1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 0, 0, cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this drops all the extents in the cache that intersect the range 503 * [start, end]. Existing extents are split as required. 504 */ 505 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 506 int skip_pinned) 507 { 508 struct extent_map *em; 509 struct extent_map *split = NULL; 510 struct extent_map *split2 = NULL; 511 struct extent_map_tree *em_tree = &inode->extent_tree; 512 u64 len = end - start + 1; 513 u64 gen; 514 int ret; 515 int testend = 1; 516 unsigned long flags; 517 int compressed = 0; 518 bool modified; 519 520 WARN_ON(end < start); 521 if (end == (u64)-1) { 522 len = (u64)-1; 523 testend = 0; 524 } 525 while (1) { 526 int no_splits = 0; 527 528 modified = false; 529 if (!split) 530 split = alloc_extent_map(); 531 if (!split2) 532 split2 = alloc_extent_map(); 533 if (!split || !split2) 534 no_splits = 1; 535 536 write_lock(&em_tree->lock); 537 em = lookup_extent_mapping(em_tree, start, len); 538 if (!em) { 539 write_unlock(&em_tree->lock); 540 break; 541 } 542 flags = em->flags; 543 gen = em->generation; 544 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 545 if (testend && em->start + em->len >= start + len) { 546 free_extent_map(em); 547 write_unlock(&em_tree->lock); 548 break; 549 } 550 start = em->start + em->len; 551 if (testend) 552 len = start + len - (em->start + em->len); 553 free_extent_map(em); 554 write_unlock(&em_tree->lock); 555 continue; 556 } 557 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 558 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 559 clear_bit(EXTENT_FLAG_LOGGING, &flags); 560 modified = !list_empty(&em->list); 561 if (no_splits) 562 goto next; 563 564 if (em->start < start) { 565 split->start = em->start; 566 split->len = start - em->start; 567 568 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 569 split->orig_start = em->orig_start; 570 split->block_start = em->block_start; 571 572 if (compressed) 573 split->block_len = em->block_len; 574 else 575 split->block_len = split->len; 576 split->orig_block_len = max(split->block_len, 577 em->orig_block_len); 578 split->ram_bytes = em->ram_bytes; 579 } else { 580 split->orig_start = split->start; 581 split->block_len = 0; 582 split->block_start = em->block_start; 583 split->orig_block_len = 0; 584 split->ram_bytes = split->len; 585 } 586 587 split->generation = gen; 588 split->flags = flags; 589 split->compress_type = em->compress_type; 590 replace_extent_mapping(em_tree, em, split, modified); 591 free_extent_map(split); 592 split = split2; 593 split2 = NULL; 594 } 595 if (testend && em->start + em->len > start + len) { 596 u64 diff = start + len - em->start; 597 598 split->start = start + len; 599 split->len = em->start + em->len - (start + len); 600 split->flags = flags; 601 split->compress_type = em->compress_type; 602 split->generation = gen; 603 604 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 605 split->orig_block_len = max(em->block_len, 606 em->orig_block_len); 607 608 split->ram_bytes = em->ram_bytes; 609 if (compressed) { 610 split->block_len = em->block_len; 611 split->block_start = em->block_start; 612 split->orig_start = em->orig_start; 613 } else { 614 split->block_len = split->len; 615 split->block_start = em->block_start 616 + diff; 617 split->orig_start = em->orig_start; 618 } 619 } else { 620 split->ram_bytes = split->len; 621 split->orig_start = split->start; 622 split->block_len = 0; 623 split->block_start = em->block_start; 624 split->orig_block_len = 0; 625 } 626 627 if (extent_map_in_tree(em)) { 628 replace_extent_mapping(em_tree, em, split, 629 modified); 630 } else { 631 ret = add_extent_mapping(em_tree, split, 632 modified); 633 ASSERT(ret == 0); /* Logic error */ 634 } 635 free_extent_map(split); 636 split = NULL; 637 } 638 next: 639 if (extent_map_in_tree(em)) 640 remove_extent_mapping(em_tree, em); 641 write_unlock(&em_tree->lock); 642 643 /* once for us */ 644 free_extent_map(em); 645 /* once for the tree*/ 646 free_extent_map(em); 647 } 648 if (split) 649 free_extent_map(split); 650 if (split2) 651 free_extent_map(split2); 652 } 653 654 /* 655 * this is very complex, but the basic idea is to drop all extents 656 * in the range start - end. hint_block is filled in with a block number 657 * that would be a good hint to the block allocator for this file. 658 * 659 * If an extent intersects the range but is not entirely inside the range 660 * it is either truncated or split. Anything entirely inside the range 661 * is deleted from the tree. 662 * 663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 664 * to deal with that. We set the field 'bytes_found' of the arguments structure 665 * with the number of allocated bytes found in the target range, so that the 666 * caller can update the inode's number of bytes in an atomic way when 667 * replacing extents in a range to avoid races with stat(2). 668 */ 669 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, struct btrfs_inode *inode, 671 struct btrfs_drop_extents_args *args) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct extent_buffer *leaf; 675 struct btrfs_file_extent_item *fi; 676 struct btrfs_ref ref = { 0 }; 677 struct btrfs_key key; 678 struct btrfs_key new_key; 679 u64 ino = btrfs_ino(inode); 680 u64 search_start = args->start; 681 u64 disk_bytenr = 0; 682 u64 num_bytes = 0; 683 u64 extent_offset = 0; 684 u64 extent_end = 0; 685 u64 last_end = args->start; 686 int del_nr = 0; 687 int del_slot = 0; 688 int extent_type; 689 int recow; 690 int ret; 691 int modify_tree = -1; 692 int update_refs; 693 int found = 0; 694 int leafs_visited = 0; 695 struct btrfs_path *path = args->path; 696 697 args->bytes_found = 0; 698 args->extent_inserted = false; 699 700 /* Must always have a path if ->replace_extent is true */ 701 ASSERT(!(args->replace_extent && !args->path)); 702 703 if (!path) { 704 path = btrfs_alloc_path(); 705 if (!path) { 706 ret = -ENOMEM; 707 goto out; 708 } 709 } 710 711 if (args->drop_cache) 712 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 713 714 if (args->start >= inode->disk_i_size && !args->replace_extent) 715 modify_tree = 0; 716 717 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 718 while (1) { 719 recow = 0; 720 ret = btrfs_lookup_file_extent(trans, root, path, ino, 721 search_start, modify_tree); 722 if (ret < 0) 723 break; 724 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 725 leaf = path->nodes[0]; 726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 727 if (key.objectid == ino && 728 key.type == BTRFS_EXTENT_DATA_KEY) 729 path->slots[0]--; 730 } 731 ret = 0; 732 leafs_visited++; 733 next_slot: 734 leaf = path->nodes[0]; 735 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 736 BUG_ON(del_nr > 0); 737 ret = btrfs_next_leaf(root, path); 738 if (ret < 0) 739 break; 740 if (ret > 0) { 741 ret = 0; 742 break; 743 } 744 leafs_visited++; 745 leaf = path->nodes[0]; 746 recow = 1; 747 } 748 749 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 750 751 if (key.objectid > ino) 752 break; 753 if (WARN_ON_ONCE(key.objectid < ino) || 754 key.type < BTRFS_EXTENT_DATA_KEY) { 755 ASSERT(del_nr == 0); 756 path->slots[0]++; 757 goto next_slot; 758 } 759 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 760 break; 761 762 fi = btrfs_item_ptr(leaf, path->slots[0], 763 struct btrfs_file_extent_item); 764 extent_type = btrfs_file_extent_type(leaf, fi); 765 766 if (extent_type == BTRFS_FILE_EXTENT_REG || 767 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 768 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 769 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 770 extent_offset = btrfs_file_extent_offset(leaf, fi); 771 extent_end = key.offset + 772 btrfs_file_extent_num_bytes(leaf, fi); 773 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 774 extent_end = key.offset + 775 btrfs_file_extent_ram_bytes(leaf, fi); 776 } else { 777 /* can't happen */ 778 BUG(); 779 } 780 781 /* 782 * Don't skip extent items representing 0 byte lengths. They 783 * used to be created (bug) if while punching holes we hit 784 * -ENOSPC condition. So if we find one here, just ensure we 785 * delete it, otherwise we would insert a new file extent item 786 * with the same key (offset) as that 0 bytes length file 787 * extent item in the call to setup_items_for_insert() later 788 * in this function. 789 */ 790 if (extent_end == key.offset && extent_end >= search_start) { 791 last_end = extent_end; 792 goto delete_extent_item; 793 } 794 795 if (extent_end <= search_start) { 796 path->slots[0]++; 797 goto next_slot; 798 } 799 800 found = 1; 801 search_start = max(key.offset, args->start); 802 if (recow || !modify_tree) { 803 modify_tree = -1; 804 btrfs_release_path(path); 805 continue; 806 } 807 808 /* 809 * | - range to drop - | 810 * | -------- extent -------- | 811 */ 812 if (args->start > key.offset && args->end < extent_end) { 813 BUG_ON(del_nr > 0); 814 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 815 ret = -EOPNOTSUPP; 816 break; 817 } 818 819 memcpy(&new_key, &key, sizeof(new_key)); 820 new_key.offset = args->start; 821 ret = btrfs_duplicate_item(trans, root, path, 822 &new_key); 823 if (ret == -EAGAIN) { 824 btrfs_release_path(path); 825 continue; 826 } 827 if (ret < 0) 828 break; 829 830 leaf = path->nodes[0]; 831 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 832 struct btrfs_file_extent_item); 833 btrfs_set_file_extent_num_bytes(leaf, fi, 834 args->start - key.offset); 835 836 fi = btrfs_item_ptr(leaf, path->slots[0], 837 struct btrfs_file_extent_item); 838 839 extent_offset += args->start - key.offset; 840 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 extent_end - args->start); 843 btrfs_mark_buffer_dirty(leaf); 844 845 if (update_refs && disk_bytenr > 0) { 846 btrfs_init_generic_ref(&ref, 847 BTRFS_ADD_DELAYED_REF, 848 disk_bytenr, num_bytes, 0); 849 btrfs_init_data_ref(&ref, 850 root->root_key.objectid, 851 new_key.objectid, 852 args->start - extent_offset, 853 0, false); 854 ret = btrfs_inc_extent_ref(trans, &ref); 855 BUG_ON(ret); /* -ENOMEM */ 856 } 857 key.offset = args->start; 858 } 859 /* 860 * From here on out we will have actually dropped something, so 861 * last_end can be updated. 862 */ 863 last_end = extent_end; 864 865 /* 866 * | ---- range to drop ----- | 867 * | -------- extent -------- | 868 */ 869 if (args->start <= key.offset && args->end < extent_end) { 870 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 871 ret = -EOPNOTSUPP; 872 break; 873 } 874 875 memcpy(&new_key, &key, sizeof(new_key)); 876 new_key.offset = args->end; 877 btrfs_set_item_key_safe(fs_info, path, &new_key); 878 879 extent_offset += args->end - key.offset; 880 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 881 btrfs_set_file_extent_num_bytes(leaf, fi, 882 extent_end - args->end); 883 btrfs_mark_buffer_dirty(leaf); 884 if (update_refs && disk_bytenr > 0) 885 args->bytes_found += args->end - key.offset; 886 break; 887 } 888 889 search_start = extent_end; 890 /* 891 * | ---- range to drop ----- | 892 * | -------- extent -------- | 893 */ 894 if (args->start > key.offset && args->end >= extent_end) { 895 BUG_ON(del_nr > 0); 896 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 897 ret = -EOPNOTSUPP; 898 break; 899 } 900 901 btrfs_set_file_extent_num_bytes(leaf, fi, 902 args->start - key.offset); 903 btrfs_mark_buffer_dirty(leaf); 904 if (update_refs && disk_bytenr > 0) 905 args->bytes_found += extent_end - args->start; 906 if (args->end == extent_end) 907 break; 908 909 path->slots[0]++; 910 goto next_slot; 911 } 912 913 /* 914 * | ---- range to drop ----- | 915 * | ------ extent ------ | 916 */ 917 if (args->start <= key.offset && args->end >= extent_end) { 918 delete_extent_item: 919 if (del_nr == 0) { 920 del_slot = path->slots[0]; 921 del_nr = 1; 922 } else { 923 BUG_ON(del_slot + del_nr != path->slots[0]); 924 del_nr++; 925 } 926 927 if (update_refs && 928 extent_type == BTRFS_FILE_EXTENT_INLINE) { 929 args->bytes_found += extent_end - key.offset; 930 extent_end = ALIGN(extent_end, 931 fs_info->sectorsize); 932 } else if (update_refs && disk_bytenr > 0) { 933 btrfs_init_generic_ref(&ref, 934 BTRFS_DROP_DELAYED_REF, 935 disk_bytenr, num_bytes, 0); 936 btrfs_init_data_ref(&ref, 937 root->root_key.objectid, 938 key.objectid, 939 key.offset - extent_offset, 0, 940 false); 941 ret = btrfs_free_extent(trans, &ref); 942 BUG_ON(ret); /* -ENOMEM */ 943 args->bytes_found += extent_end - key.offset; 944 } 945 946 if (args->end == extent_end) 947 break; 948 949 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 950 path->slots[0]++; 951 goto next_slot; 952 } 953 954 ret = btrfs_del_items(trans, root, path, del_slot, 955 del_nr); 956 if (ret) { 957 btrfs_abort_transaction(trans, ret); 958 break; 959 } 960 961 del_nr = 0; 962 del_slot = 0; 963 964 btrfs_release_path(path); 965 continue; 966 } 967 968 BUG(); 969 } 970 971 if (!ret && del_nr > 0) { 972 /* 973 * Set path->slots[0] to first slot, so that after the delete 974 * if items are move off from our leaf to its immediate left or 975 * right neighbor leafs, we end up with a correct and adjusted 976 * path->slots[0] for our insertion (if args->replace_extent). 