xref: /linux/fs/btrfs/inode.c (revision 026dadad6b44f0469a475efb4cae48269d8848bd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 
61 struct btrfs_iget_args {
62 	u64 ino;
63 	struct btrfs_root *root;
64 };
65 
66 static const struct inode_operations btrfs_dir_inode_operations;
67 static const struct inode_operations btrfs_symlink_inode_operations;
68 static const struct inode_operations btrfs_dir_ro_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct address_space_operations btrfs_symlink_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74 static struct extent_io_ops btrfs_extent_io_ops;
75 
76 static struct kmem_cache *btrfs_inode_cachep;
77 static struct kmem_cache *btrfs_delalloc_work_cachep;
78 struct kmem_cache *btrfs_trans_handle_cachep;
79 struct kmem_cache *btrfs_transaction_cachep;
80 struct kmem_cache *btrfs_path_cachep;
81 struct kmem_cache *btrfs_free_space_cachep;
82 
83 #define S_SHIFT 12
84 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
85 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
86 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
87 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
88 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
89 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
90 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
91 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
92 };
93 
94 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
95 static int btrfs_truncate(struct inode *inode);
96 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
97 static noinline int cow_file_range(struct inode *inode,
98 				   struct page *locked_page,
99 				   u64 start, u64 end, int *page_started,
100 				   unsigned long *nr_written, int unlock);
101 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
102 					   u64 len, u64 orig_start,
103 					   u64 block_start, u64 block_len,
104 					   u64 orig_block_len, u64 ram_bytes,
105 					   int type);
106 
107 static int btrfs_dirty_inode(struct inode *inode);
108 
109 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
110 				     struct inode *inode,  struct inode *dir,
111 				     const struct qstr *qstr)
112 {
113 	int err;
114 
115 	err = btrfs_init_acl(trans, inode, dir);
116 	if (!err)
117 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
118 	return err;
119 }
120 
121 /*
122  * this does all the hard work for inserting an inline extent into
123  * the btree.  The caller should have done a btrfs_drop_extents so that
124  * no overlapping inline items exist in the btree
125  */
126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
127 				struct btrfs_root *root, struct inode *inode,
128 				u64 start, size_t size, size_t compressed_size,
129 				int compress_type,
130 				struct page **compressed_pages)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_path *path;
134 	struct extent_buffer *leaf;
135 	struct page *page = NULL;
136 	char *kaddr;
137 	unsigned long ptr;
138 	struct btrfs_file_extent_item *ei;
139 	int err = 0;
140 	int ret;
141 	size_t cur_size = size;
142 	size_t datasize;
143 	unsigned long offset;
144 
145 	if (compressed_size && compressed_pages)
146 		cur_size = compressed_size;
147 
148 	path = btrfs_alloc_path();
149 	if (!path)
150 		return -ENOMEM;
151 
152 	path->leave_spinning = 1;
153 
154 	key.objectid = btrfs_ino(inode);
155 	key.offset = start;
156 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
158 
159 	inode_add_bytes(inode, size);
160 	ret = btrfs_insert_empty_item(trans, root, path, &key,
161 				      datasize);
162 	if (ret) {
163 		err = ret;
164 		goto fail;
165 	}
166 	leaf = path->nodes[0];
167 	ei = btrfs_item_ptr(leaf, path->slots[0],
168 			    struct btrfs_file_extent_item);
169 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
170 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
171 	btrfs_set_file_extent_encryption(leaf, ei, 0);
172 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
173 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
174 	ptr = btrfs_file_extent_inline_start(ei);
175 
176 	if (compress_type != BTRFS_COMPRESS_NONE) {
177 		struct page *cpage;
178 		int i = 0;
179 		while (compressed_size > 0) {
180 			cpage = compressed_pages[i];
181 			cur_size = min_t(unsigned long, compressed_size,
182 				       PAGE_CACHE_SIZE);
183 
184 			kaddr = kmap_atomic(cpage);
185 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
186 			kunmap_atomic(kaddr);
187 
188 			i++;
189 			ptr += cur_size;
190 			compressed_size -= cur_size;
191 		}
192 		btrfs_set_file_extent_compression(leaf, ei,
193 						  compress_type);
194 	} else {
195 		page = find_get_page(inode->i_mapping,
196 				     start >> PAGE_CACHE_SHIFT);
197 		btrfs_set_file_extent_compression(leaf, ei, 0);
198 		kaddr = kmap_atomic(page);
199 		offset = start & (PAGE_CACHE_SIZE - 1);
200 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
201 		kunmap_atomic(kaddr);
202 		page_cache_release(page);
203 	}
204 	btrfs_mark_buffer_dirty(leaf);
205 	btrfs_free_path(path);
206 
207 	/*
208 	 * we're an inline extent, so nobody can
209 	 * extend the file past i_size without locking
210 	 * a page we already have locked.
211 	 *
212 	 * We must do any isize and inode updates
213 	 * before we unlock the pages.  Otherwise we
214 	 * could end up racing with unlink.
215 	 */
216 	BTRFS_I(inode)->disk_i_size = inode->i_size;
217 	ret = btrfs_update_inode(trans, root, inode);
218 
219 	return ret;
220 fail:
221 	btrfs_free_path(path);
222 	return err;
223 }
224 
225 
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
232 				 struct btrfs_root *root,
233 				 struct inode *inode, u64 start, u64 end,
234 				 size_t compressed_size, int compress_type,
235 				 struct page **compressed_pages)
236 {
237 	u64 isize = i_size_read(inode);
238 	u64 actual_end = min(end + 1, isize);
239 	u64 inline_len = actual_end - start;
240 	u64 aligned_end = ALIGN(end, root->sectorsize);
241 	u64 data_len = inline_len;
242 	int ret;
243 
244 	if (compressed_size)
245 		data_len = compressed_size;
246 
247 	if (start > 0 ||
248 	    actual_end >= PAGE_CACHE_SIZE ||
249 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
250 	    (!compressed_size &&
251 	    (actual_end & (root->sectorsize - 1)) == 0) ||
252 	    end + 1 < isize ||
253 	    data_len > root->fs_info->max_inline) {
254 		return 1;
255 	}
256 
257 	ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
258 	if (ret)
259 		return ret;
260 
261 	if (isize > actual_end)
262 		inline_len = min_t(u64, isize, actual_end);
263 	ret = insert_inline_extent(trans, root, inode, start,
264 				   inline_len, compressed_size,
265 				   compress_type, compressed_pages);
266 	if (ret && ret != -ENOSPC) {
267 		btrfs_abort_transaction(trans, root, ret);
268 		return ret;
269 	} else if (ret == -ENOSPC) {
270 		return 1;
271 	}
272 
273 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
274 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
275 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
276 	return 0;
277 }
278 
279 struct async_extent {
280 	u64 start;
281 	u64 ram_size;
282 	u64 compressed_size;
283 	struct page **pages;
284 	unsigned long nr_pages;
285 	int compress_type;
286 	struct list_head list;
287 };
288 
289 struct async_cow {
290 	struct inode *inode;
291 	struct btrfs_root *root;
292 	struct page *locked_page;
293 	u64 start;
294 	u64 end;
295 	struct list_head extents;
296 	struct btrfs_work work;
297 };
298 
299 static noinline int add_async_extent(struct async_cow *cow,
300 				     u64 start, u64 ram_size,
301 				     u64 compressed_size,
302 				     struct page **pages,
303 				     unsigned long nr_pages,
304 				     int compress_type)
305 {
306 	struct async_extent *async_extent;
307 
308 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
309 	BUG_ON(!async_extent); /* -ENOMEM */
310 	async_extent->start = start;
311 	async_extent->ram_size = ram_size;
312 	async_extent->compressed_size = compressed_size;
313 	async_extent->pages = pages;
314 	async_extent->nr_pages = nr_pages;
315 	async_extent->compress_type = compress_type;
316 	list_add_tail(&async_extent->list, &cow->extents);
317 	return 0;
318 }
319 
320 /*
321  * we create compressed extents in two phases.  The first
322  * phase compresses a range of pages that have already been
323  * locked (both pages and state bits are locked).
324  *
325  * This is done inside an ordered work queue, and the compression
326  * is spread across many cpus.  The actual IO submission is step
327  * two, and the ordered work queue takes care of making sure that
328  * happens in the same order things were put onto the queue by
329  * writepages and friends.
330  *
331  * If this code finds it can't get good compression, it puts an
332  * entry onto the work queue to write the uncompressed bytes.  This
333  * makes sure that both compressed inodes and uncompressed inodes
334  * are written in the same order that the flusher thread sent them
335  * down.
336  */
337 static noinline int compress_file_range(struct inode *inode,
338 					struct page *locked_page,
339 					u64 start, u64 end,
340 					struct async_cow *async_cow,
341 					int *num_added)
342 {
343 	struct btrfs_root *root = BTRFS_I(inode)->root;
344 	struct btrfs_trans_handle *trans;
345 	u64 num_bytes;
346 	u64 blocksize = root->sectorsize;
347 	u64 actual_end;
348 	u64 isize = i_size_read(inode);
349 	int ret = 0;
350 	struct page **pages = NULL;
351 	unsigned long nr_pages;
352 	unsigned long nr_pages_ret = 0;
353 	unsigned long total_compressed = 0;
354 	unsigned long total_in = 0;
355 	unsigned long max_compressed = 128 * 1024;
356 	unsigned long max_uncompressed = 128 * 1024;
357 	int i;
358 	int will_compress;
359 	int compress_type = root->fs_info->compress_type;
360 	int redirty = 0;
361 
362 	/* if this is a small write inside eof, kick off a defrag */
363 	if ((end - start + 1) < 16 * 1024 &&
364 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
365 		btrfs_add_inode_defrag(NULL, inode);
366 
367 	actual_end = min_t(u64, isize, end + 1);
368 again:
369 	will_compress = 0;
370 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
371 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
372 
373 	/*
374 	 * we don't want to send crud past the end of i_size through
375 	 * compression, that's just a waste of CPU time.  So, if the
376 	 * end of the file is before the start of our current
377 	 * requested range of bytes, we bail out to the uncompressed
378 	 * cleanup code that can deal with all of this.
379 	 *
380 	 * It isn't really the fastest way to fix things, but this is a
381 	 * very uncommon corner.
382 	 */
383 	if (actual_end <= start)
384 		goto cleanup_and_bail_uncompressed;
385 
386 	total_compressed = actual_end - start;
387 
388 	/* we want to make sure that amount of ram required to uncompress
389 	 * an extent is reasonable, so we limit the total size in ram
390 	 * of a compressed extent to 128k.  This is a crucial number
391 	 * because it also controls how easily we can spread reads across
392 	 * cpus for decompression.
393 	 *
394 	 * We also want to make sure the amount of IO required to do
395 	 * a random read is reasonably small, so we limit the size of
396 	 * a compressed extent to 128k.
397 	 */
398 	total_compressed = min(total_compressed, max_uncompressed);
399 	num_bytes = ALIGN(end - start + 1, blocksize);
400 	num_bytes = max(blocksize,  num_bytes);
401 	total_in = 0;
402 	ret = 0;
403 
404 	/*
405 	 * we do compression for mount -o compress and when the
406 	 * inode has not been flagged as nocompress.  This flag can
407 	 * change at any time if we discover bad compression ratios.
408 	 */
409 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
410 	    (btrfs_test_opt(root, COMPRESS) ||
411 	     (BTRFS_I(inode)->force_compress) ||
412 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
413 		WARN_ON(pages);
414 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
415 		if (!pages) {
416 			/* just bail out to the uncompressed code */
417 			goto cont;
418 		}
419 
420 		if (BTRFS_I(inode)->force_compress)
421 			compress_type = BTRFS_I(inode)->force_compress;
422 
423 		/*
424 		 * we need to call clear_page_dirty_for_io on each
425 		 * page in the range.  Otherwise applications with the file
426 		 * mmap'd can wander in and change the page contents while
427 		 * we are compressing them.
428 		 *
429 		 * If the compression fails for any reason, we set the pages
430 		 * dirty again later on.
431 		 */
432 		extent_range_clear_dirty_for_io(inode, start, end);
433 		redirty = 1;
434 		ret = btrfs_compress_pages(compress_type,
435 					   inode->i_mapping, start,
436 					   total_compressed, pages,
437 					   nr_pages, &nr_pages_ret,
438 					   &total_in,
439 					   &total_compressed,
440 					   max_compressed);
441 
442 		if (!ret) {
443 			unsigned long offset = total_compressed &
444 				(PAGE_CACHE_SIZE - 1);
445 			struct page *page = pages[nr_pages_ret - 1];
446 			char *kaddr;
447 
448 			/* zero the tail end of the last page, we might be
449 			 * sending it down to disk
450 			 */
451 			if (offset) {
452 				kaddr = kmap_atomic(page);
453 				memset(kaddr + offset, 0,
454 				       PAGE_CACHE_SIZE - offset);
455 				kunmap_atomic(kaddr);
456 			}
457 			will_compress = 1;
458 		}
459 	}
460 cont:
461 	if (start == 0) {
462 		trans = btrfs_join_transaction(root);
463 		if (IS_ERR(trans)) {
464 			ret = PTR_ERR(trans);
465 			trans = NULL;
466 			goto cleanup_and_out;
467 		}
468 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
469 
470 		/* lets try to make an inline extent */
471 		if (ret || total_in < (actual_end - start)) {
472 			/* we didn't compress the entire range, try
473 			 * to make an uncompressed inline extent.
474 			 */
475 			ret = cow_file_range_inline(trans, root, inode,
476 						    start, end, 0, 0, NULL);
477 		} else {
478 			/* try making a compressed inline extent */
479 			ret = cow_file_range_inline(trans, root, inode,
480 						    start, end,
481 						    total_compressed,
482 						    compress_type, pages);
483 		}
484 		if (ret <= 0) {
485 			/*
486 			 * inline extent creation worked or returned error,
487 			 * we don't need to create any more async work items.
488 			 * Unlock and free up our temp pages.
489 			 */
490 			extent_clear_unlock_delalloc(inode,
491 			     &BTRFS_I(inode)->io_tree,
492 			     start, end, NULL,
493 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
494 			     EXTENT_CLEAR_DELALLOC |
495 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
496 
497 			btrfs_end_transaction(trans, root);
498 			goto free_pages_out;
499 		}
500 		btrfs_end_transaction(trans, root);
501 	}
502 
503 	if (will_compress) {
504 		/*
505 		 * we aren't doing an inline extent round the compressed size
506 		 * up to a block size boundary so the allocator does sane
507 		 * things
508 		 */
509 		total_compressed = ALIGN(total_compressed, blocksize);
510 
511 		/*
512 		 * one last check to make sure the compression is really a
513 		 * win, compare the page count read with the blocks on disk
514 		 */
515 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
516 		if (total_compressed >= total_in) {
517 			will_compress = 0;
518 		} else {
519 			num_bytes = total_in;
520 		}
521 	}
522 	if (!will_compress && pages) {
523 		/*
524 		 * the compression code ran but failed to make things smaller,
525 		 * free any pages it allocated and our page pointer array
526 		 */
527 		for (i = 0; i < nr_pages_ret; i++) {
528 			WARN_ON(pages[i]->mapping);
529 			page_cache_release(pages[i]);
530 		}
531 		kfree(pages);
532 		pages = NULL;
533 		total_compressed = 0;
534 		nr_pages_ret = 0;
535 
536 		/* flag the file so we don't compress in the future */
537 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
538 		    !(BTRFS_I(inode)->force_compress)) {
539 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
540 		}
541 	}
542 	if (will_compress) {
543 		*num_added += 1;
544 
545 		/* the async work queues will take care of doing actual
546 		 * allocation on disk for these compressed pages,
547 		 * and will submit them to the elevator.
548 		 */
549 		add_async_extent(async_cow, start, num_bytes,
550 				 total_compressed, pages, nr_pages_ret,
551 				 compress_type);
552 
553 		if (start + num_bytes < end) {
554 			start += num_bytes;
555 			pages = NULL;
556 			cond_resched();
557 			goto again;
558 		}
559 	} else {
560 cleanup_and_bail_uncompressed:
561 		/*
562 		 * No compression, but we still need to write the pages in
563 		 * the file we've been given so far.  redirty the locked
564 		 * page if it corresponds to our extent and set things up
565 		 * for the async work queue to run cow_file_range to do
566 		 * the normal delalloc dance
567 		 */
568 		if (page_offset(locked_page) >= start &&
569 		    page_offset(locked_page) <= end) {
570 			__set_page_dirty_nobuffers(locked_page);
571 			/* unlocked later on in the async handlers */
572 		}
573 		if (redirty)
574 			extent_range_redirty_for_io(inode, start, end);
575 		add_async_extent(async_cow, start, end - start + 1,
576 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
577 		*num_added += 1;
578 	}
579 
580 out:
581 	return ret;
582 
583 free_pages_out:
584 	for (i = 0; i < nr_pages_ret; i++) {
585 		WARN_ON(pages[i]->mapping);
586 		page_cache_release(pages[i]);
587 	}
588 	kfree(pages);
589 
590 	goto out;
591 
592 cleanup_and_out:
593 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
594 				     start, end, NULL,
595 				     EXTENT_CLEAR_UNLOCK_PAGE |
596 				     EXTENT_CLEAR_DIRTY |
597 				     EXTENT_CLEAR_DELALLOC |
598 				     EXTENT_SET_WRITEBACK |
599 				     EXTENT_END_WRITEBACK);
600 	if (!trans || IS_ERR(trans))
601 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
602 	else
603 		btrfs_abort_transaction(trans, root, ret);
604 	goto free_pages_out;
605 }
606 
607 /*
608  * phase two of compressed writeback.  This is the ordered portion
609  * of the code, which only gets called in the order the work was
610  * queued.  We walk all the async extents created by compress_file_range
611  * and send them down to the disk.
612  */
613 static noinline int submit_compressed_extents(struct inode *inode,
614 					      struct async_cow *async_cow)
615 {
616 	struct async_extent *async_extent;
617 	u64 alloc_hint = 0;
618 	struct btrfs_trans_handle *trans;
619 	struct btrfs_key ins;
620 	struct extent_map *em;
621 	struct btrfs_root *root = BTRFS_I(inode)->root;
622 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
623 	struct extent_io_tree *io_tree;
624 	int ret = 0;
625 
626 	if (list_empty(&async_cow->extents))
627 		return 0;
628 
629 again:
630 	while (!list_empty(&async_cow->extents)) {
631 		async_extent = list_entry(async_cow->extents.next,
632 					  struct async_extent, list);
633 		list_del(&async_extent->list);
634 
635 		io_tree = &BTRFS_I(inode)->io_tree;
636 
637 retry:
638 		/* did the compression code fall back to uncompressed IO? */
639 		if (!async_extent->pages) {
640 			int page_started = 0;
641 			unsigned long nr_written = 0;
642 
643 			lock_extent(io_tree, async_extent->start,
644 					 async_extent->start +
645 					 async_extent->ram_size - 1);
646 
647 			/* allocate blocks */
648 			ret = cow_file_range(inode, async_cow->locked_page,
649 					     async_extent->start,
650 					     async_extent->start +
651 					     async_extent->ram_size - 1,
652 					     &page_started, &nr_written, 0);
653 
654 			/* JDM XXX */
655 
656 			/*
657 			 * if page_started, cow_file_range inserted an
658 			 * inline extent and took care of all the unlocking
659 			 * and IO for us.  Otherwise, we need to submit
660 			 * all those pages down to the drive.
661 			 */
662 			if (!page_started && !ret)
663 				extent_write_locked_range(io_tree,
664 						  inode, async_extent->start,
665 						  async_extent->start +
666 						  async_extent->ram_size - 1,
667 						  btrfs_get_extent,
668 						  WB_SYNC_ALL);
669 			else if (ret)
670 				unlock_page(async_cow->locked_page);
671 			kfree(async_extent);
672 			cond_resched();
673 			continue;
674 		}
675 
676 		lock_extent(io_tree, async_extent->start,
677 			    async_extent->start + async_extent->ram_size - 1);
678 
679 		trans = btrfs_join_transaction(root);
680 		if (IS_ERR(trans)) {
681 			ret = PTR_ERR(trans);
682 		} else {
683 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
684 			ret = btrfs_reserve_extent(trans, root,
685 					   async_extent->compressed_size,
686 					   async_extent->compressed_size,
687 					   0, alloc_hint, &ins, 1);
688 			if (ret && ret != -ENOSPC)
689 				btrfs_abort_transaction(trans, root, ret);
690 			btrfs_end_transaction(trans, root);
691 		}
692 
693 		if (ret) {
694 			int i;
695 
696 			for (i = 0; i < async_extent->nr_pages; i++) {
697 				WARN_ON(async_extent->pages[i]->mapping);
698 				page_cache_release(async_extent->pages[i]);
699 			}
700 			kfree(async_extent->pages);
701 			async_extent->nr_pages = 0;
702 			async_extent->pages = NULL;
703 
704 			if (ret == -ENOSPC)
705 				goto retry;
706 			goto out_free;
707 		}
708 
709 		/*
710 		 * here we're doing allocation and writeback of the
711 		 * compressed pages
712 		 */
713 		btrfs_drop_extent_cache(inode, async_extent->start,
714 					async_extent->start +
715 					async_extent->ram_size - 1, 0);
716 
717 		em = alloc_extent_map();
718 		if (!em) {
719 			ret = -ENOMEM;
720 			goto out_free_reserve;
721 		}
722 		em->start = async_extent->start;
723 		em->len = async_extent->ram_size;
724 		em->orig_start = em->start;
725 		em->mod_start = em->start;
726 		em->mod_len = em->len;
727 
728 		em->block_start = ins.objectid;
729 		em->block_len = ins.offset;
730 		em->orig_block_len = ins.offset;
731 		em->ram_bytes = async_extent->ram_size;
732 		em->bdev = root->fs_info->fs_devices->latest_bdev;
733 		em->compress_type = async_extent->compress_type;
734 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
735 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
736 		em->generation = -1;
737 
738 		while (1) {
739 			write_lock(&em_tree->lock);
740 			ret = add_extent_mapping(em_tree, em, 1);
741 			write_unlock(&em_tree->lock);
742 			if (ret != -EEXIST) {
743 				free_extent_map(em);
744 				break;
745 			}
746 			btrfs_drop_extent_cache(inode, async_extent->start,
747 						async_extent->start +
748 						async_extent->ram_size - 1, 0);
749 		}
750 
751 		if (ret)
752 			goto out_free_reserve;
753 
754 		ret = btrfs_add_ordered_extent_compress(inode,
755 						async_extent->start,
756 						ins.objectid,
757 						async_extent->ram_size,
758 						ins.offset,
759 						BTRFS_ORDERED_COMPRESSED,
760 						async_extent->compress_type);
761 		if (ret)
762 			goto out_free_reserve;
763 
764 		/*
765 		 * clear dirty, set writeback and unlock the pages.
766 		 */
767 		extent_clear_unlock_delalloc(inode,
768 				&BTRFS_I(inode)->io_tree,
769 				async_extent->start,
770 				async_extent->start +
771 				async_extent->ram_size - 1,
772 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
773 				EXTENT_CLEAR_UNLOCK |
774 				EXTENT_CLEAR_DELALLOC |
775 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
776 
777 		ret = btrfs_submit_compressed_write(inode,
778 				    async_extent->start,
779 				    async_extent->ram_size,
780 				    ins.objectid,
781 				    ins.offset, async_extent->pages,
782 				    async_extent->nr_pages);
783 		alloc_hint = ins.objectid + ins.offset;
784 		kfree(async_extent);
785 		if (ret)
786 			goto out;
787 		cond_resched();
788 	}
789 	ret = 0;
790 out:
791 	return ret;
792 out_free_reserve:
793 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
794 out_free:
795 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
796 				     async_extent->start,
797 				     async_extent->start +
798 				     async_extent->ram_size - 1,
799 				     NULL, EXTENT_CLEAR_UNLOCK_PAGE |
800 				     EXTENT_CLEAR_UNLOCK |
801 				     EXTENT_CLEAR_DELALLOC |
802 				     EXTENT_CLEAR_DIRTY |
803 				     EXTENT_SET_WRITEBACK |
804 				     EXTENT_END_WRITEBACK);
805 	kfree(async_extent);
806 	goto again;
807 }
808 
809 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
810 				      u64 num_bytes)
811 {
812 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
813 	struct extent_map *em;
814 	u64 alloc_hint = 0;
815 
816 	read_lock(&em_tree->lock);
817 	em = search_extent_mapping(em_tree, start, num_bytes);
818 	if (em) {
819 		/*
820 		 * if block start isn't an actual block number then find the
821 		 * first block in this inode and use that as a hint.  If that
822 		 * block is also bogus then just don't worry about it.
823 		 */
824 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
825 			free_extent_map(em);
826 			em = search_extent_mapping(em_tree, 0, 0);
827 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
828 				alloc_hint = em->block_start;
829 			if (em)
830 				free_extent_map(em);
831 		} else {
832 			alloc_hint = em->block_start;
833 			free_extent_map(em);
834 		}
835 	}
836 	read_unlock(&em_tree->lock);
837 
838 	return alloc_hint;
839 }
840 
841 /*
842  * when extent_io.c finds a delayed allocation range in the file,
843  * the call backs end up in this code.  The basic idea is to
844  * allocate extents on disk for the range, and create ordered data structs
845  * in ram to track those extents.
846  *
847  * locked_page is the page that writepage had locked already.  We use
848  * it to make sure we don't do extra locks or unlocks.
849  *
850  * *page_started is set to one if we unlock locked_page and do everything
851  * required to start IO on it.  It may be clean and already done with
852  * IO when we return.
853  */
854 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
855 				     struct inode *inode,
856 				     struct btrfs_root *root,
857 				     struct page *locked_page,
858 				     u64 start, u64 end, int *page_started,
859 				     unsigned long *nr_written,
860 				     int unlock)
861 {
862 	u64 alloc_hint = 0;
863 	u64 num_bytes;
864 	unsigned long ram_size;
865 	u64 disk_num_bytes;
866 	u64 cur_alloc_size;
867 	u64 blocksize = root->sectorsize;
868 	struct btrfs_key ins;
869 	struct extent_map *em;
870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 	int ret = 0;
872 
873 	BUG_ON(btrfs_is_free_space_inode(inode));
874 
875 	num_bytes = ALIGN(end - start + 1, blocksize);
876 	num_bytes = max(blocksize,  num_bytes);
877 	disk_num_bytes = num_bytes;
878 
879 	/* if this is a small write inside eof, kick off defrag */
880 	if (num_bytes < 64 * 1024 &&
881 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
882 		btrfs_add_inode_defrag(trans, inode);
883 
884 	if (start == 0) {
885 		/* lets try to make an inline extent */
886 		ret = cow_file_range_inline(trans, root, inode,
887 					    start, end, 0, 0, NULL);
888 		if (ret == 0) {
889 			extent_clear_unlock_delalloc(inode,
890 				     &BTRFS_I(inode)->io_tree,
891 				     start, end, NULL,
892 				     EXTENT_CLEAR_UNLOCK_PAGE |
893 				     EXTENT_CLEAR_UNLOCK |
894 				     EXTENT_CLEAR_DELALLOC |
895 				     EXTENT_CLEAR_DIRTY |
896 				     EXTENT_SET_WRITEBACK |
897 				     EXTENT_END_WRITEBACK);
898 
899 			*nr_written = *nr_written +
900 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
901 			*page_started = 1;
902 			goto out;
903 		} else if (ret < 0) {
904 			btrfs_abort_transaction(trans, root, ret);
905 			goto out_unlock;
906 		}
907 	}
908 
909 	BUG_ON(disk_num_bytes >
910 	       btrfs_super_total_bytes(root->fs_info->super_copy));
911 
912 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
913 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
914 
915 	while (disk_num_bytes > 0) {
916 		unsigned long op;
917 
918 		cur_alloc_size = disk_num_bytes;
919 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
920 					   root->sectorsize, 0, alloc_hint,
921 					   &ins, 1);
922 		if (ret < 0) {
923 			btrfs_abort_transaction(trans, root, ret);
924 			goto out_unlock;
925 		}
926 
927 		em = alloc_extent_map();
928 		if (!em) {
929 			ret = -ENOMEM;
930 			goto out_reserve;
931 		}
932 		em->start = start;
933 		em->orig_start = em->start;
934 		ram_size = ins.offset;
935 		em->len = ins.offset;
936 		em->mod_start = em->start;
937 		em->mod_len = em->len;
938 
939 		em->block_start = ins.objectid;
940 		em->block_len = ins.offset;
941 		em->orig_block_len = ins.offset;
942 		em->ram_bytes = ram_size;
943 		em->bdev = root->fs_info->fs_devices->latest_bdev;
944 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
945 		em->generation = -1;
946 
947 		while (1) {
948 			write_lock(&em_tree->lock);
949 			ret = add_extent_mapping(em_tree, em, 1);
950 			write_unlock(&em_tree->lock);
951 			if (ret != -EEXIST) {
952 				free_extent_map(em);
953 				break;
954 			}
955 			btrfs_drop_extent_cache(inode, start,
956 						start + ram_size - 1, 0);
957 		}
958 		if (ret)
959 			goto out_reserve;
960 
961 		cur_alloc_size = ins.offset;
962 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
963 					       ram_size, cur_alloc_size, 0);
964 		if (ret)
965 			goto out_reserve;
966 
967 		if (root->root_key.objectid ==
968 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
969 			ret = btrfs_reloc_clone_csums(inode, start,
970 						      cur_alloc_size);
971 			if (ret) {
972 				btrfs_abort_transaction(trans, root, ret);
973 				goto out_reserve;
974 			}
975 		}
976 
977 		if (disk_num_bytes < cur_alloc_size)
978 			break;
979 
980 		/* we're not doing compressed IO, don't unlock the first
981 		 * page (which the caller expects to stay locked), don't
982 		 * clear any dirty bits and don't set any writeback bits
983 		 *
984 		 * Do set the Private2 bit so we know this page was properly
985 		 * setup for writepage
986 		 */
987 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
988 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
989 			EXTENT_SET_PRIVATE2;
990 
991 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
992 					     start, start + ram_size - 1,
993 					     locked_page, op);
994 		disk_num_bytes -= cur_alloc_size;
995 		num_bytes -= cur_alloc_size;
996 		alloc_hint = ins.objectid + ins.offset;
997 		start += cur_alloc_size;
998 	}
999 out:
1000 	return ret;
1001 
1002 out_reserve:
1003 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1004 out_unlock:
1005 	extent_clear_unlock_delalloc(inode,
1006 		     &BTRFS_I(inode)->io_tree,
1007 		     start, end, locked_page,
1008 		     EXTENT_CLEAR_UNLOCK_PAGE |
1009 		     EXTENT_CLEAR_UNLOCK |
1010 		     EXTENT_CLEAR_DELALLOC |
1011 		     EXTENT_CLEAR_DIRTY |
1012 		     EXTENT_SET_WRITEBACK |
1013 		     EXTENT_END_WRITEBACK);
1014 
1015 	goto out;
1016 }
1017 
1018 static noinline int cow_file_range(struct inode *inode,
1019 				   struct page *locked_page,
1020 				   u64 start, u64 end, int *page_started,
1021 				   unsigned long *nr_written,
1022 				   int unlock)
1023 {
1024 	struct btrfs_trans_handle *trans;
1025 	struct btrfs_root *root = BTRFS_I(inode)->root;
1026 	int ret;
1027 
1028 	trans = btrfs_join_transaction(root);
1029 	if (IS_ERR(trans)) {
1030 		extent_clear_unlock_delalloc(inode,
1031 			     &BTRFS_I(inode)->io_tree,
1032 			     start, end, locked_page,
1033 			     EXTENT_CLEAR_UNLOCK_PAGE |
1034 			     EXTENT_CLEAR_UNLOCK |
1035 			     EXTENT_CLEAR_DELALLOC |
1036 			     EXTENT_CLEAR_DIRTY |
1037 			     EXTENT_SET_WRITEBACK |
1038 			     EXTENT_END_WRITEBACK);
1039 		return PTR_ERR(trans);
1040 	}
1041 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1042 
1043 	ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1044 			       page_started, nr_written, unlock);
1045 
1046 	btrfs_end_transaction(trans, root);
1047 
1048 	return ret;
1049 }
1050 
1051 /*
1052  * work queue call back to started compression on a file and pages
1053  */
1054 static noinline void async_cow_start(struct btrfs_work *work)
1055 {
1056 	struct async_cow *async_cow;
1057 	int num_added = 0;
1058 	async_cow = container_of(work, struct async_cow, work);
1059 
1060 	compress_file_range(async_cow->inode, async_cow->locked_page,
1061 			    async_cow->start, async_cow->end, async_cow,
1062 			    &num_added);
1063 	if (num_added == 0) {
1064 		btrfs_add_delayed_iput(async_cow->inode);
1065 		async_cow->inode = NULL;
1066 	}
1067 }
1068 
1069 /*
1070  * work queue call back to submit previously compressed pages
1071  */
1072 static noinline void async_cow_submit(struct btrfs_work *work)
1073 {
1074 	struct async_cow *async_cow;
1075 	struct btrfs_root *root;
1076 	unsigned long nr_pages;
1077 
1078 	async_cow = container_of(work, struct async_cow, work);
1079 
1080 	root = async_cow->root;
1081 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1082 		PAGE_CACHE_SHIFT;
1083 
1084 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1085 	    5 * 1024 * 1024 &&
1086 	    waitqueue_active(&root->fs_info->async_submit_wait))
1087 		wake_up(&root->fs_info->async_submit_wait);
1088 
1089 	if (async_cow->inode)
1090 		submit_compressed_extents(async_cow->inode, async_cow);
1091 }
1092 
1093 static noinline void async_cow_free(struct btrfs_work *work)
1094 {
1095 	struct async_cow *async_cow;
1096 	async_cow = container_of(work, struct async_cow, work);
1097 	if (async_cow->inode)
1098 		btrfs_add_delayed_iput(async_cow->inode);
1099 	kfree(async_cow);
1100 }
1101 
1102 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1103 				u64 start, u64 end, int *page_started,
1104 				unsigned long *nr_written)
1105 {
1106 	struct async_cow *async_cow;
1107 	struct btrfs_root *root = BTRFS_I(inode)->root;
1108 	unsigned long nr_pages;
1109 	u64 cur_end;
1110 	int limit = 10 * 1024 * 1024;
1111 
1112 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1113 			 1, 0, NULL, GFP_NOFS);
1114 	while (start < end) {
1115 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1116 		BUG_ON(!async_cow); /* -ENOMEM */
1117 		async_cow->inode = igrab(inode);
1118 		async_cow->root = root;
1119 		async_cow->locked_page = locked_page;
1120 		async_cow->start = start;
1121 
1122 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1123 			cur_end = end;
1124 		else
1125 			cur_end = min(end, start + 512 * 1024 - 1);
1126 
1127 		async_cow->end = cur_end;
1128 		INIT_LIST_HEAD(&async_cow->extents);
1129 
1130 		async_cow->work.func = async_cow_start;
1131 		async_cow->work.ordered_func = async_cow_submit;
1132 		async_cow->work.ordered_free = async_cow_free;
1133 		async_cow->work.flags = 0;
1134 
1135 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1136 			PAGE_CACHE_SHIFT;
1137 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1138 
1139 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1140 				   &async_cow->work);
1141 
1142 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1143 			wait_event(root->fs_info->async_submit_wait,
1144 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1145 			    limit));
1146 		}
1147 
1148 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1149 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1150 			wait_event(root->fs_info->async_submit_wait,
1151 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1152 			   0));
1153 		}
1154 
1155 		*nr_written += nr_pages;
1156 		start = cur_end + 1;
1157 	}
1158 	*page_started = 1;
1159 	return 0;
1160 }
1161 
1162 static noinline int csum_exist_in_range(struct btrfs_root *root,
1163 					u64 bytenr, u64 num_bytes)
1164 {
1165 	int ret;
1166 	struct btrfs_ordered_sum *sums;
1167 	LIST_HEAD(list);
1168 
1169 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1170 				       bytenr + num_bytes - 1, &list, 0);
1171 	if (ret == 0 && list_empty(&list))
1172 		return 0;
1173 
1174 	while (!list_empty(&list)) {
1175 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1176 		list_del(&sums->list);
1177 		kfree(sums);
1178 	}
1179 	return 1;
1180 }
1181 
1182 /*
1183  * when nowcow writeback call back.  This checks for snapshots or COW copies
1184  * of the extents that exist in the file, and COWs the file as required.
