1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 61 struct btrfs_iget_args { 62 u64 ino; 63 struct btrfs_root *root; 64 }; 65 66 static const struct inode_operations btrfs_dir_inode_operations; 67 static const struct inode_operations btrfs_symlink_inode_operations; 68 static const struct inode_operations btrfs_dir_ro_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct address_space_operations btrfs_symlink_aops; 73 static const struct file_operations btrfs_dir_file_operations; 74 static struct extent_io_ops btrfs_extent_io_ops; 75 76 static struct kmem_cache *btrfs_inode_cachep; 77 static struct kmem_cache *btrfs_delalloc_work_cachep; 78 struct kmem_cache *btrfs_trans_handle_cachep; 79 struct kmem_cache *btrfs_transaction_cachep; 80 struct kmem_cache *btrfs_path_cachep; 81 struct kmem_cache *btrfs_free_space_cachep; 82 83 #define S_SHIFT 12 84 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 85 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 86 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 87 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 88 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 89 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 90 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 91 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 92 }; 93 94 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 95 static int btrfs_truncate(struct inode *inode); 96 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 97 static noinline int cow_file_range(struct inode *inode, 98 struct page *locked_page, 99 u64 start, u64 end, int *page_started, 100 unsigned long *nr_written, int unlock); 101 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 102 u64 len, u64 orig_start, 103 u64 block_start, u64 block_len, 104 u64 orig_block_len, u64 ram_bytes, 105 int type); 106 107 static int btrfs_dirty_inode(struct inode *inode); 108 109 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 110 struct inode *inode, struct inode *dir, 111 const struct qstr *qstr) 112 { 113 int err; 114 115 err = btrfs_init_acl(trans, inode, dir); 116 if (!err) 117 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 118 return err; 119 } 120 121 /* 122 * this does all the hard work for inserting an inline extent into 123 * the btree. The caller should have done a btrfs_drop_extents so that 124 * no overlapping inline items exist in the btree 125 */ 126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 127 struct btrfs_root *root, struct inode *inode, 128 u64 start, size_t size, size_t compressed_size, 129 int compress_type, 130 struct page **compressed_pages) 131 { 132 struct btrfs_key key; 133 struct btrfs_path *path; 134 struct extent_buffer *leaf; 135 struct page *page = NULL; 136 char *kaddr; 137 unsigned long ptr; 138 struct btrfs_file_extent_item *ei; 139 int err = 0; 140 int ret; 141 size_t cur_size = size; 142 size_t datasize; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 path = btrfs_alloc_path(); 149 if (!path) 150 return -ENOMEM; 151 152 path->leave_spinning = 1; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 157 datasize = btrfs_file_extent_calc_inline_size(cur_size); 158 159 inode_add_bytes(inode, size); 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 leaf = path->nodes[0]; 167 ei = btrfs_item_ptr(leaf, path->slots[0], 168 struct btrfs_file_extent_item); 169 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 170 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 171 btrfs_set_file_extent_encryption(leaf, ei, 0); 172 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 173 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 174 ptr = btrfs_file_extent_inline_start(ei); 175 176 if (compress_type != BTRFS_COMPRESS_NONE) { 177 struct page *cpage; 178 int i = 0; 179 while (compressed_size > 0) { 180 cpage = compressed_pages[i]; 181 cur_size = min_t(unsigned long, compressed_size, 182 PAGE_CACHE_SIZE); 183 184 kaddr = kmap_atomic(cpage); 185 write_extent_buffer(leaf, kaddr, ptr, cur_size); 186 kunmap_atomic(kaddr); 187 188 i++; 189 ptr += cur_size; 190 compressed_size -= cur_size; 191 } 192 btrfs_set_file_extent_compression(leaf, ei, 193 compress_type); 194 } else { 195 page = find_get_page(inode->i_mapping, 196 start >> PAGE_CACHE_SHIFT); 197 btrfs_set_file_extent_compression(leaf, ei, 0); 198 kaddr = kmap_atomic(page); 199 offset = start & (PAGE_CACHE_SIZE - 1); 200 write_extent_buffer(leaf, kaddr + offset, ptr, size); 201 kunmap_atomic(kaddr); 202 page_cache_release(page); 203 } 204 btrfs_mark_buffer_dirty(leaf); 205 btrfs_free_path(path); 206 207 /* 208 * we're an inline extent, so nobody can 209 * extend the file past i_size without locking 210 * a page we already have locked. 211 * 212 * We must do any isize and inode updates 213 * before we unlock the pages. Otherwise we 214 * could end up racing with unlink. 215 */ 216 BTRFS_I(inode)->disk_i_size = inode->i_size; 217 ret = btrfs_update_inode(trans, root, inode); 218 219 return ret; 220 fail: 221 btrfs_free_path(path); 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct inode *inode, u64 start, u64 end, 234 size_t compressed_size, int compress_type, 235 struct page **compressed_pages) 236 { 237 u64 isize = i_size_read(inode); 238 u64 actual_end = min(end + 1, isize); 239 u64 inline_len = actual_end - start; 240 u64 aligned_end = ALIGN(end, root->sectorsize); 241 u64 data_len = inline_len; 242 int ret; 243 244 if (compressed_size) 245 data_len = compressed_size; 246 247 if (start > 0 || 248 actual_end >= PAGE_CACHE_SIZE || 249 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 250 (!compressed_size && 251 (actual_end & (root->sectorsize - 1)) == 0) || 252 end + 1 < isize || 253 data_len > root->fs_info->max_inline) { 254 return 1; 255 } 256 257 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 258 if (ret) 259 return ret; 260 261 if (isize > actual_end) 262 inline_len = min_t(u64, isize, actual_end); 263 ret = insert_inline_extent(trans, root, inode, start, 264 inline_len, compressed_size, 265 compress_type, compressed_pages); 266 if (ret && ret != -ENOSPC) { 267 btrfs_abort_transaction(trans, root, ret); 268 return ret; 269 } else if (ret == -ENOSPC) { 270 return 1; 271 } 272 273 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 274 btrfs_delalloc_release_metadata(inode, end + 1 - start); 275 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 276 return 0; 277 } 278 279 struct async_extent { 280 u64 start; 281 u64 ram_size; 282 u64 compressed_size; 283 struct page **pages; 284 unsigned long nr_pages; 285 int compress_type; 286 struct list_head list; 287 }; 288 289 struct async_cow { 290 struct inode *inode; 291 struct btrfs_root *root; 292 struct page *locked_page; 293 u64 start; 294 u64 end; 295 struct list_head extents; 296 struct btrfs_work work; 297 }; 298 299 static noinline int add_async_extent(struct async_cow *cow, 300 u64 start, u64 ram_size, 301 u64 compressed_size, 302 struct page **pages, 303 unsigned long nr_pages, 304 int compress_type) 305 { 306 struct async_extent *async_extent; 307 308 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 309 BUG_ON(!async_extent); /* -ENOMEM */ 310 async_extent->start = start; 311 async_extent->ram_size = ram_size; 312 async_extent->compressed_size = compressed_size; 313 async_extent->pages = pages; 314 async_extent->nr_pages = nr_pages; 315 async_extent->compress_type = compress_type; 316 list_add_tail(&async_extent->list, &cow->extents); 317 return 0; 318 } 319 320 /* 321 * we create compressed extents in two phases. The first 322 * phase compresses a range of pages that have already been 323 * locked (both pages and state bits are locked). 324 * 325 * This is done inside an ordered work queue, and the compression 326 * is spread across many cpus. The actual IO submission is step 327 * two, and the ordered work queue takes care of making sure that 328 * happens in the same order things were put onto the queue by 329 * writepages and friends. 330 * 331 * If this code finds it can't get good compression, it puts an 332 * entry onto the work queue to write the uncompressed bytes. This 333 * makes sure that both compressed inodes and uncompressed inodes 334 * are written in the same order that the flusher thread sent them 335 * down. 336 */ 337 static noinline int compress_file_range(struct inode *inode, 338 struct page *locked_page, 339 u64 start, u64 end, 340 struct async_cow *async_cow, 341 int *num_added) 342 { 343 struct btrfs_root *root = BTRFS_I(inode)->root; 344 struct btrfs_trans_handle *trans; 345 u64 num_bytes; 346 u64 blocksize = root->sectorsize; 347 u64 actual_end; 348 u64 isize = i_size_read(inode); 349 int ret = 0; 350 struct page **pages = NULL; 351 unsigned long nr_pages; 352 unsigned long nr_pages_ret = 0; 353 unsigned long total_compressed = 0; 354 unsigned long total_in = 0; 355 unsigned long max_compressed = 128 * 1024; 356 unsigned long max_uncompressed = 128 * 1024; 357 int i; 358 int will_compress; 359 int compress_type = root->fs_info->compress_type; 360 int redirty = 0; 361 362 /* if this is a small write inside eof, kick off a defrag */ 363 if ((end - start + 1) < 16 * 1024 && 364 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 365 btrfs_add_inode_defrag(NULL, inode); 366 367 actual_end = min_t(u64, isize, end + 1); 368 again: 369 will_compress = 0; 370 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 371 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 372 373 /* 374 * we don't want to send crud past the end of i_size through 375 * compression, that's just a waste of CPU time. So, if the 376 * end of the file is before the start of our current 377 * requested range of bytes, we bail out to the uncompressed 378 * cleanup code that can deal with all of this. 379 * 380 * It isn't really the fastest way to fix things, but this is a 381 * very uncommon corner. 382 */ 383 if (actual_end <= start) 384 goto cleanup_and_bail_uncompressed; 385 386 total_compressed = actual_end - start; 387 388 /* we want to make sure that amount of ram required to uncompress 389 * an extent is reasonable, so we limit the total size in ram 390 * of a compressed extent to 128k. This is a crucial number 391 * because it also controls how easily we can spread reads across 392 * cpus for decompression. 393 * 394 * We also want to make sure the amount of IO required to do 395 * a random read is reasonably small, so we limit the size of 396 * a compressed extent to 128k. 397 */ 398 total_compressed = min(total_compressed, max_uncompressed); 399 num_bytes = ALIGN(end - start + 1, blocksize); 400 num_bytes = max(blocksize, num_bytes); 401 total_in = 0; 402 ret = 0; 403 404 /* 405 * we do compression for mount -o compress and when the 406 * inode has not been flagged as nocompress. This flag can 407 * change at any time if we discover bad compression ratios. 408 */ 409 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 410 (btrfs_test_opt(root, COMPRESS) || 411 (BTRFS_I(inode)->force_compress) || 412 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 413 WARN_ON(pages); 414 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 415 if (!pages) { 416 /* just bail out to the uncompressed code */ 417 goto cont; 418 } 419 420 if (BTRFS_I(inode)->force_compress) 421 compress_type = BTRFS_I(inode)->force_compress; 422 423 /* 424 * we need to call clear_page_dirty_for_io on each 425 * page in the range. Otherwise applications with the file 426 * mmap'd can wander in and change the page contents while 427 * we are compressing them. 428 * 429 * If the compression fails for any reason, we set the pages 430 * dirty again later on. 431 */ 432 extent_range_clear_dirty_for_io(inode, start, end); 433 redirty = 1; 434 ret = btrfs_compress_pages(compress_type, 435 inode->i_mapping, start, 436 total_compressed, pages, 437 nr_pages, &nr_pages_ret, 438 &total_in, 439 &total_compressed, 440 max_compressed); 441 442 if (!ret) { 443 unsigned long offset = total_compressed & 444 (PAGE_CACHE_SIZE - 1); 445 struct page *page = pages[nr_pages_ret - 1]; 446 char *kaddr; 447 448 /* zero the tail end of the last page, we might be 449 * sending it down to disk 450 */ 451 if (offset) { 452 kaddr = kmap_atomic(page); 453 memset(kaddr + offset, 0, 454 PAGE_CACHE_SIZE - offset); 455 kunmap_atomic(kaddr); 456 } 457 will_compress = 1; 458 } 459 } 460 cont: 461 if (start == 0) { 462 trans = btrfs_join_transaction(root); 463 if (IS_ERR(trans)) { 464 ret = PTR_ERR(trans); 465 trans = NULL; 466 goto cleanup_and_out; 467 } 468 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 469 470 /* lets try to make an inline extent */ 471 if (ret || total_in < (actual_end - start)) { 472 /* we didn't compress the entire range, try 473 * to make an uncompressed inline extent. 474 */ 475 ret = cow_file_range_inline(trans, root, inode, 476 start, end, 0, 0, NULL); 477 } else { 478 /* try making a compressed inline extent */ 479 ret = cow_file_range_inline(trans, root, inode, 480 start, end, 481 total_compressed, 482 compress_type, pages); 483 } 484 if (ret <= 0) { 485 /* 486 * inline extent creation worked or returned error, 487 * we don't need to create any more async work items. 488 * Unlock and free up our temp pages. 489 */ 490 extent_clear_unlock_delalloc(inode, 491 &BTRFS_I(inode)->io_tree, 492 start, end, NULL, 493 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 494 EXTENT_CLEAR_DELALLOC | 495 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 496 497 btrfs_end_transaction(trans, root); 498 goto free_pages_out; 499 } 500 btrfs_end_transaction(trans, root); 501 } 502 503 if (will_compress) { 504 /* 505 * we aren't doing an inline extent round the compressed size 506 * up to a block size boundary so the allocator does sane 507 * things 508 */ 509 total_compressed = ALIGN(total_compressed, blocksize); 510 511 /* 512 * one last check to make sure the compression is really a 513 * win, compare the page count read with the blocks on disk 514 */ 515 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 516 if (total_compressed >= total_in) { 517 will_compress = 0; 518 } else { 519 num_bytes = total_in; 520 } 521 } 522 if (!will_compress && pages) { 523 /* 524 * the compression code ran but failed to make things smaller, 525 * free any pages it allocated and our page pointer array 526 */ 527 for (i = 0; i < nr_pages_ret; i++) { 528 WARN_ON(pages[i]->mapping); 529 page_cache_release(pages[i]); 530 } 531 kfree(pages); 532 pages = NULL; 533 total_compressed = 0; 534 nr_pages_ret = 0; 535 536 /* flag the file so we don't compress in the future */ 537 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 538 !(BTRFS_I(inode)->force_compress)) { 539 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 540 } 541 } 542 if (will_compress) { 543 *num_added += 1; 544 545 /* the async work queues will take care of doing actual 546 * allocation on disk for these compressed pages, 547 * and will submit them to the elevator. 548 */ 549 add_async_extent(async_cow, start, num_bytes, 550 total_compressed, pages, nr_pages_ret, 551 compress_type); 552 553 if (start + num_bytes < end) { 554 start += num_bytes; 555 pages = NULL; 556 cond_resched(); 557 goto again; 558 } 559 } else { 560 cleanup_and_bail_uncompressed: 561 /* 562 * No compression, but we still need to write the pages in 563 * the file we've been given so far. redirty the locked 564 * page if it corresponds to our extent and set things up 565 * for the async work queue to run cow_file_range to do 566 * the normal delalloc dance 567 */ 568 if (page_offset(locked_page) >= start && 569 page_offset(locked_page) <= end) { 570 __set_page_dirty_nobuffers(locked_page); 571 /* unlocked later on in the async handlers */ 572 } 573 if (redirty) 574 extent_range_redirty_for_io(inode, start, end); 575 add_async_extent(async_cow, start, end - start + 1, 576 0, NULL, 0, BTRFS_COMPRESS_NONE); 577 *num_added += 1; 578 } 579 580 out: 581 return ret; 582 583 free_pages_out: 584 for (i = 0; i < nr_pages_ret; i++) { 585 WARN_ON(pages[i]->mapping); 586 page_cache_release(pages[i]); 587 } 588 kfree(pages); 589 590 goto out; 591 592 cleanup_and_out: 593 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 594 start, end, NULL, 595 EXTENT_CLEAR_UNLOCK_PAGE | 596 EXTENT_CLEAR_DIRTY | 597 EXTENT_CLEAR_DELALLOC | 598 EXTENT_SET_WRITEBACK | 599 EXTENT_END_WRITEBACK); 600 if (!trans || IS_ERR(trans)) 601 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 602 else 603 btrfs_abort_transaction(trans, root, ret); 604 goto free_pages_out; 605 } 606 607 /* 608 * phase two of compressed writeback. This is the ordered portion 609 * of the code, which only gets called in the order the work was 610 * queued. We walk all the async extents created by compress_file_range 611 * and send them down to the disk. 612 */ 613 static noinline int submit_compressed_extents(struct inode *inode, 614 struct async_cow *async_cow) 615 { 616 struct async_extent *async_extent; 617 u64 alloc_hint = 0; 618 struct btrfs_trans_handle *trans; 619 struct btrfs_key ins; 620 struct extent_map *em; 621 struct btrfs_root *root = BTRFS_I(inode)->root; 622 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 623 struct extent_io_tree *io_tree; 624 int ret = 0; 625 626 if (list_empty(&async_cow->extents)) 627 return 0; 628 629 again: 630 while (!list_empty(&async_cow->extents)) { 631 async_extent = list_entry(async_cow->extents.next, 632 struct async_extent, list); 633 list_del(&async_extent->list); 634 635 io_tree = &BTRFS_I(inode)->io_tree; 636 637 retry: 638 /* did the compression code fall back to uncompressed IO? */ 639 if (!async_extent->pages) { 640 int page_started = 0; 641 unsigned long nr_written = 0; 642 643 lock_extent(io_tree, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1); 646 647 /* allocate blocks */ 648 ret = cow_file_range(inode, async_cow->locked_page, 649 async_extent->start, 650 async_extent->start + 651 async_extent->ram_size - 1, 652 &page_started, &nr_written, 0); 653 654 /* JDM XXX */ 655 656 /* 657 * if page_started, cow_file_range inserted an 658 * inline extent and took care of all the unlocking 659 * and IO for us. Otherwise, we need to submit 660 * all those pages down to the drive. 661 */ 662 if (!page_started && !ret) 663 extent_write_locked_range(io_tree, 664 inode, async_extent->start, 665 async_extent->start + 666 async_extent->ram_size - 1, 667 btrfs_get_extent, 668 WB_SYNC_ALL); 669 else if (ret) 670 unlock_page(async_cow->locked_page); 671 kfree(async_extent); 672 cond_resched(); 673 continue; 674 } 675 676 lock_extent(io_tree, async_extent->start, 677 async_extent->start + async_extent->ram_size - 1); 678 679 trans = btrfs_join_transaction(root); 680 if (IS_ERR(trans)) { 681 ret = PTR_ERR(trans); 682 } else { 683 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 684 ret = btrfs_reserve_extent(trans, root, 685 async_extent->compressed_size, 686 async_extent->compressed_size, 687 0, alloc_hint, &ins, 1); 688 if (ret && ret != -ENOSPC) 689 btrfs_abort_transaction(trans, root, ret); 690 btrfs_end_transaction(trans, root); 691 } 692 693 if (ret) { 694 int i; 695 696 for (i = 0; i < async_extent->nr_pages; i++) { 697 WARN_ON(async_extent->pages[i]->mapping); 698 page_cache_release(async_extent->pages[i]); 699 } 700 kfree(async_extent->pages); 701 async_extent->nr_pages = 0; 702 async_extent->pages = NULL; 703 704 if (ret == -ENOSPC) 705 goto retry; 706 goto out_free; 707 } 708 709 /* 710 * here we're doing allocation and writeback of the 711 * compressed pages 712 */ 713 btrfs_drop_extent_cache(inode, async_extent->start, 714 async_extent->start + 715 async_extent->ram_size - 1, 0); 716 717 em = alloc_extent_map(); 718 if (!em) { 719 ret = -ENOMEM; 720 goto out_free_reserve; 721 } 722 em->start = async_extent->start; 723 em->len = async_extent->ram_size; 724 em->orig_start = em->start; 725 em->mod_start = em->start; 726 em->mod_len = em->len; 727 728 em->block_start = ins.objectid; 729 em->block_len = ins.offset; 730 em->orig_block_len = ins.offset; 731 em->ram_bytes = async_extent->ram_size; 732 em->bdev = root->fs_info->fs_devices->latest_bdev; 733 em->compress_type = async_extent->compress_type; 734 set_bit(EXTENT_FLAG_PINNED, &em->flags); 735 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 736 em->generation = -1; 737 738 while (1) { 739 write_lock(&em_tree->lock); 740 ret = add_extent_mapping(em_tree, em, 1); 741 write_unlock(&em_tree->lock); 742 if (ret != -EEXIST) { 743 free_extent_map(em); 744 break; 745 } 746 btrfs_drop_extent_cache(inode, async_extent->start, 747 async_extent->start + 748 async_extent->ram_size - 1, 0); 749 } 750 751 if (ret) 752 goto out_free_reserve; 753 754 ret = btrfs_add_ordered_extent_compress(inode, 755 async_extent->start, 756 ins.objectid, 757 async_extent->ram_size, 758 ins.offset, 759 BTRFS_ORDERED_COMPRESSED, 760 async_extent->compress_type); 761 if (ret) 762 goto out_free_reserve; 763 764 /* 765 * clear dirty, set writeback and unlock the pages. 766 */ 767 extent_clear_unlock_delalloc(inode, 768 &BTRFS_I(inode)->io_tree, 769 async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1, 772 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 773 EXTENT_CLEAR_UNLOCK | 774 EXTENT_CLEAR_DELALLOC | 775 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 776 777 ret = btrfs_submit_compressed_write(inode, 778 async_extent->start, 779 async_extent->ram_size, 780 ins.objectid, 781 ins.offset, async_extent->pages, 782 async_extent->nr_pages); 783 alloc_hint = ins.objectid + ins.offset; 784 kfree(async_extent); 785 if (ret) 786 goto out; 787 cond_resched(); 788 } 789 ret = 0; 790 out: 791 return ret; 792 out_free_reserve: 793 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 794 out_free: 795 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 796 async_extent->start, 797 async_extent->start + 798 async_extent->ram_size - 1, 799 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 800 EXTENT_CLEAR_UNLOCK | 801 EXTENT_CLEAR_DELALLOC | 802 EXTENT_CLEAR_DIRTY | 803 EXTENT_SET_WRITEBACK | 804 EXTENT_END_WRITEBACK); 805 kfree(async_extent); 806 goto again; 807 } 808 809 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 810 u64 num_bytes) 811 { 812 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 813 struct extent_map *em; 814 u64 alloc_hint = 0; 815 816 read_lock(&em_tree->lock); 817 em = search_extent_mapping(em_tree, start, num_bytes); 818 if (em) { 819 /* 820 * if block start isn't an actual block number then find the 821 * first block in this inode and use that as a hint. If that 822 * block is also bogus then just don't worry about it. 823 */ 824 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 825 free_extent_map(em); 826 em = search_extent_mapping(em_tree, 0, 0); 827 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 828 alloc_hint = em->block_start; 829 if (em) 830 free_extent_map(em); 831 } else { 832 alloc_hint = em->block_start; 833 free_extent_map(em); 834 } 835 } 836 read_unlock(&em_tree->lock); 837 838 return alloc_hint; 839 } 840 841 /* 842 * when extent_io.c finds a delayed allocation range in the file, 843 * the call backs end up in this code. The basic idea is to 844 * allocate extents on disk for the range, and create ordered data structs 845 * in ram to track those extents. 846 * 847 * locked_page is the page that writepage had locked already. We use 848 * it to make sure we don't do extra locks or unlocks. 849 * 850 * *page_started is set to one if we unlock locked_page and do everything 851 * required to start IO on it. It may be clean and already done with 852 * IO when we return. 853 */ 854 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 855 struct inode *inode, 856 struct btrfs_root *root, 857 struct page *locked_page, 858 u64 start, u64 end, int *page_started, 859 unsigned long *nr_written, 860 int unlock) 861 { 862 u64 alloc_hint = 0; 863 u64 num_bytes; 864 unsigned long ram_size; 865 u64 disk_num_bytes; 866 u64 cur_alloc_size; 867 u64 blocksize = root->sectorsize; 868 struct btrfs_key ins; 869 struct extent_map *em; 870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 871 int ret = 0; 872 873 BUG_ON(btrfs_is_free_space_inode(inode)); 874 875 num_bytes = ALIGN(end - start + 1, blocksize); 876 num_bytes = max(blocksize, num_bytes); 877 disk_num_bytes = num_bytes; 878 879 /* if this is a small write inside eof, kick off defrag */ 880 if (num_bytes < 64 * 1024 && 881 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 882 btrfs_add_inode_defrag(trans, inode); 883 884 if (start == 0) { 885 /* lets try to make an inline extent */ 886 ret = cow_file_range_inline(trans, root, inode, 887 start, end, 0, 0, NULL); 888 if (ret == 0) { 889 extent_clear_unlock_delalloc(inode, 890 &BTRFS_I(inode)->io_tree, 891 start, end, NULL, 892 EXTENT_CLEAR_UNLOCK_PAGE | 893 EXTENT_CLEAR_UNLOCK | 894 EXTENT_CLEAR_DELALLOC | 895 EXTENT_CLEAR_DIRTY | 896 EXTENT_SET_WRITEBACK | 897 EXTENT_END_WRITEBACK); 898 899 *nr_written = *nr_written + 900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 901 *page_started = 1; 902 goto out; 903 } else if (ret < 0) { 904 btrfs_abort_transaction(trans, root, ret); 905 goto out_unlock; 906 } 907 } 908 909 BUG_ON(disk_num_bytes > 910 btrfs_super_total_bytes(root->fs_info->super_copy)); 911 912 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 913 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 914 915 while (disk_num_bytes > 0) { 916 unsigned long op; 917 918 cur_alloc_size = disk_num_bytes; 919 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 920 root->sectorsize, 0, alloc_hint, 921 &ins, 1); 922 if (ret < 0) { 923 btrfs_abort_transaction(trans, root, ret); 924 goto out_unlock; 925 } 926 927 em = alloc_extent_map(); 928 if (!em) { 929 ret = -ENOMEM; 930 goto out_reserve; 931 } 932 em->start = start; 933 em->orig_start = em->start; 934 ram_size = ins.offset; 935 em->len = ins.offset; 936 em->mod_start = em->start; 937 em->mod_len = em->len; 938 939 em->block_start = ins.objectid; 940 em->block_len = ins.offset; 941 em->orig_block_len = ins.offset; 942 em->ram_bytes = ram_size; 943 em->bdev = root->fs_info->fs_devices->latest_bdev; 944 set_bit(EXTENT_FLAG_PINNED, &em->flags); 945 em->generation = -1; 946 947 while (1) { 948 write_lock(&em_tree->lock); 949 ret = add_extent_mapping(em_tree, em, 1); 950 write_unlock(&em_tree->lock); 951 if (ret != -EEXIST) { 952 free_extent_map(em); 953 break; 954 } 955 btrfs_drop_extent_cache(inode, start, 956 start + ram_size - 1, 0); 957 } 958 if (ret) 959 goto out_reserve; 960 961 cur_alloc_size = ins.offset; 962 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 963 ram_size, cur_alloc_size, 0); 964 if (ret) 965 goto out_reserve; 966 967 if (root->root_key.objectid == 968 BTRFS_DATA_RELOC_TREE_OBJECTID) { 969 ret = btrfs_reloc_clone_csums(inode, start, 970 cur_alloc_size); 971 if (ret) { 972 btrfs_abort_transaction(trans, root, ret); 973 goto out_reserve; 974 } 975 } 976 977 if (disk_num_bytes < cur_alloc_size) 978 break; 979 980 /* we're not doing compressed IO, don't unlock the first 981 * page (which the caller expects to stay locked), don't 982 * clear any dirty bits and don't set any writeback bits 983 * 984 * Do set the Private2 bit so we know this page was properly 985 * setup for writepage 986 */ 987 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 988 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 989 EXTENT_SET_PRIVATE2; 990 991 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 992 start, start + ram_size - 1, 993 locked_page, op); 994 disk_num_bytes -= cur_alloc_size; 995 num_bytes -= cur_alloc_size; 996 alloc_hint = ins.objectid + ins.offset; 997 start += cur_alloc_size; 998 } 999 out: 1000 return ret; 1001 1002 out_reserve: 1003 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 1004 out_unlock: 1005 extent_clear_unlock_delalloc(inode, 1006 &BTRFS_I(inode)->io_tree, 1007 start, end, locked_page, 1008 EXTENT_CLEAR_UNLOCK_PAGE | 1009 EXTENT_CLEAR_UNLOCK | 1010 EXTENT_CLEAR_DELALLOC | 1011 EXTENT_CLEAR_DIRTY | 1012 EXTENT_SET_WRITEBACK | 1013 EXTENT_END_WRITEBACK); 1014 1015 goto out; 1016 } 1017 1018 static noinline int cow_file_range(struct inode *inode, 1019 struct page *locked_page, 1020 u64 start, u64 end, int *page_started, 1021 unsigned long *nr_written, 1022 int unlock) 1023 { 1024 struct btrfs_trans_handle *trans; 1025 struct btrfs_root *root = BTRFS_I(inode)->root; 1026 int ret; 1027 1028 trans = btrfs_join_transaction(root); 1029 if (IS_ERR(trans)) { 1030 extent_clear_unlock_delalloc(inode, 1031 &BTRFS_I(inode)->io_tree, 1032 start, end, locked_page, 1033 EXTENT_CLEAR_UNLOCK_PAGE | 1034 EXTENT_CLEAR_UNLOCK | 1035 EXTENT_CLEAR_DELALLOC | 1036 EXTENT_CLEAR_DIRTY | 1037 EXTENT_SET_WRITEBACK | 1038 EXTENT_END_WRITEBACK); 1039 return PTR_ERR(trans); 1040 } 1041 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1042 1043 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 1044 page_started, nr_written, unlock); 1045 1046 btrfs_end_transaction(trans, root); 1047 1048 return ret; 1049 } 1050 1051 /* 1052 * work queue call back to started compression on a file and pages 1053 */ 1054 static noinline void async_cow_start(struct btrfs_work *work) 1055 { 1056 struct async_cow *async_cow; 1057 int num_added = 0; 1058 async_cow = container_of(work, struct async_cow, work); 1059 1060 compress_file_range(async_cow->inode, async_cow->locked_page, 1061 async_cow->start, async_cow->end, async_cow, 1062 &num_added); 1063 if (num_added == 0) { 1064 btrfs_add_delayed_iput(async_cow->inode); 1065 async_cow->inode = NULL; 1066 } 1067 } 1068 1069 /* 1070 * work queue call back to submit previously compressed pages 1071 */ 1072 static noinline void async_cow_submit(struct btrfs_work *work) 1073 { 1074 struct async_cow *async_cow; 1075 struct btrfs_root *root; 1076 unsigned long nr_pages; 1077 1078 async_cow = container_of(work, struct async_cow, work); 1079 1080 root = async_cow->root; 1081 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1082 PAGE_CACHE_SHIFT; 1083 1084 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1085 5 * 1024 * 1024 && 1086 waitqueue_active(&root->fs_info->async_submit_wait)) 1087 wake_up(&root->fs_info->async_submit_wait); 1088 1089 if (async_cow->inode) 1090 submit_compressed_extents(async_cow->inode, async_cow); 1091 } 1092 1093 static noinline void async_cow_free(struct btrfs_work *work) 1094 { 1095 struct async_cow *async_cow; 1096 async_cow = container_of(work, struct async_cow, work); 1097 if (async_cow->inode) 1098 btrfs_add_delayed_iput(async_cow->inode); 1099 kfree(async_cow); 1100 } 1101 1102 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1103 u64 start, u64 end, int *page_started, 1104 unsigned long *nr_written) 1105 { 1106 struct async_cow *async_cow; 1107 struct btrfs_root *root = BTRFS_I(inode)->root; 1108 unsigned long nr_pages; 1109 u64 cur_end; 1110 int limit = 10 * 1024 * 1024; 1111 1112 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1113 1, 0, NULL, GFP_NOFS); 1114 while (start < end) { 1115 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1116 BUG_ON(!async_cow); /* -ENOMEM */ 1117 async_cow->inode = igrab(inode); 1118 async_cow->root = root; 1119 async_cow->locked_page = locked_page; 1120 async_cow->start = start; 1121 1122 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1123 cur_end = end; 1124 else 1125 cur_end = min(end, start + 512 * 1024 - 1); 1126 1127 async_cow->end = cur_end; 1128 INIT_LIST_HEAD(&async_cow->extents); 1129 1130 async_cow->work.func = async_cow_start; 1131 async_cow->work.ordered_func = async_cow_submit; 1132 async_cow->work.ordered_free = async_cow_free; 1133 async_cow->work.flags = 0; 1134 1135 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1136 PAGE_CACHE_SHIFT; 1137 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1138 1139 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1140 &async_cow->work); 1141 1142 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1143 wait_event(root->fs_info->async_submit_wait, 1144 (atomic_read(&root->fs_info->async_delalloc_pages) < 1145 limit)); 1146 } 1147 1148 while (atomic_read(&root->fs_info->async_submit_draining) && 1149 atomic_read(&root->fs_info->async_delalloc_pages)) { 1150 wait_event(root->fs_info->async_submit_wait, 1151 (atomic_read(&root->fs_info->async_delalloc_pages) == 1152 0)); 1153 } 1154 1155 *nr_written += nr_pages; 1156 start = cur_end + 1; 1157 } 1158 *page_started = 1; 1159 return 0; 1160 } 1161 1162 static noinline int csum_exist_in_range(struct btrfs_root *root, 1163 u64 bytenr, u64 num_bytes) 1164 { 1165 int ret; 1166 struct btrfs_ordered_sum *sums; 1167 LIST_HEAD(list); 1168 1169 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1170 bytenr + num_bytes - 1, &list, 0); 1171 if (ret == 0 && list_empty(&list)) 1172 return 0; 1173 1174 while (!list_empty(&list)) { 1175 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1176 list_del(&sums->list); 1177 kfree(sums); 1178 } 1179 return 1; 1180 } 1181 1182 /* 1183 * when nowcow writeback call back. This checks for snapshots or COW copies 1184 * of the extents that exist in the file, and COWs the file as required. 