1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "ioctl.h" 38 #include "print-tree.h" 39 #include "tree-log.h" 40 #include "locking.h" 41 #include "compat.h" 42 #include "volumes.h" 43 44 /* 45 * when auto defrag is enabled we 46 * queue up these defrag structs to remember which 47 * inodes need defragging passes 48 */ 49 struct inode_defrag { 50 struct rb_node rb_node; 51 /* objectid */ 52 u64 ino; 53 /* 54 * transid where the defrag was added, we search for 55 * extents newer than this 56 */ 57 u64 transid; 58 59 /* root objectid */ 60 u64 root; 61 62 /* last offset we were able to defrag */ 63 u64 last_offset; 64 65 /* if we've wrapped around back to zero once already */ 66 int cycled; 67 }; 68 69 static int __compare_inode_defrag(struct inode_defrag *defrag1, 70 struct inode_defrag *defrag2) 71 { 72 if (defrag1->root > defrag2->root) 73 return 1; 74 else if (defrag1->root < defrag2->root) 75 return -1; 76 else if (defrag1->ino > defrag2->ino) 77 return 1; 78 else if (defrag1->ino < defrag2->ino) 79 return -1; 80 else 81 return 0; 82 } 83 84 /* pop a record for an inode into the defrag tree. The lock 85 * must be held already 86 * 87 * If you're inserting a record for an older transid than an 88 * existing record, the transid already in the tree is lowered 89 * 90 * If an existing record is found the defrag item you 91 * pass in is freed 92 */ 93 static void __btrfs_add_inode_defrag(struct inode *inode, 94 struct inode_defrag *defrag) 95 { 96 struct btrfs_root *root = BTRFS_I(inode)->root; 97 struct inode_defrag *entry; 98 struct rb_node **p; 99 struct rb_node *parent = NULL; 100 int ret; 101 102 p = &root->fs_info->defrag_inodes.rb_node; 103 while (*p) { 104 parent = *p; 105 entry = rb_entry(parent, struct inode_defrag, rb_node); 106 107 ret = __compare_inode_defrag(defrag, entry); 108 if (ret < 0) 109 p = &parent->rb_left; 110 else if (ret > 0) 111 p = &parent->rb_right; 112 else { 113 /* if we're reinserting an entry for 114 * an old defrag run, make sure to 115 * lower the transid of our existing record 116 */ 117 if (defrag->transid < entry->transid) 118 entry->transid = defrag->transid; 119 if (defrag->last_offset > entry->last_offset) 120 entry->last_offset = defrag->last_offset; 121 goto exists; 122 } 123 } 124 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 125 rb_link_node(&defrag->rb_node, parent, p); 126 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 127 return; 128 129 exists: 130 kfree(defrag); 131 return; 132 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct inode *inode) 141 { 142 struct btrfs_root *root = BTRFS_I(inode)->root; 143 struct inode_defrag *defrag; 144 u64 transid; 145 146 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 147 return 0; 148 149 if (btrfs_fs_closing(root->fs_info)) 150 return 0; 151 152 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 153 return 0; 154 155 if (trans) 156 transid = trans->transid; 157 else 158 transid = BTRFS_I(inode)->root->last_trans; 159 160 defrag = kzalloc(sizeof(*defrag), GFP_NOFS); 161 if (!defrag) 162 return -ENOMEM; 163 164 defrag->ino = btrfs_ino(inode); 165 defrag->transid = transid; 166 defrag->root = root->root_key.objectid; 167 168 spin_lock(&root->fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 170 __btrfs_add_inode_defrag(inode, defrag); 171 else 172 kfree(defrag); 173 spin_unlock(&root->fs_info->defrag_inodes_lock); 174 return 0; 175 } 176 177 /* 178 * must be called with the defrag_inodes lock held 179 */ 180 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, 181 u64 root, u64 ino, 182 struct rb_node **next) 183 { 184 struct inode_defrag *entry = NULL; 185 struct inode_defrag tmp; 186 struct rb_node *p; 187 struct rb_node *parent = NULL; 188 int ret; 189 190 tmp.ino = ino; 191 tmp.root = root; 192 193 p = info->defrag_inodes.rb_node; 194 while (p) { 195 parent = p; 196 entry = rb_entry(parent, struct inode_defrag, rb_node); 197 198 ret = __compare_inode_defrag(&tmp, entry); 199 if (ret < 0) 200 p = parent->rb_left; 201 else if (ret > 0) 202 p = parent->rb_right; 203 else 204 return entry; 205 } 206 207 if (next) { 208 while (parent && __compare_inode_defrag(&tmp, entry) > 0) { 209 parent = rb_next(parent); 210 entry = rb_entry(parent, struct inode_defrag, rb_node); 211 } 212 *next = parent; 213 } 214 return NULL; 215 } 216 217 /* 218 * run through the list of inodes in the FS that need 219 * defragging 220 */ 221 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 222 { 223 struct inode_defrag *defrag; 224 struct btrfs_root *inode_root; 225 struct inode *inode; 226 struct rb_node *n; 227 struct btrfs_key key; 228 struct btrfs_ioctl_defrag_range_args range; 229 u64 first_ino = 0; 230 u64 root_objectid = 0; 231 int num_defrag; 232 int defrag_batch = 1024; 233 234 memset(&range, 0, sizeof(range)); 235 range.len = (u64)-1; 236 237 atomic_inc(&fs_info->defrag_running); 238 spin_lock(&fs_info->defrag_inodes_lock); 239 while(1) { 240 n = NULL; 241 242 /* find an inode to defrag */ 243 defrag = btrfs_find_defrag_inode(fs_info, root_objectid, 244 first_ino, &n); 245 if (!defrag) { 246 if (n) { 247 defrag = rb_entry(n, struct inode_defrag, 248 rb_node); 249 } else if (root_objectid || first_ino) { 250 root_objectid = 0; 251 first_ino = 0; 252 continue; 253 } else { 254 break; 255 } 256 } 257 258 /* remove it from the rbtree */ 259 first_ino = defrag->ino + 1; 260 root_objectid = defrag->root; 261 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes); 262 263 if (btrfs_fs_closing(fs_info)) 264 goto next_free; 265 266 spin_unlock(&fs_info->defrag_inodes_lock); 267 268 /* get the inode */ 269 key.objectid = defrag->root; 270 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 271 key.offset = (u64)-1; 272 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 273 if (IS_ERR(inode_root)) 274 goto next; 275 276 key.objectid = defrag->ino; 277 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 278 key.offset = 0; 279 280 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 281 if (IS_ERR(inode)) 282 goto next; 283 284 /* do a chunk of defrag */ 285 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 286 range.start = defrag->last_offset; 287 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 288 defrag_batch); 289 /* 290 * if we filled the whole defrag batch, there 291 * must be more work to do. Queue this defrag 292 * again 293 */ 294 if (num_defrag == defrag_batch) { 295 defrag->last_offset = range.start; 296 __btrfs_add_inode_defrag(inode, defrag); 297 /* 298 * we don't want to kfree defrag, we added it back to 299 * the rbtree 300 */ 301 defrag = NULL; 302 } else if (defrag->last_offset && !defrag->cycled) { 303 /* 304 * we didn't fill our defrag batch, but 305 * we didn't start at zero. Make sure we loop 306 * around to the start of the file. 307 */ 308 defrag->last_offset = 0; 309 defrag->cycled = 1; 310 __btrfs_add_inode_defrag(inode, defrag); 311 defrag = NULL; 312 } 313 314 iput(inode); 315 next: 316 spin_lock(&fs_info->defrag_inodes_lock); 317 next_free: 318 kfree(defrag); 319 } 320 spin_unlock(&fs_info->defrag_inodes_lock); 321 322 atomic_dec(&fs_info->defrag_running); 323 324 /* 325 * during unmount, we use the transaction_wait queue to 326 * wait for the defragger to stop 327 */ 328 wake_up(&fs_info->transaction_wait); 329 return 0; 330 } 331 332 /* simple helper to fault in pages and copy. This should go away 333 * and be replaced with calls into generic code. 334 */ 335 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 336 size_t write_bytes, 337 struct page **prepared_pages, 338 struct iov_iter *i) 339 { 340 size_t copied = 0; 341 size_t total_copied = 0; 342 int pg = 0; 343 int offset = pos & (PAGE_CACHE_SIZE - 1); 344 345 while (write_bytes > 0) { 346 size_t count = min_t(size_t, 347 PAGE_CACHE_SIZE - offset, write_bytes); 348 struct page *page = prepared_pages[pg]; 349 /* 350 * Copy data from userspace to the current page 351 * 352 * Disable pagefault to avoid recursive lock since 353 * the pages are already locked 354 */ 355 pagefault_disable(); 356 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 357 pagefault_enable(); 358 359 /* Flush processor's dcache for this page */ 360 flush_dcache_page(page); 361 362 /* 363 * if we get a partial write, we can end up with 364 * partially up to date pages. These add 365 * a lot of complexity, so make sure they don't 366 * happen by forcing this copy to be retried. 