1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 unsigned long index = offset >> PAGE_SHIFT; 399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int err; 427 428 if (args->default_acl) { 429 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (err) 432 return err; 433 } 434 if (args->acl) { 435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (err) 437 return err; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.type = BTRFS_EXTENT_DATA_KEY; 493 key.offset = 0; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* Inline extents are limited to sectorsize. */ 570 if (size > fs_info->sectorsize) 571 return false; 572 573 /* We do not allow a non-compressed extent to be as large as block size. */ 574 if (data_len >= fs_info->sectorsize) 575 return false; 576 577 /* We cannot exceed the maximum inline data size. */ 578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 579 return false; 580 581 /* We cannot exceed the user specified max_inline size. */ 582 if (data_len > fs_info->max_inline) 583 return false; 584 585 /* Inline extents must be the entirety of the file. */ 586 if (size < i_size_read(&inode->vfs_inode)) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * conditionally insert an inline extent into the file. This 594 * does the checks required to make sure the data is small enough 595 * to fit as an inline extent. 596 * 597 * If being used directly, you must have already checked we're allowed to cow 598 * the range by getting true from can_cow_file_range_inline(). 599 */ 600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 601 u64 size, size_t compressed_size, 602 int compress_type, 603 struct folio *compressed_folio, 604 bool update_i_size) 605 { 606 struct btrfs_drop_extents_args drop_args = { 0 }; 607 struct btrfs_root *root = inode->root; 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_trans_handle *trans; 610 u64 data_len = (compressed_size ?: size); 611 int ret; 612 struct btrfs_path *path; 613 614 path = btrfs_alloc_path(); 615 if (!path) 616 return -ENOMEM; 617 618 trans = btrfs_join_transaction(root); 619 if (IS_ERR(trans)) { 620 btrfs_free_path(path); 621 return PTR_ERR(trans); 622 } 623 trans->block_rsv = &inode->block_rsv; 624 625 drop_args.path = path; 626 drop_args.start = 0; 627 drop_args.end = fs_info->sectorsize; 628 drop_args.drop_cache = true; 629 drop_args.replace_extent = true; 630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 631 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto out; 635 } 636 637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 638 size, compressed_size, compress_type, 639 compressed_folio, update_i_size); 640 if (ret && ret != -ENOSPC) { 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } else if (ret == -ENOSPC) { 644 ret = 1; 645 goto out; 646 } 647 648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 649 ret = btrfs_update_inode(trans, inode); 650 if (ret && ret != -ENOSPC) { 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } else if (ret == -ENOSPC) { 654 ret = 1; 655 goto out; 656 } 657 658 btrfs_set_inode_full_sync(inode); 659 out: 660 /* 661 * Don't forget to free the reserved space, as for inlined extent 662 * it won't count as data extent, free them directly here. 663 * And at reserve time, it's always aligned to page size, so 664 * just free one page here. 665 */ 666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 667 btrfs_free_path(path); 668 btrfs_end_transaction(trans); 669 return ret; 670 } 671 672 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 673 struct folio *locked_folio, 674 u64 offset, u64 end, 675 size_t compressed_size, 676 int compress_type, 677 struct folio *compressed_folio, 678 bool update_i_size) 679 { 680 struct extent_state *cached = NULL; 681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 684 int ret; 685 686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 687 return 1; 688 689 lock_extent(&inode->io_tree, offset, end, &cached); 690 ret = __cow_file_range_inline(inode, size, compressed_size, 691 compress_type, compressed_folio, 692 update_i_size); 693 if (ret > 0) { 694 unlock_extent(&inode->io_tree, offset, end, &cached); 695 return ret; 696 } 697 698 /* 699 * In the successful case (ret == 0 here), cow_file_range will return 1. 700 * 701 * Quite a bit further up the callstack in extent_writepage(), ret == 1 702 * is treated as a short circuited success and does not unlock the folio, 703 * so we must do it here. 704 * 705 * In the failure case, the locked_folio does get unlocked by 706 * btrfs_folio_end_all_writers, which asserts that it is still locked 707 * at that point, so we must *not* unlock it here. 708 * 709 * The other two callsites in compress_file_range do not have a 710 * locked_folio, so they are not relevant to this logic. 711 */ 712 if (ret == 0) 713 locked_folio = NULL; 714 715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 716 clear_flags, PAGE_UNLOCK | 717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 718 return ret; 719 } 720 721 struct async_extent { 722 u64 start; 723 u64 ram_size; 724 u64 compressed_size; 725 struct folio **folios; 726 unsigned long nr_folios; 727 int compress_type; 728 struct list_head list; 729 }; 730 731 struct async_chunk { 732 struct btrfs_inode *inode; 733 struct folio *locked_folio; 734 u64 start; 735 u64 end; 736 blk_opf_t write_flags; 737 struct list_head extents; 738 struct cgroup_subsys_state *blkcg_css; 739 struct btrfs_work work; 740 struct async_cow *async_cow; 741 }; 742 743 struct async_cow { 744 atomic_t num_chunks; 745 struct async_chunk chunks[]; 746 }; 747 748 static noinline int add_async_extent(struct async_chunk *cow, 749 u64 start, u64 ram_size, 750 u64 compressed_size, 751 struct folio **folios, 752 unsigned long nr_folios, 753 int compress_type) 754 { 755 struct async_extent *async_extent; 756 757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 758 if (!async_extent) 759 return -ENOMEM; 760 async_extent->start = start; 761 async_extent->ram_size = ram_size; 762 async_extent->compressed_size = compressed_size; 763 async_extent->folios = folios; 764 async_extent->nr_folios = nr_folios; 765 async_extent->compress_type = compress_type; 766 list_add_tail(&async_extent->list, &cow->extents); 767 return 0; 768 } 769 770 /* 771 * Check if the inode needs to be submitted to compression, based on mount 772 * options, defragmentation, properties or heuristics. 773 */ 774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 775 u64 end) 776 { 777 struct btrfs_fs_info *fs_info = inode->root->fs_info; 778 779 if (!btrfs_inode_can_compress(inode)) { 780 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 781 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 782 btrfs_ino(inode)); 783 return 0; 784 } 785 /* 786 * Only enable sector perfect compression for experimental builds. 787 * 788 * This is a big feature change for subpage cases, and can hit 789 * different corner cases, so only limit this feature for 790 * experimental build for now. 791 * 792 * ETA for moving this out of experimental builds is 6.15. 793 */ 794 if (fs_info->sectorsize < PAGE_SIZE && 795 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 796 if (!PAGE_ALIGNED(start) || 797 !PAGE_ALIGNED(end + 1)) 798 return 0; 799 } 800 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* defrag ioctl */ 805 if (inode->defrag_compress) 806 return 1; 807 /* bad compression ratios */ 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 809 return 0; 810 if (btrfs_test_opt(fs_info, COMPRESS) || 811 inode->flags & BTRFS_INODE_COMPRESS || 812 inode->prop_compress) 813 return btrfs_compress_heuristic(inode, start, end); 814 return 0; 815 } 816 817 static inline void inode_should_defrag(struct btrfs_inode *inode, 818 u64 start, u64 end, u64 num_bytes, u32 small_write) 819 { 820 /* If this is a small write inside eof, kick off a defrag */ 821 if (num_bytes < small_write && 822 (start > 0 || end + 1 < inode->disk_i_size)) 823 btrfs_add_inode_defrag(inode, small_write); 824 } 825 826 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 827 { 828 unsigned long end_index = end >> PAGE_SHIFT; 829 struct folio *folio; 830 int ret = 0; 831 832 for (unsigned long index = start >> PAGE_SHIFT; 833 index <= end_index; index++) { 834 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 835 if (IS_ERR(folio)) { 836 if (!ret) 837 ret = PTR_ERR(folio); 838 continue; 839 } 840 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 841 end + 1 - start); 842 folio_put(folio); 843 } 844 return ret; 845 } 846 847 /* 848 * Work queue call back to started compression on a file and pages. 849 * 850 * This is done inside an ordered work queue, and the compression is spread 851 * across many cpus. The actual IO submission is step two, and the ordered work 852 * queue takes care of making sure that happens in the same order things were 853 * put onto the queue by writepages and friends. 854 * 855 * If this code finds it can't get good compression, it puts an entry onto the 856 * work queue to write the uncompressed bytes. This makes sure that both 857 * compressed inodes and uncompressed inodes are written in the same order that 858 * the flusher thread sent them down. 859 */ 860 static void compress_file_range(struct btrfs_work *work) 861 { 862 struct async_chunk *async_chunk = 863 container_of(work, struct async_chunk, work); 864 struct btrfs_inode *inode = async_chunk->inode; 865 struct btrfs_fs_info *fs_info = inode->root->fs_info; 866 struct address_space *mapping = inode->vfs_inode.i_mapping; 867 u64 blocksize = fs_info->sectorsize; 868 u64 start = async_chunk->start; 869 u64 end = async_chunk->end; 870 u64 actual_end; 871 u64 i_size; 872 int ret = 0; 873 struct folio **folios; 874 unsigned long nr_folios; 875 unsigned long total_compressed = 0; 876 unsigned long total_in = 0; 877 unsigned int poff; 878 int i; 879 int compress_type = fs_info->compress_type; 880 int compress_level = fs_info->compress_level; 881 882 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 883 884 /* 885 * We need to call clear_page_dirty_for_io on each page in the range. 886 * Otherwise applications with the file mmap'd can wander in and change 887 * the page contents while we are compressing them. 888 */ 889 ret = extent_range_clear_dirty_for_io(inode, start, end); 890 891 /* 892 * All the folios should have been locked thus no failure. 893 * 894 * And even if some folios are missing, btrfs_compress_folios() 895 * would handle them correctly, so here just do an ASSERT() check for 896 * early logic errors. 897 */ 898 ASSERT(ret == 0); 899 900 /* 901 * We need to save i_size before now because it could change in between 902 * us evaluating the size and assigning it. This is because we lock and 903 * unlock the page in truncate and fallocate, and then modify the i_size 904 * later on. 905 * 906 * The barriers are to emulate READ_ONCE, remove that once i_size_read 907 * does that for us. 908 */ 909 barrier(); 910 i_size = i_size_read(&inode->vfs_inode); 911 barrier(); 912 actual_end = min_t(u64, i_size, end + 1); 913 again: 914 folios = NULL; 915 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 916 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 917 918 /* 919 * we don't want to send crud past the end of i_size through 920 * compression, that's just a waste of CPU time. So, if the 921 * end of the file is before the start of our current 922 * requested range of bytes, we bail out to the uncompressed 923 * cleanup code that can deal with all of this. 924 * 925 * It isn't really the fastest way to fix things, but this is a 926 * very uncommon corner. 927 */ 928 if (actual_end <= start) 929 goto cleanup_and_bail_uncompressed; 930 931 total_compressed = actual_end - start; 932 933 /* 934 * Skip compression for a small file range(<=blocksize) that 935 * isn't an inline extent, since it doesn't save disk space at all. 936 */ 937 if (total_compressed <= blocksize && 938 (start > 0 || end + 1 < inode->disk_i_size)) 939 goto cleanup_and_bail_uncompressed; 940 941 total_compressed = min_t(unsigned long, total_compressed, 942 BTRFS_MAX_UNCOMPRESSED); 943 total_in = 0; 944 ret = 0; 945 946 /* 947 * We do compression for mount -o compress and when the inode has not 948 * been flagged as NOCOMPRESS. This flag can change at any time if we 949 * discover bad compression ratios. 950 */ 951 if (!inode_need_compress(inode, start, end)) 952 goto cleanup_and_bail_uncompressed; 953 954 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 955 if (!folios) { 956 /* 957 * Memory allocation failure is not a fatal error, we can fall 958 * back to uncompressed code. 959 */ 960 goto cleanup_and_bail_uncompressed; 961 } 962 963 if (inode->defrag_compress) { 964 compress_type = inode->defrag_compress; 965 compress_level = inode->defrag_compress_level; 966 } else if (inode->prop_compress) { 967 compress_type = inode->prop_compress; 968 } 969 970 /* Compression level is applied here. */ 971 ret = btrfs_compress_folios(compress_type, compress_level, 972 mapping, start, folios, &nr_folios, &total_in, 973 &total_compressed); 974 if (ret) 975 goto mark_incompressible; 976 977 /* 978 * Zero the tail end of the last page, as we might be sending it down 979 * to disk. 980 */ 981 poff = offset_in_page(total_compressed); 982 if (poff) 983 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 984 985 /* 986 * Try to create an inline extent. 987 * 988 * If we didn't compress the entire range, try to create an uncompressed 989 * inline extent, else a compressed one. 990 * 991 * Check cow_file_range() for why we don't even try to create inline 992 * extent for the subpage case. 993 */ 994 if (total_in < actual_end) 995 ret = cow_file_range_inline(inode, NULL, start, end, 0, 996 BTRFS_COMPRESS_NONE, NULL, false); 997 else 998 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 999 compress_type, folios[0], false); 1000 if (ret <= 0) { 1001 if (ret < 0) 1002 mapping_set_error(mapping, -EIO); 1003 goto free_pages; 1004 } 1005 1006 /* 1007 * We aren't doing an inline extent. Round the compressed size up to a 1008 * block size boundary so the allocator does sane things. 1009 */ 1010 total_compressed = ALIGN(total_compressed, blocksize); 1011 1012 /* 1013 * One last check to make sure the compression is really a win, compare 1014 * the page count read with the blocks on disk, compression must free at 1015 * least one sector. 1016 */ 1017 total_in = round_up(total_in, fs_info->sectorsize); 1018 if (total_compressed + blocksize > total_in) 1019 goto mark_incompressible; 1020 1021 /* 1022 * The async work queues will take care of doing actual allocation on 1023 * disk for these compressed pages, and will submit the bios. 1024 */ 1025 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1026 nr_folios, compress_type); 1027 BUG_ON(ret); 1028 if (start + total_in < end) { 1029 start += total_in; 1030 cond_resched(); 1031 goto again; 1032 } 1033 return; 1034 1035 mark_incompressible: 1036 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1037 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1038 cleanup_and_bail_uncompressed: 1039 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1040 BTRFS_COMPRESS_NONE); 1041 BUG_ON(ret); 1042 free_pages: 1043 if (folios) { 1044 for (i = 0; i < nr_folios; i++) { 1045 WARN_ON(folios[i]->mapping); 1046 btrfs_free_compr_folio(folios[i]); 1047 } 1048 kfree(folios); 1049 } 1050 } 1051 1052 static void free_async_extent_pages(struct async_extent *async_extent) 1053 { 1054 int i; 1055 1056 if (!async_extent->folios) 1057 return; 1058 1059 for (i = 0; i < async_extent->nr_folios; i++) { 1060 WARN_ON(async_extent->folios[i]->mapping); 1061 btrfs_free_compr_folio(async_extent->folios[i]); 1062 } 1063 kfree(async_extent->folios); 1064 async_extent->nr_folios = 0; 1065 async_extent->folios = NULL; 1066 } 1067 1068 static void submit_uncompressed_range(struct btrfs_inode *inode, 1069 struct async_extent *async_extent, 1070 struct folio *locked_folio) 1071 { 1072 u64 start = async_extent->start; 1073 u64 end = async_extent->start + async_extent->ram_size - 1; 1074 int ret; 1075 struct writeback_control wbc = { 1076 .sync_mode = WB_SYNC_ALL, 1077 .range_start = start, 1078 .range_end = end, 1079 .no_cgroup_owner = 1, 1080 }; 1081 1082 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1083 ret = run_delalloc_cow(inode, locked_folio, start, end, 1084 &wbc, false); 1085 wbc_detach_inode(&wbc); 1086 if (ret < 0) { 1087 if (locked_folio) 1088 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1089 start, async_extent->ram_size); 1090 btrfs_err_rl(inode->root->fs_info, 1091 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1092 __func__, btrfs_root_id(inode->root), 1093 btrfs_ino(inode), start, async_extent->ram_size, ret); 1094 } 1095 } 1096 1097 static void submit_one_async_extent(struct async_chunk *async_chunk, 1098 struct async_extent *async_extent, 1099 u64 *alloc_hint) 1100 { 1101 struct btrfs_inode *inode = async_chunk->inode; 1102 struct extent_io_tree *io_tree = &inode->io_tree; 1103 struct btrfs_root *root = inode->root; 1104 struct btrfs_fs_info *fs_info = root->fs_info; 1105 struct btrfs_ordered_extent *ordered; 1106 struct btrfs_file_extent file_extent; 1107 struct btrfs_key ins; 1108 struct folio *locked_folio = NULL; 1109 struct extent_state *cached = NULL; 1110 struct extent_map *em; 1111 int ret = 0; 1112 u64 start = async_extent->start; 1113 u64 end = async_extent->start + async_extent->ram_size - 1; 1114 1115 if (async_chunk->blkcg_css) 1116 kthread_associate_blkcg(async_chunk->blkcg_css); 1117 1118 /* 1119 * If async_chunk->locked_folio is in the async_extent range, we need to 1120 * handle it. 1121 */ 1122 if (async_chunk->locked_folio) { 1123 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1124 u64 locked_folio_end = locked_folio_start + 1125 folio_size(async_chunk->locked_folio) - 1; 1126 1127 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1128 locked_folio = async_chunk->locked_folio; 1129 } 1130 1131 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1132 submit_uncompressed_range(inode, async_extent, locked_folio); 1133 goto done; 1134 } 1135 1136 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1137 async_extent->compressed_size, 1138 async_extent->compressed_size, 1139 0, *alloc_hint, &ins, 1, 1); 1140 if (ret) { 1141 /* 1142 * We can't reserve contiguous space for the compressed size. 1143 * Unlikely, but it's possible that we could have enough 1144 * non-contiguous space for the uncompressed size instead. So 1145 * fall back to uncompressed. 1146 */ 1147 submit_uncompressed_range(inode, async_extent, locked_folio); 1148 goto done; 1149 } 1150 1151 lock_extent(io_tree, start, end, &cached); 1152 1153 /* Here we're doing allocation and writeback of the compressed pages */ 1154 file_extent.disk_bytenr = ins.objectid; 1155 file_extent.disk_num_bytes = ins.offset; 1156 file_extent.ram_bytes = async_extent->ram_size; 1157 file_extent.num_bytes = async_extent->ram_size; 1158 file_extent.offset = 0; 1159 file_extent.compression = async_extent->compress_type; 1160 1161 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1162 if (IS_ERR(em)) { 1163 ret = PTR_ERR(em); 1164 goto out_free_reserve; 1165 } 1166 free_extent_map(em); 1167 1168 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1169 1 << BTRFS_ORDERED_COMPRESSED); 1170 if (IS_ERR(ordered)) { 1171 btrfs_drop_extent_map_range(inode, start, end, false); 1172 ret = PTR_ERR(ordered); 1173 goto out_free_reserve; 1174 } 1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1176 1177 /* Clear dirty, set writeback and unlock the pages. */ 1178 extent_clear_unlock_delalloc(inode, start, end, 1179 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1180 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1181 btrfs_submit_compressed_write(ordered, 1182 async_extent->folios, /* compressed_folios */ 1183 async_extent->nr_folios, 1184 async_chunk->write_flags, true); 1185 *alloc_hint = ins.objectid + ins.offset; 1186 done: 1187 if (async_chunk->blkcg_css) 1188 kthread_associate_blkcg(NULL); 1189 kfree(async_extent); 1190 return; 1191 1192 out_free_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1196 extent_clear_unlock_delalloc(inode, start, end, 1197 NULL, &cached, 1198 EXTENT_LOCKED | EXTENT_DELALLOC | 1199 EXTENT_DELALLOC_NEW | 1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1201 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1202 PAGE_END_WRITEBACK); 1203 free_async_extent_pages(async_extent); 1204 if (async_chunk->blkcg_css) 1205 kthread_associate_blkcg(NULL); 1206 btrfs_debug(fs_info, 1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1208 btrfs_root_id(root), btrfs_ino(inode), start, 1209 async_extent->ram_size, ret); 1210 kfree(async_extent); 1211 } 1212 1213 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1214 u64 num_bytes) 1215 { 1216 struct extent_map_tree *em_tree = &inode->extent_tree; 1217 struct extent_map *em; 1218 u64 alloc_hint = 0; 1219 1220 read_lock(&em_tree->lock); 1221 em = search_extent_mapping(em_tree, start, num_bytes); 1222 if (em) { 1223 /* 1224 * if block start isn't an actual block number then find the 1225 * first block in this inode and use that as a hint. If that 1226 * block is also bogus then just don't worry about it. 1227 */ 1228 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1229 free_extent_map(em); 1230 em = search_extent_mapping(em_tree, 0, 0); 1231 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1232 alloc_hint = extent_map_block_start(em); 1233 if (em) 1234 free_extent_map(em); 1235 } else { 1236 alloc_hint = extent_map_block_start(em); 1237 free_extent_map(em); 1238 } 1239 } 1240 read_unlock(&em_tree->lock); 1241 1242 return alloc_hint; 1243 } 1244 1245 /* 1246 * when extent_io.c finds a delayed allocation range in the file, 1247 * the call backs end up in this code. The basic idea is to 1248 * allocate extents on disk for the range, and create ordered data structs 1249 * in ram to track those extents. 1250 * 1251 * locked_folio is the folio that writepage had locked already. We use 1252 * it to make sure we don't do extra locks or unlocks. 1253 * 1254 * When this function fails, it unlocks all pages except @locked_folio. 1255 * 1256 * When this function successfully creates an inline extent, it returns 1 and 1257 * unlocks all pages including locked_folio and starts I/O on them. 1258 * (In reality inline extents are limited to a single page, so locked_folio is 1259 * the only page handled anyway). 1260 * 1261 * When this function succeed and creates a normal extent, the page locking 1262 * status depends on the passed in flags: 1263 * 1264 * - If @keep_locked is set, all pages are kept locked. 1265 * - Else all pages except for @locked_folio are unlocked. 1266 * 1267 * When a failure happens in the second or later iteration of the 1268 * while-loop, the ordered extents created in previous iterations are cleaned up. 1269 */ 1270 static noinline int cow_file_range(struct btrfs_inode *inode, 1271 struct folio *locked_folio, u64 start, 1272 u64 end, u64 *done_offset, 1273 bool keep_locked, bool no_inline) 1274 { 1275 struct btrfs_root *root = inode->root; 1276 struct btrfs_fs_info *fs_info = root->fs_info; 1277 struct extent_state *cached = NULL; 1278 u64 alloc_hint = 0; 1279 u64 orig_start = start; 1280 u64 num_bytes; 1281 u64 cur_alloc_size = 0; 1282 u64 min_alloc_size; 1283 u64 blocksize = fs_info->sectorsize; 1284 struct btrfs_key ins; 1285 struct extent_map *em; 1286 unsigned clear_bits; 1287 unsigned long page_ops; 1288 int ret = 0; 1289 1290 if (btrfs_is_free_space_inode(inode)) { 1291 ret = -EINVAL; 1292 goto out_unlock; 1293 } 1294 1295 num_bytes = ALIGN(end - start + 1, blocksize); 1296 num_bytes = max(blocksize, num_bytes); 1297 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1298 1299 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1300 1301 if (!no_inline) { 1302 /* lets try to make an inline extent */ 1303 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1304 BTRFS_COMPRESS_NONE, NULL, false); 1305 if (ret <= 0) { 1306 /* 1307 * We succeeded, return 1 so the caller knows we're done 1308 * with this page and already handled the IO. 1309 * 1310 * If there was an error then cow_file_range_inline() has 1311 * already done the cleanup. 1312 */ 1313 if (ret == 0) 1314 ret = 1; 1315 goto done; 1316 } 1317 } 1318 1319 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1320 1321 /* 1322 * We're not doing compressed IO, don't unlock the first page (which 1323 * the caller expects to stay locked), don't clear any dirty bits and 1324 * don't set any writeback bits. 1325 * 1326 * Do set the Ordered (Private2) bit so we know this page was properly 1327 * setup for writepage. 1328 */ 1329 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1330 page_ops |= PAGE_SET_ORDERED; 1331 1332 /* 1333 * Relocation relies on the relocated extents to have exactly the same 1334 * size as the original extents. Normally writeback for relocation data 1335 * extents follows a NOCOW path because relocation preallocates the 1336 * extents. However, due to an operation such as scrub turning a block 1337 * group to RO mode, it may fallback to COW mode, so we must make sure 1338 * an extent allocated during COW has exactly the requested size and can 1339 * not be split into smaller extents, otherwise relocation breaks and 1340 * fails during the stage where it updates the bytenr of file extent 1341 * items. 1342 */ 1343 if (btrfs_is_data_reloc_root(root)) 1344 min_alloc_size = num_bytes; 1345 else 1346 min_alloc_size = fs_info->sectorsize; 1347 1348 while (num_bytes > 0) { 1349 struct btrfs_ordered_extent *ordered; 1350 struct btrfs_file_extent file_extent; 1351 1352 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1353 min_alloc_size, 0, alloc_hint, 1354 &ins, 1, 1); 1355 if (ret == -EAGAIN) { 1356 /* 1357 * btrfs_reserve_extent only returns -EAGAIN for zoned 1358 * file systems, which is an indication that there are 1359 * no active zones to allocate from at the moment. 1360 * 1361 * If this is the first loop iteration, wait for at 1362 * least one zone to finish before retrying the 1363 * allocation. Otherwise ask the caller to write out 1364 * the already allocated blocks before coming back to 1365 * us, or return -ENOSPC if it can't handle retries. 1366 */ 1367 ASSERT(btrfs_is_zoned(fs_info)); 1368 if (start == orig_start) { 1369 wait_on_bit_io(&inode->root->fs_info->flags, 1370 BTRFS_FS_NEED_ZONE_FINISH, 1371 TASK_UNINTERRUPTIBLE); 1372 continue; 1373 } 1374 if (done_offset) { 1375 /* 1376 * Move @end to the end of the processed range, 1377 * and exit the loop to unlock the processed extents. 1378 */ 1379 end = start - 1; 1380 ret = 0; 1381 break; 1382 } 1383 ret = -ENOSPC; 1384 } 1385 if (ret < 0) 1386 goto out_unlock; 1387 cur_alloc_size = ins.offset; 1388 1389 file_extent.disk_bytenr = ins.objectid; 1390 file_extent.disk_num_bytes = ins.offset; 1391 file_extent.num_bytes = ins.offset; 1392 file_extent.ram_bytes = ins.offset; 1393 file_extent.offset = 0; 1394 file_extent.compression = BTRFS_COMPRESS_NONE; 1395 1396 /* 1397 * Locked range will be released either during error clean up or 1398 * after the whole range is finished. 1399 */ 1400 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1401 &cached); 1402 1403 em = btrfs_create_io_em(inode, start, &file_extent, 1404 BTRFS_ORDERED_REGULAR); 1405 if (IS_ERR(em)) { 1406 unlock_extent(&inode->io_tree, start, 1407 start + cur_alloc_size - 1, &cached); 1408 ret = PTR_ERR(em); 1409 goto out_reserve; 1410 } 1411 free_extent_map(em); 1412 1413 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1414 1 << BTRFS_ORDERED_REGULAR); 1415 if (IS_ERR(ordered)) { 1416 unlock_extent(&inode->io_tree, start, 1417 start + cur_alloc_size - 1, &cached); 1418 ret = PTR_ERR(ordered); 1419 goto out_drop_extent_cache; 1420 } 1421 1422 if (btrfs_is_data_reloc_root(root)) { 1423 ret = btrfs_reloc_clone_csums(ordered); 1424 1425 /* 1426 * Only drop cache here, and process as normal. 1427 * 1428 * We must not allow extent_clear_unlock_delalloc() 1429 * at out_unlock label to free meta of this ordered 1430 * extent, as its meta should be freed by 1431 * btrfs_finish_ordered_io(). 1432 * 1433 * So we must continue until @start is increased to 1434 * skip current ordered extent. 1435 */ 1436 if (ret) 1437 btrfs_drop_extent_map_range(inode, start, 1438 start + cur_alloc_size - 1, 1439 false); 1440 } 1441 btrfs_put_ordered_extent(ordered); 1442 1443 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1444 1445 if (num_bytes < cur_alloc_size) 1446 num_bytes = 0; 1447 else 1448 num_bytes -= cur_alloc_size; 1449 alloc_hint = ins.objectid + ins.offset; 1450 start += cur_alloc_size; 1451 cur_alloc_size = 0; 1452 1453 /* 1454 * btrfs_reloc_clone_csums() error, since start is increased 1455 * extent_clear_unlock_delalloc() at out_unlock label won't 1456 * free metadata of current ordered extent, we're OK to exit. 1457 */ 1458 if (ret) 1459 goto out_unlock; 1460 } 1461 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1462 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1463 done: 1464 if (done_offset) 1465 *done_offset = end; 1466 return ret; 1467 1468 out_drop_extent_cache: 1469 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1470 out_reserve: 1471 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1472 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1473 out_unlock: 1474 /* 1475 * Now, we have three regions to clean up: 1476 * 1477 * |-------(1)----|---(2)---|-------------(3)----------| 1478 * `- orig_start `- start `- start + cur_alloc_size `- end 1479 * 1480 * We process each region below. 1481 */ 1482 1483 /* 1484 * For the range (1). We have already instantiated the ordered extents 1485 * for this region, thus we need to cleanup those ordered extents. 1486 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1487 * are also handled by the ordered extents cleanup. 1488 * 1489 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1490 * finish the writeback of the involved folios, which will be never submitted. 1491 */ 1492 if (orig_start < start) { 1493 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1494 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1495 1496 if (!locked_folio) 1497 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1498 1499 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1500 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1501 locked_folio, NULL, clear_bits, page_ops); 1502 } 1503 1504 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1505 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1506 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1507 1508 /* 1509 * For the range (2). If we reserved an extent for our delalloc range 1510 * (or a subrange) and failed to create the respective ordered extent, 1511 * then it means that when we reserved the extent we decremented the 1512 * extent's size from the data space_info's bytes_may_use counter and 1513 * incremented the space_info's bytes_reserved counter by the same 1514 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1515 * to decrement again the data space_info's bytes_may_use counter, 1516 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1517 */ 1518 if (cur_alloc_size) { 1519 extent_clear_unlock_delalloc(inode, start, 1520 start + cur_alloc_size - 1, 1521 locked_folio, &cached, clear_bits, 1522 page_ops); 1523 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1524 } 1525 1526 /* 1527 * For the range (3). We never touched the region. In addition to the 1528 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1529 * space_info's bytes_may_use counter, reserved in 1530 * btrfs_check_data_free_space(). 1531 */ 1532 if (start + cur_alloc_size < end) { 1533 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1534 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1535 end, locked_folio, 1536 &cached, clear_bits, page_ops); 1537 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1538 end - start - cur_alloc_size + 1, NULL); 1539 } 1540 btrfs_err_rl(fs_info, 1541 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1542 __func__, btrfs_root_id(inode->root), 1543 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1544 return ret; 1545 } 1546 1547 /* 1548 * Phase two of compressed writeback. This is the ordered portion of the code, 1549 * which only gets called in the order the work was queued. We walk all the 1550 * async extents created by compress_file_range and send them down to the disk. 1551 * 1552 * If called with @do_free == true then it'll try to finish the work and free 1553 * the work struct eventually. 1554 */ 1555 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1556 { 1557 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1558 work); 1559 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1560 struct async_extent *async_extent; 1561 unsigned long nr_pages; 1562 u64 alloc_hint = 0; 1563 1564 if (do_free) { 1565 struct async_cow *async_cow; 1566 1567 btrfs_add_delayed_iput(async_chunk->inode); 1568 if (async_chunk->blkcg_css) 1569 css_put(async_chunk->blkcg_css); 1570 1571 async_cow = async_chunk->async_cow; 1572 if (atomic_dec_and_test(&async_cow->num_chunks)) 1573 kvfree(async_cow); 1574 return; 1575 } 1576 1577 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1578 PAGE_SHIFT; 1579 1580 while (!list_empty(&async_chunk->extents)) { 1581 async_extent = list_entry(async_chunk->extents.next, 1582 struct async_extent, list); 1583 list_del(&async_extent->list); 1584 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1585 } 1586 1587 /* atomic_sub_return implies a barrier */ 1588 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1589 5 * SZ_1M) 1590 cond_wake_up_nomb(&fs_info->async_submit_wait); 1591 } 1592 1593 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1594 struct folio *locked_folio, u64 start, 1595 u64 end, struct writeback_control *wbc) 1596 { 1597 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1598 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1599 struct async_cow *ctx; 1600 struct async_chunk *async_chunk; 1601 unsigned long nr_pages; 1602 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1603 int i; 1604 unsigned nofs_flag; 1605 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1606 1607 nofs_flag = memalloc_nofs_save(); 1608 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1609 memalloc_nofs_restore(nofs_flag); 1610 if (!ctx) 1611 return false; 1612 1613 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1614 1615 async_chunk = ctx->chunks; 1616 atomic_set(&ctx->num_chunks, num_chunks); 1617 1618 for (i = 0; i < num_chunks; i++) { 1619 u64 cur_end = min(end, start + SZ_512K - 1); 1620 1621 /* 1622 * igrab is called higher up in the call chain, take only the 1623 * lightweight reference for the callback lifetime 1624 */ 1625 ihold(&inode->vfs_inode); 1626 async_chunk[i].async_cow = ctx; 1627 async_chunk[i].inode = inode; 1628 async_chunk[i].start = start; 1629 async_chunk[i].end = cur_end; 1630 async_chunk[i].write_flags = write_flags; 1631 INIT_LIST_HEAD(&async_chunk[i].extents); 1632 1633 /* 1634 * The locked_folio comes all the way from writepage and its 1635 * the original folio we were actually given. As we spread 1636 * this large delalloc region across multiple async_chunk 1637 * structs, only the first struct needs a pointer to 1638 * locked_folio. 1639 * 1640 * This way we don't need racey decisions about who is supposed 1641 * to unlock it. 1642 */ 1643 if (locked_folio) { 1644 /* 1645 * Depending on the compressibility, the pages might or 1646 * might not go through async. We want all of them to 1647 * be accounted against wbc once. Let's do it here 1648 * before the paths diverge. wbc accounting is used 1649 * only for foreign writeback detection and doesn't 1650 * need full accuracy. Just account the whole thing 1651 * against the first page. 1652 */ 1653 wbc_account_cgroup_owner(wbc, locked_folio, 1654 cur_end - start); 1655 async_chunk[i].locked_folio = locked_folio; 1656 locked_folio = NULL; 1657 } else { 1658 async_chunk[i].locked_folio = NULL; 1659 } 1660 1661 if (blkcg_css != blkcg_root_css) { 1662 css_get(blkcg_css); 1663 async_chunk[i].blkcg_css = blkcg_css; 1664 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1665 } else { 1666 async_chunk[i].blkcg_css = NULL; 1667 } 1668 1669 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1670 submit_compressed_extents); 1671 1672 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1673 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1674 1675 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1676 1677 start = cur_end + 1; 1678 } 1679 return true; 1680 } 1681 1682 /* 1683 * Run the delalloc range from start to end, and write back any dirty pages 1684 * covered by the range. 1685 */ 1686 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1687 struct folio *locked_folio, u64 start, 1688 u64 end, struct writeback_control *wbc, 1689 bool pages_dirty) 1690 { 1691 u64 done_offset = end; 1692 int ret; 1693 1694 while (start <= end) { 1695 ret = cow_file_range(inode, locked_folio, start, end, 1696 &done_offset, true, false); 1697 if (ret) 1698 return ret; 1699 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1700 start, done_offset, wbc, pages_dirty); 1701 start = done_offset + 1; 1702 } 1703 1704 return 1; 1705 } 1706 1707 static int fallback_to_cow(struct btrfs_inode *inode, 1708 struct folio *locked_folio, const u64 start, 1709 const u64 end) 1710 { 1711 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1712 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1713 const u64 range_bytes = end + 1 - start; 1714 struct extent_io_tree *io_tree = &inode->io_tree; 1715 struct extent_state *cached_state = NULL; 1716 u64 range_start = start; 1717 u64 count; 1718 int ret; 1719 1720 /* 1721 * If EXTENT_NORESERVE is set it means that when the buffered write was 1722 * made we had not enough available data space and therefore we did not 1723 * reserve data space for it, since we though we could do NOCOW for the 1724 * respective file range (either there is prealloc extent or the inode 1725 * has the NOCOW bit set). 