1185 * 1186 * If no cow copies or snapshots exist, we write directly to the existing 1187 * blocks on disk 1188 */ 1189 static noinline int run_delalloc_nocow(struct inode *inode, 1190 struct page *locked_page, 1191 u64 start, u64 end, int *page_started, int force, 1192 unsigned long *nr_written) 1193 { 1194 struct btrfs_root *root = BTRFS_I(inode)->root; 1195 struct btrfs_trans_handle *trans; 1196 struct extent_buffer *leaf; 1197 struct btrfs_path *path; 1198 struct btrfs_file_extent_item *fi; 1199 struct btrfs_key found_key; 1200 u64 cow_start; 1201 u64 cur_offset; 1202 u64 extent_end; 1203 u64 extent_offset; 1204 u64 disk_bytenr; 1205 u64 num_bytes; 1206 u64 disk_num_bytes; 1207 u64 ram_bytes; 1208 int extent_type; 1209 int ret, err; 1210 int type; 1211 int nocow; 1212 int check_prev = 1; 1213 bool nolock; 1214 u64 ino = btrfs_ino(inode); 1215 1216 path = btrfs_alloc_path(); 1217 if (!path) { 1218 extent_clear_unlock_delalloc(inode, 1219 &BTRFS_I(inode)->io_tree, 1220 start, end, locked_page, 1221 EXTENT_CLEAR_UNLOCK_PAGE | 1222 EXTENT_CLEAR_UNLOCK | 1223 EXTENT_CLEAR_DELALLOC | 1224 EXTENT_CLEAR_DIRTY | 1225 EXTENT_SET_WRITEBACK | 1226 EXTENT_END_WRITEBACK); 1227 return -ENOMEM; 1228 } 1229 1230 nolock = btrfs_is_free_space_inode(inode); 1231 1232 if (nolock) 1233 trans = btrfs_join_transaction_nolock(root); 1234 else 1235 trans = btrfs_join_transaction(root); 1236 1237 if (IS_ERR(trans)) { 1238 extent_clear_unlock_delalloc(inode, 1239 &BTRFS_I(inode)->io_tree, 1240 start, end, locked_page, 1241 EXTENT_CLEAR_UNLOCK_PAGE | 1242 EXTENT_CLEAR_UNLOCK | 1243 EXTENT_CLEAR_DELALLOC | 1244 EXTENT_CLEAR_DIRTY | 1245 EXTENT_SET_WRITEBACK | 1246 EXTENT_END_WRITEBACK); 1247 btrfs_free_path(path); 1248 return PTR_ERR(trans); 1249 } 1250 1251 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1252 1253 cow_start = (u64)-1; 1254 cur_offset = start; 1255 while (1) { 1256 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1257 cur_offset, 0); 1258 if (ret < 0) { 1259 btrfs_abort_transaction(trans, root, ret); 1260 goto error; 1261 } 1262 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1263 leaf = path->nodes[0]; 1264 btrfs_item_key_to_cpu(leaf, &found_key, 1265 path->slots[0] - 1); 1266 if (found_key.objectid == ino && 1267 found_key.type == BTRFS_EXTENT_DATA_KEY) 1268 path->slots[0]--; 1269 } 1270 check_prev = 0; 1271 next_slot: 1272 leaf = path->nodes[0]; 1273 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) { 1276 btrfs_abort_transaction(trans, root, ret); 1277 goto error; 1278 } 1279 if (ret > 0) 1280 break; 1281 leaf = path->nodes[0]; 1282 } 1283 1284 nocow = 0; 1285 disk_bytenr = 0; 1286 num_bytes = 0; 1287 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1288 1289 if (found_key.objectid > ino || 1290 found_key.type > BTRFS_EXTENT_DATA_KEY || 1291 found_key.offset > end) 1292 break; 1293 1294 if (found_key.offset > cur_offset) { 1295 extent_end = found_key.offset; 1296 extent_type = 0; 1297 goto out_check; 1298 } 1299 1300 fi = btrfs_item_ptr(leaf, path->slots[0], 1301 struct btrfs_file_extent_item); 1302 extent_type = btrfs_file_extent_type(leaf, fi); 1303 1304 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1305 if (extent_type == BTRFS_FILE_EXTENT_REG || 1306 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1307 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1308 extent_offset = btrfs_file_extent_offset(leaf, fi); 1309 extent_end = found_key.offset + 1310 btrfs_file_extent_num_bytes(leaf, fi); 1311 disk_num_bytes = 1312 btrfs_file_extent_disk_num_bytes(leaf, fi); 1313 if (extent_end <= start) { 1314 path->slots[0]++; 1315 goto next_slot; 1316 } 1317 if (disk_bytenr == 0) 1318 goto out_check; 1319 if (btrfs_file_extent_compression(leaf, fi) || 1320 btrfs_file_extent_encryption(leaf, fi) || 1321 btrfs_file_extent_other_encoding(leaf, fi)) 1322 goto out_check; 1323 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1324 goto out_check; 1325 if (btrfs_extent_readonly(root, disk_bytenr)) 1326 goto out_check; 1327 if (btrfs_cross_ref_exist(trans, root, ino, 1328 found_key.offset - 1329 extent_offset, disk_bytenr)) 1330 goto out_check; 1331 disk_bytenr += extent_offset; 1332 disk_bytenr += cur_offset - found_key.offset; 1333 num_bytes = min(end + 1, extent_end) - cur_offset; 1334 /* 1335 * force cow if csum exists in the range. 1336 * this ensure that csum for a given extent are 1337 * either valid or do not exist. 1338 */ 1339 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1340 goto out_check; 1341 nocow = 1; 1342 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1343 extent_end = found_key.offset + 1344 btrfs_file_extent_inline_len(leaf, fi); 1345 extent_end = ALIGN(extent_end, root->sectorsize); 1346 } else { 1347 BUG_ON(1); 1348 } 1349 out_check: 1350 if (extent_end <= start) { 1351 path->slots[0]++; 1352 goto next_slot; 1353 } 1354 if (!nocow) { 1355 if (cow_start == (u64)-1) 1356 cow_start = cur_offset; 1357 cur_offset = extent_end; 1358 if (cur_offset > end) 1359 break; 1360 path->slots[0]++; 1361 goto next_slot; 1362 } 1363 1364 btrfs_release_path(path); 1365 if (cow_start != (u64)-1) { 1366 ret = __cow_file_range(trans, inode, root, locked_page, 1367 cow_start, found_key.offset - 1, 1368 page_started, nr_written, 1); 1369 if (ret) { 1370 btrfs_abort_transaction(trans, root, ret); 1371 goto error; 1372 } 1373 cow_start = (u64)-1; 1374 } 1375 1376 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1377 struct extent_map *em; 1378 struct extent_map_tree *em_tree; 1379 em_tree = &BTRFS_I(inode)->extent_tree; 1380 em = alloc_extent_map(); 1381 BUG_ON(!em); /* -ENOMEM */ 1382 em->start = cur_offset; 1383 em->orig_start = found_key.offset - extent_offset; 1384 em->len = num_bytes; 1385 em->block_len = num_bytes; 1386 em->block_start = disk_bytenr; 1387 em->orig_block_len = disk_num_bytes; 1388 em->ram_bytes = ram_bytes; 1389 em->bdev = root->fs_info->fs_devices->latest_bdev; 1390 em->mod_start = em->start; 1391 em->mod_len = em->len; 1392 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1393 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1394 em->generation = -1; 1395 while (1) { 1396 write_lock(&em_tree->lock); 1397 ret = add_extent_mapping(em_tree, em, 1); 1398 write_unlock(&em_tree->lock); 1399 if (ret != -EEXIST) { 1400 free_extent_map(em); 1401 break; 1402 } 1403 btrfs_drop_extent_cache(inode, em->start, 1404 em->start + em->len - 1, 0); 1405 } 1406 type = BTRFS_ORDERED_PREALLOC; 1407 } else { 1408 type = BTRFS_ORDERED_NOCOW; 1409 } 1410 1411 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1412 num_bytes, num_bytes, type); 1413 BUG_ON(ret); /* -ENOMEM */ 1414 1415 if (root->root_key.objectid == 1416 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1417 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1418 num_bytes); 1419 if (ret) { 1420 btrfs_abort_transaction(trans, root, ret); 1421 goto error; 1422 } 1423 } 1424 1425 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1426 cur_offset, cur_offset + num_bytes - 1, 1427 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1428 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1429 EXTENT_SET_PRIVATE2); 1430 cur_offset = extent_end; 1431 if (cur_offset > end) 1432 break; 1433 } 1434 btrfs_release_path(path); 1435 1436 if (cur_offset <= end && cow_start == (u64)-1) { 1437 cow_start = cur_offset; 1438 cur_offset = end; 1439 } 1440 1441 if (cow_start != (u64)-1) { 1442 ret = __cow_file_range(trans, inode, root, locked_page, 1443 cow_start, end, 1444 page_started, nr_written, 1); 1445 if (ret) { 1446 btrfs_abort_transaction(trans, root, ret); 1447 goto error; 1448 } 1449 } 1450 1451 error: 1452 err = btrfs_end_transaction(trans, root); 1453 if (!ret) 1454 ret = err; 1455 1456 if (ret && cur_offset < end) 1457 extent_clear_unlock_delalloc(inode, 1458 &BTRFS_I(inode)->io_tree, 1459 cur_offset, end, locked_page, 1460 EXTENT_CLEAR_UNLOCK_PAGE | 1461 EXTENT_CLEAR_UNLOCK | 1462 EXTENT_CLEAR_DELALLOC | 1463 EXTENT_CLEAR_DIRTY | 1464 EXTENT_SET_WRITEBACK | 1465 EXTENT_END_WRITEBACK); 1466 1467 btrfs_free_path(path); 1468 return ret; 1469 } 1470 1471 /* 1472 * extent_io.c call back to do delayed allocation processing 1473 */ 1474 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1475 u64 start, u64 end, int *page_started, 1476 unsigned long *nr_written) 1477 { 1478 int ret; 1479 struct btrfs_root *root = BTRFS_I(inode)->root; 1480 1481 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1482 ret = run_delalloc_nocow(inode, locked_page, start, end, 1483 page_started, 1, nr_written); 1484 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1485 ret = run_delalloc_nocow(inode, locked_page, start, end, 1486 page_started, 0, nr_written); 1487 } else if (!btrfs_test_opt(root, COMPRESS) && 1488 !(BTRFS_I(inode)->force_compress) && 1489 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1490 ret = cow_file_range(inode, locked_page, start, end, 1491 page_started, nr_written, 1); 1492 } else { 1493 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1494 &BTRFS_I(inode)->runtime_flags); 1495 ret = cow_file_range_async(inode, locked_page, start, end, 1496 page_started, nr_written); 1497 } 1498 return ret; 1499 } 1500 1501 static void btrfs_split_extent_hook(struct inode *inode, 1502 struct extent_state *orig, u64 split) 1503 { 1504 /* not delalloc, ignore it */ 1505 if (!(orig->state & EXTENT_DELALLOC)) 1506 return; 1507 1508 spin_lock(&BTRFS_I(inode)->lock); 1509 BTRFS_I(inode)->outstanding_extents++; 1510 spin_unlock(&BTRFS_I(inode)->lock); 1511 } 1512 1513 /* 1514 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1515 * extents so we can keep track of new extents that are just merged onto old 1516 * extents, such as when we are doing sequential writes, so we can properly 1517 * account for the metadata space we'll need. 1518 */ 1519 static void btrfs_merge_extent_hook(struct inode *inode, 1520 struct extent_state *new, 1521 struct extent_state *other) 1522 { 1523 /* not delalloc, ignore it */ 1524 if (!(other->state & EXTENT_DELALLOC)) 1525 return; 1526 1527 spin_lock(&BTRFS_I(inode)->lock); 1528 BTRFS_I(inode)->outstanding_extents--; 1529 spin_unlock(&BTRFS_I(inode)->lock); 1530 } 1531 1532 /* 1533 * extent_io.c set_bit_hook, used to track delayed allocation 1534 * bytes in this file, and to maintain the list of inodes that 1535 * have pending delalloc work to be done. 1536 */ 1537 static void btrfs_set_bit_hook(struct inode *inode, 1538 struct extent_state *state, unsigned long *bits) 1539 { 1540 1541 /* 1542 * set_bit and clear bit hooks normally require _irqsave/restore 1543 * but in this case, we are only testing for the DELALLOC 1544 * bit, which is only set or cleared with irqs on 1545 */ 1546 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1547 struct btrfs_root *root = BTRFS_I(inode)->root; 1548 u64 len = state->end + 1 - state->start; 1549 bool do_list = !btrfs_is_free_space_inode(inode); 1550 1551 if (*bits & EXTENT_FIRST_DELALLOC) { 1552 *bits &= ~EXTENT_FIRST_DELALLOC; 1553 } else { 1554 spin_lock(&BTRFS_I(inode)->lock); 1555 BTRFS_I(inode)->outstanding_extents++; 1556 spin_unlock(&BTRFS_I(inode)->lock); 1557 } 1558 1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1560 root->fs_info->delalloc_batch); 1561 spin_lock(&BTRFS_I(inode)->lock); 1562 BTRFS_I(inode)->delalloc_bytes += len; 1563 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1564 &BTRFS_I(inode)->runtime_flags)) { 1565 spin_lock(&root->fs_info->delalloc_lock); 1566 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1567 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1568 &root->fs_info->delalloc_inodes); 1569 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1570 &BTRFS_I(inode)->runtime_flags); 1571 } 1572 spin_unlock(&root->fs_info->delalloc_lock); 1573 } 1574 spin_unlock(&BTRFS_I(inode)->lock); 1575 } 1576 } 1577 1578 /* 1579 * extent_io.c clear_bit_hook, see set_bit_hook for why 1580 */ 1581 static void btrfs_clear_bit_hook(struct inode *inode, 1582 struct extent_state *state, 1583 unsigned long *bits) 1584 { 1585 /* 1586 * set_bit and clear bit hooks normally require _irqsave/restore 1587 * but in this case, we are only testing for the DELALLOC 1588 * bit, which is only set or cleared with irqs on 1589 */ 1590 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1591 struct btrfs_root *root = BTRFS_I(inode)->root; 1592 u64 len = state->end + 1 - state->start; 1593 bool do_list = !btrfs_is_free_space_inode(inode); 1594 1595 if (*bits & EXTENT_FIRST_DELALLOC) { 1596 *bits &= ~EXTENT_FIRST_DELALLOC; 1597 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1598 spin_lock(&BTRFS_I(inode)->lock); 1599 BTRFS_I(inode)->outstanding_extents--; 1600 spin_unlock(&BTRFS_I(inode)->lock); 1601 } 1602 1603 if (*bits & EXTENT_DO_ACCOUNTING) 1604 btrfs_delalloc_release_metadata(inode, len); 1605 1606 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1607 && do_list) 1608 btrfs_free_reserved_data_space(inode, len); 1609 1610 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1611 root->fs_info->delalloc_batch); 1612 spin_lock(&BTRFS_I(inode)->lock); 1613 BTRFS_I(inode)->delalloc_bytes -= len; 1614 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1615 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1616 &BTRFS_I(inode)->runtime_flags)) { 1617 spin_lock(&root->fs_info->delalloc_lock); 1618 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1619 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1620 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1621 &BTRFS_I(inode)->runtime_flags); 1622 } 1623 spin_unlock(&root->fs_info->delalloc_lock); 1624 } 1625 spin_unlock(&BTRFS_I(inode)->lock); 1626 } 1627 } 1628 1629 /* 1630 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1631 * we don't create bios that span stripes or chunks 1632 */ 1633 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1634 size_t size, struct bio *bio, 1635 unsigned long bio_flags) 1636 { 1637 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1638 u64 logical = (u64)bio->bi_sector << 9; 1639 u64 length = 0; 1640 u64 map_length; 1641 int ret; 1642 1643 if (bio_flags & EXTENT_BIO_COMPRESSED) 1644 return 0; 1645 1646 length = bio->bi_size; 1647 map_length = length; 1648 ret = btrfs_map_block(root->fs_info, rw, logical, 1649 &map_length, NULL, 0); 1650 /* Will always return 0 with map_multi == NULL */ 1651 BUG_ON(ret < 0); 1652 if (map_length < length + size) 1653 return 1; 1654 return 0; 1655 } 1656 1657 /* 1658 * in order to insert checksums into the metadata in large chunks, 1659 * we wait until bio submission time. All the pages in the bio are 1660 * checksummed and sums are attached onto the ordered extent record. 1661 * 1662 * At IO completion time the cums attached on the ordered extent record 1663 * are inserted into the btree 1664 */ 1665 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1666 struct bio *bio, int mirror_num, 1667 unsigned long bio_flags, 1668 u64 bio_offset) 1669 { 1670 struct btrfs_root *root = BTRFS_I(inode)->root; 1671 int ret = 0; 1672 1673 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1674 BUG_ON(ret); /* -ENOMEM */ 1675 return 0; 1676 } 1677 1678 /* 1679 * in order to insert checksums into the metadata in large chunks, 1680 * we wait until bio submission time. All the pages in the bio are 1681 * checksummed and sums are attached onto the ordered extent record. 1682 * 1683 * At IO completion time the cums attached on the ordered extent record 1684 * are inserted into the btree 1685 */ 1686 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1687 int mirror_num, unsigned long bio_flags, 1688 u64 bio_offset) 1689 { 1690 struct btrfs_root *root = BTRFS_I(inode)->root; 1691 int ret; 1692 1693 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1694 if (ret) 1695 bio_endio(bio, ret); 1696 return ret; 1697 } 1698 1699 /* 1700 * extent_io.c submission hook. This does the right thing for csum calculation 1701 * on write, or reading the csums from the tree before a read 1702 */ 1703 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1704 int mirror_num, unsigned long bio_flags, 1705 u64 bio_offset) 1706 { 1707 struct btrfs_root *root = BTRFS_I(inode)->root; 1708 int ret = 0; 1709 int skip_sum; 1710 int metadata = 0; 1711 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1712 1713 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1714 1715 if (btrfs_is_free_space_inode(inode)) 1716 metadata = 2; 1717 1718 if (!(rw & REQ_WRITE)) { 1719 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1720 if (ret) 1721 goto out; 1722 1723 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1724 ret = btrfs_submit_compressed_read(inode, bio, 1725 mirror_num, 1726 bio_flags); 1727 goto out; 1728 } else if (!skip_sum) { 1729 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1730 if (ret) 1731 goto out; 1732 } 1733 goto mapit; 1734 } else if (async && !skip_sum) { 1735 /* csum items have already been cloned */ 1736 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1737 goto mapit; 1738 /* we're doing a write, do the async checksumming */ 1739 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1740 inode, rw, bio, mirror_num, 1741 bio_flags, bio_offset, 1742 __btrfs_submit_bio_start, 1743 __btrfs_submit_bio_done); 1744 goto out; 1745 } else if (!skip_sum) { 1746 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1747 if (ret) 1748 goto out; 1749 } 1750 1751 mapit: 1752 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1753 1754 out: 1755 if (ret < 0) 1756 bio_endio(bio, ret); 1757 return ret; 1758 } 1759 1760 /* 1761 * given a list of ordered sums record them in the inode. This happens 1762 * at IO completion time based on sums calculated at bio submission time. 1763 */ 1764 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1765 struct inode *inode, u64 file_offset, 1766 struct list_head *list) 1767 { 1768 struct btrfs_ordered_sum *sum; 1769 1770 list_for_each_entry(sum, list, list) { 1771 trans->adding_csums = 1; 1772 btrfs_csum_file_blocks(trans, 1773 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1774 trans->adding_csums = 0; 1775 } 1776 return 0; 1777 } 1778 1779 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1780 struct extent_state **cached_state) 1781 { 1782 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1783 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1784 cached_state, GFP_NOFS); 1785 } 1786 1787 /* see btrfs_writepage_start_hook for details on why this is required */ 1788 struct btrfs_writepage_fixup { 1789 struct page *page; 1790 struct btrfs_work work; 1791 }; 1792 1793 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1794 { 1795 struct btrfs_writepage_fixup *fixup; 1796 struct btrfs_ordered_extent *ordered; 1797 struct extent_state *cached_state = NULL; 1798 struct page *page; 1799 struct inode *inode; 1800 u64 page_start; 1801 u64 page_end; 1802 int ret; 1803 1804 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1805 page = fixup->page; 1806 again: 1807 lock_page(page); 1808 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1809 ClearPageChecked(page); 1810 goto out_page; 1811 } 1812 1813 inode = page->mapping->host; 1814 page_start = page_offset(page); 1815 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1816 1817 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1818 &cached_state); 1819 1820 /* already ordered? We're done */ 1821 if (PagePrivate2(page)) 1822 goto out; 1823 1824 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1825 if (ordered) { 1826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1827 page_end, &cached_state, GFP_NOFS); 1828 unlock_page(page); 1829 btrfs_start_ordered_extent(inode, ordered, 1); 1830 btrfs_put_ordered_extent(ordered); 1831 goto again; 1832 } 1833 1834 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1835 if (ret) { 1836 mapping_set_error(page->mapping, ret); 1837 end_extent_writepage(page, ret, page_start, page_end); 1838 ClearPageChecked(page); 1839 goto out; 1840 } 1841 1842 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1843 ClearPageChecked(page); 1844 set_page_dirty(page); 1845 out: 1846 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1847 &cached_state, GFP_NOFS); 1848 out_page: 1849 unlock_page(page); 1850 page_cache_release(page); 1851 kfree(fixup); 1852 } 1853 1854 /* 1855 * There are a few paths in the higher layers of the kernel that directly 1856 * set the page dirty bit without asking the filesystem if it is a 1857 * good idea. This causes problems because we want to make sure COW 1858 * properly happens and the data=ordered rules are followed. 1859 * 1860 * In our case any range that doesn't have the ORDERED bit set 1861 * hasn't been properly setup for IO. We kick off an async process 1862 * to fix it up. The async helper will wait for ordered extents, set 1863 * the delalloc bit and make it safe to write the page. 1864 */ 1865 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1866 { 1867 struct inode *inode = page->mapping->host; 1868 struct btrfs_writepage_fixup *fixup; 1869 struct btrfs_root *root = BTRFS_I(inode)->root; 1870 1871 /* this page is properly in the ordered list */ 1872 if (TestClearPagePrivate2(page)) 1873 return 0; 1874 1875 if (PageChecked(page)) 1876 return -EAGAIN; 1877 1878 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1879 if (!fixup) 1880 return -EAGAIN; 1881 1882 SetPageChecked(page); 1883 page_cache_get(page); 1884 fixup->work.func = btrfs_writepage_fixup_worker; 1885 fixup->page = page; 1886 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1887 return -EBUSY; 1888 } 1889 1890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1891 struct inode *inode, u64 file_pos, 1892 u64 disk_bytenr, u64 disk_num_bytes, 1893 u64 num_bytes, u64 ram_bytes, 1894 u8 compression, u8 encryption, 1895 u16 other_encoding, int extent_type) 1896 { 1897 struct btrfs_root *root = BTRFS_I(inode)->root; 1898 struct btrfs_file_extent_item *fi; 1899 struct btrfs_path *path; 1900 struct extent_buffer *leaf; 1901 struct btrfs_key ins; 1902 int ret; 1903 1904 path = btrfs_alloc_path(); 1905 if (!path) 1906 return -ENOMEM; 1907 1908 path->leave_spinning = 1; 1909 1910 /* 1911 * we may be replacing one extent in the tree with another. 1912 * The new extent is pinned in the extent map, and we don't want 1913 * to drop it from the cache until it is completely in the btree. 1914 * 1915 * So, tell btrfs_drop_extents to leave this extent in the cache. 1916 * the caller is expected to unpin it and allow it to be merged 1917 * with the others. 1918 */ 1919 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1920 file_pos + num_bytes, 0); 1921 if (ret) 1922 goto out; 1923 1924 ins.objectid = btrfs_ino(inode); 1925 ins.offset = file_pos; 1926 ins.type = BTRFS_EXTENT_DATA_KEY; 1927 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1928 if (ret) 1929 goto out; 1930 leaf = path->nodes[0]; 1931 fi = btrfs_item_ptr(leaf, path->slots[0], 1932 struct btrfs_file_extent_item); 1933 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1934 btrfs_set_file_extent_type(leaf, fi, extent_type); 1935 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1936 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1937 btrfs_set_file_extent_offset(leaf, fi, 0); 1938 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1939 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1940 btrfs_set_file_extent_compression(leaf, fi, compression); 1941 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1942 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1943 1944 btrfs_mark_buffer_dirty(leaf); 1945 btrfs_release_path(path); 1946 1947 inode_add_bytes(inode, num_bytes); 1948 1949 ins.objectid = disk_bytenr; 1950 ins.offset = disk_num_bytes; 1951 ins.type = BTRFS_EXTENT_ITEM_KEY; 1952 ret = btrfs_alloc_reserved_file_extent(trans, root, 1953 root->root_key.objectid, 1954 btrfs_ino(inode), file_pos, &ins); 1955 out: 1956 btrfs_free_path(path); 1957 1958 return ret; 1959 } 1960 1961 /* snapshot-aware defrag */ 1962 struct sa_defrag_extent_backref { 1963 struct rb_node node; 1964 struct old_sa_defrag_extent *old; 1965 u64 root_id; 1966 u64 inum; 1967 u64 file_pos; 1968 u64 extent_offset; 1969 u64 num_bytes; 1970 u64 generation; 1971 }; 1972 1973 struct old_sa_defrag_extent { 1974 struct list_head list; 1975 struct new_sa_defrag_extent *new; 1976 1977 u64 extent_offset; 1978 u64 bytenr; 1979 u64 offset; 1980 u64 len; 1981 int count; 1982 }; 1983 1984 struct new_sa_defrag_extent { 1985 struct rb_root root; 1986 struct list_head head; 1987 struct btrfs_path *path; 1988 struct inode *inode; 1989 u64 file_pos; 1990 u64 len; 1991 u64 bytenr; 1992 u64 disk_len; 1993 u8 compress_type; 1994 }; 1995 1996 static int backref_comp(struct sa_defrag_extent_backref *b1, 1997 struct sa_defrag_extent_backref *b2) 1998 { 1999 if (b1->root_id < b2->root_id) 2000 return -1; 2001 else if (b1->root_id > b2->root_id) 2002 return 1; 2003 2004 if (b1->inum < b2->inum) 2005 return -1; 2006 else if (b1->inum > b2->inum) 2007 return 1; 2008 2009 if (b1->file_pos < b2->file_pos) 2010 return -1; 2011 else if (b1->file_pos > b2->file_pos) 2012 return 1; 2013 2014 /* 2015 * [------------------------------] ===> (a range of space) 2016 * |<--->| |<---->| =============> (fs/file tree A) 2017 * |<---------------------------->| ===> (fs/file tree B) 2018 * 2019 * A range of space can refer to two file extents in one tree while 2020 * refer to only one file extent in another tree. 2021 * 2022 * So we may process a disk offset more than one time(two extents in A) 2023 * and locate at the same extent(one extent in B), then insert two same 2024 * backrefs(both refer to the extent in B). 2025 */ 2026 return 0; 2027 } 2028 2029 static void backref_insert(struct rb_root *root, 2030 struct sa_defrag_extent_backref *backref) 2031 { 2032 struct rb_node **p = &root->rb_node; 2033 struct rb_node *parent = NULL; 2034 struct sa_defrag_extent_backref *entry; 2035 int ret; 2036 2037 while (*p) { 2038 parent = *p; 2039 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2040 2041 ret = backref_comp(backref, entry); 2042 if (ret < 0) 2043 p = &(*p)->rb_left; 2044 else 2045 p = &(*p)->rb_right; 2046 } 2047 2048 rb_link_node(&backref->node, parent, p); 2049 rb_insert_color(&backref->node, root); 2050 } 2051 2052 /* 2053 * Note the backref might has changed, and in this case we just return 0. 2054 */ 2055 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2056 void *ctx) 2057 { 2058 struct btrfs_file_extent_item *extent; 2059 struct btrfs_fs_info *fs_info; 2060 struct old_sa_defrag_extent *old = ctx; 2061 struct new_sa_defrag_extent *new = old->new; 2062 struct btrfs_path *path = new->path; 2063 struct btrfs_key key; 2064 struct btrfs_root *root; 2065 struct sa_defrag_extent_backref *backref; 2066 struct extent_buffer *leaf; 2067 struct inode *inode = new->inode; 2068 int slot; 2069 int ret; 2070 u64 extent_offset; 2071 u64 num_bytes; 2072 2073 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2074 inum == btrfs_ino(inode)) 2075 return 0; 2076 2077 key.objectid = root_id; 2078 key.type = BTRFS_ROOT_ITEM_KEY; 2079 key.offset = (u64)-1; 2080 2081 fs_info = BTRFS_I(inode)->root->fs_info; 2082 root = btrfs_read_fs_root_no_name(fs_info, &key); 2083 if (IS_ERR(root)) { 2084 if (PTR_ERR(root) == -ENOENT) 2085 return 0; 2086 WARN_ON(1); 2087 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2088 inum, offset, root_id); 2089 return PTR_ERR(root); 2090 } 2091 2092 key.objectid = inum; 2093 key.type = BTRFS_EXTENT_DATA_KEY; 2094 if (offset > (u64)-1 << 32) 2095 key.offset = 0; 2096 else 2097 key.offset = offset; 2098 2099 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2100 if (ret < 0) { 2101 WARN_ON(1); 2102 return ret; 2103 } 2104 2105 while (1) { 2106 cond_resched(); 2107 2108 leaf = path->nodes[0]; 2109 slot = path->slots[0]; 2110 2111 if (slot >= btrfs_header_nritems(leaf)) { 2112 ret = btrfs_next_leaf(root, path); 2113 if (ret < 0) { 2114 goto out; 2115 } else if (ret > 0) { 2116 ret = 0; 2117 goto out; 2118 } 2119 continue; 2120 } 2121 2122 path->slots[0]++; 2123 2124 btrfs_item_key_to_cpu(leaf, &key, slot); 2125 2126 if (key.objectid > inum) 2127 goto out; 2128 2129 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2130 continue; 2131 2132 extent = btrfs_item_ptr(leaf, slot, 2133 struct btrfs_file_extent_item); 2134 2135 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2136 continue; 2137 2138 extent_offset = btrfs_file_extent_offset(leaf, extent); 2139 if (key.offset - extent_offset != offset) 2140 continue; 2141 2142 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2143 if (extent_offset >= old->extent_offset + old->offset + 2144 old->len || extent_offset + num_bytes <= 2145 old->extent_offset + old->offset) 2146 continue; 2147 2148 break; 2149 } 2150 2151 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2152 if (!backref) { 2153 ret = -ENOENT; 2154 goto out; 2155 } 2156 2157 backref->root_id = root_id; 2158 backref->inum = inum; 2159 backref->file_pos = offset + extent_offset; 2160 backref->num_bytes = num_bytes; 2161 backref->extent_offset = extent_offset; 2162 backref->generation = btrfs_file_extent_generation(leaf, extent); 2163 backref->old = old; 2164 backref_insert(&new->root, backref); 2165 old->count++; 2166 out: 2167 btrfs_release_path(path); 2168 WARN_ON(ret); 2169 return ret; 2170 } 2171 2172 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2173 struct new_sa_defrag_extent *new) 2174 { 2175 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2176 struct old_sa_defrag_extent *old, *tmp; 2177 int ret; 2178 2179 new->path = path; 2180 2181 list_for_each_entry_safe(old, tmp, &new->head, list) { 2182 ret = iterate_inodes_from_logical(old->bytenr, fs_info, 2183 path, record_one_backref, 2184 old); 2185 BUG_ON(ret < 0 && ret != -ENOENT); 2186 2187 /* no backref to be processed for this extent */ 2188 if (!old->count) { 2189 list_del(&old->list); 2190 kfree(old); 2191 } 2192 } 2193 2194 if (list_empty(&new->head)) 2195 return false; 2196 2197 return true; 2198 } 2199 2200 static int relink_is_mergable(struct extent_buffer *leaf, 2201 struct btrfs_file_extent_item *fi, 2202 u64 disk_bytenr) 2203 { 2204 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr) 2205 return 0; 2206 2207 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2208 return 0; 2209 2210 if (btrfs_file_extent_compression(leaf, fi) || 2211 btrfs_file_extent_encryption(leaf, fi) || 2212 btrfs_file_extent_other_encoding(leaf, fi)) 2213 return 0; 2214 2215 return 1; 2216 } 2217 2218 /* 2219 * Note the backref might has changed, and in this case we just return 0. 