1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/fs_struct.h>
13 #include <linux/pagemap.h>
14 #include <linux/highmem.h>
15 #include <linux/time.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/xattr.h>
22 #include <linux/posix_acl.h>
23 #include <linux/falloc.h>
24 #include <linux/slab.h>
25 #include <linux/ratelimit.h>
26 #include <linux/btrfs.h>
27 #include <linux/blkdev.h>
28 #include <linux/posix_acl_xattr.h>
29 #include <linux/uio.h>
30 #include <linux/magic.h>
31 #include <linux/iversion.h>
32 #include <linux/swap.h>
33 #include <linux/migrate.h>
34 #include <linux/sched/mm.h>
35 #include <linux/iomap.h>
36 #include <linux/unaligned.h>
37 #include <linux/fsverity.h>
38 #include "misc.h"
39 #include "ctree.h"
40 #include "disk-io.h"
41 #include "transaction.h"
42 #include "btrfs_inode.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56 #include "inode-item.h"
57 #include "fs.h"
58 #include "accessors.h"
59 #include "extent-tree.h"
60 #include "root-tree.h"
61 #include "defrag.h"
62 #include "dir-item.h"
63 #include "file-item.h"
64 #include "uuid-tree.h"
65 #include "ioctl.h"
66 #include "file.h"
67 #include "acl.h"
68 #include "relocation.h"
69 #include "verity.h"
70 #include "super.h"
71 #include "orphan.h"
72 #include "backref.h"
73 #include "raid-stripe-tree.h"
74 #include "fiemap.h"
75 #include "delayed-inode.h"
76
77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0)
78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1)
79
80 struct btrfs_iget_args {
81 u64 ino;
82 struct btrfs_root *root;
83 };
84
85 struct btrfs_rename_ctx {
86 /* Output field. Stores the index number of the old directory entry. */
87 u64 index;
88 };
89
90 /*
91 * Used by data_reloc_print_warning_inode() to pass needed info for filename
92 * resolution and output of error message.
93 */
94 struct data_reloc_warn {
95 struct btrfs_path path;
96 struct btrfs_fs_info *fs_info;
97 u64 extent_item_size;
98 u64 logical;
99 int mirror_num;
100 };
101
102 /*
103 * For the file_extent_tree, we want to hold the inode lock when we lookup and
104 * update the disk_i_size, but lockdep will complain because our io_tree we hold
105 * the tree lock and get the inode lock when setting delalloc. These two things
106 * are unrelated, so make a class for the file_extent_tree so we don't get the
107 * two locking patterns mixed up.
108 */
109 static struct lock_class_key file_extent_tree_class;
110
111 static const struct inode_operations btrfs_dir_inode_operations;
112 static const struct inode_operations btrfs_symlink_inode_operations;
113 static const struct inode_operations btrfs_special_inode_operations;
114 static const struct inode_operations btrfs_file_inode_operations;
115 static const struct address_space_operations btrfs_aops;
116 static const struct file_operations btrfs_dir_file_operations;
117
118 static struct kmem_cache *btrfs_inode_cachep;
119
120 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
122
123 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
124 struct folio *locked_folio, u64 start,
125 u64 end, struct writeback_control *wbc,
126 bool pages_dirty);
127
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
129 u64 root, void *warn_ctx)
130 {
131 struct data_reloc_warn *warn = warn_ctx;
132 struct btrfs_fs_info *fs_info = warn->fs_info;
133 struct extent_buffer *eb;
134 struct btrfs_inode_item *inode_item;
135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
136 struct btrfs_root *local_root;
137 struct btrfs_key key;
138 unsigned int nofs_flag;
139 u32 nlink;
140 int ret;
141
142 local_root = btrfs_get_fs_root(fs_info, root, true);
143 if (IS_ERR(local_root)) {
144 ret = PTR_ERR(local_root);
145 goto err;
146 }
147
148 /* This makes the path point to (inum INODE_ITEM ioff). */
149 key.objectid = inum;
150 key.type = BTRFS_INODE_ITEM_KEY;
151 key.offset = 0;
152
153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
154 if (ret) {
155 btrfs_put_root(local_root);
156 btrfs_release_path(&warn->path);
157 goto err;
158 }
159
160 eb = warn->path.nodes[0];
161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
162 nlink = btrfs_inode_nlink(eb, inode_item);
163 btrfs_release_path(&warn->path);
164
165 nofs_flag = memalloc_nofs_save();
166 ipath = init_ipath(4096, local_root, &warn->path);
167 memalloc_nofs_restore(nofs_flag);
168 if (IS_ERR(ipath)) {
169 btrfs_put_root(local_root);
170 ret = PTR_ERR(ipath);
171 ipath = NULL;
172 /*
173 * -ENOMEM, not a critical error, just output an generic error
174 * without filename.
175 */
176 btrfs_warn(fs_info,
177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
178 warn->logical, warn->mirror_num, root, inum, offset);
179 return ret;
180 }
181 ret = paths_from_inode(inum, ipath);
182 if (ret < 0) {
183 btrfs_put_root(local_root);
184 goto err;
185 }
186
187 /*
188 * We deliberately ignore the bit ipath might have been too small to
189 * hold all of the paths here
190 */
191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
192 btrfs_warn(fs_info,
193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
194 warn->logical, warn->mirror_num, root, inum, offset,
195 fs_info->sectorsize, nlink,
196 (char *)(unsigned long)ipath->fspath->val[i]);
197 }
198
199 btrfs_put_root(local_root);
200 return 0;
201
202 err:
203 btrfs_warn(fs_info,
204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
205 warn->logical, warn->mirror_num, root, inum, offset, ret);
206
207 return ret;
208 }
209
210 /*
211 * Do extra user-friendly error output (e.g. lookup all the affected files).
212 *
213 * Return true if we succeeded doing the backref lookup.
214 * Return false if such lookup failed, and has to fallback to the old error message.
215 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
217 const u8 *csum, const u8 *csum_expected,
218 int mirror_num)
219 {
220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
221 struct btrfs_path path = { 0 };
222 struct btrfs_key found_key = { 0 };
223 struct extent_buffer *eb;
224 struct btrfs_extent_item *ei;
225 const u32 csum_size = fs_info->csum_size;
226 u64 logical;
227 u64 flags;
228 u32 item_size;
229 int ret;
230
231 mutex_lock(&fs_info->reloc_mutex);
232 logical = btrfs_get_reloc_bg_bytenr(fs_info);
233 mutex_unlock(&fs_info->reloc_mutex);
234
235 if (logical == U64_MAX) {
236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
237 btrfs_warn_rl(fs_info,
238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
240 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
242 mirror_num);
243 return;
244 }
245
246 logical += file_off;
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
249 btrfs_root_id(inode->root),
250 btrfs_ino(inode), file_off, logical,
251 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
253 mirror_num);
254
255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
256 if (ret < 0) {
257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
258 logical, ret);
259 return;
260 }
261 eb = path.nodes[0];
262 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
263 item_size = btrfs_item_size(eb, path.slots[0]);
264 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
265 unsigned long ptr = 0;
266 u64 ref_root;
267 u8 ref_level;
268
269 while (true) {
270 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
271 item_size, &ref_root,
272 &ref_level);
273 if (ret < 0) {
274 btrfs_warn_rl(fs_info,
275 "failed to resolve tree backref for logical %llu: %d",
276 logical, ret);
277 break;
278 }
279 if (ret > 0)
280 break;
281
282 btrfs_warn_rl(fs_info,
283 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
284 logical, mirror_num,
285 (ref_level ? "node" : "leaf"),
286 ref_level, ref_root);
287 }
288 btrfs_release_path(&path);
289 } else {
290 struct btrfs_backref_walk_ctx ctx = { 0 };
291 struct data_reloc_warn reloc_warn = { 0 };
292
293 btrfs_release_path(&path);
294
295 ctx.bytenr = found_key.objectid;
296 ctx.extent_item_pos = logical - found_key.objectid;
297 ctx.fs_info = fs_info;
298
299 reloc_warn.logical = logical;
300 reloc_warn.extent_item_size = found_key.offset;
301 reloc_warn.mirror_num = mirror_num;
302 reloc_warn.fs_info = fs_info;
303
304 iterate_extent_inodes(&ctx, true,
305 data_reloc_print_warning_inode, &reloc_warn);
306 }
307 }
308
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)309 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
310 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
311 {
312 struct btrfs_root *root = inode->root;
313 const u32 csum_size = root->fs_info->csum_size;
314
315 /* For data reloc tree, it's better to do a backref lookup instead. */
316 if (btrfs_is_data_reloc_root(root))
317 return print_data_reloc_error(inode, logical_start, csum,
318 csum_expected, mirror_num);
319
320 /* Output without objectid, which is more meaningful */
321 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
322 btrfs_warn_rl(root->fs_info,
323 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
324 btrfs_root_id(root), btrfs_ino(inode),
325 logical_start,
326 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
327 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
328 mirror_num);
329 } else {
330 btrfs_warn_rl(root->fs_info,
331 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
332 btrfs_root_id(root), btrfs_ino(inode),
333 logical_start,
334 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
335 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
336 mirror_num);
337 }
338 }
339
340 /*
341 * Lock inode i_rwsem based on arguments passed.
342 *
343 * ilock_flags can have the following bit set:
344 *
345 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
346 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
347 * return -EAGAIN
348 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
349 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)350 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
351 {
352 if (ilock_flags & BTRFS_ILOCK_SHARED) {
353 if (ilock_flags & BTRFS_ILOCK_TRY) {
354 if (!inode_trylock_shared(&inode->vfs_inode))
355 return -EAGAIN;
356 else
357 return 0;
358 }
359 inode_lock_shared(&inode->vfs_inode);
360 } else {
361 if (ilock_flags & BTRFS_ILOCK_TRY) {
362 if (!inode_trylock(&inode->vfs_inode))
363 return -EAGAIN;
364 else
365 return 0;
366 }
367 inode_lock(&inode->vfs_inode);
368 }
369 if (ilock_flags & BTRFS_ILOCK_MMAP)
370 down_write(&inode->i_mmap_lock);
371 return 0;
372 }
373
374 /*
375 * Unlock inode i_rwsem.
376 *
377 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
378 * to decide whether the lock acquired is shared or exclusive.
379 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)380 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
381 {
382 if (ilock_flags & BTRFS_ILOCK_MMAP)
383 up_write(&inode->i_mmap_lock);
384 if (ilock_flags & BTRFS_ILOCK_SHARED)
385 inode_unlock_shared(&inode->vfs_inode);
386 else
387 inode_unlock(&inode->vfs_inode);
388 }
389
390 /*
391 * Cleanup all submitted ordered extents in specified range to handle errors
392 * from the btrfs_run_delalloc_range() callback.
393 *
394 * NOTE: caller must ensure that when an error happens, it can not call
395 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
396 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
397 * to be released, which we want to happen only when finishing the ordered
398 * extent (btrfs_finish_ordered_io()).
399 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)400 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
401 u64 offset, u64 bytes)
402 {
403 pgoff_t index = offset >> PAGE_SHIFT;
404 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
405 struct folio *folio;
406
407 while (index <= end_index) {
408 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
409 if (IS_ERR(folio)) {
410 index++;
411 continue;
412 }
413
414 index = folio_next_index(folio);
415 /*
416 * Here we just clear all Ordered bits for every page in the
417 * range, then btrfs_mark_ordered_io_finished() will handle
418 * the ordered extent accounting for the range.
419 */
420 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
421 offset, bytes);
422 folio_put(folio);
423 }
424
425 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
426 }
427
428 static int btrfs_dirty_inode(struct btrfs_inode *inode);
429
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)430 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
431 struct btrfs_new_inode_args *args)
432 {
433 int ret;
434
435 if (args->default_acl) {
436 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
437 ACL_TYPE_DEFAULT);
438 if (ret)
439 return ret;
440 }
441 if (args->acl) {
442 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
443 if (ret)
444 return ret;
445 }
446 if (!args->default_acl && !args->acl)
447 cache_no_acl(args->inode);
448 return btrfs_xattr_security_init(trans, args->inode, args->dir,
449 &args->dentry->d_name);
450 }
451
452 /*
453 * this does all the hard work for inserting an inline extent into
454 * the btree. The caller should have done a btrfs_drop_extents so that
455 * no overlapping inline items exist in the btree
456 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)457 static int insert_inline_extent(struct btrfs_trans_handle *trans,
458 struct btrfs_path *path,
459 struct btrfs_inode *inode, bool extent_inserted,
460 size_t size, size_t compressed_size,
461 int compress_type,
462 struct folio *compressed_folio,
463 bool update_i_size)
464 {
465 struct btrfs_root *root = inode->root;
466 struct extent_buffer *leaf;
467 const u32 sectorsize = trans->fs_info->sectorsize;
468 char *kaddr;
469 unsigned long ptr;
470 struct btrfs_file_extent_item *ei;
471 int ret;
472 size_t cur_size = size;
473 u64 i_size;
474
475 /*
476 * The decompressed size must still be no larger than a sector. Under
477 * heavy race, we can have size == 0 passed in, but that shouldn't be a
478 * big deal and we can continue the insertion.
479 */
480 ASSERT(size <= sectorsize);
481
482 /*
483 * The compressed size also needs to be no larger than a sector.
484 * That's also why we only need one page as the parameter.
485 */
486 if (compressed_folio)
487 ASSERT(compressed_size <= sectorsize);
488 else
489 ASSERT(compressed_size == 0);
490
491 if (compressed_size && compressed_folio)
492 cur_size = compressed_size;
493
494 if (!extent_inserted) {
495 struct btrfs_key key;
496 size_t datasize;
497
498 key.objectid = btrfs_ino(inode);
499 key.type = BTRFS_EXTENT_DATA_KEY;
500 key.offset = 0;
501
502 datasize = btrfs_file_extent_calc_inline_size(cur_size);
503 ret = btrfs_insert_empty_item(trans, root, path, &key,
504 datasize);
505 if (ret)
506 goto fail;
507 }
508 leaf = path->nodes[0];
509 ei = btrfs_item_ptr(leaf, path->slots[0],
510 struct btrfs_file_extent_item);
511 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
512 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
513 btrfs_set_file_extent_encryption(leaf, ei, 0);
514 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
515 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
516 ptr = btrfs_file_extent_inline_start(ei);
517
518 if (compress_type != BTRFS_COMPRESS_NONE) {
519 kaddr = kmap_local_folio(compressed_folio, 0);
520 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
521 kunmap_local(kaddr);
522
523 btrfs_set_file_extent_compression(leaf, ei,
524 compress_type);
525 } else {
526 struct folio *folio;
527
528 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
529 ASSERT(!IS_ERR(folio));
530 btrfs_set_file_extent_compression(leaf, ei, 0);
531 kaddr = kmap_local_folio(folio, 0);
532 write_extent_buffer(leaf, kaddr, ptr, size);
533 kunmap_local(kaddr);
534 folio_put(folio);
535 }
536 btrfs_release_path(path);
537
538 /*
539 * We align size to sectorsize for inline extents just for simplicity
540 * sake.
541 */
542 ret = btrfs_inode_set_file_extent_range(inode, 0,
543 ALIGN(size, root->fs_info->sectorsize));
544 if (ret)
545 goto fail;
546
547 /*
548 * We're an inline extent, so nobody can extend the file past i_size
549 * without locking a page we already have locked.
550 *
551 * We must do any i_size and inode updates before we unlock the pages.
552 * Otherwise we could end up racing with unlink.
553 */
554 i_size = i_size_read(&inode->vfs_inode);
555 if (update_i_size && size > i_size) {
556 i_size_write(&inode->vfs_inode, size);
557 i_size = size;
558 }
559 inode->disk_i_size = i_size;
560
561 fail:
562 return ret;
563 }
564
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)565 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
566 u64 offset, u64 size,
567 size_t compressed_size)
568 {
569 struct btrfs_fs_info *fs_info = inode->root->fs_info;
570 u64 data_len = (compressed_size ?: size);
571
572 /* Inline extents must start at offset 0. */
573 if (offset != 0)
574 return false;
575
576 /* Inline extents are limited to sectorsize. */
577 if (size > fs_info->sectorsize)
578 return false;
579
580 /* We do not allow a non-compressed extent to be as large as block size. */
581 if (data_len >= fs_info->sectorsize)
582 return false;
583
584 /* We cannot exceed the maximum inline data size. */
585 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
586 return false;
587
588 /* We cannot exceed the user specified max_inline size. */
589 if (data_len > fs_info->max_inline)
590 return false;
591
592 /* Inline extents must be the entirety of the file. */
593 if (size < i_size_read(&inode->vfs_inode))
594 return false;
595
596 /* Encrypted file cannot be inlined. */
597 if (IS_ENCRYPTED(&inode->vfs_inode))
598 return false;
599
600 return true;
601 }
602
603 /*
604 * conditionally insert an inline extent into the file. This
605 * does the checks required to make sure the data is small enough
606 * to fit as an inline extent.
607 *
608 * If being used directly, you must have already checked we're allowed to cow
609 * the range by getting true from can_cow_file_range_inline().
610 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)611 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
612 u64 size, size_t compressed_size,
613 int compress_type,
614 struct folio *compressed_folio,
615 bool update_i_size)
616 {
617 struct btrfs_drop_extents_args drop_args = { 0 };
618 struct btrfs_root *root = inode->root;
619 struct btrfs_fs_info *fs_info = root->fs_info;
620 struct btrfs_trans_handle *trans;
621 u64 data_len = (compressed_size ?: size);
622 int ret;
623 struct btrfs_path *path;
624
625 path = btrfs_alloc_path();
626 if (!path)
627 return -ENOMEM;
628
629 trans = btrfs_join_transaction(root);
630 if (IS_ERR(trans)) {
631 btrfs_free_path(path);
632 return PTR_ERR(trans);
633 }
634 trans->block_rsv = &inode->block_rsv;
635
636 drop_args.path = path;
637 drop_args.start = 0;
638 drop_args.end = fs_info->sectorsize;
639 drop_args.drop_cache = true;
640 drop_args.replace_extent = true;
641 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
642 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
643 if (unlikely(ret)) {
644 btrfs_abort_transaction(trans, ret);
645 goto out;
646 }
647
648 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
649 size, compressed_size, compress_type,
650 compressed_folio, update_i_size);
651 if (unlikely(ret && ret != -ENOSPC)) {
652 btrfs_abort_transaction(trans, ret);
653 goto out;
654 } else if (ret == -ENOSPC) {
655 ret = 1;
656 goto out;
657 }
658
659 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
660 ret = btrfs_update_inode(trans, inode);
661 if (unlikely(ret && ret != -ENOSPC)) {
662 btrfs_abort_transaction(trans, ret);
663 goto out;
664 } else if (ret == -ENOSPC) {
665 ret = 1;
666 goto out;
667 }
668
669 btrfs_set_inode_full_sync(inode);
670 out:
671 /*
672 * Don't forget to free the reserved space, as for inlined extent
673 * it won't count as data extent, free them directly here.
674 * And at reserve time, it's always aligned to page size, so
675 * just free one page here.
676 */
677 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
678 btrfs_free_path(path);
679 btrfs_end_transaction(trans);
680 return ret;
681 }
682
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)683 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
684 struct folio *locked_folio,
685 u64 offset, u64 end,
686 size_t compressed_size,
687 int compress_type,
688 struct folio *compressed_folio,
689 bool update_i_size)
690 {
691 struct extent_state *cached = NULL;
692 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
693 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
694 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
695 int ret;
696
697 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
698 return 1;
699
700 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
701 ret = __cow_file_range_inline(inode, size, compressed_size,
702 compress_type, compressed_folio,
703 update_i_size);
704 if (ret > 0) {
705 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
706 return ret;
707 }
708
709 /*
710 * In the successful case (ret == 0 here), cow_file_range will return 1.
711 *
712 * Quite a bit further up the callstack in extent_writepage(), ret == 1
713 * is treated as a short circuited success and does not unlock the folio,
714 * so we must do it here.
715 *
716 * In the failure case, the locked_folio does get unlocked by
717 * btrfs_folio_end_all_writers, which asserts that it is still locked
718 * at that point, so we must *not* unlock it here.
719 *
720 * The other two callsites in compress_file_range do not have a
721 * locked_folio, so they are not relevant to this logic.
722 */
723 if (ret == 0)
724 locked_folio = NULL;
725
726 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
727 clear_flags, PAGE_UNLOCK |
728 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
729 return ret;
730 }
731
732 struct async_extent {
733 u64 start;
734 u64 ram_size;
735 u64 compressed_size;
736 struct folio **folios;
737 unsigned long nr_folios;
738 int compress_type;
739 struct list_head list;
740 };
741
742 struct async_chunk {
743 struct btrfs_inode *inode;
744 struct folio *locked_folio;
745 u64 start;
746 u64 end;
747 blk_opf_t write_flags;
748 struct list_head extents;
749 struct cgroup_subsys_state *blkcg_css;
750 struct btrfs_work work;
751 struct async_cow *async_cow;
752 };
753
754 struct async_cow {
755 atomic_t num_chunks;
756 struct async_chunk chunks[];
757 };
758
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)759 static noinline int add_async_extent(struct async_chunk *cow,
760 u64 start, u64 ram_size,
761 u64 compressed_size,
762 struct folio **folios,
763 unsigned long nr_folios,
764 int compress_type)
765 {
766 struct async_extent *async_extent;
767
768 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
769 if (!async_extent)
770 return -ENOMEM;
771 async_extent->start = start;
772 async_extent->ram_size = ram_size;
773 async_extent->compressed_size = compressed_size;
774 async_extent->folios = folios;
775 async_extent->nr_folios = nr_folios;
776 async_extent->compress_type = compress_type;
777 list_add_tail(&async_extent->list, &cow->extents);
778 return 0;
779 }
780
781 /*
782 * Check if the inode needs to be submitted to compression, based on mount
783 * options, defragmentation, properties or heuristics.
784 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)785 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
786 u64 end)
787 {
788 struct btrfs_fs_info *fs_info = inode->root->fs_info;
789
790 if (!btrfs_inode_can_compress(inode)) {
791 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
792 return 0;
793 }
794
795 /* Defrag ioctl takes precedence over mount options and properties. */
796 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
797 return 0;
798 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
799 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
800 return 1;
801 /* force compress */
802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
803 return 1;
804 /* bad compression ratios */
805 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
806 return 0;
807 if (btrfs_test_opt(fs_info, COMPRESS) ||
808 inode->flags & BTRFS_INODE_COMPRESS ||
809 inode->prop_compress)
810 return btrfs_compress_heuristic(inode, start, end);
811 return 0;
812 }
813
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)814 static inline void inode_should_defrag(struct btrfs_inode *inode,
815 u64 start, u64 end, u64 num_bytes, u32 small_write)
816 {
817 /* If this is a small write inside eof, kick off a defrag */
818 if (num_bytes < small_write &&
819 (start > 0 || end + 1 < inode->disk_i_size))
820 btrfs_add_inode_defrag(inode, small_write);
821 }
822
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)823 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
824 {
825 const pgoff_t end_index = end >> PAGE_SHIFT;
826 struct folio *folio;
827 int ret = 0;
828
829 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
830 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
831 if (IS_ERR(folio)) {
832 if (!ret)
833 ret = PTR_ERR(folio);
834 continue;
835 }
836 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
837 end + 1 - start);
838 folio_put(folio);
839 }
840 return ret;
841 }
842
843 /*
844 * Work queue call back to started compression on a file and pages.
845 *
846 * This is done inside an ordered work queue, and the compression is spread
847 * across many cpus. The actual IO submission is step two, and the ordered work
848 * queue takes care of making sure that happens in the same order things were
849 * put onto the queue by writepages and friends.
850 *
851 * If this code finds it can't get good compression, it puts an entry onto the
852 * work queue to write the uncompressed bytes. This makes sure that both
853 * compressed inodes and uncompressed inodes are written in the same order that
854 * the flusher thread sent them down.
855 */
compress_file_range(struct btrfs_work * work)856 static void compress_file_range(struct btrfs_work *work)
857 {
858 struct async_chunk *async_chunk =
859 container_of(work, struct async_chunk, work);
860 struct btrfs_inode *inode = async_chunk->inode;
861 struct btrfs_fs_info *fs_info = inode->root->fs_info;
862 struct address_space *mapping = inode->vfs_inode.i_mapping;
863 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
864 const u32 min_folio_size = btrfs_min_folio_size(fs_info);
865 u64 blocksize = fs_info->sectorsize;
866 u64 start = async_chunk->start;
867 u64 end = async_chunk->end;
868 u64 actual_end;
869 u64 i_size;
870 int ret = 0;
871 struct folio **folios = NULL;
872 unsigned long nr_folios;
873 unsigned long total_compressed = 0;
874 unsigned long total_in = 0;
875 unsigned int loff;
876 int i;
877 int compress_type = fs_info->compress_type;
878 int compress_level = fs_info->compress_level;
879
880 if (unlikely(btrfs_is_shutdown(fs_info)))
881 goto cleanup_and_bail_uncompressed;
882
883 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
884
885 /*
886 * We need to call clear_page_dirty_for_io on each page in the range.
887 * Otherwise applications with the file mmap'd can wander in and change
888 * the page contents while we are compressing them.
889 */
890 ret = extent_range_clear_dirty_for_io(inode, start, end);
891
892 /*
893 * All the folios should have been locked thus no failure.
894 *
895 * And even if some folios are missing, btrfs_compress_folios()
896 * would handle them correctly, so here just do an ASSERT() check for
897 * early logic errors.
898 */
899 ASSERT(ret == 0);
900
901 /*
902 * We need to save i_size before now because it could change in between
903 * us evaluating the size and assigning it. This is because we lock and
904 * unlock the page in truncate and fallocate, and then modify the i_size
905 * later on.
906 *
907 * The barriers are to emulate READ_ONCE, remove that once i_size_read
908 * does that for us.
909 */
910 barrier();
911 i_size = i_size_read(&inode->vfs_inode);
912 barrier();
913 actual_end = min_t(u64, i_size, end + 1);
914 again:
915 folios = NULL;
916 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1;
917 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift);
918
919 /*
920 * we don't want to send crud past the end of i_size through
921 * compression, that's just a waste of CPU time. So, if the
922 * end of the file is before the start of our current
923 * requested range of bytes, we bail out to the uncompressed
924 * cleanup code that can deal with all of this.
925 *
926 * It isn't really the fastest way to fix things, but this is a
927 * very uncommon corner.
928 */
929 if (actual_end <= start)
930 goto cleanup_and_bail_uncompressed;
931
932 total_compressed = actual_end - start;
933
934 /*
935 * Skip compression for a small file range(<=blocksize) that
936 * isn't an inline extent, since it doesn't save disk space at all.
937 */
938 if (total_compressed <= blocksize &&
939 (start > 0 || end + 1 < inode->disk_i_size))
940 goto cleanup_and_bail_uncompressed;
941
942 total_compressed = min_t(unsigned long, total_compressed,
943 BTRFS_MAX_UNCOMPRESSED);
944 total_in = 0;
945 ret = 0;
946
947 /*
948 * We do compression for mount -o compress and when the inode has not
949 * been flagged as NOCOMPRESS. This flag can change at any time if we
950 * discover bad compression ratios.
951 */
952 if (!inode_need_compress(inode, start, end))
953 goto cleanup_and_bail_uncompressed;
954
955 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
956 if (!folios) {
957 /*
958 * Memory allocation failure is not a fatal error, we can fall
959 * back to uncompressed code.
960 */
961 goto cleanup_and_bail_uncompressed;
962 }
963
964 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
965 compress_type = inode->defrag_compress;
966 compress_level = inode->defrag_compress_level;
967 } else if (inode->prop_compress) {
968 compress_type = inode->prop_compress;
969 }
970
971 /* Compression level is applied here. */
972 ret = btrfs_compress_folios(compress_type, compress_level,
973 inode, start, folios, &nr_folios, &total_in,
974 &total_compressed);
975 if (ret)
976 goto mark_incompressible;
977
978 /*
979 * Zero the tail end of the last folio, as we might be sending it down
980 * to disk.
981 */
982 loff = (total_compressed & (min_folio_size - 1));
983 if (loff)
984 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff);
985
986 /*
987 * Try to create an inline extent.
988 *
989 * If we didn't compress the entire range, try to create an uncompressed
990 * inline extent, else a compressed one.
991 *
992 * Check cow_file_range() for why we don't even try to create inline
993 * extent for the subpage case.
994 */
995 if (total_in < actual_end)
996 ret = cow_file_range_inline(inode, NULL, start, end, 0,
997 BTRFS_COMPRESS_NONE, NULL, false);
998 else
999 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1000 compress_type, folios[0], false);
1001 if (ret <= 0) {
1002 if (ret < 0)
1003 mapping_set_error(mapping, -EIO);
1004 goto free_pages;
1005 }
1006
1007 /*
1008 * We aren't doing an inline extent. Round the compressed size up to a
1009 * block size boundary so the allocator does sane things.
1010 */
1011 total_compressed = ALIGN(total_compressed, blocksize);
1012
1013 /*
1014 * One last check to make sure the compression is really a win, compare
1015 * the page count read with the blocks on disk, compression must free at
1016 * least one sector.
1017 */
1018 total_in = round_up(total_in, fs_info->sectorsize);
1019 if (total_compressed + blocksize > total_in)
1020 goto mark_incompressible;
1021
1022 /*
1023 * The async work queues will take care of doing actual allocation on
1024 * disk for these compressed pages, and will submit the bios.
1025 */
1026 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1027 nr_folios, compress_type);
1028 BUG_ON(ret);
1029 if (start + total_in < end) {
1030 start += total_in;
1031 cond_resched();
1032 goto again;
1033 }
1034 return;
1035
1036 mark_incompressible:
1037 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1038 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1039 cleanup_and_bail_uncompressed:
1040 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1041 BTRFS_COMPRESS_NONE);
1042 BUG_ON(ret);
1043 free_pages:
1044 if (folios) {
1045 for (i = 0; i < nr_folios; i++) {
1046 WARN_ON(folios[i]->mapping);
1047 btrfs_free_compr_folio(folios[i]);
1048 }
1049 kfree(folios);
1050 }
1051 }
1052
free_async_extent_pages(struct async_extent * async_extent)1053 static void free_async_extent_pages(struct async_extent *async_extent)
1054 {
1055 int i;
1056
1057 if (!async_extent->folios)
1058 return;
1059
1060 for (i = 0; i < async_extent->nr_folios; i++) {
1061 WARN_ON(async_extent->folios[i]->mapping);
1062 btrfs_free_compr_folio(async_extent->folios[i]);
1063 }
1064 kfree(async_extent->folios);
1065 async_extent->nr_folios = 0;
1066 async_extent->folios = NULL;
1067 }
1068
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1069 static void submit_uncompressed_range(struct btrfs_inode *inode,
1070 struct async_extent *async_extent,
1071 struct folio *locked_folio)
1072 {
1073 u64 start = async_extent->start;
1074 u64 end = async_extent->start + async_extent->ram_size - 1;
1075 int ret;
1076 struct writeback_control wbc = {
1077 .sync_mode = WB_SYNC_ALL,
1078 .range_start = start,
1079 .range_end = end,
1080 .no_cgroup_owner = 1,
1081 };
1082
1083 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1084 ret = run_delalloc_cow(inode, locked_folio, start, end,
1085 &wbc, false);
1086 wbc_detach_inode(&wbc);
1087 if (ret < 0) {
1088 if (locked_folio)
1089 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1090 start, async_extent->ram_size);
1091 btrfs_err_rl(inode->root->fs_info,
1092 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1093 __func__, btrfs_root_id(inode->root),
1094 btrfs_ino(inode), start, async_extent->ram_size, ret);
1095 }
1096 }
1097
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1098 static void submit_one_async_extent(struct async_chunk *async_chunk,
1099 struct async_extent *async_extent,
1100 u64 *alloc_hint)
1101 {
1102 struct btrfs_inode *inode = async_chunk->inode;
1103 struct extent_io_tree *io_tree = &inode->io_tree;
1104 struct btrfs_root *root = inode->root;
1105 struct btrfs_fs_info *fs_info = root->fs_info;
1106 struct btrfs_ordered_extent *ordered;
1107 struct btrfs_file_extent file_extent;
1108 struct btrfs_key ins;
1109 struct folio *locked_folio = NULL;
1110 struct extent_state *cached = NULL;
1111 struct extent_map *em;
1112 int ret = 0;
1113 bool free_pages = false;
1114 u64 start = async_extent->start;
1115 u64 end = async_extent->start + async_extent->ram_size - 1;
1116
1117 if (async_chunk->blkcg_css)
1118 kthread_associate_blkcg(async_chunk->blkcg_css);
1119
1120 /*
1121 * If async_chunk->locked_folio is in the async_extent range, we need to
1122 * handle it.
1123 */
1124 if (async_chunk->locked_folio) {
1125 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1126 u64 locked_folio_end = locked_folio_start +
1127 folio_size(async_chunk->locked_folio) - 1;
1128
1129 if (!(start >= locked_folio_end || end <= locked_folio_start))
1130 locked_folio = async_chunk->locked_folio;
1131 }
1132
1133 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1134 ASSERT(!async_extent->folios);
1135 ASSERT(async_extent->nr_folios == 0);
1136 submit_uncompressed_range(inode, async_extent, locked_folio);
1137 free_pages = true;
1138 goto done;
1139 }
1140
1141 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 async_extent->compressed_size,
1143 async_extent->compressed_size,
1144 0, *alloc_hint, &ins, true, true);
1145 if (ret) {
1146 /*
1147 * We can't reserve contiguous space for the compressed size.
1148 * Unlikely, but it's possible that we could have enough
1149 * non-contiguous space for the uncompressed size instead. So
1150 * fall back to uncompressed.
1151 */
1152 submit_uncompressed_range(inode, async_extent, locked_folio);
1153 free_pages = true;
1154 goto done;
1155 }
1156
1157 btrfs_lock_extent(io_tree, start, end, &cached);
1158
1159 /* Here we're doing allocation and writeback of the compressed pages */
1160 file_extent.disk_bytenr = ins.objectid;
1161 file_extent.disk_num_bytes = ins.offset;
1162 file_extent.ram_bytes = async_extent->ram_size;
1163 file_extent.num_bytes = async_extent->ram_size;
1164 file_extent.offset = 0;
1165 file_extent.compression = async_extent->compress_type;
1166
1167 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1168 if (IS_ERR(em)) {
1169 ret = PTR_ERR(em);
1170 goto out_free_reserve;
1171 }
1172 btrfs_free_extent_map(em);
1173
1174 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1175 1U << BTRFS_ORDERED_COMPRESSED);
1176 if (IS_ERR(ordered)) {
1177 btrfs_drop_extent_map_range(inode, start, end, false);
1178 ret = PTR_ERR(ordered);
1179 goto out_free_reserve;
1180 }
1181 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1182
1183 /* Clear dirty, set writeback and unlock the pages. */
1184 extent_clear_unlock_delalloc(inode, start, end,
1185 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1186 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1187 btrfs_submit_compressed_write(ordered,
1188 async_extent->folios, /* compressed_folios */
1189 async_extent->nr_folios,
1190 async_chunk->write_flags, true);
1191 *alloc_hint = ins.objectid + ins.offset;
1192 done:
1193 if (async_chunk->blkcg_css)
1194 kthread_associate_blkcg(NULL);
1195 if (free_pages)
1196 free_async_extent_pages(async_extent);
1197 kfree(async_extent);
1198 return;
1199
1200 out_free_reserve:
1201 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1202 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1203 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1204 extent_clear_unlock_delalloc(inode, start, end,
1205 NULL, &cached,
1206 EXTENT_LOCKED | EXTENT_DELALLOC |
1207 EXTENT_DELALLOC_NEW |
1208 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1209 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1210 PAGE_END_WRITEBACK);
1211 free_async_extent_pages(async_extent);
1212 if (async_chunk->blkcg_css)
1213 kthread_associate_blkcg(NULL);
1214 btrfs_debug(fs_info,
1215 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1216 btrfs_root_id(root), btrfs_ino(inode), start,
1217 async_extent->ram_size, ret);
1218 kfree(async_extent);
1219 }
1220
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1221 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1222 u64 num_bytes)
1223 {
1224 struct extent_map_tree *em_tree = &inode->extent_tree;
1225 struct extent_map *em;
1226 u64 alloc_hint = 0;
1227
1228 read_lock(&em_tree->lock);
1229 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1230 if (em) {
1231 /*
1232 * if block start isn't an actual block number then find the
1233 * first block in this inode and use that as a hint. If that
1234 * block is also bogus then just don't worry about it.
1235 */
1236 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1237 btrfs_free_extent_map(em);
1238 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1239 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1240 alloc_hint = btrfs_extent_map_block_start(em);
1241 if (em)
1242 btrfs_free_extent_map(em);
1243 } else {
1244 alloc_hint = btrfs_extent_map_block_start(em);
1245 btrfs_free_extent_map(em);
1246 }
1247 }
1248 read_unlock(&em_tree->lock);
1249
1250 return alloc_hint;
1251 }
1252
1253 /*
1254 * when extent_io.c finds a delayed allocation range in the file,
1255 * the call backs end up in this code. The basic idea is to
1256 * allocate extents on disk for the range, and create ordered data structs
1257 * in ram to track those extents.
1258 *
1259 * locked_folio is the folio that writepage had locked already. We use
1260 * it to make sure we don't do extra locks or unlocks.
1261 *
1262 * When this function fails, it unlocks all folios except @locked_folio.
1263 *
1264 * When this function successfully creates an inline extent, it returns 1 and
1265 * unlocks all folios including locked_folio and starts I/O on them.
1266 * (In reality inline extents are limited to a single block, so locked_folio is
1267 * the only folio handled anyway).
1268 *
1269 * When this function succeed and creates a normal extent, the folio locking
1270 * status depends on the passed in flags:
1271 *
1272 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked.
1273 * - Else all folios except for @locked_folio are unlocked.
1274 *
1275 * When a failure happens in the second or later iteration of the
1276 * while-loop, the ordered extents created in previous iterations are cleaned up.
1277 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,unsigned long flags)1278 static noinline int cow_file_range(struct btrfs_inode *inode,
1279 struct folio *locked_folio, u64 start,
1280 u64 end, u64 *done_offset,
1281 unsigned long flags)
1282 {
1283 struct btrfs_root *root = inode->root;
1284 struct btrfs_fs_info *fs_info = root->fs_info;
1285 struct extent_state *cached = NULL;
1286 u64 alloc_hint = 0;
1287 u64 orig_start = start;
1288 u64 num_bytes;
1289 u64 cur_alloc_size = 0;
1290 u64 min_alloc_size;
1291 u64 blocksize = fs_info->sectorsize;
1292 struct btrfs_key ins;
1293 struct extent_map *em;
1294 unsigned clear_bits;
1295 unsigned long page_ops;
1296 int ret = 0;
1297
1298 if (unlikely(btrfs_is_shutdown(fs_info))) {
1299 ret = -EIO;
1300 goto out_unlock;
1301 }
1302
1303 if (btrfs_is_free_space_inode(inode)) {
1304 ret = -EINVAL;
1305 goto out_unlock;
1306 }
1307
1308 num_bytes = ALIGN(end - start + 1, blocksize);
1309 num_bytes = max(blocksize, num_bytes);
1310 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1311
1312 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1313
1314 if (!(flags & COW_FILE_RANGE_NO_INLINE)) {
1315 /* lets try to make an inline extent */
1316 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1317 BTRFS_COMPRESS_NONE, NULL, false);
1318 if (ret <= 0) {
1319 /*
1320 * We succeeded, return 1 so the caller knows we're done
1321 * with this page and already handled the IO.
1322 *
1323 * If there was an error then cow_file_range_inline() has
1324 * already done the cleanup.
1325 */
1326 if (ret == 0)
1327 ret = 1;
1328 goto done;
1329 }
1330 }
1331
1332 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1333
1334 /*
1335 * We're not doing compressed IO, don't unlock the first page (which
1336 * the caller expects to stay locked), don't clear any dirty bits and
1337 * don't set any writeback bits.
1338 *
1339 * Do set the Ordered (Private2) bit so we know this page was properly
1340 * setup for writepage.
1341 */
1342 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK);
1343 page_ops |= PAGE_SET_ORDERED;
1344
1345 /*
1346 * Relocation relies on the relocated extents to have exactly the same
1347 * size as the original extents. Normally writeback for relocation data
1348 * extents follows a NOCOW path because relocation preallocates the
1349 * extents. However, due to an operation such as scrub turning a block
1350 * group to RO mode, it may fallback to COW mode, so we must make sure
1351 * an extent allocated during COW has exactly the requested size and can
1352 * not be split into smaller extents, otherwise relocation breaks and
1353 * fails during the stage where it updates the bytenr of file extent
1354 * items.
