1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 unsigned long index = offset >> PAGE_SHIFT; 399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int err; 427 428 if (args->default_acl) { 429 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (err) 432 return err; 433 } 434 if (args->acl) { 435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (err) 437 return err; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.offset = 0; 493 key.type = BTRFS_EXTENT_DATA_KEY; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* 570 * Due to the page size limit, for subpage we can only trigger the 571 * writeback for the dirty sectors of page, that means data writeback 572 * is doing more writeback than what we want. 573 * 574 * This is especially unexpected for some call sites like fallocate, 575 * where we only increase i_size after everything is done. 576 * This means we can trigger inline extent even if we didn't want to. 577 * So here we skip inline extent creation completely. 578 */ 579 if (fs_info->sectorsize != PAGE_SIZE) 580 return false; 581 582 /* Inline extents are limited to sectorsize. */ 583 if (size > fs_info->sectorsize) 584 return false; 585 586 /* We cannot exceed the maximum inline data size. */ 587 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 588 return false; 589 590 /* We cannot exceed the user specified max_inline size. */ 591 if (data_len > fs_info->max_inline) 592 return false; 593 594 /* Inline extents must be the entirety of the file. */ 595 if (size < i_size_read(&inode->vfs_inode)) 596 return false; 597 598 return true; 599 } 600 601 /* 602 * conditionally insert an inline extent into the file. This 603 * does the checks required to make sure the data is small enough 604 * to fit as an inline extent. 605 * 606 * If being used directly, you must have already checked we're allowed to cow 607 * the range by getting true from can_cow_file_range_inline(). 608 */ 609 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 610 u64 size, size_t compressed_size, 611 int compress_type, 612 struct folio *compressed_folio, 613 bool update_i_size) 614 { 615 struct btrfs_drop_extents_args drop_args = { 0 }; 616 struct btrfs_root *root = inode->root; 617 struct btrfs_fs_info *fs_info = root->fs_info; 618 struct btrfs_trans_handle *trans; 619 u64 data_len = (compressed_size ?: size); 620 int ret; 621 struct btrfs_path *path; 622 623 path = btrfs_alloc_path(); 624 if (!path) 625 return -ENOMEM; 626 627 trans = btrfs_join_transaction(root); 628 if (IS_ERR(trans)) { 629 btrfs_free_path(path); 630 return PTR_ERR(trans); 631 } 632 trans->block_rsv = &inode->block_rsv; 633 634 drop_args.path = path; 635 drop_args.start = 0; 636 drop_args.end = fs_info->sectorsize; 637 drop_args.drop_cache = true; 638 drop_args.replace_extent = true; 639 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 640 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 641 if (ret) { 642 btrfs_abort_transaction(trans, ret); 643 goto out; 644 } 645 646 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 647 size, compressed_size, compress_type, 648 compressed_folio, update_i_size); 649 if (ret && ret != -ENOSPC) { 650 btrfs_abort_transaction(trans, ret); 651 goto out; 652 } else if (ret == -ENOSPC) { 653 ret = 1; 654 goto out; 655 } 656 657 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 658 ret = btrfs_update_inode(trans, inode); 659 if (ret && ret != -ENOSPC) { 660 btrfs_abort_transaction(trans, ret); 661 goto out; 662 } else if (ret == -ENOSPC) { 663 ret = 1; 664 goto out; 665 } 666 667 btrfs_set_inode_full_sync(inode); 668 out: 669 /* 670 * Don't forget to free the reserved space, as for inlined extent 671 * it won't count as data extent, free them directly here. 672 * And at reserve time, it's always aligned to page size, so 673 * just free one page here. 674 */ 675 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 676 btrfs_free_path(path); 677 btrfs_end_transaction(trans); 678 return ret; 679 } 680 681 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 682 struct folio *locked_folio, 683 u64 offset, u64 end, 684 size_t compressed_size, 685 int compress_type, 686 struct folio *compressed_folio, 687 bool update_i_size) 688 { 689 struct extent_state *cached = NULL; 690 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 691 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 692 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 693 int ret; 694 695 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 696 return 1; 697 698 lock_extent(&inode->io_tree, offset, end, &cached); 699 ret = __cow_file_range_inline(inode, size, compressed_size, 700 compress_type, compressed_folio, 701 update_i_size); 702 if (ret > 0) { 703 unlock_extent(&inode->io_tree, offset, end, &cached); 704 return ret; 705 } 706 707 /* 708 * In the successful case (ret == 0 here), cow_file_range will return 1. 709 * 710 * Quite a bit further up the callstack in extent_writepage(), ret == 1 711 * is treated as a short circuited success and does not unlock the folio, 712 * so we must do it here. 713 * 714 * In the failure case, the locked_folio does get unlocked by 715 * btrfs_folio_end_all_writers, which asserts that it is still locked 716 * at that point, so we must *not* unlock it here. 717 * 718 * The other two callsites in compress_file_range do not have a 719 * locked_folio, so they are not relevant to this logic. 720 */ 721 if (ret == 0) 722 locked_folio = NULL; 723 724 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 725 clear_flags, PAGE_UNLOCK | 726 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 727 return ret; 728 } 729 730 struct async_extent { 731 u64 start; 732 u64 ram_size; 733 u64 compressed_size; 734 struct folio **folios; 735 unsigned long nr_folios; 736 int compress_type; 737 struct list_head list; 738 }; 739 740 struct async_chunk { 741 struct btrfs_inode *inode; 742 struct folio *locked_folio; 743 u64 start; 744 u64 end; 745 blk_opf_t write_flags; 746 struct list_head extents; 747 struct cgroup_subsys_state *blkcg_css; 748 struct btrfs_work work; 749 struct async_cow *async_cow; 750 }; 751 752 struct async_cow { 753 atomic_t num_chunks; 754 struct async_chunk chunks[]; 755 }; 756 757 static noinline int add_async_extent(struct async_chunk *cow, 758 u64 start, u64 ram_size, 759 u64 compressed_size, 760 struct folio **folios, 761 unsigned long nr_folios, 762 int compress_type) 763 { 764 struct async_extent *async_extent; 765 766 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 767 if (!async_extent) 768 return -ENOMEM; 769 async_extent->start = start; 770 async_extent->ram_size = ram_size; 771 async_extent->compressed_size = compressed_size; 772 async_extent->folios = folios; 773 async_extent->nr_folios = nr_folios; 774 async_extent->compress_type = compress_type; 775 list_add_tail(&async_extent->list, &cow->extents); 776 return 0; 777 } 778 779 /* 780 * Check if the inode needs to be submitted to compression, based on mount 781 * options, defragmentation, properties or heuristics. 782 */ 783 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 784 u64 end) 785 { 786 struct btrfs_fs_info *fs_info = inode->root->fs_info; 787 788 if (!btrfs_inode_can_compress(inode)) { 789 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 790 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 791 btrfs_ino(inode)); 792 return 0; 793 } 794 /* 795 * Only enable sector perfect compression for experimental builds. 796 * 797 * This is a big feature change for subpage cases, and can hit 798 * different corner cases, so only limit this feature for 799 * experimental build for now. 800 * 801 * ETA for moving this out of experimental builds is 6.15. 802 */ 803 if (fs_info->sectorsize < PAGE_SIZE && 804 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 805 if (!PAGE_ALIGNED(start) || 806 !PAGE_ALIGNED(end + 1)) 807 return 0; 808 } 809 810 /* force compress */ 811 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 812 return 1; 813 /* defrag ioctl */ 814 if (inode->defrag_compress) 815 return 1; 816 /* bad compression ratios */ 817 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 818 return 0; 819 if (btrfs_test_opt(fs_info, COMPRESS) || 820 inode->flags & BTRFS_INODE_COMPRESS || 821 inode->prop_compress) 822 return btrfs_compress_heuristic(inode, start, end); 823 return 0; 824 } 825 826 static inline void inode_should_defrag(struct btrfs_inode *inode, 827 u64 start, u64 end, u64 num_bytes, u32 small_write) 828 { 829 /* If this is a small write inside eof, kick off a defrag */ 830 if (num_bytes < small_write && 831 (start > 0 || end + 1 < inode->disk_i_size)) 832 btrfs_add_inode_defrag(inode, small_write); 833 } 834 835 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 836 { 837 unsigned long end_index = end >> PAGE_SHIFT; 838 struct folio *folio; 839 int ret = 0; 840 841 for (unsigned long index = start >> PAGE_SHIFT; 842 index <= end_index; index++) { 843 folio = filemap_get_folio(inode->i_mapping, index); 844 if (IS_ERR(folio)) { 845 if (!ret) 846 ret = PTR_ERR(folio); 847 continue; 848 } 849 btrfs_folio_clamp_clear_dirty(inode_to_fs_info(inode), folio, start, 850 end + 1 - start); 851 folio_put(folio); 852 } 853 return ret; 854 } 855 856 /* 857 * Work queue call back to started compression on a file and pages. 858 * 859 * This is done inside an ordered work queue, and the compression is spread 860 * across many cpus. The actual IO submission is step two, and the ordered work 861 * queue takes care of making sure that happens in the same order things were 862 * put onto the queue by writepages and friends. 863 * 864 * If this code finds it can't get good compression, it puts an entry onto the 865 * work queue to write the uncompressed bytes. This makes sure that both 866 * compressed inodes and uncompressed inodes are written in the same order that 867 * the flusher thread sent them down. 868 */ 869 static void compress_file_range(struct btrfs_work *work) 870 { 871 struct async_chunk *async_chunk = 872 container_of(work, struct async_chunk, work); 873 struct btrfs_inode *inode = async_chunk->inode; 874 struct btrfs_fs_info *fs_info = inode->root->fs_info; 875 struct address_space *mapping = inode->vfs_inode.i_mapping; 876 u64 blocksize = fs_info->sectorsize; 877 u64 start = async_chunk->start; 878 u64 end = async_chunk->end; 879 u64 actual_end; 880 u64 i_size; 881 int ret = 0; 882 struct folio **folios; 883 unsigned long nr_folios; 884 unsigned long total_compressed = 0; 885 unsigned long total_in = 0; 886 unsigned int poff; 887 int i; 888 int compress_type = fs_info->compress_type; 889 890 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 891 892 /* 893 * We need to call clear_page_dirty_for_io on each page in the range. 894 * Otherwise applications with the file mmap'd can wander in and change 895 * the page contents while we are compressing them. 896 */ 897 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 898 899 /* 900 * All the folios should have been locked thus no failure. 901 * 902 * And even if some folios are missing, btrfs_compress_folios() 903 * would handle them correctly, so here just do an ASSERT() check for 904 * early logic errors. 905 */ 906 ASSERT(ret == 0); 907 908 /* 909 * We need to save i_size before now because it could change in between 910 * us evaluating the size and assigning it. This is because we lock and 911 * unlock the page in truncate and fallocate, and then modify the i_size 912 * later on. 913 * 914 * The barriers are to emulate READ_ONCE, remove that once i_size_read 915 * does that for us. 916 */ 917 barrier(); 918 i_size = i_size_read(&inode->vfs_inode); 919 barrier(); 920 actual_end = min_t(u64, i_size, end + 1); 921 again: 922 folios = NULL; 923 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 924 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 925 926 /* 927 * we don't want to send crud past the end of i_size through 928 * compression, that's just a waste of CPU time. So, if the 929 * end of the file is before the start of our current 930 * requested range of bytes, we bail out to the uncompressed 931 * cleanup code that can deal with all of this. 932 * 933 * It isn't really the fastest way to fix things, but this is a 934 * very uncommon corner. 935 */ 936 if (actual_end <= start) 937 goto cleanup_and_bail_uncompressed; 938 939 total_compressed = actual_end - start; 940 941 /* 942 * Skip compression for a small file range(<=blocksize) that 943 * isn't an inline extent, since it doesn't save disk space at all. 944 */ 945 if (total_compressed <= blocksize && 946 (start > 0 || end + 1 < inode->disk_i_size)) 947 goto cleanup_and_bail_uncompressed; 948 949 total_compressed = min_t(unsigned long, total_compressed, 950 BTRFS_MAX_UNCOMPRESSED); 951 total_in = 0; 952 ret = 0; 953 954 /* 955 * We do compression for mount -o compress and when the inode has not 956 * been flagged as NOCOMPRESS. This flag can change at any time if we 957 * discover bad compression ratios. 958 */ 959 if (!inode_need_compress(inode, start, end)) 960 goto cleanup_and_bail_uncompressed; 961 962 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 963 if (!folios) { 964 /* 965 * Memory allocation failure is not a fatal error, we can fall 966 * back to uncompressed code. 967 */ 968 goto cleanup_and_bail_uncompressed; 969 } 970 971 if (inode->defrag_compress) 972 compress_type = inode->defrag_compress; 973 else if (inode->prop_compress) 974 compress_type = inode->prop_compress; 975 976 /* Compression level is applied here. */ 977 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 978 mapping, start, folios, &nr_folios, &total_in, 979 &total_compressed); 980 if (ret) 981 goto mark_incompressible; 982 983 /* 984 * Zero the tail end of the last page, as we might be sending it down 985 * to disk. 986 */ 987 poff = offset_in_page(total_compressed); 988 if (poff) 989 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 990 991 /* 992 * Try to create an inline extent. 993 * 994 * If we didn't compress the entire range, try to create an uncompressed 995 * inline extent, else a compressed one. 996 * 997 * Check cow_file_range() for why we don't even try to create inline 998 * extent for the subpage case. 999 */ 1000 if (total_in < actual_end) 1001 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1002 BTRFS_COMPRESS_NONE, NULL, false); 1003 else 1004 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1005 compress_type, folios[0], false); 1006 if (ret <= 0) { 1007 if (ret < 0) 1008 mapping_set_error(mapping, -EIO); 1009 goto free_pages; 1010 } 1011 1012 /* 1013 * We aren't doing an inline extent. Round the compressed size up to a 1014 * block size boundary so the allocator does sane things. 1015 */ 1016 total_compressed = ALIGN(total_compressed, blocksize); 1017 1018 /* 1019 * One last check to make sure the compression is really a win, compare 1020 * the page count read with the blocks on disk, compression must free at 1021 * least one sector. 1022 */ 1023 total_in = round_up(total_in, fs_info->sectorsize); 1024 if (total_compressed + blocksize > total_in) 1025 goto mark_incompressible; 1026 1027 /* 1028 * The async work queues will take care of doing actual allocation on 1029 * disk for these compressed pages, and will submit the bios. 1030 */ 1031 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1032 nr_folios, compress_type); 1033 BUG_ON(ret); 1034 if (start + total_in < end) { 1035 start += total_in; 1036 cond_resched(); 1037 goto again; 1038 } 1039 return; 1040 1041 mark_incompressible: 1042 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1043 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1044 cleanup_and_bail_uncompressed: 1045 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1046 BTRFS_COMPRESS_NONE); 1047 BUG_ON(ret); 1048 free_pages: 1049 if (folios) { 1050 for (i = 0; i < nr_folios; i++) { 1051 WARN_ON(folios[i]->mapping); 1052 btrfs_free_compr_folio(folios[i]); 1053 } 1054 kfree(folios); 1055 } 1056 } 1057 1058 static void free_async_extent_pages(struct async_extent *async_extent) 1059 { 1060 int i; 1061 1062 if (!async_extent->folios) 1063 return; 1064 1065 for (i = 0; i < async_extent->nr_folios; i++) { 1066 WARN_ON(async_extent->folios[i]->mapping); 1067 btrfs_free_compr_folio(async_extent->folios[i]); 1068 } 1069 kfree(async_extent->folios); 1070 async_extent->nr_folios = 0; 1071 async_extent->folios = NULL; 1072 } 1073 1074 static void submit_uncompressed_range(struct btrfs_inode *inode, 1075 struct async_extent *async_extent, 1076 struct folio *locked_folio) 1077 { 1078 u64 start = async_extent->start; 1079 u64 end = async_extent->start + async_extent->ram_size - 1; 1080 int ret; 1081 struct writeback_control wbc = { 1082 .sync_mode = WB_SYNC_ALL, 1083 .range_start = start, 1084 .range_end = end, 1085 .no_cgroup_owner = 1, 1086 }; 1087 1088 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1089 ret = run_delalloc_cow(inode, locked_folio, start, end, 1090 &wbc, false); 1091 wbc_detach_inode(&wbc); 1092 if (ret < 0) { 1093 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1094 if (locked_folio) 1095 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1096 start, async_extent->ram_size); 1097 btrfs_err_rl(inode->root->fs_info, 1098 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1099 __func__, btrfs_root_id(inode->root), 1100 btrfs_ino(inode), start, async_extent->ram_size, ret); 1101 } 1102 } 1103 1104 static void submit_one_async_extent(struct async_chunk *async_chunk, 1105 struct async_extent *async_extent, 1106 u64 *alloc_hint) 1107 { 1108 struct btrfs_inode *inode = async_chunk->inode; 1109 struct extent_io_tree *io_tree = &inode->io_tree; 1110 struct btrfs_root *root = inode->root; 1111 struct btrfs_fs_info *fs_info = root->fs_info; 1112 struct btrfs_ordered_extent *ordered; 1113 struct btrfs_file_extent file_extent; 1114 struct btrfs_key ins; 1115 struct folio *locked_folio = NULL; 1116 struct extent_state *cached = NULL; 1117 struct extent_map *em; 1118 int ret = 0; 1119 u64 start = async_extent->start; 1120 u64 end = async_extent->start + async_extent->ram_size - 1; 1121 1122 if (async_chunk->blkcg_css) 1123 kthread_associate_blkcg(async_chunk->blkcg_css); 1124 1125 /* 1126 * If async_chunk->locked_folio is in the async_extent range, we need to 1127 * handle it. 1128 */ 1129 if (async_chunk->locked_folio) { 1130 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1131 u64 locked_folio_end = locked_folio_start + 1132 folio_size(async_chunk->locked_folio) - 1; 1133 1134 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1135 locked_folio = async_chunk->locked_folio; 1136 } 1137 1138 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1139 submit_uncompressed_range(inode, async_extent, locked_folio); 1140 goto done; 1141 } 1142 1143 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1144 async_extent->compressed_size, 1145 async_extent->compressed_size, 1146 0, *alloc_hint, &ins, 1, 1); 1147 if (ret) { 1148 /* 1149 * We can't reserve contiguous space for the compressed size. 1150 * Unlikely, but it's possible that we could have enough 1151 * non-contiguous space for the uncompressed size instead. So 1152 * fall back to uncompressed. 1153 */ 1154 submit_uncompressed_range(inode, async_extent, locked_folio); 1155 goto done; 1156 } 1157 1158 lock_extent(io_tree, start, end, &cached); 1159 1160 /* Here we're doing allocation and writeback of the compressed pages */ 1161 file_extent.disk_bytenr = ins.objectid; 1162 file_extent.disk_num_bytes = ins.offset; 1163 file_extent.ram_bytes = async_extent->ram_size; 1164 file_extent.num_bytes = async_extent->ram_size; 1165 file_extent.offset = 0; 1166 file_extent.compression = async_extent->compress_type; 1167 1168 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1169 if (IS_ERR(em)) { 1170 ret = PTR_ERR(em); 1171 goto out_free_reserve; 1172 } 1173 free_extent_map(em); 1174 1175 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1176 1 << BTRFS_ORDERED_COMPRESSED); 1177 if (IS_ERR(ordered)) { 1178 btrfs_drop_extent_map_range(inode, start, end, false); 1179 ret = PTR_ERR(ordered); 1180 goto out_free_reserve; 1181 } 1182 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1183 1184 /* Clear dirty, set writeback and unlock the pages. */ 1185 extent_clear_unlock_delalloc(inode, start, end, 1186 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1187 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1188 btrfs_submit_compressed_write(ordered, 1189 async_extent->folios, /* compressed_folios */ 1190 async_extent->nr_folios, 1191 async_chunk->write_flags, true); 1192 *alloc_hint = ins.objectid + ins.offset; 1193 done: 1194 if (async_chunk->blkcg_css) 1195 kthread_associate_blkcg(NULL); 1196 kfree(async_extent); 1197 return; 1198 1199 out_free_reserve: 1200 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1201 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1202 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1203 extent_clear_unlock_delalloc(inode, start, end, 1204 NULL, &cached, 1205 EXTENT_LOCKED | EXTENT_DELALLOC | 1206 EXTENT_DELALLOC_NEW | 1207 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1208 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1209 PAGE_END_WRITEBACK); 1210 free_async_extent_pages(async_extent); 1211 if (async_chunk->blkcg_css) 1212 kthread_associate_blkcg(NULL); 1213 btrfs_debug(fs_info, 1214 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1215 btrfs_root_id(root), btrfs_ino(inode), start, 1216 async_extent->ram_size, ret); 1217 kfree(async_extent); 1218 } 1219 1220 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1221 u64 num_bytes) 1222 { 1223 struct extent_map_tree *em_tree = &inode->extent_tree; 1224 struct extent_map *em; 1225 u64 alloc_hint = 0; 1226 1227 read_lock(&em_tree->lock); 1228 em = search_extent_mapping(em_tree, start, num_bytes); 1229 if (em) { 1230 /* 1231 * if block start isn't an actual block number then find the 1232 * first block in this inode and use that as a hint. If that 1233 * block is also bogus then just don't worry about it. 1234 */ 1235 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1236 free_extent_map(em); 1237 em = search_extent_mapping(em_tree, 0, 0); 1238 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1239 alloc_hint = extent_map_block_start(em); 1240 if (em) 1241 free_extent_map(em); 1242 } else { 1243 alloc_hint = extent_map_block_start(em); 1244 free_extent_map(em); 1245 } 1246 } 1247 read_unlock(&em_tree->lock); 1248 1249 return alloc_hint; 1250 } 1251 1252 /* 1253 * when extent_io.c finds a delayed allocation range in the file, 1254 * the call backs end up in this code. The basic idea is to 1255 * allocate extents on disk for the range, and create ordered data structs 1256 * in ram to track those extents. 1257 * 1258 * locked_folio is the folio that writepage had locked already. We use 1259 * it to make sure we don't do extra locks or unlocks. 1260 * 1261 * When this function fails, it unlocks all pages except @locked_folio. 1262 * 1263 * When this function successfully creates an inline extent, it returns 1 and 1264 * unlocks all pages including locked_folio and starts I/O on them. 1265 * (In reality inline extents are limited to a single page, so locked_folio is 1266 * the only page handled anyway). 1267 * 1268 * When this function succeed and creates a normal extent, the page locking 1269 * status depends on the passed in flags: 1270 * 1271 * - If @keep_locked is set, all pages are kept locked. 1272 * - Else all pages except for @locked_folio are unlocked. 1273 * 1274 * When a failure happens in the second or later iteration of the 1275 * while-loop, the ordered extents created in previous iterations are kept 1276 * intact. So, the caller must clean them up by calling 1277 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1278 * example. 1279 */ 1280 static noinline int cow_file_range(struct btrfs_inode *inode, 1281 struct folio *locked_folio, u64 start, 1282 u64 end, u64 *done_offset, 1283 bool keep_locked, bool no_inline) 1284 { 1285 struct btrfs_root *root = inode->root; 1286 struct btrfs_fs_info *fs_info = root->fs_info; 1287 struct extent_state *cached = NULL; 1288 u64 alloc_hint = 0; 1289 u64 orig_start = start; 1290 u64 num_bytes; 1291 u64 cur_alloc_size = 0; 1292 u64 min_alloc_size; 1293 u64 blocksize = fs_info->sectorsize; 1294 struct btrfs_key ins; 1295 struct extent_map *em; 1296 unsigned clear_bits; 1297 unsigned long page_ops; 1298 int ret = 0; 1299 1300 if (btrfs_is_free_space_inode(inode)) { 1301 ret = -EINVAL; 1302 goto out_unlock; 1303 } 1304 1305 num_bytes = ALIGN(end - start + 1, blocksize); 1306 num_bytes = max(blocksize, num_bytes); 1307 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1308 1309 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1310 1311 if (!no_inline) { 1312 /* lets try to make an inline extent */ 1313 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1314 BTRFS_COMPRESS_NONE, NULL, false); 1315 if (ret <= 0) { 1316 /* 1317 * We succeeded, return 1 so the caller knows we're done 1318 * with this page and already handled the IO. 1319 * 1320 * If there was an error then cow_file_range_inline() has 1321 * already done the cleanup. 1322 */ 1323 if (ret == 0) 1324 ret = 1; 1325 goto done; 1326 } 1327 } 1328 1329 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1330 1331 /* 1332 * We're not doing compressed IO, don't unlock the first page (which 1333 * the caller expects to stay locked), don't clear any dirty bits and 1334 * don't set any writeback bits. 1335 * 1336 * Do set the Ordered (Private2) bit so we know this page was properly 1337 * setup for writepage. 1338 */ 1339 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1340 page_ops |= PAGE_SET_ORDERED; 1341 1342 /* 1343 * Relocation relies on the relocated extents to have exactly the same 1344 * size as the original extents. Normally writeback for relocation data 1345 * extents follows a NOCOW path because relocation preallocates the 1346 * extents. However, due to an operation such as scrub turning a block 1347 * group to RO mode, it may fallback to COW mode, so we must make sure 1348 * an extent allocated during COW has exactly the requested size and can 1349 * not be split into smaller extents, otherwise relocation breaks and 1350 * fails during the stage where it updates the bytenr of file extent 1351 * items. 1352 */ 1353 if (btrfs_is_data_reloc_root(root)) 1354 min_alloc_size = num_bytes; 1355 else 1356 min_alloc_size = fs_info->sectorsize; 1357 1358 while (num_bytes > 0) { 1359 struct btrfs_ordered_extent *ordered; 1360 struct btrfs_file_extent file_extent; 1361 1362 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1363 min_alloc_size, 0, alloc_hint, 1364 &ins, 1, 1); 1365 if (ret == -EAGAIN) { 1366 /* 1367 * btrfs_reserve_extent only returns -EAGAIN for zoned 1368 * file systems, which is an indication that there are 1369 * no active zones to allocate from at the moment. 1370 * 1371 * If this is the first loop iteration, wait for at 1372 * least one zone to finish before retrying the 1373 * allocation. Otherwise ask the caller to write out 1374 * the already allocated blocks before coming back to 1375 * us, or return -ENOSPC if it can't handle retries. 1376 */ 1377 ASSERT(btrfs_is_zoned(fs_info)); 1378 if (start == orig_start) { 1379 wait_on_bit_io(&inode->root->fs_info->flags, 1380 BTRFS_FS_NEED_ZONE_FINISH, 1381 TASK_UNINTERRUPTIBLE); 1382 continue; 1383 } 1384 if (done_offset) { 1385 /* 1386 * Move @end to the end of the processed range, 1387 * and exit the loop to unlock the processed extents. 1388 */ 1389 end = start - 1; 1390 ret = 0; 1391 break; 1392 } 1393 ret = -ENOSPC; 1394 } 1395 if (ret < 0) 1396 goto out_unlock; 1397 cur_alloc_size = ins.offset; 1398 1399 file_extent.disk_bytenr = ins.objectid; 1400 file_extent.disk_num_bytes = ins.offset; 1401 file_extent.num_bytes = ins.offset; 1402 file_extent.ram_bytes = ins.offset; 1403 file_extent.offset = 0; 1404 file_extent.compression = BTRFS_COMPRESS_NONE; 1405 1406 /* 1407 * Locked range will be released either during error clean up or 1408 * after the whole range is finished. 1409 */ 1410 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1411 &cached); 1412 1413 em = btrfs_create_io_em(inode, start, &file_extent, 1414 BTRFS_ORDERED_REGULAR); 1415 if (IS_ERR(em)) { 1416 unlock_extent(&inode->io_tree, start, 1417 start + cur_alloc_size - 1, &cached); 1418 ret = PTR_ERR(em); 1419 goto out_reserve; 1420 } 1421 free_extent_map(em); 1422 1423 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1424 1 << BTRFS_ORDERED_REGULAR); 1425 if (IS_ERR(ordered)) { 1426 unlock_extent(&inode->io_tree, start, 1427 start + cur_alloc_size - 1, &cached); 1428 ret = PTR_ERR(ordered); 1429 goto out_drop_extent_cache; 1430 } 1431 1432 if (btrfs_is_data_reloc_root(root)) { 1433 ret = btrfs_reloc_clone_csums(ordered); 1434 1435 /* 1436 * Only drop cache here, and process as normal. 1437 * 1438 * We must not allow extent_clear_unlock_delalloc() 1439 * at out_unlock label to free meta of this ordered 1440 * extent, as its meta should be freed by 1441 * btrfs_finish_ordered_io(). 1442 * 1443 * So we must continue until @start is increased to 1444 * skip current ordered extent. 1445 */ 1446 if (ret) 1447 btrfs_drop_extent_map_range(inode, start, 1448 start + cur_alloc_size - 1, 1449 false); 1450 } 1451 btrfs_put_ordered_extent(ordered); 1452 1453 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1454 1455 if (num_bytes < cur_alloc_size) 1456 num_bytes = 0; 1457 else 1458 num_bytes -= cur_alloc_size; 1459 alloc_hint = ins.objectid + ins.offset; 1460 start += cur_alloc_size; 1461 cur_alloc_size = 0; 1462 1463 /* 1464 * btrfs_reloc_clone_csums() error, since start is increased 1465 * extent_clear_unlock_delalloc() at out_unlock label won't 1466 * free metadata of current ordered extent, we're OK to exit. 1467 */ 1468 if (ret) 1469 goto out_unlock; 1470 } 1471 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1472 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1473 done: 1474 if (done_offset) 1475 *done_offset = end; 1476 return ret; 1477 1478 out_drop_extent_cache: 1479 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1480 out_reserve: 1481 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1482 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1483 out_unlock: 1484 /* 1485 * Now, we have three regions to clean up: 1486 * 1487 * |-------(1)----|---(2)---|-------------(3)----------| 1488 * `- orig_start `- start `- start + cur_alloc_size `- end 1489 * 1490 * We process each region below. 1491 */ 1492 1493 /* 1494 * For the range (1). We have already instantiated the ordered extents 1495 * for this region. They are cleaned up by 1496 * btrfs_cleanup_ordered_extents() in e.g, 1497 * btrfs_run_delalloc_range(). 1498 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1499 * are also handled by the cleanup function. 1500 * 1501 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1502 * finish the writeback of the involved folios, which will be never submitted. 1503 */ 1504 if (orig_start < start) { 1505 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1506 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1507 1508 if (!locked_folio) 1509 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1510 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1511 locked_folio, NULL, clear_bits, page_ops); 1512 } 1513 1514 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1515 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1516 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1517 1518 /* 1519 * For the range (2). If we reserved an extent for our delalloc range 1520 * (or a subrange) and failed to create the respective ordered extent, 1521 * then it means that when we reserved the extent we decremented the 1522 * extent's size from the data space_info's bytes_may_use counter and 1523 * incremented the space_info's bytes_reserved counter by the same 1524 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1525 * to decrement again the data space_info's bytes_may_use counter, 1526 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1527 */ 1528 if (cur_alloc_size) { 1529 extent_clear_unlock_delalloc(inode, start, 1530 start + cur_alloc_size - 1, 1531 locked_folio, &cached, clear_bits, 1532 page_ops); 1533 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1534 } 1535 1536 /* 1537 * For the range (3). We never touched the region. In addition to the 1538 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1539 * space_info's bytes_may_use counter, reserved in 1540 * btrfs_check_data_free_space(). 1541 */ 1542 if (start + cur_alloc_size < end) { 1543 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1544 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1545 end, locked_folio, 1546 &cached, clear_bits, page_ops); 1547 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1548 end - start - cur_alloc_size + 1, NULL); 1549 } 1550 btrfs_err_rl(fs_info, 1551 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1552 __func__, btrfs_root_id(inode->root), 1553 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1554 return ret; 1555 } 1556 1557 /* 1558 * Phase two of compressed writeback. This is the ordered portion of the code, 1559 * which only gets called in the order the work was queued. We walk all the 1560 * async extents created by compress_file_range and send them down to the disk. 1561 * 1562 * If called with @do_free == true then it'll try to finish the work and free 1563 * the work struct eventually. 1564 */ 1565 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1566 { 1567 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1568 work); 1569 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1570 struct async_extent *async_extent; 1571 unsigned long nr_pages; 1572 u64 alloc_hint = 0; 1573 1574 if (do_free) { 1575 struct async_cow *async_cow; 1576 1577 btrfs_add_delayed_iput(async_chunk->inode); 1578 if (async_chunk->blkcg_css) 1579 css_put(async_chunk->blkcg_css); 1580 1581 async_cow = async_chunk->async_cow; 1582 if (atomic_dec_and_test(&async_cow->num_chunks)) 1583 kvfree(async_cow); 1584 return; 1585 } 1586 1587 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1588 PAGE_SHIFT; 1589 1590 while (!list_empty(&async_chunk->extents)) { 1591 async_extent = list_entry(async_chunk->extents.next, 1592 struct async_extent, list); 1593 list_del(&async_extent->list); 1594 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1595 } 1596 1597 /* atomic_sub_return implies a barrier */ 1598 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1599 5 * SZ_1M) 1600 cond_wake_up_nomb(&fs_info->async_submit_wait); 1601 } 1602 1603 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1604 struct folio *locked_folio, u64 start, 1605 u64 end, struct writeback_control *wbc) 1606 { 1607 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1608 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1609 struct async_cow *ctx; 1610 struct async_chunk *async_chunk; 1611 unsigned long nr_pages; 1612 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1613 int i; 1614 unsigned nofs_flag; 1615 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1616 1617 nofs_flag = memalloc_nofs_save(); 1618 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1619 memalloc_nofs_restore(nofs_flag); 1620 if (!ctx) 1621 return false; 1622 1623 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1624 1625 async_chunk = ctx->chunks; 1626 atomic_set(&ctx->num_chunks, num_chunks); 1627 1628 for (i = 0; i < num_chunks; i++) { 1629 u64 cur_end = min(end, start + SZ_512K - 1); 1630 1631 /* 1632 * igrab is called higher up in the call chain, take only the 1633 * lightweight reference for the callback lifetime 1634 */ 1635 ihold(&inode->vfs_inode); 1636 async_chunk[i].async_cow = ctx; 1637 async_chunk[i].inode = inode; 1638 async_chunk[i].start = start; 1639 async_chunk[i].end = cur_end; 1640 async_chunk[i].write_flags = write_flags; 1641 INIT_LIST_HEAD(&async_chunk[i].extents); 1642 1643 /* 1644 * The locked_folio comes all the way from writepage and its 1645 * the original folio we were actually given. As we spread 1646 * this large delalloc region across multiple async_chunk 1647 * structs, only the first struct needs a pointer to 1648 * locked_folio. 1649 * 1650 * This way we don't need racey decisions about who is supposed 1651 * to unlock it. 1652 */ 1653 if (locked_folio) { 1654 /* 1655 * Depending on the compressibility, the pages might or 1656 * might not go through async. We want all of them to 1657 * be accounted against wbc once. Let's do it here 1658 * before the paths diverge. wbc accounting is used 1659 * only for foreign writeback detection and doesn't 1660 * need full accuracy. Just account the whole thing 1661 * against the first page. 1662 */ 1663 wbc_account_cgroup_owner(wbc, locked_folio, 1664 cur_end - start); 1665 async_chunk[i].locked_folio = locked_folio; 1666 locked_folio = NULL; 1667 } else { 1668 async_chunk[i].locked_folio = NULL; 1669 } 1670 1671 if (blkcg_css != blkcg_root_css) { 1672 css_get(blkcg_css); 1673 async_chunk[i].blkcg_css = blkcg_css; 1674 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1675 } else { 1676 async_chunk[i].blkcg_css = NULL; 1677 } 1678 1679 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1680 submit_compressed_extents); 1681 1682 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1683 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1684 1685 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1686 1687 start = cur_end + 1; 1688 } 1689 return true; 1690 } 1691 1692 /* 1693 * Run the delalloc range from start to end, and write back any dirty pages 1694 * covered by the range. 1695 */ 1696 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1697 struct folio *locked_folio, u64 start, 1698 u64 end, struct writeback_control *wbc, 1699 bool pages_dirty) 1700 { 1701 u64 done_offset = end; 1702 int ret; 1703 1704 while (start <= end) { 1705 ret = cow_file_range(inode, locked_folio, start, end, 1706 &done_offset, true, false); 1707 if (ret) 1708 return ret; 1709 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1710 start, done_offset, wbc, pages_dirty); 1711 start = done_offset + 1; 1712 } 1713 1714 return 1; 1715 } 1716 1717 static int fallback_to_cow(struct btrfs_inode *inode, 1718 struct folio *locked_folio, const u64 start, 1719 const u64 end) 1720 { 1721 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1722 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1723 const u64 range_bytes = end + 1 - start; 1724 struct extent_io_tree *io_tree = &inode->io_tree; 1725 struct extent_state *cached_state = NULL; 1726 u64 range_start = start; 1727 u64 count; 1728 int ret; 1729 1730 /* 1731 * If EXTENT_NORESERVE is set it means that when the buffered write was 1732 * made we had not enough available data space and therefore we did not 1733 * reserve data space for it, since we though we could do NOCOW for the 1734 * respective file range (either there is prealloc extent or the inode 1735 * has the NOCOW bit set). 