977 */ 978 path->slots[0] = del_slot; 979 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 980 if (ret) 981 btrfs_abort_transaction(trans, ret); 982 } 983 984 leaf = path->nodes[0]; 985 /* 986 * If btrfs_del_items() was called, it might have deleted a leaf, in 987 * which case it unlocked our path, so check path->locks[0] matches a 988 * write lock. 989 */ 990 if (!ret && args->replace_extent && leafs_visited == 1 && 991 path->locks[0] == BTRFS_WRITE_LOCK && 992 btrfs_leaf_free_space(leaf) >= 993 sizeof(struct btrfs_item) + args->extent_item_size) { 994 995 key.objectid = ino; 996 key.type = BTRFS_EXTENT_DATA_KEY; 997 key.offset = args->start; 998 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 999 struct btrfs_key slot_key; 1000 1001 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1002 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1003 path->slots[0]++; 1004 } 1005 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 1006 args->extent_inserted = true; 1007 } 1008 1009 if (!args->path) 1010 btrfs_free_path(path); 1011 else if (!args->extent_inserted) 1012 btrfs_release_path(path); 1013 out: 1014 args->drop_end = found ? min(args->end, last_end) : args->end; 1015 1016 return ret; 1017 } 1018 1019 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1020 u64 objectid, u64 bytenr, u64 orig_offset, 1021 u64 *start, u64 *end) 1022 { 1023 struct btrfs_file_extent_item *fi; 1024 struct btrfs_key key; 1025 u64 extent_end; 1026 1027 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1028 return 0; 1029 1030 btrfs_item_key_to_cpu(leaf, &key, slot); 1031 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1032 return 0; 1033 1034 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1035 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1036 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1037 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1038 btrfs_file_extent_compression(leaf, fi) || 1039 btrfs_file_extent_encryption(leaf, fi) || 1040 btrfs_file_extent_other_encoding(leaf, fi)) 1041 return 0; 1042 1043 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1044 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1045 return 0; 1046 1047 *start = key.offset; 1048 *end = extent_end; 1049 return 1; 1050 } 1051 1052 /* 1053 * Mark extent in the range start - end as written. 1054 * 1055 * This changes extent type from 'pre-allocated' to 'regular'. If only 1056 * part of extent is marked as written, the extent will be split into 1057 * two or three. 1058 */ 1059 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1060 struct btrfs_inode *inode, u64 start, u64 end) 1061 { 1062 struct btrfs_fs_info *fs_info = trans->fs_info; 1063 struct btrfs_root *root = inode->root; 1064 struct extent_buffer *leaf; 1065 struct btrfs_path *path; 1066 struct btrfs_file_extent_item *fi; 1067 struct btrfs_ref ref = { 0 }; 1068 struct btrfs_key key; 1069 struct btrfs_key new_key; 1070 u64 bytenr; 1071 u64 num_bytes; 1072 u64 extent_end; 1073 u64 orig_offset; 1074 u64 other_start; 1075 u64 other_end; 1076 u64 split; 1077 int del_nr = 0; 1078 int del_slot = 0; 1079 int recow; 1080 int ret = 0; 1081 u64 ino = btrfs_ino(inode); 1082 1083 path = btrfs_alloc_path(); 1084 if (!path) 1085 return -ENOMEM; 1086 again: 1087 recow = 0; 1088 split = start; 1089 key.objectid = ino; 1090 key.type = BTRFS_EXTENT_DATA_KEY; 1091 key.offset = split; 1092 1093 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1094 if (ret < 0) 1095 goto out; 1096 if (ret > 0 && path->slots[0] > 0) 1097 path->slots[0]--; 1098 1099 leaf = path->nodes[0]; 1100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1101 if (key.objectid != ino || 1102 key.type != BTRFS_EXTENT_DATA_KEY) { 1103 ret = -EINVAL; 1104 btrfs_abort_transaction(trans, ret); 1105 goto out; 1106 } 1107 fi = btrfs_item_ptr(leaf, path->slots[0], 1108 struct btrfs_file_extent_item); 1109 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1110 ret = -EINVAL; 1111 btrfs_abort_transaction(trans, ret); 1112 goto out; 1113 } 1114 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1115 if (key.offset > start || extent_end < end) { 1116 ret = -EINVAL; 1117 btrfs_abort_transaction(trans, ret); 1118 goto out; 1119 } 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1214 num_bytes, 0); 1215 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1216 orig_offset, 0, false); 1217 ret = btrfs_inc_extent_ref(trans, &ref); 1218 if (ret) { 1219 btrfs_abort_transaction(trans, ret); 1220 goto out; 1221 } 1222 1223 if (split == start) { 1224 key.offset = start; 1225 } else { 1226 if (start != key.offset) { 1227 ret = -EINVAL; 1228 btrfs_abort_transaction(trans, ret); 1229 goto out; 1230 } 1231 path->slots[0]--; 1232 extent_end = end; 1233 } 1234 recow = 1; 1235 } 1236 1237 other_start = end; 1238 other_end = 0; 1239 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1240 num_bytes, 0); 1241 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1242 0, false); 1243 if (extent_mergeable(leaf, path->slots[0] + 1, 1244 ino, bytenr, orig_offset, 1245 &other_start, &other_end)) { 1246 if (recow) { 1247 btrfs_release_path(path); 1248 goto again; 1249 } 1250 extent_end = other_end; 1251 del_slot = path->slots[0] + 1; 1252 del_nr++; 1253 ret = btrfs_free_extent(trans, &ref); 1254 if (ret) { 1255 btrfs_abort_transaction(trans, ret); 1256 goto out; 1257 } 1258 } 1259 other_start = 0; 1260 other_end = start; 1261 if (extent_mergeable(leaf, path->slots[0] - 1, 1262 ino, bytenr, orig_offset, 1263 &other_start, &other_end)) { 1264 if (recow) { 1265 btrfs_release_path(path); 1266 goto again; 1267 } 1268 key.offset = other_start; 1269 del_slot = path->slots[0]; 1270 del_nr++; 1271 ret = btrfs_free_extent(trans, &ref); 1272 if (ret) { 1273 btrfs_abort_transaction(trans, ret); 1274 goto out; 1275 } 1276 } 1277 if (del_nr == 0) { 1278 fi = btrfs_item_ptr(leaf, path->slots[0], 1279 struct btrfs_file_extent_item); 1280 btrfs_set_file_extent_type(leaf, fi, 1281 BTRFS_FILE_EXTENT_REG); 1282 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1283 btrfs_mark_buffer_dirty(leaf); 1284 } else { 1285 fi = btrfs_item_ptr(leaf, del_slot - 1, 1286 struct btrfs_file_extent_item); 1287 btrfs_set_file_extent_type(leaf, fi, 1288 BTRFS_FILE_EXTENT_REG); 1289 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1290 btrfs_set_file_extent_num_bytes(leaf, fi, 1291 extent_end - key.offset); 1292 btrfs_mark_buffer_dirty(leaf); 1293 1294 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1295 if (ret < 0) { 1296 btrfs_abort_transaction(trans, ret); 1297 goto out; 1298 } 1299 } 1300 out: 1301 btrfs_free_path(path); 1302 return ret; 1303 } 1304 1305 /* 1306 * on error we return an unlocked page and the error value 1307 * on success we return a locked page and 0 1308 */ 1309 static int prepare_uptodate_page(struct inode *inode, 1310 struct page *page, u64 pos, 1311 bool force_uptodate) 1312 { 1313 int ret = 0; 1314 1315 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1316 !PageUptodate(page)) { 1317 ret = btrfs_readpage(NULL, page); 1318 if (ret) 1319 return ret; 1320 lock_page(page); 1321 if (!PageUptodate(page)) { 1322 unlock_page(page); 1323 return -EIO; 1324 } 1325 1326 /* 1327 * Since btrfs_readpage() will unlock the page before it 1328 * returns, there is a window where btrfs_releasepage() can be 1329 * called to release the page. Here we check both inode 1330 * mapping and PagePrivate() to make sure the page was not 1331 * released. 1332 * 1333 * The private flag check is essential for subpage as we need 1334 * to store extra bitmap using page->private. 1335 */ 1336 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1337 unlock_page(page); 1338 return -EAGAIN; 1339 } 1340 } 1341 return 0; 1342 } 1343 1344 /* 1345 * this just gets pages into the page cache and locks them down. 1346 */ 1347 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1348 size_t num_pages, loff_t pos, 1349 size_t write_bytes, bool force_uptodate) 1350 { 1351 int i; 1352 unsigned long index = pos >> PAGE_SHIFT; 1353 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1354 int err = 0; 1355 int faili; 1356 1357 for (i = 0; i < num_pages; i++) { 1358 again: 1359 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1360 mask | __GFP_WRITE); 1361 if (!pages[i]) { 1362 faili = i - 1; 1363 err = -ENOMEM; 1364 goto fail; 1365 } 1366 1367 err = set_page_extent_mapped(pages[i]); 1368 if (err < 0) { 1369 faili = i; 1370 goto fail; 1371 } 1372 1373 if (i == 0) 1374 err = prepare_uptodate_page(inode, pages[i], pos, 1375 force_uptodate); 1376 if (!err && i == num_pages - 1) 1377 err = prepare_uptodate_page(inode, pages[i], 1378 pos + write_bytes, false); 1379 if (err) { 1380 put_page(pages[i]); 1381 if (err == -EAGAIN) { 1382 err = 0; 1383 goto again; 1384 } 1385 faili = i - 1; 1386 goto fail; 1387 } 1388 wait_on_page_writeback(pages[i]); 1389 } 1390 1391 return 0; 1392 fail: 1393 while (faili >= 0) { 1394 unlock_page(pages[faili]); 1395 put_page(pages[faili]); 1396 faili--; 1397 } 1398 return err; 1399 1400 } 1401 1402 /* 1403 * This function locks the extent and properly waits for data=ordered extents 1404 * to finish before allowing the pages to be modified if need. 1405 * 1406 * The return value: 1407 * 1 - the extent is locked 1408 * 0 - the extent is not locked, and everything is OK 1409 * -EAGAIN - need re-prepare the pages 1410 * the other < 0 number - Something wrong happens 1411 */ 1412 static noinline int 1413 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1414 size_t num_pages, loff_t pos, 1415 size_t write_bytes, 1416 u64 *lockstart, u64 *lockend, 1417 struct extent_state **cached_state) 1418 { 1419 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1420 u64 start_pos; 1421 u64 last_pos; 1422 int i; 1423 int ret = 0; 1424 1425 start_pos = round_down(pos, fs_info->sectorsize); 1426 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1427 1428 if (start_pos < inode->vfs_inode.i_size) { 1429 struct btrfs_ordered_extent *ordered; 1430 1431 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1432 cached_state); 1433 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1434 last_pos - start_pos + 1); 1435 if (ordered && 1436 ordered->file_offset + ordered->num_bytes > start_pos && 1437 ordered->file_offset <= last_pos) { 1438 unlock_extent_cached(&inode->io_tree, start_pos, 1439 last_pos, cached_state); 1440 for (i = 0; i < num_pages; i++) { 1441 unlock_page(pages[i]); 1442 put_page(pages[i]); 1443 } 1444 btrfs_start_ordered_extent(ordered, 1); 1445 btrfs_put_ordered_extent(ordered); 1446 return -EAGAIN; 1447 } 1448 if (ordered) 1449 btrfs_put_ordered_extent(ordered); 1450 1451 *lockstart = start_pos; 1452 *lockend = last_pos; 1453 ret = 1; 1454 } 1455 1456 /* 1457 * We should be called after prepare_pages() which should have locked 1458 * all pages in the range. 