1726 * 1727 * However when we need to fallback to COW mode (because for example the 1728 * block group for the corresponding extent was turned to RO mode by a 1729 * scrub or relocation) we need to do the following: 1730 * 1731 * 1) We increment the bytes_may_use counter of the data space info. 1732 * If COW succeeds, it allocates a new data extent and after doing 1733 * that it decrements the space info's bytes_may_use counter and 1734 * increments its bytes_reserved counter by the same amount (we do 1735 * this at btrfs_add_reserved_bytes()). So we need to increment the 1736 * bytes_may_use counter to compensate (when space is reserved at 1737 * buffered write time, the bytes_may_use counter is incremented); 1738 * 1739 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1740 * that if the COW path fails for any reason, it decrements (through 1741 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1742 * data space info, which we incremented in the step above. 1743 * 1744 * If we need to fallback to cow and the inode corresponds to a free 1745 * space cache inode or an inode of the data relocation tree, we must 1746 * also increment bytes_may_use of the data space_info for the same 1747 * reason. Space caches and relocated data extents always get a prealloc 1748 * extent for them, however scrub or balance may have set the block 1749 * group that contains that extent to RO mode and therefore force COW 1750 * when starting writeback. 1751 */ 1752 lock_extent(io_tree, start, end, &cached_state); 1753 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1754 EXTENT_NORESERVE, 0, NULL); 1755 if (count > 0 || is_space_ino || is_reloc_ino) { 1756 u64 bytes = count; 1757 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1758 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1759 1760 if (is_space_ino || is_reloc_ino) 1761 bytes = range_bytes; 1762 1763 spin_lock(&sinfo->lock); 1764 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1765 spin_unlock(&sinfo->lock); 1766 1767 if (count > 0) 1768 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1769 NULL); 1770 } 1771 unlock_extent(io_tree, start, end, &cached_state); 1772 1773 /* 1774 * Don't try to create inline extents, as a mix of inline extent that 1775 * is written out and unlocked directly and a normal NOCOW extent 1776 * doesn't work. 1777 */ 1778 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1779 true); 1780 ASSERT(ret != 1); 1781 return ret; 1782 } 1783 1784 struct can_nocow_file_extent_args { 1785 /* Input fields. */ 1786 1787 /* Start file offset of the range we want to NOCOW. */ 1788 u64 start; 1789 /* End file offset (inclusive) of the range we want to NOCOW. */ 1790 u64 end; 1791 bool writeback_path; 1792 /* 1793 * Free the path passed to can_nocow_file_extent() once it's not needed 1794 * anymore. 1795 */ 1796 bool free_path; 1797 1798 /* 1799 * Output fields. Only set when can_nocow_file_extent() returns 1. 1800 * The expected file extent for the NOCOW write. 1801 */ 1802 struct btrfs_file_extent file_extent; 1803 }; 1804 1805 /* 1806 * Check if we can NOCOW the file extent that the path points to. 1807 * This function may return with the path released, so the caller should check 1808 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1809 * 1810 * Returns: < 0 on error 1811 * 0 if we can not NOCOW 1812 * 1 if we can NOCOW 1813 */ 1814 static int can_nocow_file_extent(struct btrfs_path *path, 1815 struct btrfs_key *key, 1816 struct btrfs_inode *inode, 1817 struct can_nocow_file_extent_args *args) 1818 { 1819 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1820 struct extent_buffer *leaf = path->nodes[0]; 1821 struct btrfs_root *root = inode->root; 1822 struct btrfs_file_extent_item *fi; 1823 struct btrfs_root *csum_root; 1824 u64 io_start; 1825 u64 extent_end; 1826 u8 extent_type; 1827 int can_nocow = 0; 1828 int ret = 0; 1829 bool nowait = path->nowait; 1830 1831 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1832 extent_type = btrfs_file_extent_type(leaf, fi); 1833 1834 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1835 goto out; 1836 1837 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1838 extent_type == BTRFS_FILE_EXTENT_REG) 1839 goto out; 1840 1841 /* 1842 * If the extent was created before the generation where the last snapshot 1843 * for its subvolume was created, then this implies the extent is shared, 1844 * hence we must COW. 1845 */ 1846 if (btrfs_file_extent_generation(leaf, fi) <= 1847 btrfs_root_last_snapshot(&root->root_item)) 1848 goto out; 1849 1850 /* An explicit hole, must COW. */ 1851 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1852 goto out; 1853 1854 /* Compressed/encrypted/encoded extents must be COWed. */ 1855 if (btrfs_file_extent_compression(leaf, fi) || 1856 btrfs_file_extent_encryption(leaf, fi) || 1857 btrfs_file_extent_other_encoding(leaf, fi)) 1858 goto out; 1859 1860 extent_end = btrfs_file_extent_end(path); 1861 1862 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1863 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1864 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1865 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1866 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1867 1868 /* 1869 * The following checks can be expensive, as they need to take other 1870 * locks and do btree or rbtree searches, so release the path to avoid 1871 * blocking other tasks for too long. 1872 */ 1873 btrfs_release_path(path); 1874 1875 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1876 args->file_extent.disk_bytenr, path); 1877 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1878 if (ret != 0) 1879 goto out; 1880 1881 if (args->free_path) { 1882 /* 1883 * We don't need the path anymore, plus through the 1884 * btrfs_lookup_csums_list() call below we will end up allocating 1885 * another path. So free the path to avoid unnecessary extra 1886 * memory usage. 1887 */ 1888 btrfs_free_path(path); 1889 path = NULL; 1890 } 1891 1892 /* If there are pending snapshots for this root, we must COW. */ 1893 if (args->writeback_path && !is_freespace_inode && 1894 atomic_read(&root->snapshot_force_cow)) 1895 goto out; 1896 1897 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1898 args->file_extent.offset += args->start - key->offset; 1899 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1900 1901 /* 1902 * Force COW if csums exist in the range. This ensures that csums for a 1903 * given extent are either valid or do not exist. 1904 */ 1905 1906 csum_root = btrfs_csum_root(root->fs_info, io_start); 1907 ret = btrfs_lookup_csums_list(csum_root, io_start, 1908 io_start + args->file_extent.num_bytes - 1, 1909 NULL, nowait); 1910 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1911 if (ret != 0) 1912 goto out; 1913 1914 can_nocow = 1; 1915 out: 1916 if (args->free_path && path) 1917 btrfs_free_path(path); 1918 1919 return ret < 0 ? ret : can_nocow; 1920 } 1921 1922 /* 1923 * Cleanup the dirty folios which will never be submitted due to error. 1924 * 1925 * When running a delalloc range, we may need to split the ranges (due to 1926 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1927 * out and previously successfully executed range will never be submitted, thus 1928 * we have to cleanup those folios by clearing their dirty flag, starting and 1929 * finishing the writeback. 1930 */ 1931 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1932 struct folio *locked_folio, 1933 u64 start, u64 end, int error) 1934 { 1935 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1936 struct address_space *mapping = inode->vfs_inode.i_mapping; 1937 pgoff_t start_index = start >> PAGE_SHIFT; 1938 pgoff_t end_index = end >> PAGE_SHIFT; 1939 u32 len; 1940 1941 ASSERT(end + 1 - start < U32_MAX); 1942 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1943 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1944 len = end + 1 - start; 1945 1946 /* 1947 * Handle the locked folio first. 1948 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1949 */ 1950 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1951 1952 for (pgoff_t index = start_index; index <= end_index; index++) { 1953 struct folio *folio; 1954 1955 /* Already handled at the beginning. */ 1956 if (index == locked_folio->index) 1957 continue; 1958 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1959 /* Cache already dropped, no need to do any cleanup. */ 1960 if (IS_ERR(folio)) 1961 continue; 1962 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1963 folio_unlock(folio); 1964 folio_put(folio); 1965 } 1966 mapping_set_error(mapping, error); 1967 } 1968 1969 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1970 struct extent_state **cached, 1971 struct can_nocow_file_extent_args *nocow_args, 1972 u64 file_pos, bool is_prealloc) 1973 { 1974 struct btrfs_ordered_extent *ordered; 1975 u64 len = nocow_args->file_extent.num_bytes; 1976 u64 end = file_pos + len - 1; 1977 int ret = 0; 1978 1979 lock_extent(&inode->io_tree, file_pos, end, cached); 1980 1981 if (is_prealloc) { 1982 struct extent_map *em; 1983 1984 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1985 BTRFS_ORDERED_PREALLOC); 1986 if (IS_ERR(em)) { 1987 unlock_extent(&inode->io_tree, file_pos, end, cached); 1988 return PTR_ERR(em); 1989 } 1990 free_extent_map(em); 1991 } 1992 1993 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1994 is_prealloc 1995 ? (1 << BTRFS_ORDERED_PREALLOC) 1996 : (1 << BTRFS_ORDERED_NOCOW)); 1997 if (IS_ERR(ordered)) { 1998 if (is_prealloc) 1999 btrfs_drop_extent_map_range(inode, file_pos, end, false); 2000 unlock_extent(&inode->io_tree, file_pos, end, cached); 2001 return PTR_ERR(ordered); 2002 } 2003 2004 if (btrfs_is_data_reloc_root(inode->root)) 2005 /* 2006 * Errors are handled later, as we must prevent 2007 * extent_clear_unlock_delalloc() in error handler from freeing 2008 * metadata of the created ordered extent. 2009 */ 2010 ret = btrfs_reloc_clone_csums(ordered); 2011 btrfs_put_ordered_extent(ordered); 2012 2013 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2014 EXTENT_LOCKED | EXTENT_DELALLOC | 2015 EXTENT_CLEAR_DATA_RESV, 2016 PAGE_UNLOCK | PAGE_SET_ORDERED); 2017 /* 2018 * On error, we need to cleanup the ordered extents we created. 2019 * 2020 * We do not clear the folio Dirty flags because they are set and 2021 * cleaered by the caller. 2022 */ 2023 if (ret < 0) 2024 btrfs_cleanup_ordered_extents(inode, file_pos, end); 2025 return ret; 2026 } 2027 2028 /* 2029 * when nowcow writeback call back. This checks for snapshots or COW copies 2030 * of the extents that exist in the file, and COWs the file as required. 2031 * 2032 * If no cow copies or snapshots exist, we write directly to the existing 2033 * blocks on disk 2034 */ 2035 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2036 struct folio *locked_folio, 2037 const u64 start, const u64 end) 2038 { 2039 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2040 struct btrfs_root *root = inode->root; 2041 struct btrfs_path *path; 2042 u64 cow_start = (u64)-1; 2043 /* 2044 * If not 0, represents the inclusive end of the last fallback_to_cow() 2045 * range. Only for error handling. 2046 */ 2047 u64 cow_end = 0; 2048 u64 cur_offset = start; 2049 int ret; 2050 bool check_prev = true; 2051 u64 ino = btrfs_ino(inode); 2052 struct can_nocow_file_extent_args nocow_args = { 0 }; 2053 2054 /* 2055 * Normally on a zoned device we're only doing COW writes, but in case 2056 * of relocation on a zoned filesystem serializes I/O so that we're only 2057 * writing sequentially and can end up here as well. 2058 */ 2059 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2060 2061 path = btrfs_alloc_path(); 2062 if (!path) { 2063 ret = -ENOMEM; 2064 goto error; 2065 } 2066 2067 nocow_args.end = end; 2068 nocow_args.writeback_path = true; 2069 2070 while (cur_offset <= end) { 2071 struct btrfs_block_group *nocow_bg = NULL; 2072 struct btrfs_key found_key; 2073 struct btrfs_file_extent_item *fi; 2074 struct extent_buffer *leaf; 2075 struct extent_state *cached_state = NULL; 2076 u64 extent_end; 2077 int extent_type; 2078 2079 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2080 cur_offset, 0); 2081 if (ret < 0) 2082 goto error; 2083 2084 /* 2085 * If there is no extent for our range when doing the initial 2086 * search, then go back to the previous slot as it will be the 2087 * one containing the search offset 2088 */ 2089 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2090 leaf = path->nodes[0]; 2091 btrfs_item_key_to_cpu(leaf, &found_key, 2092 path->slots[0] - 1); 2093 if (found_key.objectid == ino && 2094 found_key.type == BTRFS_EXTENT_DATA_KEY) 2095 path->slots[0]--; 2096 } 2097 check_prev = false; 2098 next_slot: 2099 /* Go to next leaf if we have exhausted the current one */ 2100 leaf = path->nodes[0]; 2101 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2102 ret = btrfs_next_leaf(root, path); 2103 if (ret < 0) 2104 goto error; 2105 if (ret > 0) 2106 break; 2107 leaf = path->nodes[0]; 2108 } 2109 2110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2111 2112 /* Didn't find anything for our INO */ 2113 if (found_key.objectid > ino) 2114 break; 2115 /* 2116 * Keep searching until we find an EXTENT_ITEM or there are no 2117 * more extents for this inode 2118 */ 2119 if (WARN_ON_ONCE(found_key.objectid < ino) || 2120 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2121 path->slots[0]++; 2122 goto next_slot; 2123 } 2124 2125 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2126 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2127 found_key.offset > end) 2128 break; 2129 2130 /* 2131 * If the found extent starts after requested offset, then 2132 * adjust extent_end to be right before this extent begins 2133 */ 2134 if (found_key.offset > cur_offset) { 2135 extent_end = found_key.offset; 2136 extent_type = 0; 2137 goto must_cow; 2138 } 2139 2140 /* 2141 * Found extent which begins before our range and potentially 2142 * intersect it 2143 */ 2144 fi = btrfs_item_ptr(leaf, path->slots[0], 2145 struct btrfs_file_extent_item); 2146 extent_type = btrfs_file_extent_type(leaf, fi); 2147 /* If this is triggered then we have a memory corruption. */ 2148 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2149 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2150 ret = -EUCLEAN; 2151 goto error; 2152 } 2153 extent_end = btrfs_file_extent_end(path); 2154 2155 /* 2156 * If the extent we got ends before our current offset, skip to 2157 * the next extent. 2158 */ 2159 if (extent_end <= cur_offset) { 2160 path->slots[0]++; 2161 goto next_slot; 2162 } 2163 2164 nocow_args.start = cur_offset; 2165 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2166 if (ret < 0) 2167 goto error; 2168 if (ret == 0) 2169 goto must_cow; 2170 2171 ret = 0; 2172 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2173 nocow_args.file_extent.disk_bytenr + 2174 nocow_args.file_extent.offset); 2175 if (!nocow_bg) { 2176 must_cow: 2177 /* 2178 * If we can't perform NOCOW writeback for the range, 2179 * then record the beginning of the range that needs to 2180 * be COWed. It will be written out before the next 2181 * NOCOW range if we find one, or when exiting this 2182 * loop. 2183 */ 2184 if (cow_start == (u64)-1) 2185 cow_start = cur_offset; 2186 cur_offset = extent_end; 2187 if (cur_offset > end) 2188 break; 2189 if (!path->nodes[0]) 2190 continue; 2191 path->slots[0]++; 2192 goto next_slot; 2193 } 2194 2195 /* 2196 * COW range from cow_start to found_key.offset - 1. As the key 2197 * will contain the beginning of the first extent that can be 2198 * NOCOW, following one which needs to be COW'ed 2199 */ 2200 if (cow_start != (u64)-1) { 2201 ret = fallback_to_cow(inode, locked_folio, cow_start, 2202 found_key.offset - 1); 2203 if (ret) { 2204 cow_end = found_key.offset - 1; 2205 btrfs_dec_nocow_writers(nocow_bg); 2206 goto error; 2207 } 2208 cow_start = (u64)-1; 2209 } 2210 2211 ret = nocow_one_range(inode, locked_folio, &cached_state, 2212 &nocow_args, cur_offset, 2213 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2214 btrfs_dec_nocow_writers(nocow_bg); 2215 if (ret < 0) 2216 goto error; 2217 cur_offset = extent_end; 2218 } 2219 btrfs_release_path(path); 2220 2221 if (cur_offset <= end && cow_start == (u64)-1) 2222 cow_start = cur_offset; 2223 2224 if (cow_start != (u64)-1) { 2225 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2226 if (ret) { 2227 cow_end = end; 2228 goto error; 2229 } 2230 cow_start = (u64)-1; 2231 } 2232 2233 btrfs_free_path(path); 2234 return 0; 2235 2236 error: 2237 /* 2238 * There are several error cases: 2239 * 2240 * 1) Failed without falling back to COW 2241 * start cur_offset end 2242 * |/////////////| | 2243 * 2244 * In this case, cow_start should be (u64)-1. 2245 * 2246 * For range [start, cur_offset) the folios are already unlocked (except 2247 * @locked_folio), EXTENT_DELALLOC already removed. 2248 * Need to clear the dirty flags and finish the ordered extents. 2249 * 2250 * 2) Failed with error before calling fallback_to_cow() 2251 * 2252 * start cow_start end 2253 * |/////////////| | 2254 * 2255 * In this case, only @cow_start is set, @cur_offset is between 2256 * [cow_start, end) 2257 * 2258 * It's mostly the same as case 1), just replace @cur_offset with 2259 * @cow_start. 2260 * 2261 * 3) Failed with error from fallback_to_cow() 2262 * 2263 * start cow_start cow_end end 2264 * |/////////////|-----------| | 2265 * 2266 * In this case, both @cow_start and @cow_end is set. 2267 * 2268 * For range [start, cow_start) it's the same as case 1). 2269 * But for range [cow_start, cow_end), all the cleanup is handled by 2270 * cow_file_range(), we should not touch anything in that range. 2271 * 2272 * So for all above cases, if @cow_start is set, cleanup ordered extents 2273 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2274 */ 2275 if (cow_start != (u64)-1) 2276 cur_offset = cow_start; 2277 2278 if (cur_offset > start) { 2279 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2280 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2281 } 2282 2283 /* 2284 * If an error happened while a COW region is outstanding, cur_offset 2285 * needs to be reset to @cow_end + 1 to skip the COW range, as 2286 * cow_file_range() will do the proper cleanup at error. 2287 */ 2288 if (cow_end) 2289 cur_offset = cow_end + 1; 2290 2291 /* 2292 * We need to lock the extent here because we're clearing DELALLOC and 2293 * we're not locked at this point. 2294 */ 2295 if (cur_offset < end) { 2296 struct extent_state *cached = NULL; 2297 2298 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2299 extent_clear_unlock_delalloc(inode, cur_offset, end, 2300 locked_folio, &cached, 2301 EXTENT_LOCKED | EXTENT_DELALLOC | 2302 EXTENT_DEFRAG | 2303 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2304 PAGE_START_WRITEBACK | 2305 PAGE_END_WRITEBACK); 2306 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2307 } 2308 btrfs_free_path(path); 2309 btrfs_err_rl(fs_info, 2310 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2311 __func__, btrfs_root_id(inode->root), 2312 btrfs_ino(inode), start, end + 1 - start, ret); 2313 return ret; 2314 } 2315 2316 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2317 { 2318 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2319 if (inode->defrag_bytes && 2320 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2321 return false; 2322 return true; 2323 } 2324 return false; 2325 } 2326 2327 /* 2328 * Function to process delayed allocation (create CoW) for ranges which are 2329 * being touched for the first time. 2330 */ 2331 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2332 u64 start, u64 end, struct writeback_control *wbc) 2333 { 2334 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2335 int ret; 2336 2337 /* 2338 * The range must cover part of the @locked_folio, or a return of 1 2339 * can confuse the caller. 2340 */ 2341 ASSERT(!(end <= folio_pos(locked_folio) || 2342 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2343 2344 if (should_nocow(inode, start, end)) { 2345 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2346 return ret; 2347 } 2348 2349 if (btrfs_inode_can_compress(inode) && 2350 inode_need_compress(inode, start, end) && 2351 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2352 return 1; 2353 2354 if (zoned) 2355 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2356 true); 2357 else 2358 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2359 false, false); 2360 return ret; 2361 } 2362 2363 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2364 struct extent_state *orig, u64 split) 2365 { 2366 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2367 u64 size; 2368 2369 lockdep_assert_held(&inode->io_tree.lock); 2370 2371 /* not delalloc, ignore it */ 2372 if (!(orig->state & EXTENT_DELALLOC)) 2373 return; 2374 2375 size = orig->end - orig->start + 1; 2376 if (size > fs_info->max_extent_size) { 2377 u32 num_extents; 2378 u64 new_size; 2379 2380 /* 2381 * See the explanation in btrfs_merge_delalloc_extent, the same 2382 * applies here, just in reverse. 2383 */ 2384 new_size = orig->end - split + 1; 2385 num_extents = count_max_extents(fs_info, new_size); 2386 new_size = split - orig->start; 2387 num_extents += count_max_extents(fs_info, new_size); 2388 if (count_max_extents(fs_info, size) >= num_extents) 2389 return; 2390 } 2391 2392 spin_lock(&inode->lock); 2393 btrfs_mod_outstanding_extents(inode, 1); 2394 spin_unlock(&inode->lock); 2395 } 2396 2397 /* 2398 * Handle merged delayed allocation extents so we can keep track of new extents 2399 * that are just merged onto old extents, such as when we are doing sequential 2400 * writes, so we can properly account for the metadata space we'll need. 2401 */ 2402 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2403 struct extent_state *other) 2404 { 2405 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2406 u64 new_size, old_size; 2407 u32 num_extents; 2408 2409 lockdep_assert_held(&inode->io_tree.lock); 2410 2411 /* not delalloc, ignore it */ 2412 if (!(other->state & EXTENT_DELALLOC)) 2413 return; 2414 2415 if (new->start > other->start) 2416 new_size = new->end - other->start + 1; 2417 else 2418 new_size = other->end - new->start + 1; 2419 2420 /* we're not bigger than the max, unreserve the space and go */ 2421 if (new_size <= fs_info->max_extent_size) { 2422 spin_lock(&inode->lock); 2423 btrfs_mod_outstanding_extents(inode, -1); 2424 spin_unlock(&inode->lock); 2425 return; 2426 } 2427 2428 /* 2429 * We have to add up either side to figure out how many extents were 2430 * accounted for before we merged into one big extent. If the number of 2431 * extents we accounted for is <= the amount we need for the new range 2432 * then we can return, otherwise drop. Think of it like this 2433 * 2434 * [ 4k][MAX_SIZE] 2435 * 2436 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2437 * need 2 outstanding extents, on one side we have 1 and the other side 2438 * we have 1 so they are == and we can return. But in this case 2439 * 2440 * [MAX_SIZE+4k][MAX_SIZE+4k] 2441 * 2442 * Each range on their own accounts for 2 extents, but merged together 2443 * they are only 3 extents worth of accounting, so we need to drop in 2444 * this case. 2445 */ 2446 old_size = other->end - other->start + 1; 2447 num_extents = count_max_extents(fs_info, old_size); 2448 old_size = new->end - new->start + 1; 2449 num_extents += count_max_extents(fs_info, old_size); 2450 if (count_max_extents(fs_info, new_size) >= num_extents) 2451 return; 2452 2453 spin_lock(&inode->lock); 2454 btrfs_mod_outstanding_extents(inode, -1); 2455 spin_unlock(&inode->lock); 2456 } 2457 2458 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2459 { 2460 struct btrfs_root *root = inode->root; 2461 struct btrfs_fs_info *fs_info = root->fs_info; 2462 2463 spin_lock(&root->delalloc_lock); 2464 ASSERT(list_empty(&inode->delalloc_inodes)); 2465 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2466 root->nr_delalloc_inodes++; 2467 if (root->nr_delalloc_inodes == 1) { 2468 spin_lock(&fs_info->delalloc_root_lock); 2469 ASSERT(list_empty(&root->delalloc_root)); 2470 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2471 spin_unlock(&fs_info->delalloc_root_lock); 2472 } 2473 spin_unlock(&root->delalloc_lock); 2474 } 2475 2476 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2477 { 2478 struct btrfs_root *root = inode->root; 2479 struct btrfs_fs_info *fs_info = root->fs_info; 2480 2481 lockdep_assert_held(&root->delalloc_lock); 2482 2483 /* 2484 * We may be called after the inode was already deleted from the list, 2485 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2486 * and then later through btrfs_clear_delalloc_extent() while the inode 2487 * still has ->delalloc_bytes > 0. 2488 */ 2489 if (!list_empty(&inode->delalloc_inodes)) { 2490 list_del_init(&inode->delalloc_inodes); 2491 root->nr_delalloc_inodes--; 2492 if (!root->nr_delalloc_inodes) { 2493 ASSERT(list_empty(&root->delalloc_inodes)); 2494 spin_lock(&fs_info->delalloc_root_lock); 2495 ASSERT(!list_empty(&root->delalloc_root)); 2496 list_del_init(&root->delalloc_root); 2497 spin_unlock(&fs_info->delalloc_root_lock); 2498 } 2499 } 2500 } 2501 2502 /* 2503 * Properly track delayed allocation bytes in the inode and to maintain the 2504 * list of inodes that have pending delalloc work to be done. 2505 */ 2506 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2507 u32 bits) 2508 { 2509 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2510 2511 lockdep_assert_held(&inode->io_tree.lock); 2512 2513 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2514 WARN_ON(1); 2515 /* 2516 * set_bit and clear bit hooks normally require _irqsave/restore 2517 * but in this case, we are only testing for the DELALLOC 2518 * bit, which is only set or cleared with irqs on 2519 */ 2520 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2521 u64 len = state->end + 1 - state->start; 2522 u64 prev_delalloc_bytes; 2523 u32 num_extents = count_max_extents(fs_info, len); 2524 2525 spin_lock(&inode->lock); 2526 btrfs_mod_outstanding_extents(inode, num_extents); 2527 spin_unlock(&inode->lock); 2528 2529 /* For sanity tests */ 2530 if (btrfs_is_testing(fs_info)) 2531 return; 2532 2533 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2534 fs_info->delalloc_batch); 2535 spin_lock(&inode->lock); 2536 prev_delalloc_bytes = inode->delalloc_bytes; 2537 inode->delalloc_bytes += len; 2538 if (bits & EXTENT_DEFRAG) 2539 inode->defrag_bytes += len; 2540 spin_unlock(&inode->lock); 2541 2542 /* 2543 * We don't need to be under the protection of the inode's lock, 2544 * because we are called while holding the inode's io_tree lock 2545 * and are therefore protected against concurrent calls of this 2546 * function and btrfs_clear_delalloc_extent(). 2547 */ 2548 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2549 btrfs_add_delalloc_inode(inode); 2550 } 2551 2552 if (!(state->state & EXTENT_DELALLOC_NEW) && 2553 (bits & EXTENT_DELALLOC_NEW)) { 2554 spin_lock(&inode->lock); 2555 inode->new_delalloc_bytes += state->end + 1 - state->start; 2556 spin_unlock(&inode->lock); 2557 } 2558 } 2559 2560 /* 2561 * Once a range is no longer delalloc this function ensures that proper 2562 * accounting happens. 2563 */ 2564 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2565 struct extent_state *state, u32 bits) 2566 { 2567 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2568 u64 len = state->end + 1 - state->start; 2569 u32 num_extents = count_max_extents(fs_info, len); 2570 2571 lockdep_assert_held(&inode->io_tree.lock); 2572 2573 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2574 spin_lock(&inode->lock); 2575 inode->defrag_bytes -= len; 2576 spin_unlock(&inode->lock); 2577 } 2578 2579 /* 2580 * set_bit and clear bit hooks normally require _irqsave/restore 2581 * but in this case, we are only testing for the DELALLOC 2582 * bit, which is only set or cleared with irqs on 2583 */ 2584 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2585 struct btrfs_root *root = inode->root; 2586 u64 new_delalloc_bytes; 2587 2588 spin_lock(&inode->lock); 2589 btrfs_mod_outstanding_extents(inode, -num_extents); 2590 spin_unlock(&inode->lock); 2591 2592 /* 2593 * We don't reserve metadata space for space cache inodes so we 2594 * don't need to call delalloc_release_metadata if there is an 2595 * error. 2596 */ 2597 if (bits & EXTENT_CLEAR_META_RESV && 2598 root != fs_info->tree_root) 2599 btrfs_delalloc_release_metadata(inode, len, true); 2600 2601 /* For sanity tests. */ 2602 if (btrfs_is_testing(fs_info)) 2603 return; 2604 2605 if (!btrfs_is_data_reloc_root(root) && 2606 !btrfs_is_free_space_inode(inode) && 2607 !(state->state & EXTENT_NORESERVE) && 2608 (bits & EXTENT_CLEAR_DATA_RESV)) 2609 btrfs_free_reserved_data_space_noquota(fs_info, len); 2610 2611 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2612 fs_info->delalloc_batch); 2613 spin_lock(&inode->lock); 2614 inode->delalloc_bytes -= len; 2615 new_delalloc_bytes = inode->delalloc_bytes; 2616 spin_unlock(&inode->lock); 2617 2618 /* 2619 * We don't need to be under the protection of the inode's lock, 2620 * because we are called while holding the inode's io_tree lock 2621 * and are therefore protected against concurrent calls of this 2622 * function and btrfs_set_delalloc_extent(). 2623 */ 2624 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2625 spin_lock(&root->delalloc_lock); 2626 btrfs_del_delalloc_inode(inode); 2627 spin_unlock(&root->delalloc_lock); 2628 } 2629 } 2630 2631 if ((state->state & EXTENT_DELALLOC_NEW) && 2632 (bits & EXTENT_DELALLOC_NEW)) { 2633 spin_lock(&inode->lock); 2634 ASSERT(inode->new_delalloc_bytes >= len); 2635 inode->new_delalloc_bytes -= len; 2636 if (bits & EXTENT_ADD_INODE_BYTES) 2637 inode_add_bytes(&inode->vfs_inode, len); 2638 spin_unlock(&inode->lock); 2639 } 2640 } 2641 2642 /* 2643 * given a list of ordered sums record them in the inode. This happens 2644 * at IO completion time based on sums calculated at bio submission time. 2645 */ 2646 static int add_pending_csums(struct btrfs_trans_handle *trans, 2647 struct list_head *list) 2648 { 2649 struct btrfs_ordered_sum *sum; 2650 struct btrfs_root *csum_root = NULL; 2651 int ret; 2652 2653 list_for_each_entry(sum, list, list) { 2654 trans->adding_csums = true; 2655 if (!csum_root) 2656 csum_root = btrfs_csum_root(trans->fs_info, 2657 sum->logical); 2658 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2659 trans->adding_csums = false; 2660 if (ret) 2661 return ret; 2662 } 2663 return 0; 2664 } 2665 2666 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2667 const u64 start, 2668 const u64 len, 2669 struct extent_state **cached_state) 2670 { 2671 u64 search_start = start; 2672 const u64 end = start + len - 1; 2673 2674 while (search_start < end) { 2675 const u64 search_len = end - search_start + 1; 2676 struct extent_map *em; 2677 u64 em_len; 2678 int ret = 0; 2679 2680 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2681 if (IS_ERR(em)) 2682 return PTR_ERR(em); 2683 2684 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2685 goto next; 2686 2687 em_len = em->len; 2688 if (em->start < search_start) 2689 em_len -= search_start - em->start; 2690 if (em_len > search_len) 2691 em_len = search_len; 2692 2693 ret = set_extent_bit(&inode->io_tree, search_start, 2694 search_start + em_len - 1, 2695 EXTENT_DELALLOC_NEW, cached_state); 2696 next: 2697 search_start = extent_map_end(em); 2698 free_extent_map(em); 2699 if (ret) 2700 return ret; 2701 } 2702 return 0; 2703 } 2704 2705 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2706 unsigned int extra_bits, 2707 struct extent_state **cached_state) 2708 { 2709 WARN_ON(PAGE_ALIGNED(end)); 2710 2711 if (start >= i_size_read(&inode->vfs_inode) && 2712 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2713 /* 2714 * There can't be any extents following eof in this case so just 2715 * set the delalloc new bit for the range directly. 2716 */ 2717 extra_bits |= EXTENT_DELALLOC_NEW; 2718 } else { 2719 int ret; 2720 2721 ret = btrfs_find_new_delalloc_bytes(inode, start, 2722 end + 1 - start, 2723 cached_state); 2724 if (ret) 2725 return ret; 2726 } 2727 2728 return set_extent_bit(&inode->io_tree, start, end, 2729 EXTENT_DELALLOC | extra_bits, cached_state); 2730 } 2731 2732 /* see btrfs_writepage_start_hook for details on why this is required */ 2733 struct btrfs_writepage_fixup { 2734 struct folio *folio; 2735 struct btrfs_inode *inode; 2736 struct btrfs_work work; 2737 }; 2738 2739 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2740 { 2741 struct btrfs_writepage_fixup *fixup = 2742 container_of(work, struct btrfs_writepage_fixup, work); 2743 struct btrfs_ordered_extent *ordered; 2744 struct extent_state *cached_state = NULL; 2745 struct extent_changeset *data_reserved = NULL; 2746 struct folio *folio = fixup->folio; 2747 struct btrfs_inode *inode = fixup->inode; 2748 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2749 u64 page_start = folio_pos(folio); 2750 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2751 int ret = 0; 2752 bool free_delalloc_space = true; 2753 2754 /* 2755 * This is similar to page_mkwrite, we need to reserve the space before 2756 * we take the folio lock. 2757 */ 2758 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2759 folio_size(folio)); 2760 again: 2761 folio_lock(folio); 2762 2763 /* 2764 * Before we queued this fixup, we took a reference on the folio. 2765 * folio->mapping may go NULL, but it shouldn't be moved to a different 2766 * address space. 2767 */ 2768 if (!folio->mapping || !folio_test_dirty(folio) || 2769 !folio_test_checked(folio)) { 2770 /* 2771 * Unfortunately this is a little tricky, either 2772 * 2773 * 1) We got here and our folio had already been dealt with and 2774 * we reserved our space, thus ret == 0, so we need to just 2775 * drop our space reservation and bail. This can happen the 2776 * first time we come into the fixup worker, or could happen 2777 * while waiting for the ordered extent. 2778 * 2) Our folio was already dealt with, but we happened to get an 2779 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2780 * this case we obviously don't have anything to release, but 2781 * because the folio was already dealt with we don't want to 2782 * mark the folio with an error, so make sure we're resetting 2783 * ret to 0. This is why we have this check _before_ the ret 2784 * check, because we do not want to have a surprise ENOSPC 2785 * when the folio was already properly dealt with. 2786 */ 2787 if (!ret) { 2788 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2789 btrfs_delalloc_release_space(inode, data_reserved, 2790 page_start, folio_size(folio), 2791 true); 2792 } 2793 ret = 0; 2794 goto out_page; 2795 } 2796 2797 /* 2798 * We can't mess with the folio state unless it is locked, so now that 2799 * it is locked bail if we failed to make our space reservation. 2800 */ 2801 if (ret) 2802 goto out_page; 2803 2804 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2805 2806 /* already ordered? We're done */ 2807 if (folio_test_ordered(folio)) 2808 goto out_reserved; 2809 2810 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2811 if (ordered) { 2812 unlock_extent(&inode->io_tree, page_start, page_end, 2813 &cached_state); 2814 folio_unlock(folio); 2815 btrfs_start_ordered_extent(ordered); 2816 btrfs_put_ordered_extent(ordered); 2817 goto again; 2818 } 2819 2820 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2821 &cached_state); 2822 if (ret) 2823 goto out_reserved; 2824 2825 /* 2826 * Everything went as planned, we're now the owner of a dirty page with 2827 * delayed allocation bits set and space reserved for our COW 2828 * destination. 2829 * 2830 * The page was dirty when we started, nothing should have cleaned it. 2831 */ 2832 BUG_ON(!folio_test_dirty(folio)); 2833 free_delalloc_space = false; 2834 out_reserved: 2835 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2836 if (free_delalloc_space) 2837 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2838 PAGE_SIZE, true); 2839 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2840 out_page: 2841 if (ret) { 2842 /* 2843 * We hit ENOSPC or other errors. Update the mapping and page 2844 * to reflect the errors and clean the page. 2845 */ 2846 mapping_set_error(folio->mapping, ret); 2847 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2848 folio_size(folio), !ret); 2849 folio_clear_dirty_for_io(folio); 2850 } 2851 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2852 folio_unlock(folio); 2853 folio_put(folio); 2854 kfree(fixup); 2855 extent_changeset_free(data_reserved); 2856 /* 2857 * As a precaution, do a delayed iput in case it would be the last iput 2858 * that could need flushing space. Recursing back to fixup worker would 2859 * deadlock. 2860 */ 2861 btrfs_add_delayed_iput(inode); 2862 } 2863 2864 /* 2865 * There are a few paths in the higher layers of the kernel that directly 2866 * set the folio dirty bit without asking the filesystem if it is a 2867 * good idea. This causes problems because we want to make sure COW 2868 * properly happens and the data=ordered rules are followed. 2869 * 2870 * In our case any range that doesn't have the ORDERED bit set 2871 * hasn't been properly setup for IO. We kick off an async process 2872 * to fix it up. The async helper will wait for ordered extents, set 2873 * the delalloc bit and make it safe to write the folio. 2874 */ 2875 int btrfs_writepage_cow_fixup(struct folio *folio) 2876 { 2877 struct inode *inode = folio->mapping->host; 2878 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2879 struct btrfs_writepage_fixup *fixup; 2880 2881 /* This folio has ordered extent covering it already */ 2882 if (folio_test_ordered(folio)) 2883 return 0; 2884 2885 /* 2886 * For experimental build, we error out instead of EAGAIN. 2887 * 2888 * We should not hit such out-of-band dirty folios anymore. 2889 */ 2890 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2891 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2892 btrfs_err_rl(fs_info, 2893 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2894 BTRFS_I(inode)->root->root_key.objectid, 2895 btrfs_ino(BTRFS_I(inode)), 2896 folio_pos(folio)); 2897 return -EUCLEAN; 2898 } 2899 2900 /* 2901 * folio_checked is set below when we create a fixup worker for this 2902 * folio, don't try to create another one if we're already 2903 * folio_test_checked. 2904 * 2905 * The extent_io writepage code will redirty the foio if we send back 2906 * EAGAIN. 