1185  *
1186  * If no cow copies or snapshots exist, we write directly to the existing
1187  * blocks on disk
1188  */
1189 static noinline int run_delalloc_nocow(struct inode *inode,
1190 				       struct page *locked_page,
1191 			      u64 start, u64 end, int *page_started, int force,
1192 			      unsigned long *nr_written)
1193 {
1194 	struct btrfs_root *root = BTRFS_I(inode)->root;
1195 	struct btrfs_trans_handle *trans;
1196 	struct extent_buffer *leaf;
1197 	struct btrfs_path *path;
1198 	struct btrfs_file_extent_item *fi;
1199 	struct btrfs_key found_key;
1200 	u64 cow_start;
1201 	u64 cur_offset;
1202 	u64 extent_end;
1203 	u64 extent_offset;
1204 	u64 disk_bytenr;
1205 	u64 num_bytes;
1206 	u64 disk_num_bytes;
1207 	u64 ram_bytes;
1208 	int extent_type;
1209 	int ret, err;
1210 	int type;
1211 	int nocow;
1212 	int check_prev = 1;
1213 	bool nolock;
1214 	u64 ino = btrfs_ino(inode);
1215 
1216 	path = btrfs_alloc_path();
1217 	if (!path) {
1218 		extent_clear_unlock_delalloc(inode,
1219 			     &BTRFS_I(inode)->io_tree,
1220 			     start, end, locked_page,
1221 			     EXTENT_CLEAR_UNLOCK_PAGE |
1222 			     EXTENT_CLEAR_UNLOCK |
1223 			     EXTENT_CLEAR_DELALLOC |
1224 			     EXTENT_CLEAR_DIRTY |
1225 			     EXTENT_SET_WRITEBACK |
1226 			     EXTENT_END_WRITEBACK);
1227 		return -ENOMEM;
1228 	}
1229 
1230 	nolock = btrfs_is_free_space_inode(inode);
1231 
1232 	if (nolock)
1233 		trans = btrfs_join_transaction_nolock(root);
1234 	else
1235 		trans = btrfs_join_transaction(root);
1236 
1237 	if (IS_ERR(trans)) {
1238 		extent_clear_unlock_delalloc(inode,
1239 			     &BTRFS_I(inode)->io_tree,
1240 			     start, end, locked_page,
1241 			     EXTENT_CLEAR_UNLOCK_PAGE |
1242 			     EXTENT_CLEAR_UNLOCK |
1243 			     EXTENT_CLEAR_DELALLOC |
1244 			     EXTENT_CLEAR_DIRTY |
1245 			     EXTENT_SET_WRITEBACK |
1246 			     EXTENT_END_WRITEBACK);
1247 		btrfs_free_path(path);
1248 		return PTR_ERR(trans);
1249 	}
1250 
1251 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1252 
1253 	cow_start = (u64)-1;
1254 	cur_offset = start;
1255 	while (1) {
1256 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1257 					       cur_offset, 0);
1258 		if (ret < 0) {
1259 			btrfs_abort_transaction(trans, root, ret);
1260 			goto error;
1261 		}
1262 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1263 			leaf = path->nodes[0];
1264 			btrfs_item_key_to_cpu(leaf, &found_key,
1265 					      path->slots[0] - 1);
1266 			if (found_key.objectid == ino &&
1267 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1268 				path->slots[0]--;
1269 		}
1270 		check_prev = 0;
1271 next_slot:
1272 		leaf = path->nodes[0];
1273 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1274 			ret = btrfs_next_leaf(root, path);
1275 			if (ret < 0) {
1276 				btrfs_abort_transaction(trans, root, ret);
1277 				goto error;
1278 			}
1279 			if (ret > 0)
1280 				break;
1281 			leaf = path->nodes[0];
1282 		}
1283 
1284 		nocow = 0;
1285 		disk_bytenr = 0;
1286 		num_bytes = 0;
1287 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1288 
1289 		if (found_key.objectid > ino ||
1290 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1291 		    found_key.offset > end)
1292 			break;
1293 
1294 		if (found_key.offset > cur_offset) {
1295 			extent_end = found_key.offset;
1296 			extent_type = 0;
1297 			goto out_check;
1298 		}
1299 
1300 		fi = btrfs_item_ptr(leaf, path->slots[0],
1301 				    struct btrfs_file_extent_item);
1302 		extent_type = btrfs_file_extent_type(leaf, fi);
1303 
1304 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1305 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1306 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1307 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1308 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1309 			extent_end = found_key.offset +
1310 				btrfs_file_extent_num_bytes(leaf, fi);
1311 			disk_num_bytes =
1312 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1313 			if (extent_end <= start) {
1314 				path->slots[0]++;
1315 				goto next_slot;
1316 			}
1317 			if (disk_bytenr == 0)
1318 				goto out_check;
1319 			if (btrfs_file_extent_compression(leaf, fi) ||
1320 			    btrfs_file_extent_encryption(leaf, fi) ||
1321 			    btrfs_file_extent_other_encoding(leaf, fi))
1322 				goto out_check;
1323 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1324 				goto out_check;
1325 			if (btrfs_extent_readonly(root, disk_bytenr))
1326 				goto out_check;
1327 			if (btrfs_cross_ref_exist(trans, root, ino,
1328 						  found_key.offset -
1329 						  extent_offset, disk_bytenr))
1330 				goto out_check;
1331 			disk_bytenr += extent_offset;
1332 			disk_bytenr += cur_offset - found_key.offset;
1333 			num_bytes = min(end + 1, extent_end) - cur_offset;
1334 			/*
1335 			 * force cow if csum exists in the range.
1336 			 * this ensure that csum for a given extent are
1337 			 * either valid or do not exist.
1338 			 */
1339 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1340 				goto out_check;
1341 			nocow = 1;
1342 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1343 			extent_end = found_key.offset +
1344 				btrfs_file_extent_inline_len(leaf, fi);
1345 			extent_end = ALIGN(extent_end, root->sectorsize);
1346 		} else {
1347 			BUG_ON(1);
1348 		}
1349 out_check:
1350 		if (extent_end <= start) {
1351 			path->slots[0]++;
1352 			goto next_slot;
1353 		}
1354 		if (!nocow) {
1355 			if (cow_start == (u64)-1)
1356 				cow_start = cur_offset;
1357 			cur_offset = extent_end;
1358 			if (cur_offset > end)
1359 				break;
1360 			path->slots[0]++;
1361 			goto next_slot;
1362 		}
1363 
1364 		btrfs_release_path(path);
1365 		if (cow_start != (u64)-1) {
1366 			ret = __cow_file_range(trans, inode, root, locked_page,
1367 					       cow_start, found_key.offset - 1,
1368 					       page_started, nr_written, 1);
1369 			if (ret) {
1370 				btrfs_abort_transaction(trans, root, ret);
1371 				goto error;
1372 			}
1373 			cow_start = (u64)-1;
1374 		}
1375 
1376 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1377 			struct extent_map *em;
1378 			struct extent_map_tree *em_tree;
1379 			em_tree = &BTRFS_I(inode)->extent_tree;
1380 			em = alloc_extent_map();
1381 			BUG_ON(!em); /* -ENOMEM */
1382 			em->start = cur_offset;
1383 			em->orig_start = found_key.offset - extent_offset;
1384 			em->len = num_bytes;
1385 			em->block_len = num_bytes;
1386 			em->block_start = disk_bytenr;
1387 			em->orig_block_len = disk_num_bytes;
1388 			em->ram_bytes = ram_bytes;
1389 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1390 			em->mod_start = em->start;
1391 			em->mod_len = em->len;
1392 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1393 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1394 			em->generation = -1;
1395 			while (1) {
1396 				write_lock(&em_tree->lock);
1397 				ret = add_extent_mapping(em_tree, em, 1);
1398 				write_unlock(&em_tree->lock);
1399 				if (ret != -EEXIST) {
1400 					free_extent_map(em);
1401 					break;
1402 				}
1403 				btrfs_drop_extent_cache(inode, em->start,
1404 						em->start + em->len - 1, 0);
1405 			}
1406 			type = BTRFS_ORDERED_PREALLOC;
1407 		} else {
1408 			type = BTRFS_ORDERED_NOCOW;
1409 		}
1410 
1411 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1412 					       num_bytes, num_bytes, type);
1413 		BUG_ON(ret); /* -ENOMEM */
1414 
1415 		if (root->root_key.objectid ==
1416 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1417 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1418 						      num_bytes);
1419 			if (ret) {
1420 				btrfs_abort_transaction(trans, root, ret);
1421 				goto error;
1422 			}
1423 		}
1424 
1425 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1426 				cur_offset, cur_offset + num_bytes - 1,
1427 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1428 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1429 				EXTENT_SET_PRIVATE2);
1430 		cur_offset = extent_end;
1431 		if (cur_offset > end)
1432 			break;
1433 	}
1434 	btrfs_release_path(path);
1435 
1436 	if (cur_offset <= end && cow_start == (u64)-1) {
1437 		cow_start = cur_offset;
1438 		cur_offset = end;
1439 	}
1440 
1441 	if (cow_start != (u64)-1) {
1442 		ret = __cow_file_range(trans, inode, root, locked_page,
1443 				       cow_start, end,
1444 				       page_started, nr_written, 1);
1445 		if (ret) {
1446 			btrfs_abort_transaction(trans, root, ret);
1447 			goto error;
1448 		}
1449 	}
1450 
1451 error:
1452 	err = btrfs_end_transaction(trans, root);
1453 	if (!ret)
1454 		ret = err;
1455 
1456 	if (ret && cur_offset < end)
1457 		extent_clear_unlock_delalloc(inode,
1458 			     &BTRFS_I(inode)->io_tree,
1459 			     cur_offset, end, locked_page,
1460 			     EXTENT_CLEAR_UNLOCK_PAGE |
1461 			     EXTENT_CLEAR_UNLOCK |
1462 			     EXTENT_CLEAR_DELALLOC |
1463 			     EXTENT_CLEAR_DIRTY |
1464 			     EXTENT_SET_WRITEBACK |
1465 			     EXTENT_END_WRITEBACK);
1466 
1467 	btrfs_free_path(path);
1468 	return ret;
1469 }
1470 
1471 /*
1472  * extent_io.c call back to do delayed allocation processing
1473  */
1474 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1475 			      u64 start, u64 end, int *page_started,
1476 			      unsigned long *nr_written)
1477 {
1478 	int ret;
1479 	struct btrfs_root *root = BTRFS_I(inode)->root;
1480 
1481 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1482 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1483 					 page_started, 1, nr_written);
1484 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1485 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1486 					 page_started, 0, nr_written);
1487 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1488 		   !(BTRFS_I(inode)->force_compress) &&
1489 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1490 		ret = cow_file_range(inode, locked_page, start, end,
1491 				      page_started, nr_written, 1);
1492 	} else {
1493 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1494 			&BTRFS_I(inode)->runtime_flags);
1495 		ret = cow_file_range_async(inode, locked_page, start, end,
1496 					   page_started, nr_written);
1497 	}
1498 	return ret;
1499 }
1500 
1501 static void btrfs_split_extent_hook(struct inode *inode,
1502 				    struct extent_state *orig, u64 split)
1503 {
1504 	/* not delalloc, ignore it */
1505 	if (!(orig->state & EXTENT_DELALLOC))
1506 		return;
1507 
1508 	spin_lock(&BTRFS_I(inode)->lock);
1509 	BTRFS_I(inode)->outstanding_extents++;
1510 	spin_unlock(&BTRFS_I(inode)->lock);
1511 }
1512 
1513 /*
1514  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1515  * extents so we can keep track of new extents that are just merged onto old
1516  * extents, such as when we are doing sequential writes, so we can properly
1517  * account for the metadata space we'll need.
1518  */
1519 static void btrfs_merge_extent_hook(struct inode *inode,
1520 				    struct extent_state *new,
1521 				    struct extent_state *other)
1522 {
1523 	/* not delalloc, ignore it */
1524 	if (!(other->state & EXTENT_DELALLOC))
1525 		return;
1526 
1527 	spin_lock(&BTRFS_I(inode)->lock);
1528 	BTRFS_I(inode)->outstanding_extents--;
1529 	spin_unlock(&BTRFS_I(inode)->lock);
1530 }
1531 
1532 /*
1533  * extent_io.c set_bit_hook, used to track delayed allocation
1534  * bytes in this file, and to maintain the list of inodes that
1535  * have pending delalloc work to be done.
1536  */
1537 static void btrfs_set_bit_hook(struct inode *inode,
1538 			       struct extent_state *state, unsigned long *bits)
1539 {
1540 
1541 	/*
1542 	 * set_bit and clear bit hooks normally require _irqsave/restore
1543 	 * but in this case, we are only testing for the DELALLOC
1544 	 * bit, which is only set or cleared with irqs on
1545 	 */
1546 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1547 		struct btrfs_root *root = BTRFS_I(inode)->root;
1548 		u64 len = state->end + 1 - state->start;
1549 		bool do_list = !btrfs_is_free_space_inode(inode);
1550 
1551 		if (*bits & EXTENT_FIRST_DELALLOC) {
1552 			*bits &= ~EXTENT_FIRST_DELALLOC;
1553 		} else {
1554 			spin_lock(&BTRFS_I(inode)->lock);
1555 			BTRFS_I(inode)->outstanding_extents++;
1556 			spin_unlock(&BTRFS_I(inode)->lock);
1557 		}
1558 
1559 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1560 				     root->fs_info->delalloc_batch);
1561 		spin_lock(&BTRFS_I(inode)->lock);
1562 		BTRFS_I(inode)->delalloc_bytes += len;
1563 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1564 					 &BTRFS_I(inode)->runtime_flags)) {
1565 			spin_lock(&root->fs_info->delalloc_lock);
1566 			if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1567 				list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1568 					      &root->fs_info->delalloc_inodes);
1569 				set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570 					&BTRFS_I(inode)->runtime_flags);
1571 			}
1572 			spin_unlock(&root->fs_info->delalloc_lock);
1573 		}
1574 		spin_unlock(&BTRFS_I(inode)->lock);
1575 	}
1576 }
1577 
1578 /*
1579  * extent_io.c clear_bit_hook, see set_bit_hook for why
1580  */
1581 static void btrfs_clear_bit_hook(struct inode *inode,
1582 				 struct extent_state *state,
1583 				 unsigned long *bits)
1584 {
1585 	/*
1586 	 * set_bit and clear bit hooks normally require _irqsave/restore
1587 	 * but in this case, we are only testing for the DELALLOC
1588 	 * bit, which is only set or cleared with irqs on
1589 	 */
1590 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1591 		struct btrfs_root *root = BTRFS_I(inode)->root;
1592 		u64 len = state->end + 1 - state->start;
1593 		bool do_list = !btrfs_is_free_space_inode(inode);
1594 
1595 		if (*bits & EXTENT_FIRST_DELALLOC) {
1596 			*bits &= ~EXTENT_FIRST_DELALLOC;
1597 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1598 			spin_lock(&BTRFS_I(inode)->lock);
1599 			BTRFS_I(inode)->outstanding_extents--;
1600 			spin_unlock(&BTRFS_I(inode)->lock);
1601 		}
1602 
1603 		if (*bits & EXTENT_DO_ACCOUNTING)
1604 			btrfs_delalloc_release_metadata(inode, len);
1605 
1606 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1607 		    && do_list)
1608 			btrfs_free_reserved_data_space(inode, len);
1609 
1610 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1611 				     root->fs_info->delalloc_batch);
1612 		spin_lock(&BTRFS_I(inode)->lock);
1613 		BTRFS_I(inode)->delalloc_bytes -= len;
1614 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1615 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1616 			     &BTRFS_I(inode)->runtime_flags)) {
1617 			spin_lock(&root->fs_info->delalloc_lock);
1618 			if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1619 				list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1620 				clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1621 					  &BTRFS_I(inode)->runtime_flags);
1622 			}
1623 			spin_unlock(&root->fs_info->delalloc_lock);
1624 		}
1625 		spin_unlock(&BTRFS_I(inode)->lock);
1626 	}
1627 }
1628 
1629 /*
1630  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1631  * we don't create bios that span stripes or chunks
1632  */
1633 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1634 			 size_t size, struct bio *bio,
1635 			 unsigned long bio_flags)
1636 {
1637 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1638 	u64 logical = (u64)bio->bi_sector << 9;
1639 	u64 length = 0;
1640 	u64 map_length;
1641 	int ret;
1642 
1643 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1644 		return 0;
1645 
1646 	length = bio->bi_size;
1647 	map_length = length;
1648 	ret = btrfs_map_block(root->fs_info, rw, logical,
1649 			      &map_length, NULL, 0);
1650 	/* Will always return 0 with map_multi == NULL */
1651 	BUG_ON(ret < 0);
1652 	if (map_length < length + size)
1653 		return 1;
1654 	return 0;
1655 }
1656 
1657 /*
1658  * in order to insert checksums into the metadata in large chunks,
1659  * we wait until bio submission time.   All the pages in the bio are
1660  * checksummed and sums are attached onto the ordered extent record.
1661  *
1662  * At IO completion time the cums attached on the ordered extent record
1663  * are inserted into the btree
1664  */
1665 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1666 				    struct bio *bio, int mirror_num,
1667 				    unsigned long bio_flags,
1668 				    u64 bio_offset)
1669 {
1670 	struct btrfs_root *root = BTRFS_I(inode)->root;
1671 	int ret = 0;
1672 
1673 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1674 	BUG_ON(ret); /* -ENOMEM */
1675 	return 0;
1676 }
1677 
1678 /*
1679  * in order to insert checksums into the metadata in large chunks,
1680  * we wait until bio submission time.   All the pages in the bio are
1681  * checksummed and sums are attached onto the ordered extent record.
1682  *
1683  * At IO completion time the cums attached on the ordered extent record
1684  * are inserted into the btree
1685  */
1686 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1687 			  int mirror_num, unsigned long bio_flags,
1688 			  u64 bio_offset)
1689 {
1690 	struct btrfs_root *root = BTRFS_I(inode)->root;
1691 	int ret;
1692 
1693 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1694 	if (ret)
1695 		bio_endio(bio, ret);
1696 	return ret;
1697 }
1698 
1699 /*
1700  * extent_io.c submission hook. This does the right thing for csum calculation
1701  * on write, or reading the csums from the tree before a read
1702  */
1703 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1704 			  int mirror_num, unsigned long bio_flags,
1705 			  u64 bio_offset)
1706 {
1707 	struct btrfs_root *root = BTRFS_I(inode)->root;
1708 	int ret = 0;
1709 	int skip_sum;
1710 	int metadata = 0;
1711 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1712 
1713 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1714 
1715 	if (btrfs_is_free_space_inode(inode))
1716 		metadata = 2;
1717 
1718 	if (!(rw & REQ_WRITE)) {
1719 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1720 		if (ret)
1721 			goto out;
1722 
1723 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1724 			ret = btrfs_submit_compressed_read(inode, bio,
1725 							   mirror_num,
1726 							   bio_flags);
1727 			goto out;
1728 		} else if (!skip_sum) {
1729 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1730 			if (ret)
1731 				goto out;
1732 		}
1733 		goto mapit;
1734 	} else if (async && !skip_sum) {
1735 		/* csum items have already been cloned */
1736 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 			goto mapit;
1738 		/* we're doing a write, do the async checksumming */
1739 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1740 				   inode, rw, bio, mirror_num,
1741 				   bio_flags, bio_offset,
1742 				   __btrfs_submit_bio_start,
1743 				   __btrfs_submit_bio_done);
1744 		goto out;
1745 	} else if (!skip_sum) {
1746 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1747 		if (ret)
1748 			goto out;
1749 	}
1750 
1751 mapit:
1752 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1753 
1754 out:
1755 	if (ret < 0)
1756 		bio_endio(bio, ret);
1757 	return ret;
1758 }
1759 
1760 /*
1761  * given a list of ordered sums record them in the inode.  This happens
1762  * at IO completion time based on sums calculated at bio submission time.
1763  */
1764 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1765 			     struct inode *inode, u64 file_offset,
1766 			     struct list_head *list)
1767 {
1768 	struct btrfs_ordered_sum *sum;
1769 
1770 	list_for_each_entry(sum, list, list) {
1771 		trans->adding_csums = 1;
1772 		btrfs_csum_file_blocks(trans,
1773 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1774 		trans->adding_csums = 0;
1775 	}
1776 	return 0;
1777 }
1778 
1779 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1780 			      struct extent_state **cached_state)
1781 {
1782 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1783 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1784 				   cached_state, GFP_NOFS);
1785 }
1786 
1787 /* see btrfs_writepage_start_hook for details on why this is required */
1788 struct btrfs_writepage_fixup {
1789 	struct page *page;
1790 	struct btrfs_work work;
1791 };
1792 
1793 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1794 {
1795 	struct btrfs_writepage_fixup *fixup;
1796 	struct btrfs_ordered_extent *ordered;
1797 	struct extent_state *cached_state = NULL;
1798 	struct page *page;
1799 	struct inode *inode;
1800 	u64 page_start;
1801 	u64 page_end;
1802 	int ret;
1803 
1804 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1805 	page = fixup->page;
1806 again:
1807 	lock_page(page);
1808 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1809 		ClearPageChecked(page);
1810 		goto out_page;
1811 	}
1812 
1813 	inode = page->mapping->host;
1814 	page_start = page_offset(page);
1815 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1816 
1817 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1818 			 &cached_state);
1819 
1820 	/* already ordered? We're done */
1821 	if (PagePrivate2(page))
1822 		goto out;
1823 
1824 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1825 	if (ordered) {
1826 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1827 				     page_end, &cached_state, GFP_NOFS);
1828 		unlock_page(page);
1829 		btrfs_start_ordered_extent(inode, ordered, 1);
1830 		btrfs_put_ordered_extent(ordered);
1831 		goto again;
1832 	}
1833 
1834 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1835 	if (ret) {
1836 		mapping_set_error(page->mapping, ret);
1837 		end_extent_writepage(page, ret, page_start, page_end);
1838 		ClearPageChecked(page);
1839 		goto out;
1840 	 }
1841 
1842 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1843 	ClearPageChecked(page);
1844 	set_page_dirty(page);
1845 out:
1846 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1847 			     &cached_state, GFP_NOFS);
1848 out_page:
1849 	unlock_page(page);
1850 	page_cache_release(page);
1851 	kfree(fixup);
1852 }
1853 
1854 /*
1855  * There are a few paths in the higher layers of the kernel that directly
1856  * set the page dirty bit without asking the filesystem if it is a
1857  * good idea.  This causes problems because we want to make sure COW
1858  * properly happens and the data=ordered rules are followed.
1859  *
1860  * In our case any range that doesn't have the ORDERED bit set
1861  * hasn't been properly setup for IO.  We kick off an async process
1862  * to fix it up.  The async helper will wait for ordered extents, set
1863  * the delalloc bit and make it safe to write the page.
1864  */
1865 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1866 {
1867 	struct inode *inode = page->mapping->host;
1868 	struct btrfs_writepage_fixup *fixup;
1869 	struct btrfs_root *root = BTRFS_I(inode)->root;
1870 
1871 	/* this page is properly in the ordered list */
1872 	if (TestClearPagePrivate2(page))
1873 		return 0;
1874 
1875 	if (PageChecked(page))
1876 		return -EAGAIN;
1877 
1878 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1879 	if (!fixup)
1880 		return -EAGAIN;
1881 
1882 	SetPageChecked(page);
1883 	page_cache_get(page);
1884 	fixup->work.func = btrfs_writepage_fixup_worker;
1885 	fixup->page = page;
1886 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1887 	return -EBUSY;
1888 }
1889 
1890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1891 				       struct inode *inode, u64 file_pos,
1892 				       u64 disk_bytenr, u64 disk_num_bytes,
1893 				       u64 num_bytes, u64 ram_bytes,
1894 				       u8 compression, u8 encryption,
1895 				       u16 other_encoding, int extent_type)
1896 {
1897 	struct btrfs_root *root = BTRFS_I(inode)->root;
1898 	struct btrfs_file_extent_item *fi;
1899 	struct btrfs_path *path;
1900 	struct extent_buffer *leaf;
1901 	struct btrfs_key ins;
1902 	int ret;
1903 
1904 	path = btrfs_alloc_path();
1905 	if (!path)
1906 		return -ENOMEM;
1907 
1908 	path->leave_spinning = 1;
1909 
1910 	/*
1911 	 * we may be replacing one extent in the tree with another.
1912 	 * The new extent is pinned in the extent map, and we don't want
1913 	 * to drop it from the cache until it is completely in the btree.
1914 	 *
1915 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1916 	 * the caller is expected to unpin it and allow it to be merged
1917 	 * with the others.
1918 	 */
1919 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1920 				 file_pos + num_bytes, 0);
1921 	if (ret)
1922 		goto out;
1923 
1924 	ins.objectid = btrfs_ino(inode);
1925 	ins.offset = file_pos;
1926 	ins.type = BTRFS_EXTENT_DATA_KEY;
1927 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1928 	if (ret)
1929 		goto out;
1930 	leaf = path->nodes[0];
1931 	fi = btrfs_item_ptr(leaf, path->slots[0],
1932 			    struct btrfs_file_extent_item);
1933 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1934 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1935 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1936 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1937 	btrfs_set_file_extent_offset(leaf, fi, 0);
1938 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1939 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1940 	btrfs_set_file_extent_compression(leaf, fi, compression);
1941 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1942 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1943 
1944 	btrfs_mark_buffer_dirty(leaf);
1945 	btrfs_release_path(path);
1946 
1947 	inode_add_bytes(inode, num_bytes);
1948 
1949 	ins.objectid = disk_bytenr;
1950 	ins.offset = disk_num_bytes;
1951 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1952 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1953 					root->root_key.objectid,
1954 					btrfs_ino(inode), file_pos, &ins);
1955 out:
1956 	btrfs_free_path(path);
1957 
1958 	return ret;
1959 }
1960 
1961 /* snapshot-aware defrag */
1962 struct sa_defrag_extent_backref {
1963 	struct rb_node node;
1964 	struct old_sa_defrag_extent *old;
1965 	u64 root_id;
1966 	u64 inum;
1967 	u64 file_pos;
1968 	u64 extent_offset;
1969 	u64 num_bytes;
1970 	u64 generation;
1971 };
1972 
1973 struct old_sa_defrag_extent {
1974 	struct list_head list;
1975 	struct new_sa_defrag_extent *new;
1976 
1977 	u64 extent_offset;
1978 	u64 bytenr;
1979 	u64 offset;
1980 	u64 len;
1981 	int count;
1982 };
1983 
1984 struct new_sa_defrag_extent {
1985 	struct rb_root root;
1986 	struct list_head head;
1987 	struct btrfs_path *path;
1988 	struct inode *inode;
1989 	u64 file_pos;
1990 	u64 len;
1991 	u64 bytenr;
1992 	u64 disk_len;
1993 	u8 compress_type;
1994 };
1995 
1996 static int backref_comp(struct sa_defrag_extent_backref *b1,
1997 			struct sa_defrag_extent_backref *b2)
1998 {
1999 	if (b1->root_id < b2->root_id)
2000 		return -1;
2001 	else if (b1->root_id > b2->root_id)
2002 		return 1;
2003 
2004 	if (b1->inum < b2->inum)
2005 		return -1;
2006 	else if (b1->inum > b2->inum)
2007 		return 1;
2008 
2009 	if (b1->file_pos < b2->file_pos)
2010 		return -1;
2011 	else if (b1->file_pos > b2->file_pos)
2012 		return 1;
2013 
2014 	/*
2015 	 * [------------------------------] ===> (a range of space)
2016 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2017 	 * |<---------------------------->| ===> (fs/file tree B)
2018 	 *
2019 	 * A range of space can refer to two file extents in one tree while
2020 	 * refer to only one file extent in another tree.
2021 	 *
2022 	 * So we may process a disk offset more than one time(two extents in A)
2023 	 * and locate at the same extent(one extent in B), then insert two same
2024 	 * backrefs(both refer to the extent in B).
2025 	 */
2026 	return 0;
2027 }
2028 
2029 static void backref_insert(struct rb_root *root,
2030 			   struct sa_defrag_extent_backref *backref)
2031 {
2032 	struct rb_node **p = &root->rb_node;
2033 	struct rb_node *parent = NULL;
2034 	struct sa_defrag_extent_backref *entry;
2035 	int ret;
2036 
2037 	while (*p) {
2038 		parent = *p;
2039 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2040 
2041 		ret = backref_comp(backref, entry);
2042 		if (ret < 0)
2043 			p = &(*p)->rb_left;
2044 		else
2045 			p = &(*p)->rb_right;
2046 	}
2047 
2048 	rb_link_node(&backref->node, parent, p);
2049 	rb_insert_color(&backref->node, root);
2050 }
2051 
2052 /*
2053  * Note the backref might has changed, and in this case we just return 0.
2054  */
2055 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2056 				       void *ctx)
2057 {
2058 	struct btrfs_file_extent_item *extent;
2059 	struct btrfs_fs_info *fs_info;
2060 	struct old_sa_defrag_extent *old = ctx;
2061 	struct new_sa_defrag_extent *new = old->new;
2062 	struct btrfs_path *path = new->path;
2063 	struct btrfs_key key;
2064 	struct btrfs_root *root;
2065 	struct sa_defrag_extent_backref *backref;
2066 	struct extent_buffer *leaf;
2067 	struct inode *inode = new->inode;
2068 	int slot;
2069 	int ret;
2070 	u64 extent_offset;
2071 	u64 num_bytes;
2072 
2073 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2074 	    inum == btrfs_ino(inode))
2075 		return 0;
2076 
2077 	key.objectid = root_id;
2078 	key.type = BTRFS_ROOT_ITEM_KEY;
2079 	key.offset = (u64)-1;
2080 
2081 	fs_info = BTRFS_I(inode)->root->fs_info;
2082 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2083 	if (IS_ERR(root)) {
2084 		if (PTR_ERR(root) == -ENOENT)
2085 			return 0;
2086 		WARN_ON(1);
2087 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2088 			 inum, offset, root_id);
2089 		return PTR_ERR(root);
2090 	}
2091 
2092 	key.objectid = inum;
2093 	key.type = BTRFS_EXTENT_DATA_KEY;
2094 	if (offset > (u64)-1 << 32)
2095 		key.offset = 0;
2096 	else
2097 		key.offset = offset;
2098 
2099 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2100 	if (ret < 0) {
2101 		WARN_ON(1);
2102 		return ret;
2103 	}
2104 
2105 	while (1) {
2106 		cond_resched();
2107 
2108 		leaf = path->nodes[0];
2109 		slot = path->slots[0];
2110 
2111 		if (slot >= btrfs_header_nritems(leaf)) {
2112 			ret = btrfs_next_leaf(root, path);
2113 			if (ret < 0) {
2114 				goto out;
2115 			} else if (ret > 0) {
2116 				ret = 0;
2117 				goto out;
2118 			}
2119 			continue;
2120 		}
2121 
2122 		path->slots[0]++;
2123 
2124 		btrfs_item_key_to_cpu(leaf, &key, slot);
2125 
2126 		if (key.objectid > inum)
2127 			goto out;
2128 
2129 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2130 			continue;
2131 
2132 		extent = btrfs_item_ptr(leaf, slot,
2133 					struct btrfs_file_extent_item);
2134 
2135 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2136 			continue;
2137 
2138 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2139 		if (key.offset - extent_offset != offset)
2140 			continue;
2141 
2142 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2143 		if (extent_offset >= old->extent_offset + old->offset +
2144 		    old->len || extent_offset + num_bytes <=
2145 		    old->extent_offset + old->offset)
2146 			continue;
2147 
2148 		break;
2149 	}
2150 
2151 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2152 	if (!backref) {
2153 		ret = -ENOENT;
2154 		goto out;
2155 	}
2156 
2157 	backref->root_id = root_id;
2158 	backref->inum = inum;
2159 	backref->file_pos = offset + extent_offset;
2160 	backref->num_bytes = num_bytes;
2161 	backref->extent_offset = extent_offset;
2162 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2163 	backref->old = old;
2164 	backref_insert(&new->root, backref);
2165 	old->count++;
2166 out:
2167 	btrfs_release_path(path);
2168 	WARN_ON(ret);
2169 	return ret;
2170 }
2171 
2172 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2173 				   struct new_sa_defrag_extent *new)
2174 {
2175 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2176 	struct old_sa_defrag_extent *old, *tmp;
2177 	int ret;
2178 
2179 	new->path = path;
2180 
2181 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2182 		ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2183 						  path, record_one_backref,
2184 						  old);
2185 		BUG_ON(ret < 0 && ret != -ENOENT);
2186 
2187 		/* no backref to be processed for this extent */
2188 		if (!old->count) {
2189 			list_del(&old->list);
2190 			kfree(old);
2191 		}
2192 	}
2193 
2194 	if (list_empty(&new->head))
2195 		return false;
2196 
2197 	return true;
2198 }
2199 
2200 static int relink_is_mergable(struct extent_buffer *leaf,
2201 			      struct btrfs_file_extent_item *fi,
2202 			      u64 disk_bytenr)
2203 {
2204 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2205 		return 0;
2206 
2207 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2208 		return 0;
2209 
2210 	if (btrfs_file_extent_compression(leaf, fi) ||
2211 	    btrfs_file_extent_encryption(leaf, fi) ||
2212 	    btrfs_file_extent_other_encoding(leaf, fi))
2213 		return 0;
2214 
2215 	return 1;
2216 }
2217 
2218 /*
2219  * Note the backref might has changed, and in this case we just return 0.
