1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_is_data_reloc_root(root)) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 pgoff_t index = offset >> PAGE_SHIFT; 399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 if (IS_ERR(folio)) { 405 index++; 406 continue; 407 } 408 409 index = folio_end(folio) >> PAGE_SHIFT; 410 /* 411 * Here we just clear all Ordered bits for every page in the 412 * range, then btrfs_mark_ordered_io_finished() will handle 413 * the ordered extent accounting for the range. 414 */ 415 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 416 offset, bytes); 417 folio_put(folio); 418 } 419 420 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 421 } 422 423 static int btrfs_dirty_inode(struct btrfs_inode *inode); 424 425 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 426 struct btrfs_new_inode_args *args) 427 { 428 int ret; 429 430 if (args->default_acl) { 431 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 432 ACL_TYPE_DEFAULT); 433 if (ret) 434 return ret; 435 } 436 if (args->acl) { 437 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 438 if (ret) 439 return ret; 440 } 441 if (!args->default_acl && !args->acl) 442 cache_no_acl(args->inode); 443 return btrfs_xattr_security_init(trans, args->inode, args->dir, 444 &args->dentry->d_name); 445 } 446 447 /* 448 * this does all the hard work for inserting an inline extent into 449 * the btree. The caller should have done a btrfs_drop_extents so that 450 * no overlapping inline items exist in the btree 451 */ 452 static int insert_inline_extent(struct btrfs_trans_handle *trans, 453 struct btrfs_path *path, 454 struct btrfs_inode *inode, bool extent_inserted, 455 size_t size, size_t compressed_size, 456 int compress_type, 457 struct folio *compressed_folio, 458 bool update_i_size) 459 { 460 struct btrfs_root *root = inode->root; 461 struct extent_buffer *leaf; 462 const u32 sectorsize = trans->fs_info->sectorsize; 463 char *kaddr; 464 unsigned long ptr; 465 struct btrfs_file_extent_item *ei; 466 int ret; 467 size_t cur_size = size; 468 u64 i_size; 469 470 /* 471 * The decompressed size must still be no larger than a sector. Under 472 * heavy race, we can have size == 0 passed in, but that shouldn't be a 473 * big deal and we can continue the insertion. 474 */ 475 ASSERT(size <= sectorsize); 476 477 /* 478 * The compressed size also needs to be no larger than a sector. 479 * That's also why we only need one page as the parameter. 480 */ 481 if (compressed_folio) 482 ASSERT(compressed_size <= sectorsize); 483 else 484 ASSERT(compressed_size == 0); 485 486 if (compressed_size && compressed_folio) 487 cur_size = compressed_size; 488 489 if (!extent_inserted) { 490 struct btrfs_key key; 491 size_t datasize; 492 493 key.objectid = btrfs_ino(inode); 494 key.type = BTRFS_EXTENT_DATA_KEY; 495 key.offset = 0; 496 497 datasize = btrfs_file_extent_calc_inline_size(cur_size); 498 ret = btrfs_insert_empty_item(trans, root, path, &key, 499 datasize); 500 if (ret) 501 goto fail; 502 } 503 leaf = path->nodes[0]; 504 ei = btrfs_item_ptr(leaf, path->slots[0], 505 struct btrfs_file_extent_item); 506 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 507 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 508 btrfs_set_file_extent_encryption(leaf, ei, 0); 509 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 510 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 511 ptr = btrfs_file_extent_inline_start(ei); 512 513 if (compress_type != BTRFS_COMPRESS_NONE) { 514 kaddr = kmap_local_folio(compressed_folio, 0); 515 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 516 kunmap_local(kaddr); 517 518 btrfs_set_file_extent_compression(leaf, ei, 519 compress_type); 520 } else { 521 struct folio *folio; 522 523 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 524 ASSERT(!IS_ERR(folio)); 525 btrfs_set_file_extent_compression(leaf, ei, 0); 526 kaddr = kmap_local_folio(folio, 0); 527 write_extent_buffer(leaf, kaddr, ptr, size); 528 kunmap_local(kaddr); 529 folio_put(folio); 530 } 531 btrfs_release_path(path); 532 533 /* 534 * We align size to sectorsize for inline extents just for simplicity 535 * sake. 536 */ 537 ret = btrfs_inode_set_file_extent_range(inode, 0, 538 ALIGN(size, root->fs_info->sectorsize)); 539 if (ret) 540 goto fail; 541 542 /* 543 * We're an inline extent, so nobody can extend the file past i_size 544 * without locking a page we already have locked. 545 * 546 * We must do any i_size and inode updates before we unlock the pages. 547 * Otherwise we could end up racing with unlink. 548 */ 549 i_size = i_size_read(&inode->vfs_inode); 550 if (update_i_size && size > i_size) { 551 i_size_write(&inode->vfs_inode, size); 552 i_size = size; 553 } 554 inode->disk_i_size = i_size; 555 556 fail: 557 return ret; 558 } 559 560 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 561 u64 offset, u64 size, 562 size_t compressed_size) 563 { 564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 565 u64 data_len = (compressed_size ?: size); 566 567 /* Inline extents must start at offset 0. */ 568 if (offset != 0) 569 return false; 570 571 /* Inline extents are limited to sectorsize. */ 572 if (size > fs_info->sectorsize) 573 return false; 574 575 /* We do not allow a non-compressed extent to be as large as block size. */ 576 if (data_len >= fs_info->sectorsize) 577 return false; 578 579 /* We cannot exceed the maximum inline data size. */ 580 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 581 return false; 582 583 /* We cannot exceed the user specified max_inline size. */ 584 if (data_len > fs_info->max_inline) 585 return false; 586 587 /* Inline extents must be the entirety of the file. */ 588 if (size < i_size_read(&inode->vfs_inode)) 589 return false; 590 591 return true; 592 } 593 594 /* 595 * conditionally insert an inline extent into the file. This 596 * does the checks required to make sure the data is small enough 597 * to fit as an inline extent. 598 * 599 * If being used directly, you must have already checked we're allowed to cow 600 * the range by getting true from can_cow_file_range_inline(). 601 */ 602 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 603 u64 size, size_t compressed_size, 604 int compress_type, 605 struct folio *compressed_folio, 606 bool update_i_size) 607 { 608 struct btrfs_drop_extents_args drop_args = { 0 }; 609 struct btrfs_root *root = inode->root; 610 struct btrfs_fs_info *fs_info = root->fs_info; 611 struct btrfs_trans_handle *trans; 612 u64 data_len = (compressed_size ?: size); 613 int ret; 614 struct btrfs_path *path; 615 616 path = btrfs_alloc_path(); 617 if (!path) 618 return -ENOMEM; 619 620 trans = btrfs_join_transaction(root); 621 if (IS_ERR(trans)) { 622 btrfs_free_path(path); 623 return PTR_ERR(trans); 624 } 625 trans->block_rsv = &inode->block_rsv; 626 627 drop_args.path = path; 628 drop_args.start = 0; 629 drop_args.end = fs_info->sectorsize; 630 drop_args.drop_cache = true; 631 drop_args.replace_extent = true; 632 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 633 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 634 if (ret) { 635 btrfs_abort_transaction(trans, ret); 636 goto out; 637 } 638 639 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 640 size, compressed_size, compress_type, 641 compressed_folio, update_i_size); 642 if (ret && ret != -ENOSPC) { 643 btrfs_abort_transaction(trans, ret); 644 goto out; 645 } else if (ret == -ENOSPC) { 646 ret = 1; 647 goto out; 648 } 649 650 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 651 ret = btrfs_update_inode(trans, inode); 652 if (ret && ret != -ENOSPC) { 653 btrfs_abort_transaction(trans, ret); 654 goto out; 655 } else if (ret == -ENOSPC) { 656 ret = 1; 657 goto out; 658 } 659 660 btrfs_set_inode_full_sync(inode); 661 out: 662 /* 663 * Don't forget to free the reserved space, as for inlined extent 664 * it won't count as data extent, free them directly here. 665 * And at reserve time, it's always aligned to page size, so 666 * just free one page here. 667 */ 668 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 669 btrfs_free_path(path); 670 btrfs_end_transaction(trans); 671 return ret; 672 } 673 674 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 675 struct folio *locked_folio, 676 u64 offset, u64 end, 677 size_t compressed_size, 678 int compress_type, 679 struct folio *compressed_folio, 680 bool update_i_size) 681 { 682 struct extent_state *cached = NULL; 683 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 684 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 685 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 686 int ret; 687 688 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 689 return 1; 690 691 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 692 ret = __cow_file_range_inline(inode, size, compressed_size, 693 compress_type, compressed_folio, 694 update_i_size); 695 if (ret > 0) { 696 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 697 return ret; 698 } 699 700 /* 701 * In the successful case (ret == 0 here), cow_file_range will return 1. 702 * 703 * Quite a bit further up the callstack in extent_writepage(), ret == 1 704 * is treated as a short circuited success and does not unlock the folio, 705 * so we must do it here. 706 * 707 * In the failure case, the locked_folio does get unlocked by 708 * btrfs_folio_end_all_writers, which asserts that it is still locked 709 * at that point, so we must *not* unlock it here. 710 * 711 * The other two callsites in compress_file_range do not have a 712 * locked_folio, so they are not relevant to this logic. 713 */ 714 if (ret == 0) 715 locked_folio = NULL; 716 717 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 718 clear_flags, PAGE_UNLOCK | 719 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 720 return ret; 721 } 722 723 struct async_extent { 724 u64 start; 725 u64 ram_size; 726 u64 compressed_size; 727 struct folio **folios; 728 unsigned long nr_folios; 729 int compress_type; 730 struct list_head list; 731 }; 732 733 struct async_chunk { 734 struct btrfs_inode *inode; 735 struct folio *locked_folio; 736 u64 start; 737 u64 end; 738 blk_opf_t write_flags; 739 struct list_head extents; 740 struct cgroup_subsys_state *blkcg_css; 741 struct btrfs_work work; 742 struct async_cow *async_cow; 743 }; 744 745 struct async_cow { 746 atomic_t num_chunks; 747 struct async_chunk chunks[]; 748 }; 749 750 static noinline int add_async_extent(struct async_chunk *cow, 751 u64 start, u64 ram_size, 752 u64 compressed_size, 753 struct folio **folios, 754 unsigned long nr_folios, 755 int compress_type) 756 { 757 struct async_extent *async_extent; 758 759 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 760 if (!async_extent) 761 return -ENOMEM; 762 async_extent->start = start; 763 async_extent->ram_size = ram_size; 764 async_extent->compressed_size = compressed_size; 765 async_extent->folios = folios; 766 async_extent->nr_folios = nr_folios; 767 async_extent->compress_type = compress_type; 768 list_add_tail(&async_extent->list, &cow->extents); 769 return 0; 770 } 771 772 /* 773 * Check if the inode needs to be submitted to compression, based on mount 774 * options, defragmentation, properties or heuristics. 775 */ 776 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 777 u64 end) 778 { 779 struct btrfs_fs_info *fs_info = inode->root->fs_info; 780 781 if (!btrfs_inode_can_compress(inode)) { 782 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 783 return 0; 784 } 785 786 /* Defrag ioctl takes precedence over mount options and properties. */ 787 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 788 return 0; 789 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 790 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 791 return 1; 792 /* force compress */ 793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 794 return 1; 795 /* bad compression ratios */ 796 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 797 return 0; 798 if (btrfs_test_opt(fs_info, COMPRESS) || 799 inode->flags & BTRFS_INODE_COMPRESS || 800 inode->prop_compress) 801 return btrfs_compress_heuristic(inode, start, end); 802 return 0; 803 } 804 805 static inline void inode_should_defrag(struct btrfs_inode *inode, 806 u64 start, u64 end, u64 num_bytes, u32 small_write) 807 { 808 /* If this is a small write inside eof, kick off a defrag */ 809 if (num_bytes < small_write && 810 (start > 0 || end + 1 < inode->disk_i_size)) 811 btrfs_add_inode_defrag(inode, small_write); 812 } 813 814 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 815 { 816 const pgoff_t end_index = end >> PAGE_SHIFT; 817 struct folio *folio; 818 int ret = 0; 819 820 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 821 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 822 if (IS_ERR(folio)) { 823 if (!ret) 824 ret = PTR_ERR(folio); 825 continue; 826 } 827 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 828 end + 1 - start); 829 folio_put(folio); 830 } 831 return ret; 832 } 833 834 /* 835 * Work queue call back to started compression on a file and pages. 836 * 837 * This is done inside an ordered work queue, and the compression is spread 838 * across many cpus. The actual IO submission is step two, and the ordered work 839 * queue takes care of making sure that happens in the same order things were 840 * put onto the queue by writepages and friends. 841 * 842 * If this code finds it can't get good compression, it puts an entry onto the 843 * work queue to write the uncompressed bytes. This makes sure that both 844 * compressed inodes and uncompressed inodes are written in the same order that 845 * the flusher thread sent them down. 846 */ 847 static void compress_file_range(struct btrfs_work *work) 848 { 849 struct async_chunk *async_chunk = 850 container_of(work, struct async_chunk, work); 851 struct btrfs_inode *inode = async_chunk->inode; 852 struct btrfs_fs_info *fs_info = inode->root->fs_info; 853 struct address_space *mapping = inode->vfs_inode.i_mapping; 854 u64 blocksize = fs_info->sectorsize; 855 u64 start = async_chunk->start; 856 u64 end = async_chunk->end; 857 u64 actual_end; 858 u64 i_size; 859 int ret = 0; 860 struct folio **folios; 861 unsigned long nr_folios; 862 unsigned long total_compressed = 0; 863 unsigned long total_in = 0; 864 unsigned int poff; 865 int i; 866 int compress_type = fs_info->compress_type; 867 int compress_level = fs_info->compress_level; 868 869 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 870 871 /* 872 * We need to call clear_page_dirty_for_io on each page in the range. 873 * Otherwise applications with the file mmap'd can wander in and change 874 * the page contents while we are compressing them. 875 */ 876 ret = extent_range_clear_dirty_for_io(inode, start, end); 877 878 /* 879 * All the folios should have been locked thus no failure. 880 * 881 * And even if some folios are missing, btrfs_compress_folios() 882 * would handle them correctly, so here just do an ASSERT() check for 883 * early logic errors. 884 */ 885 ASSERT(ret == 0); 886 887 /* 888 * We need to save i_size before now because it could change in between 889 * us evaluating the size and assigning it. This is because we lock and 890 * unlock the page in truncate and fallocate, and then modify the i_size 891 * later on. 892 * 893 * The barriers are to emulate READ_ONCE, remove that once i_size_read 894 * does that for us. 895 */ 896 barrier(); 897 i_size = i_size_read(&inode->vfs_inode); 898 barrier(); 899 actual_end = min_t(u64, i_size, end + 1); 900 again: 901 folios = NULL; 902 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 903 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 904 905 /* 906 * we don't want to send crud past the end of i_size through 907 * compression, that's just a waste of CPU time. So, if the 908 * end of the file is before the start of our current 909 * requested range of bytes, we bail out to the uncompressed 910 * cleanup code that can deal with all of this. 911 * 912 * It isn't really the fastest way to fix things, but this is a 913 * very uncommon corner. 914 */ 915 if (actual_end <= start) 916 goto cleanup_and_bail_uncompressed; 917 918 total_compressed = actual_end - start; 919 920 /* 921 * Skip compression for a small file range(<=blocksize) that 922 * isn't an inline extent, since it doesn't save disk space at all. 923 */ 924 if (total_compressed <= blocksize && 925 (start > 0 || end + 1 < inode->disk_i_size)) 926 goto cleanup_and_bail_uncompressed; 927 928 total_compressed = min_t(unsigned long, total_compressed, 929 BTRFS_MAX_UNCOMPRESSED); 930 total_in = 0; 931 ret = 0; 932 933 /* 934 * We do compression for mount -o compress and when the inode has not 935 * been flagged as NOCOMPRESS. This flag can change at any time if we 936 * discover bad compression ratios. 937 */ 938 if (!inode_need_compress(inode, start, end)) 939 goto cleanup_and_bail_uncompressed; 940 941 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 942 if (!folios) { 943 /* 944 * Memory allocation failure is not a fatal error, we can fall 945 * back to uncompressed code. 946 */ 947 goto cleanup_and_bail_uncompressed; 948 } 949 950 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 951 compress_type = inode->defrag_compress; 952 compress_level = inode->defrag_compress_level; 953 } else if (inode->prop_compress) { 954 compress_type = inode->prop_compress; 955 } 956 957 /* Compression level is applied here. */ 958 ret = btrfs_compress_folios(compress_type, compress_level, 959 mapping, start, folios, &nr_folios, &total_in, 960 &total_compressed); 961 if (ret) 962 goto mark_incompressible; 963 964 /* 965 * Zero the tail end of the last page, as we might be sending it down 966 * to disk. 967 */ 968 poff = offset_in_page(total_compressed); 969 if (poff) 970 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 971 972 /* 973 * Try to create an inline extent. 974 * 975 * If we didn't compress the entire range, try to create an uncompressed 976 * inline extent, else a compressed one. 977 * 978 * Check cow_file_range() for why we don't even try to create inline 979 * extent for the subpage case. 980 */ 981 if (total_in < actual_end) 982 ret = cow_file_range_inline(inode, NULL, start, end, 0, 983 BTRFS_COMPRESS_NONE, NULL, false); 984 else 985 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 986 compress_type, folios[0], false); 987 if (ret <= 0) { 988 if (ret < 0) 989 mapping_set_error(mapping, -EIO); 990 goto free_pages; 991 } 992 993 /* 994 * We aren't doing an inline extent. Round the compressed size up to a 995 * block size boundary so the allocator does sane things. 996 */ 997 total_compressed = ALIGN(total_compressed, blocksize); 998 999 /* 1000 * One last check to make sure the compression is really a win, compare 1001 * the page count read with the blocks on disk, compression must free at 1002 * least one sector. 1003 */ 1004 total_in = round_up(total_in, fs_info->sectorsize); 1005 if (total_compressed + blocksize > total_in) 1006 goto mark_incompressible; 1007 1008 /* 1009 * The async work queues will take care of doing actual allocation on 1010 * disk for these compressed pages, and will submit the bios. 1011 */ 1012 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1013 nr_folios, compress_type); 1014 BUG_ON(ret); 1015 if (start + total_in < end) { 1016 start += total_in; 1017 cond_resched(); 1018 goto again; 1019 } 1020 return; 1021 1022 mark_incompressible: 1023 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1024 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1025 cleanup_and_bail_uncompressed: 1026 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1027 BTRFS_COMPRESS_NONE); 1028 BUG_ON(ret); 1029 free_pages: 1030 if (folios) { 1031 for (i = 0; i < nr_folios; i++) { 1032 WARN_ON(folios[i]->mapping); 1033 btrfs_free_compr_folio(folios[i]); 1034 } 1035 kfree(folios); 1036 } 1037 } 1038 1039 static void free_async_extent_pages(struct async_extent *async_extent) 1040 { 1041 int i; 1042 1043 if (!async_extent->folios) 1044 return; 1045 1046 for (i = 0; i < async_extent->nr_folios; i++) { 1047 WARN_ON(async_extent->folios[i]->mapping); 1048 btrfs_free_compr_folio(async_extent->folios[i]); 1049 } 1050 kfree(async_extent->folios); 1051 async_extent->nr_folios = 0; 1052 async_extent->folios = NULL; 1053 } 1054 1055 static void submit_uncompressed_range(struct btrfs_inode *inode, 1056 struct async_extent *async_extent, 1057 struct folio *locked_folio) 1058 { 1059 u64 start = async_extent->start; 1060 u64 end = async_extent->start + async_extent->ram_size - 1; 1061 int ret; 1062 struct writeback_control wbc = { 1063 .sync_mode = WB_SYNC_ALL, 1064 .range_start = start, 1065 .range_end = end, 1066 .no_cgroup_owner = 1, 1067 }; 1068 1069 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1070 ret = run_delalloc_cow(inode, locked_folio, start, end, 1071 &wbc, false); 1072 wbc_detach_inode(&wbc); 1073 if (ret < 0) { 1074 if (locked_folio) 1075 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1076 start, async_extent->ram_size); 1077 btrfs_err_rl(inode->root->fs_info, 1078 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1079 __func__, btrfs_root_id(inode->root), 1080 btrfs_ino(inode), start, async_extent->ram_size, ret); 1081 } 1082 } 1083 1084 static void submit_one_async_extent(struct async_chunk *async_chunk, 1085 struct async_extent *async_extent, 1086 u64 *alloc_hint) 1087 { 1088 struct btrfs_inode *inode = async_chunk->inode; 1089 struct extent_io_tree *io_tree = &inode->io_tree; 1090 struct btrfs_root *root = inode->root; 1091 struct btrfs_fs_info *fs_info = root->fs_info; 1092 struct btrfs_ordered_extent *ordered; 1093 struct btrfs_file_extent file_extent; 1094 struct btrfs_key ins; 1095 struct folio *locked_folio = NULL; 1096 struct extent_state *cached = NULL; 1097 struct extent_map *em; 1098 int ret = 0; 1099 bool free_pages = false; 1100 u64 start = async_extent->start; 1101 u64 end = async_extent->start + async_extent->ram_size - 1; 1102 1103 if (async_chunk->blkcg_css) 1104 kthread_associate_blkcg(async_chunk->blkcg_css); 1105 1106 /* 1107 * If async_chunk->locked_folio is in the async_extent range, we need to 1108 * handle it. 1109 */ 1110 if (async_chunk->locked_folio) { 1111 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1112 u64 locked_folio_end = locked_folio_start + 1113 folio_size(async_chunk->locked_folio) - 1; 1114 1115 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1116 locked_folio = async_chunk->locked_folio; 1117 } 1118 1119 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1120 ASSERT(!async_extent->folios); 1121 ASSERT(async_extent->nr_folios == 0); 1122 submit_uncompressed_range(inode, async_extent, locked_folio); 1123 free_pages = true; 1124 goto done; 1125 } 1126 1127 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1128 async_extent->compressed_size, 1129 async_extent->compressed_size, 1130 0, *alloc_hint, &ins, 1, 1); 1131 if (ret) { 1132 /* 1133 * We can't reserve contiguous space for the compressed size. 1134 * Unlikely, but it's possible that we could have enough 1135 * non-contiguous space for the uncompressed size instead. So 1136 * fall back to uncompressed. 1137 */ 1138 submit_uncompressed_range(inode, async_extent, locked_folio); 1139 free_pages = true; 1140 goto done; 1141 } 1142 1143 btrfs_lock_extent(io_tree, start, end, &cached); 1144 1145 /* Here we're doing allocation and writeback of the compressed pages */ 1146 file_extent.disk_bytenr = ins.objectid; 1147 file_extent.disk_num_bytes = ins.offset; 1148 file_extent.ram_bytes = async_extent->ram_size; 1149 file_extent.num_bytes = async_extent->ram_size; 1150 file_extent.offset = 0; 1151 file_extent.compression = async_extent->compress_type; 1152 1153 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1154 if (IS_ERR(em)) { 1155 ret = PTR_ERR(em); 1156 goto out_free_reserve; 1157 } 1158 btrfs_free_extent_map(em); 1159 1160 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1161 1U << BTRFS_ORDERED_COMPRESSED); 1162 if (IS_ERR(ordered)) { 1163 btrfs_drop_extent_map_range(inode, start, end, false); 1164 ret = PTR_ERR(ordered); 1165 goto out_free_reserve; 1166 } 1167 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1168 1169 /* Clear dirty, set writeback and unlock the pages. */ 1170 extent_clear_unlock_delalloc(inode, start, end, 1171 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1172 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1173 btrfs_submit_compressed_write(ordered, 1174 async_extent->folios, /* compressed_folios */ 1175 async_extent->nr_folios, 1176 async_chunk->write_flags, true); 1177 *alloc_hint = ins.objectid + ins.offset; 1178 done: 1179 if (async_chunk->blkcg_css) 1180 kthread_associate_blkcg(NULL); 1181 if (free_pages) 1182 free_async_extent_pages(async_extent); 1183 kfree(async_extent); 1184 return; 1185 1186 out_free_reserve: 1187 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1189 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1190 extent_clear_unlock_delalloc(inode, start, end, 1191 NULL, &cached, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DELALLOC_NEW | 1194 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1195 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1196 PAGE_END_WRITEBACK); 1197 free_async_extent_pages(async_extent); 1198 if (async_chunk->blkcg_css) 1199 kthread_associate_blkcg(NULL); 1200 btrfs_debug(fs_info, 1201 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1202 btrfs_root_id(root), btrfs_ino(inode), start, 1203 async_extent->ram_size, ret); 1204 kfree(async_extent); 1205 } 1206 1207 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1208 u64 num_bytes) 1209 { 1210 struct extent_map_tree *em_tree = &inode->extent_tree; 1211 struct extent_map *em; 1212 u64 alloc_hint = 0; 1213 1214 read_lock(&em_tree->lock); 1215 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1216 if (em) { 1217 /* 1218 * if block start isn't an actual block number then find the 1219 * first block in this inode and use that as a hint. If that 1220 * block is also bogus then just don't worry about it. 1221 */ 1222 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1223 btrfs_free_extent_map(em); 1224 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1225 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1226 alloc_hint = btrfs_extent_map_block_start(em); 1227 if (em) 1228 btrfs_free_extent_map(em); 1229 } else { 1230 alloc_hint = btrfs_extent_map_block_start(em); 1231 btrfs_free_extent_map(em); 1232 } 1233 } 1234 read_unlock(&em_tree->lock); 1235 1236 return alloc_hint; 1237 } 1238 1239 /* 1240 * when extent_io.c finds a delayed allocation range in the file, 1241 * the call backs end up in this code. The basic idea is to 1242 * allocate extents on disk for the range, and create ordered data structs 1243 * in ram to track those extents. 1244 * 1245 * locked_folio is the folio that writepage had locked already. We use 1246 * it to make sure we don't do extra locks or unlocks. 1247 * 1248 * When this function fails, it unlocks all pages except @locked_folio. 1249 * 1250 * When this function successfully creates an inline extent, it returns 1 and 1251 * unlocks all pages including locked_folio and starts I/O on them. 1252 * (In reality inline extents are limited to a single page, so locked_folio is 1253 * the only page handled anyway). 1254 * 1255 * When this function succeed and creates a normal extent, the page locking 1256 * status depends on the passed in flags: 1257 * 1258 * - If @keep_locked is set, all pages are kept locked. 1259 * - Else all pages except for @locked_folio are unlocked. 1260 * 1261 * When a failure happens in the second or later iteration of the 1262 * while-loop, the ordered extents created in previous iterations are cleaned up. 1263 */ 1264 static noinline int cow_file_range(struct btrfs_inode *inode, 1265 struct folio *locked_folio, u64 start, 1266 u64 end, u64 *done_offset, 1267 bool keep_locked, bool no_inline) 1268 { 1269 struct btrfs_root *root = inode->root; 1270 struct btrfs_fs_info *fs_info = root->fs_info; 1271 struct extent_state *cached = NULL; 1272 u64 alloc_hint = 0; 1273 u64 orig_start = start; 1274 u64 num_bytes; 1275 u64 cur_alloc_size = 0; 1276 u64 min_alloc_size; 1277 u64 blocksize = fs_info->sectorsize; 1278 struct btrfs_key ins; 1279 struct extent_map *em; 1280 unsigned clear_bits; 1281 unsigned long page_ops; 1282 int ret = 0; 1283 1284 if (btrfs_is_free_space_inode(inode)) { 1285 ret = -EINVAL; 1286 goto out_unlock; 1287 } 1288 1289 num_bytes = ALIGN(end - start + 1, blocksize); 1290 num_bytes = max(blocksize, num_bytes); 1291 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1292 1293 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1294 1295 if (!no_inline) { 1296 /* lets try to make an inline extent */ 1297 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1298 BTRFS_COMPRESS_NONE, NULL, false); 1299 if (ret <= 0) { 1300 /* 1301 * We succeeded, return 1 so the caller knows we're done 1302 * with this page and already handled the IO. 1303 * 1304 * If there was an error then cow_file_range_inline() has 1305 * already done the cleanup. 1306 */ 1307 if (ret == 0) 1308 ret = 1; 1309 goto done; 1310 } 1311 } 1312 1313 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1314 1315 /* 1316 * We're not doing compressed IO, don't unlock the first page (which 1317 * the caller expects to stay locked), don't clear any dirty bits and 1318 * don't set any writeback bits. 1319 * 1320 * Do set the Ordered (Private2) bit so we know this page was properly 1321 * setup for writepage. 1322 */ 1323 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1324 page_ops |= PAGE_SET_ORDERED; 1325 1326 /* 1327 * Relocation relies on the relocated extents to have exactly the same 1328 * size as the original extents. Normally writeback for relocation data 1329 * extents follows a NOCOW path because relocation preallocates the 1330 * extents. However, due to an operation such as scrub turning a block 1331 * group to RO mode, it may fallback to COW mode, so we must make sure 1332 * an extent allocated during COW has exactly the requested size and can 1333 * not be split into smaller extents, otherwise relocation breaks and 1334 * fails during the stage where it updates the bytenr of file extent 1335 * items. 1336 */ 1337 if (btrfs_is_data_reloc_root(root)) 1338 min_alloc_size = num_bytes; 1339 else 1340 min_alloc_size = fs_info->sectorsize; 1341 1342 while (num_bytes > 0) { 1343 struct btrfs_ordered_extent *ordered; 1344 struct btrfs_file_extent file_extent; 1345 1346 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1347 min_alloc_size, 0, alloc_hint, 1348 &ins, 1, 1); 1349 if (ret == -EAGAIN) { 1350 /* 1351 * btrfs_reserve_extent only returns -EAGAIN for zoned 1352 * file systems, which is an indication that there are 1353 * no active zones to allocate from at the moment. 1354 * 1355 * If this is the first loop iteration, wait for at 1356 * least one zone to finish before retrying the 1357 * allocation. Otherwise ask the caller to write out 1358 * the already allocated blocks before coming back to 1359 * us, or return -ENOSPC if it can't handle retries. 1360 */ 1361 ASSERT(btrfs_is_zoned(fs_info)); 1362 if (start == orig_start) { 1363 wait_on_bit_io(&inode->root->fs_info->flags, 1364 BTRFS_FS_NEED_ZONE_FINISH, 1365 TASK_UNINTERRUPTIBLE); 1366 continue; 1367 } 1368 if (done_offset) { 1369 /* 1370 * Move @end to the end of the processed range, 1371 * and exit the loop to unlock the processed extents. 1372 */ 1373 end = start - 1; 1374 ret = 0; 1375 break; 1376 } 1377 ret = -ENOSPC; 1378 } 1379 if (ret < 0) 1380 goto out_unlock; 1381 cur_alloc_size = ins.offset; 1382 1383 file_extent.disk_bytenr = ins.objectid; 1384 file_extent.disk_num_bytes = ins.offset; 1385 file_extent.num_bytes = ins.offset; 1386 file_extent.ram_bytes = ins.offset; 1387 file_extent.offset = 0; 1388 file_extent.compression = BTRFS_COMPRESS_NONE; 1389 1390 /* 1391 * Locked range will be released either during error clean up or 1392 * after the whole range is finished. 1393 */ 1394 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1395 &cached); 1396 1397 em = btrfs_create_io_em(inode, start, &file_extent, 1398 BTRFS_ORDERED_REGULAR); 1399 if (IS_ERR(em)) { 1400 btrfs_unlock_extent(&inode->io_tree, start, 1401 start + cur_alloc_size - 1, &cached); 1402 ret = PTR_ERR(em); 1403 goto out_reserve; 1404 } 1405 btrfs_free_extent_map(em); 1406 1407 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1408 1U << BTRFS_ORDERED_REGULAR); 1409 if (IS_ERR(ordered)) { 1410 btrfs_unlock_extent(&inode->io_tree, start, 1411 start + cur_alloc_size - 1, &cached); 1412 ret = PTR_ERR(ordered); 1413 goto out_drop_extent_cache; 1414 } 1415 1416 if (btrfs_is_data_reloc_root(root)) { 1417 ret = btrfs_reloc_clone_csums(ordered); 1418 1419 /* 1420 * Only drop cache here, and process as normal. 1421 * 1422 * We must not allow extent_clear_unlock_delalloc() 1423 * at out_unlock label to free meta of this ordered 1424 * extent, as its meta should be freed by 1425 * btrfs_finish_ordered_io(). 1426 * 1427 * So we must continue until @start is increased to 1428 * skip current ordered extent. 1429 */ 1430 if (ret) 1431 btrfs_drop_extent_map_range(inode, start, 1432 start + cur_alloc_size - 1, 1433 false); 1434 } 1435 btrfs_put_ordered_extent(ordered); 1436 1437 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1438 1439 if (num_bytes < cur_alloc_size) 1440 num_bytes = 0; 1441 else 1442 num_bytes -= cur_alloc_size; 1443 alloc_hint = ins.objectid + ins.offset; 1444 start += cur_alloc_size; 1445 cur_alloc_size = 0; 1446 1447 /* 1448 * btrfs_reloc_clone_csums() error, since start is increased 1449 * extent_clear_unlock_delalloc() at out_unlock label won't 1450 * free metadata of current ordered extent, we're OK to exit. 1451 */ 1452 if (ret) 1453 goto out_unlock; 1454 } 1455 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1456 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1457 done: 1458 if (done_offset) 1459 *done_offset = end; 1460 return ret; 1461 1462 out_drop_extent_cache: 1463 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1464 out_reserve: 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1467 out_unlock: 1468 /* 1469 * Now, we have three regions to clean up: 1470 * 1471 * |-------(1)----|---(2)---|-------------(3)----------| 1472 * `- orig_start `- start `- start + cur_alloc_size `- end 1473 * 1474 * We process each region below. 1475 */ 1476 1477 /* 1478 * For the range (1). We have already instantiated the ordered extents 1479 * for this region, thus we need to cleanup those ordered extents. 1480 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1481 * are also handled by the ordered extents cleanup. 1482 * 1483 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1484 * finish the writeback of the involved folios, which will be never submitted. 1485 */ 1486 if (orig_start < start) { 1487 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1488 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1489 1490 if (!locked_folio) 1491 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1492 1493 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1494 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1495 locked_folio, NULL, clear_bits, page_ops); 1496 } 1497 1498 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1499 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1500 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1501 1502 /* 1503 * For the range (2). If we reserved an extent for our delalloc range 1504 * (or a subrange) and failed to create the respective ordered extent, 1505 * then it means that when we reserved the extent we decremented the 1506 * extent's size from the data space_info's bytes_may_use counter and 1507 * incremented the space_info's bytes_reserved counter by the same 1508 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1509 * to decrement again the data space_info's bytes_may_use counter, 1510 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1511 */ 1512 if (cur_alloc_size) { 1513 extent_clear_unlock_delalloc(inode, start, 1514 start + cur_alloc_size - 1, 1515 locked_folio, &cached, clear_bits, 1516 page_ops); 1517 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1518 } 1519 1520 /* 1521 * For the range (3). We never touched the region. In addition to the 1522 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1523 * space_info's bytes_may_use counter, reserved in 1524 * btrfs_check_data_free_space(). 1525 */ 1526 if (start + cur_alloc_size < end) { 1527 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1528 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1529 end, locked_folio, 1530 &cached, clear_bits, page_ops); 1531 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1532 end - start - cur_alloc_size + 1, NULL); 1533 } 1534 btrfs_err_rl(fs_info, 1535 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1536 __func__, btrfs_root_id(inode->root), 1537 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1538 return ret; 1539 } 1540 1541 /* 1542 * Phase two of compressed writeback. This is the ordered portion of the code, 1543 * which only gets called in the order the work was queued. We walk all the 1544 * async extents created by compress_file_range and send them down to the disk. 1545 * 1546 * If called with @do_free == true then it'll try to finish the work and free 1547 * the work struct eventually. 1548 */ 1549 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1550 { 1551 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1552 work); 1553 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1554 struct async_extent *async_extent; 1555 unsigned long nr_pages; 1556 u64 alloc_hint = 0; 1557 1558 if (do_free) { 1559 struct async_cow *async_cow; 1560 1561 btrfs_add_delayed_iput(async_chunk->inode); 1562 if (async_chunk->blkcg_css) 1563 css_put(async_chunk->blkcg_css); 1564 1565 async_cow = async_chunk->async_cow; 1566 if (atomic_dec_and_test(&async_cow->num_chunks)) 1567 kvfree(async_cow); 1568 return; 1569 } 1570 1571 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1572 PAGE_SHIFT; 1573 1574 while (!list_empty(&async_chunk->extents)) { 1575 async_extent = list_first_entry(&async_chunk->extents, 1576 struct async_extent, list); 1577 list_del(&async_extent->list); 1578 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1579 } 1580 1581 /* atomic_sub_return implies a barrier */ 1582 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1583 5 * SZ_1M) 1584 cond_wake_up_nomb(&fs_info->async_submit_wait); 1585 } 1586 1587 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1588 struct folio *locked_folio, u64 start, 1589 u64 end, struct writeback_control *wbc) 1590 { 1591 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1592 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1593 struct async_cow *ctx; 1594 struct async_chunk *async_chunk; 1595 unsigned long nr_pages; 1596 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1597 int i; 1598 unsigned nofs_flag; 1599 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1600 1601 nofs_flag = memalloc_nofs_save(); 1602 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1603 memalloc_nofs_restore(nofs_flag); 1604 if (!ctx) 1605 return false; 1606 1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1608 1609 async_chunk = ctx->chunks; 1610 atomic_set(&ctx->num_chunks, num_chunks); 1611 1612 for (i = 0; i < num_chunks; i++) { 1613 u64 cur_end = min(end, start + SZ_512K - 1); 1614 1615 /* 1616 * igrab is called higher up in the call chain, take only the 1617 * lightweight reference for the callback lifetime 1618 */ 1619 ihold(&inode->vfs_inode); 1620 async_chunk[i].async_cow = ctx; 1621 async_chunk[i].inode = inode; 1622 async_chunk[i].start = start; 1623 async_chunk[i].end = cur_end; 1624 async_chunk[i].write_flags = write_flags; 1625 INIT_LIST_HEAD(&async_chunk[i].extents); 1626 1627 /* 1628 * The locked_folio comes all the way from writepage and its 1629 * the original folio we were actually given. As we spread 1630 * this large delalloc region across multiple async_chunk 1631 * structs, only the first struct needs a pointer to 1632 * locked_folio. 