xref: /linux/fs/btrfs/inode.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52 
53 struct btrfs_iget_args {
54 	u64 ino;
55 	struct btrfs_root *root;
56 };
57 
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67 
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93 	int err;
94 
95 	err = btrfs_init_acl(inode, dir);
96 	if (!err)
97 		err = btrfs_xattr_security_init(inode, dir);
98 	return err;
99 }
100 
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 				struct btrfs_root *root, struct inode *inode,
108 				u64 start, size_t size, size_t compressed_size,
109 				struct page **compressed_pages)
110 {
111 	struct btrfs_key key;
112 	struct btrfs_path *path;
113 	struct extent_buffer *leaf;
114 	struct page *page = NULL;
115 	char *kaddr;
116 	unsigned long ptr;
117 	struct btrfs_file_extent_item *ei;
118 	int err = 0;
119 	int ret;
120 	size_t cur_size = size;
121 	size_t datasize;
122 	unsigned long offset;
123 	int use_compress = 0;
124 
125 	if (compressed_size && compressed_pages) {
126 		use_compress = 1;
127 		cur_size = compressed_size;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	path->leave_spinning = 1;
135 	btrfs_set_trans_block_group(trans, inode);
136 
137 	key.objectid = inode->i_ino;
138 	key.offset = start;
139 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
141 
142 	inode_add_bytes(inode, size);
143 	ret = btrfs_insert_empty_item(trans, root, path, &key,
144 				      datasize);
145 	BUG_ON(ret);
146 	if (ret) {
147 		err = ret;
148 		goto fail;
149 	}
150 	leaf = path->nodes[0];
151 	ei = btrfs_item_ptr(leaf, path->slots[0],
152 			    struct btrfs_file_extent_item);
153 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 	btrfs_set_file_extent_encryption(leaf, ei, 0);
156 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 	ptr = btrfs_file_extent_inline_start(ei);
159 
160 	if (use_compress) {
161 		struct page *cpage;
162 		int i = 0;
163 		while (compressed_size > 0) {
164 			cpage = compressed_pages[i];
165 			cur_size = min_t(unsigned long, compressed_size,
166 				       PAGE_CACHE_SIZE);
167 
168 			kaddr = kmap_atomic(cpage, KM_USER0);
169 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 			kunmap_atomic(kaddr, KM_USER0);
171 
172 			i++;
173 			ptr += cur_size;
174 			compressed_size -= cur_size;
175 		}
176 		btrfs_set_file_extent_compression(leaf, ei,
177 						  BTRFS_COMPRESS_ZLIB);
178 	} else {
179 		page = find_get_page(inode->i_mapping,
180 				     start >> PAGE_CACHE_SHIFT);
181 		btrfs_set_file_extent_compression(leaf, ei, 0);
182 		kaddr = kmap_atomic(page, KM_USER0);
183 		offset = start & (PAGE_CACHE_SIZE - 1);
184 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 		kunmap_atomic(kaddr, KM_USER0);
186 		page_cache_release(page);
187 	}
188 	btrfs_mark_buffer_dirty(leaf);
189 	btrfs_free_path(path);
190 
191 	BTRFS_I(inode)->disk_i_size = inode->i_size;
192 	btrfs_update_inode(trans, root, inode);
193 	return 0;
194 fail:
195 	btrfs_free_path(path);
196 	return err;
197 }
198 
199 
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 				 struct btrfs_root *root,
207 				 struct inode *inode, u64 start, u64 end,
208 				 size_t compressed_size,
209 				 struct page **compressed_pages)
210 {
211 	u64 isize = i_size_read(inode);
212 	u64 actual_end = min(end + 1, isize);
213 	u64 inline_len = actual_end - start;
214 	u64 aligned_end = (end + root->sectorsize - 1) &
215 			~((u64)root->sectorsize - 1);
216 	u64 hint_byte;
217 	u64 data_len = inline_len;
218 	int ret;
219 
220 	if (compressed_size)
221 		data_len = compressed_size;
222 
223 	if (start > 0 ||
224 	    actual_end >= PAGE_CACHE_SIZE ||
225 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 	    (!compressed_size &&
227 	    (actual_end & (root->sectorsize - 1)) == 0) ||
228 	    end + 1 < isize ||
229 	    data_len > root->fs_info->max_inline) {
230 		return 1;
231 	}
232 
233 	ret = btrfs_drop_extents(trans, root, inode, start,
234 				 aligned_end, aligned_end, start, &hint_byte);
235 	BUG_ON(ret);
236 
237 	if (isize > actual_end)
238 		inline_len = min_t(u64, isize, actual_end);
239 	ret = insert_inline_extent(trans, root, inode, start,
240 				   inline_len, compressed_size,
241 				   compressed_pages);
242 	BUG_ON(ret);
243 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
244 	return 0;
245 }
246 
247 struct async_extent {
248 	u64 start;
249 	u64 ram_size;
250 	u64 compressed_size;
251 	struct page **pages;
252 	unsigned long nr_pages;
253 	struct list_head list;
254 };
255 
256 struct async_cow {
257 	struct inode *inode;
258 	struct btrfs_root *root;
259 	struct page *locked_page;
260 	u64 start;
261 	u64 end;
262 	struct list_head extents;
263 	struct btrfs_work work;
264 };
265 
266 static noinline int add_async_extent(struct async_cow *cow,
267 				     u64 start, u64 ram_size,
268 				     u64 compressed_size,
269 				     struct page **pages,
270 				     unsigned long nr_pages)
271 {
272 	struct async_extent *async_extent;
273 
274 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
275 	async_extent->start = start;
276 	async_extent->ram_size = ram_size;
277 	async_extent->compressed_size = compressed_size;
278 	async_extent->pages = pages;
279 	async_extent->nr_pages = nr_pages;
280 	list_add_tail(&async_extent->list, &cow->extents);
281 	return 0;
282 }
283 
284 /*
285  * we create compressed extents in two phases.  The first
286  * phase compresses a range of pages that have already been
287  * locked (both pages and state bits are locked).
288  *
289  * This is done inside an ordered work queue, and the compression
290  * is spread across many cpus.  The actual IO submission is step
291  * two, and the ordered work queue takes care of making sure that
292  * happens in the same order things were put onto the queue by
293  * writepages and friends.
294  *
295  * If this code finds it can't get good compression, it puts an
296  * entry onto the work queue to write the uncompressed bytes.  This
297  * makes sure that both compressed inodes and uncompressed inodes
298  * are written in the same order that pdflush sent them down.
299  */
300 static noinline int compress_file_range(struct inode *inode,
301 					struct page *locked_page,
302 					u64 start, u64 end,
303 					struct async_cow *async_cow,
304 					int *num_added)
305 {
306 	struct btrfs_root *root = BTRFS_I(inode)->root;
307 	struct btrfs_trans_handle *trans;
308 	u64 num_bytes;
309 	u64 orig_start;
310 	u64 disk_num_bytes;
311 	u64 blocksize = root->sectorsize;
312 	u64 actual_end;
313 	u64 isize = i_size_read(inode);
314 	int ret = 0;
315 	struct page **pages = NULL;
316 	unsigned long nr_pages;
317 	unsigned long nr_pages_ret = 0;
318 	unsigned long total_compressed = 0;
319 	unsigned long total_in = 0;
320 	unsigned long max_compressed = 128 * 1024;
321 	unsigned long max_uncompressed = 128 * 1024;
322 	int i;
323 	int will_compress;
324 
325 	orig_start = start;
326 
327 	actual_end = min_t(u64, isize, end + 1);
328 again:
329 	will_compress = 0;
330 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
331 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
332 
333 	/*
334 	 * we don't want to send crud past the end of i_size through
335 	 * compression, that's just a waste of CPU time.  So, if the
336 	 * end of the file is before the start of our current
337 	 * requested range of bytes, we bail out to the uncompressed
338 	 * cleanup code that can deal with all of this.
339 	 *
340 	 * It isn't really the fastest way to fix things, but this is a
341 	 * very uncommon corner.
342 	 */
343 	if (actual_end <= start)
344 		goto cleanup_and_bail_uncompressed;
345 
346 	total_compressed = actual_end - start;
347 
348 	/* we want to make sure that amount of ram required to uncompress
349 	 * an extent is reasonable, so we limit the total size in ram
350 	 * of a compressed extent to 128k.  This is a crucial number
351 	 * because it also controls how easily we can spread reads across
352 	 * cpus for decompression.
353 	 *
354 	 * We also want to make sure the amount of IO required to do
355 	 * a random read is reasonably small, so we limit the size of
356 	 * a compressed extent to 128k.
357 	 */
358 	total_compressed = min(total_compressed, max_uncompressed);
359 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
360 	num_bytes = max(blocksize,  num_bytes);
361 	disk_num_bytes = num_bytes;
362 	total_in = 0;
363 	ret = 0;
364 
365 	/*
366 	 * we do compression for mount -o compress and when the
367 	 * inode has not been flagged as nocompress.  This flag can
368 	 * change at any time if we discover bad compression ratios.
369 	 */
370 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
371 	    btrfs_test_opt(root, COMPRESS)) {
372 		WARN_ON(pages);
373 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
374 
375 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
376 						total_compressed, pages,
377 						nr_pages, &nr_pages_ret,
378 						&total_in,
379 						&total_compressed,
380 						max_compressed);
381 
382 		if (!ret) {
383 			unsigned long offset = total_compressed &
384 				(PAGE_CACHE_SIZE - 1);
385 			struct page *page = pages[nr_pages_ret - 1];
386 			char *kaddr;
387 
388 			/* zero the tail end of the last page, we might be
389 			 * sending it down to disk
390 			 */
391 			if (offset) {
392 				kaddr = kmap_atomic(page, KM_USER0);
393 				memset(kaddr + offset, 0,
394 				       PAGE_CACHE_SIZE - offset);
395 				kunmap_atomic(kaddr, KM_USER0);
396 			}
397 			will_compress = 1;
398 		}
399 	}
400 	if (start == 0) {
401 		trans = btrfs_join_transaction(root, 1);
402 		BUG_ON(!trans);
403 		btrfs_set_trans_block_group(trans, inode);
404 
405 		/* lets try to make an inline extent */
406 		if (ret || total_in < (actual_end - start)) {
407 			/* we didn't compress the entire range, try
408 			 * to make an uncompressed inline extent.
409 			 */
410 			ret = cow_file_range_inline(trans, root, inode,
411 						    start, end, 0, NULL);
412 		} else {
413 			/* try making a compressed inline extent */
414 			ret = cow_file_range_inline(trans, root, inode,
415 						    start, end,
416 						    total_compressed, pages);
417 		}
418 		btrfs_end_transaction(trans, root);
419 		if (ret == 0) {
420 			/*
421 			 * inline extent creation worked, we don't need
422 			 * to create any more async work items.  Unlock
423 			 * and free up our temp pages.
424 			 */
425 			extent_clear_unlock_delalloc(inode,
426 						     &BTRFS_I(inode)->io_tree,
427 						     start, end, NULL, 1, 0,
428 						     0, 1, 1, 1);
429 			ret = 0;
430 			goto free_pages_out;
431 		}
432 	}
433 
434 	if (will_compress) {
435 		/*
436 		 * we aren't doing an inline extent round the compressed size
437 		 * up to a block size boundary so the allocator does sane
438 		 * things
439 		 */
440 		total_compressed = (total_compressed + blocksize - 1) &
441 			~(blocksize - 1);
442 
443 		/*
444 		 * one last check to make sure the compression is really a
445 		 * win, compare the page count read with the blocks on disk
446 		 */
447 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
448 			~(PAGE_CACHE_SIZE - 1);
449 		if (total_compressed >= total_in) {
450 			will_compress = 0;
451 		} else {
452 			disk_num_bytes = total_compressed;
453 			num_bytes = total_in;
454 		}
455 	}
456 	if (!will_compress && pages) {
457 		/*
458 		 * the compression code ran but failed to make things smaller,
459 		 * free any pages it allocated and our page pointer array
460 		 */
461 		for (i = 0; i < nr_pages_ret; i++) {
462 			WARN_ON(pages[i]->mapping);
463 			page_cache_release(pages[i]);
464 		}
465 		kfree(pages);
466 		pages = NULL;
467 		total_compressed = 0;
468 		nr_pages_ret = 0;
469 
470 		/* flag the file so we don't compress in the future */
471 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
472 	}
473 	if (will_compress) {
474 		*num_added += 1;
475 
476 		/* the async work queues will take care of doing actual
477 		 * allocation on disk for these compressed pages,
478 		 * and will submit them to the elevator.
479 		 */
480 		add_async_extent(async_cow, start, num_bytes,
481 				 total_compressed, pages, nr_pages_ret);
482 
483 		if (start + num_bytes < end && start + num_bytes < actual_end) {
484 			start += num_bytes;
485 			pages = NULL;
486 			cond_resched();
487 			goto again;
488 		}
489 	} else {
490 cleanup_and_bail_uncompressed:
491 		/*
492 		 * No compression, but we still need to write the pages in
493 		 * the file we've been given so far.  redirty the locked
494 		 * page if it corresponds to our extent and set things up
495 		 * for the async work queue to run cow_file_range to do
496 		 * the normal delalloc dance
497 		 */
498 		if (page_offset(locked_page) >= start &&
499 		    page_offset(locked_page) <= end) {
500 			__set_page_dirty_nobuffers(locked_page);
501 			/* unlocked later on in the async handlers */
502 		}
503 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
504 		*num_added += 1;
505 	}
506 
507 out:
508 	return 0;
509 
510 free_pages_out:
511 	for (i = 0; i < nr_pages_ret; i++) {
512 		WARN_ON(pages[i]->mapping);
513 		page_cache_release(pages[i]);
514 	}
515 	kfree(pages);
516 
517 	goto out;
518 }
519 
520 /*
521  * phase two of compressed writeback.  This is the ordered portion
522  * of the code, which only gets called in the order the work was
523  * queued.  We walk all the async extents created by compress_file_range
524  * and send them down to the disk.
525  */
526 static noinline int submit_compressed_extents(struct inode *inode,
527 					      struct async_cow *async_cow)
528 {
529 	struct async_extent *async_extent;
530 	u64 alloc_hint = 0;
531 	struct btrfs_trans_handle *trans;
532 	struct btrfs_key ins;
533 	struct extent_map *em;
534 	struct btrfs_root *root = BTRFS_I(inode)->root;
535 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
536 	struct extent_io_tree *io_tree;
537 	int ret;
538 
539 	if (list_empty(&async_cow->extents))
540 		return 0;
541 
542 	trans = btrfs_join_transaction(root, 1);
543 
544 	while (!list_empty(&async_cow->extents)) {
545 		async_extent = list_entry(async_cow->extents.next,
546 					  struct async_extent, list);
547 		list_del(&async_extent->list);
548 
549 		io_tree = &BTRFS_I(inode)->io_tree;
550 
551 		/* did the compression code fall back to uncompressed IO? */
552 		if (!async_extent->pages) {
553 			int page_started = 0;
554 			unsigned long nr_written = 0;
555 
556 			lock_extent(io_tree, async_extent->start,
557 				    async_extent->start +
558 				    async_extent->ram_size - 1, GFP_NOFS);
559 
560 			/* allocate blocks */
561 			cow_file_range(inode, async_cow->locked_page,
562 				       async_extent->start,
563 				       async_extent->start +
564 				       async_extent->ram_size - 1,
565 				       &page_started, &nr_written, 0);
566 
567 			/*
568 			 * if page_started, cow_file_range inserted an
569 			 * inline extent and took care of all the unlocking
570 			 * and IO for us.  Otherwise, we need to submit
571 			 * all those pages down to the drive.
572 			 */
573 			if (!page_started)
574 				extent_write_locked_range(io_tree,
575 						  inode, async_extent->start,
576 						  async_extent->start +
577 						  async_extent->ram_size - 1,
578 						  btrfs_get_extent,
579 						  WB_SYNC_ALL);
580 			kfree(async_extent);
581 			cond_resched();
582 			continue;
583 		}
584 
585 		lock_extent(io_tree, async_extent->start,
586 			    async_extent->start + async_extent->ram_size - 1,
587 			    GFP_NOFS);
588 		/*
589 		 * here we're doing allocation and writeback of the
590 		 * compressed pages
591 		 */
592 		btrfs_drop_extent_cache(inode, async_extent->start,
593 					async_extent->start +
594 					async_extent->ram_size - 1, 0);
595 
596 		ret = btrfs_reserve_extent(trans, root,
597 					   async_extent->compressed_size,
598 					   async_extent->compressed_size,
599 					   0, alloc_hint,
600 					   (u64)-1, &ins, 1);
601 		BUG_ON(ret);
602 		em = alloc_extent_map(GFP_NOFS);
603 		em->start = async_extent->start;
604 		em->len = async_extent->ram_size;
605 		em->orig_start = em->start;
606 
607 		em->block_start = ins.objectid;
608 		em->block_len = ins.offset;
609 		em->bdev = root->fs_info->fs_devices->latest_bdev;
610 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
611 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
612 
613 		while (1) {
614 			spin_lock(&em_tree->lock);
615 			ret = add_extent_mapping(em_tree, em);
616 			spin_unlock(&em_tree->lock);
617 			if (ret != -EEXIST) {
618 				free_extent_map(em);
619 				break;
620 			}
621 			btrfs_drop_extent_cache(inode, async_extent->start,
622 						async_extent->start +
623 						async_extent->ram_size - 1, 0);
624 		}
625 
626 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
627 					       ins.objectid,
628 					       async_extent->ram_size,
629 					       ins.offset,
630 					       BTRFS_ORDERED_COMPRESSED);
631 		BUG_ON(ret);
632 
633 		btrfs_end_transaction(trans, root);
634 
635 		/*
636 		 * clear dirty, set writeback and unlock the pages.
637 		 */
638 		extent_clear_unlock_delalloc(inode,
639 					     &BTRFS_I(inode)->io_tree,
640 					     async_extent->start,
641 					     async_extent->start +
642 					     async_extent->ram_size - 1,
643 					     NULL, 1, 1, 0, 1, 1, 0);
644 
645 		ret = btrfs_submit_compressed_write(inode,
646 				    async_extent->start,
647 				    async_extent->ram_size,
648 				    ins.objectid,
649 				    ins.offset, async_extent->pages,
650 				    async_extent->nr_pages);
651 
652 		BUG_ON(ret);
653 		trans = btrfs_join_transaction(root, 1);
654 		alloc_hint = ins.objectid + ins.offset;
655 		kfree(async_extent);
656 		cond_resched();
657 	}
658 
659 	btrfs_end_transaction(trans, root);
660 	return 0;
661 }
662 
663 /*
664  * when extent_io.c finds a delayed allocation range in the file,
665  * the call backs end up in this code.  The basic idea is to
666  * allocate extents on disk for the range, and create ordered data structs
667  * in ram to track those extents.
668  *
669  * locked_page is the page that writepage had locked already.  We use
670  * it to make sure we don't do extra locks or unlocks.
671  *
672  * *page_started is set to one if we unlock locked_page and do everything
673  * required to start IO on it.  It may be clean and already done with
674  * IO when we return.