2220  */
2221 static noinline int relink_extent_backref(struct btrfs_path *path,
2222 				 struct sa_defrag_extent_backref *prev,
2223 				 struct sa_defrag_extent_backref *backref)
2224 {
2225 	struct btrfs_file_extent_item *extent;
2226 	struct btrfs_file_extent_item *item;
2227 	struct btrfs_ordered_extent *ordered;
2228 	struct btrfs_trans_handle *trans;
2229 	struct btrfs_fs_info *fs_info;
2230 	struct btrfs_root *root;
2231 	struct btrfs_key key;
2232 	struct extent_buffer *leaf;
2233 	struct old_sa_defrag_extent *old = backref->old;
2234 	struct new_sa_defrag_extent *new = old->new;
2235 	struct inode *src_inode = new->inode;
2236 	struct inode *inode;
2237 	struct extent_state *cached = NULL;
2238 	int ret = 0;
2239 	u64 start;
2240 	u64 len;
2241 	u64 lock_start;
2242 	u64 lock_end;
2243 	bool merge = false;
2244 	int index;
2245 
2246 	if (prev && prev->root_id == backref->root_id &&
2247 	    prev->inum == backref->inum &&
2248 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2249 		merge = true;
2250 
2251 	/* step 1: get root */
2252 	key.objectid = backref->root_id;
2253 	key.type = BTRFS_ROOT_ITEM_KEY;
2254 	key.offset = (u64)-1;
2255 
2256 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2257 	index = srcu_read_lock(&fs_info->subvol_srcu);
2258 
2259 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2260 	if (IS_ERR(root)) {
2261 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2262 		if (PTR_ERR(root) == -ENOENT)
2263 			return 0;
2264 		return PTR_ERR(root);
2265 	}
2266 	if (btrfs_root_refs(&root->root_item) == 0) {
2267 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2268 		/* parse ENOENT to 0 */
2269 		return 0;
2270 	}
2271 
2272 	/* step 2: get inode */
2273 	key.objectid = backref->inum;
2274 	key.type = BTRFS_INODE_ITEM_KEY;
2275 	key.offset = 0;
2276 
2277 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2278 	if (IS_ERR(inode)) {
2279 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2280 		return 0;
2281 	}
2282 
2283 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2284 
2285 	/* step 3: relink backref */
2286 	lock_start = backref->file_pos;
2287 	lock_end = backref->file_pos + backref->num_bytes - 1;
2288 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2289 			 0, &cached);
2290 
2291 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2292 	if (ordered) {
2293 		btrfs_put_ordered_extent(ordered);
2294 		goto out_unlock;
2295 	}
2296 
2297 	trans = btrfs_join_transaction(root);
2298 	if (IS_ERR(trans)) {
2299 		ret = PTR_ERR(trans);
2300 		goto out_unlock;
2301 	}
2302 
2303 	key.objectid = backref->inum;
2304 	key.type = BTRFS_EXTENT_DATA_KEY;
2305 	key.offset = backref->file_pos;
2306 
2307 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308 	if (ret < 0) {
2309 		goto out_free_path;
2310 	} else if (ret > 0) {
2311 		ret = 0;
2312 		goto out_free_path;
2313 	}
2314 
2315 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2316 				struct btrfs_file_extent_item);
2317 
2318 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2319 	    backref->generation)
2320 		goto out_free_path;
2321 
2322 	btrfs_release_path(path);
2323 
2324 	start = backref->file_pos;
2325 	if (backref->extent_offset < old->extent_offset + old->offset)
2326 		start += old->extent_offset + old->offset -
2327 			 backref->extent_offset;
2328 
2329 	len = min(backref->extent_offset + backref->num_bytes,
2330 		  old->extent_offset + old->offset + old->len);
2331 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2332 
2333 	ret = btrfs_drop_extents(trans, root, inode, start,
2334 				 start + len, 1);
2335 	if (ret)
2336 		goto out_free_path;
2337 again:
2338 	key.objectid = btrfs_ino(inode);
2339 	key.type = BTRFS_EXTENT_DATA_KEY;
2340 	key.offset = start;
2341 
2342 	path->leave_spinning = 1;
2343 	if (merge) {
2344 		struct btrfs_file_extent_item *fi;
2345 		u64 extent_len;
2346 		struct btrfs_key found_key;
2347 
2348 		ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2349 		if (ret < 0)
2350 			goto out_free_path;
2351 
2352 		path->slots[0]--;
2353 		leaf = path->nodes[0];
2354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355 
2356 		fi = btrfs_item_ptr(leaf, path->slots[0],
2357 				    struct btrfs_file_extent_item);
2358 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2359 
2360 		if (relink_is_mergable(leaf, fi, new->bytenr) &&
2361 		    extent_len + found_key.offset == start) {
2362 			btrfs_set_file_extent_num_bytes(leaf, fi,
2363 							extent_len + len);
2364 			btrfs_mark_buffer_dirty(leaf);
2365 			inode_add_bytes(inode, len);
2366 
2367 			ret = 1;
2368 			goto out_free_path;
2369 		} else {
2370 			merge = false;
2371 			btrfs_release_path(path);
2372 			goto again;
2373 		}
2374 	}
2375 
2376 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2377 					sizeof(*extent));
2378 	if (ret) {
2379 		btrfs_abort_transaction(trans, root, ret);
2380 		goto out_free_path;
2381 	}
2382 
2383 	leaf = path->nodes[0];
2384 	item = btrfs_item_ptr(leaf, path->slots[0],
2385 				struct btrfs_file_extent_item);
2386 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2387 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2388 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2389 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2390 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2391 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2392 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2393 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2394 	btrfs_set_file_extent_encryption(leaf, item, 0);
2395 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2396 
2397 	btrfs_mark_buffer_dirty(leaf);
2398 	inode_add_bytes(inode, len);
2399 	btrfs_release_path(path);
2400 
2401 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2402 			new->disk_len, 0,
2403 			backref->root_id, backref->inum,
2404 			new->file_pos, 0);	/* start - extent_offset */
2405 	if (ret) {
2406 		btrfs_abort_transaction(trans, root, ret);
2407 		goto out_free_path;
2408 	}
2409 
2410 	ret = 1;
2411 out_free_path:
2412 	btrfs_release_path(path);
2413 	path->leave_spinning = 0;
2414 	btrfs_end_transaction(trans, root);
2415 out_unlock:
2416 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2417 			     &cached, GFP_NOFS);
2418 	iput(inode);
2419 	return ret;
2420 }
2421 
2422 static void relink_file_extents(struct new_sa_defrag_extent *new)
2423 {
2424 	struct btrfs_path *path;
2425 	struct old_sa_defrag_extent *old, *tmp;
2426 	struct sa_defrag_extent_backref *backref;
2427 	struct sa_defrag_extent_backref *prev = NULL;
2428 	struct inode *inode;
2429 	struct btrfs_root *root;
2430 	struct rb_node *node;
2431 	int ret;
2432 
2433 	inode = new->inode;
2434 	root = BTRFS_I(inode)->root;
2435 
2436 	path = btrfs_alloc_path();
2437 	if (!path)
2438 		return;
2439 
2440 	if (!record_extent_backrefs(path, new)) {
2441 		btrfs_free_path(path);
2442 		goto out;
2443 	}
2444 	btrfs_release_path(path);
2445 
2446 	while (1) {
2447 		node = rb_first(&new->root);
2448 		if (!node)
2449 			break;
2450 		rb_erase(node, &new->root);
2451 
2452 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2453 
2454 		ret = relink_extent_backref(path, prev, backref);
2455 		WARN_ON(ret < 0);
2456 
2457 		kfree(prev);
2458 
2459 		if (ret == 1)
2460 			prev = backref;
2461 		else
2462 			prev = NULL;
2463 		cond_resched();
2464 	}
2465 	kfree(prev);
2466 
2467 	btrfs_free_path(path);
2468 
2469 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2470 		list_del(&old->list);
2471 		kfree(old);
2472 	}
2473 out:
2474 	atomic_dec(&root->fs_info->defrag_running);
2475 	wake_up(&root->fs_info->transaction_wait);
2476 
2477 	kfree(new);
2478 }
2479 
2480 static struct new_sa_defrag_extent *
2481 record_old_file_extents(struct inode *inode,
2482 			struct btrfs_ordered_extent *ordered)
2483 {
2484 	struct btrfs_root *root = BTRFS_I(inode)->root;
2485 	struct btrfs_path *path;
2486 	struct btrfs_key key;
2487 	struct old_sa_defrag_extent *old, *tmp;
2488 	struct new_sa_defrag_extent *new;
2489 	int ret;
2490 
2491 	new = kmalloc(sizeof(*new), GFP_NOFS);
2492 	if (!new)
2493 		return NULL;
2494 
2495 	new->inode = inode;
2496 	new->file_pos = ordered->file_offset;
2497 	new->len = ordered->len;
2498 	new->bytenr = ordered->start;
2499 	new->disk_len = ordered->disk_len;
2500 	new->compress_type = ordered->compress_type;
2501 	new->root = RB_ROOT;
2502 	INIT_LIST_HEAD(&new->head);
2503 
2504 	path = btrfs_alloc_path();
2505 	if (!path)
2506 		goto out_kfree;
2507 
2508 	key.objectid = btrfs_ino(inode);
2509 	key.type = BTRFS_EXTENT_DATA_KEY;
2510 	key.offset = new->file_pos;
2511 
2512 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2513 	if (ret < 0)
2514 		goto out_free_path;
2515 	if (ret > 0 && path->slots[0] > 0)
2516 		path->slots[0]--;
2517 
2518 	/* find out all the old extents for the file range */
2519 	while (1) {
2520 		struct btrfs_file_extent_item *extent;
2521 		struct extent_buffer *l;
2522 		int slot;
2523 		u64 num_bytes;
2524 		u64 offset;
2525 		u64 end;
2526 		u64 disk_bytenr;
2527 		u64 extent_offset;
2528 
2529 		l = path->nodes[0];
2530 		slot = path->slots[0];
2531 
2532 		if (slot >= btrfs_header_nritems(l)) {
2533 			ret = btrfs_next_leaf(root, path);
2534 			if (ret < 0)
2535 				goto out_free_list;
2536 			else if (ret > 0)
2537 				break;
2538 			continue;
2539 		}
2540 
2541 		btrfs_item_key_to_cpu(l, &key, slot);
2542 
2543 		if (key.objectid != btrfs_ino(inode))
2544 			break;
2545 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2546 			break;
2547 		if (key.offset >= new->file_pos + new->len)
2548 			break;
2549 
2550 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2551 
2552 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2553 		if (key.offset + num_bytes < new->file_pos)
2554 			goto next;
2555 
2556 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2557 		if (!disk_bytenr)
2558 			goto next;
2559 
2560 		extent_offset = btrfs_file_extent_offset(l, extent);
2561 
2562 		old = kmalloc(sizeof(*old), GFP_NOFS);
2563 		if (!old)
2564 			goto out_free_list;
2565 
2566 		offset = max(new->file_pos, key.offset);
2567 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2568 
2569 		old->bytenr = disk_bytenr;
2570 		old->extent_offset = extent_offset;
2571 		old->offset = offset - key.offset;
2572 		old->len = end - offset;
2573 		old->new = new;
2574 		old->count = 0;
2575 		list_add_tail(&old->list, &new->head);
2576 next:
2577 		path->slots[0]++;
2578 		cond_resched();
2579 	}
2580 
2581 	btrfs_free_path(path);
2582 	atomic_inc(&root->fs_info->defrag_running);
2583 
2584 	return new;
2585 
2586 out_free_list:
2587 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2588 		list_del(&old->list);
2589 		kfree(old);
2590 	}
2591 out_free_path:
2592 	btrfs_free_path(path);
2593 out_kfree:
2594 	kfree(new);
2595 	return NULL;
2596 }
2597 
2598 /*
2599  * helper function for btrfs_finish_ordered_io, this
2600  * just reads in some of the csum leaves to prime them into ram
2601  * before we start the transaction.  It limits the amount of btree
2602  * reads required while inside the transaction.
2603  */
2604 /* as ordered data IO finishes, this gets called so we can finish
2605  * an ordered extent if the range of bytes in the file it covers are
2606  * fully written.
2607  */
2608 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2609 {
2610 	struct inode *inode = ordered_extent->inode;
2611 	struct btrfs_root *root = BTRFS_I(inode)->root;
2612 	struct btrfs_trans_handle *trans = NULL;
2613 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2614 	struct extent_state *cached_state = NULL;
2615 	struct new_sa_defrag_extent *new = NULL;
2616 	int compress_type = 0;
2617 	int ret;
2618 	bool nolock;
2619 
2620 	nolock = btrfs_is_free_space_inode(inode);
2621 
2622 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2623 		ret = -EIO;
2624 		goto out;
2625 	}
2626 
2627 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2628 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2629 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2630 		if (nolock)
2631 			trans = btrfs_join_transaction_nolock(root);
2632 		else
2633 			trans = btrfs_join_transaction(root);
2634 		if (IS_ERR(trans)) {
2635 			ret = PTR_ERR(trans);
2636 			trans = NULL;
2637 			goto out;
2638 		}
2639 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2640 		ret = btrfs_update_inode_fallback(trans, root, inode);
2641 		if (ret) /* -ENOMEM or corruption */
2642 			btrfs_abort_transaction(trans, root, ret);
2643 		goto out;
2644 	}
2645 
2646 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2647 			 ordered_extent->file_offset + ordered_extent->len - 1,
2648 			 0, &cached_state);
2649 
2650 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2651 			ordered_extent->file_offset + ordered_extent->len - 1,
2652 			EXTENT_DEFRAG, 1, cached_state);
2653 	if (ret) {
2654 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2655 		if (last_snapshot >= BTRFS_I(inode)->generation)
2656 			/* the inode is shared */
2657 			new = record_old_file_extents(inode, ordered_extent);
2658 
2659 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2660 			ordered_extent->file_offset + ordered_extent->len - 1,
2661 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2662 	}
2663 
2664 	if (nolock)
2665 		trans = btrfs_join_transaction_nolock(root);
2666 	else
2667 		trans = btrfs_join_transaction(root);
2668 	if (IS_ERR(trans)) {
2669 		ret = PTR_ERR(trans);
2670 		trans = NULL;
2671 		goto out_unlock;
2672 	}
2673 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674 
2675 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2676 		compress_type = ordered_extent->compress_type;
2677 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2678 		BUG_ON(compress_type);
2679 		ret = btrfs_mark_extent_written(trans, inode,
2680 						ordered_extent->file_offset,
2681 						ordered_extent->file_offset +
2682 						ordered_extent->len);
2683 	} else {
2684 		BUG_ON(root == root->fs_info->tree_root);
2685 		ret = insert_reserved_file_extent(trans, inode,
2686 						ordered_extent->file_offset,
2687 						ordered_extent->start,
2688 						ordered_extent->disk_len,
2689 						ordered_extent->len,
2690 						ordered_extent->len,
2691 						compress_type, 0, 0,
2692 						BTRFS_FILE_EXTENT_REG);
2693 	}
2694 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2695 			   ordered_extent->file_offset, ordered_extent->len,
2696 			   trans->transid);
2697 	if (ret < 0) {
2698 		btrfs_abort_transaction(trans, root, ret);
2699 		goto out_unlock;
2700 	}
2701 
2702 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2703 			  &ordered_extent->list);
2704 
2705 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2706 	ret = btrfs_update_inode_fallback(trans, root, inode);
2707 	if (ret) { /* -ENOMEM or corruption */
2708 		btrfs_abort_transaction(trans, root, ret);
2709 		goto out_unlock;
2710 	}
2711 	ret = 0;
2712 out_unlock:
2713 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2714 			     ordered_extent->file_offset +
2715 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2716 out:
2717 	if (root != root->fs_info->tree_root)
2718 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2719 	if (trans)
2720 		btrfs_end_transaction(trans, root);
2721 
2722 	if (ret) {
2723 		clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2724 				      ordered_extent->file_offset +
2725 				      ordered_extent->len - 1, NULL, GFP_NOFS);
2726 
2727 		/*
2728 		 * If the ordered extent had an IOERR or something else went
2729 		 * wrong we need to return the space for this ordered extent
2730 		 * back to the allocator.
2731 		 */
2732 		if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2733 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2734 			btrfs_free_reserved_extent(root, ordered_extent->start,
2735 						   ordered_extent->disk_len);
2736 	}
2737 
2738 
2739 	/*
2740 	 * This needs to be done to make sure anybody waiting knows we are done
2741 	 * updating everything for this ordered extent.
2742 	 */
2743 	btrfs_remove_ordered_extent(inode, ordered_extent);
2744 
2745 	/* for snapshot-aware defrag */
2746 	if (new)
2747 		relink_file_extents(new);
2748 
2749 	/* once for us */
2750 	btrfs_put_ordered_extent(ordered_extent);
2751 	/* once for the tree */
2752 	btrfs_put_ordered_extent(ordered_extent);
2753 
2754 	return ret;
2755 }
2756 
2757 static void finish_ordered_fn(struct btrfs_work *work)
2758 {
2759 	struct btrfs_ordered_extent *ordered_extent;
2760 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2761 	btrfs_finish_ordered_io(ordered_extent);
2762 }
2763 
2764 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2765 				struct extent_state *state, int uptodate)
2766 {
2767 	struct inode *inode = page->mapping->host;
2768 	struct btrfs_root *root = BTRFS_I(inode)->root;
2769 	struct btrfs_ordered_extent *ordered_extent = NULL;
2770 	struct btrfs_workers *workers;
2771 
2772 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2773 
2774 	ClearPagePrivate2(page);
2775 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2776 					    end - start + 1, uptodate))
2777 		return 0;
2778 
2779 	ordered_extent->work.func = finish_ordered_fn;
2780 	ordered_extent->work.flags = 0;
2781 
2782 	if (btrfs_is_free_space_inode(inode))
2783 		workers = &root->fs_info->endio_freespace_worker;
2784 	else
2785 		workers = &root->fs_info->endio_write_workers;
2786 	btrfs_queue_worker(workers, &ordered_extent->work);
2787 
2788 	return 0;
2789 }
2790 
2791 /*
2792  * when reads are done, we need to check csums to verify the data is correct
2793  * if there's a match, we allow the bio to finish.  If not, the code in
2794  * extent_io.c will try to find good copies for us.
2795  */
2796 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2797 			       struct extent_state *state, int mirror)
2798 {
2799 	size_t offset = start - page_offset(page);
2800 	struct inode *inode = page->mapping->host;
2801 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2802 	char *kaddr;
2803 	u64 private = ~(u32)0;
2804 	int ret;
2805 	struct btrfs_root *root = BTRFS_I(inode)->root;
2806 	u32 csum = ~(u32)0;
2807 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2808 	                              DEFAULT_RATELIMIT_BURST);
2809 
2810 	if (PageChecked(page)) {
2811 		ClearPageChecked(page);
2812 		goto good;
2813 	}
2814 
2815 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2816 		goto good;
2817 
2818 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2819 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2820 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2821 				  GFP_NOFS);
2822 		return 0;
2823 	}
2824 
2825 	if (state && state->start == start) {
2826 		private = state->private;
2827 		ret = 0;
2828 	} else {
2829 		ret = get_state_private(io_tree, start, &private);
2830 	}
2831 	kaddr = kmap_atomic(page);
2832 	if (ret)
2833 		goto zeroit;
2834 
2835 	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2836 	btrfs_csum_final(csum, (char *)&csum);
2837 	if (csum != private)
2838 		goto zeroit;
2839 
2840 	kunmap_atomic(kaddr);
2841 good:
2842 	return 0;
2843 
2844 zeroit:
2845 	if (__ratelimit(&_rs))
2846 		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2847 			(unsigned long long)btrfs_ino(page->mapping->host),
2848 			(unsigned long long)start, csum,
2849 			(unsigned long long)private);
2850 	memset(kaddr + offset, 1, end - start + 1);
2851 	flush_dcache_page(page);
2852 	kunmap_atomic(kaddr);
2853 	if (private == 0)
2854 		return 0;
2855 	return -EIO;
2856 }
2857 
2858 struct delayed_iput {
2859 	struct list_head list;
2860 	struct inode *inode;
2861 };
2862 
2863 /* JDM: If this is fs-wide, why can't we add a pointer to
2864  * btrfs_inode instead and avoid the allocation? */
2865 void btrfs_add_delayed_iput(struct inode *inode)
2866 {
2867 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2868 	struct delayed_iput *delayed;
2869 
2870 	if (atomic_add_unless(&inode->i_count, -1, 1))
2871 		return;
2872 
2873 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2874 	delayed->inode = inode;
2875 
2876 	spin_lock(&fs_info->delayed_iput_lock);
2877 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2878 	spin_unlock(&fs_info->delayed_iput_lock);
2879 }
2880 
2881 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2882 {
2883 	LIST_HEAD(list);
2884 	struct btrfs_fs_info *fs_info = root->fs_info;
2885 	struct delayed_iput *delayed;
2886 	int empty;
2887 
2888 	spin_lock(&fs_info->delayed_iput_lock);
2889 	empty = list_empty(&fs_info->delayed_iputs);
2890 	spin_unlock(&fs_info->delayed_iput_lock);
2891 	if (empty)
2892 		return;
2893 
2894 	spin_lock(&fs_info->delayed_iput_lock);
2895 	list_splice_init(&fs_info->delayed_iputs, &list);
2896 	spin_unlock(&fs_info->delayed_iput_lock);
2897 
2898 	while (!list_empty(&list)) {
2899 		delayed = list_entry(list.next, struct delayed_iput, list);
2900 		list_del(&delayed->list);
2901 		iput(delayed->inode);
2902 		kfree(delayed);
2903 	}
2904 }
2905 
2906 /*
2907  * This is called in transaction commit time. If there are no orphan
2908  * files in the subvolume, it removes orphan item and frees block_rsv
2909  * structure.
2910  */
2911 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2912 			      struct btrfs_root *root)
2913 {
2914 	struct btrfs_block_rsv *block_rsv;
2915 	int ret;
2916 
2917 	if (atomic_read(&root->orphan_inodes) ||
2918 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2919 		return;
2920 
2921 	spin_lock(&root->orphan_lock);
2922 	if (atomic_read(&root->orphan_inodes)) {
2923 		spin_unlock(&root->orphan_lock);
2924 		return;
2925 	}
2926 
2927 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2928 		spin_unlock(&root->orphan_lock);
2929 		return;
2930 	}
2931 
2932 	block_rsv = root->orphan_block_rsv;
2933 	root->orphan_block_rsv = NULL;
2934 	spin_unlock(&root->orphan_lock);
2935 
2936 	if (root->orphan_item_inserted &&
2937 	    btrfs_root_refs(&root->root_item) > 0) {
2938 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2939 					    root->root_key.objectid);
2940 		BUG_ON(ret);
2941 		root->orphan_item_inserted = 0;
2942 	}
2943 
2944 	if (block_rsv) {
2945 		WARN_ON(block_rsv->size > 0);
2946 		btrfs_free_block_rsv(root, block_rsv);
2947 	}
2948 }
2949 
2950 /*
2951  * This creates an orphan entry for the given inode in case something goes
2952  * wrong in the middle of an unlink/truncate.
2953  *
2954  * NOTE: caller of this function should reserve 5 units of metadata for
2955  *	 this function.
2956  */
2957 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2958 {
2959 	struct btrfs_root *root = BTRFS_I(inode)->root;
2960 	struct btrfs_block_rsv *block_rsv = NULL;
2961 	int reserve = 0;
2962 	int insert = 0;
2963 	int ret;
2964 
2965 	if (!root->orphan_block_rsv) {
2966 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2967 		if (!block_rsv)
2968 			return -ENOMEM;
2969 	}
2970 
2971 	spin_lock(&root->orphan_lock);
2972 	if (!root->orphan_block_rsv) {
2973 		root->orphan_block_rsv = block_rsv;
2974 	} else if (block_rsv) {
2975 		btrfs_free_block_rsv(root, block_rsv);
2976 		block_rsv = NULL;
2977 	}
2978 
2979 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2980 			      &BTRFS_I(inode)->runtime_flags)) {
2981 #if 0
2982 		/*
2983 		 * For proper ENOSPC handling, we should do orphan
2984 		 * cleanup when mounting. But this introduces backward
2985 		 * compatibility issue.
2986 		 */
2987 		if (!xchg(&root->orphan_item_inserted, 1))
2988 			insert = 2;
2989 		else
2990 			insert = 1;
2991 #endif
2992 		insert = 1;
2993 		atomic_inc(&root->orphan_inodes);
2994 	}
2995 
2996 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2997 			      &BTRFS_I(inode)->runtime_flags))
2998 		reserve = 1;
2999 	spin_unlock(&root->orphan_lock);
3000 
3001 	/* grab metadata reservation from transaction handle */
3002 	if (reserve) {
3003 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3004 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3005 	}
3006 
3007 	/* insert an orphan item to track this unlinked/truncated file */
3008 	if (insert >= 1) {
3009 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3010 		if (ret && ret != -EEXIST) {
3011 			clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3012 				  &BTRFS_I(inode)->runtime_flags);
3013 			btrfs_abort_transaction(trans, root, ret);
3014 			return ret;
3015 		}
3016 		ret = 0;
3017 	}
3018 
3019 	/* insert an orphan item to track subvolume contains orphan files */
3020 	if (insert >= 2) {
3021 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3022 					       root->root_key.objectid);
3023 		if (ret && ret != -EEXIST) {
3024 			btrfs_abort_transaction(trans, root, ret);
3025 			return ret;
3026 		}
3027 	}
3028 	return 0;
3029 }
3030 
3031 /*
3032  * We have done the truncate/delete so we can go ahead and remove the orphan
3033  * item for this particular inode.
3034  */
3035 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3036 			    struct inode *inode)
3037 {
3038 	struct btrfs_root *root = BTRFS_I(inode)->root;
3039 	int delete_item = 0;
3040 	int release_rsv = 0;
3041 	int ret = 0;
3042 
3043 	spin_lock(&root->orphan_lock);
3044 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3045 			       &BTRFS_I(inode)->runtime_flags))
3046 		delete_item = 1;
3047 
3048 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3049 			       &BTRFS_I(inode)->runtime_flags))
3050 		release_rsv = 1;
3051 	spin_unlock(&root->orphan_lock);
3052 
3053 	if (trans && delete_item) {
3054 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3055 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3056 	}
3057 
3058 	if (release_rsv) {
3059 		btrfs_orphan_release_metadata(inode);
3060 		atomic_dec(&root->orphan_inodes);
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 /*
3067  * this cleans up any orphans that may be left on the list from the last use
3068  * of this root.
3069  */
3070 int btrfs_orphan_cleanup(struct btrfs_root *root)
3071 {
3072 	struct btrfs_path *path;
3073 	struct extent_buffer *leaf;
3074 	struct btrfs_key key, found_key;
3075 	struct btrfs_trans_handle *trans;
3076 	struct inode *inode;
3077 	u64 last_objectid = 0;
3078 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3079 
3080 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3081 		return 0;
3082 
3083 	path = btrfs_alloc_path();
3084 	if (!path) {
3085 		ret = -ENOMEM;
3086 		goto out;
3087 	}
3088 	path->reada = -1;
3089 
3090 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3091 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3092 	key.offset = (u64)-1;
3093 
3094 	while (1) {
3095 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3096 		if (ret < 0)
3097 			goto out;
3098 
3099 		/*
3100 		 * if ret == 0 means we found what we were searching for, which
3101 		 * is weird, but possible, so only screw with path if we didn't
3102 		 * find the key and see if we have stuff that matches
3103 		 */
3104 		if (ret > 0) {
3105 			ret = 0;
3106 			if (path->slots[0] == 0)
3107 				break;
3108 			path->slots[0]--;
3109 		}
3110 
3111 		/* pull out the item */
3112 		leaf = path->nodes[0];
3113 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3114 
3115 		/* make sure the item matches what we want */
3116 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3117 			break;
3118 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3119 			break;
3120 
3121 		/* release the path since we're done with it */
3122 		btrfs_release_path(path);
3123 
3124 		/*
3125 		 * this is where we are basically btrfs_lookup, without the
3126 		 * crossing root thing.  we store the inode number in the
3127 		 * offset of the orphan item.
3128 		 */
3129 
3130 		if (found_key.offset == last_objectid) {
3131 			btrfs_err(root->fs_info,
3132 				"Error removing orphan entry, stopping orphan cleanup");
3133 			ret = -EINVAL;
3134 			goto out;
3135 		}
3136 
3137 		last_objectid = found_key.offset;
3138 
3139 		found_key.objectid = found_key.offset;
3140 		found_key.type = BTRFS_INODE_ITEM_KEY;
3141 		found_key.offset = 0;
3142 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3143 		ret = PTR_RET(inode);
3144 		if (ret && ret != -ESTALE)
3145 			goto out;
3146 
3147 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3148 			struct btrfs_root *dead_root;
3149 			struct btrfs_fs_info *fs_info = root->fs_info;
3150 			int is_dead_root = 0;
3151 
3152 			/*
3153 			 * this is an orphan in the tree root. Currently these
3154 			 * could come from 2 sources:
3155 			 *  a) a snapshot deletion in progress
3156 			 *  b) a free space cache inode
3157 			 * We need to distinguish those two, as the snapshot
3158 			 * orphan must not get deleted.
3159 			 * find_dead_roots already ran before us, so if this
3160 			 * is a snapshot deletion, we should find the root
3161 			 * in the dead_roots list
3162 			 */
3163 			spin_lock(&fs_info->trans_lock);
3164 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3165 					    root_list) {
3166 				if (dead_root->root_key.objectid ==
3167 				    found_key.objectid) {
3168 					is_dead_root = 1;
3169 					break;
3170 				}
3171 			}
3172 			spin_unlock(&fs_info->trans_lock);
3173 			if (is_dead_root) {
3174 				/* prevent this orphan from being found again */
3175 				key.offset = found_key.objectid - 1;
3176 				continue;
3177 			}
3178 		}
3179 		/*
3180 		 * Inode is already gone but the orphan item is still there,
3181 		 * kill the orphan item.
3182 		 */
3183 		if (ret == -ESTALE) {
3184 			trans = btrfs_start_transaction(root, 1);
3185 			if (IS_ERR(trans)) {
3186 				ret = PTR_ERR(trans);
3187 				goto out;
3188 			}
3189 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3190 				found_key.objectid);
3191 			ret = btrfs_del_orphan_item(trans, root,
3192 						    found_key.objectid);
3193 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3194 			btrfs_end_transaction(trans, root);
3195 			continue;
3196 		}
3197 
3198 		/*
3199 		 * add this inode to the orphan list so btrfs_orphan_del does
3200 		 * the proper thing when we hit it
3201 		 */
3202 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3203 			&BTRFS_I(inode)->runtime_flags);
3204 		atomic_inc(&root->orphan_inodes);
3205 
3206 		/* if we have links, this was a truncate, lets do that */
3207 		if (inode->i_nlink) {
3208 			if (!S_ISREG(inode->i_mode)) {
3209 				WARN_ON(1);
3210 				iput(inode);
3211 				continue;
3212 			}
3213 			nr_truncate++;
3214 
3215 			/* 1 for the orphan item deletion. */
3216 			trans = btrfs_start_transaction(root, 1);
3217 			if (IS_ERR(trans)) {
3218 				ret = PTR_ERR(trans);
3219 				goto out;
3220 			}
3221 			ret = btrfs_orphan_add(trans, inode);
3222 			btrfs_end_transaction(trans, root);
3223 			if (ret)
3224 				goto out;
3225 
3226 			ret = btrfs_truncate(inode);
3227 			if (ret)
3228 				btrfs_orphan_del(NULL, inode);
3229 		} else {
3230 			nr_unlink++;
3231 		}
3232 
3233 		/* this will do delete_inode and everything for us */
3234 		iput(inode);
3235 		if (ret)
3236 			goto out;
3237 	}
3238 	/* release the path since we're done with it */
3239 	btrfs_release_path(path);
3240 
3241 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3242 
3243 	if (root->orphan_block_rsv)
3244 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3245 					(u64)-1);
3246 
3247 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
3248 		trans = btrfs_join_transaction(root);
3249 		if (!IS_ERR(trans))
3250 			btrfs_end_transaction(trans, root);
3251 	}
3252 
3253 	if (nr_unlink)
3254 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3255 	if (nr_truncate)
3256 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3257 
3258 out:
3259 	if (ret)
3260 		btrfs_crit(root->fs_info,
3261 			"could not do orphan cleanup %d", ret);
3262 	btrfs_free_path(path);
3263 	return ret;
3264 }
3265 
3266 /*
3267  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3268  * don't find any xattrs, we know there can't be any acls.
3269  *
3270  * slot is the slot the inode is in, objectid is the objectid of the inode
3271  */
3272 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3273 					  int slot, u64 objectid)
3274 {
3275 	u32 nritems = btrfs_header_nritems(leaf);
3276 	struct btrfs_key found_key;
3277 	int scanned = 0;
3278 
3279 	slot++;
3280 	while (slot < nritems) {
3281 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3282 
3283 		/* we found a different objectid, there must not be acls */
3284 		if (found_key.objectid != objectid)
3285 			return 0;
3286 
3287 		/* we found an xattr, assume we've got an acl */
3288 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3289 			return 1;
3290 
3291 		/*
3292 		 * we found a key greater than an xattr key, there can't
3293 		 * be any acls later on
3294 		 */
3295 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3296 			return 0;
3297 
3298 		slot++;
3299 		scanned++;
3300 
3301 		/*
3302 		 * it goes inode, inode backrefs, xattrs, extents,
3303 		 * so if there are a ton of hard links to an inode there can
3304 		 * be a lot of backrefs.  Don't waste time searching too hard,
3305 		 * this is just an optimization
3306 		 */
3307 		if (scanned >= 8)
3308 			break;
3309 	}
3310 	/* we hit the end of the leaf before we found an xattr or
3311 	 * something larger than an xattr.  We have to assume the inode
3312 	 * has acls
3313 	 */
3314 	return 1;
3315 }
3316 
3317 /*
3318  * read an inode from the btree into the in-memory inode
3319  */
3320 static void btrfs_read_locked_inode(struct inode *inode)
3321 {
3322 	struct btrfs_path *path;
3323 	struct extent_buffer *leaf;
3324 	struct btrfs_inode_item *inode_item;
3325 	struct btrfs_timespec *tspec;
3326 	struct btrfs_root *root = BTRFS_I(inode)->root;
3327 	struct btrfs_key location;
3328 	int maybe_acls;
3329 	u32 rdev;
3330 	int ret;
3331 	bool filled = false;
3332 
3333 	ret = btrfs_fill_inode(inode, &rdev);
3334 	if (!ret)
3335 		filled = true;
3336 
3337 	path = btrfs_alloc_path();
3338 	if (!path)
3339 		goto make_bad;
3340 
3341 	path->leave_spinning = 1;
3342 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3343 
3344 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3345 	if (ret)
3346 		goto make_bad;
3347 
3348 	leaf = path->nodes[0];
3349 
3350 	if (filled)
3351 		goto cache_acl;
3352 
3353 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3354 				    struct btrfs_inode_item);
3355 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3356 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3357 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3358 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3359 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3360 
3361 	tspec = btrfs_inode_atime(inode_item);
3362 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3363 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3364 
3365 	tspec = btrfs_inode_mtime(inode_item);
3366 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3367 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3368 
3369 	tspec = btrfs_inode_ctime(inode_item);
3370 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3371 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3372 
3373 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3374 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3375 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3376 
3377 	/*
3378 	 * If we were modified in the current generation and evicted from memory
3379 	 * and then re-read we need to do a full sync since we don't have any
3380 	 * idea about which extents were modified before we were evicted from
3381 	 * cache.
