1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct folio *locked_folio, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct folio *folio; 403 404 if (locked_folio) { 405 page_start = folio_pos(locked_folio); 406 page_end = page_start + folio_size(locked_folio) - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0); 425 index++; 426 if (IS_ERR(folio)) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 435 offset, bytes); 436 folio_put(folio); 437 } 438 439 if (locked_folio) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + folio_size(locked_folio)) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - folio_pos(locked_folio) - 451 folio_size(locked_folio); 452 offset = folio_pos(locked_folio) + folio_size(locked_folio); 453 } 454 } 455 456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 457 } 458 459 static int btrfs_dirty_inode(struct btrfs_inode *inode); 460 461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 462 struct btrfs_new_inode_args *args) 463 { 464 int err; 465 466 if (args->default_acl) { 467 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 468 ACL_TYPE_DEFAULT); 469 if (err) 470 return err; 471 } 472 if (args->acl) { 473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 474 if (err) 475 return err; 476 } 477 if (!args->default_acl && !args->acl) 478 cache_no_acl(args->inode); 479 return btrfs_xattr_security_init(trans, args->inode, args->dir, 480 &args->dentry->d_name); 481 } 482 483 /* 484 * this does all the hard work for inserting an inline extent into 485 * the btree. The caller should have done a btrfs_drop_extents so that 486 * no overlapping inline items exist in the btree 487 */ 488 static int insert_inline_extent(struct btrfs_trans_handle *trans, 489 struct btrfs_path *path, 490 struct btrfs_inode *inode, bool extent_inserted, 491 size_t size, size_t compressed_size, 492 int compress_type, 493 struct folio *compressed_folio, 494 bool update_i_size) 495 { 496 struct btrfs_root *root = inode->root; 497 struct extent_buffer *leaf; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 struct folio *folio; 558 559 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, 560 0, 0, 0); 561 ASSERT(!IS_ERR(folio)); 562 btrfs_set_file_extent_compression(leaf, ei, 0); 563 kaddr = kmap_local_folio(folio, 0); 564 write_extent_buffer(leaf, kaddr, ptr, size); 565 kunmap_local(kaddr); 566 folio_put(folio); 567 } 568 btrfs_mark_buffer_dirty(trans, leaf); 569 btrfs_release_path(path); 570 571 /* 572 * We align size to sectorsize for inline extents just for simplicity 573 * sake. 574 */ 575 ret = btrfs_inode_set_file_extent_range(inode, 0, 576 ALIGN(size, root->fs_info->sectorsize)); 577 if (ret) 578 goto fail; 579 580 /* 581 * We're an inline extent, so nobody can extend the file past i_size 582 * without locking a page we already have locked. 583 * 584 * We must do any i_size and inode updates before we unlock the pages. 585 * Otherwise we could end up racing with unlink. 586 */ 587 i_size = i_size_read(&inode->vfs_inode); 588 if (update_i_size && size > i_size) { 589 i_size_write(&inode->vfs_inode, size); 590 i_size = size; 591 } 592 inode->disk_i_size = i_size; 593 594 fail: 595 return ret; 596 } 597 598 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 599 u64 offset, u64 size, 600 size_t compressed_size) 601 { 602 struct btrfs_fs_info *fs_info = inode->root->fs_info; 603 u64 data_len = (compressed_size ?: size); 604 605 /* Inline extents must start at offset 0. */ 606 if (offset != 0) 607 return false; 608 609 /* 610 * Due to the page size limit, for subpage we can only trigger the 611 * writeback for the dirty sectors of page, that means data writeback 612 * is doing more writeback than what we want. 613 * 614 * This is especially unexpected for some call sites like fallocate, 615 * where we only increase i_size after everything is done. 616 * This means we can trigger inline extent even if we didn't want to. 617 * So here we skip inline extent creation completely. 618 */ 619 if (fs_info->sectorsize != PAGE_SIZE) 620 return false; 621 622 /* Inline extents are limited to sectorsize. */ 623 if (size > fs_info->sectorsize) 624 return false; 625 626 /* We cannot exceed the maximum inline data size. */ 627 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 628 return false; 629 630 /* We cannot exceed the user specified max_inline size. */ 631 if (data_len > fs_info->max_inline) 632 return false; 633 634 /* Inline extents must be the entirety of the file. */ 635 if (size < i_size_read(&inode->vfs_inode)) 636 return false; 637 638 return true; 639 } 640 641 /* 642 * conditionally insert an inline extent into the file. This 643 * does the checks required to make sure the data is small enough 644 * to fit as an inline extent. 645 * 646 * If being used directly, you must have already checked we're allowed to cow 647 * the range by getting true from can_cow_file_range_inline(). 648 */ 649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 650 u64 size, size_t compressed_size, 651 int compress_type, 652 struct folio *compressed_folio, 653 bool update_i_size) 654 { 655 struct btrfs_drop_extents_args drop_args = { 0 }; 656 struct btrfs_root *root = inode->root; 657 struct btrfs_fs_info *fs_info = root->fs_info; 658 struct btrfs_trans_handle *trans; 659 u64 data_len = (compressed_size ?: size); 660 int ret; 661 struct btrfs_path *path; 662 663 path = btrfs_alloc_path(); 664 if (!path) 665 return -ENOMEM; 666 667 trans = btrfs_join_transaction(root); 668 if (IS_ERR(trans)) { 669 btrfs_free_path(path); 670 return PTR_ERR(trans); 671 } 672 trans->block_rsv = &inode->block_rsv; 673 674 drop_args.path = path; 675 drop_args.start = 0; 676 drop_args.end = fs_info->sectorsize; 677 drop_args.drop_cache = true; 678 drop_args.replace_extent = true; 679 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 680 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 681 if (ret) { 682 btrfs_abort_transaction(trans, ret); 683 goto out; 684 } 685 686 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 687 size, compressed_size, compress_type, 688 compressed_folio, update_i_size); 689 if (ret && ret != -ENOSPC) { 690 btrfs_abort_transaction(trans, ret); 691 goto out; 692 } else if (ret == -ENOSPC) { 693 ret = 1; 694 goto out; 695 } 696 697 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 698 ret = btrfs_update_inode(trans, inode); 699 if (ret && ret != -ENOSPC) { 700 btrfs_abort_transaction(trans, ret); 701 goto out; 702 } else if (ret == -ENOSPC) { 703 ret = 1; 704 goto out; 705 } 706 707 btrfs_set_inode_full_sync(inode); 708 out: 709 /* 710 * Don't forget to free the reserved space, as for inlined extent 711 * it won't count as data extent, free them directly here. 712 * And at reserve time, it's always aligned to page size, so 713 * just free one page here. 714 */ 715 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 716 btrfs_free_path(path); 717 btrfs_end_transaction(trans); 718 return ret; 719 } 720 721 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 722 struct folio *locked_folio, 723 u64 offset, u64 end, 724 size_t compressed_size, 725 int compress_type, 726 struct folio *compressed_folio, 727 bool update_i_size) 728 { 729 struct extent_state *cached = NULL; 730 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 731 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 732 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 733 int ret; 734 735 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 736 return 1; 737 738 lock_extent(&inode->io_tree, offset, end, &cached); 739 ret = __cow_file_range_inline(inode, offset, size, compressed_size, 740 compress_type, compressed_folio, 741 update_i_size); 742 if (ret > 0) { 743 unlock_extent(&inode->io_tree, offset, end, &cached); 744 return ret; 745 } 746 747 /* 748 * In the successful case (ret == 0 here), cow_file_range will return 1. 749 * 750 * Quite a bit further up the callstack in extent_writepage(), ret == 1 751 * is treated as a short circuited success and does not unlock the folio, 752 * so we must do it here. 753 * 754 * In the failure case, the locked_folio does get unlocked by 755 * btrfs_folio_end_all_writers, which asserts that it is still locked 756 * at that point, so we must *not* unlock it here. 757 * 758 * The other two callsites in compress_file_range do not have a 759 * locked_folio, so they are not relevant to this logic. 760 */ 761 if (ret == 0) 762 locked_folio = NULL; 763 764 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 765 clear_flags, PAGE_UNLOCK | 766 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 767 return ret; 768 } 769 770 struct async_extent { 771 u64 start; 772 u64 ram_size; 773 u64 compressed_size; 774 struct folio **folios; 775 unsigned long nr_folios; 776 int compress_type; 777 struct list_head list; 778 }; 779 780 struct async_chunk { 781 struct btrfs_inode *inode; 782 struct folio *locked_folio; 783 u64 start; 784 u64 end; 785 blk_opf_t write_flags; 786 struct list_head extents; 787 struct cgroup_subsys_state *blkcg_css; 788 struct btrfs_work work; 789 struct async_cow *async_cow; 790 }; 791 792 struct async_cow { 793 atomic_t num_chunks; 794 struct async_chunk chunks[]; 795 }; 796 797 static noinline int add_async_extent(struct async_chunk *cow, 798 u64 start, u64 ram_size, 799 u64 compressed_size, 800 struct folio **folios, 801 unsigned long nr_folios, 802 int compress_type) 803 { 804 struct async_extent *async_extent; 805 806 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 807 if (!async_extent) 808 return -ENOMEM; 809 async_extent->start = start; 810 async_extent->ram_size = ram_size; 811 async_extent->compressed_size = compressed_size; 812 async_extent->folios = folios; 813 async_extent->nr_folios = nr_folios; 814 async_extent->compress_type = compress_type; 815 list_add_tail(&async_extent->list, &cow->extents); 816 return 0; 817 } 818 819 /* 820 * Check if the inode needs to be submitted to compression, based on mount 821 * options, defragmentation, properties or heuristics. 822 */ 823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 824 u64 end) 825 { 826 struct btrfs_fs_info *fs_info = inode->root->fs_info; 827 828 if (!btrfs_inode_can_compress(inode)) { 829 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 830 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 831 btrfs_ino(inode)); 832 return 0; 833 } 834 /* 835 * Special check for subpage. 836 * 837 * We lock the full page then run each delalloc range in the page, thus 838 * for the following case, we will hit some subpage specific corner case: 839 * 840 * 0 32K 64K 841 * | |///////| |///////| 842 * \- A \- B 843 * 844 * In above case, both range A and range B will try to unlock the full 845 * page [0, 64K), causing the one finished later will have page 846 * unlocked already, triggering various page lock requirement BUG_ON()s. 847 * 848 * So here we add an artificial limit that subpage compression can only 849 * if the range is fully page aligned. 850 * 851 * In theory we only need to ensure the first page is fully covered, but 852 * the tailing partial page will be locked until the full compression 853 * finishes, delaying the write of other range. 854 * 855 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 856 * first to prevent any submitted async extent to unlock the full page. 857 * By this, we can ensure for subpage case that only the last async_cow 858 * will unlock the full page. 859 */ 860 if (fs_info->sectorsize < PAGE_SIZE) { 861 if (!PAGE_ALIGNED(start) || 862 !PAGE_ALIGNED(end + 1)) 863 return 0; 864 } 865 866 /* force compress */ 867 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 868 return 1; 869 /* defrag ioctl */ 870 if (inode->defrag_compress) 871 return 1; 872 /* bad compression ratios */ 873 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 874 return 0; 875 if (btrfs_test_opt(fs_info, COMPRESS) || 876 inode->flags & BTRFS_INODE_COMPRESS || 877 inode->prop_compress) 878 return btrfs_compress_heuristic(inode, start, end); 879 return 0; 880 } 881 882 static inline void inode_should_defrag(struct btrfs_inode *inode, 883 u64 start, u64 end, u64 num_bytes, u32 small_write) 884 { 885 /* If this is a small write inside eof, kick off a defrag */ 886 if (num_bytes < small_write && 887 (start > 0 || end + 1 < inode->disk_i_size)) 888 btrfs_add_inode_defrag(inode, small_write); 889 } 890 891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 892 { 893 unsigned long end_index = end >> PAGE_SHIFT; 894 struct folio *folio; 895 int ret = 0; 896 897 for (unsigned long index = start >> PAGE_SHIFT; 898 index <= end_index; index++) { 899 folio = __filemap_get_folio(inode->i_mapping, index, 0, 0); 900 if (IS_ERR(folio)) { 901 if (!ret) 902 ret = PTR_ERR(folio); 903 continue; 904 } 905 folio_clear_dirty_for_io(folio); 906 folio_put(folio); 907 } 908 return ret; 909 } 910 911 /* 912 * Work queue call back to started compression on a file and pages. 913 * 914 * This is done inside an ordered work queue, and the compression is spread 915 * across many cpus. The actual IO submission is step two, and the ordered work 916 * queue takes care of making sure that happens in the same order things were 917 * put onto the queue by writepages and friends. 918 * 919 * If this code finds it can't get good compression, it puts an entry onto the 920 * work queue to write the uncompressed bytes. This makes sure that both 921 * compressed inodes and uncompressed inodes are written in the same order that 922 * the flusher thread sent them down. 923 */ 924 static void compress_file_range(struct btrfs_work *work) 925 { 926 struct async_chunk *async_chunk = 927 container_of(work, struct async_chunk, work); 928 struct btrfs_inode *inode = async_chunk->inode; 929 struct btrfs_fs_info *fs_info = inode->root->fs_info; 930 struct address_space *mapping = inode->vfs_inode.i_mapping; 931 u64 blocksize = fs_info->sectorsize; 932 u64 start = async_chunk->start; 933 u64 end = async_chunk->end; 934 u64 actual_end; 935 u64 i_size; 936 int ret = 0; 937 struct folio **folios; 938 unsigned long nr_folios; 939 unsigned long total_compressed = 0; 940 unsigned long total_in = 0; 941 unsigned int poff; 942 int i; 943 int compress_type = fs_info->compress_type; 944 945 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 946 947 /* 948 * We need to call clear_page_dirty_for_io on each page in the range. 949 * Otherwise applications with the file mmap'd can wander in and change 950 * the page contents while we are compressing them. 951 */ 952 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 953 954 /* 955 * All the folios should have been locked thus no failure. 956 * 957 * And even if some folios are missing, btrfs_compress_folios() 958 * would handle them correctly, so here just do an ASSERT() check for 959 * early logic errors. 960 */ 961 ASSERT(ret == 0); 962 963 /* 964 * We need to save i_size before now because it could change in between 965 * us evaluating the size and assigning it. This is because we lock and 966 * unlock the page in truncate and fallocate, and then modify the i_size 967 * later on. 968 * 969 * The barriers are to emulate READ_ONCE, remove that once i_size_read 970 * does that for us. 971 */ 972 barrier(); 973 i_size = i_size_read(&inode->vfs_inode); 974 barrier(); 975 actual_end = min_t(u64, i_size, end + 1); 976 again: 977 folios = NULL; 978 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 979 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 980 981 /* 982 * we don't want to send crud past the end of i_size through 983 * compression, that's just a waste of CPU time. So, if the 984 * end of the file is before the start of our current 985 * requested range of bytes, we bail out to the uncompressed 986 * cleanup code that can deal with all of this. 987 * 988 * It isn't really the fastest way to fix things, but this is a 989 * very uncommon corner. 990 */ 991 if (actual_end <= start) 992 goto cleanup_and_bail_uncompressed; 993 994 total_compressed = actual_end - start; 995 996 /* 997 * Skip compression for a small file range(<=blocksize) that 998 * isn't an inline extent, since it doesn't save disk space at all. 999 */ 1000 if (total_compressed <= blocksize && 1001 (start > 0 || end + 1 < inode->disk_i_size)) 1002 goto cleanup_and_bail_uncompressed; 1003 1004 /* 1005 * For subpage case, we require full page alignment for the sector 1006 * aligned range. 1007 * Thus we must also check against @actual_end, not just @end. 1008 */ 1009 if (blocksize < PAGE_SIZE) { 1010 if (!PAGE_ALIGNED(start) || 1011 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 1012 goto cleanup_and_bail_uncompressed; 1013 } 1014 1015 total_compressed = min_t(unsigned long, total_compressed, 1016 BTRFS_MAX_UNCOMPRESSED); 1017 total_in = 0; 1018 ret = 0; 1019 1020 /* 1021 * We do compression for mount -o compress and when the inode has not 1022 * been flagged as NOCOMPRESS. This flag can change at any time if we 1023 * discover bad compression ratios. 1024 */ 1025 if (!inode_need_compress(inode, start, end)) 1026 goto cleanup_and_bail_uncompressed; 1027 1028 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1029 if (!folios) { 1030 /* 1031 * Memory allocation failure is not a fatal error, we can fall 1032 * back to uncompressed code. 1033 */ 1034 goto cleanup_and_bail_uncompressed; 1035 } 1036 1037 if (inode->defrag_compress) 1038 compress_type = inode->defrag_compress; 1039 else if (inode->prop_compress) 1040 compress_type = inode->prop_compress; 1041 1042 /* Compression level is applied here. */ 1043 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1044 mapping, start, folios, &nr_folios, &total_in, 1045 &total_compressed); 1046 if (ret) 1047 goto mark_incompressible; 1048 1049 /* 1050 * Zero the tail end of the last page, as we might be sending it down 1051 * to disk. 1052 */ 1053 poff = offset_in_page(total_compressed); 1054 if (poff) 1055 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1056 1057 /* 1058 * Try to create an inline extent. 1059 * 1060 * If we didn't compress the entire range, try to create an uncompressed 1061 * inline extent, else a compressed one. 1062 * 1063 * Check cow_file_range() for why we don't even try to create inline 1064 * extent for the subpage case. 1065 */ 1066 if (total_in < actual_end) 1067 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1068 BTRFS_COMPRESS_NONE, NULL, false); 1069 else 1070 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1071 compress_type, folios[0], false); 1072 if (ret <= 0) { 1073 if (ret < 0) 1074 mapping_set_error(mapping, -EIO); 1075 goto free_pages; 1076 } 1077 1078 /* 1079 * We aren't doing an inline extent. Round the compressed size up to a 1080 * block size boundary so the allocator does sane things. 1081 */ 1082 total_compressed = ALIGN(total_compressed, blocksize); 1083 1084 /* 1085 * One last check to make sure the compression is really a win, compare 1086 * the page count read with the blocks on disk, compression must free at 1087 * least one sector. 1088 */ 1089 total_in = round_up(total_in, fs_info->sectorsize); 1090 if (total_compressed + blocksize > total_in) 1091 goto mark_incompressible; 1092 1093 /* 1094 * The async work queues will take care of doing actual allocation on 1095 * disk for these compressed pages, and will submit the bios. 1096 */ 1097 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1098 nr_folios, compress_type); 1099 BUG_ON(ret); 1100 if (start + total_in < end) { 1101 start += total_in; 1102 cond_resched(); 1103 goto again; 1104 } 1105 return; 1106 1107 mark_incompressible: 1108 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1109 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1110 cleanup_and_bail_uncompressed: 1111 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1112 BTRFS_COMPRESS_NONE); 1113 BUG_ON(ret); 1114 free_pages: 1115 if (folios) { 1116 for (i = 0; i < nr_folios; i++) { 1117 WARN_ON(folios[i]->mapping); 1118 btrfs_free_compr_folio(folios[i]); 1119 } 1120 kfree(folios); 1121 } 1122 } 1123 1124 static void free_async_extent_pages(struct async_extent *async_extent) 1125 { 1126 int i; 1127 1128 if (!async_extent->folios) 1129 return; 1130 1131 for (i = 0; i < async_extent->nr_folios; i++) { 1132 WARN_ON(async_extent->folios[i]->mapping); 1133 btrfs_free_compr_folio(async_extent->folios[i]); 1134 } 1135 kfree(async_extent->folios); 1136 async_extent->nr_folios = 0; 1137 async_extent->folios = NULL; 1138 } 1139 1140 static void submit_uncompressed_range(struct btrfs_inode *inode, 1141 struct async_extent *async_extent, 1142 struct folio *locked_folio) 1143 { 1144 u64 start = async_extent->start; 1145 u64 end = async_extent->start + async_extent->ram_size - 1; 1146 int ret; 1147 struct writeback_control wbc = { 1148 .sync_mode = WB_SYNC_ALL, 1149 .range_start = start, 1150 .range_end = end, 1151 .no_cgroup_owner = 1, 1152 }; 1153 1154 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1155 ret = run_delalloc_cow(inode, locked_folio, start, end, 1156 &wbc, false); 1157 wbc_detach_inode(&wbc); 1158 if (ret < 0) { 1159 btrfs_cleanup_ordered_extents(inode, locked_folio, 1160 start, end - start + 1); 1161 if (locked_folio) { 1162 const u64 page_start = folio_pos(locked_folio); 1163 1164 folio_start_writeback(locked_folio); 1165 folio_end_writeback(locked_folio); 1166 btrfs_mark_ordered_io_finished(inode, locked_folio, 1167 page_start, PAGE_SIZE, 1168 !ret); 1169 mapping_set_error(locked_folio->mapping, ret); 1170 folio_unlock(locked_folio); 1171 } 1172 } 1173 } 1174 1175 static void submit_one_async_extent(struct async_chunk *async_chunk, 1176 struct async_extent *async_extent, 1177 u64 *alloc_hint) 1178 { 1179 struct btrfs_inode *inode = async_chunk->inode; 1180 struct extent_io_tree *io_tree = &inode->io_tree; 1181 struct btrfs_root *root = inode->root; 1182 struct btrfs_fs_info *fs_info = root->fs_info; 1183 struct btrfs_ordered_extent *ordered; 1184 struct btrfs_file_extent file_extent; 1185 struct btrfs_key ins; 1186 struct folio *locked_folio = NULL; 1187 struct extent_state *cached = NULL; 1188 struct extent_map *em; 1189 int ret = 0; 1190 u64 start = async_extent->start; 1191 u64 end = async_extent->start + async_extent->ram_size - 1; 1192 1193 if (async_chunk->blkcg_css) 1194 kthread_associate_blkcg(async_chunk->blkcg_css); 1195 1196 /* 1197 * If async_chunk->locked_folio is in the async_extent range, we need to 1198 * handle it. 1199 */ 1200 if (async_chunk->locked_folio) { 1201 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1202 u64 locked_folio_end = locked_folio_start + 1203 folio_size(async_chunk->locked_folio) - 1; 1204 1205 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1206 locked_folio = async_chunk->locked_folio; 1207 } 1208 1209 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1210 submit_uncompressed_range(inode, async_extent, locked_folio); 1211 goto done; 1212 } 1213 1214 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1215 async_extent->compressed_size, 1216 async_extent->compressed_size, 1217 0, *alloc_hint, &ins, 1, 1); 1218 if (ret) { 1219 /* 1220 * We can't reserve contiguous space for the compressed size. 1221 * Unlikely, but it's possible that we could have enough 1222 * non-contiguous space for the uncompressed size instead. So 1223 * fall back to uncompressed. 1224 */ 1225 submit_uncompressed_range(inode, async_extent, locked_folio); 1226 goto done; 1227 } 1228 1229 lock_extent(io_tree, start, end, &cached); 1230 1231 /* Here we're doing allocation and writeback of the compressed pages */ 1232 file_extent.disk_bytenr = ins.objectid; 1233 file_extent.disk_num_bytes = ins.offset; 1234 file_extent.ram_bytes = async_extent->ram_size; 1235 file_extent.num_bytes = async_extent->ram_size; 1236 file_extent.offset = 0; 1237 file_extent.compression = async_extent->compress_type; 1238 1239 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1240 if (IS_ERR(em)) { 1241 ret = PTR_ERR(em); 1242 goto out_free_reserve; 1243 } 1244 free_extent_map(em); 1245 1246 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1247 1 << BTRFS_ORDERED_COMPRESSED); 1248 if (IS_ERR(ordered)) { 1249 btrfs_drop_extent_map_range(inode, start, end, false); 1250 ret = PTR_ERR(ordered); 1251 goto out_free_reserve; 1252 } 1253 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1254 1255 /* Clear dirty, set writeback and unlock the pages. */ 1256 extent_clear_unlock_delalloc(inode, start, end, 1257 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1258 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1259 btrfs_submit_compressed_write(ordered, 1260 async_extent->folios, /* compressed_folios */ 1261 async_extent->nr_folios, 1262 async_chunk->write_flags, true); 1263 *alloc_hint = ins.objectid + ins.offset; 1264 done: 1265 if (async_chunk->blkcg_css) 1266 kthread_associate_blkcg(NULL); 1267 kfree(async_extent); 1268 return; 1269 1270 out_free_reserve: 1271 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1272 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1273 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1274 extent_clear_unlock_delalloc(inode, start, end, 1275 NULL, &cached, 1276 EXTENT_LOCKED | EXTENT_DELALLOC | 1277 EXTENT_DELALLOC_NEW | 1278 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1279 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1280 PAGE_END_WRITEBACK); 1281 free_async_extent_pages(async_extent); 1282 if (async_chunk->blkcg_css) 1283 kthread_associate_blkcg(NULL); 1284 btrfs_debug(fs_info, 1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1286 btrfs_root_id(root), btrfs_ino(inode), start, 1287 async_extent->ram_size, ret); 1288 kfree(async_extent); 1289 } 1290 1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1292 u64 num_bytes) 1293 { 1294 struct extent_map_tree *em_tree = &inode->extent_tree; 1295 struct extent_map *em; 1296 u64 alloc_hint = 0; 1297 1298 read_lock(&em_tree->lock); 1299 em = search_extent_mapping(em_tree, start, num_bytes); 1300 if (em) { 1301 /* 1302 * if block start isn't an actual block number then find the 1303 * first block in this inode and use that as a hint. If that 1304 * block is also bogus then just don't worry about it. 1305 */ 1306 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1307 free_extent_map(em); 1308 em = search_extent_mapping(em_tree, 0, 0); 1309 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1310 alloc_hint = extent_map_block_start(em); 1311 if (em) 1312 free_extent_map(em); 1313 } else { 1314 alloc_hint = extent_map_block_start(em); 1315 free_extent_map(em); 1316 } 1317 } 1318 read_unlock(&em_tree->lock); 1319 1320 return alloc_hint; 1321 } 1322 1323 /* 1324 * when extent_io.c finds a delayed allocation range in the file, 1325 * the call backs end up in this code. The basic idea is to 1326 * allocate extents on disk for the range, and create ordered data structs 1327 * in ram to track those extents. 1328 * 1329 * locked_folio is the folio that writepage had locked already. We use 1330 * it to make sure we don't do extra locks or unlocks. 1331 * 1332 * When this function fails, it unlocks all pages except @locked_folio. 1333 * 1334 * When this function successfully creates an inline extent, it returns 1 and 1335 * unlocks all pages including locked_folio and starts I/O on them. 1336 * (In reality inline extents are limited to a single page, so locked_folio is 1337 * the only page handled anyway). 1338 * 1339 * When this function succeed and creates a normal extent, the page locking 1340 * status depends on the passed in flags: 1341 * 1342 * - If @keep_locked is set, all pages are kept locked. 1343 * - Else all pages except for @locked_folio are unlocked. 1344 * 1345 * When a failure happens in the second or later iteration of the 1346 * while-loop, the ordered extents created in previous iterations are kept 1347 * intact. So, the caller must clean them up by calling 1348 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1349 * example. 1350 */ 1351 static noinline int cow_file_range(struct btrfs_inode *inode, 1352 struct folio *locked_folio, u64 start, 1353 u64 end, u64 *done_offset, 1354 bool keep_locked, bool no_inline) 1355 { 1356 struct btrfs_root *root = inode->root; 1357 struct btrfs_fs_info *fs_info = root->fs_info; 1358 struct extent_state *cached = NULL; 1359 u64 alloc_hint = 0; 1360 u64 orig_start = start; 1361 u64 num_bytes; 1362 unsigned long ram_size; 1363 u64 cur_alloc_size = 0; 1364 u64 min_alloc_size; 1365 u64 blocksize = fs_info->sectorsize; 1366 struct btrfs_key ins; 1367 struct extent_map *em; 1368 unsigned clear_bits; 1369 unsigned long page_ops; 1370 bool extent_reserved = false; 1371 int ret = 0; 1372 1373 if (btrfs_is_free_space_inode(inode)) { 1374 ret = -EINVAL; 1375 goto out_unlock; 1376 } 1377 1378 num_bytes = ALIGN(end - start + 1, blocksize); 1379 num_bytes = max(blocksize, num_bytes); 1380 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1381 1382 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1383 1384 if (!no_inline) { 1385 /* lets try to make an inline extent */ 1386 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1387 BTRFS_COMPRESS_NONE, NULL, false); 1388 if (ret <= 0) { 1389 /* 1390 * We succeeded, return 1 so the caller knows we're done 1391 * with this page and already handled the IO. 1392 * 1393 * If there was an error then cow_file_range_inline() has 1394 * already done the cleanup. 1395 */ 1396 if (ret == 0) 1397 ret = 1; 1398 goto done; 1399 } 1400 } 1401 1402 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1403 1404 /* 1405 * Relocation relies on the relocated extents to have exactly the same 1406 * size as the original extents. Normally writeback for relocation data 1407 * extents follows a NOCOW path because relocation preallocates the 1408 * extents. However, due to an operation such as scrub turning a block 1409 * group to RO mode, it may fallback to COW mode, so we must make sure 1410 * an extent allocated during COW has exactly the requested size and can 1411 * not be split into smaller extents, otherwise relocation breaks and 1412 * fails during the stage where it updates the bytenr of file extent 1413 * items. 1414 */ 1415 if (btrfs_is_data_reloc_root(root)) 1416 min_alloc_size = num_bytes; 1417 else 1418 min_alloc_size = fs_info->sectorsize; 1419 1420 while (num_bytes > 0) { 1421 struct btrfs_ordered_extent *ordered; 1422 struct btrfs_file_extent file_extent; 1423 1424 cur_alloc_size = num_bytes; 1425 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1426 min_alloc_size, 0, alloc_hint, 1427 &ins, 1, 1); 1428 if (ret == -EAGAIN) { 1429 /* 1430 * btrfs_reserve_extent only returns -EAGAIN for zoned 1431 * file systems, which is an indication that there are 1432 * no active zones to allocate from at the moment. 1433 * 1434 * If this is the first loop iteration, wait for at 1435 * least one zone to finish before retrying the 1436 * allocation. Otherwise ask the caller to write out 1437 * the already allocated blocks before coming back to 1438 * us, or return -ENOSPC if it can't handle retries. 1439 */ 1440 ASSERT(btrfs_is_zoned(fs_info)); 1441 if (start == orig_start) { 1442 wait_on_bit_io(&inode->root->fs_info->flags, 1443 BTRFS_FS_NEED_ZONE_FINISH, 1444 TASK_UNINTERRUPTIBLE); 1445 continue; 1446 } 1447 if (done_offset) { 1448 *done_offset = start - 1; 1449 return 0; 1450 } 1451 ret = -ENOSPC; 1452 } 1453 if (ret < 0) 1454 goto out_unlock; 1455 cur_alloc_size = ins.offset; 1456 extent_reserved = true; 1457 1458 ram_size = ins.offset; 1459 file_extent.disk_bytenr = ins.objectid; 1460 file_extent.disk_num_bytes = ins.offset; 1461 file_extent.num_bytes = ins.offset; 1462 file_extent.ram_bytes = ins.offset; 1463 file_extent.offset = 0; 1464 file_extent.compression = BTRFS_COMPRESS_NONE; 1465 1466 lock_extent(&inode->io_tree, start, start + ram_size - 1, 1467 &cached); 1468 1469 em = btrfs_create_io_em(inode, start, &file_extent, 1470 BTRFS_ORDERED_REGULAR); 1471 if (IS_ERR(em)) { 1472 unlock_extent(&inode->io_tree, start, 1473 start + ram_size - 1, &cached); 1474 ret = PTR_ERR(em); 1475 goto out_reserve; 1476 } 1477 free_extent_map(em); 1478 1479 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1480 1 << BTRFS_ORDERED_REGULAR); 1481 if (IS_ERR(ordered)) { 1482 unlock_extent(&inode->io_tree, start, 1483 start + ram_size - 1, &cached); 1484 ret = PTR_ERR(ordered); 1485 goto out_drop_extent_cache; 1486 } 1487 1488 if (btrfs_is_data_reloc_root(root)) { 1489 ret = btrfs_reloc_clone_csums(ordered); 1490 1491 /* 1492 * Only drop cache here, and process as normal. 1493 * 1494 * We must not allow extent_clear_unlock_delalloc() 1495 * at out_unlock label to free meta of this ordered 1496 * extent, as its meta should be freed by 1497 * btrfs_finish_ordered_io(). 1498 * 1499 * So we must continue until @start is increased to 1500 * skip current ordered extent. 1501 */ 1502 if (ret) 1503 btrfs_drop_extent_map_range(inode, start, 1504 start + ram_size - 1, 1505 false); 1506 } 1507 btrfs_put_ordered_extent(ordered); 1508 1509 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1510 1511 /* 1512 * We're not doing compressed IO, don't unlock the first page 1513 * (which the caller expects to stay locked), don't clear any 1514 * dirty bits and don't set any writeback bits 1515 * 1516 * Do set the Ordered (Private2) bit so we know this page was 1517 * properly setup for writepage. 1518 */ 1519 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1520 page_ops |= PAGE_SET_ORDERED; 1521 1522 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1523 locked_folio, &cached, 1524 EXTENT_LOCKED | EXTENT_DELALLOC, 1525 page_ops); 1526 if (num_bytes < cur_alloc_size) 1527 num_bytes = 0; 1528 else 1529 num_bytes -= cur_alloc_size; 1530 alloc_hint = ins.objectid + ins.offset; 1531 start += cur_alloc_size; 1532 extent_reserved = false; 1533 1534 /* 1535 * btrfs_reloc_clone_csums() error, since start is increased 1536 * extent_clear_unlock_delalloc() at out_unlock label won't 1537 * free metadata of current ordered extent, we're OK to exit. 1538 */ 1539 if (ret) 1540 goto out_unlock; 1541 } 1542 done: 1543 if (done_offset) 1544 *done_offset = end; 1545 return ret; 1546 1547 out_drop_extent_cache: 1548 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1549 out_reserve: 1550 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1552 out_unlock: 1553 /* 1554 * Now, we have three regions to clean up: 1555 * 1556 * |-------(1)----|---(2)---|-------------(3)----------| 1557 * `- orig_start `- start `- start + cur_alloc_size `- end 1558 * 1559 * We process each region below. 1560 */ 1561 1562 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1563 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1564 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1565 1566 /* 1567 * For the range (1). We have already instantiated the ordered extents 1568 * for this region. They are cleaned up by 1569 * btrfs_cleanup_ordered_extents() in e.g, 1570 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1571 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1572 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1573 * function. 1574 * 1575 * However, in case of @keep_locked, we still need to unlock the pages 1576 * (except @locked_folio) to ensure all the pages are unlocked. 1577 */ 1578 if (keep_locked && orig_start < start) { 1579 if (!locked_folio) 1580 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1581 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1582 locked_folio, NULL, 0, page_ops); 1583 } 1584 1585 /* 1586 * At this point we're unlocked, we want to make sure we're only 1587 * clearing these flags under the extent lock, so lock the rest of the 1588 * range and clear everything up. 1589 */ 1590 lock_extent(&inode->io_tree, start, end, NULL); 1591 1592 /* 1593 * For the range (2). If we reserved an extent for our delalloc range 1594 * (or a subrange) and failed to create the respective ordered extent, 1595 * then it means that when we reserved the extent we decremented the 1596 * extent's size from the data space_info's bytes_may_use counter and 1597 * incremented the space_info's bytes_reserved counter by the same 1598 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1599 * to decrement again the data space_info's bytes_may_use counter, 1600 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1601 */ 1602 if (extent_reserved) { 1603 extent_clear_unlock_delalloc(inode, start, 1604 start + cur_alloc_size - 1, 1605 locked_folio, &cached, clear_bits, 1606 page_ops); 1607 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1608 start += cur_alloc_size; 1609 } 1610 1611 /* 1612 * For the range (3). We never touched the region. In addition to the 1613 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1614 * space_info's bytes_may_use counter, reserved in 1615 * btrfs_check_data_free_space(). 1616 */ 1617 if (start < end) { 1618 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1619 extent_clear_unlock_delalloc(inode, start, end, locked_folio, 1620 &cached, clear_bits, page_ops); 1621 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1622 } 1623 return ret; 1624 } 1625 1626 /* 1627 * Phase two of compressed writeback. This is the ordered portion of the code, 1628 * which only gets called in the order the work was queued. We walk all the 1629 * async extents created by compress_file_range and send them down to the disk. 1630 * 1631 * If called with @do_free == true then it'll try to finish the work and free 1632 * the work struct eventually. 