent_cache(inode, hole_start,
3354 					last_byte - 1, 0);
3355 
3356 			btrfs_end_transaction(trans, root);
3357 		}
3358 		free_extent_map(em);
3359 		em = NULL;
3360 		cur_offset = last_byte;
3361 		if (cur_offset >= block_end)
3362 			break;
3363 	}
3364 
3365 	free_extent_map(em);
3366 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3367 			     GFP_NOFS);
3368 	return err;
3369 }
3370 
3371 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3372 {
3373 	loff_t oldsize = i_size_read(inode);
3374 	int ret;
3375 
3376 	if (newsize == oldsize)
3377 		return 0;
3378 
3379 	if (newsize > oldsize) {
3380 		i_size_write(inode, newsize);
3381 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3382 		truncate_pagecache(inode, oldsize, newsize);
3383 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3384 		if (ret) {
3385 			btrfs_setsize(inode, oldsize);
3386 			return ret;
3387 		}
3388 
3389 		mark_inode_dirty(inode);
3390 	} else {
3391 
3392 		/*
3393 		 * We're truncating a file that used to have good data down to
3394 		 * zero. Make sure it gets into the ordered flush list so that
3395 		 * any new writes get down to disk quickly.
3396 		 */
3397 		if (newsize == 0)
3398 			BTRFS_I(inode)->ordered_data_close = 1;
3399 
3400 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3401 		truncate_setsize(inode, newsize);
3402 		ret = btrfs_truncate(inode);
3403 	}
3404 
3405 	return ret;
3406 }
3407 
3408 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3409 {
3410 	struct inode *inode = dentry->d_inode;
3411 	struct btrfs_root *root = BTRFS_I(inode)->root;
3412 	int err;
3413 
3414 	if (btrfs_root_readonly(root))
3415 		return -EROFS;
3416 
3417 	err = inode_change_ok(inode, attr);
3418 	if (err)
3419 		return err;
3420 
3421 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3422 		err = btrfs_setsize(inode, attr->ia_size);
3423 		if (err)
3424 			return err;
3425 	}
3426 
3427 	if (attr->ia_valid) {
3428 		setattr_copy(inode, attr);
3429 		mark_inode_dirty(inode);
3430 
3431 		if (attr->ia_valid & ATTR_MODE)
3432 			err = btrfs_acl_chmod(inode);
3433 	}
3434 
3435 	return err;
3436 }
3437 
3438 void btrfs_evict_inode(struct inode *inode)
3439 {
3440 	struct btrfs_trans_handle *trans;
3441 	struct btrfs_root *root = BTRFS_I(inode)->root;
3442 	struct btrfs_block_rsv *rsv, *global_rsv;
3443 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3444 	unsigned long nr;
3445 	int ret;
3446 
3447 	trace_btrfs_inode_evict(inode);
3448 
3449 	truncate_inode_pages(&inode->i_data, 0);
3450 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3451 			       btrfs_is_free_space_inode(root, inode)))
3452 		goto no_delete;
3453 
3454 	if (is_bad_inode(inode)) {
3455 		btrfs_orphan_del(NULL, inode);
3456 		goto no_delete;
3457 	}
3458 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3459 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3460 
3461 	if (root->fs_info->log_root_recovering) {
3462 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3463 		goto no_delete;
3464 	}
3465 
3466 	if (inode->i_nlink > 0) {
3467 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3468 		goto no_delete;
3469 	}
3470 
3471 	rsv = btrfs_alloc_block_rsv(root);
3472 	if (!rsv) {
3473 		btrfs_orphan_del(NULL, inode);
3474 		goto no_delete;
3475 	}
3476 	rsv->size = min_size;
3477 	global_rsv = &root->fs_info->global_block_rsv;
3478 
3479 	btrfs_i_size_write(inode, 0);
3480 
3481 	/*
3482 	 * This is a bit simpler than btrfs_truncate since
3483 	 *
3484 	 * 1) We've already reserved our space for our orphan item in the
3485 	 *    unlink.
3486 	 * 2) We're going to delete the inode item, so we don't need to update
3487 	 *    it at all.
3488 	 *
3489 	 * So we just need to reserve some slack space in case we add bytes when
3490 	 * doing the truncate.
3491 	 */
3492 	while (1) {
3493 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
3494 
3495 		/*
3496 		 * Try and steal from the global reserve since we will
3497 		 * likely not use this space anyway, we want to try as
3498 		 * hard as possible to get this to work.
3499 		 */
3500 		if (ret)
3501 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3502 
3503 		if (ret) {
3504 			printk(KERN_WARNING "Could not get space for a "
3505 			       "delete, will truncate on mount %d\n", ret);
3506 			btrfs_orphan_del(NULL, inode);
3507 			btrfs_free_block_rsv(root, rsv);
3508 			goto no_delete;
3509 		}
3510 
3511 		trans = btrfs_start_transaction(root, 0);
3512 		if (IS_ERR(trans)) {
3513 			btrfs_orphan_del(NULL, inode);
3514 			btrfs_free_block_rsv(root, rsv);
3515 			goto no_delete;
3516 		}
3517 
3518 		trans->block_rsv = rsv;
3519 
3520 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3521 		if (ret != -EAGAIN)
3522 			break;
3523 
3524 		nr = trans->blocks_used;
3525 		btrfs_end_transaction(trans, root);
3526 		trans = NULL;
3527 		btrfs_btree_balance_dirty(root, nr);
3528 	}
3529 
3530 	btrfs_free_block_rsv(root, rsv);
3531 
3532 	if (ret == 0) {
3533 		trans->block_rsv = root->orphan_block_rsv;
3534 		ret = btrfs_orphan_del(trans, inode);
3535 		BUG_ON(ret);
3536 	}
3537 
3538 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3539 	if (!(root == root->fs_info->tree_root ||
3540 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3541 		btrfs_return_ino(root, btrfs_ino(inode));
3542 
3543 	nr = trans->blocks_used;
3544 	btrfs_end_transaction(trans, root);
3545 	btrfs_btree_balance_dirty(root, nr);
3546 no_delete:
3547 	end_writeback(inode);
3548 	return;
3549 }
3550 
3551 /*
3552  * this returns the key found in the dir entry in the location pointer.
3553  * If no dir entries were found, location->objectid is 0.
3554  */
3555 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3556 			       struct btrfs_key *location)
3557 {
3558 	const char *name = dentry->d_name.name;
3559 	int namelen = dentry->d_name.len;
3560 	struct btrfs_dir_item *di;
3561 	struct btrfs_path *path;
3562 	struct btrfs_root *root = BTRFS_I(dir)->root;
3563 	int ret = 0;
3564 
3565 	path = btrfs_alloc_path();
3566 	if (!path)
3567 		return -ENOMEM;
3568 
3569 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3570 				    namelen, 0);
3571 	if (IS_ERR(di))
3572 		ret = PTR_ERR(di);
3573 
3574 	if (IS_ERR_OR_NULL(di))
3575 		goto out_err;
3576 
3577 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3578 out:
3579 	btrfs_free_path(path);
3580 	return ret;
3581 out_err:
3582 	location->objectid = 0;
3583 	goto out;
3584 }
3585 
3586 /*
3587  * when we hit a tree root in a directory, the btrfs part of the inode
3588  * needs to be changed to reflect the root directory of the tree root.  This
3589  * is kind of like crossing a mount point.
3590  */
3591 static int fixup_tree_root_location(struct btrfs_root *root,
3592 				    struct inode *dir,
3593 				    struct dentry *dentry,
3594 				    struct btrfs_key *location,
3595 				    struct btrfs_root **sub_root)
3596 {
3597 	struct btrfs_path *path;
3598 	struct btrfs_root *new_root;
3599 	struct btrfs_root_ref *ref;
3600 	struct extent_buffer *leaf;
3601 	int ret;
3602 	int err = 0;
3603 
3604 	path = btrfs_alloc_path();
3605 	if (!path) {
3606 		err = -ENOMEM;
3607 		goto out;
3608 	}
3609 
3610 	err = -ENOENT;
3611 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3612 				  BTRFS_I(dir)->root->root_key.objectid,
3613 				  location->objectid);
3614 	if (ret) {
3615 		if (ret < 0)
3616 			err = ret;
3617 		goto out;
3618 	}
3619 
3620 	leaf = path->nodes[0];
3621 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3622 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3623 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3624 		goto out;
3625 
3626 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3627 				   (unsigned long)(ref + 1),
3628 				   dentry->d_name.len);
3629 	if (ret)
3630 		goto out;
3631 
3632 	btrfs_release_path(path);
3633 
3634 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3635 	if (IS_ERR(new_root)) {
3636 		err = PTR_ERR(new_root);
3637 		goto out;
3638 	}
3639 
3640 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3641 		err = -ENOENT;
3642 		goto out;
3643 	}
3644 
3645 	*sub_root = new_root;
3646 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3647 	location->type = BTRFS_INODE_ITEM_KEY;
3648 	location->offset = 0;
3649 	err = 0;
3650 out:
3651 	btrfs_free_path(path);
3652 	return err;
3653 }
3654 
3655 static void inode_tree_add(struct inode *inode)
3656 {
3657 	struct btrfs_root *root = BTRFS_I(inode)->root;
3658 	struct btrfs_inode *entry;
3659 	struct rb_node **p;
3660 	struct rb_node *parent;
3661 	u64 ino = btrfs_ino(inode);
3662 again:
3663 	p = &root->inode_tree.rb_node;
3664 	parent = NULL;
3665 
3666 	if (inode_unhashed(inode))
3667 		return;
3668 
3669 	spin_lock(&root->inode_lock);
3670 	while (*p) {
3671 		parent = *p;
3672 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3673 
3674 		if (ino < btrfs_ino(&entry->vfs_inode))
3675 			p = &parent->rb_left;
3676 		else if (ino > btrfs_ino(&entry->vfs_inode))
3677 			p = &parent->rb_right;
3678 		else {
3679 			WARN_ON(!(entry->vfs_inode.i_state &
3680 				  (I_WILL_FREE | I_FREEING)));
3681 			rb_erase(parent, &root->inode_tree);
3682 			RB_CLEAR_NODE(parent);
3683 			spin_unlock(&root->inode_lock);
3684 			goto again;
3685 		}
3686 	}
3687 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3688 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3689 	spin_unlock(&root->inode_lock);
3690 }
3691 
3692 static void inode_tree_del(struct inode *inode)
3693 {
3694 	struct btrfs_root *root = BTRFS_I(inode)->root;
3695 	int empty = 0;
3696 
3697 	spin_lock(&root->inode_lock);
3698 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3699 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3700 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3701 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3702 	}
3703 	spin_unlock(&root->inode_lock);
3704 
3705 	/*
3706 	 * Free space cache has inodes in the tree root, but the tree root has a
3707 	 * root_refs of 0, so this could end up dropping the tree root as a
3708 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3709 	 * make sure we don't drop it.
3710 	 */
3711 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3712 	    root != root->fs_info->tree_root) {
3713 		synchronize_srcu(&root->fs_info->subvol_srcu);
3714 		spin_lock(&root->inode_lock);
3715 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3716 		spin_unlock(&root->inode_lock);
3717 		if (empty)
3718 			btrfs_add_dead_root(root);
3719 	}
3720 }
3721 
3722 int btrfs_invalidate_inodes(struct btrfs_root *root)
3723 {
3724 	struct rb_node *node;
3725 	struct rb_node *prev;
3726 	struct btrfs_inode *entry;
3727 	struct inode *inode;
3728 	u64 objectid = 0;
3729 
3730 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3731 
3732 	spin_lock(&root->inode_lock);
3733 again:
3734 	node = root->inode_tree.rb_node;
3735 	prev = NULL;
3736 	while (node) {
3737 		prev = node;
3738 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3739 
3740 		if (objectid < btrfs_ino(&entry->vfs_inode))
3741 			node = node->rb_left;
3742 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3743 			node = node->rb_right;
3744 		else
3745 			break;
3746 	}
3747 	if (!node) {
3748 		while (prev) {
3749 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3750 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3751 				node = prev;
3752 				break;
3753 			}
3754 			prev = rb_next(prev);
3755 		}
3756 	}
3757 	while (node) {
3758 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3759 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3760 		inode = igrab(&entry->vfs_inode);
3761 		if (inode) {
3762 			spin_unlock(&root->inode_lock);
3763 			if (atomic_read(&inode->i_count) > 1)
3764 				d_prune_aliases(inode);
3765 			/*
3766 			 * btrfs_drop_inode will have it removed from
3767 			 * the inode cache when its usage count
3768 			 * hits zero.
3769 			 */
3770 			iput(inode);
3771 			cond_resched();
3772 			spin_lock(&root->inode_lock);
3773 			goto again;
3774 		}
3775 
3776 		if (cond_resched_lock(&root->inode_lock))
3777 			goto again;
3778 
3779 		node = rb_next(node);
3780 	}
3781 	spin_unlock(&root->inode_lock);
3782 	return 0;
3783 }
3784 
3785 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3786 {
3787 	struct btrfs_iget_args *args = p;
3788 	inode->i_ino = args->ino;
3789 	BTRFS_I(inode)->root = args->root;
3790 	btrfs_set_inode_space_info(args->root, inode);
3791 	return 0;
3792 }
3793 
3794 static int btrfs_find_actor(struct inode *inode, void *opaque)
3795 {
3796 	struct btrfs_iget_args *args = opaque;
3797 	return args->ino == btrfs_ino(inode) &&
3798 		args->root == BTRFS_I(inode)->root;
3799 }
3800 
3801 static struct inode *btrfs_iget_locked(struct super_block *s,
3802 				       u64 objectid,
3803 				       struct btrfs_root *root)
3804 {
3805 	struct inode *inode;
3806 	struct btrfs_iget_args args;
3807 	args.ino = objectid;
3808 	args.root = root;
3809 
3810 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3811 			     btrfs_init_locked_inode,
3812 			     (void *)&args);
3813 	return inode;
3814 }
3815 
3816 /* Get an inode object given its location and corresponding root.