2907 */ 2908 if (folio_test_checked(folio)) 2909 return -EAGAIN; 2910 2911 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2912 if (!fixup) 2913 return -EAGAIN; 2914 2915 /* 2916 * We are already holding a reference to this inode from 2917 * write_cache_pages. We need to hold it because the space reservation 2918 * takes place outside of the folio lock, and we can't trust 2919 * folio->mapping outside of the folio lock. 2920 */ 2921 ihold(inode); 2922 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2923 folio_get(folio); 2924 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2925 fixup->folio = folio; 2926 fixup->inode = BTRFS_I(inode); 2927 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2928 2929 return -EAGAIN; 2930 } 2931 2932 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2933 struct btrfs_inode *inode, u64 file_pos, 2934 struct btrfs_file_extent_item *stack_fi, 2935 const bool update_inode_bytes, 2936 u64 qgroup_reserved) 2937 { 2938 struct btrfs_root *root = inode->root; 2939 const u64 sectorsize = root->fs_info->sectorsize; 2940 struct btrfs_path *path; 2941 struct extent_buffer *leaf; 2942 struct btrfs_key ins; 2943 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2944 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2945 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2946 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2947 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2948 struct btrfs_drop_extents_args drop_args = { 0 }; 2949 int ret; 2950 2951 path = btrfs_alloc_path(); 2952 if (!path) 2953 return -ENOMEM; 2954 2955 /* 2956 * we may be replacing one extent in the tree with another. 2957 * The new extent is pinned in the extent map, and we don't want 2958 * to drop it from the cache until it is completely in the btree. 2959 * 2960 * So, tell btrfs_drop_extents to leave this extent in the cache. 2961 * the caller is expected to unpin it and allow it to be merged 2962 * with the others. 2963 */ 2964 drop_args.path = path; 2965 drop_args.start = file_pos; 2966 drop_args.end = file_pos + num_bytes; 2967 drop_args.replace_extent = true; 2968 drop_args.extent_item_size = sizeof(*stack_fi); 2969 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2970 if (ret) 2971 goto out; 2972 2973 if (!drop_args.extent_inserted) { 2974 ins.objectid = btrfs_ino(inode); 2975 ins.type = BTRFS_EXTENT_DATA_KEY; 2976 ins.offset = file_pos; 2977 2978 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2979 sizeof(*stack_fi)); 2980 if (ret) 2981 goto out; 2982 } 2983 leaf = path->nodes[0]; 2984 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2985 write_extent_buffer(leaf, stack_fi, 2986 btrfs_item_ptr_offset(leaf, path->slots[0]), 2987 sizeof(struct btrfs_file_extent_item)); 2988 2989 btrfs_release_path(path); 2990 2991 /* 2992 * If we dropped an inline extent here, we know the range where it is 2993 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2994 * number of bytes only for that range containing the inline extent. 2995 * The remaining of the range will be processed when clearning the 2996 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2997 */ 2998 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2999 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3000 3001 inline_size = drop_args.bytes_found - inline_size; 3002 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3003 drop_args.bytes_found -= inline_size; 3004 num_bytes -= sectorsize; 3005 } 3006 3007 if (update_inode_bytes) 3008 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3009 3010 ins.objectid = disk_bytenr; 3011 ins.type = BTRFS_EXTENT_ITEM_KEY; 3012 ins.offset = disk_num_bytes; 3013 3014 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3015 if (ret) 3016 goto out; 3017 3018 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3019 file_pos - offset, 3020 qgroup_reserved, &ins); 3021 out: 3022 btrfs_free_path(path); 3023 3024 return ret; 3025 } 3026 3027 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3028 u64 start, u64 len) 3029 { 3030 struct btrfs_block_group *cache; 3031 3032 cache = btrfs_lookup_block_group(fs_info, start); 3033 ASSERT(cache); 3034 3035 spin_lock(&cache->lock); 3036 cache->delalloc_bytes -= len; 3037 spin_unlock(&cache->lock); 3038 3039 btrfs_put_block_group(cache); 3040 } 3041 3042 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3043 struct btrfs_ordered_extent *oe) 3044 { 3045 struct btrfs_file_extent_item stack_fi; 3046 bool update_inode_bytes; 3047 u64 num_bytes = oe->num_bytes; 3048 u64 ram_bytes = oe->ram_bytes; 3049 3050 memset(&stack_fi, 0, sizeof(stack_fi)); 3051 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3052 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3053 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3054 oe->disk_num_bytes); 3055 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3056 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3057 num_bytes = oe->truncated_len; 3058 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3059 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3060 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3061 /* Encryption and other encoding is reserved and all 0 */ 3062 3063 /* 3064 * For delalloc, when completing an ordered extent we update the inode's 3065 * bytes when clearing the range in the inode's io tree, so pass false 3066 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3067 * except if the ordered extent was truncated. 3068 */ 3069 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3070 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3071 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3072 3073 return insert_reserved_file_extent(trans, oe->inode, 3074 oe->file_offset, &stack_fi, 3075 update_inode_bytes, oe->qgroup_rsv); 3076 } 3077 3078 /* 3079 * As ordered data IO finishes, this gets called so we can finish 3080 * an ordered extent if the range of bytes in the file it covers are 3081 * fully written. 3082 */ 3083 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3084 { 3085 struct btrfs_inode *inode = ordered_extent->inode; 3086 struct btrfs_root *root = inode->root; 3087 struct btrfs_fs_info *fs_info = root->fs_info; 3088 struct btrfs_trans_handle *trans = NULL; 3089 struct extent_io_tree *io_tree = &inode->io_tree; 3090 struct extent_state *cached_state = NULL; 3091 u64 start, end; 3092 int compress_type = 0; 3093 int ret = 0; 3094 u64 logical_len = ordered_extent->num_bytes; 3095 bool freespace_inode; 3096 bool truncated = false; 3097 bool clear_reserved_extent = true; 3098 unsigned int clear_bits = EXTENT_DEFRAG; 3099 3100 start = ordered_extent->file_offset; 3101 end = start + ordered_extent->num_bytes - 1; 3102 3103 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3104 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3105 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3106 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3107 clear_bits |= EXTENT_DELALLOC_NEW; 3108 3109 freespace_inode = btrfs_is_free_space_inode(inode); 3110 if (!freespace_inode) 3111 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3112 3113 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3114 ret = -EIO; 3115 goto out; 3116 } 3117 3118 if (btrfs_is_zoned(fs_info)) 3119 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3120 ordered_extent->disk_num_bytes); 3121 3122 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3123 truncated = true; 3124 logical_len = ordered_extent->truncated_len; 3125 /* Truncated the entire extent, don't bother adding */ 3126 if (!logical_len) 3127 goto out; 3128 } 3129 3130 /* 3131 * If it's a COW write we need to lock the extent range as we will be 3132 * inserting/replacing file extent items and unpinning an extent map. 3133 * This must be taken before joining a transaction, as it's a higher 3134 * level lock (like the inode's VFS lock), otherwise we can run into an 3135 * ABBA deadlock with other tasks (transactions work like a lock, 3136 * depending on their current state). 3137 */ 3138 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3139 clear_bits |= EXTENT_LOCKED; 3140 lock_extent(io_tree, start, end, &cached_state); 3141 } 3142 3143 if (freespace_inode) 3144 trans = btrfs_join_transaction_spacecache(root); 3145 else 3146 trans = btrfs_join_transaction(root); 3147 if (IS_ERR(trans)) { 3148 ret = PTR_ERR(trans); 3149 trans = NULL; 3150 goto out; 3151 } 3152 3153 trans->block_rsv = &inode->block_rsv; 3154 3155 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3156 if (ret) { 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 3161 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3162 /* Logic error */ 3163 ASSERT(list_empty(&ordered_extent->list)); 3164 if (!list_empty(&ordered_extent->list)) { 3165 ret = -EINVAL; 3166 btrfs_abort_transaction(trans, ret); 3167 goto out; 3168 } 3169 3170 btrfs_inode_safe_disk_i_size_write(inode, 0); 3171 ret = btrfs_update_inode_fallback(trans, inode); 3172 if (ret) { 3173 /* -ENOMEM or corruption */ 3174 btrfs_abort_transaction(trans, ret); 3175 } 3176 goto out; 3177 } 3178 3179 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3180 compress_type = ordered_extent->compress_type; 3181 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3182 BUG_ON(compress_type); 3183 ret = btrfs_mark_extent_written(trans, inode, 3184 ordered_extent->file_offset, 3185 ordered_extent->file_offset + 3186 logical_len); 3187 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3188 ordered_extent->disk_num_bytes); 3189 } else { 3190 BUG_ON(root == fs_info->tree_root); 3191 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3192 if (!ret) { 3193 clear_reserved_extent = false; 3194 btrfs_release_delalloc_bytes(fs_info, 3195 ordered_extent->disk_bytenr, 3196 ordered_extent->disk_num_bytes); 3197 } 3198 } 3199 if (ret < 0) { 3200 btrfs_abort_transaction(trans, ret); 3201 goto out; 3202 } 3203 3204 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3205 ordered_extent->num_bytes, trans->transid); 3206 if (ret < 0) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 ret = add_pending_csums(trans, &ordered_extent->list); 3212 if (ret) { 3213 btrfs_abort_transaction(trans, ret); 3214 goto out; 3215 } 3216 3217 /* 3218 * If this is a new delalloc range, clear its new delalloc flag to 3219 * update the inode's number of bytes. This needs to be done first 3220 * before updating the inode item. 3221 */ 3222 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3223 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3224 clear_extent_bit(&inode->io_tree, start, end, 3225 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3226 &cached_state); 3227 3228 btrfs_inode_safe_disk_i_size_write(inode, 0); 3229 ret = btrfs_update_inode_fallback(trans, inode); 3230 if (ret) { /* -ENOMEM or corruption */ 3231 btrfs_abort_transaction(trans, ret); 3232 goto out; 3233 } 3234 out: 3235 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3236 &cached_state); 3237 3238 if (trans) 3239 btrfs_end_transaction(trans); 3240 3241 if (ret || truncated) { 3242 u64 unwritten_start = start; 3243 3244 /* 3245 * If we failed to finish this ordered extent for any reason we 3246 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3247 * extent, and mark the inode with the error if it wasn't 3248 * already set. Any error during writeback would have already 3249 * set the mapping error, so we need to set it if we're the ones 3250 * marking this ordered extent as failed. 3251 */ 3252 if (ret) 3253 btrfs_mark_ordered_extent_error(ordered_extent); 3254 3255 if (truncated) 3256 unwritten_start += logical_len; 3257 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3258 3259 /* 3260 * Drop extent maps for the part of the extent we didn't write. 3261 * 3262 * We have an exception here for the free_space_inode, this is 3263 * because when we do btrfs_get_extent() on the free space inode 3264 * we will search the commit root. If this is a new block group 3265 * we won't find anything, and we will trip over the assert in 3266 * writepage where we do ASSERT(em->block_start != 3267 * EXTENT_MAP_HOLE). 3268 * 3269 * Theoretically we could also skip this for any NOCOW extent as 3270 * we don't mess with the extent map tree in the NOCOW case, but 3271 * for now simply skip this if we are the free space inode. 3272 */ 3273 if (!btrfs_is_free_space_inode(inode)) 3274 btrfs_drop_extent_map_range(inode, unwritten_start, 3275 end, false); 3276 3277 /* 3278 * If the ordered extent had an IOERR or something else went 3279 * wrong we need to return the space for this ordered extent 3280 * back to the allocator. We only free the extent in the 3281 * truncated case if we didn't write out the extent at all. 3282 * 3283 * If we made it past insert_reserved_file_extent before we 3284 * errored out then we don't need to do this as the accounting 3285 * has already been done. 3286 */ 3287 if ((ret || !logical_len) && 3288 clear_reserved_extent && 3289 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3290 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3291 /* 3292 * Discard the range before returning it back to the 3293 * free space pool 3294 */ 3295 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3296 btrfs_discard_extent(fs_info, 3297 ordered_extent->disk_bytenr, 3298 ordered_extent->disk_num_bytes, 3299 NULL); 3300 btrfs_free_reserved_extent(fs_info, 3301 ordered_extent->disk_bytenr, 3302 ordered_extent->disk_num_bytes, 1); 3303 /* 3304 * Actually free the qgroup rsv which was released when 3305 * the ordered extent was created. 3306 */ 3307 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3308 ordered_extent->qgroup_rsv, 3309 BTRFS_QGROUP_RSV_DATA); 3310 } 3311 } 3312 3313 /* 3314 * This needs to be done to make sure anybody waiting knows we are done 3315 * updating everything for this ordered extent. 3316 */ 3317 btrfs_remove_ordered_extent(inode, ordered_extent); 3318 3319 /* once for us */ 3320 btrfs_put_ordered_extent(ordered_extent); 3321 /* once for the tree */ 3322 btrfs_put_ordered_extent(ordered_extent); 3323 3324 return ret; 3325 } 3326 3327 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3328 { 3329 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3330 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3331 list_empty(&ordered->bioc_list)) 3332 btrfs_finish_ordered_zoned(ordered); 3333 return btrfs_finish_one_ordered(ordered); 3334 } 3335 3336 /* 3337 * Verify the checksum for a single sector without any extra action that depend 3338 * on the type of I/O. 3339 */ 3340 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3341 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3342 { 3343 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3344 char *kaddr; 3345 3346 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3347 3348 shash->tfm = fs_info->csum_shash; 3349 3350 kaddr = kmap_local_page(page) + pgoff; 3351 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3352 kunmap_local(kaddr); 3353 3354 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3355 return -EIO; 3356 return 0; 3357 } 3358 3359 /* 3360 * Verify the checksum of a single data sector. 3361 * 3362 * @bbio: btrfs_io_bio which contains the csum 3363 * @dev: device the sector is on 3364 * @bio_offset: offset to the beginning of the bio (in bytes) 3365 * @bv: bio_vec to check 3366 * 3367 * Check if the checksum on a data block is valid. When a checksum mismatch is 3368 * detected, report the error and fill the corrupted range with zero. 3369 * 3370 * Return %true if the sector is ok or had no checksum to start with, else %false. 3371 */ 3372 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3373 u32 bio_offset, struct bio_vec *bv) 3374 { 3375 struct btrfs_inode *inode = bbio->inode; 3376 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3377 u64 file_offset = bbio->file_offset + bio_offset; 3378 u64 end = file_offset + bv->bv_len - 1; 3379 u8 *csum_expected; 3380 u8 csum[BTRFS_CSUM_SIZE]; 3381 3382 ASSERT(bv->bv_len == fs_info->sectorsize); 3383 3384 if (!bbio->csum) 3385 return true; 3386 3387 if (btrfs_is_data_reloc_root(inode->root) && 3388 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3389 NULL)) { 3390 /* Skip the range without csum for data reloc inode */ 3391 clear_extent_bits(&inode->io_tree, file_offset, end, 3392 EXTENT_NODATASUM); 3393 return true; 3394 } 3395 3396 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3397 fs_info->csum_size; 3398 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3399 csum_expected)) 3400 goto zeroit; 3401 return true; 3402 3403 zeroit: 3404 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3405 bbio->mirror_num); 3406 if (dev) 3407 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3408 memzero_bvec(bv); 3409 return false; 3410 } 3411 3412 /* 3413 * Perform a delayed iput on @inode. 3414 * 3415 * @inode: The inode we want to perform iput on 3416 * 3417 * This function uses the generic vfs_inode::i_count to track whether we should 3418 * just decrement it (in case it's > 1) or if this is the last iput then link 3419 * the inode to the delayed iput machinery. Delayed iputs are processed at 3420 * transaction commit time/superblock commit/cleaner kthread. 3421 */ 3422 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3423 { 3424 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3425 unsigned long flags; 3426 3427 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3428 return; 3429 3430 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3431 atomic_inc(&fs_info->nr_delayed_iputs); 3432 /* 3433 * Need to be irq safe here because we can be called from either an irq 3434 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3435 * context. 3436 */ 3437 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3438 ASSERT(list_empty(&inode->delayed_iput)); 3439 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3440 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3441 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3442 wake_up_process(fs_info->cleaner_kthread); 3443 } 3444 3445 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3446 struct btrfs_inode *inode) 3447 { 3448 list_del_init(&inode->delayed_iput); 3449 spin_unlock_irq(&fs_info->delayed_iput_lock); 3450 iput(&inode->vfs_inode); 3451 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3452 wake_up(&fs_info->delayed_iputs_wait); 3453 spin_lock_irq(&fs_info->delayed_iput_lock); 3454 } 3455 3456 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3457 struct btrfs_inode *inode) 3458 { 3459 if (!list_empty(&inode->delayed_iput)) { 3460 spin_lock_irq(&fs_info->delayed_iput_lock); 3461 if (!list_empty(&inode->delayed_iput)) 3462 run_delayed_iput_locked(fs_info, inode); 3463 spin_unlock_irq(&fs_info->delayed_iput_lock); 3464 } 3465 } 3466 3467 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3468 { 3469 /* 3470 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3471 * calls btrfs_add_delayed_iput() and that needs to lock 3472 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3473 * prevent a deadlock. 3474 */ 3475 spin_lock_irq(&fs_info->delayed_iput_lock); 3476 while (!list_empty(&fs_info->delayed_iputs)) { 3477 struct btrfs_inode *inode; 3478 3479 inode = list_first_entry(&fs_info->delayed_iputs, 3480 struct btrfs_inode, delayed_iput); 3481 run_delayed_iput_locked(fs_info, inode); 3482 if (need_resched()) { 3483 spin_unlock_irq(&fs_info->delayed_iput_lock); 3484 cond_resched(); 3485 spin_lock_irq(&fs_info->delayed_iput_lock); 3486 } 3487 } 3488 spin_unlock_irq(&fs_info->delayed_iput_lock); 3489 } 3490 3491 /* 3492 * Wait for flushing all delayed iputs 3493 * 3494 * @fs_info: the filesystem 3495 * 3496 * This will wait on any delayed iputs that are currently running with KILLABLE 3497 * set. Once they are all done running we will return, unless we are killed in 3498 * which case we return EINTR. This helps in user operations like fallocate etc 3499 * that might get blocked on the iputs. 3500 * 3501 * Return EINTR if we were killed, 0 if nothing's pending 3502 */ 3503 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3504 { 3505 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3506 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3507 if (ret) 3508 return -EINTR; 3509 return 0; 3510 } 3511 3512 /* 3513 * This creates an orphan entry for the given inode in case something goes wrong 3514 * in the middle of an unlink. 3515 */ 3516 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3517 struct btrfs_inode *inode) 3518 { 3519 int ret; 3520 3521 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3522 if (ret && ret != -EEXIST) { 3523 btrfs_abort_transaction(trans, ret); 3524 return ret; 3525 } 3526 3527 return 0; 3528 } 3529 3530 /* 3531 * We have done the delete so we can go ahead and remove the orphan item for 3532 * this particular inode. 3533 */ 3534 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3535 struct btrfs_inode *inode) 3536 { 3537 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3538 } 3539 3540 /* 3541 * this cleans up any orphans that may be left on the list from the last use 3542 * of this root. 3543 */ 3544 int btrfs_orphan_cleanup(struct btrfs_root *root) 3545 { 3546 struct btrfs_fs_info *fs_info = root->fs_info; 3547 struct btrfs_path *path; 3548 struct extent_buffer *leaf; 3549 struct btrfs_key key, found_key; 3550 struct btrfs_trans_handle *trans; 3551 u64 last_objectid = 0; 3552 int ret = 0, nr_unlink = 0; 3553 3554 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3555 return 0; 3556 3557 path = btrfs_alloc_path(); 3558 if (!path) { 3559 ret = -ENOMEM; 3560 goto out; 3561 } 3562 path->reada = READA_BACK; 3563 3564 key.objectid = BTRFS_ORPHAN_OBJECTID; 3565 key.type = BTRFS_ORPHAN_ITEM_KEY; 3566 key.offset = (u64)-1; 3567 3568 while (1) { 3569 struct btrfs_inode *inode; 3570 3571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3572 if (ret < 0) 3573 goto out; 3574 3575 /* 3576 * if ret == 0 means we found what we were searching for, which 3577 * is weird, but possible, so only screw with path if we didn't 3578 * find the key and see if we have stuff that matches 3579 */ 3580 if (ret > 0) { 3581 ret = 0; 3582 if (path->slots[0] == 0) 3583 break; 3584 path->slots[0]--; 3585 } 3586 3587 /* pull out the item */ 3588 leaf = path->nodes[0]; 3589 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3590 3591 /* make sure the item matches what we want */ 3592 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3593 break; 3594 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3595 break; 3596 3597 /* release the path since we're done with it */ 3598 btrfs_release_path(path); 3599 3600 /* 3601 * this is where we are basically btrfs_lookup, without the 3602 * crossing root thing. we store the inode number in the 3603 * offset of the orphan item. 3604 */ 3605 3606 if (found_key.offset == last_objectid) { 3607 /* 3608 * We found the same inode as before. This means we were 3609 * not able to remove its items via eviction triggered 3610 * by an iput(). A transaction abort may have happened, 3611 * due to -ENOSPC for example, so try to grab the error 3612 * that lead to a transaction abort, if any. 3613 */ 3614 btrfs_err(fs_info, 3615 "Error removing orphan entry, stopping orphan cleanup"); 3616 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3617 goto out; 3618 } 3619 3620 last_objectid = found_key.offset; 3621 3622 found_key.objectid = found_key.offset; 3623 found_key.type = BTRFS_INODE_ITEM_KEY; 3624 found_key.offset = 0; 3625 inode = btrfs_iget(last_objectid, root); 3626 if (IS_ERR(inode)) { 3627 ret = PTR_ERR(inode); 3628 inode = NULL; 3629 if (ret != -ENOENT) 3630 goto out; 3631 } 3632 3633 if (!inode && root == fs_info->tree_root) { 3634 struct btrfs_root *dead_root; 3635 int is_dead_root = 0; 3636 3637 /* 3638 * This is an orphan in the tree root. Currently these 3639 * could come from 2 sources: 3640 * a) a root (snapshot/subvolume) deletion in progress 3641 * b) a free space cache inode 3642 * We need to distinguish those two, as the orphan item 3643 * for a root must not get deleted before the deletion 3644 * of the snapshot/subvolume's tree completes. 3645 * 3646 * btrfs_find_orphan_roots() ran before us, which has 3647 * found all deleted roots and loaded them into 3648 * fs_info->fs_roots_radix. So here we can find if an 3649 * orphan item corresponds to a deleted root by looking 3650 * up the root from that radix tree. 3651 */ 3652 3653 spin_lock(&fs_info->fs_roots_radix_lock); 3654 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3655 (unsigned long)found_key.objectid); 3656 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3657 is_dead_root = 1; 3658 spin_unlock(&fs_info->fs_roots_radix_lock); 3659 3660 if (is_dead_root) { 3661 /* prevent this orphan from being found again */ 3662 key.offset = found_key.objectid - 1; 3663 continue; 3664 } 3665 3666 } 3667 3668 /* 3669 * If we have an inode with links, there are a couple of 3670 * possibilities: 3671 * 3672 * 1. We were halfway through creating fsverity metadata for the 3673 * file. In that case, the orphan item represents incomplete 3674 * fsverity metadata which must be cleaned up with 3675 * btrfs_drop_verity_items and deleting the orphan item. 3676 3677 * 2. Old kernels (before v3.12) used to create an 3678 * orphan item for truncate indicating that there were possibly 3679 * extent items past i_size that needed to be deleted. In v3.12, 3680 * truncate was changed to update i_size in sync with the extent 3681 * items, but the (useless) orphan item was still created. Since 3682 * v4.18, we don't create the orphan item for truncate at all. 3683 * 3684 * So, this item could mean that we need to do a truncate, but 3685 * only if this filesystem was last used on a pre-v3.12 kernel 3686 * and was not cleanly unmounted. The odds of that are quite 3687 * slim, and it's a pain to do the truncate now, so just delete 3688 * the orphan item. 3689 * 3690 * It's also possible that this orphan item was supposed to be 3691 * deleted but wasn't. The inode number may have been reused, 3692 * but either way, we can delete the orphan item. 3693 */ 3694 if (!inode || inode->vfs_inode.i_nlink) { 3695 if (inode) { 3696 ret = btrfs_drop_verity_items(inode); 3697 iput(&inode->vfs_inode); 3698 inode = NULL; 3699 if (ret) 3700 goto out; 3701 } 3702 trans = btrfs_start_transaction(root, 1); 3703 if (IS_ERR(trans)) { 3704 ret = PTR_ERR(trans); 3705 goto out; 3706 } 3707 btrfs_debug(fs_info, "auto deleting %Lu", 3708 found_key.objectid); 3709 ret = btrfs_del_orphan_item(trans, root, 3710 found_key.objectid); 3711 btrfs_end_transaction(trans); 3712 if (ret) 3713 goto out; 3714 continue; 3715 } 3716 3717 nr_unlink++; 3718 3719 /* this will do delete_inode and everything for us */ 3720 iput(&inode->vfs_inode); 3721 } 3722 /* release the path since we're done with it */ 3723 btrfs_release_path(path); 3724 3725 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3726 trans = btrfs_join_transaction(root); 3727 if (!IS_ERR(trans)) 3728 btrfs_end_transaction(trans); 3729 } 3730 3731 if (nr_unlink) 3732 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3733 3734 out: 3735 if (ret) 3736 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3737 btrfs_free_path(path); 3738 return ret; 3739 } 3740 3741 /* 3742 * very simple check to peek ahead in the leaf looking for xattrs. If we 3743 * don't find any xattrs, we know there can't be any acls. 3744 * 3745 * slot is the slot the inode is in, objectid is the objectid of the inode 3746 */ 3747 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3748 int slot, u64 objectid, 3749 int *first_xattr_slot) 3750 { 3751 u32 nritems = btrfs_header_nritems(leaf); 3752 struct btrfs_key found_key; 3753 static u64 xattr_access = 0; 3754 static u64 xattr_default = 0; 3755 int scanned = 0; 3756 3757 if (!xattr_access) { 3758 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3759 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3760 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3761 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3762 } 3763 3764 slot++; 3765 *first_xattr_slot = -1; 3766 while (slot < nritems) { 3767 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3768 3769 /* we found a different objectid, there must not be acls */ 3770 if (found_key.objectid != objectid) 3771 return 0; 3772 3773 /* we found an xattr, assume we've got an acl */ 3774 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3775 if (*first_xattr_slot == -1) 3776 *first_xattr_slot = slot; 3777 if (found_key.offset == xattr_access || 3778 found_key.offset == xattr_default) 3779 return 1; 3780 } 3781 3782 /* 3783 * we found a key greater than an xattr key, there can't 3784 * be any acls later on 3785 */ 3786 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3787 return 0; 3788 3789 slot++; 3790 scanned++; 3791 3792 /* 3793 * it goes inode, inode backrefs, xattrs, extents, 3794 * so if there are a ton of hard links to an inode there can 3795 * be a lot of backrefs. Don't waste time searching too hard, 3796 * this is just an optimization 3797 */ 3798 if (scanned >= 8) 3799 break; 3800 } 3801 /* we hit the end of the leaf before we found an xattr or 3802 * something larger than an xattr. We have to assume the inode 3803 * has acls 3804 */ 3805 if (*first_xattr_slot == -1) 3806 *first_xattr_slot = slot; 3807 return 1; 3808 } 3809 3810 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3811 { 3812 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3813 3814 if (WARN_ON_ONCE(inode->file_extent_tree)) 3815 return 0; 3816 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3817 return 0; 3818 if (!S_ISREG(inode->vfs_inode.i_mode)) 3819 return 0; 3820 if (btrfs_is_free_space_inode(inode)) 3821 return 0; 3822 3823 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3824 if (!inode->file_extent_tree) 3825 return -ENOMEM; 3826 3827 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3828 /* Lockdep class is set only for the file extent tree. */ 3829 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3830 3831 return 0; 3832 } 3833 3834 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3835 { 3836 struct btrfs_root *root = inode->root; 3837 struct btrfs_inode *existing; 3838 const u64 ino = btrfs_ino(inode); 3839 int ret; 3840 3841 if (inode_unhashed(&inode->vfs_inode)) 3842 return 0; 3843 3844 if (prealloc) { 3845 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3846 if (ret) 3847 return ret; 3848 } 3849 3850 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3851 3852 if (xa_is_err(existing)) { 3853 ret = xa_err(existing); 3854 ASSERT(ret != -EINVAL); 3855 ASSERT(ret != -ENOMEM); 3856 return ret; 3857 } else if (existing) { 3858 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3859 } 3860 3861 return 0; 3862 } 3863 3864 /* 3865 * Read a locked inode from the btree into the in-memory inode and add it to 3866 * its root list/tree. 3867 * 3868 * On failure clean up the inode. 3869 */ 3870 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3871 { 3872 struct btrfs_root *root = inode->root; 3873 struct btrfs_fs_info *fs_info = root->fs_info; 3874 struct extent_buffer *leaf; 3875 struct btrfs_inode_item *inode_item; 3876 struct inode *vfs_inode = &inode->vfs_inode; 3877 struct btrfs_key location; 3878 unsigned long ptr; 3879 int maybe_acls; 3880 u32 rdev; 3881 int ret; 3882 bool filled = false; 3883 int first_xattr_slot; 3884 3885 ret = btrfs_init_file_extent_tree(inode); 3886 if (ret) 3887 goto out; 3888 3889 ret = btrfs_fill_inode(inode, &rdev); 3890 if (!ret) 3891 filled = true; 3892 3893 ASSERT(path); 3894 3895 btrfs_get_inode_key(inode, &location); 3896 3897 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3898 if (ret) { 3899 /* 3900 * ret > 0 can come from btrfs_search_slot called by 3901 * btrfs_lookup_inode(), this means the inode was not found. 3902 */ 3903 if (ret > 0) 3904 ret = -ENOENT; 3905 goto out; 3906 } 3907 3908 leaf = path->nodes[0]; 3909 3910 if (filled) 3911 goto cache_index; 3912 3913 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3914 struct btrfs_inode_item); 3915 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3916 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3917 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3918 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3919 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3920 btrfs_inode_set_file_extent_range(inode, 0, 3921 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3922 3923 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3924 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3925 3926 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3927 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3928 3929 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3930 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3931 3932 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3933 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3934 3935 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3936 inode->generation = btrfs_inode_generation(leaf, inode_item); 3937 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3938 3939 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3940 vfs_inode->i_generation = inode->generation; 3941 vfs_inode->i_rdev = 0; 3942 rdev = btrfs_inode_rdev(leaf, inode_item); 3943 3944 if (S_ISDIR(vfs_inode->i_mode)) 3945 inode->index_cnt = (u64)-1; 3946 3947 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3948 &inode->flags, &inode->ro_flags); 3949 btrfs_update_inode_mapping_flags(inode); 3950 3951 cache_index: 3952 /* 3953 * If we were modified in the current generation and evicted from memory 3954 * and then re-read we need to do a full sync since we don't have any 3955 * idea about which extents were modified before we were evicted from 3956 * cache. 3957 * 3958 * This is required for both inode re-read from disk and delayed inode 3959 * in the delayed_nodes xarray. 3960 */ 3961 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3962 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3963 3964 /* 3965 * We don't persist the id of the transaction where an unlink operation 3966 * against the inode was last made. So here we assume the inode might 3967 * have been evicted, and therefore the exact value of last_unlink_trans 3968 * lost, and set it to last_trans to avoid metadata inconsistencies 3969 * between the inode and its parent if the inode is fsync'ed and the log 3970 * replayed. For example, in the scenario: 3971 * 3972 * touch mydir/foo 3973 * ln mydir/foo mydir/bar 3974 * sync 3975 * unlink mydir/bar 3976 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3977 * xfs_io -c fsync mydir/foo 3978 * <power failure> 3979 * mount fs, triggers fsync log replay 3980 * 3981 * We must make sure that when we fsync our inode foo we also log its 3982 * parent inode, otherwise after log replay the parent still has the 3983 * dentry with the "bar" name but our inode foo has a link count of 1 3984 * and doesn't have an inode ref with the name "bar" anymore. 3985 * 3986 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3987 * but it guarantees correctness at the expense of occasional full 3988 * transaction commits on fsync if our inode is a directory, or if our 3989 * inode is not a directory, logging its parent unnecessarily. 3990 */ 3991 inode->last_unlink_trans = inode->last_trans; 3992 3993 /* 3994 * Same logic as for last_unlink_trans. We don't persist the generation 3995 * of the last transaction where this inode was used for a reflink 3996 * operation, so after eviction and reloading the inode we must be 3997 * pessimistic and assume the last transaction that modified the inode. 3998 */ 3999 inode->last_reflink_trans = inode->last_trans; 4000 4001 path->slots[0]++; 4002 if (vfs_inode->i_nlink != 1 || 4003 path->slots[0] >= btrfs_header_nritems(leaf)) 4004 goto cache_acl; 4005 4006 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4007 if (location.objectid != btrfs_ino(inode)) 4008 goto cache_acl; 4009 4010 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4011 if (location.type == BTRFS_INODE_REF_KEY) { 4012 struct btrfs_inode_ref *ref; 4013 4014 ref = (struct btrfs_inode_ref *)ptr; 4015 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4016 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4017 struct btrfs_inode_extref *extref; 4018 4019 extref = (struct btrfs_inode_extref *)ptr; 4020 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4021 } 4022 cache_acl: 4023 /* 4024 * try to precache a NULL acl entry for files that don't have 4025 * any xattrs or acls 4026 */ 4027 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4028 btrfs_ino(inode), &first_xattr_slot); 4029 if (first_xattr_slot != -1) { 4030 path->slots[0] = first_xattr_slot; 4031 ret = btrfs_load_inode_props(inode, path); 4032 if (ret) 4033 btrfs_err(fs_info, 4034 "error loading props for ino %llu (root %llu): %d", 4035 btrfs_ino(inode), btrfs_root_id(root), ret); 4036 } 4037 4038 if (!maybe_acls) 4039 cache_no_acl(vfs_inode); 4040 4041 switch (vfs_inode->i_mode & S_IFMT) { 4042 case S_IFREG: 4043 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4044 vfs_inode->i_fop = &btrfs_file_operations; 4045 vfs_inode->i_op = &btrfs_file_inode_operations; 4046 break; 4047 case S_IFDIR: 4048 vfs_inode->i_fop = &btrfs_dir_file_operations; 4049 vfs_inode->i_op = &btrfs_dir_inode_operations; 4050 break; 4051 case S_IFLNK: 4052 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4053 inode_nohighmem(vfs_inode); 4054 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4055 break; 4056 default: 4057 vfs_inode->i_op = &btrfs_special_inode_operations; 4058 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4059 break; 4060 } 4061 4062 btrfs_sync_inode_flags_to_i_flags(inode); 4063 4064 ret = btrfs_add_inode_to_root(inode, true); 4065 if (ret) 4066 goto out; 4067 4068 return 0; 4069 out: 4070 iget_failed(vfs_inode); 4071 return ret; 4072 } 4073 4074 /* 4075 * given a leaf and an inode, copy the inode fields into the leaf 4076 */ 4077 static void fill_inode_item(struct btrfs_trans_handle *trans, 4078 struct extent_buffer *leaf, 4079 struct btrfs_inode_item *item, 4080 struct inode *inode) 4081 { 4082 struct btrfs_map_token token; 4083 u64 flags; 4084 4085 btrfs_init_map_token(&token, leaf); 4086 4087 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4088 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4089 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4090 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4091 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4092 4093 btrfs_set_token_timespec_sec(&token, &item->atime, 4094 inode_get_atime_sec(inode)); 4095 btrfs_set_token_timespec_nsec(&token, &item->atime, 4096 inode_get_atime_nsec(inode)); 4097 4098 btrfs_set_token_timespec_sec(&token, &item->mtime, 4099 inode_get_mtime_sec(inode)); 4100 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4101 inode_get_mtime_nsec(inode)); 4102 4103 btrfs_set_token_timespec_sec(&token, &item->ctime, 4104 inode_get_ctime_sec(inode)); 4105 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4106 inode_get_ctime_nsec(inode)); 4107 4108 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4109 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4110 4111 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4112 btrfs_set_token_inode_generation(&token, item, 4113 BTRFS_I(inode)->generation); 4114 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4115 btrfs_set_token_inode_transid(&token, item, trans->transid); 4116 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4117 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4118 BTRFS_I(inode)->ro_flags); 4119 btrfs_set_token_inode_flags(&token, item, flags); 4120 btrfs_set_token_inode_block_group(&token, item, 0); 4121 } 4122 4123 /* 4124 * copy everything in the in-memory inode into the btree. 