1459 */ 1460 for (i = 0; i < num_pages; i++) 1461 WARN_ON(!PageLocked(pages[i])); 1462 1463 return ret; 1464 } 1465 1466 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1467 size_t *write_bytes, bool nowait) 1468 { 1469 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1470 struct btrfs_root *root = inode->root; 1471 u64 lockstart, lockend; 1472 u64 num_bytes; 1473 int ret; 1474 1475 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1476 return 0; 1477 1478 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1479 return -EAGAIN; 1480 1481 lockstart = round_down(pos, fs_info->sectorsize); 1482 lockend = round_up(pos + *write_bytes, 1483 fs_info->sectorsize) - 1; 1484 num_bytes = lockend - lockstart + 1; 1485 1486 if (nowait) { 1487 struct btrfs_ordered_extent *ordered; 1488 1489 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1490 return -EAGAIN; 1491 1492 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1493 num_bytes); 1494 if (ordered) { 1495 btrfs_put_ordered_extent(ordered); 1496 ret = -EAGAIN; 1497 goto out_unlock; 1498 } 1499 } else { 1500 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1501 lockend, NULL); 1502 } 1503 1504 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1505 NULL, NULL, NULL, false); 1506 if (ret <= 0) { 1507 ret = 0; 1508 if (!nowait) 1509 btrfs_drew_write_unlock(&root->snapshot_lock); 1510 } else { 1511 *write_bytes = min_t(size_t, *write_bytes , 1512 num_bytes - pos + lockstart); 1513 } 1514 out_unlock: 1515 unlock_extent(&inode->io_tree, lockstart, lockend); 1516 1517 return ret; 1518 } 1519 1520 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1521 size_t *write_bytes) 1522 { 1523 return check_can_nocow(inode, pos, write_bytes, true); 1524 } 1525 1526 /* 1527 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1528 * 1529 * @pos: File offset 1530 * @write_bytes: The length to write, will be updated to the nocow writeable 1531 * range 1532 * 1533 * This function will flush ordered extents in the range to ensure proper 1534 * nocow checks. 1535 * 1536 * Return: 1537 * >0 and update @write_bytes if we can do nocow write 1538 * 0 if we can't do nocow write 1539 * -EAGAIN if we can't get the needed lock or there are ordered extents 1540 * for * (nowait == true) case 1541 * <0 if other error happened 1542 * 1543 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1544 */ 1545 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1546 size_t *write_bytes) 1547 { 1548 return check_can_nocow(inode, pos, write_bytes, false); 1549 } 1550 1551 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1552 { 1553 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1554 } 1555 1556 static void update_time_for_write(struct inode *inode) 1557 { 1558 struct timespec64 now; 1559 1560 if (IS_NOCMTIME(inode)) 1561 return; 1562 1563 now = current_time(inode); 1564 if (!timespec64_equal(&inode->i_mtime, &now)) 1565 inode->i_mtime = now; 1566 1567 if (!timespec64_equal(&inode->i_ctime, &now)) 1568 inode->i_ctime = now; 1569 1570 if (IS_I_VERSION(inode)) 1571 inode_inc_iversion(inode); 1572 } 1573 1574 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1575 size_t count) 1576 { 1577 struct file *file = iocb->ki_filp; 1578 struct inode *inode = file_inode(file); 1579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1580 loff_t pos = iocb->ki_pos; 1581 int ret; 1582 loff_t oldsize; 1583 loff_t start_pos; 1584 1585 if (iocb->ki_flags & IOCB_NOWAIT) { 1586 size_t nocow_bytes = count; 1587 1588 /* We will allocate space in case nodatacow is not set, so bail */ 1589 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1590 return -EAGAIN; 1591 /* 1592 * There are holes in the range or parts of the range that must 1593 * be COWed (shared extents, RO block groups, etc), so just bail 1594 * out. 1595 */ 1596 if (nocow_bytes < count) 1597 return -EAGAIN; 1598 } 1599 1600 current->backing_dev_info = inode_to_bdi(inode); 1601 ret = file_remove_privs(file); 1602 if (ret) 1603 return ret; 1604 1605 /* 1606 * We reserve space for updating the inode when we reserve space for the 1607 * extent we are going to write, so we will enospc out there. We don't 1608 * need to start yet another transaction to update the inode as we will 1609 * update the inode when we finish writing whatever data we write. 1610 */ 1611 update_time_for_write(inode); 1612 1613 start_pos = round_down(pos, fs_info->sectorsize); 1614 oldsize = i_size_read(inode); 1615 if (start_pos > oldsize) { 1616 /* Expand hole size to cover write data, preventing empty gap */ 1617 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1618 1619 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1620 if (ret) { 1621 current->backing_dev_info = NULL; 1622 return ret; 1623 } 1624 } 1625 1626 return 0; 1627 } 1628 1629 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1630 struct iov_iter *i) 1631 { 1632 struct file *file = iocb->ki_filp; 1633 loff_t pos; 1634 struct inode *inode = file_inode(file); 1635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1636 struct page **pages = NULL; 1637 struct extent_changeset *data_reserved = NULL; 1638 u64 release_bytes = 0; 1639 u64 lockstart; 1640 u64 lockend; 1641 size_t num_written = 0; 1642 int nrptrs; 1643 ssize_t ret; 1644 bool only_release_metadata = false; 1645 bool force_page_uptodate = false; 1646 loff_t old_isize = i_size_read(inode); 1647 unsigned int ilock_flags = 0; 1648 1649 if (iocb->ki_flags & IOCB_NOWAIT) 1650 ilock_flags |= BTRFS_ILOCK_TRY; 1651 1652 ret = btrfs_inode_lock(inode, ilock_flags); 1653 if (ret < 0) 1654 return ret; 1655 1656 ret = generic_write_checks(iocb, i); 1657 if (ret <= 0) 1658 goto out; 1659 1660 ret = btrfs_write_check(iocb, i, ret); 1661 if (ret < 0) 1662 goto out; 1663 1664 pos = iocb->ki_pos; 1665 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1666 PAGE_SIZE / (sizeof(struct page *))); 1667 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1668 nrptrs = max(nrptrs, 8); 1669 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1670 if (!pages) { 1671 ret = -ENOMEM; 1672 goto out; 1673 } 1674 1675 while (iov_iter_count(i) > 0) { 1676 struct extent_state *cached_state = NULL; 1677 size_t offset = offset_in_page(pos); 1678 size_t sector_offset; 1679 size_t write_bytes = min(iov_iter_count(i), 1680 nrptrs * (size_t)PAGE_SIZE - 1681 offset); 1682 size_t num_pages; 1683 size_t reserve_bytes; 1684 size_t dirty_pages; 1685 size_t copied; 1686 size_t dirty_sectors; 1687 size_t num_sectors; 1688 int extents_locked; 1689 1690 /* 1691 * Fault pages before locking them in prepare_pages 1692 * to avoid recursive lock 1693 */ 1694 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1695 ret = -EFAULT; 1696 break; 1697 } 1698 1699 only_release_metadata = false; 1700 sector_offset = pos & (fs_info->sectorsize - 1); 1701 1702 extent_changeset_release(data_reserved); 1703 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1704 &data_reserved, pos, 1705 write_bytes); 1706 if (ret < 0) { 1707 /* 1708 * If we don't have to COW at the offset, reserve 1709 * metadata only. write_bytes may get smaller than 1710 * requested here. 1711 */ 1712 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1713 &write_bytes) > 0) 1714 only_release_metadata = true; 1715 else 1716 break; 1717 } 1718 1719 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1720 WARN_ON(num_pages > nrptrs); 1721 reserve_bytes = round_up(write_bytes + sector_offset, 1722 fs_info->sectorsize); 1723 WARN_ON(reserve_bytes == 0); 1724 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1725 reserve_bytes); 1726 if (ret) { 1727 if (!only_release_metadata) 1728 btrfs_free_reserved_data_space(BTRFS_I(inode), 1729 data_reserved, pos, 1730 write_bytes); 1731 else 1732 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1733 break; 1734 } 1735 1736 release_bytes = reserve_bytes; 1737 again: 1738 /* 1739 * This is going to setup the pages array with the number of 1740 * pages we want, so we don't really need to worry about the 1741 * contents of pages from loop to loop 1742 */ 1743 ret = prepare_pages(inode, pages, num_pages, 1744 pos, write_bytes, 1745 force_page_uptodate); 1746 if (ret) { 1747 btrfs_delalloc_release_extents(BTRFS_I(inode), 1748 reserve_bytes); 1749 break; 1750 } 1751 1752 extents_locked = lock_and_cleanup_extent_if_need( 1753 BTRFS_I(inode), pages, 1754 num_pages, pos, write_bytes, &lockstart, 1755 &lockend, &cached_state); 1756 if (extents_locked < 0) { 1757 if (extents_locked == -EAGAIN) 1758 goto again; 1759 btrfs_delalloc_release_extents(BTRFS_I(inode), 1760 reserve_bytes); 1761 ret = extents_locked; 1762 break; 1763 } 1764 1765 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1766 1767 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1768 dirty_sectors = round_up(copied + sector_offset, 1769 fs_info->sectorsize); 1770 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1771 1772 /* 1773 * if we have trouble faulting in the pages, fall 1774 * back to one page at a time 1775 */ 1776 if (copied < write_bytes) 1777 nrptrs = 1; 1778 1779 if (copied == 0) { 1780 force_page_uptodate = true; 1781 dirty_sectors = 0; 1782 dirty_pages = 0; 1783 } else { 1784 force_page_uptodate = false; 1785 dirty_pages = DIV_ROUND_UP(copied + offset, 1786 PAGE_SIZE); 1787 } 1788 1789 if (num_sectors > dirty_sectors) { 1790 /* release everything except the sectors we dirtied */ 1791 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1792 if (only_release_metadata) { 1793 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1794 release_bytes, true); 1795 } else { 1796 u64 __pos; 1797 1798 __pos = round_down(pos, 1799 fs_info->sectorsize) + 1800 (dirty_pages << PAGE_SHIFT); 1801 btrfs_delalloc_release_space(BTRFS_I(inode), 1802 data_reserved, __pos, 1803 release_bytes, true); 1804 } 1805 } 1806 1807 release_bytes = round_up(copied + sector_offset, 1808 fs_info->sectorsize); 1809 1810 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1811 dirty_pages, pos, copied, 1812 &cached_state, only_release_metadata); 1813 1814 /* 1815 * If we have not locked the extent range, because the range's 1816 * start offset is >= i_size, we might still have a non-NULL 1817 * cached extent state, acquired while marking the extent range 1818 * as delalloc through btrfs_dirty_pages(). Therefore free any 1819 * possible cached extent state to avoid a memory leak. 1820 */ 1821 if (extents_locked) 1822 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1823 lockstart, lockend, &cached_state); 1824 else 1825 free_extent_state(cached_state); 1826 1827 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1828 if (ret) { 1829 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1830 break; 1831 } 1832 1833 release_bytes = 0; 1834 if (only_release_metadata) 1835 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1836 1837 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1838 1839 cond_resched(); 1840 1841 balance_dirty_pages_ratelimited(inode->i_mapping); 1842 1843 pos += copied; 1844 num_written += copied; 1845 } 1846 1847 kfree(pages); 1848 1849 if (release_bytes) { 1850 if (only_release_metadata) { 1851 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1852 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1853 release_bytes, true); 1854 } else { 1855 btrfs_delalloc_release_space(BTRFS_I(inode), 1856 data_reserved, 1857 round_down(pos, fs_info->sectorsize), 1858 release_bytes, true); 1859 } 1860 } 1861 1862 extent_changeset_free(data_reserved); 1863 if (num_written > 0) { 1864 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1865 iocb->ki_pos += num_written; 1866 } 1867 out: 1868 btrfs_inode_unlock(inode, ilock_flags); 1869 return num_written ? num_written : ret; 1870 } 1871 1872 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1873 const struct iov_iter *iter, loff_t offset) 1874 { 1875 const u32 blocksize_mask = fs_info->sectorsize - 1; 1876 1877 if (offset & blocksize_mask) 1878 return -EINVAL; 1879 1880 if (iov_iter_alignment(iter) & blocksize_mask) 1881 return -EINVAL; 1882 1883 return 0; 1884 } 1885 1886 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1887 { 1888 const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC); 1889 struct file *file = iocb->ki_filp; 1890 struct inode *inode = file_inode(file); 1891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1892 loff_t pos; 1893 ssize_t written = 0; 1894 ssize_t written_buffered; 1895 size_t prev_left = 0; 1896 loff_t endbyte; 1897 ssize_t