1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 30 static struct kmem_cache *btrfs_inode_defrag_cachep; 31 /* 32 * when auto defrag is enabled we 33 * queue up these defrag structs to remember which 34 * inodes need defragging passes 35 */ 36 struct inode_defrag { 37 struct rb_node rb_node; 38 /* objectid */ 39 u64 ino; 40 /* 41 * transid where the defrag was added, we search for 42 * extents newer than this 43 */ 44 u64 transid; 45 46 /* root objectid */ 47 u64 root; 48 49 /* last offset we were able to defrag */ 50 u64 last_offset; 51 52 /* if we've wrapped around back to zero once already */ 53 int cycled; 54 }; 55 56 static int __compare_inode_defrag(struct inode_defrag *defrag1, 57 struct inode_defrag *defrag2) 58 { 59 if (defrag1->root > defrag2->root) 60 return 1; 61 else if (defrag1->root < defrag2->root) 62 return -1; 63 else if (defrag1->ino > defrag2->ino) 64 return 1; 65 else if (defrag1->ino < defrag2->ino) 66 return -1; 67 else 68 return 0; 69 } 70 71 /* pop a record for an inode into the defrag tree. The lock 72 * must be held already 73 * 74 * If you're inserting a record for an older transid than an 75 * existing record, the transid already in the tree is lowered 76 * 77 * If an existing record is found the defrag item you 78 * pass in is freed 79 */ 80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 81 struct inode_defrag *defrag) 82 { 83 struct btrfs_fs_info *fs_info = inode->root->fs_info; 84 struct inode_defrag *entry; 85 struct rb_node **p; 86 struct rb_node *parent = NULL; 87 int ret; 88 89 p = &fs_info->defrag_inodes.rb_node; 90 while (*p) { 91 parent = *p; 92 entry = rb_entry(parent, struct inode_defrag, rb_node); 93 94 ret = __compare_inode_defrag(defrag, entry); 95 if (ret < 0) 96 p = &parent->rb_left; 97 else if (ret > 0) 98 p = &parent->rb_right; 99 else { 100 /* if we're reinserting an entry for 101 * an old defrag run, make sure to 102 * lower the transid of our existing record 103 */ 104 if (defrag->transid < entry->transid) 105 entry->transid = defrag->transid; 106 if (defrag->last_offset > entry->last_offset) 107 entry->last_offset = defrag->last_offset; 108 return -EEXIST; 109 } 110 } 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 112 rb_link_node(&defrag->rb_node, parent, p); 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 114 return 0; 115 } 116 117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 118 { 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 120 return 0; 121 122 if (btrfs_fs_closing(fs_info)) 123 return 0; 124 125 return 1; 126 } 127 128 /* 129 * insert a defrag record for this inode if auto defrag is 130 * enabled 131 */ 132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 133 struct btrfs_inode *inode) 134 { 135 struct btrfs_root *root = inode->root; 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 struct inode_defrag *defrag; 138 u64 transid; 139 int ret; 140 141 if (!__need_auto_defrag(fs_info)) 142 return 0; 143 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 145 return 0; 146 147 if (trans) 148 transid = trans->transid; 149 else 150 transid = inode->root->last_trans; 151 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 153 if (!defrag) 154 return -ENOMEM; 155 156 defrag->ino = btrfs_ino(inode); 157 defrag->transid = transid; 158 defrag->root = root->root_key.objectid; 159 160 spin_lock(&fs_info->defrag_inodes_lock); 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 162 /* 163 * If we set IN_DEFRAG flag and evict the inode from memory, 164 * and then re-read this inode, this new inode doesn't have 165 * IN_DEFRAG flag. At the case, we may find the existed defrag. 166 */ 167 ret = __btrfs_add_inode_defrag(inode, defrag); 168 if (ret) 169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 170 } else { 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } 173 spin_unlock(&fs_info->defrag_inodes_lock); 174 return 0; 175 } 176 177 /* 178 * Requeue the defrag object. If there is a defrag object that points to 179 * the same inode in the tree, we will merge them together (by 180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 181 */ 182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 183 struct inode_defrag *defrag) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 int ret; 187 188 if (!__need_auto_defrag(fs_info)) 189 goto out; 190 191 /* 192 * Here we don't check the IN_DEFRAG flag, because we need merge 193 * them together. 194 */ 195 spin_lock(&fs_info->defrag_inodes_lock); 196 ret = __btrfs_add_inode_defrag(inode, defrag); 197 spin_unlock(&fs_info->defrag_inodes_lock); 198 if (ret) 199 goto out; 200 return; 201 out: 202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 203 } 204 205 /* 206 * pick the defragable inode that we want, if it doesn't exist, we will get 207 * the next one. 208 */ 209 static struct inode_defrag * 210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 211 { 212 struct inode_defrag *entry = NULL; 213 struct inode_defrag tmp; 214 struct rb_node *p; 215 struct rb_node *parent = NULL; 216 int ret; 217 218 tmp.ino = ino; 219 tmp.root = root; 220 221 spin_lock(&fs_info->defrag_inodes_lock); 222 p = fs_info->defrag_inodes.rb_node; 223 while (p) { 224 parent = p; 225 entry = rb_entry(parent, struct inode_defrag, rb_node); 226 227 ret = __compare_inode_defrag(&tmp, entry); 228 if (ret < 0) 229 p = parent->rb_left; 230 else if (ret > 0) 231 p = parent->rb_right; 232 else 233 goto out; 234 } 235 236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 237 parent = rb_next(parent); 238 if (parent) 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 else 241 entry = NULL; 242 } 243 out: 244 if (entry) 245 rb_erase(parent, &fs_info->defrag_inodes); 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 return entry; 248 } 249 250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 251 { 252 struct inode_defrag *defrag; 253 struct rb_node *node; 254 255 spin_lock(&fs_info->defrag_inodes_lock); 256 node = rb_first(&fs_info->defrag_inodes); 257 while (node) { 258 rb_erase(node, &fs_info->defrag_inodes); 259 defrag = rb_entry(node, struct inode_defrag, rb_node); 260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 261 262 cond_resched_lock(&fs_info->defrag_inodes_lock); 263 264 node = rb_first(&fs_info->defrag_inodes); 265 } 266 spin_unlock(&fs_info->defrag_inodes_lock); 267 } 268 269 #define BTRFS_DEFRAG_BATCH 1024 270 271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 272 struct inode_defrag *defrag) 273 { 274 struct btrfs_root *inode_root; 275 struct inode *inode; 276 struct btrfs_key key; 277 struct btrfs_ioctl_defrag_range_args range; 278 int num_defrag; 279 int index; 280 int ret; 281 282 /* get the inode */ 283 key.objectid = defrag->root; 284 key.type = BTRFS_ROOT_ITEM_KEY; 285 key.offset = (u64)-1; 286 287 index = srcu_read_lock(&fs_info->subvol_srcu); 288 289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 290 if (IS_ERR(inode_root)) { 291 ret = PTR_ERR(inode_root); 292 goto cleanup; 293 } 294 295 key.objectid = defrag->ino; 296 key.type = BTRFS_INODE_ITEM_KEY; 297 key.offset = 0; 298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 299 if (IS_ERR(inode)) { 300 ret = PTR_ERR(inode); 301 goto cleanup; 302 } 303 srcu_read_unlock(&fs_info->subvol_srcu, index); 304 305 /* do a chunk of defrag */ 306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 307 memset(&range, 0, sizeof(range)); 308 range.len = (u64)-1; 309 range.start = defrag->last_offset; 310 311 sb_start_write(fs_info->sb); 312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 313 BTRFS_DEFRAG_BATCH); 314 sb_end_write(fs_info->sb); 315 /* 316 * if we filled the whole defrag batch, there 317 * must be more work to do. Queue this defrag 318 * again 319 */ 320 if (num_defrag == BTRFS_DEFRAG_BATCH) { 321 defrag->last_offset = range.start; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else if (defrag->last_offset && !defrag->cycled) { 324 /* 325 * we didn't fill our defrag batch, but 326 * we didn't start at zero. Make sure we loop 327 * around to the start of the file. 328 */ 329 defrag->last_offset = 0; 330 defrag->cycled = 1; 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 332 } else { 333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 334 } 335 336 iput(inode); 337 return 0; 338 cleanup: 339 srcu_read_unlock(&fs_info->subvol_srcu, index); 340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 341 return ret; 342 } 343 344 /* 345 * run through the list of inodes in the FS that need 346 * defragging 347 */ 348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 349 { 350 struct inode_defrag *defrag; 351 u64 first_ino = 0; 352 u64 root_objectid = 0; 353 354 atomic_inc(&fs_info->defrag_running); 355 while (1) { 356 /* Pause the auto defragger. */ 357 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 358 &fs_info->fs_state)) 359 break; 360 361 if (!