3382 	 */
3383 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3384 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3385 			&BTRFS_I(inode)->runtime_flags);
3386 
3387 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3388 	inode->i_generation = BTRFS_I(inode)->generation;
3389 	inode->i_rdev = 0;
3390 	rdev = btrfs_inode_rdev(leaf, inode_item);
3391 
3392 	BTRFS_I(inode)->index_cnt = (u64)-1;
3393 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3394 cache_acl:
3395 	/*
3396 	 * try to precache a NULL acl entry for files that don't have
3397 	 * any xattrs or acls
3398 	 */
3399 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3400 					   btrfs_ino(inode));
3401 	if (!maybe_acls)
3402 		cache_no_acl(inode);
3403 
3404 	btrfs_free_path(path);
3405 
3406 	switch (inode->i_mode & S_IFMT) {
3407 	case S_IFREG:
3408 		inode->i_mapping->a_ops = &btrfs_aops;
3409 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3410 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3411 		inode->i_fop = &btrfs_file_operations;
3412 		inode->i_op = &btrfs_file_inode_operations;
3413 		break;
3414 	case S_IFDIR:
3415 		inode->i_fop = &btrfs_dir_file_operations;
3416 		if (root == root->fs_info->tree_root)
3417 			inode->i_op = &btrfs_dir_ro_inode_operations;
3418 		else
3419 			inode->i_op = &btrfs_dir_inode_operations;
3420 		break;
3421 	case S_IFLNK:
3422 		inode->i_op = &btrfs_symlink_inode_operations;
3423 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3424 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3425 		break;
3426 	default:
3427 		inode->i_op = &btrfs_special_inode_operations;
3428 		init_special_inode(inode, inode->i_mode, rdev);
3429 		break;
3430 	}
3431 
3432 	btrfs_update_iflags(inode);
3433 	return;
3434 
3435 make_bad:
3436 	btrfs_free_path(path);
3437 	make_bad_inode(inode);
3438 }
3439 
3440 /*
3441  * given a leaf and an inode, copy the inode fields into the leaf
3442  */
3443 static void fill_inode_item(struct btrfs_trans_handle *trans,
3444 			    struct extent_buffer *leaf,
3445 			    struct btrfs_inode_item *item,
3446 			    struct inode *inode)
3447 {
3448 	struct btrfs_map_token token;
3449 
3450 	btrfs_init_map_token(&token);
3451 
3452 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3453 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3454 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3455 				   &token);
3456 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3457 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3458 
3459 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3460 				     inode->i_atime.tv_sec, &token);
3461 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3462 				      inode->i_atime.tv_nsec, &token);
3463 
3464 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3465 				     inode->i_mtime.tv_sec, &token);
3466 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3467 				      inode->i_mtime.tv_nsec, &token);
3468 
3469 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3470 				     inode->i_ctime.tv_sec, &token);
3471 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3472 				      inode->i_ctime.tv_nsec, &token);
3473 
3474 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3475 				     &token);
3476 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3477 					 &token);
3478 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3479 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3480 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3481 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3482 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3483 }
3484 
3485 /*
3486  * copy everything in the in-memory inode into the btree.
3487  */
3488 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3489 				struct btrfs_root *root, struct inode *inode)
3490 {
3491 	struct btrfs_inode_item *inode_item;
3492 	struct btrfs_path *path;
3493 	struct extent_buffer *leaf;
3494 	int ret;
3495 
3496 	path = btrfs_alloc_path();
3497 	if (!path)
3498 		return -ENOMEM;
3499 
3500 	path->leave_spinning = 1;
3501 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3502 				 1);
3503 	if (ret) {
3504 		if (ret > 0)
3505 			ret = -ENOENT;
3506 		goto failed;
3507 	}
3508 
3509 	btrfs_unlock_up_safe(path, 1);
3510 	leaf = path->nodes[0];
3511 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3512 				    struct btrfs_inode_item);
3513 
3514 	fill_inode_item(trans, leaf, inode_item, inode);
3515 	btrfs_mark_buffer_dirty(leaf);
3516 	btrfs_set_inode_last_trans(trans, inode);
3517 	ret = 0;
3518 failed:
3519 	btrfs_free_path(path);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * copy everything in the in-memory inode into the btree.
3525  */
3526 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3527 				struct btrfs_root *root, struct inode *inode)
3528 {
3529 	int ret;
3530 
3531 	/*
3532 	 * If the inode is a free space inode, we can deadlock during commit
3533 	 * if we put it into the delayed code.
3534 	 *
3535 	 * The data relocation inode should also be directly updated
3536 	 * without delay
3537 	 */
3538 	if (!btrfs_is_free_space_inode(inode)
3539 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3540 		btrfs_update_root_times(trans, root);
3541 
3542 		ret = btrfs_delayed_update_inode(trans, root, inode);
3543 		if (!ret)
3544 			btrfs_set_inode_last_trans(trans, inode);
3545 		return ret;
3546 	}
3547 
3548 	return btrfs_update_inode_item(trans, root, inode);
3549 }
3550 
3551 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3552 					 struct btrfs_root *root,
3553 					 struct inode *inode)
3554 {
3555 	int ret;
3556 
3557 	ret = btrfs_update_inode(trans, root, inode);
3558 	if (ret == -ENOSPC)
3559 		return btrfs_update_inode_item(trans, root, inode);
3560 	return ret;
3561 }
3562 
3563 /*
3564  * unlink helper that gets used here in inode.c and in the tree logging
3565  * recovery code.  It remove a link in a directory with a given name, and
3566  * also drops the back refs in the inode to the directory
3567  */
3568 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3569 				struct btrfs_root *root,
3570 				struct inode *dir, struct inode *inode,
3571 				const char *name, int name_len)
3572 {
3573 	struct btrfs_path *path;
3574 	int ret = 0;
3575 	struct extent_buffer *leaf;
3576 	struct btrfs_dir_item *di;
3577 	struct btrfs_key key;
3578 	u64 index;
3579 	u64 ino = btrfs_ino(inode);
3580 	u64 dir_ino = btrfs_ino(dir);
3581 
3582 	path = btrfs_alloc_path();
3583 	if (!path) {
3584 		ret = -ENOMEM;
3585 		goto out;
3586 	}
3587 
3588 	path->leave_spinning = 1;
3589 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3590 				    name, name_len, -1);
3591 	if (IS_ERR(di)) {
3592 		ret = PTR_ERR(di);
3593 		goto err;
3594 	}
3595 	if (!di) {
3596 		ret = -ENOENT;
3597 		goto err;
3598 	}
3599 	leaf = path->nodes[0];
3600 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3601 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3602 	if (ret)
3603 		goto err;
3604 	btrfs_release_path(path);
3605 
3606 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3607 				  dir_ino, &index);
3608 	if (ret) {
3609 		btrfs_info(root->fs_info,
3610 			"failed to delete reference to %.*s, inode %llu parent %llu",
3611 			name_len, name,
3612 			(unsigned long long)ino, (unsigned long long)dir_ino);
3613 		btrfs_abort_transaction(trans, root, ret);
3614 		goto err;
3615 	}
3616 
3617 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3618 	if (ret) {
3619 		btrfs_abort_transaction(trans, root, ret);
3620 		goto err;
3621 	}
3622 
3623 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3624 					 inode, dir_ino);
3625 	if (ret != 0 && ret != -ENOENT) {
3626 		btrfs_abort_transaction(trans, root, ret);
3627 		goto err;
3628 	}
3629 
3630 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3631 					   dir, index);
3632 	if (ret == -ENOENT)
3633 		ret = 0;
3634 	else if (ret)
3635 		btrfs_abort_transaction(trans, root, ret);
3636 err:
3637 	btrfs_free_path(path);
3638 	if (ret)
3639 		goto out;
3640 
3641 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3642 	inode_inc_iversion(inode);
3643 	inode_inc_iversion(dir);
3644 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3645 	ret = btrfs_update_inode(trans, root, dir);
3646 out:
3647 	return ret;
3648 }
3649 
3650 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3651 		       struct btrfs_root *root,
3652 		       struct inode *dir, struct inode *inode,
3653 		       const char *name, int name_len)
3654 {
3655 	int ret;
3656 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3657 	if (!ret) {
3658 		btrfs_drop_nlink(inode);
3659 		ret = btrfs_update_inode(trans, root, inode);
3660 	}
3661 	return ret;
3662 }
3663 
3664 
3665 /* helper to check if there is any shared block in the path */
3666 static int check_path_shared(struct btrfs_root *root,
3667 			     struct btrfs_path *path)
3668 {
3669 	struct extent_buffer *eb;
3670 	int level;
3671 	u64 refs = 1;
3672 
3673 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3674 		int ret;
3675 
3676 		if (!path->nodes[level])
3677 			break;
3678 		eb = path->nodes[level];
3679 		if (!btrfs_block_can_be_shared(root, eb))
3680 			continue;
3681 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1,
3682 					       &refs, NULL);
3683 		if (refs > 1)
3684 			return 1;
3685 	}
3686 	return 0;
3687 }
3688 
3689 /*
3690  * helper to start transaction for unlink and rmdir.
3691  *
3692  * unlink and rmdir are special in btrfs, they do not always free space.
3693  * so in enospc case, we should make sure they will free space before
3694  * allowing them to use the global metadata reservation.
3695  */
3696 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3697 						       struct dentry *dentry)
3698 {
3699 	struct btrfs_trans_handle *trans;
3700 	struct btrfs_root *root = BTRFS_I(dir)->root;
3701 	struct btrfs_path *path;
3702 	struct btrfs_dir_item *di;
3703 	struct inode *inode = dentry->d_inode;
3704 	u64 index;
3705 	int check_link = 1;
3706 	int err = -ENOSPC;
3707 	int ret;
3708 	u64 ino = btrfs_ino(inode);
3709 	u64 dir_ino = btrfs_ino(dir);
3710 
3711 	/*
3712 	 * 1 for the possible orphan item
3713 	 * 1 for the dir item
3714 	 * 1 for the dir index
3715 	 * 1 for the inode ref
3716 	 * 1 for the inode
3717 	 */
3718 	trans = btrfs_start_transaction(root, 5);
3719 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3720 		return trans;
3721 
3722 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
3723 		return ERR_PTR(-ENOSPC);
3724 
3725 	/* check if there is someone else holds reference */
3726 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3727 		return ERR_PTR(-ENOSPC);
3728 
3729 	if (atomic_read(&inode->i_count) > 2)
3730 		return ERR_PTR(-ENOSPC);
3731 
3732 	if (xchg(&root->fs_info->enospc_unlink, 1))
3733 		return ERR_PTR(-ENOSPC);
3734 
3735 	path = btrfs_alloc_path();
3736 	if (!path) {
3737 		root->fs_info->enospc_unlink = 0;
3738 		return ERR_PTR(-ENOMEM);
3739 	}
3740 
3741 	/* 1 for the orphan item */
3742 	trans = btrfs_start_transaction(root, 1);
3743 	if (IS_ERR(trans)) {
3744 		btrfs_free_path(path);
3745 		root->fs_info->enospc_unlink = 0;
3746 		return trans;
3747 	}
3748 
3749 	path->skip_locking = 1;
3750 	path->search_commit_root = 1;
3751 
3752 	ret = btrfs_lookup_inode(trans, root, path,
3753 				&BTRFS_I(dir)->location, 0);
3754 	if (ret < 0) {
3755 		err = ret;
3756 		goto out;
3757 	}
3758 	if (ret == 0) {
3759 		if (check_path_shared(root, path))
3760 			goto out;
3761 	} else {
3762 		check_link = 0;
3763 	}
3764 	btrfs_release_path(path);
3765 
3766 	ret = btrfs_lookup_inode(trans, root, path,
3767 				&BTRFS_I(inode)->location, 0);
3768 	if (ret < 0) {
3769 		err = ret;
3770 		goto out;
3771 	}
3772 	if (ret == 0) {
3773 		if (check_path_shared(root, path))
3774 			goto out;
3775 	} else {
3776 		check_link = 0;
3777 	}
3778 	btrfs_release_path(path);
3779 
3780 	if (ret == 0 && S_ISREG(inode->i_mode)) {
3781 		ret = btrfs_lookup_file_extent(trans, root, path,
3782 					       ino, (u64)-1, 0);
3783 		if (ret < 0) {
3784 			err = ret;
3785 			goto out;
3786 		}
3787 		BUG_ON(ret == 0); /* Corruption */
3788 		if (check_path_shared(root, path))
3789 			goto out;
3790 		btrfs_release_path(path);
3791 	}
3792 
3793 	if (!check_link) {
3794 		err = 0;
3795 		goto out;
3796 	}
3797 
3798 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3799 				dentry->d_name.name, dentry->d_name.len, 0);
3800 	if (IS_ERR(di)) {
3801 		err = PTR_ERR(di);
3802 		goto out;
3803 	}
3804 	if (di) {
3805 		if (check_path_shared(root, path))
3806 			goto out;
3807 	} else {
3808 		err = 0;
3809 		goto out;
3810 	}
3811 	btrfs_release_path(path);
3812 
3813 	ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3814 					dentry->d_name.len, ino, dir_ino, 0,
3815 					&index);
3816 	if (ret) {
3817 		err = ret;
3818 		goto out;
3819 	}
3820 
3821 	if (check_path_shared(root, path))
3822 		goto out;
3823 
3824 	btrfs_release_path(path);
3825 
3826 	/*
3827 	 * This is a commit root search, if we can lookup inode item and other
3828 	 * relative items in the commit root, it means the transaction of
3829 	 * dir/file creation has been committed, and the dir index item that we
3830 	 * delay to insert has also been inserted into the commit root. So
3831 	 * we needn't worry about the delayed insertion of the dir index item
3832 	 * here.
3833 	 */
3834 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3835 				dentry->d_name.name, dentry->d_name.len, 0);
3836 	if (IS_ERR(di)) {
3837 		err = PTR_ERR(di);
3838 		goto out;
3839 	}
3840 	BUG_ON(ret == -ENOENT);
3841 	if (check_path_shared(root, path))
3842 		goto out;
3843 
3844 	err = 0;
3845 out:
3846 	btrfs_free_path(path);
3847 	/* Migrate the orphan reservation over */
3848 	if (!err)
3849 		err = btrfs_block_rsv_migrate(trans->block_rsv,
3850 				&root->fs_info->global_block_rsv,
3851 				trans->bytes_reserved);
3852 
3853 	if (err) {
3854 		btrfs_end_transaction(trans, root);
3855 		root->fs_info->enospc_unlink = 0;
3856 		return ERR_PTR(err);
3857 	}
3858 
3859 	trans->block_rsv = &root->fs_info->global_block_rsv;
3860 	return trans;
3861 }
3862 
3863 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3864 			       struct btrfs_root *root)
3865 {
3866 	if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3867 		btrfs_block_rsv_release(root, trans->block_rsv,
3868 					trans->bytes_reserved);
3869 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3870 		BUG_ON(!root->fs_info->enospc_unlink);
3871 		root->fs_info->enospc_unlink = 0;
3872 	}
3873 	btrfs_end_transaction(trans, root);
3874 }
3875 
3876 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3877 {
3878 	struct btrfs_root *root = BTRFS_I(dir)->root;
3879 	struct btrfs_trans_handle *trans;
3880 	struct inode *inode = dentry->d_inode;
3881 	int ret;
3882 
3883 	trans = __unlink_start_trans(dir, dentry);
3884 	if (IS_ERR(trans))
3885 		return PTR_ERR(trans);
3886 
3887 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3888 
3889 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3890 				 dentry->d_name.name, dentry->d_name.len);
3891 	if (ret)
3892 		goto out;
3893 
3894 	if (inode->i_nlink == 0) {
3895 		ret = btrfs_orphan_add(trans, inode);
3896 		if (ret)
3897 			goto out;
3898 	}
3899 
3900 out:
3901 	__unlink_end_trans(trans, root);
3902 	btrfs_btree_balance_dirty(root);
3903 	return ret;
3904 }
3905 
3906 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3907 			struct btrfs_root *root,
3908 			struct inode *dir, u64 objectid,
3909 			const char *name, int name_len)
3910 {
3911 	struct btrfs_path *path;
3912 	struct extent_buffer *leaf;
3913 	struct btrfs_dir_item *di;
3914 	struct btrfs_key key;
3915 	u64 index;
3916 	int ret;
3917 	u64 dir_ino = btrfs_ino(dir);
3918 
3919 	path = btrfs_alloc_path();
3920 	if (!path)
3921 		return -ENOMEM;
3922 
3923 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3924 				   name, name_len, -1);
3925 	if (IS_ERR_OR_NULL(di)) {
3926 		if (!di)
3927 			ret = -ENOENT;
3928 		else
3929 			ret = PTR_ERR(di);
3930 		goto out;
3931 	}
3932 
3933 	leaf = path->nodes[0];
3934 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3935 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3936 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3937 	if (ret) {
3938 		btrfs_abort_transaction(trans, root, ret);
3939 		goto out;
3940 	}
3941 	btrfs_release_path(path);
3942 
3943 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3944 				 objectid, root->root_key.objectid,
3945 				 dir_ino, &index, name, name_len);
3946 	if (ret < 0) {
3947 		if (ret != -ENOENT) {
3948 			btrfs_abort_transaction(trans, root, ret);
3949 			goto out;
3950 		}
3951 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3952 						 name, name_len);
3953 		if (IS_ERR_OR_NULL(di)) {
3954 			if (!di)
3955 				ret = -ENOENT;
3956 			else
3957 				ret = PTR_ERR(di);
3958 			btrfs_abort_transaction(trans, root, ret);
3959 			goto out;
3960 		}
3961 
3962 		leaf = path->nodes[0];
3963 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3964 		btrfs_release_path(path);
3965 		index = key.offset;
3966 	}
3967 	btrfs_release_path(path);
3968 
3969 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3970 	if (ret) {
3971 		btrfs_abort_transaction(trans, root, ret);
3972 		goto out;
3973 	}
3974 
3975 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3976 	inode_inc_iversion(dir);
3977 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3978 	ret = btrfs_update_inode_fallback(trans, root, dir);
3979 	if (ret)
3980 		btrfs_abort_transaction(trans, root, ret);
3981 out:
3982 	btrfs_free_path(path);
3983 	return ret;
3984 }
3985 
3986 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3987 {
3988 	struct inode *inode = dentry->d_inode;
3989 	int err = 0;
3990 	struct btrfs_root *root = BTRFS_I(dir)->root;
3991 	struct btrfs_trans_handle *trans;
3992 
3993 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3994 		return -ENOTEMPTY;
3995 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3996 		return -EPERM;
3997 
3998 	trans = __unlink_start_trans(dir, dentry);
3999 	if (IS_ERR(trans))
4000 		return PTR_ERR(trans);
4001 
4002 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4003 		err = btrfs_unlink_subvol(trans, root, dir,
4004 					  BTRFS_I(inode)->location.objectid,
4005 					  dentry->d_name.name,
4006 					  dentry->d_name.len);
4007 		goto out;
4008 	}
4009 
4010 	err = btrfs_orphan_add(trans, inode);
4011 	if (err)
4012 		goto out;
4013 
4014 	/* now the directory is empty */
4015 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4016 				 dentry->d_name.name, dentry->d_name.len);
4017 	if (!err)
4018 		btrfs_i_size_write(inode, 0);
4019 out:
4020 	__unlink_end_trans(trans, root);
4021 	btrfs_btree_balance_dirty(root);
4022 
4023 	return err;
4024 }
4025 
4026 /*
4027  * this can truncate away extent items, csum items and directory items.
4028  * It starts at a high offset and removes keys until it can't find
4029  * any higher than new_size
4030  *
4031  * csum items that cross the new i_size are truncated to the new size
4032  * as well.
4033  *
4034  * min_type is the minimum key type to truncate down to.  If set to 0, this
4035  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4036  */
4037 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4038 			       struct btrfs_root *root,
4039 			       struct inode *inode,
4040 			       u64 new_size, u32 min_type)
4041 {
4042 	struct btrfs_path *path;
4043 	struct extent_buffer *leaf;
4044 	struct btrfs_file_extent_item *fi;
4045 	struct btrfs_key key;
4046 	struct btrfs_key found_key;
4047 	u64 extent_start = 0;
4048 	u64 extent_num_bytes = 0;
4049 	u64 extent_offset = 0;
4050 	u64 item_end = 0;
4051 	u32 found_type = (u8)-1;
4052 	int found_extent;
4053 	int del_item;
4054 	int pending_del_nr = 0;
4055 	int pending_del_slot = 0;
4056 	int extent_type = -1;
4057 	int ret;
4058 	int err = 0;
4059 	u64 ino = btrfs_ino(inode);
4060 
4061 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4062 
4063 	path = btrfs_alloc_path();
4064 	if (!path)
4065 		return -ENOMEM;
4066 	path->reada = -1;
4067 
4068 	/*
4069 	 * We want to drop from the next block forward in case this new size is
4070 	 * not block aligned since we will be keeping the last block of the
4071 	 * extent just the way it is.
4072 	 */
4073 	if (root->ref_cows || root == root->fs_info->tree_root)
4074 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4075 					root->sectorsize), (u64)-1, 0);
4076 
4077 	/*
4078 	 * This function is also used to drop the items in the log tree before
4079 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4080 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4081 	 * items.
4082 	 */
4083 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4084 		btrfs_kill_delayed_inode_items(inode);
4085 
4086 	key.objectid = ino;
4087 	key.offset = (u64)-1;
4088 	key.type = (u8)-1;
4089 
4090 search_again:
4091 	path->leave_spinning = 1;
4092 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4093 	if (ret < 0) {
4094 		err = ret;
4095 		goto out;
4096 	}
4097 
4098 	if (ret > 0) {
4099 		/* there are no items in the tree for us to truncate, we're
4100 		 * done
4101 		 */
4102 		if (path->slots[0] == 0)
4103 			goto out;
4104 		path->slots[0]--;
4105 	}
4106 
4107 	while (1) {
4108 		fi = NULL;
4109 		leaf = path->nodes[0];
4110 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4111 		found_type = btrfs_key_type(&found_key);
4112 
4113 		if (found_key.objectid != ino)
4114 			break;
4115 
4116 		if (found_type < min_type)
4117 			break;
4118 
4119 		item_end = found_key.offset;
4120 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4121 			fi = btrfs_item_ptr(leaf, path->slots[0],
4122 					    struct btrfs_file_extent_item);
4123 			extent_type = btrfs_file_extent_type(leaf, fi);
4124 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4125 				item_end +=
4126 				    btrfs_file_extent_num_bytes(leaf, fi);
4127 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4128 				item_end += btrfs_file_extent_inline_len(leaf,
4129 									 fi);
4130 			}
4131 			item_end--;
4132 		}
4133 		if (found_type > min_type) {
4134 			del_item = 1;
4135 		} else {
4136 			if (item_end < new_size)
4137 				break;
4138 			if (found_key.offset >= new_size)
4139 				del_item = 1;
4140 			else
4141 				del_item = 0;
4142 		}
4143 		found_extent = 0;
4144 		/* FIXME, shrink the extent if the ref count is only 1 */
4145 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4146 			goto delete;
4147 
4148 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4149 			u64 num_dec;
4150 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4151 			if (!del_item) {
4152 				u64 orig_num_bytes =
4153 					btrfs_file_extent_num_bytes(leaf, fi);
4154 				extent_num_bytes = ALIGN(new_size -
4155 						found_key.offset,
4156 						root->sectorsize);
4157 				btrfs_set_file_extent_num_bytes(leaf, fi,
4158 							 extent_num_bytes);
4159 				num_dec = (orig_num_bytes -
4160 					   extent_num_bytes);
4161 				if (root->ref_cows && extent_start != 0)
4162 					inode_sub_bytes(inode, num_dec);
4163 				btrfs_mark_buffer_dirty(leaf);
4164 			} else {
4165 				extent_num_bytes =
4166 					btrfs_file_extent_disk_num_bytes(leaf,
4167 									 fi);
4168 				extent_offset = found_key.offset -
4169 					btrfs_file_extent_offset(leaf, fi);
4170 
4171 				/* FIXME blocksize != 4096 */
4172 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4173 				if (extent_start != 0) {
4174 					found_extent = 1;
4175 					if (root->ref_cows)
4176 						inode_sub_bytes(inode, num_dec);
4177 				}
4178 			}
4179 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4180 			/*
4181 			 * we can't truncate inline items that have had
4182 			 * special encodings
4183 			 */
4184 			if (!del_item &&
4185 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4186 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4187 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4188 				u32 size = new_size - found_key.offset;
4189 
4190 				if (root->ref_cows) {
4191 					inode_sub_bytes(inode, item_end + 1 -
4192 							new_size);
4193 				}
4194 				size =
4195 				    btrfs_file_extent_calc_inline_size(size);
4196 				btrfs_truncate_item(root, path, size, 1);
4197 			} else if (root->ref_cows) {
4198 				inode_sub_bytes(inode, item_end + 1 -
4199 						found_key.offset);
4200 			}
4201 		}
4202 delete:
4203 		if (del_item) {
4204 			if (!pending_del_nr) {
4205 				/* no pending yet, add ourselves */
4206 				pending_del_slot = path->slots[0];
4207 				pending_del_nr = 1;
4208 			} else if (pending_del_nr &&
4209 				   path->slots[0] + 1 == pending_del_slot) {
4210 				/* hop on the pending chunk */
4211 				pending_del_nr++;
4212 				pending_del_slot = path->slots[0];
4213 			} else {
4214 				BUG();
4215 			}
4216 		} else {
4217 			break;
4218 		}
4219 		if (found_extent && (root->ref_cows ||
4220 				     root == root->fs_info->tree_root)) {
4221 			btrfs_set_path_blocking(path);
4222 			ret = btrfs_free_extent(trans, root, extent_start,
4223 						extent_num_bytes, 0,
4224 						btrfs_header_owner(leaf),
4225 						ino, extent_offset, 0);
4226 			BUG_ON(ret);
4227 		}
4228 
4229 		if (found_type == BTRFS_INODE_ITEM_KEY)
4230 			break;
4231 
4232 		if (path->slots[0] == 0 ||
4233 		    path->slots[0] != pending_del_slot) {
4234 			if (pending_del_nr) {
4235 				ret = btrfs_del_items(trans, root, path,
4236 						pending_del_slot,
4237 						pending_del_nr);
4238 				if (ret) {
4239 					btrfs_abort_transaction(trans,
4240 								root, ret);
4241 					goto error;
4242 				}
4243 				pending_del_nr = 0;
4244 			}
4245 			btrfs_release_path(path);
4246 			goto search_again;
4247 		} else {
4248 			path->slots[0]--;
4249 		}
4250 	}
4251 out:
4252 	if (pending_del_nr) {
4253 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4254 				      pending_del_nr);
4255 		if (ret)
4256 			btrfs_abort_transaction(trans, root, ret);
4257 	}
4258 error:
4259 	btrfs_free_path(path);
4260 	return err;
4261 }
4262 
4263 /*
4264  * btrfs_truncate_page - read, zero a chunk and write a page
4265  * @inode - inode that we're zeroing
4266  * @from - the offset to start zeroing
4267  * @len - the length to zero, 0 to zero the entire range respective to the
4268  *	offset
4269  * @front - zero up to the offset instead of from the offset on
4270  *
4271  * This will find the page for the "from" offset and cow the page and zero the
4272  * part we want to zero.  This is used with truncate and hole punching.
4273  */
4274 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4275 			int front)
4276 {
4277 	struct address_space *mapping = inode->i_mapping;
4278 	struct btrfs_root *root = BTRFS_I(inode)->root;
4279 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4280 	struct btrfs_ordered_extent *ordered;
4281 	struct extent_state *cached_state = NULL;
4282 	char *kaddr;
4283 	u32 blocksize = root->sectorsize;
4284 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4285 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4286 	struct page *page;
4287 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4288 	int ret = 0;
4289 	u64 page_start;
4290 	u64 page_end;
4291 
4292 	if ((offset & (blocksize - 1)) == 0 &&
4293 	    (!len || ((len & (blocksize - 1)) == 0)))
4294 		goto out;
4295 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4296 	if (ret)
4297 		goto out;
4298 
4299 again:
4300 	page = find_or_create_page(mapping, index, mask);
4301 	if (!page) {
4302 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4303 		ret = -ENOMEM;
4304 		goto out;
4305 	}
4306 
4307 	page_start = page_offset(page);
4308 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4309 
4310 	if (!PageUptodate(page)) {
4311 		ret = btrfs_readpage(NULL, page);
4312 		lock_page(page);
4313 		if (page->mapping != mapping) {
4314 			unlock_page(page);
4315 			page_cache_release(page);
4316 			goto again;
4317 		}
4318 		if (!PageUptodate(page)) {
4319 			ret = -EIO;
4320 			goto out_unlock;
4321 		}
4322 	}
4323 	wait_on_page_writeback(page);
4324 
4325 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4326 	set_page_extent_mapped(page);
4327 
4328 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4329 	if (ordered) {
4330 		unlock_extent_cached(io_tree, page_start, page_end,
4331 				     &cached_state, GFP_NOFS);
4332 		unlock_page(page);
4333 		page_cache_release(page);
4334 		btrfs_start_ordered_extent(inode, ordered, 1);
4335 		btrfs_put_ordered_extent(ordered);
4336 		goto again;
4337 	}
4338 
4339 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4340 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4341 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4342 			  0, 0, &cached_state, GFP_NOFS);
4343 
4344 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4345 					&cached_state);
4346 	if (ret) {
4347 		unlock_extent_cached(io_tree, page_start, page_end,
4348 				     &cached_state, GFP_NOFS);
4349 		goto out_unlock;
4350 	}
4351 
4352 	if (offset != PAGE_CACHE_SIZE) {
4353 		if (!len)
4354 			len = PAGE_CACHE_SIZE - offset;
4355 		kaddr = kmap(page);
4356 		if (front)
4357 			memset(kaddr, 0, offset);
4358 		else
4359 			memset(kaddr + offset, 0, len);
4360 		flush_dcache_page(page);
4361 		kunmap(page);
4362 	}
4363 	ClearPageChecked(page);
4364 	set_page_dirty(page);
4365 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4366 			     GFP_NOFS);
4367 
4368 out_unlock:
4369 	if (ret)
4370 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4371 	unlock_page(page);
4372 	page_cache_release(page);
4373 out:
4374 	return ret;
4375 }
4376 
4377 /*
4378  * This function puts in dummy file extents for the area we're creating a hole
4379  * for.  So if we are truncating this file to a larger size we need to insert
4380  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4381  * the range between oldsize and size
4382  */
4383 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4384 {
4385 	struct btrfs_trans_handle *trans;
4386 	struct btrfs_root *root = BTRFS_I(inode)->root;
4387 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4388 	struct extent_map *em = NULL;
4389 	struct extent_state *cached_state = NULL;
4390 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4391 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4392 	u64 block_end = ALIGN(size, root->sectorsize);
4393 	u64 last_byte;
4394 	u64 cur_offset;
4395 	u64 hole_size;
4396 	int err = 0;
4397 
4398 	if (size <= hole_start)
4399 		return 0;
4400 
4401 	while (1) {
4402 		struct btrfs_ordered_extent *ordered;
4403 		btrfs_wait_ordered_range(inode, hole_start,
4404 					 block_end - hole_start);
4405 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4406 				 &cached_state);
4407 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4408 		if (!ordered)
4409 			break;
4410 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4411 				     &cached_state, GFP_NOFS);
4412 		btrfs_put_ordered_extent(ordered);
4413 	}
4414 
4415 	cur_offset = hole_start;
4416 	while (1) {
4417 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4418 				block_end - cur_offset, 0);
4419 		if (IS_ERR(em)) {
4420 			err = PTR_ERR(em);
4421 			em = NULL;
4422 			break;
4423 		}
4424 		last_byte = min(extent_map_end(em), block_end);
4425 		last_byte = ALIGN(last_byte , root->sectorsize);
4426 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4427 			struct extent_map *hole_em;
4428 			hole_size = last_byte - cur_offset;
4429 
4430 			trans = btrfs_start_transaction(root, 3);
4431 			if (IS_ERR(trans)) {
4432 				err = PTR_ERR(trans);
4433 				break;
4434 			}
4435 
4436 			err = btrfs_drop_extents(trans, root, inode,
4437 						 cur_offset,
4438 						 cur_offset + hole_size, 1);
4439 			if (err) {
4440 				btrfs_abort_transaction(trans, root, err);
4441 				btrfs_end_transaction(trans, root);
4442 				break;
4443 			}
4444 
4445 			err = btrfs_insert_file_extent(trans, root,
4446 					btrfs_ino(inode), cur_offset, 0,
4447 					0, hole_size, 0, hole_size,
4448 					0, 0, 0);
4449 			if (err) {
4450 				btrfs_abort_transaction(trans, root, err);
4451 				btrfs_end_transaction(trans, root);
4452 				break;
4453 			}
4454 
4455 			btrfs_drop_extent_cache(inode, cur_offset,
4456 						cur_offset + hole_size - 1, 0);
4457 			hole_em = alloc_extent_map();
4458 			if (!hole_em) {
4459 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4460 					&BTRFS_I(inode)->runtime_flags);
4461 				goto next;
4462 			}
4463 			hole_em->start = cur_offset;
4464 			hole_em->len = hole_size;
4465 			hole_em->orig_start = cur_offset;
4466 
4467 			hole_em->block_start = EXTENT_MAP_HOLE;
4468 			hole_em->block_len = 0;
4469 			hole_em->orig_block_len = 0;
4470 			hole_em->ram_bytes = hole_size;
4471 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4472 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4473 			hole_em->generation = trans->transid;
4474 
4475 			while (1) {
4476 				write_lock(&em_tree->lock);
4477 				err = add_extent_mapping(em_tree, hole_em, 1);
4478 				write_unlock(&em_tree->lock);
4479 				if (err != -EEXIST)
4480 					break;
4481 				btrfs_drop_extent_cache(inode, cur_offset,
4482 							cur_offset +
4483 							hole_size - 1, 0);
4484 			}
4485 			free_extent_map(hole_em);
4486 next:
4487 			btrfs_update_inode(trans, root, inode);
4488 			btrfs_end_transaction(trans, root);
4489 		}
4490 		free_extent_map(em);
4491 		em = NULL;
4492 		cur_offset = last_byte;
4493 		if (cur_offset >= block_end)
4494 			break;
4495 	}
4496 
4497 	free_extent_map(em);
4498 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4499 			     GFP_NOFS);
4500 	return err;
4501 }
4502 
4503 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4504 {
4505 	struct btrfs_root *root = BTRFS_I(inode)->root;
4506 	struct btrfs_trans_handle *trans;
4507 	loff_t oldsize = i_size_read(inode);
4508 	loff_t newsize = attr->ia_size;
4509 	int mask = attr->ia_valid;
4510 	int ret;
4511 
4512 	if (newsize == oldsize)
4513 		return 0;
4514 
4515 	/*
4516 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4517 	 * special case where we need to update the times despite not having
4518 	 * these flags set.  For all other operations the VFS set these flags
4519 	 * explicitly if it wants a timestamp update.