1633 */ 1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1635 { 1636 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1637 work); 1638 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1639 struct async_extent *async_extent; 1640 unsigned long nr_pages; 1641 u64 alloc_hint = 0; 1642 1643 if (do_free) { 1644 struct async_cow *async_cow; 1645 1646 btrfs_add_delayed_iput(async_chunk->inode); 1647 if (async_chunk->blkcg_css) 1648 css_put(async_chunk->blkcg_css); 1649 1650 async_cow = async_chunk->async_cow; 1651 if (atomic_dec_and_test(&async_cow->num_chunks)) 1652 kvfree(async_cow); 1653 return; 1654 } 1655 1656 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1657 PAGE_SHIFT; 1658 1659 while (!list_empty(&async_chunk->extents)) { 1660 async_extent = list_entry(async_chunk->extents.next, 1661 struct async_extent, list); 1662 list_del(&async_extent->list); 1663 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1664 } 1665 1666 /* atomic_sub_return implies a barrier */ 1667 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1668 5 * SZ_1M) 1669 cond_wake_up_nomb(&fs_info->async_submit_wait); 1670 } 1671 1672 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1673 struct folio *locked_folio, u64 start, 1674 u64 end, struct writeback_control *wbc) 1675 { 1676 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1677 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1678 struct async_cow *ctx; 1679 struct async_chunk *async_chunk; 1680 unsigned long nr_pages; 1681 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1682 int i; 1683 unsigned nofs_flag; 1684 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1685 1686 nofs_flag = memalloc_nofs_save(); 1687 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1688 memalloc_nofs_restore(nofs_flag); 1689 if (!ctx) 1690 return false; 1691 1692 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1693 1694 async_chunk = ctx->chunks; 1695 atomic_set(&ctx->num_chunks, num_chunks); 1696 1697 for (i = 0; i < num_chunks; i++) { 1698 u64 cur_end = min(end, start + SZ_512K - 1); 1699 1700 /* 1701 * igrab is called higher up in the call chain, take only the 1702 * lightweight reference for the callback lifetime 1703 */ 1704 ihold(&inode->vfs_inode); 1705 async_chunk[i].async_cow = ctx; 1706 async_chunk[i].inode = inode; 1707 async_chunk[i].start = start; 1708 async_chunk[i].end = cur_end; 1709 async_chunk[i].write_flags = write_flags; 1710 INIT_LIST_HEAD(&async_chunk[i].extents); 1711 1712 /* 1713 * The locked_folio comes all the way from writepage and its 1714 * the original folio we were actually given. As we spread 1715 * this large delalloc region across multiple async_chunk 1716 * structs, only the first struct needs a pointer to 1717 * locked_folio. 1718 * 1719 * This way we don't need racey decisions about who is supposed 1720 * to unlock it. 1721 */ 1722 if (locked_folio) { 1723 /* 1724 * Depending on the compressibility, the pages might or 1725 * might not go through async. We want all of them to 1726 * be accounted against wbc once. Let's do it here 1727 * before the paths diverge. wbc accounting is used 1728 * only for foreign writeback detection and doesn't 1729 * need full accuracy. Just account the whole thing 1730 * against the first page. 1731 */ 1732 wbc_account_cgroup_owner(wbc, &locked_folio->page, 1733 cur_end - start); 1734 async_chunk[i].locked_folio = locked_folio; 1735 locked_folio = NULL; 1736 } else { 1737 async_chunk[i].locked_folio = NULL; 1738 } 1739 1740 if (blkcg_css != blkcg_root_css) { 1741 css_get(blkcg_css); 1742 async_chunk[i].blkcg_css = blkcg_css; 1743 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1744 } else { 1745 async_chunk[i].blkcg_css = NULL; 1746 } 1747 1748 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1749 submit_compressed_extents); 1750 1751 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1752 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1753 1754 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1755 1756 start = cur_end + 1; 1757 } 1758 return true; 1759 } 1760 1761 /* 1762 * Run the delalloc range from start to end, and write back any dirty pages 1763 * covered by the range. 1764 */ 1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1766 struct folio *locked_folio, u64 start, 1767 u64 end, struct writeback_control *wbc, 1768 bool pages_dirty) 1769 { 1770 u64 done_offset = end; 1771 int ret; 1772 1773 while (start <= end) { 1774 ret = cow_file_range(inode, locked_folio, start, end, 1775 &done_offset, true, false); 1776 if (ret) 1777 return ret; 1778 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1779 start, done_offset, wbc, pages_dirty); 1780 start = done_offset + 1; 1781 } 1782 1783 return 1; 1784 } 1785 1786 static int fallback_to_cow(struct btrfs_inode *inode, 1787 struct folio *locked_folio, const u64 start, 1788 const u64 end) 1789 { 1790 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1791 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1792 const u64 range_bytes = end + 1 - start; 1793 struct extent_io_tree *io_tree = &inode->io_tree; 1794 struct extent_state *cached_state = NULL; 1795 u64 range_start = start; 1796 u64 count; 1797 int ret; 1798 1799 /* 1800 * If EXTENT_NORESERVE is set it means that when the buffered write was 1801 * made we had not enough available data space and therefore we did not 1802 * reserve data space for it, since we though we could do NOCOW for the 1803 * respective file range (either there is prealloc extent or the inode 1804 * has the NOCOW bit set). 1805 * 1806 * However when we need to fallback to COW mode (because for example the 1807 * block group for the corresponding extent was turned to RO mode by a 1808 * scrub or relocation) we need to do the following: 1809 * 1810 * 1) We increment the bytes_may_use counter of the data space info. 1811 * If COW succeeds, it allocates a new data extent and after doing 1812 * that it decrements the space info's bytes_may_use counter and 1813 * increments its bytes_reserved counter by the same amount (we do 1814 * this at btrfs_add_reserved_bytes()). So we need to increment the 1815 * bytes_may_use counter to compensate (when space is reserved at 1816 * buffered write time, the bytes_may_use counter is incremented); 1817 * 1818 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1819 * that if the COW path fails for any reason, it decrements (through 1820 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1821 * data space info, which we incremented in the step above. 1822 * 1823 * If we need to fallback to cow and the inode corresponds to a free 1824 * space cache inode or an inode of the data relocation tree, we must 1825 * also increment bytes_may_use of the data space_info for the same 1826 * reason. Space caches and relocated data extents always get a prealloc 1827 * extent for them, however scrub or balance may have set the block 1828 * group that contains that extent to RO mode and therefore force COW 1829 * when starting writeback. 1830 */ 1831 lock_extent(io_tree, start, end, &cached_state); 1832 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1833 EXTENT_NORESERVE, 0, NULL); 1834 if (count > 0 || is_space_ino || is_reloc_ino) { 1835 u64 bytes = count; 1836 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1837 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1838 1839 if (is_space_ino || is_reloc_ino) 1840 bytes = range_bytes; 1841 1842 spin_lock(&sinfo->lock); 1843 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1844 spin_unlock(&sinfo->lock); 1845 1846 if (count > 0) 1847 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1848 NULL); 1849 } 1850 unlock_extent(io_tree, start, end, &cached_state); 1851 1852 /* 1853 * Don't try to create inline extents, as a mix of inline extent that 1854 * is written out and unlocked directly and a normal NOCOW extent 1855 * doesn't work. 1856 */ 1857 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1858 true); 1859 ASSERT(ret != 1); 1860 return ret; 1861 } 1862 1863 struct can_nocow_file_extent_args { 1864 /* Input fields. */ 1865 1866 /* Start file offset of the range we want to NOCOW. */ 1867 u64 start; 1868 /* End file offset (inclusive) of the range we want to NOCOW. */ 1869 u64 end; 1870 bool writeback_path; 1871 bool strict; 1872 /* 1873 * Free the path passed to can_nocow_file_extent() once it's not needed 1874 * anymore. 1875 */ 1876 bool free_path; 1877 1878 /* 1879 * Output fields. Only set when can_nocow_file_extent() returns 1. 1880 * The expected file extent for the NOCOW write. 1881 */ 1882 struct btrfs_file_extent file_extent; 1883 }; 1884 1885 /* 1886 * Check if we can NOCOW the file extent that the path points to. 1887 * This function may return with the path released, so the caller should check 1888 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1889 * 1890 * Returns: < 0 on error 1891 * 0 if we can not NOCOW 1892 * 1 if we can NOCOW 1893 */ 1894 static int can_nocow_file_extent(struct btrfs_path *path, 1895 struct btrfs_key *key, 1896 struct btrfs_inode *inode, 1897 struct can_nocow_file_extent_args *args) 1898 { 1899 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1900 struct extent_buffer *leaf = path->nodes[0]; 1901 struct btrfs_root *root = inode->root; 1902 struct btrfs_file_extent_item *fi; 1903 struct btrfs_root *csum_root; 1904 u64 io_start; 1905 u64 extent_end; 1906 u8 extent_type; 1907 int can_nocow = 0; 1908 int ret = 0; 1909 bool nowait = path->nowait; 1910 1911 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1912 extent_type = btrfs_file_extent_type(leaf, fi); 1913 1914 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1915 goto out; 1916 1917 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1918 extent_type == BTRFS_FILE_EXTENT_REG) 1919 goto out; 1920 1921 /* 1922 * If the extent was created before the generation where the last snapshot 1923 * for its subvolume was created, then this implies the extent is shared, 1924 * hence we must COW. 1925 */ 1926 if (!args->strict && 1927 btrfs_file_extent_generation(leaf, fi) <= 1928 btrfs_root_last_snapshot(&root->root_item)) 1929 goto out; 1930 1931 /* An explicit hole, must COW. */ 1932 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1933 goto out; 1934 1935 /* Compressed/encrypted/encoded extents must be COWed. */ 1936 if (btrfs_file_extent_compression(leaf, fi) || 1937 btrfs_file_extent_encryption(leaf, fi) || 1938 btrfs_file_extent_other_encoding(leaf, fi)) 1939 goto out; 1940 1941 extent_end = btrfs_file_extent_end(path); 1942 1943 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1944 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1945 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1946 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1947 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1948 1949 /* 1950 * The following checks can be expensive, as they need to take other 1951 * locks and do btree or rbtree searches, so release the path to avoid 1952 * blocking other tasks for too long. 1953 */ 1954 btrfs_release_path(path); 1955 1956 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1957 key->offset - args->file_extent.offset, 1958 args->file_extent.disk_bytenr, args->strict, path); 1959 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1960 if (ret != 0) 1961 goto out; 1962 1963 if (args->free_path) { 1964 /* 1965 * We don't need the path anymore, plus through the 1966 * btrfs_lookup_csums_list() call below we will end up allocating 1967 * another path. So free the path to avoid unnecessary extra 1968 * memory usage. 1969 */ 1970 btrfs_free_path(path); 1971 path = NULL; 1972 } 1973 1974 /* If there are pending snapshots for this root, we must COW. */ 1975 if (args->writeback_path && !is_freespace_inode && 1976 atomic_read(&root->snapshot_force_cow)) 1977 goto out; 1978 1979 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1980 args->file_extent.offset += args->start - key->offset; 1981 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1982 1983 /* 1984 * Force COW if csums exist in the range. This ensures that csums for a 1985 * given extent are either valid or do not exist. 1986 */ 1987 1988 csum_root = btrfs_csum_root(root->fs_info, io_start); 1989 ret = btrfs_lookup_csums_list(csum_root, io_start, 1990 io_start + args->file_extent.num_bytes - 1, 1991 NULL, nowait); 1992 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1993 if (ret != 0) 1994 goto out; 1995 1996 can_nocow = 1; 1997 out: 1998 if (args->free_path && path) 1999 btrfs_free_path(path); 2000 2001 return ret < 0 ? ret : can_nocow; 2002 } 2003 2004 /* 2005 * when nowcow writeback call back. This checks for snapshots or COW copies 2006 * of the extents that exist in the file, and COWs the file as required. 2007 * 2008 * If no cow copies or snapshots exist, we write directly to the existing 2009 * blocks on disk 2010 */ 2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2012 struct folio *locked_folio, 2013 const u64 start, const u64 end) 2014 { 2015 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2016 struct btrfs_root *root = inode->root; 2017 struct btrfs_path *path; 2018 u64 cow_start = (u64)-1; 2019 u64 cur_offset = start; 2020 int ret; 2021 bool check_prev = true; 2022 u64 ino = btrfs_ino(inode); 2023 struct can_nocow_file_extent_args nocow_args = { 0 }; 2024 2025 /* 2026 * Normally on a zoned device we're only doing COW writes, but in case 2027 * of relocation on a zoned filesystem serializes I/O so that we're only 2028 * writing sequentially and can end up here as well. 2029 */ 2030 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2031 2032 path = btrfs_alloc_path(); 2033 if (!path) { 2034 ret = -ENOMEM; 2035 goto error; 2036 } 2037 2038 nocow_args.end = end; 2039 nocow_args.writeback_path = true; 2040 2041 while (cur_offset <= end) { 2042 struct btrfs_block_group *nocow_bg = NULL; 2043 struct btrfs_ordered_extent *ordered; 2044 struct btrfs_key found_key; 2045 struct btrfs_file_extent_item *fi; 2046 struct extent_buffer *leaf; 2047 struct extent_state *cached_state = NULL; 2048 u64 extent_end; 2049 u64 nocow_end; 2050 int extent_type; 2051 bool is_prealloc; 2052 2053 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2054 cur_offset, 0); 2055 if (ret < 0) 2056 goto error; 2057 2058 /* 2059 * If there is no extent for our range when doing the initial 2060 * search, then go back to the previous slot as it will be the 2061 * one containing the search offset 2062 */ 2063 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2064 leaf = path->nodes[0]; 2065 btrfs_item_key_to_cpu(leaf, &found_key, 2066 path->slots[0] - 1); 2067 if (found_key.objectid == ino && 2068 found_key.type == BTRFS_EXTENT_DATA_KEY) 2069 path->slots[0]--; 2070 } 2071 check_prev = false; 2072 next_slot: 2073 /* Go to next leaf if we have exhausted the current one */ 2074 leaf = path->nodes[0]; 2075 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2076 ret = btrfs_next_leaf(root, path); 2077 if (ret < 0) 2078 goto error; 2079 if (ret > 0) 2080 break; 2081 leaf = path->nodes[0]; 2082 } 2083 2084 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2085 2086 /* Didn't find anything for our INO */ 2087 if (found_key.objectid > ino) 2088 break; 2089 /* 2090 * Keep searching until we find an EXTENT_ITEM or there are no 2091 * more extents for this inode 2092 */ 2093 if (WARN_ON_ONCE(found_key.objectid < ino) || 2094 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2095 path->slots[0]++; 2096 goto next_slot; 2097 } 2098 2099 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2100 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2101 found_key.offset > end) 2102 break; 2103 2104 /* 2105 * If the found extent starts after requested offset, then 2106 * adjust extent_end to be right before this extent begins 2107 */ 2108 if (found_key.offset > cur_offset) { 2109 extent_end = found_key.offset; 2110 extent_type = 0; 2111 goto must_cow; 2112 } 2113 2114 /* 2115 * Found extent which begins before our range and potentially 2116 * intersect it 2117 */ 2118 fi = btrfs_item_ptr(leaf, path->slots[0], 2119 struct btrfs_file_extent_item); 2120 extent_type = btrfs_file_extent_type(leaf, fi); 2121 /* If this is triggered then we have a memory corruption. */ 2122 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2123 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2124 ret = -EUCLEAN; 2125 goto error; 2126 } 2127 extent_end = btrfs_file_extent_end(path); 2128 2129 /* 2130 * If the extent we got ends before our current offset, skip to 2131 * the next extent. 2132 */ 2133 if (extent_end <= cur_offset) { 2134 path->slots[0]++; 2135 goto next_slot; 2136 } 2137 2138 nocow_args.start = cur_offset; 2139 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2140 if (ret < 0) 2141 goto error; 2142 if (ret == 0) 2143 goto must_cow; 2144 2145 ret = 0; 2146 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2147 nocow_args.file_extent.disk_bytenr + 2148 nocow_args.file_extent.offset); 2149 if (!nocow_bg) { 2150 must_cow: 2151 /* 2152 * If we can't perform NOCOW writeback for the range, 2153 * then record the beginning of the range that needs to 2154 * be COWed. It will be written out before the next 2155 * NOCOW range if we find one, or when exiting this 2156 * loop. 2157 */ 2158 if (cow_start == (u64)-1) 2159 cow_start = cur_offset; 2160 cur_offset = extent_end; 2161 if (cur_offset > end) 2162 break; 2163 if (!path->nodes[0]) 2164 continue; 2165 path->slots[0]++; 2166 goto next_slot; 2167 } 2168 2169 /* 2170 * COW range from cow_start to found_key.offset - 1. As the key 2171 * will contain the beginning of the first extent that can be 2172 * NOCOW, following one which needs to be COW'ed 2173 */ 2174 if (cow_start != (u64)-1) { 2175 ret = fallback_to_cow(inode, locked_folio, cow_start, 2176 found_key.offset - 1); 2177 cow_start = (u64)-1; 2178 if (ret) { 2179 btrfs_dec_nocow_writers(nocow_bg); 2180 goto error; 2181 } 2182 } 2183 2184 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2185 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2186 2187 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2188 if (is_prealloc) { 2189 struct extent_map *em; 2190 2191 em = btrfs_create_io_em(inode, cur_offset, 2192 &nocow_args.file_extent, 2193 BTRFS_ORDERED_PREALLOC); 2194 if (IS_ERR(em)) { 2195 unlock_extent(&inode->io_tree, cur_offset, 2196 nocow_end, &cached_state); 2197 btrfs_dec_nocow_writers(nocow_bg); 2198 ret = PTR_ERR(em); 2199 goto error; 2200 } 2201 free_extent_map(em); 2202 } 2203 2204 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2205 &nocow_args.file_extent, 2206 is_prealloc 2207 ? (1 << BTRFS_ORDERED_PREALLOC) 2208 : (1 << BTRFS_ORDERED_NOCOW)); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (IS_ERR(ordered)) { 2211 if (is_prealloc) { 2212 btrfs_drop_extent_map_range(inode, cur_offset, 2213 nocow_end, false); 2214 } 2215 unlock_extent(&inode->io_tree, cur_offset, 2216 nocow_end, &cached_state); 2217 ret = PTR_ERR(ordered); 2218 goto error; 2219 } 2220 2221 if (btrfs_is_data_reloc_root(root)) 2222 /* 2223 * Error handled later, as we must prevent 2224 * extent_clear_unlock_delalloc() in error handler 2225 * from freeing metadata of created ordered extent. 2226 */ 2227 ret = btrfs_reloc_clone_csums(ordered); 2228 btrfs_put_ordered_extent(ordered); 2229 2230 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2231 locked_folio, &cached_state, 2232 EXTENT_LOCKED | EXTENT_DELALLOC | 2233 EXTENT_CLEAR_DATA_RESV, 2234 PAGE_UNLOCK | PAGE_SET_ORDERED); 2235 2236 cur_offset = extent_end; 2237 2238 /* 2239 * btrfs_reloc_clone_csums() error, now we're OK to call error 2240 * handler, as metadata for created ordered extent will only 2241 * be freed by btrfs_finish_ordered_io(). 2242 */ 2243 if (ret) 2244 goto error; 2245 } 2246 btrfs_release_path(path); 2247 2248 if (cur_offset <= end && cow_start == (u64)-1) 2249 cow_start = cur_offset; 2250 2251 if (cow_start != (u64)-1) { 2252 cur_offset = end; 2253 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2254 cow_start = (u64)-1; 2255 if (ret) 2256 goto error; 2257 } 2258 2259 btrfs_free_path(path); 2260 return 0; 2261 2262 error: 2263 /* 2264 * If an error happened while a COW region is outstanding, cur_offset 2265 * needs to be reset to cow_start to ensure the COW region is unlocked 2266 * as well. 2267 */ 2268 if (cow_start != (u64)-1) 2269 cur_offset = cow_start; 2270 2271 /* 2272 * We need to lock the extent here because we're clearing DELALLOC and 2273 * we're not locked at this point. 2274 */ 2275 if (cur_offset < end) { 2276 struct extent_state *cached = NULL; 2277 2278 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2279 extent_clear_unlock_delalloc(inode, cur_offset, end, 2280 locked_folio, &cached, 2281 EXTENT_LOCKED | EXTENT_DELALLOC | 2282 EXTENT_DEFRAG | 2283 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2284 PAGE_START_WRITEBACK | 2285 PAGE_END_WRITEBACK); 2286 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2287 } 2288 btrfs_free_path(path); 2289 return ret; 2290 } 2291 2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2293 { 2294 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2295 if (inode->defrag_bytes && 2296 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2297 return false; 2298 return true; 2299 } 2300 return false; 2301 } 2302 2303 /* 2304 * Function to process delayed allocation (create CoW) for ranges which are 2305 * being touched for the first time. 2306 */ 2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2308 u64 start, u64 end, struct writeback_control *wbc) 2309 { 2310 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2311 int ret; 2312 2313 /* 2314 * The range must cover part of the @locked_folio, or a return of 1 2315 * can confuse the caller. 2316 */ 2317 ASSERT(!(end <= folio_pos(locked_folio) || 2318 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2319 2320 if (should_nocow(inode, start, end)) { 2321 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2322 goto out; 2323 } 2324 2325 if (btrfs_inode_can_compress(inode) && 2326 inode_need_compress(inode, start, end) && 2327 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2328 return 1; 2329 2330 if (zoned) 2331 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2332 true); 2333 else 2334 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2335 false, false); 2336 2337 out: 2338 if (ret < 0) 2339 btrfs_cleanup_ordered_extents(inode, locked_folio, start, 2340 end - start + 1); 2341 return ret; 2342 } 2343 2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2345 struct extent_state *orig, u64 split) 2346 { 2347 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2348 u64 size; 2349 2350 lockdep_assert_held(&inode->io_tree.lock); 2351 2352 /* not delalloc, ignore it */ 2353 if (!(orig->state & EXTENT_DELALLOC)) 2354 return; 2355 2356 size = orig->end - orig->start + 1; 2357 if (size > fs_info->max_extent_size) { 2358 u32 num_extents; 2359 u64 new_size; 2360 2361 /* 2362 * See the explanation in btrfs_merge_delalloc_extent, the same 2363 * applies here, just in reverse. 2364 */ 2365 new_size = orig->end - split + 1; 2366 num_extents = count_max_extents(fs_info, new_size); 2367 new_size = split - orig->start; 2368 num_extents += count_max_extents(fs_info, new_size); 2369 if (count_max_extents(fs_info, size) >= num_extents) 2370 return; 2371 } 2372 2373 spin_lock(&inode->lock); 2374 btrfs_mod_outstanding_extents(inode, 1); 2375 spin_unlock(&inode->lock); 2376 } 2377 2378 /* 2379 * Handle merged delayed allocation extents so we can keep track of new extents 2380 * that are just merged onto old extents, such as when we are doing sequential 2381 * writes, so we can properly account for the metadata space we'll need. 2382 */ 2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2384 struct extent_state *other) 2385 { 2386 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2387 u64 new_size, old_size; 2388 u32 num_extents; 2389 2390 lockdep_assert_held(&inode->io_tree.lock); 2391 2392 /* not delalloc, ignore it */ 2393 if (!(other->state & EXTENT_DELALLOC)) 2394 return; 2395 2396 if (new->start > other->start) 2397 new_size = new->end - other->start + 1; 2398 else 2399 new_size = other->end - new->start + 1; 2400 2401 /* we're not bigger than the max, unreserve the space and go */ 2402 if (new_size <= fs_info->max_extent_size) { 2403 spin_lock(&inode->lock); 2404 btrfs_mod_outstanding_extents(inode, -1); 2405 spin_unlock(&inode->lock); 2406 return; 2407 } 2408 2409 /* 2410 * We have to add up either side to figure out how many extents were 2411 * accounted for before we merged into one big extent. If the number of 2412 * extents we accounted for is <= the amount we need for the new range 2413 * then we can return, otherwise drop. Think of it like this 2414 * 2415 * [ 4k][MAX_SIZE] 2416 * 2417 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2418 * need 2 outstanding extents, on one side we have 1 and the other side 2419 * we have 1 so they are == and we can return. But in this case 2420 * 2421 * [MAX_SIZE+4k][MAX_SIZE+4k] 2422 * 2423 * Each range on their own accounts for 2 extents, but merged together 2424 * they are only 3 extents worth of accounting, so we need to drop in 2425 * this case. 2426 */ 2427 old_size = other->end - other->start + 1; 2428 num_extents = count_max_extents(fs_info, old_size); 2429 old_size = new->end - new->start + 1; 2430 num_extents += count_max_extents(fs_info, old_size); 2431 if (count_max_extents(fs_info, new_size) >= num_extents) 2432 return; 2433 2434 spin_lock(&inode->lock); 2435 btrfs_mod_outstanding_extents(inode, -1); 2436 spin_unlock(&inode->lock); 2437 } 2438 2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2440 { 2441 struct btrfs_root *root = inode->root; 2442 struct btrfs_fs_info *fs_info = root->fs_info; 2443 2444 spin_lock(&root->delalloc_lock); 2445 ASSERT(list_empty(&inode->delalloc_inodes)); 2446 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2447 root->nr_delalloc_inodes++; 2448 if (root->nr_delalloc_inodes == 1) { 2449 spin_lock(&fs_info->delalloc_root_lock); 2450 ASSERT(list_empty(&root->delalloc_root)); 2451 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2452 spin_unlock(&fs_info->delalloc_root_lock); 2453 } 2454 spin_unlock(&root->delalloc_lock); 2455 } 2456 2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2458 { 2459 struct btrfs_root *root = inode->root; 2460 struct btrfs_fs_info *fs_info = root->fs_info; 2461 2462 lockdep_assert_held(&root->delalloc_lock); 2463 2464 /* 2465 * We may be called after the inode was already deleted from the list, 2466 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2467 * and then later through btrfs_clear_delalloc_extent() while the inode 2468 * still has ->delalloc_bytes > 0. 2469 */ 2470 if (!list_empty(&inode->delalloc_inodes)) { 2471 list_del_init(&inode->delalloc_inodes); 2472 root->nr_delalloc_inodes--; 2473 if (!root->nr_delalloc_inodes) { 2474 ASSERT(list_empty(&root->delalloc_inodes)); 2475 spin_lock(&fs_info->delalloc_root_lock); 2476 ASSERT(!list_empty(&root->delalloc_root)); 2477 list_del_init(&root->delalloc_root); 2478 spin_unlock(&fs_info->delalloc_root_lock); 2479 } 2480 } 2481 } 2482 2483 /* 2484 * Properly track delayed allocation bytes in the inode and to maintain the 2485 * list of inodes that have pending delalloc work to be done. 2486 */ 2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2488 u32 bits) 2489 { 2490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2491 2492 lockdep_assert_held(&inode->io_tree.lock); 2493 2494 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2495 WARN_ON(1); 2496 /* 2497 * set_bit and clear bit hooks normally require _irqsave/restore 2498 * but in this case, we are only testing for the DELALLOC 2499 * bit, which is only set or cleared with irqs on 2500 */ 2501 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2502 u64 len = state->end + 1 - state->start; 2503 u64 prev_delalloc_bytes; 2504 u32 num_extents = count_max_extents(fs_info, len); 2505 2506 spin_lock(&inode->lock); 2507 btrfs_mod_outstanding_extents(inode, num_extents); 2508 spin_unlock(&inode->lock); 2509 2510 /* For sanity tests */ 2511 if (btrfs_is_testing(fs_info)) 2512 return; 2513 2514 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2515 fs_info->delalloc_batch); 2516 spin_lock(&inode->lock); 2517 prev_delalloc_bytes = inode->delalloc_bytes; 2518 inode->delalloc_bytes += len; 2519 if (bits & EXTENT_DEFRAG) 2520 inode->defrag_bytes += len; 2521 spin_unlock(&inode->lock); 2522 2523 /* 2524 * We don't need to be under the protection of the inode's lock, 2525 * because we are called while holding the inode's io_tree lock 2526 * and are therefore protected against concurrent calls of this 2527 * function and btrfs_clear_delalloc_extent(). 2528 */ 2529 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2530 btrfs_add_delalloc_inode(inode); 2531 } 2532 2533 if (!(state->state & EXTENT_DELALLOC_NEW) && 2534 (bits & EXTENT_DELALLOC_NEW)) { 2535 spin_lock(&inode->lock); 2536 inode->new_delalloc_bytes += state->end + 1 - state->start; 2537 spin_unlock(&inode->lock); 2538 } 2539 } 2540 2541 /* 2542 * Once a range is no longer delalloc this function ensures that proper 2543 * accounting happens. 2544 */ 2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2546 struct extent_state *state, u32 bits) 2547 { 2548 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2549 u64 len = state->end + 1 - state->start; 2550 u32 num_extents = count_max_extents(fs_info, len); 2551 2552 lockdep_assert_held(&inode->io_tree.lock); 2553 2554 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2555 spin_lock(&inode->lock); 2556 inode->defrag_bytes -= len; 2557 spin_unlock(&inode->lock); 2558 } 2559 2560 /* 2561 * set_bit and clear bit hooks normally require _irqsave/restore 2562 * but in this case, we are only testing for the DELALLOC 2563 * bit, which is only set or cleared with irqs on 2564 */ 2565 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2566 struct btrfs_root *root = inode->root; 2567 u64 new_delalloc_bytes; 2568 2569 spin_lock(&inode->lock); 2570 btrfs_mod_outstanding_extents(inode, -num_extents); 2571 spin_unlock(&inode->lock); 2572 2573 /* 2574 * We don't reserve metadata space for space cache inodes so we 2575 * don't need to call delalloc_release_metadata if there is an 2576 * error. 2577 */ 2578 if (bits & EXTENT_CLEAR_META_RESV && 2579 root != fs_info->tree_root) 2580 btrfs_delalloc_release_metadata(inode, len, true); 2581 2582 /* For sanity tests. */ 2583 if (btrfs_is_testing(fs_info)) 2584 return; 2585 2586 if (!btrfs_is_data_reloc_root(root) && 2587 !btrfs_is_free_space_inode(inode) && 2588 !(state->state & EXTENT_NORESERVE) && 2589 (bits & EXTENT_CLEAR_DATA_RESV)) 2590 btrfs_free_reserved_data_space_noquota(fs_info, len); 2591 2592 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2593 fs_info->delalloc_batch); 2594 spin_lock(&inode->lock); 2595 inode->delalloc_bytes -= len; 2596 new_delalloc_bytes = inode->delalloc_bytes; 2597 spin_unlock(&inode->lock); 2598 2599 /* 2600 * We don't need to be under the protection of the inode's lock, 2601 * because we are called while holding the inode's io_tree lock 2602 * and are therefore protected against concurrent calls of this 2603 * function and btrfs_set_delalloc_extent(). 2604 */ 2605 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2606 spin_lock(&root->delalloc_lock); 2607 btrfs_del_delalloc_inode(inode); 2608 spin_unlock(&root->delalloc_lock); 2609 } 2610 } 2611 2612 if ((state->state & EXTENT_DELALLOC_NEW) && 2613 (bits & EXTENT_DELALLOC_NEW)) { 2614 spin_lock(&inode->lock); 2615 ASSERT(inode->new_delalloc_bytes >= len); 2616 inode->new_delalloc_bytes -= len; 2617 if (bits & EXTENT_ADD_INODE_BYTES) 2618 inode_add_bytes(&inode->vfs_inode, len); 2619 spin_unlock(&inode->lock); 2620 } 2621 } 2622 2623 /* 2624 * given a list of ordered sums record them in the inode. This happens 2625 * at IO completion time based on sums calculated at bio submission time. 2626 */ 2627 static int add_pending_csums(struct btrfs_trans_handle *trans, 2628 struct list_head *list) 2629 { 2630 struct btrfs_ordered_sum *sum; 2631 struct btrfs_root *csum_root = NULL; 2632 int ret; 2633 2634 list_for_each_entry(sum, list, list) { 2635 trans->adding_csums = true; 2636 if (!csum_root) 2637 csum_root = btrfs_csum_root(trans->fs_info, 2638 sum->logical); 2639 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2640 trans->adding_csums = false; 2641 if (ret) 2642 return ret; 2643 } 2644 return 0; 2645 } 2646 2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2648 const u64 start, 2649 const u64 len, 2650 struct extent_state **cached_state) 2651 { 2652 u64 search_start = start; 2653 const u64 end = start + len - 1; 2654 2655 while (search_start < end) { 2656 const u64 search_len = end - search_start + 1; 2657 struct extent_map *em; 2658 u64 em_len; 2659 int ret = 0; 2660 2661 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2662 if (IS_ERR(em)) 2663 return PTR_ERR(em); 2664 2665 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2666 goto next; 2667 2668 em_len = em->len; 2669 if (em->start < search_start) 2670 em_len -= search_start - em->start; 2671 if (em_len > search_len) 2672 em_len = search_len; 2673 2674 ret = set_extent_bit(&inode->io_tree, search_start, 2675 search_start + em_len - 1, 2676 EXTENT_DELALLOC_NEW, cached_state); 2677 next: 2678 search_start = extent_map_end(em); 2679 free_extent_map(em); 2680 if (ret) 2681 return ret; 2682 } 2683 return 0; 2684 } 2685 2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2687 unsigned int extra_bits, 2688 struct extent_state **cached_state) 2689 { 2690 WARN_ON(PAGE_ALIGNED(end)); 2691 2692 if (start >= i_size_read(&inode->vfs_inode) && 2693 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2694 /* 2695 * There can't be any extents following eof in this case so just 2696 * set the delalloc new bit for the range directly. 2697 */ 2698 extra_bits |= EXTENT_DELALLOC_NEW; 2699 } else { 2700 int ret; 2701 2702 ret = btrfs_find_new_delalloc_bytes(inode, start, 2703 end + 1 - start, 2704 cached_state); 2705 if (ret) 2706 return ret; 2707 } 2708 2709 return set_extent_bit(&inode->io_tree, start, end, 2710 EXTENT_DELALLOC | extra_bits, cached_state); 2711 } 2712 2713 /* see btrfs_writepage_start_hook for details on why this is required */ 2714 struct btrfs_writepage_fixup { 2715 struct folio *folio; 2716 struct btrfs_inode *inode; 2717 struct btrfs_work work; 2718 }; 2719 2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2721 { 2722 struct btrfs_writepage_fixup *fixup = 2723 container_of(work, struct btrfs_writepage_fixup, work); 2724 struct btrfs_ordered_extent *ordered; 2725 struct extent_state *cached_state = NULL; 2726 struct extent_changeset *data_reserved = NULL; 2727 struct folio *folio = fixup->folio; 2728 struct btrfs_inode *inode = fixup->inode; 2729 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2730 u64 page_start = folio_pos(folio); 2731 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2732 int ret = 0; 2733 bool free_delalloc_space = true; 2734 2735 /* 2736 * This is similar to page_mkwrite, we need to reserve the space before 2737 * we take the folio lock. 2738 */ 2739 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2740 folio_size(folio)); 2741 again: 2742 folio_lock(folio); 2743 2744 /* 2745 * Before we queued this fixup, we took a reference on the folio. 2746 * folio->mapping may go NULL, but it shouldn't be moved to a different 2747 * address space. 2748 */ 2749 if (!folio->mapping || !folio_test_dirty(folio) || 2750 !folio_test_checked(folio)) { 2751 /* 2752 * Unfortunately this is a little tricky, either 2753 * 2754 * 1) We got here and our folio had already been dealt with and 2755 * we reserved our space, thus ret == 0, so we need to just 2756 * drop our space reservation and bail. This can happen the 2757 * first time we come into the fixup worker, or could happen 2758 * while waiting for the ordered extent. 2759 * 2) Our folio was already dealt with, but we happened to get an 2760 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2761 * this case we obviously don't have anything to release, but 2762 * because the folio was already dealt with we don't want to 2763 * mark the folio with an error, so make sure we're resetting 2764 * ret to 0. This is why we have this check _before_ the ret 2765 * check, because we do not want to have a surprise ENOSPC 2766 * when the folio was already properly dealt with. 2767 */ 2768 if (!ret) { 2769 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2770 btrfs_delalloc_release_space(inode, data_reserved, 2771 page_start, folio_size(folio), 2772 true); 2773 } 2774 ret = 0; 2775 goto out_page; 2776 } 2777 2778 /* 2779 * We can't mess with the folio state unless it is locked, so now that 2780 * it is locked bail if we failed to make our space reservation. 2781 */ 2782 if (ret) 2783 goto out_page; 2784 2785 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2786 2787 /* already ordered? We're done */ 2788 if (folio_test_ordered(folio)) 2789 goto out_reserved; 2790 2791 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2792 if (ordered) { 2793 unlock_extent(&inode->io_tree, page_start, page_end, 2794 &cached_state); 2795 folio_unlock(folio); 2796 btrfs_start_ordered_extent(ordered); 2797 btrfs_put_ordered_extent(ordered); 2798 goto again; 2799 } 2800 2801 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2802 &cached_state); 2803 if (ret) 2804 goto out_reserved; 2805 2806 /* 2807 * Everything went as planned, we're now the owner of a dirty page with 2808 * delayed allocation bits set and space reserved for our COW 2809 * destination. 2810 * 2811 * The page was dirty when we started, nothing should have cleaned it. 2812 */ 2813 BUG_ON(!folio_test_dirty(folio)); 2814 free_delalloc_space = false; 2815 out_reserved: 2816 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2817 if (free_delalloc_space) 2818 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2819 PAGE_SIZE, true); 2820 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2821 out_page: 2822 if (ret) { 2823 /* 2824 * We hit ENOSPC or other errors. Update the mapping and page 2825 * to reflect the errors and clean the page. 2826 */ 2827 mapping_set_error(folio->mapping, ret); 2828 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2829 folio_size(folio), !ret); 2830 folio_clear_dirty_for_io(folio); 2831 } 2832 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2833 folio_unlock(folio); 2834 folio_put(folio); 2835 kfree(fixup); 2836 extent_changeset_free(data_reserved); 2837 /* 2838 * As a precaution, do a delayed iput in case it would be the last iput 2839 * that could need flushing space. Recursing back to fixup worker would 2840 * deadlock. 