675  */
676 static noinline int cow_file_range(struct inode *inode,
677 				   struct page *locked_page,
678 				   u64 start, u64 end, int *page_started,
679 				   unsigned long *nr_written,
680 				   int unlock)
681 {
682 	struct btrfs_root *root = BTRFS_I(inode)->root;
683 	struct btrfs_trans_handle *trans;
684 	u64 alloc_hint = 0;
685 	u64 num_bytes;
686 	unsigned long ram_size;
687 	u64 disk_num_bytes;
688 	u64 cur_alloc_size;
689 	u64 blocksize = root->sectorsize;
690 	u64 actual_end;
691 	u64 isize = i_size_read(inode);
692 	struct btrfs_key ins;
693 	struct extent_map *em;
694 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
695 	int ret = 0;
696 
697 	trans = btrfs_join_transaction(root, 1);
698 	BUG_ON(!trans);
699 	btrfs_set_trans_block_group(trans, inode);
700 
701 	actual_end = min_t(u64, isize, end + 1);
702 
703 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
704 	num_bytes = max(blocksize,  num_bytes);
705 	disk_num_bytes = num_bytes;
706 	ret = 0;
707 
708 	if (start == 0) {
709 		/* lets try to make an inline extent */
710 		ret = cow_file_range_inline(trans, root, inode,
711 					    start, end, 0, NULL);
712 		if (ret == 0) {
713 			extent_clear_unlock_delalloc(inode,
714 						     &BTRFS_I(inode)->io_tree,
715 						     start, end, NULL, 1, 1,
716 						     1, 1, 1, 1);
717 			*nr_written = *nr_written +
718 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
719 			*page_started = 1;
720 			ret = 0;
721 			goto out;
722 		}
723 	}
724 
725 	BUG_ON(disk_num_bytes >
726 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
727 
728 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
729 
730 	while (disk_num_bytes > 0) {
731 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
732 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
733 					   root->sectorsize, 0, alloc_hint,
734 					   (u64)-1, &ins, 1);
735 		BUG_ON(ret);
736 
737 		em = alloc_extent_map(GFP_NOFS);
738 		em->start = start;
739 		em->orig_start = em->start;
740 
741 		ram_size = ins.offset;
742 		em->len = ins.offset;
743 
744 		em->block_start = ins.objectid;
745 		em->block_len = ins.offset;
746 		em->bdev = root->fs_info->fs_devices->latest_bdev;
747 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
748 
749 		while (1) {
750 			spin_lock(&em_tree->lock);
751 			ret = add_extent_mapping(em_tree, em);
752 			spin_unlock(&em_tree->lock);
753 			if (ret != -EEXIST) {
754 				free_extent_map(em);
755 				break;
756 			}
757 			btrfs_drop_extent_cache(inode, start,
758 						start + ram_size - 1, 0);
759 		}
760 
761 		cur_alloc_size = ins.offset;
762 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
763 					       ram_size, cur_alloc_size, 0);
764 		BUG_ON(ret);
765 
766 		if (root->root_key.objectid ==
767 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
768 			ret = btrfs_reloc_clone_csums(inode, start,
769 						      cur_alloc_size);
770 			BUG_ON(ret);
771 		}
772 
773 		if (disk_num_bytes < cur_alloc_size)
774 			break;
775 
776 		/* we're not doing compressed IO, don't unlock the first
777 		 * page (which the caller expects to stay locked), don't
778 		 * clear any dirty bits and don't set any writeback bits
779 		 */
780 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
781 					     start, start + ram_size - 1,
782 					     locked_page, unlock, 1,
783 					     1, 0, 0, 0);
784 		disk_num_bytes -= cur_alloc_size;
785 		num_bytes -= cur_alloc_size;
786 		alloc_hint = ins.objectid + ins.offset;
787 		start += cur_alloc_size;
788 	}
789 out:
790 	ret = 0;
791 	btrfs_end_transaction(trans, root);
792 
793 	return ret;
794 }
795 
796 /*
797  * work queue call back to started compression on a file and pages
798  */
799 static noinline void async_cow_start(struct btrfs_work *work)
800 {
801 	struct async_cow *async_cow;
802 	int num_added = 0;
803 	async_cow = container_of(work, struct async_cow, work);
804 
805 	compress_file_range(async_cow->inode, async_cow->locked_page,
806 			    async_cow->start, async_cow->end, async_cow,
807 			    &num_added);
808 	if (num_added == 0)
809 		async_cow->inode = NULL;
810 }
811 
812 /*
813  * work queue call back to submit previously compressed pages
814  */
815 static noinline void async_cow_submit(struct btrfs_work *work)
816 {
817 	struct async_cow *async_cow;
818 	struct btrfs_root *root;
819 	unsigned long nr_pages;
820 
821 	async_cow = container_of(work, struct async_cow, work);
822 
823 	root = async_cow->root;
824 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
825 		PAGE_CACHE_SHIFT;
826 
827 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
828 
829 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
830 	    5 * 1042 * 1024 &&
831 	    waitqueue_active(&root->fs_info->async_submit_wait))
832 		wake_up(&root->fs_info->async_submit_wait);
833 
834 	if (async_cow->inode)
835 		submit_compressed_extents(async_cow->inode, async_cow);
836 }
837 
838 static noinline void async_cow_free(struct btrfs_work *work)
839 {
840 	struct async_cow *async_cow;
841 	async_cow = container_of(work, struct async_cow, work);
842 	kfree(async_cow);
843 }
844 
845 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
846 				u64 start, u64 end, int *page_started,
847 				unsigned long *nr_written)
848 {
849 	struct async_cow *async_cow;
850 	struct btrfs_root *root = BTRFS_I(inode)->root;
851 	unsigned long nr_pages;
852 	u64 cur_end;
853 	int limit = 10 * 1024 * 1042;
854 
855 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
856 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
857 	while (start < end) {
858 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
859 		async_cow->inode = inode;
860 		async_cow->root = root;
861 		async_cow->locked_page = locked_page;
862 		async_cow->start = start;
863 
864 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
865 			cur_end = end;
866 		else
867 			cur_end = min(end, start + 512 * 1024 - 1);
868 
869 		async_cow->end = cur_end;
870 		INIT_LIST_HEAD(&async_cow->extents);
871 
872 		async_cow->work.func = async_cow_start;
873 		async_cow->work.ordered_func = async_cow_submit;
874 		async_cow->work.ordered_free = async_cow_free;
875 		async_cow->work.flags = 0;
876 
877 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
878 			PAGE_CACHE_SHIFT;
879 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
880 
881 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
882 				   &async_cow->work);
883 
884 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
885 			wait_event(root->fs_info->async_submit_wait,
886 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
887 			    limit));
888 		}
889 
890 		while (atomic_read(&root->fs_info->async_submit_draining) &&
891 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
892 			wait_event(root->fs_info->async_submit_wait,
893 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
894 			   0));
895 		}
896 
897 		*nr_written += nr_pages;
898 		start = cur_end + 1;
899 	}
900 	*page_started = 1;
901 	return 0;
902 }
903 
904 static noinline int csum_exist_in_range(struct btrfs_root *root,
905 					u64 bytenr, u64 num_bytes)
906 {
907 	int ret;
908 	struct btrfs_ordered_sum *sums;
909 	LIST_HEAD(list);
910 
911 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
912 				       bytenr + num_bytes - 1, &list);
913 	if (ret == 0 && list_empty(&list))
914 		return 0;
915 
916 	while (!list_empty(&list)) {
917 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
918 		list_del(&sums->list);
919 		kfree(sums);
920 	}
921 	return 1;
922 }
923 
924 /*
925  * when nowcow writeback call back.  This checks for snapshots or COW copies
926  * of the extents that exist in the file, and COWs the file as required.
927  *
928  * If no cow copies or snapshots exist, we write directly to the existing
929  * blocks on disk
930  */
931 static noinline int run_delalloc_nocow(struct inode *inode,
932 				       struct page *locked_page,
933 			      u64 start, u64 end, int *page_started, int force,
934 			      unsigned long *nr_written)
935 {
936 	struct btrfs_root *root = BTRFS_I(inode)->root;
937 	struct btrfs_trans_handle *trans;
938 	struct extent_buffer *leaf;
939 	struct btrfs_path *path;
940 	struct btrfs_file_extent_item *fi;
941 	struct btrfs_key found_key;
942 	u64 cow_start;
943 	u64 cur_offset;
944 	u64 extent_end;
945 	u64 extent_offset;
946 	u64 disk_bytenr;
947 	u64 num_bytes;
948 	int extent_type;
949 	int ret;
950 	int type;
951 	int nocow;
952 	int check_prev = 1;
953 
954 	path = btrfs_alloc_path();
955 	BUG_ON(!path);
956 	trans = btrfs_join_transaction(root, 1);
957 	BUG_ON(!trans);
958 
959 	cow_start = (u64)-1;
960 	cur_offset = start;
961 	while (1) {
962 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
963 					       cur_offset, 0);
964 		BUG_ON(ret < 0);
965 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
966 			leaf = path->nodes[0];
967 			btrfs_item_key_to_cpu(leaf, &found_key,
968 					      path->slots[0] - 1);
969 			if (found_key.objectid == inode->i_ino &&
970 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
971 				path->slots[0]--;
972 		}
973 		check_prev = 0;
974 next_slot:
975 		leaf = path->nodes[0];
976 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
977 			ret = btrfs_next_leaf(root, path);
978 			if (ret < 0)
979 				BUG_ON(1);
980 			if (ret > 0)
981 				break;
982 			leaf = path->nodes[0];
983 		}
984 
985 		nocow = 0;
986 		disk_bytenr = 0;
987 		num_bytes = 0;
988 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
989 
990 		if (found_key.objectid > inode->i_ino ||
991 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
992 		    found_key.offset > end)
993 			break;
994 
995 		if (found_key.offset > cur_offset) {
996 			extent_end = found_key.offset;
997 			goto out_check;
998 		}
999 
1000 		fi = btrfs_item_ptr(leaf, path->slots[0],
1001 				    struct btrfs_file_extent_item);
1002 		extent_type = btrfs_file_extent_type(leaf, fi);
1003 
1004 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1005 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1006 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1007 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1008 			extent_end = found_key.offset +
1009 				btrfs_file_extent_num_bytes(leaf, fi);
1010 			if (extent_end <= start) {
1011 				path->slots[0]++;
1012 				goto next_slot;
1013 			}
1014 			if (disk_bytenr == 0)
1015 				goto out_check;
1016 			if (btrfs_file_extent_compression(leaf, fi) ||
1017 			    btrfs_file_extent_encryption(leaf, fi) ||
1018 			    btrfs_file_extent_other_encoding(leaf, fi))
1019 				goto out_check;
1020 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1021 				goto out_check;
1022 			if (btrfs_extent_readonly(root, disk_bytenr))
1023 				goto out_check;
1024 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1025 						  found_key.offset -
1026 						  extent_offset, disk_bytenr))
1027 				goto out_check;
1028 			disk_bytenr += extent_offset;
1029 			disk_bytenr += cur_offset - found_key.offset;
1030 			num_bytes = min(end + 1, extent_end) - cur_offset;
1031 			/*
1032 			 * force cow if csum exists in the range.
1033 			 * this ensure that csum for a given extent are
1034 			 * either valid or do not exist.
1035 			 */
1036 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037 				goto out_check;
1038 			nocow = 1;
1039 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040 			extent_end = found_key.offset +
1041 				btrfs_file_extent_inline_len(leaf, fi);
1042 			extent_end = ALIGN(extent_end, root->sectorsize);
1043 		} else {
1044 			BUG_ON(1);
1045 		}
1046 out_check:
1047 		if (extent_end <= start) {
1048 			path->slots[0]++;
1049 			goto next_slot;
1050 		}
1051 		if (!nocow) {
1052 			if (cow_start == (u64)-1)
1053 				cow_start = cur_offset;
1054 			cur_offset = extent_end;
1055 			if (cur_offset > end)
1056 				break;
1057 			path->slots[0]++;
1058 			goto next_slot;
1059 		}
1060 
1061 		btrfs_release_path(root, path);
1062 		if (cow_start != (u64)-1) {
1063 			ret = cow_file_range(inode, locked_page, cow_start,
1064 					found_key.offset - 1, page_started,
1065 					nr_written, 1);
1066 			BUG_ON(ret);
1067 			cow_start = (u64)-1;
1068 		}
1069 
1070 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071 			struct extent_map *em;
1072 			struct extent_map_tree *em_tree;
1073 			em_tree = &BTRFS_I(inode)->extent_tree;
1074 			em = alloc_extent_map(GFP_NOFS);
1075 			em->start = cur_offset;
1076 			em->orig_start = em->start;
1077 			em->len = num_bytes;
1078 			em->block_len = num_bytes;
1079 			em->block_start = disk_bytenr;
1080 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1081 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082 			while (1) {
1083 				spin_lock(&em_tree->lock);
1084 				ret = add_extent_mapping(em_tree, em);
1085 				spin_unlock(&em_tree->lock);
1086 				if (ret != -EEXIST) {
1087 					free_extent_map(em);
1088 					break;
1089 				}
1090 				btrfs_drop_extent_cache(inode, em->start,
1091 						em->start + em->len - 1, 0);
1092 			}
1093 			type = BTRFS_ORDERED_PREALLOC;
1094 		} else {
1095 			type = BTRFS_ORDERED_NOCOW;
1096 		}
1097 
1098 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099 					       num_bytes, num_bytes, type);
1100 		BUG_ON(ret);
1101 
1102 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103 					cur_offset, cur_offset + num_bytes - 1,
1104 					locked_page, 1, 1, 1, 0, 0, 0);
1105 		cur_offset = extent_end;
1106 		if (cur_offset > end)
1107 			break;
1108 	}
1109 	btrfs_release_path(root, path);
1110 
1111 	if (cur_offset <= end && cow_start == (u64)-1)
1112 		cow_start = cur_offset;
1113 	if (cow_start != (u64)-1) {
1114 		ret = cow_file_range(inode, locked_page, cow_start, end,
1115 				     page_started, nr_written, 1);
1116 		BUG_ON(ret);
1117 	}
1118 
1119 	ret = btrfs_end_transaction(trans, root);
1120 	BUG_ON(ret);
1121 	btrfs_free_path(path);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * extent_io.c call back to do delayed allocation processing
1127  */
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129 			      u64 start, u64 end, int *page_started,
1130 			      unsigned long *nr_written)
1131 {
1132 	int ret;
1133 	struct btrfs_root *root = BTRFS_I(inode)->root;
1134 
1135 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1136 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1137 					 page_started, 1, nr_written);
1138 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1139 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1140 					 page_started, 0, nr_written);
1141 	else if (!btrfs_test_opt(root, COMPRESS))
1142 		ret = cow_file_range(inode, locked_page, start, end,
1143 				      page_started, nr_written, 1);
1144 	else
1145 		ret = cow_file_range_async(inode, locked_page, start, end,
1146 					   page_started, nr_written);
1147 	return ret;
1148 }
1149 
1150 /*
1151  * extent_io.c set_bit_hook, used to track delayed allocation
1152  * bytes in this file, and to maintain the list of inodes that
1153  * have pending delalloc work to be done.
1154  */
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 		       unsigned long old, unsigned long bits)
1157 {
1158 	/*
1159 	 * set_bit and clear bit hooks normally require _irqsave/restore
1160 	 * but in this case, we are only testeing for the DELALLOC
1161 	 * bit, which is only set or cleared with irqs on
1162 	 */
1163 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 		struct btrfs_root *root = BTRFS_I(inode)->root;
1165 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 		spin_lock(&root->fs_info->delalloc_lock);
1167 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 		root->fs_info->delalloc_bytes += end - start + 1;
1169 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 				      &root->fs_info->delalloc_inodes);
1172 		}
1173 		spin_unlock(&root->fs_info->delalloc_lock);
1174 	}
1175 	return 0;
1176 }
1177 
1178 /*
1179  * extent_io.c clear_bit_hook, see set_bit_hook for why
1180  */
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 			 unsigned long old, unsigned long bits)
1183 {
1184 	/*
1185 	 * set_bit and clear bit hooks normally require _irqsave/restore
1186 	 * but in this case, we are only testeing for the DELALLOC
1187 	 * bit, which is only set or cleared with irqs on
1188 	 */
1189 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 		struct btrfs_root *root = BTRFS_I(inode)->root;
1191 
1192 		spin_lock(&root->fs_info->delalloc_lock);
1193 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 			printk(KERN_INFO "btrfs warning: delalloc account "
1195 			       "%llu %llu\n",
1196 			       (unsigned long long)end - start + 1,
1197 			       (unsigned long long)
1198 			       root->fs_info->delalloc_bytes);
1199 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 			root->fs_info->delalloc_bytes = 0;
1201 			BTRFS_I(inode)->delalloc_bytes = 0;
1202 		} else {
1203 			btrfs_delalloc_free_space(root, inode,
1204 						  end - start + 1);
1205 			root->fs_info->delalloc_bytes -= end - start + 1;
1206 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 		}
1208 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 		}
1212 		spin_unlock(&root->fs_info->delalloc_lock);
1213 	}
1214 	return 0;
1215 }
1216 
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 			 size_t size, struct bio *bio,
1223 			 unsigned long bio_flags)
1224 {
1225 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 	struct btrfs_mapping_tree *map_tree;
1227 	u64 logical = (u64)bio->bi_sector << 9;
1228 	u64 length = 0;
1229 	u64 map_length;
1230 	int ret;
1231 
1232 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 		return 0;
1234 
1235 	length = bio->bi_size;
1236 	map_tree = &root->fs_info->mapping_tree;
1237 	map_length = length;
1238 	ret = btrfs_map_block(map_tree, READ, logical,
1239 			      &map_length, NULL, 0);
1240 
1241 	if (map_length < length + size)
1242 		return 1;
1243 	return 0;
1244 }
1245 
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 				    struct bio *bio, int mirror_num,
1256 				    unsigned long bio_flags)
1257 {
1258 	struct btrfs_root *root = BTRFS_I(inode)->root;
1259 	int ret = 0;
1260 
1261 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 	BUG_ON(ret);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 			  int mirror_num, unsigned long bio_flags)
1276 {
1277 	struct btrfs_root *root = BTRFS_I(inode)->root;
1278 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280 
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 			  int mirror_num, unsigned long bio_flags)
1287 {
1288 	struct btrfs_root *root = BTRFS_I(inode)->root;
1289 	int ret = 0;
1290 	int skip_sum;
1291 
1292 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1293 
1294 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 	BUG_ON(ret);
1296 
1297 	if (!(rw & (1 << BIO_RW))) {
1298 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 			return btrfs_submit_compressed_read(inode, bio,
1300 						    mirror_num, bio_flags);
1301 		} else if (!skip_sum)
1302 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 		goto mapit;
1304 	} else if (!skip_sum) {
1305 		/* csum items have already been cloned */
1306 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 			goto mapit;
1308 		/* we're doing a write, do the async checksumming */
1309 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 				   inode, rw, bio, mirror_num,
1311 				   bio_flags, __btrfs_submit_bio_start,
1312 				   __btrfs_submit_bio_done);
1313 	}
1314 
1315 mapit:
1316 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318 
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 			     struct inode *inode, u64 file_offset,
1325 			     struct list_head *list)
1326 {
1327 	struct btrfs_ordered_sum *sum;
1328 
1329 	btrfs_set_trans_block_group(trans, inode);
1330 
1331 	list_for_each_entry(sum, list, list) {
1332 		btrfs_csum_file_blocks(trans,
1333 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334 	}
1335 	return 0;
1336 }
1337 
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 		WARN_ON(1);
1342 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 				   GFP_NOFS);
1344 }
1345 
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 	struct page *page;
1349 	struct btrfs_work work;
1350 };
1351 
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354 	struct btrfs_writepage_fixup *fixup;
1355 	struct btrfs_ordered_extent *ordered;
1356 	struct page *page;
1357 	struct inode *inode;
1358 	u64 page_start;
1359 	u64 page_end;
1360 
1361 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 	page = fixup->page;
1363 again:
1364 	lock_page(page);
1365 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 		ClearPageChecked(page);
1367 		goto out_page;
1368 	}
1369 
1370 	inode = page->mapping->host;
1371 	page_start = page_offset(page);
1372 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373 
1374 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375 
1376 	/* already ordered? We're done */
1377 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 			     EXTENT_ORDERED, 0)) {
1379 		goto out;
1380 	}
1381 
1382 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 	if (ordered) {
1384 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 			      page_end, GFP_NOFS);
1386 		unlock_page(page);
1387 		btrfs_start_ordered_extent(inode, ordered, 1);
1388 		goto again;
1389 	}
1390 
1391 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 	ClearPageChecked(page);
1393 out:
1394 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 	unlock_page(page);
1397 	page_cache_release(page);
1398 }
1399 
1400 /*
1401  * There are a few paths in the higher layers of the kernel that directly
1402  * set the page dirty bit without asking the filesystem if it is a
1403  * good idea.  This causes problems because we want to make sure COW
1404  * properly happens and the data=ordered rules are followed.
1405  *
1406  * In our case any range that doesn't have the ORDERED bit set
1407  * hasn't been properly setup for IO.  We kick off an async process
1408  * to fix it up.  The async helper will wait for ordered extents, set
1409  * the delalloc bit and make it safe to write the page.