367 * 368 * The rest of the btrfs_file_write code will fall 369 * back to page at a time copies after we return 0. 370 */ 371 if (!PageUptodate(page) && copied < count) 372 copied = 0; 373 374 iov_iter_advance(i, copied); 375 write_bytes -= copied; 376 total_copied += copied; 377 378 /* Return to btrfs_file_aio_write to fault page */ 379 if (unlikely(copied == 0)) 380 break; 381 382 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 383 offset += copied; 384 } else { 385 pg++; 386 offset = 0; 387 } 388 } 389 return total_copied; 390 } 391 392 /* 393 * unlocks pages after btrfs_file_write is done with them 394 */ 395 void btrfs_drop_pages(struct page **pages, size_t num_pages) 396 { 397 size_t i; 398 for (i = 0; i < num_pages; i++) { 399 /* page checked is some magic around finding pages that 400 * have been modified without going through btrfs_set_page_dirty 401 * clear it here 402 */ 403 ClearPageChecked(pages[i]); 404 unlock_page(pages[i]); 405 mark_page_accessed(pages[i]); 406 page_cache_release(pages[i]); 407 } 408 } 409 410 /* 411 * after copy_from_user, pages need to be dirtied and we need to make 412 * sure holes are created between the current EOF and the start of 413 * any next extents (if required). 414 * 415 * this also makes the decision about creating an inline extent vs 416 * doing real data extents, marking pages dirty and delalloc as required. 417 */ 418 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 419 struct page **pages, size_t num_pages, 420 loff_t pos, size_t write_bytes, 421 struct extent_state **cached) 422 { 423 int err = 0; 424 int i; 425 u64 num_bytes; 426 u64 start_pos; 427 u64 end_of_last_block; 428 u64 end_pos = pos + write_bytes; 429 loff_t isize = i_size_read(inode); 430 431 start_pos = pos & ~((u64)root->sectorsize - 1); 432 num_bytes = (write_bytes + pos - start_pos + 433 root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 434 435 end_of_last_block = start_pos + num_bytes - 1; 436 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 437 cached); 438 if (err) 439 return err; 440 441 for (i = 0; i < num_pages; i++) { 442 struct page *p = pages[i]; 443 SetPageUptodate(p); 444 ClearPageChecked(p); 445 set_page_dirty(p); 446 } 447 448 /* 449 * we've only changed i_size in ram, and we haven't updated 450 * the disk i_size. There is no need to log the inode 451 * at this time. 452 */ 453 if (end_pos > isize) 454 i_size_write(inode, end_pos); 455 return 0; 456 } 457 458 /* 459 * this drops all the extents in the cache that intersect the range 460 * [start, end]. Existing extents are split as required. 461 */ 462 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 463 int skip_pinned) 464 { 465 struct extent_map *em; 466 struct extent_map *split = NULL; 467 struct extent_map *split2 = NULL; 468 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 469 u64 len = end - start + 1; 470 u64 gen; 471 int ret; 472 int testend = 1; 473 unsigned long flags; 474 int compressed = 0; 475 476 WARN_ON(end < start); 477 if (end == (u64)-1) { 478 len = (u64)-1; 479 testend = 0; 480 } 481 while (1) { 482 int no_splits = 0; 483 484 if (!split) 485 split = alloc_extent_map(); 486 if (!split2) 487 split2 = alloc_extent_map(); 488 if (!split || !split2) 489 no_splits = 1; 490 491 write_lock(&em_tree->lock); 492 em = lookup_extent_mapping(em_tree, start, len); 493 if (!em) { 494 write_unlock(&em_tree->lock); 495 break; 496 } 497 flags = em->flags; 498 gen = em->generation; 499 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 500 if (testend && em->start + em->len >= start + len) { 501 free_extent_map(em); 502 write_unlock(&em_tree->lock); 503 break; 504 } 505 start = em->start + em->len; 506 if (testend) 507 len = start + len - (em->start + em->len); 508 free_extent_map(em); 509 write_unlock(&em_tree->lock); 510 continue; 511 } 512 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 513 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 514 remove_extent_mapping(em_tree, em); 515 if (no_splits) 516 goto next; 517 518 if (em->block_start < EXTENT_MAP_LAST_BYTE && 519 em->start < start) { 520 split->start = em->start; 521 split->len = start - em->start; 522 split->orig_start = em->orig_start; 523 split->block_start = em->block_start; 524 525 if (compressed) 526 split->block_len = em->block_len; 527 else 528 split->block_len = split->len; 529 split->generation = gen; 530 split->bdev = em->bdev; 531 split->flags = flags; 532 split->compress_type = em->compress_type; 533 ret = add_extent_mapping(em_tree, split); 534 BUG_ON(ret); /* Logic error */ 535 list_move(&split->list, &em_tree->modified_extents); 536 free_extent_map(split); 537 split = split2; 538 split2 = NULL; 539 } 540 if (em->block_start < EXTENT_MAP_LAST_BYTE && 541 testend && em->start + em->len > start + len) { 542 u64 diff = start + len - em->start; 543 544 split->start = start + len; 545 split->len = em->start + em->len - (start + len); 546 split->bdev = em->bdev; 547 split->flags = flags; 548 split->compress_type = em->compress_type; 549 split->generation = gen; 550 551 if (compressed) { 552 split->block_len = em->block_len; 553 split->block_start = em->block_start; 554 split->orig_start = em->orig_start; 555 } else { 556 split->block_len = split->len; 557 split->block_start = em->block_start + diff; 558 split->orig_start = split->start; 559 } 560 561 ret = add_extent_mapping(em_tree, split); 562 BUG_ON(ret); /* Logic error */ 563 list_move(&split->list, &em_tree->modified_extents); 564 free_extent_map(split); 565 split = NULL; 566 } 567 next: 568 write_unlock(&em_tree->lock); 569 570 /* once for us */ 571 free_extent_map(em); 572 /* once for the tree*/ 573 free_extent_map(em); 574 } 575 if (split) 576 free_extent_map(split); 577 if (split2) 578 free_extent_map(split2); 579 } 580 581 /* 582 * this is very complex, but the basic idea is to drop all extents 583 * in the range start - end. hint_block is filled in with a block number 584 * that would be a good hint to the block allocator for this file. 585 * 586 * If an extent intersects the range but is not entirely inside the range 587 * it is either truncated or split. Anything entirely inside the range 588 * is deleted from the tree. 589 */ 590 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 591 struct btrfs_root *root, struct inode *inode, 592 struct btrfs_path *path, u64 start, u64 end, 593 u64 *drop_end, int drop_cache) 594 { 595 struct extent_buffer *leaf; 596 struct btrfs_file_extent_item *fi; 597 struct btrfs_key key; 598 struct btrfs_key new_key; 599 u64 ino = btrfs_ino(inode); 600 u64 search_start = start; 601 u64 disk_bytenr = 0; 602 u64 num_bytes = 0; 603 u64 extent_offset = 0; 604 u64 extent_end = 0; 605 int del_nr = 0; 606 int del_slot = 0; 607 int extent_type; 608 int recow; 609 int ret; 610 int modify_tree = -1; 611 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 612 int found = 0; 613 614 if (drop_cache) 615 btrfs_drop_extent_cache(inode, start, end - 1, 0); 616 617 if (start >= BTRFS_I(inode)->disk_i_size) 618 modify_tree = 0; 619 620 while (1) { 621 recow = 0; 622 ret = btrfs_lookup_file_extent(trans, root, path, ino, 623 search_start, modify_tree); 624 if (ret < 0) 625 break; 626 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 