3817  * Returns in *is_new if the inode was read from disk
3818  */
3819 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3820 			 struct btrfs_root *root, int *new)
3821 {
3822 	struct inode *inode;
3823 
3824 	inode = btrfs_iget_locked(s, location->objectid, root);
3825 	if (!inode)
3826 		return ERR_PTR(-ENOMEM);
3827 
3828 	if (inode->i_state & I_NEW) {
3829 		BTRFS_I(inode)->root = root;
3830 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3831 		btrfs_read_locked_inode(inode);
3832 		if (!is_bad_inode(inode)) {
3833 			inode_tree_add(inode);
3834 			unlock_new_inode(inode);
3835 			if (new)
3836 				*new = 1;
3837 		} else {
3838 			unlock_new_inode(inode);
3839 			iput(inode);
3840 			inode = ERR_PTR(-ESTALE);
3841 		}
3842 	}
3843 
3844 	return inode;
3845 }
3846 
3847 static struct inode *new_simple_dir(struct super_block *s,
3848 				    struct btrfs_key *key,
3849 				    struct btrfs_root *root)
3850 {
3851 	struct inode *inode = new_inode(s);
3852 
3853 	if (!inode)
3854 		return ERR_PTR(-ENOMEM);
3855 
3856 	BTRFS_I(inode)->root = root;
3857 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3858 	BTRFS_I(inode)->dummy_inode = 1;
3859 
3860 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3861 	inode->i_op = &simple_dir_inode_operations;
3862 	inode->i_fop = &simple_dir_operations;
3863 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3864 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3865 
3866 	return inode;
3867 }
3868 
3869 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3870 {
3871 	struct inode *inode;
3872 	struct btrfs_root *root = BTRFS_I(dir)->root;
3873 	struct btrfs_root *sub_root = root;
3874 	struct btrfs_key location;
3875 	int index;
3876 	int ret = 0;
3877 
3878 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3879 		return ERR_PTR(-ENAMETOOLONG);
3880 
3881 	if (unlikely(d_need_lookup(dentry))) {
3882 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3883 		kfree(dentry->d_fsdata);
3884 		dentry->d_fsdata = NULL;
3885 		/* This thing is hashed, drop it for now */
3886 		d_drop(dentry);
3887 	} else {
3888 		ret = btrfs_inode_by_name(dir, dentry, &location);
3889 	}
3890 
3891 	if (ret < 0)
3892 		return ERR_PTR(ret);
3893 
3894 	if (location.objectid == 0)
3895 		return NULL;
3896 
3897 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3898 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3899 		return inode;
3900 	}
3901 
3902 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3903 
3904 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3905 	ret = fixup_tree_root_location(root, dir, dentry,
3906 				       &location, &sub_root);
3907 	if (ret < 0) {
3908 		if (ret != -ENOENT)
3909 			inode = ERR_PTR(ret);
3910 		else
3911 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3912 	} else {
3913 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3914 	}
3915 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3916 
3917 	if (!IS_ERR(inode) && root != sub_root) {
3918 		down_read(&root->fs_info->cleanup_work_sem);
3919 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3920 			ret = btrfs_orphan_cleanup(sub_root);
3921 		up_read(&root->fs_info->cleanup_work_sem);
3922 		if (ret)
3923 			inode = ERR_PTR(ret);
3924 	}
3925 
3926 	return inode;
3927 }
3928 
3929 static int btrfs_dentry_delete(const struct dentry *dentry)
3930 {
3931 	struct btrfs_root *root;
3932 
3933 	if (!dentry->d_inode && !IS_ROOT(dentry))
3934 		dentry = dentry->d_parent;
3935 
3936 	if (dentry->d_inode) {
3937 		root = BTRFS_I(dentry->d_inode)->root;
3938 		if (btrfs_root_refs(&root->root_item) == 0)
3939 			return 1;
3940 	}
3941 	return 0;
3942 }
3943 
3944 static void btrfs_dentry_release(struct dentry *dentry)
3945 {
3946 	if (dentry->d_fsdata)
3947 		kfree(dentry->d_fsdata);
3948 }
3949 
3950 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3951 				   struct nameidata *nd)
3952 {
3953 	struct dentry *ret;
3954 
3955 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
3956 	if (unlikely(d_need_lookup(dentry))) {
3957 		spin_lock(&dentry->d_lock);
3958 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
3959 		spin_unlock(&dentry->d_lock);
3960 	}
3961 	return ret;
3962 }
3963 
3964 unsigned char btrfs_filetype_table[] = {
3965 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3966 };
3967 
3968 static int btrfs_real_readdir(struct file *filp, void *dirent,
3969 			      filldir_t filldir)
3970 {
3971 	struct inode *inode = filp->f_dentry->d_inode;
3972 	struct btrfs_root *root = BTRFS_I(inode)->root;
3973 	struct btrfs_item *item;
3974 	struct btrfs_dir_item *di;
3975 	struct btrfs_key key;
3976 	struct btrfs_key found_key;
3977 	struct btrfs_path *path;
3978 	struct list_head ins_list;
3979 	struct list_head del_list;
3980 	struct qstr q;
3981 	int ret;
3982 	struct extent_buffer *leaf;
3983 	int slot;
3984 	unsigned char d_type;
3985 	int over = 0;
3986 	u32 di_cur;
3987 	u32 di_total;
3988 	u32 di_len;
3989 	int key_type = BTRFS_DIR_INDEX_KEY;
3990 	char tmp_name[32];
3991 	char *name_ptr;
3992 	int name_len;
3993 	int is_curr = 0;	/* filp->f_pos points to the current index? */
3994 
3995 	/* FIXME, use a real flag for deciding about the key type */
3996 	if (root->fs_info->tree_root == root)
3997 		key_type = BTRFS_DIR_ITEM_KEY;
3998 
3999 	/* special case for "." */
4000 	if (filp->f_pos == 0) {
4001 		over = filldir(dirent, ".", 1,
4002 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4003 		if (over)
4004 			return 0;
4005 		filp->f_pos = 1;
4006 	}
4007 	/* special case for .., just use the back ref */
4008 	if (filp->f_pos == 1) {
4009 		u64 pino = parent_ino(filp->f_path.dentry);
4010 		over = filldir(dirent, "..", 2,
4011 			       filp->f_pos, pino, DT_DIR);
4012 		if (over)
4013 			return 0;
4014 		filp->f_pos = 2;
4015 	}
4016 	path = btrfs_alloc_path();
4017 	if (!path)
4018 		return -ENOMEM;
4019 
4020 	path->reada = 1;
4021 
4022 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4023 		INIT_LIST_HEAD(&ins_list);
4024 		INIT_LIST_HEAD(&del_list);
4025 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4026 	}
4027 
4028 	btrfs_set_key_type(&key, key_type);
4029 	key.offset = filp->f_pos;
4030 	key.objectid = btrfs_ino(inode);
4031 
4032 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4033 	if (ret < 0)
4034 		goto err;
4035 
4036 	while (1) {
4037 		leaf = path->nodes[0];
4038 		slot = path->slots[0];
4039 		if (slot >= btrfs_header_nritems(leaf)) {
4040 			ret = btrfs_next_leaf(root, path);
4041 			if (ret < 0)
4042 				goto err;
4043 			else if (ret > 0)
4044 				break;
4045 			continue;
4046 		}
4047 
4048 		item = btrfs_item_nr(leaf, slot);
4049 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4050 
4051 		if (found_key.objectid != key.objectid)
4052 			break;
4053 		if (btrfs_key_type(&found_key) != key_type)
4054 			break;
4055 		if (found_key.offset < filp->f_pos)
4056 			goto next;
4057 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4058 		    btrfs_should_delete_dir_index(&del_list,
4059 						  found_key.offset))
4060 			goto next;
4061 
4062 		filp->f_pos = found_key.offset;
4063 		is_curr = 1;
4064 
4065 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4066 		di_cur = 0;
4067 		di_total = btrfs_item_size(leaf, item);
4068 
4069 		while (di_cur < di_total) {
4070 			struct btrfs_key location;
4071 			struct dentry *tmp;
4072 
4073 			if (verify_dir_item(root, leaf, di))
4074 				break;
4075 
4076 			name_len = btrfs_dir_name_len(leaf, di);
4077 			if (name_len <= sizeof(tmp_name)) {
4078 				name_ptr = tmp_name;
4079 			} else {
4080 				name_ptr = kmalloc(name_len, GFP_NOFS);
4081 				if (!name_ptr) {
4082 					ret = -ENOMEM;
4083 					goto err;
4084 				}
4085 			}
4086 			read_extent_buffer(leaf, name_ptr,
4087 					   (unsigned long)(di + 1), name_len);
4088 
4089 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4090 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4091 
4092 			q.name = name_ptr;
4093 			q.len = name_len;
4094 			q.hash = full_name_hash(q.name, q.len);
4095 			tmp = d_lookup(filp->f_dentry, &q);
4096 			if (!tmp) {
4097 				struct btrfs_key *newkey;
4098 
4099 				newkey = kzalloc(sizeof(struct btrfs_key),
4100 						 GFP_NOFS);
4101 				if (!newkey)
4102 					goto no_dentry;
4103 				tmp = d_alloc(filp->f_dentry, &q);
4104 				if (!tmp) {
4105 					kfree(newkey);
4106 					dput(tmp);
4107 					goto no_dentry;
4108 				}
4109 				memcpy(newkey, &location,
4110 				       sizeof(struct btrfs_key));
4111 				tmp->d_fsdata = newkey;
4112 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4113 				d_rehash(tmp);
4114 				dput(tmp);
4115 			} else {
4116 				dput(tmp);
4117 			}
4118 no_dentry:
4119 			/* is this a reference to our own snapshot? If so
4120 			 * skip it
4121 			 */
4122 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4123 			    location.objectid == root->root_key.objectid) {
4124 				over = 0;
4125 				goto skip;
4126 			}
4127 			over = filldir(dirent, name_ptr, name_len,
4128 				       found_key.offset, location.objectid,
4129 				       d_type);
4130 
4131 skip:
4132 			if (name_ptr != tmp_name)
4133 				kfree(name_ptr);
4134 
4135 			if (over)
4136 				goto nopos;
4137 			di_len = btrfs_dir_name_len(leaf, di) +
4138 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4139 			di_cur += di_len;
4140 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4141 		}
4142 next:
4143 		path->slots[0]++;
4144 	}
4145 
4146 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4147 		if (is_curr)
4148 			filp->f_pos++;
4149 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4150 						      &ins_list);
4151 		if (ret)
4152 			goto nopos;
4153 	}
4154 
4155 	/* Reached end of directory/root. Bump pos past the last item. */
4156 	if (key_type == BTRFS_DIR_INDEX_KEY)
4157 		/*
4158 		 * 32-bit glibc will use getdents64, but then strtol -
4159 		 * so the last number we can serve is this.
4160 		 */
4161 		filp->f_pos = 0x7fffffff;
4162 	else
4163 		filp->f_pos++;
4164 nopos:
4165 	ret = 0;
4166 err:
4167 	if (key_type == BTRFS_DIR_INDEX_KEY)
4168 		btrfs_put_delayed_items(&ins_list, &del_list);
4169 	btrfs_free_path(path);
4170 	return ret;
4171 }
4172 
4173 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4174 {
4175 	struct btrfs_root *root = BTRFS_I(inode)->root;
4176 	struct btrfs_trans_handle *trans;
4177 	int ret = 0;
4178 	bool nolock = false;
4179 
4180 	if (BTRFS_I(inode)->dummy_inode)
4181 		return 0;
4182 
4183 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4184 		nolock = true;
4185 
4186 	if (wbc->sync_mode == WB_SYNC_ALL) {
4187 		if (nolock)
4188 			trans = btrfs_join_transaction_nolock(root);
4189 		else
4190 			trans = btrfs_join_transaction(root);
4191 		if (IS_ERR(trans))
4192 			return PTR_ERR(trans);
4193 		if (nolock)
4194 			ret = btrfs_end_transaction_nolock(trans, root);
4195 		else
4196 			ret = btrfs_commit_transaction(trans, root);
4197 	}
4198 	return ret;
4199 }
4200 
4201 /*
4202  * This is somewhat expensive, updating the tree every time the
4203  * inode changes.  But, it is most likely to find the inode in cache.
4204  * FIXME, needs more benchmarking...there are no reasons other than performance
4205  * to keep or drop this code.
4206  */
4207 void btrfs_dirty_inode(struct inode *inode, int flags)
4208 {
4209 	struct btrfs_root *root = BTRFS_I(inode)->root;
4210 	struct btrfs_trans_handle *trans;
4211 	int ret;
4212 
4213 	if (BTRFS_I(inode)->dummy_inode)
4214 		return;
4215 
4216 	trans = btrfs_join_transaction(root);
4217 	BUG_ON(IS_ERR(trans));
4218 
4219 	ret = btrfs_update_inode(trans, root, inode);
4220 	if (ret && ret == -ENOSPC) {
4221 		/* whoops, lets try again with the full transaction */
4222 		btrfs_end_transaction(trans, root);
4223 		trans = btrfs_start_transaction(root, 1);
4224 		if (IS_ERR(trans)) {
4225 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4226 				       "dirty  inode %llu error %ld\n",
4227 				       (unsigned long long)btrfs_ino(inode),
4228 				       PTR_ERR(trans));
4229 			return;
4230 		}
4231 
4232 		ret = btrfs_update_inode(trans, root, inode);
4233 		if (ret) {
4234 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4235 				       "dirty  inode %llu error %d\n",
4236 				       (unsigned long long)btrfs_ino(inode),
4237 				       ret);
4238 		}
4239 	}
4240 	btrfs_end_transaction(trans, root);
4241 	if (BTRFS_I(inode)->delayed_node)
4242 		btrfs_balance_delayed_items(root);
4243 }
4244 
4245 /*
4246  * find the highest existing sequence number in a directory
4247  * and then set the in-memory index_cnt variable to reflect
4248  * free sequence numbers
4249  */
4250 static int btrfs_set_inode_index_count(struct inode *inode)
4251 {
4252 	struct btrfs_root *root = BTRFS_I(inode)->root;
4253 	struct btrfs_key key, found_key;
4254 	struct btrfs_path *path;
4255 	struct extent_buffer *leaf;
4256 	int ret;
4257 
4258 	key.objectid = btrfs_ino(inode);
4259 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4260 	key.offset = (u64)-1;
4261 
4262 	path = btrfs_alloc_path();
4263 	if (!path)
4264 		return -ENOMEM;
4265 
4266 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4267 	if (ret < 0)
4268 		goto out;
4269 	/* FIXME: we should be able to handle this */
4270 	if (ret == 0)
4271 		goto out;
4272 	ret = 0;
4273 
4274 	/*
4275 	 * MAGIC NUMBER EXPLANATION:
4276 	 * since we search a directory based on f_pos we have to start at 2
4277 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4278 	 * else has to start at 2
4279 	 */
4280 	if (path->slots[0] == 0) {
4281 		BTRFS_I(inode)->index_cnt = 2;
4282 		goto out;
4283 	}
4284 
4285 	path->slots[0]--;
4286 
4287 	leaf = path->nodes[0];
4288 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4289 
4290 	if (found_key.objectid != btrfs_ino(inode) ||
4291 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4292 		BTRFS_I(inode)->index_cnt = 2;
4293 		goto out;
4294 	}
4295 
4296 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4297 out:
4298 	btrfs_free_path(path);
4299 	return ret;
4300 }
4301 
4302 /*
4303  * helper to find a free sequence number in a given directory.  This current
4304  * code is very simple, later versions will do smarter things in the btree
4305  */
4306 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4307 {
4308 	int ret = 0;
4309 
4310 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4311 		ret = btrfs_inode_delayed_dir_index_count(dir);
4312 		if (ret) {
4313 			ret = btrfs_set_inode_index_count(dir);
4314 			if (ret)
4315 				return ret;
4316 		}
4317 	}
4318 
4319 	*index = BTRFS_I(dir)->index_cnt;
4320 	BTRFS_I(dir)->index_cnt++;
4321 
4322 	return ret;
4323 }
4324 
4325 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4326 				     struct btrfs_root *root,
4327 				     struct inode *dir,
4328 				     const char *name, int name_len,
4329 				     u64 ref_objectid, u64 objectid, int mode,
4330 				     u64 *index)
4331 {
4332 	struct inode *inode;
4333 	struct btrfs_inode_item *inode_item;
4334 	struct btrfs_key *location;
4335 	struct btrfs_path *path;
4336 	struct btrfs_inode_ref *ref;
4337 	struct btrfs_key key[2];
4338 	u32 sizes[2];
4339 	unsigned long ptr;
4340 	int ret;
4341 	int owner;
4342 
4343 	path = btrfs_alloc_path();
4344 	if (!path)
4345 		return ERR_PTR(-ENOMEM);
4346 
4347 	inode = new_inode(root->fs_info->sb);
4348 	if (!inode) {
4349 		btrfs_free_path(path);
4350 		return ERR_PTR(-ENOMEM);
4351 	}
4352 
4353 	/*
4354 	 * we have to initialize this early, so we can reclaim the inode
4355 	 * number if we fail afterwards in this function.
