xref: /linux/fs/btrfs/inode.c (revision 7a40974fd0efa3698de4c6d1d0ee0436bcc4445d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct folio *locked_folio, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct folio *locked_folio,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct folio *folio;
403 
404 	if (locked_folio) {
405 		page_start = folio_pos(locked_folio);
406 		page_end = page_start + folio_size(locked_folio) - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
425 		index++;
426 		if (IS_ERR(folio))
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 						offset, bytes);
436 		folio_put(folio);
437 	}
438 
439 	if (locked_folio) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + folio_size(locked_folio))
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - folio_pos(locked_folio) -
451 				folio_size(locked_folio);
452 			offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 		}
454 	}
455 
456 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458 
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460 
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 				     struct btrfs_new_inode_args *args)
463 {
464 	int err;
465 
466 	if (args->default_acl) {
467 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 				      ACL_TYPE_DEFAULT);
469 		if (err)
470 			return err;
471 	}
472 	if (args->acl) {
473 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 		if (err)
475 			return err;
476 	}
477 	if (!args->default_acl && !args->acl)
478 		cache_no_acl(args->inode);
479 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 					 &args->dentry->d_name);
481 }
482 
483 /*
484  * this does all the hard work for inserting an inline extent into
485  * the btree.  The caller should have done a btrfs_drop_extents so that
486  * no overlapping inline items exist in the btree
487  */
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 				struct btrfs_path *path,
490 				struct btrfs_inode *inode, bool extent_inserted,
491 				size_t size, size_t compressed_size,
492 				int compress_type,
493 				struct folio *compressed_folio,
494 				bool update_i_size)
495 {
496 	struct btrfs_root *root = inode->root;
497 	struct extent_buffer *leaf;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		struct folio *folio;
558 
559 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping,
560 					    0, 0, 0);
561 		ASSERT(!IS_ERR(folio));
562 		btrfs_set_file_extent_compression(leaf, ei, 0);
563 		kaddr = kmap_local_folio(folio, 0);
564 		write_extent_buffer(leaf, kaddr, ptr, size);
565 		kunmap_local(kaddr);
566 		folio_put(folio);
567 	}
568 	btrfs_mark_buffer_dirty(trans, leaf);
569 	btrfs_release_path(path);
570 
571 	/*
572 	 * We align size to sectorsize for inline extents just for simplicity
573 	 * sake.
574 	 */
575 	ret = btrfs_inode_set_file_extent_range(inode, 0,
576 					ALIGN(size, root->fs_info->sectorsize));
577 	if (ret)
578 		goto fail;
579 
580 	/*
581 	 * We're an inline extent, so nobody can extend the file past i_size
582 	 * without locking a page we already have locked.
583 	 *
584 	 * We must do any i_size and inode updates before we unlock the pages.
585 	 * Otherwise we could end up racing with unlink.
586 	 */
587 	i_size = i_size_read(&inode->vfs_inode);
588 	if (update_i_size && size > i_size) {
589 		i_size_write(&inode->vfs_inode, size);
590 		i_size = size;
591 	}
592 	inode->disk_i_size = i_size;
593 
594 fail:
595 	return ret;
596 }
597 
598 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
599 				      u64 offset, u64 size,
600 				      size_t compressed_size)
601 {
602 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
603 	u64 data_len = (compressed_size ?: size);
604 
605 	/* Inline extents must start at offset 0. */
606 	if (offset != 0)
607 		return false;
608 
609 	/*
610 	 * Due to the page size limit, for subpage we can only trigger the
611 	 * writeback for the dirty sectors of page, that means data writeback
612 	 * is doing more writeback than what we want.
613 	 *
614 	 * This is especially unexpected for some call sites like fallocate,
615 	 * where we only increase i_size after everything is done.
616 	 * This means we can trigger inline extent even if we didn't want to.
617 	 * So here we skip inline extent creation completely.
618 	 */
619 	if (fs_info->sectorsize != PAGE_SIZE)
620 		return false;
621 
622 	/* Inline extents are limited to sectorsize. */
623 	if (size > fs_info->sectorsize)
624 		return false;
625 
626 	/* We cannot exceed the maximum inline data size. */
627 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
628 		return false;
629 
630 	/* We cannot exceed the user specified max_inline size. */
631 	if (data_len > fs_info->max_inline)
632 		return false;
633 
634 	/* Inline extents must be the entirety of the file. */
635 	if (size < i_size_read(&inode->vfs_inode))
636 		return false;
637 
638 	return true;
639 }
640 
641 /*
642  * conditionally insert an inline extent into the file.  This
643  * does the checks required to make sure the data is small enough
644  * to fit as an inline extent.
645  *
646  * If being used directly, you must have already checked we're allowed to cow
647  * the range by getting true from can_cow_file_range_inline().
648  */
649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
650 					    u64 size, size_t compressed_size,
651 					    int compress_type,
652 					    struct folio *compressed_folio,
653 					    bool update_i_size)
654 {
655 	struct btrfs_drop_extents_args drop_args = { 0 };
656 	struct btrfs_root *root = inode->root;
657 	struct btrfs_fs_info *fs_info = root->fs_info;
658 	struct btrfs_trans_handle *trans;
659 	u64 data_len = (compressed_size ?: size);
660 	int ret;
661 	struct btrfs_path *path;
662 
663 	path = btrfs_alloc_path();
664 	if (!path)
665 		return -ENOMEM;
666 
667 	trans = btrfs_join_transaction(root);
668 	if (IS_ERR(trans)) {
669 		btrfs_free_path(path);
670 		return PTR_ERR(trans);
671 	}
672 	trans->block_rsv = &inode->block_rsv;
673 
674 	drop_args.path = path;
675 	drop_args.start = 0;
676 	drop_args.end = fs_info->sectorsize;
677 	drop_args.drop_cache = true;
678 	drop_args.replace_extent = true;
679 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
680 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
681 	if (ret) {
682 		btrfs_abort_transaction(trans, ret);
683 		goto out;
684 	}
685 
686 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
687 				   size, compressed_size, compress_type,
688 				   compressed_folio, update_i_size);
689 	if (ret && ret != -ENOSPC) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto out;
692 	} else if (ret == -ENOSPC) {
693 		ret = 1;
694 		goto out;
695 	}
696 
697 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
698 	ret = btrfs_update_inode(trans, inode);
699 	if (ret && ret != -ENOSPC) {
700 		btrfs_abort_transaction(trans, ret);
701 		goto out;
702 	} else if (ret == -ENOSPC) {
703 		ret = 1;
704 		goto out;
705 	}
706 
707 	btrfs_set_inode_full_sync(inode);
708 out:
709 	/*
710 	 * Don't forget to free the reserved space, as for inlined extent
711 	 * it won't count as data extent, free them directly here.
712 	 * And at reserve time, it's always aligned to page size, so
713 	 * just free one page here.
714 	 */
715 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
716 	btrfs_free_path(path);
717 	btrfs_end_transaction(trans);
718 	return ret;
719 }
720 
721 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
722 					  struct folio *locked_folio,
723 					  u64 offset, u64 end,
724 					  size_t compressed_size,
725 					  int compress_type,
726 					  struct folio *compressed_folio,
727 					  bool update_i_size)
728 {
729 	struct extent_state *cached = NULL;
730 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
731 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
732 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
733 	int ret;
734 
735 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
736 		return 1;
737 
738 	lock_extent(&inode->io_tree, offset, end, &cached);
739 	ret = __cow_file_range_inline(inode, offset, size, compressed_size,
740 				      compress_type, compressed_folio,
741 				      update_i_size);
742 	if (ret > 0) {
743 		unlock_extent(&inode->io_tree, offset, end, &cached);
744 		return ret;
745 	}
746 
747 	/*
748 	 * In the successful case (ret == 0 here), cow_file_range will return 1.
749 	 *
750 	 * Quite a bit further up the callstack in extent_writepage(), ret == 1
751 	 * is treated as a short circuited success and does not unlock the folio,
752 	 * so we must do it here.
753 	 *
754 	 * In the failure case, the locked_folio does get unlocked by
755 	 * btrfs_folio_end_all_writers, which asserts that it is still locked
756 	 * at that point, so we must *not* unlock it here.
757 	 *
758 	 * The other two callsites in compress_file_range do not have a
759 	 * locked_folio, so they are not relevant to this logic.
760 	 */
761 	if (ret == 0)
762 		locked_folio = NULL;
763 
764 	extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
765 				     clear_flags, PAGE_UNLOCK |
766 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
767 	return ret;
768 }
769 
770 struct async_extent {
771 	u64 start;
772 	u64 ram_size;
773 	u64 compressed_size;
774 	struct folio **folios;
775 	unsigned long nr_folios;
776 	int compress_type;
777 	struct list_head list;
778 };
779 
780 struct async_chunk {
781 	struct btrfs_inode *inode;
782 	struct folio *locked_folio;
783 	u64 start;
784 	u64 end;
785 	blk_opf_t write_flags;
786 	struct list_head extents;
787 	struct cgroup_subsys_state *blkcg_css;
788 	struct btrfs_work work;
789 	struct async_cow *async_cow;
790 };
791 
792 struct async_cow {
793 	atomic_t num_chunks;
794 	struct async_chunk chunks[];
795 };
796 
797 static noinline int add_async_extent(struct async_chunk *cow,
798 				     u64 start, u64 ram_size,
799 				     u64 compressed_size,
800 				     struct folio **folios,
801 				     unsigned long nr_folios,
802 				     int compress_type)
803 {
804 	struct async_extent *async_extent;
805 
806 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
807 	if (!async_extent)
808 		return -ENOMEM;
809 	async_extent->start = start;
810 	async_extent->ram_size = ram_size;
811 	async_extent->compressed_size = compressed_size;
812 	async_extent->folios = folios;
813 	async_extent->nr_folios = nr_folios;
814 	async_extent->compress_type = compress_type;
815 	list_add_tail(&async_extent->list, &cow->extents);
816 	return 0;
817 }
818 
819 /*
820  * Check if the inode needs to be submitted to compression, based on mount
821  * options, defragmentation, properties or heuristics.
822  */
823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
824 				      u64 end)
825 {
826 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
827 
828 	if (!btrfs_inode_can_compress(inode)) {
829 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
830 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
831 			btrfs_ino(inode));
832 		return 0;
833 	}
834 	/*
835 	 * Special check for subpage.
836 	 *
837 	 * We lock the full page then run each delalloc range in the page, thus
838 	 * for the following case, we will hit some subpage specific corner case:
839 	 *
840 	 * 0		32K		64K
841 	 * |	|///////|	|///////|
842 	 *		\- A		\- B
843 	 *
844 	 * In above case, both range A and range B will try to unlock the full
845 	 * page [0, 64K), causing the one finished later will have page
846 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
847 	 *
848 	 * So here we add an artificial limit that subpage compression can only
849 	 * if the range is fully page aligned.
850 	 *
851 	 * In theory we only need to ensure the first page is fully covered, but
852 	 * the tailing partial page will be locked until the full compression
853 	 * finishes, delaying the write of other range.
854 	 *
855 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
856 	 * first to prevent any submitted async extent to unlock the full page.
857 	 * By this, we can ensure for subpage case that only the last async_cow
858 	 * will unlock the full page.
859 	 */
860 	if (fs_info->sectorsize < PAGE_SIZE) {
861 		if (!PAGE_ALIGNED(start) ||
862 		    !PAGE_ALIGNED(end + 1))
863 			return 0;
864 	}
865 
866 	/* force compress */
867 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
868 		return 1;
869 	/* defrag ioctl */
870 	if (inode->defrag_compress)
871 		return 1;
872 	/* bad compression ratios */
873 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
874 		return 0;
875 	if (btrfs_test_opt(fs_info, COMPRESS) ||
876 	    inode->flags & BTRFS_INODE_COMPRESS ||
877 	    inode->prop_compress)
878 		return btrfs_compress_heuristic(inode, start, end);
879 	return 0;
880 }
881 
882 static inline void inode_should_defrag(struct btrfs_inode *inode,
883 		u64 start, u64 end, u64 num_bytes, u32 small_write)
884 {
885 	/* If this is a small write inside eof, kick off a defrag */
886 	if (num_bytes < small_write &&
887 	    (start > 0 || end + 1 < inode->disk_i_size))
888 		btrfs_add_inode_defrag(inode, small_write);
889 }
890 
891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
892 {
893 	unsigned long end_index = end >> PAGE_SHIFT;
894 	struct folio *folio;
895 	int ret = 0;
896 
897 	for (unsigned long index = start >> PAGE_SHIFT;
898 	     index <= end_index; index++) {
899 		folio = __filemap_get_folio(inode->i_mapping, index, 0, 0);
900 		if (IS_ERR(folio)) {
901 			if (!ret)
902 				ret = PTR_ERR(folio);
903 			continue;
904 		}
905 		folio_clear_dirty_for_io(folio);
906 		folio_put(folio);
907 	}
908 	return ret;
909 }
910 
911 /*
912  * Work queue call back to started compression on a file and pages.
913  *
914  * This is done inside an ordered work queue, and the compression is spread
915  * across many cpus.  The actual IO submission is step two, and the ordered work
916  * queue takes care of making sure that happens in the same order things were
917  * put onto the queue by writepages and friends.
918  *
919  * If this code finds it can't get good compression, it puts an entry onto the
920  * work queue to write the uncompressed bytes.  This makes sure that both
921  * compressed inodes and uncompressed inodes are written in the same order that
922  * the flusher thread sent them down.
923  */
924 static void compress_file_range(struct btrfs_work *work)
925 {
926 	struct async_chunk *async_chunk =
927 		container_of(work, struct async_chunk, work);
928 	struct btrfs_inode *inode = async_chunk->inode;
929 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
930 	struct address_space *mapping = inode->vfs_inode.i_mapping;
931 	u64 blocksize = fs_info->sectorsize;
932 	u64 start = async_chunk->start;
933 	u64 end = async_chunk->end;
934 	u64 actual_end;
935 	u64 i_size;
936 	int ret = 0;
937 	struct folio **folios;
938 	unsigned long nr_folios;
939 	unsigned long total_compressed = 0;
940 	unsigned long total_in = 0;
941 	unsigned int poff;
942 	int i;
943 	int compress_type = fs_info->compress_type;
944 
945 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
946 
947 	/*
948 	 * We need to call clear_page_dirty_for_io on each page in the range.
949 	 * Otherwise applications with the file mmap'd can wander in and change
950 	 * the page contents while we are compressing them.
951 	 */
952 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
953 
954 	/*
955 	 * All the folios should have been locked thus no failure.
956 	 *
957 	 * And even if some folios are missing, btrfs_compress_folios()
958 	 * would handle them correctly, so here just do an ASSERT() check for
959 	 * early logic errors.
960 	 */
961 	ASSERT(ret == 0);
962 
963 	/*
964 	 * We need to save i_size before now because it could change in between
965 	 * us evaluating the size and assigning it.  This is because we lock and
966 	 * unlock the page in truncate and fallocate, and then modify the i_size
967 	 * later on.
968 	 *
969 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
970 	 * does that for us.
971 	 */
972 	barrier();
973 	i_size = i_size_read(&inode->vfs_inode);
974 	barrier();
975 	actual_end = min_t(u64, i_size, end + 1);
976 again:
977 	folios = NULL;
978 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
979 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
980 
981 	/*
982 	 * we don't want to send crud past the end of i_size through
983 	 * compression, that's just a waste of CPU time.  So, if the
984 	 * end of the file is before the start of our current
985 	 * requested range of bytes, we bail out to the uncompressed
986 	 * cleanup code that can deal with all of this.
987 	 *
988 	 * It isn't really the fastest way to fix things, but this is a
989 	 * very uncommon corner.
990 	 */
991 	if (actual_end <= start)
992 		goto cleanup_and_bail_uncompressed;
993 
994 	total_compressed = actual_end - start;
995 
996 	/*
997 	 * Skip compression for a small file range(<=blocksize) that
998 	 * isn't an inline extent, since it doesn't save disk space at all.
999 	 */
1000 	if (total_compressed <= blocksize &&
1001 	   (start > 0 || end + 1 < inode->disk_i_size))
1002 		goto cleanup_and_bail_uncompressed;
1003 
1004 	/*
1005 	 * For subpage case, we require full page alignment for the sector
1006 	 * aligned range.
1007 	 * Thus we must also check against @actual_end, not just @end.
1008 	 */
1009 	if (blocksize < PAGE_SIZE) {
1010 		if (!PAGE_ALIGNED(start) ||
1011 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
1012 			goto cleanup_and_bail_uncompressed;
1013 	}
1014 
1015 	total_compressed = min_t(unsigned long, total_compressed,
1016 			BTRFS_MAX_UNCOMPRESSED);
1017 	total_in = 0;
1018 	ret = 0;
1019 
1020 	/*
1021 	 * We do compression for mount -o compress and when the inode has not
1022 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
1023 	 * discover bad compression ratios.
1024 	 */
1025 	if (!inode_need_compress(inode, start, end))
1026 		goto cleanup_and_bail_uncompressed;
1027 
1028 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1029 	if (!folios) {
1030 		/*
1031 		 * Memory allocation failure is not a fatal error, we can fall
1032 		 * back to uncompressed code.
1033 		 */
1034 		goto cleanup_and_bail_uncompressed;
1035 	}
1036 
1037 	if (inode->defrag_compress)
1038 		compress_type = inode->defrag_compress;
1039 	else if (inode->prop_compress)
1040 		compress_type = inode->prop_compress;
1041 
1042 	/* Compression level is applied here. */
1043 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1044 				    mapping, start, folios, &nr_folios, &total_in,
1045 				    &total_compressed);
1046 	if (ret)
1047 		goto mark_incompressible;
1048 
1049 	/*
1050 	 * Zero the tail end of the last page, as we might be sending it down
1051 	 * to disk.
1052 	 */
1053 	poff = offset_in_page(total_compressed);
1054 	if (poff)
1055 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1056 
1057 	/*
1058 	 * Try to create an inline extent.
1059 	 *
1060 	 * If we didn't compress the entire range, try to create an uncompressed
1061 	 * inline extent, else a compressed one.
1062 	 *
1063 	 * Check cow_file_range() for why we don't even try to create inline
1064 	 * extent for the subpage case.
1065 	 */
1066 	if (total_in < actual_end)
1067 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1068 					    BTRFS_COMPRESS_NONE, NULL, false);
1069 	else
1070 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1071 					    compress_type, folios[0], false);
1072 	if (ret <= 0) {
1073 		if (ret < 0)
1074 			mapping_set_error(mapping, -EIO);
1075 		goto free_pages;
1076 	}
1077 
1078 	/*
1079 	 * We aren't doing an inline extent. Round the compressed size up to a
1080 	 * block size boundary so the allocator does sane things.
1081 	 */
1082 	total_compressed = ALIGN(total_compressed, blocksize);
1083 
1084 	/*
1085 	 * One last check to make sure the compression is really a win, compare
1086 	 * the page count read with the blocks on disk, compression must free at
1087 	 * least one sector.
1088 	 */
1089 	total_in = round_up(total_in, fs_info->sectorsize);
1090 	if (total_compressed + blocksize > total_in)
1091 		goto mark_incompressible;
1092 
1093 	/*
1094 	 * The async work queues will take care of doing actual allocation on
1095 	 * disk for these compressed pages, and will submit the bios.
1096 	 */
1097 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1098 			       nr_folios, compress_type);
1099 	BUG_ON(ret);
1100 	if (start + total_in < end) {
1101 		start += total_in;
1102 		cond_resched();
1103 		goto again;
1104 	}
1105 	return;
1106 
1107 mark_incompressible:
1108 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1109 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1110 cleanup_and_bail_uncompressed:
1111 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1112 			       BTRFS_COMPRESS_NONE);
1113 	BUG_ON(ret);
1114 free_pages:
1115 	if (folios) {
1116 		for (i = 0; i < nr_folios; i++) {
1117 			WARN_ON(folios[i]->mapping);
1118 			btrfs_free_compr_folio(folios[i]);
1119 		}
1120 		kfree(folios);
1121 	}
1122 }
1123 
1124 static void free_async_extent_pages(struct async_extent *async_extent)
1125 {
1126 	int i;
1127 
1128 	if (!async_extent->folios)
1129 		return;
1130 
1131 	for (i = 0; i < async_extent->nr_folios; i++) {
1132 		WARN_ON(async_extent->folios[i]->mapping);
1133 		btrfs_free_compr_folio(async_extent->folios[i]);
1134 	}
1135 	kfree(async_extent->folios);
1136 	async_extent->nr_folios = 0;
1137 	async_extent->folios = NULL;
1138 }
1139 
1140 static void submit_uncompressed_range(struct btrfs_inode *inode,
1141 				      struct async_extent *async_extent,
1142 				      struct folio *locked_folio)
1143 {
1144 	u64 start = async_extent->start;
1145 	u64 end = async_extent->start + async_extent->ram_size - 1;
1146 	int ret;
1147 	struct writeback_control wbc = {
1148 		.sync_mode		= WB_SYNC_ALL,
1149 		.range_start		= start,
1150 		.range_end		= end,
1151 		.no_cgroup_owner	= 1,
1152 	};
1153 
1154 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1155 	ret = run_delalloc_cow(inode, locked_folio, start, end,
1156 			       &wbc, false);
1157 	wbc_detach_inode(&wbc);
1158 	if (ret < 0) {
1159 		btrfs_cleanup_ordered_extents(inode, locked_folio,
1160 					      start, end - start + 1);
1161 		if (locked_folio) {
1162 			const u64 page_start = folio_pos(locked_folio);
1163 
1164 			folio_start_writeback(locked_folio);
1165 			folio_end_writeback(locked_folio);
1166 			btrfs_mark_ordered_io_finished(inode, locked_folio,
1167 						       page_start, PAGE_SIZE,
1168 						       !ret);
1169 			mapping_set_error(locked_folio->mapping, ret);
1170 			folio_unlock(locked_folio);
1171 		}
1172 	}
1173 }
1174 
1175 static void submit_one_async_extent(struct async_chunk *async_chunk,
1176 				    struct async_extent *async_extent,
1177 				    u64 *alloc_hint)
1178 {
1179 	struct btrfs_inode *inode = async_chunk->inode;
1180 	struct extent_io_tree *io_tree = &inode->io_tree;
1181 	struct btrfs_root *root = inode->root;
1182 	struct btrfs_fs_info *fs_info = root->fs_info;
1183 	struct btrfs_ordered_extent *ordered;
1184 	struct btrfs_file_extent file_extent;
1185 	struct btrfs_key ins;
1186 	struct folio *locked_folio = NULL;
1187 	struct extent_state *cached = NULL;
1188 	struct extent_map *em;
1189 	int ret = 0;
1190 	u64 start = async_extent->start;
1191 	u64 end = async_extent->start + async_extent->ram_size - 1;
1192 
1193 	if (async_chunk->blkcg_css)
1194 		kthread_associate_blkcg(async_chunk->blkcg_css);
1195 
1196 	/*
1197 	 * If async_chunk->locked_folio is in the async_extent range, we need to
1198 	 * handle it.
1199 	 */
1200 	if (async_chunk->locked_folio) {
1201 		u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1202 		u64 locked_folio_end = locked_folio_start +
1203 			folio_size(async_chunk->locked_folio) - 1;
1204 
1205 		if (!(start >= locked_folio_end || end <= locked_folio_start))
1206 			locked_folio = async_chunk->locked_folio;
1207 	}
1208 
1209 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1210 		submit_uncompressed_range(inode, async_extent, locked_folio);
1211 		goto done;
1212 	}
1213 
1214 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1215 				   async_extent->compressed_size,
1216 				   async_extent->compressed_size,
1217 				   0, *alloc_hint, &ins, 1, 1);
1218 	if (ret) {
1219 		/*
1220 		 * We can't reserve contiguous space for the compressed size.
1221 		 * Unlikely, but it's possible that we could have enough
1222 		 * non-contiguous space for the uncompressed size instead.  So
1223 		 * fall back to uncompressed.
1224 		 */
1225 		submit_uncompressed_range(inode, async_extent, locked_folio);
1226 		goto done;
1227 	}
1228 
1229 	lock_extent(io_tree, start, end, &cached);
1230 
1231 	/* Here we're doing allocation and writeback of the compressed pages */
1232 	file_extent.disk_bytenr = ins.objectid;
1233 	file_extent.disk_num_bytes = ins.offset;
1234 	file_extent.ram_bytes = async_extent->ram_size;
1235 	file_extent.num_bytes = async_extent->ram_size;
1236 	file_extent.offset = 0;
1237 	file_extent.compression = async_extent->compress_type;
1238 
1239 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1240 	if (IS_ERR(em)) {
1241 		ret = PTR_ERR(em);
1242 		goto out_free_reserve;
1243 	}
1244 	free_extent_map(em);
1245 
1246 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1247 					     1 << BTRFS_ORDERED_COMPRESSED);
1248 	if (IS_ERR(ordered)) {
1249 		btrfs_drop_extent_map_range(inode, start, end, false);
1250 		ret = PTR_ERR(ordered);
1251 		goto out_free_reserve;
1252 	}
1253 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1254 
1255 	/* Clear dirty, set writeback and unlock the pages. */
1256 	extent_clear_unlock_delalloc(inode, start, end,
1257 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1258 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1259 	btrfs_submit_compressed_write(ordered,
1260 			    async_extent->folios,	/* compressed_folios */
1261 			    async_extent->nr_folios,
1262 			    async_chunk->write_flags, true);
1263 	*alloc_hint = ins.objectid + ins.offset;
1264 done:
1265 	if (async_chunk->blkcg_css)
1266 		kthread_associate_blkcg(NULL);
1267 	kfree(async_extent);
1268 	return;
1269 
1270 out_free_reserve:
1271 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1272 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1273 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1274 	extent_clear_unlock_delalloc(inode, start, end,
1275 				     NULL, &cached,
1276 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1277 				     EXTENT_DELALLOC_NEW |
1278 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1279 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1280 				     PAGE_END_WRITEBACK);
1281 	free_async_extent_pages(async_extent);
1282 	if (async_chunk->blkcg_css)
1283 		kthread_associate_blkcg(NULL);
1284 	btrfs_debug(fs_info,
1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1286 		    btrfs_root_id(root), btrfs_ino(inode), start,
1287 		    async_extent->ram_size, ret);
1288 	kfree(async_extent);
1289 }
1290 
1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1292 				     u64 num_bytes)
1293 {
1294 	struct extent_map_tree *em_tree = &inode->extent_tree;
1295 	struct extent_map *em;
1296 	u64 alloc_hint = 0;
1297 
1298 	read_lock(&em_tree->lock);
1299 	em = search_extent_mapping(em_tree, start, num_bytes);
1300 	if (em) {
1301 		/*
1302 		 * if block start isn't an actual block number then find the
1303 		 * first block in this inode and use that as a hint.  If that
1304 		 * block is also bogus then just don't worry about it.
1305 		 */
1306 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1307 			free_extent_map(em);
1308 			em = search_extent_mapping(em_tree, 0, 0);
1309 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1310 				alloc_hint = extent_map_block_start(em);
1311 			if (em)
1312 				free_extent_map(em);
1313 		} else {
1314 			alloc_hint = extent_map_block_start(em);
1315 			free_extent_map(em);
1316 		}
1317 	}
1318 	read_unlock(&em_tree->lock);
1319 
1320 	return alloc_hint;
1321 }
1322 
1323 /*
1324  * when extent_io.c finds a delayed allocation range in the file,
1325  * the call backs end up in this code.  The basic idea is to
1326  * allocate extents on disk for the range, and create ordered data structs
1327  * in ram to track those extents.
1328  *
1329  * locked_folio is the folio that writepage had locked already.  We use
1330  * it to make sure we don't do extra locks or unlocks.
1331  *
1332  * When this function fails, it unlocks all pages except @locked_folio.
1333  *
1334  * When this function successfully creates an inline extent, it returns 1 and
1335  * unlocks all pages including locked_folio and starts I/O on them.
1336  * (In reality inline extents are limited to a single page, so locked_folio is
1337  * the only page handled anyway).
1338  *
1339  * When this function succeed and creates a normal extent, the page locking
1340  * status depends on the passed in flags:
1341  *
1342  * - If @keep_locked is set, all pages are kept locked.
1343  * - Else all pages except for @locked_folio are unlocked.
1344  *
1345  * When a failure happens in the second or later iteration of the
1346  * while-loop, the ordered extents created in previous iterations are kept
1347  * intact. So, the caller must clean them up by calling
1348  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1349  * example.
1350  */
1351 static noinline int cow_file_range(struct btrfs_inode *inode,
1352 				   struct folio *locked_folio, u64 start,
1353 				   u64 end, u64 *done_offset,
1354 				   bool keep_locked, bool no_inline)
1355 {
1356 	struct btrfs_root *root = inode->root;
1357 	struct btrfs_fs_info *fs_info = root->fs_info;
1358 	struct extent_state *cached = NULL;
1359 	u64 alloc_hint = 0;
1360 	u64 orig_start = start;
1361 	u64 num_bytes;
1362 	unsigned long ram_size;
1363 	u64 cur_alloc_size = 0;
1364 	u64 min_alloc_size;
1365 	u64 blocksize = fs_info->sectorsize;
1366 	struct btrfs_key ins;
1367 	struct extent_map *em;
1368 	unsigned clear_bits;
1369 	unsigned long page_ops;
1370 	bool extent_reserved = false;
1371 	int ret = 0;
1372 
1373 	if (btrfs_is_free_space_inode(inode)) {
1374 		ret = -EINVAL;
1375 		goto out_unlock;
1376 	}
1377 
1378 	num_bytes = ALIGN(end - start + 1, blocksize);
1379 	num_bytes = max(blocksize,  num_bytes);
1380 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1381 
1382 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1383 
1384 	if (!no_inline) {
1385 		/* lets try to make an inline extent */
1386 		ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1387 					    BTRFS_COMPRESS_NONE, NULL, false);
1388 		if (ret <= 0) {
1389 			/*
1390 			 * We succeeded, return 1 so the caller knows we're done
1391 			 * with this page and already handled the IO.
1392 			 *
1393 			 * If there was an error then cow_file_range_inline() has
1394 			 * already done the cleanup.
1395 			 */
1396 			if (ret == 0)
1397 				ret = 1;
1398 			goto done;
1399 		}
1400 	}
1401 
1402 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1403 
1404 	/*
1405 	 * Relocation relies on the relocated extents to have exactly the same
1406 	 * size as the original extents. Normally writeback for relocation data
1407 	 * extents follows a NOCOW path because relocation preallocates the
1408 	 * extents. However, due to an operation such as scrub turning a block
1409 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1410 	 * an extent allocated during COW has exactly the requested size and can
1411 	 * not be split into smaller extents, otherwise relocation breaks and
1412 	 * fails during the stage where it updates the bytenr of file extent
1413 	 * items.
1414 	 */
1415 	if (btrfs_is_data_reloc_root(root))
1416 		min_alloc_size = num_bytes;
1417 	else
1418 		min_alloc_size = fs_info->sectorsize;
1419 
1420 	while (num_bytes > 0) {
1421 		struct btrfs_ordered_extent *ordered;
1422 		struct btrfs_file_extent file_extent;
1423 
1424 		cur_alloc_size = num_bytes;
1425 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1426 					   min_alloc_size, 0, alloc_hint,
1427 					   &ins, 1, 1);
1428 		if (ret == -EAGAIN) {
1429 			/*
1430 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1431 			 * file systems, which is an indication that there are
1432 			 * no active zones to allocate from at the moment.
1433 			 *
1434 			 * If this is the first loop iteration, wait for at
1435 			 * least one zone to finish before retrying the
1436 			 * allocation.  Otherwise ask the caller to write out
1437 			 * the already allocated blocks before coming back to
1438 			 * us, or return -ENOSPC if it can't handle retries.
1439 			 */
1440 			ASSERT(btrfs_is_zoned(fs_info));
1441 			if (start == orig_start) {
1442 				wait_on_bit_io(&inode->root->fs_info->flags,
1443 					       BTRFS_FS_NEED_ZONE_FINISH,
1444 					       TASK_UNINTERRUPTIBLE);
1445 				continue;
1446 			}
1447 			if (done_offset) {
1448 				*done_offset = start - 1;
1449 				return 0;
1450 			}
1451 			ret = -ENOSPC;
1452 		}
1453 		if (ret < 0)
1454 			goto out_unlock;
1455 		cur_alloc_size = ins.offset;
1456 		extent_reserved = true;
1457 
1458 		ram_size = ins.offset;
1459 		file_extent.disk_bytenr = ins.objectid;
1460 		file_extent.disk_num_bytes = ins.offset;
1461 		file_extent.num_bytes = ins.offset;
1462 		file_extent.ram_bytes = ins.offset;
1463 		file_extent.offset = 0;
1464 		file_extent.compression = BTRFS_COMPRESS_NONE;
1465 
1466 		lock_extent(&inode->io_tree, start, start + ram_size - 1,
1467 			    &cached);
1468 
1469 		em = btrfs_create_io_em(inode, start, &file_extent,
1470 					BTRFS_ORDERED_REGULAR);
1471 		if (IS_ERR(em)) {
1472 			unlock_extent(&inode->io_tree, start,
1473 				      start + ram_size - 1, &cached);
1474 			ret = PTR_ERR(em);
1475 			goto out_reserve;
1476 		}
1477 		free_extent_map(em);
1478 
1479 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1480 						     1 << BTRFS_ORDERED_REGULAR);
1481 		if (IS_ERR(ordered)) {
1482 			unlock_extent(&inode->io_tree, start,
1483 				      start + ram_size - 1, &cached);
1484 			ret = PTR_ERR(ordered);
1485 			goto out_drop_extent_cache;
1486 		}
1487 
1488 		if (btrfs_is_data_reloc_root(root)) {
1489 			ret = btrfs_reloc_clone_csums(ordered);
1490 
1491 			/*
1492 			 * Only drop cache here, and process as normal.
1493 			 *
1494 			 * We must not allow extent_clear_unlock_delalloc()
1495 			 * at out_unlock label to free meta of this ordered
1496 			 * extent, as its meta should be freed by
1497 			 * btrfs_finish_ordered_io().
1498 			 *
1499 			 * So we must continue until @start is increased to
1500 			 * skip current ordered extent.
1501 			 */
1502 			if (ret)
1503 				btrfs_drop_extent_map_range(inode, start,
1504 							    start + ram_size - 1,
1505 							    false);
1506 		}
1507 		btrfs_put_ordered_extent(ordered);
1508 
1509 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1510 
1511 		/*
1512 		 * We're not doing compressed IO, don't unlock the first page
1513 		 * (which the caller expects to stay locked), don't clear any
1514 		 * dirty bits and don't set any writeback bits
1515 		 *
1516 		 * Do set the Ordered (Private2) bit so we know this page was
1517 		 * properly setup for writepage.
1518 		 */
1519 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1520 		page_ops |= PAGE_SET_ORDERED;
1521 
1522 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1523 					     locked_folio, &cached,
1524 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1525 					     page_ops);
1526 		if (num_bytes < cur_alloc_size)
1527 			num_bytes = 0;
1528 		else
1529 			num_bytes -= cur_alloc_size;
1530 		alloc_hint = ins.objectid + ins.offset;
1531 		start += cur_alloc_size;
1532 		extent_reserved = false;
1533 
1534 		/*
1535 		 * btrfs_reloc_clone_csums() error, since start is increased
1536 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1537 		 * free metadata of current ordered extent, we're OK to exit.
1538 		 */
1539 		if (ret)
1540 			goto out_unlock;
1541 	}
1542 done:
1543 	if (done_offset)
1544 		*done_offset = end;
1545 	return ret;
1546 
1547 out_drop_extent_cache:
1548 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1549 out_reserve:
1550 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1551 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1552 out_unlock:
1553 	/*
1554 	 * Now, we have three regions to clean up:
1555 	 *
1556 	 * |-------(1)----|---(2)---|-------------(3)----------|
1557 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1558 	 *
1559 	 * We process each region below.
1560 	 */
1561 
1562 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1563 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1564 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1565 
1566 	/*
1567 	 * For the range (1). We have already instantiated the ordered extents
1568 	 * for this region. They are cleaned up by
1569 	 * btrfs_cleanup_ordered_extents() in e.g,
1570 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1571 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1572 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1573 	 * function.
1574 	 *
1575 	 * However, in case of @keep_locked, we still need to unlock the pages
1576 	 * (except @locked_folio) to ensure all the pages are unlocked.
1577 	 */
1578 	if (keep_locked && orig_start < start) {
1579 		if (!locked_folio)
1580 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1581 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1582 					     locked_folio, NULL, 0, page_ops);
1583 	}
1584 
1585 	/*
1586 	 * At this point we're unlocked, we want to make sure we're only
1587 	 * clearing these flags under the extent lock, so lock the rest of the
1588 	 * range and clear everything up.
1589 	 */
1590 	lock_extent(&inode->io_tree, start, end, NULL);
1591 
1592 	/*
1593 	 * For the range (2). If we reserved an extent for our delalloc range
1594 	 * (or a subrange) and failed to create the respective ordered extent,
1595 	 * then it means that when we reserved the extent we decremented the
1596 	 * extent's size from the data space_info's bytes_may_use counter and
1597 	 * incremented the space_info's bytes_reserved counter by the same
1598 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1599 	 * to decrement again the data space_info's bytes_may_use counter,
1600 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1601 	 */
1602 	if (extent_reserved) {
1603 		extent_clear_unlock_delalloc(inode, start,
1604 					     start + cur_alloc_size - 1,
1605 					     locked_folio, &cached, clear_bits,
1606 					     page_ops);
1607 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1608 		start += cur_alloc_size;
1609 	}
1610 
1611 	/*
1612 	 * For the range (3). We never touched the region. In addition to the
1613 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1614 	 * space_info's bytes_may_use counter, reserved in
1615 	 * btrfs_check_data_free_space().
1616 	 */
1617 	if (start < end) {
1618 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1619 		extent_clear_unlock_delalloc(inode, start, end, locked_folio,
1620 					     &cached, clear_bits, page_ops);
1621 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1622 	}
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Phase two of compressed writeback.  This is the ordered portion of the code,
1628  * which only gets called in the order the work was queued.  We walk all the
1629  * async extents created by compress_file_range and send them down to the disk.
1630  *
1631  * If called with @do_free == true then it'll try to finish the work and free
1632  * the work struct eventually.