627 leaf = path->nodes[0]; 628 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 629 if (key.objectid == ino && 630 key.type == BTRFS_EXTENT_DATA_KEY) 631 path->slots[0]--; 632 } 633 ret = 0; 634 next_slot: 635 leaf = path->nodes[0]; 636 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 637 BUG_ON(del_nr > 0); 638 ret = btrfs_next_leaf(root, path); 639 if (ret < 0) 640 break; 641 if (ret > 0) { 642 ret = 0; 643 break; 644 } 645 leaf = path->nodes[0]; 646 recow = 1; 647 } 648 649 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 650 if (key.objectid > ino || 651 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 652 break; 653 654 fi = btrfs_item_ptr(leaf, path->slots[0], 655 struct btrfs_file_extent_item); 656 extent_type = btrfs_file_extent_type(leaf, fi); 657 658 if (extent_type == BTRFS_FILE_EXTENT_REG || 659 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 660 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 661 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 662 extent_offset = btrfs_file_extent_offset(leaf, fi); 663 extent_end = key.offset + 664 btrfs_file_extent_num_bytes(leaf, fi); 665 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 666 extent_end = key.offset + 667 btrfs_file_extent_inline_len(leaf, fi); 668 } else { 669 WARN_ON(1); 670 extent_end = search_start; 671 } 672 673 if (extent_end <= search_start) { 674 path->slots[0]++; 675 goto next_slot; 676 } 677 678 found = 1; 679 search_start = max(key.offset, start); 680 if (recow || !modify_tree) { 681 modify_tree = -1; 682 btrfs_release_path(path); 683 continue; 684 } 685 686 /* 687 * | - range to drop - | 688 * | -------- extent -------- | 689 */ 690 if (start > key.offset && end < extent_end) { 691 BUG_ON(del_nr > 0); 692 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 693 694 memcpy(&new_key, &key, sizeof(new_key)); 695 new_key.offset = start; 696 ret = btrfs_duplicate_item(trans, root, path, 697 &new_key); 698 if (ret == -EAGAIN) { 699 btrfs_release_path(path); 700 continue; 701 } 702 if (ret < 0) 703 break; 704 705 leaf = path->nodes[0]; 706 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 707 struct btrfs_file_extent_item); 708 btrfs_set_file_extent_num_bytes(leaf, fi, 709 start - key.offset); 710 711 fi = btrfs_item_ptr(leaf, path->slots[0], 712 struct btrfs_file_extent_item); 713 714 extent_offset += start - key.offset; 715 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 716 btrfs_set_file_extent_num_bytes(leaf, fi, 717 extent_end - start); 718 btrfs_mark_buffer_dirty(leaf); 719 720 if (update_refs && disk_bytenr > 0) { 721 ret = btrfs_inc_extent_ref(trans, root, 722 disk_bytenr, num_bytes, 0, 723 root->root_key.objectid, 724 new_key.objectid, 725 start - extent_offset, 0); 726 BUG_ON(ret); /* -ENOMEM */ 727 } 728 key.offset = start; 729 } 730 /* 731 * | ---- range to drop ----- | 732 * | -------- extent -------- | 733 */ 734 if (start <= key.offset && end < extent_end) { 735 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 736 737 memcpy(&new_key, &key, sizeof(new_key)); 738 new_key.offset = end; 739 btrfs_set_item_key_safe(trans, root, path, &new_key); 740 741 extent_offset += end - key.offset; 742 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - end); 745 btrfs_mark_buffer_dirty(leaf); 746 if (update_refs && disk_bytenr > 0) 747 inode_sub_bytes(inode, end - key.offset); 748 break; 749 } 750 751 search_start = extent_end; 752 /* 753 * | ---- range to drop ----- | 754 * | -------- extent -------- | 755 */ 756 if (start > key.offset && end >= extent_end) { 757 BUG_ON(del_nr > 0); 758 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 759 760 btrfs_set_file_extent_num_bytes(leaf, fi, 761 start - key.offset); 762 btrfs_mark_buffer_dirty(leaf); 763 if (update_refs && disk_bytenr > 0) 764 inode_sub_bytes(inode, extent_end - start); 765 if (end == extent_end) 766 break; 767 768 path->slots[0]++; 769 goto next_slot; 770 } 771 772 /* 773 * | ---- range to drop ----- | 774 * | ------ extent ------ | 775 */ 776 if (start <= key.offset && end >= extent_end) { 777 if (del_nr == 0) { 778 del_slot = path->slots[0]; 779 del_nr = 1; 780 } else { 781 BUG_ON(del_slot + del_nr != path->slots[0]); 782 del_nr++; 783 } 784 785 if (update_refs && 786 extent_type == BTRFS_FILE_EXTENT_INLINE) { 787 inode_sub_bytes(inode, 788 extent_end - key.offset); 789 extent_end = ALIGN(extent_end, 790 root->sectorsize); 791 } else if (update_refs && disk_bytenr > 0) { 792 ret = btrfs_free_extent(trans, root, 793 disk_bytenr, num_bytes, 0, 794 root->root_key.objectid, 795 key.objectid, key.offset - 796 extent_offset, 0); 797 BUG_ON(ret); /* -ENOMEM */ 798 inode_sub_bytes(inode, 799 extent_end - key.offset); 800 } 801 802 if (end == extent_end) 803 break; 804 805 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 806 path->slots[0]++; 807 goto next_slot; 808 } 809 810 ret = btrfs_del_items(trans, root, path, del_slot, 811 del_nr); 812 if (ret) { 813 btrfs_abort_transaction(trans, root, ret); 814 break; 815 } 816 817 del_nr = 0; 818 del_slot = 0; 819 820 btrfs_release_path(path); 821 continue; 822 } 823 824 BUG_ON(1); 825 } 826 827 if (!ret && del_nr > 0) { 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret) 830 btrfs_abort_transaction(trans, root, ret); 831 } 832 833 if (drop_end) 834 *drop_end = found ? min(end, extent_end) : end; 835 btrfs_release_path(path); 836 return ret; 837 } 838 839 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 840 struct btrfs_root *root, struct inode *inode, u64 start, 841 u64 end, int drop_cache) 842 { 843 struct btrfs_path *path; 844 int ret; 845 846 path = btrfs_alloc_path(); 847 if (!path) 848 return -ENOMEM; 849 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 850 drop_cache); 851 btrfs_free_path(path); 852 return ret; 853 } 854 855 static int extent_mergeable(struct extent_buffer *leaf, int slot, 856 u64 objectid, u64 bytenr, u64 orig_offset, 857 u64 *start, u64 *end) 858 { 859 struct btrfs_file_extent_item *fi; 860 struct btrfs_key key; 861 u64 extent_end; 862 863 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 864 return 0; 865 866 btrfs_item_key_to_cpu(leaf, &key, slot); 867 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 868 return 0; 869 870 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 871 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 872 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 873 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 874 btrfs_file_extent_compression(leaf, fi) || 875 btrfs_file_extent_encryption(leaf, fi) || 876 btrfs_file_extent_other_encoding(leaf, fi)) 877 return 0; 878 879 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 880 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 881 return 0; 882 883 *start = key.offset; 884 *end = extent_end; 885 return 1; 886 } 887 888 /* 889 * Mark extent in the range start - end as written. 890 * 891 * This changes extent type from 'pre-allocated' to 'regular'. If only 892 * part of extent is marked as written, the extent will be split into 893 * two or three. 