4356 	 */
4357 	inode->i_ino = objectid;
4358 
4359 	if (dir) {
4360 		trace_btrfs_inode_request(dir);
4361 
4362 		ret = btrfs_set_inode_index(dir, index);
4363 		if (ret) {
4364 			btrfs_free_path(path);
4365 			iput(inode);
4366 			return ERR_PTR(ret);
4367 		}
4368 	}
4369 	/*
4370 	 * index_cnt is ignored for everything but a dir,
4371 	 * btrfs_get_inode_index_count has an explanation for the magic
4372 	 * number
4373 	 */
4374 	BTRFS_I(inode)->index_cnt = 2;
4375 	BTRFS_I(inode)->root = root;
4376 	BTRFS_I(inode)->generation = trans->transid;
4377 	inode->i_generation = BTRFS_I(inode)->generation;
4378 	btrfs_set_inode_space_info(root, inode);
4379 
4380 	if (S_ISDIR(mode))
4381 		owner = 0;
4382 	else
4383 		owner = 1;
4384 
4385 	key[0].objectid = objectid;
4386 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4387 	key[0].offset = 0;
4388 
4389 	key[1].objectid = objectid;
4390 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4391 	key[1].offset = ref_objectid;
4392 
4393 	sizes[0] = sizeof(struct btrfs_inode_item);
4394 	sizes[1] = name_len + sizeof(*ref);
4395 
4396 	path->leave_spinning = 1;
4397 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4398 	if (ret != 0)
4399 		goto fail;
4400 
4401 	inode_init_owner(inode, dir, mode);
4402 	inode_set_bytes(inode, 0);
4403 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4404 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4405 				  struct btrfs_inode_item);
4406 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4407 
4408 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4409 			     struct btrfs_inode_ref);
4410 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4411 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4412 	ptr = (unsigned long)(ref + 1);
4413 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4414 
4415 	btrfs_mark_buffer_dirty(path->nodes[0]);
4416 	btrfs_free_path(path);
4417 
4418 	location = &BTRFS_I(inode)->location;
4419 	location->objectid = objectid;
4420 	location->offset = 0;
4421 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4422 
4423 	btrfs_inherit_iflags(inode, dir);
4424 
4425 	if (S_ISREG(mode)) {
4426 		if (btrfs_test_opt(root, NODATASUM))
4427 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4428 		if (btrfs_test_opt(root, NODATACOW) ||
4429 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4430 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4431 	}
4432 
4433 	insert_inode_hash(inode);
4434 	inode_tree_add(inode);
4435 
4436 	trace_btrfs_inode_new(inode);
4437 	btrfs_set_inode_last_trans(trans, inode);
4438 
4439 	return inode;
4440 fail:
4441 	if (dir)
4442 		BTRFS_I(dir)->index_cnt--;
4443 	btrfs_free_path(path);
4444 	iput(inode);
4445 	return ERR_PTR(ret);
4446 }
4447 
4448 static inline u8 btrfs_inode_type(struct inode *inode)
4449 {
4450 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4451 }
4452 
4453 /*
4454  * utility function to add 'inode' into 'parent_inode' with
4455  * a give name and a given sequence number.
4456  * if 'add_backref' is true, also insert a backref from the
4457  * inode to the parent directory.
4458  */
4459 int btrfs_add_link(struct btrfs_trans_handle *trans,
4460 		   struct inode *parent_inode, struct inode *inode,
4461 		   const char *name, int name_len, int add_backref, u64 index)
4462 {
4463 	int ret = 0;
4464 	struct btrfs_key key;
4465 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4466 	u64 ino = btrfs_ino(inode);
4467 	u64 parent_ino = btrfs_ino(parent_inode);
4468 
4469 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4470 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4471 	} else {
4472 		key.objectid = ino;
4473 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4474 		key.offset = 0;
4475 	}
4476 
4477 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4478 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4479 					 key.objectid, root->root_key.objectid,
4480 					 parent_ino, index, name, name_len);
4481 	} else if (add_backref) {
4482 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4483 					     parent_ino, index);
4484 	}
4485 
4486 	if (ret == 0) {
4487 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4488 					    parent_inode, &key,
4489 					    btrfs_inode_type(inode), index);
4490 		BUG_ON(ret);
4491 
4492 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4493 				   name_len * 2);
4494 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4495 		ret = btrfs_update_inode(trans, root, parent_inode);
4496 	}
4497 	return ret;
4498 }
4499 
4500 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4501 			    struct inode *dir, struct dentry *dentry,
4502 			    struct inode *inode, int backref, u64 index)
4503 {
4504 	int err = btrfs_add_link(trans, dir, inode,
4505 				 dentry->d_name.name, dentry->d_name.len,
4506 				 backref, index);
4507 	if (!err) {
4508 		d_instantiate(dentry, inode);
4509 		return 0;
4510 	}
4511 	if (err > 0)
4512 		err = -EEXIST;
4513 	return err;
4514 }
4515 
4516 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4517 			int mode, dev_t rdev)
4518 {
4519 	struct btrfs_trans_handle *trans;
4520 	struct btrfs_root *root = BTRFS_I(dir)->root;
4521 	struct inode *inode = NULL;
4522 	int err;
4523 	int drop_inode = 0;
4524 	u64 objectid;
4525 	unsigned long nr = 0;
4526 	u64 index = 0;
4527 
4528 	if (!new_valid_dev(rdev))
4529 		return -EINVAL;
4530 
4531 	/*
4532 	 * 2 for inode item and ref
4533 	 * 2 for dir items
4534 	 * 1 for xattr if selinux is on
4535 	 */
4536 	trans = btrfs_start_transaction(root, 5);
4537 	if (IS_ERR(trans))
4538 		return PTR_ERR(trans);
4539 
4540 	err = btrfs_find_free_ino(root, &objectid);
4541 	if (err)
4542 		goto out_unlock;
4543 
4544 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4545 				dentry->d_name.len, btrfs_ino(dir), objectid,
4546 				mode, &index);
4547 	if (IS_ERR(inode)) {
4548 		err = PTR_ERR(inode);
4549 		goto out_unlock;
4550 	}
4551 
4552 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4553 	if (err) {
4554 		drop_inode = 1;
4555 		goto out_unlock;
4556 	}
4557 
4558 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4559 	if (err)
4560 		drop_inode = 1;
4561 	else {
4562 		inode->i_op = &btrfs_special_inode_operations;
4563 		init_special_inode(inode, inode->i_mode, rdev);
4564 		btrfs_update_inode(trans, root, inode);
4565 	}
4566 out_unlock:
4567 	nr = trans->blocks_used;
4568 	btrfs_end_transaction_throttle(trans, root);
4569 	btrfs_btree_balance_dirty(root, nr);
4570 	if (drop_inode) {
4571 		inode_dec_link_count(inode);
4572 		iput(inode);
4573 	}
4574 	return err;
4575 }
4576 
4577 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4578 			int mode, struct nameidata *nd)
4579 {
4580 	struct btrfs_trans_handle *trans;
4581 	struct btrfs_root *root = BTRFS_I(dir)->root;
4582 	struct inode *inode = NULL;
4583 	int drop_inode = 0;
4584 	int err;
4585 	unsigned long nr = 0;
4586 	u64 objectid;
4587 	u64 index = 0;
4588 
4589 	/*
4590 	 * 2 for inode item and ref
4591 	 * 2 for dir items
4592 	 * 1 for xattr if selinux is on
4593 	 */
4594 	trans = btrfs_start_transaction(root, 5);
4595 	if (IS_ERR(trans))
4596 		return PTR_ERR(trans);
4597 
4598 	err = btrfs_find_free_ino(root, &objectid);
4599 	if (err)
4600 		goto out_unlock;
4601 
4602 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4603 				dentry->d_name.len, btrfs_ino(dir), objectid,
4604 				mode, &index);
4605 	if (IS_ERR(inode)) {
4606 		err = PTR_ERR(inode);
4607 		goto out_unlock;
4608 	}
4609 
4610 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4611 	if (err) {
4612 		drop_inode = 1;
4613 		goto out_unlock;
4614 	}
4615 
4616 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4617 	if (err)
4618 		drop_inode = 1;
4619 	else {
4620 		inode->i_mapping->a_ops = &btrfs_aops;
4621 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4622 		inode->i_fop = &btrfs_file_operations;
4623 		inode->i_op = &btrfs_file_inode_operations;
4624 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4625 	}
4626 out_unlock:
4627 	nr = trans->blocks_used;
4628 	btrfs_end_transaction_throttle(trans, root);
4629 	if (drop_inode) {
4630 		inode_dec_link_count(inode);
4631 		iput(inode);
4632 	}
4633 	btrfs_btree_balance_dirty(root, nr);
4634 	return err;
4635 }
4636 
4637 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4638 		      struct dentry *dentry)
4639 {
4640 	struct btrfs_trans_handle *trans;
4641 	struct btrfs_root *root = BTRFS_I(dir)->root;
4642 	struct inode *inode = old_dentry->d_inode;
4643 	u64 index;
4644 	unsigned long nr = 0;
4645 	int err;
4646 	int drop_inode = 0;
4647 
4648 	/* do not allow sys_link's with other subvols of the same device */
4649 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4650 		return -EXDEV;
4651 
4652 	if (inode->i_nlink == ~0U)
4653 		return -EMLINK;
4654 
4655 	err = btrfs_set_inode_index(dir, &index);
4656 	if (err)
4657 		goto fail;
4658 
4659 	/*
4660 	 * 2 items for inode and inode ref
4661 	 * 2 items for dir items
4662 	 * 1 item for parent inode
4663 	 */
4664 	trans = btrfs_start_transaction(root, 5);
4665 	if (IS_ERR(trans)) {
4666 		err = PTR_ERR(trans);
4667 		goto fail;
4668 	}
4669 
4670 	btrfs_inc_nlink(inode);
4671 	inode->i_ctime = CURRENT_TIME;
4672 	ihold(inode);
4673 
4674 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4675 
4676 	if (err) {
4677 		drop_inode = 1;
4678 	} else {
4679 		struct dentry *parent = dentry->d_parent;
4680 		err = btrfs_update_inode(trans, root, inode);
4681 		BUG_ON(err);
4682 		btrfs_log_new_name(trans, inode, NULL, parent);
4683 	}
4684 
4685 	nr = trans->blocks_used;
4686 	btrfs_end_transaction_throttle(trans, root);
4687 fail:
4688 	if (drop_inode) {
4689 		inode_dec_link_count(inode);
4690 		iput(inode);
4691 	}
4692 	btrfs_btree_balance_dirty(root, nr);
4693 	return err;
4694 }
4695 
4696 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4697 {
4698 	struct inode *inode = NULL;
4699 	struct btrfs_trans_handle *trans;
4700 	struct btrfs_root *root = BTRFS_I(dir)->root;
4701 	int err = 0;
4702 	int drop_on_err = 0;
4703 	u64 objectid = 0;
4704 	u64 index = 0;
4705 	unsigned long nr = 1;
4706 
4707 	/*
4708 	 * 2 items for inode and ref
4709 	 * 2 items for dir items
4710 	 * 1 for xattr if selinux is on
4711 	 */
4712 	trans = btrfs_start_transaction(root, 5);
4713 	if (IS_ERR(trans))
4714 		return PTR_ERR(trans);
4715 
4716 	err = btrfs_find_free_ino(root, &objectid);
4717 	if (err)
4718 		goto out_fail;
4719 
4720 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4721 				dentry->d_name.len, btrfs_ino(dir), objectid,
4722 				S_IFDIR | mode, &index);
4723 	if (IS_ERR(inode)) {
4724 		err = PTR_ERR(inode);
4725 		goto out_fail;
4726 	}
4727 
4728 	drop_on_err = 1;
4729 
4730 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4731 	if (err)
4732 		goto out_fail;
4733 
4734 	inode->i_op = &btrfs_dir_inode_operations;
4735 	inode->i_fop = &btrfs_dir_file_operations;
4736 
4737 	btrfs_i_size_write(inode, 0);
4738 	err = btrfs_update_inode(trans, root, inode);
4739 	if (err)
4740 		goto out_fail;
4741 
4742 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4743 			     dentry->d_name.len, 0, index);
4744 	if (err)
4745 		goto out_fail;
4746 
4747 	d_instantiate(dentry, inode);
4748 	drop_on_err = 0;
4749 
4750 out_fail:
4751 	nr = trans->blocks_used;
4752 	btrfs_end_transaction_throttle(trans, root);
4753 	if (drop_on_err)
4754 		iput(inode);
4755 	btrfs_btree_balance_dirty(root, nr);
4756 	return err;
4757 }
4758 
4759 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4760  * and an extent that you want to insert, deal with overlap and insert
4761  * the new extent into the tree.
4762  */
4763 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4764 				struct extent_map *existing,
4765 				struct extent_map *em,
4766 				u64 map_start, u64 map_len)
4767 {
4768 	u64 start_diff;
4769 
4770 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4771 	start_diff = map_start - em->start;
4772 	em->start = map_start;
4773 	em->len = map_len;
4774 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4775 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4776 		em->block_start += start_diff;
4777 		em->block_len -= start_diff;
4778 	}
4779 	return add_extent_mapping(em_tree, em);
4780 }
4781 
4782 static noinline int uncompress_inline(struct btrfs_path *path,
4783 				      struct inode *inode, struct page *page,
4784 				      size_t pg_offset, u64 extent_offset,
4785 				      struct btrfs_file_extent_item *item)
4786 {
4787 	int ret;
4788 	struct extent_buffer *leaf = path->nodes[0];
4789 	char *tmp;
4790 	size_t max_size;
4791 	unsigned long inline_size;
4792 	unsigned long ptr;
4793 	int compress_type;
4794 
4795 	WARN_ON(pg_offset != 0);
4796 	compress_type = btrfs_file_extent_compression(leaf, item);
4797 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4798 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4799 					btrfs_item_nr(leaf, path->slots[0]));
4800 	tmp = kmalloc(inline_size, GFP_NOFS);
4801 	if (!tmp)
4802 		return -ENOMEM;
4803 	ptr = btrfs_file_extent_inline_start(item);
4804 
4805 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4806 
4807 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4808 	ret = btrfs_decompress(compress_type, tmp, page,
4809 			       extent_offset, inline_size, max_size);
4810 	if (ret) {
4811 		char *kaddr = kmap_atomic(page, KM_USER0);
4812 		unsigned long copy_size = min_t(u64,
4813 				  PAGE_CACHE_SIZE - pg_offset,
4814 				  max_size - extent_offset);
4815 		memset(kaddr + pg_offset, 0, copy_size);
4816 		kunmap_atomic(kaddr, KM_USER0);
4817 	}
4818 	kfree(tmp);
4819 	return 0;
4820 }
4821 
4822 /*
4823  * a bit scary, this does extent mapping from logical file offset to the disk.
4824  * the ugly parts come from merging extents from the disk with the in-ram
4825  * representation.  This gets more complex because of the data=ordered code,
4826  * where the in-ram extents might be locked pending data=ordered completion.
4827  *
4828  * This also copies inline extents directly into the page.