__need_auto_defrag(fs_info)) 362 break; 363 364 /* find an inode to defrag */ 365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 366 first_ino); 367 if (!defrag) { 368 if (root_objectid || first_ino) { 369 root_objectid = 0; 370 first_ino = 0; 371 continue; 372 } else { 373 break; 374 } 375 } 376 377 first_ino = defrag->ino + 1; 378 root_objectid = defrag->root; 379 380 __btrfs_run_defrag_inode(fs_info, defrag); 381 } 382 atomic_dec(&fs_info->defrag_running); 383 384 /* 385 * during unmount, we use the transaction_wait queue to 386 * wait for the defragger to stop 387 */ 388 wake_up(&fs_info->transaction_wait); 389 return 0; 390 } 391 392 /* simple helper to fault in pages and copy. This should go away 393 * and be replaced with calls into generic code. 394 */ 395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 396 struct page **prepared_pages, 397 struct iov_iter *i) 398 { 399 size_t copied = 0; 400 size_t total_copied = 0; 401 int pg = 0; 402 int offset = pos & (PAGE_SIZE - 1); 403 404 while (write_bytes > 0) { 405 size_t count = min_t(size_t, 406 PAGE_SIZE - offset, write_bytes); 407 struct page *page = prepared_pages[pg]; 408 /* 409 * Copy data from userspace to the current page 410 */ 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 412 413 /* Flush processor's dcache for this page */ 414 flush_dcache_page(page); 415 416 /* 417 * if we get a partial write, we can end up with 418 * partially up to date pages. These add 419 * a lot of complexity, so make sure they don't 420 * happen by forcing this copy to be retried. 421 * 422 * The rest of the btrfs_file_write code will fall 423 * back to page at a time copies after we return 0. 424 */ 425 if (!PageUptodate(page) && copied < count) 426 copied = 0; 427 428 iov_iter_advance(i, copied); 429 write_bytes -= copied; 430 total_copied += copied; 431 432 /* Return to btrfs_file_write_iter to fault page */ 433 if (unlikely(copied == 0)) 434 break; 435 436 if (copied < PAGE_SIZE - offset) { 437 offset += copied; 438 } else { 439 pg++; 440 offset = 0; 441 } 442 } 443 return total_copied; 444 } 445 446 /* 447 * unlocks pages after btrfs_file_write is done with them 448 */ 449 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 450 { 451 size_t i; 452 for (i = 0; i < num_pages; i++) { 453 /* page checked is some magic around finding pages that 454 * have been modified without going through btrfs_set_page_dirty 455 * clear it here. There should be no need to mark the pages 456 * accessed as prepare_pages should have marked them accessed 457 * in prepare_pages via find_or_create_page() 458 */ 459 ClearPageChecked(pages[i]); 460 unlock_page(pages[i]); 461 put_page(pages[i]); 462 } 463 } 464 465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 466 const u64 start, 467 const u64 len, 468 struct extent_state **cached_state) 469 { 470 u64 search_start = start; 471 const u64 end = start + len - 1; 472 473 while (search_start < end) { 474 const u64 search_len = end - search_start + 1; 475 struct extent_map *em; 476 u64 em_len; 477 int ret = 0; 478 479 em = btrfs_get_extent(inode, NULL, 0, search_start, 480 search_len, 0); 481 if (IS_ERR(em)) 482 return PTR_ERR(em); 483 484 if (em->block_start != EXTENT_MAP_HOLE) 485 goto next; 486 487 em_len = em->len; 488 if (em->start < search_start) 489 em_len -= search_start - em->start; 490 if (em_len > search_len) 491 em_len = search_len; 492 493 ret = set_extent_bit(&inode->io_tree, search_start, 494 search_start + em_len - 1, 495 EXTENT_DELALLOC_NEW, 496 NULL, cached_state, GFP_NOFS); 497 next: 498 search_start = extent_map_end(em); 499 free_extent_map(em); 500 if (ret) 501 return ret; 502 } 503 return 0; 504 } 505 506 /* 507 * after copy_from_user, pages need to be dirtied and we need to make 508 * sure holes are created between the current EOF and the start of 509 * any next extents (if required). 510 * 511 * this also makes the decision about creating an inline extent vs 512 * doing real data extents, marking pages dirty and delalloc as required. 513 */ 514 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 515 size_t num_pages, loff_t pos, size_t write_bytes, 516 struct extent_state **cached) 517 { 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 519 int err = 0; 520 int i; 521 u64 num_bytes; 522 u64 start_pos; 523 u64 end_of_last_block; 524 u64 end_pos = pos + write_bytes; 525 loff_t isize = i_size_read(inode); 526 unsigned int extra_bits = 0; 527 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 529 num_bytes = round_up(write_bytes + pos - start_pos, 530 fs_info->sectorsize); 531 532 end_of_last_block = start_pos + num_bytes - 1; 533 534 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 535 if (start_pos >= isize && 536 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 537 /* 538 * There can't be any extents following eof in this case 539 * so just set the delalloc new bit for the range 540 * directly. 541 */ 542 extra_bits |= EXTENT_DELALLOC_NEW; 543 } else { 544 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 545 start_pos, 546 num_bytes, cached); 547 if (err) 548 return err; 549 } 550 } 551 552 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 553 extra_bits, cached, 0); 554 if (err) 555 return err; 556 557 for (i = 0; i < num_pages; i++) { 558 struct page *p = pages[i]; 559 SetPageUptodate(p); 560 ClearPageChecked(p); 561 set_page_dirty(p); 562 } 563 564 /* 565 * we've only changed i_size in ram, and we haven't updated 566 * the disk i_size. There is no need to log the inode 567 * at this time. 568 */ 569 if (end_pos > isize) 570 i_size_write(inode, end_pos); 571 return 0; 572 } 573 574 /* 575 * this drops all the extents in the cache that intersect the range 576 * [start, end]. Existing extents are split as required. 