1410  */
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413 	struct inode *inode = page->mapping->host;
1414 	struct btrfs_writepage_fixup *fixup;
1415 	struct btrfs_root *root = BTRFS_I(inode)->root;
1416 	int ret;
1417 
1418 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 			     EXTENT_ORDERED, 0);
1420 	if (ret)
1421 		return 0;
1422 
1423 	if (PageChecked(page))
1424 		return -EAGAIN;
1425 
1426 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 	if (!fixup)
1428 		return -EAGAIN;
1429 
1430 	SetPageChecked(page);
1431 	page_cache_get(page);
1432 	fixup->work.func = btrfs_writepage_fixup_worker;
1433 	fixup->page = page;
1434 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 	return -EAGAIN;
1436 }
1437 
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 				       struct inode *inode, u64 file_pos,
1440 				       u64 disk_bytenr, u64 disk_num_bytes,
1441 				       u64 num_bytes, u64 ram_bytes,
1442 				       u64 locked_end,
1443 				       u8 compression, u8 encryption,
1444 				       u16 other_encoding, int extent_type)
1445 {
1446 	struct btrfs_root *root = BTRFS_I(inode)->root;
1447 	struct btrfs_file_extent_item *fi;
1448 	struct btrfs_path *path;
1449 	struct extent_buffer *leaf;
1450 	struct btrfs_key ins;
1451 	u64 hint;
1452 	int ret;
1453 
1454 	path = btrfs_alloc_path();
1455 	BUG_ON(!path);
1456 
1457 	path->leave_spinning = 1;
1458 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459 				 file_pos + num_bytes, locked_end,
1460 				 file_pos, &hint);
1461 	BUG_ON(ret);
1462 
1463 	ins.objectid = inode->i_ino;
1464 	ins.offset = file_pos;
1465 	ins.type = BTRFS_EXTENT_DATA_KEY;
1466 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467 	BUG_ON(ret);
1468 	leaf = path->nodes[0];
1469 	fi = btrfs_item_ptr(leaf, path->slots[0],
1470 			    struct btrfs_file_extent_item);
1471 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1473 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475 	btrfs_set_file_extent_offset(leaf, fi, 0);
1476 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478 	btrfs_set_file_extent_compression(leaf, fi, compression);
1479 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1481 
1482 	btrfs_unlock_up_safe(path, 1);
1483 	btrfs_set_lock_blocking(leaf);
1484 
1485 	btrfs_mark_buffer_dirty(leaf);
1486 
1487 	inode_add_bytes(inode, num_bytes);
1488 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1489 
1490 	ins.objectid = disk_bytenr;
1491 	ins.offset = disk_num_bytes;
1492 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1493 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1494 					root->root_key.objectid,
1495 					inode->i_ino, file_pos, &ins);
1496 	BUG_ON(ret);
1497 	btrfs_free_path(path);
1498 
1499 	return 0;
1500 }
1501 
1502 /*
1503  * helper function for btrfs_finish_ordered_io, this
1504  * just reads in some of the csum leaves to prime them into ram
1505  * before we start the transaction.  It limits the amount of btree
1506  * reads required while inside the transaction.
1507  */
1508 static noinline void reada_csum(struct btrfs_root *root,
1509 				struct btrfs_path *path,
1510 				struct btrfs_ordered_extent *ordered_extent)
1511 {
1512 	struct btrfs_ordered_sum *sum;
1513 	u64 bytenr;
1514 
1515 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516 			 list);
1517 	bytenr = sum->sums[0].bytenr;
1518 
1519 	/*
1520 	 * we don't care about the results, the point of this search is
1521 	 * just to get the btree leaves into ram
1522 	 */
1523 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1524 }
1525 
1526 /* as ordered data IO finishes, this gets called so we can finish
1527  * an ordered extent if the range of bytes in the file it covers are
1528  * fully written.
1529  */
1530 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1531 {
1532 	struct btrfs_root *root = BTRFS_I(inode)->root;
1533 	struct btrfs_trans_handle *trans;
1534 	struct btrfs_ordered_extent *ordered_extent = NULL;
1535 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1536 	struct btrfs_path *path;
1537 	int compressed = 0;
1538 	int ret;
1539 
1540 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1541 	if (!ret)
1542 		return 0;
1543 
1544 	/*
1545 	 * before we join the transaction, try to do some of our IO.
1546 	 * This will limit the amount of IO that we have to do with
1547 	 * the transaction running.  We're unlikely to need to do any
1548 	 * IO if the file extents are new, the disk_i_size checks
1549 	 * covers the most common case.
1550 	 */
1551 	if (start < BTRFS_I(inode)->disk_i_size) {
1552 		path = btrfs_alloc_path();
1553 		if (path) {
1554 			ret = btrfs_lookup_file_extent(NULL, root, path,
1555 						       inode->i_ino,
1556 						       start, 0);
1557 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1558 								     start);
1559 			if (!list_empty(&ordered_extent->list)) {
1560 				btrfs_release_path(root, path);
1561 				reada_csum(root, path, ordered_extent);
1562 			}
1563 			btrfs_free_path(path);
1564 		}
1565 	}
1566 
1567 	trans = btrfs_join_transaction(root, 1);
1568 
1569 	if (!ordered_extent)
1570 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1571 	BUG_ON(!ordered_extent);
1572 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1573 		goto nocow;
1574 
1575 	lock_extent(io_tree, ordered_extent->file_offset,
1576 		    ordered_extent->file_offset + ordered_extent->len - 1,
1577 		    GFP_NOFS);
1578 
1579 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1580 		compressed = 1;
1581 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582 		BUG_ON(compressed);
1583 		ret = btrfs_mark_extent_written(trans, root, inode,
1584 						ordered_extent->file_offset,
1585 						ordered_extent->file_offset +
1586 						ordered_extent->len);
1587 		BUG_ON(ret);
1588 	} else {
1589 		ret = insert_reserved_file_extent(trans, inode,
1590 						ordered_extent->file_offset,
1591 						ordered_extent->start,
1592 						ordered_extent->disk_len,
1593 						ordered_extent->len,
1594 						ordered_extent->len,
1595 						ordered_extent->file_offset +
1596 						ordered_extent->len,
1597 						compressed, 0, 0,
1598 						BTRFS_FILE_EXTENT_REG);
1599 		BUG_ON(ret);
1600 	}
1601 	unlock_extent(io_tree, ordered_extent->file_offset,
1602 		    ordered_extent->file_offset + ordered_extent->len - 1,
1603 		    GFP_NOFS);
1604 nocow:
1605 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1606 			  &ordered_extent->list);
1607 
1608 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1609 	btrfs_ordered_update_i_size(inode, ordered_extent);
1610 	btrfs_update_inode(trans, root, inode);
1611 	btrfs_remove_ordered_extent(inode, ordered_extent);
1612 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1613 
1614 	/* once for us */
1615 	btrfs_put_ordered_extent(ordered_extent);
1616 	/* once for the tree */
1617 	btrfs_put_ordered_extent(ordered_extent);
1618 
1619 	btrfs_end_transaction(trans, root);
1620 	return 0;
1621 }
1622 
1623 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1624 				struct extent_state *state, int uptodate)
1625 {
1626 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1627 }
1628 
1629 /*
1630  * When IO fails, either with EIO or csum verification fails, we
1631  * try other mirrors that might have a good copy of the data.  This
1632  * io_failure_record is used to record state as we go through all the
1633  * mirrors.  If another mirror has good data, the page is set up to date
1634  * and things continue.  If a good mirror can't be found, the original
1635  * bio end_io callback is called to indicate things have failed.
1636  */
1637 struct io_failure_record {
1638 	struct page *page;
1639 	u64 start;
1640 	u64 len;
1641 	u64 logical;
1642 	unsigned long bio_flags;
1643 	int last_mirror;
1644 };
1645 
1646 static int btrfs_io_failed_hook(struct bio *failed_bio,
1647 			 struct page *page, u64 start, u64 end,
1648 			 struct extent_state *state)
1649 {
1650 	struct io_failure_record *failrec = NULL;
1651 	u64 private;
1652 	struct extent_map *em;
1653 	struct inode *inode = page->mapping->host;
1654 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1655 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1656 	struct bio *bio;
1657 	int num_copies;
1658 	int ret;
1659 	int rw;
1660 	u64 logical;
1661 
1662 	ret = get_state_private(failure_tree, start, &private);
1663 	if (ret) {
1664 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1665 		if (!failrec)
1666 			return -ENOMEM;
1667 		failrec->start = start;
1668 		failrec->len = end - start + 1;
1669 		failrec->last_mirror = 0;
1670 		failrec->bio_flags = 0;
1671 
1672 		spin_lock(&em_tree->lock);
1673 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1674 		if (em->start > start || em->start + em->len < start) {
1675 			free_extent_map(em);
1676 			em = NULL;
1677 		}
1678 		spin_unlock(&em_tree->lock);
1679 
1680 		if (!em || IS_ERR(em)) {
1681 			kfree(failrec);
1682 			return -EIO;
1683 		}
1684 		logical = start - em->start;
1685 		logical = em->block_start + logical;
1686 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1687 			logical = em->block_start;
1688 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1689 		}
1690 		failrec->logical = logical;
1691 		free_extent_map(em);
1692 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1693 				EXTENT_DIRTY, GFP_NOFS);
1694 		set_state_private(failure_tree, start,
1695 				 (u64)(unsigned long)failrec);
1696 	} else {
1697 		failrec = (struct io_failure_record *)(unsigned long)private;
1698 	}
1699 	num_copies = btrfs_num_copies(
1700 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1701 			      failrec->logical, failrec->len);
1702 	failrec->last_mirror++;
1703 	if (!state) {
1704 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1705 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1706 						    failrec->start,
1707 						    EXTENT_LOCKED);
1708 		if (state && state->start != failrec->start)
1709 			state = NULL;
1710 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1711 	}
1712 	if (!state || failrec->last_mirror > num_copies) {
1713 		set_state_private(failure_tree, failrec->start, 0);
1714 		clear_extent_bits(failure_tree, failrec->start,
1715 				  failrec->start + failrec->len - 1,
1716 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1717 		kfree(failrec);
1718 		return -EIO;
1719 	}
1720 	bio = bio_alloc(GFP_NOFS, 1);
1721 	bio->bi_private = state;
1722 	bio->bi_end_io = failed_bio->bi_end_io;
1723 	bio->bi_sector = failrec->logical >> 9;
1724 	bio->bi_bdev = failed_bio->bi_bdev;
1725 	bio->bi_size = 0;
1726 
1727 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1728 	if (failed_bio->bi_rw & (1 << BIO_RW))
1729 		rw = WRITE;
1730 	else
1731 		rw = READ;
1732 
1733 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1734 						      failrec->last_mirror,
1735 						      failrec->bio_flags);
1736 	return 0;
1737 }
1738 
1739 /*
1740  * each time an IO finishes, we do a fast check in the IO failure tree
1741  * to see if we need to process or clean up an io_failure_record
1742  */
1743 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1744 {
1745 	u64 private;
1746 	u64 private_failure;
1747 	struct io_failure_record *failure;
1748 	int ret;
1749 
1750 	private = 0;
1751 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1752 			     (u64)-1, 1, EXTENT_DIRTY)) {
1753 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1754 					start, &private_failure);
1755 		if (ret == 0) {
1756 			failure = (struct io_failure_record *)(unsigned long)
1757 				   private_failure;
1758 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1759 					  failure->start, 0);
1760 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1761 					  failure->start,
1762 					  failure->start + failure->len - 1,
1763 					  EXTENT_DIRTY | EXTENT_LOCKED,
1764 					  GFP_NOFS);
1765 			kfree(failure);
1766 		}
1767 	}
1768 	return 0;
1769 }
1770 
1771 /*
1772  * when reads are done, we need to check csums to verify the data is correct
1773  * if there's a match, we allow the bio to finish.  If not, we go through
1774  * the io_failure_record routines to find good copies
1775  */
1776 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1777 			       struct extent_state *state)
1778 {
1779 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1780 	struct inode *inode = page->mapping->host;
1781 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1782 	char *kaddr;
1783 	u64 private = ~(u32)0;
1784 	int ret;
1785 	struct btrfs_root *root = BTRFS_I(inode)->root;
1786 	u32 csum = ~(u32)0;
1787 
1788 	if (PageChecked(page)) {
1789 		ClearPageChecked(page);
1790 		goto good;
1791 	}
1792 
1793 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1794 		return 0;
1795 
1796 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1797 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1798 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1799 				  GFP_NOFS);
1800 		return 0;
1801 	}
1802 
1803 	if (state && state->start == start) {
1804 		private = state->private;
1805 		ret = 0;
1806 	} else {
1807 		ret = get_state_private(io_tree, start, &private);
1808 	}
1809 	kaddr = kmap_atomic(page, KM_USER0);
1810 	if (ret)
1811 		goto zeroit;
1812 
1813 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1814 	btrfs_csum_final(csum, (char *)&csum);
1815 	if (csum != private)
1816 		goto zeroit;
1817 
1818 	kunmap_atomic(kaddr, KM_USER0);
1819 good:
1820 	/* if the io failure tree for this inode is non-empty,
1821 	 * check to see if we've recovered from a failed IO
1822 	 */
1823 	btrfs_clean_io_failures(inode, start);
1824 	return 0;
1825 
1826 zeroit:
1827 	if (printk_ratelimit()) {
1828 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1829 		       "private %llu\n", page->mapping->host->i_ino,
1830 		       (unsigned long long)start, csum,
1831 		       (unsigned long long)private);
1832 	}
1833 	memset(kaddr + offset, 1, end - start + 1);
1834 	flush_dcache_page(page);
1835 	kunmap_atomic(kaddr, KM_USER0);
1836 	if (private == 0)
1837 		return 0;
1838 	return -EIO;
1839 }
1840 
1841 /*
1842  * This creates an orphan entry for the given inode in case something goes
1843  * wrong in the middle of an unlink/truncate.
1844  */
1845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1846 {
1847 	struct btrfs_root *root = BTRFS_I(inode)->root;
1848 	int ret = 0;
1849 
1850 	spin_lock(&root->list_lock);
1851 
1852 	/* already on the orphan list, we're good */
1853 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1854 		spin_unlock(&root->list_lock);
1855 		return 0;
1856 	}
1857 
1858 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1859 
1860 	spin_unlock(&root->list_lock);
1861 
1862 	/*
1863 	 * insert an orphan item to track this unlinked/truncated file
1864 	 */
1865 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1866 
1867 	return ret;
1868 }
1869 
1870 /*
1871  * We have done the truncate/delete so we can go ahead and remove the orphan
1872  * item for this particular inode.
1873  */
1874 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1875 {
1876 	struct btrfs_root *root = BTRFS_I(inode)->root;
1877 	int ret = 0;
1878 
1879 	spin_lock(&root->list_lock);
1880 
1881 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1882 		spin_unlock(&root->list_lock);
1883 		return 0;
1884 	}
1885 
1886 	list_del_init(&BTRFS_I(inode)->i_orphan);
1887 	if (!trans) {
1888 		spin_unlock(&root->list_lock);
1889 		return 0;
1890 	}
1891 
1892 	spin_unlock(&root->list_lock);
1893 
1894 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1895 
1896 	return ret;
1897 }
1898 
1899 /*
1900  * this cleans up any orphans that may be left on the list from the last use
1901  * of this root.
1902  */
1903 void btrfs_orphan_cleanup(struct btrfs_root *root)
1904 {
1905 	struct btrfs_path *path;
1906 	struct extent_buffer *leaf;
1907 	struct btrfs_item *item;
1908 	struct btrfs_key key, found_key;
1909 	struct btrfs_trans_handle *trans;
1910 	struct inode *inode;
1911 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1912 
1913 	path = btrfs_alloc_path();
1914 	if (!path)
1915 		return;
1916 	path->reada = -1;
1917 
1918 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1919 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1920 	key.offset = (u64)-1;
1921 
1922 
1923 	while (1) {
1924 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1925 		if (ret < 0) {
1926 			printk(KERN_ERR "Error searching slot for orphan: %d"
1927 			       "\n", ret);
1928 			break;
1929 		}
1930 
1931 		/*
1932 		 * if ret == 0 means we found what we were searching for, which
1933 		 * is weird, but possible, so only screw with path if we didnt
1934 		 * find the key and see if we have stuff that matches
1935 		 */
1936 		if (ret > 0) {
1937 			if (path->slots[0] == 0)
1938 				break;
1939 			path->slots[0]--;
1940 		}
1941 
1942 		/* pull out the item */
1943 		leaf = path->nodes[0];
1944 		item = btrfs_item_nr(leaf, path->slots[0]);
1945 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1946 
1947 		/* make sure the item matches what we want */
1948 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1949 			break;
1950 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1951 			break;
1952 
1953 		/* release the path since we're done with it */
1954 		btrfs_release_path(root, path);
1955 
1956 		/*
1957 		 * this is where we are basically btrfs_lookup, without the
1958 		 * crossing root thing.  we store the inode number in the
1959 		 * offset of the orphan item.
1960 		 */
1961 		found_key.objectid = found_key.offset;
1962 		found_key.type = BTRFS_INODE_ITEM_KEY;
1963 		found_key.offset = 0;
1964 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1965 		if (IS_ERR(inode))
1966 			break;
1967 
1968 		/*
1969 		 * add this inode to the orphan list so btrfs_orphan_del does
1970 		 * the proper thing when we hit it
1971 		 */
1972 		spin_lock(&root->list_lock);
1973 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1974 		spin_unlock(&root->list_lock);
1975 
1976 		/*
1977 		 * if this is a bad inode, means we actually succeeded in
1978 		 * removing the inode, but not the orphan record, which means
1979 		 * we need to manually delete the orphan since iput will just
1980 		 * do a destroy_inode
1981 		 */
1982 		if (is_bad_inode(inode)) {
1983 			trans = btrfs_start_transaction(root, 1);
1984 			btrfs_orphan_del(trans, inode);
1985 			btrfs_end_transaction(trans, root);
1986 			iput(inode);
1987 			continue;
1988 		}
1989 
1990 		/* if we have links, this was a truncate, lets do that */
1991 		if (inode->i_nlink) {
1992 			nr_truncate++;
1993 			btrfs_truncate(inode);
1994 		} else {
1995 			nr_unlink++;
1996 		}
1997 
1998 		/* this will do delete_inode and everything for us */
1999 		iput(inode);
2000 	}
2001 
2002 	if (nr_unlink)
2003 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2004 	if (nr_truncate)
2005 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2006 
2007 	btrfs_free_path(path);
2008 }
2009 
2010 /*
2011  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2012  * don't find any xattrs, we know there can't be any acls.
2013  *
2014  * slot is the slot the inode is in, objectid is the objectid of the inode
2015  */
2016 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2017 					  int slot, u64 objectid)
2018 {
2019 	u32 nritems = btrfs_header_nritems(leaf);
2020 	struct btrfs_key found_key;
2021 	int scanned = 0;
2022 
2023 	slot++;
2024 	while (slot < nritems) {
2025 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2026 
2027 		/* we found a different objectid, there must not be acls */
2028 		if (found_key.objectid != objectid)
2029 			return 0;
2030 
2031 		/* we found an xattr, assume we've got an acl */
2032 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2033 			return 1;
2034 
2035 		/*
2036 		 * we found a key greater than an xattr key, there can't
2037 		 * be any acls later on
2038 		 */
2039 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2040 			return 0;
2041 
2042 		slot++;
2043 		scanned++;
2044 
2045 		/*
2046 		 * it goes inode, inode backrefs, xattrs, extents,
2047 		 * so if there are a ton of hard links to an inode there can
2048 		 * be a lot of backrefs.  Don't waste time searching too hard,
2049 		 * this is just an optimization
2050 		 */
2051 		if (scanned >= 8)
2052 			break;
2053 	}
2054 	/* we hit the end of the leaf before we found an xattr or
2055 	 * something larger than an xattr.  We have to assume the inode
2056 	 * has acls
2057 	 */
2058 	return 1;
2059 }
2060 
2061 /*
2062  * read an inode from the btree into the in-memory inode
2063  */
2064 static void btrfs_read_locked_inode(struct inode *inode)
2065 {
2066 	struct btrfs_path *path;
2067 	struct extent_buffer *leaf;
2068 	struct btrfs_inode_item *inode_item;
2069 	struct btrfs_timespec *tspec;
2070 	struct btrfs_root *root = BTRFS_I(inode)->root;
2071 	struct btrfs_key location;
2072 	int maybe_acls;
2073 	u64 alloc_group_block;
2074 	u32 rdev;
2075 	int ret;
2076 
2077 	path = btrfs_alloc_path();
2078 	BUG_ON(!path);
2079 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2080 
2081 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2082 	if (ret)
2083 		goto make_bad;
2084 
2085 	leaf = path->nodes[0];
2086 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2087 				    struct btrfs_inode_item);
2088 
2089 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2090 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2091 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2092 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2093 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2094 
2095 	tspec = btrfs_inode_atime(inode_item);
2096 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2097 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2098 
2099 	tspec = btrfs_inode_mtime(inode_item);
2100 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2101 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2102 
2103 	tspec = btrfs_inode_ctime(inode_item);
2104 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2105 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2106 
2107 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2108 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2109 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2110 	inode->i_generation = BTRFS_I(inode)->generation;
2111 	inode->i_rdev = 0;
2112 	rdev = btrfs_inode_rdev(leaf, inode_item);
2113 
2114 	BTRFS_I(inode)->index_cnt = (u64)-1;
2115 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2116 
2117 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2118 
2119 	/*
2120 	 * try to precache a NULL acl entry for files that don't have
2121 	 * any xattrs or acls
2122 	 */
2123 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2124 	if (!maybe_acls)
2125 		cache_no_acl(inode);
2126 
2127 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2128 						alloc_group_block, 0);
2129 	btrfs_free_path(path);
2130 	inode_item = NULL;
2131 
2132 	switch (inode->i_mode & S_IFMT) {
2133 	case S_IFREG:
2134 		inode->i_mapping->a_ops = &btrfs_aops;
2135 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2136 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2137 		inode->i_fop = &btrfs_file_operations;
2138 		inode->i_op = &btrfs_file_inode_operations;
2139 		break;
2140 	case S_IFDIR:
2141 		inode->i_fop = &btrfs_dir_file_operations;
2142 		if (root == root->fs_info->tree_root)
2143 			inode->i_op = &btrfs_dir_ro_inode_operations;
2144 		else
2145 			inode->i_op = &btrfs_dir_inode_operations;
2146 		break;
2147 	case S_IFLNK:
2148 		inode->i_op = &btrfs_symlink_inode_operations;
2149 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2150 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2151 		break;
2152 	default:
2153 		inode->i_op = &btrfs_special_inode_operations;
2154 		init_special_inode(inode, inode->i_mode, rdev);
2155 		break;
2156 	}
2157 
2158 	btrfs_update_iflags(inode);
2159 	return;
2160 
2161 make_bad:
2162 	btrfs_free_path(path);
2163 	make_bad_inode(inode);
2164 }
2165 
2166 /*
2167  * given a leaf and an inode, copy the inode fields into the leaf
2168  */
2169 static void fill_inode_item(struct btrfs_trans_handle *trans,
2170 			    struct extent_buffer *leaf,
2171 			    struct btrfs_inode_item *item,
2172 			    struct inode *inode)
2173 {
2174 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2175 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2176 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2177 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2178 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2179 
2180 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2181 			       inode->i_atime.tv_sec);
2182 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2183 				inode->i_atime.tv_nsec);
2184 
2185 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2186 			       inode->i_mtime.tv_sec);
2187 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2188 				inode->i_mtime.tv_nsec);
2189 
2190 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2191 			       inode->i_ctime.tv_sec);
2192 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2193 				inode->i_ctime.tv_nsec);
2194 
2195 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2196 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2197 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2198 	btrfs_set_inode_transid(leaf, item, trans->transid);
2199 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2200 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2201 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2202 }
2203 
2204 /*
2205  * copy everything in the in-memory inode into the btree.