1633  */
1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1635 {
1636 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1637 						     work);
1638 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1639 	struct async_extent *async_extent;
1640 	unsigned long nr_pages;
1641 	u64 alloc_hint = 0;
1642 
1643 	if (do_free) {
1644 		struct async_cow *async_cow;
1645 
1646 		btrfs_add_delayed_iput(async_chunk->inode);
1647 		if (async_chunk->blkcg_css)
1648 			css_put(async_chunk->blkcg_css);
1649 
1650 		async_cow = async_chunk->async_cow;
1651 		if (atomic_dec_and_test(&async_cow->num_chunks))
1652 			kvfree(async_cow);
1653 		return;
1654 	}
1655 
1656 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1657 		PAGE_SHIFT;
1658 
1659 	while (!list_empty(&async_chunk->extents)) {
1660 		async_extent = list_entry(async_chunk->extents.next,
1661 					  struct async_extent, list);
1662 		list_del(&async_extent->list);
1663 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1664 	}
1665 
1666 	/* atomic_sub_return implies a barrier */
1667 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1668 	    5 * SZ_1M)
1669 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1670 }
1671 
1672 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1673 				    struct folio *locked_folio, u64 start,
1674 				    u64 end, struct writeback_control *wbc)
1675 {
1676 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1677 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1678 	struct async_cow *ctx;
1679 	struct async_chunk *async_chunk;
1680 	unsigned long nr_pages;
1681 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1682 	int i;
1683 	unsigned nofs_flag;
1684 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1685 
1686 	nofs_flag = memalloc_nofs_save();
1687 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1688 	memalloc_nofs_restore(nofs_flag);
1689 	if (!ctx)
1690 		return false;
1691 
1692 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1693 
1694 	async_chunk = ctx->chunks;
1695 	atomic_set(&ctx->num_chunks, num_chunks);
1696 
1697 	for (i = 0; i < num_chunks; i++) {
1698 		u64 cur_end = min(end, start + SZ_512K - 1);
1699 
1700 		/*
1701 		 * igrab is called higher up in the call chain, take only the
1702 		 * lightweight reference for the callback lifetime
1703 		 */
1704 		ihold(&inode->vfs_inode);
1705 		async_chunk[i].async_cow = ctx;
1706 		async_chunk[i].inode = inode;
1707 		async_chunk[i].start = start;
1708 		async_chunk[i].end = cur_end;
1709 		async_chunk[i].write_flags = write_flags;
1710 		INIT_LIST_HEAD(&async_chunk[i].extents);
1711 
1712 		/*
1713 		 * The locked_folio comes all the way from writepage and its
1714 		 * the original folio we were actually given.  As we spread
1715 		 * this large delalloc region across multiple async_chunk
1716 		 * structs, only the first struct needs a pointer to
1717 		 * locked_folio.
1718 		 *
1719 		 * This way we don't need racey decisions about who is supposed
1720 		 * to unlock it.
1721 		 */
1722 		if (locked_folio) {
1723 			/*
1724 			 * Depending on the compressibility, the pages might or
1725 			 * might not go through async.  We want all of them to
1726 			 * be accounted against wbc once.  Let's do it here
1727 			 * before the paths diverge.  wbc accounting is used
1728 			 * only for foreign writeback detection and doesn't
1729 			 * need full accuracy.  Just account the whole thing
1730 			 * against the first page.
1731 			 */
1732 			wbc_account_cgroup_owner(wbc, &locked_folio->page,
1733 						 cur_end - start);
1734 			async_chunk[i].locked_folio = locked_folio;
1735 			locked_folio = NULL;
1736 		} else {
1737 			async_chunk[i].locked_folio = NULL;
1738 		}
1739 
1740 		if (blkcg_css != blkcg_root_css) {
1741 			css_get(blkcg_css);
1742 			async_chunk[i].blkcg_css = blkcg_css;
1743 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1744 		} else {
1745 			async_chunk[i].blkcg_css = NULL;
1746 		}
1747 
1748 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1749 				submit_compressed_extents);
1750 
1751 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1752 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1753 
1754 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1755 
1756 		start = cur_end + 1;
1757 	}
1758 	return true;
1759 }
1760 
1761 /*
1762  * Run the delalloc range from start to end, and write back any dirty pages
1763  * covered by the range.
1764  */
1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1766 				     struct folio *locked_folio, u64 start,
1767 				     u64 end, struct writeback_control *wbc,
1768 				     bool pages_dirty)
1769 {
1770 	u64 done_offset = end;
1771 	int ret;
1772 
1773 	while (start <= end) {
1774 		ret = cow_file_range(inode, locked_folio, start, end,
1775 				     &done_offset, true, false);
1776 		if (ret)
1777 			return ret;
1778 		extent_write_locked_range(&inode->vfs_inode, locked_folio,
1779 					  start, done_offset, wbc, pages_dirty);
1780 		start = done_offset + 1;
1781 	}
1782 
1783 	return 1;
1784 }
1785 
1786 static int fallback_to_cow(struct btrfs_inode *inode,
1787 			   struct folio *locked_folio, const u64 start,
1788 			   const u64 end)
1789 {
1790 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1791 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1792 	const u64 range_bytes = end + 1 - start;
1793 	struct extent_io_tree *io_tree = &inode->io_tree;
1794 	struct extent_state *cached_state = NULL;
1795 	u64 range_start = start;
1796 	u64 count;
1797 	int ret;
1798 
1799 	/*
1800 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1801 	 * made we had not enough available data space and therefore we did not
1802 	 * reserve data space for it, since we though we could do NOCOW for the
1803 	 * respective file range (either there is prealloc extent or the inode
1804 	 * has the NOCOW bit set).
1805 	 *
1806 	 * However when we need to fallback to COW mode (because for example the
1807 	 * block group for the corresponding extent was turned to RO mode by a
1808 	 * scrub or relocation) we need to do the following:
1809 	 *
1810 	 * 1) We increment the bytes_may_use counter of the data space info.
1811 	 *    If COW succeeds, it allocates a new data extent and after doing
1812 	 *    that it decrements the space info's bytes_may_use counter and
1813 	 *    increments its bytes_reserved counter by the same amount (we do
1814 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1815 	 *    bytes_may_use counter to compensate (when space is reserved at
1816 	 *    buffered write time, the bytes_may_use counter is incremented);
1817 	 *
1818 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1819 	 *    that if the COW path fails for any reason, it decrements (through
1820 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1821 	 *    data space info, which we incremented in the step above.
1822 	 *
1823 	 * If we need to fallback to cow and the inode corresponds to a free
1824 	 * space cache inode or an inode of the data relocation tree, we must
1825 	 * also increment bytes_may_use of the data space_info for the same
1826 	 * reason. Space caches and relocated data extents always get a prealloc
1827 	 * extent for them, however scrub or balance may have set the block
1828 	 * group that contains that extent to RO mode and therefore force COW
1829 	 * when starting writeback.
1830 	 */
1831 	lock_extent(io_tree, start, end, &cached_state);
1832 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1833 				 EXTENT_NORESERVE, 0, NULL);
1834 	if (count > 0 || is_space_ino || is_reloc_ino) {
1835 		u64 bytes = count;
1836 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1837 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1838 
1839 		if (is_space_ino || is_reloc_ino)
1840 			bytes = range_bytes;
1841 
1842 		spin_lock(&sinfo->lock);
1843 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1844 		spin_unlock(&sinfo->lock);
1845 
1846 		if (count > 0)
1847 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1848 					 NULL);
1849 	}
1850 	unlock_extent(io_tree, start, end, &cached_state);
1851 
1852 	/*
1853 	 * Don't try to create inline extents, as a mix of inline extent that
1854 	 * is written out and unlocked directly and a normal NOCOW extent
1855 	 * doesn't work.
1856 	 */
1857 	ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1858 			     true);
1859 	ASSERT(ret != 1);
1860 	return ret;
1861 }
1862 
1863 struct can_nocow_file_extent_args {
1864 	/* Input fields. */
1865 
1866 	/* Start file offset of the range we want to NOCOW. */
1867 	u64 start;
1868 	/* End file offset (inclusive) of the range we want to NOCOW. */
1869 	u64 end;
1870 	bool writeback_path;
1871 	bool strict;
1872 	/*
1873 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1874 	 * anymore.
1875 	 */
1876 	bool free_path;
1877 
1878 	/*
1879 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1880 	 * The expected file extent for the NOCOW write.
1881 	 */
1882 	struct btrfs_file_extent file_extent;
1883 };
1884 
1885 /*
1886  * Check if we can NOCOW the file extent that the path points to.
1887  * This function may return with the path released, so the caller should check
1888  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1889  *
1890  * Returns: < 0 on error
1891  *            0 if we can not NOCOW
1892  *            1 if we can NOCOW
1893  */
1894 static int can_nocow_file_extent(struct btrfs_path *path,
1895 				 struct btrfs_key *key,
1896 				 struct btrfs_inode *inode,
1897 				 struct can_nocow_file_extent_args *args)
1898 {
1899 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1900 	struct extent_buffer *leaf = path->nodes[0];
1901 	struct btrfs_root *root = inode->root;
1902 	struct btrfs_file_extent_item *fi;
1903 	struct btrfs_root *csum_root;
1904 	u64 io_start;
1905 	u64 extent_end;
1906 	u8 extent_type;
1907 	int can_nocow = 0;
1908 	int ret = 0;
1909 	bool nowait = path->nowait;
1910 
1911 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1912 	extent_type = btrfs_file_extent_type(leaf, fi);
1913 
1914 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1915 		goto out;
1916 
1917 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1918 	    extent_type == BTRFS_FILE_EXTENT_REG)
1919 		goto out;
1920 
1921 	/*
1922 	 * If the extent was created before the generation where the last snapshot
1923 	 * for its subvolume was created, then this implies the extent is shared,
1924 	 * hence we must COW.
1925 	 */
1926 	if (!args->strict &&
1927 	    btrfs_file_extent_generation(leaf, fi) <=
1928 	    btrfs_root_last_snapshot(&root->root_item))
1929 		goto out;
1930 
1931 	/* An explicit hole, must COW. */
1932 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1933 		goto out;
1934 
1935 	/* Compressed/encrypted/encoded extents must be COWed. */
1936 	if (btrfs_file_extent_compression(leaf, fi) ||
1937 	    btrfs_file_extent_encryption(leaf, fi) ||
1938 	    btrfs_file_extent_other_encoding(leaf, fi))
1939 		goto out;
1940 
1941 	extent_end = btrfs_file_extent_end(path);
1942 
1943 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1944 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1945 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1946 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1947 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1948 
1949 	/*
1950 	 * The following checks can be expensive, as they need to take other
1951 	 * locks and do btree or rbtree searches, so release the path to avoid
1952 	 * blocking other tasks for too long.
1953 	 */
1954 	btrfs_release_path(path);
1955 
1956 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1957 				    key->offset - args->file_extent.offset,
1958 				    args->file_extent.disk_bytenr, args->strict, path);
1959 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1960 	if (ret != 0)
1961 		goto out;
1962 
1963 	if (args->free_path) {
1964 		/*
1965 		 * We don't need the path anymore, plus through the
1966 		 * btrfs_lookup_csums_list() call below we will end up allocating
1967 		 * another path. So free the path to avoid unnecessary extra
1968 		 * memory usage.
1969 		 */
1970 		btrfs_free_path(path);
1971 		path = NULL;
1972 	}
1973 
1974 	/* If there are pending snapshots for this root, we must COW. */
1975 	if (args->writeback_path && !is_freespace_inode &&
1976 	    atomic_read(&root->snapshot_force_cow))
1977 		goto out;
1978 
1979 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1980 	args->file_extent.offset += args->start - key->offset;
1981 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1982 
1983 	/*
1984 	 * Force COW if csums exist in the range. This ensures that csums for a
1985 	 * given extent are either valid or do not exist.
1986 	 */
1987 
1988 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1989 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1990 				      io_start + args->file_extent.num_bytes - 1,
1991 				      NULL, nowait);
1992 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1993 	if (ret != 0)
1994 		goto out;
1995 
1996 	can_nocow = 1;
1997  out:
1998 	if (args->free_path && path)
1999 		btrfs_free_path(path);
2000 
2001 	return ret < 0 ? ret : can_nocow;
2002 }
2003 
2004 /*
2005  * when nowcow writeback call back.  This checks for snapshots or COW copies
2006  * of the extents that exist in the file, and COWs the file as required.
2007  *
2008  * If no cow copies or snapshots exist, we write directly to the existing
2009  * blocks on disk
2010  */
2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2012 				       struct folio *locked_folio,
2013 				       const u64 start, const u64 end)
2014 {
2015 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2016 	struct btrfs_root *root = inode->root;
2017 	struct btrfs_path *path;
2018 	u64 cow_start = (u64)-1;
2019 	u64 cur_offset = start;
2020 	int ret;
2021 	bool check_prev = true;
2022 	u64 ino = btrfs_ino(inode);
2023 	struct can_nocow_file_extent_args nocow_args = { 0 };
2024 
2025 	/*
2026 	 * Normally on a zoned device we're only doing COW writes, but in case
2027 	 * of relocation on a zoned filesystem serializes I/O so that we're only
2028 	 * writing sequentially and can end up here as well.
2029 	 */
2030 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2031 
2032 	path = btrfs_alloc_path();
2033 	if (!path) {
2034 		ret = -ENOMEM;
2035 		goto error;
2036 	}
2037 
2038 	nocow_args.end = end;
2039 	nocow_args.writeback_path = true;
2040 
2041 	while (cur_offset <= end) {
2042 		struct btrfs_block_group *nocow_bg = NULL;
2043 		struct btrfs_ordered_extent *ordered;
2044 		struct btrfs_key found_key;
2045 		struct btrfs_file_extent_item *fi;
2046 		struct extent_buffer *leaf;
2047 		struct extent_state *cached_state = NULL;
2048 		u64 extent_end;
2049 		u64 nocow_end;
2050 		int extent_type;
2051 		bool is_prealloc;
2052 
2053 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2054 					       cur_offset, 0);
2055 		if (ret < 0)
2056 			goto error;
2057 
2058 		/*
2059 		 * If there is no extent for our range when doing the initial
2060 		 * search, then go back to the previous slot as it will be the
2061 		 * one containing the search offset
2062 		 */
2063 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2064 			leaf = path->nodes[0];
2065 			btrfs_item_key_to_cpu(leaf, &found_key,
2066 					      path->slots[0] - 1);
2067 			if (found_key.objectid == ino &&
2068 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2069 				path->slots[0]--;
2070 		}
2071 		check_prev = false;
2072 next_slot:
2073 		/* Go to next leaf if we have exhausted the current one */
2074 		leaf = path->nodes[0];
2075 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2076 			ret = btrfs_next_leaf(root, path);
2077 			if (ret < 0)
2078 				goto error;
2079 			if (ret > 0)
2080 				break;
2081 			leaf = path->nodes[0];
2082 		}
2083 
2084 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2085 
2086 		/* Didn't find anything for our INO */
2087 		if (found_key.objectid > ino)
2088 			break;
2089 		/*
2090 		 * Keep searching until we find an EXTENT_ITEM or there are no
2091 		 * more extents for this inode
2092 		 */
2093 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2094 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2095 			path->slots[0]++;
2096 			goto next_slot;
2097 		}
2098 
2099 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2100 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2101 		    found_key.offset > end)
2102 			break;
2103 
2104 		/*
2105 		 * If the found extent starts after requested offset, then
2106 		 * adjust extent_end to be right before this extent begins
2107 		 */
2108 		if (found_key.offset > cur_offset) {
2109 			extent_end = found_key.offset;
2110 			extent_type = 0;
2111 			goto must_cow;
2112 		}
2113 
2114 		/*
2115 		 * Found extent which begins before our range and potentially
2116 		 * intersect it
2117 		 */
2118 		fi = btrfs_item_ptr(leaf, path->slots[0],
2119 				    struct btrfs_file_extent_item);
2120 		extent_type = btrfs_file_extent_type(leaf, fi);
2121 		/* If this is triggered then we have a memory corruption. */
2122 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2123 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2124 			ret = -EUCLEAN;
2125 			goto error;
2126 		}
2127 		extent_end = btrfs_file_extent_end(path);
2128 
2129 		/*
2130 		 * If the extent we got ends before our current offset, skip to
2131 		 * the next extent.
2132 		 */
2133 		if (extent_end <= cur_offset) {
2134 			path->slots[0]++;
2135 			goto next_slot;
2136 		}
2137 
2138 		nocow_args.start = cur_offset;
2139 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2140 		if (ret < 0)
2141 			goto error;
2142 		if (ret == 0)
2143 			goto must_cow;
2144 
2145 		ret = 0;
2146 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2147 				nocow_args.file_extent.disk_bytenr +
2148 				nocow_args.file_extent.offset);
2149 		if (!nocow_bg) {
2150 must_cow:
2151 			/*
2152 			 * If we can't perform NOCOW writeback for the range,
2153 			 * then record the beginning of the range that needs to
2154 			 * be COWed.  It will be written out before the next
2155 			 * NOCOW range if we find one, or when exiting this
2156 			 * loop.
2157 			 */
2158 			if (cow_start == (u64)-1)
2159 				cow_start = cur_offset;
2160 			cur_offset = extent_end;
2161 			if (cur_offset > end)
2162 				break;
2163 			if (!path->nodes[0])
2164 				continue;
2165 			path->slots[0]++;
2166 			goto next_slot;
2167 		}
2168 
2169 		/*
2170 		 * COW range from cow_start to found_key.offset - 1. As the key
2171 		 * will contain the beginning of the first extent that can be
2172 		 * NOCOW, following one which needs to be COW'ed
2173 		 */
2174 		if (cow_start != (u64)-1) {
2175 			ret = fallback_to_cow(inode, locked_folio, cow_start,
2176 					      found_key.offset - 1);
2177 			cow_start = (u64)-1;
2178 			if (ret) {
2179 				btrfs_dec_nocow_writers(nocow_bg);
2180 				goto error;
2181 			}
2182 		}
2183 
2184 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2185 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2186 
2187 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2188 		if (is_prealloc) {
2189 			struct extent_map *em;
2190 
2191 			em = btrfs_create_io_em(inode, cur_offset,
2192 						&nocow_args.file_extent,
2193 						BTRFS_ORDERED_PREALLOC);
2194 			if (IS_ERR(em)) {
2195 				unlock_extent(&inode->io_tree, cur_offset,
2196 					      nocow_end, &cached_state);
2197 				btrfs_dec_nocow_writers(nocow_bg);
2198 				ret = PTR_ERR(em);
2199 				goto error;
2200 			}
2201 			free_extent_map(em);
2202 		}
2203 
2204 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2205 				&nocow_args.file_extent,
2206 				is_prealloc
2207 				? (1 << BTRFS_ORDERED_PREALLOC)
2208 				: (1 << BTRFS_ORDERED_NOCOW));
2209 		btrfs_dec_nocow_writers(nocow_bg);
2210 		if (IS_ERR(ordered)) {
2211 			if (is_prealloc) {
2212 				btrfs_drop_extent_map_range(inode, cur_offset,
2213 							    nocow_end, false);
2214 			}
2215 			unlock_extent(&inode->io_tree, cur_offset,
2216 				      nocow_end, &cached_state);
2217 			ret = PTR_ERR(ordered);
2218 			goto error;
2219 		}
2220 
2221 		if (btrfs_is_data_reloc_root(root))
2222 			/*
2223 			 * Error handled later, as we must prevent
2224 			 * extent_clear_unlock_delalloc() in error handler
2225 			 * from freeing metadata of created ordered extent.
2226 			 */
2227 			ret = btrfs_reloc_clone_csums(ordered);
2228 		btrfs_put_ordered_extent(ordered);
2229 
2230 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2231 					     locked_folio, &cached_state,
2232 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2233 					     EXTENT_CLEAR_DATA_RESV,
2234 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2235 
2236 		cur_offset = extent_end;
2237 
2238 		/*
2239 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2240 		 * handler, as metadata for created ordered extent will only
2241 		 * be freed by btrfs_finish_ordered_io().
2242 		 */
2243 		if (ret)
2244 			goto error;
2245 	}
2246 	btrfs_release_path(path);
2247 
2248 	if (cur_offset <= end && cow_start == (u64)-1)
2249 		cow_start = cur_offset;
2250 
2251 	if (cow_start != (u64)-1) {
2252 		cur_offset = end;
2253 		ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2254 		cow_start = (u64)-1;
2255 		if (ret)
2256 			goto error;
2257 	}
2258 
2259 	btrfs_free_path(path);
2260 	return 0;
2261 
2262 error:
2263 	/*
2264 	 * If an error happened while a COW region is outstanding, cur_offset
2265 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2266 	 * as well.
2267 	 */
2268 	if (cow_start != (u64)-1)
2269 		cur_offset = cow_start;
2270 
2271 	/*
2272 	 * We need to lock the extent here because we're clearing DELALLOC and
2273 	 * we're not locked at this point.
2274 	 */
2275 	if (cur_offset < end) {
2276 		struct extent_state *cached = NULL;
2277 
2278 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2279 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2280 					     locked_folio, &cached,
2281 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2282 					     EXTENT_DEFRAG |
2283 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2284 					     PAGE_START_WRITEBACK |
2285 					     PAGE_END_WRITEBACK);
2286 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2287 	}
2288 	btrfs_free_path(path);
2289 	return ret;
2290 }
2291 
2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2293 {
2294 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2295 		if (inode->defrag_bytes &&
2296 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2297 			return false;
2298 		return true;
2299 	}
2300 	return false;
2301 }
2302 
2303 /*
2304  * Function to process delayed allocation (create CoW) for ranges which are
2305  * being touched for the first time.
2306  */
2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2308 			     u64 start, u64 end, struct writeback_control *wbc)
2309 {
2310 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2311 	int ret;
2312 
2313 	/*
2314 	 * The range must cover part of the @locked_folio, or a return of 1
2315 	 * can confuse the caller.
2316 	 */
2317 	ASSERT(!(end <= folio_pos(locked_folio) ||
2318 		 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2319 
2320 	if (should_nocow(inode, start, end)) {
2321 		ret = run_delalloc_nocow(inode, locked_folio, start, end);
2322 		goto out;
2323 	}
2324 
2325 	if (btrfs_inode_can_compress(inode) &&
2326 	    inode_need_compress(inode, start, end) &&
2327 	    run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2328 		return 1;
2329 
2330 	if (zoned)
2331 		ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2332 				       true);
2333 	else
2334 		ret = cow_file_range(inode, locked_folio, start, end, NULL,
2335 				     false, false);
2336 
2337 out:
2338 	if (ret < 0)
2339 		btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2340 					      end - start + 1);
2341 	return ret;
2342 }
2343 
2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2345 				 struct extent_state *orig, u64 split)
2346 {
2347 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2348 	u64 size;
2349 
2350 	lockdep_assert_held(&inode->io_tree.lock);
2351 
2352 	/* not delalloc, ignore it */
2353 	if (!(orig->state & EXTENT_DELALLOC))
2354 		return;
2355 
2356 	size = orig->end - orig->start + 1;
2357 	if (size > fs_info->max_extent_size) {
2358 		u32 num_extents;
2359 		u64 new_size;
2360 
2361 		/*
2362 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2363 		 * applies here, just in reverse.
2364 		 */
2365 		new_size = orig->end - split + 1;
2366 		num_extents = count_max_extents(fs_info, new_size);
2367 		new_size = split - orig->start;
2368 		num_extents += count_max_extents(fs_info, new_size);
2369 		if (count_max_extents(fs_info, size) >= num_extents)
2370 			return;
2371 	}
2372 
2373 	spin_lock(&inode->lock);
2374 	btrfs_mod_outstanding_extents(inode, 1);
2375 	spin_unlock(&inode->lock);
2376 }
2377 
2378 /*
2379  * Handle merged delayed allocation extents so we can keep track of new extents
2380  * that are just merged onto old extents, such as when we are doing sequential
2381  * writes, so we can properly account for the metadata space we'll need.
2382  */
2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2384 				 struct extent_state *other)
2385 {
2386 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2387 	u64 new_size, old_size;
2388 	u32 num_extents;
2389 
2390 	lockdep_assert_held(&inode->io_tree.lock);
2391 
2392 	/* not delalloc, ignore it */
2393 	if (!(other->state & EXTENT_DELALLOC))
2394 		return;
2395 
2396 	if (new->start > other->start)
2397 		new_size = new->end - other->start + 1;
2398 	else
2399 		new_size = other->end - new->start + 1;
2400 
2401 	/* we're not bigger than the max, unreserve the space and go */
2402 	if (new_size <= fs_info->max_extent_size) {
2403 		spin_lock(&inode->lock);
2404 		btrfs_mod_outstanding_extents(inode, -1);
2405 		spin_unlock(&inode->lock);
2406 		return;
2407 	}
2408 
2409 	/*
2410 	 * We have to add up either side to figure out how many extents were
2411 	 * accounted for before we merged into one big extent.  If the number of
2412 	 * extents we accounted for is <= the amount we need for the new range
2413 	 * then we can return, otherwise drop.  Think of it like this
2414 	 *
2415 	 * [ 4k][MAX_SIZE]
2416 	 *
2417 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2418 	 * need 2 outstanding extents, on one side we have 1 and the other side
2419 	 * we have 1 so they are == and we can return.  But in this case
2420 	 *
2421 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2422 	 *
2423 	 * Each range on their own accounts for 2 extents, but merged together
2424 	 * they are only 3 extents worth of accounting, so we need to drop in
2425 	 * this case.
2426 	 */
2427 	old_size = other->end - other->start + 1;
2428 	num_extents = count_max_extents(fs_info, old_size);
2429 	old_size = new->end - new->start + 1;
2430 	num_extents += count_max_extents(fs_info, old_size);
2431 	if (count_max_extents(fs_info, new_size) >= num_extents)
2432 		return;
2433 
2434 	spin_lock(&inode->lock);
2435 	btrfs_mod_outstanding_extents(inode, -1);
2436 	spin_unlock(&inode->lock);
2437 }
2438 
2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2440 {
2441 	struct btrfs_root *root = inode->root;
2442 	struct btrfs_fs_info *fs_info = root->fs_info;
2443 
2444 	spin_lock(&root->delalloc_lock);
2445 	ASSERT(list_empty(&inode->delalloc_inodes));
2446 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2447 	root->nr_delalloc_inodes++;
2448 	if (root->nr_delalloc_inodes == 1) {
2449 		spin_lock(&fs_info->delalloc_root_lock);
2450 		ASSERT(list_empty(&root->delalloc_root));
2451 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2452 		spin_unlock(&fs_info->delalloc_root_lock);
2453 	}
2454 	spin_unlock(&root->delalloc_lock);
2455 }
2456 
2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2458 {
2459 	struct btrfs_root *root = inode->root;
2460 	struct btrfs_fs_info *fs_info = root->fs_info;
2461 
2462 	lockdep_assert_held(&root->delalloc_lock);
2463 
2464 	/*
2465 	 * We may be called after the inode was already deleted from the list,
2466 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2467 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2468 	 * still has ->delalloc_bytes > 0.
2469 	 */
2470 	if (!list_empty(&inode->delalloc_inodes)) {
2471 		list_del_init(&inode->delalloc_inodes);
2472 		root->nr_delalloc_inodes--;
2473 		if (!root->nr_delalloc_inodes) {
2474 			ASSERT(list_empty(&root->delalloc_inodes));
2475 			spin_lock(&fs_info->delalloc_root_lock);
2476 			ASSERT(!list_empty(&root->delalloc_root));
2477 			list_del_init(&root->delalloc_root);
2478 			spin_unlock(&fs_info->delalloc_root_lock);
2479 		}
2480 	}
2481 }
2482 
2483 /*
2484  * Properly track delayed allocation bytes in the inode and to maintain the
2485  * list of inodes that have pending delalloc work to be done.
2486  */
2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2488 			       u32 bits)
2489 {
2490 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2491 
2492 	lockdep_assert_held(&inode->io_tree.lock);
2493 
2494 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2495 		WARN_ON(1);
2496 	/*
2497 	 * set_bit and clear bit hooks normally require _irqsave/restore
2498 	 * but in this case, we are only testing for the DELALLOC
2499 	 * bit, which is only set or cleared with irqs on
2500 	 */
2501 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 		u64 len = state->end + 1 - state->start;
2503 		u64 prev_delalloc_bytes;
2504 		u32 num_extents = count_max_extents(fs_info, len);
2505 
2506 		spin_lock(&inode->lock);
2507 		btrfs_mod_outstanding_extents(inode, num_extents);
2508 		spin_unlock(&inode->lock);
2509 
2510 		/* For sanity tests */
2511 		if (btrfs_is_testing(fs_info))
2512 			return;
2513 
2514 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2515 					 fs_info->delalloc_batch);
2516 		spin_lock(&inode->lock);
2517 		prev_delalloc_bytes = inode->delalloc_bytes;
2518 		inode->delalloc_bytes += len;
2519 		if (bits & EXTENT_DEFRAG)
2520 			inode->defrag_bytes += len;
2521 		spin_unlock(&inode->lock);
2522 
2523 		/*
2524 		 * We don't need to be under the protection of the inode's lock,
2525 		 * because we are called while holding the inode's io_tree lock
2526 		 * and are therefore protected against concurrent calls of this
2527 		 * function and btrfs_clear_delalloc_extent().
2528 		 */
2529 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2530 			btrfs_add_delalloc_inode(inode);
2531 	}
2532 
2533 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2534 	    (bits & EXTENT_DELALLOC_NEW)) {
2535 		spin_lock(&inode->lock);
2536 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2537 		spin_unlock(&inode->lock);
2538 	}
2539 }
2540 
2541 /*
2542  * Once a range is no longer delalloc this function ensures that proper
2543  * accounting happens.
2544  */
2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2546 				 struct extent_state *state, u32 bits)
2547 {
2548 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2549 	u64 len = state->end + 1 - state->start;
2550 	u32 num_extents = count_max_extents(fs_info, len);
2551 
2552 	lockdep_assert_held(&inode->io_tree.lock);
2553 
2554 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2555 		spin_lock(&inode->lock);
2556 		inode->defrag_bytes -= len;
2557 		spin_unlock(&inode->lock);
2558 	}
2559 
2560 	/*
2561 	 * set_bit and clear bit hooks normally require _irqsave/restore
2562 	 * but in this case, we are only testing for the DELALLOC
2563 	 * bit, which is only set or cleared with irqs on
2564 	 */
2565 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2566 		struct btrfs_root *root = inode->root;
2567 		u64 new_delalloc_bytes;
2568 
2569 		spin_lock(&inode->lock);
2570 		btrfs_mod_outstanding_extents(inode, -num_extents);
2571 		spin_unlock(&inode->lock);
2572 
2573 		/*
2574 		 * We don't reserve metadata space for space cache inodes so we
2575 		 * don't need to call delalloc_release_metadata if there is an
2576 		 * error.
2577 		 */
2578 		if (bits & EXTENT_CLEAR_META_RESV &&
2579 		    root != fs_info->tree_root)
2580 			btrfs_delalloc_release_metadata(inode, len, true);
2581 
2582 		/* For sanity tests. */
2583 		if (btrfs_is_testing(fs_info))
2584 			return;
2585 
2586 		if (!btrfs_is_data_reloc_root(root) &&
2587 		    !btrfs_is_free_space_inode(inode) &&
2588 		    !(state->state & EXTENT_NORESERVE) &&
2589 		    (bits & EXTENT_CLEAR_DATA_RESV))
2590 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2591 
2592 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2593 					 fs_info->delalloc_batch);
2594 		spin_lock(&inode->lock);
2595 		inode->delalloc_bytes -= len;
2596 		new_delalloc_bytes = inode->delalloc_bytes;
2597 		spin_unlock(&inode->lock);
2598 
2599 		/*
2600 		 * We don't need to be under the protection of the inode's lock,
2601 		 * because we are called while holding the inode's io_tree lock
2602 		 * and are therefore protected against concurrent calls of this
2603 		 * function and btrfs_set_delalloc_extent().
2604 		 */
2605 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2606 			spin_lock(&root->delalloc_lock);
2607 			btrfs_del_delalloc_inode(inode);
2608 			spin_unlock(&root->delalloc_lock);
2609 		}
2610 	}
2611 
2612 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2613 	    (bits & EXTENT_DELALLOC_NEW)) {
2614 		spin_lock(&inode->lock);
2615 		ASSERT(inode->new_delalloc_bytes >= len);
2616 		inode->new_delalloc_bytes -= len;
2617 		if (bits & EXTENT_ADD_INODE_BYTES)
2618 			inode_add_bytes(&inode->vfs_inode, len);
2619 		spin_unlock(&inode->lock);
2620 	}
2621 }
2622 
2623 /*
2624  * given a list of ordered sums record them in the inode.  This happens
2625  * at IO completion time based on sums calculated at bio submission time.
2626  */
2627 static int add_pending_csums(struct btrfs_trans_handle *trans,
2628 			     struct list_head *list)
2629 {
2630 	struct btrfs_ordered_sum *sum;
2631 	struct btrfs_root *csum_root = NULL;
2632 	int ret;
2633 
2634 	list_for_each_entry(sum, list, list) {
2635 		trans->adding_csums = true;
2636 		if (!csum_root)
2637 			csum_root = btrfs_csum_root(trans->fs_info,
2638 						    sum->logical);
2639 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2640 		trans->adding_csums = false;
2641 		if (ret)
2642 			return ret;
2643 	}
2644 	return 0;
2645 }
2646 
2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2648 					 const u64 start,
2649 					 const u64 len,
2650 					 struct extent_state **cached_state)
2651 {
2652 	u64 search_start = start;
2653 	const u64 end = start + len - 1;
2654 
2655 	while (search_start < end) {
2656 		const u64 search_len = end - search_start + 1;
2657 		struct extent_map *em;
2658 		u64 em_len;
2659 		int ret = 0;
2660 
2661 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2662 		if (IS_ERR(em))
2663 			return PTR_ERR(em);
2664 
2665 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2666 			goto next;
2667 
2668 		em_len = em->len;
2669 		if (em->start < search_start)
2670 			em_len -= search_start - em->start;
2671 		if (em_len > search_len)
2672 			em_len = search_len;
2673 
2674 		ret = set_extent_bit(&inode->io_tree, search_start,
2675 				     search_start + em_len - 1,
2676 				     EXTENT_DELALLOC_NEW, cached_state);
2677 next:
2678 		search_start = extent_map_end(em);
2679 		free_extent_map(em);
2680 		if (ret)
2681 			return ret;
2682 	}
2683 	return 0;
2684 }
2685 
2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2687 			      unsigned int extra_bits,
2688 			      struct extent_state **cached_state)
2689 {
2690 	WARN_ON(PAGE_ALIGNED(end));
2691 
2692 	if (start >= i_size_read(&inode->vfs_inode) &&
2693 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2694 		/*
2695 		 * There can't be any extents following eof in this case so just
2696 		 * set the delalloc new bit for the range directly.
2697 		 */
2698 		extra_bits |= EXTENT_DELALLOC_NEW;
2699 	} else {
2700 		int ret;
2701 
2702 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2703 						    end + 1 - start,
2704 						    cached_state);
2705 		if (ret)
2706 			return ret;
2707 	}
2708 
2709 	return set_extent_bit(&inode->io_tree, start, end,
2710 			      EXTENT_DELALLOC | extra_bits, cached_state);
2711 }
2712 
2713 /* see btrfs_writepage_start_hook for details on why this is required */
2714 struct btrfs_writepage_fixup {
2715 	struct folio *folio;
2716 	struct btrfs_inode *inode;
2717 	struct btrfs_work work;
2718 };
2719 
2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2721 {
2722 	struct btrfs_writepage_fixup *fixup =
2723 		container_of(work, struct btrfs_writepage_fixup, work);
2724 	struct btrfs_ordered_extent *ordered;
2725 	struct extent_state *cached_state = NULL;
2726 	struct extent_changeset *data_reserved = NULL;
2727 	struct folio *folio = fixup->folio;
2728 	struct btrfs_inode *inode = fixup->inode;
2729 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2730 	u64 page_start = folio_pos(folio);
2731 	u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2732 	int ret = 0;
2733 	bool free_delalloc_space = true;
2734 
2735 	/*
2736 	 * This is similar to page_mkwrite, we need to reserve the space before
2737 	 * we take the folio lock.
2738 	 */
2739 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2740 					   folio_size(folio));
2741 again:
2742 	folio_lock(folio);
2743 
2744 	/*
2745 	 * Before we queued this fixup, we took a reference on the folio.
2746 	 * folio->mapping may go NULL, but it shouldn't be moved to a different
2747 	 * address space.
2748 	 */
2749 	if (!folio->mapping || !folio_test_dirty(folio) ||
2750 	    !folio_test_checked(folio)) {
2751 		/*
2752 		 * Unfortunately this is a little tricky, either
2753 		 *
2754 		 * 1) We got here and our folio had already been dealt with and
2755 		 *    we reserved our space, thus ret == 0, so we need to just
2756 		 *    drop our space reservation and bail.  This can happen the
2757 		 *    first time we come into the fixup worker, or could happen
2758 		 *    while waiting for the ordered extent.
2759 		 * 2) Our folio was already dealt with, but we happened to get an
2760 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2761 		 *    this case we obviously don't have anything to release, but
2762 		 *    because the folio was already dealt with we don't want to
2763 		 *    mark the folio with an error, so make sure we're resetting
2764 		 *    ret to 0.  This is why we have this check _before_ the ret
2765 		 *    check, because we do not want to have a surprise ENOSPC
2766 		 *    when the folio was already properly dealt with.
2767 		 */
2768 		if (!ret) {
2769 			btrfs_delalloc_release_extents(inode, folio_size(folio));
2770 			btrfs_delalloc_release_space(inode, data_reserved,
2771 						     page_start, folio_size(folio),
2772 						     true);
2773 		}
2774 		ret = 0;
2775 		goto out_page;
2776 	}
2777 
2778 	/*
2779 	 * We can't mess with the folio state unless it is locked, so now that
2780 	 * it is locked bail if we failed to make our space reservation.
2781 	 */
2782 	if (ret)
2783 		goto out_page;
2784 
2785 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2786 
2787 	/* already ordered? We're done */
2788 	if (folio_test_ordered(folio))
2789 		goto out_reserved;
2790 
2791 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2792 	if (ordered) {
2793 		unlock_extent(&inode->io_tree, page_start, page_end,
2794 			      &cached_state);
2795 		folio_unlock(folio);
2796 		btrfs_start_ordered_extent(ordered);
2797 		btrfs_put_ordered_extent(ordered);
2798 		goto again;
2799 	}
2800 
2801 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2802 					&cached_state);
2803 	if (ret)
2804 		goto out_reserved;
2805 
2806 	/*
2807 	 * Everything went as planned, we're now the owner of a dirty page with
2808 	 * delayed allocation bits set and space reserved for our COW
2809 	 * destination.
2810 	 *
2811 	 * The page was dirty when we started, nothing should have cleaned it.
2812 	 */
2813 	BUG_ON(!folio_test_dirty(folio));
2814 	free_delalloc_space = false;
2815 out_reserved:
2816 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2817 	if (free_delalloc_space)
2818 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2819 					     PAGE_SIZE, true);
2820 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2821 out_page:
2822 	if (ret) {
2823 		/*
2824 		 * We hit ENOSPC or other errors.  Update the mapping and page
2825 		 * to reflect the errors and clean the page.