577 */ 578 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 579 int skip_pinned) 580 { 581 struct extent_map *em; 582 struct extent_map *split = NULL; 583 struct extent_map *split2 = NULL; 584 struct extent_map_tree *em_tree = &inode->extent_tree; 585 u64 len = end - start + 1; 586 u64 gen; 587 int ret; 588 int testend = 1; 589 unsigned long flags; 590 int compressed = 0; 591 bool modified; 592 593 WARN_ON(end < start); 594 if (end == (u64)-1) { 595 len = (u64)-1; 596 testend = 0; 597 } 598 while (1) { 599 int no_splits = 0; 600 601 modified = false; 602 if (!split) 603 split = alloc_extent_map(); 604 if (!split2) 605 split2 = alloc_extent_map(); 606 if (!split || !split2) 607 no_splits = 1; 608 609 write_lock(&em_tree->lock); 610 em = lookup_extent_mapping(em_tree, start, len); 611 if (!em) { 612 write_unlock(&em_tree->lock); 613 break; 614 } 615 flags = em->flags; 616 gen = em->generation; 617 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 618 if (testend && em->start + em->len >= start + len) { 619 free_extent_map(em); 620 write_unlock(&em_tree->lock); 621 break; 622 } 623 start = em->start + em->len; 624 if (testend) 625 len = start + len - (em->start + em->len); 626 free_extent_map(em); 627 write_unlock(&em_tree->lock); 628 continue; 629 } 630 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 631 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 632 clear_bit(EXTENT_FLAG_LOGGING, &flags); 633 modified = !list_empty(&em->list); 634 if (no_splits) 635 goto next; 636 637 if (em->start < start) { 638 split->start = em->start; 639 split->len = start - em->start; 640 641 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 642 split->orig_start = em->orig_start; 643 split->block_start = em->block_start; 644 645 if (compressed) 646 split->block_len = em->block_len; 647 else 648 split->block_len = split->len; 649 split->orig_block_len = max(split->block_len, 650 em->orig_block_len); 651 split->ram_bytes = em->ram_bytes; 652 } else { 653 split->orig_start = split->start; 654 split->block_len = 0; 655 split->block_start = em->block_start; 656 split->orig_block_len = 0; 657 split->ram_bytes = split->len; 658 } 659 660 split->generation = gen; 661 split->bdev = em->bdev; 662 split->flags = flags; 663 split->compress_type = em->compress_type; 664 replace_extent_mapping(em_tree, em, split, modified); 665 free_extent_map(split); 666 split = split2; 667 split2 = NULL; 668 } 669 if (testend && em->start + em->len > start + len) { 670 u64 diff = start + len - em->start; 671 672 split->start = start + len; 673 split->len = em->start + em->len - (start + len); 674 split->bdev = em->bdev; 675 split->flags = flags; 676 split->compress_type = em->compress_type; 677 split->generation = gen; 678 679 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 680 split->orig_block_len = max(em->block_len, 681 em->orig_block_len); 682 683 split->ram_bytes = em->ram_bytes; 684 if (compressed) { 685 split->block_len = em->block_len; 686 split->block_start = em->block_start; 687 split->orig_start = em->orig_start; 688 } else { 689 split->block_len = split->len; 690 split->block_start = em->block_start 691 + diff; 692 split->orig_start = em->orig_start; 693 } 694 } else { 695 split->ram_bytes = split->len; 696 split->orig_start = split->start; 697 split->block_len = 0; 698 split->block_start = em->block_start; 699 split->orig_block_len = 0; 700 } 701 702 if (extent_map_in_tree(em)) { 703 replace_extent_mapping(em_tree, em, split, 704 modified); 705 } else { 706 ret = add_extent_mapping(em_tree, split, 707 modified); 708 ASSERT(ret == 0); /* Logic error */ 709 } 710 free_extent_map(split); 711 split = NULL; 712 } 713 next: 714 if (extent_map_in_tree(em)) 715 remove_extent_mapping(em_tree, em); 716 write_unlock(&em_tree->lock); 717 718 /* once for us */ 719 free_extent_map(em); 720 /* once for the tree*/ 721 free_extent_map(em); 722 } 723 if (split) 724 free_extent_map(split); 725 if (split2) 726 free_extent_map(split2); 727 } 728 729 /* 730 * this is very complex, but the basic idea is to drop all extents 731 * in the range start - end. hint_block is filled in with a block number 732 * that would be a good hint to the block allocator for this file. 733 * 734 * If an extent intersects the range but is not entirely inside the range 735 * it is either truncated or split. Anything entirely inside the range 736 * is deleted from the tree. 737 */ 738 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 739 struct btrfs_root *root, struct inode *inode, 740 struct btrfs_path *path, u64 start, u64 end, 741 u64 *drop_end, int drop_cache, 742 int replace_extent, 743 u32 extent_item_size, 744 int *key_inserted) 745 { 746 struct btrfs_fs_info *fs_info = root->fs_info; 747 struct extent_buffer *leaf; 748 struct btrfs_file_extent_item *fi; 749 struct btrfs_key key; 750 struct btrfs_key new_key; 751 u64 ino = btrfs_ino(BTRFS_I(inode)); 752 u64 search_start = start; 753 u64 disk_bytenr = 0; 754 u64 num_bytes = 0; 755 u64 extent_offset = 0; 756 u64 extent_end = 0; 757 u64 last_end = start; 758 int del_nr = 0; 759 int del_slot = 0; 760 int extent_type; 761 int recow; 762 int ret; 763 int modify_tree = -1; 764 int update_refs; 765 int found = 0; 766 int leafs_visited = 0; 767 768 if (drop_cache) 769 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 770 771 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 772 modify_tree = 0; 773 774 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 775 root == fs_info->tree_root); 776 while (1) { 777 recow = 0; 778 ret = btrfs_lookup_file_extent(trans, root, path, ino, 779 search_start, modify_tree); 780 if (ret < 0) 781 break; 782 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 783 leaf = path->nodes[0]; 784 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 785 if (key.objectid == ino && 786 key.type == BTRFS_EXTENT_DATA_KEY) 787 path->slots[0]--; 788 } 789 ret = 0; 790 leafs_visited++; 791 next_slot: 792 leaf = path->nodes[0]; 793 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 794 BUG_ON(del_nr > 0); 795 ret = btrfs_next_leaf(root, path); 796 if (ret < 0) 797 break; 798 if (ret > 0) { 799 ret = 0; 800 break; 801 } 802 leafs_visited++; 803 leaf = path->nodes[0]; 804 recow = 1; 805 } 806 807 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 808 809 if (key.objectid > ino) 810 break; 811 if (WARN_ON_ONCE(key.objectid < ino) || 812 key.type < BTRFS_EXTENT_DATA_KEY) { 813 ASSERT(del_nr == 0); 814 path->slots[0]++; 815 goto next_slot; 816 } 817 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 818 break; 819 820 fi = btrfs_item_ptr(leaf, path->slots[0], 821 struct btrfs_file_extent_item); 822 extent_type = btrfs_file_extent_type(leaf, fi); 823 824 if (extent_type == BTRFS_FILE_EXTENT_REG || 825 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 826 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 827 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 828 extent_offset = btrfs_file_extent_offset(leaf, fi); 829 extent_end = key.offset + 830 btrfs_file_extent_num_bytes(leaf, fi); 831 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 832 extent_end = key.offset + 833 btrfs_file_extent_ram_bytes(leaf, fi); 834 } else { 835 /* can't happen */ 836 BUG(); 837 } 838 839 /* 840 * Don't skip extent items representing 0 byte lengths. They 841 * used to be created (bug) if while punching holes we hit 842 * -ENOSPC condition. So if we find one here, just ensure we 843 * delete it, otherwise we would insert a new file extent item 844 * with the same key (offset) as that 0 bytes length file 845 * extent item in the call to setup_items_for_insert() later 846 * in this function. 847 */ 848 if (extent_end == key.offset && extent_end >= search_start) { 849 last_end = extent_end; 850 goto delete_extent_item; 851 } 852 853 if (extent_end <= search_start) { 854 path->slots[0]++; 855 goto next_slot; 856 } 857 858 found = 1; 859 search_start = max(key.offset, start); 860 if (recow || !modify_tree) { 861 modify_tree = -1; 862 btrfs_release_path(path); 863 continue; 864 } 865 866 /* 867 * | - range to drop - | 868 * | -------- extent -------- | 869 */ 870 if (start > key.offset && end < extent_end) { 871 BUG_ON(del_nr > 0); 872 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 873 ret = -EOPNOTSUPP; 874 break; 875 } 876 877 memcpy(&new_key, &key, sizeof(new_key)); 878 new_key.offset = start; 879 ret = btrfs_duplicate_item(trans, root, path, 880 &new_key); 881 if (ret == -EAGAIN) { 882 btrfs_release_path(path); 883 continue; 884 } 885 if (ret < 0) 886 break; 887 888 leaf = path->nodes[0]; 889 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 890 struct btrfs_file_extent_item); 891 btrfs_set_file_extent_num_bytes(leaf, fi, 892 start - key.offset); 893 894 fi = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_file_extent_item); 896 897 extent_offset += start - key.offset; 898 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 extent_end - start); 901 btrfs_mark_buffer_dirty(leaf); 902 903 if (update_refs && disk_bytenr > 0) { 904 ret = btrfs_inc_extent_ref(trans, root, 905 disk_bytenr, num_bytes, 0, 906 root->root_key.objectid, 907 new_key.objectid, 908 start - extent_offset); 909 BUG_ON(ret); /* -ENOMEM */ 910 } 911 key.offset = start; 912 } 913 /* 914 * From here on out we will have actually dropped something, so 915 * last_end can be updated. 