2220 */ 2221 static noinline int relink_extent_backref(struct btrfs_path *path, 2222 struct sa_defrag_extent_backref *prev, 2223 struct sa_defrag_extent_backref *backref) 2224 { 2225 struct btrfs_file_extent_item *extent; 2226 struct btrfs_file_extent_item *item; 2227 struct btrfs_ordered_extent *ordered; 2228 struct btrfs_trans_handle *trans; 2229 struct btrfs_fs_info *fs_info; 2230 struct btrfs_root *root; 2231 struct btrfs_key key; 2232 struct extent_buffer *leaf; 2233 struct old_sa_defrag_extent *old = backref->old; 2234 struct new_sa_defrag_extent *new = old->new; 2235 struct inode *src_inode = new->inode; 2236 struct inode *inode; 2237 struct extent_state *cached = NULL; 2238 int ret = 0; 2239 u64 start; 2240 u64 len; 2241 u64 lock_start; 2242 u64 lock_end; 2243 bool merge = false; 2244 int index; 2245 2246 if (prev && prev->root_id == backref->root_id && 2247 prev->inum == backref->inum && 2248 prev->file_pos + prev->num_bytes == backref->file_pos) 2249 merge = true; 2250 2251 /* step 1: get root */ 2252 key.objectid = backref->root_id; 2253 key.type = BTRFS_ROOT_ITEM_KEY; 2254 key.offset = (u64)-1; 2255 2256 fs_info = BTRFS_I(src_inode)->root->fs_info; 2257 index = srcu_read_lock(&fs_info->subvol_srcu); 2258 2259 root = btrfs_read_fs_root_no_name(fs_info, &key); 2260 if (IS_ERR(root)) { 2261 srcu_read_unlock(&fs_info->subvol_srcu, index); 2262 if (PTR_ERR(root) == -ENOENT) 2263 return 0; 2264 return PTR_ERR(root); 2265 } 2266 if (btrfs_root_refs(&root->root_item) == 0) { 2267 srcu_read_unlock(&fs_info->subvol_srcu, index); 2268 /* parse ENOENT to 0 */ 2269 return 0; 2270 } 2271 2272 /* step 2: get inode */ 2273 key.objectid = backref->inum; 2274 key.type = BTRFS_INODE_ITEM_KEY; 2275 key.offset = 0; 2276 2277 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2278 if (IS_ERR(inode)) { 2279 srcu_read_unlock(&fs_info->subvol_srcu, index); 2280 return 0; 2281 } 2282 2283 srcu_read_unlock(&fs_info->subvol_srcu, index); 2284 2285 /* step 3: relink backref */ 2286 lock_start = backref->file_pos; 2287 lock_end = backref->file_pos + backref->num_bytes - 1; 2288 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2289 0, &cached); 2290 2291 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2292 if (ordered) { 2293 btrfs_put_ordered_extent(ordered); 2294 goto out_unlock; 2295 } 2296 2297 trans = btrfs_join_transaction(root); 2298 if (IS_ERR(trans)) { 2299 ret = PTR_ERR(trans); 2300 goto out_unlock; 2301 } 2302 2303 key.objectid = backref->inum; 2304 key.type = BTRFS_EXTENT_DATA_KEY; 2305 key.offset = backref->file_pos; 2306 2307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2308 if (ret < 0) { 2309 goto out_free_path; 2310 } else if (ret > 0) { 2311 ret = 0; 2312 goto out_free_path; 2313 } 2314 2315 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2316 struct btrfs_file_extent_item); 2317 2318 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2319 backref->generation) 2320 goto out_free_path; 2321 2322 btrfs_release_path(path); 2323 2324 start = backref->file_pos; 2325 if (backref->extent_offset < old->extent_offset + old->offset) 2326 start += old->extent_offset + old->offset - 2327 backref->extent_offset; 2328 2329 len = min(backref->extent_offset + backref->num_bytes, 2330 old->extent_offset + old->offset + old->len); 2331 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2332 2333 ret = btrfs_drop_extents(trans, root, inode, start, 2334 start + len, 1); 2335 if (ret) 2336 goto out_free_path; 2337 again: 2338 key.objectid = btrfs_ino(inode); 2339 key.type = BTRFS_EXTENT_DATA_KEY; 2340 key.offset = start; 2341 2342 path->leave_spinning = 1; 2343 if (merge) { 2344 struct btrfs_file_extent_item *fi; 2345 u64 extent_len; 2346 struct btrfs_key found_key; 2347 2348 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2349 if (ret < 0) 2350 goto out_free_path; 2351 2352 path->slots[0]--; 2353 leaf = path->nodes[0]; 2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2355 2356 fi = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2359 2360 if (relink_is_mergable(leaf, fi, new->bytenr) && 2361 extent_len + found_key.offset == start) { 2362 btrfs_set_file_extent_num_bytes(leaf, fi, 2363 extent_len + len); 2364 btrfs_mark_buffer_dirty(leaf); 2365 inode_add_bytes(inode, len); 2366 2367 ret = 1; 2368 goto out_free_path; 2369 } else { 2370 merge = false; 2371 btrfs_release_path(path); 2372 goto again; 2373 } 2374 } 2375 2376 ret = btrfs_insert_empty_item(trans, root, path, &key, 2377 sizeof(*extent)); 2378 if (ret) { 2379 btrfs_abort_transaction(trans, root, ret); 2380 goto out_free_path; 2381 } 2382 2383 leaf = path->nodes[0]; 2384 item = btrfs_item_ptr(leaf, path->slots[0], 2385 struct btrfs_file_extent_item); 2386 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2387 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2388 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2389 btrfs_set_file_extent_num_bytes(leaf, item, len); 2390 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2391 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2392 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2393 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2394 btrfs_set_file_extent_encryption(leaf, item, 0); 2395 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2396 2397 btrfs_mark_buffer_dirty(leaf); 2398 inode_add_bytes(inode, len); 2399 btrfs_release_path(path); 2400 2401 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2402 new->disk_len, 0, 2403 backref->root_id, backref->inum, 2404 new->file_pos, 0); /* start - extent_offset */ 2405 if (ret) { 2406 btrfs_abort_transaction(trans, root, ret); 2407 goto out_free_path; 2408 } 2409 2410 ret = 1; 2411 out_free_path: 2412 btrfs_release_path(path); 2413 path->leave_spinning = 0; 2414 btrfs_end_transaction(trans, root); 2415 out_unlock: 2416 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2417 &cached, GFP_NOFS); 2418 iput(inode); 2419 return ret; 2420 } 2421 2422 static void relink_file_extents(struct new_sa_defrag_extent *new) 2423 { 2424 struct btrfs_path *path; 2425 struct old_sa_defrag_extent *old, *tmp; 2426 struct sa_defrag_extent_backref *backref; 2427 struct sa_defrag_extent_backref *prev = NULL; 2428 struct inode *inode; 2429 struct btrfs_root *root; 2430 struct rb_node *node; 2431 int ret; 2432 2433 inode = new->inode; 2434 root = BTRFS_I(inode)->root; 2435 2436 path = btrfs_alloc_path(); 2437 if (!path) 2438 return; 2439 2440 if (!record_extent_backrefs(path, new)) { 2441 btrfs_free_path(path); 2442 goto out; 2443 } 2444 btrfs_release_path(path); 2445 2446 while (1) { 2447 node = rb_first(&new->root); 2448 if (!node) 2449 break; 2450 rb_erase(node, &new->root); 2451 2452 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2453 2454 ret = relink_extent_backref(path, prev, backref); 2455 WARN_ON(ret < 0); 2456 2457 kfree(prev); 2458 2459 if (ret == 1) 2460 prev = backref; 2461 else 2462 prev = NULL; 2463 cond_resched(); 2464 } 2465 kfree(prev); 2466 2467 btrfs_free_path(path); 2468 2469 list_for_each_entry_safe(old, tmp, &new->head, list) { 2470 list_del(&old->list); 2471 kfree(old); 2472 } 2473 out: 2474 atomic_dec(&root->fs_info->defrag_running); 2475 wake_up(&root->fs_info->transaction_wait); 2476 2477 kfree(new); 2478 } 2479 2480 static struct new_sa_defrag_extent * 2481 record_old_file_extents(struct inode *inode, 2482 struct btrfs_ordered_extent *ordered) 2483 { 2484 struct btrfs_root *root = BTRFS_I(inode)->root; 2485 struct btrfs_path *path; 2486 struct btrfs_key key; 2487 struct old_sa_defrag_extent *old, *tmp; 2488 struct new_sa_defrag_extent *new; 2489 int ret; 2490 2491 new = kmalloc(sizeof(*new), GFP_NOFS); 2492 if (!new) 2493 return NULL; 2494 2495 new->inode = inode; 2496 new->file_pos = ordered->file_offset; 2497 new->len = ordered->len; 2498 new->bytenr = ordered->start; 2499 new->disk_len = ordered->disk_len; 2500 new->compress_type = ordered->compress_type; 2501 new->root = RB_ROOT; 2502 INIT_LIST_HEAD(&new->head); 2503 2504 path = btrfs_alloc_path(); 2505 if (!path) 2506 goto out_kfree; 2507 2508 key.objectid = btrfs_ino(inode); 2509 key.type = BTRFS_EXTENT_DATA_KEY; 2510 key.offset = new->file_pos; 2511 2512 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2513 if (ret < 0) 2514 goto out_free_path; 2515 if (ret > 0 && path->slots[0] > 0) 2516 path->slots[0]--; 2517 2518 /* find out all the old extents for the file range */ 2519 while (1) { 2520 struct btrfs_file_extent_item *extent; 2521 struct extent_buffer *l; 2522 int slot; 2523 u64 num_bytes; 2524 u64 offset; 2525 u64 end; 2526 u64 disk_bytenr; 2527 u64 extent_offset; 2528 2529 l = path->nodes[0]; 2530 slot = path->slots[0]; 2531 2532 if (slot >= btrfs_header_nritems(l)) { 2533 ret = btrfs_next_leaf(root, path); 2534 if (ret < 0) 2535 goto out_free_list; 2536 else if (ret > 0) 2537 break; 2538 continue; 2539 } 2540 2541 btrfs_item_key_to_cpu(l, &key, slot); 2542 2543 if (key.objectid != btrfs_ino(inode)) 2544 break; 2545 if (key.type != BTRFS_EXTENT_DATA_KEY) 2546 break; 2547 if (key.offset >= new->file_pos + new->len) 2548 break; 2549 2550 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2551 2552 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2553 if (key.offset + num_bytes < new->file_pos) 2554 goto next; 2555 2556 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2557 if (!disk_bytenr) 2558 goto next; 2559 2560 extent_offset = btrfs_file_extent_offset(l, extent); 2561 2562 old = kmalloc(sizeof(*old), GFP_NOFS); 2563 if (!old) 2564 goto out_free_list; 2565 2566 offset = max(new->file_pos, key.offset); 2567 end = min(new->file_pos + new->len, key.offset + num_bytes); 2568 2569 old->bytenr = disk_bytenr; 2570 old->extent_offset = extent_offset; 2571 old->offset = offset - key.offset; 2572 old->len = end - offset; 2573 old->new = new; 2574 old->count = 0; 2575 list_add_tail(&old->list, &new->head); 2576 next: 2577 path->slots[0]++; 2578 cond_resched(); 2579 } 2580 2581 btrfs_free_path(path); 2582 atomic_inc(&root->fs_info->defrag_running); 2583 2584 return new; 2585 2586 out_free_list: 2587 list_for_each_entry_safe(old, tmp, &new->head, list) { 2588 list_del(&old->list); 2589 kfree(old); 2590 } 2591 out_free_path: 2592 btrfs_free_path(path); 2593 out_kfree: 2594 kfree(new); 2595 return NULL; 2596 } 2597 2598 /* 2599 * helper function for btrfs_finish_ordered_io, this 2600 * just reads in some of the csum leaves to prime them into ram 2601 * before we start the transaction. It limits the amount of btree 2602 * reads required while inside the transaction. 2603 */ 2604 /* as ordered data IO finishes, this gets called so we can finish 2605 * an ordered extent if the range of bytes in the file it covers are 2606 * fully written. 2607 */ 2608 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2609 { 2610 struct inode *inode = ordered_extent->inode; 2611 struct btrfs_root *root = BTRFS_I(inode)->root; 2612 struct btrfs_trans_handle *trans = NULL; 2613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2614 struct extent_state *cached_state = NULL; 2615 struct new_sa_defrag_extent *new = NULL; 2616 int compress_type = 0; 2617 int ret; 2618 bool nolock; 2619 2620 nolock = btrfs_is_free_space_inode(inode); 2621 2622 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2623 ret = -EIO; 2624 goto out; 2625 } 2626 2627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2628 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2629 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2630 if (nolock) 2631 trans = btrfs_join_transaction_nolock(root); 2632 else 2633 trans = btrfs_join_transaction(root); 2634 if (IS_ERR(trans)) { 2635 ret = PTR_ERR(trans); 2636 trans = NULL; 2637 goto out; 2638 } 2639 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2640 ret = btrfs_update_inode_fallback(trans, root, inode); 2641 if (ret) /* -ENOMEM or corruption */ 2642 btrfs_abort_transaction(trans, root, ret); 2643 goto out; 2644 } 2645 2646 lock_extent_bits(io_tree, ordered_extent->file_offset, 2647 ordered_extent->file_offset + ordered_extent->len - 1, 2648 0, &cached_state); 2649 2650 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2651 ordered_extent->file_offset + ordered_extent->len - 1, 2652 EXTENT_DEFRAG, 1, cached_state); 2653 if (ret) { 2654 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2655 if (last_snapshot >= BTRFS_I(inode)->generation) 2656 /* the inode is shared */ 2657 new = record_old_file_extents(inode, ordered_extent); 2658 2659 clear_extent_bit(io_tree, ordered_extent->file_offset, 2660 ordered_extent->file_offset + ordered_extent->len - 1, 2661 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2662 } 2663 2664 if (nolock) 2665 trans = btrfs_join_transaction_nolock(root); 2666 else 2667 trans = btrfs_join_transaction(root); 2668 if (IS_ERR(trans)) { 2669 ret = PTR_ERR(trans); 2670 trans = NULL; 2671 goto out_unlock; 2672 } 2673 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2674 2675 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2676 compress_type = ordered_extent->compress_type; 2677 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2678 BUG_ON(compress_type); 2679 ret = btrfs_mark_extent_written(trans, inode, 2680 ordered_extent->file_offset, 2681 ordered_extent->file_offset + 2682 ordered_extent->len); 2683 } else { 2684 BUG_ON(root == root->fs_info->tree_root); 2685 ret = insert_reserved_file_extent(trans, inode, 2686 ordered_extent->file_offset, 2687 ordered_extent->start, 2688 ordered_extent->disk_len, 2689 ordered_extent->len, 2690 ordered_extent->len, 2691 compress_type, 0, 0, 2692 BTRFS_FILE_EXTENT_REG); 2693 } 2694 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2695 ordered_extent->file_offset, ordered_extent->len, 2696 trans->transid); 2697 if (ret < 0) { 2698 btrfs_abort_transaction(trans, root, ret); 2699 goto out_unlock; 2700 } 2701 2702 add_pending_csums(trans, inode, ordered_extent->file_offset, 2703 &ordered_extent->list); 2704 2705 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2706 ret = btrfs_update_inode_fallback(trans, root, inode); 2707 if (ret) { /* -ENOMEM or corruption */ 2708 btrfs_abort_transaction(trans, root, ret); 2709 goto out_unlock; 2710 } 2711 ret = 0; 2712 out_unlock: 2713 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2714 ordered_extent->file_offset + 2715 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2716 out: 2717 if (root != root->fs_info->tree_root) 2718 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2719 if (trans) 2720 btrfs_end_transaction(trans, root); 2721 2722 if (ret) { 2723 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2724 ordered_extent->file_offset + 2725 ordered_extent->len - 1, NULL, GFP_NOFS); 2726 2727 /* 2728 * If the ordered extent had an IOERR or something else went 2729 * wrong we need to return the space for this ordered extent 2730 * back to the allocator. 2731 */ 2732 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2733 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2734 btrfs_free_reserved_extent(root, ordered_extent->start, 2735 ordered_extent->disk_len); 2736 } 2737 2738 2739 /* 2740 * This needs to be done to make sure anybody waiting knows we are done 2741 * updating everything for this ordered extent. 2742 */ 2743 btrfs_remove_ordered_extent(inode, ordered_extent); 2744 2745 /* for snapshot-aware defrag */ 2746 if (new) 2747 relink_file_extents(new); 2748 2749 /* once for us */ 2750 btrfs_put_ordered_extent(ordered_extent); 2751 /* once for the tree */ 2752 btrfs_put_ordered_extent(ordered_extent); 2753 2754 return ret; 2755 } 2756 2757 static void finish_ordered_fn(struct btrfs_work *work) 2758 { 2759 struct btrfs_ordered_extent *ordered_extent; 2760 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2761 btrfs_finish_ordered_io(ordered_extent); 2762 } 2763 2764 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2765 struct extent_state *state, int uptodate) 2766 { 2767 struct inode *inode = page->mapping->host; 2768 struct btrfs_root *root = BTRFS_I(inode)->root; 2769 struct btrfs_ordered_extent *ordered_extent = NULL; 2770 struct btrfs_workers *workers; 2771 2772 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2773 2774 ClearPagePrivate2(page); 2775 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2776 end - start + 1, uptodate)) 2777 return 0; 2778 2779 ordered_extent->work.func = finish_ordered_fn; 2780 ordered_extent->work.flags = 0; 2781 2782 if (btrfs_is_free_space_inode(inode)) 2783 workers = &root->fs_info->endio_freespace_worker; 2784 else 2785 workers = &root->fs_info->endio_write_workers; 2786 btrfs_queue_worker(workers, &ordered_extent->work); 2787 2788 return 0; 2789 } 2790 2791 /* 2792 * when reads are done, we need to check csums to verify the data is correct 2793 * if there's a match, we allow the bio to finish. If not, the code in 2794 * extent_io.c will try to find good copies for us. 2795 */ 2796 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2797 struct extent_state *state, int mirror) 2798 { 2799 size_t offset = start - page_offset(page); 2800 struct inode *inode = page->mapping->host; 2801 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2802 char *kaddr; 2803 u64 private = ~(u32)0; 2804 int ret; 2805 struct btrfs_root *root = BTRFS_I(inode)->root; 2806 u32 csum = ~(u32)0; 2807 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2808 DEFAULT_RATELIMIT_BURST); 2809 2810 if (PageChecked(page)) { 2811 ClearPageChecked(page); 2812 goto good; 2813 } 2814 2815 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2816 goto good; 2817 2818 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2819 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2820 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2821 GFP_NOFS); 2822 return 0; 2823 } 2824 2825 if (state && state->start == start) { 2826 private = state->private; 2827 ret = 0; 2828 } else { 2829 ret = get_state_private(io_tree, start, &private); 2830 } 2831 kaddr = kmap_atomic(page); 2832 if (ret) 2833 goto zeroit; 2834 2835 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2836 btrfs_csum_final(csum, (char *)&csum); 2837 if (csum != private) 2838 goto zeroit; 2839 2840 kunmap_atomic(kaddr); 2841 good: 2842 return 0; 2843 2844 zeroit: 2845 if (__ratelimit(&_rs)) 2846 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu", 2847 (unsigned long long)btrfs_ino(page->mapping->host), 2848 (unsigned long long)start, csum, 2849 (unsigned long long)private); 2850 memset(kaddr + offset, 1, end - start + 1); 2851 flush_dcache_page(page); 2852 kunmap_atomic(kaddr); 2853 if (private == 0) 2854 return 0; 2855 return -EIO; 2856 } 2857 2858 struct delayed_iput { 2859 struct list_head list; 2860 struct inode *inode; 2861 }; 2862 2863 /* JDM: If this is fs-wide, why can't we add a pointer to 2864 * btrfs_inode instead and avoid the allocation? */ 2865 void btrfs_add_delayed_iput(struct inode *inode) 2866 { 2867 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2868 struct delayed_iput *delayed; 2869 2870 if (atomic_add_unless(&inode->i_count, -1, 1)) 2871 return; 2872 2873 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2874 delayed->inode = inode; 2875 2876 spin_lock(&fs_info->delayed_iput_lock); 2877 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2878 spin_unlock(&fs_info->delayed_iput_lock); 2879 } 2880 2881 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2882 { 2883 LIST_HEAD(list); 2884 struct btrfs_fs_info *fs_info = root->fs_info; 2885 struct delayed_iput *delayed; 2886 int empty; 2887 2888 spin_lock(&fs_info->delayed_iput_lock); 2889 empty = list_empty(&fs_info->delayed_iputs); 2890 spin_unlock(&fs_info->delayed_iput_lock); 2891 if (empty) 2892 return; 2893 2894 spin_lock(&fs_info->delayed_iput_lock); 2895 list_splice_init(&fs_info->delayed_iputs, &list); 2896 spin_unlock(&fs_info->delayed_iput_lock); 2897 2898 while (!list_empty(&list)) { 2899 delayed = list_entry(list.next, struct delayed_iput, list); 2900 list_del(&delayed->list); 2901 iput(delayed->inode); 2902 kfree(delayed); 2903 } 2904 } 2905 2906 /* 2907 * This is called in transaction commit time. If there are no orphan 2908 * files in the subvolume, it removes orphan item and frees block_rsv 2909 * structure. 2910 */ 2911 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2912 struct btrfs_root *root) 2913 { 2914 struct btrfs_block_rsv *block_rsv; 2915 int ret; 2916 2917 if (atomic_read(&root->orphan_inodes) || 2918 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2919 return; 2920 2921 spin_lock(&root->orphan_lock); 2922 if (atomic_read(&root->orphan_inodes)) { 2923 spin_unlock(&root->orphan_lock); 2924 return; 2925 } 2926 2927 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2928 spin_unlock(&root->orphan_lock); 2929 return; 2930 } 2931 2932 block_rsv = root->orphan_block_rsv; 2933 root->orphan_block_rsv = NULL; 2934 spin_unlock(&root->orphan_lock); 2935 2936 if (root->orphan_item_inserted && 2937 btrfs_root_refs(&root->root_item) > 0) { 2938 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2939 root->root_key.objectid); 2940 BUG_ON(ret); 2941 root->orphan_item_inserted = 0; 2942 } 2943 2944 if (block_rsv) { 2945 WARN_ON(block_rsv->size > 0); 2946 btrfs_free_block_rsv(root, block_rsv); 2947 } 2948 } 2949 2950 /* 2951 * This creates an orphan entry for the given inode in case something goes 2952 * wrong in the middle of an unlink/truncate. 2953 * 2954 * NOTE: caller of this function should reserve 5 units of metadata for 2955 * this function. 2956 */ 2957 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2958 { 2959 struct btrfs_root *root = BTRFS_I(inode)->root; 2960 struct btrfs_block_rsv *block_rsv = NULL; 2961 int reserve = 0; 2962 int insert = 0; 2963 int ret; 2964 2965 if (!root->orphan_block_rsv) { 2966 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2967 if (!block_rsv) 2968 return -ENOMEM; 2969 } 2970 2971 spin_lock(&root->orphan_lock); 2972 if (!root->orphan_block_rsv) { 2973 root->orphan_block_rsv = block_rsv; 2974 } else if (block_rsv) { 2975 btrfs_free_block_rsv(root, block_rsv); 2976 block_rsv = NULL; 2977 } 2978 2979 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2980 &BTRFS_I(inode)->runtime_flags)) { 2981 #if 0 2982 /* 2983 * For proper ENOSPC handling, we should do orphan 2984 * cleanup when mounting. But this introduces backward 2985 * compatibility issue. 2986 */ 2987 if (!xchg(&root->orphan_item_inserted, 1)) 2988 insert = 2; 2989 else 2990 insert = 1; 2991 #endif 2992 insert = 1; 2993 atomic_inc(&root->orphan_inodes); 2994 } 2995 2996 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2997 &BTRFS_I(inode)->runtime_flags)) 2998 reserve = 1; 2999 spin_unlock(&root->orphan_lock); 3000 3001 /* grab metadata reservation from transaction handle */ 3002 if (reserve) { 3003 ret = btrfs_orphan_reserve_metadata(trans, inode); 3004 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3005 } 3006 3007 /* insert an orphan item to track this unlinked/truncated file */ 3008 if (insert >= 1) { 3009 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3010 if (ret && ret != -EEXIST) { 3011 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3012 &BTRFS_I(inode)->runtime_flags); 3013 btrfs_abort_transaction(trans, root, ret); 3014 return ret; 3015 } 3016 ret = 0; 3017 } 3018 3019 /* insert an orphan item to track subvolume contains orphan files */ 3020 if (insert >= 2) { 3021 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3022 root->root_key.objectid); 3023 if (ret && ret != -EEXIST) { 3024 btrfs_abort_transaction(trans, root, ret); 3025 return ret; 3026 } 3027 } 3028 return 0; 3029 } 3030 3031 /* 3032 * We have done the truncate/delete so we can go ahead and remove the orphan 3033 * item for this particular inode. 3034 */ 3035 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3036 struct inode *inode) 3037 { 3038 struct btrfs_root *root = BTRFS_I(inode)->root; 3039 int delete_item = 0; 3040 int release_rsv = 0; 3041 int ret = 0; 3042 3043 spin_lock(&root->orphan_lock); 3044 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3045 &BTRFS_I(inode)->runtime_flags)) 3046 delete_item = 1; 3047 3048 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3049 &BTRFS_I(inode)->runtime_flags)) 3050 release_rsv = 1; 3051 spin_unlock(&root->orphan_lock); 3052 3053 if (trans && delete_item) { 3054 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3055 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3056 } 3057 3058 if (release_rsv) { 3059 btrfs_orphan_release_metadata(inode); 3060 atomic_dec(&root->orphan_inodes); 3061 } 3062 3063 return 0; 3064 } 3065 3066 /* 3067 * this cleans up any orphans that may be left on the list from the last use 3068 * of this root. 3069 */ 3070 int btrfs_orphan_cleanup(struct btrfs_root *root) 3071 { 3072 struct btrfs_path *path; 3073 struct extent_buffer *leaf; 3074 struct btrfs_key key, found_key; 3075 struct btrfs_trans_handle *trans; 3076 struct inode *inode; 3077 u64 last_objectid = 0; 3078 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3079 3080 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3081 return 0; 3082 3083 path = btrfs_alloc_path(); 3084 if (!path) { 3085 ret = -ENOMEM; 3086 goto out; 3087 } 3088 path->reada = -1; 3089 3090 key.objectid = BTRFS_ORPHAN_OBJECTID; 3091 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3092 key.offset = (u64)-1; 3093 3094 while (1) { 3095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3096 if (ret < 0) 3097 goto out; 3098 3099 /* 3100 * if ret == 0 means we found what we were searching for, which 3101 * is weird, but possible, so only screw with path if we didn't 3102 * find the key and see if we have stuff that matches 3103 */ 3104 if (ret > 0) { 3105 ret = 0; 3106 if (path->slots[0] == 0) 3107 break; 3108 path->slots[0]--; 3109 } 3110 3111 /* pull out the item */ 3112 leaf = path->nodes[0]; 3113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3114 3115 /* make sure the item matches what we want */ 3116 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3117 break; 3118 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3119 break; 3120 3121 /* release the path since we're done with it */ 3122 btrfs_release_path(path); 3123 3124 /* 3125 * this is where we are basically btrfs_lookup, without the 3126 * crossing root thing. we store the inode number in the 3127 * offset of the orphan item. 3128 */ 3129 3130 if (found_key.offset == last_objectid) { 3131 btrfs_err(root->fs_info, 3132 "Error removing orphan entry, stopping orphan cleanup"); 3133 ret = -EINVAL; 3134 goto out; 3135 } 3136 3137 last_objectid = found_key.offset; 3138 3139 found_key.objectid = found_key.offset; 3140 found_key.type = BTRFS_INODE_ITEM_KEY; 3141 found_key.offset = 0; 3142 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3143 ret = PTR_RET(inode); 3144 if (ret && ret != -ESTALE) 3145 goto out; 3146 3147 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3148 struct btrfs_root *dead_root; 3149 struct btrfs_fs_info *fs_info = root->fs_info; 3150 int is_dead_root = 0; 3151 3152 /* 3153 * this is an orphan in the tree root. Currently these 3154 * could come from 2 sources: 3155 * a) a snapshot deletion in progress 3156 * b) a free space cache inode 3157 * We need to distinguish those two, as the snapshot 3158 * orphan must not get deleted. 3159 * find_dead_roots already ran before us, so if this 3160 * is a snapshot deletion, we should find the root 3161 * in the dead_roots list 3162 */ 3163 spin_lock(&fs_info->trans_lock); 3164 list_for_each_entry(dead_root, &fs_info->dead_roots, 3165 root_list) { 3166 if (dead_root->root_key.objectid == 3167 found_key.objectid) { 3168 is_dead_root = 1; 3169 break; 3170 } 3171 } 3172 spin_unlock(&fs_info->trans_lock); 3173 if (is_dead_root) { 3174 /* prevent this orphan from being found again */ 3175 key.offset = found_key.objectid - 1; 3176 continue; 3177 } 3178 } 3179 /* 3180 * Inode is already gone but the orphan item is still there, 3181 * kill the orphan item. 3182 */ 3183 if (ret == -ESTALE) { 3184 trans = btrfs_start_transaction(root, 1); 3185 if (IS_ERR(trans)) { 3186 ret = PTR_ERR(trans); 3187 goto out; 3188 } 3189 btrfs_debug(root->fs_info, "auto deleting %Lu", 3190 found_key.objectid); 3191 ret = btrfs_del_orphan_item(trans, root, 3192 found_key.objectid); 3193 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3194 btrfs_end_transaction(trans, root); 3195 continue; 3196 } 3197 3198 /* 3199 * add this inode to the orphan list so btrfs_orphan_del does 3200 * the proper thing when we hit it 3201 */ 3202 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3203 &BTRFS_I(inode)->runtime_flags); 3204 atomic_inc(&root->orphan_inodes); 3205 3206 /* if we have links, this was a truncate, lets do that */ 3207 if (inode->i_nlink) { 3208 if (!S_ISREG(inode->i_mode)) { 3209 WARN_ON(1); 3210 iput(inode); 3211 continue; 3212 } 3213 nr_truncate++; 3214 3215 /* 1 for the orphan item deletion. */ 3216 trans = btrfs_start_transaction(root, 1); 3217 if (IS_ERR(trans)) { 3218 ret = PTR_ERR(trans); 3219 goto out; 3220 } 3221 ret = btrfs_orphan_add(trans, inode); 3222 btrfs_end_transaction(trans, root); 3223 if (ret) 3224 goto out; 3225 3226 ret = btrfs_truncate(inode); 3227 if (ret) 3228 btrfs_orphan_del(NULL, inode); 3229 } else { 3230 nr_unlink++; 3231 } 3232 3233 /* this will do delete_inode and everything for us */ 3234 iput(inode); 3235 if (ret) 3236 goto out; 3237 } 3238 /* release the path since we're done with it */ 3239 btrfs_release_path(path); 3240 3241 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3242 3243 if (root->orphan_block_rsv) 3244 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3245 (u64)-1); 3246 3247 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3248 trans = btrfs_join_transaction(root); 3249 if (!IS_ERR(trans)) 3250 btrfs_end_transaction(trans, root); 3251 } 3252 3253 if (nr_unlink) 3254 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3255 if (nr_truncate) 3256 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3257 3258 out: 3259 if (ret) 3260 btrfs_crit(root->fs_info, 3261 "could not do orphan cleanup %d", ret); 3262 btrfs_free_path(path); 3263 return ret; 3264 } 3265 3266 /* 3267 * very simple check to peek ahead in the leaf looking for xattrs. If we 3268 * don't find any xattrs, we know there can't be any acls. 3269 * 3270 * slot is the slot the inode is in, objectid is the objectid of the inode 3271 */ 3272 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3273 int slot, u64 objectid) 3274 { 3275 u32 nritems = btrfs_header_nritems(leaf); 3276 struct btrfs_key found_key; 3277 int scanned = 0; 3278 3279 slot++; 3280 while (slot < nritems) { 3281 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3282 3283 /* we found a different objectid, there must not be acls */ 3284 if (found_key.objectid != objectid) 3285 return 0; 3286 3287 /* we found an xattr, assume we've got an acl */ 3288 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 3289 return 1; 3290 3291 /* 3292 * we found a key greater than an xattr key, there can't 3293 * be any acls later on 3294 */ 3295 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3296 return 0; 3297 3298 slot++; 3299 scanned++; 3300 3301 /* 3302 * it goes inode, inode backrefs, xattrs, extents, 3303 * so if there are a ton of hard links to an inode there can 3304 * be a lot of backrefs. Don't waste time searching too hard, 3305 * this is just an optimization 3306 */ 3307 if (scanned >= 8) 3308 break; 3309 } 3310 /* we hit the end of the leaf before we found an xattr or 3311 * something larger than an xattr. We have to assume the inode 3312 * has acls 3313 */ 3314 return 1; 3315 } 3316 3317 /* 3318 * read an inode from the btree into the in-memory inode 3319 */ 3320 static void btrfs_read_locked_inode(struct inode *inode) 3321 { 3322 struct btrfs_path *path; 3323 struct extent_buffer *leaf; 3324 struct btrfs_inode_item *inode_item; 3325 struct btrfs_timespec *tspec; 3326 struct btrfs_root *root = BTRFS_I(inode)->root; 3327 struct btrfs_key location; 3328 int maybe_acls; 3329 u32 rdev; 3330 int ret; 3331 bool filled = false; 3332 3333 ret = btrfs_fill_inode(inode, &rdev); 3334 if (!ret) 3335 filled = true; 3336 3337 path = btrfs_alloc_path(); 3338 if (!path) 3339 goto make_bad; 3340 3341 path->leave_spinning = 1; 3342 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3343 3344 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3345 if (ret) 3346 goto make_bad; 3347 3348 leaf = path->nodes[0]; 3349 3350 if (filled) 3351 goto cache_acl; 3352 3353 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3354 struct btrfs_inode_item); 3355 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3356 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3357 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3358 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3359 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3360 3361 tspec = btrfs_inode_atime(inode_item); 3362 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3363 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3364 3365 tspec = btrfs_inode_mtime(inode_item); 3366 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3367 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3368 3369 tspec = btrfs_inode_ctime(inode_item); 3370 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3371 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3372 3373 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3374 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3375 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3376 3377 /* 3378 * If we were modified in the current generation and evicted from memory 3379 * and then re-read we need to do a full sync since we don't have any 3380 * idea about which extents were modified before we were evicted from 3381 * cache. 