4125 */ 4126 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4127 struct btrfs_inode *inode) 4128 { 4129 struct btrfs_inode_item *inode_item; 4130 struct btrfs_path *path; 4131 struct extent_buffer *leaf; 4132 struct btrfs_key key; 4133 int ret; 4134 4135 path = btrfs_alloc_path(); 4136 if (!path) 4137 return -ENOMEM; 4138 4139 btrfs_get_inode_key(inode, &key); 4140 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4141 if (ret) { 4142 if (ret > 0) 4143 ret = -ENOENT; 4144 goto failed; 4145 } 4146 4147 leaf = path->nodes[0]; 4148 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4149 struct btrfs_inode_item); 4150 4151 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4152 btrfs_set_inode_last_trans(trans, inode); 4153 ret = 0; 4154 failed: 4155 btrfs_free_path(path); 4156 return ret; 4157 } 4158 4159 /* 4160 * copy everything in the in-memory inode into the btree. 4161 */ 4162 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4163 struct btrfs_inode *inode) 4164 { 4165 struct btrfs_root *root = inode->root; 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 int ret; 4168 4169 /* 4170 * If the inode is a free space inode, we can deadlock during commit 4171 * if we put it into the delayed code. 4172 * 4173 * The data relocation inode should also be directly updated 4174 * without delay 4175 */ 4176 if (!btrfs_is_free_space_inode(inode) 4177 && !btrfs_is_data_reloc_root(root) 4178 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4179 btrfs_update_root_times(trans, root); 4180 4181 ret = btrfs_delayed_update_inode(trans, inode); 4182 if (!ret) 4183 btrfs_set_inode_last_trans(trans, inode); 4184 return ret; 4185 } 4186 4187 return btrfs_update_inode_item(trans, inode); 4188 } 4189 4190 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4191 struct btrfs_inode *inode) 4192 { 4193 int ret; 4194 4195 ret = btrfs_update_inode(trans, inode); 4196 if (ret == -ENOSPC) 4197 return btrfs_update_inode_item(trans, inode); 4198 return ret; 4199 } 4200 4201 /* 4202 * unlink helper that gets used here in inode.c and in the tree logging 4203 * recovery code. It remove a link in a directory with a given name, and 4204 * also drops the back refs in the inode to the directory 4205 */ 4206 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4207 struct btrfs_inode *dir, 4208 struct btrfs_inode *inode, 4209 const struct fscrypt_str *name, 4210 struct btrfs_rename_ctx *rename_ctx) 4211 { 4212 struct btrfs_root *root = dir->root; 4213 struct btrfs_fs_info *fs_info = root->fs_info; 4214 struct btrfs_path *path; 4215 int ret = 0; 4216 struct btrfs_dir_item *di; 4217 u64 index; 4218 u64 ino = btrfs_ino(inode); 4219 u64 dir_ino = btrfs_ino(dir); 4220 4221 path = btrfs_alloc_path(); 4222 if (!path) { 4223 ret = -ENOMEM; 4224 goto out; 4225 } 4226 4227 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4228 if (IS_ERR_OR_NULL(di)) { 4229 ret = di ? PTR_ERR(di) : -ENOENT; 4230 goto err; 4231 } 4232 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4233 if (ret) 4234 goto err; 4235 btrfs_release_path(path); 4236 4237 /* 4238 * If we don't have dir index, we have to get it by looking up 4239 * the inode ref, since we get the inode ref, remove it directly, 4240 * it is unnecessary to do delayed deletion. 4241 * 4242 * But if we have dir index, needn't search inode ref to get it. 4243 * Since the inode ref is close to the inode item, it is better 4244 * that we delay to delete it, and just do this deletion when 4245 * we update the inode item. 4246 */ 4247 if (inode->dir_index) { 4248 ret = btrfs_delayed_delete_inode_ref(inode); 4249 if (!ret) { 4250 index = inode->dir_index; 4251 goto skip_backref; 4252 } 4253 } 4254 4255 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4256 if (ret) { 4257 btrfs_info(fs_info, 4258 "failed to delete reference to %.*s, inode %llu parent %llu", 4259 name->len, name->name, ino, dir_ino); 4260 btrfs_abort_transaction(trans, ret); 4261 goto err; 4262 } 4263 skip_backref: 4264 if (rename_ctx) 4265 rename_ctx->index = index; 4266 4267 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4268 if (ret) { 4269 btrfs_abort_transaction(trans, ret); 4270 goto err; 4271 } 4272 4273 /* 4274 * If we are in a rename context, we don't need to update anything in the 4275 * log. That will be done later during the rename by btrfs_log_new_name(). 4276 * Besides that, doing it here would only cause extra unnecessary btree 4277 * operations on the log tree, increasing latency for applications. 4278 */ 4279 if (!rename_ctx) { 4280 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4281 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4282 } 4283 4284 /* 4285 * If we have a pending delayed iput we could end up with the final iput 4286 * being run in btrfs-cleaner context. If we have enough of these built 4287 * up we can end up burning a lot of time in btrfs-cleaner without any 4288 * way to throttle the unlinks. Since we're currently holding a ref on 4289 * the inode we can run the delayed iput here without any issues as the 4290 * final iput won't be done until after we drop the ref we're currently 4291 * holding. 4292 */ 4293 btrfs_run_delayed_iput(fs_info, inode); 4294 err: 4295 btrfs_free_path(path); 4296 if (ret) 4297 goto out; 4298 4299 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4300 inode_inc_iversion(&inode->vfs_inode); 4301 inode_set_ctime_current(&inode->vfs_inode); 4302 inode_inc_iversion(&dir->vfs_inode); 4303 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4304 ret = btrfs_update_inode(trans, dir); 4305 out: 4306 return ret; 4307 } 4308 4309 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4310 struct btrfs_inode *dir, struct btrfs_inode *inode, 4311 const struct fscrypt_str *name) 4312 { 4313 int ret; 4314 4315 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4316 if (!ret) { 4317 drop_nlink(&inode->vfs_inode); 4318 ret = btrfs_update_inode(trans, inode); 4319 } 4320 return ret; 4321 } 4322 4323 /* 4324 * helper to start transaction for unlink and rmdir. 4325 * 4326 * unlink and rmdir are special in btrfs, they do not always free space, so 4327 * if we cannot make our reservations the normal way try and see if there is 4328 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4329 * allow the unlink to occur. 4330 */ 4331 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4332 { 4333 struct btrfs_root *root = dir->root; 4334 4335 return btrfs_start_transaction_fallback_global_rsv(root, 4336 BTRFS_UNLINK_METADATA_UNITS); 4337 } 4338 4339 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4340 { 4341 struct btrfs_trans_handle *trans; 4342 struct inode *inode = d_inode(dentry); 4343 int ret; 4344 struct fscrypt_name fname; 4345 4346 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4347 if (ret) 4348 return ret; 4349 4350 /* This needs to handle no-key deletions later on */ 4351 4352 trans = __unlink_start_trans(BTRFS_I(dir)); 4353 if (IS_ERR(trans)) { 4354 ret = PTR_ERR(trans); 4355 goto fscrypt_free; 4356 } 4357 4358 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4359 false); 4360 4361 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4362 &fname.disk_name); 4363 if (ret) 4364 goto end_trans; 4365 4366 if (inode->i_nlink == 0) { 4367 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4368 if (ret) 4369 goto end_trans; 4370 } 4371 4372 end_trans: 4373 btrfs_end_transaction(trans); 4374 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4375 fscrypt_free: 4376 fscrypt_free_filename(&fname); 4377 return ret; 4378 } 4379 4380 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4381 struct btrfs_inode *dir, struct dentry *dentry) 4382 { 4383 struct btrfs_root *root = dir->root; 4384 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4385 struct btrfs_path *path; 4386 struct extent_buffer *leaf; 4387 struct btrfs_dir_item *di; 4388 struct btrfs_key key; 4389 u64 index; 4390 int ret; 4391 u64 objectid; 4392 u64 dir_ino = btrfs_ino(dir); 4393 struct fscrypt_name fname; 4394 4395 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4396 if (ret) 4397 return ret; 4398 4399 /* This needs to handle no-key deletions later on */ 4400 4401 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4402 objectid = btrfs_root_id(inode->root); 4403 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4404 objectid = inode->ref_root_id; 4405 } else { 4406 WARN_ON(1); 4407 fscrypt_free_filename(&fname); 4408 return -EINVAL; 4409 } 4410 4411 path = btrfs_alloc_path(); 4412 if (!path) { 4413 ret = -ENOMEM; 4414 goto out; 4415 } 4416 4417 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4418 &fname.disk_name, -1); 4419 if (IS_ERR_OR_NULL(di)) { 4420 ret = di ? PTR_ERR(di) : -ENOENT; 4421 goto out; 4422 } 4423 4424 leaf = path->nodes[0]; 4425 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4426 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4427 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4428 if (ret) { 4429 btrfs_abort_transaction(trans, ret); 4430 goto out; 4431 } 4432 btrfs_release_path(path); 4433 4434 /* 4435 * This is a placeholder inode for a subvolume we didn't have a 4436 * reference to at the time of the snapshot creation. In the meantime 4437 * we could have renamed the real subvol link into our snapshot, so 4438 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4439 * Instead simply lookup the dir_index_item for this entry so we can 4440 * remove it. Otherwise we know we have a ref to the root and we can 4441 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4442 */ 4443 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4444 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4445 if (IS_ERR(di)) { 4446 ret = PTR_ERR(di); 4447 btrfs_abort_transaction(trans, ret); 4448 goto out; 4449 } 4450 4451 leaf = path->nodes[0]; 4452 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4453 index = key.offset; 4454 btrfs_release_path(path); 4455 } else { 4456 ret = btrfs_del_root_ref(trans, objectid, 4457 btrfs_root_id(root), dir_ino, 4458 &index, &fname.disk_name); 4459 if (ret) { 4460 btrfs_abort_transaction(trans, ret); 4461 goto out; 4462 } 4463 } 4464 4465 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4466 if (ret) { 4467 btrfs_abort_transaction(trans, ret); 4468 goto out; 4469 } 4470 4471 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4472 inode_inc_iversion(&dir->vfs_inode); 4473 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4474 ret = btrfs_update_inode_fallback(trans, dir); 4475 if (ret) 4476 btrfs_abort_transaction(trans, ret); 4477 out: 4478 btrfs_free_path(path); 4479 fscrypt_free_filename(&fname); 4480 return ret; 4481 } 4482 4483 /* 4484 * Helper to check if the subvolume references other subvolumes or if it's 4485 * default. 4486 */ 4487 static noinline int may_destroy_subvol(struct btrfs_root *root) 4488 { 4489 struct btrfs_fs_info *fs_info = root->fs_info; 4490 struct btrfs_path *path; 4491 struct btrfs_dir_item *di; 4492 struct btrfs_key key; 4493 struct fscrypt_str name = FSTR_INIT("default", 7); 4494 u64 dir_id; 4495 int ret; 4496 4497 path = btrfs_alloc_path(); 4498 if (!path) 4499 return -ENOMEM; 4500 4501 /* Make sure this root isn't set as the default subvol */ 4502 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4503 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4504 dir_id, &name, 0); 4505 if (di && !IS_ERR(di)) { 4506 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4507 if (key.objectid == btrfs_root_id(root)) { 4508 ret = -EPERM; 4509 btrfs_err(fs_info, 4510 "deleting default subvolume %llu is not allowed", 4511 key.objectid); 4512 goto out; 4513 } 4514 btrfs_release_path(path); 4515 } 4516 4517 key.objectid = btrfs_root_id(root); 4518 key.type = BTRFS_ROOT_REF_KEY; 4519 key.offset = (u64)-1; 4520 4521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4522 if (ret < 0) 4523 goto out; 4524 if (ret == 0) { 4525 /* 4526 * Key with offset -1 found, there would have to exist a root 4527 * with such id, but this is out of valid range. 4528 */ 4529 ret = -EUCLEAN; 4530 goto out; 4531 } 4532 4533 ret = 0; 4534 if (path->slots[0] > 0) { 4535 path->slots[0]--; 4536 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4537 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4538 ret = -ENOTEMPTY; 4539 } 4540 out: 4541 btrfs_free_path(path); 4542 return ret; 4543 } 4544 4545 /* Delete all dentries for inodes belonging to the root */ 4546 static void btrfs_prune_dentries(struct btrfs_root *root) 4547 { 4548 struct btrfs_fs_info *fs_info = root->fs_info; 4549 struct btrfs_inode *inode; 4550 u64 min_ino = 0; 4551 4552 if (!BTRFS_FS_ERROR(fs_info)) 4553 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4554 4555 inode = btrfs_find_first_inode(root, min_ino); 4556 while (inode) { 4557 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4558 d_prune_aliases(&inode->vfs_inode); 4559 4560 min_ino = btrfs_ino(inode) + 1; 4561 /* 4562 * btrfs_drop_inode() will have it removed from the inode 4563 * cache when its usage count hits zero. 4564 */ 4565 iput(&inode->vfs_inode); 4566 cond_resched(); 4567 inode = btrfs_find_first_inode(root, min_ino); 4568 } 4569 } 4570 4571 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4572 { 4573 struct btrfs_root *root = dir->root; 4574 struct btrfs_fs_info *fs_info = root->fs_info; 4575 struct inode *inode = d_inode(dentry); 4576 struct btrfs_root *dest = BTRFS_I(inode)->root; 4577 struct btrfs_trans_handle *trans; 4578 struct btrfs_block_rsv block_rsv; 4579 u64 root_flags; 4580 u64 qgroup_reserved = 0; 4581 int ret; 4582 4583 down_write(&fs_info->subvol_sem); 4584 4585 /* 4586 * Don't allow to delete a subvolume with send in progress. This is 4587 * inside the inode lock so the error handling that has to drop the bit 4588 * again is not run concurrently. 4589 */ 4590 spin_lock(&dest->root_item_lock); 4591 if (dest->send_in_progress) { 4592 spin_unlock(&dest->root_item_lock); 4593 btrfs_warn(fs_info, 4594 "attempt to delete subvolume %llu during send", 4595 btrfs_root_id(dest)); 4596 ret = -EPERM; 4597 goto out_up_write; 4598 } 4599 if (atomic_read(&dest->nr_swapfiles)) { 4600 spin_unlock(&dest->root_item_lock); 4601 btrfs_warn(fs_info, 4602 "attempt to delete subvolume %llu with active swapfile", 4603 btrfs_root_id(root)); 4604 ret = -EPERM; 4605 goto out_up_write; 4606 } 4607 root_flags = btrfs_root_flags(&dest->root_item); 4608 btrfs_set_root_flags(&dest->root_item, 4609 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4610 spin_unlock(&dest->root_item_lock); 4611 4612 ret = may_destroy_subvol(dest); 4613 if (ret) 4614 goto out_undead; 4615 4616 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4617 /* 4618 * One for dir inode, 4619 * two for dir entries, 4620 * two for root ref/backref. 4621 */ 4622 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4623 if (ret) 4624 goto out_undead; 4625 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4626 4627 trans = btrfs_start_transaction(root, 0); 4628 if (IS_ERR(trans)) { 4629 ret = PTR_ERR(trans); 4630 goto out_release; 4631 } 4632 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4633 qgroup_reserved = 0; 4634 trans->block_rsv = &block_rsv; 4635 trans->bytes_reserved = block_rsv.size; 4636 4637 btrfs_record_snapshot_destroy(trans, dir); 4638 4639 ret = btrfs_unlink_subvol(trans, dir, dentry); 4640 if (ret) { 4641 btrfs_abort_transaction(trans, ret); 4642 goto out_end_trans; 4643 } 4644 4645 ret = btrfs_record_root_in_trans(trans, dest); 4646 if (ret) { 4647 btrfs_abort_transaction(trans, ret); 4648 goto out_end_trans; 4649 } 4650 4651 memset(&dest->root_item.drop_progress, 0, 4652 sizeof(dest->root_item.drop_progress)); 4653 btrfs_set_root_drop_level(&dest->root_item, 0); 4654 btrfs_set_root_refs(&dest->root_item, 0); 4655 4656 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4657 ret = btrfs_insert_orphan_item(trans, 4658 fs_info->tree_root, 4659 btrfs_root_id(dest)); 4660 if (ret) { 4661 btrfs_abort_transaction(trans, ret); 4662 goto out_end_trans; 4663 } 4664 } 4665 4666 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4667 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4668 if (ret && ret != -ENOENT) { 4669 btrfs_abort_transaction(trans, ret); 4670 goto out_end_trans; 4671 } 4672 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4673 ret = btrfs_uuid_tree_remove(trans, 4674 dest->root_item.received_uuid, 4675 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4676 btrfs_root_id(dest)); 4677 if (ret && ret != -ENOENT) { 4678 btrfs_abort_transaction(trans, ret); 4679 goto out_end_trans; 4680 } 4681 } 4682 4683 free_anon_bdev(dest->anon_dev); 4684 dest->anon_dev = 0; 4685 out_end_trans: 4686 trans->block_rsv = NULL; 4687 trans->bytes_reserved = 0; 4688 ret = btrfs_end_transaction(trans); 4689 inode->i_flags |= S_DEAD; 4690 out_release: 4691 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4692 if (qgroup_reserved) 4693 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4694 out_undead: 4695 if (ret) { 4696 spin_lock(&dest->root_item_lock); 4697 root_flags = btrfs_root_flags(&dest->root_item); 4698 btrfs_set_root_flags(&dest->root_item, 4699 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4700 spin_unlock(&dest->root_item_lock); 4701 } 4702 out_up_write: 4703 up_write(&fs_info->subvol_sem); 4704 if (!ret) { 4705 d_invalidate(dentry); 4706 btrfs_prune_dentries(dest); 4707 ASSERT(dest->send_in_progress == 0); 4708 } 4709 4710 return ret; 4711 } 4712 4713 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4714 { 4715 struct inode *inode = d_inode(dentry); 4716 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4717 int ret = 0; 4718 struct btrfs_trans_handle *trans; 4719 u64 last_unlink_trans; 4720 struct fscrypt_name fname; 4721 4722 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4723 return -ENOTEMPTY; 4724 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4725 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4726 btrfs_err(fs_info, 4727 "extent tree v2 doesn't support snapshot deletion yet"); 4728 return -EOPNOTSUPP; 4729 } 4730 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4731 } 4732 4733 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4734 if (ret) 4735 return ret; 4736 4737 /* This needs to handle no-key deletions later on */ 4738 4739 trans = __unlink_start_trans(BTRFS_I(dir)); 4740 if (IS_ERR(trans)) { 4741 ret = PTR_ERR(trans); 4742 goto out_notrans; 4743 } 4744 4745 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4746 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4747 goto out; 4748 } 4749 4750 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4751 if (ret) 4752 goto out; 4753 4754 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4755 4756 /* now the directory is empty */ 4757 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4758 &fname.disk_name); 4759 if (!ret) { 4760 btrfs_i_size_write(BTRFS_I(inode), 0); 4761 /* 4762 * Propagate the last_unlink_trans value of the deleted dir to 4763 * its parent directory. This is to prevent an unrecoverable 4764 * log tree in the case we do something like this: 4765 * 1) create dir foo 4766 * 2) create snapshot under dir foo 4767 * 3) delete the snapshot 4768 * 4) rmdir foo 4769 * 5) mkdir foo 4770 * 6) fsync foo or some file inside foo 4771 */ 4772 if (last_unlink_trans >= trans->transid) 4773 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4774 } 4775 out: 4776 btrfs_end_transaction(trans); 4777 out_notrans: 4778 btrfs_btree_balance_dirty(fs_info); 4779 fscrypt_free_filename(&fname); 4780 4781 return ret; 4782 } 4783 4784 /* 4785 * Read, zero a chunk and write a block. 4786 * 4787 * @inode - inode that we're zeroing 4788 * @from - the offset to start zeroing 4789 * @len - the length to zero, 0 to zero the entire range respective to the 4790 * offset 4791 * @front - zero up to the offset instead of from the offset on 4792 * 4793 * This will find the block for the "from" offset and cow the block and zero the 4794 * part we want to zero. This is used with truncate and hole punching. 4795 */ 4796 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4797 int front) 4798 { 4799 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4800 struct address_space *mapping = inode->vfs_inode.i_mapping; 4801 struct extent_io_tree *io_tree = &inode->io_tree; 4802 struct btrfs_ordered_extent *ordered; 4803 struct extent_state *cached_state = NULL; 4804 struct extent_changeset *data_reserved = NULL; 4805 bool only_release_metadata = false; 4806 u32 blocksize = fs_info->sectorsize; 4807 pgoff_t index = from >> PAGE_SHIFT; 4808 unsigned offset = from & (blocksize - 1); 4809 struct folio *folio; 4810 gfp_t mask = btrfs_alloc_write_mask(mapping); 4811 size_t write_bytes = blocksize; 4812 int ret = 0; 4813 u64 block_start; 4814 u64 block_end; 4815 4816 if (IS_ALIGNED(offset, blocksize) && 4817 (!len || IS_ALIGNED(len, blocksize))) 4818 goto out; 4819 4820 block_start = round_down(from, blocksize); 4821 block_end = block_start + blocksize - 1; 4822 4823 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4824 blocksize, false); 4825 if (ret < 0) { 4826 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4827 /* For nocow case, no need to reserve data space */ 4828 only_release_metadata = true; 4829 } else { 4830 goto out; 4831 } 4832 } 4833 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4834 if (ret < 0) { 4835 if (!only_release_metadata) 4836 btrfs_free_reserved_data_space(inode, data_reserved, 4837 block_start, blocksize); 4838 goto out; 4839 } 4840 again: 4841 folio = __filemap_get_folio(mapping, index, 4842 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4843 if (IS_ERR(folio)) { 4844 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4845 blocksize, true); 4846 btrfs_delalloc_release_extents(inode, blocksize); 4847 ret = -ENOMEM; 4848 goto out; 4849 } 4850 4851 if (!folio_test_uptodate(folio)) { 4852 ret = btrfs_read_folio(NULL, folio); 4853 folio_lock(folio); 4854 if (folio->mapping != mapping) { 4855 folio_unlock(folio); 4856 folio_put(folio); 4857 goto again; 4858 } 4859 if (!folio_test_uptodate(folio)) { 4860 ret = -EIO; 4861 goto out_unlock; 4862 } 4863 } 4864 4865 /* 4866 * We unlock the page after the io is completed and then re-lock it 4867 * above. release_folio() could have come in between that and cleared 4868 * folio private, but left the page in the mapping. Set the page mapped 4869 * here to make sure it's properly set for the subpage stuff. 4870 */ 4871 ret = set_folio_extent_mapped(folio); 4872 if (ret < 0) 4873 goto out_unlock; 4874 4875 folio_wait_writeback(folio); 4876 4877 lock_extent(io_tree, block_start, block_end, &cached_state); 4878 4879 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4880 if (ordered) { 4881 unlock_extent(io_tree, block_start, block_end, &cached_state); 4882 folio_unlock(folio); 4883 folio_put(folio); 4884 btrfs_start_ordered_extent(ordered); 4885 btrfs_put_ordered_extent(ordered); 4886 goto again; 4887 } 4888 4889 clear_extent_bit(&inode->io_tree, block_start, block_end, 4890 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4891 &cached_state); 4892 4893 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4894 &cached_state); 4895 if (ret) { 4896 unlock_extent(io_tree, block_start, block_end, &cached_state); 4897 goto out_unlock; 4898 } 4899 4900 if (offset != blocksize) { 4901 if (!len) 4902 len = blocksize - offset; 4903 if (front) 4904 folio_zero_range(folio, block_start - folio_pos(folio), 4905 offset); 4906 else 4907 folio_zero_range(folio, 4908 (block_start - folio_pos(folio)) + offset, 4909 len); 4910 } 4911 btrfs_folio_clear_checked(fs_info, folio, block_start, 4912 block_end + 1 - block_start); 4913 btrfs_folio_set_dirty(fs_info, folio, block_start, 4914 block_end + 1 - block_start); 4915 unlock_extent(io_tree, block_start, block_end, &cached_state); 4916 4917 if (only_release_metadata) 4918 set_extent_bit(&inode->io_tree, block_start, block_end, 4919 EXTENT_NORESERVE, NULL); 4920 4921 out_unlock: 4922 if (ret) { 4923 if (only_release_metadata) 4924 btrfs_delalloc_release_metadata(inode, blocksize, true); 4925 else 4926 btrfs_delalloc_release_space(inode, data_reserved, 4927 block_start, blocksize, true); 4928 } 4929 btrfs_delalloc_release_extents(inode, blocksize); 4930 folio_unlock(folio); 4931 folio_put(folio); 4932 out: 4933 if (only_release_metadata) 4934 btrfs_check_nocow_unlock(inode); 4935 extent_changeset_free(data_reserved); 4936 return ret; 4937 } 4938 4939 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4940 { 4941 struct btrfs_root *root = inode->root; 4942 struct btrfs_fs_info *fs_info = root->fs_info; 4943 struct btrfs_trans_handle *trans; 4944 struct btrfs_drop_extents_args drop_args = { 0 }; 4945 int ret; 4946 4947 /* 4948 * If NO_HOLES is enabled, we don't need to do anything. 4949 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4950 * or btrfs_update_inode() will be called, which guarantee that the next 4951 * fsync will know this inode was changed and needs to be logged. 4952 */ 4953 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4954 return 0; 4955 4956 /* 4957 * 1 - for the one we're dropping 4958 * 1 - for the one we're adding 4959 * 1 - for updating the inode. 4960 */ 4961 trans = btrfs_start_transaction(root, 3); 4962 if (IS_ERR(trans)) 4963 return PTR_ERR(trans); 4964 4965 drop_args.start = offset; 4966 drop_args.end = offset + len; 4967 drop_args.drop_cache = true; 4968 4969 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4970 if (ret) { 4971 btrfs_abort_transaction(trans, ret); 4972 btrfs_end_transaction(trans); 4973 return ret; 4974 } 4975 4976 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4977 if (ret) { 4978 btrfs_abort_transaction(trans, ret); 4979 } else { 4980 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4981 btrfs_update_inode(trans, inode); 4982 } 4983 btrfs_end_transaction(trans); 4984 return ret; 4985 } 4986 4987 /* 4988 * This function puts in dummy file extents for the area we're creating a hole 4989 * for. So if we are truncating this file to a larger size we need to insert 4990 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4991 * the range between oldsize and size 4992 */ 4993 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4994 { 4995 struct btrfs_root *root = inode->root; 4996 struct btrfs_fs_info *fs_info = root->fs_info; 4997 struct extent_io_tree *io_tree = &inode->io_tree; 4998 struct extent_map *em = NULL; 4999 struct extent_state *cached_state = NULL; 5000 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5001 u64 block_end = ALIGN(size, fs_info->sectorsize); 5002 u64 last_byte; 5003 u64 cur_offset; 5004 u64 hole_size; 5005 int ret = 0; 5006 5007 /* 5008 * If our size started in the middle of a block we need to zero out the 5009 * rest of the block before we expand the i_size, otherwise we could 5010 * expose stale data. 5011 */ 5012 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 5013 if (ret) 5014 return ret; 5015 5016 if (size <= hole_start) 5017 return 0; 5018 5019 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5020 &cached_state); 5021 cur_offset = hole_start; 5022 while (1) { 5023 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5024 if (IS_ERR(em)) { 5025 ret = PTR_ERR(em); 5026 em = NULL; 5027 break; 5028 } 5029 last_byte = min(extent_map_end(em), block_end); 5030 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5031 hole_size = last_byte - cur_offset; 5032 5033 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5034 struct extent_map *hole_em; 5035 5036 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5037 if (ret) 5038 break; 5039 5040 ret = btrfs_inode_set_file_extent_range(inode, 5041 cur_offset, hole_size); 5042 if (ret) 5043 break; 5044 5045 hole_em = alloc_extent_map(); 5046 if (!hole_em) { 5047 btrfs_drop_extent_map_range(inode, cur_offset, 5048 cur_offset + hole_size - 1, 5049 false); 5050 btrfs_set_inode_full_sync(inode); 5051 goto next; 5052 } 5053 hole_em->start = cur_offset; 5054 hole_em->len = hole_size; 5055 5056 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5057 hole_em->disk_num_bytes = 0; 5058 hole_em->ram_bytes = hole_size; 5059 hole_em->generation = btrfs_get_fs_generation(fs_info); 5060 5061 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5062 free_extent_map(hole_em); 5063 } else { 5064 ret = btrfs_inode_set_file_extent_range(inode, 5065 cur_offset, hole_size); 5066 if (ret) 5067 break; 5068 } 5069 next: 5070 free_extent_map(em); 5071 em = NULL; 5072 cur_offset = last_byte; 5073 if (cur_offset >= block_end) 5074 break; 5075 } 5076 free_extent_map(em); 5077 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5078 return ret; 5079 } 5080 5081 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5082 { 5083 struct btrfs_root *root = BTRFS_I(inode)->root; 5084 struct btrfs_trans_handle *trans; 5085 loff_t oldsize = i_size_read(inode); 5086 loff_t newsize = attr->ia_size; 5087 int mask = attr->ia_valid; 5088 int ret; 5089 5090 /* 5091 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5092 * special case where we need to update the times despite not having 5093 * these flags set. For all other operations the VFS set these flags 5094 * explicitly if it wants a timestamp update. 5095 */ 5096 if (newsize != oldsize) { 5097 inode_inc_iversion(inode); 5098 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5099 inode_set_mtime_to_ts(inode, 5100 inode_set_ctime_current(inode)); 5101 } 5102 } 5103 5104 if (newsize > oldsize) { 5105 /* 5106 * Don't do an expanding truncate while snapshotting is ongoing. 5107 * This is to ensure the snapshot captures a fully consistent 5108 * state of this file - if the snapshot captures this expanding 5109 * truncation, it must capture all writes that happened before 5110 * this truncation. 5111 */ 5112 btrfs_drew_write_lock(&root->snapshot_lock); 5113 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5114 if (ret) { 5115 btrfs_drew_write_unlock(&root->snapshot_lock); 5116 return ret; 5117 } 5118 5119 trans = btrfs_start_transaction(root, 1); 5120 if (IS_ERR(trans)) { 5121 btrfs_drew_write_unlock(&root->snapshot_lock); 5122 return PTR_ERR(trans); 5123 } 5124 5125 i_size_write(inode, newsize); 5126 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5127 pagecache_isize_extended(inode, oldsize, newsize); 5128 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5129 btrfs_drew_write_unlock(&root->snapshot_lock); 5130 btrfs_end_transaction(trans); 5131 } else { 5132 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5133 5134 if (btrfs_is_zoned(fs_info)) { 5135 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5136 ALIGN(newsize, fs_info->sectorsize), 5137 (u64)-1); 5138 if (ret) 5139 return ret; 5140 } 5141 5142 /* 5143 * We're truncating a file that used to have good data down to 5144 * zero. Make sure any new writes to the file get on disk 5145 * on close. 5146 */ 5147 if (newsize == 0) 5148 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5149 &BTRFS_I(inode)->runtime_flags); 5150 5151 truncate_setsize(inode, newsize); 5152 5153 inode_dio_wait(inode); 5154 5155 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5156 if (ret && inode->i_nlink) { 5157 int err; 5158 5159 /* 5160 * Truncate failed, so fix up the in-memory size. We 5161 * adjusted disk_i_size down as we removed extents, so 5162 * wait for disk_i_size to be stable and then update the 5163 * in-memory size to match. 5164 */ 5165 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5166 if (err) 5167 return err; 5168 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5169 } 5170 } 5171 5172 return ret; 5173 } 5174 5175 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5176 struct iattr *attr) 5177 { 5178 struct inode *inode = d_inode(dentry); 5179 struct btrfs_root *root = BTRFS_I(inode)->root; 5180 int err; 5181 5182 if (btrfs_root_readonly(root)) 5183 return -EROFS; 5184 5185 err = setattr_prepare(idmap, dentry, attr); 5186 if (err) 5187 return err; 5188 5189 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5190 err = btrfs_setsize(inode, attr); 5191 if (err) 5192 return err; 5193 } 5194 5195 if (attr->ia_valid) { 5196 setattr_copy(idmap, inode, attr); 5197 inode_inc_iversion(inode); 5198 err = btrfs_dirty_inode(BTRFS_I(inode)); 5199 5200 if (!err && attr->ia_valid & ATTR_MODE) 5201 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5202 } 5203 5204 return err; 5205 } 5206 5207 /* 5208 * While truncating the inode pages during eviction, we get the VFS 5209 * calling btrfs_invalidate_folio() against each folio of the inode. This 5210 * is slow because the calls to btrfs_invalidate_folio() result in a 5211 * huge amount of calls to lock_extent() and clear_extent_bit(), 5212 * which keep merging and splitting extent_state structures over and over, 5213 * wasting lots of time. 5214 * 5215 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5216 * skip all those expensive operations on a per folio basis and do only 5217 * the ordered io finishing, while we release here the extent_map and 5218 * extent_state structures, without the excessive merging and splitting. 5219 */ 5220 static void evict_inode_truncate_pages(struct inode *inode) 5221 { 5222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5223 struct rb_node *node; 5224 5225 ASSERT(inode->i_state & I_FREEING); 5226 truncate_inode_pages_final(&inode->i_data); 5227 5228 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5229 5230 /* 5231 * Keep looping until we have no more ranges in the io tree. 5232 * We can have ongoing bios started by readahead that have 5233 * their endio callback (extent_io.c:end_bio_extent_readpage) 5234 * still in progress (unlocked the pages in the bio but did not yet 5235 * unlocked the ranges in the io tree). Therefore this means some 5236 * ranges can still be locked and eviction started because before 5237 * submitting those bios, which are executed by a separate task (work 5238 * queue kthread), inode references (inode->i_count) were not taken 5239 * (which would be dropped in the end io callback of each bio). 5240 * Therefore here we effectively end up waiting for those bios and 5241 * anyone else holding locked ranges without having bumped the inode's 5242 * reference count - if we don't do it, when they access the inode's 5243 * io_tree to unlock a range it may be too late, leading to an 5244 * use-after-free issue. 5245 */ 5246 spin_lock(&io_tree->lock); 5247 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5248 struct extent_state *state; 5249 struct extent_state *cached_state = NULL; 5250 u64 start; 5251 u64 end; 5252 unsigned state_flags; 5253 5254 node = rb_first(&io_tree->state); 5255 state = rb_entry(node, struct extent_state, rb_node); 5256 start = state->start; 5257 end = state->end; 5258 state_flags = state->state; 5259 spin_unlock(&io_tree->lock); 5260 5261 lock_extent(io_tree, start, end, &cached_state); 5262 5263 /* 5264 * If still has DELALLOC flag, the extent didn't reach disk, 5265 * and its reserved space won't be freed by delayed_ref. 5266 * So we need to free its reserved space here. 5267 * (Refer to comment in btrfs_invalidate_folio, case 2) 5268 * 5269 * Note, end is the bytenr of last byte, so we need + 1 here. 5270 */ 5271 if (state_flags & EXTENT_DELALLOC) 5272 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5273 end - start + 1, NULL); 5274 5275 clear_extent_bit(io_tree, start, end, 5276 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5277 &cached_state); 5278 5279 cond_resched(); 5280 spin_lock(&io_tree->lock); 5281 } 5282 spin_unlock(&io_tree->lock); 5283 } 5284 5285 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5286 struct btrfs_block_rsv *rsv) 5287 { 5288 struct btrfs_fs_info *fs_info = root->fs_info; 5289 struct btrfs_trans_handle *trans; 5290 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5291 int ret; 5292 5293 /* 5294 * Eviction should be taking place at some place safe because of our 5295 * delayed iputs. However the normal flushing code will run delayed 5296 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5297 * 5298 * We reserve the delayed_refs_extra here again because we can't use 5299 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5300 * above. We reserve our extra bit here because we generate a ton of 5301 * delayed refs activity by truncating. 5302 * 5303 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5304 * if we fail to make this reservation we can re-try without the 5305 * delayed_refs_extra so we can make some forward progress. 5306 */ 5307 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5308 BTRFS_RESERVE_FLUSH_EVICT); 5309 if (ret) { 5310 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5311 BTRFS_RESERVE_FLUSH_EVICT); 5312 if (ret) { 5313 btrfs_warn(fs_info, 5314 "could not allocate space for delete; will truncate on mount"); 5315 return ERR_PTR(-ENOSPC); 5316 } 5317 delayed_refs_extra = 0; 5318 } 5319 5320 trans = btrfs_join_transaction(root); 5321 if (IS_ERR(trans)) 5322 return trans; 5323 5324 if (delayed_refs_extra) { 5325 trans->block_rsv = &fs_info->trans_block_rsv; 5326 trans->bytes_reserved = delayed_refs_extra; 5327 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5328 delayed_refs_extra, true); 5329 } 5330 return trans; 5331 } 5332 5333 void btrfs_evict_inode(struct inode *inode) 5334 { 5335 struct btrfs_fs_info *fs_info; 5336 struct btrfs_trans_handle *trans; 5337 struct btrfs_root *root = BTRFS_I(inode)->root; 5338 struct btrfs_block_rsv *rsv = NULL; 5339 int ret; 5340 5341 trace_btrfs_inode_evict(inode); 5342 5343 if (!root) { 5344 fsverity_cleanup_inode(inode); 5345 clear_inode(inode); 5346 return; 5347 } 5348 5349 fs_info = inode_to_fs_info(inode); 5350 evict_inode_truncate_pages(inode); 5351 5352 if (inode->i_nlink && 5353 ((btrfs_root_refs(&root->root_item) != 0 && 5354 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5355 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5356 goto out; 5357 5358 if (is_bad_inode(inode)) 5359 goto out; 5360 5361 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5362 goto out; 5363 5364 if (inode->i_nlink > 0) { 5365 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5366 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5367 goto out; 5368 } 5369 5370 /* 5371 * This makes sure the inode item in tree is uptodate and the space for 5372 * the inode update is released. 