2841 */ 2842 btrfs_add_delayed_iput(inode); 2843 } 2844 2845 /* 2846 * There are a few paths in the higher layers of the kernel that directly 2847 * set the folio dirty bit without asking the filesystem if it is a 2848 * good idea. This causes problems because we want to make sure COW 2849 * properly happens and the data=ordered rules are followed. 2850 * 2851 * In our case any range that doesn't have the ORDERED bit set 2852 * hasn't been properly setup for IO. We kick off an async process 2853 * to fix it up. The async helper will wait for ordered extents, set 2854 * the delalloc bit and make it safe to write the folio. 2855 */ 2856 int btrfs_writepage_cow_fixup(struct folio *folio) 2857 { 2858 struct inode *inode = folio->mapping->host; 2859 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2860 struct btrfs_writepage_fixup *fixup; 2861 2862 /* This folio has ordered extent covering it already */ 2863 if (folio_test_ordered(folio)) 2864 return 0; 2865 2866 /* 2867 * folio_checked is set below when we create a fixup worker for this 2868 * folio, don't try to create another one if we're already 2869 * folio_test_checked. 2870 * 2871 * The extent_io writepage code will redirty the foio if we send back 2872 * EAGAIN. 2873 */ 2874 if (folio_test_checked(folio)) 2875 return -EAGAIN; 2876 2877 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2878 if (!fixup) 2879 return -EAGAIN; 2880 2881 /* 2882 * We are already holding a reference to this inode from 2883 * write_cache_pages. We need to hold it because the space reservation 2884 * takes place outside of the folio lock, and we can't trust 2885 * page->mapping outside of the folio lock. 2886 */ 2887 ihold(inode); 2888 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2889 folio_get(folio); 2890 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2891 fixup->folio = folio; 2892 fixup->inode = BTRFS_I(inode); 2893 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2894 2895 return -EAGAIN; 2896 } 2897 2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2899 struct btrfs_inode *inode, u64 file_pos, 2900 struct btrfs_file_extent_item *stack_fi, 2901 const bool update_inode_bytes, 2902 u64 qgroup_reserved) 2903 { 2904 struct btrfs_root *root = inode->root; 2905 const u64 sectorsize = root->fs_info->sectorsize; 2906 struct btrfs_path *path; 2907 struct extent_buffer *leaf; 2908 struct btrfs_key ins; 2909 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2910 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2911 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2912 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2913 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2914 struct btrfs_drop_extents_args drop_args = { 0 }; 2915 int ret; 2916 2917 path = btrfs_alloc_path(); 2918 if (!path) 2919 return -ENOMEM; 2920 2921 /* 2922 * we may be replacing one extent in the tree with another. 2923 * The new extent is pinned in the extent map, and we don't want 2924 * to drop it from the cache until it is completely in the btree. 2925 * 2926 * So, tell btrfs_drop_extents to leave this extent in the cache. 2927 * the caller is expected to unpin it and allow it to be merged 2928 * with the others. 2929 */ 2930 drop_args.path = path; 2931 drop_args.start = file_pos; 2932 drop_args.end = file_pos + num_bytes; 2933 drop_args.replace_extent = true; 2934 drop_args.extent_item_size = sizeof(*stack_fi); 2935 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2936 if (ret) 2937 goto out; 2938 2939 if (!drop_args.extent_inserted) { 2940 ins.objectid = btrfs_ino(inode); 2941 ins.offset = file_pos; 2942 ins.type = BTRFS_EXTENT_DATA_KEY; 2943 2944 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2945 sizeof(*stack_fi)); 2946 if (ret) 2947 goto out; 2948 } 2949 leaf = path->nodes[0]; 2950 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2951 write_extent_buffer(leaf, stack_fi, 2952 btrfs_item_ptr_offset(leaf, path->slots[0]), 2953 sizeof(struct btrfs_file_extent_item)); 2954 2955 btrfs_mark_buffer_dirty(trans, leaf); 2956 btrfs_release_path(path); 2957 2958 /* 2959 * If we dropped an inline extent here, we know the range where it is 2960 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2961 * number of bytes only for that range containing the inline extent. 2962 * The remaining of the range will be processed when clearning the 2963 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2964 */ 2965 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2966 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2967 2968 inline_size = drop_args.bytes_found - inline_size; 2969 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2970 drop_args.bytes_found -= inline_size; 2971 num_bytes -= sectorsize; 2972 } 2973 2974 if (update_inode_bytes) 2975 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2976 2977 ins.objectid = disk_bytenr; 2978 ins.offset = disk_num_bytes; 2979 ins.type = BTRFS_EXTENT_ITEM_KEY; 2980 2981 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2982 if (ret) 2983 goto out; 2984 2985 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2986 file_pos - offset, 2987 qgroup_reserved, &ins); 2988 out: 2989 btrfs_free_path(path); 2990 2991 return ret; 2992 } 2993 2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2995 u64 start, u64 len) 2996 { 2997 struct btrfs_block_group *cache; 2998 2999 cache = btrfs_lookup_block_group(fs_info, start); 3000 ASSERT(cache); 3001 3002 spin_lock(&cache->lock); 3003 cache->delalloc_bytes -= len; 3004 spin_unlock(&cache->lock); 3005 3006 btrfs_put_block_group(cache); 3007 } 3008 3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3010 struct btrfs_ordered_extent *oe) 3011 { 3012 struct btrfs_file_extent_item stack_fi; 3013 bool update_inode_bytes; 3014 u64 num_bytes = oe->num_bytes; 3015 u64 ram_bytes = oe->ram_bytes; 3016 3017 memset(&stack_fi, 0, sizeof(stack_fi)); 3018 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3019 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3020 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3021 oe->disk_num_bytes); 3022 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3023 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3024 num_bytes = oe->truncated_len; 3025 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3026 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3027 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3028 /* Encryption and other encoding is reserved and all 0 */ 3029 3030 /* 3031 * For delalloc, when completing an ordered extent we update the inode's 3032 * bytes when clearing the range in the inode's io tree, so pass false 3033 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3034 * except if the ordered extent was truncated. 3035 */ 3036 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3037 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3038 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3039 3040 return insert_reserved_file_extent(trans, oe->inode, 3041 oe->file_offset, &stack_fi, 3042 update_inode_bytes, oe->qgroup_rsv); 3043 } 3044 3045 /* 3046 * As ordered data IO finishes, this gets called so we can finish 3047 * an ordered extent if the range of bytes in the file it covers are 3048 * fully written. 3049 */ 3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3051 { 3052 struct btrfs_inode *inode = ordered_extent->inode; 3053 struct btrfs_root *root = inode->root; 3054 struct btrfs_fs_info *fs_info = root->fs_info; 3055 struct btrfs_trans_handle *trans = NULL; 3056 struct extent_io_tree *io_tree = &inode->io_tree; 3057 struct extent_state *cached_state = NULL; 3058 u64 start, end; 3059 int compress_type = 0; 3060 int ret = 0; 3061 u64 logical_len = ordered_extent->num_bytes; 3062 bool freespace_inode; 3063 bool truncated = false; 3064 bool clear_reserved_extent = true; 3065 unsigned int clear_bits = EXTENT_DEFRAG; 3066 3067 start = ordered_extent->file_offset; 3068 end = start + ordered_extent->num_bytes - 1; 3069 3070 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3071 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3072 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3073 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3074 clear_bits |= EXTENT_DELALLOC_NEW; 3075 3076 freespace_inode = btrfs_is_free_space_inode(inode); 3077 if (!freespace_inode) 3078 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3079 3080 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3081 ret = -EIO; 3082 goto out; 3083 } 3084 3085 if (btrfs_is_zoned(fs_info)) 3086 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3087 ordered_extent->disk_num_bytes); 3088 3089 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3090 truncated = true; 3091 logical_len = ordered_extent->truncated_len; 3092 /* Truncated the entire extent, don't bother adding */ 3093 if (!logical_len) 3094 goto out; 3095 } 3096 3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3098 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3099 3100 btrfs_inode_safe_disk_i_size_write(inode, 0); 3101 if (freespace_inode) 3102 trans = btrfs_join_transaction_spacecache(root); 3103 else 3104 trans = btrfs_join_transaction(root); 3105 if (IS_ERR(trans)) { 3106 ret = PTR_ERR(trans); 3107 trans = NULL; 3108 goto out; 3109 } 3110 trans->block_rsv = &inode->block_rsv; 3111 ret = btrfs_update_inode_fallback(trans, inode); 3112 if (ret) /* -ENOMEM or corruption */ 3113 btrfs_abort_transaction(trans, ret); 3114 goto out; 3115 } 3116 3117 clear_bits |= EXTENT_LOCKED; 3118 lock_extent(io_tree, start, end, &cached_state); 3119 3120 if (freespace_inode) 3121 trans = btrfs_join_transaction_spacecache(root); 3122 else 3123 trans = btrfs_join_transaction(root); 3124 if (IS_ERR(trans)) { 3125 ret = PTR_ERR(trans); 3126 trans = NULL; 3127 goto out; 3128 } 3129 3130 trans->block_rsv = &inode->block_rsv; 3131 3132 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3133 if (ret) 3134 goto out; 3135 3136 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3137 compress_type = ordered_extent->compress_type; 3138 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3139 BUG_ON(compress_type); 3140 ret = btrfs_mark_extent_written(trans, inode, 3141 ordered_extent->file_offset, 3142 ordered_extent->file_offset + 3143 logical_len); 3144 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3145 ordered_extent->disk_num_bytes); 3146 } else { 3147 BUG_ON(root == fs_info->tree_root); 3148 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3149 if (!ret) { 3150 clear_reserved_extent = false; 3151 btrfs_release_delalloc_bytes(fs_info, 3152 ordered_extent->disk_bytenr, 3153 ordered_extent->disk_num_bytes); 3154 } 3155 } 3156 if (ret < 0) { 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 3161 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3162 ordered_extent->num_bytes, trans->transid); 3163 if (ret < 0) { 3164 btrfs_abort_transaction(trans, ret); 3165 goto out; 3166 } 3167 3168 ret = add_pending_csums(trans, &ordered_extent->list); 3169 if (ret) { 3170 btrfs_abort_transaction(trans, ret); 3171 goto out; 3172 } 3173 3174 /* 3175 * If this is a new delalloc range, clear its new delalloc flag to 3176 * update the inode's number of bytes. This needs to be done first 3177 * before updating the inode item. 3178 */ 3179 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3180 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3181 clear_extent_bit(&inode->io_tree, start, end, 3182 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3183 &cached_state); 3184 3185 btrfs_inode_safe_disk_i_size_write(inode, 0); 3186 ret = btrfs_update_inode_fallback(trans, inode); 3187 if (ret) { /* -ENOMEM or corruption */ 3188 btrfs_abort_transaction(trans, ret); 3189 goto out; 3190 } 3191 out: 3192 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3193 &cached_state); 3194 3195 if (trans) 3196 btrfs_end_transaction(trans); 3197 3198 if (ret || truncated) { 3199 u64 unwritten_start = start; 3200 3201 /* 3202 * If we failed to finish this ordered extent for any reason we 3203 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3204 * extent, and mark the inode with the error if it wasn't 3205 * already set. Any error during writeback would have already 3206 * set the mapping error, so we need to set it if we're the ones 3207 * marking this ordered extent as failed. 3208 */ 3209 if (ret) 3210 btrfs_mark_ordered_extent_error(ordered_extent); 3211 3212 if (truncated) 3213 unwritten_start += logical_len; 3214 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3215 3216 /* 3217 * Drop extent maps for the part of the extent we didn't write. 3218 * 3219 * We have an exception here for the free_space_inode, this is 3220 * because when we do btrfs_get_extent() on the free space inode 3221 * we will search the commit root. If this is a new block group 3222 * we won't find anything, and we will trip over the assert in 3223 * writepage where we do ASSERT(em->block_start != 3224 * EXTENT_MAP_HOLE). 3225 * 3226 * Theoretically we could also skip this for any NOCOW extent as 3227 * we don't mess with the extent map tree in the NOCOW case, but 3228 * for now simply skip this if we are the free space inode. 3229 */ 3230 if (!btrfs_is_free_space_inode(inode)) 3231 btrfs_drop_extent_map_range(inode, unwritten_start, 3232 end, false); 3233 3234 /* 3235 * If the ordered extent had an IOERR or something else went 3236 * wrong we need to return the space for this ordered extent 3237 * back to the allocator. We only free the extent in the 3238 * truncated case if we didn't write out the extent at all. 3239 * 3240 * If we made it past insert_reserved_file_extent before we 3241 * errored out then we don't need to do this as the accounting 3242 * has already been done. 3243 */ 3244 if ((ret || !logical_len) && 3245 clear_reserved_extent && 3246 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3247 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3248 /* 3249 * Discard the range before returning it back to the 3250 * free space pool 3251 */ 3252 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3253 btrfs_discard_extent(fs_info, 3254 ordered_extent->disk_bytenr, 3255 ordered_extent->disk_num_bytes, 3256 NULL); 3257 btrfs_free_reserved_extent(fs_info, 3258 ordered_extent->disk_bytenr, 3259 ordered_extent->disk_num_bytes, 1); 3260 /* 3261 * Actually free the qgroup rsv which was released when 3262 * the ordered extent was created. 3263 */ 3264 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3265 ordered_extent->qgroup_rsv, 3266 BTRFS_QGROUP_RSV_DATA); 3267 } 3268 } 3269 3270 /* 3271 * This needs to be done to make sure anybody waiting knows we are done 3272 * updating everything for this ordered extent. 3273 */ 3274 btrfs_remove_ordered_extent(inode, ordered_extent); 3275 3276 /* once for us */ 3277 btrfs_put_ordered_extent(ordered_extent); 3278 /* once for the tree */ 3279 btrfs_put_ordered_extent(ordered_extent); 3280 3281 return ret; 3282 } 3283 3284 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3285 { 3286 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3287 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3288 list_empty(&ordered->bioc_list)) 3289 btrfs_finish_ordered_zoned(ordered); 3290 return btrfs_finish_one_ordered(ordered); 3291 } 3292 3293 /* 3294 * Verify the checksum for a single sector without any extra action that depend 3295 * on the type of I/O. 3296 */ 3297 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3298 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3299 { 3300 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3301 char *kaddr; 3302 3303 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3304 3305 shash->tfm = fs_info->csum_shash; 3306 3307 kaddr = kmap_local_page(page) + pgoff; 3308 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3309 kunmap_local(kaddr); 3310 3311 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3312 return -EIO; 3313 return 0; 3314 } 3315 3316 /* 3317 * Verify the checksum of a single data sector. 3318 * 3319 * @bbio: btrfs_io_bio which contains the csum 3320 * @dev: device the sector is on 3321 * @bio_offset: offset to the beginning of the bio (in bytes) 3322 * @bv: bio_vec to check 3323 * 3324 * Check if the checksum on a data block is valid. When a checksum mismatch is 3325 * detected, report the error and fill the corrupted range with zero. 3326 * 3327 * Return %true if the sector is ok or had no checksum to start with, else %false. 3328 */ 3329 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3330 u32 bio_offset, struct bio_vec *bv) 3331 { 3332 struct btrfs_inode *inode = bbio->inode; 3333 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3334 u64 file_offset = bbio->file_offset + bio_offset; 3335 u64 end = file_offset + bv->bv_len - 1; 3336 u8 *csum_expected; 3337 u8 csum[BTRFS_CSUM_SIZE]; 3338 3339 ASSERT(bv->bv_len == fs_info->sectorsize); 3340 3341 if (!bbio->csum) 3342 return true; 3343 3344 if (btrfs_is_data_reloc_root(inode->root) && 3345 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3346 NULL)) { 3347 /* Skip the range without csum for data reloc inode */ 3348 clear_extent_bits(&inode->io_tree, file_offset, end, 3349 EXTENT_NODATASUM); 3350 return true; 3351 } 3352 3353 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3354 fs_info->csum_size; 3355 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3356 csum_expected)) 3357 goto zeroit; 3358 return true; 3359 3360 zeroit: 3361 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3362 bbio->mirror_num); 3363 if (dev) 3364 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3365 memzero_bvec(bv); 3366 return false; 3367 } 3368 3369 /* 3370 * Perform a delayed iput on @inode. 3371 * 3372 * @inode: The inode we want to perform iput on 3373 * 3374 * This function uses the generic vfs_inode::i_count to track whether we should 3375 * just decrement it (in case it's > 1) or if this is the last iput then link 3376 * the inode to the delayed iput machinery. Delayed iputs are processed at 3377 * transaction commit time/superblock commit/cleaner kthread. 3378 */ 3379 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3380 { 3381 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3382 unsigned long flags; 3383 3384 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3385 return; 3386 3387 atomic_inc(&fs_info->nr_delayed_iputs); 3388 /* 3389 * Need to be irq safe here because we can be called from either an irq 3390 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3391 * context. 3392 */ 3393 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3394 ASSERT(list_empty(&inode->delayed_iput)); 3395 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3396 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3397 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3398 wake_up_process(fs_info->cleaner_kthread); 3399 } 3400 3401 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3402 struct btrfs_inode *inode) 3403 { 3404 list_del_init(&inode->delayed_iput); 3405 spin_unlock_irq(&fs_info->delayed_iput_lock); 3406 iput(&inode->vfs_inode); 3407 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3408 wake_up(&fs_info->delayed_iputs_wait); 3409 spin_lock_irq(&fs_info->delayed_iput_lock); 3410 } 3411 3412 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3413 struct btrfs_inode *inode) 3414 { 3415 if (!list_empty(&inode->delayed_iput)) { 3416 spin_lock_irq(&fs_info->delayed_iput_lock); 3417 if (!list_empty(&inode->delayed_iput)) 3418 run_delayed_iput_locked(fs_info, inode); 3419 spin_unlock_irq(&fs_info->delayed_iput_lock); 3420 } 3421 } 3422 3423 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3424 { 3425 /* 3426 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3427 * calls btrfs_add_delayed_iput() and that needs to lock 3428 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3429 * prevent a deadlock. 3430 */ 3431 spin_lock_irq(&fs_info->delayed_iput_lock); 3432 while (!list_empty(&fs_info->delayed_iputs)) { 3433 struct btrfs_inode *inode; 3434 3435 inode = list_first_entry(&fs_info->delayed_iputs, 3436 struct btrfs_inode, delayed_iput); 3437 run_delayed_iput_locked(fs_info, inode); 3438 if (need_resched()) { 3439 spin_unlock_irq(&fs_info->delayed_iput_lock); 3440 cond_resched(); 3441 spin_lock_irq(&fs_info->delayed_iput_lock); 3442 } 3443 } 3444 spin_unlock_irq(&fs_info->delayed_iput_lock); 3445 } 3446 3447 /* 3448 * Wait for flushing all delayed iputs 3449 * 3450 * @fs_info: the filesystem 3451 * 3452 * This will wait on any delayed iputs that are currently running with KILLABLE 3453 * set. Once they are all done running we will return, unless we are killed in 3454 * which case we return EINTR. This helps in user operations like fallocate etc 3455 * that might get blocked on the iputs. 3456 * 3457 * Return EINTR if we were killed, 0 if nothing's pending 3458 */ 3459 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3460 { 3461 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3462 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3463 if (ret) 3464 return -EINTR; 3465 return 0; 3466 } 3467 3468 /* 3469 * This creates an orphan entry for the given inode in case something goes wrong 3470 * in the middle of an unlink. 3471 */ 3472 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3473 struct btrfs_inode *inode) 3474 { 3475 int ret; 3476 3477 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3478 if (ret && ret != -EEXIST) { 3479 btrfs_abort_transaction(trans, ret); 3480 return ret; 3481 } 3482 3483 return 0; 3484 } 3485 3486 /* 3487 * We have done the delete so we can go ahead and remove the orphan item for 3488 * this particular inode. 3489 */ 3490 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3491 struct btrfs_inode *inode) 3492 { 3493 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3494 } 3495 3496 /* 3497 * this cleans up any orphans that may be left on the list from the last use 3498 * of this root. 3499 */ 3500 int btrfs_orphan_cleanup(struct btrfs_root *root) 3501 { 3502 struct btrfs_fs_info *fs_info = root->fs_info; 3503 struct btrfs_path *path; 3504 struct extent_buffer *leaf; 3505 struct btrfs_key key, found_key; 3506 struct btrfs_trans_handle *trans; 3507 struct inode *inode; 3508 u64 last_objectid = 0; 3509 int ret = 0, nr_unlink = 0; 3510 3511 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3512 return 0; 3513 3514 path = btrfs_alloc_path(); 3515 if (!path) { 3516 ret = -ENOMEM; 3517 goto out; 3518 } 3519 path->reada = READA_BACK; 3520 3521 key.objectid = BTRFS_ORPHAN_OBJECTID; 3522 key.type = BTRFS_ORPHAN_ITEM_KEY; 3523 key.offset = (u64)-1; 3524 3525 while (1) { 3526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3527 if (ret < 0) 3528 goto out; 3529 3530 /* 3531 * if ret == 0 means we found what we were searching for, which 3532 * is weird, but possible, so only screw with path if we didn't 3533 * find the key and see if we have stuff that matches 3534 */ 3535 if (ret > 0) { 3536 ret = 0; 3537 if (path->slots[0] == 0) 3538 break; 3539 path->slots[0]--; 3540 } 3541 3542 /* pull out the item */ 3543 leaf = path->nodes[0]; 3544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3545 3546 /* make sure the item matches what we want */ 3547 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3548 break; 3549 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3550 break; 3551 3552 /* release the path since we're done with it */ 3553 btrfs_release_path(path); 3554 3555 /* 3556 * this is where we are basically btrfs_lookup, without the 3557 * crossing root thing. we store the inode number in the 3558 * offset of the orphan item. 3559 */ 3560 3561 if (found_key.offset == last_objectid) { 3562 /* 3563 * We found the same inode as before. This means we were 3564 * not able to remove its items via eviction triggered 3565 * by an iput(). A transaction abort may have happened, 3566 * due to -ENOSPC for example, so try to grab the error 3567 * that lead to a transaction abort, if any. 3568 */ 3569 btrfs_err(fs_info, 3570 "Error removing orphan entry, stopping orphan cleanup"); 3571 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3572 goto out; 3573 } 3574 3575 last_objectid = found_key.offset; 3576 3577 found_key.objectid = found_key.offset; 3578 found_key.type = BTRFS_INODE_ITEM_KEY; 3579 found_key.offset = 0; 3580 inode = btrfs_iget(last_objectid, root); 3581 if (IS_ERR(inode)) { 3582 ret = PTR_ERR(inode); 3583 inode = NULL; 3584 if (ret != -ENOENT) 3585 goto out; 3586 } 3587 3588 if (!inode && root == fs_info->tree_root) { 3589 struct btrfs_root *dead_root; 3590 int is_dead_root = 0; 3591 3592 /* 3593 * This is an orphan in the tree root. Currently these 3594 * could come from 2 sources: 3595 * a) a root (snapshot/subvolume) deletion in progress 3596 * b) a free space cache inode 3597 * We need to distinguish those two, as the orphan item 3598 * for a root must not get deleted before the deletion 3599 * of the snapshot/subvolume's tree completes. 3600 * 3601 * btrfs_find_orphan_roots() ran before us, which has 3602 * found all deleted roots and loaded them into 3603 * fs_info->fs_roots_radix. So here we can find if an 3604 * orphan item corresponds to a deleted root by looking 3605 * up the root from that radix tree. 3606 */ 3607 3608 spin_lock(&fs_info->fs_roots_radix_lock); 3609 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3610 (unsigned long)found_key.objectid); 3611 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3612 is_dead_root = 1; 3613 spin_unlock(&fs_info->fs_roots_radix_lock); 3614 3615 if (is_dead_root) { 3616 /* prevent this orphan from being found again */ 3617 key.offset = found_key.objectid - 1; 3618 continue; 3619 } 3620 3621 } 3622 3623 /* 3624 * If we have an inode with links, there are a couple of 3625 * possibilities: 3626 * 3627 * 1. We were halfway through creating fsverity metadata for the 3628 * file. In that case, the orphan item represents incomplete 3629 * fsverity metadata which must be cleaned up with 3630 * btrfs_drop_verity_items and deleting the orphan item. 3631 3632 * 2. Old kernels (before v3.12) used to create an 3633 * orphan item for truncate indicating that there were possibly 3634 * extent items past i_size that needed to be deleted. In v3.12, 3635 * truncate was changed to update i_size in sync with the extent 3636 * items, but the (useless) orphan item was still created. Since 3637 * v4.18, we don't create the orphan item for truncate at all. 3638 * 3639 * So, this item could mean that we need to do a truncate, but 3640 * only if this filesystem was last used on a pre-v3.12 kernel 3641 * and was not cleanly unmounted. The odds of that are quite 3642 * slim, and it's a pain to do the truncate now, so just delete 3643 * the orphan item. 3644 * 3645 * It's also possible that this orphan item was supposed to be 3646 * deleted but wasn't. The inode number may have been reused, 3647 * but either way, we can delete the orphan item. 3648 */ 3649 if (!inode || inode->i_nlink) { 3650 if (inode) { 3651 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3652 iput(inode); 3653 inode = NULL; 3654 if (ret) 3655 goto out; 3656 } 3657 trans = btrfs_start_transaction(root, 1); 3658 if (IS_ERR(trans)) { 3659 ret = PTR_ERR(trans); 3660 goto out; 3661 } 3662 btrfs_debug(fs_info, "auto deleting %Lu", 3663 found_key.objectid); 3664 ret = btrfs_del_orphan_item(trans, root, 3665 found_key.objectid); 3666 btrfs_end_transaction(trans); 3667 if (ret) 3668 goto out; 3669 continue; 3670 } 3671 3672 nr_unlink++; 3673 3674 /* this will do delete_inode and everything for us */ 3675 iput(inode); 3676 } 3677 /* release the path since we're done with it */ 3678 btrfs_release_path(path); 3679 3680 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3681 trans = btrfs_join_transaction(root); 3682 if (!IS_ERR(trans)) 3683 btrfs_end_transaction(trans); 3684 } 3685 3686 if (nr_unlink) 3687 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3688 3689 out: 3690 if (ret) 3691 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3692 btrfs_free_path(path); 3693 return ret; 3694 } 3695 3696 /* 3697 * very simple check to peek ahead in the leaf looking for xattrs. If we 3698 * don't find any xattrs, we know there can't be any acls. 3699 * 3700 * slot is the slot the inode is in, objectid is the objectid of the inode 3701 */ 3702 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3703 int slot, u64 objectid, 3704 int *first_xattr_slot) 3705 { 3706 u32 nritems = btrfs_header_nritems(leaf); 3707 struct btrfs_key found_key; 3708 static u64 xattr_access = 0; 3709 static u64 xattr_default = 0; 3710 int scanned = 0; 3711 3712 if (!xattr_access) { 3713 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3714 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3715 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3716 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3717 } 3718 3719 slot++; 3720 *first_xattr_slot = -1; 3721 while (slot < nritems) { 3722 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3723 3724 /* we found a different objectid, there must not be acls */ 3725 if (found_key.objectid != objectid) 3726 return 0; 3727 3728 /* we found an xattr, assume we've got an acl */ 3729 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3730 if (*first_xattr_slot == -1) 3731 *first_xattr_slot = slot; 3732 if (found_key.offset == xattr_access || 3733 found_key.offset == xattr_default) 3734 return 1; 3735 } 3736 3737 /* 3738 * we found a key greater than an xattr key, there can't 3739 * be any acls later on 3740 */ 3741 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3742 return 0; 3743 3744 slot++; 3745 scanned++; 3746 3747 /* 3748 * it goes inode, inode backrefs, xattrs, extents, 3749 * so if there are a ton of hard links to an inode there can 3750 * be a lot of backrefs. Don't waste time searching too hard, 3751 * this is just an optimization 3752 */ 3753 if (scanned >= 8) 3754 break; 3755 } 3756 /* we hit the end of the leaf before we found an xattr or 3757 * something larger than an xattr. We have to assume the inode 3758 * has acls 3759 */ 3760 if (*first_xattr_slot == -1) 3761 *first_xattr_slot = slot; 3762 return 1; 3763 } 3764 3765 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3766 { 3767 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3768 3769 if (WARN_ON_ONCE(inode->file_extent_tree)) 3770 return 0; 3771 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3772 return 0; 3773 if (!S_ISREG(inode->vfs_inode.i_mode)) 3774 return 0; 3775 if (btrfs_is_free_space_inode(inode)) 3776 return 0; 3777 3778 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3779 if (!inode->file_extent_tree) 3780 return -ENOMEM; 3781 3782 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3783 /* Lockdep class is set only for the file extent tree. */ 3784 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3785 3786 return 0; 3787 } 3788 3789 /* 3790 * read an inode from the btree into the in-memory inode 3791 */ 3792 static int btrfs_read_locked_inode(struct inode *inode, 3793 struct btrfs_path *in_path) 3794 { 3795 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3796 struct btrfs_path *path = in_path; 3797 struct extent_buffer *leaf; 3798 struct btrfs_inode_item *inode_item; 3799 struct btrfs_root *root = BTRFS_I(inode)->root; 3800 struct btrfs_key location; 3801 unsigned long ptr; 3802 int maybe_acls; 3803 u32 rdev; 3804 int ret; 3805 bool filled = false; 3806 int first_xattr_slot; 3807 3808 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3809 if (ret) 3810 return ret; 3811 3812 ret = btrfs_fill_inode(inode, &rdev); 3813 if (!ret) 3814 filled = true; 3815 3816 if (!path) { 3817 path = btrfs_alloc_path(); 3818 if (!path) 3819 return -ENOMEM; 3820 } 3821 3822 btrfs_get_inode_key(BTRFS_I(inode), &location); 3823 3824 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3825 if (ret) { 3826 if (path != in_path) 3827 btrfs_free_path(path); 3828 return ret; 3829 } 3830 3831 leaf = path->nodes[0]; 3832 3833 if (filled) 3834 goto cache_index; 3835 3836 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3837 struct btrfs_inode_item); 3838 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3839 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3840 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3841 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3842 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3844 round_up(i_size_read(inode), fs_info->sectorsize)); 3845 3846 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3847 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3848 3849 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3850 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3851 3852 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3853 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3854 3855 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3856 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3857 3858 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3859 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3860 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3861 3862 inode_set_iversion_queried(inode, 3863 btrfs_inode_sequence(leaf, inode_item)); 3864 inode->i_generation = BTRFS_I(inode)->generation; 3865 inode->i_rdev = 0; 3866 rdev = btrfs_inode_rdev(leaf, inode_item); 3867 3868 if (S_ISDIR(inode->i_mode)) 3869 BTRFS_I(inode)->index_cnt = (u64)-1; 3870 3871 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3872 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3873 3874 cache_index: 3875 /* 3876 * If we were modified in the current generation and evicted from memory 3877 * and then re-read we need to do a full sync since we don't have any 3878 * idea about which extents were modified before we were evicted from 3879 * cache. 3880 * 3881 * This is required for both inode re-read from disk and delayed inode 3882 * in the delayed_nodes xarray. 3883 */ 3884 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3885 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3886 &BTRFS_I(inode)->runtime_flags); 3887 3888 /* 3889 * We don't persist the id of the transaction where an unlink operation 3890 * against the inode was last made. So here we assume the inode might 3891 * have been evicted, and therefore the exact value of last_unlink_trans 3892 * lost, and set it to last_trans to avoid metadata inconsistencies 3893 * between the inode and its parent if the inode is fsync'ed and the log 3894 * replayed. For example, in the scenario: 3895 * 3896 * touch mydir/foo 3897 * ln mydir/foo mydir/bar 3898 * sync 3899 * unlink mydir/bar 3900 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3901 * xfs_io -c fsync mydir/foo 3902 * <power failure> 3903 * mount fs, triggers fsync log replay 3904 * 3905 * We must make sure that when we fsync our inode foo we also log its 3906 * parent inode, otherwise after log replay the parent still has the 3907 * dentry with the "bar" name but our inode foo has a link count of 1 3908 * and doesn't have an inode ref with the name "bar" anymore. 3909 * 3910 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3911 * but it guarantees correctness at the expense of occasional full 3912 * transaction commits on fsync if our inode is a directory, or if our 3913 * inode is not a directory, logging its parent unnecessarily. 3914 */ 3915 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3916 3917 /* 3918 * Same logic as for last_unlink_trans. We don't persist the generation 3919 * of the last transaction where this inode was used for a reflink 3920 * operation, so after eviction and reloading the inode we must be 3921 * pessimistic and assume the last transaction that modified the inode. 3922 */ 3923 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3924 3925 path->slots[0]++; 3926 if (inode->i_nlink != 1 || 3927 path->slots[0] >= btrfs_header_nritems(leaf)) 3928 goto cache_acl; 3929 3930 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3931 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3932 goto cache_acl; 3933 3934 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3935 if (location.type == BTRFS_INODE_REF_KEY) { 3936 struct btrfs_inode_ref *ref; 3937 3938 ref = (struct btrfs_inode_ref *)ptr; 3939 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3940 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3941 struct btrfs_inode_extref *extref; 3942 3943 extref = (struct btrfs_inode_extref *)ptr; 3944 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3945 extref); 3946 } 3947 cache_acl: 3948 /* 3949 * try to precache a NULL acl entry for files that don't have 3950 * any xattrs or acls 3951 */ 3952 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3953 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3954 if (first_xattr_slot != -1) { 3955 path->slots[0] = first_xattr_slot; 3956 ret = btrfs_load_inode_props(inode, path); 3957 if (ret) 3958 btrfs_err(fs_info, 3959 "error loading props for ino %llu (root %llu): %d", 3960 btrfs_ino(BTRFS_I(inode)), 3961 btrfs_root_id(root), ret); 3962 } 3963 if (path != in_path) 3964 btrfs_free_path(path); 3965 3966 if (!maybe_acls) 3967 cache_no_acl(inode); 3968 3969 switch (inode->i_mode & S_IFMT) { 3970 case S_IFREG: 3971 inode->i_mapping->a_ops = &btrfs_aops; 3972 inode->i_fop = &btrfs_file_operations; 3973 inode->i_op = &btrfs_file_inode_operations; 3974 break; 3975 case S_IFDIR: 3976 inode->i_fop = &btrfs_dir_file_operations; 3977 inode->i_op = &btrfs_dir_inode_operations; 3978 break; 3979 case S_IFLNK: 3980 inode->i_op = &btrfs_symlink_inode_operations; 3981 inode_nohighmem(inode); 3982 inode->i_mapping->a_ops = &btrfs_aops; 3983 break; 3984 default: 3985 inode->i_op = &btrfs_special_inode_operations; 3986 init_special_inode(inode, inode->i_mode, rdev); 3987 break; 3988 } 3989 3990 btrfs_sync_inode_flags_to_i_flags(inode); 3991 return 0; 3992 } 3993 3994 /* 3995 * given a leaf and an inode, copy the inode fields into the leaf 3996 */ 3997 static void fill_inode_item(struct btrfs_trans_handle *trans, 3998 struct extent_buffer *leaf, 3999 struct btrfs_inode_item *item, 4000 struct inode *inode) 4001 { 4002 struct btrfs_map_token token; 4003 u64 flags; 4004 4005 btrfs_init_map_token(&token, leaf); 4006 4007 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4008 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4009 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4010 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4011 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4012 4013 btrfs_set_token_timespec_sec(&token, &item->atime, 4014 inode_get_atime_sec(inode)); 4015 btrfs_set_token_timespec_nsec(&token, &item->atime, 4016 inode_get_atime_nsec(inode)); 4017 4018 btrfs_set_token_timespec_sec(&token, &item->mtime, 4019 inode_get_mtime_sec(inode)); 4020 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4021 inode_get_mtime_nsec(inode)); 4022 4023 btrfs_set_token_timespec_sec(&token, &item->ctime, 4024 inode_get_ctime_sec(inode)); 4025 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4026 inode_get_ctime_nsec(inode)); 4027 4028 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4029 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4030 4031 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4032 btrfs_set_token_inode_generation(&token, item, 4033 BTRFS_I(inode)->generation); 4034 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4035 btrfs_set_token_inode_transid(&token, item, trans->transid); 4036 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4037 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4038 BTRFS_I(inode)->ro_flags); 4039 btrfs_set_token_inode_flags(&token, item, flags); 4040 btrfs_set_token_inode_block_group(&token, item, 0); 4041 } 4042 4043 /* 4044 * copy everything in the in-memory inode into the btree. 