4829  */
4830 
4831 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4832 				    size_t pg_offset, u64 start, u64 len,
4833 				    int create)
4834 {
4835 	int ret;
4836 	int err = 0;
4837 	u64 bytenr;
4838 	u64 extent_start = 0;
4839 	u64 extent_end = 0;
4840 	u64 objectid = btrfs_ino(inode);
4841 	u32 found_type;
4842 	struct btrfs_path *path = NULL;
4843 	struct btrfs_root *root = BTRFS_I(inode)->root;
4844 	struct btrfs_file_extent_item *item;
4845 	struct extent_buffer *leaf;
4846 	struct btrfs_key found_key;
4847 	struct extent_map *em = NULL;
4848 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4849 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4850 	struct btrfs_trans_handle *trans = NULL;
4851 	int compress_type;
4852 
4853 again:
4854 	read_lock(&em_tree->lock);
4855 	em = lookup_extent_mapping(em_tree, start, len);
4856 	if (em)
4857 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4858 	read_unlock(&em_tree->lock);
4859 
4860 	if (em) {
4861 		if (em->start > start || em->start + em->len <= start)
4862 			free_extent_map(em);
4863 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4864 			free_extent_map(em);
4865 		else
4866 			goto out;
4867 	}
4868 	em = alloc_extent_map();
4869 	if (!em) {
4870 		err = -ENOMEM;
4871 		goto out;
4872 	}
4873 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4874 	em->start = EXTENT_MAP_HOLE;
4875 	em->orig_start = EXTENT_MAP_HOLE;
4876 	em->len = (u64)-1;
4877 	em->block_len = (u64)-1;
4878 
4879 	if (!path) {
4880 		path = btrfs_alloc_path();
4881 		if (!path) {
4882 			err = -ENOMEM;
4883 			goto out;
4884 		}
4885 		/*
4886 		 * Chances are we'll be called again, so go ahead and do
4887 		 * readahead
4888 		 */
4889 		path->reada = 1;
4890 	}
4891 
4892 	ret = btrfs_lookup_file_extent(trans, root, path,
4893 				       objectid, start, trans != NULL);
4894 	if (ret < 0) {
4895 		err = ret;
4896 		goto out;
4897 	}
4898 
4899 	if (ret != 0) {
4900 		if (path->slots[0] == 0)
4901 			goto not_found;
4902 		path->slots[0]--;
4903 	}
4904 
4905 	leaf = path->nodes[0];
4906 	item = btrfs_item_ptr(leaf, path->slots[0],
4907 			      struct btrfs_file_extent_item);
4908 	/* are we inside the extent that was found? */
4909 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4910 	found_type = btrfs_key_type(&found_key);
4911 	if (found_key.objectid != objectid ||
4912 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4913 		goto not_found;
4914 	}
4915 
4916 	found_type = btrfs_file_extent_type(leaf, item);
4917 	extent_start = found_key.offset;
4918 	compress_type = btrfs_file_extent_compression(leaf, item);
4919 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4920 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4921 		extent_end = extent_start +
4922 		       btrfs_file_extent_num_bytes(leaf, item);
4923 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4924 		size_t size;
4925 		size = btrfs_file_extent_inline_len(leaf, item);
4926 		extent_end = (extent_start + size + root->sectorsize - 1) &
4927 			~((u64)root->sectorsize - 1);
4928 	}
4929 
4930 	if (start >= extent_end) {
4931 		path->slots[0]++;
4932 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4933 			ret = btrfs_next_leaf(root, path);
4934 			if (ret < 0) {
4935 				err = ret;
4936 				goto out;
4937 			}
4938 			if (ret > 0)
4939 				goto not_found;
4940 			leaf = path->nodes[0];
4941 		}
4942 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4943 		if (found_key.objectid != objectid ||
4944 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4945 			goto not_found;
4946 		if (start + len <= found_key.offset)
4947 			goto not_found;
4948 		em->start = start;
4949 		em->len = found_key.offset - start;
4950 		goto not_found_em;
4951 	}
4952 
4953 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4954 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4955 		em->start = extent_start;
4956 		em->len = extent_end - extent_start;
4957 		em->orig_start = extent_start -
4958 				 btrfs_file_extent_offset(leaf, item);
4959 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4960 		if (bytenr == 0) {
4961 			em->block_start = EXTENT_MAP_HOLE;
4962 			goto insert;
4963 		}
4964 		if (compress_type != BTRFS_COMPRESS_NONE) {
4965 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4966 			em->compress_type = compress_type;
4967 			em->block_start = bytenr;
4968 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4969 									 item);
4970 		} else {
4971 			bytenr += btrfs_file_extent_offset(leaf, item);
4972 			em->block_start = bytenr;
4973 			em->block_len = em->len;
4974 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4975 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4976 		}
4977 		goto insert;
4978 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4979 		unsigned long ptr;
4980 		char *map;
4981 		size_t size;
4982 		size_t extent_offset;
4983 		size_t copy_size;
4984 
4985 		em->block_start = EXTENT_MAP_INLINE;
4986 		if (!page || create) {
4987 			em->start = extent_start;
4988 			em->len = extent_end - extent_start;
4989 			goto out;
4990 		}
4991 
4992 		size = btrfs_file_extent_inline_len(leaf, item);
4993 		extent_offset = page_offset(page) + pg_offset - extent_start;
4994 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4995 				size - extent_offset);
4996 		em->start = extent_start + extent_offset;
4997 		em->len = (copy_size + root->sectorsize - 1) &
4998 			~((u64)root->sectorsize - 1);
4999 		em->orig_start = EXTENT_MAP_INLINE;
5000 		if (compress_type) {
5001 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5002 			em->compress_type = compress_type;
5003 		}
5004 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5005 		if (create == 0 && !PageUptodate(page)) {
5006 			if (btrfs_file_extent_compression(leaf, item) !=
5007 			    BTRFS_COMPRESS_NONE) {
5008 				ret = uncompress_inline(path, inode, page,
5009 							pg_offset,
5010 							extent_offset, item);
5011 				BUG_ON(ret);
5012 			} else {
5013 				map = kmap(page);
5014 				read_extent_buffer(leaf, map + pg_offset, ptr,
5015 						   copy_size);
5016 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5017 					memset(map + pg_offset + copy_size, 0,
5018 					       PAGE_CACHE_SIZE - pg_offset -
5019 					       copy_size);
5020 				}
5021 				kunmap(page);
5022 			}
5023 			flush_dcache_page(page);
5024 		} else if (create && PageUptodate(page)) {
5025 			WARN_ON(1);
5026 			if (!trans) {
5027 				kunmap(page);
5028 				free_extent_map(em);
5029 				em = NULL;
5030 
5031 				btrfs_release_path(path);
5032 				trans = btrfs_join_transaction(root);
5033 
5034 				if (IS_ERR(trans))
5035 					return ERR_CAST(trans);
5036 				goto again;
5037 			}
5038 			map = kmap(page);
5039 			write_extent_buffer(leaf, map + pg_offset, ptr,
5040 					    copy_size);
5041 			kunmap(page);
5042 			btrfs_mark_buffer_dirty(leaf);
5043 		}
5044 		set_extent_uptodate(io_tree, em->start,
5045 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5046 		goto insert;
5047 	} else {
5048 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5049 		WARN_ON(1);
5050 	}
5051 not_found:
5052 	em->start = start;
5053 	em->len = len;
5054 not_found_em:
5055 	em->block_start = EXTENT_MAP_HOLE;
5056 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5057 insert:
5058 	btrfs_release_path(path);
5059 	if (em->start > start || extent_map_end(em) <= start) {
5060 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5061 		       "[%llu %llu]\n", (unsigned long long)em->start,
5062 		       (unsigned long long)em->len,
5063 		       (unsigned long long)start,
5064 		       (unsigned long long)len);
5065 		err = -EIO;
5066 		goto out;
5067 	}
5068 
5069 	err = 0;
5070 	write_lock(&em_tree->lock);
5071 	ret = add_extent_mapping(em_tree, em);
5072 	/* it is possible that someone inserted the extent into the tree
5073 	 * while we had the lock dropped.  It is also possible that
5074 	 * an overlapping map exists in the tree
5075 	 */
5076 	if (ret == -EEXIST) {
5077 		struct extent_map *existing;
5078 
5079 		ret = 0;
5080 
5081 		existing = lookup_extent_mapping(em_tree, start, len);
5082 		if (existing && (existing->start > start ||
5083 		    existing->start + existing->len <= start)) {
5084 			free_extent_map(existing);
5085 			existing = NULL;
5086 		}
5087 		if (!existing) {
5088 			existing = lookup_extent_mapping(em_tree, em->start,
5089 							 em->len);
5090 			if (existing) {
5091 				err = merge_extent_mapping(em_tree, existing,
5092 							   em, start,
5093 							   root->sectorsize);
5094 				free_extent_map(existing);
5095 				if (err) {
5096 					free_extent_map(em);
5097 					em = NULL;
5098 				}
5099 			} else {
5100 				err = -EIO;
5101 				free_extent_map(em);
5102 				em = NULL;
5103 			}
5104 		} else {
5105 			free_extent_map(em);
5106 			em = existing;
5107 			err = 0;
5108 		}
5109 	}
5110 	write_unlock(&em_tree->lock);
5111 out:
5112 
5113 	trace_btrfs_get_extent(root, em);
5114 
5115 	if (path)
5116 		btrfs_free_path(path);
5117 	if (trans) {
5118 		ret = btrfs_end_transaction(trans, root);
5119 		if (!err)
5120 			err = ret;
5121 	}
5122 	if (err) {
5123 		free_extent_map(em);
5124 		return ERR_PTR(err);
5125 	}
5126 	return em;
5127 }
5128 
5129 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5130 					   size_t pg_offset, u64 start, u64 len,
5131 					   int create)
5132 {
5133 	struct extent_map *em;
5134 	struct extent_map *hole_em = NULL;
5135 	u64 range_start = start;
5136 	u64 end;
5137 	u64 found;
5138 	u64 found_end;
5139 	int err = 0;
5140 
5141 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5142 	if (IS_ERR(em))
5143 		return em;
5144 	if (em) {
5145 		/*
5146 		 * if our em maps to a hole, there might
5147 		 * actually be delalloc bytes behind it
5148 		 */
5149 		if (em->block_start != EXTENT_MAP_HOLE)
5150 			return em;
5151 		else
5152 			hole_em = em;
5153 	}
5154 
5155 	/* check to see if we've wrapped (len == -1 or similar) */
5156 	end = start + len;
5157 	if (end < start)
5158 		end = (u64)-1;
5159 	else
5160 		end -= 1;
5161 
5162 	em = NULL;
5163 
5164 	/* ok, we didn't find anything, lets look for delalloc */
5165 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5166 				 end, len, EXTENT_DELALLOC, 1);
5167 	found_end = range_start + found;
5168 	if (found_end < range_start)
5169 		found_end = (u64)-1;
5170 
5171 	/*
5172 	 * we didn't find anything useful, return
5173 	 * the original results from get_extent()
5174 	 */
5175 	if (range_start > end || found_end <= start) {
5176 		em = hole_em;
5177 		hole_em = NULL;
5178 		goto out;
5179 	}
5180 
5181 	/* adjust the range_start to make sure it doesn't
5182 	 * go backwards from the start they passed in
5183 	 */
5184 	range_start = max(start,range_start);
5185 	found = found_end - range_start;
5186 
5187 	if (found > 0) {
5188 		u64 hole_start = start;
5189 		u64 hole_len = len;
5190 
5191 		em = alloc_extent_map();
5192 		if (!em) {
5193 			err = -ENOMEM;
5194 			goto out;
5195 		}
5196 		/*
5197 		 * when btrfs_get_extent can't find anything it
5198 		 * returns one huge hole
5199 		 *
5200 		 * make sure what it found really fits our range, and
5201 		 * adjust to make sure it is based on the start from
5202 		 * the caller
5203 		 */
5204 		if (hole_em) {
5205 			u64 calc_end = extent_map_end(hole_em);
5206 
5207 			if (calc_end <= start || (hole_em->start > end)) {
5208 				free_extent_map(hole_em);
5209 				hole_em = NULL;
5210 			} else {
5211 				hole_start = max(hole_em->start, start);
5212 				hole_len = calc_end - hole_start;
5213 			}
5214 		}
5215 		em->bdev = NULL;
5216 		if (hole_em && range_start > hole_start) {
5217 			/* our hole starts before our delalloc, so we
5218 			 * have to return just the parts of the hole
5219 			 * that go until  the delalloc starts
5220 			 */
5221 			em->len = min(hole_len,
5222 				      range_start - hole_start);
5223 			em->start = hole_start;
5224 			em->orig_start = hole_start;
5225 			/*
5226 			 * don't adjust block start at all,
5227 			 * it is fixed at EXTENT_MAP_HOLE
5228 			 */
5229 			em->block_start = hole_em->block_start;
5230 			em->block_len = hole_len;
5231 		} else {
5232 			em->start = range_start;
5233 			em->len = found;
5234 			em->orig_start = range_start;
5235 			em->block_start = EXTENT_MAP_DELALLOC;
5236 			em->block_len = found;
5237 		}
5238 	} else if (hole_em) {
5239 		return hole_em;
5240 	}
5241 out:
5242 
5243 	free_extent_map(hole_em);
5244 	if (err) {
5245 		free_extent_map(em);
5246 		return ERR_PTR(err);
5247 	}
5248 	return em;
5249 }
5250 
5251 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5252 						  struct extent_map *em,
5253 						  u64 start, u64 len)
5254 {
5255 	struct btrfs_root *root = BTRFS_I(inode)->root;
5256 	struct btrfs_trans_handle *trans;
5257 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5258 	struct btrfs_key ins;
5259 	u64 alloc_hint;
5260 	int ret;
5261 	bool insert = false;
5262 
5263 	/*
5264 	 * Ok if the extent map we looked up is a hole and is for the exact
5265 	 * range we want, there is no reason to allocate a new one, however if
5266 	 * it is not right then we need to free this one and drop the cache for
5267 	 * our range.
5268 	 */
5269 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5270 	    em->len != len) {
5271 		free_extent_map(em);
5272 		em = NULL;
5273 		insert = true;
5274 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5275 	}
5276 
5277 	trans = btrfs_join_transaction(root);
5278 	if (IS_ERR(trans))
5279 		return ERR_CAST(trans);
5280 
5281 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5282 		btrfs_add_inode_defrag(trans, inode);
5283 
5284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5285 
5286 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5287 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5288 				   alloc_hint, (u64)-1, &ins, 1);
5289 	if (ret) {
5290 		em = ERR_PTR(ret);
5291 		goto out;
5292 	}
5293 
5294 	if (!em) {
5295 		em = alloc_extent_map();
5296 		if (!em) {
5297 			em = ERR_PTR(-ENOMEM);
5298 			goto out;
5299 		}
5300 	}
5301 
5302 	em->start = start;
5303 	em->orig_start = em->start;
5304 	em->len = ins.offset;
5305 
5306 	em->block_start = ins.objectid;
5307 	em->block_len = ins.offset;
5308 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5309 
5310 	/*
5311 	 * We need to do this because if we're using the original em we searched
5312 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5313 	 */
5314 	em->flags = 0;
5315 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5316 
5317 	while (insert) {
5318 		write_lock(&em_tree->lock);
5319 		ret = add_extent_mapping(em_tree, em);
5320 		write_unlock(&em_tree->lock);
5321 		if (ret != -EEXIST)
5322 			break;
5323 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5324 	}
5325 
5326 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5327 					   ins.offset, ins.offset, 0);
5328 	if (ret) {
5329 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5330 		em = ERR_PTR(ret);
5331 	}
5332 out:
5333 	btrfs_end_transaction(trans, root);
5334 	return em;
5335 }
5336 
5337 /*
5338  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5339  * block must be cow'd
5340  */
5341 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5342 				      struct inode *inode, u64 offset, u64 len)
5343 {
5344 	struct btrfs_path *path;
5345 	int ret;
5346 	struct extent_buffer *leaf;
5347 	struct btrfs_root *root = BTRFS_I(inode)->root;
5348 	struct btrfs_file_extent_item *fi;
5349 	struct btrfs_key key;
5350 	u64 disk_bytenr;
5351 	u64 backref_offset;
5352 	u64 extent_end;
5353 	u64 num_bytes;
5354 	int slot;
5355 	int found_type;
5356 
5357 	path = btrfs_alloc_path();
5358 	if (!path)
5359 		return -ENOMEM;
5360 
5361 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5362 				       offset, 0);
5363 	if (ret < 0)
5364 		goto out;
5365 
5366 	slot = path->slots[0];
5367 	if (ret == 1) {
5368 		if (slot == 0) {
5369 			/* can't find the item, must cow */
5370 			ret = 0;
5371 			goto out;
5372 		}
5373 		slot--;
5374 	}
5375 	ret = 0;
5376 	leaf = path->nodes[0];
5377 	btrfs_item_key_to_cpu(leaf, &key, slot);
5378 	if (key.objectid != btrfs_ino(inode) ||
5379 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5380 		/* not our file or wrong item type, must cow */
5381 		goto out;
5382 	}
5383 
5384 	if (key.offset > offset) {
5385 		/* Wrong offset, must cow */
5386 		goto out;
5387 	}
5388 
5389 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5390 	found_type = btrfs_file_extent_type(leaf, fi);
5391 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5392 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5393 		/* not a regular extent, must cow */
5394 		goto out;
5395 	}
5396 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5397 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5398 
5399 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5400 	if (extent_end < offset + len) {
5401 		/* extent doesn't include our full range, must cow */
5402 		goto out;
5403 	}
5404 
5405 	if (btrfs_extent_readonly(root, disk_bytenr))
5406 		goto out;
5407 
5408 	/*
5409 	 * look for other files referencing this extent, if we
5410 	 * find any we must cow
5411 	 */
5412 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5413 				  key.offset - backref_offset, disk_bytenr))
5414 		goto out;
5415 
5416 	/*
5417 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5418 	 * in this extent we are about to write.  If there
5419 	 * are any csums in that range we have to cow in order
5420 	 * to keep the csums correct
5421 	 */
5422 	disk_bytenr += backref_offset;
5423 	disk_bytenr += offset - key.offset;
5424 	num_bytes = min(offset + len, extent_end) - offset;
5425 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5426 				goto out;
5427 	/*
5428 	 * all of the above have passed, it is safe to overwrite this extent
5429 	 * without cow
5430 	 */
5431 	ret = 1;
5432 out:
5433 	btrfs_free_path(path);
5434 	return ret;
5435 }
5436 
5437 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5438 				   struct buffer_head *bh_result, int create)
5439 {
5440 	struct extent_map *em;
5441 	struct btrfs_root *root = BTRFS_I(inode)->root;
5442 	u64 start = iblock << inode->i_blkbits;
5443 	u64 len = bh_result->b_size;
5444 	struct btrfs_trans_handle *trans;
5445 
5446 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5447 	if (IS_ERR(em))
5448 		return PTR_ERR(em);
5449 
5450 	/*
5451 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5452 	 * io.  INLINE is special, and we could probably kludge it in here, but
5453 	 * it's still buffered so for safety lets just fall back to the generic
5454 	 * buffered path.