err; 1898 unsigned int ilock_flags = 0; 1899 1900 if (iocb->ki_flags & IOCB_NOWAIT) 1901 ilock_flags |= BTRFS_ILOCK_TRY; 1902 1903 /* If the write DIO is within EOF, use a shared lock */ 1904 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1905 ilock_flags |= BTRFS_ILOCK_SHARED; 1906 1907 relock: 1908 err = btrfs_inode_lock(inode, ilock_flags); 1909 if (err < 0) 1910 return err; 1911 1912 err = generic_write_checks(iocb, from); 1913 if (err <= 0) { 1914 btrfs_inode_unlock(inode, ilock_flags); 1915 return err; 1916 } 1917 1918 err = btrfs_write_check(iocb, from, err); 1919 if (err < 0) { 1920 btrfs_inode_unlock(inode, ilock_flags); 1921 goto out; 1922 } 1923 1924 pos = iocb->ki_pos; 1925 /* 1926 * Re-check since file size may have changed just before taking the 1927 * lock or pos may have changed because of O_APPEND in generic_write_check() 1928 */ 1929 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1930 pos + iov_iter_count(from) > i_size_read(inode)) { 1931 btrfs_inode_unlock(inode, ilock_flags); 1932 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1933 goto relock; 1934 } 1935 1936 if (check_direct_IO(fs_info, from, pos)) { 1937 btrfs_inode_unlock(inode, ilock_flags); 1938 goto buffered; 1939 } 1940 1941 /* 1942 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw() 1943 * calls generic_write_sync() (through iomap_dio_complete()), because 1944 * that results in calling fsync (btrfs_sync_file()) which will try to 1945 * lock the inode in exclusive/write mode. 1946 */ 1947 if (is_sync_write) 1948 iocb->ki_flags &= ~IOCB_DSYNC; 1949 1950 /* 1951 * The iov_iter can be mapped to the same file range we are writing to. 1952 * If that's the case, then we will deadlock in the iomap code, because 1953 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1954 * an ordered extent, and after that it will fault in the pages that the 1955 * iov_iter refers to. During the fault in we end up in the readahead 1956 * pages code (starting at btrfs_readahead()), which will lock the range, 1957 * find that ordered extent and then wait for it to complete (at 1958 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1959 * obviously the ordered extent can never complete as we didn't submit 1960 * yet the respective bio(s). This always happens when the buffer is 1961 * memory mapped to the same file range, since the iomap DIO code always 1962 * invalidates pages in the target file range (after starting and waiting 1963 * for any writeback). 1964 * 1965 * So here we disable page faults in the iov_iter and then retry if we 1966 * got -EFAULT, faulting in the pages before the retry. 1967 */ 1968 again: 1969 from->nofault = true; 1970 err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1971 IOMAP_DIO_PARTIAL, written); 1972 from->nofault = false; 1973 1974 /* No increment (+=) because iomap returns a cumulative value. */ 1975 if (err > 0) 1976 written = err; 1977 1978 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1979 const size_t left = iov_iter_count(from); 1980 /* 1981 * We have more data left to write. Try to fault in as many as 1982 * possible of the remainder pages and retry. We do this without 1983 * releasing and locking again the inode, to prevent races with 1984 * truncate. 1985 * 1986 * Also, in case the iov refers to pages in the file range of the 1987 * file we want to write to (due to a mmap), we could enter an 1988 * infinite loop if we retry after faulting the pages in, since 1989 * iomap will invalidate any pages in the range early on, before 1990 * it tries to fault in the pages of the iov. So we keep track of 1991 * how much was left of iov in the previous EFAULT and fallback 1992 * to buffered IO in case we haven't made any progress. 1993 */ 1994 if (left == prev_left) { 1995 err = -ENOTBLK; 1996 } else { 1997 fault_in_iov_iter_readable(from, left); 1998 prev_left = left; 1999 goto again; 2000 } 2001 } 2002 2003 btrfs_inode_unlock(inode, ilock_flags); 2004 2005 /* 2006 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do 2007 * the fsync (call generic_write_sync()). 2008 */ 2009 if (is_sync_write) 2010 iocb->ki_flags |= IOCB_DSYNC; 2011 2012 /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */ 2013 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 2014 goto out; 2015 2016 buffered: 2017 pos = iocb->ki_pos; 2018 written_buffered = btrfs_buffered_write(iocb, from); 2019 if (written_buffered < 0) { 2020 err = written_buffered; 2021 goto out; 2022 } 2023 /* 2024 * Ensure all data is persisted. We want the next direct IO read to be 2025 * able to read what was just written. 2026 */ 2027 endbyte = pos + written_buffered - 1; 2028 err = btrfs_fdatawrite_range(inode, pos, endbyte); 2029 if (err) 2030 goto out; 2031 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 2032 if (err) 2033 goto out; 2034 written += written_buffered; 2035 iocb->ki_pos = pos + written_buffered; 2036 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 2037 endbyte >> PAGE_SHIFT); 2038 out: 2039 return err < 0 ? err : written; 2040 } 2041 2042 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 2043 struct iov_iter *from) 2044 { 2045 struct file *file = iocb->ki_filp; 2046 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2047 ssize_t num_written = 0; 2048 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2049 2050 /* 2051 * If the fs flips readonly due to some impossible error, although we 2052 * have opened a file as writable, we have to stop this write operation 2053 * to ensure consistency. 2054 */ 2055 if (BTRFS_FS_ERROR(inode->root->fs_info)) 2056 return -EROFS; 2057 2058 if (!(iocb->ki_flags & IOCB_DIRECT) && 2059 (iocb->ki_flags & IOCB_NOWAIT)) 2060 return -EOPNOTSUPP; 2061 2062 if (sync) 2063 atomic_inc(&inode->sync_writers); 2064 2065 if (iocb->ki_flags & IOCB_DIRECT) 2066 num_written = btrfs_direct_write(iocb, from); 2067 else 2068 num_written = btrfs_buffered_write(iocb, from); 2069 2070 btrfs_set_inode_last_sub_trans(inode); 2071 2072 if (num_written > 0) 2073 num_written = generic_write_sync(iocb, num_written); 2074 2075 if (sync) 2076 atomic_dec(&inode->sync_writers); 2077 2078 current->backing_dev_info = NULL; 2079 return num_written; 2080 } 2081 2082 int btrfs_release_file(struct inode *inode, struct file *filp) 2083 { 2084 struct btrfs_file_private *private = filp->private_data; 2085 2086 if (private && private->filldir_buf) 2087 kfree(private->filldir_buf); 2088 kfree(private); 2089 filp->private_data = NULL; 2090 2091 /* 2092 * Set by setattr when we are about to truncate a file from a non-zero 2093 * size to a zero size. This tries to flush down new bytes that may 2094 * have been written if the application were using truncate to replace 2095 * a file in place. 2096 */ 2097 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2098 &BTRFS_I(inode)->runtime_flags)) 2099 filemap_flush(inode->i_mapping); 2100 return 0; 2101 } 2102 2103 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2104 { 2105 int ret; 2106 struct blk_plug plug; 2107 2108 /* 2109 * This is only called in fsync, which would do synchronous writes, so 2110 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2111 * multiple disks using raid profile, a large IO can be split to 2112 * several segments of stripe length (currently 64K). 2113 */ 2114 blk_start_plug(&plug); 2115 atomic_inc(&BTRFS_I(inode)->sync_writers); 2116 ret = btrfs_fdatawrite_range(inode, start, end); 2117 atomic_dec(&BTRFS_I(inode)->sync_writers); 2118 blk_finish_plug(&plug); 2119 2120 return ret; 2121 } 2122 2123 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2124 { 2125 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2126 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2127 2128 if (btrfs_inode_in_log(inode, fs_info->generation) && 2129 list_empty(&ctx->ordered_extents)) 2130 return true; 2131 2132 /* 2133 * If we are doing a fast fsync we can not bail out if the inode's 2134 * last_trans is <= then the last committed transaction, because we only 2135 * update the last_trans of the inode during ordered extent completion, 2136 * and for a fast fsync we don't wait for that, we only wait for the 2137 * writeback to complete. 2138 */ 2139 if (inode->last_trans <= fs_info->last_trans_committed && 2140 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2141 list_empty(&ctx->ordered_extents))) 2142 return true; 2143 2144 return false; 2145 } 2146 2147 /* 2148 * fsync call for both files and directories. This logs the inode into 2149 * the tree log instead of forcing full commits whenever possible. 2150 * 2151 * It needs to call filemap_fdatawait so that all ordered extent updates are 2152 * in the metadata btree are up to date for copying to the log. 2153 * 2154 * It drops the inode mutex before doing the tree log commit. This is an 2155 * important optimization for directories because holding the mutex prevents 2156 * new operations on the dir while we write to disk. 2157 */ 2158 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2159 { 2160 struct dentry *dentry = file_dentry(file); 2161 struct inode *inode = d_inode(dentry); 2162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2163 struct btrfs_root *root = BTRFS_I(inode)->root; 2164 struct btrfs_trans_handle *trans; 2165 struct btrfs_log_ctx ctx; 2166 int ret = 0, err; 2167 u64 len; 2168 bool full_sync; 2169 2170 trace_btrfs_sync_file(file, datasync); 2171 2172 btrfs_init_log_ctx(&ctx, inode); 2173 2174 /* 2175 * Always set the range to a full range, otherwise we can get into 2176 * several problems, from missing file extent items to represent holes 2177 * when not using the NO_HOLES feature, to log tree corruption due to 2178 * races between hole detection during logging and completion of ordered 2179 * extents outside the range, to missing checksums due to ordered extents 2180 * for which we flushed only a subset of their pages. 2181 */ 2182 start = 0; 2183 end = LLONG_MAX; 2184 len = (u64)LLONG_MAX + 1; 2185 2186 /* 2187 * We write the dirty pages in the range and wait until they complete 2188 * out of the ->i_mutex. If so, we can flush the dirty pages by 2189 * multi-task, and make the performance up. See 2190 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2191 */ 2192 ret = start_ordered_ops(inode, start, end); 2193 if (ret) 2194 goto out; 2195 2196 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2197 2198 atomic_inc(&root->log_batch); 2199 2200 /* 2201 * Always check for the full sync flag while holding the inode's lock, 2202 * to avoid races with other tasks. The flag must be either set all the 2203 * time during logging or always off all the time while logging. 2204 */ 2205 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2206 &BTRFS_I(inode)->runtime_flags); 2207 2208 /* 2209 * Before we acquired the inode's lock and the mmap lock, someone may 2210 * have dirtied more pages in the target range. We need to make sure 2211 * that writeback for any such pages does not start while we are logging 2212 * the inode, because if it does, any of the following might happen when 2213 * we are not doing a full inode sync: 2214 * 2215 * 1) We log an extent after its writeback finishes but before its 2216 * checksums are added to the csum tree, leading to -EIO errors 2217 * when attempting to read the extent after a log replay. 2218 * 2219 * 2) We can end up logging an extent before its writeback finishes. 2220 * Therefore after the log replay we will have a file extent item 2221 * pointing to an unwritten extent (and no data checksums as well). 2222 * 2223 * So trigger writeback for any eventual new dirty pages and then we 2224 * wait for all ordered extents to complete below. 2225 */ 2226 ret = start_ordered_ops(inode, start, end); 2227 if (ret) { 2228 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2229 goto out; 2230 } 2231 2232 /* 2233 * We have to do this here to avoid the priority inversion of waiting on 2234 * IO of a lower priority task while holding a transaction open. 2235 * 2236 * For a full fsync we wait for the ordered extents to complete while 2237 * for a fast fsync we wait just for writeback to complete, and then 2238 * attach the ordered extents to the transaction so that a transaction 2239 * commit waits for their completion, to avoid data loss if we fsync, 2240 * the current transaction commits before the ordered extents complete 2241 * and a power failure happens right after that. 2242 * 2243 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2244 * logical address recorded in the ordered extent may change. We need 2245 * to wait for the IO to stabilize the logical address. 