5373 */ 5374 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5375 if (ret) 5376 goto out; 5377 5378 /* 5379 * This drops any pending insert or delete operations we have for this 5380 * inode. We could have a delayed dir index deletion queued up, but 5381 * we're removing the inode completely so that'll be taken care of in 5382 * the truncate. 5383 */ 5384 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5385 5386 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5387 if (!rsv) 5388 goto out; 5389 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5390 rsv->failfast = true; 5391 5392 btrfs_i_size_write(BTRFS_I(inode), 0); 5393 5394 while (1) { 5395 struct btrfs_truncate_control control = { 5396 .inode = BTRFS_I(inode), 5397 .ino = btrfs_ino(BTRFS_I(inode)), 5398 .new_size = 0, 5399 .min_type = 0, 5400 }; 5401 5402 trans = evict_refill_and_join(root, rsv); 5403 if (IS_ERR(trans)) 5404 goto out; 5405 5406 trans->block_rsv = rsv; 5407 5408 ret = btrfs_truncate_inode_items(trans, root, &control); 5409 trans->block_rsv = &fs_info->trans_block_rsv; 5410 btrfs_end_transaction(trans); 5411 /* 5412 * We have not added new delayed items for our inode after we 5413 * have flushed its delayed items, so no need to throttle on 5414 * delayed items. However we have modified extent buffers. 5415 */ 5416 btrfs_btree_balance_dirty_nodelay(fs_info); 5417 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5418 goto out; 5419 else if (!ret) 5420 break; 5421 } 5422 5423 /* 5424 * Errors here aren't a big deal, it just means we leave orphan items in 5425 * the tree. They will be cleaned up on the next mount. If the inode 5426 * number gets reused, cleanup deletes the orphan item without doing 5427 * anything, and unlink reuses the existing orphan item. 5428 * 5429 * If it turns out that we are dropping too many of these, we might want 5430 * to add a mechanism for retrying these after a commit. 5431 */ 5432 trans = evict_refill_and_join(root, rsv); 5433 if (!IS_ERR(trans)) { 5434 trans->block_rsv = rsv; 5435 btrfs_orphan_del(trans, BTRFS_I(inode)); 5436 trans->block_rsv = &fs_info->trans_block_rsv; 5437 btrfs_end_transaction(trans); 5438 } 5439 5440 out: 5441 btrfs_free_block_rsv(fs_info, rsv); 5442 /* 5443 * If we didn't successfully delete, the orphan item will still be in 5444 * the tree and we'll retry on the next mount. Again, we might also want 5445 * to retry these periodically in the future. 5446 */ 5447 btrfs_remove_delayed_node(BTRFS_I(inode)); 5448 fsverity_cleanup_inode(inode); 5449 clear_inode(inode); 5450 } 5451 5452 /* 5453 * Return the key found in the dir entry in the location pointer, fill @type 5454 * with BTRFS_FT_*, and return 0. 5455 * 5456 * If no dir entries were found, returns -ENOENT. 5457 * If found a corrupted location in dir entry, returns -EUCLEAN. 5458 */ 5459 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5460 struct btrfs_key *location, u8 *type) 5461 { 5462 struct btrfs_dir_item *di; 5463 struct btrfs_path *path; 5464 struct btrfs_root *root = dir->root; 5465 int ret = 0; 5466 struct fscrypt_name fname; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) 5470 return -ENOMEM; 5471 5472 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5473 if (ret < 0) 5474 goto out; 5475 /* 5476 * fscrypt_setup_filename() should never return a positive value, but 5477 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5478 */ 5479 ASSERT(ret == 0); 5480 5481 /* This needs to handle no-key deletions later on */ 5482 5483 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5484 &fname.disk_name, 0); 5485 if (IS_ERR_OR_NULL(di)) { 5486 ret = di ? PTR_ERR(di) : -ENOENT; 5487 goto out; 5488 } 5489 5490 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5491 if (location->type != BTRFS_INODE_ITEM_KEY && 5492 location->type != BTRFS_ROOT_ITEM_KEY) { 5493 ret = -EUCLEAN; 5494 btrfs_warn(root->fs_info, 5495 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5496 __func__, fname.disk_name.name, btrfs_ino(dir), 5497 location->objectid, location->type, location->offset); 5498 } 5499 if (!ret) 5500 *type = btrfs_dir_ftype(path->nodes[0], di); 5501 out: 5502 fscrypt_free_filename(&fname); 5503 btrfs_free_path(path); 5504 return ret; 5505 } 5506 5507 /* 5508 * when we hit a tree root in a directory, the btrfs part of the inode 5509 * needs to be changed to reflect the root directory of the tree root. This 5510 * is kind of like crossing a mount point. 5511 */ 5512 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5513 struct btrfs_inode *dir, 5514 struct dentry *dentry, 5515 struct btrfs_key *location, 5516 struct btrfs_root **sub_root) 5517 { 5518 struct btrfs_path *path; 5519 struct btrfs_root *new_root; 5520 struct btrfs_root_ref *ref; 5521 struct extent_buffer *leaf; 5522 struct btrfs_key key; 5523 int ret; 5524 int err = 0; 5525 struct fscrypt_name fname; 5526 5527 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5528 if (ret) 5529 return ret; 5530 5531 path = btrfs_alloc_path(); 5532 if (!path) { 5533 err = -ENOMEM; 5534 goto out; 5535 } 5536 5537 err = -ENOENT; 5538 key.objectid = btrfs_root_id(dir->root); 5539 key.type = BTRFS_ROOT_REF_KEY; 5540 key.offset = location->objectid; 5541 5542 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5543 if (ret) { 5544 if (ret < 0) 5545 err = ret; 5546 goto out; 5547 } 5548 5549 leaf = path->nodes[0]; 5550 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5551 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5552 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5553 goto out; 5554 5555 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5556 (unsigned long)(ref + 1), fname.disk_name.len); 5557 if (ret) 5558 goto out; 5559 5560 btrfs_release_path(path); 5561 5562 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5563 if (IS_ERR(new_root)) { 5564 err = PTR_ERR(new_root); 5565 goto out; 5566 } 5567 5568 *sub_root = new_root; 5569 location->objectid = btrfs_root_dirid(&new_root->root_item); 5570 location->type = BTRFS_INODE_ITEM_KEY; 5571 location->offset = 0; 5572 err = 0; 5573 out: 5574 btrfs_free_path(path); 5575 fscrypt_free_filename(&fname); 5576 return err; 5577 } 5578 5579 5580 5581 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5582 { 5583 struct btrfs_root *root = inode->root; 5584 struct btrfs_inode *entry; 5585 bool empty = false; 5586 5587 xa_lock(&root->inodes); 5588 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5589 if (entry == inode) 5590 empty = xa_empty(&root->inodes); 5591 xa_unlock(&root->inodes); 5592 5593 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5594 xa_lock(&root->inodes); 5595 empty = xa_empty(&root->inodes); 5596 xa_unlock(&root->inodes); 5597 if (empty) 5598 btrfs_add_dead_root(root); 5599 } 5600 } 5601 5602 5603 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5604 { 5605 struct btrfs_iget_args *args = p; 5606 5607 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5608 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5609 5610 if (args->root && args->root == args->root->fs_info->tree_root && 5611 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5612 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5613 &BTRFS_I(inode)->runtime_flags); 5614 return 0; 5615 } 5616 5617 static int btrfs_find_actor(struct inode *inode, void *opaque) 5618 { 5619 struct btrfs_iget_args *args = opaque; 5620 5621 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5622 args->root == BTRFS_I(inode)->root; 5623 } 5624 5625 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5626 { 5627 struct inode *inode; 5628 struct btrfs_iget_args args; 5629 unsigned long hashval = btrfs_inode_hash(ino, root); 5630 5631 args.ino = ino; 5632 args.root = root; 5633 5634 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5635 btrfs_init_locked_inode, 5636 (void *)&args); 5637 if (!inode) 5638 return NULL; 5639 return BTRFS_I(inode); 5640 } 5641 5642 /* 5643 * Get an inode object given its inode number and corresponding root. Path is 5644 * preallocated to prevent recursing back to iget through allocator. 5645 */ 5646 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5647 struct btrfs_path *path) 5648 { 5649 struct btrfs_inode *inode; 5650 int ret; 5651 5652 inode = btrfs_iget_locked(ino, root); 5653 if (!inode) 5654 return ERR_PTR(-ENOMEM); 5655 5656 if (!(inode->vfs_inode.i_state & I_NEW)) 5657 return inode; 5658 5659 ret = btrfs_read_locked_inode(inode, path); 5660 if (ret) 5661 return ERR_PTR(ret); 5662 5663 unlock_new_inode(&inode->vfs_inode); 5664 return inode; 5665 } 5666 5667 /* 5668 * Get an inode object given its inode number and corresponding root. 5669 */ 5670 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5671 { 5672 struct btrfs_inode *inode; 5673 struct btrfs_path *path; 5674 int ret; 5675 5676 inode = btrfs_iget_locked(ino, root); 5677 if (!inode) 5678 return ERR_PTR(-ENOMEM); 5679 5680 if (!(inode->vfs_inode.i_state & I_NEW)) 5681 return inode; 5682 5683 path = btrfs_alloc_path(); 5684 if (!path) 5685 return ERR_PTR(-ENOMEM); 5686 5687 ret = btrfs_read_locked_inode(inode, path); 5688 btrfs_free_path(path); 5689 if (ret) 5690 return ERR_PTR(ret); 5691 5692 unlock_new_inode(&inode->vfs_inode); 5693 return inode; 5694 } 5695 5696 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5697 struct btrfs_key *key, 5698 struct btrfs_root *root) 5699 { 5700 struct timespec64 ts; 5701 struct inode *vfs_inode; 5702 struct btrfs_inode *inode; 5703 5704 vfs_inode = new_inode(dir->i_sb); 5705 if (!vfs_inode) 5706 return ERR_PTR(-ENOMEM); 5707 5708 inode = BTRFS_I(vfs_inode); 5709 inode->root = btrfs_grab_root(root); 5710 inode->ref_root_id = key->objectid; 5711 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5712 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5713 5714 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5715 /* 5716 * We only need lookup, the rest is read-only and there's no inode 5717 * associated with the dentry 5718 */ 5719 vfs_inode->i_op = &simple_dir_inode_operations; 5720 vfs_inode->i_opflags &= ~IOP_XATTR; 5721 vfs_inode->i_fop = &simple_dir_operations; 5722 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5723 5724 ts = inode_set_ctime_current(vfs_inode); 5725 inode_set_mtime_to_ts(vfs_inode, ts); 5726 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5727 inode->i_otime_sec = ts.tv_sec; 5728 inode->i_otime_nsec = ts.tv_nsec; 5729 5730 vfs_inode->i_uid = dir->i_uid; 5731 vfs_inode->i_gid = dir->i_gid; 5732 5733 return inode; 5734 } 5735 5736 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5737 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5738 static_assert(BTRFS_FT_DIR == FT_DIR); 5739 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5740 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5741 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5742 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5743 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5744 5745 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5746 { 5747 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5748 } 5749 5750 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5751 { 5752 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5753 struct btrfs_inode *inode; 5754 struct btrfs_root *root = BTRFS_I(dir)->root; 5755 struct btrfs_root *sub_root = root; 5756 struct btrfs_key location = { 0 }; 5757 u8 di_type = 0; 5758 int ret = 0; 5759 5760 if (dentry->d_name.len > BTRFS_NAME_LEN) 5761 return ERR_PTR(-ENAMETOOLONG); 5762 5763 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5764 if (ret < 0) 5765 return ERR_PTR(ret); 5766 5767 if (location.type == BTRFS_INODE_ITEM_KEY) { 5768 inode = btrfs_iget(location.objectid, root); 5769 if (IS_ERR(inode)) 5770 return ERR_CAST(inode); 5771 5772 /* Do extra check against inode mode with di_type */ 5773 if (btrfs_inode_type(inode) != di_type) { 5774 btrfs_crit(fs_info, 5775 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5776 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5777 di_type); 5778 iput(&inode->vfs_inode); 5779 return ERR_PTR(-EUCLEAN); 5780 } 5781 return &inode->vfs_inode; 5782 } 5783 5784 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5785 &location, &sub_root); 5786 if (ret < 0) { 5787 if (ret != -ENOENT) 5788 inode = ERR_PTR(ret); 5789 else 5790 inode = new_simple_dir(dir, &location, root); 5791 } else { 5792 inode = btrfs_iget(location.objectid, sub_root); 5793 btrfs_put_root(sub_root); 5794 5795 if (IS_ERR(inode)) 5796 return ERR_CAST(inode); 5797 5798 down_read(&fs_info->cleanup_work_sem); 5799 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5800 ret = btrfs_orphan_cleanup(sub_root); 5801 up_read(&fs_info->cleanup_work_sem); 5802 if (ret) { 5803 iput(&inode->vfs_inode); 5804 inode = ERR_PTR(ret); 5805 } 5806 } 5807 5808 if (IS_ERR(inode)) 5809 return ERR_CAST(inode); 5810 5811 return &inode->vfs_inode; 5812 } 5813 5814 static int btrfs_dentry_delete(const struct dentry *dentry) 5815 { 5816 struct btrfs_root *root; 5817 struct inode *inode = d_inode(dentry); 5818 5819 if (!inode && !IS_ROOT(dentry)) 5820 inode = d_inode(dentry->d_parent); 5821 5822 if (inode) { 5823 root = BTRFS_I(inode)->root; 5824 if (btrfs_root_refs(&root->root_item) == 0) 5825 return 1; 5826 5827 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5828 return 1; 5829 } 5830 return 0; 5831 } 5832 5833 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5834 unsigned int flags) 5835 { 5836 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5837 5838 if (inode == ERR_PTR(-ENOENT)) 5839 inode = NULL; 5840 return d_splice_alias(inode, dentry); 5841 } 5842 5843 /* 5844 * Find the highest existing sequence number in a directory and then set the 5845 * in-memory index_cnt variable to the first free sequence number. 5846 */ 5847 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5848 { 5849 struct btrfs_root *root = inode->root; 5850 struct btrfs_key key, found_key; 5851 struct btrfs_path *path; 5852 struct extent_buffer *leaf; 5853 int ret; 5854 5855 key.objectid = btrfs_ino(inode); 5856 key.type = BTRFS_DIR_INDEX_KEY; 5857 key.offset = (u64)-1; 5858 5859 path = btrfs_alloc_path(); 5860 if (!path) 5861 return -ENOMEM; 5862 5863 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5864 if (ret < 0) 5865 goto out; 5866 /* FIXME: we should be able to handle this */ 5867 if (ret == 0) 5868 goto out; 5869 ret = 0; 5870 5871 if (path->slots[0] == 0) { 5872 inode->index_cnt = BTRFS_DIR_START_INDEX; 5873 goto out; 5874 } 5875 5876 path->slots[0]--; 5877 5878 leaf = path->nodes[0]; 5879 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5880 5881 if (found_key.objectid != btrfs_ino(inode) || 5882 found_key.type != BTRFS_DIR_INDEX_KEY) { 5883 inode->index_cnt = BTRFS_DIR_START_INDEX; 5884 goto out; 5885 } 5886 5887 inode->index_cnt = found_key.offset + 1; 5888 out: 5889 btrfs_free_path(path); 5890 return ret; 5891 } 5892 5893 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5894 { 5895 int ret = 0; 5896 5897 btrfs_inode_lock(dir, 0); 5898 if (dir->index_cnt == (u64)-1) { 5899 ret = btrfs_inode_delayed_dir_index_count(dir); 5900 if (ret) { 5901 ret = btrfs_set_inode_index_count(dir); 5902 if (ret) 5903 goto out; 5904 } 5905 } 5906 5907 /* index_cnt is the index number of next new entry, so decrement it. */ 5908 *index = dir->index_cnt - 1; 5909 out: 5910 btrfs_inode_unlock(dir, 0); 5911 5912 return ret; 5913 } 5914 5915 /* 5916 * All this infrastructure exists because dir_emit can fault, and we are holding 5917 * the tree lock when doing readdir. For now just allocate a buffer and copy 5918 * our information into that, and then dir_emit from the buffer. This is 5919 * similar to what NFS does, only we don't keep the buffer around in pagecache 5920 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5921 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5922 * tree lock. 5923 */ 5924 static int btrfs_opendir(struct inode *inode, struct file *file) 5925 { 5926 struct btrfs_file_private *private; 5927 u64 last_index; 5928 int ret; 5929 5930 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5931 if (ret) 5932 return ret; 5933 5934 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5935 if (!private) 5936 return -ENOMEM; 5937 private->last_index = last_index; 5938 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5939 if (!private->filldir_buf) { 5940 kfree(private); 5941 return -ENOMEM; 5942 } 5943 file->private_data = private; 5944 return 0; 5945 } 5946 5947 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5948 { 5949 struct btrfs_file_private *private = file->private_data; 5950 int ret; 5951 5952 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5953 &private->last_index); 5954 if (ret) 5955 return ret; 5956 5957 return generic_file_llseek(file, offset, whence); 5958 } 5959 5960 struct dir_entry { 5961 u64 ino; 5962 u64 offset; 5963 unsigned type; 5964 int name_len; 5965 }; 5966 5967 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5968 { 5969 while (entries--) { 5970 struct dir_entry *entry = addr; 5971 char *name = (char *)(entry + 1); 5972 5973 ctx->pos = get_unaligned(&entry->offset); 5974 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5975 get_unaligned(&entry->ino), 5976 get_unaligned(&entry->type))) 5977 return 1; 5978 addr += sizeof(struct dir_entry) + 5979 get_unaligned(&entry->name_len); 5980 ctx->pos++; 5981 } 5982 return 0; 5983 } 5984 5985 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5986 { 5987 struct inode *inode = file_inode(file); 5988 struct btrfs_root *root = BTRFS_I(inode)->root; 5989 struct btrfs_file_private *private = file->private_data; 5990 struct btrfs_dir_item *di; 5991 struct btrfs_key key; 5992 struct btrfs_key found_key; 5993 struct btrfs_path *path; 5994 void *addr; 5995 LIST_HEAD(ins_list); 5996 LIST_HEAD(del_list); 5997 int ret; 5998 char *name_ptr; 5999 int name_len; 6000 int entries = 0; 6001 int total_len = 0; 6002 bool put = false; 6003 struct btrfs_key location; 6004 6005 if (!dir_emit_dots(file, ctx)) 6006 return 0; 6007 6008 path = btrfs_alloc_path(); 6009 if (!path) 6010 return -ENOMEM; 6011 6012 addr = private->filldir_buf; 6013 path->reada = READA_FORWARD; 6014 6015 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6016 &ins_list, &del_list); 6017 6018 again: 6019 key.type = BTRFS_DIR_INDEX_KEY; 6020 key.offset = ctx->pos; 6021 key.objectid = btrfs_ino(BTRFS_I(inode)); 6022 6023 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6024 struct dir_entry *entry; 6025 struct extent_buffer *leaf = path->nodes[0]; 6026 u8 ftype; 6027 6028 if (found_key.objectid != key.objectid) 6029 break; 6030 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6031 break; 6032 if (found_key.offset < ctx->pos) 6033 continue; 6034 if (found_key.offset > private->last_index) 6035 break; 6036 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6037 continue; 6038 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6039 name_len = btrfs_dir_name_len(leaf, di); 6040 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6041 PAGE_SIZE) { 6042 btrfs_release_path(path); 6043 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6044 if (ret) 6045 goto nopos; 6046 addr = private->filldir_buf; 6047 entries = 0; 6048 total_len = 0; 6049 goto again; 6050 } 6051 6052 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6053 entry = addr; 6054 name_ptr = (char *)(entry + 1); 6055 read_extent_buffer(leaf, name_ptr, 6056 (unsigned long)(di + 1), name_len); 6057 put_unaligned(name_len, &entry->name_len); 6058 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6059 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6060 put_unaligned(location.objectid, &entry->ino); 6061 put_unaligned(found_key.offset, &entry->offset); 6062 entries++; 6063 addr += sizeof(struct dir_entry) + name_len; 6064 total_len += sizeof(struct dir_entry) + name_len; 6065 } 6066 /* Catch error encountered during iteration */ 6067 if (ret < 0) 6068 goto err; 6069 6070 btrfs_release_path(path); 6071 6072 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6073 if (ret) 6074 goto nopos; 6075 6076 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6077 if (ret) 6078 goto nopos; 6079 6080 /* 6081 * Stop new entries from being returned after we return the last 6082 * entry. 6083 * 6084 * New directory entries are assigned a strictly increasing 6085 * offset. This means that new entries created during readdir 6086 * are *guaranteed* to be seen in the future by that readdir. 6087 * This has broken buggy programs which operate on names as 6088 * they're returned by readdir. Until we reuse freed offsets 6089 * we have this hack to stop new entries from being returned 6090 * under the assumption that they'll never reach this huge 6091 * offset. 6092 * 6093 * This is being careful not to overflow 32bit loff_t unless the 6094 * last entry requires it because doing so has broken 32bit apps 6095 * in the past. 6096 */ 6097 if (ctx->pos >= INT_MAX) 6098 ctx->pos = LLONG_MAX; 6099 else 6100 ctx->pos = INT_MAX; 6101 nopos: 6102 ret = 0; 6103 err: 6104 if (put) 6105 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6106 btrfs_free_path(path); 6107 return ret; 6108 } 6109 6110 /* 6111 * This is somewhat expensive, updating the tree every time the 6112 * inode changes. But, it is most likely to find the inode in cache. 6113 * FIXME, needs more benchmarking...there are no reasons other than performance 6114 * to keep or drop this code. 6115 */ 6116 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6117 { 6118 struct btrfs_root *root = inode->root; 6119 struct btrfs_fs_info *fs_info = root->fs_info; 6120 struct btrfs_trans_handle *trans; 6121 int ret; 6122 6123 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6124 return 0; 6125 6126 trans = btrfs_join_transaction(root); 6127 if (IS_ERR(trans)) 6128 return PTR_ERR(trans); 6129 6130 ret = btrfs_update_inode(trans, inode); 6131 if (ret == -ENOSPC || ret == -EDQUOT) { 6132 /* whoops, lets try again with the full transaction */ 6133 btrfs_end_transaction(trans); 6134 trans = btrfs_start_transaction(root, 1); 6135 if (IS_ERR(trans)) 6136 return PTR_ERR(trans); 6137 6138 ret = btrfs_update_inode(trans, inode); 6139 } 6140 btrfs_end_transaction(trans); 6141 if (inode->delayed_node) 6142 btrfs_balance_delayed_items(fs_info); 6143 6144 return ret; 6145 } 6146 6147 /* 6148 * This is a copy of file_update_time. We need this so we can return error on 6149 * ENOSPC for updating the inode in the case of file write and mmap writes. 6150 */ 6151 static int btrfs_update_time(struct inode *inode, int flags) 6152 { 6153 struct btrfs_root *root = BTRFS_I(inode)->root; 6154 bool dirty; 6155 6156 if (btrfs_root_readonly(root)) 6157 return -EROFS; 6158 6159 dirty = inode_update_timestamps(inode, flags); 6160 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6161 } 6162 6163 /* 6164 * helper to find a free sequence number in a given directory. This current 6165 * code is very simple, later versions will do smarter things in the btree 6166 */ 6167 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6168 { 6169 int ret = 0; 6170 6171 if (dir->index_cnt == (u64)-1) { 6172 ret = btrfs_inode_delayed_dir_index_count(dir); 6173 if (ret) { 6174 ret = btrfs_set_inode_index_count(dir); 6175 if (ret) 6176 return ret; 6177 } 6178 } 6179 6180 *index = dir->index_cnt; 6181 dir->index_cnt++; 6182 6183 return ret; 6184 } 6185 6186 static int btrfs_insert_inode_locked(struct inode *inode) 6187 { 6188 struct btrfs_iget_args args; 6189 6190 args.ino = btrfs_ino(BTRFS_I(inode)); 6191 args.root = BTRFS_I(inode)->root; 6192 6193 return insert_inode_locked4(inode, 6194 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6195 btrfs_find_actor, &args); 6196 } 6197 6198 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6199 unsigned int *trans_num_items) 6200 { 6201 struct inode *dir = args->dir; 6202 struct inode *inode = args->inode; 6203 int ret; 6204 6205 if (!args->orphan) { 6206 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6207 &args->fname); 6208 if (ret) 6209 return ret; 6210 } 6211 6212 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6213 if (ret) { 6214 fscrypt_free_filename(&args->fname); 6215 return ret; 6216 } 6217 6218 /* 1 to add inode item */ 6219 *trans_num_items = 1; 6220 /* 1 to add compression property */ 6221 if (BTRFS_I(dir)->prop_compress) 6222 (*trans_num_items)++; 6223 /* 1 to add default ACL xattr */ 6224 if (args->default_acl) 6225 (*trans_num_items)++; 6226 /* 1 to add access ACL xattr */ 6227 if (args->acl) 6228 (*trans_num_items)++; 6229 #ifdef CONFIG_SECURITY 6230 /* 1 to add LSM xattr */ 6231 if (dir->i_security) 6232 (*trans_num_items)++; 6233 #endif 6234 if (args->orphan) { 6235 /* 1 to add orphan item */ 6236 (*trans_num_items)++; 6237 } else { 6238 /* 6239 * 1 to add dir item 6240 * 1 to add dir index 6241 * 1 to update parent inode item 6242 * 6243 * No need for 1 unit for the inode ref item because it is 6244 * inserted in a batch together with the inode item at 6245 * btrfs_create_new_inode(). 6246 */ 6247 *trans_num_items += 3; 6248 } 6249 return 0; 6250 } 6251 6252 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6253 { 6254 posix_acl_release(args->acl); 6255 posix_acl_release(args->default_acl); 6256 fscrypt_free_filename(&args->fname); 6257 } 6258 6259 /* 6260 * Inherit flags from the parent inode. 6261 * 6262 * Currently only the compression flags and the cow flags are inherited. 6263 */ 6264 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6265 { 6266 unsigned int flags; 6267 6268 flags = dir->flags; 6269 6270 if (flags & BTRFS_INODE_NOCOMPRESS) { 6271 inode->flags &= ~BTRFS_INODE_COMPRESS; 6272 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6273 } else if (flags & BTRFS_INODE_COMPRESS) { 6274 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6275 inode->flags |= BTRFS_INODE_COMPRESS; 6276 } 6277 6278 if (flags & BTRFS_INODE_NODATACOW) { 6279 inode->flags |= BTRFS_INODE_NODATACOW; 6280 if (S_ISREG(inode->vfs_inode.i_mode)) 6281 inode->flags |= BTRFS_INODE_NODATASUM; 6282 } 6283 6284 btrfs_sync_inode_flags_to_i_flags(inode); 6285 } 6286 6287 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6288 struct btrfs_new_inode_args *args) 6289 { 6290 struct timespec64 ts; 6291 struct inode *dir = args->dir; 6292 struct inode *inode = args->inode; 6293 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6294 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6295 struct btrfs_root *root; 6296 struct btrfs_inode_item *inode_item; 6297 struct btrfs_path *path; 6298 u64 objectid; 6299 struct btrfs_inode_ref *ref; 6300 struct btrfs_key key[2]; 6301 u32 sizes[2]; 6302 struct btrfs_item_batch batch; 6303 unsigned long ptr; 6304 int ret; 6305 bool xa_reserved = false; 6306 6307 path = btrfs_alloc_path(); 6308 if (!path) 6309 return -ENOMEM; 6310 6311 if (!args->subvol) 6312 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6313 root = BTRFS_I(inode)->root; 6314 6315 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6316 if (ret) 6317 goto out; 6318 6319 ret = btrfs_get_free_objectid(root, &objectid); 6320 if (ret) 6321 goto out; 6322 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6323 6324 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6325 if (ret) 6326 goto out; 6327 xa_reserved = true; 6328 6329 if (args->orphan) { 6330 /* 6331 * O_TMPFILE, set link count to 0, so that after this point, we 6332 * fill in an inode item with the correct link count. 6333 */ 6334 set_nlink(inode, 0); 6335 } else { 6336 trace_btrfs_inode_request(dir); 6337 6338 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6339 if (ret) 6340 goto out; 6341 } 6342 6343 if (S_ISDIR(inode->i_mode)) 6344 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6345 6346 BTRFS_I(inode)->generation = trans->transid; 6347 inode->i_generation = BTRFS_I(inode)->generation; 6348 6349 /* 6350 * We don't have any capability xattrs set here yet, shortcut any 6351 * queries for the xattrs here. If we add them later via the inode 6352 * security init path or any other path this flag will be cleared. 6353 */ 6354 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6355 6356 /* 6357 * Subvolumes don't inherit flags from their parent directory. 6358 * Originally this was probably by accident, but we probably can't 6359 * change it now without compatibility issues. 6360 */ 6361 if (!args->subvol) 6362 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6363 6364 if (S_ISREG(inode->i_mode)) { 6365 if (btrfs_test_opt(fs_info, NODATASUM)) 6366 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6367 if (btrfs_test_opt(fs_info, NODATACOW)) 6368 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6369 BTRFS_INODE_NODATASUM; 6370 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6371 } 6372 6373 ret = btrfs_insert_inode_locked(inode); 6374 if (ret < 0) { 6375 if (!args->orphan) 6376 BTRFS_I(dir)->index_cnt--; 6377 goto out; 6378 } 6379 6380 /* 6381 * We could have gotten an inode number from somebody who was fsynced 6382 * and then removed in this same transaction, so let's just set full 6383 * sync since it will be a full sync anyway and this will blow away the 6384 * old info in the log. 6385 */ 6386 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6387 6388 key[0].objectid = objectid; 6389 key[0].type = BTRFS_INODE_ITEM_KEY; 6390 key[0].offset = 0; 6391 6392 sizes[0] = sizeof(struct btrfs_inode_item); 6393 6394 if (!args->orphan) { 6395 /* 6396 * Start new inodes with an inode_ref. This is slightly more 6397 * efficient for small numbers of hard links since they will 6398 * be packed into one item. Extended refs will kick in if we 6399 * add more hard links than can fit in the ref item. 6400 */ 6401 key[1].objectid = objectid; 6402 key[1].type = BTRFS_INODE_REF_KEY; 6403 if (args->subvol) { 6404 key[1].offset = objectid; 6405 sizes[1] = 2 + sizeof(*ref); 6406 } else { 6407 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6408 sizes[1] = name->len + sizeof(*ref); 6409 } 6410 } 6411 6412 batch.keys = &key[0]; 6413 batch.data_sizes = &sizes[0]; 6414 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6415 batch.nr = args->orphan ? 1 : 2; 6416 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6417 if (ret != 0) { 6418 btrfs_abort_transaction(trans, ret); 6419 goto discard; 6420 } 6421 6422 ts = simple_inode_init_ts(inode); 6423 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6424 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6425 6426 /* 6427 * We're going to fill the inode item now, so at this point the inode 6428 * must be fully initialized. 6429 */ 6430 6431 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6432 struct btrfs_inode_item); 6433 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6434 sizeof(*inode_item)); 6435 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6436 6437 if (!args->orphan) { 6438 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6439 struct btrfs_inode_ref); 6440 ptr = (unsigned long)(ref + 1); 6441 if (args->subvol) { 6442 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6443 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6444 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6445 } else { 6446 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6447 name->len); 6448 btrfs_set_inode_ref_index(path->nodes[0], ref, 6449 BTRFS_I(inode)->dir_index); 6450 write_extent_buffer(path->nodes[0], name->name, ptr, 6451 name->len); 6452 } 6453 } 6454 6455 /* 6456 * We don't need the path anymore, plus inheriting properties, adding 6457 * ACLs, security xattrs, orphan item or adding the link, will result in 6458 * allocating yet another path. So just free our path. 6459 */ 6460 btrfs_free_path(path); 6461 path = NULL; 6462 6463 if (args->subvol) { 6464 struct btrfs_inode *parent; 6465 6466 /* 6467 * Subvolumes inherit properties from their parent subvolume, 6468 * not the directory they were created in. 6469 */ 6470 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6471 if (IS_ERR(parent)) { 6472 ret = PTR_ERR(parent); 6473 } else { 6474 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6475 parent); 6476 iput(&parent->vfs_inode); 6477 } 6478 } else { 6479 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6480 BTRFS_I(dir)); 6481 } 6482 if (ret) { 6483 btrfs_err(fs_info, 6484 "error inheriting props for ino %llu (root %llu): %d", 6485 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6486 } 6487 6488 /* 6489 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6490 * probably a bug. 6491 */ 6492 if (!args->subvol) { 6493 ret = btrfs_init_inode_security(trans, args); 6494 if (ret) { 6495 btrfs_abort_transaction(trans, ret); 6496 goto discard; 6497 } 6498 } 6499 6500 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6501 if (WARN_ON(ret)) { 6502 /* Shouldn't happen, we used xa_reserve() before. */ 6503 btrfs_abort_transaction(trans, ret); 6504 goto discard; 6505 } 6506 6507 trace_btrfs_inode_new(inode); 6508 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6509 6510 btrfs_update_root_times(trans, root); 6511 6512 if (args->orphan) { 6513 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6514 } else { 6515 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6516 0, BTRFS_I(inode)->dir_index); 6517 } 6518 if (ret) { 6519 btrfs_abort_transaction(trans, ret); 6520 goto discard; 6521 } 6522 6523 return 0; 6524 6525 discard: 6526 /* 6527 * discard_new_inode() calls iput(), but the caller owns the reference 6528 * to the inode. 6529 */ 6530 ihold(inode); 6531 discard_new_inode(inode); 6532 out: 6533 if (xa_reserved) 6534 xa_release(&root->inodes, objectid); 6535 6536 btrfs_free_path(path); 6537 return ret; 6538 } 6539 6540 /* 6541 * utility function to add 'inode' into 'parent_inode' with 6542 * a give name and a given sequence number. 6543 * if 'add_backref' is true, also insert a backref from the 6544 * inode to the parent directory. 6545 */ 6546 int btrfs_add_link(struct btrfs_trans_handle *trans, 6547 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6548 const struct fscrypt_str *name, int add_backref, u64 index) 6549 { 6550 int ret = 0; 6551 struct btrfs_key key; 6552 struct btrfs_root *root = parent_inode->root; 6553 u64 ino = btrfs_ino(inode); 6554 u64 parent_ino = btrfs_ino(parent_inode); 6555 6556 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6557 memcpy(&key, &inode->root->root_key, sizeof(key)); 6558 } else { 6559 key.objectid = ino; 6560 key.type = BTRFS_INODE_ITEM_KEY; 6561 key.offset = 0; 6562 } 6563 6564 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6565 ret = btrfs_add_root_ref(trans, key.objectid, 6566 btrfs_root_id(root), parent_ino, 6567 index, name); 6568 } else if (add_backref) { 6569 ret = btrfs_insert_inode_ref(trans, root, name, 6570 ino, parent_ino, index); 6571 } 6572 6573 /* Nothing to clean up yet */ 6574 if (ret) 6575 return ret; 6576 6577 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6578 btrfs_inode_type(inode), index); 6579 if (ret == -EEXIST || ret == -EOVERFLOW) 6580 goto fail_dir_item; 6581 else if (ret) { 6582 btrfs_abort_transaction(trans, ret); 6583 return ret; 6584 } 6585 6586 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6587 name->len * 2); 6588 inode_inc_iversion(&parent_inode->vfs_inode); 6589 /* 6590 * If we are replaying a log tree, we do not want to update the mtime 6591 * and ctime of the parent directory with the current time, since the 6592 * log replay procedure is responsible for setting them to their correct 6593 * values (the ones it had when the fsync was done). 