1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(fs_info, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 540 args->extent_inserted = true; 541 } 542 543 if (!args->path) 544 btrfs_free_path(path); 545 else if (!args->extent_inserted) 546 btrfs_release_path(path); 547 out: 548 args->drop_end = found ? min(args->end, last_end) : args->end; 549 550 return ret; 551 } 552 553 static int extent_mergeable(struct extent_buffer *leaf, int slot, 554 u64 objectid, u64 bytenr, u64 orig_offset, 555 u64 *start, u64 *end) 556 { 557 struct btrfs_file_extent_item *fi; 558 struct btrfs_key key; 559 u64 extent_end; 560 561 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 562 return 0; 563 564 btrfs_item_key_to_cpu(leaf, &key, slot); 565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 566 return 0; 567 568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 572 btrfs_file_extent_compression(leaf, fi) || 573 btrfs_file_extent_encryption(leaf, fi) || 574 btrfs_file_extent_other_encoding(leaf, fi)) 575 return 0; 576 577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 578 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 579 return 0; 580 581 *start = key.offset; 582 *end = extent_end; 583 return 1; 584 } 585 586 /* 587 * Mark extent in the range start - end as written. 588 * 589 * This changes extent type from 'pre-allocated' to 'regular'. If only 590 * part of extent is marked as written, the extent will be split into 591 * two or three. 592 */ 593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 594 struct btrfs_inode *inode, u64 start, u64 end) 595 { 596 struct btrfs_fs_info *fs_info = trans->fs_info; 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(fs_info, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(fs_info, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static fgf_t get_prepare_fgp_flags(bool nowait) 880 { 881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1110 size_t count) 1111 { 1112 struct file *file = iocb->ki_filp; 1113 struct inode *inode = file_inode(file); 1114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1115 loff_t pos = iocb->ki_pos; 1116 int ret; 1117 loff_t oldsize; 1118 loff_t start_pos; 1119 1120 /* 1121 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1122 * prealloc flags, as without those flags we always have to COW. We will 1123 * later check if we can really COW into the target range (using 1124 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1125 */ 1126 if ((iocb->ki_flags & IOCB_NOWAIT) && 1127 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1128 return -EAGAIN; 1129 1130 ret = file_remove_privs(file); 1131 if (ret) 1132 return ret; 1133 1134 /* 1135 * We reserve space for updating the inode when we reserve space for the 1136 * extent we are going to write, so we will enospc out there. We don't 1137 * need to start yet another transaction to update the inode as we will 1138 * update the inode when we finish writing whatever data we write. 1139 */ 1140 if (!IS_NOCMTIME(inode)) { 1141 inode->i_mtime = inode_set_ctime_current(inode); 1142 inode_inc_iversion(inode); 1143 } 1144 1145 start_pos = round_down(pos, fs_info->sectorsize); 1146 oldsize = i_size_read(inode); 1147 if (start_pos > oldsize) { 1148 /* Expand hole size to cover write data, preventing empty gap */ 1149 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1150 1151 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1152 if (ret) 1153 return ret; 1154 } 1155 1156 return 0; 1157 } 1158 1159 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1160 struct iov_iter *i) 1161 { 1162 struct file *file = iocb->ki_filp; 1163 loff_t pos; 1164 struct inode *inode = file_inode(file); 1165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1166 struct page **pages = NULL; 1167 struct extent_changeset *data_reserved = NULL; 1168 u64 release_bytes = 0; 1169 u64 lockstart; 1170 u64 lockend; 1171 size_t num_written = 0; 1172 int nrptrs; 1173 ssize_t ret; 1174 bool only_release_metadata = false; 1175 bool force_page_uptodate = false; 1176 loff_t old_isize = i_size_read(inode); 1177 unsigned int ilock_flags = 0; 1178 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1179 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1180 1181 if (nowait) 1182 ilock_flags |= BTRFS_ILOCK_TRY; 1183 1184 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1185 if (ret < 0) 1186 return ret; 1187 1188 ret = generic_write_checks(iocb, i); 1189 if (ret <= 0) 1190 goto out; 1191 1192 ret = btrfs_write_check(iocb, i, ret); 1193 if (ret < 0) 1194 goto out; 1195 1196 pos = iocb->ki_pos; 1197 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1198 PAGE_SIZE / (sizeof(struct page *))); 1199 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1200 nrptrs = max(nrptrs, 8); 1201 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1202 if (!pages) { 1203 ret = -ENOMEM; 1204 goto out; 1205 } 1206 1207 while (iov_iter_count(i) > 0) { 1208 struct extent_state *cached_state = NULL; 1209 size_t offset = offset_in_page(pos); 1210 size_t sector_offset; 1211 size_t write_bytes = min(iov_iter_count(i), 1212 nrptrs * (size_t)PAGE_SIZE - 1213 offset); 1214 size_t num_pages; 1215 size_t reserve_bytes; 1216 size_t dirty_pages; 1217 size_t copied; 1218 size_t dirty_sectors; 1219 size_t num_sectors; 1220 int extents_locked; 1221 1222 /* 1223 * Fault pages before locking them in prepare_pages 1224 * to avoid recursive lock 1225 */ 1226 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1227 ret = -EFAULT; 1228 break; 1229 } 1230 1231 only_release_metadata = false; 1232 sector_offset = pos & (fs_info->sectorsize - 1); 1233 1234 extent_changeset_release(data_reserved); 1235 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1236 &data_reserved, pos, 1237 write_bytes, nowait); 1238 if (ret < 0) { 1239 int can_nocow; 1240 1241 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1242 ret = -EAGAIN; 1243 break; 1244 } 1245 1246 /* 1247 * If we don't have to COW at the offset, reserve 1248 * metadata only. write_bytes may get smaller than 1249 * requested here. 1250 */ 1251 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1252 &write_bytes, nowait); 1253 if (can_nocow < 0) 1254 ret = can_nocow; 1255 if (can_nocow > 0) 1256 ret = 0; 1257 if (ret) 1258 break; 1259 only_release_metadata = true; 1260 } 1261 1262 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1263 WARN_ON(num_pages > nrptrs); 1264 reserve_bytes = round_up(write_bytes + sector_offset, 1265 fs_info->sectorsize); 1266 WARN_ON(reserve_bytes == 0); 1267 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1268 reserve_bytes, 1269 reserve_bytes, nowait); 1270 if (ret) { 1271 if (!only_release_metadata) 1272 btrfs_free_reserved_data_space(BTRFS_I(inode), 1273 data_reserved, pos, 1274 write_bytes); 1275 else 1276 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1277 1278 if (nowait && ret == -ENOSPC) 1279 ret = -EAGAIN; 1280 break; 1281 } 1282 1283 release_bytes = reserve_bytes; 1284 again: 1285 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1286 if (ret) { 1287 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1288 break; 1289 } 1290 1291 /* 1292 * This is going to setup the pages array with the number of 1293 * pages we want, so we don't really need to worry about the 1294 * contents of pages from loop to loop 1295 */ 1296 ret = prepare_pages(inode, pages, num_pages, 1297 pos, write_bytes, force_page_uptodate, false); 1298 if (ret) { 1299 btrfs_delalloc_release_extents(BTRFS_I(inode), 1300 reserve_bytes); 1301 break; 1302 } 1303 1304 extents_locked = lock_and_cleanup_extent_if_need( 1305 BTRFS_I(inode), pages, 1306 num_pages, pos, write_bytes, &lockstart, 1307 &lockend, nowait, &cached_state); 1308 if (extents_locked < 0) { 1309 if (!nowait && extents_locked == -EAGAIN) 1310 goto again; 1311 1312 btrfs_delalloc_release_extents(BTRFS_I(inode), 1313 reserve_bytes); 1314 ret = extents_locked; 1315 break; 1316 } 1317 1318 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1319 1320 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1321 dirty_sectors = round_up(copied + sector_offset, 1322 fs_info->sectorsize); 1323 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1324 1325 /* 1326 * if we have trouble faulting in the pages, fall 1327 * back to one page at a time 1328 */ 1329 if (copied < write_bytes) 1330 nrptrs = 1; 1331 1332 if (copied == 0) { 1333 force_page_uptodate = true; 1334 dirty_sectors = 0; 1335 dirty_pages = 0; 1336 } else { 1337 force_page_uptodate = false; 1338 dirty_pages = DIV_ROUND_UP(copied + offset, 1339 PAGE_SIZE); 1340 } 1341 1342 if (num_sectors > dirty_sectors) { 1343 /* release everything except the sectors we dirtied */ 1344 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1345 if (only_release_metadata) { 1346 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1347 release_bytes, true); 1348 } else { 1349 u64 __pos; 1350 1351 __pos = round_down(pos, 1352 fs_info->sectorsize) + 1353 (dirty_pages << PAGE_SHIFT); 1354 btrfs_delalloc_release_space(BTRFS_I(inode), 1355 data_reserved, __pos, 1356 release_bytes, true); 1357 } 1358 } 1359 1360 release_bytes = round_up(copied + sector_offset, 1361 fs_info->sectorsize); 1362 1363 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1364 dirty_pages, pos, copied, 1365 &cached_state, only_release_metadata); 1366 1367 /* 1368 * If we have not locked the extent range, because the range's 1369 * start offset is >= i_size, we might still have a non-NULL 1370 * cached extent state, acquired while marking the extent range 1371 * as delalloc through btrfs_dirty_pages(). Therefore free any 1372 * possible cached extent state to avoid a memory leak. 1373 */ 1374 if (extents_locked) 1375 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1376 lockend, &cached_state); 1377 else 1378 free_extent_state(cached_state); 1379 1380 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1381 if (ret) { 1382 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1383 break; 1384 } 1385 1386 release_bytes = 0; 1387 if (only_release_metadata) 1388 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1389 1390 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1391 1392 cond_resched(); 1393 1394 pos += copied; 1395 num_written += copied; 1396 } 1397 1398 kfree(pages); 1399 1400 if (release_bytes) { 1401 if (only_release_metadata) { 1402 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1403 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1404 release_bytes, true); 1405 } else { 1406 btrfs_delalloc_release_space(BTRFS_I(inode), 1407 data_reserved, 1408 round_down(pos, fs_info->sectorsize), 1409 release_bytes, true); 1410 } 1411 } 1412 1413 extent_changeset_free(data_reserved); 1414 if (num_written > 0) { 1415 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1416 iocb->ki_pos += num_written; 1417 } 1418 out: 1419 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1420 return num_written ? num_written : ret; 1421 } 1422 1423 