3382 */ 3383 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3384 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3385 &BTRFS_I(inode)->runtime_flags); 3386 3387 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3388 inode->i_generation = BTRFS_I(inode)->generation; 3389 inode->i_rdev = 0; 3390 rdev = btrfs_inode_rdev(leaf, inode_item); 3391 3392 BTRFS_I(inode)->index_cnt = (u64)-1; 3393 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3394 cache_acl: 3395 /* 3396 * try to precache a NULL acl entry for files that don't have 3397 * any xattrs or acls 3398 */ 3399 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3400 btrfs_ino(inode)); 3401 if (!maybe_acls) 3402 cache_no_acl(inode); 3403 3404 btrfs_free_path(path); 3405 3406 switch (inode->i_mode & S_IFMT) { 3407 case S_IFREG: 3408 inode->i_mapping->a_ops = &btrfs_aops; 3409 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3410 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3411 inode->i_fop = &btrfs_file_operations; 3412 inode->i_op = &btrfs_file_inode_operations; 3413 break; 3414 case S_IFDIR: 3415 inode->i_fop = &btrfs_dir_file_operations; 3416 if (root == root->fs_info->tree_root) 3417 inode->i_op = &btrfs_dir_ro_inode_operations; 3418 else 3419 inode->i_op = &btrfs_dir_inode_operations; 3420 break; 3421 case S_IFLNK: 3422 inode->i_op = &btrfs_symlink_inode_operations; 3423 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3424 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3425 break; 3426 default: 3427 inode->i_op = &btrfs_special_inode_operations; 3428 init_special_inode(inode, inode->i_mode, rdev); 3429 break; 3430 } 3431 3432 btrfs_update_iflags(inode); 3433 return; 3434 3435 make_bad: 3436 btrfs_free_path(path); 3437 make_bad_inode(inode); 3438 } 3439 3440 /* 3441 * given a leaf and an inode, copy the inode fields into the leaf 3442 */ 3443 static void fill_inode_item(struct btrfs_trans_handle *trans, 3444 struct extent_buffer *leaf, 3445 struct btrfs_inode_item *item, 3446 struct inode *inode) 3447 { 3448 struct btrfs_map_token token; 3449 3450 btrfs_init_map_token(&token); 3451 3452 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3453 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3454 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3455 &token); 3456 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3457 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3458 3459 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3460 inode->i_atime.tv_sec, &token); 3461 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3462 inode->i_atime.tv_nsec, &token); 3463 3464 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3465 inode->i_mtime.tv_sec, &token); 3466 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3467 inode->i_mtime.tv_nsec, &token); 3468 3469 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3470 inode->i_ctime.tv_sec, &token); 3471 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3472 inode->i_ctime.tv_nsec, &token); 3473 3474 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3475 &token); 3476 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3477 &token); 3478 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3479 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3480 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3481 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3482 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3483 } 3484 3485 /* 3486 * copy everything in the in-memory inode into the btree. 3487 */ 3488 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3489 struct btrfs_root *root, struct inode *inode) 3490 { 3491 struct btrfs_inode_item *inode_item; 3492 struct btrfs_path *path; 3493 struct extent_buffer *leaf; 3494 int ret; 3495 3496 path = btrfs_alloc_path(); 3497 if (!path) 3498 return -ENOMEM; 3499 3500 path->leave_spinning = 1; 3501 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3502 1); 3503 if (ret) { 3504 if (ret > 0) 3505 ret = -ENOENT; 3506 goto failed; 3507 } 3508 3509 btrfs_unlock_up_safe(path, 1); 3510 leaf = path->nodes[0]; 3511 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3512 struct btrfs_inode_item); 3513 3514 fill_inode_item(trans, leaf, inode_item, inode); 3515 btrfs_mark_buffer_dirty(leaf); 3516 btrfs_set_inode_last_trans(trans, inode); 3517 ret = 0; 3518 failed: 3519 btrfs_free_path(path); 3520 return ret; 3521 } 3522 3523 /* 3524 * copy everything in the in-memory inode into the btree. 3525 */ 3526 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, struct inode *inode) 3528 { 3529 int ret; 3530 3531 /* 3532 * If the inode is a free space inode, we can deadlock during commit 3533 * if we put it into the delayed code. 3534 * 3535 * The data relocation inode should also be directly updated 3536 * without delay 3537 */ 3538 if (!btrfs_is_free_space_inode(inode) 3539 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3540 btrfs_update_root_times(trans, root); 3541 3542 ret = btrfs_delayed_update_inode(trans, root, inode); 3543 if (!ret) 3544 btrfs_set_inode_last_trans(trans, inode); 3545 return ret; 3546 } 3547 3548 return btrfs_update_inode_item(trans, root, inode); 3549 } 3550 3551 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3552 struct btrfs_root *root, 3553 struct inode *inode) 3554 { 3555 int ret; 3556 3557 ret = btrfs_update_inode(trans, root, inode); 3558 if (ret == -ENOSPC) 3559 return btrfs_update_inode_item(trans, root, inode); 3560 return ret; 3561 } 3562 3563 /* 3564 * unlink helper that gets used here in inode.c and in the tree logging 3565 * recovery code. It remove a link in a directory with a given name, and 3566 * also drops the back refs in the inode to the directory 3567 */ 3568 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3569 struct btrfs_root *root, 3570 struct inode *dir, struct inode *inode, 3571 const char *name, int name_len) 3572 { 3573 struct btrfs_path *path; 3574 int ret = 0; 3575 struct extent_buffer *leaf; 3576 struct btrfs_dir_item *di; 3577 struct btrfs_key key; 3578 u64 index; 3579 u64 ino = btrfs_ino(inode); 3580 u64 dir_ino = btrfs_ino(dir); 3581 3582 path = btrfs_alloc_path(); 3583 if (!path) { 3584 ret = -ENOMEM; 3585 goto out; 3586 } 3587 3588 path->leave_spinning = 1; 3589 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3590 name, name_len, -1); 3591 if (IS_ERR(di)) { 3592 ret = PTR_ERR(di); 3593 goto err; 3594 } 3595 if (!di) { 3596 ret = -ENOENT; 3597 goto err; 3598 } 3599 leaf = path->nodes[0]; 3600 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3601 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3602 if (ret) 3603 goto err; 3604 btrfs_release_path(path); 3605 3606 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3607 dir_ino, &index); 3608 if (ret) { 3609 btrfs_info(root->fs_info, 3610 "failed to delete reference to %.*s, inode %llu parent %llu", 3611 name_len, name, 3612 (unsigned long long)ino, (unsigned long long)dir_ino); 3613 btrfs_abort_transaction(trans, root, ret); 3614 goto err; 3615 } 3616 3617 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3618 if (ret) { 3619 btrfs_abort_transaction(trans, root, ret); 3620 goto err; 3621 } 3622 3623 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3624 inode, dir_ino); 3625 if (ret != 0 && ret != -ENOENT) { 3626 btrfs_abort_transaction(trans, root, ret); 3627 goto err; 3628 } 3629 3630 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3631 dir, index); 3632 if (ret == -ENOENT) 3633 ret = 0; 3634 else if (ret) 3635 btrfs_abort_transaction(trans, root, ret); 3636 err: 3637 btrfs_free_path(path); 3638 if (ret) 3639 goto out; 3640 3641 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3642 inode_inc_iversion(inode); 3643 inode_inc_iversion(dir); 3644 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3645 ret = btrfs_update_inode(trans, root, dir); 3646 out: 3647 return ret; 3648 } 3649 3650 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3651 struct btrfs_root *root, 3652 struct inode *dir, struct inode *inode, 3653 const char *name, int name_len) 3654 { 3655 int ret; 3656 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3657 if (!ret) { 3658 btrfs_drop_nlink(inode); 3659 ret = btrfs_update_inode(trans, root, inode); 3660 } 3661 return ret; 3662 } 3663 3664 3665 /* helper to check if there is any shared block in the path */ 3666 static int check_path_shared(struct btrfs_root *root, 3667 struct btrfs_path *path) 3668 { 3669 struct extent_buffer *eb; 3670 int level; 3671 u64 refs = 1; 3672 3673 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 3674 int ret; 3675 3676 if (!path->nodes[level]) 3677 break; 3678 eb = path->nodes[level]; 3679 if (!btrfs_block_can_be_shared(root, eb)) 3680 continue; 3681 ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1, 3682 &refs, NULL); 3683 if (refs > 1) 3684 return 1; 3685 } 3686 return 0; 3687 } 3688 3689 /* 3690 * helper to start transaction for unlink and rmdir. 3691 * 3692 * unlink and rmdir are special in btrfs, they do not always free space. 3693 * so in enospc case, we should make sure they will free space before 3694 * allowing them to use the global metadata reservation. 3695 */ 3696 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 3697 struct dentry *dentry) 3698 { 3699 struct btrfs_trans_handle *trans; 3700 struct btrfs_root *root = BTRFS_I(dir)->root; 3701 struct btrfs_path *path; 3702 struct btrfs_dir_item *di; 3703 struct inode *inode = dentry->d_inode; 3704 u64 index; 3705 int check_link = 1; 3706 int err = -ENOSPC; 3707 int ret; 3708 u64 ino = btrfs_ino(inode); 3709 u64 dir_ino = btrfs_ino(dir); 3710 3711 /* 3712 * 1 for the possible orphan item 3713 * 1 for the dir item 3714 * 1 for the dir index 3715 * 1 for the inode ref 3716 * 1 for the inode 3717 */ 3718 trans = btrfs_start_transaction(root, 5); 3719 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3720 return trans; 3721 3722 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 3723 return ERR_PTR(-ENOSPC); 3724 3725 /* check if there is someone else holds reference */ 3726 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 3727 return ERR_PTR(-ENOSPC); 3728 3729 if (atomic_read(&inode->i_count) > 2) 3730 return ERR_PTR(-ENOSPC); 3731 3732 if (xchg(&root->fs_info->enospc_unlink, 1)) 3733 return ERR_PTR(-ENOSPC); 3734 3735 path = btrfs_alloc_path(); 3736 if (!path) { 3737 root->fs_info->enospc_unlink = 0; 3738 return ERR_PTR(-ENOMEM); 3739 } 3740 3741 /* 1 for the orphan item */ 3742 trans = btrfs_start_transaction(root, 1); 3743 if (IS_ERR(trans)) { 3744 btrfs_free_path(path); 3745 root->fs_info->enospc_unlink = 0; 3746 return trans; 3747 } 3748 3749 path->skip_locking = 1; 3750 path->search_commit_root = 1; 3751 3752 ret = btrfs_lookup_inode(trans, root, path, 3753 &BTRFS_I(dir)->location, 0); 3754 if (ret < 0) { 3755 err = ret; 3756 goto out; 3757 } 3758 if (ret == 0) { 3759 if (check_path_shared(root, path)) 3760 goto out; 3761 } else { 3762 check_link = 0; 3763 } 3764 btrfs_release_path(path); 3765 3766 ret = btrfs_lookup_inode(trans, root, path, 3767 &BTRFS_I(inode)->location, 0); 3768 if (ret < 0) { 3769 err = ret; 3770 goto out; 3771 } 3772 if (ret == 0) { 3773 if (check_path_shared(root, path)) 3774 goto out; 3775 } else { 3776 check_link = 0; 3777 } 3778 btrfs_release_path(path); 3779 3780 if (ret == 0 && S_ISREG(inode->i_mode)) { 3781 ret = btrfs_lookup_file_extent(trans, root, path, 3782 ino, (u64)-1, 0); 3783 if (ret < 0) { 3784 err = ret; 3785 goto out; 3786 } 3787 BUG_ON(ret == 0); /* Corruption */ 3788 if (check_path_shared(root, path)) 3789 goto out; 3790 btrfs_release_path(path); 3791 } 3792 3793 if (!check_link) { 3794 err = 0; 3795 goto out; 3796 } 3797 3798 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3799 dentry->d_name.name, dentry->d_name.len, 0); 3800 if (IS_ERR(di)) { 3801 err = PTR_ERR(di); 3802 goto out; 3803 } 3804 if (di) { 3805 if (check_path_shared(root, path)) 3806 goto out; 3807 } else { 3808 err = 0; 3809 goto out; 3810 } 3811 btrfs_release_path(path); 3812 3813 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3814 dentry->d_name.len, ino, dir_ino, 0, 3815 &index); 3816 if (ret) { 3817 err = ret; 3818 goto out; 3819 } 3820 3821 if (check_path_shared(root, path)) 3822 goto out; 3823 3824 btrfs_release_path(path); 3825 3826 /* 3827 * This is a commit root search, if we can lookup inode item and other 3828 * relative items in the commit root, it means the transaction of 3829 * dir/file creation has been committed, and the dir index item that we 3830 * delay to insert has also been inserted into the commit root. So 3831 * we needn't worry about the delayed insertion of the dir index item 3832 * here. 3833 */ 3834 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3835 dentry->d_name.name, dentry->d_name.len, 0); 3836 if (IS_ERR(di)) { 3837 err = PTR_ERR(di); 3838 goto out; 3839 } 3840 BUG_ON(ret == -ENOENT); 3841 if (check_path_shared(root, path)) 3842 goto out; 3843 3844 err = 0; 3845 out: 3846 btrfs_free_path(path); 3847 /* Migrate the orphan reservation over */ 3848 if (!err) 3849 err = btrfs_block_rsv_migrate(trans->block_rsv, 3850 &root->fs_info->global_block_rsv, 3851 trans->bytes_reserved); 3852 3853 if (err) { 3854 btrfs_end_transaction(trans, root); 3855 root->fs_info->enospc_unlink = 0; 3856 return ERR_PTR(err); 3857 } 3858 3859 trans->block_rsv = &root->fs_info->global_block_rsv; 3860 return trans; 3861 } 3862 3863 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3864 struct btrfs_root *root) 3865 { 3866 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3867 btrfs_block_rsv_release(root, trans->block_rsv, 3868 trans->bytes_reserved); 3869 trans->block_rsv = &root->fs_info->trans_block_rsv; 3870 BUG_ON(!root->fs_info->enospc_unlink); 3871 root->fs_info->enospc_unlink = 0; 3872 } 3873 btrfs_end_transaction(trans, root); 3874 } 3875 3876 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3877 { 3878 struct btrfs_root *root = BTRFS_I(dir)->root; 3879 struct btrfs_trans_handle *trans; 3880 struct inode *inode = dentry->d_inode; 3881 int ret; 3882 3883 trans = __unlink_start_trans(dir, dentry); 3884 if (IS_ERR(trans)) 3885 return PTR_ERR(trans); 3886 3887 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3888 3889 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3890 dentry->d_name.name, dentry->d_name.len); 3891 if (ret) 3892 goto out; 3893 3894 if (inode->i_nlink == 0) { 3895 ret = btrfs_orphan_add(trans, inode); 3896 if (ret) 3897 goto out; 3898 } 3899 3900 out: 3901 __unlink_end_trans(trans, root); 3902 btrfs_btree_balance_dirty(root); 3903 return ret; 3904 } 3905 3906 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3907 struct btrfs_root *root, 3908 struct inode *dir, u64 objectid, 3909 const char *name, int name_len) 3910 { 3911 struct btrfs_path *path; 3912 struct extent_buffer *leaf; 3913 struct btrfs_dir_item *di; 3914 struct btrfs_key key; 3915 u64 index; 3916 int ret; 3917 u64 dir_ino = btrfs_ino(dir); 3918 3919 path = btrfs_alloc_path(); 3920 if (!path) 3921 return -ENOMEM; 3922 3923 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3924 name, name_len, -1); 3925 if (IS_ERR_OR_NULL(di)) { 3926 if (!di) 3927 ret = -ENOENT; 3928 else 3929 ret = PTR_ERR(di); 3930 goto out; 3931 } 3932 3933 leaf = path->nodes[0]; 3934 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3935 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3936 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3937 if (ret) { 3938 btrfs_abort_transaction(trans, root, ret); 3939 goto out; 3940 } 3941 btrfs_release_path(path); 3942 3943 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3944 objectid, root->root_key.objectid, 3945 dir_ino, &index, name, name_len); 3946 if (ret < 0) { 3947 if (ret != -ENOENT) { 3948 btrfs_abort_transaction(trans, root, ret); 3949 goto out; 3950 } 3951 di = btrfs_search_dir_index_item(root, path, dir_ino, 3952 name, name_len); 3953 if (IS_ERR_OR_NULL(di)) { 3954 if (!di) 3955 ret = -ENOENT; 3956 else 3957 ret = PTR_ERR(di); 3958 btrfs_abort_transaction(trans, root, ret); 3959 goto out; 3960 } 3961 3962 leaf = path->nodes[0]; 3963 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3964 btrfs_release_path(path); 3965 index = key.offset; 3966 } 3967 btrfs_release_path(path); 3968 3969 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3970 if (ret) { 3971 btrfs_abort_transaction(trans, root, ret); 3972 goto out; 3973 } 3974 3975 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3976 inode_inc_iversion(dir); 3977 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3978 ret = btrfs_update_inode_fallback(trans, root, dir); 3979 if (ret) 3980 btrfs_abort_transaction(trans, root, ret); 3981 out: 3982 btrfs_free_path(path); 3983 return ret; 3984 } 3985 3986 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3987 { 3988 struct inode *inode = dentry->d_inode; 3989 int err = 0; 3990 struct btrfs_root *root = BTRFS_I(dir)->root; 3991 struct btrfs_trans_handle *trans; 3992 3993 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3994 return -ENOTEMPTY; 3995 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3996 return -EPERM; 3997 3998 trans = __unlink_start_trans(dir, dentry); 3999 if (IS_ERR(trans)) 4000 return PTR_ERR(trans); 4001 4002 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4003 err = btrfs_unlink_subvol(trans, root, dir, 4004 BTRFS_I(inode)->location.objectid, 4005 dentry->d_name.name, 4006 dentry->d_name.len); 4007 goto out; 4008 } 4009 4010 err = btrfs_orphan_add(trans, inode); 4011 if (err) 4012 goto out; 4013 4014 /* now the directory is empty */ 4015 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4016 dentry->d_name.name, dentry->d_name.len); 4017 if (!err) 4018 btrfs_i_size_write(inode, 0); 4019 out: 4020 __unlink_end_trans(trans, root); 4021 btrfs_btree_balance_dirty(root); 4022 4023 return err; 4024 } 4025 4026 /* 4027 * this can truncate away extent items, csum items and directory items. 4028 * It starts at a high offset and removes keys until it can't find 4029 * any higher than new_size 4030 * 4031 * csum items that cross the new i_size are truncated to the new size 4032 * as well. 4033 * 4034 * min_type is the minimum key type to truncate down to. If set to 0, this 4035 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4036 */ 4037 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4038 struct btrfs_root *root, 4039 struct inode *inode, 4040 u64 new_size, u32 min_type) 4041 { 4042 struct btrfs_path *path; 4043 struct extent_buffer *leaf; 4044 struct btrfs_file_extent_item *fi; 4045 struct btrfs_key key; 4046 struct btrfs_key found_key; 4047 u64 extent_start = 0; 4048 u64 extent_num_bytes = 0; 4049 u64 extent_offset = 0; 4050 u64 item_end = 0; 4051 u32 found_type = (u8)-1; 4052 int found_extent; 4053 int del_item; 4054 int pending_del_nr = 0; 4055 int pending_del_slot = 0; 4056 int extent_type = -1; 4057 int ret; 4058 int err = 0; 4059 u64 ino = btrfs_ino(inode); 4060 4061 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4062 4063 path = btrfs_alloc_path(); 4064 if (!path) 4065 return -ENOMEM; 4066 path->reada = -1; 4067 4068 /* 4069 * We want to drop from the next block forward in case this new size is 4070 * not block aligned since we will be keeping the last block of the 4071 * extent just the way it is. 4072 */ 4073 if (root->ref_cows || root == root->fs_info->tree_root) 4074 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4075 root->sectorsize), (u64)-1, 0); 4076 4077 /* 4078 * This function is also used to drop the items in the log tree before 4079 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4080 * it is used to drop the loged items. So we shouldn't kill the delayed 4081 * items. 4082 */ 4083 if (min_type == 0 && root == BTRFS_I(inode)->root) 4084 btrfs_kill_delayed_inode_items(inode); 4085 4086 key.objectid = ino; 4087 key.offset = (u64)-1; 4088 key.type = (u8)-1; 4089 4090 search_again: 4091 path->leave_spinning = 1; 4092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4093 if (ret < 0) { 4094 err = ret; 4095 goto out; 4096 } 4097 4098 if (ret > 0) { 4099 /* there are no items in the tree for us to truncate, we're 4100 * done 4101 */ 4102 if (path->slots[0] == 0) 4103 goto out; 4104 path->slots[0]--; 4105 } 4106 4107 while (1) { 4108 fi = NULL; 4109 leaf = path->nodes[0]; 4110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4111 found_type = btrfs_key_type(&found_key); 4112 4113 if (found_key.objectid != ino) 4114 break; 4115 4116 if (found_type < min_type) 4117 break; 4118 4119 item_end = found_key.offset; 4120 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4121 fi = btrfs_item_ptr(leaf, path->slots[0], 4122 struct btrfs_file_extent_item); 4123 extent_type = btrfs_file_extent_type(leaf, fi); 4124 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4125 item_end += 4126 btrfs_file_extent_num_bytes(leaf, fi); 4127 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4128 item_end += btrfs_file_extent_inline_len(leaf, 4129 fi); 4130 } 4131 item_end--; 4132 } 4133 if (found_type > min_type) { 4134 del_item = 1; 4135 } else { 4136 if (item_end < new_size) 4137 break; 4138 if (found_key.offset >= new_size) 4139 del_item = 1; 4140 else 4141 del_item = 0; 4142 } 4143 found_extent = 0; 4144 /* FIXME, shrink the extent if the ref count is only 1 */ 4145 if (found_type != BTRFS_EXTENT_DATA_KEY) 4146 goto delete; 4147 4148 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4149 u64 num_dec; 4150 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4151 if (!del_item) { 4152 u64 orig_num_bytes = 4153 btrfs_file_extent_num_bytes(leaf, fi); 4154 extent_num_bytes = ALIGN(new_size - 4155 found_key.offset, 4156 root->sectorsize); 4157 btrfs_set_file_extent_num_bytes(leaf, fi, 4158 extent_num_bytes); 4159 num_dec = (orig_num_bytes - 4160 extent_num_bytes); 4161 if (root->ref_cows && extent_start != 0) 4162 inode_sub_bytes(inode, num_dec); 4163 btrfs_mark_buffer_dirty(leaf); 4164 } else { 4165 extent_num_bytes = 4166 btrfs_file_extent_disk_num_bytes(leaf, 4167 fi); 4168 extent_offset = found_key.offset - 4169 btrfs_file_extent_offset(leaf, fi); 4170 4171 /* FIXME blocksize != 4096 */ 4172 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4173 if (extent_start != 0) { 4174 found_extent = 1; 4175 if (root->ref_cows) 4176 inode_sub_bytes(inode, num_dec); 4177 } 4178 } 4179 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4180 /* 4181 * we can't truncate inline items that have had 4182 * special encodings 4183 */ 4184 if (!del_item && 4185 btrfs_file_extent_compression(leaf, fi) == 0 && 4186 btrfs_file_extent_encryption(leaf, fi) == 0 && 4187 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4188 u32 size = new_size - found_key.offset; 4189 4190 if (root->ref_cows) { 4191 inode_sub_bytes(inode, item_end + 1 - 4192 new_size); 4193 } 4194 size = 4195 btrfs_file_extent_calc_inline_size(size); 4196 btrfs_truncate_item(root, path, size, 1); 4197 } else if (root->ref_cows) { 4198 inode_sub_bytes(inode, item_end + 1 - 4199 found_key.offset); 4200 } 4201 } 4202 delete: 4203 if (del_item) { 4204 if (!pending_del_nr) { 4205 /* no pending yet, add ourselves */ 4206 pending_del_slot = path->slots[0]; 4207 pending_del_nr = 1; 4208 } else if (pending_del_nr && 4209 path->slots[0] + 1 == pending_del_slot) { 4210 /* hop on the pending chunk */ 4211 pending_del_nr++; 4212 pending_del_slot = path->slots[0]; 4213 } else { 4214 BUG(); 4215 } 4216 } else { 4217 break; 4218 } 4219 if (found_extent && (root->ref_cows || 4220 root == root->fs_info->tree_root)) { 4221 btrfs_set_path_blocking(path); 4222 ret = btrfs_free_extent(trans, root, extent_start, 4223 extent_num_bytes, 0, 4224 btrfs_header_owner(leaf), 4225 ino, extent_offset, 0); 4226 BUG_ON(ret); 4227 } 4228 4229 if (found_type == BTRFS_INODE_ITEM_KEY) 4230 break; 4231 4232 if (path->slots[0] == 0 || 4233 path->slots[0] != pending_del_slot) { 4234 if (pending_del_nr) { 4235 ret = btrfs_del_items(trans, root, path, 4236 pending_del_slot, 4237 pending_del_nr); 4238 if (ret) { 4239 btrfs_abort_transaction(trans, 4240 root, ret); 4241 goto error; 4242 } 4243 pending_del_nr = 0; 4244 } 4245 btrfs_release_path(path); 4246 goto search_again; 4247 } else { 4248 path->slots[0]--; 4249 } 4250 } 4251 out: 4252 if (pending_del_nr) { 4253 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4254 pending_del_nr); 4255 if (ret) 4256 btrfs_abort_transaction(trans, root, ret); 4257 } 4258 error: 4259 btrfs_free_path(path); 4260 return err; 4261 } 4262 4263 /* 4264 * btrfs_truncate_page - read, zero a chunk and write a page 4265 * @inode - inode that we're zeroing 4266 * @from - the offset to start zeroing 4267 * @len - the length to zero, 0 to zero the entire range respective to the 4268 * offset 4269 * @front - zero up to the offset instead of from the offset on 4270 * 4271 * This will find the page for the "from" offset and cow the page and zero the 4272 * part we want to zero. This is used with truncate and hole punching. 4273 */ 4274 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4275 int front) 4276 { 4277 struct address_space *mapping = inode->i_mapping; 4278 struct btrfs_root *root = BTRFS_I(inode)->root; 4279 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4280 struct btrfs_ordered_extent *ordered; 4281 struct extent_state *cached_state = NULL; 4282 char *kaddr; 4283 u32 blocksize = root->sectorsize; 4284 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4285 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4286 struct page *page; 4287 gfp_t mask = btrfs_alloc_write_mask(mapping); 4288 int ret = 0; 4289 u64 page_start; 4290 u64 page_end; 4291 4292 if ((offset & (blocksize - 1)) == 0 && 4293 (!len || ((len & (blocksize - 1)) == 0))) 4294 goto out; 4295 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4296 if (ret) 4297 goto out; 4298 4299 again: 4300 page = find_or_create_page(mapping, index, mask); 4301 if (!page) { 4302 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4303 ret = -ENOMEM; 4304 goto out; 4305 } 4306 4307 page_start = page_offset(page); 4308 page_end = page_start + PAGE_CACHE_SIZE - 1; 4309 4310 if (!PageUptodate(page)) { 4311 ret = btrfs_readpage(NULL, page); 4312 lock_page(page); 4313 if (page->mapping != mapping) { 4314 unlock_page(page); 4315 page_cache_release(page); 4316 goto again; 4317 } 4318 if (!PageUptodate(page)) { 4319 ret = -EIO; 4320 goto out_unlock; 4321 } 4322 } 4323 wait_on_page_writeback(page); 4324 4325 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4326 set_page_extent_mapped(page); 4327 4328 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4329 if (ordered) { 4330 unlock_extent_cached(io_tree, page_start, page_end, 4331 &cached_state, GFP_NOFS); 4332 unlock_page(page); 4333 page_cache_release(page); 4334 btrfs_start_ordered_extent(inode, ordered, 1); 4335 btrfs_put_ordered_extent(ordered); 4336 goto again; 4337 } 4338 4339 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4340 EXTENT_DIRTY | EXTENT_DELALLOC | 4341 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4342 0, 0, &cached_state, GFP_NOFS); 4343 4344 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4345 &cached_state); 4346 if (ret) { 4347 unlock_extent_cached(io_tree, page_start, page_end, 4348 &cached_state, GFP_NOFS); 4349 goto out_unlock; 4350 } 4351 4352 if (offset != PAGE_CACHE_SIZE) { 4353 if (!len) 4354 len = PAGE_CACHE_SIZE - offset; 4355 kaddr = kmap(page); 4356 if (front) 4357 memset(kaddr, 0, offset); 4358 else 4359 memset(kaddr + offset, 0, len); 4360 flush_dcache_page(page); 4361 kunmap(page); 4362 } 4363 ClearPageChecked(page); 4364 set_page_dirty(page); 4365 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4366 GFP_NOFS); 4367 4368 out_unlock: 4369 if (ret) 4370 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4371 unlock_page(page); 4372 page_cache_release(page); 4373 out: 4374 return ret; 4375 } 4376 4377 /* 4378 * This function puts in dummy file extents for the area we're creating a hole 4379 * for. So if we are truncating this file to a larger size we need to insert 4380 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4381 * the range between oldsize and size 4382 */ 4383 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4384 { 4385 struct btrfs_trans_handle *trans; 4386 struct btrfs_root *root = BTRFS_I(inode)->root; 4387 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4388 struct extent_map *em = NULL; 4389 struct extent_state *cached_state = NULL; 4390 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4391 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4392 u64 block_end = ALIGN(size, root->sectorsize); 4393 u64 last_byte; 4394 u64 cur_offset; 4395 u64 hole_size; 4396 int err = 0; 4397 4398 if (size <= hole_start) 4399 return 0; 4400 4401 while (1) { 4402 struct btrfs_ordered_extent *ordered; 4403 btrfs_wait_ordered_range(inode, hole_start, 4404 block_end - hole_start); 4405 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4406 &cached_state); 4407 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4408 if (!ordered) 4409 break; 4410 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4411 &cached_state, GFP_NOFS); 4412 btrfs_put_ordered_extent(ordered); 4413 } 4414 4415 cur_offset = hole_start; 4416 while (1) { 4417 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4418 block_end - cur_offset, 0); 4419 if (IS_ERR(em)) { 4420 err = PTR_ERR(em); 4421 em = NULL; 4422 break; 4423 } 4424 last_byte = min(extent_map_end(em), block_end); 4425 last_byte = ALIGN(last_byte , root->sectorsize); 4426 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4427 struct extent_map *hole_em; 4428 hole_size = last_byte - cur_offset; 4429 4430 trans = btrfs_start_transaction(root, 3); 4431 if (IS_ERR(trans)) { 4432 err = PTR_ERR(trans); 4433 break; 4434 } 4435 4436 err = btrfs_drop_extents(trans, root, inode, 4437 cur_offset, 4438 cur_offset + hole_size, 1); 4439 if (err) { 4440 btrfs_abort_transaction(trans, root, err); 4441 btrfs_end_transaction(trans, root); 4442 break; 4443 } 4444 4445 err = btrfs_insert_file_extent(trans, root, 4446 btrfs_ino(inode), cur_offset, 0, 4447 0, hole_size, 0, hole_size, 4448 0, 0, 0); 4449 if (err) { 4450 btrfs_abort_transaction(trans, root, err); 4451 btrfs_end_transaction(trans, root); 4452 break; 4453 } 4454 4455 btrfs_drop_extent_cache(inode, cur_offset, 4456 cur_offset + hole_size - 1, 0); 4457 hole_em = alloc_extent_map(); 4458 if (!hole_em) { 4459 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4460 &BTRFS_I(inode)->runtime_flags); 4461 goto next; 4462 } 4463 hole_em->start = cur_offset; 4464 hole_em->len = hole_size; 4465 hole_em->orig_start = cur_offset; 4466 4467 hole_em->block_start = EXTENT_MAP_HOLE; 4468 hole_em->block_len = 0; 4469 hole_em->orig_block_len = 0; 4470 hole_em->ram_bytes = hole_size; 4471 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4472 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4473 hole_em->generation = trans->transid; 4474 4475 while (1) { 4476 write_lock(&em_tree->lock); 4477 err = add_extent_mapping(em_tree, hole_em, 1); 4478 write_unlock(&em_tree->lock); 4479 if (err != -EEXIST) 4480 break; 4481 btrfs_drop_extent_cache(inode, cur_offset, 4482 cur_offset + 4483 hole_size - 1, 0); 4484 } 4485 free_extent_map(hole_em); 4486 next: 4487 btrfs_update_inode(trans, root, inode); 4488 btrfs_end_transaction(trans, root); 4489 } 4490 free_extent_map(em); 4491 em = NULL; 4492 cur_offset = last_byte; 4493 if (cur_offset >= block_end) 4494 break; 4495 } 4496 4497 free_extent_map(em); 4498 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4499 GFP_NOFS); 4500 return err; 4501 } 4502 4503 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4504 { 4505 struct btrfs_root *root = BTRFS_I(inode)->root; 4506 struct btrfs_trans_handle *trans; 4507 loff_t oldsize = i_size_read(inode); 4508 loff_t newsize = attr->ia_size; 4509 int mask = attr->ia_valid; 4510 int ret; 4511 4512 if (newsize == oldsize) 4513 return 0; 4514 4515 /* 4516 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4517 * special case where we need to update the times despite not having 4518 * these flags set. For all other operations the VFS set these flags 4519 * explicitly if it wants a timestamp update. 