2246 */ 2247 if (full_sync || btrfs_is_zoned(fs_info)) { 2248 ret = btrfs_wait_ordered_range(inode, start, len); 2249 } else { 2250 /* 2251 * Get our ordered extents as soon as possible to avoid doing 2252 * checksum lookups in the csum tree, and use instead the 2253 * checksums attached to the ordered extents. 2254 */ 2255 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2256 &ctx.ordered_extents); 2257 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2258 } 2259 2260 if (ret) 2261 goto out_release_extents; 2262 2263 atomic_inc(&root->log_batch); 2264 2265 smp_mb(); 2266 if (skip_inode_logging(&ctx)) { 2267 /* 2268 * We've had everything committed since the last time we were 2269 * modified so clear this flag in case it was set for whatever 2270 * reason, it's no longer relevant. 2271 */ 2272 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2273 &BTRFS_I(inode)->runtime_flags); 2274 /* 2275 * An ordered extent might have started before and completed 2276 * already with io errors, in which case the inode was not 2277 * updated and we end up here. So check the inode's mapping 2278 * for any errors that might have happened since we last 2279 * checked called fsync. 2280 */ 2281 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2282 goto out_release_extents; 2283 } 2284 2285 /* 2286 * We use start here because we will need to wait on the IO to complete 2287 * in btrfs_sync_log, which could require joining a transaction (for 2288 * example checking cross references in the nocow path). If we use join 2289 * here we could get into a situation where we're waiting on IO to 2290 * happen that is blocked on a transaction trying to commit. With start 2291 * we inc the extwriter counter, so we wait for all extwriters to exit 2292 * before we start blocking joiners. This comment is to keep somebody 2293 * from thinking they are super smart and changing this to 2294 * btrfs_join_transaction *cough*Josef*cough*. 2295 */ 2296 trans = btrfs_start_transaction(root, 0); 2297 if (IS_ERR(trans)) { 2298 ret = PTR_ERR(trans); 2299 goto out_release_extents; 2300 } 2301 trans->in_fsync = true; 2302 2303 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2304 btrfs_release_log_ctx_extents(&ctx); 2305 if (ret < 0) { 2306 /* Fallthrough and commit/free transaction. */ 2307 ret = 1; 2308 } 2309 2310 /* we've logged all the items and now have a consistent 2311 * version of the file in the log. It is possible that 2312 * someone will come in and modify the file, but that's 2313 * fine because the log is consistent on disk, and we 2314 * have references to all of the file's extents 2315 * 2316 * It is possible that someone will come in and log the 2317 * file again, but that will end up using the synchronization 2318 * inside btrfs_sync_log to keep things safe. 2319 */ 2320 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2321 2322 if (ret != BTRFS_NO_LOG_SYNC) { 2323 if (!ret) { 2324 ret = btrfs_sync_log(trans, root, &ctx); 2325 if (!ret) { 2326 ret = btrfs_end_transaction(trans); 2327 goto out; 2328 } 2329 } 2330 if (!full_sync) { 2331 ret = btrfs_wait_ordered_range(inode, start, len); 2332 if (ret) { 2333 btrfs_end_transaction(trans); 2334 goto out; 2335 } 2336 } 2337 ret = btrfs_commit_transaction(trans); 2338 } else { 2339 ret = btrfs_end_transaction(trans); 2340 } 2341 out: 2342 ASSERT(list_empty(&ctx.list)); 2343 err = file_check_and_advance_wb_err(file); 2344 if (!ret) 2345 ret = err; 2346 return ret > 0 ? -EIO : ret; 2347 2348 out_release_extents: 2349 btrfs_release_log_ctx_extents(&ctx); 2350 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2351 goto out; 2352 } 2353 2354 static const struct vm_operations_struct btrfs_file_vm_ops = { 2355 .fault = filemap_fault, 2356 .map_pages = filemap_map_pages, 2357 .page_mkwrite = btrfs_page_mkwrite, 2358 }; 2359 2360 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2361 { 2362 struct address_space *mapping = filp->f_mapping; 2363 2364 if (!mapping->a_ops->readpage) 2365 return -ENOEXEC; 2366 2367 file_accessed(filp); 2368 vma->vm_ops = &btrfs_file_vm_ops; 2369 2370 return 0; 2371 } 2372 2373 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2374 int slot, u64 start, u64 end) 2375 { 2376 struct btrfs_file_extent_item *fi; 2377 struct btrfs_key key; 2378 2379 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2380 return 0; 2381 2382 btrfs_item_key_to_cpu(leaf, &key, slot); 2383 if (key.objectid != btrfs_ino(inode) || 2384 key.type != BTRFS_EXTENT_DATA_KEY) 2385 return 0; 2386 2387 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2388 2389 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2390 return 0; 2391 2392 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2393 return 0; 2394 2395 if (key.offset == end) 2396 return 1; 2397 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2398 return 1; 2399 return 0; 2400 } 2401 2402 static int fill_holes(struct btrfs_trans_handle *trans, 2403 struct btrfs_inode *inode, 2404 struct btrfs_path *path, u64 offset, u64 end) 2405 { 2406 struct btrfs_fs_info *fs_info = trans->fs_info; 2407 struct btrfs_root *root = inode->root; 2408 struct extent_buffer *leaf; 2409 struct btrfs_file_extent_item *fi; 2410 struct extent_map *hole_em; 2411 struct extent_map_tree *em_tree = &inode->extent_tree; 2412 struct btrfs_key key; 2413 int ret; 2414 2415 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2416 goto out; 2417 2418 key.objectid = btrfs_ino(inode); 2419 key.type = BTRFS_EXTENT_DATA_KEY; 2420 key.offset = offset; 2421 2422 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2423 if (ret <= 0) { 2424 /* 2425 * We should have dropped this offset, so if we find it then 2426 * something has gone horribly wrong. 2427 */ 2428 if (ret == 0) 2429 ret = -EINVAL; 2430 return ret; 2431 } 2432 2433 leaf = path->nodes[0]; 2434 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2435 u64 num_bytes; 2436 2437 path->slots[0]--; 2438 fi = btrfs_item_ptr(leaf, path->slots[0], 2439 struct btrfs_file_extent_item); 2440 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2441 end - offset; 2442 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2443 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2444 btrfs_set_file_extent_offset(leaf, fi, 0); 2445 btrfs_mark_buffer_dirty(leaf); 2446 goto out; 2447 } 2448 2449 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2450 u64 num_bytes; 2451 2452 key.offset = offset; 2453 btrfs_set_item_key_safe(fs_info, path, &key); 2454 fi = btrfs_item_ptr(leaf, path->slots[0], 2455 struct btrfs_file_extent_item); 2456 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2457 offset; 2458 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2459 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2460 btrfs_set_file_extent_offset(leaf, fi, 0); 2461 btrfs_mark_buffer_dirty(leaf); 2462 goto out; 2463 } 2464 btrfs_release_path(path); 2465 2466 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2467 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2468 if (ret) 2469 return ret; 2470 2471 out: 2472 btrfs_release_path(path); 2473 2474 hole_em = alloc_extent_map(); 2475 if (!hole_em) { 2476 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2477 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2478 } else { 2479 hole_em->start = offset; 2480 hole_em->len = end - offset; 2481 hole_em->ram_bytes = hole_em->len; 2482 hole_em->orig_start = offset; 2483 2484 hole_em->block_start = EXTENT_MAP_HOLE; 2485 hole_em->block_len = 0; 2486 hole_em->orig_block_len = 0; 2487 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2488 hole_em->generation = trans->transid; 2489 2490 do { 2491 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2492 write_lock(&em_tree->lock); 2493 ret = add_extent_mapping(em_tree, hole_em, 1); 2494 write_unlock(&em_tree->lock); 2495 } while (ret == -EEXIST); 2496 free_extent_map(hole_em); 2497 if (ret) 2498 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2499 &inode->runtime_flags); 2500 } 2501 2502 return 0; 2503 } 2504 2505 /* 2506 * Find a hole extent on given inode and change start/len to the end of hole 2507 * extent.(hole/vacuum extent whose em->start <= start && 2508 * em->start + em->len > start) 2509 * When a hole extent is found, return 1 and modify start/len. 2510 */ 2511 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2512 { 2513 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2514 struct extent_map *em; 2515 int ret = 0; 2516 2517 em = btrfs_get_extent(inode, NULL, 0, 2518 round_down(*start, fs_info->sectorsize), 2519 round_up(*len, fs_info->sectorsize)); 2520 if (IS_ERR(em)) 2521 return PTR_ERR(em); 2522 2523 /* Hole or vacuum extent(only exists in no-hole mode) */ 2524 if (em->block_start == EXTENT_MAP_HOLE) { 2525 ret = 1; 2526 *len = em->start + em->len > *start + *len ? 2527 0 : *start + *len - em->start - em->len; 2528 *start = em->start + em->len; 2529 } 2530 free_extent_map(em); 2531 return ret; 2532 } 2533 2534 static int btrfs_punch_hole_lock_range(struct inode *inode, 2535 const u64 lockstart, 2536 const u64 lockend, 2537 struct extent_state **cached_state) 2538 { 2539 /* 2540 * For subpage case, if the range is not at page boundary, we could 2541 * have pages at the leading/tailing part of the range. 2542 * This could lead to dead loop since filemap_range_has_page() 2543 * will always return true. 2544 * So here we need to do extra page alignment for 2545 * filemap_range_has_page(). 2546 */ 2547 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2548 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2549 2550 while (1) { 2551 struct btrfs_ordered_extent *ordered; 2552 int ret; 2553 2554 truncate_pagecache_range(inode, lockstart, lockend); 2555 2556 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2557 cached_state); 2558 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2559 lockend); 2560 2561 /* 2562 * We need to make sure we have no ordered extents in this range 2563 * and nobody raced in and read a page in this range, if we did 2564 * we need to try again. 2565 */ 2566 if ((!ordered || 2567 (ordered->file_offset + ordered->num_bytes <= lockstart || 2568 ordered->file_offset > lockend)) && 2569 !filemap_range_has_page(inode->i_mapping, 2570 page_lockstart, page_lockend)) { 2571 if (ordered) 2572 btrfs_put_ordered_extent(ordered); 2573 break; 2574 } 2575 if (ordered) 2576 btrfs_put_ordered_extent(ordered); 2577 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2578 lockend, cached_state); 2579 ret = btrfs_wait_ordered_range(inode, lockstart, 2580 lockend - lockstart + 1); 2581 if (ret) 2582 return ret; 2583 } 2584 return 0; 2585 } 2586 2587 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2588 struct btrfs_inode *inode, 2589 struct btrfs_path *path, 2590 struct btrfs_replace_extent_info *extent_info, 2591 const u64 replace_len, 2592 const u64 bytes_to_drop) 2593 { 2594 struct btrfs_fs_info *fs_info = trans->fs_info; 2595 struct btrfs_root *root = inode->root; 2596 struct btrfs_file_extent_item *extent; 2597 struct extent_buffer *leaf; 2598 struct btrfs_key key; 2599 int slot; 2600 struct btrfs_ref ref = { 0 }; 2601 int ret; 2602 2603 if (replace_len == 0) 2604 return 0; 2605 2606 if (extent_info->disk_offset == 0 && 2607 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2608 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2609 return 0; 2610 } 2611 2612 key.objectid = btrfs_ino(inode); 2613 key.type = BTRFS_EXTENT_DATA_KEY; 2614 key.offset = extent_info->file_offset; 2615 ret = btrfs_insert_empty_item(trans, root, path, &key, 2616 sizeof(struct btrfs_file_extent_item)); 2617 if (ret) 2618 return ret; 2619 leaf = path->nodes[0]; 2620 slot = path->slots[0]; 2621 write_extent_buffer(leaf, extent_info->extent_buf, 2622 btrfs_item_ptr_offset(leaf, slot), 2623 sizeof(struct btrfs_file_extent_item)); 2624 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2625 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2626 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2627 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2628 if (extent_info->is_new_extent) 2629 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2630 btrfs_mark_buffer_dirty(leaf); 2631 btrfs_release_path(path); 2632 2633 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2634 replace_len); 2635 if (ret) 2636 return ret; 2637 2638 /* If it's a hole, nothing more needs to be done. */ 2639 if (extent_info->disk_offset == 0) { 2640 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2641 return 0; 2642 } 2643 2644 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2645 2646 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2647 key.objectid = extent_info->disk_offset; 2648 key.type = BTRFS_EXTENT_ITEM_KEY; 2649 key.offset = extent_info->disk_len; 2650 ret = btrfs_alloc_reserved_file_extent(trans, root, 2651 btrfs_ino(inode), 2652 extent_info->file_offset, 2653 extent_info->qgroup_reserved, 2654 &key); 2655 } else { 2656 u64 ref_offset; 2657 2658 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2659 extent_info->disk_offset, 2660 extent_info->disk_len, 0); 2661 ref_offset = extent_info->file_offset - extent_info->data_offset; 2662 btrfs_init_data_ref(&ref, root->root_key.objectid, 2663 btrfs_ino(inode), ref_offset, 0, false); 2664 ret = btrfs_inc_extent_ref(trans, &ref); 2665 } 2666 2667 extent_info->insertions++; 2668 2669 return ret; 2670 } 2671 2672 /* 2673 * The respective range must have been previously locked, as well as the inode. 