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1424 const struct iov_iter *iter, loff_t offset) 1425 { 1426 const u32 blocksize_mask = fs_info->sectorsize - 1; 1427 1428 if (offset & blocksize_mask) 1429 return -EINVAL; 1430 1431 if (iov_iter_alignment(iter) & blocksize_mask) 1432 return -EINVAL; 1433 1434 return 0; 1435 } 1436 1437 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1438 { 1439 struct file *file = iocb->ki_filp; 1440 struct inode *inode = file_inode(file); 1441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1442 loff_t pos; 1443 ssize_t written = 0; 1444 ssize_t written_buffered; 1445 size_t prev_left = 0; 1446 loff_t endbyte; 1447 ssize_t err; 1448 unsigned int ilock_flags = 0; 1449 struct iomap_dio *dio; 1450 1451 if (iocb->ki_flags & IOCB_NOWAIT) 1452 ilock_flags |= BTRFS_ILOCK_TRY; 1453 1454 /* If the write DIO is within EOF, use a shared lock */ 1455 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1456 ilock_flags |= BTRFS_ILOCK_SHARED; 1457 1458 relock: 1459 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1460 if (err < 0) 1461 return err; 1462 1463 err = generic_write_checks(iocb, from); 1464 if (err <= 0) { 1465 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1466 return err; 1467 } 1468 1469 err = btrfs_write_check(iocb, from, err); 1470 if (err < 0) { 1471 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1472 goto out; 1473 } 1474 1475 pos = iocb->ki_pos; 1476 /* 1477 * Re-check since file size may have changed just before taking the 1478 * lock or pos may have changed because of O_APPEND in generic_write_check() 1479 */ 1480 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1481 pos + iov_iter_count(from) > i_size_read(inode)) { 1482 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1483 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1484 goto relock; 1485 } 1486 1487 if (check_direct_IO(fs_info, from, pos)) { 1488 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1489 goto buffered; 1490 } 1491 1492 /* 1493 * The iov_iter can be mapped to the same file range we are writing to. 1494 * If that's the case, then we will deadlock in the iomap code, because 1495 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1496 * an ordered extent, and after that it will fault in the pages that the 1497 * iov_iter refers to. During the fault in we end up in the readahead 1498 * pages code (starting at btrfs_readahead()), which will lock the range, 1499 * find that ordered extent and then wait for it to complete (at 1500 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1501 * obviously the ordered extent can never complete as we didn't submit 1502 * yet the respective bio(s). This always happens when the buffer is 1503 * memory mapped to the same file range, since the iomap DIO code always 1504 * invalidates pages in the target file range (after starting and waiting 1505 * for any writeback). 1506 * 1507 * So here we disable page faults in the iov_iter and then retry if we 1508 * got -EFAULT, faulting in the pages before the retry. 1509 */ 1510 from->nofault = true; 1511 dio = btrfs_dio_write(iocb, from, written); 1512 from->nofault = false; 1513 1514 /* 1515 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1516 * iocb, and that needs to lock the inode. So unlock it before calling 1517 * iomap_dio_complete() to avoid a deadlock. 1518 */ 1519 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1520 1521 if (IS_ERR_OR_NULL(dio)) 1522 err = PTR_ERR_OR_ZERO(dio); 1523 else 1524 err = iomap_dio_complete(dio); 1525 1526 /* No increment (+=) because iomap returns a cumulative value. */ 1527 if (err > 0) 1528 written = err; 1529 1530 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1531 const size_t left = iov_iter_count(from); 1532 /* 1533 * We have more data left to write. Try to fault in as many as 1534 * possible of the remainder pages and retry. We do this without 1535 * releasing and locking again the inode, to prevent races with 1536 * truncate. 1537 * 1538 * Also, in case the iov refers to pages in the file range of the 1539 * file we want to write to (due to a mmap), we could enter an 1540 * infinite loop if we retry after faulting the pages in, since 1541 * iomap will invalidate any pages in the range early on, before 1542 * it tries to fault in the pages of the iov. So we keep track of 1543 * how much was left of iov in the previous EFAULT and fallback 1544 * to buffered IO in case we haven't made any progress. 1545 */ 1546 if (left == prev_left) { 1547 err = -ENOTBLK; 1548 } else { 1549 fault_in_iov_iter_readable(from, left); 1550 prev_left = left; 1551 goto relock; 1552 } 1553 } 1554 1555 /* 1556 * If 'err' is -ENOTBLK or we have not written all data, then it means 1557 * we must fallback to buffered IO. 1558 */ 1559 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1560 goto out; 1561 1562 buffered: 1563 /* 1564 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1565 * it must retry the operation in a context where blocking is acceptable, 1566 * because even if we end up not blocking during the buffered IO attempt 1567 * below, we will block when flushing and waiting for the IO. 1568 */ 1569 if (iocb->ki_flags & IOCB_NOWAIT) { 1570 err = -EAGAIN; 1571 goto out; 1572 } 1573 1574 pos = iocb->ki_pos; 1575 written_buffered = btrfs_buffered_write(iocb, from); 1576 if (written_buffered < 0) { 1577 err = written_buffered; 1578 goto out; 1579 } 1580 /* 1581 * Ensure all data is persisted. We want the next direct IO read to be 1582 * able to read what was just written. 1583 */ 1584 endbyte = pos + written_buffered - 1; 1585 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1586 if (err) 1587 goto out; 1588 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1589 if (err) 1590 goto out; 1591 written += written_buffered; 1592 iocb->ki_pos = pos + written_buffered; 1593 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1594 endbyte >> PAGE_SHIFT); 1595 out: 1596 return err < 0 ? err : written; 1597 } 1598 1599 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1600 const struct btrfs_ioctl_encoded_io_args *encoded) 1601 { 1602 struct file *file = iocb->ki_filp; 1603 struct inode *inode = file_inode(file); 1604 loff_t count; 1605 ssize_t ret; 1606 1607 btrfs_inode_lock(BTRFS_I(inode), 0); 1608 count = encoded->len; 1609 ret = generic_write_checks_count(iocb, &count); 1610 if (ret == 0 && count != encoded->len) { 1611 /* 1612 * The write got truncated by generic_write_checks_count(). We 1613 * can't do a partial encoded write. 1614 */ 1615 ret = -EFBIG; 1616 } 1617 if (ret || encoded->len == 0) 1618 goto out; 1619 1620 ret = btrfs_write_check(iocb, from, encoded->len); 1621 if (ret < 0) 1622 goto out; 1623 1624 ret = btrfs_do_encoded_write(iocb, from, encoded); 1625 out: 1626 btrfs_inode_unlock(BTRFS_I(inode), 0); 1627 return ret; 1628 } 1629 1630 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1631 const struct btrfs_ioctl_encoded_io_args *encoded) 1632 { 1633 struct file *file = iocb->ki_filp; 1634 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1635 ssize_t num_written, num_sync; 1636 1637 /* 1638 * If the fs flips readonly due to some impossible error, although we 1639 * have opened a file as writable, we have to stop this write operation 1640 * to ensure consistency. 1641 */ 1642 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1643 return -EROFS; 1644 1645 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1646 return -EOPNOTSUPP; 1647 1648 if (encoded) { 1649 num_written = btrfs_encoded_write(iocb, from, encoded); 1650 num_sync = encoded->len; 1651 } else if (iocb->ki_flags & IOCB_DIRECT) { 1652 num_written = btrfs_direct_write(iocb, from); 1653 num_sync = num_written; 1654 } else { 1655 num_written = btrfs_buffered_write(iocb, from); 1656 num_sync = num_written; 1657 } 1658 1659 btrfs_set_inode_last_sub_trans(inode); 1660 1661 if (num_sync > 0) { 1662 num_sync = generic_write_sync(iocb, num_sync); 1663 if (num_sync < 0) 1664 num_written = num_sync; 1665 } 1666 1667 return num_written; 1668 } 1669 1670 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1671 { 1672 return btrfs_do_write_iter(iocb, from, NULL); 1673 } 1674 1675 int btrfs_release_file(struct inode *inode, struct file *filp) 1676 { 1677 struct btrfs_file_private *private = filp->private_data; 1678 1679 if (private) { 1680 kfree(private->filldir_buf); 1681 free_extent_state(private->llseek_cached_state); 1682 kfree(private); 1683 filp->private_data = NULL; 1684 } 1685 1686 /* 1687 * Set by setattr when we are about to truncate a file from a non-zero 1688 * size to a zero size. This tries to flush down new bytes that may 1689 * have been written if the application were using truncate to replace 1690 * a file in place. 1691 */ 1692 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1693 &BTRFS_I(inode)->runtime_flags)) 1694 filemap_flush(inode->i_mapping); 1695 return 0; 1696 } 1697 1698 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1699 { 1700 int ret; 1701 struct blk_plug plug; 1702 1703 /* 1704 * This is only called in fsync, which would do synchronous writes, so 1705 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1706 * multiple disks using raid profile, a large IO can be split to 1707 * several segments of stripe length (currently 64K). 1708 */ 1709 blk_start_plug(&plug); 1710 ret = btrfs_fdatawrite_range(inode, start, end); 1711 blk_finish_plug(&plug); 1712 1713 return ret; 1714 } 1715 1716 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1717 { 1718 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1719 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1720 1721 if (btrfs_inode_in_log(inode, fs_info->generation) && 1722 list_empty(&ctx->ordered_extents)) 1723 return true; 1724 1725 /* 1726 * If we are doing a fast fsync we can not bail out if the inode's 1727 * last_trans is <= then the last committed transaction, because we only 1728 * update the last_trans of the inode during ordered extent completion, 1729 * and for a fast fsync we don't wait for that, we only wait for the 1730 * writeback to complete. 1731 */ 1732 if (inode->last_trans <= fs_info->last_trans_committed && 1733 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1734 list_empty(&ctx->ordered_extents))) 1735 return true; 1736 1737 return false; 1738 } 1739 1740 /* 1741 * fsync call for both files and directories. This logs the inode into 1742 * the tree log instead of forcing full commits whenever possible. 