5455 	 *
5456 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5457 	 * decompress it, so there will be buffering required no matter what we
5458 	 * do, so go ahead and fallback to buffered.
5459 	 *
5460 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5461 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5462 	 * the generic code.
5463 	 */
5464 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5465 	    em->block_start == EXTENT_MAP_INLINE) {
5466 		free_extent_map(em);
5467 		return -ENOTBLK;
5468 	}
5469 
5470 	/* Just a good old fashioned hole, return */
5471 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5472 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5473 		free_extent_map(em);
5474 		/* DIO will do one hole at a time, so just unlock a sector */
5475 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5476 			      start + root->sectorsize - 1, GFP_NOFS);
5477 		return 0;
5478 	}
5479 
5480 	/*
5481 	 * We don't allocate a new extent in the following cases
5482 	 *
5483 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5484 	 * existing extent.
5485 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5486 	 * just use the extent.
5487 	 *
5488 	 */
5489 	if (!create) {
5490 		len = em->len - (start - em->start);
5491 		goto map;
5492 	}
5493 
5494 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5495 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5496 	     em->block_start != EXTENT_MAP_HOLE)) {
5497 		int type;
5498 		int ret;
5499 		u64 block_start;
5500 
5501 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5502 			type = BTRFS_ORDERED_PREALLOC;
5503 		else
5504 			type = BTRFS_ORDERED_NOCOW;
5505 		len = min(len, em->len - (start - em->start));
5506 		block_start = em->block_start + (start - em->start);
5507 
5508 		/*
5509 		 * we're not going to log anything, but we do need
5510 		 * to make sure the current transaction stays open
5511 		 * while we look for nocow cross refs
5512 		 */
5513 		trans = btrfs_join_transaction(root);
5514 		if (IS_ERR(trans))
5515 			goto must_cow;
5516 
5517 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5518 			ret = btrfs_add_ordered_extent_dio(inode, start,
5519 					   block_start, len, len, type);
5520 			btrfs_end_transaction(trans, root);
5521 			if (ret) {
5522 				free_extent_map(em);
5523 				return ret;
5524 			}
5525 			goto unlock;
5526 		}
5527 		btrfs_end_transaction(trans, root);
5528 	}
5529 must_cow:
5530 	/*
5531 	 * this will cow the extent, reset the len in case we changed
5532 	 * it above
5533 	 */
5534 	len = bh_result->b_size;
5535 	em = btrfs_new_extent_direct(inode, em, start, len);
5536 	if (IS_ERR(em))
5537 		return PTR_ERR(em);
5538 	len = min(len, em->len - (start - em->start));
5539 unlock:
5540 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5541 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5542 			  0, NULL, GFP_NOFS);
5543 map:
5544 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5545 		inode->i_blkbits;
5546 	bh_result->b_size = len;
5547 	bh_result->b_bdev = em->bdev;
5548 	set_buffer_mapped(bh_result);
5549 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5550 		set_buffer_new(bh_result);
5551 
5552 	free_extent_map(em);
5553 
5554 	return 0;
5555 }
5556 
5557 struct btrfs_dio_private {
5558 	struct inode *inode;
5559 	u64 logical_offset;
5560 	u64 disk_bytenr;
5561 	u64 bytes;
5562 	u32 *csums;
5563 	void *private;
5564 
5565 	/* number of bios pending for this dio */
5566 	atomic_t pending_bios;
5567 
5568 	/* IO errors */
5569 	int errors;
5570 
5571 	struct bio *orig_bio;
5572 };
5573 
5574 static void btrfs_endio_direct_read(struct bio *bio, int err)
5575 {
5576 	struct btrfs_dio_private *dip = bio->bi_private;
5577 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5578 	struct bio_vec *bvec = bio->bi_io_vec;
5579 	struct inode *inode = dip->inode;
5580 	struct btrfs_root *root = BTRFS_I(inode)->root;
5581 	u64 start;
5582 	u32 *private = dip->csums;
5583 
5584 	start = dip->logical_offset;
5585 	do {
5586 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5587 			struct page *page = bvec->bv_page;
5588 			char *kaddr;
5589 			u32 csum = ~(u32)0;
5590 			unsigned long flags;
5591 
5592 			local_irq_save(flags);
5593 			kaddr = kmap_atomic(page, KM_IRQ0);
5594 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5595 					       csum, bvec->bv_len);
5596 			btrfs_csum_final(csum, (char *)&csum);
5597 			kunmap_atomic(kaddr, KM_IRQ0);
5598 			local_irq_restore(flags);
5599 
5600 			flush_dcache_page(bvec->bv_page);
5601 			if (csum != *private) {
5602 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5603 				      " %llu csum %u private %u\n",
5604 				      (unsigned long long)btrfs_ino(inode),
5605 				      (unsigned long long)start,
5606 				      csum, *private);
5607 				err = -EIO;
5608 			}
5609 		}
5610 
5611 		start += bvec->bv_len;
5612 		private++;
5613 		bvec++;
5614 	} while (bvec <= bvec_end);
5615 
5616 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5617 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5618 	bio->bi_private = dip->private;
5619 
5620 	kfree(dip->csums);
5621 	kfree(dip);
5622 
5623 	/* If we had a csum failure make sure to clear the uptodate flag */
5624 	if (err)
5625 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5626 	dio_end_io(bio, err);
5627 }
5628 
5629 static void btrfs_endio_direct_write(struct bio *bio, int err)
5630 {
5631 	struct btrfs_dio_private *dip = bio->bi_private;
5632 	struct inode *inode = dip->inode;
5633 	struct btrfs_root *root = BTRFS_I(inode)->root;
5634 	struct btrfs_trans_handle *trans;
5635 	struct btrfs_ordered_extent *ordered = NULL;
5636 	struct extent_state *cached_state = NULL;
5637 	u64 ordered_offset = dip->logical_offset;
5638 	u64 ordered_bytes = dip->bytes;
5639 	int ret;
5640 
5641 	if (err)
5642 		goto out_done;
5643 again:
5644 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5645 						   &ordered_offset,
5646 						   ordered_bytes);
5647 	if (!ret)
5648 		goto out_test;
5649 
5650 	BUG_ON(!ordered);
5651 
5652 	trans = btrfs_join_transaction(root);
5653 	if (IS_ERR(trans)) {
5654 		err = -ENOMEM;
5655 		goto out;
5656 	}
5657 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5658 
5659 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5660 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5661 		if (!ret)
5662 			err = btrfs_update_inode_fallback(trans, root, inode);
5663 		goto out;
5664 	}
5665 
5666 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5667 			 ordered->file_offset + ordered->len - 1, 0,
5668 			 &cached_state, GFP_NOFS);
5669 
5670 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5671 		ret = btrfs_mark_extent_written(trans, inode,
5672 						ordered->file_offset,
5673 						ordered->file_offset +
5674 						ordered->len);
5675 		if (ret) {
5676 			err = ret;
5677 			goto out_unlock;
5678 		}
5679 	} else {
5680 		ret = insert_reserved_file_extent(trans, inode,
5681 						  ordered->file_offset,
5682 						  ordered->start,
5683 						  ordered->disk_len,
5684 						  ordered->len,
5685 						  ordered->len,
5686 						  0, 0, 0,
5687 						  BTRFS_FILE_EXTENT_REG);
5688 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5689 				   ordered->file_offset, ordered->len);
5690 		if (ret) {
5691 			err = ret;
5692 			WARN_ON(1);
5693 			goto out_unlock;
5694 		}
5695 	}
5696 
5697 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5698 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5699 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5700 		btrfs_update_inode_fallback(trans, root, inode);
5701 	ret = 0;
5702 out_unlock:
5703 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5704 			     ordered->file_offset + ordered->len - 1,
5705 			     &cached_state, GFP_NOFS);
5706 out:
5707 	btrfs_delalloc_release_metadata(inode, ordered->len);
5708 	btrfs_end_transaction(trans, root);
5709 	ordered_offset = ordered->file_offset + ordered->len;
5710 	btrfs_put_ordered_extent(ordered);
5711 	btrfs_put_ordered_extent(ordered);
5712 
5713 out_test:
5714 	/*
5715 	 * our bio might span multiple ordered extents.  If we haven't
5716 	 * completed the accounting for the whole dio, go back and try again
5717 	 */
5718 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5719 		ordered_bytes = dip->logical_offset + dip->bytes -
5720 			ordered_offset;
5721 		goto again;
5722 	}
5723 out_done:
5724 	bio->bi_private = dip->private;
5725 
5726 	kfree(dip->csums);
5727 	kfree(dip);
5728 
5729 	/* If we had an error make sure to clear the uptodate flag */
5730 	if (err)
5731 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5732 	dio_end_io(bio, err);
5733 }
5734 
5735 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5736 				    struct bio *bio, int mirror_num,
5737 				    unsigned long bio_flags, u64 offset)
5738 {
5739 	int ret;
5740 	struct btrfs_root *root = BTRFS_I(inode)->root;
5741 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5742 	BUG_ON(ret);
5743 	return 0;
5744 }
5745 
5746 static void btrfs_end_dio_bio(struct bio *bio, int err)
5747 {
5748 	struct btrfs_dio_private *dip = bio->bi_private;
5749 
5750 	if (err) {
5751 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5752 		      "sector %#Lx len %u err no %d\n",
5753 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5754 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5755 		dip->errors = 1;
5756 
5757 		/*
5758 		 * before atomic variable goto zero, we must make sure
5759 		 * dip->errors is perceived to be set.
5760 		 */
5761 		smp_mb__before_atomic_dec();
5762 	}
5763 
5764 	/* if there are more bios still pending for this dio, just exit */
5765 	if (!atomic_dec_and_test(&dip->pending_bios))
5766 		goto out;
5767 
5768 	if (dip->errors)
5769 		bio_io_error(dip->orig_bio);
5770 	else {
5771 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5772 		bio_endio(dip->orig_bio, 0);
5773 	}
5774 out:
5775 	bio_put(bio);
5776 }
5777 
5778 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5779 				       u64 first_sector, gfp_t gfp_flags)
5780 {
5781 	int nr_vecs = bio_get_nr_vecs(bdev);
5782 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5783 }
5784 
5785 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5786 					 int rw, u64 file_offset, int skip_sum,
5787 					 u32 *csums, int async_submit)
5788 {
5789 	int write = rw & REQ_WRITE;
5790 	struct btrfs_root *root = BTRFS_I(inode)->root;
5791 	int ret;
5792 
5793 	bio_get(bio);
5794 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5795 	if (ret)
5796 		goto err;
5797 
5798 	if (skip_sum)
5799 		goto map;
5800 
5801 	if (write && async_submit) {
5802 		ret = btrfs_wq_submit_bio(root->fs_info,
5803 				   inode, rw, bio, 0, 0,
5804 				   file_offset,
5805 				   __btrfs_submit_bio_start_direct_io,
5806 				   __btrfs_submit_bio_done);
5807 		goto err;
5808 	} else if (write) {
5809 		/*
5810 		 * If we aren't doing async submit, calculate the csum of the
5811 		 * bio now.
5812 		 */
5813 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5814 		if (ret)
5815 			goto err;
5816 	} else if (!skip_sum) {
5817 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5818 					  file_offset, csums);
5819 		if (ret)
5820 			goto err;
5821 	}
5822 
5823 map:
5824 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5825 err:
5826 	bio_put(bio);
5827 	return ret;
5828 }
5829 
5830 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5831 				    int skip_sum)
5832 {
5833 	struct inode *inode = dip->inode;
5834 	struct btrfs_root *root = BTRFS_I(inode)->root;
5835 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5836 	struct bio *bio;
5837 	struct bio *orig_bio = dip->orig_bio;
5838 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5839 	u64 start_sector = orig_bio->bi_sector;
5840 	u64 file_offset = dip->logical_offset;
5841 	u64 submit_len = 0;
5842 	u64 map_length;
5843 	int nr_pages = 0;
5844 	u32 *csums = dip->csums;
5845 	int ret = 0;
5846 	int async_submit = 0;
5847 	int write = rw & REQ_WRITE;
5848 
5849 	map_length = orig_bio->bi_size;
5850 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5851 			      &map_length, NULL, 0);
5852 	if (ret) {
5853 		bio_put(orig_bio);
5854 		return -EIO;
5855 	}
5856 
5857 	if (map_length >= orig_bio->bi_size) {
5858 		bio = orig_bio;
5859 		goto submit;
5860 	}
5861 
5862 	async_submit = 1;
5863 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5864 	if (!bio)
5865 		return -ENOMEM;
5866 	bio->bi_private = dip;
5867 	bio->bi_end_io = btrfs_end_dio_bio;
5868 	atomic_inc(&dip->pending_bios);
5869 
5870 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5871 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5872 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5873 				 bvec->bv_offset) < bvec->bv_len)) {
5874 			/*
5875 			 * inc the count before we submit the bio so
5876 			 * we know the end IO handler won't happen before
5877 			 * we inc the count. Otherwise, the dip might get freed
5878 			 * before we're done setting it up
5879 			 */
5880 			atomic_inc(&dip->pending_bios);
5881 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5882 						     file_offset, skip_sum,
5883 						     csums, async_submit);
5884 			if (ret) {
5885 				bio_put(bio);
5886 				atomic_dec(&dip->pending_bios);
5887 				goto out_err;
5888 			}
5889 
5890 			/* Write's use the ordered csums */
5891 			if (!write && !skip_sum)
5892 				csums = csums + nr_pages;
5893 			start_sector += submit_len >> 9;
5894 			file_offset += submit_len;
5895 
5896 			submit_len = 0;
5897 			nr_pages = 0;
5898 
5899 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5900 						  start_sector, GFP_NOFS);
5901 			if (!bio)
5902 				goto out_err;
5903 			bio->bi_private = dip;
5904 			bio->bi_end_io = btrfs_end_dio_bio;
5905 
5906 			map_length = orig_bio->bi_size;
5907 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5908 					      &map_length, NULL, 0);
5909 			if (ret) {
5910 				bio_put(bio);
5911 				goto out_err;
5912 			}
5913 		} else {
5914 			submit_len += bvec->bv_len;
5915 			nr_pages ++;
5916 			bvec++;
5917 		}
5918 	}
5919 
5920 submit:
5921 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5922 				     csums, async_submit);
5923 	if (!ret)
5924 		return 0;
5925 
5926 	bio_put(bio);
5927 out_err:
5928 	dip->errors = 1;
5929 	/*
5930 	 * before atomic variable goto zero, we must
5931 	 * make sure dip->errors is perceived to be set.