4520 */ 4521 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4522 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4523 4524 if (newsize > oldsize) { 4525 truncate_pagecache(inode, oldsize, newsize); 4526 ret = btrfs_cont_expand(inode, oldsize, newsize); 4527 if (ret) 4528 return ret; 4529 4530 trans = btrfs_start_transaction(root, 1); 4531 if (IS_ERR(trans)) 4532 return PTR_ERR(trans); 4533 4534 i_size_write(inode, newsize); 4535 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4536 ret = btrfs_update_inode(trans, root, inode); 4537 btrfs_end_transaction(trans, root); 4538 } else { 4539 4540 /* 4541 * We're truncating a file that used to have good data down to 4542 * zero. Make sure it gets into the ordered flush list so that 4543 * any new writes get down to disk quickly. 4544 */ 4545 if (newsize == 0) 4546 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4547 &BTRFS_I(inode)->runtime_flags); 4548 4549 /* 4550 * 1 for the orphan item we're going to add 4551 * 1 for the orphan item deletion. 4552 */ 4553 trans = btrfs_start_transaction(root, 2); 4554 if (IS_ERR(trans)) 4555 return PTR_ERR(trans); 4556 4557 /* 4558 * We need to do this in case we fail at _any_ point during the 4559 * actual truncate. Once we do the truncate_setsize we could 4560 * invalidate pages which forces any outstanding ordered io to 4561 * be instantly completed which will give us extents that need 4562 * to be truncated. If we fail to get an orphan inode down we 4563 * could have left over extents that were never meant to live, 4564 * so we need to garuntee from this point on that everything 4565 * will be consistent. 4566 */ 4567 ret = btrfs_orphan_add(trans, inode); 4568 btrfs_end_transaction(trans, root); 4569 if (ret) 4570 return ret; 4571 4572 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4573 truncate_setsize(inode, newsize); 4574 4575 /* Disable nonlocked read DIO to avoid the end less truncate */ 4576 btrfs_inode_block_unlocked_dio(inode); 4577 inode_dio_wait(inode); 4578 btrfs_inode_resume_unlocked_dio(inode); 4579 4580 ret = btrfs_truncate(inode); 4581 if (ret && inode->i_nlink) 4582 btrfs_orphan_del(NULL, inode); 4583 } 4584 4585 return ret; 4586 } 4587 4588 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4589 { 4590 struct inode *inode = dentry->d_inode; 4591 struct btrfs_root *root = BTRFS_I(inode)->root; 4592 int err; 4593 4594 if (btrfs_root_readonly(root)) 4595 return -EROFS; 4596 4597 err = inode_change_ok(inode, attr); 4598 if (err) 4599 return err; 4600 4601 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4602 err = btrfs_setsize(inode, attr); 4603 if (err) 4604 return err; 4605 } 4606 4607 if (attr->ia_valid) { 4608 setattr_copy(inode, attr); 4609 inode_inc_iversion(inode); 4610 err = btrfs_dirty_inode(inode); 4611 4612 if (!err && attr->ia_valid & ATTR_MODE) 4613 err = btrfs_acl_chmod(inode); 4614 } 4615 4616 return err; 4617 } 4618 4619 void btrfs_evict_inode(struct inode *inode) 4620 { 4621 struct btrfs_trans_handle *trans; 4622 struct btrfs_root *root = BTRFS_I(inode)->root; 4623 struct btrfs_block_rsv *rsv, *global_rsv; 4624 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4625 int ret; 4626 4627 trace_btrfs_inode_evict(inode); 4628 4629 truncate_inode_pages(&inode->i_data, 0); 4630 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4631 btrfs_is_free_space_inode(inode))) 4632 goto no_delete; 4633 4634 if (is_bad_inode(inode)) { 4635 btrfs_orphan_del(NULL, inode); 4636 goto no_delete; 4637 } 4638 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4639 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4640 4641 if (root->fs_info->log_root_recovering) { 4642 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4643 &BTRFS_I(inode)->runtime_flags)); 4644 goto no_delete; 4645 } 4646 4647 if (inode->i_nlink > 0) { 4648 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4649 goto no_delete; 4650 } 4651 4652 ret = btrfs_commit_inode_delayed_inode(inode); 4653 if (ret) { 4654 btrfs_orphan_del(NULL, inode); 4655 goto no_delete; 4656 } 4657 4658 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4659 if (!rsv) { 4660 btrfs_orphan_del(NULL, inode); 4661 goto no_delete; 4662 } 4663 rsv->size = min_size; 4664 rsv->failfast = 1; 4665 global_rsv = &root->fs_info->global_block_rsv; 4666 4667 btrfs_i_size_write(inode, 0); 4668 4669 /* 4670 * This is a bit simpler than btrfs_truncate since we've already 4671 * reserved our space for our orphan item in the unlink, so we just 4672 * need to reserve some slack space in case we add bytes and update 4673 * inode item when doing the truncate. 4674 */ 4675 while (1) { 4676 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4677 BTRFS_RESERVE_FLUSH_LIMIT); 4678 4679 /* 4680 * Try and steal from the global reserve since we will 4681 * likely not use this space anyway, we want to try as 4682 * hard as possible to get this to work. 4683 */ 4684 if (ret) 4685 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4686 4687 if (ret) { 4688 btrfs_warn(root->fs_info, 4689 "Could not get space for a delete, will truncate on mount %d", 4690 ret); 4691 btrfs_orphan_del(NULL, inode); 4692 btrfs_free_block_rsv(root, rsv); 4693 goto no_delete; 4694 } 4695 4696 trans = btrfs_join_transaction(root); 4697 if (IS_ERR(trans)) { 4698 btrfs_orphan_del(NULL, inode); 4699 btrfs_free_block_rsv(root, rsv); 4700 goto no_delete; 4701 } 4702 4703 trans->block_rsv = rsv; 4704 4705 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4706 if (ret != -ENOSPC) 4707 break; 4708 4709 trans->block_rsv = &root->fs_info->trans_block_rsv; 4710 btrfs_end_transaction(trans, root); 4711 trans = NULL; 4712 btrfs_btree_balance_dirty(root); 4713 } 4714 4715 btrfs_free_block_rsv(root, rsv); 4716 4717 if (ret == 0) { 4718 trans->block_rsv = root->orphan_block_rsv; 4719 ret = btrfs_orphan_del(trans, inode); 4720 BUG_ON(ret); 4721 } 4722 4723 trans->block_rsv = &root->fs_info->trans_block_rsv; 4724 if (!(root == root->fs_info->tree_root || 4725 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4726 btrfs_return_ino(root, btrfs_ino(inode)); 4727 4728 btrfs_end_transaction(trans, root); 4729 btrfs_btree_balance_dirty(root); 4730 no_delete: 4731 btrfs_remove_delayed_node(inode); 4732 clear_inode(inode); 4733 return; 4734 } 4735 4736 /* 4737 * this returns the key found in the dir entry in the location pointer. 4738 * If no dir entries were found, location->objectid is 0. 4739 */ 4740 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4741 struct btrfs_key *location) 4742 { 4743 const char *name = dentry->d_name.name; 4744 int namelen = dentry->d_name.len; 4745 struct btrfs_dir_item *di; 4746 struct btrfs_path *path; 4747 struct btrfs_root *root = BTRFS_I(dir)->root; 4748 int ret = 0; 4749 4750 path = btrfs_alloc_path(); 4751 if (!path) 4752 return -ENOMEM; 4753 4754 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4755 namelen, 0); 4756 if (IS_ERR(di)) 4757 ret = PTR_ERR(di); 4758 4759 if (IS_ERR_OR_NULL(di)) 4760 goto out_err; 4761 4762 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4763 out: 4764 btrfs_free_path(path); 4765 return ret; 4766 out_err: 4767 location->objectid = 0; 4768 goto out; 4769 } 4770 4771 /* 4772 * when we hit a tree root in a directory, the btrfs part of the inode 4773 * needs to be changed to reflect the root directory of the tree root. This 4774 * is kind of like crossing a mount point. 4775 */ 4776 static int fixup_tree_root_location(struct btrfs_root *root, 4777 struct inode *dir, 4778 struct dentry *dentry, 4779 struct btrfs_key *location, 4780 struct btrfs_root **sub_root) 4781 { 4782 struct btrfs_path *path; 4783 struct btrfs_root *new_root; 4784 struct btrfs_root_ref *ref; 4785 struct extent_buffer *leaf; 4786 int ret; 4787 int err = 0; 4788 4789 path = btrfs_alloc_path(); 4790 if (!path) { 4791 err = -ENOMEM; 4792 goto out; 4793 } 4794 4795 err = -ENOENT; 4796 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4797 BTRFS_I(dir)->root->root_key.objectid, 4798 location->objectid); 4799 if (ret) { 4800 if (ret < 0) 4801 err = ret; 4802 goto out; 4803 } 4804 4805 leaf = path->nodes[0]; 4806 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4807 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4808 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4809 goto out; 4810 4811 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4812 (unsigned long)(ref + 1), 4813 dentry->d_name.len); 4814 if (ret) 4815 goto out; 4816 4817 btrfs_release_path(path); 4818 4819 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4820 if (IS_ERR(new_root)) { 4821 err = PTR_ERR(new_root); 4822 goto out; 4823 } 4824 4825 if (btrfs_root_refs(&new_root->root_item) == 0) { 4826 err = -ENOENT; 4827 goto out; 4828 } 4829 4830 *sub_root = new_root; 4831 location->objectid = btrfs_root_dirid(&new_root->root_item); 4832 location->type = BTRFS_INODE_ITEM_KEY; 4833 location->offset = 0; 4834 err = 0; 4835 out: 4836 btrfs_free_path(path); 4837 return err; 4838 } 4839 4840 static void inode_tree_add(struct inode *inode) 4841 { 4842 struct btrfs_root *root = BTRFS_I(inode)->root; 4843 struct btrfs_inode *entry; 4844 struct rb_node **p; 4845 struct rb_node *parent; 4846 u64 ino = btrfs_ino(inode); 4847 4848 if (inode_unhashed(inode)) 4849 return; 4850 again: 4851 parent = NULL; 4852 spin_lock(&root->inode_lock); 4853 p = &root->inode_tree.rb_node; 4854 while (*p) { 4855 parent = *p; 4856 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4857 4858 if (ino < btrfs_ino(&entry->vfs_inode)) 4859 p = &parent->rb_left; 4860 else if (ino > btrfs_ino(&entry->vfs_inode)) 4861 p = &parent->rb_right; 4862 else { 4863 WARN_ON(!(entry->vfs_inode.i_state & 4864 (I_WILL_FREE | I_FREEING))); 4865 rb_erase(parent, &root->inode_tree); 4866 RB_CLEAR_NODE(parent); 4867 spin_unlock(&root->inode_lock); 4868 goto again; 4869 } 4870 } 4871 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4872 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4873 spin_unlock(&root->inode_lock); 4874 } 4875 4876 static void inode_tree_del(struct inode *inode) 4877 { 4878 struct btrfs_root *root = BTRFS_I(inode)->root; 4879 int empty = 0; 4880 4881 spin_lock(&root->inode_lock); 4882 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4883 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4884 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4885 empty = RB_EMPTY_ROOT(&root->inode_tree); 4886 } 4887 spin_unlock(&root->inode_lock); 4888 4889 /* 4890 * Free space cache has inodes in the tree root, but the tree root has a 4891 * root_refs of 0, so this could end up dropping the tree root as a 4892 * snapshot, so we need the extra !root->fs_info->tree_root check to 4893 * make sure we don't drop it. 4894 */ 4895 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4896 root != root->fs_info->tree_root) { 4897 synchronize_srcu(&root->fs_info->subvol_srcu); 4898 spin_lock(&root->inode_lock); 4899 empty = RB_EMPTY_ROOT(&root->inode_tree); 4900 spin_unlock(&root->inode_lock); 4901 if (empty) 4902 btrfs_add_dead_root(root); 4903 } 4904 } 4905 4906 void btrfs_invalidate_inodes(struct btrfs_root *root) 4907 { 4908 struct rb_node *node; 4909 struct rb_node *prev; 4910 struct btrfs_inode *entry; 4911 struct inode *inode; 4912 u64 objectid = 0; 4913 4914 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4915 4916 spin_lock(&root->inode_lock); 4917 again: 4918 node = root->inode_tree.rb_node; 4919 prev = NULL; 4920 while (node) { 4921 prev = node; 4922 entry = rb_entry(node, struct btrfs_inode, rb_node); 4923 4924 if (objectid < btrfs_ino(&entry->vfs_inode)) 4925 node = node->rb_left; 4926 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4927 node = node->rb_right; 4928 else 4929 break; 4930 } 4931 if (!node) { 4932 while (prev) { 4933 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4934 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4935 node = prev; 4936 break; 4937 } 4938 prev = rb_next(prev); 4939 } 4940 } 4941 while (node) { 4942 entry = rb_entry(node, struct btrfs_inode, rb_node); 4943 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4944 inode = igrab(&entry->vfs_inode); 4945 if (inode) { 4946 spin_unlock(&root->inode_lock); 4947 if (atomic_read(&inode->i_count) > 1) 4948 d_prune_aliases(inode); 4949 /* 4950 * btrfs_drop_inode will have it removed from 4951 * the inode cache when its usage count 4952 * hits zero. 4953 */ 4954 iput(inode); 4955 cond_resched(); 4956 spin_lock(&root->inode_lock); 4957 goto again; 4958 } 4959 4960 if (cond_resched_lock(&root->inode_lock)) 4961 goto again; 4962 4963 node = rb_next(node); 4964 } 4965 spin_unlock(&root->inode_lock); 4966 } 4967 4968 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4969 { 4970 struct btrfs_iget_args *args = p; 4971 inode->i_ino = args->ino; 4972 BTRFS_I(inode)->root = args->root; 4973 return 0; 4974 } 4975 4976 static int btrfs_find_actor(struct inode *inode, void *opaque) 4977 { 4978 struct btrfs_iget_args *args = opaque; 4979 return args->ino == btrfs_ino(inode) && 4980 args->root == BTRFS_I(inode)->root; 4981 } 4982 4983 static struct inode *btrfs_iget_locked(struct super_block *s, 4984 u64 objectid, 4985 struct btrfs_root *root) 4986 { 4987 struct inode *inode; 4988 struct btrfs_iget_args args; 4989 args.ino = objectid; 4990 args.root = root; 4991 4992 inode = iget5_locked(s, objectid, btrfs_find_actor, 4993 btrfs_init_locked_inode, 4994 (void *)&args); 4995 return inode; 4996 } 4997 4998 /* Get an inode object given its location and corresponding root. 4999 * Returns in *is_new if the inode was read from disk 5000 */ 5001 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5002 struct btrfs_root *root, int *new) 5003 { 5004 struct inode *inode; 5005 5006 inode = btrfs_iget_locked(s, location->objectid, root); 5007 if (!inode) 5008 return ERR_PTR(-ENOMEM); 5009 5010 if (inode->i_state & I_NEW) { 5011 BTRFS_I(inode)->root = root; 5012 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 5013 btrfs_read_locked_inode(inode); 5014 if (!is_bad_inode(inode)) { 5015 inode_tree_add(inode); 5016 unlock_new_inode(inode); 5017 if (new) 5018 *new = 1; 5019 } else { 5020 unlock_new_inode(inode); 5021 iput(inode); 5022 inode = ERR_PTR(-ESTALE); 5023 } 5024 } 5025 5026 return inode; 5027 } 5028 5029 static struct inode *new_simple_dir(struct super_block *s, 5030 struct btrfs_key *key, 5031 struct btrfs_root *root) 5032 { 5033 struct inode *inode = new_inode(s); 5034 5035 if (!inode) 5036 return ERR_PTR(-ENOMEM); 5037 5038 BTRFS_I(inode)->root = root; 5039 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5040 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5041 5042 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5043 inode->i_op = &btrfs_dir_ro_inode_operations; 5044 inode->i_fop = &simple_dir_operations; 5045 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5046 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5047 5048 return inode; 5049 } 5050 5051 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5052 { 5053 struct inode *inode; 5054 struct btrfs_root *root = BTRFS_I(dir)->root; 5055 struct btrfs_root *sub_root = root; 5056 struct btrfs_key location; 5057 int index; 5058 int ret = 0; 5059 5060 if (dentry->d_name.len > BTRFS_NAME_LEN) 5061 return ERR_PTR(-ENAMETOOLONG); 5062 5063 ret = btrfs_inode_by_name(dir, dentry, &location); 5064 if (ret < 0) 5065 return ERR_PTR(ret); 5066 5067 if (location.objectid == 0) 5068 return NULL; 5069 5070 if (location.type == BTRFS_INODE_ITEM_KEY) { 5071 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5072 return inode; 5073 } 5074 5075 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5076 5077 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5078 ret = fixup_tree_root_location(root, dir, dentry, 5079 &location, &sub_root); 5080 if (ret < 0) { 5081 if (ret != -ENOENT) 5082 inode = ERR_PTR(ret); 5083 else 5084 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5085 } else { 5086 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5087 } 5088 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5089 5090 if (!IS_ERR(inode) && root != sub_root) { 5091 down_read(&root->fs_info->cleanup_work_sem); 5092 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5093 ret = btrfs_orphan_cleanup(sub_root); 5094 up_read(&root->fs_info->cleanup_work_sem); 5095 if (ret) 5096 inode = ERR_PTR(ret); 5097 } 5098 5099 return inode; 5100 } 5101 5102 static int btrfs_dentry_delete(const struct dentry *dentry) 5103 { 5104 struct btrfs_root *root; 5105 struct inode *inode = dentry->d_inode; 5106 5107 if (!inode && !IS_ROOT(dentry)) 5108 inode = dentry->d_parent->d_inode; 5109 5110 if (inode) { 5111 root = BTRFS_I(inode)->root; 5112 if (btrfs_root_refs(&root->root_item) == 0) 5113 return 1; 5114 5115 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5116 return 1; 5117 } 5118 return 0; 5119 } 5120 5121 static void btrfs_dentry_release(struct dentry *dentry) 5122 { 5123 if (dentry->d_fsdata) 5124 kfree(dentry->d_fsdata); 5125 } 5126 5127 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5128 unsigned int flags) 5129 { 5130 struct dentry *ret; 5131 5132 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 5133 return ret; 5134 } 5135 5136 unsigned char btrfs_filetype_table[] = { 5137 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5138 }; 5139 5140 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5141 { 5142 struct inode *inode = file_inode(file); 5143 struct btrfs_root *root = BTRFS_I(inode)->root; 5144 struct btrfs_item *item; 5145 struct btrfs_dir_item *di; 5146 struct btrfs_key key; 5147 struct btrfs_key found_key; 5148 struct btrfs_path *path; 5149 struct list_head ins_list; 5150 struct list_head del_list; 5151 int ret; 5152 struct extent_buffer *leaf; 5153 int slot; 5154 unsigned char d_type; 5155 int over = 0; 5156 u32 di_cur; 5157 u32 di_total; 5158 u32 di_len; 5159 int key_type = BTRFS_DIR_INDEX_KEY; 5160 char tmp_name[32]; 5161 char *name_ptr; 5162 int name_len; 5163 int is_curr = 0; /* ctx->pos points to the current index? */ 5164 5165 /* FIXME, use a real flag for deciding about the key type */ 5166 if (root->fs_info->tree_root == root) 5167 key_type = BTRFS_DIR_ITEM_KEY; 5168 5169 if (!dir_emit_dots(file, ctx)) 5170 return 0; 5171 5172 path = btrfs_alloc_path(); 5173 if (!path) 5174 return -ENOMEM; 5175 5176 path->reada = 1; 5177 5178 if (key_type == BTRFS_DIR_INDEX_KEY) { 5179 INIT_LIST_HEAD(&ins_list); 5180 INIT_LIST_HEAD(&del_list); 5181 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5182 } 5183 5184 btrfs_set_key_type(&key, key_type); 5185 key.offset = ctx->pos; 5186 key.objectid = btrfs_ino(inode); 5187 5188 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5189 if (ret < 0) 5190 goto err; 5191 5192 while (1) { 5193 leaf = path->nodes[0]; 5194 slot = path->slots[0]; 5195 if (slot >= btrfs_header_nritems(leaf)) { 5196 ret = btrfs_next_leaf(root, path); 5197 if (ret < 0) 5198 goto err; 5199 else if (ret > 0) 5200 break; 5201 continue; 5202 } 5203 5204 item = btrfs_item_nr(leaf, slot); 5205 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5206 5207 if (found_key.objectid != key.objectid) 5208 break; 5209 if (btrfs_key_type(&found_key) != key_type) 5210 break; 5211 if (found_key.offset < ctx->pos) 5212 goto next; 5213 if (key_type == BTRFS_DIR_INDEX_KEY && 5214 btrfs_should_delete_dir_index(&del_list, 5215 found_key.offset)) 5216 goto next; 5217 5218 ctx->pos = found_key.offset; 5219 is_curr = 1; 5220 5221 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5222 di_cur = 0; 5223 di_total = btrfs_item_size(leaf, item); 5224 5225 while (di_cur < di_total) { 5226 struct btrfs_key location; 5227 5228 if (verify_dir_item(root, leaf, di)) 5229 break; 5230 5231 name_len = btrfs_dir_name_len(leaf, di); 5232 if (name_len <= sizeof(tmp_name)) { 5233 name_ptr = tmp_name; 5234 } else { 5235 name_ptr = kmalloc(name_len, GFP_NOFS); 5236 if (!name_ptr) { 5237 ret = -ENOMEM; 5238 goto err; 5239 } 5240 } 5241 read_extent_buffer(leaf, name_ptr, 5242 (unsigned long)(di + 1), name_len); 5243 5244 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5245 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5246 5247 5248 /* is this a reference to our own snapshot? If so 5249 * skip it. 5250 * 5251 * In contrast to old kernels, we insert the snapshot's 5252 * dir item and dir index after it has been created, so 5253 * we won't find a reference to our own snapshot. We 5254 * still keep the following code for backward 5255 * compatibility. 5256 */ 5257 if (location.type == BTRFS_ROOT_ITEM_KEY && 5258 location.objectid == root->root_key.objectid) { 5259 over = 0; 5260 goto skip; 5261 } 5262 over = !dir_emit(ctx, name_ptr, name_len, 5263 location.objectid, d_type); 5264 5265 skip: 5266 if (name_ptr != tmp_name) 5267 kfree(name_ptr); 5268 5269 if (over) 5270 goto nopos; 5271 di_len = btrfs_dir_name_len(leaf, di) + 5272 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5273 di_cur += di_len; 5274 di = (struct btrfs_dir_item *)((char *)di + di_len); 5275 } 5276 next: 5277 path->slots[0]++; 5278 } 5279 5280 if (key_type == BTRFS_DIR_INDEX_KEY) { 5281 if (is_curr) 5282 ctx->pos++; 5283 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5284 if (ret) 5285 goto nopos; 5286 } 5287 5288 /* Reached end of directory/root. Bump pos past the last item. */ 5289 if (key_type == BTRFS_DIR_INDEX_KEY) 5290 /* 5291 * 32-bit glibc will use getdents64, but then strtol - 5292 * so the last number we can serve is this. 5293 */ 5294 ctx->pos = 0x7fffffff; 5295 else 5296 ctx->pos++; 5297 nopos: 5298 ret = 0; 5299 err: 5300 if (key_type == BTRFS_DIR_INDEX_KEY) 5301 btrfs_put_delayed_items(&ins_list, &del_list); 5302 btrfs_free_path(path); 5303 return ret; 5304 } 5305 5306 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5307 { 5308 struct btrfs_root *root = BTRFS_I(inode)->root; 5309 struct btrfs_trans_handle *trans; 5310 int ret = 0; 5311 bool nolock = false; 5312 5313 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5314 return 0; 5315 5316 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5317 nolock = true; 5318 5319 if (wbc->sync_mode == WB_SYNC_ALL) { 5320 if (nolock) 5321 trans = btrfs_join_transaction_nolock(root); 5322 else 5323 trans = btrfs_join_transaction(root); 5324 if (IS_ERR(trans)) 5325 return PTR_ERR(trans); 5326 ret = btrfs_commit_transaction(trans, root); 5327 } 5328 return ret; 5329 } 5330 5331 /* 5332 * This is somewhat expensive, updating the tree every time the 5333 * inode changes. But, it is most likely to find the inode in cache. 5334 * FIXME, needs more benchmarking...there are no reasons other than performance 5335 * to keep or drop this code. 5336 */ 5337 static int btrfs_dirty_inode(struct inode *inode) 5338 { 5339 struct btrfs_root *root = BTRFS_I(inode)->root; 5340 struct btrfs_trans_handle *trans; 5341 int ret; 5342 5343 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5344 return 0; 5345 5346 trans = btrfs_join_transaction(root); 5347 if (IS_ERR(trans)) 5348 return PTR_ERR(trans); 5349 5350 ret = btrfs_update_inode(trans, root, inode); 5351 if (ret && ret == -ENOSPC) { 5352 /* whoops, lets try again with the full transaction */ 5353 btrfs_end_transaction(trans, root); 5354 trans = btrfs_start_transaction(root, 1); 5355 if (IS_ERR(trans)) 5356 return PTR_ERR(trans); 5357 5358 ret = btrfs_update_inode(trans, root, inode); 5359 } 5360 btrfs_end_transaction(trans, root); 5361 if (BTRFS_I(inode)->delayed_node) 5362 btrfs_balance_delayed_items(root); 5363 5364 return ret; 5365 } 5366 5367 /* 5368 * This is a copy of file_update_time. We need this so we can return error on 5369 * ENOSPC for updating the inode in the case of file write and mmap writes. 5370 */ 5371 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5372 int flags) 5373 { 5374 struct btrfs_root *root = BTRFS_I(inode)->root; 5375 5376 if (btrfs_root_readonly(root)) 5377 return -EROFS; 5378 5379 if (flags & S_VERSION) 5380 inode_inc_iversion(inode); 5381 if (flags & S_CTIME) 5382 inode->i_ctime = *now; 5383 if (flags & S_MTIME) 5384 inode->i_mtime = *now; 5385 if (flags & S_ATIME) 5386 inode->i_atime = *now; 5387 return btrfs_dirty_inode(inode); 5388 } 5389 5390 /* 5391 * find the highest existing sequence number in a directory 5392 * and then set the in-memory index_cnt variable to reflect 5393 * free sequence numbers 5394 */ 5395 static int btrfs_set_inode_index_count(struct inode *inode) 5396 { 5397 struct btrfs_root *root = BTRFS_I(inode)->root; 5398 struct btrfs_key key, found_key; 5399 struct btrfs_path *path; 5400 struct extent_buffer *leaf; 5401 int ret; 5402 5403 key.objectid = btrfs_ino(inode); 5404 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5405 key.offset = (u64)-1; 5406 5407 path = btrfs_alloc_path(); 5408 if (!path) 5409 return -ENOMEM; 5410 5411 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5412 if (ret < 0) 5413 goto out; 5414 /* FIXME: we should be able to handle this */ 5415 if (ret == 0) 5416 goto out; 5417 ret = 0; 5418 5419 /* 5420 * MAGIC NUMBER EXPLANATION: 5421 * since we search a directory based on f_pos we have to start at 2 5422 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5423 * else has to start at 2 5424 */ 5425 if (path->slots[0] == 0) { 5426 BTRFS_I(inode)->index_cnt = 2; 5427 goto out; 5428 } 5429 5430 path->slots[0]--; 5431 5432 leaf = path->nodes[0]; 5433 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5434 5435 if (found_key.objectid != btrfs_ino(inode) || 5436 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5437 BTRFS_I(inode)->index_cnt = 2; 5438 goto out; 5439 } 5440 5441 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5442 out: 5443 btrfs_free_path(path); 5444 return ret; 5445 } 5446 5447 /* 5448 * helper to find a free sequence number in a given directory. This current 5449 * code is very simple, later versions will do smarter things in the btree 5450 */ 5451 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5452 { 5453 int ret = 0; 5454 5455 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5456 ret = btrfs_inode_delayed_dir_index_count(dir); 5457 if (ret) { 5458 ret = btrfs_set_inode_index_count(dir); 5459 if (ret) 5460 return ret; 5461 } 5462 } 5463 5464 *index = BTRFS_I(dir)->index_cnt; 5465 BTRFS_I(dir)->index_cnt++; 5466 5467 return ret; 5468 } 5469 5470 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5471 struct btrfs_root *root, 5472 struct inode *dir, 5473 const char *name, int name_len, 5474 u64 ref_objectid, u64 objectid, 5475 umode_t mode, u64 *index) 5476 { 5477 struct inode *inode; 5478 struct btrfs_inode_item *inode_item; 5479 struct btrfs_key *location; 5480 struct btrfs_path *path; 5481 struct btrfs_inode_ref *ref; 5482 struct btrfs_key key[2]; 5483 u32 sizes[2]; 5484 unsigned long ptr; 5485 int ret; 5486 int owner; 5487 5488 path = btrfs_alloc_path(); 5489 if (!path) 5490 return ERR_PTR(-ENOMEM); 5491 5492 inode = new_inode(root->fs_info->sb); 5493 if (!inode) { 5494 btrfs_free_path(path); 5495 return ERR_PTR(-ENOMEM); 5496 } 5497 5498 /* 5499 * we have to initialize this early, so we can reclaim the inode 5500 * number if we fail afterwards in this function. 5501 */ 5502 inode->i_ino = objectid; 5503 5504 if (dir) { 5505 trace_btrfs_inode_request(dir); 5506 5507 ret = btrfs_set_inode_index(dir, index); 5508 if (ret) { 5509 btrfs_free_path(path); 5510 iput(inode); 5511 return ERR_PTR(ret); 5512 } 5513 } 5514 /* 5515 * index_cnt is ignored for everything but a dir, 5516 * btrfs_get_inode_index_count has an explanation for the magic 5517 * number 5518 */ 5519 BTRFS_I(inode)->index_cnt = 2; 5520 BTRFS_I(inode)->root = root; 5521 BTRFS_I(inode)->generation = trans->transid; 5522 inode->i_generation = BTRFS_I(inode)->generation; 5523 5524 /* 5525 * We could have gotten an inode number from somebody who was fsynced 5526 * and then removed in this same transaction, so let's just set full 5527 * sync since it will be a full sync anyway and this will blow away the 5528 * old info in the log. 5529 */ 5530 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5531 5532 if (S_ISDIR(mode)) 5533 owner = 0; 5534 else 5535 owner = 1; 5536 5537 key[0].objectid = objectid; 5538 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5539 key[0].offset = 0; 5540 5541 /* 5542 * Start new inodes with an inode_ref. This is slightly more 5543 * efficient for small numbers of hard links since they will 5544 * be packed into one item. Extended refs will kick in if we 5545 * add more hard links than can fit in the ref item. 5546 */ 5547 key[1].objectid = objectid; 5548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5549 key[1].offset = ref_objectid; 5550 5551 sizes[0] = sizeof(struct btrfs_inode_item); 5552 sizes[1] = name_len + sizeof(*ref); 5553 5554 path->leave_spinning = 1; 5555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5556 if (ret != 0) 5557 goto fail; 5558 5559 inode_init_owner(inode, dir, mode); 5560 inode_set_bytes(inode, 0); 5561 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5562 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5563 struct btrfs_inode_item); 5564 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5565 sizeof(*inode_item)); 5566 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5567 5568 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5569 struct btrfs_inode_ref); 5570 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5571 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5572 ptr = (unsigned long)(ref + 1); 5573 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5574 5575 btrfs_mark_buffer_dirty(path->nodes[0]); 5576 btrfs_free_path(path); 5577 5578 location = &BTRFS_I(inode)->location; 5579 location->objectid = objectid; 5580 location->offset = 0; 5581 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5582 5583 btrfs_inherit_iflags(inode, dir); 5584 5585 if (S_ISREG(mode)) { 5586 if (btrfs_test_opt(root, NODATASUM)) 5587 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5588 if (btrfs_test_opt(root, NODATACOW)) 5589 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5590 BTRFS_INODE_NODATASUM; 5591 } 5592 5593 insert_inode_hash(inode); 5594 inode_tree_add(inode); 5595 5596 trace_btrfs_inode_new(inode); 5597 btrfs_set_inode_last_trans(trans, inode); 5598 5599 btrfs_update_root_times(trans, root); 5600 5601 return inode; 5602 fail: 5603 if (dir) 5604 BTRFS_I(dir)->index_cnt--; 5605 btrfs_free_path(path); 5606 iput(inode); 5607 return ERR_PTR(ret); 5608 } 5609 5610 static inline u8 btrfs_inode_type(struct inode *inode) 5611 { 5612 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5613 } 5614 5615 /* 5616 * utility function to add 'inode' into 'parent_inode' with 5617 * a give name and a given sequence number. 