894 */ 895 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 896 struct inode *inode, u64 start, u64 end) 897 { 898 struct btrfs_root *root = BTRFS_I(inode)->root; 899 struct extent_buffer *leaf; 900 struct btrfs_path *path; 901 struct btrfs_file_extent_item *fi; 902 struct btrfs_key key; 903 struct btrfs_key new_key; 904 u64 bytenr; 905 u64 num_bytes; 906 u64 extent_end; 907 u64 orig_offset; 908 u64 other_start; 909 u64 other_end; 910 u64 split; 911 int del_nr = 0; 912 int del_slot = 0; 913 int recow; 914 int ret; 915 u64 ino = btrfs_ino(inode); 916 917 path = btrfs_alloc_path(); 918 if (!path) 919 return -ENOMEM; 920 again: 921 recow = 0; 922 split = start; 923 key.objectid = ino; 924 key.type = BTRFS_EXTENT_DATA_KEY; 925 key.offset = split; 926 927 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 928 if (ret < 0) 929 goto out; 930 if (ret > 0 && path->slots[0] > 0) 931 path->slots[0]--; 932 933 leaf = path->nodes[0]; 934 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 935 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 936 fi = btrfs_item_ptr(leaf, path->slots[0], 937 struct btrfs_file_extent_item); 938 BUG_ON(btrfs_file_extent_type(leaf, fi) != 939 BTRFS_FILE_EXTENT_PREALLOC); 940 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 941 BUG_ON(key.offset > start || extent_end < end); 942 943 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 944 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 945 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 946 memcpy(&new_key, &key, sizeof(new_key)); 947 948 if (start == key.offset && end < extent_end) { 949 other_start = 0; 950 other_end = start; 951 if (extent_mergeable(leaf, path->slots[0] - 1, 952 ino, bytenr, orig_offset, 953 &other_start, &other_end)) { 954 new_key.offset = end; 955 btrfs_set_item_key_safe(trans, root, path, &new_key); 956 fi = btrfs_item_ptr(leaf, path->slots[0], 957 struct btrfs_file_extent_item); 958 btrfs_set_file_extent_generation(leaf, fi, 959 trans->transid); 960 btrfs_set_file_extent_num_bytes(leaf, fi, 961 extent_end - end); 962 btrfs_set_file_extent_offset(leaf, fi, 963 end - orig_offset); 964 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 965 struct btrfs_file_extent_item); 966 btrfs_set_file_extent_generation(leaf, fi, 967 trans->transid); 968 btrfs_set_file_extent_num_bytes(leaf, fi, 969 end - other_start); 970 btrfs_mark_buffer_dirty(leaf); 971 goto out; 972 } 973 } 974 975 if (start > key.offset && end == extent_end) { 976 other_start = end; 977 other_end = 0; 978 if (extent_mergeable(leaf, path->slots[0] + 1, 979 ino, bytenr, orig_offset, 980 &other_start, &other_end)) { 981 fi = btrfs_item_ptr(leaf, path->slots[0], 982 struct btrfs_file_extent_item); 983 btrfs_set_file_extent_num_bytes(leaf, fi, 984 start - key.offset); 985 btrfs_set_file_extent_generation(leaf, fi, 986 trans->transid); 987 path->slots[0]++; 988 new_key.offset = start; 989 btrfs_set_item_key_safe(trans, root, path, &new_key); 990 991 fi = btrfs_item_ptr(leaf, path->slots[0], 992 struct btrfs_file_extent_item); 993 btrfs_set_file_extent_generation(leaf, fi, 994 trans->transid); 995 btrfs_set_file_extent_num_bytes(leaf, fi, 996 other_end - start); 997 btrfs_set_file_extent_offset(leaf, fi, 998 start - orig_offset); 999 btrfs_mark_buffer_dirty(leaf); 1000 goto out; 1001 } 1002 } 1003 1004 while (start > key.offset || end < extent_end) { 1005 if (key.offset == start) 1006 split = end; 1007 1008 new_key.offset = split; 1009 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1010 if (ret == -EAGAIN) { 1011 btrfs_release_path(path); 1012 goto again; 1013 } 1014 if (ret < 0) { 1015 btrfs_abort_transaction(trans, root, ret); 1016 goto out; 1017 } 1018 1019 leaf = path->nodes[0]; 1020 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1021 struct btrfs_file_extent_item); 1022 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1023 btrfs_set_file_extent_num_bytes(leaf, fi, 1024 split - key.offset); 1025 1026 fi = btrfs_item_ptr(leaf, path->slots[0], 1027 struct btrfs_file_extent_item); 1028 1029 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1030 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1031 btrfs_set_file_extent_num_bytes(leaf, fi, 1032 extent_end - split); 1033 btrfs_mark_buffer_dirty(leaf); 1034 1035 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1036 root->root_key.objectid, 1037 ino, orig_offset, 0); 1038 BUG_ON(ret); /* -ENOMEM */ 1039 1040 if (split == start) { 1041 key.offset = start; 1042 } else { 1043 BUG_ON(start != key.offset); 1044 path->slots[0]--; 1045 extent_end = end; 1046 } 1047 recow = 1; 1048 } 1049 1050 other_start = end; 1051 other_end = 0; 1052 if (extent_mergeable(leaf, path->slots[0] + 1, 1053 ino, bytenr, orig_offset, 1054 &other_start, &other_end)) { 1055 if (recow) { 1056 btrfs_release_path(path); 1057 goto again; 1058 } 1059 extent_end = other_end; 1060 del_slot = path->slots[0] + 1; 1061 del_nr++; 1062 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1063 0, root->root_key.objectid, 1064 ino, orig_offset, 0); 1065 BUG_ON(ret); /* -ENOMEM */ 1066 } 1067 other_start = 0; 1068 other_end = start; 1069 if (extent_mergeable(leaf, path->slots[0] - 1, 1070 ino, bytenr, orig_offset, 1071 &other_start, &other_end)) { 1072 if (recow) { 1073 btrfs_release_path(path); 1074 goto again; 1075 } 1076 key.offset = other_start; 1077 del_slot = path->slots[0]; 1078 del_nr++; 1079 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1080 0, root->root_key.objectid, 1081 ino, orig_offset, 0); 1082 BUG_ON(ret); /* -ENOMEM */ 1083 } 1084 if (del_nr == 0) { 1085 fi = btrfs_item_ptr(leaf, path->slots[0], 1086 struct btrfs_file_extent_item); 1087 btrfs_set_file_extent_type(leaf, fi, 1088 BTRFS_FILE_EXTENT_REG); 1089 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1090 btrfs_mark_buffer_dirty(leaf); 1091 } else { 1092 fi = btrfs_item_ptr(leaf, del_slot - 1, 1093 struct btrfs_file_extent_item); 1094 btrfs_set_file_extent_type(leaf, fi, 1095 BTRFS_FILE_EXTENT_REG); 1096 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1097 btrfs_set_file_extent_num_bytes(leaf, fi, 1098 extent_end - key.offset); 1099 btrfs_mark_buffer_dirty(leaf); 1100 1101 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1102 if (ret < 0) { 1103 btrfs_abort_transaction(trans, root, ret); 1104 goto out; 1105 } 1106 } 1107 out: 1108 btrfs_free_path(path); 1109 return 0; 1110 } 1111 1112 /* 1113 * on error we return an unlocked page and the error value 1114 * on success we return a locked page and 0 1115 */ 1116 static int prepare_uptodate_page(struct page *page, u64 pos, 1117 bool force_uptodate) 1118 { 1119 int ret = 0; 1120 1121 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1122 !PageUptodate(page)) { 1123 ret = btrfs_readpage(NULL, page); 1124 if (ret) 1125 return ret; 1126 lock_page(page); 1127 if (!PageUptodate(page)) { 1128 unlock_page(page); 1129 return -EIO; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 /* 1136 * this gets pages into the page cache and locks them down, it also properly 1137 * waits for data=ordered extents to finish before allowing the pages to be 1138 * modified. 1139 */ 1140 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1141 struct page **pages, size_t num_pages, 1142 loff_t pos, unsigned long first_index, 1143 size_t write_bytes, bool force_uptodate) 1144 { 1145 struct extent_state *cached_state = NULL; 1146 int i; 1147 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1148 struct inode *inode = fdentry(file)->d_inode; 1149 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1150 int err = 0; 1151 int faili = 0; 1152 u64 start_pos; 1153 u64 last_pos; 1154 1155 start_pos = pos & ~((u64)root->sectorsize - 1); 1156 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1157 1158 again: 1159 for (i = 0; i < num_pages; i++) { 1160 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1161 mask | __GFP_WRITE); 1162 if (!pages[i]) { 1163 faili = i - 1; 1164 err = -ENOMEM; 1165 goto fail; 1166 } 1167 1168 if (i == 0) 1169 err = prepare_uptodate_page(pages[i], pos, 1170 force_uptodate); 1171 if (i == num_pages - 1) 1172 err = prepare_uptodate_page(pages[i], 1173 pos + write_bytes, false); 1174 if (err) { 1175 page_cache_release(pages[i]); 1176 faili = i - 1; 1177 goto fail; 1178 } 1179 wait_on_page_writeback(pages[i]); 1180 } 1181 err = 0; 1182 if (start_pos < inode->i_size) { 1183 struct btrfs_ordered_extent *ordered; 1184 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1185 start_pos, last_pos - 1, 0, &cached_state); 1186 ordered = btrfs_lookup_first_ordered_extent(inode, 1187 last_pos - 1); 1188 if (ordered && 1189 ordered->file_offset + ordered->len > start_pos && 1190 ordered->file_offset < last_pos) { 1191 btrfs_put_ordered_extent(ordered); 1192 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1193 start_pos, last_pos - 1, 1194 &cached_state, GFP_NOFS); 1195 for (i = 0; i < num_pages; i++) { 1196 unlock_page(pages[i]); 1197 page_cache_release(pages[i]); 1198 } 1199 btrfs_wait_ordered_range(inode, start_pos, 1200 last_pos - start_pos); 1201 goto again; 1202 } 1203 if (ordered) 1204 btrfs_put_ordered_extent(ordered); 1205 1206 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1207 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1208 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1209 0, 0, &cached_state, GFP_NOFS); 1210 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1211 start_pos, last_pos - 1, &cached_state, 1212 GFP_NOFS); 1213 } 1214 for (i = 0; i < num_pages; i++) { 1215 if (clear_page_dirty_for_io(pages[i])) 1216 account_page_redirty(pages[i]); 1217 set_page_extent_mapped(pages[i]); 1218 WARN_ON(!PageLocked(pages[i])); 1219 } 1220 return 0; 1221 fail: 1222 while (faili >= 0) { 1223 unlock_page(pages[faili]); 1224 page_cache_release(pages[faili]); 1225 faili--; 1226 } 1227 return err; 1228 1229 } 1230 1231 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1232 struct iov_iter *i, 1233 loff_t pos) 1234 { 1235 struct inode *inode = fdentry(file)->d_inode; 1236 struct btrfs_root *root = BTRFS_I(inode)->root; 1237 struct page **pages = NULL; 1238 unsigned long first_index; 1239 size_t num_written = 0; 1240 int nrptrs; 1241 int ret = 0; 1242 bool force_page_uptodate = false; 1243 1244 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1245 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1246 (sizeof(struct page *))); 1247 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1248 nrptrs = max(nrptrs, 8); 1249 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1250 if (!pages) 1251 return -ENOMEM; 1252 1253 first_index = pos >> PAGE_CACHE_SHIFT; 1254 1255 while (iov_iter_count(i) > 0) { 1256 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1257 size_t write_bytes = min(iov_iter_count(i), 1258 nrptrs * (size_t)PAGE_CACHE_SIZE - 1259 offset); 1260 size_t num_pages = (write_bytes + offset + 1261 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1262 size_t dirty_pages; 1263 size_t copied; 1264 1265 WARN_ON(num_pages > nrptrs); 1266 1267 /* 1268 * Fault pages before locking them in prepare_pages 1269 * to avoid recursive lock 1270 */ 1271 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1272 ret = -EFAULT; 1273 break; 1274 } 1275 1276 ret = btrfs_delalloc_reserve_space(inode, 1277 num_pages << PAGE_CACHE_SHIFT); 1278 if (ret) 1279 break; 1280 1281 /* 1282 * This is going to setup the pages array with the number of 1283 * pages we want, so we don't really need to worry about the 1284 * contents of pages from loop to loop 1285 */ 1286 ret = prepare_pages(root, file, pages, num_pages, 1287 pos, first_index, write_bytes, 1288 force_page_uptodate); 1289 if (ret) { 1290 btrfs_delalloc_release_space(inode, 1291 num_pages << PAGE_CACHE_SHIFT); 1292 break; 1293 } 1294 1295 copied = btrfs_copy_from_user(pos, num_pages, 1296 write_bytes, pages, i); 1297 1298 /* 1299 * if we have trouble faulting in the pages, fall 1300 * back to one page at a time 1301 */ 1302 if (copied < write_bytes) 1303 nrptrs = 1; 1304 1305 if (copied == 0) { 1306 force_page_uptodate = true; 1307 dirty_pages = 0; 1308 } else { 1309 force_page_uptodate = false; 1310 dirty_pages = (copied + offset + 1311 PAGE_CACHE_SIZE - 1) >> 1312 PAGE_CACHE_SHIFT; 1313 } 1314 1315 /* 1316 * If we had a short copy we need to release the excess delaloc 1317 * bytes we reserved. We need to increment outstanding_extents 1318 * because btrfs_delalloc_release_space will decrement it, but 1319 * we still have an outstanding extent for the chunk we actually 1320 * managed to copy. 1321 */ 1322 if (num_pages > dirty_pages) { 1323 if (copied > 0) { 1324 spin_lock(&BTRFS_I(inode)->lock); 1325 BTRFS_I(inode)->outstanding_extents++; 1326 spin_unlock(&BTRFS_I(inode)->lock); 1327 } 1328 btrfs_delalloc_release_space(inode, 1329 (num_pages - dirty_pages) << 1330 PAGE_CACHE_SHIFT); 1331 } 1332 1333 if (copied > 0) { 1334 ret = btrfs_dirty_pages(root, inode, pages, 1335 dirty_pages, pos, copied, 1336 NULL); 1337 if (ret) { 1338 btrfs_delalloc_release_space(inode, 1339 dirty_pages << PAGE_CACHE_SHIFT); 1340 btrfs_drop_pages(pages, num_pages); 1341 break; 1342 } 1343 } 1344 1345 btrfs_drop_pages(pages, num_pages); 1346 1347 cond_resched(); 1348 1349 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1350 dirty_pages); 1351 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1352 btrfs_btree_balance_dirty(root, 1); 1353 1354 pos += copied; 1355 num_written += copied; 1356 } 1357 1358 kfree(pages); 1359 1360 return num_written ? num_written : ret; 1361 } 1362 1363 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1364 const struct iovec *iov, 1365 unsigned long nr_segs, loff_t pos, 1366 loff_t *ppos, size_t count, size_t ocount) 1367 { 1368 struct file *file = iocb->ki_filp; 1369 struct iov_iter i; 1370 ssize_t written; 1371 ssize_t written_buffered; 1372 loff_t endbyte; 1373 int err; 1374 1375 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1376 count, ocount); 1377 1378 if (written < 0 || written == count) 1379 return written; 1380 1381 pos += written; 1382 count -= written; 1383 iov_iter_init(&i, iov, nr_segs, count, written); 1384 written_buffered = __btrfs_buffered_write(file, &i, pos); 1385 if (written_buffered < 0) { 1386 err = written_buffered; 1387 goto out; 1388 } 1389 endbyte = pos + written_buffered - 1; 1390 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1391 if (err) 1392 goto out; 1393 written += written_buffered; 1394 *ppos = pos + written_buffered; 1395 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1396 endbyte >> PAGE_CACHE_SHIFT); 1397 out: 1398 return written ? written : err; 1399 } 1400 1401 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1402 const struct iovec *iov, 1403 unsigned long nr_segs, loff_t pos) 1404 { 1405 struct file *file = iocb->ki_filp; 1406 struct inode *inode = fdentry(file)->d_inode; 1407 struct btrfs_root *root = BTRFS_I(inode)->root; 1408 loff_t *ppos = &iocb->ki_pos; 1409 u64 start_pos; 1410 ssize_t num_written = 0; 1411 ssize_t err = 0; 1412 size_t count, ocount; 1413 1414 sb_start_write(inode->i_sb); 1415 1416 mutex_lock(&inode->i_mutex); 1417 1418 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1419 if (err) { 1420 mutex_unlock(&inode->i_mutex); 1421 goto out; 1422 } 1423 count = ocount; 1424 1425 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1426 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1427 if (err) { 1428 mutex_unlock(&inode->i_mutex); 1429 goto out; 1430 } 1431 1432 if (count == 0) { 1433 mutex_unlock(&inode->i_mutex); 1434 goto out; 1435 } 1436 1437 err = file_remove_suid(file); 1438 if (err) { 1439 mutex_unlock(&inode->i_mutex); 1440 goto out; 1441 } 1442 1443 /* 1444 * If BTRFS flips readonly due to some impossible error 1445 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1446 * although we have opened a file as writable, we have 1447 * to stop this write operation to ensure FS consistency. 