1743 * 1744 * It needs to call filemap_fdatawait so that all ordered extent updates are 1745 * in the metadata btree are up to date for copying to the log. 1746 * 1747 * It drops the inode mutex before doing the tree log commit. This is an 1748 * important optimization for directories because holding the mutex prevents 1749 * new operations on the dir while we write to disk. 1750 */ 1751 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1752 { 1753 struct dentry *dentry = file_dentry(file); 1754 struct inode *inode = d_inode(dentry); 1755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1756 struct btrfs_root *root = BTRFS_I(inode)->root; 1757 struct btrfs_trans_handle *trans; 1758 struct btrfs_log_ctx ctx; 1759 int ret = 0, err; 1760 u64 len; 1761 bool full_sync; 1762 1763 trace_btrfs_sync_file(file, datasync); 1764 1765 btrfs_init_log_ctx(&ctx, inode); 1766 1767 /* 1768 * Always set the range to a full range, otherwise we can get into 1769 * several problems, from missing file extent items to represent holes 1770 * when not using the NO_HOLES feature, to log tree corruption due to 1771 * races between hole detection during logging and completion of ordered 1772 * extents outside the range, to missing checksums due to ordered extents 1773 * for which we flushed only a subset of their pages. 1774 */ 1775 start = 0; 1776 end = LLONG_MAX; 1777 len = (u64)LLONG_MAX + 1; 1778 1779 /* 1780 * We write the dirty pages in the range and wait until they complete 1781 * out of the ->i_mutex. If so, we can flush the dirty pages by 1782 * multi-task, and make the performance up. See 1783 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1784 */ 1785 ret = start_ordered_ops(inode, start, end); 1786 if (ret) 1787 goto out; 1788 1789 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1790 1791 atomic_inc(&root->log_batch); 1792 1793 /* 1794 * Before we acquired the inode's lock and the mmap lock, someone may 1795 * have dirtied more pages in the target range. We need to make sure 1796 * that writeback for any such pages does not start while we are logging 1797 * the inode, because if it does, any of the following might happen when 1798 * we are not doing a full inode sync: 1799 * 1800 * 1) We log an extent after its writeback finishes but before its 1801 * checksums are added to the csum tree, leading to -EIO errors 1802 * when attempting to read the extent after a log replay. 1803 * 1804 * 2) We can end up logging an extent before its writeback finishes. 1805 * Therefore after the log replay we will have a file extent item 1806 * pointing to an unwritten extent (and no data checksums as well). 1807 * 1808 * So trigger writeback for any eventual new dirty pages and then we 1809 * wait for all ordered extents to complete below. 1810 */ 1811 ret = start_ordered_ops(inode, start, end); 1812 if (ret) { 1813 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1814 goto out; 1815 } 1816 1817 /* 1818 * Always check for the full sync flag while holding the inode's lock, 1819 * to avoid races with other tasks. The flag must be either set all the 1820 * time during logging or always off all the time while logging. 1821 * We check the flag here after starting delalloc above, because when 1822 * running delalloc the full sync flag may be set if we need to drop 1823 * extra extent map ranges due to temporary memory allocation failures. 1824 */ 1825 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1826 &BTRFS_I(inode)->runtime_flags); 1827 1828 /* 1829 * We have to do this here to avoid the priority inversion of waiting on 1830 * IO of a lower priority task while holding a transaction open. 1831 * 1832 * For a full fsync we wait for the ordered extents to complete while 1833 * for a fast fsync we wait just for writeback to complete, and then 1834 * attach the ordered extents to the transaction so that a transaction 1835 * commit waits for their completion, to avoid data loss if we fsync, 1836 * the current transaction commits before the ordered extents complete 1837 * and a power failure happens right after that. 1838 * 1839 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1840 * logical address recorded in the ordered extent may change. We need 1841 * to wait for the IO to stabilize the logical address. 1842 */ 1843 if (full_sync || btrfs_is_zoned(fs_info)) { 1844 ret = btrfs_wait_ordered_range(inode, start, len); 1845 } else { 1846 /* 1847 * Get our ordered extents as soon as possible to avoid doing 1848 * checksum lookups in the csum tree, and use instead the 1849 * checksums attached to the ordered extents. 1850 */ 1851 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1852 &ctx.ordered_extents); 1853 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1854 } 1855 1856 if (ret) 1857 goto out_release_extents; 1858 1859 atomic_inc(&root->log_batch); 1860 1861 smp_mb(); 1862 if (skip_inode_logging(&ctx)) { 1863 /* 1864 * We've had everything committed since the last time we were 1865 * modified so clear this flag in case it was set for whatever 1866 * reason, it's no longer relevant. 1867 */ 1868 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1869 &BTRFS_I(inode)->runtime_flags); 1870 /* 1871 * An ordered extent might have started before and completed 1872 * already with io errors, in which case the inode was not 1873 * updated and we end up here. So check the inode's mapping 1874 * for any errors that might have happened since we last 1875 * checked called fsync. 1876 */ 1877 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1878 goto out_release_extents; 1879 } 1880 1881 /* 1882 * We use start here because we will need to wait on the IO to complete 1883 * in btrfs_sync_log, which could require joining a transaction (for 1884 * example checking cross references in the nocow path). If we use join 1885 * here we could get into a situation where we're waiting on IO to 1886 * happen that is blocked on a transaction trying to commit. With start 1887 * we inc the extwriter counter, so we wait for all extwriters to exit 1888 * before we start blocking joiners. This comment is to keep somebody 1889 * from thinking they are super smart and changing this to 1890 * btrfs_join_transaction *cough*Josef*cough*. 1891 */ 1892 trans = btrfs_start_transaction(root, 0); 1893 if (IS_ERR(trans)) { 1894 ret = PTR_ERR(trans); 1895 goto out_release_extents; 1896 } 1897 trans->in_fsync = true; 1898 1899 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1900 btrfs_release_log_ctx_extents(&ctx); 1901 if (ret < 0) { 1902 /* Fallthrough and commit/free transaction. */ 1903 ret = BTRFS_LOG_FORCE_COMMIT; 1904 } 1905 1906 /* we've logged all the items and now have a consistent 1907 * version of the file in the log. It is possible that 1908 * someone will come in and modify the file, but that's 1909 * fine because the log is consistent on disk, and we 1910 * have references to all of the file's extents 1911 * 1912 * It is possible that someone will come in and log the 1913 * file again, but that will end up using the synchronization 1914 * inside btrfs_sync_log to keep things safe. 1915 */ 1916 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1917 1918 if (ret == BTRFS_NO_LOG_SYNC) { 1919 ret = btrfs_end_transaction(trans); 1920 goto out; 1921 } 1922 1923 /* We successfully logged the inode, attempt to sync the log. */ 1924 if (!ret) { 1925 ret = btrfs_sync_log(trans, root, &ctx); 1926 if (!ret) { 1927 ret = btrfs_end_transaction(trans); 1928 goto out; 1929 } 1930 } 1931 1932 /* 1933 * At this point we need to commit the transaction because we had 1934 * btrfs_need_log_full_commit() or some other error. 1935 * 1936 * If we didn't do a full sync we have to stop the trans handle, wait on 1937 * the ordered extents, start it again and commit the transaction. If 1938 * we attempt to wait on the ordered extents here we could deadlock with 1939 * something like fallocate() that is holding the extent lock trying to 1940 * start a transaction while some other thread is trying to commit the 1941 * transaction while we (fsync) are currently holding the transaction 1942 * open. 1943 */ 1944 if (!full_sync) { 1945 ret = btrfs_end_transaction(trans); 1946 if (ret) 1947 goto out; 1948 ret = btrfs_wait_ordered_range(inode, start, len); 1949 if (ret) 1950 goto out; 1951 1952 /* 1953 * This is safe to use here because we're only interested in 1954 * making sure the transaction that had the ordered extents is 1955 * committed. We aren't waiting on anything past this point, 1956 * we're purely getting the transaction and committing it. 1957 */ 1958 trans = btrfs_attach_transaction_barrier(root); 1959 if (IS_ERR(trans)) { 1960 ret = PTR_ERR(trans); 1961 1962 /* 1963 * We committed the transaction and there's no currently 1964 * running transaction, this means everything we care 1965 * about made it to disk and we are done. 1966 */ 1967 if (ret == -ENOENT) 1968 ret = 0; 1969 goto out; 1970 } 1971 } 1972 1973 ret = btrfs_commit_transaction(trans); 1974 out: 1975 ASSERT(list_empty(&ctx.list)); 1976 ASSERT(list_empty(&ctx.conflict_inodes)); 1977 err = file_check_and_advance_wb_err(file); 1978 if (!ret) 1979 ret = err; 1980 return ret > 0 ? -EIO : ret; 1981 1982 out_release_extents: 1983 btrfs_release_log_ctx_extents(&ctx); 1984 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1985 goto out; 1986 } 1987 1988 static const struct vm_operations_struct btrfs_file_vm_ops = { 1989 .fault = filemap_fault, 1990 .map_pages = filemap_map_pages, 1991 .page_mkwrite = btrfs_page_mkwrite, 1992 }; 1993 1994 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1995 { 1996 struct address_space *mapping = filp->f_mapping; 1997 1998 if (!mapping->a_ops->read_folio) 1999 return -ENOEXEC; 2000 2001 file_accessed(filp); 2002 vma->vm_ops = &btrfs_file_vm_ops; 2003 2004 return 0; 2005 } 2006 2007 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2008 int slot, u64 start, u64 end) 2009 { 2010 struct btrfs_file_extent_item *fi; 2011 struct btrfs_key key; 2012 2013 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2014 return 0; 2015 2016 btrfs_item_key_to_cpu(leaf, &key, slot); 2017 if (key.objectid != btrfs_ino(inode) || 2018 key.type != BTRFS_EXTENT_DATA_KEY) 2019 return 0; 2020 2021 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2022 2023 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2024 return 0; 2025 2026 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2027 return 0; 2028 2029 if (key.offset == end) 2030 return 1; 2031 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2032 return 1; 2033 return 0; 2034 } 2035 2036 static int fill_holes(struct btrfs_trans_handle *trans, 2037 struct btrfs_inode *inode, 2038 struct btrfs_path *path, u64 offset, u64 end) 2039 { 2040 struct btrfs_fs_info *fs_info = trans->fs_info; 2041 struct btrfs_root *root = inode->root; 2042 struct extent_buffer *leaf; 2043 struct btrfs_file_extent_item *fi; 2044 struct extent_map *hole_em; 2045 struct btrfs_key key; 2046 int ret; 2047 2048 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2049 goto out; 2050 2051 key.objectid = btrfs_ino(inode); 2052 key.type = BTRFS_EXTENT_DATA_KEY; 2053 key.offset = offset; 2054 2055 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2056 if (ret <= 0) { 2057 /* 2058 * We should have dropped this offset, so if we find it then 2059 * something has gone horribly wrong. 