2826 		 */
2827 		mapping_set_error(folio->mapping, ret);
2828 		btrfs_mark_ordered_io_finished(inode, folio, page_start,
2829 					       folio_size(folio), !ret);
2830 		folio_clear_dirty_for_io(folio);
2831 	}
2832 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2833 	folio_unlock(folio);
2834 	folio_put(folio);
2835 	kfree(fixup);
2836 	extent_changeset_free(data_reserved);
2837 	/*
2838 	 * As a precaution, do a delayed iput in case it would be the last iput
2839 	 * that could need flushing space. Recursing back to fixup worker would
2840 	 * deadlock.
2841 	 */
2842 	btrfs_add_delayed_iput(inode);
2843 }
2844 
2845 /*
2846  * There are a few paths in the higher layers of the kernel that directly
2847  * set the folio dirty bit without asking the filesystem if it is a
2848  * good idea.  This causes problems because we want to make sure COW
2849  * properly happens and the data=ordered rules are followed.
2850  *
2851  * In our case any range that doesn't have the ORDERED bit set
2852  * hasn't been properly setup for IO.  We kick off an async process
2853  * to fix it up.  The async helper will wait for ordered extents, set
2854  * the delalloc bit and make it safe to write the folio.
2855  */
2856 int btrfs_writepage_cow_fixup(struct folio *folio)
2857 {
2858 	struct inode *inode = folio->mapping->host;
2859 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2860 	struct btrfs_writepage_fixup *fixup;
2861 
2862 	/* This folio has ordered extent covering it already */
2863 	if (folio_test_ordered(folio))
2864 		return 0;
2865 
2866 	/*
2867 	 * folio_checked is set below when we create a fixup worker for this
2868 	 * folio, don't try to create another one if we're already
2869 	 * folio_test_checked.
2870 	 *
2871 	 * The extent_io writepage code will redirty the foio if we send back
2872 	 * EAGAIN.
2873 	 */
2874 	if (folio_test_checked(folio))
2875 		return -EAGAIN;
2876 
2877 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2878 	if (!fixup)
2879 		return -EAGAIN;
2880 
2881 	/*
2882 	 * We are already holding a reference to this inode from
2883 	 * write_cache_pages.  We need to hold it because the space reservation
2884 	 * takes place outside of the folio lock, and we can't trust
2885 	 * page->mapping outside of the folio lock.
2886 	 */
2887 	ihold(inode);
2888 	btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2889 	folio_get(folio);
2890 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2891 	fixup->folio = folio;
2892 	fixup->inode = BTRFS_I(inode);
2893 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2894 
2895 	return -EAGAIN;
2896 }
2897 
2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2899 				       struct btrfs_inode *inode, u64 file_pos,
2900 				       struct btrfs_file_extent_item *stack_fi,
2901 				       const bool update_inode_bytes,
2902 				       u64 qgroup_reserved)
2903 {
2904 	struct btrfs_root *root = inode->root;
2905 	const u64 sectorsize = root->fs_info->sectorsize;
2906 	struct btrfs_path *path;
2907 	struct extent_buffer *leaf;
2908 	struct btrfs_key ins;
2909 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2910 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2911 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2912 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2913 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2914 	struct btrfs_drop_extents_args drop_args = { 0 };
2915 	int ret;
2916 
2917 	path = btrfs_alloc_path();
2918 	if (!path)
2919 		return -ENOMEM;
2920 
2921 	/*
2922 	 * we may be replacing one extent in the tree with another.
2923 	 * The new extent is pinned in the extent map, and we don't want
2924 	 * to drop it from the cache until it is completely in the btree.
2925 	 *
2926 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2927 	 * the caller is expected to unpin it and allow it to be merged
2928 	 * with the others.
2929 	 */
2930 	drop_args.path = path;
2931 	drop_args.start = file_pos;
2932 	drop_args.end = file_pos + num_bytes;
2933 	drop_args.replace_extent = true;
2934 	drop_args.extent_item_size = sizeof(*stack_fi);
2935 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2936 	if (ret)
2937 		goto out;
2938 
2939 	if (!drop_args.extent_inserted) {
2940 		ins.objectid = btrfs_ino(inode);
2941 		ins.offset = file_pos;
2942 		ins.type = BTRFS_EXTENT_DATA_KEY;
2943 
2944 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2945 					      sizeof(*stack_fi));
2946 		if (ret)
2947 			goto out;
2948 	}
2949 	leaf = path->nodes[0];
2950 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2951 	write_extent_buffer(leaf, stack_fi,
2952 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2953 			sizeof(struct btrfs_file_extent_item));
2954 
2955 	btrfs_mark_buffer_dirty(trans, leaf);
2956 	btrfs_release_path(path);
2957 
2958 	/*
2959 	 * If we dropped an inline extent here, we know the range where it is
2960 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2961 	 * number of bytes only for that range containing the inline extent.
2962 	 * The remaining of the range will be processed when clearning the
2963 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2964 	 */
2965 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2966 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2967 
2968 		inline_size = drop_args.bytes_found - inline_size;
2969 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2970 		drop_args.bytes_found -= inline_size;
2971 		num_bytes -= sectorsize;
2972 	}
2973 
2974 	if (update_inode_bytes)
2975 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2976 
2977 	ins.objectid = disk_bytenr;
2978 	ins.offset = disk_num_bytes;
2979 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2980 
2981 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2982 	if (ret)
2983 		goto out;
2984 
2985 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2986 					       file_pos - offset,
2987 					       qgroup_reserved, &ins);
2988 out:
2989 	btrfs_free_path(path);
2990 
2991 	return ret;
2992 }
2993 
2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2995 					 u64 start, u64 len)
2996 {
2997 	struct btrfs_block_group *cache;
2998 
2999 	cache = btrfs_lookup_block_group(fs_info, start);
3000 	ASSERT(cache);
3001 
3002 	spin_lock(&cache->lock);
3003 	cache->delalloc_bytes -= len;
3004 	spin_unlock(&cache->lock);
3005 
3006 	btrfs_put_block_group(cache);
3007 }
3008 
3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3010 					     struct btrfs_ordered_extent *oe)
3011 {
3012 	struct btrfs_file_extent_item stack_fi;
3013 	bool update_inode_bytes;
3014 	u64 num_bytes = oe->num_bytes;
3015 	u64 ram_bytes = oe->ram_bytes;
3016 
3017 	memset(&stack_fi, 0, sizeof(stack_fi));
3018 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3019 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3020 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3021 						   oe->disk_num_bytes);
3022 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3023 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3024 		num_bytes = oe->truncated_len;
3025 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3026 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3027 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3028 	/* Encryption and other encoding is reserved and all 0 */
3029 
3030 	/*
3031 	 * For delalloc, when completing an ordered extent we update the inode's
3032 	 * bytes when clearing the range in the inode's io tree, so pass false
3033 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3034 	 * except if the ordered extent was truncated.
3035 	 */
3036 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3037 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3038 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3039 
3040 	return insert_reserved_file_extent(trans, oe->inode,
3041 					   oe->file_offset, &stack_fi,
3042 					   update_inode_bytes, oe->qgroup_rsv);
3043 }
3044 
3045 /*
3046  * As ordered data IO finishes, this gets called so we can finish
3047  * an ordered extent if the range of bytes in the file it covers are
3048  * fully written.
3049  */
3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3051 {
3052 	struct btrfs_inode *inode = ordered_extent->inode;
3053 	struct btrfs_root *root = inode->root;
3054 	struct btrfs_fs_info *fs_info = root->fs_info;
3055 	struct btrfs_trans_handle *trans = NULL;
3056 	struct extent_io_tree *io_tree = &inode->io_tree;
3057 	struct extent_state *cached_state = NULL;
3058 	u64 start, end;
3059 	int compress_type = 0;
3060 	int ret = 0;
3061 	u64 logical_len = ordered_extent->num_bytes;
3062 	bool freespace_inode;
3063 	bool truncated = false;
3064 	bool clear_reserved_extent = true;
3065 	unsigned int clear_bits = EXTENT_DEFRAG;
3066 
3067 	start = ordered_extent->file_offset;
3068 	end = start + ordered_extent->num_bytes - 1;
3069 
3070 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3071 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3072 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3073 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3074 		clear_bits |= EXTENT_DELALLOC_NEW;
3075 
3076 	freespace_inode = btrfs_is_free_space_inode(inode);
3077 	if (!freespace_inode)
3078 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3079 
3080 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3081 		ret = -EIO;
3082 		goto out;
3083 	}
3084 
3085 	if (btrfs_is_zoned(fs_info))
3086 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3087 					ordered_extent->disk_num_bytes);
3088 
3089 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3090 		truncated = true;
3091 		logical_len = ordered_extent->truncated_len;
3092 		/* Truncated the entire extent, don't bother adding */
3093 		if (!logical_len)
3094 			goto out;
3095 	}
3096 
3097 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3098 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3099 
3100 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3101 		if (freespace_inode)
3102 			trans = btrfs_join_transaction_spacecache(root);
3103 		else
3104 			trans = btrfs_join_transaction(root);
3105 		if (IS_ERR(trans)) {
3106 			ret = PTR_ERR(trans);
3107 			trans = NULL;
3108 			goto out;
3109 		}
3110 		trans->block_rsv = &inode->block_rsv;
3111 		ret = btrfs_update_inode_fallback(trans, inode);
3112 		if (ret) /* -ENOMEM or corruption */
3113 			btrfs_abort_transaction(trans, ret);
3114 		goto out;
3115 	}
3116 
3117 	clear_bits |= EXTENT_LOCKED;
3118 	lock_extent(io_tree, start, end, &cached_state);
3119 
3120 	if (freespace_inode)
3121 		trans = btrfs_join_transaction_spacecache(root);
3122 	else
3123 		trans = btrfs_join_transaction(root);
3124 	if (IS_ERR(trans)) {
3125 		ret = PTR_ERR(trans);
3126 		trans = NULL;
3127 		goto out;
3128 	}
3129 
3130 	trans->block_rsv = &inode->block_rsv;
3131 
3132 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3133 	if (ret)
3134 		goto out;
3135 
3136 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3137 		compress_type = ordered_extent->compress_type;
3138 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3139 		BUG_ON(compress_type);
3140 		ret = btrfs_mark_extent_written(trans, inode,
3141 						ordered_extent->file_offset,
3142 						ordered_extent->file_offset +
3143 						logical_len);
3144 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3145 						  ordered_extent->disk_num_bytes);
3146 	} else {
3147 		BUG_ON(root == fs_info->tree_root);
3148 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3149 		if (!ret) {
3150 			clear_reserved_extent = false;
3151 			btrfs_release_delalloc_bytes(fs_info,
3152 						ordered_extent->disk_bytenr,
3153 						ordered_extent->disk_num_bytes);
3154 		}
3155 	}
3156 	if (ret < 0) {
3157 		btrfs_abort_transaction(trans, ret);
3158 		goto out;
3159 	}
3160 
3161 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3162 				 ordered_extent->num_bytes, trans->transid);
3163 	if (ret < 0) {
3164 		btrfs_abort_transaction(trans, ret);
3165 		goto out;
3166 	}
3167 
3168 	ret = add_pending_csums(trans, &ordered_extent->list);
3169 	if (ret) {
3170 		btrfs_abort_transaction(trans, ret);
3171 		goto out;
3172 	}
3173 
3174 	/*
3175 	 * If this is a new delalloc range, clear its new delalloc flag to
3176 	 * update the inode's number of bytes. This needs to be done first
3177 	 * before updating the inode item.
3178 	 */
3179 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3180 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3181 		clear_extent_bit(&inode->io_tree, start, end,
3182 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3183 				 &cached_state);
3184 
3185 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3186 	ret = btrfs_update_inode_fallback(trans, inode);
3187 	if (ret) { /* -ENOMEM or corruption */
3188 		btrfs_abort_transaction(trans, ret);
3189 		goto out;
3190 	}
3191 out:
3192 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3193 			 &cached_state);
3194 
3195 	if (trans)
3196 		btrfs_end_transaction(trans);
3197 
3198 	if (ret || truncated) {
3199 		u64 unwritten_start = start;
3200 
3201 		/*
3202 		 * If we failed to finish this ordered extent for any reason we
3203 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3204 		 * extent, and mark the inode with the error if it wasn't
3205 		 * already set.  Any error during writeback would have already
3206 		 * set the mapping error, so we need to set it if we're the ones
3207 		 * marking this ordered extent as failed.
3208 		 */
3209 		if (ret)
3210 			btrfs_mark_ordered_extent_error(ordered_extent);
3211 
3212 		if (truncated)
3213 			unwritten_start += logical_len;
3214 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3215 
3216 		/*
3217 		 * Drop extent maps for the part of the extent we didn't write.
3218 		 *
3219 		 * We have an exception here for the free_space_inode, this is
3220 		 * because when we do btrfs_get_extent() on the free space inode
3221 		 * we will search the commit root.  If this is a new block group
3222 		 * we won't find anything, and we will trip over the assert in
3223 		 * writepage where we do ASSERT(em->block_start !=
3224 		 * EXTENT_MAP_HOLE).
3225 		 *
3226 		 * Theoretically we could also skip this for any NOCOW extent as
3227 		 * we don't mess with the extent map tree in the NOCOW case, but
3228 		 * for now simply skip this if we are the free space inode.
3229 		 */
3230 		if (!btrfs_is_free_space_inode(inode))
3231 			btrfs_drop_extent_map_range(inode, unwritten_start,
3232 						    end, false);
3233 
3234 		/*
3235 		 * If the ordered extent had an IOERR or something else went
3236 		 * wrong we need to return the space for this ordered extent
3237 		 * back to the allocator.  We only free the extent in the
3238 		 * truncated case if we didn't write out the extent at all.
3239 		 *
3240 		 * If we made it past insert_reserved_file_extent before we
3241 		 * errored out then we don't need to do this as the accounting
3242 		 * has already been done.
3243 		 */
3244 		if ((ret || !logical_len) &&
3245 		    clear_reserved_extent &&
3246 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3247 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3248 			/*
3249 			 * Discard the range before returning it back to the
3250 			 * free space pool
3251 			 */
3252 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3253 				btrfs_discard_extent(fs_info,
3254 						ordered_extent->disk_bytenr,
3255 						ordered_extent->disk_num_bytes,
3256 						NULL);
3257 			btrfs_free_reserved_extent(fs_info,
3258 					ordered_extent->disk_bytenr,
3259 					ordered_extent->disk_num_bytes, 1);
3260 			/*
3261 			 * Actually free the qgroup rsv which was released when
3262 			 * the ordered extent was created.
3263 			 */
3264 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3265 						  ordered_extent->qgroup_rsv,
3266 						  BTRFS_QGROUP_RSV_DATA);
3267 		}
3268 	}
3269 
3270 	/*
3271 	 * This needs to be done to make sure anybody waiting knows we are done
3272 	 * updating everything for this ordered extent.
3273 	 */
3274 	btrfs_remove_ordered_extent(inode, ordered_extent);
3275 
3276 	/* once for us */
3277 	btrfs_put_ordered_extent(ordered_extent);
3278 	/* once for the tree */
3279 	btrfs_put_ordered_extent(ordered_extent);
3280 
3281 	return ret;
3282 }
3283 
3284 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3285 {
3286 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3287 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3288 	    list_empty(&ordered->bioc_list))
3289 		btrfs_finish_ordered_zoned(ordered);
3290 	return btrfs_finish_one_ordered(ordered);
3291 }
3292 
3293 /*
3294  * Verify the checksum for a single sector without any extra action that depend
3295  * on the type of I/O.
3296  */
3297 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3298 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3299 {
3300 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3301 	char *kaddr;
3302 
3303 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3304 
3305 	shash->tfm = fs_info->csum_shash;
3306 
3307 	kaddr = kmap_local_page(page) + pgoff;
3308 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3309 	kunmap_local(kaddr);
3310 
3311 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3312 		return -EIO;
3313 	return 0;
3314 }
3315 
3316 /*
3317  * Verify the checksum of a single data sector.
3318  *
3319  * @bbio:	btrfs_io_bio which contains the csum
3320  * @dev:	device the sector is on
3321  * @bio_offset:	offset to the beginning of the bio (in bytes)
3322  * @bv:		bio_vec to check
3323  *
3324  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3325  * detected, report the error and fill the corrupted range with zero.
3326  *
3327  * Return %true if the sector is ok or had no checksum to start with, else %false.
3328  */
3329 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3330 			u32 bio_offset, struct bio_vec *bv)
3331 {
3332 	struct btrfs_inode *inode = bbio->inode;
3333 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3334 	u64 file_offset = bbio->file_offset + bio_offset;
3335 	u64 end = file_offset + bv->bv_len - 1;
3336 	u8 *csum_expected;
3337 	u8 csum[BTRFS_CSUM_SIZE];
3338 
3339 	ASSERT(bv->bv_len == fs_info->sectorsize);
3340 
3341 	if (!bbio->csum)
3342 		return true;
3343 
3344 	if (btrfs_is_data_reloc_root(inode->root) &&
3345 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3346 			   NULL)) {
3347 		/* Skip the range without csum for data reloc inode */
3348 		clear_extent_bits(&inode->io_tree, file_offset, end,
3349 				  EXTENT_NODATASUM);
3350 		return true;
3351 	}
3352 
3353 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3354 				fs_info->csum_size;
3355 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3356 				    csum_expected))
3357 		goto zeroit;
3358 	return true;
3359 
3360 zeroit:
3361 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3362 				    bbio->mirror_num);
3363 	if (dev)
3364 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3365 	memzero_bvec(bv);
3366 	return false;
3367 }
3368 
3369 /*
3370  * Perform a delayed iput on @inode.
3371  *
3372  * @inode: The inode we want to perform iput on
3373  *
3374  * This function uses the generic vfs_inode::i_count to track whether we should
3375  * just decrement it (in case it's > 1) or if this is the last iput then link
3376  * the inode to the delayed iput machinery. Delayed iputs are processed at
3377  * transaction commit time/superblock commit/cleaner kthread.
3378  */
3379 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3380 {
3381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3382 	unsigned long flags;
3383 
3384 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3385 		return;
3386 
3387 	atomic_inc(&fs_info->nr_delayed_iputs);
3388 	/*
3389 	 * Need to be irq safe here because we can be called from either an irq
3390 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3391 	 * context.
3392 	 */
3393 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3394 	ASSERT(list_empty(&inode->delayed_iput));
3395 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3396 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3397 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3398 		wake_up_process(fs_info->cleaner_kthread);
3399 }
3400 
3401 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3402 				    struct btrfs_inode *inode)
3403 {
3404 	list_del_init(&inode->delayed_iput);
3405 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3406 	iput(&inode->vfs_inode);
3407 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3408 		wake_up(&fs_info->delayed_iputs_wait);
3409 	spin_lock_irq(&fs_info->delayed_iput_lock);
3410 }
3411 
3412 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3413 				   struct btrfs_inode *inode)
3414 {
3415 	if (!list_empty(&inode->delayed_iput)) {
3416 		spin_lock_irq(&fs_info->delayed_iput_lock);
3417 		if (!list_empty(&inode->delayed_iput))
3418 			run_delayed_iput_locked(fs_info, inode);
3419 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3420 	}
3421 }
3422 
3423 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3424 {
3425 	/*
3426 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3427 	 * calls btrfs_add_delayed_iput() and that needs to lock
3428 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3429 	 * prevent a deadlock.
3430 	 */
3431 	spin_lock_irq(&fs_info->delayed_iput_lock);
3432 	while (!list_empty(&fs_info->delayed_iputs)) {
3433 		struct btrfs_inode *inode;
3434 
3435 		inode = list_first_entry(&fs_info->delayed_iputs,
3436 				struct btrfs_inode, delayed_iput);
3437 		run_delayed_iput_locked(fs_info, inode);
3438 		if (need_resched()) {
3439 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3440 			cond_resched();
3441 			spin_lock_irq(&fs_info->delayed_iput_lock);
3442 		}
3443 	}
3444 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3445 }
3446 
3447 /*
3448  * Wait for flushing all delayed iputs
3449  *
3450  * @fs_info:  the filesystem
3451  *
3452  * This will wait on any delayed iputs that are currently running with KILLABLE
3453  * set.  Once they are all done running we will return, unless we are killed in
3454  * which case we return EINTR. This helps in user operations like fallocate etc
3455  * that might get blocked on the iputs.
3456  *
3457  * Return EINTR if we were killed, 0 if nothing's pending
3458  */
3459 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3460 {
3461 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3462 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3463 	if (ret)
3464 		return -EINTR;
3465 	return 0;
3466 }
3467 
3468 /*
3469  * This creates an orphan entry for the given inode in case something goes wrong
3470  * in the middle of an unlink.
3471  */
3472 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3473 		     struct btrfs_inode *inode)
3474 {
3475 	int ret;
3476 
3477 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3478 	if (ret && ret != -EEXIST) {
3479 		btrfs_abort_transaction(trans, ret);
3480 		return ret;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 /*
3487  * We have done the delete so we can go ahead and remove the orphan item for
3488  * this particular inode.
3489  */
3490 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3491 			    struct btrfs_inode *inode)
3492 {
3493 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3494 }
3495 
3496 /*
3497  * this cleans up any orphans that may be left on the list from the last use
3498  * of this root.
3499  */
3500 int btrfs_orphan_cleanup(struct btrfs_root *root)
3501 {
3502 	struct btrfs_fs_info *fs_info = root->fs_info;
3503 	struct btrfs_path *path;
3504 	struct extent_buffer *leaf;
3505 	struct btrfs_key key, found_key;
3506 	struct btrfs_trans_handle *trans;
3507 	struct inode *inode;
3508 	u64 last_objectid = 0;
3509 	int ret = 0, nr_unlink = 0;
3510 
3511 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3512 		return 0;
3513 
3514 	path = btrfs_alloc_path();
3515 	if (!path) {
3516 		ret = -ENOMEM;
3517 		goto out;
3518 	}
3519 	path->reada = READA_BACK;
3520 
3521 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3522 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3523 	key.offset = (u64)-1;
3524 
3525 	while (1) {
3526 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3527 		if (ret < 0)
3528 			goto out;
3529 
3530 		/*
3531 		 * if ret == 0 means we found what we were searching for, which
3532 		 * is weird, but possible, so only screw with path if we didn't
3533 		 * find the key and see if we have stuff that matches
3534 		 */
3535 		if (ret > 0) {
3536 			ret = 0;
3537 			if (path->slots[0] == 0)
3538 				break;
3539 			path->slots[0]--;
3540 		}
3541 
3542 		/* pull out the item */
3543 		leaf = path->nodes[0];
3544 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3545 
3546 		/* make sure the item matches what we want */
3547 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3548 			break;
3549 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3550 			break;
3551 
3552 		/* release the path since we're done with it */
3553 		btrfs_release_path(path);
3554 
3555 		/*
3556 		 * this is where we are basically btrfs_lookup, without the
3557 		 * crossing root thing.  we store the inode number in the
3558 		 * offset of the orphan item.
3559 		 */
3560 
3561 		if (found_key.offset == last_objectid) {
3562 			/*
3563 			 * We found the same inode as before. This means we were
3564 			 * not able to remove its items via eviction triggered
3565 			 * by an iput(). A transaction abort may have happened,
3566 			 * due to -ENOSPC for example, so try to grab the error
3567 			 * that lead to a transaction abort, if any.
3568 			 */
3569 			btrfs_err(fs_info,
3570 				  "Error removing orphan entry, stopping orphan cleanup");
3571 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3572 			goto out;
3573 		}
3574 
3575 		last_objectid = found_key.offset;
3576 
3577 		found_key.objectid = found_key.offset;
3578 		found_key.type = BTRFS_INODE_ITEM_KEY;
3579 		found_key.offset = 0;
3580 		inode = btrfs_iget(last_objectid, root);
3581 		if (IS_ERR(inode)) {
3582 			ret = PTR_ERR(inode);
3583 			inode = NULL;
3584 			if (ret != -ENOENT)
3585 				goto out;
3586 		}
3587 
3588 		if (!inode && root == fs_info->tree_root) {
3589 			struct btrfs_root *dead_root;
3590 			int is_dead_root = 0;
3591 
3592 			/*
3593 			 * This is an orphan in the tree root. Currently these
3594 			 * could come from 2 sources:
3595 			 *  a) a root (snapshot/subvolume) deletion in progress
3596 			 *  b) a free space cache inode
3597 			 * We need to distinguish those two, as the orphan item
3598 			 * for a root must not get deleted before the deletion
3599 			 * of the snapshot/subvolume's tree completes.
3600 			 *
3601 			 * btrfs_find_orphan_roots() ran before us, which has
3602 			 * found all deleted roots and loaded them into
3603 			 * fs_info->fs_roots_radix. So here we can find if an
3604 			 * orphan item corresponds to a deleted root by looking
3605 			 * up the root from that radix tree.
3606 			 */
3607 
3608 			spin_lock(&fs_info->fs_roots_radix_lock);
3609 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3610 							 (unsigned long)found_key.objectid);
3611 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3612 				is_dead_root = 1;
3613 			spin_unlock(&fs_info->fs_roots_radix_lock);
3614 
3615 			if (is_dead_root) {
3616 				/* prevent this orphan from being found again */
3617 				key.offset = found_key.objectid - 1;
3618 				continue;
3619 			}
3620 
3621 		}
3622 
3623 		/*
3624 		 * If we have an inode with links, there are a couple of
3625 		 * possibilities:
3626 		 *
3627 		 * 1. We were halfway through creating fsverity metadata for the
3628 		 * file. In that case, the orphan item represents incomplete
3629 		 * fsverity metadata which must be cleaned up with
3630 		 * btrfs_drop_verity_items and deleting the orphan item.
3631 
3632 		 * 2. Old kernels (before v3.12) used to create an
3633 		 * orphan item for truncate indicating that there were possibly
3634 		 * extent items past i_size that needed to be deleted. In v3.12,
3635 		 * truncate was changed to update i_size in sync with the extent
3636 		 * items, but the (useless) orphan item was still created. Since
3637 		 * v4.18, we don't create the orphan item for truncate at all.
3638 		 *
3639 		 * So, this item could mean that we need to do a truncate, but
3640 		 * only if this filesystem was last used on a pre-v3.12 kernel
3641 		 * and was not cleanly unmounted. The odds of that are quite
3642 		 * slim, and it's a pain to do the truncate now, so just delete
3643 		 * the orphan item.
3644 		 *
3645 		 * It's also possible that this orphan item was supposed to be
3646 		 * deleted but wasn't. The inode number may have been reused,
3647 		 * but either way, we can delete the orphan item.
3648 		 */
3649 		if (!inode || inode->i_nlink) {
3650 			if (inode) {
3651 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3652 				iput(inode);
3653 				inode = NULL;
3654 				if (ret)
3655 					goto out;
3656 			}
3657 			trans = btrfs_start_transaction(root, 1);
3658 			if (IS_ERR(trans)) {
3659 				ret = PTR_ERR(trans);
3660 				goto out;
3661 			}
3662 			btrfs_debug(fs_info, "auto deleting %Lu",
3663 				    found_key.objectid);
3664 			ret = btrfs_del_orphan_item(trans, root,
3665 						    found_key.objectid);
3666 			btrfs_end_transaction(trans);
3667 			if (ret)
3668 				goto out;
3669 			continue;
3670 		}
3671 
3672 		nr_unlink++;
3673 
3674 		/* this will do delete_inode and everything for us */
3675 		iput(inode);
3676 	}
3677 	/* release the path since we're done with it */
3678 	btrfs_release_path(path);
3679 
3680 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3681 		trans = btrfs_join_transaction(root);
3682 		if (!IS_ERR(trans))
3683 			btrfs_end_transaction(trans);
3684 	}
3685 
3686 	if (nr_unlink)
3687 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3688 
3689 out:
3690 	if (ret)
3691 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3692 	btrfs_free_path(path);
3693 	return ret;
3694 }
3695 
3696 /*
3697  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3698  * don't find any xattrs, we know there can't be any acls.
3699  *
3700  * slot is the slot the inode is in, objectid is the objectid of the inode
3701  */
3702 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3703 					  int slot, u64 objectid,
3704 					  int *first_xattr_slot)
3705 {
3706 	u32 nritems = btrfs_header_nritems(leaf);
3707 	struct btrfs_key found_key;
3708 	static u64 xattr_access = 0;
3709 	static u64 xattr_default = 0;
3710 	int scanned = 0;
3711 
3712 	if (!xattr_access) {
3713 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3714 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3715 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3716 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3717 	}
3718 
3719 	slot++;
3720 	*first_xattr_slot = -1;
3721 	while (slot < nritems) {
3722 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3723 
3724 		/* we found a different objectid, there must not be acls */
3725 		if (found_key.objectid != objectid)
3726 			return 0;
3727 
3728 		/* we found an xattr, assume we've got an acl */
3729 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3730 			if (*first_xattr_slot == -1)
3731 				*first_xattr_slot = slot;
3732 			if (found_key.offset == xattr_access ||
3733 			    found_key.offset == xattr_default)
3734 				return 1;
3735 		}
3736 
3737 		/*
3738 		 * we found a key greater than an xattr key, there can't
3739 		 * be any acls later on
3740 		 */
3741 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3742 			return 0;
3743 
3744 		slot++;
3745 		scanned++;
3746 
3747 		/*
3748 		 * it goes inode, inode backrefs, xattrs, extents,
3749 		 * so if there are a ton of hard links to an inode there can
3750 		 * be a lot of backrefs.  Don't waste time searching too hard,
3751 		 * this is just an optimization
3752 		 */
3753 		if (scanned >= 8)
3754 			break;
3755 	}
3756 	/* we hit the end of the leaf before we found an xattr or
3757 	 * something larger than an xattr.  We have to assume the inode
3758 	 * has acls
3759 	 */
3760 	if (*first_xattr_slot == -1)
3761 		*first_xattr_slot = slot;
3762 	return 1;
3763 }
3764 
3765 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3766 {
3767 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3768 
3769 	if (WARN_ON_ONCE(inode->file_extent_tree))
3770 		return 0;
3771 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3772 		return 0;
3773 	if (!S_ISREG(inode->vfs_inode.i_mode))
3774 		return 0;
3775 	if (btrfs_is_free_space_inode(inode))
3776 		return 0;
3777 
3778 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3779 	if (!inode->file_extent_tree)
3780 		return -ENOMEM;
3781 
3782 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3783 	/* Lockdep class is set only for the file extent tree. */
3784 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3785 
3786 	return 0;
3787 }
3788 
3789 /*
3790  * read an inode from the btree into the in-memory inode
3791  */
3792 static int btrfs_read_locked_inode(struct inode *inode,
3793 				   struct btrfs_path *in_path)
3794 {
3795 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3796 	struct btrfs_path *path = in_path;
3797 	struct extent_buffer *leaf;
3798 	struct btrfs_inode_item *inode_item;
3799 	struct btrfs_root *root = BTRFS_I(inode)->root;
3800 	struct btrfs_key location;
3801 	unsigned long ptr;
3802 	int maybe_acls;
3803 	u32 rdev;
3804 	int ret;
3805 	bool filled = false;
3806 	int first_xattr_slot;
3807 
3808 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3809 	if (ret)
3810 		return ret;
3811 
3812 	ret = btrfs_fill_inode(inode, &rdev);
3813 	if (!ret)
3814 		filled = true;
3815 
3816 	if (!path) {
3817 		path = btrfs_alloc_path();
3818 		if (!path)
3819 			return -ENOMEM;
3820 	}
3821 
3822 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3823 
3824 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3825 	if (ret) {
3826 		if (path != in_path)
3827 			btrfs_free_path(path);
3828 		return ret;
3829 	}
3830 
3831 	leaf = path->nodes[0];
3832 
3833 	if (filled)
3834 		goto cache_index;
3835 
3836 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3837 				    struct btrfs_inode_item);
3838 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3839 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3840 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3841 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3842 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3843 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3844 			round_up(i_size_read(inode), fs_info->sectorsize));
3845 
3846 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3847 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3848 
3849 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3850 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3851 
3852 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3853 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3854 
3855 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3856 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3857 
3858 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3859 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3860 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3861 
3862 	inode_set_iversion_queried(inode,
3863 				   btrfs_inode_sequence(leaf, inode_item));
3864 	inode->i_generation = BTRFS_I(inode)->generation;
3865 	inode->i_rdev = 0;
3866 	rdev = btrfs_inode_rdev(leaf, inode_item);
3867 
3868 	if (S_ISDIR(inode->i_mode))
3869 		BTRFS_I(inode)->index_cnt = (u64)-1;
3870 
3871 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3872 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3873 
3874 cache_index:
3875 	/*
3876 	 * If we were modified in the current generation and evicted from memory
3877 	 * and then re-read we need to do a full sync since we don't have any
3878 	 * idea about which extents were modified before we were evicted from
3879 	 * cache.
3880 	 *
3881 	 * This is required for both inode re-read from disk and delayed inode
3882 	 * in the delayed_nodes xarray.
3883 	 */
3884 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3885 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3886 			&BTRFS_I(inode)->runtime_flags);
3887 
3888 	/*
3889 	 * We don't persist the id of the transaction where an unlink operation
3890 	 * against the inode was last made. So here we assume the inode might
3891 	 * have been evicted, and therefore the exact value of last_unlink_trans
3892 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3893 	 * between the inode and its parent if the inode is fsync'ed and the log
3894 	 * replayed. For example, in the scenario:
3895 	 *
3896 	 * touch mydir/foo
3897 	 * ln mydir/foo mydir/bar
3898 	 * sync
3899 	 * unlink mydir/bar
3900 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3901 	 * xfs_io -c fsync mydir/foo
3902 	 * <power failure>
3903 	 * mount fs, triggers fsync log replay
3904 	 *
3905 	 * We must make sure that when we fsync our inode foo we also log its
3906 	 * parent inode, otherwise after log replay the parent still has the
3907 	 * dentry with the "bar" name but our inode foo has a link count of 1
3908 	 * and doesn't have an inode ref with the name "bar" anymore.
3909 	 *
3910 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3911 	 * but it guarantees correctness at the expense of occasional full
3912 	 * transaction commits on fsync if our inode is a directory, or if our
3913 	 * inode is not a directory, logging its parent unnecessarily.
3914 	 */
3915 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3916 
3917 	/*
3918 	 * Same logic as for last_unlink_trans. We don't persist the generation
3919 	 * of the last transaction where this inode was used for a reflink
3920 	 * operation, so after eviction and reloading the inode we must be
3921 	 * pessimistic and assume the last transaction that modified the inode.
3922 	 */
3923 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3924 
3925 	path->slots[0]++;
3926 	if (inode->i_nlink != 1 ||
3927 	    path->slots[0] >= btrfs_header_nritems(leaf))
3928 		goto cache_acl;
3929 
3930 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3931 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3932 		goto cache_acl;
3933 
3934 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3935 	if (location.type == BTRFS_INODE_REF_KEY) {
3936 		struct btrfs_inode_ref *ref;
3937 
3938 		ref = (struct btrfs_inode_ref *)ptr;
3939 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3940 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3941 		struct btrfs_inode_extref *extref;
3942 
3943 		extref = (struct btrfs_inode_extref *)ptr;
3944 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3945 								     extref);
3946 	}
3947 cache_acl:
3948 	/*
3949 	 * try to precache a NULL acl entry for files that don't have
3950 	 * any xattrs or acls
3951 	 */
3952 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3953 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3954 	if (first_xattr_slot != -1) {
3955 		path->slots[0] = first_xattr_slot;
3956 		ret = btrfs_load_inode_props(inode, path);
3957 		if (ret)
3958 			btrfs_err(fs_info,
3959 				  "error loading props for ino %llu (root %llu): %d",
3960 				  btrfs_ino(BTRFS_I(inode)),
3961 				  btrfs_root_id(root), ret);
3962 	}
3963 	if (path != in_path)
3964 		btrfs_free_path(path);
3965 
3966 	if (!maybe_acls)
3967 		cache_no_acl(inode);
3968 
3969 	switch (inode->i_mode & S_IFMT) {
3970 	case S_IFREG:
3971 		inode->i_mapping->a_ops = &btrfs_aops;
3972 		inode->i_fop = &btrfs_file_operations;
3973 		inode->i_op = &btrfs_file_inode_operations;
3974 		break;
3975 	case S_IFDIR:
3976 		inode->i_fop = &btrfs_dir_file_operations;
3977 		inode->i_op = &btrfs_dir_inode_operations;
3978 		break;
3979 	case S_IFLNK:
3980 		inode->i_op = &btrfs_symlink_inode_operations;
3981 		inode_nohighmem(inode);
3982 		inode->i_mapping->a_ops = &btrfs_aops;
3983 		break;
3984 	default:
3985 		inode->i_op = &btrfs_special_inode_operations;
3986 		init_special_inode(inode, inode->i_mode, rdev);
3987 		break;
3988 	}
3989 
3990 	btrfs_sync_inode_flags_to_i_flags(inode);
3991 	return 0;
3992 }
3993 
3994 /*
3995  * given a leaf and an inode, copy the inode fields into the leaf
3996  */
3997 static void fill_inode_item(struct btrfs_trans_handle *trans,
3998 			    struct extent_buffer *leaf,
3999 			    struct btrfs_inode_item *item,
4000 			    struct inode *inode)
4001 {
4002 	struct btrfs_map_token token;
4003 	u64 flags;
4004 
4005 	btrfs_init_map_token(&token, leaf);
4006 
4007 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4008 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4009 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4010 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4011 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4012 
4013 	btrfs_set_token_timespec_sec(&token, &item->atime,
4014 				     inode_get_atime_sec(inode));
4015 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4016 				      inode_get_atime_nsec(inode));
4017 
4018 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4019 				     inode_get_mtime_sec(inode));
4020 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4021 				      inode_get_mtime_nsec(inode));
4022 
4023 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4024 				     inode_get_ctime_sec(inode));
4025 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4026 				      inode_get_ctime_nsec(inode));
4027 
4028 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4029 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4030 
4031 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4032 	btrfs_set_token_inode_generation(&token, item,
4033 					 BTRFS_I(inode)->generation);
4034 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4035 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4036 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4037 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4038 					  BTRFS_I(inode)->ro_flags);
4039 	btrfs_set_token_inode_flags(&token, item, flags);
4040 	btrfs_set_token_inode_block_group(&token, item, 0);
4041 }
4042 
4043 /*
4044  * copy everything in the in-memory inode into the btree.
4045  */
4046 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4047 					    struct btrfs_inode *inode)
4048 {
4049 	struct btrfs_inode_item *inode_item;
4050 	struct btrfs_path *path;
4051 	struct extent_buffer *leaf;
4052 	struct btrfs_key key;
4053 	int ret;
4054 
4055 	path = btrfs_alloc_path();
4056 	if (!path)
4057 		return -ENOMEM;
4058 
4059 	btrfs_get_inode_key(inode, &key);
4060 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4061 	if (ret) {
4062 		if (ret > 0)
4063 			ret = -ENOENT;
4064 		goto failed;
4065 	}
4066 
4067 	leaf = path->nodes[0];
4068 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4069 				    struct btrfs_inode_item);
4070 
4071 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4072 	btrfs_mark_buffer_dirty(trans, leaf);
4073 	btrfs_set_inode_last_trans(trans, inode);
4074 	ret = 0;
4075 failed:
4076 	btrfs_free_path(path);
4077 	return ret;
4078 }
4079 
4080 /*
4081  * copy everything in the in-memory inode into the btree.