1448 */ 1449 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 1450 mutex_unlock(&inode->i_mutex); 1451 err = -EROFS; 1452 goto out; 1453 } 1454 1455 err = file_update_time(file); 1456 if (err) { 1457 mutex_unlock(&inode->i_mutex); 1458 goto out; 1459 } 1460 1461 start_pos = round_down(pos, root->sectorsize); 1462 if (start_pos > i_size_read(inode)) { 1463 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1464 if (err) { 1465 mutex_unlock(&inode->i_mutex); 1466 goto out; 1467 } 1468 } 1469 1470 if (unlikely(file->f_flags & O_DIRECT)) { 1471 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1472 pos, ppos, count, ocount); 1473 } else { 1474 struct iov_iter i; 1475 1476 iov_iter_init(&i, iov, nr_segs, count, num_written); 1477 1478 num_written = __btrfs_buffered_write(file, &i, pos); 1479 if (num_written > 0) 1480 *ppos = pos + num_written; 1481 } 1482 1483 mutex_unlock(&inode->i_mutex); 1484 1485 /* 1486 * we want to make sure fsync finds this change 1487 * but we haven't joined a transaction running right now. 1488 * 1489 * Later on, someone is sure to update the inode and get the 1490 * real transid recorded. 1491 * 1492 * We set last_trans now to the fs_info generation + 1, 1493 * this will either be one more than the running transaction 1494 * or the generation used for the next transaction if there isn't 1495 * one running right now. 1496 */ 1497 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1498 if (num_written > 0 || num_written == -EIOCBQUEUED) { 1499 err = generic_write_sync(file, pos, num_written); 1500 if (err < 0 && num_written > 0) 1501 num_written = err; 1502 } 1503 out: 1504 sb_end_write(inode->i_sb); 1505 current->backing_dev_info = NULL; 1506 return num_written ? num_written : err; 1507 } 1508 1509 int btrfs_release_file(struct inode *inode, struct file *filp) 1510 { 1511 /* 1512 * ordered_data_close is set by settattr when we are about to truncate 1513 * a file from a non-zero size to a zero size. This tries to 1514 * flush down new bytes that may have been written if the 1515 * application were using truncate to replace a file in place. 1516 */ 1517 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1518 &BTRFS_I(inode)->runtime_flags)) { 1519 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode); 1520 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1521 filemap_flush(inode->i_mapping); 1522 } 1523 if (filp->private_data) 1524 btrfs_ioctl_trans_end(filp); 1525 return 0; 1526 } 1527 1528 /* 1529 * fsync call for both files and directories. This logs the inode into 1530 * the tree log instead of forcing full commits whenever possible. 1531 * 1532 * It needs to call filemap_fdatawait so that all ordered extent updates are 1533 * in the metadata btree are up to date for copying to the log. 1534 * 1535 * It drops the inode mutex before doing the tree log commit. This is an 1536 * important optimization for directories because holding the mutex prevents 1537 * new operations on the dir while we write to disk. 1538 */ 1539 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1540 { 1541 struct dentry *dentry = file->f_path.dentry; 1542 struct inode *inode = dentry->d_inode; 1543 struct btrfs_root *root = BTRFS_I(inode)->root; 1544 int ret = 0; 1545 struct btrfs_trans_handle *trans; 1546 1547 trace_btrfs_sync_file(file, datasync); 1548 1549 /* 1550 * We write the dirty pages in the range and wait until they complete 1551 * out of the ->i_mutex. If so, we can flush the dirty pages by 1552 * multi-task, and make the performance up. 1553 */ 1554 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1555 if (ret) 1556 return ret; 1557 1558 mutex_lock(&inode->i_mutex); 1559 1560 /* 1561 * We flush the dirty pages again to avoid some dirty pages in the 1562 * range being left. 1563 */ 1564 atomic_inc(&root->log_batch); 1565 btrfs_wait_ordered_range(inode, start, end); 1566 atomic_inc(&root->log_batch); 1567 1568 /* 1569 * check the transaction that last modified this inode 1570 * and see if its already been committed 1571 */ 1572 if (!BTRFS_I(inode)->last_trans) { 1573 mutex_unlock(&inode->i_mutex); 1574 goto out; 1575 } 1576 1577 /* 1578 * if the last transaction that changed this file was before 1579 * the current transaction, we can bail out now without any 1580 * syncing 1581 */ 1582 smp_mb(); 1583 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1584 BTRFS_I(inode)->last_trans <= 1585 root->fs_info->last_trans_committed) { 1586 BTRFS_I(inode)->last_trans = 0; 1587 1588 /* 1589 * We'v had everything committed since the last time we were 1590 * modified so clear this flag in case it was set for whatever 1591 * reason, it's no longer relevant. 1592 */ 1593 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1594 &BTRFS_I(inode)->runtime_flags); 1595 mutex_unlock(&inode->i_mutex); 1596 goto out; 1597 } 1598 1599 /* 1600 * ok we haven't committed the transaction yet, lets do a commit 1601 */ 1602 if (file->private_data) 1603 btrfs_ioctl_trans_end(file); 1604 1605 trans = btrfs_start_transaction(root, 0); 1606 if (IS_ERR(trans)) { 1607 ret = PTR_ERR(trans); 1608 mutex_unlock(&inode->i_mutex); 1609 goto out; 1610 } 1611 1612 ret = btrfs_log_dentry_safe(trans, root, dentry); 1613 if (ret < 0) { 1614 mutex_unlock(&inode->i_mutex); 1615 goto out; 1616 } 1617 1618 /* we've logged all the items and now have a consistent 1619 * version of the file in the log. It is possible that 1620 * someone will come in and modify the file, but that's 1621 * fine because the log is consistent on disk, and we 1622 * have references to all of the file's extents 1623 * 1624 * It is possible that someone will come in and log the 1625 * file again, but that will end up using the synchronization 1626 * inside btrfs_sync_log to keep things safe. 1627 */ 1628 mutex_unlock(&inode->i_mutex); 1629 1630 if (ret != BTRFS_NO_LOG_SYNC) { 1631 if (ret > 0) { 1632 ret = btrfs_commit_transaction(trans, root); 1633 } else { 1634 ret = btrfs_sync_log(trans, root); 1635 if (ret == 0) 1636 ret = btrfs_end_transaction(trans, root); 1637 else 1638 ret = btrfs_commit_transaction(trans, root); 1639 } 1640 } else { 1641 ret = btrfs_end_transaction(trans, root); 1642 } 1643 out: 1644 return ret > 0 ? -EIO : ret; 1645 } 1646 1647 static const struct vm_operations_struct btrfs_file_vm_ops = { 1648 .fault = filemap_fault, 1649 .page_mkwrite = btrfs_page_mkwrite, 1650 .remap_pages = generic_file_remap_pages, 1651 }; 1652 1653 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1654 { 1655 struct address_space *mapping = filp->f_mapping; 1656 1657 if (!mapping->a_ops->readpage) 1658 return -ENOEXEC; 1659 1660 file_accessed(filp); 1661 vma->vm_ops = &btrfs_file_vm_ops; 1662 1663 return 0; 1664 } 1665 1666 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1667 int slot, u64 start, u64 end) 1668 { 1669 struct btrfs_file_extent_item *fi; 1670 struct btrfs_key key; 1671 1672 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1673 return 0; 1674 1675 btrfs_item_key_to_cpu(leaf, &key, slot); 1676 if (key.objectid != btrfs_ino(inode) || 1677 key.type != BTRFS_EXTENT_DATA_KEY) 1678 return 0; 1679 1680 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1681 1682 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1683 return 0; 1684 1685 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1686 return 0; 1687 1688 if (key.offset == end) 1689 return 1; 1690 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1691 return 1; 1692 return 0; 1693 } 1694 1695 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1696 struct btrfs_path *path, u64 offset, u64 end) 1697 { 1698 struct btrfs_root *root = BTRFS_I(inode)->root; 1699 struct extent_buffer *leaf; 1700 struct btrfs_file_extent_item *fi; 1701 struct extent_map *hole_em; 1702 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1703 struct btrfs_key key; 1704 int ret; 1705 1706 key.objectid = btrfs_ino(inode); 1707 key.type = BTRFS_EXTENT_DATA_KEY; 1708 key.offset = offset; 1709 1710 1711 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1712 if (ret < 0) 1713 return ret; 1714 BUG_ON(!ret); 1715 1716 leaf = path->nodes[0]; 1717 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1718 u64 num_bytes; 1719 1720 path->slots[0]--; 1721 fi = btrfs_item_ptr(leaf, path->slots[0], 1722 struct btrfs_file_extent_item); 1723 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1724 