2060 */ 2061 if (ret == 0) 2062 ret = -EINVAL; 2063 return ret; 2064 } 2065 2066 leaf = path->nodes[0]; 2067 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2068 u64 num_bytes; 2069 2070 path->slots[0]--; 2071 fi = btrfs_item_ptr(leaf, path->slots[0], 2072 struct btrfs_file_extent_item); 2073 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2074 end - offset; 2075 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2076 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2077 btrfs_set_file_extent_offset(leaf, fi, 0); 2078 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2079 btrfs_mark_buffer_dirty(leaf); 2080 goto out; 2081 } 2082 2083 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2084 u64 num_bytes; 2085 2086 key.offset = offset; 2087 btrfs_set_item_key_safe(fs_info, path, &key); 2088 fi = btrfs_item_ptr(leaf, path->slots[0], 2089 struct btrfs_file_extent_item); 2090 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2091 offset; 2092 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2093 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2094 btrfs_set_file_extent_offset(leaf, fi, 0); 2095 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2096 btrfs_mark_buffer_dirty(leaf); 2097 goto out; 2098 } 2099 btrfs_release_path(path); 2100 2101 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2102 end - offset); 2103 if (ret) 2104 return ret; 2105 2106 out: 2107 btrfs_release_path(path); 2108 2109 hole_em = alloc_extent_map(); 2110 if (!hole_em) { 2111 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2112 btrfs_set_inode_full_sync(inode); 2113 } else { 2114 hole_em->start = offset; 2115 hole_em->len = end - offset; 2116 hole_em->ram_bytes = hole_em->len; 2117 hole_em->orig_start = offset; 2118 2119 hole_em->block_start = EXTENT_MAP_HOLE; 2120 hole_em->block_len = 0; 2121 hole_em->orig_block_len = 0; 2122 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2123 hole_em->generation = trans->transid; 2124 2125 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2126 free_extent_map(hole_em); 2127 if (ret) 2128 btrfs_set_inode_full_sync(inode); 2129 } 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * Find a hole extent on given inode and change start/len to the end of hole 2136 * extent.(hole/vacuum extent whose em->start <= start && 2137 * em->start + em->len > start) 2138 * When a hole extent is found, return 1 and modify start/len. 2139 */ 2140 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2141 { 2142 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2143 struct extent_map *em; 2144 int ret = 0; 2145 2146 em = btrfs_get_extent(inode, NULL, 0, 2147 round_down(*start, fs_info->sectorsize), 2148 round_up(*len, fs_info->sectorsize)); 2149 if (IS_ERR(em)) 2150 return PTR_ERR(em); 2151 2152 /* Hole or vacuum extent(only exists in no-hole mode) */ 2153 if (em->block_start == EXTENT_MAP_HOLE) { 2154 ret = 1; 2155 *len = em->start + em->len > *start + *len ? 2156 0 : *start + *len - em->start - em->len; 2157 *start = em->start + em->len; 2158 } 2159 free_extent_map(em); 2160 return ret; 2161 } 2162 2163 static void btrfs_punch_hole_lock_range(struct inode *inode, 2164 const u64 lockstart, 2165 const u64 lockend, 2166 struct extent_state **cached_state) 2167 { 2168 /* 2169 * For subpage case, if the range is not at page boundary, we could 2170 * have pages at the leading/tailing part of the range. 2171 * This could lead to dead loop since filemap_range_has_page() 2172 * will always return true. 2173 * So here we need to do extra page alignment for 2174 * filemap_range_has_page(). 2175 */ 2176 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2177 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2178 2179 while (1) { 2180 truncate_pagecache_range(inode, lockstart, lockend); 2181 2182 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2183 cached_state); 2184 /* 2185 * We can't have ordered extents in the range, nor dirty/writeback 2186 * pages, because we have locked the inode's VFS lock in exclusive 2187 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2188 * we have flushed all delalloc in the range and we have waited 2189 * for any ordered extents in the range to complete. 2190 * We can race with anyone reading pages from this range, so after 2191 * locking the range check if we have pages in the range, and if 2192 * we do, unlock the range and retry. 2193 */ 2194 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2195 page_lockend)) 2196 break; 2197 2198 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2199 cached_state); 2200 } 2201 2202 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2203 } 2204 2205 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2206 struct btrfs_inode *inode, 2207 struct btrfs_path *path, 2208 struct btrfs_replace_extent_info *extent_info, 2209 const u64 replace_len, 2210 const u64 bytes_to_drop) 2211 { 2212 struct btrfs_fs_info *fs_info = trans->fs_info; 2213 struct btrfs_root *root = inode->root; 2214 struct btrfs_file_extent_item *extent; 2215 struct extent_buffer *leaf; 2216 struct btrfs_key key; 2217 int slot; 2218 struct btrfs_ref ref = { 0 }; 2219 int ret; 2220 2221 if (replace_len == 0) 2222 return 0; 2223 2224 if (extent_info->disk_offset == 0 && 2225 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2226 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2227 return 0; 2228 } 2229 2230 key.objectid = btrfs_ino(inode); 2231 key.type = BTRFS_EXTENT_DATA_KEY; 2232 key.offset = extent_info->file_offset; 2233 ret = btrfs_insert_empty_item(trans, root, path, &key, 2234 sizeof(struct btrfs_file_extent_item)); 2235 if (ret) 2236 return ret; 2237 leaf = path->nodes[0]; 2238 slot = path->slots[0]; 2239 write_extent_buffer(leaf, extent_info->extent_buf, 2240 btrfs_item_ptr_offset(leaf, slot), 2241 sizeof(struct btrfs_file_extent_item)); 2242 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2243 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2244 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2245 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2246 if (extent_info->is_new_extent) 2247 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2248 btrfs_mark_buffer_dirty(leaf); 2249 btrfs_release_path(path); 2250 2251 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2252 replace_len); 2253 if (ret) 2254 return ret; 2255 2256 /* If it's a hole, nothing more needs to be done. */ 2257 if (extent_info->disk_offset == 0) { 2258 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2259 return 0; 2260 } 2261 2262 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2263 2264 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2265 key.objectid = extent_info->disk_offset; 2266 key.type = BTRFS_EXTENT_ITEM_KEY; 2267 key.offset = extent_info->disk_len; 2268 ret = btrfs_alloc_reserved_file_extent(trans, root, 2269 btrfs_ino(inode), 2270 extent_info->file_offset, 2271 extent_info->qgroup_reserved, 2272 &key); 2273 } else { 2274 u64 ref_offset; 2275 2276 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2277 extent_info->disk_offset, 2278 extent_info->disk_len, 0); 2279 ref_offset = extent_info->file_offset - extent_info->data_offset; 2280 btrfs_init_data_ref(&ref, root->root_key.objectid, 2281 btrfs_ino(inode), ref_offset, 0, false); 2282 ret = btrfs_inc_extent_ref(trans, &ref); 2283 } 2284 2285 extent_info->insertions++; 2286 2287 return ret; 2288 } 2289 2290 /* 2291 * The respective range must have been previously locked, as well as the inode. 2292 * The end offset is inclusive (last byte of the range). 2293 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2294 * the file range with an extent. 2295 * When not punching a hole, we don't want to end up in a state where we dropped 2296 * extents without inserting a new one, so we must abort the transaction to avoid 2297 * a corruption. 2298 */ 2299 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2300 struct btrfs_path *path, const u64 start, 2301 const u64 end, 2302 struct btrfs_replace_extent_info *extent_info, 2303 struct btrfs_trans_handle **trans_out) 2304 { 2305 struct btrfs_drop_extents_args drop_args = { 0 }; 2306 struct btrfs_root *root = inode->root; 2307 struct btrfs_fs_info *fs_info = root->fs_info; 2308 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2309 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2310 struct btrfs_trans_handle *trans = NULL; 2311 struct btrfs_block_rsv *rsv; 2312 unsigned int rsv_count; 2313 u64 cur_offset; 2314 u64 len = end - start; 2315 int ret = 0; 2316 2317 if (end <= start) 2318 return -EINVAL; 2319 2320 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2321 if (!rsv) { 2322 ret = -ENOMEM; 2323 goto out; 2324 } 2325 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2326 rsv->failfast = true; 2327 2328 /* 2329 * 1 - update the inode 2330 * 1 - removing the extents in the range 2331 * 1 - adding the hole extent if no_holes isn't set or if we are 2332 * replacing the range with a new extent 2333 */ 2334 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2335 rsv_count = 3; 2336 else 2337 rsv_count = 2; 2338 2339 trans = btrfs_start_transaction(root, rsv_count); 2340 if (IS_ERR(trans)) { 2341 ret = PTR_ERR(trans); 2342 trans = NULL; 2343 goto out_free; 2344 } 2345 2346 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2347 min_size, false); 2348 if (WARN_ON(ret)) 2349 goto out_trans; 2350 trans->block_rsv = rsv; 2351 2352 cur_offset = start; 2353 drop_args.path = path; 2354 drop_args.end = end + 1; 2355 drop_args.drop_cache = true; 2356 while (cur_offset < end) { 2357 drop_args.start = cur_offset; 2358 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2359 /* If we are punching a hole decrement the inode's byte count */ 2360 if (!extent_info) 2361 btrfs_update_inode_bytes(inode, 0, 2362 drop_args.bytes_found); 2363 if (ret != -ENOSPC) { 2364 /* 2365 * The only time we don't want to abort is if we are 2366 * attempting to clone a partial inline extent, in which 2367 * case we'll get EOPNOTSUPP. However if we aren't 2368 * clone we need to abort no matter what, because if we 2369 * got EOPNOTSUPP via prealloc then we messed up and 2370 * need to abort. 2371 */ 2372 if (ret && 2373 (ret != -EOPNOTSUPP || 2374 (extent_info && extent_info->is_new_extent))) 2375 btrfs_abort_transaction(trans, ret); 2376 break; 2377 } 2378 2379 trans->block_rsv = &fs_info->trans_block_rsv; 2380 2381 if (!extent_info && cur_offset < drop_args.drop_end && 2382 cur_offset < ino_size) { 2383 ret = fill_holes(trans, inode, path, cur_offset, 2384 drop_args.drop_end); 2385 if (ret) { 2386 /* 2387 * If we failed then we didn't insert our hole 2388 * entries for the area we dropped, so now the 2389 * fs is corrupted, so we must abort the 2390 * transaction. 2391 */ 2392 btrfs_abort_transaction(trans, ret); 2393 break; 2394 } 2395 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2396 /* 2397 * We are past the i_size here, but since we didn't 2398 * insert holes we need to clear the mapped area so we 2399 * know to not set disk_i_size in this area until a new 2400 * file extent is inserted here. 2401 */ 2402 ret = btrfs_inode_clear_file_extent_range(inode, 2403 cur_offset, 2404 drop_args.drop_end - cur_offset); 2405 if (ret) { 2406 /* 2407 * We couldn't clear our area, so we could 2408 * presumably adjust up and corrupt the fs, so 2409 * we need to abort. 