1736 * 1737 * However when we need to fallback to COW mode (because for example the 1738 * block group for the corresponding extent was turned to RO mode by a 1739 * scrub or relocation) we need to do the following: 1740 * 1741 * 1) We increment the bytes_may_use counter of the data space info. 1742 * If COW succeeds, it allocates a new data extent and after doing 1743 * that it decrements the space info's bytes_may_use counter and 1744 * increments its bytes_reserved counter by the same amount (we do 1745 * this at btrfs_add_reserved_bytes()). So we need to increment the 1746 * bytes_may_use counter to compensate (when space is reserved at 1747 * buffered write time, the bytes_may_use counter is incremented); 1748 * 1749 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1750 * that if the COW path fails for any reason, it decrements (through 1751 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1752 * data space info, which we incremented in the step above. 1753 * 1754 * If we need to fallback to cow and the inode corresponds to a free 1755 * space cache inode or an inode of the data relocation tree, we must 1756 * also increment bytes_may_use of the data space_info for the same 1757 * reason. Space caches and relocated data extents always get a prealloc 1758 * extent for them, however scrub or balance may have set the block 1759 * group that contains that extent to RO mode and therefore force COW 1760 * when starting writeback. 1761 */ 1762 lock_extent(io_tree, start, end, &cached_state); 1763 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1764 EXTENT_NORESERVE, 0, NULL); 1765 if (count > 0 || is_space_ino || is_reloc_ino) { 1766 u64 bytes = count; 1767 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1768 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1769 1770 if (is_space_ino || is_reloc_ino) 1771 bytes = range_bytes; 1772 1773 spin_lock(&sinfo->lock); 1774 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1775 spin_unlock(&sinfo->lock); 1776 1777 if (count > 0) 1778 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1779 NULL); 1780 } 1781 unlock_extent(io_tree, start, end, &cached_state); 1782 1783 /* 1784 * Don't try to create inline extents, as a mix of inline extent that 1785 * is written out and unlocked directly and a normal NOCOW extent 1786 * doesn't work. 1787 */ 1788 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1789 true); 1790 ASSERT(ret != 1); 1791 return ret; 1792 } 1793 1794 struct can_nocow_file_extent_args { 1795 /* Input fields. */ 1796 1797 /* Start file offset of the range we want to NOCOW. */ 1798 u64 start; 1799 /* End file offset (inclusive) of the range we want to NOCOW. */ 1800 u64 end; 1801 bool writeback_path; 1802 /* 1803 * Free the path passed to can_nocow_file_extent() once it's not needed 1804 * anymore. 1805 */ 1806 bool free_path; 1807 1808 /* 1809 * Output fields. Only set when can_nocow_file_extent() returns 1. 1810 * The expected file extent for the NOCOW write. 1811 */ 1812 struct btrfs_file_extent file_extent; 1813 }; 1814 1815 /* 1816 * Check if we can NOCOW the file extent that the path points to. 1817 * This function may return with the path released, so the caller should check 1818 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1819 * 1820 * Returns: < 0 on error 1821 * 0 if we can not NOCOW 1822 * 1 if we can NOCOW 1823 */ 1824 static int can_nocow_file_extent(struct btrfs_path *path, 1825 struct btrfs_key *key, 1826 struct btrfs_inode *inode, 1827 struct can_nocow_file_extent_args *args) 1828 { 1829 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1830 struct extent_buffer *leaf = path->nodes[0]; 1831 struct btrfs_root *root = inode->root; 1832 struct btrfs_file_extent_item *fi; 1833 struct btrfs_root *csum_root; 1834 u64 io_start; 1835 u64 extent_end; 1836 u8 extent_type; 1837 int can_nocow = 0; 1838 int ret = 0; 1839 bool nowait = path->nowait; 1840 1841 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1842 extent_type = btrfs_file_extent_type(leaf, fi); 1843 1844 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1845 goto out; 1846 1847 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1848 extent_type == BTRFS_FILE_EXTENT_REG) 1849 goto out; 1850 1851 /* 1852 * If the extent was created before the generation where the last snapshot 1853 * for its subvolume was created, then this implies the extent is shared, 1854 * hence we must COW. 1855 */ 1856 if (btrfs_file_extent_generation(leaf, fi) <= 1857 btrfs_root_last_snapshot(&root->root_item)) 1858 goto out; 1859 1860 /* An explicit hole, must COW. */ 1861 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1862 goto out; 1863 1864 /* Compressed/encrypted/encoded extents must be COWed. */ 1865 if (btrfs_file_extent_compression(leaf, fi) || 1866 btrfs_file_extent_encryption(leaf, fi) || 1867 btrfs_file_extent_other_encoding(leaf, fi)) 1868 goto out; 1869 1870 extent_end = btrfs_file_extent_end(path); 1871 1872 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1873 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1874 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1875 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1876 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1877 1878 /* 1879 * The following checks can be expensive, as they need to take other 1880 * locks and do btree or rbtree searches, so release the path to avoid 1881 * blocking other tasks for too long. 1882 */ 1883 btrfs_release_path(path); 1884 1885 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1886 args->file_extent.disk_bytenr, path); 1887 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1888 if (ret != 0) 1889 goto out; 1890 1891 if (args->free_path) { 1892 /* 1893 * We don't need the path anymore, plus through the 1894 * btrfs_lookup_csums_list() call below we will end up allocating 1895 * another path. So free the path to avoid unnecessary extra 1896 * memory usage. 1897 */ 1898 btrfs_free_path(path); 1899 path = NULL; 1900 } 1901 1902 /* If there are pending snapshots for this root, we must COW. */ 1903 if (args->writeback_path && !is_freespace_inode && 1904 atomic_read(&root->snapshot_force_cow)) 1905 goto out; 1906 1907 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1908 args->file_extent.offset += args->start - key->offset; 1909 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1910 1911 /* 1912 * Force COW if csums exist in the range. This ensures that csums for a 1913 * given extent are either valid or do not exist. 1914 */ 1915 1916 csum_root = btrfs_csum_root(root->fs_info, io_start); 1917 ret = btrfs_lookup_csums_list(csum_root, io_start, 1918 io_start + args->file_extent.num_bytes - 1, 1919 NULL, nowait); 1920 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1921 if (ret != 0) 1922 goto out; 1923 1924 can_nocow = 1; 1925 out: 1926 if (args->free_path && path) 1927 btrfs_free_path(path); 1928 1929 return ret < 0 ? ret : can_nocow; 1930 } 1931 1932 /* 1933 * Cleanup the dirty folios which will never be submitted due to error. 1934 * 1935 * When running a delalloc range, we may need to split the ranges (due to 1936 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1937 * out and previously successfully executed range will never be submitted, thus 1938 * we have to cleanup those folios by clearing their dirty flag, starting and 1939 * finishing the writeback. 1940 */ 1941 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1942 struct folio *locked_folio, 1943 u64 start, u64 end, int error) 1944 { 1945 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1946 struct address_space *mapping = inode->vfs_inode.i_mapping; 1947 pgoff_t start_index = start >> PAGE_SHIFT; 1948 pgoff_t end_index = end >> PAGE_SHIFT; 1949 u32 len; 1950 1951 ASSERT(end + 1 - start < U32_MAX); 1952 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1953 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1954 len = end + 1 - start; 1955 1956 /* 1957 * Handle the locked folio first. 1958 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1959 */ 1960 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1961 1962 for (pgoff_t index = start_index; index <= end_index; index++) { 1963 struct folio *folio; 1964 1965 /* Already handled at the beginning. */ 1966 if (index == locked_folio->index) 1967 continue; 1968 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1969 /* Cache already dropped, no need to do any cleanup. */ 1970 if (IS_ERR(folio)) 1971 continue; 1972 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1973 folio_unlock(folio); 1974 folio_put(folio); 1975 } 1976 mapping_set_error(mapping, error); 1977 } 1978 1979 /* 1980 * when nowcow writeback call back. This checks for snapshots or COW copies 1981 * of the extents that exist in the file, and COWs the file as required. 1982 * 1983 * If no cow copies or snapshots exist, we write directly to the existing 1984 * blocks on disk 1985 */ 1986 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1987 struct folio *locked_folio, 1988 const u64 start, const u64 end) 1989 { 1990 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1991 struct btrfs_root *root = inode->root; 1992 struct btrfs_path *path; 1993 u64 cow_start = (u64)-1; 1994 /* 1995 * If not 0, represents the inclusive end of the last fallback_to_cow() 1996 * range. Only for error handling. 1997 */ 1998 u64 cow_end = 0; 1999 u64 cur_offset = start; 2000 int ret; 2001 bool check_prev = true; 2002 u64 ino = btrfs_ino(inode); 2003 struct can_nocow_file_extent_args nocow_args = { 0 }; 2004 2005 /* 2006 * Normally on a zoned device we're only doing COW writes, but in case 2007 * of relocation on a zoned filesystem serializes I/O so that we're only 2008 * writing sequentially and can end up here as well. 2009 */ 2010 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2011 2012 path = btrfs_alloc_path(); 2013 if (!path) { 2014 ret = -ENOMEM; 2015 goto error; 2016 } 2017 2018 nocow_args.end = end; 2019 nocow_args.writeback_path = true; 2020 2021 while (cur_offset <= end) { 2022 struct btrfs_block_group *nocow_bg = NULL; 2023 struct btrfs_ordered_extent *ordered; 2024 struct btrfs_key found_key; 2025 struct btrfs_file_extent_item *fi; 2026 struct extent_buffer *leaf; 2027 struct extent_state *cached_state = NULL; 2028 u64 extent_end; 2029 u64 nocow_end; 2030 int extent_type; 2031 bool is_prealloc; 2032 2033 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2034 cur_offset, 0); 2035 if (ret < 0) 2036 goto error; 2037 2038 /* 2039 * If there is no extent for our range when doing the initial 2040 * search, then go back to the previous slot as it will be the 2041 * one containing the search offset 2042 */ 2043 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2044 leaf = path->nodes[0]; 2045 btrfs_item_key_to_cpu(leaf, &found_key, 2046 path->slots[0] - 1); 2047 if (found_key.objectid == ino && 2048 found_key.type == BTRFS_EXTENT_DATA_KEY) 2049 path->slots[0]--; 2050 } 2051 check_prev = false; 2052 next_slot: 2053 /* Go to next leaf if we have exhausted the current one */ 2054 leaf = path->nodes[0]; 2055 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2056 ret = btrfs_next_leaf(root, path); 2057 if (ret < 0) 2058 goto error; 2059 if (ret > 0) 2060 break; 2061 leaf = path->nodes[0]; 2062 } 2063 2064 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2065 2066 /* Didn't find anything for our INO */ 2067 if (found_key.objectid > ino) 2068 break; 2069 /* 2070 * Keep searching until we find an EXTENT_ITEM or there are no 2071 * more extents for this inode 2072 */ 2073 if (WARN_ON_ONCE(found_key.objectid < ino) || 2074 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2075 path->slots[0]++; 2076 goto next_slot; 2077 } 2078 2079 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2080 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2081 found_key.offset > end) 2082 break; 2083 2084 /* 2085 * If the found extent starts after requested offset, then 2086 * adjust extent_end to be right before this extent begins 2087 */ 2088 if (found_key.offset > cur_offset) { 2089 extent_end = found_key.offset; 2090 extent_type = 0; 2091 goto must_cow; 2092 } 2093 2094 /* 2095 * Found extent which begins before our range and potentially 2096 * intersect it 2097 */ 2098 fi = btrfs_item_ptr(leaf, path->slots[0], 2099 struct btrfs_file_extent_item); 2100 extent_type = btrfs_file_extent_type(leaf, fi); 2101 /* If this is triggered then we have a memory corruption. */ 2102 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2103 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2104 ret = -EUCLEAN; 2105 goto error; 2106 } 2107 extent_end = btrfs_file_extent_end(path); 2108 2109 /* 2110 * If the extent we got ends before our current offset, skip to 2111 * the next extent. 2112 */ 2113 if (extent_end <= cur_offset) { 2114 path->slots[0]++; 2115 goto next_slot; 2116 } 2117 2118 nocow_args.start = cur_offset; 2119 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2120 if (ret < 0) 2121 goto error; 2122 if (ret == 0) 2123 goto must_cow; 2124 2125 ret = 0; 2126 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2127 nocow_args.file_extent.disk_bytenr + 2128 nocow_args.file_extent.offset); 2129 if (!nocow_bg) { 2130 must_cow: 2131 /* 2132 * If we can't perform NOCOW writeback for the range, 2133 * then record the beginning of the range that needs to 2134 * be COWed. It will be written out before the next 2135 * NOCOW range if we find one, or when exiting this 2136 * loop. 2137 */ 2138 if (cow_start == (u64)-1) 2139 cow_start = cur_offset; 2140 cur_offset = extent_end; 2141 if (cur_offset > end) 2142 break; 2143 if (!path->nodes[0]) 2144 continue; 2145 path->slots[0]++; 2146 goto next_slot; 2147 } 2148 2149 /* 2150 * COW range from cow_start to found_key.offset - 1. As the key 2151 * will contain the beginning of the first extent that can be 2152 * NOCOW, following one which needs to be COW'ed 2153 */ 2154 if (cow_start != (u64)-1) { 2155 ret = fallback_to_cow(inode, locked_folio, cow_start, 2156 found_key.offset - 1); 2157 cow_start = (u64)-1; 2158 if (ret) { 2159 cow_end = found_key.offset - 1; 2160 btrfs_dec_nocow_writers(nocow_bg); 2161 goto error; 2162 } 2163 } 2164 2165 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2166 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2167 2168 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2169 if (is_prealloc) { 2170 struct extent_map *em; 2171 2172 em = btrfs_create_io_em(inode, cur_offset, 2173 &nocow_args.file_extent, 2174 BTRFS_ORDERED_PREALLOC); 2175 if (IS_ERR(em)) { 2176 unlock_extent(&inode->io_tree, cur_offset, 2177 nocow_end, &cached_state); 2178 btrfs_dec_nocow_writers(nocow_bg); 2179 ret = PTR_ERR(em); 2180 goto error; 2181 } 2182 free_extent_map(em); 2183 } 2184 2185 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2186 &nocow_args.file_extent, 2187 is_prealloc 2188 ? (1 << BTRFS_ORDERED_PREALLOC) 2189 : (1 << BTRFS_ORDERED_NOCOW)); 2190 btrfs_dec_nocow_writers(nocow_bg); 2191 if (IS_ERR(ordered)) { 2192 if (is_prealloc) { 2193 btrfs_drop_extent_map_range(inode, cur_offset, 2194 nocow_end, false); 2195 } 2196 unlock_extent(&inode->io_tree, cur_offset, 2197 nocow_end, &cached_state); 2198 ret = PTR_ERR(ordered); 2199 goto error; 2200 } 2201 2202 if (btrfs_is_data_reloc_root(root)) 2203 /* 2204 * Error handled later, as we must prevent 2205 * extent_clear_unlock_delalloc() in error handler 2206 * from freeing metadata of created ordered extent. 2207 */ 2208 ret = btrfs_reloc_clone_csums(ordered); 2209 btrfs_put_ordered_extent(ordered); 2210 2211 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2212 locked_folio, &cached_state, 2213 EXTENT_LOCKED | EXTENT_DELALLOC | 2214 EXTENT_CLEAR_DATA_RESV, 2215 PAGE_UNLOCK | PAGE_SET_ORDERED); 2216 2217 cur_offset = extent_end; 2218 2219 /* 2220 * btrfs_reloc_clone_csums() error, now we're OK to call error 2221 * handler, as metadata for created ordered extent will only 2222 * be freed by btrfs_finish_ordered_io(). 2223 */ 2224 if (ret) 2225 goto error; 2226 } 2227 btrfs_release_path(path); 2228 2229 if (cur_offset <= end && cow_start == (u64)-1) 2230 cow_start = cur_offset; 2231 2232 if (cow_start != (u64)-1) { 2233 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2234 cow_start = (u64)-1; 2235 if (ret) { 2236 cow_end = end; 2237 goto error; 2238 } 2239 } 2240 2241 btrfs_free_path(path); 2242 return 0; 2243 2244 error: 2245 /* 2246 * There are several error cases: 2247 * 2248 * 1) Failed without falling back to COW 2249 * start cur_offset end 2250 * |/////////////| | 2251 * 2252 * For range [start, cur_offset) the folios are already unlocked (except 2253 * @locked_folio), EXTENT_DELALLOC already removed. 2254 * Only need to clear the dirty flag as they will never be submitted. 2255 * Ordered extent and extent maps are handled by 2256 * btrfs_mark_ordered_io_finished() inside run_delalloc_range(). 2257 * 2258 * 2) Failed with error from fallback_to_cow() 2259 * start cur_offset cow_end end 2260 * |/////////////|-----------| | 2261 * 2262 * For range [start, cur_offset) it's the same as case 1). 2263 * But for range [cur_offset, cow_end), the folios have dirty flag 2264 * cleared and unlocked, EXTENT_DEALLLOC cleared by cow_file_range(). 2265 * 2266 * Thus we should not call extent_clear_unlock_delalloc() on range 2267 * [cur_offset, cow_end), as the folios are already unlocked. 2268 * 2269 * So clear the folio dirty flags for [start, cur_offset) first. 2270 */ 2271 if (cur_offset > start) 2272 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2273 2274 /* 2275 * If an error happened while a COW region is outstanding, cur_offset 2276 * needs to be reset to @cow_end + 1 to skip the COW range, as 2277 * cow_file_range() will do the proper cleanup at error. 2278 */ 2279 if (cow_end) 2280 cur_offset = cow_end + 1; 2281 2282 /* 2283 * We need to lock the extent here because we're clearing DELALLOC and 2284 * we're not locked at this point. 2285 */ 2286 if (cur_offset < end) { 2287 struct extent_state *cached = NULL; 2288 2289 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2290 extent_clear_unlock_delalloc(inode, cur_offset, end, 2291 locked_folio, &cached, 2292 EXTENT_LOCKED | EXTENT_DELALLOC | 2293 EXTENT_DEFRAG | 2294 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2295 PAGE_START_WRITEBACK | 2296 PAGE_END_WRITEBACK); 2297 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2298 } 2299 btrfs_free_path(path); 2300 btrfs_err_rl(fs_info, 2301 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2302 __func__, btrfs_root_id(inode->root), 2303 btrfs_ino(inode), start, end + 1 - start, ret); 2304 return ret; 2305 } 2306 2307 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2308 { 2309 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2310 if (inode->defrag_bytes && 2311 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2312 return false; 2313 return true; 2314 } 2315 return false; 2316 } 2317 2318 /* 2319 * Function to process delayed allocation (create CoW) for ranges which are 2320 * being touched for the first time. 2321 */ 2322 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2323 u64 start, u64 end, struct writeback_control *wbc) 2324 { 2325 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2326 int ret; 2327 2328 /* 2329 * The range must cover part of the @locked_folio, or a return of 1 2330 * can confuse the caller. 2331 */ 2332 ASSERT(!(end <= folio_pos(locked_folio) || 2333 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2334 2335 if (should_nocow(inode, start, end)) { 2336 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2337 goto out; 2338 } 2339 2340 if (btrfs_inode_can_compress(inode) && 2341 inode_need_compress(inode, start, end) && 2342 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2343 return 1; 2344 2345 if (zoned) 2346 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2347 true); 2348 else 2349 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2350 false, false); 2351 2352 out: 2353 if (ret < 0) 2354 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 2355 return ret; 2356 } 2357 2358 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2359 struct extent_state *orig, u64 split) 2360 { 2361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2362 u64 size; 2363 2364 lockdep_assert_held(&inode->io_tree.lock); 2365 2366 /* not delalloc, ignore it */ 2367 if (!(orig->state & EXTENT_DELALLOC)) 2368 return; 2369 2370 size = orig->end - orig->start + 1; 2371 if (size > fs_info->max_extent_size) { 2372 u32 num_extents; 2373 u64 new_size; 2374 2375 /* 2376 * See the explanation in btrfs_merge_delalloc_extent, the same 2377 * applies here, just in reverse. 2378 */ 2379 new_size = orig->end - split + 1; 2380 num_extents = count_max_extents(fs_info, new_size); 2381 new_size = split - orig->start; 2382 num_extents += count_max_extents(fs_info, new_size); 2383 if (count_max_extents(fs_info, size) >= num_extents) 2384 return; 2385 } 2386 2387 spin_lock(&inode->lock); 2388 btrfs_mod_outstanding_extents(inode, 1); 2389 spin_unlock(&inode->lock); 2390 } 2391 2392 /* 2393 * Handle merged delayed allocation extents so we can keep track of new extents 2394 * that are just merged onto old extents, such as when we are doing sequential 2395 * writes, so we can properly account for the metadata space we'll need. 2396 */ 2397 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2398 struct extent_state *other) 2399 { 2400 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2401 u64 new_size, old_size; 2402 u32 num_extents; 2403 2404 lockdep_assert_held(&inode->io_tree.lock); 2405 2406 /* not delalloc, ignore it */ 2407 if (!(other->state & EXTENT_DELALLOC)) 2408 return; 2409 2410 if (new->start > other->start) 2411 new_size = new->end - other->start + 1; 2412 else 2413 new_size = other->end - new->start + 1; 2414 2415 /* we're not bigger than the max, unreserve the space and go */ 2416 if (new_size <= fs_info->max_extent_size) { 2417 spin_lock(&inode->lock); 2418 btrfs_mod_outstanding_extents(inode, -1); 2419 spin_unlock(&inode->lock); 2420 return; 2421 } 2422 2423 /* 2424 * We have to add up either side to figure out how many extents were 2425 * accounted for before we merged into one big extent. If the number of 2426 * extents we accounted for is <= the amount we need for the new range 2427 * then we can return, otherwise drop. Think of it like this 2428 * 2429 * [ 4k][MAX_SIZE] 2430 * 2431 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2432 * need 2 outstanding extents, on one side we have 1 and the other side 2433 * we have 1 so they are == and we can return. But in this case 2434 * 2435 * [MAX_SIZE+4k][MAX_SIZE+4k] 2436 * 2437 * Each range on their own accounts for 2 extents, but merged together 2438 * they are only 3 extents worth of accounting, so we need to drop in 2439 * this case. 2440 */ 2441 old_size = other->end - other->start + 1; 2442 num_extents = count_max_extents(fs_info, old_size); 2443 old_size = new->end - new->start + 1; 2444 num_extents += count_max_extents(fs_info, old_size); 2445 if (count_max_extents(fs_info, new_size) >= num_extents) 2446 return; 2447 2448 spin_lock(&inode->lock); 2449 btrfs_mod_outstanding_extents(inode, -1); 2450 spin_unlock(&inode->lock); 2451 } 2452 2453 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2454 { 2455 struct btrfs_root *root = inode->root; 2456 struct btrfs_fs_info *fs_info = root->fs_info; 2457 2458 spin_lock(&root->delalloc_lock); 2459 ASSERT(list_empty(&inode->delalloc_inodes)); 2460 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2461 root->nr_delalloc_inodes++; 2462 if (root->nr_delalloc_inodes == 1) { 2463 spin_lock(&fs_info->delalloc_root_lock); 2464 ASSERT(list_empty(&root->delalloc_root)); 2465 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2466 spin_unlock(&fs_info->delalloc_root_lock); 2467 } 2468 spin_unlock(&root->delalloc_lock); 2469 } 2470 2471 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2472 { 2473 struct btrfs_root *root = inode->root; 2474 struct btrfs_fs_info *fs_info = root->fs_info; 2475 2476 lockdep_assert_held(&root->delalloc_lock); 2477 2478 /* 2479 * We may be called after the inode was already deleted from the list, 2480 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2481 * and then later through btrfs_clear_delalloc_extent() while the inode 2482 * still has ->delalloc_bytes > 0. 2483 */ 2484 if (!list_empty(&inode->delalloc_inodes)) { 2485 list_del_init(&inode->delalloc_inodes); 2486 root->nr_delalloc_inodes--; 2487 if (!root->nr_delalloc_inodes) { 2488 ASSERT(list_empty(&root->delalloc_inodes)); 2489 spin_lock(&fs_info->delalloc_root_lock); 2490 ASSERT(!list_empty(&root->delalloc_root)); 2491 list_del_init(&root->delalloc_root); 2492 spin_unlock(&fs_info->delalloc_root_lock); 2493 } 2494 } 2495 } 2496 2497 /* 2498 * Properly track delayed allocation bytes in the inode and to maintain the 2499 * list of inodes that have pending delalloc work to be done. 2500 */ 2501 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2502 u32 bits) 2503 { 2504 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2505 2506 lockdep_assert_held(&inode->io_tree.lock); 2507 2508 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2509 WARN_ON(1); 2510 /* 2511 * set_bit and clear bit hooks normally require _irqsave/restore 2512 * but in this case, we are only testing for the DELALLOC 2513 * bit, which is only set or cleared with irqs on 2514 */ 2515 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2516 u64 len = state->end + 1 - state->start; 2517 u64 prev_delalloc_bytes; 2518 u32 num_extents = count_max_extents(fs_info, len); 2519 2520 spin_lock(&inode->lock); 2521 btrfs_mod_outstanding_extents(inode, num_extents); 2522 spin_unlock(&inode->lock); 2523 2524 /* For sanity tests */ 2525 if (btrfs_is_testing(fs_info)) 2526 return; 2527 2528 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2529 fs_info->delalloc_batch); 2530 spin_lock(&inode->lock); 2531 prev_delalloc_bytes = inode->delalloc_bytes; 2532 inode->delalloc_bytes += len; 2533 if (bits & EXTENT_DEFRAG) 2534 inode->defrag_bytes += len; 2535 spin_unlock(&inode->lock); 2536 2537 /* 2538 * We don't need to be under the protection of the inode's lock, 2539 * because we are called while holding the inode's io_tree lock 2540 * and are therefore protected against concurrent calls of this 2541 * function and btrfs_clear_delalloc_extent(). 2542 */ 2543 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2544 btrfs_add_delalloc_inode(inode); 2545 } 2546 2547 if (!(state->state & EXTENT_DELALLOC_NEW) && 2548 (bits & EXTENT_DELALLOC_NEW)) { 2549 spin_lock(&inode->lock); 2550 inode->new_delalloc_bytes += state->end + 1 - state->start; 2551 spin_unlock(&inode->lock); 2552 } 2553 } 2554 2555 /* 2556 * Once a range is no longer delalloc this function ensures that proper 2557 * accounting happens. 2558 */ 2559 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2560 struct extent_state *state, u32 bits) 2561 { 2562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2563 u64 len = state->end + 1 - state->start; 2564 u32 num_extents = count_max_extents(fs_info, len); 2565 2566 lockdep_assert_held(&inode->io_tree.lock); 2567 2568 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2569 spin_lock(&inode->lock); 2570 inode->defrag_bytes -= len; 2571 spin_unlock(&inode->lock); 2572 } 2573 2574 /* 2575 * set_bit and clear bit hooks normally require _irqsave/restore 2576 * but in this case, we are only testing for the DELALLOC 2577 * bit, which is only set or cleared with irqs on 2578 */ 2579 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2580 struct btrfs_root *root = inode->root; 2581 u64 new_delalloc_bytes; 2582 2583 spin_lock(&inode->lock); 2584 btrfs_mod_outstanding_extents(inode, -num_extents); 2585 spin_unlock(&inode->lock); 2586 2587 /* 2588 * We don't reserve metadata space for space cache inodes so we 2589 * don't need to call delalloc_release_metadata if there is an 2590 * error. 2591 */ 2592 if (bits & EXTENT_CLEAR_META_RESV && 2593 root != fs_info->tree_root) 2594 btrfs_delalloc_release_metadata(inode, len, true); 2595 2596 /* For sanity tests. */ 2597 if (btrfs_is_testing(fs_info)) 2598 return; 2599 2600 if (!btrfs_is_data_reloc_root(root) && 2601 !btrfs_is_free_space_inode(inode) && 2602 !(state->state & EXTENT_NORESERVE) && 2603 (bits & EXTENT_CLEAR_DATA_RESV)) 2604 btrfs_free_reserved_data_space_noquota(fs_info, len); 2605 2606 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2607 fs_info->delalloc_batch); 2608 spin_lock(&inode->lock); 2609 inode->delalloc_bytes -= len; 2610 new_delalloc_bytes = inode->delalloc_bytes; 2611 spin_unlock(&inode->lock); 2612 2613 /* 2614 * We don't need to be under the protection of the inode's lock, 2615 * because we are called while holding the inode's io_tree lock 2616 * and are therefore protected against concurrent calls of this 2617 * function and btrfs_set_delalloc_extent(). 2618 */ 2619 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2620 spin_lock(&root->delalloc_lock); 2621 btrfs_del_delalloc_inode(inode); 2622 spin_unlock(&root->delalloc_lock); 2623 } 2624 } 2625 2626 if ((state->state & EXTENT_DELALLOC_NEW) && 2627 (bits & EXTENT_DELALLOC_NEW)) { 2628 spin_lock(&inode->lock); 2629 ASSERT(inode->new_delalloc_bytes >= len); 2630 inode->new_delalloc_bytes -= len; 2631 if (bits & EXTENT_ADD_INODE_BYTES) 2632 inode_add_bytes(&inode->vfs_inode, len); 2633 spin_unlock(&inode->lock); 2634 } 2635 } 2636 2637 /* 2638 * given a list of ordered sums record them in the inode. This happens 2639 * at IO completion time based on sums calculated at bio submission time. 2640 */ 2641 static int add_pending_csums(struct btrfs_trans_handle *trans, 2642 struct list_head *list) 2643 { 2644 struct btrfs_ordered_sum *sum; 2645 struct btrfs_root *csum_root = NULL; 2646 int ret; 2647 2648 list_for_each_entry(sum, list, list) { 2649 trans->adding_csums = true; 2650 if (!csum_root) 2651 csum_root = btrfs_csum_root(trans->fs_info, 2652 sum->logical); 2653 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2654 trans->adding_csums = false; 2655 if (ret) 2656 return ret; 2657 } 2658 return 0; 2659 } 2660 2661 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2662 const u64 start, 2663 const u64 len, 2664 struct extent_state **cached_state) 2665 { 2666 u64 search_start = start; 2667 const u64 end = start + len - 1; 2668 2669 while (search_start < end) { 2670 const u64 search_len = end - search_start + 1; 2671 struct extent_map *em; 2672 u64 em_len; 2673 int ret = 0; 2674 2675 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2676 if (IS_ERR(em)) 2677 return PTR_ERR(em); 2678 2679 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2680 goto next; 2681 2682 em_len = em->len; 2683 if (em->start < search_start) 2684 em_len -= search_start - em->start; 2685 if (em_len > search_len) 2686 em_len = search_len; 2687 2688 ret = set_extent_bit(&inode->io_tree, search_start, 2689 search_start + em_len - 1, 2690 EXTENT_DELALLOC_NEW, cached_state); 2691 next: 2692 search_start = extent_map_end(em); 2693 free_extent_map(em); 2694 if (ret) 2695 return ret; 2696 } 2697 return 0; 2698 } 2699 2700 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2701 unsigned int extra_bits, 2702 struct extent_state **cached_state) 2703 { 2704 WARN_ON(PAGE_ALIGNED(end)); 2705 2706 if (start >= i_size_read(&inode->vfs_inode) && 2707 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2708 /* 2709 * There can't be any extents following eof in this case so just 2710 * set the delalloc new bit for the range directly. 2711 */ 2712 extra_bits |= EXTENT_DELALLOC_NEW; 2713 } else { 2714 int ret; 2715 2716 ret = btrfs_find_new_delalloc_bytes(inode, start, 2717 end + 1 - start, 2718 cached_state); 2719 if (ret) 2720 return ret; 2721 } 2722 2723 return set_extent_bit(&inode->io_tree, start, end, 2724 EXTENT_DELALLOC | extra_bits, cached_state); 2725 } 2726 2727 /* see btrfs_writepage_start_hook for details on why this is required */ 2728 struct btrfs_writepage_fixup { 2729 struct folio *folio; 2730 struct btrfs_inode *inode; 2731 struct btrfs_work work; 2732 }; 2733 2734 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2735 { 2736 struct btrfs_writepage_fixup *fixup = 2737 container_of(work, struct btrfs_writepage_fixup, work); 2738 struct btrfs_ordered_extent *ordered; 2739 struct extent_state *cached_state = NULL; 2740 struct extent_changeset *data_reserved = NULL; 2741 struct folio *folio = fixup->folio; 2742 struct btrfs_inode *inode = fixup->inode; 2743 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2744 u64 page_start = folio_pos(folio); 2745 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2746 int ret = 0; 2747 bool free_delalloc_space = true; 2748 2749 /* 2750 * This is similar to page_mkwrite, we need to reserve the space before 2751 * we take the folio lock. 2752 */ 2753 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2754 folio_size(folio)); 2755 again: 2756 folio_lock(folio); 2757 2758 /* 2759 * Before we queued this fixup, we took a reference on the folio. 2760 * folio->mapping may go NULL, but it shouldn't be moved to a different 2761 * address space. 2762 */ 2763 if (!folio->mapping || !folio_test_dirty(folio) || 2764 !folio_test_checked(folio)) { 2765 /* 2766 * Unfortunately this is a little tricky, either 2767 * 2768 * 1) We got here and our folio had already been dealt with and 2769 * we reserved our space, thus ret == 0, so we need to just 2770 * drop our space reservation and bail. This can happen the 2771 * first time we come into the fixup worker, or could happen 2772 * while waiting for the ordered extent. 2773 * 2) Our folio was already dealt with, but we happened to get an 2774 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2775 * this case we obviously don't have anything to release, but 2776 * because the folio was already dealt with we don't want to 2777 * mark the folio with an error, so make sure we're resetting 2778 * ret to 0. This is why we have this check _before_ the ret 2779 * check, because we do not want to have a surprise ENOSPC 2780 * when the folio was already properly dealt with. 2781 */ 2782 if (!ret) { 2783 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2784 btrfs_delalloc_release_space(inode, data_reserved, 2785 page_start, folio_size(folio), 2786 true); 2787 } 2788 ret = 0; 2789 goto out_page; 2790 } 2791 2792 /* 2793 * We can't mess with the folio state unless it is locked, so now that 2794 * it is locked bail if we failed to make our space reservation. 2795 */ 2796 if (ret) 2797 goto out_page; 2798 2799 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2800 2801 /* already ordered? We're done */ 2802 if (folio_test_ordered(folio)) 2803 goto out_reserved; 2804 2805 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2806 if (ordered) { 2807 unlock_extent(&inode->io_tree, page_start, page_end, 2808 &cached_state); 2809 folio_unlock(folio); 2810 btrfs_start_ordered_extent(ordered); 2811 btrfs_put_ordered_extent(ordered); 2812 goto again; 2813 } 2814 2815 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2816 &cached_state); 2817 if (ret) 2818 goto out_reserved; 2819 2820 /* 2821 * Everything went as planned, we're now the owner of a dirty page with 2822 * delayed allocation bits set and space reserved for our COW 2823 * destination. 2824 * 2825 * The page was dirty when we started, nothing should have cleaned it. 2826 */ 2827 BUG_ON(!folio_test_dirty(folio)); 2828 free_delalloc_space = false; 2829 out_reserved: 2830 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2831 if (free_delalloc_space) 2832 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2833 PAGE_SIZE, true); 2834 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2835 out_page: 2836 if (ret) { 2837 /* 2838 * We hit ENOSPC or other errors. Update the mapping and page 2839 * to reflect the errors and clean the page. 2840 */ 2841 mapping_set_error(folio->mapping, ret); 2842 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2843 folio_size(folio), !ret); 2844 folio_clear_dirty_for_io(folio); 2845 } 2846 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2847 folio_unlock(folio); 2848 folio_put(folio); 2849 kfree(fixup); 2850 extent_changeset_free(data_reserved); 2851 /* 2852 * As a precaution, do a delayed iput in case it would be the last iput 2853 * that could need flushing space. Recursing back to fixup worker would 2854 * deadlock. 2855 */ 2856 btrfs_add_delayed_iput(inode); 2857 } 2858 2859 /* 2860 * There are a few paths in the higher layers of the kernel that directly 2861 * set the folio dirty bit without asking the filesystem if it is a 2862 * good idea. This causes problems because we want to make sure COW 2863 * properly happens and the data=ordered rules are followed. 2864 * 2865 * In our case any range that doesn't have the ORDERED bit set 2866 * hasn't been properly setup for IO. We kick off an async process 2867 * to fix it up. The async helper will wait for ordered extents, set 2868 * the delalloc bit and make it safe to write the folio. 2869 */ 2870 int btrfs_writepage_cow_fixup(struct folio *folio) 2871 { 2872 struct inode *inode = folio->mapping->host; 2873 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2874 struct btrfs_writepage_fixup *fixup; 2875 2876 /* This folio has ordered extent covering it already */ 2877 if (folio_test_ordered(folio)) 2878 return 0; 2879 2880 /* 2881 * folio_checked is set below when we create a fixup worker for this 2882 * folio, don't try to create another one if we're already 2883 * folio_test_checked. 2884 * 2885 * The extent_io writepage code will redirty the foio if we send back 2886 * EAGAIN. 