5618 * if 'add_backref' is true, also insert a backref from the 5619 * inode to the parent directory. 5620 */ 5621 int btrfs_add_link(struct btrfs_trans_handle *trans, 5622 struct inode *parent_inode, struct inode *inode, 5623 const char *name, int name_len, int add_backref, u64 index) 5624 { 5625 int ret = 0; 5626 struct btrfs_key key; 5627 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5628 u64 ino = btrfs_ino(inode); 5629 u64 parent_ino = btrfs_ino(parent_inode); 5630 5631 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5632 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5633 } else { 5634 key.objectid = ino; 5635 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5636 key.offset = 0; 5637 } 5638 5639 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5640 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5641 key.objectid, root->root_key.objectid, 5642 parent_ino, index, name, name_len); 5643 } else if (add_backref) { 5644 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5645 parent_ino, index); 5646 } 5647 5648 /* Nothing to clean up yet */ 5649 if (ret) 5650 return ret; 5651 5652 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5653 parent_inode, &key, 5654 btrfs_inode_type(inode), index); 5655 if (ret == -EEXIST || ret == -EOVERFLOW) 5656 goto fail_dir_item; 5657 else if (ret) { 5658 btrfs_abort_transaction(trans, root, ret); 5659 return ret; 5660 } 5661 5662 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5663 name_len * 2); 5664 inode_inc_iversion(parent_inode); 5665 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5666 ret = btrfs_update_inode(trans, root, parent_inode); 5667 if (ret) 5668 btrfs_abort_transaction(trans, root, ret); 5669 return ret; 5670 5671 fail_dir_item: 5672 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5673 u64 local_index; 5674 int err; 5675 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5676 key.objectid, root->root_key.objectid, 5677 parent_ino, &local_index, name, name_len); 5678 5679 } else if (add_backref) { 5680 u64 local_index; 5681 int err; 5682 5683 err = btrfs_del_inode_ref(trans, root, name, name_len, 5684 ino, parent_ino, &local_index); 5685 } 5686 return ret; 5687 } 5688 5689 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5690 struct inode *dir, struct dentry *dentry, 5691 struct inode *inode, int backref, u64 index) 5692 { 5693 int err = btrfs_add_link(trans, dir, inode, 5694 dentry->d_name.name, dentry->d_name.len, 5695 backref, index); 5696 if (err > 0) 5697 err = -EEXIST; 5698 return err; 5699 } 5700 5701 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5702 umode_t mode, dev_t rdev) 5703 { 5704 struct btrfs_trans_handle *trans; 5705 struct btrfs_root *root = BTRFS_I(dir)->root; 5706 struct inode *inode = NULL; 5707 int err; 5708 int drop_inode = 0; 5709 u64 objectid; 5710 u64 index = 0; 5711 5712 if (!new_valid_dev(rdev)) 5713 return -EINVAL; 5714 5715 /* 5716 * 2 for inode item and ref 5717 * 2 for dir items 5718 * 1 for xattr if selinux is on 5719 */ 5720 trans = btrfs_start_transaction(root, 5); 5721 if (IS_ERR(trans)) 5722 return PTR_ERR(trans); 5723 5724 err = btrfs_find_free_ino(root, &objectid); 5725 if (err) 5726 goto out_unlock; 5727 5728 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5729 dentry->d_name.len, btrfs_ino(dir), objectid, 5730 mode, &index); 5731 if (IS_ERR(inode)) { 5732 err = PTR_ERR(inode); 5733 goto out_unlock; 5734 } 5735 5736 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5737 if (err) { 5738 drop_inode = 1; 5739 goto out_unlock; 5740 } 5741 5742 /* 5743 * If the active LSM wants to access the inode during 5744 * d_instantiate it needs these. Smack checks to see 5745 * if the filesystem supports xattrs by looking at the 5746 * ops vector. 5747 */ 5748 5749 inode->i_op = &btrfs_special_inode_operations; 5750 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5751 if (err) 5752 drop_inode = 1; 5753 else { 5754 init_special_inode(inode, inode->i_mode, rdev); 5755 btrfs_update_inode(trans, root, inode); 5756 d_instantiate(dentry, inode); 5757 } 5758 out_unlock: 5759 btrfs_end_transaction(trans, root); 5760 btrfs_btree_balance_dirty(root); 5761 if (drop_inode) { 5762 inode_dec_link_count(inode); 5763 iput(inode); 5764 } 5765 return err; 5766 } 5767 5768 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5769 umode_t mode, bool excl) 5770 { 5771 struct btrfs_trans_handle *trans; 5772 struct btrfs_root *root = BTRFS_I(dir)->root; 5773 struct inode *inode = NULL; 5774 int drop_inode_on_err = 0; 5775 int err; 5776 u64 objectid; 5777 u64 index = 0; 5778 5779 /* 5780 * 2 for inode item and ref 5781 * 2 for dir items 5782 * 1 for xattr if selinux is on 5783 */ 5784 trans = btrfs_start_transaction(root, 5); 5785 if (IS_ERR(trans)) 5786 return PTR_ERR(trans); 5787 5788 err = btrfs_find_free_ino(root, &objectid); 5789 if (err) 5790 goto out_unlock; 5791 5792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5793 dentry->d_name.len, btrfs_ino(dir), objectid, 5794 mode, &index); 5795 if (IS_ERR(inode)) { 5796 err = PTR_ERR(inode); 5797 goto out_unlock; 5798 } 5799 drop_inode_on_err = 1; 5800 5801 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5802 if (err) 5803 goto out_unlock; 5804 5805 err = btrfs_update_inode(trans, root, inode); 5806 if (err) 5807 goto out_unlock; 5808 5809 /* 5810 * If the active LSM wants to access the inode during 5811 * d_instantiate it needs these. Smack checks to see 5812 * if the filesystem supports xattrs by looking at the 5813 * ops vector. 5814 */ 5815 inode->i_fop = &btrfs_file_operations; 5816 inode->i_op = &btrfs_file_inode_operations; 5817 5818 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5819 if (err) 5820 goto out_unlock; 5821 5822 inode->i_mapping->a_ops = &btrfs_aops; 5823 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5824 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5825 d_instantiate(dentry, inode); 5826 5827 out_unlock: 5828 btrfs_end_transaction(trans, root); 5829 if (err && drop_inode_on_err) { 5830 inode_dec_link_count(inode); 5831 iput(inode); 5832 } 5833 btrfs_btree_balance_dirty(root); 5834 return err; 5835 } 5836 5837 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5838 struct dentry *dentry) 5839 { 5840 struct btrfs_trans_handle *trans; 5841 struct btrfs_root *root = BTRFS_I(dir)->root; 5842 struct inode *inode = old_dentry->d_inode; 5843 u64 index; 5844 int err; 5845 int drop_inode = 0; 5846 5847 /* do not allow sys_link's with other subvols of the same device */ 5848 if (root->objectid != BTRFS_I(inode)->root->objectid) 5849 return -EXDEV; 5850 5851 if (inode->i_nlink >= BTRFS_LINK_MAX) 5852 return -EMLINK; 5853 5854 err = btrfs_set_inode_index(dir, &index); 5855 if (err) 5856 goto fail; 5857 5858 /* 5859 * 2 items for inode and inode ref 5860 * 2 items for dir items 5861 * 1 item for parent inode 5862 */ 5863 trans = btrfs_start_transaction(root, 5); 5864 if (IS_ERR(trans)) { 5865 err = PTR_ERR(trans); 5866 goto fail; 5867 } 5868 5869 btrfs_inc_nlink(inode); 5870 inode_inc_iversion(inode); 5871 inode->i_ctime = CURRENT_TIME; 5872 ihold(inode); 5873 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5874 5875 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5876 5877 if (err) { 5878 drop_inode = 1; 5879 } else { 5880 struct dentry *parent = dentry->d_parent; 5881 err = btrfs_update_inode(trans, root, inode); 5882 if (err) 5883 goto fail; 5884 d_instantiate(dentry, inode); 5885 btrfs_log_new_name(trans, inode, NULL, parent); 5886 } 5887 5888 btrfs_end_transaction(trans, root); 5889 fail: 5890 if (drop_inode) { 5891 inode_dec_link_count(inode); 5892 iput(inode); 5893 } 5894 btrfs_btree_balance_dirty(root); 5895 return err; 5896 } 5897 5898 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5899 { 5900 struct inode *inode = NULL; 5901 struct btrfs_trans_handle *trans; 5902 struct btrfs_root *root = BTRFS_I(dir)->root; 5903 int err = 0; 5904 int drop_on_err = 0; 5905 u64 objectid = 0; 5906 u64 index = 0; 5907 5908 /* 5909 * 2 items for inode and ref 5910 * 2 items for dir items 5911 * 1 for xattr if selinux is on 5912 */ 5913 trans = btrfs_start_transaction(root, 5); 5914 if (IS_ERR(trans)) 5915 return PTR_ERR(trans); 5916 5917 err = btrfs_find_free_ino(root, &objectid); 5918 if (err) 5919 goto out_fail; 5920 5921 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5922 dentry->d_name.len, btrfs_ino(dir), objectid, 5923 S_IFDIR | mode, &index); 5924 if (IS_ERR(inode)) { 5925 err = PTR_ERR(inode); 5926 goto out_fail; 5927 } 5928 5929 drop_on_err = 1; 5930 5931 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5932 if (err) 5933 goto out_fail; 5934 5935 inode->i_op = &btrfs_dir_inode_operations; 5936 inode->i_fop = &btrfs_dir_file_operations; 5937 5938 btrfs_i_size_write(inode, 0); 5939 err = btrfs_update_inode(trans, root, inode); 5940 if (err) 5941 goto out_fail; 5942 5943 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5944 dentry->d_name.len, 0, index); 5945 if (err) 5946 goto out_fail; 5947 5948 d_instantiate(dentry, inode); 5949 drop_on_err = 0; 5950 5951 out_fail: 5952 btrfs_end_transaction(trans, root); 5953 if (drop_on_err) 5954 iput(inode); 5955 btrfs_btree_balance_dirty(root); 5956 return err; 5957 } 5958 5959 /* helper for btfs_get_extent. Given an existing extent in the tree, 5960 * and an extent that you want to insert, deal with overlap and insert 5961 * the new extent into the tree. 5962 */ 5963 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5964 struct extent_map *existing, 5965 struct extent_map *em, 5966 u64 map_start, u64 map_len) 5967 { 5968 u64 start_diff; 5969 5970 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5971 start_diff = map_start - em->start; 5972 em->start = map_start; 5973 em->len = map_len; 5974 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5975 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5976 em->block_start += start_diff; 5977 em->block_len -= start_diff; 5978 } 5979 return add_extent_mapping(em_tree, em, 0); 5980 } 5981 5982 static noinline int uncompress_inline(struct btrfs_path *path, 5983 struct inode *inode, struct page *page, 5984 size_t pg_offset, u64 extent_offset, 5985 struct btrfs_file_extent_item *item) 5986 { 5987 int ret; 5988 struct extent_buffer *leaf = path->nodes[0]; 5989 char *tmp; 5990 size_t max_size; 5991 unsigned long inline_size; 5992 unsigned long ptr; 5993 int compress_type; 5994 5995 WARN_ON(pg_offset != 0); 5996 compress_type = btrfs_file_extent_compression(leaf, item); 5997 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5998 inline_size = btrfs_file_extent_inline_item_len(leaf, 5999 btrfs_item_nr(leaf, path->slots[0])); 6000 tmp = kmalloc(inline_size, GFP_NOFS); 6001 if (!tmp) 6002 return -ENOMEM; 6003 ptr = btrfs_file_extent_inline_start(item); 6004 6005 read_extent_buffer(leaf, tmp, ptr, inline_size); 6006 6007 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6008 ret = btrfs_decompress(compress_type, tmp, page, 6009 extent_offset, inline_size, max_size); 6010 if (ret) { 6011 char *kaddr = kmap_atomic(page); 6012 unsigned long copy_size = min_t(u64, 6013 PAGE_CACHE_SIZE - pg_offset, 6014 max_size - extent_offset); 6015 memset(kaddr + pg_offset, 0, copy_size); 6016 kunmap_atomic(kaddr); 6017 } 6018 kfree(tmp); 6019 return 0; 6020 } 6021 6022 /* 6023 * a bit scary, this does extent mapping from logical file offset to the disk. 6024 * the ugly parts come from merging extents from the disk with the in-ram 6025 * representation. This gets more complex because of the data=ordered code, 6026 * where the in-ram extents might be locked pending data=ordered completion. 6027 * 6028 * This also copies inline extents directly into the page. 6029 */ 6030 6031 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6032 size_t pg_offset, u64 start, u64 len, 6033 int create) 6034 { 6035 int ret; 6036 int err = 0; 6037 u64 bytenr; 6038 u64 extent_start = 0; 6039 u64 extent_end = 0; 6040 u64 objectid = btrfs_ino(inode); 6041 u32 found_type; 6042 struct btrfs_path *path = NULL; 6043 struct btrfs_root *root = BTRFS_I(inode)->root; 6044 struct btrfs_file_extent_item *item; 6045 struct extent_buffer *leaf; 6046 struct btrfs_key found_key; 6047 struct extent_map *em = NULL; 6048 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6049 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6050 struct btrfs_trans_handle *trans = NULL; 6051 int compress_type; 6052 6053 again: 6054 read_lock(&em_tree->lock); 6055 em = lookup_extent_mapping(em_tree, start, len); 6056 if (em) 6057 em->bdev = root->fs_info->fs_devices->latest_bdev; 6058 read_unlock(&em_tree->lock); 6059 6060 if (em) { 6061 if (em->start > start || em->start + em->len <= start) 6062 free_extent_map(em); 6063 else if (em->block_start == EXTENT_MAP_INLINE && page) 6064 free_extent_map(em); 6065 else 6066 goto out; 6067 } 6068 em = alloc_extent_map(); 6069 if (!em) { 6070 err = -ENOMEM; 6071 goto out; 6072 } 6073 em->bdev = root->fs_info->fs_devices->latest_bdev; 6074 em->start = EXTENT_MAP_HOLE; 6075 em->orig_start = EXTENT_MAP_HOLE; 6076 em->len = (u64)-1; 6077 em->block_len = (u64)-1; 6078 6079 if (!path) { 6080 path = btrfs_alloc_path(); 6081 if (!path) { 6082 err = -ENOMEM; 6083 goto out; 6084 } 6085 /* 6086 * Chances are we'll be called again, so go ahead and do 6087 * readahead 6088 */ 6089 path->reada = 1; 6090 } 6091 6092 ret = btrfs_lookup_file_extent(trans, root, path, 6093 objectid, start, trans != NULL); 6094 if (ret < 0) { 6095 err = ret; 6096 goto out; 6097 } 6098 6099 if (ret != 0) { 6100 if (path->slots[0] == 0) 6101 goto not_found; 6102 path->slots[0]--; 6103 } 6104 6105 leaf = path->nodes[0]; 6106 item = btrfs_item_ptr(leaf, path->slots[0], 6107 struct btrfs_file_extent_item); 6108 /* are we inside the extent that was found? */ 6109 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6110 found_type = btrfs_key_type(&found_key); 6111 if (found_key.objectid != objectid || 6112 found_type != BTRFS_EXTENT_DATA_KEY) { 6113 goto not_found; 6114 } 6115 6116 found_type = btrfs_file_extent_type(leaf, item); 6117 extent_start = found_key.offset; 6118 compress_type = btrfs_file_extent_compression(leaf, item); 6119 if (found_type == BTRFS_FILE_EXTENT_REG || 6120 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6121 extent_end = extent_start + 6122 btrfs_file_extent_num_bytes(leaf, item); 6123 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6124 size_t size; 6125 size = btrfs_file_extent_inline_len(leaf, item); 6126 extent_end = ALIGN(extent_start + size, root->sectorsize); 6127 } 6128 6129 if (start >= extent_end) { 6130 path->slots[0]++; 6131 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6132 ret = btrfs_next_leaf(root, path); 6133 if (ret < 0) { 6134 err = ret; 6135 goto out; 6136 } 6137 if (ret > 0) 6138 goto not_found; 6139 leaf = path->nodes[0]; 6140 } 6141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6142 if (found_key.objectid != objectid || 6143 found_key.type != BTRFS_EXTENT_DATA_KEY) 6144 goto not_found; 6145 if (start + len <= found_key.offset) 6146 goto not_found; 6147 em->start = start; 6148 em->orig_start = start; 6149 em->len = found_key.offset - start; 6150 goto not_found_em; 6151 } 6152 6153 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 6154 if (found_type == BTRFS_FILE_EXTENT_REG || 6155 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6156 em->start = extent_start; 6157 em->len = extent_end - extent_start; 6158 em->orig_start = extent_start - 6159 btrfs_file_extent_offset(leaf, item); 6160 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6161 item); 6162 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6163 if (bytenr == 0) { 6164 em->block_start = EXTENT_MAP_HOLE; 6165 goto insert; 6166 } 6167 if (compress_type != BTRFS_COMPRESS_NONE) { 6168 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6169 em->compress_type = compress_type; 6170 em->block_start = bytenr; 6171 em->block_len = em->orig_block_len; 6172 } else { 6173 bytenr += btrfs_file_extent_offset(leaf, item); 6174 em->block_start = bytenr; 6175 em->block_len = em->len; 6176 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6177 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6178 } 6179 goto insert; 6180 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6181 unsigned long ptr; 6182 char *map; 6183 size_t size; 6184 size_t extent_offset; 6185 size_t copy_size; 6186 6187 em->block_start = EXTENT_MAP_INLINE; 6188 if (!page || create) { 6189 em->start = extent_start; 6190 em->len = extent_end - extent_start; 6191 goto out; 6192 } 6193 6194 size = btrfs_file_extent_inline_len(leaf, item); 6195 extent_offset = page_offset(page) + pg_offset - extent_start; 6196 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6197 size - extent_offset); 6198 em->start = extent_start + extent_offset; 6199 em->len = ALIGN(copy_size, root->sectorsize); 6200 em->orig_block_len = em->len; 6201 em->orig_start = em->start; 6202 if (compress_type) { 6203 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6204 em->compress_type = compress_type; 6205 } 6206 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6207 if (create == 0 && !PageUptodate(page)) { 6208 if (btrfs_file_extent_compression(leaf, item) != 6209 BTRFS_COMPRESS_NONE) { 6210 ret = uncompress_inline(path, inode, page, 6211 pg_offset, 6212 extent_offset, item); 6213 BUG_ON(ret); /* -ENOMEM */ 6214 } else { 6215 map = kmap(page); 6216 read_extent_buffer(leaf, map + pg_offset, ptr, 6217 copy_size); 6218 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6219 memset(map + pg_offset + copy_size, 0, 6220 PAGE_CACHE_SIZE - pg_offset - 6221 copy_size); 6222 } 6223 kunmap(page); 6224 } 6225 flush_dcache_page(page); 6226 } else if (create && PageUptodate(page)) { 6227 BUG(); 6228 if (!trans) { 6229 kunmap(page); 6230 free_extent_map(em); 6231 em = NULL; 6232 6233 btrfs_release_path(path); 6234 trans = btrfs_join_transaction(root); 6235 6236 if (IS_ERR(trans)) 6237 return ERR_CAST(trans); 6238 goto again; 6239 } 6240 map = kmap(page); 6241 write_extent_buffer(leaf, map + pg_offset, ptr, 6242 copy_size); 6243 kunmap(page); 6244 btrfs_mark_buffer_dirty(leaf); 6245 } 6246 set_extent_uptodate(io_tree, em->start, 6247 extent_map_end(em) - 1, NULL, GFP_NOFS); 6248 goto insert; 6249 } else { 6250 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6251 } 6252 not_found: 6253 em->start = start; 6254 em->orig_start = start; 6255 em->len = len; 6256 not_found_em: 6257 em->block_start = EXTENT_MAP_HOLE; 6258 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6259 insert: 6260 btrfs_release_path(path); 6261 if (em->start > start || extent_map_end(em) <= start) { 6262 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6263 (unsigned long long)em->start, 6264 (unsigned long long)em->len, 6265 (unsigned long long)start, 6266 (unsigned long long)len); 6267 err = -EIO; 6268 goto out; 6269 } 6270 6271 err = 0; 6272 write_lock(&em_tree->lock); 6273 ret = add_extent_mapping(em_tree, em, 0); 6274 /* it is possible that someone inserted the extent into the tree 6275 * while we had the lock dropped. It is also possible that 6276 * an overlapping map exists in the tree 6277 */ 6278 if (ret == -EEXIST) { 6279 struct extent_map *existing; 6280 6281 ret = 0; 6282 6283 existing = lookup_extent_mapping(em_tree, start, len); 6284 if (existing && (existing->start > start || 6285 existing->start + existing->len <= start)) { 6286 free_extent_map(existing); 6287 existing = NULL; 6288 } 6289 if (!existing) { 6290 existing = lookup_extent_mapping(em_tree, em->start, 6291 em->len); 6292 if (existing) { 6293 err = merge_extent_mapping(em_tree, existing, 6294 em, start, 6295 root->sectorsize); 6296 free_extent_map(existing); 6297 if (err) { 6298 free_extent_map(em); 6299 em = NULL; 6300 } 6301 } else { 6302 err = -EIO; 6303 free_extent_map(em); 6304 em = NULL; 6305 } 6306 } else { 6307 free_extent_map(em); 6308 em = existing; 6309 err = 0; 6310 } 6311 } 6312 write_unlock(&em_tree->lock); 6313 out: 6314 6315 if (em) 6316 trace_btrfs_get_extent(root, em); 6317 6318 if (path) 6319 btrfs_free_path(path); 6320 if (trans) { 6321 ret = btrfs_end_transaction(trans, root); 6322 if (!err) 6323 err = ret; 6324 } 6325 if (err) { 6326 free_extent_map(em); 6327 return ERR_PTR(err); 6328 } 6329 BUG_ON(!em); /* Error is always set */ 6330 return em; 6331 } 6332 6333 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6334 size_t pg_offset, u64 start, u64 len, 6335 int create) 6336 { 6337 struct extent_map *em; 6338 struct extent_map *hole_em = NULL; 6339 u64 range_start = start; 6340 u64 end; 6341 u64 found; 6342 u64 found_end; 6343 int err = 0; 6344 6345 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6346 if (IS_ERR(em)) 6347 return em; 6348 if (em) { 6349 /* 6350 * if our em maps to 6351 * - a hole or 6352 * - a pre-alloc extent, 6353 * there might actually be delalloc bytes behind it. 6354 */ 6355 if (em->block_start != EXTENT_MAP_HOLE && 6356 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6357 return em; 6358 else 6359 hole_em = em; 6360 } 6361 6362 /* check to see if we've wrapped (len == -1 or similar) */ 6363 end = start + len; 6364 if (end < start) 6365 end = (u64)-1; 6366 else 6367 end -= 1; 6368 6369 em = NULL; 6370 6371 /* ok, we didn't find anything, lets look for delalloc */ 6372 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6373 end, len, EXTENT_DELALLOC, 1); 6374 found_end = range_start + found; 6375 if (found_end < range_start) 6376 found_end = (u64)-1; 6377 6378 /* 6379 * we didn't find anything useful, return 6380 * the original results from get_extent() 6381 */ 6382 if (range_start > end || found_end <= start) { 6383 em = hole_em; 6384 hole_em = NULL; 6385 goto out; 6386 } 6387 6388 /* adjust the range_start to make sure it doesn't 6389 * go backwards from the start they passed in 6390 */ 6391 range_start = max(start,range_start); 6392 found = found_end - range_start; 6393 6394 if (found > 0) { 6395 u64 hole_start = start; 6396 u64 hole_len = len; 6397 6398 em = alloc_extent_map(); 6399 if (!em) { 6400 err = -ENOMEM; 6401 goto out; 6402 } 6403 /* 6404 * when btrfs_get_extent can't find anything it 6405 * returns one huge hole 6406 * 6407 * make sure what it found really fits our range, and 6408 * adjust to make sure it is based on the start from 6409 * the caller 6410 */ 6411 if (hole_em) { 6412 u64 calc_end = extent_map_end(hole_em); 6413 6414 if (calc_end <= start || (hole_em->start > end)) { 6415 free_extent_map(hole_em); 6416 hole_em = NULL; 6417 } else { 6418 hole_start = max(hole_em->start, start); 6419 hole_len = calc_end - hole_start; 6420 } 6421 } 6422 em->bdev = NULL; 6423 if (hole_em && range_start > hole_start) { 6424 /* our hole starts before our delalloc, so we 6425 * have to return just the parts of the hole 6426 * that go until the delalloc starts 6427 */ 6428 em->len = min(hole_len, 6429 range_start - hole_start); 6430 em->start = hole_start; 6431 em->orig_start = hole_start; 6432 /* 6433 * don't adjust block start at all, 6434 * it is fixed at EXTENT_MAP_HOLE 6435 */ 6436 em->block_start = hole_em->block_start; 6437 em->block_len = hole_len; 6438 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6439 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6440 } else { 6441 em->start = range_start; 6442 em->len = found; 6443 em->orig_start = range_start; 6444 em->block_start = EXTENT_MAP_DELALLOC; 6445 em->block_len = found; 6446 } 6447 } else if (hole_em) { 6448 return hole_em; 6449 } 6450 out: 6451 6452 free_extent_map(hole_em); 6453 if (err) { 6454 free_extent_map(em); 6455 return ERR_PTR(err); 6456 } 6457 return em; 6458 } 6459 6460 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6461 u64 start, u64 len) 6462 { 6463 struct btrfs_root *root = BTRFS_I(inode)->root; 6464 struct btrfs_trans_handle *trans; 6465 struct extent_map *em; 6466 struct btrfs_key ins; 6467 u64 alloc_hint; 6468 int ret; 6469 6470 trans = btrfs_join_transaction(root); 6471 if (IS_ERR(trans)) 6472 return ERR_CAST(trans); 6473 6474 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 6475 6476 alloc_hint = get_extent_allocation_hint(inode, start, len); 6477 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 6478 alloc_hint, &ins, 1); 6479 if (ret) { 6480 em = ERR_PTR(ret); 6481 goto out; 6482 } 6483 6484 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6485 ins.offset, ins.offset, ins.offset, 0); 6486 if (IS_ERR(em)) 6487 goto out; 6488 6489 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6490 ins.offset, ins.offset, 0); 6491 if (ret) { 6492 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6493 em = ERR_PTR(ret); 6494 } 6495 out: 6496 btrfs_end_transaction(trans, root); 6497 return em; 6498 } 6499 6500 /* 6501 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6502 * block must be cow'd 6503 */ 6504 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 6505 struct inode *inode, u64 offset, u64 *len, 6506 u64 *orig_start, u64 *orig_block_len, 6507 u64 *ram_bytes) 6508 { 6509 struct btrfs_path *path; 6510 int ret; 6511 struct extent_buffer *leaf; 6512 struct btrfs_root *root = BTRFS_I(inode)->root; 6513 struct btrfs_file_extent_item *fi; 6514 struct btrfs_key key; 6515 u64 disk_bytenr; 6516 u64 backref_offset; 6517 u64 extent_end; 6518 u64 num_bytes; 6519 int slot; 6520 int found_type; 6521 6522 path = btrfs_alloc_path(); 6523 if (!path) 6524 return -ENOMEM; 6525 6526 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 6527 offset, 0); 6528 if (ret < 0) 6529 goto out; 6530 6531 slot = path->slots[0]; 6532 if (ret == 1) { 6533 if (slot == 0) { 6534 /* can't find the item, must cow */ 6535 ret = 0; 6536 goto out; 6537 } 6538 slot--; 6539 } 6540 ret = 0; 6541 leaf = path->nodes[0]; 6542 btrfs_item_key_to_cpu(leaf, &key, slot); 6543 if (key.objectid != btrfs_ino(inode) || 6544 key.type != BTRFS_EXTENT_DATA_KEY) { 6545 /* not our file or wrong item type, must cow */ 6546 goto out; 6547 } 6548 6549 if (key.offset > offset) { 6550 /* Wrong offset, must cow */ 6551 goto out; 6552 } 6553 6554 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6555 found_type = btrfs_file_extent_type(leaf, fi); 6556 if (found_type != BTRFS_FILE_EXTENT_REG && 6557 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6558 /* not a regular extent, must cow */ 6559 goto out; 6560 } 6561 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6562 backref_offset = btrfs_file_extent_offset(leaf, fi); 6563 6564 *orig_start = key.offset - backref_offset; 6565 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6566 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6567 6568 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6569 if (extent_end < offset + *len) { 6570 /* extent doesn't include our full range, must cow */ 6571 goto out; 6572 } 6573 6574 if (btrfs_extent_readonly(root, disk_bytenr)) 6575 goto out; 6576 6577 /* 6578 * look for other files referencing this extent, if we 6579 * find any we must cow 6580 */ 6581 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6582 key.offset - backref_offset, disk_bytenr)) 6583 goto out; 6584 6585 /* 6586 * adjust disk_bytenr and num_bytes to cover just the bytes 6587 * in this extent we are about to write. If there 6588 * are any csums in that range we have to cow in order 6589 * to keep the csums correct 6590 */ 6591 disk_bytenr += backref_offset; 6592 disk_bytenr += offset - key.offset; 6593 num_bytes = min(offset + *len, extent_end) - offset; 6594 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6595 goto out; 6596 /* 6597 * all of the above have passed, it is safe to overwrite this extent 6598 * without cow 6599 */ 6600 *len = num_bytes; 6601 ret = 1; 6602 out: 6603 btrfs_free_path(path); 6604 return ret; 6605 } 6606 6607 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6608 struct extent_state **cached_state, int writing) 6609 { 6610 struct btrfs_ordered_extent *ordered; 6611 int ret = 0; 6612 6613 while (1) { 6614 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6615 0, cached_state); 6616 /* 6617 * We're concerned with the entire range that we're going to be 6618 * doing DIO to, so we need to make sure theres no ordered 6619 * extents in this range. 6620 */ 6621 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6622 lockend - lockstart + 1); 6623 6624 /* 6625 * We need to make sure there are no buffered pages in this 6626 * range either, we could have raced between the invalidate in 6627 * generic_file_direct_write and locking the extent. The 6628 * invalidate needs to happen so that reads after a write do not 6629 * get stale data. 6630 */ 6631 if (!ordered && (!writing || 6632 !test_range_bit(&BTRFS_I(inode)->io_tree, 6633 lockstart, lockend, EXTENT_UPTODATE, 0, 6634 *cached_state))) 6635 break; 6636 6637 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6638 cached_state, GFP_NOFS); 6639 6640 if (ordered) { 6641 btrfs_start_ordered_extent(inode, ordered, 1); 6642 btrfs_put_ordered_extent(ordered); 6643 } else { 6644 /* Screw you mmap */ 6645 ret = filemap_write_and_wait_range(inode->i_mapping, 6646 lockstart, 6647 lockend); 6648 if (ret) 6649 break; 6650 6651 /* 6652 * If we found a page that couldn't be invalidated just 6653 * fall back to buffered. 6654 */ 6655 ret = invalidate_inode_pages2_range(inode->i_mapping, 6656 lockstart >> PAGE_CACHE_SHIFT, 6657 lockend >> PAGE_CACHE_SHIFT); 6658 if (ret) 6659 break; 6660 } 6661 6662 cond_resched(); 6663 } 6664 6665 return ret; 6666 } 6667 6668 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6669 u64 len, u64 orig_start, 6670 u64 block_start, u64 block_len, 6671 u64 orig_block_len, u64 ram_bytes, 6672 int type) 6673 { 6674 struct extent_map_tree *em_tree; 6675 struct extent_map *em; 6676 struct btrfs_root *root = BTRFS_I(inode)->root; 6677 int ret; 6678 6679 em_tree = &BTRFS_I(inode)->extent_tree; 6680 em = alloc_extent_map(); 6681 if (!em) 6682 return ERR_PTR(-ENOMEM); 6683 6684 em->start = start; 6685 em->orig_start = orig_start; 6686 em->mod_start = start; 6687 em->mod_len = len; 6688 em->len = len; 6689 em->block_len = block_len; 6690 em->block_start = block_start; 6691 em->bdev = root->fs_info->fs_devices->latest_bdev; 6692 em->orig_block_len = orig_block_len; 6693 em->ram_bytes = ram_bytes; 6694 em->generation = -1; 6695 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6696 if (type == BTRFS_ORDERED_PREALLOC) 6697 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6698 6699 do { 6700 btrfs_drop_extent_cache(inode, em->start, 6701 em->start + em->len - 1, 0); 6702 write_lock(&em_tree->lock); 6703 ret = add_extent_mapping(em_tree, em, 1); 6704 write_unlock(&em_tree->lock); 6705 } while (ret == -EEXIST); 6706 6707 if (ret) { 6708 free_extent_map(em); 6709 return ERR_PTR(ret); 6710 } 6711 6712 return em; 6713 } 6714 6715 6716 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6717 struct buffer_head *bh_result, int create) 6718 { 6719 struct extent_map *em; 6720 struct btrfs_root *root = BTRFS_I(inode)->root; 6721 struct extent_state *cached_state = NULL; 6722 u64 start = iblock << inode->i_blkbits; 6723 u64 lockstart, lockend; 6724 u64 len = bh_result->b_size; 6725 struct btrfs_trans_handle *trans; 6726 int unlock_bits = EXTENT_LOCKED; 6727 int ret = 0; 6728 6729 if (create) 6730 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6731 else 6732 len = min_t(u64, len, root->sectorsize); 6733 6734 lockstart = start; 6735 lockend = start + len - 1; 6736 6737 /* 6738 * If this errors out it's because we couldn't invalidate pagecache for 6739 * this range and we need to fallback to buffered. 