2206  */
2207 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2208 				struct btrfs_root *root, struct inode *inode)
2209 {
2210 	struct btrfs_inode_item *inode_item;
2211 	struct btrfs_path *path;
2212 	struct extent_buffer *leaf;
2213 	int ret;
2214 
2215 	path = btrfs_alloc_path();
2216 	BUG_ON(!path);
2217 	path->leave_spinning = 1;
2218 	ret = btrfs_lookup_inode(trans, root, path,
2219 				 &BTRFS_I(inode)->location, 1);
2220 	if (ret) {
2221 		if (ret > 0)
2222 			ret = -ENOENT;
2223 		goto failed;
2224 	}
2225 
2226 	btrfs_unlock_up_safe(path, 1);
2227 	leaf = path->nodes[0];
2228 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2229 				  struct btrfs_inode_item);
2230 
2231 	fill_inode_item(trans, leaf, inode_item, inode);
2232 	btrfs_mark_buffer_dirty(leaf);
2233 	btrfs_set_inode_last_trans(trans, inode);
2234 	ret = 0;
2235 failed:
2236 	btrfs_free_path(path);
2237 	return ret;
2238 }
2239 
2240 
2241 /*
2242  * unlink helper that gets used here in inode.c and in the tree logging
2243  * recovery code.  It remove a link in a directory with a given name, and
2244  * also drops the back refs in the inode to the directory
2245  */
2246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2247 		       struct btrfs_root *root,
2248 		       struct inode *dir, struct inode *inode,
2249 		       const char *name, int name_len)
2250 {
2251 	struct btrfs_path *path;
2252 	int ret = 0;
2253 	struct extent_buffer *leaf;
2254 	struct btrfs_dir_item *di;
2255 	struct btrfs_key key;
2256 	u64 index;
2257 
2258 	path = btrfs_alloc_path();
2259 	if (!path) {
2260 		ret = -ENOMEM;
2261 		goto err;
2262 	}
2263 
2264 	path->leave_spinning = 1;
2265 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2266 				    name, name_len, -1);
2267 	if (IS_ERR(di)) {
2268 		ret = PTR_ERR(di);
2269 		goto err;
2270 	}
2271 	if (!di) {
2272 		ret = -ENOENT;
2273 		goto err;
2274 	}
2275 	leaf = path->nodes[0];
2276 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2277 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2278 	if (ret)
2279 		goto err;
2280 	btrfs_release_path(root, path);
2281 
2282 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2283 				  inode->i_ino,
2284 				  dir->i_ino, &index);
2285 	if (ret) {
2286 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2287 		       "inode %lu parent %lu\n", name_len, name,
2288 		       inode->i_ino, dir->i_ino);
2289 		goto err;
2290 	}
2291 
2292 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2293 					 index, name, name_len, -1);
2294 	if (IS_ERR(di)) {
2295 		ret = PTR_ERR(di);
2296 		goto err;
2297 	}
2298 	if (!di) {
2299 		ret = -ENOENT;
2300 		goto err;
2301 	}
2302 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2303 	btrfs_release_path(root, path);
2304 
2305 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2306 					 inode, dir->i_ino);
2307 	BUG_ON(ret != 0 && ret != -ENOENT);
2308 
2309 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2310 					   dir, index);
2311 	BUG_ON(ret);
2312 err:
2313 	btrfs_free_path(path);
2314 	if (ret)
2315 		goto out;
2316 
2317 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2318 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2319 	btrfs_update_inode(trans, root, dir);
2320 	btrfs_drop_nlink(inode);
2321 	ret = btrfs_update_inode(trans, root, inode);
2322 out:
2323 	return ret;
2324 }
2325 
2326 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2327 {
2328 	struct btrfs_root *root;
2329 	struct btrfs_trans_handle *trans;
2330 	struct inode *inode = dentry->d_inode;
2331 	int ret;
2332 	unsigned long nr = 0;
2333 
2334 	root = BTRFS_I(dir)->root;
2335 
2336 	trans = btrfs_start_transaction(root, 1);
2337 
2338 	btrfs_set_trans_block_group(trans, dir);
2339 
2340 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2341 
2342 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2343 				 dentry->d_name.name, dentry->d_name.len);
2344 
2345 	if (inode->i_nlink == 0)
2346 		ret = btrfs_orphan_add(trans, inode);
2347 
2348 	nr = trans->blocks_used;
2349 
2350 	btrfs_end_transaction_throttle(trans, root);
2351 	btrfs_btree_balance_dirty(root, nr);
2352 	return ret;
2353 }
2354 
2355 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2356 {
2357 	struct inode *inode = dentry->d_inode;
2358 	int err = 0;
2359 	int ret;
2360 	struct btrfs_root *root = BTRFS_I(dir)->root;
2361 	struct btrfs_trans_handle *trans;
2362 	unsigned long nr = 0;
2363 
2364 	/*
2365 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2366 	 * the root of a subvolume or snapshot
2367 	 */
2368 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2369 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2370 		return -ENOTEMPTY;
2371 	}
2372 
2373 	trans = btrfs_start_transaction(root, 1);
2374 	btrfs_set_trans_block_group(trans, dir);
2375 
2376 	err = btrfs_orphan_add(trans, inode);
2377 	if (err)
2378 		goto fail_trans;
2379 
2380 	/* now the directory is empty */
2381 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2382 				 dentry->d_name.name, dentry->d_name.len);
2383 	if (!err)
2384 		btrfs_i_size_write(inode, 0);
2385 
2386 fail_trans:
2387 	nr = trans->blocks_used;
2388 	ret = btrfs_end_transaction_throttle(trans, root);
2389 	btrfs_btree_balance_dirty(root, nr);
2390 
2391 	if (ret && !err)
2392 		err = ret;
2393 	return err;
2394 }
2395 
2396 #if 0
2397 /*
2398  * when truncating bytes in a file, it is possible to avoid reading
2399  * the leaves that contain only checksum items.  This can be the
2400  * majority of the IO required to delete a large file, but it must
2401  * be done carefully.
2402  *
2403  * The keys in the level just above the leaves are checked to make sure
2404  * the lowest key in a given leaf is a csum key, and starts at an offset
2405  * after the new  size.
2406  *
2407  * Then the key for the next leaf is checked to make sure it also has
2408  * a checksum item for the same file.  If it does, we know our target leaf
2409  * contains only checksum items, and it can be safely freed without reading
2410  * it.
2411  *
2412  * This is just an optimization targeted at large files.  It may do
2413  * nothing.  It will return 0 unless things went badly.
2414  */
2415 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2416 				     struct btrfs_root *root,
2417 				     struct btrfs_path *path,
2418 				     struct inode *inode, u64 new_size)
2419 {
2420 	struct btrfs_key key;
2421 	int ret;
2422 	int nritems;
2423 	struct btrfs_key found_key;
2424 	struct btrfs_key other_key;
2425 	struct btrfs_leaf_ref *ref;
2426 	u64 leaf_gen;
2427 	u64 leaf_start;
2428 
2429 	path->lowest_level = 1;
2430 	key.objectid = inode->i_ino;
2431 	key.type = BTRFS_CSUM_ITEM_KEY;
2432 	key.offset = new_size;
2433 again:
2434 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2435 	if (ret < 0)
2436 		goto out;
2437 
2438 	if (path->nodes[1] == NULL) {
2439 		ret = 0;
2440 		goto out;
2441 	}
2442 	ret = 0;
2443 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2444 	nritems = btrfs_header_nritems(path->nodes[1]);
2445 
2446 	if (!nritems)
2447 		goto out;
2448 
2449 	if (path->slots[1] >= nritems)
2450 		goto next_node;
2451 
2452 	/* did we find a key greater than anything we want to delete? */
2453 	if (found_key.objectid > inode->i_ino ||
2454 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2455 		goto out;
2456 
2457 	/* we check the next key in the node to make sure the leave contains
2458 	 * only checksum items.  This comparison doesn't work if our
2459 	 * leaf is the last one in the node
2460 	 */
2461 	if (path->slots[1] + 1 >= nritems) {
2462 next_node:
2463 		/* search forward from the last key in the node, this
2464 		 * will bring us into the next node in the tree
2465 		 */
2466 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2467 
2468 		/* unlikely, but we inc below, so check to be safe */
2469 		if (found_key.offset == (u64)-1)
2470 			goto out;
2471 
2472 		/* search_forward needs a path with locks held, do the
2473 		 * search again for the original key.  It is possible
2474 		 * this will race with a balance and return a path that
2475 		 * we could modify, but this drop is just an optimization
2476 		 * and is allowed to miss some leaves.
2477 		 */
2478 		btrfs_release_path(root, path);
2479 		found_key.offset++;
2480 
2481 		/* setup a max key for search_forward */
2482 		other_key.offset = (u64)-1;
2483 		other_key.type = key.type;
2484 		other_key.objectid = key.objectid;
2485 
2486 		path->keep_locks = 1;
2487 		ret = btrfs_search_forward(root, &found_key, &other_key,
2488 					   path, 0, 0);
2489 		path->keep_locks = 0;
2490 		if (ret || found_key.objectid != key.objectid ||
2491 		    found_key.type != key.type) {
2492 			ret = 0;
2493 			goto out;
2494 		}
2495 
2496 		key.offset = found_key.offset;
2497 		btrfs_release_path(root, path);
2498 		cond_resched();
2499 		goto again;
2500 	}
2501 
2502 	/* we know there's one more slot after us in the tree,
2503 	 * read that key so we can verify it is also a checksum item
2504 	 */
2505 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2506 
2507 	if (found_key.objectid < inode->i_ino)
2508 		goto next_key;
2509 
2510 	if (found_key.type != key.type || found_key.offset < new_size)
2511 		goto next_key;
2512 
2513 	/*
2514 	 * if the key for the next leaf isn't a csum key from this objectid,
2515 	 * we can't be sure there aren't good items inside this leaf.
2516 	 * Bail out
2517 	 */
2518 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2519 		goto out;
2520 
2521 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2522 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2523 	/*
2524 	 * it is safe to delete this leaf, it contains only
2525 	 * csum items from this inode at an offset >= new_size
2526 	 */
2527 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2528 	BUG_ON(ret);
2529 
2530 	if (root->ref_cows && leaf_gen < trans->transid) {
2531 		ref = btrfs_alloc_leaf_ref(root, 0);
2532 		if (ref) {
2533 			ref->root_gen = root->root_key.offset;
2534 			ref->bytenr = leaf_start;
2535 			ref->owner = 0;
2536 			ref->generation = leaf_gen;
2537 			ref->nritems = 0;
2538 
2539 			btrfs_sort_leaf_ref(ref);
2540 
2541 			ret = btrfs_add_leaf_ref(root, ref, 0);
2542 			WARN_ON(ret);
2543 			btrfs_free_leaf_ref(root, ref);
2544 		} else {
2545 			WARN_ON(1);
2546 		}
2547 	}
2548 next_key:
2549 	btrfs_release_path(root, path);
2550 
2551 	if (other_key.objectid == inode->i_ino &&
2552 	    other_key.type == key.type && other_key.offset > key.offset) {
2553 		key.offset = other_key.offset;
2554 		cond_resched();
2555 		goto again;
2556 	}
2557 	ret = 0;
2558 out:
2559 	/* fixup any changes we've made to the path */
2560 	path->lowest_level = 0;
2561 	path->keep_locks = 0;
2562 	btrfs_release_path(root, path);
2563 	return ret;
2564 }
2565 
2566 #endif
2567 
2568 /*
2569  * this can truncate away extent items, csum items and directory items.
2570  * It starts at a high offset and removes keys until it can't find
2571  * any higher than new_size
2572  *
2573  * csum items that cross the new i_size are truncated to the new size
2574  * as well.
2575  *
2576  * min_type is the minimum key type to truncate down to.  If set to 0, this
2577  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2578  */
2579 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2580 					struct btrfs_root *root,
2581 					struct inode *inode,
2582 					u64 new_size, u32 min_type)
2583 {
2584 	int ret;
2585 	struct btrfs_path *path;
2586 	struct btrfs_key key;
2587 	struct btrfs_key found_key;
2588 	u32 found_type = (u8)-1;
2589 	struct extent_buffer *leaf;
2590 	struct btrfs_file_extent_item *fi;
2591 	u64 extent_start = 0;
2592 	u64 extent_num_bytes = 0;
2593 	u64 extent_offset = 0;
2594 	u64 item_end = 0;
2595 	int found_extent;
2596 	int del_item;
2597 	int pending_del_nr = 0;
2598 	int pending_del_slot = 0;
2599 	int extent_type = -1;
2600 	int encoding;
2601 	u64 mask = root->sectorsize - 1;
2602 
2603 	if (root->ref_cows)
2604 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2605 	path = btrfs_alloc_path();
2606 	BUG_ON(!path);
2607 	path->reada = -1;
2608 
2609 	/* FIXME, add redo link to tree so we don't leak on crash */
2610 	key.objectid = inode->i_ino;
2611 	key.offset = (u64)-1;
2612 	key.type = (u8)-1;
2613 
2614 search_again:
2615 	path->leave_spinning = 1;
2616 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2617 	if (ret < 0)
2618 		goto error;
2619 
2620 	if (ret > 0) {
2621 		/* there are no items in the tree for us to truncate, we're
2622 		 * done
2623 		 */
2624 		if (path->slots[0] == 0) {
2625 			ret = 0;
2626 			goto error;
2627 		}
2628 		path->slots[0]--;
2629 	}
2630 
2631 	while (1) {
2632 		fi = NULL;
2633 		leaf = path->nodes[0];
2634 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2635 		found_type = btrfs_key_type(&found_key);
2636 		encoding = 0;
2637 
2638 		if (found_key.objectid != inode->i_ino)
2639 			break;
2640 
2641 		if (found_type < min_type)
2642 			break;
2643 
2644 		item_end = found_key.offset;
2645 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2646 			fi = btrfs_item_ptr(leaf, path->slots[0],
2647 					    struct btrfs_file_extent_item);
2648 			extent_type = btrfs_file_extent_type(leaf, fi);
2649 			encoding = btrfs_file_extent_compression(leaf, fi);
2650 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2651 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2652 
2653 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2654 				item_end +=
2655 				    btrfs_file_extent_num_bytes(leaf, fi);
2656 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2657 				item_end += btrfs_file_extent_inline_len(leaf,
2658 									 fi);
2659 			}
2660 			item_end--;
2661 		}
2662 		if (item_end < new_size) {
2663 			if (found_type == BTRFS_DIR_ITEM_KEY)
2664 				found_type = BTRFS_INODE_ITEM_KEY;
2665 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2666 				found_type = BTRFS_EXTENT_DATA_KEY;
2667 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2668 				found_type = BTRFS_XATTR_ITEM_KEY;
2669 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2670 				found_type = BTRFS_INODE_REF_KEY;
2671 			else if (found_type)
2672 				found_type--;
2673 			else
2674 				break;
2675 			btrfs_set_key_type(&key, found_type);
2676 			goto next;
2677 		}
2678 		if (found_key.offset >= new_size)
2679 			del_item = 1;
2680 		else
2681 			del_item = 0;
2682 		found_extent = 0;
2683 
2684 		/* FIXME, shrink the extent if the ref count is only 1 */
2685 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2686 			goto delete;
2687 
2688 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2689 			u64 num_dec;
2690 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2691 			if (!del_item && !encoding) {
2692 				u64 orig_num_bytes =
2693 					btrfs_file_extent_num_bytes(leaf, fi);
2694 				extent_num_bytes = new_size -
2695 					found_key.offset + root->sectorsize - 1;
2696 				extent_num_bytes = extent_num_bytes &
2697 					~((u64)root->sectorsize - 1);
2698 				btrfs_set_file_extent_num_bytes(leaf, fi,
2699 							 extent_num_bytes);
2700 				num_dec = (orig_num_bytes -
2701 					   extent_num_bytes);
2702 				if (root->ref_cows && extent_start != 0)
2703 					inode_sub_bytes(inode, num_dec);
2704 				btrfs_mark_buffer_dirty(leaf);
2705 			} else {
2706 				extent_num_bytes =
2707 					btrfs_file_extent_disk_num_bytes(leaf,
2708 									 fi);
2709 				extent_offset = found_key.offset -
2710 					btrfs_file_extent_offset(leaf, fi);
2711 
2712 				/* FIXME blocksize != 4096 */
2713 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2714 				if (extent_start != 0) {
2715 					found_extent = 1;
2716 					if (root->ref_cows)
2717 						inode_sub_bytes(inode, num_dec);
2718 				}
2719 			}
2720 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2721 			/*
2722 			 * we can't truncate inline items that have had
2723 			 * special encodings
2724 			 */
2725 			if (!del_item &&
2726 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2727 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2728 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2729 				u32 size = new_size - found_key.offset;
2730 
2731 				if (root->ref_cows) {
2732 					inode_sub_bytes(inode, item_end + 1 -
2733 							new_size);
2734 				}
2735 				size =
2736 				    btrfs_file_extent_calc_inline_size(size);
2737 				ret = btrfs_truncate_item(trans, root, path,
2738 							  size, 1);
2739 				BUG_ON(ret);
2740 			} else if (root->ref_cows) {
2741 				inode_sub_bytes(inode, item_end + 1 -
2742 						found_key.offset);
2743 			}
2744 		}
2745 delete:
2746 		if (del_item) {
2747 			if (!pending_del_nr) {
2748 				/* no pending yet, add ourselves */
2749 				pending_del_slot = path->slots[0];
2750 				pending_del_nr = 1;
2751 			} else if (pending_del_nr &&
2752 				   path->slots[0] + 1 == pending_del_slot) {
2753 				/* hop on the pending chunk */
2754 				pending_del_nr++;
2755 				pending_del_slot = path->slots[0];
2756 			} else {
2757 				BUG();
2758 			}
2759 		} else {
2760 			break;
2761 		}
2762 		if (found_extent && root->ref_cows) {
2763 			btrfs_set_path_blocking(path);
2764 			ret = btrfs_free_extent(trans, root, extent_start,
2765 						extent_num_bytes, 0,
2766 						btrfs_header_owner(leaf),
2767 						inode->i_ino, extent_offset);
2768 			BUG_ON(ret);
2769 		}
2770 next:
2771 		if (path->slots[0] == 0) {
2772 			if (pending_del_nr)
2773 				goto del_pending;
2774 			btrfs_release_path(root, path);
2775 			if (found_type == BTRFS_INODE_ITEM_KEY)
2776 				break;
2777 			goto search_again;
2778 		}
2779 
2780 		path->slots[0]--;
2781 		if (pending_del_nr &&
2782 		    path->slots[0] + 1 != pending_del_slot) {
2783 			struct btrfs_key debug;
2784 del_pending:
2785 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2786 					      pending_del_slot);
2787 			ret = btrfs_del_items(trans, root, path,
2788 					      pending_del_slot,
2789 					      pending_del_nr);
2790 			BUG_ON(ret);
2791 			pending_del_nr = 0;
2792 			btrfs_release_path(root, path);
2793 			if (found_type == BTRFS_INODE_ITEM_KEY)
2794 				break;
2795 			goto search_again;
2796 		}
2797 	}
2798 	ret = 0;
2799 error:
2800 	if (pending_del_nr) {
2801 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2802 				      pending_del_nr);
2803 	}
2804 	btrfs_free_path(path);
2805 	return ret;
2806 }
2807 
2808 /*
2809  * taken from block_truncate_page, but does cow as it zeros out
2810  * any bytes left in the last page in the file.