5932 	 */
5933 	smp_mb__before_atomic_dec();
5934 	if (atomic_dec_and_test(&dip->pending_bios))
5935 		bio_io_error(dip->orig_bio);
5936 
5937 	/* bio_end_io() will handle error, so we needn't return it */
5938 	return 0;
5939 }
5940 
5941 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5942 				loff_t file_offset)
5943 {
5944 	struct btrfs_root *root = BTRFS_I(inode)->root;
5945 	struct btrfs_dio_private *dip;
5946 	struct bio_vec *bvec = bio->bi_io_vec;
5947 	int skip_sum;
5948 	int write = rw & REQ_WRITE;
5949 	int ret = 0;
5950 
5951 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5952 
5953 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5954 	if (!dip) {
5955 		ret = -ENOMEM;
5956 		goto free_ordered;
5957 	}
5958 	dip->csums = NULL;
5959 
5960 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
5961 	if (!write && !skip_sum) {
5962 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5963 		if (!dip->csums) {
5964 			kfree(dip);
5965 			ret = -ENOMEM;
5966 			goto free_ordered;
5967 		}
5968 	}
5969 
5970 	dip->private = bio->bi_private;
5971 	dip->inode = inode;
5972 	dip->logical_offset = file_offset;
5973 
5974 	dip->bytes = 0;
5975 	do {
5976 		dip->bytes += bvec->bv_len;
5977 		bvec++;
5978 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5979 
5980 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5981 	bio->bi_private = dip;
5982 	dip->errors = 0;
5983 	dip->orig_bio = bio;
5984 	atomic_set(&dip->pending_bios, 0);
5985 
5986 	if (write)
5987 		bio->bi_end_io = btrfs_endio_direct_write;
5988 	else
5989 		bio->bi_end_io = btrfs_endio_direct_read;
5990 
5991 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5992 	if (!ret)
5993 		return;
5994 free_ordered:
5995 	/*
5996 	 * If this is a write, we need to clean up the reserved space and kill
5997 	 * the ordered extent.
5998 	 */
5999 	if (write) {
6000 		struct btrfs_ordered_extent *ordered;
6001 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6002 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6003 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6004 			btrfs_free_reserved_extent(root, ordered->start,
6005 						   ordered->disk_len);
6006 		btrfs_put_ordered_extent(ordered);
6007 		btrfs_put_ordered_extent(ordered);
6008 	}
6009 	bio_endio(bio, ret);
6010 }
6011 
6012 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6013 			const struct iovec *iov, loff_t offset,
6014 			unsigned long nr_segs)
6015 {
6016 	int seg;
6017 	int i;
6018 	size_t size;
6019 	unsigned long addr;
6020 	unsigned blocksize_mask = root->sectorsize - 1;
6021 	ssize_t retval = -EINVAL;
6022 	loff_t end = offset;
6023 
6024 	if (offset & blocksize_mask)
6025 		goto out;
6026 
6027 	/* Check the memory alignment.  Blocks cannot straddle pages */
6028 	for (seg = 0; seg < nr_segs; seg++) {
6029 		addr = (unsigned long)iov[seg].iov_base;
6030 		size = iov[seg].iov_len;
6031 		end += size;
6032 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6033 			goto out;
6034 
6035 		/* If this is a write we don't need to check anymore */
6036 		if (rw & WRITE)
6037 			continue;
6038 
6039 		/*
6040 		 * Check to make sure we don't have duplicate iov_base's in this
6041 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6042 		 * when reading back.
6043 		 */
6044 		for (i = seg + 1; i < nr_segs; i++) {
6045 			if (iov[seg].iov_base == iov[i].iov_base)
6046 				goto out;
6047 		}
6048 	}
6049 	retval = 0;
6050 out:
6051 	return retval;
6052 }
6053 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6054 			const struct iovec *iov, loff_t offset,
6055 			unsigned long nr_segs)
6056 {
6057 	struct file *file = iocb->ki_filp;
6058 	struct inode *inode = file->f_mapping->host;
6059 	struct btrfs_ordered_extent *ordered;
6060 	struct extent_state *cached_state = NULL;
6061 	u64 lockstart, lockend;
6062 	ssize_t ret;
6063 	int writing = rw & WRITE;
6064 	int write_bits = 0;
6065 	size_t count = iov_length(iov, nr_segs);
6066 
6067 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6068 			    offset, nr_segs)) {
6069 		return 0;
6070 	}
6071 
6072 	lockstart = offset;
6073 	lockend = offset + count - 1;
6074 
6075 	if (writing) {
6076 		ret = btrfs_delalloc_reserve_space(inode, count);
6077 		if (ret)
6078 			goto out;
6079 	}
6080 
6081 	while (1) {
6082 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6083 				 0, &cached_state, GFP_NOFS);
6084 		/*
6085 		 * We're concerned with the entire range that we're going to be
6086 		 * doing DIO to, so we need to make sure theres no ordered
6087 		 * extents in this range.
6088 		 */
6089 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6090 						     lockend - lockstart + 1);
6091 		if (!ordered)
6092 			break;
6093 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6094 				     &cached_state, GFP_NOFS);
6095 		btrfs_start_ordered_extent(inode, ordered, 1);
6096 		btrfs_put_ordered_extent(ordered);
6097 		cond_resched();
6098 	}
6099 
6100 	/*
6101 	 * we don't use btrfs_set_extent_delalloc because we don't want
6102 	 * the dirty or uptodate bits
6103 	 */
6104 	if (writing) {
6105 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6106 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6107 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6108 				     GFP_NOFS);
6109 		if (ret) {
6110 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6111 					 lockend, EXTENT_LOCKED | write_bits,
6112 					 1, 0, &cached_state, GFP_NOFS);
6113 			goto out;
6114 		}
6115 	}
6116 
6117 	free_extent_state(cached_state);
6118 	cached_state = NULL;
6119 
6120 	ret = __blockdev_direct_IO(rw, iocb, inode,
6121 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6122 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6123 		   btrfs_submit_direct, 0);
6124 
6125 	if (ret < 0 && ret != -EIOCBQUEUED) {
6126 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6127 			      offset + iov_length(iov, nr_segs) - 1,
6128 			      EXTENT_LOCKED | write_bits, 1, 0,
6129 			      &cached_state, GFP_NOFS);
6130 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6131 		/*
6132 		 * We're falling back to buffered, unlock the section we didn't
6133 		 * do IO on.
6134 		 */
6135 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6136 			      offset + iov_length(iov, nr_segs) - 1,
6137 			      EXTENT_LOCKED | write_bits, 1, 0,
6138 			      &cached_state, GFP_NOFS);
6139 	}
6140 out:
6141 	free_extent_state(cached_state);
6142 	return ret;
6143 }
6144 
6145 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6146 		__u64 start, __u64 len)
6147 {
6148 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6149 }
6150 
6151 int btrfs_readpage(struct file *file, struct page *page)
6152 {
6153 	struct extent_io_tree *tree;
6154 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6155 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6156 }
6157 
6158 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6159 {
6160 	struct extent_io_tree *tree;
6161 
6162 
6163 	if (current->flags & PF_MEMALLOC) {
6164 		redirty_page_for_writepage(wbc, page);
6165 		unlock_page(page);
6166 		return 0;
6167 	}
6168 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6169 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6170 }
6171 
6172 int btrfs_writepages(struct address_space *mapping,
6173 		     struct writeback_control *wbc)
6174 {
6175 	struct extent_io_tree *tree;
6176 
6177 	tree = &BTRFS_I(mapping->host)->io_tree;
6178 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6179 }
6180 
6181 static int
6182 btrfs_readpages(struct file *file, struct address_space *mapping,
6183 		struct list_head *pages, unsigned nr_pages)
6184 {
6185 	struct extent_io_tree *tree;
6186 	tree = &BTRFS_I(mapping->host)->io_tree;
6187 	return extent_readpages(tree, mapping, pages, nr_pages,
6188 				btrfs_get_extent);
6189 }
6190 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6191 {
6192 	struct extent_io_tree *tree;
6193 	struct extent_map_tree *map;
6194 	int ret;
6195 
6196 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6197 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6198 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6199 	if (ret == 1) {
6200 		ClearPagePrivate(page);
6201 		set_page_private(page, 0);
6202 		page_cache_release(page);
6203 	}
6204 	return ret;
6205 }
6206 
6207 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6208 {
6209 	if (PageWriteback(page) || PageDirty(page))
6210 		return 0;
6211 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6212 }
6213 
6214 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6215 {
6216 	struct extent_io_tree *tree;
6217 	struct btrfs_ordered_extent *ordered;
6218 	struct extent_state *cached_state = NULL;
6219 	u64 page_start = page_offset(page);
6220 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6221 
6222 
6223 	/*
6224 	 * we have the page locked, so new writeback can't start,
6225 	 * and the dirty bit won't be cleared while we are here.
6226 	 *
6227 	 * Wait for IO on this page so that we can safely clear
6228 	 * the PagePrivate2 bit and do ordered accounting
6229 	 */
6230 	wait_on_page_writeback(page);
6231 
6232 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6233 	if (offset) {
6234 		btrfs_releasepage(page, GFP_NOFS);
6235 		return;
6236 	}
6237 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6238 			 GFP_NOFS);
6239 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6240 					   page_offset(page));
6241 	if (ordered) {
6242 		/*
6243 		 * IO on this page will never be started, so we need
6244 		 * to account for any ordered extents now
6245 		 */
6246 		clear_extent_bit(tree, page_start, page_end,
6247 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6248 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6249 				 &cached_state, GFP_NOFS);
6250 		/*
6251 		 * whoever cleared the private bit is responsible
6252 		 * for the finish_ordered_io
6253 		 */
6254 		if (TestClearPagePrivate2(page)) {
6255 			btrfs_finish_ordered_io(page->mapping->host,
6256 						page_start, page_end);
6257 		}
6258 		btrfs_put_ordered_extent(ordered);
6259 		cached_state = NULL;
6260 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6261 				 GFP_NOFS);
6262 	}
6263 	clear_extent_bit(tree, page_start, page_end,
6264 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6265 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6266 	__btrfs_releasepage(page, GFP_NOFS);
6267 
6268 	ClearPageChecked(page);
6269 	if (PagePrivate(page)) {
6270 		ClearPagePrivate(page);
6271 		set_page_private(page, 0);
6272 		page_cache_release(page);
6273 	}
6274 }
6275 
6276 /*
6277  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6278  * called from a page fault handler when a page is first dirtied. Hence we must
6279  * be careful to check for EOF conditions here. We set the page up correctly
6280  * for a written page which means we get ENOSPC checking when writing into
6281  * holes and correct delalloc and unwritten extent mapping on filesystems that
6282  * support these features.
6283  *
6284  * We are not allowed to take the i_mutex here so we have to play games to
6285  * protect against truncate races as the page could now be beyond EOF.  Because
6286  * vmtruncate() writes the inode size before removing pages, once we have the
6287  * page lock we can determine safely if the page is beyond EOF. If it is not
6288  * beyond EOF, then the page is guaranteed safe against truncation until we
6289  * unlock the page.
6290  */
6291 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6292 {
6293 	struct page *page = vmf->page;
6294 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6295 	struct btrfs_root *root = BTRFS_I(inode)->root;
6296 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6297 	struct btrfs_ordered_extent *ordered;
6298 	struct extent_state *cached_state = NULL;
6299 	char *kaddr;
6300 	unsigned long zero_start;
6301 	loff_t size;
6302 	int ret;
6303 	u64 page_start;
6304 	u64 page_end;
6305 
6306 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6307 	if (ret) {
6308 		if (ret == -ENOMEM)
6309 			ret = VM_FAULT_OOM;
6310 		else /* -ENOSPC, -EIO, etc */
6311 			ret = VM_FAULT_SIGBUS;
6312 		goto out;
6313 	}
6314 
6315 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6316 again:
6317 	lock_page(page);
6318 	size = i_size_read(inode);
6319 	page_start = page_offset(page);
6320 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6321 
6322 	if ((page->mapping != inode->i_mapping) ||
6323 	    (page_start >= size)) {
6324 		/* page got truncated out from underneath us */
6325 		goto out_unlock;
6326 	}
6327 	wait_on_page_writeback(page);
6328 
6329 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6330 			 GFP_NOFS);
6331 	set_page_extent_mapped(page);
6332 
6333 	/*
6334 	 * we can't set the delalloc bits if there are pending ordered
6335 	 * extents.  Drop our locks and wait for them to finish
6336 	 */
6337 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6338 	if (ordered) {
6339 		unlock_extent_cached(io_tree, page_start, page_end,
6340 				     &cached_state, GFP_NOFS);
6341 		unlock_page(page);
6342 		btrfs_start_ordered_extent(inode, ordered, 1);
6343 		btrfs_put_ordered_extent(ordered);
6344 		goto again;
6345 	}
6346 
6347 	/*
6348 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6349 	 * if it was already dirty, so for space accounting reasons we need to
6350 	 * clear any delalloc bits for the range we are fixing to save.  There
6351 	 * is probably a better way to do this, but for now keep consistent with
6352 	 * prepare_pages in the normal write path.
6353 	 */
6354 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6355 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6356 			  0, 0, &cached_state, GFP_NOFS);
6357 
6358 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6359 					&cached_state);
6360 	if (ret) {
6361 		unlock_extent_cached(io_tree, page_start, page_end,
6362 				     &cached_state, GFP_NOFS);
6363 		ret = VM_FAULT_SIGBUS;
6364 		goto out_unlock;
6365 	}
6366 	ret = 0;
6367 
6368 	/* page is wholly or partially inside EOF */
6369 	if (page_start + PAGE_CACHE_SIZE > size)
6370 		zero_start = size & ~PAGE_CACHE_MASK;
6371 	else
6372 		zero_start = PAGE_CACHE_SIZE;
6373 
6374 	if (zero_start != PAGE_CACHE_SIZE) {
6375 		kaddr = kmap(page);
6376 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6377 		flush_dcache_page(page);
6378 		kunmap(page);
6379 	}
6380 	ClearPageChecked(page);
6381 	set_page_dirty(page);
6382 	SetPageUptodate(page);
6383 
6384 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6385 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6386 
6387 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6388 
6389 out_unlock:
6390 	if (!ret)
6391 		return VM_FAULT_LOCKED;
6392 	unlock_page(page);
6393 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6394 out:
6395 	return ret;
6396 }
6397 
6398 static int btrfs_truncate(struct inode *inode)
6399 {
6400 	struct btrfs_root *root = BTRFS_I(inode)->root;
6401 	struct btrfs_block_rsv *rsv;
6402 	int ret;
6403 	int err = 0;
6404 	struct btrfs_trans_handle *trans;
6405 	unsigned long nr;
6406 	u64 mask = root->sectorsize - 1;
6407 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6408 
6409 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6410 	if (ret)
6411 		return ret;
6412 
6413 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6414 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6415 
6416 	/*
6417 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6418 	 * 3 things going on here
6419 	 *
6420 	 * 1) We need to reserve space for our orphan item and the space to
6421 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6422 	 * orphan item because we didn't reserve space to remove it.
6423 	 *
6424 	 * 2) We need to reserve space to update our inode.
6425 	 *
6426 	 * 3) We need to have something to cache all the space that is going to
6427 	 * be free'd up by the truncate operation, but also have some slack
6428 	 * space reserved in case it uses space during the truncate (thank you
6429 	 * very much snapshotting).
6430 	 *
6431 	 * And we need these to all be seperate.  The fact is we can use alot of
6432 	 * space doing the truncate, and we have no earthly idea how much space
6433 	 * we will use, so we need the truncate reservation to be seperate so it
6434 	 * doesn't end up using space reserved for updating the inode or
6435 	 * removing the orphan item.  We also need to be able to stop the
6436 	 * transaction and start a new one, which means we need to be able to
6437 	 * update the inode several times, and we have no idea of knowing how
6438 	 * many times that will be, so we can't just reserve 1 item for the
6439 	 * entirety of the opration, so that has to be done seperately as well.