2410 */ 2411 btrfs_abort_transaction(trans, ret); 2412 break; 2413 } 2414 } 2415 2416 if (extent_info && 2417 drop_args.drop_end > extent_info->file_offset) { 2418 u64 replace_len = drop_args.drop_end - 2419 extent_info->file_offset; 2420 2421 ret = btrfs_insert_replace_extent(trans, inode, path, 2422 extent_info, replace_len, 2423 drop_args.bytes_found); 2424 if (ret) { 2425 btrfs_abort_transaction(trans, ret); 2426 break; 2427 } 2428 extent_info->data_len -= replace_len; 2429 extent_info->data_offset += replace_len; 2430 extent_info->file_offset += replace_len; 2431 } 2432 2433 /* 2434 * We are releasing our handle on the transaction, balance the 2435 * dirty pages of the btree inode and flush delayed items, and 2436 * then get a new transaction handle, which may now point to a 2437 * new transaction in case someone else may have committed the 2438 * transaction we used to replace/drop file extent items. So 2439 * bump the inode's iversion and update mtime and ctime except 2440 * if we are called from a dedupe context. This is because a 2441 * power failure/crash may happen after the transaction is 2442 * committed and before we finish replacing/dropping all the 2443 * file extent items we need. 2444 */ 2445 inode_inc_iversion(&inode->vfs_inode); 2446 2447 if (!extent_info || extent_info->update_times) 2448 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode); 2449 2450 ret = btrfs_update_inode(trans, root, inode); 2451 if (ret) 2452 break; 2453 2454 btrfs_end_transaction(trans); 2455 btrfs_btree_balance_dirty(fs_info); 2456 2457 trans = btrfs_start_transaction(root, rsv_count); 2458 if (IS_ERR(trans)) { 2459 ret = PTR_ERR(trans); 2460 trans = NULL; 2461 break; 2462 } 2463 2464 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2465 rsv, min_size, false); 2466 if (WARN_ON(ret)) 2467 break; 2468 trans->block_rsv = rsv; 2469 2470 cur_offset = drop_args.drop_end; 2471 len = end - cur_offset; 2472 if (!extent_info && len) { 2473 ret = find_first_non_hole(inode, &cur_offset, &len); 2474 if (unlikely(ret < 0)) 2475 break; 2476 if (ret && !len) { 2477 ret = 0; 2478 break; 2479 } 2480 } 2481 } 2482 2483 /* 2484 * If we were cloning, force the next fsync to be a full one since we 2485 * we replaced (or just dropped in the case of cloning holes when 2486 * NO_HOLES is enabled) file extent items and did not setup new extent 2487 * maps for the replacement extents (or holes). 2488 */ 2489 if (extent_info && !extent_info->is_new_extent) 2490 btrfs_set_inode_full_sync(inode); 2491 2492 if (ret) 2493 goto out_trans; 2494 2495 trans->block_rsv = &fs_info->trans_block_rsv; 2496 /* 2497 * If we are using the NO_HOLES feature we might have had already an 2498 * hole that overlaps a part of the region [lockstart, lockend] and 2499 * ends at (or beyond) lockend. Since we have no file extent items to 2500 * represent holes, drop_end can be less than lockend and so we must 2501 * make sure we have an extent map representing the existing hole (the 2502 * call to __btrfs_drop_extents() might have dropped the existing extent 2503 * map representing the existing hole), otherwise the fast fsync path 2504 * will not record the existence of the hole region 2505 * [existing_hole_start, lockend]. 2506 */ 2507 if (drop_args.drop_end <= end) 2508 drop_args.drop_end = end + 1; 2509 /* 2510 * Don't insert file hole extent item if it's for a range beyond eof 2511 * (because it's useless) or if it represents a 0 bytes range (when 2512 * cur_offset == drop_end). 2513 */ 2514 if (!extent_info && cur_offset < ino_size && 2515 cur_offset < drop_args.drop_end) { 2516 ret = fill_holes(trans, inode, path, cur_offset, 2517 drop_args.drop_end); 2518 if (ret) { 2519 /* Same comment as above. */ 2520 btrfs_abort_transaction(trans, ret); 2521 goto out_trans; 2522 } 2523 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2524 /* See the comment in the loop above for the reasoning here. */ 2525 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2526 drop_args.drop_end - cur_offset); 2527 if (ret) { 2528 btrfs_abort_transaction(trans, ret); 2529 goto out_trans; 2530 } 2531 2532 } 2533 if (extent_info) { 2534 ret = btrfs_insert_replace_extent(trans, inode, path, 2535 extent_info, extent_info->data_len, 2536 drop_args.bytes_found); 2537 if (ret) { 2538 btrfs_abort_transaction(trans, ret); 2539 goto out_trans; 2540 } 2541 } 2542 2543 out_trans: 2544 if (!trans) 2545 goto out_free; 2546 2547 trans->block_rsv = &fs_info->trans_block_rsv; 2548 if (ret) 2549 btrfs_end_transaction(trans); 2550 else 2551 *trans_out = trans; 2552 out_free: 2553 btrfs_free_block_rsv(fs_info, rsv); 2554 out: 2555 return ret; 2556 } 2557 2558 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2559 { 2560 struct inode *inode = file_inode(file); 2561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2562 struct btrfs_root *root = BTRFS_I(inode)->root; 2563 struct extent_state *cached_state = NULL; 2564 struct btrfs_path *path; 2565 struct btrfs_trans_handle *trans = NULL; 2566 u64 lockstart; 2567 u64 lockend; 2568 u64 tail_start; 2569 u64 tail_len; 2570 u64 orig_start = offset; 2571 int ret = 0; 2572 bool same_block; 2573 u64 ino_size; 2574 bool truncated_block = false; 2575 bool updated_inode = false; 2576 2577 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2578 2579 ret = btrfs_wait_ordered_range(inode, offset, len); 2580 if (ret) 2581 goto out_only_mutex; 2582 2583 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2584 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2585 if (ret < 0) 2586 goto out_only_mutex; 2587 if (ret && !len) { 2588 /* Already in a large hole */ 2589 ret = 0; 2590 goto out_only_mutex; 2591 } 2592 2593 ret = file_modified(file); 2594 if (ret) 2595 goto out_only_mutex; 2596 2597 lockstart = round_up(offset, fs_info->sectorsize); 2598 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2599 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2600 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2601 /* 2602 * We needn't truncate any block which is beyond the end of the file 2603 * because we are sure there is no data there. 2604 */ 2605 /* 2606 * Only do this if we are in the same block and we aren't doing the 2607 * entire block. 2608 */ 2609 if (same_block && len < fs_info->sectorsize) { 2610 if (offset < ino_size) { 2611 truncated_block = true; 2612 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2613 0); 2614 } else { 2615 ret = 0; 2616 } 2617 goto out_only_mutex; 2618 } 2619 2620 /* zero back part of the first block */ 2621 if (offset < ino_size) { 2622 truncated_block = true; 2623 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2624 if (ret) { 2625 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2626 return ret; 2627 } 2628 } 2629 2630 /* Check the aligned pages after the first unaligned page, 2631 * if offset != orig_start, which means the first unaligned page 2632 * including several following pages are already in holes, 2633 * the extra check can be skipped */ 2634 if (offset == orig_start) { 2635 /* after truncate page, check hole again */ 2636 len = offset + len - lockstart; 2637 offset = lockstart; 2638 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2639 if (ret < 0) 2640 goto out_only_mutex; 2641 if (ret && !len) { 2642 ret = 0; 2643 goto out_only_mutex; 2644 } 2645 lockstart = offset; 2646 } 2647 2648 /* Check the tail unaligned part is in a hole */ 2649 tail_start = lockend + 1; 2650 tail_len = offset + len - tail_start; 2651 if (tail_len) { 2652 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2653 if (unlikely(ret < 0)) 2654 goto out_only_mutex; 2655 if (!ret) { 2656 /* zero the front end of the last page */ 2657 if (tail_start + tail_len < ino_size) { 2658 truncated_block = true; 2659 ret = btrfs_truncate_block(BTRFS_I(inode), 2660 tail_start + tail_len, 2661 0, 1); 2662 if (ret) 2663 goto out_only_mutex; 2664 } 2665 } 2666 } 2667 2668 if (lockend < lockstart) { 2669 ret = 0; 2670 goto out_only_mutex; 2671 } 2672 2673 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2674 2675 path = btrfs_alloc_path(); 2676 if (!path) { 2677 ret = -ENOMEM; 2678 goto out; 2679 } 2680 2681 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2682 lockend, NULL, &trans); 2683 btrfs_free_path(path); 2684 if (ret) 2685 goto out; 2686 2687 ASSERT(trans != NULL); 2688 inode_inc_iversion(inode); 2689 inode->i_mtime = inode_set_ctime_current(inode); 2690 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2691 updated_inode = true; 2692 btrfs_end_transaction(trans); 2693 btrfs_btree_balance_dirty(fs_info); 2694 out: 2695 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2696 &cached_state); 2697 out_only_mutex: 2698 if (!updated_inode && truncated_block && !ret) { 2699 /* 2700 * If we only end up zeroing part of a page, we still need to 2701 * update the inode item, so that all the time fields are 2702 * updated as well as the necessary btrfs inode in memory fields 2703 * for detecting, at fsync time, if the inode isn't yet in the 2704 * log tree or it's there but not up to date. 2705 */ 2706 struct timespec64 now = inode_set_ctime_current(inode); 2707 2708 inode_inc_iversion(inode); 2709 inode->i_mtime = now; 2710 trans = btrfs_start_transaction(root, 1); 2711 if (IS_ERR(trans)) { 2712 ret = PTR_ERR(trans); 2713 } else { 2714 int ret2; 2715 2716 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2717 ret2 = btrfs_end_transaction(trans); 2718 if (!ret) 2719 ret = ret2; 2720 } 2721 } 2722 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2723 return ret; 2724 } 2725 2726 /* Helper structure to record which range is already reserved */ 2727 struct falloc_range { 2728 struct list_head list; 2729 u64 start; 2730 u64 len; 2731 }; 2732 2733 /* 2734 * Helper function to add falloc range 2735 * 2736 * Caller should have locked the larger range of extent containing 2737 * [start, len) 2738 */ 2739 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2740 { 2741 struct falloc_range *range = NULL; 2742 2743 if (!list_empty(head)) { 2744 /* 2745 * As fallocate iterates by bytenr order, we only need to check 2746 * the last range. 