1355 */
1356 if (btrfs_is_data_reloc_root(root))
1357 min_alloc_size = num_bytes;
1358 else
1359 min_alloc_size = fs_info->sectorsize;
1360
1361 while (num_bytes > 0) {
1362 struct btrfs_ordered_extent *ordered;
1363 struct btrfs_file_extent file_extent;
1364
1365 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1366 min_alloc_size, 0, alloc_hint,
1367 &ins, true, true);
1368 if (ret == -EAGAIN) {
1369 /*
1370 * btrfs_reserve_extent only returns -EAGAIN for zoned
1371 * file systems, which is an indication that there are
1372 * no active zones to allocate from at the moment.
1373 *
1374 * If this is the first loop iteration, wait for at
1375 * least one zone to finish before retrying the
1376 * allocation. Otherwise ask the caller to write out
1377 * the already allocated blocks before coming back to
1378 * us, or return -ENOSPC if it can't handle retries.
1379 */
1380 ASSERT(btrfs_is_zoned(fs_info));
1381 if (start == orig_start) {
1382 wait_on_bit_io(&inode->root->fs_info->flags,
1383 BTRFS_FS_NEED_ZONE_FINISH,
1384 TASK_UNINTERRUPTIBLE);
1385 continue;
1386 }
1387 if (done_offset) {
1388 /*
1389 * Move @end to the end of the processed range,
1390 * and exit the loop to unlock the processed extents.
1391 */
1392 end = start - 1;
1393 ret = 0;
1394 break;
1395 }
1396 ret = -ENOSPC;
1397 }
1398 if (ret < 0)
1399 goto out_unlock;
1400 cur_alloc_size = ins.offset;
1401
1402 file_extent.disk_bytenr = ins.objectid;
1403 file_extent.disk_num_bytes = ins.offset;
1404 file_extent.num_bytes = ins.offset;
1405 file_extent.ram_bytes = ins.offset;
1406 file_extent.offset = 0;
1407 file_extent.compression = BTRFS_COMPRESS_NONE;
1408
1409 /*
1410 * Locked range will be released either during error clean up or
1411 * after the whole range is finished.
1412 */
1413 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1414 &cached);
1415
1416 em = btrfs_create_io_em(inode, start, &file_extent,
1417 BTRFS_ORDERED_REGULAR);
1418 if (IS_ERR(em)) {
1419 btrfs_unlock_extent(&inode->io_tree, start,
1420 start + cur_alloc_size - 1, &cached);
1421 ret = PTR_ERR(em);
1422 goto out_reserve;
1423 }
1424 btrfs_free_extent_map(em);
1425
1426 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1427 1U << BTRFS_ORDERED_REGULAR);
1428 if (IS_ERR(ordered)) {
1429 btrfs_unlock_extent(&inode->io_tree, start,
1430 start + cur_alloc_size - 1, &cached);
1431 ret = PTR_ERR(ordered);
1432 goto out_drop_extent_cache;
1433 }
1434
1435 if (btrfs_is_data_reloc_root(root)) {
1436 ret = btrfs_reloc_clone_csums(ordered);
1437
1438 /*
1439 * Only drop cache here, and process as normal.
1440 *
1441 * We must not allow extent_clear_unlock_delalloc()
1442 * at out_unlock label to free meta of this ordered
1443 * extent, as its meta should be freed by
1444 * btrfs_finish_ordered_io().
1445 *
1446 * So we must continue until @start is increased to
1447 * skip current ordered extent.
1448 */
1449 if (ret)
1450 btrfs_drop_extent_map_range(inode, start,
1451 start + cur_alloc_size - 1,
1452 false);
1453 }
1454 btrfs_put_ordered_extent(ordered);
1455
1456 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1457
1458 if (num_bytes < cur_alloc_size)
1459 num_bytes = 0;
1460 else
1461 num_bytes -= cur_alloc_size;
1462 alloc_hint = ins.objectid + ins.offset;
1463 start += cur_alloc_size;
1464 cur_alloc_size = 0;
1465
1466 /*
1467 * btrfs_reloc_clone_csums() error, since start is increased
1468 * extent_clear_unlock_delalloc() at out_unlock label won't
1469 * free metadata of current ordered extent, we're OK to exit.
1470 */
1471 if (ret)
1472 goto out_unlock;
1473 }
1474 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1475 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1476 done:
1477 if (done_offset)
1478 *done_offset = end;
1479 return ret;
1480
1481 out_drop_extent_cache:
1482 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1483 out_reserve:
1484 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1485 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1486 out_unlock:
1487 /*
1488 * Now, we have three regions to clean up:
1489 *
1490 * |-------(1)----|---(2)---|-------------(3)----------|
1491 * `- orig_start `- start `- start + cur_alloc_size `- end
1492 *
1493 * We process each region below.
1494 */
1495
1496 /*
1497 * For the range (1). We have already instantiated the ordered extents
1498 * for this region, thus we need to cleanup those ordered extents.
1499 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1500 * are also handled by the ordered extents cleanup.
1501 *
1502 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1503 * finish the writeback of the involved folios, which will be never submitted.
1504 */
1505 if (orig_start < start) {
1506 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1507 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1508
1509 if (!locked_folio)
1510 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1511
1512 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1513 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1514 locked_folio, NULL, clear_bits, page_ops);
1515 }
1516
1517 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1518 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1519 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1520
1521 /*
1522 * For the range (2). If we reserved an extent for our delalloc range
1523 * (or a subrange) and failed to create the respective ordered extent,
1524 * then it means that when we reserved the extent we decremented the
1525 * extent's size from the data space_info's bytes_may_use counter and
1526 * incremented the space_info's bytes_reserved counter by the same
1527 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1528 * to decrement again the data space_info's bytes_may_use counter,
1529 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1530 */
1531 if (cur_alloc_size) {
1532 extent_clear_unlock_delalloc(inode, start,
1533 start + cur_alloc_size - 1,
1534 locked_folio, &cached, clear_bits,
1535 page_ops);
1536 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1537 }
1538
1539 /*
1540 * For the range (3). We never touched the region. In addition to the
1541 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1542 * space_info's bytes_may_use counter, reserved in
1543 * btrfs_check_data_free_space().
1544 */
1545 if (start + cur_alloc_size < end) {
1546 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1547 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1548 end, locked_folio,
1549 &cached, clear_bits, page_ops);
1550 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1551 end - start - cur_alloc_size + 1, NULL);
1552 }
1553 btrfs_err(fs_info,
1554 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d",
1555 __func__, btrfs_root_id(inode->root),
1556 btrfs_ino(inode), orig_start, end + 1 - orig_start,
1557 start, cur_alloc_size, ret);
1558 return ret;
1559 }
1560
1561 /*
1562 * Phase two of compressed writeback. This is the ordered portion of the code,
1563 * which only gets called in the order the work was queued. We walk all the
1564 * async extents created by compress_file_range and send them down to the disk.
1565 *
1566 * If called with @do_free == true then it'll try to finish the work and free
1567 * the work struct eventually.
1568 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1569 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1570 {
1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 work);
1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 struct async_extent *async_extent;
1575 unsigned long nr_pages;
1576 u64 alloc_hint = 0;
1577
1578 if (do_free) {
1579 struct async_cow *async_cow;
1580
1581 btrfs_add_delayed_iput(async_chunk->inode);
1582 if (async_chunk->blkcg_css)
1583 css_put(async_chunk->blkcg_css);
1584
1585 async_cow = async_chunk->async_cow;
1586 if (atomic_dec_and_test(&async_cow->num_chunks))
1587 kvfree(async_cow);
1588 return;
1589 }
1590
1591 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1592 PAGE_SHIFT;
1593
1594 while (!list_empty(&async_chunk->extents)) {
1595 async_extent = list_first_entry(&async_chunk->extents,
1596 struct async_extent, list);
1597 list_del(&async_extent->list);
1598 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1599 }
1600
1601 /* atomic_sub_return implies a barrier */
1602 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1603 5 * SZ_1M)
1604 cond_wake_up_nomb(&fs_info->async_submit_wait);
1605 }
1606
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1607 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1608 struct folio *locked_folio, u64 start,
1609 u64 end, struct writeback_control *wbc)
1610 {
1611 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1612 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1613 struct async_cow *ctx;
1614 struct async_chunk *async_chunk;
1615 unsigned long nr_pages;
1616 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1617 int i;
1618 unsigned nofs_flag;
1619 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1620
1621 nofs_flag = memalloc_nofs_save();
1622 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1623 memalloc_nofs_restore(nofs_flag);
1624 if (!ctx)
1625 return false;
1626
1627 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1628
1629 async_chunk = ctx->chunks;
1630 atomic_set(&ctx->num_chunks, num_chunks);
1631
1632 for (i = 0; i < num_chunks; i++) {
1633 u64 cur_end = min(end, start + SZ_512K - 1);
1634
1635 /*
1636 * igrab is called higher up in the call chain, take only the
1637 * lightweight reference for the callback lifetime
1638 */
1639 ihold(&inode->vfs_inode);
1640 async_chunk[i].async_cow = ctx;
1641 async_chunk[i].inode = inode;
1642 async_chunk[i].start = start;
1643 async_chunk[i].end = cur_end;
1644 async_chunk[i].write_flags = write_flags;
1645 INIT_LIST_HEAD(&async_chunk[i].extents);
1646
1647 /*
1648 * The locked_folio comes all the way from writepage and its
1649 * the original folio we were actually given. As we spread
1650 * this large delalloc region across multiple async_chunk
1651 * structs, only the first struct needs a pointer to
1652 * locked_folio.
1653 *
1654 * This way we don't need racey decisions about who is supposed
1655 * to unlock it.
1656 */
1657 if (locked_folio) {
1658 /*
1659 * Depending on the compressibility, the pages might or
1660 * might not go through async. We want all of them to
1661 * be accounted against wbc once. Let's do it here
1662 * before the paths diverge. wbc accounting is used
1663 * only for foreign writeback detection and doesn't
1664 * need full accuracy. Just account the whole thing
1665 * against the first page.
1666 */
1667 wbc_account_cgroup_owner(wbc, locked_folio,
1668 cur_end - start);
1669 async_chunk[i].locked_folio = locked_folio;
1670 locked_folio = NULL;
1671 } else {
1672 async_chunk[i].locked_folio = NULL;
1673 }
1674
1675 if (blkcg_css != blkcg_root_css) {
1676 css_get(blkcg_css);
1677 async_chunk[i].blkcg_css = blkcg_css;
1678 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1679 } else {
1680 async_chunk[i].blkcg_css = NULL;
1681 }
1682
1683 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1684 submit_compressed_extents);
1685
1686 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1687 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1688
1689 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1690
1691 start = cur_end + 1;
1692 }
1693 return true;
1694 }
1695
1696 /*
1697 * Run the delalloc range from start to end, and write back any dirty pages
1698 * covered by the range.
1699 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1700 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1701 struct folio *locked_folio, u64 start,
1702 u64 end, struct writeback_control *wbc,
1703 bool pages_dirty)
1704 {
1705 u64 done_offset = end;
1706 int ret;
1707
1708 while (start <= end) {
1709 ret = cow_file_range(inode, locked_folio, start, end,
1710 &done_offset, COW_FILE_RANGE_KEEP_LOCKED);
1711 if (ret)
1712 return ret;
1713 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1714 start, done_offset, wbc, pages_dirty);
1715 start = done_offset + 1;
1716 }
1717
1718 return 1;
1719 }
1720
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1721 static int fallback_to_cow(struct btrfs_inode *inode,
1722 struct folio *locked_folio, const u64 start,
1723 const u64 end)
1724 {
1725 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1726 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1727 const u64 range_bytes = end + 1 - start;
1728 struct extent_io_tree *io_tree = &inode->io_tree;
1729 struct extent_state *cached_state = NULL;
1730 u64 range_start = start;
1731 u64 count;
1732 int ret;
1733
1734 /*
1735 * If EXTENT_NORESERVE is set it means that when the buffered write was
1736 * made we had not enough available data space and therefore we did not
1737 * reserve data space for it, since we though we could do NOCOW for the
1738 * respective file range (either there is prealloc extent or the inode
1739 * has the NOCOW bit set).
1740 *
1741 * However when we need to fallback to COW mode (because for example the
1742 * block group for the corresponding extent was turned to RO mode by a
1743 * scrub or relocation) we need to do the following:
1744 *
1745 * 1) We increment the bytes_may_use counter of the data space info.
1746 * If COW succeeds, it allocates a new data extent and after doing
1747 * that it decrements the space info's bytes_may_use counter and
1748 * increments its bytes_reserved counter by the same amount (we do
1749 * this at btrfs_add_reserved_bytes()). So we need to increment the
1750 * bytes_may_use counter to compensate (when space is reserved at
1751 * buffered write time, the bytes_may_use counter is incremented);
1752 *
1753 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1754 * that if the COW path fails for any reason, it decrements (through
1755 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1756 * data space info, which we incremented in the step above.
1757 *
1758 * If we need to fallback to cow and the inode corresponds to a free
1759 * space cache inode or an inode of the data relocation tree, we must
1760 * also increment bytes_may_use of the data space_info for the same
1761 * reason. Space caches and relocated data extents always get a prealloc
1762 * extent for them, however scrub or balance may have set the block
1763 * group that contains that extent to RO mode and therefore force COW
1764 * when starting writeback.
1765 */
1766 btrfs_lock_extent(io_tree, start, end, &cached_state);
1767 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1768 EXTENT_NORESERVE, 0, NULL);
1769 if (count > 0 || is_space_ino || is_reloc_ino) {
1770 u64 bytes = count;
1771 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1772 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1773
1774 if (is_space_ino || is_reloc_ino)
1775 bytes = range_bytes;
1776
1777 spin_lock(&sinfo->lock);
1778 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1779 spin_unlock(&sinfo->lock);
1780
1781 if (count > 0)
1782 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1783 &cached_state);
1784 }
1785 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1786
1787 /*
1788 * Don't try to create inline extents, as a mix of inline extent that
1789 * is written out and unlocked directly and a normal NOCOW extent
1790 * doesn't work.
1791 *
1792 * And here we do not unlock the folio after a successful run.
1793 * The folios will be unlocked after everything is finished, or by error handling.
1794 *
1795 * This is to ensure error handling won't need to clear dirty/ordered flags without
1796 * a locked folio, which can race with writeback.
1797 */
1798 ret = cow_file_range(inode, locked_folio, start, end, NULL,
1799 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED);
1800 ASSERT(ret != 1);
1801 return ret;
1802 }
1803
1804 struct can_nocow_file_extent_args {
1805 /* Input fields. */
1806
1807 /* Start file offset of the range we want to NOCOW. */
1808 u64 start;
1809 /* End file offset (inclusive) of the range we want to NOCOW. */
1810 u64 end;
1811 bool writeback_path;
1812 /*
1813 * Free the path passed to can_nocow_file_extent() once it's not needed
1814 * anymore.
1815 */
1816 bool free_path;
1817
1818 /*
1819 * Output fields. Only set when can_nocow_file_extent() returns 1.
1820 * The expected file extent for the NOCOW write.
1821 */
1822 struct btrfs_file_extent file_extent;
1823 };
1824
1825 /*
1826 * Check if we can NOCOW the file extent that the path points to.
1827 * This function may return with the path released, so the caller should check
1828 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1829 *
1830 * Returns: < 0 on error
1831 * 0 if we can not NOCOW
1832 * 1 if we can NOCOW
1833 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1834 static int can_nocow_file_extent(struct btrfs_path *path,
1835 struct btrfs_key *key,
1836 struct btrfs_inode *inode,
1837 struct can_nocow_file_extent_args *args)
1838 {
1839 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1840 struct extent_buffer *leaf = path->nodes[0];
1841 struct btrfs_root *root = inode->root;
1842 struct btrfs_file_extent_item *fi;
1843 struct btrfs_root *csum_root;
1844 u64 io_start;
1845 u64 extent_end;
1846 u8 extent_type;
1847 int can_nocow = 0;
1848 int ret = 0;
1849 bool nowait = path->nowait;
1850
1851 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1852 extent_type = btrfs_file_extent_type(leaf, fi);
1853
1854 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1855 goto out;
1856
1857 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1858 extent_type == BTRFS_FILE_EXTENT_REG)
1859 goto out;
1860
1861 /*
1862 * If the extent was created before the generation where the last snapshot
1863 * for its subvolume was created, then this implies the extent is shared,
1864 * hence we must COW.
1865 */
1866 if (btrfs_file_extent_generation(leaf, fi) <=
1867 btrfs_root_last_snapshot(&root->root_item))
1868 goto out;
1869
1870 /* An explicit hole, must COW. */
1871 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1872 goto out;
1873
1874 /* Compressed/encrypted/encoded extents must be COWed. */
1875 if (btrfs_file_extent_compression(leaf, fi) ||
1876 btrfs_file_extent_encryption(leaf, fi) ||
1877 btrfs_file_extent_other_encoding(leaf, fi))
1878 goto out;
1879
1880 extent_end = btrfs_file_extent_end(path);
1881
1882 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1883 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1884 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1885 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1886 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1887
1888 /*
1889 * The following checks can be expensive, as they need to take other
1890 * locks and do btree or rbtree searches, so release the path to avoid
1891 * blocking other tasks for too long.
1892 */
1893 btrfs_release_path(path);
1894
1895 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1896 args->file_extent.disk_bytenr, path);
1897 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1898 if (ret != 0)
1899 goto out;
1900
1901 if (args->free_path) {
1902 /*
1903 * We don't need the path anymore, plus through the
1904 * btrfs_lookup_csums_list() call below we will end up allocating
1905 * another path. So free the path to avoid unnecessary extra
1906 * memory usage.
1907 */
1908 btrfs_free_path(path);
1909 path = NULL;
1910 }
1911
1912 /* If there are pending snapshots for this root, we must COW. */
1913 if (args->writeback_path && !is_freespace_inode &&
1914 atomic_read(&root->snapshot_force_cow))
1915 goto out;
1916
1917 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1918 args->file_extent.offset += args->start - key->offset;
1919 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1920
1921 /*
1922 * Force COW if csums exist in the range. This ensures that csums for a
1923 * given extent are either valid or do not exist.
1924 */
1925
1926 csum_root = btrfs_csum_root(root->fs_info, io_start);
1927 ret = btrfs_lookup_csums_list(csum_root, io_start,
1928 io_start + args->file_extent.num_bytes - 1,
1929 NULL, nowait);
1930 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1931 if (ret != 0)
1932 goto out;
1933
1934 can_nocow = 1;
1935 out:
1936 if (args->free_path && path)
1937 btrfs_free_path(path);
1938
1939 return ret < 0 ? ret : can_nocow;
1940 }
1941
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1942 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1943 struct extent_state **cached,
1944 struct can_nocow_file_extent_args *nocow_args,
1945 u64 file_pos, bool is_prealloc)
1946 {
1947 struct btrfs_ordered_extent *ordered;
1948 const u64 len = nocow_args->file_extent.num_bytes;
1949 const u64 end = file_pos + len - 1;
1950 int ret = 0;
1951
1952 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1953
1954 if (is_prealloc) {
1955 struct extent_map *em;
1956
1957 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1958 BTRFS_ORDERED_PREALLOC);
1959 if (IS_ERR(em)) {
1960 ret = PTR_ERR(em);
1961 goto error;
1962 }
1963 btrfs_free_extent_map(em);
1964 }
1965
1966 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1967 is_prealloc
1968 ? (1U << BTRFS_ORDERED_PREALLOC)
1969 : (1U << BTRFS_ORDERED_NOCOW));
1970 if (IS_ERR(ordered)) {
1971 if (is_prealloc)
1972 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1973 ret = PTR_ERR(ordered);
1974 goto error;
1975 }
1976
1977 if (btrfs_is_data_reloc_root(inode->root))
1978 /*
1979 * Errors are handled later, as we must prevent
1980 * extent_clear_unlock_delalloc() in error handler from freeing
1981 * metadata of the created ordered extent.
1982 */
1983 ret = btrfs_reloc_clone_csums(ordered);
1984 btrfs_put_ordered_extent(ordered);
1985
1986 if (ret < 0)
1987 goto error;
1988 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
1989 EXTENT_LOCKED | EXTENT_DELALLOC |
1990 EXTENT_CLEAR_DATA_RESV,
1991 PAGE_SET_ORDERED);
1992 return ret;
1993
1994 error:
1995 btrfs_cleanup_ordered_extents(inode, file_pos, len);
1996 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
1997 EXTENT_LOCKED | EXTENT_DELALLOC |
1998 EXTENT_CLEAR_DATA_RESV,
1999 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2000 PAGE_END_WRITEBACK);
2001 btrfs_err(inode->root->fs_info,
2002 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d",
2003 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2004 file_pos, len, ret);
2005 return ret;
2006 }
2007
2008 /*
2009 * When nocow writeback calls back. This checks for snapshots or COW copies
2010 * of the extents that exist in the file, and COWs the file as required.
2011 *
2012 * If no cow copies or snapshots exist, we write directly to the existing
2013 * blocks on disk
2014 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2015 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2016 struct folio *locked_folio,
2017 const u64 start, const u64 end)
2018 {
2019 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2020 struct btrfs_root *root = inode->root;
2021 struct btrfs_path *path = NULL;
2022 u64 cow_start = (u64)-1;
2023 /*
2024 * If not 0, represents the inclusive end of the last fallback_to_cow()
2025 * range. Only for error handling.
2026 *
2027 * The same for nocow_end, it's to avoid double cleaning up the range
2028 * already cleaned by nocow_one_range().
2029 */
2030 u64 cow_end = 0;
2031 u64 nocow_end = 0;
2032 u64 cur_offset = start;
2033 int ret;
2034 bool check_prev = true;
2035 u64 ino = btrfs_ino(inode);
2036 struct can_nocow_file_extent_args nocow_args = { 0 };
2037 /* The range that has ordered extent(s). */
2038 u64 oe_cleanup_start;
2039 u64 oe_cleanup_len = 0;
2040 /* The range that is untouched. */
2041 u64 untouched_start;
2042 u64 untouched_len = 0;
2043
2044 /*
2045 * Normally on a zoned device we're only doing COW writes, but in case
2046 * of relocation on a zoned filesystem serializes I/O so that we're only
2047 * writing sequentially and can end up here as well.
2048 */
2049 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2050
2051 if (unlikely(btrfs_is_shutdown(fs_info))) {
2052 ret = -EIO;
2053 goto error;
2054 }
2055 path = btrfs_alloc_path();
2056 if (!path) {
2057 ret = -ENOMEM;
2058 goto error;
2059 }
2060
2061 nocow_args.end = end;
2062 nocow_args.writeback_path = true;
2063
2064 while (cur_offset <= end) {
2065 struct btrfs_block_group *nocow_bg = NULL;
2066 struct btrfs_key found_key;
2067 struct btrfs_file_extent_item *fi;
2068 struct extent_buffer *leaf;
2069 struct extent_state *cached_state = NULL;
2070 u64 extent_end;
2071 int extent_type;
2072
2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2074 cur_offset, 0);
2075 if (ret < 0)
2076 goto error;
2077
2078 /*
2079 * If there is no extent for our range when doing the initial
2080 * search, then go back to the previous slot as it will be the
2081 * one containing the search offset
2082 */
2083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2084 leaf = path->nodes[0];
2085 btrfs_item_key_to_cpu(leaf, &found_key,
2086 path->slots[0] - 1);
2087 if (found_key.objectid == ino &&
2088 found_key.type == BTRFS_EXTENT_DATA_KEY)
2089 path->slots[0]--;
2090 }
2091 check_prev = false;
2092 next_slot:
2093 /* Go to next leaf if we have exhausted the current one */
2094 leaf = path->nodes[0];
2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2096 ret = btrfs_next_leaf(root, path);
2097 if (ret < 0)
2098 goto error;
2099 if (ret > 0)
2100 break;
2101 leaf = path->nodes[0];
2102 }
2103
2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2105
2106 /* Didn't find anything for our INO */
2107 if (found_key.objectid > ino)
2108 break;
2109 /*
2110 * Keep searching until we find an EXTENT_ITEM or there are no
2111 * more extents for this inode
2112 */
2113 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2114 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2115 path->slots[0]++;
2116 goto next_slot;
2117 }
2118
2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2121 found_key.offset > end)
2122 break;
2123
2124 /*
2125 * If the found extent starts after requested offset, then
2126 * adjust cur_offset to be right before this extent begins.
2127 */
2128 if (found_key.offset > cur_offset) {
2129 if (cow_start == (u64)-1)
2130 cow_start = cur_offset;
2131 cur_offset = found_key.offset;
2132 goto next_slot;
2133 }
2134
2135 /*
2136 * Found extent which begins before our range and potentially
2137 * intersect it
2138 */
2139 fi = btrfs_item_ptr(leaf, path->slots[0],
2140 struct btrfs_file_extent_item);
2141 extent_type = btrfs_file_extent_type(leaf, fi);
2142 /* If this is triggered then we have a memory corruption. */
2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2145 ret = -EUCLEAN;
2146 goto error;
2147 }
2148 extent_end = btrfs_file_extent_end(path);
2149
2150 /*
2151 * If the extent we got ends before our current offset, skip to
2152 * the next extent.
2153 */
2154 if (extent_end <= cur_offset) {
2155 path->slots[0]++;
2156 goto next_slot;
2157 }
2158
2159 nocow_args.start = cur_offset;
2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2161 if (ret < 0)
2162 goto error;
2163 if (ret == 0)
2164 goto must_cow;
2165
2166 ret = 0;
2167 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2168 nocow_args.file_extent.disk_bytenr +
2169 nocow_args.file_extent.offset);
2170 if (!nocow_bg) {
2171 must_cow:
2172 /*
2173 * If we can't perform NOCOW writeback for the range,
2174 * then record the beginning of the range that needs to
2175 * be COWed. It will be written out before the next
2176 * NOCOW range if we find one, or when exiting this
2177 * loop.
2178 */
2179 if (cow_start == (u64)-1)
2180 cow_start = cur_offset;
2181 cur_offset = extent_end;
2182 if (cur_offset > end)
2183 break;
2184 if (!path->nodes[0])
2185 continue;
2186 path->slots[0]++;
2187 goto next_slot;
2188 }
2189
2190 /*
2191 * COW range from cow_start to found_key.offset - 1. As the key
2192 * will contain the beginning of the first extent that can be
2193 * NOCOW, following one which needs to be COW'ed
2194 */
2195 if (cow_start != (u64)-1) {
2196 ret = fallback_to_cow(inode, locked_folio, cow_start,
2197 found_key.offset - 1);
2198 if (ret) {
2199 cow_end = found_key.offset - 1;
2200 btrfs_dec_nocow_writers(nocow_bg);
2201 goto error;
2202 }
2203 cow_start = (u64)-1;
2204 }
2205
2206 ret = nocow_one_range(inode, locked_folio, &cached_state,
2207 &nocow_args, cur_offset,
2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 if (ret < 0) {
2211 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2212 goto error;
2213 }
2214 cur_offset = extent_end;
2215 }
2216 btrfs_release_path(path);
2217
2218 if (cur_offset <= end && cow_start == (u64)-1)
2219 cow_start = cur_offset;
2220
2221 if (cow_start != (u64)-1) {
2222 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2223 if (ret) {
2224 cow_end = end;
2225 goto error;
2226 }
2227 cow_start = (u64)-1;
2228 }
2229
2230 /*
2231 * Everything is finished without an error, can unlock the folios now.
2232 *
2233 * No need to touch the io tree range nor set folio ordered flag, as
2234 * fallback_to_cow() and nocow_one_range() have already handled them.
2235 */
2236 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK);
2237
2238 btrfs_free_path(path);
2239 return 0;
2240
2241 error:
2242 if (cow_start == (u64)-1) {
2243 /*
2244 * case a)
2245 * start cur_offset end
2246 * | OE cleanup | Untouched |
2247 *
2248 * We finished a fallback_to_cow() or nocow_one_range() call,
2249 * but failed to check the next range.
2250 *
2251 * or
2252 * start cur_offset nocow_end end
2253 * | OE cleanup | Skip | Untouched |
2254 *
2255 * nocow_one_range() failed, the range [cur_offset, nocow_end] is
2256 * already cleaned up.
2257 */
2258 oe_cleanup_start = start;
2259 oe_cleanup_len = cur_offset - start;
2260 if (nocow_end)
2261 untouched_start = nocow_end + 1;
2262 else
2263 untouched_start = cur_offset;
2264 untouched_len = end + 1 - untouched_start;
2265 } else if (cow_start != (u64)-1 && cow_end == 0) {
2266 /*
2267 * case b)
2268 * start cow_start cur_offset end
2269 * | OE cleanup | Untouched |
2270 *
2271 * We got a range that needs COW, but before we hit the next NOCOW range,
2272 * thus [cow_start, cur_offset) doesn't yet have any OE.
2273 */
2274 oe_cleanup_start = start;
2275 oe_cleanup_len = cow_start - start;
2276 untouched_start = cow_start;
2277 untouched_len = end + 1 - untouched_start;
2278 } else {
2279 /*
2280 * case c)
2281 * start cow_start cow_end end
2282 * | OE cleanup | Skip | Untouched |
2283 *
2284 * fallback_to_cow() failed, and fallback_to_cow() will do the
2285 * cleanup for its range, we shouldn't touch the range
2286 * [cow_start, cow_end].
2287 */
2288 ASSERT(cow_start != (u64)-1 && cow_end != 0);
2289 oe_cleanup_start = start;
2290 oe_cleanup_len = cow_start - start;
2291 untouched_start = cow_end + 1;
2292 untouched_len = end + 1 - untouched_start;
2293 }
2294
2295 if (oe_cleanup_len) {
2296 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1;
2297 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len);
2298 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end,
2299 locked_folio, NULL,
2300 EXTENT_LOCKED | EXTENT_DELALLOC,
2301 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2302 PAGE_END_WRITEBACK);
2303 }
2304
2305 if (untouched_len) {
2306 struct extent_state *cached = NULL;
2307 const u64 untouched_end = untouched_start + untouched_len - 1;
2308
2309 /*
2310 * We need to lock the extent here because we're clearing DELALLOC and
2311 * we're not locked at this point.
2312 */
2313 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached);
2314 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end,
2315 locked_folio, &cached,
2316 EXTENT_LOCKED | EXTENT_DELALLOC |
2317 EXTENT_DEFRAG |
2318 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2319 PAGE_START_WRITEBACK |
2320 PAGE_END_WRITEBACK);
2321 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL);
2322 }
2323 btrfs_free_path(path);
2324 btrfs_err(fs_info,
2325 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d",
2326 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2327 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len,
2328 untouched_start, untouched_len, ret);
2329 return ret;
2330 }
2331
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2332 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2333 {
2334 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2335 if (inode->defrag_bytes &&
2336 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2337 return false;
2338 return true;
2339 }
2340 return false;
2341 }
2342
2343 /*
2344 * Function to process delayed allocation (create CoW) for ranges which are
2345 * being touched for the first time.
2346 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2347 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2348 u64 start, u64 end, struct writeback_control *wbc)
2349 {
2350 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2351 int ret;
2352
2353 /*
2354 * The range must cover part of the @locked_folio, or a return of 1
2355 * can confuse the caller.
2356 */
2357 ASSERT(!(end <= folio_pos(locked_folio) ||
2358 start >= folio_next_pos(locked_folio)));
2359
2360 if (should_nocow(inode, start, end)) {
2361 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2362 return ret;
2363 }
2364
2365 if (btrfs_inode_can_compress(inode) &&
2366 inode_need_compress(inode, start, end) &&
2367 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2368 return 1;
2369
2370 if (zoned)
2371 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2372 true);
2373 else
2374 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0);
2375 return ret;
2376 }
2377
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2378 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2379 struct extent_state *orig, u64 split)
2380 {
2381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382 u64 size;
2383
2384 lockdep_assert_held(&inode->io_tree.lock);
2385
2386 /* not delalloc, ignore it */
2387 if (!(orig->state & EXTENT_DELALLOC))
2388 return;
2389
2390 size = orig->end - orig->start + 1;
2391 if (size > fs_info->max_extent_size) {
2392 u32 num_extents;
2393 u64 new_size;
2394
2395 /*
2396 * See the explanation in btrfs_merge_delalloc_extent, the same
2397 * applies here, just in reverse.
2398 */
2399 new_size = orig->end - split + 1;
2400 num_extents = count_max_extents(fs_info, new_size);
2401 new_size = split - orig->start;
2402 num_extents += count_max_extents(fs_info, new_size);
2403 if (count_max_extents(fs_info, size) >= num_extents)
2404 return;
2405 }
2406
2407 spin_lock(&inode->lock);
2408 btrfs_mod_outstanding_extents(inode, 1);
2409 spin_unlock(&inode->lock);
2410 }
2411
2412 /*
2413 * Handle merged delayed allocation extents so we can keep track of new extents
2414 * that are just merged onto old extents, such as when we are doing sequential
2415 * writes, so we can properly account for the metadata space we'll need.
2416 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2417 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2418 struct extent_state *other)
2419 {
2420 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2421 u64 new_size, old_size;
2422 u32 num_extents;
2423
2424 lockdep_assert_held(&inode->io_tree.lock);
2425
2426 /* not delalloc, ignore it */
2427 if (!(other->state & EXTENT_DELALLOC))
2428 return;
2429
2430 if (new->start > other->start)
2431 new_size = new->end - other->start + 1;
2432 else
2433 new_size = other->end - new->start + 1;
2434
2435 /* we're not bigger than the max, unreserve the space and go */
2436 if (new_size <= fs_info->max_extent_size) {
2437 spin_lock(&inode->lock);
2438 btrfs_mod_outstanding_extents(inode, -1);
2439 spin_unlock(&inode->lock);
2440 return;
2441 }
2442
2443 /*
2444 * We have to add up either side to figure out how many extents were
2445 * accounted for before we merged into one big extent. If the number of
2446 * extents we accounted for is <= the amount we need for the new range
2447 * then we can return, otherwise drop. Think of it like this
2448 *
2449 * [ 4k][MAX_SIZE]
2450 *
2451 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2452 * need 2 outstanding extents, on one side we have 1 and the other side
2453 * we have 1 so they are == and we can return. But in this case
2454 *
2455 * [MAX_SIZE+4k][MAX_SIZE+4k]
2456 *
2457 * Each range on their own accounts for 2 extents, but merged together
2458 * they are only 3 extents worth of accounting, so we need to drop in
2459 * this case.
2460 */
2461 old_size = other->end - other->start + 1;
2462 num_extents = count_max_extents(fs_info, old_size);
2463 old_size = new->end - new->start + 1;
2464 num_extents += count_max_extents(fs_info, old_size);
2465 if (count_max_extents(fs_info, new_size) >= num_extents)
2466 return;
2467
2468 spin_lock(&inode->lock);
2469 btrfs_mod_outstanding_extents(inode, -1);
2470 spin_unlock(&inode->lock);
2471 }
2472
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2473 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2474 {
2475 struct btrfs_root *root = inode->root;
2476 struct btrfs_fs_info *fs_info = root->fs_info;
2477
2478 spin_lock(&root->delalloc_lock);
2479 ASSERT(list_empty(&inode->delalloc_inodes));
2480 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2481 root->nr_delalloc_inodes++;
2482 if (root->nr_delalloc_inodes == 1) {
2483 spin_lock(&fs_info->delalloc_root_lock);
2484 ASSERT(list_empty(&root->delalloc_root));
2485 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2486 spin_unlock(&fs_info->delalloc_root_lock);
2487 }
2488 spin_unlock(&root->delalloc_lock);
2489 }
2490
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2491 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2492 {
2493 struct btrfs_root *root = inode->root;
2494 struct btrfs_fs_info *fs_info = root->fs_info;
2495
2496 lockdep_assert_held(&root->delalloc_lock);
2497
2498 /*
2499 * We may be called after the inode was already deleted from the list,
2500 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2501 * and then later through btrfs_clear_delalloc_extent() while the inode
2502 * still has ->delalloc_bytes > 0.
2503 */
2504 if (!list_empty(&inode->delalloc_inodes)) {
2505 list_del_init(&inode->delalloc_inodes);
2506 root->nr_delalloc_inodes--;
2507 if (!root->nr_delalloc_inodes) {
2508 ASSERT(list_empty(&root->delalloc_inodes));
2509 spin_lock(&fs_info->delalloc_root_lock);
2510 ASSERT(!list_empty(&root->delalloc_root));
2511 list_del_init(&root->delalloc_root);
2512 spin_unlock(&fs_info->delalloc_root_lock);
2513 }
2514 }
2515 }
2516
2517 /*
2518 * Properly track delayed allocation bytes in the inode and to maintain the
2519 * list of inodes that have pending delalloc work to be done.
2520 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2521 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2522 u32 bits)
2523 {
2524 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2525
2526 lockdep_assert_held(&inode->io_tree.lock);
2527
2528 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2529 WARN_ON(1);
2530 /*
2531 * set_bit and clear bit hooks normally require _irqsave/restore
2532 * but in this case, we are only testing for the DELALLOC
2533 * bit, which is only set or cleared with irqs on
2534 */
2535 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2536 u64 len = state->end + 1 - state->start;
2537 u64 prev_delalloc_bytes;
2538 u32 num_extents = count_max_extents(fs_info, len);
2539
2540 spin_lock(&inode->lock);
2541 btrfs_mod_outstanding_extents(inode, num_extents);
2542 spin_unlock(&inode->lock);
2543
2544 /* For sanity tests */
2545 if (btrfs_is_testing(fs_info))
2546 return;
2547
2548 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2549 fs_info->delalloc_batch);
2550 spin_lock(&inode->lock);
2551 prev_delalloc_bytes = inode->delalloc_bytes;
2552 inode->delalloc_bytes += len;
2553 if (bits & EXTENT_DEFRAG)
2554 inode->defrag_bytes += len;
2555 spin_unlock(&inode->lock);
2556
2557 /*
2558 * We don't need to be under the protection of the inode's lock,
2559 * because we are called while holding the inode's io_tree lock
2560 * and are therefore protected against concurrent calls of this
2561 * function and btrfs_clear_delalloc_extent().
2562 */
2563 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2564 btrfs_add_delalloc_inode(inode);
2565 }
2566
2567 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2568 (bits & EXTENT_DELALLOC_NEW)) {
2569 spin_lock(&inode->lock);
2570 inode->new_delalloc_bytes += state->end + 1 - state->start;
2571 spin_unlock(&inode->lock);
2572 }
2573 }
2574
2575 /*
2576 * Once a range is no longer delalloc this function ensures that proper
2577 * accounting happens.
2578 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2579 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2580 struct extent_state *state, u32 bits)
2581 {
2582 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2583 u64 len = state->end + 1 - state->start;
2584 u32 num_extents = count_max_extents(fs_info, len);
2585
2586 lockdep_assert_held(&inode->io_tree.lock);
2587
2588 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2589 spin_lock(&inode->lock);
2590 inode->defrag_bytes -= len;
2591 spin_unlock(&inode->lock);
2592 }
2593
2594 /*
2595 * set_bit and clear bit hooks normally require _irqsave/restore
2596 * but in this case, we are only testing for the DELALLOC
2597 * bit, which is only set or cleared with irqs on
2598 */
2599 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2600 struct btrfs_root *root = inode->root;
2601 u64 new_delalloc_bytes;
2602
2603 spin_lock(&inode->lock);
2604 btrfs_mod_outstanding_extents(inode, -num_extents);
2605 spin_unlock(&inode->lock);
2606
2607 /*
2608 * We don't reserve metadata space for space cache inodes so we
2609 * don't need to call delalloc_release_metadata if there is an
2610 * error.
2611 */
2612 if (bits & EXTENT_CLEAR_META_RESV &&
2613 root != fs_info->tree_root)
2614 btrfs_delalloc_release_metadata(inode, len, true);
2615
2616 /* For sanity tests. */
2617 if (btrfs_is_testing(fs_info))
2618 return;
2619
2620 if (!btrfs_is_data_reloc_root(root) &&
2621 !btrfs_is_free_space_inode(inode) &&
2622 !(state->state & EXTENT_NORESERVE) &&
2623 (bits & EXTENT_CLEAR_DATA_RESV))
2624 btrfs_free_reserved_data_space_noquota(inode, len);
2625
2626 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2627 fs_info->delalloc_batch);
2628 spin_lock(&inode->lock);
2629 inode->delalloc_bytes -= len;
2630 new_delalloc_bytes = inode->delalloc_bytes;
2631 spin_unlock(&inode->lock);
2632
2633 /*
2634 * We don't need to be under the protection of the inode's lock,
2635 * because we are called while holding the inode's io_tree lock
2636 * and are therefore protected against concurrent calls of this
2637 * function and btrfs_set_delalloc_extent().