2887 */ 2888 if (folio_test_checked(folio)) 2889 return -EAGAIN; 2890 2891 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2892 if (!fixup) 2893 return -EAGAIN; 2894 2895 /* 2896 * We are already holding a reference to this inode from 2897 * write_cache_pages. We need to hold it because the space reservation 2898 * takes place outside of the folio lock, and we can't trust 2899 * page->mapping outside of the folio lock. 2900 */ 2901 ihold(inode); 2902 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2903 folio_get(folio); 2904 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2905 fixup->folio = folio; 2906 fixup->inode = BTRFS_I(inode); 2907 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2908 2909 return -EAGAIN; 2910 } 2911 2912 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2913 struct btrfs_inode *inode, u64 file_pos, 2914 struct btrfs_file_extent_item *stack_fi, 2915 const bool update_inode_bytes, 2916 u64 qgroup_reserved) 2917 { 2918 struct btrfs_root *root = inode->root; 2919 const u64 sectorsize = root->fs_info->sectorsize; 2920 struct btrfs_path *path; 2921 struct extent_buffer *leaf; 2922 struct btrfs_key ins; 2923 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2924 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2925 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2926 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2927 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2928 struct btrfs_drop_extents_args drop_args = { 0 }; 2929 int ret; 2930 2931 path = btrfs_alloc_path(); 2932 if (!path) 2933 return -ENOMEM; 2934 2935 /* 2936 * we may be replacing one extent in the tree with another. 2937 * The new extent is pinned in the extent map, and we don't want 2938 * to drop it from the cache until it is completely in the btree. 2939 * 2940 * So, tell btrfs_drop_extents to leave this extent in the cache. 2941 * the caller is expected to unpin it and allow it to be merged 2942 * with the others. 2943 */ 2944 drop_args.path = path; 2945 drop_args.start = file_pos; 2946 drop_args.end = file_pos + num_bytes; 2947 drop_args.replace_extent = true; 2948 drop_args.extent_item_size = sizeof(*stack_fi); 2949 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2950 if (ret) 2951 goto out; 2952 2953 if (!drop_args.extent_inserted) { 2954 ins.objectid = btrfs_ino(inode); 2955 ins.offset = file_pos; 2956 ins.type = BTRFS_EXTENT_DATA_KEY; 2957 2958 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2959 sizeof(*stack_fi)); 2960 if (ret) 2961 goto out; 2962 } 2963 leaf = path->nodes[0]; 2964 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2965 write_extent_buffer(leaf, stack_fi, 2966 btrfs_item_ptr_offset(leaf, path->slots[0]), 2967 sizeof(struct btrfs_file_extent_item)); 2968 2969 btrfs_release_path(path); 2970 2971 /* 2972 * If we dropped an inline extent here, we know the range where it is 2973 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2974 * number of bytes only for that range containing the inline extent. 2975 * The remaining of the range will be processed when clearning the 2976 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2977 */ 2978 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2979 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2980 2981 inline_size = drop_args.bytes_found - inline_size; 2982 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2983 drop_args.bytes_found -= inline_size; 2984 num_bytes -= sectorsize; 2985 } 2986 2987 if (update_inode_bytes) 2988 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2989 2990 ins.objectid = disk_bytenr; 2991 ins.offset = disk_num_bytes; 2992 ins.type = BTRFS_EXTENT_ITEM_KEY; 2993 2994 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2995 if (ret) 2996 goto out; 2997 2998 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2999 file_pos - offset, 3000 qgroup_reserved, &ins); 3001 out: 3002 btrfs_free_path(path); 3003 3004 return ret; 3005 } 3006 3007 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3008 u64 start, u64 len) 3009 { 3010 struct btrfs_block_group *cache; 3011 3012 cache = btrfs_lookup_block_group(fs_info, start); 3013 ASSERT(cache); 3014 3015 spin_lock(&cache->lock); 3016 cache->delalloc_bytes -= len; 3017 spin_unlock(&cache->lock); 3018 3019 btrfs_put_block_group(cache); 3020 } 3021 3022 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3023 struct btrfs_ordered_extent *oe) 3024 { 3025 struct btrfs_file_extent_item stack_fi; 3026 bool update_inode_bytes; 3027 u64 num_bytes = oe->num_bytes; 3028 u64 ram_bytes = oe->ram_bytes; 3029 3030 memset(&stack_fi, 0, sizeof(stack_fi)); 3031 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3032 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3033 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3034 oe->disk_num_bytes); 3035 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3036 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3037 num_bytes = oe->truncated_len; 3038 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3039 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3040 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3041 /* Encryption and other encoding is reserved and all 0 */ 3042 3043 /* 3044 * For delalloc, when completing an ordered extent we update the inode's 3045 * bytes when clearing the range in the inode's io tree, so pass false 3046 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3047 * except if the ordered extent was truncated. 3048 */ 3049 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3050 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3051 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3052 3053 return insert_reserved_file_extent(trans, oe->inode, 3054 oe->file_offset, &stack_fi, 3055 update_inode_bytes, oe->qgroup_rsv); 3056 } 3057 3058 /* 3059 * As ordered data IO finishes, this gets called so we can finish 3060 * an ordered extent if the range of bytes in the file it covers are 3061 * fully written. 3062 */ 3063 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3064 { 3065 struct btrfs_inode *inode = ordered_extent->inode; 3066 struct btrfs_root *root = inode->root; 3067 struct btrfs_fs_info *fs_info = root->fs_info; 3068 struct btrfs_trans_handle *trans = NULL; 3069 struct extent_io_tree *io_tree = &inode->io_tree; 3070 struct extent_state *cached_state = NULL; 3071 u64 start, end; 3072 int compress_type = 0; 3073 int ret = 0; 3074 u64 logical_len = ordered_extent->num_bytes; 3075 bool freespace_inode; 3076 bool truncated = false; 3077 bool clear_reserved_extent = true; 3078 unsigned int clear_bits = EXTENT_DEFRAG; 3079 3080 start = ordered_extent->file_offset; 3081 end = start + ordered_extent->num_bytes - 1; 3082 3083 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3084 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3085 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3086 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3087 clear_bits |= EXTENT_DELALLOC_NEW; 3088 3089 freespace_inode = btrfs_is_free_space_inode(inode); 3090 if (!freespace_inode) 3091 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3092 3093 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3094 ret = -EIO; 3095 goto out; 3096 } 3097 3098 if (btrfs_is_zoned(fs_info)) 3099 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3100 ordered_extent->disk_num_bytes); 3101 3102 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3103 truncated = true; 3104 logical_len = ordered_extent->truncated_len; 3105 /* Truncated the entire extent, don't bother adding */ 3106 if (!logical_len) 3107 goto out; 3108 } 3109 3110 /* 3111 * If it's a COW write we need to lock the extent range as we will be 3112 * inserting/replacing file extent items and unpinning an extent map. 3113 * This must be taken before joining a transaction, as it's a higher 3114 * level lock (like the inode's VFS lock), otherwise we can run into an 3115 * ABBA deadlock with other tasks (transactions work like a lock, 3116 * depending on their current state). 3117 */ 3118 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3119 clear_bits |= EXTENT_LOCKED; 3120 lock_extent(io_tree, start, end, &cached_state); 3121 } 3122 3123 if (freespace_inode) 3124 trans = btrfs_join_transaction_spacecache(root); 3125 else 3126 trans = btrfs_join_transaction(root); 3127 if (IS_ERR(trans)) { 3128 ret = PTR_ERR(trans); 3129 trans = NULL; 3130 goto out; 3131 } 3132 3133 trans->block_rsv = &inode->block_rsv; 3134 3135 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3136 if (ret) { 3137 btrfs_abort_transaction(trans, ret); 3138 goto out; 3139 } 3140 3141 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3142 /* Logic error */ 3143 ASSERT(list_empty(&ordered_extent->list)); 3144 if (!list_empty(&ordered_extent->list)) { 3145 ret = -EINVAL; 3146 btrfs_abort_transaction(trans, ret); 3147 goto out; 3148 } 3149 3150 btrfs_inode_safe_disk_i_size_write(inode, 0); 3151 ret = btrfs_update_inode_fallback(trans, inode); 3152 if (ret) { 3153 /* -ENOMEM or corruption */ 3154 btrfs_abort_transaction(trans, ret); 3155 } 3156 goto out; 3157 } 3158 3159 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3160 compress_type = ordered_extent->compress_type; 3161 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3162 BUG_ON(compress_type); 3163 ret = btrfs_mark_extent_written(trans, inode, 3164 ordered_extent->file_offset, 3165 ordered_extent->file_offset + 3166 logical_len); 3167 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3168 ordered_extent->disk_num_bytes); 3169 } else { 3170 BUG_ON(root == fs_info->tree_root); 3171 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3172 if (!ret) { 3173 clear_reserved_extent = false; 3174 btrfs_release_delalloc_bytes(fs_info, 3175 ordered_extent->disk_bytenr, 3176 ordered_extent->disk_num_bytes); 3177 } 3178 } 3179 if (ret < 0) { 3180 btrfs_abort_transaction(trans, ret); 3181 goto out; 3182 } 3183 3184 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3185 ordered_extent->num_bytes, trans->transid); 3186 if (ret < 0) { 3187 btrfs_abort_transaction(trans, ret); 3188 goto out; 3189 } 3190 3191 ret = add_pending_csums(trans, &ordered_extent->list); 3192 if (ret) { 3193 btrfs_abort_transaction(trans, ret); 3194 goto out; 3195 } 3196 3197 /* 3198 * If this is a new delalloc range, clear its new delalloc flag to 3199 * update the inode's number of bytes. This needs to be done first 3200 * before updating the inode item. 3201 */ 3202 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3203 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3204 clear_extent_bit(&inode->io_tree, start, end, 3205 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3206 &cached_state); 3207 3208 btrfs_inode_safe_disk_i_size_write(inode, 0); 3209 ret = btrfs_update_inode_fallback(trans, inode); 3210 if (ret) { /* -ENOMEM or corruption */ 3211 btrfs_abort_transaction(trans, ret); 3212 goto out; 3213 } 3214 out: 3215 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3216 &cached_state); 3217 3218 if (trans) 3219 btrfs_end_transaction(trans); 3220 3221 if (ret || truncated) { 3222 u64 unwritten_start = start; 3223 3224 /* 3225 * If we failed to finish this ordered extent for any reason we 3226 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3227 * extent, and mark the inode with the error if it wasn't 3228 * already set. Any error during writeback would have already 3229 * set the mapping error, so we need to set it if we're the ones 3230 * marking this ordered extent as failed. 3231 */ 3232 if (ret) 3233 btrfs_mark_ordered_extent_error(ordered_extent); 3234 3235 if (truncated) 3236 unwritten_start += logical_len; 3237 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3238 3239 /* 3240 * Drop extent maps for the part of the extent we didn't write. 3241 * 3242 * We have an exception here for the free_space_inode, this is 3243 * because when we do btrfs_get_extent() on the free space inode 3244 * we will search the commit root. If this is a new block group 3245 * we won't find anything, and we will trip over the assert in 3246 * writepage where we do ASSERT(em->block_start != 3247 * EXTENT_MAP_HOLE). 3248 * 3249 * Theoretically we could also skip this for any NOCOW extent as 3250 * we don't mess with the extent map tree in the NOCOW case, but 3251 * for now simply skip this if we are the free space inode. 3252 */ 3253 if (!btrfs_is_free_space_inode(inode)) 3254 btrfs_drop_extent_map_range(inode, unwritten_start, 3255 end, false); 3256 3257 /* 3258 * If the ordered extent had an IOERR or something else went 3259 * wrong we need to return the space for this ordered extent 3260 * back to the allocator. We only free the extent in the 3261 * truncated case if we didn't write out the extent at all. 3262 * 3263 * If we made it past insert_reserved_file_extent before we 3264 * errored out then we don't need to do this as the accounting 3265 * has already been done. 3266 */ 3267 if ((ret || !logical_len) && 3268 clear_reserved_extent && 3269 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3270 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3271 /* 3272 * Discard the range before returning it back to the 3273 * free space pool 3274 */ 3275 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3276 btrfs_discard_extent(fs_info, 3277 ordered_extent->disk_bytenr, 3278 ordered_extent->disk_num_bytes, 3279 NULL); 3280 btrfs_free_reserved_extent(fs_info, 3281 ordered_extent->disk_bytenr, 3282 ordered_extent->disk_num_bytes, 1); 3283 /* 3284 * Actually free the qgroup rsv which was released when 3285 * the ordered extent was created. 3286 */ 3287 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3288 ordered_extent->qgroup_rsv, 3289 BTRFS_QGROUP_RSV_DATA); 3290 } 3291 } 3292 3293 /* 3294 * This needs to be done to make sure anybody waiting knows we are done 3295 * updating everything for this ordered extent. 3296 */ 3297 btrfs_remove_ordered_extent(inode, ordered_extent); 3298 3299 /* once for us */ 3300 btrfs_put_ordered_extent(ordered_extent); 3301 /* once for the tree */ 3302 btrfs_put_ordered_extent(ordered_extent); 3303 3304 return ret; 3305 } 3306 3307 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3308 { 3309 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3310 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3311 list_empty(&ordered->bioc_list)) 3312 btrfs_finish_ordered_zoned(ordered); 3313 return btrfs_finish_one_ordered(ordered); 3314 } 3315 3316 /* 3317 * Verify the checksum for a single sector without any extra action that depend 3318 * on the type of I/O. 3319 */ 3320 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3321 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3322 { 3323 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3324 char *kaddr; 3325 3326 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3327 3328 shash->tfm = fs_info->csum_shash; 3329 3330 kaddr = kmap_local_page(page) + pgoff; 3331 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3332 kunmap_local(kaddr); 3333 3334 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3335 return -EIO; 3336 return 0; 3337 } 3338 3339 /* 3340 * Verify the checksum of a single data sector. 3341 * 3342 * @bbio: btrfs_io_bio which contains the csum 3343 * @dev: device the sector is on 3344 * @bio_offset: offset to the beginning of the bio (in bytes) 3345 * @bv: bio_vec to check 3346 * 3347 * Check if the checksum on a data block is valid. When a checksum mismatch is 3348 * detected, report the error and fill the corrupted range with zero. 3349 * 3350 * Return %true if the sector is ok or had no checksum to start with, else %false. 3351 */ 3352 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3353 u32 bio_offset, struct bio_vec *bv) 3354 { 3355 struct btrfs_inode *inode = bbio->inode; 3356 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3357 u64 file_offset = bbio->file_offset + bio_offset; 3358 u64 end = file_offset + bv->bv_len - 1; 3359 u8 *csum_expected; 3360 u8 csum[BTRFS_CSUM_SIZE]; 3361 3362 ASSERT(bv->bv_len == fs_info->sectorsize); 3363 3364 if (!bbio->csum) 3365 return true; 3366 3367 if (btrfs_is_data_reloc_root(inode->root) && 3368 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3369 NULL)) { 3370 /* Skip the range without csum for data reloc inode */ 3371 clear_extent_bits(&inode->io_tree, file_offset, end, 3372 EXTENT_NODATASUM); 3373 return true; 3374 } 3375 3376 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3377 fs_info->csum_size; 3378 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3379 csum_expected)) 3380 goto zeroit; 3381 return true; 3382 3383 zeroit: 3384 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3385 bbio->mirror_num); 3386 if (dev) 3387 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3388 memzero_bvec(bv); 3389 return false; 3390 } 3391 3392 /* 3393 * Perform a delayed iput on @inode. 3394 * 3395 * @inode: The inode we want to perform iput on 3396 * 3397 * This function uses the generic vfs_inode::i_count to track whether we should 3398 * just decrement it (in case it's > 1) or if this is the last iput then link 3399 * the inode to the delayed iput machinery. Delayed iputs are processed at 3400 * transaction commit time/superblock commit/cleaner kthread. 3401 */ 3402 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3403 { 3404 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3405 unsigned long flags; 3406 3407 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3408 return; 3409 3410 atomic_inc(&fs_info->nr_delayed_iputs); 3411 /* 3412 * Need to be irq safe here because we can be called from either an irq 3413 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3414 * context. 3415 */ 3416 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3417 ASSERT(list_empty(&inode->delayed_iput)); 3418 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3419 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3420 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3421 wake_up_process(fs_info->cleaner_kthread); 3422 } 3423 3424 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3425 struct btrfs_inode *inode) 3426 { 3427 list_del_init(&inode->delayed_iput); 3428 spin_unlock_irq(&fs_info->delayed_iput_lock); 3429 iput(&inode->vfs_inode); 3430 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3431 wake_up(&fs_info->delayed_iputs_wait); 3432 spin_lock_irq(&fs_info->delayed_iput_lock); 3433 } 3434 3435 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3436 struct btrfs_inode *inode) 3437 { 3438 if (!list_empty(&inode->delayed_iput)) { 3439 spin_lock_irq(&fs_info->delayed_iput_lock); 3440 if (!list_empty(&inode->delayed_iput)) 3441 run_delayed_iput_locked(fs_info, inode); 3442 spin_unlock_irq(&fs_info->delayed_iput_lock); 3443 } 3444 } 3445 3446 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3447 { 3448 /* 3449 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3450 * calls btrfs_add_delayed_iput() and that needs to lock 3451 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3452 * prevent a deadlock. 3453 */ 3454 spin_lock_irq(&fs_info->delayed_iput_lock); 3455 while (!list_empty(&fs_info->delayed_iputs)) { 3456 struct btrfs_inode *inode; 3457 3458 inode = list_first_entry(&fs_info->delayed_iputs, 3459 struct btrfs_inode, delayed_iput); 3460 run_delayed_iput_locked(fs_info, inode); 3461 if (need_resched()) { 3462 spin_unlock_irq(&fs_info->delayed_iput_lock); 3463 cond_resched(); 3464 spin_lock_irq(&fs_info->delayed_iput_lock); 3465 } 3466 } 3467 spin_unlock_irq(&fs_info->delayed_iput_lock); 3468 } 3469 3470 /* 3471 * Wait for flushing all delayed iputs 3472 * 3473 * @fs_info: the filesystem 3474 * 3475 * This will wait on any delayed iputs that are currently running with KILLABLE 3476 * set. Once they are all done running we will return, unless we are killed in 3477 * which case we return EINTR. This helps in user operations like fallocate etc 3478 * that might get blocked on the iputs. 3479 * 3480 * Return EINTR if we were killed, 0 if nothing's pending 3481 */ 3482 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3483 { 3484 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3485 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3486 if (ret) 3487 return -EINTR; 3488 return 0; 3489 } 3490 3491 /* 3492 * This creates an orphan entry for the given inode in case something goes wrong 3493 * in the middle of an unlink. 3494 */ 3495 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3496 struct btrfs_inode *inode) 3497 { 3498 int ret; 3499 3500 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3501 if (ret && ret != -EEXIST) { 3502 btrfs_abort_transaction(trans, ret); 3503 return ret; 3504 } 3505 3506 return 0; 3507 } 3508 3509 /* 3510 * We have done the delete so we can go ahead and remove the orphan item for 3511 * this particular inode. 3512 */ 3513 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3514 struct btrfs_inode *inode) 3515 { 3516 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3517 } 3518 3519 /* 3520 * this cleans up any orphans that may be left on the list from the last use 3521 * of this root. 3522 */ 3523 int btrfs_orphan_cleanup(struct btrfs_root *root) 3524 { 3525 struct btrfs_fs_info *fs_info = root->fs_info; 3526 struct btrfs_path *path; 3527 struct extent_buffer *leaf; 3528 struct btrfs_key key, found_key; 3529 struct btrfs_trans_handle *trans; 3530 struct inode *inode; 3531 u64 last_objectid = 0; 3532 int ret = 0, nr_unlink = 0; 3533 3534 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3535 return 0; 3536 3537 path = btrfs_alloc_path(); 3538 if (!path) { 3539 ret = -ENOMEM; 3540 goto out; 3541 } 3542 path->reada = READA_BACK; 3543 3544 key.objectid = BTRFS_ORPHAN_OBJECTID; 3545 key.type = BTRFS_ORPHAN_ITEM_KEY; 3546 key.offset = (u64)-1; 3547 3548 while (1) { 3549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3550 if (ret < 0) 3551 goto out; 3552 3553 /* 3554 * if ret == 0 means we found what we were searching for, which 3555 * is weird, but possible, so only screw with path if we didn't 3556 * find the key and see if we have stuff that matches 3557 */ 3558 if (ret > 0) { 3559 ret = 0; 3560 if (path->slots[0] == 0) 3561 break; 3562 path->slots[0]--; 3563 } 3564 3565 /* pull out the item */ 3566 leaf = path->nodes[0]; 3567 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3568 3569 /* make sure the item matches what we want */ 3570 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3571 break; 3572 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3573 break; 3574 3575 /* release the path since we're done with it */ 3576 btrfs_release_path(path); 3577 3578 /* 3579 * this is where we are basically btrfs_lookup, without the 3580 * crossing root thing. we store the inode number in the 3581 * offset of the orphan item. 3582 */ 3583 3584 if (found_key.offset == last_objectid) { 3585 /* 3586 * We found the same inode as before. This means we were 3587 * not able to remove its items via eviction triggered 3588 * by an iput(). A transaction abort may have happened, 3589 * due to -ENOSPC for example, so try to grab the error 3590 * that lead to a transaction abort, if any. 3591 */ 3592 btrfs_err(fs_info, 3593 "Error removing orphan entry, stopping orphan cleanup"); 3594 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3595 goto out; 3596 } 3597 3598 last_objectid = found_key.offset; 3599 3600 found_key.objectid = found_key.offset; 3601 found_key.type = BTRFS_INODE_ITEM_KEY; 3602 found_key.offset = 0; 3603 inode = btrfs_iget(last_objectid, root); 3604 if (IS_ERR(inode)) { 3605 ret = PTR_ERR(inode); 3606 inode = NULL; 3607 if (ret != -ENOENT) 3608 goto out; 3609 } 3610 3611 if (!inode && root == fs_info->tree_root) { 3612 struct btrfs_root *dead_root; 3613 int is_dead_root = 0; 3614 3615 /* 3616 * This is an orphan in the tree root. Currently these 3617 * could come from 2 sources: 3618 * a) a root (snapshot/subvolume) deletion in progress 3619 * b) a free space cache inode 3620 * We need to distinguish those two, as the orphan item 3621 * for a root must not get deleted before the deletion 3622 * of the snapshot/subvolume's tree completes. 3623 * 3624 * btrfs_find_orphan_roots() ran before us, which has 3625 * found all deleted roots and loaded them into 3626 * fs_info->fs_roots_radix. So here we can find if an 3627 * orphan item corresponds to a deleted root by looking 3628 * up the root from that radix tree. 3629 */ 3630 3631 spin_lock(&fs_info->fs_roots_radix_lock); 3632 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3633 (unsigned long)found_key.objectid); 3634 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3635 is_dead_root = 1; 3636 spin_unlock(&fs_info->fs_roots_radix_lock); 3637 3638 if (is_dead_root) { 3639 /* prevent this orphan from being found again */ 3640 key.offset = found_key.objectid - 1; 3641 continue; 3642 } 3643 3644 } 3645 3646 /* 3647 * If we have an inode with links, there are a couple of 3648 * possibilities: 3649 * 3650 * 1. We were halfway through creating fsverity metadata for the 3651 * file. In that case, the orphan item represents incomplete 3652 * fsverity metadata which must be cleaned up with 3653 * btrfs_drop_verity_items and deleting the orphan item. 3654 3655 * 2. Old kernels (before v3.12) used to create an 3656 * orphan item for truncate indicating that there were possibly 3657 * extent items past i_size that needed to be deleted. In v3.12, 3658 * truncate was changed to update i_size in sync with the extent 3659 * items, but the (useless) orphan item was still created. Since 3660 * v4.18, we don't create the orphan item for truncate at all. 3661 * 3662 * So, this item could mean that we need to do a truncate, but 3663 * only if this filesystem was last used on a pre-v3.12 kernel 3664 * and was not cleanly unmounted. The odds of that are quite 3665 * slim, and it's a pain to do the truncate now, so just delete 3666 * the orphan item. 3667 * 3668 * It's also possible that this orphan item was supposed to be 3669 * deleted but wasn't. The inode number may have been reused, 3670 * but either way, we can delete the orphan item. 3671 */ 3672 if (!inode || inode->i_nlink) { 3673 if (inode) { 3674 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3675 iput(inode); 3676 inode = NULL; 3677 if (ret) 3678 goto out; 3679 } 3680 trans = btrfs_start_transaction(root, 1); 3681 if (IS_ERR(trans)) { 3682 ret = PTR_ERR(trans); 3683 goto out; 3684 } 3685 btrfs_debug(fs_info, "auto deleting %Lu", 3686 found_key.objectid); 3687 ret = btrfs_del_orphan_item(trans, root, 3688 found_key.objectid); 3689 btrfs_end_transaction(trans); 3690 if (ret) 3691 goto out; 3692 continue; 3693 } 3694 3695 nr_unlink++; 3696 3697 /* this will do delete_inode and everything for us */ 3698 iput(inode); 3699 } 3700 /* release the path since we're done with it */ 3701 btrfs_release_path(path); 3702 3703 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3704 trans = btrfs_join_transaction(root); 3705 if (!IS_ERR(trans)) 3706 btrfs_end_transaction(trans); 3707 } 3708 3709 if (nr_unlink) 3710 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3711 3712 out: 3713 if (ret) 3714 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3715 btrfs_free_path(path); 3716 return ret; 3717 } 3718 3719 /* 3720 * very simple check to peek ahead in the leaf looking for xattrs. If we 3721 * don't find any xattrs, we know there can't be any acls. 3722 * 3723 * slot is the slot the inode is in, objectid is the objectid of the inode 3724 */ 3725 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3726 int slot, u64 objectid, 3727 int *first_xattr_slot) 3728 { 3729 u32 nritems = btrfs_header_nritems(leaf); 3730 struct btrfs_key found_key; 3731 static u64 xattr_access = 0; 3732 static u64 xattr_default = 0; 3733 int scanned = 0; 3734 3735 if (!xattr_access) { 3736 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3737 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3738 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3739 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3740 } 3741 3742 slot++; 3743 *first_xattr_slot = -1; 3744 while (slot < nritems) { 3745 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3746 3747 /* we found a different objectid, there must not be acls */ 3748 if (found_key.objectid != objectid) 3749 return 0; 3750 3751 /* we found an xattr, assume we've got an acl */ 3752 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3753 if (*first_xattr_slot == -1) 3754 *first_xattr_slot = slot; 3755 if (found_key.offset == xattr_access || 3756 found_key.offset == xattr_default) 3757 return 1; 3758 } 3759 3760 /* 3761 * we found a key greater than an xattr key, there can't 3762 * be any acls later on 3763 */ 3764 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3765 return 0; 3766 3767 slot++; 3768 scanned++; 3769 3770 /* 3771 * it goes inode, inode backrefs, xattrs, extents, 3772 * so if there are a ton of hard links to an inode there can 3773 * be a lot of backrefs. Don't waste time searching too hard, 3774 * this is just an optimization 3775 */ 3776 if (scanned >= 8) 3777 break; 3778 } 3779 /* we hit the end of the leaf before we found an xattr or 3780 * something larger than an xattr. We have to assume the inode 3781 * has acls 3782 */ 3783 if (*first_xattr_slot == -1) 3784 *first_xattr_slot = slot; 3785 return 1; 3786 } 3787 3788 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3789 { 3790 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3791 3792 if (WARN_ON_ONCE(inode->file_extent_tree)) 3793 return 0; 3794 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3795 return 0; 3796 if (!S_ISREG(inode->vfs_inode.i_mode)) 3797 return 0; 3798 if (btrfs_is_free_space_inode(inode)) 3799 return 0; 3800 3801 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3802 if (!inode->file_extent_tree) 3803 return -ENOMEM; 3804 3805 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3806 /* Lockdep class is set only for the file extent tree. */ 3807 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3808 3809 return 0; 3810 } 3811 3812 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3813 { 3814 struct btrfs_root *root = inode->root; 3815 struct btrfs_inode *existing; 3816 const u64 ino = btrfs_ino(inode); 3817 int ret; 3818 3819 if (inode_unhashed(&inode->vfs_inode)) 3820 return 0; 3821 3822 if (prealloc) { 3823 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3824 if (ret) 3825 return ret; 3826 } 3827 3828 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3829 3830 if (xa_is_err(existing)) { 3831 ret = xa_err(existing); 3832 ASSERT(ret != -EINVAL); 3833 ASSERT(ret != -ENOMEM); 3834 return ret; 3835 } else if (existing) { 3836 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3837 } 3838 3839 return 0; 3840 } 3841 3842 /* 3843 * Read a locked inode from the btree into the in-memory inode and add it to 3844 * its root list/tree. 3845 * 3846 * On failure clean up the inode. 3847 */ 3848 static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *path) 3849 { 3850 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3851 struct extent_buffer *leaf; 3852 struct btrfs_inode_item *inode_item; 3853 struct btrfs_root *root = BTRFS_I(inode)->root; 3854 struct btrfs_key location; 3855 unsigned long ptr; 3856 int maybe_acls; 3857 u32 rdev; 3858 int ret; 3859 bool filled = false; 3860 int first_xattr_slot; 3861 3862 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3863 if (ret) 3864 goto out; 3865 3866 ret = btrfs_fill_inode(inode, &rdev); 3867 if (!ret) 3868 filled = true; 3869 3870 ASSERT(path); 3871 3872 btrfs_get_inode_key(BTRFS_I(inode), &location); 3873 3874 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3875 if (ret) { 3876 /* 3877 * ret > 0 can come from btrfs_search_slot called by 3878 * btrfs_lookup_inode(), this means the inode was not found. 3879 */ 3880 if (ret > 0) 3881 ret = -ENOENT; 3882 goto out; 3883 } 3884 3885 leaf = path->nodes[0]; 3886 3887 if (filled) 3888 goto cache_index; 3889 3890 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3891 struct btrfs_inode_item); 3892 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3893 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3894 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3895 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3896 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3897 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3898 round_up(i_size_read(inode), fs_info->sectorsize)); 3899 3900 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3901 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3902 3903 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3904 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3905 3906 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3907 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3908 3909 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3910 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3911 3912 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3913 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3914 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3915 3916 inode_set_iversion_queried(inode, 3917 btrfs_inode_sequence(leaf, inode_item)); 3918 inode->i_generation = BTRFS_I(inode)->generation; 3919 inode->i_rdev = 0; 3920 rdev = btrfs_inode_rdev(leaf, inode_item); 3921 3922 if (S_ISDIR(inode->i_mode)) 3923 BTRFS_I(inode)->index_cnt = (u64)-1; 3924 3925 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3926 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3927 3928 cache_index: 3929 /* 3930 * If we were modified in the current generation and evicted from memory 3931 * and then re-read we need to do a full sync since we don't have any 3932 * idea about which extents were modified before we were evicted from 3933 * cache. 3934 * 3935 * This is required for both inode re-read from disk and delayed inode 3936 * in the delayed_nodes xarray. 3937 */ 3938 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3939 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3940 &BTRFS_I(inode)->runtime_flags); 3941 3942 /* 3943 * We don't persist the id of the transaction where an unlink operation 3944 * against the inode was last made. So here we assume the inode might 3945 * have been evicted, and therefore the exact value of last_unlink_trans 3946 * lost, and set it to last_trans to avoid metadata inconsistencies 3947 * between the inode and its parent if the inode is fsync'ed and the log 3948 * replayed. For example, in the scenario: 3949 * 3950 * touch mydir/foo 3951 * ln mydir/foo mydir/bar 3952 * sync 3953 * unlink mydir/bar 3954 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3955 * xfs_io -c fsync mydir/foo 3956 * <power failure> 3957 * mount fs, triggers fsync log replay 3958 * 3959 * We must make sure that when we fsync our inode foo we also log its 3960 * parent inode, otherwise after log replay the parent still has the 3961 * dentry with the "bar" name but our inode foo has a link count of 1 3962 * and doesn't have an inode ref with the name "bar" anymore. 3963 * 3964 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3965 * but it guarantees correctness at the expense of occasional full 3966 * transaction commits on fsync if our inode is a directory, or if our 3967 * inode is not a directory, logging its parent unnecessarily. 3968 */ 3969 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3970 3971 /* 3972 * Same logic as for last_unlink_trans. We don't persist the generation 3973 * of the last transaction where this inode was used for a reflink 3974 * operation, so after eviction and reloading the inode we must be 3975 * pessimistic and assume the last transaction that modified the inode. 3976 */ 3977 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3978 3979 path->slots[0]++; 3980 if (inode->i_nlink != 1 || 3981 path->slots[0] >= btrfs_header_nritems(leaf)) 3982 goto cache_acl; 3983 3984 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3985 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3986 goto cache_acl; 3987 3988 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3989 if (location.type == BTRFS_INODE_REF_KEY) { 3990 struct btrfs_inode_ref *ref; 3991 3992 ref = (struct btrfs_inode_ref *)ptr; 3993 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3994 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3995 struct btrfs_inode_extref *extref; 3996 3997 extref = (struct btrfs_inode_extref *)ptr; 3998 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3999 extref); 4000 } 4001 cache_acl: 4002 /* 4003 * try to precache a NULL acl entry for files that don't have 4004 * any xattrs or acls 4005 */ 4006 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4007 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 4008 if (first_xattr_slot != -1) { 4009 path->slots[0] = first_xattr_slot; 4010 ret = btrfs_load_inode_props(inode, path); 4011 if (ret) 4012 btrfs_err(fs_info, 4013 "error loading props for ino %llu (root %llu): %d", 4014 btrfs_ino(BTRFS_I(inode)), 4015 btrfs_root_id(root), ret); 4016 } 4017 4018 if (!maybe_acls) 4019 cache_no_acl(inode); 4020 4021 switch (inode->i_mode & S_IFMT) { 4022 case S_IFREG: 4023 inode->i_mapping->a_ops = &btrfs_aops; 4024 inode->i_fop = &btrfs_file_operations; 4025 inode->i_op = &btrfs_file_inode_operations; 4026 break; 4027 case S_IFDIR: 4028 inode->i_fop = &btrfs_dir_file_operations; 4029 inode->i_op = &btrfs_dir_inode_operations; 4030 break; 4031 case S_IFLNK: 4032 inode->i_op = &btrfs_symlink_inode_operations; 4033 inode_nohighmem(inode); 4034 inode->i_mapping->a_ops = &btrfs_aops; 4035 break; 4036 default: 4037 inode->i_op = &btrfs_special_inode_operations; 4038 init_special_inode(inode, inode->i_mode, rdev); 4039 break; 4040 } 4041 4042 btrfs_sync_inode_flags_to_i_flags(inode); 4043 4044 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 4045 if (ret) 4046 goto out; 4047 4048 return 0; 4049 out: 4050 iget_failed(inode); 4051 return ret; 4052 } 4053 4054 /* 4055 * given a leaf and an inode, copy the inode fields into the leaf 4056 */ 4057 static void fill_inode_item(struct btrfs_trans_handle *trans, 4058 struct extent_buffer *leaf, 4059 struct btrfs_inode_item *item, 4060 struct inode *inode) 4061 { 4062 struct btrfs_map_token token; 4063 u64 flags; 4064 4065 btrfs_init_map_token(&token, leaf); 4066 4067 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4068 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4069 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4070 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4071 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4072 4073 btrfs_set_token_timespec_sec(&token, &item->atime, 4074 inode_get_atime_sec(inode)); 4075 btrfs_set_token_timespec_nsec(&token, &item->atime, 4076 inode_get_atime_nsec(inode)); 4077 4078 btrfs_set_token_timespec_sec(&token, &item->mtime, 4079 inode_get_mtime_sec(inode)); 4080 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4081 inode_get_mtime_nsec(inode)); 4082 4083 btrfs_set_token_timespec_sec(&token, &item->ctime, 4084 inode_get_ctime_sec(inode)); 4085 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4086 inode_get_ctime_nsec(inode)); 4087 4088 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4089 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4090 4091 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4092 btrfs_set_token_inode_generation(&token, item, 4093 BTRFS_I(inode)->generation); 4094 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4095 btrfs_set_token_inode_transid(&token, item, trans->transid); 4096 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4097 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4098 BTRFS_I(inode)->ro_flags); 4099 btrfs_set_token_inode_flags(&token, item, flags); 4100 btrfs_set_token_inode_block_group(&token, item, 0); 4101 } 4102 4103 /* 4104 * copy everything in the in-memory inode into the btree. 