4045 */ 4046 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4047 struct btrfs_inode *inode) 4048 { 4049 struct btrfs_inode_item *inode_item; 4050 struct btrfs_path *path; 4051 struct extent_buffer *leaf; 4052 struct btrfs_key key; 4053 int ret; 4054 4055 path = btrfs_alloc_path(); 4056 if (!path) 4057 return -ENOMEM; 4058 4059 btrfs_get_inode_key(inode, &key); 4060 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4061 if (ret) { 4062 if (ret > 0) 4063 ret = -ENOENT; 4064 goto failed; 4065 } 4066 4067 leaf = path->nodes[0]; 4068 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4069 struct btrfs_inode_item); 4070 4071 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4072 btrfs_mark_buffer_dirty(trans, leaf); 4073 btrfs_set_inode_last_trans(trans, inode); 4074 ret = 0; 4075 failed: 4076 btrfs_free_path(path); 4077 return ret; 4078 } 4079 4080 /* 4081 * copy everything in the in-memory inode into the btree. 4082 */ 4083 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4084 struct btrfs_inode *inode) 4085 { 4086 struct btrfs_root *root = inode->root; 4087 struct btrfs_fs_info *fs_info = root->fs_info; 4088 int ret; 4089 4090 /* 4091 * If the inode is a free space inode, we can deadlock during commit 4092 * if we put it into the delayed code. 4093 * 4094 * The data relocation inode should also be directly updated 4095 * without delay 4096 */ 4097 if (!btrfs_is_free_space_inode(inode) 4098 && !btrfs_is_data_reloc_root(root) 4099 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4100 btrfs_update_root_times(trans, root); 4101 4102 ret = btrfs_delayed_update_inode(trans, inode); 4103 if (!ret) 4104 btrfs_set_inode_last_trans(trans, inode); 4105 return ret; 4106 } 4107 4108 return btrfs_update_inode_item(trans, inode); 4109 } 4110 4111 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4112 struct btrfs_inode *inode) 4113 { 4114 int ret; 4115 4116 ret = btrfs_update_inode(trans, inode); 4117 if (ret == -ENOSPC) 4118 return btrfs_update_inode_item(trans, inode); 4119 return ret; 4120 } 4121 4122 /* 4123 * unlink helper that gets used here in inode.c and in the tree logging 4124 * recovery code. It remove a link in a directory with a given name, and 4125 * also drops the back refs in the inode to the directory 4126 */ 4127 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4128 struct btrfs_inode *dir, 4129 struct btrfs_inode *inode, 4130 const struct fscrypt_str *name, 4131 struct btrfs_rename_ctx *rename_ctx) 4132 { 4133 struct btrfs_root *root = dir->root; 4134 struct btrfs_fs_info *fs_info = root->fs_info; 4135 struct btrfs_path *path; 4136 int ret = 0; 4137 struct btrfs_dir_item *di; 4138 u64 index; 4139 u64 ino = btrfs_ino(inode); 4140 u64 dir_ino = btrfs_ino(dir); 4141 4142 path = btrfs_alloc_path(); 4143 if (!path) { 4144 ret = -ENOMEM; 4145 goto out; 4146 } 4147 4148 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4149 if (IS_ERR_OR_NULL(di)) { 4150 ret = di ? PTR_ERR(di) : -ENOENT; 4151 goto err; 4152 } 4153 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4154 if (ret) 4155 goto err; 4156 btrfs_release_path(path); 4157 4158 /* 4159 * If we don't have dir index, we have to get it by looking up 4160 * the inode ref, since we get the inode ref, remove it directly, 4161 * it is unnecessary to do delayed deletion. 4162 * 4163 * But if we have dir index, needn't search inode ref to get it. 4164 * Since the inode ref is close to the inode item, it is better 4165 * that we delay to delete it, and just do this deletion when 4166 * we update the inode item. 4167 */ 4168 if (inode->dir_index) { 4169 ret = btrfs_delayed_delete_inode_ref(inode); 4170 if (!ret) { 4171 index = inode->dir_index; 4172 goto skip_backref; 4173 } 4174 } 4175 4176 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4177 if (ret) { 4178 btrfs_info(fs_info, 4179 "failed to delete reference to %.*s, inode %llu parent %llu", 4180 name->len, name->name, ino, dir_ino); 4181 btrfs_abort_transaction(trans, ret); 4182 goto err; 4183 } 4184 skip_backref: 4185 if (rename_ctx) 4186 rename_ctx->index = index; 4187 4188 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4189 if (ret) { 4190 btrfs_abort_transaction(trans, ret); 4191 goto err; 4192 } 4193 4194 /* 4195 * If we are in a rename context, we don't need to update anything in the 4196 * log. That will be done later during the rename by btrfs_log_new_name(). 4197 * Besides that, doing it here would only cause extra unnecessary btree 4198 * operations on the log tree, increasing latency for applications. 4199 */ 4200 if (!rename_ctx) { 4201 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4202 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4203 } 4204 4205 /* 4206 * If we have a pending delayed iput we could end up with the final iput 4207 * being run in btrfs-cleaner context. If we have enough of these built 4208 * up we can end up burning a lot of time in btrfs-cleaner without any 4209 * way to throttle the unlinks. Since we're currently holding a ref on 4210 * the inode we can run the delayed iput here without any issues as the 4211 * final iput won't be done until after we drop the ref we're currently 4212 * holding. 4213 */ 4214 btrfs_run_delayed_iput(fs_info, inode); 4215 err: 4216 btrfs_free_path(path); 4217 if (ret) 4218 goto out; 4219 4220 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4221 inode_inc_iversion(&inode->vfs_inode); 4222 inode_set_ctime_current(&inode->vfs_inode); 4223 inode_inc_iversion(&dir->vfs_inode); 4224 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4225 ret = btrfs_update_inode(trans, dir); 4226 out: 4227 return ret; 4228 } 4229 4230 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4231 struct btrfs_inode *dir, struct btrfs_inode *inode, 4232 const struct fscrypt_str *name) 4233 { 4234 int ret; 4235 4236 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4237 if (!ret) { 4238 drop_nlink(&inode->vfs_inode); 4239 ret = btrfs_update_inode(trans, inode); 4240 } 4241 return ret; 4242 } 4243 4244 /* 4245 * helper to start transaction for unlink and rmdir. 4246 * 4247 * unlink and rmdir are special in btrfs, they do not always free space, so 4248 * if we cannot make our reservations the normal way try and see if there is 4249 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4250 * allow the unlink to occur. 4251 */ 4252 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4253 { 4254 struct btrfs_root *root = dir->root; 4255 4256 return btrfs_start_transaction_fallback_global_rsv(root, 4257 BTRFS_UNLINK_METADATA_UNITS); 4258 } 4259 4260 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4261 { 4262 struct btrfs_trans_handle *trans; 4263 struct inode *inode = d_inode(dentry); 4264 int ret; 4265 struct fscrypt_name fname; 4266 4267 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4268 if (ret) 4269 return ret; 4270 4271 /* This needs to handle no-key deletions later on */ 4272 4273 trans = __unlink_start_trans(BTRFS_I(dir)); 4274 if (IS_ERR(trans)) { 4275 ret = PTR_ERR(trans); 4276 goto fscrypt_free; 4277 } 4278 4279 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4280 false); 4281 4282 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4283 &fname.disk_name); 4284 if (ret) 4285 goto end_trans; 4286 4287 if (inode->i_nlink == 0) { 4288 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4289 if (ret) 4290 goto end_trans; 4291 } 4292 4293 end_trans: 4294 btrfs_end_transaction(trans); 4295 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4296 fscrypt_free: 4297 fscrypt_free_filename(&fname); 4298 return ret; 4299 } 4300 4301 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4302 struct btrfs_inode *dir, struct dentry *dentry) 4303 { 4304 struct btrfs_root *root = dir->root; 4305 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4306 struct btrfs_path *path; 4307 struct extent_buffer *leaf; 4308 struct btrfs_dir_item *di; 4309 struct btrfs_key key; 4310 u64 index; 4311 int ret; 4312 u64 objectid; 4313 u64 dir_ino = btrfs_ino(dir); 4314 struct fscrypt_name fname; 4315 4316 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4317 if (ret) 4318 return ret; 4319 4320 /* This needs to handle no-key deletions later on */ 4321 4322 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4323 objectid = btrfs_root_id(inode->root); 4324 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4325 objectid = inode->ref_root_id; 4326 } else { 4327 WARN_ON(1); 4328 fscrypt_free_filename(&fname); 4329 return -EINVAL; 4330 } 4331 4332 path = btrfs_alloc_path(); 4333 if (!path) { 4334 ret = -ENOMEM; 4335 goto out; 4336 } 4337 4338 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4339 &fname.disk_name, -1); 4340 if (IS_ERR_OR_NULL(di)) { 4341 ret = di ? PTR_ERR(di) : -ENOENT; 4342 goto out; 4343 } 4344 4345 leaf = path->nodes[0]; 4346 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4347 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4348 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4349 if (ret) { 4350 btrfs_abort_transaction(trans, ret); 4351 goto out; 4352 } 4353 btrfs_release_path(path); 4354 4355 /* 4356 * This is a placeholder inode for a subvolume we didn't have a 4357 * reference to at the time of the snapshot creation. In the meantime 4358 * we could have renamed the real subvol link into our snapshot, so 4359 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4360 * Instead simply lookup the dir_index_item for this entry so we can 4361 * remove it. Otherwise we know we have a ref to the root and we can 4362 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4363 */ 4364 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4365 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4366 if (IS_ERR_OR_NULL(di)) { 4367 if (!di) 4368 ret = -ENOENT; 4369 else 4370 ret = PTR_ERR(di); 4371 btrfs_abort_transaction(trans, ret); 4372 goto out; 4373 } 4374 4375 leaf = path->nodes[0]; 4376 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4377 index = key.offset; 4378 btrfs_release_path(path); 4379 } else { 4380 ret = btrfs_del_root_ref(trans, objectid, 4381 btrfs_root_id(root), dir_ino, 4382 &index, &fname.disk_name); 4383 if (ret) { 4384 btrfs_abort_transaction(trans, ret); 4385 goto out; 4386 } 4387 } 4388 4389 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4390 if (ret) { 4391 btrfs_abort_transaction(trans, ret); 4392 goto out; 4393 } 4394 4395 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4396 inode_inc_iversion(&dir->vfs_inode); 4397 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4398 ret = btrfs_update_inode_fallback(trans, dir); 4399 if (ret) 4400 btrfs_abort_transaction(trans, ret); 4401 out: 4402 btrfs_free_path(path); 4403 fscrypt_free_filename(&fname); 4404 return ret; 4405 } 4406 4407 /* 4408 * Helper to check if the subvolume references other subvolumes or if it's 4409 * default. 4410 */ 4411 static noinline int may_destroy_subvol(struct btrfs_root *root) 4412 { 4413 struct btrfs_fs_info *fs_info = root->fs_info; 4414 struct btrfs_path *path; 4415 struct btrfs_dir_item *di; 4416 struct btrfs_key key; 4417 struct fscrypt_str name = FSTR_INIT("default", 7); 4418 u64 dir_id; 4419 int ret; 4420 4421 path = btrfs_alloc_path(); 4422 if (!path) 4423 return -ENOMEM; 4424 4425 /* Make sure this root isn't set as the default subvol */ 4426 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4427 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4428 dir_id, &name, 0); 4429 if (di && !IS_ERR(di)) { 4430 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4431 if (key.objectid == btrfs_root_id(root)) { 4432 ret = -EPERM; 4433 btrfs_err(fs_info, 4434 "deleting default subvolume %llu is not allowed", 4435 key.objectid); 4436 goto out; 4437 } 4438 btrfs_release_path(path); 4439 } 4440 4441 key.objectid = btrfs_root_id(root); 4442 key.type = BTRFS_ROOT_REF_KEY; 4443 key.offset = (u64)-1; 4444 4445 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4446 if (ret < 0) 4447 goto out; 4448 if (ret == 0) { 4449 /* 4450 * Key with offset -1 found, there would have to exist a root 4451 * with such id, but this is out of valid range. 4452 */ 4453 ret = -EUCLEAN; 4454 goto out; 4455 } 4456 4457 ret = 0; 4458 if (path->slots[0] > 0) { 4459 path->slots[0]--; 4460 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4461 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4462 ret = -ENOTEMPTY; 4463 } 4464 out: 4465 btrfs_free_path(path); 4466 return ret; 4467 } 4468 4469 /* Delete all dentries for inodes belonging to the root */ 4470 static void btrfs_prune_dentries(struct btrfs_root *root) 4471 { 4472 struct btrfs_fs_info *fs_info = root->fs_info; 4473 struct btrfs_inode *inode; 4474 u64 min_ino = 0; 4475 4476 if (!BTRFS_FS_ERROR(fs_info)) 4477 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4478 4479 inode = btrfs_find_first_inode(root, min_ino); 4480 while (inode) { 4481 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4482 d_prune_aliases(&inode->vfs_inode); 4483 4484 min_ino = btrfs_ino(inode) + 1; 4485 /* 4486 * btrfs_drop_inode() will have it removed from the inode 4487 * cache when its usage count hits zero. 4488 */ 4489 iput(&inode->vfs_inode); 4490 cond_resched(); 4491 inode = btrfs_find_first_inode(root, min_ino); 4492 } 4493 } 4494 4495 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4496 { 4497 struct btrfs_root *root = dir->root; 4498 struct btrfs_fs_info *fs_info = root->fs_info; 4499 struct inode *inode = d_inode(dentry); 4500 struct btrfs_root *dest = BTRFS_I(inode)->root; 4501 struct btrfs_trans_handle *trans; 4502 struct btrfs_block_rsv block_rsv; 4503 u64 root_flags; 4504 u64 qgroup_reserved = 0; 4505 int ret; 4506 4507 down_write(&fs_info->subvol_sem); 4508 4509 /* 4510 * Don't allow to delete a subvolume with send in progress. This is 4511 * inside the inode lock so the error handling that has to drop the bit 4512 * again is not run concurrently. 4513 */ 4514 spin_lock(&dest->root_item_lock); 4515 if (dest->send_in_progress) { 4516 spin_unlock(&dest->root_item_lock); 4517 btrfs_warn(fs_info, 4518 "attempt to delete subvolume %llu during send", 4519 btrfs_root_id(dest)); 4520 ret = -EPERM; 4521 goto out_up_write; 4522 } 4523 if (atomic_read(&dest->nr_swapfiles)) { 4524 spin_unlock(&dest->root_item_lock); 4525 btrfs_warn(fs_info, 4526 "attempt to delete subvolume %llu with active swapfile", 4527 btrfs_root_id(root)); 4528 ret = -EPERM; 4529 goto out_up_write; 4530 } 4531 root_flags = btrfs_root_flags(&dest->root_item); 4532 btrfs_set_root_flags(&dest->root_item, 4533 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4534 spin_unlock(&dest->root_item_lock); 4535 4536 ret = may_destroy_subvol(dest); 4537 if (ret) 4538 goto out_undead; 4539 4540 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4541 /* 4542 * One for dir inode, 4543 * two for dir entries, 4544 * two for root ref/backref. 4545 */ 4546 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4547 if (ret) 4548 goto out_undead; 4549 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4550 4551 trans = btrfs_start_transaction(root, 0); 4552 if (IS_ERR(trans)) { 4553 ret = PTR_ERR(trans); 4554 goto out_release; 4555 } 4556 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4557 qgroup_reserved = 0; 4558 trans->block_rsv = &block_rsv; 4559 trans->bytes_reserved = block_rsv.size; 4560 4561 btrfs_record_snapshot_destroy(trans, dir); 4562 4563 ret = btrfs_unlink_subvol(trans, dir, dentry); 4564 if (ret) { 4565 btrfs_abort_transaction(trans, ret); 4566 goto out_end_trans; 4567 } 4568 4569 ret = btrfs_record_root_in_trans(trans, dest); 4570 if (ret) { 4571 btrfs_abort_transaction(trans, ret); 4572 goto out_end_trans; 4573 } 4574 4575 memset(&dest->root_item.drop_progress, 0, 4576 sizeof(dest->root_item.drop_progress)); 4577 btrfs_set_root_drop_level(&dest->root_item, 0); 4578 btrfs_set_root_refs(&dest->root_item, 0); 4579 4580 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4581 ret = btrfs_insert_orphan_item(trans, 4582 fs_info->tree_root, 4583 btrfs_root_id(dest)); 4584 if (ret) { 4585 btrfs_abort_transaction(trans, ret); 4586 goto out_end_trans; 4587 } 4588 } 4589 4590 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4591 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4592 if (ret && ret != -ENOENT) { 4593 btrfs_abort_transaction(trans, ret); 4594 goto out_end_trans; 4595 } 4596 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4597 ret = btrfs_uuid_tree_remove(trans, 4598 dest->root_item.received_uuid, 4599 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4600 btrfs_root_id(dest)); 4601 if (ret && ret != -ENOENT) { 4602 btrfs_abort_transaction(trans, ret); 4603 goto out_end_trans; 4604 } 4605 } 4606 4607 free_anon_bdev(dest->anon_dev); 4608 dest->anon_dev = 0; 4609 out_end_trans: 4610 trans->block_rsv = NULL; 4611 trans->bytes_reserved = 0; 4612 ret = btrfs_end_transaction(trans); 4613 inode->i_flags |= S_DEAD; 4614 out_release: 4615 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4616 if (qgroup_reserved) 4617 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4618 out_undead: 4619 if (ret) { 4620 spin_lock(&dest->root_item_lock); 4621 root_flags = btrfs_root_flags(&dest->root_item); 4622 btrfs_set_root_flags(&dest->root_item, 4623 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4624 spin_unlock(&dest->root_item_lock); 4625 } 4626 out_up_write: 4627 up_write(&fs_info->subvol_sem); 4628 if (!ret) { 4629 d_invalidate(dentry); 4630 btrfs_prune_dentries(dest); 4631 ASSERT(dest->send_in_progress == 0); 4632 } 4633 4634 return ret; 4635 } 4636 4637 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4638 { 4639 struct inode *inode = d_inode(dentry); 4640 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4641 int ret = 0; 4642 struct btrfs_trans_handle *trans; 4643 u64 last_unlink_trans; 4644 struct fscrypt_name fname; 4645 4646 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4647 return -ENOTEMPTY; 4648 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4649 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4650 btrfs_err(fs_info, 4651 "extent tree v2 doesn't support snapshot deletion yet"); 4652 return -EOPNOTSUPP; 4653 } 4654 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4655 } 4656 4657 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4658 if (ret) 4659 return ret; 4660 4661 /* This needs to handle no-key deletions later on */ 4662 4663 trans = __unlink_start_trans(BTRFS_I(dir)); 4664 if (IS_ERR(trans)) { 4665 ret = PTR_ERR(trans); 4666 goto out_notrans; 4667 } 4668 4669 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4670 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4671 goto out; 4672 } 4673 4674 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4675 if (ret) 4676 goto out; 4677 4678 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4679 4680 /* now the directory is empty */ 4681 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4682 &fname.disk_name); 4683 if (!ret) { 4684 btrfs_i_size_write(BTRFS_I(inode), 0); 4685 /* 4686 * Propagate the last_unlink_trans value of the deleted dir to 4687 * its parent directory. This is to prevent an unrecoverable 4688 * log tree in the case we do something like this: 4689 * 1) create dir foo 4690 * 2) create snapshot under dir foo 4691 * 3) delete the snapshot 4692 * 4) rmdir foo 4693 * 5) mkdir foo 4694 * 6) fsync foo or some file inside foo 4695 */ 4696 if (last_unlink_trans >= trans->transid) 4697 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4698 } 4699 out: 4700 btrfs_end_transaction(trans); 4701 out_notrans: 4702 btrfs_btree_balance_dirty(fs_info); 4703 fscrypt_free_filename(&fname); 4704 4705 return ret; 4706 } 4707 4708 /* 4709 * Read, zero a chunk and write a block. 4710 * 4711 * @inode - inode that we're zeroing 4712 * @from - the offset to start zeroing 4713 * @len - the length to zero, 0 to zero the entire range respective to the 4714 * offset 4715 * @front - zero up to the offset instead of from the offset on 4716 * 4717 * This will find the block for the "from" offset and cow the block and zero the 4718 * part we want to zero. This is used with truncate and hole punching. 4719 */ 4720 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4721 int front) 4722 { 4723 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4724 struct address_space *mapping = inode->vfs_inode.i_mapping; 4725 struct extent_io_tree *io_tree = &inode->io_tree; 4726 struct btrfs_ordered_extent *ordered; 4727 struct extent_state *cached_state = NULL; 4728 struct extent_changeset *data_reserved = NULL; 4729 bool only_release_metadata = false; 4730 u32 blocksize = fs_info->sectorsize; 4731 pgoff_t index = from >> PAGE_SHIFT; 4732 unsigned offset = from & (blocksize - 1); 4733 struct folio *folio; 4734 gfp_t mask = btrfs_alloc_write_mask(mapping); 4735 size_t write_bytes = blocksize; 4736 int ret = 0; 4737 u64 block_start; 4738 u64 block_end; 4739 4740 if (IS_ALIGNED(offset, blocksize) && 4741 (!len || IS_ALIGNED(len, blocksize))) 4742 goto out; 4743 4744 block_start = round_down(from, blocksize); 4745 block_end = block_start + blocksize - 1; 4746 4747 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4748 blocksize, false); 4749 if (ret < 0) { 4750 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4751 /* For nocow case, no need to reserve data space */ 4752 only_release_metadata = true; 4753 } else { 4754 goto out; 4755 } 4756 } 4757 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4758 if (ret < 0) { 4759 if (!only_release_metadata) 4760 btrfs_free_reserved_data_space(inode, data_reserved, 4761 block_start, blocksize); 4762 goto out; 4763 } 4764 again: 4765 folio = __filemap_get_folio(mapping, index, 4766 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4767 if (IS_ERR(folio)) { 4768 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4769 blocksize, true); 4770 btrfs_delalloc_release_extents(inode, blocksize); 4771 ret = -ENOMEM; 4772 goto out; 4773 } 4774 4775 if (!folio_test_uptodate(folio)) { 4776 ret = btrfs_read_folio(NULL, folio); 4777 folio_lock(folio); 4778 if (folio->mapping != mapping) { 4779 folio_unlock(folio); 4780 folio_put(folio); 4781 goto again; 4782 } 4783 if (!folio_test_uptodate(folio)) { 4784 ret = -EIO; 4785 goto out_unlock; 4786 } 4787 } 4788 4789 /* 4790 * We unlock the page after the io is completed and then re-lock it 4791 * above. release_folio() could have come in between that and cleared 4792 * folio private, but left the page in the mapping. Set the page mapped 4793 * here to make sure it's properly set for the subpage stuff. 4794 */ 4795 ret = set_folio_extent_mapped(folio); 4796 if (ret < 0) 4797 goto out_unlock; 4798 4799 folio_wait_writeback(folio); 4800 4801 lock_extent(io_tree, block_start, block_end, &cached_state); 4802 4803 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4804 if (ordered) { 4805 unlock_extent(io_tree, block_start, block_end, &cached_state); 4806 folio_unlock(folio); 4807 folio_put(folio); 4808 btrfs_start_ordered_extent(ordered); 4809 btrfs_put_ordered_extent(ordered); 4810 goto again; 4811 } 4812 4813 clear_extent_bit(&inode->io_tree, block_start, block_end, 4814 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4815 &cached_state); 4816 4817 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4818 &cached_state); 4819 if (ret) { 4820 unlock_extent(io_tree, block_start, block_end, &cached_state); 4821 goto out_unlock; 4822 } 4823 4824 if (offset != blocksize) { 4825 if (!len) 4826 len = blocksize - offset; 4827 if (front) 4828 folio_zero_range(folio, block_start - folio_pos(folio), 4829 offset); 4830 else 4831 folio_zero_range(folio, 4832 (block_start - folio_pos(folio)) + offset, 4833 len); 4834 } 4835 btrfs_folio_clear_checked(fs_info, folio, block_start, 4836 block_end + 1 - block_start); 4837 btrfs_folio_set_dirty(fs_info, folio, block_start, 4838 block_end + 1 - block_start); 4839 unlock_extent(io_tree, block_start, block_end, &cached_state); 4840 4841 if (only_release_metadata) 4842 set_extent_bit(&inode->io_tree, block_start, block_end, 4843 EXTENT_NORESERVE, NULL); 4844 4845 out_unlock: 4846 if (ret) { 4847 if (only_release_metadata) 4848 btrfs_delalloc_release_metadata(inode, blocksize, true); 4849 else 4850 btrfs_delalloc_release_space(inode, data_reserved, 4851 block_start, blocksize, true); 4852 } 4853 btrfs_delalloc_release_extents(inode, blocksize); 4854 folio_unlock(folio); 4855 folio_put(folio); 4856 out: 4857 if (only_release_metadata) 4858 btrfs_check_nocow_unlock(inode); 4859 extent_changeset_free(data_reserved); 4860 return ret; 4861 } 4862 4863 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4864 { 4865 struct btrfs_root *root = inode->root; 4866 struct btrfs_fs_info *fs_info = root->fs_info; 4867 struct btrfs_trans_handle *trans; 4868 struct btrfs_drop_extents_args drop_args = { 0 }; 4869 int ret; 4870 4871 /* 4872 * If NO_HOLES is enabled, we don't need to do anything. 4873 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4874 * or btrfs_update_inode() will be called, which guarantee that the next 4875 * fsync will know this inode was changed and needs to be logged. 4876 */ 4877 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4878 return 0; 4879 4880 /* 4881 * 1 - for the one we're dropping 4882 * 1 - for the one we're adding 4883 * 1 - for updating the inode. 4884 */ 4885 trans = btrfs_start_transaction(root, 3); 4886 if (IS_ERR(trans)) 4887 return PTR_ERR(trans); 4888 4889 drop_args.start = offset; 4890 drop_args.end = offset + len; 4891 drop_args.drop_cache = true; 4892 4893 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4894 if (ret) { 4895 btrfs_abort_transaction(trans, ret); 4896 btrfs_end_transaction(trans); 4897 return ret; 4898 } 4899 4900 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4901 if (ret) { 4902 btrfs_abort_transaction(trans, ret); 4903 } else { 4904 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4905 btrfs_update_inode(trans, inode); 4906 } 4907 btrfs_end_transaction(trans); 4908 return ret; 4909 } 4910 4911 /* 4912 * This function puts in dummy file extents for the area we're creating a hole 4913 * for. So if we are truncating this file to a larger size we need to insert 4914 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4915 * the range between oldsize and size 4916 */ 4917 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4918 { 4919 struct btrfs_root *root = inode->root; 4920 struct btrfs_fs_info *fs_info = root->fs_info; 4921 struct extent_io_tree *io_tree = &inode->io_tree; 4922 struct extent_map *em = NULL; 4923 struct extent_state *cached_state = NULL; 4924 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4925 u64 block_end = ALIGN(size, fs_info->sectorsize); 4926 u64 last_byte; 4927 u64 cur_offset; 4928 u64 hole_size; 4929 int ret = 0; 4930 4931 /* 4932 * If our size started in the middle of a block we need to zero out the 4933 * rest of the block before we expand the i_size, otherwise we could 4934 * expose stale data. 4935 */ 4936 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4937 if (ret) 4938 return ret; 4939 4940 if (size <= hole_start) 4941 return 0; 4942 4943 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4944 &cached_state); 4945 cur_offset = hole_start; 4946 while (1) { 4947 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4948 if (IS_ERR(em)) { 4949 ret = PTR_ERR(em); 4950 em = NULL; 4951 break; 4952 } 4953 last_byte = min(extent_map_end(em), block_end); 4954 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4955 hole_size = last_byte - cur_offset; 4956 4957 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4958 struct extent_map *hole_em; 4959 4960 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4961 if (ret) 4962 break; 4963 4964 ret = btrfs_inode_set_file_extent_range(inode, 4965 cur_offset, hole_size); 4966 if (ret) 4967 break; 4968 4969 hole_em = alloc_extent_map(); 4970 if (!hole_em) { 4971 btrfs_drop_extent_map_range(inode, cur_offset, 4972 cur_offset + hole_size - 1, 4973 false); 4974 btrfs_set_inode_full_sync(inode); 4975 goto next; 4976 } 4977 hole_em->start = cur_offset; 4978 hole_em->len = hole_size; 4979 4980 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4981 hole_em->disk_num_bytes = 0; 4982 hole_em->ram_bytes = hole_size; 4983 hole_em->generation = btrfs_get_fs_generation(fs_info); 4984 4985 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4986 free_extent_map(hole_em); 4987 } else { 4988 ret = btrfs_inode_set_file_extent_range(inode, 4989 cur_offset, hole_size); 4990 if (ret) 4991 break; 4992 } 4993 next: 4994 free_extent_map(em); 4995 em = NULL; 4996 cur_offset = last_byte; 4997 if (cur_offset >= block_end) 4998 break; 4999 } 5000 free_extent_map(em); 5001 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5002 return ret; 5003 } 5004 5005 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5006 { 5007 struct btrfs_root *root = BTRFS_I(inode)->root; 5008 struct btrfs_trans_handle *trans; 5009 loff_t oldsize = i_size_read(inode); 5010 loff_t newsize = attr->ia_size; 5011 int mask = attr->ia_valid; 5012 int ret; 5013 5014 /* 5015 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5016 * special case where we need to update the times despite not having 5017 * these flags set. For all other operations the VFS set these flags 5018 * explicitly if it wants a timestamp update. 5019 */ 5020 if (newsize != oldsize) { 5021 inode_inc_iversion(inode); 5022 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5023 inode_set_mtime_to_ts(inode, 5024 inode_set_ctime_current(inode)); 5025 } 5026 } 5027 5028 if (newsize > oldsize) { 5029 /* 5030 * Don't do an expanding truncate while snapshotting is ongoing. 5031 * This is to ensure the snapshot captures a fully consistent 5032 * state of this file - if the snapshot captures this expanding 5033 * truncation, it must capture all writes that happened before 5034 * this truncation. 5035 */ 5036 btrfs_drew_write_lock(&root->snapshot_lock); 5037 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5038 if (ret) { 5039 btrfs_drew_write_unlock(&root->snapshot_lock); 5040 return ret; 5041 } 5042 5043 trans = btrfs_start_transaction(root, 1); 5044 if (IS_ERR(trans)) { 5045 btrfs_drew_write_unlock(&root->snapshot_lock); 5046 return PTR_ERR(trans); 5047 } 5048 5049 i_size_write(inode, newsize); 5050 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5051 pagecache_isize_extended(inode, oldsize, newsize); 5052 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5053 btrfs_drew_write_unlock(&root->snapshot_lock); 5054 btrfs_end_transaction(trans); 5055 } else { 5056 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5057 5058 if (btrfs_is_zoned(fs_info)) { 5059 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5060 ALIGN(newsize, fs_info->sectorsize), 5061 (u64)-1); 5062 if (ret) 5063 return ret; 5064 } 5065 5066 /* 5067 * We're truncating a file that used to have good data down to 5068 * zero. Make sure any new writes to the file get on disk 5069 * on close. 5070 */ 5071 if (newsize == 0) 5072 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5073 &BTRFS_I(inode)->runtime_flags); 5074 5075 truncate_setsize(inode, newsize); 5076 5077 inode_dio_wait(inode); 5078 5079 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5080 if (ret && inode->i_nlink) { 5081 int err; 5082 5083 /* 5084 * Truncate failed, so fix up the in-memory size. We 5085 * adjusted disk_i_size down as we removed extents, so 5086 * wait for disk_i_size to be stable and then update the 5087 * in-memory size to match. 5088 */ 5089 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5090 if (err) 5091 return err; 5092 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5093 } 5094 } 5095 5096 return ret; 5097 } 5098 5099 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5100 struct iattr *attr) 5101 { 5102 struct inode *inode = d_inode(dentry); 5103 struct btrfs_root *root = BTRFS_I(inode)->root; 5104 int err; 5105 5106 if (btrfs_root_readonly(root)) 5107 return -EROFS; 5108 5109 err = setattr_prepare(idmap, dentry, attr); 5110 if (err) 5111 return err; 5112 5113 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5114 err = btrfs_setsize(inode, attr); 5115 if (err) 5116 return err; 5117 } 5118 5119 if (attr->ia_valid) { 5120 setattr_copy(idmap, inode, attr); 5121 inode_inc_iversion(inode); 5122 err = btrfs_dirty_inode(BTRFS_I(inode)); 5123 5124 if (!err && attr->ia_valid & ATTR_MODE) 5125 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5126 } 5127 5128 return err; 5129 } 5130 5131 /* 5132 * While truncating the inode pages during eviction, we get the VFS 5133 * calling btrfs_invalidate_folio() against each folio of the inode. This 5134 * is slow because the calls to btrfs_invalidate_folio() result in a 5135 * huge amount of calls to lock_extent() and clear_extent_bit(), 5136 * which keep merging and splitting extent_state structures over and over, 5137 * wasting lots of time. 5138 * 5139 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5140 * skip all those expensive operations on a per folio basis and do only 5141 * the ordered io finishing, while we release here the extent_map and 5142 * extent_state structures, without the excessive merging and splitting. 5143 */ 5144 static void evict_inode_truncate_pages(struct inode *inode) 5145 { 5146 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5147 struct rb_node *node; 5148 5149 ASSERT(inode->i_state & I_FREEING); 5150 truncate_inode_pages_final(&inode->i_data); 5151 5152 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5153 5154 /* 5155 * Keep looping until we have no more ranges in the io tree. 5156 * We can have ongoing bios started by readahead that have 5157 * their endio callback (extent_io.c:end_bio_extent_readpage) 5158 * still in progress (unlocked the pages in the bio but did not yet 5159 * unlocked the ranges in the io tree). Therefore this means some 5160 * ranges can still be locked and eviction started because before 5161 * submitting those bios, which are executed by a separate task (work 5162 * queue kthread), inode references (inode->i_count) were not taken 5163 * (which would be dropped in the end io callback of each bio). 5164 * Therefore here we effectively end up waiting for those bios and 5165 * anyone else holding locked ranges without having bumped the inode's 5166 * reference count - if we don't do it, when they access the inode's 5167 * io_tree to unlock a range it may be too late, leading to an 5168 * use-after-free issue. 5169 */ 5170 spin_lock(&io_tree->lock); 5171 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5172 struct extent_state *state; 5173 struct extent_state *cached_state = NULL; 5174 u64 start; 5175 u64 end; 5176 unsigned state_flags; 5177 5178 node = rb_first(&io_tree->state); 5179 state = rb_entry(node, struct extent_state, rb_node); 5180 start = state->start; 5181 end = state->end; 5182 state_flags = state->state; 5183 spin_unlock(&io_tree->lock); 5184 5185 lock_extent(io_tree, start, end, &cached_state); 5186 5187 /* 5188 * If still has DELALLOC flag, the extent didn't reach disk, 5189 * and its reserved space won't be freed by delayed_ref. 5190 * So we need to free its reserved space here. 5191 * (Refer to comment in btrfs_invalidate_folio, case 2) 5192 * 5193 * Note, end is the bytenr of last byte, so we need + 1 here. 5194 */ 5195 if (state_flags & EXTENT_DELALLOC) 5196 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5197 end - start + 1, NULL); 5198 5199 clear_extent_bit(io_tree, start, end, 5200 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5201 &cached_state); 5202 5203 cond_resched(); 5204 spin_lock(&io_tree->lock); 5205 } 5206 spin_unlock(&io_tree->lock); 5207 } 5208 5209 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5210 struct btrfs_block_rsv *rsv) 5211 { 5212 struct btrfs_fs_info *fs_info = root->fs_info; 5213 struct btrfs_trans_handle *trans; 5214 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5215 int ret; 5216 5217 /* 5218 * Eviction should be taking place at some place safe because of our 5219 * delayed iputs. However the normal flushing code will run delayed 5220 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5221 * 5222 * We reserve the delayed_refs_extra here again because we can't use 5223 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5224 * above. We reserve our extra bit here because we generate a ton of 5225 * delayed refs activity by truncating. 