2638 */
2639 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2640 spin_lock(&root->delalloc_lock);
2641 btrfs_del_delalloc_inode(inode);
2642 spin_unlock(&root->delalloc_lock);
2643 }
2644 }
2645
2646 if ((state->state & EXTENT_DELALLOC_NEW) &&
2647 (bits & EXTENT_DELALLOC_NEW)) {
2648 spin_lock(&inode->lock);
2649 ASSERT(inode->new_delalloc_bytes >= len);
2650 inode->new_delalloc_bytes -= len;
2651 if (bits & EXTENT_ADD_INODE_BYTES)
2652 inode_add_bytes(&inode->vfs_inode, len);
2653 spin_unlock(&inode->lock);
2654 }
2655 }
2656
2657 /*
2658 * given a list of ordered sums record them in the inode. This happens
2659 * at IO completion time based on sums calculated at bio submission time.
2660 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2661 static int add_pending_csums(struct btrfs_trans_handle *trans,
2662 struct list_head *list)
2663 {
2664 struct btrfs_ordered_sum *sum;
2665 struct btrfs_root *csum_root = NULL;
2666 int ret;
2667
2668 list_for_each_entry(sum, list, list) {
2669 trans->adding_csums = true;
2670 if (!csum_root)
2671 csum_root = btrfs_csum_root(trans->fs_info,
2672 sum->logical);
2673 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2674 trans->adding_csums = false;
2675 if (ret)
2676 return ret;
2677 }
2678 return 0;
2679 }
2680
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2681 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2682 const u64 start,
2683 const u64 len,
2684 struct extent_state **cached_state)
2685 {
2686 u64 search_start = start;
2687 const u64 end = start + len - 1;
2688
2689 while (search_start < end) {
2690 const u64 search_len = end - search_start + 1;
2691 struct extent_map *em;
2692 u64 em_len;
2693 int ret = 0;
2694
2695 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2696 if (IS_ERR(em))
2697 return PTR_ERR(em);
2698
2699 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2700 goto next;
2701
2702 em_len = em->len;
2703 if (em->start < search_start)
2704 em_len -= search_start - em->start;
2705 if (em_len > search_len)
2706 em_len = search_len;
2707
2708 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2709 search_start + em_len - 1,
2710 EXTENT_DELALLOC_NEW, cached_state);
2711 next:
2712 search_start = btrfs_extent_map_end(em);
2713 btrfs_free_extent_map(em);
2714 if (ret)
2715 return ret;
2716 }
2717 return 0;
2718 }
2719
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2720 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2721 unsigned int extra_bits,
2722 struct extent_state **cached_state)
2723 {
2724 WARN_ON(PAGE_ALIGNED(end));
2725
2726 if (start >= i_size_read(&inode->vfs_inode) &&
2727 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2728 /*
2729 * There can't be any extents following eof in this case so just
2730 * set the delalloc new bit for the range directly.
2731 */
2732 extra_bits |= EXTENT_DELALLOC_NEW;
2733 } else {
2734 int ret;
2735
2736 ret = btrfs_find_new_delalloc_bytes(inode, start,
2737 end + 1 - start,
2738 cached_state);
2739 if (ret)
2740 return ret;
2741 }
2742
2743 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2744 EXTENT_DELALLOC | extra_bits, cached_state);
2745 }
2746
2747 /* see btrfs_writepage_start_hook for details on why this is required */
2748 struct btrfs_writepage_fixup {
2749 struct folio *folio;
2750 struct btrfs_inode *inode;
2751 struct btrfs_work work;
2752 };
2753
btrfs_writepage_fixup_worker(struct btrfs_work * work)2754 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2755 {
2756 struct btrfs_writepage_fixup *fixup =
2757 container_of(work, struct btrfs_writepage_fixup, work);
2758 struct btrfs_ordered_extent *ordered;
2759 struct extent_state *cached_state = NULL;
2760 struct extent_changeset *data_reserved = NULL;
2761 struct folio *folio = fixup->folio;
2762 struct btrfs_inode *inode = fixup->inode;
2763 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2764 u64 page_start = folio_pos(folio);
2765 u64 page_end = folio_next_pos(folio) - 1;
2766 int ret = 0;
2767 bool free_delalloc_space = true;
2768
2769 /*
2770 * This is similar to page_mkwrite, we need to reserve the space before
2771 * we take the folio lock.
2772 */
2773 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2774 folio_size(folio));
2775 again:
2776 folio_lock(folio);
2777
2778 /*
2779 * Before we queued this fixup, we took a reference on the folio.
2780 * folio->mapping may go NULL, but it shouldn't be moved to a different
2781 * address space.
2782 */
2783 if (!folio->mapping || !folio_test_dirty(folio) ||
2784 !folio_test_checked(folio)) {
2785 /*
2786 * Unfortunately this is a little tricky, either
2787 *
2788 * 1) We got here and our folio had already been dealt with and
2789 * we reserved our space, thus ret == 0, so we need to just
2790 * drop our space reservation and bail. This can happen the
2791 * first time we come into the fixup worker, or could happen
2792 * while waiting for the ordered extent.
2793 * 2) Our folio was already dealt with, but we happened to get an
2794 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2795 * this case we obviously don't have anything to release, but
2796 * because the folio was already dealt with we don't want to
2797 * mark the folio with an error, so make sure we're resetting
2798 * ret to 0. This is why we have this check _before_ the ret
2799 * check, because we do not want to have a surprise ENOSPC
2800 * when the folio was already properly dealt with.
2801 */
2802 if (!ret) {
2803 btrfs_delalloc_release_extents(inode, folio_size(folio));
2804 btrfs_delalloc_release_space(inode, data_reserved,
2805 page_start, folio_size(folio),
2806 true);
2807 }
2808 ret = 0;
2809 goto out_page;
2810 }
2811
2812 /*
2813 * We can't mess with the folio state unless it is locked, so now that
2814 * it is locked bail if we failed to make our space reservation.
2815 */
2816 if (ret)
2817 goto out_page;
2818
2819 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2820
2821 /* already ordered? We're done */
2822 if (folio_test_ordered(folio))
2823 goto out_reserved;
2824
2825 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2826 if (ordered) {
2827 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2828 &cached_state);
2829 folio_unlock(folio);
2830 btrfs_start_ordered_extent(ordered);
2831 btrfs_put_ordered_extent(ordered);
2832 goto again;
2833 }
2834
2835 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2836 &cached_state);
2837 if (ret)
2838 goto out_reserved;
2839
2840 /*
2841 * Everything went as planned, we're now the owner of a dirty page with
2842 * delayed allocation bits set and space reserved for our COW
2843 * destination.
2844 *
2845 * The page was dirty when we started, nothing should have cleaned it.
2846 */
2847 BUG_ON(!folio_test_dirty(folio));
2848 free_delalloc_space = false;
2849 out_reserved:
2850 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2851 if (free_delalloc_space)
2852 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2853 PAGE_SIZE, true);
2854 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2855 out_page:
2856 if (ret) {
2857 /*
2858 * We hit ENOSPC or other errors. Update the mapping and page
2859 * to reflect the errors and clean the page.
2860 */
2861 mapping_set_error(folio->mapping, ret);
2862 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2863 folio_size(folio), !ret);
2864 folio_clear_dirty_for_io(folio);
2865 }
2866 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2867 folio_unlock(folio);
2868 folio_put(folio);
2869 kfree(fixup);
2870 extent_changeset_free(data_reserved);
2871 /*
2872 * As a precaution, do a delayed iput in case it would be the last iput
2873 * that could need flushing space. Recursing back to fixup worker would
2874 * deadlock.
2875 */
2876 btrfs_add_delayed_iput(inode);
2877 }
2878
2879 /*
2880 * There are a few paths in the higher layers of the kernel that directly
2881 * set the folio dirty bit without asking the filesystem if it is a
2882 * good idea. This causes problems because we want to make sure COW
2883 * properly happens and the data=ordered rules are followed.
2884 *
2885 * In our case any range that doesn't have the ORDERED bit set
2886 * hasn't been properly setup for IO. We kick off an async process
2887 * to fix it up. The async helper will wait for ordered extents, set
2888 * the delalloc bit and make it safe to write the folio.
2889 */
btrfs_writepage_cow_fixup(struct folio * folio)2890 int btrfs_writepage_cow_fixup(struct folio *folio)
2891 {
2892 struct inode *inode = folio->mapping->host;
2893 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2894 struct btrfs_writepage_fixup *fixup;
2895
2896 /* This folio has ordered extent covering it already */
2897 if (folio_test_ordered(folio))
2898 return 0;
2899
2900 /*
2901 * For experimental build, we error out instead of EAGAIN.
2902 *
2903 * We should not hit such out-of-band dirty folios anymore.
2904 */
2905 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2906 DEBUG_WARN();
2907 btrfs_err_rl(fs_info,
2908 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2909 btrfs_root_id(BTRFS_I(inode)->root),
2910 btrfs_ino(BTRFS_I(inode)),
2911 folio_pos(folio));
2912 return -EUCLEAN;
2913 }
2914
2915 /*
2916 * folio_checked is set below when we create a fixup worker for this
2917 * folio, don't try to create another one if we're already
2918 * folio_test_checked.
2919 *
2920 * The extent_io writepage code will redirty the foio if we send back
2921 * EAGAIN.
2922 */
2923 if (folio_test_checked(folio))
2924 return -EAGAIN;
2925
2926 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2927 if (!fixup)
2928 return -EAGAIN;
2929
2930 /*
2931 * We are already holding a reference to this inode from
2932 * write_cache_pages. We need to hold it because the space reservation
2933 * takes place outside of the folio lock, and we can't trust
2934 * folio->mapping outside of the folio lock.
2935 */
2936 ihold(inode);
2937 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2938 folio_get(folio);
2939 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2940 fixup->folio = folio;
2941 fixup->inode = BTRFS_I(inode);
2942 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2943
2944 return -EAGAIN;
2945 }
2946
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2947 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2948 struct btrfs_inode *inode, u64 file_pos,
2949 struct btrfs_file_extent_item *stack_fi,
2950 const bool update_inode_bytes,
2951 u64 qgroup_reserved)
2952 {
2953 struct btrfs_root *root = inode->root;
2954 const u64 sectorsize = root->fs_info->sectorsize;
2955 BTRFS_PATH_AUTO_FREE(path);
2956 struct extent_buffer *leaf;
2957 struct btrfs_key ins;
2958 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2959 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2960 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2961 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2962 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2963 struct btrfs_drop_extents_args drop_args = { 0 };
2964 int ret;
2965
2966 path = btrfs_alloc_path();
2967 if (!path)
2968 return -ENOMEM;
2969
2970 /*
2971 * we may be replacing one extent in the tree with another.
2972 * The new extent is pinned in the extent map, and we don't want
2973 * to drop it from the cache until it is completely in the btree.
2974 *
2975 * So, tell btrfs_drop_extents to leave this extent in the cache.
2976 * the caller is expected to unpin it and allow it to be merged
2977 * with the others.
2978 */
2979 drop_args.path = path;
2980 drop_args.start = file_pos;
2981 drop_args.end = file_pos + num_bytes;
2982 drop_args.replace_extent = true;
2983 drop_args.extent_item_size = sizeof(*stack_fi);
2984 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2985 if (ret)
2986 goto out;
2987
2988 if (!drop_args.extent_inserted) {
2989 ins.objectid = btrfs_ino(inode);
2990 ins.type = BTRFS_EXTENT_DATA_KEY;
2991 ins.offset = file_pos;
2992
2993 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2994 sizeof(*stack_fi));
2995 if (ret)
2996 goto out;
2997 }
2998 leaf = path->nodes[0];
2999 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3000 write_extent_buffer(leaf, stack_fi,
3001 btrfs_item_ptr_offset(leaf, path->slots[0]),
3002 sizeof(struct btrfs_file_extent_item));
3003
3004 btrfs_release_path(path);
3005
3006 /*
3007 * If we dropped an inline extent here, we know the range where it is
3008 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3009 * number of bytes only for that range containing the inline extent.
3010 * The remaining of the range will be processed when clearing the
3011 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3012 */
3013 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3014 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3015
3016 inline_size = drop_args.bytes_found - inline_size;
3017 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3018 drop_args.bytes_found -= inline_size;
3019 num_bytes -= sectorsize;
3020 }
3021
3022 if (update_inode_bytes)
3023 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3024
3025 ins.objectid = disk_bytenr;
3026 ins.type = BTRFS_EXTENT_ITEM_KEY;
3027 ins.offset = disk_num_bytes;
3028
3029 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3030 if (ret)
3031 goto out;
3032
3033 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3034 file_pos - offset,
3035 qgroup_reserved, &ins);
3036 out:
3037 return ret;
3038 }
3039
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3041 u64 start, u64 len)
3042 {
3043 struct btrfs_block_group *cache;
3044
3045 cache = btrfs_lookup_block_group(fs_info, start);
3046 ASSERT(cache);
3047
3048 spin_lock(&cache->lock);
3049 cache->delalloc_bytes -= len;
3050 spin_unlock(&cache->lock);
3051
3052 btrfs_put_block_group(cache);
3053 }
3054
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3055 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3056 struct btrfs_ordered_extent *oe)
3057 {
3058 struct btrfs_file_extent_item stack_fi;
3059 bool update_inode_bytes;
3060 u64 num_bytes = oe->num_bytes;
3061 u64 ram_bytes = oe->ram_bytes;
3062
3063 memset(&stack_fi, 0, sizeof(stack_fi));
3064 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3065 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3066 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3067 oe->disk_num_bytes);
3068 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3069 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3070 num_bytes = oe->truncated_len;
3071 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3072 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3073 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3074 /* Encryption and other encoding is reserved and all 0 */
3075
3076 /*
3077 * For delalloc, when completing an ordered extent we update the inode's
3078 * bytes when clearing the range in the inode's io tree, so pass false
3079 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3080 * except if the ordered extent was truncated.
3081 */
3082 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3083 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3084 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3085
3086 return insert_reserved_file_extent(trans, oe->inode,
3087 oe->file_offset, &stack_fi,
3088 update_inode_bytes, oe->qgroup_rsv);
3089 }
3090
3091 /*
3092 * As ordered data IO finishes, this gets called so we can finish
3093 * an ordered extent if the range of bytes in the file it covers are
3094 * fully written.
3095 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3096 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3097 {
3098 struct btrfs_inode *inode = ordered_extent->inode;
3099 struct btrfs_root *root = inode->root;
3100 struct btrfs_fs_info *fs_info = root->fs_info;
3101 struct btrfs_trans_handle *trans = NULL;
3102 struct extent_io_tree *io_tree = &inode->io_tree;
3103 struct extent_state *cached_state = NULL;
3104 u64 start, end;
3105 int compress_type = 0;
3106 int ret = 0;
3107 u64 logical_len = ordered_extent->num_bytes;
3108 bool freespace_inode;
3109 bool truncated = false;
3110 bool clear_reserved_extent = true;
3111 unsigned int clear_bits = EXTENT_DEFRAG;
3112
3113 start = ordered_extent->file_offset;
3114 end = start + ordered_extent->num_bytes - 1;
3115
3116 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3117 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3118 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3119 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3120 clear_bits |= EXTENT_DELALLOC_NEW;
3121
3122 freespace_inode = btrfs_is_free_space_inode(inode);
3123 if (!freespace_inode)
3124 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3125
3126 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) {
3127 ret = -EIO;
3128 goto out;
3129 }
3130
3131 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3132 ordered_extent->disk_num_bytes);
3133 if (ret)
3134 goto out;
3135
3136 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3137 truncated = true;
3138 logical_len = ordered_extent->truncated_len;
3139 /* Truncated the entire extent, don't bother adding */
3140 if (!logical_len)
3141 goto out;
3142 }
3143
3144 /*
3145 * If it's a COW write we need to lock the extent range as we will be
3146 * inserting/replacing file extent items and unpinning an extent map.
3147 * This must be taken before joining a transaction, as it's a higher
3148 * level lock (like the inode's VFS lock), otherwise we can run into an
3149 * ABBA deadlock with other tasks (transactions work like a lock,
3150 * depending on their current state).
3151 */
3152 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3153 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3154 btrfs_lock_extent_bits(io_tree, start, end,
3155 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3156 &cached_state);
3157 }
3158
3159 if (freespace_inode)
3160 trans = btrfs_join_transaction_spacecache(root);
3161 else
3162 trans = btrfs_join_transaction(root);
3163 if (IS_ERR(trans)) {
3164 ret = PTR_ERR(trans);
3165 trans = NULL;
3166 goto out;
3167 }
3168
3169 trans->block_rsv = &inode->block_rsv;
3170
3171 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3172 if (unlikely(ret)) {
3173 btrfs_abort_transaction(trans, ret);
3174 goto out;
3175 }
3176
3177 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3178 /* Logic error */
3179 ASSERT(list_empty(&ordered_extent->list));
3180 if (unlikely(!list_empty(&ordered_extent->list))) {
3181 ret = -EINVAL;
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 btrfs_inode_safe_disk_i_size_write(inode, 0);
3187 ret = btrfs_update_inode_fallback(trans, inode);
3188 if (unlikely(ret)) {
3189 /* -ENOMEM or corruption */
3190 btrfs_abort_transaction(trans, ret);
3191 }
3192 goto out;
3193 }
3194
3195 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3196 compress_type = ordered_extent->compress_type;
3197 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3198 BUG_ON(compress_type);
3199 ret = btrfs_mark_extent_written(trans, inode,
3200 ordered_extent->file_offset,
3201 ordered_extent->file_offset +
3202 logical_len);
3203 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3204 ordered_extent->disk_num_bytes);
3205 } else {
3206 BUG_ON(root == fs_info->tree_root);
3207 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3208 if (!ret) {
3209 clear_reserved_extent = false;
3210 btrfs_release_delalloc_bytes(fs_info,
3211 ordered_extent->disk_bytenr,
3212 ordered_extent->disk_num_bytes);
3213 }
3214 }
3215 if (unlikely(ret < 0)) {
3216 btrfs_abort_transaction(trans, ret);
3217 goto out;
3218 }
3219
3220 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3221 ordered_extent->num_bytes, trans->transid);
3222 if (unlikely(ret < 0)) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227 ret = add_pending_csums(trans, &ordered_extent->list);
3228 if (unlikely(ret)) {
3229 btrfs_abort_transaction(trans, ret);
3230 goto out;
3231 }
3232
3233 /*
3234 * If this is a new delalloc range, clear its new delalloc flag to
3235 * update the inode's number of bytes. This needs to be done first
3236 * before updating the inode item.
3237 */
3238 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3239 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3240 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3241 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3242 &cached_state);
3243
3244 btrfs_inode_safe_disk_i_size_write(inode, 0);
3245 ret = btrfs_update_inode_fallback(trans, inode);
3246 if (unlikely(ret)) { /* -ENOMEM or corruption */
3247 btrfs_abort_transaction(trans, ret);
3248 goto out;
3249 }
3250 out:
3251 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3252 &cached_state);
3253
3254 if (trans)
3255 btrfs_end_transaction(trans);
3256
3257 if (ret || truncated) {
3258 /*
3259 * If we failed to finish this ordered extent for any reason we
3260 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3261 * extent, and mark the inode with the error if it wasn't
3262 * already set. Any error during writeback would have already
3263 * set the mapping error, so we need to set it if we're the ones
3264 * marking this ordered extent as failed.
3265 */
3266 if (ret)
3267 btrfs_mark_ordered_extent_error(ordered_extent);
3268
3269 /*
3270 * Drop extent maps for the part of the extent we didn't write.
3271 *
3272 * We have an exception here for the free_space_inode, this is
3273 * because when we do btrfs_get_extent() on the free space inode
3274 * we will search the commit root. If this is a new block group
3275 * we won't find anything, and we will trip over the assert in
3276 * writepage where we do ASSERT(em->block_start !=
3277 * EXTENT_MAP_HOLE).
3278 *
3279 * Theoretically we could also skip this for any NOCOW extent as
3280 * we don't mess with the extent map tree in the NOCOW case, but
3281 * for now simply skip this if we are the free space inode.
3282 */
3283 if (!btrfs_is_free_space_inode(inode)) {
3284 u64 unwritten_start = start;
3285
3286 if (truncated)
3287 unwritten_start += logical_len;
3288
3289 btrfs_drop_extent_map_range(inode, unwritten_start,
3290 end, false);
3291 }
3292
3293 /*
3294 * If the ordered extent had an IOERR or something else went
3295 * wrong we need to return the space for this ordered extent
3296 * back to the allocator. We only free the extent in the
3297 * truncated case if we didn't write out the extent at all.
3298 *
3299 * If we made it past insert_reserved_file_extent before we
3300 * errored out then we don't need to do this as the accounting
3301 * has already been done.
3302 */
3303 if ((ret || !logical_len) &&
3304 clear_reserved_extent &&
3305 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3306 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3307 /*
3308 * Discard the range before returning it back to the
3309 * free space pool
3310 */
3311 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3312 btrfs_discard_extent(fs_info,
3313 ordered_extent->disk_bytenr,
3314 ordered_extent->disk_num_bytes,
3315 NULL);
3316 btrfs_free_reserved_extent(fs_info,
3317 ordered_extent->disk_bytenr,
3318 ordered_extent->disk_num_bytes, true);
3319 /*
3320 * Actually free the qgroup rsv which was released when
3321 * the ordered extent was created.
3322 */
3323 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3324 ordered_extent->qgroup_rsv,
3325 BTRFS_QGROUP_RSV_DATA);
3326 }
3327 }
3328
3329 /*
3330 * This needs to be done to make sure anybody waiting knows we are done
3331 * updating everything for this ordered extent.
3332 */
3333 btrfs_remove_ordered_extent(inode, ordered_extent);
3334
3335 /* once for us */
3336 btrfs_put_ordered_extent(ordered_extent);
3337 /* once for the tree */
3338 btrfs_put_ordered_extent(ordered_extent);
3339
3340 return ret;
3341 }
3342
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3343 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3344 {
3345 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3346 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3347 list_empty(&ordered->bioc_list))
3348 btrfs_finish_ordered_zoned(ordered);
3349 return btrfs_finish_one_ordered(ordered);
3350 }
3351
3352 /*
3353 * Calculate the checksum of an fs block at physical memory address @paddr,
3354 * and save the result to @dest.
3355 *
3356 * The folio containing @paddr must be large enough to contain a full fs block.
3357 */
btrfs_calculate_block_csum_folio(struct btrfs_fs_info * fs_info,const phys_addr_t paddr,u8 * dest)3358 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info,
3359 const phys_addr_t paddr, u8 *dest)
3360 {
3361 struct folio *folio = page_folio(phys_to_page(paddr));
3362 const u32 blocksize = fs_info->sectorsize;
3363 const u32 step = min(blocksize, PAGE_SIZE);
3364 const u32 nr_steps = blocksize / step;
3365 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
3366
3367 /* The full block must be inside the folio. */
3368 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3369
3370 for (int i = 0; i < nr_steps; i++) {
3371 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT;
3372
3373 /*
3374 * For bs <= ps cases, we will only run the loop once, so the offset
3375 * inside the page will only added to paddrs[0].
3376 *
3377 * For bs > ps cases, the block must be page aligned, thus offset
3378 * inside the page will always be 0.
3379 */
3380 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr);
3381 }
3382 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest);
3383 }
3384
3385 /*
3386 * Calculate the checksum of a fs block backed by multiple noncontiguous pages
3387 * at @paddrs[] and save the result to @dest.
3388 *
3389 * The folio containing @paddr must be large enough to contain a full fs block.
3390 */
btrfs_calculate_block_csum_pages(struct btrfs_fs_info * fs_info,const phys_addr_t paddrs[],u8 * dest)3391 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info,
3392 const phys_addr_t paddrs[], u8 *dest)
3393 {
3394 const u32 blocksize = fs_info->sectorsize;
3395 const u32 step = min(blocksize, PAGE_SIZE);
3396 const u32 nr_steps = blocksize / step;
3397 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3398
3399 shash->tfm = fs_info->csum_shash;
3400 crypto_shash_init(shash);
3401 for (int i = 0; i < nr_steps; i++) {
3402 const phys_addr_t paddr = paddrs[i];
3403 void *kaddr;
3404
3405 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE);
3406 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
3407 crypto_shash_update(shash, kaddr, step);
3408 kunmap_local(kaddr);
3409 }
3410 crypto_shash_final(shash, dest);
3411 }
3412
3413 /*
3414 * Verify the checksum for a single sector without any extra action that depend
3415 * on the type of I/O.
3416 *
3417 * @kaddr must be a properly kmapped address.
3418 */
btrfs_check_block_csum(struct btrfs_fs_info * fs_info,phys_addr_t paddr,u8 * csum,const u8 * const csum_expected)3419 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum,
3420 const u8 * const csum_expected)
3421 {
3422 btrfs_calculate_block_csum_folio(fs_info, paddr, csum);
3423 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3424 return -EIO;
3425 return 0;
3426 }
3427
3428 /*
3429 * Verify the checksum of a single data sector, which can be scattered at
3430 * different noncontiguous pages.
3431 *
3432 * @bbio: btrfs_io_bio which contains the csum
3433 * @dev: device the sector is on
3434 * @bio_offset: offset to the beginning of the bio (in bytes)
3435 * @paddrs: physical addresses which back the fs block
3436 *
3437 * Check if the checksum on a data block is valid. When a checksum mismatch is
3438 * detected, report the error and fill the corrupted range with zero.
3439 *
3440 * Return %true if the sector is ok or had no checksum to start with, else %false.
3441 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,const phys_addr_t paddrs[])3442 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3443 u32 bio_offset, const phys_addr_t paddrs[])
3444 {
3445 struct btrfs_inode *inode = bbio->inode;
3446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3447 const u32 blocksize = fs_info->sectorsize;
3448 const u32 step = min(blocksize, PAGE_SIZE);
3449 const u32 nr_steps = blocksize / step;
3450 u64 file_offset = bbio->file_offset + bio_offset;
3451 u64 end = file_offset + blocksize - 1;
3452 u8 *csum_expected;
3453 u8 csum[BTRFS_CSUM_SIZE];
3454
3455 if (!bbio->csum)
3456 return true;
3457
3458 if (btrfs_is_data_reloc_root(inode->root) &&
3459 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3460 NULL)) {
3461 /* Skip the range without csum for data reloc inode */
3462 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3463 EXTENT_NODATASUM, NULL);
3464 return true;
3465 }
3466
3467 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3468 fs_info->csum_size;
3469 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum);
3470 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3471 goto zeroit;
3472 return true;
3473
3474 zeroit:
3475 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3476 bbio->mirror_num);
3477 if (dev)
3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3479 for (int i = 0; i < nr_steps; i++)
3480 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step);
3481 return false;
3482 }
3483
3484 /*
3485 * Perform a delayed iput on @inode.
3486 *
3487 * @inode: The inode we want to perform iput on
3488 *
3489 * This function uses the generic vfs_inode::i_count to track whether we should
3490 * just decrement it (in case it's > 1) or if this is the last iput then link
3491 * the inode to the delayed iput machinery. Delayed iputs are processed at
3492 * transaction commit time/superblock commit/cleaner kthread.
3493 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3494 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3495 {
3496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3497 unsigned long flags;
3498
3499 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3500 return;
3501
3502 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3503 atomic_inc(&fs_info->nr_delayed_iputs);
3504 /*
3505 * Need to be irq safe here because we can be called from either an irq
3506 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3507 * context.
3508 */
3509 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3510 ASSERT(list_empty(&inode->delayed_iput));
3511 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3512 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3513 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3514 wake_up_process(fs_info->cleaner_kthread);
3515 }
3516
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3517 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3518 struct btrfs_inode *inode)
3519 {
3520 list_del_init(&inode->delayed_iput);
3521 spin_unlock_irq(&fs_info->delayed_iput_lock);
3522 iput(&inode->vfs_inode);
3523 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3524 wake_up(&fs_info->delayed_iputs_wait);
3525 spin_lock_irq(&fs_info->delayed_iput_lock);
3526 }
3527
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3528 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3529 struct btrfs_inode *inode)
3530 {
3531 if (!list_empty(&inode->delayed_iput)) {
3532 spin_lock_irq(&fs_info->delayed_iput_lock);
3533 if (!list_empty(&inode->delayed_iput))
3534 run_delayed_iput_locked(fs_info, inode);
3535 spin_unlock_irq(&fs_info->delayed_iput_lock);
3536 }
3537 }
3538
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3539 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3540 {
3541 /*
3542 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3543 * calls btrfs_add_delayed_iput() and that needs to lock
3544 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3545 * prevent a deadlock.
3546 */
3547 spin_lock_irq(&fs_info->delayed_iput_lock);
3548 while (!list_empty(&fs_info->delayed_iputs)) {
3549 struct btrfs_inode *inode;
3550
3551 inode = list_first_entry(&fs_info->delayed_iputs,
3552 struct btrfs_inode, delayed_iput);
3553 run_delayed_iput_locked(fs_info, inode);
3554 if (need_resched()) {
3555 spin_unlock_irq(&fs_info->delayed_iput_lock);
3556 cond_resched();
3557 spin_lock_irq(&fs_info->delayed_iput_lock);
3558 }
3559 }
3560 spin_unlock_irq(&fs_info->delayed_iput_lock);
3561 }
3562
3563 /*
3564 * Wait for flushing all delayed iputs
3565 *
3566 * @fs_info: the filesystem
3567 *
3568 * This will wait on any delayed iputs that are currently running with KILLABLE
3569 * set. Once they are all done running we will return, unless we are killed in
3570 * which case we return EINTR. This helps in user operations like fallocate etc
3571 * that might get blocked on the iputs.
3572 *
3573 * Return EINTR if we were killed, 0 if nothing's pending
3574 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3575 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3576 {
3577 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3578 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3579 if (ret)
3580 return -EINTR;
3581 return 0;
3582 }
3583
3584 /*
3585 * This creates an orphan entry for the given inode in case something goes wrong
3586 * in the middle of an unlink.
3587 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3588 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3589 struct btrfs_inode *inode)
3590 {
3591 int ret;
3592
3593 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3594 if (unlikely(ret && ret != -EEXIST)) {
3595 btrfs_abort_transaction(trans, ret);
3596 return ret;
3597 }
3598
3599 return 0;
3600 }
3601
3602 /*
3603 * We have done the delete so we can go ahead and remove the orphan item for
3604 * this particular inode.
3605 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3606 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3607 struct btrfs_inode *inode)
3608 {
3609 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3610 }
3611
3612 /*
3613 * this cleans up any orphans that may be left on the list from the last use
3614 * of this root.
3615 */
btrfs_orphan_cleanup(struct btrfs_root * root)3616 int btrfs_orphan_cleanup(struct btrfs_root *root)
3617 {
3618 struct btrfs_fs_info *fs_info = root->fs_info;
3619 BTRFS_PATH_AUTO_FREE(path);
3620 struct extent_buffer *leaf;
3621 struct btrfs_key key, found_key;
3622 struct btrfs_trans_handle *trans;
3623 u64 last_objectid = 0;
3624 int ret = 0, nr_unlink = 0;
3625
3626 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3627 return 0;
3628
3629 path = btrfs_alloc_path();
3630 if (!path) {
3631 ret = -ENOMEM;
3632 goto out;
3633 }
3634 path->reada = READA_BACK;
3635
3636 key.objectid = BTRFS_ORPHAN_OBJECTID;
3637 key.type = BTRFS_ORPHAN_ITEM_KEY;
3638 key.offset = (u64)-1;
3639
3640 while (1) {
3641 struct btrfs_inode *inode;
3642
3643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3644 if (ret < 0)
3645 goto out;
3646
3647 /*
3648 * if ret == 0 means we found what we were searching for, which
3649 * is weird, but possible, so only screw with path if we didn't
3650 * find the key and see if we have stuff that matches
3651 */
3652 if (ret > 0) {
3653 ret = 0;
3654 if (path->slots[0] == 0)
3655 break;
3656 path->slots[0]--;
3657 }
3658
3659 /* pull out the item */
3660 leaf = path->nodes[0];
3661 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3662
3663 /* make sure the item matches what we want */
3664 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3665 break;
3666 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3667 break;
3668
3669 /* release the path since we're done with it */
3670 btrfs_release_path(path);
3671
3672 /*
3673 * this is where we are basically btrfs_lookup, without the
3674 * crossing root thing. we store the inode number in the
3675 * offset of the orphan item.
3676 */
3677
3678 if (found_key.offset == last_objectid) {
3679 /*
3680 * We found the same inode as before. This means we were
3681 * not able to remove its items via eviction triggered
3682 * by an iput(). A transaction abort may have happened,
3683 * due to -ENOSPC for example, so try to grab the error
3684 * that lead to a transaction abort, if any.
3685 */
3686 btrfs_err(fs_info,
3687 "Error removing orphan entry, stopping orphan cleanup");
3688 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3689 goto out;
3690 }
3691
3692 last_objectid = found_key.offset;
3693
3694 found_key.objectid = found_key.offset;
3695 found_key.type = BTRFS_INODE_ITEM_KEY;
3696 found_key.offset = 0;
3697 inode = btrfs_iget(last_objectid, root);
3698 if (IS_ERR(inode)) {
3699 ret = PTR_ERR(inode);
3700 inode = NULL;
3701 if (ret != -ENOENT)
3702 goto out;
3703 }
3704
3705 if (!inode && root == fs_info->tree_root) {
3706 struct btrfs_root *dead_root;
3707 int is_dead_root = 0;
3708
3709 /*
3710 * This is an orphan in the tree root. Currently these
3711 * could come from 2 sources:
3712 * a) a root (snapshot/subvolume) deletion in progress
3713 * b) a free space cache inode
3714 * We need to distinguish those two, as the orphan item
3715 * for a root must not get deleted before the deletion
3716 * of the snapshot/subvolume's tree completes.
3717 *
3718 * btrfs_find_orphan_roots() ran before us, which has
3719 * found all deleted roots and loaded them into
3720 * fs_info->fs_roots_radix. So here we can find if an
3721 * orphan item corresponds to a deleted root by looking
3722 * up the root from that radix tree.
3723 */
3724
3725 spin_lock(&fs_info->fs_roots_radix_lock);
3726 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3727 (unsigned long)found_key.objectid);
3728 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3729 is_dead_root = 1;
3730 spin_unlock(&fs_info->fs_roots_radix_lock);
3731
3732 if (is_dead_root) {
3733 /* prevent this orphan from being found again */
3734 key.offset = found_key.objectid - 1;
3735 continue;
3736 }
3737
3738 }
3739
3740 /*
3741 * If we have an inode with links, there are a couple of
3742 * possibilities:
3743 *
3744 * 1. We were halfway through creating fsverity metadata for the
3745 * file. In that case, the orphan item represents incomplete
3746 * fsverity metadata which must be cleaned up with
3747 * btrfs_drop_verity_items and deleting the orphan item.
3748
3749 * 2. Old kernels (before v3.12) used to create an
3750 * orphan item for truncate indicating that there were possibly
3751 * extent items past i_size that needed to be deleted. In v3.12,
3752 * truncate was changed to update i_size in sync with the extent
3753 * items, but the (useless) orphan item was still created. Since
3754 * v4.18, we don't create the orphan item for truncate at all.
3755 *
3756 * So, this item could mean that we need to do a truncate, but
3757 * only if this filesystem was last used on a pre-v3.12 kernel
3758 * and was not cleanly unmounted. The odds of that are quite
3759 * slim, and it's a pain to do the truncate now, so just delete
3760 * the orphan item.
3761 *
3762 * It's also possible that this orphan item was supposed to be
3763 * deleted but wasn't. The inode number may have been reused,
3764 * but either way, we can delete the orphan item.
3765 */
3766 if (!inode || inode->vfs_inode.i_nlink) {
3767 if (inode) {
3768 ret = btrfs_drop_verity_items(inode);
3769 iput(&inode->vfs_inode);
3770 inode = NULL;
3771 if (ret)
3772 goto out;
3773 }
3774 trans = btrfs_start_transaction(root, 1);
3775 if (IS_ERR(trans)) {
3776 ret = PTR_ERR(trans);
3777 goto out;
3778 }
3779 btrfs_debug(fs_info, "auto deleting %Lu",
3780 found_key.objectid);
3781 ret = btrfs_del_orphan_item(trans, root,
3782 found_key.objectid);
3783 btrfs_end_transaction(trans);
3784 if (ret)
3785 goto out;
3786 continue;
3787 }
3788
3789 nr_unlink++;
3790
3791 /* this will do delete_inode and everything for us */
3792 iput(&inode->vfs_inode);
3793 }
3794 /* release the path since we're done with it */
3795 btrfs_release_path(path);
3796
3797 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3798 trans = btrfs_join_transaction(root);
3799 if (!IS_ERR(trans))
3800 btrfs_end_transaction(trans);
3801 }
3802
3803 if (nr_unlink)
3804 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3805
3806 out:
3807 if (ret)
3808 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3809 return ret;
3810 }
3811
3812 /*
3813 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3814 * can't be any ACLs.
3815 *
3816 * @leaf: the eb leaf where to search
3817 * @slot: the slot the inode is in
3818 * @objectid: the objectid of the inode
3819 *
3820 * Return true if there is xattr/ACL, false otherwise.
3821 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3822 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3823 int slot, u64 objectid,
3824 int *first_xattr_slot)
3825 {
3826 u32 nritems = btrfs_header_nritems(leaf);
3827 struct btrfs_key found_key;
3828 static u64 xattr_access = 0;
3829 static u64 xattr_default = 0;
3830 int scanned = 0;
3831
3832 if (!xattr_access) {
3833 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3834 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3835 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3836 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3837 }
3838
3839 slot++;
3840 *first_xattr_slot = -1;
3841 while (slot < nritems) {
3842 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3843
3844 /* We found a different objectid, there must be no ACLs. */
3845 if (found_key.objectid != objectid)
3846 return false;
3847
3848 /* We found an xattr, assume we've got an ACL. */
3849 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3850 if (*first_xattr_slot == -1)
3851 *first_xattr_slot = slot;
3852 if (found_key.offset == xattr_access ||
3853 found_key.offset == xattr_default)
3854 return true;
3855 }
3856
3857 /*
3858 * We found a key greater than an xattr key, there can't be any
3859 * ACLs later on.
3860 */
3861 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3862 return false;
3863
3864 slot++;
3865 scanned++;
3866
3867 /*
3868 * The item order goes like:
3869 * - inode
3870 * - inode backrefs
3871 * - xattrs
3872 * - extents,
3873 *
3874 * so if there are lots of hard links to an inode there can be
3875 * a lot of backrefs. Don't waste time searching too hard,
3876 * this is just an optimization.
3877 */
3878 if (scanned >= 8)
3879 break;
3880 }
3881 /*
3882 * We hit the end of the leaf before we found an xattr or something
3883 * larger than an xattr. We have to assume the inode has ACLs.
3884 */
3885 if (*first_xattr_slot == -1)
3886 *first_xattr_slot = slot;
3887 return true;
3888 }
3889
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3890 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3891 {
3892 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3893
3894 if (WARN_ON_ONCE(inode->file_extent_tree))
3895 return 0;
3896 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3897 return 0;
3898 if (!S_ISREG(inode->vfs_inode.i_mode))
3899 return 0;
3900 if (btrfs_is_free_space_inode(inode))
3901 return 0;
3902
3903 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3904 if (!inode->file_extent_tree)
3905 return -ENOMEM;
3906
3907 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3908 IO_TREE_INODE_FILE_EXTENT);
3909 /* Lockdep class is set only for the file extent tree. */
3910 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3911
3912 return 0;
3913 }
3914
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3915 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3916 {
3917 struct btrfs_root *root = inode->root;
3918 struct btrfs_inode *existing;
3919 const u64 ino = btrfs_ino(inode);
3920 int ret;
3921
3922 if (inode_unhashed(&inode->vfs_inode))
3923 return 0;
3924
3925 if (prealloc) {
3926 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3927 if (ret)
3928 return ret;
3929 }
3930
3931 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3932
3933 if (xa_is_err(existing)) {
3934 ret = xa_err(existing);
3935 ASSERT(ret != -EINVAL);
3936 ASSERT(ret != -ENOMEM);
3937 return ret;
3938 } else if (existing) {
3939 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING)));
3940 }
3941
3942 return 0;
3943 }
3944
3945 /*
3946 * Read a locked inode from the btree into the in-memory inode and add it to
3947 * its root list/tree.
3948 *
3949 * On failure clean up the inode.
3950 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3951 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3952 {
3953 struct btrfs_root *root = inode->root;
3954 struct btrfs_fs_info *fs_info = root->fs_info;
3955 struct extent_buffer *leaf;
3956 struct btrfs_inode_item *inode_item;
3957 struct inode *vfs_inode = &inode->vfs_inode;
3958 struct btrfs_key location;
3959 unsigned long ptr;
3960 int maybe_acls;
3961 u32 rdev;
3962 int ret;
3963 bool filled = false;
3964 int first_xattr_slot;
3965
3966 ret = btrfs_fill_inode(inode, &rdev);
3967 if (!ret)
3968 filled = true;
3969
3970 ASSERT(path);
3971
3972 btrfs_get_inode_key(inode, &location);
3973
3974 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3975 if (ret) {
3976 /*
3977 * ret > 0 can come from btrfs_search_slot called by
3978 * btrfs_lookup_inode(), this means the inode was not found.