4520 	 */
4521 	if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4522 		inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4523 
4524 	if (newsize > oldsize) {
4525 		truncate_pagecache(inode, oldsize, newsize);
4526 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4527 		if (ret)
4528 			return ret;
4529 
4530 		trans = btrfs_start_transaction(root, 1);
4531 		if (IS_ERR(trans))
4532 			return PTR_ERR(trans);
4533 
4534 		i_size_write(inode, newsize);
4535 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4536 		ret = btrfs_update_inode(trans, root, inode);
4537 		btrfs_end_transaction(trans, root);
4538 	} else {
4539 
4540 		/*
4541 		 * We're truncating a file that used to have good data down to
4542 		 * zero. Make sure it gets into the ordered flush list so that
4543 		 * any new writes get down to disk quickly.
4544 		 */
4545 		if (newsize == 0)
4546 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4547 				&BTRFS_I(inode)->runtime_flags);
4548 
4549 		/*
4550 		 * 1 for the orphan item we're going to add
4551 		 * 1 for the orphan item deletion.
4552 		 */
4553 		trans = btrfs_start_transaction(root, 2);
4554 		if (IS_ERR(trans))
4555 			return PTR_ERR(trans);
4556 
4557 		/*
4558 		 * We need to do this in case we fail at _any_ point during the
4559 		 * actual truncate.  Once we do the truncate_setsize we could
4560 		 * invalidate pages which forces any outstanding ordered io to
4561 		 * be instantly completed which will give us extents that need
4562 		 * to be truncated.  If we fail to get an orphan inode down we
4563 		 * could have left over extents that were never meant to live,
4564 		 * so we need to garuntee from this point on that everything
4565 		 * will be consistent.
4566 		 */
4567 		ret = btrfs_orphan_add(trans, inode);
4568 		btrfs_end_transaction(trans, root);
4569 		if (ret)
4570 			return ret;
4571 
4572 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4573 		truncate_setsize(inode, newsize);
4574 
4575 		/* Disable nonlocked read DIO to avoid the end less truncate */
4576 		btrfs_inode_block_unlocked_dio(inode);
4577 		inode_dio_wait(inode);
4578 		btrfs_inode_resume_unlocked_dio(inode);
4579 
4580 		ret = btrfs_truncate(inode);
4581 		if (ret && inode->i_nlink)
4582 			btrfs_orphan_del(NULL, inode);
4583 	}
4584 
4585 	return ret;
4586 }
4587 
4588 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4589 {
4590 	struct inode *inode = dentry->d_inode;
4591 	struct btrfs_root *root = BTRFS_I(inode)->root;
4592 	int err;
4593 
4594 	if (btrfs_root_readonly(root))
4595 		return -EROFS;
4596 
4597 	err = inode_change_ok(inode, attr);
4598 	if (err)
4599 		return err;
4600 
4601 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4602 		err = btrfs_setsize(inode, attr);
4603 		if (err)
4604 			return err;
4605 	}
4606 
4607 	if (attr->ia_valid) {
4608 		setattr_copy(inode, attr);
4609 		inode_inc_iversion(inode);
4610 		err = btrfs_dirty_inode(inode);
4611 
4612 		if (!err && attr->ia_valid & ATTR_MODE)
4613 			err = btrfs_acl_chmod(inode);
4614 	}
4615 
4616 	return err;
4617 }
4618 
4619 void btrfs_evict_inode(struct inode *inode)
4620 {
4621 	struct btrfs_trans_handle *trans;
4622 	struct btrfs_root *root = BTRFS_I(inode)->root;
4623 	struct btrfs_block_rsv *rsv, *global_rsv;
4624 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4625 	int ret;
4626 
4627 	trace_btrfs_inode_evict(inode);
4628 
4629 	truncate_inode_pages(&inode->i_data, 0);
4630 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4631 			       btrfs_is_free_space_inode(inode)))
4632 		goto no_delete;
4633 
4634 	if (is_bad_inode(inode)) {
4635 		btrfs_orphan_del(NULL, inode);
4636 		goto no_delete;
4637 	}
4638 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4639 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4640 
4641 	if (root->fs_info->log_root_recovering) {
4642 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4643 				 &BTRFS_I(inode)->runtime_flags));
4644 		goto no_delete;
4645 	}
4646 
4647 	if (inode->i_nlink > 0) {
4648 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4649 		goto no_delete;
4650 	}
4651 
4652 	ret = btrfs_commit_inode_delayed_inode(inode);
4653 	if (ret) {
4654 		btrfs_orphan_del(NULL, inode);
4655 		goto no_delete;
4656 	}
4657 
4658 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4659 	if (!rsv) {
4660 		btrfs_orphan_del(NULL, inode);
4661 		goto no_delete;
4662 	}
4663 	rsv->size = min_size;
4664 	rsv->failfast = 1;
4665 	global_rsv = &root->fs_info->global_block_rsv;
4666 
4667 	btrfs_i_size_write(inode, 0);
4668 
4669 	/*
4670 	 * This is a bit simpler than btrfs_truncate since we've already
4671 	 * reserved our space for our orphan item in the unlink, so we just
4672 	 * need to reserve some slack space in case we add bytes and update
4673 	 * inode item when doing the truncate.
4674 	 */
4675 	while (1) {
4676 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4677 					     BTRFS_RESERVE_FLUSH_LIMIT);
4678 
4679 		/*
4680 		 * Try and steal from the global reserve since we will
4681 		 * likely not use this space anyway, we want to try as
4682 		 * hard as possible to get this to work.
4683 		 */
4684 		if (ret)
4685 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4686 
4687 		if (ret) {
4688 			btrfs_warn(root->fs_info,
4689 				"Could not get space for a delete, will truncate on mount %d",
4690 				ret);
4691 			btrfs_orphan_del(NULL, inode);
4692 			btrfs_free_block_rsv(root, rsv);
4693 			goto no_delete;
4694 		}
4695 
4696 		trans = btrfs_join_transaction(root);
4697 		if (IS_ERR(trans)) {
4698 			btrfs_orphan_del(NULL, inode);
4699 			btrfs_free_block_rsv(root, rsv);
4700 			goto no_delete;
4701 		}
4702 
4703 		trans->block_rsv = rsv;
4704 
4705 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4706 		if (ret != -ENOSPC)
4707 			break;
4708 
4709 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4710 		btrfs_end_transaction(trans, root);
4711 		trans = NULL;
4712 		btrfs_btree_balance_dirty(root);
4713 	}
4714 
4715 	btrfs_free_block_rsv(root, rsv);
4716 
4717 	if (ret == 0) {
4718 		trans->block_rsv = root->orphan_block_rsv;
4719 		ret = btrfs_orphan_del(trans, inode);
4720 		BUG_ON(ret);
4721 	}
4722 
4723 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4724 	if (!(root == root->fs_info->tree_root ||
4725 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4726 		btrfs_return_ino(root, btrfs_ino(inode));
4727 
4728 	btrfs_end_transaction(trans, root);
4729 	btrfs_btree_balance_dirty(root);
4730 no_delete:
4731 	btrfs_remove_delayed_node(inode);
4732 	clear_inode(inode);
4733 	return;
4734 }
4735 
4736 /*
4737  * this returns the key found in the dir entry in the location pointer.
4738  * If no dir entries were found, location->objectid is 0.
4739  */
4740 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4741 			       struct btrfs_key *location)
4742 {
4743 	const char *name = dentry->d_name.name;
4744 	int namelen = dentry->d_name.len;
4745 	struct btrfs_dir_item *di;
4746 	struct btrfs_path *path;
4747 	struct btrfs_root *root = BTRFS_I(dir)->root;
4748 	int ret = 0;
4749 
4750 	path = btrfs_alloc_path();
4751 	if (!path)
4752 		return -ENOMEM;
4753 
4754 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4755 				    namelen, 0);
4756 	if (IS_ERR(di))
4757 		ret = PTR_ERR(di);
4758 
4759 	if (IS_ERR_OR_NULL(di))
4760 		goto out_err;
4761 
4762 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4763 out:
4764 	btrfs_free_path(path);
4765 	return ret;
4766 out_err:
4767 	location->objectid = 0;
4768 	goto out;
4769 }
4770 
4771 /*
4772  * when we hit a tree root in a directory, the btrfs part of the inode
4773  * needs to be changed to reflect the root directory of the tree root.  This
4774  * is kind of like crossing a mount point.
4775  */
4776 static int fixup_tree_root_location(struct btrfs_root *root,
4777 				    struct inode *dir,
4778 				    struct dentry *dentry,
4779 				    struct btrfs_key *location,
4780 				    struct btrfs_root **sub_root)
4781 {
4782 	struct btrfs_path *path;
4783 	struct btrfs_root *new_root;
4784 	struct btrfs_root_ref *ref;
4785 	struct extent_buffer *leaf;
4786 	int ret;
4787 	int err = 0;
4788 
4789 	path = btrfs_alloc_path();
4790 	if (!path) {
4791 		err = -ENOMEM;
4792 		goto out;
4793 	}
4794 
4795 	err = -ENOENT;
4796 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4797 				  BTRFS_I(dir)->root->root_key.objectid,
4798 				  location->objectid);
4799 	if (ret) {
4800 		if (ret < 0)
4801 			err = ret;
4802 		goto out;
4803 	}
4804 
4805 	leaf = path->nodes[0];
4806 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4807 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4808 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4809 		goto out;
4810 
4811 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4812 				   (unsigned long)(ref + 1),
4813 				   dentry->d_name.len);
4814 	if (ret)
4815 		goto out;
4816 
4817 	btrfs_release_path(path);
4818 
4819 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4820 	if (IS_ERR(new_root)) {
4821 		err = PTR_ERR(new_root);
4822 		goto out;
4823 	}
4824 
4825 	if (btrfs_root_refs(&new_root->root_item) == 0) {
4826 		err = -ENOENT;
4827 		goto out;
4828 	}
4829 
4830 	*sub_root = new_root;
4831 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4832 	location->type = BTRFS_INODE_ITEM_KEY;
4833 	location->offset = 0;
4834 	err = 0;
4835 out:
4836 	btrfs_free_path(path);
4837 	return err;
4838 }
4839 
4840 static void inode_tree_add(struct inode *inode)
4841 {
4842 	struct btrfs_root *root = BTRFS_I(inode)->root;
4843 	struct btrfs_inode *entry;
4844 	struct rb_node **p;
4845 	struct rb_node *parent;
4846 	u64 ino = btrfs_ino(inode);
4847 
4848 	if (inode_unhashed(inode))
4849 		return;
4850 again:
4851 	parent = NULL;
4852 	spin_lock(&root->inode_lock);
4853 	p = &root->inode_tree.rb_node;
4854 	while (*p) {
4855 		parent = *p;
4856 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4857 
4858 		if (ino < btrfs_ino(&entry->vfs_inode))
4859 			p = &parent->rb_left;
4860 		else if (ino > btrfs_ino(&entry->vfs_inode))
4861 			p = &parent->rb_right;
4862 		else {
4863 			WARN_ON(!(entry->vfs_inode.i_state &
4864 				  (I_WILL_FREE | I_FREEING)));
4865 			rb_erase(parent, &root->inode_tree);
4866 			RB_CLEAR_NODE(parent);
4867 			spin_unlock(&root->inode_lock);
4868 			goto again;
4869 		}
4870 	}
4871 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4872 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4873 	spin_unlock(&root->inode_lock);
4874 }
4875 
4876 static void inode_tree_del(struct inode *inode)
4877 {
4878 	struct btrfs_root *root = BTRFS_I(inode)->root;
4879 	int empty = 0;
4880 
4881 	spin_lock(&root->inode_lock);
4882 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4883 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4884 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4885 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4886 	}
4887 	spin_unlock(&root->inode_lock);
4888 
4889 	/*
4890 	 * Free space cache has inodes in the tree root, but the tree root has a
4891 	 * root_refs of 0, so this could end up dropping the tree root as a
4892 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
4893 	 * make sure we don't drop it.
4894 	 */
4895 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4896 	    root != root->fs_info->tree_root) {
4897 		synchronize_srcu(&root->fs_info->subvol_srcu);
4898 		spin_lock(&root->inode_lock);
4899 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4900 		spin_unlock(&root->inode_lock);
4901 		if (empty)
4902 			btrfs_add_dead_root(root);
4903 	}
4904 }
4905 
4906 void btrfs_invalidate_inodes(struct btrfs_root *root)
4907 {
4908 	struct rb_node *node;
4909 	struct rb_node *prev;
4910 	struct btrfs_inode *entry;
4911 	struct inode *inode;
4912 	u64 objectid = 0;
4913 
4914 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4915 
4916 	spin_lock(&root->inode_lock);
4917 again:
4918 	node = root->inode_tree.rb_node;
4919 	prev = NULL;
4920 	while (node) {
4921 		prev = node;
4922 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4923 
4924 		if (objectid < btrfs_ino(&entry->vfs_inode))
4925 			node = node->rb_left;
4926 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4927 			node = node->rb_right;
4928 		else
4929 			break;
4930 	}
4931 	if (!node) {
4932 		while (prev) {
4933 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4934 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4935 				node = prev;
4936 				break;
4937 			}
4938 			prev = rb_next(prev);
4939 		}
4940 	}
4941 	while (node) {
4942 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4943 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4944 		inode = igrab(&entry->vfs_inode);
4945 		if (inode) {
4946 			spin_unlock(&root->inode_lock);
4947 			if (atomic_read(&inode->i_count) > 1)
4948 				d_prune_aliases(inode);
4949 			/*
4950 			 * btrfs_drop_inode will have it removed from
4951 			 * the inode cache when its usage count
4952 			 * hits zero.
4953 			 */
4954 			iput(inode);
4955 			cond_resched();
4956 			spin_lock(&root->inode_lock);
4957 			goto again;
4958 		}
4959 
4960 		if (cond_resched_lock(&root->inode_lock))
4961 			goto again;
4962 
4963 		node = rb_next(node);
4964 	}
4965 	spin_unlock(&root->inode_lock);
4966 }
4967 
4968 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4969 {
4970 	struct btrfs_iget_args *args = p;
4971 	inode->i_ino = args->ino;
4972 	BTRFS_I(inode)->root = args->root;
4973 	return 0;
4974 }
4975 
4976 static int btrfs_find_actor(struct inode *inode, void *opaque)
4977 {
4978 	struct btrfs_iget_args *args = opaque;
4979 	return args->ino == btrfs_ino(inode) &&
4980 		args->root == BTRFS_I(inode)->root;
4981 }
4982 
4983 static struct inode *btrfs_iget_locked(struct super_block *s,
4984 				       u64 objectid,
4985 				       struct btrfs_root *root)
4986 {
4987 	struct inode *inode;
4988 	struct btrfs_iget_args args;
4989 	args.ino = objectid;
4990 	args.root = root;
4991 
4992 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4993 			     btrfs_init_locked_inode,
4994 			     (void *)&args);
4995 	return inode;
4996 }
4997 
4998 /* Get an inode object given its location and corresponding root.
4999  * Returns in *is_new if the inode was read from disk
5000  */
5001 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5002 			 struct btrfs_root *root, int *new)
5003 {
5004 	struct inode *inode;
5005 
5006 	inode = btrfs_iget_locked(s, location->objectid, root);
5007 	if (!inode)
5008 		return ERR_PTR(-ENOMEM);
5009 
5010 	if (inode->i_state & I_NEW) {
5011 		BTRFS_I(inode)->root = root;
5012 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
5013 		btrfs_read_locked_inode(inode);
5014 		if (!is_bad_inode(inode)) {
5015 			inode_tree_add(inode);
5016 			unlock_new_inode(inode);
5017 			if (new)
5018 				*new = 1;
5019 		} else {
5020 			unlock_new_inode(inode);
5021 			iput(inode);
5022 			inode = ERR_PTR(-ESTALE);
5023 		}
5024 	}
5025 
5026 	return inode;
5027 }
5028 
5029 static struct inode *new_simple_dir(struct super_block *s,
5030 				    struct btrfs_key *key,
5031 				    struct btrfs_root *root)
5032 {
5033 	struct inode *inode = new_inode(s);
5034 
5035 	if (!inode)
5036 		return ERR_PTR(-ENOMEM);
5037 
5038 	BTRFS_I(inode)->root = root;
5039 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5040 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5041 
5042 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5043 	inode->i_op = &btrfs_dir_ro_inode_operations;
5044 	inode->i_fop = &simple_dir_operations;
5045 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5046 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5047 
5048 	return inode;
5049 }
5050 
5051 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5052 {
5053 	struct inode *inode;
5054 	struct btrfs_root *root = BTRFS_I(dir)->root;
5055 	struct btrfs_root *sub_root = root;
5056 	struct btrfs_key location;
5057 	int index;
5058 	int ret = 0;
5059 
5060 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5061 		return ERR_PTR(-ENAMETOOLONG);
5062 
5063 	ret = btrfs_inode_by_name(dir, dentry, &location);
5064 	if (ret < 0)
5065 		return ERR_PTR(ret);
5066 
5067 	if (location.objectid == 0)
5068 		return NULL;
5069 
5070 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5071 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5072 		return inode;
5073 	}
5074 
5075 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5076 
5077 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5078 	ret = fixup_tree_root_location(root, dir, dentry,
5079 				       &location, &sub_root);
5080 	if (ret < 0) {
5081 		if (ret != -ENOENT)
5082 			inode = ERR_PTR(ret);
5083 		else
5084 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5085 	} else {
5086 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5087 	}
5088 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5089 
5090 	if (!IS_ERR(inode) && root != sub_root) {
5091 		down_read(&root->fs_info->cleanup_work_sem);
5092 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5093 			ret = btrfs_orphan_cleanup(sub_root);
5094 		up_read(&root->fs_info->cleanup_work_sem);
5095 		if (ret)
5096 			inode = ERR_PTR(ret);
5097 	}
5098 
5099 	return inode;
5100 }
5101 
5102 static int btrfs_dentry_delete(const struct dentry *dentry)
5103 {
5104 	struct btrfs_root *root;
5105 	struct inode *inode = dentry->d_inode;
5106 
5107 	if (!inode && !IS_ROOT(dentry))
5108 		inode = dentry->d_parent->d_inode;
5109 
5110 	if (inode) {
5111 		root = BTRFS_I(inode)->root;
5112 		if (btrfs_root_refs(&root->root_item) == 0)
5113 			return 1;
5114 
5115 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5116 			return 1;
5117 	}
5118 	return 0;
5119 }
5120 
5121 static void btrfs_dentry_release(struct dentry *dentry)
5122 {
5123 	if (dentry->d_fsdata)
5124 		kfree(dentry->d_fsdata);
5125 }
5126 
5127 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5128 				   unsigned int flags)
5129 {
5130 	struct dentry *ret;
5131 
5132 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5133 	return ret;
5134 }
5135 
5136 unsigned char btrfs_filetype_table[] = {
5137 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5138 };
5139 
5140 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5141 {
5142 	struct inode *inode = file_inode(file);
5143 	struct btrfs_root *root = BTRFS_I(inode)->root;
5144 	struct btrfs_item *item;
5145 	struct btrfs_dir_item *di;
5146 	struct btrfs_key key;
5147 	struct btrfs_key found_key;
5148 	struct btrfs_path *path;
5149 	struct list_head ins_list;
5150 	struct list_head del_list;
5151 	int ret;
5152 	struct extent_buffer *leaf;
5153 	int slot;
5154 	unsigned char d_type;
5155 	int over = 0;
5156 	u32 di_cur;
5157 	u32 di_total;
5158 	u32 di_len;
5159 	int key_type = BTRFS_DIR_INDEX_KEY;
5160 	char tmp_name[32];
5161 	char *name_ptr;
5162 	int name_len;
5163 	int is_curr = 0;	/* ctx->pos points to the current index? */
5164 
5165 	/* FIXME, use a real flag for deciding about the key type */
5166 	if (root->fs_info->tree_root == root)
5167 		key_type = BTRFS_DIR_ITEM_KEY;
5168 
5169 	if (!dir_emit_dots(file, ctx))
5170 		return 0;
5171 
5172 	path = btrfs_alloc_path();
5173 	if (!path)
5174 		return -ENOMEM;
5175 
5176 	path->reada = 1;
5177 
5178 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5179 		INIT_LIST_HEAD(&ins_list);
5180 		INIT_LIST_HEAD(&del_list);
5181 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5182 	}
5183 
5184 	btrfs_set_key_type(&key, key_type);
5185 	key.offset = ctx->pos;
5186 	key.objectid = btrfs_ino(inode);
5187 
5188 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5189 	if (ret < 0)
5190 		goto err;
5191 
5192 	while (1) {
5193 		leaf = path->nodes[0];
5194 		slot = path->slots[0];
5195 		if (slot >= btrfs_header_nritems(leaf)) {
5196 			ret = btrfs_next_leaf(root, path);
5197 			if (ret < 0)
5198 				goto err;
5199 			else if (ret > 0)
5200 				break;
5201 			continue;
5202 		}
5203 
5204 		item = btrfs_item_nr(leaf, slot);
5205 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5206 
5207 		if (found_key.objectid != key.objectid)
5208 			break;
5209 		if (btrfs_key_type(&found_key) != key_type)
5210 			break;
5211 		if (found_key.offset < ctx->pos)
5212 			goto next;
5213 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5214 		    btrfs_should_delete_dir_index(&del_list,
5215 						  found_key.offset))
5216 			goto next;
5217 
5218 		ctx->pos = found_key.offset;
5219 		is_curr = 1;
5220 
5221 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5222 		di_cur = 0;
5223 		di_total = btrfs_item_size(leaf, item);
5224 
5225 		while (di_cur < di_total) {
5226 			struct btrfs_key location;
5227 
5228 			if (verify_dir_item(root, leaf, di))
5229 				break;
5230 
5231 			name_len = btrfs_dir_name_len(leaf, di);
5232 			if (name_len <= sizeof(tmp_name)) {
5233 				name_ptr = tmp_name;
5234 			} else {
5235 				name_ptr = kmalloc(name_len, GFP_NOFS);
5236 				if (!name_ptr) {
5237 					ret = -ENOMEM;
5238 					goto err;
5239 				}
5240 			}
5241 			read_extent_buffer(leaf, name_ptr,
5242 					   (unsigned long)(di + 1), name_len);
5243 
5244 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5245 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5246 
5247 
5248 			/* is this a reference to our own snapshot? If so
5249 			 * skip it.
5250 			 *
5251 			 * In contrast to old kernels, we insert the snapshot's
5252 			 * dir item and dir index after it has been created, so
5253 			 * we won't find a reference to our own snapshot. We
5254 			 * still keep the following code for backward
5255 			 * compatibility.
5256 			 */
5257 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5258 			    location.objectid == root->root_key.objectid) {
5259 				over = 0;
5260 				goto skip;
5261 			}
5262 			over = !dir_emit(ctx, name_ptr, name_len,
5263 				       location.objectid, d_type);
5264 
5265 skip:
5266 			if (name_ptr != tmp_name)
5267 				kfree(name_ptr);
5268 
5269 			if (over)
5270 				goto nopos;
5271 			di_len = btrfs_dir_name_len(leaf, di) +
5272 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5273 			di_cur += di_len;
5274 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5275 		}
5276 next:
5277 		path->slots[0]++;
5278 	}
5279 
5280 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5281 		if (is_curr)
5282 			ctx->pos++;
5283 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5284 		if (ret)
5285 			goto nopos;
5286 	}
5287 
5288 	/* Reached end of directory/root. Bump pos past the last item. */
5289 	if (key_type == BTRFS_DIR_INDEX_KEY)
5290 		/*
5291 		 * 32-bit glibc will use getdents64, but then strtol -
5292 		 * so the last number we can serve is this.
5293 		 */
5294 		ctx->pos = 0x7fffffff;
5295 	else
5296 		ctx->pos++;
5297 nopos:
5298 	ret = 0;
5299 err:
5300 	if (key_type == BTRFS_DIR_INDEX_KEY)
5301 		btrfs_put_delayed_items(&ins_list, &del_list);
5302 	btrfs_free_path(path);
5303 	return ret;
5304 }
5305 
5306 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5307 {
5308 	struct btrfs_root *root = BTRFS_I(inode)->root;
5309 	struct btrfs_trans_handle *trans;
5310 	int ret = 0;
5311 	bool nolock = false;
5312 
5313 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5314 		return 0;
5315 
5316 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5317 		nolock = true;
5318 
5319 	if (wbc->sync_mode == WB_SYNC_ALL) {
5320 		if (nolock)
5321 			trans = btrfs_join_transaction_nolock(root);
5322 		else
5323 			trans = btrfs_join_transaction(root);
5324 		if (IS_ERR(trans))
5325 			return PTR_ERR(trans);
5326 		ret = btrfs_commit_transaction(trans, root);
5327 	}
5328 	return ret;
5329 }
5330 
5331 /*
5332  * This is somewhat expensive, updating the tree every time the
5333  * inode changes.  But, it is most likely to find the inode in cache.
5334  * FIXME, needs more benchmarking...there are no reasons other than performance
5335  * to keep or drop this code.
5336  */
5337 static int btrfs_dirty_inode(struct inode *inode)
5338 {
5339 	struct btrfs_root *root = BTRFS_I(inode)->root;
5340 	struct btrfs_trans_handle *trans;
5341 	int ret;
5342 
5343 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5344 		return 0;
5345 
5346 	trans = btrfs_join_transaction(root);
5347 	if (IS_ERR(trans))
5348 		return PTR_ERR(trans);
5349 
5350 	ret = btrfs_update_inode(trans, root, inode);
5351 	if (ret && ret == -ENOSPC) {
5352 		/* whoops, lets try again with the full transaction */
5353 		btrfs_end_transaction(trans, root);
5354 		trans = btrfs_start_transaction(root, 1);
5355 		if (IS_ERR(trans))
5356 			return PTR_ERR(trans);
5357 
5358 		ret = btrfs_update_inode(trans, root, inode);
5359 	}
5360 	btrfs_end_transaction(trans, root);
5361 	if (BTRFS_I(inode)->delayed_node)
5362 		btrfs_balance_delayed_items(root);
5363 
5364 	return ret;
5365 }
5366 
5367 /*
5368  * This is a copy of file_update_time.  We need this so we can return error on
5369  * ENOSPC for updating the inode in the case of file write and mmap writes.
5370  */
5371 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5372 			     int flags)
5373 {
5374 	struct btrfs_root *root = BTRFS_I(inode)->root;
5375 
5376 	if (btrfs_root_readonly(root))
5377 		return -EROFS;
5378 
5379 	if (flags & S_VERSION)
5380 		inode_inc_iversion(inode);
5381 	if (flags & S_CTIME)
5382 		inode->i_ctime = *now;
5383 	if (flags & S_MTIME)
5384 		inode->i_mtime = *now;
5385 	if (flags & S_ATIME)
5386 		inode->i_atime = *now;
5387 	return btrfs_dirty_inode(inode);
5388 }
5389 
5390 /*
5391  * find the highest existing sequence number in a directory
5392  * and then set the in-memory index_cnt variable to reflect
5393  * free sequence numbers
5394  */
5395 static int btrfs_set_inode_index_count(struct inode *inode)
5396 {
5397 	struct btrfs_root *root = BTRFS_I(inode)->root;
5398 	struct btrfs_key key, found_key;
5399 	struct btrfs_path *path;
5400 	struct extent_buffer *leaf;
5401 	int ret;
5402 
5403 	key.objectid = btrfs_ino(inode);
5404 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5405 	key.offset = (u64)-1;
5406 
5407 	path = btrfs_alloc_path();
5408 	if (!path)
5409 		return -ENOMEM;
5410 
5411 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5412 	if (ret < 0)
5413 		goto out;
5414 	/* FIXME: we should be able to handle this */
5415 	if (ret == 0)
5416 		goto out;
5417 	ret = 0;
5418 
5419 	/*
5420 	 * MAGIC NUMBER EXPLANATION:
5421 	 * since we search a directory based on f_pos we have to start at 2
5422 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5423 	 * else has to start at 2
5424 	 */
5425 	if (path->slots[0] == 0) {
5426 		BTRFS_I(inode)->index_cnt = 2;
5427 		goto out;
5428 	}
5429 
5430 	path->slots[0]--;
5431 
5432 	leaf = path->nodes[0];
5433 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5434 
5435 	if (found_key.objectid != btrfs_ino(inode) ||
5436 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5437 		BTRFS_I(inode)->index_cnt = 2;
5438 		goto out;
5439 	}
5440 
5441 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5442 out:
5443 	btrfs_free_path(path);
5444 	return ret;
5445 }
5446 
5447 /*
5448  * helper to find a free sequence number in a given directory.  This current
5449  * code is very simple, later versions will do smarter things in the btree
5450  */
5451 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5452 {
5453 	int ret = 0;
5454 
5455 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5456 		ret = btrfs_inode_delayed_dir_index_count(dir);
5457 		if (ret) {
5458 			ret = btrfs_set_inode_index_count(dir);
5459 			if (ret)
5460 				return ret;
5461 		}
5462 	}
5463 
5464 	*index = BTRFS_I(dir)->index_cnt;
5465 	BTRFS_I(dir)->index_cnt++;
5466 
5467 	return ret;
5468 }
5469 
5470 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5471 				     struct btrfs_root *root,
5472 				     struct inode *dir,
5473 				     const char *name, int name_len,
5474 				     u64 ref_objectid, u64 objectid,
5475 				     umode_t mode, u64 *index)
5476 {
5477 	struct inode *inode;
5478 	struct btrfs_inode_item *inode_item;
5479 	struct btrfs_key *location;
5480 	struct btrfs_path *path;
5481 	struct btrfs_inode_ref *ref;
5482 	struct btrfs_key key[2];
5483 	u32 sizes[2];
5484 	unsigned long ptr;
5485 	int ret;
5486 	int owner;
5487 
5488 	path = btrfs_alloc_path();
5489 	if (!path)
5490 		return ERR_PTR(-ENOMEM);
5491 
5492 	inode = new_inode(root->fs_info->sb);
5493 	if (!inode) {
5494 		btrfs_free_path(path);
5495 		return ERR_PTR(-ENOMEM);
5496 	}
5497 
5498 	/*
5499 	 * we have to initialize this early, so we can reclaim the inode
5500 	 * number if we fail afterwards in this function.
5501 	 */
5502 	inode->i_ino = objectid;
5503 
5504 	if (dir) {
5505 		trace_btrfs_inode_request(dir);
5506 
5507 		ret = btrfs_set_inode_index(dir, index);
5508 		if (ret) {
5509 			btrfs_free_path(path);
5510 			iput(inode);
5511 			return ERR_PTR(ret);
5512 		}
5513 	}
5514 	/*
5515 	 * index_cnt is ignored for everything but a dir,
5516 	 * btrfs_get_inode_index_count has an explanation for the magic
5517 	 * number
5518 	 */
5519 	BTRFS_I(inode)->index_cnt = 2;
5520 	BTRFS_I(inode)->root = root;
5521 	BTRFS_I(inode)->generation = trans->transid;
5522 	inode->i_generation = BTRFS_I(inode)->generation;
5523 
5524 	/*
5525 	 * We could have gotten an inode number from somebody who was fsynced
5526 	 * and then removed in this same transaction, so let's just set full
5527 	 * sync since it will be a full sync anyway and this will blow away the
5528 	 * old info in the log.
5529 	 */
5530 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5531 
5532 	if (S_ISDIR(mode))
5533 		owner = 0;
5534 	else
5535 		owner = 1;
5536 
5537 	key[0].objectid = objectid;
5538 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5539 	key[0].offset = 0;
5540 
5541 	/*
5542 	 * Start new inodes with an inode_ref. This is slightly more
5543 	 * efficient for small numbers of hard links since they will
5544 	 * be packed into one item. Extended refs will kick in if we
5545 	 * add more hard links than can fit in the ref item.
5546 	 */
5547 	key[1].objectid = objectid;
5548 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5549 	key[1].offset = ref_objectid;
5550 
5551 	sizes[0] = sizeof(struct btrfs_inode_item);
5552 	sizes[1] = name_len + sizeof(*ref);
5553 
5554 	path->leave_spinning = 1;
5555 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5556 	if (ret != 0)
5557 		goto fail;
5558 
5559 	inode_init_owner(inode, dir, mode);
5560 	inode_set_bytes(inode, 0);
5561 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5562 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5563 				  struct btrfs_inode_item);
5564 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5565 			     sizeof(*inode_item));
5566 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5567 
5568 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5569 			     struct btrfs_inode_ref);
5570 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5571 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5572 	ptr = (unsigned long)(ref + 1);
5573 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
5574 
5575 	btrfs_mark_buffer_dirty(path->nodes[0]);
5576 	btrfs_free_path(path);
5577 
5578 	location = &BTRFS_I(inode)->location;
5579 	location->objectid = objectid;
5580 	location->offset = 0;
5581 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5582 
5583 	btrfs_inherit_iflags(inode, dir);
5584 
5585 	if (S_ISREG(mode)) {
5586 		if (btrfs_test_opt(root, NODATASUM))
5587 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5588 		if (btrfs_test_opt(root, NODATACOW))
5589 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5590 				BTRFS_INODE_NODATASUM;
5591 	}
5592 
5593 	insert_inode_hash(inode);
5594 	inode_tree_add(inode);
5595 
5596 	trace_btrfs_inode_new(inode);
5597 	btrfs_set_inode_last_trans(trans, inode);
5598 
5599 	btrfs_update_root_times(trans, root);
5600 
5601 	return inode;
5602 fail:
5603 	if (dir)
5604 		BTRFS_I(dir)->index_cnt--;
5605 	btrfs_free_path(path);
5606 	iput(inode);
5607 	return ERR_PTR(ret);
5608 }
5609 
5610 static inline u8 btrfs_inode_type(struct inode *inode)
5611 {
5612 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5613 }
5614 
5615 /*
5616  * utility function to add 'inode' into 'parent_inode' with
5617  * a give name and a given sequence number.