916 */ 917 last_end = extent_end; 918 919 /* 920 * | ---- range to drop ----- | 921 * | -------- extent -------- | 922 */ 923 if (start <= key.offset && end < extent_end) { 924 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 925 ret = -EOPNOTSUPP; 926 break; 927 } 928 929 memcpy(&new_key, &key, sizeof(new_key)); 930 new_key.offset = end; 931 btrfs_set_item_key_safe(fs_info, path, &new_key); 932 933 extent_offset += end - key.offset; 934 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 935 btrfs_set_file_extent_num_bytes(leaf, fi, 936 extent_end - end); 937 btrfs_mark_buffer_dirty(leaf); 938 if (update_refs && disk_bytenr > 0) 939 inode_sub_bytes(inode, end - key.offset); 940 break; 941 } 942 943 search_start = extent_end; 944 /* 945 * | ---- range to drop ----- | 946 * | -------- extent -------- | 947 */ 948 if (start > key.offset && end >= extent_end) { 949 BUG_ON(del_nr > 0); 950 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 951 ret = -EOPNOTSUPP; 952 break; 953 } 954 955 btrfs_set_file_extent_num_bytes(leaf, fi, 956 start - key.offset); 957 btrfs_mark_buffer_dirty(leaf); 958 if (update_refs && disk_bytenr > 0) 959 inode_sub_bytes(inode, extent_end - start); 960 if (end == extent_end) 961 break; 962 963 path->slots[0]++; 964 goto next_slot; 965 } 966 967 /* 968 * | ---- range to drop ----- | 969 * | ------ extent ------ | 970 */ 971 if (start <= key.offset && end >= extent_end) { 972 delete_extent_item: 973 if (del_nr == 0) { 974 del_slot = path->slots[0]; 975 del_nr = 1; 976 } else { 977 BUG_ON(del_slot + del_nr != path->slots[0]); 978 del_nr++; 979 } 980 981 if (update_refs && 982 extent_type == BTRFS_FILE_EXTENT_INLINE) { 983 inode_sub_bytes(inode, 984 extent_end - key.offset); 985 extent_end = ALIGN(extent_end, 986 fs_info->sectorsize); 987 } else if (update_refs && disk_bytenr > 0) { 988 ret = btrfs_free_extent(trans, root, 989 disk_bytenr, num_bytes, 0, 990 root->root_key.objectid, 991 key.objectid, key.offset - 992 extent_offset); 993 BUG_ON(ret); /* -ENOMEM */ 994 inode_sub_bytes(inode, 995 extent_end - key.offset); 996 } 997 998 if (end == extent_end) 999 break; 1000 1001 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1002 path->slots[0]++; 1003 goto next_slot; 1004 } 1005 1006 ret = btrfs_del_items(trans, root, path, del_slot, 1007 del_nr); 1008 if (ret) { 1009 btrfs_abort_transaction(trans, ret); 1010 break; 1011 } 1012 1013 del_nr = 0; 1014 del_slot = 0; 1015 1016 btrfs_release_path(path); 1017 continue; 1018 } 1019 1020 BUG_ON(1); 1021 } 1022 1023 if (!ret && del_nr > 0) { 1024 /* 1025 * Set path->slots[0] to first slot, so that after the delete 1026 * if items are move off from our leaf to its immediate left or 1027 * right neighbor leafs, we end up with a correct and adjusted 1028 * path->slots[0] for our insertion (if replace_extent != 0). 1029 */ 1030 path->slots[0] = del_slot; 1031 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1032 if (ret) 1033 btrfs_abort_transaction(trans, ret); 1034 } 1035 1036 leaf = path->nodes[0]; 1037 /* 1038 * If btrfs_del_items() was called, it might have deleted a leaf, in 1039 * which case it unlocked our path, so check path->locks[0] matches a 1040 * write lock. 1041 */ 1042 if (!ret && replace_extent && leafs_visited == 1 && 1043 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1044 path->locks[0] == BTRFS_WRITE_LOCK) && 1045 btrfs_leaf_free_space(fs_info, leaf) >= 1046 sizeof(struct btrfs_item) + extent_item_size) { 1047 1048 key.objectid = ino; 1049 key.type = BTRFS_EXTENT_DATA_KEY; 1050 key.offset = start; 1051 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1052 struct btrfs_key slot_key; 1053 1054 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1055 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1056 path->slots[0]++; 1057 } 1058 setup_items_for_insert(root, path, &key, 1059 &extent_item_size, 1060 extent_item_size, 1061 sizeof(struct btrfs_item) + 1062 extent_item_size, 1); 1063 *key_inserted = 1; 1064 } 1065 1066 if (!replace_extent || !(*key_inserted)) 1067 btrfs_release_path(path); 1068 if (drop_end) 1069 *drop_end = found ? min(end, last_end) : end; 1070 return ret; 1071 } 1072 1073 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1074 struct btrfs_root *root, struct inode *inode, u64 start, 1075 u64 end, int drop_cache) 1076 { 1077 struct btrfs_path *path; 1078 int ret; 1079 1080 path = btrfs_alloc_path(); 1081 if (!path) 1082 return -ENOMEM; 1083 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1084 drop_cache, 0, 0, NULL); 1085 btrfs_free_path(path); 1086 return ret; 1087 } 1088 1089 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1090 u64 objectid, u64 bytenr, u64 orig_offset, 1091 u64 *start, u64 *end) 1092 { 1093 struct btrfs_file_extent_item *fi; 1094 struct btrfs_key key; 1095 u64 extent_end; 1096 1097 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1098 return 0; 1099 1100 btrfs_item_key_to_cpu(leaf, &key, slot); 1101 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1102 return 0; 1103 1104 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1105 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1106 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1107 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1108 btrfs_file_extent_compression(leaf, fi) || 1109 btrfs_file_extent_encryption(leaf, fi) || 1110 btrfs_file_extent_other_encoding(leaf, fi)) 1111 return 0; 1112 1113 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1114 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1115 return 0; 1116 1117 *start = key.offset; 1118 *end = extent_end; 1119 return 1; 1120 } 1121 1122 /* 1123 * Mark extent in the range start - end as written. 1124 * 1125 * This changes extent type from 'pre-allocated' to 'regular'. If only 1126 * part of extent is marked as written, the extent will be split into 1127 * two or three. 1128 */ 1129 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1130 struct btrfs_inode *inode, u64 start, u64 end) 1131 { 1132 struct btrfs_fs_info *fs_info = trans->fs_info; 1133 struct btrfs_root *root = inode->root; 1134 struct extent_buffer *leaf; 1135 struct btrfs_path *path; 1136 struct btrfs_file_extent_item *fi; 1137 struct btrfs_key key; 1138 struct btrfs_key new_key; 1139 u64 bytenr; 1140 u64 num_bytes; 1141 u64 extent_end; 1142 u64 orig_offset; 1143 u64 other_start; 1144 u64 other_end; 1145 u64 split; 1146 int del_nr = 0; 1147 int del_slot = 0; 1148 int recow; 1149 int ret; 1150 u64 ino = btrfs_ino(inode); 1151 1152 path = btrfs_alloc_path(); 1153 if (!path) 1154 return -ENOMEM; 1155 again: 1156 recow = 0; 1157 split = start; 1158 key.objectid = ino; 1159 key.type = BTRFS_EXTENT_DATA_KEY; 1160 key.offset = split; 1161 1162 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1163 if (ret < 0) 1164 goto out; 1165 if (ret > 0 && path->slots[0] > 0) 1166 path->slots[0]--; 1167 1168 leaf = path->nodes[0]; 1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1170 if (key.objectid != ino || 1171 key.type != BTRFS_EXTENT_DATA_KEY) { 1172 ret = -EINVAL; 1173 btrfs_abort_transaction(trans, ret); 1174 goto out; 1175 } 1176 fi = btrfs_item_ptr(leaf, path->slots[0], 1177 struct btrfs_file_extent_item); 1178 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1179 ret = -EINVAL; 1180 btrfs_abort_transaction(trans, ret); 1181 goto out; 1182 } 1183 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1184 if (key.offset > start || extent_end < end) { 1185 ret = -EINVAL; 1186 btrfs_abort_transaction(trans, ret); 1187 goto out; 1188 } 1189 1190 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1191 