3979 */
3980 if (ret > 0)
3981 ret = -ENOENT;
3982 goto out;
3983 }
3984
3985 leaf = path->nodes[0];
3986
3987 if (filled)
3988 goto cache_index;
3989
3990 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3991 struct btrfs_inode_item);
3992 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3993 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3994 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3995 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3996 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3997
3998 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3999 btrfs_timespec_nsec(leaf, &inode_item->atime));
4000
4001 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
4002 btrfs_timespec_nsec(leaf, &inode_item->mtime));
4003
4004 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
4005 btrfs_timespec_nsec(leaf, &inode_item->ctime));
4006
4007 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
4008 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
4009
4010 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
4011 inode->generation = btrfs_inode_generation(leaf, inode_item);
4012 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
4013
4014 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
4015 vfs_inode->i_generation = inode->generation;
4016 vfs_inode->i_rdev = 0;
4017 rdev = btrfs_inode_rdev(leaf, inode_item);
4018
4019 if (S_ISDIR(vfs_inode->i_mode))
4020 inode->index_cnt = (u64)-1;
4021
4022 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4023 &inode->flags, &inode->ro_flags);
4024 btrfs_update_inode_mapping_flags(inode);
4025 btrfs_set_inode_mapping_order(inode);
4026
4027 cache_index:
4028 ret = btrfs_init_file_extent_tree(inode);
4029 if (ret)
4030 goto out;
4031 btrfs_inode_set_file_extent_range(inode, 0,
4032 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
4033 /*
4034 * If we were modified in the current generation and evicted from memory
4035 * and then re-read we need to do a full sync since we don't have any
4036 * idea about which extents were modified before we were evicted from
4037 * cache.
4038 *
4039 * This is required for both inode re-read from disk and delayed inode
4040 * in the delayed_nodes xarray.
4041 */
4042 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
4043 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
4044
4045 /*
4046 * We don't persist the id of the transaction where an unlink operation
4047 * against the inode was last made. So here we assume the inode might
4048 * have been evicted, and therefore the exact value of last_unlink_trans
4049 * lost, and set it to last_trans to avoid metadata inconsistencies
4050 * between the inode and its parent if the inode is fsync'ed and the log
4051 * replayed. For example, in the scenario:
4052 *
4053 * touch mydir/foo
4054 * ln mydir/foo mydir/bar
4055 * sync
4056 * unlink mydir/bar
4057 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4058 * xfs_io -c fsync mydir/foo
4059 * <power failure>
4060 * mount fs, triggers fsync log replay
4061 *
4062 * We must make sure that when we fsync our inode foo we also log its
4063 * parent inode, otherwise after log replay the parent still has the
4064 * dentry with the "bar" name but our inode foo has a link count of 1
4065 * and doesn't have an inode ref with the name "bar" anymore.
4066 *
4067 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4068 * but it guarantees correctness at the expense of occasional full
4069 * transaction commits on fsync if our inode is a directory, or if our
4070 * inode is not a directory, logging its parent unnecessarily.
4071 */
4072 inode->last_unlink_trans = inode->last_trans;
4073
4074 /*
4075 * Same logic as for last_unlink_trans. We don't persist the generation
4076 * of the last transaction where this inode was used for a reflink
4077 * operation, so after eviction and reloading the inode we must be
4078 * pessimistic and assume the last transaction that modified the inode.
4079 */
4080 inode->last_reflink_trans = inode->last_trans;
4081
4082 path->slots[0]++;
4083 if (vfs_inode->i_nlink != 1 ||
4084 path->slots[0] >= btrfs_header_nritems(leaf))
4085 goto cache_acl;
4086
4087 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4088 if (location.objectid != btrfs_ino(inode))
4089 goto cache_acl;
4090
4091 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4092 if (location.type == BTRFS_INODE_REF_KEY) {
4093 struct btrfs_inode_ref *ref;
4094
4095 ref = (struct btrfs_inode_ref *)ptr;
4096 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4097 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4098 struct btrfs_inode_extref *extref;
4099
4100 extref = (struct btrfs_inode_extref *)ptr;
4101 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4102 }
4103 cache_acl:
4104 /*
4105 * try to precache a NULL acl entry for files that don't have
4106 * any xattrs or acls
4107 */
4108 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4109 btrfs_ino(inode), &first_xattr_slot);
4110 if (first_xattr_slot != -1) {
4111 path->slots[0] = first_xattr_slot;
4112 ret = btrfs_load_inode_props(inode, path);
4113 if (ret)
4114 btrfs_err(fs_info,
4115 "error loading props for ino %llu (root %llu): %d",
4116 btrfs_ino(inode), btrfs_root_id(root), ret);
4117 }
4118
4119 if (!maybe_acls)
4120 cache_no_acl(vfs_inode);
4121
4122 switch (vfs_inode->i_mode & S_IFMT) {
4123 case S_IFREG:
4124 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4125 vfs_inode->i_fop = &btrfs_file_operations;
4126 vfs_inode->i_op = &btrfs_file_inode_operations;
4127 break;
4128 case S_IFDIR:
4129 vfs_inode->i_fop = &btrfs_dir_file_operations;
4130 vfs_inode->i_op = &btrfs_dir_inode_operations;
4131 break;
4132 case S_IFLNK:
4133 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4134 inode_nohighmem(vfs_inode);
4135 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4136 break;
4137 default:
4138 vfs_inode->i_op = &btrfs_special_inode_operations;
4139 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4140 break;
4141 }
4142
4143 btrfs_sync_inode_flags_to_i_flags(inode);
4144
4145 ret = btrfs_add_inode_to_root(inode, true);
4146 if (ret)
4147 goto out;
4148
4149 return 0;
4150 out:
4151 iget_failed(vfs_inode);
4152 return ret;
4153 }
4154
4155 /*
4156 * given a leaf and an inode, copy the inode fields into the leaf
4157 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4158 static void fill_inode_item(struct btrfs_trans_handle *trans,
4159 struct extent_buffer *leaf,
4160 struct btrfs_inode_item *item,
4161 struct inode *inode)
4162 {
4163 u64 flags;
4164
4165 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4166 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4167 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4168 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4169 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4170
4171 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4172 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4173
4174 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4175 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4176
4177 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4178 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4179
4180 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4181 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4182
4183 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4184 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4185 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4186 btrfs_set_inode_transid(leaf, item, trans->transid);
4187 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4188 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4189 BTRFS_I(inode)->ro_flags);
4190 btrfs_set_inode_flags(leaf, item, flags);
4191 btrfs_set_inode_block_group(leaf, item, 0);
4192 }
4193
4194 /*
4195 * copy everything in the in-memory inode into the btree.
4196 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4197 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4198 struct btrfs_inode *inode)
4199 {
4200 struct btrfs_inode_item *inode_item;
4201 BTRFS_PATH_AUTO_FREE(path);
4202 struct extent_buffer *leaf;
4203 struct btrfs_key key;
4204 int ret;
4205
4206 path = btrfs_alloc_path();
4207 if (!path)
4208 return -ENOMEM;
4209
4210 btrfs_get_inode_key(inode, &key);
4211 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4212 if (ret) {
4213 if (ret > 0)
4214 ret = -ENOENT;
4215 return ret;
4216 }
4217
4218 leaf = path->nodes[0];
4219 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4220 struct btrfs_inode_item);
4221
4222 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4223 btrfs_set_inode_last_trans(trans, inode);
4224 return 0;
4225 }
4226
4227 /*
4228 * copy everything in the in-memory inode into the btree.
4229 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4230 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4231 struct btrfs_inode *inode)
4232 {
4233 struct btrfs_root *root = inode->root;
4234 struct btrfs_fs_info *fs_info = root->fs_info;
4235 int ret;
4236
4237 /*
4238 * If the inode is a free space inode, we can deadlock during commit
4239 * if we put it into the delayed code.
4240 *
4241 * The data relocation inode should also be directly updated
4242 * without delay
4243 */
4244 if (!btrfs_is_free_space_inode(inode)
4245 && !btrfs_is_data_reloc_root(root)
4246 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4247 btrfs_update_root_times(trans, root);
4248
4249 ret = btrfs_delayed_update_inode(trans, inode);
4250 if (!ret)
4251 btrfs_set_inode_last_trans(trans, inode);
4252 return ret;
4253 }
4254
4255 return btrfs_update_inode_item(trans, inode);
4256 }
4257
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4258 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4259 struct btrfs_inode *inode)
4260 {
4261 int ret;
4262
4263 ret = btrfs_update_inode(trans, inode);
4264 if (ret == -ENOSPC)
4265 return btrfs_update_inode_item(trans, inode);
4266 return ret;
4267 }
4268
update_time_after_link_or_unlink(struct btrfs_inode * dir)4269 static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4270 {
4271 struct timespec64 now;
4272
4273 /*
4274 * If we are replaying a log tree, we do not want to update the mtime
4275 * and ctime of the parent directory with the current time, since the
4276 * log replay procedure is responsible for setting them to their correct
4277 * values (the ones it had when the fsync was done).
4278 */
4279 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4280 return;
4281
4282 now = inode_set_ctime_current(&dir->vfs_inode);
4283 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4284 }
4285
4286 /*
4287 * unlink helper that gets used here in inode.c and in the tree logging
4288 * recovery code. It remove a link in a directory with a given name, and
4289 * also drops the back refs in the inode to the directory
4290 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4291 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4292 struct btrfs_inode *dir,
4293 struct btrfs_inode *inode,
4294 const struct fscrypt_str *name,
4295 struct btrfs_rename_ctx *rename_ctx)
4296 {
4297 struct btrfs_root *root = dir->root;
4298 struct btrfs_fs_info *fs_info = root->fs_info;
4299 struct btrfs_path *path;
4300 int ret = 0;
4301 struct btrfs_dir_item *di;
4302 u64 index;
4303 u64 ino = btrfs_ino(inode);
4304 u64 dir_ino = btrfs_ino(dir);
4305
4306 path = btrfs_alloc_path();
4307 if (!path)
4308 return -ENOMEM;
4309
4310 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4311 if (IS_ERR_OR_NULL(di)) {
4312 btrfs_free_path(path);
4313 return di ? PTR_ERR(di) : -ENOENT;
4314 }
4315 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4316 /*
4317 * Down the call chains below we'll also need to allocate a path, so no
4318 * need to hold on to this one for longer than necessary.
4319 */
4320 btrfs_free_path(path);
4321 if (ret)
4322 return ret;
4323
4324 /*
4325 * If we don't have dir index, we have to get it by looking up
4326 * the inode ref, since we get the inode ref, remove it directly,
4327 * it is unnecessary to do delayed deletion.
4328 *
4329 * But if we have dir index, needn't search inode ref to get it.
4330 * Since the inode ref is close to the inode item, it is better
4331 * that we delay to delete it, and just do this deletion when
4332 * we update the inode item.
4333 */
4334 if (inode->dir_index) {
4335 ret = btrfs_delayed_delete_inode_ref(inode);
4336 if (!ret) {
4337 index = inode->dir_index;
4338 goto skip_backref;
4339 }
4340 }
4341
4342 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4343 if (unlikely(ret)) {
4344 btrfs_crit(fs_info,
4345 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4346 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4347 btrfs_abort_transaction(trans, ret);
4348 return ret;
4349 }
4350 skip_backref:
4351 if (rename_ctx)
4352 rename_ctx->index = index;
4353
4354 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4355 if (unlikely(ret)) {
4356 btrfs_abort_transaction(trans, ret);
4357 return ret;
4358 }
4359
4360 /*
4361 * If we are in a rename context, we don't need to update anything in the
4362 * log. That will be done later during the rename by btrfs_log_new_name().
4363 * Besides that, doing it here would only cause extra unnecessary btree
4364 * operations on the log tree, increasing latency for applications.
4365 */
4366 if (!rename_ctx) {
4367 btrfs_del_inode_ref_in_log(trans, name, inode, dir);
4368 btrfs_del_dir_entries_in_log(trans, name, dir, index);
4369 }
4370
4371 /*
4372 * If we have a pending delayed iput we could end up with the final iput
4373 * being run in btrfs-cleaner context. If we have enough of these built
4374 * up we can end up burning a lot of time in btrfs-cleaner without any
4375 * way to throttle the unlinks. Since we're currently holding a ref on
4376 * the inode we can run the delayed iput here without any issues as the
4377 * final iput won't be done until after we drop the ref we're currently
4378 * holding.
4379 */
4380 btrfs_run_delayed_iput(fs_info, inode);
4381
4382 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4383 inode_inc_iversion(&inode->vfs_inode);
4384 inode_set_ctime_current(&inode->vfs_inode);
4385 inode_inc_iversion(&dir->vfs_inode);
4386 update_time_after_link_or_unlink(dir);
4387
4388 return btrfs_update_inode(trans, dir);
4389 }
4390
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4391 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4392 struct btrfs_inode *dir, struct btrfs_inode *inode,
4393 const struct fscrypt_str *name)
4394 {
4395 int ret;
4396
4397 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4398 if (!ret) {
4399 drop_nlink(&inode->vfs_inode);
4400 ret = btrfs_update_inode(trans, inode);
4401 }
4402 return ret;
4403 }
4404
4405 /*
4406 * helper to start transaction for unlink and rmdir.
4407 *
4408 * unlink and rmdir are special in btrfs, they do not always free space, so
4409 * if we cannot make our reservations the normal way try and see if there is
4410 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4411 * allow the unlink to occur.
4412 */
__unlink_start_trans(struct btrfs_inode * dir)4413 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4414 {
4415 struct btrfs_root *root = dir->root;
4416
4417 return btrfs_start_transaction_fallback_global_rsv(root,
4418 BTRFS_UNLINK_METADATA_UNITS);
4419 }
4420
btrfs_unlink(struct inode * dir,struct dentry * dentry)4421 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4422 {
4423 struct btrfs_trans_handle *trans;
4424 struct inode *inode = d_inode(dentry);
4425 int ret;
4426 struct fscrypt_name fname;
4427
4428 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4429 if (ret)
4430 return ret;
4431
4432 /* This needs to handle no-key deletions later on */
4433
4434 trans = __unlink_start_trans(BTRFS_I(dir));
4435 if (IS_ERR(trans)) {
4436 ret = PTR_ERR(trans);
4437 goto fscrypt_free;
4438 }
4439
4440 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4441 false);
4442
4443 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4444 &fname.disk_name);
4445 if (ret)
4446 goto end_trans;
4447
4448 if (inode->i_nlink == 0) {
4449 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4450 if (ret)
4451 goto end_trans;
4452 }
4453
4454 end_trans:
4455 btrfs_end_transaction(trans);
4456 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4457 fscrypt_free:
4458 fscrypt_free_filename(&fname);
4459 return ret;
4460 }
4461
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4462 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4463 struct btrfs_inode *dir, struct dentry *dentry)
4464 {
4465 struct btrfs_root *root = dir->root;
4466 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4467 BTRFS_PATH_AUTO_FREE(path);
4468 struct extent_buffer *leaf;
4469 struct btrfs_dir_item *di;
4470 struct btrfs_key key;
4471 u64 index;
4472 int ret;
4473 u64 objectid;
4474 u64 dir_ino = btrfs_ino(dir);
4475 struct fscrypt_name fname;
4476
4477 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4478 if (ret)
4479 return ret;
4480
4481 /* This needs to handle no-key deletions later on */
4482
4483 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4484 objectid = btrfs_root_id(inode->root);
4485 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4486 objectid = inode->ref_root_id;
4487 } else {
4488 WARN_ON(1);
4489 fscrypt_free_filename(&fname);
4490 return -EINVAL;
4491 }
4492
4493 path = btrfs_alloc_path();
4494 if (!path) {
4495 ret = -ENOMEM;
4496 goto out;
4497 }
4498
4499 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4500 &fname.disk_name, -1);
4501 if (IS_ERR_OR_NULL(di)) {
4502 ret = di ? PTR_ERR(di) : -ENOENT;
4503 goto out;
4504 }
4505
4506 leaf = path->nodes[0];
4507 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4508 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4509 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4510 if (unlikely(ret)) {
4511 btrfs_abort_transaction(trans, ret);
4512 goto out;
4513 }
4514 btrfs_release_path(path);
4515
4516 /*
4517 * This is a placeholder inode for a subvolume we didn't have a
4518 * reference to at the time of the snapshot creation. In the meantime
4519 * we could have renamed the real subvol link into our snapshot, so
4520 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4521 * Instead simply lookup the dir_index_item for this entry so we can
4522 * remove it. Otherwise we know we have a ref to the root and we can
4523 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4524 */
4525 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4526 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4527 if (IS_ERR(di)) {
4528 ret = PTR_ERR(di);
4529 btrfs_abort_transaction(trans, ret);
4530 goto out;
4531 }
4532
4533 leaf = path->nodes[0];
4534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4535 index = key.offset;
4536 btrfs_release_path(path);
4537 } else {
4538 ret = btrfs_del_root_ref(trans, objectid,
4539 btrfs_root_id(root), dir_ino,
4540 &index, &fname.disk_name);
4541 if (unlikely(ret)) {
4542 btrfs_abort_transaction(trans, ret);
4543 goto out;
4544 }
4545 }
4546
4547 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4548 if (unlikely(ret)) {
4549 btrfs_abort_transaction(trans, ret);
4550 goto out;
4551 }
4552
4553 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4554 inode_inc_iversion(&dir->vfs_inode);
4555 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4556 ret = btrfs_update_inode_fallback(trans, dir);
4557 if (ret)
4558 btrfs_abort_transaction(trans, ret);
4559 out:
4560 fscrypt_free_filename(&fname);
4561 return ret;
4562 }
4563
4564 /*
4565 * Helper to check if the subvolume references other subvolumes or if it's
4566 * default.
4567 */
may_destroy_subvol(struct btrfs_root * root)4568 static noinline int may_destroy_subvol(struct btrfs_root *root)
4569 {
4570 struct btrfs_fs_info *fs_info = root->fs_info;
4571 BTRFS_PATH_AUTO_FREE(path);
4572 struct btrfs_dir_item *di;
4573 struct btrfs_key key;
4574 struct fscrypt_str name = FSTR_INIT("default", 7);
4575 u64 dir_id;
4576 int ret;
4577
4578 path = btrfs_alloc_path();
4579 if (!path)
4580 return -ENOMEM;
4581
4582 /* Make sure this root isn't set as the default subvol */
4583 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4584 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4585 dir_id, &name, 0);
4586 if (di && !IS_ERR(di)) {
4587 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4588 if (key.objectid == btrfs_root_id(root)) {
4589 ret = -EPERM;
4590 btrfs_err(fs_info,
4591 "deleting default subvolume %llu is not allowed",
4592 key.objectid);
4593 return ret;
4594 }
4595 btrfs_release_path(path);
4596 }
4597
4598 key.objectid = btrfs_root_id(root);
4599 key.type = BTRFS_ROOT_REF_KEY;
4600 key.offset = (u64)-1;
4601
4602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4603 if (ret < 0)
4604 return ret;
4605 if (unlikely(ret == 0)) {
4606 /*
4607 * Key with offset -1 found, there would have to exist a root
4608 * with such id, but this is out of valid range.
4609 */
4610 return -EUCLEAN;
4611 }
4612
4613 ret = 0;
4614 if (path->slots[0] > 0) {
4615 path->slots[0]--;
4616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4617 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4618 ret = -ENOTEMPTY;
4619 }
4620
4621 return ret;
4622 }
4623
4624 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4625 static void btrfs_prune_dentries(struct btrfs_root *root)
4626 {
4627 struct btrfs_fs_info *fs_info = root->fs_info;
4628 struct btrfs_inode *inode;
4629 u64 min_ino = 0;
4630
4631 if (!BTRFS_FS_ERROR(fs_info))
4632 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4633
4634 inode = btrfs_find_first_inode(root, min_ino);
4635 while (inode) {
4636 if (icount_read(&inode->vfs_inode) > 1)
4637 d_prune_aliases(&inode->vfs_inode);
4638
4639 min_ino = btrfs_ino(inode) + 1;
4640 /*
4641 * btrfs_drop_inode() will have it removed from the inode
4642 * cache when its usage count hits zero.
4643 */
4644 iput(&inode->vfs_inode);
4645 cond_resched();
4646 inode = btrfs_find_first_inode(root, min_ino);
4647 }
4648 }
4649
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4650 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4651 {
4652 struct btrfs_root *root = dir->root;
4653 struct btrfs_fs_info *fs_info = root->fs_info;
4654 struct inode *inode = d_inode(dentry);
4655 struct btrfs_root *dest = BTRFS_I(inode)->root;
4656 struct btrfs_trans_handle *trans;
4657 struct btrfs_block_rsv block_rsv;
4658 u64 root_flags;
4659 u64 qgroup_reserved = 0;
4660 int ret;
4661
4662 down_write(&fs_info->subvol_sem);
4663
4664 /*
4665 * Don't allow to delete a subvolume with send in progress. This is
4666 * inside the inode lock so the error handling that has to drop the bit
4667 * again is not run concurrently.
4668 */
4669 spin_lock(&dest->root_item_lock);
4670 if (dest->send_in_progress) {
4671 spin_unlock(&dest->root_item_lock);
4672 btrfs_warn(fs_info,
4673 "attempt to delete subvolume %llu during send",
4674 btrfs_root_id(dest));
4675 ret = -EPERM;
4676 goto out_up_write;
4677 }
4678 if (atomic_read(&dest->nr_swapfiles)) {
4679 spin_unlock(&dest->root_item_lock);
4680 btrfs_warn(fs_info,
4681 "attempt to delete subvolume %llu with active swapfile",
4682 btrfs_root_id(root));
4683 ret = -EPERM;
4684 goto out_up_write;
4685 }
4686 root_flags = btrfs_root_flags(&dest->root_item);
4687 btrfs_set_root_flags(&dest->root_item,
4688 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4689 spin_unlock(&dest->root_item_lock);
4690
4691 ret = may_destroy_subvol(dest);
4692 if (ret)
4693 goto out_undead;
4694
4695 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4696 /*
4697 * One for dir inode,
4698 * two for dir entries,
4699 * two for root ref/backref.
4700 */
4701 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4702 if (ret)
4703 goto out_undead;
4704 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4705
4706 trans = btrfs_start_transaction(root, 0);
4707 if (IS_ERR(trans)) {
4708 ret = PTR_ERR(trans);
4709 goto out_release;
4710 }
4711 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4712 qgroup_reserved = 0;
4713 trans->block_rsv = &block_rsv;
4714 trans->bytes_reserved = block_rsv.size;
4715
4716 btrfs_record_snapshot_destroy(trans, dir);
4717
4718 ret = btrfs_unlink_subvol(trans, dir, dentry);
4719 if (unlikely(ret)) {
4720 btrfs_abort_transaction(trans, ret);
4721 goto out_end_trans;
4722 }
4723
4724 ret = btrfs_record_root_in_trans(trans, dest);
4725 if (unlikely(ret)) {
4726 btrfs_abort_transaction(trans, ret);
4727 goto out_end_trans;
4728 }
4729
4730 memset(&dest->root_item.drop_progress, 0,
4731 sizeof(dest->root_item.drop_progress));
4732 btrfs_set_root_drop_level(&dest->root_item, 0);
4733 btrfs_set_root_refs(&dest->root_item, 0);
4734
4735 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4736 ret = btrfs_insert_orphan_item(trans,
4737 fs_info->tree_root,
4738 btrfs_root_id(dest));
4739 if (unlikely(ret)) {
4740 btrfs_abort_transaction(trans, ret);
4741 goto out_end_trans;
4742 }
4743 }
4744
4745 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4746 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4747 if (unlikely(ret && ret != -ENOENT)) {
4748 btrfs_abort_transaction(trans, ret);
4749 goto out_end_trans;
4750 }
4751 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4752 ret = btrfs_uuid_tree_remove(trans,
4753 dest->root_item.received_uuid,
4754 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4755 btrfs_root_id(dest));
4756 if (unlikely(ret && ret != -ENOENT)) {
4757 btrfs_abort_transaction(trans, ret);
4758 goto out_end_trans;
4759 }
4760 }
4761
4762 free_anon_bdev(dest->anon_dev);
4763 dest->anon_dev = 0;
4764 out_end_trans:
4765 trans->block_rsv = NULL;
4766 trans->bytes_reserved = 0;
4767 ret = btrfs_end_transaction(trans);
4768 inode->i_flags |= S_DEAD;
4769 out_release:
4770 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4771 if (qgroup_reserved)
4772 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4773 out_undead:
4774 if (ret) {
4775 spin_lock(&dest->root_item_lock);
4776 root_flags = btrfs_root_flags(&dest->root_item);
4777 btrfs_set_root_flags(&dest->root_item,
4778 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4779 spin_unlock(&dest->root_item_lock);
4780 }
4781 out_up_write:
4782 up_write(&fs_info->subvol_sem);
4783 if (!ret) {
4784 d_invalidate(dentry);
4785 btrfs_prune_dentries(dest);
4786 ASSERT(dest->send_in_progress == 0);
4787 }
4788
4789 return ret;
4790 }
4791
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4792 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4793 {
4794 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4795 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4796 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4797 int ret = 0;
4798 struct btrfs_trans_handle *trans;
4799 struct fscrypt_name fname;
4800
4801 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4802 return -ENOTEMPTY;
4803 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4804 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4805 btrfs_err(fs_info,
4806 "extent tree v2 doesn't support snapshot deletion yet");
4807 return -EOPNOTSUPP;
4808 }
4809 return btrfs_delete_subvolume(dir, dentry);
4810 }
4811
4812 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4813 if (ret)
4814 return ret;
4815
4816 /* This needs to handle no-key deletions later on */
4817
4818 trans = __unlink_start_trans(dir);
4819 if (IS_ERR(trans)) {
4820 ret = PTR_ERR(trans);
4821 goto out_notrans;
4822 }
4823
4824 /*
4825 * Propagate the last_unlink_trans value of the deleted dir to its
4826 * parent directory. This is to prevent an unrecoverable log tree in the
4827 * case we do something like this:
4828 * 1) create dir foo
4829 * 2) create snapshot under dir foo
4830 * 3) delete the snapshot
4831 * 4) rmdir foo
4832 * 5) mkdir foo
4833 * 6) fsync foo or some file inside foo
4834 *
4835 * This is because we can't unlink other roots when replaying the dir
4836 * deletes for directory foo.
4837 */
4838 if (inode->last_unlink_trans >= trans->transid)
4839 btrfs_record_snapshot_destroy(trans, dir);
4840
4841 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4842 ret = btrfs_unlink_subvol(trans, dir, dentry);
4843 goto out;
4844 }
4845
4846 ret = btrfs_orphan_add(trans, inode);
4847 if (ret)
4848 goto out;
4849
4850 /* now the directory is empty */
4851 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4852 if (!ret)
4853 btrfs_i_size_write(inode, 0);
4854 out:
4855 btrfs_end_transaction(trans);
4856 out_notrans:
4857 btrfs_btree_balance_dirty(fs_info);
4858 fscrypt_free_filename(&fname);
4859
4860 return ret;
4861 }
4862
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4863 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4864 {
4865 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4866 blockstart, blocksize);
4867
4868 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4869 return true;
4870 return false;
4871 }
4872
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4873 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4874 {
4875 const pgoff_t index = (start >> PAGE_SHIFT);
4876 struct address_space *mapping = inode->vfs_inode.i_mapping;
4877 struct folio *folio;
4878 u64 zero_start;
4879 u64 zero_end;
4880 int ret = 0;
4881
4882 again:
4883 folio = filemap_lock_folio(mapping, index);
4884 /* No folio present. */
4885 if (IS_ERR(folio))
4886 return 0;
4887
4888 if (!folio_test_uptodate(folio)) {
4889 ret = btrfs_read_folio(NULL, folio);
4890 folio_lock(folio);
4891 if (folio->mapping != mapping) {
4892 folio_unlock(folio);
4893 folio_put(folio);
4894 goto again;
4895 }
4896 if (unlikely(!folio_test_uptodate(folio))) {
4897 ret = -EIO;
4898 goto out_unlock;
4899 }
4900 }
4901 folio_wait_writeback(folio);
4902
4903 /*
4904 * We do not need to lock extents nor wait for OE, as it's already
4905 * beyond EOF.
4906 */
4907
4908 zero_start = max_t(u64, folio_pos(folio), start);
4909 zero_end = folio_next_pos(folio);
4910 folio_zero_range(folio, zero_start - folio_pos(folio),
4911 zero_end - zero_start);
4912
4913 out_unlock:
4914 folio_unlock(folio);
4915 folio_put(folio);
4916 return ret;
4917 }
4918
4919 /*
4920 * Handle the truncation of a fs block.
4921 *
4922 * @inode - inode that we're zeroing
4923 * @offset - the file offset of the block to truncate
4924 * The value must be inside [@start, @end], and the function will do
4925 * extra checks if the block that covers @offset needs to be zeroed.
4926 * @start - the start file offset of the range we want to zero
4927 * @end - the end (inclusive) file offset of the range we want to zero.
4928 *
4929 * If the range is not block aligned, read out the folio that covers @offset,
4930 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4931 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4932 * for writeback.
4933 *
4934 * This is utilized by hole punch, zero range, file expansion.
4935 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4936 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4937 {
4938 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4939 struct address_space *mapping = inode->vfs_inode.i_mapping;
4940 struct extent_io_tree *io_tree = &inode->io_tree;
4941 struct btrfs_ordered_extent *ordered;
4942 struct extent_state *cached_state = NULL;
4943 struct extent_changeset *data_reserved = NULL;
4944 bool only_release_metadata = false;
4945 u32 blocksize = fs_info->sectorsize;
4946 pgoff_t index = (offset >> PAGE_SHIFT);
4947 struct folio *folio;
4948 gfp_t mask = btrfs_alloc_write_mask(mapping);
4949 int ret = 0;
4950 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4951 blocksize);
4952 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4953 blocksize);
4954 bool need_truncate_head = false;
4955 bool need_truncate_tail = false;
4956 u64 zero_start;
4957 u64 zero_end;
4958 u64 block_start;
4959 u64 block_end;
4960
4961 /* @offset should be inside the range. */
4962 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4963 offset, start, end);
4964
4965 /* The range is aligned at both ends. */
4966 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4967 /*
4968 * For block size < page size case, we may have polluted blocks
4969 * beyond EOF. So we also need to zero them out.
4970 */
4971 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4972 ret = truncate_block_zero_beyond_eof(inode, start);
4973 goto out;
4974 }
4975
4976 /*
4977 * @offset may not be inside the head nor tail block. In that case we
4978 * don't need to do anything.
4979 */
4980 if (!in_head_block && !in_tail_block)
4981 goto out;
4982
4983 /*
4984 * Skip the truncation if the range in the target block is already aligned.
4985 * The seemingly complex check will also handle the same block case.
4986 */
4987 if (in_head_block && !IS_ALIGNED(start, blocksize))
4988 need_truncate_head = true;
4989 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4990 need_truncate_tail = true;
4991 if (!need_truncate_head && !need_truncate_tail)
4992 goto out;
4993
4994 block_start = round_down(offset, blocksize);
4995 block_end = block_start + blocksize - 1;
4996
4997 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4998 blocksize, false);
4999 if (ret < 0) {
5000 size_t write_bytes = blocksize;
5001
5002 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
5003 /* For nocow case, no need to reserve data space. */
5004 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
5005 write_bytes, blocksize);
5006 only_release_metadata = true;
5007 } else {
5008 goto out;
5009 }
5010 }
5011 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
5012 if (ret < 0) {
5013 if (!only_release_metadata)
5014 btrfs_free_reserved_data_space(inode, data_reserved,
5015 block_start, blocksize);
5016 goto out;
5017 }
5018 again:
5019 folio = __filemap_get_folio(mapping, index,
5020 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
5021 if (IS_ERR(folio)) {
5022 if (only_release_metadata)
5023 btrfs_delalloc_release_metadata(inode, blocksize, true);
5024 else
5025 btrfs_delalloc_release_space(inode, data_reserved,
5026 block_start, blocksize, true);
5027 btrfs_delalloc_release_extents(inode, blocksize);
5028 ret = PTR_ERR(folio);
5029 goto out;
5030 }
5031
5032 if (!folio_test_uptodate(folio)) {
5033 ret = btrfs_read_folio(NULL, folio);
5034 folio_lock(folio);
5035 if (folio->mapping != mapping) {
5036 folio_unlock(folio);
5037 folio_put(folio);
5038 goto again;
5039 }
5040 if (unlikely(!folio_test_uptodate(folio))) {
5041 ret = -EIO;
5042 goto out_unlock;
5043 }
5044 }
5045
5046 /*
5047 * We unlock the page after the io is completed and then re-lock it
5048 * above. release_folio() could have come in between that and cleared
5049 * folio private, but left the page in the mapping. Set the page mapped
5050 * here to make sure it's properly set for the subpage stuff.
5051 */
5052 ret = set_folio_extent_mapped(folio);
5053 if (ret < 0)
5054 goto out_unlock;
5055
5056 folio_wait_writeback(folio);
5057
5058 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
5059
5060 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5061 if (ordered) {
5062 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5063 folio_unlock(folio);
5064 folio_put(folio);
5065 btrfs_start_ordered_extent(ordered);
5066 btrfs_put_ordered_extent(ordered);
5067 goto again;
5068 }
5069
5070 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
5071 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5072 &cached_state);
5073
5074 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5075 &cached_state);
5076 if (ret) {
5077 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5078 goto out_unlock;
5079 }
5080
5081 if (end == (u64)-1) {
5082 /*
5083 * We're truncating beyond EOF, the remaining blocks normally are
5084 * already holes thus no need to zero again, but it's possible for
5085 * fs block size < page size cases to have memory mapped writes
5086 * to pollute ranges beyond EOF.
5087 *
5088 * In that case although such polluted blocks beyond EOF will
5089 * not reach disk, it still affects our page caches.
5090 */
5091 zero_start = max_t(u64, folio_pos(folio), start);
5092 zero_end = min_t(u64, folio_next_pos(folio) - 1, end);
5093 } else {
5094 zero_start = max_t(u64, block_start, start);
5095 zero_end = min_t(u64, block_end, end);
5096 }
5097 folio_zero_range(folio, zero_start - folio_pos(folio),
5098 zero_end - zero_start + 1);
5099
5100 btrfs_folio_clear_checked(fs_info, folio, block_start,
5101 block_end + 1 - block_start);
5102 btrfs_folio_set_dirty(fs_info, folio, block_start,
5103 block_end + 1 - block_start);
5104
5105 if (only_release_metadata)
5106 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5107 EXTENT_NORESERVE, &cached_state);
5108
5109 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5110
5111 out_unlock:
5112 if (ret) {
5113 if (only_release_metadata)
5114 btrfs_delalloc_release_metadata(inode, blocksize, true);
5115 else
5116 btrfs_delalloc_release_space(inode, data_reserved,
5117 block_start, blocksize, true);
5118 }
5119 btrfs_delalloc_release_extents(inode, blocksize);
5120 folio_unlock(folio);
5121 folio_put(folio);
5122 out:
5123 if (only_release_metadata)
5124 btrfs_check_nocow_unlock(inode);
5125 extent_changeset_free(data_reserved);
5126 return ret;
5127 }
5128
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5129 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5130 {
5131 struct btrfs_root *root = inode->root;
5132 struct btrfs_fs_info *fs_info = root->fs_info;
5133 struct btrfs_trans_handle *trans;
5134 struct btrfs_drop_extents_args drop_args = { 0 };
5135 int ret;
5136
5137 /*
5138 * If NO_HOLES is enabled, we don't need to do anything.
5139 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5140 * or btrfs_update_inode() will be called, which guarantee that the next
5141 * fsync will know this inode was changed and needs to be logged.
5142 */
5143 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5144 return 0;
5145
5146 /*
5147 * 1 - for the one we're dropping
5148 * 1 - for the one we're adding
5149 * 1 - for updating the inode.
5150 */
5151 trans = btrfs_start_transaction(root, 3);
5152 if (IS_ERR(trans))
5153 return PTR_ERR(trans);
5154
5155 drop_args.start = offset;
5156 drop_args.end = offset + len;
5157 drop_args.drop_cache = true;
5158
5159 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5160 if (unlikely(ret)) {
5161 btrfs_abort_transaction(trans, ret);
5162 btrfs_end_transaction(trans);
5163 return ret;
5164 }
5165
5166 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5167 if (ret) {
5168 btrfs_abort_transaction(trans, ret);
5169 } else {
5170 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5171 btrfs_update_inode(trans, inode);
5172 }
5173 btrfs_end_transaction(trans);
5174 return ret;
5175 }
5176
5177 /*
5178 * This function puts in dummy file extents for the area we're creating a hole
5179 * for. So if we are truncating this file to a larger size we need to insert
5180 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5181 * the range between oldsize and size
5182 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5183 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5184 {
5185 struct btrfs_root *root = inode->root;
5186 struct btrfs_fs_info *fs_info = root->fs_info;
5187 struct extent_io_tree *io_tree = &inode->io_tree;
5188 struct extent_map *em = NULL;
5189 struct extent_state *cached_state = NULL;
5190 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5191 u64 block_end = ALIGN(size, fs_info->sectorsize);
5192 u64 last_byte;
5193 u64 cur_offset;
5194 u64 hole_size;
5195 int ret = 0;
5196
5197 /*
5198 * If our size started in the middle of a block we need to zero out the
5199 * rest of the block before we expand the i_size, otherwise we could
5200 * expose stale data.
5201 */
5202 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5203 if (ret)
5204 return ret;
5205
5206 if (size <= hole_start)
5207 return 0;
5208
5209 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5210 &cached_state);
5211 cur_offset = hole_start;
5212 while (1) {
5213 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5214 if (IS_ERR(em)) {
5215 ret = PTR_ERR(em);
5216 em = NULL;
5217 break;
5218 }
5219 last_byte = min(btrfs_extent_map_end(em), block_end);
5220 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5221 hole_size = last_byte - cur_offset;
5222
5223 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5224 struct extent_map *hole_em;
5225
5226 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5227 if (ret)
5228 break;
5229
5230 ret = btrfs_inode_set_file_extent_range(inode,
5231 cur_offset, hole_size);
5232 if (ret)
5233 break;
5234
5235 hole_em = btrfs_alloc_extent_map();
5236 if (!hole_em) {
5237 btrfs_drop_extent_map_range(inode, cur_offset,
5238 cur_offset + hole_size - 1,
5239 false);
5240 btrfs_set_inode_full_sync(inode);
5241 goto next;
5242 }
5243 hole_em->start = cur_offset;
5244 hole_em->len = hole_size;
5245
5246 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5247 hole_em->disk_num_bytes = 0;
5248 hole_em->ram_bytes = hole_size;
5249 hole_em->generation = btrfs_get_fs_generation(fs_info);
5250
5251 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5252 btrfs_free_extent_map(hole_em);
5253 } else {
5254 ret = btrfs_inode_set_file_extent_range(inode,
5255 cur_offset, hole_size);
5256 if (ret)
5257 break;
5258 }
5259 next:
5260 btrfs_free_extent_map(em);
5261 em = NULL;
5262 cur_offset = last_byte;
5263 if (cur_offset >= block_end)
5264 break;
5265 }
5266 btrfs_free_extent_map(em);
5267 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5268 return ret;
5269 }
5270
btrfs_setsize(struct inode * inode,struct iattr * attr)5271 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5272 {
5273 struct btrfs_root *root = BTRFS_I(inode)->root;
5274 struct btrfs_trans_handle *trans;
5275 loff_t oldsize = i_size_read(inode);
5276 loff_t newsize = attr->ia_size;
5277 int mask = attr->ia_valid;
5278 int ret;
5279
5280 /*
5281 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5282 * special case where we need to update the times despite not having
5283 * these flags set. For all other operations the VFS set these flags
5284 * explicitly if it wants a timestamp update.
5285 */
5286 if (newsize != oldsize) {
5287 inode_inc_iversion(inode);
5288 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5289 inode_set_mtime_to_ts(inode,
5290 inode_set_ctime_current(inode));
5291 }
5292 }
5293
5294 if (newsize > oldsize) {
5295 /*
5296 * Don't do an expanding truncate while snapshotting is ongoing.
5297 * This is to ensure the snapshot captures a fully consistent
5298 * state of this file - if the snapshot captures this expanding
5299 * truncation, it must capture all writes that happened before
5300 * this truncation.