1633 * 1634 * This way we don't need racey decisions about who is supposed 1635 * to unlock it. 1636 */ 1637 if (locked_folio) { 1638 /* 1639 * Depending on the compressibility, the pages might or 1640 * might not go through async. We want all of them to 1641 * be accounted against wbc once. Let's do it here 1642 * before the paths diverge. wbc accounting is used 1643 * only for foreign writeback detection and doesn't 1644 * need full accuracy. Just account the whole thing 1645 * against the first page. 1646 */ 1647 wbc_account_cgroup_owner(wbc, locked_folio, 1648 cur_end - start); 1649 async_chunk[i].locked_folio = locked_folio; 1650 locked_folio = NULL; 1651 } else { 1652 async_chunk[i].locked_folio = NULL; 1653 } 1654 1655 if (blkcg_css != blkcg_root_css) { 1656 css_get(blkcg_css); 1657 async_chunk[i].blkcg_css = blkcg_css; 1658 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1659 } else { 1660 async_chunk[i].blkcg_css = NULL; 1661 } 1662 1663 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1664 submit_compressed_extents); 1665 1666 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1667 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1668 1669 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1670 1671 start = cur_end + 1; 1672 } 1673 return true; 1674 } 1675 1676 /* 1677 * Run the delalloc range from start to end, and write back any dirty pages 1678 * covered by the range. 1679 */ 1680 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1681 struct folio *locked_folio, u64 start, 1682 u64 end, struct writeback_control *wbc, 1683 bool pages_dirty) 1684 { 1685 u64 done_offset = end; 1686 int ret; 1687 1688 while (start <= end) { 1689 ret = cow_file_range(inode, locked_folio, start, end, 1690 &done_offset, true, false); 1691 if (ret) 1692 return ret; 1693 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1694 start, done_offset, wbc, pages_dirty); 1695 start = done_offset + 1; 1696 } 1697 1698 return 1; 1699 } 1700 1701 static int fallback_to_cow(struct btrfs_inode *inode, 1702 struct folio *locked_folio, const u64 start, 1703 const u64 end) 1704 { 1705 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1706 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1707 const u64 range_bytes = end + 1 - start; 1708 struct extent_io_tree *io_tree = &inode->io_tree; 1709 struct extent_state *cached_state = NULL; 1710 u64 range_start = start; 1711 u64 count; 1712 int ret; 1713 1714 /* 1715 * If EXTENT_NORESERVE is set it means that when the buffered write was 1716 * made we had not enough available data space and therefore we did not 1717 * reserve data space for it, since we though we could do NOCOW for the 1718 * respective file range (either there is prealloc extent or the inode 1719 * has the NOCOW bit set). 1720 * 1721 * However when we need to fallback to COW mode (because for example the 1722 * block group for the corresponding extent was turned to RO mode by a 1723 * scrub or relocation) we need to do the following: 1724 * 1725 * 1) We increment the bytes_may_use counter of the data space info. 1726 * If COW succeeds, it allocates a new data extent and after doing 1727 * that it decrements the space info's bytes_may_use counter and 1728 * increments its bytes_reserved counter by the same amount (we do 1729 * this at btrfs_add_reserved_bytes()). So we need to increment the 1730 * bytes_may_use counter to compensate (when space is reserved at 1731 * buffered write time, the bytes_may_use counter is incremented); 1732 * 1733 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1734 * that if the COW path fails for any reason, it decrements (through 1735 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1736 * data space info, which we incremented in the step above. 1737 * 1738 * If we need to fallback to cow and the inode corresponds to a free 1739 * space cache inode or an inode of the data relocation tree, we must 1740 * also increment bytes_may_use of the data space_info for the same 1741 * reason. Space caches and relocated data extents always get a prealloc 1742 * extent for them, however scrub or balance may have set the block 1743 * group that contains that extent to RO mode and therefore force COW 1744 * when starting writeback. 1745 */ 1746 btrfs_lock_extent(io_tree, start, end, &cached_state); 1747 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1748 EXTENT_NORESERVE, 0, NULL); 1749 if (count > 0 || is_space_ino || is_reloc_ino) { 1750 u64 bytes = count; 1751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1752 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1753 1754 if (is_space_ino || is_reloc_ino) 1755 bytes = range_bytes; 1756 1757 spin_lock(&sinfo->lock); 1758 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1759 spin_unlock(&sinfo->lock); 1760 1761 if (count > 0) 1762 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1763 &cached_state); 1764 } 1765 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1766 1767 /* 1768 * Don't try to create inline extents, as a mix of inline extent that 1769 * is written out and unlocked directly and a normal NOCOW extent 1770 * doesn't work. 1771 */ 1772 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1773 true); 1774 ASSERT(ret != 1); 1775 return ret; 1776 } 1777 1778 struct can_nocow_file_extent_args { 1779 /* Input fields. */ 1780 1781 /* Start file offset of the range we want to NOCOW. */ 1782 u64 start; 1783 /* End file offset (inclusive) of the range we want to NOCOW. */ 1784 u64 end; 1785 bool writeback_path; 1786 /* 1787 * Free the path passed to can_nocow_file_extent() once it's not needed 1788 * anymore. 1789 */ 1790 bool free_path; 1791 1792 /* 1793 * Output fields. Only set when can_nocow_file_extent() returns 1. 1794 * The expected file extent for the NOCOW write. 1795 */ 1796 struct btrfs_file_extent file_extent; 1797 }; 1798 1799 /* 1800 * Check if we can NOCOW the file extent that the path points to. 1801 * This function may return with the path released, so the caller should check 1802 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1803 * 1804 * Returns: < 0 on error 1805 * 0 if we can not NOCOW 1806 * 1 if we can NOCOW 1807 */ 1808 static int can_nocow_file_extent(struct btrfs_path *path, 1809 struct btrfs_key *key, 1810 struct btrfs_inode *inode, 1811 struct can_nocow_file_extent_args *args) 1812 { 1813 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1814 struct extent_buffer *leaf = path->nodes[0]; 1815 struct btrfs_root *root = inode->root; 1816 struct btrfs_file_extent_item *fi; 1817 struct btrfs_root *csum_root; 1818 u64 io_start; 1819 u64 extent_end; 1820 u8 extent_type; 1821 int can_nocow = 0; 1822 int ret = 0; 1823 bool nowait = path->nowait; 1824 1825 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1826 extent_type = btrfs_file_extent_type(leaf, fi); 1827 1828 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1829 goto out; 1830 1831 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1832 extent_type == BTRFS_FILE_EXTENT_REG) 1833 goto out; 1834 1835 /* 1836 * If the extent was created before the generation where the last snapshot 1837 * for its subvolume was created, then this implies the extent is shared, 1838 * hence we must COW. 1839 */ 1840 if (btrfs_file_extent_generation(leaf, fi) <= 1841 btrfs_root_last_snapshot(&root->root_item)) 1842 goto out; 1843 1844 /* An explicit hole, must COW. */ 1845 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1846 goto out; 1847 1848 /* Compressed/encrypted/encoded extents must be COWed. */ 1849 if (btrfs_file_extent_compression(leaf, fi) || 1850 btrfs_file_extent_encryption(leaf, fi) || 1851 btrfs_file_extent_other_encoding(leaf, fi)) 1852 goto out; 1853 1854 extent_end = btrfs_file_extent_end(path); 1855 1856 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1857 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1858 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1859 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1860 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1861 1862 /* 1863 * The following checks can be expensive, as they need to take other 1864 * locks and do btree or rbtree searches, so release the path to avoid 1865 * blocking other tasks for too long. 1866 */ 1867 btrfs_release_path(path); 1868 1869 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1870 args->file_extent.disk_bytenr, path); 1871 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1872 if (ret != 0) 1873 goto out; 1874 1875 if (args->free_path) { 1876 /* 1877 * We don't need the path anymore, plus through the 1878 * btrfs_lookup_csums_list() call below we will end up allocating 1879 * another path. So free the path to avoid unnecessary extra 1880 * memory usage. 1881 */ 1882 btrfs_free_path(path); 1883 path = NULL; 1884 } 1885 1886 /* If there are pending snapshots for this root, we must COW. */ 1887 if (args->writeback_path && !is_freespace_inode && 1888 atomic_read(&root->snapshot_force_cow)) 1889 goto out; 1890 1891 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1892 args->file_extent.offset += args->start - key->offset; 1893 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1894 1895 /* 1896 * Force COW if csums exist in the range. This ensures that csums for a 1897 * given extent are either valid or do not exist. 1898 */ 1899 1900 csum_root = btrfs_csum_root(root->fs_info, io_start); 1901 ret = btrfs_lookup_csums_list(csum_root, io_start, 1902 io_start + args->file_extent.num_bytes - 1, 1903 NULL, nowait); 1904 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1905 if (ret != 0) 1906 goto out; 1907 1908 can_nocow = 1; 1909 out: 1910 if (args->free_path && path) 1911 btrfs_free_path(path); 1912 1913 return ret < 0 ? ret : can_nocow; 1914 } 1915 1916 /* 1917 * Cleanup the dirty folios which will never be submitted due to error. 1918 * 1919 * When running a delalloc range, we may need to split the ranges (due to 1920 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1921 * out and previously successfully executed range will never be submitted, thus 1922 * we have to cleanup those folios by clearing their dirty flag, starting and 1923 * finishing the writeback. 1924 */ 1925 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1926 struct folio *locked_folio, 1927 u64 start, u64 end, int error) 1928 { 1929 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1930 struct address_space *mapping = inode->vfs_inode.i_mapping; 1931 pgoff_t start_index = start >> PAGE_SHIFT; 1932 pgoff_t end_index = end >> PAGE_SHIFT; 1933 u32 len; 1934 1935 ASSERT(end + 1 - start < U32_MAX); 1936 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1937 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1938 len = end + 1 - start; 1939 1940 /* 1941 * Handle the locked folio first. 1942 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1943 */ 1944 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1945 1946 for (pgoff_t index = start_index; index <= end_index; index++) { 1947 struct folio *folio; 1948 1949 /* Already handled at the beginning. */ 1950 if (index == locked_folio->index) 1951 continue; 1952 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1953 /* Cache already dropped, no need to do any cleanup. */ 1954 if (IS_ERR(folio)) 1955 continue; 1956 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1957 folio_unlock(folio); 1958 folio_put(folio); 1959 } 1960 mapping_set_error(mapping, error); 1961 } 1962 1963 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1964 struct extent_state **cached, 1965 struct can_nocow_file_extent_args *nocow_args, 1966 u64 file_pos, bool is_prealloc) 1967 { 1968 struct btrfs_ordered_extent *ordered; 1969 u64 len = nocow_args->file_extent.num_bytes; 1970 u64 end = file_pos + len - 1; 1971 int ret = 0; 1972 1973 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1974 1975 if (is_prealloc) { 1976 struct extent_map *em; 1977 1978 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1979 BTRFS_ORDERED_PREALLOC); 1980 if (IS_ERR(em)) { 1981 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1982 return PTR_ERR(em); 1983 } 1984 btrfs_free_extent_map(em); 1985 } 1986 1987 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1988 is_prealloc 1989 ? (1U << BTRFS_ORDERED_PREALLOC) 1990 : (1U << BTRFS_ORDERED_NOCOW)); 1991 if (IS_ERR(ordered)) { 1992 if (is_prealloc) 1993 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1994 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1995 return PTR_ERR(ordered); 1996 } 1997 1998 if (btrfs_is_data_reloc_root(inode->root)) 1999 /* 2000 * Errors are handled later, as we must prevent 2001 * extent_clear_unlock_delalloc() in error handler from freeing 2002 * metadata of the created ordered extent. 2003 */ 2004 ret = btrfs_reloc_clone_csums(ordered); 2005 btrfs_put_ordered_extent(ordered); 2006 2007 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2008 EXTENT_LOCKED | EXTENT_DELALLOC | 2009 EXTENT_CLEAR_DATA_RESV, 2010 PAGE_UNLOCK | PAGE_SET_ORDERED); 2011 /* 2012 * On error, we need to cleanup the ordered extents we created. 2013 * 2014 * We do not clear the folio Dirty flags because they are set and 2015 * cleaered by the caller. 2016 */ 2017 if (ret < 0) 2018 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2019 return ret; 2020 } 2021 2022 /* 2023 * when nowcow writeback call back. This checks for snapshots or COW copies 2024 * of the extents that exist in the file, and COWs the file as required. 2025 * 2026 * If no cow copies or snapshots exist, we write directly to the existing 2027 * blocks on disk 2028 */ 2029 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2030 struct folio *locked_folio, 2031 const u64 start, const u64 end) 2032 { 2033 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2034 struct btrfs_root *root = inode->root; 2035 struct btrfs_path *path; 2036 u64 cow_start = (u64)-1; 2037 /* 2038 * If not 0, represents the inclusive end of the last fallback_to_cow() 2039 * range. Only for error handling. 2040 */ 2041 u64 cow_end = 0; 2042 u64 cur_offset = start; 2043 int ret; 2044 bool check_prev = true; 2045 u64 ino = btrfs_ino(inode); 2046 struct can_nocow_file_extent_args nocow_args = { 0 }; 2047 2048 /* 2049 * Normally on a zoned device we're only doing COW writes, but in case 2050 * of relocation on a zoned filesystem serializes I/O so that we're only 2051 * writing sequentially and can end up here as well. 2052 */ 2053 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2054 2055 path = btrfs_alloc_path(); 2056 if (!path) { 2057 ret = -ENOMEM; 2058 goto error; 2059 } 2060 2061 nocow_args.end = end; 2062 nocow_args.writeback_path = true; 2063 2064 while (cur_offset <= end) { 2065 struct btrfs_block_group *nocow_bg = NULL; 2066 struct btrfs_key found_key; 2067 struct btrfs_file_extent_item *fi; 2068 struct extent_buffer *leaf; 2069 struct extent_state *cached_state = NULL; 2070 u64 extent_end; 2071 int extent_type; 2072 2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2074 cur_offset, 0); 2075 if (ret < 0) 2076 goto error; 2077 2078 /* 2079 * If there is no extent for our range when doing the initial 2080 * search, then go back to the previous slot as it will be the 2081 * one containing the search offset 2082 */ 2083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2084 leaf = path->nodes[0]; 2085 btrfs_item_key_to_cpu(leaf, &found_key, 2086 path->slots[0] - 1); 2087 if (found_key.objectid == ino && 2088 found_key.type == BTRFS_EXTENT_DATA_KEY) 2089 path->slots[0]--; 2090 } 2091 check_prev = false; 2092 next_slot: 2093 /* Go to next leaf if we have exhausted the current one */ 2094 leaf = path->nodes[0]; 2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2096 ret = btrfs_next_leaf(root, path); 2097 if (ret < 0) 2098 goto error; 2099 if (ret > 0) 2100 break; 2101 leaf = path->nodes[0]; 2102 } 2103 2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2105 2106 /* Didn't find anything for our INO */ 2107 if (found_key.objectid > ino) 2108 break; 2109 /* 2110 * Keep searching until we find an EXTENT_ITEM or there are no 2111 * more extents for this inode 2112 */ 2113 if (WARN_ON_ONCE(found_key.objectid < ino) || 2114 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2121 found_key.offset > end) 2122 break; 2123 2124 /* 2125 * If the found extent starts after requested offset, then 2126 * adjust cur_offset to be right before this extent begins. 2127 */ 2128 if (found_key.offset > cur_offset) { 2129 if (cow_start == (u64)-1) 2130 cow_start = cur_offset; 2131 cur_offset = found_key.offset; 2132 goto next_slot; 2133 } 2134 2135 /* 2136 * Found extent which begins before our range and potentially 2137 * intersect it 2138 */ 2139 fi = btrfs_item_ptr(leaf, path->slots[0], 2140 struct btrfs_file_extent_item); 2141 extent_type = btrfs_file_extent_type(leaf, fi); 2142 /* If this is triggered then we have a memory corruption. */ 2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2145 ret = -EUCLEAN; 2146 goto error; 2147 } 2148 extent_end = btrfs_file_extent_end(path); 2149 2150 /* 2151 * If the extent we got ends before our current offset, skip to 2152 * the next extent. 2153 */ 2154 if (extent_end <= cur_offset) { 2155 path->slots[0]++; 2156 goto next_slot; 2157 } 2158 2159 nocow_args.start = cur_offset; 2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2161 if (ret < 0) 2162 goto error; 2163 if (ret == 0) 2164 goto must_cow; 2165 2166 ret = 0; 2167 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2168 nocow_args.file_extent.disk_bytenr + 2169 nocow_args.file_extent.offset); 2170 if (!nocow_bg) { 2171 must_cow: 2172 /* 2173 * If we can't perform NOCOW writeback for the range, 2174 * then record the beginning of the range that needs to 2175 * be COWed. It will be written out before the next 2176 * NOCOW range if we find one, or when exiting this 2177 * loop. 2178 */ 2179 if (cow_start == (u64)-1) 2180 cow_start = cur_offset; 2181 cur_offset = extent_end; 2182 if (cur_offset > end) 2183 break; 2184 if (!path->nodes[0]) 2185 continue; 2186 path->slots[0]++; 2187 goto next_slot; 2188 } 2189 2190 /* 2191 * COW range from cow_start to found_key.offset - 1. As the key 2192 * will contain the beginning of the first extent that can be 2193 * NOCOW, following one which needs to be COW'ed 2194 */ 2195 if (cow_start != (u64)-1) { 2196 ret = fallback_to_cow(inode, locked_folio, cow_start, 2197 found_key.offset - 1); 2198 if (ret) { 2199 cow_end = found_key.offset - 1; 2200 btrfs_dec_nocow_writers(nocow_bg); 2201 goto error; 2202 } 2203 cow_start = (u64)-1; 2204 } 2205 2206 ret = nocow_one_range(inode, locked_folio, &cached_state, 2207 &nocow_args, cur_offset, 2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (ret < 0) 2211 goto error; 2212 cur_offset = extent_end; 2213 } 2214 btrfs_release_path(path); 2215 2216 if (cur_offset <= end && cow_start == (u64)-1) 2217 cow_start = cur_offset; 2218 2219 if (cow_start != (u64)-1) { 2220 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2221 if (ret) { 2222 cow_end = end; 2223 goto error; 2224 } 2225 cow_start = (u64)-1; 2226 } 2227 2228 btrfs_free_path(path); 2229 return 0; 2230 2231 error: 2232 /* 2233 * There are several error cases: 2234 * 2235 * 1) Failed without falling back to COW 2236 * start cur_offset end 2237 * |/////////////| | 2238 * 2239 * In this case, cow_start should be (u64)-1. 2240 * 2241 * For range [start, cur_offset) the folios are already unlocked (except 2242 * @locked_folio), EXTENT_DELALLOC already removed. 2243 * Need to clear the dirty flags and finish the ordered extents. 2244 * 2245 * 2) Failed with error before calling fallback_to_cow() 2246 * 2247 * start cow_start end 2248 * |/////////////| | 2249 * 2250 * In this case, only @cow_start is set, @cur_offset is between 2251 * [cow_start, end) 2252 * 2253 * It's mostly the same as case 1), just replace @cur_offset with 2254 * @cow_start. 2255 * 2256 * 3) Failed with error from fallback_to_cow() 2257 * 2258 * start cow_start cow_end end 2259 * |/////////////|-----------| | 2260 * 2261 * In this case, both @cow_start and @cow_end is set. 2262 * 2263 * For range [start, cow_start) it's the same as case 1). 2264 * But for range [cow_start, cow_end), all the cleanup is handled by 2265 * cow_file_range(), we should not touch anything in that range. 2266 * 2267 * So for all above cases, if @cow_start is set, cleanup ordered extents 2268 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2269 */ 2270 if (cow_start != (u64)-1) 2271 cur_offset = cow_start; 2272 2273 if (cur_offset > start) { 2274 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2275 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2276 } 2277 2278 /* 2279 * If an error happened while a COW region is outstanding, cur_offset 2280 * needs to be reset to @cow_end + 1 to skip the COW range, as 2281 * cow_file_range() will do the proper cleanup at error. 2282 */ 2283 if (cow_end) 2284 cur_offset = cow_end + 1; 2285 2286 /* 2287 * We need to lock the extent here because we're clearing DELALLOC and 2288 * we're not locked at this point. 2289 */ 2290 if (cur_offset < end) { 2291 struct extent_state *cached = NULL; 2292 2293 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached); 2294 extent_clear_unlock_delalloc(inode, cur_offset, end, 2295 locked_folio, &cached, 2296 EXTENT_LOCKED | EXTENT_DELALLOC | 2297 EXTENT_DEFRAG | 2298 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2299 PAGE_START_WRITEBACK | 2300 PAGE_END_WRITEBACK); 2301 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2302 } 2303 btrfs_free_path(path); 2304 btrfs_err_rl(fs_info, 2305 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2306 __func__, btrfs_root_id(inode->root), 2307 btrfs_ino(inode), start, end + 1 - start, ret); 2308 return ret; 2309 } 2310 2311 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2312 { 2313 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2314 if (inode->defrag_bytes && 2315 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2316 return false; 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /* 2323 * Function to process delayed allocation (create CoW) for ranges which are 2324 * being touched for the first time. 2325 */ 2326 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2327 u64 start, u64 end, struct writeback_control *wbc) 2328 { 2329 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2330 int ret; 2331 2332 /* 2333 * The range must cover part of the @locked_folio, or a return of 1 2334 * can confuse the caller. 2335 */ 2336 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2337 2338 if (should_nocow(inode, start, end)) { 2339 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2340 return ret; 2341 } 2342 2343 if (btrfs_inode_can_compress(inode) && 2344 inode_need_compress(inode, start, end) && 2345 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2346 return 1; 2347 2348 if (zoned) 2349 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2350 true); 2351 else 2352 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2353 false, false); 2354 return ret; 2355 } 2356 2357 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2358 struct extent_state *orig, u64 split) 2359 { 2360 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2361 u64 size; 2362 2363 lockdep_assert_held(&inode->io_tree.lock); 2364 2365 /* not delalloc, ignore it */ 2366 if (!(orig->state & EXTENT_DELALLOC)) 2367 return; 2368 2369 size = orig->end - orig->start + 1; 2370 if (size > fs_info->max_extent_size) { 2371 u32 num_extents; 2372 u64 new_size; 2373 2374 /* 2375 * See the explanation in btrfs_merge_delalloc_extent, the same 2376 * applies here, just in reverse. 2377 */ 2378 new_size = orig->end - split + 1; 2379 num_extents = count_max_extents(fs_info, new_size); 2380 new_size = split - orig->start; 2381 num_extents += count_max_extents(fs_info, new_size); 2382 if (count_max_extents(fs_info, size) >= num_extents) 2383 return; 2384 } 2385 2386 spin_lock(&inode->lock); 2387 btrfs_mod_outstanding_extents(inode, 1); 2388 spin_unlock(&inode->lock); 2389 } 2390 2391 /* 2392 * Handle merged delayed allocation extents so we can keep track of new extents 2393 * that are just merged onto old extents, such as when we are doing sequential 2394 * writes, so we can properly account for the metadata space we'll need. 2395 */ 2396 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2397 struct extent_state *other) 2398 { 2399 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2400 u64 new_size, old_size; 2401 u32 num_extents; 2402 2403 lockdep_assert_held(&inode->io_tree.lock); 2404 2405 /* not delalloc, ignore it */ 2406 if (!(other->state & EXTENT_DELALLOC)) 2407 return; 2408 2409 if (new->start > other->start) 2410 new_size = new->end - other->start + 1; 2411 else 2412 new_size = other->end - new->start + 1; 2413 2414 /* we're not bigger than the max, unreserve the space and go */ 2415 if (new_size <= fs_info->max_extent_size) { 2416 spin_lock(&inode->lock); 2417 btrfs_mod_outstanding_extents(inode, -1); 2418 spin_unlock(&inode->lock); 2419 return; 2420 } 2421 2422 /* 2423 * We have to add up either side to figure out how many extents were 2424 * accounted for before we merged into one big extent. If the number of 2425 * extents we accounted for is <= the amount we need for the new range 2426 * then we can return, otherwise drop. Think of it like this 2427 * 2428 * [ 4k][MAX_SIZE] 2429 * 2430 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2431 * need 2 outstanding extents, on one side we have 1 and the other side 2432 * we have 1 so they are == and we can return. But in this case 2433 * 2434 * [MAX_SIZE+4k][MAX_SIZE+4k] 2435 * 2436 * Each range on their own accounts for 2 extents, but merged together 2437 * they are only 3 extents worth of accounting, so we need to drop in 2438 * this case. 2439 */ 2440 old_size = other->end - other->start + 1; 2441 num_extents = count_max_extents(fs_info, old_size); 2442 old_size = new->end - new->start + 1; 2443 num_extents += count_max_extents(fs_info, old_size); 2444 if (count_max_extents(fs_info, new_size) >= num_extents) 2445 return; 2446 2447 spin_lock(&inode->lock); 2448 btrfs_mod_outstanding_extents(inode, -1); 2449 spin_unlock(&inode->lock); 2450 } 2451 2452 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2453 { 2454 struct btrfs_root *root = inode->root; 2455 struct btrfs_fs_info *fs_info = root->fs_info; 2456 2457 spin_lock(&root->delalloc_lock); 2458 ASSERT(list_empty(&inode->delalloc_inodes)); 2459 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2460 root->nr_delalloc_inodes++; 2461 if (root->nr_delalloc_inodes == 1) { 2462 spin_lock(&fs_info->delalloc_root_lock); 2463 ASSERT(list_empty(&root->delalloc_root)); 2464 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2465 spin_unlock(&fs_info->delalloc_root_lock); 2466 } 2467 spin_unlock(&root->delalloc_lock); 2468 } 2469 2470 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2471 { 2472 struct btrfs_root *root = inode->root; 2473 struct btrfs_fs_info *fs_info = root->fs_info; 2474 2475 lockdep_assert_held(&root->delalloc_lock); 2476 2477 /* 2478 * We may be called after the inode was already deleted from the list, 2479 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2480 * and then later through btrfs_clear_delalloc_extent() while the inode 2481 * still has ->delalloc_bytes > 0. 2482 */ 2483 if (!list_empty(&inode->delalloc_inodes)) { 2484 list_del_init(&inode->delalloc_inodes); 2485 root->nr_delalloc_inodes--; 2486 if (!root->nr_delalloc_inodes) { 2487 ASSERT(list_empty(&root->delalloc_inodes)); 2488 spin_lock(&fs_info->delalloc_root_lock); 2489 ASSERT(!list_empty(&root->delalloc_root)); 2490 list_del_init(&root->delalloc_root); 2491 spin_unlock(&fs_info->delalloc_root_lock); 2492 } 2493 } 2494 } 2495 2496 /* 2497 * Properly track delayed allocation bytes in the inode and to maintain the 2498 * list of inodes that have pending delalloc work to be done. 2499 */ 2500 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2501 u32 bits) 2502 { 2503 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2504 2505 lockdep_assert_held(&inode->io_tree.lock); 2506 2507 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2508 WARN_ON(1); 2509 /* 2510 * set_bit and clear bit hooks normally require _irqsave/restore 2511 * but in this case, we are only testing for the DELALLOC 2512 * bit, which is only set or cleared with irqs on 2513 */ 2514 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2515 u64 len = state->end + 1 - state->start; 2516 u64 prev_delalloc_bytes; 2517 u32 num_extents = count_max_extents(fs_info, len); 2518 2519 spin_lock(&inode->lock); 2520 btrfs_mod_outstanding_extents(inode, num_extents); 2521 spin_unlock(&inode->lock); 2522 2523 /* For sanity tests */ 2524 if (btrfs_is_testing(fs_info)) 2525 return; 2526 2527 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2528 fs_info->delalloc_batch); 2529 spin_lock(&inode->lock); 2530 prev_delalloc_bytes = inode->delalloc_bytes; 2531 inode->delalloc_bytes += len; 2532 if (bits & EXTENT_DEFRAG) 2533 inode->defrag_bytes += len; 2534 spin_unlock(&inode->lock); 2535 2536 /* 2537 * We don't need to be under the protection of the inode's lock, 2538 * because we are called while holding the inode's io_tree lock 2539 * and are therefore protected against concurrent calls of this 2540 * function and btrfs_clear_delalloc_extent(). 2541 */ 2542 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2543 btrfs_add_delalloc_inode(inode); 2544 } 2545 2546 if (!(state->state & EXTENT_DELALLOC_NEW) && 2547 (bits & EXTENT_DELALLOC_NEW)) { 2548 spin_lock(&inode->lock); 2549 inode->new_delalloc_bytes += state->end + 1 - state->start; 2550 spin_unlock(&inode->lock); 2551 } 2552 } 2553 2554 /* 2555 * Once a range is no longer delalloc this function ensures that proper 2556 * accounting happens. 2557 */ 2558 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2559 struct extent_state *state, u32 bits) 2560 { 2561 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2562 u64 len = state->end + 1 - state->start; 2563 u32 num_extents = count_max_extents(fs_info, len); 2564 2565 lockdep_assert_held(&inode->io_tree.lock); 2566 2567 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2568 spin_lock(&inode->lock); 2569 inode->defrag_bytes -= len; 2570 spin_unlock(&inode->lock); 2571 } 2572 2573 /* 2574 * set_bit and clear bit hooks normally require _irqsave/restore 2575 * but in this case, we are only testing for the DELALLOC 2576 * bit, which is only set or cleared with irqs on 2577 */ 2578 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2579 struct btrfs_root *root = inode->root; 2580 u64 new_delalloc_bytes; 2581 2582 spin_lock(&inode->lock); 2583 btrfs_mod_outstanding_extents(inode, -num_extents); 2584 spin_unlock(&inode->lock); 2585 2586 /* 2587 * We don't reserve metadata space for space cache inodes so we 2588 * don't need to call delalloc_release_metadata if there is an 2589 * error. 2590 */ 2591 if (bits & EXTENT_CLEAR_META_RESV && 2592 root != fs_info->tree_root) 2593 btrfs_delalloc_release_metadata(inode, len, true); 2594 2595 /* For sanity tests. */ 2596 if (btrfs_is_testing(fs_info)) 2597 return; 2598 2599 if (!btrfs_is_data_reloc_root(root) && 2600 !btrfs_is_free_space_inode(inode) && 2601 !(state->state & EXTENT_NORESERVE) && 2602 (bits & EXTENT_CLEAR_DATA_RESV)) 2603 btrfs_free_reserved_data_space_noquota(inode, len); 2604 2605 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2606 fs_info->delalloc_batch); 2607 spin_lock(&inode->lock); 2608 inode->delalloc_bytes -= len; 2609 new_delalloc_bytes = inode->delalloc_bytes; 2610 spin_unlock(&inode->lock); 2611 2612 /* 2613 * We don't need to be under the protection of the inode's lock, 2614 * because we are called while holding the inode's io_tree lock 2615 * and are therefore protected against concurrent calls of this 2616 * function and btrfs_set_delalloc_extent(). 2617 */ 2618 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2619 spin_lock(&root->delalloc_lock); 2620 btrfs_del_delalloc_inode(inode); 2621 spin_unlock(&root->delalloc_lock); 2622 } 2623 } 2624 2625 if ((state->state & EXTENT_DELALLOC_NEW) && 2626 (bits & EXTENT_DELALLOC_NEW)) { 2627 spin_lock(&inode->lock); 2628 ASSERT(inode->new_delalloc_bytes >= len); 2629 inode->new_delalloc_bytes -= len; 2630 if (bits & EXTENT_ADD_INODE_BYTES) 2631 inode_add_bytes(&inode->vfs_inode, len); 2632 spin_unlock(&inode->lock); 2633 } 2634 } 2635 2636 /* 2637 * given a list of ordered sums record them in the inode. This happens 2638 * at IO completion time based on sums calculated at bio submission time. 2639 */ 2640 static int add_pending_csums(struct btrfs_trans_handle *trans, 2641 struct list_head *list) 2642 { 2643 struct btrfs_ordered_sum *sum; 2644 struct btrfs_root *csum_root = NULL; 2645 int ret; 2646 2647 list_for_each_entry(sum, list, list) { 2648 trans->adding_csums = true; 2649 if (!csum_root) 2650 csum_root = btrfs_csum_root(trans->fs_info, 2651 sum->logical); 2652 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2653 trans->adding_csums = false; 2654 if (ret) 2655 return ret; 2656 } 2657 return 0; 2658 } 2659 2660 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2661 const u64 start, 2662 const u64 len, 2663 struct extent_state **cached_state) 2664 { 2665 u64 search_start = start; 2666 const u64 end = start + len - 1; 2667 2668 while (search_start < end) { 2669 const u64 search_len = end - search_start + 1; 2670 struct extent_map *em; 2671 u64 em_len; 2672 int ret = 0; 2673 2674 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2675 if (IS_ERR(em)) 2676 return PTR_ERR(em); 2677 2678 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2679 goto next; 2680 2681 em_len = em->len; 2682 if (em->start < search_start) 2683 em_len -= search_start - em->start; 2684 if (em_len > search_len) 2685 em_len = search_len; 2686 2687 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2688 search_start + em_len - 1, 2689 EXTENT_DELALLOC_NEW, cached_state); 2690 next: 2691 search_start = btrfs_extent_map_end(em); 2692 btrfs_free_extent_map(em); 2693 if (ret) 2694 return ret; 2695 } 2696 return 0; 2697 } 2698 2699 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2700 unsigned int extra_bits, 2701 struct extent_state **cached_state) 2702 { 2703 WARN_ON(PAGE_ALIGNED(end)); 2704 2705 if (start >= i_size_read(&inode->vfs_inode) && 2706 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2707 /* 2708 * There can't be any extents following eof in this case so just 2709 * set the delalloc new bit for the range directly. 2710 */ 2711 extra_bits |= EXTENT_DELALLOC_NEW; 2712 } else { 2713 int ret; 2714 2715 ret = btrfs_find_new_delalloc_bytes(inode, start, 2716 end + 1 - start, 2717 cached_state); 2718 if (ret) 2719 return ret; 2720 } 2721 2722 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2723 EXTENT_DELALLOC | extra_bits, cached_state); 2724 } 2725 2726 /* see btrfs_writepage_start_hook for details on why this is required */ 2727 struct btrfs_writepage_fixup { 2728 struct folio *folio; 2729 struct btrfs_inode *inode; 2730 struct btrfs_work work; 2731 }; 2732 2733 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2734 { 2735 struct btrfs_writepage_fixup *fixup = 2736 container_of(work, struct btrfs_writepage_fixup, work); 2737 struct btrfs_ordered_extent *ordered; 2738 struct extent_state *cached_state = NULL; 2739 struct extent_changeset *data_reserved = NULL; 2740 struct folio *folio = fixup->folio; 2741 struct btrfs_inode *inode = fixup->inode; 2742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2743 u64 page_start = folio_pos(folio); 2744 u64 page_end = folio_end(folio) - 1; 2745 int ret = 0; 2746 bool free_delalloc_space = true; 2747 2748 /* 2749 * This is similar to page_mkwrite, we need to reserve the space before 2750 * we take the folio lock. 2751 */ 2752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2753 folio_size(folio)); 2754 again: 2755 folio_lock(folio); 2756 2757 /* 2758 * Before we queued this fixup, we took a reference on the folio. 2759 * folio->mapping may go NULL, but it shouldn't be moved to a different 2760 * address space. 2761 */ 2762 if (!folio->mapping || !folio_test_dirty(folio) || 2763 !folio_test_checked(folio)) { 2764 /* 2765 * Unfortunately this is a little tricky, either 2766 * 2767 * 1) We got here and our folio had already been dealt with and 2768 * we reserved our space, thus ret == 0, so we need to just 2769 * drop our space reservation and bail. This can happen the 2770 * first time we come into the fixup worker, or could happen 2771 * while waiting for the ordered extent. 2772 * 2) Our folio was already dealt with, but we happened to get an 2773 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2774 * this case we obviously don't have anything to release, but 2775 * because the folio was already dealt with we don't want to 2776 * mark the folio with an error, so make sure we're resetting 2777 * ret to 0. This is why we have this check _before_ the ret 2778 * check, because we do not want to have a surprise ENOSPC 2779 * when the folio was already properly dealt with. 2780 */ 2781 if (!ret) { 2782 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2783 btrfs_delalloc_release_space(inode, data_reserved, 2784 page_start, folio_size(folio), 2785 true); 2786 } 2787 ret = 0; 2788 goto out_page; 2789 } 2790 2791 /* 2792 * We can't mess with the folio state unless it is locked, so now that 2793 * it is locked bail if we failed to make our space reservation. 2794 */ 2795 if (ret) 2796 goto out_page; 2797 2798 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2799 2800 /* already ordered? We're done */ 2801 if (folio_test_ordered(folio)) 2802 goto out_reserved; 2803 2804 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2805 if (ordered) { 2806 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2807 &cached_state); 2808 folio_unlock(folio); 2809 btrfs_start_ordered_extent(ordered); 2810 btrfs_put_ordered_extent(ordered); 2811 goto again; 2812 } 2813 2814 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2815 &cached_state); 2816 if (ret) 2817 goto out_reserved; 2818 2819 /* 2820 * Everything went as planned, we're now the owner of a dirty page with 2821 * delayed allocation bits set and space reserved for our COW 2822 * destination. 2823 * 2824 * The page was dirty when we started, nothing should have cleaned it. 2825 */ 2826 BUG_ON(!folio_test_dirty(folio)); 2827 free_delalloc_space = false; 2828 out_reserved: 2829 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2830 if (free_delalloc_space) 2831 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2832 PAGE_SIZE, true); 2833 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2834 out_page: 2835 if (ret) { 2836 /* 2837 * We hit ENOSPC or other errors. Update the mapping and page 2838 * to reflect the errors and clean the page. 2839 */ 2840 mapping_set_error(folio->mapping, ret); 2841 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2842 folio_size(folio), !ret); 2843 folio_clear_dirty_for_io(folio); 2844 } 2845 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2846 folio_unlock(folio); 2847 folio_put(folio); 2848 kfree(fixup); 2849 extent_changeset_free(data_reserved); 2850 /* 2851 * As a precaution, do a delayed iput in case it would be the last iput 2852 * that could need flushing space. Recursing back to fixup worker would 2853 * deadlock. 