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1192 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1193 memcpy(&new_key, &key, sizeof(new_key)); 1194 1195 if (start == key.offset && end < extent_end) { 1196 other_start = 0; 1197 other_end = start; 1198 if (extent_mergeable(leaf, path->slots[0] - 1, 1199 ino, bytenr, orig_offset, 1200 &other_start, &other_end)) { 1201 new_key.offset = end; 1202 btrfs_set_item_key_safe(fs_info, path, &new_key); 1203 fi = btrfs_item_ptr(leaf, path->slots[0], 1204 struct btrfs_file_extent_item); 1205 btrfs_set_file_extent_generation(leaf, fi, 1206 trans->transid); 1207 btrfs_set_file_extent_num_bytes(leaf, fi, 1208 extent_end - end); 1209 btrfs_set_file_extent_offset(leaf, fi, 1210 end - orig_offset); 1211 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1212 struct btrfs_file_extent_item); 1213 btrfs_set_file_extent_generation(leaf, fi, 1214 trans->transid); 1215 btrfs_set_file_extent_num_bytes(leaf, fi, 1216 end - other_start); 1217 btrfs_mark_buffer_dirty(leaf); 1218 goto out; 1219 } 1220 } 1221 1222 if (start > key.offset && end == extent_end) { 1223 other_start = end; 1224 other_end = 0; 1225 if (extent_mergeable(leaf, path->slots[0] + 1, 1226 ino, bytenr, orig_offset, 1227 &other_start, &other_end)) { 1228 fi = btrfs_item_ptr(leaf, path->slots[0], 1229 struct btrfs_file_extent_item); 1230 btrfs_set_file_extent_num_bytes(leaf, fi, 1231 start - key.offset); 1232 btrfs_set_file_extent_generation(leaf, fi, 1233 trans->transid); 1234 path->slots[0]++; 1235 new_key.offset = start; 1236 btrfs_set_item_key_safe(fs_info, path, &new_key); 1237 1238 fi = btrfs_item_ptr(leaf, path->slots[0], 1239 struct btrfs_file_extent_item); 1240 btrfs_set_file_extent_generation(leaf, fi, 1241 trans->transid); 1242 btrfs_set_file_extent_num_bytes(leaf, fi, 1243 other_end - start); 1244 btrfs_set_file_extent_offset(leaf, fi, 1245 start - orig_offset); 1246 btrfs_mark_buffer_dirty(leaf); 1247 goto out; 1248 } 1249 } 1250 1251 while (start > key.offset || end < extent_end) { 1252 if (key.offset == start) 1253 split = end; 1254 1255 new_key.offset = split; 1256 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1257 if (ret == -EAGAIN) { 1258 btrfs_release_path(path); 1259 goto again; 1260 } 1261 if (ret < 0) { 1262 btrfs_abort_transaction(trans, ret); 1263 goto out; 1264 } 1265 1266 leaf = path->nodes[0]; 1267 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1268 struct btrfs_file_extent_item); 1269 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1270 btrfs_set_file_extent_num_bytes(leaf, fi, 1271 split - key.offset); 1272 1273 fi = btrfs_item_ptr(leaf, path->slots[0], 1274 struct btrfs_file_extent_item); 1275 1276 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1277 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1278 btrfs_set_file_extent_num_bytes(leaf, fi, 1279 extent_end - split); 1280 btrfs_mark_buffer_dirty(leaf); 1281 1282 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1283 0, root->root_key.objectid, 1284 ino, orig_offset); 1285 if (ret) { 1286 btrfs_abort_transaction(trans, ret); 1287 goto out; 1288 } 1289 1290 if (split == start) { 1291 key.offset = start; 1292 } else { 1293 if (start != key.offset) { 1294 ret = -EINVAL; 1295 btrfs_abort_transaction(trans, ret); 1296 goto out; 1297 } 1298 path->slots[0]--; 1299 extent_end = end; 1300 } 1301 recow = 1; 1302 } 1303 1304 other_start = end; 1305 other_end = 0; 1306 if (extent_mergeable(leaf, path->slots[0] + 1, 1307 ino, bytenr, orig_offset, 1308 &other_start, &other_end)) { 1309 if (recow) { 1310 btrfs_release_path(path); 1311 goto again; 1312 } 1313 extent_end = other_end; 1314 del_slot = path->slots[0] + 1; 1315 del_nr++; 1316 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1317 0, root->root_key.objectid, 1318 ino, orig_offset); 1319 if (ret) { 1320 btrfs_abort_transaction(trans, ret); 1321 goto out; 1322 } 1323 } 1324 other_start = 0; 1325 other_end = start; 1326 if (extent_mergeable(leaf, path->slots[0] - 1, 1327 ino, bytenr, orig_offset, 1328 &other_start, &other_end)) { 1329 if (recow) { 1330 btrfs_release_path(path); 1331 goto again; 1332 } 1333 key.offset = other_start; 1334 del_slot = path->slots[0]; 1335 del_nr++; 1336 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1337 0, root->root_key.objectid, 1338 ino, orig_offset); 1339 if (ret) { 1340 btrfs_abort_transaction(trans, ret); 1341 goto out; 1342 } 1343 } 1344 if (del_nr == 0) { 1345 fi = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_file_extent_item); 1347 btrfs_set_file_extent_type(leaf, fi, 1348 BTRFS_FILE_EXTENT_REG); 1349 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1350 btrfs_mark_buffer_dirty(leaf); 1351 } else { 1352 fi = btrfs_item_ptr(leaf, del_slot - 1, 1353 struct btrfs_file_extent_item); 1354 btrfs_set_file_extent_type(leaf, fi, 1355 BTRFS_FILE_EXTENT_REG); 1356 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1357 btrfs_set_file_extent_num_bytes(leaf, fi, 1358 extent_end - key.offset); 1359 btrfs_mark_buffer_dirty(leaf); 1360 1361 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1362 if (ret < 0) { 1363 btrfs_abort_transaction(trans, ret); 1364 goto out; 1365 } 1366 } 1367 out: 1368 btrfs_free_path(path); 1369 return 0; 1370 } 1371 1372 /* 1373 * on error we return an unlocked page and the error value 1374 * on success we return a locked page and 0 1375 */ 1376 static int prepare_uptodate_page(struct inode *inode, 1377 struct page *page, u64 pos, 1378 bool force_uptodate) 1379 { 1380 int ret = 0; 1381 1382 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1383 !PageUptodate(page)) { 1384 ret = btrfs_readpage(NULL, page); 1385 if (ret) 1386 return ret; 1387 lock_page(page); 1388 if (!PageUptodate(page)) { 1389 unlock_page(page); 1390 return -EIO; 1391 } 1392 if (page->mapping != inode->i_mapping) { 1393 unlock_page(page); 1394 return -EAGAIN; 1395 } 1396 } 1397 return 0; 1398 } 1399 1400 /* 1401 * this just gets pages into the page cache and locks them down. 1402 */ 1403 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1404 size_t num_pages, loff_t pos, 1405 size_t write_bytes, bool force_uptodate) 1406 { 1407 int i; 1408 unsigned long index = pos >> PAGE_SHIFT; 1409 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1410 int err = 0; 1411 int faili; 1412 1413 for (i = 0; i < num_pages; i++) { 1414 again: 1415 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1416 mask | __GFP_WRITE); 1417 if (!pages[i]) { 1418 faili = i - 1; 1419 err = -ENOMEM; 1420 goto fail; 1421 } 1422 1423 if (i == 0) 1424 err = prepare_uptodate_page(inode, pages[i], pos, 1425 force_uptodate); 1426 if (!err && i == num_pages - 1) 1427 err = prepare_uptodate_page(inode, pages[i], 1428 pos + write_bytes, false); 1429 if (err) { 1430 put_page(pages[i]); 1431 if (err == -EAGAIN) { 1432 err = 0; 1433 goto again; 1434 } 1435 faili = i - 1; 1436 goto fail; 1437 } 1438 wait_on_page_writeback(pages[i]); 1439 } 1440 1441 return 0; 1442 fail: 1443 while (faili >= 0) { 1444 unlock_page(pages[faili]); 1445 put_page(pages[faili]); 1446 faili--; 1447 } 1448 return err; 1449 1450 } 1451 1452 /* 1453 * This function locks the extent and properly waits for data=ordered extents 1454 * to finish before allowing the pages to be modified if need. 1455 * 1456 * The return value: 1457 * 1 - the extent is locked 1458 * 0 - the extent is not locked, and everything is OK 1459 * -EAGAIN - need re-prepare the pages 1460 * the other < 0 number - Something wrong happens 1461 */ 1462 static noinline int 1463 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1464 size_t num_pages, loff_t pos, 1465 size_t write_bytes, 1466 u64 *lockstart, u64 *lockend, 1467 struct extent_state **cached_state) 1468 { 1469 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1470 u64 start_pos; 1471 u64 last_pos; 1472 int i; 1473 int ret = 0; 1474 1475 start_pos = round_down(pos, fs_info->sectorsize); 1476 last_pos = start_pos 1477 + round_up(pos + write_bytes - start_pos, 1478 fs_info->sectorsize) - 1; 1479 1480 if (start_pos < inode->vfs_inode.i_size) { 1481 struct btrfs_ordered_extent *ordered; 1482 1483 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1484 cached_state); 1485 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1486 last_pos - start_pos + 1); 1487 if (ordered && 1488 ordered->file_offset + ordered->len > start_pos && 1489 ordered->file_offset <= last_pos) { 1490 unlock_extent_cached(&inode->io_tree, start_pos, 1491 last_pos, cached_state); 1492 for (i = 0; i < num_pages; i++) { 1493 unlock_page(pages[i]); 1494 put_page(pages[i]); 1495 } 1496 btrfs_start_ordered_extent(&inode->vfs_inode, 1497 ordered, 1); 1498 btrfs_put_ordered_extent(ordered); 1499 return -EAGAIN; 1500 } 1501 if (ordered) 1502 btrfs_put_ordered_extent(ordered); 1503 clear_extent_bit(&inode->io_tree, start_pos, last_pos, 1504 EXTENT_DIRTY | EXTENT_DELALLOC | 1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1506 0, 0, cached_state); 1507 *lockstart = start_pos; 1508 *lockend = last_pos; 1509 ret = 1; 1510 } 1511 1512 for (i = 0; i < num_pages; i++) { 1513 if (clear_page_dirty_for_io(pages[i])) 1514 account_page_redirty(pages[i]); 1515 set_page_extent_mapped(pages[i]); 1516 WARN_ON(!PageLocked(pages[i])); 1517 } 1518 1519 return ret; 1520 } 1521 1522 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1523 size_t *write_bytes) 1524 { 1525 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1526 struct btrfs_root *root = inode->root; 1527 struct btrfs_ordered_extent *ordered; 1528 u64 lockstart, lockend; 1529 u64 num_bytes; 1530 int ret; 1531 1532 ret = btrfs_start_write_no_snapshotting(root); 1533 if (!ret) 1534 return -ENOSPC; 1535 1536 lockstart = round_down(pos, fs_info->sectorsize); 1537 lockend = round_up(pos + *write_bytes, 1538 fs_info->sectorsize) - 1; 1539 1540 while (1) { 1541 lock_extent(&inode->io_tree, lockstart, lockend); 1542 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1543 lockend - lockstart + 1); 1544 if (!ordered) { 1545 break; 1546 } 1547 unlock_extent(&inode->io_tree, lockstart, lockend); 1548 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1549 btrfs_put_ordered_extent(ordered); 1550 } 1551 1552 num_bytes = lockend - lockstart + 1; 1553 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1554 NULL, NULL, NULL); 1555 if (ret <= 0) { 1556 ret = 0; 1557 btrfs_end_write_no_snapshotting(root); 1558 } else { 1559 *write_bytes = min_t(size_t, *write_bytes , 1560 num_bytes - pos + lockstart); 1561 } 1562 1563 unlock_extent(&inode->io_tree, lockstart, lockend); 1564 1565 return ret; 1566 } 1567 1568 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1569 struct iov_iter *i) 1570 { 1571 struct file *file = iocb->ki_filp; 1572 loff_t pos = iocb->ki_pos; 1573 struct inode *inode = file_inode(file); 1574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1575 struct btrfs_root *root = BTRFS_I(inode)->root; 1576 struct page **pages = NULL; 1577 struct extent_state *cached_state = NULL; 1578 struct extent_changeset *data_reserved = NULL; 1579 u64 release_bytes = 0; 1580 u64 lockstart; 1581 u64 lockend; 1582 size_t num_written = 0; 1583 int nrptrs; 1584 int ret = 0; 1585 bool only_release_metadata = false; 1586 bool force_page_uptodate = false; 1587 1588 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1589 PAGE_SIZE / (sizeof(struct page *))); 1590 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1591 nrptrs = max(nrptrs, 8); 1592 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1593 if (!pages) 1594 return -ENOMEM; 1595 1596 while (iov_iter_count(i) > 0) { 1597 size_t offset = pos & (PAGE_SIZE - 1); 1598 size_t sector_offset; 1599 size_t write_bytes = min(iov_iter_count(i), 1600 nrptrs * (size_t)PAGE_SIZE - 1601 offset); 1602 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1603 PAGE_SIZE); 1604 size_t reserve_bytes; 1605 size_t dirty_pages; 1606 size_t copied; 1607 size_t dirty_sectors; 1608 size_t num_sectors; 1609 int extents_locked; 1610 1611 WARN_ON(num_pages > nrptrs); 1612 1613 /* 1614 * Fault pages before locking them in prepare_pages 1615 * to avoid recursive lock 1616 */ 1617 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1618 ret = -EFAULT; 1619 break; 1620 } 1621 1622 sector_offset = pos & (fs_info->sectorsize - 1); 1623 reserve_bytes = round_up(write_bytes + sector_offset, 1624 fs_info->sectorsize); 1625 1626 extent_changeset_release(data_reserved); 1627 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1628 write_bytes); 1629 if (ret < 0) { 1630 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1631 BTRFS_INODE_PREALLOC)) && 1632 check_can_nocow(BTRFS_I(inode), pos, 1633 &write_bytes) > 0) { 1634 /* 1635 * For nodata cow case, no need to reserve 1636 * data space. 1637 */ 1638 only_release_metadata = true; 1639 /* 1640 * our prealloc extent may be smaller than 1641 * write_bytes, so scale down. 1642 */ 1643 num_pages = DIV_ROUND_UP(write_bytes + offset, 1644 PAGE_SIZE); 1645 reserve_bytes = round_up(write_bytes + 1646 sector_offset, 1647 fs_info->sectorsize); 1648 } else { 1649 break; 1650 } 1651 } 1652 1653 WARN_ON(reserve_bytes == 0); 1654 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1655 reserve_bytes); 1656 if (ret) { 1657 if (!only_release_metadata) 1658 btrfs_free_reserved_data_space(inode, 1659 data_reserved, pos, 1660 write_bytes); 1661 else 1662 btrfs_end_write_no_snapshotting(root); 1663 break; 1664 } 1665 1666 release_bytes = reserve_bytes; 1667 again: 1668 /* 1669 * This is going to setup the pages array with the number of 1670 * pages we want, so we don't really need to worry about the 1671 * contents of pages from loop to loop 1672 */ 1673 ret = prepare_pages(inode, pages, num_pages, 1674 pos, write_bytes, 1675 force_page_uptodate); 1676 if (ret) { 1677 btrfs_delalloc_release_extents(BTRFS_I(inode), 1678 reserve_bytes, true); 1679 break; 1680 } 1681 1682 extents_locked = lock_and_cleanup_extent_if_need( 1683 BTRFS_I(inode), pages, 1684 num_pages, pos, write_bytes, &lockstart, 1685 &lockend, &cached_state); 1686 if (extents_locked < 0) { 1687 if (extents_locked == -EAGAIN) 1688 goto again; 1689 btrfs_delalloc_release_extents(BTRFS_I(inode), 1690 reserve_bytes, true); 1691 ret = extents_locked; 1692 break; 1693 } 1694 1695 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1696 1697 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1698 dirty_sectors = round_up(copied + sector_offset, 1699 fs_info->sectorsize); 1700 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1701 1702 /* 1703 * if we have trouble faulting in the pages, fall 1704 * back to one page at a time 1705 */ 1706 if (copied < write_bytes) 1707 nrptrs = 1; 1708 1709 if (copied == 0) { 1710 force_page_uptodate = true; 1711 dirty_sectors = 0; 1712 dirty_pages = 0; 1713 } else { 1714 force_page_uptodate = false; 1715 dirty_pages = DIV_ROUND_UP(copied + offset, 1716 PAGE_SIZE); 1717 } 1718 1719 if (num_sectors > dirty_sectors) { 1720 /* release everything except the sectors we dirtied */ 1721 release_bytes -= dirty_sectors << 1722 fs_info->sb->s_blocksize_bits; 1723 if (only_release_metadata) { 1724 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1725 release_bytes, true); 1726 } else { 1727 u64 __pos; 1728 1729 __pos = round_down(pos, 1730 fs_info->sectorsize) + 1731 (dirty_pages << PAGE_SHIFT); 1732 btrfs_delalloc_release_space(inode, 1733 data_reserved, __pos, 1734 release_bytes, true); 1735 } 1736 } 1737 1738 release_bytes = round_up(copied + sector_offset, 1739 fs_info->sectorsize); 1740 1741 if (copied > 0) 1742 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1743 pos, copied, &cached_state); 1744 if (extents_locked) 1745 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1746 lockstart, lockend, &cached_state); 1747 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1748 