6594 */ 6595 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6596 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6597 inode_set_ctime_current(&parent_inode->vfs_inode)); 6598 6599 ret = btrfs_update_inode(trans, parent_inode); 6600 if (ret) 6601 btrfs_abort_transaction(trans, ret); 6602 return ret; 6603 6604 fail_dir_item: 6605 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6606 u64 local_index; 6607 int err; 6608 err = btrfs_del_root_ref(trans, key.objectid, 6609 btrfs_root_id(root), parent_ino, 6610 &local_index, name); 6611 if (err) 6612 btrfs_abort_transaction(trans, err); 6613 } else if (add_backref) { 6614 u64 local_index; 6615 int err; 6616 6617 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6618 &local_index); 6619 if (err) 6620 btrfs_abort_transaction(trans, err); 6621 } 6622 6623 /* Return the original error code */ 6624 return ret; 6625 } 6626 6627 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6628 struct inode *inode) 6629 { 6630 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6631 struct btrfs_root *root = BTRFS_I(dir)->root; 6632 struct btrfs_new_inode_args new_inode_args = { 6633 .dir = dir, 6634 .dentry = dentry, 6635 .inode = inode, 6636 }; 6637 unsigned int trans_num_items; 6638 struct btrfs_trans_handle *trans; 6639 int err; 6640 6641 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6642 if (err) 6643 goto out_inode; 6644 6645 trans = btrfs_start_transaction(root, trans_num_items); 6646 if (IS_ERR(trans)) { 6647 err = PTR_ERR(trans); 6648 goto out_new_inode_args; 6649 } 6650 6651 err = btrfs_create_new_inode(trans, &new_inode_args); 6652 if (!err) 6653 d_instantiate_new(dentry, inode); 6654 6655 btrfs_end_transaction(trans); 6656 btrfs_btree_balance_dirty(fs_info); 6657 out_new_inode_args: 6658 btrfs_new_inode_args_destroy(&new_inode_args); 6659 out_inode: 6660 if (err) 6661 iput(inode); 6662 return err; 6663 } 6664 6665 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6666 struct dentry *dentry, umode_t mode, dev_t rdev) 6667 { 6668 struct inode *inode; 6669 6670 inode = new_inode(dir->i_sb); 6671 if (!inode) 6672 return -ENOMEM; 6673 inode_init_owner(idmap, inode, dir, mode); 6674 inode->i_op = &btrfs_special_inode_operations; 6675 init_special_inode(inode, inode->i_mode, rdev); 6676 return btrfs_create_common(dir, dentry, inode); 6677 } 6678 6679 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6680 struct dentry *dentry, umode_t mode, bool excl) 6681 { 6682 struct inode *inode; 6683 6684 inode = new_inode(dir->i_sb); 6685 if (!inode) 6686 return -ENOMEM; 6687 inode_init_owner(idmap, inode, dir, mode); 6688 inode->i_fop = &btrfs_file_operations; 6689 inode->i_op = &btrfs_file_inode_operations; 6690 inode->i_mapping->a_ops = &btrfs_aops; 6691 return btrfs_create_common(dir, dentry, inode); 6692 } 6693 6694 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6695 struct dentry *dentry) 6696 { 6697 struct btrfs_trans_handle *trans = NULL; 6698 struct btrfs_root *root = BTRFS_I(dir)->root; 6699 struct inode *inode = d_inode(old_dentry); 6700 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6701 struct fscrypt_name fname; 6702 u64 index; 6703 int err; 6704 int drop_inode = 0; 6705 6706 /* do not allow sys_link's with other subvols of the same device */ 6707 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6708 return -EXDEV; 6709 6710 if (inode->i_nlink >= BTRFS_LINK_MAX) 6711 return -EMLINK; 6712 6713 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6714 if (err) 6715 goto fail; 6716 6717 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6718 if (err) 6719 goto fail; 6720 6721 /* 6722 * 2 items for inode and inode ref 6723 * 2 items for dir items 6724 * 1 item for parent inode 6725 * 1 item for orphan item deletion if O_TMPFILE 6726 */ 6727 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6728 if (IS_ERR(trans)) { 6729 err = PTR_ERR(trans); 6730 trans = NULL; 6731 goto fail; 6732 } 6733 6734 /* There are several dir indexes for this inode, clear the cache. */ 6735 BTRFS_I(inode)->dir_index = 0ULL; 6736 inc_nlink(inode); 6737 inode_inc_iversion(inode); 6738 inode_set_ctime_current(inode); 6739 ihold(inode); 6740 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6741 6742 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6743 &fname.disk_name, 1, index); 6744 6745 if (err) { 6746 drop_inode = 1; 6747 } else { 6748 struct dentry *parent = dentry->d_parent; 6749 6750 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6751 if (err) 6752 goto fail; 6753 if (inode->i_nlink == 1) { 6754 /* 6755 * If new hard link count is 1, it's a file created 6756 * with open(2) O_TMPFILE flag. 6757 */ 6758 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6759 if (err) 6760 goto fail; 6761 } 6762 d_instantiate(dentry, inode); 6763 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6764 } 6765 6766 fail: 6767 fscrypt_free_filename(&fname); 6768 if (trans) 6769 btrfs_end_transaction(trans); 6770 if (drop_inode) { 6771 inode_dec_link_count(inode); 6772 iput(inode); 6773 } 6774 btrfs_btree_balance_dirty(fs_info); 6775 return err; 6776 } 6777 6778 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6779 struct dentry *dentry, umode_t mode) 6780 { 6781 struct inode *inode; 6782 6783 inode = new_inode(dir->i_sb); 6784 if (!inode) 6785 return ERR_PTR(-ENOMEM); 6786 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6787 inode->i_op = &btrfs_dir_inode_operations; 6788 inode->i_fop = &btrfs_dir_file_operations; 6789 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6790 } 6791 6792 static noinline int uncompress_inline(struct btrfs_path *path, 6793 struct folio *folio, 6794 struct btrfs_file_extent_item *item) 6795 { 6796 int ret; 6797 struct extent_buffer *leaf = path->nodes[0]; 6798 const u32 blocksize = leaf->fs_info->sectorsize; 6799 char *tmp; 6800 size_t max_size; 6801 unsigned long inline_size; 6802 unsigned long ptr; 6803 int compress_type; 6804 6805 compress_type = btrfs_file_extent_compression(leaf, item); 6806 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6807 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6808 tmp = kmalloc(inline_size, GFP_NOFS); 6809 if (!tmp) 6810 return -ENOMEM; 6811 ptr = btrfs_file_extent_inline_start(item); 6812 6813 read_extent_buffer(leaf, tmp, ptr, inline_size); 6814 6815 max_size = min_t(unsigned long, blocksize, max_size); 6816 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6817 max_size); 6818 6819 /* 6820 * decompression code contains a memset to fill in any space between the end 6821 * of the uncompressed data and the end of max_size in case the decompressed 6822 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6823 * the end of an inline extent and the beginning of the next block, so we 6824 * cover that region here. 6825 */ 6826 6827 if (max_size < blocksize) 6828 folio_zero_range(folio, max_size, blocksize - max_size); 6829 kfree(tmp); 6830 return ret; 6831 } 6832 6833 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6834 { 6835 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6836 struct btrfs_file_extent_item *fi; 6837 void *kaddr; 6838 size_t copy_size; 6839 6840 if (!folio || folio_test_uptodate(folio)) 6841 return 0; 6842 6843 ASSERT(folio_pos(folio) == 0); 6844 6845 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6846 struct btrfs_file_extent_item); 6847 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6848 return uncompress_inline(path, folio, fi); 6849 6850 copy_size = min_t(u64, blocksize, 6851 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6852 kaddr = kmap_local_folio(folio, 0); 6853 read_extent_buffer(path->nodes[0], kaddr, 6854 btrfs_file_extent_inline_start(fi), copy_size); 6855 kunmap_local(kaddr); 6856 if (copy_size < blocksize) 6857 folio_zero_range(folio, copy_size, blocksize - copy_size); 6858 return 0; 6859 } 6860 6861 /* 6862 * Lookup the first extent overlapping a range in a file. 6863 * 6864 * @inode: file to search in 6865 * @page: page to read extent data into if the extent is inline 6866 * @start: file offset 6867 * @len: length of range starting at @start 6868 * 6869 * Return the first &struct extent_map which overlaps the given range, reading 6870 * it from the B-tree and caching it if necessary. Note that there may be more 6871 * extents which overlap the given range after the returned extent_map. 6872 * 6873 * If @page is not NULL and the extent is inline, this also reads the extent 6874 * data directly into the page and marks the extent up to date in the io_tree. 6875 * 6876 * Return: ERR_PTR on error, non-NULL extent_map on success. 6877 */ 6878 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6879 struct folio *folio, u64 start, u64 len) 6880 { 6881 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6882 int ret = 0; 6883 u64 extent_start = 0; 6884 u64 extent_end = 0; 6885 u64 objectid = btrfs_ino(inode); 6886 int extent_type = -1; 6887 struct btrfs_path *path = NULL; 6888 struct btrfs_root *root = inode->root; 6889 struct btrfs_file_extent_item *item; 6890 struct extent_buffer *leaf; 6891 struct btrfs_key found_key; 6892 struct extent_map *em = NULL; 6893 struct extent_map_tree *em_tree = &inode->extent_tree; 6894 6895 read_lock(&em_tree->lock); 6896 em = lookup_extent_mapping(em_tree, start, len); 6897 read_unlock(&em_tree->lock); 6898 6899 if (em) { 6900 if (em->start > start || em->start + em->len <= start) 6901 free_extent_map(em); 6902 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6903 free_extent_map(em); 6904 else 6905 goto out; 6906 } 6907 em = alloc_extent_map(); 6908 if (!em) { 6909 ret = -ENOMEM; 6910 goto out; 6911 } 6912 em->start = EXTENT_MAP_HOLE; 6913 em->disk_bytenr = EXTENT_MAP_HOLE; 6914 em->len = (u64)-1; 6915 6916 path = btrfs_alloc_path(); 6917 if (!path) { 6918 ret = -ENOMEM; 6919 goto out; 6920 } 6921 6922 /* Chances are we'll be called again, so go ahead and do readahead */ 6923 path->reada = READA_FORWARD; 6924 6925 /* 6926 * The same explanation in load_free_space_cache applies here as well, 6927 * we only read when we're loading the free space cache, and at that 6928 * point the commit_root has everything we need. 6929 */ 6930 if (btrfs_is_free_space_inode(inode)) { 6931 path->search_commit_root = 1; 6932 path->skip_locking = 1; 6933 } 6934 6935 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6936 if (ret < 0) { 6937 goto out; 6938 } else if (ret > 0) { 6939 if (path->slots[0] == 0) 6940 goto not_found; 6941 path->slots[0]--; 6942 ret = 0; 6943 } 6944 6945 leaf = path->nodes[0]; 6946 item = btrfs_item_ptr(leaf, path->slots[0], 6947 struct btrfs_file_extent_item); 6948 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6949 if (found_key.objectid != objectid || 6950 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6951 /* 6952 * If we backup past the first extent we want to move forward 6953 * and see if there is an extent in front of us, otherwise we'll 6954 * say there is a hole for our whole search range which can 6955 * cause problems. 6956 */ 6957 extent_end = start; 6958 goto next; 6959 } 6960 6961 extent_type = btrfs_file_extent_type(leaf, item); 6962 extent_start = found_key.offset; 6963 extent_end = btrfs_file_extent_end(path); 6964 if (extent_type == BTRFS_FILE_EXTENT_REG || 6965 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6966 /* Only regular file could have regular/prealloc extent */ 6967 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6968 ret = -EUCLEAN; 6969 btrfs_crit(fs_info, 6970 "regular/prealloc extent found for non-regular inode %llu", 6971 btrfs_ino(inode)); 6972 goto out; 6973 } 6974 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6975 extent_start); 6976 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6977 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6978 path->slots[0], 6979 extent_start); 6980 } 6981 next: 6982 if (start >= extent_end) { 6983 path->slots[0]++; 6984 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6985 ret = btrfs_next_leaf(root, path); 6986 if (ret < 0) 6987 goto out; 6988 else if (ret > 0) 6989 goto not_found; 6990 6991 leaf = path->nodes[0]; 6992 } 6993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6994 if (found_key.objectid != objectid || 6995 found_key.type != BTRFS_EXTENT_DATA_KEY) 6996 goto not_found; 6997 if (start + len <= found_key.offset) 6998 goto not_found; 6999 if (start > found_key.offset) 7000 goto next; 7001 7002 /* New extent overlaps with existing one */ 7003 em->start = start; 7004 em->len = found_key.offset - start; 7005 em->disk_bytenr = EXTENT_MAP_HOLE; 7006 goto insert; 7007 } 7008 7009 btrfs_extent_item_to_extent_map(inode, path, item, em); 7010 7011 if (extent_type == BTRFS_FILE_EXTENT_REG || 7012 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7013 goto insert; 7014 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7015 /* 7016 * Inline extent can only exist at file offset 0. This is 7017 * ensured by tree-checker and inline extent creation path. 7018 * Thus all members representing file offsets should be zero. 7019 */ 7020 ASSERT(extent_start == 0); 7021 ASSERT(em->start == 0); 7022 7023 /* 7024 * btrfs_extent_item_to_extent_map() should have properly 7025 * initialized em members already. 7026 * 7027 * Other members are not utilized for inline extents. 7028 */ 7029 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7030 ASSERT(em->len == fs_info->sectorsize); 7031 7032 ret = read_inline_extent(path, folio); 7033 if (ret < 0) 7034 goto out; 7035 goto insert; 7036 } 7037 not_found: 7038 em->start = start; 7039 em->len = len; 7040 em->disk_bytenr = EXTENT_MAP_HOLE; 7041 insert: 7042 ret = 0; 7043 btrfs_release_path(path); 7044 if (em->start > start || extent_map_end(em) <= start) { 7045 btrfs_err(fs_info, 7046 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7047 em->start, em->len, start, len); 7048 ret = -EIO; 7049 goto out; 7050 } 7051 7052 write_lock(&em_tree->lock); 7053 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7054 write_unlock(&em_tree->lock); 7055 out: 7056 btrfs_free_path(path); 7057 7058 trace_btrfs_get_extent(root, inode, em); 7059 7060 if (ret) { 7061 free_extent_map(em); 7062 return ERR_PTR(ret); 7063 } 7064 return em; 7065 } 7066 7067 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7068 { 7069 struct btrfs_block_group *block_group; 7070 bool readonly = false; 7071 7072 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7073 if (!block_group || block_group->ro) 7074 readonly = true; 7075 if (block_group) 7076 btrfs_put_block_group(block_group); 7077 return readonly; 7078 } 7079 7080 /* 7081 * Check if we can do nocow write into the range [@offset, @offset + @len) 7082 * 7083 * @offset: File offset 7084 * @len: The length to write, will be updated to the nocow writeable 7085 * range 7086 * @orig_start: (optional) Return the original file offset of the file extent 7087 * @orig_len: (optional) Return the original on-disk length of the file extent 7088 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7089 * 7090 * Return: 7091 * >0 and update @len if we can do nocow write 7092 * 0 if we can't do nocow write 7093 * <0 if error happened 7094 * 7095 * NOTE: This only checks the file extents, caller is responsible to wait for 7096 * any ordered extents. 7097 */ 7098 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7099 struct btrfs_file_extent *file_extent, 7100 bool nowait) 7101 { 7102 struct btrfs_root *root = inode->root; 7103 struct btrfs_fs_info *fs_info = root->fs_info; 7104 struct can_nocow_file_extent_args nocow_args = { 0 }; 7105 struct btrfs_path *path; 7106 int ret; 7107 struct extent_buffer *leaf; 7108 struct extent_io_tree *io_tree = &inode->io_tree; 7109 struct btrfs_file_extent_item *fi; 7110 struct btrfs_key key; 7111 int found_type; 7112 7113 path = btrfs_alloc_path(); 7114 if (!path) 7115 return -ENOMEM; 7116 path->nowait = nowait; 7117 7118 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7119 offset, 0); 7120 if (ret < 0) 7121 goto out; 7122 7123 if (ret == 1) { 7124 if (path->slots[0] == 0) { 7125 /* can't find the item, must cow */ 7126 ret = 0; 7127 goto out; 7128 } 7129 path->slots[0]--; 7130 } 7131 ret = 0; 7132 leaf = path->nodes[0]; 7133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7134 if (key.objectid != btrfs_ino(inode) || 7135 key.type != BTRFS_EXTENT_DATA_KEY) { 7136 /* not our file or wrong item type, must cow */ 7137 goto out; 7138 } 7139 7140 if (key.offset > offset) { 7141 /* Wrong offset, must cow */ 7142 goto out; 7143 } 7144 7145 if (btrfs_file_extent_end(path) <= offset) 7146 goto out; 7147 7148 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7149 found_type = btrfs_file_extent_type(leaf, fi); 7150 7151 nocow_args.start = offset; 7152 nocow_args.end = offset + *len - 1; 7153 nocow_args.free_path = true; 7154 7155 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7156 /* can_nocow_file_extent() has freed the path. */ 7157 path = NULL; 7158 7159 if (ret != 1) { 7160 /* Treat errors as not being able to NOCOW. */ 7161 ret = 0; 7162 goto out; 7163 } 7164 7165 ret = 0; 7166 if (btrfs_extent_readonly(fs_info, 7167 nocow_args.file_extent.disk_bytenr + 7168 nocow_args.file_extent.offset)) 7169 goto out; 7170 7171 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7172 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7173 u64 range_end; 7174 7175 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7176 root->fs_info->sectorsize) - 1; 7177 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7178 if (ret) { 7179 ret = -EAGAIN; 7180 goto out; 7181 } 7182 } 7183 7184 if (file_extent) 7185 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7186 7187 *len = nocow_args.file_extent.num_bytes; 7188 ret = 1; 7189 out: 7190 btrfs_free_path(path); 7191 return ret; 7192 } 7193 7194 /* The callers of this must take lock_extent() */ 7195 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7196 const struct btrfs_file_extent *file_extent, 7197 int type) 7198 { 7199 struct extent_map *em; 7200 int ret; 7201 7202 /* 7203 * Note the missing NOCOW type. 7204 * 7205 * For pure NOCOW writes, we should not create an io extent map, but 7206 * just reusing the existing one. 7207 * Only PREALLOC writes (NOCOW write into preallocated range) can 7208 * create an io extent map. 7209 */ 7210 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7211 type == BTRFS_ORDERED_COMPRESSED || 7212 type == BTRFS_ORDERED_REGULAR); 7213 7214 switch (type) { 7215 case BTRFS_ORDERED_PREALLOC: 7216 /* We're only referring part of a larger preallocated extent. */ 7217 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7218 break; 7219 case BTRFS_ORDERED_REGULAR: 7220 /* COW results a new extent matching our file extent size. */ 7221 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7222 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7223 7224 /* Since it's a new extent, we should not have any offset. */ 7225 ASSERT(file_extent->offset == 0); 7226 break; 7227 case BTRFS_ORDERED_COMPRESSED: 7228 /* Must be compressed. */ 7229 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7230 7231 /* 7232 * Encoded write can make us to refer to part of the 7233 * uncompressed extent. 7234 */ 7235 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7236 break; 7237 } 7238 7239 em = alloc_extent_map(); 7240 if (!em) 7241 return ERR_PTR(-ENOMEM); 7242 7243 em->start = start; 7244 em->len = file_extent->num_bytes; 7245 em->disk_bytenr = file_extent->disk_bytenr; 7246 em->disk_num_bytes = file_extent->disk_num_bytes; 7247 em->ram_bytes = file_extent->ram_bytes; 7248 em->generation = -1; 7249 em->offset = file_extent->offset; 7250 em->flags |= EXTENT_FLAG_PINNED; 7251 if (type == BTRFS_ORDERED_COMPRESSED) 7252 extent_map_set_compression(em, file_extent->compression); 7253 7254 ret = btrfs_replace_extent_map_range(inode, em, true); 7255 if (ret) { 7256 free_extent_map(em); 7257 return ERR_PTR(ret); 7258 } 7259 7260 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7261 return em; 7262 } 7263 7264 /* 7265 * For release_folio() and invalidate_folio() we have a race window where 7266 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7267 * If we continue to release/invalidate the page, we could cause use-after-free 7268 * for subpage spinlock. So this function is to spin and wait for subpage 7269 * spinlock. 7270 */ 7271 static void wait_subpage_spinlock(struct folio *folio) 7272 { 7273 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7274 struct btrfs_subpage *subpage; 7275 7276 if (!btrfs_is_subpage(fs_info, folio)) 7277 return; 7278 7279 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7280 subpage = folio_get_private(folio); 7281 7282 /* 7283 * This may look insane as we just acquire the spinlock and release it, 7284 * without doing anything. But we just want to make sure no one is 7285 * still holding the subpage spinlock. 7286 * And since the page is not dirty nor writeback, and we have page 7287 * locked, the only possible way to hold a spinlock is from the endio 7288 * function to clear page writeback. 7289 * 7290 * Here we just acquire the spinlock so that all existing callers 7291 * should exit and we're safe to release/invalidate the page. 7292 */ 7293 spin_lock_irq(&subpage->lock); 7294 spin_unlock_irq(&subpage->lock); 7295 } 7296 7297 static int btrfs_launder_folio(struct folio *folio) 7298 { 7299 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7300 folio_size(folio), NULL); 7301 } 7302 7303 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7304 { 7305 if (try_release_extent_mapping(folio, gfp_flags)) { 7306 wait_subpage_spinlock(folio); 7307 clear_folio_extent_mapped(folio); 7308 return true; 7309 } 7310 return false; 7311 } 7312 7313 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7314 { 7315 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7316 return false; 7317 return __btrfs_release_folio(folio, gfp_flags); 7318 } 7319 7320 #ifdef CONFIG_MIGRATION 7321 static int btrfs_migrate_folio(struct address_space *mapping, 7322 struct folio *dst, struct folio *src, 7323 enum migrate_mode mode) 7324 { 7325 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7326 7327 if (ret != MIGRATEPAGE_SUCCESS) 7328 return ret; 7329 7330 if (folio_test_ordered(src)) { 7331 folio_clear_ordered(src); 7332 folio_set_ordered(dst); 7333 } 7334 7335 return MIGRATEPAGE_SUCCESS; 7336 } 7337 #else 7338 #define btrfs_migrate_folio NULL 7339 #endif 7340 7341 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7342 size_t length) 7343 { 7344 struct btrfs_inode *inode = folio_to_inode(folio); 7345 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7346 struct extent_io_tree *tree = &inode->io_tree; 7347 struct extent_state *cached_state = NULL; 7348 u64 page_start = folio_pos(folio); 7349 u64 page_end = page_start + folio_size(folio) - 1; 7350 u64 cur; 7351 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7352 7353 /* 7354 * We have folio locked so no new ordered extent can be created on this 7355 * page, nor bio can be submitted for this folio. 7356 * 7357 * But already submitted bio can still be finished on this folio. 7358 * Furthermore, endio function won't skip folio which has Ordered 7359 * already cleared, so it's possible for endio and 7360 * invalidate_folio to do the same ordered extent accounting twice 7361 * on one folio. 7362 * 7363 * So here we wait for any submitted bios to finish, so that we won't 7364 * do double ordered extent accounting on the same folio. 7365 */ 7366 folio_wait_writeback(folio); 7367 wait_subpage_spinlock(folio); 7368 7369 /* 7370 * For subpage case, we have call sites like 7371 * btrfs_punch_hole_lock_range() which passes range not aligned to 7372 * sectorsize. 7373 * If the range doesn't cover the full folio, we don't need to and 7374 * shouldn't clear page extent mapped, as folio->private can still 7375 * record subpage dirty bits for other part of the range. 7376 * 7377 * For cases that invalidate the full folio even the range doesn't 7378 * cover the full folio, like invalidating the last folio, we're 7379 * still safe to wait for ordered extent to finish. 7380 */ 7381 if (!(offset == 0 && length == folio_size(folio))) { 7382 btrfs_release_folio(folio, GFP_NOFS); 7383 return; 7384 } 7385 7386 if (!inode_evicting) 7387 lock_extent(tree, page_start, page_end, &cached_state); 7388 7389 cur = page_start; 7390 while (cur < page_end) { 7391 struct btrfs_ordered_extent *ordered; 7392 u64 range_end; 7393 u32 range_len; 7394 u32 extra_flags = 0; 7395 7396 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7397 page_end + 1 - cur); 7398 if (!ordered) { 7399 range_end = page_end; 7400 /* 7401 * No ordered extent covering this range, we are safe 7402 * to delete all extent states in the range. 7403 */ 7404 extra_flags = EXTENT_CLEAR_ALL_BITS; 7405 goto next; 7406 } 7407 if (ordered->file_offset > cur) { 7408 /* 7409 * There is a range between [cur, oe->file_offset) not 7410 * covered by any ordered extent. 7411 * We are safe to delete all extent states, and handle 7412 * the ordered extent in the next iteration. 7413 */ 7414 range_end = ordered->file_offset - 1; 7415 extra_flags = EXTENT_CLEAR_ALL_BITS; 7416 goto next; 7417 } 7418 7419 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7420 page_end); 7421 ASSERT(range_end + 1 - cur < U32_MAX); 7422 range_len = range_end + 1 - cur; 7423 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7424 /* 7425 * If Ordered is cleared, it means endio has 7426 * already been executed for the range. 7427 * We can't delete the extent states as 7428 * btrfs_finish_ordered_io() may still use some of them. 7429 */ 7430 goto next; 7431 } 7432 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7433 7434 /* 7435 * IO on this page will never be started, so we need to account 7436 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7437 * here, must leave that up for the ordered extent completion. 7438 * 7439 * This will also unlock the range for incoming 7440 * btrfs_finish_ordered_io(). 7441 */ 7442 if (!inode_evicting) 7443 clear_extent_bit(tree, cur, range_end, 7444 EXTENT_DELALLOC | 7445 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7446 EXTENT_DEFRAG, &cached_state); 7447 7448 spin_lock_irq(&inode->ordered_tree_lock); 7449 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7450 ordered->truncated_len = min(ordered->truncated_len, 7451 cur - ordered->file_offset); 7452 spin_unlock_irq(&inode->ordered_tree_lock); 7453 7454 /* 7455 * If the ordered extent has finished, we're safe to delete all 7456 * the extent states of the range, otherwise 7457 * btrfs_finish_ordered_io() will get executed by endio for 7458 * other pages, so we can't delete extent states. 7459 */ 7460 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7461 cur, range_end + 1 - cur)) { 7462 btrfs_finish_ordered_io(ordered); 7463 /* 7464 * The ordered extent has finished, now we're again 7465 * safe to delete all extent states of the range. 7466 */ 7467 extra_flags = EXTENT_CLEAR_ALL_BITS; 7468 } 7469 next: 7470 if (ordered) 7471 btrfs_put_ordered_extent(ordered); 7472 /* 7473 * Qgroup reserved space handler 7474 * Sector(s) here will be either: 7475 * 7476 * 1) Already written to disk or bio already finished 7477 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7478 * Qgroup will be handled by its qgroup_record then. 7479 * btrfs_qgroup_free_data() call will do nothing here. 7480 * 7481 * 2) Not written to disk yet 7482 * Then btrfs_qgroup_free_data() call will clear the 7483 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7484 * reserved data space. 7485 * Since the IO will never happen for this page. 7486 */ 7487 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7488 if (!inode_evicting) { 7489 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7490 EXTENT_DELALLOC | EXTENT_UPTODATE | 7491 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7492 extra_flags, &cached_state); 7493 } 7494 cur = range_end + 1; 7495 } 7496 /* 7497 * We have iterated through all ordered extents of the page, the page 7498 * should not have Ordered anymore, or the above iteration 7499 * did something wrong. 7500 */ 7501 ASSERT(!folio_test_ordered(folio)); 7502 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7503 if (!inode_evicting) 7504 __btrfs_release_folio(folio, GFP_NOFS); 7505 clear_folio_extent_mapped(folio); 7506 } 7507 7508 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7509 { 7510 struct btrfs_truncate_control control = { 7511 .inode = inode, 7512 .ino = btrfs_ino(inode), 7513 .min_type = BTRFS_EXTENT_DATA_KEY, 7514 .clear_extent_range = true, 7515 }; 7516 struct btrfs_root *root = inode->root; 7517 struct btrfs_fs_info *fs_info = root->fs_info; 7518 struct btrfs_block_rsv *rsv; 7519 int ret; 7520 struct btrfs_trans_handle *trans; 7521 u64 mask = fs_info->sectorsize - 1; 7522 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7523 7524 if (!skip_writeback) { 7525 ret = btrfs_wait_ordered_range(inode, 7526 inode->vfs_inode.i_size & (~mask), 7527 (u64)-1); 7528 if (ret) 7529 return ret; 7530 } 7531 7532 /* 7533 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7534 * things going on here: 7535 * 7536 * 1) We need to reserve space to update our inode. 7537 * 7538 * 2) We need to have something to cache all the space that is going to 7539 * be free'd up by the truncate operation, but also have some slack 7540 * space reserved in case it uses space during the truncate (thank you 7541 * very much snapshotting). 7542 * 7543 * And we need these to be separate. The fact is we can use a lot of 7544 * space doing the truncate, and we have no earthly idea how much space 7545 * we will use, so we need the truncate reservation to be separate so it 7546 * doesn't end up using space reserved for updating the inode. We also 7547 * need to be able to stop the transaction and start a new one, which 7548 * means we need to be able to update the inode several times, and we 7549 * have no idea of knowing how many times that will be, so we can't just 7550 * reserve 1 item for the entirety of the operation, so that has to be 7551 * done separately as well. 7552 * 7553 * So that leaves us with 7554 * 7555 * 1) rsv - for the truncate reservation, which we will steal from the 7556 * transaction reservation. 7557 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7558 * updating the inode. 7559 */ 7560 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7561 if (!rsv) 7562 return -ENOMEM; 7563 rsv->size = min_size; 7564 rsv->failfast = true; 7565 7566 /* 7567 * 1 for the truncate slack space 7568 * 1 for updating the inode. 7569 */ 7570 trans = btrfs_start_transaction(root, 2); 7571 if (IS_ERR(trans)) { 7572 ret = PTR_ERR(trans); 7573 goto out; 7574 } 7575 7576 /* Migrate the slack space for the truncate to our reserve */ 7577 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7578 min_size, false); 7579 /* 7580 * We have reserved 2 metadata units when we started the transaction and 7581 * min_size matches 1 unit, so this should never fail, but if it does, 7582 * it's not critical we just fail truncation. 7583 */ 7584 if (WARN_ON(ret)) { 7585 btrfs_end_transaction(trans); 7586 goto out; 7587 } 7588 7589 trans->block_rsv = rsv; 7590 7591 while (1) { 7592 struct extent_state *cached_state = NULL; 7593 const u64 new_size = inode->vfs_inode.i_size; 7594 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7595 7596 control.new_size = new_size; 7597 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7598 /* 7599 * We want to drop from the next block forward in case this new 7600 * size is not block aligned since we will be keeping the last 7601 * block of the extent just the way it is. 7602 */ 7603 btrfs_drop_extent_map_range(inode, 7604 ALIGN(new_size, fs_info->sectorsize), 7605 (u64)-1, false); 7606 7607 ret = btrfs_truncate_inode_items(trans, root, &control); 7608 7609 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7610 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7611 7612 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7613 7614 trans->block_rsv = &fs_info->trans_block_rsv; 7615 if (ret != -ENOSPC && ret != -EAGAIN) 7616 break; 7617 7618 ret = btrfs_update_inode(trans, inode); 7619 if (ret) 7620 break; 7621 7622 btrfs_end_transaction(trans); 7623 btrfs_btree_balance_dirty(fs_info); 7624 7625 trans = btrfs_start_transaction(root, 2); 7626 if (IS_ERR(trans)) { 7627 ret = PTR_ERR(trans); 7628 trans = NULL; 7629 break; 7630 } 7631 7632 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7633 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7634 rsv, min_size, false); 7635 /* 7636 * We have reserved 2 metadata units when we started the 7637 * transaction and min_size matches 1 unit, so this should never 7638 * fail, but if it does, it's not critical we just fail truncation. 7639 */ 7640 if (WARN_ON(ret)) 7641 break; 7642 7643 trans->block_rsv = rsv; 7644 } 7645 7646 /* 7647 * We can't call btrfs_truncate_block inside a trans handle as we could 7648 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7649 * know we've truncated everything except the last little bit, and can 7650 * do btrfs_truncate_block and then update the disk_i_size. 7651 */ 7652 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7653 btrfs_end_transaction(trans); 7654 btrfs_btree_balance_dirty(fs_info); 7655 7656 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7657 if (ret) 7658 goto out; 7659 trans = btrfs_start_transaction(root, 1); 7660 if (IS_ERR(trans)) { 7661 ret = PTR_ERR(trans); 7662 goto out; 7663 } 7664 btrfs_inode_safe_disk_i_size_write(inode, 0); 7665 } 7666 7667 if (trans) { 7668 int ret2; 7669 7670 trans->block_rsv = &fs_info->trans_block_rsv; 7671 ret2 = btrfs_update_inode(trans, inode); 7672 if (ret2 && !ret) 7673 ret = ret2; 7674 7675 ret2 = btrfs_end_transaction(trans); 7676 if (ret2 && !ret) 7677 ret = ret2; 7678 btrfs_btree_balance_dirty(fs_info); 7679 } 7680 out: 7681 btrfs_free_block_rsv(fs_info, rsv); 7682 /* 7683 * So if we truncate and then write and fsync we normally would just 7684 * write the extents that changed, which is a problem if we need to 7685 * first truncate that entire inode. So set this flag so we write out 7686 * all of the extents in the inode to the sync log so we're completely 7687 * safe. 7688 * 7689 * If no extents were dropped or trimmed we don't need to force the next 7690 * fsync to truncate all the inode's items from the log and re-log them 7691 * all. This means the truncate operation did not change the file size, 7692 * or changed it to a smaller size but there was only an implicit hole 7693 * between the old i_size and the new i_size, and there were no prealloc 7694 * extents beyond i_size to drop. 7695 */ 7696 if (control.extents_found > 0) 7697 btrfs_set_inode_full_sync(inode); 7698 7699 return ret; 7700 } 7701 7702 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7703 struct inode *dir) 7704 { 7705 struct inode *inode; 7706 7707 inode = new_inode(dir->i_sb); 7708 if (inode) { 7709 /* 7710 * Subvolumes don't inherit the sgid bit or the parent's gid if 7711 * the parent's sgid bit is set. This is probably a bug. 7712 */ 7713 inode_init_owner(idmap, inode, NULL, 7714 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7715 inode->i_op = &btrfs_dir_inode_operations; 7716 inode->i_fop = &btrfs_dir_file_operations; 7717 } 7718 return inode; 7719 } 7720 7721 struct inode *btrfs_alloc_inode(struct super_block *sb) 7722 { 7723 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7724 struct btrfs_inode *ei; 7725 struct inode *inode; 7726 7727 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7728 if (!ei) 7729 return NULL; 7730 7731 ei->root = NULL; 7732 ei->generation = 0; 7733 ei->last_trans = 0; 7734 ei->last_sub_trans = 0; 7735 ei->logged_trans = 0; 7736 ei->delalloc_bytes = 0; 7737 ei->new_delalloc_bytes = 0; 7738 ei->defrag_bytes = 0; 7739 ei->disk_i_size = 0; 7740 ei->flags = 0; 7741 ei->ro_flags = 0; 7742 /* 7743 * ->index_cnt will be properly initialized later when creating a new 7744 * inode (btrfs_create_new_inode()) or when reading an existing inode 7745 * from disk (btrfs_read_locked_inode()). 7746 */ 7747 ei->csum_bytes = 0; 7748 ei->dir_index = 0; 7749 ei->last_unlink_trans = 0; 7750 ei->last_reflink_trans = 0; 7751 ei->last_log_commit = 0; 7752 7753 spin_lock_init(&ei->lock); 7754 ei->outstanding_extents = 0; 7755 if (sb->s_magic != BTRFS_TEST_MAGIC) 7756 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7757 BTRFS_BLOCK_RSV_DELALLOC); 7758 ei->runtime_flags = 0; 7759 ei->prop_compress = BTRFS_COMPRESS_NONE; 7760 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7761 7762 ei->delayed_node = NULL; 7763 7764 ei->i_otime_sec = 0; 7765 ei->i_otime_nsec = 0; 7766 7767 inode = &ei->vfs_inode; 7768 extent_map_tree_init(&ei->extent_tree); 7769 7770 /* This io tree sets the valid inode. */ 7771 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7772 ei->io_tree.inode = ei; 7773 7774 ei->file_extent_tree = NULL; 7775 7776 mutex_init(&ei->log_mutex); 7777 spin_lock_init(&ei->ordered_tree_lock); 7778 ei->ordered_tree = RB_ROOT; 7779 ei->ordered_tree_last = NULL; 7780 INIT_LIST_HEAD(&ei->delalloc_inodes); 7781 INIT_LIST_HEAD(&ei->delayed_iput); 7782 init_rwsem(&ei->i_mmap_lock); 7783 7784 return inode; 7785 } 7786 7787 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7788 void btrfs_test_destroy_inode(struct inode *inode) 7789 { 7790 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7791 kfree(BTRFS_I(inode)->file_extent_tree); 7792 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7793 } 7794 #endif 7795 7796 void btrfs_free_inode(struct inode *inode) 7797 { 7798 kfree(BTRFS_I(inode)->file_extent_tree); 7799 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7800 } 7801 7802 void btrfs_destroy_inode(struct inode *vfs_inode) 7803 { 7804 struct btrfs_ordered_extent *ordered; 7805 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7806 struct btrfs_root *root = inode->root; 7807 bool freespace_inode; 7808 7809 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7810 WARN_ON(vfs_inode->i_data.nrpages); 7811 WARN_ON(inode->block_rsv.reserved); 7812 WARN_ON(inode->block_rsv.size); 7813 WARN_ON(inode->outstanding_extents); 7814 if (!S_ISDIR(vfs_inode->i_mode)) { 7815 WARN_ON(inode->delalloc_bytes); 7816 WARN_ON(inode->new_delalloc_bytes); 7817 WARN_ON(inode->csum_bytes); 7818 } 7819 if (!root || !btrfs_is_data_reloc_root(root)) 7820 WARN_ON(inode->defrag_bytes); 7821 7822 /* 7823 * This can happen where we create an inode, but somebody else also 7824 * created the same inode and we need to destroy the one we already 7825 * created. 7826 */ 7827 if (!root) 7828 return; 7829 7830 /* 7831 * If this is a free space inode do not take the ordered extents lockdep 7832 * map. 7833 */ 7834 freespace_inode = btrfs_is_free_space_inode(inode); 7835 7836 while (1) { 7837 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7838 if (!ordered) 7839 break; 7840 else { 7841 btrfs_err(root->fs_info, 7842 "found ordered extent %llu %llu on inode cleanup", 7843 ordered->file_offset, ordered->num_bytes); 7844 7845 if (!freespace_inode) 7846 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7847 7848 btrfs_remove_ordered_extent(inode, ordered); 7849 btrfs_put_ordered_extent(ordered); 7850 btrfs_put_ordered_extent(ordered); 7851 } 7852 } 7853 btrfs_qgroup_check_reserved_leak(inode); 7854 btrfs_del_inode_from_root(inode); 7855 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7856 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7857 btrfs_put_root(inode->root); 7858 } 7859 7860 int btrfs_drop_inode(struct inode *inode) 7861 { 7862 struct btrfs_root *root = BTRFS_I(inode)->root; 7863 7864 if (root == NULL) 7865 return 1; 7866 7867 /* the snap/subvol tree is on deleting */ 7868 if (btrfs_root_refs(&root->root_item) == 0) 7869 return 1; 7870 else 7871 return generic_drop_inode(inode); 7872 } 7873 7874 static void init_once(void *foo) 7875 { 7876 struct btrfs_inode *ei = foo; 7877 7878 inode_init_once(&ei->vfs_inode); 7879 } 7880 7881 void __cold btrfs_destroy_cachep(void) 7882 { 7883 /* 7884 * Make sure all delayed rcu free inodes are flushed before we 7885 * destroy cache. 