2854 */ 2855 btrfs_add_delayed_iput(inode); 2856 } 2857 2858 /* 2859 * There are a few paths in the higher layers of the kernel that directly 2860 * set the folio dirty bit without asking the filesystem if it is a 2861 * good idea. This causes problems because we want to make sure COW 2862 * properly happens and the data=ordered rules are followed. 2863 * 2864 * In our case any range that doesn't have the ORDERED bit set 2865 * hasn't been properly setup for IO. We kick off an async process 2866 * to fix it up. The async helper will wait for ordered extents, set 2867 * the delalloc bit and make it safe to write the folio. 2868 */ 2869 int btrfs_writepage_cow_fixup(struct folio *folio) 2870 { 2871 struct inode *inode = folio->mapping->host; 2872 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2873 struct btrfs_writepage_fixup *fixup; 2874 2875 /* This folio has ordered extent covering it already */ 2876 if (folio_test_ordered(folio)) 2877 return 0; 2878 2879 /* 2880 * For experimental build, we error out instead of EAGAIN. 2881 * 2882 * We should not hit such out-of-band dirty folios anymore. 2883 */ 2884 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2885 DEBUG_WARN(); 2886 btrfs_err_rl(fs_info, 2887 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2888 btrfs_root_id(BTRFS_I(inode)->root), 2889 btrfs_ino(BTRFS_I(inode)), 2890 folio_pos(folio)); 2891 return -EUCLEAN; 2892 } 2893 2894 /* 2895 * folio_checked is set below when we create a fixup worker for this 2896 * folio, don't try to create another one if we're already 2897 * folio_test_checked. 2898 * 2899 * The extent_io writepage code will redirty the foio if we send back 2900 * EAGAIN. 2901 */ 2902 if (folio_test_checked(folio)) 2903 return -EAGAIN; 2904 2905 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2906 if (!fixup) 2907 return -EAGAIN; 2908 2909 /* 2910 * We are already holding a reference to this inode from 2911 * write_cache_pages. We need to hold it because the space reservation 2912 * takes place outside of the folio lock, and we can't trust 2913 * folio->mapping outside of the folio lock. 2914 */ 2915 ihold(inode); 2916 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2917 folio_get(folio); 2918 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2919 fixup->folio = folio; 2920 fixup->inode = BTRFS_I(inode); 2921 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2922 2923 return -EAGAIN; 2924 } 2925 2926 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2927 struct btrfs_inode *inode, u64 file_pos, 2928 struct btrfs_file_extent_item *stack_fi, 2929 const bool update_inode_bytes, 2930 u64 qgroup_reserved) 2931 { 2932 struct btrfs_root *root = inode->root; 2933 const u64 sectorsize = root->fs_info->sectorsize; 2934 BTRFS_PATH_AUTO_FREE(path); 2935 struct extent_buffer *leaf; 2936 struct btrfs_key ins; 2937 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2938 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2939 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2940 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2941 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2942 struct btrfs_drop_extents_args drop_args = { 0 }; 2943 int ret; 2944 2945 path = btrfs_alloc_path(); 2946 if (!path) 2947 return -ENOMEM; 2948 2949 /* 2950 * we may be replacing one extent in the tree with another. 2951 * The new extent is pinned in the extent map, and we don't want 2952 * to drop it from the cache until it is completely in the btree. 2953 * 2954 * So, tell btrfs_drop_extents to leave this extent in the cache. 2955 * the caller is expected to unpin it and allow it to be merged 2956 * with the others. 2957 */ 2958 drop_args.path = path; 2959 drop_args.start = file_pos; 2960 drop_args.end = file_pos + num_bytes; 2961 drop_args.replace_extent = true; 2962 drop_args.extent_item_size = sizeof(*stack_fi); 2963 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2964 if (ret) 2965 goto out; 2966 2967 if (!drop_args.extent_inserted) { 2968 ins.objectid = btrfs_ino(inode); 2969 ins.type = BTRFS_EXTENT_DATA_KEY; 2970 ins.offset = file_pos; 2971 2972 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2973 sizeof(*stack_fi)); 2974 if (ret) 2975 goto out; 2976 } 2977 leaf = path->nodes[0]; 2978 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2979 write_extent_buffer(leaf, stack_fi, 2980 btrfs_item_ptr_offset(leaf, path->slots[0]), 2981 sizeof(struct btrfs_file_extent_item)); 2982 2983 btrfs_release_path(path); 2984 2985 /* 2986 * If we dropped an inline extent here, we know the range where it is 2987 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2988 * number of bytes only for that range containing the inline extent. 2989 * The remaining of the range will be processed when clearning the 2990 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2991 */ 2992 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2993 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2994 2995 inline_size = drop_args.bytes_found - inline_size; 2996 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2997 drop_args.bytes_found -= inline_size; 2998 num_bytes -= sectorsize; 2999 } 3000 3001 if (update_inode_bytes) 3002 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3003 3004 ins.objectid = disk_bytenr; 3005 ins.type = BTRFS_EXTENT_ITEM_KEY; 3006 ins.offset = disk_num_bytes; 3007 3008 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3009 if (ret) 3010 goto out; 3011 3012 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3013 file_pos - offset, 3014 qgroup_reserved, &ins); 3015 out: 3016 return ret; 3017 } 3018 3019 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3020 u64 start, u64 len) 3021 { 3022 struct btrfs_block_group *cache; 3023 3024 cache = btrfs_lookup_block_group(fs_info, start); 3025 ASSERT(cache); 3026 3027 spin_lock(&cache->lock); 3028 cache->delalloc_bytes -= len; 3029 spin_unlock(&cache->lock); 3030 3031 btrfs_put_block_group(cache); 3032 } 3033 3034 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3035 struct btrfs_ordered_extent *oe) 3036 { 3037 struct btrfs_file_extent_item stack_fi; 3038 bool update_inode_bytes; 3039 u64 num_bytes = oe->num_bytes; 3040 u64 ram_bytes = oe->ram_bytes; 3041 3042 memset(&stack_fi, 0, sizeof(stack_fi)); 3043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3046 oe->disk_num_bytes); 3047 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3048 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3049 num_bytes = oe->truncated_len; 3050 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3051 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3052 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3053 /* Encryption and other encoding is reserved and all 0 */ 3054 3055 /* 3056 * For delalloc, when completing an ordered extent we update the inode's 3057 * bytes when clearing the range in the inode's io tree, so pass false 3058 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3059 * except if the ordered extent was truncated. 3060 */ 3061 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3062 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3063 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3064 3065 return insert_reserved_file_extent(trans, oe->inode, 3066 oe->file_offset, &stack_fi, 3067 update_inode_bytes, oe->qgroup_rsv); 3068 } 3069 3070 /* 3071 * As ordered data IO finishes, this gets called so we can finish 3072 * an ordered extent if the range of bytes in the file it covers are 3073 * fully written. 3074 */ 3075 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3076 { 3077 struct btrfs_inode *inode = ordered_extent->inode; 3078 struct btrfs_root *root = inode->root; 3079 struct btrfs_fs_info *fs_info = root->fs_info; 3080 struct btrfs_trans_handle *trans = NULL; 3081 struct extent_io_tree *io_tree = &inode->io_tree; 3082 struct extent_state *cached_state = NULL; 3083 u64 start, end; 3084 int compress_type = 0; 3085 int ret = 0; 3086 u64 logical_len = ordered_extent->num_bytes; 3087 bool freespace_inode; 3088 bool truncated = false; 3089 bool clear_reserved_extent = true; 3090 unsigned int clear_bits = EXTENT_DEFRAG; 3091 3092 start = ordered_extent->file_offset; 3093 end = start + ordered_extent->num_bytes - 1; 3094 3095 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3096 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3097 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3098 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3099 clear_bits |= EXTENT_DELALLOC_NEW; 3100 3101 freespace_inode = btrfs_is_free_space_inode(inode); 3102 if (!freespace_inode) 3103 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3104 3105 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3106 ret = -EIO; 3107 goto out; 3108 } 3109 3110 if (btrfs_is_zoned(fs_info)) 3111 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3112 ordered_extent->disk_num_bytes); 3113 3114 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3115 truncated = true; 3116 logical_len = ordered_extent->truncated_len; 3117 /* Truncated the entire extent, don't bother adding */ 3118 if (!logical_len) 3119 goto out; 3120 } 3121 3122 /* 3123 * If it's a COW write we need to lock the extent range as we will be 3124 * inserting/replacing file extent items and unpinning an extent map. 3125 * This must be taken before joining a transaction, as it's a higher 3126 * level lock (like the inode's VFS lock), otherwise we can run into an 3127 * ABBA deadlock with other tasks (transactions work like a lock, 3128 * depending on their current state). 3129 */ 3130 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3131 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3132 btrfs_lock_extent_bits(io_tree, start, end, 3133 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3134 &cached_state); 3135 } 3136 3137 if (freespace_inode) 3138 trans = btrfs_join_transaction_spacecache(root); 3139 else 3140 trans = btrfs_join_transaction(root); 3141 if (IS_ERR(trans)) { 3142 ret = PTR_ERR(trans); 3143 trans = NULL; 3144 goto out; 3145 } 3146 3147 trans->block_rsv = &inode->block_rsv; 3148 3149 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3150 if (ret) { 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3156 /* Logic error */ 3157 ASSERT(list_empty(&ordered_extent->list)); 3158 if (!list_empty(&ordered_extent->list)) { 3159 ret = -EINVAL; 3160 btrfs_abort_transaction(trans, ret); 3161 goto out; 3162 } 3163 3164 btrfs_inode_safe_disk_i_size_write(inode, 0); 3165 ret = btrfs_update_inode_fallback(trans, inode); 3166 if (ret) { 3167 /* -ENOMEM or corruption */ 3168 btrfs_abort_transaction(trans, ret); 3169 } 3170 goto out; 3171 } 3172 3173 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3174 compress_type = ordered_extent->compress_type; 3175 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3176 BUG_ON(compress_type); 3177 ret = btrfs_mark_extent_written(trans, inode, 3178 ordered_extent->file_offset, 3179 ordered_extent->file_offset + 3180 logical_len); 3181 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3182 ordered_extent->disk_num_bytes); 3183 } else { 3184 BUG_ON(root == fs_info->tree_root); 3185 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3186 if (!ret) { 3187 clear_reserved_extent = false; 3188 btrfs_release_delalloc_bytes(fs_info, 3189 ordered_extent->disk_bytenr, 3190 ordered_extent->disk_num_bytes); 3191 } 3192 } 3193 if (ret < 0) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 3198 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3199 ordered_extent->num_bytes, trans->transid); 3200 if (ret < 0) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 3205 ret = add_pending_csums(trans, &ordered_extent->list); 3206 if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 /* 3212 * If this is a new delalloc range, clear its new delalloc flag to 3213 * update the inode's number of bytes. This needs to be done first 3214 * before updating the inode item. 3215 */ 3216 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3217 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3218 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3219 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3220 &cached_state); 3221 3222 btrfs_inode_safe_disk_i_size_write(inode, 0); 3223 ret = btrfs_update_inode_fallback(trans, inode); 3224 if (ret) { /* -ENOMEM or corruption */ 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 out: 3229 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3230 &cached_state); 3231 3232 if (trans) 3233 btrfs_end_transaction(trans); 3234 3235 if (ret || truncated) { 3236 /* 3237 * If we failed to finish this ordered extent for any reason we 3238 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3239 * extent, and mark the inode with the error if it wasn't 3240 * already set. Any error during writeback would have already 3241 * set the mapping error, so we need to set it if we're the ones 3242 * marking this ordered extent as failed. 3243 */ 3244 if (ret) 3245 btrfs_mark_ordered_extent_error(ordered_extent); 3246 3247 /* 3248 * Drop extent maps for the part of the extent we didn't write. 3249 * 3250 * We have an exception here for the free_space_inode, this is 3251 * because when we do btrfs_get_extent() on the free space inode 3252 * we will search the commit root. If this is a new block group 3253 * we won't find anything, and we will trip over the assert in 3254 * writepage where we do ASSERT(em->block_start != 3255 * EXTENT_MAP_HOLE). 3256 * 3257 * Theoretically we could also skip this for any NOCOW extent as 3258 * we don't mess with the extent map tree in the NOCOW case, but 3259 * for now simply skip this if we are the free space inode. 3260 */ 3261 if (!btrfs_is_free_space_inode(inode)) { 3262 u64 unwritten_start = start; 3263 3264 if (truncated) 3265 unwritten_start += logical_len; 3266 3267 btrfs_drop_extent_map_range(inode, unwritten_start, 3268 end, false); 3269 } 3270 3271 /* 3272 * If the ordered extent had an IOERR or something else went 3273 * wrong we need to return the space for this ordered extent 3274 * back to the allocator. We only free the extent in the 3275 * truncated case if we didn't write out the extent at all. 3276 * 3277 * If we made it past insert_reserved_file_extent before we 3278 * errored out then we don't need to do this as the accounting 3279 * has already been done. 3280 */ 3281 if ((ret || !logical_len) && 3282 clear_reserved_extent && 3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3285 /* 3286 * Discard the range before returning it back to the 3287 * free space pool 3288 */ 3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3290 btrfs_discard_extent(fs_info, 3291 ordered_extent->disk_bytenr, 3292 ordered_extent->disk_num_bytes, 3293 NULL); 3294 btrfs_free_reserved_extent(fs_info, 3295 ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes, true); 3297 /* 3298 * Actually free the qgroup rsv which was released when 3299 * the ordered extent was created. 3300 */ 3301 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3302 ordered_extent->qgroup_rsv, 3303 BTRFS_QGROUP_RSV_DATA); 3304 } 3305 } 3306 3307 /* 3308 * This needs to be done to make sure anybody waiting knows we are done 3309 * updating everything for this ordered extent. 3310 */ 3311 btrfs_remove_ordered_extent(inode, ordered_extent); 3312 3313 /* once for us */ 3314 btrfs_put_ordered_extent(ordered_extent); 3315 /* once for the tree */ 3316 btrfs_put_ordered_extent(ordered_extent); 3317 3318 return ret; 3319 } 3320 3321 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3322 { 3323 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3324 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3325 list_empty(&ordered->bioc_list)) 3326 btrfs_finish_ordered_zoned(ordered); 3327 return btrfs_finish_one_ordered(ordered); 3328 } 3329 3330 /* 3331 * Verify the checksum for a single sector without any extra action that depend 3332 * on the type of I/O. 3333 * 3334 * @kaddr must be a properly kmapped address. 3335 */ 3336 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 3337 const u8 * const csum_expected) 3338 { 3339 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3340 3341 shash->tfm = fs_info->csum_shash; 3342 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3343 3344 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3345 return -EIO; 3346 return 0; 3347 } 3348 3349 /* 3350 * Verify the checksum of a single data sector. 3351 * 3352 * @bbio: btrfs_io_bio which contains the csum 3353 * @dev: device the sector is on 3354 * @bio_offset: offset to the beginning of the bio (in bytes) 3355 * @bv: bio_vec to check 3356 * 3357 * Check if the checksum on a data block is valid. When a checksum mismatch is 3358 * detected, report the error and fill the corrupted range with zero. 3359 * 3360 * Return %true if the sector is ok or had no checksum to start with, else %false. 3361 */ 3362 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3363 u32 bio_offset, struct bio_vec *bv) 3364 { 3365 struct btrfs_inode *inode = bbio->inode; 3366 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3367 u64 file_offset = bbio->file_offset + bio_offset; 3368 u64 end = file_offset + bv->bv_len - 1; 3369 u8 *csum_expected; 3370 u8 csum[BTRFS_CSUM_SIZE]; 3371 void *kaddr; 3372 3373 ASSERT(bv->bv_len == fs_info->sectorsize); 3374 3375 if (!bbio->csum) 3376 return true; 3377 3378 if (btrfs_is_data_reloc_root(inode->root) && 3379 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3380 NULL)) { 3381 /* Skip the range without csum for data reloc inode */ 3382 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3383 EXTENT_NODATASUM, NULL); 3384 return true; 3385 } 3386 3387 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3388 fs_info->csum_size; 3389 kaddr = bvec_kmap_local(bv); 3390 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) { 3391 kunmap_local(kaddr); 3392 goto zeroit; 3393 } 3394 kunmap_local(kaddr); 3395 return true; 3396 3397 zeroit: 3398 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3399 bbio->mirror_num); 3400 if (dev) 3401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3402 memzero_bvec(bv); 3403 return false; 3404 } 3405 3406 /* 3407 * Perform a delayed iput on @inode. 3408 * 3409 * @inode: The inode we want to perform iput on 3410 * 3411 * This function uses the generic vfs_inode::i_count to track whether we should 3412 * just decrement it (in case it's > 1) or if this is the last iput then link 3413 * the inode to the delayed iput machinery. Delayed iputs are processed at 3414 * transaction commit time/superblock commit/cleaner kthread. 3415 */ 3416 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3417 { 3418 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3419 unsigned long flags; 3420 3421 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3422 return; 3423 3424 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3425 atomic_inc(&fs_info->nr_delayed_iputs); 3426 /* 3427 * Need to be irq safe here because we can be called from either an irq 3428 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3429 * context. 3430 */ 3431 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3432 ASSERT(list_empty(&inode->delayed_iput)); 3433 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3434 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3435 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3436 wake_up_process(fs_info->cleaner_kthread); 3437 } 3438 3439 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3440 struct btrfs_inode *inode) 3441 { 3442 list_del_init(&inode->delayed_iput); 3443 spin_unlock_irq(&fs_info->delayed_iput_lock); 3444 iput(&inode->vfs_inode); 3445 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3446 wake_up(&fs_info->delayed_iputs_wait); 3447 spin_lock_irq(&fs_info->delayed_iput_lock); 3448 } 3449 3450 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3451 struct btrfs_inode *inode) 3452 { 3453 if (!list_empty(&inode->delayed_iput)) { 3454 spin_lock_irq(&fs_info->delayed_iput_lock); 3455 if (!list_empty(&inode->delayed_iput)) 3456 run_delayed_iput_locked(fs_info, inode); 3457 spin_unlock_irq(&fs_info->delayed_iput_lock); 3458 } 3459 } 3460 3461 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3462 { 3463 /* 3464 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3465 * calls btrfs_add_delayed_iput() and that needs to lock 3466 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3467 * prevent a deadlock. 3468 */ 3469 spin_lock_irq(&fs_info->delayed_iput_lock); 3470 while (!list_empty(&fs_info->delayed_iputs)) { 3471 struct btrfs_inode *inode; 3472 3473 inode = list_first_entry(&fs_info->delayed_iputs, 3474 struct btrfs_inode, delayed_iput); 3475 run_delayed_iput_locked(fs_info, inode); 3476 if (need_resched()) { 3477 spin_unlock_irq(&fs_info->delayed_iput_lock); 3478 cond_resched(); 3479 spin_lock_irq(&fs_info->delayed_iput_lock); 3480 } 3481 } 3482 spin_unlock_irq(&fs_info->delayed_iput_lock); 3483 } 3484 3485 /* 3486 * Wait for flushing all delayed iputs 3487 * 3488 * @fs_info: the filesystem 3489 * 3490 * This will wait on any delayed iputs that are currently running with KILLABLE 3491 * set. Once they are all done running we will return, unless we are killed in 3492 * which case we return EINTR. This helps in user operations like fallocate etc 3493 * that might get blocked on the iputs. 3494 * 3495 * Return EINTR if we were killed, 0 if nothing's pending 3496 */ 3497 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3498 { 3499 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3500 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3501 if (ret) 3502 return -EINTR; 3503 return 0; 3504 } 3505 3506 /* 3507 * This creates an orphan entry for the given inode in case something goes wrong 3508 * in the middle of an unlink. 3509 */ 3510 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3511 struct btrfs_inode *inode) 3512 { 3513 int ret; 3514 3515 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3516 if (ret && ret != -EEXIST) { 3517 btrfs_abort_transaction(trans, ret); 3518 return ret; 3519 } 3520 3521 return 0; 3522 } 3523 3524 /* 3525 * We have done the delete so we can go ahead and remove the orphan item for 3526 * this particular inode. 3527 */ 3528 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3529 struct btrfs_inode *inode) 3530 { 3531 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3532 } 3533 3534 /* 3535 * this cleans up any orphans that may be left on the list from the last use 3536 * of this root. 3537 */ 3538 int btrfs_orphan_cleanup(struct btrfs_root *root) 3539 { 3540 struct btrfs_fs_info *fs_info = root->fs_info; 3541 BTRFS_PATH_AUTO_FREE(path); 3542 struct extent_buffer *leaf; 3543 struct btrfs_key key, found_key; 3544 struct btrfs_trans_handle *trans; 3545 u64 last_objectid = 0; 3546 int ret = 0, nr_unlink = 0; 3547 3548 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3549 return 0; 3550 3551 path = btrfs_alloc_path(); 3552 if (!path) { 3553 ret = -ENOMEM; 3554 goto out; 3555 } 3556 path->reada = READA_BACK; 3557 3558 key.objectid = BTRFS_ORPHAN_OBJECTID; 3559 key.type = BTRFS_ORPHAN_ITEM_KEY; 3560 key.offset = (u64)-1; 3561 3562 while (1) { 3563 struct btrfs_inode *inode; 3564 3565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3566 if (ret < 0) 3567 goto out; 3568 3569 /* 3570 * if ret == 0 means we found what we were searching for, which 3571 * is weird, but possible, so only screw with path if we didn't 3572 * find the key and see if we have stuff that matches 3573 */ 3574 if (ret > 0) { 3575 ret = 0; 3576 if (path->slots[0] == 0) 3577 break; 3578 path->slots[0]--; 3579 } 3580 3581 /* pull out the item */ 3582 leaf = path->nodes[0]; 3583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3584 3585 /* make sure the item matches what we want */ 3586 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3587 break; 3588 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3589 break; 3590 3591 /* release the path since we're done with it */ 3592 btrfs_release_path(path); 3593 3594 /* 3595 * this is where we are basically btrfs_lookup, without the 3596 * crossing root thing. we store the inode number in the 3597 * offset of the orphan item. 3598 */ 3599 3600 if (found_key.offset == last_objectid) { 3601 /* 3602 * We found the same inode as before. This means we were 3603 * not able to remove its items via eviction triggered 3604 * by an iput(). A transaction abort may have happened, 3605 * due to -ENOSPC for example, so try to grab the error 3606 * that lead to a transaction abort, if any. 3607 */ 3608 btrfs_err(fs_info, 3609 "Error removing orphan entry, stopping orphan cleanup"); 3610 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3611 goto out; 3612 } 3613 3614 last_objectid = found_key.offset; 3615 3616 found_key.objectid = found_key.offset; 3617 found_key.type = BTRFS_INODE_ITEM_KEY; 3618 found_key.offset = 0; 3619 inode = btrfs_iget(last_objectid, root); 3620 if (IS_ERR(inode)) { 3621 ret = PTR_ERR(inode); 3622 inode = NULL; 3623 if (ret != -ENOENT) 3624 goto out; 3625 } 3626 3627 if (!inode && root == fs_info->tree_root) { 3628 struct btrfs_root *dead_root; 3629 int is_dead_root = 0; 3630 3631 /* 3632 * This is an orphan in the tree root. Currently these 3633 * could come from 2 sources: 3634 * a) a root (snapshot/subvolume) deletion in progress 3635 * b) a free space cache inode 3636 * We need to distinguish those two, as the orphan item 3637 * for a root must not get deleted before the deletion 3638 * of the snapshot/subvolume's tree completes. 3639 * 3640 * btrfs_find_orphan_roots() ran before us, which has 3641 * found all deleted roots and loaded them into 3642 * fs_info->fs_roots_radix. So here we can find if an 3643 * orphan item corresponds to a deleted root by looking 3644 * up the root from that radix tree. 3645 */ 3646 3647 spin_lock(&fs_info->fs_roots_radix_lock); 3648 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3649 (unsigned long)found_key.objectid); 3650 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3651 is_dead_root = 1; 3652 spin_unlock(&fs_info->fs_roots_radix_lock); 3653 3654 if (is_dead_root) { 3655 /* prevent this orphan from being found again */ 3656 key.offset = found_key.objectid - 1; 3657 continue; 3658 } 3659 3660 } 3661 3662 /* 3663 * If we have an inode with links, there are a couple of 3664 * possibilities: 3665 * 3666 * 1. We were halfway through creating fsverity metadata for the 3667 * file. In that case, the orphan item represents incomplete 3668 * fsverity metadata which must be cleaned up with 3669 * btrfs_drop_verity_items and deleting the orphan item. 3670 3671 * 2. Old kernels (before v3.12) used to create an 3672 * orphan item for truncate indicating that there were possibly 3673 * extent items past i_size that needed to be deleted. In v3.12, 3674 * truncate was changed to update i_size in sync with the extent 3675 * items, but the (useless) orphan item was still created. Since 3676 * v4.18, we don't create the orphan item for truncate at all. 3677 * 3678 * So, this item could mean that we need to do a truncate, but 3679 * only if this filesystem was last used on a pre-v3.12 kernel 3680 * and was not cleanly unmounted. The odds of that are quite 3681 * slim, and it's a pain to do the truncate now, so just delete 3682 * the orphan item. 3683 * 3684 * It's also possible that this orphan item was supposed to be 3685 * deleted but wasn't. The inode number may have been reused, 3686 * but either way, we can delete the orphan item. 3687 */ 3688 if (!inode || inode->vfs_inode.i_nlink) { 3689 if (inode) { 3690 ret = btrfs_drop_verity_items(inode); 3691 iput(&inode->vfs_inode); 3692 inode = NULL; 3693 if (ret) 3694 goto out; 3695 } 3696 trans = btrfs_start_transaction(root, 1); 3697 if (IS_ERR(trans)) { 3698 ret = PTR_ERR(trans); 3699 goto out; 3700 } 3701 btrfs_debug(fs_info, "auto deleting %Lu", 3702 found_key.objectid); 3703 ret = btrfs_del_orphan_item(trans, root, 3704 found_key.objectid); 3705 btrfs_end_transaction(trans); 3706 if (ret) 3707 goto out; 3708 continue; 3709 } 3710 3711 nr_unlink++; 3712 3713 /* this will do delete_inode and everything for us */ 3714 iput(&inode->vfs_inode); 3715 } 3716 /* release the path since we're done with it */ 3717 btrfs_release_path(path); 3718 3719 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3720 trans = btrfs_join_transaction(root); 3721 if (!IS_ERR(trans)) 3722 btrfs_end_transaction(trans); 3723 } 3724 3725 if (nr_unlink) 3726 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3727 3728 out: 3729 if (ret) 3730 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3731 return ret; 3732 } 3733 3734 /* 3735 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3736 * can't be any ACLs. 3737 * 3738 * @leaf: the eb leaf where to search 3739 * @slot: the slot the inode is in 3740 * @objectid: the objectid of the inode 3741 * 3742 * Return true if there is xattr/ACL, false otherwise. 3743 */ 3744 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3745 int slot, u64 objectid, 3746 int *first_xattr_slot) 3747 { 3748 u32 nritems = btrfs_header_nritems(leaf); 3749 struct btrfs_key found_key; 3750 static u64 xattr_access = 0; 3751 static u64 xattr_default = 0; 3752 int scanned = 0; 3753 3754 if (!xattr_access) { 3755 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3756 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3757 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3758 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3759 } 3760 3761 slot++; 3762 *first_xattr_slot = -1; 3763 while (slot < nritems) { 3764 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3765 3766 /* We found a different objectid, there must be no ACLs. */ 3767 if (found_key.objectid != objectid) 3768 return false; 3769 3770 /* We found an xattr, assume we've got an ACL. */ 3771 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3772 if (*first_xattr_slot == -1) 3773 *first_xattr_slot = slot; 3774 if (found_key.offset == xattr_access || 3775 found_key.offset == xattr_default) 3776 return true; 3777 } 3778 3779 /* 3780 * We found a key greater than an xattr key, there can't be any 3781 * ACLs later on. 3782 */ 3783 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3784 return false; 3785 3786 slot++; 3787 scanned++; 3788 3789 /* 3790 * The item order goes like: 3791 * - inode 3792 * - inode backrefs 3793 * - xattrs 3794 * - extents, 3795 * 3796 * so if there are lots of hard links to an inode there can be 3797 * a lot of backrefs. Don't waste time searching too hard, 3798 * this is just an optimization. 3799 */ 3800 if (scanned >= 8) 3801 break; 3802 } 3803 /* 3804 * We hit the end of the leaf before we found an xattr or something 3805 * larger than an xattr. We have to assume the inode has ACLs. 3806 */ 3807 if (*first_xattr_slot == -1) 3808 *first_xattr_slot = slot; 3809 return true; 3810 } 3811 3812 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3813 { 3814 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3815 3816 if (WARN_ON_ONCE(inode->file_extent_tree)) 3817 return 0; 3818 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3819 return 0; 3820 if (!S_ISREG(inode->vfs_inode.i_mode)) 3821 return 0; 3822 if (btrfs_is_free_space_inode(inode)) 3823 return 0; 3824 3825 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3826 if (!inode->file_extent_tree) 3827 return -ENOMEM; 3828 3829 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3830 IO_TREE_INODE_FILE_EXTENT); 3831 /* Lockdep class is set only for the file extent tree. */ 3832 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3833 3834 return 0; 3835 } 3836 3837 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3838 { 3839 struct btrfs_root *root = inode->root; 3840 struct btrfs_inode *existing; 3841 const u64 ino = btrfs_ino(inode); 3842 int ret; 3843 3844 if (inode_unhashed(&inode->vfs_inode)) 3845 return 0; 3846 3847 if (prealloc) { 3848 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3849 if (ret) 3850 return ret; 3851 } 3852 3853 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3854 3855 if (xa_is_err(existing)) { 3856 ret = xa_err(existing); 3857 ASSERT(ret != -EINVAL); 3858 ASSERT(ret != -ENOMEM); 3859 return ret; 3860 } else if (existing) { 3861 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3862 } 3863 3864 return 0; 3865 } 3866 3867 /* 3868 * Read a locked inode from the btree into the in-memory inode and add it to 3869 * its root list/tree. 3870 * 3871 * On failure clean up the inode. 3872 */ 3873 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3874 { 3875 struct btrfs_root *root = inode->root; 3876 struct btrfs_fs_info *fs_info = root->fs_info; 3877 struct extent_buffer *leaf; 3878 struct btrfs_inode_item *inode_item; 3879 struct inode *vfs_inode = &inode->vfs_inode; 3880 struct btrfs_key location; 3881 unsigned long ptr; 3882 int maybe_acls; 3883 u32 rdev; 3884 int ret; 3885 bool filled = false; 3886 int first_xattr_slot; 3887 3888 ret = btrfs_init_file_extent_tree(inode); 3889 if (ret) 3890 goto out; 3891 3892 ret = btrfs_fill_inode(inode, &rdev); 3893 if (!ret) 3894 filled = true; 3895 3896 ASSERT(path); 3897 3898 btrfs_get_inode_key(inode, &location); 3899 3900 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3901 if (ret) { 3902 /* 3903 * ret > 0 can come from btrfs_search_slot called by 3904 * btrfs_lookup_inode(), this means the inode was not found. 3905 */ 3906 if (ret > 0) 3907 ret = -ENOENT; 3908 goto out; 3909 } 3910 3911 leaf = path->nodes[0]; 3912 3913 if (filled) 3914 goto cache_index; 3915 3916 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3917 struct btrfs_inode_item); 3918 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3919 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3920 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3921 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3922 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3923 btrfs_inode_set_file_extent_range(inode, 0, 3924 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3925 3926 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3927 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3928 3929 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3930 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3931 3932 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3933 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3934 3935 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3936 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3937 3938 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3939 inode->generation = btrfs_inode_generation(leaf, inode_item); 3940 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3941 3942 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3943 vfs_inode->i_generation = inode->generation; 3944 vfs_inode->i_rdev = 0; 3945 rdev = btrfs_inode_rdev(leaf, inode_item); 3946 3947 if (S_ISDIR(vfs_inode->i_mode)) 3948 inode->index_cnt = (u64)-1; 3949 3950 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3951 &inode->flags, &inode->ro_flags); 3952 btrfs_update_inode_mapping_flags(inode); 3953 btrfs_set_inode_mapping_order(inode); 3954 3955 cache_index: 3956 /* 3957 * If we were modified in the current generation and evicted from memory 3958 * and then re-read we need to do a full sync since we don't have any 3959 * idea about which extents were modified before we were evicted from 3960 * cache. 3961 * 3962 * This is required for both inode re-read from disk and delayed inode 3963 * in the delayed_nodes xarray. 3964 */ 3965 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3967 3968 /* 3969 * We don't persist the id of the transaction where an unlink operation 3970 * against the inode was last made. So here we assume the inode might 3971 * have been evicted, and therefore the exact value of last_unlink_trans 3972 * lost, and set it to last_trans to avoid metadata inconsistencies 3973 * between the inode and its parent if the inode is fsync'ed and the log 3974 * replayed. For example, in the scenario: 3975 * 3976 * touch mydir/foo 3977 * ln mydir/foo mydir/bar 3978 * sync 3979 * unlink mydir/bar 3980 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3981 * xfs_io -c fsync mydir/foo 3982 * <power failure> 3983 * mount fs, triggers fsync log replay 3984 * 3985 * We must make sure that when we fsync our inode foo we also log its 3986 * parent inode, otherwise after log replay the parent still has the 3987 * dentry with the "bar" name but our inode foo has a link count of 1 3988 * and doesn't have an inode ref with the name "bar" anymore. 3989 * 3990 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3991 * but it guarantees correctness at the expense of occasional full 3992 * transaction commits on fsync if our inode is a directory, or if our 3993 * inode is not a directory, logging its parent unnecessarily. 3994 */ 3995 inode->last_unlink_trans = inode->last_trans; 3996 3997 /* 3998 * Same logic as for last_unlink_trans. We don't persist the generation 3999 * of the last transaction where this inode was used for a reflink 4000 * operation, so after eviction and reloading the inode we must be 4001 * pessimistic and assume the last transaction that modified the inode. 4002 */ 4003 inode->last_reflink_trans = inode->last_trans; 4004 4005 path->slots[0]++; 4006 if (vfs_inode->i_nlink != 1 || 4007 path->slots[0] >= btrfs_header_nritems(leaf)) 4008 goto cache_acl; 4009 4010 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4011 if (location.objectid != btrfs_ino(inode)) 4012 goto cache_acl; 4013 4014 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4015 if (location.type == BTRFS_INODE_REF_KEY) { 4016 struct btrfs_inode_ref *ref; 4017 4018 ref = (struct btrfs_inode_ref *)ptr; 4019 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4020 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4021 struct btrfs_inode_extref *extref; 4022 4023 extref = (struct btrfs_inode_extref *)ptr; 4024 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4025 } 4026 cache_acl: 4027 /* 4028 * try to precache a NULL acl entry for files that don't have 4029 * any xattrs or acls 4030 */ 4031 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4032 btrfs_ino(inode), &first_xattr_slot); 4033 if (first_xattr_slot != -1) { 4034 path->slots[0] = first_xattr_slot; 4035 ret = btrfs_load_inode_props(inode, path); 4036 if (ret) 4037 btrfs_err(fs_info, 4038 "error loading props for ino %llu (root %llu): %d", 4039 btrfs_ino(inode), btrfs_root_id(root), ret); 4040 } 4041 4042 if (!maybe_acls) 4043 cache_no_acl(vfs_inode); 4044 4045 switch (vfs_inode->i_mode & S_IFMT) { 4046 case S_IFREG: 4047 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4048 vfs_inode->i_fop = &btrfs_file_operations; 4049 vfs_inode->i_op = &btrfs_file_inode_operations; 4050 break; 4051 case S_IFDIR: 4052 vfs_inode->i_fop = &btrfs_dir_file_operations; 4053 vfs_inode->i_op = &btrfs_dir_inode_operations; 4054 break; 4055 case S_IFLNK: 4056 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4057 inode_nohighmem(vfs_inode); 4058 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4059 break; 4060 default: 4061 vfs_inode->i_op = &btrfs_special_inode_operations; 4062 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4063 break; 4064 } 4065 4066 btrfs_sync_inode_flags_to_i_flags(inode); 4067 4068 ret = btrfs_add_inode_to_root(inode, true); 4069 if (ret) 4070 goto out; 4071 4072 return 0; 4073 out: 4074 iget_failed(vfs_inode); 4075 return ret; 4076 } 4077 4078 /* 4079 * given a leaf and an inode, copy the inode fields into the leaf 4080 */ 4081 static void fill_inode_item(struct btrfs_trans_handle *trans, 4082 struct extent_buffer *leaf, 4083 struct btrfs_inode_item *item, 4084 struct inode *inode) 4085 { 4086 u64 flags; 4087 4088 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4089 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4090 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4091 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4092 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4093 4094 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4095 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4096 4097 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4098 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4099 4100 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4101 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4102 4103 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4104 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4105 4106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4108 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4109 btrfs_set_inode_transid(leaf, item, trans->transid); 4110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4111 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4112 BTRFS_I(inode)->ro_flags); 4113 btrfs_set_inode_flags(leaf, item, flags); 4114 btrfs_set_inode_block_group(leaf, item, 0); 4115 } 4116 4117 /* 4118 * copy everything in the in-memory inode into the btree. 