2811  */
2812 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2813 {
2814 	struct inode *inode = mapping->host;
2815 	struct btrfs_root *root = BTRFS_I(inode)->root;
2816 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2817 	struct btrfs_ordered_extent *ordered;
2818 	char *kaddr;
2819 	u32 blocksize = root->sectorsize;
2820 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2821 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2822 	struct page *page;
2823 	int ret = 0;
2824 	u64 page_start;
2825 	u64 page_end;
2826 
2827 	if ((offset & (blocksize - 1)) == 0)
2828 		goto out;
2829 
2830 	ret = -ENOMEM;
2831 again:
2832 	page = grab_cache_page(mapping, index);
2833 	if (!page)
2834 		goto out;
2835 
2836 	page_start = page_offset(page);
2837 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2838 
2839 	if (!PageUptodate(page)) {
2840 		ret = btrfs_readpage(NULL, page);
2841 		lock_page(page);
2842 		if (page->mapping != mapping) {
2843 			unlock_page(page);
2844 			page_cache_release(page);
2845 			goto again;
2846 		}
2847 		if (!PageUptodate(page)) {
2848 			ret = -EIO;
2849 			goto out_unlock;
2850 		}
2851 	}
2852 	wait_on_page_writeback(page);
2853 
2854 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2855 	set_page_extent_mapped(page);
2856 
2857 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2858 	if (ordered) {
2859 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2860 		unlock_page(page);
2861 		page_cache_release(page);
2862 		btrfs_start_ordered_extent(inode, ordered, 1);
2863 		btrfs_put_ordered_extent(ordered);
2864 		goto again;
2865 	}
2866 
2867 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2868 	ret = 0;
2869 	if (offset != PAGE_CACHE_SIZE) {
2870 		kaddr = kmap(page);
2871 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2872 		flush_dcache_page(page);
2873 		kunmap(page);
2874 	}
2875 	ClearPageChecked(page);
2876 	set_page_dirty(page);
2877 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2878 
2879 out_unlock:
2880 	unlock_page(page);
2881 	page_cache_release(page);
2882 out:
2883 	return ret;
2884 }
2885 
2886 int btrfs_cont_expand(struct inode *inode, loff_t size)
2887 {
2888 	struct btrfs_trans_handle *trans;
2889 	struct btrfs_root *root = BTRFS_I(inode)->root;
2890 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2891 	struct extent_map *em;
2892 	u64 mask = root->sectorsize - 1;
2893 	u64 hole_start = (inode->i_size + mask) & ~mask;
2894 	u64 block_end = (size + mask) & ~mask;
2895 	u64 last_byte;
2896 	u64 cur_offset;
2897 	u64 hole_size;
2898 	int err;
2899 
2900 	if (size <= hole_start)
2901 		return 0;
2902 
2903 	err = btrfs_check_metadata_free_space(root);
2904 	if (err)
2905 		return err;
2906 
2907 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2908 
2909 	while (1) {
2910 		struct btrfs_ordered_extent *ordered;
2911 		btrfs_wait_ordered_range(inode, hole_start,
2912 					 block_end - hole_start);
2913 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2914 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2915 		if (!ordered)
2916 			break;
2917 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2918 		btrfs_put_ordered_extent(ordered);
2919 	}
2920 
2921 	trans = btrfs_start_transaction(root, 1);
2922 	btrfs_set_trans_block_group(trans, inode);
2923 
2924 	cur_offset = hole_start;
2925 	while (1) {
2926 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2927 				block_end - cur_offset, 0);
2928 		BUG_ON(IS_ERR(em) || !em);
2929 		last_byte = min(extent_map_end(em), block_end);
2930 		last_byte = (last_byte + mask) & ~mask;
2931 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2932 			u64 hint_byte = 0;
2933 			hole_size = last_byte - cur_offset;
2934 			err = btrfs_drop_extents(trans, root, inode,
2935 						 cur_offset,
2936 						 cur_offset + hole_size,
2937 						 block_end,
2938 						 cur_offset, &hint_byte);
2939 			if (err)
2940 				break;
2941 			err = btrfs_insert_file_extent(trans, root,
2942 					inode->i_ino, cur_offset, 0,
2943 					0, hole_size, 0, hole_size,
2944 					0, 0, 0);
2945 			btrfs_drop_extent_cache(inode, hole_start,
2946 					last_byte - 1, 0);
2947 		}
2948 		free_extent_map(em);
2949 		cur_offset = last_byte;
2950 		if (err || cur_offset >= block_end)
2951 			break;
2952 	}
2953 
2954 	btrfs_end_transaction(trans, root);
2955 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2956 	return err;
2957 }
2958 
2959 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2960 {
2961 	struct inode *inode = dentry->d_inode;
2962 	int err;
2963 
2964 	err = inode_change_ok(inode, attr);
2965 	if (err)
2966 		return err;
2967 
2968 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2969 		if (attr->ia_size > inode->i_size) {
2970 			err = btrfs_cont_expand(inode, attr->ia_size);
2971 			if (err)
2972 				return err;
2973 		} else if (inode->i_size > 0 &&
2974 			   attr->ia_size == 0) {
2975 
2976 			/* we're truncating a file that used to have good
2977 			 * data down to zero.  Make sure it gets into
2978 			 * the ordered flush list so that any new writes
2979 			 * get down to disk quickly.
2980 			 */
2981 			BTRFS_I(inode)->ordered_data_close = 1;
2982 		}
2983 	}
2984 
2985 	err = inode_setattr(inode, attr);
2986 
2987 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2988 		err = btrfs_acl_chmod(inode);
2989 	return err;
2990 }
2991 
2992 void btrfs_delete_inode(struct inode *inode)
2993 {
2994 	struct btrfs_trans_handle *trans;
2995 	struct btrfs_root *root = BTRFS_I(inode)->root;
2996 	unsigned long nr;
2997 	int ret;
2998 
2999 	truncate_inode_pages(&inode->i_data, 0);
3000 	if (is_bad_inode(inode)) {
3001 		btrfs_orphan_del(NULL, inode);
3002 		goto no_delete;
3003 	}
3004 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3005 
3006 	btrfs_i_size_write(inode, 0);
3007 	trans = btrfs_join_transaction(root, 1);
3008 
3009 	btrfs_set_trans_block_group(trans, inode);
3010 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3011 	if (ret) {
3012 		btrfs_orphan_del(NULL, inode);
3013 		goto no_delete_lock;
3014 	}
3015 
3016 	btrfs_orphan_del(trans, inode);
3017 
3018 	nr = trans->blocks_used;
3019 	clear_inode(inode);
3020 
3021 	btrfs_end_transaction(trans, root);
3022 	btrfs_btree_balance_dirty(root, nr);
3023 	return;
3024 
3025 no_delete_lock:
3026 	nr = trans->blocks_used;
3027 	btrfs_end_transaction(trans, root);
3028 	btrfs_btree_balance_dirty(root, nr);
3029 no_delete:
3030 	clear_inode(inode);
3031 }
3032 
3033 /*
3034  * this returns the key found in the dir entry in the location pointer.
3035  * If no dir entries were found, location->objectid is 0.
3036  */
3037 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3038 			       struct btrfs_key *location)
3039 {
3040 	const char *name = dentry->d_name.name;
3041 	int namelen = dentry->d_name.len;
3042 	struct btrfs_dir_item *di;
3043 	struct btrfs_path *path;
3044 	struct btrfs_root *root = BTRFS_I(dir)->root;
3045 	int ret = 0;
3046 
3047 	path = btrfs_alloc_path();
3048 	BUG_ON(!path);
3049 
3050 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3051 				    namelen, 0);
3052 	if (IS_ERR(di))
3053 		ret = PTR_ERR(di);
3054 
3055 	if (!di || IS_ERR(di))
3056 		goto out_err;
3057 
3058 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3059 out:
3060 	btrfs_free_path(path);
3061 	return ret;
3062 out_err:
3063 	location->objectid = 0;
3064 	goto out;
3065 }
3066 
3067 /*
3068  * when we hit a tree root in a directory, the btrfs part of the inode
3069  * needs to be changed to reflect the root directory of the tree root.  This
3070  * is kind of like crossing a mount point.
3071  */
3072 static int fixup_tree_root_location(struct btrfs_root *root,
3073 			     struct btrfs_key *location,
3074 			     struct btrfs_root **sub_root,
3075 			     struct dentry *dentry)
3076 {
3077 	struct btrfs_root_item *ri;
3078 
3079 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3080 		return 0;
3081 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3082 		return 0;
3083 
3084 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
3085 					dentry->d_name.name,
3086 					dentry->d_name.len);
3087 	if (IS_ERR(*sub_root))
3088 		return PTR_ERR(*sub_root);
3089 
3090 	ri = &(*sub_root)->root_item;
3091 	location->objectid = btrfs_root_dirid(ri);
3092 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3093 	location->offset = 0;
3094 
3095 	return 0;
3096 }
3097 
3098 static void inode_tree_add(struct inode *inode)
3099 {
3100 	struct btrfs_root *root = BTRFS_I(inode)->root;
3101 	struct btrfs_inode *entry;
3102 	struct rb_node **p;
3103 	struct rb_node *parent;
3104 
3105 again:
3106 	p = &root->inode_tree.rb_node;
3107 	parent = NULL;
3108 
3109 	spin_lock(&root->inode_lock);
3110 	while (*p) {
3111 		parent = *p;
3112 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3113 
3114 		if (inode->i_ino < entry->vfs_inode.i_ino)
3115 			p = &parent->rb_left;
3116 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3117 			p = &parent->rb_right;
3118 		else {
3119 			WARN_ON(!(entry->vfs_inode.i_state &
3120 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3121 			rb_erase(parent, &root->inode_tree);
3122 			RB_CLEAR_NODE(parent);
3123 			spin_unlock(&root->inode_lock);
3124 			goto again;
3125 		}
3126 	}
3127 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3128 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3129 	spin_unlock(&root->inode_lock);
3130 }
3131 
3132 static void inode_tree_del(struct inode *inode)
3133 {
3134 	struct btrfs_root *root = BTRFS_I(inode)->root;
3135 
3136 	spin_lock(&root->inode_lock);
3137 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3138 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3139 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3140 	}
3141 	spin_unlock(&root->inode_lock);
3142 }
3143 
3144 static noinline void init_btrfs_i(struct inode *inode)
3145 {
3146 	struct btrfs_inode *bi = BTRFS_I(inode);
3147 
3148 	bi->generation = 0;
3149 	bi->sequence = 0;
3150 	bi->last_trans = 0;
3151 	bi->logged_trans = 0;
3152 	bi->delalloc_bytes = 0;
3153 	bi->reserved_bytes = 0;
3154 	bi->disk_i_size = 0;
3155 	bi->flags = 0;
3156 	bi->index_cnt = (u64)-1;
3157 	bi->last_unlink_trans = 0;
3158 	bi->ordered_data_close = 0;
3159 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3160 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3161 			     inode->i_mapping, GFP_NOFS);
3162 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3163 			     inode->i_mapping, GFP_NOFS);
3164 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3165 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3166 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3167 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3168 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3169 	mutex_init(&BTRFS_I(inode)->log_mutex);
3170 }
3171 
3172 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3173 {
3174 	struct btrfs_iget_args *args = p;
3175 	inode->i_ino = args->ino;
3176 	init_btrfs_i(inode);
3177 	BTRFS_I(inode)->root = args->root;
3178 	btrfs_set_inode_space_info(args->root, inode);
3179 	return 0;
3180 }
3181 
3182 static int btrfs_find_actor(struct inode *inode, void *opaque)
3183 {
3184 	struct btrfs_iget_args *args = opaque;
3185 	return args->ino == inode->i_ino &&
3186 		args->root == BTRFS_I(inode)->root;
3187 }
3188 
3189 static struct inode *btrfs_iget_locked(struct super_block *s,
3190 				       u64 objectid,
3191 				       struct btrfs_root *root)
3192 {
3193 	struct inode *inode;
3194 	struct btrfs_iget_args args;
3195 	args.ino = objectid;
3196 	args.root = root;
3197 
3198 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3199 			     btrfs_init_locked_inode,
3200 			     (void *)&args);
3201 	return inode;
3202 }
3203 
3204 /* Get an inode object given its location and corresponding root.
3205  * Returns in *is_new if the inode was read from disk
3206  */
3207 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3208 			 struct btrfs_root *root)
3209 {
3210 	struct inode *inode;
3211 
3212 	inode = btrfs_iget_locked(s, location->objectid, root);
3213 	if (!inode)
3214 		return ERR_PTR(-ENOMEM);
3215 
3216 	if (inode->i_state & I_NEW) {
3217 		BTRFS_I(inode)->root = root;
3218 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3219 		btrfs_read_locked_inode(inode);
3220 
3221 		inode_tree_add(inode);
3222 		unlock_new_inode(inode);
3223 	}
3224 
3225 	return inode;
3226 }
3227 
3228 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3229 {
3230 	struct inode *inode;
3231 	struct btrfs_inode *bi = BTRFS_I(dir);
3232 	struct btrfs_root *root = bi->root;
3233 	struct btrfs_root *sub_root = root;
3234 	struct btrfs_key location;
3235 	int ret;
3236 
3237 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3238 		return ERR_PTR(-ENAMETOOLONG);
3239 
3240 	ret = btrfs_inode_by_name(dir, dentry, &location);
3241 
3242 	if (ret < 0)
3243 		return ERR_PTR(ret);
3244 
3245 	inode = NULL;
3246 	if (location.objectid) {
3247 		ret = fixup_tree_root_location(root, &location, &sub_root,
3248 						dentry);
3249 		if (ret < 0)
3250 			return ERR_PTR(ret);
3251 		if (ret > 0)
3252 			return ERR_PTR(-ENOENT);
3253 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3254 		if (IS_ERR(inode))
3255 			return ERR_CAST(inode);
3256 	}
3257 	return inode;
3258 }
3259 
3260 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3261 				   struct nameidata *nd)
3262 {
3263 	struct inode *inode;
3264 
3265 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3266 		return ERR_PTR(-ENAMETOOLONG);
3267 
3268 	inode = btrfs_lookup_dentry(dir, dentry);
3269 	if (IS_ERR(inode))
3270 		return ERR_CAST(inode);
3271 
3272 	return d_splice_alias(inode, dentry);
3273 }
3274 
3275 static unsigned char btrfs_filetype_table[] = {
3276 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3277 };
3278 
3279 static int btrfs_real_readdir(struct file *filp, void *dirent,
3280 			      filldir_t filldir)
3281 {
3282 	struct inode *inode = filp->f_dentry->d_inode;
3283 	struct btrfs_root *root = BTRFS_I(inode)->root;
3284 	struct btrfs_item *item;
3285 	struct btrfs_dir_item *di;
3286 	struct btrfs_key key;
3287 	struct btrfs_key found_key;
3288 	struct btrfs_path *path;
3289 	int ret;
3290 	u32 nritems;
3291 	struct extent_buffer *leaf;
3292 	int slot;
3293 	int advance;
3294 	unsigned char d_type;
3295 	int over = 0;
3296 	u32 di_cur;
3297 	u32 di_total;
3298 	u32 di_len;
3299 	int key_type = BTRFS_DIR_INDEX_KEY;
3300 	char tmp_name[32];
3301 	char *name_ptr;
3302 	int name_len;
3303 
3304 	/* FIXME, use a real flag for deciding about the key type */
3305 	if (root->fs_info->tree_root == root)
3306 		key_type = BTRFS_DIR_ITEM_KEY;
3307 
3308 	/* special case for "." */
3309 	if (filp->f_pos == 0) {
3310 		over = filldir(dirent, ".", 1,
3311 			       1, inode->i_ino,
3312 			       DT_DIR);
3313 		if (over)
3314 			return 0;
3315 		filp->f_pos = 1;
3316 	}
3317 	/* special case for .., just use the back ref */
3318 	if (filp->f_pos == 1) {
3319 		u64 pino = parent_ino(filp->f_path.dentry);
3320 		over = filldir(dirent, "..", 2,
3321 			       2, pino, DT_DIR);
3322 		if (over)
3323 			return 0;
3324 		filp->f_pos = 2;
3325 	}
3326 	path = btrfs_alloc_path();
3327 	path->reada = 2;
3328 
3329 	btrfs_set_key_type(&key, key_type);
3330 	key.offset = filp->f_pos;
3331 	key.objectid = inode->i_ino;
3332 
3333 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 	if (ret < 0)
3335 		goto err;
3336 	advance = 0;
3337 
3338 	while (1) {
3339 		leaf = path->nodes[0];
3340 		nritems = btrfs_header_nritems(leaf);
3341 		slot = path->slots[0];
3342 		if (advance || slot >= nritems) {
3343 			if (slot >= nritems - 1) {
3344 				ret = btrfs_next_leaf(root, path);
3345 				if (ret)
3346 					break;
3347 				leaf = path->nodes[0];
3348 				nritems = btrfs_header_nritems(leaf);
3349 				slot = path->slots[0];
3350 			} else {
3351 				slot++;
3352 				path->slots[0]++;
3353 			}
3354 		}
3355 
3356 		advance = 1;
3357 		item = btrfs_item_nr(leaf, slot);
3358 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3359 
3360 		if (found_key.objectid != key.objectid)
3361 			break;
3362 		if (btrfs_key_type(&found_key) != key_type)
3363 			break;
3364 		if (found_key.offset < filp->f_pos)
3365 			continue;
3366 
3367 		filp->f_pos = found_key.offset;
3368 
3369 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3370 		di_cur = 0;
3371 		di_total = btrfs_item_size(leaf, item);
3372 
3373 		while (di_cur < di_total) {
3374 			struct btrfs_key location;
3375 
3376 			name_len = btrfs_dir_name_len(leaf, di);
3377 			if (name_len <= sizeof(tmp_name)) {
3378 				name_ptr = tmp_name;
3379 			} else {
3380 				name_ptr = kmalloc(name_len, GFP_NOFS);
3381 				if (!name_ptr) {
3382 					ret = -ENOMEM;
3383 					goto err;
3384 				}
3385 			}
3386 			read_extent_buffer(leaf, name_ptr,
3387 					   (unsigned long)(di + 1), name_len);
3388 
3389 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3390 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3391 
3392 			/* is this a reference to our own snapshot? If so
3393 			 * skip it
3394 			 */
3395 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3396 			    location.objectid == root->root_key.objectid) {
3397 				over = 0;
3398 				goto skip;
3399 			}
3400 			over = filldir(dirent, name_ptr, name_len,
3401 				       found_key.offset, location.objectid,
3402 				       d_type);
3403 
3404 skip:
3405 			if (name_ptr != tmp_name)
3406 				kfree(name_ptr);
3407 
3408 			if (over)
3409 				goto nopos;
3410 			di_len = btrfs_dir_name_len(leaf, di) +
3411 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3412 			di_cur += di_len;
3413 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3414 		}
3415 	}
3416 
3417 	/* Reached end of directory/root. Bump pos past the last item. */
3418 	if (key_type == BTRFS_DIR_INDEX_KEY)
3419 		filp->f_pos = INT_LIMIT(off_t);
3420 	else
3421 		filp->f_pos++;
3422 nopos:
3423 	ret = 0;
3424 err:
3425 	btrfs_free_path(path);
3426 	return ret;
3427 }
3428 
3429 int btrfs_write_inode(struct inode *inode, int wait)
3430 {
3431 	struct btrfs_root *root = BTRFS_I(inode)->root;
3432 	struct btrfs_trans_handle *trans;
3433 	int ret = 0;
3434 
3435 	if (root->fs_info->btree_inode == inode)
3436 		return 0;
3437 
3438 	if (wait) {
3439 		trans = btrfs_join_transaction(root, 1);
3440 		btrfs_set_trans_block_group(trans, inode);
3441 		ret = btrfs_commit_transaction(trans, root);
3442 	}
3443 	return ret;
3444 }
3445 
3446 /*
3447  * This is somewhat expensive, updating the tree every time the
3448  * inode changes.  But, it is most likely to find the inode in cache.