5226 * 5227 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5228 * if we fail to make this reservation we can re-try without the 5229 * delayed_refs_extra so we can make some forward progress. 5230 */ 5231 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5232 BTRFS_RESERVE_FLUSH_EVICT); 5233 if (ret) { 5234 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5235 BTRFS_RESERVE_FLUSH_EVICT); 5236 if (ret) { 5237 btrfs_warn(fs_info, 5238 "could not allocate space for delete; will truncate on mount"); 5239 return ERR_PTR(-ENOSPC); 5240 } 5241 delayed_refs_extra = 0; 5242 } 5243 5244 trans = btrfs_join_transaction(root); 5245 if (IS_ERR(trans)) 5246 return trans; 5247 5248 if (delayed_refs_extra) { 5249 trans->block_rsv = &fs_info->trans_block_rsv; 5250 trans->bytes_reserved = delayed_refs_extra; 5251 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5252 delayed_refs_extra, true); 5253 } 5254 return trans; 5255 } 5256 5257 void btrfs_evict_inode(struct inode *inode) 5258 { 5259 struct btrfs_fs_info *fs_info; 5260 struct btrfs_trans_handle *trans; 5261 struct btrfs_root *root = BTRFS_I(inode)->root; 5262 struct btrfs_block_rsv *rsv = NULL; 5263 int ret; 5264 5265 trace_btrfs_inode_evict(inode); 5266 5267 if (!root) { 5268 fsverity_cleanup_inode(inode); 5269 clear_inode(inode); 5270 return; 5271 } 5272 5273 fs_info = inode_to_fs_info(inode); 5274 evict_inode_truncate_pages(inode); 5275 5276 if (inode->i_nlink && 5277 ((btrfs_root_refs(&root->root_item) != 0 && 5278 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5279 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5280 goto out; 5281 5282 if (is_bad_inode(inode)) 5283 goto out; 5284 5285 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5286 goto out; 5287 5288 if (inode->i_nlink > 0) { 5289 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5290 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5291 goto out; 5292 } 5293 5294 /* 5295 * This makes sure the inode item in tree is uptodate and the space for 5296 * the inode update is released. 5297 */ 5298 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5299 if (ret) 5300 goto out; 5301 5302 /* 5303 * This drops any pending insert or delete operations we have for this 5304 * inode. We could have a delayed dir index deletion queued up, but 5305 * we're removing the inode completely so that'll be taken care of in 5306 * the truncate. 5307 */ 5308 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5309 5310 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5311 if (!rsv) 5312 goto out; 5313 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5314 rsv->failfast = true; 5315 5316 btrfs_i_size_write(BTRFS_I(inode), 0); 5317 5318 while (1) { 5319 struct btrfs_truncate_control control = { 5320 .inode = BTRFS_I(inode), 5321 .ino = btrfs_ino(BTRFS_I(inode)), 5322 .new_size = 0, 5323 .min_type = 0, 5324 }; 5325 5326 trans = evict_refill_and_join(root, rsv); 5327 if (IS_ERR(trans)) 5328 goto out; 5329 5330 trans->block_rsv = rsv; 5331 5332 ret = btrfs_truncate_inode_items(trans, root, &control); 5333 trans->block_rsv = &fs_info->trans_block_rsv; 5334 btrfs_end_transaction(trans); 5335 /* 5336 * We have not added new delayed items for our inode after we 5337 * have flushed its delayed items, so no need to throttle on 5338 * delayed items. However we have modified extent buffers. 5339 */ 5340 btrfs_btree_balance_dirty_nodelay(fs_info); 5341 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5342 goto out; 5343 else if (!ret) 5344 break; 5345 } 5346 5347 /* 5348 * Errors here aren't a big deal, it just means we leave orphan items in 5349 * the tree. They will be cleaned up on the next mount. If the inode 5350 * number gets reused, cleanup deletes the orphan item without doing 5351 * anything, and unlink reuses the existing orphan item. 5352 * 5353 * If it turns out that we are dropping too many of these, we might want 5354 * to add a mechanism for retrying these after a commit. 5355 */ 5356 trans = evict_refill_and_join(root, rsv); 5357 if (!IS_ERR(trans)) { 5358 trans->block_rsv = rsv; 5359 btrfs_orphan_del(trans, BTRFS_I(inode)); 5360 trans->block_rsv = &fs_info->trans_block_rsv; 5361 btrfs_end_transaction(trans); 5362 } 5363 5364 out: 5365 btrfs_free_block_rsv(fs_info, rsv); 5366 /* 5367 * If we didn't successfully delete, the orphan item will still be in 5368 * the tree and we'll retry on the next mount. Again, we might also want 5369 * to retry these periodically in the future. 5370 */ 5371 btrfs_remove_delayed_node(BTRFS_I(inode)); 5372 fsverity_cleanup_inode(inode); 5373 clear_inode(inode); 5374 } 5375 5376 /* 5377 * Return the key found in the dir entry in the location pointer, fill @type 5378 * with BTRFS_FT_*, and return 0. 5379 * 5380 * If no dir entries were found, returns -ENOENT. 5381 * If found a corrupted location in dir entry, returns -EUCLEAN. 5382 */ 5383 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5384 struct btrfs_key *location, u8 *type) 5385 { 5386 struct btrfs_dir_item *di; 5387 struct btrfs_path *path; 5388 struct btrfs_root *root = dir->root; 5389 int ret = 0; 5390 struct fscrypt_name fname; 5391 5392 path = btrfs_alloc_path(); 5393 if (!path) 5394 return -ENOMEM; 5395 5396 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5397 if (ret < 0) 5398 goto out; 5399 /* 5400 * fscrypt_setup_filename() should never return a positive value, but 5401 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5402 */ 5403 ASSERT(ret == 0); 5404 5405 /* This needs to handle no-key deletions later on */ 5406 5407 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5408 &fname.disk_name, 0); 5409 if (IS_ERR_OR_NULL(di)) { 5410 ret = di ? PTR_ERR(di) : -ENOENT; 5411 goto out; 5412 } 5413 5414 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5415 if (location->type != BTRFS_INODE_ITEM_KEY && 5416 location->type != BTRFS_ROOT_ITEM_KEY) { 5417 ret = -EUCLEAN; 5418 btrfs_warn(root->fs_info, 5419 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5420 __func__, fname.disk_name.name, btrfs_ino(dir), 5421 location->objectid, location->type, location->offset); 5422 } 5423 if (!ret) 5424 *type = btrfs_dir_ftype(path->nodes[0], di); 5425 out: 5426 fscrypt_free_filename(&fname); 5427 btrfs_free_path(path); 5428 return ret; 5429 } 5430 5431 /* 5432 * when we hit a tree root in a directory, the btrfs part of the inode 5433 * needs to be changed to reflect the root directory of the tree root. This 5434 * is kind of like crossing a mount point. 5435 */ 5436 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5437 struct btrfs_inode *dir, 5438 struct dentry *dentry, 5439 struct btrfs_key *location, 5440 struct btrfs_root **sub_root) 5441 { 5442 struct btrfs_path *path; 5443 struct btrfs_root *new_root; 5444 struct btrfs_root_ref *ref; 5445 struct extent_buffer *leaf; 5446 struct btrfs_key key; 5447 int ret; 5448 int err = 0; 5449 struct fscrypt_name fname; 5450 5451 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5452 if (ret) 5453 return ret; 5454 5455 path = btrfs_alloc_path(); 5456 if (!path) { 5457 err = -ENOMEM; 5458 goto out; 5459 } 5460 5461 err = -ENOENT; 5462 key.objectid = btrfs_root_id(dir->root); 5463 key.type = BTRFS_ROOT_REF_KEY; 5464 key.offset = location->objectid; 5465 5466 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5467 if (ret) { 5468 if (ret < 0) 5469 err = ret; 5470 goto out; 5471 } 5472 5473 leaf = path->nodes[0]; 5474 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5475 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5476 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5477 goto out; 5478 5479 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5480 (unsigned long)(ref + 1), fname.disk_name.len); 5481 if (ret) 5482 goto out; 5483 5484 btrfs_release_path(path); 5485 5486 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5487 if (IS_ERR(new_root)) { 5488 err = PTR_ERR(new_root); 5489 goto out; 5490 } 5491 5492 *sub_root = new_root; 5493 location->objectid = btrfs_root_dirid(&new_root->root_item); 5494 location->type = BTRFS_INODE_ITEM_KEY; 5495 location->offset = 0; 5496 err = 0; 5497 out: 5498 btrfs_free_path(path); 5499 fscrypt_free_filename(&fname); 5500 return err; 5501 } 5502 5503 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 5504 { 5505 struct btrfs_root *root = inode->root; 5506 struct btrfs_inode *existing; 5507 const u64 ino = btrfs_ino(inode); 5508 int ret; 5509 5510 if (inode_unhashed(&inode->vfs_inode)) 5511 return 0; 5512 5513 if (prealloc) { 5514 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 5515 if (ret) 5516 return ret; 5517 } 5518 5519 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 5520 5521 if (xa_is_err(existing)) { 5522 ret = xa_err(existing); 5523 ASSERT(ret != -EINVAL); 5524 ASSERT(ret != -ENOMEM); 5525 return ret; 5526 } else if (existing) { 5527 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 5528 } 5529 5530 return 0; 5531 } 5532 5533 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5534 { 5535 struct btrfs_root *root = inode->root; 5536 struct btrfs_inode *entry; 5537 bool empty = false; 5538 5539 xa_lock(&root->inodes); 5540 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5541 if (entry == inode) 5542 empty = xa_empty(&root->inodes); 5543 xa_unlock(&root->inodes); 5544 5545 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5546 xa_lock(&root->inodes); 5547 empty = xa_empty(&root->inodes); 5548 xa_unlock(&root->inodes); 5549 if (empty) 5550 btrfs_add_dead_root(root); 5551 } 5552 } 5553 5554 5555 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5556 { 5557 struct btrfs_iget_args *args = p; 5558 5559 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5560 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5561 5562 if (args->root && args->root == args->root->fs_info->tree_root && 5563 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5564 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5565 &BTRFS_I(inode)->runtime_flags); 5566 return 0; 5567 } 5568 5569 static int btrfs_find_actor(struct inode *inode, void *opaque) 5570 { 5571 struct btrfs_iget_args *args = opaque; 5572 5573 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5574 args->root == BTRFS_I(inode)->root; 5575 } 5576 5577 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5578 { 5579 struct inode *inode; 5580 struct btrfs_iget_args args; 5581 unsigned long hashval = btrfs_inode_hash(ino, root); 5582 5583 args.ino = ino; 5584 args.root = root; 5585 5586 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5587 btrfs_init_locked_inode, 5588 (void *)&args); 5589 return inode; 5590 } 5591 5592 /* 5593 * Get an inode object given its inode number and corresponding root. 5594 * Path can be preallocated to prevent recursing back to iget through 5595 * allocator. NULL is also valid but may require an additional allocation 5596 * later. 5597 */ 5598 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5599 struct btrfs_path *path) 5600 { 5601 struct inode *inode; 5602 int ret; 5603 5604 inode = btrfs_iget_locked(ino, root); 5605 if (!inode) 5606 return ERR_PTR(-ENOMEM); 5607 5608 if (!(inode->i_state & I_NEW)) 5609 return inode; 5610 5611 ret = btrfs_read_locked_inode(inode, path); 5612 /* 5613 * ret > 0 can come from btrfs_search_slot called by 5614 * btrfs_read_locked_inode(), this means the inode item was not found. 5615 */ 5616 if (ret > 0) 5617 ret = -ENOENT; 5618 if (ret < 0) 5619 goto error; 5620 5621 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 5622 if (ret < 0) 5623 goto error; 5624 5625 unlock_new_inode(inode); 5626 5627 return inode; 5628 error: 5629 iget_failed(inode); 5630 return ERR_PTR(ret); 5631 } 5632 5633 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5634 { 5635 return btrfs_iget_path(ino, root, NULL); 5636 } 5637 5638 static struct inode *new_simple_dir(struct inode *dir, 5639 struct btrfs_key *key, 5640 struct btrfs_root *root) 5641 { 5642 struct timespec64 ts; 5643 struct inode *inode = new_inode(dir->i_sb); 5644 5645 if (!inode) 5646 return ERR_PTR(-ENOMEM); 5647 5648 BTRFS_I(inode)->root = btrfs_grab_root(root); 5649 BTRFS_I(inode)->ref_root_id = key->objectid; 5650 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5651 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5652 5653 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5654 /* 5655 * We only need lookup, the rest is read-only and there's no inode 5656 * associated with the dentry 5657 */ 5658 inode->i_op = &simple_dir_inode_operations; 5659 inode->i_opflags &= ~IOP_XATTR; 5660 inode->i_fop = &simple_dir_operations; 5661 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5662 5663 ts = inode_set_ctime_current(inode); 5664 inode_set_mtime_to_ts(inode, ts); 5665 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5666 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5667 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5668 5669 inode->i_uid = dir->i_uid; 5670 inode->i_gid = dir->i_gid; 5671 5672 return inode; 5673 } 5674 5675 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5676 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5677 static_assert(BTRFS_FT_DIR == FT_DIR); 5678 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5679 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5680 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5681 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5682 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5683 5684 static inline u8 btrfs_inode_type(struct inode *inode) 5685 { 5686 return fs_umode_to_ftype(inode->i_mode); 5687 } 5688 5689 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5690 { 5691 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5692 struct inode *inode; 5693 struct btrfs_root *root = BTRFS_I(dir)->root; 5694 struct btrfs_root *sub_root = root; 5695 struct btrfs_key location = { 0 }; 5696 u8 di_type = 0; 5697 int ret = 0; 5698 5699 if (dentry->d_name.len > BTRFS_NAME_LEN) 5700 return ERR_PTR(-ENAMETOOLONG); 5701 5702 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5703 if (ret < 0) 5704 return ERR_PTR(ret); 5705 5706 if (location.type == BTRFS_INODE_ITEM_KEY) { 5707 inode = btrfs_iget(location.objectid, root); 5708 if (IS_ERR(inode)) 5709 return inode; 5710 5711 /* Do extra check against inode mode with di_type */ 5712 if (btrfs_inode_type(inode) != di_type) { 5713 btrfs_crit(fs_info, 5714 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5715 inode->i_mode, btrfs_inode_type(inode), 5716 di_type); 5717 iput(inode); 5718 return ERR_PTR(-EUCLEAN); 5719 } 5720 return inode; 5721 } 5722 5723 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5724 &location, &sub_root); 5725 if (ret < 0) { 5726 if (ret != -ENOENT) 5727 inode = ERR_PTR(ret); 5728 else 5729 inode = new_simple_dir(dir, &location, root); 5730 } else { 5731 inode = btrfs_iget(location.objectid, sub_root); 5732 btrfs_put_root(sub_root); 5733 5734 if (IS_ERR(inode)) 5735 return inode; 5736 5737 down_read(&fs_info->cleanup_work_sem); 5738 if (!sb_rdonly(inode->i_sb)) 5739 ret = btrfs_orphan_cleanup(sub_root); 5740 up_read(&fs_info->cleanup_work_sem); 5741 if (ret) { 5742 iput(inode); 5743 inode = ERR_PTR(ret); 5744 } 5745 } 5746 5747 return inode; 5748 } 5749 5750 static int btrfs_dentry_delete(const struct dentry *dentry) 5751 { 5752 struct btrfs_root *root; 5753 struct inode *inode = d_inode(dentry); 5754 5755 if (!inode && !IS_ROOT(dentry)) 5756 inode = d_inode(dentry->d_parent); 5757 5758 if (inode) { 5759 root = BTRFS_I(inode)->root; 5760 if (btrfs_root_refs(&root->root_item) == 0) 5761 return 1; 5762 5763 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5764 return 1; 5765 } 5766 return 0; 5767 } 5768 5769 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5770 unsigned int flags) 5771 { 5772 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5773 5774 if (inode == ERR_PTR(-ENOENT)) 5775 inode = NULL; 5776 return d_splice_alias(inode, dentry); 5777 } 5778 5779 /* 5780 * Find the highest existing sequence number in a directory and then set the 5781 * in-memory index_cnt variable to the first free sequence number. 5782 */ 5783 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5784 { 5785 struct btrfs_root *root = inode->root; 5786 struct btrfs_key key, found_key; 5787 struct btrfs_path *path; 5788 struct extent_buffer *leaf; 5789 int ret; 5790 5791 key.objectid = btrfs_ino(inode); 5792 key.type = BTRFS_DIR_INDEX_KEY; 5793 key.offset = (u64)-1; 5794 5795 path = btrfs_alloc_path(); 5796 if (!path) 5797 return -ENOMEM; 5798 5799 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5800 if (ret < 0) 5801 goto out; 5802 /* FIXME: we should be able to handle this */ 5803 if (ret == 0) 5804 goto out; 5805 ret = 0; 5806 5807 if (path->slots[0] == 0) { 5808 inode->index_cnt = BTRFS_DIR_START_INDEX; 5809 goto out; 5810 } 5811 5812 path->slots[0]--; 5813 5814 leaf = path->nodes[0]; 5815 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5816 5817 if (found_key.objectid != btrfs_ino(inode) || 5818 found_key.type != BTRFS_DIR_INDEX_KEY) { 5819 inode->index_cnt = BTRFS_DIR_START_INDEX; 5820 goto out; 5821 } 5822 5823 inode->index_cnt = found_key.offset + 1; 5824 out: 5825 btrfs_free_path(path); 5826 return ret; 5827 } 5828 5829 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5830 { 5831 int ret = 0; 5832 5833 btrfs_inode_lock(dir, 0); 5834 if (dir->index_cnt == (u64)-1) { 5835 ret = btrfs_inode_delayed_dir_index_count(dir); 5836 if (ret) { 5837 ret = btrfs_set_inode_index_count(dir); 5838 if (ret) 5839 goto out; 5840 } 5841 } 5842 5843 /* index_cnt is the index number of next new entry, so decrement it. */ 5844 *index = dir->index_cnt - 1; 5845 out: 5846 btrfs_inode_unlock(dir, 0); 5847 5848 return ret; 5849 } 5850 5851 /* 5852 * All this infrastructure exists because dir_emit can fault, and we are holding 5853 * the tree lock when doing readdir. For now just allocate a buffer and copy 5854 * our information into that, and then dir_emit from the buffer. This is 5855 * similar to what NFS does, only we don't keep the buffer around in pagecache 5856 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5857 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5858 * tree lock. 5859 */ 5860 static int btrfs_opendir(struct inode *inode, struct file *file) 5861 { 5862 struct btrfs_file_private *private; 5863 u64 last_index; 5864 int ret; 5865 5866 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5867 if (ret) 5868 return ret; 5869 5870 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5871 if (!private) 5872 return -ENOMEM; 5873 private->last_index = last_index; 5874 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5875 if (!private->filldir_buf) { 5876 kfree(private); 5877 return -ENOMEM; 5878 } 5879 file->private_data = private; 5880 return 0; 5881 } 5882 5883 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5884 { 5885 struct btrfs_file_private *private = file->private_data; 5886 int ret; 5887 5888 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5889 &private->last_index); 5890 if (ret) 5891 return ret; 5892 5893 return generic_file_llseek(file, offset, whence); 5894 } 5895 5896 struct dir_entry { 5897 u64 ino; 5898 u64 offset; 5899 unsigned type; 5900 int name_len; 5901 }; 5902 5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5904 { 5905 while (entries--) { 5906 struct dir_entry *entry = addr; 5907 char *name = (char *)(entry + 1); 5908 5909 ctx->pos = get_unaligned(&entry->offset); 5910 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5911 get_unaligned(&entry->ino), 5912 get_unaligned(&entry->type))) 5913 return 1; 5914 addr += sizeof(struct dir_entry) + 5915 get_unaligned(&entry->name_len); 5916 ctx->pos++; 5917 } 5918 return 0; 5919 } 5920 5921 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5922 { 5923 struct inode *inode = file_inode(file); 5924 struct btrfs_root *root = BTRFS_I(inode)->root; 5925 struct btrfs_file_private *private = file->private_data; 5926 struct btrfs_dir_item *di; 5927 struct btrfs_key key; 5928 struct btrfs_key found_key; 5929 struct btrfs_path *path; 5930 void *addr; 5931 LIST_HEAD(ins_list); 5932 LIST_HEAD(del_list); 5933 int ret; 5934 char *name_ptr; 5935 int name_len; 5936 int entries = 0; 5937 int total_len = 0; 5938 bool put = false; 5939 struct btrfs_key location; 5940 5941 if (!dir_emit_dots(file, ctx)) 5942 return 0; 5943 5944 path = btrfs_alloc_path(); 5945 if (!path) 5946 return -ENOMEM; 5947 5948 addr = private->filldir_buf; 5949 path->reada = READA_FORWARD; 5950 5951 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5952 &ins_list, &del_list); 5953 5954 again: 5955 key.type = BTRFS_DIR_INDEX_KEY; 5956 key.offset = ctx->pos; 5957 key.objectid = btrfs_ino(BTRFS_I(inode)); 5958 5959 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5960 struct dir_entry *entry; 5961 struct extent_buffer *leaf = path->nodes[0]; 5962 u8 ftype; 5963 5964 if (found_key.objectid != key.objectid) 5965 break; 5966 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5967 break; 5968 if (found_key.offset < ctx->pos) 5969 continue; 5970 if (found_key.offset > private->last_index) 5971 break; 5972 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5973 continue; 5974 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5975 name_len = btrfs_dir_name_len(leaf, di); 5976 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5977 PAGE_SIZE) { 5978 btrfs_release_path(path); 5979 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5980 if (ret) 5981 goto nopos; 5982 addr = private->filldir_buf; 5983 entries = 0; 5984 total_len = 0; 5985 goto again; 5986 } 5987 5988 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5989 entry = addr; 5990 name_ptr = (char *)(entry + 1); 5991 read_extent_buffer(leaf, name_ptr, 5992 (unsigned long)(di + 1), name_len); 5993 put_unaligned(name_len, &entry->name_len); 5994 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5995 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5996 put_unaligned(location.objectid, &entry->ino); 5997 put_unaligned(found_key.offset, &entry->offset); 5998 entries++; 5999 addr += sizeof(struct dir_entry) + name_len; 6000 total_len += sizeof(struct dir_entry) + name_len; 6001 } 6002 /* Catch error encountered during iteration */ 6003 if (ret < 0) 6004 goto err; 6005 6006 btrfs_release_path(path); 6007 6008 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6009 if (ret) 6010 goto nopos; 6011 6012 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6013 if (ret) 6014 goto nopos; 6015 6016 /* 6017 * Stop new entries from being returned after we return the last 6018 * entry. 6019 * 6020 * New directory entries are assigned a strictly increasing 6021 * offset. This means that new entries created during readdir 6022 * are *guaranteed* to be seen in the future by that readdir. 6023 * This has broken buggy programs which operate on names as 6024 * they're returned by readdir. Until we re-use freed offsets 6025 * we have this hack to stop new entries from being returned 6026 * under the assumption that they'll never reach this huge 6027 * offset. 6028 * 6029 * This is being careful not to overflow 32bit loff_t unless the 6030 * last entry requires it because doing so has broken 32bit apps 6031 * in the past. 6032 */ 6033 if (ctx->pos >= INT_MAX) 6034 ctx->pos = LLONG_MAX; 6035 else 6036 ctx->pos = INT_MAX; 6037 nopos: 6038 ret = 0; 6039 err: 6040 if (put) 6041 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6042 btrfs_free_path(path); 6043 return ret; 6044 } 6045 6046 /* 6047 * This is somewhat expensive, updating the tree every time the 6048 * inode changes. But, it is most likely to find the inode in cache. 6049 * FIXME, needs more benchmarking...there are no reasons other than performance 6050 * to keep or drop this code. 6051 */ 6052 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6053 { 6054 struct btrfs_root *root = inode->root; 6055 struct btrfs_fs_info *fs_info = root->fs_info; 6056 struct btrfs_trans_handle *trans; 6057 int ret; 6058 6059 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6060 return 0; 6061 6062 trans = btrfs_join_transaction(root); 6063 if (IS_ERR(trans)) 6064 return PTR_ERR(trans); 6065 6066 ret = btrfs_update_inode(trans, inode); 6067 if (ret == -ENOSPC || ret == -EDQUOT) { 6068 /* whoops, lets try again with the full transaction */ 6069 btrfs_end_transaction(trans); 6070 trans = btrfs_start_transaction(root, 1); 6071 if (IS_ERR(trans)) 6072 return PTR_ERR(trans); 6073 6074 ret = btrfs_update_inode(trans, inode); 6075 } 6076 btrfs_end_transaction(trans); 6077 if (inode->delayed_node) 6078 btrfs_balance_delayed_items(fs_info); 6079 6080 return ret; 6081 } 6082 6083 /* 6084 * This is a copy of file_update_time. We need this so we can return error on 6085 * ENOSPC for updating the inode in the case of file write and mmap writes. 6086 */ 6087 static int btrfs_update_time(struct inode *inode, int flags) 6088 { 6089 struct btrfs_root *root = BTRFS_I(inode)->root; 6090 bool dirty; 6091 6092 if (btrfs_root_readonly(root)) 6093 return -EROFS; 6094 6095 dirty = inode_update_timestamps(inode, flags); 6096 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6097 } 6098 6099 /* 6100 * helper to find a free sequence number in a given directory. This current 6101 * code is very simple, later versions will do smarter things in the btree 6102 */ 6103 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6104 { 6105 int ret = 0; 6106 6107 if (dir->index_cnt == (u64)-1) { 6108 ret = btrfs_inode_delayed_dir_index_count(dir); 6109 if (ret) { 6110 ret = btrfs_set_inode_index_count(dir); 6111 if (ret) 6112 return ret; 6113 } 6114 } 6115 6116 *index = dir->index_cnt; 6117 dir->index_cnt++; 6118 6119 return ret; 6120 } 6121 6122 static int btrfs_insert_inode_locked(struct inode *inode) 6123 { 6124 struct btrfs_iget_args args; 6125 6126 args.ino = btrfs_ino(BTRFS_I(inode)); 6127 args.root = BTRFS_I(inode)->root; 6128 6129 return insert_inode_locked4(inode, 6130 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6131 btrfs_find_actor, &args); 6132 } 6133 6134 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6135 unsigned int *trans_num_items) 6136 { 6137 struct inode *dir = args->dir; 6138 struct inode *inode = args->inode; 6139 int ret; 6140 6141 if (!args->orphan) { 6142 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6143 &args->fname); 6144 if (ret) 6145 return ret; 6146 } 6147 6148 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6149 if (ret) { 6150 fscrypt_free_filename(&args->fname); 6151 return ret; 6152 } 6153 6154 /* 1 to add inode item */ 6155 *trans_num_items = 1; 6156 /* 1 to add compression property */ 6157 if (BTRFS_I(dir)->prop_compress) 6158 (*trans_num_items)++; 6159 /* 1 to add default ACL xattr */ 6160 if (args->default_acl) 6161 (*trans_num_items)++; 6162 /* 1 to add access ACL xattr */ 6163 if (args->acl) 6164 (*trans_num_items)++; 6165 #ifdef CONFIG_SECURITY 6166 /* 1 to add LSM xattr */ 6167 if (dir->i_security) 6168 (*trans_num_items)++; 6169 #endif 6170 if (args->orphan) { 6171 /* 1 to add orphan item */ 6172 (*trans_num_items)++; 6173 } else { 6174 /* 6175 * 1 to add dir item 6176 * 1 to add dir index 6177 * 1 to update parent inode item 6178 * 6179 * No need for 1 unit for the inode ref item because it is 6180 * inserted in a batch together with the inode item at 6181 * btrfs_create_new_inode(). 6182 */ 6183 *trans_num_items += 3; 6184 } 6185 return 0; 6186 } 6187 6188 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6189 { 6190 posix_acl_release(args->acl); 6191 posix_acl_release(args->default_acl); 6192 fscrypt_free_filename(&args->fname); 6193 } 6194 6195 /* 6196 * Inherit flags from the parent inode. 6197 * 6198 * Currently only the compression flags and the cow flags are inherited. 6199 */ 6200 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6201 { 6202 unsigned int flags; 6203 6204 flags = dir->flags; 6205 6206 if (flags & BTRFS_INODE_NOCOMPRESS) { 6207 inode->flags &= ~BTRFS_INODE_COMPRESS; 6208 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6209 } else if (flags & BTRFS_INODE_COMPRESS) { 6210 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6211 inode->flags |= BTRFS_INODE_COMPRESS; 6212 } 6213 6214 if (flags & BTRFS_INODE_NODATACOW) { 6215 inode->flags |= BTRFS_INODE_NODATACOW; 6216 if (S_ISREG(inode->vfs_inode.i_mode)) 6217 inode->flags |= BTRFS_INODE_NODATASUM; 6218 } 6219 6220 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6221 } 6222 6223 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6224 struct btrfs_new_inode_args *args) 6225 { 6226 struct timespec64 ts; 6227 struct inode *dir = args->dir; 6228 struct inode *inode = args->inode; 6229 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6230 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6231 struct btrfs_root *root; 6232 struct btrfs_inode_item *inode_item; 6233 struct btrfs_path *path; 6234 u64 objectid; 6235 struct btrfs_inode_ref *ref; 6236 struct btrfs_key key[2]; 6237 u32 sizes[2]; 6238 struct btrfs_item_batch batch; 6239 unsigned long ptr; 6240 int ret; 6241 bool xa_reserved = false; 6242 6243 path = btrfs_alloc_path(); 6244 if (!path) 6245 return -ENOMEM; 6246 6247 if (!args->subvol) 6248 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6249 root = BTRFS_I(inode)->root; 6250 6251 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6252 if (ret) 6253 goto out; 6254 6255 ret = btrfs_get_free_objectid(root, &objectid); 6256 if (ret) 6257 goto out; 6258 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6259 6260 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6261 if (ret) 6262 goto out; 6263 xa_reserved = true; 6264 6265 if (args->orphan) { 6266 /* 6267 * O_TMPFILE, set link count to 0, so that after this point, we 6268 * fill in an inode item with the correct link count. 6269 */ 6270 set_nlink(inode, 0); 6271 } else { 6272 trace_btrfs_inode_request(dir); 6273 6274 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6275 if (ret) 6276 goto out; 6277 } 6278 6279 if (S_ISDIR(inode->i_mode)) 6280 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6281 6282 BTRFS_I(inode)->generation = trans->transid; 6283 inode->i_generation = BTRFS_I(inode)->generation; 6284 6285 /* 6286 * We don't have any capability xattrs set here yet, shortcut any 6287 * queries for the xattrs here. If we add them later via the inode 6288 * security init path or any other path this flag will be cleared. 6289 */ 6290 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6291 6292 /* 6293 * Subvolumes don't inherit flags from their parent directory. 6294 * Originally this was probably by accident, but we probably can't 6295 * change it now without compatibility issues. 6296 */ 6297 if (!args->subvol) 6298 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6299 6300 if (S_ISREG(inode->i_mode)) { 6301 if (btrfs_test_opt(fs_info, NODATASUM)) 6302 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6303 if (btrfs_test_opt(fs_info, NODATACOW)) 6304 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6305 BTRFS_INODE_NODATASUM; 6306 } 6307 6308 ret = btrfs_insert_inode_locked(inode); 6309 if (ret < 0) { 6310 if (!args->orphan) 6311 BTRFS_I(dir)->index_cnt--; 6312 goto out; 6313 } 6314 6315 /* 6316 * We could have gotten an inode number from somebody who was fsynced 6317 * and then removed in this same transaction, so let's just set full 6318 * sync since it will be a full sync anyway and this will blow away the 6319 * old info in the log. 6320 */ 6321 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6322 6323 key[0].objectid = objectid; 6324 key[0].type = BTRFS_INODE_ITEM_KEY; 6325 key[0].offset = 0; 6326 6327 sizes[0] = sizeof(struct btrfs_inode_item); 6328 6329 if (!args->orphan) { 6330 /* 6331 * Start new inodes with an inode_ref. This is slightly more 6332 * efficient for small numbers of hard links since they will 6333 * be packed into one item. Extended refs will kick in if we 6334 * add more hard links than can fit in the ref item. 6335 */ 6336 key[1].objectid = objectid; 6337 key[1].type = BTRFS_INODE_REF_KEY; 6338 if (args->subvol) { 6339 key[1].offset = objectid; 6340 sizes[1] = 2 + sizeof(*ref); 6341 } else { 6342 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6343 sizes[1] = name->len + sizeof(*ref); 6344 } 6345 } 6346 6347 batch.keys = &key[0]; 6348 batch.data_sizes = &sizes[0]; 6349 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6350 batch.nr = args->orphan ? 1 : 2; 6351 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6352 if (ret != 0) { 6353 btrfs_abort_transaction(trans, ret); 6354 goto discard; 6355 } 6356 6357 ts = simple_inode_init_ts(inode); 6358 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6359 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6360 6361 /* 6362 * We're going to fill the inode item now, so at this point the inode 6363 * must be fully initialized. 6364 */ 6365 6366 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6367 struct btrfs_inode_item); 6368 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6369 sizeof(*inode_item)); 6370 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6371 6372 if (!args->orphan) { 6373 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6374 struct btrfs_inode_ref); 6375 ptr = (unsigned long)(ref + 1); 6376 if (args->subvol) { 6377 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6378 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6379 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6380 } else { 6381 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6382 name->len); 6383 btrfs_set_inode_ref_index(path->nodes[0], ref, 6384 BTRFS_I(inode)->dir_index); 6385 write_extent_buffer(path->nodes[0], name->name, ptr, 6386 name->len); 6387 } 6388 } 6389 6390 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6391 /* 6392 * We don't need the path anymore, plus inheriting properties, adding 6393 * ACLs, security xattrs, orphan item or adding the link, will result in 6394 * allocating yet another path. So just free our path. 6395 */ 6396 btrfs_free_path(path); 6397 path = NULL; 6398 6399 if (args->subvol) { 6400 struct inode *parent; 6401 6402 /* 6403 * Subvolumes inherit properties from their parent subvolume, 6404 * not the directory they were created in. 6405 */ 6406 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6407 if (IS_ERR(parent)) { 6408 ret = PTR_ERR(parent); 6409 } else { 6410 ret = btrfs_inode_inherit_props(trans, inode, parent); 6411 iput(parent); 6412 } 6413 } else { 6414 ret = btrfs_inode_inherit_props(trans, inode, dir); 6415 } 6416 if (ret) { 6417 btrfs_err(fs_info, 6418 "error inheriting props for ino %llu (root %llu): %d", 6419 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6420 } 6421 6422 /* 6423 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6424 * probably a bug. 6425 */ 6426 if (!args->subvol) { 6427 ret = btrfs_init_inode_security(trans, args); 6428 if (ret) { 6429 btrfs_abort_transaction(trans, ret); 6430 goto discard; 6431 } 6432 } 6433 6434 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6435 if (WARN_ON(ret)) { 6436 /* Shouldn't happen, we used xa_reserve() before. */ 6437 btrfs_abort_transaction(trans, ret); 6438 goto discard; 6439 } 6440 6441 trace_btrfs_inode_new(inode); 6442 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6443 6444 btrfs_update_root_times(trans, root); 6445 6446 if (args->orphan) { 6447 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6448 } else { 6449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6450 0, BTRFS_I(inode)->dir_index); 6451 } 6452 if (ret) { 6453 btrfs_abort_transaction(trans, ret); 6454 goto discard; 6455 } 6456 6457 return 0; 6458 6459 discard: 6460 /* 6461 * discard_new_inode() calls iput(), but the caller owns the reference 6462 * to the inode. 6463 */ 6464 ihold(inode); 6465 discard_new_inode(inode); 6466 out: 6467 if (xa_reserved) 6468 xa_release(&root->inodes, objectid); 6469 6470 btrfs_free_path(path); 6471 return ret; 6472 } 6473 6474 /* 6475 * utility function to add 'inode' into 'parent_inode' with 6476 * a give name and a given sequence number. 6477 * if 'add_backref' is true, also insert a backref from the 6478 * inode to the parent directory. 6479 */ 6480 int btrfs_add_link(struct btrfs_trans_handle *trans, 6481 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6482 const struct fscrypt_str *name, int add_backref, u64 index) 6483 { 6484 int ret = 0; 6485 struct btrfs_key key; 6486 struct btrfs_root *root = parent_inode->root; 6487 u64 ino = btrfs_ino(inode); 6488 u64 parent_ino = btrfs_ino(parent_inode); 6489 6490 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6491 memcpy(&key, &inode->root->root_key, sizeof(key)); 6492 } else { 6493 key.objectid = ino; 6494 key.type = BTRFS_INODE_ITEM_KEY; 6495 key.offset = 0; 6496 } 6497 6498 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6499 ret = btrfs_add_root_ref(trans, key.objectid, 6500 btrfs_root_id(root), parent_ino, 6501 index, name); 6502 } else if (add_backref) { 6503 ret = btrfs_insert_inode_ref(trans, root, name, 6504 ino, parent_ino, index); 6505 } 6506 6507 /* Nothing to clean up yet */ 6508 if (ret) 6509 return ret; 6510 6511 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6512 btrfs_inode_type(&inode->vfs_inode), index); 6513 if (ret == -EEXIST || ret == -EOVERFLOW) 6514 goto fail_dir_item; 6515 else if (ret) { 6516 btrfs_abort_transaction(trans, ret); 6517 return ret; 6518 } 6519 6520 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6521 name->len * 2); 6522 inode_inc_iversion(&parent_inode->vfs_inode); 6523 /* 6524 * If we are replaying a log tree, we do not want to update the mtime 6525 * and ctime of the parent directory with the current time, since the 6526 * log replay procedure is responsible for setting them to their correct 6527 * values (the ones it had when the fsync was done). 