4105 */ 4106 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4107 struct btrfs_inode *inode) 4108 { 4109 struct btrfs_inode_item *inode_item; 4110 struct btrfs_path *path; 4111 struct extent_buffer *leaf; 4112 struct btrfs_key key; 4113 int ret; 4114 4115 path = btrfs_alloc_path(); 4116 if (!path) 4117 return -ENOMEM; 4118 4119 btrfs_get_inode_key(inode, &key); 4120 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4121 if (ret) { 4122 if (ret > 0) 4123 ret = -ENOENT; 4124 goto failed; 4125 } 4126 4127 leaf = path->nodes[0]; 4128 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4129 struct btrfs_inode_item); 4130 4131 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4132 btrfs_set_inode_last_trans(trans, inode); 4133 ret = 0; 4134 failed: 4135 btrfs_free_path(path); 4136 return ret; 4137 } 4138 4139 /* 4140 * copy everything in the in-memory inode into the btree. 4141 */ 4142 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4143 struct btrfs_inode *inode) 4144 { 4145 struct btrfs_root *root = inode->root; 4146 struct btrfs_fs_info *fs_info = root->fs_info; 4147 int ret; 4148 4149 /* 4150 * If the inode is a free space inode, we can deadlock during commit 4151 * if we put it into the delayed code. 4152 * 4153 * The data relocation inode should also be directly updated 4154 * without delay 4155 */ 4156 if (!btrfs_is_free_space_inode(inode) 4157 && !btrfs_is_data_reloc_root(root) 4158 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4159 btrfs_update_root_times(trans, root); 4160 4161 ret = btrfs_delayed_update_inode(trans, inode); 4162 if (!ret) 4163 btrfs_set_inode_last_trans(trans, inode); 4164 return ret; 4165 } 4166 4167 return btrfs_update_inode_item(trans, inode); 4168 } 4169 4170 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4171 struct btrfs_inode *inode) 4172 { 4173 int ret; 4174 4175 ret = btrfs_update_inode(trans, inode); 4176 if (ret == -ENOSPC) 4177 return btrfs_update_inode_item(trans, inode); 4178 return ret; 4179 } 4180 4181 /* 4182 * unlink helper that gets used here in inode.c and in the tree logging 4183 * recovery code. It remove a link in a directory with a given name, and 4184 * also drops the back refs in the inode to the directory 4185 */ 4186 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4187 struct btrfs_inode *dir, 4188 struct btrfs_inode *inode, 4189 const struct fscrypt_str *name, 4190 struct btrfs_rename_ctx *rename_ctx) 4191 { 4192 struct btrfs_root *root = dir->root; 4193 struct btrfs_fs_info *fs_info = root->fs_info; 4194 struct btrfs_path *path; 4195 int ret = 0; 4196 struct btrfs_dir_item *di; 4197 u64 index; 4198 u64 ino = btrfs_ino(inode); 4199 u64 dir_ino = btrfs_ino(dir); 4200 4201 path = btrfs_alloc_path(); 4202 if (!path) { 4203 ret = -ENOMEM; 4204 goto out; 4205 } 4206 4207 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4208 if (IS_ERR_OR_NULL(di)) { 4209 ret = di ? PTR_ERR(di) : -ENOENT; 4210 goto err; 4211 } 4212 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4213 if (ret) 4214 goto err; 4215 btrfs_release_path(path); 4216 4217 /* 4218 * If we don't have dir index, we have to get it by looking up 4219 * the inode ref, since we get the inode ref, remove it directly, 4220 * it is unnecessary to do delayed deletion. 4221 * 4222 * But if we have dir index, needn't search inode ref to get it. 4223 * Since the inode ref is close to the inode item, it is better 4224 * that we delay to delete it, and just do this deletion when 4225 * we update the inode item. 4226 */ 4227 if (inode->dir_index) { 4228 ret = btrfs_delayed_delete_inode_ref(inode); 4229 if (!ret) { 4230 index = inode->dir_index; 4231 goto skip_backref; 4232 } 4233 } 4234 4235 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4236 if (ret) { 4237 btrfs_info(fs_info, 4238 "failed to delete reference to %.*s, inode %llu parent %llu", 4239 name->len, name->name, ino, dir_ino); 4240 btrfs_abort_transaction(trans, ret); 4241 goto err; 4242 } 4243 skip_backref: 4244 if (rename_ctx) 4245 rename_ctx->index = index; 4246 4247 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4248 if (ret) { 4249 btrfs_abort_transaction(trans, ret); 4250 goto err; 4251 } 4252 4253 /* 4254 * If we are in a rename context, we don't need to update anything in the 4255 * log. That will be done later during the rename by btrfs_log_new_name(). 4256 * Besides that, doing it here would only cause extra unnecessary btree 4257 * operations on the log tree, increasing latency for applications. 4258 */ 4259 if (!rename_ctx) { 4260 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4261 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4262 } 4263 4264 /* 4265 * If we have a pending delayed iput we could end up with the final iput 4266 * being run in btrfs-cleaner context. If we have enough of these built 4267 * up we can end up burning a lot of time in btrfs-cleaner without any 4268 * way to throttle the unlinks. Since we're currently holding a ref on 4269 * the inode we can run the delayed iput here without any issues as the 4270 * final iput won't be done until after we drop the ref we're currently 4271 * holding. 4272 */ 4273 btrfs_run_delayed_iput(fs_info, inode); 4274 err: 4275 btrfs_free_path(path); 4276 if (ret) 4277 goto out; 4278 4279 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4280 inode_inc_iversion(&inode->vfs_inode); 4281 inode_set_ctime_current(&inode->vfs_inode); 4282 inode_inc_iversion(&dir->vfs_inode); 4283 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4284 ret = btrfs_update_inode(trans, dir); 4285 out: 4286 return ret; 4287 } 4288 4289 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4290 struct btrfs_inode *dir, struct btrfs_inode *inode, 4291 const struct fscrypt_str *name) 4292 { 4293 int ret; 4294 4295 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4296 if (!ret) { 4297 drop_nlink(&inode->vfs_inode); 4298 ret = btrfs_update_inode(trans, inode); 4299 } 4300 return ret; 4301 } 4302 4303 /* 4304 * helper to start transaction for unlink and rmdir. 4305 * 4306 * unlink and rmdir are special in btrfs, they do not always free space, so 4307 * if we cannot make our reservations the normal way try and see if there is 4308 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4309 * allow the unlink to occur. 4310 */ 4311 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4312 { 4313 struct btrfs_root *root = dir->root; 4314 4315 return btrfs_start_transaction_fallback_global_rsv(root, 4316 BTRFS_UNLINK_METADATA_UNITS); 4317 } 4318 4319 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4320 { 4321 struct btrfs_trans_handle *trans; 4322 struct inode *inode = d_inode(dentry); 4323 int ret; 4324 struct fscrypt_name fname; 4325 4326 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4327 if (ret) 4328 return ret; 4329 4330 /* This needs to handle no-key deletions later on */ 4331 4332 trans = __unlink_start_trans(BTRFS_I(dir)); 4333 if (IS_ERR(trans)) { 4334 ret = PTR_ERR(trans); 4335 goto fscrypt_free; 4336 } 4337 4338 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4339 false); 4340 4341 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4342 &fname.disk_name); 4343 if (ret) 4344 goto end_trans; 4345 4346 if (inode->i_nlink == 0) { 4347 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4348 if (ret) 4349 goto end_trans; 4350 } 4351 4352 end_trans: 4353 btrfs_end_transaction(trans); 4354 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4355 fscrypt_free: 4356 fscrypt_free_filename(&fname); 4357 return ret; 4358 } 4359 4360 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4361 struct btrfs_inode *dir, struct dentry *dentry) 4362 { 4363 struct btrfs_root *root = dir->root; 4364 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4365 struct btrfs_path *path; 4366 struct extent_buffer *leaf; 4367 struct btrfs_dir_item *di; 4368 struct btrfs_key key; 4369 u64 index; 4370 int ret; 4371 u64 objectid; 4372 u64 dir_ino = btrfs_ino(dir); 4373 struct fscrypt_name fname; 4374 4375 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4376 if (ret) 4377 return ret; 4378 4379 /* This needs to handle no-key deletions later on */ 4380 4381 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4382 objectid = btrfs_root_id(inode->root); 4383 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4384 objectid = inode->ref_root_id; 4385 } else { 4386 WARN_ON(1); 4387 fscrypt_free_filename(&fname); 4388 return -EINVAL; 4389 } 4390 4391 path = btrfs_alloc_path(); 4392 if (!path) { 4393 ret = -ENOMEM; 4394 goto out; 4395 } 4396 4397 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4398 &fname.disk_name, -1); 4399 if (IS_ERR_OR_NULL(di)) { 4400 ret = di ? PTR_ERR(di) : -ENOENT; 4401 goto out; 4402 } 4403 4404 leaf = path->nodes[0]; 4405 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4406 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4407 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4408 if (ret) { 4409 btrfs_abort_transaction(trans, ret); 4410 goto out; 4411 } 4412 btrfs_release_path(path); 4413 4414 /* 4415 * This is a placeholder inode for a subvolume we didn't have a 4416 * reference to at the time of the snapshot creation. In the meantime 4417 * we could have renamed the real subvol link into our snapshot, so 4418 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4419 * Instead simply lookup the dir_index_item for this entry so we can 4420 * remove it. Otherwise we know we have a ref to the root and we can 4421 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4422 */ 4423 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4424 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4425 if (IS_ERR(di)) { 4426 ret = PTR_ERR(di); 4427 btrfs_abort_transaction(trans, ret); 4428 goto out; 4429 } 4430 4431 leaf = path->nodes[0]; 4432 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4433 index = key.offset; 4434 btrfs_release_path(path); 4435 } else { 4436 ret = btrfs_del_root_ref(trans, objectid, 4437 btrfs_root_id(root), dir_ino, 4438 &index, &fname.disk_name); 4439 if (ret) { 4440 btrfs_abort_transaction(trans, ret); 4441 goto out; 4442 } 4443 } 4444 4445 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4446 if (ret) { 4447 btrfs_abort_transaction(trans, ret); 4448 goto out; 4449 } 4450 4451 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4452 inode_inc_iversion(&dir->vfs_inode); 4453 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4454 ret = btrfs_update_inode_fallback(trans, dir); 4455 if (ret) 4456 btrfs_abort_transaction(trans, ret); 4457 out: 4458 btrfs_free_path(path); 4459 fscrypt_free_filename(&fname); 4460 return ret; 4461 } 4462 4463 /* 4464 * Helper to check if the subvolume references other subvolumes or if it's 4465 * default. 4466 */ 4467 static noinline int may_destroy_subvol(struct btrfs_root *root) 4468 { 4469 struct btrfs_fs_info *fs_info = root->fs_info; 4470 struct btrfs_path *path; 4471 struct btrfs_dir_item *di; 4472 struct btrfs_key key; 4473 struct fscrypt_str name = FSTR_INIT("default", 7); 4474 u64 dir_id; 4475 int ret; 4476 4477 path = btrfs_alloc_path(); 4478 if (!path) 4479 return -ENOMEM; 4480 4481 /* Make sure this root isn't set as the default subvol */ 4482 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4483 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4484 dir_id, &name, 0); 4485 if (di && !IS_ERR(di)) { 4486 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4487 if (key.objectid == btrfs_root_id(root)) { 4488 ret = -EPERM; 4489 btrfs_err(fs_info, 4490 "deleting default subvolume %llu is not allowed", 4491 key.objectid); 4492 goto out; 4493 } 4494 btrfs_release_path(path); 4495 } 4496 4497 key.objectid = btrfs_root_id(root); 4498 key.type = BTRFS_ROOT_REF_KEY; 4499 key.offset = (u64)-1; 4500 4501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4502 if (ret < 0) 4503 goto out; 4504 if (ret == 0) { 4505 /* 4506 * Key with offset -1 found, there would have to exist a root 4507 * with such id, but this is out of valid range. 4508 */ 4509 ret = -EUCLEAN; 4510 goto out; 4511 } 4512 4513 ret = 0; 4514 if (path->slots[0] > 0) { 4515 path->slots[0]--; 4516 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4517 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4518 ret = -ENOTEMPTY; 4519 } 4520 out: 4521 btrfs_free_path(path); 4522 return ret; 4523 } 4524 4525 /* Delete all dentries for inodes belonging to the root */ 4526 static void btrfs_prune_dentries(struct btrfs_root *root) 4527 { 4528 struct btrfs_fs_info *fs_info = root->fs_info; 4529 struct btrfs_inode *inode; 4530 u64 min_ino = 0; 4531 4532 if (!BTRFS_FS_ERROR(fs_info)) 4533 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4534 4535 inode = btrfs_find_first_inode(root, min_ino); 4536 while (inode) { 4537 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4538 d_prune_aliases(&inode->vfs_inode); 4539 4540 min_ino = btrfs_ino(inode) + 1; 4541 /* 4542 * btrfs_drop_inode() will have it removed from the inode 4543 * cache when its usage count hits zero. 4544 */ 4545 iput(&inode->vfs_inode); 4546 cond_resched(); 4547 inode = btrfs_find_first_inode(root, min_ino); 4548 } 4549 } 4550 4551 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4552 { 4553 struct btrfs_root *root = dir->root; 4554 struct btrfs_fs_info *fs_info = root->fs_info; 4555 struct inode *inode = d_inode(dentry); 4556 struct btrfs_root *dest = BTRFS_I(inode)->root; 4557 struct btrfs_trans_handle *trans; 4558 struct btrfs_block_rsv block_rsv; 4559 u64 root_flags; 4560 u64 qgroup_reserved = 0; 4561 int ret; 4562 4563 down_write(&fs_info->subvol_sem); 4564 4565 /* 4566 * Don't allow to delete a subvolume with send in progress. This is 4567 * inside the inode lock so the error handling that has to drop the bit 4568 * again is not run concurrently. 4569 */ 4570 spin_lock(&dest->root_item_lock); 4571 if (dest->send_in_progress) { 4572 spin_unlock(&dest->root_item_lock); 4573 btrfs_warn(fs_info, 4574 "attempt to delete subvolume %llu during send", 4575 btrfs_root_id(dest)); 4576 ret = -EPERM; 4577 goto out_up_write; 4578 } 4579 if (atomic_read(&dest->nr_swapfiles)) { 4580 spin_unlock(&dest->root_item_lock); 4581 btrfs_warn(fs_info, 4582 "attempt to delete subvolume %llu with active swapfile", 4583 btrfs_root_id(root)); 4584 ret = -EPERM; 4585 goto out_up_write; 4586 } 4587 root_flags = btrfs_root_flags(&dest->root_item); 4588 btrfs_set_root_flags(&dest->root_item, 4589 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4590 spin_unlock(&dest->root_item_lock); 4591 4592 ret = may_destroy_subvol(dest); 4593 if (ret) 4594 goto out_undead; 4595 4596 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4597 /* 4598 * One for dir inode, 4599 * two for dir entries, 4600 * two for root ref/backref. 4601 */ 4602 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4603 if (ret) 4604 goto out_undead; 4605 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4606 4607 trans = btrfs_start_transaction(root, 0); 4608 if (IS_ERR(trans)) { 4609 ret = PTR_ERR(trans); 4610 goto out_release; 4611 } 4612 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4613 qgroup_reserved = 0; 4614 trans->block_rsv = &block_rsv; 4615 trans->bytes_reserved = block_rsv.size; 4616 4617 btrfs_record_snapshot_destroy(trans, dir); 4618 4619 ret = btrfs_unlink_subvol(trans, dir, dentry); 4620 if (ret) { 4621 btrfs_abort_transaction(trans, ret); 4622 goto out_end_trans; 4623 } 4624 4625 ret = btrfs_record_root_in_trans(trans, dest); 4626 if (ret) { 4627 btrfs_abort_transaction(trans, ret); 4628 goto out_end_trans; 4629 } 4630 4631 memset(&dest->root_item.drop_progress, 0, 4632 sizeof(dest->root_item.drop_progress)); 4633 btrfs_set_root_drop_level(&dest->root_item, 0); 4634 btrfs_set_root_refs(&dest->root_item, 0); 4635 4636 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4637 ret = btrfs_insert_orphan_item(trans, 4638 fs_info->tree_root, 4639 btrfs_root_id(dest)); 4640 if (ret) { 4641 btrfs_abort_transaction(trans, ret); 4642 goto out_end_trans; 4643 } 4644 } 4645 4646 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4647 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4648 if (ret && ret != -ENOENT) { 4649 btrfs_abort_transaction(trans, ret); 4650 goto out_end_trans; 4651 } 4652 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4653 ret = btrfs_uuid_tree_remove(trans, 4654 dest->root_item.received_uuid, 4655 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4656 btrfs_root_id(dest)); 4657 if (ret && ret != -ENOENT) { 4658 btrfs_abort_transaction(trans, ret); 4659 goto out_end_trans; 4660 } 4661 } 4662 4663 free_anon_bdev(dest->anon_dev); 4664 dest->anon_dev = 0; 4665 out_end_trans: 4666 trans->block_rsv = NULL; 4667 trans->bytes_reserved = 0; 4668 ret = btrfs_end_transaction(trans); 4669 inode->i_flags |= S_DEAD; 4670 out_release: 4671 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4672 if (qgroup_reserved) 4673 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4674 out_undead: 4675 if (ret) { 4676 spin_lock(&dest->root_item_lock); 4677 root_flags = btrfs_root_flags(&dest->root_item); 4678 btrfs_set_root_flags(&dest->root_item, 4679 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4680 spin_unlock(&dest->root_item_lock); 4681 } 4682 out_up_write: 4683 up_write(&fs_info->subvol_sem); 4684 if (!ret) { 4685 d_invalidate(dentry); 4686 btrfs_prune_dentries(dest); 4687 ASSERT(dest->send_in_progress == 0); 4688 } 4689 4690 return ret; 4691 } 4692 4693 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4694 { 4695 struct inode *inode = d_inode(dentry); 4696 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4697 int ret = 0; 4698 struct btrfs_trans_handle *trans; 4699 u64 last_unlink_trans; 4700 struct fscrypt_name fname; 4701 4702 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4703 return -ENOTEMPTY; 4704 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4705 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4706 btrfs_err(fs_info, 4707 "extent tree v2 doesn't support snapshot deletion yet"); 4708 return -EOPNOTSUPP; 4709 } 4710 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4711 } 4712 4713 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4714 if (ret) 4715 return ret; 4716 4717 /* This needs to handle no-key deletions later on */ 4718 4719 trans = __unlink_start_trans(BTRFS_I(dir)); 4720 if (IS_ERR(trans)) { 4721 ret = PTR_ERR(trans); 4722 goto out_notrans; 4723 } 4724 4725 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4726 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4727 goto out; 4728 } 4729 4730 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4731 if (ret) 4732 goto out; 4733 4734 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4735 4736 /* now the directory is empty */ 4737 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4738 &fname.disk_name); 4739 if (!ret) { 4740 btrfs_i_size_write(BTRFS_I(inode), 0); 4741 /* 4742 * Propagate the last_unlink_trans value of the deleted dir to 4743 * its parent directory. This is to prevent an unrecoverable 4744 * log tree in the case we do something like this: 4745 * 1) create dir foo 4746 * 2) create snapshot under dir foo 4747 * 3) delete the snapshot 4748 * 4) rmdir foo 4749 * 5) mkdir foo 4750 * 6) fsync foo or some file inside foo 4751 */ 4752 if (last_unlink_trans >= trans->transid) 4753 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4754 } 4755 out: 4756 btrfs_end_transaction(trans); 4757 out_notrans: 4758 btrfs_btree_balance_dirty(fs_info); 4759 fscrypt_free_filename(&fname); 4760 4761 return ret; 4762 } 4763 4764 /* 4765 * Read, zero a chunk and write a block. 4766 * 4767 * @inode - inode that we're zeroing 4768 * @from - the offset to start zeroing 4769 * @len - the length to zero, 0 to zero the entire range respective to the 4770 * offset 4771 * @front - zero up to the offset instead of from the offset on 4772 * 4773 * This will find the block for the "from" offset and cow the block and zero the 4774 * part we want to zero. This is used with truncate and hole punching. 4775 */ 4776 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4777 int front) 4778 { 4779 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4780 struct address_space *mapping = inode->vfs_inode.i_mapping; 4781 struct extent_io_tree *io_tree = &inode->io_tree; 4782 struct btrfs_ordered_extent *ordered; 4783 struct extent_state *cached_state = NULL; 4784 struct extent_changeset *data_reserved = NULL; 4785 bool only_release_metadata = false; 4786 u32 blocksize = fs_info->sectorsize; 4787 pgoff_t index = from >> PAGE_SHIFT; 4788 unsigned offset = from & (blocksize - 1); 4789 struct folio *folio; 4790 gfp_t mask = btrfs_alloc_write_mask(mapping); 4791 size_t write_bytes = blocksize; 4792 int ret = 0; 4793 u64 block_start; 4794 u64 block_end; 4795 4796 if (IS_ALIGNED(offset, blocksize) && 4797 (!len || IS_ALIGNED(len, blocksize))) 4798 goto out; 4799 4800 block_start = round_down(from, blocksize); 4801 block_end = block_start + blocksize - 1; 4802 4803 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4804 blocksize, false); 4805 if (ret < 0) { 4806 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4807 /* For nocow case, no need to reserve data space */ 4808 only_release_metadata = true; 4809 } else { 4810 goto out; 4811 } 4812 } 4813 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4814 if (ret < 0) { 4815 if (!only_release_metadata) 4816 btrfs_free_reserved_data_space(inode, data_reserved, 4817 block_start, blocksize); 4818 goto out; 4819 } 4820 again: 4821 folio = __filemap_get_folio(mapping, index, 4822 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4823 if (IS_ERR(folio)) { 4824 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4825 blocksize, true); 4826 btrfs_delalloc_release_extents(inode, blocksize); 4827 ret = -ENOMEM; 4828 goto out; 4829 } 4830 4831 if (!folio_test_uptodate(folio)) { 4832 ret = btrfs_read_folio(NULL, folio); 4833 folio_lock(folio); 4834 if (folio->mapping != mapping) { 4835 folio_unlock(folio); 4836 folio_put(folio); 4837 goto again; 4838 } 4839 if (!folio_test_uptodate(folio)) { 4840 ret = -EIO; 4841 goto out_unlock; 4842 } 4843 } 4844 4845 /* 4846 * We unlock the page after the io is completed and then re-lock it 4847 * above. release_folio() could have come in between that and cleared 4848 * folio private, but left the page in the mapping. Set the page mapped 4849 * here to make sure it's properly set for the subpage stuff. 4850 */ 4851 ret = set_folio_extent_mapped(folio); 4852 if (ret < 0) 4853 goto out_unlock; 4854 4855 folio_wait_writeback(folio); 4856 4857 lock_extent(io_tree, block_start, block_end, &cached_state); 4858 4859 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4860 if (ordered) { 4861 unlock_extent(io_tree, block_start, block_end, &cached_state); 4862 folio_unlock(folio); 4863 folio_put(folio); 4864 btrfs_start_ordered_extent(ordered); 4865 btrfs_put_ordered_extent(ordered); 4866 goto again; 4867 } 4868 4869 clear_extent_bit(&inode->io_tree, block_start, block_end, 4870 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4871 &cached_state); 4872 4873 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4874 &cached_state); 4875 if (ret) { 4876 unlock_extent(io_tree, block_start, block_end, &cached_state); 4877 goto out_unlock; 4878 } 4879 4880 if (offset != blocksize) { 4881 if (!len) 4882 len = blocksize - offset; 4883 if (front) 4884 folio_zero_range(folio, block_start - folio_pos(folio), 4885 offset); 4886 else 4887 folio_zero_range(folio, 4888 (block_start - folio_pos(folio)) + offset, 4889 len); 4890 } 4891 btrfs_folio_clear_checked(fs_info, folio, block_start, 4892 block_end + 1 - block_start); 4893 btrfs_folio_set_dirty(fs_info, folio, block_start, 4894 block_end + 1 - block_start); 4895 unlock_extent(io_tree, block_start, block_end, &cached_state); 4896 4897 if (only_release_metadata) 4898 set_extent_bit(&inode->io_tree, block_start, block_end, 4899 EXTENT_NORESERVE, NULL); 4900 4901 out_unlock: 4902 if (ret) { 4903 if (only_release_metadata) 4904 btrfs_delalloc_release_metadata(inode, blocksize, true); 4905 else 4906 btrfs_delalloc_release_space(inode, data_reserved, 4907 block_start, blocksize, true); 4908 } 4909 btrfs_delalloc_release_extents(inode, blocksize); 4910 folio_unlock(folio); 4911 folio_put(folio); 4912 out: 4913 if (only_release_metadata) 4914 btrfs_check_nocow_unlock(inode); 4915 extent_changeset_free(data_reserved); 4916 return ret; 4917 } 4918 4919 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4920 { 4921 struct btrfs_root *root = inode->root; 4922 struct btrfs_fs_info *fs_info = root->fs_info; 4923 struct btrfs_trans_handle *trans; 4924 struct btrfs_drop_extents_args drop_args = { 0 }; 4925 int ret; 4926 4927 /* 4928 * If NO_HOLES is enabled, we don't need to do anything. 4929 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4930 * or btrfs_update_inode() will be called, which guarantee that the next 4931 * fsync will know this inode was changed and needs to be logged. 4932 */ 4933 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4934 return 0; 4935 4936 /* 4937 * 1 - for the one we're dropping 4938 * 1 - for the one we're adding 4939 * 1 - for updating the inode. 4940 */ 4941 trans = btrfs_start_transaction(root, 3); 4942 if (IS_ERR(trans)) 4943 return PTR_ERR(trans); 4944 4945 drop_args.start = offset; 4946 drop_args.end = offset + len; 4947 drop_args.drop_cache = true; 4948 4949 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4950 if (ret) { 4951 btrfs_abort_transaction(trans, ret); 4952 btrfs_end_transaction(trans); 4953 return ret; 4954 } 4955 4956 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4957 if (ret) { 4958 btrfs_abort_transaction(trans, ret); 4959 } else { 4960 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4961 btrfs_update_inode(trans, inode); 4962 } 4963 btrfs_end_transaction(trans); 4964 return ret; 4965 } 4966 4967 /* 4968 * This function puts in dummy file extents for the area we're creating a hole 4969 * for. So if we are truncating this file to a larger size we need to insert 4970 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4971 * the range between oldsize and size 4972 */ 4973 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4974 { 4975 struct btrfs_root *root = inode->root; 4976 struct btrfs_fs_info *fs_info = root->fs_info; 4977 struct extent_io_tree *io_tree = &inode->io_tree; 4978 struct extent_map *em = NULL; 4979 struct extent_state *cached_state = NULL; 4980 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4981 u64 block_end = ALIGN(size, fs_info->sectorsize); 4982 u64 last_byte; 4983 u64 cur_offset; 4984 u64 hole_size; 4985 int ret = 0; 4986 4987 /* 4988 * If our size started in the middle of a block we need to zero out the 4989 * rest of the block before we expand the i_size, otherwise we could 4990 * expose stale data. 4991 */ 4992 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4993 if (ret) 4994 return ret; 4995 4996 if (size <= hole_start) 4997 return 0; 4998 4999 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5000 &cached_state); 5001 cur_offset = hole_start; 5002 while (1) { 5003 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5004 if (IS_ERR(em)) { 5005 ret = PTR_ERR(em); 5006 em = NULL; 5007 break; 5008 } 5009 last_byte = min(extent_map_end(em), block_end); 5010 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5011 hole_size = last_byte - cur_offset; 5012 5013 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5014 struct extent_map *hole_em; 5015 5016 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5017 if (ret) 5018 break; 5019 5020 ret = btrfs_inode_set_file_extent_range(inode, 5021 cur_offset, hole_size); 5022 if (ret) 5023 break; 5024 5025 hole_em = alloc_extent_map(); 5026 if (!hole_em) { 5027 btrfs_drop_extent_map_range(inode, cur_offset, 5028 cur_offset + hole_size - 1, 5029 false); 5030 btrfs_set_inode_full_sync(inode); 5031 goto next; 5032 } 5033 hole_em->start = cur_offset; 5034 hole_em->len = hole_size; 5035 5036 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5037 hole_em->disk_num_bytes = 0; 5038 hole_em->ram_bytes = hole_size; 5039 hole_em->generation = btrfs_get_fs_generation(fs_info); 5040 5041 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5042 free_extent_map(hole_em); 5043 } else { 5044 ret = btrfs_inode_set_file_extent_range(inode, 5045 cur_offset, hole_size); 5046 if (ret) 5047 break; 5048 } 5049 next: 5050 free_extent_map(em); 5051 em = NULL; 5052 cur_offset = last_byte; 5053 if (cur_offset >= block_end) 5054 break; 5055 } 5056 free_extent_map(em); 5057 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5058 return ret; 5059 } 5060 5061 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5062 { 5063 struct btrfs_root *root = BTRFS_I(inode)->root; 5064 struct btrfs_trans_handle *trans; 5065 loff_t oldsize = i_size_read(inode); 5066 loff_t newsize = attr->ia_size; 5067 int mask = attr->ia_valid; 5068 int ret; 5069 5070 /* 5071 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5072 * special case where we need to update the times despite not having 5073 * these flags set. For all other operations the VFS set these flags 5074 * explicitly if it wants a timestamp update. 5075 */ 5076 if (newsize != oldsize) { 5077 inode_inc_iversion(inode); 5078 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5079 inode_set_mtime_to_ts(inode, 5080 inode_set_ctime_current(inode)); 5081 } 5082 } 5083 5084 if (newsize > oldsize) { 5085 /* 5086 * Don't do an expanding truncate while snapshotting is ongoing. 5087 * This is to ensure the snapshot captures a fully consistent 5088 * state of this file - if the snapshot captures this expanding 5089 * truncation, it must capture all writes that happened before 5090 * this truncation. 5091 */ 5092 btrfs_drew_write_lock(&root->snapshot_lock); 5093 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5094 if (ret) { 5095 btrfs_drew_write_unlock(&root->snapshot_lock); 5096 return ret; 5097 } 5098 5099 trans = btrfs_start_transaction(root, 1); 5100 if (IS_ERR(trans)) { 5101 btrfs_drew_write_unlock(&root->snapshot_lock); 5102 return PTR_ERR(trans); 5103 } 5104 5105 i_size_write(inode, newsize); 5106 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5107 pagecache_isize_extended(inode, oldsize, newsize); 5108 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5109 btrfs_drew_write_unlock(&root->snapshot_lock); 5110 btrfs_end_transaction(trans); 5111 } else { 5112 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5113 5114 if (btrfs_is_zoned(fs_info)) { 5115 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5116 ALIGN(newsize, fs_info->sectorsize), 5117 (u64)-1); 5118 if (ret) 5119 return ret; 5120 } 5121 5122 /* 5123 * We're truncating a file that used to have good data down to 5124 * zero. Make sure any new writes to the file get on disk 5125 * on close. 5126 */ 5127 if (newsize == 0) 5128 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5129 &BTRFS_I(inode)->runtime_flags); 5130 5131 truncate_setsize(inode, newsize); 5132 5133 inode_dio_wait(inode); 5134 5135 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5136 if (ret && inode->i_nlink) { 5137 int err; 5138 5139 /* 5140 * Truncate failed, so fix up the in-memory size. We 5141 * adjusted disk_i_size down as we removed extents, so 5142 * wait for disk_i_size to be stable and then update the 5143 * in-memory size to match. 5144 */ 5145 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5146 if (err) 5147 return err; 5148 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5149 } 5150 } 5151 5152 return ret; 5153 } 5154 5155 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5156 struct iattr *attr) 5157 { 5158 struct inode *inode = d_inode(dentry); 5159 struct btrfs_root *root = BTRFS_I(inode)->root; 5160 int err; 5161 5162 if (btrfs_root_readonly(root)) 5163 return -EROFS; 5164 5165 err = setattr_prepare(idmap, dentry, attr); 5166 if (err) 5167 return err; 5168 5169 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5170 err = btrfs_setsize(inode, attr); 5171 if (err) 5172 return err; 5173 } 5174 5175 if (attr->ia_valid) { 5176 setattr_copy(idmap, inode, attr); 5177 inode_inc_iversion(inode); 5178 err = btrfs_dirty_inode(BTRFS_I(inode)); 5179 5180 if (!err && attr->ia_valid & ATTR_MODE) 5181 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5182 } 5183 5184 return err; 5185 } 5186 5187 /* 5188 * While truncating the inode pages during eviction, we get the VFS 5189 * calling btrfs_invalidate_folio() against each folio of the inode. This 5190 * is slow because the calls to btrfs_invalidate_folio() result in a 5191 * huge amount of calls to lock_extent() and clear_extent_bit(), 5192 * which keep merging and splitting extent_state structures over and over, 5193 * wasting lots of time. 5194 * 5195 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5196 * skip all those expensive operations on a per folio basis and do only 5197 * the ordered io finishing, while we release here the extent_map and 5198 * extent_state structures, without the excessive merging and splitting. 5199 */ 5200 static void evict_inode_truncate_pages(struct inode *inode) 5201 { 5202 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5203 struct rb_node *node; 5204 5205 ASSERT(inode->i_state & I_FREEING); 5206 truncate_inode_pages_final(&inode->i_data); 5207 5208 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5209 5210 /* 5211 * Keep looping until we have no more ranges in the io tree. 5212 * We can have ongoing bios started by readahead that have 5213 * their endio callback (extent_io.c:end_bio_extent_readpage) 5214 * still in progress (unlocked the pages in the bio but did not yet 5215 * unlocked the ranges in the io tree). Therefore this means some 5216 * ranges can still be locked and eviction started because before 5217 * submitting those bios, which are executed by a separate task (work 5218 * queue kthread), inode references (inode->i_count) were not taken 5219 * (which would be dropped in the end io callback of each bio). 5220 * Therefore here we effectively end up waiting for those bios and 5221 * anyone else holding locked ranges without having bumped the inode's 5222 * reference count - if we don't do it, when they access the inode's 5223 * io_tree to unlock a range it may be too late, leading to an 5224 * use-after-free issue. 5225 */ 5226 spin_lock(&io_tree->lock); 5227 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5228 struct extent_state *state; 5229 struct extent_state *cached_state = NULL; 5230 u64 start; 5231 u64 end; 5232 unsigned state_flags; 5233 5234 node = rb_first(&io_tree->state); 5235 state = rb_entry(node, struct extent_state, rb_node); 5236 start = state->start; 5237 end = state->end; 5238 state_flags = state->state; 5239 spin_unlock(&io_tree->lock); 5240 5241 lock_extent(io_tree, start, end, &cached_state); 5242 5243 /* 5244 * If still has DELALLOC flag, the extent didn't reach disk, 5245 * and its reserved space won't be freed by delayed_ref. 5246 * So we need to free its reserved space here. 5247 * (Refer to comment in btrfs_invalidate_folio, case 2) 5248 * 5249 * Note, end is the bytenr of last byte, so we need + 1 here. 5250 */ 5251 if (state_flags & EXTENT_DELALLOC) 5252 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5253 end - start + 1, NULL); 5254 5255 clear_extent_bit(io_tree, start, end, 5256 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5257 &cached_state); 5258 5259 cond_resched(); 5260 spin_lock(&io_tree->lock); 5261 } 5262 spin_unlock(&io_tree->lock); 5263 } 5264 5265 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5266 struct btrfs_block_rsv *rsv) 5267 { 5268 struct btrfs_fs_info *fs_info = root->fs_info; 5269 struct btrfs_trans_handle *trans; 5270 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5271 int ret; 5272 5273 /* 5274 * Eviction should be taking place at some place safe because of our 5275 * delayed iputs. However the normal flushing code will run delayed 5276 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5277 * 5278 * We reserve the delayed_refs_extra here again because we can't use 5279 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5280 * above. We reserve our extra bit here because we generate a ton of 5281 * delayed refs activity by truncating. 5282 * 5283 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5284 * if we fail to make this reservation we can re-try without the 5285 * delayed_refs_extra so we can make some forward progress. 