true); 1749 if (ret) { 1750 btrfs_drop_pages(pages, num_pages); 1751 break; 1752 } 1753 1754 release_bytes = 0; 1755 if (only_release_metadata) 1756 btrfs_end_write_no_snapshotting(root); 1757 1758 if (only_release_metadata && copied > 0) { 1759 lockstart = round_down(pos, 1760 fs_info->sectorsize); 1761 lockend = round_up(pos + copied, 1762 fs_info->sectorsize) - 1; 1763 1764 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1765 lockend, EXTENT_NORESERVE, NULL, 1766 NULL, GFP_NOFS); 1767 only_release_metadata = false; 1768 } 1769 1770 btrfs_drop_pages(pages, num_pages); 1771 1772 cond_resched(); 1773 1774 balance_dirty_pages_ratelimited(inode->i_mapping); 1775 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1776 btrfs_btree_balance_dirty(fs_info); 1777 1778 pos += copied; 1779 num_written += copied; 1780 } 1781 1782 kfree(pages); 1783 1784 if (release_bytes) { 1785 if (only_release_metadata) { 1786 btrfs_end_write_no_snapshotting(root); 1787 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1788 release_bytes, true); 1789 } else { 1790 btrfs_delalloc_release_space(inode, data_reserved, 1791 round_down(pos, fs_info->sectorsize), 1792 release_bytes, true); 1793 } 1794 } 1795 1796 extent_changeset_free(data_reserved); 1797 return num_written ? num_written : ret; 1798 } 1799 1800 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1801 { 1802 struct file *file = iocb->ki_filp; 1803 struct inode *inode = file_inode(file); 1804 loff_t pos; 1805 ssize_t written; 1806 ssize_t written_buffered; 1807 loff_t endbyte; 1808 int err; 1809 1810 written = generic_file_direct_write(iocb, from); 1811 1812 if (written < 0 || !iov_iter_count(from)) 1813 return written; 1814 1815 pos = iocb->ki_pos; 1816 written_buffered = btrfs_buffered_write(iocb, from); 1817 if (written_buffered < 0) { 1818 err = written_buffered; 1819 goto out; 1820 } 1821 /* 1822 * Ensure all data is persisted. We want the next direct IO read to be 1823 * able to read what was just written. 1824 */ 1825 endbyte = pos + written_buffered - 1; 1826 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1827 if (err) 1828 goto out; 1829 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1830 if (err) 1831 goto out; 1832 written += written_buffered; 1833 iocb->ki_pos = pos + written_buffered; 1834 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1835 endbyte >> PAGE_SHIFT); 1836 out: 1837 return written ? written : err; 1838 } 1839 1840 static void update_time_for_write(struct inode *inode) 1841 { 1842 struct timespec64 now; 1843 1844 if (IS_NOCMTIME(inode)) 1845 return; 1846 1847 now = current_time(inode); 1848 if (!timespec64_equal(&inode->i_mtime, &now)) 1849 inode->i_mtime = now; 1850 1851 if (!timespec64_equal(&inode->i_ctime, &now)) 1852 inode->i_ctime = now; 1853 1854 if (IS_I_VERSION(inode)) 1855 inode_inc_iversion(inode); 1856 } 1857 1858 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1859 struct iov_iter *from) 1860 { 1861 struct file *file = iocb->ki_filp; 1862 struct inode *inode = file_inode(file); 1863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1864 struct btrfs_root *root = BTRFS_I(inode)->root; 1865 u64 start_pos; 1866 u64 end_pos; 1867 ssize_t num_written = 0; 1868 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1869 ssize_t err; 1870 loff_t pos; 1871 size_t count = iov_iter_count(from); 1872 loff_t oldsize; 1873 int clean_page = 0; 1874 1875 if (!(iocb->ki_flags & IOCB_DIRECT) && 1876 (iocb->ki_flags & IOCB_NOWAIT)) 1877 return -EOPNOTSUPP; 1878 1879 if (!inode_trylock(inode)) { 1880 if (iocb->ki_flags & IOCB_NOWAIT) 1881 return -EAGAIN; 1882 inode_lock(inode); 1883 } 1884 1885 err = generic_write_checks(iocb, from); 1886 if (err <= 0) { 1887 inode_unlock(inode); 1888 return err; 1889 } 1890 1891 pos = iocb->ki_pos; 1892 if (iocb->ki_flags & IOCB_NOWAIT) { 1893 /* 1894 * We will allocate space in case nodatacow is not set, 1895 * so bail 1896 */ 1897 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1898 BTRFS_INODE_PREALLOC)) || 1899 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1900 inode_unlock(inode); 1901 return -EAGAIN; 1902 } 1903 } 1904 1905 current->backing_dev_info = inode_to_bdi(inode); 1906 err = file_remove_privs(file); 1907 if (err) { 1908 inode_unlock(inode); 1909 goto out; 1910 } 1911 1912 /* 1913 * If BTRFS flips readonly due to some impossible error 1914 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1915 * although we have opened a file as writable, we have 1916 * to stop this write operation to ensure FS consistency. 1917 */ 1918 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1919 inode_unlock(inode); 1920 err = -EROFS; 1921 goto out; 1922 } 1923 1924 /* 1925 * We reserve space for updating the inode when we reserve space for the 1926 * extent we are going to write, so we will enospc out there. We don't 1927 * need to start yet another transaction to update the inode as we will 1928 * update the inode when we finish writing whatever data we write. 1929 */ 1930 update_time_for_write(inode); 1931 1932 start_pos = round_down(pos, fs_info->sectorsize); 1933 oldsize = i_size_read(inode); 1934 if (start_pos > oldsize) { 1935 /* Expand hole size to cover write data, preventing empty gap */ 1936 end_pos = round_up(pos + count, 1937 fs_info->sectorsize); 1938 err = btrfs_cont_expand(inode, oldsize, end_pos); 1939 if (err) { 1940 inode_unlock(inode); 1941 goto out; 1942 } 1943 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1944 clean_page = 1; 1945 } 1946 1947 if (sync) 1948 atomic_inc(&BTRFS_I(inode)->sync_writers); 1949 1950 if (iocb->ki_flags & IOCB_DIRECT) { 1951 num_written = __btrfs_direct_write(iocb, from); 1952 } else { 1953 num_written = btrfs_buffered_write(iocb, from); 1954 if (num_written > 0) 1955 iocb->ki_pos = pos + num_written; 1956 if (clean_page) 1957 pagecache_isize_extended(inode, oldsize, 1958 i_size_read(inode)); 1959 } 1960 1961 inode_unlock(inode); 1962 1963 /* 1964 * We also have to set last_sub_trans to the current log transid, 1965 * otherwise subsequent syncs to a file that's been synced in this 1966 * transaction will appear to have already occurred. 1967 */ 1968 spin_lock(&BTRFS_I(inode)->lock); 1969 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1970 spin_unlock(&BTRFS_I(inode)->lock); 1971 if (num_written > 0) 1972 num_written = generic_write_sync(iocb, num_written); 1973 1974 if (sync) 1975 atomic_dec(&BTRFS_I(inode)->sync_writers); 1976 out: 1977 current->backing_dev_info = NULL; 1978 return num_written ? num_written : err; 1979 } 1980 1981 int btrfs_release_file(struct inode *inode, struct file *filp) 1982 { 1983 struct btrfs_file_private *private = filp->private_data; 1984 1985 if (private && private->filldir_buf) 1986 kfree(private->filldir_buf); 1987 kfree(private); 1988 filp->private_data = NULL; 1989 1990 /* 1991 * ordered_data_close is set by settattr when we are about to truncate 1992 * a file from a non-zero size to a zero size. This tries to 1993 * flush down new bytes that may have been written if the 1994 * application were using truncate to replace a file in place. 1995 */ 1996 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1997 &BTRFS_I(inode)->runtime_flags)) 1998 filemap_flush(inode->i_mapping); 1999 return 0; 2000 } 2001 2002 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2003 { 2004 int ret; 2005 struct blk_plug plug; 2006 2007 /* 2008 * This is only called in fsync, which would do synchronous writes, so 2009 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2010 * multiple disks using raid profile, a large IO can be split to 2011 * several segments of stripe length (currently 64K). 2012 */ 2013 blk_start_plug(&plug); 2014 atomic_inc(&BTRFS_I(inode)->sync_writers); 2015 ret = btrfs_fdatawrite_range(inode, start, end); 2016 atomic_dec(&BTRFS_I(inode)->sync_writers); 2017 blk_finish_plug(&plug); 2018 2019 return ret; 2020 } 2021 2022 /* 2023 * fsync call for both files and directories. This logs the inode into 2024 * the tree log instead of forcing full commits whenever possible. 