4119 */ 4120 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4121 struct btrfs_inode *inode) 4122 { 4123 struct btrfs_inode_item *inode_item; 4124 BTRFS_PATH_AUTO_FREE(path); 4125 struct extent_buffer *leaf; 4126 struct btrfs_key key; 4127 int ret; 4128 4129 path = btrfs_alloc_path(); 4130 if (!path) 4131 return -ENOMEM; 4132 4133 btrfs_get_inode_key(inode, &key); 4134 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4135 if (ret) { 4136 if (ret > 0) 4137 ret = -ENOENT; 4138 return ret; 4139 } 4140 4141 leaf = path->nodes[0]; 4142 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4143 struct btrfs_inode_item); 4144 4145 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4146 btrfs_set_inode_last_trans(trans, inode); 4147 return 0; 4148 } 4149 4150 /* 4151 * copy everything in the in-memory inode into the btree. 4152 */ 4153 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4154 struct btrfs_inode *inode) 4155 { 4156 struct btrfs_root *root = inode->root; 4157 struct btrfs_fs_info *fs_info = root->fs_info; 4158 int ret; 4159 4160 /* 4161 * If the inode is a free space inode, we can deadlock during commit 4162 * if we put it into the delayed code. 4163 * 4164 * The data relocation inode should also be directly updated 4165 * without delay 4166 */ 4167 if (!btrfs_is_free_space_inode(inode) 4168 && !btrfs_is_data_reloc_root(root) 4169 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4170 btrfs_update_root_times(trans, root); 4171 4172 ret = btrfs_delayed_update_inode(trans, inode); 4173 if (!ret) 4174 btrfs_set_inode_last_trans(trans, inode); 4175 return ret; 4176 } 4177 4178 return btrfs_update_inode_item(trans, inode); 4179 } 4180 4181 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4182 struct btrfs_inode *inode) 4183 { 4184 int ret; 4185 4186 ret = btrfs_update_inode(trans, inode); 4187 if (ret == -ENOSPC) 4188 return btrfs_update_inode_item(trans, inode); 4189 return ret; 4190 } 4191 4192 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4193 { 4194 struct timespec64 now; 4195 4196 /* 4197 * If we are replaying a log tree, we do not want to update the mtime 4198 * and ctime of the parent directory with the current time, since the 4199 * log replay procedure is responsible for setting them to their correct 4200 * values (the ones it had when the fsync was done). 4201 */ 4202 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4203 return; 4204 4205 now = inode_set_ctime_current(&dir->vfs_inode); 4206 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4207 } 4208 4209 /* 4210 * unlink helper that gets used here in inode.c and in the tree logging 4211 * recovery code. It remove a link in a directory with a given name, and 4212 * also drops the back refs in the inode to the directory 4213 */ 4214 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4215 struct btrfs_inode *dir, 4216 struct btrfs_inode *inode, 4217 const struct fscrypt_str *name, 4218 struct btrfs_rename_ctx *rename_ctx) 4219 { 4220 struct btrfs_root *root = dir->root; 4221 struct btrfs_fs_info *fs_info = root->fs_info; 4222 struct btrfs_path *path; 4223 int ret = 0; 4224 struct btrfs_dir_item *di; 4225 u64 index; 4226 u64 ino = btrfs_ino(inode); 4227 u64 dir_ino = btrfs_ino(dir); 4228 4229 path = btrfs_alloc_path(); 4230 if (!path) 4231 return -ENOMEM; 4232 4233 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4234 if (IS_ERR_OR_NULL(di)) { 4235 btrfs_free_path(path); 4236 return di ? PTR_ERR(di) : -ENOENT; 4237 } 4238 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4239 /* 4240 * Down the call chains below we'll also need to allocate a path, so no 4241 * need to hold on to this one for longer than necessary. 4242 */ 4243 btrfs_free_path(path); 4244 if (ret) 4245 return ret; 4246 4247 /* 4248 * If we don't have dir index, we have to get it by looking up 4249 * the inode ref, since we get the inode ref, remove it directly, 4250 * it is unnecessary to do delayed deletion. 4251 * 4252 * But if we have dir index, needn't search inode ref to get it. 4253 * Since the inode ref is close to the inode item, it is better 4254 * that we delay to delete it, and just do this deletion when 4255 * we update the inode item. 4256 */ 4257 if (inode->dir_index) { 4258 ret = btrfs_delayed_delete_inode_ref(inode); 4259 if (!ret) { 4260 index = inode->dir_index; 4261 goto skip_backref; 4262 } 4263 } 4264 4265 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4266 if (ret) { 4267 btrfs_crit(fs_info, 4268 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4269 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4270 btrfs_abort_transaction(trans, ret); 4271 return ret; 4272 } 4273 skip_backref: 4274 if (rename_ctx) 4275 rename_ctx->index = index; 4276 4277 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4278 if (ret) { 4279 btrfs_abort_transaction(trans, ret); 4280 return ret; 4281 } 4282 4283 /* 4284 * If we are in a rename context, we don't need to update anything in the 4285 * log. That will be done later during the rename by btrfs_log_new_name(). 4286 * Besides that, doing it here would only cause extra unnecessary btree 4287 * operations on the log tree, increasing latency for applications. 4288 */ 4289 if (!rename_ctx) { 4290 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4291 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4292 } 4293 4294 /* 4295 * If we have a pending delayed iput we could end up with the final iput 4296 * being run in btrfs-cleaner context. If we have enough of these built 4297 * up we can end up burning a lot of time in btrfs-cleaner without any 4298 * way to throttle the unlinks. Since we're currently holding a ref on 4299 * the inode we can run the delayed iput here without any issues as the 4300 * final iput won't be done until after we drop the ref we're currently 4301 * holding. 4302 */ 4303 btrfs_run_delayed_iput(fs_info, inode); 4304 4305 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4306 inode_inc_iversion(&inode->vfs_inode); 4307 inode_set_ctime_current(&inode->vfs_inode); 4308 inode_inc_iversion(&dir->vfs_inode); 4309 update_time_after_link_or_unlink(dir); 4310 4311 return btrfs_update_inode(trans, dir); 4312 } 4313 4314 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4315 struct btrfs_inode *dir, struct btrfs_inode *inode, 4316 const struct fscrypt_str *name) 4317 { 4318 int ret; 4319 4320 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4321 if (!ret) { 4322 drop_nlink(&inode->vfs_inode); 4323 ret = btrfs_update_inode(trans, inode); 4324 } 4325 return ret; 4326 } 4327 4328 /* 4329 * helper to start transaction for unlink and rmdir. 4330 * 4331 * unlink and rmdir are special in btrfs, they do not always free space, so 4332 * if we cannot make our reservations the normal way try and see if there is 4333 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4334 * allow the unlink to occur. 4335 */ 4336 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4337 { 4338 struct btrfs_root *root = dir->root; 4339 4340 return btrfs_start_transaction_fallback_global_rsv(root, 4341 BTRFS_UNLINK_METADATA_UNITS); 4342 } 4343 4344 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4345 { 4346 struct btrfs_trans_handle *trans; 4347 struct inode *inode = d_inode(dentry); 4348 int ret; 4349 struct fscrypt_name fname; 4350 4351 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4352 if (ret) 4353 return ret; 4354 4355 /* This needs to handle no-key deletions later on */ 4356 4357 trans = __unlink_start_trans(BTRFS_I(dir)); 4358 if (IS_ERR(trans)) { 4359 ret = PTR_ERR(trans); 4360 goto fscrypt_free; 4361 } 4362 4363 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4364 false); 4365 4366 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4367 &fname.disk_name); 4368 if (ret) 4369 goto end_trans; 4370 4371 if (inode->i_nlink == 0) { 4372 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4373 if (ret) 4374 goto end_trans; 4375 } 4376 4377 end_trans: 4378 btrfs_end_transaction(trans); 4379 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4380 fscrypt_free: 4381 fscrypt_free_filename(&fname); 4382 return ret; 4383 } 4384 4385 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4386 struct btrfs_inode *dir, struct dentry *dentry) 4387 { 4388 struct btrfs_root *root = dir->root; 4389 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4390 struct btrfs_path *path; 4391 struct extent_buffer *leaf; 4392 struct btrfs_dir_item *di; 4393 struct btrfs_key key; 4394 u64 index; 4395 int ret; 4396 u64 objectid; 4397 u64 dir_ino = btrfs_ino(dir); 4398 struct fscrypt_name fname; 4399 4400 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4401 if (ret) 4402 return ret; 4403 4404 /* This needs to handle no-key deletions later on */ 4405 4406 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4407 objectid = btrfs_root_id(inode->root); 4408 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4409 objectid = inode->ref_root_id; 4410 } else { 4411 WARN_ON(1); 4412 fscrypt_free_filename(&fname); 4413 return -EINVAL; 4414 } 4415 4416 path = btrfs_alloc_path(); 4417 if (!path) { 4418 ret = -ENOMEM; 4419 goto out; 4420 } 4421 4422 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4423 &fname.disk_name, -1); 4424 if (IS_ERR_OR_NULL(di)) { 4425 ret = di ? PTR_ERR(di) : -ENOENT; 4426 goto out; 4427 } 4428 4429 leaf = path->nodes[0]; 4430 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4431 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4432 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4433 if (ret) { 4434 btrfs_abort_transaction(trans, ret); 4435 goto out; 4436 } 4437 btrfs_release_path(path); 4438 4439 /* 4440 * This is a placeholder inode for a subvolume we didn't have a 4441 * reference to at the time of the snapshot creation. In the meantime 4442 * we could have renamed the real subvol link into our snapshot, so 4443 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4444 * Instead simply lookup the dir_index_item for this entry so we can 4445 * remove it. Otherwise we know we have a ref to the root and we can 4446 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4447 */ 4448 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4449 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4450 if (IS_ERR(di)) { 4451 ret = PTR_ERR(di); 4452 btrfs_abort_transaction(trans, ret); 4453 goto out; 4454 } 4455 4456 leaf = path->nodes[0]; 4457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4458 index = key.offset; 4459 btrfs_release_path(path); 4460 } else { 4461 ret = btrfs_del_root_ref(trans, objectid, 4462 btrfs_root_id(root), dir_ino, 4463 &index, &fname.disk_name); 4464 if (ret) { 4465 btrfs_abort_transaction(trans, ret); 4466 goto out; 4467 } 4468 } 4469 4470 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4471 if (ret) { 4472 btrfs_abort_transaction(trans, ret); 4473 goto out; 4474 } 4475 4476 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4477 inode_inc_iversion(&dir->vfs_inode); 4478 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4479 ret = btrfs_update_inode_fallback(trans, dir); 4480 if (ret) 4481 btrfs_abort_transaction(trans, ret); 4482 out: 4483 btrfs_free_path(path); 4484 fscrypt_free_filename(&fname); 4485 return ret; 4486 } 4487 4488 /* 4489 * Helper to check if the subvolume references other subvolumes or if it's 4490 * default. 4491 */ 4492 static noinline int may_destroy_subvol(struct btrfs_root *root) 4493 { 4494 struct btrfs_fs_info *fs_info = root->fs_info; 4495 BTRFS_PATH_AUTO_FREE(path); 4496 struct btrfs_dir_item *di; 4497 struct btrfs_key key; 4498 struct fscrypt_str name = FSTR_INIT("default", 7); 4499 u64 dir_id; 4500 int ret; 4501 4502 path = btrfs_alloc_path(); 4503 if (!path) 4504 return -ENOMEM; 4505 4506 /* Make sure this root isn't set as the default subvol */ 4507 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4508 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4509 dir_id, &name, 0); 4510 if (di && !IS_ERR(di)) { 4511 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4512 if (key.objectid == btrfs_root_id(root)) { 4513 ret = -EPERM; 4514 btrfs_err(fs_info, 4515 "deleting default subvolume %llu is not allowed", 4516 key.objectid); 4517 return ret; 4518 } 4519 btrfs_release_path(path); 4520 } 4521 4522 key.objectid = btrfs_root_id(root); 4523 key.type = BTRFS_ROOT_REF_KEY; 4524 key.offset = (u64)-1; 4525 4526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4527 if (ret < 0) 4528 return ret; 4529 if (ret == 0) { 4530 /* 4531 * Key with offset -1 found, there would have to exist a root 4532 * with such id, but this is out of valid range. 4533 */ 4534 return -EUCLEAN; 4535 } 4536 4537 ret = 0; 4538 if (path->slots[0] > 0) { 4539 path->slots[0]--; 4540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4541 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4542 ret = -ENOTEMPTY; 4543 } 4544 4545 return ret; 4546 } 4547 4548 /* Delete all dentries for inodes belonging to the root */ 4549 static void btrfs_prune_dentries(struct btrfs_root *root) 4550 { 4551 struct btrfs_fs_info *fs_info = root->fs_info; 4552 struct btrfs_inode *inode; 4553 u64 min_ino = 0; 4554 4555 if (!BTRFS_FS_ERROR(fs_info)) 4556 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4557 4558 inode = btrfs_find_first_inode(root, min_ino); 4559 while (inode) { 4560 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4561 d_prune_aliases(&inode->vfs_inode); 4562 4563 min_ino = btrfs_ino(inode) + 1; 4564 /* 4565 * btrfs_drop_inode() will have it removed from the inode 4566 * cache when its usage count hits zero. 4567 */ 4568 iput(&inode->vfs_inode); 4569 cond_resched(); 4570 inode = btrfs_find_first_inode(root, min_ino); 4571 } 4572 } 4573 4574 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4575 { 4576 struct btrfs_root *root = dir->root; 4577 struct btrfs_fs_info *fs_info = root->fs_info; 4578 struct inode *inode = d_inode(dentry); 4579 struct btrfs_root *dest = BTRFS_I(inode)->root; 4580 struct btrfs_trans_handle *trans; 4581 struct btrfs_block_rsv block_rsv; 4582 u64 root_flags; 4583 u64 qgroup_reserved = 0; 4584 int ret; 4585 4586 down_write(&fs_info->subvol_sem); 4587 4588 /* 4589 * Don't allow to delete a subvolume with send in progress. This is 4590 * inside the inode lock so the error handling that has to drop the bit 4591 * again is not run concurrently. 4592 */ 4593 spin_lock(&dest->root_item_lock); 4594 if (dest->send_in_progress) { 4595 spin_unlock(&dest->root_item_lock); 4596 btrfs_warn(fs_info, 4597 "attempt to delete subvolume %llu during send", 4598 btrfs_root_id(dest)); 4599 ret = -EPERM; 4600 goto out_up_write; 4601 } 4602 if (atomic_read(&dest->nr_swapfiles)) { 4603 spin_unlock(&dest->root_item_lock); 4604 btrfs_warn(fs_info, 4605 "attempt to delete subvolume %llu with active swapfile", 4606 btrfs_root_id(root)); 4607 ret = -EPERM; 4608 goto out_up_write; 4609 } 4610 root_flags = btrfs_root_flags(&dest->root_item); 4611 btrfs_set_root_flags(&dest->root_item, 4612 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4613 spin_unlock(&dest->root_item_lock); 4614 4615 ret = may_destroy_subvol(dest); 4616 if (ret) 4617 goto out_undead; 4618 4619 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4620 /* 4621 * One for dir inode, 4622 * two for dir entries, 4623 * two for root ref/backref. 4624 */ 4625 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4626 if (ret) 4627 goto out_undead; 4628 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4629 4630 trans = btrfs_start_transaction(root, 0); 4631 if (IS_ERR(trans)) { 4632 ret = PTR_ERR(trans); 4633 goto out_release; 4634 } 4635 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4636 qgroup_reserved = 0; 4637 trans->block_rsv = &block_rsv; 4638 trans->bytes_reserved = block_rsv.size; 4639 4640 btrfs_record_snapshot_destroy(trans, dir); 4641 4642 ret = btrfs_unlink_subvol(trans, dir, dentry); 4643 if (ret) { 4644 btrfs_abort_transaction(trans, ret); 4645 goto out_end_trans; 4646 } 4647 4648 ret = btrfs_record_root_in_trans(trans, dest); 4649 if (ret) { 4650 btrfs_abort_transaction(trans, ret); 4651 goto out_end_trans; 4652 } 4653 4654 memset(&dest->root_item.drop_progress, 0, 4655 sizeof(dest->root_item.drop_progress)); 4656 btrfs_set_root_drop_level(&dest->root_item, 0); 4657 btrfs_set_root_refs(&dest->root_item, 0); 4658 4659 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4660 ret = btrfs_insert_orphan_item(trans, 4661 fs_info->tree_root, 4662 btrfs_root_id(dest)); 4663 if (ret) { 4664 btrfs_abort_transaction(trans, ret); 4665 goto out_end_trans; 4666 } 4667 } 4668 4669 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4670 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4671 if (ret && ret != -ENOENT) { 4672 btrfs_abort_transaction(trans, ret); 4673 goto out_end_trans; 4674 } 4675 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4676 ret = btrfs_uuid_tree_remove(trans, 4677 dest->root_item.received_uuid, 4678 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4679 btrfs_root_id(dest)); 4680 if (ret && ret != -ENOENT) { 4681 btrfs_abort_transaction(trans, ret); 4682 goto out_end_trans; 4683 } 4684 } 4685 4686 free_anon_bdev(dest->anon_dev); 4687 dest->anon_dev = 0; 4688 out_end_trans: 4689 trans->block_rsv = NULL; 4690 trans->bytes_reserved = 0; 4691 ret = btrfs_end_transaction(trans); 4692 inode->i_flags |= S_DEAD; 4693 out_release: 4694 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4695 if (qgroup_reserved) 4696 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4697 out_undead: 4698 if (ret) { 4699 spin_lock(&dest->root_item_lock); 4700 root_flags = btrfs_root_flags(&dest->root_item); 4701 btrfs_set_root_flags(&dest->root_item, 4702 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4703 spin_unlock(&dest->root_item_lock); 4704 } 4705 out_up_write: 4706 up_write(&fs_info->subvol_sem); 4707 if (!ret) { 4708 d_invalidate(dentry); 4709 btrfs_prune_dentries(dest); 4710 ASSERT(dest->send_in_progress == 0); 4711 } 4712 4713 return ret; 4714 } 4715 4716 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4717 { 4718 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4719 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4720 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4721 int ret = 0; 4722 struct btrfs_trans_handle *trans; 4723 struct fscrypt_name fname; 4724 4725 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4726 return -ENOTEMPTY; 4727 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4728 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4729 btrfs_err(fs_info, 4730 "extent tree v2 doesn't support snapshot deletion yet"); 4731 return -EOPNOTSUPP; 4732 } 4733 return btrfs_delete_subvolume(dir, dentry); 4734 } 4735 4736 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4737 if (ret) 4738 return ret; 4739 4740 /* This needs to handle no-key deletions later on */ 4741 4742 trans = __unlink_start_trans(dir); 4743 if (IS_ERR(trans)) { 4744 ret = PTR_ERR(trans); 4745 goto out_notrans; 4746 } 4747 4748 /* 4749 * Propagate the last_unlink_trans value of the deleted dir to its 4750 * parent directory. This is to prevent an unrecoverable log tree in the 4751 * case we do something like this: 4752 * 1) create dir foo 4753 * 2) create snapshot under dir foo 4754 * 3) delete the snapshot 4755 * 4) rmdir foo 4756 * 5) mkdir foo 4757 * 6) fsync foo or some file inside foo 4758 * 4759 * This is because we can't unlink other roots when replaying the dir 4760 * deletes for directory foo. 4761 */ 4762 if (inode->last_unlink_trans >= trans->transid) 4763 btrfs_record_snapshot_destroy(trans, dir); 4764 4765 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4766 ret = btrfs_unlink_subvol(trans, dir, dentry); 4767 goto out; 4768 } 4769 4770 ret = btrfs_orphan_add(trans, inode); 4771 if (ret) 4772 goto out; 4773 4774 /* now the directory is empty */ 4775 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4776 if (!ret) 4777 btrfs_i_size_write(inode, 0); 4778 out: 4779 btrfs_end_transaction(trans); 4780 out_notrans: 4781 btrfs_btree_balance_dirty(fs_info); 4782 fscrypt_free_filename(&fname); 4783 4784 return ret; 4785 } 4786 4787 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4788 { 4789 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4790 blockstart, blocksize); 4791 4792 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4793 return true; 4794 return false; 4795 } 4796 4797 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4798 { 4799 const pgoff_t index = (start >> PAGE_SHIFT); 4800 struct address_space *mapping = inode->vfs_inode.i_mapping; 4801 struct folio *folio; 4802 u64 zero_start; 4803 u64 zero_end; 4804 int ret = 0; 4805 4806 again: 4807 folio = filemap_lock_folio(mapping, index); 4808 /* No folio present. */ 4809 if (IS_ERR(folio)) 4810 return 0; 4811 4812 if (!folio_test_uptodate(folio)) { 4813 ret = btrfs_read_folio(NULL, folio); 4814 folio_lock(folio); 4815 if (folio->mapping != mapping) { 4816 folio_unlock(folio); 4817 folio_put(folio); 4818 goto again; 4819 } 4820 if (!folio_test_uptodate(folio)) { 4821 ret = -EIO; 4822 goto out_unlock; 4823 } 4824 } 4825 folio_wait_writeback(folio); 4826 4827 /* 4828 * We do not need to lock extents nor wait for OE, as it's already 4829 * beyond EOF. 4830 */ 4831 4832 zero_start = max_t(u64, folio_pos(folio), start); 4833 zero_end = folio_end(folio); 4834 folio_zero_range(folio, zero_start - folio_pos(folio), 4835 zero_end - zero_start); 4836 4837 out_unlock: 4838 folio_unlock(folio); 4839 folio_put(folio); 4840 return ret; 4841 } 4842 4843 /* 4844 * Handle the truncation of a fs block. 4845 * 4846 * @inode - inode that we're zeroing 4847 * @offset - the file offset of the block to truncate 4848 * The value must be inside [@start, @end], and the function will do 4849 * extra checks if the block that covers @offset needs to be zeroed. 4850 * @start - the start file offset of the range we want to zero 4851 * @end - the end (inclusive) file offset of the range we want to zero. 4852 * 4853 * If the range is not block aligned, read out the folio that covers @offset, 4854 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4855 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4856 * for writeback. 4857 * 4858 * This is utilized by hole punch, zero range, file expansion. 4859 */ 4860 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4861 { 4862 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4863 struct address_space *mapping = inode->vfs_inode.i_mapping; 4864 struct extent_io_tree *io_tree = &inode->io_tree; 4865 struct btrfs_ordered_extent *ordered; 4866 struct extent_state *cached_state = NULL; 4867 struct extent_changeset *data_reserved = NULL; 4868 bool only_release_metadata = false; 4869 u32 blocksize = fs_info->sectorsize; 4870 pgoff_t index = (offset >> PAGE_SHIFT); 4871 struct folio *folio; 4872 gfp_t mask = btrfs_alloc_write_mask(mapping); 4873 int ret = 0; 4874 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4875 blocksize); 4876 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4877 blocksize); 4878 bool need_truncate_head = false; 4879 bool need_truncate_tail = false; 4880 u64 zero_start; 4881 u64 zero_end; 4882 u64 block_start; 4883 u64 block_end; 4884 4885 /* @offset should be inside the range. */ 4886 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4887 offset, start, end); 4888 4889 /* The range is aligned at both ends. */ 4890 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4891 /* 4892 * For block size < page size case, we may have polluted blocks 4893 * beyond EOF. So we also need to zero them out. 4894 */ 4895 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4896 ret = truncate_block_zero_beyond_eof(inode, start); 4897 goto out; 4898 } 4899 4900 /* 4901 * @offset may not be inside the head nor tail block. In that case we 4902 * don't need to do anything. 4903 */ 4904 if (!in_head_block && !in_tail_block) 4905 goto out; 4906 4907 /* 4908 * Skip the truncatioin if the range in the target block is already aligned. 4909 * The seemingly complex check will also handle the same block case. 4910 */ 4911 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4912 need_truncate_head = true; 4913 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4914 need_truncate_tail = true; 4915 if (!need_truncate_head && !need_truncate_tail) 4916 goto out; 4917 4918 block_start = round_down(offset, blocksize); 4919 block_end = block_start + blocksize - 1; 4920 4921 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4922 blocksize, false); 4923 if (ret < 0) { 4924 size_t write_bytes = blocksize; 4925 4926 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4927 /* For nocow case, no need to reserve data space. */ 4928 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4929 write_bytes, blocksize); 4930 only_release_metadata = true; 4931 } else { 4932 goto out; 4933 } 4934 } 4935 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4936 if (ret < 0) { 4937 if (!only_release_metadata) 4938 btrfs_free_reserved_data_space(inode, data_reserved, 4939 block_start, blocksize); 4940 goto out; 4941 } 4942 again: 4943 folio = __filemap_get_folio(mapping, index, 4944 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4945 if (IS_ERR(folio)) { 4946 if (only_release_metadata) 4947 btrfs_delalloc_release_metadata(inode, blocksize, true); 4948 else 4949 btrfs_delalloc_release_space(inode, data_reserved, 4950 block_start, blocksize, true); 4951 btrfs_delalloc_release_extents(inode, blocksize); 4952 ret = PTR_ERR(folio); 4953 goto out; 4954 } 4955 4956 if (!folio_test_uptodate(folio)) { 4957 ret = btrfs_read_folio(NULL, folio); 4958 folio_lock(folio); 4959 if (folio->mapping != mapping) { 4960 folio_unlock(folio); 4961 folio_put(folio); 4962 goto again; 4963 } 4964 if (!folio_test_uptodate(folio)) { 4965 ret = -EIO; 4966 goto out_unlock; 4967 } 4968 } 4969 4970 /* 4971 * We unlock the page after the io is completed and then re-lock it 4972 * above. release_folio() could have come in between that and cleared 4973 * folio private, but left the page in the mapping. Set the page mapped 4974 * here to make sure it's properly set for the subpage stuff. 4975 */ 4976 ret = set_folio_extent_mapped(folio); 4977 if (ret < 0) 4978 goto out_unlock; 4979 4980 folio_wait_writeback(folio); 4981 4982 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 4983 4984 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4985 if (ordered) { 4986 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4987 folio_unlock(folio); 4988 folio_put(folio); 4989 btrfs_start_ordered_extent(ordered); 4990 btrfs_put_ordered_extent(ordered); 4991 goto again; 4992 } 4993 4994 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 4995 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4996 &cached_state); 4997 4998 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4999 &cached_state); 5000 if (ret) { 5001 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5002 goto out_unlock; 5003 } 5004 5005 if (end == (u64)-1) { 5006 /* 5007 * We're truncating beyond EOF, the remaining blocks normally are 5008 * already holes thus no need to zero again, but it's possible for 5009 * fs block size < page size cases to have memory mapped writes 5010 * to pollute ranges beyond EOF. 5011 * 5012 * In that case although such polluted blocks beyond EOF will 5013 * not reach disk, it still affects our page caches. 5014 */ 5015 zero_start = max_t(u64, folio_pos(folio), start); 5016 zero_end = min_t(u64, folio_end(folio) - 1, end); 5017 } else { 5018 zero_start = max_t(u64, block_start, start); 5019 zero_end = min_t(u64, block_end, end); 5020 } 5021 folio_zero_range(folio, zero_start - folio_pos(folio), 5022 zero_end - zero_start + 1); 5023 5024 btrfs_folio_clear_checked(fs_info, folio, block_start, 5025 block_end + 1 - block_start); 5026 btrfs_folio_set_dirty(fs_info, folio, block_start, 5027 block_end + 1 - block_start); 5028 5029 if (only_release_metadata) 5030 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5031 EXTENT_NORESERVE, &cached_state); 5032 5033 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5034 5035 out_unlock: 5036 if (ret) { 5037 if (only_release_metadata) 5038 btrfs_delalloc_release_metadata(inode, blocksize, true); 5039 else 5040 btrfs_delalloc_release_space(inode, data_reserved, 5041 block_start, blocksize, true); 5042 } 5043 btrfs_delalloc_release_extents(inode, blocksize); 5044 folio_unlock(folio); 5045 folio_put(folio); 5046 out: 5047 if (only_release_metadata) 5048 btrfs_check_nocow_unlock(inode); 5049 extent_changeset_free(data_reserved); 5050 return ret; 5051 } 5052 5053 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5054 { 5055 struct btrfs_root *root = inode->root; 5056 struct btrfs_fs_info *fs_info = root->fs_info; 5057 struct btrfs_trans_handle *trans; 5058 struct btrfs_drop_extents_args drop_args = { 0 }; 5059 int ret; 5060 5061 /* 5062 * If NO_HOLES is enabled, we don't need to do anything. 5063 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5064 * or btrfs_update_inode() will be called, which guarantee that the next 5065 * fsync will know this inode was changed and needs to be logged. 5066 */ 5067 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5068 return 0; 5069 5070 /* 5071 * 1 - for the one we're dropping 5072 * 1 - for the one we're adding 5073 * 1 - for updating the inode. 5074 */ 5075 trans = btrfs_start_transaction(root, 3); 5076 if (IS_ERR(trans)) 5077 return PTR_ERR(trans); 5078 5079 drop_args.start = offset; 5080 drop_args.end = offset + len; 5081 drop_args.drop_cache = true; 5082 5083 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5084 if (ret) { 5085 btrfs_abort_transaction(trans, ret); 5086 btrfs_end_transaction(trans); 5087 return ret; 5088 } 5089 5090 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5091 if (ret) { 5092 btrfs_abort_transaction(trans, ret); 5093 } else { 5094 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5095 btrfs_update_inode(trans, inode); 5096 } 5097 btrfs_end_transaction(trans); 5098 return ret; 5099 } 5100 5101 /* 5102 * This function puts in dummy file extents for the area we're creating a hole 5103 * for. So if we are truncating this file to a larger size we need to insert 5104 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5105 * the range between oldsize and size 5106 */ 5107 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5108 { 5109 struct btrfs_root *root = inode->root; 5110 struct btrfs_fs_info *fs_info = root->fs_info; 5111 struct extent_io_tree *io_tree = &inode->io_tree; 5112 struct extent_map *em = NULL; 5113 struct extent_state *cached_state = NULL; 5114 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5115 u64 block_end = ALIGN(size, fs_info->sectorsize); 5116 u64 last_byte; 5117 u64 cur_offset; 5118 u64 hole_size; 5119 int ret = 0; 5120 5121 /* 5122 * If our size started in the middle of a block we need to zero out the 5123 * rest of the block before we expand the i_size, otherwise we could 5124 * expose stale data. 5125 */ 5126 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5127 if (ret) 5128 return ret; 5129 5130 if (size <= hole_start) 5131 return 0; 5132 5133 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5134 &cached_state); 5135 cur_offset = hole_start; 5136 while (1) { 5137 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5138 if (IS_ERR(em)) { 5139 ret = PTR_ERR(em); 5140 em = NULL; 5141 break; 5142 } 5143 last_byte = min(btrfs_extent_map_end(em), block_end); 5144 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5145 hole_size = last_byte - cur_offset; 5146 5147 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5148 struct extent_map *hole_em; 5149 5150 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5151 if (ret) 5152 break; 5153 5154 ret = btrfs_inode_set_file_extent_range(inode, 5155 cur_offset, hole_size); 5156 if (ret) 5157 break; 5158 5159 hole_em = btrfs_alloc_extent_map(); 5160 if (!hole_em) { 5161 btrfs_drop_extent_map_range(inode, cur_offset, 5162 cur_offset + hole_size - 1, 5163 false); 5164 btrfs_set_inode_full_sync(inode); 5165 goto next; 5166 } 5167 hole_em->start = cur_offset; 5168 hole_em->len = hole_size; 5169 5170 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5171 hole_em->disk_num_bytes = 0; 5172 hole_em->ram_bytes = hole_size; 5173 hole_em->generation = btrfs_get_fs_generation(fs_info); 5174 5175 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5176 btrfs_free_extent_map(hole_em); 5177 } else { 5178 ret = btrfs_inode_set_file_extent_range(inode, 5179 cur_offset, hole_size); 5180 if (ret) 5181 break; 5182 } 5183 next: 5184 btrfs_free_extent_map(em); 5185 em = NULL; 5186 cur_offset = last_byte; 5187 if (cur_offset >= block_end) 5188 break; 5189 } 5190 btrfs_free_extent_map(em); 5191 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5192 return ret; 5193 } 5194 5195 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5196 { 5197 struct btrfs_root *root = BTRFS_I(inode)->root; 5198 struct btrfs_trans_handle *trans; 5199 loff_t oldsize = i_size_read(inode); 5200 loff_t newsize = attr->ia_size; 5201 int mask = attr->ia_valid; 5202 int ret; 5203 5204 /* 5205 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5206 * special case where we need to update the times despite not having 5207 * these flags set. For all other operations the VFS set these flags 5208 * explicitly if it wants a timestamp update. 5209 */ 5210 if (newsize != oldsize) { 5211 inode_inc_iversion(inode); 5212 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5213 inode_set_mtime_to_ts(inode, 5214 inode_set_ctime_current(inode)); 5215 } 5216 } 5217 5218 if (newsize > oldsize) { 5219 /* 5220 * Don't do an expanding truncate while snapshotting is ongoing. 5221 * This is to ensure the snapshot captures a fully consistent 5222 * state of this file - if the snapshot captures this expanding 5223 * truncation, it must capture all writes that happened before 5224 * this truncation. 5225 */ 5226 btrfs_drew_write_lock(&root->snapshot_lock); 5227 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5228 if (ret) { 5229 btrfs_drew_write_unlock(&root->snapshot_lock); 5230 return ret; 5231 } 5232 5233 trans = btrfs_start_transaction(root, 1); 5234 if (IS_ERR(trans)) { 5235 btrfs_drew_write_unlock(&root->snapshot_lock); 5236 return PTR_ERR(trans); 5237 } 5238 5239 i_size_write(inode, newsize); 5240 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5241 pagecache_isize_extended(inode, oldsize, newsize); 5242 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5243 btrfs_drew_write_unlock(&root->snapshot_lock); 5244 btrfs_end_transaction(trans); 5245 } else { 5246 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5247 5248 if (btrfs_is_zoned(fs_info)) { 5249 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5250 ALIGN(newsize, fs_info->sectorsize), 5251 (u64)-1); 5252 if (ret) 5253 return ret; 5254 } 5255 5256 /* 5257 * We're truncating a file that used to have good data down to 5258 * zero. Make sure any new writes to the file get on disk 5259 * on close. 5260 */ 5261 if (newsize == 0) 5262 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5263 &BTRFS_I(inode)->runtime_flags); 5264 5265 truncate_setsize(inode, newsize); 5266 5267 inode_dio_wait(inode); 5268 5269 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5270 if (ret && inode->i_nlink) { 5271 int ret2; 5272 5273 /* 5274 * Truncate failed, so fix up the in-memory size. We 5275 * adjusted disk_i_size down as we removed extents, so 5276 * wait for disk_i_size to be stable and then update the 5277 * in-memory size to match. 5278 */ 5279 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5280 if (ret2) 5281 return ret2; 5282 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5283 } 5284 } 5285 5286 return ret; 5287 } 5288 5289 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5290 struct iattr *attr) 5291 { 5292 struct inode *inode = d_inode(dentry); 5293 struct btrfs_root *root = BTRFS_I(inode)->root; 5294 int ret; 5295 5296 if (btrfs_root_readonly(root)) 5297 return -EROFS; 5298 5299 ret = setattr_prepare(idmap, dentry, attr); 5300 if (ret) 5301 return ret; 5302 5303 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5304 ret = btrfs_setsize(inode, attr); 5305 if (ret) 5306 return ret; 5307 } 5308 5309 if (attr->ia_valid) { 5310 setattr_copy(idmap, inode, attr); 5311 inode_inc_iversion(inode); 5312 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5313 5314 if (!ret && attr->ia_valid & ATTR_MODE) 5315 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5316 } 5317 5318 return ret; 5319 } 5320 5321 /* 5322 * While truncating the inode pages during eviction, we get the VFS 5323 * calling btrfs_invalidate_folio() against each folio of the inode. This 5324 * is slow because the calls to btrfs_invalidate_folio() result in a 5325 * huge amount of calls to lock_extent() and clear_extent_bit(), 5326 * which keep merging and splitting extent_state structures over and over, 5327 * wasting lots of time. 5328 * 5329 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5330 * skip all those expensive operations on a per folio basis and do only 5331 * the ordered io finishing, while we release here the extent_map and 5332 * extent_state structures, without the excessive merging and splitting. 5333 */ 5334 static void evict_inode_truncate_pages(struct inode *inode) 5335 { 5336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5337 struct rb_node *node; 5338 5339 ASSERT(inode->i_state & I_FREEING); 5340 truncate_inode_pages_final(&inode->i_data); 5341 5342 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5343 5344 /* 5345 * Keep looping until we have no more ranges in the io tree. 5346 * We can have ongoing bios started by readahead that have 5347 * their endio callback (extent_io.c:end_bio_extent_readpage) 5348 * still in progress (unlocked the pages in the bio but did not yet 5349 * unlocked the ranges in the io tree). Therefore this means some 5350 * ranges can still be locked and eviction started because before 5351 * submitting those bios, which are executed by a separate task (work 5352 * queue kthread), inode references (inode->i_count) were not taken 5353 * (which would be dropped in the end io callback of each bio). 