5286 */ 5287 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5288 BTRFS_RESERVE_FLUSH_EVICT); 5289 if (ret) { 5290 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5291 BTRFS_RESERVE_FLUSH_EVICT); 5292 if (ret) { 5293 btrfs_warn(fs_info, 5294 "could not allocate space for delete; will truncate on mount"); 5295 return ERR_PTR(-ENOSPC); 5296 } 5297 delayed_refs_extra = 0; 5298 } 5299 5300 trans = btrfs_join_transaction(root); 5301 if (IS_ERR(trans)) 5302 return trans; 5303 5304 if (delayed_refs_extra) { 5305 trans->block_rsv = &fs_info->trans_block_rsv; 5306 trans->bytes_reserved = delayed_refs_extra; 5307 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5308 delayed_refs_extra, true); 5309 } 5310 return trans; 5311 } 5312 5313 void btrfs_evict_inode(struct inode *inode) 5314 { 5315 struct btrfs_fs_info *fs_info; 5316 struct btrfs_trans_handle *trans; 5317 struct btrfs_root *root = BTRFS_I(inode)->root; 5318 struct btrfs_block_rsv *rsv = NULL; 5319 int ret; 5320 5321 trace_btrfs_inode_evict(inode); 5322 5323 if (!root) { 5324 fsverity_cleanup_inode(inode); 5325 clear_inode(inode); 5326 return; 5327 } 5328 5329 fs_info = inode_to_fs_info(inode); 5330 evict_inode_truncate_pages(inode); 5331 5332 if (inode->i_nlink && 5333 ((btrfs_root_refs(&root->root_item) != 0 && 5334 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5335 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5336 goto out; 5337 5338 if (is_bad_inode(inode)) 5339 goto out; 5340 5341 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5342 goto out; 5343 5344 if (inode->i_nlink > 0) { 5345 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5346 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5347 goto out; 5348 } 5349 5350 /* 5351 * This makes sure the inode item in tree is uptodate and the space for 5352 * the inode update is released. 5353 */ 5354 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5355 if (ret) 5356 goto out; 5357 5358 /* 5359 * This drops any pending insert or delete operations we have for this 5360 * inode. We could have a delayed dir index deletion queued up, but 5361 * we're removing the inode completely so that'll be taken care of in 5362 * the truncate. 5363 */ 5364 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5365 5366 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5367 if (!rsv) 5368 goto out; 5369 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5370 rsv->failfast = true; 5371 5372 btrfs_i_size_write(BTRFS_I(inode), 0); 5373 5374 while (1) { 5375 struct btrfs_truncate_control control = { 5376 .inode = BTRFS_I(inode), 5377 .ino = btrfs_ino(BTRFS_I(inode)), 5378 .new_size = 0, 5379 .min_type = 0, 5380 }; 5381 5382 trans = evict_refill_and_join(root, rsv); 5383 if (IS_ERR(trans)) 5384 goto out; 5385 5386 trans->block_rsv = rsv; 5387 5388 ret = btrfs_truncate_inode_items(trans, root, &control); 5389 trans->block_rsv = &fs_info->trans_block_rsv; 5390 btrfs_end_transaction(trans); 5391 /* 5392 * We have not added new delayed items for our inode after we 5393 * have flushed its delayed items, so no need to throttle on 5394 * delayed items. However we have modified extent buffers. 5395 */ 5396 btrfs_btree_balance_dirty_nodelay(fs_info); 5397 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5398 goto out; 5399 else if (!ret) 5400 break; 5401 } 5402 5403 /* 5404 * Errors here aren't a big deal, it just means we leave orphan items in 5405 * the tree. They will be cleaned up on the next mount. If the inode 5406 * number gets reused, cleanup deletes the orphan item without doing 5407 * anything, and unlink reuses the existing orphan item. 5408 * 5409 * If it turns out that we are dropping too many of these, we might want 5410 * to add a mechanism for retrying these after a commit. 5411 */ 5412 trans = evict_refill_and_join(root, rsv); 5413 if (!IS_ERR(trans)) { 5414 trans->block_rsv = rsv; 5415 btrfs_orphan_del(trans, BTRFS_I(inode)); 5416 trans->block_rsv = &fs_info->trans_block_rsv; 5417 btrfs_end_transaction(trans); 5418 } 5419 5420 out: 5421 btrfs_free_block_rsv(fs_info, rsv); 5422 /* 5423 * If we didn't successfully delete, the orphan item will still be in 5424 * the tree and we'll retry on the next mount. Again, we might also want 5425 * to retry these periodically in the future. 5426 */ 5427 btrfs_remove_delayed_node(BTRFS_I(inode)); 5428 fsverity_cleanup_inode(inode); 5429 clear_inode(inode); 5430 } 5431 5432 /* 5433 * Return the key found in the dir entry in the location pointer, fill @type 5434 * with BTRFS_FT_*, and return 0. 5435 * 5436 * If no dir entries were found, returns -ENOENT. 5437 * If found a corrupted location in dir entry, returns -EUCLEAN. 5438 */ 5439 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5440 struct btrfs_key *location, u8 *type) 5441 { 5442 struct btrfs_dir_item *di; 5443 struct btrfs_path *path; 5444 struct btrfs_root *root = dir->root; 5445 int ret = 0; 5446 struct fscrypt_name fname; 5447 5448 path = btrfs_alloc_path(); 5449 if (!path) 5450 return -ENOMEM; 5451 5452 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5453 if (ret < 0) 5454 goto out; 5455 /* 5456 * fscrypt_setup_filename() should never return a positive value, but 5457 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5458 */ 5459 ASSERT(ret == 0); 5460 5461 /* This needs to handle no-key deletions later on */ 5462 5463 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5464 &fname.disk_name, 0); 5465 if (IS_ERR_OR_NULL(di)) { 5466 ret = di ? PTR_ERR(di) : -ENOENT; 5467 goto out; 5468 } 5469 5470 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5471 if (location->type != BTRFS_INODE_ITEM_KEY && 5472 location->type != BTRFS_ROOT_ITEM_KEY) { 5473 ret = -EUCLEAN; 5474 btrfs_warn(root->fs_info, 5475 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5476 __func__, fname.disk_name.name, btrfs_ino(dir), 5477 location->objectid, location->type, location->offset); 5478 } 5479 if (!ret) 5480 *type = btrfs_dir_ftype(path->nodes[0], di); 5481 out: 5482 fscrypt_free_filename(&fname); 5483 btrfs_free_path(path); 5484 return ret; 5485 } 5486 5487 /* 5488 * when we hit a tree root in a directory, the btrfs part of the inode 5489 * needs to be changed to reflect the root directory of the tree root. This 5490 * is kind of like crossing a mount point. 5491 */ 5492 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5493 struct btrfs_inode *dir, 5494 struct dentry *dentry, 5495 struct btrfs_key *location, 5496 struct btrfs_root **sub_root) 5497 { 5498 struct btrfs_path *path; 5499 struct btrfs_root *new_root; 5500 struct btrfs_root_ref *ref; 5501 struct extent_buffer *leaf; 5502 struct btrfs_key key; 5503 int ret; 5504 int err = 0; 5505 struct fscrypt_name fname; 5506 5507 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5508 if (ret) 5509 return ret; 5510 5511 path = btrfs_alloc_path(); 5512 if (!path) { 5513 err = -ENOMEM; 5514 goto out; 5515 } 5516 5517 err = -ENOENT; 5518 key.objectid = btrfs_root_id(dir->root); 5519 key.type = BTRFS_ROOT_REF_KEY; 5520 key.offset = location->objectid; 5521 5522 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5523 if (ret) { 5524 if (ret < 0) 5525 err = ret; 5526 goto out; 5527 } 5528 5529 leaf = path->nodes[0]; 5530 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5531 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5532 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5533 goto out; 5534 5535 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5536 (unsigned long)(ref + 1), fname.disk_name.len); 5537 if (ret) 5538 goto out; 5539 5540 btrfs_release_path(path); 5541 5542 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5543 if (IS_ERR(new_root)) { 5544 err = PTR_ERR(new_root); 5545 goto out; 5546 } 5547 5548 *sub_root = new_root; 5549 location->objectid = btrfs_root_dirid(&new_root->root_item); 5550 location->type = BTRFS_INODE_ITEM_KEY; 5551 location->offset = 0; 5552 err = 0; 5553 out: 5554 btrfs_free_path(path); 5555 fscrypt_free_filename(&fname); 5556 return err; 5557 } 5558 5559 5560 5561 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5562 { 5563 struct btrfs_root *root = inode->root; 5564 struct btrfs_inode *entry; 5565 bool empty = false; 5566 5567 xa_lock(&root->inodes); 5568 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5569 if (entry == inode) 5570 empty = xa_empty(&root->inodes); 5571 xa_unlock(&root->inodes); 5572 5573 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5574 xa_lock(&root->inodes); 5575 empty = xa_empty(&root->inodes); 5576 xa_unlock(&root->inodes); 5577 if (empty) 5578 btrfs_add_dead_root(root); 5579 } 5580 } 5581 5582 5583 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5584 { 5585 struct btrfs_iget_args *args = p; 5586 5587 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5588 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5589 5590 if (args->root && args->root == args->root->fs_info->tree_root && 5591 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5592 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5593 &BTRFS_I(inode)->runtime_flags); 5594 return 0; 5595 } 5596 5597 static int btrfs_find_actor(struct inode *inode, void *opaque) 5598 { 5599 struct btrfs_iget_args *args = opaque; 5600 5601 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5602 args->root == BTRFS_I(inode)->root; 5603 } 5604 5605 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5606 { 5607 struct inode *inode; 5608 struct btrfs_iget_args args; 5609 unsigned long hashval = btrfs_inode_hash(ino, root); 5610 5611 args.ino = ino; 5612 args.root = root; 5613 5614 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5615 btrfs_init_locked_inode, 5616 (void *)&args); 5617 return inode; 5618 } 5619 5620 /* 5621 * Get an inode object given its inode number and corresponding root. Path is 5622 * preallocated to prevent recursing back to iget through allocator. 5623 */ 5624 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5625 struct btrfs_path *path) 5626 { 5627 struct inode *inode; 5628 int ret; 5629 5630 inode = btrfs_iget_locked(ino, root); 5631 if (!inode) 5632 return ERR_PTR(-ENOMEM); 5633 5634 if (!(inode->i_state & I_NEW)) 5635 return inode; 5636 5637 ret = btrfs_read_locked_inode(inode, path); 5638 if (ret) 5639 return ERR_PTR(ret); 5640 5641 unlock_new_inode(inode); 5642 return inode; 5643 } 5644 5645 /* 5646 * Get an inode object given its inode number and corresponding root. 5647 */ 5648 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5649 { 5650 struct inode *inode; 5651 struct btrfs_path *path; 5652 int ret; 5653 5654 inode = btrfs_iget_locked(ino, root); 5655 if (!inode) 5656 return ERR_PTR(-ENOMEM); 5657 5658 if (!(inode->i_state & I_NEW)) 5659 return inode; 5660 5661 path = btrfs_alloc_path(); 5662 if (!path) 5663 return ERR_PTR(-ENOMEM); 5664 5665 ret = btrfs_read_locked_inode(inode, path); 5666 btrfs_free_path(path); 5667 if (ret) 5668 return ERR_PTR(ret); 5669 5670 unlock_new_inode(inode); 5671 return inode; 5672 } 5673 5674 static struct inode *new_simple_dir(struct inode *dir, 5675 struct btrfs_key *key, 5676 struct btrfs_root *root) 5677 { 5678 struct timespec64 ts; 5679 struct inode *inode = new_inode(dir->i_sb); 5680 5681 if (!inode) 5682 return ERR_PTR(-ENOMEM); 5683 5684 BTRFS_I(inode)->root = btrfs_grab_root(root); 5685 BTRFS_I(inode)->ref_root_id = key->objectid; 5686 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5687 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5688 5689 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5690 /* 5691 * We only need lookup, the rest is read-only and there's no inode 5692 * associated with the dentry 5693 */ 5694 inode->i_op = &simple_dir_inode_operations; 5695 inode->i_opflags &= ~IOP_XATTR; 5696 inode->i_fop = &simple_dir_operations; 5697 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5698 5699 ts = inode_set_ctime_current(inode); 5700 inode_set_mtime_to_ts(inode, ts); 5701 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5702 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5703 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5704 5705 inode->i_uid = dir->i_uid; 5706 inode->i_gid = dir->i_gid; 5707 5708 return inode; 5709 } 5710 5711 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5712 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5713 static_assert(BTRFS_FT_DIR == FT_DIR); 5714 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5715 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5716 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5717 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5718 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5719 5720 static inline u8 btrfs_inode_type(struct inode *inode) 5721 { 5722 return fs_umode_to_ftype(inode->i_mode); 5723 } 5724 5725 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5726 { 5727 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5728 struct inode *inode; 5729 struct btrfs_root *root = BTRFS_I(dir)->root; 5730 struct btrfs_root *sub_root = root; 5731 struct btrfs_key location = { 0 }; 5732 u8 di_type = 0; 5733 int ret = 0; 5734 5735 if (dentry->d_name.len > BTRFS_NAME_LEN) 5736 return ERR_PTR(-ENAMETOOLONG); 5737 5738 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5739 if (ret < 0) 5740 return ERR_PTR(ret); 5741 5742 if (location.type == BTRFS_INODE_ITEM_KEY) { 5743 inode = btrfs_iget(location.objectid, root); 5744 if (IS_ERR(inode)) 5745 return inode; 5746 5747 /* Do extra check against inode mode with di_type */ 5748 if (btrfs_inode_type(inode) != di_type) { 5749 btrfs_crit(fs_info, 5750 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5751 inode->i_mode, btrfs_inode_type(inode), 5752 di_type); 5753 iput(inode); 5754 return ERR_PTR(-EUCLEAN); 5755 } 5756 return inode; 5757 } 5758 5759 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5760 &location, &sub_root); 5761 if (ret < 0) { 5762 if (ret != -ENOENT) 5763 inode = ERR_PTR(ret); 5764 else 5765 inode = new_simple_dir(dir, &location, root); 5766 } else { 5767 inode = btrfs_iget(location.objectid, sub_root); 5768 btrfs_put_root(sub_root); 5769 5770 if (IS_ERR(inode)) 5771 return inode; 5772 5773 down_read(&fs_info->cleanup_work_sem); 5774 if (!sb_rdonly(inode->i_sb)) 5775 ret = btrfs_orphan_cleanup(sub_root); 5776 up_read(&fs_info->cleanup_work_sem); 5777 if (ret) { 5778 iput(inode); 5779 inode = ERR_PTR(ret); 5780 } 5781 } 5782 5783 return inode; 5784 } 5785 5786 static int btrfs_dentry_delete(const struct dentry *dentry) 5787 { 5788 struct btrfs_root *root; 5789 struct inode *inode = d_inode(dentry); 5790 5791 if (!inode && !IS_ROOT(dentry)) 5792 inode = d_inode(dentry->d_parent); 5793 5794 if (inode) { 5795 root = BTRFS_I(inode)->root; 5796 if (btrfs_root_refs(&root->root_item) == 0) 5797 return 1; 5798 5799 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5800 return 1; 5801 } 5802 return 0; 5803 } 5804 5805 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5806 unsigned int flags) 5807 { 5808 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5809 5810 if (inode == ERR_PTR(-ENOENT)) 5811 inode = NULL; 5812 return d_splice_alias(inode, dentry); 5813 } 5814 5815 /* 5816 * Find the highest existing sequence number in a directory and then set the 5817 * in-memory index_cnt variable to the first free sequence number. 5818 */ 5819 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5820 { 5821 struct btrfs_root *root = inode->root; 5822 struct btrfs_key key, found_key; 5823 struct btrfs_path *path; 5824 struct extent_buffer *leaf; 5825 int ret; 5826 5827 key.objectid = btrfs_ino(inode); 5828 key.type = BTRFS_DIR_INDEX_KEY; 5829 key.offset = (u64)-1; 5830 5831 path = btrfs_alloc_path(); 5832 if (!path) 5833 return -ENOMEM; 5834 5835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5836 if (ret < 0) 5837 goto out; 5838 /* FIXME: we should be able to handle this */ 5839 if (ret == 0) 5840 goto out; 5841 ret = 0; 5842 5843 if (path->slots[0] == 0) { 5844 inode->index_cnt = BTRFS_DIR_START_INDEX; 5845 goto out; 5846 } 5847 5848 path->slots[0]--; 5849 5850 leaf = path->nodes[0]; 5851 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5852 5853 if (found_key.objectid != btrfs_ino(inode) || 5854 found_key.type != BTRFS_DIR_INDEX_KEY) { 5855 inode->index_cnt = BTRFS_DIR_START_INDEX; 5856 goto out; 5857 } 5858 5859 inode->index_cnt = found_key.offset + 1; 5860 out: 5861 btrfs_free_path(path); 5862 return ret; 5863 } 5864 5865 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5866 { 5867 int ret = 0; 5868 5869 btrfs_inode_lock(dir, 0); 5870 if (dir->index_cnt == (u64)-1) { 5871 ret = btrfs_inode_delayed_dir_index_count(dir); 5872 if (ret) { 5873 ret = btrfs_set_inode_index_count(dir); 5874 if (ret) 5875 goto out; 5876 } 5877 } 5878 5879 /* index_cnt is the index number of next new entry, so decrement it. */ 5880 *index = dir->index_cnt - 1; 5881 out: 5882 btrfs_inode_unlock(dir, 0); 5883 5884 return ret; 5885 } 5886 5887 /* 5888 * All this infrastructure exists because dir_emit can fault, and we are holding 5889 * the tree lock when doing readdir. For now just allocate a buffer and copy 5890 * our information into that, and then dir_emit from the buffer. This is 5891 * similar to what NFS does, only we don't keep the buffer around in pagecache 5892 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5893 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5894 * tree lock. 5895 */ 5896 static int btrfs_opendir(struct inode *inode, struct file *file) 5897 { 5898 struct btrfs_file_private *private; 5899 u64 last_index; 5900 int ret; 5901 5902 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5903 if (ret) 5904 return ret; 5905 5906 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5907 if (!private) 5908 return -ENOMEM; 5909 private->last_index = last_index; 5910 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5911 if (!private->filldir_buf) { 5912 kfree(private); 5913 return -ENOMEM; 5914 } 5915 file->private_data = private; 5916 return 0; 5917 } 5918 5919 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5920 { 5921 struct btrfs_file_private *private = file->private_data; 5922 int ret; 5923 5924 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5925 &private->last_index); 5926 if (ret) 5927 return ret; 5928 5929 return generic_file_llseek(file, offset, whence); 5930 } 5931 5932 struct dir_entry { 5933 u64 ino; 5934 u64 offset; 5935 unsigned type; 5936 int name_len; 5937 }; 5938 5939 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5940 { 5941 while (entries--) { 5942 struct dir_entry *entry = addr; 5943 char *name = (char *)(entry + 1); 5944 5945 ctx->pos = get_unaligned(&entry->offset); 5946 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5947 get_unaligned(&entry->ino), 5948 get_unaligned(&entry->type))) 5949 return 1; 5950 addr += sizeof(struct dir_entry) + 5951 get_unaligned(&entry->name_len); 5952 ctx->pos++; 5953 } 5954 return 0; 5955 } 5956 5957 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5958 { 5959 struct inode *inode = file_inode(file); 5960 struct btrfs_root *root = BTRFS_I(inode)->root; 5961 struct btrfs_file_private *private = file->private_data; 5962 struct btrfs_dir_item *di; 5963 struct btrfs_key key; 5964 struct btrfs_key found_key; 5965 struct btrfs_path *path; 5966 void *addr; 5967 LIST_HEAD(ins_list); 5968 LIST_HEAD(del_list); 5969 int ret; 5970 char *name_ptr; 5971 int name_len; 5972 int entries = 0; 5973 int total_len = 0; 5974 bool put = false; 5975 struct btrfs_key location; 5976 5977 if (!dir_emit_dots(file, ctx)) 5978 return 0; 5979 5980 path = btrfs_alloc_path(); 5981 if (!path) 5982 return -ENOMEM; 5983 5984 addr = private->filldir_buf; 5985 path->reada = READA_FORWARD; 5986 5987 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5988 &ins_list, &del_list); 5989 5990 again: 5991 key.type = BTRFS_DIR_INDEX_KEY; 5992 key.offset = ctx->pos; 5993 key.objectid = btrfs_ino(BTRFS_I(inode)); 5994 5995 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5996 struct dir_entry *entry; 5997 struct extent_buffer *leaf = path->nodes[0]; 5998 u8 ftype; 5999 6000 if (found_key.objectid != key.objectid) 6001 break; 6002 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6003 break; 6004 if (found_key.offset < ctx->pos) 6005 continue; 6006 if (found_key.offset > private->last_index) 6007 break; 6008 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6009 continue; 6010 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6011 name_len = btrfs_dir_name_len(leaf, di); 6012 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6013 PAGE_SIZE) { 6014 btrfs_release_path(path); 6015 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6016 if (ret) 6017 goto nopos; 6018 addr = private->filldir_buf; 6019 entries = 0; 6020 total_len = 0; 6021 goto again; 6022 } 6023 6024 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6025 entry = addr; 6026 name_ptr = (char *)(entry + 1); 6027 read_extent_buffer(leaf, name_ptr, 6028 (unsigned long)(di + 1), name_len); 6029 put_unaligned(name_len, &entry->name_len); 6030 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6031 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6032 put_unaligned(location.objectid, &entry->ino); 6033 put_unaligned(found_key.offset, &entry->offset); 6034 entries++; 6035 addr += sizeof(struct dir_entry) + name_len; 6036 total_len += sizeof(struct dir_entry) + name_len; 6037 } 6038 /* Catch error encountered during iteration */ 6039 if (ret < 0) 6040 goto err; 6041 6042 btrfs_release_path(path); 6043 6044 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6045 if (ret) 6046 goto nopos; 6047 6048 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6049 if (ret) 6050 goto nopos; 6051 6052 /* 6053 * Stop new entries from being returned after we return the last 6054 * entry. 6055 * 6056 * New directory entries are assigned a strictly increasing 6057 * offset. This means that new entries created during readdir 6058 * are *guaranteed* to be seen in the future by that readdir. 6059 * This has broken buggy programs which operate on names as 6060 * they're returned by readdir. Until we reuse freed offsets 6061 * we have this hack to stop new entries from being returned 6062 * under the assumption that they'll never reach this huge 6063 * offset. 6064 * 6065 * This is being careful not to overflow 32bit loff_t unless the 6066 * last entry requires it because doing so has broken 32bit apps 6067 * in the past. 6068 */ 6069 if (ctx->pos >= INT_MAX) 6070 ctx->pos = LLONG_MAX; 6071 else 6072 ctx->pos = INT_MAX; 6073 nopos: 6074 ret = 0; 6075 err: 6076 if (put) 6077 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6078 btrfs_free_path(path); 6079 return ret; 6080 } 6081 6082 /* 6083 * This is somewhat expensive, updating the tree every time the 6084 * inode changes. But, it is most likely to find the inode in cache. 6085 * FIXME, needs more benchmarking...there are no reasons other than performance 6086 * to keep or drop this code. 6087 */ 6088 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6089 { 6090 struct btrfs_root *root = inode->root; 6091 struct btrfs_fs_info *fs_info = root->fs_info; 6092 struct btrfs_trans_handle *trans; 6093 int ret; 6094 6095 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6096 return 0; 6097 6098 trans = btrfs_join_transaction(root); 6099 if (IS_ERR(trans)) 6100 return PTR_ERR(trans); 6101 6102 ret = btrfs_update_inode(trans, inode); 6103 if (ret == -ENOSPC || ret == -EDQUOT) { 6104 /* whoops, lets try again with the full transaction */ 6105 btrfs_end_transaction(trans); 6106 trans = btrfs_start_transaction(root, 1); 6107 if (IS_ERR(trans)) 6108 return PTR_ERR(trans); 6109 6110 ret = btrfs_update_inode(trans, inode); 6111 } 6112 btrfs_end_transaction(trans); 6113 if (inode->delayed_node) 6114 btrfs_balance_delayed_items(fs_info); 6115 6116 return ret; 6117 } 6118 6119 /* 6120 * This is a copy of file_update_time. We need this so we can return error on 6121 * ENOSPC for updating the inode in the case of file write and mmap writes. 6122 */ 6123 static int btrfs_update_time(struct inode *inode, int flags) 6124 { 6125 struct btrfs_root *root = BTRFS_I(inode)->root; 6126 bool dirty; 6127 6128 if (btrfs_root_readonly(root)) 6129 return -EROFS; 6130 6131 dirty = inode_update_timestamps(inode, flags); 6132 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6133 } 6134 6135 /* 6136 * helper to find a free sequence number in a given directory. This current 6137 * code is very simple, later versions will do smarter things in the btree 6138 */ 6139 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6140 { 6141 int ret = 0; 6142 6143 if (dir->index_cnt == (u64)-1) { 6144 ret = btrfs_inode_delayed_dir_index_count(dir); 6145 if (ret) { 6146 ret = btrfs_set_inode_index_count(dir); 6147 if (ret) 6148 return ret; 6149 } 6150 } 6151 6152 *index = dir->index_cnt; 6153 dir->index_cnt++; 6154 6155 return ret; 6156 } 6157 6158 static int btrfs_insert_inode_locked(struct inode *inode) 6159 { 6160 struct btrfs_iget_args args; 6161 6162 args.ino = btrfs_ino(BTRFS_I(inode)); 6163 args.root = BTRFS_I(inode)->root; 6164 6165 return insert_inode_locked4(inode, 6166 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6167 btrfs_find_actor, &args); 6168 } 6169 6170 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6171 unsigned int *trans_num_items) 6172 { 6173 struct inode *dir = args->dir; 6174 struct inode *inode = args->inode; 6175 int ret; 6176 6177 if (!args->orphan) { 6178 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6179 &args->fname); 6180 if (ret) 6181 return ret; 6182 } 6183 6184 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6185 if (ret) { 6186 fscrypt_free_filename(&args->fname); 6187 return ret; 6188 } 6189 6190 /* 1 to add inode item */ 6191 *trans_num_items = 1; 6192 /* 1 to add compression property */ 6193 if (BTRFS_I(dir)->prop_compress) 6194 (*trans_num_items)++; 6195 /* 1 to add default ACL xattr */ 6196 if (args->default_acl) 6197 (*trans_num_items)++; 6198 /* 1 to add access ACL xattr */ 6199 if (args->acl) 6200 (*trans_num_items)++; 6201 #ifdef CONFIG_SECURITY 6202 /* 1 to add LSM xattr */ 6203 if (dir->i_security) 6204 (*trans_num_items)++; 6205 #endif 6206 if (args->orphan) { 6207 /* 1 to add orphan item */ 6208 (*trans_num_items)++; 6209 } else { 6210 /* 6211 * 1 to add dir item 6212 * 1 to add dir index 6213 * 1 to update parent inode item 6214 * 6215 * No need for 1 unit for the inode ref item because it is 6216 * inserted in a batch together with the inode item at 6217 * btrfs_create_new_inode(). 6218 */ 6219 *trans_num_items += 3; 6220 } 6221 return 0; 6222 } 6223 6224 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6225 { 6226 posix_acl_release(args->acl); 6227 posix_acl_release(args->default_acl); 6228 fscrypt_free_filename(&args->fname); 6229 } 6230 6231 /* 6232 * Inherit flags from the parent inode. 6233 * 6234 * Currently only the compression flags and the cow flags are inherited. 6235 */ 6236 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6237 { 6238 unsigned int flags; 6239 6240 flags = dir->flags; 6241 6242 if (flags & BTRFS_INODE_NOCOMPRESS) { 6243 inode->flags &= ~BTRFS_INODE_COMPRESS; 6244 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6245 } else if (flags & BTRFS_INODE_COMPRESS) { 6246 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6247 inode->flags |= BTRFS_INODE_COMPRESS; 6248 } 6249 6250 if (flags & BTRFS_INODE_NODATACOW) { 6251 inode->flags |= BTRFS_INODE_NODATACOW; 6252 if (S_ISREG(inode->vfs_inode.i_mode)) 6253 inode->flags |= BTRFS_INODE_NODATASUM; 6254 } 6255 6256 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6257 } 6258 6259 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6260 struct btrfs_new_inode_args *args) 6261 { 6262 struct timespec64 ts; 6263 struct inode *dir = args->dir; 6264 struct inode *inode = args->inode; 6265 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6266 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6267 struct btrfs_root *root; 6268 struct btrfs_inode_item *inode_item; 6269 struct btrfs_path *path; 6270 u64 objectid; 6271 struct btrfs_inode_ref *ref; 6272 struct btrfs_key key[2]; 6273 u32 sizes[2]; 6274 struct btrfs_item_batch batch; 6275 unsigned long ptr; 6276 int ret; 6277 bool xa_reserved = false; 6278 6279 path = btrfs_alloc_path(); 6280 if (!path) 6281 return -ENOMEM; 6282 6283 if (!args->subvol) 6284 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6285 root = BTRFS_I(inode)->root; 6286 6287 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6288 if (ret) 6289 goto out; 6290 6291 ret = btrfs_get_free_objectid(root, &objectid); 6292 if (ret) 6293 goto out; 6294 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6295 6296 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6297 if (ret) 6298 goto out; 6299 xa_reserved = true; 6300 6301 if (args->orphan) { 6302 /* 6303 * O_TMPFILE, set link count to 0, so that after this point, we 6304 * fill in an inode item with the correct link count. 6305 */ 6306 set_nlink(inode, 0); 6307 } else { 6308 trace_btrfs_inode_request(dir); 6309 6310 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6311 if (ret) 6312 goto out; 6313 } 6314 6315 if (S_ISDIR(inode->i_mode)) 6316 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6317 6318 BTRFS_I(inode)->generation = trans->transid; 6319 inode->i_generation = BTRFS_I(inode)->generation; 6320 6321 /* 6322 * We don't have any capability xattrs set here yet, shortcut any 6323 * queries for the xattrs here. If we add them later via the inode 6324 * security init path or any other path this flag will be cleared. 6325 */ 6326 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6327 6328 /* 6329 * Subvolumes don't inherit flags from their parent directory. 6330 * Originally this was probably by accident, but we probably can't 6331 * change it now without compatibility issues. 6332 */ 6333 if (!args->subvol) 6334 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6335 6336 if (S_ISREG(inode->i_mode)) { 6337 if (btrfs_test_opt(fs_info, NODATASUM)) 6338 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6339 if (btrfs_test_opt(fs_info, NODATACOW)) 6340 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6341 BTRFS_INODE_NODATASUM; 6342 } 6343 6344 ret = btrfs_insert_inode_locked(inode); 6345 if (ret < 0) { 6346 if (!args->orphan) 6347 BTRFS_I(dir)->index_cnt--; 6348 goto out; 6349 } 6350 6351 /* 6352 * We could have gotten an inode number from somebody who was fsynced 6353 * and then removed in this same transaction, so let's just set full 6354 * sync since it will be a full sync anyway and this will blow away the 6355 * old info in the log. 6356 */ 6357 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6358 6359 key[0].objectid = objectid; 6360 key[0].type = BTRFS_INODE_ITEM_KEY; 6361 key[0].offset = 0; 6362 6363 sizes[0] = sizeof(struct btrfs_inode_item); 6364 6365 if (!args->orphan) { 6366 /* 6367 * Start new inodes with an inode_ref. This is slightly more 6368 * efficient for small numbers of hard links since they will 6369 * be packed into one item. Extended refs will kick in if we 6370 * add more hard links than can fit in the ref item. 6371 */ 6372 key[1].objectid = objectid; 6373 key[1].type = BTRFS_INODE_REF_KEY; 6374 if (args->subvol) { 6375 key[1].offset = objectid; 6376 sizes[1] = 2 + sizeof(*ref); 6377 } else { 6378 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6379 sizes[1] = name->len + sizeof(*ref); 6380 } 6381 } 6382 6383 batch.keys = &key[0]; 6384 batch.data_sizes = &sizes[0]; 6385 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6386 batch.nr = args->orphan ? 1 : 2; 6387 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6388 if (ret != 0) { 6389 btrfs_abort_transaction(trans, ret); 6390 goto discard; 6391 } 6392 6393 ts = simple_inode_init_ts(inode); 6394 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6395 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6396 6397 /* 6398 * We're going to fill the inode item now, so at this point the inode 6399 * must be fully initialized. 6400 */ 6401 6402 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6403 struct btrfs_inode_item); 6404 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6405 sizeof(*inode_item)); 6406 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6407 6408 if (!args->orphan) { 6409 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6410 struct btrfs_inode_ref); 6411 ptr = (unsigned long)(ref + 1); 6412 if (args->subvol) { 6413 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6414 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6415 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6416 } else { 6417 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6418 name->len); 6419 btrfs_set_inode_ref_index(path->nodes[0], ref, 6420 BTRFS_I(inode)->dir_index); 6421 write_extent_buffer(path->nodes[0], name->name, ptr, 6422 name->len); 6423 } 6424 } 6425 6426 /* 6427 * We don't need the path anymore, plus inheriting properties, adding 6428 * ACLs, security xattrs, orphan item or adding the link, will result in 6429 * allocating yet another path. So just free our path. 6430 */ 6431 btrfs_free_path(path); 6432 path = NULL; 6433 6434 if (args->subvol) { 6435 struct inode *parent; 6436 6437 /* 6438 * Subvolumes inherit properties from their parent subvolume, 6439 * not the directory they were created in. 6440 */ 6441 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6442 if (IS_ERR(parent)) { 6443 ret = PTR_ERR(parent); 6444 } else { 6445 ret = btrfs_inode_inherit_props(trans, inode, parent); 6446 iput(parent); 6447 } 6448 } else { 6449 ret = btrfs_inode_inherit_props(trans, inode, dir); 6450 } 6451 if (ret) { 6452 btrfs_err(fs_info, 6453 "error inheriting props for ino %llu (root %llu): %d", 6454 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6455 } 6456 6457 /* 6458 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6459 * probably a bug. 6460 */ 6461 if (!args->subvol) { 6462 ret = btrfs_init_inode_security(trans, args); 6463 if (ret) { 6464 btrfs_abort_transaction(trans, ret); 6465 goto discard; 6466 } 6467 } 6468 6469 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6470 if (WARN_ON(ret)) { 6471 /* Shouldn't happen, we used xa_reserve() before. */ 6472 btrfs_abort_transaction(trans, ret); 6473 goto discard; 6474 } 6475 6476 trace_btrfs_inode_new(inode); 6477 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6478 6479 btrfs_update_root_times(trans, root); 6480 6481 if (args->orphan) { 6482 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6483 } else { 6484 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6485 0, BTRFS_I(inode)->dir_index); 6486 } 6487 if (ret) { 6488 btrfs_abort_transaction(trans, ret); 6489 goto discard; 6490 } 6491 6492 return 0; 6493 6494 discard: 6495 /* 6496 * discard_new_inode() calls iput(), but the caller owns the reference 6497 * to the inode. 6498 */ 6499 ihold(inode); 6500 discard_new_inode(inode); 6501 out: 6502 if (xa_reserved) 6503 xa_release(&root->inodes, objectid); 6504 6505 btrfs_free_path(path); 6506 return ret; 6507 } 6508 6509 /* 6510 * utility function to add 'inode' into 'parent_inode' with 6511 * a give name and a given sequence number. 6512 * if 'add_backref' is true, also insert a backref from the 6513 * inode to the parent directory. 6514 */ 6515 int btrfs_add_link(struct btrfs_trans_handle *trans, 6516 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6517 const struct fscrypt_str *name, int add_backref, u64 index) 6518 { 6519 int ret = 0; 6520 struct btrfs_key key; 6521 struct btrfs_root *root = parent_inode->root; 6522 u64 ino = btrfs_ino(inode); 6523 u64 parent_ino = btrfs_ino(parent_inode); 6524 6525 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6526 memcpy(&key, &inode->root->root_key, sizeof(key)); 6527 } else { 6528 key.objectid = ino; 6529 key.type = BTRFS_INODE_ITEM_KEY; 6530 key.offset = 0; 6531 } 6532 6533 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6534 ret = btrfs_add_root_ref(trans, key.objectid, 6535 btrfs_root_id(root), parent_ino, 6536 index, name); 6537 } else if (add_backref) { 6538 ret = btrfs_insert_inode_ref(trans, root, name, 6539 ino, parent_ino, index); 6540 } 6541 6542 /* Nothing to clean up yet */ 6543 if (ret) 6544 return ret; 6545 6546 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6547 btrfs_inode_type(&inode->vfs_inode), index); 6548 if (ret == -EEXIST || ret == -EOVERFLOW) 6549 goto fail_dir_item; 6550 else if (ret) { 6551 btrfs_abort_transaction(trans, ret); 6552 return ret; 6553 } 6554 6555 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6556 name->len * 2); 6557 inode_inc_iversion(&parent_inode->vfs_inode); 6558 /* 6559 * If we are replaying a log tree, we do not want to update the mtime 6560 * and ctime of the parent directory with the current time, since the 6561 * log replay procedure is responsible for setting them to their correct 6562 * values (the ones it had when the fsync was done). 