2674 * The end offset is inclusive (last byte of the range). 2675 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2676 * the file range with an extent. 2677 * When not punching a hole, we don't want to end up in a state where we dropped 2678 * extents without inserting a new one, so we must abort the transaction to avoid 2679 * a corruption. 2680 */ 2681 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2682 struct btrfs_path *path, const u64 start, 2683 const u64 end, 2684 struct btrfs_replace_extent_info *extent_info, 2685 struct btrfs_trans_handle **trans_out) 2686 { 2687 struct btrfs_drop_extents_args drop_args = { 0 }; 2688 struct btrfs_root *root = inode->root; 2689 struct btrfs_fs_info *fs_info = root->fs_info; 2690 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2691 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2692 struct btrfs_trans_handle *trans = NULL; 2693 struct btrfs_block_rsv *rsv; 2694 unsigned int rsv_count; 2695 u64 cur_offset; 2696 u64 len = end - start; 2697 int ret = 0; 2698 2699 if (end <= start) 2700 return -EINVAL; 2701 2702 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2703 if (!rsv) { 2704 ret = -ENOMEM; 2705 goto out; 2706 } 2707 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2708 rsv->failfast = 1; 2709 2710 /* 2711 * 1 - update the inode 2712 * 1 - removing the extents in the range 2713 * 1 - adding the hole extent if no_holes isn't set or if we are 2714 * replacing the range with a new extent 2715 */ 2716 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2717 rsv_count = 3; 2718 else 2719 rsv_count = 2; 2720 2721 trans = btrfs_start_transaction(root, rsv_count); 2722 if (IS_ERR(trans)) { 2723 ret = PTR_ERR(trans); 2724 trans = NULL; 2725 goto out_free; 2726 } 2727 2728 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2729 min_size, false); 2730 BUG_ON(ret); 2731 trans->block_rsv = rsv; 2732 2733 cur_offset = start; 2734 drop_args.path = path; 2735 drop_args.end = end + 1; 2736 drop_args.drop_cache = true; 2737 while (cur_offset < end) { 2738 drop_args.start = cur_offset; 2739 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2740 /* If we are punching a hole decrement the inode's byte count */ 2741 if (!extent_info) 2742 btrfs_update_inode_bytes(inode, 0, 2743 drop_args.bytes_found); 2744 if (ret != -ENOSPC) { 2745 /* 2746 * The only time we don't want to abort is if we are 2747 * attempting to clone a partial inline extent, in which 2748 * case we'll get EOPNOTSUPP. However if we aren't 2749 * clone we need to abort no matter what, because if we 2750 * got EOPNOTSUPP via prealloc then we messed up and 2751 * need to abort. 2752 */ 2753 if (ret && 2754 (ret != -EOPNOTSUPP || 2755 (extent_info && extent_info->is_new_extent))) 2756 btrfs_abort_transaction(trans, ret); 2757 break; 2758 } 2759 2760 trans->block_rsv = &fs_info->trans_block_rsv; 2761 2762 if (!extent_info && cur_offset < drop_args.drop_end && 2763 cur_offset < ino_size) { 2764 ret = fill_holes(trans, inode, path, cur_offset, 2765 drop_args.drop_end); 2766 if (ret) { 2767 /* 2768 * If we failed then we didn't insert our hole 2769 * entries for the area we dropped, so now the 2770 * fs is corrupted, so we must abort the 2771 * transaction. 2772 */ 2773 btrfs_abort_transaction(trans, ret); 2774 break; 2775 } 2776 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2777 /* 2778 * We are past the i_size here, but since we didn't 2779 * insert holes we need to clear the mapped area so we 2780 * know to not set disk_i_size in this area until a new 2781 * file extent is inserted here. 2782 */ 2783 ret = btrfs_inode_clear_file_extent_range(inode, 2784 cur_offset, 2785 drop_args.drop_end - cur_offset); 2786 if (ret) { 2787 /* 2788 * We couldn't clear our area, so we could 2789 * presumably adjust up and corrupt the fs, so 2790 * we need to abort. 2791 */ 2792 btrfs_abort_transaction(trans, ret); 2793 break; 2794 } 2795 } 2796 2797 if (extent_info && 2798 drop_args.drop_end > extent_info->file_offset) { 2799 u64 replace_len = drop_args.drop_end - 2800 extent_info->file_offset; 2801 2802 ret = btrfs_insert_replace_extent(trans, inode, path, 2803 extent_info, replace_len, 2804 drop_args.bytes_found); 2805 if (ret) { 2806 btrfs_abort_transaction(trans, ret); 2807 break; 2808 } 2809 extent_info->data_len -= replace_len; 2810 extent_info->data_offset += replace_len; 2811 extent_info->file_offset += replace_len; 2812 } 2813 2814 ret = btrfs_update_inode(trans, root, inode); 2815 if (ret) 2816 break; 2817 2818 btrfs_end_transaction(trans); 2819 btrfs_btree_balance_dirty(fs_info); 2820 2821 trans = btrfs_start_transaction(root, rsv_count); 2822 if (IS_ERR(trans)) { 2823 ret = PTR_ERR(trans); 2824 trans = NULL; 2825 break; 2826 } 2827 2828 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2829 rsv, min_size, false); 2830 BUG_ON(ret); /* shouldn't happen */ 2831 trans->block_rsv = rsv; 2832 2833 cur_offset = drop_args.drop_end; 2834 len = end - cur_offset; 2835 if (!extent_info && len) { 2836 ret = find_first_non_hole(inode, &cur_offset, &len); 2837 if (unlikely(ret < 0)) 2838 break; 2839 if (ret && !len) { 2840 ret = 0; 2841 break; 2842 } 2843 } 2844 } 2845 2846 /* 2847 * If we were cloning, force the next fsync to be a full one since we 2848 * we replaced (or just dropped in the case of cloning holes when 2849 * NO_HOLES is enabled) file extent items and did not setup new extent 2850 * maps for the replacement extents (or holes). 2851 */ 2852 if (extent_info && !extent_info->is_new_extent) 2853 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2854 2855 if (ret) 2856 goto out_trans; 2857 2858 trans->block_rsv = &fs_info->trans_block_rsv; 2859 /* 2860 * If we are using the NO_HOLES feature we might have had already an 2861 * hole that overlaps a part of the region [lockstart, lockend] and 2862 * ends at (or beyond) lockend. Since we have no file extent items to 2863 * represent holes, drop_end can be less than lockend and so we must 2864 * make sure we have an extent map representing the existing hole (the 2865 * call to __btrfs_drop_extents() might have dropped the existing extent 2866 * map representing the existing hole), otherwise the fast fsync path 2867 * will not record the existence of the hole region 2868 * [existing_hole_start, lockend]. 2869 */ 2870 if (drop_args.drop_end <= end) 2871 drop_args.drop_end = end + 1; 2872 /* 2873 * Don't insert file hole extent item if it's for a range beyond eof 2874 * (because it's useless) or if it represents a 0 bytes range (when 2875 * cur_offset == drop_end). 2876 */ 2877 if (!extent_info && cur_offset < ino_size && 2878 cur_offset < drop_args.drop_end) { 2879 ret = fill_holes(trans, inode, path, cur_offset, 2880 drop_args.drop_end); 2881 if (ret) { 2882 /* Same comment as above. */ 2883 btrfs_abort_transaction(trans, ret); 2884 goto out_trans; 2885 } 2886 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2887 /* See the comment in the loop above for the reasoning here. */ 2888 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2889 drop_args.drop_end - cur_offset); 2890 if (ret) { 2891 btrfs_abort_transaction(trans, ret); 2892 goto out_trans; 2893 } 2894 2895 } 2896 if (extent_info) { 2897 ret = btrfs_insert_replace_extent(trans, inode, path, 2898 extent_info, extent_info->data_len, 2899 drop_args.bytes_found); 2900 if (ret) { 2901 btrfs_abort_transaction(trans, ret); 2902 goto out_trans; 2903 } 2904 } 2905 2906 out_trans: 2907 if (!trans) 2908 goto out_free; 2909 2910 trans->block_rsv = &fs_info->trans_block_rsv; 2911 if (ret) 2912 btrfs_end_transaction(trans); 2913 else 2914 *trans_out = trans; 2915 out_free: 2916 btrfs_free_block_rsv(fs_info, rsv); 2917 out: 2918 return ret; 2919 } 2920 2921 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2922 { 2923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2924 struct btrfs_root *root = BTRFS_I(inode)->root; 2925 struct extent_state *cached_state = NULL; 2926 struct btrfs_path *path; 2927 struct btrfs_trans_handle *trans = NULL; 2928 u64 lockstart; 2929 u64 lockend; 2930 u64 tail_start; 2931 u64 tail_len; 2932 u64 orig_start = offset; 2933 int ret = 0; 2934 bool same_block; 2935 u64 ino_size; 2936 bool truncated_block = false; 2937 bool updated_inode = false; 2938 2939 ret = btrfs_wait_ordered_range(inode, offset, len); 2940 if (ret) 2941 return ret; 2942 2943 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2944 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2945 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2946 if (ret < 0) 2947 goto out_only_mutex; 2948 if (ret && !len) { 2949 /* Already in a large hole */ 2950 ret = 0; 2951 goto out_only_mutex; 2952 } 2953 2954 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2955 lockend = round_down(offset + len, 2956 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2957 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2958 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2959 /* 2960 * We needn't truncate any block which is beyond the end of the file 2961 * because we are sure there is no data there. 2962 */ 2963 /* 2964 * Only do this if we are in the same block and we aren't doing the 2965 * entire block. 