5618  * if 'add_backref' is true, also insert a backref from the
5619  * inode to the parent directory.
5620  */
5621 int btrfs_add_link(struct btrfs_trans_handle *trans,
5622 		   struct inode *parent_inode, struct inode *inode,
5623 		   const char *name, int name_len, int add_backref, u64 index)
5624 {
5625 	int ret = 0;
5626 	struct btrfs_key key;
5627 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5628 	u64 ino = btrfs_ino(inode);
5629 	u64 parent_ino = btrfs_ino(parent_inode);
5630 
5631 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5632 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5633 	} else {
5634 		key.objectid = ino;
5635 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5636 		key.offset = 0;
5637 	}
5638 
5639 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5640 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5641 					 key.objectid, root->root_key.objectid,
5642 					 parent_ino, index, name, name_len);
5643 	} else if (add_backref) {
5644 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5645 					     parent_ino, index);
5646 	}
5647 
5648 	/* Nothing to clean up yet */
5649 	if (ret)
5650 		return ret;
5651 
5652 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5653 				    parent_inode, &key,
5654 				    btrfs_inode_type(inode), index);
5655 	if (ret == -EEXIST || ret == -EOVERFLOW)
5656 		goto fail_dir_item;
5657 	else if (ret) {
5658 		btrfs_abort_transaction(trans, root, ret);
5659 		return ret;
5660 	}
5661 
5662 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5663 			   name_len * 2);
5664 	inode_inc_iversion(parent_inode);
5665 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5666 	ret = btrfs_update_inode(trans, root, parent_inode);
5667 	if (ret)
5668 		btrfs_abort_transaction(trans, root, ret);
5669 	return ret;
5670 
5671 fail_dir_item:
5672 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5673 		u64 local_index;
5674 		int err;
5675 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5676 				 key.objectid, root->root_key.objectid,
5677 				 parent_ino, &local_index, name, name_len);
5678 
5679 	} else if (add_backref) {
5680 		u64 local_index;
5681 		int err;
5682 
5683 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5684 					  ino, parent_ino, &local_index);
5685 	}
5686 	return ret;
5687 }
5688 
5689 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5690 			    struct inode *dir, struct dentry *dentry,
5691 			    struct inode *inode, int backref, u64 index)
5692 {
5693 	int err = btrfs_add_link(trans, dir, inode,
5694 				 dentry->d_name.name, dentry->d_name.len,
5695 				 backref, index);
5696 	if (err > 0)
5697 		err = -EEXIST;
5698 	return err;
5699 }
5700 
5701 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5702 			umode_t mode, dev_t rdev)
5703 {
5704 	struct btrfs_trans_handle *trans;
5705 	struct btrfs_root *root = BTRFS_I(dir)->root;
5706 	struct inode *inode = NULL;
5707 	int err;
5708 	int drop_inode = 0;
5709 	u64 objectid;
5710 	u64 index = 0;
5711 
5712 	if (!new_valid_dev(rdev))
5713 		return -EINVAL;
5714 
5715 	/*
5716 	 * 2 for inode item and ref
5717 	 * 2 for dir items
5718 	 * 1 for xattr if selinux is on
5719 	 */
5720 	trans = btrfs_start_transaction(root, 5);
5721 	if (IS_ERR(trans))
5722 		return PTR_ERR(trans);
5723 
5724 	err = btrfs_find_free_ino(root, &objectid);
5725 	if (err)
5726 		goto out_unlock;
5727 
5728 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5729 				dentry->d_name.len, btrfs_ino(dir), objectid,
5730 				mode, &index);
5731 	if (IS_ERR(inode)) {
5732 		err = PTR_ERR(inode);
5733 		goto out_unlock;
5734 	}
5735 
5736 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5737 	if (err) {
5738 		drop_inode = 1;
5739 		goto out_unlock;
5740 	}
5741 
5742 	/*
5743 	* If the active LSM wants to access the inode during
5744 	* d_instantiate it needs these. Smack checks to see
5745 	* if the filesystem supports xattrs by looking at the
5746 	* ops vector.
5747 	*/
5748 
5749 	inode->i_op = &btrfs_special_inode_operations;
5750 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5751 	if (err)
5752 		drop_inode = 1;
5753 	else {
5754 		init_special_inode(inode, inode->i_mode, rdev);
5755 		btrfs_update_inode(trans, root, inode);
5756 		d_instantiate(dentry, inode);
5757 	}
5758 out_unlock:
5759 	btrfs_end_transaction(trans, root);
5760 	btrfs_btree_balance_dirty(root);
5761 	if (drop_inode) {
5762 		inode_dec_link_count(inode);
5763 		iput(inode);
5764 	}
5765 	return err;
5766 }
5767 
5768 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5769 			umode_t mode, bool excl)
5770 {
5771 	struct btrfs_trans_handle *trans;
5772 	struct btrfs_root *root = BTRFS_I(dir)->root;
5773 	struct inode *inode = NULL;
5774 	int drop_inode_on_err = 0;
5775 	int err;
5776 	u64 objectid;
5777 	u64 index = 0;
5778 
5779 	/*
5780 	 * 2 for inode item and ref
5781 	 * 2 for dir items
5782 	 * 1 for xattr if selinux is on
5783 	 */
5784 	trans = btrfs_start_transaction(root, 5);
5785 	if (IS_ERR(trans))
5786 		return PTR_ERR(trans);
5787 
5788 	err = btrfs_find_free_ino(root, &objectid);
5789 	if (err)
5790 		goto out_unlock;
5791 
5792 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5793 				dentry->d_name.len, btrfs_ino(dir), objectid,
5794 				mode, &index);
5795 	if (IS_ERR(inode)) {
5796 		err = PTR_ERR(inode);
5797 		goto out_unlock;
5798 	}
5799 	drop_inode_on_err = 1;
5800 
5801 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5802 	if (err)
5803 		goto out_unlock;
5804 
5805 	err = btrfs_update_inode(trans, root, inode);
5806 	if (err)
5807 		goto out_unlock;
5808 
5809 	/*
5810 	* If the active LSM wants to access the inode during
5811 	* d_instantiate it needs these. Smack checks to see
5812 	* if the filesystem supports xattrs by looking at the
5813 	* ops vector.
5814 	*/
5815 	inode->i_fop = &btrfs_file_operations;
5816 	inode->i_op = &btrfs_file_inode_operations;
5817 
5818 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5819 	if (err)
5820 		goto out_unlock;
5821 
5822 	inode->i_mapping->a_ops = &btrfs_aops;
5823 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5824 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5825 	d_instantiate(dentry, inode);
5826 
5827 out_unlock:
5828 	btrfs_end_transaction(trans, root);
5829 	if (err && drop_inode_on_err) {
5830 		inode_dec_link_count(inode);
5831 		iput(inode);
5832 	}
5833 	btrfs_btree_balance_dirty(root);
5834 	return err;
5835 }
5836 
5837 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5838 		      struct dentry *dentry)
5839 {
5840 	struct btrfs_trans_handle *trans;
5841 	struct btrfs_root *root = BTRFS_I(dir)->root;
5842 	struct inode *inode = old_dentry->d_inode;
5843 	u64 index;
5844 	int err;
5845 	int drop_inode = 0;
5846 
5847 	/* do not allow sys_link's with other subvols of the same device */
5848 	if (root->objectid != BTRFS_I(inode)->root->objectid)
5849 		return -EXDEV;
5850 
5851 	if (inode->i_nlink >= BTRFS_LINK_MAX)
5852 		return -EMLINK;
5853 
5854 	err = btrfs_set_inode_index(dir, &index);
5855 	if (err)
5856 		goto fail;
5857 
5858 	/*
5859 	 * 2 items for inode and inode ref
5860 	 * 2 items for dir items
5861 	 * 1 item for parent inode
5862 	 */
5863 	trans = btrfs_start_transaction(root, 5);
5864 	if (IS_ERR(trans)) {
5865 		err = PTR_ERR(trans);
5866 		goto fail;
5867 	}
5868 
5869 	btrfs_inc_nlink(inode);
5870 	inode_inc_iversion(inode);
5871 	inode->i_ctime = CURRENT_TIME;
5872 	ihold(inode);
5873 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5874 
5875 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5876 
5877 	if (err) {
5878 		drop_inode = 1;
5879 	} else {
5880 		struct dentry *parent = dentry->d_parent;
5881 		err = btrfs_update_inode(trans, root, inode);
5882 		if (err)
5883 			goto fail;
5884 		d_instantiate(dentry, inode);
5885 		btrfs_log_new_name(trans, inode, NULL, parent);
5886 	}
5887 
5888 	btrfs_end_transaction(trans, root);
5889 fail:
5890 	if (drop_inode) {
5891 		inode_dec_link_count(inode);
5892 		iput(inode);
5893 	}
5894 	btrfs_btree_balance_dirty(root);
5895 	return err;
5896 }
5897 
5898 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5899 {
5900 	struct inode *inode = NULL;
5901 	struct btrfs_trans_handle *trans;
5902 	struct btrfs_root *root = BTRFS_I(dir)->root;
5903 	int err = 0;
5904 	int drop_on_err = 0;
5905 	u64 objectid = 0;
5906 	u64 index = 0;
5907 
5908 	/*
5909 	 * 2 items for inode and ref
5910 	 * 2 items for dir items
5911 	 * 1 for xattr if selinux is on
5912 	 */
5913 	trans = btrfs_start_transaction(root, 5);
5914 	if (IS_ERR(trans))
5915 		return PTR_ERR(trans);
5916 
5917 	err = btrfs_find_free_ino(root, &objectid);
5918 	if (err)
5919 		goto out_fail;
5920 
5921 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5922 				dentry->d_name.len, btrfs_ino(dir), objectid,
5923 				S_IFDIR | mode, &index);
5924 	if (IS_ERR(inode)) {
5925 		err = PTR_ERR(inode);
5926 		goto out_fail;
5927 	}
5928 
5929 	drop_on_err = 1;
5930 
5931 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5932 	if (err)
5933 		goto out_fail;
5934 
5935 	inode->i_op = &btrfs_dir_inode_operations;
5936 	inode->i_fop = &btrfs_dir_file_operations;
5937 
5938 	btrfs_i_size_write(inode, 0);
5939 	err = btrfs_update_inode(trans, root, inode);
5940 	if (err)
5941 		goto out_fail;
5942 
5943 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5944 			     dentry->d_name.len, 0, index);
5945 	if (err)
5946 		goto out_fail;
5947 
5948 	d_instantiate(dentry, inode);
5949 	drop_on_err = 0;
5950 
5951 out_fail:
5952 	btrfs_end_transaction(trans, root);
5953 	if (drop_on_err)
5954 		iput(inode);
5955 	btrfs_btree_balance_dirty(root);
5956 	return err;
5957 }
5958 
5959 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5960  * and an extent that you want to insert, deal with overlap and insert
5961  * the new extent into the tree.
5962  */
5963 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5964 				struct extent_map *existing,
5965 				struct extent_map *em,
5966 				u64 map_start, u64 map_len)
5967 {
5968 	u64 start_diff;
5969 
5970 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5971 	start_diff = map_start - em->start;
5972 	em->start = map_start;
5973 	em->len = map_len;
5974 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5975 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5976 		em->block_start += start_diff;
5977 		em->block_len -= start_diff;
5978 	}
5979 	return add_extent_mapping(em_tree, em, 0);
5980 }
5981 
5982 static noinline int uncompress_inline(struct btrfs_path *path,
5983 				      struct inode *inode, struct page *page,
5984 				      size_t pg_offset, u64 extent_offset,
5985 				      struct btrfs_file_extent_item *item)
5986 {
5987 	int ret;
5988 	struct extent_buffer *leaf = path->nodes[0];
5989 	char *tmp;
5990 	size_t max_size;
5991 	unsigned long inline_size;
5992 	unsigned long ptr;
5993 	int compress_type;
5994 
5995 	WARN_ON(pg_offset != 0);
5996 	compress_type = btrfs_file_extent_compression(leaf, item);
5997 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5998 	inline_size = btrfs_file_extent_inline_item_len(leaf,
5999 					btrfs_item_nr(leaf, path->slots[0]));
6000 	tmp = kmalloc(inline_size, GFP_NOFS);
6001 	if (!tmp)
6002 		return -ENOMEM;
6003 	ptr = btrfs_file_extent_inline_start(item);
6004 
6005 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6006 
6007 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6008 	ret = btrfs_decompress(compress_type, tmp, page,
6009 			       extent_offset, inline_size, max_size);
6010 	if (ret) {
6011 		char *kaddr = kmap_atomic(page);
6012 		unsigned long copy_size = min_t(u64,
6013 				  PAGE_CACHE_SIZE - pg_offset,
6014 				  max_size - extent_offset);
6015 		memset(kaddr + pg_offset, 0, copy_size);
6016 		kunmap_atomic(kaddr);
6017 	}
6018 	kfree(tmp);
6019 	return 0;
6020 }
6021 
6022 /*
6023  * a bit scary, this does extent mapping from logical file offset to the disk.
6024  * the ugly parts come from merging extents from the disk with the in-ram
6025  * representation.  This gets more complex because of the data=ordered code,
6026  * where the in-ram extents might be locked pending data=ordered completion.
6027  *
6028  * This also copies inline extents directly into the page.
6029  */
6030 
6031 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6032 				    size_t pg_offset, u64 start, u64 len,
6033 				    int create)
6034 {
6035 	int ret;
6036 	int err = 0;
6037 	u64 bytenr;
6038 	u64 extent_start = 0;
6039 	u64 extent_end = 0;
6040 	u64 objectid = btrfs_ino(inode);
6041 	u32 found_type;
6042 	struct btrfs_path *path = NULL;
6043 	struct btrfs_root *root = BTRFS_I(inode)->root;
6044 	struct btrfs_file_extent_item *item;
6045 	struct extent_buffer *leaf;
6046 	struct btrfs_key found_key;
6047 	struct extent_map *em = NULL;
6048 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6049 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6050 	struct btrfs_trans_handle *trans = NULL;
6051 	int compress_type;
6052 
6053 again:
6054 	read_lock(&em_tree->lock);
6055 	em = lookup_extent_mapping(em_tree, start, len);
6056 	if (em)
6057 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6058 	read_unlock(&em_tree->lock);
6059 
6060 	if (em) {
6061 		if (em->start > start || em->start + em->len <= start)
6062 			free_extent_map(em);
6063 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6064 			free_extent_map(em);
6065 		else
6066 			goto out;
6067 	}
6068 	em = alloc_extent_map();
6069 	if (!em) {
6070 		err = -ENOMEM;
6071 		goto out;
6072 	}
6073 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6074 	em->start = EXTENT_MAP_HOLE;
6075 	em->orig_start = EXTENT_MAP_HOLE;
6076 	em->len = (u64)-1;
6077 	em->block_len = (u64)-1;
6078 
6079 	if (!path) {
6080 		path = btrfs_alloc_path();
6081 		if (!path) {
6082 			err = -ENOMEM;
6083 			goto out;
6084 		}
6085 		/*
6086 		 * Chances are we'll be called again, so go ahead and do
6087 		 * readahead
6088 		 */
6089 		path->reada = 1;
6090 	}
6091 
6092 	ret = btrfs_lookup_file_extent(trans, root, path,
6093 				       objectid, start, trans != NULL);
6094 	if (ret < 0) {
6095 		err = ret;
6096 		goto out;
6097 	}
6098 
6099 	if (ret != 0) {
6100 		if (path->slots[0] == 0)
6101 			goto not_found;
6102 		path->slots[0]--;
6103 	}
6104 
6105 	leaf = path->nodes[0];
6106 	item = btrfs_item_ptr(leaf, path->slots[0],
6107 			      struct btrfs_file_extent_item);
6108 	/* are we inside the extent that was found? */
6109 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6110 	found_type = btrfs_key_type(&found_key);
6111 	if (found_key.objectid != objectid ||
6112 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6113 		goto not_found;
6114 	}
6115 
6116 	found_type = btrfs_file_extent_type(leaf, item);
6117 	extent_start = found_key.offset;
6118 	compress_type = btrfs_file_extent_compression(leaf, item);
6119 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6120 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6121 		extent_end = extent_start +
6122 		       btrfs_file_extent_num_bytes(leaf, item);
6123 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6124 		size_t size;
6125 		size = btrfs_file_extent_inline_len(leaf, item);
6126 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6127 	}
6128 
6129 	if (start >= extent_end) {
6130 		path->slots[0]++;
6131 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6132 			ret = btrfs_next_leaf(root, path);
6133 			if (ret < 0) {
6134 				err = ret;
6135 				goto out;
6136 			}
6137 			if (ret > 0)
6138 				goto not_found;
6139 			leaf = path->nodes[0];
6140 		}
6141 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6142 		if (found_key.objectid != objectid ||
6143 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6144 			goto not_found;
6145 		if (start + len <= found_key.offset)
6146 			goto not_found;
6147 		em->start = start;
6148 		em->orig_start = start;
6149 		em->len = found_key.offset - start;
6150 		goto not_found_em;
6151 	}
6152 
6153 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6154 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6155 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6156 		em->start = extent_start;
6157 		em->len = extent_end - extent_start;
6158 		em->orig_start = extent_start -
6159 				 btrfs_file_extent_offset(leaf, item);
6160 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6161 								      item);
6162 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6163 		if (bytenr == 0) {
6164 			em->block_start = EXTENT_MAP_HOLE;
6165 			goto insert;
6166 		}
6167 		if (compress_type != BTRFS_COMPRESS_NONE) {
6168 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6169 			em->compress_type = compress_type;
6170 			em->block_start = bytenr;
6171 			em->block_len = em->orig_block_len;
6172 		} else {
6173 			bytenr += btrfs_file_extent_offset(leaf, item);
6174 			em->block_start = bytenr;
6175 			em->block_len = em->len;
6176 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6177 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6178 		}
6179 		goto insert;
6180 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6181 		unsigned long ptr;
6182 		char *map;
6183 		size_t size;
6184 		size_t extent_offset;
6185 		size_t copy_size;
6186 
6187 		em->block_start = EXTENT_MAP_INLINE;
6188 		if (!page || create) {
6189 			em->start = extent_start;
6190 			em->len = extent_end - extent_start;
6191 			goto out;
6192 		}
6193 
6194 		size = btrfs_file_extent_inline_len(leaf, item);
6195 		extent_offset = page_offset(page) + pg_offset - extent_start;
6196 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6197 				size - extent_offset);
6198 		em->start = extent_start + extent_offset;
6199 		em->len = ALIGN(copy_size, root->sectorsize);
6200 		em->orig_block_len = em->len;
6201 		em->orig_start = em->start;
6202 		if (compress_type) {
6203 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6204 			em->compress_type = compress_type;
6205 		}
6206 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6207 		if (create == 0 && !PageUptodate(page)) {
6208 			if (btrfs_file_extent_compression(leaf, item) !=
6209 			    BTRFS_COMPRESS_NONE) {
6210 				ret = uncompress_inline(path, inode, page,
6211 							pg_offset,
6212 							extent_offset, item);
6213 				BUG_ON(ret); /* -ENOMEM */
6214 			} else {
6215 				map = kmap(page);
6216 				read_extent_buffer(leaf, map + pg_offset, ptr,
6217 						   copy_size);
6218 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6219 					memset(map + pg_offset + copy_size, 0,
6220 					       PAGE_CACHE_SIZE - pg_offset -
6221 					       copy_size);
6222 				}
6223 				kunmap(page);
6224 			}
6225 			flush_dcache_page(page);
6226 		} else if (create && PageUptodate(page)) {
6227 			BUG();
6228 			if (!trans) {
6229 				kunmap(page);
6230 				free_extent_map(em);
6231 				em = NULL;
6232 
6233 				btrfs_release_path(path);
6234 				trans = btrfs_join_transaction(root);
6235 
6236 				if (IS_ERR(trans))
6237 					return ERR_CAST(trans);
6238 				goto again;
6239 			}
6240 			map = kmap(page);
6241 			write_extent_buffer(leaf, map + pg_offset, ptr,
6242 					    copy_size);
6243 			kunmap(page);
6244 			btrfs_mark_buffer_dirty(leaf);
6245 		}
6246 		set_extent_uptodate(io_tree, em->start,
6247 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6248 		goto insert;
6249 	} else {
6250 		WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6251 	}
6252 not_found:
6253 	em->start = start;
6254 	em->orig_start = start;
6255 	em->len = len;
6256 not_found_em:
6257 	em->block_start = EXTENT_MAP_HOLE;
6258 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6259 insert:
6260 	btrfs_release_path(path);
6261 	if (em->start > start || extent_map_end(em) <= start) {
6262 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6263 			(unsigned long long)em->start,
6264 			(unsigned long long)em->len,
6265 			(unsigned long long)start,
6266 			(unsigned long long)len);
6267 		err = -EIO;
6268 		goto out;
6269 	}
6270 
6271 	err = 0;
6272 	write_lock(&em_tree->lock);
6273 	ret = add_extent_mapping(em_tree, em, 0);
6274 	/* it is possible that someone inserted the extent into the tree
6275 	 * while we had the lock dropped.  It is also possible that
6276 	 * an overlapping map exists in the tree
6277 	 */
6278 	if (ret == -EEXIST) {
6279 		struct extent_map *existing;
6280 
6281 		ret = 0;
6282 
6283 		existing = lookup_extent_mapping(em_tree, start, len);
6284 		if (existing && (existing->start > start ||
6285 		    existing->start + existing->len <= start)) {
6286 			free_extent_map(existing);
6287 			existing = NULL;
6288 		}
6289 		if (!existing) {
6290 			existing = lookup_extent_mapping(em_tree, em->start,
6291 							 em->len);
6292 			if (existing) {
6293 				err = merge_extent_mapping(em_tree, existing,
6294 							   em, start,
6295 							   root->sectorsize);
6296 				free_extent_map(existing);
6297 				if (err) {
6298 					free_extent_map(em);
6299 					em = NULL;
6300 				}
6301 			} else {
6302 				err = -EIO;
6303 				free_extent_map(em);
6304 				em = NULL;
6305 			}
6306 		} else {
6307 			free_extent_map(em);
6308 			em = existing;
6309 			err = 0;
6310 		}
6311 	}
6312 	write_unlock(&em_tree->lock);
6313 out:
6314 
6315 	if (em)
6316 		trace_btrfs_get_extent(root, em);
6317 
6318 	if (path)
6319 		btrfs_free_path(path);
6320 	if (trans) {
6321 		ret = btrfs_end_transaction(trans, root);
6322 		if (!err)
6323 			err = ret;
6324 	}
6325 	if (err) {
6326 		free_extent_map(em);
6327 		return ERR_PTR(err);
6328 	}
6329 	BUG_ON(!em); /* Error is always set */
6330 	return em;
6331 }
6332 
6333 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6334 					   size_t pg_offset, u64 start, u64 len,
6335 					   int create)
6336 {
6337 	struct extent_map *em;
6338 	struct extent_map *hole_em = NULL;
6339 	u64 range_start = start;
6340 	u64 end;
6341 	u64 found;
6342 	u64 found_end;
6343 	int err = 0;
6344 
6345 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6346 	if (IS_ERR(em))
6347 		return em;
6348 	if (em) {
6349 		/*
6350 		 * if our em maps to
6351 		 * -  a hole or
6352 		 * -  a pre-alloc extent,
6353 		 * there might actually be delalloc bytes behind it.
6354 		 */
6355 		if (em->block_start != EXTENT_MAP_HOLE &&
6356 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6357 			return em;
6358 		else
6359 			hole_em = em;
6360 	}
6361 
6362 	/* check to see if we've wrapped (len == -1 or similar) */
6363 	end = start + len;
6364 	if (end < start)
6365 		end = (u64)-1;
6366 	else
6367 		end -= 1;
6368 
6369 	em = NULL;
6370 
6371 	/* ok, we didn't find anything, lets look for delalloc */
6372 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6373 				 end, len, EXTENT_DELALLOC, 1);
6374 	found_end = range_start + found;
6375 	if (found_end < range_start)
6376 		found_end = (u64)-1;
6377 
6378 	/*
6379 	 * we didn't find anything useful, return
6380 	 * the original results from get_extent()
6381 	 */
6382 	if (range_start > end || found_end <= start) {
6383 		em = hole_em;
6384 		hole_em = NULL;
6385 		goto out;
6386 	}
6387 
6388 	/* adjust the range_start to make sure it doesn't
6389 	 * go backwards from the start they passed in
6390 	 */
6391 	range_start = max(start,range_start);
6392 	found = found_end - range_start;
6393 
6394 	if (found > 0) {
6395 		u64 hole_start = start;
6396 		u64 hole_len = len;
6397 
6398 		em = alloc_extent_map();
6399 		if (!em) {
6400 			err = -ENOMEM;
6401 			goto out;
6402 		}
6403 		/*
6404 		 * when btrfs_get_extent can't find anything it
6405 		 * returns one huge hole
6406 		 *
6407 		 * make sure what it found really fits our range, and
6408 		 * adjust to make sure it is based on the start from
6409 		 * the caller
6410 		 */
6411 		if (hole_em) {
6412 			u64 calc_end = extent_map_end(hole_em);
6413 
6414 			if (calc_end <= start || (hole_em->start > end)) {
6415 				free_extent_map(hole_em);
6416 				hole_em = NULL;
6417 			} else {
6418 				hole_start = max(hole_em->start, start);
6419 				hole_len = calc_end - hole_start;
6420 			}
6421 		}
6422 		em->bdev = NULL;
6423 		if (hole_em && range_start > hole_start) {
6424 			/* our hole starts before our delalloc, so we
6425 			 * have to return just the parts of the hole
6426 			 * that go until  the delalloc starts
6427 			 */
6428 			em->len = min(hole_len,
6429 				      range_start - hole_start);
6430 			em->start = hole_start;
6431 			em->orig_start = hole_start;
6432 			/*
6433 			 * don't adjust block start at all,
6434 			 * it is fixed at EXTENT_MAP_HOLE
6435 			 */
6436 			em->block_start = hole_em->block_start;
6437 			em->block_len = hole_len;
6438 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6439 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6440 		} else {
6441 			em->start = range_start;
6442 			em->len = found;
6443 			em->orig_start = range_start;
6444 			em->block_start = EXTENT_MAP_DELALLOC;
6445 			em->block_len = found;
6446 		}
6447 	} else if (hole_em) {
6448 		return hole_em;
6449 	}
6450 out:
6451 
6452 	free_extent_map(hole_em);
6453 	if (err) {
6454 		free_extent_map(em);
6455 		return ERR_PTR(err);
6456 	}
6457 	return em;
6458 }
6459 
6460 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6461 						  u64 start, u64 len)
6462 {
6463 	struct btrfs_root *root = BTRFS_I(inode)->root;
6464 	struct btrfs_trans_handle *trans;
6465 	struct extent_map *em;
6466 	struct btrfs_key ins;
6467 	u64 alloc_hint;
6468 	int ret;
6469 
6470 	trans = btrfs_join_transaction(root);
6471 	if (IS_ERR(trans))
6472 		return ERR_CAST(trans);
6473 
6474 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6475 
6476 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6477 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6478 				   alloc_hint, &ins, 1);
6479 	if (ret) {
6480 		em = ERR_PTR(ret);
6481 		goto out;
6482 	}
6483 
6484 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6485 			      ins.offset, ins.offset, ins.offset, 0);
6486 	if (IS_ERR(em))
6487 		goto out;
6488 
6489 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6490 					   ins.offset, ins.offset, 0);
6491 	if (ret) {
6492 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6493 		em = ERR_PTR(ret);
6494 	}
6495 out:
6496 	btrfs_end_transaction(trans, root);
6497 	return em;
6498 }
6499 
6500 /*
6501  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6502  * block must be cow'd
6503  */
6504 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
6505 				      struct inode *inode, u64 offset, u64 *len,
6506 				      u64 *orig_start, u64 *orig_block_len,
6507 				      u64 *ram_bytes)
6508 {
6509 	struct btrfs_path *path;
6510 	int ret;
6511 	struct extent_buffer *leaf;
6512 	struct btrfs_root *root = BTRFS_I(inode)->root;
6513 	struct btrfs_file_extent_item *fi;
6514 	struct btrfs_key key;
6515 	u64 disk_bytenr;
6516 	u64 backref_offset;
6517 	u64 extent_end;
6518 	u64 num_bytes;
6519 	int slot;
6520 	int found_type;
6521 
6522 	path = btrfs_alloc_path();
6523 	if (!path)
6524 		return -ENOMEM;
6525 
6526 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6527 				       offset, 0);
6528 	if (ret < 0)
6529 		goto out;
6530 
6531 	slot = path->slots[0];
6532 	if (ret == 1) {
6533 		if (slot == 0) {
6534 			/* can't find the item, must cow */
6535 			ret = 0;
6536 			goto out;
6537 		}
6538 		slot--;
6539 	}
6540 	ret = 0;
6541 	leaf = path->nodes[0];
6542 	btrfs_item_key_to_cpu(leaf, &key, slot);
6543 	if (key.objectid != btrfs_ino(inode) ||
6544 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6545 		/* not our file or wrong item type, must cow */
6546 		goto out;
6547 	}
6548 
6549 	if (key.offset > offset) {
6550 		/* Wrong offset, must cow */
6551 		goto out;
6552 	}
6553 
6554 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6555 	found_type = btrfs_file_extent_type(leaf, fi);
6556 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6557 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6558 		/* not a regular extent, must cow */
6559 		goto out;
6560 	}
6561 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6562 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6563 
6564 	*orig_start = key.offset - backref_offset;
6565 	*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6566 	*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6567 
6568 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6569 	if (extent_end < offset + *len) {
6570 		/* extent doesn't include our full range, must cow */
6571 		goto out;
6572 	}
6573 
6574 	if (btrfs_extent_readonly(root, disk_bytenr))
6575 		goto out;
6576 
6577 	/*
6578 	 * look for other files referencing this extent, if we
6579 	 * find any we must cow
6580 	 */
6581 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6582 				  key.offset - backref_offset, disk_bytenr))
6583 		goto out;
6584 
6585 	/*
6586 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6587 	 * in this extent we are about to write.  If there
6588 	 * are any csums in that range we have to cow in order
6589 	 * to keep the csums correct
6590 	 */
6591 	disk_bytenr += backref_offset;
6592 	disk_bytenr += offset - key.offset;
6593 	num_bytes = min(offset + *len, extent_end) - offset;
6594 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6595 				goto out;
6596 	/*
6597 	 * all of the above have passed, it is safe to overwrite this extent
6598 	 * without cow
6599 	 */
6600 	*len = num_bytes;
6601 	ret = 1;
6602 out:
6603 	btrfs_free_path(path);
6604 	return ret;
6605 }
6606 
6607 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6608 			      struct extent_state **cached_state, int writing)
6609 {
6610 	struct btrfs_ordered_extent *ordered;
6611 	int ret = 0;
6612 
6613 	while (1) {
6614 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6615 				 0, cached_state);
6616 		/*
6617 		 * We're concerned with the entire range that we're going to be
6618 		 * doing DIO to, so we need to make sure theres no ordered
6619 		 * extents in this range.
6620 		 */
6621 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6622 						     lockend - lockstart + 1);
6623 
6624 		/*
6625 		 * We need to make sure there are no buffered pages in this
6626 		 * range either, we could have raced between the invalidate in
6627 		 * generic_file_direct_write and locking the extent.  The
6628 		 * invalidate needs to happen so that reads after a write do not
6629 		 * get stale data.
6630 		 */
6631 		if (!ordered && (!writing ||
6632 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
6633 				    lockstart, lockend, EXTENT_UPTODATE, 0,
6634 				    *cached_state)))
6635 			break;
6636 
6637 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6638 				     cached_state, GFP_NOFS);
6639 
6640 		if (ordered) {
6641 			btrfs_start_ordered_extent(inode, ordered, 1);
6642 			btrfs_put_ordered_extent(ordered);
6643 		} else {
6644 			/* Screw you mmap */
6645 			ret = filemap_write_and_wait_range(inode->i_mapping,
6646 							   lockstart,
6647 							   lockend);
6648 			if (ret)
6649 				break;
6650 
6651 			/*
6652 			 * If we found a page that couldn't be invalidated just
6653 			 * fall back to buffered.
6654 			 */
6655 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6656 					lockstart >> PAGE_CACHE_SHIFT,
6657 					lockend >> PAGE_CACHE_SHIFT);
6658 			if (ret)
6659 				break;
6660 		}
6661 
6662 		cond_resched();
6663 	}
6664 
6665 	return ret;
6666 }
6667 
6668 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6669 					   u64 len, u64 orig_start,
6670 					   u64 block_start, u64 block_len,
6671 					   u64 orig_block_len, u64 ram_bytes,
6672 					   int type)
6673 {
6674 	struct extent_map_tree *em_tree;
6675 	struct extent_map *em;
6676 	struct btrfs_root *root = BTRFS_I(inode)->root;
6677 	int ret;
6678 
6679 	em_tree = &BTRFS_I(inode)->extent_tree;
6680 	em = alloc_extent_map();
6681 	if (!em)
6682 		return ERR_PTR(-ENOMEM);
6683 
6684 	em->start = start;
6685 	em->orig_start = orig_start;
6686 	em->mod_start = start;
6687 	em->mod_len = len;
6688 	em->len = len;
6689 	em->block_len = block_len;
6690 	em->block_start = block_start;
6691 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6692 	em->orig_block_len = orig_block_len;
6693 	em->ram_bytes = ram_bytes;
6694 	em->generation = -1;
6695 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6696 	if (type == BTRFS_ORDERED_PREALLOC)
6697 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6698 
6699 	do {
6700 		btrfs_drop_extent_cache(inode, em->start,
6701 				em->start + em->len - 1, 0);
6702 		write_lock(&em_tree->lock);
6703 		ret = add_extent_mapping(em_tree, em, 1);
6704 		write_unlock(&em_tree->lock);
6705 	} while (ret == -EEXIST);
6706 
6707 	if (ret) {
6708 		free_extent_map(em);
6709 		return ERR_PTR(ret);
6710 	}
6711 
6712 	return em;
6713 }
6714 
6715 
6716 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6717 				   struct buffer_head *bh_result, int create)
6718 {
6719 	struct extent_map *em;
6720 	struct btrfs_root *root = BTRFS_I(inode)->root;
6721 	struct extent_state *cached_state = NULL;
6722 	u64 start = iblock << inode->i_blkbits;
6723 	u64 lockstart, lockend;
6724 	u64 len = bh_result->b_size;
6725 	struct btrfs_trans_handle *trans;
6726 	int unlock_bits = EXTENT_LOCKED;
6727 	int ret = 0;
6728 
6729 	if (create)
6730 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6731 	else
6732 		len = min_t(u64, len, root->sectorsize);
6733 
6734 	lockstart = start;
6735 	lockend = start + len - 1;
6736 
6737 	/*
6738 	 * If this errors out it's because we couldn't invalidate pagecache for
6739 	 * this range and we need to fallback to buffered.