6563 */ 6564 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6565 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6566 inode_set_ctime_current(&parent_inode->vfs_inode)); 6567 6568 ret = btrfs_update_inode(trans, parent_inode); 6569 if (ret) 6570 btrfs_abort_transaction(trans, ret); 6571 return ret; 6572 6573 fail_dir_item: 6574 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6575 u64 local_index; 6576 int err; 6577 err = btrfs_del_root_ref(trans, key.objectid, 6578 btrfs_root_id(root), parent_ino, 6579 &local_index, name); 6580 if (err) 6581 btrfs_abort_transaction(trans, err); 6582 } else if (add_backref) { 6583 u64 local_index; 6584 int err; 6585 6586 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6587 &local_index); 6588 if (err) 6589 btrfs_abort_transaction(trans, err); 6590 } 6591 6592 /* Return the original error code */ 6593 return ret; 6594 } 6595 6596 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6597 struct inode *inode) 6598 { 6599 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6600 struct btrfs_root *root = BTRFS_I(dir)->root; 6601 struct btrfs_new_inode_args new_inode_args = { 6602 .dir = dir, 6603 .dentry = dentry, 6604 .inode = inode, 6605 }; 6606 unsigned int trans_num_items; 6607 struct btrfs_trans_handle *trans; 6608 int err; 6609 6610 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6611 if (err) 6612 goto out_inode; 6613 6614 trans = btrfs_start_transaction(root, trans_num_items); 6615 if (IS_ERR(trans)) { 6616 err = PTR_ERR(trans); 6617 goto out_new_inode_args; 6618 } 6619 6620 err = btrfs_create_new_inode(trans, &new_inode_args); 6621 if (!err) 6622 d_instantiate_new(dentry, inode); 6623 6624 btrfs_end_transaction(trans); 6625 btrfs_btree_balance_dirty(fs_info); 6626 out_new_inode_args: 6627 btrfs_new_inode_args_destroy(&new_inode_args); 6628 out_inode: 6629 if (err) 6630 iput(inode); 6631 return err; 6632 } 6633 6634 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6635 struct dentry *dentry, umode_t mode, dev_t rdev) 6636 { 6637 struct inode *inode; 6638 6639 inode = new_inode(dir->i_sb); 6640 if (!inode) 6641 return -ENOMEM; 6642 inode_init_owner(idmap, inode, dir, mode); 6643 inode->i_op = &btrfs_special_inode_operations; 6644 init_special_inode(inode, inode->i_mode, rdev); 6645 return btrfs_create_common(dir, dentry, inode); 6646 } 6647 6648 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6649 struct dentry *dentry, umode_t mode, bool excl) 6650 { 6651 struct inode *inode; 6652 6653 inode = new_inode(dir->i_sb); 6654 if (!inode) 6655 return -ENOMEM; 6656 inode_init_owner(idmap, inode, dir, mode); 6657 inode->i_fop = &btrfs_file_operations; 6658 inode->i_op = &btrfs_file_inode_operations; 6659 inode->i_mapping->a_ops = &btrfs_aops; 6660 return btrfs_create_common(dir, dentry, inode); 6661 } 6662 6663 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6664 struct dentry *dentry) 6665 { 6666 struct btrfs_trans_handle *trans = NULL; 6667 struct btrfs_root *root = BTRFS_I(dir)->root; 6668 struct inode *inode = d_inode(old_dentry); 6669 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6670 struct fscrypt_name fname; 6671 u64 index; 6672 int err; 6673 int drop_inode = 0; 6674 6675 /* do not allow sys_link's with other subvols of the same device */ 6676 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6677 return -EXDEV; 6678 6679 if (inode->i_nlink >= BTRFS_LINK_MAX) 6680 return -EMLINK; 6681 6682 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6683 if (err) 6684 goto fail; 6685 6686 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6687 if (err) 6688 goto fail; 6689 6690 /* 6691 * 2 items for inode and inode ref 6692 * 2 items for dir items 6693 * 1 item for parent inode 6694 * 1 item for orphan item deletion if O_TMPFILE 6695 */ 6696 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6697 if (IS_ERR(trans)) { 6698 err = PTR_ERR(trans); 6699 trans = NULL; 6700 goto fail; 6701 } 6702 6703 /* There are several dir indexes for this inode, clear the cache. */ 6704 BTRFS_I(inode)->dir_index = 0ULL; 6705 inc_nlink(inode); 6706 inode_inc_iversion(inode); 6707 inode_set_ctime_current(inode); 6708 ihold(inode); 6709 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6710 6711 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6712 &fname.disk_name, 1, index); 6713 6714 if (err) { 6715 drop_inode = 1; 6716 } else { 6717 struct dentry *parent = dentry->d_parent; 6718 6719 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6720 if (err) 6721 goto fail; 6722 if (inode->i_nlink == 1) { 6723 /* 6724 * If new hard link count is 1, it's a file created 6725 * with open(2) O_TMPFILE flag. 6726 */ 6727 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6728 if (err) 6729 goto fail; 6730 } 6731 d_instantiate(dentry, inode); 6732 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6733 } 6734 6735 fail: 6736 fscrypt_free_filename(&fname); 6737 if (trans) 6738 btrfs_end_transaction(trans); 6739 if (drop_inode) { 6740 inode_dec_link_count(inode); 6741 iput(inode); 6742 } 6743 btrfs_btree_balance_dirty(fs_info); 6744 return err; 6745 } 6746 6747 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6748 struct dentry *dentry, umode_t mode) 6749 { 6750 struct inode *inode; 6751 6752 inode = new_inode(dir->i_sb); 6753 if (!inode) 6754 return -ENOMEM; 6755 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6756 inode->i_op = &btrfs_dir_inode_operations; 6757 inode->i_fop = &btrfs_dir_file_operations; 6758 return btrfs_create_common(dir, dentry, inode); 6759 } 6760 6761 static noinline int uncompress_inline(struct btrfs_path *path, 6762 struct folio *folio, 6763 struct btrfs_file_extent_item *item) 6764 { 6765 int ret; 6766 struct extent_buffer *leaf = path->nodes[0]; 6767 char *tmp; 6768 size_t max_size; 6769 unsigned long inline_size; 6770 unsigned long ptr; 6771 int compress_type; 6772 6773 compress_type = btrfs_file_extent_compression(leaf, item); 6774 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6775 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6776 tmp = kmalloc(inline_size, GFP_NOFS); 6777 if (!tmp) 6778 return -ENOMEM; 6779 ptr = btrfs_file_extent_inline_start(item); 6780 6781 read_extent_buffer(leaf, tmp, ptr, inline_size); 6782 6783 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6784 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6785 max_size); 6786 6787 /* 6788 * decompression code contains a memset to fill in any space between the end 6789 * of the uncompressed data and the end of max_size in case the decompressed 6790 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6791 * the end of an inline extent and the beginning of the next block, so we 6792 * cover that region here. 6793 */ 6794 6795 if (max_size < PAGE_SIZE) 6796 folio_zero_range(folio, max_size, PAGE_SIZE - max_size); 6797 kfree(tmp); 6798 return ret; 6799 } 6800 6801 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6802 { 6803 struct btrfs_file_extent_item *fi; 6804 void *kaddr; 6805 size_t copy_size; 6806 6807 if (!folio || folio_test_uptodate(folio)) 6808 return 0; 6809 6810 ASSERT(folio_pos(folio) == 0); 6811 6812 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6813 struct btrfs_file_extent_item); 6814 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6815 return uncompress_inline(path, folio, fi); 6816 6817 copy_size = min_t(u64, PAGE_SIZE, 6818 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6819 kaddr = kmap_local_folio(folio, 0); 6820 read_extent_buffer(path->nodes[0], kaddr, 6821 btrfs_file_extent_inline_start(fi), copy_size); 6822 kunmap_local(kaddr); 6823 if (copy_size < PAGE_SIZE) 6824 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size); 6825 return 0; 6826 } 6827 6828 /* 6829 * Lookup the first extent overlapping a range in a file. 6830 * 6831 * @inode: file to search in 6832 * @page: page to read extent data into if the extent is inline 6833 * @start: file offset 6834 * @len: length of range starting at @start 6835 * 6836 * Return the first &struct extent_map which overlaps the given range, reading 6837 * it from the B-tree and caching it if necessary. Note that there may be more 6838 * extents which overlap the given range after the returned extent_map. 6839 * 6840 * If @page is not NULL and the extent is inline, this also reads the extent 6841 * data directly into the page and marks the extent up to date in the io_tree. 6842 * 6843 * Return: ERR_PTR on error, non-NULL extent_map on success. 6844 */ 6845 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6846 struct folio *folio, u64 start, u64 len) 6847 { 6848 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6849 int ret = 0; 6850 u64 extent_start = 0; 6851 u64 extent_end = 0; 6852 u64 objectid = btrfs_ino(inode); 6853 int extent_type = -1; 6854 struct btrfs_path *path = NULL; 6855 struct btrfs_root *root = inode->root; 6856 struct btrfs_file_extent_item *item; 6857 struct extent_buffer *leaf; 6858 struct btrfs_key found_key; 6859 struct extent_map *em = NULL; 6860 struct extent_map_tree *em_tree = &inode->extent_tree; 6861 6862 read_lock(&em_tree->lock); 6863 em = lookup_extent_mapping(em_tree, start, len); 6864 read_unlock(&em_tree->lock); 6865 6866 if (em) { 6867 if (em->start > start || em->start + em->len <= start) 6868 free_extent_map(em); 6869 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6870 free_extent_map(em); 6871 else 6872 goto out; 6873 } 6874 em = alloc_extent_map(); 6875 if (!em) { 6876 ret = -ENOMEM; 6877 goto out; 6878 } 6879 em->start = EXTENT_MAP_HOLE; 6880 em->disk_bytenr = EXTENT_MAP_HOLE; 6881 em->len = (u64)-1; 6882 6883 path = btrfs_alloc_path(); 6884 if (!path) { 6885 ret = -ENOMEM; 6886 goto out; 6887 } 6888 6889 /* Chances are we'll be called again, so go ahead and do readahead */ 6890 path->reada = READA_FORWARD; 6891 6892 /* 6893 * The same explanation in load_free_space_cache applies here as well, 6894 * we only read when we're loading the free space cache, and at that 6895 * point the commit_root has everything we need. 6896 */ 6897 if (btrfs_is_free_space_inode(inode)) { 6898 path->search_commit_root = 1; 6899 path->skip_locking = 1; 6900 } 6901 6902 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6903 if (ret < 0) { 6904 goto out; 6905 } else if (ret > 0) { 6906 if (path->slots[0] == 0) 6907 goto not_found; 6908 path->slots[0]--; 6909 ret = 0; 6910 } 6911 6912 leaf = path->nodes[0]; 6913 item = btrfs_item_ptr(leaf, path->slots[0], 6914 struct btrfs_file_extent_item); 6915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6916 if (found_key.objectid != objectid || 6917 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6918 /* 6919 * If we backup past the first extent we want to move forward 6920 * and see if there is an extent in front of us, otherwise we'll 6921 * say there is a hole for our whole search range which can 6922 * cause problems. 6923 */ 6924 extent_end = start; 6925 goto next; 6926 } 6927 6928 extent_type = btrfs_file_extent_type(leaf, item); 6929 extent_start = found_key.offset; 6930 extent_end = btrfs_file_extent_end(path); 6931 if (extent_type == BTRFS_FILE_EXTENT_REG || 6932 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6933 /* Only regular file could have regular/prealloc extent */ 6934 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6935 ret = -EUCLEAN; 6936 btrfs_crit(fs_info, 6937 "regular/prealloc extent found for non-regular inode %llu", 6938 btrfs_ino(inode)); 6939 goto out; 6940 } 6941 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6942 extent_start); 6943 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6944 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6945 path->slots[0], 6946 extent_start); 6947 } 6948 next: 6949 if (start >= extent_end) { 6950 path->slots[0]++; 6951 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6952 ret = btrfs_next_leaf(root, path); 6953 if (ret < 0) 6954 goto out; 6955 else if (ret > 0) 6956 goto not_found; 6957 6958 leaf = path->nodes[0]; 6959 } 6960 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6961 if (found_key.objectid != objectid || 6962 found_key.type != BTRFS_EXTENT_DATA_KEY) 6963 goto not_found; 6964 if (start + len <= found_key.offset) 6965 goto not_found; 6966 if (start > found_key.offset) 6967 goto next; 6968 6969 /* New extent overlaps with existing one */ 6970 em->start = start; 6971 em->len = found_key.offset - start; 6972 em->disk_bytenr = EXTENT_MAP_HOLE; 6973 goto insert; 6974 } 6975 6976 btrfs_extent_item_to_extent_map(inode, path, item, em); 6977 6978 if (extent_type == BTRFS_FILE_EXTENT_REG || 6979 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6980 goto insert; 6981 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6982 /* 6983 * Inline extent can only exist at file offset 0. This is 6984 * ensured by tree-checker and inline extent creation path. 6985 * Thus all members representing file offsets should be zero. 6986 */ 6987 ASSERT(extent_start == 0); 6988 ASSERT(em->start == 0); 6989 6990 /* 6991 * btrfs_extent_item_to_extent_map() should have properly 6992 * initialized em members already. 6993 * 6994 * Other members are not utilized for inline extents. 6995 */ 6996 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6997 ASSERT(em->len == fs_info->sectorsize); 6998 6999 ret = read_inline_extent(path, folio); 7000 if (ret < 0) 7001 goto out; 7002 goto insert; 7003 } 7004 not_found: 7005 em->start = start; 7006 em->len = len; 7007 em->disk_bytenr = EXTENT_MAP_HOLE; 7008 insert: 7009 ret = 0; 7010 btrfs_release_path(path); 7011 if (em->start > start || extent_map_end(em) <= start) { 7012 btrfs_err(fs_info, 7013 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7014 em->start, em->len, start, len); 7015 ret = -EIO; 7016 goto out; 7017 } 7018 7019 write_lock(&em_tree->lock); 7020 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7021 write_unlock(&em_tree->lock); 7022 out: 7023 btrfs_free_path(path); 7024 7025 trace_btrfs_get_extent(root, inode, em); 7026 7027 if (ret) { 7028 free_extent_map(em); 7029 return ERR_PTR(ret); 7030 } 7031 return em; 7032 } 7033 7034 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7035 { 7036 struct btrfs_block_group *block_group; 7037 bool readonly = false; 7038 7039 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7040 if (!block_group || block_group->ro) 7041 readonly = true; 7042 if (block_group) 7043 btrfs_put_block_group(block_group); 7044 return readonly; 7045 } 7046 7047 /* 7048 * Check if we can do nocow write into the range [@offset, @offset + @len) 7049 * 7050 * @offset: File offset 7051 * @len: The length to write, will be updated to the nocow writeable 7052 * range 7053 * @orig_start: (optional) Return the original file offset of the file extent 7054 * @orig_len: (optional) Return the original on-disk length of the file extent 7055 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7056 * 7057 * Return: 7058 * >0 and update @len if we can do nocow write 7059 * 0 if we can't do nocow write 7060 * <0 if error happened 7061 * 7062 * NOTE: This only checks the file extents, caller is responsible to wait for 7063 * any ordered extents. 7064 */ 7065 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7066 struct btrfs_file_extent *file_extent, 7067 bool nowait) 7068 { 7069 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7070 struct can_nocow_file_extent_args nocow_args = { 0 }; 7071 struct btrfs_path *path; 7072 int ret; 7073 struct extent_buffer *leaf; 7074 struct btrfs_root *root = BTRFS_I(inode)->root; 7075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7076 struct btrfs_file_extent_item *fi; 7077 struct btrfs_key key; 7078 int found_type; 7079 7080 path = btrfs_alloc_path(); 7081 if (!path) 7082 return -ENOMEM; 7083 path->nowait = nowait; 7084 7085 ret = btrfs_lookup_file_extent(NULL, root, path, 7086 btrfs_ino(BTRFS_I(inode)), offset, 0); 7087 if (ret < 0) 7088 goto out; 7089 7090 if (ret == 1) { 7091 if (path->slots[0] == 0) { 7092 /* can't find the item, must cow */ 7093 ret = 0; 7094 goto out; 7095 } 7096 path->slots[0]--; 7097 } 7098 ret = 0; 7099 leaf = path->nodes[0]; 7100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7101 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7102 key.type != BTRFS_EXTENT_DATA_KEY) { 7103 /* not our file or wrong item type, must cow */ 7104 goto out; 7105 } 7106 7107 if (key.offset > offset) { 7108 /* Wrong offset, must cow */ 7109 goto out; 7110 } 7111 7112 if (btrfs_file_extent_end(path) <= offset) 7113 goto out; 7114 7115 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7116 found_type = btrfs_file_extent_type(leaf, fi); 7117 7118 nocow_args.start = offset; 7119 nocow_args.end = offset + *len - 1; 7120 nocow_args.free_path = true; 7121 7122 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7123 /* can_nocow_file_extent() has freed the path. */ 7124 path = NULL; 7125 7126 if (ret != 1) { 7127 /* Treat errors as not being able to NOCOW. */ 7128 ret = 0; 7129 goto out; 7130 } 7131 7132 ret = 0; 7133 if (btrfs_extent_readonly(fs_info, 7134 nocow_args.file_extent.disk_bytenr + 7135 nocow_args.file_extent.offset)) 7136 goto out; 7137 7138 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7139 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7140 u64 range_end; 7141 7142 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7143 root->fs_info->sectorsize) - 1; 7144 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7145 if (ret) { 7146 ret = -EAGAIN; 7147 goto out; 7148 } 7149 } 7150 7151 if (file_extent) 7152 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7153 7154 *len = nocow_args.file_extent.num_bytes; 7155 ret = 1; 7156 out: 7157 btrfs_free_path(path); 7158 return ret; 7159 } 7160 7161 /* The callers of this must take lock_extent() */ 7162 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7163 const struct btrfs_file_extent *file_extent, 7164 int type) 7165 { 7166 struct extent_map *em; 7167 int ret; 7168 7169 /* 7170 * Note the missing NOCOW type. 7171 * 7172 * For pure NOCOW writes, we should not create an io extent map, but 7173 * just reusing the existing one. 7174 * Only PREALLOC writes (NOCOW write into preallocated range) can 7175 * create an io extent map. 7176 */ 7177 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7178 type == BTRFS_ORDERED_COMPRESSED || 7179 type == BTRFS_ORDERED_REGULAR); 7180 7181 switch (type) { 7182 case BTRFS_ORDERED_PREALLOC: 7183 /* We're only referring part of a larger preallocated extent. */ 7184 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7185 break; 7186 case BTRFS_ORDERED_REGULAR: 7187 /* COW results a new extent matching our file extent size. */ 7188 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7189 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7190 7191 /* Since it's a new extent, we should not have any offset. */ 7192 ASSERT(file_extent->offset == 0); 7193 break; 7194 case BTRFS_ORDERED_COMPRESSED: 7195 /* Must be compressed. */ 7196 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7197 7198 /* 7199 * Encoded write can make us to refer to part of the 7200 * uncompressed extent. 7201 */ 7202 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7203 break; 7204 } 7205 7206 em = alloc_extent_map(); 7207 if (!em) 7208 return ERR_PTR(-ENOMEM); 7209 7210 em->start = start; 7211 em->len = file_extent->num_bytes; 7212 em->disk_bytenr = file_extent->disk_bytenr; 7213 em->disk_num_bytes = file_extent->disk_num_bytes; 7214 em->ram_bytes = file_extent->ram_bytes; 7215 em->generation = -1; 7216 em->offset = file_extent->offset; 7217 em->flags |= EXTENT_FLAG_PINNED; 7218 if (type == BTRFS_ORDERED_COMPRESSED) 7219 extent_map_set_compression(em, file_extent->compression); 7220 7221 ret = btrfs_replace_extent_map_range(inode, em, true); 7222 if (ret) { 7223 free_extent_map(em); 7224 return ERR_PTR(ret); 7225 } 7226 7227 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7228 return em; 7229 } 7230 7231 /* 7232 * For release_folio() and invalidate_folio() we have a race window where 7233 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7234 * If we continue to release/invalidate the page, we could cause use-after-free 7235 * for subpage spinlock. So this function is to spin and wait for subpage 7236 * spinlock. 7237 */ 7238 static void wait_subpage_spinlock(struct folio *folio) 7239 { 7240 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7241 struct btrfs_subpage *subpage; 7242 7243 if (!btrfs_is_subpage(fs_info, folio->mapping)) 7244 return; 7245 7246 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7247 subpage = folio_get_private(folio); 7248 7249 /* 7250 * This may look insane as we just acquire the spinlock and release it, 7251 * without doing anything. But we just want to make sure no one is 7252 * still holding the subpage spinlock. 7253 * And since the page is not dirty nor writeback, and we have page 7254 * locked, the only possible way to hold a spinlock is from the endio 7255 * function to clear page writeback. 7256 * 7257 * Here we just acquire the spinlock so that all existing callers 7258 * should exit and we're safe to release/invalidate the page. 7259 */ 7260 spin_lock_irq(&subpage->lock); 7261 spin_unlock_irq(&subpage->lock); 7262 } 7263 7264 static int btrfs_launder_folio(struct folio *folio) 7265 { 7266 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7267 PAGE_SIZE, NULL); 7268 } 7269 7270 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7271 { 7272 if (try_release_extent_mapping(folio, gfp_flags)) { 7273 wait_subpage_spinlock(folio); 7274 clear_folio_extent_mapped(folio); 7275 return true; 7276 } 7277 return false; 7278 } 7279 7280 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7281 { 7282 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7283 return false; 7284 return __btrfs_release_folio(folio, gfp_flags); 7285 } 7286 7287 #ifdef CONFIG_MIGRATION 7288 static int btrfs_migrate_folio(struct address_space *mapping, 7289 struct folio *dst, struct folio *src, 7290 enum migrate_mode mode) 7291 { 7292 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7293 7294 if (ret != MIGRATEPAGE_SUCCESS) 7295 return ret; 7296 7297 if (folio_test_ordered(src)) { 7298 folio_clear_ordered(src); 7299 folio_set_ordered(dst); 7300 } 7301 7302 return MIGRATEPAGE_SUCCESS; 7303 } 7304 #else 7305 #define btrfs_migrate_folio NULL 7306 #endif 7307 7308 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7309 size_t length) 7310 { 7311 struct btrfs_inode *inode = folio_to_inode(folio); 7312 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7313 struct extent_io_tree *tree = &inode->io_tree; 7314 struct extent_state *cached_state = NULL; 7315 u64 page_start = folio_pos(folio); 7316 u64 page_end = page_start + folio_size(folio) - 1; 7317 u64 cur; 7318 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7319 7320 /* 7321 * We have folio locked so no new ordered extent can be created on this 7322 * page, nor bio can be submitted for this folio. 7323 * 7324 * But already submitted bio can still be finished on this folio. 7325 * Furthermore, endio function won't skip folio which has Ordered 7326 * already cleared, so it's possible for endio and 7327 * invalidate_folio to do the same ordered extent accounting twice 7328 * on one folio. 7329 * 7330 * So here we wait for any submitted bios to finish, so that we won't 7331 * do double ordered extent accounting on the same folio. 7332 */ 7333 folio_wait_writeback(folio); 7334 wait_subpage_spinlock(folio); 7335 7336 /* 7337 * For subpage case, we have call sites like 7338 * btrfs_punch_hole_lock_range() which passes range not aligned to 7339 * sectorsize. 7340 * If the range doesn't cover the full folio, we don't need to and 7341 * shouldn't clear page extent mapped, as folio->private can still 7342 * record subpage dirty bits for other part of the range. 7343 * 7344 * For cases that invalidate the full folio even the range doesn't 7345 * cover the full folio, like invalidating the last folio, we're 7346 * still safe to wait for ordered extent to finish. 7347 */ 7348 if (!(offset == 0 && length == folio_size(folio))) { 7349 btrfs_release_folio(folio, GFP_NOFS); 7350 return; 7351 } 7352 7353 if (!inode_evicting) 7354 lock_extent(tree, page_start, page_end, &cached_state); 7355 7356 cur = page_start; 7357 while (cur < page_end) { 7358 struct btrfs_ordered_extent *ordered; 7359 u64 range_end; 7360 u32 range_len; 7361 u32 extra_flags = 0; 7362 7363 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7364 page_end + 1 - cur); 7365 if (!ordered) { 7366 range_end = page_end; 7367 /* 7368 * No ordered extent covering this range, we are safe 7369 * to delete all extent states in the range. 7370 */ 7371 extra_flags = EXTENT_CLEAR_ALL_BITS; 7372 goto next; 7373 } 7374 if (ordered->file_offset > cur) { 7375 /* 7376 * There is a range between [cur, oe->file_offset) not 7377 * covered by any ordered extent. 7378 * We are safe to delete all extent states, and handle 7379 * the ordered extent in the next iteration. 7380 */ 7381 range_end = ordered->file_offset - 1; 7382 extra_flags = EXTENT_CLEAR_ALL_BITS; 7383 goto next; 7384 } 7385 7386 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7387 page_end); 7388 ASSERT(range_end + 1 - cur < U32_MAX); 7389 range_len = range_end + 1 - cur; 7390 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7391 /* 7392 * If Ordered is cleared, it means endio has 7393 * already been executed for the range. 7394 * We can't delete the extent states as 7395 * btrfs_finish_ordered_io() may still use some of them. 7396 */ 7397 goto next; 7398 } 7399 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7400 7401 /* 7402 * IO on this page will never be started, so we need to account 7403 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7404 * here, must leave that up for the ordered extent completion. 7405 * 7406 * This will also unlock the range for incoming 7407 * btrfs_finish_ordered_io(). 7408 */ 7409 if (!inode_evicting) 7410 clear_extent_bit(tree, cur, range_end, 7411 EXTENT_DELALLOC | 7412 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7413 EXTENT_DEFRAG, &cached_state); 7414 7415 spin_lock_irq(&inode->ordered_tree_lock); 7416 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7417 ordered->truncated_len = min(ordered->truncated_len, 7418 cur - ordered->file_offset); 7419 spin_unlock_irq(&inode->ordered_tree_lock); 7420 7421 /* 7422 * If the ordered extent has finished, we're safe to delete all 7423 * the extent states of the range, otherwise 7424 * btrfs_finish_ordered_io() will get executed by endio for 7425 * other pages, so we can't delete extent states. 7426 */ 7427 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7428 cur, range_end + 1 - cur)) { 7429 btrfs_finish_ordered_io(ordered); 7430 /* 7431 * The ordered extent has finished, now we're again 7432 * safe to delete all extent states of the range. 7433 */ 7434 extra_flags = EXTENT_CLEAR_ALL_BITS; 7435 } 7436 next: 7437 if (ordered) 7438 btrfs_put_ordered_extent(ordered); 7439 /* 7440 * Qgroup reserved space handler 7441 * Sector(s) here will be either: 7442 * 7443 * 1) Already written to disk or bio already finished 7444 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7445 * Qgroup will be handled by its qgroup_record then. 7446 * btrfs_qgroup_free_data() call will do nothing here. 7447 * 7448 * 2) Not written to disk yet 7449 * Then btrfs_qgroup_free_data() call will clear the 7450 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7451 * reserved data space. 7452 * Since the IO will never happen for this page. 7453 */ 7454 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7455 if (!inode_evicting) { 7456 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7457 EXTENT_DELALLOC | EXTENT_UPTODATE | 7458 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7459 extra_flags, &cached_state); 7460 } 7461 cur = range_end + 1; 7462 } 7463 /* 7464 * We have iterated through all ordered extents of the page, the page 7465 * should not have Ordered anymore, or the above iteration 7466 * did something wrong. 7467 */ 7468 ASSERT(!folio_test_ordered(folio)); 7469 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7470 if (!inode_evicting) 7471 __btrfs_release_folio(folio, GFP_NOFS); 7472 clear_folio_extent_mapped(folio); 7473 } 7474 7475 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7476 { 7477 struct btrfs_truncate_control control = { 7478 .inode = inode, 7479 .ino = btrfs_ino(inode), 7480 .min_type = BTRFS_EXTENT_DATA_KEY, 7481 .clear_extent_range = true, 7482 }; 7483 struct btrfs_root *root = inode->root; 7484 struct btrfs_fs_info *fs_info = root->fs_info; 7485 struct btrfs_block_rsv *rsv; 7486 int ret; 7487 struct btrfs_trans_handle *trans; 7488 u64 mask = fs_info->sectorsize - 1; 7489 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7490 7491 if (!skip_writeback) { 7492 ret = btrfs_wait_ordered_range(inode, 7493 inode->vfs_inode.i_size & (~mask), 7494 (u64)-1); 7495 if (ret) 7496 return ret; 7497 } 7498 7499 /* 7500 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7501 * things going on here: 7502 * 7503 * 1) We need to reserve space to update our inode. 7504 * 7505 * 2) We need to have something to cache all the space that is going to 7506 * be free'd up by the truncate operation, but also have some slack 7507 * space reserved in case it uses space during the truncate (thank you 7508 * very much snapshotting). 7509 * 7510 * And we need these to be separate. The fact is we can use a lot of 7511 * space doing the truncate, and we have no earthly idea how much space 7512 * we will use, so we need the truncate reservation to be separate so it 7513 * doesn't end up using space reserved for updating the inode. We also 7514 * need to be able to stop the transaction and start a new one, which 7515 * means we need to be able to update the inode several times, and we 7516 * have no idea of knowing how many times that will be, so we can't just 7517 * reserve 1 item for the entirety of the operation, so that has to be 7518 * done separately as well. 7519 * 7520 * So that leaves us with 7521 * 7522 * 1) rsv - for the truncate reservation, which we will steal from the 7523 * transaction reservation. 7524 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7525 * updating the inode. 7526 */ 7527 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7528 if (!rsv) 7529 return -ENOMEM; 7530 rsv->size = min_size; 7531 rsv->failfast = true; 7532 7533 /* 7534 * 1 for the truncate slack space 7535 * 1 for updating the inode. 7536 */ 7537 trans = btrfs_start_transaction(root, 2); 7538 if (IS_ERR(trans)) { 7539 ret = PTR_ERR(trans); 7540 goto out; 7541 } 7542 7543 /* Migrate the slack space for the truncate to our reserve */ 7544 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7545 min_size, false); 7546 /* 7547 * We have reserved 2 metadata units when we started the transaction and 7548 * min_size matches 1 unit, so this should never fail, but if it does, 7549 * it's not critical we just fail truncation. 7550 */ 7551 if (WARN_ON(ret)) { 7552 btrfs_end_transaction(trans); 7553 goto out; 7554 } 7555 7556 trans->block_rsv = rsv; 7557 7558 while (1) { 7559 struct extent_state *cached_state = NULL; 7560 const u64 new_size = inode->vfs_inode.i_size; 7561 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7562 7563 control.new_size = new_size; 7564 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7565 /* 7566 * We want to drop from the next block forward in case this new 7567 * size is not block aligned since we will be keeping the last 7568 * block of the extent just the way it is. 7569 */ 7570 btrfs_drop_extent_map_range(inode, 7571 ALIGN(new_size, fs_info->sectorsize), 7572 (u64)-1, false); 7573 7574 ret = btrfs_truncate_inode_items(trans, root, &control); 7575 7576 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7577 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7578 7579 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7580 7581 trans->block_rsv = &fs_info->trans_block_rsv; 7582 if (ret != -ENOSPC && ret != -EAGAIN) 7583 break; 7584 7585 ret = btrfs_update_inode(trans, inode); 7586 if (ret) 7587 break; 7588 7589 btrfs_end_transaction(trans); 7590 btrfs_btree_balance_dirty(fs_info); 7591 7592 trans = btrfs_start_transaction(root, 2); 7593 if (IS_ERR(trans)) { 7594 ret = PTR_ERR(trans); 7595 trans = NULL; 7596 break; 7597 } 7598 7599 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7600 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7601 rsv, min_size, false); 7602 /* 7603 * We have reserved 2 metadata units when we started the 7604 * transaction and min_size matches 1 unit, so this should never 7605 * fail, but if it does, it's not critical we just fail truncation. 7606 */ 7607 if (WARN_ON(ret)) 7608 break; 7609 7610 trans->block_rsv = rsv; 7611 } 7612 7613 /* 7614 * We can't call btrfs_truncate_block inside a trans handle as we could 7615 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7616 * know we've truncated everything except the last little bit, and can 7617 * do btrfs_truncate_block and then update the disk_i_size. 7618 */ 7619 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7620 btrfs_end_transaction(trans); 7621 btrfs_btree_balance_dirty(fs_info); 7622 7623 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7624 if (ret) 7625 goto out; 7626 trans = btrfs_start_transaction(root, 1); 7627 if (IS_ERR(trans)) { 7628 ret = PTR_ERR(trans); 7629 goto out; 7630 } 7631 btrfs_inode_safe_disk_i_size_write(inode, 0); 7632 } 7633 7634 if (trans) { 7635 int ret2; 7636 7637 trans->block_rsv = &fs_info->trans_block_rsv; 7638 ret2 = btrfs_update_inode(trans, inode); 7639 if (ret2 && !ret) 7640 ret = ret2; 7641 7642 ret2 = btrfs_end_transaction(trans); 7643 if (ret2 && !ret) 7644 ret = ret2; 7645 btrfs_btree_balance_dirty(fs_info); 7646 } 7647 out: 7648 btrfs_free_block_rsv(fs_info, rsv); 7649 /* 7650 * So if we truncate and then write and fsync we normally would just 7651 * write the extents that changed, which is a problem if we need to 7652 * first truncate that entire inode. So set this flag so we write out 7653 * all of the extents in the inode to the sync log so we're completely 7654 * safe. 7655 * 7656 * If no extents were dropped or trimmed we don't need to force the next 7657 * fsync to truncate all the inode's items from the log and re-log them 7658 * all. This means the truncate operation did not change the file size, 7659 * or changed it to a smaller size but there was only an implicit hole 7660 * between the old i_size and the new i_size, and there were no prealloc 7661 * extents beyond i_size to drop. 7662 */ 7663 if (control.extents_found > 0) 7664 btrfs_set_inode_full_sync(inode); 7665 7666 return ret; 7667 } 7668 7669 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7670 struct inode *dir) 7671 { 7672 struct inode *inode; 7673 7674 inode = new_inode(dir->i_sb); 7675 if (inode) { 7676 /* 7677 * Subvolumes don't inherit the sgid bit or the parent's gid if 7678 * the parent's sgid bit is set. This is probably a bug. 7679 */ 7680 inode_init_owner(idmap, inode, NULL, 7681 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7682 inode->i_op = &btrfs_dir_inode_operations; 7683 inode->i_fop = &btrfs_dir_file_operations; 7684 } 7685 return inode; 7686 } 7687 7688 struct inode *btrfs_alloc_inode(struct super_block *sb) 7689 { 7690 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7691 struct btrfs_inode *ei; 7692 struct inode *inode; 7693 7694 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7695 if (!ei) 7696 return NULL; 7697 7698 ei->root = NULL; 7699 ei->generation = 0; 7700 ei->last_trans = 0; 7701 ei->last_sub_trans = 0; 7702 ei->logged_trans = 0; 7703 ei->delalloc_bytes = 0; 7704 ei->new_delalloc_bytes = 0; 7705 ei->defrag_bytes = 0; 7706 ei->disk_i_size = 0; 7707 ei->flags = 0; 7708 ei->ro_flags = 0; 7709 /* 7710 * ->index_cnt will be properly initialized later when creating a new 7711 * inode (btrfs_create_new_inode()) or when reading an existing inode 7712 * from disk (btrfs_read_locked_inode()). 7713 */ 7714 ei->csum_bytes = 0; 7715 ei->dir_index = 0; 7716 ei->last_unlink_trans = 0; 7717 ei->last_reflink_trans = 0; 7718 ei->last_log_commit = 0; 7719 7720 spin_lock_init(&ei->lock); 7721 ei->outstanding_extents = 0; 7722 if (sb->s_magic != BTRFS_TEST_MAGIC) 7723 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7724 BTRFS_BLOCK_RSV_DELALLOC); 7725 ei->runtime_flags = 0; 7726 ei->prop_compress = BTRFS_COMPRESS_NONE; 7727 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7728 7729 ei->delayed_node = NULL; 7730 7731 ei->i_otime_sec = 0; 7732 ei->i_otime_nsec = 0; 7733 7734 inode = &ei->vfs_inode; 7735 extent_map_tree_init(&ei->extent_tree); 7736 7737 /* This io tree sets the valid inode. */ 7738 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7739 ei->io_tree.inode = ei; 7740 7741 ei->file_extent_tree = NULL; 7742 7743 mutex_init(&ei->log_mutex); 7744 spin_lock_init(&ei->ordered_tree_lock); 7745 ei->ordered_tree = RB_ROOT; 7746 ei->ordered_tree_last = NULL; 7747 INIT_LIST_HEAD(&ei->delalloc_inodes); 7748 INIT_LIST_HEAD(&ei->delayed_iput); 7749 init_rwsem(&ei->i_mmap_lock); 7750 7751 return inode; 7752 } 7753 7754 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7755 void btrfs_test_destroy_inode(struct inode *inode) 7756 { 7757 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7758 kfree(BTRFS_I(inode)->file_extent_tree); 7759 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7760 } 7761 #endif 7762 7763 void btrfs_free_inode(struct inode *inode) 7764 { 7765 kfree(BTRFS_I(inode)->file_extent_tree); 7766 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7767 } 7768 7769 void btrfs_destroy_inode(struct inode *vfs_inode) 7770 { 7771 struct btrfs_ordered_extent *ordered; 7772 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7773 struct btrfs_root *root = inode->root; 7774 bool freespace_inode; 7775 7776 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7777 WARN_ON(vfs_inode->i_data.nrpages); 7778 WARN_ON(inode->block_rsv.reserved); 7779 WARN_ON(inode->block_rsv.size); 7780 WARN_ON(inode->outstanding_extents); 7781 if (!S_ISDIR(vfs_inode->i_mode)) { 7782 WARN_ON(inode->delalloc_bytes); 7783 WARN_ON(inode->new_delalloc_bytes); 7784 WARN_ON(inode->csum_bytes); 7785 } 7786 if (!root || !btrfs_is_data_reloc_root(root)) 7787 WARN_ON(inode->defrag_bytes); 7788 7789 /* 7790 * This can happen where we create an inode, but somebody else also 7791 * created the same inode and we need to destroy the one we already 7792 * created. 7793 */ 7794 if (!root) 7795 return; 7796 7797 /* 7798 * If this is a free space inode do not take the ordered extents lockdep 7799 * map. 7800 */ 7801 freespace_inode = btrfs_is_free_space_inode(inode); 7802 7803 while (1) { 7804 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7805 if (!ordered) 7806 break; 7807 else { 7808 btrfs_err(root->fs_info, 7809 "found ordered extent %llu %llu on inode cleanup", 7810 ordered->file_offset, ordered->num_bytes); 7811 7812 if (!freespace_inode) 7813 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7814 7815 btrfs_remove_ordered_extent(inode, ordered); 7816 btrfs_put_ordered_extent(ordered); 7817 btrfs_put_ordered_extent(ordered); 7818 } 7819 } 7820 btrfs_qgroup_check_reserved_leak(inode); 7821 btrfs_del_inode_from_root(inode); 7822 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7823 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7824 btrfs_put_root(inode->root); 7825 } 7826 7827 int btrfs_drop_inode(struct inode *inode) 7828 { 7829 struct btrfs_root *root = BTRFS_I(inode)->root; 7830 7831 if (root == NULL) 7832 return 1; 7833 7834 /* the snap/subvol tree is on deleting */ 7835 if (btrfs_root_refs(&root->root_item) == 0) 7836 return 1; 7837 else 7838 return generic_drop_inode(inode); 7839 } 7840 7841 static void init_once(void *foo) 7842 { 7843 struct btrfs_inode *ei = foo; 7844 7845 inode_init_once(&ei->vfs_inode); 7846 } 7847 7848 void __cold btrfs_destroy_cachep(void) 7849 { 7850 /* 7851 * Make sure all delayed rcu free inodes are flushed before we 7852 * destroy cache. 