4082  */
4083 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4084 		       struct btrfs_inode *inode)
4085 {
4086 	struct btrfs_root *root = inode->root;
4087 	struct btrfs_fs_info *fs_info = root->fs_info;
4088 	int ret;
4089 
4090 	/*
4091 	 * If the inode is a free space inode, we can deadlock during commit
4092 	 * if we put it into the delayed code.
4093 	 *
4094 	 * The data relocation inode should also be directly updated
4095 	 * without delay
4096 	 */
4097 	if (!btrfs_is_free_space_inode(inode)
4098 	    && !btrfs_is_data_reloc_root(root)
4099 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4100 		btrfs_update_root_times(trans, root);
4101 
4102 		ret = btrfs_delayed_update_inode(trans, inode);
4103 		if (!ret)
4104 			btrfs_set_inode_last_trans(trans, inode);
4105 		return ret;
4106 	}
4107 
4108 	return btrfs_update_inode_item(trans, inode);
4109 }
4110 
4111 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4112 				struct btrfs_inode *inode)
4113 {
4114 	int ret;
4115 
4116 	ret = btrfs_update_inode(trans, inode);
4117 	if (ret == -ENOSPC)
4118 		return btrfs_update_inode_item(trans, inode);
4119 	return ret;
4120 }
4121 
4122 /*
4123  * unlink helper that gets used here in inode.c and in the tree logging
4124  * recovery code.  It remove a link in a directory with a given name, and
4125  * also drops the back refs in the inode to the directory
4126  */
4127 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4128 				struct btrfs_inode *dir,
4129 				struct btrfs_inode *inode,
4130 				const struct fscrypt_str *name,
4131 				struct btrfs_rename_ctx *rename_ctx)
4132 {
4133 	struct btrfs_root *root = dir->root;
4134 	struct btrfs_fs_info *fs_info = root->fs_info;
4135 	struct btrfs_path *path;
4136 	int ret = 0;
4137 	struct btrfs_dir_item *di;
4138 	u64 index;
4139 	u64 ino = btrfs_ino(inode);
4140 	u64 dir_ino = btrfs_ino(dir);
4141 
4142 	path = btrfs_alloc_path();
4143 	if (!path) {
4144 		ret = -ENOMEM;
4145 		goto out;
4146 	}
4147 
4148 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4149 	if (IS_ERR_OR_NULL(di)) {
4150 		ret = di ? PTR_ERR(di) : -ENOENT;
4151 		goto err;
4152 	}
4153 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4154 	if (ret)
4155 		goto err;
4156 	btrfs_release_path(path);
4157 
4158 	/*
4159 	 * If we don't have dir index, we have to get it by looking up
4160 	 * the inode ref, since we get the inode ref, remove it directly,
4161 	 * it is unnecessary to do delayed deletion.
4162 	 *
4163 	 * But if we have dir index, needn't search inode ref to get it.
4164 	 * Since the inode ref is close to the inode item, it is better
4165 	 * that we delay to delete it, and just do this deletion when
4166 	 * we update the inode item.
4167 	 */
4168 	if (inode->dir_index) {
4169 		ret = btrfs_delayed_delete_inode_ref(inode);
4170 		if (!ret) {
4171 			index = inode->dir_index;
4172 			goto skip_backref;
4173 		}
4174 	}
4175 
4176 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4177 	if (ret) {
4178 		btrfs_info(fs_info,
4179 			"failed to delete reference to %.*s, inode %llu parent %llu",
4180 			name->len, name->name, ino, dir_ino);
4181 		btrfs_abort_transaction(trans, ret);
4182 		goto err;
4183 	}
4184 skip_backref:
4185 	if (rename_ctx)
4186 		rename_ctx->index = index;
4187 
4188 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4189 	if (ret) {
4190 		btrfs_abort_transaction(trans, ret);
4191 		goto err;
4192 	}
4193 
4194 	/*
4195 	 * If we are in a rename context, we don't need to update anything in the
4196 	 * log. That will be done later during the rename by btrfs_log_new_name().
4197 	 * Besides that, doing it here would only cause extra unnecessary btree
4198 	 * operations on the log tree, increasing latency for applications.
4199 	 */
4200 	if (!rename_ctx) {
4201 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4202 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4203 	}
4204 
4205 	/*
4206 	 * If we have a pending delayed iput we could end up with the final iput
4207 	 * being run in btrfs-cleaner context.  If we have enough of these built
4208 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4209 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4210 	 * the inode we can run the delayed iput here without any issues as the
4211 	 * final iput won't be done until after we drop the ref we're currently
4212 	 * holding.
4213 	 */
4214 	btrfs_run_delayed_iput(fs_info, inode);
4215 err:
4216 	btrfs_free_path(path);
4217 	if (ret)
4218 		goto out;
4219 
4220 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4221 	inode_inc_iversion(&inode->vfs_inode);
4222 	inode_set_ctime_current(&inode->vfs_inode);
4223 	inode_inc_iversion(&dir->vfs_inode);
4224  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4225 	ret = btrfs_update_inode(trans, dir);
4226 out:
4227 	return ret;
4228 }
4229 
4230 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4231 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4232 		       const struct fscrypt_str *name)
4233 {
4234 	int ret;
4235 
4236 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4237 	if (!ret) {
4238 		drop_nlink(&inode->vfs_inode);
4239 		ret = btrfs_update_inode(trans, inode);
4240 	}
4241 	return ret;
4242 }
4243 
4244 /*
4245  * helper to start transaction for unlink and rmdir.
4246  *
4247  * unlink and rmdir are special in btrfs, they do not always free space, so
4248  * if we cannot make our reservations the normal way try and see if there is
4249  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4250  * allow the unlink to occur.
4251  */
4252 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4253 {
4254 	struct btrfs_root *root = dir->root;
4255 
4256 	return btrfs_start_transaction_fallback_global_rsv(root,
4257 						   BTRFS_UNLINK_METADATA_UNITS);
4258 }
4259 
4260 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4261 {
4262 	struct btrfs_trans_handle *trans;
4263 	struct inode *inode = d_inode(dentry);
4264 	int ret;
4265 	struct fscrypt_name fname;
4266 
4267 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4268 	if (ret)
4269 		return ret;
4270 
4271 	/* This needs to handle no-key deletions later on */
4272 
4273 	trans = __unlink_start_trans(BTRFS_I(dir));
4274 	if (IS_ERR(trans)) {
4275 		ret = PTR_ERR(trans);
4276 		goto fscrypt_free;
4277 	}
4278 
4279 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4280 				false);
4281 
4282 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4283 				 &fname.disk_name);
4284 	if (ret)
4285 		goto end_trans;
4286 
4287 	if (inode->i_nlink == 0) {
4288 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4289 		if (ret)
4290 			goto end_trans;
4291 	}
4292 
4293 end_trans:
4294 	btrfs_end_transaction(trans);
4295 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4296 fscrypt_free:
4297 	fscrypt_free_filename(&fname);
4298 	return ret;
4299 }
4300 
4301 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4302 			       struct btrfs_inode *dir, struct dentry *dentry)
4303 {
4304 	struct btrfs_root *root = dir->root;
4305 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4306 	struct btrfs_path *path;
4307 	struct extent_buffer *leaf;
4308 	struct btrfs_dir_item *di;
4309 	struct btrfs_key key;
4310 	u64 index;
4311 	int ret;
4312 	u64 objectid;
4313 	u64 dir_ino = btrfs_ino(dir);
4314 	struct fscrypt_name fname;
4315 
4316 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4317 	if (ret)
4318 		return ret;
4319 
4320 	/* This needs to handle no-key deletions later on */
4321 
4322 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4323 		objectid = btrfs_root_id(inode->root);
4324 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4325 		objectid = inode->ref_root_id;
4326 	} else {
4327 		WARN_ON(1);
4328 		fscrypt_free_filename(&fname);
4329 		return -EINVAL;
4330 	}
4331 
4332 	path = btrfs_alloc_path();
4333 	if (!path) {
4334 		ret = -ENOMEM;
4335 		goto out;
4336 	}
4337 
4338 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4339 				   &fname.disk_name, -1);
4340 	if (IS_ERR_OR_NULL(di)) {
4341 		ret = di ? PTR_ERR(di) : -ENOENT;
4342 		goto out;
4343 	}
4344 
4345 	leaf = path->nodes[0];
4346 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4347 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4348 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4349 	if (ret) {
4350 		btrfs_abort_transaction(trans, ret);
4351 		goto out;
4352 	}
4353 	btrfs_release_path(path);
4354 
4355 	/*
4356 	 * This is a placeholder inode for a subvolume we didn't have a
4357 	 * reference to at the time of the snapshot creation.  In the meantime
4358 	 * we could have renamed the real subvol link into our snapshot, so
4359 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4360 	 * Instead simply lookup the dir_index_item for this entry so we can
4361 	 * remove it.  Otherwise we know we have a ref to the root and we can
4362 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4363 	 */
4364 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4365 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4366 		if (IS_ERR_OR_NULL(di)) {
4367 			if (!di)
4368 				ret = -ENOENT;
4369 			else
4370 				ret = PTR_ERR(di);
4371 			btrfs_abort_transaction(trans, ret);
4372 			goto out;
4373 		}
4374 
4375 		leaf = path->nodes[0];
4376 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4377 		index = key.offset;
4378 		btrfs_release_path(path);
4379 	} else {
4380 		ret = btrfs_del_root_ref(trans, objectid,
4381 					 btrfs_root_id(root), dir_ino,
4382 					 &index, &fname.disk_name);
4383 		if (ret) {
4384 			btrfs_abort_transaction(trans, ret);
4385 			goto out;
4386 		}
4387 	}
4388 
4389 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4390 	if (ret) {
4391 		btrfs_abort_transaction(trans, ret);
4392 		goto out;
4393 	}
4394 
4395 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4396 	inode_inc_iversion(&dir->vfs_inode);
4397 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4398 	ret = btrfs_update_inode_fallback(trans, dir);
4399 	if (ret)
4400 		btrfs_abort_transaction(trans, ret);
4401 out:
4402 	btrfs_free_path(path);
4403 	fscrypt_free_filename(&fname);
4404 	return ret;
4405 }
4406 
4407 /*
4408  * Helper to check if the subvolume references other subvolumes or if it's
4409  * default.
4410  */
4411 static noinline int may_destroy_subvol(struct btrfs_root *root)
4412 {
4413 	struct btrfs_fs_info *fs_info = root->fs_info;
4414 	struct btrfs_path *path;
4415 	struct btrfs_dir_item *di;
4416 	struct btrfs_key key;
4417 	struct fscrypt_str name = FSTR_INIT("default", 7);
4418 	u64 dir_id;
4419 	int ret;
4420 
4421 	path = btrfs_alloc_path();
4422 	if (!path)
4423 		return -ENOMEM;
4424 
4425 	/* Make sure this root isn't set as the default subvol */
4426 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4427 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4428 				   dir_id, &name, 0);
4429 	if (di && !IS_ERR(di)) {
4430 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4431 		if (key.objectid == btrfs_root_id(root)) {
4432 			ret = -EPERM;
4433 			btrfs_err(fs_info,
4434 				  "deleting default subvolume %llu is not allowed",
4435 				  key.objectid);
4436 			goto out;
4437 		}
4438 		btrfs_release_path(path);
4439 	}
4440 
4441 	key.objectid = btrfs_root_id(root);
4442 	key.type = BTRFS_ROOT_REF_KEY;
4443 	key.offset = (u64)-1;
4444 
4445 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4446 	if (ret < 0)
4447 		goto out;
4448 	if (ret == 0) {
4449 		/*
4450 		 * Key with offset -1 found, there would have to exist a root
4451 		 * with such id, but this is out of valid range.
4452 		 */
4453 		ret = -EUCLEAN;
4454 		goto out;
4455 	}
4456 
4457 	ret = 0;
4458 	if (path->slots[0] > 0) {
4459 		path->slots[0]--;
4460 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4461 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4462 			ret = -ENOTEMPTY;
4463 	}
4464 out:
4465 	btrfs_free_path(path);
4466 	return ret;
4467 }
4468 
4469 /* Delete all dentries for inodes belonging to the root */
4470 static void btrfs_prune_dentries(struct btrfs_root *root)
4471 {
4472 	struct btrfs_fs_info *fs_info = root->fs_info;
4473 	struct btrfs_inode *inode;
4474 	u64 min_ino = 0;
4475 
4476 	if (!BTRFS_FS_ERROR(fs_info))
4477 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4478 
4479 	inode = btrfs_find_first_inode(root, min_ino);
4480 	while (inode) {
4481 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4482 			d_prune_aliases(&inode->vfs_inode);
4483 
4484 		min_ino = btrfs_ino(inode) + 1;
4485 		/*
4486 		 * btrfs_drop_inode() will have it removed from the inode
4487 		 * cache when its usage count hits zero.
4488 		 */
4489 		iput(&inode->vfs_inode);
4490 		cond_resched();
4491 		inode = btrfs_find_first_inode(root, min_ino);
4492 	}
4493 }
4494 
4495 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4496 {
4497 	struct btrfs_root *root = dir->root;
4498 	struct btrfs_fs_info *fs_info = root->fs_info;
4499 	struct inode *inode = d_inode(dentry);
4500 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4501 	struct btrfs_trans_handle *trans;
4502 	struct btrfs_block_rsv block_rsv;
4503 	u64 root_flags;
4504 	u64 qgroup_reserved = 0;
4505 	int ret;
4506 
4507 	down_write(&fs_info->subvol_sem);
4508 
4509 	/*
4510 	 * Don't allow to delete a subvolume with send in progress. This is
4511 	 * inside the inode lock so the error handling that has to drop the bit
4512 	 * again is not run concurrently.
4513 	 */
4514 	spin_lock(&dest->root_item_lock);
4515 	if (dest->send_in_progress) {
4516 		spin_unlock(&dest->root_item_lock);
4517 		btrfs_warn(fs_info,
4518 			   "attempt to delete subvolume %llu during send",
4519 			   btrfs_root_id(dest));
4520 		ret = -EPERM;
4521 		goto out_up_write;
4522 	}
4523 	if (atomic_read(&dest->nr_swapfiles)) {
4524 		spin_unlock(&dest->root_item_lock);
4525 		btrfs_warn(fs_info,
4526 			   "attempt to delete subvolume %llu with active swapfile",
4527 			   btrfs_root_id(root));
4528 		ret = -EPERM;
4529 		goto out_up_write;
4530 	}
4531 	root_flags = btrfs_root_flags(&dest->root_item);
4532 	btrfs_set_root_flags(&dest->root_item,
4533 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4534 	spin_unlock(&dest->root_item_lock);
4535 
4536 	ret = may_destroy_subvol(dest);
4537 	if (ret)
4538 		goto out_undead;
4539 
4540 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4541 	/*
4542 	 * One for dir inode,
4543 	 * two for dir entries,
4544 	 * two for root ref/backref.
4545 	 */
4546 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4547 	if (ret)
4548 		goto out_undead;
4549 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4550 
4551 	trans = btrfs_start_transaction(root, 0);
4552 	if (IS_ERR(trans)) {
4553 		ret = PTR_ERR(trans);
4554 		goto out_release;
4555 	}
4556 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4557 	qgroup_reserved = 0;
4558 	trans->block_rsv = &block_rsv;
4559 	trans->bytes_reserved = block_rsv.size;
4560 
4561 	btrfs_record_snapshot_destroy(trans, dir);
4562 
4563 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4564 	if (ret) {
4565 		btrfs_abort_transaction(trans, ret);
4566 		goto out_end_trans;
4567 	}
4568 
4569 	ret = btrfs_record_root_in_trans(trans, dest);
4570 	if (ret) {
4571 		btrfs_abort_transaction(trans, ret);
4572 		goto out_end_trans;
4573 	}
4574 
4575 	memset(&dest->root_item.drop_progress, 0,
4576 		sizeof(dest->root_item.drop_progress));
4577 	btrfs_set_root_drop_level(&dest->root_item, 0);
4578 	btrfs_set_root_refs(&dest->root_item, 0);
4579 
4580 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4581 		ret = btrfs_insert_orphan_item(trans,
4582 					fs_info->tree_root,
4583 					btrfs_root_id(dest));
4584 		if (ret) {
4585 			btrfs_abort_transaction(trans, ret);
4586 			goto out_end_trans;
4587 		}
4588 	}
4589 
4590 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4591 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4592 	if (ret && ret != -ENOENT) {
4593 		btrfs_abort_transaction(trans, ret);
4594 		goto out_end_trans;
4595 	}
4596 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4597 		ret = btrfs_uuid_tree_remove(trans,
4598 					  dest->root_item.received_uuid,
4599 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4600 					  btrfs_root_id(dest));
4601 		if (ret && ret != -ENOENT) {
4602 			btrfs_abort_transaction(trans, ret);
4603 			goto out_end_trans;
4604 		}
4605 	}
4606 
4607 	free_anon_bdev(dest->anon_dev);
4608 	dest->anon_dev = 0;
4609 out_end_trans:
4610 	trans->block_rsv = NULL;
4611 	trans->bytes_reserved = 0;
4612 	ret = btrfs_end_transaction(trans);
4613 	inode->i_flags |= S_DEAD;
4614 out_release:
4615 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4616 	if (qgroup_reserved)
4617 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4618 out_undead:
4619 	if (ret) {
4620 		spin_lock(&dest->root_item_lock);
4621 		root_flags = btrfs_root_flags(&dest->root_item);
4622 		btrfs_set_root_flags(&dest->root_item,
4623 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4624 		spin_unlock(&dest->root_item_lock);
4625 	}
4626 out_up_write:
4627 	up_write(&fs_info->subvol_sem);
4628 	if (!ret) {
4629 		d_invalidate(dentry);
4630 		btrfs_prune_dentries(dest);
4631 		ASSERT(dest->send_in_progress == 0);
4632 	}
4633 
4634 	return ret;
4635 }
4636 
4637 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4638 {
4639 	struct inode *inode = d_inode(dentry);
4640 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4641 	int ret = 0;
4642 	struct btrfs_trans_handle *trans;
4643 	u64 last_unlink_trans;
4644 	struct fscrypt_name fname;
4645 
4646 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4647 		return -ENOTEMPTY;
4648 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4649 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4650 			btrfs_err(fs_info,
4651 			"extent tree v2 doesn't support snapshot deletion yet");
4652 			return -EOPNOTSUPP;
4653 		}
4654 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4655 	}
4656 
4657 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4658 	if (ret)
4659 		return ret;
4660 
4661 	/* This needs to handle no-key deletions later on */
4662 
4663 	trans = __unlink_start_trans(BTRFS_I(dir));
4664 	if (IS_ERR(trans)) {
4665 		ret = PTR_ERR(trans);
4666 		goto out_notrans;
4667 	}
4668 
4669 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4670 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4671 		goto out;
4672 	}
4673 
4674 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4675 	if (ret)
4676 		goto out;
4677 
4678 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4679 
4680 	/* now the directory is empty */
4681 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4682 				 &fname.disk_name);
4683 	if (!ret) {
4684 		btrfs_i_size_write(BTRFS_I(inode), 0);
4685 		/*
4686 		 * Propagate the last_unlink_trans value of the deleted dir to
4687 		 * its parent directory. This is to prevent an unrecoverable
4688 		 * log tree in the case we do something like this:
4689 		 * 1) create dir foo
4690 		 * 2) create snapshot under dir foo
4691 		 * 3) delete the snapshot
4692 		 * 4) rmdir foo
4693 		 * 5) mkdir foo
4694 		 * 6) fsync foo or some file inside foo
4695 		 */
4696 		if (last_unlink_trans >= trans->transid)
4697 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4698 	}
4699 out:
4700 	btrfs_end_transaction(trans);
4701 out_notrans:
4702 	btrfs_btree_balance_dirty(fs_info);
4703 	fscrypt_free_filename(&fname);
4704 
4705 	return ret;
4706 }
4707 
4708 /*
4709  * Read, zero a chunk and write a block.
4710  *
4711  * @inode - inode that we're zeroing
4712  * @from - the offset to start zeroing
4713  * @len - the length to zero, 0 to zero the entire range respective to the
4714  *	offset
4715  * @front - zero up to the offset instead of from the offset on
4716  *
4717  * This will find the block for the "from" offset and cow the block and zero the
4718  * part we want to zero.  This is used with truncate and hole punching.
4719  */
4720 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4721 			 int front)
4722 {
4723 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4724 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4725 	struct extent_io_tree *io_tree = &inode->io_tree;
4726 	struct btrfs_ordered_extent *ordered;
4727 	struct extent_state *cached_state = NULL;
4728 	struct extent_changeset *data_reserved = NULL;
4729 	bool only_release_metadata = false;
4730 	u32 blocksize = fs_info->sectorsize;
4731 	pgoff_t index = from >> PAGE_SHIFT;
4732 	unsigned offset = from & (blocksize - 1);
4733 	struct folio *folio;
4734 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4735 	size_t write_bytes = blocksize;
4736 	int ret = 0;
4737 	u64 block_start;
4738 	u64 block_end;
4739 
4740 	if (IS_ALIGNED(offset, blocksize) &&
4741 	    (!len || IS_ALIGNED(len, blocksize)))
4742 		goto out;
4743 
4744 	block_start = round_down(from, blocksize);
4745 	block_end = block_start + blocksize - 1;
4746 
4747 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4748 					  blocksize, false);
4749 	if (ret < 0) {
4750 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4751 			/* For nocow case, no need to reserve data space */
4752 			only_release_metadata = true;
4753 		} else {
4754 			goto out;
4755 		}
4756 	}
4757 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4758 	if (ret < 0) {
4759 		if (!only_release_metadata)
4760 			btrfs_free_reserved_data_space(inode, data_reserved,
4761 						       block_start, blocksize);
4762 		goto out;
4763 	}
4764 again:
4765 	folio = __filemap_get_folio(mapping, index,
4766 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4767 	if (IS_ERR(folio)) {
4768 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4769 					     blocksize, true);
4770 		btrfs_delalloc_release_extents(inode, blocksize);
4771 		ret = -ENOMEM;
4772 		goto out;
4773 	}
4774 
4775 	if (!folio_test_uptodate(folio)) {
4776 		ret = btrfs_read_folio(NULL, folio);
4777 		folio_lock(folio);
4778 		if (folio->mapping != mapping) {
4779 			folio_unlock(folio);
4780 			folio_put(folio);
4781 			goto again;
4782 		}
4783 		if (!folio_test_uptodate(folio)) {
4784 			ret = -EIO;
4785 			goto out_unlock;
4786 		}
4787 	}
4788 
4789 	/*
4790 	 * We unlock the page after the io is completed and then re-lock it
4791 	 * above.  release_folio() could have come in between that and cleared
4792 	 * folio private, but left the page in the mapping.  Set the page mapped
4793 	 * here to make sure it's properly set for the subpage stuff.
4794 	 */
4795 	ret = set_folio_extent_mapped(folio);
4796 	if (ret < 0)
4797 		goto out_unlock;
4798 
4799 	folio_wait_writeback(folio);
4800 
4801 	lock_extent(io_tree, block_start, block_end, &cached_state);
4802 
4803 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4804 	if (ordered) {
4805 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4806 		folio_unlock(folio);
4807 		folio_put(folio);
4808 		btrfs_start_ordered_extent(ordered);
4809 		btrfs_put_ordered_extent(ordered);
4810 		goto again;
4811 	}
4812 
4813 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4814 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4815 			 &cached_state);
4816 
4817 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4818 					&cached_state);
4819 	if (ret) {
4820 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4821 		goto out_unlock;
4822 	}
4823 
4824 	if (offset != blocksize) {
4825 		if (!len)
4826 			len = blocksize - offset;
4827 		if (front)
4828 			folio_zero_range(folio, block_start - folio_pos(folio),
4829 					 offset);
4830 		else
4831 			folio_zero_range(folio,
4832 					 (block_start - folio_pos(folio)) + offset,
4833 					 len);
4834 	}
4835 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4836 				  block_end + 1 - block_start);
4837 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4838 			      block_end + 1 - block_start);
4839 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4840 
4841 	if (only_release_metadata)
4842 		set_extent_bit(&inode->io_tree, block_start, block_end,
4843 			       EXTENT_NORESERVE, NULL);
4844 
4845 out_unlock:
4846 	if (ret) {
4847 		if (only_release_metadata)
4848 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4849 		else
4850 			btrfs_delalloc_release_space(inode, data_reserved,
4851 					block_start, blocksize, true);
4852 	}
4853 	btrfs_delalloc_release_extents(inode, blocksize);
4854 	folio_unlock(folio);
4855 	folio_put(folio);
4856 out:
4857 	if (only_release_metadata)
4858 		btrfs_check_nocow_unlock(inode);
4859 	extent_changeset_free(data_reserved);
4860 	return ret;
4861 }
4862 
4863 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4864 {
4865 	struct btrfs_root *root = inode->root;
4866 	struct btrfs_fs_info *fs_info = root->fs_info;
4867 	struct btrfs_trans_handle *trans;
4868 	struct btrfs_drop_extents_args drop_args = { 0 };
4869 	int ret;
4870 
4871 	/*
4872 	 * If NO_HOLES is enabled, we don't need to do anything.
4873 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4874 	 * or btrfs_update_inode() will be called, which guarantee that the next
4875 	 * fsync will know this inode was changed and needs to be logged.
4876 	 */
4877 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4878 		return 0;
4879 
4880 	/*
4881 	 * 1 - for the one we're dropping
4882 	 * 1 - for the one we're adding
4883 	 * 1 - for updating the inode.
4884 	 */
4885 	trans = btrfs_start_transaction(root, 3);
4886 	if (IS_ERR(trans))
4887 		return PTR_ERR(trans);
4888 
4889 	drop_args.start = offset;
4890 	drop_args.end = offset + len;
4891 	drop_args.drop_cache = true;
4892 
4893 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4894 	if (ret) {
4895 		btrfs_abort_transaction(trans, ret);
4896 		btrfs_end_transaction(trans);
4897 		return ret;
4898 	}
4899 
4900 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4901 	if (ret) {
4902 		btrfs_abort_transaction(trans, ret);
4903 	} else {
4904 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4905 		btrfs_update_inode(trans, inode);
4906 	}
4907 	btrfs_end_transaction(trans);
4908 	return ret;
4909 }
4910 
4911 /*
4912  * This function puts in dummy file extents for the area we're creating a hole
4913  * for.  So if we are truncating this file to a larger size we need to insert
4914  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4915  * the range between oldsize and size
4916  */
4917 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4918 {
4919 	struct btrfs_root *root = inode->root;
4920 	struct btrfs_fs_info *fs_info = root->fs_info;
4921 	struct extent_io_tree *io_tree = &inode->io_tree;
4922 	struct extent_map *em = NULL;
4923 	struct extent_state *cached_state = NULL;
4924 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4925 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4926 	u64 last_byte;
4927 	u64 cur_offset;
4928 	u64 hole_size;
4929 	int ret = 0;
4930 
4931 	/*
4932 	 * If our size started in the middle of a block we need to zero out the
4933 	 * rest of the block before we expand the i_size, otherwise we could
4934 	 * expose stale data.
4935 	 */
4936 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4937 	if (ret)
4938 		return ret;
4939 
4940 	if (size <= hole_start)
4941 		return 0;
4942 
4943 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4944 					   &cached_state);
4945 	cur_offset = hole_start;
4946 	while (1) {
4947 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4948 		if (IS_ERR(em)) {
4949 			ret = PTR_ERR(em);
4950 			em = NULL;
4951 			break;
4952 		}
4953 		last_byte = min(extent_map_end(em), block_end);
4954 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4955 		hole_size = last_byte - cur_offset;
4956 
4957 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4958 			struct extent_map *hole_em;
4959 
4960 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4961 			if (ret)
4962 				break;
4963 
4964 			ret = btrfs_inode_set_file_extent_range(inode,
4965 							cur_offset, hole_size);
4966 			if (ret)
4967 				break;
4968 
4969 			hole_em = alloc_extent_map();
4970 			if (!hole_em) {
4971 				btrfs_drop_extent_map_range(inode, cur_offset,
4972 						    cur_offset + hole_size - 1,
4973 						    false);
4974 				btrfs_set_inode_full_sync(inode);
4975 				goto next;
4976 			}
4977 			hole_em->start = cur_offset;
4978 			hole_em->len = hole_size;
4979 
4980 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4981 			hole_em->disk_num_bytes = 0;
4982 			hole_em->ram_bytes = hole_size;
4983 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4984 
4985 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4986 			free_extent_map(hole_em);
4987 		} else {
4988 			ret = btrfs_inode_set_file_extent_range(inode,
4989 							cur_offset, hole_size);
4990 			if (ret)
4991 				break;
4992 		}
4993 next:
4994 		free_extent_map(em);
4995 		em = NULL;
4996 		cur_offset = last_byte;
4997 		if (cur_offset >= block_end)
4998 			break;
4999 	}
5000 	free_extent_map(em);
5001 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5002 	return ret;
5003 }
5004 
5005 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5006 {
5007 	struct btrfs_root *root = BTRFS_I(inode)->root;
5008 	struct btrfs_trans_handle *trans;
5009 	loff_t oldsize = i_size_read(inode);
5010 	loff_t newsize = attr->ia_size;
5011 	int mask = attr->ia_valid;
5012 	int ret;
5013 
5014 	/*
5015 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5016 	 * special case where we need to update the times despite not having
5017 	 * these flags set.  For all other operations the VFS set these flags
5018 	 * explicitly if it wants a timestamp update.
5019 	 */
5020 	if (newsize != oldsize) {
5021 		inode_inc_iversion(inode);
5022 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5023 			inode_set_mtime_to_ts(inode,
5024 					      inode_set_ctime_current(inode));
5025 		}
5026 	}
5027 
5028 	if (newsize > oldsize) {
5029 		/*
5030 		 * Don't do an expanding truncate while snapshotting is ongoing.
5031 		 * This is to ensure the snapshot captures a fully consistent
5032 		 * state of this file - if the snapshot captures this expanding
5033 		 * truncation, it must capture all writes that happened before
5034 		 * this truncation.
5035 		 */
5036 		btrfs_drew_write_lock(&root->snapshot_lock);
5037 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5038 		if (ret) {
5039 			btrfs_drew_write_unlock(&root->snapshot_lock);
5040 			return ret;
5041 		}
5042 
5043 		trans = btrfs_start_transaction(root, 1);
5044 		if (IS_ERR(trans)) {
5045 			btrfs_drew_write_unlock(&root->snapshot_lock);
5046 			return PTR_ERR(trans);
5047 		}
5048 
5049 		i_size_write(inode, newsize);
5050 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5051 		pagecache_isize_extended(inode, oldsize, newsize);
5052 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5053 		btrfs_drew_write_unlock(&root->snapshot_lock);
5054 		btrfs_end_transaction(trans);
5055 	} else {
5056 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5057 
5058 		if (btrfs_is_zoned(fs_info)) {
5059 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5060 					ALIGN(newsize, fs_info->sectorsize),
5061 					(u64)-1);
5062 			if (ret)
5063 				return ret;
5064 		}
5065 
5066 		/*
5067 		 * We're truncating a file that used to have good data down to
5068 		 * zero. Make sure any new writes to the file get on disk
5069 		 * on close.
5070 		 */
5071 		if (newsize == 0)
5072 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5073 				&BTRFS_I(inode)->runtime_flags);
5074 
5075 		truncate_setsize(inode, newsize);
5076 
5077 		inode_dio_wait(inode);
5078 
5079 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5080 		if (ret && inode->i_nlink) {
5081 			int err;
5082 
5083 			/*
5084 			 * Truncate failed, so fix up the in-memory size. We
5085 			 * adjusted disk_i_size down as we removed extents, so
5086 			 * wait for disk_i_size to be stable and then update the
5087 			 * in-memory size to match.
5088 			 */
5089 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5090 			if (err)
5091 				return err;
5092 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5093 		}
5094 	}
5095 
5096 	return ret;
5097 }
5098 
5099 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5100 			 struct iattr *attr)
5101 {
5102 	struct inode *inode = d_inode(dentry);
5103 	struct btrfs_root *root = BTRFS_I(inode)->root;
5104 	int err;
5105 
5106 	if (btrfs_root_readonly(root))
5107 		return -EROFS;
5108 
5109 	err = setattr_prepare(idmap, dentry, attr);
5110 	if (err)
5111 		return err;
5112 
5113 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5114 		err = btrfs_setsize(inode, attr);
5115 		if (err)
5116 			return err;
5117 	}
5118 
5119 	if (attr->ia_valid) {
5120 		setattr_copy(idmap, inode, attr);
5121 		inode_inc_iversion(inode);
5122 		err = btrfs_dirty_inode(BTRFS_I(inode));
5123 
5124 		if (!err && attr->ia_valid & ATTR_MODE)
5125 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5126 	}
5127 
5128 	return err;
5129 }
5130 
5131 /*
5132  * While truncating the inode pages during eviction, we get the VFS
5133  * calling btrfs_invalidate_folio() against each folio of the inode. This
5134  * is slow because the calls to btrfs_invalidate_folio() result in a
5135  * huge amount of calls to lock_extent() and clear_extent_bit(),
5136  * which keep merging and splitting extent_state structures over and over,
5137  * wasting lots of time.
5138  *
5139  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5140  * skip all those expensive operations on a per folio basis and do only
5141  * the ordered io finishing, while we release here the extent_map and
5142  * extent_state structures, without the excessive merging and splitting.
5143  */
5144 static void evict_inode_truncate_pages(struct inode *inode)
5145 {
5146 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5147 	struct rb_node *node;
5148 
5149 	ASSERT(inode->i_state & I_FREEING);
5150 	truncate_inode_pages_final(&inode->i_data);
5151 
5152 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5153 
5154 	/*
5155 	 * Keep looping until we have no more ranges in the io tree.
5156 	 * We can have ongoing bios started by readahead that have
5157 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5158 	 * still in progress (unlocked the pages in the bio but did not yet
5159 	 * unlocked the ranges in the io tree). Therefore this means some
5160 	 * ranges can still be locked and eviction started because before
5161 	 * submitting those bios, which are executed by a separate task (work
5162 	 * queue kthread), inode references (inode->i_count) were not taken
5163 	 * (which would be dropped in the end io callback of each bio).
5164 	 * Therefore here we effectively end up waiting for those bios and
5165 	 * anyone else holding locked ranges without having bumped the inode's
5166 	 * reference count - if we don't do it, when they access the inode's
5167 	 * io_tree to unlock a range it may be too late, leading to an
5168 	 * use-after-free issue.
5169 	 */
5170 	spin_lock(&io_tree->lock);
5171 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5172 		struct extent_state *state;
5173 		struct extent_state *cached_state = NULL;
5174 		u64 start;
5175 		u64 end;
5176 		unsigned state_flags;
5177 
5178 		node = rb_first(&io_tree->state);
5179 		state = rb_entry(node, struct extent_state, rb_node);
5180 		start = state->start;
5181 		end = state->end;
5182 		state_flags = state->state;
5183 		spin_unlock(&io_tree->lock);
5184 
5185 		lock_extent(io_tree, start, end, &cached_state);
5186 
5187 		/*
5188 		 * If still has DELALLOC flag, the extent didn't reach disk,
5189 		 * and its reserved space won't be freed by delayed_ref.
5190 		 * So we need to free its reserved space here.
5191 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5192 		 *
5193 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5194 		 */
5195 		if (state_flags & EXTENT_DELALLOC)
5196 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5197 					       end - start + 1, NULL);
5198 
5199 		clear_extent_bit(io_tree, start, end,
5200 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5201 				 &cached_state);
5202 
5203 		cond_resched();
5204 		spin_lock(&io_tree->lock);
5205 	}
5206 	spin_unlock(&io_tree->lock);
5207 }
5208 
5209 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5210 							struct btrfs_block_rsv *rsv)
5211 {
5212 	struct btrfs_fs_info *fs_info = root->fs_info;
5213 	struct btrfs_trans_handle *trans;
5214 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5215 	int ret;
5216 
5217 	/*
5218 	 * Eviction should be taking place at some place safe because of our
5219 	 * delayed iputs.  However the normal flushing code will run delayed
5220 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5221 	 *
5222 	 * We reserve the delayed_refs_extra here again because we can't use
5223 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5224 	 * above.  We reserve our extra bit here because we generate a ton of
5225 	 * delayed refs activity by truncating.
5226 	 *
5227 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5228 	 * if we fail to make this reservation we can re-try without the
5229 	 * delayed_refs_extra so we can make some forward progress.
5230 	 */
5231 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5232 				     BTRFS_RESERVE_FLUSH_EVICT);
5233 	if (ret) {
5234 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5235 					     BTRFS_RESERVE_FLUSH_EVICT);
5236 		if (ret) {
5237 			btrfs_warn(fs_info,
5238 				   "could not allocate space for delete; will truncate on mount");
5239 			return ERR_PTR(-ENOSPC);
5240 		}
5241 		delayed_refs_extra = 0;
5242 	}
5243 
5244 	trans = btrfs_join_transaction(root);
5245 	if (IS_ERR(trans))
5246 		return trans;
5247 
5248 	if (delayed_refs_extra) {
5249 		trans->block_rsv = &fs_info->trans_block_rsv;
5250 		trans->bytes_reserved = delayed_refs_extra;
5251 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5252 					delayed_refs_extra, true);
5253 	}
5254 	return trans;
5255 }
5256 
5257 void btrfs_evict_inode(struct inode *inode)
5258 {
5259 	struct btrfs_fs_info *fs_info;
5260 	struct btrfs_trans_handle *trans;
5261 	struct btrfs_root *root = BTRFS_I(inode)->root;
5262 	struct btrfs_block_rsv *rsv = NULL;
5263 	int ret;
5264 
5265 	trace_btrfs_inode_evict(inode);
5266 
5267 	if (!root) {
5268 		fsverity_cleanup_inode(inode);
5269 		clear_inode(inode);
5270 		return;
5271 	}
5272 
5273 	fs_info = inode_to_fs_info(inode);
5274 	evict_inode_truncate_pages(inode);
5275 
5276 	if (inode->i_nlink &&
5277 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5278 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5279 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5280 		goto out;
5281 
5282 	if (is_bad_inode(inode))
5283 		goto out;
5284 
5285 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5286 		goto out;
5287 
5288 	if (inode->i_nlink > 0) {
5289 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5290 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5291 		goto out;
5292 	}
5293 
5294 	/*
5295 	 * This makes sure the inode item in tree is uptodate and the space for
5296 	 * the inode update is released.
5297 	 */
5298 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5299 	if (ret)
5300 		goto out;
5301 
5302 	/*
5303 	 * This drops any pending insert or delete operations we have for this
5304 	 * inode.  We could have a delayed dir index deletion queued up, but
5305 	 * we're removing the inode completely so that'll be taken care of in
5306 	 * the truncate.