7886 */ 7887 rcu_barrier(); 7888 kmem_cache_destroy(btrfs_inode_cachep); 7889 } 7890 7891 int __init btrfs_init_cachep(void) 7892 { 7893 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7894 sizeof(struct btrfs_inode), 0, 7895 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7896 init_once); 7897 if (!btrfs_inode_cachep) 7898 return -ENOMEM; 7899 7900 return 0; 7901 } 7902 7903 static int btrfs_getattr(struct mnt_idmap *idmap, 7904 const struct path *path, struct kstat *stat, 7905 u32 request_mask, unsigned int flags) 7906 { 7907 u64 delalloc_bytes; 7908 u64 inode_bytes; 7909 struct inode *inode = d_inode(path->dentry); 7910 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7911 u32 bi_flags = BTRFS_I(inode)->flags; 7912 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7913 7914 stat->result_mask |= STATX_BTIME; 7915 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7916 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7917 if (bi_flags & BTRFS_INODE_APPEND) 7918 stat->attributes |= STATX_ATTR_APPEND; 7919 if (bi_flags & BTRFS_INODE_COMPRESS) 7920 stat->attributes |= STATX_ATTR_COMPRESSED; 7921 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7922 stat->attributes |= STATX_ATTR_IMMUTABLE; 7923 if (bi_flags & BTRFS_INODE_NODUMP) 7924 stat->attributes |= STATX_ATTR_NODUMP; 7925 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7926 stat->attributes |= STATX_ATTR_VERITY; 7927 7928 stat->attributes_mask |= (STATX_ATTR_APPEND | 7929 STATX_ATTR_COMPRESSED | 7930 STATX_ATTR_IMMUTABLE | 7931 STATX_ATTR_NODUMP); 7932 7933 generic_fillattr(idmap, request_mask, inode, stat); 7934 stat->dev = BTRFS_I(inode)->root->anon_dev; 7935 7936 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7937 stat->result_mask |= STATX_SUBVOL; 7938 7939 spin_lock(&BTRFS_I(inode)->lock); 7940 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7941 inode_bytes = inode_get_bytes(inode); 7942 spin_unlock(&BTRFS_I(inode)->lock); 7943 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7944 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7945 return 0; 7946 } 7947 7948 static int btrfs_rename_exchange(struct inode *old_dir, 7949 struct dentry *old_dentry, 7950 struct inode *new_dir, 7951 struct dentry *new_dentry) 7952 { 7953 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7954 struct btrfs_trans_handle *trans; 7955 unsigned int trans_num_items; 7956 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7957 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7958 struct inode *new_inode = new_dentry->d_inode; 7959 struct inode *old_inode = old_dentry->d_inode; 7960 struct btrfs_rename_ctx old_rename_ctx; 7961 struct btrfs_rename_ctx new_rename_ctx; 7962 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7963 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7964 u64 old_idx = 0; 7965 u64 new_idx = 0; 7966 int ret; 7967 int ret2; 7968 bool need_abort = false; 7969 struct fscrypt_name old_fname, new_fname; 7970 struct fscrypt_str *old_name, *new_name; 7971 7972 /* 7973 * For non-subvolumes allow exchange only within one subvolume, in the 7974 * same inode namespace. Two subvolumes (represented as directory) can 7975 * be exchanged as they're a logical link and have a fixed inode number. 7976 */ 7977 if (root != dest && 7978 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7979 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7980 return -EXDEV; 7981 7982 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7983 if (ret) 7984 return ret; 7985 7986 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7987 if (ret) { 7988 fscrypt_free_filename(&old_fname); 7989 return ret; 7990 } 7991 7992 old_name = &old_fname.disk_name; 7993 new_name = &new_fname.disk_name; 7994 7995 /* close the race window with snapshot create/destroy ioctl */ 7996 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7997 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7998 down_read(&fs_info->subvol_sem); 7999 8000 /* 8001 * For each inode: 8002 * 1 to remove old dir item 8003 * 1 to remove old dir index 8004 * 1 to add new dir item 8005 * 1 to add new dir index 8006 * 1 to update parent inode 8007 * 8008 * If the parents are the same, we only need to account for one 8009 */ 8010 trans_num_items = (old_dir == new_dir ? 9 : 10); 8011 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8012 /* 8013 * 1 to remove old root ref 8014 * 1 to remove old root backref 8015 * 1 to add new root ref 8016 * 1 to add new root backref 8017 */ 8018 trans_num_items += 4; 8019 } else { 8020 /* 8021 * 1 to update inode item 8022 * 1 to remove old inode ref 8023 * 1 to add new inode ref 8024 */ 8025 trans_num_items += 3; 8026 } 8027 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8028 trans_num_items += 4; 8029 else 8030 trans_num_items += 3; 8031 trans = btrfs_start_transaction(root, trans_num_items); 8032 if (IS_ERR(trans)) { 8033 ret = PTR_ERR(trans); 8034 goto out_notrans; 8035 } 8036 8037 if (dest != root) { 8038 ret = btrfs_record_root_in_trans(trans, dest); 8039 if (ret) 8040 goto out_fail; 8041 } 8042 8043 /* 8044 * We need to find a free sequence number both in the source and 8045 * in the destination directory for the exchange. 8046 */ 8047 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8048 if (ret) 8049 goto out_fail; 8050 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8051 if (ret) 8052 goto out_fail; 8053 8054 BTRFS_I(old_inode)->dir_index = 0ULL; 8055 BTRFS_I(new_inode)->dir_index = 0ULL; 8056 8057 /* Reference for the source. */ 8058 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8059 /* force full log commit if subvolume involved. */ 8060 btrfs_set_log_full_commit(trans); 8061 } else { 8062 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8063 btrfs_ino(BTRFS_I(new_dir)), 8064 old_idx); 8065 if (ret) 8066 goto out_fail; 8067 need_abort = true; 8068 } 8069 8070 /* And now for the dest. */ 8071 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8072 /* force full log commit if subvolume involved. */ 8073 btrfs_set_log_full_commit(trans); 8074 } else { 8075 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8076 btrfs_ino(BTRFS_I(old_dir)), 8077 new_idx); 8078 if (ret) { 8079 if (need_abort) 8080 btrfs_abort_transaction(trans, ret); 8081 goto out_fail; 8082 } 8083 } 8084 8085 /* Update inode version and ctime/mtime. */ 8086 inode_inc_iversion(old_dir); 8087 inode_inc_iversion(new_dir); 8088 inode_inc_iversion(old_inode); 8089 inode_inc_iversion(new_inode); 8090 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8091 8092 if (old_dentry->d_parent != new_dentry->d_parent) { 8093 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8094 BTRFS_I(old_inode), true); 8095 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8096 BTRFS_I(new_inode), true); 8097 } 8098 8099 /* src is a subvolume */ 8100 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8101 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8102 if (ret) { 8103 btrfs_abort_transaction(trans, ret); 8104 goto out_fail; 8105 } 8106 } else { /* src is an inode */ 8107 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8108 BTRFS_I(old_dentry->d_inode), 8109 old_name, &old_rename_ctx); 8110 if (ret) { 8111 btrfs_abort_transaction(trans, ret); 8112 goto out_fail; 8113 } 8114 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8115 if (ret) { 8116 btrfs_abort_transaction(trans, ret); 8117 goto out_fail; 8118 } 8119 } 8120 8121 /* dest is a subvolume */ 8122 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8123 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8124 if (ret) { 8125 btrfs_abort_transaction(trans, ret); 8126 goto out_fail; 8127 } 8128 } else { /* dest is an inode */ 8129 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8130 BTRFS_I(new_dentry->d_inode), 8131 new_name, &new_rename_ctx); 8132 if (ret) { 8133 btrfs_abort_transaction(trans, ret); 8134 goto out_fail; 8135 } 8136 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8137 if (ret) { 8138 btrfs_abort_transaction(trans, ret); 8139 goto out_fail; 8140 } 8141 } 8142 8143 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8144 new_name, 0, old_idx); 8145 if (ret) { 8146 btrfs_abort_transaction(trans, ret); 8147 goto out_fail; 8148 } 8149 8150 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8151 old_name, 0, new_idx); 8152 if (ret) { 8153 btrfs_abort_transaction(trans, ret); 8154 goto out_fail; 8155 } 8156 8157 if (old_inode->i_nlink == 1) 8158 BTRFS_I(old_inode)->dir_index = old_idx; 8159 if (new_inode->i_nlink == 1) 8160 BTRFS_I(new_inode)->dir_index = new_idx; 8161 8162 /* 8163 * Now pin the logs of the roots. We do it to ensure that no other task 8164 * can sync the logs while we are in progress with the rename, because 8165 * that could result in an inconsistency in case any of the inodes that 8166 * are part of this rename operation were logged before. 8167 */ 8168 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8169 btrfs_pin_log_trans(root); 8170 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8171 btrfs_pin_log_trans(dest); 8172 8173 /* Do the log updates for all inodes. */ 8174 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8175 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8176 old_rename_ctx.index, new_dentry->d_parent); 8177 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8178 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8179 new_rename_ctx.index, old_dentry->d_parent); 8180 8181 /* Now unpin the logs. */ 8182 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8183 btrfs_end_log_trans(root); 8184 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8185 btrfs_end_log_trans(dest); 8186 out_fail: 8187 ret2 = btrfs_end_transaction(trans); 8188 ret = ret ? ret : ret2; 8189 out_notrans: 8190 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8191 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8192 up_read(&fs_info->subvol_sem); 8193 8194 fscrypt_free_filename(&new_fname); 8195 fscrypt_free_filename(&old_fname); 8196 return ret; 8197 } 8198 8199 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8200 struct inode *dir) 8201 { 8202 struct inode *inode; 8203 8204 inode = new_inode(dir->i_sb); 8205 if (inode) { 8206 inode_init_owner(idmap, inode, dir, 8207 S_IFCHR | WHITEOUT_MODE); 8208 inode->i_op = &btrfs_special_inode_operations; 8209 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8210 } 8211 return inode; 8212 } 8213 8214 static int btrfs_rename(struct mnt_idmap *idmap, 8215 struct inode *old_dir, struct dentry *old_dentry, 8216 struct inode *new_dir, struct dentry *new_dentry, 8217 unsigned int flags) 8218 { 8219 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8220 struct btrfs_new_inode_args whiteout_args = { 8221 .dir = old_dir, 8222 .dentry = old_dentry, 8223 }; 8224 struct btrfs_trans_handle *trans; 8225 unsigned int trans_num_items; 8226 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8227 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8228 struct inode *new_inode = d_inode(new_dentry); 8229 struct inode *old_inode = d_inode(old_dentry); 8230 struct btrfs_rename_ctx rename_ctx; 8231 u64 index = 0; 8232 int ret; 8233 int ret2; 8234 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8235 struct fscrypt_name old_fname, new_fname; 8236 8237 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8238 return -EPERM; 8239 8240 /* we only allow rename subvolume link between subvolumes */ 8241 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8242 return -EXDEV; 8243 8244 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8245 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8246 return -ENOTEMPTY; 8247 8248 if (S_ISDIR(old_inode->i_mode) && new_inode && 8249 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8250 return -ENOTEMPTY; 8251 8252 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8253 if (ret) 8254 return ret; 8255 8256 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8257 if (ret) { 8258 fscrypt_free_filename(&old_fname); 8259 return ret; 8260 } 8261 8262 /* check for collisions, even if the name isn't there */ 8263 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8264 if (ret) { 8265 if (ret == -EEXIST) { 8266 /* we shouldn't get 8267 * eexist without a new_inode */ 8268 if (WARN_ON(!new_inode)) { 8269 goto out_fscrypt_names; 8270 } 8271 } else { 8272 /* maybe -EOVERFLOW */ 8273 goto out_fscrypt_names; 8274 } 8275 } 8276 ret = 0; 8277 8278 /* 8279 * we're using rename to replace one file with another. Start IO on it 8280 * now so we don't add too much work to the end of the transaction 8281 */ 8282 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8283 filemap_flush(old_inode->i_mapping); 8284 8285 if (flags & RENAME_WHITEOUT) { 8286 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8287 if (!whiteout_args.inode) { 8288 ret = -ENOMEM; 8289 goto out_fscrypt_names; 8290 } 8291 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8292 if (ret) 8293 goto out_whiteout_inode; 8294 } else { 8295 /* 1 to update the old parent inode. */ 8296 trans_num_items = 1; 8297 } 8298 8299 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8300 /* Close the race window with snapshot create/destroy ioctl */ 8301 down_read(&fs_info->subvol_sem); 8302 /* 8303 * 1 to remove old root ref 8304 * 1 to remove old root backref 8305 * 1 to add new root ref 8306 * 1 to add new root backref 8307 */ 8308 trans_num_items += 4; 8309 } else { 8310 /* 8311 * 1 to update inode 8312 * 1 to remove old inode ref 8313 * 1 to add new inode ref 8314 */ 8315 trans_num_items += 3; 8316 } 8317 /* 8318 * 1 to remove old dir item 8319 * 1 to remove old dir index 8320 * 1 to add new dir item 8321 * 1 to add new dir index 8322 */ 8323 trans_num_items += 4; 8324 /* 1 to update new parent inode if it's not the same as the old parent */ 8325 if (new_dir != old_dir) 8326 trans_num_items++; 8327 if (new_inode) { 8328 /* 8329 * 1 to update inode 8330 * 1 to remove inode ref 8331 * 1 to remove dir item 8332 * 1 to remove dir index 8333 * 1 to possibly add orphan item 8334 */ 8335 trans_num_items += 5; 8336 } 8337 trans = btrfs_start_transaction(root, trans_num_items); 8338 if (IS_ERR(trans)) { 8339 ret = PTR_ERR(trans); 8340 goto out_notrans; 8341 } 8342 8343 if (dest != root) { 8344 ret = btrfs_record_root_in_trans(trans, dest); 8345 if (ret) 8346 goto out_fail; 8347 } 8348 8349 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8350 if (ret) 8351 goto out_fail; 8352 8353 BTRFS_I(old_inode)->dir_index = 0ULL; 8354 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8355 /* force full log commit if subvolume involved. */ 8356 btrfs_set_log_full_commit(trans); 8357 } else { 8358 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8359 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8360 index); 8361 if (ret) 8362 goto out_fail; 8363 } 8364 8365 inode_inc_iversion(old_dir); 8366 inode_inc_iversion(new_dir); 8367 inode_inc_iversion(old_inode); 8368 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8369 8370 if (old_dentry->d_parent != new_dentry->d_parent) 8371 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8372 BTRFS_I(old_inode), true); 8373 8374 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8375 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8376 if (ret) { 8377 btrfs_abort_transaction(trans, ret); 8378 goto out_fail; 8379 } 8380 } else { 8381 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8382 BTRFS_I(d_inode(old_dentry)), 8383 &old_fname.disk_name, &rename_ctx); 8384 if (ret) { 8385 btrfs_abort_transaction(trans, ret); 8386 goto out_fail; 8387 } 8388 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8389 if (ret) { 8390 btrfs_abort_transaction(trans, ret); 8391 goto out_fail; 8392 } 8393 } 8394 8395 if (new_inode) { 8396 inode_inc_iversion(new_inode); 8397 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8398 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8399 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8400 if (ret) { 8401 btrfs_abort_transaction(trans, ret); 8402 goto out_fail; 8403 } 8404 BUG_ON(new_inode->i_nlink == 0); 8405 } else { 8406 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8407 BTRFS_I(d_inode(new_dentry)), 8408 &new_fname.disk_name); 8409 if (ret) { 8410 btrfs_abort_transaction(trans, ret); 8411 goto out_fail; 8412 } 8413 } 8414 if (new_inode->i_nlink == 0) { 8415 ret = btrfs_orphan_add(trans, 8416 BTRFS_I(d_inode(new_dentry))); 8417 if (ret) { 8418 btrfs_abort_transaction(trans, ret); 8419 goto out_fail; 8420 } 8421 } 8422 } 8423 8424 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8425 &new_fname.disk_name, 0, index); 8426 if (ret) { 8427 btrfs_abort_transaction(trans, ret); 8428 goto out_fail; 8429 } 8430 8431 if (old_inode->i_nlink == 1) 8432 BTRFS_I(old_inode)->dir_index = index; 8433 8434 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8435 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8436 rename_ctx.index, new_dentry->d_parent); 8437 8438 if (flags & RENAME_WHITEOUT) { 8439 ret = btrfs_create_new_inode(trans, &whiteout_args); 8440 if (ret) { 8441 btrfs_abort_transaction(trans, ret); 8442 goto out_fail; 8443 } else { 8444 unlock_new_inode(whiteout_args.inode); 8445 iput(whiteout_args.inode); 8446 whiteout_args.inode = NULL; 8447 } 8448 } 8449 out_fail: 8450 ret2 = btrfs_end_transaction(trans); 8451 ret = ret ? ret : ret2; 8452 out_notrans: 8453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8454 up_read(&fs_info->subvol_sem); 8455 if (flags & RENAME_WHITEOUT) 8456 btrfs_new_inode_args_destroy(&whiteout_args); 8457 out_whiteout_inode: 8458 if (flags & RENAME_WHITEOUT) 8459 iput(whiteout_args.inode); 8460 out_fscrypt_names: 8461 fscrypt_free_filename(&old_fname); 8462 fscrypt_free_filename(&new_fname); 8463 return ret; 8464 } 8465 8466 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8467 struct dentry *old_dentry, struct inode *new_dir, 8468 struct dentry *new_dentry, unsigned int flags) 8469 { 8470 int ret; 8471 8472 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8473 return -EINVAL; 8474 8475 if (flags & RENAME_EXCHANGE) 8476 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8477 new_dentry); 8478 else 8479 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8480 new_dentry, flags); 8481 8482 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8483 8484 return ret; 8485 } 8486 8487 struct btrfs_delalloc_work { 8488 struct inode *inode; 8489 struct completion completion; 8490 struct list_head list; 8491 struct btrfs_work work; 8492 }; 8493 8494 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8495 { 8496 struct btrfs_delalloc_work *delalloc_work; 8497 struct inode *inode; 8498 8499 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8500 work); 8501 inode = delalloc_work->inode; 8502 filemap_flush(inode->i_mapping); 8503 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8504 &BTRFS_I(inode)->runtime_flags)) 8505 filemap_flush(inode->i_mapping); 8506 8507 iput(inode); 8508 complete(&delalloc_work->completion); 8509 } 8510 8511 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8512 { 8513 struct btrfs_delalloc_work *work; 8514 8515 work = kmalloc(sizeof(*work), GFP_NOFS); 8516 if (!work) 8517 return NULL; 8518 8519 init_completion(&work->completion); 8520 INIT_LIST_HEAD(&work->list); 8521 work->inode = inode; 8522 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8523 8524 return work; 8525 } 8526 8527 /* 8528 * some fairly slow code that needs optimization. This walks the list 8529 * of all the inodes with pending delalloc and forces them to disk. 8530 */ 8531 static int start_delalloc_inodes(struct btrfs_root *root, 8532 struct writeback_control *wbc, bool snapshot, 8533 bool in_reclaim_context) 8534 { 8535 struct btrfs_delalloc_work *work, *next; 8536 LIST_HEAD(works); 8537 LIST_HEAD(splice); 8538 int ret = 0; 8539 bool full_flush = wbc->nr_to_write == LONG_MAX; 8540 8541 mutex_lock(&root->delalloc_mutex); 8542 spin_lock(&root->delalloc_lock); 8543 list_splice_init(&root->delalloc_inodes, &splice); 8544 while (!list_empty(&splice)) { 8545 struct btrfs_inode *inode; 8546 struct inode *tmp_inode; 8547 8548 inode = list_entry(splice.next, struct btrfs_inode, delalloc_inodes); 8549 8550 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8551 8552 if (in_reclaim_context && 8553 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8554 continue; 8555 8556 tmp_inode = igrab(&inode->vfs_inode); 8557 if (!tmp_inode) { 8558 cond_resched_lock(&root->delalloc_lock); 8559 continue; 8560 } 8561 spin_unlock(&root->delalloc_lock); 8562 8563 if (snapshot) 8564 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8565 if (full_flush) { 8566 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8567 if (!work) { 8568 iput(&inode->vfs_inode); 8569 ret = -ENOMEM; 8570 goto out; 8571 } 8572 list_add_tail(&work->list, &works); 8573 btrfs_queue_work(root->fs_info->flush_workers, 8574 &work->work); 8575 } else { 8576 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8577 btrfs_add_delayed_iput(inode); 8578 if (ret || wbc->nr_to_write <= 0) 8579 goto out; 8580 } 8581 cond_resched(); 8582 spin_lock(&root->delalloc_lock); 8583 } 8584 spin_unlock(&root->delalloc_lock); 8585 8586 out: 8587 list_for_each_entry_safe(work, next, &works, list) { 8588 list_del_init(&work->list); 8589 wait_for_completion(&work->completion); 8590 kfree(work); 8591 } 8592 8593 if (!list_empty(&splice)) { 8594 spin_lock(&root->delalloc_lock); 8595 list_splice_tail(&splice, &root->delalloc_inodes); 8596 spin_unlock(&root->delalloc_lock); 8597 } 8598 mutex_unlock(&root->delalloc_mutex); 8599 return ret; 8600 } 8601 8602 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8603 { 8604 struct writeback_control wbc = { 8605 .nr_to_write = LONG_MAX, 8606 .sync_mode = WB_SYNC_NONE, 8607 .range_start = 0, 8608 .range_end = LLONG_MAX, 8609 }; 8610 struct btrfs_fs_info *fs_info = root->fs_info; 8611 8612 if (BTRFS_FS_ERROR(fs_info)) 8613 return -EROFS; 8614 8615 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8616 } 8617 8618 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8619 bool in_reclaim_context) 8620 { 8621 struct writeback_control wbc = { 8622 .nr_to_write = nr, 8623 .sync_mode = WB_SYNC_NONE, 8624 .range_start = 0, 8625 .range_end = LLONG_MAX, 8626 }; 8627 struct btrfs_root *root; 8628 LIST_HEAD(splice); 8629 int ret; 8630 8631 if (BTRFS_FS_ERROR(fs_info)) 8632 return -EROFS; 8633 8634 mutex_lock(&fs_info->delalloc_root_mutex); 8635 spin_lock(&fs_info->delalloc_root_lock); 8636 list_splice_init(&fs_info->delalloc_roots, &splice); 8637 while (!list_empty(&splice)) { 8638 /* 8639 * Reset nr_to_write here so we know that we're doing a full 8640 * flush. 8641 */ 8642 if (nr == LONG_MAX) 8643 wbc.nr_to_write = LONG_MAX; 8644 8645 root = list_first_entry(&splice, struct btrfs_root, 8646 delalloc_root); 8647 root = btrfs_grab_root(root); 8648 BUG_ON(!root); 8649 list_move_tail(&root->delalloc_root, 8650 &fs_info->delalloc_roots); 8651 spin_unlock(&fs_info->delalloc_root_lock); 8652 8653 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8654 btrfs_put_root(root); 8655 if (ret < 0 || wbc.nr_to_write <= 0) 8656 goto out; 8657 spin_lock(&fs_info->delalloc_root_lock); 8658 } 8659 spin_unlock(&fs_info->delalloc_root_lock); 8660 8661 ret = 0; 8662 out: 8663 if (!list_empty(&splice)) { 8664 spin_lock(&fs_info->delalloc_root_lock); 8665 list_splice_tail(&splice, &fs_info->delalloc_roots); 8666 spin_unlock(&fs_info->delalloc_root_lock); 8667 } 8668 mutex_unlock(&fs_info->delalloc_root_mutex); 8669 return ret; 8670 } 8671 8672 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8673 struct dentry *dentry, const char *symname) 8674 { 8675 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8676 struct btrfs_trans_handle *trans; 8677 struct btrfs_root *root = BTRFS_I(dir)->root; 8678 struct btrfs_path *path; 8679 struct btrfs_key key; 8680 struct inode *inode; 8681 struct btrfs_new_inode_args new_inode_args = { 8682 .dir = dir, 8683 .dentry = dentry, 8684 }; 8685 unsigned int trans_num_items; 8686 int err; 8687 int name_len; 8688 int datasize; 8689 unsigned long ptr; 8690 struct btrfs_file_extent_item *ei; 8691 struct extent_buffer *leaf; 8692 8693 name_len = strlen(symname); 8694 /* 8695 * Symlinks utilize uncompressed inline extent data, which should not 8696 * reach block size. 8697 */ 8698 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8699 name_len >= fs_info->sectorsize) 8700 return -ENAMETOOLONG; 8701 8702 inode = new_inode(dir->i_sb); 8703 if (!inode) 8704 return -ENOMEM; 8705 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8706 inode->i_op = &btrfs_symlink_inode_operations; 8707 inode_nohighmem(inode); 8708 inode->i_mapping->a_ops = &btrfs_aops; 8709 btrfs_i_size_write(BTRFS_I(inode), name_len); 8710 inode_set_bytes(inode, name_len); 8711 8712 new_inode_args.inode = inode; 8713 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8714 if (err) 8715 goto out_inode; 8716 /* 1 additional item for the inline extent */ 8717 trans_num_items++; 8718 8719 trans = btrfs_start_transaction(root, trans_num_items); 8720 if (IS_ERR(trans)) { 8721 err = PTR_ERR(trans); 8722 goto out_new_inode_args; 8723 } 8724 8725 err = btrfs_create_new_inode(trans, &new_inode_args); 8726 if (err) 8727 goto out; 8728 8729 path = btrfs_alloc_path(); 8730 if (!path) { 8731 err = -ENOMEM; 8732 btrfs_abort_transaction(trans, err); 8733 discard_new_inode(inode); 8734 inode = NULL; 8735 goto out; 8736 } 8737 key.objectid = btrfs_ino(BTRFS_I(inode)); 8738 key.type = BTRFS_EXTENT_DATA_KEY; 8739 key.offset = 0; 8740 datasize = btrfs_file_extent_calc_inline_size(name_len); 8741 err = btrfs_insert_empty_item(trans, root, path, &key, 8742 datasize); 8743 if (err) { 8744 btrfs_abort_transaction(trans, err); 8745 btrfs_free_path(path); 8746 discard_new_inode(inode); 8747 inode = NULL; 8748 goto out; 8749 } 8750 leaf = path->nodes[0]; 8751 ei = btrfs_item_ptr(leaf, path->slots[0], 8752 struct btrfs_file_extent_item); 8753 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8754 btrfs_set_file_extent_type(leaf, ei, 8755 BTRFS_FILE_EXTENT_INLINE); 8756 btrfs_set_file_extent_encryption(leaf, ei, 0); 8757 btrfs_set_file_extent_compression(leaf, ei, 0); 8758 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8759 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8760 8761 ptr = btrfs_file_extent_inline_start(ei); 8762 write_extent_buffer(leaf, symname, ptr, name_len); 8763 btrfs_free_path(path); 8764 8765 d_instantiate_new(dentry, inode); 8766 err = 0; 8767 out: 8768 btrfs_end_transaction(trans); 8769 btrfs_btree_balance_dirty(fs_info); 8770 out_new_inode_args: 8771 btrfs_new_inode_args_destroy(&new_inode_args); 8772 out_inode: 8773 if (err) 8774 iput(inode); 8775 return err; 8776 } 8777 8778 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8779 struct btrfs_trans_handle *trans_in, 8780 struct btrfs_inode *inode, 8781 struct btrfs_key *ins, 8782 u64 file_offset) 8783 { 8784 struct btrfs_file_extent_item stack_fi; 8785 struct btrfs_replace_extent_info extent_info; 8786 struct btrfs_trans_handle *trans = trans_in; 8787 struct btrfs_path *path; 8788 u64 start = ins->objectid; 8789 u64 len = ins->offset; 8790 u64 qgroup_released = 0; 8791 int ret; 8792 8793 memset(&stack_fi, 0, sizeof(stack_fi)); 8794 8795 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8796 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8797 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8798 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8799 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8800 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8801 /* Encryption and other encoding is reserved and all 0 */ 8802 8803 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8804 if (ret < 0) 8805 return ERR_PTR(ret); 8806 8807 if (trans) { 8808 ret = insert_reserved_file_extent(trans, inode, 8809 file_offset, &stack_fi, 8810 true, qgroup_released); 8811 if (ret) 8812 goto free_qgroup; 8813 return trans; 8814 } 8815 8816 extent_info.disk_offset = start; 8817 extent_info.disk_len = len; 8818 extent_info.data_offset = 0; 8819 extent_info.data_len = len; 8820 extent_info.file_offset = file_offset; 8821 extent_info.extent_buf = (char *)&stack_fi; 8822 extent_info.is_new_extent = true; 8823 extent_info.update_times = true; 8824 extent_info.qgroup_reserved = qgroup_released; 8825 extent_info.insertions = 0; 8826 8827 path = btrfs_alloc_path(); 8828 if (!path) { 8829 ret = -ENOMEM; 8830 goto free_qgroup; 8831 } 8832 8833 ret = btrfs_replace_file_extents(inode, path, file_offset, 8834 file_offset + len - 1, &extent_info, 8835 &trans); 8836 btrfs_free_path(path); 8837 if (ret) 8838 goto free_qgroup; 8839 return trans; 8840 8841 free_qgroup: 8842 /* 8843 * We have released qgroup data range at the beginning of the function, 8844 * and normally qgroup_released bytes will be freed when committing 8845 * transaction. 8846 * But if we error out early, we have to free what we have released 8847 * or we leak qgroup data reservation. 8848 */ 8849 btrfs_qgroup_free_refroot(inode->root->fs_info, 8850 btrfs_root_id(inode->root), qgroup_released, 8851 BTRFS_QGROUP_RSV_DATA); 8852 return ERR_PTR(ret); 8853 } 8854 8855 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8856 u64 start, u64 num_bytes, u64 min_size, 8857 loff_t actual_len, u64 *alloc_hint, 8858 struct btrfs_trans_handle *trans) 8859 { 8860 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8861 struct extent_map *em; 8862 struct btrfs_root *root = BTRFS_I(inode)->root; 8863 struct btrfs_key ins; 8864 u64 cur_offset = start; 8865 u64 clear_offset = start; 8866 u64 i_size; 8867 u64 cur_bytes; 8868 u64 last_alloc = (u64)-1; 8869 int ret = 0; 8870 bool own_trans = true; 8871 u64 end = start + num_bytes - 1; 8872 8873 if (trans) 8874 own_trans = false; 8875 while (num_bytes > 0) { 8876 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8877 cur_bytes = max(cur_bytes, min_size); 8878 /* 8879 * If we are severely fragmented we could end up with really 8880 * small allocations, so if the allocator is returning small 8881 * chunks lets make its job easier by only searching for those 8882 * sized chunks. 8883 */ 8884 cur_bytes = min(cur_bytes, last_alloc); 8885 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8886 min_size, 0, *alloc_hint, &ins, 1, 0); 8887 if (ret) 8888 break; 8889 8890 /* 8891 * We've reserved this space, and thus converted it from 8892 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8893 * from here on out we will only need to clear our reservation 8894 * for the remaining unreserved area, so advance our 8895 * clear_offset by our extent size. 8896 */ 8897 clear_offset += ins.offset; 8898 8899 last_alloc = ins.offset; 8900 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8901 &ins, cur_offset); 8902 /* 8903 * Now that we inserted the prealloc extent we can finally 8904 * decrement the number of reservations in the block group. 8905 * If we did it before, we could race with relocation and have 8906 * relocation miss the reserved extent, making it fail later. 8907 */ 8908 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8909 if (IS_ERR(trans)) { 8910 ret = PTR_ERR(trans); 8911 btrfs_free_reserved_extent(fs_info, ins.objectid, 8912 ins.offset, 0); 8913 break; 8914 } 8915 8916 em = alloc_extent_map(); 8917 if (!em) { 8918 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8919 cur_offset + ins.offset - 1, false); 8920 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8921 goto next; 8922 } 8923 8924 em->start = cur_offset; 8925 em->len = ins.offset; 8926 em->disk_bytenr = ins.objectid; 8927 em->offset = 0; 8928 em->disk_num_bytes = ins.offset; 8929 em->ram_bytes = ins.offset; 8930 em->flags |= EXTENT_FLAG_PREALLOC; 8931 em->generation = trans->transid; 8932 8933 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8934 free_extent_map(em); 8935 next: 8936 num_bytes -= ins.offset; 8937 cur_offset += ins.offset; 8938 *alloc_hint = ins.objectid + ins.offset; 8939 8940 inode_inc_iversion(inode); 8941 inode_set_ctime_current(inode); 8942 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8943 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8944 (actual_len > inode->i_size) && 8945 (cur_offset > inode->i_size)) { 8946 if (cur_offset > actual_len) 8947 i_size = actual_len; 8948 else 8949 i_size = cur_offset; 8950 i_size_write(inode, i_size); 8951 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8952 } 8953 8954 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8955 8956 if (ret) { 8957 btrfs_abort_transaction(trans, ret); 8958 if (own_trans) 8959 btrfs_end_transaction(trans); 8960 break; 8961 } 8962 8963 if (own_trans) { 8964 btrfs_end_transaction(trans); 8965 trans = NULL; 8966 } 8967 } 8968 if (clear_offset < end) 8969 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8970 end - clear_offset + 1); 8971 return ret; 8972 } 8973 8974 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8975 u64 start, u64 num_bytes, u64 min_size, 8976 loff_t actual_len, u64 *alloc_hint) 8977 { 8978 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8979 min_size, actual_len, alloc_hint, 8980 NULL); 8981 } 8982 8983 int btrfs_prealloc_file_range_trans(struct inode *inode, 8984 struct btrfs_trans_handle *trans, int mode, 8985 u64 start, u64 num_bytes, u64 min_size, 8986 loff_t actual_len, u64 *alloc_hint) 8987 { 8988 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8989 min_size, actual_len, alloc_hint, trans); 8990 } 8991 8992 static int btrfs_permission(struct mnt_idmap *idmap, 8993 struct inode *inode, int mask) 8994 { 8995 struct btrfs_root *root = BTRFS_I(inode)->root; 8996 umode_t mode = inode->i_mode; 8997 8998 if (mask & MAY_WRITE && 8999 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9000 if (btrfs_root_readonly(root)) 9001 return -EROFS; 9002 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9003 return -EACCES; 9004 } 9005 return generic_permission(idmap, inode, mask); 9006 } 9007 9008 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9009 struct file *file, umode_t mode) 9010 { 9011 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9012 struct btrfs_trans_handle *trans; 9013 struct btrfs_root *root = BTRFS_I(dir)->root; 9014 struct inode *inode; 9015 struct btrfs_new_inode_args new_inode_args = { 9016 .dir = dir, 9017 .dentry = file->f_path.dentry, 9018 .orphan = true, 9019 }; 9020 unsigned int trans_num_items; 9021 int ret; 9022 9023 inode = new_inode(dir->i_sb); 9024 if (!inode) 9025 return -ENOMEM; 9026 inode_init_owner(idmap, inode, dir, mode); 9027 inode->i_fop = &btrfs_file_operations; 9028 inode->i_op = &btrfs_file_inode_operations; 9029 inode->i_mapping->a_ops = &btrfs_aops; 9030 9031 new_inode_args.inode = inode; 9032 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9033 if (ret) 9034 goto out_inode; 9035 9036 trans = btrfs_start_transaction(root, trans_num_items); 9037 if (IS_ERR(trans)) { 9038 ret = PTR_ERR(trans); 9039 goto out_new_inode_args; 9040 } 9041 9042 ret = btrfs_create_new_inode(trans, &new_inode_args); 9043 9044 /* 9045 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9046 * set it to 1 because d_tmpfile() will issue a warning if the count is 9047 * 0, through: 9048 * 9049 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9050 */ 9051 set_nlink(inode, 1); 9052 9053 if (!ret) { 9054 d_tmpfile(file, inode); 9055 unlock_new_inode(inode); 9056 mark_inode_dirty(inode); 9057 } 9058 9059 btrfs_end_transaction(trans); 9060 btrfs_btree_balance_dirty(fs_info); 9061 out_new_inode_args: 9062 btrfs_new_inode_args_destroy(&new_inode_args); 9063 out_inode: 9064 if (ret) 9065 iput(inode); 9066 return finish_open_simple(file, ret); 9067 } 9068 9069 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9070 int compress_type) 9071 { 9072 switch (compress_type) { 9073 case BTRFS_COMPRESS_NONE: 9074 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9075 case BTRFS_COMPRESS_ZLIB: 9076 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9077 case BTRFS_COMPRESS_LZO: 9078 /* 9079 * The LZO format depends on the sector size. 64K is the maximum 9080 * sector size that we support. 9081 */ 9082 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9083 return -EINVAL; 9084 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9085 (fs_info->sectorsize_bits - 12); 9086 case BTRFS_COMPRESS_ZSTD: 9087 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9088 default: 9089 return -EUCLEAN; 9090 } 9091 } 9092 9093 static ssize_t btrfs_encoded_read_inline( 9094 struct kiocb *iocb, 9095 struct iov_iter *iter, u64 start, 9096 u64 lockend, 9097 struct extent_state **cached_state, 9098 u64 extent_start, size_t count, 9099 struct btrfs_ioctl_encoded_io_args *encoded, 9100 bool *unlocked) 9101 { 9102 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9103 struct btrfs_root *root = inode->root; 9104 struct btrfs_fs_info *fs_info = root->fs_info; 9105 struct extent_io_tree *io_tree = &inode->io_tree; 9106 struct btrfs_path *path; 9107 struct extent_buffer *leaf; 9108 struct btrfs_file_extent_item *item; 9109 u64 ram_bytes; 9110 unsigned long ptr; 9111 void *tmp; 9112 ssize_t ret; 9113 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9114 9115 path = btrfs_alloc_path(); 9116 if (!path) { 9117 ret = -ENOMEM; 9118 goto out; 9119 } 9120 9121 path->nowait = nowait; 9122 9123 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9124 extent_start, 0); 9125 if (ret) { 9126 if (ret > 0) { 9127 /* The extent item disappeared? */ 9128 ret = -EIO; 9129 } 9130 goto out; 9131 } 9132 leaf = path->nodes[0]; 9133 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9134 9135 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9136 ptr = btrfs_file_extent_inline_start(item); 9137 9138 encoded->len = min_t(u64, extent_start + ram_bytes, 9139 inode->vfs_inode.i_size) - iocb->ki_pos; 9140 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9141 btrfs_file_extent_compression(leaf, item)); 9142 if (ret < 0) 9143 goto out; 9144 encoded->compression = ret; 9145 if (encoded->compression) { 9146 size_t inline_size; 9147 9148 inline_size = btrfs_file_extent_inline_item_len(leaf, 9149 path->slots[0]); 9150 if (inline_size > count) { 9151 ret = -ENOBUFS; 9152 goto out; 9153 } 9154 count = inline_size; 9155 encoded->unencoded_len = ram_bytes; 9156 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9157 } else { 9158 count = min_t(u64, count, encoded->len); 9159 encoded->len = count; 9160 encoded->unencoded_len = count; 9161 ptr += iocb->ki_pos - extent_start; 9162 } 9163 9164 tmp = kmalloc(count, GFP_NOFS); 9165 if (!tmp) { 9166 ret = -ENOMEM; 9167 goto out; 9168 } 9169 read_extent_buffer(leaf, tmp, ptr, count); 9170 btrfs_release_path(path); 9171 unlock_extent(io_tree, start, lockend, cached_state); 9172 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9173 *unlocked = true; 9174 9175 ret = copy_to_iter(tmp, count, iter); 9176 if (ret != count) 9177 ret = -EFAULT; 9178 kfree(tmp); 9179 out: 9180 btrfs_free_path(path); 9181 return ret; 9182 } 9183 9184 struct btrfs_encoded_read_private { 9185 struct completion *sync_reads; 9186 void *uring_ctx; 9187 refcount_t pending_refs; 9188 blk_status_t status; 9189 }; 9190 9191 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9192 { 9193 struct btrfs_encoded_read_private *priv = bbio->private; 9194 9195 if (bbio->bio.bi_status) { 9196 /* 9197 * The memory barrier implied by the refcount_dec_and_test() here 9198 * pairs with the memory barrier implied by the refcount_dec_and_test() 9199 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9200 * this write is observed before the load of status in 9201 * btrfs_encoded_read_regular_fill_pages(). 