2747 */ 2748 range = list_last_entry(head, struct falloc_range, list); 2749 if (range->start + range->len == start) { 2750 range->len += len; 2751 return 0; 2752 } 2753 } 2754 2755 range = kmalloc(sizeof(*range), GFP_KERNEL); 2756 if (!range) 2757 return -ENOMEM; 2758 range->start = start; 2759 range->len = len; 2760 list_add_tail(&range->list, head); 2761 return 0; 2762 } 2763 2764 static int btrfs_fallocate_update_isize(struct inode *inode, 2765 const u64 end, 2766 const int mode) 2767 { 2768 struct btrfs_trans_handle *trans; 2769 struct btrfs_root *root = BTRFS_I(inode)->root; 2770 int ret; 2771 int ret2; 2772 2773 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2774 return 0; 2775 2776 trans = btrfs_start_transaction(root, 1); 2777 if (IS_ERR(trans)) 2778 return PTR_ERR(trans); 2779 2780 inode_set_ctime_current(inode); 2781 i_size_write(inode, end); 2782 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2783 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2784 ret2 = btrfs_end_transaction(trans); 2785 2786 return ret ? ret : ret2; 2787 } 2788 2789 enum { 2790 RANGE_BOUNDARY_WRITTEN_EXTENT, 2791 RANGE_BOUNDARY_PREALLOC_EXTENT, 2792 RANGE_BOUNDARY_HOLE, 2793 }; 2794 2795 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2796 u64 offset) 2797 { 2798 const u64 sectorsize = inode->root->fs_info->sectorsize; 2799 struct extent_map *em; 2800 int ret; 2801 2802 offset = round_down(offset, sectorsize); 2803 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2804 if (IS_ERR(em)) 2805 return PTR_ERR(em); 2806 2807 if (em->block_start == EXTENT_MAP_HOLE) 2808 ret = RANGE_BOUNDARY_HOLE; 2809 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2810 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2811 else 2812 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2813 2814 free_extent_map(em); 2815 return ret; 2816 } 2817 2818 static int btrfs_zero_range(struct inode *inode, 2819 loff_t offset, 2820 loff_t len, 2821 const int mode) 2822 { 2823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2824 struct extent_map *em; 2825 struct extent_changeset *data_reserved = NULL; 2826 int ret; 2827 u64 alloc_hint = 0; 2828 const u64 sectorsize = fs_info->sectorsize; 2829 u64 alloc_start = round_down(offset, sectorsize); 2830 u64 alloc_end = round_up(offset + len, sectorsize); 2831 u64 bytes_to_reserve = 0; 2832 bool space_reserved = false; 2833 2834 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2835 alloc_end - alloc_start); 2836 if (IS_ERR(em)) { 2837 ret = PTR_ERR(em); 2838 goto out; 2839 } 2840 2841 /* 2842 * Avoid hole punching and extent allocation for some cases. More cases 2843 * could be considered, but these are unlikely common and we keep things 2844 * as simple as possible for now. Also, intentionally, if the target 2845 * range contains one or more prealloc extents together with regular 2846 * extents and holes, we drop all the existing extents and allocate a 2847 * new prealloc extent, so that we get a larger contiguous disk extent. 2848 */ 2849 if (em->start <= alloc_start && 2850 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2851 const u64 em_end = em->start + em->len; 2852 2853 if (em_end >= offset + len) { 2854 /* 2855 * The whole range is already a prealloc extent, 2856 * do nothing except updating the inode's i_size if 2857 * needed. 2858 */ 2859 free_extent_map(em); 2860 ret = btrfs_fallocate_update_isize(inode, offset + len, 2861 mode); 2862 goto out; 2863 } 2864 /* 2865 * Part of the range is already a prealloc extent, so operate 2866 * only on the remaining part of the range. 2867 */ 2868 alloc_start = em_end; 2869 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2870 len = offset + len - alloc_start; 2871 offset = alloc_start; 2872 alloc_hint = em->block_start + em->len; 2873 } 2874 free_extent_map(em); 2875 2876 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2877 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2878 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2879 sectorsize); 2880 if (IS_ERR(em)) { 2881 ret = PTR_ERR(em); 2882 goto out; 2883 } 2884 2885 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2886 free_extent_map(em); 2887 ret = btrfs_fallocate_update_isize(inode, offset + len, 2888 mode); 2889 goto out; 2890 } 2891 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2892 free_extent_map(em); 2893 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2894 0); 2895 if (!ret) 2896 ret = btrfs_fallocate_update_isize(inode, 2897 offset + len, 2898 mode); 2899 return ret; 2900 } 2901 free_extent_map(em); 2902 alloc_start = round_down(offset, sectorsize); 2903 alloc_end = alloc_start + sectorsize; 2904 goto reserve_space; 2905 } 2906 2907 alloc_start = round_up(offset, sectorsize); 2908 alloc_end = round_down(offset + len, sectorsize); 2909 2910 /* 2911 * For unaligned ranges, check the pages at the boundaries, they might 2912 * map to an extent, in which case we need to partially zero them, or 2913 * they might map to a hole, in which case we need our allocation range 2914 * to cover them. 2915 */ 2916 if (!IS_ALIGNED(offset, sectorsize)) { 2917 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2918 offset); 2919 if (ret < 0) 2920 goto out; 2921 if (ret == RANGE_BOUNDARY_HOLE) { 2922 alloc_start = round_down(offset, sectorsize); 2923 ret = 0; 2924 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2925 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2926 if (ret) 2927 goto out; 2928 } else { 2929 ret = 0; 2930 } 2931 } 2932 2933 if (!IS_ALIGNED(offset + len, sectorsize)) { 2934 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2935 offset + len); 2936 if (ret < 0) 2937 goto out; 2938 if (ret == RANGE_BOUNDARY_HOLE) { 2939 alloc_end = round_up(offset + len, sectorsize); 2940 ret = 0; 2941 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2942 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2943 0, 1); 2944 if (ret) 2945 goto out; 2946 } else { 2947 ret = 0; 2948 } 2949 } 2950 2951 reserve_space: 2952 if (alloc_start < alloc_end) { 2953 struct extent_state *cached_state = NULL; 2954 const u64 lockstart = alloc_start; 2955 const u64 lockend = alloc_end - 1; 2956 2957 bytes_to_reserve = alloc_end - alloc_start; 2958 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2959 bytes_to_reserve); 2960 if (ret < 0) 2961 goto out; 2962 space_reserved = true; 2963 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2964 &cached_state); 2965 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2966 alloc_start, bytes_to_reserve); 2967 if (ret) { 2968 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2969 lockend, &cached_state); 2970 goto out; 2971 } 2972 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2973 alloc_end - alloc_start, 2974 i_blocksize(inode), 2975 offset + len, &alloc_hint); 2976 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2977 &cached_state); 2978 /* btrfs_prealloc_file_range releases reserved space on error */ 2979 if (ret) { 2980 space_reserved = false; 2981 goto out; 2982 } 2983 } 2984 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2985 out: 2986 if (ret && space_reserved) 2987 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 2988 alloc_start, bytes_to_reserve); 2989 extent_changeset_free(data_reserved); 2990 2991 return ret; 2992 } 2993 2994 static long btrfs_fallocate(struct file *file, int mode, 2995 loff_t offset, loff_t len) 2996 { 2997 struct inode *inode = file_inode(file); 2998 struct extent_state *cached_state = NULL; 2999 struct extent_changeset *data_reserved = NULL; 3000 struct falloc_range *range; 3001 struct falloc_range *tmp; 3002 LIST_HEAD(reserve_list); 3003 u64 cur_offset; 3004 u64 last_byte; 3005 u64 alloc_start; 3006 u64 alloc_end; 3007 u64 alloc_hint = 0; 3008 u64 locked_end; 3009 u64 actual_end = 0; 3010 u64 data_space_needed = 0; 3011 u64 data_space_reserved = 0; 3012 u64 qgroup_reserved = 0; 3013 struct extent_map *em; 3014 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3015 int ret; 3016 3017 /* Do not allow fallocate in ZONED mode */ 3018 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3019 return -EOPNOTSUPP; 3020 3021 alloc_start = round_down(offset, blocksize); 3022 alloc_end = round_up(offset + len, blocksize); 3023 cur_offset = alloc_start; 3024 3025 /* Make sure we aren't being give some crap mode */ 3026 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3027 FALLOC_FL_ZERO_RANGE)) 3028 return -EOPNOTSUPP; 3029 3030 if (mode & FALLOC_FL_PUNCH_HOLE) 3031 return btrfs_punch_hole(file, offset, len); 3032 3033 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3034 3035 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3036 ret = inode_newsize_ok(inode, offset + len); 3037 if (ret) 3038 goto out; 3039 } 3040 3041 ret = file_modified(file); 3042 if (ret) 3043 goto out; 3044 3045 /* 3046 * TODO: Move these two operations after we have checked 3047 * accurate reserved space, or fallocate can still fail but 3048 * with page truncated or size expanded. 3049 * 3050 * But that's a minor problem and won't do much harm BTW. 3051 */ 3052 if (alloc_start > inode->i_size) { 3053 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3054 alloc_start); 3055 if (ret) 3056 goto out; 3057 } else if (offset + len > inode->i_size) { 3058 /* 3059 * If we are fallocating from the end of the file onward we 3060 * need to zero out the end of the block if i_size lands in the 3061 * middle of a block. 3062 */ 3063 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3064 if (ret) 3065 goto out; 3066 } 3067 3068 /* 3069 * We have locked the inode at the VFS level (in exclusive mode) and we 3070 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3071 * locking the file range, flush all dealloc in the range and wait for 3072 * all ordered extents in the range to complete. After this we can lock 3073 * the file range and, due to the previous locking we did, we know there 3074 * can't be more delalloc or ordered extents in the range. 3075 */ 3076 ret = btrfs_wait_ordered_range(inode, alloc_start, 3077 alloc_end - alloc_start); 3078 if (ret) 3079 goto out; 3080 3081 if (mode & FALLOC_FL_ZERO_RANGE) { 3082 ret = btrfs_zero_range(inode, offset, len, mode); 3083 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3084 return ret; 3085 } 3086 3087 locked_end = alloc_end - 1; 3088 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3089 &cached_state); 3090 3091 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3092 3093 /* First, check if we exceed the qgroup limit */ 3094 while (cur_offset < alloc_end) { 3095 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3096 alloc_end - cur_offset); 3097 if (IS_ERR(em)) { 3098 ret = PTR_ERR(em); 3099 break; 3100 } 3101 last_byte = min(extent_map_end(em), alloc_end); 3102 actual_end = min_t(u64, extent_map_end(em), offset + len); 3103 last_byte = ALIGN(last_byte, blocksize); 3104 if (em->block_start == EXTENT_MAP_HOLE || 3105 (cur_offset >= inode->i_size && 3106 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3107 const u64 range_len = last_byte - cur_offset; 3108 3109 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3110 if (ret < 0) { 3111 free_extent_map(em); 3112 break; 3113 } 3114 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3115 &data_reserved, cur_offset, range_len); 3116 if (ret < 0) { 3117 free_extent_map(em); 3118 break; 3119 } 3120 qgroup_reserved += range_len; 3121 data_space_needed += range_len; 3122 } 3123 free_extent_map(em); 3124 cur_offset = last_byte; 3125 } 3126 3127 if (!ret && data_space_needed > 0) { 3128 /* 3129 * We are safe to reserve space here as we can't have delalloc 3130 * in the range, see above. 