5301 */
5302 btrfs_drew_write_lock(&root->snapshot_lock);
5303 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5304 if (ret) {
5305 btrfs_drew_write_unlock(&root->snapshot_lock);
5306 return ret;
5307 }
5308
5309 trans = btrfs_start_transaction(root, 1);
5310 if (IS_ERR(trans)) {
5311 btrfs_drew_write_unlock(&root->snapshot_lock);
5312 return PTR_ERR(trans);
5313 }
5314
5315 i_size_write(inode, newsize);
5316 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5317 pagecache_isize_extended(inode, oldsize, newsize);
5318 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5319 btrfs_drew_write_unlock(&root->snapshot_lock);
5320 btrfs_end_transaction(trans);
5321 } else {
5322 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5323
5324 if (btrfs_is_zoned(fs_info)) {
5325 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5326 ALIGN(newsize, fs_info->sectorsize),
5327 (u64)-1);
5328 if (ret)
5329 return ret;
5330 }
5331
5332 /*
5333 * We're truncating a file that used to have good data down to
5334 * zero. Make sure any new writes to the file get on disk
5335 * on close.
5336 */
5337 if (newsize == 0)
5338 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5339 &BTRFS_I(inode)->runtime_flags);
5340
5341 truncate_setsize(inode, newsize);
5342
5343 inode_dio_wait(inode);
5344
5345 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5346 if (ret && inode->i_nlink) {
5347 int ret2;
5348
5349 /*
5350 * Truncate failed, so fix up the in-memory size. We
5351 * adjusted disk_i_size down as we removed extents, so
5352 * wait for disk_i_size to be stable and then update the
5353 * in-memory size to match.
5354 */
5355 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5356 if (ret2)
5357 return ret2;
5358 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5359 }
5360 }
5361
5362 return ret;
5363 }
5364
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5365 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5366 struct iattr *attr)
5367 {
5368 struct inode *inode = d_inode(dentry);
5369 struct btrfs_root *root = BTRFS_I(inode)->root;
5370 int ret;
5371
5372 if (btrfs_root_readonly(root))
5373 return -EROFS;
5374
5375 ret = setattr_prepare(idmap, dentry, attr);
5376 if (ret)
5377 return ret;
5378
5379 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5380 ret = btrfs_setsize(inode, attr);
5381 if (ret)
5382 return ret;
5383 }
5384
5385 if (attr->ia_valid) {
5386 setattr_copy(idmap, inode, attr);
5387 inode_inc_iversion(inode);
5388 ret = btrfs_dirty_inode(BTRFS_I(inode));
5389
5390 if (!ret && attr->ia_valid & ATTR_MODE)
5391 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5392 }
5393
5394 return ret;
5395 }
5396
5397 /*
5398 * While truncating the inode pages during eviction, we get the VFS
5399 * calling btrfs_invalidate_folio() against each folio of the inode. This
5400 * is slow because the calls to btrfs_invalidate_folio() result in a
5401 * huge amount of calls to lock_extent() and clear_extent_bit(),
5402 * which keep merging and splitting extent_state structures over and over,
5403 * wasting lots of time.
5404 *
5405 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5406 * skip all those expensive operations on a per folio basis and do only
5407 * the ordered io finishing, while we release here the extent_map and
5408 * extent_state structures, without the excessive merging and splitting.
5409 */
evict_inode_truncate_pages(struct inode * inode)5410 static void evict_inode_truncate_pages(struct inode *inode)
5411 {
5412 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5413 struct rb_node *node;
5414
5415 ASSERT(inode_state_read_once(inode) & I_FREEING);
5416 truncate_inode_pages_final(&inode->i_data);
5417
5418 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5419
5420 /*
5421 * Keep looping until we have no more ranges in the io tree.
5422 * We can have ongoing bios started by readahead that have
5423 * their endio callback (extent_io.c:end_bio_extent_readpage)
5424 * still in progress (unlocked the pages in the bio but did not yet
5425 * unlocked the ranges in the io tree). Therefore this means some
5426 * ranges can still be locked and eviction started because before
5427 * submitting those bios, which are executed by a separate task (work
5428 * queue kthread), inode references (inode->i_count) were not taken
5429 * (which would be dropped in the end io callback of each bio).
5430 * Therefore here we effectively end up waiting for those bios and
5431 * anyone else holding locked ranges without having bumped the inode's
5432 * reference count - if we don't do it, when they access the inode's
5433 * io_tree to unlock a range it may be too late, leading to an
5434 * use-after-free issue.
5435 */
5436 spin_lock(&io_tree->lock);
5437 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5438 struct extent_state *state;
5439 struct extent_state *cached_state = NULL;
5440 u64 start;
5441 u64 end;
5442 unsigned state_flags;
5443
5444 node = rb_first(&io_tree->state);
5445 state = rb_entry(node, struct extent_state, rb_node);
5446 start = state->start;
5447 end = state->end;
5448 state_flags = state->state;
5449 spin_unlock(&io_tree->lock);
5450
5451 btrfs_lock_extent(io_tree, start, end, &cached_state);
5452
5453 /*
5454 * If still has DELALLOC flag, the extent didn't reach disk,
5455 * and its reserved space won't be freed by delayed_ref.
5456 * So we need to free its reserved space here.
5457 * (Refer to comment in btrfs_invalidate_folio, case 2)
5458 *
5459 * Note, end is the bytenr of last byte, so we need + 1 here.
5460 */
5461 if (state_flags & EXTENT_DELALLOC)
5462 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5463 end - start + 1, NULL);
5464
5465 btrfs_clear_extent_bit(io_tree, start, end,
5466 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5467 &cached_state);
5468
5469 cond_resched();
5470 spin_lock(&io_tree->lock);
5471 }
5472 spin_unlock(&io_tree->lock);
5473 }
5474
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5475 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5476 struct btrfs_block_rsv *rsv)
5477 {
5478 struct btrfs_fs_info *fs_info = root->fs_info;
5479 struct btrfs_trans_handle *trans;
5480 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5481 int ret;
5482
5483 /*
5484 * Eviction should be taking place at some place safe because of our
5485 * delayed iputs. However the normal flushing code will run delayed
5486 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5487 *
5488 * We reserve the delayed_refs_extra here again because we can't use
5489 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5490 * above. We reserve our extra bit here because we generate a ton of
5491 * delayed refs activity by truncating.
5492 *
5493 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5494 * if we fail to make this reservation we can re-try without the
5495 * delayed_refs_extra so we can make some forward progress.
5496 */
5497 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5498 BTRFS_RESERVE_FLUSH_EVICT);
5499 if (ret) {
5500 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5501 BTRFS_RESERVE_FLUSH_EVICT);
5502 if (ret) {
5503 btrfs_warn(fs_info,
5504 "could not allocate space for delete; will truncate on mount");
5505 return ERR_PTR(-ENOSPC);
5506 }
5507 delayed_refs_extra = 0;
5508 }
5509
5510 trans = btrfs_join_transaction(root);
5511 if (IS_ERR(trans))
5512 return trans;
5513
5514 if (delayed_refs_extra) {
5515 trans->block_rsv = &fs_info->trans_block_rsv;
5516 trans->bytes_reserved = delayed_refs_extra;
5517 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5518 delayed_refs_extra, true);
5519 }
5520 return trans;
5521 }
5522
btrfs_evict_inode(struct inode * inode)5523 void btrfs_evict_inode(struct inode *inode)
5524 {
5525 struct btrfs_fs_info *fs_info;
5526 struct btrfs_trans_handle *trans;
5527 struct btrfs_root *root = BTRFS_I(inode)->root;
5528 struct btrfs_block_rsv rsv;
5529 int ret;
5530
5531 trace_btrfs_inode_evict(inode);
5532
5533 if (!root) {
5534 fsverity_cleanup_inode(inode);
5535 clear_inode(inode);
5536 return;
5537 }
5538
5539 fs_info = inode_to_fs_info(inode);
5540 evict_inode_truncate_pages(inode);
5541
5542 if (inode->i_nlink &&
5543 ((btrfs_root_refs(&root->root_item) != 0 &&
5544 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5545 btrfs_is_free_space_inode(BTRFS_I(inode))))
5546 goto out;
5547
5548 if (is_bad_inode(inode))
5549 goto out;
5550
5551 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5552 goto out;
5553
5554 if (inode->i_nlink > 0) {
5555 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5556 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5557 goto out;
5558 }
5559
5560 /*
5561 * This makes sure the inode item in tree is uptodate and the space for
5562 * the inode update is released.
5563 */
5564 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5565 if (ret)
5566 goto out;
5567
5568 /*
5569 * This drops any pending insert or delete operations we have for this
5570 * inode. We could have a delayed dir index deletion queued up, but
5571 * we're removing the inode completely so that'll be taken care of in
5572 * the truncate.
5573 */
5574 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5575
5576 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5577 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5578 rsv.failfast = true;
5579
5580 btrfs_i_size_write(BTRFS_I(inode), 0);
5581
5582 while (1) {
5583 struct btrfs_truncate_control control = {
5584 .inode = BTRFS_I(inode),
5585 .ino = btrfs_ino(BTRFS_I(inode)),
5586 .new_size = 0,
5587 .min_type = 0,
5588 };
5589
5590 trans = evict_refill_and_join(root, &rsv);
5591 if (IS_ERR(trans))
5592 goto out_release;
5593
5594 trans->block_rsv = &rsv;
5595
5596 ret = btrfs_truncate_inode_items(trans, root, &control);
5597 trans->block_rsv = &fs_info->trans_block_rsv;
5598 btrfs_end_transaction(trans);
5599 /*
5600 * We have not added new delayed items for our inode after we
5601 * have flushed its delayed items, so no need to throttle on
5602 * delayed items. However we have modified extent buffers.
5603 */
5604 btrfs_btree_balance_dirty_nodelay(fs_info);
5605 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5606 goto out_release;
5607 else if (!ret)
5608 break;
5609 }
5610
5611 /*
5612 * Errors here aren't a big deal, it just means we leave orphan items in
5613 * the tree. They will be cleaned up on the next mount. If the inode
5614 * number gets reused, cleanup deletes the orphan item without doing
5615 * anything, and unlink reuses the existing orphan item.
5616 *
5617 * If it turns out that we are dropping too many of these, we might want
5618 * to add a mechanism for retrying these after a commit.
5619 */
5620 trans = evict_refill_and_join(root, &rsv);
5621 if (!IS_ERR(trans)) {
5622 trans->block_rsv = &rsv;
5623 btrfs_orphan_del(trans, BTRFS_I(inode));
5624 trans->block_rsv = &fs_info->trans_block_rsv;
5625 btrfs_end_transaction(trans);
5626 }
5627
5628 out_release:
5629 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5630 out:
5631 /*
5632 * If we didn't successfully delete, the orphan item will still be in
5633 * the tree and we'll retry on the next mount. Again, we might also want
5634 * to retry these periodically in the future.
5635 */
5636 btrfs_remove_delayed_node(BTRFS_I(inode));
5637 fsverity_cleanup_inode(inode);
5638 clear_inode(inode);
5639 }
5640
5641 /*
5642 * Return the key found in the dir entry in the location pointer, fill @type
5643 * with BTRFS_FT_*, and return 0.
5644 *
5645 * If no dir entries were found, returns -ENOENT.
5646 * If found a corrupted location in dir entry, returns -EUCLEAN.
5647 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5648 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5649 struct btrfs_key *location, u8 *type)
5650 {
5651 struct btrfs_dir_item *di;
5652 BTRFS_PATH_AUTO_FREE(path);
5653 struct btrfs_root *root = dir->root;
5654 int ret = 0;
5655 struct fscrypt_name fname;
5656
5657 path = btrfs_alloc_path();
5658 if (!path)
5659 return -ENOMEM;
5660
5661 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5662 if (ret < 0)
5663 return ret;
5664 /*
5665 * fscrypt_setup_filename() should never return a positive value, but
5666 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5667 */
5668 ASSERT(ret == 0);
5669
5670 /* This needs to handle no-key deletions later on */
5671
5672 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5673 &fname.disk_name, 0);
5674 if (IS_ERR_OR_NULL(di)) {
5675 ret = di ? PTR_ERR(di) : -ENOENT;
5676 goto out;
5677 }
5678
5679 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5680 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY &&
5681 location->type != BTRFS_ROOT_ITEM_KEY)) {
5682 ret = -EUCLEAN;
5683 btrfs_warn(root->fs_info,
5684 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")",
5685 __func__, fname.disk_name.name, btrfs_ino(dir),
5686 BTRFS_KEY_FMT_VALUE(location));
5687 }
5688 if (!ret)
5689 *type = btrfs_dir_ftype(path->nodes[0], di);
5690 out:
5691 fscrypt_free_filename(&fname);
5692 return ret;
5693 }
5694
5695 /*
5696 * when we hit a tree root in a directory, the btrfs part of the inode
5697 * needs to be changed to reflect the root directory of the tree root. This
5698 * is kind of like crossing a mount point.
5699 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5700 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5701 struct btrfs_inode *dir,
5702 struct dentry *dentry,
5703 struct btrfs_key *location,
5704 struct btrfs_root **sub_root)
5705 {
5706 BTRFS_PATH_AUTO_FREE(path);
5707 struct btrfs_root *new_root;
5708 struct btrfs_root_ref *ref;
5709 struct extent_buffer *leaf;
5710 struct btrfs_key key;
5711 int ret;
5712 int err = 0;
5713 struct fscrypt_name fname;
5714
5715 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5716 if (ret)
5717 return ret;
5718
5719 path = btrfs_alloc_path();
5720 if (!path) {
5721 err = -ENOMEM;
5722 goto out;
5723 }
5724
5725 err = -ENOENT;
5726 key.objectid = btrfs_root_id(dir->root);
5727 key.type = BTRFS_ROOT_REF_KEY;
5728 key.offset = location->objectid;
5729
5730 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5731 if (ret) {
5732 if (ret < 0)
5733 err = ret;
5734 goto out;
5735 }
5736
5737 leaf = path->nodes[0];
5738 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5739 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5740 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5741 goto out;
5742
5743 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5744 (unsigned long)(ref + 1), fname.disk_name.len);
5745 if (ret)
5746 goto out;
5747
5748 btrfs_release_path(path);
5749
5750 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5751 if (IS_ERR(new_root)) {
5752 err = PTR_ERR(new_root);
5753 goto out;
5754 }
5755
5756 *sub_root = new_root;
5757 location->objectid = btrfs_root_dirid(&new_root->root_item);
5758 location->type = BTRFS_INODE_ITEM_KEY;
5759 location->offset = 0;
5760 err = 0;
5761 out:
5762 fscrypt_free_filename(&fname);
5763 return err;
5764 }
5765
5766
5767
btrfs_del_inode_from_root(struct btrfs_inode * inode)5768 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5769 {
5770 struct btrfs_root *root = inode->root;
5771 struct btrfs_inode *entry;
5772 bool empty = false;
5773
5774 xa_lock(&root->inodes);
5775 /*
5776 * This btrfs_inode is being freed and has already been unhashed at this
5777 * point. It's possible that another btrfs_inode has already been
5778 * allocated for the same inode and inserted itself into the root, so
5779 * don't delete it in that case.
5780 *
5781 * Note that this shouldn't need to allocate memory, so the gfp flags
5782 * don't really matter.
5783 */
5784 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5785 GFP_ATOMIC);
5786 if (entry == inode)
5787 empty = xa_empty(&root->inodes);
5788 xa_unlock(&root->inodes);
5789
5790 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5791 xa_lock(&root->inodes);
5792 empty = xa_empty(&root->inodes);
5793 xa_unlock(&root->inodes);
5794 if (empty)
5795 btrfs_add_dead_root(root);
5796 }
5797 }
5798
5799
btrfs_init_locked_inode(struct inode * inode,void * p)5800 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5801 {
5802 struct btrfs_iget_args *args = p;
5803
5804 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5805 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5806
5807 if (args->root && args->root == args->root->fs_info->tree_root &&
5808 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5809 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5810 &BTRFS_I(inode)->runtime_flags);
5811 return 0;
5812 }
5813
btrfs_find_actor(struct inode * inode,void * opaque)5814 static int btrfs_find_actor(struct inode *inode, void *opaque)
5815 {
5816 struct btrfs_iget_args *args = opaque;
5817
5818 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5819 args->root == BTRFS_I(inode)->root;
5820 }
5821
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5822 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5823 {
5824 struct inode *inode;
5825 struct btrfs_iget_args args;
5826 unsigned long hashval = btrfs_inode_hash(ino, root);
5827
5828 args.ino = ino;
5829 args.root = root;
5830
5831 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5832 btrfs_init_locked_inode,
5833 (void *)&args);
5834 if (!inode)
5835 return NULL;
5836 return BTRFS_I(inode);
5837 }
5838
5839 /*
5840 * Get an inode object given its inode number and corresponding root. Path is
5841 * preallocated to prevent recursing back to iget through allocator.
5842 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5843 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5844 struct btrfs_path *path)
5845 {
5846 struct btrfs_inode *inode;
5847 int ret;
5848
5849 inode = btrfs_iget_locked(ino, root);
5850 if (!inode)
5851 return ERR_PTR(-ENOMEM);
5852
5853 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5854 return inode;
5855
5856 ret = btrfs_read_locked_inode(inode, path);
5857 if (ret)
5858 return ERR_PTR(ret);
5859
5860 unlock_new_inode(&inode->vfs_inode);
5861 return inode;
5862 }
5863
5864 /*
5865 * Get an inode object given its inode number and corresponding root.
5866 */
btrfs_iget(u64 ino,struct btrfs_root * root)5867 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5868 {
5869 struct btrfs_inode *inode;
5870 struct btrfs_path *path;
5871 int ret;
5872
5873 inode = btrfs_iget_locked(ino, root);
5874 if (!inode)
5875 return ERR_PTR(-ENOMEM);
5876
5877 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5878 return inode;
5879
5880 path = btrfs_alloc_path();
5881 if (!path) {
5882 iget_failed(&inode->vfs_inode);
5883 return ERR_PTR(-ENOMEM);
5884 }
5885
5886 ret = btrfs_read_locked_inode(inode, path);
5887 btrfs_free_path(path);
5888 if (ret)
5889 return ERR_PTR(ret);
5890
5891 if (S_ISDIR(inode->vfs_inode.i_mode))
5892 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC;
5893 unlock_new_inode(&inode->vfs_inode);
5894 return inode;
5895 }
5896
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5897 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5898 struct btrfs_key *key,
5899 struct btrfs_root *root)
5900 {
5901 struct timespec64 ts;
5902 struct inode *vfs_inode;
5903 struct btrfs_inode *inode;
5904
5905 vfs_inode = new_inode(dir->i_sb);
5906 if (!vfs_inode)
5907 return ERR_PTR(-ENOMEM);
5908
5909 inode = BTRFS_I(vfs_inode);
5910 inode->root = btrfs_grab_root(root);
5911 inode->ref_root_id = key->objectid;
5912 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5913 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5914
5915 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5916 /*
5917 * We only need lookup, the rest is read-only and there's no inode
5918 * associated with the dentry
5919 */
5920 vfs_inode->i_op = &simple_dir_inode_operations;
5921 vfs_inode->i_opflags &= ~IOP_XATTR;
5922 vfs_inode->i_fop = &simple_dir_operations;
5923 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5924
5925 ts = inode_set_ctime_current(vfs_inode);
5926 inode_set_mtime_to_ts(vfs_inode, ts);
5927 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5928 inode->i_otime_sec = ts.tv_sec;
5929 inode->i_otime_nsec = ts.tv_nsec;
5930
5931 vfs_inode->i_uid = dir->i_uid;
5932 vfs_inode->i_gid = dir->i_gid;
5933
5934 return inode;
5935 }
5936
5937 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5938 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5939 static_assert(BTRFS_FT_DIR == FT_DIR);
5940 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5941 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5942 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5943 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5944 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5945
btrfs_inode_type(const struct btrfs_inode * inode)5946 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5947 {
5948 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5949 }
5950
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5951 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5952 {
5953 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5954 struct btrfs_inode *inode;
5955 struct btrfs_root *root = BTRFS_I(dir)->root;
5956 struct btrfs_root *sub_root = root;
5957 struct btrfs_key location = { 0 };
5958 u8 di_type = 0;
5959 int ret = 0;
5960
5961 if (dentry->d_name.len > BTRFS_NAME_LEN)
5962 return ERR_PTR(-ENAMETOOLONG);
5963
5964 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5965 if (ret < 0)
5966 return ERR_PTR(ret);
5967
5968 if (location.type == BTRFS_INODE_ITEM_KEY) {
5969 inode = btrfs_iget(location.objectid, root);
5970 if (IS_ERR(inode))
5971 return ERR_CAST(inode);
5972
5973 /* Do extra check against inode mode with di_type */
5974 if (unlikely(btrfs_inode_type(inode) != di_type)) {
5975 btrfs_crit(fs_info,
5976 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5977 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5978 di_type);
5979 iput(&inode->vfs_inode);
5980 return ERR_PTR(-EUCLEAN);
5981 }
5982 return &inode->vfs_inode;
5983 }
5984
5985 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5986 &location, &sub_root);
5987 if (ret < 0) {
5988 if (ret != -ENOENT)
5989 inode = ERR_PTR(ret);
5990 else
5991 inode = new_simple_dir(dir, &location, root);
5992 } else {
5993 inode = btrfs_iget(location.objectid, sub_root);
5994 btrfs_put_root(sub_root);
5995
5996 if (IS_ERR(inode))
5997 return ERR_CAST(inode);
5998
5999 down_read(&fs_info->cleanup_work_sem);
6000 if (!sb_rdonly(inode->vfs_inode.i_sb))
6001 ret = btrfs_orphan_cleanup(sub_root);
6002 up_read(&fs_info->cleanup_work_sem);
6003 if (ret) {
6004 iput(&inode->vfs_inode);
6005 inode = ERR_PTR(ret);
6006 }
6007 }
6008
6009 if (IS_ERR(inode))
6010 return ERR_CAST(inode);
6011
6012 return &inode->vfs_inode;
6013 }
6014
btrfs_dentry_delete(const struct dentry * dentry)6015 static int btrfs_dentry_delete(const struct dentry *dentry)
6016 {
6017 struct btrfs_root *root;
6018 struct inode *inode = d_inode(dentry);
6019
6020 if (!inode && !IS_ROOT(dentry))
6021 inode = d_inode(dentry->d_parent);
6022
6023 if (inode) {
6024 root = BTRFS_I(inode)->root;
6025 if (btrfs_root_refs(&root->root_item) == 0)
6026 return 1;
6027
6028 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6029 return 1;
6030 }
6031 return 0;
6032 }
6033
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6034 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6035 unsigned int flags)
6036 {
6037 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6038
6039 if (inode == ERR_PTR(-ENOENT))
6040 inode = NULL;
6041 return d_splice_alias(inode, dentry);
6042 }
6043
6044 /*
6045 * Find the highest existing sequence number in a directory and then set the
6046 * in-memory index_cnt variable to the first free sequence number.
6047 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6048 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6049 {
6050 struct btrfs_root *root = inode->root;
6051 struct btrfs_key key, found_key;
6052 BTRFS_PATH_AUTO_FREE(path);
6053 struct extent_buffer *leaf;
6054 int ret;
6055
6056 key.objectid = btrfs_ino(inode);
6057 key.type = BTRFS_DIR_INDEX_KEY;
6058 key.offset = (u64)-1;
6059
6060 path = btrfs_alloc_path();
6061 if (!path)
6062 return -ENOMEM;
6063
6064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6065 if (ret < 0)
6066 return ret;
6067 /* FIXME: we should be able to handle this */
6068 if (ret == 0)
6069 return ret;
6070
6071 if (path->slots[0] == 0) {
6072 inode->index_cnt = BTRFS_DIR_START_INDEX;
6073 return 0;
6074 }
6075
6076 path->slots[0]--;
6077
6078 leaf = path->nodes[0];
6079 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6080
6081 if (found_key.objectid != btrfs_ino(inode) ||
6082 found_key.type != BTRFS_DIR_INDEX_KEY) {
6083 inode->index_cnt = BTRFS_DIR_START_INDEX;
6084 return 0;
6085 }
6086
6087 inode->index_cnt = found_key.offset + 1;
6088
6089 return 0;
6090 }
6091
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6092 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6093 {
6094 int ret = 0;
6095
6096 btrfs_inode_lock(dir, 0);
6097 if (dir->index_cnt == (u64)-1) {
6098 ret = btrfs_inode_delayed_dir_index_count(dir);
6099 if (ret) {
6100 ret = btrfs_set_inode_index_count(dir);
6101 if (ret)
6102 goto out;
6103 }
6104 }
6105
6106 /* index_cnt is the index number of next new entry, so decrement it. */
6107 *index = dir->index_cnt - 1;
6108 out:
6109 btrfs_inode_unlock(dir, 0);
6110
6111 return ret;
6112 }
6113
6114 /*
6115 * All this infrastructure exists because dir_emit can fault, and we are holding
6116 * the tree lock when doing readdir. For now just allocate a buffer and copy
6117 * our information into that, and then dir_emit from the buffer. This is
6118 * similar to what NFS does, only we don't keep the buffer around in pagecache
6119 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6120 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6121 * tree lock.
6122 */
btrfs_opendir(struct inode * inode,struct file * file)6123 static int btrfs_opendir(struct inode *inode, struct file *file)
6124 {
6125 struct btrfs_file_private *private;
6126 u64 last_index;
6127 int ret;
6128
6129 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6130 if (ret)
6131 return ret;
6132
6133 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6134 if (!private)
6135 return -ENOMEM;
6136 private->last_index = last_index;
6137 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6138 if (!private->filldir_buf) {
6139 kfree(private);
6140 return -ENOMEM;
6141 }
6142 file->private_data = private;
6143 return 0;
6144 }
6145
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6146 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6147 {
6148 struct btrfs_file_private *private = file->private_data;
6149 int ret;
6150
6151 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6152 &private->last_index);
6153 if (ret)
6154 return ret;
6155
6156 return generic_file_llseek(file, offset, whence);
6157 }
6158
6159 struct dir_entry {
6160 u64 ino;
6161 u64 offset;
6162 unsigned type;
6163 int name_len;
6164 };
6165
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6166 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6167 {
6168 while (entries--) {
6169 struct dir_entry *entry = addr;
6170 char *name = (char *)(entry + 1);
6171
6172 ctx->pos = get_unaligned(&entry->offset);
6173 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6174 get_unaligned(&entry->ino),
6175 get_unaligned(&entry->type)))
6176 return 1;
6177 addr += sizeof(struct dir_entry) +
6178 get_unaligned(&entry->name_len);
6179 ctx->pos++;
6180 }
6181 return 0;
6182 }
6183
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6184 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6185 {
6186 struct inode *inode = file_inode(file);
6187 struct btrfs_root *root = BTRFS_I(inode)->root;
6188 struct btrfs_file_private *private = file->private_data;
6189 struct btrfs_dir_item *di;
6190 struct btrfs_key key;
6191 struct btrfs_key found_key;
6192 BTRFS_PATH_AUTO_FREE(path);
6193 void *addr;
6194 LIST_HEAD(ins_list);
6195 LIST_HEAD(del_list);
6196 int ret;
6197 char *name_ptr;
6198 int name_len;
6199 int entries = 0;
6200 int total_len = 0;
6201 bool put = false;
6202 struct btrfs_key location;
6203
6204 if (!dir_emit_dots(file, ctx))
6205 return 0;
6206
6207 path = btrfs_alloc_path();
6208 if (!path)
6209 return -ENOMEM;
6210
6211 addr = private->filldir_buf;
6212 path->reada = READA_FORWARD;
6213
6214 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6215 &ins_list, &del_list);
6216
6217 again:
6218 key.type = BTRFS_DIR_INDEX_KEY;
6219 key.offset = ctx->pos;
6220 key.objectid = btrfs_ino(BTRFS_I(inode));
6221
6222 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6223 struct dir_entry *entry;
6224 struct extent_buffer *leaf = path->nodes[0];
6225 u8 ftype;
6226
6227 if (found_key.objectid != key.objectid)
6228 break;
6229 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6230 break;
6231 if (found_key.offset < ctx->pos)
6232 continue;
6233 if (found_key.offset > private->last_index)
6234 break;
6235 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6236 continue;
6237 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6238 name_len = btrfs_dir_name_len(leaf, di);
6239 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6240 PAGE_SIZE) {
6241 btrfs_release_path(path);
6242 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6243 if (ret)
6244 goto nopos;
6245 addr = private->filldir_buf;
6246 entries = 0;
6247 total_len = 0;
6248 goto again;
6249 }
6250
6251 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6252 entry = addr;
6253 name_ptr = (char *)(entry + 1);
6254 read_extent_buffer(leaf, name_ptr,
6255 (unsigned long)(di + 1), name_len);
6256 put_unaligned(name_len, &entry->name_len);
6257 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6258 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6259 put_unaligned(location.objectid, &entry->ino);
6260 put_unaligned(found_key.offset, &entry->offset);
6261 entries++;
6262 addr += sizeof(struct dir_entry) + name_len;
6263 total_len += sizeof(struct dir_entry) + name_len;
6264 }
6265 /* Catch error encountered during iteration */
6266 if (ret < 0)
6267 goto err;
6268
6269 btrfs_release_path(path);
6270
6271 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6272 if (ret)
6273 goto nopos;
6274
6275 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6276 goto nopos;
6277
6278 /*
6279 * Stop new entries from being returned after we return the last
6280 * entry.
6281 *
6282 * New directory entries are assigned a strictly increasing
6283 * offset. This means that new entries created during readdir
6284 * are *guaranteed* to be seen in the future by that readdir.
6285 * This has broken buggy programs which operate on names as
6286 * they're returned by readdir. Until we reuse freed offsets
6287 * we have this hack to stop new entries from being returned
6288 * under the assumption that they'll never reach this huge
6289 * offset.
6290 *
6291 * This is being careful not to overflow 32bit loff_t unless the
6292 * last entry requires it because doing so has broken 32bit apps
6293 * in the past.
6294 */
6295 if (ctx->pos >= INT_MAX)
6296 ctx->pos = LLONG_MAX;
6297 else
6298 ctx->pos = INT_MAX;
6299 nopos:
6300 ret = 0;
6301 err:
6302 if (put)
6303 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6304 return ret;
6305 }
6306
6307 /*
6308 * This is somewhat expensive, updating the tree every time the
6309 * inode changes. But, it is most likely to find the inode in cache.
6310 * FIXME, needs more benchmarking...there are no reasons other than performance
6311 * to keep or drop this code.
6312 */
btrfs_dirty_inode(struct btrfs_inode * inode)6313 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6314 {
6315 struct btrfs_root *root = inode->root;
6316 struct btrfs_fs_info *fs_info = root->fs_info;
6317 struct btrfs_trans_handle *trans;
6318 int ret;
6319
6320 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6321 return 0;
6322
6323 trans = btrfs_join_transaction(root);
6324 if (IS_ERR(trans))
6325 return PTR_ERR(trans);
6326
6327 ret = btrfs_update_inode(trans, inode);
6328 if (ret == -ENOSPC || ret == -EDQUOT) {
6329 /* whoops, lets try again with the full transaction */
6330 btrfs_end_transaction(trans);
6331 trans = btrfs_start_transaction(root, 1);
6332 if (IS_ERR(trans))
6333 return PTR_ERR(trans);
6334
6335 ret = btrfs_update_inode(trans, inode);
6336 }
6337 btrfs_end_transaction(trans);
6338 if (inode->delayed_node)
6339 btrfs_balance_delayed_items(fs_info);
6340
6341 return ret;
6342 }
6343
6344 /*
6345 * We need our own ->update_time so that we can return error on ENOSPC for
6346 * updating the inode in the case of file write and mmap writes.
6347 */
btrfs_update_time(struct inode * inode,int flags)6348 static int btrfs_update_time(struct inode *inode, int flags)
6349 {
6350 struct btrfs_root *root = BTRFS_I(inode)->root;
6351 bool dirty;
6352
6353 if (btrfs_root_readonly(root))
6354 return -EROFS;
6355
6356 dirty = inode_update_timestamps(inode, flags);
6357 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6358 }
6359
6360 /*
6361 * helper to find a free sequence number in a given directory. This current
6362 * code is very simple, later versions will do smarter things in the btree
6363 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6364 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6365 {
6366 int ret = 0;
6367
6368 if (dir->index_cnt == (u64)-1) {
6369 ret = btrfs_inode_delayed_dir_index_count(dir);
6370 if (ret) {
6371 ret = btrfs_set_inode_index_count(dir);
6372 if (ret)
6373 return ret;
6374 }
6375 }
6376
6377 *index = dir->index_cnt;
6378 dir->index_cnt++;
6379
6380 return ret;
6381 }
6382
btrfs_insert_inode_locked(struct inode * inode)6383 static int btrfs_insert_inode_locked(struct inode *inode)
6384 {
6385 struct btrfs_iget_args args;
6386
6387 args.ino = btrfs_ino(BTRFS_I(inode));
6388 args.root = BTRFS_I(inode)->root;
6389
6390 return insert_inode_locked4(inode,
6391 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6392 btrfs_find_actor, &args);
6393 }
6394
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6395 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6396 unsigned int *trans_num_items)
6397 {
6398 struct inode *dir = args->dir;
6399 struct inode *inode = args->inode;
6400 int ret;
6401
6402 if (!args->orphan) {
6403 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6404 &args->fname);
6405 if (ret)
6406 return ret;
6407 }
6408
6409 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6410 if (ret) {
6411 fscrypt_free_filename(&args->fname);
6412 return ret;
6413 }
6414
6415 /* 1 to add inode item */
6416 *trans_num_items = 1;
6417 /* 1 to add compression property */
6418 if (BTRFS_I(dir)->prop_compress)
6419 (*trans_num_items)++;
6420 /* 1 to add default ACL xattr */
6421 if (args->default_acl)
6422 (*trans_num_items)++;
6423 /* 1 to add access ACL xattr */
6424 if (args->acl)
6425 (*trans_num_items)++;
6426 #ifdef CONFIG_SECURITY
6427 /* 1 to add LSM xattr */
6428 if (dir->i_security)
6429 (*trans_num_items)++;
6430 #endif
6431 if (args->orphan) {
6432 /* 1 to add orphan item */
6433 (*trans_num_items)++;
6434 } else {
6435 /*
6436 * 1 to add dir item
6437 * 1 to add dir index
6438 * 1 to update parent inode item
6439 *
6440 * No need for 1 unit for the inode ref item because it is
6441 * inserted in a batch together with the inode item at
6442 * btrfs_create_new_inode().
6443 */
6444 *trans_num_items += 3;
6445 }
6446 return 0;
6447 }
6448
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6449 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6450 {
6451 posix_acl_release(args->acl);
6452 posix_acl_release(args->default_acl);
6453 fscrypt_free_filename(&args->fname);
6454 }
6455
6456 /*
6457 * Inherit flags from the parent inode.
6458 *
6459 * Currently only the compression flags and the cow flags are inherited.
6460 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6461 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6462 {
6463 unsigned int flags;
6464
6465 flags = dir->flags;
6466
6467 if (flags & BTRFS_INODE_NOCOMPRESS) {
6468 inode->flags &= ~BTRFS_INODE_COMPRESS;
6469 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6470 } else if (flags & BTRFS_INODE_COMPRESS) {
6471 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6472 inode->flags |= BTRFS_INODE_COMPRESS;
6473 }
6474
6475 if (flags & BTRFS_INODE_NODATACOW) {
6476 inode->flags |= BTRFS_INODE_NODATACOW;
6477 if (S_ISREG(inode->vfs_inode.i_mode))
6478 inode->flags |= BTRFS_INODE_NODATASUM;
6479 }
6480
6481 btrfs_sync_inode_flags_to_i_flags(inode);
6482 }
6483
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6484 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6485 struct btrfs_new_inode_args *args)
6486 {
6487 struct timespec64 ts;
6488 struct inode *dir = args->dir;
6489 struct inode *inode = args->inode;
6490 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6491 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6492 struct btrfs_root *root;
6493 struct btrfs_inode_item *inode_item;
6494 struct btrfs_path *path;
6495 u64 objectid;
6496 struct btrfs_inode_ref *ref;
6497 struct btrfs_key key[2];
6498 u32 sizes[2];
6499 struct btrfs_item_batch batch;
6500 unsigned long ptr;
6501 int ret;
6502 bool xa_reserved = false;
6503
6504 path = btrfs_alloc_path();
6505 if (!path)
6506 return -ENOMEM;
6507
6508 if (!args->subvol)
6509 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6510 root = BTRFS_I(inode)->root;
6511
6512 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6513 if (ret)
6514 goto out;
6515
6516 ret = btrfs_get_free_objectid(root, &objectid);
6517 if (ret)
6518 goto out;
6519 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6520
6521 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6522 if (ret)
6523 goto out;
6524 xa_reserved = true;
6525
6526 if (args->orphan) {
6527 /*
6528 * O_TMPFILE, set link count to 0, so that after this point, we
6529 * fill in an inode item with the correct link count.
6530 */
6531 set_nlink(inode, 0);
6532 } else {
6533 trace_btrfs_inode_request(dir);
6534
6535 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6536 if (ret)
6537 goto out;
6538 }
6539
6540 if (S_ISDIR(inode->i_mode))
6541 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6542
6543 BTRFS_I(inode)->generation = trans->transid;
6544 inode->i_generation = BTRFS_I(inode)->generation;
6545
6546 /*
6547 * We don't have any capability xattrs set here yet, shortcut any
6548 * queries for the xattrs here. If we add them later via the inode
6549 * security init path or any other path this flag will be cleared.
6550 */
6551 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6552
6553 /*
6554 * Subvolumes don't inherit flags from their parent directory.
6555 * Originally this was probably by accident, but we probably can't
6556 * change it now without compatibility issues.
6557 */
6558 if (!args->subvol)
6559 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6560
6561 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6562 if (S_ISREG(inode->i_mode)) {
6563 if (btrfs_test_opt(fs_info, NODATASUM))
6564 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6565 if (btrfs_test_opt(fs_info, NODATACOW))
6566 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6567 BTRFS_INODE_NODATASUM;
6568 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6569 }
6570
6571 ret = btrfs_insert_inode_locked(inode);
6572 if (ret < 0) {
6573 if (!args->orphan)
6574 BTRFS_I(dir)->index_cnt--;
6575 goto out;
6576 }
6577
6578 /*
6579 * We could have gotten an inode number from somebody who was fsynced
6580 * and then removed in this same transaction, so let's just set full
6581 * sync since it will be a full sync anyway and this will blow away the
6582 * old info in the log.
6583 */
6584 btrfs_set_inode_full_sync(BTRFS_I(inode));
6585
6586 key[0].objectid = objectid;
6587 key[0].type = BTRFS_INODE_ITEM_KEY;
6588 key[0].offset = 0;
6589
6590 sizes[0] = sizeof(struct btrfs_inode_item);
6591
6592 if (!args->orphan) {
6593 /*
6594 * Start new inodes with an inode_ref. This is slightly more
6595 * efficient for small numbers of hard links since they will
6596 * be packed into one item. Extended refs will kick in if we
6597 * add more hard links than can fit in the ref item.
6598 */
6599 key[1].objectid = objectid;
6600 key[1].type = BTRFS_INODE_REF_KEY;
6601 if (args->subvol) {
6602 key[1].offset = objectid;
6603 sizes[1] = 2 + sizeof(*ref);
6604 } else {
6605 key[1].offset = btrfs_ino(BTRFS_I(dir));
6606 sizes[1] = name->len + sizeof(*ref);
6607 }
6608 }
6609
6610 batch.keys = &key[0];
6611 batch.data_sizes = &sizes[0];
6612 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6613 batch.nr = args->orphan ? 1 : 2;
6614 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6615 if (unlikely(ret != 0)) {
6616 btrfs_abort_transaction(trans, ret);
6617 goto discard;
6618 }
6619
6620 ts = simple_inode_init_ts(inode);
6621 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6622 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6623
6624 /*
6625 * We're going to fill the inode item now, so at this point the inode
6626 * must be fully initialized.
6627 */
6628
6629 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6630 struct btrfs_inode_item);
6631 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6632 sizeof(*inode_item));
6633 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6634
6635 if (!args->orphan) {
6636 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6637 struct btrfs_inode_ref);
6638 ptr = (unsigned long)(ref + 1);
6639 if (args->subvol) {
6640 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6641 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6642 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6643 } else {
6644 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6645 name->len);
6646 btrfs_set_inode_ref_index(path->nodes[0], ref,
6647 BTRFS_I(inode)->dir_index);
6648 write_extent_buffer(path->nodes[0], name->name, ptr,
6649 name->len);
6650 }
6651 }
6652
6653 /*
6654 * We don't need the path anymore, plus inheriting properties, adding
6655 * ACLs, security xattrs, orphan item or adding the link, will result in
6656 * allocating yet another path. So just free our path.
6657 */
6658 btrfs_free_path(path);
6659 path = NULL;
6660
6661 if (args->subvol) {
6662 struct btrfs_inode *parent;
6663
6664 /*
6665 * Subvolumes inherit properties from their parent subvolume,
6666 * not the directory they were created in.