7853 */ 7854 rcu_barrier(); 7855 kmem_cache_destroy(btrfs_inode_cachep); 7856 } 7857 7858 int __init btrfs_init_cachep(void) 7859 { 7860 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7861 sizeof(struct btrfs_inode), 0, 7862 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7863 init_once); 7864 if (!btrfs_inode_cachep) 7865 return -ENOMEM; 7866 7867 return 0; 7868 } 7869 7870 static int btrfs_getattr(struct mnt_idmap *idmap, 7871 const struct path *path, struct kstat *stat, 7872 u32 request_mask, unsigned int flags) 7873 { 7874 u64 delalloc_bytes; 7875 u64 inode_bytes; 7876 struct inode *inode = d_inode(path->dentry); 7877 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7878 u32 bi_flags = BTRFS_I(inode)->flags; 7879 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7880 7881 stat->result_mask |= STATX_BTIME; 7882 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7883 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7884 if (bi_flags & BTRFS_INODE_APPEND) 7885 stat->attributes |= STATX_ATTR_APPEND; 7886 if (bi_flags & BTRFS_INODE_COMPRESS) 7887 stat->attributes |= STATX_ATTR_COMPRESSED; 7888 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7889 stat->attributes |= STATX_ATTR_IMMUTABLE; 7890 if (bi_flags & BTRFS_INODE_NODUMP) 7891 stat->attributes |= STATX_ATTR_NODUMP; 7892 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7893 stat->attributes |= STATX_ATTR_VERITY; 7894 7895 stat->attributes_mask |= (STATX_ATTR_APPEND | 7896 STATX_ATTR_COMPRESSED | 7897 STATX_ATTR_IMMUTABLE | 7898 STATX_ATTR_NODUMP); 7899 7900 generic_fillattr(idmap, request_mask, inode, stat); 7901 stat->dev = BTRFS_I(inode)->root->anon_dev; 7902 7903 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7904 stat->result_mask |= STATX_SUBVOL; 7905 7906 spin_lock(&BTRFS_I(inode)->lock); 7907 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7908 inode_bytes = inode_get_bytes(inode); 7909 spin_unlock(&BTRFS_I(inode)->lock); 7910 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7911 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7912 return 0; 7913 } 7914 7915 static int btrfs_rename_exchange(struct inode *old_dir, 7916 struct dentry *old_dentry, 7917 struct inode *new_dir, 7918 struct dentry *new_dentry) 7919 { 7920 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7921 struct btrfs_trans_handle *trans; 7922 unsigned int trans_num_items; 7923 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7924 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7925 struct inode *new_inode = new_dentry->d_inode; 7926 struct inode *old_inode = old_dentry->d_inode; 7927 struct btrfs_rename_ctx old_rename_ctx; 7928 struct btrfs_rename_ctx new_rename_ctx; 7929 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7930 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7931 u64 old_idx = 0; 7932 u64 new_idx = 0; 7933 int ret; 7934 int ret2; 7935 bool need_abort = false; 7936 struct fscrypt_name old_fname, new_fname; 7937 struct fscrypt_str *old_name, *new_name; 7938 7939 /* 7940 * For non-subvolumes allow exchange only within one subvolume, in the 7941 * same inode namespace. Two subvolumes (represented as directory) can 7942 * be exchanged as they're a logical link and have a fixed inode number. 7943 */ 7944 if (root != dest && 7945 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7946 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7947 return -EXDEV; 7948 7949 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7950 if (ret) 7951 return ret; 7952 7953 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7954 if (ret) { 7955 fscrypt_free_filename(&old_fname); 7956 return ret; 7957 } 7958 7959 old_name = &old_fname.disk_name; 7960 new_name = &new_fname.disk_name; 7961 7962 /* close the race window with snapshot create/destroy ioctl */ 7963 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7964 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7965 down_read(&fs_info->subvol_sem); 7966 7967 /* 7968 * For each inode: 7969 * 1 to remove old dir item 7970 * 1 to remove old dir index 7971 * 1 to add new dir item 7972 * 1 to add new dir index 7973 * 1 to update parent inode 7974 * 7975 * If the parents are the same, we only need to account for one 7976 */ 7977 trans_num_items = (old_dir == new_dir ? 9 : 10); 7978 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7979 /* 7980 * 1 to remove old root ref 7981 * 1 to remove old root backref 7982 * 1 to add new root ref 7983 * 1 to add new root backref 7984 */ 7985 trans_num_items += 4; 7986 } else { 7987 /* 7988 * 1 to update inode item 7989 * 1 to remove old inode ref 7990 * 1 to add new inode ref 7991 */ 7992 trans_num_items += 3; 7993 } 7994 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7995 trans_num_items += 4; 7996 else 7997 trans_num_items += 3; 7998 trans = btrfs_start_transaction(root, trans_num_items); 7999 if (IS_ERR(trans)) { 8000 ret = PTR_ERR(trans); 8001 goto out_notrans; 8002 } 8003 8004 if (dest != root) { 8005 ret = btrfs_record_root_in_trans(trans, dest); 8006 if (ret) 8007 goto out_fail; 8008 } 8009 8010 /* 8011 * We need to find a free sequence number both in the source and 8012 * in the destination directory for the exchange. 8013 */ 8014 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8015 if (ret) 8016 goto out_fail; 8017 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8018 if (ret) 8019 goto out_fail; 8020 8021 BTRFS_I(old_inode)->dir_index = 0ULL; 8022 BTRFS_I(new_inode)->dir_index = 0ULL; 8023 8024 /* Reference for the source. */ 8025 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8026 /* force full log commit if subvolume involved. */ 8027 btrfs_set_log_full_commit(trans); 8028 } else { 8029 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8030 btrfs_ino(BTRFS_I(new_dir)), 8031 old_idx); 8032 if (ret) 8033 goto out_fail; 8034 need_abort = true; 8035 } 8036 8037 /* And now for the dest. */ 8038 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8039 /* force full log commit if subvolume involved. */ 8040 btrfs_set_log_full_commit(trans); 8041 } else { 8042 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8043 btrfs_ino(BTRFS_I(old_dir)), 8044 new_idx); 8045 if (ret) { 8046 if (need_abort) 8047 btrfs_abort_transaction(trans, ret); 8048 goto out_fail; 8049 } 8050 } 8051 8052 /* Update inode version and ctime/mtime. */ 8053 inode_inc_iversion(old_dir); 8054 inode_inc_iversion(new_dir); 8055 inode_inc_iversion(old_inode); 8056 inode_inc_iversion(new_inode); 8057 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8058 8059 if (old_dentry->d_parent != new_dentry->d_parent) { 8060 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8061 BTRFS_I(old_inode), true); 8062 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8063 BTRFS_I(new_inode), true); 8064 } 8065 8066 /* src is a subvolume */ 8067 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8068 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8069 if (ret) { 8070 btrfs_abort_transaction(trans, ret); 8071 goto out_fail; 8072 } 8073 } else { /* src is an inode */ 8074 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8075 BTRFS_I(old_dentry->d_inode), 8076 old_name, &old_rename_ctx); 8077 if (ret) { 8078 btrfs_abort_transaction(trans, ret); 8079 goto out_fail; 8080 } 8081 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8082 if (ret) { 8083 btrfs_abort_transaction(trans, ret); 8084 goto out_fail; 8085 } 8086 } 8087 8088 /* dest is a subvolume */ 8089 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8090 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8091 if (ret) { 8092 btrfs_abort_transaction(trans, ret); 8093 goto out_fail; 8094 } 8095 } else { /* dest is an inode */ 8096 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8097 BTRFS_I(new_dentry->d_inode), 8098 new_name, &new_rename_ctx); 8099 if (ret) { 8100 btrfs_abort_transaction(trans, ret); 8101 goto out_fail; 8102 } 8103 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8104 if (ret) { 8105 btrfs_abort_transaction(trans, ret); 8106 goto out_fail; 8107 } 8108 } 8109 8110 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8111 new_name, 0, old_idx); 8112 if (ret) { 8113 btrfs_abort_transaction(trans, ret); 8114 goto out_fail; 8115 } 8116 8117 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8118 old_name, 0, new_idx); 8119 if (ret) { 8120 btrfs_abort_transaction(trans, ret); 8121 goto out_fail; 8122 } 8123 8124 if (old_inode->i_nlink == 1) 8125 BTRFS_I(old_inode)->dir_index = old_idx; 8126 if (new_inode->i_nlink == 1) 8127 BTRFS_I(new_inode)->dir_index = new_idx; 8128 8129 /* 8130 * Now pin the logs of the roots. We do it to ensure that no other task 8131 * can sync the logs while we are in progress with the rename, because 8132 * that could result in an inconsistency in case any of the inodes that 8133 * are part of this rename operation were logged before. 8134 */ 8135 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8136 btrfs_pin_log_trans(root); 8137 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8138 btrfs_pin_log_trans(dest); 8139 8140 /* Do the log updates for all inodes. */ 8141 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8142 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8143 old_rename_ctx.index, new_dentry->d_parent); 8144 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8145 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8146 new_rename_ctx.index, old_dentry->d_parent); 8147 8148 /* Now unpin the logs. */ 8149 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8150 btrfs_end_log_trans(root); 8151 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8152 btrfs_end_log_trans(dest); 8153 out_fail: 8154 ret2 = btrfs_end_transaction(trans); 8155 ret = ret ? ret : ret2; 8156 out_notrans: 8157 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8158 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8159 up_read(&fs_info->subvol_sem); 8160 8161 fscrypt_free_filename(&new_fname); 8162 fscrypt_free_filename(&old_fname); 8163 return ret; 8164 } 8165 8166 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8167 struct inode *dir) 8168 { 8169 struct inode *inode; 8170 8171 inode = new_inode(dir->i_sb); 8172 if (inode) { 8173 inode_init_owner(idmap, inode, dir, 8174 S_IFCHR | WHITEOUT_MODE); 8175 inode->i_op = &btrfs_special_inode_operations; 8176 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8177 } 8178 return inode; 8179 } 8180 8181 static int btrfs_rename(struct mnt_idmap *idmap, 8182 struct inode *old_dir, struct dentry *old_dentry, 8183 struct inode *new_dir, struct dentry *new_dentry, 8184 unsigned int flags) 8185 { 8186 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8187 struct btrfs_new_inode_args whiteout_args = { 8188 .dir = old_dir, 8189 .dentry = old_dentry, 8190 }; 8191 struct btrfs_trans_handle *trans; 8192 unsigned int trans_num_items; 8193 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8194 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8195 struct inode *new_inode = d_inode(new_dentry); 8196 struct inode *old_inode = d_inode(old_dentry); 8197 struct btrfs_rename_ctx rename_ctx; 8198 u64 index = 0; 8199 int ret; 8200 int ret2; 8201 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8202 struct fscrypt_name old_fname, new_fname; 8203 8204 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8205 return -EPERM; 8206 8207 /* we only allow rename subvolume link between subvolumes */ 8208 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8209 return -EXDEV; 8210 8211 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8212 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8213 return -ENOTEMPTY; 8214 8215 if (S_ISDIR(old_inode->i_mode) && new_inode && 8216 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8217 return -ENOTEMPTY; 8218 8219 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8220 if (ret) 8221 return ret; 8222 8223 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8224 if (ret) { 8225 fscrypt_free_filename(&old_fname); 8226 return ret; 8227 } 8228 8229 /* check for collisions, even if the name isn't there */ 8230 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8231 if (ret) { 8232 if (ret == -EEXIST) { 8233 /* we shouldn't get 8234 * eexist without a new_inode */ 8235 if (WARN_ON(!new_inode)) { 8236 goto out_fscrypt_names; 8237 } 8238 } else { 8239 /* maybe -EOVERFLOW */ 8240 goto out_fscrypt_names; 8241 } 8242 } 8243 ret = 0; 8244 8245 /* 8246 * we're using rename to replace one file with another. Start IO on it 8247 * now so we don't add too much work to the end of the transaction 8248 */ 8249 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8250 filemap_flush(old_inode->i_mapping); 8251 8252 if (flags & RENAME_WHITEOUT) { 8253 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8254 if (!whiteout_args.inode) { 8255 ret = -ENOMEM; 8256 goto out_fscrypt_names; 8257 } 8258 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8259 if (ret) 8260 goto out_whiteout_inode; 8261 } else { 8262 /* 1 to update the old parent inode. */ 8263 trans_num_items = 1; 8264 } 8265 8266 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8267 /* Close the race window with snapshot create/destroy ioctl */ 8268 down_read(&fs_info->subvol_sem); 8269 /* 8270 * 1 to remove old root ref 8271 * 1 to remove old root backref 8272 * 1 to add new root ref 8273 * 1 to add new root backref 8274 */ 8275 trans_num_items += 4; 8276 } else { 8277 /* 8278 * 1 to update inode 8279 * 1 to remove old inode ref 8280 * 1 to add new inode ref 8281 */ 8282 trans_num_items += 3; 8283 } 8284 /* 8285 * 1 to remove old dir item 8286 * 1 to remove old dir index 8287 * 1 to add new dir item 8288 * 1 to add new dir index 8289 */ 8290 trans_num_items += 4; 8291 /* 1 to update new parent inode if it's not the same as the old parent */ 8292 if (new_dir != old_dir) 8293 trans_num_items++; 8294 if (new_inode) { 8295 /* 8296 * 1 to update inode 8297 * 1 to remove inode ref 8298 * 1 to remove dir item 8299 * 1 to remove dir index 8300 * 1 to possibly add orphan item 8301 */ 8302 trans_num_items += 5; 8303 } 8304 trans = btrfs_start_transaction(root, trans_num_items); 8305 if (IS_ERR(trans)) { 8306 ret = PTR_ERR(trans); 8307 goto out_notrans; 8308 } 8309 8310 if (dest != root) { 8311 ret = btrfs_record_root_in_trans(trans, dest); 8312 if (ret) 8313 goto out_fail; 8314 } 8315 8316 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8317 if (ret) 8318 goto out_fail; 8319 8320 BTRFS_I(old_inode)->dir_index = 0ULL; 8321 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8322 /* force full log commit if subvolume involved. */ 8323 btrfs_set_log_full_commit(trans); 8324 } else { 8325 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8326 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8327 index); 8328 if (ret) 8329 goto out_fail; 8330 } 8331 8332 inode_inc_iversion(old_dir); 8333 inode_inc_iversion(new_dir); 8334 inode_inc_iversion(old_inode); 8335 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8336 8337 if (old_dentry->d_parent != new_dentry->d_parent) 8338 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8339 BTRFS_I(old_inode), true); 8340 8341 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8342 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8343 if (ret) { 8344 btrfs_abort_transaction(trans, ret); 8345 goto out_fail; 8346 } 8347 } else { 8348 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8349 BTRFS_I(d_inode(old_dentry)), 8350 &old_fname.disk_name, &rename_ctx); 8351 if (ret) { 8352 btrfs_abort_transaction(trans, ret); 8353 goto out_fail; 8354 } 8355 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8356 if (ret) { 8357 btrfs_abort_transaction(trans, ret); 8358 goto out_fail; 8359 } 8360 } 8361 8362 if (new_inode) { 8363 inode_inc_iversion(new_inode); 8364 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8365 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8366 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8367 if (ret) { 8368 btrfs_abort_transaction(trans, ret); 8369 goto out_fail; 8370 } 8371 BUG_ON(new_inode->i_nlink == 0); 8372 } else { 8373 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8374 BTRFS_I(d_inode(new_dentry)), 8375 &new_fname.disk_name); 8376 if (ret) { 8377 btrfs_abort_transaction(trans, ret); 8378 goto out_fail; 8379 } 8380 } 8381 if (new_inode->i_nlink == 0) { 8382 ret = btrfs_orphan_add(trans, 8383 BTRFS_I(d_inode(new_dentry))); 8384 if (ret) { 8385 btrfs_abort_transaction(trans, ret); 8386 goto out_fail; 8387 } 8388 } 8389 } 8390 8391 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8392 &new_fname.disk_name, 0, index); 8393 if (ret) { 8394 btrfs_abort_transaction(trans, ret); 8395 goto out_fail; 8396 } 8397 8398 if (old_inode->i_nlink == 1) 8399 BTRFS_I(old_inode)->dir_index = index; 8400 8401 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8402 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8403 rename_ctx.index, new_dentry->d_parent); 8404 8405 if (flags & RENAME_WHITEOUT) { 8406 ret = btrfs_create_new_inode(trans, &whiteout_args); 8407 if (ret) { 8408 btrfs_abort_transaction(trans, ret); 8409 goto out_fail; 8410 } else { 8411 unlock_new_inode(whiteout_args.inode); 8412 iput(whiteout_args.inode); 8413 whiteout_args.inode = NULL; 8414 } 8415 } 8416 out_fail: 8417 ret2 = btrfs_end_transaction(trans); 8418 ret = ret ? ret : ret2; 8419 out_notrans: 8420 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8421 up_read(&fs_info->subvol_sem); 8422 if (flags & RENAME_WHITEOUT) 8423 btrfs_new_inode_args_destroy(&whiteout_args); 8424 out_whiteout_inode: 8425 if (flags & RENAME_WHITEOUT) 8426 iput(whiteout_args.inode); 8427 out_fscrypt_names: 8428 fscrypt_free_filename(&old_fname); 8429 fscrypt_free_filename(&new_fname); 8430 return ret; 8431 } 8432 8433 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8434 struct dentry *old_dentry, struct inode *new_dir, 8435 struct dentry *new_dentry, unsigned int flags) 8436 { 8437 int ret; 8438 8439 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8440 return -EINVAL; 8441 8442 if (flags & RENAME_EXCHANGE) 8443 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8444 new_dentry); 8445 else 8446 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8447 new_dentry, flags); 8448 8449 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8450 8451 return ret; 8452 } 8453 8454 struct btrfs_delalloc_work { 8455 struct inode *inode; 8456 struct completion completion; 8457 struct list_head list; 8458 struct btrfs_work work; 8459 }; 8460 8461 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8462 { 8463 struct btrfs_delalloc_work *delalloc_work; 8464 struct inode *inode; 8465 8466 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8467 work); 8468 inode = delalloc_work->inode; 8469 filemap_flush(inode->i_mapping); 8470 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8471 &BTRFS_I(inode)->runtime_flags)) 8472 filemap_flush(inode->i_mapping); 8473 8474 iput(inode); 8475 complete(&delalloc_work->completion); 8476 } 8477 8478 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8479 { 8480 struct btrfs_delalloc_work *work; 8481 8482 work = kmalloc(sizeof(*work), GFP_NOFS); 8483 if (!work) 8484 return NULL; 8485 8486 init_completion(&work->completion); 8487 INIT_LIST_HEAD(&work->list); 8488 work->inode = inode; 8489 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8490 8491 return work; 8492 } 8493 8494 /* 8495 * some fairly slow code that needs optimization. This walks the list 8496 * of all the inodes with pending delalloc and forces them to disk. 8497 */ 8498 static int start_delalloc_inodes(struct btrfs_root *root, 8499 struct writeback_control *wbc, bool snapshot, 8500 bool in_reclaim_context) 8501 { 8502 struct btrfs_inode *binode; 8503 struct inode *inode; 8504 struct btrfs_delalloc_work *work, *next; 8505 LIST_HEAD(works); 8506 LIST_HEAD(splice); 8507 int ret = 0; 8508 bool full_flush = wbc->nr_to_write == LONG_MAX; 8509 8510 mutex_lock(&root->delalloc_mutex); 8511 spin_lock(&root->delalloc_lock); 8512 list_splice_init(&root->delalloc_inodes, &splice); 8513 while (!list_empty(&splice)) { 8514 binode = list_entry(splice.next, struct btrfs_inode, 8515 delalloc_inodes); 8516 8517 list_move_tail(&binode->delalloc_inodes, 8518 &root->delalloc_inodes); 8519 8520 if (in_reclaim_context && 8521 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8522 continue; 8523 8524 inode = igrab(&binode->vfs_inode); 8525 if (!inode) { 8526 cond_resched_lock(&root->delalloc_lock); 8527 continue; 8528 } 8529 spin_unlock(&root->delalloc_lock); 8530 8531 if (snapshot) 8532 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8533 &binode->runtime_flags); 8534 if (full_flush) { 8535 work = btrfs_alloc_delalloc_work(inode); 8536 if (!work) { 8537 iput(inode); 8538 ret = -ENOMEM; 8539 goto out; 8540 } 8541 list_add_tail(&work->list, &works); 8542 btrfs_queue_work(root->fs_info->flush_workers, 8543 &work->work); 8544 } else { 8545 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8546 btrfs_add_delayed_iput(BTRFS_I(inode)); 8547 if (ret || wbc->nr_to_write <= 0) 8548 goto out; 8549 } 8550 cond_resched(); 8551 spin_lock(&root->delalloc_lock); 8552 } 8553 spin_unlock(&root->delalloc_lock); 8554 8555 out: 8556 list_for_each_entry_safe(work, next, &works, list) { 8557 list_del_init(&work->list); 8558 wait_for_completion(&work->completion); 8559 kfree(work); 8560 } 8561 8562 if (!list_empty(&splice)) { 8563 spin_lock(&root->delalloc_lock); 8564 list_splice_tail(&splice, &root->delalloc_inodes); 8565 spin_unlock(&root->delalloc_lock); 8566 } 8567 mutex_unlock(&root->delalloc_mutex); 8568 return ret; 8569 } 8570 8571 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8572 { 8573 struct writeback_control wbc = { 8574 .nr_to_write = LONG_MAX, 8575 .sync_mode = WB_SYNC_NONE, 8576 .range_start = 0, 8577 .range_end = LLONG_MAX, 8578 }; 8579 struct btrfs_fs_info *fs_info = root->fs_info; 8580 8581 if (BTRFS_FS_ERROR(fs_info)) 8582 return -EROFS; 8583 8584 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8585 } 8586 8587 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8588 bool in_reclaim_context) 8589 { 8590 struct writeback_control wbc = { 8591 .nr_to_write = nr, 8592 .sync_mode = WB_SYNC_NONE, 8593 .range_start = 0, 8594 .range_end = LLONG_MAX, 8595 }; 8596 struct btrfs_root *root; 8597 LIST_HEAD(splice); 8598 int ret; 8599 8600 if (BTRFS_FS_ERROR(fs_info)) 8601 return -EROFS; 8602 8603 mutex_lock(&fs_info->delalloc_root_mutex); 8604 spin_lock(&fs_info->delalloc_root_lock); 8605 list_splice_init(&fs_info->delalloc_roots, &splice); 8606 while (!list_empty(&splice)) { 8607 /* 8608 * Reset nr_to_write here so we know that we're doing a full 8609 * flush. 8610 */ 8611 if (nr == LONG_MAX) 8612 wbc.nr_to_write = LONG_MAX; 8613 8614 root = list_first_entry(&splice, struct btrfs_root, 8615 delalloc_root); 8616 root = btrfs_grab_root(root); 8617 BUG_ON(!root); 8618 list_move_tail(&root->delalloc_root, 8619 &fs_info->delalloc_roots); 8620 spin_unlock(&fs_info->delalloc_root_lock); 8621 8622 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8623 btrfs_put_root(root); 8624 if (ret < 0 || wbc.nr_to_write <= 0) 8625 goto out; 8626 spin_lock(&fs_info->delalloc_root_lock); 8627 } 8628 spin_unlock(&fs_info->delalloc_root_lock); 8629 8630 ret = 0; 8631 out: 8632 if (!list_empty(&splice)) { 8633 spin_lock(&fs_info->delalloc_root_lock); 8634 list_splice_tail(&splice, &fs_info->delalloc_roots); 8635 spin_unlock(&fs_info->delalloc_root_lock); 8636 } 8637 mutex_unlock(&fs_info->delalloc_root_mutex); 8638 return ret; 8639 } 8640 8641 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8642 struct dentry *dentry, const char *symname) 8643 { 8644 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8645 struct btrfs_trans_handle *trans; 8646 struct btrfs_root *root = BTRFS_I(dir)->root; 8647 struct btrfs_path *path; 8648 struct btrfs_key key; 8649 struct inode *inode; 8650 struct btrfs_new_inode_args new_inode_args = { 8651 .dir = dir, 8652 .dentry = dentry, 8653 }; 8654 unsigned int trans_num_items; 8655 int err; 8656 int name_len; 8657 int datasize; 8658 unsigned long ptr; 8659 struct btrfs_file_extent_item *ei; 8660 struct extent_buffer *leaf; 8661 8662 name_len = strlen(symname); 8663 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8664 return -ENAMETOOLONG; 8665 8666 inode = new_inode(dir->i_sb); 8667 if (!inode) 8668 return -ENOMEM; 8669 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8670 inode->i_op = &btrfs_symlink_inode_operations; 8671 inode_nohighmem(inode); 8672 inode->i_mapping->a_ops = &btrfs_aops; 8673 btrfs_i_size_write(BTRFS_I(inode), name_len); 8674 inode_set_bytes(inode, name_len); 8675 8676 new_inode_args.inode = inode; 8677 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8678 if (err) 8679 goto out_inode; 8680 /* 1 additional item for the inline extent */ 8681 trans_num_items++; 8682 8683 trans = btrfs_start_transaction(root, trans_num_items); 8684 if (IS_ERR(trans)) { 8685 err = PTR_ERR(trans); 8686 goto out_new_inode_args; 8687 } 8688 8689 err = btrfs_create_new_inode(trans, &new_inode_args); 8690 if (err) 8691 goto out; 8692 8693 path = btrfs_alloc_path(); 8694 if (!path) { 8695 err = -ENOMEM; 8696 btrfs_abort_transaction(trans, err); 8697 discard_new_inode(inode); 8698 inode = NULL; 8699 goto out; 8700 } 8701 key.objectid = btrfs_ino(BTRFS_I(inode)); 8702 key.offset = 0; 8703 key.type = BTRFS_EXTENT_DATA_KEY; 8704 datasize = btrfs_file_extent_calc_inline_size(name_len); 8705 err = btrfs_insert_empty_item(trans, root, path, &key, 8706 datasize); 8707 if (err) { 8708 btrfs_abort_transaction(trans, err); 8709 btrfs_free_path(path); 8710 discard_new_inode(inode); 8711 inode = NULL; 8712 goto out; 8713 } 8714 leaf = path->nodes[0]; 8715 ei = btrfs_item_ptr(leaf, path->slots[0], 8716 struct btrfs_file_extent_item); 8717 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8718 btrfs_set_file_extent_type(leaf, ei, 8719 BTRFS_FILE_EXTENT_INLINE); 8720 btrfs_set_file_extent_encryption(leaf, ei, 0); 8721 btrfs_set_file_extent_compression(leaf, ei, 0); 8722 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8723 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8724 8725 ptr = btrfs_file_extent_inline_start(ei); 8726 write_extent_buffer(leaf, symname, ptr, name_len); 8727 btrfs_free_path(path); 8728 8729 d_instantiate_new(dentry, inode); 8730 err = 0; 8731 out: 8732 btrfs_end_transaction(trans); 8733 btrfs_btree_balance_dirty(fs_info); 8734 out_new_inode_args: 8735 btrfs_new_inode_args_destroy(&new_inode_args); 8736 out_inode: 8737 if (err) 8738 iput(inode); 8739 return err; 8740 } 8741 8742 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8743 struct btrfs_trans_handle *trans_in, 8744 struct btrfs_inode *inode, 8745 struct btrfs_key *ins, 8746 u64 file_offset) 8747 { 8748 struct btrfs_file_extent_item stack_fi; 8749 struct btrfs_replace_extent_info extent_info; 8750 struct btrfs_trans_handle *trans = trans_in; 8751 struct btrfs_path *path; 8752 u64 start = ins->objectid; 8753 u64 len = ins->offset; 8754 u64 qgroup_released = 0; 8755 int ret; 8756 8757 memset(&stack_fi, 0, sizeof(stack_fi)); 8758 8759 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8760 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8761 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8762 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8763 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8764 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8765 /* Encryption and other encoding is reserved and all 0 */ 8766 8767 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8768 if (ret < 0) 8769 return ERR_PTR(ret); 8770 8771 if (trans) { 8772 ret = insert_reserved_file_extent(trans, inode, 8773 file_offset, &stack_fi, 8774 true, qgroup_released); 8775 if (ret) 8776 goto free_qgroup; 8777 return trans; 8778 } 8779 8780 extent_info.disk_offset = start; 8781 extent_info.disk_len = len; 8782 extent_info.data_offset = 0; 8783 extent_info.data_len = len; 8784 extent_info.file_offset = file_offset; 8785 extent_info.extent_buf = (char *)&stack_fi; 8786 extent_info.is_new_extent = true; 8787 extent_info.update_times = true; 8788 extent_info.qgroup_reserved = qgroup_released; 8789 extent_info.insertions = 0; 8790 8791 path = btrfs_alloc_path(); 8792 if (!path) { 8793 ret = -ENOMEM; 8794 goto free_qgroup; 8795 } 8796 8797 ret = btrfs_replace_file_extents(inode, path, file_offset, 8798 file_offset + len - 1, &extent_info, 8799 &trans); 8800 btrfs_free_path(path); 8801 if (ret) 8802 goto free_qgroup; 8803 return trans; 8804 8805 free_qgroup: 8806 /* 8807 * We have released qgroup data range at the beginning of the function, 8808 * and normally qgroup_released bytes will be freed when committing 8809 * transaction. 8810 * But if we error out early, we have to free what we have released 8811 * or we leak qgroup data reservation. 8812 */ 8813 btrfs_qgroup_free_refroot(inode->root->fs_info, 8814 btrfs_root_id(inode->root), qgroup_released, 8815 BTRFS_QGROUP_RSV_DATA); 8816 return ERR_PTR(ret); 8817 } 8818 8819 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8820 u64 start, u64 num_bytes, u64 min_size, 8821 loff_t actual_len, u64 *alloc_hint, 8822 struct btrfs_trans_handle *trans) 8823 { 8824 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8825 struct extent_map *em; 8826 struct btrfs_root *root = BTRFS_I(inode)->root; 8827 struct btrfs_key ins; 8828 u64 cur_offset = start; 8829 u64 clear_offset = start; 8830 u64 i_size; 8831 u64 cur_bytes; 8832 u64 last_alloc = (u64)-1; 8833 int ret = 0; 8834 bool own_trans = true; 8835 u64 end = start + num_bytes - 1; 8836 8837 if (trans) 8838 own_trans = false; 8839 while (num_bytes > 0) { 8840 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8841 cur_bytes = max(cur_bytes, min_size); 8842 /* 8843 * If we are severely fragmented we could end up with really 8844 * small allocations, so if the allocator is returning small 8845 * chunks lets make its job easier by only searching for those 8846 * sized chunks. 8847 */ 8848 cur_bytes = min(cur_bytes, last_alloc); 8849 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8850 min_size, 0, *alloc_hint, &ins, 1, 0); 8851 if (ret) 8852 break; 8853 8854 /* 8855 * We've reserved this space, and thus converted it from 8856 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8857 * from here on out we will only need to clear our reservation 8858 * for the remaining unreserved area, so advance our 8859 * clear_offset by our extent size. 8860 */ 8861 clear_offset += ins.offset; 8862 8863 last_alloc = ins.offset; 8864 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8865 &ins, cur_offset); 8866 /* 8867 * Now that we inserted the prealloc extent we can finally 8868 * decrement the number of reservations in the block group. 8869 * If we did it before, we could race with relocation and have 8870 * relocation miss the reserved extent, making it fail later. 8871 */ 8872 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8873 if (IS_ERR(trans)) { 8874 ret = PTR_ERR(trans); 8875 btrfs_free_reserved_extent(fs_info, ins.objectid, 8876 ins.offset, 0); 8877 break; 8878 } 8879 8880 em = alloc_extent_map(); 8881 if (!em) { 8882 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8883 cur_offset + ins.offset - 1, false); 8884 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8885 goto next; 8886 } 8887 8888 em->start = cur_offset; 8889 em->len = ins.offset; 8890 em->disk_bytenr = ins.objectid; 8891 em->offset = 0; 8892 em->disk_num_bytes = ins.offset; 8893 em->ram_bytes = ins.offset; 8894 em->flags |= EXTENT_FLAG_PREALLOC; 8895 em->generation = trans->transid; 8896 8897 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8898 free_extent_map(em); 8899 next: 8900 num_bytes -= ins.offset; 8901 cur_offset += ins.offset; 8902 *alloc_hint = ins.objectid + ins.offset; 8903 8904 inode_inc_iversion(inode); 8905 inode_set_ctime_current(inode); 8906 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8907 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8908 (actual_len > inode->i_size) && 8909 (cur_offset > inode->i_size)) { 8910 if (cur_offset > actual_len) 8911 i_size = actual_len; 8912 else 8913 i_size = cur_offset; 8914 i_size_write(inode, i_size); 8915 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8916 } 8917 8918 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8919 8920 if (ret) { 8921 btrfs_abort_transaction(trans, ret); 8922 if (own_trans) 8923 btrfs_end_transaction(trans); 8924 break; 8925 } 8926 8927 if (own_trans) { 8928 btrfs_end_transaction(trans); 8929 trans = NULL; 8930 } 8931 } 8932 if (clear_offset < end) 8933 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8934 end - clear_offset + 1); 8935 return ret; 8936 } 8937 8938 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8939 u64 start, u64 num_bytes, u64 min_size, 8940 loff_t actual_len, u64 *alloc_hint) 8941 { 8942 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8943 min_size, actual_len, alloc_hint, 8944 NULL); 8945 } 8946 8947 int btrfs_prealloc_file_range_trans(struct inode *inode, 8948 struct btrfs_trans_handle *trans, int mode, 8949 u64 start, u64 num_bytes, u64 min_size, 8950 loff_t actual_len, u64 *alloc_hint) 8951 { 8952 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8953 min_size, actual_len, alloc_hint, trans); 8954 } 8955 8956 static int btrfs_permission(struct mnt_idmap *idmap, 8957 struct inode *inode, int mask) 8958 { 8959 struct btrfs_root *root = BTRFS_I(inode)->root; 8960 umode_t mode = inode->i_mode; 8961 8962 if (mask & MAY_WRITE && 8963 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8964 if (btrfs_root_readonly(root)) 8965 return -EROFS; 8966 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8967 return -EACCES; 8968 } 8969 return generic_permission(idmap, inode, mask); 8970 } 8971 8972 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8973 struct file *file, umode_t mode) 8974 { 8975 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8976 struct btrfs_trans_handle *trans; 8977 struct btrfs_root *root = BTRFS_I(dir)->root; 8978 struct inode *inode; 8979 struct btrfs_new_inode_args new_inode_args = { 8980 .dir = dir, 8981 .dentry = file->f_path.dentry, 8982 .orphan = true, 8983 }; 8984 unsigned int trans_num_items; 8985 int ret; 8986 8987 inode = new_inode(dir->i_sb); 8988 if (!inode) 8989 return -ENOMEM; 8990 inode_init_owner(idmap, inode, dir, mode); 8991 inode->i_fop = &btrfs_file_operations; 8992 inode->i_op = &btrfs_file_inode_operations; 8993 inode->i_mapping->a_ops = &btrfs_aops; 8994 8995 new_inode_args.inode = inode; 8996 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8997 if (ret) 8998 goto out_inode; 8999 9000 trans = btrfs_start_transaction(root, trans_num_items); 9001 if (IS_ERR(trans)) { 9002 ret = PTR_ERR(trans); 9003 goto out_new_inode_args; 9004 } 9005 9006 ret = btrfs_create_new_inode(trans, &new_inode_args); 9007 9008 /* 9009 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9010 * set it to 1 because d_tmpfile() will issue a warning if the count is 9011 * 0, through: 9012 * 9013 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9014 */ 9015 set_nlink(inode, 1); 9016 9017 if (!ret) { 9018 d_tmpfile(file, inode); 9019 unlock_new_inode(inode); 9020 mark_inode_dirty(inode); 9021 } 9022 9023 btrfs_end_transaction(trans); 9024 btrfs_btree_balance_dirty(fs_info); 9025 out_new_inode_args: 9026 btrfs_new_inode_args_destroy(&new_inode_args); 9027 out_inode: 9028 if (ret) 9029 iput(inode); 9030 return finish_open_simple(file, ret); 9031 } 9032 9033 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9034 int compress_type) 9035 { 9036 switch (compress_type) { 9037 case BTRFS_COMPRESS_NONE: 9038 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9039 case BTRFS_COMPRESS_ZLIB: 9040 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9041 case BTRFS_COMPRESS_LZO: 9042 /* 9043 * The LZO format depends on the sector size. 64K is the maximum 9044 * sector size that we support. 9045 */ 9046 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9047 return -EINVAL; 9048 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9049 (fs_info->sectorsize_bits - 12); 9050 case BTRFS_COMPRESS_ZSTD: 9051 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9052 default: 9053 return -EUCLEAN; 9054 } 9055 } 9056 9057 static ssize_t btrfs_encoded_read_inline( 9058 struct kiocb *iocb, 9059 struct iov_iter *iter, u64 start, 9060 u64 lockend, 9061 struct extent_state **cached_state, 9062 u64 extent_start, size_t count, 9063 struct btrfs_ioctl_encoded_io_args *encoded, 9064 bool *unlocked) 9065 { 9066 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9067 struct btrfs_root *root = inode->root; 9068 struct btrfs_fs_info *fs_info = root->fs_info; 9069 struct extent_io_tree *io_tree = &inode->io_tree; 9070 struct btrfs_path *path; 9071 struct extent_buffer *leaf; 9072 struct btrfs_file_extent_item *item; 9073 u64 ram_bytes; 9074 unsigned long ptr; 9075 void *tmp; 9076 ssize_t ret; 9077 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9078 9079 path = btrfs_alloc_path(); 9080 if (!path) { 9081 ret = -ENOMEM; 9082 goto out; 9083 } 9084 9085 path->nowait = nowait; 9086 9087 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9088 extent_start, 0); 9089 if (ret) { 9090 if (ret > 0) { 9091 /* The extent item disappeared? */ 9092 ret = -EIO; 9093 } 9094 goto out; 9095 } 9096 leaf = path->nodes[0]; 9097 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9098 9099 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9100 ptr = btrfs_file_extent_inline_start(item); 9101 9102 encoded->len = min_t(u64, extent_start + ram_bytes, 9103 inode->vfs_inode.i_size) - iocb->ki_pos; 9104 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9105 btrfs_file_extent_compression(leaf, item)); 9106 if (ret < 0) 9107 goto out; 9108 encoded->compression = ret; 9109 if (encoded->compression) { 9110 size_t inline_size; 9111 9112 inline_size = btrfs_file_extent_inline_item_len(leaf, 9113 path->slots[0]); 9114 if (inline_size > count) { 9115 ret = -ENOBUFS; 9116 goto out; 9117 } 9118 count = inline_size; 9119 encoded->unencoded_len = ram_bytes; 9120 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9121 } else { 9122 count = min_t(u64, count, encoded->len); 9123 encoded->len = count; 9124 encoded->unencoded_len = count; 9125 ptr += iocb->ki_pos - extent_start; 9126 } 9127 9128 tmp = kmalloc(count, GFP_NOFS); 9129 if (!tmp) { 9130 ret = -ENOMEM; 9131 goto out; 9132 } 9133 read_extent_buffer(leaf, tmp, ptr, count); 9134 btrfs_release_path(path); 9135 unlock_extent(io_tree, start, lockend, cached_state); 9136 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9137 *unlocked = true; 9138 9139 ret = copy_to_iter(tmp, count, iter); 9140 if (ret != count) 9141 ret = -EFAULT; 9142 kfree(tmp); 9143 out: 9144 btrfs_free_path(path); 9145 return ret; 9146 } 9147 9148 struct btrfs_encoded_read_private { 9149 struct completion done; 9150 void *uring_ctx; 9151 refcount_t pending_refs; 9152 blk_status_t status; 9153 }; 9154 9155 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9156 { 9157 struct btrfs_encoded_read_private *priv = bbio->private; 9158 9159 if (bbio->bio.bi_status) { 9160 /* 9161 * The memory barrier implied by the atomic_dec_return() here 9162 * pairs with the memory barrier implied by the 9163 * atomic_dec_return() or io_wait_event() in 9164 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9165 * write is observed before the load of status in 9166 * btrfs_encoded_read_regular_fill_pages(). 