6528 */ 6529 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6530 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6531 inode_set_ctime_current(&parent_inode->vfs_inode)); 6532 6533 ret = btrfs_update_inode(trans, parent_inode); 6534 if (ret) 6535 btrfs_abort_transaction(trans, ret); 6536 return ret; 6537 6538 fail_dir_item: 6539 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6540 u64 local_index; 6541 int err; 6542 err = btrfs_del_root_ref(trans, key.objectid, 6543 btrfs_root_id(root), parent_ino, 6544 &local_index, name); 6545 if (err) 6546 btrfs_abort_transaction(trans, err); 6547 } else if (add_backref) { 6548 u64 local_index; 6549 int err; 6550 6551 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6552 &local_index); 6553 if (err) 6554 btrfs_abort_transaction(trans, err); 6555 } 6556 6557 /* Return the original error code */ 6558 return ret; 6559 } 6560 6561 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6562 struct inode *inode) 6563 { 6564 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6565 struct btrfs_root *root = BTRFS_I(dir)->root; 6566 struct btrfs_new_inode_args new_inode_args = { 6567 .dir = dir, 6568 .dentry = dentry, 6569 .inode = inode, 6570 }; 6571 unsigned int trans_num_items; 6572 struct btrfs_trans_handle *trans; 6573 int err; 6574 6575 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6576 if (err) 6577 goto out_inode; 6578 6579 trans = btrfs_start_transaction(root, trans_num_items); 6580 if (IS_ERR(trans)) { 6581 err = PTR_ERR(trans); 6582 goto out_new_inode_args; 6583 } 6584 6585 err = btrfs_create_new_inode(trans, &new_inode_args); 6586 if (!err) 6587 d_instantiate_new(dentry, inode); 6588 6589 btrfs_end_transaction(trans); 6590 btrfs_btree_balance_dirty(fs_info); 6591 out_new_inode_args: 6592 btrfs_new_inode_args_destroy(&new_inode_args); 6593 out_inode: 6594 if (err) 6595 iput(inode); 6596 return err; 6597 } 6598 6599 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6600 struct dentry *dentry, umode_t mode, dev_t rdev) 6601 { 6602 struct inode *inode; 6603 6604 inode = new_inode(dir->i_sb); 6605 if (!inode) 6606 return -ENOMEM; 6607 inode_init_owner(idmap, inode, dir, mode); 6608 inode->i_op = &btrfs_special_inode_operations; 6609 init_special_inode(inode, inode->i_mode, rdev); 6610 return btrfs_create_common(dir, dentry, inode); 6611 } 6612 6613 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6614 struct dentry *dentry, umode_t mode, bool excl) 6615 { 6616 struct inode *inode; 6617 6618 inode = new_inode(dir->i_sb); 6619 if (!inode) 6620 return -ENOMEM; 6621 inode_init_owner(idmap, inode, dir, mode); 6622 inode->i_fop = &btrfs_file_operations; 6623 inode->i_op = &btrfs_file_inode_operations; 6624 inode->i_mapping->a_ops = &btrfs_aops; 6625 return btrfs_create_common(dir, dentry, inode); 6626 } 6627 6628 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6629 struct dentry *dentry) 6630 { 6631 struct btrfs_trans_handle *trans = NULL; 6632 struct btrfs_root *root = BTRFS_I(dir)->root; 6633 struct inode *inode = d_inode(old_dentry); 6634 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6635 struct fscrypt_name fname; 6636 u64 index; 6637 int err; 6638 int drop_inode = 0; 6639 6640 /* do not allow sys_link's with other subvols of the same device */ 6641 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6642 return -EXDEV; 6643 6644 if (inode->i_nlink >= BTRFS_LINK_MAX) 6645 return -EMLINK; 6646 6647 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6648 if (err) 6649 goto fail; 6650 6651 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6652 if (err) 6653 goto fail; 6654 6655 /* 6656 * 2 items for inode and inode ref 6657 * 2 items for dir items 6658 * 1 item for parent inode 6659 * 1 item for orphan item deletion if O_TMPFILE 6660 */ 6661 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6662 if (IS_ERR(trans)) { 6663 err = PTR_ERR(trans); 6664 trans = NULL; 6665 goto fail; 6666 } 6667 6668 /* There are several dir indexes for this inode, clear the cache. */ 6669 BTRFS_I(inode)->dir_index = 0ULL; 6670 inc_nlink(inode); 6671 inode_inc_iversion(inode); 6672 inode_set_ctime_current(inode); 6673 ihold(inode); 6674 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6675 6676 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6677 &fname.disk_name, 1, index); 6678 6679 if (err) { 6680 drop_inode = 1; 6681 } else { 6682 struct dentry *parent = dentry->d_parent; 6683 6684 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6685 if (err) 6686 goto fail; 6687 if (inode->i_nlink == 1) { 6688 /* 6689 * If new hard link count is 1, it's a file created 6690 * with open(2) O_TMPFILE flag. 6691 */ 6692 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6693 if (err) 6694 goto fail; 6695 } 6696 d_instantiate(dentry, inode); 6697 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6698 } 6699 6700 fail: 6701 fscrypt_free_filename(&fname); 6702 if (trans) 6703 btrfs_end_transaction(trans); 6704 if (drop_inode) { 6705 inode_dec_link_count(inode); 6706 iput(inode); 6707 } 6708 btrfs_btree_balance_dirty(fs_info); 6709 return err; 6710 } 6711 6712 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6713 struct dentry *dentry, umode_t mode) 6714 { 6715 struct inode *inode; 6716 6717 inode = new_inode(dir->i_sb); 6718 if (!inode) 6719 return -ENOMEM; 6720 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6721 inode->i_op = &btrfs_dir_inode_operations; 6722 inode->i_fop = &btrfs_dir_file_operations; 6723 return btrfs_create_common(dir, dentry, inode); 6724 } 6725 6726 static noinline int uncompress_inline(struct btrfs_path *path, 6727 struct folio *folio, 6728 struct btrfs_file_extent_item *item) 6729 { 6730 int ret; 6731 struct extent_buffer *leaf = path->nodes[0]; 6732 char *tmp; 6733 size_t max_size; 6734 unsigned long inline_size; 6735 unsigned long ptr; 6736 int compress_type; 6737 6738 compress_type = btrfs_file_extent_compression(leaf, item); 6739 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6740 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6741 tmp = kmalloc(inline_size, GFP_NOFS); 6742 if (!tmp) 6743 return -ENOMEM; 6744 ptr = btrfs_file_extent_inline_start(item); 6745 6746 read_extent_buffer(leaf, tmp, ptr, inline_size); 6747 6748 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6749 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6750 max_size); 6751 6752 /* 6753 * decompression code contains a memset to fill in any space between the end 6754 * of the uncompressed data and the end of max_size in case the decompressed 6755 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6756 * the end of an inline extent and the beginning of the next block, so we 6757 * cover that region here. 6758 */ 6759 6760 if (max_size < PAGE_SIZE) 6761 folio_zero_range(folio, max_size, PAGE_SIZE - max_size); 6762 kfree(tmp); 6763 return ret; 6764 } 6765 6766 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6767 struct folio *folio) 6768 { 6769 struct btrfs_file_extent_item *fi; 6770 void *kaddr; 6771 size_t copy_size; 6772 6773 if (!folio || folio_test_uptodate(folio)) 6774 return 0; 6775 6776 ASSERT(folio_pos(folio) == 0); 6777 6778 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6779 struct btrfs_file_extent_item); 6780 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6781 return uncompress_inline(path, folio, fi); 6782 6783 copy_size = min_t(u64, PAGE_SIZE, 6784 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6785 kaddr = kmap_local_folio(folio, 0); 6786 read_extent_buffer(path->nodes[0], kaddr, 6787 btrfs_file_extent_inline_start(fi), copy_size); 6788 kunmap_local(kaddr); 6789 if (copy_size < PAGE_SIZE) 6790 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size); 6791 return 0; 6792 } 6793 6794 /* 6795 * Lookup the first extent overlapping a range in a file. 6796 * 6797 * @inode: file to search in 6798 * @page: page to read extent data into if the extent is inline 6799 * @start: file offset 6800 * @len: length of range starting at @start 6801 * 6802 * Return the first &struct extent_map which overlaps the given range, reading 6803 * it from the B-tree and caching it if necessary. Note that there may be more 6804 * extents which overlap the given range after the returned extent_map. 6805 * 6806 * If @page is not NULL and the extent is inline, this also reads the extent 6807 * data directly into the page and marks the extent up to date in the io_tree. 6808 * 6809 * Return: ERR_PTR on error, non-NULL extent_map on success. 6810 */ 6811 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6812 struct folio *folio, u64 start, u64 len) 6813 { 6814 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6815 int ret = 0; 6816 u64 extent_start = 0; 6817 u64 extent_end = 0; 6818 u64 objectid = btrfs_ino(inode); 6819 int extent_type = -1; 6820 struct btrfs_path *path = NULL; 6821 struct btrfs_root *root = inode->root; 6822 struct btrfs_file_extent_item *item; 6823 struct extent_buffer *leaf; 6824 struct btrfs_key found_key; 6825 struct extent_map *em = NULL; 6826 struct extent_map_tree *em_tree = &inode->extent_tree; 6827 6828 read_lock(&em_tree->lock); 6829 em = lookup_extent_mapping(em_tree, start, len); 6830 read_unlock(&em_tree->lock); 6831 6832 if (em) { 6833 if (em->start > start || em->start + em->len <= start) 6834 free_extent_map(em); 6835 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6836 free_extent_map(em); 6837 else 6838 goto out; 6839 } 6840 em = alloc_extent_map(); 6841 if (!em) { 6842 ret = -ENOMEM; 6843 goto out; 6844 } 6845 em->start = EXTENT_MAP_HOLE; 6846 em->disk_bytenr = EXTENT_MAP_HOLE; 6847 em->len = (u64)-1; 6848 6849 path = btrfs_alloc_path(); 6850 if (!path) { 6851 ret = -ENOMEM; 6852 goto out; 6853 } 6854 6855 /* Chances are we'll be called again, so go ahead and do readahead */ 6856 path->reada = READA_FORWARD; 6857 6858 /* 6859 * The same explanation in load_free_space_cache applies here as well, 6860 * we only read when we're loading the free space cache, and at that 6861 * point the commit_root has everything we need. 6862 */ 6863 if (btrfs_is_free_space_inode(inode)) { 6864 path->search_commit_root = 1; 6865 path->skip_locking = 1; 6866 } 6867 6868 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6869 if (ret < 0) { 6870 goto out; 6871 } else if (ret > 0) { 6872 if (path->slots[0] == 0) 6873 goto not_found; 6874 path->slots[0]--; 6875 ret = 0; 6876 } 6877 6878 leaf = path->nodes[0]; 6879 item = btrfs_item_ptr(leaf, path->slots[0], 6880 struct btrfs_file_extent_item); 6881 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6882 if (found_key.objectid != objectid || 6883 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6884 /* 6885 * If we backup past the first extent we want to move forward 6886 * and see if there is an extent in front of us, otherwise we'll 6887 * say there is a hole for our whole search range which can 6888 * cause problems. 6889 */ 6890 extent_end = start; 6891 goto next; 6892 } 6893 6894 extent_type = btrfs_file_extent_type(leaf, item); 6895 extent_start = found_key.offset; 6896 extent_end = btrfs_file_extent_end(path); 6897 if (extent_type == BTRFS_FILE_EXTENT_REG || 6898 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6899 /* Only regular file could have regular/prealloc extent */ 6900 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6901 ret = -EUCLEAN; 6902 btrfs_crit(fs_info, 6903 "regular/prealloc extent found for non-regular inode %llu", 6904 btrfs_ino(inode)); 6905 goto out; 6906 } 6907 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6908 extent_start); 6909 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6910 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6911 path->slots[0], 6912 extent_start); 6913 } 6914 next: 6915 if (start >= extent_end) { 6916 path->slots[0]++; 6917 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6918 ret = btrfs_next_leaf(root, path); 6919 if (ret < 0) 6920 goto out; 6921 else if (ret > 0) 6922 goto not_found; 6923 6924 leaf = path->nodes[0]; 6925 } 6926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6927 if (found_key.objectid != objectid || 6928 found_key.type != BTRFS_EXTENT_DATA_KEY) 6929 goto not_found; 6930 if (start + len <= found_key.offset) 6931 goto not_found; 6932 if (start > found_key.offset) 6933 goto next; 6934 6935 /* New extent overlaps with existing one */ 6936 em->start = start; 6937 em->len = found_key.offset - start; 6938 em->disk_bytenr = EXTENT_MAP_HOLE; 6939 goto insert; 6940 } 6941 6942 btrfs_extent_item_to_extent_map(inode, path, item, em); 6943 6944 if (extent_type == BTRFS_FILE_EXTENT_REG || 6945 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6946 goto insert; 6947 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6948 /* 6949 * Inline extent can only exist at file offset 0. This is 6950 * ensured by tree-checker and inline extent creation path. 6951 * Thus all members representing file offsets should be zero. 6952 */ 6953 ASSERT(extent_start == 0); 6954 ASSERT(em->start == 0); 6955 6956 /* 6957 * btrfs_extent_item_to_extent_map() should have properly 6958 * initialized em members already. 6959 * 6960 * Other members are not utilized for inline extents. 6961 */ 6962 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6963 ASSERT(em->len == fs_info->sectorsize); 6964 6965 ret = read_inline_extent(inode, path, folio); 6966 if (ret < 0) 6967 goto out; 6968 goto insert; 6969 } 6970 not_found: 6971 em->start = start; 6972 em->len = len; 6973 em->disk_bytenr = EXTENT_MAP_HOLE; 6974 insert: 6975 ret = 0; 6976 btrfs_release_path(path); 6977 if (em->start > start || extent_map_end(em) <= start) { 6978 btrfs_err(fs_info, 6979 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6980 em->start, em->len, start, len); 6981 ret = -EIO; 6982 goto out; 6983 } 6984 6985 write_lock(&em_tree->lock); 6986 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6987 write_unlock(&em_tree->lock); 6988 out: 6989 btrfs_free_path(path); 6990 6991 trace_btrfs_get_extent(root, inode, em); 6992 6993 if (ret) { 6994 free_extent_map(em); 6995 return ERR_PTR(ret); 6996 } 6997 return em; 6998 } 6999 7000 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7001 { 7002 struct btrfs_block_group *block_group; 7003 bool readonly = false; 7004 7005 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7006 if (!block_group || block_group->ro) 7007 readonly = true; 7008 if (block_group) 7009 btrfs_put_block_group(block_group); 7010 return readonly; 7011 } 7012 7013 /* 7014 * Check if we can do nocow write into the range [@offset, @offset + @len) 7015 * 7016 * @offset: File offset 7017 * @len: The length to write, will be updated to the nocow writeable 7018 * range 7019 * @orig_start: (optional) Return the original file offset of the file extent 7020 * @orig_len: (optional) Return the original on-disk length of the file extent 7021 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7022 * @strict: if true, omit optimizations that might force us into unnecessary 7023 * cow. e.g., don't trust generation number. 7024 * 7025 * Return: 7026 * >0 and update @len if we can do nocow write 7027 * 0 if we can't do nocow write 7028 * <0 if error happened 7029 * 7030 * NOTE: This only checks the file extents, caller is responsible to wait for 7031 * any ordered extents. 7032 */ 7033 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7034 struct btrfs_file_extent *file_extent, 7035 bool nowait, bool strict) 7036 { 7037 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7038 struct can_nocow_file_extent_args nocow_args = { 0 }; 7039 struct btrfs_path *path; 7040 int ret; 7041 struct extent_buffer *leaf; 7042 struct btrfs_root *root = BTRFS_I(inode)->root; 7043 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7044 struct btrfs_file_extent_item *fi; 7045 struct btrfs_key key; 7046 int found_type; 7047 7048 path = btrfs_alloc_path(); 7049 if (!path) 7050 return -ENOMEM; 7051 path->nowait = nowait; 7052 7053 ret = btrfs_lookup_file_extent(NULL, root, path, 7054 btrfs_ino(BTRFS_I(inode)), offset, 0); 7055 if (ret < 0) 7056 goto out; 7057 7058 if (ret == 1) { 7059 if (path->slots[0] == 0) { 7060 /* can't find the item, must cow */ 7061 ret = 0; 7062 goto out; 7063 } 7064 path->slots[0]--; 7065 } 7066 ret = 0; 7067 leaf = path->nodes[0]; 7068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7069 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7070 key.type != BTRFS_EXTENT_DATA_KEY) { 7071 /* not our file or wrong item type, must cow */ 7072 goto out; 7073 } 7074 7075 if (key.offset > offset) { 7076 /* Wrong offset, must cow */ 7077 goto out; 7078 } 7079 7080 if (btrfs_file_extent_end(path) <= offset) 7081 goto out; 7082 7083 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7084 found_type = btrfs_file_extent_type(leaf, fi); 7085 7086 nocow_args.start = offset; 7087 nocow_args.end = offset + *len - 1; 7088 nocow_args.strict = strict; 7089 nocow_args.free_path = true; 7090 7091 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7092 /* can_nocow_file_extent() has freed the path. */ 7093 path = NULL; 7094 7095 if (ret != 1) { 7096 /* Treat errors as not being able to NOCOW. */ 7097 ret = 0; 7098 goto out; 7099 } 7100 7101 ret = 0; 7102 if (btrfs_extent_readonly(fs_info, 7103 nocow_args.file_extent.disk_bytenr + 7104 nocow_args.file_extent.offset)) 7105 goto out; 7106 7107 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7108 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7109 u64 range_end; 7110 7111 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7112 root->fs_info->sectorsize) - 1; 7113 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7114 if (ret) { 7115 ret = -EAGAIN; 7116 goto out; 7117 } 7118 } 7119 7120 if (file_extent) 7121 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7122 7123 *len = nocow_args.file_extent.num_bytes; 7124 ret = 1; 7125 out: 7126 btrfs_free_path(path); 7127 return ret; 7128 } 7129 7130 /* The callers of this must take lock_extent() */ 7131 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7132 const struct btrfs_file_extent *file_extent, 7133 int type) 7134 { 7135 struct extent_map *em; 7136 int ret; 7137 7138 /* 7139 * Note the missing NOCOW type. 7140 * 7141 * For pure NOCOW writes, we should not create an io extent map, but 7142 * just reusing the existing one. 7143 * Only PREALLOC writes (NOCOW write into preallocated range) can 7144 * create an io extent map. 7145 */ 7146 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7147 type == BTRFS_ORDERED_COMPRESSED || 7148 type == BTRFS_ORDERED_REGULAR); 7149 7150 switch (type) { 7151 case BTRFS_ORDERED_PREALLOC: 7152 /* We're only referring part of a larger preallocated extent. */ 7153 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7154 break; 7155 case BTRFS_ORDERED_REGULAR: 7156 /* COW results a new extent matching our file extent size. */ 7157 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7158 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7159 7160 /* Since it's a new extent, we should not have any offset. */ 7161 ASSERT(file_extent->offset == 0); 7162 break; 7163 case BTRFS_ORDERED_COMPRESSED: 7164 /* Must be compressed. */ 7165 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7166 7167 /* 7168 * Encoded write can make us to refer to part of the 7169 * uncompressed extent. 7170 */ 7171 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7172 break; 7173 } 7174 7175 em = alloc_extent_map(); 7176 if (!em) 7177 return ERR_PTR(-ENOMEM); 7178 7179 em->start = start; 7180 em->len = file_extent->num_bytes; 7181 em->disk_bytenr = file_extent->disk_bytenr; 7182 em->disk_num_bytes = file_extent->disk_num_bytes; 7183 em->ram_bytes = file_extent->ram_bytes; 7184 em->generation = -1; 7185 em->offset = file_extent->offset; 7186 em->flags |= EXTENT_FLAG_PINNED; 7187 if (type == BTRFS_ORDERED_COMPRESSED) 7188 extent_map_set_compression(em, file_extent->compression); 7189 7190 ret = btrfs_replace_extent_map_range(inode, em, true); 7191 if (ret) { 7192 free_extent_map(em); 7193 return ERR_PTR(ret); 7194 } 7195 7196 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7197 return em; 7198 } 7199 7200 /* 7201 * For release_folio() and invalidate_folio() we have a race window where 7202 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7203 * If we continue to release/invalidate the page, we could cause use-after-free 7204 * for subpage spinlock. So this function is to spin and wait for subpage 7205 * spinlock. 7206 */ 7207 static void wait_subpage_spinlock(struct folio *folio) 7208 { 7209 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7210 struct btrfs_subpage *subpage; 7211 7212 if (!btrfs_is_subpage(fs_info, folio->mapping)) 7213 return; 7214 7215 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7216 subpage = folio_get_private(folio); 7217 7218 /* 7219 * This may look insane as we just acquire the spinlock and release it, 7220 * without doing anything. But we just want to make sure no one is 7221 * still holding the subpage spinlock. 7222 * And since the page is not dirty nor writeback, and we have page 7223 * locked, the only possible way to hold a spinlock is from the endio 7224 * function to clear page writeback. 7225 * 7226 * Here we just acquire the spinlock so that all existing callers 7227 * should exit and we're safe to release/invalidate the page. 7228 */ 7229 spin_lock_irq(&subpage->lock); 7230 spin_unlock_irq(&subpage->lock); 7231 } 7232 7233 static int btrfs_launder_folio(struct folio *folio) 7234 { 7235 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7236 PAGE_SIZE, NULL); 7237 } 7238 7239 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7240 { 7241 if (try_release_extent_mapping(folio, gfp_flags)) { 7242 wait_subpage_spinlock(folio); 7243 clear_folio_extent_mapped(folio); 7244 return true; 7245 } 7246 return false; 7247 } 7248 7249 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7250 { 7251 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7252 return false; 7253 return __btrfs_release_folio(folio, gfp_flags); 7254 } 7255 7256 #ifdef CONFIG_MIGRATION 7257 static int btrfs_migrate_folio(struct address_space *mapping, 7258 struct folio *dst, struct folio *src, 7259 enum migrate_mode mode) 7260 { 7261 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7262 7263 if (ret != MIGRATEPAGE_SUCCESS) 7264 return ret; 7265 7266 if (folio_test_ordered(src)) { 7267 folio_clear_ordered(src); 7268 folio_set_ordered(dst); 7269 } 7270 7271 return MIGRATEPAGE_SUCCESS; 7272 } 7273 #else 7274 #define btrfs_migrate_folio NULL 7275 #endif 7276 7277 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7278 size_t length) 7279 { 7280 struct btrfs_inode *inode = folio_to_inode(folio); 7281 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7282 struct extent_io_tree *tree = &inode->io_tree; 7283 struct extent_state *cached_state = NULL; 7284 u64 page_start = folio_pos(folio); 7285 u64 page_end = page_start + folio_size(folio) - 1; 7286 u64 cur; 7287 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7288 7289 /* 7290 * We have folio locked so no new ordered extent can be created on this 7291 * page, nor bio can be submitted for this folio. 7292 * 7293 * But already submitted bio can still be finished on this folio. 7294 * Furthermore, endio function won't skip folio which has Ordered 7295 * (Private2) already cleared, so it's possible for endio and 7296 * invalidate_folio to do the same ordered extent accounting twice 7297 * on one folio. 7298 * 7299 * So here we wait for any submitted bios to finish, so that we won't 7300 * do double ordered extent accounting on the same folio. 7301 */ 7302 folio_wait_writeback(folio); 7303 wait_subpage_spinlock(folio); 7304 7305 /* 7306 * For subpage case, we have call sites like 7307 * btrfs_punch_hole_lock_range() which passes range not aligned to 7308 * sectorsize. 7309 * If the range doesn't cover the full folio, we don't need to and 7310 * shouldn't clear page extent mapped, as folio->private can still 7311 * record subpage dirty bits for other part of the range. 7312 * 7313 * For cases that invalidate the full folio even the range doesn't 7314 * cover the full folio, like invalidating the last folio, we're 7315 * still safe to wait for ordered extent to finish. 7316 */ 7317 if (!(offset == 0 && length == folio_size(folio))) { 7318 btrfs_release_folio(folio, GFP_NOFS); 7319 return; 7320 } 7321 7322 if (!inode_evicting) 7323 lock_extent(tree, page_start, page_end, &cached_state); 7324 7325 cur = page_start; 7326 while (cur < page_end) { 7327 struct btrfs_ordered_extent *ordered; 7328 u64 range_end; 7329 u32 range_len; 7330 u32 extra_flags = 0; 7331 7332 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7333 page_end + 1 - cur); 7334 if (!ordered) { 7335 range_end = page_end; 7336 /* 7337 * No ordered extent covering this range, we are safe 7338 * to delete all extent states in the range. 7339 */ 7340 extra_flags = EXTENT_CLEAR_ALL_BITS; 7341 goto next; 7342 } 7343 if (ordered->file_offset > cur) { 7344 /* 7345 * There is a range between [cur, oe->file_offset) not 7346 * covered by any ordered extent. 7347 * We are safe to delete all extent states, and handle 7348 * the ordered extent in the next iteration. 7349 */ 7350 range_end = ordered->file_offset - 1; 7351 extra_flags = EXTENT_CLEAR_ALL_BITS; 7352 goto next; 7353 } 7354 7355 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7356 page_end); 7357 ASSERT(range_end + 1 - cur < U32_MAX); 7358 range_len = range_end + 1 - cur; 7359 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7360 /* 7361 * If Ordered (Private2) is cleared, it means endio has 7362 * already been executed for the range. 7363 * We can't delete the extent states as 7364 * btrfs_finish_ordered_io() may still use some of them. 7365 */ 7366 goto next; 7367 } 7368 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7369 7370 /* 7371 * IO on this page will never be started, so we need to account 7372 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7373 * here, must leave that up for the ordered extent completion. 7374 * 7375 * This will also unlock the range for incoming 7376 * btrfs_finish_ordered_io(). 7377 */ 7378 if (!inode_evicting) 7379 clear_extent_bit(tree, cur, range_end, 7380 EXTENT_DELALLOC | 7381 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7382 EXTENT_DEFRAG, &cached_state); 7383 7384 spin_lock_irq(&inode->ordered_tree_lock); 7385 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7386 ordered->truncated_len = min(ordered->truncated_len, 7387 cur - ordered->file_offset); 7388 spin_unlock_irq(&inode->ordered_tree_lock); 7389 7390 /* 7391 * If the ordered extent has finished, we're safe to delete all 7392 * the extent states of the range, otherwise 7393 * btrfs_finish_ordered_io() will get executed by endio for 7394 * other pages, so we can't delete extent states. 7395 */ 7396 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7397 cur, range_end + 1 - cur)) { 7398 btrfs_finish_ordered_io(ordered); 7399 /* 7400 * The ordered extent has finished, now we're again 7401 * safe to delete all extent states of the range. 7402 */ 7403 extra_flags = EXTENT_CLEAR_ALL_BITS; 7404 } 7405 next: 7406 if (ordered) 7407 btrfs_put_ordered_extent(ordered); 7408 /* 7409 * Qgroup reserved space handler 7410 * Sector(s) here will be either: 7411 * 7412 * 1) Already written to disk or bio already finished 7413 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7414 * Qgroup will be handled by its qgroup_record then. 7415 * btrfs_qgroup_free_data() call will do nothing here. 7416 * 7417 * 2) Not written to disk yet 7418 * Then btrfs_qgroup_free_data() call will clear the 7419 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7420 * reserved data space. 7421 * Since the IO will never happen for this page. 7422 */ 7423 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7424 if (!inode_evicting) { 7425 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7426 EXTENT_DELALLOC | EXTENT_UPTODATE | 7427 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7428 extra_flags, &cached_state); 7429 } 7430 cur = range_end + 1; 7431 } 7432 /* 7433 * We have iterated through all ordered extents of the page, the page 7434 * should not have Ordered (Private2) anymore, or the above iteration 7435 * did something wrong. 7436 */ 7437 ASSERT(!folio_test_ordered(folio)); 7438 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7439 if (!inode_evicting) 7440 __btrfs_release_folio(folio, GFP_NOFS); 7441 clear_folio_extent_mapped(folio); 7442 } 7443 7444 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7445 { 7446 struct btrfs_truncate_control control = { 7447 .inode = inode, 7448 .ino = btrfs_ino(inode), 7449 .min_type = BTRFS_EXTENT_DATA_KEY, 7450 .clear_extent_range = true, 7451 }; 7452 struct btrfs_root *root = inode->root; 7453 struct btrfs_fs_info *fs_info = root->fs_info; 7454 struct btrfs_block_rsv *rsv; 7455 int ret; 7456 struct btrfs_trans_handle *trans; 7457 u64 mask = fs_info->sectorsize - 1; 7458 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7459 7460 if (!skip_writeback) { 7461 ret = btrfs_wait_ordered_range(inode, 7462 inode->vfs_inode.i_size & (~mask), 7463 (u64)-1); 7464 if (ret) 7465 return ret; 7466 } 7467 7468 /* 7469 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7470 * things going on here: 7471 * 7472 * 1) We need to reserve space to update our inode. 7473 * 7474 * 2) We need to have something to cache all the space that is going to 7475 * be free'd up by the truncate operation, but also have some slack 7476 * space reserved in case it uses space during the truncate (thank you 7477 * very much snapshotting). 7478 * 7479 * And we need these to be separate. The fact is we can use a lot of 7480 * space doing the truncate, and we have no earthly idea how much space 7481 * we will use, so we need the truncate reservation to be separate so it 7482 * doesn't end up using space reserved for updating the inode. We also 7483 * need to be able to stop the transaction and start a new one, which 7484 * means we need to be able to update the inode several times, and we 7485 * have no idea of knowing how many times that will be, so we can't just 7486 * reserve 1 item for the entirety of the operation, so that has to be 7487 * done separately as well. 7488 * 7489 * So that leaves us with 7490 * 7491 * 1) rsv - for the truncate reservation, which we will steal from the 7492 * transaction reservation. 7493 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7494 * updating the inode. 7495 */ 7496 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7497 if (!rsv) 7498 return -ENOMEM; 7499 rsv->size = min_size; 7500 rsv->failfast = true; 7501 7502 /* 7503 * 1 for the truncate slack space 7504 * 1 for updating the inode. 7505 */ 7506 trans = btrfs_start_transaction(root, 2); 7507 if (IS_ERR(trans)) { 7508 ret = PTR_ERR(trans); 7509 goto out; 7510 } 7511 7512 /* Migrate the slack space for the truncate to our reserve */ 7513 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7514 min_size, false); 7515 /* 7516 * We have reserved 2 metadata units when we started the transaction and 7517 * min_size matches 1 unit, so this should never fail, but if it does, 7518 * it's not critical we just fail truncation. 7519 */ 7520 if (WARN_ON(ret)) { 7521 btrfs_end_transaction(trans); 7522 goto out; 7523 } 7524 7525 trans->block_rsv = rsv; 7526 7527 while (1) { 7528 struct extent_state *cached_state = NULL; 7529 const u64 new_size = inode->vfs_inode.i_size; 7530 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7531 7532 control.new_size = new_size; 7533 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7534 /* 7535 * We want to drop from the next block forward in case this new 7536 * size is not block aligned since we will be keeping the last 7537 * block of the extent just the way it is. 7538 */ 7539 btrfs_drop_extent_map_range(inode, 7540 ALIGN(new_size, fs_info->sectorsize), 7541 (u64)-1, false); 7542 7543 ret = btrfs_truncate_inode_items(trans, root, &control); 7544 7545 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7546 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7547 7548 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7549 7550 trans->block_rsv = &fs_info->trans_block_rsv; 7551 if (ret != -ENOSPC && ret != -EAGAIN) 7552 break; 7553 7554 ret = btrfs_update_inode(trans, inode); 7555 if (ret) 7556 break; 7557 7558 btrfs_end_transaction(trans); 7559 btrfs_btree_balance_dirty(fs_info); 7560 7561 trans = btrfs_start_transaction(root, 2); 7562 if (IS_ERR(trans)) { 7563 ret = PTR_ERR(trans); 7564 trans = NULL; 7565 break; 7566 } 7567 7568 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7569 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7570 rsv, min_size, false); 7571 /* 7572 * We have reserved 2 metadata units when we started the 7573 * transaction and min_size matches 1 unit, so this should never 7574 * fail, but if it does, it's not critical we just fail truncation. 7575 */ 7576 if (WARN_ON(ret)) 7577 break; 7578 7579 trans->block_rsv = rsv; 7580 } 7581 7582 /* 7583 * We can't call btrfs_truncate_block inside a trans handle as we could 7584 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7585 * know we've truncated everything except the last little bit, and can 7586 * do btrfs_truncate_block and then update the disk_i_size. 7587 */ 7588 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7589 btrfs_end_transaction(trans); 7590 btrfs_btree_balance_dirty(fs_info); 7591 7592 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7593 if (ret) 7594 goto out; 7595 trans = btrfs_start_transaction(root, 1); 7596 if (IS_ERR(trans)) { 7597 ret = PTR_ERR(trans); 7598 goto out; 7599 } 7600 btrfs_inode_safe_disk_i_size_write(inode, 0); 7601 } 7602 7603 if (trans) { 7604 int ret2; 7605 7606 trans->block_rsv = &fs_info->trans_block_rsv; 7607 ret2 = btrfs_update_inode(trans, inode); 7608 if (ret2 && !ret) 7609 ret = ret2; 7610 7611 ret2 = btrfs_end_transaction(trans); 7612 if (ret2 && !ret) 7613 ret = ret2; 7614 btrfs_btree_balance_dirty(fs_info); 7615 } 7616 out: 7617 btrfs_free_block_rsv(fs_info, rsv); 7618 /* 7619 * So if we truncate and then write and fsync we normally would just 7620 * write the extents that changed, which is a problem if we need to 7621 * first truncate that entire inode. So set this flag so we write out 7622 * all of the extents in the inode to the sync log so we're completely 7623 * safe. 7624 * 7625 * If no extents were dropped or trimmed we don't need to force the next 7626 * fsync to truncate all the inode's items from the log and re-log them 7627 * all. This means the truncate operation did not change the file size, 7628 * or changed it to a smaller size but there was only an implicit hole 7629 * between the old i_size and the new i_size, and there were no prealloc 7630 * extents beyond i_size to drop. 7631 */ 7632 if (control.extents_found > 0) 7633 btrfs_set_inode_full_sync(inode); 7634 7635 return ret; 7636 } 7637 7638 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7639 struct inode *dir) 7640 { 7641 struct inode *inode; 7642 7643 inode = new_inode(dir->i_sb); 7644 if (inode) { 7645 /* 7646 * Subvolumes don't inherit the sgid bit or the parent's gid if 7647 * the parent's sgid bit is set. This is probably a bug. 7648 */ 7649 inode_init_owner(idmap, inode, NULL, 7650 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7651 inode->i_op = &btrfs_dir_inode_operations; 7652 inode->i_fop = &btrfs_dir_file_operations; 7653 } 7654 return inode; 7655 } 7656 7657 struct inode *btrfs_alloc_inode(struct super_block *sb) 7658 { 7659 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7660 struct btrfs_inode *ei; 7661 struct inode *inode; 7662 7663 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7664 if (!ei) 7665 return NULL; 7666 7667 ei->root = NULL; 7668 ei->generation = 0; 7669 ei->last_trans = 0; 7670 ei->last_sub_trans = 0; 7671 ei->logged_trans = 0; 7672 ei->delalloc_bytes = 0; 7673 ei->new_delalloc_bytes = 0; 7674 ei->defrag_bytes = 0; 7675 ei->disk_i_size = 0; 7676 ei->flags = 0; 7677 ei->ro_flags = 0; 7678 /* 7679 * ->index_cnt will be properly initialized later when creating a new 7680 * inode (btrfs_create_new_inode()) or when reading an existing inode 7681 * from disk (btrfs_read_locked_inode()). 7682 */ 7683 ei->csum_bytes = 0; 7684 ei->dir_index = 0; 7685 ei->last_unlink_trans = 0; 7686 ei->last_reflink_trans = 0; 7687 ei->last_log_commit = 0; 7688 7689 spin_lock_init(&ei->lock); 7690 ei->outstanding_extents = 0; 7691 if (sb->s_magic != BTRFS_TEST_MAGIC) 7692 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7693 BTRFS_BLOCK_RSV_DELALLOC); 7694 ei->runtime_flags = 0; 7695 ei->prop_compress = BTRFS_COMPRESS_NONE; 7696 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7697 7698 ei->delayed_node = NULL; 7699 7700 ei->i_otime_sec = 0; 7701 ei->i_otime_nsec = 0; 7702 7703 inode = &ei->vfs_inode; 7704 extent_map_tree_init(&ei->extent_tree); 7705 7706 /* This io tree sets the valid inode. */ 7707 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7708 ei->io_tree.inode = ei; 7709 7710 ei->file_extent_tree = NULL; 7711 7712 mutex_init(&ei->log_mutex); 7713 spin_lock_init(&ei->ordered_tree_lock); 7714 ei->ordered_tree = RB_ROOT; 7715 ei->ordered_tree_last = NULL; 7716 INIT_LIST_HEAD(&ei->delalloc_inodes); 7717 INIT_LIST_HEAD(&ei->delayed_iput); 7718 init_rwsem(&ei->i_mmap_lock); 7719 7720 return inode; 7721 } 7722 7723 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7724 void btrfs_test_destroy_inode(struct inode *inode) 7725 { 7726 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7727 kfree(BTRFS_I(inode)->file_extent_tree); 7728 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7729 } 7730 #endif 7731 7732 void btrfs_free_inode(struct inode *inode) 7733 { 7734 kfree(BTRFS_I(inode)->file_extent_tree); 7735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7736 } 7737 7738 void btrfs_destroy_inode(struct inode *vfs_inode) 7739 { 7740 struct btrfs_ordered_extent *ordered; 7741 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7742 struct btrfs_root *root = inode->root; 7743 bool freespace_inode; 7744 7745 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7746 WARN_ON(vfs_inode->i_data.nrpages); 7747 WARN_ON(inode->block_rsv.reserved); 7748 WARN_ON(inode->block_rsv.size); 7749 WARN_ON(inode->outstanding_extents); 7750 if (!S_ISDIR(vfs_inode->i_mode)) { 7751 WARN_ON(inode->delalloc_bytes); 7752 WARN_ON(inode->new_delalloc_bytes); 7753 WARN_ON(inode->csum_bytes); 7754 } 7755 if (!root || !btrfs_is_data_reloc_root(root)) 7756 WARN_ON(inode->defrag_bytes); 7757 7758 /* 7759 * This can happen where we create an inode, but somebody else also 7760 * created the same inode and we need to destroy the one we already 7761 * created. 