3449  * FIXME, needs more benchmarking...there are no reasons other than performance
3450  * to keep or drop this code.
3451  */
3452 void btrfs_dirty_inode(struct inode *inode)
3453 {
3454 	struct btrfs_root *root = BTRFS_I(inode)->root;
3455 	struct btrfs_trans_handle *trans;
3456 
3457 	trans = btrfs_join_transaction(root, 1);
3458 	btrfs_set_trans_block_group(trans, inode);
3459 	btrfs_update_inode(trans, root, inode);
3460 	btrfs_end_transaction(trans, root);
3461 }
3462 
3463 /*
3464  * find the highest existing sequence number in a directory
3465  * and then set the in-memory index_cnt variable to reflect
3466  * free sequence numbers
3467  */
3468 static int btrfs_set_inode_index_count(struct inode *inode)
3469 {
3470 	struct btrfs_root *root = BTRFS_I(inode)->root;
3471 	struct btrfs_key key, found_key;
3472 	struct btrfs_path *path;
3473 	struct extent_buffer *leaf;
3474 	int ret;
3475 
3476 	key.objectid = inode->i_ino;
3477 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3478 	key.offset = (u64)-1;
3479 
3480 	path = btrfs_alloc_path();
3481 	if (!path)
3482 		return -ENOMEM;
3483 
3484 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3485 	if (ret < 0)
3486 		goto out;
3487 	/* FIXME: we should be able to handle this */
3488 	if (ret == 0)
3489 		goto out;
3490 	ret = 0;
3491 
3492 	/*
3493 	 * MAGIC NUMBER EXPLANATION:
3494 	 * since we search a directory based on f_pos we have to start at 2
3495 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3496 	 * else has to start at 2
3497 	 */
3498 	if (path->slots[0] == 0) {
3499 		BTRFS_I(inode)->index_cnt = 2;
3500 		goto out;
3501 	}
3502 
3503 	path->slots[0]--;
3504 
3505 	leaf = path->nodes[0];
3506 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3507 
3508 	if (found_key.objectid != inode->i_ino ||
3509 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3510 		BTRFS_I(inode)->index_cnt = 2;
3511 		goto out;
3512 	}
3513 
3514 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3515 out:
3516 	btrfs_free_path(path);
3517 	return ret;
3518 }
3519 
3520 /*
3521  * helper to find a free sequence number in a given directory.  This current
3522  * code is very simple, later versions will do smarter things in the btree
3523  */
3524 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3525 {
3526 	int ret = 0;
3527 
3528 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3529 		ret = btrfs_set_inode_index_count(dir);
3530 		if (ret)
3531 			return ret;
3532 	}
3533 
3534 	*index = BTRFS_I(dir)->index_cnt;
3535 	BTRFS_I(dir)->index_cnt++;
3536 
3537 	return ret;
3538 }
3539 
3540 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3541 				     struct btrfs_root *root,
3542 				     struct inode *dir,
3543 				     const char *name, int name_len,
3544 				     u64 ref_objectid, u64 objectid,
3545 				     u64 alloc_hint, int mode, u64 *index)
3546 {
3547 	struct inode *inode;
3548 	struct btrfs_inode_item *inode_item;
3549 	struct btrfs_key *location;
3550 	struct btrfs_path *path;
3551 	struct btrfs_inode_ref *ref;
3552 	struct btrfs_key key[2];
3553 	u32 sizes[2];
3554 	unsigned long ptr;
3555 	int ret;
3556 	int owner;
3557 
3558 	path = btrfs_alloc_path();
3559 	BUG_ON(!path);
3560 
3561 	inode = new_inode(root->fs_info->sb);
3562 	if (!inode)
3563 		return ERR_PTR(-ENOMEM);
3564 
3565 	if (dir) {
3566 		ret = btrfs_set_inode_index(dir, index);
3567 		if (ret) {
3568 			iput(inode);
3569 			return ERR_PTR(ret);
3570 		}
3571 	}
3572 	/*
3573 	 * index_cnt is ignored for everything but a dir,
3574 	 * btrfs_get_inode_index_count has an explanation for the magic
3575 	 * number
3576 	 */
3577 	init_btrfs_i(inode);
3578 	BTRFS_I(inode)->index_cnt = 2;
3579 	BTRFS_I(inode)->root = root;
3580 	BTRFS_I(inode)->generation = trans->transid;
3581 	btrfs_set_inode_space_info(root, inode);
3582 
3583 	if (mode & S_IFDIR)
3584 		owner = 0;
3585 	else
3586 		owner = 1;
3587 	BTRFS_I(inode)->block_group =
3588 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3589 
3590 	key[0].objectid = objectid;
3591 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3592 	key[0].offset = 0;
3593 
3594 	key[1].objectid = objectid;
3595 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3596 	key[1].offset = ref_objectid;
3597 
3598 	sizes[0] = sizeof(struct btrfs_inode_item);
3599 	sizes[1] = name_len + sizeof(*ref);
3600 
3601 	path->leave_spinning = 1;
3602 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3603 	if (ret != 0)
3604 		goto fail;
3605 
3606 	if (objectid > root->highest_inode)
3607 		root->highest_inode = objectid;
3608 
3609 	inode->i_uid = current_fsuid();
3610 
3611 	if (dir && (dir->i_mode & S_ISGID)) {
3612 		inode->i_gid = dir->i_gid;
3613 		if (S_ISDIR(mode))
3614 			mode |= S_ISGID;
3615 	} else
3616 		inode->i_gid = current_fsgid();
3617 
3618 	inode->i_mode = mode;
3619 	inode->i_ino = objectid;
3620 	inode_set_bytes(inode, 0);
3621 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3622 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3623 				  struct btrfs_inode_item);
3624 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3625 
3626 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3627 			     struct btrfs_inode_ref);
3628 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3629 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3630 	ptr = (unsigned long)(ref + 1);
3631 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3632 
3633 	btrfs_mark_buffer_dirty(path->nodes[0]);
3634 	btrfs_free_path(path);
3635 
3636 	location = &BTRFS_I(inode)->location;
3637 	location->objectid = objectid;
3638 	location->offset = 0;
3639 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3640 
3641 	btrfs_inherit_iflags(inode, dir);
3642 
3643 	if ((mode & S_IFREG)) {
3644 		if (btrfs_test_opt(root, NODATASUM))
3645 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3646 		if (btrfs_test_opt(root, NODATACOW))
3647 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3648 	}
3649 
3650 	insert_inode_hash(inode);
3651 	inode_tree_add(inode);
3652 	return inode;
3653 fail:
3654 	if (dir)
3655 		BTRFS_I(dir)->index_cnt--;
3656 	btrfs_free_path(path);
3657 	iput(inode);
3658 	return ERR_PTR(ret);
3659 }
3660 
3661 static inline u8 btrfs_inode_type(struct inode *inode)
3662 {
3663 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3664 }
3665 
3666 /*
3667  * utility function to add 'inode' into 'parent_inode' with
3668  * a give name and a given sequence number.
3669  * if 'add_backref' is true, also insert a backref from the
3670  * inode to the parent directory.
3671  */
3672 int btrfs_add_link(struct btrfs_trans_handle *trans,
3673 		   struct inode *parent_inode, struct inode *inode,
3674 		   const char *name, int name_len, int add_backref, u64 index)
3675 {
3676 	int ret;
3677 	struct btrfs_key key;
3678 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3679 
3680 	key.objectid = inode->i_ino;
3681 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3682 	key.offset = 0;
3683 
3684 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3685 				    parent_inode->i_ino,
3686 				    &key, btrfs_inode_type(inode),
3687 				    index);
3688 	if (ret == 0) {
3689 		if (add_backref) {
3690 			ret = btrfs_insert_inode_ref(trans, root,
3691 						     name, name_len,
3692 						     inode->i_ino,
3693 						     parent_inode->i_ino,
3694 						     index);
3695 		}
3696 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3697 				   name_len * 2);
3698 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3699 		ret = btrfs_update_inode(trans, root, parent_inode);
3700 	}
3701 	return ret;
3702 }
3703 
3704 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3705 			    struct dentry *dentry, struct inode *inode,
3706 			    int backref, u64 index)
3707 {
3708 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3709 				 inode, dentry->d_name.name,
3710 				 dentry->d_name.len, backref, index);
3711 	if (!err) {
3712 		d_instantiate(dentry, inode);
3713 		return 0;
3714 	}
3715 	if (err > 0)
3716 		err = -EEXIST;
3717 	return err;
3718 }
3719 
3720 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3721 			int mode, dev_t rdev)
3722 {
3723 	struct btrfs_trans_handle *trans;
3724 	struct btrfs_root *root = BTRFS_I(dir)->root;
3725 	struct inode *inode = NULL;
3726 	int err;
3727 	int drop_inode = 0;
3728 	u64 objectid;
3729 	unsigned long nr = 0;
3730 	u64 index = 0;
3731 
3732 	if (!new_valid_dev(rdev))
3733 		return -EINVAL;
3734 
3735 	err = btrfs_check_metadata_free_space(root);
3736 	if (err)
3737 		goto fail;
3738 
3739 	trans = btrfs_start_transaction(root, 1);
3740 	btrfs_set_trans_block_group(trans, dir);
3741 
3742 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3743 	if (err) {
3744 		err = -ENOSPC;
3745 		goto out_unlock;
3746 	}
3747 
3748 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3749 				dentry->d_name.len,
3750 				dentry->d_parent->d_inode->i_ino, objectid,
3751 				BTRFS_I(dir)->block_group, mode, &index);
3752 	err = PTR_ERR(inode);
3753 	if (IS_ERR(inode))
3754 		goto out_unlock;
3755 
3756 	err = btrfs_init_inode_security(inode, dir);
3757 	if (err) {
3758 		drop_inode = 1;
3759 		goto out_unlock;
3760 	}
3761 
3762 	btrfs_set_trans_block_group(trans, inode);
3763 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3764 	if (err)
3765 		drop_inode = 1;
3766 	else {
3767 		inode->i_op = &btrfs_special_inode_operations;
3768 		init_special_inode(inode, inode->i_mode, rdev);
3769 		btrfs_update_inode(trans, root, inode);
3770 	}
3771 	btrfs_update_inode_block_group(trans, inode);
3772 	btrfs_update_inode_block_group(trans, dir);
3773 out_unlock:
3774 	nr = trans->blocks_used;
3775 	btrfs_end_transaction_throttle(trans, root);
3776 fail:
3777 	if (drop_inode) {
3778 		inode_dec_link_count(inode);
3779 		iput(inode);
3780 	}
3781 	btrfs_btree_balance_dirty(root, nr);
3782 	return err;
3783 }
3784 
3785 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3786 			int mode, struct nameidata *nd)
3787 {
3788 	struct btrfs_trans_handle *trans;
3789 	struct btrfs_root *root = BTRFS_I(dir)->root;
3790 	struct inode *inode = NULL;
3791 	int err;
3792 	int drop_inode = 0;
3793 	unsigned long nr = 0;
3794 	u64 objectid;
3795 	u64 index = 0;
3796 
3797 	err = btrfs_check_metadata_free_space(root);
3798 	if (err)
3799 		goto fail;
3800 	trans = btrfs_start_transaction(root, 1);
3801 	btrfs_set_trans_block_group(trans, dir);
3802 
3803 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3804 	if (err) {
3805 		err = -ENOSPC;
3806 		goto out_unlock;
3807 	}
3808 
3809 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3810 				dentry->d_name.len,
3811 				dentry->d_parent->d_inode->i_ino,
3812 				objectid, BTRFS_I(dir)->block_group, mode,
3813 				&index);
3814 	err = PTR_ERR(inode);
3815 	if (IS_ERR(inode))
3816 		goto out_unlock;
3817 
3818 	err = btrfs_init_inode_security(inode, dir);
3819 	if (err) {
3820 		drop_inode = 1;
3821 		goto out_unlock;
3822 	}
3823 
3824 	btrfs_set_trans_block_group(trans, inode);
3825 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3826 	if (err)
3827 		drop_inode = 1;
3828 	else {
3829 		inode->i_mapping->a_ops = &btrfs_aops;
3830 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3831 		inode->i_fop = &btrfs_file_operations;
3832 		inode->i_op = &btrfs_file_inode_operations;
3833 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3834 	}
3835 	btrfs_update_inode_block_group(trans, inode);
3836 	btrfs_update_inode_block_group(trans, dir);
3837 out_unlock:
3838 	nr = trans->blocks_used;
3839 	btrfs_end_transaction_throttle(trans, root);
3840 fail:
3841 	if (drop_inode) {
3842 		inode_dec_link_count(inode);
3843 		iput(inode);
3844 	}
3845 	btrfs_btree_balance_dirty(root, nr);
3846 	return err;
3847 }
3848 
3849 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3850 		      struct dentry *dentry)
3851 {
3852 	struct btrfs_trans_handle *trans;
3853 	struct btrfs_root *root = BTRFS_I(dir)->root;
3854 	struct inode *inode = old_dentry->d_inode;
3855 	u64 index;
3856 	unsigned long nr = 0;
3857 	int err;
3858 	int drop_inode = 0;
3859 
3860 	if (inode->i_nlink == 0)
3861 		return -ENOENT;
3862 
3863 	btrfs_inc_nlink(inode);
3864 	err = btrfs_check_metadata_free_space(root);
3865 	if (err)
3866 		goto fail;
3867 	err = btrfs_set_inode_index(dir, &index);
3868 	if (err)
3869 		goto fail;
3870 
3871 	trans = btrfs_start_transaction(root, 1);
3872 
3873 	btrfs_set_trans_block_group(trans, dir);
3874 	atomic_inc(&inode->i_count);
3875 
3876 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3877 
3878 	if (err)
3879 		drop_inode = 1;
3880 
3881 	btrfs_update_inode_block_group(trans, dir);
3882 	err = btrfs_update_inode(trans, root, inode);
3883 
3884 	if (err)
3885 		drop_inode = 1;
3886 
3887 	nr = trans->blocks_used;
3888 
3889 	btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3890 	btrfs_end_transaction_throttle(trans, root);
3891 fail:
3892 	if (drop_inode) {
3893 		inode_dec_link_count(inode);
3894 		iput(inode);
3895 	}
3896 	btrfs_btree_balance_dirty(root, nr);
3897 	return err;
3898 }
3899 
3900 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3901 {
3902 	struct inode *inode = NULL;
3903 	struct btrfs_trans_handle *trans;
3904 	struct btrfs_root *root = BTRFS_I(dir)->root;
3905 	int err = 0;
3906 	int drop_on_err = 0;
3907 	u64 objectid = 0;
3908 	u64 index = 0;
3909 	unsigned long nr = 1;
3910 
3911 	err = btrfs_check_metadata_free_space(root);
3912 	if (err)
3913 		goto out_unlock;
3914 
3915 	trans = btrfs_start_transaction(root, 1);
3916 	btrfs_set_trans_block_group(trans, dir);
3917 
3918 	if (IS_ERR(trans)) {
3919 		err = PTR_ERR(trans);
3920 		goto out_unlock;
3921 	}
3922 
3923 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3924 	if (err) {
3925 		err = -ENOSPC;
3926 		goto out_unlock;
3927 	}
3928 
3929 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3930 				dentry->d_name.len,
3931 				dentry->d_parent->d_inode->i_ino, objectid,
3932 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3933 				&index);
3934 	if (IS_ERR(inode)) {
3935 		err = PTR_ERR(inode);
3936 		goto out_fail;
3937 	}
3938 
3939 	drop_on_err = 1;
3940 
3941 	err = btrfs_init_inode_security(inode, dir);
3942 	if (err)
3943 		goto out_fail;
3944 
3945 	inode->i_op = &btrfs_dir_inode_operations;
3946 	inode->i_fop = &btrfs_dir_file_operations;
3947 	btrfs_set_trans_block_group(trans, inode);
3948 
3949 	btrfs_i_size_write(inode, 0);
3950 	err = btrfs_update_inode(trans, root, inode);
3951 	if (err)
3952 		goto out_fail;
3953 
3954 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3955 				 inode, dentry->d_name.name,
3956 				 dentry->d_name.len, 0, index);
3957 	if (err)
3958 		goto out_fail;
3959 
3960 	d_instantiate(dentry, inode);
3961 	drop_on_err = 0;
3962 	btrfs_update_inode_block_group(trans, inode);
3963 	btrfs_update_inode_block_group(trans, dir);
3964 
3965 out_fail:
3966 	nr = trans->blocks_used;
3967 	btrfs_end_transaction_throttle(trans, root);
3968 
3969 out_unlock:
3970 	if (drop_on_err)
3971 		iput(inode);
3972 	btrfs_btree_balance_dirty(root, nr);
3973 	return err;
3974 }
3975 
3976 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3977  * and an extent that you want to insert, deal with overlap and insert
3978  * the new extent into the tree.
3979  */
3980 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3981 				struct extent_map *existing,
3982 				struct extent_map *em,
3983 				u64 map_start, u64 map_len)
3984 {
3985 	u64 start_diff;
3986 
3987 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3988 	start_diff = map_start - em->start;
3989 	em->start = map_start;
3990 	em->len = map_len;
3991 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3992 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3993 		em->block_start += start_diff;
3994 		em->block_len -= start_diff;
3995 	}
3996 	return add_extent_mapping(em_tree, em);
3997 }
3998 
3999 static noinline int uncompress_inline(struct btrfs_path *path,
4000 				      struct inode *inode, struct page *page,
4001 				      size_t pg_offset, u64 extent_offset,
4002 				      struct btrfs_file_extent_item *item)
4003 {
4004 	int ret;
4005 	struct extent_buffer *leaf = path->nodes[0];
4006 	char *tmp;
4007 	size_t max_size;
4008 	unsigned long inline_size;
4009 	unsigned long ptr;
4010 
4011 	WARN_ON(pg_offset != 0);
4012 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4013 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4014 					btrfs_item_nr(leaf, path->slots[0]));
4015 	tmp = kmalloc(inline_size, GFP_NOFS);
4016 	ptr = btrfs_file_extent_inline_start(item);
4017 
4018 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4019 
4020 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4021 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4022 				    inline_size, max_size);
4023 	if (ret) {
4024 		char *kaddr = kmap_atomic(page, KM_USER0);
4025 		unsigned long copy_size = min_t(u64,
4026 				  PAGE_CACHE_SIZE - pg_offset,
4027 				  max_size - extent_offset);
4028 		memset(kaddr + pg_offset, 0, copy_size);
4029 		kunmap_atomic(kaddr, KM_USER0);
4030 	}
4031 	kfree(tmp);
4032 	return 0;
4033 }
4034 
4035 /*
4036  * a bit scary, this does extent mapping from logical file offset to the disk.
4037  * the ugly parts come from merging extents from the disk with the in-ram
4038  * representation.  This gets more complex because of the data=ordered code,
4039  * where the in-ram extents might be locked pending data=ordered completion.
4040  *
4041  * This also copies inline extents directly into the page.