6440 	 * Then there is the orphan item, which does indeed need to be held on
6441 	 * to for the whole operation, and we need nobody to touch this reserved
6442 	 * space except the orphan code.
6443 	 *
6444 	 * So that leaves us with
6445 	 *
6446 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6447 	 * 2) rsv - for the truncate reservation, which we will steal from the
6448 	 * transaction reservation.
6449 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6450 	 * updating the inode.
6451 	 */
6452 	rsv = btrfs_alloc_block_rsv(root);
6453 	if (!rsv)
6454 		return -ENOMEM;
6455 	rsv->size = min_size;
6456 
6457 	/*
6458 	 * 1 for the truncate slack space
6459 	 * 1 for the orphan item we're going to add
6460 	 * 1 for the orphan item deletion
6461 	 * 1 for updating the inode.
6462 	 */
6463 	trans = btrfs_start_transaction(root, 4);
6464 	if (IS_ERR(trans)) {
6465 		err = PTR_ERR(trans);
6466 		goto out;
6467 	}
6468 
6469 	/* Migrate the slack space for the truncate to our reserve */
6470 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6471 				      min_size);
6472 	BUG_ON(ret);
6473 
6474 	ret = btrfs_orphan_add(trans, inode);
6475 	if (ret) {
6476 		btrfs_end_transaction(trans, root);
6477 		goto out;
6478 	}
6479 
6480 	/*
6481 	 * setattr is responsible for setting the ordered_data_close flag,
6482 	 * but that is only tested during the last file release.  That
6483 	 * could happen well after the next commit, leaving a great big
6484 	 * window where new writes may get lost if someone chooses to write
6485 	 * to this file after truncating to zero
6486 	 *
6487 	 * The inode doesn't have any dirty data here, and so if we commit
6488 	 * this is a noop.  If someone immediately starts writing to the inode
6489 	 * it is very likely we'll catch some of their writes in this
6490 	 * transaction, and the commit will find this file on the ordered
6491 	 * data list with good things to send down.
6492 	 *
6493 	 * This is a best effort solution, there is still a window where
6494 	 * using truncate to replace the contents of the file will
6495 	 * end up with a zero length file after a crash.
6496 	 */
6497 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6498 		btrfs_add_ordered_operation(trans, root, inode);
6499 
6500 	while (1) {
6501 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6502 		if (ret) {
6503 			/*
6504 			 * This can only happen with the original transaction we
6505 			 * started above, every other time we shouldn't have a
6506 			 * transaction started yet.
6507 			 */
6508 			if (ret == -EAGAIN)
6509 				goto end_trans;
6510 			err = ret;
6511 			break;
6512 		}
6513 
6514 		if (!trans) {
6515 			/* Just need the 1 for updating the inode */
6516 			trans = btrfs_start_transaction(root, 1);
6517 			if (IS_ERR(trans)) {
6518 				err = PTR_ERR(trans);
6519 				goto out;
6520 			}
6521 		}
6522 
6523 		trans->block_rsv = rsv;
6524 
6525 		ret = btrfs_truncate_inode_items(trans, root, inode,
6526 						 inode->i_size,
6527 						 BTRFS_EXTENT_DATA_KEY);
6528 		if (ret != -EAGAIN) {
6529 			err = ret;
6530 			break;
6531 		}
6532 
6533 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6534 		ret = btrfs_update_inode(trans, root, inode);
6535 		if (ret) {
6536 			err = ret;
6537 			break;
6538 		}
6539 end_trans:
6540 		nr = trans->blocks_used;
6541 		btrfs_end_transaction(trans, root);
6542 		trans = NULL;
6543 		btrfs_btree_balance_dirty(root, nr);
6544 	}
6545 
6546 	if (ret == 0 && inode->i_nlink > 0) {
6547 		trans->block_rsv = root->orphan_block_rsv;
6548 		ret = btrfs_orphan_del(trans, inode);
6549 		if (ret)
6550 			err = ret;
6551 	} else if (ret && inode->i_nlink > 0) {
6552 		/*
6553 		 * Failed to do the truncate, remove us from the in memory
6554 		 * orphan list.
6555 		 */
6556 		ret = btrfs_orphan_del(NULL, inode);
6557 	}
6558 
6559 	if (trans) {
6560 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6561 		ret = btrfs_update_inode(trans, root, inode);
6562 		if (ret && !err)
6563 			err = ret;
6564 
6565 		nr = trans->blocks_used;
6566 		ret = btrfs_end_transaction_throttle(trans, root);
6567 		btrfs_btree_balance_dirty(root, nr);
6568 	}
6569 
6570 out:
6571 	btrfs_free_block_rsv(root, rsv);
6572 
6573 	if (ret && !err)
6574 		err = ret;
6575 
6576 	return err;
6577 }
6578 
6579 /*
6580  * create a new subvolume directory/inode (helper for the ioctl).
6581  */
6582 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6583 			     struct btrfs_root *new_root, u64 new_dirid)
6584 {
6585 	struct inode *inode;
6586 	int err;
6587 	u64 index = 0;
6588 
6589 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6590 				new_dirid, S_IFDIR | 0700, &index);
6591 	if (IS_ERR(inode))
6592 		return PTR_ERR(inode);
6593 	inode->i_op = &btrfs_dir_inode_operations;
6594 	inode->i_fop = &btrfs_dir_file_operations;
6595 
6596 	set_nlink(inode, 1);
6597 	btrfs_i_size_write(inode, 0);
6598 
6599 	err = btrfs_update_inode(trans, new_root, inode);
6600 	BUG_ON(err);
6601 
6602 	iput(inode);
6603 	return 0;
6604 }
6605 
6606 struct inode *btrfs_alloc_inode(struct super_block *sb)
6607 {
6608 	struct btrfs_inode *ei;
6609 	struct inode *inode;
6610 
6611 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6612 	if (!ei)
6613 		return NULL;
6614 
6615 	ei->root = NULL;
6616 	ei->space_info = NULL;
6617 	ei->generation = 0;
6618 	ei->sequence = 0;
6619 	ei->last_trans = 0;
6620 	ei->last_sub_trans = 0;
6621 	ei->logged_trans = 0;
6622 	ei->delalloc_bytes = 0;
6623 	ei->disk_i_size = 0;
6624 	ei->flags = 0;
6625 	ei->csum_bytes = 0;
6626 	ei->index_cnt = (u64)-1;
6627 	ei->last_unlink_trans = 0;
6628 
6629 	spin_lock_init(&ei->lock);
6630 	ei->outstanding_extents = 0;
6631 	ei->reserved_extents = 0;
6632 
6633 	ei->ordered_data_close = 0;
6634 	ei->orphan_meta_reserved = 0;
6635 	ei->dummy_inode = 0;
6636 	ei->in_defrag = 0;
6637 	ei->delalloc_meta_reserved = 0;
6638 	ei->force_compress = BTRFS_COMPRESS_NONE;
6639 
6640 	ei->delayed_node = NULL;
6641 
6642 	inode = &ei->vfs_inode;
6643 	extent_map_tree_init(&ei->extent_tree);
6644 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6645 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6646 	mutex_init(&ei->log_mutex);
6647 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6648 	INIT_LIST_HEAD(&ei->i_orphan);
6649 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6650 	INIT_LIST_HEAD(&ei->ordered_operations);
6651 	RB_CLEAR_NODE(&ei->rb_node);
6652 
6653 	return inode;
6654 }
6655 
6656 static void btrfs_i_callback(struct rcu_head *head)
6657 {
6658 	struct inode *inode = container_of(head, struct inode, i_rcu);
6659 	INIT_LIST_HEAD(&inode->i_dentry);
6660 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6661 }
6662 
6663 void btrfs_destroy_inode(struct inode *inode)
6664 {
6665 	struct btrfs_ordered_extent *ordered;
6666 	struct btrfs_root *root = BTRFS_I(inode)->root;
6667 
6668 	WARN_ON(!list_empty(&inode->i_dentry));
6669 	WARN_ON(inode->i_data.nrpages);
6670 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6671 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6672 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6673 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6674 
6675 	/*
6676 	 * This can happen where we create an inode, but somebody else also
6677 	 * created the same inode and we need to destroy the one we already
6678 	 * created.
6679 	 */
6680 	if (!root)
6681 		goto free;
6682 
6683 	/*
6684 	 * Make sure we're properly removed from the ordered operation
6685 	 * lists.
6686 	 */
6687 	smp_mb();
6688 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6689 		spin_lock(&root->fs_info->ordered_extent_lock);
6690 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6691 		spin_unlock(&root->fs_info->ordered_extent_lock);
6692 	}
6693 
6694 	spin_lock(&root->orphan_lock);
6695 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6696 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6697 		       (unsigned long long)btrfs_ino(inode));
6698 		list_del_init(&BTRFS_I(inode)->i_orphan);
6699 	}
6700 	spin_unlock(&root->orphan_lock);
6701 
6702 	while (1) {
6703 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6704 		if (!ordered)
6705 			break;
6706 		else {
6707 			printk(KERN_ERR "btrfs found ordered "
6708 			       "extent %llu %llu on inode cleanup\n",
6709 			       (unsigned long long)ordered->file_offset,
6710 			       (unsigned long long)ordered->len);
6711 			btrfs_remove_ordered_extent(inode, ordered);
6712 			btrfs_put_ordered_extent(ordered);
6713 			btrfs_put_ordered_extent(ordered);
6714 		}
6715 	}
6716 	inode_tree_del(inode);
6717 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6718 free:
6719 	btrfs_remove_delayed_node(inode);
6720 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6721 }
6722 
6723 int btrfs_drop_inode(struct inode *inode)
6724 {
6725 	struct btrfs_root *root = BTRFS_I(inode)->root;
6726 
6727 	if (btrfs_root_refs(&root->root_item) == 0 &&
6728 	    !btrfs_is_free_space_inode(root, inode))
6729 		return 1;
6730 	else
6731 		return generic_drop_inode(inode);
6732 }
6733 
6734 static void init_once(void *foo)
6735 {
6736 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6737 
6738 	inode_init_once(&ei->vfs_inode);
6739 }
6740 
6741 void btrfs_destroy_cachep(void)
6742 {
6743 	if (btrfs_inode_cachep)
6744 		kmem_cache_destroy(btrfs_inode_cachep);
6745 	if (btrfs_trans_handle_cachep)
6746 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6747 	if (btrfs_transaction_cachep)
6748 		kmem_cache_destroy(btrfs_transaction_cachep);
6749 	if (btrfs_path_cachep)
6750 		kmem_cache_destroy(btrfs_path_cachep);
6751 	if (btrfs_free_space_cachep)
6752 		kmem_cache_destroy(btrfs_free_space_cachep);
6753 }
6754 
6755 int btrfs_init_cachep(void)
6756 {
6757 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6758 			sizeof(struct btrfs_inode), 0,
6759 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6760 	if (!btrfs_inode_cachep)
6761 		goto fail;
6762 
6763 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6764 			sizeof(struct btrfs_trans_handle), 0,
6765 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6766 	if (!btrfs_trans_handle_cachep)
6767 		goto fail;
6768 
6769 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6770 			sizeof(struct btrfs_transaction), 0,
6771 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6772 	if (!btrfs_transaction_cachep)
6773 		goto fail;
6774 
6775 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6776 			sizeof(struct btrfs_path), 0,
6777 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6778 	if (!btrfs_path_cachep)
6779 		goto fail;
6780 
6781 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6782 			sizeof(struct btrfs_free_space), 0,
6783 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6784 	if (!btrfs_free_space_cachep)
6785 		goto fail;
6786 
6787 	return 0;
6788 fail:
6789 	btrfs_destroy_cachep();
6790 	return -ENOMEM;
6791 }
6792 
6793 static int btrfs_getattr(struct vfsmount *mnt,
6794 			 struct dentry *dentry, struct kstat *stat)
6795 {
6796 	struct inode *inode = dentry->d_inode;
6797 	generic_fillattr(inode, stat);
6798 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6799 	stat->blksize = PAGE_CACHE_SIZE;
6800 	stat->blocks = (inode_get_bytes(inode) +
6801 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6802 	return 0;
6803 }
6804 
6805 /*
6806  * If a file is moved, it will inherit the cow and compression flags of the new
6807  * directory.
6808  */
6809 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6810 {
6811 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6812 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6813 
6814 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6815 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6816 	else
6817 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6818 
6819 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6820 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6821 	else
6822 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6823 }
6824 
6825 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6826 			   struct inode *new_dir, struct dentry *new_dentry)
6827 {
6828 	struct btrfs_trans_handle *trans;
6829 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6830 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6831 	struct inode *new_inode = new_dentry->d_inode;
6832 	struct inode *old_inode = old_dentry->d_inode;
6833 	struct timespec ctime = CURRENT_TIME;
6834 	u64 index = 0;
6835 	u64 root_objectid;
6836 	int ret;
6837 	u64 old_ino = btrfs_ino(old_inode);
6838 
6839 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6840 		return -EPERM;
6841 
6842 	/* we only allow rename subvolume link between subvolumes */
6843 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6844 		return -EXDEV;
6845 
6846 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6847 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6848 		return -ENOTEMPTY;
6849 
6850 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6851 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6852 		return -ENOTEMPTY;
6853 	/*
6854 	 * we're using rename to replace one file with another.
6855 	 * and the replacement file is large.  Start IO on it now so
6856 	 * we don't add too much work to the end of the transaction
6857 	 */
6858 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6859 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6860 		filemap_flush(old_inode->i_mapping);
6861 
6862 	/* close the racy window with snapshot create/destroy ioctl */
6863 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6864 		down_read(&root->fs_info->subvol_sem);
6865 	/*
6866 	 * We want to reserve the absolute worst case amount of items.  So if
6867 	 * both inodes are subvols and we need to unlink them then that would
6868 	 * require 4 item modifications, but if they are both normal inodes it
6869 	 * would require 5 item modifications, so we'll assume their normal
6870 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6871 	 * should cover the worst case number of items we'll modify.
6872 	 */
6873 	trans = btrfs_start_transaction(root, 20);
6874 	if (IS_ERR(trans)) {
6875                 ret = PTR_ERR(trans);
6876                 goto out_notrans;
6877         }
6878 
6879 	if (dest != root)
6880 		btrfs_record_root_in_trans(trans, dest);
6881 
6882 	ret = btrfs_set_inode_index(new_dir, &index);
6883 	if (ret)
6884 		goto out_fail;
6885 
6886 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6887 		/* force full log commit if subvolume involved. */
6888 		root->fs_info->last_trans_log_full_commit = trans->transid;
6889 	} else {
6890 		ret = btrfs_insert_inode_ref(trans, dest,
6891 					     new_dentry->d_name.name,
6892 					     new_dentry->d_name.len,
6893 					     old_ino,
6894 					     btrfs_ino(new_dir), index);
6895 		if (ret)
6896 			goto out_fail;
6897 		/*
6898 		 * this is an ugly little race, but the rename is required
6899 		 * to make sure that if we crash, the inode is either at the
6900 		 * old name or the new one.  pinning the log transaction lets
6901 		 * us make sure we don't allow a log commit to come in after
6902 		 * we unlink the name but before we add the new name back in.
6903 		 */
6904 		btrfs_pin_log_trans(root);
6905 	}
6906 	/*
6907 	 * make sure the inode gets flushed if it is replacing
6908 	 * something.