9167 */ 9168 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9169 } 9170 if (refcount_dec_and_test(&priv->pending_refs)) { 9171 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9172 9173 if (priv->uring_ctx) { 9174 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9175 kfree(priv); 9176 } else { 9177 complete(&priv->done); 9178 } 9179 } 9180 bio_put(&bbio->bio); 9181 } 9182 9183 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9184 u64 disk_bytenr, u64 disk_io_size, 9185 struct page **pages, void *uring_ctx) 9186 { 9187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9188 struct btrfs_encoded_read_private *priv; 9189 unsigned long i = 0; 9190 struct btrfs_bio *bbio; 9191 int ret; 9192 9193 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9194 if (!priv) 9195 return -ENOMEM; 9196 9197 init_completion(&priv->done); 9198 refcount_set(&priv->pending_refs, 1); 9199 priv->status = 0; 9200 priv->uring_ctx = uring_ctx; 9201 9202 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9203 btrfs_encoded_read_endio, priv); 9204 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9205 bbio->inode = inode; 9206 9207 do { 9208 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9209 9210 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9211 refcount_inc(&priv->pending_refs); 9212 btrfs_submit_bbio(bbio, 0); 9213 9214 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9215 btrfs_encoded_read_endio, priv); 9216 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9217 bbio->inode = inode; 9218 continue; 9219 } 9220 9221 i++; 9222 disk_bytenr += bytes; 9223 disk_io_size -= bytes; 9224 } while (disk_io_size); 9225 9226 refcount_inc(&priv->pending_refs); 9227 btrfs_submit_bbio(bbio, 0); 9228 9229 if (uring_ctx) { 9230 if (refcount_dec_and_test(&priv->pending_refs)) { 9231 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9232 btrfs_uring_read_extent_endio(uring_ctx, ret); 9233 kfree(priv); 9234 return ret; 9235 } 9236 9237 return -EIOCBQUEUED; 9238 } else { 9239 if (!refcount_dec_and_test(&priv->pending_refs)) 9240 wait_for_completion_io(&priv->done); 9241 /* See btrfs_encoded_read_endio() for ordering. */ 9242 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9243 kfree(priv); 9244 return ret; 9245 } 9246 } 9247 9248 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9249 u64 start, u64 lockend, 9250 struct extent_state **cached_state, 9251 u64 disk_bytenr, u64 disk_io_size, 9252 size_t count, bool compressed, bool *unlocked) 9253 { 9254 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9255 struct extent_io_tree *io_tree = &inode->io_tree; 9256 struct page **pages; 9257 unsigned long nr_pages, i; 9258 u64 cur; 9259 size_t page_offset; 9260 ssize_t ret; 9261 9262 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9263 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9264 if (!pages) 9265 return -ENOMEM; 9266 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9267 if (ret) { 9268 ret = -ENOMEM; 9269 goto out; 9270 } 9271 9272 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9273 disk_io_size, pages, NULL); 9274 if (ret) 9275 goto out; 9276 9277 unlock_extent(io_tree, start, lockend, cached_state); 9278 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9279 *unlocked = true; 9280 9281 if (compressed) { 9282 i = 0; 9283 page_offset = 0; 9284 } else { 9285 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9286 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9287 } 9288 cur = 0; 9289 while (cur < count) { 9290 size_t bytes = min_t(size_t, count - cur, 9291 PAGE_SIZE - page_offset); 9292 9293 if (copy_page_to_iter(pages[i], page_offset, bytes, 9294 iter) != bytes) { 9295 ret = -EFAULT; 9296 goto out; 9297 } 9298 i++; 9299 cur += bytes; 9300 page_offset = 0; 9301 } 9302 ret = count; 9303 out: 9304 for (i = 0; i < nr_pages; i++) { 9305 if (pages[i]) 9306 __free_page(pages[i]); 9307 } 9308 kfree(pages); 9309 return ret; 9310 } 9311 9312 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9313 struct btrfs_ioctl_encoded_io_args *encoded, 9314 struct extent_state **cached_state, 9315 u64 *disk_bytenr, u64 *disk_io_size) 9316 { 9317 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9318 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9319 struct extent_io_tree *io_tree = &inode->io_tree; 9320 ssize_t ret; 9321 size_t count = iov_iter_count(iter); 9322 u64 start, lockend; 9323 struct extent_map *em; 9324 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9325 bool unlocked = false; 9326 9327 file_accessed(iocb->ki_filp); 9328 9329 ret = btrfs_inode_lock(inode, 9330 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9331 if (ret) 9332 return ret; 9333 9334 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9335 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9336 return 0; 9337 } 9338 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9339 /* 9340 * We don't know how long the extent containing iocb->ki_pos is, but if 9341 * it's compressed we know that it won't be longer than this. 9342 */ 9343 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9344 9345 if (nowait) { 9346 struct btrfs_ordered_extent *ordered; 9347 9348 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9349 start, lockend)) { 9350 ret = -EAGAIN; 9351 goto out_unlock_inode; 9352 } 9353 9354 if (!try_lock_extent(io_tree, start, lockend, cached_state)) { 9355 ret = -EAGAIN; 9356 goto out_unlock_inode; 9357 } 9358 9359 ordered = btrfs_lookup_ordered_range(inode, start, 9360 lockend - start + 1); 9361 if (ordered) { 9362 btrfs_put_ordered_extent(ordered); 9363 unlock_extent(io_tree, start, lockend, cached_state); 9364 ret = -EAGAIN; 9365 goto out_unlock_inode; 9366 } 9367 } else { 9368 for (;;) { 9369 struct btrfs_ordered_extent *ordered; 9370 9371 ret = btrfs_wait_ordered_range(inode, start, 9372 lockend - start + 1); 9373 if (ret) 9374 goto out_unlock_inode; 9375 9376 lock_extent(io_tree, start, lockend, cached_state); 9377 ordered = btrfs_lookup_ordered_range(inode, start, 9378 lockend - start + 1); 9379 if (!ordered) 9380 break; 9381 btrfs_put_ordered_extent(ordered); 9382 unlock_extent(io_tree, start, lockend, cached_state); 9383 cond_resched(); 9384 } 9385 } 9386 9387 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9388 if (IS_ERR(em)) { 9389 ret = PTR_ERR(em); 9390 goto out_unlock_extent; 9391 } 9392 9393 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9394 u64 extent_start = em->start; 9395 9396 /* 9397 * For inline extents we get everything we need out of the 9398 * extent item. 9399 */ 9400 free_extent_map(em); 9401 em = NULL; 9402 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9403 cached_state, extent_start, 9404 count, encoded, &unlocked); 9405 goto out_unlock_extent; 9406 } 9407 9408 /* 9409 * We only want to return up to EOF even if the extent extends beyond 9410 * that. 9411 */ 9412 encoded->len = min_t(u64, extent_map_end(em), 9413 inode->vfs_inode.i_size) - iocb->ki_pos; 9414 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9415 (em->flags & EXTENT_FLAG_PREALLOC)) { 9416 *disk_bytenr = EXTENT_MAP_HOLE; 9417 count = min_t(u64, count, encoded->len); 9418 encoded->len = count; 9419 encoded->unencoded_len = count; 9420 } else if (extent_map_is_compressed(em)) { 9421 *disk_bytenr = em->disk_bytenr; 9422 /* 9423 * Bail if the buffer isn't large enough to return the whole 9424 * compressed extent. 9425 */ 9426 if (em->disk_num_bytes > count) { 9427 ret = -ENOBUFS; 9428 goto out_em; 9429 } 9430 *disk_io_size = em->disk_num_bytes; 9431 count = em->disk_num_bytes; 9432 encoded->unencoded_len = em->ram_bytes; 9433 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9434 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9435 extent_map_compression(em)); 9436 if (ret < 0) 9437 goto out_em; 9438 encoded->compression = ret; 9439 } else { 9440 *disk_bytenr = extent_map_block_start(em) + (start - em->start); 9441 if (encoded->len > count) 9442 encoded->len = count; 9443 /* 9444 * Don't read beyond what we locked. This also limits the page 9445 * allocations that we'll do. 9446 */ 9447 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9448 count = start + *disk_io_size - iocb->ki_pos; 9449 encoded->len = count; 9450 encoded->unencoded_len = count; 9451 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9452 } 9453 free_extent_map(em); 9454 em = NULL; 9455 9456 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9457 unlock_extent(io_tree, start, lockend, cached_state); 9458 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9459 unlocked = true; 9460 ret = iov_iter_zero(count, iter); 9461 if (ret != count) 9462 ret = -EFAULT; 9463 } else { 9464 ret = -EIOCBQUEUED; 9465 goto out_unlock_extent; 9466 } 9467 9468 out_em: 9469 free_extent_map(em); 9470 out_unlock_extent: 9471 /* Leave inode and extent locked if we need to do a read. */ 9472 if (!unlocked && ret != -EIOCBQUEUED) 9473 unlock_extent(io_tree, start, lockend, cached_state); 9474 out_unlock_inode: 9475 if (!unlocked && ret != -EIOCBQUEUED) 9476 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9477 return ret; 9478 } 9479 9480 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9481 const struct btrfs_ioctl_encoded_io_args *encoded) 9482 { 9483 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9484 struct btrfs_root *root = inode->root; 9485 struct btrfs_fs_info *fs_info = root->fs_info; 9486 struct extent_io_tree *io_tree = &inode->io_tree; 9487 struct extent_changeset *data_reserved = NULL; 9488 struct extent_state *cached_state = NULL; 9489 struct btrfs_ordered_extent *ordered; 9490 struct btrfs_file_extent file_extent; 9491 int compression; 9492 size_t orig_count; 9493 u64 start, end; 9494 u64 num_bytes, ram_bytes, disk_num_bytes; 9495 unsigned long nr_folios, i; 9496 struct folio **folios; 9497 struct btrfs_key ins; 9498 bool extent_reserved = false; 9499 struct extent_map *em; 9500 ssize_t ret; 9501 9502 switch (encoded->compression) { 9503 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9504 compression = BTRFS_COMPRESS_ZLIB; 9505 break; 9506 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9507 compression = BTRFS_COMPRESS_ZSTD; 9508 break; 9509 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9510 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9511 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9512 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9513 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9514 /* The sector size must match for LZO. */ 9515 if (encoded->compression - 9516 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9517 fs_info->sectorsize_bits) 9518 return -EINVAL; 9519 compression = BTRFS_COMPRESS_LZO; 9520 break; 9521 default: 9522 return -EINVAL; 9523 } 9524 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9525 return -EINVAL; 9526 9527 /* 9528 * Compressed extents should always have checksums, so error out if we 9529 * have a NOCOW file or inode was created while mounted with NODATASUM. 9530 */ 9531 if (inode->flags & BTRFS_INODE_NODATASUM) 9532 return -EINVAL; 9533 9534 orig_count = iov_iter_count(from); 9535 9536 /* The extent size must be sane. */ 9537 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9538 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9539 return -EINVAL; 9540 9541 /* 9542 * The compressed data must be smaller than the decompressed data. 9543 * 9544 * It's of course possible for data to compress to larger or the same 9545 * size, but the buffered I/O path falls back to no compression for such 9546 * data, and we don't want to break any assumptions by creating these 9547 * extents. 9548 * 9549 * Note that this is less strict than the current check we have that the 9550 * compressed data must be at least one sector smaller than the 9551 * decompressed data. We only want to enforce the weaker requirement 9552 * from old kernels that it is at least one byte smaller. 9553 */ 9554 if (orig_count >= encoded->unencoded_len) 9555 return -EINVAL; 9556 9557 /* The extent must start on a sector boundary. */ 9558 start = iocb->ki_pos; 9559 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9560 return -EINVAL; 9561 9562 /* 9563 * The extent must end on a sector boundary. However, we allow a write 9564 * which ends at or extends i_size to have an unaligned length; we round 9565 * up the extent size and set i_size to the unaligned end. 9566 */ 9567 if (start + encoded->len < inode->vfs_inode.i_size && 9568 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9569 return -EINVAL; 9570 9571 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9572 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9573 return -EINVAL; 9574 9575 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9576 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9577 end = start + num_bytes - 1; 9578 9579 /* 9580 * If the extent cannot be inline, the compressed data on disk must be 9581 * sector-aligned. For convenience, we extend it with zeroes if it 9582 * isn't. 9583 */ 9584 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9585 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9586 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9587 if (!folios) 9588 return -ENOMEM; 9589 for (i = 0; i < nr_folios; i++) { 9590 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9591 char *kaddr; 9592 9593 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9594 if (!folios[i]) { 9595 ret = -ENOMEM; 9596 goto out_folios; 9597 } 9598 kaddr = kmap_local_folio(folios[i], 0); 9599 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9600 kunmap_local(kaddr); 9601 ret = -EFAULT; 9602 goto out_folios; 9603 } 9604 if (bytes < PAGE_SIZE) 9605 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9606 kunmap_local(kaddr); 9607 } 9608 9609 for (;;) { 9610 struct btrfs_ordered_extent *ordered; 9611 9612 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9613 if (ret) 9614 goto out_folios; 9615 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9616 start >> PAGE_SHIFT, 9617 end >> PAGE_SHIFT); 9618 if (ret) 9619 goto out_folios; 9620 lock_extent(io_tree, start, end, &cached_state); 9621 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9622 if (!ordered && 9623 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9624 break; 9625 if (ordered) 9626 btrfs_put_ordered_extent(ordered); 9627 unlock_extent(io_tree, start, end, &cached_state); 9628 cond_resched(); 9629 } 9630 9631 /* 9632 * We don't use the higher-level delalloc space functions because our 9633 * num_bytes and disk_num_bytes are different. 9634 */ 9635 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9636 if (ret) 9637 goto out_unlock; 9638 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9639 if (ret) 9640 goto out_free_data_space; 9641 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9642 false); 9643 if (ret) 9644 goto out_qgroup_free_data; 9645 9646 /* Try an inline extent first. */ 9647 if (encoded->unencoded_len == encoded->len && 9648 encoded->unencoded_offset == 0 && 9649 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9650 ret = __cow_file_range_inline(inode, encoded->len, 9651 orig_count, compression, folios[0], 9652 true); 9653 if (ret <= 0) { 9654 if (ret == 0) 9655 ret = orig_count; 9656 goto out_delalloc_release; 9657 } 9658 } 9659 9660 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9661 disk_num_bytes, 0, 0, &ins, 1, 1); 9662 if (ret) 9663 goto out_delalloc_release; 9664 extent_reserved = true; 9665 9666 file_extent.disk_bytenr = ins.objectid; 9667 file_extent.disk_num_bytes = ins.offset; 9668 file_extent.num_bytes = num_bytes; 9669 file_extent.ram_bytes = ram_bytes; 9670 file_extent.offset = encoded->unencoded_offset; 9671 file_extent.compression = compression; 9672 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9673 if (IS_ERR(em)) { 9674 ret = PTR_ERR(em); 9675 goto out_free_reserved; 9676 } 9677 free_extent_map(em); 9678 9679 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9680 (1 << BTRFS_ORDERED_ENCODED) | 9681 (1 << BTRFS_ORDERED_COMPRESSED)); 9682 if (IS_ERR(ordered)) { 9683 btrfs_drop_extent_map_range(inode, start, end, false); 9684 ret = PTR_ERR(ordered); 9685 goto out_free_reserved; 9686 } 9687 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9688 9689 if (start + encoded->len > inode->vfs_inode.i_size) 9690 i_size_write(&inode->vfs_inode, start + encoded->len); 9691 9692 unlock_extent(io_tree, start, end, &cached_state); 9693 9694 btrfs_delalloc_release_extents(inode, num_bytes); 9695 9696 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9697 ret = orig_count; 9698 goto out; 9699 9700 out_free_reserved: 9701 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9702 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9703 out_delalloc_release: 9704 btrfs_delalloc_release_extents(inode, num_bytes); 9705 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9706 out_qgroup_free_data: 9707 if (ret < 0) 9708 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9709 out_free_data_space: 9710 /* 9711 * If btrfs_reserve_extent() succeeded, then we already decremented 9712 * bytes_may_use. 9713 */ 9714 if (!extent_reserved) 9715 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9716 out_unlock: 9717 unlock_extent(io_tree, start, end, &cached_state); 9718 out_folios: 9719 for (i = 0; i < nr_folios; i++) { 9720 if (folios[i]) 9721 folio_put(folios[i]); 9722 } 9723 kvfree(folios); 9724 out: 9725 if (ret >= 0) 9726 iocb->ki_pos += encoded->len; 9727 return ret; 9728 } 9729 9730 #ifdef CONFIG_SWAP 9731 /* 9732 * Add an entry indicating a block group or device which is pinned by a 9733 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9734 * negative errno on failure. 9735 */ 9736 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9737 bool is_block_group) 9738 { 9739 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9740 struct btrfs_swapfile_pin *sp, *entry; 9741 struct rb_node **p; 9742 struct rb_node *parent = NULL; 9743 9744 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9745 if (!sp) 9746 return -ENOMEM; 9747 sp->ptr = ptr; 9748 sp->inode = inode; 9749 sp->is_block_group = is_block_group; 9750 sp->bg_extent_count = 1; 9751 9752 spin_lock(&fs_info->swapfile_pins_lock); 9753 p = &fs_info->swapfile_pins.rb_node; 9754 while (*p) { 9755 parent = *p; 9756 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9757 if (sp->ptr < entry->ptr || 9758 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9759 p = &(*p)->rb_left; 9760 } else if (sp->ptr > entry->ptr || 9761 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9762 p = &(*p)->rb_right; 9763 } else { 9764 if (is_block_group) 9765 entry->bg_extent_count++; 9766 spin_unlock(&fs_info->swapfile_pins_lock); 9767 kfree(sp); 9768 return 1; 9769 } 9770 } 9771 rb_link_node(&sp->node, parent, p); 9772 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9773 spin_unlock(&fs_info->swapfile_pins_lock); 9774 return 0; 9775 } 9776 9777 /* Free all of the entries pinned by this swapfile. */ 9778 static void btrfs_free_swapfile_pins(struct inode *inode) 9779 { 9780 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9781 struct btrfs_swapfile_pin *sp; 9782 struct rb_node *node, *next; 9783 9784 spin_lock(&fs_info->swapfile_pins_lock); 9785 node = rb_first(&fs_info->swapfile_pins); 9786 while (node) { 9787 next = rb_next(node); 9788 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9789 if (sp->inode == inode) { 9790 rb_erase(&sp->node, &fs_info->swapfile_pins); 9791 if (sp->is_block_group) { 9792 btrfs_dec_block_group_swap_extents(sp->ptr, 9793 sp->bg_extent_count); 9794 btrfs_put_block_group(sp->ptr); 9795 } 9796 kfree(sp); 9797 } 9798 node = next; 9799 } 9800 spin_unlock(&fs_info->swapfile_pins_lock); 9801 } 9802 9803 struct btrfs_swap_info { 9804 u64 start; 9805 u64 block_start; 9806 u64 block_len; 9807 u64 lowest_ppage; 9808 u64 highest_ppage; 9809 unsigned long nr_pages; 9810 int nr_extents; 9811 }; 9812 9813 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9814 struct btrfs_swap_info *bsi) 9815 { 9816 unsigned long nr_pages; 9817 unsigned long max_pages; 9818 u64 first_ppage, first_ppage_reported, next_ppage; 9819 int ret; 9820 9821 /* 9822 * Our swapfile may have had its size extended after the swap header was 9823 * written. In that case activating the swapfile should not go beyond 9824 * the max size set in the swap header. 9825 */ 9826 if (bsi->nr_pages >= sis->max) 9827 return 0; 9828 9829 max_pages = sis->max - bsi->nr_pages; 9830 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9831 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9832 9833 if (first_ppage >= next_ppage) 9834 return 0; 9835 nr_pages = next_ppage - first_ppage; 9836 nr_pages = min(nr_pages, max_pages); 9837 9838 first_ppage_reported = first_ppage; 9839 if (bsi->start == 0) 9840 first_ppage_reported++; 9841 if (bsi->lowest_ppage > first_ppage_reported) 9842 bsi->lowest_ppage = first_ppage_reported; 9843 if (bsi->highest_ppage < (next_ppage - 1)) 9844 bsi->highest_ppage = next_ppage - 1; 9845 9846 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9847 if (ret < 0) 9848 return ret; 9849 bsi->nr_extents += ret; 9850 bsi->nr_pages += nr_pages; 9851 return 0; 9852 } 9853 9854 static void btrfs_swap_deactivate(struct file *file) 9855 { 9856 struct inode *inode = file_inode(file); 9857 9858 btrfs_free_swapfile_pins(inode); 9859 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9860 } 9861 9862 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9863 sector_t *span) 9864 { 9865 struct inode *inode = file_inode(file); 9866 struct btrfs_root *root = BTRFS_I(inode)->root; 9867 struct btrfs_fs_info *fs_info = root->fs_info; 9868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9869 struct extent_state *cached_state = NULL; 9870 struct btrfs_chunk_map *map = NULL; 9871 struct btrfs_device *device = NULL; 9872 struct btrfs_swap_info bsi = { 9873 .lowest_ppage = (sector_t)-1ULL, 9874 }; 9875 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 9876 struct btrfs_path *path = NULL; 9877 int ret = 0; 9878 u64 isize; 9879 u64 prev_extent_end = 0; 9880 9881 /* 9882 * Acquire the inode's mmap lock to prevent races with memory mapped 9883 * writes, as they could happen after we flush delalloc below and before 9884 * we lock the extent range further below. The inode was already locked 9885 * up in the call chain. 9886 */ 9887 btrfs_assert_inode_locked(BTRFS_I(inode)); 9888 down_write(&BTRFS_I(inode)->i_mmap_lock); 9889 9890 /* 9891 * If the swap file was just created, make sure delalloc is done. If the 9892 * file changes again after this, the user is doing something stupid and 9893 * we don't really care. 9894 */ 9895 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9896 if (ret) 9897 goto out_unlock_mmap; 9898 9899 /* 9900 * The inode is locked, so these flags won't change after we check them. 9901 */ 9902 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9903 btrfs_warn(fs_info, "swapfile must not be compressed"); 9904 ret = -EINVAL; 9905 goto out_unlock_mmap; 9906 } 9907 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9908 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9909 ret = -EINVAL; 9910 goto out_unlock_mmap; 9911 } 9912 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9913 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9914 ret = -EINVAL; 9915 goto out_unlock_mmap; 9916 } 9917 9918 path = btrfs_alloc_path(); 9919 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 9920 if (!path || !backref_ctx) { 9921 ret = -ENOMEM; 9922 goto out_unlock_mmap; 9923 } 9924 9925 /* 9926 * Balance or device remove/replace/resize can move stuff around from 9927 * under us. The exclop protection makes sure they aren't running/won't 9928 * run concurrently while we are mapping the swap extents, and 9929 * fs_info->swapfile_pins prevents them from running while the swap 9930 * file is active and moving the extents. Note that this also prevents 9931 * a concurrent device add which isn't actually necessary, but it's not 9932 * really worth the trouble to allow it. 9933 */ 9934 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9935 btrfs_warn(fs_info, 9936 "cannot activate swapfile while exclusive operation is running"); 9937 ret = -EBUSY; 9938 goto out_unlock_mmap; 9939 } 9940 9941 /* 9942 * Prevent snapshot creation while we are activating the swap file. 9943 * We do not want to race with snapshot creation. If snapshot creation 9944 * already started before we bumped nr_swapfiles from 0 to 1 and 9945 * completes before the first write into the swap file after it is 9946 * activated, than that write would fallback to COW. 9947 */ 9948 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9949 btrfs_exclop_finish(fs_info); 9950 btrfs_warn(fs_info, 9951 "cannot activate swapfile because snapshot creation is in progress"); 9952 ret = -EINVAL; 9953 goto out_unlock_mmap; 9954 } 9955 /* 9956 * Snapshots can create extents which require COW even if NODATACOW is 9957 * set. We use this counter to prevent snapshots. We must increment it 9958 * before walking the extents because we don't want a concurrent 9959 * snapshot to run after we've already checked the extents. 9960 * 9961 * It is possible that subvolume is marked for deletion but still not 9962 * removed yet. To prevent this race, we check the root status before 9963 * activating the swapfile. 9964 */ 9965 spin_lock(&root->root_item_lock); 9966 if (btrfs_root_dead(root)) { 9967 spin_unlock(&root->root_item_lock); 9968 9969 btrfs_drew_write_unlock(&root->snapshot_lock); 9970 btrfs_exclop_finish(fs_info); 9971 btrfs_warn(fs_info, 9972 "cannot activate swapfile because subvolume %llu is being deleted", 9973 btrfs_root_id(root)); 9974 ret = -EPERM; 9975 goto out_unlock_mmap; 9976 } 9977 atomic_inc(&root->nr_swapfiles); 9978 spin_unlock(&root->root_item_lock); 9979 9980 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9981 9982 lock_extent(io_tree, 0, isize - 1, &cached_state); 9983 while (prev_extent_end < isize) { 9984 struct btrfs_key key; 9985 struct extent_buffer *leaf; 9986 struct btrfs_file_extent_item *ei; 9987 struct btrfs_block_group *bg; 9988 u64 logical_block_start; 9989 u64 physical_block_start; 9990 u64 extent_gen; 9991 u64 disk_bytenr; 9992 u64 len; 9993 9994 key.objectid = btrfs_ino(BTRFS_I(inode)); 9995 key.type = BTRFS_EXTENT_DATA_KEY; 9996 key.offset = prev_extent_end; 9997 9998 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9999 if (ret < 0) 10000 goto out; 10001 10002 /* 10003 * If key not found it means we have an implicit hole (NO_HOLES 10004 * is enabled). 10005 */ 10006 if (ret > 0) { 10007 btrfs_warn(fs_info, "swapfile must not have holes"); 10008 ret = -EINVAL; 10009 goto out; 10010 } 10011 10012 leaf = path->nodes[0]; 10013 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10014 10015 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10016 /* 10017 * It's unlikely we'll ever actually find ourselves 10018 * here, as a file small enough to fit inline won't be 10019 * big enough to store more than the swap header, but in 10020 * case something changes in the future, let's catch it 10021 * here rather than later. 10022 */ 10023 btrfs_warn(fs_info, "swapfile must not be inline"); 10024 ret = -EINVAL; 10025 goto out; 10026 } 10027 10028 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10029 btrfs_warn(fs_info, "swapfile must not be compressed"); 10030 ret = -EINVAL; 10031 goto out; 10032 } 10033 10034 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10035 if (disk_bytenr == 0) { 10036 btrfs_warn(fs_info, "swapfile must not have holes"); 10037 ret = -EINVAL; 10038 goto out; 10039 } 10040 10041 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10042 extent_gen = btrfs_file_extent_generation(leaf, ei); 10043 prev_extent_end = btrfs_file_extent_end(path); 10044 10045 if (prev_extent_end > isize) 10046 len = isize - key.offset; 10047 else 10048 len = btrfs_file_extent_num_bytes(leaf, ei); 10049 10050 backref_ctx->curr_leaf_bytenr = leaf->start; 10051 10052 /* 10053 * Don't need the path anymore, release to avoid deadlocks when 10054 * calling btrfs_is_data_extent_shared() because when joining a 10055 * transaction it can block waiting for the current one's commit 10056 * which in turn may be trying to lock the same leaf to flush 10057 * delayed items for example. 10058 */ 10059 btrfs_release_path(path); 10060 10061 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10062 extent_gen, backref_ctx); 10063 if (ret < 0) { 10064 goto out; 10065 } else if (ret > 0) { 10066 btrfs_warn(fs_info, 10067 "swapfile must not be copy-on-write"); 10068 ret = -EINVAL; 10069 goto out; 10070 } 10071 10072 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10073 if (IS_ERR(map)) { 10074 ret = PTR_ERR(map); 10075 goto out; 10076 } 10077 10078 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10079 btrfs_warn(fs_info, 10080 "swapfile must have single data profile"); 10081 ret = -EINVAL; 10082 goto out; 10083 } 10084 10085 if (device == NULL) { 10086 device = map->stripes[0].dev; 10087 ret = btrfs_add_swapfile_pin(inode, device, false); 10088 if (ret == 1) 10089 ret = 0; 10090 else if (ret) 10091 goto out; 10092 } else if (device != map->stripes[0].dev) { 10093 btrfs_warn(fs_info, "swapfile must be on one device"); 10094 ret = -EINVAL; 10095 goto out; 10096 } 10097 10098 physical_block_start = (map->stripes[0].physical + 10099 (logical_block_start - map->start)); 10100 btrfs_free_chunk_map(map); 10101 map = NULL; 10102 10103 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10104 if (!bg) { 10105 btrfs_warn(fs_info, 10106 "could not find block group containing swapfile"); 10107 ret = -EINVAL; 10108 goto out; 10109 } 10110 10111 if (!btrfs_inc_block_group_swap_extents(bg)) { 10112 btrfs_warn(fs_info, 10113 "block group for swapfile at %llu is read-only%s", 10114 bg->start, 10115 atomic_read(&fs_info->scrubs_running) ? 10116 " (scrub running)" : ""); 10117 btrfs_put_block_group(bg); 10118 ret = -EINVAL; 10119 goto out; 10120 } 10121 10122 ret = btrfs_add_swapfile_pin(inode, bg, true); 10123 if (ret) { 10124 btrfs_put_block_group(bg); 10125 if (ret == 1) 10126 ret = 0; 10127 else 10128 goto out; 10129 } 10130 10131 if (bsi.block_len && 10132 bsi.block_start + bsi.block_len == physical_block_start) { 10133 bsi.block_len += len; 10134 } else { 10135 if (bsi.block_len) { 10136 ret = btrfs_add_swap_extent(sis, &bsi); 10137 if (ret) 10138 goto out; 10139 } 10140 bsi.start = key.offset; 10141 bsi.block_start = physical_block_start; 10142 bsi.block_len = len; 10143 } 10144 10145 if (fatal_signal_pending(current)) { 10146 ret = -EINTR; 10147 goto out; 10148 } 10149 10150 cond_resched(); 10151 } 10152 10153 if (bsi.block_len) 10154 ret = btrfs_add_swap_extent(sis, &bsi); 10155 10156 out: 10157 if (!IS_ERR_OR_NULL(map)) 10158 btrfs_free_chunk_map(map); 10159 10160 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10161 10162 if (ret) 10163 btrfs_swap_deactivate(file); 10164 10165 btrfs_drew_write_unlock(&root->snapshot_lock); 10166 10167 btrfs_exclop_finish(fs_info); 10168 10169 out_unlock_mmap: 10170 up_write(&BTRFS_I(inode)->i_mmap_lock); 10171 btrfs_free_backref_share_ctx(backref_ctx); 10172 btrfs_free_path(path); 10173 if (ret) 10174 return ret; 10175 10176 if (device) 10177 sis->bdev = device->bdev; 10178 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10179 sis->max = bsi.nr_pages; 10180 sis->pages = bsi.nr_pages - 1; 10181 return bsi.nr_extents; 10182 } 10183 #else 10184 static void btrfs_swap_deactivate(struct file *file) 10185 { 10186 } 10187 10188 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10189 sector_t *span) 10190 { 10191 return -EOPNOTSUPP; 10192 } 10193 #endif 10194 10195 /* 10196 * Update the number of bytes used in the VFS' inode. When we replace extents in 10197 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10198 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10199 * always get a correct value. 10200 */ 10201 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10202 const u64 add_bytes, 10203 const u64 del_bytes) 10204 { 10205 if (add_bytes == del_bytes) 10206 return; 10207 10208 spin_lock(&inode->lock); 10209 if (del_bytes > 0) 10210 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10211 if (add_bytes > 0) 10212 inode_add_bytes(&inode->vfs_inode, add_bytes); 10213 spin_unlock(&inode->lock); 10214 } 10215 10216 /* 10217 * Verify that there are no ordered extents for a given file range. 10218 * 10219 * @inode: The target inode. 10220 * @start: Start offset of the file range, should be sector size aligned. 10221 * @end: End offset (inclusive) of the file range, its value +1 should be 10222 * sector size aligned. 10223 * 10224 * This should typically be used for cases where we locked an inode's VFS lock in 10225 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10226 * we have flushed all delalloc in the range, we have waited for all ordered 10227 * extents in the range to complete and finally we have locked the file range in 10228 * the inode's io_tree. 10229 */ 10230 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10231 { 10232 struct btrfs_root *root = inode->root; 10233 struct btrfs_ordered_extent *ordered; 10234 10235 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10236 return; 10237 10238 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10239 if (ordered) { 10240 btrfs_err(root->fs_info, 10241 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10242 start, end, btrfs_ino(inode), btrfs_root_id(root), 10243 ordered->file_offset, 10244 ordered->file_offset + ordered->num_bytes - 1); 10245 btrfs_put_ordered_extent(ordered); 10246 } 10247 10248 ASSERT(ordered == NULL); 10249 } 10250 10251 /* 10252 * Find the first inode with a minimum number. 10253 * 10254 * @root: The root to search for. 10255 * @min_ino: The minimum inode number. 10256 * 10257 * Find the first inode in the @root with a number >= @min_ino and return it. 10258 * Returns NULL if no such inode found. 10259 */ 10260 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10261 { 10262 struct btrfs_inode *inode; 10263 unsigned long from = min_ino; 10264 10265 xa_lock(&root->inodes); 10266 while (true) { 10267 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10268 if (!inode) 10269 break; 10270 if (igrab(&inode->vfs_inode)) 10271 break; 10272 10273 from = btrfs_ino(inode) + 1; 10274 cond_resched_lock(&root->inodes.xa_lock); 10275 } 10276 xa_unlock(&root->inodes); 10277 10278 return inode; 10279 } 10280 10281 static const struct inode_operations btrfs_dir_inode_operations = { 10282 .getattr = btrfs_getattr, 10283 .lookup = btrfs_lookup, 10284 .create = btrfs_create, 10285 .unlink = btrfs_unlink, 10286 .link = btrfs_link, 10287 .mkdir = btrfs_mkdir, 10288 .rmdir = btrfs_rmdir, 10289 .rename = btrfs_rename2, 10290 .symlink = btrfs_symlink, 10291 .setattr = btrfs_setattr, 10292 .mknod = btrfs_mknod, 10293 .listxattr = btrfs_listxattr, 10294 .permission = btrfs_permission, 10295 .get_inode_acl = btrfs_get_acl, 10296 .set_acl = btrfs_set_acl, 10297 .update_time = btrfs_update_time, 10298 .tmpfile = btrfs_tmpfile, 10299 .fileattr_get = btrfs_fileattr_get, 10300 .fileattr_set = btrfs_fileattr_set, 10301 }; 10302 10303 static const struct file_operations btrfs_dir_file_operations = { 10304 .llseek = btrfs_dir_llseek, 10305 .read = generic_read_dir, 10306 .iterate_shared = btrfs_real_readdir, 10307 .open = btrfs_opendir, 10308 .unlocked_ioctl = btrfs_ioctl, 10309 #ifdef CONFIG_COMPAT 10310 .compat_ioctl = btrfs_compat_ioctl, 10311 #endif 10312 .release = btrfs_release_file, 10313 .fsync = btrfs_sync_file, 10314 }; 10315 10316 /* 10317 * btrfs doesn't support the bmap operation because swapfiles 10318 * use bmap to make a mapping of extents in the file. They assume 10319 * these extents won't change over the life of the file and they 10320 * use the bmap result to do IO directly to the drive. 10321 * 10322 * the btrfs bmap call would return logical addresses that aren't 10323 * suitable for IO and they also will change frequently as COW 10324 * operations happen. So, swapfile + btrfs == corruption. 10325 * 10326 * For now we're avoiding this by dropping bmap. 10327 */ 10328 static const struct address_space_operations btrfs_aops = { 10329 .read_folio = btrfs_read_folio, 10330 .writepages = btrfs_writepages, 10331 .readahead = btrfs_readahead, 10332 .invalidate_folio = btrfs_invalidate_folio, 10333 .launder_folio = btrfs_launder_folio, 10334 .release_folio = btrfs_release_folio, 10335 .migrate_folio = btrfs_migrate_folio, 10336 .dirty_folio = filemap_dirty_folio, 10337 .error_remove_folio = generic_error_remove_folio, 10338 .swap_activate = btrfs_swap_activate, 10339 .swap_deactivate = btrfs_swap_deactivate, 10340 }; 10341 10342 static const struct inode_operations btrfs_file_inode_operations = { 10343 .getattr = btrfs_getattr, 10344 .setattr = btrfs_setattr, 10345 .listxattr = btrfs_listxattr, 10346 .permission = btrfs_permission, 10347 .fiemap = btrfs_fiemap, 10348 .get_inode_acl = btrfs_get_acl, 10349 .set_acl = btrfs_set_acl, 10350 .update_time = btrfs_update_time, 10351 .fileattr_get = btrfs_fileattr_get, 10352 .fileattr_set = btrfs_fileattr_set, 10353 }; 10354 static const struct inode_operations btrfs_special_inode_operations = { 10355 .getattr = btrfs_getattr, 10356 .setattr = btrfs_setattr, 10357 .permission = btrfs_permission, 10358 .listxattr = btrfs_listxattr, 10359 .get_inode_acl = btrfs_get_acl, 10360 .set_acl = btrfs_set_acl, 10361 .update_time = btrfs_update_time, 10362 }; 10363 static const struct inode_operations btrfs_symlink_inode_operations = { 10364 .get_link = page_get_link, 10365 .getattr = btrfs_getattr, 10366 .setattr = btrfs_setattr, 10367 .permission = btrfs_permission, 10368 .listxattr = btrfs_listxattr, 10369 .update_time = btrfs_update_time, 10370 }; 10371 10372 const struct dentry_operations btrfs_dentry_operations = { 10373 .d_delete = btrfs_dentry_delete, 10374 }; 10375