5307 	 */
5308 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5309 
5310 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5311 	if (!rsv)
5312 		goto out;
5313 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5314 	rsv->failfast = true;
5315 
5316 	btrfs_i_size_write(BTRFS_I(inode), 0);
5317 
5318 	while (1) {
5319 		struct btrfs_truncate_control control = {
5320 			.inode = BTRFS_I(inode),
5321 			.ino = btrfs_ino(BTRFS_I(inode)),
5322 			.new_size = 0,
5323 			.min_type = 0,
5324 		};
5325 
5326 		trans = evict_refill_and_join(root, rsv);
5327 		if (IS_ERR(trans))
5328 			goto out;
5329 
5330 		trans->block_rsv = rsv;
5331 
5332 		ret = btrfs_truncate_inode_items(trans, root, &control);
5333 		trans->block_rsv = &fs_info->trans_block_rsv;
5334 		btrfs_end_transaction(trans);
5335 		/*
5336 		 * We have not added new delayed items for our inode after we
5337 		 * have flushed its delayed items, so no need to throttle on
5338 		 * delayed items. However we have modified extent buffers.
5339 		 */
5340 		btrfs_btree_balance_dirty_nodelay(fs_info);
5341 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5342 			goto out;
5343 		else if (!ret)
5344 			break;
5345 	}
5346 
5347 	/*
5348 	 * Errors here aren't a big deal, it just means we leave orphan items in
5349 	 * the tree. They will be cleaned up on the next mount. If the inode
5350 	 * number gets reused, cleanup deletes the orphan item without doing
5351 	 * anything, and unlink reuses the existing orphan item.
5352 	 *
5353 	 * If it turns out that we are dropping too many of these, we might want
5354 	 * to add a mechanism for retrying these after a commit.
5355 	 */
5356 	trans = evict_refill_and_join(root, rsv);
5357 	if (!IS_ERR(trans)) {
5358 		trans->block_rsv = rsv;
5359 		btrfs_orphan_del(trans, BTRFS_I(inode));
5360 		trans->block_rsv = &fs_info->trans_block_rsv;
5361 		btrfs_end_transaction(trans);
5362 	}
5363 
5364 out:
5365 	btrfs_free_block_rsv(fs_info, rsv);
5366 	/*
5367 	 * If we didn't successfully delete, the orphan item will still be in
5368 	 * the tree and we'll retry on the next mount. Again, we might also want
5369 	 * to retry these periodically in the future.
5370 	 */
5371 	btrfs_remove_delayed_node(BTRFS_I(inode));
5372 	fsverity_cleanup_inode(inode);
5373 	clear_inode(inode);
5374 }
5375 
5376 /*
5377  * Return the key found in the dir entry in the location pointer, fill @type
5378  * with BTRFS_FT_*, and return 0.
5379  *
5380  * If no dir entries were found, returns -ENOENT.
5381  * If found a corrupted location in dir entry, returns -EUCLEAN.
5382  */
5383 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5384 			       struct btrfs_key *location, u8 *type)
5385 {
5386 	struct btrfs_dir_item *di;
5387 	struct btrfs_path *path;
5388 	struct btrfs_root *root = dir->root;
5389 	int ret = 0;
5390 	struct fscrypt_name fname;
5391 
5392 	path = btrfs_alloc_path();
5393 	if (!path)
5394 		return -ENOMEM;
5395 
5396 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5397 	if (ret < 0)
5398 		goto out;
5399 	/*
5400 	 * fscrypt_setup_filename() should never return a positive value, but
5401 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5402 	 */
5403 	ASSERT(ret == 0);
5404 
5405 	/* This needs to handle no-key deletions later on */
5406 
5407 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5408 				   &fname.disk_name, 0);
5409 	if (IS_ERR_OR_NULL(di)) {
5410 		ret = di ? PTR_ERR(di) : -ENOENT;
5411 		goto out;
5412 	}
5413 
5414 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5415 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5416 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5417 		ret = -EUCLEAN;
5418 		btrfs_warn(root->fs_info,
5419 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5420 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5421 			   location->objectid, location->type, location->offset);
5422 	}
5423 	if (!ret)
5424 		*type = btrfs_dir_ftype(path->nodes[0], di);
5425 out:
5426 	fscrypt_free_filename(&fname);
5427 	btrfs_free_path(path);
5428 	return ret;
5429 }
5430 
5431 /*
5432  * when we hit a tree root in a directory, the btrfs part of the inode
5433  * needs to be changed to reflect the root directory of the tree root.  This
5434  * is kind of like crossing a mount point.
5435  */
5436 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5437 				    struct btrfs_inode *dir,
5438 				    struct dentry *dentry,
5439 				    struct btrfs_key *location,
5440 				    struct btrfs_root **sub_root)
5441 {
5442 	struct btrfs_path *path;
5443 	struct btrfs_root *new_root;
5444 	struct btrfs_root_ref *ref;
5445 	struct extent_buffer *leaf;
5446 	struct btrfs_key key;
5447 	int ret;
5448 	int err = 0;
5449 	struct fscrypt_name fname;
5450 
5451 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5452 	if (ret)
5453 		return ret;
5454 
5455 	path = btrfs_alloc_path();
5456 	if (!path) {
5457 		err = -ENOMEM;
5458 		goto out;
5459 	}
5460 
5461 	err = -ENOENT;
5462 	key.objectid = btrfs_root_id(dir->root);
5463 	key.type = BTRFS_ROOT_REF_KEY;
5464 	key.offset = location->objectid;
5465 
5466 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5467 	if (ret) {
5468 		if (ret < 0)
5469 			err = ret;
5470 		goto out;
5471 	}
5472 
5473 	leaf = path->nodes[0];
5474 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5475 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5476 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5477 		goto out;
5478 
5479 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5480 				   (unsigned long)(ref + 1), fname.disk_name.len);
5481 	if (ret)
5482 		goto out;
5483 
5484 	btrfs_release_path(path);
5485 
5486 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5487 	if (IS_ERR(new_root)) {
5488 		err = PTR_ERR(new_root);
5489 		goto out;
5490 	}
5491 
5492 	*sub_root = new_root;
5493 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5494 	location->type = BTRFS_INODE_ITEM_KEY;
5495 	location->offset = 0;
5496 	err = 0;
5497 out:
5498 	btrfs_free_path(path);
5499 	fscrypt_free_filename(&fname);
5500 	return err;
5501 }
5502 
5503 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5504 {
5505 	struct btrfs_root *root = inode->root;
5506 	struct btrfs_inode *existing;
5507 	const u64 ino = btrfs_ino(inode);
5508 	int ret;
5509 
5510 	if (inode_unhashed(&inode->vfs_inode))
5511 		return 0;
5512 
5513 	if (prealloc) {
5514 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5515 		if (ret)
5516 			return ret;
5517 	}
5518 
5519 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5520 
5521 	if (xa_is_err(existing)) {
5522 		ret = xa_err(existing);
5523 		ASSERT(ret != -EINVAL);
5524 		ASSERT(ret != -ENOMEM);
5525 		return ret;
5526 	} else if (existing) {
5527 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5528 	}
5529 
5530 	return 0;
5531 }
5532 
5533 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5534 {
5535 	struct btrfs_root *root = inode->root;
5536 	struct btrfs_inode *entry;
5537 	bool empty = false;
5538 
5539 	xa_lock(&root->inodes);
5540 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5541 	if (entry == inode)
5542 		empty = xa_empty(&root->inodes);
5543 	xa_unlock(&root->inodes);
5544 
5545 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5546 		xa_lock(&root->inodes);
5547 		empty = xa_empty(&root->inodes);
5548 		xa_unlock(&root->inodes);
5549 		if (empty)
5550 			btrfs_add_dead_root(root);
5551 	}
5552 }
5553 
5554 
5555 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5556 {
5557 	struct btrfs_iget_args *args = p;
5558 
5559 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5560 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5561 
5562 	if (args->root && args->root == args->root->fs_info->tree_root &&
5563 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5564 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5565 			&BTRFS_I(inode)->runtime_flags);
5566 	return 0;
5567 }
5568 
5569 static int btrfs_find_actor(struct inode *inode, void *opaque)
5570 {
5571 	struct btrfs_iget_args *args = opaque;
5572 
5573 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5574 		args->root == BTRFS_I(inode)->root;
5575 }
5576 
5577 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5578 {
5579 	struct inode *inode;
5580 	struct btrfs_iget_args args;
5581 	unsigned long hashval = btrfs_inode_hash(ino, root);
5582 
5583 	args.ino = ino;
5584 	args.root = root;
5585 
5586 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5587 			     btrfs_init_locked_inode,
5588 			     (void *)&args);
5589 	return inode;
5590 }
5591 
5592 /*
5593  * Get an inode object given its inode number and corresponding root.
5594  * Path can be preallocated to prevent recursing back to iget through
5595  * allocator. NULL is also valid but may require an additional allocation
5596  * later.
5597  */
5598 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5599 			      struct btrfs_path *path)
5600 {
5601 	struct inode *inode;
5602 	int ret;
5603 
5604 	inode = btrfs_iget_locked(ino, root);
5605 	if (!inode)
5606 		return ERR_PTR(-ENOMEM);
5607 
5608 	if (!(inode->i_state & I_NEW))
5609 		return inode;
5610 
5611 	ret = btrfs_read_locked_inode(inode, path);
5612 	/*
5613 	 * ret > 0 can come from btrfs_search_slot called by
5614 	 * btrfs_read_locked_inode(), this means the inode item was not found.
5615 	 */
5616 	if (ret > 0)
5617 		ret = -ENOENT;
5618 	if (ret < 0)
5619 		goto error;
5620 
5621 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5622 	if (ret < 0)
5623 		goto error;
5624 
5625 	unlock_new_inode(inode);
5626 
5627 	return inode;
5628 error:
5629 	iget_failed(inode);
5630 	return ERR_PTR(ret);
5631 }
5632 
5633 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5634 {
5635 	return btrfs_iget_path(ino, root, NULL);
5636 }
5637 
5638 static struct inode *new_simple_dir(struct inode *dir,
5639 				    struct btrfs_key *key,
5640 				    struct btrfs_root *root)
5641 {
5642 	struct timespec64 ts;
5643 	struct inode *inode = new_inode(dir->i_sb);
5644 
5645 	if (!inode)
5646 		return ERR_PTR(-ENOMEM);
5647 
5648 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5649 	BTRFS_I(inode)->ref_root_id = key->objectid;
5650 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5651 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5652 
5653 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5654 	/*
5655 	 * We only need lookup, the rest is read-only and there's no inode
5656 	 * associated with the dentry
5657 	 */
5658 	inode->i_op = &simple_dir_inode_operations;
5659 	inode->i_opflags &= ~IOP_XATTR;
5660 	inode->i_fop = &simple_dir_operations;
5661 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5662 
5663 	ts = inode_set_ctime_current(inode);
5664 	inode_set_mtime_to_ts(inode, ts);
5665 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5666 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5667 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5668 
5669 	inode->i_uid = dir->i_uid;
5670 	inode->i_gid = dir->i_gid;
5671 
5672 	return inode;
5673 }
5674 
5675 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5676 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5677 static_assert(BTRFS_FT_DIR == FT_DIR);
5678 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5679 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5680 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5681 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5682 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5683 
5684 static inline u8 btrfs_inode_type(struct inode *inode)
5685 {
5686 	return fs_umode_to_ftype(inode->i_mode);
5687 }
5688 
5689 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5690 {
5691 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5692 	struct inode *inode;
5693 	struct btrfs_root *root = BTRFS_I(dir)->root;
5694 	struct btrfs_root *sub_root = root;
5695 	struct btrfs_key location = { 0 };
5696 	u8 di_type = 0;
5697 	int ret = 0;
5698 
5699 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5700 		return ERR_PTR(-ENAMETOOLONG);
5701 
5702 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5703 	if (ret < 0)
5704 		return ERR_PTR(ret);
5705 
5706 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5707 		inode = btrfs_iget(location.objectid, root);
5708 		if (IS_ERR(inode))
5709 			return inode;
5710 
5711 		/* Do extra check against inode mode with di_type */
5712 		if (btrfs_inode_type(inode) != di_type) {
5713 			btrfs_crit(fs_info,
5714 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5715 				  inode->i_mode, btrfs_inode_type(inode),
5716 				  di_type);
5717 			iput(inode);
5718 			return ERR_PTR(-EUCLEAN);
5719 		}
5720 		return inode;
5721 	}
5722 
5723 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5724 				       &location, &sub_root);
5725 	if (ret < 0) {
5726 		if (ret != -ENOENT)
5727 			inode = ERR_PTR(ret);
5728 		else
5729 			inode = new_simple_dir(dir, &location, root);
5730 	} else {
5731 		inode = btrfs_iget(location.objectid, sub_root);
5732 		btrfs_put_root(sub_root);
5733 
5734 		if (IS_ERR(inode))
5735 			return inode;
5736 
5737 		down_read(&fs_info->cleanup_work_sem);
5738 		if (!sb_rdonly(inode->i_sb))
5739 			ret = btrfs_orphan_cleanup(sub_root);
5740 		up_read(&fs_info->cleanup_work_sem);
5741 		if (ret) {
5742 			iput(inode);
5743 			inode = ERR_PTR(ret);
5744 		}
5745 	}
5746 
5747 	return inode;
5748 }
5749 
5750 static int btrfs_dentry_delete(const struct dentry *dentry)
5751 {
5752 	struct btrfs_root *root;
5753 	struct inode *inode = d_inode(dentry);
5754 
5755 	if (!inode && !IS_ROOT(dentry))
5756 		inode = d_inode(dentry->d_parent);
5757 
5758 	if (inode) {
5759 		root = BTRFS_I(inode)->root;
5760 		if (btrfs_root_refs(&root->root_item) == 0)
5761 			return 1;
5762 
5763 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5764 			return 1;
5765 	}
5766 	return 0;
5767 }
5768 
5769 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5770 				   unsigned int flags)
5771 {
5772 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5773 
5774 	if (inode == ERR_PTR(-ENOENT))
5775 		inode = NULL;
5776 	return d_splice_alias(inode, dentry);
5777 }
5778 
5779 /*
5780  * Find the highest existing sequence number in a directory and then set the
5781  * in-memory index_cnt variable to the first free sequence number.
5782  */
5783 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5784 {
5785 	struct btrfs_root *root = inode->root;
5786 	struct btrfs_key key, found_key;
5787 	struct btrfs_path *path;
5788 	struct extent_buffer *leaf;
5789 	int ret;
5790 
5791 	key.objectid = btrfs_ino(inode);
5792 	key.type = BTRFS_DIR_INDEX_KEY;
5793 	key.offset = (u64)-1;
5794 
5795 	path = btrfs_alloc_path();
5796 	if (!path)
5797 		return -ENOMEM;
5798 
5799 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5800 	if (ret < 0)
5801 		goto out;
5802 	/* FIXME: we should be able to handle this */
5803 	if (ret == 0)
5804 		goto out;
5805 	ret = 0;
5806 
5807 	if (path->slots[0] == 0) {
5808 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5809 		goto out;
5810 	}
5811 
5812 	path->slots[0]--;
5813 
5814 	leaf = path->nodes[0];
5815 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5816 
5817 	if (found_key.objectid != btrfs_ino(inode) ||
5818 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5819 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5820 		goto out;
5821 	}
5822 
5823 	inode->index_cnt = found_key.offset + 1;
5824 out:
5825 	btrfs_free_path(path);
5826 	return ret;
5827 }
5828 
5829 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5830 {
5831 	int ret = 0;
5832 
5833 	btrfs_inode_lock(dir, 0);
5834 	if (dir->index_cnt == (u64)-1) {
5835 		ret = btrfs_inode_delayed_dir_index_count(dir);
5836 		if (ret) {
5837 			ret = btrfs_set_inode_index_count(dir);
5838 			if (ret)
5839 				goto out;
5840 		}
5841 	}
5842 
5843 	/* index_cnt is the index number of next new entry, so decrement it. */
5844 	*index = dir->index_cnt - 1;
5845 out:
5846 	btrfs_inode_unlock(dir, 0);
5847 
5848 	return ret;
5849 }
5850 
5851 /*
5852  * All this infrastructure exists because dir_emit can fault, and we are holding
5853  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5854  * our information into that, and then dir_emit from the buffer.  This is
5855  * similar to what NFS does, only we don't keep the buffer around in pagecache
5856  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5857  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5858  * tree lock.
5859  */
5860 static int btrfs_opendir(struct inode *inode, struct file *file)
5861 {
5862 	struct btrfs_file_private *private;
5863 	u64 last_index;
5864 	int ret;
5865 
5866 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5867 	if (ret)
5868 		return ret;
5869 
5870 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5871 	if (!private)
5872 		return -ENOMEM;
5873 	private->last_index = last_index;
5874 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5875 	if (!private->filldir_buf) {
5876 		kfree(private);
5877 		return -ENOMEM;
5878 	}
5879 	file->private_data = private;
5880 	return 0;
5881 }
5882 
5883 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5884 {
5885 	struct btrfs_file_private *private = file->private_data;
5886 	int ret;
5887 
5888 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5889 				       &private->last_index);
5890 	if (ret)
5891 		return ret;
5892 
5893 	return generic_file_llseek(file, offset, whence);
5894 }
5895 
5896 struct dir_entry {
5897 	u64 ino;
5898 	u64 offset;
5899 	unsigned type;
5900 	int name_len;
5901 };
5902 
5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5904 {
5905 	while (entries--) {
5906 		struct dir_entry *entry = addr;
5907 		char *name = (char *)(entry + 1);
5908 
5909 		ctx->pos = get_unaligned(&entry->offset);
5910 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5911 					 get_unaligned(&entry->ino),
5912 					 get_unaligned(&entry->type)))
5913 			return 1;
5914 		addr += sizeof(struct dir_entry) +
5915 			get_unaligned(&entry->name_len);
5916 		ctx->pos++;
5917 	}
5918 	return 0;
5919 }
5920 
5921 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5922 {
5923 	struct inode *inode = file_inode(file);
5924 	struct btrfs_root *root = BTRFS_I(inode)->root;
5925 	struct btrfs_file_private *private = file->private_data;
5926 	struct btrfs_dir_item *di;
5927 	struct btrfs_key key;
5928 	struct btrfs_key found_key;
5929 	struct btrfs_path *path;
5930 	void *addr;
5931 	LIST_HEAD(ins_list);
5932 	LIST_HEAD(del_list);
5933 	int ret;
5934 	char *name_ptr;
5935 	int name_len;
5936 	int entries = 0;
5937 	int total_len = 0;
5938 	bool put = false;
5939 	struct btrfs_key location;
5940 
5941 	if (!dir_emit_dots(file, ctx))
5942 		return 0;
5943 
5944 	path = btrfs_alloc_path();
5945 	if (!path)
5946 		return -ENOMEM;
5947 
5948 	addr = private->filldir_buf;
5949 	path->reada = READA_FORWARD;
5950 
5951 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5952 					      &ins_list, &del_list);
5953 
5954 again:
5955 	key.type = BTRFS_DIR_INDEX_KEY;
5956 	key.offset = ctx->pos;
5957 	key.objectid = btrfs_ino(BTRFS_I(inode));
5958 
5959 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5960 		struct dir_entry *entry;
5961 		struct extent_buffer *leaf = path->nodes[0];
5962 		u8 ftype;
5963 
5964 		if (found_key.objectid != key.objectid)
5965 			break;
5966 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5967 			break;
5968 		if (found_key.offset < ctx->pos)
5969 			continue;
5970 		if (found_key.offset > private->last_index)
5971 			break;
5972 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5973 			continue;
5974 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5975 		name_len = btrfs_dir_name_len(leaf, di);
5976 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5977 		    PAGE_SIZE) {
5978 			btrfs_release_path(path);
5979 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5980 			if (ret)
5981 				goto nopos;
5982 			addr = private->filldir_buf;
5983 			entries = 0;
5984 			total_len = 0;
5985 			goto again;
5986 		}
5987 
5988 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5989 		entry = addr;
5990 		name_ptr = (char *)(entry + 1);
5991 		read_extent_buffer(leaf, name_ptr,
5992 				   (unsigned long)(di + 1), name_len);
5993 		put_unaligned(name_len, &entry->name_len);
5994 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5995 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5996 		put_unaligned(location.objectid, &entry->ino);
5997 		put_unaligned(found_key.offset, &entry->offset);
5998 		entries++;
5999 		addr += sizeof(struct dir_entry) + name_len;
6000 		total_len += sizeof(struct dir_entry) + name_len;
6001 	}
6002 	/* Catch error encountered during iteration */
6003 	if (ret < 0)
6004 		goto err;
6005 
6006 	btrfs_release_path(path);
6007 
6008 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6009 	if (ret)
6010 		goto nopos;
6011 
6012 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6013 	if (ret)
6014 		goto nopos;
6015 
6016 	/*
6017 	 * Stop new entries from being returned after we return the last
6018 	 * entry.
6019 	 *
6020 	 * New directory entries are assigned a strictly increasing
6021 	 * offset.  This means that new entries created during readdir
6022 	 * are *guaranteed* to be seen in the future by that readdir.
6023 	 * This has broken buggy programs which operate on names as
6024 	 * they're returned by readdir.  Until we re-use freed offsets
6025 	 * we have this hack to stop new entries from being returned
6026 	 * under the assumption that they'll never reach this huge
6027 	 * offset.
6028 	 *
6029 	 * This is being careful not to overflow 32bit loff_t unless the
6030 	 * last entry requires it because doing so has broken 32bit apps
6031 	 * in the past.
6032 	 */
6033 	if (ctx->pos >= INT_MAX)
6034 		ctx->pos = LLONG_MAX;
6035 	else
6036 		ctx->pos = INT_MAX;
6037 nopos:
6038 	ret = 0;
6039 err:
6040 	if (put)
6041 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6042 	btrfs_free_path(path);
6043 	return ret;
6044 }
6045 
6046 /*
6047  * This is somewhat expensive, updating the tree every time the
6048  * inode changes.  But, it is most likely to find the inode in cache.
6049  * FIXME, needs more benchmarking...there are no reasons other than performance
6050  * to keep or drop this code.
6051  */
6052 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6053 {
6054 	struct btrfs_root *root = inode->root;
6055 	struct btrfs_fs_info *fs_info = root->fs_info;
6056 	struct btrfs_trans_handle *trans;
6057 	int ret;
6058 
6059 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6060 		return 0;
6061 
6062 	trans = btrfs_join_transaction(root);
6063 	if (IS_ERR(trans))
6064 		return PTR_ERR(trans);
6065 
6066 	ret = btrfs_update_inode(trans, inode);
6067 	if (ret == -ENOSPC || ret == -EDQUOT) {
6068 		/* whoops, lets try again with the full transaction */
6069 		btrfs_end_transaction(trans);
6070 		trans = btrfs_start_transaction(root, 1);
6071 		if (IS_ERR(trans))
6072 			return PTR_ERR(trans);
6073 
6074 		ret = btrfs_update_inode(trans, inode);
6075 	}
6076 	btrfs_end_transaction(trans);
6077 	if (inode->delayed_node)
6078 		btrfs_balance_delayed_items(fs_info);
6079 
6080 	return ret;
6081 }
6082 
6083 /*
6084  * This is a copy of file_update_time.  We need this so we can return error on
6085  * ENOSPC for updating the inode in the case of file write and mmap writes.
6086  */
6087 static int btrfs_update_time(struct inode *inode, int flags)
6088 {
6089 	struct btrfs_root *root = BTRFS_I(inode)->root;
6090 	bool dirty;
6091 
6092 	if (btrfs_root_readonly(root))
6093 		return -EROFS;
6094 
6095 	dirty = inode_update_timestamps(inode, flags);
6096 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6097 }
6098 
6099 /*
6100  * helper to find a free sequence number in a given directory.  This current
6101  * code is very simple, later versions will do smarter things in the btree
6102  */
6103 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6104 {
6105 	int ret = 0;
6106 
6107 	if (dir->index_cnt == (u64)-1) {
6108 		ret = btrfs_inode_delayed_dir_index_count(dir);
6109 		if (ret) {
6110 			ret = btrfs_set_inode_index_count(dir);
6111 			if (ret)
6112 				return ret;
6113 		}
6114 	}
6115 
6116 	*index = dir->index_cnt;
6117 	dir->index_cnt++;
6118 
6119 	return ret;
6120 }
6121 
6122 static int btrfs_insert_inode_locked(struct inode *inode)
6123 {
6124 	struct btrfs_iget_args args;
6125 
6126 	args.ino = btrfs_ino(BTRFS_I(inode));
6127 	args.root = BTRFS_I(inode)->root;
6128 
6129 	return insert_inode_locked4(inode,
6130 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6131 		   btrfs_find_actor, &args);
6132 }
6133 
6134 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6135 			    unsigned int *trans_num_items)
6136 {
6137 	struct inode *dir = args->dir;
6138 	struct inode *inode = args->inode;
6139 	int ret;
6140 
6141 	if (!args->orphan) {
6142 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6143 					     &args->fname);
6144 		if (ret)
6145 			return ret;
6146 	}
6147 
6148 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6149 	if (ret) {
6150 		fscrypt_free_filename(&args->fname);
6151 		return ret;
6152 	}
6153 
6154 	/* 1 to add inode item */
6155 	*trans_num_items = 1;
6156 	/* 1 to add compression property */
6157 	if (BTRFS_I(dir)->prop_compress)
6158 		(*trans_num_items)++;
6159 	/* 1 to add default ACL xattr */
6160 	if (args->default_acl)
6161 		(*trans_num_items)++;
6162 	/* 1 to add access ACL xattr */
6163 	if (args->acl)
6164 		(*trans_num_items)++;
6165 #ifdef CONFIG_SECURITY
6166 	/* 1 to add LSM xattr */
6167 	if (dir->i_security)
6168 		(*trans_num_items)++;
6169 #endif
6170 	if (args->orphan) {
6171 		/* 1 to add orphan item */
6172 		(*trans_num_items)++;
6173 	} else {
6174 		/*
6175 		 * 1 to add dir item
6176 		 * 1 to add dir index
6177 		 * 1 to update parent inode item
6178 		 *
6179 		 * No need for 1 unit for the inode ref item because it is
6180 		 * inserted in a batch together with the inode item at
6181 		 * btrfs_create_new_inode().
6182 		 */
6183 		*trans_num_items += 3;
6184 	}
6185 	return 0;
6186 }
6187 
6188 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6189 {
6190 	posix_acl_release(args->acl);
6191 	posix_acl_release(args->default_acl);
6192 	fscrypt_free_filename(&args->fname);
6193 }
6194 
6195 /*
6196  * Inherit flags from the parent inode.
6197  *
6198  * Currently only the compression flags and the cow flags are inherited.
6199  */
6200 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6201 {
6202 	unsigned int flags;
6203 
6204 	flags = dir->flags;
6205 
6206 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6207 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6208 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6209 	} else if (flags & BTRFS_INODE_COMPRESS) {
6210 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6211 		inode->flags |= BTRFS_INODE_COMPRESS;
6212 	}
6213 
6214 	if (flags & BTRFS_INODE_NODATACOW) {
6215 		inode->flags |= BTRFS_INODE_NODATACOW;
6216 		if (S_ISREG(inode->vfs_inode.i_mode))
6217 			inode->flags |= BTRFS_INODE_NODATASUM;
6218 	}
6219 
6220 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6221 }
6222 
6223 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6224 			   struct btrfs_new_inode_args *args)
6225 {
6226 	struct timespec64 ts;
6227 	struct inode *dir = args->dir;
6228 	struct inode *inode = args->inode;
6229 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6230 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6231 	struct btrfs_root *root;
6232 	struct btrfs_inode_item *inode_item;
6233 	struct btrfs_path *path;
6234 	u64 objectid;
6235 	struct btrfs_inode_ref *ref;
6236 	struct btrfs_key key[2];
6237 	u32 sizes[2];
6238 	struct btrfs_item_batch batch;
6239 	unsigned long ptr;
6240 	int ret;
6241 	bool xa_reserved = false;
6242 
6243 	path = btrfs_alloc_path();
6244 	if (!path)
6245 		return -ENOMEM;
6246 
6247 	if (!args->subvol)
6248 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6249 	root = BTRFS_I(inode)->root;
6250 
6251 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6252 	if (ret)
6253 		goto out;
6254 
6255 	ret = btrfs_get_free_objectid(root, &objectid);
6256 	if (ret)
6257 		goto out;
6258 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6259 
6260 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6261 	if (ret)
6262 		goto out;
6263 	xa_reserved = true;
6264 
6265 	if (args->orphan) {
6266 		/*
6267 		 * O_TMPFILE, set link count to 0, so that after this point, we
6268 		 * fill in an inode item with the correct link count.
6269 		 */
6270 		set_nlink(inode, 0);
6271 	} else {
6272 		trace_btrfs_inode_request(dir);
6273 
6274 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6275 		if (ret)
6276 			goto out;
6277 	}
6278 
6279 	if (S_ISDIR(inode->i_mode))
6280 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6281 
6282 	BTRFS_I(inode)->generation = trans->transid;
6283 	inode->i_generation = BTRFS_I(inode)->generation;
6284 
6285 	/*
6286 	 * We don't have any capability xattrs set here yet, shortcut any
6287 	 * queries for the xattrs here.  If we add them later via the inode
6288 	 * security init path or any other path this flag will be cleared.
6289 	 */
6290 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6291 
6292 	/*
6293 	 * Subvolumes don't inherit flags from their parent directory.
6294 	 * Originally this was probably by accident, but we probably can't
6295 	 * change it now without compatibility issues.
6296 	 */
6297 	if (!args->subvol)
6298 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6299 
6300 	if (S_ISREG(inode->i_mode)) {
6301 		if (btrfs_test_opt(fs_info, NODATASUM))
6302 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6303 		if (btrfs_test_opt(fs_info, NODATACOW))
6304 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6305 				BTRFS_INODE_NODATASUM;
6306 	}
6307 
6308 	ret = btrfs_insert_inode_locked(inode);
6309 	if (ret < 0) {
6310 		if (!args->orphan)
6311 			BTRFS_I(dir)->index_cnt--;
6312 		goto out;
6313 	}
6314 
6315 	/*
6316 	 * We could have gotten an inode number from somebody who was fsynced
6317 	 * and then removed in this same transaction, so let's just set full
6318 	 * sync since it will be a full sync anyway and this will blow away the
6319 	 * old info in the log.
6320 	 */
6321 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6322 
6323 	key[0].objectid = objectid;
6324 	key[0].type = BTRFS_INODE_ITEM_KEY;
6325 	key[0].offset = 0;
6326 
6327 	sizes[0] = sizeof(struct btrfs_inode_item);
6328 
6329 	if (!args->orphan) {
6330 		/*
6331 		 * Start new inodes with an inode_ref. This is slightly more
6332 		 * efficient for small numbers of hard links since they will
6333 		 * be packed into one item. Extended refs will kick in if we
6334 		 * add more hard links than can fit in the ref item.
6335 		 */
6336 		key[1].objectid = objectid;
6337 		key[1].type = BTRFS_INODE_REF_KEY;
6338 		if (args->subvol) {
6339 			key[1].offset = objectid;
6340 			sizes[1] = 2 + sizeof(*ref);
6341 		} else {
6342 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6343 			sizes[1] = name->len + sizeof(*ref);
6344 		}
6345 	}
6346 
6347 	batch.keys = &key[0];
6348 	batch.data_sizes = &sizes[0];
6349 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6350 	batch.nr = args->orphan ? 1 : 2;
6351 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6352 	if (ret != 0) {
6353 		btrfs_abort_transaction(trans, ret);
6354 		goto discard;
6355 	}
6356 
6357 	ts = simple_inode_init_ts(inode);
6358 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6359 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6360 
6361 	/*
6362 	 * We're going to fill the inode item now, so at this point the inode
6363 	 * must be fully initialized.
6364 	 */
6365 
6366 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6367 				  struct btrfs_inode_item);
6368 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6369 			     sizeof(*inode_item));
6370 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6371 
6372 	if (!args->orphan) {
6373 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6374 				     struct btrfs_inode_ref);
6375 		ptr = (unsigned long)(ref + 1);
6376 		if (args->subvol) {
6377 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6378 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6379 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6380 		} else {
6381 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6382 						     name->len);
6383 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6384 						  BTRFS_I(inode)->dir_index);
6385 			write_extent_buffer(path->nodes[0], name->name, ptr,
6386 					    name->len);
6387 		}
6388 	}
6389 
6390 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6391 	/*
6392 	 * We don't need the path anymore, plus inheriting properties, adding
6393 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6394 	 * allocating yet another path. So just free our path.
6395 	 */
6396 	btrfs_free_path(path);
6397 	path = NULL;
6398 
6399 	if (args->subvol) {
6400 		struct inode *parent;
6401 
6402 		/*
6403 		 * Subvolumes inherit properties from their parent subvolume,
6404 		 * not the directory they were created in.
6405 		 */
6406 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6407 		if (IS_ERR(parent)) {
6408 			ret = PTR_ERR(parent);
6409 		} else {
6410 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6411 			iput(parent);
6412 		}
6413 	} else {
6414 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6415 	}
6416 	if (ret) {
6417 		btrfs_err(fs_info,
6418 			  "error inheriting props for ino %llu (root %llu): %d",
6419 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6420 	}
6421 
6422 	/*
6423 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6424 	 * probably a bug.
6425 	 */
6426 	if (!args->subvol) {
6427 		ret = btrfs_init_inode_security(trans, args);
6428 		if (ret) {
6429 			btrfs_abort_transaction(trans, ret);
6430 			goto discard;
6431 		}
6432 	}
6433 
6434 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6435 	if (WARN_ON(ret)) {
6436 		/* Shouldn't happen, we used xa_reserve() before. */
6437 		btrfs_abort_transaction(trans, ret);
6438 		goto discard;
6439 	}
6440 
6441 	trace_btrfs_inode_new(inode);
6442 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6443 
6444 	btrfs_update_root_times(trans, root);
6445 
6446 	if (args->orphan) {
6447 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6448 	} else {
6449 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6450 				     0, BTRFS_I(inode)->dir_index);
6451 	}
6452 	if (ret) {
6453 		btrfs_abort_transaction(trans, ret);
6454 		goto discard;
6455 	}
6456 
6457 	return 0;
6458 
6459 discard:
6460 	/*
6461 	 * discard_new_inode() calls iput(), but the caller owns the reference
6462 	 * to the inode.
6463 	 */
6464 	ihold(inode);
6465 	discard_new_inode(inode);
6466 out:
6467 	if (xa_reserved)
6468 		xa_release(&root->inodes, objectid);
6469 
6470 	btrfs_free_path(path);
6471 	return ret;
6472 }
6473 
6474 /*
6475  * utility function to add 'inode' into 'parent_inode' with
6476  * a give name and a given sequence number.
6477  * if 'add_backref' is true, also insert a backref from the
6478  * inode to the parent directory.
6479  */
6480 int btrfs_add_link(struct btrfs_trans_handle *trans,
6481 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6482 		   const struct fscrypt_str *name, int add_backref, u64 index)
6483 {
6484 	int ret = 0;
6485 	struct btrfs_key key;
6486 	struct btrfs_root *root = parent_inode->root;
6487 	u64 ino = btrfs_ino(inode);
6488 	u64 parent_ino = btrfs_ino(parent_inode);
6489 
6490 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6491 		memcpy(&key, &inode->root->root_key, sizeof(key));
6492 	} else {
6493 		key.objectid = ino;
6494 		key.type = BTRFS_INODE_ITEM_KEY;
6495 		key.offset = 0;
6496 	}
6497 
6498 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6499 		ret = btrfs_add_root_ref(trans, key.objectid,
6500 					 btrfs_root_id(root), parent_ino,
6501 					 index, name);
6502 	} else if (add_backref) {
6503 		ret = btrfs_insert_inode_ref(trans, root, name,
6504 					     ino, parent_ino, index);
6505 	}
6506 
6507 	/* Nothing to clean up yet */
6508 	if (ret)
6509 		return ret;
6510 
6511 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6512 				    btrfs_inode_type(&inode->vfs_inode), index);
6513 	if (ret == -EEXIST || ret == -EOVERFLOW)
6514 		goto fail_dir_item;
6515 	else if (ret) {
6516 		btrfs_abort_transaction(trans, ret);
6517 		return ret;
6518 	}
6519 
6520 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6521 			   name->len * 2);
6522 	inode_inc_iversion(&parent_inode->vfs_inode);
6523 	/*
6524 	 * If we are replaying a log tree, we do not want to update the mtime
6525 	 * and ctime of the parent directory with the current time, since the
6526 	 * log replay procedure is responsible for setting them to their correct
6527 	 * values (the ones it had when the fsync was done).