5354 * Therefore here we effectively end up waiting for those bios and 5355 * anyone else holding locked ranges without having bumped the inode's 5356 * reference count - if we don't do it, when they access the inode's 5357 * io_tree to unlock a range it may be too late, leading to an 5358 * use-after-free issue. 5359 */ 5360 spin_lock(&io_tree->lock); 5361 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5362 struct extent_state *state; 5363 struct extent_state *cached_state = NULL; 5364 u64 start; 5365 u64 end; 5366 unsigned state_flags; 5367 5368 node = rb_first(&io_tree->state); 5369 state = rb_entry(node, struct extent_state, rb_node); 5370 start = state->start; 5371 end = state->end; 5372 state_flags = state->state; 5373 spin_unlock(&io_tree->lock); 5374 5375 btrfs_lock_extent(io_tree, start, end, &cached_state); 5376 5377 /* 5378 * If still has DELALLOC flag, the extent didn't reach disk, 5379 * and its reserved space won't be freed by delayed_ref. 5380 * So we need to free its reserved space here. 5381 * (Refer to comment in btrfs_invalidate_folio, case 2) 5382 * 5383 * Note, end is the bytenr of last byte, so we need + 1 here. 5384 */ 5385 if (state_flags & EXTENT_DELALLOC) 5386 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5387 end - start + 1, NULL); 5388 5389 btrfs_clear_extent_bit(io_tree, start, end, 5390 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5391 &cached_state); 5392 5393 cond_resched(); 5394 spin_lock(&io_tree->lock); 5395 } 5396 spin_unlock(&io_tree->lock); 5397 } 5398 5399 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5400 struct btrfs_block_rsv *rsv) 5401 { 5402 struct btrfs_fs_info *fs_info = root->fs_info; 5403 struct btrfs_trans_handle *trans; 5404 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5405 int ret; 5406 5407 /* 5408 * Eviction should be taking place at some place safe because of our 5409 * delayed iputs. However the normal flushing code will run delayed 5410 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5411 * 5412 * We reserve the delayed_refs_extra here again because we can't use 5413 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5414 * above. We reserve our extra bit here because we generate a ton of 5415 * delayed refs activity by truncating. 5416 * 5417 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5418 * if we fail to make this reservation we can re-try without the 5419 * delayed_refs_extra so we can make some forward progress. 5420 */ 5421 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5422 BTRFS_RESERVE_FLUSH_EVICT); 5423 if (ret) { 5424 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5425 BTRFS_RESERVE_FLUSH_EVICT); 5426 if (ret) { 5427 btrfs_warn(fs_info, 5428 "could not allocate space for delete; will truncate on mount"); 5429 return ERR_PTR(-ENOSPC); 5430 } 5431 delayed_refs_extra = 0; 5432 } 5433 5434 trans = btrfs_join_transaction(root); 5435 if (IS_ERR(trans)) 5436 return trans; 5437 5438 if (delayed_refs_extra) { 5439 trans->block_rsv = &fs_info->trans_block_rsv; 5440 trans->bytes_reserved = delayed_refs_extra; 5441 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5442 delayed_refs_extra, true); 5443 } 5444 return trans; 5445 } 5446 5447 void btrfs_evict_inode(struct inode *inode) 5448 { 5449 struct btrfs_fs_info *fs_info; 5450 struct btrfs_trans_handle *trans; 5451 struct btrfs_root *root = BTRFS_I(inode)->root; 5452 struct btrfs_block_rsv rsv; 5453 int ret; 5454 5455 trace_btrfs_inode_evict(inode); 5456 5457 if (!root) { 5458 fsverity_cleanup_inode(inode); 5459 clear_inode(inode); 5460 return; 5461 } 5462 5463 fs_info = inode_to_fs_info(inode); 5464 evict_inode_truncate_pages(inode); 5465 5466 if (inode->i_nlink && 5467 ((btrfs_root_refs(&root->root_item) != 0 && 5468 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5469 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5470 goto out; 5471 5472 if (is_bad_inode(inode)) 5473 goto out; 5474 5475 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5476 goto out; 5477 5478 if (inode->i_nlink > 0) { 5479 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5480 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5481 goto out; 5482 } 5483 5484 /* 5485 * This makes sure the inode item in tree is uptodate and the space for 5486 * the inode update is released. 5487 */ 5488 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5489 if (ret) 5490 goto out; 5491 5492 /* 5493 * This drops any pending insert or delete operations we have for this 5494 * inode. We could have a delayed dir index deletion queued up, but 5495 * we're removing the inode completely so that'll be taken care of in 5496 * the truncate. 5497 */ 5498 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5499 5500 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5501 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5502 rsv.failfast = true; 5503 5504 btrfs_i_size_write(BTRFS_I(inode), 0); 5505 5506 while (1) { 5507 struct btrfs_truncate_control control = { 5508 .inode = BTRFS_I(inode), 5509 .ino = btrfs_ino(BTRFS_I(inode)), 5510 .new_size = 0, 5511 .min_type = 0, 5512 }; 5513 5514 trans = evict_refill_and_join(root, &rsv); 5515 if (IS_ERR(trans)) 5516 goto out_release; 5517 5518 trans->block_rsv = &rsv; 5519 5520 ret = btrfs_truncate_inode_items(trans, root, &control); 5521 trans->block_rsv = &fs_info->trans_block_rsv; 5522 btrfs_end_transaction(trans); 5523 /* 5524 * We have not added new delayed items for our inode after we 5525 * have flushed its delayed items, so no need to throttle on 5526 * delayed items. However we have modified extent buffers. 5527 */ 5528 btrfs_btree_balance_dirty_nodelay(fs_info); 5529 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5530 goto out_release; 5531 else if (!ret) 5532 break; 5533 } 5534 5535 /* 5536 * Errors here aren't a big deal, it just means we leave orphan items in 5537 * the tree. They will be cleaned up on the next mount. If the inode 5538 * number gets reused, cleanup deletes the orphan item without doing 5539 * anything, and unlink reuses the existing orphan item. 5540 * 5541 * If it turns out that we are dropping too many of these, we might want 5542 * to add a mechanism for retrying these after a commit. 5543 */ 5544 trans = evict_refill_and_join(root, &rsv); 5545 if (!IS_ERR(trans)) { 5546 trans->block_rsv = &rsv; 5547 btrfs_orphan_del(trans, BTRFS_I(inode)); 5548 trans->block_rsv = &fs_info->trans_block_rsv; 5549 btrfs_end_transaction(trans); 5550 } 5551 5552 out_release: 5553 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5554 out: 5555 /* 5556 * If we didn't successfully delete, the orphan item will still be in 5557 * the tree and we'll retry on the next mount. Again, we might also want 5558 * to retry these periodically in the future. 5559 */ 5560 btrfs_remove_delayed_node(BTRFS_I(inode)); 5561 fsverity_cleanup_inode(inode); 5562 clear_inode(inode); 5563 } 5564 5565 /* 5566 * Return the key found in the dir entry in the location pointer, fill @type 5567 * with BTRFS_FT_*, and return 0. 5568 * 5569 * If no dir entries were found, returns -ENOENT. 5570 * If found a corrupted location in dir entry, returns -EUCLEAN. 5571 */ 5572 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5573 struct btrfs_key *location, u8 *type) 5574 { 5575 struct btrfs_dir_item *di; 5576 BTRFS_PATH_AUTO_FREE(path); 5577 struct btrfs_root *root = dir->root; 5578 int ret = 0; 5579 struct fscrypt_name fname; 5580 5581 path = btrfs_alloc_path(); 5582 if (!path) 5583 return -ENOMEM; 5584 5585 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5586 if (ret < 0) 5587 return ret; 5588 /* 5589 * fscrypt_setup_filename() should never return a positive value, but 5590 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5591 */ 5592 ASSERT(ret == 0); 5593 5594 /* This needs to handle no-key deletions later on */ 5595 5596 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5597 &fname.disk_name, 0); 5598 if (IS_ERR_OR_NULL(di)) { 5599 ret = di ? PTR_ERR(di) : -ENOENT; 5600 goto out; 5601 } 5602 5603 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5604 if (location->type != BTRFS_INODE_ITEM_KEY && 5605 location->type != BTRFS_ROOT_ITEM_KEY) { 5606 ret = -EUCLEAN; 5607 btrfs_warn(root->fs_info, 5608 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5609 __func__, fname.disk_name.name, btrfs_ino(dir), 5610 location->objectid, location->type, location->offset); 5611 } 5612 if (!ret) 5613 *type = btrfs_dir_ftype(path->nodes[0], di); 5614 out: 5615 fscrypt_free_filename(&fname); 5616 return ret; 5617 } 5618 5619 /* 5620 * when we hit a tree root in a directory, the btrfs part of the inode 5621 * needs to be changed to reflect the root directory of the tree root. This 5622 * is kind of like crossing a mount point. 5623 */ 5624 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5625 struct btrfs_inode *dir, 5626 struct dentry *dentry, 5627 struct btrfs_key *location, 5628 struct btrfs_root **sub_root) 5629 { 5630 BTRFS_PATH_AUTO_FREE(path); 5631 struct btrfs_root *new_root; 5632 struct btrfs_root_ref *ref; 5633 struct extent_buffer *leaf; 5634 struct btrfs_key key; 5635 int ret; 5636 int err = 0; 5637 struct fscrypt_name fname; 5638 5639 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5640 if (ret) 5641 return ret; 5642 5643 path = btrfs_alloc_path(); 5644 if (!path) { 5645 err = -ENOMEM; 5646 goto out; 5647 } 5648 5649 err = -ENOENT; 5650 key.objectid = btrfs_root_id(dir->root); 5651 key.type = BTRFS_ROOT_REF_KEY; 5652 key.offset = location->objectid; 5653 5654 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5655 if (ret) { 5656 if (ret < 0) 5657 err = ret; 5658 goto out; 5659 } 5660 5661 leaf = path->nodes[0]; 5662 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5663 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5664 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5665 goto out; 5666 5667 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5668 (unsigned long)(ref + 1), fname.disk_name.len); 5669 if (ret) 5670 goto out; 5671 5672 btrfs_release_path(path); 5673 5674 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5675 if (IS_ERR(new_root)) { 5676 err = PTR_ERR(new_root); 5677 goto out; 5678 } 5679 5680 *sub_root = new_root; 5681 location->objectid = btrfs_root_dirid(&new_root->root_item); 5682 location->type = BTRFS_INODE_ITEM_KEY; 5683 location->offset = 0; 5684 err = 0; 5685 out: 5686 fscrypt_free_filename(&fname); 5687 return err; 5688 } 5689 5690 5691 5692 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5693 { 5694 struct btrfs_root *root = inode->root; 5695 struct btrfs_inode *entry; 5696 bool empty = false; 5697 5698 xa_lock(&root->inodes); 5699 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5700 if (entry == inode) 5701 empty = xa_empty(&root->inodes); 5702 xa_unlock(&root->inodes); 5703 5704 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5705 xa_lock(&root->inodes); 5706 empty = xa_empty(&root->inodes); 5707 xa_unlock(&root->inodes); 5708 if (empty) 5709 btrfs_add_dead_root(root); 5710 } 5711 } 5712 5713 5714 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5715 { 5716 struct btrfs_iget_args *args = p; 5717 5718 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5719 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5720 5721 if (args->root && args->root == args->root->fs_info->tree_root && 5722 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5723 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5724 &BTRFS_I(inode)->runtime_flags); 5725 return 0; 5726 } 5727 5728 static int btrfs_find_actor(struct inode *inode, void *opaque) 5729 { 5730 struct btrfs_iget_args *args = opaque; 5731 5732 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5733 args->root == BTRFS_I(inode)->root; 5734 } 5735 5736 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5737 { 5738 struct inode *inode; 5739 struct btrfs_iget_args args; 5740 unsigned long hashval = btrfs_inode_hash(ino, root); 5741 5742 args.ino = ino; 5743 args.root = root; 5744 5745 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5746 btrfs_init_locked_inode, 5747 (void *)&args); 5748 if (!inode) 5749 return NULL; 5750 return BTRFS_I(inode); 5751 } 5752 5753 /* 5754 * Get an inode object given its inode number and corresponding root. Path is 5755 * preallocated to prevent recursing back to iget through allocator. 5756 */ 5757 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5758 struct btrfs_path *path) 5759 { 5760 struct btrfs_inode *inode; 5761 int ret; 5762 5763 inode = btrfs_iget_locked(ino, root); 5764 if (!inode) 5765 return ERR_PTR(-ENOMEM); 5766 5767 if (!(inode->vfs_inode.i_state & I_NEW)) 5768 return inode; 5769 5770 ret = btrfs_read_locked_inode(inode, path); 5771 if (ret) 5772 return ERR_PTR(ret); 5773 5774 unlock_new_inode(&inode->vfs_inode); 5775 return inode; 5776 } 5777 5778 /* 5779 * Get an inode object given its inode number and corresponding root. 5780 */ 5781 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5782 { 5783 struct btrfs_inode *inode; 5784 struct btrfs_path *path; 5785 int ret; 5786 5787 inode = btrfs_iget_locked(ino, root); 5788 if (!inode) 5789 return ERR_PTR(-ENOMEM); 5790 5791 if (!(inode->vfs_inode.i_state & I_NEW)) 5792 return inode; 5793 5794 path = btrfs_alloc_path(); 5795 if (!path) { 5796 iget_failed(&inode->vfs_inode); 5797 return ERR_PTR(-ENOMEM); 5798 } 5799 5800 ret = btrfs_read_locked_inode(inode, path); 5801 btrfs_free_path(path); 5802 if (ret) 5803 return ERR_PTR(ret); 5804 5805 unlock_new_inode(&inode->vfs_inode); 5806 return inode; 5807 } 5808 5809 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5810 struct btrfs_key *key, 5811 struct btrfs_root *root) 5812 { 5813 struct timespec64 ts; 5814 struct inode *vfs_inode; 5815 struct btrfs_inode *inode; 5816 5817 vfs_inode = new_inode(dir->i_sb); 5818 if (!vfs_inode) 5819 return ERR_PTR(-ENOMEM); 5820 5821 inode = BTRFS_I(vfs_inode); 5822 inode->root = btrfs_grab_root(root); 5823 inode->ref_root_id = key->objectid; 5824 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5825 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5826 5827 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5828 /* 5829 * We only need lookup, the rest is read-only and there's no inode 5830 * associated with the dentry 5831 */ 5832 vfs_inode->i_op = &simple_dir_inode_operations; 5833 vfs_inode->i_opflags &= ~IOP_XATTR; 5834 vfs_inode->i_fop = &simple_dir_operations; 5835 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5836 5837 ts = inode_set_ctime_current(vfs_inode); 5838 inode_set_mtime_to_ts(vfs_inode, ts); 5839 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5840 inode->i_otime_sec = ts.tv_sec; 5841 inode->i_otime_nsec = ts.tv_nsec; 5842 5843 vfs_inode->i_uid = dir->i_uid; 5844 vfs_inode->i_gid = dir->i_gid; 5845 5846 return inode; 5847 } 5848 5849 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5850 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5851 static_assert(BTRFS_FT_DIR == FT_DIR); 5852 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5853 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5854 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5855 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5856 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5857 5858 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5859 { 5860 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5861 } 5862 5863 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5864 { 5865 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5866 struct btrfs_inode *inode; 5867 struct btrfs_root *root = BTRFS_I(dir)->root; 5868 struct btrfs_root *sub_root = root; 5869 struct btrfs_key location = { 0 }; 5870 u8 di_type = 0; 5871 int ret = 0; 5872 5873 if (dentry->d_name.len > BTRFS_NAME_LEN) 5874 return ERR_PTR(-ENAMETOOLONG); 5875 5876 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5877 if (ret < 0) 5878 return ERR_PTR(ret); 5879 5880 if (location.type == BTRFS_INODE_ITEM_KEY) { 5881 inode = btrfs_iget(location.objectid, root); 5882 if (IS_ERR(inode)) 5883 return ERR_CAST(inode); 5884 5885 /* Do extra check against inode mode with di_type */ 5886 if (btrfs_inode_type(inode) != di_type) { 5887 btrfs_crit(fs_info, 5888 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5889 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5890 di_type); 5891 iput(&inode->vfs_inode); 5892 return ERR_PTR(-EUCLEAN); 5893 } 5894 return &inode->vfs_inode; 5895 } 5896 5897 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5898 &location, &sub_root); 5899 if (ret < 0) { 5900 if (ret != -ENOENT) 5901 inode = ERR_PTR(ret); 5902 else 5903 inode = new_simple_dir(dir, &location, root); 5904 } else { 5905 inode = btrfs_iget(location.objectid, sub_root); 5906 btrfs_put_root(sub_root); 5907 5908 if (IS_ERR(inode)) 5909 return ERR_CAST(inode); 5910 5911 down_read(&fs_info->cleanup_work_sem); 5912 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5913 ret = btrfs_orphan_cleanup(sub_root); 5914 up_read(&fs_info->cleanup_work_sem); 5915 if (ret) { 5916 iput(&inode->vfs_inode); 5917 inode = ERR_PTR(ret); 5918 } 5919 } 5920 5921 if (IS_ERR(inode)) 5922 return ERR_CAST(inode); 5923 5924 return &inode->vfs_inode; 5925 } 5926 5927 static int btrfs_dentry_delete(const struct dentry *dentry) 5928 { 5929 struct btrfs_root *root; 5930 struct inode *inode = d_inode(dentry); 5931 5932 if (!inode && !IS_ROOT(dentry)) 5933 inode = d_inode(dentry->d_parent); 5934 5935 if (inode) { 5936 root = BTRFS_I(inode)->root; 5937 if (btrfs_root_refs(&root->root_item) == 0) 5938 return 1; 5939 5940 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5941 return 1; 5942 } 5943 return 0; 5944 } 5945 5946 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5947 unsigned int flags) 5948 { 5949 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5950 5951 if (inode == ERR_PTR(-ENOENT)) 5952 inode = NULL; 5953 return d_splice_alias(inode, dentry); 5954 } 5955 5956 /* 5957 * Find the highest existing sequence number in a directory and then set the 5958 * in-memory index_cnt variable to the first free sequence number. 5959 */ 5960 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5961 { 5962 struct btrfs_root *root = inode->root; 5963 struct btrfs_key key, found_key; 5964 BTRFS_PATH_AUTO_FREE(path); 5965 struct extent_buffer *leaf; 5966 int ret; 5967 5968 key.objectid = btrfs_ino(inode); 5969 key.type = BTRFS_DIR_INDEX_KEY; 5970 key.offset = (u64)-1; 5971 5972 path = btrfs_alloc_path(); 5973 if (!path) 5974 return -ENOMEM; 5975 5976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5977 if (ret < 0) 5978 return ret; 5979 /* FIXME: we should be able to handle this */ 5980 if (ret == 0) 5981 return ret; 5982 5983 if (path->slots[0] == 0) { 5984 inode->index_cnt = BTRFS_DIR_START_INDEX; 5985 return 0; 5986 } 5987 5988 path->slots[0]--; 5989 5990 leaf = path->nodes[0]; 5991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5992 5993 if (found_key.objectid != btrfs_ino(inode) || 5994 found_key.type != BTRFS_DIR_INDEX_KEY) { 5995 inode->index_cnt = BTRFS_DIR_START_INDEX; 5996 return 0; 5997 } 5998 5999 inode->index_cnt = found_key.offset + 1; 6000 6001 return 0; 6002 } 6003 6004 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6005 { 6006 int ret = 0; 6007 6008 btrfs_inode_lock(dir, 0); 6009 if (dir->index_cnt == (u64)-1) { 6010 ret = btrfs_inode_delayed_dir_index_count(dir); 6011 if (ret) { 6012 ret = btrfs_set_inode_index_count(dir); 6013 if (ret) 6014 goto out; 6015 } 6016 } 6017 6018 /* index_cnt is the index number of next new entry, so decrement it. */ 6019 *index = dir->index_cnt - 1; 6020 out: 6021 btrfs_inode_unlock(dir, 0); 6022 6023 return ret; 6024 } 6025 6026 /* 6027 * All this infrastructure exists because dir_emit can fault, and we are holding 6028 * the tree lock when doing readdir. For now just allocate a buffer and copy 6029 * our information into that, and then dir_emit from the buffer. This is 6030 * similar to what NFS does, only we don't keep the buffer around in pagecache 6031 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6032 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6033 * tree lock. 6034 */ 6035 static int btrfs_opendir(struct inode *inode, struct file *file) 6036 { 6037 struct btrfs_file_private *private; 6038 u64 last_index; 6039 int ret; 6040 6041 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6042 if (ret) 6043 return ret; 6044 6045 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6046 if (!private) 6047 return -ENOMEM; 6048 private->last_index = last_index; 6049 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6050 if (!private->filldir_buf) { 6051 kfree(private); 6052 return -ENOMEM; 6053 } 6054 file->private_data = private; 6055 return 0; 6056 } 6057 6058 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6059 { 6060 struct btrfs_file_private *private = file->private_data; 6061 int ret; 6062 6063 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6064 &private->last_index); 6065 if (ret) 6066 return ret; 6067 6068 return generic_file_llseek(file, offset, whence); 6069 } 6070 6071 struct dir_entry { 6072 u64 ino; 6073 u64 offset; 6074 unsigned type; 6075 int name_len; 6076 }; 6077 6078 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6079 { 6080 while (entries--) { 6081 struct dir_entry *entry = addr; 6082 char *name = (char *)(entry + 1); 6083 6084 ctx->pos = get_unaligned(&entry->offset); 6085 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6086 get_unaligned(&entry->ino), 6087 get_unaligned(&entry->type))) 6088 return 1; 6089 addr += sizeof(struct dir_entry) + 6090 get_unaligned(&entry->name_len); 6091 ctx->pos++; 6092 } 6093 return 0; 6094 } 6095 6096 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6097 { 6098 struct inode *inode = file_inode(file); 6099 struct btrfs_root *root = BTRFS_I(inode)->root; 6100 struct btrfs_file_private *private = file->private_data; 6101 struct btrfs_dir_item *di; 6102 struct btrfs_key key; 6103 struct btrfs_key found_key; 6104 BTRFS_PATH_AUTO_FREE(path); 6105 void *addr; 6106 LIST_HEAD(ins_list); 6107 LIST_HEAD(del_list); 6108 int ret; 6109 char *name_ptr; 6110 int name_len; 6111 int entries = 0; 6112 int total_len = 0; 6113 bool put = false; 6114 struct btrfs_key location; 6115 6116 if (!dir_emit_dots(file, ctx)) 6117 return 0; 6118 6119 path = btrfs_alloc_path(); 6120 if (!path) 6121 return -ENOMEM; 6122 6123 addr = private->filldir_buf; 6124 path->reada = READA_FORWARD; 6125 6126 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6127 &ins_list, &del_list); 6128 6129 again: 6130 key.type = BTRFS_DIR_INDEX_KEY; 6131 key.offset = ctx->pos; 6132 key.objectid = btrfs_ino(BTRFS_I(inode)); 6133 6134 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6135 struct dir_entry *entry; 6136 struct extent_buffer *leaf = path->nodes[0]; 6137 u8 ftype; 6138 6139 if (found_key.objectid != key.objectid) 6140 break; 6141 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6142 break; 6143 if (found_key.offset < ctx->pos) 6144 continue; 6145 if (found_key.offset > private->last_index) 6146 break; 6147 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6148 continue; 6149 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6150 name_len = btrfs_dir_name_len(leaf, di); 6151 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6152 PAGE_SIZE) { 6153 btrfs_release_path(path); 6154 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6155 if (ret) 6156 goto nopos; 6157 addr = private->filldir_buf; 6158 entries = 0; 6159 total_len = 0; 6160 goto again; 6161 } 6162 6163 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6164 entry = addr; 6165 name_ptr = (char *)(entry + 1); 6166 read_extent_buffer(leaf, name_ptr, 6167 (unsigned long)(di + 1), name_len); 6168 put_unaligned(name_len, &entry->name_len); 6169 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6170 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6171 put_unaligned(location.objectid, &entry->ino); 6172 put_unaligned(found_key.offset, &entry->offset); 6173 entries++; 6174 addr += sizeof(struct dir_entry) + name_len; 6175 total_len += sizeof(struct dir_entry) + name_len; 6176 } 6177 /* Catch error encountered during iteration */ 6178 if (ret < 0) 6179 goto err; 6180 6181 btrfs_release_path(path); 6182 6183 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6184 if (ret) 6185 goto nopos; 6186 6187 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6188 goto nopos; 6189 6190 /* 6191 * Stop new entries from being returned after we return the last 6192 * entry. 6193 * 6194 * New directory entries are assigned a strictly increasing 6195 * offset. This means that new entries created during readdir 6196 * are *guaranteed* to be seen in the future by that readdir. 6197 * This has broken buggy programs which operate on names as 6198 * they're returned by readdir. Until we reuse freed offsets 6199 * we have this hack to stop new entries from being returned 6200 * under the assumption that they'll never reach this huge 6201 * offset. 6202 * 6203 * This is being careful not to overflow 32bit loff_t unless the 6204 * last entry requires it because doing so has broken 32bit apps 6205 * in the past. 6206 */ 6207 if (ctx->pos >= INT_MAX) 6208 ctx->pos = LLONG_MAX; 6209 else 6210 ctx->pos = INT_MAX; 6211 nopos: 6212 ret = 0; 6213 err: 6214 if (put) 6215 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6216 return ret; 6217 } 6218 6219 /* 6220 * This is somewhat expensive, updating the tree every time the 6221 * inode changes. But, it is most likely to find the inode in cache. 6222 * FIXME, needs more benchmarking...there are no reasons other than performance 6223 * to keep or drop this code. 6224 */ 6225 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6226 { 6227 struct btrfs_root *root = inode->root; 6228 struct btrfs_fs_info *fs_info = root->fs_info; 6229 struct btrfs_trans_handle *trans; 6230 int ret; 6231 6232 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6233 return 0; 6234 6235 trans = btrfs_join_transaction(root); 6236 if (IS_ERR(trans)) 6237 return PTR_ERR(trans); 6238 6239 ret = btrfs_update_inode(trans, inode); 6240 if (ret == -ENOSPC || ret == -EDQUOT) { 6241 /* whoops, lets try again with the full transaction */ 6242 btrfs_end_transaction(trans); 6243 trans = btrfs_start_transaction(root, 1); 6244 if (IS_ERR(trans)) 6245 return PTR_ERR(trans); 6246 6247 ret = btrfs_update_inode(trans, inode); 6248 } 6249 btrfs_end_transaction(trans); 6250 if (inode->delayed_node) 6251 btrfs_balance_delayed_items(fs_info); 6252 6253 return ret; 6254 } 6255 6256 /* 6257 * This is a copy of file_update_time. We need this so we can return error on 6258 * ENOSPC for updating the inode in the case of file write and mmap writes. 6259 */ 6260 static int btrfs_update_time(struct inode *inode, int flags) 6261 { 6262 struct btrfs_root *root = BTRFS_I(inode)->root; 6263 bool dirty; 6264 6265 if (btrfs_root_readonly(root)) 6266 return -EROFS; 6267 6268 dirty = inode_update_timestamps(inode, flags); 6269 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6270 } 6271 6272 /* 6273 * helper to find a free sequence number in a given directory. This current 6274 * code is very simple, later versions will do smarter things in the btree 6275 */ 6276 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6277 { 6278 int ret = 0; 6279 6280 if (dir->index_cnt == (u64)-1) { 6281 ret = btrfs_inode_delayed_dir_index_count(dir); 6282 if (ret) { 6283 ret = btrfs_set_inode_index_count(dir); 6284 if (ret) 6285 return ret; 6286 } 6287 } 6288 6289 *index = dir->index_cnt; 6290 dir->index_cnt++; 6291 6292 return ret; 6293 } 6294 6295 static int btrfs_insert_inode_locked(struct inode *inode) 6296 { 6297 struct btrfs_iget_args args; 6298 6299 args.ino = btrfs_ino(BTRFS_I(inode)); 6300 args.root = BTRFS_I(inode)->root; 6301 6302 return insert_inode_locked4(inode, 6303 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6304 btrfs_find_actor, &args); 6305 } 6306 6307 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6308 unsigned int *trans_num_items) 6309 { 6310 struct inode *dir = args->dir; 6311 struct inode *inode = args->inode; 6312 int ret; 6313 6314 if (!args->orphan) { 6315 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6316 &args->fname); 6317 if (ret) 6318 return ret; 6319 } 6320 6321 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6322 if (ret) { 6323 fscrypt_free_filename(&args->fname); 6324 return ret; 6325 } 6326 6327 /* 1 to add inode item */ 6328 *trans_num_items = 1; 6329 /* 1 to add compression property */ 6330 if (BTRFS_I(dir)->prop_compress) 6331 (*trans_num_items)++; 6332 /* 1 to add default ACL xattr */ 6333 if (args->default_acl) 6334 (*trans_num_items)++; 6335 /* 1 to add access ACL xattr */ 6336 if (args->acl) 6337 (*trans_num_items)++; 6338 #ifdef CONFIG_SECURITY 6339 /* 1 to add LSM xattr */ 6340 if (dir->i_security) 6341 (*trans_num_items)++; 6342 #endif 6343 if (args->orphan) { 6344 /* 1 to add orphan item */ 6345 (*trans_num_items)++; 6346 } else { 6347 /* 6348 * 1 to add dir item 6349 * 1 to add dir index 6350 * 1 to update parent inode item 6351 * 6352 * No need for 1 unit for the inode ref item because it is 6353 * inserted in a batch together with the inode item at 6354 * btrfs_create_new_inode(). 6355 */ 6356 *trans_num_items += 3; 6357 } 6358 return 0; 6359 } 6360 6361 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6362 { 6363 posix_acl_release(args->acl); 6364 posix_acl_release(args->default_acl); 6365 fscrypt_free_filename(&args->fname); 6366 } 6367 6368 /* 6369 * Inherit flags from the parent inode. 6370 * 6371 * Currently only the compression flags and the cow flags are inherited. 6372 */ 6373 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6374 { 6375 unsigned int flags; 6376 6377 flags = dir->flags; 6378 6379 if (flags & BTRFS_INODE_NOCOMPRESS) { 6380 inode->flags &= ~BTRFS_INODE_COMPRESS; 6381 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6382 } else if (flags & BTRFS_INODE_COMPRESS) { 6383 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6384 inode->flags |= BTRFS_INODE_COMPRESS; 6385 } 6386 6387 if (flags & BTRFS_INODE_NODATACOW) { 6388 inode->flags |= BTRFS_INODE_NODATACOW; 6389 if (S_ISREG(inode->vfs_inode.i_mode)) 6390 inode->flags |= BTRFS_INODE_NODATASUM; 6391 } 6392 6393 btrfs_sync_inode_flags_to_i_flags(inode); 6394 } 6395 6396 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6397 struct btrfs_new_inode_args *args) 6398 { 6399 struct timespec64 ts; 6400 struct inode *dir = args->dir; 6401 struct inode *inode = args->inode; 6402 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6403 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6404 struct btrfs_root *root; 6405 struct btrfs_inode_item *inode_item; 6406 struct btrfs_path *path; 6407 u64 objectid; 6408 struct btrfs_inode_ref *ref; 6409 struct btrfs_key key[2]; 6410 u32 sizes[2]; 6411 struct btrfs_item_batch batch; 6412 unsigned long ptr; 6413 int ret; 6414 bool xa_reserved = false; 6415 6416 path = btrfs_alloc_path(); 6417 if (!path) 6418 return -ENOMEM; 6419 6420 if (!args->subvol) 6421 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6422 root = BTRFS_I(inode)->root; 6423 6424 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6425 if (ret) 6426 goto out; 6427 6428 ret = btrfs_get_free_objectid(root, &objectid); 6429 if (ret) 6430 goto out; 6431 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6432 6433 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6434 if (ret) 6435 goto out; 6436 xa_reserved = true; 6437 6438 if (args->orphan) { 6439 /* 6440 * O_TMPFILE, set link count to 0, so that after this point, we 6441 * fill in an inode item with the correct link count. 6442 */ 6443 set_nlink(inode, 0); 6444 } else { 6445 trace_btrfs_inode_request(dir); 6446 6447 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6448 if (ret) 6449 goto out; 6450 } 6451 6452 if (S_ISDIR(inode->i_mode)) 6453 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6454 6455 BTRFS_I(inode)->generation = trans->transid; 6456 inode->i_generation = BTRFS_I(inode)->generation; 6457 6458 /* 6459 * We don't have any capability xattrs set here yet, shortcut any 6460 * queries for the xattrs here. If we add them later via the inode 6461 * security init path or any other path this flag will be cleared. 6462 */ 6463 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6464 6465 /* 6466 * Subvolumes don't inherit flags from their parent directory. 6467 * Originally this was probably by accident, but we probably can't 6468 * change it now without compatibility issues. 6469 */ 6470 if (!args->subvol) 6471 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6472 6473 if (S_ISREG(inode->i_mode)) { 6474 if (btrfs_test_opt(fs_info, NODATASUM)) 6475 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6476 if (btrfs_test_opt(fs_info, NODATACOW)) 6477 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6478 BTRFS_INODE_NODATASUM; 6479 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6480 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6481 } 6482 6483 ret = btrfs_insert_inode_locked(inode); 6484 if (ret < 0) { 6485 if (!args->orphan) 6486 BTRFS_I(dir)->index_cnt--; 6487 goto out; 6488 } 6489 6490 /* 6491 * We could have gotten an inode number from somebody who was fsynced 6492 * and then removed in this same transaction, so let's just set full 6493 * sync since it will be a full sync anyway and this will blow away the 6494 * old info in the log. 6495 */ 6496 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6497 6498 key[0].objectid = objectid; 6499 key[0].type = BTRFS_INODE_ITEM_KEY; 6500 key[0].offset = 0; 6501 6502 sizes[0] = sizeof(struct btrfs_inode_item); 6503 6504 if (!args->orphan) { 6505 /* 6506 * Start new inodes with an inode_ref. This is slightly more 6507 * efficient for small numbers of hard links since they will 6508 * be packed into one item. Extended refs will kick in if we 6509 * add more hard links than can fit in the ref item. 6510 */ 6511 key[1].objectid = objectid; 6512 key[1].type = BTRFS_INODE_REF_KEY; 6513 if (args->subvol) { 6514 key[1].offset = objectid; 6515 sizes[1] = 2 + sizeof(*ref); 6516 } else { 6517 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6518 sizes[1] = name->len + sizeof(*ref); 6519 } 6520 } 6521 6522 batch.keys = &key[0]; 6523 batch.data_sizes = &sizes[0]; 6524 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6525 batch.nr = args->orphan ? 1 : 2; 6526 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6527 if (ret != 0) { 6528 btrfs_abort_transaction(trans, ret); 6529 goto discard; 6530 } 6531 6532 ts = simple_inode_init_ts(inode); 6533 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6534 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6535 6536 /* 6537 * We're going to fill the inode item now, so at this point the inode 6538 * must be fully initialized. 6539 */ 6540 6541 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6542 struct btrfs_inode_item); 6543 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6544 sizeof(*inode_item)); 6545 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6546 6547 if (!args->orphan) { 6548 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6549 struct btrfs_inode_ref); 6550 ptr = (unsigned long)(ref + 1); 6551 if (args->subvol) { 6552 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6553 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6554 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6555 } else { 6556 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6557 name->len); 6558 btrfs_set_inode_ref_index(path->nodes[0], ref, 6559 BTRFS_I(inode)->dir_index); 6560 write_extent_buffer(path->nodes[0], name->name, ptr, 6561 name->len); 6562 } 6563 } 6564 6565 /* 6566 * We don't need the path anymore, plus inheriting properties, adding 6567 * ACLs, security xattrs, orphan item or adding the link, will result in 6568 * allocating yet another path. So just free our path. 6569 */ 6570 btrfs_free_path(path); 6571 path = NULL; 6572 6573 if (args->subvol) { 6574 struct btrfs_inode *parent; 6575 6576 /* 6577 * Subvolumes inherit properties from their parent subvolume, 6578 * not the directory they were created in. 6579 */ 6580 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6581 if (IS_ERR(parent)) { 6582 ret = PTR_ERR(parent); 6583 } else { 6584 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6585 parent); 6586 iput(&parent->vfs_inode); 6587 } 6588 } else { 6589 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6590 BTRFS_I(dir)); 6591 } 6592 if (ret) { 6593 btrfs_err(fs_info, 6594 "error inheriting props for ino %llu (root %llu): %d", 6595 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6596 } 6597 6598 /* 6599 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6600 * probably a bug. 6601 */ 6602 if (!args->subvol) { 6603 ret = btrfs_init_inode_security(trans, args); 6604 if (ret) { 6605 btrfs_abort_transaction(trans, ret); 6606 goto discard; 6607 } 6608 } 6609 6610 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6611 if (WARN_ON(ret)) { 6612 /* Shouldn't happen, we used xa_reserve() before. */ 6613 btrfs_abort_transaction(trans, ret); 6614 goto discard; 6615 } 6616 6617 trace_btrfs_inode_new(inode); 6618 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6619 6620 btrfs_update_root_times(trans, root); 6621 6622 if (args->orphan) { 6623 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6624 if (ret) { 6625 btrfs_abort_transaction(trans, ret); 6626 goto discard; 6627 } 6628 } else { 6629 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6630 0, BTRFS_I(inode)->dir_index); 6631 if (ret) { 6632 btrfs_abort_transaction(trans, ret); 6633 goto discard; 6634 } 6635 } 6636 6637 return 0; 6638 6639 discard: 6640 /* 6641 * discard_new_inode() calls iput(), but the caller owns the reference 6642 * to the inode. 6643 */ 6644 ihold(inode); 6645 discard_new_inode(inode); 6646 out: 6647 if (xa_reserved) 6648 xa_release(&root->inodes, objectid); 6649 6650 btrfs_free_path(path); 6651 return ret; 6652 } 6653 6654 /* 6655 * utility function to add 'inode' into 'parent_inode' with 6656 * a give name and a given sequence number. 6657 * if 'add_backref' is true, also insert a backref from the 6658 * inode to the parent directory. 