6740 */ 6741 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6742 return -ENOTBLK; 6743 6744 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6745 if (IS_ERR(em)) { 6746 ret = PTR_ERR(em); 6747 goto unlock_err; 6748 } 6749 6750 /* 6751 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6752 * io. INLINE is special, and we could probably kludge it in here, but 6753 * it's still buffered so for safety lets just fall back to the generic 6754 * buffered path. 6755 * 6756 * For COMPRESSED we _have_ to read the entire extent in so we can 6757 * decompress it, so there will be buffering required no matter what we 6758 * do, so go ahead and fallback to buffered. 6759 * 6760 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6761 * to buffered IO. Don't blame me, this is the price we pay for using 6762 * the generic code. 6763 */ 6764 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6765 em->block_start == EXTENT_MAP_INLINE) { 6766 free_extent_map(em); 6767 ret = -ENOTBLK; 6768 goto unlock_err; 6769 } 6770 6771 /* Just a good old fashioned hole, return */ 6772 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6773 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6774 free_extent_map(em); 6775 goto unlock_err; 6776 } 6777 6778 /* 6779 * We don't allocate a new extent in the following cases 6780 * 6781 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6782 * existing extent. 6783 * 2) The extent is marked as PREALLOC. We're good to go here and can 6784 * just use the extent. 6785 * 6786 */ 6787 if (!create) { 6788 len = min(len, em->len - (start - em->start)); 6789 lockstart = start + len; 6790 goto unlock; 6791 } 6792 6793 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6794 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6795 em->block_start != EXTENT_MAP_HOLE)) { 6796 int type; 6797 int ret; 6798 u64 block_start, orig_start, orig_block_len, ram_bytes; 6799 6800 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6801 type = BTRFS_ORDERED_PREALLOC; 6802 else 6803 type = BTRFS_ORDERED_NOCOW; 6804 len = min(len, em->len - (start - em->start)); 6805 block_start = em->block_start + (start - em->start); 6806 6807 /* 6808 * we're not going to log anything, but we do need 6809 * to make sure the current transaction stays open 6810 * while we look for nocow cross refs 6811 */ 6812 trans = btrfs_join_transaction(root); 6813 if (IS_ERR(trans)) 6814 goto must_cow; 6815 6816 if (can_nocow_odirect(trans, inode, start, &len, &orig_start, 6817 &orig_block_len, &ram_bytes) == 1) { 6818 if (type == BTRFS_ORDERED_PREALLOC) { 6819 free_extent_map(em); 6820 em = create_pinned_em(inode, start, len, 6821 orig_start, 6822 block_start, len, 6823 orig_block_len, 6824 ram_bytes, type); 6825 if (IS_ERR(em)) { 6826 btrfs_end_transaction(trans, root); 6827 goto unlock_err; 6828 } 6829 } 6830 6831 ret = btrfs_add_ordered_extent_dio(inode, start, 6832 block_start, len, len, type); 6833 btrfs_end_transaction(trans, root); 6834 if (ret) { 6835 free_extent_map(em); 6836 goto unlock_err; 6837 } 6838 goto unlock; 6839 } 6840 btrfs_end_transaction(trans, root); 6841 } 6842 must_cow: 6843 /* 6844 * this will cow the extent, reset the len in case we changed 6845 * it above 6846 */ 6847 len = bh_result->b_size; 6848 free_extent_map(em); 6849 em = btrfs_new_extent_direct(inode, start, len); 6850 if (IS_ERR(em)) { 6851 ret = PTR_ERR(em); 6852 goto unlock_err; 6853 } 6854 len = min(len, em->len - (start - em->start)); 6855 unlock: 6856 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6857 inode->i_blkbits; 6858 bh_result->b_size = len; 6859 bh_result->b_bdev = em->bdev; 6860 set_buffer_mapped(bh_result); 6861 if (create) { 6862 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6863 set_buffer_new(bh_result); 6864 6865 /* 6866 * Need to update the i_size under the extent lock so buffered 6867 * readers will get the updated i_size when we unlock. 6868 */ 6869 if (start + len > i_size_read(inode)) 6870 i_size_write(inode, start + len); 6871 6872 spin_lock(&BTRFS_I(inode)->lock); 6873 BTRFS_I(inode)->outstanding_extents++; 6874 spin_unlock(&BTRFS_I(inode)->lock); 6875 6876 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6877 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6878 &cached_state, GFP_NOFS); 6879 BUG_ON(ret); 6880 } 6881 6882 /* 6883 * In the case of write we need to clear and unlock the entire range, 6884 * in the case of read we need to unlock only the end area that we 6885 * aren't using if there is any left over space. 6886 */ 6887 if (lockstart < lockend) { 6888 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6889 lockend, unlock_bits, 1, 0, 6890 &cached_state, GFP_NOFS); 6891 } else { 6892 free_extent_state(cached_state); 6893 } 6894 6895 free_extent_map(em); 6896 6897 return 0; 6898 6899 unlock_err: 6900 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6901 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6902 return ret; 6903 } 6904 6905 struct btrfs_dio_private { 6906 struct inode *inode; 6907 u64 logical_offset; 6908 u64 disk_bytenr; 6909 u64 bytes; 6910 void *private; 6911 6912 /* number of bios pending for this dio */ 6913 atomic_t pending_bios; 6914 6915 /* IO errors */ 6916 int errors; 6917 6918 /* orig_bio is our btrfs_io_bio */ 6919 struct bio *orig_bio; 6920 6921 /* dio_bio came from fs/direct-io.c */ 6922 struct bio *dio_bio; 6923 }; 6924 6925 static void btrfs_endio_direct_read(struct bio *bio, int err) 6926 { 6927 struct btrfs_dio_private *dip = bio->bi_private; 6928 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6929 struct bio_vec *bvec = bio->bi_io_vec; 6930 struct inode *inode = dip->inode; 6931 struct btrfs_root *root = BTRFS_I(inode)->root; 6932 struct bio *dio_bio; 6933 u64 start; 6934 6935 start = dip->logical_offset; 6936 do { 6937 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6938 struct page *page = bvec->bv_page; 6939 char *kaddr; 6940 u32 csum = ~(u32)0; 6941 u64 private = ~(u32)0; 6942 unsigned long flags; 6943 6944 if (get_state_private(&BTRFS_I(inode)->io_tree, 6945 start, &private)) 6946 goto failed; 6947 local_irq_save(flags); 6948 kaddr = kmap_atomic(page); 6949 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6950 csum, bvec->bv_len); 6951 btrfs_csum_final(csum, (char *)&csum); 6952 kunmap_atomic(kaddr); 6953 local_irq_restore(flags); 6954 6955 flush_dcache_page(bvec->bv_page); 6956 if (csum != private) { 6957 failed: 6958 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u", 6959 (unsigned long long)btrfs_ino(inode), 6960 (unsigned long long)start, 6961 csum, (unsigned)private); 6962 err = -EIO; 6963 } 6964 } 6965 6966 start += bvec->bv_len; 6967 bvec++; 6968 } while (bvec <= bvec_end); 6969 6970 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6971 dip->logical_offset + dip->bytes - 1); 6972 dio_bio = dip->dio_bio; 6973 6974 kfree(dip); 6975 6976 /* If we had a csum failure make sure to clear the uptodate flag */ 6977 if (err) 6978 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6979 dio_end_io(dio_bio, err); 6980 bio_put(bio); 6981 } 6982 6983 static void btrfs_endio_direct_write(struct bio *bio, int err) 6984 { 6985 struct btrfs_dio_private *dip = bio->bi_private; 6986 struct inode *inode = dip->inode; 6987 struct btrfs_root *root = BTRFS_I(inode)->root; 6988 struct btrfs_ordered_extent *ordered = NULL; 6989 u64 ordered_offset = dip->logical_offset; 6990 u64 ordered_bytes = dip->bytes; 6991 struct bio *dio_bio; 6992 int ret; 6993 6994 if (err) 6995 goto out_done; 6996 again: 6997 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6998 &ordered_offset, 6999 ordered_bytes, !err); 7000 if (!ret) 7001 goto out_test; 7002 7003 ordered->work.func = finish_ordered_fn; 7004 ordered->work.flags = 0; 7005 btrfs_queue_worker(&root->fs_info->endio_write_workers, 7006 &ordered->work); 7007 out_test: 7008 /* 7009 * our bio might span multiple ordered extents. If we haven't 7010 * completed the accounting for the whole dio, go back and try again 7011 */ 7012 if (ordered_offset < dip->logical_offset + dip->bytes) { 7013 ordered_bytes = dip->logical_offset + dip->bytes - 7014 ordered_offset; 7015 ordered = NULL; 7016 goto again; 7017 } 7018 out_done: 7019 dio_bio = dip->dio_bio; 7020 7021 kfree(dip); 7022 7023 /* If we had an error make sure to clear the uptodate flag */ 7024 if (err) 7025 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7026 dio_end_io(dio_bio, err); 7027 bio_put(bio); 7028 } 7029 7030 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7031 struct bio *bio, int mirror_num, 7032 unsigned long bio_flags, u64 offset) 7033 { 7034 int ret; 7035 struct btrfs_root *root = BTRFS_I(inode)->root; 7036 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7037 BUG_ON(ret); /* -ENOMEM */ 7038 return 0; 7039 } 7040 7041 static void btrfs_end_dio_bio(struct bio *bio, int err) 7042 { 7043 struct btrfs_dio_private *dip = bio->bi_private; 7044 7045 if (err) { 7046 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 7047 "sector %#Lx len %u err no %d\n", 7048 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 7049 (unsigned long long)bio->bi_sector, bio->bi_size, err); 7050 dip->errors = 1; 7051 7052 /* 7053 * before atomic variable goto zero, we must make sure 7054 * dip->errors is perceived to be set. 7055 */ 7056 smp_mb__before_atomic_dec(); 7057 } 7058 7059 /* if there are more bios still pending for this dio, just exit */ 7060 if (!atomic_dec_and_test(&dip->pending_bios)) 7061 goto out; 7062 7063 if (dip->errors) { 7064 bio_io_error(dip->orig_bio); 7065 } else { 7066 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7067 bio_endio(dip->orig_bio, 0); 7068 } 7069 out: 7070 bio_put(bio); 7071 } 7072 7073 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7074 u64 first_sector, gfp_t gfp_flags) 7075 { 7076 int nr_vecs = bio_get_nr_vecs(bdev); 7077 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7078 } 7079 7080 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7081 int rw, u64 file_offset, int skip_sum, 7082 int async_submit) 7083 { 7084 int write = rw & REQ_WRITE; 7085 struct btrfs_root *root = BTRFS_I(inode)->root; 7086 int ret; 7087 7088 if (async_submit) 7089 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7090 7091 bio_get(bio); 7092 7093 if (!write) { 7094 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7095 if (ret) 7096 goto err; 7097 } 7098 7099 if (skip_sum) 7100 goto map; 7101 7102 if (write && async_submit) { 7103 ret = btrfs_wq_submit_bio(root->fs_info, 7104 inode, rw, bio, 0, 0, 7105 file_offset, 7106 __btrfs_submit_bio_start_direct_io, 7107 __btrfs_submit_bio_done); 7108 goto err; 7109 } else if (write) { 7110 /* 7111 * If we aren't doing async submit, calculate the csum of the 7112 * bio now. 7113 */ 7114 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7115 if (ret) 7116 goto err; 7117 } else if (!skip_sum) { 7118 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 7119 if (ret) 7120 goto err; 7121 } 7122 7123 map: 7124 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7125 err: 7126 bio_put(bio); 7127 return ret; 7128 } 7129 7130 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7131 int skip_sum) 7132 { 7133 struct inode *inode = dip->inode; 7134 struct btrfs_root *root = BTRFS_I(inode)->root; 7135 struct bio *bio; 7136 struct bio *orig_bio = dip->orig_bio; 7137 struct bio_vec *bvec = orig_bio->bi_io_vec; 7138 u64 start_sector = orig_bio->bi_sector; 7139 u64 file_offset = dip->logical_offset; 7140 u64 submit_len = 0; 7141 u64 map_length; 7142 int nr_pages = 0; 7143 int ret = 0; 7144 int async_submit = 0; 7145 7146 map_length = orig_bio->bi_size; 7147 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7148 &map_length, NULL, 0); 7149 if (ret) { 7150 bio_put(orig_bio); 7151 return -EIO; 7152 } 7153 if (map_length >= orig_bio->bi_size) { 7154 bio = orig_bio; 7155 goto submit; 7156 } 7157 7158 /* async crcs make it difficult to collect full stripe writes. */ 7159 if (btrfs_get_alloc_profile(root, 1) & 7160 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7161 async_submit = 0; 7162 else 7163 async_submit = 1; 7164 7165 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7166 if (!bio) 7167 return -ENOMEM; 7168 bio->bi_private = dip; 7169 bio->bi_end_io = btrfs_end_dio_bio; 7170 atomic_inc(&dip->pending_bios); 7171 7172 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7173 if (unlikely(map_length < submit_len + bvec->bv_len || 7174 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7175 bvec->bv_offset) < bvec->bv_len)) { 7176 /* 7177 * inc the count before we submit the bio so 7178 * we know the end IO handler won't happen before 7179 * we inc the count. Otherwise, the dip might get freed 7180 * before we're done setting it up 7181 */ 7182 atomic_inc(&dip->pending_bios); 7183 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7184 file_offset, skip_sum, 7185 async_submit); 7186 if (ret) { 7187 bio_put(bio); 7188 atomic_dec(&dip->pending_bios); 7189 goto out_err; 7190 } 7191 7192 start_sector += submit_len >> 9; 7193 file_offset += submit_len; 7194 7195 submit_len = 0; 7196 nr_pages = 0; 7197 7198 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7199 start_sector, GFP_NOFS); 7200 if (!bio) 7201 goto out_err; 7202 bio->bi_private = dip; 7203 bio->bi_end_io = btrfs_end_dio_bio; 7204 7205 map_length = orig_bio->bi_size; 7206 ret = btrfs_map_block(root->fs_info, rw, 7207 start_sector << 9, 7208 &map_length, NULL, 0); 7209 if (ret) { 7210 bio_put(bio); 7211 goto out_err; 7212 } 7213 } else { 7214 submit_len += bvec->bv_len; 7215 nr_pages ++; 7216 bvec++; 7217 } 7218 } 7219 7220 submit: 7221 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7222 async_submit); 7223 if (!ret) 7224 return 0; 7225 7226 bio_put(bio); 7227 out_err: 7228 dip->errors = 1; 7229 /* 7230 * before atomic variable goto zero, we must 7231 * make sure dip->errors is perceived to be set. 7232 */ 7233 smp_mb__before_atomic_dec(); 7234 if (atomic_dec_and_test(&dip->pending_bios)) 7235 bio_io_error(dip->orig_bio); 7236 7237 /* bio_end_io() will handle error, so we needn't return it */ 7238 return 0; 7239 } 7240 7241 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7242 struct inode *inode, loff_t file_offset) 7243 { 7244 struct btrfs_root *root = BTRFS_I(inode)->root; 7245 struct btrfs_dio_private *dip; 7246 struct bio_vec *bvec = dio_bio->bi_io_vec; 7247 struct bio *io_bio; 7248 int skip_sum; 7249 int write = rw & REQ_WRITE; 7250 int ret = 0; 7251 7252 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7253 7254 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7255 7256 if (!io_bio) { 7257 ret = -ENOMEM; 7258 goto free_ordered; 7259 } 7260 7261 dip = kmalloc(sizeof(*dip), GFP_NOFS); 7262 if (!dip) { 7263 ret = -ENOMEM; 7264 goto free_io_bio; 7265 } 7266 7267 dip->private = dio_bio->bi_private; 7268 io_bio->bi_private = dio_bio->bi_private; 7269 dip->inode = inode; 7270 dip->logical_offset = file_offset; 7271 7272 dip->bytes = 0; 7273 do { 7274 dip->bytes += bvec->bv_len; 7275 bvec++; 7276 } while (bvec <= (dio_bio->bi_io_vec + dio_bio->bi_vcnt - 1)); 7277 7278 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7279 io_bio->bi_private = dip; 7280 dip->errors = 0; 7281 dip->orig_bio = io_bio; 7282 dip->dio_bio = dio_bio; 7283 atomic_set(&dip->pending_bios, 0); 7284 7285 if (write) 7286 io_bio->bi_end_io = btrfs_endio_direct_write; 7287 else 7288 io_bio->bi_end_io = btrfs_endio_direct_read; 7289 7290 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7291 if (!ret) 7292 return; 7293 7294 free_io_bio: 7295 bio_put(io_bio); 7296 7297 free_ordered: 7298 /* 7299 * If this is a write, we need to clean up the reserved space and kill 7300 * the ordered extent. 7301 */ 7302 if (write) { 7303 struct btrfs_ordered_extent *ordered; 7304 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7305 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7306 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7307 btrfs_free_reserved_extent(root, ordered->start, 7308 ordered->disk_len); 7309 btrfs_put_ordered_extent(ordered); 7310 btrfs_put_ordered_extent(ordered); 7311 } 7312 bio_endio(dio_bio, ret); 7313 } 7314 7315 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7316 const struct iovec *iov, loff_t offset, 7317 unsigned long nr_segs) 7318 { 7319 int seg; 7320 int i; 7321 size_t size; 7322 unsigned long addr; 7323 unsigned blocksize_mask = root->sectorsize - 1; 7324 ssize_t retval = -EINVAL; 7325 loff_t end = offset; 7326 7327 if (offset & blocksize_mask) 7328 goto out; 7329 7330 /* Check the memory alignment. Blocks cannot straddle pages */ 7331 for (seg = 0; seg < nr_segs; seg++) { 7332 addr = (unsigned long)iov[seg].iov_base; 7333 size = iov[seg].iov_len; 7334 end += size; 7335 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7336 goto out; 7337 7338 /* If this is a write we don't need to check anymore */ 7339 if (rw & WRITE) 7340 continue; 7341 7342 /* 7343 * Check to make sure we don't have duplicate iov_base's in this 7344 * iovec, if so return EINVAL, otherwise we'll get csum errors 7345 * when reading back. 7346 */ 7347 for (i = seg + 1; i < nr_segs; i++) { 7348 if (iov[seg].iov_base == iov[i].iov_base) 7349 goto out; 7350 } 7351 } 7352 retval = 0; 7353 out: 7354 return retval; 7355 } 7356 7357 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7358 const struct iovec *iov, loff_t offset, 7359 unsigned long nr_segs) 7360 { 7361 struct file *file = iocb->ki_filp; 7362 struct inode *inode = file->f_mapping->host; 7363 size_t count = 0; 7364 int flags = 0; 7365 bool wakeup = true; 7366 bool relock = false; 7367 ssize_t ret; 7368 7369 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7370 offset, nr_segs)) 7371 return 0; 7372 7373 atomic_inc(&inode->i_dio_count); 7374 smp_mb__after_atomic_inc(); 7375 7376 if (rw & WRITE) { 7377 count = iov_length(iov, nr_segs); 7378 /* 7379 * If the write DIO is beyond the EOF, we need update 7380 * the isize, but it is protected by i_mutex. So we can 7381 * not unlock the i_mutex at this case. 7382 */ 7383 if (offset + count <= inode->i_size) { 7384 mutex_unlock(&inode->i_mutex); 7385 relock = true; 7386 } 7387 ret = btrfs_delalloc_reserve_space(inode, count); 7388 if (ret) 7389 goto out; 7390 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7391 &BTRFS_I(inode)->runtime_flags))) { 7392 inode_dio_done(inode); 7393 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7394 wakeup = false; 7395 } 7396 7397 ret = __blockdev_direct_IO(rw, iocb, inode, 7398 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7399 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7400 btrfs_submit_direct, flags); 7401 if (rw & WRITE) { 7402 if (ret < 0 && ret != -EIOCBQUEUED) 7403 btrfs_delalloc_release_space(inode, count); 7404 else if (ret >= 0 && (size_t)ret < count) 7405 btrfs_delalloc_release_space(inode, 7406 count - (size_t)ret); 7407 else 7408 btrfs_delalloc_release_metadata(inode, 0); 7409 } 7410 out: 7411 if (wakeup) 7412 inode_dio_done(inode); 7413 if (relock) 7414 mutex_lock(&inode->i_mutex); 7415 7416 return ret; 7417 } 7418 7419 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7420 7421 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7422 __u64 start, __u64 len) 7423 { 7424 int ret; 7425 7426 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7427 if (ret) 7428 return ret; 7429 7430 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7431 } 7432 7433 int btrfs_readpage(struct file *file, struct page *page) 7434 { 7435 struct extent_io_tree *tree; 7436 tree = &BTRFS_I(page->mapping->host)->io_tree; 7437 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7438 } 7439 7440 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7441 { 7442 struct extent_io_tree *tree; 7443 7444 7445 if (current->flags & PF_MEMALLOC) { 7446 redirty_page_for_writepage(wbc, page); 7447 unlock_page(page); 7448 return 0; 7449 } 7450 tree = &BTRFS_I(page->mapping->host)->io_tree; 7451 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7452 } 7453 7454 static int btrfs_writepages(struct address_space *mapping, 7455 struct writeback_control *wbc) 7456 { 7457 struct extent_io_tree *tree; 7458 7459 tree = &BTRFS_I(mapping->host)->io_tree; 7460 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7461 } 7462 7463 static int 7464 btrfs_readpages(struct file *file, struct address_space *mapping, 7465 struct list_head *pages, unsigned nr_pages) 7466 { 7467 struct extent_io_tree *tree; 7468 tree = &BTRFS_I(mapping->host)->io_tree; 7469 return extent_readpages(tree, mapping, pages, nr_pages, 7470 btrfs_get_extent); 7471 } 7472 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7473 { 7474 struct extent_io_tree *tree; 7475 struct extent_map_tree *map; 7476 int ret; 7477 7478 tree = &BTRFS_I(page->mapping->host)->io_tree; 7479 map = &BTRFS_I(page->mapping->host)->extent_tree; 7480 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7481 if (ret == 1) { 7482 ClearPagePrivate(page); 7483 set_page_private(page, 0); 7484 page_cache_release(page); 7485 } 7486 return ret; 7487 } 7488 7489 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7490 { 7491 if (PageWriteback(page) || PageDirty(page)) 7492 return 0; 7493 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7494 } 7495 7496 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7497 unsigned int length) 7498 { 7499 struct inode *inode = page->mapping->host; 7500 struct extent_io_tree *tree; 7501 struct btrfs_ordered_extent *ordered; 7502 struct extent_state *cached_state = NULL; 7503 u64 page_start = page_offset(page); 7504 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7505 7506 /* 7507 * we have the page locked, so new writeback can't start, 7508 * and the dirty bit won't be cleared while we are here. 7509 * 7510 * Wait for IO on this page so that we can safely clear 7511 * the PagePrivate2 bit and do ordered accounting 7512 */ 7513 wait_on_page_writeback(page); 7514 7515 tree = &BTRFS_I(inode)->io_tree; 7516 if (offset) { 7517 btrfs_releasepage(page, GFP_NOFS); 7518 return; 7519 } 7520 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7521 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7522 if (ordered) { 7523 /* 7524 * IO on this page will never be started, so we need 7525 * to account for any ordered extents now 7526 */ 7527 clear_extent_bit(tree, page_start, page_end, 7528 EXTENT_DIRTY | EXTENT_DELALLOC | 7529 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7530 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7531 /* 7532 * whoever cleared the private bit is responsible 7533 * for the finish_ordered_io 7534 */ 7535 if (TestClearPagePrivate2(page) && 7536 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7537 PAGE_CACHE_SIZE, 1)) { 7538 btrfs_finish_ordered_io(ordered); 7539 } 7540 btrfs_put_ordered_extent(ordered); 7541 cached_state = NULL; 7542 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7543 } 7544 clear_extent_bit(tree, page_start, page_end, 7545 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7546 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7547 &cached_state, GFP_NOFS); 7548 __btrfs_releasepage(page, GFP_NOFS); 7549 7550 ClearPageChecked(page); 7551 if (PagePrivate(page)) { 7552 ClearPagePrivate(page); 7553 set_page_private(page, 0); 7554 page_cache_release(page); 7555 } 7556 } 7557 7558 /* 7559 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7560 * called from a page fault handler when a page is first dirtied. Hence we must 7561 * be careful to check for EOF conditions here. We set the page up correctly 7562 * for a written page which means we get ENOSPC checking when writing into 7563 * holes and correct delalloc and unwritten extent mapping on filesystems that 7564 * support these features. 7565 * 7566 * We are not allowed to take the i_mutex here so we have to play games to 7567 * protect against truncate races as the page could now be beyond EOF. Because 7568 * vmtruncate() writes the inode size before removing pages, once we have the 7569 * page lock we can determine safely if the page is beyond EOF. If it is not 7570 * beyond EOF, then the page is guaranteed safe against truncation until we 7571 * unlock the page. 7572 */ 7573 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7574 { 7575 struct page *page = vmf->page; 7576 struct inode *inode = file_inode(vma->vm_file); 7577 struct btrfs_root *root = BTRFS_I(inode)->root; 7578 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7579 struct btrfs_ordered_extent *ordered; 7580 struct extent_state *cached_state = NULL; 7581 char *kaddr; 7582 unsigned long zero_start; 7583 loff_t size; 7584 int ret; 7585 int reserved = 0; 7586 u64 page_start; 7587 u64 page_end; 7588 7589 sb_start_pagefault(inode->i_sb); 7590 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7591 if (!ret) { 7592 ret = file_update_time(vma->vm_file); 7593 reserved = 1; 7594 } 7595 if (ret) { 7596 if (ret == -ENOMEM) 7597 ret = VM_FAULT_OOM; 7598 else /* -ENOSPC, -EIO, etc */ 7599 ret = VM_FAULT_SIGBUS; 7600 if (reserved) 7601 goto out; 7602 goto out_noreserve; 7603 } 7604 7605 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7606 again: 7607 lock_page(page); 7608 size = i_size_read(inode); 7609 page_start = page_offset(page); 7610 page_end = page_start + PAGE_CACHE_SIZE - 1; 7611 7612 if ((page->mapping != inode->i_mapping) || 7613 (page_start >= size)) { 7614 /* page got truncated out from underneath us */ 7615 goto out_unlock; 7616 } 7617 wait_on_page_writeback(page); 7618 7619 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7620 set_page_extent_mapped(page); 7621 7622 /* 7623 * we can't set the delalloc bits if there are pending ordered 7624 * extents. Drop our locks and wait for them to finish 7625 */ 7626 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7627 if (ordered) { 7628 unlock_extent_cached(io_tree, page_start, page_end, 7629 &cached_state, GFP_NOFS); 7630 unlock_page(page); 7631 btrfs_start_ordered_extent(inode, ordered, 1); 7632 btrfs_put_ordered_extent(ordered); 7633 goto again; 7634 } 7635 7636 /* 7637 * XXX - page_mkwrite gets called every time the page is dirtied, even 7638 * if it was already dirty, so for space accounting reasons we need to 7639 * clear any delalloc bits for the range we are fixing to save. There 7640 * is probably a better way to do this, but for now keep consistent with 7641 * prepare_pages in the normal write path. 7642 */ 7643 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7644 EXTENT_DIRTY | EXTENT_DELALLOC | 7645 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7646 0, 0, &cached_state, GFP_NOFS); 7647 7648 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7649 &cached_state); 7650 if (ret) { 7651 unlock_extent_cached(io_tree, page_start, page_end, 7652 &cached_state, GFP_NOFS); 7653 ret = VM_FAULT_SIGBUS; 7654 goto out_unlock; 7655 } 7656 ret = 0; 7657 7658 /* page is wholly or partially inside EOF */ 7659 if (page_start + PAGE_CACHE_SIZE > size) 7660 zero_start = size & ~PAGE_CACHE_MASK; 7661 else 7662 zero_start = PAGE_CACHE_SIZE; 7663 7664 if (zero_start != PAGE_CACHE_SIZE) { 7665 kaddr = kmap(page); 7666 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7667 flush_dcache_page(page); 7668 kunmap(page); 7669 } 7670 ClearPageChecked(page); 7671 set_page_dirty(page); 7672 SetPageUptodate(page); 7673 7674 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7675 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7676 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7677 7678 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7679 7680 out_unlock: 7681 if (!ret) { 7682 sb_end_pagefault(inode->i_sb); 7683 return VM_FAULT_LOCKED; 7684 } 7685 unlock_page(page); 7686 out: 7687 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7688 out_noreserve: 7689 sb_end_pagefault(inode->i_sb); 7690 return ret; 7691 } 7692 7693 static int btrfs_truncate(struct inode *inode) 7694 { 7695 struct btrfs_root *root = BTRFS_I(inode)->root; 7696 struct btrfs_block_rsv *rsv; 7697 int ret; 7698 int err = 0; 7699 struct btrfs_trans_handle *trans; 7700 u64 mask = root->sectorsize - 1; 7701 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7702 7703 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 7704 if (ret) 7705 return ret; 7706 7707 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7708 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7709 7710 /* 7711 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7712 * 3 things going on here 7713 * 7714 * 1) We need to reserve space for our orphan item and the space to 7715 * delete our orphan item. Lord knows we don't want to have a dangling 7716 * orphan item because we didn't reserve space to remove it. 7717 * 7718 * 2) We need to reserve space to update our inode. 7719 * 7720 * 3) We need to have something to cache all the space that is going to 7721 * be free'd up by the truncate operation, but also have some slack 7722 * space reserved in case it uses space during the truncate (thank you 7723 * very much snapshotting). 7724 * 7725 * And we need these to all be seperate. The fact is we can use alot of 7726 * space doing the truncate, and we have no earthly idea how much space 7727 * we will use, so we need the truncate reservation to be seperate so it 7728 * doesn't end up using space reserved for updating the inode or 7729 * removing the orphan item. We also need to be able to stop the 7730 * transaction and start a new one, which means we need to be able to 7731 * update the inode several times, and we have no idea of knowing how 7732 * many times that will be, so we can't just reserve 1 item for the 7733 * entirety of the opration, so that has to be done seperately as well. 7734 * Then there is the orphan item, which does indeed need to be held on 7735 * to for the whole operation, and we need nobody to touch this reserved 7736 * space except the orphan code. 7737 * 7738 * So that leaves us with 7739 * 7740 * 1) root->orphan_block_rsv - for the orphan deletion. 7741 * 2) rsv - for the truncate reservation, which we will steal from the 7742 * transaction reservation. 7743 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7744 * updating the inode. 7745 */ 7746 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7747 if (!rsv) 7748 return -ENOMEM; 7749 rsv->size = min_size; 7750 rsv->failfast = 1; 7751 7752 /* 7753 * 1 for the truncate slack space 7754 * 1 for updating the inode. 7755 */ 7756 trans = btrfs_start_transaction(root, 2); 7757 if (IS_ERR(trans)) { 7758 err = PTR_ERR(trans); 7759 goto out; 7760 } 7761 7762 /* Migrate the slack space for the truncate to our reserve */ 7763 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7764 min_size); 7765 BUG_ON(ret); 7766 7767 /* 7768 * setattr is responsible for setting the ordered_data_close flag, 7769 * but that is only tested during the last file release. That 7770 * could happen well after the next commit, leaving a great big 7771 * window where new writes may get lost if someone chooses to write 7772 * to this file after truncating to zero 7773 * 7774 * The inode doesn't have any dirty data here, and so if we commit 7775 * this is a noop. If someone immediately starts writing to the inode 7776 * it is very likely we'll catch some of their writes in this 7777 * transaction, and the commit will find this file on the ordered 7778 * data list with good things to send down. 7779 * 7780 * This is a best effort solution, there is still a window where 7781 * using truncate to replace the contents of the file will 7782 * end up with a zero length file after a crash. 