3131 */ 3132 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3133 data_space_needed); 3134 if (!ret) 3135 data_space_reserved = data_space_needed; 3136 } 3137 3138 /* 3139 * If ret is still 0, means we're OK to fallocate. 3140 * Or just cleanup the list and exit. 3141 */ 3142 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3143 if (!ret) { 3144 ret = btrfs_prealloc_file_range(inode, mode, 3145 range->start, 3146 range->len, i_blocksize(inode), 3147 offset + len, &alloc_hint); 3148 /* 3149 * btrfs_prealloc_file_range() releases space even 3150 * if it returns an error. 3151 */ 3152 data_space_reserved -= range->len; 3153 qgroup_reserved -= range->len; 3154 } else if (data_space_reserved > 0) { 3155 btrfs_free_reserved_data_space(BTRFS_I(inode), 3156 data_reserved, range->start, 3157 range->len); 3158 data_space_reserved -= range->len; 3159 qgroup_reserved -= range->len; 3160 } else if (qgroup_reserved > 0) { 3161 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3162 range->start, range->len); 3163 qgroup_reserved -= range->len; 3164 } 3165 list_del(&range->list); 3166 kfree(range); 3167 } 3168 if (ret < 0) 3169 goto out_unlock; 3170 3171 /* 3172 * We didn't need to allocate any more space, but we still extended the 3173 * size of the file so we need to update i_size and the inode item. 3174 */ 3175 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3176 out_unlock: 3177 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3178 &cached_state); 3179 out: 3180 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3181 extent_changeset_free(data_reserved); 3182 return ret; 3183 } 3184 3185 /* 3186 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3187 * that has unflushed and/or flushing delalloc. There might be other adjacent 3188 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3189 * looping while it gets adjacent subranges, and merging them together. 3190 */ 3191 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3192 struct extent_state **cached_state, 3193 bool *search_io_tree, 3194 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3195 { 3196 u64 len = end + 1 - start; 3197 u64 delalloc_len = 0; 3198 struct btrfs_ordered_extent *oe; 3199 u64 oe_start; 3200 u64 oe_end; 3201 3202 /* 3203 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3204 * means we have delalloc (dirty pages) for which writeback has not 3205 * started yet. 3206 */ 3207 if (*search_io_tree) { 3208 spin_lock(&inode->lock); 3209 if (inode->delalloc_bytes > 0) { 3210 spin_unlock(&inode->lock); 3211 *delalloc_start_ret = start; 3212 delalloc_len = count_range_bits(&inode->io_tree, 3213 delalloc_start_ret, end, 3214 len, EXTENT_DELALLOC, 1, 3215 cached_state); 3216 } else { 3217 spin_unlock(&inode->lock); 3218 } 3219 } 3220 3221 if (delalloc_len > 0) { 3222 /* 3223 * If delalloc was found then *delalloc_start_ret has a sector size 3224 * aligned value (rounded down). 3225 */ 3226 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3227 3228 if (*delalloc_start_ret == start) { 3229 /* Delalloc for the whole range, nothing more to do. */ 3230 if (*delalloc_end_ret == end) 3231 return true; 3232 /* Else trim our search range for ordered extents. */ 3233 start = *delalloc_end_ret + 1; 3234 len = end + 1 - start; 3235 } 3236 } else { 3237 /* No delalloc, future calls don't need to search again. */ 3238 *search_io_tree = false; 3239 } 3240 3241 /* 3242 * Now also check if there's any ordered extent in the range. 3243 * We do this because: 3244 * 3245 * 1) When delalloc is flushed, the file range is locked, we clear the 3246 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3247 * an ordered extent for the write. So we might just have been called 3248 * after delalloc is flushed and before the ordered extent completes 3249 * and inserts the new file extent item in the subvolume's btree; 3250 * 3251 * 2) We may have an ordered extent created by flushing delalloc for a 3252 * subrange that starts before the subrange we found marked with 3253 * EXTENT_DELALLOC in the io tree. 3254 * 3255 * We could also use the extent map tree to find such delalloc that is 3256 * being flushed, but using the ordered extents tree is more efficient 3257 * because it's usually much smaller as ordered extents are removed from 3258 * the tree once they complete. With the extent maps, we mau have them 3259 * in the extent map tree for a very long time, and they were either 3260 * created by previous writes or loaded by read operations. 3261 */ 3262 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3263 if (!oe) 3264 return (delalloc_len > 0); 3265 3266 /* The ordered extent may span beyond our search range. */ 3267 oe_start = max(oe->file_offset, start); 3268 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3269 3270 btrfs_put_ordered_extent(oe); 3271 3272 /* Don't have unflushed delalloc, return the ordered extent range. */ 3273 if (delalloc_len == 0) { 3274 *delalloc_start_ret = oe_start; 3275 *delalloc_end_ret = oe_end; 3276 return true; 3277 } 3278 3279 /* 3280 * We have both unflushed delalloc (io_tree) and an ordered extent. 3281 * If the ranges are adjacent returned a combined range, otherwise 3282 * return the leftmost range. 3283 */ 3284 if (oe_start < *delalloc_start_ret) { 3285 if (oe_end < *delalloc_start_ret) 3286 *delalloc_end_ret = oe_end; 3287 *delalloc_start_ret = oe_start; 3288 } else if (*delalloc_end_ret + 1 == oe_start) { 3289 *delalloc_end_ret = oe_end; 3290 } 3291 3292 return true; 3293 } 3294 3295 /* 3296 * Check if there's delalloc in a given range. 3297 * 3298 * @inode: The inode. 3299 * @start: The start offset of the range. It does not need to be 3300 * sector size aligned. 3301 * @end: The end offset (inclusive value) of the search range. 3302 * It does not need to be sector size aligned. 3303 * @cached_state: Extent state record used for speeding up delalloc 3304 * searches in the inode's io_tree. Can be NULL. 3305 * @delalloc_start_ret: Output argument, set to the start offset of the 3306 * subrange found with delalloc (may not be sector size 3307 * aligned). 3308 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3309 * of the subrange found with delalloc. 3310 * 3311 * Returns true if a subrange with delalloc is found within the given range, and 3312 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3313 * end offsets of the subrange. 3314 */ 3315 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3316 struct extent_state **cached_state, 3317 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3318 { 3319 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3320 u64 prev_delalloc_end = 0; 3321 bool search_io_tree = true; 3322 bool ret = false; 3323 3324 while (cur_offset <= end) { 3325 u64 delalloc_start; 3326 u64 delalloc_end; 3327 bool delalloc; 3328 3329 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3330 cached_state, &search_io_tree, 3331 &delalloc_start, 3332 &delalloc_end); 3333 if (!delalloc) 3334 break; 3335 3336 if (prev_delalloc_end == 0) { 3337 /* First subrange found. */ 3338 *delalloc_start_ret = max(delalloc_start, start); 3339 *delalloc_end_ret = delalloc_end; 3340 ret = true; 3341 } else if (delalloc_start == prev_delalloc_end + 1) { 3342 /* Subrange adjacent to the previous one, merge them. */ 3343 *delalloc_end_ret = delalloc_end; 3344 } else { 3345 /* Subrange not adjacent to the previous one, exit. */ 3346 break; 3347 } 3348 3349 prev_delalloc_end = delalloc_end; 3350 cur_offset = delalloc_end + 1; 3351 cond_resched(); 3352 } 3353 3354 return ret; 3355 } 3356 3357 /* 3358 * Check if there's a hole or delalloc range in a range representing a hole (or 3359 * prealloc extent) found in the inode's subvolume btree. 3360 * 3361 * @inode: The inode. 3362 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3363 * @start: Start offset of the hole region. It does not need to be sector 3364 * size aligned. 3365 * @end: End offset (inclusive value) of the hole region. It does not 3366 * need to be sector size aligned. 3367 * @start_ret: Return parameter, used to set the start of the subrange in the 3368 * hole that matches the search criteria (seek mode), if such 3369 * subrange is found (return value of the function is true). 3370 * The value returned here may not be sector size aligned. 3371 * 3372 * Returns true if a subrange matching the given seek mode is found, and if one 3373 * is found, it updates @start_ret with the start of the subrange. 3374 */ 3375 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3376 struct extent_state **cached_state, 3377 u64 start, u64 end, u64 *start_ret) 3378 { 3379 u64 delalloc_start; 3380 u64 delalloc_end; 3381 bool delalloc; 3382 3383 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3384 &delalloc_start, &delalloc_end); 3385 if (delalloc && whence == SEEK_DATA) { 3386 *start_ret = delalloc_start; 3387 return true; 3388 } 3389 3390 if (delalloc && whence == SEEK_HOLE) { 3391 /* 3392 * We found delalloc but it starts after out start offset. So we 3393 * have a hole between our start offset and the delalloc start. 3394 */ 3395 if (start < delalloc_start) { 3396 *start_ret = start; 3397 return true; 3398 } 3399 /* 3400 * Delalloc range starts at our start offset. 3401 * If the delalloc range's length is smaller than our range, 3402 * then it means we have a hole that starts where the delalloc 3403 * subrange ends. 3404 */ 3405 if (delalloc_end < end) { 3406 *start_ret = delalloc_end + 1; 3407 return true; 3408 } 3409 3410 /* There's delalloc for the whole range. */ 3411 return false; 3412 } 3413 3414 if (!delalloc && whence == SEEK_HOLE) { 3415 *start_ret = start; 3416 return true; 3417 } 3418 3419 /* 3420 * No delalloc in the range and we are seeking for data. The caller has 3421 * to iterate to the next extent item in the subvolume btree. 3422 */ 3423 return false; 3424 } 3425 3426 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3427 { 3428 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3429 struct btrfs_file_private *private = file->private_data; 3430 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3431 struct extent_state *cached_state = NULL; 3432 struct extent_state **delalloc_cached_state; 3433 const loff_t i_size = i_size_read(&inode->vfs_inode); 3434 const u64 ino = btrfs_ino(inode); 3435 struct btrfs_root *root = inode->root; 3436 struct btrfs_path *path; 3437 struct btrfs_key key; 3438 u64 last_extent_end; 3439 u64 lockstart; 3440 u64 lockend; 3441 u64 start; 3442 int ret; 3443 bool found = false; 3444 3445 if (i_size == 0 || offset >= i_size) 3446 return -ENXIO; 3447 3448 /* 3449 * Quick path. If the inode has no prealloc extents and its number of 3450 * bytes used matches its i_size, then it can not have holes. 3451 */ 3452 if (whence == SEEK_HOLE && 3453 !(inode->flags & BTRFS_INODE_PREALLOC) && 3454 inode_get_bytes(&inode->vfs_inode) == i_size) 3455 return i_size; 3456 3457 if (!private) { 3458 private = kzalloc(sizeof(*private), GFP_KERNEL); 3459 /* 3460 * No worries if memory allocation failed. 