7762 */ 7763 if (!root) 7764 return; 7765 7766 /* 7767 * If this is a free space inode do not take the ordered extents lockdep 7768 * map. 7769 */ 7770 freespace_inode = btrfs_is_free_space_inode(inode); 7771 7772 while (1) { 7773 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7774 if (!ordered) 7775 break; 7776 else { 7777 btrfs_err(root->fs_info, 7778 "found ordered extent %llu %llu on inode cleanup", 7779 ordered->file_offset, ordered->num_bytes); 7780 7781 if (!freespace_inode) 7782 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7783 7784 btrfs_remove_ordered_extent(inode, ordered); 7785 btrfs_put_ordered_extent(ordered); 7786 btrfs_put_ordered_extent(ordered); 7787 } 7788 } 7789 btrfs_qgroup_check_reserved_leak(inode); 7790 btrfs_del_inode_from_root(inode); 7791 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7792 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7793 btrfs_put_root(inode->root); 7794 } 7795 7796 int btrfs_drop_inode(struct inode *inode) 7797 { 7798 struct btrfs_root *root = BTRFS_I(inode)->root; 7799 7800 if (root == NULL) 7801 return 1; 7802 7803 /* the snap/subvol tree is on deleting */ 7804 if (btrfs_root_refs(&root->root_item) == 0) 7805 return 1; 7806 else 7807 return generic_drop_inode(inode); 7808 } 7809 7810 static void init_once(void *foo) 7811 { 7812 struct btrfs_inode *ei = foo; 7813 7814 inode_init_once(&ei->vfs_inode); 7815 } 7816 7817 void __cold btrfs_destroy_cachep(void) 7818 { 7819 /* 7820 * Make sure all delayed rcu free inodes are flushed before we 7821 * destroy cache. 7822 */ 7823 rcu_barrier(); 7824 kmem_cache_destroy(btrfs_inode_cachep); 7825 } 7826 7827 int __init btrfs_init_cachep(void) 7828 { 7829 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7830 sizeof(struct btrfs_inode), 0, 7831 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7832 init_once); 7833 if (!btrfs_inode_cachep) 7834 return -ENOMEM; 7835 7836 return 0; 7837 } 7838 7839 static int btrfs_getattr(struct mnt_idmap *idmap, 7840 const struct path *path, struct kstat *stat, 7841 u32 request_mask, unsigned int flags) 7842 { 7843 u64 delalloc_bytes; 7844 u64 inode_bytes; 7845 struct inode *inode = d_inode(path->dentry); 7846 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7847 u32 bi_flags = BTRFS_I(inode)->flags; 7848 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7849 7850 stat->result_mask |= STATX_BTIME; 7851 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7852 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7853 if (bi_flags & BTRFS_INODE_APPEND) 7854 stat->attributes |= STATX_ATTR_APPEND; 7855 if (bi_flags & BTRFS_INODE_COMPRESS) 7856 stat->attributes |= STATX_ATTR_COMPRESSED; 7857 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7858 stat->attributes |= STATX_ATTR_IMMUTABLE; 7859 if (bi_flags & BTRFS_INODE_NODUMP) 7860 stat->attributes |= STATX_ATTR_NODUMP; 7861 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7862 stat->attributes |= STATX_ATTR_VERITY; 7863 7864 stat->attributes_mask |= (STATX_ATTR_APPEND | 7865 STATX_ATTR_COMPRESSED | 7866 STATX_ATTR_IMMUTABLE | 7867 STATX_ATTR_NODUMP); 7868 7869 generic_fillattr(idmap, request_mask, inode, stat); 7870 stat->dev = BTRFS_I(inode)->root->anon_dev; 7871 7872 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7873 stat->result_mask |= STATX_SUBVOL; 7874 7875 spin_lock(&BTRFS_I(inode)->lock); 7876 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7877 inode_bytes = inode_get_bytes(inode); 7878 spin_unlock(&BTRFS_I(inode)->lock); 7879 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7880 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7881 return 0; 7882 } 7883 7884 static int btrfs_rename_exchange(struct inode *old_dir, 7885 struct dentry *old_dentry, 7886 struct inode *new_dir, 7887 struct dentry *new_dentry) 7888 { 7889 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7890 struct btrfs_trans_handle *trans; 7891 unsigned int trans_num_items; 7892 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7893 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7894 struct inode *new_inode = new_dentry->d_inode; 7895 struct inode *old_inode = old_dentry->d_inode; 7896 struct btrfs_rename_ctx old_rename_ctx; 7897 struct btrfs_rename_ctx new_rename_ctx; 7898 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7899 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7900 u64 old_idx = 0; 7901 u64 new_idx = 0; 7902 int ret; 7903 int ret2; 7904 bool need_abort = false; 7905 struct fscrypt_name old_fname, new_fname; 7906 struct fscrypt_str *old_name, *new_name; 7907 7908 /* 7909 * For non-subvolumes allow exchange only within one subvolume, in the 7910 * same inode namespace. Two subvolumes (represented as directory) can 7911 * be exchanged as they're a logical link and have a fixed inode number. 7912 */ 7913 if (root != dest && 7914 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7915 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7916 return -EXDEV; 7917 7918 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7919 if (ret) 7920 return ret; 7921 7922 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7923 if (ret) { 7924 fscrypt_free_filename(&old_fname); 7925 return ret; 7926 } 7927 7928 old_name = &old_fname.disk_name; 7929 new_name = &new_fname.disk_name; 7930 7931 /* close the race window with snapshot create/destroy ioctl */ 7932 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7933 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7934 down_read(&fs_info->subvol_sem); 7935 7936 /* 7937 * For each inode: 7938 * 1 to remove old dir item 7939 * 1 to remove old dir index 7940 * 1 to add new dir item 7941 * 1 to add new dir index 7942 * 1 to update parent inode 7943 * 7944 * If the parents are the same, we only need to account for one 7945 */ 7946 trans_num_items = (old_dir == new_dir ? 9 : 10); 7947 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7948 /* 7949 * 1 to remove old root ref 7950 * 1 to remove old root backref 7951 * 1 to add new root ref 7952 * 1 to add new root backref 7953 */ 7954 trans_num_items += 4; 7955 } else { 7956 /* 7957 * 1 to update inode item 7958 * 1 to remove old inode ref 7959 * 1 to add new inode ref 7960 */ 7961 trans_num_items += 3; 7962 } 7963 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7964 trans_num_items += 4; 7965 else 7966 trans_num_items += 3; 7967 trans = btrfs_start_transaction(root, trans_num_items); 7968 if (IS_ERR(trans)) { 7969 ret = PTR_ERR(trans); 7970 goto out_notrans; 7971 } 7972 7973 if (dest != root) { 7974 ret = btrfs_record_root_in_trans(trans, dest); 7975 if (ret) 7976 goto out_fail; 7977 } 7978 7979 /* 7980 * We need to find a free sequence number both in the source and 7981 * in the destination directory for the exchange. 7982 */ 7983 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7984 if (ret) 7985 goto out_fail; 7986 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7987 if (ret) 7988 goto out_fail; 7989 7990 BTRFS_I(old_inode)->dir_index = 0ULL; 7991 BTRFS_I(new_inode)->dir_index = 0ULL; 7992 7993 /* Reference for the source. */ 7994 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7995 /* force full log commit if subvolume involved. */ 7996 btrfs_set_log_full_commit(trans); 7997 } else { 7998 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 7999 btrfs_ino(BTRFS_I(new_dir)), 8000 old_idx); 8001 if (ret) 8002 goto out_fail; 8003 need_abort = true; 8004 } 8005 8006 /* And now for the dest. */ 8007 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8008 /* force full log commit if subvolume involved. */ 8009 btrfs_set_log_full_commit(trans); 8010 } else { 8011 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8012 btrfs_ino(BTRFS_I(old_dir)), 8013 new_idx); 8014 if (ret) { 8015 if (need_abort) 8016 btrfs_abort_transaction(trans, ret); 8017 goto out_fail; 8018 } 8019 } 8020 8021 /* Update inode version and ctime/mtime. */ 8022 inode_inc_iversion(old_dir); 8023 inode_inc_iversion(new_dir); 8024 inode_inc_iversion(old_inode); 8025 inode_inc_iversion(new_inode); 8026 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8027 8028 if (old_dentry->d_parent != new_dentry->d_parent) { 8029 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8030 BTRFS_I(old_inode), true); 8031 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8032 BTRFS_I(new_inode), true); 8033 } 8034 8035 /* src is a subvolume */ 8036 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8037 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8038 } else { /* src is an inode */ 8039 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8040 BTRFS_I(old_dentry->d_inode), 8041 old_name, &old_rename_ctx); 8042 if (!ret) 8043 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8044 } 8045 if (ret) { 8046 btrfs_abort_transaction(trans, ret); 8047 goto out_fail; 8048 } 8049 8050 /* dest is a subvolume */ 8051 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8052 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8053 } else { /* dest is an inode */ 8054 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8055 BTRFS_I(new_dentry->d_inode), 8056 new_name, &new_rename_ctx); 8057 if (!ret) 8058 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8059 } 8060 if (ret) { 8061 btrfs_abort_transaction(trans, ret); 8062 goto out_fail; 8063 } 8064 8065 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8066 new_name, 0, old_idx); 8067 if (ret) { 8068 btrfs_abort_transaction(trans, ret); 8069 goto out_fail; 8070 } 8071 8072 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8073 old_name, 0, new_idx); 8074 if (ret) { 8075 btrfs_abort_transaction(trans, ret); 8076 goto out_fail; 8077 } 8078 8079 if (old_inode->i_nlink == 1) 8080 BTRFS_I(old_inode)->dir_index = old_idx; 8081 if (new_inode->i_nlink == 1) 8082 BTRFS_I(new_inode)->dir_index = new_idx; 8083 8084 /* 8085 * Now pin the logs of the roots. We do it to ensure that no other task 8086 * can sync the logs while we are in progress with the rename, because 8087 * that could result in an inconsistency in case any of the inodes that 8088 * are part of this rename operation were logged before. 8089 */ 8090 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8091 btrfs_pin_log_trans(root); 8092 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8093 btrfs_pin_log_trans(dest); 8094 8095 /* Do the log updates for all inodes. */ 8096 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8097 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8098 old_rename_ctx.index, new_dentry->d_parent); 8099 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8100 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8101 new_rename_ctx.index, old_dentry->d_parent); 8102 8103 /* Now unpin the logs. */ 8104 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8105 btrfs_end_log_trans(root); 8106 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8107 btrfs_end_log_trans(dest); 8108 out_fail: 8109 ret2 = btrfs_end_transaction(trans); 8110 ret = ret ? ret : ret2; 8111 out_notrans: 8112 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8113 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8114 up_read(&fs_info->subvol_sem); 8115 8116 fscrypt_free_filename(&new_fname); 8117 fscrypt_free_filename(&old_fname); 8118 return ret; 8119 } 8120 8121 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8122 struct inode *dir) 8123 { 8124 struct inode *inode; 8125 8126 inode = new_inode(dir->i_sb); 8127 if (inode) { 8128 inode_init_owner(idmap, inode, dir, 8129 S_IFCHR | WHITEOUT_MODE); 8130 inode->i_op = &btrfs_special_inode_operations; 8131 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8132 } 8133 return inode; 8134 } 8135 8136 static int btrfs_rename(struct mnt_idmap *idmap, 8137 struct inode *old_dir, struct dentry *old_dentry, 8138 struct inode *new_dir, struct dentry *new_dentry, 8139 unsigned int flags) 8140 { 8141 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8142 struct btrfs_new_inode_args whiteout_args = { 8143 .dir = old_dir, 8144 .dentry = old_dentry, 8145 }; 8146 struct btrfs_trans_handle *trans; 8147 unsigned int trans_num_items; 8148 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8149 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8150 struct inode *new_inode = d_inode(new_dentry); 8151 struct inode *old_inode = d_inode(old_dentry); 8152 struct btrfs_rename_ctx rename_ctx; 8153 u64 index = 0; 8154 int ret; 8155 int ret2; 8156 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8157 struct fscrypt_name old_fname, new_fname; 8158 8159 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8160 return -EPERM; 8161 8162 /* we only allow rename subvolume link between subvolumes */ 8163 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8164 return -EXDEV; 8165 8166 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8167 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8168 return -ENOTEMPTY; 8169 8170 if (S_ISDIR(old_inode->i_mode) && new_inode && 8171 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8172 return -ENOTEMPTY; 8173 8174 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8175 if (ret) 8176 return ret; 8177 8178 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8179 if (ret) { 8180 fscrypt_free_filename(&old_fname); 8181 return ret; 8182 } 8183 8184 /* check for collisions, even if the name isn't there */ 8185 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8186 if (ret) { 8187 if (ret == -EEXIST) { 8188 /* we shouldn't get 8189 * eexist without a new_inode */ 8190 if (WARN_ON(!new_inode)) { 8191 goto out_fscrypt_names; 8192 } 8193 } else { 8194 /* maybe -EOVERFLOW */ 8195 goto out_fscrypt_names; 8196 } 8197 } 8198 ret = 0; 8199 8200 /* 8201 * we're using rename to replace one file with another. Start IO on it 8202 * now so we don't add too much work to the end of the transaction 8203 */ 8204 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8205 filemap_flush(old_inode->i_mapping); 8206 8207 if (flags & RENAME_WHITEOUT) { 8208 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8209 if (!whiteout_args.inode) { 8210 ret = -ENOMEM; 8211 goto out_fscrypt_names; 8212 } 8213 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8214 if (ret) 8215 goto out_whiteout_inode; 8216 } else { 8217 /* 1 to update the old parent inode. */ 8218 trans_num_items = 1; 8219 } 8220 8221 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8222 /* Close the race window with snapshot create/destroy ioctl */ 8223 down_read(&fs_info->subvol_sem); 8224 /* 8225 * 1 to remove old root ref 8226 * 1 to remove old root backref 8227 * 1 to add new root ref 8228 * 1 to add new root backref 8229 */ 8230 trans_num_items += 4; 8231 } else { 8232 /* 8233 * 1 to update inode 8234 * 1 to remove old inode ref 8235 * 1 to add new inode ref 8236 */ 8237 trans_num_items += 3; 8238 } 8239 /* 8240 * 1 to remove old dir item 8241 * 1 to remove old dir index 8242 * 1 to add new dir item 8243 * 1 to add new dir index 8244 */ 8245 trans_num_items += 4; 8246 /* 1 to update new parent inode if it's not the same as the old parent */ 8247 if (new_dir != old_dir) 8248 trans_num_items++; 8249 if (new_inode) { 8250 /* 8251 * 1 to update inode 8252 * 1 to remove inode ref 8253 * 1 to remove dir item 8254 * 1 to remove dir index 8255 * 1 to possibly add orphan item 8256 */ 8257 trans_num_items += 5; 8258 } 8259 trans = btrfs_start_transaction(root, trans_num_items); 8260 if (IS_ERR(trans)) { 8261 ret = PTR_ERR(trans); 8262 goto out_notrans; 8263 } 8264 8265 if (dest != root) { 8266 ret = btrfs_record_root_in_trans(trans, dest); 8267 if (ret) 8268 goto out_fail; 8269 } 8270 8271 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8272 if (ret) 8273 goto out_fail; 8274 8275 BTRFS_I(old_inode)->dir_index = 0ULL; 8276 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8277 /* force full log commit if subvolume involved. */ 8278 btrfs_set_log_full_commit(trans); 8279 } else { 8280 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8281 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8282 index); 8283 if (ret) 8284 goto out_fail; 8285 } 8286 8287 inode_inc_iversion(old_dir); 8288 inode_inc_iversion(new_dir); 8289 inode_inc_iversion(old_inode); 8290 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8291 8292 if (old_dentry->d_parent != new_dentry->d_parent) 8293 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8294 BTRFS_I(old_inode), true); 8295 8296 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8297 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8298 } else { 8299 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8300 BTRFS_I(d_inode(old_dentry)), 8301 &old_fname.disk_name, &rename_ctx); 8302 if (!ret) 8303 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8304 } 8305 if (ret) { 8306 btrfs_abort_transaction(trans, ret); 8307 goto out_fail; 8308 } 8309 8310 if (new_inode) { 8311 inode_inc_iversion(new_inode); 8312 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8313 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8314 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8315 BUG_ON(new_inode->i_nlink == 0); 8316 } else { 8317 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8318 BTRFS_I(d_inode(new_dentry)), 8319 &new_fname.disk_name); 8320 } 8321 if (!ret && new_inode->i_nlink == 0) 8322 ret = btrfs_orphan_add(trans, 8323 BTRFS_I(d_inode(new_dentry))); 8324 if (ret) { 8325 btrfs_abort_transaction(trans, ret); 8326 goto out_fail; 8327 } 8328 } 8329 8330 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8331 &new_fname.disk_name, 0, index); 8332 if (ret) { 8333 btrfs_abort_transaction(trans, ret); 8334 goto out_fail; 8335 } 8336 8337 if (old_inode->i_nlink == 1) 8338 BTRFS_I(old_inode)->dir_index = index; 8339 8340 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8341 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8342 rename_ctx.index, new_dentry->d_parent); 8343 8344 if (flags & RENAME_WHITEOUT) { 8345 ret = btrfs_create_new_inode(trans, &whiteout_args); 8346 if (ret) { 8347 btrfs_abort_transaction(trans, ret); 8348 goto out_fail; 8349 } else { 8350 unlock_new_inode(whiteout_args.inode); 8351 iput(whiteout_args.inode); 8352 whiteout_args.inode = NULL; 8353 } 8354 } 8355 out_fail: 8356 ret2 = btrfs_end_transaction(trans); 8357 ret = ret ? ret : ret2; 8358 out_notrans: 8359 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8360 up_read(&fs_info->subvol_sem); 8361 if (flags & RENAME_WHITEOUT) 8362 btrfs_new_inode_args_destroy(&whiteout_args); 8363 out_whiteout_inode: 8364 if (flags & RENAME_WHITEOUT) 8365 iput(whiteout_args.inode); 8366 out_fscrypt_names: 8367 fscrypt_free_filename(&old_fname); 8368 fscrypt_free_filename(&new_fname); 8369 return ret; 8370 } 8371 8372 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8373 struct dentry *old_dentry, struct inode *new_dir, 8374 struct dentry *new_dentry, unsigned int flags) 8375 { 8376 int ret; 8377 8378 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8379 return -EINVAL; 8380 8381 if (flags & RENAME_EXCHANGE) 8382 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8383 new_dentry); 8384 else 8385 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8386 new_dentry, flags); 8387 8388 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8389 8390 return ret; 8391 } 8392 8393 struct btrfs_delalloc_work { 8394 struct inode *inode; 8395 struct completion completion; 8396 struct list_head list; 8397 struct btrfs_work work; 8398 }; 8399 8400 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8401 { 8402 struct btrfs_delalloc_work *delalloc_work; 8403 struct inode *inode; 8404 8405 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8406 work); 8407 inode = delalloc_work->inode; 8408 filemap_flush(inode->i_mapping); 8409 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8410 &BTRFS_I(inode)->runtime_flags)) 8411 filemap_flush(inode->i_mapping); 8412 8413 iput(inode); 8414 complete(&delalloc_work->completion); 8415 } 8416 8417 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8418 { 8419 struct btrfs_delalloc_work *work; 8420 8421 work = kmalloc(sizeof(*work), GFP_NOFS); 8422 if (!work) 8423 return NULL; 8424 8425 init_completion(&work->completion); 8426 INIT_LIST_HEAD(&work->list); 8427 work->inode = inode; 8428 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8429 8430 return work; 8431 } 8432 8433 /* 8434 * some fairly slow code that needs optimization. This walks the list 8435 * of all the inodes with pending delalloc and forces them to disk. 8436 */ 8437 static int start_delalloc_inodes(struct btrfs_root *root, 8438 struct writeback_control *wbc, bool snapshot, 8439 bool in_reclaim_context) 8440 { 8441 struct btrfs_inode *binode; 8442 struct inode *inode; 8443 struct btrfs_delalloc_work *work, *next; 8444 LIST_HEAD(works); 8445 LIST_HEAD(splice); 8446 int ret = 0; 8447 bool full_flush = wbc->nr_to_write == LONG_MAX; 8448 8449 mutex_lock(&root->delalloc_mutex); 8450 spin_lock(&root->delalloc_lock); 8451 list_splice_init(&root->delalloc_inodes, &splice); 8452 while (!list_empty(&splice)) { 8453 binode = list_entry(splice.next, struct btrfs_inode, 8454 delalloc_inodes); 8455 8456 list_move_tail(&binode->delalloc_inodes, 8457 &root->delalloc_inodes); 8458 8459 if (in_reclaim_context && 8460 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8461 continue; 8462 8463 inode = igrab(&binode->vfs_inode); 8464 if (!inode) { 8465 cond_resched_lock(&root->delalloc_lock); 8466 continue; 8467 } 8468 spin_unlock(&root->delalloc_lock); 8469 8470 if (snapshot) 8471 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8472 &binode->runtime_flags); 8473 if (full_flush) { 8474 work = btrfs_alloc_delalloc_work(inode); 8475 if (!work) { 8476 iput(inode); 8477 ret = -ENOMEM; 8478 goto out; 8479 } 8480 list_add_tail(&work->list, &works); 8481 btrfs_queue_work(root->fs_info->flush_workers, 8482 &work->work); 8483 } else { 8484 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8485 btrfs_add_delayed_iput(BTRFS_I(inode)); 8486 if (ret || wbc->nr_to_write <= 0) 8487 goto out; 8488 } 8489 cond_resched(); 8490 spin_lock(&root->delalloc_lock); 8491 } 8492 spin_unlock(&root->delalloc_lock); 8493 8494 out: 8495 list_for_each_entry_safe(work, next, &works, list) { 8496 list_del_init(&work->list); 8497 wait_for_completion(&work->completion); 8498 kfree(work); 8499 } 8500 8501 if (!list_empty(&splice)) { 8502 spin_lock(&root->delalloc_lock); 8503 list_splice_tail(&splice, &root->delalloc_inodes); 8504 spin_unlock(&root->delalloc_lock); 8505 } 8506 mutex_unlock(&root->delalloc_mutex); 8507 return ret; 8508 } 8509 8510 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8511 { 8512 struct writeback_control wbc = { 8513 .nr_to_write = LONG_MAX, 8514 .sync_mode = WB_SYNC_NONE, 8515 .range_start = 0, 8516 .range_end = LLONG_MAX, 8517 }; 8518 struct btrfs_fs_info *fs_info = root->fs_info; 8519 8520 if (BTRFS_FS_ERROR(fs_info)) 8521 return -EROFS; 8522 8523 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8524 } 8525 8526 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8527 bool in_reclaim_context) 8528 { 8529 struct writeback_control wbc = { 8530 .nr_to_write = nr, 8531 .sync_mode = WB_SYNC_NONE, 8532 .range_start = 0, 8533 .range_end = LLONG_MAX, 8534 }; 8535 struct btrfs_root *root; 8536 LIST_HEAD(splice); 8537 int ret; 8538 8539 if (BTRFS_FS_ERROR(fs_info)) 8540 return -EROFS; 8541 8542 mutex_lock(&fs_info->delalloc_root_mutex); 8543 spin_lock(&fs_info->delalloc_root_lock); 8544 list_splice_init(&fs_info->delalloc_roots, &splice); 8545 while (!list_empty(&splice)) { 8546 /* 8547 * Reset nr_to_write here so we know that we're doing a full 8548 * flush. 8549 */ 8550 if (nr == LONG_MAX) 8551 wbc.nr_to_write = LONG_MAX; 8552 8553 root = list_first_entry(&splice, struct btrfs_root, 8554 delalloc_root); 8555 root = btrfs_grab_root(root); 8556 BUG_ON(!root); 8557 list_move_tail(&root->delalloc_root, 8558 &fs_info->delalloc_roots); 8559 spin_unlock(&fs_info->delalloc_root_lock); 8560 8561 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8562 btrfs_put_root(root); 8563 if (ret < 0 || wbc.nr_to_write <= 0) 8564 goto out; 8565 spin_lock(&fs_info->delalloc_root_lock); 8566 } 8567 spin_unlock(&fs_info->delalloc_root_lock); 8568 8569 ret = 0; 8570 out: 8571 if (!list_empty(&splice)) { 8572 spin_lock(&fs_info->delalloc_root_lock); 8573 list_splice_tail(&splice, &fs_info->delalloc_roots); 8574 spin_unlock(&fs_info->delalloc_root_lock); 8575 } 8576 mutex_unlock(&fs_info->delalloc_root_mutex); 8577 return ret; 8578 } 8579 8580 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8581 struct dentry *dentry, const char *symname) 8582 { 8583 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8584 struct btrfs_trans_handle *trans; 8585 struct btrfs_root *root = BTRFS_I(dir)->root; 8586 struct btrfs_path *path; 8587 struct btrfs_key key; 8588 struct inode *inode; 8589 struct btrfs_new_inode_args new_inode_args = { 8590 .dir = dir, 8591 .dentry = dentry, 8592 }; 8593 unsigned int trans_num_items; 8594 int err; 8595 int name_len; 8596 int datasize; 8597 unsigned long ptr; 8598 struct btrfs_file_extent_item *ei; 8599 struct extent_buffer *leaf; 8600 8601 name_len = strlen(symname); 8602 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8603 return -ENAMETOOLONG; 8604 8605 inode = new_inode(dir->i_sb); 8606 if (!inode) 8607 return -ENOMEM; 8608 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8609 inode->i_op = &btrfs_symlink_inode_operations; 8610 inode_nohighmem(inode); 8611 inode->i_mapping->a_ops = &btrfs_aops; 8612 btrfs_i_size_write(BTRFS_I(inode), name_len); 8613 inode_set_bytes(inode, name_len); 8614 8615 new_inode_args.inode = inode; 8616 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8617 if (err) 8618 goto out_inode; 8619 /* 1 additional item for the inline extent */ 8620 trans_num_items++; 8621 8622 trans = btrfs_start_transaction(root, trans_num_items); 8623 if (IS_ERR(trans)) { 8624 err = PTR_ERR(trans); 8625 goto out_new_inode_args; 8626 } 8627 8628 err = btrfs_create_new_inode(trans, &new_inode_args); 8629 if (err) 8630 goto out; 8631 8632 path = btrfs_alloc_path(); 8633 if (!path) { 8634 err = -ENOMEM; 8635 btrfs_abort_transaction(trans, err); 8636 discard_new_inode(inode); 8637 inode = NULL; 8638 goto out; 8639 } 8640 key.objectid = btrfs_ino(BTRFS_I(inode)); 8641 key.offset = 0; 8642 key.type = BTRFS_EXTENT_DATA_KEY; 8643 datasize = btrfs_file_extent_calc_inline_size(name_len); 8644 err = btrfs_insert_empty_item(trans, root, path, &key, 8645 datasize); 8646 if (err) { 8647 btrfs_abort_transaction(trans, err); 8648 btrfs_free_path(path); 8649 discard_new_inode(inode); 8650 inode = NULL; 8651 goto out; 8652 } 8653 leaf = path->nodes[0]; 8654 ei = btrfs_item_ptr(leaf, path->slots[0], 8655 struct btrfs_file_extent_item); 8656 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8657 btrfs_set_file_extent_type(leaf, ei, 8658 BTRFS_FILE_EXTENT_INLINE); 8659 btrfs_set_file_extent_encryption(leaf, ei, 0); 8660 btrfs_set_file_extent_compression(leaf, ei, 0); 8661 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8662 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8663 8664 ptr = btrfs_file_extent_inline_start(ei); 8665 write_extent_buffer(leaf, symname, ptr, name_len); 8666 btrfs_mark_buffer_dirty(trans, leaf); 8667 btrfs_free_path(path); 8668 8669 d_instantiate_new(dentry, inode); 8670 err = 0; 8671 out: 8672 btrfs_end_transaction(trans); 8673 btrfs_btree_balance_dirty(fs_info); 8674 out_new_inode_args: 8675 btrfs_new_inode_args_destroy(&new_inode_args); 8676 out_inode: 8677 if (err) 8678 iput(inode); 8679 return err; 8680 } 8681 8682 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8683 struct btrfs_trans_handle *trans_in, 8684 struct btrfs_inode *inode, 8685 struct btrfs_key *ins, 8686 u64 file_offset) 8687 { 8688 struct btrfs_file_extent_item stack_fi; 8689 struct btrfs_replace_extent_info extent_info; 8690 struct btrfs_trans_handle *trans = trans_in; 8691 struct btrfs_path *path; 8692 u64 start = ins->objectid; 8693 u64 len = ins->offset; 8694 u64 qgroup_released = 0; 8695 int ret; 8696 8697 memset(&stack_fi, 0, sizeof(stack_fi)); 8698 8699 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8700 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8701 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8702 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8703 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8704 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8705 /* Encryption and other encoding is reserved and all 0 */ 8706 8707 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8708 if (ret < 0) 8709 return ERR_PTR(ret); 8710 8711 if (trans) { 8712 ret = insert_reserved_file_extent(trans, inode, 8713 file_offset, &stack_fi, 8714 true, qgroup_released); 8715 if (ret) 8716 goto free_qgroup; 8717 return trans; 8718 } 8719 8720 extent_info.disk_offset = start; 8721 extent_info.disk_len = len; 8722 extent_info.data_offset = 0; 8723 extent_info.data_len = len; 8724 extent_info.file_offset = file_offset; 8725 extent_info.extent_buf = (char *)&stack_fi; 8726 extent_info.is_new_extent = true; 8727 extent_info.update_times = true; 8728 extent_info.qgroup_reserved = qgroup_released; 8729 extent_info.insertions = 0; 8730 8731 path = btrfs_alloc_path(); 8732 if (!path) { 8733 ret = -ENOMEM; 8734 goto free_qgroup; 8735 } 8736 8737 ret = btrfs_replace_file_extents(inode, path, file_offset, 8738 file_offset + len - 1, &extent_info, 8739 &trans); 8740 btrfs_free_path(path); 8741 if (ret) 8742 goto free_qgroup; 8743 return trans; 8744 8745 free_qgroup: 8746 /* 8747 * We have released qgroup data range at the beginning of the function, 8748 * and normally qgroup_released bytes will be freed when committing 8749 * transaction. 8750 * But if we error out early, we have to free what we have released 8751 * or we leak qgroup data reservation. 8752 */ 8753 btrfs_qgroup_free_refroot(inode->root->fs_info, 8754 btrfs_root_id(inode->root), qgroup_released, 8755 BTRFS_QGROUP_RSV_DATA); 8756 return ERR_PTR(ret); 8757 } 8758 8759 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8760 u64 start, u64 num_bytes, u64 min_size, 8761 loff_t actual_len, u64 *alloc_hint, 8762 struct btrfs_trans_handle *trans) 8763 { 8764 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8765 struct extent_map *em; 8766 struct btrfs_root *root = BTRFS_I(inode)->root; 8767 struct btrfs_key ins; 8768 u64 cur_offset = start; 8769 u64 clear_offset = start; 8770 u64 i_size; 8771 u64 cur_bytes; 8772 u64 last_alloc = (u64)-1; 8773 int ret = 0; 8774 bool own_trans = true; 8775 u64 end = start + num_bytes - 1; 8776 8777 if (trans) 8778 own_trans = false; 8779 while (num_bytes > 0) { 8780 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8781 cur_bytes = max(cur_bytes, min_size); 8782 /* 8783 * If we are severely fragmented we could end up with really 8784 * small allocations, so if the allocator is returning small 8785 * chunks lets make its job easier by only searching for those 8786 * sized chunks. 8787 */ 8788 cur_bytes = min(cur_bytes, last_alloc); 8789 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8790 min_size, 0, *alloc_hint, &ins, 1, 0); 8791 if (ret) 8792 break; 8793 8794 /* 8795 * We've reserved this space, and thus converted it from 8796 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8797 * from here on out we will only need to clear our reservation 8798 * for the remaining unreserved area, so advance our 8799 * clear_offset by our extent size. 8800 */ 8801 clear_offset += ins.offset; 8802 8803 last_alloc = ins.offset; 8804 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8805 &ins, cur_offset); 8806 /* 8807 * Now that we inserted the prealloc extent we can finally 8808 * decrement the number of reservations in the block group. 8809 * If we did it before, we could race with relocation and have 8810 * relocation miss the reserved extent, making it fail later. 8811 */ 8812 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8813 if (IS_ERR(trans)) { 8814 ret = PTR_ERR(trans); 8815 btrfs_free_reserved_extent(fs_info, ins.objectid, 8816 ins.offset, 0); 8817 break; 8818 } 8819 8820 em = alloc_extent_map(); 8821 if (!em) { 8822 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8823 cur_offset + ins.offset - 1, false); 8824 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8825 goto next; 8826 } 8827 8828 em->start = cur_offset; 8829 em->len = ins.offset; 8830 em->disk_bytenr = ins.objectid; 8831 em->offset = 0; 8832 em->disk_num_bytes = ins.offset; 8833 em->ram_bytes = ins.offset; 8834 em->flags |= EXTENT_FLAG_PREALLOC; 8835 em->generation = trans->transid; 8836 8837 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8838 free_extent_map(em); 8839 next: 8840 num_bytes -= ins.offset; 8841 cur_offset += ins.offset; 8842 *alloc_hint = ins.objectid + ins.offset; 8843 8844 inode_inc_iversion(inode); 8845 inode_set_ctime_current(inode); 8846 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8847 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8848 (actual_len > inode->i_size) && 8849 (cur_offset > inode->i_size)) { 8850 if (cur_offset > actual_len) 8851 i_size = actual_len; 8852 else 8853 i_size = cur_offset; 8854 i_size_write(inode, i_size); 8855 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8856 } 8857 8858 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8859 8860 if (ret) { 8861 btrfs_abort_transaction(trans, ret); 8862 if (own_trans) 8863 btrfs_end_transaction(trans); 8864 break; 8865 } 8866 8867 if (own_trans) { 8868 btrfs_end_transaction(trans); 8869 trans = NULL; 8870 } 8871 } 8872 if (clear_offset < end) 8873 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8874 end - clear_offset + 1); 8875 return ret; 8876 } 8877 8878 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8879 u64 start, u64 num_bytes, u64 min_size, 8880 loff_t actual_len, u64 *alloc_hint) 8881 { 8882 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8883 min_size, actual_len, alloc_hint, 8884 NULL); 8885 } 8886 8887 int btrfs_prealloc_file_range_trans(struct inode *inode, 8888 struct btrfs_trans_handle *trans, int mode, 8889 u64 start, u64 num_bytes, u64 min_size, 8890 loff_t actual_len, u64 *alloc_hint) 8891 { 8892 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8893 min_size, actual_len, alloc_hint, trans); 8894 } 8895 8896 static int btrfs_permission(struct mnt_idmap *idmap, 8897 struct inode *inode, int mask) 8898 { 8899 struct btrfs_root *root = BTRFS_I(inode)->root; 8900 umode_t mode = inode->i_mode; 8901 8902 if (mask & MAY_WRITE && 8903 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8904 if (btrfs_root_readonly(root)) 8905 return -EROFS; 8906 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8907 return -EACCES; 8908 } 8909 return generic_permission(idmap, inode, mask); 8910 } 8911 8912 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8913 struct file *file, umode_t mode) 8914 { 8915 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8916 struct btrfs_trans_handle *trans; 8917 struct btrfs_root *root = BTRFS_I(dir)->root; 8918 struct inode *inode; 8919 struct btrfs_new_inode_args new_inode_args = { 8920 .dir = dir, 8921 .dentry = file->f_path.dentry, 8922 .orphan = true, 8923 }; 8924 unsigned int trans_num_items; 8925 int ret; 8926 8927 inode = new_inode(dir->i_sb); 8928 if (!inode) 8929 return -ENOMEM; 8930 inode_init_owner(idmap, inode, dir, mode); 8931 inode->i_fop = &btrfs_file_operations; 8932 inode->i_op = &btrfs_file_inode_operations; 8933 inode->i_mapping->a_ops = &btrfs_aops; 8934 8935 new_inode_args.inode = inode; 8936 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8937 if (ret) 8938 goto out_inode; 8939 8940 trans = btrfs_start_transaction(root, trans_num_items); 8941 if (IS_ERR(trans)) { 8942 ret = PTR_ERR(trans); 8943 goto out_new_inode_args; 8944 } 8945 8946 ret = btrfs_create_new_inode(trans, &new_inode_args); 8947 8948 /* 8949 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8950 * set it to 1 because d_tmpfile() will issue a warning if the count is 8951 * 0, through: 8952 * 8953 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8954 */ 8955 set_nlink(inode, 1); 8956 8957 if (!ret) { 8958 d_tmpfile(file, inode); 8959 unlock_new_inode(inode); 8960 mark_inode_dirty(inode); 8961 } 8962 8963 btrfs_end_transaction(trans); 8964 btrfs_btree_balance_dirty(fs_info); 8965 out_new_inode_args: 8966 btrfs_new_inode_args_destroy(&new_inode_args); 8967 out_inode: 8968 if (ret) 8969 iput(inode); 8970 return finish_open_simple(file, ret); 8971 } 8972 8973 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 8974 { 8975 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8976 unsigned long index = start >> PAGE_SHIFT; 8977 unsigned long end_index = end >> PAGE_SHIFT; 8978 struct folio *folio; 8979 u32 len; 8980 8981 ASSERT(end + 1 - start <= U32_MAX); 8982 len = end + 1 - start; 8983 while (index <= end_index) { 8984 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0); 8985 ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */ 8986 8987 /* This is for data, which doesn't yet support larger folio. */ 8988 ASSERT(folio_order(folio) == 0); 8989 btrfs_folio_set_writeback(fs_info, folio, start, len); 8990 folio_put(folio); 8991 index++; 8992 } 8993 } 8994 8995 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8996 int compress_type) 8997 { 8998 switch (compress_type) { 8999 case BTRFS_COMPRESS_NONE: 9000 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9001 case BTRFS_COMPRESS_ZLIB: 9002 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9003 case BTRFS_COMPRESS_LZO: 9004 /* 9005 * The LZO format depends on the sector size. 64K is the maximum 9006 * sector size that we support. 