2966 */ 2967 if (same_block && len < fs_info->sectorsize) { 2968 if (offset < ino_size) { 2969 truncated_block = true; 2970 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2971 0); 2972 } else { 2973 ret = 0; 2974 } 2975 goto out_only_mutex; 2976 } 2977 2978 /* zero back part of the first block */ 2979 if (offset < ino_size) { 2980 truncated_block = true; 2981 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2982 if (ret) { 2983 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2984 return ret; 2985 } 2986 } 2987 2988 /* Check the aligned pages after the first unaligned page, 2989 * if offset != orig_start, which means the first unaligned page 2990 * including several following pages are already in holes, 2991 * the extra check can be skipped */ 2992 if (offset == orig_start) { 2993 /* after truncate page, check hole again */ 2994 len = offset + len - lockstart; 2995 offset = lockstart; 2996 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2997 if (ret < 0) 2998 goto out_only_mutex; 2999 if (ret && !len) { 3000 ret = 0; 3001 goto out_only_mutex; 3002 } 3003 lockstart = offset; 3004 } 3005 3006 /* Check the tail unaligned part is in a hole */ 3007 tail_start = lockend + 1; 3008 tail_len = offset + len - tail_start; 3009 if (tail_len) { 3010 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 3011 if (unlikely(ret < 0)) 3012 goto out_only_mutex; 3013 if (!ret) { 3014 /* zero the front end of the last page */ 3015 if (tail_start + tail_len < ino_size) { 3016 truncated_block = true; 3017 ret = btrfs_truncate_block(BTRFS_I(inode), 3018 tail_start + tail_len, 3019 0, 1); 3020 if (ret) 3021 goto out_only_mutex; 3022 } 3023 } 3024 } 3025 3026 if (lockend < lockstart) { 3027 ret = 0; 3028 goto out_only_mutex; 3029 } 3030 3031 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3032 &cached_state); 3033 if (ret) 3034 goto out_only_mutex; 3035 3036 path = btrfs_alloc_path(); 3037 if (!path) { 3038 ret = -ENOMEM; 3039 goto out; 3040 } 3041 3042 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3043 lockend, NULL, &trans); 3044 btrfs_free_path(path); 3045 if (ret) 3046 goto out; 3047 3048 ASSERT(trans != NULL); 3049 inode_inc_iversion(inode); 3050 inode->i_mtime = inode->i_ctime = current_time(inode); 3051 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3052 updated_inode = true; 3053 btrfs_end_transaction(trans); 3054 btrfs_btree_balance_dirty(fs_info); 3055 out: 3056 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3057 &cached_state); 3058 out_only_mutex: 3059 if (!updated_inode && truncated_block && !ret) { 3060 /* 3061 * If we only end up zeroing part of a page, we still need to 3062 * update the inode item, so that all the time fields are 3063 * updated as well as the necessary btrfs inode in memory fields 3064 * for detecting, at fsync time, if the inode isn't yet in the 3065 * log tree or it's there but not up to date. 3066 */ 3067 struct timespec64 now = current_time(inode); 3068 3069 inode_inc_iversion(inode); 3070 inode->i_mtime = now; 3071 inode->i_ctime = now; 3072 trans = btrfs_start_transaction(root, 1); 3073 if (IS_ERR(trans)) { 3074 ret = PTR_ERR(trans); 3075 } else { 3076 int ret2; 3077 3078 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3079 ret2 = btrfs_end_transaction(trans); 3080 if (!ret) 3081 ret = ret2; 3082 } 3083 } 3084 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3085 return ret; 3086 } 3087 3088 /* Helper structure to record which range is already reserved */ 3089 struct falloc_range { 3090 struct list_head list; 3091 u64 start; 3092 u64 len; 3093 }; 3094 3095 /* 3096 * Helper function to add falloc range 3097 * 3098 * Caller should have locked the larger range of extent containing 3099 * [start, len) 3100 */ 3101 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3102 { 3103 struct falloc_range *range = NULL; 3104 3105 if (!list_empty(head)) { 3106 /* 3107 * As fallocate iterates by bytenr order, we only need to check 3108 * the last range. 3109 */ 3110 range = list_last_entry(head, struct falloc_range, list); 3111 if (range->start + range->len == start) { 3112 range->len += len; 3113 return 0; 3114 } 3115 } 3116 3117 range = kmalloc(sizeof(*range), GFP_KERNEL); 3118 if (!range) 3119 return -ENOMEM; 3120 range->start = start; 3121 range->len = len; 3122 list_add_tail(&range->list, head); 3123 return 0; 3124 } 3125 3126 static int btrfs_fallocate_update_isize(struct inode *inode, 3127 const u64 end, 3128 const int mode) 3129 { 3130 struct btrfs_trans_handle *trans; 3131 struct btrfs_root *root = BTRFS_I(inode)->root; 3132 int ret; 3133 int ret2; 3134 3135 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3136 return 0; 3137 3138 trans = btrfs_start_transaction(root, 1); 3139 if (IS_ERR(trans)) 3140 return PTR_ERR(trans); 3141 3142 inode->i_ctime = current_time(inode); 3143 i_size_write(inode, end); 3144 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3145 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3146 ret2 = btrfs_end_transaction(trans); 3147 3148 return ret ? ret : ret2; 3149 } 3150 3151 enum { 3152 RANGE_BOUNDARY_WRITTEN_EXTENT, 3153 RANGE_BOUNDARY_PREALLOC_EXTENT, 3154 RANGE_BOUNDARY_HOLE, 3155 }; 3156 3157 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3158 u64 offset) 3159 { 3160 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3161 struct extent_map *em; 3162 int ret; 3163 3164 offset = round_down(offset, sectorsize); 3165 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3166 if (IS_ERR(em)) 3167 return PTR_ERR(em); 3168 3169 if (em->block_start == EXTENT_MAP_HOLE) 3170 ret = RANGE_BOUNDARY_HOLE; 3171 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3172 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3173 else 3174 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3175 3176 free_extent_map(em); 3177 return ret; 3178 } 3179 3180 static int btrfs_zero_range(struct inode *inode, 3181 loff_t offset, 3182 loff_t len, 3183 const int mode) 3184 { 3185 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3186 struct extent_map *em; 3187 struct extent_changeset *data_reserved = NULL; 3188 int ret; 3189 u64 alloc_hint = 0; 3190 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3191 u64 alloc_start = round_down(offset, sectorsize); 3192 u64 alloc_end = round_up(offset + len, sectorsize); 3193 u64 bytes_to_reserve = 0; 3194 bool space_reserved = false; 3195 3196 inode_dio_wait(inode); 3197 3198 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3199 alloc_end - alloc_start); 3200 if (IS_ERR(em)) { 3201 ret = PTR_ERR(em); 3202 goto out; 3203 } 3204 3205 /* 3206 * Avoid hole punching and extent allocation for some cases. More cases 3207 * could be considered, but these are unlikely common and we keep things 3208 * as simple as possible for now. Also, intentionally, if the target 3209 * range contains one or more prealloc extents together with regular 3210 * extents and holes, we drop all the existing extents and allocate a 3211 * new prealloc extent, so that we get a larger contiguous disk extent. 3212 */ 3213 if (em->start <= alloc_start && 3214 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3215 const u64 em_end = em->start + em->len; 3216 3217 if (em_end >= offset + len) { 3218 /* 3219 * The whole range is already a prealloc extent, 3220 * do nothing except updating the inode's i_size if 3221 * needed. 3222 */ 3223 free_extent_map(em); 3224 ret = btrfs_fallocate_update_isize(inode, offset + len, 3225 mode); 3226 goto out; 3227 } 3228 /* 3229 * Part of the range is already a prealloc extent, so operate 3230 * only on the remaining part of the range. 3231 */ 3232 alloc_start = em_end; 3233 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3234 len = offset + len - alloc_start; 3235 offset = alloc_start; 3236 alloc_hint = em->block_start + em->len; 3237 } 3238 free_extent_map(em); 3239 3240 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3241 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3242 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3243 sectorsize); 3244 if (IS_ERR(em)) { 3245 ret = PTR_ERR(em); 3246 goto out; 3247 } 3248 3249 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3250 free_extent_map(em); 3251 ret = btrfs_fallocate_update_isize(inode, offset + len, 3252 mode); 3253 goto out; 3254 } 3255 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3256 free_extent_map(em); 3257 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3258 0); 3259 if (!ret) 3260 ret = btrfs_fallocate_update_isize(inode, 3261 offset + len, 3262 mode); 3263 return ret; 3264 } 3265 free_extent_map(em); 3266 alloc_start = round_down(offset, sectorsize); 3267 alloc_end = alloc_start + sectorsize; 3268 goto reserve_space; 3269 } 3270 3271 alloc_start = round_up(offset, sectorsize); 3272 alloc_end = round_down(offset + len, sectorsize); 3273 3274 /* 3275 * For unaligned ranges, check the pages at the boundaries, they might 3276 * map to an extent, in which case we need to partially zero them, or 3277 * they might map to a hole, in which case we need our allocation range 3278 * to cover them. 3279 */ 3280 if (!IS_ALIGNED(offset, sectorsize)) { 3281 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3282 offset); 3283 if (ret < 0) 3284 goto out; 3285 if (ret == RANGE_BOUNDARY_HOLE) { 3286 alloc_start = round_down(offset, sectorsize); 3287 ret = 0; 3288 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3289 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3290 if (ret) 3291 goto out; 3292 } else { 3293 ret = 0; 3294 } 3295 } 3296 3297 if (!IS_ALIGNED(offset + len, sectorsize)) { 3298 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3299 offset + len); 3300 if (ret < 0) 3301 goto out; 3302 if (ret == RANGE_BOUNDARY_HOLE) { 3303 alloc_end = round_up(offset + len, sectorsize); 3304 ret = 0; 3305 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3306 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3307 0, 1); 3308 if (ret) 3309 goto out; 3310 } else { 3311 ret = 0; 3312 } 3313 } 3314 3315 reserve_space: 3316 if (alloc_start < alloc_end) { 3317 struct extent_state *cached_state = NULL; 3318 const u64 lockstart = alloc_start; 3319 const u64 lockend = alloc_end - 1; 3320 3321 bytes_to_reserve = alloc_end - alloc_start; 3322 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3323 bytes_to_reserve); 3324 if (ret < 0) 3325 goto out; 3326 space_reserved = true; 3327 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3328 &cached_state); 3329 if (ret) 3330 goto out; 3331 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3332 alloc_start, bytes_to_reserve); 3333 if (ret) { 3334 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3335 lockend, &cached_state); 3336 goto out; 3337 } 3338 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3339 alloc_end - alloc_start, 3340 i_blocksize(inode), 3341 offset + len, &alloc_hint); 3342 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3343 lockend, &cached_state); 3344 /* btrfs_prealloc_file_range releases reserved space on error */ 3345 if (ret) { 3346 space_reserved = false; 3347 goto out; 3348 } 3349 } 3350 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3351 out: 3352 if (ret && space_reserved) 3353 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3354 alloc_start, bytes_to_reserve); 3355 extent_changeset_free(data_reserved); 3356 3357 return ret; 3358 } 3359 3360 static long btrfs_fallocate(struct file *file, int mode, 3361 loff_t offset, loff_t len) 3362 { 3363 struct inode *inode = file_inode(file); 3364 struct extent_state *cached_state = NULL; 3365 struct extent_changeset *data_reserved = NULL; 3366 struct falloc_range *range; 3367 struct falloc_range *tmp; 3368 struct list_head reserve_list; 3369 u64 cur_offset; 3370 u64 last_byte; 3371 u64 alloc_start; 3372 u64 alloc_end; 3373 u64 alloc_hint = 0; 3374 u64 locked_end; 3375 u64 actual_end = 0; 3376 struct extent_map *em; 3377 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3378 int ret; 3379 3380 /* Do not allow fallocate in ZONED mode */ 3381 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3382 return -EOPNOTSUPP; 3383 3384 alloc_start = round_down(offset, blocksize); 3385 alloc_end = round_up(offset + len, blocksize); 3386 cur_offset = alloc_start; 3387 3388 /* Make sure we aren't being give some crap mode */ 3389 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3390 FALLOC_FL_ZERO_RANGE)) 3391 return -EOPNOTSUPP; 3392 3393 if (mode & FALLOC_FL_PUNCH_HOLE) 3394 return btrfs_punch_hole(inode, offset, len); 3395 3396 /* 3397 * Only trigger disk allocation, don't trigger qgroup reserve 3398 * 3399 * For qgroup space, it will be checked later. 3400 */ 3401 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3402 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3403 alloc_end - alloc_start); 3404 if (ret < 0) 3405 return ret; 3406 } 3407 3408 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3409 3410 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3411 ret = inode_newsize_ok(inode, offset + len); 3412 if (ret) 3413 goto out; 3414 } 3415 3416 /* 3417 * TODO: Move these two operations after we have checked 3418 * accurate reserved space, or fallocate can still fail but 3419 * with page truncated or size expanded. 3420 * 3421 * But that's a minor problem and won't do much harm BTW. 3422 */ 3423 if (alloc_start > inode->i_size) { 3424 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3425 alloc_start); 3426 if (ret) 3427 goto out; 3428 } else if (offset + len > inode->i_size) { 3429 /* 3430 * If we are fallocating from the end of the file onward we 3431 * need to zero out the end of the block if i_size lands in the 3432 * middle of a block. 