6659 */ 6660 int btrfs_add_link(struct btrfs_trans_handle *trans, 6661 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6662 const struct fscrypt_str *name, int add_backref, u64 index) 6663 { 6664 int ret = 0; 6665 struct btrfs_key key; 6666 struct btrfs_root *root = parent_inode->root; 6667 u64 ino = btrfs_ino(inode); 6668 u64 parent_ino = btrfs_ino(parent_inode); 6669 6670 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6671 memcpy(&key, &inode->root->root_key, sizeof(key)); 6672 } else { 6673 key.objectid = ino; 6674 key.type = BTRFS_INODE_ITEM_KEY; 6675 key.offset = 0; 6676 } 6677 6678 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6679 ret = btrfs_add_root_ref(trans, key.objectid, 6680 btrfs_root_id(root), parent_ino, 6681 index, name); 6682 } else if (add_backref) { 6683 ret = btrfs_insert_inode_ref(trans, root, name, 6684 ino, parent_ino, index); 6685 } 6686 6687 /* Nothing to clean up yet */ 6688 if (ret) 6689 return ret; 6690 6691 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6692 btrfs_inode_type(inode), index); 6693 if (ret == -EEXIST || ret == -EOVERFLOW) 6694 goto fail_dir_item; 6695 else if (ret) { 6696 btrfs_abort_transaction(trans, ret); 6697 return ret; 6698 } 6699 6700 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6701 name->len * 2); 6702 inode_inc_iversion(&parent_inode->vfs_inode); 6703 update_time_after_link_or_unlink(parent_inode); 6704 6705 ret = btrfs_update_inode(trans, parent_inode); 6706 if (ret) 6707 btrfs_abort_transaction(trans, ret); 6708 return ret; 6709 6710 fail_dir_item: 6711 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6712 u64 local_index; 6713 int ret2; 6714 6715 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6716 parent_ino, &local_index, name); 6717 if (ret2) 6718 btrfs_abort_transaction(trans, ret2); 6719 } else if (add_backref) { 6720 int ret2; 6721 6722 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6723 if (ret2) 6724 btrfs_abort_transaction(trans, ret2); 6725 } 6726 6727 /* Return the original error code */ 6728 return ret; 6729 } 6730 6731 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6732 struct inode *inode) 6733 { 6734 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6735 struct btrfs_root *root = BTRFS_I(dir)->root; 6736 struct btrfs_new_inode_args new_inode_args = { 6737 .dir = dir, 6738 .dentry = dentry, 6739 .inode = inode, 6740 }; 6741 unsigned int trans_num_items; 6742 struct btrfs_trans_handle *trans; 6743 int ret; 6744 6745 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6746 if (ret) 6747 goto out_inode; 6748 6749 trans = btrfs_start_transaction(root, trans_num_items); 6750 if (IS_ERR(trans)) { 6751 ret = PTR_ERR(trans); 6752 goto out_new_inode_args; 6753 } 6754 6755 ret = btrfs_create_new_inode(trans, &new_inode_args); 6756 if (!ret) 6757 d_instantiate_new(dentry, inode); 6758 6759 btrfs_end_transaction(trans); 6760 btrfs_btree_balance_dirty(fs_info); 6761 out_new_inode_args: 6762 btrfs_new_inode_args_destroy(&new_inode_args); 6763 out_inode: 6764 if (ret) 6765 iput(inode); 6766 return ret; 6767 } 6768 6769 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6770 struct dentry *dentry, umode_t mode, dev_t rdev) 6771 { 6772 struct inode *inode; 6773 6774 inode = new_inode(dir->i_sb); 6775 if (!inode) 6776 return -ENOMEM; 6777 inode_init_owner(idmap, inode, dir, mode); 6778 inode->i_op = &btrfs_special_inode_operations; 6779 init_special_inode(inode, inode->i_mode, rdev); 6780 return btrfs_create_common(dir, dentry, inode); 6781 } 6782 6783 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6784 struct dentry *dentry, umode_t mode, bool excl) 6785 { 6786 struct inode *inode; 6787 6788 inode = new_inode(dir->i_sb); 6789 if (!inode) 6790 return -ENOMEM; 6791 inode_init_owner(idmap, inode, dir, mode); 6792 inode->i_fop = &btrfs_file_operations; 6793 inode->i_op = &btrfs_file_inode_operations; 6794 inode->i_mapping->a_ops = &btrfs_aops; 6795 return btrfs_create_common(dir, dentry, inode); 6796 } 6797 6798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6799 struct dentry *dentry) 6800 { 6801 struct btrfs_trans_handle *trans = NULL; 6802 struct btrfs_root *root = BTRFS_I(dir)->root; 6803 struct inode *inode = d_inode(old_dentry); 6804 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6805 struct fscrypt_name fname; 6806 u64 index; 6807 int ret; 6808 int drop_inode = 0; 6809 6810 /* do not allow sys_link's with other subvols of the same device */ 6811 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6812 return -EXDEV; 6813 6814 if (inode->i_nlink >= BTRFS_LINK_MAX) 6815 return -EMLINK; 6816 6817 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6818 if (ret) 6819 goto fail; 6820 6821 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6822 if (ret) 6823 goto fail; 6824 6825 /* 6826 * 2 items for inode and inode ref 6827 * 2 items for dir items 6828 * 1 item for parent inode 6829 * 1 item for orphan item deletion if O_TMPFILE 6830 */ 6831 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6832 if (IS_ERR(trans)) { 6833 ret = PTR_ERR(trans); 6834 trans = NULL; 6835 goto fail; 6836 } 6837 6838 /* There are several dir indexes for this inode, clear the cache. */ 6839 BTRFS_I(inode)->dir_index = 0ULL; 6840 inc_nlink(inode); 6841 inode_inc_iversion(inode); 6842 inode_set_ctime_current(inode); 6843 ihold(inode); 6844 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6845 6846 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6847 &fname.disk_name, 1, index); 6848 6849 if (ret) { 6850 drop_inode = 1; 6851 } else { 6852 struct dentry *parent = dentry->d_parent; 6853 6854 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6855 if (ret) 6856 goto fail; 6857 if (inode->i_nlink == 1) { 6858 /* 6859 * If new hard link count is 1, it's a file created 6860 * with open(2) O_TMPFILE flag. 6861 */ 6862 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6863 if (ret) 6864 goto fail; 6865 } 6866 d_instantiate(dentry, inode); 6867 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6868 } 6869 6870 fail: 6871 fscrypt_free_filename(&fname); 6872 if (trans) 6873 btrfs_end_transaction(trans); 6874 if (drop_inode) { 6875 inode_dec_link_count(inode); 6876 iput(inode); 6877 } 6878 btrfs_btree_balance_dirty(fs_info); 6879 return ret; 6880 } 6881 6882 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6883 struct dentry *dentry, umode_t mode) 6884 { 6885 struct inode *inode; 6886 6887 inode = new_inode(dir->i_sb); 6888 if (!inode) 6889 return ERR_PTR(-ENOMEM); 6890 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6891 inode->i_op = &btrfs_dir_inode_operations; 6892 inode->i_fop = &btrfs_dir_file_operations; 6893 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6894 } 6895 6896 static noinline int uncompress_inline(struct btrfs_path *path, 6897 struct folio *folio, 6898 struct btrfs_file_extent_item *item) 6899 { 6900 int ret; 6901 struct extent_buffer *leaf = path->nodes[0]; 6902 const u32 blocksize = leaf->fs_info->sectorsize; 6903 char *tmp; 6904 size_t max_size; 6905 unsigned long inline_size; 6906 unsigned long ptr; 6907 int compress_type; 6908 6909 compress_type = btrfs_file_extent_compression(leaf, item); 6910 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6911 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6912 tmp = kmalloc(inline_size, GFP_NOFS); 6913 if (!tmp) 6914 return -ENOMEM; 6915 ptr = btrfs_file_extent_inline_start(item); 6916 6917 read_extent_buffer(leaf, tmp, ptr, inline_size); 6918 6919 max_size = min_t(unsigned long, blocksize, max_size); 6920 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6921 max_size); 6922 6923 /* 6924 * decompression code contains a memset to fill in any space between the end 6925 * of the uncompressed data and the end of max_size in case the decompressed 6926 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6927 * the end of an inline extent and the beginning of the next block, so we 6928 * cover that region here. 6929 */ 6930 6931 if (max_size < blocksize) 6932 folio_zero_range(folio, max_size, blocksize - max_size); 6933 kfree(tmp); 6934 return ret; 6935 } 6936 6937 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6938 { 6939 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6940 struct btrfs_file_extent_item *fi; 6941 void *kaddr; 6942 size_t copy_size; 6943 6944 if (!folio || folio_test_uptodate(folio)) 6945 return 0; 6946 6947 ASSERT(folio_pos(folio) == 0); 6948 6949 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6950 struct btrfs_file_extent_item); 6951 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6952 return uncompress_inline(path, folio, fi); 6953 6954 copy_size = min_t(u64, blocksize, 6955 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6956 kaddr = kmap_local_folio(folio, 0); 6957 read_extent_buffer(path->nodes[0], kaddr, 6958 btrfs_file_extent_inline_start(fi), copy_size); 6959 kunmap_local(kaddr); 6960 if (copy_size < blocksize) 6961 folio_zero_range(folio, copy_size, blocksize - copy_size); 6962 return 0; 6963 } 6964 6965 /* 6966 * Lookup the first extent overlapping a range in a file. 6967 * 6968 * @inode: file to search in 6969 * @page: page to read extent data into if the extent is inline 6970 * @start: file offset 6971 * @len: length of range starting at @start 6972 * 6973 * Return the first &struct extent_map which overlaps the given range, reading 6974 * it from the B-tree and caching it if necessary. Note that there may be more 6975 * extents which overlap the given range after the returned extent_map. 6976 * 6977 * If @page is not NULL and the extent is inline, this also reads the extent 6978 * data directly into the page and marks the extent up to date in the io_tree. 6979 * 6980 * Return: ERR_PTR on error, non-NULL extent_map on success. 6981 */ 6982 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6983 struct folio *folio, u64 start, u64 len) 6984 { 6985 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6986 int ret = 0; 6987 u64 extent_start = 0; 6988 u64 extent_end = 0; 6989 u64 objectid = btrfs_ino(inode); 6990 int extent_type = -1; 6991 struct btrfs_path *path = NULL; 6992 struct btrfs_root *root = inode->root; 6993 struct btrfs_file_extent_item *item; 6994 struct extent_buffer *leaf; 6995 struct btrfs_key found_key; 6996 struct extent_map *em = NULL; 6997 struct extent_map_tree *em_tree = &inode->extent_tree; 6998 6999 read_lock(&em_tree->lock); 7000 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7001 read_unlock(&em_tree->lock); 7002 7003 if (em) { 7004 if (em->start > start || em->start + em->len <= start) 7005 btrfs_free_extent_map(em); 7006 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7007 btrfs_free_extent_map(em); 7008 else 7009 goto out; 7010 } 7011 em = btrfs_alloc_extent_map(); 7012 if (!em) { 7013 ret = -ENOMEM; 7014 goto out; 7015 } 7016 em->start = EXTENT_MAP_HOLE; 7017 em->disk_bytenr = EXTENT_MAP_HOLE; 7018 em->len = (u64)-1; 7019 7020 path = btrfs_alloc_path(); 7021 if (!path) { 7022 ret = -ENOMEM; 7023 goto out; 7024 } 7025 7026 /* Chances are we'll be called again, so go ahead and do readahead */ 7027 path->reada = READA_FORWARD; 7028 7029 /* 7030 * The same explanation in load_free_space_cache applies here as well, 7031 * we only read when we're loading the free space cache, and at that 7032 * point the commit_root has everything we need. 7033 */ 7034 if (btrfs_is_free_space_inode(inode)) { 7035 path->search_commit_root = 1; 7036 path->skip_locking = 1; 7037 } 7038 7039 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7040 if (ret < 0) { 7041 goto out; 7042 } else if (ret > 0) { 7043 if (path->slots[0] == 0) 7044 goto not_found; 7045 path->slots[0]--; 7046 ret = 0; 7047 } 7048 7049 leaf = path->nodes[0]; 7050 item = btrfs_item_ptr(leaf, path->slots[0], 7051 struct btrfs_file_extent_item); 7052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7053 if (found_key.objectid != objectid || 7054 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7055 /* 7056 * If we backup past the first extent we want to move forward 7057 * and see if there is an extent in front of us, otherwise we'll 7058 * say there is a hole for our whole search range which can 7059 * cause problems. 7060 */ 7061 extent_end = start; 7062 goto next; 7063 } 7064 7065 extent_type = btrfs_file_extent_type(leaf, item); 7066 extent_start = found_key.offset; 7067 extent_end = btrfs_file_extent_end(path); 7068 if (extent_type == BTRFS_FILE_EXTENT_REG || 7069 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7070 /* Only regular file could have regular/prealloc extent */ 7071 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7072 ret = -EUCLEAN; 7073 btrfs_crit(fs_info, 7074 "regular/prealloc extent found for non-regular inode %llu", 7075 btrfs_ino(inode)); 7076 goto out; 7077 } 7078 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7079 extent_start); 7080 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7081 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7082 path->slots[0], 7083 extent_start); 7084 } 7085 next: 7086 if (start >= extent_end) { 7087 path->slots[0]++; 7088 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7089 ret = btrfs_next_leaf(root, path); 7090 if (ret < 0) 7091 goto out; 7092 else if (ret > 0) 7093 goto not_found; 7094 7095 leaf = path->nodes[0]; 7096 } 7097 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7098 if (found_key.objectid != objectid || 7099 found_key.type != BTRFS_EXTENT_DATA_KEY) 7100 goto not_found; 7101 if (start + len <= found_key.offset) 7102 goto not_found; 7103 if (start > found_key.offset) 7104 goto next; 7105 7106 /* New extent overlaps with existing one */ 7107 em->start = start; 7108 em->len = found_key.offset - start; 7109 em->disk_bytenr = EXTENT_MAP_HOLE; 7110 goto insert; 7111 } 7112 7113 btrfs_extent_item_to_extent_map(inode, path, item, em); 7114 7115 if (extent_type == BTRFS_FILE_EXTENT_REG || 7116 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7117 goto insert; 7118 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7119 /* 7120 * Inline extent can only exist at file offset 0. This is 7121 * ensured by tree-checker and inline extent creation path. 7122 * Thus all members representing file offsets should be zero. 7123 */ 7124 ASSERT(extent_start == 0); 7125 ASSERT(em->start == 0); 7126 7127 /* 7128 * btrfs_extent_item_to_extent_map() should have properly 7129 * initialized em members already. 7130 * 7131 * Other members are not utilized for inline extents. 7132 */ 7133 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7134 ASSERT(em->len == fs_info->sectorsize); 7135 7136 ret = read_inline_extent(path, folio); 7137 if (ret < 0) 7138 goto out; 7139 goto insert; 7140 } 7141 not_found: 7142 em->start = start; 7143 em->len = len; 7144 em->disk_bytenr = EXTENT_MAP_HOLE; 7145 insert: 7146 ret = 0; 7147 btrfs_release_path(path); 7148 if (em->start > start || btrfs_extent_map_end(em) <= start) { 7149 btrfs_err(fs_info, 7150 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7151 em->start, em->len, start, len); 7152 ret = -EIO; 7153 goto out; 7154 } 7155 7156 write_lock(&em_tree->lock); 7157 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7158 write_unlock(&em_tree->lock); 7159 out: 7160 btrfs_free_path(path); 7161 7162 trace_btrfs_get_extent(root, inode, em); 7163 7164 if (ret) { 7165 btrfs_free_extent_map(em); 7166 return ERR_PTR(ret); 7167 } 7168 return em; 7169 } 7170 7171 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7172 { 7173 struct btrfs_block_group *block_group; 7174 bool readonly = false; 7175 7176 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7177 if (!block_group || block_group->ro) 7178 readonly = true; 7179 if (block_group) 7180 btrfs_put_block_group(block_group); 7181 return readonly; 7182 } 7183 7184 /* 7185 * Check if we can do nocow write into the range [@offset, @offset + @len) 7186 * 7187 * @offset: File offset 7188 * @len: The length to write, will be updated to the nocow writeable 7189 * range 7190 * @orig_start: (optional) Return the original file offset of the file extent 7191 * @orig_len: (optional) Return the original on-disk length of the file extent 7192 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7193 * 7194 * Return: 7195 * >0 and update @len if we can do nocow write 7196 * 0 if we can't do nocow write 7197 * <0 if error happened 7198 * 7199 * NOTE: This only checks the file extents, caller is responsible to wait for 7200 * any ordered extents. 7201 */ 7202 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7203 struct btrfs_file_extent *file_extent, 7204 bool nowait) 7205 { 7206 struct btrfs_root *root = inode->root; 7207 struct btrfs_fs_info *fs_info = root->fs_info; 7208 struct can_nocow_file_extent_args nocow_args = { 0 }; 7209 BTRFS_PATH_AUTO_FREE(path); 7210 int ret; 7211 struct extent_buffer *leaf; 7212 struct extent_io_tree *io_tree = &inode->io_tree; 7213 struct btrfs_file_extent_item *fi; 7214 struct btrfs_key key; 7215 int found_type; 7216 7217 path = btrfs_alloc_path(); 7218 if (!path) 7219 return -ENOMEM; 7220 path->nowait = nowait; 7221 7222 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7223 offset, 0); 7224 if (ret < 0) 7225 return ret; 7226 7227 if (ret == 1) { 7228 if (path->slots[0] == 0) { 7229 /* Can't find the item, must COW. */ 7230 return 0; 7231 } 7232 path->slots[0]--; 7233 } 7234 ret = 0; 7235 leaf = path->nodes[0]; 7236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7237 if (key.objectid != btrfs_ino(inode) || 7238 key.type != BTRFS_EXTENT_DATA_KEY) { 7239 /* Not our file or wrong item type, must COW. */ 7240 return 0; 7241 } 7242 7243 if (key.offset > offset) { 7244 /* Wrong offset, must COW. */ 7245 return 0; 7246 } 7247 7248 if (btrfs_file_extent_end(path) <= offset) 7249 return 0; 7250 7251 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7252 found_type = btrfs_file_extent_type(leaf, fi); 7253 7254 nocow_args.start = offset; 7255 nocow_args.end = offset + *len - 1; 7256 nocow_args.free_path = true; 7257 7258 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7259 /* can_nocow_file_extent() has freed the path. */ 7260 path = NULL; 7261 7262 if (ret != 1) { 7263 /* Treat errors as not being able to NOCOW. */ 7264 return 0; 7265 } 7266 7267 if (btrfs_extent_readonly(fs_info, 7268 nocow_args.file_extent.disk_bytenr + 7269 nocow_args.file_extent.offset)) 7270 return 0; 7271 7272 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7273 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7274 u64 range_end; 7275 7276 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7277 root->fs_info->sectorsize) - 1; 7278 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7279 EXTENT_DELALLOC); 7280 if (ret) 7281 return -EAGAIN; 7282 } 7283 7284 if (file_extent) 7285 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7286 7287 *len = nocow_args.file_extent.num_bytes; 7288 7289 return 1; 7290 } 7291 7292 /* The callers of this must take lock_extent() */ 7293 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7294 const struct btrfs_file_extent *file_extent, 7295 int type) 7296 { 7297 struct extent_map *em; 7298 int ret; 7299 7300 /* 7301 * Note the missing NOCOW type. 7302 * 7303 * For pure NOCOW writes, we should not create an io extent map, but 7304 * just reusing the existing one. 7305 * Only PREALLOC writes (NOCOW write into preallocated range) can 7306 * create an io extent map. 7307 */ 7308 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7309 type == BTRFS_ORDERED_COMPRESSED || 7310 type == BTRFS_ORDERED_REGULAR); 7311 7312 switch (type) { 7313 case BTRFS_ORDERED_PREALLOC: 7314 /* We're only referring part of a larger preallocated extent. */ 7315 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7316 break; 7317 case BTRFS_ORDERED_REGULAR: 7318 /* COW results a new extent matching our file extent size. */ 7319 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7320 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7321 7322 /* Since it's a new extent, we should not have any offset. */ 7323 ASSERT(file_extent->offset == 0); 7324 break; 7325 case BTRFS_ORDERED_COMPRESSED: 7326 /* Must be compressed. */ 7327 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7328 7329 /* 7330 * Encoded write can make us to refer to part of the 7331 * uncompressed extent. 7332 */ 7333 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7334 break; 7335 } 7336 7337 em = btrfs_alloc_extent_map(); 7338 if (!em) 7339 return ERR_PTR(-ENOMEM); 7340 7341 em->start = start; 7342 em->len = file_extent->num_bytes; 7343 em->disk_bytenr = file_extent->disk_bytenr; 7344 em->disk_num_bytes = file_extent->disk_num_bytes; 7345 em->ram_bytes = file_extent->ram_bytes; 7346 em->generation = -1; 7347 em->offset = file_extent->offset; 7348 em->flags |= EXTENT_FLAG_PINNED; 7349 if (type == BTRFS_ORDERED_COMPRESSED) 7350 btrfs_extent_map_set_compression(em, file_extent->compression); 7351 7352 ret = btrfs_replace_extent_map_range(inode, em, true); 7353 if (ret) { 7354 btrfs_free_extent_map(em); 7355 return ERR_PTR(ret); 7356 } 7357 7358 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7359 return em; 7360 } 7361 7362 /* 7363 * For release_folio() and invalidate_folio() we have a race window where 7364 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7365 * If we continue to release/invalidate the page, we could cause use-after-free 7366 * for subpage spinlock. So this function is to spin and wait for subpage 7367 * spinlock. 7368 */ 7369 static void wait_subpage_spinlock(struct folio *folio) 7370 { 7371 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7372 struct btrfs_folio_state *bfs; 7373 7374 if (!btrfs_is_subpage(fs_info, folio)) 7375 return; 7376 7377 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7378 bfs = folio_get_private(folio); 7379 7380 /* 7381 * This may look insane as we just acquire the spinlock and release it, 7382 * without doing anything. But we just want to make sure no one is 7383 * still holding the subpage spinlock. 7384 * And since the page is not dirty nor writeback, and we have page 7385 * locked, the only possible way to hold a spinlock is from the endio 7386 * function to clear page writeback. 7387 * 7388 * Here we just acquire the spinlock so that all existing callers 7389 * should exit and we're safe to release/invalidate the page. 7390 */ 7391 spin_lock_irq(&bfs->lock); 7392 spin_unlock_irq(&bfs->lock); 7393 } 7394 7395 static int btrfs_launder_folio(struct folio *folio) 7396 { 7397 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7398 folio_size(folio), NULL); 7399 } 7400 7401 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7402 { 7403 if (try_release_extent_mapping(folio, gfp_flags)) { 7404 wait_subpage_spinlock(folio); 7405 clear_folio_extent_mapped(folio); 7406 return true; 7407 } 7408 return false; 7409 } 7410 7411 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7412 { 7413 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7414 return false; 7415 return __btrfs_release_folio(folio, gfp_flags); 7416 } 7417 7418 #ifdef CONFIG_MIGRATION 7419 static int btrfs_migrate_folio(struct address_space *mapping, 7420 struct folio *dst, struct folio *src, 7421 enum migrate_mode mode) 7422 { 7423 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7424 7425 if (ret != MIGRATEPAGE_SUCCESS) 7426 return ret; 7427 7428 if (folio_test_ordered(src)) { 7429 folio_clear_ordered(src); 7430 folio_set_ordered(dst); 7431 } 7432 7433 return MIGRATEPAGE_SUCCESS; 7434 } 7435 #else 7436 #define btrfs_migrate_folio NULL 7437 #endif 7438 7439 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7440 size_t length) 7441 { 7442 struct btrfs_inode *inode = folio_to_inode(folio); 7443 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7444 struct extent_io_tree *tree = &inode->io_tree; 7445 struct extent_state *cached_state = NULL; 7446 u64 page_start = folio_pos(folio); 7447 u64 page_end = page_start + folio_size(folio) - 1; 7448 u64 cur; 7449 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7450 7451 /* 7452 * We have folio locked so no new ordered extent can be created on this 7453 * page, nor bio can be submitted for this folio. 7454 * 7455 * But already submitted bio can still be finished on this folio. 7456 * Furthermore, endio function won't skip folio which has Ordered 7457 * already cleared, so it's possible for endio and 7458 * invalidate_folio to do the same ordered extent accounting twice 7459 * on one folio. 7460 * 7461 * So here we wait for any submitted bios to finish, so that we won't 7462 * do double ordered extent accounting on the same folio. 7463 */ 7464 folio_wait_writeback(folio); 7465 wait_subpage_spinlock(folio); 7466 7467 /* 7468 * For subpage case, we have call sites like 7469 * btrfs_punch_hole_lock_range() which passes range not aligned to 7470 * sectorsize. 7471 * If the range doesn't cover the full folio, we don't need to and 7472 * shouldn't clear page extent mapped, as folio->private can still 7473 * record subpage dirty bits for other part of the range. 7474 * 7475 * For cases that invalidate the full folio even the range doesn't 7476 * cover the full folio, like invalidating the last folio, we're 7477 * still safe to wait for ordered extent to finish. 7478 */ 7479 if (!(offset == 0 && length == folio_size(folio))) { 7480 btrfs_release_folio(folio, GFP_NOFS); 7481 return; 7482 } 7483 7484 if (!inode_evicting) 7485 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7486 7487 cur = page_start; 7488 while (cur < page_end) { 7489 struct btrfs_ordered_extent *ordered; 7490 u64 range_end; 7491 u32 range_len; 7492 u32 extra_flags = 0; 7493 7494 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7495 page_end + 1 - cur); 7496 if (!ordered) { 7497 range_end = page_end; 7498 /* 7499 * No ordered extent covering this range, we are safe 7500 * to delete all extent states in the range. 7501 */ 7502 extra_flags = EXTENT_CLEAR_ALL_BITS; 7503 goto next; 7504 } 7505 if (ordered->file_offset > cur) { 7506 /* 7507 * There is a range between [cur, oe->file_offset) not 7508 * covered by any ordered extent. 7509 * We are safe to delete all extent states, and handle 7510 * the ordered extent in the next iteration. 7511 */ 7512 range_end = ordered->file_offset - 1; 7513 extra_flags = EXTENT_CLEAR_ALL_BITS; 7514 goto next; 7515 } 7516 7517 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7518 page_end); 7519 ASSERT(range_end + 1 - cur < U32_MAX); 7520 range_len = range_end + 1 - cur; 7521 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7522 /* 7523 * If Ordered is cleared, it means endio has 7524 * already been executed for the range. 7525 * We can't delete the extent states as 7526 * btrfs_finish_ordered_io() may still use some of them. 7527 */ 7528 goto next; 7529 } 7530 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7531 7532 /* 7533 * IO on this page will never be started, so we need to account 7534 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7535 * here, must leave that up for the ordered extent completion. 7536 * 7537 * This will also unlock the range for incoming 7538 * btrfs_finish_ordered_io(). 7539 */ 7540 if (!inode_evicting) 7541 btrfs_clear_extent_bit(tree, cur, range_end, 7542 EXTENT_DELALLOC | 7543 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7544 EXTENT_DEFRAG, &cached_state); 7545 7546 spin_lock_irq(&inode->ordered_tree_lock); 7547 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7548 ordered->truncated_len = min(ordered->truncated_len, 7549 cur - ordered->file_offset); 7550 spin_unlock_irq(&inode->ordered_tree_lock); 7551 7552 /* 7553 * If the ordered extent has finished, we're safe to delete all 7554 * the extent states of the range, otherwise 7555 * btrfs_finish_ordered_io() will get executed by endio for 7556 * other pages, so we can't delete extent states. 7557 */ 7558 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7559 cur, range_end + 1 - cur)) { 7560 btrfs_finish_ordered_io(ordered); 7561 /* 7562 * The ordered extent has finished, now we're again 7563 * safe to delete all extent states of the range. 7564 */ 7565 extra_flags = EXTENT_CLEAR_ALL_BITS; 7566 } 7567 next: 7568 if (ordered) 7569 btrfs_put_ordered_extent(ordered); 7570 /* 7571 * Qgroup reserved space handler 7572 * Sector(s) here will be either: 7573 * 7574 * 1) Already written to disk or bio already finished 7575 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7576 * Qgroup will be handled by its qgroup_record then. 7577 * btrfs_qgroup_free_data() call will do nothing here. 7578 * 7579 * 2) Not written to disk yet 7580 * Then btrfs_qgroup_free_data() call will clear the 7581 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7582 * reserved data space. 7583 * Since the IO will never happen for this page. 7584 */ 7585 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7586 if (!inode_evicting) 7587 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7588 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7589 EXTENT_DEFRAG | extra_flags, 7590 &cached_state); 7591 cur = range_end + 1; 7592 } 7593 /* 7594 * We have iterated through all ordered extents of the page, the page 7595 * should not have Ordered anymore, or the above iteration 7596 * did something wrong. 7597 */ 7598 ASSERT(!folio_test_ordered(folio)); 7599 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7600 if (!inode_evicting) 7601 __btrfs_release_folio(folio, GFP_NOFS); 7602 clear_folio_extent_mapped(folio); 7603 } 7604 7605 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7606 { 7607 struct btrfs_truncate_control control = { 7608 .inode = inode, 7609 .ino = btrfs_ino(inode), 7610 .min_type = BTRFS_EXTENT_DATA_KEY, 7611 .clear_extent_range = true, 7612 }; 7613 struct btrfs_root *root = inode->root; 7614 struct btrfs_fs_info *fs_info = root->fs_info; 7615 struct btrfs_block_rsv rsv; 7616 int ret; 7617 struct btrfs_trans_handle *trans; 7618 u64 mask = fs_info->sectorsize - 1; 7619 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7620 7621 if (!skip_writeback) { 7622 ret = btrfs_wait_ordered_range(inode, 7623 inode->vfs_inode.i_size & (~mask), 7624 (u64)-1); 7625 if (ret) 7626 return ret; 7627 } 7628 7629 /* 7630 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7631 * things going on here: 7632 * 7633 * 1) We need to reserve space to update our inode. 7634 * 7635 * 2) We need to have something to cache all the space that is going to 7636 * be free'd up by the truncate operation, but also have some slack 7637 * space reserved in case it uses space during the truncate (thank you 7638 * very much snapshotting). 7639 * 7640 * And we need these to be separate. The fact is we can use a lot of 7641 * space doing the truncate, and we have no earthly idea how much space 7642 * we will use, so we need the truncate reservation to be separate so it 7643 * doesn't end up using space reserved for updating the inode. We also 7644 * need to be able to stop the transaction and start a new one, which 7645 * means we need to be able to update the inode several times, and we 7646 * have no idea of knowing how many times that will be, so we can't just 7647 * reserve 1 item for the entirety of the operation, so that has to be 7648 * done separately as well. 7649 * 7650 * So that leaves us with 7651 * 7652 * 1) rsv - for the truncate reservation, which we will steal from the 7653 * transaction reservation. 7654 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7655 * updating the inode. 7656 */ 7657 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7658 rsv.size = min_size; 7659 rsv.failfast = true; 7660 7661 /* 7662 * 1 for the truncate slack space 7663 * 1 for updating the inode. 7664 */ 7665 trans = btrfs_start_transaction(root, 2); 7666 if (IS_ERR(trans)) { 7667 ret = PTR_ERR(trans); 7668 goto out; 7669 } 7670 7671 /* Migrate the slack space for the truncate to our reserve */ 7672 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7673 min_size, false); 7674 /* 7675 * We have reserved 2 metadata units when we started the transaction and 7676 * min_size matches 1 unit, so this should never fail, but if it does, 7677 * it's not critical we just fail truncation. 7678 */ 7679 if (WARN_ON(ret)) { 7680 btrfs_end_transaction(trans); 7681 goto out; 7682 } 7683 7684 trans->block_rsv = &rsv; 7685 7686 while (1) { 7687 struct extent_state *cached_state = NULL; 7688 const u64 new_size = inode->vfs_inode.i_size; 7689 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7690 7691 control.new_size = new_size; 7692 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7693 /* 7694 * We want to drop from the next block forward in case this new 7695 * size is not block aligned since we will be keeping the last 7696 * block of the extent just the way it is. 7697 */ 7698 btrfs_drop_extent_map_range(inode, 7699 ALIGN(new_size, fs_info->sectorsize), 7700 (u64)-1, false); 7701 7702 ret = btrfs_truncate_inode_items(trans, root, &control); 7703 7704 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7705 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7706 7707 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7708 7709 trans->block_rsv = &fs_info->trans_block_rsv; 7710 if (ret != -ENOSPC && ret != -EAGAIN) 7711 break; 7712 7713 ret = btrfs_update_inode(trans, inode); 7714 if (ret) 7715 break; 7716 7717 btrfs_end_transaction(trans); 7718 btrfs_btree_balance_dirty(fs_info); 7719 7720 trans = btrfs_start_transaction(root, 2); 7721 if (IS_ERR(trans)) { 7722 ret = PTR_ERR(trans); 7723 trans = NULL; 7724 break; 7725 } 7726 7727 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7728 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7729 &rsv, min_size, false); 7730 /* 7731 * We have reserved 2 metadata units when we started the 7732 * transaction and min_size matches 1 unit, so this should never 7733 * fail, but if it does, it's not critical we just fail truncation. 7734 */ 7735 if (WARN_ON(ret)) 7736 break; 7737 7738 trans->block_rsv = &rsv; 7739 } 7740 7741 /* 7742 * We can't call btrfs_truncate_block inside a trans handle as we could 7743 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7744 * know we've truncated everything except the last little bit, and can 7745 * do btrfs_truncate_block and then update the disk_i_size. 7746 */ 7747 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7748 btrfs_end_transaction(trans); 7749 btrfs_btree_balance_dirty(fs_info); 7750 7751 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7752 inode->vfs_inode.i_size, (u64)-1); 7753 if (ret) 7754 goto out; 7755 trans = btrfs_start_transaction(root, 1); 7756 if (IS_ERR(trans)) { 7757 ret = PTR_ERR(trans); 7758 goto out; 7759 } 7760 btrfs_inode_safe_disk_i_size_write(inode, 0); 7761 } 7762 7763 if (trans) { 7764 int ret2; 7765 7766 trans->block_rsv = &fs_info->trans_block_rsv; 7767 ret2 = btrfs_update_inode(trans, inode); 7768 if (ret2 && !ret) 7769 ret = ret2; 7770 7771 ret2 = btrfs_end_transaction(trans); 7772 if (ret2 && !ret) 7773 ret = ret2; 7774 btrfs_btree_balance_dirty(fs_info); 7775 } 7776 out: 7777 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7778 /* 7779 * So if we truncate and then write and fsync we normally would just 7780 * write the extents that changed, which is a problem if we need to 7781 * first truncate that entire inode. So set this flag so we write out 7782 * all of the extents in the inode to the sync log so we're completely 7783 * safe. 7784 * 7785 * If no extents were dropped or trimmed we don't need to force the next 7786 * fsync to truncate all the inode's items from the log and re-log them 7787 * all. This means the truncate operation did not change the file size, 7788 * or changed it to a smaller size but there was only an implicit hole 7789 * between the old i_size and the new i_size, and there were no prealloc 7790 * extents beyond i_size to drop. 7791 */ 7792 if (control.extents_found > 0) 7793 btrfs_set_inode_full_sync(inode); 7794 7795 return ret; 7796 } 7797 7798 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7799 struct inode *dir) 7800 { 7801 struct inode *inode; 7802 7803 inode = new_inode(dir->i_sb); 7804 if (inode) { 7805 /* 7806 * Subvolumes don't inherit the sgid bit or the parent's gid if 7807 * the parent's sgid bit is set. This is probably a bug. 7808 */ 7809 inode_init_owner(idmap, inode, NULL, 7810 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7811 inode->i_op = &btrfs_dir_inode_operations; 7812 inode->i_fop = &btrfs_dir_file_operations; 7813 } 7814 return inode; 7815 } 7816 7817 struct inode *btrfs_alloc_inode(struct super_block *sb) 7818 { 7819 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7820 struct btrfs_inode *ei; 7821 struct inode *inode; 7822 7823 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7824 if (!ei) 7825 return NULL; 7826 7827 ei->root = NULL; 7828 ei->generation = 0; 7829 ei->last_trans = 0; 7830 ei->last_sub_trans = 0; 7831 ei->logged_trans = 0; 7832 ei->delalloc_bytes = 0; 7833 ei->new_delalloc_bytes = 0; 7834 ei->defrag_bytes = 0; 7835 ei->disk_i_size = 0; 7836 ei->flags = 0; 7837 ei->ro_flags = 0; 7838 /* 7839 * ->index_cnt will be properly initialized later when creating a new 7840 * inode (btrfs_create_new_inode()) or when reading an existing inode 7841 * from disk (btrfs_read_locked_inode()). 7842 */ 7843 ei->csum_bytes = 0; 7844 ei->dir_index = 0; 7845 ei->last_unlink_trans = 0; 7846 ei->last_reflink_trans = 0; 7847 ei->last_log_commit = 0; 7848 7849 spin_lock_init(&ei->lock); 7850 ei->outstanding_extents = 0; 7851 if (sb->s_magic != BTRFS_TEST_MAGIC) 7852 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7853 BTRFS_BLOCK_RSV_DELALLOC); 7854 ei->runtime_flags = 0; 7855 ei->prop_compress = BTRFS_COMPRESS_NONE; 7856 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7857 7858 ei->delayed_node = NULL; 7859 7860 ei->i_otime_sec = 0; 7861 ei->i_otime_nsec = 0; 7862 7863 inode = &ei->vfs_inode; 7864 btrfs_extent_map_tree_init(&ei->extent_tree); 7865 7866 /* This io tree sets the valid inode. */ 7867 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7868 ei->io_tree.inode = ei; 7869 7870 ei->file_extent_tree = NULL; 7871 7872 mutex_init(&ei->log_mutex); 7873 spin_lock_init(&ei->ordered_tree_lock); 7874 ei->ordered_tree = RB_ROOT; 7875 ei->ordered_tree_last = NULL; 7876 INIT_LIST_HEAD(&ei->delalloc_inodes); 7877 INIT_LIST_HEAD(&ei->delayed_iput); 7878 init_rwsem(&ei->i_mmap_lock); 7879 7880 return inode; 7881 } 7882 7883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7884 void btrfs_test_destroy_inode(struct inode *inode) 7885 { 7886 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7887 kfree(BTRFS_I(inode)->file_extent_tree); 7888 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7889 } 7890 #endif 7891 7892 void btrfs_free_inode(struct inode *inode) 7893 { 7894 kfree(BTRFS_I(inode)->file_extent_tree); 7895 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7896 } 7897 7898 void btrfs_destroy_inode(struct inode *vfs_inode) 7899 { 7900 struct btrfs_ordered_extent *ordered; 7901 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7902 struct btrfs_root *root = inode->root; 7903 bool freespace_inode; 7904 7905 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7906 WARN_ON(vfs_inode->i_data.nrpages); 7907 WARN_ON(inode->block_rsv.reserved); 7908 WARN_ON(inode->block_rsv.size); 7909 WARN_ON(inode->outstanding_extents); 7910 if (!S_ISDIR(vfs_inode->i_mode)) { 7911 WARN_ON(inode->delalloc_bytes); 7912 WARN_ON(inode->new_delalloc_bytes); 7913 WARN_ON(inode->csum_bytes); 7914 } 7915 if (!root || !btrfs_is_data_reloc_root(root)) 7916 WARN_ON(inode->defrag_bytes); 7917 7918 /* 7919 * This can happen where we create an inode, but somebody else also 7920 * created the same inode and we need to destroy the one we already 7921 * created. 7922 */ 7923 if (!root) 7924 return; 7925 7926 /* 7927 * If this is a free space inode do not take the ordered extents lockdep 7928 * map. 7929 */ 7930 freespace_inode = btrfs_is_free_space_inode(inode); 7931 7932 while (1) { 7933 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7934 if (!ordered) 7935 break; 7936 else { 7937 btrfs_err(root->fs_info, 7938 "found ordered extent %llu %llu on inode cleanup", 7939 ordered->file_offset, ordered->num_bytes); 7940 7941 if (!freespace_inode) 7942 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7943 7944 btrfs_remove_ordered_extent(inode, ordered); 7945 btrfs_put_ordered_extent(ordered); 7946 btrfs_put_ordered_extent(ordered); 7947 } 7948 } 7949 btrfs_qgroup_check_reserved_leak(inode); 7950 btrfs_del_inode_from_root(inode); 7951 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7952 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7953 btrfs_put_root(inode->root); 7954 } 7955 7956 int btrfs_drop_inode(struct inode *inode) 7957 { 7958 struct btrfs_root *root = BTRFS_I(inode)->root; 7959 7960 if (root == NULL) 7961 return 1; 7962 7963 /* the snap/subvol tree is on deleting */ 7964 if (btrfs_root_refs(&root->root_item) == 0) 7965 return 1; 7966 else 7967 return generic_drop_inode(inode); 7968 } 7969 7970 static void init_once(void *foo) 7971 { 7972 struct btrfs_inode *ei = foo; 7973 7974 inode_init_once(&ei->vfs_inode); 7975 } 7976 7977 void __cold btrfs_destroy_cachep(void) 7978 { 7979 /* 7980 * Make sure all delayed rcu free inodes are flushed before we 7981 * destroy cache. 