9202 */ 9203 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9204 } 9205 if (refcount_dec_and_test(&priv->pending_refs)) { 9206 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9207 9208 if (priv->uring_ctx) { 9209 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9210 kfree(priv); 9211 } else { 9212 complete(priv->sync_reads); 9213 } 9214 } 9215 bio_put(&bbio->bio); 9216 } 9217 9218 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9219 u64 disk_bytenr, u64 disk_io_size, 9220 struct page **pages, void *uring_ctx) 9221 { 9222 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9223 struct btrfs_encoded_read_private *priv, sync_priv; 9224 struct completion sync_reads; 9225 unsigned long i = 0; 9226 struct btrfs_bio *bbio; 9227 int ret; 9228 9229 /* 9230 * Fast path for synchronous reads which completes in this call, io_uring 9231 * needs longer time span. 9232 */ 9233 if (uring_ctx) { 9234 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9235 if (!priv) 9236 return -ENOMEM; 9237 } else { 9238 priv = &sync_priv; 9239 init_completion(&sync_reads); 9240 priv->sync_reads = &sync_reads; 9241 } 9242 9243 refcount_set(&priv->pending_refs, 1); 9244 priv->status = 0; 9245 priv->uring_ctx = uring_ctx; 9246 9247 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9248 btrfs_encoded_read_endio, priv); 9249 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9250 bbio->inode = inode; 9251 9252 do { 9253 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9254 9255 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9256 refcount_inc(&priv->pending_refs); 9257 btrfs_submit_bbio(bbio, 0); 9258 9259 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9260 btrfs_encoded_read_endio, priv); 9261 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9262 bbio->inode = inode; 9263 continue; 9264 } 9265 9266 i++; 9267 disk_bytenr += bytes; 9268 disk_io_size -= bytes; 9269 } while (disk_io_size); 9270 9271 refcount_inc(&priv->pending_refs); 9272 btrfs_submit_bbio(bbio, 0); 9273 9274 if (uring_ctx) { 9275 if (refcount_dec_and_test(&priv->pending_refs)) { 9276 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9277 btrfs_uring_read_extent_endio(uring_ctx, ret); 9278 kfree(priv); 9279 return ret; 9280 } 9281 9282 return -EIOCBQUEUED; 9283 } else { 9284 if (!refcount_dec_and_test(&priv->pending_refs)) 9285 wait_for_completion_io(&sync_reads); 9286 /* See btrfs_encoded_read_endio() for ordering. */ 9287 return blk_status_to_errno(READ_ONCE(priv->status)); 9288 } 9289 } 9290 9291 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9292 u64 start, u64 lockend, 9293 struct extent_state **cached_state, 9294 u64 disk_bytenr, u64 disk_io_size, 9295 size_t count, bool compressed, bool *unlocked) 9296 { 9297 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9298 struct extent_io_tree *io_tree = &inode->io_tree; 9299 struct page **pages; 9300 unsigned long nr_pages, i; 9301 u64 cur; 9302 size_t page_offset; 9303 ssize_t ret; 9304 9305 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9306 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9307 if (!pages) 9308 return -ENOMEM; 9309 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9310 if (ret) { 9311 ret = -ENOMEM; 9312 goto out; 9313 } 9314 9315 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9316 disk_io_size, pages, NULL); 9317 if (ret) 9318 goto out; 9319 9320 unlock_extent(io_tree, start, lockend, cached_state); 9321 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9322 *unlocked = true; 9323 9324 if (compressed) { 9325 i = 0; 9326 page_offset = 0; 9327 } else { 9328 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9329 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9330 } 9331 cur = 0; 9332 while (cur < count) { 9333 size_t bytes = min_t(size_t, count - cur, 9334 PAGE_SIZE - page_offset); 9335 9336 if (copy_page_to_iter(pages[i], page_offset, bytes, 9337 iter) != bytes) { 9338 ret = -EFAULT; 9339 goto out; 9340 } 9341 i++; 9342 cur += bytes; 9343 page_offset = 0; 9344 } 9345 ret = count; 9346 out: 9347 for (i = 0; i < nr_pages; i++) { 9348 if (pages[i]) 9349 __free_page(pages[i]); 9350 } 9351 kfree(pages); 9352 return ret; 9353 } 9354 9355 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9356 struct btrfs_ioctl_encoded_io_args *encoded, 9357 struct extent_state **cached_state, 9358 u64 *disk_bytenr, u64 *disk_io_size) 9359 { 9360 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9362 struct extent_io_tree *io_tree = &inode->io_tree; 9363 ssize_t ret; 9364 size_t count = iov_iter_count(iter); 9365 u64 start, lockend; 9366 struct extent_map *em; 9367 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9368 bool unlocked = false; 9369 9370 file_accessed(iocb->ki_filp); 9371 9372 ret = btrfs_inode_lock(inode, 9373 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9374 if (ret) 9375 return ret; 9376 9377 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9378 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9379 return 0; 9380 } 9381 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9382 /* 9383 * We don't know how long the extent containing iocb->ki_pos is, but if 9384 * it's compressed we know that it won't be longer than this. 9385 */ 9386 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9387 9388 if (nowait) { 9389 struct btrfs_ordered_extent *ordered; 9390 9391 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9392 start, lockend)) { 9393 ret = -EAGAIN; 9394 goto out_unlock_inode; 9395 } 9396 9397 if (!try_lock_extent(io_tree, start, lockend, cached_state)) { 9398 ret = -EAGAIN; 9399 goto out_unlock_inode; 9400 } 9401 9402 ordered = btrfs_lookup_ordered_range(inode, start, 9403 lockend - start + 1); 9404 if (ordered) { 9405 btrfs_put_ordered_extent(ordered); 9406 unlock_extent(io_tree, start, lockend, cached_state); 9407 ret = -EAGAIN; 9408 goto out_unlock_inode; 9409 } 9410 } else { 9411 for (;;) { 9412 struct btrfs_ordered_extent *ordered; 9413 9414 ret = btrfs_wait_ordered_range(inode, start, 9415 lockend - start + 1); 9416 if (ret) 9417 goto out_unlock_inode; 9418 9419 lock_extent(io_tree, start, lockend, cached_state); 9420 ordered = btrfs_lookup_ordered_range(inode, start, 9421 lockend - start + 1); 9422 if (!ordered) 9423 break; 9424 btrfs_put_ordered_extent(ordered); 9425 unlock_extent(io_tree, start, lockend, cached_state); 9426 cond_resched(); 9427 } 9428 } 9429 9430 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9431 if (IS_ERR(em)) { 9432 ret = PTR_ERR(em); 9433 goto out_unlock_extent; 9434 } 9435 9436 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9437 u64 extent_start = em->start; 9438 9439 /* 9440 * For inline extents we get everything we need out of the 9441 * extent item. 9442 */ 9443 free_extent_map(em); 9444 em = NULL; 9445 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9446 cached_state, extent_start, 9447 count, encoded, &unlocked); 9448 goto out_unlock_extent; 9449 } 9450 9451 /* 9452 * We only want to return up to EOF even if the extent extends beyond 9453 * that. 9454 */ 9455 encoded->len = min_t(u64, extent_map_end(em), 9456 inode->vfs_inode.i_size) - iocb->ki_pos; 9457 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9458 (em->flags & EXTENT_FLAG_PREALLOC)) { 9459 *disk_bytenr = EXTENT_MAP_HOLE; 9460 count = min_t(u64, count, encoded->len); 9461 encoded->len = count; 9462 encoded->unencoded_len = count; 9463 } else if (extent_map_is_compressed(em)) { 9464 *disk_bytenr = em->disk_bytenr; 9465 /* 9466 * Bail if the buffer isn't large enough to return the whole 9467 * compressed extent. 9468 */ 9469 if (em->disk_num_bytes > count) { 9470 ret = -ENOBUFS; 9471 goto out_em; 9472 } 9473 *disk_io_size = em->disk_num_bytes; 9474 count = em->disk_num_bytes; 9475 encoded->unencoded_len = em->ram_bytes; 9476 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9477 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9478 extent_map_compression(em)); 9479 if (ret < 0) 9480 goto out_em; 9481 encoded->compression = ret; 9482 } else { 9483 *disk_bytenr = extent_map_block_start(em) + (start - em->start); 9484 if (encoded->len > count) 9485 encoded->len = count; 9486 /* 9487 * Don't read beyond what we locked. This also limits the page 9488 * allocations that we'll do. 9489 */ 9490 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9491 count = start + *disk_io_size - iocb->ki_pos; 9492 encoded->len = count; 9493 encoded->unencoded_len = count; 9494 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9495 } 9496 free_extent_map(em); 9497 em = NULL; 9498 9499 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9500 unlock_extent(io_tree, start, lockend, cached_state); 9501 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9502 unlocked = true; 9503 ret = iov_iter_zero(count, iter); 9504 if (ret != count) 9505 ret = -EFAULT; 9506 } else { 9507 ret = -EIOCBQUEUED; 9508 goto out_unlock_extent; 9509 } 9510 9511 out_em: 9512 free_extent_map(em); 9513 out_unlock_extent: 9514 /* Leave inode and extent locked if we need to do a read. */ 9515 if (!unlocked && ret != -EIOCBQUEUED) 9516 unlock_extent(io_tree, start, lockend, cached_state); 9517 out_unlock_inode: 9518 if (!unlocked && ret != -EIOCBQUEUED) 9519 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9520 return ret; 9521 } 9522 9523 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9524 const struct btrfs_ioctl_encoded_io_args *encoded) 9525 { 9526 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9527 struct btrfs_root *root = inode->root; 9528 struct btrfs_fs_info *fs_info = root->fs_info; 9529 struct extent_io_tree *io_tree = &inode->io_tree; 9530 struct extent_changeset *data_reserved = NULL; 9531 struct extent_state *cached_state = NULL; 9532 struct btrfs_ordered_extent *ordered; 9533 struct btrfs_file_extent file_extent; 9534 int compression; 9535 size_t orig_count; 9536 u64 start, end; 9537 u64 num_bytes, ram_bytes, disk_num_bytes; 9538 unsigned long nr_folios, i; 9539 struct folio **folios; 9540 struct btrfs_key ins; 9541 bool extent_reserved = false; 9542 struct extent_map *em; 9543 ssize_t ret; 9544 9545 switch (encoded->compression) { 9546 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9547 compression = BTRFS_COMPRESS_ZLIB; 9548 break; 9549 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9550 compression = BTRFS_COMPRESS_ZSTD; 9551 break; 9552 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9553 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9554 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9555 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9556 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9557 /* The sector size must match for LZO. */ 9558 if (encoded->compression - 9559 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9560 fs_info->sectorsize_bits) 9561 return -EINVAL; 9562 compression = BTRFS_COMPRESS_LZO; 9563 break; 9564 default: 9565 return -EINVAL; 9566 } 9567 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9568 return -EINVAL; 9569 9570 /* 9571 * Compressed extents should always have checksums, so error out if we 9572 * have a NOCOW file or inode was created while mounted with NODATASUM. 9573 */ 9574 if (inode->flags & BTRFS_INODE_NODATASUM) 9575 return -EINVAL; 9576 9577 orig_count = iov_iter_count(from); 9578 9579 /* The extent size must be sane. */ 9580 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9581 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9582 return -EINVAL; 9583 9584 /* 9585 * The compressed data must be smaller than the decompressed data. 9586 * 9587 * It's of course possible for data to compress to larger or the same 9588 * size, but the buffered I/O path falls back to no compression for such 9589 * data, and we don't want to break any assumptions by creating these 9590 * extents. 9591 * 9592 * Note that this is less strict than the current check we have that the 9593 * compressed data must be at least one sector smaller than the 9594 * decompressed data. We only want to enforce the weaker requirement 9595 * from old kernels that it is at least one byte smaller. 9596 */ 9597 if (orig_count >= encoded->unencoded_len) 9598 return -EINVAL; 9599 9600 /* The extent must start on a sector boundary. */ 9601 start = iocb->ki_pos; 9602 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9603 return -EINVAL; 9604 9605 /* 9606 * The extent must end on a sector boundary. However, we allow a write 9607 * which ends at or extends i_size to have an unaligned length; we round 9608 * up the extent size and set i_size to the unaligned end. 9609 */ 9610 if (start + encoded->len < inode->vfs_inode.i_size && 9611 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9612 return -EINVAL; 9613 9614 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9615 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9616 return -EINVAL; 9617 9618 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9619 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9620 end = start + num_bytes - 1; 9621 9622 /* 9623 * If the extent cannot be inline, the compressed data on disk must be 9624 * sector-aligned. For convenience, we extend it with zeroes if it 9625 * isn't. 9626 */ 9627 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9628 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9629 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9630 if (!folios) 9631 return -ENOMEM; 9632 for (i = 0; i < nr_folios; i++) { 9633 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9634 char *kaddr; 9635 9636 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9637 if (!folios[i]) { 9638 ret = -ENOMEM; 9639 goto out_folios; 9640 } 9641 kaddr = kmap_local_folio(folios[i], 0); 9642 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9643 kunmap_local(kaddr); 9644 ret = -EFAULT; 9645 goto out_folios; 9646 } 9647 if (bytes < PAGE_SIZE) 9648 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9649 kunmap_local(kaddr); 9650 } 9651 9652 for (;;) { 9653 struct btrfs_ordered_extent *ordered; 9654 9655 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9656 if (ret) 9657 goto out_folios; 9658 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9659 start >> PAGE_SHIFT, 9660 end >> PAGE_SHIFT); 9661 if (ret) 9662 goto out_folios; 9663 lock_extent(io_tree, start, end, &cached_state); 9664 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9665 if (!ordered && 9666 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9667 break; 9668 if (ordered) 9669 btrfs_put_ordered_extent(ordered); 9670 unlock_extent(io_tree, start, end, &cached_state); 9671 cond_resched(); 9672 } 9673 9674 /* 9675 * We don't use the higher-level delalloc space functions because our 9676 * num_bytes and disk_num_bytes are different. 9677 */ 9678 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9679 if (ret) 9680 goto out_unlock; 9681 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9682 if (ret) 9683 goto out_free_data_space; 9684 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9685 false); 9686 if (ret) 9687 goto out_qgroup_free_data; 9688 9689 /* Try an inline extent first. */ 9690 if (encoded->unencoded_len == encoded->len && 9691 encoded->unencoded_offset == 0 && 9692 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9693 ret = __cow_file_range_inline(inode, encoded->len, 9694 orig_count, compression, folios[0], 9695 true); 9696 if (ret <= 0) { 9697 if (ret == 0) 9698 ret = orig_count; 9699 goto out_delalloc_release; 9700 } 9701 } 9702 9703 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9704 disk_num_bytes, 0, 0, &ins, 1, 1); 9705 if (ret) 9706 goto out_delalloc_release; 9707 extent_reserved = true; 9708 9709 file_extent.disk_bytenr = ins.objectid; 9710 file_extent.disk_num_bytes = ins.offset; 9711 file_extent.num_bytes = num_bytes; 9712 file_extent.ram_bytes = ram_bytes; 9713 file_extent.offset = encoded->unencoded_offset; 9714 file_extent.compression = compression; 9715 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9716 if (IS_ERR(em)) { 9717 ret = PTR_ERR(em); 9718 goto out_free_reserved; 9719 } 9720 free_extent_map(em); 9721 9722 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9723 (1 << BTRFS_ORDERED_ENCODED) | 9724 (1 << BTRFS_ORDERED_COMPRESSED)); 9725 if (IS_ERR(ordered)) { 9726 btrfs_drop_extent_map_range(inode, start, end, false); 9727 ret = PTR_ERR(ordered); 9728 goto out_free_reserved; 9729 } 9730 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9731 9732 if (start + encoded->len > inode->vfs_inode.i_size) 9733 i_size_write(&inode->vfs_inode, start + encoded->len); 9734 9735 unlock_extent(io_tree, start, end, &cached_state); 9736 9737 btrfs_delalloc_release_extents(inode, num_bytes); 9738 9739 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9740 ret = orig_count; 9741 goto out; 9742 9743 out_free_reserved: 9744 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9745 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9746 out_delalloc_release: 9747 btrfs_delalloc_release_extents(inode, num_bytes); 9748 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9749 out_qgroup_free_data: 9750 if (ret < 0) 9751 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9752 out_free_data_space: 9753 /* 9754 * If btrfs_reserve_extent() succeeded, then we already decremented 9755 * bytes_may_use. 9756 */ 9757 if (!extent_reserved) 9758 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9759 out_unlock: 9760 unlock_extent(io_tree, start, end, &cached_state); 9761 out_folios: 9762 for (i = 0; i < nr_folios; i++) { 9763 if (folios[i]) 9764 folio_put(folios[i]); 9765 } 9766 kvfree(folios); 9767 out: 9768 if (ret >= 0) 9769 iocb->ki_pos += encoded->len; 9770 return ret; 9771 } 9772 9773 #ifdef CONFIG_SWAP 9774 /* 9775 * Add an entry indicating a block group or device which is pinned by a 9776 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9777 * negative errno on failure. 9778 */ 9779 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9780 bool is_block_group) 9781 { 9782 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9783 struct btrfs_swapfile_pin *sp, *entry; 9784 struct rb_node **p; 9785 struct rb_node *parent = NULL; 9786 9787 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9788 if (!sp) 9789 return -ENOMEM; 9790 sp->ptr = ptr; 9791 sp->inode = inode; 9792 sp->is_block_group = is_block_group; 9793 sp->bg_extent_count = 1; 9794 9795 spin_lock(&fs_info->swapfile_pins_lock); 9796 p = &fs_info->swapfile_pins.rb_node; 9797 while (*p) { 9798 parent = *p; 9799 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9800 if (sp->ptr < entry->ptr || 9801 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9802 p = &(*p)->rb_left; 9803 } else if (sp->ptr > entry->ptr || 9804 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9805 p = &(*p)->rb_right; 9806 } else { 9807 if (is_block_group) 9808 entry->bg_extent_count++; 9809 spin_unlock(&fs_info->swapfile_pins_lock); 9810 kfree(sp); 9811 return 1; 9812 } 9813 } 9814 rb_link_node(&sp->node, parent, p); 9815 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9816 spin_unlock(&fs_info->swapfile_pins_lock); 9817 return 0; 9818 } 9819 9820 /* Free all of the entries pinned by this swapfile. */ 9821 static void btrfs_free_swapfile_pins(struct inode *inode) 9822 { 9823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9824 struct btrfs_swapfile_pin *sp; 9825 struct rb_node *node, *next; 9826 9827 spin_lock(&fs_info->swapfile_pins_lock); 9828 node = rb_first(&fs_info->swapfile_pins); 9829 while (node) { 9830 next = rb_next(node); 9831 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9832 if (sp->inode == inode) { 9833 rb_erase(&sp->node, &fs_info->swapfile_pins); 9834 if (sp->is_block_group) { 9835 btrfs_dec_block_group_swap_extents(sp->ptr, 9836 sp->bg_extent_count); 9837 btrfs_put_block_group(sp->ptr); 9838 } 9839 kfree(sp); 9840 } 9841 node = next; 9842 } 9843 spin_unlock(&fs_info->swapfile_pins_lock); 9844 } 9845 9846 struct btrfs_swap_info { 9847 u64 start; 9848 u64 block_start; 9849 u64 block_len; 9850 u64 lowest_ppage; 9851 u64 highest_ppage; 9852 unsigned long nr_pages; 9853 int nr_extents; 9854 }; 9855 9856 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9857 struct btrfs_swap_info *bsi) 9858 { 9859 unsigned long nr_pages; 9860 unsigned long max_pages; 9861 u64 first_ppage, first_ppage_reported, next_ppage; 9862 int ret; 9863 9864 /* 9865 * Our swapfile may have had its size extended after the swap header was 9866 * written. In that case activating the swapfile should not go beyond 9867 * the max size set in the swap header. 9868 */ 9869 if (bsi->nr_pages >= sis->max) 9870 return 0; 9871 9872 max_pages = sis->max - bsi->nr_pages; 9873 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9874 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9875 9876 if (first_ppage >= next_ppage) 9877 return 0; 9878 nr_pages = next_ppage - first_ppage; 9879 nr_pages = min(nr_pages, max_pages); 9880 9881 first_ppage_reported = first_ppage; 9882 if (bsi->start == 0) 9883 first_ppage_reported++; 9884 if (bsi->lowest_ppage > first_ppage_reported) 9885 bsi->lowest_ppage = first_ppage_reported; 9886 if (bsi->highest_ppage < (next_ppage - 1)) 9887 bsi->highest_ppage = next_ppage - 1; 9888 9889 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9890 if (ret < 0) 9891 return ret; 9892 bsi->nr_extents += ret; 9893 bsi->nr_pages += nr_pages; 9894 return 0; 9895 } 9896 9897 static void btrfs_swap_deactivate(struct file *file) 9898 { 9899 struct inode *inode = file_inode(file); 9900 9901 btrfs_free_swapfile_pins(inode); 9902 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9903 } 9904 9905 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9906 sector_t *span) 9907 { 9908 struct inode *inode = file_inode(file); 9909 struct btrfs_root *root = BTRFS_I(inode)->root; 9910 struct btrfs_fs_info *fs_info = root->fs_info; 9911 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9912 struct extent_state *cached_state = NULL; 9913 struct btrfs_chunk_map *map = NULL; 9914 struct btrfs_device *device = NULL; 9915 struct btrfs_swap_info bsi = { 9916 .lowest_ppage = (sector_t)-1ULL, 9917 }; 9918 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 9919 struct btrfs_path *path = NULL; 9920 int ret = 0; 9921 u64 isize; 9922 u64 prev_extent_end = 0; 9923 9924 /* 9925 * Acquire the inode's mmap lock to prevent races with memory mapped 9926 * writes, as they could happen after we flush delalloc below and before 9927 * we lock the extent range further below. The inode was already locked 9928 * up in the call chain. 9929 */ 9930 btrfs_assert_inode_locked(BTRFS_I(inode)); 9931 down_write(&BTRFS_I(inode)->i_mmap_lock); 9932 9933 /* 9934 * If the swap file was just created, make sure delalloc is done. If the 9935 * file changes again after this, the user is doing something stupid and 9936 * we don't really care. 9937 */ 9938 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9939 if (ret) 9940 goto out_unlock_mmap; 9941 9942 /* 9943 * The inode is locked, so these flags won't change after we check them. 9944 */ 9945 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9946 btrfs_warn(fs_info, "swapfile must not be compressed"); 9947 ret = -EINVAL; 9948 goto out_unlock_mmap; 9949 } 9950 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9951 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9952 ret = -EINVAL; 9953 goto out_unlock_mmap; 9954 } 9955 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9956 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9957 ret = -EINVAL; 9958 goto out_unlock_mmap; 9959 } 9960 9961 path = btrfs_alloc_path(); 9962 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 9963 if (!path || !backref_ctx) { 9964 ret = -ENOMEM; 9965 goto out_unlock_mmap; 9966 } 9967 9968 /* 9969 * Balance or device remove/replace/resize can move stuff around from 9970 * under us. The exclop protection makes sure they aren't running/won't 9971 * run concurrently while we are mapping the swap extents, and 9972 * fs_info->swapfile_pins prevents them from running while the swap 9973 * file is active and moving the extents. Note that this also prevents 9974 * a concurrent device add which isn't actually necessary, but it's not 9975 * really worth the trouble to allow it. 9976 */ 9977 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9978 btrfs_warn(fs_info, 9979 "cannot activate swapfile while exclusive operation is running"); 9980 ret = -EBUSY; 9981 goto out_unlock_mmap; 9982 } 9983 9984 /* 9985 * Prevent snapshot creation while we are activating the swap file. 9986 * We do not want to race with snapshot creation. If snapshot creation 9987 * already started before we bumped nr_swapfiles from 0 to 1 and 9988 * completes before the first write into the swap file after it is 9989 * activated, than that write would fallback to COW. 9990 */ 9991 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9992 btrfs_exclop_finish(fs_info); 9993 btrfs_warn(fs_info, 9994 "cannot activate swapfile because snapshot creation is in progress"); 9995 ret = -EINVAL; 9996 goto out_unlock_mmap; 9997 } 9998 /* 9999 * Snapshots can create extents which require COW even if NODATACOW is 10000 * set. We use this counter to prevent snapshots. We must increment it 10001 * before walking the extents because we don't want a concurrent 10002 * snapshot to run after we've already checked the extents. 10003 * 10004 * It is possible that subvolume is marked for deletion but still not 10005 * removed yet. To prevent this race, we check the root status before 10006 * activating the swapfile. 10007 */ 10008 spin_lock(&root->root_item_lock); 10009 if (btrfs_root_dead(root)) { 10010 spin_unlock(&root->root_item_lock); 10011 10012 btrfs_drew_write_unlock(&root->snapshot_lock); 10013 btrfs_exclop_finish(fs_info); 10014 btrfs_warn(fs_info, 10015 "cannot activate swapfile because subvolume %llu is being deleted", 10016 btrfs_root_id(root)); 10017 ret = -EPERM; 10018 goto out_unlock_mmap; 10019 } 10020 atomic_inc(&root->nr_swapfiles); 10021 spin_unlock(&root->root_item_lock); 10022 10023 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10024 10025 lock_extent(io_tree, 0, isize - 1, &cached_state); 10026 while (prev_extent_end < isize) { 10027 struct btrfs_key key; 10028 struct extent_buffer *leaf; 10029 struct btrfs_file_extent_item *ei; 10030 struct btrfs_block_group *bg; 10031 u64 logical_block_start; 10032 u64 physical_block_start; 10033 u64 extent_gen; 10034 u64 disk_bytenr; 10035 u64 len; 10036 10037 key.objectid = btrfs_ino(BTRFS_I(inode)); 10038 key.type = BTRFS_EXTENT_DATA_KEY; 10039 key.offset = prev_extent_end; 10040 10041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10042 if (ret < 0) 10043 goto out; 10044 10045 /* 10046 * If key not found it means we have an implicit hole (NO_HOLES 10047 * is enabled). 10048 */ 10049 if (ret > 0) { 10050 btrfs_warn(fs_info, "swapfile must not have holes"); 10051 ret = -EINVAL; 10052 goto out; 10053 } 10054 10055 leaf = path->nodes[0]; 10056 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10057 10058 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10059 /* 10060 * It's unlikely we'll ever actually find ourselves 10061 * here, as a file small enough to fit inline won't be 10062 * big enough to store more than the swap header, but in 10063 * case something changes in the future, let's catch it 10064 * here rather than later. 10065 */ 10066 btrfs_warn(fs_info, "swapfile must not be inline"); 10067 ret = -EINVAL; 10068 goto out; 10069 } 10070 10071 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10072 btrfs_warn(fs_info, "swapfile must not be compressed"); 10073 ret = -EINVAL; 10074 goto out; 10075 } 10076 10077 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10078 if (disk_bytenr == 0) { 10079 btrfs_warn(fs_info, "swapfile must not have holes"); 10080 ret = -EINVAL; 10081 goto out; 10082 } 10083 10084 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10085 extent_gen = btrfs_file_extent_generation(leaf, ei); 10086 prev_extent_end = btrfs_file_extent_end(path); 10087 10088 if (prev_extent_end > isize) 10089 len = isize - key.offset; 10090 else 10091 len = btrfs_file_extent_num_bytes(leaf, ei); 10092 10093 backref_ctx->curr_leaf_bytenr = leaf->start; 10094 10095 /* 10096 * Don't need the path anymore, release to avoid deadlocks when 10097 * calling btrfs_is_data_extent_shared() because when joining a 10098 * transaction it can block waiting for the current one's commit 10099 * which in turn may be trying to lock the same leaf to flush 10100 * delayed items for example. 10101 */ 10102 btrfs_release_path(path); 10103 10104 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10105 extent_gen, backref_ctx); 10106 if (ret < 0) { 10107 goto out; 10108 } else if (ret > 0) { 10109 btrfs_warn(fs_info, 10110 "swapfile must not be copy-on-write"); 10111 ret = -EINVAL; 10112 goto out; 10113 } 10114 10115 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10116 if (IS_ERR(map)) { 10117 ret = PTR_ERR(map); 10118 goto out; 10119 } 10120 10121 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10122 btrfs_warn(fs_info, 10123 "swapfile must have single data profile"); 10124 ret = -EINVAL; 10125 goto out; 10126 } 10127 10128 if (device == NULL) { 10129 device = map->stripes[0].dev; 10130 ret = btrfs_add_swapfile_pin(inode, device, false); 10131 if (ret == 1) 10132 ret = 0; 10133 else if (ret) 10134 goto out; 10135 } else if (device != map->stripes[0].dev) { 10136 btrfs_warn(fs_info, "swapfile must be on one device"); 10137 ret = -EINVAL; 10138 goto out; 10139 } 10140 10141 physical_block_start = (map->stripes[0].physical + 10142 (logical_block_start - map->start)); 10143 btrfs_free_chunk_map(map); 10144 map = NULL; 10145 10146 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10147 if (!bg) { 10148 btrfs_warn(fs_info, 10149 "could not find block group containing swapfile"); 10150 ret = -EINVAL; 10151 goto out; 10152 } 10153 10154 if (!btrfs_inc_block_group_swap_extents(bg)) { 10155 btrfs_warn(fs_info, 10156 "block group for swapfile at %llu is read-only%s", 10157 bg->start, 10158 atomic_read(&fs_info->scrubs_running) ? 10159 " (scrub running)" : ""); 10160 btrfs_put_block_group(bg); 10161 ret = -EINVAL; 10162 goto out; 10163 } 10164 10165 ret = btrfs_add_swapfile_pin(inode, bg, true); 10166 if (ret) { 10167 btrfs_put_block_group(bg); 10168 if (ret == 1) 10169 ret = 0; 10170 else 10171 goto out; 10172 } 10173 10174 if (bsi.block_len && 10175 bsi.block_start + bsi.block_len == physical_block_start) { 10176 bsi.block_len += len; 10177 } else { 10178 if (bsi.block_len) { 10179 ret = btrfs_add_swap_extent(sis, &bsi); 10180 if (ret) 10181 goto out; 10182 } 10183 bsi.start = key.offset; 10184 bsi.block_start = physical_block_start; 10185 bsi.block_len = len; 10186 } 10187 10188 if (fatal_signal_pending(current)) { 10189 ret = -EINTR; 10190 goto out; 10191 } 10192 10193 cond_resched(); 10194 } 10195 10196 if (bsi.block_len) 10197 ret = btrfs_add_swap_extent(sis, &bsi); 10198 10199 out: 10200 if (!IS_ERR_OR_NULL(map)) 10201 btrfs_free_chunk_map(map); 10202 10203 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10204 10205 if (ret) 10206 btrfs_swap_deactivate(file); 10207 10208 btrfs_drew_write_unlock(&root->snapshot_lock); 10209 10210 btrfs_exclop_finish(fs_info); 10211 10212 out_unlock_mmap: 10213 up_write(&BTRFS_I(inode)->i_mmap_lock); 10214 btrfs_free_backref_share_ctx(backref_ctx); 10215 btrfs_free_path(path); 10216 if (ret) 10217 return ret; 10218 10219 if (device) 10220 sis->bdev = device->bdev; 10221 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10222 sis->max = bsi.nr_pages; 10223 sis->pages = bsi.nr_pages - 1; 10224 return bsi.nr_extents; 10225 } 10226 #else 10227 static void btrfs_swap_deactivate(struct file *file) 10228 { 10229 } 10230 10231 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10232 sector_t *span) 10233 { 10234 return -EOPNOTSUPP; 10235 } 10236 #endif 10237 10238 /* 10239 * Update the number of bytes used in the VFS' inode. When we replace extents in 10240 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10241 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10242 * always get a correct value. 10243 */ 10244 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10245 const u64 add_bytes, 10246 const u64 del_bytes) 10247 { 10248 if (add_bytes == del_bytes) 10249 return; 10250 10251 spin_lock(&inode->lock); 10252 if (del_bytes > 0) 10253 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10254 if (add_bytes > 0) 10255 inode_add_bytes(&inode->vfs_inode, add_bytes); 10256 spin_unlock(&inode->lock); 10257 } 10258 10259 /* 10260 * Verify that there are no ordered extents for a given file range. 10261 * 10262 * @inode: The target inode. 10263 * @start: Start offset of the file range, should be sector size aligned. 10264 * @end: End offset (inclusive) of the file range, its value +1 should be 10265 * sector size aligned. 10266 * 10267 * This should typically be used for cases where we locked an inode's VFS lock in 10268 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10269 * we have flushed all delalloc in the range, we have waited for all ordered 10270 * extents in the range to complete and finally we have locked the file range in 10271 * the inode's io_tree. 10272 */ 10273 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10274 { 10275 struct btrfs_root *root = inode->root; 10276 struct btrfs_ordered_extent *ordered; 10277 10278 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10279 return; 10280 10281 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10282 if (ordered) { 10283 btrfs_err(root->fs_info, 10284 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10285 start, end, btrfs_ino(inode), btrfs_root_id(root), 10286 ordered->file_offset, 10287 ordered->file_offset + ordered->num_bytes - 1); 10288 btrfs_put_ordered_extent(ordered); 10289 } 10290 10291 ASSERT(ordered == NULL); 10292 } 10293 10294 /* 10295 * Find the first inode with a minimum number. 10296 * 10297 * @root: The root to search for. 10298 * @min_ino: The minimum inode number. 10299 * 10300 * Find the first inode in the @root with a number >= @min_ino and return it. 10301 * Returns NULL if no such inode found. 10302 */ 10303 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10304 { 10305 struct btrfs_inode *inode; 10306 unsigned long from = min_ino; 10307 10308 xa_lock(&root->inodes); 10309 while (true) { 10310 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10311 if (!inode) 10312 break; 10313 if (igrab(&inode->vfs_inode)) 10314 break; 10315 10316 from = btrfs_ino(inode) + 1; 10317 cond_resched_lock(&root->inodes.xa_lock); 10318 } 10319 xa_unlock(&root->inodes); 10320 10321 return inode; 10322 } 10323 10324 static const struct inode_operations btrfs_dir_inode_operations = { 10325 .getattr = btrfs_getattr, 10326 .lookup = btrfs_lookup, 10327 .create = btrfs_create, 10328 .unlink = btrfs_unlink, 10329 .link = btrfs_link, 10330 .mkdir = btrfs_mkdir, 10331 .rmdir = btrfs_rmdir, 10332 .rename = btrfs_rename2, 10333 .symlink = btrfs_symlink, 10334 .setattr = btrfs_setattr, 10335 .mknod = btrfs_mknod, 10336 .listxattr = btrfs_listxattr, 10337 .permission = btrfs_permission, 10338 .get_inode_acl = btrfs_get_acl, 10339 .set_acl = btrfs_set_acl, 10340 .update_time = btrfs_update_time, 10341 .tmpfile = btrfs_tmpfile, 10342 .fileattr_get = btrfs_fileattr_get, 10343 .fileattr_set = btrfs_fileattr_set, 10344 }; 10345 10346 static const struct file_operations btrfs_dir_file_operations = { 10347 .llseek = btrfs_dir_llseek, 10348 .read = generic_read_dir, 10349 .iterate_shared = btrfs_real_readdir, 10350 .open = btrfs_opendir, 10351 .unlocked_ioctl = btrfs_ioctl, 10352 #ifdef CONFIG_COMPAT 10353 .compat_ioctl = btrfs_compat_ioctl, 10354 #endif 10355 .release = btrfs_release_file, 10356 .fsync = btrfs_sync_file, 10357 }; 10358 10359 /* 10360 * btrfs doesn't support the bmap operation because swapfiles 10361 * use bmap to make a mapping of extents in the file. They assume 10362 * these extents won't change over the life of the file and they 10363 * use the bmap result to do IO directly to the drive. 10364 * 10365 * the btrfs bmap call would return logical addresses that aren't 10366 * suitable for IO and they also will change frequently as COW 10367 * operations happen. So, swapfile + btrfs == corruption. 10368 * 10369 * For now we're avoiding this by dropping bmap. 10370 */ 10371 static const struct address_space_operations btrfs_aops = { 10372 .read_folio = btrfs_read_folio, 10373 .writepages = btrfs_writepages, 10374 .readahead = btrfs_readahead, 10375 .invalidate_folio = btrfs_invalidate_folio, 10376 .launder_folio = btrfs_launder_folio, 10377 .release_folio = btrfs_release_folio, 10378 .migrate_folio = btrfs_migrate_folio, 10379 .dirty_folio = filemap_dirty_folio, 10380 .error_remove_folio = generic_error_remove_folio, 10381 .swap_activate = btrfs_swap_activate, 10382 .swap_deactivate = btrfs_swap_deactivate, 10383 }; 10384 10385 static const struct inode_operations btrfs_file_inode_operations = { 10386 .getattr = btrfs_getattr, 10387 .setattr = btrfs_setattr, 10388 .listxattr = btrfs_listxattr, 10389 .permission = btrfs_permission, 10390 .fiemap = btrfs_fiemap, 10391 .get_inode_acl = btrfs_get_acl, 10392 .set_acl = btrfs_set_acl, 10393 .update_time = btrfs_update_time, 10394 .fileattr_get = btrfs_fileattr_get, 10395 .fileattr_set = btrfs_fileattr_set, 10396 }; 10397 static const struct inode_operations btrfs_special_inode_operations = { 10398 .getattr = btrfs_getattr, 10399 .setattr = btrfs_setattr, 10400 .permission = btrfs_permission, 10401 .listxattr = btrfs_listxattr, 10402 .get_inode_acl = btrfs_get_acl, 10403 .set_acl = btrfs_set_acl, 10404 .update_time = btrfs_update_time, 10405 }; 10406 static const struct inode_operations btrfs_symlink_inode_operations = { 10407 .get_link = page_get_link, 10408 .getattr = btrfs_getattr, 10409 .setattr = btrfs_setattr, 10410 .permission = btrfs_permission, 10411 .listxattr = btrfs_listxattr, 10412 .update_time = btrfs_update_time, 10413 }; 10414 10415 const struct dentry_operations btrfs_dentry_operations = { 10416 .d_delete = btrfs_dentry_delete, 10417 }; 10418