6667 */
6668 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6669 if (IS_ERR(parent)) {
6670 ret = PTR_ERR(parent);
6671 } else {
6672 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6673 parent);
6674 iput(&parent->vfs_inode);
6675 }
6676 } else {
6677 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6678 BTRFS_I(dir));
6679 }
6680 if (ret) {
6681 btrfs_err(fs_info,
6682 "error inheriting props for ino %llu (root %llu): %d",
6683 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6684 }
6685
6686 /*
6687 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6688 * probably a bug.
6689 */
6690 if (!args->subvol) {
6691 ret = btrfs_init_inode_security(trans, args);
6692 if (unlikely(ret)) {
6693 btrfs_abort_transaction(trans, ret);
6694 goto discard;
6695 }
6696 }
6697
6698 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6699 if (WARN_ON(ret)) {
6700 /* Shouldn't happen, we used xa_reserve() before. */
6701 btrfs_abort_transaction(trans, ret);
6702 goto discard;
6703 }
6704
6705 trace_btrfs_inode_new(inode);
6706 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6707
6708 btrfs_update_root_times(trans, root);
6709
6710 if (args->orphan) {
6711 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6712 if (unlikely(ret)) {
6713 btrfs_abort_transaction(trans, ret);
6714 goto discard;
6715 }
6716 } else {
6717 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6718 0, BTRFS_I(inode)->dir_index);
6719 if (unlikely(ret)) {
6720 btrfs_abort_transaction(trans, ret);
6721 goto discard;
6722 }
6723 }
6724
6725 return 0;
6726
6727 discard:
6728 /*
6729 * discard_new_inode() calls iput(), but the caller owns the reference
6730 * to the inode.
6731 */
6732 ihold(inode);
6733 discard_new_inode(inode);
6734 out:
6735 if (xa_reserved)
6736 xa_release(&root->inodes, objectid);
6737
6738 btrfs_free_path(path);
6739 return ret;
6740 }
6741
6742 /*
6743 * utility function to add 'inode' into 'parent_inode' with
6744 * a give name and a given sequence number.
6745 * if 'add_backref' is true, also insert a backref from the
6746 * inode to the parent directory.
6747 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,bool add_backref,u64 index)6748 int btrfs_add_link(struct btrfs_trans_handle *trans,
6749 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6750 const struct fscrypt_str *name, bool add_backref, u64 index)
6751 {
6752 int ret = 0;
6753 struct btrfs_key key;
6754 struct btrfs_root *root = parent_inode->root;
6755 u64 ino = btrfs_ino(inode);
6756 u64 parent_ino = btrfs_ino(parent_inode);
6757
6758 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6759 memcpy(&key, &inode->root->root_key, sizeof(key));
6760 } else {
6761 key.objectid = ino;
6762 key.type = BTRFS_INODE_ITEM_KEY;
6763 key.offset = 0;
6764 }
6765
6766 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6767 ret = btrfs_add_root_ref(trans, key.objectid,
6768 btrfs_root_id(root), parent_ino,
6769 index, name);
6770 } else if (add_backref) {
6771 ret = btrfs_insert_inode_ref(trans, root, name,
6772 ino, parent_ino, index);
6773 }
6774
6775 /* Nothing to clean up yet */
6776 if (ret)
6777 return ret;
6778
6779 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6780 btrfs_inode_type(inode), index);
6781 if (ret == -EEXIST || ret == -EOVERFLOW)
6782 goto fail_dir_item;
6783 else if (unlikely(ret)) {
6784 btrfs_abort_transaction(trans, ret);
6785 return ret;
6786 }
6787
6788 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6789 name->len * 2);
6790 inode_inc_iversion(&parent_inode->vfs_inode);
6791 update_time_after_link_or_unlink(parent_inode);
6792
6793 ret = btrfs_update_inode(trans, parent_inode);
6794 if (ret)
6795 btrfs_abort_transaction(trans, ret);
6796 return ret;
6797
6798 fail_dir_item:
6799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6800 u64 local_index;
6801 int ret2;
6802
6803 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6804 parent_ino, &local_index, name);
6805 if (ret2)
6806 btrfs_abort_transaction(trans, ret2);
6807 } else if (add_backref) {
6808 int ret2;
6809
6810 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6811 if (ret2)
6812 btrfs_abort_transaction(trans, ret2);
6813 }
6814
6815 /* Return the original error code */
6816 return ret;
6817 }
6818
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6819 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6820 struct inode *inode)
6821 {
6822 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6823 struct btrfs_root *root = BTRFS_I(dir)->root;
6824 struct btrfs_new_inode_args new_inode_args = {
6825 .dir = dir,
6826 .dentry = dentry,
6827 .inode = inode,
6828 };
6829 unsigned int trans_num_items;
6830 struct btrfs_trans_handle *trans;
6831 int ret;
6832
6833 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6834 if (ret)
6835 goto out_inode;
6836
6837 trans = btrfs_start_transaction(root, trans_num_items);
6838 if (IS_ERR(trans)) {
6839 ret = PTR_ERR(trans);
6840 goto out_new_inode_args;
6841 }
6842
6843 ret = btrfs_create_new_inode(trans, &new_inode_args);
6844 if (!ret) {
6845 if (S_ISDIR(inode->i_mode))
6846 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC;
6847 d_instantiate_new(dentry, inode);
6848 }
6849
6850 btrfs_end_transaction(trans);
6851 btrfs_btree_balance_dirty(fs_info);
6852 out_new_inode_args:
6853 btrfs_new_inode_args_destroy(&new_inode_args);
6854 out_inode:
6855 if (ret)
6856 iput(inode);
6857 return ret;
6858 }
6859
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6860 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6861 struct dentry *dentry, umode_t mode, dev_t rdev)
6862 {
6863 struct inode *inode;
6864
6865 inode = new_inode(dir->i_sb);
6866 if (!inode)
6867 return -ENOMEM;
6868 inode_init_owner(idmap, inode, dir, mode);
6869 inode->i_op = &btrfs_special_inode_operations;
6870 init_special_inode(inode, inode->i_mode, rdev);
6871 return btrfs_create_common(dir, dentry, inode);
6872 }
6873
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6874 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6875 struct dentry *dentry, umode_t mode, bool excl)
6876 {
6877 struct inode *inode;
6878
6879 inode = new_inode(dir->i_sb);
6880 if (!inode)
6881 return -ENOMEM;
6882 inode_init_owner(idmap, inode, dir, mode);
6883 inode->i_fop = &btrfs_file_operations;
6884 inode->i_op = &btrfs_file_inode_operations;
6885 inode->i_mapping->a_ops = &btrfs_aops;
6886 return btrfs_create_common(dir, dentry, inode);
6887 }
6888
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6889 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6890 struct dentry *dentry)
6891 {
6892 struct btrfs_trans_handle *trans = NULL;
6893 struct btrfs_root *root = BTRFS_I(dir)->root;
6894 struct inode *inode = d_inode(old_dentry);
6895 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6896 struct fscrypt_name fname;
6897 u64 index;
6898 int ret;
6899
6900 /* do not allow sys_link's with other subvols of the same device */
6901 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6902 return -EXDEV;
6903
6904 if (inode->i_nlink >= BTRFS_LINK_MAX)
6905 return -EMLINK;
6906
6907 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6908 if (ret)
6909 goto fail;
6910
6911 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6912 if (ret)
6913 goto fail;
6914
6915 /*
6916 * 2 items for inode and inode ref
6917 * 2 items for dir items
6918 * 1 item for parent inode
6919 * 1 item for orphan item deletion if O_TMPFILE
6920 */
6921 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6922 if (IS_ERR(trans)) {
6923 ret = PTR_ERR(trans);
6924 trans = NULL;
6925 goto fail;
6926 }
6927
6928 /* There are several dir indexes for this inode, clear the cache. */
6929 BTRFS_I(inode)->dir_index = 0ULL;
6930 inode_inc_iversion(inode);
6931 inode_set_ctime_current(inode);
6932
6933 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6934 &fname.disk_name, 1, index);
6935 if (ret)
6936 goto fail;
6937
6938 /* Link added now we update the inode item with the new link count. */
6939 inc_nlink(inode);
6940 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6941 if (unlikely(ret)) {
6942 btrfs_abort_transaction(trans, ret);
6943 goto fail;
6944 }
6945
6946 if (inode->i_nlink == 1) {
6947 /*
6948 * If the new hard link count is 1, it's a file created with the
6949 * open(2) O_TMPFILE flag.
6950 */
6951 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6952 if (unlikely(ret)) {
6953 btrfs_abort_transaction(trans, ret);
6954 goto fail;
6955 }
6956 }
6957
6958 /* Grab reference for the new dentry passed to d_instantiate(). */
6959 ihold(inode);
6960 d_instantiate(dentry, inode);
6961 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent);
6962
6963 fail:
6964 fscrypt_free_filename(&fname);
6965 if (trans)
6966 btrfs_end_transaction(trans);
6967 btrfs_btree_balance_dirty(fs_info);
6968 return ret;
6969 }
6970
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6971 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6972 struct dentry *dentry, umode_t mode)
6973 {
6974 struct inode *inode;
6975
6976 inode = new_inode(dir->i_sb);
6977 if (!inode)
6978 return ERR_PTR(-ENOMEM);
6979 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6980 inode->i_op = &btrfs_dir_inode_operations;
6981 inode->i_fop = &btrfs_dir_file_operations;
6982 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6983 }
6984
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6985 static noinline int uncompress_inline(struct btrfs_path *path,
6986 struct folio *folio,
6987 struct btrfs_file_extent_item *item)
6988 {
6989 int ret;
6990 struct extent_buffer *leaf = path->nodes[0];
6991 const u32 blocksize = leaf->fs_info->sectorsize;
6992 char *tmp;
6993 size_t max_size;
6994 unsigned long inline_size;
6995 unsigned long ptr;
6996 int compress_type;
6997
6998 compress_type = btrfs_file_extent_compression(leaf, item);
6999 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7000 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
7001 tmp = kmalloc(inline_size, GFP_NOFS);
7002 if (!tmp)
7003 return -ENOMEM;
7004 ptr = btrfs_file_extent_inline_start(item);
7005
7006 read_extent_buffer(leaf, tmp, ptr, inline_size);
7007
7008 max_size = min_t(unsigned long, blocksize, max_size);
7009 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
7010 max_size);
7011
7012 /*
7013 * decompression code contains a memset to fill in any space between the end
7014 * of the uncompressed data and the end of max_size in case the decompressed
7015 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7016 * the end of an inline extent and the beginning of the next block, so we
7017 * cover that region here.
7018 */
7019
7020 if (max_size < blocksize)
7021 folio_zero_range(folio, max_size, blocksize - max_size);
7022 kfree(tmp);
7023 return ret;
7024 }
7025
read_inline_extent(struct btrfs_path * path,struct folio * folio)7026 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
7027 {
7028 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
7029 struct btrfs_file_extent_item *fi;
7030 void *kaddr;
7031 size_t copy_size;
7032
7033 if (!folio || folio_test_uptodate(folio))
7034 return 0;
7035
7036 ASSERT(folio_pos(folio) == 0);
7037
7038 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
7039 struct btrfs_file_extent_item);
7040 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
7041 return uncompress_inline(path, folio, fi);
7042
7043 copy_size = min_t(u64, blocksize,
7044 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
7045 kaddr = kmap_local_folio(folio, 0);
7046 read_extent_buffer(path->nodes[0], kaddr,
7047 btrfs_file_extent_inline_start(fi), copy_size);
7048 kunmap_local(kaddr);
7049 if (copy_size < blocksize)
7050 folio_zero_range(folio, copy_size, blocksize - copy_size);
7051 return 0;
7052 }
7053
7054 /*
7055 * Lookup the first extent overlapping a range in a file.
7056 *
7057 * @inode: file to search in
7058 * @page: page to read extent data into if the extent is inline
7059 * @start: file offset
7060 * @len: length of range starting at @start
7061 *
7062 * Return the first &struct extent_map which overlaps the given range, reading
7063 * it from the B-tree and caching it if necessary. Note that there may be more
7064 * extents which overlap the given range after the returned extent_map.
7065 *
7066 * If @page is not NULL and the extent is inline, this also reads the extent
7067 * data directly into the page and marks the extent up to date in the io_tree.
7068 *
7069 * Return: ERR_PTR on error, non-NULL extent_map on success.
7070 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)7071 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7072 struct folio *folio, u64 start, u64 len)
7073 {
7074 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7075 int ret = 0;
7076 u64 extent_start = 0;
7077 u64 extent_end = 0;
7078 u64 objectid = btrfs_ino(inode);
7079 int extent_type = -1;
7080 struct btrfs_path *path = NULL;
7081 struct btrfs_root *root = inode->root;
7082 struct btrfs_file_extent_item *item;
7083 struct extent_buffer *leaf;
7084 struct btrfs_key found_key;
7085 struct extent_map *em = NULL;
7086 struct extent_map_tree *em_tree = &inode->extent_tree;
7087
7088 read_lock(&em_tree->lock);
7089 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7090 read_unlock(&em_tree->lock);
7091
7092 if (em) {
7093 if (em->start > start || em->start + em->len <= start)
7094 btrfs_free_extent_map(em);
7095 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7096 btrfs_free_extent_map(em);
7097 else
7098 goto out;
7099 }
7100 em = btrfs_alloc_extent_map();
7101 if (!em) {
7102 ret = -ENOMEM;
7103 goto out;
7104 }
7105 em->start = EXTENT_MAP_HOLE;
7106 em->disk_bytenr = EXTENT_MAP_HOLE;
7107 em->len = (u64)-1;
7108
7109 path = btrfs_alloc_path();
7110 if (!path) {
7111 ret = -ENOMEM;
7112 goto out;
7113 }
7114
7115 /* Chances are we'll be called again, so go ahead and do readahead */
7116 path->reada = READA_FORWARD;
7117
7118 /*
7119 * The same explanation in load_free_space_cache applies here as well,
7120 * we only read when we're loading the free space cache, and at that
7121 * point the commit_root has everything we need.
7122 */
7123 if (btrfs_is_free_space_inode(inode)) {
7124 path->search_commit_root = true;
7125 path->skip_locking = true;
7126 }
7127
7128 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7129 if (ret < 0) {
7130 goto out;
7131 } else if (ret > 0) {
7132 if (path->slots[0] == 0)
7133 goto not_found;
7134 path->slots[0]--;
7135 ret = 0;
7136 }
7137
7138 leaf = path->nodes[0];
7139 item = btrfs_item_ptr(leaf, path->slots[0],
7140 struct btrfs_file_extent_item);
7141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7142 if (found_key.objectid != objectid ||
7143 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7144 /*
7145 * If we backup past the first extent we want to move forward
7146 * and see if there is an extent in front of us, otherwise we'll
7147 * say there is a hole for our whole search range which can
7148 * cause problems.
7149 */
7150 extent_end = start;
7151 goto next;
7152 }
7153
7154 extent_type = btrfs_file_extent_type(leaf, item);
7155 extent_start = found_key.offset;
7156 extent_end = btrfs_file_extent_end(path);
7157 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7158 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7159 /* Only regular file could have regular/prealloc extent */
7160 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) {
7161 ret = -EUCLEAN;
7162 btrfs_crit(fs_info,
7163 "regular/prealloc extent found for non-regular inode %llu",
7164 btrfs_ino(inode));
7165 goto out;
7166 }
7167 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7168 extent_start);
7169 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7170 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7171 path->slots[0],
7172 extent_start);
7173 }
7174 next:
7175 if (start >= extent_end) {
7176 path->slots[0]++;
7177 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7178 ret = btrfs_next_leaf(root, path);
7179 if (ret < 0)
7180 goto out;
7181 else if (ret > 0)
7182 goto not_found;
7183
7184 leaf = path->nodes[0];
7185 }
7186 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7187 if (found_key.objectid != objectid ||
7188 found_key.type != BTRFS_EXTENT_DATA_KEY)
7189 goto not_found;
7190 if (start + len <= found_key.offset)
7191 goto not_found;
7192 if (start > found_key.offset)
7193 goto next;
7194
7195 /* New extent overlaps with existing one */
7196 em->start = start;
7197 em->len = found_key.offset - start;
7198 em->disk_bytenr = EXTENT_MAP_HOLE;
7199 goto insert;
7200 }
7201
7202 btrfs_extent_item_to_extent_map(inode, path, item, em);
7203
7204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7206 goto insert;
7207 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7208 /*
7209 * Inline extent can only exist at file offset 0. This is
7210 * ensured by tree-checker and inline extent creation path.
7211 * Thus all members representing file offsets should be zero.
7212 */
7213 ASSERT(extent_start == 0);
7214 ASSERT(em->start == 0);
7215
7216 /*
7217 * btrfs_extent_item_to_extent_map() should have properly
7218 * initialized em members already.
7219 *
7220 * Other members are not utilized for inline extents.
7221 */
7222 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7223 ASSERT(em->len == fs_info->sectorsize);
7224
7225 ret = read_inline_extent(path, folio);
7226 if (ret < 0)
7227 goto out;
7228 goto insert;
7229 }
7230 not_found:
7231 em->start = start;
7232 em->len = len;
7233 em->disk_bytenr = EXTENT_MAP_HOLE;
7234 insert:
7235 ret = 0;
7236 btrfs_release_path(path);
7237 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) {
7238 btrfs_err(fs_info,
7239 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7240 em->start, em->len, start, len);
7241 ret = -EIO;
7242 goto out;
7243 }
7244
7245 write_lock(&em_tree->lock);
7246 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7247 write_unlock(&em_tree->lock);
7248 out:
7249 btrfs_free_path(path);
7250
7251 trace_btrfs_get_extent(root, inode, em);
7252
7253 if (ret) {
7254 btrfs_free_extent_map(em);
7255 return ERR_PTR(ret);
7256 }
7257 return em;
7258 }
7259
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7260 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7261 {
7262 struct btrfs_block_group *block_group;
7263 bool readonly = false;
7264
7265 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7266 if (!block_group || block_group->ro)
7267 readonly = true;
7268 if (block_group)
7269 btrfs_put_block_group(block_group);
7270 return readonly;
7271 }
7272
7273 /*
7274 * Check if we can do nocow write into the range [@offset, @offset + @len)
7275 *
7276 * @offset: File offset
7277 * @len: The length to write, will be updated to the nocow writeable
7278 * range
7279 * @orig_start: (optional) Return the original file offset of the file extent
7280 * @orig_len: (optional) Return the original on-disk length of the file extent
7281 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7282 *
7283 * Return:
7284 * >0 and update @len if we can do nocow write
7285 * 0 if we can't do nocow write
7286 * <0 if error happened
7287 *
7288 * NOTE: This only checks the file extents, caller is responsible to wait for
7289 * any ordered extents.
7290 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7291 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7292 struct btrfs_file_extent *file_extent,
7293 bool nowait)
7294 {
7295 struct btrfs_root *root = inode->root;
7296 struct btrfs_fs_info *fs_info = root->fs_info;
7297 struct can_nocow_file_extent_args nocow_args = { 0 };
7298 BTRFS_PATH_AUTO_FREE(path);
7299 int ret;
7300 struct extent_buffer *leaf;
7301 struct extent_io_tree *io_tree = &inode->io_tree;
7302 struct btrfs_file_extent_item *fi;
7303 struct btrfs_key key;
7304 int found_type;
7305
7306 path = btrfs_alloc_path();
7307 if (!path)
7308 return -ENOMEM;
7309 path->nowait = nowait;
7310
7311 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7312 offset, 0);
7313 if (ret < 0)
7314 return ret;
7315
7316 if (ret == 1) {
7317 if (path->slots[0] == 0) {
7318 /* Can't find the item, must COW. */
7319 return 0;
7320 }
7321 path->slots[0]--;
7322 }
7323 ret = 0;
7324 leaf = path->nodes[0];
7325 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7326 if (key.objectid != btrfs_ino(inode) ||
7327 key.type != BTRFS_EXTENT_DATA_KEY) {
7328 /* Not our file or wrong item type, must COW. */
7329 return 0;
7330 }
7331
7332 if (key.offset > offset) {
7333 /* Wrong offset, must COW. */
7334 return 0;
7335 }
7336
7337 if (btrfs_file_extent_end(path) <= offset)
7338 return 0;
7339
7340 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7341 found_type = btrfs_file_extent_type(leaf, fi);
7342
7343 nocow_args.start = offset;
7344 nocow_args.end = offset + *len - 1;
7345 nocow_args.free_path = true;
7346
7347 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7348 /* can_nocow_file_extent() has freed the path. */
7349 path = NULL;
7350
7351 if (ret != 1) {
7352 /* Treat errors as not being able to NOCOW. */
7353 return 0;
7354 }
7355
7356 if (btrfs_extent_readonly(fs_info,
7357 nocow_args.file_extent.disk_bytenr +
7358 nocow_args.file_extent.offset))
7359 return 0;
7360
7361 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7362 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7363 u64 range_end;
7364
7365 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7366 root->fs_info->sectorsize) - 1;
7367 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7368 EXTENT_DELALLOC);
7369 if (ret)
7370 return -EAGAIN;
7371 }
7372
7373 if (file_extent)
7374 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7375
7376 *len = nocow_args.file_extent.num_bytes;
7377
7378 return 1;
7379 }
7380
7381 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7382 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7383 const struct btrfs_file_extent *file_extent,
7384 int type)
7385 {
7386 struct extent_map *em;
7387 int ret;
7388
7389 /*
7390 * Note the missing NOCOW type.
7391 *
7392 * For pure NOCOW writes, we should not create an io extent map, but
7393 * just reusing the existing one.
7394 * Only PREALLOC writes (NOCOW write into preallocated range) can
7395 * create an io extent map.
7396 */
7397 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7398 type == BTRFS_ORDERED_COMPRESSED ||
7399 type == BTRFS_ORDERED_REGULAR);
7400
7401 switch (type) {
7402 case BTRFS_ORDERED_PREALLOC:
7403 /* We're only referring part of a larger preallocated extent. */
7404 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7405 break;
7406 case BTRFS_ORDERED_REGULAR:
7407 /* COW results a new extent matching our file extent size. */
7408 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7409 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7410
7411 /* Since it's a new extent, we should not have any offset. */
7412 ASSERT(file_extent->offset == 0);
7413 break;
7414 case BTRFS_ORDERED_COMPRESSED:
7415 /* Must be compressed. */
7416 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7417
7418 /*
7419 * Encoded write can make us to refer to part of the
7420 * uncompressed extent.
7421 */
7422 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7423 break;
7424 }
7425
7426 em = btrfs_alloc_extent_map();
7427 if (!em)
7428 return ERR_PTR(-ENOMEM);
7429
7430 em->start = start;
7431 em->len = file_extent->num_bytes;
7432 em->disk_bytenr = file_extent->disk_bytenr;
7433 em->disk_num_bytes = file_extent->disk_num_bytes;
7434 em->ram_bytes = file_extent->ram_bytes;
7435 em->generation = -1;
7436 em->offset = file_extent->offset;
7437 em->flags |= EXTENT_FLAG_PINNED;
7438 if (type == BTRFS_ORDERED_COMPRESSED)
7439 btrfs_extent_map_set_compression(em, file_extent->compression);
7440
7441 ret = btrfs_replace_extent_map_range(inode, em, true);
7442 if (ret) {
7443 btrfs_free_extent_map(em);
7444 return ERR_PTR(ret);
7445 }
7446
7447 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7448 return em;
7449 }
7450
7451 /*
7452 * For release_folio() and invalidate_folio() we have a race window where
7453 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7454 * If we continue to release/invalidate the page, we could cause use-after-free
7455 * for subpage spinlock. So this function is to spin and wait for subpage
7456 * spinlock.
7457 */
wait_subpage_spinlock(struct folio * folio)7458 static void wait_subpage_spinlock(struct folio *folio)
7459 {
7460 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7461 struct btrfs_folio_state *bfs;
7462
7463 if (!btrfs_is_subpage(fs_info, folio))
7464 return;
7465
7466 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7467 bfs = folio_get_private(folio);
7468
7469 /*
7470 * This may look insane as we just acquire the spinlock and release it,
7471 * without doing anything. But we just want to make sure no one is
7472 * still holding the subpage spinlock.
7473 * And since the page is not dirty nor writeback, and we have page
7474 * locked, the only possible way to hold a spinlock is from the endio
7475 * function to clear page writeback.
7476 *
7477 * Here we just acquire the spinlock so that all existing callers
7478 * should exit and we're safe to release/invalidate the page.
7479 */
7480 spin_lock_irq(&bfs->lock);
7481 spin_unlock_irq(&bfs->lock);
7482 }
7483
btrfs_launder_folio(struct folio * folio)7484 static int btrfs_launder_folio(struct folio *folio)
7485 {
7486 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7487 folio_size(folio), NULL);
7488 }
7489
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7490 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7491 {
7492 if (try_release_extent_mapping(folio, gfp_flags)) {
7493 wait_subpage_spinlock(folio);
7494 clear_folio_extent_mapped(folio);
7495 return true;
7496 }
7497 return false;
7498 }
7499
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7500 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7501 {
7502 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7503 return false;
7504 return __btrfs_release_folio(folio, gfp_flags);
7505 }
7506
7507 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7508 static int btrfs_migrate_folio(struct address_space *mapping,
7509 struct folio *dst, struct folio *src,
7510 enum migrate_mode mode)
7511 {
7512 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7513
7514 if (ret)
7515 return ret;
7516
7517 if (folio_test_ordered(src)) {
7518 folio_clear_ordered(src);
7519 folio_set_ordered(dst);
7520 }
7521
7522 return 0;
7523 }
7524 #else
7525 #define btrfs_migrate_folio NULL
7526 #endif
7527
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7528 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7529 size_t length)
7530 {
7531 struct btrfs_inode *inode = folio_to_inode(folio);
7532 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7533 struct extent_io_tree *tree = &inode->io_tree;
7534 struct extent_state *cached_state = NULL;
7535 u64 page_start = folio_pos(folio);
7536 u64 page_end = page_start + folio_size(folio) - 1;
7537 u64 cur;
7538 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING;
7539
7540 /*
7541 * We have folio locked so no new ordered extent can be created on this
7542 * page, nor bio can be submitted for this folio.
7543 *
7544 * But already submitted bio can still be finished on this folio.
7545 * Furthermore, endio function won't skip folio which has Ordered
7546 * already cleared, so it's possible for endio and
7547 * invalidate_folio to do the same ordered extent accounting twice
7548 * on one folio.
7549 *
7550 * So here we wait for any submitted bios to finish, so that we won't
7551 * do double ordered extent accounting on the same folio.
7552 */
7553 folio_wait_writeback(folio);
7554 wait_subpage_spinlock(folio);
7555
7556 /*
7557 * For subpage case, we have call sites like
7558 * btrfs_punch_hole_lock_range() which passes range not aligned to
7559 * sectorsize.
7560 * If the range doesn't cover the full folio, we don't need to and
7561 * shouldn't clear page extent mapped, as folio->private can still
7562 * record subpage dirty bits for other part of the range.
7563 *
7564 * For cases that invalidate the full folio even the range doesn't
7565 * cover the full folio, like invalidating the last folio, we're
7566 * still safe to wait for ordered extent to finish.
7567 */
7568 if (!(offset == 0 && length == folio_size(folio))) {
7569 btrfs_release_folio(folio, GFP_NOFS);
7570 return;
7571 }
7572
7573 if (!inode_evicting)
7574 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7575
7576 cur = page_start;
7577 while (cur < page_end) {
7578 struct btrfs_ordered_extent *ordered;
7579 u64 range_end;
7580 u32 range_len;
7581 u32 extra_flags = 0;
7582
7583 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7584 page_end + 1 - cur);
7585 if (!ordered) {
7586 range_end = page_end;
7587 /*
7588 * No ordered extent covering this range, we are safe
7589 * to delete all extent states in the range.
7590 */
7591 extra_flags = EXTENT_CLEAR_ALL_BITS;
7592 goto next;
7593 }
7594 if (ordered->file_offset > cur) {
7595 /*
7596 * There is a range between [cur, oe->file_offset) not
7597 * covered by any ordered extent.
7598 * We are safe to delete all extent states, and handle
7599 * the ordered extent in the next iteration.
7600 */
7601 range_end = ordered->file_offset - 1;
7602 extra_flags = EXTENT_CLEAR_ALL_BITS;
7603 goto next;
7604 }
7605
7606 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7607 page_end);
7608 ASSERT(range_end + 1 - cur < U32_MAX);
7609 range_len = range_end + 1 - cur;
7610 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7611 /*
7612 * If Ordered is cleared, it means endio has
7613 * already been executed for the range.
7614 * We can't delete the extent states as
7615 * btrfs_finish_ordered_io() may still use some of them.
7616 */
7617 goto next;
7618 }
7619 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7620
7621 /*
7622 * IO on this page will never be started, so we need to account
7623 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7624 * here, must leave that up for the ordered extent completion.
7625 *
7626 * This will also unlock the range for incoming
7627 * btrfs_finish_ordered_io().
7628 */
7629 if (!inode_evicting)
7630 btrfs_clear_extent_bit(tree, cur, range_end,
7631 EXTENT_DELALLOC |
7632 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7633 EXTENT_DEFRAG, &cached_state);
7634
7635 spin_lock(&inode->ordered_tree_lock);
7636 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7637 ordered->truncated_len = min(ordered->truncated_len,
7638 cur - ordered->file_offset);
7639 spin_unlock(&inode->ordered_tree_lock);
7640
7641 /*
7642 * If the ordered extent has finished, we're safe to delete all
7643 * the extent states of the range, otherwise
7644 * btrfs_finish_ordered_io() will get executed by endio for
7645 * other pages, so we can't delete extent states.
7646 */
7647 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7648 cur, range_end + 1 - cur)) {
7649 btrfs_finish_ordered_io(ordered);
7650 /*
7651 * The ordered extent has finished, now we're again
7652 * safe to delete all extent states of the range.
7653 */
7654 extra_flags = EXTENT_CLEAR_ALL_BITS;
7655 }
7656 next:
7657 if (ordered)
7658 btrfs_put_ordered_extent(ordered);
7659 /*
7660 * Qgroup reserved space handler
7661 * Sector(s) here will be either:
7662 *
7663 * 1) Already written to disk or bio already finished
7664 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7665 * Qgroup will be handled by its qgroup_record then.
7666 * btrfs_qgroup_free_data() call will do nothing here.
7667 *
7668 * 2) Not written to disk yet
7669 * Then btrfs_qgroup_free_data() call will clear the
7670 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7671 * reserved data space.
7672 * Since the IO will never happen for this page.
7673 */
7674 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7675 if (!inode_evicting)
7676 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7677 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7678 EXTENT_DEFRAG | extra_flags,
7679 &cached_state);
7680 cur = range_end + 1;
7681 }
7682 /*
7683 * We have iterated through all ordered extents of the page, the page
7684 * should not have Ordered anymore, or the above iteration
7685 * did something wrong.
7686 */
7687 ASSERT(!folio_test_ordered(folio));
7688 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7689 if (!inode_evicting)
7690 __btrfs_release_folio(folio, GFP_NOFS);
7691 clear_folio_extent_mapped(folio);
7692 }
7693
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7694 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7695 {
7696 struct btrfs_truncate_control control = {
7697 .inode = inode,
7698 .ino = btrfs_ino(inode),
7699 .min_type = BTRFS_EXTENT_DATA_KEY,
7700 .clear_extent_range = true,
7701 .new_size = inode->vfs_inode.i_size,
7702 };
7703 struct btrfs_root *root = inode->root;
7704 struct btrfs_fs_info *fs_info = root->fs_info;
7705 struct btrfs_block_rsv rsv;
7706 int ret;
7707 struct btrfs_trans_handle *trans;
7708 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7709 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize);
7710 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
7711
7712 /* Our inode is locked and the i_size can't be changed concurrently. */
7713 btrfs_assert_inode_locked(inode);
7714
7715 if (!skip_writeback) {
7716 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1);
7717 if (ret)
7718 return ret;
7719 }
7720
7721 /*
7722 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7723 * things going on here:
7724 *
7725 * 1) We need to reserve space to update our inode.
7726 *
7727 * 2) We need to have something to cache all the space that is going to
7728 * be free'd up by the truncate operation, but also have some slack
7729 * space reserved in case it uses space during the truncate (thank you
7730 * very much snapshotting).
7731 *
7732 * And we need these to be separate. The fact is we can use a lot of
7733 * space doing the truncate, and we have no earthly idea how much space
7734 * we will use, so we need the truncate reservation to be separate so it
7735 * doesn't end up using space reserved for updating the inode. We also
7736 * need to be able to stop the transaction and start a new one, which
7737 * means we need to be able to update the inode several times, and we
7738 * have no idea of knowing how many times that will be, so we can't just
7739 * reserve 1 item for the entirety of the operation, so that has to be
7740 * done separately as well.
7741 *
7742 * So that leaves us with
7743 *
7744 * 1) rsv - for the truncate reservation, which we will steal from the
7745 * transaction reservation.
7746 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7747 * updating the inode.
7748 */
7749 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7750 rsv.size = min_size;
7751 rsv.failfast = true;
7752
7753 /*
7754 * 1 for the truncate slack space
7755 * 1 for updating the inode.
7756 */
7757 trans = btrfs_start_transaction(root, 2);
7758 if (IS_ERR(trans)) {
7759 ret = PTR_ERR(trans);
7760 goto out;
7761 }
7762
7763 /* Migrate the slack space for the truncate to our reserve */
7764 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7765 min_size, false);
7766 /*
7767 * We have reserved 2 metadata units when we started the transaction and
7768 * min_size matches 1 unit, so this should never fail, but if it does,
7769 * it's not critical we just fail truncation.
7770 */
7771 if (WARN_ON(ret)) {
7772 btrfs_end_transaction(trans);
7773 goto out;
7774 }
7775
7776 trans->block_rsv = &rsv;
7777
7778 while (1) {
7779 struct extent_state *cached_state = NULL;
7780
7781 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7782 /*
7783 * We want to drop from the next block forward in case this new
7784 * size is not block aligned since we will be keeping the last
7785 * block of the extent just the way it is.
7786 */
7787 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false);
7788
7789 ret = btrfs_truncate_inode_items(trans, root, &control);
7790
7791 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7792 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7793
7794 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7795
7796 trans->block_rsv = &fs_info->trans_block_rsv;
7797 if (ret != -ENOSPC && ret != -EAGAIN)
7798 break;
7799
7800 ret = btrfs_update_inode(trans, inode);
7801 if (ret)
7802 break;
7803
7804 btrfs_end_transaction(trans);
7805 btrfs_btree_balance_dirty(fs_info);
7806
7807 trans = btrfs_start_transaction(root, 2);
7808 if (IS_ERR(trans)) {
7809 ret = PTR_ERR(trans);
7810 trans = NULL;
7811 break;
7812 }
7813
7814 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7815 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7816 &rsv, min_size, false);
7817 /*
7818 * We have reserved 2 metadata units when we started the
7819 * transaction and min_size matches 1 unit, so this should never
7820 * fail, but if it does, it's not critical we just fail truncation.
7821 */
7822 if (WARN_ON(ret))
7823 break;
7824
7825 trans->block_rsv = &rsv;
7826 }
7827
7828 /*
7829 * We can't call btrfs_truncate_block inside a trans handle as we could
7830 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7831 * know we've truncated everything except the last little bit, and can
7832 * do btrfs_truncate_block and then update the disk_i_size.
7833 */
7834 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7835 btrfs_end_transaction(trans);
7836 btrfs_btree_balance_dirty(fs_info);
7837
7838 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7839 inode->vfs_inode.i_size, (u64)-1);
7840 if (ret)
7841 goto out;
7842 trans = btrfs_start_transaction(root, 1);
7843 if (IS_ERR(trans)) {
7844 ret = PTR_ERR(trans);
7845 goto out;
7846 }
7847 btrfs_inode_safe_disk_i_size_write(inode, 0);
7848 }
7849
7850 if (trans) {
7851 int ret2;
7852
7853 trans->block_rsv = &fs_info->trans_block_rsv;
7854 ret2 = btrfs_update_inode(trans, inode);
7855 if (ret2 && !ret)
7856 ret = ret2;
7857
7858 ret2 = btrfs_end_transaction(trans);
7859 if (ret2 && !ret)
7860 ret = ret2;
7861 btrfs_btree_balance_dirty(fs_info);
7862 }
7863 out:
7864 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7865 /*
7866 * So if we truncate and then write and fsync we normally would just
7867 * write the extents that changed, which is a problem if we need to
7868 * first truncate that entire inode. So set this flag so we write out
7869 * all of the extents in the inode to the sync log so we're completely
7870 * safe.
7871 *
7872 * If no extents were dropped or trimmed we don't need to force the next
7873 * fsync to truncate all the inode's items from the log and re-log them
7874 * all. This means the truncate operation did not change the file size,
7875 * or changed it to a smaller size but there was only an implicit hole
7876 * between the old i_size and the new i_size, and there were no prealloc
7877 * extents beyond i_size to drop.
7878 */
7879 if (control.extents_found > 0)
7880 btrfs_set_inode_full_sync(inode);
7881
7882 return ret;
7883 }
7884
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7885 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7886 struct inode *dir)
7887 {
7888 struct inode *inode;
7889
7890 inode = new_inode(dir->i_sb);
7891 if (inode) {
7892 /*
7893 * Subvolumes don't inherit the sgid bit or the parent's gid if
7894 * the parent's sgid bit is set. This is probably a bug.
7895 */
7896 inode_init_owner(idmap, inode, NULL,
7897 S_IFDIR | (~current_umask() & S_IRWXUGO));
7898 inode->i_op = &btrfs_dir_inode_operations;
7899 inode->i_fop = &btrfs_dir_file_operations;
7900 }
7901 return inode;
7902 }
7903
btrfs_alloc_inode(struct super_block * sb)7904 struct inode *btrfs_alloc_inode(struct super_block *sb)
7905 {
7906 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7907 struct btrfs_inode *ei;
7908 struct inode *inode;
7909
7910 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7911 if (!ei)
7912 return NULL;
7913
7914 ei->root = NULL;
7915 ei->generation = 0;
7916 ei->last_trans = 0;
7917 ei->last_sub_trans = 0;
7918 ei->logged_trans = 0;
7919 ei->delalloc_bytes = 0;
7920 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7921 ei->new_delalloc_bytes = 0;
7922 ei->defrag_bytes = 0;
7923 ei->disk_i_size = 0;
7924 ei->flags = 0;
7925 ei->ro_flags = 0;
7926 /*
7927 * ->index_cnt will be properly initialized later when creating a new
7928 * inode (btrfs_create_new_inode()) or when reading an existing inode
7929 * from disk (btrfs_read_locked_inode()).
7930 */
7931 ei->csum_bytes = 0;
7932 ei->dir_index = 0;
7933 ei->last_unlink_trans = 0;
7934 ei->last_reflink_trans = 0;
7935 ei->last_log_commit = 0;
7936
7937 spin_lock_init(&ei->lock);
7938 ei->outstanding_extents = 0;
7939 if (sb->s_magic != BTRFS_TEST_MAGIC)
7940 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7941 BTRFS_BLOCK_RSV_DELALLOC);
7942 ei->runtime_flags = 0;
7943 ei->prop_compress = BTRFS_COMPRESS_NONE;
7944 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7945
7946 ei->delayed_node = NULL;
7947
7948 ei->i_otime_sec = 0;
7949 ei->i_otime_nsec = 0;
7950
7951 inode = &ei->vfs_inode;
7952 btrfs_extent_map_tree_init(&ei->extent_tree);
7953
7954 /* This io tree sets the valid inode. */
7955 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7956 ei->io_tree.inode = ei;
7957
7958 ei->file_extent_tree = NULL;
7959
7960 mutex_init(&ei->log_mutex);
7961 spin_lock_init(&ei->ordered_tree_lock);
7962 ei->ordered_tree = RB_ROOT;
7963 ei->ordered_tree_last = NULL;
7964 INIT_LIST_HEAD(&ei->delalloc_inodes);
7965 INIT_LIST_HEAD(&ei->delayed_iput);
7966 init_rwsem(&ei->i_mmap_lock);
7967
7968 return inode;
7969 }
7970
7971 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7972 void btrfs_test_destroy_inode(struct inode *inode)
7973 {
7974 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7975 kfree(BTRFS_I(inode)->file_extent_tree);
7976 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7977 }
7978 #endif
7979
btrfs_free_inode(struct inode * inode)7980 void btrfs_free_inode(struct inode *inode)
7981 {
7982 kfree(BTRFS_I(inode)->file_extent_tree);
7983 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7984 }
7985
btrfs_destroy_inode(struct inode * vfs_inode)7986 void btrfs_destroy_inode(struct inode *vfs_inode)
7987 {
7988 struct btrfs_ordered_extent *ordered;
7989 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7990 struct btrfs_root *root = inode->root;
7991 bool freespace_inode;
7992
7993 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7994 WARN_ON(vfs_inode->i_data.nrpages);
7995 WARN_ON(inode->block_rsv.reserved);
7996 WARN_ON(inode->block_rsv.size);
7997 WARN_ON(inode->outstanding_extents);
7998 if (!S_ISDIR(vfs_inode->i_mode)) {
7999 WARN_ON(inode->delalloc_bytes);
8000 WARN_ON(inode->new_delalloc_bytes);
8001 WARN_ON(inode->csum_bytes);
8002 }
8003 if (!root || !btrfs_is_data_reloc_root(root))
8004 WARN_ON(inode->defrag_bytes);
8005
8006 /*
8007 * This can happen where we create an inode, but somebody else also
8008 * created the same inode and we need to destroy the one we already
8009 * created.