7982 */ 7983 rcu_barrier(); 7984 kmem_cache_destroy(btrfs_inode_cachep); 7985 } 7986 7987 int __init btrfs_init_cachep(void) 7988 { 7989 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7990 sizeof(struct btrfs_inode), 0, 7991 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7992 init_once); 7993 if (!btrfs_inode_cachep) 7994 return -ENOMEM; 7995 7996 return 0; 7997 } 7998 7999 static int btrfs_getattr(struct mnt_idmap *idmap, 8000 const struct path *path, struct kstat *stat, 8001 u32 request_mask, unsigned int flags) 8002 { 8003 u64 delalloc_bytes; 8004 u64 inode_bytes; 8005 struct inode *inode = d_inode(path->dentry); 8006 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8007 u32 bi_flags = BTRFS_I(inode)->flags; 8008 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8009 8010 stat->result_mask |= STATX_BTIME; 8011 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8012 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8013 if (bi_flags & BTRFS_INODE_APPEND) 8014 stat->attributes |= STATX_ATTR_APPEND; 8015 if (bi_flags & BTRFS_INODE_COMPRESS) 8016 stat->attributes |= STATX_ATTR_COMPRESSED; 8017 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8018 stat->attributes |= STATX_ATTR_IMMUTABLE; 8019 if (bi_flags & BTRFS_INODE_NODUMP) 8020 stat->attributes |= STATX_ATTR_NODUMP; 8021 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8022 stat->attributes |= STATX_ATTR_VERITY; 8023 8024 stat->attributes_mask |= (STATX_ATTR_APPEND | 8025 STATX_ATTR_COMPRESSED | 8026 STATX_ATTR_IMMUTABLE | 8027 STATX_ATTR_NODUMP); 8028 8029 generic_fillattr(idmap, request_mask, inode, stat); 8030 stat->dev = BTRFS_I(inode)->root->anon_dev; 8031 8032 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8033 stat->result_mask |= STATX_SUBVOL; 8034 8035 spin_lock(&BTRFS_I(inode)->lock); 8036 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8037 inode_bytes = inode_get_bytes(inode); 8038 spin_unlock(&BTRFS_I(inode)->lock); 8039 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8040 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8041 return 0; 8042 } 8043 8044 static int btrfs_rename_exchange(struct inode *old_dir, 8045 struct dentry *old_dentry, 8046 struct inode *new_dir, 8047 struct dentry *new_dentry) 8048 { 8049 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8050 struct btrfs_trans_handle *trans; 8051 unsigned int trans_num_items; 8052 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8053 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8054 struct inode *new_inode = new_dentry->d_inode; 8055 struct inode *old_inode = old_dentry->d_inode; 8056 struct btrfs_rename_ctx old_rename_ctx; 8057 struct btrfs_rename_ctx new_rename_ctx; 8058 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8059 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8060 u64 old_idx = 0; 8061 u64 new_idx = 0; 8062 int ret; 8063 int ret2; 8064 bool need_abort = false; 8065 bool logs_pinned = false; 8066 struct fscrypt_name old_fname, new_fname; 8067 struct fscrypt_str *old_name, *new_name; 8068 8069 /* 8070 * For non-subvolumes allow exchange only within one subvolume, in the 8071 * same inode namespace. Two subvolumes (represented as directory) can 8072 * be exchanged as they're a logical link and have a fixed inode number. 8073 */ 8074 if (root != dest && 8075 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8076 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8077 return -EXDEV; 8078 8079 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8080 if (ret) 8081 return ret; 8082 8083 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8084 if (ret) { 8085 fscrypt_free_filename(&old_fname); 8086 return ret; 8087 } 8088 8089 old_name = &old_fname.disk_name; 8090 new_name = &new_fname.disk_name; 8091 8092 /* close the race window with snapshot create/destroy ioctl */ 8093 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8094 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8095 down_read(&fs_info->subvol_sem); 8096 8097 /* 8098 * For each inode: 8099 * 1 to remove old dir item 8100 * 1 to remove old dir index 8101 * 1 to add new dir item 8102 * 1 to add new dir index 8103 * 1 to update parent inode 8104 * 8105 * If the parents are the same, we only need to account for one 8106 */ 8107 trans_num_items = (old_dir == new_dir ? 9 : 10); 8108 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8109 /* 8110 * 1 to remove old root ref 8111 * 1 to remove old root backref 8112 * 1 to add new root ref 8113 * 1 to add new root backref 8114 */ 8115 trans_num_items += 4; 8116 } else { 8117 /* 8118 * 1 to update inode item 8119 * 1 to remove old inode ref 8120 * 1 to add new inode ref 8121 */ 8122 trans_num_items += 3; 8123 } 8124 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8125 trans_num_items += 4; 8126 else 8127 trans_num_items += 3; 8128 trans = btrfs_start_transaction(root, trans_num_items); 8129 if (IS_ERR(trans)) { 8130 ret = PTR_ERR(trans); 8131 goto out_notrans; 8132 } 8133 8134 if (dest != root) { 8135 ret = btrfs_record_root_in_trans(trans, dest); 8136 if (ret) 8137 goto out_fail; 8138 } 8139 8140 /* 8141 * We need to find a free sequence number both in the source and 8142 * in the destination directory for the exchange. 8143 */ 8144 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8145 if (ret) 8146 goto out_fail; 8147 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8148 if (ret) 8149 goto out_fail; 8150 8151 BTRFS_I(old_inode)->dir_index = 0ULL; 8152 BTRFS_I(new_inode)->dir_index = 0ULL; 8153 8154 /* Reference for the source. */ 8155 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8156 /* force full log commit if subvolume involved. */ 8157 btrfs_set_log_full_commit(trans); 8158 } else { 8159 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8160 btrfs_ino(BTRFS_I(new_dir)), 8161 old_idx); 8162 if (ret) 8163 goto out_fail; 8164 need_abort = true; 8165 } 8166 8167 /* And now for the dest. */ 8168 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8169 /* force full log commit if subvolume involved. */ 8170 btrfs_set_log_full_commit(trans); 8171 } else { 8172 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8173 btrfs_ino(BTRFS_I(old_dir)), 8174 new_idx); 8175 if (ret) { 8176 if (need_abort) 8177 btrfs_abort_transaction(trans, ret); 8178 goto out_fail; 8179 } 8180 } 8181 8182 /* Update inode version and ctime/mtime. */ 8183 inode_inc_iversion(old_dir); 8184 inode_inc_iversion(new_dir); 8185 inode_inc_iversion(old_inode); 8186 inode_inc_iversion(new_inode); 8187 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8188 8189 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8190 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8191 /* 8192 * If we are renaming in the same directory (and it's not for 8193 * root entries) pin the log early to prevent any concurrent 8194 * task from logging the directory after we removed the old 8195 * entries and before we add the new entries, otherwise that 8196 * task can sync a log without any entry for the inodes we are 8197 * renaming and therefore replaying that log, if a power failure 8198 * happens after syncing the log, would result in deleting the 8199 * inodes. 8200 * 8201 * If the rename affects two different directories, we want to 8202 * make sure the that there's no log commit that contains 8203 * updates for only one of the directories but not for the 8204 * other. 8205 * 8206 * If we are renaming an entry for a root, we don't care about 8207 * log updates since we called btrfs_set_log_full_commit(). 8208 */ 8209 btrfs_pin_log_trans(root); 8210 btrfs_pin_log_trans(dest); 8211 logs_pinned = true; 8212 } 8213 8214 if (old_dentry->d_parent != new_dentry->d_parent) { 8215 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8216 BTRFS_I(old_inode), true); 8217 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8218 BTRFS_I(new_inode), true); 8219 } 8220 8221 /* src is a subvolume */ 8222 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8223 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8224 if (ret) { 8225 btrfs_abort_transaction(trans, ret); 8226 goto out_fail; 8227 } 8228 } else { /* src is an inode */ 8229 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8230 BTRFS_I(old_dentry->d_inode), 8231 old_name, &old_rename_ctx); 8232 if (ret) { 8233 btrfs_abort_transaction(trans, ret); 8234 goto out_fail; 8235 } 8236 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8237 if (ret) { 8238 btrfs_abort_transaction(trans, ret); 8239 goto out_fail; 8240 } 8241 } 8242 8243 /* dest is a subvolume */ 8244 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8245 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8246 if (ret) { 8247 btrfs_abort_transaction(trans, ret); 8248 goto out_fail; 8249 } 8250 } else { /* dest is an inode */ 8251 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8252 BTRFS_I(new_dentry->d_inode), 8253 new_name, &new_rename_ctx); 8254 if (ret) { 8255 btrfs_abort_transaction(trans, ret); 8256 goto out_fail; 8257 } 8258 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8259 if (ret) { 8260 btrfs_abort_transaction(trans, ret); 8261 goto out_fail; 8262 } 8263 } 8264 8265 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8266 new_name, 0, old_idx); 8267 if (ret) { 8268 btrfs_abort_transaction(trans, ret); 8269 goto out_fail; 8270 } 8271 8272 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8273 old_name, 0, new_idx); 8274 if (ret) { 8275 btrfs_abort_transaction(trans, ret); 8276 goto out_fail; 8277 } 8278 8279 if (old_inode->i_nlink == 1) 8280 BTRFS_I(old_inode)->dir_index = old_idx; 8281 if (new_inode->i_nlink == 1) 8282 BTRFS_I(new_inode)->dir_index = new_idx; 8283 8284 /* 8285 * Do the log updates for all inodes. 8286 * 8287 * If either entry is for a root we don't need to update the logs since 8288 * we've called btrfs_set_log_full_commit() before. 8289 */ 8290 if (logs_pinned) { 8291 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8292 old_rename_ctx.index, new_dentry->d_parent); 8293 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8294 new_rename_ctx.index, old_dentry->d_parent); 8295 } 8296 8297 out_fail: 8298 if (logs_pinned) { 8299 btrfs_end_log_trans(root); 8300 btrfs_end_log_trans(dest); 8301 } 8302 ret2 = btrfs_end_transaction(trans); 8303 ret = ret ? ret : ret2; 8304 out_notrans: 8305 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8306 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8307 up_read(&fs_info->subvol_sem); 8308 8309 fscrypt_free_filename(&new_fname); 8310 fscrypt_free_filename(&old_fname); 8311 return ret; 8312 } 8313 8314 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8315 struct inode *dir) 8316 { 8317 struct inode *inode; 8318 8319 inode = new_inode(dir->i_sb); 8320 if (inode) { 8321 inode_init_owner(idmap, inode, dir, 8322 S_IFCHR | WHITEOUT_MODE); 8323 inode->i_op = &btrfs_special_inode_operations; 8324 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8325 } 8326 return inode; 8327 } 8328 8329 static int btrfs_rename(struct mnt_idmap *idmap, 8330 struct inode *old_dir, struct dentry *old_dentry, 8331 struct inode *new_dir, struct dentry *new_dentry, 8332 unsigned int flags) 8333 { 8334 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8335 struct btrfs_new_inode_args whiteout_args = { 8336 .dir = old_dir, 8337 .dentry = old_dentry, 8338 }; 8339 struct btrfs_trans_handle *trans; 8340 unsigned int trans_num_items; 8341 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8342 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8343 struct inode *new_inode = d_inode(new_dentry); 8344 struct inode *old_inode = d_inode(old_dentry); 8345 struct btrfs_rename_ctx rename_ctx; 8346 u64 index = 0; 8347 int ret; 8348 int ret2; 8349 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8350 struct fscrypt_name old_fname, new_fname; 8351 bool logs_pinned = false; 8352 8353 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8354 return -EPERM; 8355 8356 /* we only allow rename subvolume link between subvolumes */ 8357 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8358 return -EXDEV; 8359 8360 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8361 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8362 return -ENOTEMPTY; 8363 8364 if (S_ISDIR(old_inode->i_mode) && new_inode && 8365 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8366 return -ENOTEMPTY; 8367 8368 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8369 if (ret) 8370 return ret; 8371 8372 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8373 if (ret) { 8374 fscrypt_free_filename(&old_fname); 8375 return ret; 8376 } 8377 8378 /* check for collisions, even if the name isn't there */ 8379 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8380 if (ret) { 8381 if (ret == -EEXIST) { 8382 /* we shouldn't get 8383 * eexist without a new_inode */ 8384 if (WARN_ON(!new_inode)) { 8385 goto out_fscrypt_names; 8386 } 8387 } else { 8388 /* maybe -EOVERFLOW */ 8389 goto out_fscrypt_names; 8390 } 8391 } 8392 ret = 0; 8393 8394 /* 8395 * we're using rename to replace one file with another. Start IO on it 8396 * now so we don't add too much work to the end of the transaction 8397 */ 8398 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8399 filemap_flush(old_inode->i_mapping); 8400 8401 if (flags & RENAME_WHITEOUT) { 8402 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8403 if (!whiteout_args.inode) { 8404 ret = -ENOMEM; 8405 goto out_fscrypt_names; 8406 } 8407 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8408 if (ret) 8409 goto out_whiteout_inode; 8410 } else { 8411 /* 1 to update the old parent inode. */ 8412 trans_num_items = 1; 8413 } 8414 8415 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8416 /* Close the race window with snapshot create/destroy ioctl */ 8417 down_read(&fs_info->subvol_sem); 8418 /* 8419 * 1 to remove old root ref 8420 * 1 to remove old root backref 8421 * 1 to add new root ref 8422 * 1 to add new root backref 8423 */ 8424 trans_num_items += 4; 8425 } else { 8426 /* 8427 * 1 to update inode 8428 * 1 to remove old inode ref 8429 * 1 to add new inode ref 8430 */ 8431 trans_num_items += 3; 8432 } 8433 /* 8434 * 1 to remove old dir item 8435 * 1 to remove old dir index 8436 * 1 to add new dir item 8437 * 1 to add new dir index 8438 */ 8439 trans_num_items += 4; 8440 /* 1 to update new parent inode if it's not the same as the old parent */ 8441 if (new_dir != old_dir) 8442 trans_num_items++; 8443 if (new_inode) { 8444 /* 8445 * 1 to update inode 8446 * 1 to remove inode ref 8447 * 1 to remove dir item 8448 * 1 to remove dir index 8449 * 1 to possibly add orphan item 8450 */ 8451 trans_num_items += 5; 8452 } 8453 trans = btrfs_start_transaction(root, trans_num_items); 8454 if (IS_ERR(trans)) { 8455 ret = PTR_ERR(trans); 8456 goto out_notrans; 8457 } 8458 8459 if (dest != root) { 8460 ret = btrfs_record_root_in_trans(trans, dest); 8461 if (ret) 8462 goto out_fail; 8463 } 8464 8465 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8466 if (ret) 8467 goto out_fail; 8468 8469 BTRFS_I(old_inode)->dir_index = 0ULL; 8470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8471 /* force full log commit if subvolume involved. */ 8472 btrfs_set_log_full_commit(trans); 8473 } else { 8474 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8475 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8476 index); 8477 if (ret) 8478 goto out_fail; 8479 } 8480 8481 inode_inc_iversion(old_dir); 8482 inode_inc_iversion(new_dir); 8483 inode_inc_iversion(old_inode); 8484 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8485 8486 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8487 /* 8488 * If we are renaming in the same directory (and it's not a 8489 * root entry) pin the log to prevent any concurrent task from 8490 * logging the directory after we removed the old entry and 8491 * before we add the new entry, otherwise that task can sync 8492 * a log without any entry for the inode we are renaming and 8493 * therefore replaying that log, if a power failure happens 8494 * after syncing the log, would result in deleting the inode. 8495 * 8496 * If the rename affects two different directories, we want to 8497 * make sure the that there's no log commit that contains 8498 * updates for only one of the directories but not for the 8499 * other. 8500 * 8501 * If we are renaming an entry for a root, we don't care about 8502 * log updates since we called btrfs_set_log_full_commit(). 8503 */ 8504 btrfs_pin_log_trans(root); 8505 btrfs_pin_log_trans(dest); 8506 logs_pinned = true; 8507 } 8508 8509 if (old_dentry->d_parent != new_dentry->d_parent) 8510 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8511 BTRFS_I(old_inode), true); 8512 8513 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8514 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8515 if (ret) { 8516 btrfs_abort_transaction(trans, ret); 8517 goto out_fail; 8518 } 8519 } else { 8520 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8521 BTRFS_I(d_inode(old_dentry)), 8522 &old_fname.disk_name, &rename_ctx); 8523 if (ret) { 8524 btrfs_abort_transaction(trans, ret); 8525 goto out_fail; 8526 } 8527 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8528 if (ret) { 8529 btrfs_abort_transaction(trans, ret); 8530 goto out_fail; 8531 } 8532 } 8533 8534 if (new_inode) { 8535 inode_inc_iversion(new_inode); 8536 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8537 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8538 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8539 if (ret) { 8540 btrfs_abort_transaction(trans, ret); 8541 goto out_fail; 8542 } 8543 BUG_ON(new_inode->i_nlink == 0); 8544 } else { 8545 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8546 BTRFS_I(d_inode(new_dentry)), 8547 &new_fname.disk_name); 8548 if (ret) { 8549 btrfs_abort_transaction(trans, ret); 8550 goto out_fail; 8551 } 8552 } 8553 if (new_inode->i_nlink == 0) { 8554 ret = btrfs_orphan_add(trans, 8555 BTRFS_I(d_inode(new_dentry))); 8556 if (ret) { 8557 btrfs_abort_transaction(trans, ret); 8558 goto out_fail; 8559 } 8560 } 8561 } 8562 8563 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8564 &new_fname.disk_name, 0, index); 8565 if (ret) { 8566 btrfs_abort_transaction(trans, ret); 8567 goto out_fail; 8568 } 8569 8570 if (old_inode->i_nlink == 1) 8571 BTRFS_I(old_inode)->dir_index = index; 8572 8573 if (logs_pinned) 8574 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8575 rename_ctx.index, new_dentry->d_parent); 8576 8577 if (flags & RENAME_WHITEOUT) { 8578 ret = btrfs_create_new_inode(trans, &whiteout_args); 8579 if (ret) { 8580 btrfs_abort_transaction(trans, ret); 8581 goto out_fail; 8582 } else { 8583 unlock_new_inode(whiteout_args.inode); 8584 iput(whiteout_args.inode); 8585 whiteout_args.inode = NULL; 8586 } 8587 } 8588 out_fail: 8589 if (logs_pinned) { 8590 btrfs_end_log_trans(root); 8591 btrfs_end_log_trans(dest); 8592 } 8593 ret2 = btrfs_end_transaction(trans); 8594 ret = ret ? ret : ret2; 8595 out_notrans: 8596 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8597 up_read(&fs_info->subvol_sem); 8598 if (flags & RENAME_WHITEOUT) 8599 btrfs_new_inode_args_destroy(&whiteout_args); 8600 out_whiteout_inode: 8601 if (flags & RENAME_WHITEOUT) 8602 iput(whiteout_args.inode); 8603 out_fscrypt_names: 8604 fscrypt_free_filename(&old_fname); 8605 fscrypt_free_filename(&new_fname); 8606 return ret; 8607 } 8608 8609 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8610 struct dentry *old_dentry, struct inode *new_dir, 8611 struct dentry *new_dentry, unsigned int flags) 8612 { 8613 int ret; 8614 8615 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8616 return -EINVAL; 8617 8618 if (flags & RENAME_EXCHANGE) 8619 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8620 new_dentry); 8621 else 8622 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8623 new_dentry, flags); 8624 8625 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8626 8627 return ret; 8628 } 8629 8630 struct btrfs_delalloc_work { 8631 struct inode *inode; 8632 struct completion completion; 8633 struct list_head list; 8634 struct btrfs_work work; 8635 }; 8636 8637 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8638 { 8639 struct btrfs_delalloc_work *delalloc_work; 8640 struct inode *inode; 8641 8642 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8643 work); 8644 inode = delalloc_work->inode; 8645 filemap_flush(inode->i_mapping); 8646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8647 &BTRFS_I(inode)->runtime_flags)) 8648 filemap_flush(inode->i_mapping); 8649 8650 iput(inode); 8651 complete(&delalloc_work->completion); 8652 } 8653 8654 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8655 { 8656 struct btrfs_delalloc_work *work; 8657 8658 work = kmalloc(sizeof(*work), GFP_NOFS); 8659 if (!work) 8660 return NULL; 8661 8662 init_completion(&work->completion); 8663 INIT_LIST_HEAD(&work->list); 8664 work->inode = inode; 8665 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8666 8667 return work; 8668 } 8669 8670 /* 8671 * some fairly slow code that needs optimization. This walks the list 8672 * of all the inodes with pending delalloc and forces them to disk. 8673 */ 8674 static int start_delalloc_inodes(struct btrfs_root *root, 8675 struct writeback_control *wbc, bool snapshot, 8676 bool in_reclaim_context) 8677 { 8678 struct btrfs_delalloc_work *work, *next; 8679 LIST_HEAD(works); 8680 LIST_HEAD(splice); 8681 int ret = 0; 8682 bool full_flush = wbc->nr_to_write == LONG_MAX; 8683 8684 mutex_lock(&root->delalloc_mutex); 8685 spin_lock(&root->delalloc_lock); 8686 list_splice_init(&root->delalloc_inodes, &splice); 8687 while (!list_empty(&splice)) { 8688 struct btrfs_inode *inode; 8689 struct inode *tmp_inode; 8690 8691 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8692 8693 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8694 8695 if (in_reclaim_context && 8696 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8697 continue; 8698 8699 tmp_inode = igrab(&inode->vfs_inode); 8700 if (!tmp_inode) { 8701 cond_resched_lock(&root->delalloc_lock); 8702 continue; 8703 } 8704 spin_unlock(&root->delalloc_lock); 8705 8706 if (snapshot) 8707 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8708 if (full_flush) { 8709 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8710 if (!work) { 8711 iput(&inode->vfs_inode); 8712 ret = -ENOMEM; 8713 goto out; 8714 } 8715 list_add_tail(&work->list, &works); 8716 btrfs_queue_work(root->fs_info->flush_workers, 8717 &work->work); 8718 } else { 8719 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8720 btrfs_add_delayed_iput(inode); 8721 if (ret || wbc->nr_to_write <= 0) 8722 goto out; 8723 } 8724 cond_resched(); 8725 spin_lock(&root->delalloc_lock); 8726 } 8727 spin_unlock(&root->delalloc_lock); 8728 8729 out: 8730 list_for_each_entry_safe(work, next, &works, list) { 8731 list_del_init(&work->list); 8732 wait_for_completion(&work->completion); 8733 kfree(work); 8734 } 8735 8736 if (!list_empty(&splice)) { 8737 spin_lock(&root->delalloc_lock); 8738 list_splice_tail(&splice, &root->delalloc_inodes); 8739 spin_unlock(&root->delalloc_lock); 8740 } 8741 mutex_unlock(&root->delalloc_mutex); 8742 return ret; 8743 } 8744 8745 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8746 { 8747 struct writeback_control wbc = { 8748 .nr_to_write = LONG_MAX, 8749 .sync_mode = WB_SYNC_NONE, 8750 .range_start = 0, 8751 .range_end = LLONG_MAX, 8752 }; 8753 struct btrfs_fs_info *fs_info = root->fs_info; 8754 8755 if (BTRFS_FS_ERROR(fs_info)) 8756 return -EROFS; 8757 8758 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8759 } 8760 8761 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8762 bool in_reclaim_context) 8763 { 8764 struct writeback_control wbc = { 8765 .nr_to_write = nr, 8766 .sync_mode = WB_SYNC_NONE, 8767 .range_start = 0, 8768 .range_end = LLONG_MAX, 8769 }; 8770 struct btrfs_root *root; 8771 LIST_HEAD(splice); 8772 int ret; 8773 8774 if (BTRFS_FS_ERROR(fs_info)) 8775 return -EROFS; 8776 8777 mutex_lock(&fs_info->delalloc_root_mutex); 8778 spin_lock(&fs_info->delalloc_root_lock); 8779 list_splice_init(&fs_info->delalloc_roots, &splice); 8780 while (!list_empty(&splice)) { 8781 /* 8782 * Reset nr_to_write here so we know that we're doing a full 8783 * flush. 8784 */ 8785 if (nr == LONG_MAX) 8786 wbc.nr_to_write = LONG_MAX; 8787 8788 root = list_first_entry(&splice, struct btrfs_root, 8789 delalloc_root); 8790 root = btrfs_grab_root(root); 8791 BUG_ON(!root); 8792 list_move_tail(&root->delalloc_root, 8793 &fs_info->delalloc_roots); 8794 spin_unlock(&fs_info->delalloc_root_lock); 8795 8796 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8797 btrfs_put_root(root); 8798 if (ret < 0 || wbc.nr_to_write <= 0) 8799 goto out; 8800 spin_lock(&fs_info->delalloc_root_lock); 8801 } 8802 spin_unlock(&fs_info->delalloc_root_lock); 8803 8804 ret = 0; 8805 out: 8806 if (!list_empty(&splice)) { 8807 spin_lock(&fs_info->delalloc_root_lock); 8808 list_splice_tail(&splice, &fs_info->delalloc_roots); 8809 spin_unlock(&fs_info->delalloc_root_lock); 8810 } 8811 mutex_unlock(&fs_info->delalloc_root_mutex); 8812 return ret; 8813 } 8814 8815 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8816 struct dentry *dentry, const char *symname) 8817 { 8818 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8819 struct btrfs_trans_handle *trans; 8820 struct btrfs_root *root = BTRFS_I(dir)->root; 8821 struct btrfs_path *path; 8822 struct btrfs_key key; 8823 struct inode *inode; 8824 struct btrfs_new_inode_args new_inode_args = { 8825 .dir = dir, 8826 .dentry = dentry, 8827 }; 8828 unsigned int trans_num_items; 8829 int ret; 8830 int name_len; 8831 int datasize; 8832 unsigned long ptr; 8833 struct btrfs_file_extent_item *ei; 8834 struct extent_buffer *leaf; 8835 8836 name_len = strlen(symname); 8837 /* 8838 * Symlinks utilize uncompressed inline extent data, which should not 8839 * reach block size. 8840 */ 8841 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8842 name_len >= fs_info->sectorsize) 8843 return -ENAMETOOLONG; 8844 8845 inode = new_inode(dir->i_sb); 8846 if (!inode) 8847 return -ENOMEM; 8848 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8849 inode->i_op = &btrfs_symlink_inode_operations; 8850 inode_nohighmem(inode); 8851 inode->i_mapping->a_ops = &btrfs_aops; 8852 btrfs_i_size_write(BTRFS_I(inode), name_len); 8853 inode_set_bytes(inode, name_len); 8854 8855 new_inode_args.inode = inode; 8856 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8857 if (ret) 8858 goto out_inode; 8859 /* 1 additional item for the inline extent */ 8860 trans_num_items++; 8861 8862 trans = btrfs_start_transaction(root, trans_num_items); 8863 if (IS_ERR(trans)) { 8864 ret = PTR_ERR(trans); 8865 goto out_new_inode_args; 8866 } 8867 8868 ret = btrfs_create_new_inode(trans, &new_inode_args); 8869 if (ret) 8870 goto out; 8871 8872 path = btrfs_alloc_path(); 8873 if (!path) { 8874 ret = -ENOMEM; 8875 btrfs_abort_transaction(trans, ret); 8876 discard_new_inode(inode); 8877 inode = NULL; 8878 goto out; 8879 } 8880 key.objectid = btrfs_ino(BTRFS_I(inode)); 8881 key.type = BTRFS_EXTENT_DATA_KEY; 8882 key.offset = 0; 8883 datasize = btrfs_file_extent_calc_inline_size(name_len); 8884 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8885 if (ret) { 8886 btrfs_abort_transaction(trans, ret); 8887 btrfs_free_path(path); 8888 discard_new_inode(inode); 8889 inode = NULL; 8890 goto out; 8891 } 8892 leaf = path->nodes[0]; 8893 ei = btrfs_item_ptr(leaf, path->slots[0], 8894 struct btrfs_file_extent_item); 8895 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8896 btrfs_set_file_extent_type(leaf, ei, 8897 BTRFS_FILE_EXTENT_INLINE); 8898 btrfs_set_file_extent_encryption(leaf, ei, 0); 8899 btrfs_set_file_extent_compression(leaf, ei, 0); 8900 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8901 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8902 8903 ptr = btrfs_file_extent_inline_start(ei); 8904 write_extent_buffer(leaf, symname, ptr, name_len); 8905 btrfs_free_path(path); 8906 8907 d_instantiate_new(dentry, inode); 8908 ret = 0; 8909 out: 8910 btrfs_end_transaction(trans); 8911 btrfs_btree_balance_dirty(fs_info); 8912 out_new_inode_args: 8913 btrfs_new_inode_args_destroy(&new_inode_args); 8914 out_inode: 8915 if (ret) 8916 iput(inode); 8917 return ret; 8918 } 8919 8920 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8921 struct btrfs_trans_handle *trans_in, 8922 struct btrfs_inode *inode, 8923 struct btrfs_key *ins, 8924 u64 file_offset) 8925 { 8926 struct btrfs_file_extent_item stack_fi; 8927 struct btrfs_replace_extent_info extent_info; 8928 struct btrfs_trans_handle *trans = trans_in; 8929 struct btrfs_path *path; 8930 u64 start = ins->objectid; 8931 u64 len = ins->offset; 8932 u64 qgroup_released = 0; 8933 int ret; 8934 8935 memset(&stack_fi, 0, sizeof(stack_fi)); 8936 8937 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8938 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8939 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8940 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8941 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8942 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8943 /* Encryption and other encoding is reserved and all 0 */ 8944 8945 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8946 if (ret < 0) 8947 return ERR_PTR(ret); 8948 8949 if (trans) { 8950 ret = insert_reserved_file_extent(trans, inode, 8951 file_offset, &stack_fi, 8952 true, qgroup_released); 8953 if (ret) 8954 goto free_qgroup; 8955 return trans; 8956 } 8957 8958 extent_info.disk_offset = start; 8959 extent_info.disk_len = len; 8960 extent_info.data_offset = 0; 8961 extent_info.data_len = len; 8962 extent_info.file_offset = file_offset; 8963 extent_info.extent_buf = (char *)&stack_fi; 8964 extent_info.is_new_extent = true; 8965 extent_info.update_times = true; 8966 extent_info.qgroup_reserved = qgroup_released; 8967 extent_info.insertions = 0; 8968 8969 path = btrfs_alloc_path(); 8970 if (!path) { 8971 ret = -ENOMEM; 8972 goto free_qgroup; 8973 } 8974 8975 ret = btrfs_replace_file_extents(inode, path, file_offset, 8976 file_offset + len - 1, &extent_info, 8977 &trans); 8978 btrfs_free_path(path); 8979 if (ret) 8980 goto free_qgroup; 8981 return trans; 8982 8983 free_qgroup: 8984 /* 8985 * We have released qgroup data range at the beginning of the function, 8986 * and normally qgroup_released bytes will be freed when committing 8987 * transaction. 8988 * But if we error out early, we have to free what we have released 8989 * or we leak qgroup data reservation. 8990 */ 8991 btrfs_qgroup_free_refroot(inode->root->fs_info, 8992 btrfs_root_id(inode->root), qgroup_released, 8993 BTRFS_QGROUP_RSV_DATA); 8994 return ERR_PTR(ret); 8995 } 8996 8997 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8998 u64 start, u64 num_bytes, u64 min_size, 8999 loff_t actual_len, u64 *alloc_hint, 9000 struct btrfs_trans_handle *trans) 9001 { 9002 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9003 struct extent_map *em; 9004 struct btrfs_root *root = BTRFS_I(inode)->root; 9005 struct btrfs_key ins; 9006 u64 cur_offset = start; 9007 u64 clear_offset = start; 9008 u64 i_size; 9009 u64 cur_bytes; 9010 u64 last_alloc = (u64)-1; 9011 int ret = 0; 9012 bool own_trans = true; 9013 u64 end = start + num_bytes - 1; 9014 9015 if (trans) 9016 own_trans = false; 9017 while (num_bytes > 0) { 9018 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9019 cur_bytes = max(cur_bytes, min_size); 9020 /* 9021 * If we are severely fragmented we could end up with really 9022 * small allocations, so if the allocator is returning small 9023 * chunks lets make its job easier by only searching for those 9024 * sized chunks. 9025 */ 9026 cur_bytes = min(cur_bytes, last_alloc); 9027 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9028 min_size, 0, *alloc_hint, &ins, 1, 0); 9029 if (ret) 9030 break; 9031 9032 /* 9033 * We've reserved this space, and thus converted it from 9034 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9035 * from here on out we will only need to clear our reservation 9036 * for the remaining unreserved area, so advance our 9037 * clear_offset by our extent size. 9038 */ 9039 clear_offset += ins.offset; 9040 9041 last_alloc = ins.offset; 9042 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9043 &ins, cur_offset); 9044 /* 9045 * Now that we inserted the prealloc extent we can finally 9046 * decrement the number of reservations in the block group. 9047 * If we did it before, we could race with relocation and have 9048 * relocation miss the reserved extent, making it fail later. 9049 */ 9050 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9051 if (IS_ERR(trans)) { 9052 ret = PTR_ERR(trans); 9053 btrfs_free_reserved_extent(fs_info, ins.objectid, 9054 ins.offset, false); 9055 break; 9056 } 9057 9058 em = btrfs_alloc_extent_map(); 9059 if (!em) { 9060 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9061 cur_offset + ins.offset - 1, false); 9062 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9063 goto next; 9064 } 9065 9066 em->start = cur_offset; 9067 em->len = ins.offset; 9068 em->disk_bytenr = ins.objectid; 9069 em->offset = 0; 9070 em->disk_num_bytes = ins.offset; 9071 em->ram_bytes = ins.offset; 9072 em->flags |= EXTENT_FLAG_PREALLOC; 9073 em->generation = trans->transid; 9074 9075 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9076 btrfs_free_extent_map(em); 9077 next: 9078 num_bytes -= ins.offset; 9079 cur_offset += ins.offset; 9080 *alloc_hint = ins.objectid + ins.offset; 9081 9082 inode_inc_iversion(inode); 9083 inode_set_ctime_current(inode); 9084 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9085 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9086 (actual_len > inode->i_size) && 9087 (cur_offset > inode->i_size)) { 9088 if (cur_offset > actual_len) 9089 i_size = actual_len; 9090 else 9091 i_size = cur_offset; 9092 i_size_write(inode, i_size); 9093 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9094 } 9095 9096 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9097 9098 if (ret) { 9099 btrfs_abort_transaction(trans, ret); 9100 if (own_trans) 9101 btrfs_end_transaction(trans); 9102 break; 9103 } 9104 9105 if (own_trans) { 9106 btrfs_end_transaction(trans); 9107 trans = NULL; 9108 } 9109 } 9110 if (clear_offset < end) 9111 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9112 end - clear_offset + 1); 9113 return ret; 9114 } 9115 9116 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9117 u64 start, u64 num_bytes, u64 min_size, 9118 loff_t actual_len, u64 *alloc_hint) 9119 { 9120 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9121 min_size, actual_len, alloc_hint, 9122 NULL); 9123 } 9124 9125 int btrfs_prealloc_file_range_trans(struct inode *inode, 9126 struct btrfs_trans_handle *trans, int mode, 9127 u64 start, u64 num_bytes, u64 min_size, 9128 loff_t actual_len, u64 *alloc_hint) 9129 { 9130 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9131 min_size, actual_len, alloc_hint, trans); 9132 } 9133 9134 static int btrfs_permission(struct mnt_idmap *idmap, 9135 struct inode *inode, int mask) 9136 { 9137 struct btrfs_root *root = BTRFS_I(inode)->root; 9138 umode_t mode = inode->i_mode; 9139 9140 if (mask & MAY_WRITE && 9141 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9142 if (btrfs_root_readonly(root)) 9143 return -EROFS; 9144 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9145 return -EACCES; 9146 } 9147 return generic_permission(idmap, inode, mask); 9148 } 9149 9150 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9151 struct file *file, umode_t mode) 9152 { 9153 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9154 struct btrfs_trans_handle *trans; 9155 struct btrfs_root *root = BTRFS_I(dir)->root; 9156 struct inode *inode; 9157 struct btrfs_new_inode_args new_inode_args = { 9158 .dir = dir, 9159 .dentry = file->f_path.dentry, 9160 .orphan = true, 9161 }; 9162 unsigned int trans_num_items; 9163 int ret; 9164 9165 inode = new_inode(dir->i_sb); 9166 if (!inode) 9167 return -ENOMEM; 9168 inode_init_owner(idmap, inode, dir, mode); 9169 inode->i_fop = &btrfs_file_operations; 9170 inode->i_op = &btrfs_file_inode_operations; 9171 inode->i_mapping->a_ops = &btrfs_aops; 9172 9173 new_inode_args.inode = inode; 9174 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9175 if (ret) 9176 goto out_inode; 9177 9178 trans = btrfs_start_transaction(root, trans_num_items); 9179 if (IS_ERR(trans)) { 9180 ret = PTR_ERR(trans); 9181 goto out_new_inode_args; 9182 } 9183 9184 ret = btrfs_create_new_inode(trans, &new_inode_args); 9185 9186 /* 9187 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9188 * set it to 1 because d_tmpfile() will issue a warning if the count is 9189 * 0, through: 9190 * 9191 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9192 */ 9193 set_nlink(inode, 1); 9194 9195 if (!ret) { 9196 d_tmpfile(file, inode); 9197 unlock_new_inode(inode); 9198 mark_inode_dirty(inode); 9199 } 9200 9201 btrfs_end_transaction(trans); 9202 btrfs_btree_balance_dirty(fs_info); 9203 out_new_inode_args: 9204 btrfs_new_inode_args_destroy(&new_inode_args); 9205 out_inode: 9206 if (ret) 9207 iput(inode); 9208 return finish_open_simple(file, ret); 9209 } 9210 9211 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9212 int compress_type) 9213 { 9214 switch (compress_type) { 9215 case BTRFS_COMPRESS_NONE: 9216 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9217 case BTRFS_COMPRESS_ZLIB: 9218 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9219 case BTRFS_COMPRESS_LZO: 9220 /* 9221 * The LZO format depends on the sector size. 64K is the maximum 9222 * sector size that we support. 9223 */ 9224 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9225 return -EINVAL; 9226 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9227 (fs_info->sectorsize_bits - 12); 9228 case BTRFS_COMPRESS_ZSTD: 9229 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9230 default: 9231 return -EUCLEAN; 9232 } 9233 } 9234 9235 static ssize_t btrfs_encoded_read_inline( 9236 struct kiocb *iocb, 9237 struct iov_iter *iter, u64 start, 9238 u64 lockend, 9239 struct extent_state **cached_state, 9240 u64 extent_start, size_t count, 9241 struct btrfs_ioctl_encoded_io_args *encoded, 9242 bool *unlocked) 9243 { 9244 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9245 struct btrfs_root *root = inode->root; 9246 struct btrfs_fs_info *fs_info = root->fs_info; 9247 struct extent_io_tree *io_tree = &inode->io_tree; 9248 BTRFS_PATH_AUTO_FREE(path); 9249 struct extent_buffer *leaf; 9250 struct btrfs_file_extent_item *item; 9251 u64 ram_bytes; 9252 unsigned long ptr; 9253 void *tmp; 9254 ssize_t ret; 9255 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9256 9257 path = btrfs_alloc_path(); 9258 if (!path) 9259 return -ENOMEM; 9260 9261 path->nowait = nowait; 9262 9263 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9264 extent_start, 0); 9265 if (ret) { 9266 if (ret > 0) { 9267 /* The extent item disappeared? */ 9268 return -EIO; 9269 } 9270 return ret; 9271 } 9272 leaf = path->nodes[0]; 9273 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9274 9275 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9276 ptr = btrfs_file_extent_inline_start(item); 9277 9278 encoded->len = min_t(u64, extent_start + ram_bytes, 9279 inode->vfs_inode.i_size) - iocb->ki_pos; 9280 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9281 btrfs_file_extent_compression(leaf, item)); 9282 if (ret < 0) 9283 return ret; 9284 encoded->compression = ret; 9285 if (encoded->compression) { 9286 size_t inline_size; 9287 9288 inline_size = btrfs_file_extent_inline_item_len(leaf, 9289 path->slots[0]); 9290 if (inline_size > count) 9291 return -ENOBUFS; 9292 9293 count = inline_size; 9294 encoded->unencoded_len = ram_bytes; 9295 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9296 } else { 9297 count = min_t(u64, count, encoded->len); 9298 encoded->len = count; 9299 encoded->unencoded_len = count; 9300 ptr += iocb->ki_pos - extent_start; 9301 } 9302 9303 tmp = kmalloc(count, GFP_NOFS); 9304 if (!tmp) 9305 return -ENOMEM; 9306 9307 read_extent_buffer(leaf, tmp, ptr, count); 9308 btrfs_release_path(path); 9309 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9310 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9311 *unlocked = true; 9312 9313 ret = copy_to_iter(tmp, count, iter); 9314 if (ret != count) 9315 ret = -EFAULT; 9316 kfree(tmp); 9317 9318 return ret; 9319 } 9320 9321 struct btrfs_encoded_read_private { 9322 struct completion *sync_reads; 9323 void *uring_ctx; 9324 refcount_t pending_refs; 9325 blk_status_t status; 9326 }; 9327 9328 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9329 { 9330 struct btrfs_encoded_read_private *priv = bbio->private; 9331 9332 if (bbio->bio.bi_status) { 9333 /* 9334 * The memory barrier implied by the refcount_dec_and_test() here 9335 * pairs with the memory barrier implied by the refcount_dec_and_test() 9336 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9337 * this write is observed before the load of status in 9338 * btrfs_encoded_read_regular_fill_pages(). 