6740 	 */
6741 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6742 		return -ENOTBLK;
6743 
6744 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6745 	if (IS_ERR(em)) {
6746 		ret = PTR_ERR(em);
6747 		goto unlock_err;
6748 	}
6749 
6750 	/*
6751 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6752 	 * io.  INLINE is special, and we could probably kludge it in here, but
6753 	 * it's still buffered so for safety lets just fall back to the generic
6754 	 * buffered path.
6755 	 *
6756 	 * For COMPRESSED we _have_ to read the entire extent in so we can
6757 	 * decompress it, so there will be buffering required no matter what we
6758 	 * do, so go ahead and fallback to buffered.
6759 	 *
6760 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6761 	 * to buffered IO.  Don't blame me, this is the price we pay for using
6762 	 * the generic code.
6763 	 */
6764 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6765 	    em->block_start == EXTENT_MAP_INLINE) {
6766 		free_extent_map(em);
6767 		ret = -ENOTBLK;
6768 		goto unlock_err;
6769 	}
6770 
6771 	/* Just a good old fashioned hole, return */
6772 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6773 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6774 		free_extent_map(em);
6775 		goto unlock_err;
6776 	}
6777 
6778 	/*
6779 	 * We don't allocate a new extent in the following cases
6780 	 *
6781 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6782 	 * existing extent.
6783 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
6784 	 * just use the extent.
6785 	 *
6786 	 */
6787 	if (!create) {
6788 		len = min(len, em->len - (start - em->start));
6789 		lockstart = start + len;
6790 		goto unlock;
6791 	}
6792 
6793 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6794 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6795 	     em->block_start != EXTENT_MAP_HOLE)) {
6796 		int type;
6797 		int ret;
6798 		u64 block_start, orig_start, orig_block_len, ram_bytes;
6799 
6800 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6801 			type = BTRFS_ORDERED_PREALLOC;
6802 		else
6803 			type = BTRFS_ORDERED_NOCOW;
6804 		len = min(len, em->len - (start - em->start));
6805 		block_start = em->block_start + (start - em->start);
6806 
6807 		/*
6808 		 * we're not going to log anything, but we do need
6809 		 * to make sure the current transaction stays open
6810 		 * while we look for nocow cross refs
6811 		 */
6812 		trans = btrfs_join_transaction(root);
6813 		if (IS_ERR(trans))
6814 			goto must_cow;
6815 
6816 		if (can_nocow_odirect(trans, inode, start, &len, &orig_start,
6817 				      &orig_block_len, &ram_bytes) == 1) {
6818 			if (type == BTRFS_ORDERED_PREALLOC) {
6819 				free_extent_map(em);
6820 				em = create_pinned_em(inode, start, len,
6821 						       orig_start,
6822 						       block_start, len,
6823 						       orig_block_len,
6824 						       ram_bytes, type);
6825 				if (IS_ERR(em)) {
6826 					btrfs_end_transaction(trans, root);
6827 					goto unlock_err;
6828 				}
6829 			}
6830 
6831 			ret = btrfs_add_ordered_extent_dio(inode, start,
6832 					   block_start, len, len, type);
6833 			btrfs_end_transaction(trans, root);
6834 			if (ret) {
6835 				free_extent_map(em);
6836 				goto unlock_err;
6837 			}
6838 			goto unlock;
6839 		}
6840 		btrfs_end_transaction(trans, root);
6841 	}
6842 must_cow:
6843 	/*
6844 	 * this will cow the extent, reset the len in case we changed
6845 	 * it above
6846 	 */
6847 	len = bh_result->b_size;
6848 	free_extent_map(em);
6849 	em = btrfs_new_extent_direct(inode, start, len);
6850 	if (IS_ERR(em)) {
6851 		ret = PTR_ERR(em);
6852 		goto unlock_err;
6853 	}
6854 	len = min(len, em->len - (start - em->start));
6855 unlock:
6856 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6857 		inode->i_blkbits;
6858 	bh_result->b_size = len;
6859 	bh_result->b_bdev = em->bdev;
6860 	set_buffer_mapped(bh_result);
6861 	if (create) {
6862 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6863 			set_buffer_new(bh_result);
6864 
6865 		/*
6866 		 * Need to update the i_size under the extent lock so buffered
6867 		 * readers will get the updated i_size when we unlock.
6868 		 */
6869 		if (start + len > i_size_read(inode))
6870 			i_size_write(inode, start + len);
6871 
6872 		spin_lock(&BTRFS_I(inode)->lock);
6873 		BTRFS_I(inode)->outstanding_extents++;
6874 		spin_unlock(&BTRFS_I(inode)->lock);
6875 
6876 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6877 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6878 				     &cached_state, GFP_NOFS);
6879 		BUG_ON(ret);
6880 	}
6881 
6882 	/*
6883 	 * In the case of write we need to clear and unlock the entire range,
6884 	 * in the case of read we need to unlock only the end area that we
6885 	 * aren't using if there is any left over space.
6886 	 */
6887 	if (lockstart < lockend) {
6888 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6889 				 lockend, unlock_bits, 1, 0,
6890 				 &cached_state, GFP_NOFS);
6891 	} else {
6892 		free_extent_state(cached_state);
6893 	}
6894 
6895 	free_extent_map(em);
6896 
6897 	return 0;
6898 
6899 unlock_err:
6900 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6901 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6902 	return ret;
6903 }
6904 
6905 struct btrfs_dio_private {
6906 	struct inode *inode;
6907 	u64 logical_offset;
6908 	u64 disk_bytenr;
6909 	u64 bytes;
6910 	void *private;
6911 
6912 	/* number of bios pending for this dio */
6913 	atomic_t pending_bios;
6914 
6915 	/* IO errors */
6916 	int errors;
6917 
6918 	/* orig_bio is our btrfs_io_bio */
6919 	struct bio *orig_bio;
6920 
6921 	/* dio_bio came from fs/direct-io.c */
6922 	struct bio *dio_bio;
6923 };
6924 
6925 static void btrfs_endio_direct_read(struct bio *bio, int err)
6926 {
6927 	struct btrfs_dio_private *dip = bio->bi_private;
6928 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6929 	struct bio_vec *bvec = bio->bi_io_vec;
6930 	struct inode *inode = dip->inode;
6931 	struct btrfs_root *root = BTRFS_I(inode)->root;
6932 	struct bio *dio_bio;
6933 	u64 start;
6934 
6935 	start = dip->logical_offset;
6936 	do {
6937 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6938 			struct page *page = bvec->bv_page;
6939 			char *kaddr;
6940 			u32 csum = ~(u32)0;
6941 			u64 private = ~(u32)0;
6942 			unsigned long flags;
6943 
6944 			if (get_state_private(&BTRFS_I(inode)->io_tree,
6945 					      start, &private))
6946 				goto failed;
6947 			local_irq_save(flags);
6948 			kaddr = kmap_atomic(page);
6949 			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6950 					       csum, bvec->bv_len);
6951 			btrfs_csum_final(csum, (char *)&csum);
6952 			kunmap_atomic(kaddr);
6953 			local_irq_restore(flags);
6954 
6955 			flush_dcache_page(bvec->bv_page);
6956 			if (csum != private) {
6957 failed:
6958 				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6959 					(unsigned long long)btrfs_ino(inode),
6960 					(unsigned long long)start,
6961 					csum, (unsigned)private);
6962 				err = -EIO;
6963 			}
6964 		}
6965 
6966 		start += bvec->bv_len;
6967 		bvec++;
6968 	} while (bvec <= bvec_end);
6969 
6970 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6971 		      dip->logical_offset + dip->bytes - 1);
6972 	dio_bio = dip->dio_bio;
6973 
6974 	kfree(dip);
6975 
6976 	/* If we had a csum failure make sure to clear the uptodate flag */
6977 	if (err)
6978 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6979 	dio_end_io(dio_bio, err);
6980 	bio_put(bio);
6981 }
6982 
6983 static void btrfs_endio_direct_write(struct bio *bio, int err)
6984 {
6985 	struct btrfs_dio_private *dip = bio->bi_private;
6986 	struct inode *inode = dip->inode;
6987 	struct btrfs_root *root = BTRFS_I(inode)->root;
6988 	struct btrfs_ordered_extent *ordered = NULL;
6989 	u64 ordered_offset = dip->logical_offset;
6990 	u64 ordered_bytes = dip->bytes;
6991 	struct bio *dio_bio;
6992 	int ret;
6993 
6994 	if (err)
6995 		goto out_done;
6996 again:
6997 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6998 						   &ordered_offset,
6999 						   ordered_bytes, !err);
7000 	if (!ret)
7001 		goto out_test;
7002 
7003 	ordered->work.func = finish_ordered_fn;
7004 	ordered->work.flags = 0;
7005 	btrfs_queue_worker(&root->fs_info->endio_write_workers,
7006 			   &ordered->work);
7007 out_test:
7008 	/*
7009 	 * our bio might span multiple ordered extents.  If we haven't
7010 	 * completed the accounting for the whole dio, go back and try again
7011 	 */
7012 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7013 		ordered_bytes = dip->logical_offset + dip->bytes -
7014 			ordered_offset;
7015 		ordered = NULL;
7016 		goto again;
7017 	}
7018 out_done:
7019 	dio_bio = dip->dio_bio;
7020 
7021 	kfree(dip);
7022 
7023 	/* If we had an error make sure to clear the uptodate flag */
7024 	if (err)
7025 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7026 	dio_end_io(dio_bio, err);
7027 	bio_put(bio);
7028 }
7029 
7030 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7031 				    struct bio *bio, int mirror_num,
7032 				    unsigned long bio_flags, u64 offset)
7033 {
7034 	int ret;
7035 	struct btrfs_root *root = BTRFS_I(inode)->root;
7036 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7037 	BUG_ON(ret); /* -ENOMEM */
7038 	return 0;
7039 }
7040 
7041 static void btrfs_end_dio_bio(struct bio *bio, int err)
7042 {
7043 	struct btrfs_dio_private *dip = bio->bi_private;
7044 
7045 	if (err) {
7046 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
7047 		      "sector %#Lx len %u err no %d\n",
7048 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
7049 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
7050 		dip->errors = 1;
7051 
7052 		/*
7053 		 * before atomic variable goto zero, we must make sure
7054 		 * dip->errors is perceived to be set.
7055 		 */
7056 		smp_mb__before_atomic_dec();
7057 	}
7058 
7059 	/* if there are more bios still pending for this dio, just exit */
7060 	if (!atomic_dec_and_test(&dip->pending_bios))
7061 		goto out;
7062 
7063 	if (dip->errors) {
7064 		bio_io_error(dip->orig_bio);
7065 	} else {
7066 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7067 		bio_endio(dip->orig_bio, 0);
7068 	}
7069 out:
7070 	bio_put(bio);
7071 }
7072 
7073 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7074 				       u64 first_sector, gfp_t gfp_flags)
7075 {
7076 	int nr_vecs = bio_get_nr_vecs(bdev);
7077 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7078 }
7079 
7080 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7081 					 int rw, u64 file_offset, int skip_sum,
7082 					 int async_submit)
7083 {
7084 	int write = rw & REQ_WRITE;
7085 	struct btrfs_root *root = BTRFS_I(inode)->root;
7086 	int ret;
7087 
7088 	if (async_submit)
7089 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7090 
7091 	bio_get(bio);
7092 
7093 	if (!write) {
7094 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7095 		if (ret)
7096 			goto err;
7097 	}
7098 
7099 	if (skip_sum)
7100 		goto map;
7101 
7102 	if (write && async_submit) {
7103 		ret = btrfs_wq_submit_bio(root->fs_info,
7104 				   inode, rw, bio, 0, 0,
7105 				   file_offset,
7106 				   __btrfs_submit_bio_start_direct_io,
7107 				   __btrfs_submit_bio_done);
7108 		goto err;
7109 	} else if (write) {
7110 		/*
7111 		 * If we aren't doing async submit, calculate the csum of the
7112 		 * bio now.
7113 		 */
7114 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7115 		if (ret)
7116 			goto err;
7117 	} else if (!skip_sum) {
7118 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7119 		if (ret)
7120 			goto err;
7121 	}
7122 
7123 map:
7124 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7125 err:
7126 	bio_put(bio);
7127 	return ret;
7128 }
7129 
7130 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7131 				    int skip_sum)
7132 {
7133 	struct inode *inode = dip->inode;
7134 	struct btrfs_root *root = BTRFS_I(inode)->root;
7135 	struct bio *bio;
7136 	struct bio *orig_bio = dip->orig_bio;
7137 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7138 	u64 start_sector = orig_bio->bi_sector;
7139 	u64 file_offset = dip->logical_offset;
7140 	u64 submit_len = 0;
7141 	u64 map_length;
7142 	int nr_pages = 0;
7143 	int ret = 0;
7144 	int async_submit = 0;
7145 
7146 	map_length = orig_bio->bi_size;
7147 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7148 			      &map_length, NULL, 0);
7149 	if (ret) {
7150 		bio_put(orig_bio);
7151 		return -EIO;
7152 	}
7153 	if (map_length >= orig_bio->bi_size) {
7154 		bio = orig_bio;
7155 		goto submit;
7156 	}
7157 
7158 	/* async crcs make it difficult to collect full stripe writes. */
7159 	if (btrfs_get_alloc_profile(root, 1) &
7160 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7161 		async_submit = 0;
7162 	else
7163 		async_submit = 1;
7164 
7165 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7166 	if (!bio)
7167 		return -ENOMEM;
7168 	bio->bi_private = dip;
7169 	bio->bi_end_io = btrfs_end_dio_bio;
7170 	atomic_inc(&dip->pending_bios);
7171 
7172 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7173 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7174 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7175 				 bvec->bv_offset) < bvec->bv_len)) {
7176 			/*
7177 			 * inc the count before we submit the bio so
7178 			 * we know the end IO handler won't happen before
7179 			 * we inc the count. Otherwise, the dip might get freed
7180 			 * before we're done setting it up
7181 			 */
7182 			atomic_inc(&dip->pending_bios);
7183 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7184 						     file_offset, skip_sum,
7185 						     async_submit);
7186 			if (ret) {
7187 				bio_put(bio);
7188 				atomic_dec(&dip->pending_bios);
7189 				goto out_err;
7190 			}
7191 
7192 			start_sector += submit_len >> 9;
7193 			file_offset += submit_len;
7194 
7195 			submit_len = 0;
7196 			nr_pages = 0;
7197 
7198 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7199 						  start_sector, GFP_NOFS);
7200 			if (!bio)
7201 				goto out_err;
7202 			bio->bi_private = dip;
7203 			bio->bi_end_io = btrfs_end_dio_bio;
7204 
7205 			map_length = orig_bio->bi_size;
7206 			ret = btrfs_map_block(root->fs_info, rw,
7207 					      start_sector << 9,
7208 					      &map_length, NULL, 0);
7209 			if (ret) {
7210 				bio_put(bio);
7211 				goto out_err;
7212 			}
7213 		} else {
7214 			submit_len += bvec->bv_len;
7215 			nr_pages ++;
7216 			bvec++;
7217 		}
7218 	}
7219 
7220 submit:
7221 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7222 				     async_submit);
7223 	if (!ret)
7224 		return 0;
7225 
7226 	bio_put(bio);
7227 out_err:
7228 	dip->errors = 1;
7229 	/*
7230 	 * before atomic variable goto zero, we must
7231 	 * make sure dip->errors is perceived to be set.
7232 	 */
7233 	smp_mb__before_atomic_dec();
7234 	if (atomic_dec_and_test(&dip->pending_bios))
7235 		bio_io_error(dip->orig_bio);
7236 
7237 	/* bio_end_io() will handle error, so we needn't return it */
7238 	return 0;
7239 }
7240 
7241 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7242 				struct inode *inode, loff_t file_offset)
7243 {
7244 	struct btrfs_root *root = BTRFS_I(inode)->root;
7245 	struct btrfs_dio_private *dip;
7246 	struct bio_vec *bvec = dio_bio->bi_io_vec;
7247 	struct bio *io_bio;
7248 	int skip_sum;
7249 	int write = rw & REQ_WRITE;
7250 	int ret = 0;
7251 
7252 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7253 
7254 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7255 
7256 	if (!io_bio) {
7257 		ret = -ENOMEM;
7258 		goto free_ordered;
7259 	}
7260 
7261 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
7262 	if (!dip) {
7263 		ret = -ENOMEM;
7264 		goto free_io_bio;
7265 	}
7266 
7267 	dip->private = dio_bio->bi_private;
7268 	io_bio->bi_private = dio_bio->bi_private;
7269 	dip->inode = inode;
7270 	dip->logical_offset = file_offset;
7271 
7272 	dip->bytes = 0;
7273 	do {
7274 		dip->bytes += bvec->bv_len;
7275 		bvec++;
7276 	} while (bvec <= (dio_bio->bi_io_vec + dio_bio->bi_vcnt - 1));
7277 
7278 	dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7279 	io_bio->bi_private = dip;
7280 	dip->errors = 0;
7281 	dip->orig_bio = io_bio;
7282 	dip->dio_bio = dio_bio;
7283 	atomic_set(&dip->pending_bios, 0);
7284 
7285 	if (write)
7286 		io_bio->bi_end_io = btrfs_endio_direct_write;
7287 	else
7288 		io_bio->bi_end_io = btrfs_endio_direct_read;
7289 
7290 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7291 	if (!ret)
7292 		return;
7293 
7294 free_io_bio:
7295 	bio_put(io_bio);
7296 
7297 free_ordered:
7298 	/*
7299 	 * If this is a write, we need to clean up the reserved space and kill
7300 	 * the ordered extent.
7301 	 */
7302 	if (write) {
7303 		struct btrfs_ordered_extent *ordered;
7304 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7305 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7306 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7307 			btrfs_free_reserved_extent(root, ordered->start,
7308 						   ordered->disk_len);
7309 		btrfs_put_ordered_extent(ordered);
7310 		btrfs_put_ordered_extent(ordered);
7311 	}
7312 	bio_endio(dio_bio, ret);
7313 }
7314 
7315 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7316 			const struct iovec *iov, loff_t offset,
7317 			unsigned long nr_segs)
7318 {
7319 	int seg;
7320 	int i;
7321 	size_t size;
7322 	unsigned long addr;
7323 	unsigned blocksize_mask = root->sectorsize - 1;
7324 	ssize_t retval = -EINVAL;
7325 	loff_t end = offset;
7326 
7327 	if (offset & blocksize_mask)
7328 		goto out;
7329 
7330 	/* Check the memory alignment.  Blocks cannot straddle pages */
7331 	for (seg = 0; seg < nr_segs; seg++) {
7332 		addr = (unsigned long)iov[seg].iov_base;
7333 		size = iov[seg].iov_len;
7334 		end += size;
7335 		if ((addr & blocksize_mask) || (size & blocksize_mask))
7336 			goto out;
7337 
7338 		/* If this is a write we don't need to check anymore */
7339 		if (rw & WRITE)
7340 			continue;
7341 
7342 		/*
7343 		 * Check to make sure we don't have duplicate iov_base's in this
7344 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
7345 		 * when reading back.
7346 		 */
7347 		for (i = seg + 1; i < nr_segs; i++) {
7348 			if (iov[seg].iov_base == iov[i].iov_base)
7349 				goto out;
7350 		}
7351 	}
7352 	retval = 0;
7353 out:
7354 	return retval;
7355 }
7356 
7357 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7358 			const struct iovec *iov, loff_t offset,
7359 			unsigned long nr_segs)
7360 {
7361 	struct file *file = iocb->ki_filp;
7362 	struct inode *inode = file->f_mapping->host;
7363 	size_t count = 0;
7364 	int flags = 0;
7365 	bool wakeup = true;
7366 	bool relock = false;
7367 	ssize_t ret;
7368 
7369 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7370 			    offset, nr_segs))
7371 		return 0;
7372 
7373 	atomic_inc(&inode->i_dio_count);
7374 	smp_mb__after_atomic_inc();
7375 
7376 	if (rw & WRITE) {
7377 		count = iov_length(iov, nr_segs);
7378 		/*
7379 		 * If the write DIO is beyond the EOF, we need update
7380 		 * the isize, but it is protected by i_mutex. So we can
7381 		 * not unlock the i_mutex at this case.
7382 		 */
7383 		if (offset + count <= inode->i_size) {
7384 			mutex_unlock(&inode->i_mutex);
7385 			relock = true;
7386 		}
7387 		ret = btrfs_delalloc_reserve_space(inode, count);
7388 		if (ret)
7389 			goto out;
7390 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7391 				     &BTRFS_I(inode)->runtime_flags))) {
7392 		inode_dio_done(inode);
7393 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7394 		wakeup = false;
7395 	}
7396 
7397 	ret = __blockdev_direct_IO(rw, iocb, inode,
7398 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7399 			iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7400 			btrfs_submit_direct, flags);
7401 	if (rw & WRITE) {
7402 		if (ret < 0 && ret != -EIOCBQUEUED)
7403 			btrfs_delalloc_release_space(inode, count);
7404 		else if (ret >= 0 && (size_t)ret < count)
7405 			btrfs_delalloc_release_space(inode,
7406 						     count - (size_t)ret);
7407 		else
7408 			btrfs_delalloc_release_metadata(inode, 0);
7409 	}
7410 out:
7411 	if (wakeup)
7412 		inode_dio_done(inode);
7413 	if (relock)
7414 		mutex_lock(&inode->i_mutex);
7415 
7416 	return ret;
7417 }
7418 
7419 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7420 
7421 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7422 		__u64 start, __u64 len)
7423 {
7424 	int	ret;
7425 
7426 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7427 	if (ret)
7428 		return ret;
7429 
7430 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7431 }
7432 
7433 int btrfs_readpage(struct file *file, struct page *page)
7434 {
7435 	struct extent_io_tree *tree;
7436 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7437 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7438 }
7439 
7440 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7441 {
7442 	struct extent_io_tree *tree;
7443 
7444 
7445 	if (current->flags & PF_MEMALLOC) {
7446 		redirty_page_for_writepage(wbc, page);
7447 		unlock_page(page);
7448 		return 0;
7449 	}
7450 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7451 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7452 }
7453 
7454 static int btrfs_writepages(struct address_space *mapping,
7455 			    struct writeback_control *wbc)
7456 {
7457 	struct extent_io_tree *tree;
7458 
7459 	tree = &BTRFS_I(mapping->host)->io_tree;
7460 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7461 }
7462 
7463 static int
7464 btrfs_readpages(struct file *file, struct address_space *mapping,
7465 		struct list_head *pages, unsigned nr_pages)
7466 {
7467 	struct extent_io_tree *tree;
7468 	tree = &BTRFS_I(mapping->host)->io_tree;
7469 	return extent_readpages(tree, mapping, pages, nr_pages,
7470 				btrfs_get_extent);
7471 }
7472 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7473 {
7474 	struct extent_io_tree *tree;
7475 	struct extent_map_tree *map;
7476 	int ret;
7477 
7478 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7479 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7480 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7481 	if (ret == 1) {
7482 		ClearPagePrivate(page);
7483 		set_page_private(page, 0);
7484 		page_cache_release(page);
7485 	}
7486 	return ret;
7487 }
7488 
7489 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7490 {
7491 	if (PageWriteback(page) || PageDirty(page))
7492 		return 0;
7493 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7494 }
7495 
7496 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7497 				 unsigned int length)
7498 {
7499 	struct inode *inode = page->mapping->host;
7500 	struct extent_io_tree *tree;
7501 	struct btrfs_ordered_extent *ordered;
7502 	struct extent_state *cached_state = NULL;
7503 	u64 page_start = page_offset(page);
7504 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7505 
7506 	/*
7507 	 * we have the page locked, so new writeback can't start,
7508 	 * and the dirty bit won't be cleared while we are here.
7509 	 *
7510 	 * Wait for IO on this page so that we can safely clear
7511 	 * the PagePrivate2 bit and do ordered accounting
7512 	 */
7513 	wait_on_page_writeback(page);
7514 
7515 	tree = &BTRFS_I(inode)->io_tree;
7516 	if (offset) {
7517 		btrfs_releasepage(page, GFP_NOFS);
7518 		return;
7519 	}
7520 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7521 	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7522 	if (ordered) {
7523 		/*
7524 		 * IO on this page will never be started, so we need
7525 		 * to account for any ordered extents now
7526 		 */
7527 		clear_extent_bit(tree, page_start, page_end,
7528 				 EXTENT_DIRTY | EXTENT_DELALLOC |
7529 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7530 				 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7531 		/*
7532 		 * whoever cleared the private bit is responsible
7533 		 * for the finish_ordered_io
7534 		 */
7535 		if (TestClearPagePrivate2(page) &&
7536 		    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7537 						   PAGE_CACHE_SIZE, 1)) {
7538 			btrfs_finish_ordered_io(ordered);
7539 		}
7540 		btrfs_put_ordered_extent(ordered);
7541 		cached_state = NULL;
7542 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7543 	}
7544 	clear_extent_bit(tree, page_start, page_end,
7545 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7546 		 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7547 		 &cached_state, GFP_NOFS);
7548 	__btrfs_releasepage(page, GFP_NOFS);
7549 
7550 	ClearPageChecked(page);
7551 	if (PagePrivate(page)) {
7552 		ClearPagePrivate(page);
7553 		set_page_private(page, 0);
7554 		page_cache_release(page);
7555 	}
7556 }
7557 
7558 /*
7559  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7560  * called from a page fault handler when a page is first dirtied. Hence we must
7561  * be careful to check for EOF conditions here. We set the page up correctly
7562  * for a written page which means we get ENOSPC checking when writing into
7563  * holes and correct delalloc and unwritten extent mapping on filesystems that
7564  * support these features.
7565  *
7566  * We are not allowed to take the i_mutex here so we have to play games to
7567  * protect against truncate races as the page could now be beyond EOF.  Because
7568  * vmtruncate() writes the inode size before removing pages, once we have the
7569  * page lock we can determine safely if the page is beyond EOF. If it is not
7570  * beyond EOF, then the page is guaranteed safe against truncation until we
7571  * unlock the page.
7572  */
7573 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7574 {
7575 	struct page *page = vmf->page;
7576 	struct inode *inode = file_inode(vma->vm_file);
7577 	struct btrfs_root *root = BTRFS_I(inode)->root;
7578 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7579 	struct btrfs_ordered_extent *ordered;
7580 	struct extent_state *cached_state = NULL;
7581 	char *kaddr;
7582 	unsigned long zero_start;
7583 	loff_t size;
7584 	int ret;
7585 	int reserved = 0;
7586 	u64 page_start;
7587 	u64 page_end;
7588 
7589 	sb_start_pagefault(inode->i_sb);
7590 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7591 	if (!ret) {
7592 		ret = file_update_time(vma->vm_file);
7593 		reserved = 1;
7594 	}
7595 	if (ret) {
7596 		if (ret == -ENOMEM)
7597 			ret = VM_FAULT_OOM;
7598 		else /* -ENOSPC, -EIO, etc */
7599 			ret = VM_FAULT_SIGBUS;
7600 		if (reserved)
7601 			goto out;
7602 		goto out_noreserve;
7603 	}
7604 
7605 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7606 again:
7607 	lock_page(page);
7608 	size = i_size_read(inode);
7609 	page_start = page_offset(page);
7610 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7611 
7612 	if ((page->mapping != inode->i_mapping) ||
7613 	    (page_start >= size)) {
7614 		/* page got truncated out from underneath us */
7615 		goto out_unlock;
7616 	}
7617 	wait_on_page_writeback(page);
7618 
7619 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7620 	set_page_extent_mapped(page);
7621 
7622 	/*
7623 	 * we can't set the delalloc bits if there are pending ordered
7624 	 * extents.  Drop our locks and wait for them to finish
7625 	 */
7626 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7627 	if (ordered) {
7628 		unlock_extent_cached(io_tree, page_start, page_end,
7629 				     &cached_state, GFP_NOFS);
7630 		unlock_page(page);
7631 		btrfs_start_ordered_extent(inode, ordered, 1);
7632 		btrfs_put_ordered_extent(ordered);
7633 		goto again;
7634 	}
7635 
7636 	/*
7637 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7638 	 * if it was already dirty, so for space accounting reasons we need to
7639 	 * clear any delalloc bits for the range we are fixing to save.  There
7640 	 * is probably a better way to do this, but for now keep consistent with
7641 	 * prepare_pages in the normal write path.
7642 	 */
7643 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7644 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7645 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7646 			  0, 0, &cached_state, GFP_NOFS);
7647 
7648 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7649 					&cached_state);
7650 	if (ret) {
7651 		unlock_extent_cached(io_tree, page_start, page_end,
7652 				     &cached_state, GFP_NOFS);
7653 		ret = VM_FAULT_SIGBUS;
7654 		goto out_unlock;
7655 	}
7656 	ret = 0;
7657 
7658 	/* page is wholly or partially inside EOF */
7659 	if (page_start + PAGE_CACHE_SIZE > size)
7660 		zero_start = size & ~PAGE_CACHE_MASK;
7661 	else
7662 		zero_start = PAGE_CACHE_SIZE;
7663 
7664 	if (zero_start != PAGE_CACHE_SIZE) {
7665 		kaddr = kmap(page);
7666 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7667 		flush_dcache_page(page);
7668 		kunmap(page);
7669 	}
7670 	ClearPageChecked(page);
7671 	set_page_dirty(page);
7672 	SetPageUptodate(page);
7673 
7674 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7675 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7676 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7677 
7678 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7679 
7680 out_unlock:
7681 	if (!ret) {
7682 		sb_end_pagefault(inode->i_sb);
7683 		return VM_FAULT_LOCKED;
7684 	}
7685 	unlock_page(page);
7686 out:
7687 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7688 out_noreserve:
7689 	sb_end_pagefault(inode->i_sb);
7690 	return ret;
7691 }
7692 
7693 static int btrfs_truncate(struct inode *inode)
7694 {
7695 	struct btrfs_root *root = BTRFS_I(inode)->root;
7696 	struct btrfs_block_rsv *rsv;
7697 	int ret;
7698 	int err = 0;
7699 	struct btrfs_trans_handle *trans;
7700 	u64 mask = root->sectorsize - 1;
7701 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7702 
7703 	ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
7704 	if (ret)
7705 		return ret;
7706 
7707 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7708 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7709 
7710 	/*
7711 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7712 	 * 3 things going on here
7713 	 *
7714 	 * 1) We need to reserve space for our orphan item and the space to
7715 	 * delete our orphan item.  Lord knows we don't want to have a dangling
7716 	 * orphan item because we didn't reserve space to remove it.
7717 	 *
7718 	 * 2) We need to reserve space to update our inode.
7719 	 *
7720 	 * 3) We need to have something to cache all the space that is going to
7721 	 * be free'd up by the truncate operation, but also have some slack
7722 	 * space reserved in case it uses space during the truncate (thank you
7723 	 * very much snapshotting).
7724 	 *
7725 	 * And we need these to all be seperate.  The fact is we can use alot of
7726 	 * space doing the truncate, and we have no earthly idea how much space
7727 	 * we will use, so we need the truncate reservation to be seperate so it
7728 	 * doesn't end up using space reserved for updating the inode or
7729 	 * removing the orphan item.  We also need to be able to stop the
7730 	 * transaction and start a new one, which means we need to be able to
7731 	 * update the inode several times, and we have no idea of knowing how
7732 	 * many times that will be, so we can't just reserve 1 item for the
7733 	 * entirety of the opration, so that has to be done seperately as well.
7734 	 * Then there is the orphan item, which does indeed need to be held on
7735 	 * to for the whole operation, and we need nobody to touch this reserved
7736 	 * space except the orphan code.
7737 	 *
7738 	 * So that leaves us with
7739 	 *
7740 	 * 1) root->orphan_block_rsv - for the orphan deletion.
7741 	 * 2) rsv - for the truncate reservation, which we will steal from the
7742 	 * transaction reservation.
7743 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7744 	 * updating the inode.
7745 	 */
7746 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7747 	if (!rsv)
7748 		return -ENOMEM;
7749 	rsv->size = min_size;
7750 	rsv->failfast = 1;
7751 
7752 	/*
7753 	 * 1 for the truncate slack space
7754 	 * 1 for updating the inode.
7755 	 */
7756 	trans = btrfs_start_transaction(root, 2);
7757 	if (IS_ERR(trans)) {
7758 		err = PTR_ERR(trans);
7759 		goto out;
7760 	}
7761 
7762 	/* Migrate the slack space for the truncate to our reserve */
7763 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7764 				      min_size);
7765 	BUG_ON(ret);
7766 
7767 	/*
7768 	 * setattr is responsible for setting the ordered_data_close flag,
7769 	 * but that is only tested during the last file release.  That
7770 	 * could happen well after the next commit, leaving a great big
7771 	 * window where new writes may get lost if someone chooses to write
7772 	 * to this file after truncating to zero
7773 	 *
7774 	 * The inode doesn't have any dirty data here, and so if we commit
7775 	 * this is a noop.  If someone immediately starts writing to the inode
7776 	 * it is very likely we'll catch some of their writes in this
7777 	 * transaction, and the commit will find this file on the ordered
7778 	 * data list with good things to send down.
7779 	 *
7780 	 * This is a best effort solution, there is still a window where
7781 	 * using truncate to replace the contents of the file will
7782 	 * end up with a zero length file after a crash.
7783 	 */
7784 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7785 					   &BTRFS_I(inode)->runtime_flags))
7786 		btrfs_add_ordered_operation(trans, root, inode);
7787 
7788 	/*
7789 	 * So if we truncate and then write and fsync we normally would just
7790 	 * write the extents that changed, which is a problem if we need to
7791 	 * first truncate that entire inode.  So set this flag so we write out
7792 	 * all of the extents in the inode to the sync log so we're completely
7793 	 * safe.