6909 	 */
6910 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
6911 		btrfs_add_ordered_operation(trans, root, old_inode);
6912 
6913 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6914 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6915 	old_inode->i_ctime = ctime;
6916 
6917 	if (old_dentry->d_parent != new_dentry->d_parent)
6918 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6919 
6920 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6921 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6922 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6923 					old_dentry->d_name.name,
6924 					old_dentry->d_name.len);
6925 	} else {
6926 		ret = __btrfs_unlink_inode(trans, root, old_dir,
6927 					old_dentry->d_inode,
6928 					old_dentry->d_name.name,
6929 					old_dentry->d_name.len);
6930 		if (!ret)
6931 			ret = btrfs_update_inode(trans, root, old_inode);
6932 	}
6933 	BUG_ON(ret);
6934 
6935 	if (new_inode) {
6936 		new_inode->i_ctime = CURRENT_TIME;
6937 		if (unlikely(btrfs_ino(new_inode) ==
6938 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6939 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6940 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6941 						root_objectid,
6942 						new_dentry->d_name.name,
6943 						new_dentry->d_name.len);
6944 			BUG_ON(new_inode->i_nlink == 0);
6945 		} else {
6946 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6947 						 new_dentry->d_inode,
6948 						 new_dentry->d_name.name,
6949 						 new_dentry->d_name.len);
6950 		}
6951 		BUG_ON(ret);
6952 		if (new_inode->i_nlink == 0) {
6953 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6954 			BUG_ON(ret);
6955 		}
6956 	}
6957 
6958 	fixup_inode_flags(new_dir, old_inode);
6959 
6960 	ret = btrfs_add_link(trans, new_dir, old_inode,
6961 			     new_dentry->d_name.name,
6962 			     new_dentry->d_name.len, 0, index);
6963 	BUG_ON(ret);
6964 
6965 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6966 		struct dentry *parent = new_dentry->d_parent;
6967 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6968 		btrfs_end_log_trans(root);
6969 	}
6970 out_fail:
6971 	btrfs_end_transaction_throttle(trans, root);
6972 out_notrans:
6973 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6974 		up_read(&root->fs_info->subvol_sem);
6975 
6976 	return ret;
6977 }
6978 
6979 /*
6980  * some fairly slow code that needs optimization. This walks the list
6981  * of all the inodes with pending delalloc and forces them to disk.
6982  */
6983 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6984 {
6985 	struct list_head *head = &root->fs_info->delalloc_inodes;
6986 	struct btrfs_inode *binode;
6987 	struct inode *inode;
6988 
6989 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6990 		return -EROFS;
6991 
6992 	spin_lock(&root->fs_info->delalloc_lock);
6993 	while (!list_empty(head)) {
6994 		binode = list_entry(head->next, struct btrfs_inode,
6995 				    delalloc_inodes);
6996 		inode = igrab(&binode->vfs_inode);
6997 		if (!inode)
6998 			list_del_init(&binode->delalloc_inodes);
6999 		spin_unlock(&root->fs_info->delalloc_lock);
7000 		if (inode) {
7001 			filemap_flush(inode->i_mapping);
7002 			if (delay_iput)
7003 				btrfs_add_delayed_iput(inode);
7004 			else
7005 				iput(inode);
7006 		}
7007 		cond_resched();
7008 		spin_lock(&root->fs_info->delalloc_lock);
7009 	}
7010 	spin_unlock(&root->fs_info->delalloc_lock);
7011 
7012 	/* the filemap_flush will queue IO into the worker threads, but
7013 	 * we have to make sure the IO is actually started and that
7014 	 * ordered extents get created before we return
7015 	 */
7016 	atomic_inc(&root->fs_info->async_submit_draining);
7017 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7018 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7019 		wait_event(root->fs_info->async_submit_wait,
7020 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7021 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7022 	}
7023 	atomic_dec(&root->fs_info->async_submit_draining);
7024 	return 0;
7025 }
7026 
7027 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7028 			 const char *symname)
7029 {
7030 	struct btrfs_trans_handle *trans;
7031 	struct btrfs_root *root = BTRFS_I(dir)->root;
7032 	struct btrfs_path *path;
7033 	struct btrfs_key key;
7034 	struct inode *inode = NULL;
7035 	int err;
7036 	int drop_inode = 0;
7037 	u64 objectid;
7038 	u64 index = 0 ;
7039 	int name_len;
7040 	int datasize;
7041 	unsigned long ptr;
7042 	struct btrfs_file_extent_item *ei;
7043 	struct extent_buffer *leaf;
7044 	unsigned long nr = 0;
7045 
7046 	name_len = strlen(symname) + 1;
7047 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7048 		return -ENAMETOOLONG;
7049 
7050 	/*
7051 	 * 2 items for inode item and ref
7052 	 * 2 items for dir items
7053 	 * 1 item for xattr if selinux is on
7054 	 */
7055 	trans = btrfs_start_transaction(root, 5);
7056 	if (IS_ERR(trans))
7057 		return PTR_ERR(trans);
7058 
7059 	err = btrfs_find_free_ino(root, &objectid);
7060 	if (err)
7061 		goto out_unlock;
7062 
7063 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7064 				dentry->d_name.len, btrfs_ino(dir), objectid,
7065 				S_IFLNK|S_IRWXUGO, &index);
7066 	if (IS_ERR(inode)) {
7067 		err = PTR_ERR(inode);
7068 		goto out_unlock;
7069 	}
7070 
7071 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7072 	if (err) {
7073 		drop_inode = 1;
7074 		goto out_unlock;
7075 	}
7076 
7077 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7078 	if (err)
7079 		drop_inode = 1;
7080 	else {
7081 		inode->i_mapping->a_ops = &btrfs_aops;
7082 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7083 		inode->i_fop = &btrfs_file_operations;
7084 		inode->i_op = &btrfs_file_inode_operations;
7085 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7086 	}
7087 	if (drop_inode)
7088 		goto out_unlock;
7089 
7090 	path = btrfs_alloc_path();
7091 	if (!path) {
7092 		err = -ENOMEM;
7093 		drop_inode = 1;
7094 		goto out_unlock;
7095 	}
7096 	key.objectid = btrfs_ino(inode);
7097 	key.offset = 0;
7098 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7099 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7100 	err = btrfs_insert_empty_item(trans, root, path, &key,
7101 				      datasize);
7102 	if (err) {
7103 		drop_inode = 1;
7104 		btrfs_free_path(path);
7105 		goto out_unlock;
7106 	}
7107 	leaf = path->nodes[0];
7108 	ei = btrfs_item_ptr(leaf, path->slots[0],
7109 			    struct btrfs_file_extent_item);
7110 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7111 	btrfs_set_file_extent_type(leaf, ei,
7112 				   BTRFS_FILE_EXTENT_INLINE);
7113 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7114 	btrfs_set_file_extent_compression(leaf, ei, 0);
7115 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7116 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7117 
7118 	ptr = btrfs_file_extent_inline_start(ei);
7119 	write_extent_buffer(leaf, symname, ptr, name_len);
7120 	btrfs_mark_buffer_dirty(leaf);
7121 	btrfs_free_path(path);
7122 
7123 	inode->i_op = &btrfs_symlink_inode_operations;
7124 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7125 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7126 	inode_set_bytes(inode, name_len);
7127 	btrfs_i_size_write(inode, name_len - 1);
7128 	err = btrfs_update_inode(trans, root, inode);
7129 	if (err)
7130 		drop_inode = 1;
7131 
7132 out_unlock:
7133 	nr = trans->blocks_used;
7134 	btrfs_end_transaction_throttle(trans, root);
7135 	if (drop_inode) {
7136 		inode_dec_link_count(inode);
7137 		iput(inode);
7138 	}
7139 	btrfs_btree_balance_dirty(root, nr);
7140 	return err;
7141 }
7142 
7143 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7144 				       u64 start, u64 num_bytes, u64 min_size,
7145 				       loff_t actual_len, u64 *alloc_hint,
7146 				       struct btrfs_trans_handle *trans)
7147 {
7148 	struct btrfs_root *root = BTRFS_I(inode)->root;
7149 	struct btrfs_key ins;
7150 	u64 cur_offset = start;
7151 	u64 i_size;
7152 	int ret = 0;
7153 	bool own_trans = true;
7154 
7155 	if (trans)
7156 		own_trans = false;
7157 	while (num_bytes > 0) {
7158 		if (own_trans) {
7159 			trans = btrfs_start_transaction(root, 3);
7160 			if (IS_ERR(trans)) {
7161 				ret = PTR_ERR(trans);
7162 				break;
7163 			}
7164 		}
7165 
7166 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7167 					   0, *alloc_hint, (u64)-1, &ins, 1);
7168 		if (ret) {
7169 			if (own_trans)
7170 				btrfs_end_transaction(trans, root);
7171 			break;
7172 		}
7173 
7174 		ret = insert_reserved_file_extent(trans, inode,
7175 						  cur_offset, ins.objectid,
7176 						  ins.offset, ins.offset,
7177 						  ins.offset, 0, 0, 0,
7178 						  BTRFS_FILE_EXTENT_PREALLOC);
7179 		BUG_ON(ret);
7180 		btrfs_drop_extent_cache(inode, cur_offset,
7181 					cur_offset + ins.offset -1, 0);
7182 
7183 		num_bytes -= ins.offset;
7184 		cur_offset += ins.offset;
7185 		*alloc_hint = ins.objectid + ins.offset;
7186 
7187 		inode->i_ctime = CURRENT_TIME;
7188 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7189 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7190 		    (actual_len > inode->i_size) &&
7191 		    (cur_offset > inode->i_size)) {
7192 			if (cur_offset > actual_len)
7193 				i_size = actual_len;
7194 			else
7195 				i_size = cur_offset;
7196 			i_size_write(inode, i_size);
7197 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7198 		}
7199 
7200 		ret = btrfs_update_inode(trans, root, inode);
7201 		BUG_ON(ret);
7202 
7203 		if (own_trans)
7204 			btrfs_end_transaction(trans, root);
7205 	}
7206 	return ret;
7207 }
7208 
7209 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7210 			      u64 start, u64 num_bytes, u64 min_size,
7211 			      loff_t actual_len, u64 *alloc_hint)
7212 {
7213 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7214 					   min_size, actual_len, alloc_hint,
7215 					   NULL);
7216 }
7217 
7218 int btrfs_prealloc_file_range_trans(struct inode *inode,
7219 				    struct btrfs_trans_handle *trans, int mode,
7220 				    u64 start, u64 num_bytes, u64 min_size,
7221 				    loff_t actual_len, u64 *alloc_hint)
7222 {
7223 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7224 					   min_size, actual_len, alloc_hint, trans);
7225 }
7226 
7227 static int btrfs_set_page_dirty(struct page *page)
7228 {
7229 	return __set_page_dirty_nobuffers(page);
7230 }
7231 
7232 static int btrfs_permission(struct inode *inode, int mask)
7233 {
7234 	struct btrfs_root *root = BTRFS_I(inode)->root;
7235 	umode_t mode = inode->i_mode;
7236 
7237 	if (mask & MAY_WRITE &&
7238 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7239 		if (btrfs_root_readonly(root))
7240 			return -EROFS;
7241 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7242 			return -EACCES;
7243 	}
7244 	return generic_permission(inode, mask);
7245 }
7246 
7247 static const struct inode_operations btrfs_dir_inode_operations = {
7248 	.getattr	= btrfs_getattr,
7249 	.lookup		= btrfs_lookup,
7250 	.create		= btrfs_create,
7251 	.unlink		= btrfs_unlink,
7252 	.link		= btrfs_link,
7253 	.mkdir		= btrfs_mkdir,
7254 	.rmdir		= btrfs_rmdir,
7255 	.rename		= btrfs_rename,
7256 	.symlink	= btrfs_symlink,
7257 	.setattr	= btrfs_setattr,
7258 	.mknod		= btrfs_mknod,
7259 	.setxattr	= btrfs_setxattr,
7260 	.getxattr	= btrfs_getxattr,
7261 	.listxattr	= btrfs_listxattr,
7262 	.removexattr	= btrfs_removexattr,
7263 	.permission	= btrfs_permission,
7264 	.get_acl	= btrfs_get_acl,
7265 };
7266 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7267 	.lookup		= btrfs_lookup,
7268 	.permission	= btrfs_permission,
7269 	.get_acl	= btrfs_get_acl,
7270 };
7271 
7272 static const struct file_operations btrfs_dir_file_operations = {
7273 	.llseek		= generic_file_llseek,
7274 	.read		= generic_read_dir,
7275 	.readdir	= btrfs_real_readdir,
7276 	.unlocked_ioctl	= btrfs_ioctl,
7277 #ifdef CONFIG_COMPAT
7278 	.compat_ioctl	= btrfs_ioctl,
7279 #endif
7280 	.release        = btrfs_release_file,
7281 	.fsync		= btrfs_sync_file,
7282 };
7283 
7284 static struct extent_io_ops btrfs_extent_io_ops = {
7285 	.fill_delalloc = run_delalloc_range,
7286 	.submit_bio_hook = btrfs_submit_bio_hook,
7287 	.merge_bio_hook = btrfs_merge_bio_hook,
7288 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7289 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7290 	.writepage_start_hook = btrfs_writepage_start_hook,
7291 	.set_bit_hook = btrfs_set_bit_hook,
7292 	.clear_bit_hook = btrfs_clear_bit_hook,
7293 	.merge_extent_hook = btrfs_merge_extent_hook,
7294 	.split_extent_hook = btrfs_split_extent_hook,
7295 };
7296 
7297 /*
7298  * btrfs doesn't support the bmap operation because swapfiles
7299  * use bmap to make a mapping of extents in the file.  They assume
7300  * these extents won't change over the life of the file and they
7301  * use the bmap result to do IO directly to the drive.
7302  *
7303  * the btrfs bmap call would return logical addresses that aren't
7304  * suitable for IO and they also will change frequently as COW
7305  * operations happen.  So, swapfile + btrfs == corruption.
7306  *
7307  * For now we're avoiding this by dropping bmap.
7308  */
7309 static const struct address_space_operations btrfs_aops = {
7310 	.readpage	= btrfs_readpage,
7311 	.writepage	= btrfs_writepage,
7312 	.writepages	= btrfs_writepages,
7313 	.readpages	= btrfs_readpages,
7314 	.direct_IO	= btrfs_direct_IO,
7315 	.invalidatepage = btrfs_invalidatepage,
7316 	.releasepage	= btrfs_releasepage,
7317 	.set_page_dirty	= btrfs_set_page_dirty,
7318 	.error_remove_page = generic_error_remove_page,
7319 };
7320 
7321 static const struct address_space_operations btrfs_symlink_aops = {
7322 	.readpage	= btrfs_readpage,
7323 	.writepage	= btrfs_writepage,
7324 	.invalidatepage = btrfs_invalidatepage,
7325 	.releasepage	= btrfs_releasepage,
7326 };
7327 
7328 static const struct inode_operations btrfs_file_inode_operations = {
7329 	.getattr	= btrfs_getattr,
7330 	.setattr	= btrfs_setattr,
7331 	.setxattr	= btrfs_setxattr,
7332 	.getxattr	= btrfs_getxattr,
7333 	.listxattr      = btrfs_listxattr,
7334 	.removexattr	= btrfs_removexattr,
7335 	.permission	= btrfs_permission,
7336 	.fiemap		= btrfs_fiemap,
7337 	.get_acl	= btrfs_get_acl,
7338 };
7339 static const struct inode_operations btrfs_special_inode_operations = {
7340 	.getattr	= btrfs_getattr,
7341 	.setattr	= btrfs_setattr,
7342 	.permission	= btrfs_permission,
7343 	.setxattr	= btrfs_setxattr,
7344 	.getxattr	= btrfs_getxattr,
7345 	.listxattr	= btrfs_listxattr,
7346 	.removexattr	= btrfs_removexattr,
7347 	.get_acl	= btrfs_get_acl,
7348 };
7349 static const struct inode_operations btrfs_symlink_inode_operations = {
7350 	.readlink	= generic_readlink,
7351 	.follow_link	= page_follow_link_light,
7352 	.put_link	= page_put_link,
7353 	.getattr	= btrfs_getattr,
7354 	.permission	= btrfs_permission,
7355 	.setxattr	= btrfs_setxattr,
7356 	.getxattr	= btrfs_getxattr,
7357 	.listxattr	= btrfs_listxattr,
7358 	.removexattr	= btrfs_removexattr,
7359 	.get_acl	= btrfs_get_acl,
7360 };
7361 
7362 const struct dentry_operations btrfs_dentry_operations = {
7363 	.d_delete	= btrfs_dentry_delete,
7364 	.d_release	= btrfs_dentry_release,
7365 };
7366