9339 */ 9340 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9341 } 9342 if (refcount_dec_and_test(&priv->pending_refs)) { 9343 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9344 9345 if (priv->uring_ctx) { 9346 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9347 kfree(priv); 9348 } else { 9349 complete(priv->sync_reads); 9350 } 9351 } 9352 bio_put(&bbio->bio); 9353 } 9354 9355 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9356 u64 disk_bytenr, u64 disk_io_size, 9357 struct page **pages, void *uring_ctx) 9358 { 9359 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9360 struct btrfs_encoded_read_private *priv, sync_priv; 9361 struct completion sync_reads; 9362 unsigned long i = 0; 9363 struct btrfs_bio *bbio; 9364 int ret; 9365 9366 /* 9367 * Fast path for synchronous reads which completes in this call, io_uring 9368 * needs longer time span. 9369 */ 9370 if (uring_ctx) { 9371 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9372 if (!priv) 9373 return -ENOMEM; 9374 } else { 9375 priv = &sync_priv; 9376 init_completion(&sync_reads); 9377 priv->sync_reads = &sync_reads; 9378 } 9379 9380 refcount_set(&priv->pending_refs, 1); 9381 priv->status = 0; 9382 priv->uring_ctx = uring_ctx; 9383 9384 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9385 btrfs_encoded_read_endio, priv); 9386 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9387 bbio->inode = inode; 9388 9389 do { 9390 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9391 9392 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9393 refcount_inc(&priv->pending_refs); 9394 btrfs_submit_bbio(bbio, 0); 9395 9396 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9397 btrfs_encoded_read_endio, priv); 9398 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9399 bbio->inode = inode; 9400 continue; 9401 } 9402 9403 i++; 9404 disk_bytenr += bytes; 9405 disk_io_size -= bytes; 9406 } while (disk_io_size); 9407 9408 refcount_inc(&priv->pending_refs); 9409 btrfs_submit_bbio(bbio, 0); 9410 9411 if (uring_ctx) { 9412 if (refcount_dec_and_test(&priv->pending_refs)) { 9413 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9414 btrfs_uring_read_extent_endio(uring_ctx, ret); 9415 kfree(priv); 9416 return ret; 9417 } 9418 9419 return -EIOCBQUEUED; 9420 } else { 9421 if (!refcount_dec_and_test(&priv->pending_refs)) 9422 wait_for_completion_io(&sync_reads); 9423 /* See btrfs_encoded_read_endio() for ordering. */ 9424 return blk_status_to_errno(READ_ONCE(priv->status)); 9425 } 9426 } 9427 9428 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9429 u64 start, u64 lockend, 9430 struct extent_state **cached_state, 9431 u64 disk_bytenr, u64 disk_io_size, 9432 size_t count, bool compressed, bool *unlocked) 9433 { 9434 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9435 struct extent_io_tree *io_tree = &inode->io_tree; 9436 struct page **pages; 9437 unsigned long nr_pages, i; 9438 u64 cur; 9439 size_t page_offset; 9440 ssize_t ret; 9441 9442 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9443 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9444 if (!pages) 9445 return -ENOMEM; 9446 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9447 if (ret) { 9448 ret = -ENOMEM; 9449 goto out; 9450 } 9451 9452 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9453 disk_io_size, pages, NULL); 9454 if (ret) 9455 goto out; 9456 9457 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9458 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9459 *unlocked = true; 9460 9461 if (compressed) { 9462 i = 0; 9463 page_offset = 0; 9464 } else { 9465 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9466 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9467 } 9468 cur = 0; 9469 while (cur < count) { 9470 size_t bytes = min_t(size_t, count - cur, 9471 PAGE_SIZE - page_offset); 9472 9473 if (copy_page_to_iter(pages[i], page_offset, bytes, 9474 iter) != bytes) { 9475 ret = -EFAULT; 9476 goto out; 9477 } 9478 i++; 9479 cur += bytes; 9480 page_offset = 0; 9481 } 9482 ret = count; 9483 out: 9484 for (i = 0; i < nr_pages; i++) { 9485 if (pages[i]) 9486 __free_page(pages[i]); 9487 } 9488 kfree(pages); 9489 return ret; 9490 } 9491 9492 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9493 struct btrfs_ioctl_encoded_io_args *encoded, 9494 struct extent_state **cached_state, 9495 u64 *disk_bytenr, u64 *disk_io_size) 9496 { 9497 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9498 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9499 struct extent_io_tree *io_tree = &inode->io_tree; 9500 ssize_t ret; 9501 size_t count = iov_iter_count(iter); 9502 u64 start, lockend; 9503 struct extent_map *em; 9504 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9505 bool unlocked = false; 9506 9507 file_accessed(iocb->ki_filp); 9508 9509 ret = btrfs_inode_lock(inode, 9510 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9511 if (ret) 9512 return ret; 9513 9514 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9515 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9516 return 0; 9517 } 9518 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9519 /* 9520 * We don't know how long the extent containing iocb->ki_pos is, but if 9521 * it's compressed we know that it won't be longer than this. 9522 */ 9523 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9524 9525 if (nowait) { 9526 struct btrfs_ordered_extent *ordered; 9527 9528 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9529 start, lockend)) { 9530 ret = -EAGAIN; 9531 goto out_unlock_inode; 9532 } 9533 9534 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9535 ret = -EAGAIN; 9536 goto out_unlock_inode; 9537 } 9538 9539 ordered = btrfs_lookup_ordered_range(inode, start, 9540 lockend - start + 1); 9541 if (ordered) { 9542 btrfs_put_ordered_extent(ordered); 9543 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9544 ret = -EAGAIN; 9545 goto out_unlock_inode; 9546 } 9547 } else { 9548 for (;;) { 9549 struct btrfs_ordered_extent *ordered; 9550 9551 ret = btrfs_wait_ordered_range(inode, start, 9552 lockend - start + 1); 9553 if (ret) 9554 goto out_unlock_inode; 9555 9556 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9557 ordered = btrfs_lookup_ordered_range(inode, start, 9558 lockend - start + 1); 9559 if (!ordered) 9560 break; 9561 btrfs_put_ordered_extent(ordered); 9562 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9563 cond_resched(); 9564 } 9565 } 9566 9567 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9568 if (IS_ERR(em)) { 9569 ret = PTR_ERR(em); 9570 goto out_unlock_extent; 9571 } 9572 9573 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9574 u64 extent_start = em->start; 9575 9576 /* 9577 * For inline extents we get everything we need out of the 9578 * extent item. 9579 */ 9580 btrfs_free_extent_map(em); 9581 em = NULL; 9582 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9583 cached_state, extent_start, 9584 count, encoded, &unlocked); 9585 goto out_unlock_extent; 9586 } 9587 9588 /* 9589 * We only want to return up to EOF even if the extent extends beyond 9590 * that. 9591 */ 9592 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9593 inode->vfs_inode.i_size) - iocb->ki_pos; 9594 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9595 (em->flags & EXTENT_FLAG_PREALLOC)) { 9596 *disk_bytenr = EXTENT_MAP_HOLE; 9597 count = min_t(u64, count, encoded->len); 9598 encoded->len = count; 9599 encoded->unencoded_len = count; 9600 } else if (btrfs_extent_map_is_compressed(em)) { 9601 *disk_bytenr = em->disk_bytenr; 9602 /* 9603 * Bail if the buffer isn't large enough to return the whole 9604 * compressed extent. 9605 */ 9606 if (em->disk_num_bytes > count) { 9607 ret = -ENOBUFS; 9608 goto out_em; 9609 } 9610 *disk_io_size = em->disk_num_bytes; 9611 count = em->disk_num_bytes; 9612 encoded->unencoded_len = em->ram_bytes; 9613 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9614 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9615 btrfs_extent_map_compression(em)); 9616 if (ret < 0) 9617 goto out_em; 9618 encoded->compression = ret; 9619 } else { 9620 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9621 if (encoded->len > count) 9622 encoded->len = count; 9623 /* 9624 * Don't read beyond what we locked. This also limits the page 9625 * allocations that we'll do. 9626 */ 9627 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9628 count = start + *disk_io_size - iocb->ki_pos; 9629 encoded->len = count; 9630 encoded->unencoded_len = count; 9631 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9632 } 9633 btrfs_free_extent_map(em); 9634 em = NULL; 9635 9636 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9637 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9638 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9639 unlocked = true; 9640 ret = iov_iter_zero(count, iter); 9641 if (ret != count) 9642 ret = -EFAULT; 9643 } else { 9644 ret = -EIOCBQUEUED; 9645 goto out_unlock_extent; 9646 } 9647 9648 out_em: 9649 btrfs_free_extent_map(em); 9650 out_unlock_extent: 9651 /* Leave inode and extent locked if we need to do a read. */ 9652 if (!unlocked && ret != -EIOCBQUEUED) 9653 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9654 out_unlock_inode: 9655 if (!unlocked && ret != -EIOCBQUEUED) 9656 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9657 return ret; 9658 } 9659 9660 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9661 const struct btrfs_ioctl_encoded_io_args *encoded) 9662 { 9663 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9664 struct btrfs_root *root = inode->root; 9665 struct btrfs_fs_info *fs_info = root->fs_info; 9666 struct extent_io_tree *io_tree = &inode->io_tree; 9667 struct extent_changeset *data_reserved = NULL; 9668 struct extent_state *cached_state = NULL; 9669 struct btrfs_ordered_extent *ordered; 9670 struct btrfs_file_extent file_extent; 9671 int compression; 9672 size_t orig_count; 9673 u64 start, end; 9674 u64 num_bytes, ram_bytes, disk_num_bytes; 9675 unsigned long nr_folios, i; 9676 struct folio **folios; 9677 struct btrfs_key ins; 9678 bool extent_reserved = false; 9679 struct extent_map *em; 9680 ssize_t ret; 9681 9682 switch (encoded->compression) { 9683 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9684 compression = BTRFS_COMPRESS_ZLIB; 9685 break; 9686 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9687 compression = BTRFS_COMPRESS_ZSTD; 9688 break; 9689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9691 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9692 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9693 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9694 /* The sector size must match for LZO. */ 9695 if (encoded->compression - 9696 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9697 fs_info->sectorsize_bits) 9698 return -EINVAL; 9699 compression = BTRFS_COMPRESS_LZO; 9700 break; 9701 default: 9702 return -EINVAL; 9703 } 9704 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9705 return -EINVAL; 9706 9707 /* 9708 * Compressed extents should always have checksums, so error out if we 9709 * have a NOCOW file or inode was created while mounted with NODATASUM. 9710 */ 9711 if (inode->flags & BTRFS_INODE_NODATASUM) 9712 return -EINVAL; 9713 9714 orig_count = iov_iter_count(from); 9715 9716 /* The extent size must be sane. */ 9717 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9718 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9719 return -EINVAL; 9720 9721 /* 9722 * The compressed data must be smaller than the decompressed data. 9723 * 9724 * It's of course possible for data to compress to larger or the same 9725 * size, but the buffered I/O path falls back to no compression for such 9726 * data, and we don't want to break any assumptions by creating these 9727 * extents. 9728 * 9729 * Note that this is less strict than the current check we have that the 9730 * compressed data must be at least one sector smaller than the 9731 * decompressed data. We only want to enforce the weaker requirement 9732 * from old kernels that it is at least one byte smaller. 9733 */ 9734 if (orig_count >= encoded->unencoded_len) 9735 return -EINVAL; 9736 9737 /* The extent must start on a sector boundary. */ 9738 start = iocb->ki_pos; 9739 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9740 return -EINVAL; 9741 9742 /* 9743 * The extent must end on a sector boundary. However, we allow a write 9744 * which ends at or extends i_size to have an unaligned length; we round 9745 * up the extent size and set i_size to the unaligned end. 9746 */ 9747 if (start + encoded->len < inode->vfs_inode.i_size && 9748 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9749 return -EINVAL; 9750 9751 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9752 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9753 return -EINVAL; 9754 9755 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9756 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9757 end = start + num_bytes - 1; 9758 9759 /* 9760 * If the extent cannot be inline, the compressed data on disk must be 9761 * sector-aligned. For convenience, we extend it with zeroes if it 9762 * isn't. 9763 */ 9764 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9765 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9766 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9767 if (!folios) 9768 return -ENOMEM; 9769 for (i = 0; i < nr_folios; i++) { 9770 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9771 char *kaddr; 9772 9773 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9774 if (!folios[i]) { 9775 ret = -ENOMEM; 9776 goto out_folios; 9777 } 9778 kaddr = kmap_local_folio(folios[i], 0); 9779 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9780 kunmap_local(kaddr); 9781 ret = -EFAULT; 9782 goto out_folios; 9783 } 9784 if (bytes < PAGE_SIZE) 9785 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9786 kunmap_local(kaddr); 9787 } 9788 9789 for (;;) { 9790 struct btrfs_ordered_extent *ordered; 9791 9792 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9793 if (ret) 9794 goto out_folios; 9795 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9796 start >> PAGE_SHIFT, 9797 end >> PAGE_SHIFT); 9798 if (ret) 9799 goto out_folios; 9800 btrfs_lock_extent(io_tree, start, end, &cached_state); 9801 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9802 if (!ordered && 9803 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9804 break; 9805 if (ordered) 9806 btrfs_put_ordered_extent(ordered); 9807 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9808 cond_resched(); 9809 } 9810 9811 /* 9812 * We don't use the higher-level delalloc space functions because our 9813 * num_bytes and disk_num_bytes are different. 9814 */ 9815 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9816 if (ret) 9817 goto out_unlock; 9818 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9819 if (ret) 9820 goto out_free_data_space; 9821 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9822 false); 9823 if (ret) 9824 goto out_qgroup_free_data; 9825 9826 /* Try an inline extent first. */ 9827 if (encoded->unencoded_len == encoded->len && 9828 encoded->unencoded_offset == 0 && 9829 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9830 ret = __cow_file_range_inline(inode, encoded->len, 9831 orig_count, compression, folios[0], 9832 true); 9833 if (ret <= 0) { 9834 if (ret == 0) 9835 ret = orig_count; 9836 goto out_delalloc_release; 9837 } 9838 } 9839 9840 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9841 disk_num_bytes, 0, 0, &ins, 1, 1); 9842 if (ret) 9843 goto out_delalloc_release; 9844 extent_reserved = true; 9845 9846 file_extent.disk_bytenr = ins.objectid; 9847 file_extent.disk_num_bytes = ins.offset; 9848 file_extent.num_bytes = num_bytes; 9849 file_extent.ram_bytes = ram_bytes; 9850 file_extent.offset = encoded->unencoded_offset; 9851 file_extent.compression = compression; 9852 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9853 if (IS_ERR(em)) { 9854 ret = PTR_ERR(em); 9855 goto out_free_reserved; 9856 } 9857 btrfs_free_extent_map(em); 9858 9859 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9860 (1U << BTRFS_ORDERED_ENCODED) | 9861 (1U << BTRFS_ORDERED_COMPRESSED)); 9862 if (IS_ERR(ordered)) { 9863 btrfs_drop_extent_map_range(inode, start, end, false); 9864 ret = PTR_ERR(ordered); 9865 goto out_free_reserved; 9866 } 9867 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9868 9869 if (start + encoded->len > inode->vfs_inode.i_size) 9870 i_size_write(&inode->vfs_inode, start + encoded->len); 9871 9872 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9873 9874 btrfs_delalloc_release_extents(inode, num_bytes); 9875 9876 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9877 ret = orig_count; 9878 goto out; 9879 9880 out_free_reserved: 9881 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9882 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9883 out_delalloc_release: 9884 btrfs_delalloc_release_extents(inode, num_bytes); 9885 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9886 out_qgroup_free_data: 9887 if (ret < 0) 9888 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9889 out_free_data_space: 9890 /* 9891 * If btrfs_reserve_extent() succeeded, then we already decremented 9892 * bytes_may_use. 9893 */ 9894 if (!extent_reserved) 9895 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9896 out_unlock: 9897 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9898 out_folios: 9899 for (i = 0; i < nr_folios; i++) { 9900 if (folios[i]) 9901 folio_put(folios[i]); 9902 } 9903 kvfree(folios); 9904 out: 9905 if (ret >= 0) 9906 iocb->ki_pos += encoded->len; 9907 return ret; 9908 } 9909 9910 #ifdef CONFIG_SWAP 9911 /* 9912 * Add an entry indicating a block group or device which is pinned by a 9913 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9914 * negative errno on failure. 9915 */ 9916 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9917 bool is_block_group) 9918 { 9919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9920 struct btrfs_swapfile_pin *sp, *entry; 9921 struct rb_node **p; 9922 struct rb_node *parent = NULL; 9923 9924 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9925 if (!sp) 9926 return -ENOMEM; 9927 sp->ptr = ptr; 9928 sp->inode = inode; 9929 sp->is_block_group = is_block_group; 9930 sp->bg_extent_count = 1; 9931 9932 spin_lock(&fs_info->swapfile_pins_lock); 9933 p = &fs_info->swapfile_pins.rb_node; 9934 while (*p) { 9935 parent = *p; 9936 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9937 if (sp->ptr < entry->ptr || 9938 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9939 p = &(*p)->rb_left; 9940 } else if (sp->ptr > entry->ptr || 9941 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9942 p = &(*p)->rb_right; 9943 } else { 9944 if (is_block_group) 9945 entry->bg_extent_count++; 9946 spin_unlock(&fs_info->swapfile_pins_lock); 9947 kfree(sp); 9948 return 1; 9949 } 9950 } 9951 rb_link_node(&sp->node, parent, p); 9952 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9953 spin_unlock(&fs_info->swapfile_pins_lock); 9954 return 0; 9955 } 9956 9957 /* Free all of the entries pinned by this swapfile. */ 9958 static void btrfs_free_swapfile_pins(struct inode *inode) 9959 { 9960 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9961 struct btrfs_swapfile_pin *sp; 9962 struct rb_node *node, *next; 9963 9964 spin_lock(&fs_info->swapfile_pins_lock); 9965 node = rb_first(&fs_info->swapfile_pins); 9966 while (node) { 9967 next = rb_next(node); 9968 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9969 if (sp->inode == inode) { 9970 rb_erase(&sp->node, &fs_info->swapfile_pins); 9971 if (sp->is_block_group) { 9972 btrfs_dec_block_group_swap_extents(sp->ptr, 9973 sp->bg_extent_count); 9974 btrfs_put_block_group(sp->ptr); 9975 } 9976 kfree(sp); 9977 } 9978 node = next; 9979 } 9980 spin_unlock(&fs_info->swapfile_pins_lock); 9981 } 9982 9983 struct btrfs_swap_info { 9984 u64 start; 9985 u64 block_start; 9986 u64 block_len; 9987 u64 lowest_ppage; 9988 u64 highest_ppage; 9989 unsigned long nr_pages; 9990 int nr_extents; 9991 }; 9992 9993 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9994 struct btrfs_swap_info *bsi) 9995 { 9996 unsigned long nr_pages; 9997 unsigned long max_pages; 9998 u64 first_ppage, first_ppage_reported, next_ppage; 9999 int ret; 10000 10001 /* 10002 * Our swapfile may have had its size extended after the swap header was 10003 * written. In that case activating the swapfile should not go beyond 10004 * the max size set in the swap header. 10005 */ 10006 if (bsi->nr_pages >= sis->max) 10007 return 0; 10008 10009 max_pages = sis->max - bsi->nr_pages; 10010 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10011 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10012 10013 if (first_ppage >= next_ppage) 10014 return 0; 10015 nr_pages = next_ppage - first_ppage; 10016 nr_pages = min(nr_pages, max_pages); 10017 10018 first_ppage_reported = first_ppage; 10019 if (bsi->start == 0) 10020 first_ppage_reported++; 10021 if (bsi->lowest_ppage > first_ppage_reported) 10022 bsi->lowest_ppage = first_ppage_reported; 10023 if (bsi->highest_ppage < (next_ppage - 1)) 10024 bsi->highest_ppage = next_ppage - 1; 10025 10026 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10027 if (ret < 0) 10028 return ret; 10029 bsi->nr_extents += ret; 10030 bsi->nr_pages += nr_pages; 10031 return 0; 10032 } 10033 10034 static void btrfs_swap_deactivate(struct file *file) 10035 { 10036 struct inode *inode = file_inode(file); 10037 10038 btrfs_free_swapfile_pins(inode); 10039 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10040 } 10041 10042 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10043 sector_t *span) 10044 { 10045 struct inode *inode = file_inode(file); 10046 struct btrfs_root *root = BTRFS_I(inode)->root; 10047 struct btrfs_fs_info *fs_info = root->fs_info; 10048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10049 struct extent_state *cached_state = NULL; 10050 struct btrfs_chunk_map *map = NULL; 10051 struct btrfs_device *device = NULL; 10052 struct btrfs_swap_info bsi = { 10053 .lowest_ppage = (sector_t)-1ULL, 10054 }; 10055 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10056 struct btrfs_path *path = NULL; 10057 int ret = 0; 10058 u64 isize; 10059 u64 prev_extent_end = 0; 10060 10061 /* 10062 * Acquire the inode's mmap lock to prevent races with memory mapped 10063 * writes, as they could happen after we flush delalloc below and before 10064 * we lock the extent range further below. The inode was already locked 10065 * up in the call chain. 10066 */ 10067 btrfs_assert_inode_locked(BTRFS_I(inode)); 10068 down_write(&BTRFS_I(inode)->i_mmap_lock); 10069 10070 /* 10071 * If the swap file was just created, make sure delalloc is done. If the 10072 * file changes again after this, the user is doing something stupid and 10073 * we don't really care. 10074 */ 10075 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10076 if (ret) 10077 goto out_unlock_mmap; 10078 10079 /* 10080 * The inode is locked, so these flags won't change after we check them. 10081 */ 10082 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10083 btrfs_warn(fs_info, "swapfile must not be compressed"); 10084 ret = -EINVAL; 10085 goto out_unlock_mmap; 10086 } 10087 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10088 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10089 ret = -EINVAL; 10090 goto out_unlock_mmap; 10091 } 10092 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10093 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10094 ret = -EINVAL; 10095 goto out_unlock_mmap; 10096 } 10097 10098 path = btrfs_alloc_path(); 10099 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10100 if (!path || !backref_ctx) { 10101 ret = -ENOMEM; 10102 goto out_unlock_mmap; 10103 } 10104 10105 /* 10106 * Balance or device remove/replace/resize can move stuff around from 10107 * under us. The exclop protection makes sure they aren't running/won't 10108 * run concurrently while we are mapping the swap extents, and 10109 * fs_info->swapfile_pins prevents them from running while the swap 10110 * file is active and moving the extents. Note that this also prevents 10111 * a concurrent device add which isn't actually necessary, but it's not 10112 * really worth the trouble to allow it. 10113 */ 10114 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10115 btrfs_warn(fs_info, 10116 "cannot activate swapfile while exclusive operation is running"); 10117 ret = -EBUSY; 10118 goto out_unlock_mmap; 10119 } 10120 10121 /* 10122 * Prevent snapshot creation while we are activating the swap file. 10123 * We do not want to race with snapshot creation. If snapshot creation 10124 * already started before we bumped nr_swapfiles from 0 to 1 and 10125 * completes before the first write into the swap file after it is 10126 * activated, than that write would fallback to COW. 10127 */ 10128 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10129 btrfs_exclop_finish(fs_info); 10130 btrfs_warn(fs_info, 10131 "cannot activate swapfile because snapshot creation is in progress"); 10132 ret = -EINVAL; 10133 goto out_unlock_mmap; 10134 } 10135 /* 10136 * Snapshots can create extents which require COW even if NODATACOW is 10137 * set. We use this counter to prevent snapshots. We must increment it 10138 * before walking the extents because we don't want a concurrent 10139 * snapshot to run after we've already checked the extents. 10140 * 10141 * It is possible that subvolume is marked for deletion but still not 10142 * removed yet. To prevent this race, we check the root status before 10143 * activating the swapfile. 10144 */ 10145 spin_lock(&root->root_item_lock); 10146 if (btrfs_root_dead(root)) { 10147 spin_unlock(&root->root_item_lock); 10148 10149 btrfs_drew_write_unlock(&root->snapshot_lock); 10150 btrfs_exclop_finish(fs_info); 10151 btrfs_warn(fs_info, 10152 "cannot activate swapfile because subvolume %llu is being deleted", 10153 btrfs_root_id(root)); 10154 ret = -EPERM; 10155 goto out_unlock_mmap; 10156 } 10157 atomic_inc(&root->nr_swapfiles); 10158 spin_unlock(&root->root_item_lock); 10159 10160 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10161 10162 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10163 while (prev_extent_end < isize) { 10164 struct btrfs_key key; 10165 struct extent_buffer *leaf; 10166 struct btrfs_file_extent_item *ei; 10167 struct btrfs_block_group *bg; 10168 u64 logical_block_start; 10169 u64 physical_block_start; 10170 u64 extent_gen; 10171 u64 disk_bytenr; 10172 u64 len; 10173 10174 key.objectid = btrfs_ino(BTRFS_I(inode)); 10175 key.type = BTRFS_EXTENT_DATA_KEY; 10176 key.offset = prev_extent_end; 10177 10178 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10179 if (ret < 0) 10180 goto out; 10181 10182 /* 10183 * If key not found it means we have an implicit hole (NO_HOLES 10184 * is enabled). 10185 */ 10186 if (ret > 0) { 10187 btrfs_warn(fs_info, "swapfile must not have holes"); 10188 ret = -EINVAL; 10189 goto out; 10190 } 10191 10192 leaf = path->nodes[0]; 10193 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10194 10195 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10196 /* 10197 * It's unlikely we'll ever actually find ourselves 10198 * here, as a file small enough to fit inline won't be 10199 * big enough to store more than the swap header, but in 10200 * case something changes in the future, let's catch it 10201 * here rather than later. 10202 */ 10203 btrfs_warn(fs_info, "swapfile must not be inline"); 10204 ret = -EINVAL; 10205 goto out; 10206 } 10207 10208 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10209 btrfs_warn(fs_info, "swapfile must not be compressed"); 10210 ret = -EINVAL; 10211 goto out; 10212 } 10213 10214 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10215 if (disk_bytenr == 0) { 10216 btrfs_warn(fs_info, "swapfile must not have holes"); 10217 ret = -EINVAL; 10218 goto out; 10219 } 10220 10221 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10222 extent_gen = btrfs_file_extent_generation(leaf, ei); 10223 prev_extent_end = btrfs_file_extent_end(path); 10224 10225 if (prev_extent_end > isize) 10226 len = isize - key.offset; 10227 else 10228 len = btrfs_file_extent_num_bytes(leaf, ei); 10229 10230 backref_ctx->curr_leaf_bytenr = leaf->start; 10231 10232 /* 10233 * Don't need the path anymore, release to avoid deadlocks when 10234 * calling btrfs_is_data_extent_shared() because when joining a 10235 * transaction it can block waiting for the current one's commit 10236 * which in turn may be trying to lock the same leaf to flush 10237 * delayed items for example. 10238 */ 10239 btrfs_release_path(path); 10240 10241 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10242 extent_gen, backref_ctx); 10243 if (ret < 0) { 10244 goto out; 10245 } else if (ret > 0) { 10246 btrfs_warn(fs_info, 10247 "swapfile must not be copy-on-write"); 10248 ret = -EINVAL; 10249 goto out; 10250 } 10251 10252 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10253 if (IS_ERR(map)) { 10254 ret = PTR_ERR(map); 10255 goto out; 10256 } 10257 10258 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10259 btrfs_warn(fs_info, 10260 "swapfile must have single data profile"); 10261 ret = -EINVAL; 10262 goto out; 10263 } 10264 10265 if (device == NULL) { 10266 device = map->stripes[0].dev; 10267 ret = btrfs_add_swapfile_pin(inode, device, false); 10268 if (ret == 1) 10269 ret = 0; 10270 else if (ret) 10271 goto out; 10272 } else if (device != map->stripes[0].dev) { 10273 btrfs_warn(fs_info, "swapfile must be on one device"); 10274 ret = -EINVAL; 10275 goto out; 10276 } 10277 10278 physical_block_start = (map->stripes[0].physical + 10279 (logical_block_start - map->start)); 10280 btrfs_free_chunk_map(map); 10281 map = NULL; 10282 10283 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10284 if (!bg) { 10285 btrfs_warn(fs_info, 10286 "could not find block group containing swapfile"); 10287 ret = -EINVAL; 10288 goto out; 10289 } 10290 10291 if (!btrfs_inc_block_group_swap_extents(bg)) { 10292 btrfs_warn(fs_info, 10293 "block group for swapfile at %llu is read-only%s", 10294 bg->start, 10295 atomic_read(&fs_info->scrubs_running) ? 10296 " (scrub running)" : ""); 10297 btrfs_put_block_group(bg); 10298 ret = -EINVAL; 10299 goto out; 10300 } 10301 10302 ret = btrfs_add_swapfile_pin(inode, bg, true); 10303 if (ret) { 10304 btrfs_put_block_group(bg); 10305 if (ret == 1) 10306 ret = 0; 10307 else 10308 goto out; 10309 } 10310 10311 if (bsi.block_len && 10312 bsi.block_start + bsi.block_len == physical_block_start) { 10313 bsi.block_len += len; 10314 } else { 10315 if (bsi.block_len) { 10316 ret = btrfs_add_swap_extent(sis, &bsi); 10317 if (ret) 10318 goto out; 10319 } 10320 bsi.start = key.offset; 10321 bsi.block_start = physical_block_start; 10322 bsi.block_len = len; 10323 } 10324 10325 if (fatal_signal_pending(current)) { 10326 ret = -EINTR; 10327 goto out; 10328 } 10329 10330 cond_resched(); 10331 } 10332 10333 if (bsi.block_len) 10334 ret = btrfs_add_swap_extent(sis, &bsi); 10335 10336 out: 10337 if (!IS_ERR_OR_NULL(map)) 10338 btrfs_free_chunk_map(map); 10339 10340 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10341 10342 if (ret) 10343 btrfs_swap_deactivate(file); 10344 10345 btrfs_drew_write_unlock(&root->snapshot_lock); 10346 10347 btrfs_exclop_finish(fs_info); 10348 10349 out_unlock_mmap: 10350 up_write(&BTRFS_I(inode)->i_mmap_lock); 10351 btrfs_free_backref_share_ctx(backref_ctx); 10352 btrfs_free_path(path); 10353 if (ret) 10354 return ret; 10355 10356 if (device) 10357 sis->bdev = device->bdev; 10358 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10359 sis->max = bsi.nr_pages; 10360 sis->pages = bsi.nr_pages - 1; 10361 return bsi.nr_extents; 10362 } 10363 #else 10364 static void btrfs_swap_deactivate(struct file *file) 10365 { 10366 } 10367 10368 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10369 sector_t *span) 10370 { 10371 return -EOPNOTSUPP; 10372 } 10373 #endif 10374 10375 /* 10376 * Update the number of bytes used in the VFS' inode. When we replace extents in 10377 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10378 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10379 * always get a correct value. 10380 */ 10381 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10382 const u64 add_bytes, 10383 const u64 del_bytes) 10384 { 10385 if (add_bytes == del_bytes) 10386 return; 10387 10388 spin_lock(&inode->lock); 10389 if (del_bytes > 0) 10390 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10391 if (add_bytes > 0) 10392 inode_add_bytes(&inode->vfs_inode, add_bytes); 10393 spin_unlock(&inode->lock); 10394 } 10395 10396 /* 10397 * Verify that there are no ordered extents for a given file range. 10398 * 10399 * @inode: The target inode. 10400 * @start: Start offset of the file range, should be sector size aligned. 10401 * @end: End offset (inclusive) of the file range, its value +1 should be 10402 * sector size aligned. 10403 * 10404 * This should typically be used for cases where we locked an inode's VFS lock in 10405 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10406 * we have flushed all delalloc in the range, we have waited for all ordered 10407 * extents in the range to complete and finally we have locked the file range in 10408 * the inode's io_tree. 10409 */ 10410 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10411 { 10412 struct btrfs_root *root = inode->root; 10413 struct btrfs_ordered_extent *ordered; 10414 10415 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10416 return; 10417 10418 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10419 if (ordered) { 10420 btrfs_err(root->fs_info, 10421 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10422 start, end, btrfs_ino(inode), btrfs_root_id(root), 10423 ordered->file_offset, 10424 ordered->file_offset + ordered->num_bytes - 1); 10425 btrfs_put_ordered_extent(ordered); 10426 } 10427 10428 ASSERT(ordered == NULL); 10429 } 10430 10431 /* 10432 * Find the first inode with a minimum number. 10433 * 10434 * @root: The root to search for. 10435 * @min_ino: The minimum inode number. 10436 * 10437 * Find the first inode in the @root with a number >= @min_ino and return it. 10438 * Returns NULL if no such inode found. 10439 */ 10440 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10441 { 10442 struct btrfs_inode *inode; 10443 unsigned long from = min_ino; 10444 10445 xa_lock(&root->inodes); 10446 while (true) { 10447 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10448 if (!inode) 10449 break; 10450 if (igrab(&inode->vfs_inode)) 10451 break; 10452 10453 from = btrfs_ino(inode) + 1; 10454 cond_resched_lock(&root->inodes.xa_lock); 10455 } 10456 xa_unlock(&root->inodes); 10457 10458 return inode; 10459 } 10460 10461 static const struct inode_operations btrfs_dir_inode_operations = { 10462 .getattr = btrfs_getattr, 10463 .lookup = btrfs_lookup, 10464 .create = btrfs_create, 10465 .unlink = btrfs_unlink, 10466 .link = btrfs_link, 10467 .mkdir = btrfs_mkdir, 10468 .rmdir = btrfs_rmdir, 10469 .rename = btrfs_rename2, 10470 .symlink = btrfs_symlink, 10471 .setattr = btrfs_setattr, 10472 .mknod = btrfs_mknod, 10473 .listxattr = btrfs_listxattr, 10474 .permission = btrfs_permission, 10475 .get_inode_acl = btrfs_get_acl, 10476 .set_acl = btrfs_set_acl, 10477 .update_time = btrfs_update_time, 10478 .tmpfile = btrfs_tmpfile, 10479 .fileattr_get = btrfs_fileattr_get, 10480 .fileattr_set = btrfs_fileattr_set, 10481 }; 10482 10483 static const struct file_operations btrfs_dir_file_operations = { 10484 .llseek = btrfs_dir_llseek, 10485 .read = generic_read_dir, 10486 .iterate_shared = btrfs_real_readdir, 10487 .open = btrfs_opendir, 10488 .unlocked_ioctl = btrfs_ioctl, 10489 #ifdef CONFIG_COMPAT 10490 .compat_ioctl = btrfs_compat_ioctl, 10491 #endif 10492 .release = btrfs_release_file, 10493 .fsync = btrfs_sync_file, 10494 }; 10495 10496 /* 10497 * btrfs doesn't support the bmap operation because swapfiles 10498 * use bmap to make a mapping of extents in the file. They assume 10499 * these extents won't change over the life of the file and they 10500 * use the bmap result to do IO directly to the drive. 10501 * 10502 * the btrfs bmap call would return logical addresses that aren't 10503 * suitable for IO and they also will change frequently as COW 10504 * operations happen. So, swapfile + btrfs == corruption. 10505 * 10506 * For now we're avoiding this by dropping bmap. 10507 */ 10508 static const struct address_space_operations btrfs_aops = { 10509 .read_folio = btrfs_read_folio, 10510 .writepages = btrfs_writepages, 10511 .readahead = btrfs_readahead, 10512 .invalidate_folio = btrfs_invalidate_folio, 10513 .launder_folio = btrfs_launder_folio, 10514 .release_folio = btrfs_release_folio, 10515 .migrate_folio = btrfs_migrate_folio, 10516 .dirty_folio = filemap_dirty_folio, 10517 .error_remove_folio = generic_error_remove_folio, 10518 .swap_activate = btrfs_swap_activate, 10519 .swap_deactivate = btrfs_swap_deactivate, 10520 }; 10521 10522 static const struct inode_operations btrfs_file_inode_operations = { 10523 .getattr = btrfs_getattr, 10524 .setattr = btrfs_setattr, 10525 .listxattr = btrfs_listxattr, 10526 .permission = btrfs_permission, 10527 .fiemap = btrfs_fiemap, 10528 .get_inode_acl = btrfs_get_acl, 10529 .set_acl = btrfs_set_acl, 10530 .update_time = btrfs_update_time, 10531 .fileattr_get = btrfs_fileattr_get, 10532 .fileattr_set = btrfs_fileattr_set, 10533 }; 10534 static const struct inode_operations btrfs_special_inode_operations = { 10535 .getattr = btrfs_getattr, 10536 .setattr = btrfs_setattr, 10537 .permission = btrfs_permission, 10538 .listxattr = btrfs_listxattr, 10539 .get_inode_acl = btrfs_get_acl, 10540 .set_acl = btrfs_set_acl, 10541 .update_time = btrfs_update_time, 10542 }; 10543 static const struct inode_operations btrfs_symlink_inode_operations = { 10544 .get_link = page_get_link, 10545 .getattr = btrfs_getattr, 10546 .setattr = btrfs_setattr, 10547 .permission = btrfs_permission, 10548 .listxattr = btrfs_listxattr, 10549 .update_time = btrfs_update_time, 10550 }; 10551 10552 const struct dentry_operations btrfs_dentry_operations = { 10553 .d_delete = btrfs_dentry_delete, 10554 }; 10555