7794 	 */
7795 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7796 	trans->block_rsv = rsv;
7797 
7798 	while (1) {
7799 		ret = btrfs_truncate_inode_items(trans, root, inode,
7800 						 inode->i_size,
7801 						 BTRFS_EXTENT_DATA_KEY);
7802 		if (ret != -ENOSPC) {
7803 			err = ret;
7804 			break;
7805 		}
7806 
7807 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7808 		ret = btrfs_update_inode(trans, root, inode);
7809 		if (ret) {
7810 			err = ret;
7811 			break;
7812 		}
7813 
7814 		btrfs_end_transaction(trans, root);
7815 		btrfs_btree_balance_dirty(root);
7816 
7817 		trans = btrfs_start_transaction(root, 2);
7818 		if (IS_ERR(trans)) {
7819 			ret = err = PTR_ERR(trans);
7820 			trans = NULL;
7821 			break;
7822 		}
7823 
7824 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7825 					      rsv, min_size);
7826 		BUG_ON(ret);	/* shouldn't happen */
7827 		trans->block_rsv = rsv;
7828 	}
7829 
7830 	if (ret == 0 && inode->i_nlink > 0) {
7831 		trans->block_rsv = root->orphan_block_rsv;
7832 		ret = btrfs_orphan_del(trans, inode);
7833 		if (ret)
7834 			err = ret;
7835 	}
7836 
7837 	if (trans) {
7838 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7839 		ret = btrfs_update_inode(trans, root, inode);
7840 		if (ret && !err)
7841 			err = ret;
7842 
7843 		ret = btrfs_end_transaction(trans, root);
7844 		btrfs_btree_balance_dirty(root);
7845 	}
7846 
7847 out:
7848 	btrfs_free_block_rsv(root, rsv);
7849 
7850 	if (ret && !err)
7851 		err = ret;
7852 
7853 	return err;
7854 }
7855 
7856 /*
7857  * create a new subvolume directory/inode (helper for the ioctl).
7858  */
7859 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7860 			     struct btrfs_root *new_root, u64 new_dirid)
7861 {
7862 	struct inode *inode;
7863 	int err;
7864 	u64 index = 0;
7865 
7866 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7867 				new_dirid, new_dirid,
7868 				S_IFDIR | (~current_umask() & S_IRWXUGO),
7869 				&index);
7870 	if (IS_ERR(inode))
7871 		return PTR_ERR(inode);
7872 	inode->i_op = &btrfs_dir_inode_operations;
7873 	inode->i_fop = &btrfs_dir_file_operations;
7874 
7875 	set_nlink(inode, 1);
7876 	btrfs_i_size_write(inode, 0);
7877 
7878 	err = btrfs_update_inode(trans, new_root, inode);
7879 
7880 	iput(inode);
7881 	return err;
7882 }
7883 
7884 struct inode *btrfs_alloc_inode(struct super_block *sb)
7885 {
7886 	struct btrfs_inode *ei;
7887 	struct inode *inode;
7888 
7889 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7890 	if (!ei)
7891 		return NULL;
7892 
7893 	ei->root = NULL;
7894 	ei->generation = 0;
7895 	ei->last_trans = 0;
7896 	ei->last_sub_trans = 0;
7897 	ei->logged_trans = 0;
7898 	ei->delalloc_bytes = 0;
7899 	ei->disk_i_size = 0;
7900 	ei->flags = 0;
7901 	ei->csum_bytes = 0;
7902 	ei->index_cnt = (u64)-1;
7903 	ei->last_unlink_trans = 0;
7904 	ei->last_log_commit = 0;
7905 
7906 	spin_lock_init(&ei->lock);
7907 	ei->outstanding_extents = 0;
7908 	ei->reserved_extents = 0;
7909 
7910 	ei->runtime_flags = 0;
7911 	ei->force_compress = BTRFS_COMPRESS_NONE;
7912 
7913 	ei->delayed_node = NULL;
7914 
7915 	inode = &ei->vfs_inode;
7916 	extent_map_tree_init(&ei->extent_tree);
7917 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
7918 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7919 	ei->io_tree.track_uptodate = 1;
7920 	ei->io_failure_tree.track_uptodate = 1;
7921 	atomic_set(&ei->sync_writers, 0);
7922 	mutex_init(&ei->log_mutex);
7923 	mutex_init(&ei->delalloc_mutex);
7924 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7925 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7926 	INIT_LIST_HEAD(&ei->ordered_operations);
7927 	RB_CLEAR_NODE(&ei->rb_node);
7928 
7929 	return inode;
7930 }
7931 
7932 static void btrfs_i_callback(struct rcu_head *head)
7933 {
7934 	struct inode *inode = container_of(head, struct inode, i_rcu);
7935 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7936 }
7937 
7938 void btrfs_destroy_inode(struct inode *inode)
7939 {
7940 	struct btrfs_ordered_extent *ordered;
7941 	struct btrfs_root *root = BTRFS_I(inode)->root;
7942 
7943 	WARN_ON(!hlist_empty(&inode->i_dentry));
7944 	WARN_ON(inode->i_data.nrpages);
7945 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
7946 	WARN_ON(BTRFS_I(inode)->reserved_extents);
7947 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7948 	WARN_ON(BTRFS_I(inode)->csum_bytes);
7949 
7950 	/*
7951 	 * This can happen where we create an inode, but somebody else also
7952 	 * created the same inode and we need to destroy the one we already
7953 	 * created.
7954 	 */
7955 	if (!root)
7956 		goto free;
7957 
7958 	/*
7959 	 * Make sure we're properly removed from the ordered operation
7960 	 * lists.
7961 	 */
7962 	smp_mb();
7963 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7964 		spin_lock(&root->fs_info->ordered_extent_lock);
7965 		list_del_init(&BTRFS_I(inode)->ordered_operations);
7966 		spin_unlock(&root->fs_info->ordered_extent_lock);
7967 	}
7968 
7969 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7970 		     &BTRFS_I(inode)->runtime_flags)) {
7971 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7972 			(unsigned long long)btrfs_ino(inode));
7973 		atomic_dec(&root->orphan_inodes);
7974 	}
7975 
7976 	while (1) {
7977 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7978 		if (!ordered)
7979 			break;
7980 		else {
7981 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7982 				(unsigned long long)ordered->file_offset,
7983 				(unsigned long long)ordered->len);
7984 			btrfs_remove_ordered_extent(inode, ordered);
7985 			btrfs_put_ordered_extent(ordered);
7986 			btrfs_put_ordered_extent(ordered);
7987 		}
7988 	}
7989 	inode_tree_del(inode);
7990 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7991 free:
7992 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7993 }
7994 
7995 int btrfs_drop_inode(struct inode *inode)
7996 {
7997 	struct btrfs_root *root = BTRFS_I(inode)->root;
7998 
7999 	if (root == NULL)
8000 		return 1;
8001 
8002 	/* the snap/subvol tree is on deleting */
8003 	if (btrfs_root_refs(&root->root_item) == 0 &&
8004 	    root != root->fs_info->tree_root)
8005 		return 1;
8006 	else
8007 		return generic_drop_inode(inode);
8008 }
8009 
8010 static void init_once(void *foo)
8011 {
8012 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8013 
8014 	inode_init_once(&ei->vfs_inode);
8015 }
8016 
8017 void btrfs_destroy_cachep(void)
8018 {
8019 	/*
8020 	 * Make sure all delayed rcu free inodes are flushed before we
8021 	 * destroy cache.
8022 	 */
8023 	rcu_barrier();
8024 	if (btrfs_inode_cachep)
8025 		kmem_cache_destroy(btrfs_inode_cachep);
8026 	if (btrfs_trans_handle_cachep)
8027 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8028 	if (btrfs_transaction_cachep)
8029 		kmem_cache_destroy(btrfs_transaction_cachep);
8030 	if (btrfs_path_cachep)
8031 		kmem_cache_destroy(btrfs_path_cachep);
8032 	if (btrfs_free_space_cachep)
8033 		kmem_cache_destroy(btrfs_free_space_cachep);
8034 	if (btrfs_delalloc_work_cachep)
8035 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8036 }
8037 
8038 int btrfs_init_cachep(void)
8039 {
8040 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8041 			sizeof(struct btrfs_inode), 0,
8042 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8043 	if (!btrfs_inode_cachep)
8044 		goto fail;
8045 
8046 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8047 			sizeof(struct btrfs_trans_handle), 0,
8048 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8049 	if (!btrfs_trans_handle_cachep)
8050 		goto fail;
8051 
8052 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8053 			sizeof(struct btrfs_transaction), 0,
8054 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8055 	if (!btrfs_transaction_cachep)
8056 		goto fail;
8057 
8058 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8059 			sizeof(struct btrfs_path), 0,
8060 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8061 	if (!btrfs_path_cachep)
8062 		goto fail;
8063 
8064 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8065 			sizeof(struct btrfs_free_space), 0,
8066 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8067 	if (!btrfs_free_space_cachep)
8068 		goto fail;
8069 
8070 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8071 			sizeof(struct btrfs_delalloc_work), 0,
8072 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8073 			NULL);
8074 	if (!btrfs_delalloc_work_cachep)
8075 		goto fail;
8076 
8077 	return 0;
8078 fail:
8079 	btrfs_destroy_cachep();
8080 	return -ENOMEM;
8081 }
8082 
8083 static int btrfs_getattr(struct vfsmount *mnt,
8084 			 struct dentry *dentry, struct kstat *stat)
8085 {
8086 	u64 delalloc_bytes;
8087 	struct inode *inode = dentry->d_inode;
8088 	u32 blocksize = inode->i_sb->s_blocksize;
8089 
8090 	generic_fillattr(inode, stat);
8091 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8092 	stat->blksize = PAGE_CACHE_SIZE;
8093 
8094 	spin_lock(&BTRFS_I(inode)->lock);
8095 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8096 	spin_unlock(&BTRFS_I(inode)->lock);
8097 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8098 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8099 	return 0;
8100 }
8101 
8102 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8103 			   struct inode *new_dir, struct dentry *new_dentry)
8104 {
8105 	struct btrfs_trans_handle *trans;
8106 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8107 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8108 	struct inode *new_inode = new_dentry->d_inode;
8109 	struct inode *old_inode = old_dentry->d_inode;
8110 	struct timespec ctime = CURRENT_TIME;
8111 	u64 index = 0;
8112 	u64 root_objectid;
8113 	int ret;
8114 	u64 old_ino = btrfs_ino(old_inode);
8115 
8116 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8117 		return -EPERM;
8118 
8119 	/* we only allow rename subvolume link between subvolumes */
8120 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8121 		return -EXDEV;
8122 
8123 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8124 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8125 		return -ENOTEMPTY;
8126 
8127 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8128 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8129 		return -ENOTEMPTY;
8130 
8131 
8132 	/* check for collisions, even if the  name isn't there */
8133 	ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8134 			     new_dentry->d_name.name,
8135 			     new_dentry->d_name.len);
8136 
8137 	if (ret) {
8138 		if (ret == -EEXIST) {
8139 			/* we shouldn't get
8140 			 * eexist without a new_inode */
8141 			if (!new_inode) {
8142 				WARN_ON(1);
8143 				return ret;
8144 			}
8145 		} else {
8146 			/* maybe -EOVERFLOW */
8147 			return ret;
8148 		}
8149 	}
8150 	ret = 0;
8151 
8152 	/*
8153 	 * we're using rename to replace one file with another.
8154 	 * and the replacement file is large.  Start IO on it now so
8155 	 * we don't add too much work to the end of the transaction
8156 	 */
8157 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8158 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8159 		filemap_flush(old_inode->i_mapping);
8160 
8161 	/* close the racy window with snapshot create/destroy ioctl */
8162 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8163 		down_read(&root->fs_info->subvol_sem);
8164 	/*
8165 	 * We want to reserve the absolute worst case amount of items.  So if
8166 	 * both inodes are subvols and we need to unlink them then that would
8167 	 * require 4 item modifications, but if they are both normal inodes it
8168 	 * would require 5 item modifications, so we'll assume their normal
8169 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8170 	 * should cover the worst case number of items we'll modify.
8171 	 */
8172 	trans = btrfs_start_transaction(root, 11);
8173 	if (IS_ERR(trans)) {
8174                 ret = PTR_ERR(trans);
8175                 goto out_notrans;
8176         }
8177 
8178 	if (dest != root)
8179 		btrfs_record_root_in_trans(trans, dest);
8180 
8181 	ret = btrfs_set_inode_index(new_dir, &index);
8182 	if (ret)
8183 		goto out_fail;
8184 
8185 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8186 		/* force full log commit if subvolume involved. */
8187 		root->fs_info->last_trans_log_full_commit = trans->transid;
8188 	} else {
8189 		ret = btrfs_insert_inode_ref(trans, dest,
8190 					     new_dentry->d_name.name,
8191 					     new_dentry->d_name.len,
8192 					     old_ino,
8193 					     btrfs_ino(new_dir), index);
8194 		if (ret)
8195 			goto out_fail;
8196 		/*
8197 		 * this is an ugly little race, but the rename is required
8198 		 * to make sure that if we crash, the inode is either at the
8199 		 * old name or the new one.  pinning the log transaction lets
8200 		 * us make sure we don't allow a log commit to come in after
8201 		 * we unlink the name but before we add the new name back in.
8202 		 */
8203 		btrfs_pin_log_trans(root);
8204 	}
8205 	/*
8206 	 * make sure the inode gets flushed if it is replacing
8207 	 * something.
8208 	 */
8209 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8210 		btrfs_add_ordered_operation(trans, root, old_inode);
8211 
8212 	inode_inc_iversion(old_dir);
8213 	inode_inc_iversion(new_dir);
8214 	inode_inc_iversion(old_inode);
8215 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8216 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8217 	old_inode->i_ctime = ctime;
8218 
8219 	if (old_dentry->d_parent != new_dentry->d_parent)
8220 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8221 
8222 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8223 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8224 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8225 					old_dentry->d_name.name,
8226 					old_dentry->d_name.len);
8227 	} else {
8228 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8229 					old_dentry->d_inode,
8230 					old_dentry->d_name.name,
8231 					old_dentry->d_name.len);
8232 		if (!ret)
8233 			ret = btrfs_update_inode(trans, root, old_inode);
8234 	}
8235 	if (ret) {
8236 		btrfs_abort_transaction(trans, root, ret);
8237 		goto out_fail;
8238 	}
8239 
8240 	if (new_inode) {
8241 		inode_inc_iversion(new_inode);
8242 		new_inode->i_ctime = CURRENT_TIME;
8243 		if (unlikely(btrfs_ino(new_inode) ==
8244 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8245 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8246 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8247 						root_objectid,
8248 						new_dentry->d_name.name,
8249 						new_dentry->d_name.len);
8250 			BUG_ON(new_inode->i_nlink == 0);
8251 		} else {
8252 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8253 						 new_dentry->d_inode,
8254 						 new_dentry->d_name.name,
8255 						 new_dentry->d_name.len);
8256 		}
8257 		if (!ret && new_inode->i_nlink == 0) {
8258 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8259 			BUG_ON(ret);
8260 		}
8261 		if (ret) {
8262 			btrfs_abort_transaction(trans, root, ret);
8263 			goto out_fail;
8264 		}
8265 	}
8266 
8267 	ret = btrfs_add_link(trans, new_dir, old_inode,
8268 			     new_dentry->d_name.name,
8269 			     new_dentry->d_name.len, 0, index);
8270 	if (ret) {
8271 		btrfs_abort_transaction(trans, root, ret);
8272 		goto out_fail;
8273 	}
8274 
8275 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8276 		struct dentry *parent = new_dentry->d_parent;
8277 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8278 		btrfs_end_log_trans(root);
8279 	}
8280 out_fail:
8281 	btrfs_end_transaction(trans, root);
8282 out_notrans:
8283 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8284 		up_read(&root->fs_info->subvol_sem);
8285 
8286 	return ret;
8287 }
8288 
8289 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8290 {
8291 	struct btrfs_delalloc_work *delalloc_work;
8292 
8293 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8294 				     work);
8295 	if (delalloc_work->wait)
8296 		btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8297 	else
8298 		filemap_flush(delalloc_work->inode->i_mapping);
8299 
8300 	if (delalloc_work->delay_iput)
8301 		btrfs_add_delayed_iput(delalloc_work->inode);
8302 	else
8303 		iput(delalloc_work->inode);
8304 	complete(&delalloc_work->completion);
8305 }
8306 
8307 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8308 						    int wait, int delay_iput)
8309 {
8310 	struct btrfs_delalloc_work *work;
8311 
8312 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8313 	if (!work)
8314 		return NULL;
8315 
8316 	init_completion(&work->completion);
8317 	INIT_LIST_HEAD(&work->list);
8318 	work->inode = inode;
8319 	work->wait = wait;
8320 	work->delay_iput = delay_iput;
8321 	work->work.func = btrfs_run_delalloc_work;
8322 
8323 	return work;
8324 }
8325 
8326 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8327 {
8328 	wait_for_completion(&work->completion);
8329 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8330 }
8331 
8332 /*
8333  * some fairly slow code that needs optimization. This walks the list
8334  * of all the inodes with pending delalloc and forces them to disk.
8335  */
8336 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8337 {
8338 	struct btrfs_inode *binode;
8339 	struct inode *inode;
8340 	struct btrfs_delalloc_work *work, *next;
8341 	struct list_head works;
8342 	struct list_head splice;
8343 	int ret = 0;
8344 
8345 	if (root->fs_info->sb->s_flags & MS_RDONLY)
8346 		return -EROFS;
8347 
8348 	INIT_LIST_HEAD(&works);
8349 	INIT_LIST_HEAD(&splice);
8350 
8351 	spin_lock(&root->fs_info->delalloc_lock);
8352 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8353 	while (!list_empty(&splice)) {
8354 		binode = list_entry(splice.next, struct btrfs_inode,
8355 				    delalloc_inodes);
8356 
8357 		list_del_init(&binode->delalloc_inodes);
8358 
8359 		inode = igrab(&binode->vfs_inode);
8360 		if (!inode) {
8361 			clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8362 				  &binode->runtime_flags);
8363 			continue;
8364 		}
8365 
8366 		list_add_tail(&binode->delalloc_inodes,
8367 			      &root->fs_info->delalloc_inodes);
8368 		spin_unlock(&root->fs_info->delalloc_lock);
8369 
8370 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8371 		if (unlikely(!work)) {
8372 			ret = -ENOMEM;
8373 			goto out;
8374 		}
8375 		list_add_tail(&work->list, &works);
8376 		btrfs_queue_worker(&root->fs_info->flush_workers,
8377 				   &work->work);
8378 
8379 		cond_resched();
8380 		spin_lock(&root->fs_info->delalloc_lock);
8381 	}
8382 	spin_unlock(&root->fs_info->delalloc_lock);
8383 
8384 	list_for_each_entry_safe(work, next, &works, list) {
8385 		list_del_init(&work->list);
8386 		btrfs_wait_and_free_delalloc_work(work);
8387 	}
8388 
8389 	/* the filemap_flush will queue IO into the worker threads, but
8390 	 * we have to make sure the IO is actually started and that
8391 	 * ordered extents get created before we return
8392 	 */
8393 	atomic_inc(&root->fs_info->async_submit_draining);
8394 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8395 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8396 		wait_event(root->fs_info->async_submit_wait,
8397 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8398 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8399 	}
8400 	atomic_dec(&root->fs_info->async_submit_draining);
8401 	return 0;
8402 out:
8403 	list_for_each_entry_safe(work, next, &works, list) {
8404 		list_del_init(&work->list);
8405 		btrfs_wait_and_free_delalloc_work(work);
8406 	}
8407 
8408 	if (!list_empty_careful(&splice)) {
8409 		spin_lock(&root->fs_info->delalloc_lock);
8410 		list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8411 		spin_unlock(&root->fs_info->delalloc_lock);
8412 	}
8413 	return ret;
8414 }
8415 
8416 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8417 			 const char *symname)
8418 {
8419 	struct btrfs_trans_handle *trans;
8420 	struct btrfs_root *root = BTRFS_I(dir)->root;
8421 	struct btrfs_path *path;
8422 	struct btrfs_key key;
8423 	struct inode *inode = NULL;
8424 	int err;
8425 	int drop_inode = 0;
8426 	u64 objectid;
8427 	u64 index = 0 ;
8428 	int name_len;
8429 	int datasize;
8430 	unsigned long ptr;
8431 	struct btrfs_file_extent_item *ei;
8432 	struct extent_buffer *leaf;
8433 
8434 	name_len = strlen(symname) + 1;
8435 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8436 		return -ENAMETOOLONG;
8437 
8438 	/*
8439 	 * 2 items for inode item and ref
8440 	 * 2 items for dir items
8441 	 * 1 item for xattr if selinux is on
8442 	 */
8443 	trans = btrfs_start_transaction(root, 5);
8444 	if (IS_ERR(trans))
8445 		return PTR_ERR(trans);
8446 
8447 	err = btrfs_find_free_ino(root, &objectid);
8448 	if (err)
8449 		goto out_unlock;
8450 
8451 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8452 				dentry->d_name.len, btrfs_ino(dir), objectid,
8453 				S_IFLNK|S_IRWXUGO, &index);
8454 	if (IS_ERR(inode)) {
8455 		err = PTR_ERR(inode);
8456 		goto out_unlock;
8457 	}
8458 
8459 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8460 	if (err) {
8461 		drop_inode = 1;
8462 		goto out_unlock;
8463 	}
8464 
8465 	/*
8466 	* If the active LSM wants to access the inode during
8467 	* d_instantiate it needs these. Smack checks to see
8468 	* if the filesystem supports xattrs by looking at the
8469 	* ops vector.
8470 	*/
8471 	inode->i_fop = &btrfs_file_operations;
8472 	inode->i_op = &btrfs_file_inode_operations;
8473 
8474 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8475 	if (err)
8476 		drop_inode = 1;
8477 	else {
8478 		inode->i_mapping->a_ops = &btrfs_aops;
8479 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8480 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8481 	}
8482 	if (drop_inode)
8483 		goto out_unlock;
8484 
8485 	path = btrfs_alloc_path();
8486 	if (!path) {
8487 		err = -ENOMEM;
8488 		drop_inode = 1;
8489 		goto out_unlock;
8490 	}
8491 	key.objectid = btrfs_ino(inode);
8492 	key.offset = 0;
8493 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8494 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8495 	err = btrfs_insert_empty_item(trans, root, path, &key,
8496 				      datasize);
8497 	if (err) {
8498 		drop_inode = 1;
8499 		btrfs_free_path(path);
8500 		goto out_unlock;
8501 	}
8502 	leaf = path->nodes[0];
8503 	ei = btrfs_item_ptr(leaf, path->slots[0],
8504 			    struct btrfs_file_extent_item);
8505 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8506 	btrfs_set_file_extent_type(leaf, ei,
8507 				   BTRFS_FILE_EXTENT_INLINE);
8508 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8509 	btrfs_set_file_extent_compression(leaf, ei, 0);
8510 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8511 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8512 
8513 	ptr = btrfs_file_extent_inline_start(ei);
8514 	write_extent_buffer(leaf, symname, ptr, name_len);
8515 	btrfs_mark_buffer_dirty(leaf);
8516 	btrfs_free_path(path);
8517 
8518 	inode->i_op = &btrfs_symlink_inode_operations;
8519 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8520 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8521 	inode_set_bytes(inode, name_len);
8522 	btrfs_i_size_write(inode, name_len - 1);
8523 	err = btrfs_update_inode(trans, root, inode);
8524 	if (err)
8525 		drop_inode = 1;
8526 
8527 out_unlock:
8528 	if (!err)
8529 		d_instantiate(dentry, inode);
8530 	btrfs_end_transaction(trans, root);
8531 	if (drop_inode) {
8532 		inode_dec_link_count(inode);
8533 		iput(inode);
8534 	}
8535 	btrfs_btree_balance_dirty(root);
8536 	return err;
8537 }
8538 
8539 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8540 				       u64 start, u64 num_bytes, u64 min_size,
8541 				       loff_t actual_len, u64 *alloc_hint,
8542 				       struct btrfs_trans_handle *trans)
8543 {
8544 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8545 	struct extent_map *em;
8546 	struct btrfs_root *root = BTRFS_I(inode)->root;
8547 	struct btrfs_key ins;
8548 	u64 cur_offset = start;
8549 	u64 i_size;
8550 	u64 cur_bytes;
8551 	int ret = 0;
8552 	bool own_trans = true;
8553 
8554 	if (trans)
8555 		own_trans = false;
8556 	while (num_bytes > 0) {
8557 		if (own_trans) {
8558 			trans = btrfs_start_transaction(root, 3);
8559 			if (IS_ERR(trans)) {
8560 				ret = PTR_ERR(trans);
8561 				break;
8562 			}
8563 		}
8564 
8565 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8566 		cur_bytes = max(cur_bytes, min_size);
8567 		ret = btrfs_reserve_extent(trans, root, cur_bytes,
8568 					   min_size, 0, *alloc_hint, &ins, 1);
8569 		if (ret) {
8570 			if (own_trans)
8571 				btrfs_end_transaction(trans, root);
8572 			break;
8573 		}
8574 
8575 		ret = insert_reserved_file_extent(trans, inode,
8576 						  cur_offset, ins.objectid,
8577 						  ins.offset, ins.offset,
8578 						  ins.offset, 0, 0, 0,
8579 						  BTRFS_FILE_EXTENT_PREALLOC);
8580 		if (ret) {
8581 			btrfs_abort_transaction(trans, root, ret);
8582 			if (own_trans)
8583 				btrfs_end_transaction(trans, root);
8584 			break;
8585 		}
8586 		btrfs_drop_extent_cache(inode, cur_offset,
8587 					cur_offset + ins.offset -1, 0);
8588 
8589 		em = alloc_extent_map();
8590 		if (!em) {
8591 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8592 				&BTRFS_I(inode)->runtime_flags);
8593 			goto next;
8594 		}
8595 
8596 		em->start = cur_offset;
8597 		em->orig_start = cur_offset;
8598 		em->len = ins.offset;
8599 		em->block_start = ins.objectid;
8600 		em->block_len = ins.offset;
8601 		em->orig_block_len = ins.offset;
8602 		em->ram_bytes = ins.offset;
8603 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8604 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8605 		em->generation = trans->transid;
8606 
8607 		while (1) {
8608 			write_lock(&em_tree->lock);
8609 			ret = add_extent_mapping(em_tree, em, 1);
8610 			write_unlock(&em_tree->lock);
8611 			if (ret != -EEXIST)
8612 				break;
8613 			btrfs_drop_extent_cache(inode, cur_offset,
8614 						cur_offset + ins.offset - 1,
8615 						0);
8616 		}
8617 		free_extent_map(em);
8618 next:
8619 		num_bytes -= ins.offset;
8620 		cur_offset += ins.offset;
8621 		*alloc_hint = ins.objectid + ins.offset;
8622 
8623 		inode_inc_iversion(inode);
8624 		inode->i_ctime = CURRENT_TIME;
8625 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8626 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8627 		    (actual_len > inode->i_size) &&
8628 		    (cur_offset > inode->i_size)) {
8629 			if (cur_offset > actual_len)
8630 				i_size = actual_len;
8631 			else
8632 				i_size = cur_offset;
8633 			i_size_write(inode, i_size);
8634 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8635 		}
8636 
8637 		ret = btrfs_update_inode(trans, root, inode);
8638 
8639 		if (ret) {
8640 			btrfs_abort_transaction(trans, root, ret);
8641 			if (own_trans)
8642 				btrfs_end_transaction(trans, root);
8643 			break;
8644 		}
8645 
8646 		if (own_trans)
8647 			btrfs_end_transaction(trans, root);
8648 	}
8649 	return ret;
8650 }
8651 
8652 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8653 			      u64 start, u64 num_bytes, u64 min_size,
8654 			      loff_t actual_len, u64 *alloc_hint)
8655 {
8656 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8657 					   min_size, actual_len, alloc_hint,
8658 					   NULL);
8659 }
8660 
8661 int btrfs_prealloc_file_range_trans(struct inode *inode,
8662 				    struct btrfs_trans_handle *trans, int mode,
8663 				    u64 start, u64 num_bytes, u64 min_size,
8664 				    loff_t actual_len, u64 *alloc_hint)
8665 {
8666 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8667 					   min_size, actual_len, alloc_hint, trans);
8668 }
8669 
8670 static int btrfs_set_page_dirty(struct page *page)
8671 {
8672 	return __set_page_dirty_nobuffers(page);
8673 }
8674 
8675 static int btrfs_permission(struct inode *inode, int mask)
8676 {
8677 	struct btrfs_root *root = BTRFS_I(inode)->root;
8678 	umode_t mode = inode->i_mode;
8679 
8680 	if (mask & MAY_WRITE &&
8681 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8682 		if (btrfs_root_readonly(root))
8683 			return -EROFS;
8684 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8685 			return -EACCES;
8686 	}
8687 	return generic_permission(inode, mask);
8688 }
8689 
8690 static const struct inode_operations btrfs_dir_inode_operations = {
8691 	.getattr	= btrfs_getattr,
8692 	.lookup		= btrfs_lookup,
8693 	.create		= btrfs_create,
8694 	.unlink		= btrfs_unlink,
8695 	.link		= btrfs_link,
8696 	.mkdir		= btrfs_mkdir,
8697 	.rmdir		= btrfs_rmdir,
8698 	.rename		= btrfs_rename,
8699 	.symlink	= btrfs_symlink,
8700 	.setattr	= btrfs_setattr,
8701 	.mknod		= btrfs_mknod,
8702 	.setxattr	= btrfs_setxattr,
8703 	.getxattr	= btrfs_getxattr,
8704 	.listxattr	= btrfs_listxattr,
8705 	.removexattr	= btrfs_removexattr,
8706 	.permission	= btrfs_permission,
8707 	.get_acl	= btrfs_get_acl,
8708 };
8709 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8710 	.lookup		= btrfs_lookup,
8711 	.permission	= btrfs_permission,
8712 	.get_acl	= btrfs_get_acl,
8713 };
8714 
8715 static const struct file_operations btrfs_dir_file_operations = {
8716 	.llseek		= generic_file_llseek,
8717 	.read		= generic_read_dir,
8718 	.iterate	= btrfs_real_readdir,
8719 	.unlocked_ioctl	= btrfs_ioctl,
8720 #ifdef CONFIG_COMPAT
8721 	.compat_ioctl	= btrfs_ioctl,
8722 #endif
8723 	.release        = btrfs_release_file,
8724 	.fsync		= btrfs_sync_file,
8725 };
8726 
8727 static struct extent_io_ops btrfs_extent_io_ops = {
8728 	.fill_delalloc = run_delalloc_range,
8729 	.submit_bio_hook = btrfs_submit_bio_hook,
8730 	.merge_bio_hook = btrfs_merge_bio_hook,
8731 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
8732 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
8733 	.writepage_start_hook = btrfs_writepage_start_hook,
8734 	.set_bit_hook = btrfs_set_bit_hook,
8735 	.clear_bit_hook = btrfs_clear_bit_hook,
8736 	.merge_extent_hook = btrfs_merge_extent_hook,
8737 	.split_extent_hook = btrfs_split_extent_hook,
8738 };
8739 
8740 /*
8741  * btrfs doesn't support the bmap operation because swapfiles
8742  * use bmap to make a mapping of extents in the file.  They assume
8743  * these extents won't change over the life of the file and they
8744  * use the bmap result to do IO directly to the drive.
8745  *
8746  * the btrfs bmap call would return logical addresses that aren't
8747  * suitable for IO and they also will change frequently as COW
8748  * operations happen.  So, swapfile + btrfs == corruption.
8749  *
8750  * For now we're avoiding this by dropping bmap.
8751  */
8752 static const struct address_space_operations btrfs_aops = {
8753 	.readpage	= btrfs_readpage,
8754 	.writepage	= btrfs_writepage,
8755 	.writepages	= btrfs_writepages,
8756 	.readpages	= btrfs_readpages,
8757 	.direct_IO	= btrfs_direct_IO,
8758 	.invalidatepage = btrfs_invalidatepage,
8759 	.releasepage	= btrfs_releasepage,
8760 	.set_page_dirty	= btrfs_set_page_dirty,
8761 	.error_remove_page = generic_error_remove_page,
8762 };
8763 
8764 static const struct address_space_operations btrfs_symlink_aops = {
8765 	.readpage	= btrfs_readpage,
8766 	.writepage	= btrfs_writepage,
8767 	.invalidatepage = btrfs_invalidatepage,
8768 	.releasepage	= btrfs_releasepage,
8769 };
8770 
8771 static const struct inode_operations btrfs_file_inode_operations = {
8772 	.getattr	= btrfs_getattr,
8773 	.setattr	= btrfs_setattr,
8774 	.setxattr	= btrfs_setxattr,
8775 	.getxattr	= btrfs_getxattr,
8776 	.listxattr      = btrfs_listxattr,
8777 	.removexattr	= btrfs_removexattr,
8778 	.permission	= btrfs_permission,
8779 	.fiemap		= btrfs_fiemap,
8780 	.get_acl	= btrfs_get_acl,
8781 	.update_time	= btrfs_update_time,
8782 };
8783 static const struct inode_operations btrfs_special_inode_operations = {
8784 	.getattr	= btrfs_getattr,
8785 	.setattr	= btrfs_setattr,
8786 	.permission	= btrfs_permission,
8787 	.setxattr	= btrfs_setxattr,
8788 	.getxattr	= btrfs_getxattr,
8789 	.listxattr	= btrfs_listxattr,
8790 	.removexattr	= btrfs_removexattr,
8791 	.get_acl	= btrfs_get_acl,
8792 	.update_time	= btrfs_update_time,
8793 };
8794 static const struct inode_operations btrfs_symlink_inode_operations = {
8795 	.readlink	= generic_readlink,
8796 	.follow_link	= page_follow_link_light,
8797 	.put_link	= page_put_link,
8798 	.getattr	= btrfs_getattr,
8799 	.setattr	= btrfs_setattr,
8800 	.permission	= btrfs_permission,
8801 	.setxattr	= btrfs_setxattr,
8802 	.getxattr	= btrfs_getxattr,
8803 	.listxattr	= btrfs_listxattr,
8804 	.removexattr	= btrfs_removexattr,
8805 	.get_acl	= btrfs_get_acl,
8806 	.update_time	= btrfs_update_time,
8807 };
8808 
8809 const struct dentry_operations btrfs_dentry_operations = {
8810 	.d_delete	= btrfs_dentry_delete,
8811 	.d_release	= btrfs_dentry_release,
8812 };
8813