6528 	 */
6529 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6530 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6531 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6532 
6533 	ret = btrfs_update_inode(trans, parent_inode);
6534 	if (ret)
6535 		btrfs_abort_transaction(trans, ret);
6536 	return ret;
6537 
6538 fail_dir_item:
6539 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6540 		u64 local_index;
6541 		int err;
6542 		err = btrfs_del_root_ref(trans, key.objectid,
6543 					 btrfs_root_id(root), parent_ino,
6544 					 &local_index, name);
6545 		if (err)
6546 			btrfs_abort_transaction(trans, err);
6547 	} else if (add_backref) {
6548 		u64 local_index;
6549 		int err;
6550 
6551 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6552 					  &local_index);
6553 		if (err)
6554 			btrfs_abort_transaction(trans, err);
6555 	}
6556 
6557 	/* Return the original error code */
6558 	return ret;
6559 }
6560 
6561 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6562 			       struct inode *inode)
6563 {
6564 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6565 	struct btrfs_root *root = BTRFS_I(dir)->root;
6566 	struct btrfs_new_inode_args new_inode_args = {
6567 		.dir = dir,
6568 		.dentry = dentry,
6569 		.inode = inode,
6570 	};
6571 	unsigned int trans_num_items;
6572 	struct btrfs_trans_handle *trans;
6573 	int err;
6574 
6575 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6576 	if (err)
6577 		goto out_inode;
6578 
6579 	trans = btrfs_start_transaction(root, trans_num_items);
6580 	if (IS_ERR(trans)) {
6581 		err = PTR_ERR(trans);
6582 		goto out_new_inode_args;
6583 	}
6584 
6585 	err = btrfs_create_new_inode(trans, &new_inode_args);
6586 	if (!err)
6587 		d_instantiate_new(dentry, inode);
6588 
6589 	btrfs_end_transaction(trans);
6590 	btrfs_btree_balance_dirty(fs_info);
6591 out_new_inode_args:
6592 	btrfs_new_inode_args_destroy(&new_inode_args);
6593 out_inode:
6594 	if (err)
6595 		iput(inode);
6596 	return err;
6597 }
6598 
6599 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6600 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6601 {
6602 	struct inode *inode;
6603 
6604 	inode = new_inode(dir->i_sb);
6605 	if (!inode)
6606 		return -ENOMEM;
6607 	inode_init_owner(idmap, inode, dir, mode);
6608 	inode->i_op = &btrfs_special_inode_operations;
6609 	init_special_inode(inode, inode->i_mode, rdev);
6610 	return btrfs_create_common(dir, dentry, inode);
6611 }
6612 
6613 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6614 			struct dentry *dentry, umode_t mode, bool excl)
6615 {
6616 	struct inode *inode;
6617 
6618 	inode = new_inode(dir->i_sb);
6619 	if (!inode)
6620 		return -ENOMEM;
6621 	inode_init_owner(idmap, inode, dir, mode);
6622 	inode->i_fop = &btrfs_file_operations;
6623 	inode->i_op = &btrfs_file_inode_operations;
6624 	inode->i_mapping->a_ops = &btrfs_aops;
6625 	return btrfs_create_common(dir, dentry, inode);
6626 }
6627 
6628 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6629 		      struct dentry *dentry)
6630 {
6631 	struct btrfs_trans_handle *trans = NULL;
6632 	struct btrfs_root *root = BTRFS_I(dir)->root;
6633 	struct inode *inode = d_inode(old_dentry);
6634 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6635 	struct fscrypt_name fname;
6636 	u64 index;
6637 	int err;
6638 	int drop_inode = 0;
6639 
6640 	/* do not allow sys_link's with other subvols of the same device */
6641 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6642 		return -EXDEV;
6643 
6644 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6645 		return -EMLINK;
6646 
6647 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6648 	if (err)
6649 		goto fail;
6650 
6651 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6652 	if (err)
6653 		goto fail;
6654 
6655 	/*
6656 	 * 2 items for inode and inode ref
6657 	 * 2 items for dir items
6658 	 * 1 item for parent inode
6659 	 * 1 item for orphan item deletion if O_TMPFILE
6660 	 */
6661 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6662 	if (IS_ERR(trans)) {
6663 		err = PTR_ERR(trans);
6664 		trans = NULL;
6665 		goto fail;
6666 	}
6667 
6668 	/* There are several dir indexes for this inode, clear the cache. */
6669 	BTRFS_I(inode)->dir_index = 0ULL;
6670 	inc_nlink(inode);
6671 	inode_inc_iversion(inode);
6672 	inode_set_ctime_current(inode);
6673 	ihold(inode);
6674 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6675 
6676 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6677 			     &fname.disk_name, 1, index);
6678 
6679 	if (err) {
6680 		drop_inode = 1;
6681 	} else {
6682 		struct dentry *parent = dentry->d_parent;
6683 
6684 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6685 		if (err)
6686 			goto fail;
6687 		if (inode->i_nlink == 1) {
6688 			/*
6689 			 * If new hard link count is 1, it's a file created
6690 			 * with open(2) O_TMPFILE flag.
6691 			 */
6692 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6693 			if (err)
6694 				goto fail;
6695 		}
6696 		d_instantiate(dentry, inode);
6697 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6698 	}
6699 
6700 fail:
6701 	fscrypt_free_filename(&fname);
6702 	if (trans)
6703 		btrfs_end_transaction(trans);
6704 	if (drop_inode) {
6705 		inode_dec_link_count(inode);
6706 		iput(inode);
6707 	}
6708 	btrfs_btree_balance_dirty(fs_info);
6709 	return err;
6710 }
6711 
6712 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6713 		       struct dentry *dentry, umode_t mode)
6714 {
6715 	struct inode *inode;
6716 
6717 	inode = new_inode(dir->i_sb);
6718 	if (!inode)
6719 		return -ENOMEM;
6720 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6721 	inode->i_op = &btrfs_dir_inode_operations;
6722 	inode->i_fop = &btrfs_dir_file_operations;
6723 	return btrfs_create_common(dir, dentry, inode);
6724 }
6725 
6726 static noinline int uncompress_inline(struct btrfs_path *path,
6727 				      struct folio *folio,
6728 				      struct btrfs_file_extent_item *item)
6729 {
6730 	int ret;
6731 	struct extent_buffer *leaf = path->nodes[0];
6732 	char *tmp;
6733 	size_t max_size;
6734 	unsigned long inline_size;
6735 	unsigned long ptr;
6736 	int compress_type;
6737 
6738 	compress_type = btrfs_file_extent_compression(leaf, item);
6739 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6740 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6741 	tmp = kmalloc(inline_size, GFP_NOFS);
6742 	if (!tmp)
6743 		return -ENOMEM;
6744 	ptr = btrfs_file_extent_inline_start(item);
6745 
6746 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6747 
6748 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6749 	ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6750 			       max_size);
6751 
6752 	/*
6753 	 * decompression code contains a memset to fill in any space between the end
6754 	 * of the uncompressed data and the end of max_size in case the decompressed
6755 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6756 	 * the end of an inline extent and the beginning of the next block, so we
6757 	 * cover that region here.
6758 	 */
6759 
6760 	if (max_size < PAGE_SIZE)
6761 		folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6762 	kfree(tmp);
6763 	return ret;
6764 }
6765 
6766 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6767 			      struct folio *folio)
6768 {
6769 	struct btrfs_file_extent_item *fi;
6770 	void *kaddr;
6771 	size_t copy_size;
6772 
6773 	if (!folio || folio_test_uptodate(folio))
6774 		return 0;
6775 
6776 	ASSERT(folio_pos(folio) == 0);
6777 
6778 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6779 			    struct btrfs_file_extent_item);
6780 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6781 		return uncompress_inline(path, folio, fi);
6782 
6783 	copy_size = min_t(u64, PAGE_SIZE,
6784 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6785 	kaddr = kmap_local_folio(folio, 0);
6786 	read_extent_buffer(path->nodes[0], kaddr,
6787 			   btrfs_file_extent_inline_start(fi), copy_size);
6788 	kunmap_local(kaddr);
6789 	if (copy_size < PAGE_SIZE)
6790 		folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6791 	return 0;
6792 }
6793 
6794 /*
6795  * Lookup the first extent overlapping a range in a file.
6796  *
6797  * @inode:	file to search in
6798  * @page:	page to read extent data into if the extent is inline
6799  * @start:	file offset
6800  * @len:	length of range starting at @start
6801  *
6802  * Return the first &struct extent_map which overlaps the given range, reading
6803  * it from the B-tree and caching it if necessary. Note that there may be more
6804  * extents which overlap the given range after the returned extent_map.
6805  *
6806  * If @page is not NULL and the extent is inline, this also reads the extent
6807  * data directly into the page and marks the extent up to date in the io_tree.
6808  *
6809  * Return: ERR_PTR on error, non-NULL extent_map on success.
6810  */
6811 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6812 				    struct folio *folio, u64 start, u64 len)
6813 {
6814 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6815 	int ret = 0;
6816 	u64 extent_start = 0;
6817 	u64 extent_end = 0;
6818 	u64 objectid = btrfs_ino(inode);
6819 	int extent_type = -1;
6820 	struct btrfs_path *path = NULL;
6821 	struct btrfs_root *root = inode->root;
6822 	struct btrfs_file_extent_item *item;
6823 	struct extent_buffer *leaf;
6824 	struct btrfs_key found_key;
6825 	struct extent_map *em = NULL;
6826 	struct extent_map_tree *em_tree = &inode->extent_tree;
6827 
6828 	read_lock(&em_tree->lock);
6829 	em = lookup_extent_mapping(em_tree, start, len);
6830 	read_unlock(&em_tree->lock);
6831 
6832 	if (em) {
6833 		if (em->start > start || em->start + em->len <= start)
6834 			free_extent_map(em);
6835 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6836 			free_extent_map(em);
6837 		else
6838 			goto out;
6839 	}
6840 	em = alloc_extent_map();
6841 	if (!em) {
6842 		ret = -ENOMEM;
6843 		goto out;
6844 	}
6845 	em->start = EXTENT_MAP_HOLE;
6846 	em->disk_bytenr = EXTENT_MAP_HOLE;
6847 	em->len = (u64)-1;
6848 
6849 	path = btrfs_alloc_path();
6850 	if (!path) {
6851 		ret = -ENOMEM;
6852 		goto out;
6853 	}
6854 
6855 	/* Chances are we'll be called again, so go ahead and do readahead */
6856 	path->reada = READA_FORWARD;
6857 
6858 	/*
6859 	 * The same explanation in load_free_space_cache applies here as well,
6860 	 * we only read when we're loading the free space cache, and at that
6861 	 * point the commit_root has everything we need.
6862 	 */
6863 	if (btrfs_is_free_space_inode(inode)) {
6864 		path->search_commit_root = 1;
6865 		path->skip_locking = 1;
6866 	}
6867 
6868 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6869 	if (ret < 0) {
6870 		goto out;
6871 	} else if (ret > 0) {
6872 		if (path->slots[0] == 0)
6873 			goto not_found;
6874 		path->slots[0]--;
6875 		ret = 0;
6876 	}
6877 
6878 	leaf = path->nodes[0];
6879 	item = btrfs_item_ptr(leaf, path->slots[0],
6880 			      struct btrfs_file_extent_item);
6881 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6882 	if (found_key.objectid != objectid ||
6883 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6884 		/*
6885 		 * If we backup past the first extent we want to move forward
6886 		 * and see if there is an extent in front of us, otherwise we'll
6887 		 * say there is a hole for our whole search range which can
6888 		 * cause problems.
6889 		 */
6890 		extent_end = start;
6891 		goto next;
6892 	}
6893 
6894 	extent_type = btrfs_file_extent_type(leaf, item);
6895 	extent_start = found_key.offset;
6896 	extent_end = btrfs_file_extent_end(path);
6897 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6898 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6899 		/* Only regular file could have regular/prealloc extent */
6900 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6901 			ret = -EUCLEAN;
6902 			btrfs_crit(fs_info,
6903 		"regular/prealloc extent found for non-regular inode %llu",
6904 				   btrfs_ino(inode));
6905 			goto out;
6906 		}
6907 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6908 						       extent_start);
6909 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6910 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6911 						      path->slots[0],
6912 						      extent_start);
6913 	}
6914 next:
6915 	if (start >= extent_end) {
6916 		path->slots[0]++;
6917 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6918 			ret = btrfs_next_leaf(root, path);
6919 			if (ret < 0)
6920 				goto out;
6921 			else if (ret > 0)
6922 				goto not_found;
6923 
6924 			leaf = path->nodes[0];
6925 		}
6926 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6927 		if (found_key.objectid != objectid ||
6928 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6929 			goto not_found;
6930 		if (start + len <= found_key.offset)
6931 			goto not_found;
6932 		if (start > found_key.offset)
6933 			goto next;
6934 
6935 		/* New extent overlaps with existing one */
6936 		em->start = start;
6937 		em->len = found_key.offset - start;
6938 		em->disk_bytenr = EXTENT_MAP_HOLE;
6939 		goto insert;
6940 	}
6941 
6942 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6943 
6944 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6945 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6946 		goto insert;
6947 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6948 		/*
6949 		 * Inline extent can only exist at file offset 0. This is
6950 		 * ensured by tree-checker and inline extent creation path.
6951 		 * Thus all members representing file offsets should be zero.
6952 		 */
6953 		ASSERT(extent_start == 0);
6954 		ASSERT(em->start == 0);
6955 
6956 		/*
6957 		 * btrfs_extent_item_to_extent_map() should have properly
6958 		 * initialized em members already.
6959 		 *
6960 		 * Other members are not utilized for inline extents.
6961 		 */
6962 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6963 		ASSERT(em->len == fs_info->sectorsize);
6964 
6965 		ret = read_inline_extent(inode, path, folio);
6966 		if (ret < 0)
6967 			goto out;
6968 		goto insert;
6969 	}
6970 not_found:
6971 	em->start = start;
6972 	em->len = len;
6973 	em->disk_bytenr = EXTENT_MAP_HOLE;
6974 insert:
6975 	ret = 0;
6976 	btrfs_release_path(path);
6977 	if (em->start > start || extent_map_end(em) <= start) {
6978 		btrfs_err(fs_info,
6979 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6980 			  em->start, em->len, start, len);
6981 		ret = -EIO;
6982 		goto out;
6983 	}
6984 
6985 	write_lock(&em_tree->lock);
6986 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6987 	write_unlock(&em_tree->lock);
6988 out:
6989 	btrfs_free_path(path);
6990 
6991 	trace_btrfs_get_extent(root, inode, em);
6992 
6993 	if (ret) {
6994 		free_extent_map(em);
6995 		return ERR_PTR(ret);
6996 	}
6997 	return em;
6998 }
6999 
7000 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7001 {
7002 	struct btrfs_block_group *block_group;
7003 	bool readonly = false;
7004 
7005 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7006 	if (!block_group || block_group->ro)
7007 		readonly = true;
7008 	if (block_group)
7009 		btrfs_put_block_group(block_group);
7010 	return readonly;
7011 }
7012 
7013 /*
7014  * Check if we can do nocow write into the range [@offset, @offset + @len)
7015  *
7016  * @offset:	File offset
7017  * @len:	The length to write, will be updated to the nocow writeable
7018  *		range
7019  * @orig_start:	(optional) Return the original file offset of the file extent
7020  * @orig_len:	(optional) Return the original on-disk length of the file extent
7021  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7022  * @strict:	if true, omit optimizations that might force us into unnecessary
7023  *		cow. e.g., don't trust generation number.
7024  *
7025  * Return:
7026  * >0	and update @len if we can do nocow write
7027  *  0	if we can't do nocow write
7028  * <0	if error happened
7029  *
7030  * NOTE: This only checks the file extents, caller is responsible to wait for
7031  *	 any ordered extents.
7032  */
7033 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7034 			      struct btrfs_file_extent *file_extent,
7035 			      bool nowait, bool strict)
7036 {
7037 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7038 	struct can_nocow_file_extent_args nocow_args = { 0 };
7039 	struct btrfs_path *path;
7040 	int ret;
7041 	struct extent_buffer *leaf;
7042 	struct btrfs_root *root = BTRFS_I(inode)->root;
7043 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7044 	struct btrfs_file_extent_item *fi;
7045 	struct btrfs_key key;
7046 	int found_type;
7047 
7048 	path = btrfs_alloc_path();
7049 	if (!path)
7050 		return -ENOMEM;
7051 	path->nowait = nowait;
7052 
7053 	ret = btrfs_lookup_file_extent(NULL, root, path,
7054 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7055 	if (ret < 0)
7056 		goto out;
7057 
7058 	if (ret == 1) {
7059 		if (path->slots[0] == 0) {
7060 			/* can't find the item, must cow */
7061 			ret = 0;
7062 			goto out;
7063 		}
7064 		path->slots[0]--;
7065 	}
7066 	ret = 0;
7067 	leaf = path->nodes[0];
7068 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7069 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7070 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7071 		/* not our file or wrong item type, must cow */
7072 		goto out;
7073 	}
7074 
7075 	if (key.offset > offset) {
7076 		/* Wrong offset, must cow */
7077 		goto out;
7078 	}
7079 
7080 	if (btrfs_file_extent_end(path) <= offset)
7081 		goto out;
7082 
7083 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7084 	found_type = btrfs_file_extent_type(leaf, fi);
7085 
7086 	nocow_args.start = offset;
7087 	nocow_args.end = offset + *len - 1;
7088 	nocow_args.strict = strict;
7089 	nocow_args.free_path = true;
7090 
7091 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7092 	/* can_nocow_file_extent() has freed the path. */
7093 	path = NULL;
7094 
7095 	if (ret != 1) {
7096 		/* Treat errors as not being able to NOCOW. */
7097 		ret = 0;
7098 		goto out;
7099 	}
7100 
7101 	ret = 0;
7102 	if (btrfs_extent_readonly(fs_info,
7103 				  nocow_args.file_extent.disk_bytenr +
7104 				  nocow_args.file_extent.offset))
7105 		goto out;
7106 
7107 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7108 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7109 		u64 range_end;
7110 
7111 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7112 				     root->fs_info->sectorsize) - 1;
7113 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7114 		if (ret) {
7115 			ret = -EAGAIN;
7116 			goto out;
7117 		}
7118 	}
7119 
7120 	if (file_extent)
7121 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7122 
7123 	*len = nocow_args.file_extent.num_bytes;
7124 	ret = 1;
7125 out:
7126 	btrfs_free_path(path);
7127 	return ret;
7128 }
7129 
7130 /* The callers of this must take lock_extent() */
7131 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7132 				      const struct btrfs_file_extent *file_extent,
7133 				      int type)
7134 {
7135 	struct extent_map *em;
7136 	int ret;
7137 
7138 	/*
7139 	 * Note the missing NOCOW type.
7140 	 *
7141 	 * For pure NOCOW writes, we should not create an io extent map, but
7142 	 * just reusing the existing one.
7143 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7144 	 * create an io extent map.
7145 	 */
7146 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7147 	       type == BTRFS_ORDERED_COMPRESSED ||
7148 	       type == BTRFS_ORDERED_REGULAR);
7149 
7150 	switch (type) {
7151 	case BTRFS_ORDERED_PREALLOC:
7152 		/* We're only referring part of a larger preallocated extent. */
7153 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7154 		break;
7155 	case BTRFS_ORDERED_REGULAR:
7156 		/* COW results a new extent matching our file extent size. */
7157 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7158 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7159 
7160 		/* Since it's a new extent, we should not have any offset. */
7161 		ASSERT(file_extent->offset == 0);
7162 		break;
7163 	case BTRFS_ORDERED_COMPRESSED:
7164 		/* Must be compressed. */
7165 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7166 
7167 		/*
7168 		 * Encoded write can make us to refer to part of the
7169 		 * uncompressed extent.
7170 		 */
7171 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7172 		break;
7173 	}
7174 
7175 	em = alloc_extent_map();
7176 	if (!em)
7177 		return ERR_PTR(-ENOMEM);
7178 
7179 	em->start = start;
7180 	em->len = file_extent->num_bytes;
7181 	em->disk_bytenr = file_extent->disk_bytenr;
7182 	em->disk_num_bytes = file_extent->disk_num_bytes;
7183 	em->ram_bytes = file_extent->ram_bytes;
7184 	em->generation = -1;
7185 	em->offset = file_extent->offset;
7186 	em->flags |= EXTENT_FLAG_PINNED;
7187 	if (type == BTRFS_ORDERED_COMPRESSED)
7188 		extent_map_set_compression(em, file_extent->compression);
7189 
7190 	ret = btrfs_replace_extent_map_range(inode, em, true);
7191 	if (ret) {
7192 		free_extent_map(em);
7193 		return ERR_PTR(ret);
7194 	}
7195 
7196 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7197 	return em;
7198 }
7199 
7200 /*
7201  * For release_folio() and invalidate_folio() we have a race window where
7202  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7203  * If we continue to release/invalidate the page, we could cause use-after-free
7204  * for subpage spinlock.  So this function is to spin and wait for subpage
7205  * spinlock.
7206  */
7207 static void wait_subpage_spinlock(struct folio *folio)
7208 {
7209 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7210 	struct btrfs_subpage *subpage;
7211 
7212 	if (!btrfs_is_subpage(fs_info, folio->mapping))
7213 		return;
7214 
7215 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7216 	subpage = folio_get_private(folio);
7217 
7218 	/*
7219 	 * This may look insane as we just acquire the spinlock and release it,
7220 	 * without doing anything.  But we just want to make sure no one is
7221 	 * still holding the subpage spinlock.
7222 	 * And since the page is not dirty nor writeback, and we have page
7223 	 * locked, the only possible way to hold a spinlock is from the endio
7224 	 * function to clear page writeback.
7225 	 *
7226 	 * Here we just acquire the spinlock so that all existing callers
7227 	 * should exit and we're safe to release/invalidate the page.
7228 	 */
7229 	spin_lock_irq(&subpage->lock);
7230 	spin_unlock_irq(&subpage->lock);
7231 }
7232 
7233 static int btrfs_launder_folio(struct folio *folio)
7234 {
7235 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7236 				      PAGE_SIZE, NULL);
7237 }
7238 
7239 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7240 {
7241 	if (try_release_extent_mapping(folio, gfp_flags)) {
7242 		wait_subpage_spinlock(folio);
7243 		clear_folio_extent_mapped(folio);
7244 		return true;
7245 	}
7246 	return false;
7247 }
7248 
7249 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7250 {
7251 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7252 		return false;
7253 	return __btrfs_release_folio(folio, gfp_flags);
7254 }
7255 
7256 #ifdef CONFIG_MIGRATION
7257 static int btrfs_migrate_folio(struct address_space *mapping,
7258 			     struct folio *dst, struct folio *src,
7259 			     enum migrate_mode mode)
7260 {
7261 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7262 
7263 	if (ret != MIGRATEPAGE_SUCCESS)
7264 		return ret;
7265 
7266 	if (folio_test_ordered(src)) {
7267 		folio_clear_ordered(src);
7268 		folio_set_ordered(dst);
7269 	}
7270 
7271 	return MIGRATEPAGE_SUCCESS;
7272 }
7273 #else
7274 #define btrfs_migrate_folio NULL
7275 #endif
7276 
7277 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7278 				 size_t length)
7279 {
7280 	struct btrfs_inode *inode = folio_to_inode(folio);
7281 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7282 	struct extent_io_tree *tree = &inode->io_tree;
7283 	struct extent_state *cached_state = NULL;
7284 	u64 page_start = folio_pos(folio);
7285 	u64 page_end = page_start + folio_size(folio) - 1;
7286 	u64 cur;
7287 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7288 
7289 	/*
7290 	 * We have folio locked so no new ordered extent can be created on this
7291 	 * page, nor bio can be submitted for this folio.
7292 	 *
7293 	 * But already submitted bio can still be finished on this folio.
7294 	 * Furthermore, endio function won't skip folio which has Ordered
7295 	 * (Private2) already cleared, so it's possible for endio and
7296 	 * invalidate_folio to do the same ordered extent accounting twice
7297 	 * on one folio.
7298 	 *
7299 	 * So here we wait for any submitted bios to finish, so that we won't
7300 	 * do double ordered extent accounting on the same folio.
7301 	 */
7302 	folio_wait_writeback(folio);
7303 	wait_subpage_spinlock(folio);
7304 
7305 	/*
7306 	 * For subpage case, we have call sites like
7307 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7308 	 * sectorsize.
7309 	 * If the range doesn't cover the full folio, we don't need to and
7310 	 * shouldn't clear page extent mapped, as folio->private can still
7311 	 * record subpage dirty bits for other part of the range.
7312 	 *
7313 	 * For cases that invalidate the full folio even the range doesn't
7314 	 * cover the full folio, like invalidating the last folio, we're
7315 	 * still safe to wait for ordered extent to finish.
7316 	 */
7317 	if (!(offset == 0 && length == folio_size(folio))) {
7318 		btrfs_release_folio(folio, GFP_NOFS);
7319 		return;
7320 	}
7321 
7322 	if (!inode_evicting)
7323 		lock_extent(tree, page_start, page_end, &cached_state);
7324 
7325 	cur = page_start;
7326 	while (cur < page_end) {
7327 		struct btrfs_ordered_extent *ordered;
7328 		u64 range_end;
7329 		u32 range_len;
7330 		u32 extra_flags = 0;
7331 
7332 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7333 							   page_end + 1 - cur);
7334 		if (!ordered) {
7335 			range_end = page_end;
7336 			/*
7337 			 * No ordered extent covering this range, we are safe
7338 			 * to delete all extent states in the range.
7339 			 */
7340 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7341 			goto next;
7342 		}
7343 		if (ordered->file_offset > cur) {
7344 			/*
7345 			 * There is a range between [cur, oe->file_offset) not
7346 			 * covered by any ordered extent.
7347 			 * We are safe to delete all extent states, and handle
7348 			 * the ordered extent in the next iteration.
7349 			 */
7350 			range_end = ordered->file_offset - 1;
7351 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7352 			goto next;
7353 		}
7354 
7355 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7356 				page_end);
7357 		ASSERT(range_end + 1 - cur < U32_MAX);
7358 		range_len = range_end + 1 - cur;
7359 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7360 			/*
7361 			 * If Ordered (Private2) is cleared, it means endio has
7362 			 * already been executed for the range.
7363 			 * We can't delete the extent states as
7364 			 * btrfs_finish_ordered_io() may still use some of them.
7365 			 */
7366 			goto next;
7367 		}
7368 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7369 
7370 		/*
7371 		 * IO on this page will never be started, so we need to account
7372 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7373 		 * here, must leave that up for the ordered extent completion.
7374 		 *
7375 		 * This will also unlock the range for incoming
7376 		 * btrfs_finish_ordered_io().
7377 		 */
7378 		if (!inode_evicting)
7379 			clear_extent_bit(tree, cur, range_end,
7380 					 EXTENT_DELALLOC |
7381 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7382 					 EXTENT_DEFRAG, &cached_state);
7383 
7384 		spin_lock_irq(&inode->ordered_tree_lock);
7385 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7386 		ordered->truncated_len = min(ordered->truncated_len,
7387 					     cur - ordered->file_offset);
7388 		spin_unlock_irq(&inode->ordered_tree_lock);
7389 
7390 		/*
7391 		 * If the ordered extent has finished, we're safe to delete all
7392 		 * the extent states of the range, otherwise
7393 		 * btrfs_finish_ordered_io() will get executed by endio for
7394 		 * other pages, so we can't delete extent states.
7395 		 */
7396 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7397 						   cur, range_end + 1 - cur)) {
7398 			btrfs_finish_ordered_io(ordered);
7399 			/*
7400 			 * The ordered extent has finished, now we're again
7401 			 * safe to delete all extent states of the range.
7402 			 */
7403 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7404 		}
7405 next:
7406 		if (ordered)
7407 			btrfs_put_ordered_extent(ordered);
7408 		/*
7409 		 * Qgroup reserved space handler
7410 		 * Sector(s) here will be either:
7411 		 *
7412 		 * 1) Already written to disk or bio already finished
7413 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7414 		 *    Qgroup will be handled by its qgroup_record then.
7415 		 *    btrfs_qgroup_free_data() call will do nothing here.
7416 		 *
7417 		 * 2) Not written to disk yet
7418 		 *    Then btrfs_qgroup_free_data() call will clear the
7419 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7420 		 *    reserved data space.
7421 		 *    Since the IO will never happen for this page.
7422 		 */
7423 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7424 		if (!inode_evicting) {
7425 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7426 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7427 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7428 				 extra_flags, &cached_state);
7429 		}
7430 		cur = range_end + 1;
7431 	}
7432 	/*
7433 	 * We have iterated through all ordered extents of the page, the page
7434 	 * should not have Ordered (Private2) anymore, or the above iteration
7435 	 * did something wrong.
7436 	 */
7437 	ASSERT(!folio_test_ordered(folio));
7438 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7439 	if (!inode_evicting)
7440 		__btrfs_release_folio(folio, GFP_NOFS);
7441 	clear_folio_extent_mapped(folio);
7442 }
7443 
7444 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7445 {
7446 	struct btrfs_truncate_control control = {
7447 		.inode = inode,
7448 		.ino = btrfs_ino(inode),
7449 		.min_type = BTRFS_EXTENT_DATA_KEY,
7450 		.clear_extent_range = true,
7451 	};
7452 	struct btrfs_root *root = inode->root;
7453 	struct btrfs_fs_info *fs_info = root->fs_info;
7454 	struct btrfs_block_rsv *rsv;
7455 	int ret;
7456 	struct btrfs_trans_handle *trans;
7457 	u64 mask = fs_info->sectorsize - 1;
7458 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7459 
7460 	if (!skip_writeback) {
7461 		ret = btrfs_wait_ordered_range(inode,
7462 					       inode->vfs_inode.i_size & (~mask),
7463 					       (u64)-1);
7464 		if (ret)
7465 			return ret;
7466 	}
7467 
7468 	/*
7469 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7470 	 * things going on here:
7471 	 *
7472 	 * 1) We need to reserve space to update our inode.
7473 	 *
7474 	 * 2) We need to have something to cache all the space that is going to
7475 	 * be free'd up by the truncate operation, but also have some slack
7476 	 * space reserved in case it uses space during the truncate (thank you
7477 	 * very much snapshotting).
7478 	 *
7479 	 * And we need these to be separate.  The fact is we can use a lot of
7480 	 * space doing the truncate, and we have no earthly idea how much space
7481 	 * we will use, so we need the truncate reservation to be separate so it
7482 	 * doesn't end up using space reserved for updating the inode.  We also
7483 	 * need to be able to stop the transaction and start a new one, which
7484 	 * means we need to be able to update the inode several times, and we
7485 	 * have no idea of knowing how many times that will be, so we can't just
7486 	 * reserve 1 item for the entirety of the operation, so that has to be
7487 	 * done separately as well.
7488 	 *
7489 	 * So that leaves us with
7490 	 *
7491 	 * 1) rsv - for the truncate reservation, which we will steal from the
7492 	 * transaction reservation.
7493 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7494 	 * updating the inode.
7495 	 */
7496 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7497 	if (!rsv)
7498 		return -ENOMEM;
7499 	rsv->size = min_size;
7500 	rsv->failfast = true;
7501 
7502 	/*
7503 	 * 1 for the truncate slack space
7504 	 * 1 for updating the inode.
7505 	 */
7506 	trans = btrfs_start_transaction(root, 2);
7507 	if (IS_ERR(trans)) {
7508 		ret = PTR_ERR(trans);
7509 		goto out;
7510 	}
7511 
7512 	/* Migrate the slack space for the truncate to our reserve */
7513 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7514 				      min_size, false);
7515 	/*
7516 	 * We have reserved 2 metadata units when we started the transaction and
7517 	 * min_size matches 1 unit, so this should never fail, but if it does,
7518 	 * it's not critical we just fail truncation.
7519 	 */
7520 	if (WARN_ON(ret)) {
7521 		btrfs_end_transaction(trans);
7522 		goto out;
7523 	}
7524 
7525 	trans->block_rsv = rsv;
7526 
7527 	while (1) {
7528 		struct extent_state *cached_state = NULL;
7529 		const u64 new_size = inode->vfs_inode.i_size;
7530 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7531 
7532 		control.new_size = new_size;
7533 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7534 		/*
7535 		 * We want to drop from the next block forward in case this new
7536 		 * size is not block aligned since we will be keeping the last
7537 		 * block of the extent just the way it is.
7538 		 */
7539 		btrfs_drop_extent_map_range(inode,
7540 					    ALIGN(new_size, fs_info->sectorsize),
7541 					    (u64)-1, false);
7542 
7543 		ret = btrfs_truncate_inode_items(trans, root, &control);
7544 
7545 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7546 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7547 
7548 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7549 
7550 		trans->block_rsv = &fs_info->trans_block_rsv;
7551 		if (ret != -ENOSPC && ret != -EAGAIN)
7552 			break;
7553 
7554 		ret = btrfs_update_inode(trans, inode);
7555 		if (ret)
7556 			break;
7557 
7558 		btrfs_end_transaction(trans);
7559 		btrfs_btree_balance_dirty(fs_info);
7560 
7561 		trans = btrfs_start_transaction(root, 2);
7562 		if (IS_ERR(trans)) {
7563 			ret = PTR_ERR(trans);
7564 			trans = NULL;
7565 			break;
7566 		}
7567 
7568 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7569 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7570 					      rsv, min_size, false);
7571 		/*
7572 		 * We have reserved 2 metadata units when we started the
7573 		 * transaction and min_size matches 1 unit, so this should never
7574 		 * fail, but if it does, it's not critical we just fail truncation.
7575 		 */
7576 		if (WARN_ON(ret))
7577 			break;
7578 
7579 		trans->block_rsv = rsv;
7580 	}
7581 
7582 	/*
7583 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7584 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7585 	 * know we've truncated everything except the last little bit, and can
7586 	 * do btrfs_truncate_block and then update the disk_i_size.
7587 	 */
7588 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7589 		btrfs_end_transaction(trans);
7590 		btrfs_btree_balance_dirty(fs_info);
7591 
7592 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7593 		if (ret)
7594 			goto out;
7595 		trans = btrfs_start_transaction(root, 1);
7596 		if (IS_ERR(trans)) {
7597 			ret = PTR_ERR(trans);
7598 			goto out;
7599 		}
7600 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7601 	}
7602 
7603 	if (trans) {
7604 		int ret2;
7605 
7606 		trans->block_rsv = &fs_info->trans_block_rsv;
7607 		ret2 = btrfs_update_inode(trans, inode);
7608 		if (ret2 && !ret)
7609 			ret = ret2;
7610 
7611 		ret2 = btrfs_end_transaction(trans);
7612 		if (ret2 && !ret)
7613 			ret = ret2;
7614 		btrfs_btree_balance_dirty(fs_info);
7615 	}
7616 out:
7617 	btrfs_free_block_rsv(fs_info, rsv);
7618 	/*
7619 	 * So if we truncate and then write and fsync we normally would just
7620 	 * write the extents that changed, which is a problem if we need to
7621 	 * first truncate that entire inode.  So set this flag so we write out
7622 	 * all of the extents in the inode to the sync log so we're completely
7623 	 * safe.
7624 	 *
7625 	 * If no extents were dropped or trimmed we don't need to force the next
7626 	 * fsync to truncate all the inode's items from the log and re-log them
7627 	 * all. This means the truncate operation did not change the file size,
7628 	 * or changed it to a smaller size but there was only an implicit hole
7629 	 * between the old i_size and the new i_size, and there were no prealloc
7630 	 * extents beyond i_size to drop.
7631 	 */
7632 	if (control.extents_found > 0)
7633 		btrfs_set_inode_full_sync(inode);
7634 
7635 	return ret;
7636 }
7637 
7638 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7639 				     struct inode *dir)
7640 {
7641 	struct inode *inode;
7642 
7643 	inode = new_inode(dir->i_sb);
7644 	if (inode) {
7645 		/*
7646 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7647 		 * the parent's sgid bit is set. This is probably a bug.
7648 		 */
7649 		inode_init_owner(idmap, inode, NULL,
7650 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7651 		inode->i_op = &btrfs_dir_inode_operations;
7652 		inode->i_fop = &btrfs_dir_file_operations;
7653 	}
7654 	return inode;
7655 }
7656 
7657 struct inode *btrfs_alloc_inode(struct super_block *sb)
7658 {
7659 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7660 	struct btrfs_inode *ei;
7661 	struct inode *inode;
7662 
7663 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7664 	if (!ei)
7665 		return NULL;
7666 
7667 	ei->root = NULL;
7668 	ei->generation = 0;
7669 	ei->last_trans = 0;
7670 	ei->last_sub_trans = 0;
7671 	ei->logged_trans = 0;
7672 	ei->delalloc_bytes = 0;
7673 	ei->new_delalloc_bytes = 0;
7674 	ei->defrag_bytes = 0;
7675 	ei->disk_i_size = 0;
7676 	ei->flags = 0;
7677 	ei->ro_flags = 0;
7678 	/*
7679 	 * ->index_cnt will be properly initialized later when creating a new
7680 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7681 	 * from disk (btrfs_read_locked_inode()).
7682 	 */
7683 	ei->csum_bytes = 0;
7684 	ei->dir_index = 0;
7685 	ei->last_unlink_trans = 0;
7686 	ei->last_reflink_trans = 0;
7687 	ei->last_log_commit = 0;
7688 
7689 	spin_lock_init(&ei->lock);
7690 	ei->outstanding_extents = 0;
7691 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7692 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7693 					      BTRFS_BLOCK_RSV_DELALLOC);
7694 	ei->runtime_flags = 0;
7695 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7696 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7697 
7698 	ei->delayed_node = NULL;
7699 
7700 	ei->i_otime_sec = 0;
7701 	ei->i_otime_nsec = 0;
7702 
7703 	inode = &ei->vfs_inode;
7704 	extent_map_tree_init(&ei->extent_tree);
7705 
7706 	/* This io tree sets the valid inode. */
7707 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7708 	ei->io_tree.inode = ei;
7709 
7710 	ei->file_extent_tree = NULL;
7711 
7712 	mutex_init(&ei->log_mutex);
7713 	spin_lock_init(&ei->ordered_tree_lock);
7714 	ei->ordered_tree = RB_ROOT;
7715 	ei->ordered_tree_last = NULL;
7716 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7717 	INIT_LIST_HEAD(&ei->delayed_iput);
7718 	init_rwsem(&ei->i_mmap_lock);
7719 
7720 	return inode;
7721 }
7722 
7723 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7724 void btrfs_test_destroy_inode(struct inode *inode)
7725 {
7726 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7727 	kfree(BTRFS_I(inode)->file_extent_tree);
7728 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7729 }
7730 #endif
7731 
7732 void btrfs_free_inode(struct inode *inode)
7733 {
7734 	kfree(BTRFS_I(inode)->file_extent_tree);
7735 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7736 }
7737 
7738 void btrfs_destroy_inode(struct inode *vfs_inode)
7739 {
7740 	struct btrfs_ordered_extent *ordered;
7741 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7742 	struct btrfs_root *root = inode->root;
7743 	bool freespace_inode;
7744 
7745 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7746 	WARN_ON(vfs_inode->i_data.nrpages);
7747 	WARN_ON(inode->block_rsv.reserved);
7748 	WARN_ON(inode->block_rsv.size);
7749 	WARN_ON(inode->outstanding_extents);
7750 	if (!S_ISDIR(vfs_inode->i_mode)) {
7751 		WARN_ON(inode->delalloc_bytes);
7752 		WARN_ON(inode->new_delalloc_bytes);
7753 		WARN_ON(inode->csum_bytes);
7754 	}
7755 	if (!root || !btrfs_is_data_reloc_root(root))
7756 		WARN_ON(inode->defrag_bytes);
7757 
7758 	/*
7759 	 * This can happen where we create an inode, but somebody else also
7760 	 * created the same inode and we need to destroy the one we already
7761 	 * created.
7762 	 */
7763 	if (!root)
7764 		return;
7765 
7766 	/*
7767 	 * If this is a free space inode do not take the ordered extents lockdep
7768 	 * map.
7769 	 */
7770 	freespace_inode = btrfs_is_free_space_inode(inode);
7771 
7772 	while (1) {
7773 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7774 		if (!ordered)
7775 			break;
7776 		else {
7777 			btrfs_err(root->fs_info,
7778 				  "found ordered extent %llu %llu on inode cleanup",
7779 				  ordered->file_offset, ordered->num_bytes);
7780 
7781 			if (!freespace_inode)
7782 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7783 
7784 			btrfs_remove_ordered_extent(inode, ordered);
7785 			btrfs_put_ordered_extent(ordered);
7786 			btrfs_put_ordered_extent(ordered);
7787 		}
7788 	}
7789 	btrfs_qgroup_check_reserved_leak(inode);
7790 	btrfs_del_inode_from_root(inode);
7791 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7792 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7793 	btrfs_put_root(inode->root);
7794 }
7795 
7796 int btrfs_drop_inode(struct inode *inode)
7797 {
7798 	struct btrfs_root *root = BTRFS_I(inode)->root;
7799 
7800 	if (root == NULL)
7801 		return 1;
7802 
7803 	/* the snap/subvol tree is on deleting */
7804 	if (btrfs_root_refs(&root->root_item) == 0)
7805 		return 1;
7806 	else
7807 		return generic_drop_inode(inode);
7808 }
7809 
7810 static void init_once(void *foo)
7811 {
7812 	struct btrfs_inode *ei = foo;
7813 
7814 	inode_init_once(&ei->vfs_inode);
7815 }
7816 
7817 void __cold btrfs_destroy_cachep(void)
7818 {
7819 	/*
7820 	 * Make sure all delayed rcu free inodes are flushed before we
7821 	 * destroy cache.