4042  */
4043 
4044 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4045 				    size_t pg_offset, u64 start, u64 len,
4046 				    int create)
4047 {
4048 	int ret;
4049 	int err = 0;
4050 	u64 bytenr;
4051 	u64 extent_start = 0;
4052 	u64 extent_end = 0;
4053 	u64 objectid = inode->i_ino;
4054 	u32 found_type;
4055 	struct btrfs_path *path = NULL;
4056 	struct btrfs_root *root = BTRFS_I(inode)->root;
4057 	struct btrfs_file_extent_item *item;
4058 	struct extent_buffer *leaf;
4059 	struct btrfs_key found_key;
4060 	struct extent_map *em = NULL;
4061 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4062 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4063 	struct btrfs_trans_handle *trans = NULL;
4064 	int compressed;
4065 
4066 again:
4067 	spin_lock(&em_tree->lock);
4068 	em = lookup_extent_mapping(em_tree, start, len);
4069 	if (em)
4070 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4071 	spin_unlock(&em_tree->lock);
4072 
4073 	if (em) {
4074 		if (em->start > start || em->start + em->len <= start)
4075 			free_extent_map(em);
4076 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4077 			free_extent_map(em);
4078 		else
4079 			goto out;
4080 	}
4081 	em = alloc_extent_map(GFP_NOFS);
4082 	if (!em) {
4083 		err = -ENOMEM;
4084 		goto out;
4085 	}
4086 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4087 	em->start = EXTENT_MAP_HOLE;
4088 	em->orig_start = EXTENT_MAP_HOLE;
4089 	em->len = (u64)-1;
4090 	em->block_len = (u64)-1;
4091 
4092 	if (!path) {
4093 		path = btrfs_alloc_path();
4094 		BUG_ON(!path);
4095 	}
4096 
4097 	ret = btrfs_lookup_file_extent(trans, root, path,
4098 				       objectid, start, trans != NULL);
4099 	if (ret < 0) {
4100 		err = ret;
4101 		goto out;
4102 	}
4103 
4104 	if (ret != 0) {
4105 		if (path->slots[0] == 0)
4106 			goto not_found;
4107 		path->slots[0]--;
4108 	}
4109 
4110 	leaf = path->nodes[0];
4111 	item = btrfs_item_ptr(leaf, path->slots[0],
4112 			      struct btrfs_file_extent_item);
4113 	/* are we inside the extent that was found? */
4114 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4115 	found_type = btrfs_key_type(&found_key);
4116 	if (found_key.objectid != objectid ||
4117 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4118 		goto not_found;
4119 	}
4120 
4121 	found_type = btrfs_file_extent_type(leaf, item);
4122 	extent_start = found_key.offset;
4123 	compressed = btrfs_file_extent_compression(leaf, item);
4124 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4125 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4126 		extent_end = extent_start +
4127 		       btrfs_file_extent_num_bytes(leaf, item);
4128 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4129 		size_t size;
4130 		size = btrfs_file_extent_inline_len(leaf, item);
4131 		extent_end = (extent_start + size + root->sectorsize - 1) &
4132 			~((u64)root->sectorsize - 1);
4133 	}
4134 
4135 	if (start >= extent_end) {
4136 		path->slots[0]++;
4137 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4138 			ret = btrfs_next_leaf(root, path);
4139 			if (ret < 0) {
4140 				err = ret;
4141 				goto out;
4142 			}
4143 			if (ret > 0)
4144 				goto not_found;
4145 			leaf = path->nodes[0];
4146 		}
4147 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4148 		if (found_key.objectid != objectid ||
4149 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4150 			goto not_found;
4151 		if (start + len <= found_key.offset)
4152 			goto not_found;
4153 		em->start = start;
4154 		em->len = found_key.offset - start;
4155 		goto not_found_em;
4156 	}
4157 
4158 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4159 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4160 		em->start = extent_start;
4161 		em->len = extent_end - extent_start;
4162 		em->orig_start = extent_start -
4163 				 btrfs_file_extent_offset(leaf, item);
4164 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4165 		if (bytenr == 0) {
4166 			em->block_start = EXTENT_MAP_HOLE;
4167 			goto insert;
4168 		}
4169 		if (compressed) {
4170 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4171 			em->block_start = bytenr;
4172 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4173 									 item);
4174 		} else {
4175 			bytenr += btrfs_file_extent_offset(leaf, item);
4176 			em->block_start = bytenr;
4177 			em->block_len = em->len;
4178 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4179 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4180 		}
4181 		goto insert;
4182 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4183 		unsigned long ptr;
4184 		char *map;
4185 		size_t size;
4186 		size_t extent_offset;
4187 		size_t copy_size;
4188 
4189 		em->block_start = EXTENT_MAP_INLINE;
4190 		if (!page || create) {
4191 			em->start = extent_start;
4192 			em->len = extent_end - extent_start;
4193 			goto out;
4194 		}
4195 
4196 		size = btrfs_file_extent_inline_len(leaf, item);
4197 		extent_offset = page_offset(page) + pg_offset - extent_start;
4198 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4199 				size - extent_offset);
4200 		em->start = extent_start + extent_offset;
4201 		em->len = (copy_size + root->sectorsize - 1) &
4202 			~((u64)root->sectorsize - 1);
4203 		em->orig_start = EXTENT_MAP_INLINE;
4204 		if (compressed)
4205 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4206 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4207 		if (create == 0 && !PageUptodate(page)) {
4208 			if (btrfs_file_extent_compression(leaf, item) ==
4209 			    BTRFS_COMPRESS_ZLIB) {
4210 				ret = uncompress_inline(path, inode, page,
4211 							pg_offset,
4212 							extent_offset, item);
4213 				BUG_ON(ret);
4214 			} else {
4215 				map = kmap(page);
4216 				read_extent_buffer(leaf, map + pg_offset, ptr,
4217 						   copy_size);
4218 				kunmap(page);
4219 			}
4220 			flush_dcache_page(page);
4221 		} else if (create && PageUptodate(page)) {
4222 			if (!trans) {
4223 				kunmap(page);
4224 				free_extent_map(em);
4225 				em = NULL;
4226 				btrfs_release_path(root, path);
4227 				trans = btrfs_join_transaction(root, 1);
4228 				goto again;
4229 			}
4230 			map = kmap(page);
4231 			write_extent_buffer(leaf, map + pg_offset, ptr,
4232 					    copy_size);
4233 			kunmap(page);
4234 			btrfs_mark_buffer_dirty(leaf);
4235 		}
4236 		set_extent_uptodate(io_tree, em->start,
4237 				    extent_map_end(em) - 1, GFP_NOFS);
4238 		goto insert;
4239 	} else {
4240 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4241 		WARN_ON(1);
4242 	}
4243 not_found:
4244 	em->start = start;
4245 	em->len = len;
4246 not_found_em:
4247 	em->block_start = EXTENT_MAP_HOLE;
4248 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4249 insert:
4250 	btrfs_release_path(root, path);
4251 	if (em->start > start || extent_map_end(em) <= start) {
4252 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4253 		       "[%llu %llu]\n", (unsigned long long)em->start,
4254 		       (unsigned long long)em->len,
4255 		       (unsigned long long)start,
4256 		       (unsigned long long)len);
4257 		err = -EIO;
4258 		goto out;
4259 	}
4260 
4261 	err = 0;
4262 	spin_lock(&em_tree->lock);
4263 	ret = add_extent_mapping(em_tree, em);
4264 	/* it is possible that someone inserted the extent into the tree
4265 	 * while we had the lock dropped.  It is also possible that
4266 	 * an overlapping map exists in the tree
4267 	 */
4268 	if (ret == -EEXIST) {
4269 		struct extent_map *existing;
4270 
4271 		ret = 0;
4272 
4273 		existing = lookup_extent_mapping(em_tree, start, len);
4274 		if (existing && (existing->start > start ||
4275 		    existing->start + existing->len <= start)) {
4276 			free_extent_map(existing);
4277 			existing = NULL;
4278 		}
4279 		if (!existing) {
4280 			existing = lookup_extent_mapping(em_tree, em->start,
4281 							 em->len);
4282 			if (existing) {
4283 				err = merge_extent_mapping(em_tree, existing,
4284 							   em, start,
4285 							   root->sectorsize);
4286 				free_extent_map(existing);
4287 				if (err) {
4288 					free_extent_map(em);
4289 					em = NULL;
4290 				}
4291 			} else {
4292 				err = -EIO;
4293 				free_extent_map(em);
4294 				em = NULL;
4295 			}
4296 		} else {
4297 			free_extent_map(em);
4298 			em = existing;
4299 			err = 0;
4300 		}
4301 	}
4302 	spin_unlock(&em_tree->lock);
4303 out:
4304 	if (path)
4305 		btrfs_free_path(path);
4306 	if (trans) {
4307 		ret = btrfs_end_transaction(trans, root);
4308 		if (!err)
4309 			err = ret;
4310 	}
4311 	if (err) {
4312 		free_extent_map(em);
4313 		return ERR_PTR(err);
4314 	}
4315 	return em;
4316 }
4317 
4318 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4319 			const struct iovec *iov, loff_t offset,
4320 			unsigned long nr_segs)
4321 {
4322 	return -EINVAL;
4323 }
4324 
4325 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4326 		__u64 start, __u64 len)
4327 {
4328 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4329 }
4330 
4331 int btrfs_readpage(struct file *file, struct page *page)
4332 {
4333 	struct extent_io_tree *tree;
4334 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4335 	return extent_read_full_page(tree, page, btrfs_get_extent);
4336 }
4337 
4338 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4339 {
4340 	struct extent_io_tree *tree;
4341 
4342 
4343 	if (current->flags & PF_MEMALLOC) {
4344 		redirty_page_for_writepage(wbc, page);
4345 		unlock_page(page);
4346 		return 0;
4347 	}
4348 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4349 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4350 }
4351 
4352 int btrfs_writepages(struct address_space *mapping,
4353 		     struct writeback_control *wbc)
4354 {
4355 	struct extent_io_tree *tree;
4356 
4357 	tree = &BTRFS_I(mapping->host)->io_tree;
4358 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4359 }
4360 
4361 static int
4362 btrfs_readpages(struct file *file, struct address_space *mapping,
4363 		struct list_head *pages, unsigned nr_pages)
4364 {
4365 	struct extent_io_tree *tree;
4366 	tree = &BTRFS_I(mapping->host)->io_tree;
4367 	return extent_readpages(tree, mapping, pages, nr_pages,
4368 				btrfs_get_extent);
4369 }
4370 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4371 {
4372 	struct extent_io_tree *tree;
4373 	struct extent_map_tree *map;
4374 	int ret;
4375 
4376 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4377 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4378 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4379 	if (ret == 1) {
4380 		ClearPagePrivate(page);
4381 		set_page_private(page, 0);
4382 		page_cache_release(page);
4383 	}
4384 	return ret;
4385 }
4386 
4387 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4388 {
4389 	if (PageWriteback(page) || PageDirty(page))
4390 		return 0;
4391 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4392 }
4393 
4394 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4395 {
4396 	struct extent_io_tree *tree;
4397 	struct btrfs_ordered_extent *ordered;
4398 	u64 page_start = page_offset(page);
4399 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4400 
4401 	wait_on_page_writeback(page);
4402 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4403 	if (offset) {
4404 		btrfs_releasepage(page, GFP_NOFS);
4405 		return;
4406 	}
4407 
4408 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4409 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4410 					   page_offset(page));
4411 	if (ordered) {
4412 		/*
4413 		 * IO on this page will never be started, so we need
4414 		 * to account for any ordered extents now
4415 		 */
4416 		clear_extent_bit(tree, page_start, page_end,
4417 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4418 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4419 		btrfs_finish_ordered_io(page->mapping->host,
4420 					page_start, page_end);
4421 		btrfs_put_ordered_extent(ordered);
4422 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4423 	}
4424 	clear_extent_bit(tree, page_start, page_end,
4425 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4426 		 EXTENT_ORDERED,
4427 		 1, 1, GFP_NOFS);
4428 	__btrfs_releasepage(page, GFP_NOFS);
4429 
4430 	ClearPageChecked(page);
4431 	if (PagePrivate(page)) {
4432 		ClearPagePrivate(page);
4433 		set_page_private(page, 0);
4434 		page_cache_release(page);
4435 	}
4436 }
4437 
4438 /*
4439  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4440  * called from a page fault handler when a page is first dirtied. Hence we must
4441  * be careful to check for EOF conditions here. We set the page up correctly
4442  * for a written page which means we get ENOSPC checking when writing into
4443  * holes and correct delalloc and unwritten extent mapping on filesystems that
4444  * support these features.
4445  *
4446  * We are not allowed to take the i_mutex here so we have to play games to
4447  * protect against truncate races as the page could now be beyond EOF.  Because
4448  * vmtruncate() writes the inode size before removing pages, once we have the
4449  * page lock we can determine safely if the page is beyond EOF. If it is not
4450  * beyond EOF, then the page is guaranteed safe against truncation until we
4451  * unlock the page.
4452  */
4453 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4454 {
4455 	struct page *page = vmf->page;
4456 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4457 	struct btrfs_root *root = BTRFS_I(inode)->root;
4458 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4459 	struct btrfs_ordered_extent *ordered;
4460 	char *kaddr;
4461 	unsigned long zero_start;
4462 	loff_t size;
4463 	int ret;
4464 	u64 page_start;
4465 	u64 page_end;
4466 
4467 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4468 	if (ret) {
4469 		if (ret == -ENOMEM)
4470 			ret = VM_FAULT_OOM;
4471 		else /* -ENOSPC, -EIO, etc */
4472 			ret = VM_FAULT_SIGBUS;
4473 		goto out;
4474 	}
4475 
4476 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4477 again:
4478 	lock_page(page);
4479 	size = i_size_read(inode);
4480 	page_start = page_offset(page);
4481 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4482 
4483 	if ((page->mapping != inode->i_mapping) ||
4484 	    (page_start >= size)) {
4485 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4486 		/* page got truncated out from underneath us */
4487 		goto out_unlock;
4488 	}
4489 	wait_on_page_writeback(page);
4490 
4491 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4492 	set_page_extent_mapped(page);
4493 
4494 	/*
4495 	 * we can't set the delalloc bits if there are pending ordered
4496 	 * extents.  Drop our locks and wait for them to finish
4497 	 */
4498 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4499 	if (ordered) {
4500 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4501 		unlock_page(page);
4502 		btrfs_start_ordered_extent(inode, ordered, 1);
4503 		btrfs_put_ordered_extent(ordered);
4504 		goto again;
4505 	}
4506 
4507 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4508 	ret = 0;
4509 
4510 	/* page is wholly or partially inside EOF */
4511 	if (page_start + PAGE_CACHE_SIZE > size)
4512 		zero_start = size & ~PAGE_CACHE_MASK;
4513 	else
4514 		zero_start = PAGE_CACHE_SIZE;
4515 
4516 	if (zero_start != PAGE_CACHE_SIZE) {
4517 		kaddr = kmap(page);
4518 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4519 		flush_dcache_page(page);
4520 		kunmap(page);
4521 	}
4522 	ClearPageChecked(page);
4523 	set_page_dirty(page);
4524 
4525 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4526 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4527 
4528 out_unlock:
4529 	unlock_page(page);
4530 out:
4531 	return ret;
4532 }
4533 
4534 static void btrfs_truncate(struct inode *inode)
4535 {
4536 	struct btrfs_root *root = BTRFS_I(inode)->root;
4537 	int ret;
4538 	struct btrfs_trans_handle *trans;
4539 	unsigned long nr;
4540 	u64 mask = root->sectorsize - 1;
4541 
4542 	if (!S_ISREG(inode->i_mode))
4543 		return;
4544 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4545 		return;
4546 
4547 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4548 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4549 
4550 	trans = btrfs_start_transaction(root, 1);
4551 
4552 	/*
4553 	 * setattr is responsible for setting the ordered_data_close flag,
4554 	 * but that is only tested during the last file release.  That
4555 	 * could happen well after the next commit, leaving a great big
4556 	 * window where new writes may get lost if someone chooses to write
4557 	 * to this file after truncating to zero
4558 	 *
4559 	 * The inode doesn't have any dirty data here, and so if we commit
4560 	 * this is a noop.  If someone immediately starts writing to the inode
4561 	 * it is very likely we'll catch some of their writes in this
4562 	 * transaction, and the commit will find this file on the ordered
4563 	 * data list with good things to send down.
4564 	 *
4565 	 * This is a best effort solution, there is still a window where
4566 	 * using truncate to replace the contents of the file will
4567 	 * end up with a zero length file after a crash.
4568 	 */
4569 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4570 		btrfs_add_ordered_operation(trans, root, inode);
4571 
4572 	btrfs_set_trans_block_group(trans, inode);
4573 	btrfs_i_size_write(inode, inode->i_size);
4574 
4575 	ret = btrfs_orphan_add(trans, inode);
4576 	if (ret)
4577 		goto out;
4578 	/* FIXME, add redo link to tree so we don't leak on crash */
4579 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4580 				      BTRFS_EXTENT_DATA_KEY);
4581 	btrfs_update_inode(trans, root, inode);
4582 
4583 	ret = btrfs_orphan_del(trans, inode);
4584 	BUG_ON(ret);
4585 
4586 out:
4587 	nr = trans->blocks_used;
4588 	ret = btrfs_end_transaction_throttle(trans, root);
4589 	BUG_ON(ret);
4590 	btrfs_btree_balance_dirty(root, nr);
4591 }
4592 
4593 /*
4594  * create a new subvolume directory/inode (helper for the ioctl).
4595  */
4596 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4597 			     struct btrfs_root *new_root, struct dentry *dentry,
4598 			     u64 new_dirid, u64 alloc_hint)
4599 {
4600 	struct inode *inode;
4601 	int error;
4602 	u64 index = 0;
4603 
4604 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4605 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4606 	if (IS_ERR(inode))
4607 		return PTR_ERR(inode);
4608 	inode->i_op = &btrfs_dir_inode_operations;
4609 	inode->i_fop = &btrfs_dir_file_operations;
4610 
4611 	inode->i_nlink = 1;
4612 	btrfs_i_size_write(inode, 0);
4613 
4614 	error = btrfs_update_inode(trans, new_root, inode);
4615 	if (error)
4616 		return error;
4617 
4618 	d_instantiate(dentry, inode);
4619 	return 0;
4620 }
4621 
4622 /* helper function for file defrag and space balancing.  This
4623  * forces readahead on a given range of bytes in an inode
4624  */
4625 unsigned long btrfs_force_ra(struct address_space *mapping,
4626 			      struct file_ra_state *ra, struct file *file,
4627 			      pgoff_t offset, pgoff_t last_index)
4628 {
4629 	pgoff_t req_size = last_index - offset + 1;
4630 
4631 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4632 	return offset + req_size;
4633 }
4634 
4635 struct inode *btrfs_alloc_inode(struct super_block *sb)
4636 {
4637 	struct btrfs_inode *ei;
4638 
4639 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4640 	if (!ei)
4641 		return NULL;
4642 	ei->last_trans = 0;
4643 	ei->logged_trans = 0;
4644 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4645 	INIT_LIST_HEAD(&ei->i_orphan);
4646 	INIT_LIST_HEAD(&ei->ordered_operations);
4647 	return &ei->vfs_inode;
4648 }
4649 
4650 void btrfs_destroy_inode(struct inode *inode)
4651 {
4652 	struct btrfs_ordered_extent *ordered;
4653 	struct btrfs_root *root = BTRFS_I(inode)->root;
4654 
4655 	WARN_ON(!list_empty(&inode->i_dentry));
4656 	WARN_ON(inode->i_data.nrpages);
4657 
4658 	/*
4659 	 * Make sure we're properly removed from the ordered operation
4660 	 * lists.
4661 	 */
4662 	smp_mb();
4663 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4664 		spin_lock(&root->fs_info->ordered_extent_lock);
4665 		list_del_init(&BTRFS_I(inode)->ordered_operations);
4666 		spin_unlock(&root->fs_info->ordered_extent_lock);
4667 	}
4668 
4669 	spin_lock(&root->list_lock);
4670 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4671 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4672 		       " list\n", inode->i_ino);
4673 		dump_stack();
4674 	}
4675 	spin_unlock(&root->list_lock);
4676 
4677 	while (1) {
4678 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4679 		if (!ordered)
4680 			break;
4681 		else {
4682 			printk(KERN_ERR "btrfs found ordered "
4683 			       "extent %llu %llu on inode cleanup\n",
4684 			       (unsigned long long)ordered->file_offset,
4685 			       (unsigned long long)ordered->len);
4686 			btrfs_remove_ordered_extent(inode, ordered);
4687 			btrfs_put_ordered_extent(ordered);
4688 			btrfs_put_ordered_extent(ordered);
4689 		}
4690 	}
4691 	inode_tree_del(inode);
4692 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4693 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4694 }
4695 
4696 static void init_once(void *foo)
4697 {
4698 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4699 
4700 	inode_init_once(&ei->vfs_inode);
4701 }
4702 
4703 void btrfs_destroy_cachep(void)
4704 {
4705 	if (btrfs_inode_cachep)
4706 		kmem_cache_destroy(btrfs_inode_cachep);
4707 	if (btrfs_trans_handle_cachep)
4708 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4709 	if (btrfs_transaction_cachep)
4710 		kmem_cache_destroy(btrfs_transaction_cachep);
4711 	if (btrfs_path_cachep)
4712 		kmem_cache_destroy(btrfs_path_cachep);
4713 }
4714 
4715 int btrfs_init_cachep(void)
4716 {
4717 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4718 			sizeof(struct btrfs_inode), 0,
4719 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4720 	if (!btrfs_inode_cachep)
4721 		goto fail;
4722 
4723 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4724 			sizeof(struct btrfs_trans_handle), 0,
4725 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4726 	if (!btrfs_trans_handle_cachep)
4727 		goto fail;
4728 
4729 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4730 			sizeof(struct btrfs_transaction), 0,
4731 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4732 	if (!btrfs_transaction_cachep)
4733 		goto fail;
4734 
4735 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4736 			sizeof(struct btrfs_path), 0,
4737 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4738 	if (!btrfs_path_cachep)
4739 		goto fail;
4740 
4741 	return 0;
4742 fail:
4743 	btrfs_destroy_cachep();
4744 	return -ENOMEM;
4745 }
4746 
4747 static int btrfs_getattr(struct vfsmount *mnt,
4748 			 struct dentry *dentry, struct kstat *stat)
4749 {
4750 	struct inode *inode = dentry->d_inode;
4751 	generic_fillattr(inode, stat);
4752 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4753 	stat->blksize = PAGE_CACHE_SIZE;
4754 	stat->blocks = (inode_get_bytes(inode) +
4755 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4756 	return 0;
4757 }
4758 
4759 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4760 			   struct inode *new_dir, struct dentry *new_dentry)
4761 {
4762 	struct btrfs_trans_handle *trans;
4763 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4764 	struct inode *new_inode = new_dentry->d_inode;
4765 	struct inode *old_inode = old_dentry->d_inode;
4766 	struct timespec ctime = CURRENT_TIME;
4767 	u64 index = 0;
4768 	int ret;
4769 
4770 	/* we're not allowed to rename between subvolumes */
4771 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4772 	    BTRFS_I(new_dir)->root->root_key.objectid)
4773 		return -EXDEV;
4774 
4775 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4776 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4777 		return -ENOTEMPTY;
4778 	}
4779 
4780 	/* to rename a snapshot or subvolume, we need to juggle the
4781 	 * backrefs.  This isn't coded yet
4782 	 */
4783 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4784 		return -EXDEV;
4785 
4786 	ret = btrfs_check_metadata_free_space(root);
4787 	if (ret)
4788 		goto out_unlock;
4789 
4790 	/*
4791 	 * we're using rename to replace one file with another.