9007 */ 9008 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9009 return -EINVAL; 9010 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9011 (fs_info->sectorsize_bits - 12); 9012 case BTRFS_COMPRESS_ZSTD: 9013 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9014 default: 9015 return -EUCLEAN; 9016 } 9017 } 9018 9019 static ssize_t btrfs_encoded_read_inline( 9020 struct kiocb *iocb, 9021 struct iov_iter *iter, u64 start, 9022 u64 lockend, 9023 struct extent_state **cached_state, 9024 u64 extent_start, size_t count, 9025 struct btrfs_ioctl_encoded_io_args *encoded, 9026 bool *unlocked) 9027 { 9028 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9029 struct btrfs_root *root = inode->root; 9030 struct btrfs_fs_info *fs_info = root->fs_info; 9031 struct extent_io_tree *io_tree = &inode->io_tree; 9032 struct btrfs_path *path; 9033 struct extent_buffer *leaf; 9034 struct btrfs_file_extent_item *item; 9035 u64 ram_bytes; 9036 unsigned long ptr; 9037 void *tmp; 9038 ssize_t ret; 9039 9040 path = btrfs_alloc_path(); 9041 if (!path) { 9042 ret = -ENOMEM; 9043 goto out; 9044 } 9045 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9046 extent_start, 0); 9047 if (ret) { 9048 if (ret > 0) { 9049 /* The extent item disappeared? */ 9050 ret = -EIO; 9051 } 9052 goto out; 9053 } 9054 leaf = path->nodes[0]; 9055 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9056 9057 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9058 ptr = btrfs_file_extent_inline_start(item); 9059 9060 encoded->len = min_t(u64, extent_start + ram_bytes, 9061 inode->vfs_inode.i_size) - iocb->ki_pos; 9062 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9063 btrfs_file_extent_compression(leaf, item)); 9064 if (ret < 0) 9065 goto out; 9066 encoded->compression = ret; 9067 if (encoded->compression) { 9068 size_t inline_size; 9069 9070 inline_size = btrfs_file_extent_inline_item_len(leaf, 9071 path->slots[0]); 9072 if (inline_size > count) { 9073 ret = -ENOBUFS; 9074 goto out; 9075 } 9076 count = inline_size; 9077 encoded->unencoded_len = ram_bytes; 9078 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9079 } else { 9080 count = min_t(u64, count, encoded->len); 9081 encoded->len = count; 9082 encoded->unencoded_len = count; 9083 ptr += iocb->ki_pos - extent_start; 9084 } 9085 9086 tmp = kmalloc(count, GFP_NOFS); 9087 if (!tmp) { 9088 ret = -ENOMEM; 9089 goto out; 9090 } 9091 read_extent_buffer(leaf, tmp, ptr, count); 9092 btrfs_release_path(path); 9093 unlock_extent(io_tree, start, lockend, cached_state); 9094 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9095 *unlocked = true; 9096 9097 ret = copy_to_iter(tmp, count, iter); 9098 if (ret != count) 9099 ret = -EFAULT; 9100 kfree(tmp); 9101 out: 9102 btrfs_free_path(path); 9103 return ret; 9104 } 9105 9106 struct btrfs_encoded_read_private { 9107 wait_queue_head_t wait; 9108 atomic_t pending; 9109 blk_status_t status; 9110 }; 9111 9112 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9113 { 9114 struct btrfs_encoded_read_private *priv = bbio->private; 9115 9116 if (bbio->bio.bi_status) { 9117 /* 9118 * The memory barrier implied by the atomic_dec_return() here 9119 * pairs with the memory barrier implied by the 9120 * atomic_dec_return() or io_wait_event() in 9121 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9122 * write is observed before the load of status in 9123 * btrfs_encoded_read_regular_fill_pages(). 9124 */ 9125 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9126 } 9127 if (!atomic_dec_return(&priv->pending)) 9128 wake_up(&priv->wait); 9129 bio_put(&bbio->bio); 9130 } 9131 9132 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9133 u64 file_offset, u64 disk_bytenr, 9134 u64 disk_io_size, struct page **pages) 9135 { 9136 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9137 struct btrfs_encoded_read_private priv = { 9138 .pending = ATOMIC_INIT(1), 9139 }; 9140 unsigned long i = 0; 9141 struct btrfs_bio *bbio; 9142 9143 init_waitqueue_head(&priv.wait); 9144 9145 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9146 btrfs_encoded_read_endio, &priv); 9147 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9148 bbio->inode = inode; 9149 9150 do { 9151 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9152 9153 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9154 atomic_inc(&priv.pending); 9155 btrfs_submit_bbio(bbio, 0); 9156 9157 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9158 btrfs_encoded_read_endio, &priv); 9159 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9160 bbio->inode = inode; 9161 continue; 9162 } 9163 9164 i++; 9165 disk_bytenr += bytes; 9166 disk_io_size -= bytes; 9167 } while (disk_io_size); 9168 9169 atomic_inc(&priv.pending); 9170 btrfs_submit_bbio(bbio, 0); 9171 9172 if (atomic_dec_return(&priv.pending)) 9173 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9174 /* See btrfs_encoded_read_endio() for ordering. */ 9175 return blk_status_to_errno(READ_ONCE(priv.status)); 9176 } 9177 9178 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9179 struct iov_iter *iter, 9180 u64 start, u64 lockend, 9181 struct extent_state **cached_state, 9182 u64 disk_bytenr, u64 disk_io_size, 9183 size_t count, bool compressed, 9184 bool *unlocked) 9185 { 9186 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9187 struct extent_io_tree *io_tree = &inode->io_tree; 9188 struct page **pages; 9189 unsigned long nr_pages, i; 9190 u64 cur; 9191 size_t page_offset; 9192 ssize_t ret; 9193 9194 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9195 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9196 if (!pages) 9197 return -ENOMEM; 9198 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9199 if (ret) { 9200 ret = -ENOMEM; 9201 goto out; 9202 } 9203 9204 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9205 disk_io_size, pages); 9206 if (ret) 9207 goto out; 9208 9209 unlock_extent(io_tree, start, lockend, cached_state); 9210 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9211 *unlocked = true; 9212 9213 if (compressed) { 9214 i = 0; 9215 page_offset = 0; 9216 } else { 9217 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9218 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9219 } 9220 cur = 0; 9221 while (cur < count) { 9222 size_t bytes = min_t(size_t, count - cur, 9223 PAGE_SIZE - page_offset); 9224 9225 if (copy_page_to_iter(pages[i], page_offset, bytes, 9226 iter) != bytes) { 9227 ret = -EFAULT; 9228 goto out; 9229 } 9230 i++; 9231 cur += bytes; 9232 page_offset = 0; 9233 } 9234 ret = count; 9235 out: 9236 for (i = 0; i < nr_pages; i++) { 9237 if (pages[i]) 9238 __free_page(pages[i]); 9239 } 9240 kfree(pages); 9241 return ret; 9242 } 9243 9244 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9245 struct btrfs_ioctl_encoded_io_args *encoded) 9246 { 9247 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9248 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9249 struct extent_io_tree *io_tree = &inode->io_tree; 9250 ssize_t ret; 9251 size_t count = iov_iter_count(iter); 9252 u64 start, lockend, disk_bytenr, disk_io_size; 9253 struct extent_state *cached_state = NULL; 9254 struct extent_map *em; 9255 bool unlocked = false; 9256 9257 file_accessed(iocb->ki_filp); 9258 9259 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 9260 9261 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9262 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9263 return 0; 9264 } 9265 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9266 /* 9267 * We don't know how long the extent containing iocb->ki_pos is, but if 9268 * it's compressed we know that it won't be longer than this. 9269 */ 9270 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9271 9272 for (;;) { 9273 struct btrfs_ordered_extent *ordered; 9274 9275 ret = btrfs_wait_ordered_range(inode, start, 9276 lockend - start + 1); 9277 if (ret) 9278 goto out_unlock_inode; 9279 lock_extent(io_tree, start, lockend, &cached_state); 9280 ordered = btrfs_lookup_ordered_range(inode, start, 9281 lockend - start + 1); 9282 if (!ordered) 9283 break; 9284 btrfs_put_ordered_extent(ordered); 9285 unlock_extent(io_tree, start, lockend, &cached_state); 9286 cond_resched(); 9287 } 9288 9289 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9290 if (IS_ERR(em)) { 9291 ret = PTR_ERR(em); 9292 goto out_unlock_extent; 9293 } 9294 9295 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9296 u64 extent_start = em->start; 9297 9298 /* 9299 * For inline extents we get everything we need out of the 9300 * extent item. 9301 */ 9302 free_extent_map(em); 9303 em = NULL; 9304 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9305 &cached_state, extent_start, 9306 count, encoded, &unlocked); 9307 goto out; 9308 } 9309 9310 /* 9311 * We only want to return up to EOF even if the extent extends beyond 9312 * that. 9313 */ 9314 encoded->len = min_t(u64, extent_map_end(em), 9315 inode->vfs_inode.i_size) - iocb->ki_pos; 9316 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9317 (em->flags & EXTENT_FLAG_PREALLOC)) { 9318 disk_bytenr = EXTENT_MAP_HOLE; 9319 count = min_t(u64, count, encoded->len); 9320 encoded->len = count; 9321 encoded->unencoded_len = count; 9322 } else if (extent_map_is_compressed(em)) { 9323 disk_bytenr = em->disk_bytenr; 9324 /* 9325 * Bail if the buffer isn't large enough to return the whole 9326 * compressed extent. 9327 */ 9328 if (em->disk_num_bytes > count) { 9329 ret = -ENOBUFS; 9330 goto out_em; 9331 } 9332 disk_io_size = em->disk_num_bytes; 9333 count = em->disk_num_bytes; 9334 encoded->unencoded_len = em->ram_bytes; 9335 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9336 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9337 extent_map_compression(em)); 9338 if (ret < 0) 9339 goto out_em; 9340 encoded->compression = ret; 9341 } else { 9342 disk_bytenr = extent_map_block_start(em) + (start - em->start); 9343 if (encoded->len > count) 9344 encoded->len = count; 9345 /* 9346 * Don't read beyond what we locked. This also limits the page 9347 * allocations that we'll do. 9348 */ 9349 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9350 count = start + disk_io_size - iocb->ki_pos; 9351 encoded->len = count; 9352 encoded->unencoded_len = count; 9353 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 9354 } 9355 free_extent_map(em); 9356 em = NULL; 9357 9358 if (disk_bytenr == EXTENT_MAP_HOLE) { 9359 unlock_extent(io_tree, start, lockend, &cached_state); 9360 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9361 unlocked = true; 9362 ret = iov_iter_zero(count, iter); 9363 if (ret != count) 9364 ret = -EFAULT; 9365 } else { 9366 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 9367 &cached_state, disk_bytenr, 9368 disk_io_size, count, 9369 encoded->compression, 9370 &unlocked); 9371 } 9372 9373 out: 9374 if (ret >= 0) 9375 iocb->ki_pos += encoded->len; 9376 out_em: 9377 free_extent_map(em); 9378 out_unlock_extent: 9379 if (!unlocked) 9380 unlock_extent(io_tree, start, lockend, &cached_state); 9381 out_unlock_inode: 9382 if (!unlocked) 9383 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9384 return ret; 9385 } 9386 9387 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9388 const struct btrfs_ioctl_encoded_io_args *encoded) 9389 { 9390 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9391 struct btrfs_root *root = inode->root; 9392 struct btrfs_fs_info *fs_info = root->fs_info; 9393 struct extent_io_tree *io_tree = &inode->io_tree; 9394 struct extent_changeset *data_reserved = NULL; 9395 struct extent_state *cached_state = NULL; 9396 struct btrfs_ordered_extent *ordered; 9397 struct btrfs_file_extent file_extent; 9398 int compression; 9399 size_t orig_count; 9400 u64 start, end; 9401 u64 num_bytes, ram_bytes, disk_num_bytes; 9402 unsigned long nr_folios, i; 9403 struct folio **folios; 9404 struct btrfs_key ins; 9405 bool extent_reserved = false; 9406 struct extent_map *em; 9407 ssize_t ret; 9408 9409 switch (encoded->compression) { 9410 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9411 compression = BTRFS_COMPRESS_ZLIB; 9412 break; 9413 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9414 compression = BTRFS_COMPRESS_ZSTD; 9415 break; 9416 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9417 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9418 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9419 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9420 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9421 /* The sector size must match for LZO. */ 9422 if (encoded->compression - 9423 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9424 fs_info->sectorsize_bits) 9425 return -EINVAL; 9426 compression = BTRFS_COMPRESS_LZO; 9427 break; 9428 default: 9429 return -EINVAL; 9430 } 9431 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9432 return -EINVAL; 9433 9434 /* 9435 * Compressed extents should always have checksums, so error out if we 9436 * have a NOCOW file or inode was created while mounted with NODATASUM. 9437 */ 9438 if (inode->flags & BTRFS_INODE_NODATASUM) 9439 return -EINVAL; 9440 9441 orig_count = iov_iter_count(from); 9442 9443 /* The extent size must be sane. */ 9444 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9445 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9446 return -EINVAL; 9447 9448 /* 9449 * The compressed data must be smaller than the decompressed data. 9450 * 9451 * It's of course possible for data to compress to larger or the same 9452 * size, but the buffered I/O path falls back to no compression for such 9453 * data, and we don't want to break any assumptions by creating these 9454 * extents. 9455 * 9456 * Note that this is less strict than the current check we have that the 9457 * compressed data must be at least one sector smaller than the 9458 * decompressed data. We only want to enforce the weaker requirement 9459 * from old kernels that it is at least one byte smaller. 9460 */ 9461 if (orig_count >= encoded->unencoded_len) 9462 return -EINVAL; 9463 9464 /* The extent must start on a sector boundary. */ 9465 start = iocb->ki_pos; 9466 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9467 return -EINVAL; 9468 9469 /* 9470 * The extent must end on a sector boundary. However, we allow a write 9471 * which ends at or extends i_size to have an unaligned length; we round 9472 * up the extent size and set i_size to the unaligned end. 9473 */ 9474 if (start + encoded->len < inode->vfs_inode.i_size && 9475 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9476 return -EINVAL; 9477 9478 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9479 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9480 return -EINVAL; 9481 9482 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9483 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9484 end = start + num_bytes - 1; 9485 9486 /* 9487 * If the extent cannot be inline, the compressed data on disk must be 9488 * sector-aligned. For convenience, we extend it with zeroes if it 9489 * isn't. 9490 */ 9491 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9492 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9493 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 9494 if (!folios) 9495 return -ENOMEM; 9496 for (i = 0; i < nr_folios; i++) { 9497 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9498 char *kaddr; 9499 9500 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9501 if (!folios[i]) { 9502 ret = -ENOMEM; 9503 goto out_folios; 9504 } 9505 kaddr = kmap_local_folio(folios[i], 0); 9506 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9507 kunmap_local(kaddr); 9508 ret = -EFAULT; 9509 goto out_folios; 9510 } 9511 if (bytes < PAGE_SIZE) 9512 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9513 kunmap_local(kaddr); 9514 } 9515 9516 for (;;) { 9517 struct btrfs_ordered_extent *ordered; 9518 9519 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9520 if (ret) 9521 goto out_folios; 9522 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9523 start >> PAGE_SHIFT, 9524 end >> PAGE_SHIFT); 9525 if (ret) 9526 goto out_folios; 9527 lock_extent(io_tree, start, end, &cached_state); 9528 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9529 if (!ordered && 9530 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9531 break; 9532 if (ordered) 9533 btrfs_put_ordered_extent(ordered); 9534 unlock_extent(io_tree, start, end, &cached_state); 9535 cond_resched(); 9536 } 9537 9538 /* 9539 * We don't use the higher-level delalloc space functions because our 9540 * num_bytes and disk_num_bytes are different. 9541 */ 9542 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9543 if (ret) 9544 goto out_unlock; 9545 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9546 if (ret) 9547 goto out_free_data_space; 9548 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9549 false); 9550 if (ret) 9551 goto out_qgroup_free_data; 9552 9553 /* Try an inline extent first. */ 9554 if (encoded->unencoded_len == encoded->len && 9555 encoded->unencoded_offset == 0 && 9556 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9557 ret = __cow_file_range_inline(inode, start, encoded->len, 9558 orig_count, compression, folios[0], 9559 true); 9560 if (ret <= 0) { 9561 if (ret == 0) 9562 ret = orig_count; 9563 goto out_delalloc_release; 9564 } 9565 } 9566 9567 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9568 disk_num_bytes, 0, 0, &ins, 1, 1); 9569 if (ret) 9570 goto out_delalloc_release; 9571 extent_reserved = true; 9572 9573 file_extent.disk_bytenr = ins.objectid; 9574 file_extent.disk_num_bytes = ins.offset; 9575 file_extent.num_bytes = num_bytes; 9576 file_extent.ram_bytes = ram_bytes; 9577 file_extent.offset = encoded->unencoded_offset; 9578 file_extent.compression = compression; 9579 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9580 if (IS_ERR(em)) { 9581 ret = PTR_ERR(em); 9582 goto out_free_reserved; 9583 } 9584 free_extent_map(em); 9585 9586 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9587 (1 << BTRFS_ORDERED_ENCODED) | 9588 (1 << BTRFS_ORDERED_COMPRESSED)); 9589 if (IS_ERR(ordered)) { 9590 btrfs_drop_extent_map_range(inode, start, end, false); 9591 ret = PTR_ERR(ordered); 9592 goto out_free_reserved; 9593 } 9594 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9595 9596 if (start + encoded->len > inode->vfs_inode.i_size) 9597 i_size_write(&inode->vfs_inode, start + encoded->len); 9598 9599 unlock_extent(io_tree, start, end, &cached_state); 9600 9601 btrfs_delalloc_release_extents(inode, num_bytes); 9602 9603 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9604 ret = orig_count; 9605 goto out; 9606 9607 out_free_reserved: 9608 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9609 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9610 out_delalloc_release: 9611 btrfs_delalloc_release_extents(inode, num_bytes); 9612 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9613 out_qgroup_free_data: 9614 if (ret < 0) 9615 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9616 out_free_data_space: 9617 /* 9618 * If btrfs_reserve_extent() succeeded, then we already decremented 9619 * bytes_may_use. 9620 */ 9621 if (!extent_reserved) 9622 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9623 out_unlock: 9624 unlock_extent(io_tree, start, end, &cached_state); 9625 out_folios: 9626 for (i = 0; i < nr_folios; i++) { 9627 if (folios[i]) 9628 folio_put(folios[i]); 9629 } 9630 kvfree(folios); 9631 out: 9632 if (ret >= 0) 9633 iocb->ki_pos += encoded->len; 9634 return ret; 9635 } 9636 9637 #ifdef CONFIG_SWAP 9638 /* 9639 * Add an entry indicating a block group or device which is pinned by a 9640 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9641 * negative errno on failure. 9642 */ 9643 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9644 bool is_block_group) 9645 { 9646 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9647 struct btrfs_swapfile_pin *sp, *entry; 9648 struct rb_node **p; 9649 struct rb_node *parent = NULL; 9650 9651 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9652 if (!sp) 9653 return -ENOMEM; 9654 sp->ptr = ptr; 9655 sp->inode = inode; 9656 sp->is_block_group = is_block_group; 9657 sp->bg_extent_count = 1; 9658 9659 spin_lock(&fs_info->swapfile_pins_lock); 9660 p = &fs_info->swapfile_pins.rb_node; 9661 while (*p) { 9662 parent = *p; 9663 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9664 if (sp->ptr < entry->ptr || 9665 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9666 p = &(*p)->rb_left; 9667 } else if (sp->ptr > entry->ptr || 9668 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9669 p = &(*p)->rb_right; 9670 } else { 9671 if (is_block_group) 9672 entry->bg_extent_count++; 9673 spin_unlock(&fs_info->swapfile_pins_lock); 9674 kfree(sp); 9675 return 1; 9676 } 9677 } 9678 rb_link_node(&sp->node, parent, p); 9679 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9680 spin_unlock(&fs_info->swapfile_pins_lock); 9681 return 0; 9682 } 9683 9684 /* Free all of the entries pinned by this swapfile. */ 9685 static void btrfs_free_swapfile_pins(struct inode *inode) 9686 { 9687 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9688 struct btrfs_swapfile_pin *sp; 9689 struct rb_node *node, *next; 9690 9691 spin_lock(&fs_info->swapfile_pins_lock); 9692 node = rb_first(&fs_info->swapfile_pins); 9693 while (node) { 9694 next = rb_next(node); 9695 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9696 if (sp->inode == inode) { 9697 rb_erase(&sp->node, &fs_info->swapfile_pins); 9698 if (sp->is_block_group) { 9699 btrfs_dec_block_group_swap_extents(sp->ptr, 9700 sp->bg_extent_count); 9701 btrfs_put_block_group(sp->ptr); 9702 } 9703 kfree(sp); 9704 } 9705 node = next; 9706 } 9707 spin_unlock(&fs_info->swapfile_pins_lock); 9708 } 9709 9710 struct btrfs_swap_info { 9711 u64 start; 9712 u64 block_start; 9713 u64 block_len; 9714 u64 lowest_ppage; 9715 u64 highest_ppage; 9716 unsigned long nr_pages; 9717 int nr_extents; 9718 }; 9719 9720 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9721 struct btrfs_swap_info *bsi) 9722 { 9723 unsigned long nr_pages; 9724 unsigned long max_pages; 9725 u64 first_ppage, first_ppage_reported, next_ppage; 9726 int ret; 9727 9728 /* 9729 * Our swapfile may have had its size extended after the swap header was 9730 * written. In that case activating the swapfile should not go beyond 9731 * the max size set in the swap header. 9732 */ 9733 if (bsi->nr_pages >= sis->max) 9734 return 0; 9735 9736 max_pages = sis->max - bsi->nr_pages; 9737 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9738 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9739 9740 if (first_ppage >= next_ppage) 9741 return 0; 9742 nr_pages = next_ppage - first_ppage; 9743 nr_pages = min(nr_pages, max_pages); 9744 9745 first_ppage_reported = first_ppage; 9746 if (bsi->start == 0) 9747 first_ppage_reported++; 9748 if (bsi->lowest_ppage > first_ppage_reported) 9749 bsi->lowest_ppage = first_ppage_reported; 9750 if (bsi->highest_ppage < (next_ppage - 1)) 9751 bsi->highest_ppage = next_ppage - 1; 9752 9753 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9754 if (ret < 0) 9755 return ret; 9756 bsi->nr_extents += ret; 9757 bsi->nr_pages += nr_pages; 9758 return 0; 9759 } 9760 9761 static void btrfs_swap_deactivate(struct file *file) 9762 { 9763 struct inode *inode = file_inode(file); 9764 9765 btrfs_free_swapfile_pins(inode); 9766 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9767 } 9768 9769 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9770 sector_t *span) 9771 { 9772 struct inode *inode = file_inode(file); 9773 struct btrfs_root *root = BTRFS_I(inode)->root; 9774 struct btrfs_fs_info *fs_info = root->fs_info; 9775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9776 struct extent_state *cached_state = NULL; 9777 struct extent_map *em = NULL; 9778 struct btrfs_chunk_map *map = NULL; 9779 struct btrfs_device *device = NULL; 9780 struct btrfs_swap_info bsi = { 9781 .lowest_ppage = (sector_t)-1ULL, 9782 }; 9783 int ret = 0; 9784 u64 isize; 9785 u64 start; 9786 9787 /* 9788 * If the swap file was just created, make sure delalloc is done. If the 9789 * file changes again after this, the user is doing something stupid and 9790 * we don't really care. 9791 */ 9792 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9793 if (ret) 9794 return ret; 9795 9796 /* 9797 * The inode is locked, so these flags won't change after we check them. 9798 */ 9799 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9800 btrfs_warn(fs_info, "swapfile must not be compressed"); 9801 return -EINVAL; 9802 } 9803 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9804 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9805 return -EINVAL; 9806 } 9807 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9808 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9809 return -EINVAL; 9810 } 9811 9812 /* 9813 * Balance or device remove/replace/resize can move stuff around from 9814 * under us. The exclop protection makes sure they aren't running/won't 9815 * run concurrently while we are mapping the swap extents, and 9816 * fs_info->swapfile_pins prevents them from running while the swap 9817 * file is active and moving the extents. Note that this also prevents 9818 * a concurrent device add which isn't actually necessary, but it's not 9819 * really worth the trouble to allow it. 9820 */ 9821 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9822 btrfs_warn(fs_info, 9823 "cannot activate swapfile while exclusive operation is running"); 9824 return -EBUSY; 9825 } 9826 9827 /* 9828 * Prevent snapshot creation while we are activating the swap file. 9829 * We do not want to race with snapshot creation. If snapshot creation 9830 * already started before we bumped nr_swapfiles from 0 to 1 and 9831 * completes before the first write into the swap file after it is 9832 * activated, than that write would fallback to COW. 9833 */ 9834 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9835 btrfs_exclop_finish(fs_info); 9836 btrfs_warn(fs_info, 9837 "cannot activate swapfile because snapshot creation is in progress"); 9838 return -EINVAL; 9839 } 9840 /* 9841 * Snapshots can create extents which require COW even if NODATACOW is 9842 * set. We use this counter to prevent snapshots. We must increment it 9843 * before walking the extents because we don't want a concurrent 9844 * snapshot to run after we've already checked the extents. 9845 * 9846 * It is possible that subvolume is marked for deletion but still not 9847 * removed yet. To prevent this race, we check the root status before 9848 * activating the swapfile. 9849 */ 9850 spin_lock(&root->root_item_lock); 9851 if (btrfs_root_dead(root)) { 9852 spin_unlock(&root->root_item_lock); 9853 9854 btrfs_exclop_finish(fs_info); 9855 btrfs_warn(fs_info, 9856 "cannot activate swapfile because subvolume %llu is being deleted", 9857 btrfs_root_id(root)); 9858 return -EPERM; 9859 } 9860 atomic_inc(&root->nr_swapfiles); 9861 spin_unlock(&root->root_item_lock); 9862 9863 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9864 9865 lock_extent(io_tree, 0, isize - 1, &cached_state); 9866 start = 0; 9867 while (start < isize) { 9868 u64 logical_block_start, physical_block_start; 9869 struct btrfs_block_group *bg; 9870 u64 len = isize - start; 9871 9872 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9873 if (IS_ERR(em)) { 9874 ret = PTR_ERR(em); 9875 goto out; 9876 } 9877 9878 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9879 btrfs_warn(fs_info, "swapfile must not have holes"); 9880 ret = -EINVAL; 9881 goto out; 9882 } 9883 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9884 /* 9885 * It's unlikely we'll ever actually find ourselves 9886 * here, as a file small enough to fit inline won't be 9887 * big enough to store more than the swap header, but in 9888 * case something changes in the future, let's catch it 9889 * here rather than later. 9890 */ 9891 btrfs_warn(fs_info, "swapfile must not be inline"); 9892 ret = -EINVAL; 9893 goto out; 9894 } 9895 if (extent_map_is_compressed(em)) { 9896 btrfs_warn(fs_info, "swapfile must not be compressed"); 9897 ret = -EINVAL; 9898 goto out; 9899 } 9900 9901 logical_block_start = extent_map_block_start(em) + (start - em->start); 9902 len = min(len, em->len - (start - em->start)); 9903 free_extent_map(em); 9904 em = NULL; 9905 9906 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9907 if (ret < 0) { 9908 goto out; 9909 } else if (ret) { 9910 ret = 0; 9911 } else { 9912 btrfs_warn(fs_info, 9913 "swapfile must not be copy-on-write"); 9914 ret = -EINVAL; 9915 goto out; 9916 } 9917 9918 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9919 if (IS_ERR(map)) { 9920 ret = PTR_ERR(map); 9921 goto out; 9922 } 9923 9924 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9925 btrfs_warn(fs_info, 9926 "swapfile must have single data profile"); 9927 ret = -EINVAL; 9928 goto out; 9929 } 9930 9931 if (device == NULL) { 9932 device = map->stripes[0].dev; 9933 ret = btrfs_add_swapfile_pin(inode, device, false); 9934 if (ret == 1) 9935 ret = 0; 9936 else if (ret) 9937 goto out; 9938 } else if (device != map->stripes[0].dev) { 9939 btrfs_warn(fs_info, "swapfile must be on one device"); 9940 ret = -EINVAL; 9941 goto out; 9942 } 9943 9944 physical_block_start = (map->stripes[0].physical + 9945 (logical_block_start - map->start)); 9946 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9947 btrfs_free_chunk_map(map); 9948 map = NULL; 9949 9950 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9951 if (!bg) { 9952 btrfs_warn(fs_info, 9953 "could not find block group containing swapfile"); 9954 ret = -EINVAL; 9955 goto out; 9956 } 9957 9958 if (!btrfs_inc_block_group_swap_extents(bg)) { 9959 btrfs_warn(fs_info, 9960 "block group for swapfile at %llu is read-only%s", 9961 bg->start, 9962 atomic_read(&fs_info->scrubs_running) ? 9963 " (scrub running)" : ""); 9964 btrfs_put_block_group(bg); 9965 ret = -EINVAL; 9966 goto out; 9967 } 9968 9969 ret = btrfs_add_swapfile_pin(inode, bg, true); 9970 if (ret) { 9971 btrfs_put_block_group(bg); 9972 if (ret == 1) 9973 ret = 0; 9974 else 9975 goto out; 9976 } 9977 9978 if (bsi.block_len && 9979 bsi.block_start + bsi.block_len == physical_block_start) { 9980 bsi.block_len += len; 9981 } else { 9982 if (bsi.block_len) { 9983 ret = btrfs_add_swap_extent(sis, &bsi); 9984 if (ret) 9985 goto out; 9986 } 9987 bsi.start = start; 9988 bsi.block_start = physical_block_start; 9989 bsi.block_len = len; 9990 } 9991 9992 start += len; 9993 } 9994 9995 if (bsi.block_len) 9996 ret = btrfs_add_swap_extent(sis, &bsi); 9997 9998 out: 9999 if (!IS_ERR_OR_NULL(em)) 10000 free_extent_map(em); 10001 if (!IS_ERR_OR_NULL(map)) 10002 btrfs_free_chunk_map(map); 10003 10004 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10005 10006 if (ret) 10007 btrfs_swap_deactivate(file); 10008 10009 btrfs_drew_write_unlock(&root->snapshot_lock); 10010 10011 btrfs_exclop_finish(fs_info); 10012 10013 if (ret) 10014 return ret; 10015 10016 if (device) 10017 sis->bdev = device->bdev; 10018 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10019 sis->max = bsi.nr_pages; 10020 sis->pages = bsi.nr_pages - 1; 10021 sis->highest_bit = bsi.nr_pages - 1; 10022 return bsi.nr_extents; 10023 } 10024 #else 10025 static void btrfs_swap_deactivate(struct file *file) 10026 { 10027 } 10028 10029 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10030 sector_t *span) 10031 { 10032 return -EOPNOTSUPP; 10033 } 10034 #endif 10035 10036 /* 10037 * Update the number of bytes used in the VFS' inode. When we replace extents in 10038 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10039 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10040 * always get a correct value. 10041 */ 10042 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10043 const u64 add_bytes, 10044 const u64 del_bytes) 10045 { 10046 if (add_bytes == del_bytes) 10047 return; 10048 10049 spin_lock(&inode->lock); 10050 if (del_bytes > 0) 10051 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10052 if (add_bytes > 0) 10053 inode_add_bytes(&inode->vfs_inode, add_bytes); 10054 spin_unlock(&inode->lock); 10055 } 10056 10057 /* 10058 * Verify that there are no ordered extents for a given file range. 10059 * 10060 * @inode: The target inode. 10061 * @start: Start offset of the file range, should be sector size aligned. 10062 * @end: End offset (inclusive) of the file range, its value +1 should be 10063 * sector size aligned. 10064 * 10065 * This should typically be used for cases where we locked an inode's VFS lock in 10066 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10067 * we have flushed all delalloc in the range, we have waited for all ordered 10068 * extents in the range to complete and finally we have locked the file range in 10069 * the inode's io_tree. 10070 */ 10071 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10072 { 10073 struct btrfs_root *root = inode->root; 10074 struct btrfs_ordered_extent *ordered; 10075 10076 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10077 return; 10078 10079 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10080 if (ordered) { 10081 btrfs_err(root->fs_info, 10082 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10083 start, end, btrfs_ino(inode), btrfs_root_id(root), 10084 ordered->file_offset, 10085 ordered->file_offset + ordered->num_bytes - 1); 10086 btrfs_put_ordered_extent(ordered); 10087 } 10088 10089 ASSERT(ordered == NULL); 10090 } 10091 10092 /* 10093 * Find the first inode with a minimum number. 10094 * 10095 * @root: The root to search for. 10096 * @min_ino: The minimum inode number. 10097 * 10098 * Find the first inode in the @root with a number >= @min_ino and return it. 10099 * Returns NULL if no such inode found. 10100 */ 10101 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10102 { 10103 struct btrfs_inode *inode; 10104 unsigned long from = min_ino; 10105 10106 xa_lock(&root->inodes); 10107 while (true) { 10108 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10109 if (!inode) 10110 break; 10111 if (igrab(&inode->vfs_inode)) 10112 break; 10113 10114 from = btrfs_ino(inode) + 1; 10115 cond_resched_lock(&root->inodes.xa_lock); 10116 } 10117 xa_unlock(&root->inodes); 10118 10119 return inode; 10120 } 10121 10122 static const struct inode_operations btrfs_dir_inode_operations = { 10123 .getattr = btrfs_getattr, 10124 .lookup = btrfs_lookup, 10125 .create = btrfs_create, 10126 .unlink = btrfs_unlink, 10127 .link = btrfs_link, 10128 .mkdir = btrfs_mkdir, 10129 .rmdir = btrfs_rmdir, 10130 .rename = btrfs_rename2, 10131 .symlink = btrfs_symlink, 10132 .setattr = btrfs_setattr, 10133 .mknod = btrfs_mknod, 10134 .listxattr = btrfs_listxattr, 10135 .permission = btrfs_permission, 10136 .get_inode_acl = btrfs_get_acl, 10137 .set_acl = btrfs_set_acl, 10138 .update_time = btrfs_update_time, 10139 .tmpfile = btrfs_tmpfile, 10140 .fileattr_get = btrfs_fileattr_get, 10141 .fileattr_set = btrfs_fileattr_set, 10142 }; 10143 10144 static const struct file_operations btrfs_dir_file_operations = { 10145 .llseek = btrfs_dir_llseek, 10146 .read = generic_read_dir, 10147 .iterate_shared = btrfs_real_readdir, 10148 .open = btrfs_opendir, 10149 .unlocked_ioctl = btrfs_ioctl, 10150 #ifdef CONFIG_COMPAT 10151 .compat_ioctl = btrfs_compat_ioctl, 10152 #endif 10153 .release = btrfs_release_file, 10154 .fsync = btrfs_sync_file, 10155 }; 10156 10157 /* 10158 * btrfs doesn't support the bmap operation because swapfiles 10159 * use bmap to make a mapping of extents in the file. They assume 10160 * these extents won't change over the life of the file and they 10161 * use the bmap result to do IO directly to the drive. 10162 * 10163 * the btrfs bmap call would return logical addresses that aren't 10164 * suitable for IO and they also will change frequently as COW 10165 * operations happen. So, swapfile + btrfs == corruption. 10166 * 10167 * For now we're avoiding this by dropping bmap. 10168 */ 10169 static const struct address_space_operations btrfs_aops = { 10170 .read_folio = btrfs_read_folio, 10171 .writepages = btrfs_writepages, 10172 .readahead = btrfs_readahead, 10173 .invalidate_folio = btrfs_invalidate_folio, 10174 .launder_folio = btrfs_launder_folio, 10175 .release_folio = btrfs_release_folio, 10176 .migrate_folio = btrfs_migrate_folio, 10177 .dirty_folio = filemap_dirty_folio, 10178 .error_remove_folio = generic_error_remove_folio, 10179 .swap_activate = btrfs_swap_activate, 10180 .swap_deactivate = btrfs_swap_deactivate, 10181 }; 10182 10183 static const struct inode_operations btrfs_file_inode_operations = { 10184 .getattr = btrfs_getattr, 10185 .setattr = btrfs_setattr, 10186 .listxattr = btrfs_listxattr, 10187 .permission = btrfs_permission, 10188 .fiemap = btrfs_fiemap, 10189 .get_inode_acl = btrfs_get_acl, 10190 .set_acl = btrfs_set_acl, 10191 .update_time = btrfs_update_time, 10192 .fileattr_get = btrfs_fileattr_get, 10193 .fileattr_set = btrfs_fileattr_set, 10194 }; 10195 static const struct inode_operations btrfs_special_inode_operations = { 10196 .getattr = btrfs_getattr, 10197 .setattr = btrfs_setattr, 10198 .permission = btrfs_permission, 10199 .listxattr = btrfs_listxattr, 10200 .get_inode_acl = btrfs_get_acl, 10201 .set_acl = btrfs_set_acl, 10202 .update_time = btrfs_update_time, 10203 }; 10204 static const struct inode_operations btrfs_symlink_inode_operations = { 10205 .get_link = page_get_link, 10206 .getattr = btrfs_getattr, 10207 .setattr = btrfs_setattr, 10208 .permission = btrfs_permission, 10209 .listxattr = btrfs_listxattr, 10210 .update_time = btrfs_update_time, 10211 }; 10212 10213 const struct dentry_operations btrfs_dentry_operations = { 10214 .d_delete = btrfs_dentry_delete, 10215 }; 10216