3433 */ 3434 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3435 if (ret) 3436 goto out; 3437 } 3438 3439 /* 3440 * wait for ordered IO before we have any locks. We'll loop again 3441 * below with the locks held. 3442 */ 3443 ret = btrfs_wait_ordered_range(inode, alloc_start, 3444 alloc_end - alloc_start); 3445 if (ret) 3446 goto out; 3447 3448 if (mode & FALLOC_FL_ZERO_RANGE) { 3449 ret = btrfs_zero_range(inode, offset, len, mode); 3450 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3451 return ret; 3452 } 3453 3454 locked_end = alloc_end - 1; 3455 while (1) { 3456 struct btrfs_ordered_extent *ordered; 3457 3458 /* the extent lock is ordered inside the running 3459 * transaction 3460 */ 3461 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3462 locked_end, &cached_state); 3463 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3464 locked_end); 3465 3466 if (ordered && 3467 ordered->file_offset + ordered->num_bytes > alloc_start && 3468 ordered->file_offset < alloc_end) { 3469 btrfs_put_ordered_extent(ordered); 3470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3471 alloc_start, locked_end, 3472 &cached_state); 3473 /* 3474 * we can't wait on the range with the transaction 3475 * running or with the extent lock held 3476 */ 3477 ret = btrfs_wait_ordered_range(inode, alloc_start, 3478 alloc_end - alloc_start); 3479 if (ret) 3480 goto out; 3481 } else { 3482 if (ordered) 3483 btrfs_put_ordered_extent(ordered); 3484 break; 3485 } 3486 } 3487 3488 /* First, check if we exceed the qgroup limit */ 3489 INIT_LIST_HEAD(&reserve_list); 3490 while (cur_offset < alloc_end) { 3491 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3492 alloc_end - cur_offset); 3493 if (IS_ERR(em)) { 3494 ret = PTR_ERR(em); 3495 break; 3496 } 3497 last_byte = min(extent_map_end(em), alloc_end); 3498 actual_end = min_t(u64, extent_map_end(em), offset + len); 3499 last_byte = ALIGN(last_byte, blocksize); 3500 if (em->block_start == EXTENT_MAP_HOLE || 3501 (cur_offset >= inode->i_size && 3502 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3503 ret = add_falloc_range(&reserve_list, cur_offset, 3504 last_byte - cur_offset); 3505 if (ret < 0) { 3506 free_extent_map(em); 3507 break; 3508 } 3509 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3510 &data_reserved, cur_offset, 3511 last_byte - cur_offset); 3512 if (ret < 0) { 3513 cur_offset = last_byte; 3514 free_extent_map(em); 3515 break; 3516 } 3517 } else { 3518 /* 3519 * Do not need to reserve unwritten extent for this 3520 * range, free reserved data space first, otherwise 3521 * it'll result in false ENOSPC error. 3522 */ 3523 btrfs_free_reserved_data_space(BTRFS_I(inode), 3524 data_reserved, cur_offset, 3525 last_byte - cur_offset); 3526 } 3527 free_extent_map(em); 3528 cur_offset = last_byte; 3529 } 3530 3531 /* 3532 * If ret is still 0, means we're OK to fallocate. 3533 * Or just cleanup the list and exit. 3534 */ 3535 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3536 if (!ret) 3537 ret = btrfs_prealloc_file_range(inode, mode, 3538 range->start, 3539 range->len, i_blocksize(inode), 3540 offset + len, &alloc_hint); 3541 else 3542 btrfs_free_reserved_data_space(BTRFS_I(inode), 3543 data_reserved, range->start, 3544 range->len); 3545 list_del(&range->list); 3546 kfree(range); 3547 } 3548 if (ret < 0) 3549 goto out_unlock; 3550 3551 /* 3552 * We didn't need to allocate any more space, but we still extended the 3553 * size of the file so we need to update i_size and the inode item. 3554 */ 3555 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3556 out_unlock: 3557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3558 &cached_state); 3559 out: 3560 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3561 /* Let go of our reservation. */ 3562 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3563 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3564 cur_offset, alloc_end - cur_offset); 3565 extent_changeset_free(data_reserved); 3566 return ret; 3567 } 3568 3569 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3570 int whence) 3571 { 3572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3573 struct extent_map *em = NULL; 3574 struct extent_state *cached_state = NULL; 3575 loff_t i_size = inode->vfs_inode.i_size; 3576 u64 lockstart; 3577 u64 lockend; 3578 u64 start; 3579 u64 len; 3580 int ret = 0; 3581 3582 if (i_size == 0 || offset >= i_size) 3583 return -ENXIO; 3584 3585 /* 3586 * offset can be negative, in this case we start finding DATA/HOLE from 3587 * the very start of the file. 3588 */ 3589 start = max_t(loff_t, 0, offset); 3590 3591 lockstart = round_down(start, fs_info->sectorsize); 3592 lockend = round_up(i_size, fs_info->sectorsize); 3593 if (lockend <= lockstart) 3594 lockend = lockstart + fs_info->sectorsize; 3595 lockend--; 3596 len = lockend - lockstart + 1; 3597 3598 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3599 3600 while (start < i_size) { 3601 em = btrfs_get_extent_fiemap(inode, start, len); 3602 if (IS_ERR(em)) { 3603 ret = PTR_ERR(em); 3604 em = NULL; 3605 break; 3606 } 3607 3608 if (whence == SEEK_HOLE && 3609 (em->block_start == EXTENT_MAP_HOLE || 3610 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3611 break; 3612 else if (whence == SEEK_DATA && 3613 (em->block_start != EXTENT_MAP_HOLE && 3614 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3615 break; 3616 3617 start = em->start + em->len; 3618 free_extent_map(em); 3619 em = NULL; 3620 cond_resched(); 3621 } 3622 free_extent_map(em); 3623 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3624 &cached_state); 3625 if (ret) { 3626 offset = ret; 3627 } else { 3628 if (whence == SEEK_DATA && start >= i_size) 3629 offset = -ENXIO; 3630 else 3631 offset = min_t(loff_t, start, i_size); 3632 } 3633 3634 return offset; 3635 } 3636 3637 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3638 { 3639 struct inode *inode = file->f_mapping->host; 3640 3641 switch (whence) { 3642 default: 3643 return generic_file_llseek(file, offset, whence); 3644 case SEEK_DATA: 3645 case SEEK_HOLE: 3646 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3647 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3648 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3649 break; 3650 } 3651 3652 if (offset < 0) 3653 return offset; 3654 3655 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3656 } 3657 3658 static int btrfs_file_open(struct inode *inode, struct file *filp) 3659 { 3660 int ret; 3661 3662 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3663 3664 ret = fsverity_file_open(inode, filp); 3665 if (ret) 3666 return ret; 3667 return generic_file_open(inode, filp); 3668 } 3669 3670 static int check_direct_read(struct btrfs_fs_info *fs_info, 3671 const struct iov_iter *iter, loff_t offset) 3672 { 3673 int ret; 3674 int i, seg; 3675 3676 ret = check_direct_IO(fs_info, iter, offset); 3677 if (ret < 0) 3678 return ret; 3679 3680 if (!iter_is_iovec(iter)) 3681 return 0; 3682 3683 for (seg = 0; seg < iter->nr_segs; seg++) 3684 for (i = seg + 1; i < iter->nr_segs; i++) 3685 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3686 return -EINVAL; 3687 return 0; 3688 } 3689 3690 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3691 { 3692 struct inode *inode = file_inode(iocb->ki_filp); 3693 size_t prev_left = 0; 3694 ssize_t read = 0; 3695 ssize_t ret; 3696 3697 if (fsverity_active(inode)) 3698 return 0; 3699 3700 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3701 return 0; 3702 3703 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3704 again: 3705 /* 3706 * This is similar to what we do for direct IO writes, see the comment 3707 * at btrfs_direct_write(), but we also disable page faults in addition 3708 * to disabling them only at the iov_iter level. This is because when 3709 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3710 * which can still trigger page fault ins despite having set ->nofault 3711 * to true of our 'to' iov_iter. 3712 * 3713 * The difference to direct IO writes is that we deadlock when trying 3714 * to lock the extent range in the inode's tree during he page reads 3715 * triggered by the fault in (while for writes it is due to waiting for 3716 * our own ordered extent). This is because for direct IO reads, 3717 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3718 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3719 */ 3720 pagefault_disable(); 3721 to->nofault = true; 3722 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 3723 IOMAP_DIO_PARTIAL, read); 3724 to->nofault = false; 3725 pagefault_enable(); 3726 3727 /* No increment (+=) because iomap returns a cumulative value. */ 3728 if (ret > 0) 3729 read = ret; 3730 3731 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3732 const size_t left = iov_iter_count(to); 3733 3734 if (left == prev_left) { 3735 /* 3736 * We didn't make any progress since the last attempt, 3737 * fallback to a buffered read for the remainder of the 3738 * range. This is just to avoid any possibility of looping 3739 * for too long. 3740 */ 3741 ret = read; 3742 } else { 3743 /* 3744 * We made some progress since the last retry or this is 3745 * the first time we are retrying. Fault in as many pages 3746 * as possible and retry. 3747 */ 3748 fault_in_iov_iter_writeable(to, left); 3749 prev_left = left; 3750 goto again; 3751 } 3752 } 3753 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3754 return ret < 0 ? ret : read; 3755 } 3756 3757 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3758 { 3759 ssize_t ret = 0; 3760 3761 if (iocb->ki_flags & IOCB_DIRECT) { 3762 ret = btrfs_direct_read(iocb, to); 3763 if (ret < 0 || !iov_iter_count(to) || 3764 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3765 return ret; 3766 } 3767 3768 return filemap_read(iocb, to, ret); 3769 } 3770 3771 const struct file_operations btrfs_file_operations = { 3772 .llseek = btrfs_file_llseek, 3773 .read_iter = btrfs_file_read_iter, 3774 .splice_read = generic_file_splice_read, 3775 .write_iter = btrfs_file_write_iter, 3776 .splice_write = iter_file_splice_write, 3777 .mmap = btrfs_file_mmap, 3778 .open = btrfs_file_open, 3779 .release = btrfs_release_file, 3780 .fsync = btrfs_sync_file, 3781 .fallocate = btrfs_fallocate, 3782 .unlocked_ioctl = btrfs_ioctl, 3783 #ifdef CONFIG_COMPAT 3784 .compat_ioctl = btrfs_compat_ioctl, 3785 #endif 3786 .remap_file_range = btrfs_remap_file_range, 3787 }; 3788 3789 void __cold btrfs_auto_defrag_exit(void) 3790 { 3791 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3792 } 3793 3794 int __init btrfs_auto_defrag_init(void) 3795 { 3796 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3797 sizeof(struct inode_defrag), 0, 3798 SLAB_MEM_SPREAD, 3799 NULL); 3800 if (!btrfs_inode_defrag_cachep) 3801 return -ENOMEM; 3802 3803 return 0; 3804 } 3805 3806 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3807 { 3808 int ret; 3809 3810 /* 3811 * So with compression we will find and lock a dirty page and clear the 3812 * first one as dirty, setup an async extent, and immediately return 3813 * with the entire range locked but with nobody actually marked with 3814 * writeback. So we can't just filemap_write_and_wait_range() and 3815 * expect it to work since it will just kick off a thread to do the 3816 * actual work. So we need to call filemap_fdatawrite_range _again_ 3817 * since it will wait on the page lock, which won't be unlocked until 3818 * after the pages have been marked as writeback and so we're good to go 3819 * from there. We have to do this otherwise we'll miss the ordered 3820 * extents and that results in badness. Please Josef, do not think you 3821 * know better and pull this out at some point in the future, it is 3822 * right and you are wrong. 3823 */ 3824 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3825 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3826 &BTRFS_I(inode)->runtime_flags)) 3827 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3828 3829 return ret; 3830 } 3831