4792 	 * and the replacement file is large.  Start IO on it now so
4793 	 * we don't add too much work to the end of the transaction
4794 	 */
4795 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4796 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4797 		filemap_flush(old_inode->i_mapping);
4798 
4799 	trans = btrfs_start_transaction(root, 1);
4800 
4801 	/*
4802 	 * make sure the inode gets flushed if it is replacing
4803 	 * something.
4804 	 */
4805 	if (new_inode && new_inode->i_size &&
4806 	    old_inode && S_ISREG(old_inode->i_mode)) {
4807 		btrfs_add_ordered_operation(trans, root, old_inode);
4808 	}
4809 
4810 	/*
4811 	 * this is an ugly little race, but the rename is required to make
4812 	 * sure that if we crash, the inode is either at the old name
4813 	 * or the new one.  pinning the log transaction lets us make sure
4814 	 * we don't allow a log commit to come in after we unlink the
4815 	 * name but before we add the new name back in.
4816 	 */
4817 	btrfs_pin_log_trans(root);
4818 
4819 	btrfs_set_trans_block_group(trans, new_dir);
4820 
4821 	btrfs_inc_nlink(old_dentry->d_inode);
4822 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4823 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4824 	old_inode->i_ctime = ctime;
4825 
4826 	if (old_dentry->d_parent != new_dentry->d_parent)
4827 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4828 
4829 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4830 				 old_dentry->d_name.name,
4831 				 old_dentry->d_name.len);
4832 	if (ret)
4833 		goto out_fail;
4834 
4835 	if (new_inode) {
4836 		new_inode->i_ctime = CURRENT_TIME;
4837 		ret = btrfs_unlink_inode(trans, root, new_dir,
4838 					 new_dentry->d_inode,
4839 					 new_dentry->d_name.name,
4840 					 new_dentry->d_name.len);
4841 		if (ret)
4842 			goto out_fail;
4843 		if (new_inode->i_nlink == 0) {
4844 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4845 			if (ret)
4846 				goto out_fail;
4847 		}
4848 
4849 	}
4850 	ret = btrfs_set_inode_index(new_dir, &index);
4851 	if (ret)
4852 		goto out_fail;
4853 
4854 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4855 			     old_inode, new_dentry->d_name.name,
4856 			     new_dentry->d_name.len, 1, index);
4857 	if (ret)
4858 		goto out_fail;
4859 
4860 	btrfs_log_new_name(trans, old_inode, old_dir,
4861 				       new_dentry->d_parent);
4862 out_fail:
4863 
4864 	/* this btrfs_end_log_trans just allows the current
4865 	 * log-sub transaction to complete
4866 	 */
4867 	btrfs_end_log_trans(root);
4868 	btrfs_end_transaction_throttle(trans, root);
4869 out_unlock:
4870 	return ret;
4871 }
4872 
4873 /*
4874  * some fairly slow code that needs optimization. This walks the list
4875  * of all the inodes with pending delalloc and forces them to disk.
4876  */
4877 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4878 {
4879 	struct list_head *head = &root->fs_info->delalloc_inodes;
4880 	struct btrfs_inode *binode;
4881 	struct inode *inode;
4882 
4883 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4884 		return -EROFS;
4885 
4886 	spin_lock(&root->fs_info->delalloc_lock);
4887 	while (!list_empty(head)) {
4888 		binode = list_entry(head->next, struct btrfs_inode,
4889 				    delalloc_inodes);
4890 		inode = igrab(&binode->vfs_inode);
4891 		if (!inode)
4892 			list_del_init(&binode->delalloc_inodes);
4893 		spin_unlock(&root->fs_info->delalloc_lock);
4894 		if (inode) {
4895 			filemap_flush(inode->i_mapping);
4896 			iput(inode);
4897 		}
4898 		cond_resched();
4899 		spin_lock(&root->fs_info->delalloc_lock);
4900 	}
4901 	spin_unlock(&root->fs_info->delalloc_lock);
4902 
4903 	/* the filemap_flush will queue IO into the worker threads, but
4904 	 * we have to make sure the IO is actually started and that
4905 	 * ordered extents get created before we return
4906 	 */
4907 	atomic_inc(&root->fs_info->async_submit_draining);
4908 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4909 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4910 		wait_event(root->fs_info->async_submit_wait,
4911 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4912 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4913 	}
4914 	atomic_dec(&root->fs_info->async_submit_draining);
4915 	return 0;
4916 }
4917 
4918 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4919 			 const char *symname)
4920 {
4921 	struct btrfs_trans_handle *trans;
4922 	struct btrfs_root *root = BTRFS_I(dir)->root;
4923 	struct btrfs_path *path;
4924 	struct btrfs_key key;
4925 	struct inode *inode = NULL;
4926 	int err;
4927 	int drop_inode = 0;
4928 	u64 objectid;
4929 	u64 index = 0 ;
4930 	int name_len;
4931 	int datasize;
4932 	unsigned long ptr;
4933 	struct btrfs_file_extent_item *ei;
4934 	struct extent_buffer *leaf;
4935 	unsigned long nr = 0;
4936 
4937 	name_len = strlen(symname) + 1;
4938 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4939 		return -ENAMETOOLONG;
4940 
4941 	err = btrfs_check_metadata_free_space(root);
4942 	if (err)
4943 		goto out_fail;
4944 
4945 	trans = btrfs_start_transaction(root, 1);
4946 	btrfs_set_trans_block_group(trans, dir);
4947 
4948 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4949 	if (err) {
4950 		err = -ENOSPC;
4951 		goto out_unlock;
4952 	}
4953 
4954 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4955 				dentry->d_name.len,
4956 				dentry->d_parent->d_inode->i_ino, objectid,
4957 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4958 				&index);
4959 	err = PTR_ERR(inode);
4960 	if (IS_ERR(inode))
4961 		goto out_unlock;
4962 
4963 	err = btrfs_init_inode_security(inode, dir);
4964 	if (err) {
4965 		drop_inode = 1;
4966 		goto out_unlock;
4967 	}
4968 
4969 	btrfs_set_trans_block_group(trans, inode);
4970 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4971 	if (err)
4972 		drop_inode = 1;
4973 	else {
4974 		inode->i_mapping->a_ops = &btrfs_aops;
4975 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4976 		inode->i_fop = &btrfs_file_operations;
4977 		inode->i_op = &btrfs_file_inode_operations;
4978 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4979 	}
4980 	btrfs_update_inode_block_group(trans, inode);
4981 	btrfs_update_inode_block_group(trans, dir);
4982 	if (drop_inode)
4983 		goto out_unlock;
4984 
4985 	path = btrfs_alloc_path();
4986 	BUG_ON(!path);
4987 	key.objectid = inode->i_ino;
4988 	key.offset = 0;
4989 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4990 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4991 	err = btrfs_insert_empty_item(trans, root, path, &key,
4992 				      datasize);
4993 	if (err) {
4994 		drop_inode = 1;
4995 		goto out_unlock;
4996 	}
4997 	leaf = path->nodes[0];
4998 	ei = btrfs_item_ptr(leaf, path->slots[0],
4999 			    struct btrfs_file_extent_item);
5000 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5001 	btrfs_set_file_extent_type(leaf, ei,
5002 				   BTRFS_FILE_EXTENT_INLINE);
5003 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5004 	btrfs_set_file_extent_compression(leaf, ei, 0);
5005 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5006 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5007 
5008 	ptr = btrfs_file_extent_inline_start(ei);
5009 	write_extent_buffer(leaf, symname, ptr, name_len);
5010 	btrfs_mark_buffer_dirty(leaf);
5011 	btrfs_free_path(path);
5012 
5013 	inode->i_op = &btrfs_symlink_inode_operations;
5014 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5015 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5016 	inode_set_bytes(inode, name_len);
5017 	btrfs_i_size_write(inode, name_len - 1);
5018 	err = btrfs_update_inode(trans, root, inode);
5019 	if (err)
5020 		drop_inode = 1;
5021 
5022 out_unlock:
5023 	nr = trans->blocks_used;
5024 	btrfs_end_transaction_throttle(trans, root);
5025 out_fail:
5026 	if (drop_inode) {
5027 		inode_dec_link_count(inode);
5028 		iput(inode);
5029 	}
5030 	btrfs_btree_balance_dirty(root, nr);
5031 	return err;
5032 }
5033 
5034 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5035 			       struct inode *inode, u64 start, u64 end,
5036 			       u64 locked_end, u64 alloc_hint, int mode)
5037 {
5038 	struct btrfs_root *root = BTRFS_I(inode)->root;
5039 	struct btrfs_key ins;
5040 	u64 alloc_size;
5041 	u64 cur_offset = start;
5042 	u64 num_bytes = end - start;
5043 	int ret = 0;
5044 
5045 	while (num_bytes > 0) {
5046 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5047 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5048 					   root->sectorsize, 0, alloc_hint,
5049 					   (u64)-1, &ins, 1);
5050 		if (ret) {
5051 			WARN_ON(1);
5052 			goto out;
5053 		}
5054 		ret = insert_reserved_file_extent(trans, inode,
5055 						  cur_offset, ins.objectid,
5056 						  ins.offset, ins.offset,
5057 						  ins.offset, locked_end,
5058 						  0, 0, 0,
5059 						  BTRFS_FILE_EXTENT_PREALLOC);
5060 		BUG_ON(ret);
5061 		num_bytes -= ins.offset;
5062 		cur_offset += ins.offset;
5063 		alloc_hint = ins.objectid + ins.offset;
5064 	}
5065 out:
5066 	if (cur_offset > start) {
5067 		inode->i_ctime = CURRENT_TIME;
5068 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5069 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5070 		    cur_offset > i_size_read(inode))
5071 			btrfs_i_size_write(inode, cur_offset);
5072 		ret = btrfs_update_inode(trans, root, inode);
5073 		BUG_ON(ret);
5074 	}
5075 
5076 	return ret;
5077 }
5078 
5079 static long btrfs_fallocate(struct inode *inode, int mode,
5080 			    loff_t offset, loff_t len)
5081 {
5082 	u64 cur_offset;
5083 	u64 last_byte;
5084 	u64 alloc_start;
5085 	u64 alloc_end;
5086 	u64 alloc_hint = 0;
5087 	u64 locked_end;
5088 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5089 	struct extent_map *em;
5090 	struct btrfs_trans_handle *trans;
5091 	struct btrfs_root *root;
5092 	int ret;
5093 
5094 	alloc_start = offset & ~mask;
5095 	alloc_end =  (offset + len + mask) & ~mask;
5096 
5097 	/*
5098 	 * wait for ordered IO before we have any locks.  We'll loop again
5099 	 * below with the locks held.
5100 	 */
5101 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5102 
5103 	mutex_lock(&inode->i_mutex);
5104 	if (alloc_start > inode->i_size) {
5105 		ret = btrfs_cont_expand(inode, alloc_start);
5106 		if (ret)
5107 			goto out;
5108 	}
5109 
5110 	root = BTRFS_I(inode)->root;
5111 
5112 	ret = btrfs_check_data_free_space(root, inode,
5113 					  alloc_end - alloc_start);
5114 	if (ret)
5115 		goto out;
5116 
5117 	locked_end = alloc_end - 1;
5118 	while (1) {
5119 		struct btrfs_ordered_extent *ordered;
5120 
5121 		trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5122 		if (!trans) {
5123 			ret = -EIO;
5124 			goto out_free;
5125 		}
5126 
5127 		/* the extent lock is ordered inside the running
5128 		 * transaction
5129 		 */
5130 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5131 			    GFP_NOFS);
5132 		ordered = btrfs_lookup_first_ordered_extent(inode,
5133 							    alloc_end - 1);
5134 		if (ordered &&
5135 		    ordered->file_offset + ordered->len > alloc_start &&
5136 		    ordered->file_offset < alloc_end) {
5137 			btrfs_put_ordered_extent(ordered);
5138 			unlock_extent(&BTRFS_I(inode)->io_tree,
5139 				      alloc_start, locked_end, GFP_NOFS);
5140 			btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5141 
5142 			/*
5143 			 * we can't wait on the range with the transaction
5144 			 * running or with the extent lock held
5145 			 */
5146 			btrfs_wait_ordered_range(inode, alloc_start,
5147 						 alloc_end - alloc_start);
5148 		} else {
5149 			if (ordered)
5150 				btrfs_put_ordered_extent(ordered);
5151 			break;
5152 		}
5153 	}
5154 
5155 	cur_offset = alloc_start;
5156 	while (1) {
5157 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5158 				      alloc_end - cur_offset, 0);
5159 		BUG_ON(IS_ERR(em) || !em);
5160 		last_byte = min(extent_map_end(em), alloc_end);
5161 		last_byte = (last_byte + mask) & ~mask;
5162 		if (em->block_start == EXTENT_MAP_HOLE) {
5163 			ret = prealloc_file_range(trans, inode, cur_offset,
5164 					last_byte, locked_end + 1,
5165 					alloc_hint, mode);
5166 			if (ret < 0) {
5167 				free_extent_map(em);
5168 				break;
5169 			}
5170 		}
5171 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5172 			alloc_hint = em->block_start;
5173 		free_extent_map(em);
5174 
5175 		cur_offset = last_byte;
5176 		if (cur_offset >= alloc_end) {
5177 			ret = 0;
5178 			break;
5179 		}
5180 	}
5181 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5182 		      GFP_NOFS);
5183 
5184 	btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5185 out_free:
5186 	btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5187 out:
5188 	mutex_unlock(&inode->i_mutex);
5189 	return ret;
5190 }
5191 
5192 static int btrfs_set_page_dirty(struct page *page)
5193 {
5194 	return __set_page_dirty_nobuffers(page);
5195 }
5196 
5197 static int btrfs_permission(struct inode *inode, int mask)
5198 {
5199 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5200 		return -EACCES;
5201 	return generic_permission(inode, mask, btrfs_check_acl);
5202 }
5203 
5204 static struct inode_operations btrfs_dir_inode_operations = {
5205 	.getattr	= btrfs_getattr,
5206 	.lookup		= btrfs_lookup,
5207 	.create		= btrfs_create,
5208 	.unlink		= btrfs_unlink,
5209 	.link		= btrfs_link,
5210 	.mkdir		= btrfs_mkdir,
5211 	.rmdir		= btrfs_rmdir,
5212 	.rename		= btrfs_rename,
5213 	.symlink	= btrfs_symlink,
5214 	.setattr	= btrfs_setattr,
5215 	.mknod		= btrfs_mknod,
5216 	.setxattr	= btrfs_setxattr,
5217 	.getxattr	= btrfs_getxattr,
5218 	.listxattr	= btrfs_listxattr,
5219 	.removexattr	= btrfs_removexattr,
5220 	.permission	= btrfs_permission,
5221 };
5222 static struct inode_operations btrfs_dir_ro_inode_operations = {
5223 	.lookup		= btrfs_lookup,
5224 	.permission	= btrfs_permission,
5225 };
5226 static struct file_operations btrfs_dir_file_operations = {
5227 	.llseek		= generic_file_llseek,
5228 	.read		= generic_read_dir,
5229 	.readdir	= btrfs_real_readdir,
5230 	.unlocked_ioctl	= btrfs_ioctl,
5231 #ifdef CONFIG_COMPAT
5232 	.compat_ioctl	= btrfs_ioctl,
5233 #endif
5234 	.release        = btrfs_release_file,
5235 	.fsync		= btrfs_sync_file,
5236 };
5237 
5238 static struct extent_io_ops btrfs_extent_io_ops = {
5239 	.fill_delalloc = run_delalloc_range,
5240 	.submit_bio_hook = btrfs_submit_bio_hook,
5241 	.merge_bio_hook = btrfs_merge_bio_hook,
5242 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5243 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5244 	.writepage_start_hook = btrfs_writepage_start_hook,
5245 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5246 	.set_bit_hook = btrfs_set_bit_hook,
5247 	.clear_bit_hook = btrfs_clear_bit_hook,
5248 };
5249 
5250 /*
5251  * btrfs doesn't support the bmap operation because swapfiles
5252  * use bmap to make a mapping of extents in the file.  They assume
5253  * these extents won't change over the life of the file and they
5254  * use the bmap result to do IO directly to the drive.
5255  *
5256  * the btrfs bmap call would return logical addresses that aren't
5257  * suitable for IO and they also will change frequently as COW
5258  * operations happen.  So, swapfile + btrfs == corruption.
5259  *
5260  * For now we're avoiding this by dropping bmap.
5261  */
5262 static struct address_space_operations btrfs_aops = {
5263 	.readpage	= btrfs_readpage,
5264 	.writepage	= btrfs_writepage,
5265 	.writepages	= btrfs_writepages,
5266 	.readpages	= btrfs_readpages,
5267 	.sync_page	= block_sync_page,
5268 	.direct_IO	= btrfs_direct_IO,
5269 	.invalidatepage = btrfs_invalidatepage,
5270 	.releasepage	= btrfs_releasepage,
5271 	.set_page_dirty	= btrfs_set_page_dirty,
5272 };
5273 
5274 static struct address_space_operations btrfs_symlink_aops = {
5275 	.readpage	= btrfs_readpage,
5276 	.writepage	= btrfs_writepage,
5277 	.invalidatepage = btrfs_invalidatepage,
5278 	.releasepage	= btrfs_releasepage,
5279 };
5280 
5281 static struct inode_operations btrfs_file_inode_operations = {
5282 	.truncate	= btrfs_truncate,
5283 	.getattr	= btrfs_getattr,
5284 	.setattr	= btrfs_setattr,
5285 	.setxattr	= btrfs_setxattr,
5286 	.getxattr	= btrfs_getxattr,
5287 	.listxattr      = btrfs_listxattr,
5288 	.removexattr	= btrfs_removexattr,
5289 	.permission	= btrfs_permission,
5290 	.fallocate	= btrfs_fallocate,
5291 	.fiemap		= btrfs_fiemap,
5292 };
5293 static struct inode_operations btrfs_special_inode_operations = {
5294 	.getattr	= btrfs_getattr,
5295 	.setattr	= btrfs_setattr,
5296 	.permission	= btrfs_permission,
5297 	.setxattr	= btrfs_setxattr,
5298 	.getxattr	= btrfs_getxattr,
5299 	.listxattr	= btrfs_listxattr,
5300 	.removexattr	= btrfs_removexattr,
5301 };
5302 static struct inode_operations btrfs_symlink_inode_operations = {
5303 	.readlink	= generic_readlink,
5304 	.follow_link	= page_follow_link_light,
5305 	.put_link	= page_put_link,
5306 	.permission	= btrfs_permission,
5307 	.setxattr	= btrfs_setxattr,
5308 	.getxattr	= btrfs_getxattr,
5309 	.listxattr	= btrfs_listxattr,
5310 	.removexattr	= btrfs_removexattr,
5311 };
5312