end - offset; 1725 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1726 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1727 btrfs_set_file_extent_offset(leaf, fi, 0); 1728 btrfs_mark_buffer_dirty(leaf); 1729 goto out; 1730 } 1731 1732 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1733 u64 num_bytes; 1734 1735 path->slots[0]++; 1736 key.offset = offset; 1737 btrfs_set_item_key_safe(trans, root, path, &key); 1738 fi = btrfs_item_ptr(leaf, path->slots[0], 1739 struct btrfs_file_extent_item); 1740 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 1741 offset; 1742 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1743 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1744 btrfs_set_file_extent_offset(leaf, fi, 0); 1745 btrfs_mark_buffer_dirty(leaf); 1746 goto out; 1747 } 1748 btrfs_release_path(path); 1749 1750 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 1751 0, 0, end - offset, 0, end - offset, 1752 0, 0, 0); 1753 if (ret) 1754 return ret; 1755 1756 out: 1757 btrfs_release_path(path); 1758 1759 hole_em = alloc_extent_map(); 1760 if (!hole_em) { 1761 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1762 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1763 &BTRFS_I(inode)->runtime_flags); 1764 } else { 1765 hole_em->start = offset; 1766 hole_em->len = end - offset; 1767 hole_em->orig_start = offset; 1768 1769 hole_em->block_start = EXTENT_MAP_HOLE; 1770 hole_em->block_len = 0; 1771 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 1772 hole_em->compress_type = BTRFS_COMPRESS_NONE; 1773 hole_em->generation = trans->transid; 1774 1775 do { 1776 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1777 write_lock(&em_tree->lock); 1778 ret = add_extent_mapping(em_tree, hole_em); 1779 if (!ret) 1780 list_move(&hole_em->list, 1781 &em_tree->modified_extents); 1782 write_unlock(&em_tree->lock); 1783 } while (ret == -EEXIST); 1784 free_extent_map(hole_em); 1785 if (ret) 1786 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1787 &BTRFS_I(inode)->runtime_flags); 1788 } 1789 1790 return 0; 1791 } 1792 1793 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1794 { 1795 struct btrfs_root *root = BTRFS_I(inode)->root; 1796 struct extent_state *cached_state = NULL; 1797 struct btrfs_path *path; 1798 struct btrfs_block_rsv *rsv; 1799 struct btrfs_trans_handle *trans; 1800 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 1801 u64 lockstart = (offset + mask) & ~mask; 1802 u64 lockend = ((offset + len) & ~mask) - 1; 1803 u64 cur_offset = lockstart; 1804 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 1805 u64 drop_end; 1806 unsigned long nr; 1807 int ret = 0; 1808 int err = 0; 1809 bool same_page = (offset >> PAGE_CACHE_SHIFT) == 1810 ((offset + len) >> PAGE_CACHE_SHIFT); 1811 1812 btrfs_wait_ordered_range(inode, offset, len); 1813 1814 mutex_lock(&inode->i_mutex); 1815 if (offset >= inode->i_size) { 1816 mutex_unlock(&inode->i_mutex); 1817 return 0; 1818 } 1819 1820 /* 1821 * Only do this if we are in the same page and we aren't doing the 1822 * entire page. 1823 */ 1824 if (same_page && len < PAGE_CACHE_SIZE) { 1825 ret = btrfs_truncate_page(inode, offset, len, 0); 1826 mutex_unlock(&inode->i_mutex); 1827 return ret; 1828 } 1829 1830 /* zero back part of the first page */ 1831 ret = btrfs_truncate_page(inode, offset, 0, 0); 1832 if (ret) { 1833 mutex_unlock(&inode->i_mutex); 1834 return ret; 1835 } 1836 1837 /* zero the front end of the last page */ 1838 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 1839 if (ret) { 1840 mutex_unlock(&inode->i_mutex); 1841 return ret; 1842 } 1843 1844 if (lockend < lockstart) { 1845 mutex_unlock(&inode->i_mutex); 1846 return 0; 1847 } 1848 1849 while (1) { 1850 struct btrfs_ordered_extent *ordered; 1851 1852 truncate_pagecache_range(inode, lockstart, lockend); 1853 1854 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1855 0, &cached_state); 1856 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 1857 1858 /* 1859 * We need to make sure we have no ordered extents in this range 1860 * and nobody raced in and read a page in this range, if we did 1861 * we need to try again. 1862 */ 1863 if ((!ordered || 1864 (ordered->file_offset + ordered->len < lockstart || 1865 ordered->file_offset > lockend)) && 1866 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 1867 lockend, EXTENT_UPTODATE, 0, 1868 cached_state)) { 1869 if (ordered) 1870 btrfs_put_ordered_extent(ordered); 1871 break; 1872 } 1873 if (ordered) 1874 btrfs_put_ordered_extent(ordered); 1875 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 1876 lockend, &cached_state, GFP_NOFS); 1877 btrfs_wait_ordered_range(inode, lockstart, 1878 lockend - lockstart + 1); 1879 } 1880 1881 path = btrfs_alloc_path(); 1882 if (!path) { 1883 ret = -ENOMEM; 1884 goto out; 1885 } 1886 1887 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 1888 if (!rsv) { 1889 ret = -ENOMEM; 1890 goto out_free; 1891 } 1892 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 1893 rsv->failfast = 1; 1894 1895 /* 1896 * 1 - update the inode 1897 * 1 - removing the extents in the range 1898 * 1 - adding the hole extent 1899 */ 1900 trans = btrfs_start_transaction(root, 3); 1901 if (IS_ERR(trans)) { 1902 err = PTR_ERR(trans); 1903 goto out_free; 1904 } 1905 1906 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 1907 min_size); 1908 BUG_ON(ret); 1909 trans->block_rsv = rsv; 1910 1911 while (cur_offset < lockend) { 1912 ret = __btrfs_drop_extents(trans, root, inode, path, 1913 cur_offset, lockend + 1, 1914 &drop_end, 1); 1915 if (ret != -ENOSPC) 1916 break; 1917 1918 trans->block_rsv = &root->fs_info->trans_block_rsv; 1919 1920 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 1921 if (ret) { 1922 err = ret; 1923 break; 1924 } 1925 1926 cur_offset = drop_end; 1927 1928 ret = btrfs_update_inode(trans, root, inode); 1929 if (ret) { 1930 err = ret; 1931 break; 1932 } 1933 1934 nr = trans->blocks_used; 1935 btrfs_end_transaction(trans, root); 1936 btrfs_btree_balance_dirty(root, nr); 1937 1938 trans = btrfs_start_transaction(root, 3); 1939 if (IS_ERR(trans)) { 1940 ret = PTR_ERR(trans); 1941 trans = NULL; 1942 break; 1943 } 1944 1945 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 1946 rsv, min_size); 1947 BUG_ON(ret); /* shouldn't happen */ 1948 trans->block_rsv = rsv; 1949 } 1950 1951 if (ret) { 1952 err = ret; 1953 goto out_trans; 1954 } 1955 1956 trans->block_rsv = &root->fs_info->trans_block_rsv; 1957 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 1958 if (ret) { 1959 err = ret; 1960 goto out_trans; 1961 } 1962 1963 out_trans: 1964 if (!trans) 1965 goto out_free; 1966 1967 trans->block_rsv = &root->fs_info->trans_block_rsv; 1968 ret = btrfs_update_inode(trans, root, inode); 1969 nr = trans->blocks_used; 1970 btrfs_end_transaction(trans, root); 1971 btrfs_btree_balance_dirty(root, nr); 1972 out_free: 1973 btrfs_free_path(path); 1974 btrfs_free_block_rsv(root, rsv); 1975 out: 1976 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1977 &cached_state, GFP_NOFS); 1978 mutex_unlock(&inode->i_mutex); 1979 if (ret && !err) 1980 err = ret; 1981 return err; 1982 } 1983 1984 static long btrfs_fallocate(struct file *file, int mode, 1985 loff_t offset, loff_t len) 1986 { 1987 struct inode *inode = file->f_path.dentry->d_inode; 1988 struct extent_state *cached_state = NULL; 1989 u64 cur_offset; 1990 u64 last_byte; 1991 u64 alloc_start; 1992 u64 alloc_end; 1993 u64 alloc_hint = 0; 1994 u64 locked_end; 1995 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 1996 struct extent_map *em; 1997 int ret; 1998 1999 alloc_start = offset & ~mask; 2000 alloc_end = (offset + len + mask) & ~mask; 2001 2002 /* Make sure we aren't being give some crap mode */ 2003 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2004 return -EOPNOTSUPP; 2005 2006 if (mode & FALLOC_FL_PUNCH_HOLE) 2007 return btrfs_punch_hole(inode, offset, len); 2008 2009 /* 2010 * Make sure we have enough space before we do the 2011 * allocation. 