7822 	 */
7823 	rcu_barrier();
7824 	kmem_cache_destroy(btrfs_inode_cachep);
7825 }
7826 
7827 int __init btrfs_init_cachep(void)
7828 {
7829 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7830 			sizeof(struct btrfs_inode), 0,
7831 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7832 			init_once);
7833 	if (!btrfs_inode_cachep)
7834 		return -ENOMEM;
7835 
7836 	return 0;
7837 }
7838 
7839 static int btrfs_getattr(struct mnt_idmap *idmap,
7840 			 const struct path *path, struct kstat *stat,
7841 			 u32 request_mask, unsigned int flags)
7842 {
7843 	u64 delalloc_bytes;
7844 	u64 inode_bytes;
7845 	struct inode *inode = d_inode(path->dentry);
7846 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7847 	u32 bi_flags = BTRFS_I(inode)->flags;
7848 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7849 
7850 	stat->result_mask |= STATX_BTIME;
7851 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7852 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7853 	if (bi_flags & BTRFS_INODE_APPEND)
7854 		stat->attributes |= STATX_ATTR_APPEND;
7855 	if (bi_flags & BTRFS_INODE_COMPRESS)
7856 		stat->attributes |= STATX_ATTR_COMPRESSED;
7857 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7858 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7859 	if (bi_flags & BTRFS_INODE_NODUMP)
7860 		stat->attributes |= STATX_ATTR_NODUMP;
7861 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7862 		stat->attributes |= STATX_ATTR_VERITY;
7863 
7864 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7865 				  STATX_ATTR_COMPRESSED |
7866 				  STATX_ATTR_IMMUTABLE |
7867 				  STATX_ATTR_NODUMP);
7868 
7869 	generic_fillattr(idmap, request_mask, inode, stat);
7870 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7871 
7872 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7873 	stat->result_mask |= STATX_SUBVOL;
7874 
7875 	spin_lock(&BTRFS_I(inode)->lock);
7876 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7877 	inode_bytes = inode_get_bytes(inode);
7878 	spin_unlock(&BTRFS_I(inode)->lock);
7879 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7880 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7881 	return 0;
7882 }
7883 
7884 static int btrfs_rename_exchange(struct inode *old_dir,
7885 			      struct dentry *old_dentry,
7886 			      struct inode *new_dir,
7887 			      struct dentry *new_dentry)
7888 {
7889 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7890 	struct btrfs_trans_handle *trans;
7891 	unsigned int trans_num_items;
7892 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7893 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7894 	struct inode *new_inode = new_dentry->d_inode;
7895 	struct inode *old_inode = old_dentry->d_inode;
7896 	struct btrfs_rename_ctx old_rename_ctx;
7897 	struct btrfs_rename_ctx new_rename_ctx;
7898 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7899 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7900 	u64 old_idx = 0;
7901 	u64 new_idx = 0;
7902 	int ret;
7903 	int ret2;
7904 	bool need_abort = false;
7905 	struct fscrypt_name old_fname, new_fname;
7906 	struct fscrypt_str *old_name, *new_name;
7907 
7908 	/*
7909 	 * For non-subvolumes allow exchange only within one subvolume, in the
7910 	 * same inode namespace. Two subvolumes (represented as directory) can
7911 	 * be exchanged as they're a logical link and have a fixed inode number.
7912 	 */
7913 	if (root != dest &&
7914 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7915 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7916 		return -EXDEV;
7917 
7918 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7919 	if (ret)
7920 		return ret;
7921 
7922 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7923 	if (ret) {
7924 		fscrypt_free_filename(&old_fname);
7925 		return ret;
7926 	}
7927 
7928 	old_name = &old_fname.disk_name;
7929 	new_name = &new_fname.disk_name;
7930 
7931 	/* close the race window with snapshot create/destroy ioctl */
7932 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7933 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7934 		down_read(&fs_info->subvol_sem);
7935 
7936 	/*
7937 	 * For each inode:
7938 	 * 1 to remove old dir item
7939 	 * 1 to remove old dir index
7940 	 * 1 to add new dir item
7941 	 * 1 to add new dir index
7942 	 * 1 to update parent inode
7943 	 *
7944 	 * If the parents are the same, we only need to account for one
7945 	 */
7946 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7947 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7948 		/*
7949 		 * 1 to remove old root ref
7950 		 * 1 to remove old root backref
7951 		 * 1 to add new root ref
7952 		 * 1 to add new root backref
7953 		 */
7954 		trans_num_items += 4;
7955 	} else {
7956 		/*
7957 		 * 1 to update inode item
7958 		 * 1 to remove old inode ref
7959 		 * 1 to add new inode ref
7960 		 */
7961 		trans_num_items += 3;
7962 	}
7963 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7964 		trans_num_items += 4;
7965 	else
7966 		trans_num_items += 3;
7967 	trans = btrfs_start_transaction(root, trans_num_items);
7968 	if (IS_ERR(trans)) {
7969 		ret = PTR_ERR(trans);
7970 		goto out_notrans;
7971 	}
7972 
7973 	if (dest != root) {
7974 		ret = btrfs_record_root_in_trans(trans, dest);
7975 		if (ret)
7976 			goto out_fail;
7977 	}
7978 
7979 	/*
7980 	 * We need to find a free sequence number both in the source and
7981 	 * in the destination directory for the exchange.
7982 	 */
7983 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7984 	if (ret)
7985 		goto out_fail;
7986 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7987 	if (ret)
7988 		goto out_fail;
7989 
7990 	BTRFS_I(old_inode)->dir_index = 0ULL;
7991 	BTRFS_I(new_inode)->dir_index = 0ULL;
7992 
7993 	/* Reference for the source. */
7994 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7995 		/* force full log commit if subvolume involved. */
7996 		btrfs_set_log_full_commit(trans);
7997 	} else {
7998 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7999 					     btrfs_ino(BTRFS_I(new_dir)),
8000 					     old_idx);
8001 		if (ret)
8002 			goto out_fail;
8003 		need_abort = true;
8004 	}
8005 
8006 	/* And now for the dest. */
8007 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8008 		/* force full log commit if subvolume involved. */
8009 		btrfs_set_log_full_commit(trans);
8010 	} else {
8011 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8012 					     btrfs_ino(BTRFS_I(old_dir)),
8013 					     new_idx);
8014 		if (ret) {
8015 			if (need_abort)
8016 				btrfs_abort_transaction(trans, ret);
8017 			goto out_fail;
8018 		}
8019 	}
8020 
8021 	/* Update inode version and ctime/mtime. */
8022 	inode_inc_iversion(old_dir);
8023 	inode_inc_iversion(new_dir);
8024 	inode_inc_iversion(old_inode);
8025 	inode_inc_iversion(new_inode);
8026 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8027 
8028 	if (old_dentry->d_parent != new_dentry->d_parent) {
8029 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8030 					BTRFS_I(old_inode), true);
8031 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8032 					BTRFS_I(new_inode), true);
8033 	}
8034 
8035 	/* src is a subvolume */
8036 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8037 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8038 	} else { /* src is an inode */
8039 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8040 					   BTRFS_I(old_dentry->d_inode),
8041 					   old_name, &old_rename_ctx);
8042 		if (!ret)
8043 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8044 	}
8045 	if (ret) {
8046 		btrfs_abort_transaction(trans, ret);
8047 		goto out_fail;
8048 	}
8049 
8050 	/* dest is a subvolume */
8051 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8052 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8053 	} else { /* dest is an inode */
8054 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8055 					   BTRFS_I(new_dentry->d_inode),
8056 					   new_name, &new_rename_ctx);
8057 		if (!ret)
8058 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8059 	}
8060 	if (ret) {
8061 		btrfs_abort_transaction(trans, ret);
8062 		goto out_fail;
8063 	}
8064 
8065 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8066 			     new_name, 0, old_idx);
8067 	if (ret) {
8068 		btrfs_abort_transaction(trans, ret);
8069 		goto out_fail;
8070 	}
8071 
8072 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8073 			     old_name, 0, new_idx);
8074 	if (ret) {
8075 		btrfs_abort_transaction(trans, ret);
8076 		goto out_fail;
8077 	}
8078 
8079 	if (old_inode->i_nlink == 1)
8080 		BTRFS_I(old_inode)->dir_index = old_idx;
8081 	if (new_inode->i_nlink == 1)
8082 		BTRFS_I(new_inode)->dir_index = new_idx;
8083 
8084 	/*
8085 	 * Now pin the logs of the roots. We do it to ensure that no other task
8086 	 * can sync the logs while we are in progress with the rename, because
8087 	 * that could result in an inconsistency in case any of the inodes that
8088 	 * are part of this rename operation were logged before.
8089 	 */
8090 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8091 		btrfs_pin_log_trans(root);
8092 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8093 		btrfs_pin_log_trans(dest);
8094 
8095 	/* Do the log updates for all inodes. */
8096 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8097 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8098 				   old_rename_ctx.index, new_dentry->d_parent);
8099 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8100 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8101 				   new_rename_ctx.index, old_dentry->d_parent);
8102 
8103 	/* Now unpin the logs. */
8104 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8105 		btrfs_end_log_trans(root);
8106 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8107 		btrfs_end_log_trans(dest);
8108 out_fail:
8109 	ret2 = btrfs_end_transaction(trans);
8110 	ret = ret ? ret : ret2;
8111 out_notrans:
8112 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8113 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8114 		up_read(&fs_info->subvol_sem);
8115 
8116 	fscrypt_free_filename(&new_fname);
8117 	fscrypt_free_filename(&old_fname);
8118 	return ret;
8119 }
8120 
8121 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8122 					struct inode *dir)
8123 {
8124 	struct inode *inode;
8125 
8126 	inode = new_inode(dir->i_sb);
8127 	if (inode) {
8128 		inode_init_owner(idmap, inode, dir,
8129 				 S_IFCHR | WHITEOUT_MODE);
8130 		inode->i_op = &btrfs_special_inode_operations;
8131 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8132 	}
8133 	return inode;
8134 }
8135 
8136 static int btrfs_rename(struct mnt_idmap *idmap,
8137 			struct inode *old_dir, struct dentry *old_dentry,
8138 			struct inode *new_dir, struct dentry *new_dentry,
8139 			unsigned int flags)
8140 {
8141 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8142 	struct btrfs_new_inode_args whiteout_args = {
8143 		.dir = old_dir,
8144 		.dentry = old_dentry,
8145 	};
8146 	struct btrfs_trans_handle *trans;
8147 	unsigned int trans_num_items;
8148 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8149 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8150 	struct inode *new_inode = d_inode(new_dentry);
8151 	struct inode *old_inode = d_inode(old_dentry);
8152 	struct btrfs_rename_ctx rename_ctx;
8153 	u64 index = 0;
8154 	int ret;
8155 	int ret2;
8156 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8157 	struct fscrypt_name old_fname, new_fname;
8158 
8159 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8160 		return -EPERM;
8161 
8162 	/* we only allow rename subvolume link between subvolumes */
8163 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8164 		return -EXDEV;
8165 
8166 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8167 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8168 		return -ENOTEMPTY;
8169 
8170 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8171 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8172 		return -ENOTEMPTY;
8173 
8174 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8175 	if (ret)
8176 		return ret;
8177 
8178 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8179 	if (ret) {
8180 		fscrypt_free_filename(&old_fname);
8181 		return ret;
8182 	}
8183 
8184 	/* check for collisions, even if the  name isn't there */
8185 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8186 	if (ret) {
8187 		if (ret == -EEXIST) {
8188 			/* we shouldn't get
8189 			 * eexist without a new_inode */
8190 			if (WARN_ON(!new_inode)) {
8191 				goto out_fscrypt_names;
8192 			}
8193 		} else {
8194 			/* maybe -EOVERFLOW */
8195 			goto out_fscrypt_names;
8196 		}
8197 	}
8198 	ret = 0;
8199 
8200 	/*
8201 	 * we're using rename to replace one file with another.  Start IO on it
8202 	 * now so  we don't add too much work to the end of the transaction
8203 	 */
8204 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8205 		filemap_flush(old_inode->i_mapping);
8206 
8207 	if (flags & RENAME_WHITEOUT) {
8208 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8209 		if (!whiteout_args.inode) {
8210 			ret = -ENOMEM;
8211 			goto out_fscrypt_names;
8212 		}
8213 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8214 		if (ret)
8215 			goto out_whiteout_inode;
8216 	} else {
8217 		/* 1 to update the old parent inode. */
8218 		trans_num_items = 1;
8219 	}
8220 
8221 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8222 		/* Close the race window with snapshot create/destroy ioctl */
8223 		down_read(&fs_info->subvol_sem);
8224 		/*
8225 		 * 1 to remove old root ref
8226 		 * 1 to remove old root backref
8227 		 * 1 to add new root ref
8228 		 * 1 to add new root backref
8229 		 */
8230 		trans_num_items += 4;
8231 	} else {
8232 		/*
8233 		 * 1 to update inode
8234 		 * 1 to remove old inode ref
8235 		 * 1 to add new inode ref
8236 		 */
8237 		trans_num_items += 3;
8238 	}
8239 	/*
8240 	 * 1 to remove old dir item
8241 	 * 1 to remove old dir index
8242 	 * 1 to add new dir item
8243 	 * 1 to add new dir index
8244 	 */
8245 	trans_num_items += 4;
8246 	/* 1 to update new parent inode if it's not the same as the old parent */
8247 	if (new_dir != old_dir)
8248 		trans_num_items++;
8249 	if (new_inode) {
8250 		/*
8251 		 * 1 to update inode
8252 		 * 1 to remove inode ref
8253 		 * 1 to remove dir item
8254 		 * 1 to remove dir index
8255 		 * 1 to possibly add orphan item
8256 		 */
8257 		trans_num_items += 5;
8258 	}
8259 	trans = btrfs_start_transaction(root, trans_num_items);
8260 	if (IS_ERR(trans)) {
8261 		ret = PTR_ERR(trans);
8262 		goto out_notrans;
8263 	}
8264 
8265 	if (dest != root) {
8266 		ret = btrfs_record_root_in_trans(trans, dest);
8267 		if (ret)
8268 			goto out_fail;
8269 	}
8270 
8271 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8272 	if (ret)
8273 		goto out_fail;
8274 
8275 	BTRFS_I(old_inode)->dir_index = 0ULL;
8276 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8277 		/* force full log commit if subvolume involved. */
8278 		btrfs_set_log_full_commit(trans);
8279 	} else {
8280 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8281 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8282 					     index);
8283 		if (ret)
8284 			goto out_fail;
8285 	}
8286 
8287 	inode_inc_iversion(old_dir);
8288 	inode_inc_iversion(new_dir);
8289 	inode_inc_iversion(old_inode);
8290 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8291 
8292 	if (old_dentry->d_parent != new_dentry->d_parent)
8293 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8294 					BTRFS_I(old_inode), true);
8295 
8296 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8297 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8298 	} else {
8299 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8300 					   BTRFS_I(d_inode(old_dentry)),
8301 					   &old_fname.disk_name, &rename_ctx);
8302 		if (!ret)
8303 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8304 	}
8305 	if (ret) {
8306 		btrfs_abort_transaction(trans, ret);
8307 		goto out_fail;
8308 	}
8309 
8310 	if (new_inode) {
8311 		inode_inc_iversion(new_inode);
8312 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8313 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8314 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8315 			BUG_ON(new_inode->i_nlink == 0);
8316 		} else {
8317 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8318 						 BTRFS_I(d_inode(new_dentry)),
8319 						 &new_fname.disk_name);
8320 		}
8321 		if (!ret && new_inode->i_nlink == 0)
8322 			ret = btrfs_orphan_add(trans,
8323 					BTRFS_I(d_inode(new_dentry)));
8324 		if (ret) {
8325 			btrfs_abort_transaction(trans, ret);
8326 			goto out_fail;
8327 		}
8328 	}
8329 
8330 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8331 			     &new_fname.disk_name, 0, index);
8332 	if (ret) {
8333 		btrfs_abort_transaction(trans, ret);
8334 		goto out_fail;
8335 	}
8336 
8337 	if (old_inode->i_nlink == 1)
8338 		BTRFS_I(old_inode)->dir_index = index;
8339 
8340 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8341 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8342 				   rename_ctx.index, new_dentry->d_parent);
8343 
8344 	if (flags & RENAME_WHITEOUT) {
8345 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8346 		if (ret) {
8347 			btrfs_abort_transaction(trans, ret);
8348 			goto out_fail;
8349 		} else {
8350 			unlock_new_inode(whiteout_args.inode);
8351 			iput(whiteout_args.inode);
8352 			whiteout_args.inode = NULL;
8353 		}
8354 	}
8355 out_fail:
8356 	ret2 = btrfs_end_transaction(trans);
8357 	ret = ret ? ret : ret2;
8358 out_notrans:
8359 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8360 		up_read(&fs_info->subvol_sem);
8361 	if (flags & RENAME_WHITEOUT)
8362 		btrfs_new_inode_args_destroy(&whiteout_args);
8363 out_whiteout_inode:
8364 	if (flags & RENAME_WHITEOUT)
8365 		iput(whiteout_args.inode);
8366 out_fscrypt_names:
8367 	fscrypt_free_filename(&old_fname);
8368 	fscrypt_free_filename(&new_fname);
8369 	return ret;
8370 }
8371 
8372 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8373 			 struct dentry *old_dentry, struct inode *new_dir,
8374 			 struct dentry *new_dentry, unsigned int flags)
8375 {
8376 	int ret;
8377 
8378 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8379 		return -EINVAL;
8380 
8381 	if (flags & RENAME_EXCHANGE)
8382 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8383 					    new_dentry);
8384 	else
8385 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8386 				   new_dentry, flags);
8387 
8388 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8389 
8390 	return ret;
8391 }
8392 
8393 struct btrfs_delalloc_work {
8394 	struct inode *inode;
8395 	struct completion completion;
8396 	struct list_head list;
8397 	struct btrfs_work work;
8398 };
8399 
8400 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8401 {
8402 	struct btrfs_delalloc_work *delalloc_work;
8403 	struct inode *inode;
8404 
8405 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8406 				     work);
8407 	inode = delalloc_work->inode;
8408 	filemap_flush(inode->i_mapping);
8409 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8410 				&BTRFS_I(inode)->runtime_flags))
8411 		filemap_flush(inode->i_mapping);
8412 
8413 	iput(inode);
8414 	complete(&delalloc_work->completion);
8415 }
8416 
8417 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8418 {
8419 	struct btrfs_delalloc_work *work;
8420 
8421 	work = kmalloc(sizeof(*work), GFP_NOFS);
8422 	if (!work)
8423 		return NULL;
8424 
8425 	init_completion(&work->completion);
8426 	INIT_LIST_HEAD(&work->list);
8427 	work->inode = inode;
8428 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8429 
8430 	return work;
8431 }
8432 
8433 /*
8434  * some fairly slow code that needs optimization. This walks the list
8435  * of all the inodes with pending delalloc and forces them to disk.
8436  */
8437 static int start_delalloc_inodes(struct btrfs_root *root,
8438 				 struct writeback_control *wbc, bool snapshot,
8439 				 bool in_reclaim_context)
8440 {
8441 	struct btrfs_inode *binode;
8442 	struct inode *inode;
8443 	struct btrfs_delalloc_work *work, *next;
8444 	LIST_HEAD(works);
8445 	LIST_HEAD(splice);
8446 	int ret = 0;
8447 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8448 
8449 	mutex_lock(&root->delalloc_mutex);
8450 	spin_lock(&root->delalloc_lock);
8451 	list_splice_init(&root->delalloc_inodes, &splice);
8452 	while (!list_empty(&splice)) {
8453 		binode = list_entry(splice.next, struct btrfs_inode,
8454 				    delalloc_inodes);
8455 
8456 		list_move_tail(&binode->delalloc_inodes,
8457 			       &root->delalloc_inodes);
8458 
8459 		if (in_reclaim_context &&
8460 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8461 			continue;
8462 
8463 		inode = igrab(&binode->vfs_inode);
8464 		if (!inode) {
8465 			cond_resched_lock(&root->delalloc_lock);
8466 			continue;
8467 		}
8468 		spin_unlock(&root->delalloc_lock);
8469 
8470 		if (snapshot)
8471 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8472 				&binode->runtime_flags);
8473 		if (full_flush) {
8474 			work = btrfs_alloc_delalloc_work(inode);
8475 			if (!work) {
8476 				iput(inode);
8477 				ret = -ENOMEM;
8478 				goto out;
8479 			}
8480 			list_add_tail(&work->list, &works);
8481 			btrfs_queue_work(root->fs_info->flush_workers,
8482 					 &work->work);
8483 		} else {
8484 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8485 			btrfs_add_delayed_iput(BTRFS_I(inode));
8486 			if (ret || wbc->nr_to_write <= 0)
8487 				goto out;
8488 		}
8489 		cond_resched();
8490 		spin_lock(&root->delalloc_lock);
8491 	}
8492 	spin_unlock(&root->delalloc_lock);
8493 
8494 out:
8495 	list_for_each_entry_safe(work, next, &works, list) {
8496 		list_del_init(&work->list);
8497 		wait_for_completion(&work->completion);
8498 		kfree(work);
8499 	}
8500 
8501 	if (!list_empty(&splice)) {
8502 		spin_lock(&root->delalloc_lock);
8503 		list_splice_tail(&splice, &root->delalloc_inodes);
8504 		spin_unlock(&root->delalloc_lock);
8505 	}
8506 	mutex_unlock(&root->delalloc_mutex);
8507 	return ret;
8508 }
8509 
8510 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8511 {
8512 	struct writeback_control wbc = {
8513 		.nr_to_write = LONG_MAX,
8514 		.sync_mode = WB_SYNC_NONE,
8515 		.range_start = 0,
8516 		.range_end = LLONG_MAX,
8517 	};
8518 	struct btrfs_fs_info *fs_info = root->fs_info;
8519 
8520 	if (BTRFS_FS_ERROR(fs_info))
8521 		return -EROFS;
8522 
8523 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8524 }
8525 
8526 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8527 			       bool in_reclaim_context)
8528 {
8529 	struct writeback_control wbc = {
8530 		.nr_to_write = nr,
8531 		.sync_mode = WB_SYNC_NONE,
8532 		.range_start = 0,
8533 		.range_end = LLONG_MAX,
8534 	};
8535 	struct btrfs_root *root;
8536 	LIST_HEAD(splice);
8537 	int ret;
8538 
8539 	if (BTRFS_FS_ERROR(fs_info))
8540 		return -EROFS;
8541 
8542 	mutex_lock(&fs_info->delalloc_root_mutex);
8543 	spin_lock(&fs_info->delalloc_root_lock);
8544 	list_splice_init(&fs_info->delalloc_roots, &splice);
8545 	while (!list_empty(&splice)) {
8546 		/*
8547 		 * Reset nr_to_write here so we know that we're doing a full
8548 		 * flush.
8549 		 */
8550 		if (nr == LONG_MAX)
8551 			wbc.nr_to_write = LONG_MAX;
8552 
8553 		root = list_first_entry(&splice, struct btrfs_root,
8554 					delalloc_root);
8555 		root = btrfs_grab_root(root);
8556 		BUG_ON(!root);
8557 		list_move_tail(&root->delalloc_root,
8558 			       &fs_info->delalloc_roots);
8559 		spin_unlock(&fs_info->delalloc_root_lock);
8560 
8561 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8562 		btrfs_put_root(root);
8563 		if (ret < 0 || wbc.nr_to_write <= 0)
8564 			goto out;
8565 		spin_lock(&fs_info->delalloc_root_lock);
8566 	}
8567 	spin_unlock(&fs_info->delalloc_root_lock);
8568 
8569 	ret = 0;
8570 out:
8571 	if (!list_empty(&splice)) {
8572 		spin_lock(&fs_info->delalloc_root_lock);
8573 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8574 		spin_unlock(&fs_info->delalloc_root_lock);
8575 	}
8576 	mutex_unlock(&fs_info->delalloc_root_mutex);
8577 	return ret;
8578 }
8579 
8580 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8581 			 struct dentry *dentry, const char *symname)
8582 {
8583 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8584 	struct btrfs_trans_handle *trans;
8585 	struct btrfs_root *root = BTRFS_I(dir)->root;
8586 	struct btrfs_path *path;
8587 	struct btrfs_key key;
8588 	struct inode *inode;
8589 	struct btrfs_new_inode_args new_inode_args = {
8590 		.dir = dir,
8591 		.dentry = dentry,
8592 	};
8593 	unsigned int trans_num_items;
8594 	int err;
8595 	int name_len;
8596 	int datasize;
8597 	unsigned long ptr;
8598 	struct btrfs_file_extent_item *ei;
8599 	struct extent_buffer *leaf;
8600 
8601 	name_len = strlen(symname);
8602 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8603 		return -ENAMETOOLONG;
8604 
8605 	inode = new_inode(dir->i_sb);
8606 	if (!inode)
8607 		return -ENOMEM;
8608 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8609 	inode->i_op = &btrfs_symlink_inode_operations;
8610 	inode_nohighmem(inode);
8611 	inode->i_mapping->a_ops = &btrfs_aops;
8612 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8613 	inode_set_bytes(inode, name_len);
8614 
8615 	new_inode_args.inode = inode;
8616 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8617 	if (err)
8618 		goto out_inode;
8619 	/* 1 additional item for the inline extent */
8620 	trans_num_items++;
8621 
8622 	trans = btrfs_start_transaction(root, trans_num_items);
8623 	if (IS_ERR(trans)) {
8624 		err = PTR_ERR(trans);
8625 		goto out_new_inode_args;
8626 	}
8627 
8628 	err = btrfs_create_new_inode(trans, &new_inode_args);
8629 	if (err)
8630 		goto out;
8631 
8632 	path = btrfs_alloc_path();
8633 	if (!path) {
8634 		err = -ENOMEM;
8635 		btrfs_abort_transaction(trans, err);
8636 		discard_new_inode(inode);
8637 		inode = NULL;
8638 		goto out;
8639 	}
8640 	key.objectid = btrfs_ino(BTRFS_I(inode));
8641 	key.offset = 0;
8642 	key.type = BTRFS_EXTENT_DATA_KEY;
8643 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8644 	err = btrfs_insert_empty_item(trans, root, path, &key,
8645 				      datasize);
8646 	if (err) {
8647 		btrfs_abort_transaction(trans, err);
8648 		btrfs_free_path(path);
8649 		discard_new_inode(inode);
8650 		inode = NULL;
8651 		goto out;
8652 	}
8653 	leaf = path->nodes[0];
8654 	ei = btrfs_item_ptr(leaf, path->slots[0],
8655 			    struct btrfs_file_extent_item);
8656 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8657 	btrfs_set_file_extent_type(leaf, ei,
8658 				   BTRFS_FILE_EXTENT_INLINE);
8659 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8660 	btrfs_set_file_extent_compression(leaf, ei, 0);
8661 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8662 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8663 
8664 	ptr = btrfs_file_extent_inline_start(ei);
8665 	write_extent_buffer(leaf, symname, ptr, name_len);
8666 	btrfs_mark_buffer_dirty(trans, leaf);
8667 	btrfs_free_path(path);
8668 
8669 	d_instantiate_new(dentry, inode);
8670 	err = 0;
8671 out:
8672 	btrfs_end_transaction(trans);
8673 	btrfs_btree_balance_dirty(fs_info);
8674 out_new_inode_args:
8675 	btrfs_new_inode_args_destroy(&new_inode_args);
8676 out_inode:
8677 	if (err)
8678 		iput(inode);
8679 	return err;
8680 }
8681 
8682 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8683 				       struct btrfs_trans_handle *trans_in,
8684 				       struct btrfs_inode *inode,
8685 				       struct btrfs_key *ins,
8686 				       u64 file_offset)
8687 {
8688 	struct btrfs_file_extent_item stack_fi;
8689 	struct btrfs_replace_extent_info extent_info;
8690 	struct btrfs_trans_handle *trans = trans_in;
8691 	struct btrfs_path *path;
8692 	u64 start = ins->objectid;
8693 	u64 len = ins->offset;
8694 	u64 qgroup_released = 0;
8695 	int ret;
8696 
8697 	memset(&stack_fi, 0, sizeof(stack_fi));
8698 
8699 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8700 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8701 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8702 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8703 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8704 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8705 	/* Encryption and other encoding is reserved and all 0 */
8706 
8707 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8708 	if (ret < 0)
8709 		return ERR_PTR(ret);
8710 
8711 	if (trans) {
8712 		ret = insert_reserved_file_extent(trans, inode,
8713 						  file_offset, &stack_fi,
8714 						  true, qgroup_released);
8715 		if (ret)
8716 			goto free_qgroup;
8717 		return trans;
8718 	}
8719 
8720 	extent_info.disk_offset = start;
8721 	extent_info.disk_len = len;
8722 	extent_info.data_offset = 0;
8723 	extent_info.data_len = len;
8724 	extent_info.file_offset = file_offset;
8725 	extent_info.extent_buf = (char *)&stack_fi;
8726 	extent_info.is_new_extent = true;
8727 	extent_info.update_times = true;
8728 	extent_info.qgroup_reserved = qgroup_released;
8729 	extent_info.insertions = 0;
8730 
8731 	path = btrfs_alloc_path();
8732 	if (!path) {
8733 		ret = -ENOMEM;
8734 		goto free_qgroup;
8735 	}
8736 
8737 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8738 				     file_offset + len - 1, &extent_info,
8739 				     &trans);
8740 	btrfs_free_path(path);
8741 	if (ret)
8742 		goto free_qgroup;
8743 	return trans;
8744 
8745 free_qgroup:
8746 	/*
8747 	 * We have released qgroup data range at the beginning of the function,
8748 	 * and normally qgroup_released bytes will be freed when committing
8749 	 * transaction.
8750 	 * But if we error out early, we have to free what we have released
8751 	 * or we leak qgroup data reservation.
8752 	 */
8753 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8754 			btrfs_root_id(inode->root), qgroup_released,
8755 			BTRFS_QGROUP_RSV_DATA);
8756 	return ERR_PTR(ret);
8757 }
8758 
8759 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8760 				       u64 start, u64 num_bytes, u64 min_size,
8761 				       loff_t actual_len, u64 *alloc_hint,
8762 				       struct btrfs_trans_handle *trans)
8763 {
8764 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8765 	struct extent_map *em;
8766 	struct btrfs_root *root = BTRFS_I(inode)->root;
8767 	struct btrfs_key ins;
8768 	u64 cur_offset = start;
8769 	u64 clear_offset = start;
8770 	u64 i_size;
8771 	u64 cur_bytes;
8772 	u64 last_alloc = (u64)-1;
8773 	int ret = 0;
8774 	bool own_trans = true;
8775 	u64 end = start + num_bytes - 1;
8776 
8777 	if (trans)
8778 		own_trans = false;
8779 	while (num_bytes > 0) {
8780 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8781 		cur_bytes = max(cur_bytes, min_size);
8782 		/*
8783 		 * If we are severely fragmented we could end up with really
8784 		 * small allocations, so if the allocator is returning small
8785 		 * chunks lets make its job easier by only searching for those
8786 		 * sized chunks.
8787 		 */
8788 		cur_bytes = min(cur_bytes, last_alloc);
8789 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8790 				min_size, 0, *alloc_hint, &ins, 1, 0);
8791 		if (ret)
8792 			break;
8793 
8794 		/*
8795 		 * We've reserved this space, and thus converted it from
8796 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8797 		 * from here on out we will only need to clear our reservation
8798 		 * for the remaining unreserved area, so advance our
8799 		 * clear_offset by our extent size.
8800 		 */
8801 		clear_offset += ins.offset;
8802 
8803 		last_alloc = ins.offset;
8804 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8805 						    &ins, cur_offset);
8806 		/*
8807 		 * Now that we inserted the prealloc extent we can finally
8808 		 * decrement the number of reservations in the block group.
8809 		 * If we did it before, we could race with relocation and have
8810 		 * relocation miss the reserved extent, making it fail later.
8811 		 */
8812 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8813 		if (IS_ERR(trans)) {
8814 			ret = PTR_ERR(trans);
8815 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8816 						   ins.offset, 0);
8817 			break;
8818 		}
8819 
8820 		em = alloc_extent_map();
8821 		if (!em) {
8822 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8823 					    cur_offset + ins.offset - 1, false);
8824 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8825 			goto next;
8826 		}
8827 
8828 		em->start = cur_offset;
8829 		em->len = ins.offset;
8830 		em->disk_bytenr = ins.objectid;
8831 		em->offset = 0;
8832 		em->disk_num_bytes = ins.offset;
8833 		em->ram_bytes = ins.offset;
8834 		em->flags |= EXTENT_FLAG_PREALLOC;
8835 		em->generation = trans->transid;
8836 
8837 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8838 		free_extent_map(em);
8839 next:
8840 		num_bytes -= ins.offset;
8841 		cur_offset += ins.offset;
8842 		*alloc_hint = ins.objectid + ins.offset;
8843 
8844 		inode_inc_iversion(inode);
8845 		inode_set_ctime_current(inode);
8846 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8847 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8848 		    (actual_len > inode->i_size) &&
8849 		    (cur_offset > inode->i_size)) {
8850 			if (cur_offset > actual_len)
8851 				i_size = actual_len;
8852 			else
8853 				i_size = cur_offset;
8854 			i_size_write(inode, i_size);
8855 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8856 		}
8857 
8858 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8859 
8860 		if (ret) {
8861 			btrfs_abort_transaction(trans, ret);
8862 			if (own_trans)
8863 				btrfs_end_transaction(trans);
8864 			break;
8865 		}
8866 
8867 		if (own_trans) {
8868 			btrfs_end_transaction(trans);
8869 			trans = NULL;
8870 		}
8871 	}
8872 	if (clear_offset < end)
8873 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8874 			end - clear_offset + 1);
8875 	return ret;
8876 }
8877 
8878 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8879 			      u64 start, u64 num_bytes, u64 min_size,
8880 			      loff_t actual_len, u64 *alloc_hint)
8881 {
8882 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8883 					   min_size, actual_len, alloc_hint,
8884 					   NULL);
8885 }
8886 
8887 int btrfs_prealloc_file_range_trans(struct inode *inode,
8888 				    struct btrfs_trans_handle *trans, int mode,
8889 				    u64 start, u64 num_bytes, u64 min_size,
8890 				    loff_t actual_len, u64 *alloc_hint)
8891 {
8892 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8893 					   min_size, actual_len, alloc_hint, trans);
8894 }
8895 
8896 static int btrfs_permission(struct mnt_idmap *idmap,
8897 			    struct inode *inode, int mask)
8898 {
8899 	struct btrfs_root *root = BTRFS_I(inode)->root;
8900 	umode_t mode = inode->i_mode;
8901 
8902 	if (mask & MAY_WRITE &&
8903 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8904 		if (btrfs_root_readonly(root))
8905 			return -EROFS;
8906 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8907 			return -EACCES;
8908 	}
8909 	return generic_permission(idmap, inode, mask);
8910 }
8911 
8912 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8913 			 struct file *file, umode_t mode)
8914 {
8915 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8916 	struct btrfs_trans_handle *trans;
8917 	struct btrfs_root *root = BTRFS_I(dir)->root;
8918 	struct inode *inode;
8919 	struct btrfs_new_inode_args new_inode_args = {
8920 		.dir = dir,
8921 		.dentry = file->f_path.dentry,
8922 		.orphan = true,
8923 	};
8924 	unsigned int trans_num_items;
8925 	int ret;
8926 
8927 	inode = new_inode(dir->i_sb);
8928 	if (!inode)
8929 		return -ENOMEM;
8930 	inode_init_owner(idmap, inode, dir, mode);
8931 	inode->i_fop = &btrfs_file_operations;
8932 	inode->i_op = &btrfs_file_inode_operations;
8933 	inode->i_mapping->a_ops = &btrfs_aops;
8934 
8935 	new_inode_args.inode = inode;
8936 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8937 	if (ret)
8938 		goto out_inode;
8939 
8940 	trans = btrfs_start_transaction(root, trans_num_items);
8941 	if (IS_ERR(trans)) {
8942 		ret = PTR_ERR(trans);
8943 		goto out_new_inode_args;
8944 	}
8945 
8946 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8947 
8948 	/*
8949 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8950 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8951 	 * 0, through:
8952 	 *
8953 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8954 	 */
8955 	set_nlink(inode, 1);
8956 
8957 	if (!ret) {
8958 		d_tmpfile(file, inode);
8959 		unlock_new_inode(inode);
8960 		mark_inode_dirty(inode);
8961 	}
8962 
8963 	btrfs_end_transaction(trans);
8964 	btrfs_btree_balance_dirty(fs_info);
8965 out_new_inode_args:
8966 	btrfs_new_inode_args_destroy(&new_inode_args);
8967 out_inode:
8968 	if (ret)
8969 		iput(inode);
8970 	return finish_open_simple(file, ret);
8971 }
8972 
8973 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8974 {
8975 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8976 	unsigned long index = start >> PAGE_SHIFT;
8977 	unsigned long end_index = end >> PAGE_SHIFT;
8978 	struct folio *folio;
8979 	u32 len;
8980 
8981 	ASSERT(end + 1 - start <= U32_MAX);
8982 	len = end + 1 - start;
8983 	while (index <= end_index) {
8984 		folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
8985 		ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */
8986 
8987 		/* This is for data, which doesn't yet support larger folio. */
8988 		ASSERT(folio_order(folio) == 0);
8989 		btrfs_folio_set_writeback(fs_info, folio, start, len);
8990 		folio_put(folio);
8991 		index++;
8992 	}
8993 }
8994 
8995 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8996 					     int compress_type)
8997 {
8998 	switch (compress_type) {
8999 	case BTRFS_COMPRESS_NONE:
9000 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9001 	case BTRFS_COMPRESS_ZLIB:
9002 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9003 	case BTRFS_COMPRESS_LZO:
9004 		/*
9005 		 * The LZO format depends on the sector size. 64K is the maximum
9006 		 * sector size that we support.