7783 */ 7784 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7785 &BTRFS_I(inode)->runtime_flags)) 7786 btrfs_add_ordered_operation(trans, root, inode); 7787 7788 /* 7789 * So if we truncate and then write and fsync we normally would just 7790 * write the extents that changed, which is a problem if we need to 7791 * first truncate that entire inode. So set this flag so we write out 7792 * all of the extents in the inode to the sync log so we're completely 7793 * safe. 7794 */ 7795 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7796 trans->block_rsv = rsv; 7797 7798 while (1) { 7799 ret = btrfs_truncate_inode_items(trans, root, inode, 7800 inode->i_size, 7801 BTRFS_EXTENT_DATA_KEY); 7802 if (ret != -ENOSPC) { 7803 err = ret; 7804 break; 7805 } 7806 7807 trans->block_rsv = &root->fs_info->trans_block_rsv; 7808 ret = btrfs_update_inode(trans, root, inode); 7809 if (ret) { 7810 err = ret; 7811 break; 7812 } 7813 7814 btrfs_end_transaction(trans, root); 7815 btrfs_btree_balance_dirty(root); 7816 7817 trans = btrfs_start_transaction(root, 2); 7818 if (IS_ERR(trans)) { 7819 ret = err = PTR_ERR(trans); 7820 trans = NULL; 7821 break; 7822 } 7823 7824 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7825 rsv, min_size); 7826 BUG_ON(ret); /* shouldn't happen */ 7827 trans->block_rsv = rsv; 7828 } 7829 7830 if (ret == 0 && inode->i_nlink > 0) { 7831 trans->block_rsv = root->orphan_block_rsv; 7832 ret = btrfs_orphan_del(trans, inode); 7833 if (ret) 7834 err = ret; 7835 } 7836 7837 if (trans) { 7838 trans->block_rsv = &root->fs_info->trans_block_rsv; 7839 ret = btrfs_update_inode(trans, root, inode); 7840 if (ret && !err) 7841 err = ret; 7842 7843 ret = btrfs_end_transaction(trans, root); 7844 btrfs_btree_balance_dirty(root); 7845 } 7846 7847 out: 7848 btrfs_free_block_rsv(root, rsv); 7849 7850 if (ret && !err) 7851 err = ret; 7852 7853 return err; 7854 } 7855 7856 /* 7857 * create a new subvolume directory/inode (helper for the ioctl). 7858 */ 7859 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7860 struct btrfs_root *new_root, u64 new_dirid) 7861 { 7862 struct inode *inode; 7863 int err; 7864 u64 index = 0; 7865 7866 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7867 new_dirid, new_dirid, 7868 S_IFDIR | (~current_umask() & S_IRWXUGO), 7869 &index); 7870 if (IS_ERR(inode)) 7871 return PTR_ERR(inode); 7872 inode->i_op = &btrfs_dir_inode_operations; 7873 inode->i_fop = &btrfs_dir_file_operations; 7874 7875 set_nlink(inode, 1); 7876 btrfs_i_size_write(inode, 0); 7877 7878 err = btrfs_update_inode(trans, new_root, inode); 7879 7880 iput(inode); 7881 return err; 7882 } 7883 7884 struct inode *btrfs_alloc_inode(struct super_block *sb) 7885 { 7886 struct btrfs_inode *ei; 7887 struct inode *inode; 7888 7889 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7890 if (!ei) 7891 return NULL; 7892 7893 ei->root = NULL; 7894 ei->generation = 0; 7895 ei->last_trans = 0; 7896 ei->last_sub_trans = 0; 7897 ei->logged_trans = 0; 7898 ei->delalloc_bytes = 0; 7899 ei->disk_i_size = 0; 7900 ei->flags = 0; 7901 ei->csum_bytes = 0; 7902 ei->index_cnt = (u64)-1; 7903 ei->last_unlink_trans = 0; 7904 ei->last_log_commit = 0; 7905 7906 spin_lock_init(&ei->lock); 7907 ei->outstanding_extents = 0; 7908 ei->reserved_extents = 0; 7909 7910 ei->runtime_flags = 0; 7911 ei->force_compress = BTRFS_COMPRESS_NONE; 7912 7913 ei->delayed_node = NULL; 7914 7915 inode = &ei->vfs_inode; 7916 extent_map_tree_init(&ei->extent_tree); 7917 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7918 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7919 ei->io_tree.track_uptodate = 1; 7920 ei->io_failure_tree.track_uptodate = 1; 7921 atomic_set(&ei->sync_writers, 0); 7922 mutex_init(&ei->log_mutex); 7923 mutex_init(&ei->delalloc_mutex); 7924 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7925 INIT_LIST_HEAD(&ei->delalloc_inodes); 7926 INIT_LIST_HEAD(&ei->ordered_operations); 7927 RB_CLEAR_NODE(&ei->rb_node); 7928 7929 return inode; 7930 } 7931 7932 static void btrfs_i_callback(struct rcu_head *head) 7933 { 7934 struct inode *inode = container_of(head, struct inode, i_rcu); 7935 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7936 } 7937 7938 void btrfs_destroy_inode(struct inode *inode) 7939 { 7940 struct btrfs_ordered_extent *ordered; 7941 struct btrfs_root *root = BTRFS_I(inode)->root; 7942 7943 WARN_ON(!hlist_empty(&inode->i_dentry)); 7944 WARN_ON(inode->i_data.nrpages); 7945 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7946 WARN_ON(BTRFS_I(inode)->reserved_extents); 7947 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7948 WARN_ON(BTRFS_I(inode)->csum_bytes); 7949 7950 /* 7951 * This can happen where we create an inode, but somebody else also 7952 * created the same inode and we need to destroy the one we already 7953 * created. 7954 */ 7955 if (!root) 7956 goto free; 7957 7958 /* 7959 * Make sure we're properly removed from the ordered operation 7960 * lists. 7961 */ 7962 smp_mb(); 7963 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7964 spin_lock(&root->fs_info->ordered_extent_lock); 7965 list_del_init(&BTRFS_I(inode)->ordered_operations); 7966 spin_unlock(&root->fs_info->ordered_extent_lock); 7967 } 7968 7969 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7970 &BTRFS_I(inode)->runtime_flags)) { 7971 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7972 (unsigned long long)btrfs_ino(inode)); 7973 atomic_dec(&root->orphan_inodes); 7974 } 7975 7976 while (1) { 7977 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7978 if (!ordered) 7979 break; 7980 else { 7981 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7982 (unsigned long long)ordered->file_offset, 7983 (unsigned long long)ordered->len); 7984 btrfs_remove_ordered_extent(inode, ordered); 7985 btrfs_put_ordered_extent(ordered); 7986 btrfs_put_ordered_extent(ordered); 7987 } 7988 } 7989 inode_tree_del(inode); 7990 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7991 free: 7992 call_rcu(&inode->i_rcu, btrfs_i_callback); 7993 } 7994 7995 int btrfs_drop_inode(struct inode *inode) 7996 { 7997 struct btrfs_root *root = BTRFS_I(inode)->root; 7998 7999 if (root == NULL) 8000 return 1; 8001 8002 /* the snap/subvol tree is on deleting */ 8003 if (btrfs_root_refs(&root->root_item) == 0 && 8004 root != root->fs_info->tree_root) 8005 return 1; 8006 else 8007 return generic_drop_inode(inode); 8008 } 8009 8010 static void init_once(void *foo) 8011 { 8012 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8013 8014 inode_init_once(&ei->vfs_inode); 8015 } 8016 8017 void btrfs_destroy_cachep(void) 8018 { 8019 /* 8020 * Make sure all delayed rcu free inodes are flushed before we 8021 * destroy cache. 8022 */ 8023 rcu_barrier(); 8024 if (btrfs_inode_cachep) 8025 kmem_cache_destroy(btrfs_inode_cachep); 8026 if (btrfs_trans_handle_cachep) 8027 kmem_cache_destroy(btrfs_trans_handle_cachep); 8028 if (btrfs_transaction_cachep) 8029 kmem_cache_destroy(btrfs_transaction_cachep); 8030 if (btrfs_path_cachep) 8031 kmem_cache_destroy(btrfs_path_cachep); 8032 if (btrfs_free_space_cachep) 8033 kmem_cache_destroy(btrfs_free_space_cachep); 8034 if (btrfs_delalloc_work_cachep) 8035 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8036 } 8037 8038 int btrfs_init_cachep(void) 8039 { 8040 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8041 sizeof(struct btrfs_inode), 0, 8042 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8043 if (!btrfs_inode_cachep) 8044 goto fail; 8045 8046 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8047 sizeof(struct btrfs_trans_handle), 0, 8048 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8049 if (!btrfs_trans_handle_cachep) 8050 goto fail; 8051 8052 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8053 sizeof(struct btrfs_transaction), 0, 8054 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8055 if (!btrfs_transaction_cachep) 8056 goto fail; 8057 8058 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8059 sizeof(struct btrfs_path), 0, 8060 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8061 if (!btrfs_path_cachep) 8062 goto fail; 8063 8064 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8065 sizeof(struct btrfs_free_space), 0, 8066 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8067 if (!btrfs_free_space_cachep) 8068 goto fail; 8069 8070 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8071 sizeof(struct btrfs_delalloc_work), 0, 8072 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8073 NULL); 8074 if (!btrfs_delalloc_work_cachep) 8075 goto fail; 8076 8077 return 0; 8078 fail: 8079 btrfs_destroy_cachep(); 8080 return -ENOMEM; 8081 } 8082 8083 static int btrfs_getattr(struct vfsmount *mnt, 8084 struct dentry *dentry, struct kstat *stat) 8085 { 8086 u64 delalloc_bytes; 8087 struct inode *inode = dentry->d_inode; 8088 u32 blocksize = inode->i_sb->s_blocksize; 8089 8090 generic_fillattr(inode, stat); 8091 stat->dev = BTRFS_I(inode)->root->anon_dev; 8092 stat->blksize = PAGE_CACHE_SIZE; 8093 8094 spin_lock(&BTRFS_I(inode)->lock); 8095 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8096 spin_unlock(&BTRFS_I(inode)->lock); 8097 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8098 ALIGN(delalloc_bytes, blocksize)) >> 9; 8099 return 0; 8100 } 8101 8102 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8103 struct inode *new_dir, struct dentry *new_dentry) 8104 { 8105 struct btrfs_trans_handle *trans; 8106 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8107 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8108 struct inode *new_inode = new_dentry->d_inode; 8109 struct inode *old_inode = old_dentry->d_inode; 8110 struct timespec ctime = CURRENT_TIME; 8111 u64 index = 0; 8112 u64 root_objectid; 8113 int ret; 8114 u64 old_ino = btrfs_ino(old_inode); 8115 8116 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8117 return -EPERM; 8118 8119 /* we only allow rename subvolume link between subvolumes */ 8120 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8121 return -EXDEV; 8122 8123 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8124 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8125 return -ENOTEMPTY; 8126 8127 if (S_ISDIR(old_inode->i_mode) && new_inode && 8128 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8129 return -ENOTEMPTY; 8130 8131 8132 /* check for collisions, even if the name isn't there */ 8133 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 8134 new_dentry->d_name.name, 8135 new_dentry->d_name.len); 8136 8137 if (ret) { 8138 if (ret == -EEXIST) { 8139 /* we shouldn't get 8140 * eexist without a new_inode */ 8141 if (!new_inode) { 8142 WARN_ON(1); 8143 return ret; 8144 } 8145 } else { 8146 /* maybe -EOVERFLOW */ 8147 return ret; 8148 } 8149 } 8150 ret = 0; 8151 8152 /* 8153 * we're using rename to replace one file with another. 8154 * and the replacement file is large. Start IO on it now so 8155 * we don't add too much work to the end of the transaction 8156 */ 8157 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8158 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8159 filemap_flush(old_inode->i_mapping); 8160 8161 /* close the racy window with snapshot create/destroy ioctl */ 8162 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8163 down_read(&root->fs_info->subvol_sem); 8164 /* 8165 * We want to reserve the absolute worst case amount of items. So if 8166 * both inodes are subvols and we need to unlink them then that would 8167 * require 4 item modifications, but if they are both normal inodes it 8168 * would require 5 item modifications, so we'll assume their normal 8169 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8170 * should cover the worst case number of items we'll modify. 8171 */ 8172 trans = btrfs_start_transaction(root, 11); 8173 if (IS_ERR(trans)) { 8174 ret = PTR_ERR(trans); 8175 goto out_notrans; 8176 } 8177 8178 if (dest != root) 8179 btrfs_record_root_in_trans(trans, dest); 8180 8181 ret = btrfs_set_inode_index(new_dir, &index); 8182 if (ret) 8183 goto out_fail; 8184 8185 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8186 /* force full log commit if subvolume involved. */ 8187 root->fs_info->last_trans_log_full_commit = trans->transid; 8188 } else { 8189 ret = btrfs_insert_inode_ref(trans, dest, 8190 new_dentry->d_name.name, 8191 new_dentry->d_name.len, 8192 old_ino, 8193 btrfs_ino(new_dir), index); 8194 if (ret) 8195 goto out_fail; 8196 /* 8197 * this is an ugly little race, but the rename is required 8198 * to make sure that if we crash, the inode is either at the 8199 * old name or the new one. pinning the log transaction lets 8200 * us make sure we don't allow a log commit to come in after 8201 * we unlink the name but before we add the new name back in. 8202 */ 8203 btrfs_pin_log_trans(root); 8204 } 8205 /* 8206 * make sure the inode gets flushed if it is replacing 8207 * something. 8208 */ 8209 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8210 btrfs_add_ordered_operation(trans, root, old_inode); 8211 8212 inode_inc_iversion(old_dir); 8213 inode_inc_iversion(new_dir); 8214 inode_inc_iversion(old_inode); 8215 old_dir->i_ctime = old_dir->i_mtime = ctime; 8216 new_dir->i_ctime = new_dir->i_mtime = ctime; 8217 old_inode->i_ctime = ctime; 8218 8219 if (old_dentry->d_parent != new_dentry->d_parent) 8220 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8221 8222 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8223 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8224 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8225 old_dentry->d_name.name, 8226 old_dentry->d_name.len); 8227 } else { 8228 ret = __btrfs_unlink_inode(trans, root, old_dir, 8229 old_dentry->d_inode, 8230 old_dentry->d_name.name, 8231 old_dentry->d_name.len); 8232 if (!ret) 8233 ret = btrfs_update_inode(trans, root, old_inode); 8234 } 8235 if (ret) { 8236 btrfs_abort_transaction(trans, root, ret); 8237 goto out_fail; 8238 } 8239 8240 if (new_inode) { 8241 inode_inc_iversion(new_inode); 8242 new_inode->i_ctime = CURRENT_TIME; 8243 if (unlikely(btrfs_ino(new_inode) == 8244 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8245 root_objectid = BTRFS_I(new_inode)->location.objectid; 8246 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8247 root_objectid, 8248 new_dentry->d_name.name, 8249 new_dentry->d_name.len); 8250 BUG_ON(new_inode->i_nlink == 0); 8251 } else { 8252 ret = btrfs_unlink_inode(trans, dest, new_dir, 8253 new_dentry->d_inode, 8254 new_dentry->d_name.name, 8255 new_dentry->d_name.len); 8256 } 8257 if (!ret && new_inode->i_nlink == 0) { 8258 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8259 BUG_ON(ret); 8260 } 8261 if (ret) { 8262 btrfs_abort_transaction(trans, root, ret); 8263 goto out_fail; 8264 } 8265 } 8266 8267 ret = btrfs_add_link(trans, new_dir, old_inode, 8268 new_dentry->d_name.name, 8269 new_dentry->d_name.len, 0, index); 8270 if (ret) { 8271 btrfs_abort_transaction(trans, root, ret); 8272 goto out_fail; 8273 } 8274 8275 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8276 struct dentry *parent = new_dentry->d_parent; 8277 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8278 btrfs_end_log_trans(root); 8279 } 8280 out_fail: 8281 btrfs_end_transaction(trans, root); 8282 out_notrans: 8283 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8284 up_read(&root->fs_info->subvol_sem); 8285 8286 return ret; 8287 } 8288 8289 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8290 { 8291 struct btrfs_delalloc_work *delalloc_work; 8292 8293 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8294 work); 8295 if (delalloc_work->wait) 8296 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8297 else 8298 filemap_flush(delalloc_work->inode->i_mapping); 8299 8300 if (delalloc_work->delay_iput) 8301 btrfs_add_delayed_iput(delalloc_work->inode); 8302 else 8303 iput(delalloc_work->inode); 8304 complete(&delalloc_work->completion); 8305 } 8306 8307 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8308 int wait, int delay_iput) 8309 { 8310 struct btrfs_delalloc_work *work; 8311 8312 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8313 if (!work) 8314 return NULL; 8315 8316 init_completion(&work->completion); 8317 INIT_LIST_HEAD(&work->list); 8318 work->inode = inode; 8319 work->wait = wait; 8320 work->delay_iput = delay_iput; 8321 work->work.func = btrfs_run_delalloc_work; 8322 8323 return work; 8324 } 8325 8326 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8327 { 8328 wait_for_completion(&work->completion); 8329 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8330 } 8331 8332 /* 8333 * some fairly slow code that needs optimization. This walks the list 8334 * of all the inodes with pending delalloc and forces them to disk. 8335 */ 8336 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8337 { 8338 struct btrfs_inode *binode; 8339 struct inode *inode; 8340 struct btrfs_delalloc_work *work, *next; 8341 struct list_head works; 8342 struct list_head splice; 8343 int ret = 0; 8344 8345 if (root->fs_info->sb->s_flags & MS_RDONLY) 8346 return -EROFS; 8347 8348 INIT_LIST_HEAD(&works); 8349 INIT_LIST_HEAD(&splice); 8350 8351 spin_lock(&root->fs_info->delalloc_lock); 8352 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 8353 while (!list_empty(&splice)) { 8354 binode = list_entry(splice.next, struct btrfs_inode, 8355 delalloc_inodes); 8356 8357 list_del_init(&binode->delalloc_inodes); 8358 8359 inode = igrab(&binode->vfs_inode); 8360 if (!inode) { 8361 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 8362 &binode->runtime_flags); 8363 continue; 8364 } 8365 8366 list_add_tail(&binode->delalloc_inodes, 8367 &root->fs_info->delalloc_inodes); 8368 spin_unlock(&root->fs_info->delalloc_lock); 8369 8370 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8371 if (unlikely(!work)) { 8372 ret = -ENOMEM; 8373 goto out; 8374 } 8375 list_add_tail(&work->list, &works); 8376 btrfs_queue_worker(&root->fs_info->flush_workers, 8377 &work->work); 8378 8379 cond_resched(); 8380 spin_lock(&root->fs_info->delalloc_lock); 8381 } 8382 spin_unlock(&root->fs_info->delalloc_lock); 8383 8384 list_for_each_entry_safe(work, next, &works, list) { 8385 list_del_init(&work->list); 8386 btrfs_wait_and_free_delalloc_work(work); 8387 } 8388 8389 /* the filemap_flush will queue IO into the worker threads, but 8390 * we have to make sure the IO is actually started and that 8391 * ordered extents get created before we return 8392 */ 8393 atomic_inc(&root->fs_info->async_submit_draining); 8394 while (atomic_read(&root->fs_info->nr_async_submits) || 8395 atomic_read(&root->fs_info->async_delalloc_pages)) { 8396 wait_event(root->fs_info->async_submit_wait, 8397 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8398 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8399 } 8400 atomic_dec(&root->fs_info->async_submit_draining); 8401 return 0; 8402 out: 8403 list_for_each_entry_safe(work, next, &works, list) { 8404 list_del_init(&work->list); 8405 btrfs_wait_and_free_delalloc_work(work); 8406 } 8407 8408 if (!list_empty_careful(&splice)) { 8409 spin_lock(&root->fs_info->delalloc_lock); 8410 list_splice_tail(&splice, &root->fs_info->delalloc_inodes); 8411 spin_unlock(&root->fs_info->delalloc_lock); 8412 } 8413 return ret; 8414 } 8415 8416 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8417 const char *symname) 8418 { 8419 struct btrfs_trans_handle *trans; 8420 struct btrfs_root *root = BTRFS_I(dir)->root; 8421 struct btrfs_path *path; 8422 struct btrfs_key key; 8423 struct inode *inode = NULL; 8424 int err; 8425 int drop_inode = 0; 8426 u64 objectid; 8427 u64 index = 0 ; 8428 int name_len; 8429 int datasize; 8430 unsigned long ptr; 8431 struct btrfs_file_extent_item *ei; 8432 struct extent_buffer *leaf; 8433 8434 name_len = strlen(symname) + 1; 8435 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8436 return -ENAMETOOLONG; 8437 8438 /* 8439 * 2 items for inode item and ref 8440 * 2 items for dir items 8441 * 1 item for xattr if selinux is on 8442 */ 8443 trans = btrfs_start_transaction(root, 5); 8444 if (IS_ERR(trans)) 8445 return PTR_ERR(trans); 8446 8447 err = btrfs_find_free_ino(root, &objectid); 8448 if (err) 8449 goto out_unlock; 8450 8451 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8452 dentry->d_name.len, btrfs_ino(dir), objectid, 8453 S_IFLNK|S_IRWXUGO, &index); 8454 if (IS_ERR(inode)) { 8455 err = PTR_ERR(inode); 8456 goto out_unlock; 8457 } 8458 8459 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8460 if (err) { 8461 drop_inode = 1; 8462 goto out_unlock; 8463 } 8464 8465 /* 8466 * If the active LSM wants to access the inode during 8467 * d_instantiate it needs these. Smack checks to see 8468 * if the filesystem supports xattrs by looking at the 8469 * ops vector. 8470 */ 8471 inode->i_fop = &btrfs_file_operations; 8472 inode->i_op = &btrfs_file_inode_operations; 8473 8474 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8475 if (err) 8476 drop_inode = 1; 8477 else { 8478 inode->i_mapping->a_ops = &btrfs_aops; 8479 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8481 } 8482 if (drop_inode) 8483 goto out_unlock; 8484 8485 path = btrfs_alloc_path(); 8486 if (!path) { 8487 err = -ENOMEM; 8488 drop_inode = 1; 8489 goto out_unlock; 8490 } 8491 key.objectid = btrfs_ino(inode); 8492 key.offset = 0; 8493 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8494 datasize = btrfs_file_extent_calc_inline_size(name_len); 8495 err = btrfs_insert_empty_item(trans, root, path, &key, 8496 datasize); 8497 if (err) { 8498 drop_inode = 1; 8499 btrfs_free_path(path); 8500 goto out_unlock; 8501 } 8502 leaf = path->nodes[0]; 8503 ei = btrfs_item_ptr(leaf, path->slots[0], 8504 struct btrfs_file_extent_item); 8505 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8506 btrfs_set_file_extent_type(leaf, ei, 8507 BTRFS_FILE_EXTENT_INLINE); 8508 btrfs_set_file_extent_encryption(leaf, ei, 0); 8509 btrfs_set_file_extent_compression(leaf, ei, 0); 8510 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8511 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8512 8513 ptr = btrfs_file_extent_inline_start(ei); 8514 write_extent_buffer(leaf, symname, ptr, name_len); 8515 btrfs_mark_buffer_dirty(leaf); 8516 btrfs_free_path(path); 8517 8518 inode->i_op = &btrfs_symlink_inode_operations; 8519 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8520 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8521 inode_set_bytes(inode, name_len); 8522 btrfs_i_size_write(inode, name_len - 1); 8523 err = btrfs_update_inode(trans, root, inode); 8524 if (err) 8525 drop_inode = 1; 8526 8527 out_unlock: 8528 if (!err) 8529 d_instantiate(dentry, inode); 8530 btrfs_end_transaction(trans, root); 8531 if (drop_inode) { 8532 inode_dec_link_count(inode); 8533 iput(inode); 8534 } 8535 btrfs_btree_balance_dirty(root); 8536 return err; 8537 } 8538 8539 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8540 u64 start, u64 num_bytes, u64 min_size, 8541 loff_t actual_len, u64 *alloc_hint, 8542 struct btrfs_trans_handle *trans) 8543 { 8544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8545 struct extent_map *em; 8546 struct btrfs_root *root = BTRFS_I(inode)->root; 8547 struct btrfs_key ins; 8548 u64 cur_offset = start; 8549 u64 i_size; 8550 u64 cur_bytes; 8551 int ret = 0; 8552 bool own_trans = true; 8553 8554 if (trans) 8555 own_trans = false; 8556 while (num_bytes > 0) { 8557 if (own_trans) { 8558 trans = btrfs_start_transaction(root, 3); 8559 if (IS_ERR(trans)) { 8560 ret = PTR_ERR(trans); 8561 break; 8562 } 8563 } 8564 8565 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8566 cur_bytes = max(cur_bytes, min_size); 8567 ret = btrfs_reserve_extent(trans, root, cur_bytes, 8568 min_size, 0, *alloc_hint, &ins, 1); 8569 if (ret) { 8570 if (own_trans) 8571 btrfs_end_transaction(trans, root); 8572 break; 8573 } 8574 8575 ret = insert_reserved_file_extent(trans, inode, 8576 cur_offset, ins.objectid, 8577 ins.offset, ins.offset, 8578 ins.offset, 0, 0, 0, 8579 BTRFS_FILE_EXTENT_PREALLOC); 8580 if (ret) { 8581 btrfs_abort_transaction(trans, root, ret); 8582 if (own_trans) 8583 btrfs_end_transaction(trans, root); 8584 break; 8585 } 8586 btrfs_drop_extent_cache(inode, cur_offset, 8587 cur_offset + ins.offset -1, 0); 8588 8589 em = alloc_extent_map(); 8590 if (!em) { 8591 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8592 &BTRFS_I(inode)->runtime_flags); 8593 goto next; 8594 } 8595 8596 em->start = cur_offset; 8597 em->orig_start = cur_offset; 8598 em->len = ins.offset; 8599 em->block_start = ins.objectid; 8600 em->block_len = ins.offset; 8601 em->orig_block_len = ins.offset; 8602 em->ram_bytes = ins.offset; 8603 em->bdev = root->fs_info->fs_devices->latest_bdev; 8604 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8605 em->generation = trans->transid; 8606 8607 while (1) { 8608 write_lock(&em_tree->lock); 8609 ret = add_extent_mapping(em_tree, em, 1); 8610 write_unlock(&em_tree->lock); 8611 if (ret != -EEXIST) 8612 break; 8613 btrfs_drop_extent_cache(inode, cur_offset, 8614 cur_offset + ins.offset - 1, 8615 0); 8616 } 8617 free_extent_map(em); 8618 next: 8619 num_bytes -= ins.offset; 8620 cur_offset += ins.offset; 8621 *alloc_hint = ins.objectid + ins.offset; 8622 8623 inode_inc_iversion(inode); 8624 inode->i_ctime = CURRENT_TIME; 8625 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8626 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8627 (actual_len > inode->i_size) && 8628 (cur_offset > inode->i_size)) { 8629 if (cur_offset > actual_len) 8630 i_size = actual_len; 8631 else 8632 i_size = cur_offset; 8633 i_size_write(inode, i_size); 8634 btrfs_ordered_update_i_size(inode, i_size, NULL); 8635 } 8636 8637 ret = btrfs_update_inode(trans, root, inode); 8638 8639 if (ret) { 8640 btrfs_abort_transaction(trans, root, ret); 8641 if (own_trans) 8642 btrfs_end_transaction(trans, root); 8643 break; 8644 } 8645 8646 if (own_trans) 8647 btrfs_end_transaction(trans, root); 8648 } 8649 return ret; 8650 } 8651 8652 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8653 u64 start, u64 num_bytes, u64 min_size, 8654 loff_t actual_len, u64 *alloc_hint) 8655 { 8656 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8657 min_size, actual_len, alloc_hint, 8658 NULL); 8659 } 8660 8661 int btrfs_prealloc_file_range_trans(struct inode *inode, 8662 struct btrfs_trans_handle *trans, int mode, 8663 u64 start, u64 num_bytes, u64 min_size, 8664 loff_t actual_len, u64 *alloc_hint) 8665 { 8666 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8667 min_size, actual_len, alloc_hint, trans); 8668 } 8669 8670 static int btrfs_set_page_dirty(struct page *page) 8671 { 8672 return __set_page_dirty_nobuffers(page); 8673 } 8674 8675 static int btrfs_permission(struct inode *inode, int mask) 8676 { 8677 struct btrfs_root *root = BTRFS_I(inode)->root; 8678 umode_t mode = inode->i_mode; 8679 8680 if (mask & MAY_WRITE && 8681 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8682 if (btrfs_root_readonly(root)) 8683 return -EROFS; 8684 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8685 return -EACCES; 8686 } 8687 return generic_permission(inode, mask); 8688 } 8689 8690 static const struct inode_operations btrfs_dir_inode_operations = { 8691 .getattr = btrfs_getattr, 8692 .lookup = btrfs_lookup, 8693 .create = btrfs_create, 8694 .unlink = btrfs_unlink, 8695 .link = btrfs_link, 8696 .mkdir = btrfs_mkdir, 8697 .rmdir = btrfs_rmdir, 8698 .rename = btrfs_rename, 8699 .symlink = btrfs_symlink, 8700 .setattr = btrfs_setattr, 8701 .mknod = btrfs_mknod, 8702 .setxattr = btrfs_setxattr, 8703 .getxattr = btrfs_getxattr, 8704 .listxattr = btrfs_listxattr, 8705 .removexattr = btrfs_removexattr, 8706 .permission = btrfs_permission, 8707 .get_acl = btrfs_get_acl, 8708 }; 8709 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8710 .lookup = btrfs_lookup, 8711 .permission = btrfs_permission, 8712 .get_acl = btrfs_get_acl, 8713 }; 8714 8715 static const struct file_operations btrfs_dir_file_operations = { 8716 .llseek = generic_file_llseek, 8717 .read = generic_read_dir, 8718 .iterate = btrfs_real_readdir, 8719 .unlocked_ioctl = btrfs_ioctl, 8720 #ifdef CONFIG_COMPAT 8721 .compat_ioctl = btrfs_ioctl, 8722 #endif 8723 .release = btrfs_release_file, 8724 .fsync = btrfs_sync_file, 8725 }; 8726 8727 static struct extent_io_ops btrfs_extent_io_ops = { 8728 .fill_delalloc = run_delalloc_range, 8729 .submit_bio_hook = btrfs_submit_bio_hook, 8730 .merge_bio_hook = btrfs_merge_bio_hook, 8731 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8732 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8733 .writepage_start_hook = btrfs_writepage_start_hook, 8734 .set_bit_hook = btrfs_set_bit_hook, 8735 .clear_bit_hook = btrfs_clear_bit_hook, 8736 .merge_extent_hook = btrfs_merge_extent_hook, 8737 .split_extent_hook = btrfs_split_extent_hook, 8738 }; 8739 8740 /* 8741 * btrfs doesn't support the bmap operation because swapfiles 8742 * use bmap to make a mapping of extents in the file. They assume 8743 * these extents won't change over the life of the file and they 8744 * use the bmap result to do IO directly to the drive. 8745 * 8746 * the btrfs bmap call would return logical addresses that aren't 8747 * suitable for IO and they also will change frequently as COW 8748 * operations happen. So, swapfile + btrfs == corruption. 8749 * 8750 * For now we're avoiding this by dropping bmap. 8751 */ 8752 static const struct address_space_operations btrfs_aops = { 8753 .readpage = btrfs_readpage, 8754 .writepage = btrfs_writepage, 8755 .writepages = btrfs_writepages, 8756 .readpages = btrfs_readpages, 8757 .direct_IO = btrfs_direct_IO, 8758 .invalidatepage = btrfs_invalidatepage, 8759 .releasepage = btrfs_releasepage, 8760 .set_page_dirty = btrfs_set_page_dirty, 8761 .error_remove_page = generic_error_remove_page, 8762 }; 8763 8764 static const struct address_space_operations btrfs_symlink_aops = { 8765 .readpage = btrfs_readpage, 8766 .writepage = btrfs_writepage, 8767 .invalidatepage = btrfs_invalidatepage, 8768 .releasepage = btrfs_releasepage, 8769 }; 8770 8771 static const struct inode_operations btrfs_file_inode_operations = { 8772 .getattr = btrfs_getattr, 8773 .setattr = btrfs_setattr, 8774 .setxattr = btrfs_setxattr, 8775 .getxattr = btrfs_getxattr, 8776 .listxattr = btrfs_listxattr, 8777 .removexattr = btrfs_removexattr, 8778 .permission = btrfs_permission, 8779 .fiemap = btrfs_fiemap, 8780 .get_acl = btrfs_get_acl, 8781 .update_time = btrfs_update_time, 8782 }; 8783 static const struct inode_operations btrfs_special_inode_operations = { 8784 .getattr = btrfs_getattr, 8785 .setattr = btrfs_setattr, 8786 .permission = btrfs_permission, 8787 .setxattr = btrfs_setxattr, 8788 .getxattr = btrfs_getxattr, 8789 .listxattr = btrfs_listxattr, 8790 .removexattr = btrfs_removexattr, 8791 .get_acl = btrfs_get_acl, 8792 .update_time = btrfs_update_time, 8793 }; 8794 static const struct inode_operations btrfs_symlink_inode_operations = { 8795 .readlink = generic_readlink, 8796 .follow_link = page_follow_link_light, 8797 .put_link = page_put_link, 8798 .getattr = btrfs_getattr, 8799 .setattr = btrfs_setattr, 8800 .permission = btrfs_permission, 8801 .setxattr = btrfs_setxattr, 8802 .getxattr = btrfs_getxattr, 8803 .listxattr = btrfs_listxattr, 8804 .removexattr = btrfs_removexattr, 8805 .get_acl = btrfs_get_acl, 8806 .update_time = btrfs_update_time, 8807 }; 8808 8809 const struct dentry_operations btrfs_dentry_operations = { 8810 .d_delete = btrfs_dentry_delete, 8811 .d_release = btrfs_dentry_release, 8812 }; 8813