2012 */ 2013 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start + 1); 2014 if (ret) 2015 return ret; 2016 2017 /* 2018 * wait for ordered IO before we have any locks. We'll loop again 2019 * below with the locks held. 2020 */ 2021 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2022 2023 mutex_lock(&inode->i_mutex); 2024 ret = inode_newsize_ok(inode, alloc_end); 2025 if (ret) 2026 goto out; 2027 2028 if (alloc_start > inode->i_size) { 2029 ret = btrfs_cont_expand(inode, i_size_read(inode), 2030 alloc_start); 2031 if (ret) 2032 goto out; 2033 } 2034 2035 locked_end = alloc_end - 1; 2036 while (1) { 2037 struct btrfs_ordered_extent *ordered; 2038 2039 /* the extent lock is ordered inside the running 2040 * transaction 2041 */ 2042 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2043 locked_end, 0, &cached_state); 2044 ordered = btrfs_lookup_first_ordered_extent(inode, 2045 alloc_end - 1); 2046 if (ordered && 2047 ordered->file_offset + ordered->len > alloc_start && 2048 ordered->file_offset < alloc_end) { 2049 btrfs_put_ordered_extent(ordered); 2050 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2051 alloc_start, locked_end, 2052 &cached_state, GFP_NOFS); 2053 /* 2054 * we can't wait on the range with the transaction 2055 * running or with the extent lock held 2056 */ 2057 btrfs_wait_ordered_range(inode, alloc_start, 2058 alloc_end - alloc_start); 2059 } else { 2060 if (ordered) 2061 btrfs_put_ordered_extent(ordered); 2062 break; 2063 } 2064 } 2065 2066 cur_offset = alloc_start; 2067 while (1) { 2068 u64 actual_end; 2069 2070 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2071 alloc_end - cur_offset, 0); 2072 if (IS_ERR_OR_NULL(em)) { 2073 if (!em) 2074 ret = -ENOMEM; 2075 else 2076 ret = PTR_ERR(em); 2077 break; 2078 } 2079 last_byte = min(extent_map_end(em), alloc_end); 2080 actual_end = min_t(u64, extent_map_end(em), offset + len); 2081 last_byte = (last_byte + mask) & ~mask; 2082 2083 if (em->block_start == EXTENT_MAP_HOLE || 2084 (cur_offset >= inode->i_size && 2085 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2086 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2087 last_byte - cur_offset, 2088 1 << inode->i_blkbits, 2089 offset + len, 2090 &alloc_hint); 2091 2092 if (ret < 0) { 2093 free_extent_map(em); 2094 break; 2095 } 2096 } else if (actual_end > inode->i_size && 2097 !(mode & FALLOC_FL_KEEP_SIZE)) { 2098 /* 2099 * We didn't need to allocate any more space, but we 2100 * still extended the size of the file so we need to 2101 * update i_size. 2102 */ 2103 inode->i_ctime = CURRENT_TIME; 2104 i_size_write(inode, actual_end); 2105 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2106 } 2107 free_extent_map(em); 2108 2109 cur_offset = last_byte; 2110 if (cur_offset >= alloc_end) { 2111 ret = 0; 2112 break; 2113 } 2114 } 2115 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2116 &cached_state, GFP_NOFS); 2117 out: 2118 mutex_unlock(&inode->i_mutex); 2119 /* Let go of our reservation. */ 2120 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start + 1); 2121 return ret; 2122 } 2123 2124 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin) 2125 { 2126 struct btrfs_root *root = BTRFS_I(inode)->root; 2127 struct extent_map *em; 2128 struct extent_state *cached_state = NULL; 2129 u64 lockstart = *offset; 2130 u64 lockend = i_size_read(inode); 2131 u64 start = *offset; 2132 u64 orig_start = *offset; 2133 u64 len = i_size_read(inode); 2134 u64 last_end = 0; 2135 int ret = 0; 2136 2137 lockend = max_t(u64, root->sectorsize, lockend); 2138 if (lockend <= lockstart) 2139 lockend = lockstart + root->sectorsize; 2140 2141 len = lockend - lockstart + 1; 2142 2143 len = max_t(u64, len, root->sectorsize); 2144 if (inode->i_size == 0) 2145 return -ENXIO; 2146 2147 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2148 &cached_state); 2149 2150 /* 2151 * Delalloc is such a pain. If we have a hole and we have pending 2152 * delalloc for a portion of the hole we will get back a hole that 2153 * exists for the entire range since it hasn't been actually written 2154 * yet. So to take care of this case we need to look for an extent just 2155 * before the position we want in case there is outstanding delalloc 2156 * going on here. 2157 */ 2158 if (origin == SEEK_HOLE && start != 0) { 2159 if (start <= root->sectorsize) 2160 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2161 root->sectorsize, 0); 2162 else 2163 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2164 start - root->sectorsize, 2165 root->sectorsize, 0); 2166 if (IS_ERR(em)) { 2167 ret = PTR_ERR(em); 2168 goto out; 2169 } 2170 last_end = em->start + em->len; 2171 if (em->block_start == EXTENT_MAP_DELALLOC) 2172 last_end = min_t(u64, last_end, inode->i_size); 2173 free_extent_map(em); 2174 } 2175 2176 while (1) { 2177 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2178 if (IS_ERR(em)) { 2179 ret = PTR_ERR(em); 2180 break; 2181 } 2182 2183 if (em->block_start == EXTENT_MAP_HOLE) { 2184 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2185 if (last_end <= orig_start) { 2186 free_extent_map(em); 2187 ret = -ENXIO; 2188 break; 2189 } 2190 } 2191 2192 if (origin == SEEK_HOLE) { 2193 *offset = start; 2194 free_extent_map(em); 2195 break; 2196 } 2197 } else { 2198 if (origin == SEEK_DATA) { 2199 if (em->block_start == EXTENT_MAP_DELALLOC) { 2200 if (start >= inode->i_size) { 2201 free_extent_map(em); 2202 ret = -ENXIO; 2203 break; 2204 } 2205 } 2206 2207 *offset = start; 2208 free_extent_map(em); 2209 break; 2210 } 2211 } 2212 2213 start = em->start + em->len; 2214 last_end = em->start + em->len; 2215 2216 if (em->block_start == EXTENT_MAP_DELALLOC) 2217 last_end = min_t(u64, last_end, inode->i_size); 2218 2219 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2220 free_extent_map(em); 2221 ret = -ENXIO; 2222 break; 2223 } 2224 free_extent_map(em); 2225 cond_resched(); 2226 } 2227 if (!ret) 2228 *offset = min(*offset, inode->i_size); 2229 out: 2230 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2231 &cached_state, GFP_NOFS); 2232 return ret; 2233 } 2234 2235 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin) 2236 { 2237 struct inode *inode = file->f_mapping->host; 2238 int ret; 2239 2240 mutex_lock(&inode->i_mutex); 2241 switch (origin) { 2242 case SEEK_END: 2243 case SEEK_CUR: 2244 offset = generic_file_llseek(file, offset, origin); 2245 goto out; 2246 case SEEK_DATA: 2247 case SEEK_HOLE: 2248 if (offset >= i_size_read(inode)) { 2249 mutex_unlock(&inode->i_mutex); 2250 return -ENXIO; 2251 } 2252 2253 ret = find_desired_extent(inode, &offset, origin); 2254 if (ret) { 2255 mutex_unlock(&inode->i_mutex); 2256 return ret; 2257 } 2258 } 2259 2260 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) { 2261 offset = -EINVAL; 2262 goto out; 2263 } 2264 if (offset > inode->i_sb->s_maxbytes) { 2265 offset = -EINVAL; 2266 goto out; 2267 } 2268 2269 /* Special lock needed here? */ 2270 if (offset != file->f_pos) { 2271 file->f_pos = offset; 2272 file->f_version = 0; 2273 } 2274 out: 2275 mutex_unlock(&inode->i_mutex); 2276 return offset; 2277 } 2278 2279 const struct file_operations btrfs_file_operations = { 2280 .llseek = btrfs_file_llseek, 2281 .read = do_sync_read, 2282 .write = do_sync_write, 2283 .aio_read = generic_file_aio_read, 2284 .splice_read = generic_file_splice_read, 2285 .aio_write = btrfs_file_aio_write, 2286 .mmap = btrfs_file_mmap, 2287 .open = generic_file_open, 2288 .release = btrfs_release_file, 2289 .fsync = btrfs_sync_file, 2290 .fallocate = btrfs_fallocate, 2291 .unlocked_ioctl = btrfs_ioctl, 2292 #ifdef CONFIG_COMPAT 2293 .compat_ioctl = btrfs_ioctl, 2294 #endif 2295 }; 2296