8010 */
8011 if (!root)
8012 return;
8013
8014 /*
8015 * If this is a free space inode do not take the ordered extents lockdep
8016 * map.
8017 */
8018 freespace_inode = btrfs_is_free_space_inode(inode);
8019
8020 while (1) {
8021 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8022 if (!ordered)
8023 break;
8024 else {
8025 btrfs_err(root->fs_info,
8026 "found ordered extent %llu %llu on inode cleanup",
8027 ordered->file_offset, ordered->num_bytes);
8028
8029 if (!freespace_inode)
8030 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8031
8032 btrfs_remove_ordered_extent(inode, ordered);
8033 btrfs_put_ordered_extent(ordered);
8034 btrfs_put_ordered_extent(ordered);
8035 }
8036 }
8037 btrfs_qgroup_check_reserved_leak(inode);
8038 btrfs_del_inode_from_root(inode);
8039 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8040 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8041 btrfs_put_root(inode->root);
8042 }
8043
btrfs_drop_inode(struct inode * inode)8044 int btrfs_drop_inode(struct inode *inode)
8045 {
8046 struct btrfs_root *root = BTRFS_I(inode)->root;
8047
8048 if (root == NULL)
8049 return 1;
8050
8051 /* the snap/subvol tree is on deleting */
8052 if (btrfs_root_refs(&root->root_item) == 0)
8053 return 1;
8054 else
8055 return inode_generic_drop(inode);
8056 }
8057
init_once(void * foo)8058 static void init_once(void *foo)
8059 {
8060 struct btrfs_inode *ei = foo;
8061
8062 inode_init_once(&ei->vfs_inode);
8063 #ifdef CONFIG_FS_VERITY
8064 ei->i_verity_info = NULL;
8065 #endif
8066 }
8067
btrfs_destroy_cachep(void)8068 void __cold btrfs_destroy_cachep(void)
8069 {
8070 /*
8071 * Make sure all delayed rcu free inodes are flushed before we
8072 * destroy cache.
8073 */
8074 rcu_barrier();
8075 kmem_cache_destroy(btrfs_inode_cachep);
8076 }
8077
btrfs_init_cachep(void)8078 int __init btrfs_init_cachep(void)
8079 {
8080 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8081 sizeof(struct btrfs_inode), 0,
8082 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8083 init_once);
8084 if (!btrfs_inode_cachep)
8085 return -ENOMEM;
8086
8087 return 0;
8088 }
8089
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8090 static int btrfs_getattr(struct mnt_idmap *idmap,
8091 const struct path *path, struct kstat *stat,
8092 u32 request_mask, unsigned int flags)
8093 {
8094 u64 delalloc_bytes;
8095 u64 inode_bytes;
8096 struct inode *inode = d_inode(path->dentry);
8097 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8098 u32 bi_flags = BTRFS_I(inode)->flags;
8099 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8100
8101 stat->result_mask |= STATX_BTIME;
8102 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8103 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8104 if (bi_flags & BTRFS_INODE_APPEND)
8105 stat->attributes |= STATX_ATTR_APPEND;
8106 if (bi_flags & BTRFS_INODE_COMPRESS)
8107 stat->attributes |= STATX_ATTR_COMPRESSED;
8108 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8109 stat->attributes |= STATX_ATTR_IMMUTABLE;
8110 if (bi_flags & BTRFS_INODE_NODUMP)
8111 stat->attributes |= STATX_ATTR_NODUMP;
8112 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8113 stat->attributes |= STATX_ATTR_VERITY;
8114
8115 stat->attributes_mask |= (STATX_ATTR_APPEND |
8116 STATX_ATTR_COMPRESSED |
8117 STATX_ATTR_IMMUTABLE |
8118 STATX_ATTR_NODUMP);
8119
8120 generic_fillattr(idmap, request_mask, inode, stat);
8121 stat->dev = BTRFS_I(inode)->root->anon_dev;
8122
8123 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8124 stat->result_mask |= STATX_SUBVOL;
8125
8126 spin_lock(&BTRFS_I(inode)->lock);
8127 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8128 inode_bytes = inode_get_bytes(inode);
8129 spin_unlock(&BTRFS_I(inode)->lock);
8130 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8131 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8132 return 0;
8133 }
8134
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8135 static int btrfs_rename_exchange(struct inode *old_dir,
8136 struct dentry *old_dentry,
8137 struct inode *new_dir,
8138 struct dentry *new_dentry)
8139 {
8140 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8141 struct btrfs_trans_handle *trans;
8142 unsigned int trans_num_items;
8143 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8144 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8145 struct inode *new_inode = new_dentry->d_inode;
8146 struct inode *old_inode = old_dentry->d_inode;
8147 struct btrfs_rename_ctx old_rename_ctx;
8148 struct btrfs_rename_ctx new_rename_ctx;
8149 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8150 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8151 u64 old_idx = 0;
8152 u64 new_idx = 0;
8153 int ret;
8154 int ret2;
8155 bool need_abort = false;
8156 bool logs_pinned = false;
8157 struct fscrypt_name old_fname, new_fname;
8158 struct fscrypt_str *old_name, *new_name;
8159
8160 /*
8161 * For non-subvolumes allow exchange only within one subvolume, in the
8162 * same inode namespace. Two subvolumes (represented as directory) can
8163 * be exchanged as they're a logical link and have a fixed inode number.
8164 */
8165 if (root != dest &&
8166 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8167 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8168 return -EXDEV;
8169
8170 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8171 if (ret)
8172 return ret;
8173
8174 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8175 if (ret) {
8176 fscrypt_free_filename(&old_fname);
8177 return ret;
8178 }
8179
8180 old_name = &old_fname.disk_name;
8181 new_name = &new_fname.disk_name;
8182
8183 /* close the race window with snapshot create/destroy ioctl */
8184 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8185 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8186 down_read(&fs_info->subvol_sem);
8187
8188 /*
8189 * For each inode:
8190 * 1 to remove old dir item
8191 * 1 to remove old dir index
8192 * 1 to add new dir item
8193 * 1 to add new dir index
8194 * 1 to update parent inode
8195 *
8196 * If the parents are the same, we only need to account for one
8197 */
8198 trans_num_items = (old_dir == new_dir ? 9 : 10);
8199 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8200 /*
8201 * 1 to remove old root ref
8202 * 1 to remove old root backref
8203 * 1 to add new root ref
8204 * 1 to add new root backref
8205 */
8206 trans_num_items += 4;
8207 } else {
8208 /*
8209 * 1 to update inode item
8210 * 1 to remove old inode ref
8211 * 1 to add new inode ref
8212 */
8213 trans_num_items += 3;
8214 }
8215 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8216 trans_num_items += 4;
8217 else
8218 trans_num_items += 3;
8219 trans = btrfs_start_transaction(root, trans_num_items);
8220 if (IS_ERR(trans)) {
8221 ret = PTR_ERR(trans);
8222 goto out_notrans;
8223 }
8224
8225 if (dest != root) {
8226 ret = btrfs_record_root_in_trans(trans, dest);
8227 if (ret)
8228 goto out_fail;
8229 }
8230
8231 /*
8232 * We need to find a free sequence number both in the source and
8233 * in the destination directory for the exchange.
8234 */
8235 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8236 if (ret)
8237 goto out_fail;
8238 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8239 if (ret)
8240 goto out_fail;
8241
8242 BTRFS_I(old_inode)->dir_index = 0ULL;
8243 BTRFS_I(new_inode)->dir_index = 0ULL;
8244
8245 /* Reference for the source. */
8246 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8247 /* force full log commit if subvolume involved. */
8248 btrfs_set_log_full_commit(trans);
8249 } else {
8250 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8251 btrfs_ino(BTRFS_I(new_dir)),
8252 old_idx);
8253 if (ret)
8254 goto out_fail;
8255 need_abort = true;
8256 }
8257
8258 /* And now for the dest. */
8259 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8260 /* force full log commit if subvolume involved. */
8261 btrfs_set_log_full_commit(trans);
8262 } else {
8263 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8264 btrfs_ino(BTRFS_I(old_dir)),
8265 new_idx);
8266 if (ret) {
8267 if (unlikely(need_abort))
8268 btrfs_abort_transaction(trans, ret);
8269 goto out_fail;
8270 }
8271 }
8272
8273 /* Update inode version and ctime/mtime. */
8274 inode_inc_iversion(old_dir);
8275 inode_inc_iversion(new_dir);
8276 inode_inc_iversion(old_inode);
8277 inode_inc_iversion(new_inode);
8278 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8279
8280 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8281 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8282 /*
8283 * If we are renaming in the same directory (and it's not for
8284 * root entries) pin the log early to prevent any concurrent
8285 * task from logging the directory after we removed the old
8286 * entries and before we add the new entries, otherwise that
8287 * task can sync a log without any entry for the inodes we are
8288 * renaming and therefore replaying that log, if a power failure
8289 * happens after syncing the log, would result in deleting the
8290 * inodes.
8291 *
8292 * If the rename affects two different directories, we want to
8293 * make sure the that there's no log commit that contains
8294 * updates for only one of the directories but not for the
8295 * other.
8296 *
8297 * If we are renaming an entry for a root, we don't care about
8298 * log updates since we called btrfs_set_log_full_commit().
8299 */
8300 btrfs_pin_log_trans(root);
8301 btrfs_pin_log_trans(dest);
8302 logs_pinned = true;
8303 }
8304
8305 if (old_dentry->d_parent != new_dentry->d_parent) {
8306 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8307 BTRFS_I(old_inode), true);
8308 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8309 BTRFS_I(new_inode), true);
8310 }
8311
8312 /* src is a subvolume */
8313 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8314 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8315 if (unlikely(ret)) {
8316 btrfs_abort_transaction(trans, ret);
8317 goto out_fail;
8318 }
8319 } else { /* src is an inode */
8320 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8321 BTRFS_I(old_dentry->d_inode),
8322 old_name, &old_rename_ctx);
8323 if (unlikely(ret)) {
8324 btrfs_abort_transaction(trans, ret);
8325 goto out_fail;
8326 }
8327 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8328 if (unlikely(ret)) {
8329 btrfs_abort_transaction(trans, ret);
8330 goto out_fail;
8331 }
8332 }
8333
8334 /* dest is a subvolume */
8335 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8336 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8337 if (unlikely(ret)) {
8338 btrfs_abort_transaction(trans, ret);
8339 goto out_fail;
8340 }
8341 } else { /* dest is an inode */
8342 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8343 BTRFS_I(new_dentry->d_inode),
8344 new_name, &new_rename_ctx);
8345 if (unlikely(ret)) {
8346 btrfs_abort_transaction(trans, ret);
8347 goto out_fail;
8348 }
8349 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8350 if (unlikely(ret)) {
8351 btrfs_abort_transaction(trans, ret);
8352 goto out_fail;
8353 }
8354 }
8355
8356 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8357 new_name, 0, old_idx);
8358 if (unlikely(ret)) {
8359 btrfs_abort_transaction(trans, ret);
8360 goto out_fail;
8361 }
8362
8363 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8364 old_name, 0, new_idx);
8365 if (unlikely(ret)) {
8366 btrfs_abort_transaction(trans, ret);
8367 goto out_fail;
8368 }
8369
8370 if (old_inode->i_nlink == 1)
8371 BTRFS_I(old_inode)->dir_index = old_idx;
8372 if (new_inode->i_nlink == 1)
8373 BTRFS_I(new_inode)->dir_index = new_idx;
8374
8375 /*
8376 * Do the log updates for all inodes.
8377 *
8378 * If either entry is for a root we don't need to update the logs since
8379 * we've called btrfs_set_log_full_commit() before.
8380 */
8381 if (logs_pinned) {
8382 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8383 old_rename_ctx.index, new_dentry->d_parent);
8384 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8385 new_rename_ctx.index, old_dentry->d_parent);
8386 }
8387
8388 out_fail:
8389 if (logs_pinned) {
8390 btrfs_end_log_trans(root);
8391 btrfs_end_log_trans(dest);
8392 }
8393 ret2 = btrfs_end_transaction(trans);
8394 ret = ret ? ret : ret2;
8395 out_notrans:
8396 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8397 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8398 up_read(&fs_info->subvol_sem);
8399
8400 fscrypt_free_filename(&new_fname);
8401 fscrypt_free_filename(&old_fname);
8402 return ret;
8403 }
8404
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8405 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8406 struct inode *dir)
8407 {
8408 struct inode *inode;
8409
8410 inode = new_inode(dir->i_sb);
8411 if (inode) {
8412 inode_init_owner(idmap, inode, dir,
8413 S_IFCHR | WHITEOUT_MODE);
8414 inode->i_op = &btrfs_special_inode_operations;
8415 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8416 }
8417 return inode;
8418 }
8419
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8420 static int btrfs_rename(struct mnt_idmap *idmap,
8421 struct inode *old_dir, struct dentry *old_dentry,
8422 struct inode *new_dir, struct dentry *new_dentry,
8423 unsigned int flags)
8424 {
8425 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8426 struct btrfs_new_inode_args whiteout_args = {
8427 .dir = old_dir,
8428 .dentry = old_dentry,
8429 };
8430 struct btrfs_trans_handle *trans;
8431 unsigned int trans_num_items;
8432 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8433 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8434 struct inode *new_inode = d_inode(new_dentry);
8435 struct inode *old_inode = d_inode(old_dentry);
8436 struct btrfs_rename_ctx rename_ctx;
8437 u64 index = 0;
8438 int ret;
8439 int ret2;
8440 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8441 struct fscrypt_name old_fname, new_fname;
8442 bool logs_pinned = false;
8443
8444 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8445 return -EPERM;
8446
8447 /* we only allow rename subvolume link between subvolumes */
8448 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8449 return -EXDEV;
8450
8451 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8452 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8453 return -ENOTEMPTY;
8454
8455 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8456 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8457 return -ENOTEMPTY;
8458
8459 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8460 if (ret)
8461 return ret;
8462
8463 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8464 if (ret) {
8465 fscrypt_free_filename(&old_fname);
8466 return ret;
8467 }
8468
8469 /* check for collisions, even if the name isn't there */
8470 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8471 if (ret) {
8472 if (ret == -EEXIST) {
8473 /* we shouldn't get
8474 * eexist without a new_inode */
8475 if (WARN_ON(!new_inode)) {
8476 goto out_fscrypt_names;
8477 }
8478 } else {
8479 /* maybe -EOVERFLOW */
8480 goto out_fscrypt_names;
8481 }
8482 }
8483 ret = 0;
8484
8485 /*
8486 * we're using rename to replace one file with another. Start IO on it
8487 * now so we don't add too much work to the end of the transaction
8488 */
8489 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8490 filemap_flush(old_inode->i_mapping);
8491
8492 if (flags & RENAME_WHITEOUT) {
8493 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8494 if (!whiteout_args.inode) {
8495 ret = -ENOMEM;
8496 goto out_fscrypt_names;
8497 }
8498 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8499 if (ret)
8500 goto out_whiteout_inode;
8501 } else {
8502 /* 1 to update the old parent inode. */
8503 trans_num_items = 1;
8504 }
8505
8506 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8507 /* Close the race window with snapshot create/destroy ioctl */
8508 down_read(&fs_info->subvol_sem);
8509 /*
8510 * 1 to remove old root ref
8511 * 1 to remove old root backref
8512 * 1 to add new root ref
8513 * 1 to add new root backref
8514 */
8515 trans_num_items += 4;
8516 } else {
8517 /*
8518 * 1 to update inode
8519 * 1 to remove old inode ref
8520 * 1 to add new inode ref
8521 */
8522 trans_num_items += 3;
8523 }
8524 /*
8525 * 1 to remove old dir item
8526 * 1 to remove old dir index
8527 * 1 to add new dir item
8528 * 1 to add new dir index
8529 */
8530 trans_num_items += 4;
8531 /* 1 to update new parent inode if it's not the same as the old parent */
8532 if (new_dir != old_dir)
8533 trans_num_items++;
8534 if (new_inode) {
8535 /*
8536 * 1 to update inode
8537 * 1 to remove inode ref
8538 * 1 to remove dir item
8539 * 1 to remove dir index
8540 * 1 to possibly add orphan item
8541 */
8542 trans_num_items += 5;
8543 }
8544 trans = btrfs_start_transaction(root, trans_num_items);
8545 if (IS_ERR(trans)) {
8546 ret = PTR_ERR(trans);
8547 goto out_notrans;
8548 }
8549
8550 if (dest != root) {
8551 ret = btrfs_record_root_in_trans(trans, dest);
8552 if (ret)
8553 goto out_fail;
8554 }
8555
8556 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8557 if (ret)
8558 goto out_fail;
8559
8560 BTRFS_I(old_inode)->dir_index = 0ULL;
8561 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8562 /* force full log commit if subvolume involved. */
8563 btrfs_set_log_full_commit(trans);
8564 } else {
8565 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8566 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8567 index);
8568 if (ret)
8569 goto out_fail;
8570 }
8571
8572 inode_inc_iversion(old_dir);
8573 inode_inc_iversion(new_dir);
8574 inode_inc_iversion(old_inode);
8575 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8576
8577 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8578 /*
8579 * If we are renaming in the same directory (and it's not a
8580 * root entry) pin the log to prevent any concurrent task from
8581 * logging the directory after we removed the old entry and
8582 * before we add the new entry, otherwise that task can sync
8583 * a log without any entry for the inode we are renaming and
8584 * therefore replaying that log, if a power failure happens
8585 * after syncing the log, would result in deleting the inode.
8586 *
8587 * If the rename affects two different directories, we want to
8588 * make sure the that there's no log commit that contains
8589 * updates for only one of the directories but not for the
8590 * other.
8591 *
8592 * If we are renaming an entry for a root, we don't care about
8593 * log updates since we called btrfs_set_log_full_commit().
8594 */
8595 btrfs_pin_log_trans(root);
8596 btrfs_pin_log_trans(dest);
8597 logs_pinned = true;
8598 }
8599
8600 if (old_dentry->d_parent != new_dentry->d_parent)
8601 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8602 BTRFS_I(old_inode), true);
8603
8604 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8605 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8606 if (unlikely(ret)) {
8607 btrfs_abort_transaction(trans, ret);
8608 goto out_fail;
8609 }
8610 } else {
8611 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8612 BTRFS_I(d_inode(old_dentry)),
8613 &old_fname.disk_name, &rename_ctx);
8614 if (unlikely(ret)) {
8615 btrfs_abort_transaction(trans, ret);
8616 goto out_fail;
8617 }
8618 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8619 if (unlikely(ret)) {
8620 btrfs_abort_transaction(trans, ret);
8621 goto out_fail;
8622 }
8623 }
8624
8625 if (new_inode) {
8626 inode_inc_iversion(new_inode);
8627 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8628 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8629 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8630 if (unlikely(ret)) {
8631 btrfs_abort_transaction(trans, ret);
8632 goto out_fail;
8633 }
8634 BUG_ON(new_inode->i_nlink == 0);
8635 } else {
8636 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8637 BTRFS_I(d_inode(new_dentry)),
8638 &new_fname.disk_name);
8639 if (unlikely(ret)) {
8640 btrfs_abort_transaction(trans, ret);
8641 goto out_fail;
8642 }
8643 }
8644 if (new_inode->i_nlink == 0) {
8645 ret = btrfs_orphan_add(trans,
8646 BTRFS_I(d_inode(new_dentry)));
8647 if (unlikely(ret)) {
8648 btrfs_abort_transaction(trans, ret);
8649 goto out_fail;
8650 }
8651 }
8652 }
8653
8654 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8655 &new_fname.disk_name, 0, index);
8656 if (unlikely(ret)) {
8657 btrfs_abort_transaction(trans, ret);
8658 goto out_fail;
8659 }
8660
8661 if (old_inode->i_nlink == 1)
8662 BTRFS_I(old_inode)->dir_index = index;
8663
8664 if (logs_pinned)
8665 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8666 rename_ctx.index, new_dentry->d_parent);
8667
8668 if (flags & RENAME_WHITEOUT) {
8669 ret = btrfs_create_new_inode(trans, &whiteout_args);
8670 if (unlikely(ret)) {
8671 btrfs_abort_transaction(trans, ret);
8672 goto out_fail;
8673 } else {
8674 unlock_new_inode(whiteout_args.inode);
8675 iput(whiteout_args.inode);
8676 whiteout_args.inode = NULL;
8677 }
8678 }
8679 out_fail:
8680 if (logs_pinned) {
8681 btrfs_end_log_trans(root);
8682 btrfs_end_log_trans(dest);
8683 }
8684 ret2 = btrfs_end_transaction(trans);
8685 ret = ret ? ret : ret2;
8686 out_notrans:
8687 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8688 up_read(&fs_info->subvol_sem);
8689 if (flags & RENAME_WHITEOUT)
8690 btrfs_new_inode_args_destroy(&whiteout_args);
8691 out_whiteout_inode:
8692 if (flags & RENAME_WHITEOUT)
8693 iput(whiteout_args.inode);
8694 out_fscrypt_names:
8695 fscrypt_free_filename(&old_fname);
8696 fscrypt_free_filename(&new_fname);
8697 return ret;
8698 }
8699
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8700 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8701 struct dentry *old_dentry, struct inode *new_dir,
8702 struct dentry *new_dentry, unsigned int flags)
8703 {
8704 int ret;
8705
8706 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8707 return -EINVAL;
8708
8709 if (flags & RENAME_EXCHANGE)
8710 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8711 new_dentry);
8712 else
8713 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8714 new_dentry, flags);
8715
8716 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8717
8718 return ret;
8719 }
8720
8721 struct btrfs_delalloc_work {
8722 struct inode *inode;
8723 struct completion completion;
8724 struct list_head list;
8725 struct btrfs_work work;
8726 };
8727
btrfs_run_delalloc_work(struct btrfs_work * work)8728 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8729 {
8730 struct btrfs_delalloc_work *delalloc_work;
8731 struct inode *inode;
8732
8733 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8734 work);
8735 inode = delalloc_work->inode;
8736 filemap_flush(inode->i_mapping);
8737 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8738 &BTRFS_I(inode)->runtime_flags))
8739 filemap_flush(inode->i_mapping);
8740
8741 iput(inode);
8742 complete(&delalloc_work->completion);
8743 }
8744
btrfs_alloc_delalloc_work(struct inode * inode)8745 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8746 {
8747 struct btrfs_delalloc_work *work;
8748
8749 work = kmalloc(sizeof(*work), GFP_NOFS);
8750 if (!work)
8751 return NULL;
8752
8753 init_completion(&work->completion);
8754 INIT_LIST_HEAD(&work->list);
8755 work->inode = inode;
8756 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8757
8758 return work;
8759 }
8760
8761 /*
8762 * some fairly slow code that needs optimization. This walks the list
8763 * of all the inodes with pending delalloc and forces them to disk.
8764 */
start_delalloc_inodes(struct btrfs_root * root,long * nr_to_write,bool snapshot,bool in_reclaim_context)8765 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write,
8766 bool snapshot, bool in_reclaim_context)
8767 {
8768 struct btrfs_delalloc_work *work, *next;
8769 LIST_HEAD(works);
8770 LIST_HEAD(splice);
8771 int ret = 0;
8772
8773 mutex_lock(&root->delalloc_mutex);
8774 spin_lock(&root->delalloc_lock);
8775 list_splice_init(&root->delalloc_inodes, &splice);
8776 while (!list_empty(&splice)) {
8777 struct btrfs_inode *inode;
8778 struct inode *tmp_inode;
8779
8780 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8781
8782 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8783
8784 if (in_reclaim_context &&
8785 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8786 continue;
8787
8788 tmp_inode = igrab(&inode->vfs_inode);
8789 if (!tmp_inode) {
8790 cond_resched_lock(&root->delalloc_lock);
8791 continue;
8792 }
8793 spin_unlock(&root->delalloc_lock);
8794
8795 if (snapshot)
8796 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8797 if (nr_to_write == NULL) {
8798 work = btrfs_alloc_delalloc_work(tmp_inode);
8799 if (!work) {
8800 iput(tmp_inode);
8801 ret = -ENOMEM;
8802 goto out;
8803 }
8804 list_add_tail(&work->list, &works);
8805 btrfs_queue_work(root->fs_info->flush_workers,
8806 &work->work);
8807 } else {
8808 ret = filemap_flush_nr(tmp_inode->i_mapping,
8809 nr_to_write);
8810 btrfs_add_delayed_iput(inode);
8811
8812 if (ret || *nr_to_write <= 0)
8813 goto out;
8814 }
8815 cond_resched();
8816 spin_lock(&root->delalloc_lock);
8817 }
8818 spin_unlock(&root->delalloc_lock);
8819
8820 out:
8821 list_for_each_entry_safe(work, next, &works, list) {
8822 list_del_init(&work->list);
8823 wait_for_completion(&work->completion);
8824 kfree(work);
8825 }
8826
8827 if (!list_empty(&splice)) {
8828 spin_lock(&root->delalloc_lock);
8829 list_splice_tail(&splice, &root->delalloc_inodes);
8830 spin_unlock(&root->delalloc_lock);
8831 }
8832 mutex_unlock(&root->delalloc_mutex);
8833 return ret;
8834 }
8835
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8836 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8837 {
8838 struct btrfs_fs_info *fs_info = root->fs_info;
8839
8840 if (BTRFS_FS_ERROR(fs_info))
8841 return -EROFS;
8842 return start_delalloc_inodes(root, NULL, true, in_reclaim_context);
8843 }
8844
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8845 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8846 bool in_reclaim_context)
8847 {
8848 long *nr_to_write = nr == LONG_MAX ? NULL : &nr;
8849 struct btrfs_root *root;
8850 LIST_HEAD(splice);
8851 int ret;
8852
8853 if (BTRFS_FS_ERROR(fs_info))
8854 return -EROFS;
8855
8856 mutex_lock(&fs_info->delalloc_root_mutex);
8857 spin_lock(&fs_info->delalloc_root_lock);
8858 list_splice_init(&fs_info->delalloc_roots, &splice);
8859 while (!list_empty(&splice)) {
8860 root = list_first_entry(&splice, struct btrfs_root,
8861 delalloc_root);
8862 root = btrfs_grab_root(root);
8863 BUG_ON(!root);
8864 list_move_tail(&root->delalloc_root,
8865 &fs_info->delalloc_roots);
8866 spin_unlock(&fs_info->delalloc_root_lock);
8867
8868 ret = start_delalloc_inodes(root, nr_to_write, false,
8869 in_reclaim_context);
8870 btrfs_put_root(root);
8871 if (ret < 0 || nr <= 0)
8872 goto out;
8873 spin_lock(&fs_info->delalloc_root_lock);
8874 }
8875 spin_unlock(&fs_info->delalloc_root_lock);
8876
8877 ret = 0;
8878 out:
8879 if (!list_empty(&splice)) {
8880 spin_lock(&fs_info->delalloc_root_lock);
8881 list_splice_tail(&splice, &fs_info->delalloc_roots);
8882 spin_unlock(&fs_info->delalloc_root_lock);
8883 }
8884 mutex_unlock(&fs_info->delalloc_root_mutex);
8885 return ret;
8886 }
8887
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8888 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8889 struct dentry *dentry, const char *symname)
8890 {
8891 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8892 struct btrfs_trans_handle *trans;
8893 struct btrfs_root *root = BTRFS_I(dir)->root;
8894 struct btrfs_path *path;
8895 struct btrfs_key key;
8896 struct inode *inode;
8897 struct btrfs_new_inode_args new_inode_args = {
8898 .dir = dir,
8899 .dentry = dentry,
8900 };
8901 unsigned int trans_num_items;
8902 int ret;
8903 int name_len;
8904 int datasize;
8905 unsigned long ptr;
8906 struct btrfs_file_extent_item *ei;
8907 struct extent_buffer *leaf;
8908
8909 name_len = strlen(symname);
8910 /*
8911 * Symlinks utilize uncompressed inline extent data, which should not
8912 * reach block size.
8913 */
8914 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8915 name_len >= fs_info->sectorsize)
8916 return -ENAMETOOLONG;
8917
8918 inode = new_inode(dir->i_sb);
8919 if (!inode)
8920 return -ENOMEM;
8921 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8922 inode->i_op = &btrfs_symlink_inode_operations;
8923 inode_nohighmem(inode);
8924 inode->i_mapping->a_ops = &btrfs_aops;
8925 btrfs_i_size_write(BTRFS_I(inode), name_len);
8926 inode_set_bytes(inode, name_len);
8927
8928 new_inode_args.inode = inode;
8929 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8930 if (ret)
8931 goto out_inode;
8932 /* 1 additional item for the inline extent */
8933 trans_num_items++;
8934
8935 trans = btrfs_start_transaction(root, trans_num_items);
8936 if (IS_ERR(trans)) {
8937 ret = PTR_ERR(trans);
8938 goto out_new_inode_args;
8939 }
8940
8941 ret = btrfs_create_new_inode(trans, &new_inode_args);
8942 if (ret)
8943 goto out;
8944
8945 path = btrfs_alloc_path();
8946 if (unlikely(!path)) {
8947 ret = -ENOMEM;
8948 btrfs_abort_transaction(trans, ret);
8949 discard_new_inode(inode);
8950 inode = NULL;
8951 goto out;
8952 }
8953 key.objectid = btrfs_ino(BTRFS_I(inode));
8954 key.type = BTRFS_EXTENT_DATA_KEY;
8955 key.offset = 0;
8956 datasize = btrfs_file_extent_calc_inline_size(name_len);
8957 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8958 if (unlikely(ret)) {
8959 btrfs_abort_transaction(trans, ret);
8960 btrfs_free_path(path);
8961 discard_new_inode(inode);
8962 inode = NULL;
8963 goto out;
8964 }
8965 leaf = path->nodes[0];
8966 ei = btrfs_item_ptr(leaf, path->slots[0],
8967 struct btrfs_file_extent_item);
8968 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8969 btrfs_set_file_extent_type(leaf, ei,
8970 BTRFS_FILE_EXTENT_INLINE);
8971 btrfs_set_file_extent_encryption(leaf, ei, 0);
8972 btrfs_set_file_extent_compression(leaf, ei, 0);
8973 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8974 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8975
8976 ptr = btrfs_file_extent_inline_start(ei);
8977 write_extent_buffer(leaf, symname, ptr, name_len);
8978 btrfs_free_path(path);
8979
8980 d_instantiate_new(dentry, inode);
8981 ret = 0;
8982 out:
8983 btrfs_end_transaction(trans);
8984 btrfs_btree_balance_dirty(fs_info);
8985 out_new_inode_args:
8986 btrfs_new_inode_args_destroy(&new_inode_args);
8987 out_inode:
8988 if (ret)
8989 iput(inode);
8990 return ret;
8991 }
8992
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8993 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8994 struct btrfs_trans_handle *trans_in,
8995 struct btrfs_inode *inode,
8996 struct btrfs_key *ins,
8997 u64 file_offset)
8998 {
8999 struct btrfs_file_extent_item stack_fi;
9000 struct btrfs_replace_extent_info extent_info;
9001 struct btrfs_trans_handle *trans = trans_in;
9002 struct btrfs_path *path;
9003 u64 start = ins->objectid;
9004 u64 len = ins->offset;
9005 u64 qgroup_released = 0;
9006 int ret;
9007
9008 memset(&stack_fi, 0, sizeof(stack_fi));
9009
9010 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9011 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9012 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9013 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9014 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9015 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9016 /* Encryption and other encoding is reserved and all 0 */
9017
9018 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9019 if (ret < 0)
9020 return ERR_PTR(ret);
9021
9022 if (trans) {
9023 ret = insert_reserved_file_extent(trans, inode,
9024 file_offset, &stack_fi,
9025 true, qgroup_released);
9026 if (ret)
9027 goto free_qgroup;
9028 return trans;
9029 }
9030
9031 extent_info.disk_offset = start;
9032 extent_info.disk_len = len;
9033 extent_info.data_offset = 0;
9034 extent_info.data_len = len;
9035 extent_info.file_offset = file_offset;
9036 extent_info.extent_buf = (char *)&stack_fi;
9037 extent_info.is_new_extent = true;
9038 extent_info.update_times = true;
9039 extent_info.qgroup_reserved = qgroup_released;
9040 extent_info.insertions = 0;
9041
9042 path = btrfs_alloc_path();
9043 if (!path) {
9044 ret = -ENOMEM;
9045 goto free_qgroup;
9046 }
9047
9048 ret = btrfs_replace_file_extents(inode, path, file_offset,
9049 file_offset + len - 1, &extent_info,
9050 &trans);
9051 btrfs_free_path(path);
9052 if (ret)
9053 goto free_qgroup;
9054 return trans;
9055
9056 free_qgroup:
9057 /*
9058 * We have released qgroup data range at the beginning of the function,
9059 * and normally qgroup_released bytes will be freed when committing
9060 * transaction.
9061 * But if we error out early, we have to free what we have released
9062 * or we leak qgroup data reservation.
9063 */
9064 btrfs_qgroup_free_refroot(inode->root->fs_info,
9065 btrfs_root_id(inode->root), qgroup_released,
9066 BTRFS_QGROUP_RSV_DATA);
9067 return ERR_PTR(ret);
9068 }
9069
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9070 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9071 u64 start, u64 num_bytes, u64 min_size,
9072 loff_t actual_len, u64 *alloc_hint,
9073 struct btrfs_trans_handle *trans)
9074 {
9075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9076 struct extent_map *em;
9077 struct btrfs_root *root = BTRFS_I(inode)->root;
9078 struct btrfs_key ins;
9079 u64 cur_offset = start;
9080 u64 clear_offset = start;
9081 u64 i_size;
9082 u64 cur_bytes;
9083 u64 last_alloc = (u64)-1;
9084 int ret = 0;
9085 bool own_trans = true;
9086 u64 end = start + num_bytes - 1;
9087
9088 if (trans)
9089 own_trans = false;
9090 while (num_bytes > 0) {
9091 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9092 cur_bytes = max(cur_bytes, min_size);
9093 /*
9094 * If we are severely fragmented we could end up with really
9095 * small allocations, so if the allocator is returning small
9096 * chunks lets make its job easier by only searching for those
9097 * sized chunks.
9098 */
9099 cur_bytes = min(cur_bytes, last_alloc);
9100 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9101 min_size, 0, *alloc_hint, &ins, true, false);
9102 if (ret)
9103 break;
9104
9105 /*
9106 * We've reserved this space, and thus converted it from
9107 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9108 * from here on out we will only need to clear our reservation
9109 * for the remaining unreserved area, so advance our
9110 * clear_offset by our extent size.
9111 */
9112 clear_offset += ins.offset;
9113
9114 last_alloc = ins.offset;
9115 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9116 &ins, cur_offset);
9117 /*
9118 * Now that we inserted the prealloc extent we can finally
9119 * decrement the number of reservations in the block group.
9120 * If we did it before, we could race with relocation and have
9121 * relocation miss the reserved extent, making it fail later.
9122 */
9123 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9124 if (IS_ERR(trans)) {
9125 ret = PTR_ERR(trans);
9126 btrfs_free_reserved_extent(fs_info, ins.objectid,
9127 ins.offset, false);
9128 break;
9129 }
9130
9131 em = btrfs_alloc_extent_map();
9132 if (!em) {
9133 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9134 cur_offset + ins.offset - 1, false);
9135 btrfs_set_inode_full_sync(BTRFS_I(inode));
9136 goto next;
9137 }
9138
9139 em->start = cur_offset;
9140 em->len = ins.offset;
9141 em->disk_bytenr = ins.objectid;
9142 em->offset = 0;
9143 em->disk_num_bytes = ins.offset;
9144 em->ram_bytes = ins.offset;
9145 em->flags |= EXTENT_FLAG_PREALLOC;
9146 em->generation = trans->transid;
9147
9148 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9149 btrfs_free_extent_map(em);
9150 next:
9151 num_bytes -= ins.offset;
9152 cur_offset += ins.offset;
9153 *alloc_hint = ins.objectid + ins.offset;
9154
9155 inode_inc_iversion(inode);
9156 inode_set_ctime_current(inode);
9157 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9158 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9159 (actual_len > inode->i_size) &&
9160 (cur_offset > inode->i_size)) {
9161 if (cur_offset > actual_len)
9162 i_size = actual_len;
9163 else
9164 i_size = cur_offset;
9165 i_size_write(inode, i_size);
9166 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9167 }
9168
9169 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9170
9171 if (unlikely(ret)) {
9172 btrfs_abort_transaction(trans, ret);
9173 if (own_trans)
9174 btrfs_end_transaction(trans);
9175 break;
9176 }
9177
9178 if (own_trans) {
9179 btrfs_end_transaction(trans);
9180 trans = NULL;
9181 }
9182 }
9183 if (clear_offset < end)
9184 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9185 end - clear_offset + 1);
9186 return ret;
9187 }
9188
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9189 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9190 u64 start, u64 num_bytes, u64 min_size,
9191 loff_t actual_len, u64 *alloc_hint)
9192 {
9193 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9194 min_size, actual_len, alloc_hint,
9195 NULL);
9196 }
9197
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9198 int btrfs_prealloc_file_range_trans(struct inode *inode,
9199 struct btrfs_trans_handle *trans, int mode,
9200 u64 start, u64 num_bytes, u64 min_size,
9201 loff_t actual_len, u64 *alloc_hint)
9202 {
9203 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9204 min_size, actual_len, alloc_hint, trans);
9205 }
9206
9207 /*
9208 * NOTE: in case you are adding MAY_EXEC check for directories:
9209 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to
9210 * elide calls here.
9211 */
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9212 static int btrfs_permission(struct mnt_idmap *idmap,
9213 struct inode *inode, int mask)
9214 {
9215 struct btrfs_root *root = BTRFS_I(inode)->root;
9216 umode_t mode = inode->i_mode;
9217
9218 if (mask & MAY_WRITE &&
9219 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9220 if (btrfs_root_readonly(root))
9221 return -EROFS;
9222 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9223 return -EACCES;
9224 }
9225 return generic_permission(idmap, inode, mask);
9226 }
9227
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9228 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9229 struct file *file, umode_t mode)
9230 {
9231 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9232 struct btrfs_trans_handle *trans;
9233 struct btrfs_root *root = BTRFS_I(dir)->root;
9234 struct inode *inode;
9235 struct btrfs_new_inode_args new_inode_args = {
9236 .dir = dir,
9237 .dentry = file->f_path.dentry,
9238 .orphan = true,
9239 };
9240 unsigned int trans_num_items;
9241 int ret;
9242
9243 inode = new_inode(dir->i_sb);
9244 if (!inode)
9245 return -ENOMEM;
9246 inode_init_owner(idmap, inode, dir, mode);
9247 inode->i_fop = &btrfs_file_operations;
9248 inode->i_op = &btrfs_file_inode_operations;
9249 inode->i_mapping->a_ops = &btrfs_aops;
9250
9251 new_inode_args.inode = inode;
9252 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9253 if (ret)
9254 goto out_inode;
9255
9256 trans = btrfs_start_transaction(root, trans_num_items);
9257 if (IS_ERR(trans)) {
9258 ret = PTR_ERR(trans);
9259 goto out_new_inode_args;
9260 }
9261
9262 ret = btrfs_create_new_inode(trans, &new_inode_args);
9263
9264 /*
9265 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9266 * set it to 1 because d_tmpfile() will issue a warning if the count is
9267 * 0, through:
9268 *
9269 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9270 */
9271 set_nlink(inode, 1);
9272
9273 if (!ret) {
9274 d_tmpfile(file, inode);
9275 unlock_new_inode(inode);
9276 mark_inode_dirty(inode);
9277 }
9278
9279 btrfs_end_transaction(trans);
9280 btrfs_btree_balance_dirty(fs_info);
9281 out_new_inode_args:
9282 btrfs_new_inode_args_destroy(&new_inode_args);
9283 out_inode:
9284 if (ret)
9285 iput(inode);
9286 return finish_open_simple(file, ret);
9287 }
9288
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9289 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9290 int compress_type)
9291 {
9292 switch (compress_type) {
9293 case BTRFS_COMPRESS_NONE:
9294 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9295 case BTRFS_COMPRESS_ZLIB:
9296 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9297 case BTRFS_COMPRESS_LZO:
9298 /*
9299 * The LZO format depends on the sector size. 64K is the maximum
9300 * sector size that we support.