9007 		 */
9008 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9009 			return -EINVAL;
9010 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9011 		       (fs_info->sectorsize_bits - 12);
9012 	case BTRFS_COMPRESS_ZSTD:
9013 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9014 	default:
9015 		return -EUCLEAN;
9016 	}
9017 }
9018 
9019 static ssize_t btrfs_encoded_read_inline(
9020 				struct kiocb *iocb,
9021 				struct iov_iter *iter, u64 start,
9022 				u64 lockend,
9023 				struct extent_state **cached_state,
9024 				u64 extent_start, size_t count,
9025 				struct btrfs_ioctl_encoded_io_args *encoded,
9026 				bool *unlocked)
9027 {
9028 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9029 	struct btrfs_root *root = inode->root;
9030 	struct btrfs_fs_info *fs_info = root->fs_info;
9031 	struct extent_io_tree *io_tree = &inode->io_tree;
9032 	struct btrfs_path *path;
9033 	struct extent_buffer *leaf;
9034 	struct btrfs_file_extent_item *item;
9035 	u64 ram_bytes;
9036 	unsigned long ptr;
9037 	void *tmp;
9038 	ssize_t ret;
9039 
9040 	path = btrfs_alloc_path();
9041 	if (!path) {
9042 		ret = -ENOMEM;
9043 		goto out;
9044 	}
9045 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9046 				       extent_start, 0);
9047 	if (ret) {
9048 		if (ret > 0) {
9049 			/* The extent item disappeared? */
9050 			ret = -EIO;
9051 		}
9052 		goto out;
9053 	}
9054 	leaf = path->nodes[0];
9055 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9056 
9057 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9058 	ptr = btrfs_file_extent_inline_start(item);
9059 
9060 	encoded->len = min_t(u64, extent_start + ram_bytes,
9061 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9062 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9063 				 btrfs_file_extent_compression(leaf, item));
9064 	if (ret < 0)
9065 		goto out;
9066 	encoded->compression = ret;
9067 	if (encoded->compression) {
9068 		size_t inline_size;
9069 
9070 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9071 								path->slots[0]);
9072 		if (inline_size > count) {
9073 			ret = -ENOBUFS;
9074 			goto out;
9075 		}
9076 		count = inline_size;
9077 		encoded->unencoded_len = ram_bytes;
9078 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9079 	} else {
9080 		count = min_t(u64, count, encoded->len);
9081 		encoded->len = count;
9082 		encoded->unencoded_len = count;
9083 		ptr += iocb->ki_pos - extent_start;
9084 	}
9085 
9086 	tmp = kmalloc(count, GFP_NOFS);
9087 	if (!tmp) {
9088 		ret = -ENOMEM;
9089 		goto out;
9090 	}
9091 	read_extent_buffer(leaf, tmp, ptr, count);
9092 	btrfs_release_path(path);
9093 	unlock_extent(io_tree, start, lockend, cached_state);
9094 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9095 	*unlocked = true;
9096 
9097 	ret = copy_to_iter(tmp, count, iter);
9098 	if (ret != count)
9099 		ret = -EFAULT;
9100 	kfree(tmp);
9101 out:
9102 	btrfs_free_path(path);
9103 	return ret;
9104 }
9105 
9106 struct btrfs_encoded_read_private {
9107 	wait_queue_head_t wait;
9108 	atomic_t pending;
9109 	blk_status_t status;
9110 };
9111 
9112 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9113 {
9114 	struct btrfs_encoded_read_private *priv = bbio->private;
9115 
9116 	if (bbio->bio.bi_status) {
9117 		/*
9118 		 * The memory barrier implied by the atomic_dec_return() here
9119 		 * pairs with the memory barrier implied by the
9120 		 * atomic_dec_return() or io_wait_event() in
9121 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9122 		 * write is observed before the load of status in
9123 		 * btrfs_encoded_read_regular_fill_pages().
9124 		 */
9125 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9126 	}
9127 	if (!atomic_dec_return(&priv->pending))
9128 		wake_up(&priv->wait);
9129 	bio_put(&bbio->bio);
9130 }
9131 
9132 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9133 					  u64 file_offset, u64 disk_bytenr,
9134 					  u64 disk_io_size, struct page **pages)
9135 {
9136 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9137 	struct btrfs_encoded_read_private priv = {
9138 		.pending = ATOMIC_INIT(1),
9139 	};
9140 	unsigned long i = 0;
9141 	struct btrfs_bio *bbio;
9142 
9143 	init_waitqueue_head(&priv.wait);
9144 
9145 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9146 			       btrfs_encoded_read_endio, &priv);
9147 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9148 	bbio->inode = inode;
9149 
9150 	do {
9151 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9152 
9153 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9154 			atomic_inc(&priv.pending);
9155 			btrfs_submit_bbio(bbio, 0);
9156 
9157 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9158 					       btrfs_encoded_read_endio, &priv);
9159 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9160 			bbio->inode = inode;
9161 			continue;
9162 		}
9163 
9164 		i++;
9165 		disk_bytenr += bytes;
9166 		disk_io_size -= bytes;
9167 	} while (disk_io_size);
9168 
9169 	atomic_inc(&priv.pending);
9170 	btrfs_submit_bbio(bbio, 0);
9171 
9172 	if (atomic_dec_return(&priv.pending))
9173 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9174 	/* See btrfs_encoded_read_endio() for ordering. */
9175 	return blk_status_to_errno(READ_ONCE(priv.status));
9176 }
9177 
9178 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9179 					  struct iov_iter *iter,
9180 					  u64 start, u64 lockend,
9181 					  struct extent_state **cached_state,
9182 					  u64 disk_bytenr, u64 disk_io_size,
9183 					  size_t count, bool compressed,
9184 					  bool *unlocked)
9185 {
9186 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9187 	struct extent_io_tree *io_tree = &inode->io_tree;
9188 	struct page **pages;
9189 	unsigned long nr_pages, i;
9190 	u64 cur;
9191 	size_t page_offset;
9192 	ssize_t ret;
9193 
9194 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9195 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9196 	if (!pages)
9197 		return -ENOMEM;
9198 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9199 	if (ret) {
9200 		ret = -ENOMEM;
9201 		goto out;
9202 		}
9203 
9204 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9205 						    disk_io_size, pages);
9206 	if (ret)
9207 		goto out;
9208 
9209 	unlock_extent(io_tree, start, lockend, cached_state);
9210 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9211 	*unlocked = true;
9212 
9213 	if (compressed) {
9214 		i = 0;
9215 		page_offset = 0;
9216 	} else {
9217 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9218 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9219 	}
9220 	cur = 0;
9221 	while (cur < count) {
9222 		size_t bytes = min_t(size_t, count - cur,
9223 				     PAGE_SIZE - page_offset);
9224 
9225 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9226 				      iter) != bytes) {
9227 			ret = -EFAULT;
9228 			goto out;
9229 		}
9230 		i++;
9231 		cur += bytes;
9232 		page_offset = 0;
9233 	}
9234 	ret = count;
9235 out:
9236 	for (i = 0; i < nr_pages; i++) {
9237 		if (pages[i])
9238 			__free_page(pages[i]);
9239 	}
9240 	kfree(pages);
9241 	return ret;
9242 }
9243 
9244 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9245 			   struct btrfs_ioctl_encoded_io_args *encoded)
9246 {
9247 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9248 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9249 	struct extent_io_tree *io_tree = &inode->io_tree;
9250 	ssize_t ret;
9251 	size_t count = iov_iter_count(iter);
9252 	u64 start, lockend, disk_bytenr, disk_io_size;
9253 	struct extent_state *cached_state = NULL;
9254 	struct extent_map *em;
9255 	bool unlocked = false;
9256 
9257 	file_accessed(iocb->ki_filp);
9258 
9259 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9260 
9261 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9262 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9263 		return 0;
9264 	}
9265 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9266 	/*
9267 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9268 	 * it's compressed we know that it won't be longer than this.
9269 	 */
9270 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9271 
9272 	for (;;) {
9273 		struct btrfs_ordered_extent *ordered;
9274 
9275 		ret = btrfs_wait_ordered_range(inode, start,
9276 					       lockend - start + 1);
9277 		if (ret)
9278 			goto out_unlock_inode;
9279 		lock_extent(io_tree, start, lockend, &cached_state);
9280 		ordered = btrfs_lookup_ordered_range(inode, start,
9281 						     lockend - start + 1);
9282 		if (!ordered)
9283 			break;
9284 		btrfs_put_ordered_extent(ordered);
9285 		unlock_extent(io_tree, start, lockend, &cached_state);
9286 		cond_resched();
9287 	}
9288 
9289 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9290 	if (IS_ERR(em)) {
9291 		ret = PTR_ERR(em);
9292 		goto out_unlock_extent;
9293 	}
9294 
9295 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9296 		u64 extent_start = em->start;
9297 
9298 		/*
9299 		 * For inline extents we get everything we need out of the
9300 		 * extent item.
9301 		 */
9302 		free_extent_map(em);
9303 		em = NULL;
9304 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9305 						&cached_state, extent_start,
9306 						count, encoded, &unlocked);
9307 		goto out;
9308 	}
9309 
9310 	/*
9311 	 * We only want to return up to EOF even if the extent extends beyond
9312 	 * that.
9313 	 */
9314 	encoded->len = min_t(u64, extent_map_end(em),
9315 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9316 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9317 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9318 		disk_bytenr = EXTENT_MAP_HOLE;
9319 		count = min_t(u64, count, encoded->len);
9320 		encoded->len = count;
9321 		encoded->unencoded_len = count;
9322 	} else if (extent_map_is_compressed(em)) {
9323 		disk_bytenr = em->disk_bytenr;
9324 		/*
9325 		 * Bail if the buffer isn't large enough to return the whole
9326 		 * compressed extent.
9327 		 */
9328 		if (em->disk_num_bytes > count) {
9329 			ret = -ENOBUFS;
9330 			goto out_em;
9331 		}
9332 		disk_io_size = em->disk_num_bytes;
9333 		count = em->disk_num_bytes;
9334 		encoded->unencoded_len = em->ram_bytes;
9335 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9336 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9337 							       extent_map_compression(em));
9338 		if (ret < 0)
9339 			goto out_em;
9340 		encoded->compression = ret;
9341 	} else {
9342 		disk_bytenr = extent_map_block_start(em) + (start - em->start);
9343 		if (encoded->len > count)
9344 			encoded->len = count;
9345 		/*
9346 		 * Don't read beyond what we locked. This also limits the page
9347 		 * allocations that we'll do.
9348 		 */
9349 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9350 		count = start + disk_io_size - iocb->ki_pos;
9351 		encoded->len = count;
9352 		encoded->unencoded_len = count;
9353 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9354 	}
9355 	free_extent_map(em);
9356 	em = NULL;
9357 
9358 	if (disk_bytenr == EXTENT_MAP_HOLE) {
9359 		unlock_extent(io_tree, start, lockend, &cached_state);
9360 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9361 		unlocked = true;
9362 		ret = iov_iter_zero(count, iter);
9363 		if (ret != count)
9364 			ret = -EFAULT;
9365 	} else {
9366 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9367 						 &cached_state, disk_bytenr,
9368 						 disk_io_size, count,
9369 						 encoded->compression,
9370 						 &unlocked);
9371 	}
9372 
9373 out:
9374 	if (ret >= 0)
9375 		iocb->ki_pos += encoded->len;
9376 out_em:
9377 	free_extent_map(em);
9378 out_unlock_extent:
9379 	if (!unlocked)
9380 		unlock_extent(io_tree, start, lockend, &cached_state);
9381 out_unlock_inode:
9382 	if (!unlocked)
9383 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9384 	return ret;
9385 }
9386 
9387 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9388 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9389 {
9390 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9391 	struct btrfs_root *root = inode->root;
9392 	struct btrfs_fs_info *fs_info = root->fs_info;
9393 	struct extent_io_tree *io_tree = &inode->io_tree;
9394 	struct extent_changeset *data_reserved = NULL;
9395 	struct extent_state *cached_state = NULL;
9396 	struct btrfs_ordered_extent *ordered;
9397 	struct btrfs_file_extent file_extent;
9398 	int compression;
9399 	size_t orig_count;
9400 	u64 start, end;
9401 	u64 num_bytes, ram_bytes, disk_num_bytes;
9402 	unsigned long nr_folios, i;
9403 	struct folio **folios;
9404 	struct btrfs_key ins;
9405 	bool extent_reserved = false;
9406 	struct extent_map *em;
9407 	ssize_t ret;
9408 
9409 	switch (encoded->compression) {
9410 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9411 		compression = BTRFS_COMPRESS_ZLIB;
9412 		break;
9413 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9414 		compression = BTRFS_COMPRESS_ZSTD;
9415 		break;
9416 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9417 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9418 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9419 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9420 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9421 		/* The sector size must match for LZO. */
9422 		if (encoded->compression -
9423 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9424 		    fs_info->sectorsize_bits)
9425 			return -EINVAL;
9426 		compression = BTRFS_COMPRESS_LZO;
9427 		break;
9428 	default:
9429 		return -EINVAL;
9430 	}
9431 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9432 		return -EINVAL;
9433 
9434 	/*
9435 	 * Compressed extents should always have checksums, so error out if we
9436 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9437 	 */
9438 	if (inode->flags & BTRFS_INODE_NODATASUM)
9439 		return -EINVAL;
9440 
9441 	orig_count = iov_iter_count(from);
9442 
9443 	/* The extent size must be sane. */
9444 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9445 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9446 		return -EINVAL;
9447 
9448 	/*
9449 	 * The compressed data must be smaller than the decompressed data.
9450 	 *
9451 	 * It's of course possible for data to compress to larger or the same
9452 	 * size, but the buffered I/O path falls back to no compression for such
9453 	 * data, and we don't want to break any assumptions by creating these
9454 	 * extents.
9455 	 *
9456 	 * Note that this is less strict than the current check we have that the
9457 	 * compressed data must be at least one sector smaller than the
9458 	 * decompressed data. We only want to enforce the weaker requirement
9459 	 * from old kernels that it is at least one byte smaller.
9460 	 */
9461 	if (orig_count >= encoded->unencoded_len)
9462 		return -EINVAL;
9463 
9464 	/* The extent must start on a sector boundary. */
9465 	start = iocb->ki_pos;
9466 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9467 		return -EINVAL;
9468 
9469 	/*
9470 	 * The extent must end on a sector boundary. However, we allow a write
9471 	 * which ends at or extends i_size to have an unaligned length; we round
9472 	 * up the extent size and set i_size to the unaligned end.
9473 	 */
9474 	if (start + encoded->len < inode->vfs_inode.i_size &&
9475 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9476 		return -EINVAL;
9477 
9478 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9479 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9480 		return -EINVAL;
9481 
9482 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9483 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9484 	end = start + num_bytes - 1;
9485 
9486 	/*
9487 	 * If the extent cannot be inline, the compressed data on disk must be
9488 	 * sector-aligned. For convenience, we extend it with zeroes if it
9489 	 * isn't.
9490 	 */
9491 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9492 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9493 	folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9494 	if (!folios)
9495 		return -ENOMEM;
9496 	for (i = 0; i < nr_folios; i++) {
9497 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9498 		char *kaddr;
9499 
9500 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9501 		if (!folios[i]) {
9502 			ret = -ENOMEM;
9503 			goto out_folios;
9504 		}
9505 		kaddr = kmap_local_folio(folios[i], 0);
9506 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9507 			kunmap_local(kaddr);
9508 			ret = -EFAULT;
9509 			goto out_folios;
9510 		}
9511 		if (bytes < PAGE_SIZE)
9512 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9513 		kunmap_local(kaddr);
9514 	}
9515 
9516 	for (;;) {
9517 		struct btrfs_ordered_extent *ordered;
9518 
9519 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9520 		if (ret)
9521 			goto out_folios;
9522 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9523 						    start >> PAGE_SHIFT,
9524 						    end >> PAGE_SHIFT);
9525 		if (ret)
9526 			goto out_folios;
9527 		lock_extent(io_tree, start, end, &cached_state);
9528 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9529 		if (!ordered &&
9530 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9531 			break;
9532 		if (ordered)
9533 			btrfs_put_ordered_extent(ordered);
9534 		unlock_extent(io_tree, start, end, &cached_state);
9535 		cond_resched();
9536 	}
9537 
9538 	/*
9539 	 * We don't use the higher-level delalloc space functions because our
9540 	 * num_bytes and disk_num_bytes are different.
9541 	 */
9542 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9543 	if (ret)
9544 		goto out_unlock;
9545 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9546 	if (ret)
9547 		goto out_free_data_space;
9548 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9549 					      false);
9550 	if (ret)
9551 		goto out_qgroup_free_data;
9552 
9553 	/* Try an inline extent first. */
9554 	if (encoded->unencoded_len == encoded->len &&
9555 	    encoded->unencoded_offset == 0 &&
9556 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9557 		ret = __cow_file_range_inline(inode, start, encoded->len,
9558 					      orig_count, compression, folios[0],
9559 					      true);
9560 		if (ret <= 0) {
9561 			if (ret == 0)
9562 				ret = orig_count;
9563 			goto out_delalloc_release;
9564 		}
9565 	}
9566 
9567 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9568 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9569 	if (ret)
9570 		goto out_delalloc_release;
9571 	extent_reserved = true;
9572 
9573 	file_extent.disk_bytenr = ins.objectid;
9574 	file_extent.disk_num_bytes = ins.offset;
9575 	file_extent.num_bytes = num_bytes;
9576 	file_extent.ram_bytes = ram_bytes;
9577 	file_extent.offset = encoded->unencoded_offset;
9578 	file_extent.compression = compression;
9579 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9580 	if (IS_ERR(em)) {
9581 		ret = PTR_ERR(em);
9582 		goto out_free_reserved;
9583 	}
9584 	free_extent_map(em);
9585 
9586 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9587 				       (1 << BTRFS_ORDERED_ENCODED) |
9588 				       (1 << BTRFS_ORDERED_COMPRESSED));
9589 	if (IS_ERR(ordered)) {
9590 		btrfs_drop_extent_map_range(inode, start, end, false);
9591 		ret = PTR_ERR(ordered);
9592 		goto out_free_reserved;
9593 	}
9594 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9595 
9596 	if (start + encoded->len > inode->vfs_inode.i_size)
9597 		i_size_write(&inode->vfs_inode, start + encoded->len);
9598 
9599 	unlock_extent(io_tree, start, end, &cached_state);
9600 
9601 	btrfs_delalloc_release_extents(inode, num_bytes);
9602 
9603 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9604 	ret = orig_count;
9605 	goto out;
9606 
9607 out_free_reserved:
9608 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9609 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9610 out_delalloc_release:
9611 	btrfs_delalloc_release_extents(inode, num_bytes);
9612 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9613 out_qgroup_free_data:
9614 	if (ret < 0)
9615 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9616 out_free_data_space:
9617 	/*
9618 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9619 	 * bytes_may_use.
9620 	 */
9621 	if (!extent_reserved)
9622 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9623 out_unlock:
9624 	unlock_extent(io_tree, start, end, &cached_state);
9625 out_folios:
9626 	for (i = 0; i < nr_folios; i++) {
9627 		if (folios[i])
9628 			folio_put(folios[i]);
9629 	}
9630 	kvfree(folios);
9631 out:
9632 	if (ret >= 0)
9633 		iocb->ki_pos += encoded->len;
9634 	return ret;
9635 }
9636 
9637 #ifdef CONFIG_SWAP
9638 /*
9639  * Add an entry indicating a block group or device which is pinned by a
9640  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9641  * negative errno on failure.
9642  */
9643 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9644 				  bool is_block_group)
9645 {
9646 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9647 	struct btrfs_swapfile_pin *sp, *entry;
9648 	struct rb_node **p;
9649 	struct rb_node *parent = NULL;
9650 
9651 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9652 	if (!sp)
9653 		return -ENOMEM;
9654 	sp->ptr = ptr;
9655 	sp->inode = inode;
9656 	sp->is_block_group = is_block_group;
9657 	sp->bg_extent_count = 1;
9658 
9659 	spin_lock(&fs_info->swapfile_pins_lock);
9660 	p = &fs_info->swapfile_pins.rb_node;
9661 	while (*p) {
9662 		parent = *p;
9663 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9664 		if (sp->ptr < entry->ptr ||
9665 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9666 			p = &(*p)->rb_left;
9667 		} else if (sp->ptr > entry->ptr ||
9668 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9669 			p = &(*p)->rb_right;
9670 		} else {
9671 			if (is_block_group)
9672 				entry->bg_extent_count++;
9673 			spin_unlock(&fs_info->swapfile_pins_lock);
9674 			kfree(sp);
9675 			return 1;
9676 		}
9677 	}
9678 	rb_link_node(&sp->node, parent, p);
9679 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9680 	spin_unlock(&fs_info->swapfile_pins_lock);
9681 	return 0;
9682 }
9683 
9684 /* Free all of the entries pinned by this swapfile. */
9685 static void btrfs_free_swapfile_pins(struct inode *inode)
9686 {
9687 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9688 	struct btrfs_swapfile_pin *sp;
9689 	struct rb_node *node, *next;
9690 
9691 	spin_lock(&fs_info->swapfile_pins_lock);
9692 	node = rb_first(&fs_info->swapfile_pins);
9693 	while (node) {
9694 		next = rb_next(node);
9695 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9696 		if (sp->inode == inode) {
9697 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9698 			if (sp->is_block_group) {
9699 				btrfs_dec_block_group_swap_extents(sp->ptr,
9700 							   sp->bg_extent_count);
9701 				btrfs_put_block_group(sp->ptr);
9702 			}
9703 			kfree(sp);
9704 		}
9705 		node = next;
9706 	}
9707 	spin_unlock(&fs_info->swapfile_pins_lock);
9708 }
9709 
9710 struct btrfs_swap_info {
9711 	u64 start;
9712 	u64 block_start;
9713 	u64 block_len;
9714 	u64 lowest_ppage;
9715 	u64 highest_ppage;
9716 	unsigned long nr_pages;
9717 	int nr_extents;
9718 };
9719 
9720 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9721 				 struct btrfs_swap_info *bsi)
9722 {
9723 	unsigned long nr_pages;
9724 	unsigned long max_pages;
9725 	u64 first_ppage, first_ppage_reported, next_ppage;
9726 	int ret;
9727 
9728 	/*
9729 	 * Our swapfile may have had its size extended after the swap header was
9730 	 * written. In that case activating the swapfile should not go beyond
9731 	 * the max size set in the swap header.
9732 	 */
9733 	if (bsi->nr_pages >= sis->max)
9734 		return 0;
9735 
9736 	max_pages = sis->max - bsi->nr_pages;
9737 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9738 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9739 
9740 	if (first_ppage >= next_ppage)
9741 		return 0;
9742 	nr_pages = next_ppage - first_ppage;
9743 	nr_pages = min(nr_pages, max_pages);
9744 
9745 	first_ppage_reported = first_ppage;
9746 	if (bsi->start == 0)
9747 		first_ppage_reported++;
9748 	if (bsi->lowest_ppage > first_ppage_reported)
9749 		bsi->lowest_ppage = first_ppage_reported;
9750 	if (bsi->highest_ppage < (next_ppage - 1))
9751 		bsi->highest_ppage = next_ppage - 1;
9752 
9753 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9754 	if (ret < 0)
9755 		return ret;
9756 	bsi->nr_extents += ret;
9757 	bsi->nr_pages += nr_pages;
9758 	return 0;
9759 }
9760 
9761 static void btrfs_swap_deactivate(struct file *file)
9762 {
9763 	struct inode *inode = file_inode(file);
9764 
9765 	btrfs_free_swapfile_pins(inode);
9766 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9767 }
9768 
9769 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9770 			       sector_t *span)
9771 {
9772 	struct inode *inode = file_inode(file);
9773 	struct btrfs_root *root = BTRFS_I(inode)->root;
9774 	struct btrfs_fs_info *fs_info = root->fs_info;
9775 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9776 	struct extent_state *cached_state = NULL;
9777 	struct extent_map *em = NULL;
9778 	struct btrfs_chunk_map *map = NULL;
9779 	struct btrfs_device *device = NULL;
9780 	struct btrfs_swap_info bsi = {
9781 		.lowest_ppage = (sector_t)-1ULL,
9782 	};
9783 	int ret = 0;
9784 	u64 isize;
9785 	u64 start;
9786 
9787 	/*
9788 	 * If the swap file was just created, make sure delalloc is done. If the
9789 	 * file changes again after this, the user is doing something stupid and
9790 	 * we don't really care.
9791 	 */
9792 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9793 	if (ret)
9794 		return ret;
9795 
9796 	/*
9797 	 * The inode is locked, so these flags won't change after we check them.
9798 	 */
9799 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9800 		btrfs_warn(fs_info, "swapfile must not be compressed");
9801 		return -EINVAL;
9802 	}
9803 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9804 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9805 		return -EINVAL;
9806 	}
9807 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9808 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9809 		return -EINVAL;
9810 	}
9811 
9812 	/*
9813 	 * Balance or device remove/replace/resize can move stuff around from
9814 	 * under us. The exclop protection makes sure they aren't running/won't
9815 	 * run concurrently while we are mapping the swap extents, and
9816 	 * fs_info->swapfile_pins prevents them from running while the swap
9817 	 * file is active and moving the extents. Note that this also prevents
9818 	 * a concurrent device add which isn't actually necessary, but it's not
9819 	 * really worth the trouble to allow it.
9820 	 */
9821 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9822 		btrfs_warn(fs_info,
9823 	   "cannot activate swapfile while exclusive operation is running");
9824 		return -EBUSY;
9825 	}
9826 
9827 	/*
9828 	 * Prevent snapshot creation while we are activating the swap file.
9829 	 * We do not want to race with snapshot creation. If snapshot creation
9830 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9831 	 * completes before the first write into the swap file after it is
9832 	 * activated, than that write would fallback to COW.
9833 	 */
9834 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9835 		btrfs_exclop_finish(fs_info);
9836 		btrfs_warn(fs_info,
9837 	   "cannot activate swapfile because snapshot creation is in progress");
9838 		return -EINVAL;
9839 	}
9840 	/*
9841 	 * Snapshots can create extents which require COW even if NODATACOW is
9842 	 * set. We use this counter to prevent snapshots. We must increment it
9843 	 * before walking the extents because we don't want a concurrent
9844 	 * snapshot to run after we've already checked the extents.
9845 	 *
9846 	 * It is possible that subvolume is marked for deletion but still not
9847 	 * removed yet. To prevent this race, we check the root status before
9848 	 * activating the swapfile.
9849 	 */
9850 	spin_lock(&root->root_item_lock);
9851 	if (btrfs_root_dead(root)) {
9852 		spin_unlock(&root->root_item_lock);
9853 
9854 		btrfs_exclop_finish(fs_info);
9855 		btrfs_warn(fs_info,
9856 		"cannot activate swapfile because subvolume %llu is being deleted",
9857 			btrfs_root_id(root));
9858 		return -EPERM;
9859 	}
9860 	atomic_inc(&root->nr_swapfiles);
9861 	spin_unlock(&root->root_item_lock);
9862 
9863 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9864 
9865 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9866 	start = 0;
9867 	while (start < isize) {
9868 		u64 logical_block_start, physical_block_start;
9869 		struct btrfs_block_group *bg;
9870 		u64 len = isize - start;
9871 
9872 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9873 		if (IS_ERR(em)) {
9874 			ret = PTR_ERR(em);
9875 			goto out;
9876 		}
9877 
9878 		if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9879 			btrfs_warn(fs_info, "swapfile must not have holes");
9880 			ret = -EINVAL;
9881 			goto out;
9882 		}
9883 		if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9884 			/*
9885 			 * It's unlikely we'll ever actually find ourselves
9886 			 * here, as a file small enough to fit inline won't be
9887 			 * big enough to store more than the swap header, but in
9888 			 * case something changes in the future, let's catch it
9889 			 * here rather than later.
9890 			 */
9891 			btrfs_warn(fs_info, "swapfile must not be inline");
9892 			ret = -EINVAL;
9893 			goto out;
9894 		}
9895 		if (extent_map_is_compressed(em)) {
9896 			btrfs_warn(fs_info, "swapfile must not be compressed");
9897 			ret = -EINVAL;
9898 			goto out;
9899 		}
9900 
9901 		logical_block_start = extent_map_block_start(em) + (start - em->start);
9902 		len = min(len, em->len - (start - em->start));
9903 		free_extent_map(em);
9904 		em = NULL;
9905 
9906 		ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9907 		if (ret < 0) {
9908 			goto out;
9909 		} else if (ret) {
9910 			ret = 0;
9911 		} else {
9912 			btrfs_warn(fs_info,
9913 				   "swapfile must not be copy-on-write");
9914 			ret = -EINVAL;
9915 			goto out;
9916 		}
9917 
9918 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9919 		if (IS_ERR(map)) {
9920 			ret = PTR_ERR(map);
9921 			goto out;
9922 		}
9923 
9924 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9925 			btrfs_warn(fs_info,
9926 				   "swapfile must have single data profile");
9927 			ret = -EINVAL;
9928 			goto out;
9929 		}
9930 
9931 		if (device == NULL) {
9932 			device = map->stripes[0].dev;
9933 			ret = btrfs_add_swapfile_pin(inode, device, false);
9934 			if (ret == 1)
9935 				ret = 0;
9936 			else if (ret)
9937 				goto out;
9938 		} else if (device != map->stripes[0].dev) {
9939 			btrfs_warn(fs_info, "swapfile must be on one device");
9940 			ret = -EINVAL;
9941 			goto out;
9942 		}
9943 
9944 		physical_block_start = (map->stripes[0].physical +
9945 					(logical_block_start - map->start));
9946 		len = min(len, map->chunk_len - (logical_block_start - map->start));
9947 		btrfs_free_chunk_map(map);
9948 		map = NULL;
9949 
9950 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9951 		if (!bg) {
9952 			btrfs_warn(fs_info,
9953 			   "could not find block group containing swapfile");
9954 			ret = -EINVAL;
9955 			goto out;
9956 		}
9957 
9958 		if (!btrfs_inc_block_group_swap_extents(bg)) {
9959 			btrfs_warn(fs_info,
9960 			   "block group for swapfile at %llu is read-only%s",
9961 			   bg->start,
9962 			   atomic_read(&fs_info->scrubs_running) ?
9963 				       " (scrub running)" : "");
9964 			btrfs_put_block_group(bg);
9965 			ret = -EINVAL;
9966 			goto out;
9967 		}
9968 
9969 		ret = btrfs_add_swapfile_pin(inode, bg, true);
9970 		if (ret) {
9971 			btrfs_put_block_group(bg);
9972 			if (ret == 1)
9973 				ret = 0;
9974 			else
9975 				goto out;
9976 		}
9977 
9978 		if (bsi.block_len &&
9979 		    bsi.block_start + bsi.block_len == physical_block_start) {
9980 			bsi.block_len += len;
9981 		} else {
9982 			if (bsi.block_len) {
9983 				ret = btrfs_add_swap_extent(sis, &bsi);
9984 				if (ret)
9985 					goto out;
9986 			}
9987 			bsi.start = start;
9988 			bsi.block_start = physical_block_start;
9989 			bsi.block_len = len;
9990 		}
9991 
9992 		start += len;
9993 	}
9994 
9995 	if (bsi.block_len)
9996 		ret = btrfs_add_swap_extent(sis, &bsi);
9997 
9998 out:
9999 	if (!IS_ERR_OR_NULL(em))
10000 		free_extent_map(em);
10001 	if (!IS_ERR_OR_NULL(map))
10002 		btrfs_free_chunk_map(map);
10003 
10004 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10005 
10006 	if (ret)
10007 		btrfs_swap_deactivate(file);
10008 
10009 	btrfs_drew_write_unlock(&root->snapshot_lock);
10010 
10011 	btrfs_exclop_finish(fs_info);
10012 
10013 	if (ret)
10014 		return ret;
10015 
10016 	if (device)
10017 		sis->bdev = device->bdev;
10018 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10019 	sis->max = bsi.nr_pages;
10020 	sis->pages = bsi.nr_pages - 1;
10021 	sis->highest_bit = bsi.nr_pages - 1;
10022 	return bsi.nr_extents;
10023 }
10024 #else
10025 static void btrfs_swap_deactivate(struct file *file)
10026 {
10027 }
10028 
10029 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10030 			       sector_t *span)
10031 {
10032 	return -EOPNOTSUPP;
10033 }
10034 #endif
10035 
10036 /*
10037  * Update the number of bytes used in the VFS' inode. When we replace extents in
10038  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10039  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10040  * always get a correct value.
10041  */
10042 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10043 			      const u64 add_bytes,
10044 			      const u64 del_bytes)
10045 {
10046 	if (add_bytes == del_bytes)
10047 		return;
10048 
10049 	spin_lock(&inode->lock);
10050 	if (del_bytes > 0)
10051 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10052 	if (add_bytes > 0)
10053 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10054 	spin_unlock(&inode->lock);
10055 }
10056 
10057 /*
10058  * Verify that there are no ordered extents for a given file range.
10059  *
10060  * @inode:   The target inode.
10061  * @start:   Start offset of the file range, should be sector size aligned.
10062  * @end:     End offset (inclusive) of the file range, its value +1 should be
10063  *           sector size aligned.
10064  *
10065  * This should typically be used for cases where we locked an inode's VFS lock in
10066  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10067  * we have flushed all delalloc in the range, we have waited for all ordered
10068  * extents in the range to complete and finally we have locked the file range in
10069  * the inode's io_tree.
10070  */
10071 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10072 {
10073 	struct btrfs_root *root = inode->root;
10074 	struct btrfs_ordered_extent *ordered;
10075 
10076 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10077 		return;
10078 
10079 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10080 	if (ordered) {
10081 		btrfs_err(root->fs_info,
10082 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10083 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10084 			  ordered->file_offset,
10085 			  ordered->file_offset + ordered->num_bytes - 1);
10086 		btrfs_put_ordered_extent(ordered);
10087 	}
10088 
10089 	ASSERT(ordered == NULL);
10090 }
10091 
10092 /*
10093  * Find the first inode with a minimum number.
10094  *
10095  * @root:	The root to search for.
10096  * @min_ino:	The minimum inode number.
10097  *
10098  * Find the first inode in the @root with a number >= @min_ino and return it.
10099  * Returns NULL if no such inode found.
10100  */
10101 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10102 {
10103 	struct btrfs_inode *inode;
10104 	unsigned long from = min_ino;
10105 
10106 	xa_lock(&root->inodes);
10107 	while (true) {
10108 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10109 		if (!inode)
10110 			break;
10111 		if (igrab(&inode->vfs_inode))
10112 			break;
10113 
10114 		from = btrfs_ino(inode) + 1;
10115 		cond_resched_lock(&root->inodes.xa_lock);
10116 	}
10117 	xa_unlock(&root->inodes);
10118 
10119 	return inode;
10120 }
10121 
10122 static const struct inode_operations btrfs_dir_inode_operations = {
10123 	.getattr	= btrfs_getattr,
10124 	.lookup		= btrfs_lookup,
10125 	.create		= btrfs_create,
10126 	.unlink		= btrfs_unlink,
10127 	.link		= btrfs_link,
10128 	.mkdir		= btrfs_mkdir,
10129 	.rmdir		= btrfs_rmdir,
10130 	.rename		= btrfs_rename2,
10131 	.symlink	= btrfs_symlink,
10132 	.setattr	= btrfs_setattr,
10133 	.mknod		= btrfs_mknod,
10134 	.listxattr	= btrfs_listxattr,
10135 	.permission	= btrfs_permission,
10136 	.get_inode_acl	= btrfs_get_acl,
10137 	.set_acl	= btrfs_set_acl,
10138 	.update_time	= btrfs_update_time,
10139 	.tmpfile        = btrfs_tmpfile,
10140 	.fileattr_get	= btrfs_fileattr_get,
10141 	.fileattr_set	= btrfs_fileattr_set,
10142 };
10143 
10144 static const struct file_operations btrfs_dir_file_operations = {
10145 	.llseek		= btrfs_dir_llseek,
10146 	.read		= generic_read_dir,
10147 	.iterate_shared	= btrfs_real_readdir,
10148 	.open		= btrfs_opendir,
10149 	.unlocked_ioctl	= btrfs_ioctl,
10150 #ifdef CONFIG_COMPAT
10151 	.compat_ioctl	= btrfs_compat_ioctl,
10152 #endif
10153 	.release        = btrfs_release_file,
10154 	.fsync		= btrfs_sync_file,
10155 };
10156 
10157 /*
10158  * btrfs doesn't support the bmap operation because swapfiles
10159  * use bmap to make a mapping of extents in the file.  They assume
10160  * these extents won't change over the life of the file and they
10161  * use the bmap result to do IO directly to the drive.
10162  *
10163  * the btrfs bmap call would return logical addresses that aren't
10164  * suitable for IO and they also will change frequently as COW
10165  * operations happen.  So, swapfile + btrfs == corruption.
10166  *
10167  * For now we're avoiding this by dropping bmap.
10168  */
10169 static const struct address_space_operations btrfs_aops = {
10170 	.read_folio	= btrfs_read_folio,
10171 	.writepages	= btrfs_writepages,
10172 	.readahead	= btrfs_readahead,
10173 	.invalidate_folio = btrfs_invalidate_folio,
10174 	.launder_folio	= btrfs_launder_folio,
10175 	.release_folio	= btrfs_release_folio,
10176 	.migrate_folio	= btrfs_migrate_folio,
10177 	.dirty_folio	= filemap_dirty_folio,
10178 	.error_remove_folio = generic_error_remove_folio,
10179 	.swap_activate	= btrfs_swap_activate,
10180 	.swap_deactivate = btrfs_swap_deactivate,
10181 };
10182 
10183 static const struct inode_operations btrfs_file_inode_operations = {
10184 	.getattr	= btrfs_getattr,
10185 	.setattr	= btrfs_setattr,
10186 	.listxattr      = btrfs_listxattr,
10187 	.permission	= btrfs_permission,
10188 	.fiemap		= btrfs_fiemap,
10189 	.get_inode_acl	= btrfs_get_acl,
10190 	.set_acl	= btrfs_set_acl,
10191 	.update_time	= btrfs_update_time,
10192 	.fileattr_get	= btrfs_fileattr_get,
10193 	.fileattr_set	= btrfs_fileattr_set,
10194 };
10195 static const struct inode_operations btrfs_special_inode_operations = {
10196 	.getattr	= btrfs_getattr,
10197 	.setattr	= btrfs_setattr,
10198 	.permission	= btrfs_permission,
10199 	.listxattr	= btrfs_listxattr,
10200 	.get_inode_acl	= btrfs_get_acl,
10201 	.set_acl	= btrfs_set_acl,
10202 	.update_time	= btrfs_update_time,
10203 };
10204 static const struct inode_operations btrfs_symlink_inode_operations = {
10205 	.get_link	= page_get_link,
10206 	.getattr	= btrfs_getattr,
10207 	.setattr	= btrfs_setattr,
10208 	.permission	= btrfs_permission,
10209 	.listxattr	= btrfs_listxattr,
10210 	.update_time	= btrfs_update_time,
10211 };
10212 
10213 const struct dentry_operations btrfs_dentry_operations = {
10214 	.d_delete	= btrfs_dentry_delete,
10215 };
10216