3461 * The private structure is used only for speeding up multiple 3462 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3463 * so everything will still be correct. 3464 */ 3465 file->private_data = private; 3466 } 3467 3468 if (private) 3469 delalloc_cached_state = &private->llseek_cached_state; 3470 else 3471 delalloc_cached_state = NULL; 3472 3473 /* 3474 * offset can be negative, in this case we start finding DATA/HOLE from 3475 * the very start of the file. 3476 */ 3477 start = max_t(loff_t, 0, offset); 3478 3479 lockstart = round_down(start, fs_info->sectorsize); 3480 lockend = round_up(i_size, fs_info->sectorsize); 3481 if (lockend <= lockstart) 3482 lockend = lockstart + fs_info->sectorsize; 3483 lockend--; 3484 3485 path = btrfs_alloc_path(); 3486 if (!path) 3487 return -ENOMEM; 3488 path->reada = READA_FORWARD; 3489 3490 key.objectid = ino; 3491 key.type = BTRFS_EXTENT_DATA_KEY; 3492 key.offset = start; 3493 3494 last_extent_end = lockstart; 3495 3496 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3497 3498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3499 if (ret < 0) { 3500 goto out; 3501 } else if (ret > 0 && path->slots[0] > 0) { 3502 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3503 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3504 path->slots[0]--; 3505 } 3506 3507 while (start < i_size) { 3508 struct extent_buffer *leaf = path->nodes[0]; 3509 struct btrfs_file_extent_item *extent; 3510 u64 extent_end; 3511 u8 type; 3512 3513 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3514 ret = btrfs_next_leaf(root, path); 3515 if (ret < 0) 3516 goto out; 3517 else if (ret > 0) 3518 break; 3519 3520 leaf = path->nodes[0]; 3521 } 3522 3523 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3524 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3525 break; 3526 3527 extent_end = btrfs_file_extent_end(path); 3528 3529 /* 3530 * In the first iteration we may have a slot that points to an 3531 * extent that ends before our start offset, so skip it. 3532 */ 3533 if (extent_end <= start) { 3534 path->slots[0]++; 3535 continue; 3536 } 3537 3538 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3539 if (last_extent_end < key.offset) { 3540 u64 search_start = last_extent_end; 3541 u64 found_start; 3542 3543 /* 3544 * First iteration, @start matches @offset and it's 3545 * within the hole. 3546 */ 3547 if (start == offset) 3548 search_start = offset; 3549 3550 found = find_desired_extent_in_hole(inode, whence, 3551 delalloc_cached_state, 3552 search_start, 3553 key.offset - 1, 3554 &found_start); 3555 if (found) { 3556 start = found_start; 3557 break; 3558 } 3559 /* 3560 * Didn't find data or a hole (due to delalloc) in the 3561 * implicit hole range, so need to analyze the extent. 3562 */ 3563 } 3564 3565 extent = btrfs_item_ptr(leaf, path->slots[0], 3566 struct btrfs_file_extent_item); 3567 type = btrfs_file_extent_type(leaf, extent); 3568 3569 /* 3570 * Can't access the extent's disk_bytenr field if this is an 3571 * inline extent, since at that offset, it's where the extent 3572 * data starts. 3573 */ 3574 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3575 (type == BTRFS_FILE_EXTENT_REG && 3576 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3577 /* 3578 * Explicit hole or prealloc extent, search for delalloc. 3579 * A prealloc extent is treated like a hole. 3580 */ 3581 u64 search_start = key.offset; 3582 u64 found_start; 3583 3584 /* 3585 * First iteration, @start matches @offset and it's 3586 * within the hole. 3587 */ 3588 if (start == offset) 3589 search_start = offset; 3590 3591 found = find_desired_extent_in_hole(inode, whence, 3592 delalloc_cached_state, 3593 search_start, 3594 extent_end - 1, 3595 &found_start); 3596 if (found) { 3597 start = found_start; 3598 break; 3599 } 3600 /* 3601 * Didn't find data or a hole (due to delalloc) in the 3602 * implicit hole range, so need to analyze the next 3603 * extent item. 3604 */ 3605 } else { 3606 /* 3607 * Found a regular or inline extent. 3608 * If we are seeking for data, adjust the start offset 3609 * and stop, we're done. 3610 */ 3611 if (whence == SEEK_DATA) { 3612 start = max_t(u64, key.offset, offset); 3613 found = true; 3614 break; 3615 } 3616 /* 3617 * Else, we are seeking for a hole, check the next file 3618 * extent item. 3619 */ 3620 } 3621 3622 start = extent_end; 3623 last_extent_end = extent_end; 3624 path->slots[0]++; 3625 if (fatal_signal_pending(current)) { 3626 ret = -EINTR; 3627 goto out; 3628 } 3629 cond_resched(); 3630 } 3631 3632 /* We have an implicit hole from the last extent found up to i_size. */ 3633 if (!found && start < i_size) { 3634 found = find_desired_extent_in_hole(inode, whence, 3635 delalloc_cached_state, start, 3636 i_size - 1, &start); 3637 if (!found) 3638 start = i_size; 3639 } 3640 3641 out: 3642 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3643 btrfs_free_path(path); 3644 3645 if (ret < 0) 3646 return ret; 3647 3648 if (whence == SEEK_DATA && start >= i_size) 3649 return -ENXIO; 3650 3651 return min_t(loff_t, start, i_size); 3652 } 3653 3654 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3655 { 3656 struct inode *inode = file->f_mapping->host; 3657 3658 switch (whence) { 3659 default: 3660 return generic_file_llseek(file, offset, whence); 3661 case SEEK_DATA: 3662 case SEEK_HOLE: 3663 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3664 offset = find_desired_extent(file, offset, whence); 3665 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3666 break; 3667 } 3668 3669 if (offset < 0) 3670 return offset; 3671 3672 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3673 } 3674 3675 static int btrfs_file_open(struct inode *inode, struct file *filp) 3676 { 3677 int ret; 3678 3679 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3680 FMODE_CAN_ODIRECT; 3681 3682 ret = fsverity_file_open(inode, filp); 3683 if (ret) 3684 return ret; 3685 return generic_file_open(inode, filp); 3686 } 3687 3688 static int check_direct_read(struct btrfs_fs_info *fs_info, 3689 const struct iov_iter *iter, loff_t offset) 3690 { 3691 int ret; 3692 int i, seg; 3693 3694 ret = check_direct_IO(fs_info, iter, offset); 3695 if (ret < 0) 3696 return ret; 3697 3698 if (!iter_is_iovec(iter)) 3699 return 0; 3700 3701 for (seg = 0; seg < iter->nr_segs; seg++) { 3702 for (i = seg + 1; i < iter->nr_segs; i++) { 3703 const struct iovec *iov1 = iter_iov(iter) + seg; 3704 const struct iovec *iov2 = iter_iov(iter) + i; 3705 3706 if (iov1->iov_base == iov2->iov_base) 3707 return -EINVAL; 3708 } 3709 } 3710 return 0; 3711 } 3712 3713 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3714 { 3715 struct inode *inode = file_inode(iocb->ki_filp); 3716 size_t prev_left = 0; 3717 ssize_t read = 0; 3718 ssize_t ret; 3719 3720 if (fsverity_active(inode)) 3721 return 0; 3722 3723 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3724 return 0; 3725 3726 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3727 again: 3728 /* 3729 * This is similar to what we do for direct IO writes, see the comment 3730 * at btrfs_direct_write(), but we also disable page faults in addition 3731 * to disabling them only at the iov_iter level. This is because when 3732 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3733 * which can still trigger page fault ins despite having set ->nofault 3734 * to true of our 'to' iov_iter. 3735 * 3736 * The difference to direct IO writes is that we deadlock when trying 3737 * to lock the extent range in the inode's tree during he page reads 3738 * triggered by the fault in (while for writes it is due to waiting for 3739 * our own ordered extent). This is because for direct IO reads, 3740 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3741 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3742 */ 3743 pagefault_disable(); 3744 to->nofault = true; 3745 ret = btrfs_dio_read(iocb, to, read); 3746 to->nofault = false; 3747 pagefault_enable(); 3748 3749 /* No increment (+=) because iomap returns a cumulative value. */ 3750 if (ret > 0) 3751 read = ret; 3752 3753 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3754 const size_t left = iov_iter_count(to); 3755 3756 if (left == prev_left) { 3757 /* 3758 * We didn't make any progress since the last attempt, 3759 * fallback to a buffered read for the remainder of the 3760 * range. This is just to avoid any possibility of looping 3761 * for too long. 3762 */ 3763 ret = read; 3764 } else { 3765 /* 3766 * We made some progress since the last retry or this is 3767 * the first time we are retrying. Fault in as many pages 3768 * as possible and retry. 3769 */ 3770 fault_in_iov_iter_writeable(to, left); 3771 prev_left = left; 3772 goto again; 3773 } 3774 } 3775 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3776 return ret < 0 ? ret : read; 3777 } 3778 3779 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3780 { 3781 ssize_t ret = 0; 3782 3783 if (iocb->ki_flags & IOCB_DIRECT) { 3784 ret = btrfs_direct_read(iocb, to); 3785 if (ret < 0 || !iov_iter_count(to) || 3786 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3787 return ret; 3788 } 3789 3790 return filemap_read(iocb, to, ret); 3791 } 3792 3793 const struct file_operations btrfs_file_operations = { 3794 .llseek = btrfs_file_llseek, 3795 .read_iter = btrfs_file_read_iter, 3796 .splice_read = filemap_splice_read, 3797 .write_iter = btrfs_file_write_iter, 3798 .splice_write = iter_file_splice_write, 3799 .mmap = btrfs_file_mmap, 3800 .open = btrfs_file_open, 3801 .release = btrfs_release_file, 3802 .get_unmapped_area = thp_get_unmapped_area, 3803 .fsync = btrfs_sync_file, 3804 .fallocate = btrfs_fallocate, 3805 .unlocked_ioctl = btrfs_ioctl, 3806 #ifdef CONFIG_COMPAT 3807 .compat_ioctl = btrfs_compat_ioctl, 3808 #endif 3809 .remap_file_range = btrfs_remap_file_range, 3810 }; 3811 3812 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3813 { 3814 int ret; 3815 3816 /* 3817 * So with compression we will find and lock a dirty page and clear the 3818 * first one as dirty, setup an async extent, and immediately return 3819 * with the entire range locked but with nobody actually marked with 3820 * writeback. So we can't just filemap_write_and_wait_range() and 3821 * expect it to work since it will just kick off a thread to do the 3822 * actual work. So we need to call filemap_fdatawrite_range _again_ 3823 * since it will wait on the page lock, which won't be unlocked until 3824 * after the pages have been marked as writeback and so we're good to go 3825 * from there. We have to do this otherwise we'll miss the ordered 3826 * extents and that results in badness. Please Josef, do not think you 3827 * know better and pull this out at some point in the future, it is 3828 * right and you are wrong. 3829 */ 3830 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3831 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3832 &BTRFS_I(inode)->runtime_flags)) 3833 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3834 3835 return ret; 3836 } 3837