9301 */
9302 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9303 return -EINVAL;
9304 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9305 (fs_info->sectorsize_bits - 12);
9306 case BTRFS_COMPRESS_ZSTD:
9307 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9308 default:
9309 return -EUCLEAN;
9310 }
9311 }
9312
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9313 static ssize_t btrfs_encoded_read_inline(
9314 struct kiocb *iocb,
9315 struct iov_iter *iter, u64 start,
9316 u64 lockend,
9317 struct extent_state **cached_state,
9318 u64 extent_start, size_t count,
9319 struct btrfs_ioctl_encoded_io_args *encoded,
9320 bool *unlocked)
9321 {
9322 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9323 struct btrfs_root *root = inode->root;
9324 struct btrfs_fs_info *fs_info = root->fs_info;
9325 struct extent_io_tree *io_tree = &inode->io_tree;
9326 BTRFS_PATH_AUTO_FREE(path);
9327 struct extent_buffer *leaf;
9328 struct btrfs_file_extent_item *item;
9329 u64 ram_bytes;
9330 unsigned long ptr;
9331 void *tmp;
9332 ssize_t ret;
9333 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9334
9335 path = btrfs_alloc_path();
9336 if (!path)
9337 return -ENOMEM;
9338
9339 path->nowait = nowait;
9340
9341 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9342 extent_start, 0);
9343 if (ret) {
9344 if (unlikely(ret > 0)) {
9345 /* The extent item disappeared? */
9346 return -EIO;
9347 }
9348 return ret;
9349 }
9350 leaf = path->nodes[0];
9351 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9352
9353 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9354 ptr = btrfs_file_extent_inline_start(item);
9355
9356 encoded->len = min_t(u64, extent_start + ram_bytes,
9357 inode->vfs_inode.i_size) - iocb->ki_pos;
9358 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9359 btrfs_file_extent_compression(leaf, item));
9360 if (ret < 0)
9361 return ret;
9362 encoded->compression = ret;
9363 if (encoded->compression) {
9364 size_t inline_size;
9365
9366 inline_size = btrfs_file_extent_inline_item_len(leaf,
9367 path->slots[0]);
9368 if (inline_size > count)
9369 return -ENOBUFS;
9370
9371 count = inline_size;
9372 encoded->unencoded_len = ram_bytes;
9373 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9374 } else {
9375 count = min_t(u64, count, encoded->len);
9376 encoded->len = count;
9377 encoded->unencoded_len = count;
9378 ptr += iocb->ki_pos - extent_start;
9379 }
9380
9381 tmp = kmalloc(count, GFP_NOFS);
9382 if (!tmp)
9383 return -ENOMEM;
9384
9385 read_extent_buffer(leaf, tmp, ptr, count);
9386 btrfs_release_path(path);
9387 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9388 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9389 *unlocked = true;
9390
9391 ret = copy_to_iter(tmp, count, iter);
9392 if (ret != count)
9393 ret = -EFAULT;
9394 kfree(tmp);
9395
9396 return ret;
9397 }
9398
9399 struct btrfs_encoded_read_private {
9400 struct completion *sync_reads;
9401 void *uring_ctx;
9402 refcount_t pending_refs;
9403 blk_status_t status;
9404 };
9405
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9406 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9407 {
9408 struct btrfs_encoded_read_private *priv = bbio->private;
9409
9410 if (bbio->bio.bi_status) {
9411 /*
9412 * The memory barrier implied by the refcount_dec_and_test() here
9413 * pairs with the memory barrier implied by the refcount_dec_and_test()
9414 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9415 * this write is observed before the load of status in
9416 * btrfs_encoded_read_regular_fill_pages().
9417 */
9418 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9419 }
9420 if (refcount_dec_and_test(&priv->pending_refs)) {
9421 int err = blk_status_to_errno(READ_ONCE(priv->status));
9422
9423 if (priv->uring_ctx) {
9424 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9425 kfree(priv);
9426 } else {
9427 complete(priv->sync_reads);
9428 }
9429 }
9430 bio_put(&bbio->bio);
9431 }
9432
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9433 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9434 u64 disk_bytenr, u64 disk_io_size,
9435 struct page **pages, void *uring_ctx)
9436 {
9437 struct btrfs_encoded_read_private *priv, sync_priv;
9438 struct completion sync_reads;
9439 unsigned long i = 0;
9440 struct btrfs_bio *bbio;
9441 int ret;
9442
9443 /*
9444 * Fast path for synchronous reads which completes in this call, io_uring
9445 * needs longer time span.
9446 */
9447 if (uring_ctx) {
9448 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9449 if (!priv)
9450 return -ENOMEM;
9451 } else {
9452 priv = &sync_priv;
9453 init_completion(&sync_reads);
9454 priv->sync_reads = &sync_reads;
9455 }
9456
9457 refcount_set(&priv->pending_refs, 1);
9458 priv->status = 0;
9459 priv->uring_ctx = uring_ctx;
9460
9461 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9462 btrfs_encoded_read_endio, priv);
9463 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9464
9465 do {
9466 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9467
9468 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9469 refcount_inc(&priv->pending_refs);
9470 btrfs_submit_bbio(bbio, 0);
9471
9472 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9473 btrfs_encoded_read_endio, priv);
9474 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9475 continue;
9476 }
9477
9478 i++;
9479 disk_bytenr += bytes;
9480 disk_io_size -= bytes;
9481 } while (disk_io_size);
9482
9483 refcount_inc(&priv->pending_refs);
9484 btrfs_submit_bbio(bbio, 0);
9485
9486 if (uring_ctx) {
9487 if (refcount_dec_and_test(&priv->pending_refs)) {
9488 ret = blk_status_to_errno(READ_ONCE(priv->status));
9489 btrfs_uring_read_extent_endio(uring_ctx, ret);
9490 kfree(priv);
9491 return ret;
9492 }
9493
9494 return -EIOCBQUEUED;
9495 } else {
9496 if (!refcount_dec_and_test(&priv->pending_refs))
9497 wait_for_completion_io(&sync_reads);
9498 /* See btrfs_encoded_read_endio() for ordering. */
9499 return blk_status_to_errno(READ_ONCE(priv->status));
9500 }
9501 }
9502
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9503 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9504 u64 start, u64 lockend,
9505 struct extent_state **cached_state,
9506 u64 disk_bytenr, u64 disk_io_size,
9507 size_t count, bool compressed, bool *unlocked)
9508 {
9509 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9510 struct extent_io_tree *io_tree = &inode->io_tree;
9511 struct page **pages;
9512 unsigned long nr_pages, i;
9513 u64 cur;
9514 size_t page_offset;
9515 ssize_t ret;
9516
9517 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9518 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9519 if (!pages)
9520 return -ENOMEM;
9521 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9522 if (ret) {
9523 ret = -ENOMEM;
9524 goto out;
9525 }
9526
9527 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9528 disk_io_size, pages, NULL);
9529 if (ret)
9530 goto out;
9531
9532 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9533 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9534 *unlocked = true;
9535
9536 if (compressed) {
9537 i = 0;
9538 page_offset = 0;
9539 } else {
9540 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9541 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9542 }
9543 cur = 0;
9544 while (cur < count) {
9545 size_t bytes = min_t(size_t, count - cur,
9546 PAGE_SIZE - page_offset);
9547
9548 if (copy_page_to_iter(pages[i], page_offset, bytes,
9549 iter) != bytes) {
9550 ret = -EFAULT;
9551 goto out;
9552 }
9553 i++;
9554 cur += bytes;
9555 page_offset = 0;
9556 }
9557 ret = count;
9558 out:
9559 for (i = 0; i < nr_pages; i++) {
9560 if (pages[i])
9561 __free_page(pages[i]);
9562 }
9563 kfree(pages);
9564 return ret;
9565 }
9566
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9567 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9568 struct btrfs_ioctl_encoded_io_args *encoded,
9569 struct extent_state **cached_state,
9570 u64 *disk_bytenr, u64 *disk_io_size)
9571 {
9572 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9573 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9574 struct extent_io_tree *io_tree = &inode->io_tree;
9575 ssize_t ret;
9576 size_t count = iov_iter_count(iter);
9577 u64 start, lockend;
9578 struct extent_map *em;
9579 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9580 bool unlocked = false;
9581
9582 file_accessed(iocb->ki_filp);
9583
9584 ret = btrfs_inode_lock(inode,
9585 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9586 if (ret)
9587 return ret;
9588
9589 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9590 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9591 return 0;
9592 }
9593 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9594 /*
9595 * We don't know how long the extent containing iocb->ki_pos is, but if
9596 * it's compressed we know that it won't be longer than this.
9597 */
9598 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9599
9600 if (nowait) {
9601 struct btrfs_ordered_extent *ordered;
9602
9603 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9604 start, lockend)) {
9605 ret = -EAGAIN;
9606 goto out_unlock_inode;
9607 }
9608
9609 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9610 ret = -EAGAIN;
9611 goto out_unlock_inode;
9612 }
9613
9614 ordered = btrfs_lookup_ordered_range(inode, start,
9615 lockend - start + 1);
9616 if (ordered) {
9617 btrfs_put_ordered_extent(ordered);
9618 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9619 ret = -EAGAIN;
9620 goto out_unlock_inode;
9621 }
9622 } else {
9623 for (;;) {
9624 struct btrfs_ordered_extent *ordered;
9625
9626 ret = btrfs_wait_ordered_range(inode, start,
9627 lockend - start + 1);
9628 if (ret)
9629 goto out_unlock_inode;
9630
9631 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9632 ordered = btrfs_lookup_ordered_range(inode, start,
9633 lockend - start + 1);
9634 if (!ordered)
9635 break;
9636 btrfs_put_ordered_extent(ordered);
9637 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9638 cond_resched();
9639 }
9640 }
9641
9642 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9643 if (IS_ERR(em)) {
9644 ret = PTR_ERR(em);
9645 goto out_unlock_extent;
9646 }
9647
9648 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9649 u64 extent_start = em->start;
9650
9651 /*
9652 * For inline extents we get everything we need out of the
9653 * extent item.
9654 */
9655 btrfs_free_extent_map(em);
9656 em = NULL;
9657 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9658 cached_state, extent_start,
9659 count, encoded, &unlocked);
9660 goto out_unlock_extent;
9661 }
9662
9663 /*
9664 * We only want to return up to EOF even if the extent extends beyond
9665 * that.
9666 */
9667 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9668 inode->vfs_inode.i_size) - iocb->ki_pos;
9669 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9670 (em->flags & EXTENT_FLAG_PREALLOC)) {
9671 *disk_bytenr = EXTENT_MAP_HOLE;
9672 count = min_t(u64, count, encoded->len);
9673 encoded->len = count;
9674 encoded->unencoded_len = count;
9675 } else if (btrfs_extent_map_is_compressed(em)) {
9676 *disk_bytenr = em->disk_bytenr;
9677 /*
9678 * Bail if the buffer isn't large enough to return the whole
9679 * compressed extent.
9680 */
9681 if (em->disk_num_bytes > count) {
9682 ret = -ENOBUFS;
9683 goto out_em;
9684 }
9685 *disk_io_size = em->disk_num_bytes;
9686 count = em->disk_num_bytes;
9687 encoded->unencoded_len = em->ram_bytes;
9688 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9689 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9690 btrfs_extent_map_compression(em));
9691 if (ret < 0)
9692 goto out_em;
9693 encoded->compression = ret;
9694 } else {
9695 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9696 if (encoded->len > count)
9697 encoded->len = count;
9698 /*
9699 * Don't read beyond what we locked. This also limits the page
9700 * allocations that we'll do.
9701 */
9702 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9703 count = start + *disk_io_size - iocb->ki_pos;
9704 encoded->len = count;
9705 encoded->unencoded_len = count;
9706 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9707 }
9708 btrfs_free_extent_map(em);
9709 em = NULL;
9710
9711 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9712 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9713 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9714 unlocked = true;
9715 ret = iov_iter_zero(count, iter);
9716 if (ret != count)
9717 ret = -EFAULT;
9718 } else {
9719 ret = -EIOCBQUEUED;
9720 goto out_unlock_extent;
9721 }
9722
9723 out_em:
9724 btrfs_free_extent_map(em);
9725 out_unlock_extent:
9726 /* Leave inode and extent locked if we need to do a read. */
9727 if (!unlocked && ret != -EIOCBQUEUED)
9728 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9729 out_unlock_inode:
9730 if (!unlocked && ret != -EIOCBQUEUED)
9731 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9732 return ret;
9733 }
9734
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9735 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9736 const struct btrfs_ioctl_encoded_io_args *encoded)
9737 {
9738 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9739 struct btrfs_root *root = inode->root;
9740 struct btrfs_fs_info *fs_info = root->fs_info;
9741 struct extent_io_tree *io_tree = &inode->io_tree;
9742 struct extent_changeset *data_reserved = NULL;
9743 struct extent_state *cached_state = NULL;
9744 struct btrfs_ordered_extent *ordered;
9745 struct btrfs_file_extent file_extent;
9746 int compression;
9747 size_t orig_count;
9748 u64 start, end;
9749 u64 num_bytes, ram_bytes, disk_num_bytes;
9750 unsigned long nr_folios, i;
9751 struct folio **folios;
9752 struct btrfs_key ins;
9753 bool extent_reserved = false;
9754 struct extent_map *em;
9755 ssize_t ret;
9756
9757 switch (encoded->compression) {
9758 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9759 compression = BTRFS_COMPRESS_ZLIB;
9760 break;
9761 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9762 compression = BTRFS_COMPRESS_ZSTD;
9763 break;
9764 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9765 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9766 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9767 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9768 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9769 /* The sector size must match for LZO. */
9770 if (encoded->compression -
9771 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9772 fs_info->sectorsize_bits)
9773 return -EINVAL;
9774 compression = BTRFS_COMPRESS_LZO;
9775 break;
9776 default:
9777 return -EINVAL;
9778 }
9779 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9780 return -EINVAL;
9781
9782 /*
9783 * Compressed extents should always have checksums, so error out if we
9784 * have a NOCOW file or inode was created while mounted with NODATASUM.
9785 */
9786 if (inode->flags & BTRFS_INODE_NODATASUM)
9787 return -EINVAL;
9788
9789 orig_count = iov_iter_count(from);
9790
9791 /* The extent size must be sane. */
9792 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9793 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9794 return -EINVAL;
9795
9796 /*
9797 * The compressed data must be smaller than the decompressed data.
9798 *
9799 * It's of course possible for data to compress to larger or the same
9800 * size, but the buffered I/O path falls back to no compression for such
9801 * data, and we don't want to break any assumptions by creating these
9802 * extents.
9803 *
9804 * Note that this is less strict than the current check we have that the
9805 * compressed data must be at least one sector smaller than the
9806 * decompressed data. We only want to enforce the weaker requirement
9807 * from old kernels that it is at least one byte smaller.
9808 */
9809 if (orig_count >= encoded->unencoded_len)
9810 return -EINVAL;
9811
9812 /* The extent must start on a sector boundary. */
9813 start = iocb->ki_pos;
9814 if (!IS_ALIGNED(start, fs_info->sectorsize))
9815 return -EINVAL;
9816
9817 /*
9818 * The extent must end on a sector boundary. However, we allow a write
9819 * which ends at or extends i_size to have an unaligned length; we round
9820 * up the extent size and set i_size to the unaligned end.
9821 */
9822 if (start + encoded->len < inode->vfs_inode.i_size &&
9823 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9824 return -EINVAL;
9825
9826 /* Finally, the offset in the unencoded data must be sector-aligned. */
9827 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9828 return -EINVAL;
9829
9830 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9831 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9832 end = start + num_bytes - 1;
9833
9834 /*
9835 * If the extent cannot be inline, the compressed data on disk must be
9836 * sector-aligned. For convenience, we extend it with zeroes if it
9837 * isn't.
9838 */
9839 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9840 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9841 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9842 if (!folios)
9843 return -ENOMEM;
9844 for (i = 0; i < nr_folios; i++) {
9845 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9846 char *kaddr;
9847
9848 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9849 if (!folios[i]) {
9850 ret = -ENOMEM;
9851 goto out_folios;
9852 }
9853 kaddr = kmap_local_folio(folios[i], 0);
9854 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9855 kunmap_local(kaddr);
9856 ret = -EFAULT;
9857 goto out_folios;
9858 }
9859 if (bytes < PAGE_SIZE)
9860 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9861 kunmap_local(kaddr);
9862 }
9863
9864 for (;;) {
9865 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9866 if (ret)
9867 goto out_folios;
9868 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9869 start >> PAGE_SHIFT,
9870 end >> PAGE_SHIFT);
9871 if (ret)
9872 goto out_folios;
9873 btrfs_lock_extent(io_tree, start, end, &cached_state);
9874 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9875 if (!ordered &&
9876 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9877 break;
9878 if (ordered)
9879 btrfs_put_ordered_extent(ordered);
9880 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9881 cond_resched();
9882 }
9883
9884 /*
9885 * We don't use the higher-level delalloc space functions because our
9886 * num_bytes and disk_num_bytes are different.
9887 */
9888 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9889 if (ret)
9890 goto out_unlock;
9891 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9892 if (ret)
9893 goto out_free_data_space;
9894 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9895 false);
9896 if (ret)
9897 goto out_qgroup_free_data;
9898
9899 /* Try an inline extent first. */
9900 if (encoded->unencoded_len == encoded->len &&
9901 encoded->unencoded_offset == 0 &&
9902 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9903 ret = __cow_file_range_inline(inode, encoded->len,
9904 orig_count, compression, folios[0],
9905 true);
9906 if (ret <= 0) {
9907 if (ret == 0)
9908 ret = orig_count;
9909 goto out_delalloc_release;
9910 }
9911 }
9912
9913 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9914 disk_num_bytes, 0, 0, &ins, true, true);
9915 if (ret)
9916 goto out_delalloc_release;
9917 extent_reserved = true;
9918
9919 file_extent.disk_bytenr = ins.objectid;
9920 file_extent.disk_num_bytes = ins.offset;
9921 file_extent.num_bytes = num_bytes;
9922 file_extent.ram_bytes = ram_bytes;
9923 file_extent.offset = encoded->unencoded_offset;
9924 file_extent.compression = compression;
9925 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9926 if (IS_ERR(em)) {
9927 ret = PTR_ERR(em);
9928 goto out_free_reserved;
9929 }
9930 btrfs_free_extent_map(em);
9931
9932 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9933 (1U << BTRFS_ORDERED_ENCODED) |
9934 (1U << BTRFS_ORDERED_COMPRESSED));
9935 if (IS_ERR(ordered)) {
9936 btrfs_drop_extent_map_range(inode, start, end, false);
9937 ret = PTR_ERR(ordered);
9938 goto out_free_reserved;
9939 }
9940 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9941
9942 if (start + encoded->len > inode->vfs_inode.i_size)
9943 i_size_write(&inode->vfs_inode, start + encoded->len);
9944
9945 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9946
9947 btrfs_delalloc_release_extents(inode, num_bytes);
9948
9949 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9950 ret = orig_count;
9951 goto out;
9952
9953 out_free_reserved:
9954 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9955 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9956 out_delalloc_release:
9957 btrfs_delalloc_release_extents(inode, num_bytes);
9958 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9959 out_qgroup_free_data:
9960 if (ret < 0)
9961 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9962 out_free_data_space:
9963 /*
9964 * If btrfs_reserve_extent() succeeded, then we already decremented
9965 * bytes_may_use.
9966 */
9967 if (!extent_reserved)
9968 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9969 out_unlock:
9970 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9971 out_folios:
9972 for (i = 0; i < nr_folios; i++) {
9973 if (folios[i])
9974 folio_put(folios[i]);
9975 }
9976 kvfree(folios);
9977 out:
9978 if (ret >= 0)
9979 iocb->ki_pos += encoded->len;
9980 return ret;
9981 }
9982
9983 #ifdef CONFIG_SWAP
9984 /*
9985 * Add an entry indicating a block group or device which is pinned by a
9986 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9987 * negative errno on failure.
9988 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9989 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9990 bool is_block_group)
9991 {
9992 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9993 struct btrfs_swapfile_pin *sp, *entry;
9994 struct rb_node **p;
9995 struct rb_node *parent = NULL;
9996
9997 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9998 if (!sp)
9999 return -ENOMEM;
10000 sp->ptr = ptr;
10001 sp->inode = inode;
10002 sp->is_block_group = is_block_group;
10003 sp->bg_extent_count = 1;
10004
10005 spin_lock(&fs_info->swapfile_pins_lock);
10006 p = &fs_info->swapfile_pins.rb_node;
10007 while (*p) {
10008 parent = *p;
10009 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10010 if (sp->ptr < entry->ptr ||
10011 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10012 p = &(*p)->rb_left;
10013 } else if (sp->ptr > entry->ptr ||
10014 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10015 p = &(*p)->rb_right;
10016 } else {
10017 if (is_block_group)
10018 entry->bg_extent_count++;
10019 spin_unlock(&fs_info->swapfile_pins_lock);
10020 kfree(sp);
10021 return 1;
10022 }
10023 }
10024 rb_link_node(&sp->node, parent, p);
10025 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10026 spin_unlock(&fs_info->swapfile_pins_lock);
10027 return 0;
10028 }
10029
10030 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10031 static void btrfs_free_swapfile_pins(struct inode *inode)
10032 {
10033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10034 struct btrfs_swapfile_pin *sp;
10035 struct rb_node *node, *next;
10036
10037 spin_lock(&fs_info->swapfile_pins_lock);
10038 node = rb_first(&fs_info->swapfile_pins);
10039 while (node) {
10040 next = rb_next(node);
10041 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10042 if (sp->inode == inode) {
10043 rb_erase(&sp->node, &fs_info->swapfile_pins);
10044 if (sp->is_block_group) {
10045 btrfs_dec_block_group_swap_extents(sp->ptr,
10046 sp->bg_extent_count);
10047 btrfs_put_block_group(sp->ptr);
10048 }
10049 kfree(sp);
10050 }
10051 node = next;
10052 }
10053 spin_unlock(&fs_info->swapfile_pins_lock);
10054 }
10055
10056 struct btrfs_swap_info {
10057 u64 start;
10058 u64 block_start;
10059 u64 block_len;
10060 u64 lowest_ppage;
10061 u64 highest_ppage;
10062 unsigned long nr_pages;
10063 int nr_extents;
10064 };
10065
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10066 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10067 struct btrfs_swap_info *bsi)
10068 {
10069 unsigned long nr_pages;
10070 unsigned long max_pages;
10071 u64 first_ppage, first_ppage_reported, next_ppage;
10072 int ret;
10073
10074 /*
10075 * Our swapfile may have had its size extended after the swap header was
10076 * written. In that case activating the swapfile should not go beyond
10077 * the max size set in the swap header.
10078 */
10079 if (bsi->nr_pages >= sis->max)
10080 return 0;
10081
10082 max_pages = sis->max - bsi->nr_pages;
10083 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10084 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10085
10086 if (first_ppage >= next_ppage)
10087 return 0;
10088 nr_pages = next_ppage - first_ppage;
10089 nr_pages = min(nr_pages, max_pages);
10090
10091 first_ppage_reported = first_ppage;
10092 if (bsi->start == 0)
10093 first_ppage_reported++;
10094 if (bsi->lowest_ppage > first_ppage_reported)
10095 bsi->lowest_ppage = first_ppage_reported;
10096 if (bsi->highest_ppage < (next_ppage - 1))
10097 bsi->highest_ppage = next_ppage - 1;
10098
10099 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10100 if (ret < 0)
10101 return ret;
10102 bsi->nr_extents += ret;
10103 bsi->nr_pages += nr_pages;
10104 return 0;
10105 }
10106
btrfs_swap_deactivate(struct file * file)10107 static void btrfs_swap_deactivate(struct file *file)
10108 {
10109 struct inode *inode = file_inode(file);
10110
10111 btrfs_free_swapfile_pins(inode);
10112 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10113 }
10114
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10115 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10116 sector_t *span)
10117 {
10118 struct inode *inode = file_inode(file);
10119 struct btrfs_root *root = BTRFS_I(inode)->root;
10120 struct btrfs_fs_info *fs_info = root->fs_info;
10121 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10122 struct extent_state *cached_state = NULL;
10123 struct btrfs_chunk_map *map = NULL;
10124 struct btrfs_device *device = NULL;
10125 struct btrfs_swap_info bsi = {
10126 .lowest_ppage = (sector_t)-1ULL,
10127 };
10128 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10129 struct btrfs_path *path = NULL;
10130 int ret = 0;
10131 u64 isize;
10132 u64 prev_extent_end = 0;
10133
10134 /*
10135 * Acquire the inode's mmap lock to prevent races with memory mapped
10136 * writes, as they could happen after we flush delalloc below and before
10137 * we lock the extent range further below. The inode was already locked
10138 * up in the call chain.
10139 */
10140 btrfs_assert_inode_locked(BTRFS_I(inode));
10141 down_write(&BTRFS_I(inode)->i_mmap_lock);
10142
10143 /*
10144 * If the swap file was just created, make sure delalloc is done. If the
10145 * file changes again after this, the user is doing something stupid and
10146 * we don't really care.
10147 */
10148 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10149 if (ret)
10150 goto out_unlock_mmap;
10151
10152 /*
10153 * The inode is locked, so these flags won't change after we check them.
10154 */
10155 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10156 btrfs_warn(fs_info, "swapfile must not be compressed");
10157 ret = -EINVAL;
10158 goto out_unlock_mmap;
10159 }
10160 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10161 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10162 ret = -EINVAL;
10163 goto out_unlock_mmap;
10164 }
10165 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10166 btrfs_warn(fs_info, "swapfile must not be checksummed");
10167 ret = -EINVAL;
10168 goto out_unlock_mmap;
10169 }
10170
10171 path = btrfs_alloc_path();
10172 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10173 if (!path || !backref_ctx) {
10174 ret = -ENOMEM;
10175 goto out_unlock_mmap;
10176 }
10177
10178 /*
10179 * Balance or device remove/replace/resize can move stuff around from
10180 * under us. The exclop protection makes sure they aren't running/won't
10181 * run concurrently while we are mapping the swap extents, and
10182 * fs_info->swapfile_pins prevents them from running while the swap
10183 * file is active and moving the extents. Note that this also prevents
10184 * a concurrent device add which isn't actually necessary, but it's not
10185 * really worth the trouble to allow it.
10186 */
10187 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10188 btrfs_warn(fs_info,
10189 "cannot activate swapfile while exclusive operation is running");
10190 ret = -EBUSY;
10191 goto out_unlock_mmap;
10192 }
10193
10194 /*
10195 * Prevent snapshot creation while we are activating the swap file.
10196 * We do not want to race with snapshot creation. If snapshot creation
10197 * already started before we bumped nr_swapfiles from 0 to 1 and
10198 * completes before the first write into the swap file after it is
10199 * activated, than that write would fallback to COW.
10200 */
10201 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10202 btrfs_exclop_finish(fs_info);
10203 btrfs_warn(fs_info,
10204 "cannot activate swapfile because snapshot creation is in progress");
10205 ret = -EINVAL;
10206 goto out_unlock_mmap;
10207 }
10208 /*
10209 * Snapshots can create extents which require COW even if NODATACOW is
10210 * set. We use this counter to prevent snapshots. We must increment it
10211 * before walking the extents because we don't want a concurrent
10212 * snapshot to run after we've already checked the extents.
10213 *
10214 * It is possible that subvolume is marked for deletion but still not
10215 * removed yet. To prevent this race, we check the root status before
10216 * activating the swapfile.
10217 */
10218 spin_lock(&root->root_item_lock);
10219 if (btrfs_root_dead(root)) {
10220 spin_unlock(&root->root_item_lock);
10221
10222 btrfs_drew_write_unlock(&root->snapshot_lock);
10223 btrfs_exclop_finish(fs_info);
10224 btrfs_warn(fs_info,
10225 "cannot activate swapfile because subvolume %llu is being deleted",
10226 btrfs_root_id(root));
10227 ret = -EPERM;
10228 goto out_unlock_mmap;
10229 }
10230 atomic_inc(&root->nr_swapfiles);
10231 spin_unlock(&root->root_item_lock);
10232
10233 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10234
10235 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10236 while (prev_extent_end < isize) {
10237 struct btrfs_key key;
10238 struct extent_buffer *leaf;
10239 struct btrfs_file_extent_item *ei;
10240 struct btrfs_block_group *bg;
10241 u64 logical_block_start;
10242 u64 physical_block_start;
10243 u64 extent_gen;
10244 u64 disk_bytenr;
10245 u64 len;
10246
10247 key.objectid = btrfs_ino(BTRFS_I(inode));
10248 key.type = BTRFS_EXTENT_DATA_KEY;
10249 key.offset = prev_extent_end;
10250
10251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10252 if (ret < 0)
10253 goto out;
10254
10255 /*
10256 * If key not found it means we have an implicit hole (NO_HOLES
10257 * is enabled).
10258 */
10259 if (ret > 0) {
10260 btrfs_warn(fs_info, "swapfile must not have holes");
10261 ret = -EINVAL;
10262 goto out;
10263 }
10264
10265 leaf = path->nodes[0];
10266 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10267
10268 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10269 /*
10270 * It's unlikely we'll ever actually find ourselves
10271 * here, as a file small enough to fit inline won't be
10272 * big enough to store more than the swap header, but in
10273 * case something changes in the future, let's catch it
10274 * here rather than later.
10275 */
10276 btrfs_warn(fs_info, "swapfile must not be inline");
10277 ret = -EINVAL;
10278 goto out;
10279 }
10280
10281 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10282 btrfs_warn(fs_info, "swapfile must not be compressed");
10283 ret = -EINVAL;
10284 goto out;
10285 }
10286
10287 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10288 if (disk_bytenr == 0) {
10289 btrfs_warn(fs_info, "swapfile must not have holes");
10290 ret = -EINVAL;
10291 goto out;
10292 }
10293
10294 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10295 extent_gen = btrfs_file_extent_generation(leaf, ei);
10296 prev_extent_end = btrfs_file_extent_end(path);
10297
10298 if (prev_extent_end > isize)
10299 len = isize - key.offset;
10300 else
10301 len = btrfs_file_extent_num_bytes(leaf, ei);
10302
10303 backref_ctx->curr_leaf_bytenr = leaf->start;
10304
10305 /*
10306 * Don't need the path anymore, release to avoid deadlocks when
10307 * calling btrfs_is_data_extent_shared() because when joining a
10308 * transaction it can block waiting for the current one's commit
10309 * which in turn may be trying to lock the same leaf to flush
10310 * delayed items for example.
10311 */
10312 btrfs_release_path(path);
10313
10314 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10315 extent_gen, backref_ctx);
10316 if (ret < 0) {
10317 goto out;
10318 } else if (ret > 0) {
10319 btrfs_warn(fs_info,
10320 "swapfile must not be copy-on-write");
10321 ret = -EINVAL;
10322 goto out;
10323 }
10324
10325 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10326 if (IS_ERR(map)) {
10327 ret = PTR_ERR(map);
10328 goto out;
10329 }
10330
10331 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10332 btrfs_warn(fs_info,
10333 "swapfile must have single data profile");
10334 ret = -EINVAL;
10335 goto out;
10336 }
10337
10338 if (device == NULL) {
10339 device = map->stripes[0].dev;
10340 ret = btrfs_add_swapfile_pin(inode, device, false);
10341 if (ret == 1)
10342 ret = 0;
10343 else if (ret)
10344 goto out;
10345 } else if (device != map->stripes[0].dev) {
10346 btrfs_warn(fs_info, "swapfile must be on one device");
10347 ret = -EINVAL;
10348 goto out;
10349 }
10350
10351 physical_block_start = (map->stripes[0].physical +
10352 (logical_block_start - map->start));
10353 btrfs_free_chunk_map(map);
10354 map = NULL;
10355
10356 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10357 if (!bg) {
10358 btrfs_warn(fs_info,
10359 "could not find block group containing swapfile");
10360 ret = -EINVAL;
10361 goto out;
10362 }
10363
10364 if (!btrfs_inc_block_group_swap_extents(bg)) {
10365 btrfs_warn(fs_info,
10366 "block group for swapfile at %llu is read-only%s",
10367 bg->start,
10368 atomic_read(&fs_info->scrubs_running) ?
10369 " (scrub running)" : "");
10370 btrfs_put_block_group(bg);
10371 ret = -EINVAL;
10372 goto out;
10373 }
10374
10375 ret = btrfs_add_swapfile_pin(inode, bg, true);
10376 if (ret) {
10377 btrfs_put_block_group(bg);
10378 if (ret == 1)
10379 ret = 0;
10380 else
10381 goto out;
10382 }
10383
10384 if (bsi.block_len &&
10385 bsi.block_start + bsi.block_len == physical_block_start) {
10386 bsi.block_len += len;
10387 } else {
10388 if (bsi.block_len) {
10389 ret = btrfs_add_swap_extent(sis, &bsi);
10390 if (ret)
10391 goto out;
10392 }
10393 bsi.start = key.offset;
10394 bsi.block_start = physical_block_start;
10395 bsi.block_len = len;
10396 }
10397
10398 if (fatal_signal_pending(current)) {
10399 ret = -EINTR;
10400 goto out;
10401 }
10402
10403 cond_resched();
10404 }
10405
10406 if (bsi.block_len)
10407 ret = btrfs_add_swap_extent(sis, &bsi);
10408
10409 out:
10410 if (!IS_ERR_OR_NULL(map))
10411 btrfs_free_chunk_map(map);
10412
10413 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10414
10415 if (ret)
10416 btrfs_swap_deactivate(file);
10417
10418 btrfs_drew_write_unlock(&root->snapshot_lock);
10419
10420 btrfs_exclop_finish(fs_info);
10421
10422 out_unlock_mmap:
10423 up_write(&BTRFS_I(inode)->i_mmap_lock);
10424 btrfs_free_backref_share_ctx(backref_ctx);
10425 btrfs_free_path(path);
10426 if (ret)
10427 return ret;
10428
10429 if (device)
10430 sis->bdev = device->bdev;
10431 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10432 sis->max = bsi.nr_pages;
10433 sis->pages = bsi.nr_pages - 1;
10434 return bsi.nr_extents;
10435 }
10436 #else
btrfs_swap_deactivate(struct file * file)10437 static void btrfs_swap_deactivate(struct file *file)
10438 {
10439 }
10440
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10441 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10442 sector_t *span)
10443 {
10444 return -EOPNOTSUPP;
10445 }
10446 #endif
10447
10448 /*
10449 * Update the number of bytes used in the VFS' inode. When we replace extents in
10450 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10451 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10452 * always get a correct value.
10453 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10454 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10455 const u64 add_bytes,
10456 const u64 del_bytes)
10457 {
10458 if (add_bytes == del_bytes)
10459 return;
10460
10461 spin_lock(&inode->lock);
10462 if (del_bytes > 0)
10463 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10464 if (add_bytes > 0)
10465 inode_add_bytes(&inode->vfs_inode, add_bytes);
10466 spin_unlock(&inode->lock);
10467 }
10468
10469 /*
10470 * Verify that there are no ordered extents for a given file range.
10471 *
10472 * @inode: The target inode.
10473 * @start: Start offset of the file range, should be sector size aligned.
10474 * @end: End offset (inclusive) of the file range, its value +1 should be
10475 * sector size aligned.
10476 *
10477 * This should typically be used for cases where we locked an inode's VFS lock in
10478 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10479 * we have flushed all delalloc in the range, we have waited for all ordered
10480 * extents in the range to complete and finally we have locked the file range in
10481 * the inode's io_tree.
10482 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10483 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10484 {
10485 struct btrfs_root *root = inode->root;
10486 struct btrfs_ordered_extent *ordered;
10487
10488 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10489 return;
10490
10491 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10492 if (ordered) {
10493 btrfs_err(root->fs_info,
10494 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10495 start, end, btrfs_ino(inode), btrfs_root_id(root),
10496 ordered->file_offset,
10497 ordered->file_offset + ordered->num_bytes - 1);
10498 btrfs_put_ordered_extent(ordered);
10499 }
10500
10501 ASSERT(ordered == NULL);
10502 }
10503
10504 /*
10505 * Find the first inode with a minimum number.
10506 *
10507 * @root: The root to search for.
10508 * @min_ino: The minimum inode number.
10509 *
10510 * Find the first inode in the @root with a number >= @min_ino and return it.
10511 * Returns NULL if no such inode found.
10512 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10513 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10514 {
10515 struct btrfs_inode *inode;
10516 unsigned long from = min_ino;
10517
10518 xa_lock(&root->inodes);
10519 while (true) {
10520 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10521 if (!inode)
10522 break;
10523 if (igrab(&inode->vfs_inode))
10524 break;
10525
10526 from = btrfs_ino(inode) + 1;
10527 cond_resched_lock(&root->inodes.xa_lock);
10528 }
10529 xa_unlock(&root->inodes);
10530
10531 return inode;
10532 }
10533
10534 static const struct inode_operations btrfs_dir_inode_operations = {
10535 .getattr = btrfs_getattr,
10536 .lookup = btrfs_lookup,
10537 .create = btrfs_create,
10538 .unlink = btrfs_unlink,
10539 .link = btrfs_link,
10540 .mkdir = btrfs_mkdir,
10541 .rmdir = btrfs_rmdir,
10542 .rename = btrfs_rename2,
10543 .symlink = btrfs_symlink,
10544 .setattr = btrfs_setattr,
10545 .mknod = btrfs_mknod,
10546 .listxattr = btrfs_listxattr,
10547 .permission = btrfs_permission,
10548 .get_inode_acl = btrfs_get_acl,
10549 .set_acl = btrfs_set_acl,
10550 .update_time = btrfs_update_time,
10551 .tmpfile = btrfs_tmpfile,
10552 .fileattr_get = btrfs_fileattr_get,
10553 .fileattr_set = btrfs_fileattr_set,
10554 };
10555
10556 static const struct file_operations btrfs_dir_file_operations = {
10557 .llseek = btrfs_dir_llseek,
10558 .read = generic_read_dir,
10559 .iterate_shared = btrfs_real_readdir,
10560 .open = btrfs_opendir,
10561 .unlocked_ioctl = btrfs_ioctl,
10562 #ifdef CONFIG_COMPAT
10563 .compat_ioctl = btrfs_compat_ioctl,
10564 #endif
10565 .release = btrfs_release_file,
10566 .fsync = btrfs_sync_file,
10567 };
10568
10569 /*
10570 * btrfs doesn't support the bmap operation because swapfiles
10571 * use bmap to make a mapping of extents in the file. They assume
10572 * these extents won't change over the life of the file and they
10573 * use the bmap result to do IO directly to the drive.
10574 *
10575 * the btrfs bmap call would return logical addresses that aren't
10576 * suitable for IO and they also will change frequently as COW
10577 * operations happen. So, swapfile + btrfs == corruption.
10578 *
10579 * For now we're avoiding this by dropping bmap.
10580 */
10581 static const struct address_space_operations btrfs_aops = {
10582 .read_folio = btrfs_read_folio,
10583 .writepages = btrfs_writepages,
10584 .readahead = btrfs_readahead,
10585 .invalidate_folio = btrfs_invalidate_folio,
10586 .launder_folio = btrfs_launder_folio,
10587 .release_folio = btrfs_release_folio,
10588 .migrate_folio = btrfs_migrate_folio,
10589 .dirty_folio = filemap_dirty_folio,
10590 .error_remove_folio = generic_error_remove_folio,
10591 .swap_activate = btrfs_swap_activate,
10592 .swap_deactivate = btrfs_swap_deactivate,
10593 };
10594
10595 static const struct inode_operations btrfs_file_inode_operations = {
10596 .getattr = btrfs_getattr,
10597 .setattr = btrfs_setattr,
10598 .listxattr = btrfs_listxattr,
10599 .permission = btrfs_permission,
10600 .fiemap = btrfs_fiemap,
10601 .get_inode_acl = btrfs_get_acl,
10602 .set_acl = btrfs_set_acl,
10603 .update_time = btrfs_update_time,
10604 .fileattr_get = btrfs_fileattr_get,
10605 .fileattr_set = btrfs_fileattr_set,
10606 };
10607 static const struct inode_operations btrfs_special_inode_operations = {
10608 .getattr = btrfs_getattr,
10609 .setattr = btrfs_setattr,
10610 .permission = btrfs_permission,
10611 .listxattr = btrfs_listxattr,
10612 .get_inode_acl = btrfs_get_acl,
10613 .set_acl = btrfs_set_acl,
10614 .update_time = btrfs_update_time,
10615 };
10616 static const struct inode_operations btrfs_symlink_inode_operations = {
10617 .get_link = page_get_link,
10618 .getattr = btrfs_getattr,
10619 .setattr = btrfs_setattr,
10620 .permission = btrfs_permission,
10621 .listxattr = btrfs_listxattr,
10622 .update_time = btrfs_update_time,
10623 };
10624
10625 const struct dentry_operations btrfs_dentry_operations = {
10626 .d_delete = btrfs_dentry_delete,
10627 };
10628