2025 * 2026 * It needs to call filemap_fdatawait so that all ordered extent updates are 2027 * in the metadata btree are up to date for copying to the log. 2028 * 2029 * It drops the inode mutex before doing the tree log commit. This is an 2030 * important optimization for directories because holding the mutex prevents 2031 * new operations on the dir while we write to disk. 2032 */ 2033 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2034 { 2035 struct dentry *dentry = file_dentry(file); 2036 struct inode *inode = d_inode(dentry); 2037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2038 struct btrfs_root *root = BTRFS_I(inode)->root; 2039 struct btrfs_trans_handle *trans; 2040 struct btrfs_log_ctx ctx; 2041 int ret = 0, err; 2042 u64 len; 2043 2044 /* 2045 * The range length can be represented by u64, we have to do the typecasts 2046 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2047 */ 2048 len = (u64)end - (u64)start + 1; 2049 trace_btrfs_sync_file(file, datasync); 2050 2051 btrfs_init_log_ctx(&ctx, inode); 2052 2053 /* 2054 * We write the dirty pages in the range and wait until they complete 2055 * out of the ->i_mutex. If so, we can flush the dirty pages by 2056 * multi-task, and make the performance up. See 2057 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2058 */ 2059 ret = start_ordered_ops(inode, start, end); 2060 if (ret) 2061 goto out; 2062 2063 inode_lock(inode); 2064 atomic_inc(&root->log_batch); 2065 2066 /* 2067 * We have to do this here to avoid the priority inversion of waiting on 2068 * IO of a lower priority task while holding a transaciton open. 2069 */ 2070 ret = btrfs_wait_ordered_range(inode, start, len); 2071 if (ret) { 2072 inode_unlock(inode); 2073 goto out; 2074 } 2075 atomic_inc(&root->log_batch); 2076 2077 smp_mb(); 2078 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2079 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2080 /* 2081 * We've had everything committed since the last time we were 2082 * modified so clear this flag in case it was set for whatever 2083 * reason, it's no longer relevant. 2084 */ 2085 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2086 &BTRFS_I(inode)->runtime_flags); 2087 /* 2088 * An ordered extent might have started before and completed 2089 * already with io errors, in which case the inode was not 2090 * updated and we end up here. So check the inode's mapping 2091 * for any errors that might have happened since we last 2092 * checked called fsync. 2093 */ 2094 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2095 inode_unlock(inode); 2096 goto out; 2097 } 2098 2099 /* 2100 * We use start here because we will need to wait on the IO to complete 2101 * in btrfs_sync_log, which could require joining a transaction (for 2102 * example checking cross references in the nocow path). If we use join 2103 * here we could get into a situation where we're waiting on IO to 2104 * happen that is blocked on a transaction trying to commit. With start 2105 * we inc the extwriter counter, so we wait for all extwriters to exit 2106 * before we start blocking join'ers. This comment is to keep somebody 2107 * from thinking they are super smart and changing this to 2108 * btrfs_join_transaction *cough*Josef*cough*. 2109 */ 2110 trans = btrfs_start_transaction(root, 0); 2111 if (IS_ERR(trans)) { 2112 ret = PTR_ERR(trans); 2113 inode_unlock(inode); 2114 goto out; 2115 } 2116 trans->sync = true; 2117 2118 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2119 if (ret < 0) { 2120 /* Fallthrough and commit/free transaction. */ 2121 ret = 1; 2122 } 2123 2124 /* we've logged all the items and now have a consistent 2125 * version of the file in the log. It is possible that 2126 * someone will come in and modify the file, but that's 2127 * fine because the log is consistent on disk, and we 2128 * have references to all of the file's extents 2129 * 2130 * It is possible that someone will come in and log the 2131 * file again, but that will end up using the synchronization 2132 * inside btrfs_sync_log to keep things safe. 2133 */ 2134 inode_unlock(inode); 2135 2136 /* 2137 * If any of the ordered extents had an error, just return it to user 2138 * space, so that the application knows some writes didn't succeed and 2139 * can take proper action (retry for e.g.). Blindly committing the 2140 * transaction in this case, would fool userspace that everything was 2141 * successful. And we also want to make sure our log doesn't contain 2142 * file extent items pointing to extents that weren't fully written to - 2143 * just like in the non fast fsync path, where we check for the ordered 2144 * operation's error flag before writing to the log tree and return -EIO 2145 * if any of them had this flag set (btrfs_wait_ordered_range) - 2146 * therefore we need to check for errors in the ordered operations, 2147 * which are indicated by ctx.io_err. 2148 */ 2149 if (ctx.io_err) { 2150 btrfs_end_transaction(trans); 2151 ret = ctx.io_err; 2152 goto out; 2153 } 2154 2155 if (ret != BTRFS_NO_LOG_SYNC) { 2156 if (!ret) { 2157 ret = btrfs_sync_log(trans, root, &ctx); 2158 if (!ret) { 2159 ret = btrfs_end_transaction(trans); 2160 goto out; 2161 } 2162 } 2163 ret = btrfs_commit_transaction(trans); 2164 } else { 2165 ret = btrfs_end_transaction(trans); 2166 } 2167 out: 2168 ASSERT(list_empty(&ctx.list)); 2169 err = file_check_and_advance_wb_err(file); 2170 if (!ret) 2171 ret = err; 2172 return ret > 0 ? -EIO : ret; 2173 } 2174 2175 static const struct vm_operations_struct btrfs_file_vm_ops = { 2176 .fault = filemap_fault, 2177 .map_pages = filemap_map_pages, 2178 .page_mkwrite = btrfs_page_mkwrite, 2179 }; 2180 2181 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2182 { 2183 struct address_space *mapping = filp->f_mapping; 2184 2185 if (!mapping->a_ops->readpage) 2186 return -ENOEXEC; 2187 2188 file_accessed(filp); 2189 vma->vm_ops = &btrfs_file_vm_ops; 2190 2191 return 0; 2192 } 2193 2194 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2195 int slot, u64 start, u64 end) 2196 { 2197 struct btrfs_file_extent_item *fi; 2198 struct btrfs_key key; 2199 2200 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2201 return 0; 2202 2203 btrfs_item_key_to_cpu(leaf, &key, slot); 2204 if (key.objectid != btrfs_ino(inode) || 2205 key.type != BTRFS_EXTENT_DATA_KEY) 2206 return 0; 2207 2208 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2209 2210 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2211 return 0; 2212 2213 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2214 return 0; 2215 2216 if (key.offset == end) 2217 return 1; 2218 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2219 return 1; 2220 return 0; 2221 } 2222 2223 static int fill_holes(struct btrfs_trans_handle *trans, 2224 struct btrfs_inode *inode, 2225 struct btrfs_path *path, u64 offset, u64 end) 2226 { 2227 struct btrfs_fs_info *fs_info = trans->fs_info; 2228 struct btrfs_root *root = inode->root; 2229 struct extent_buffer *leaf; 2230 struct btrfs_file_extent_item *fi; 2231 struct extent_map *hole_em; 2232 struct extent_map_tree *em_tree = &inode->extent_tree; 2233 struct btrfs_key key; 2234 int ret; 2235 2236 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2237 goto out; 2238 2239 key.objectid = btrfs_ino(inode); 2240 key.type = BTRFS_EXTENT_DATA_KEY; 2241 key.offset = offset; 2242 2243 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2244 if (ret <= 0) { 2245 /* 2246 * We should have dropped this offset, so if we find it then 2247 * something has gone horribly wrong. 2248 */ 2249 if (ret == 0) 2250 ret = -EINVAL; 2251 return ret; 2252 } 2253 2254 leaf = path->nodes[0]; 2255 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2256 u64 num_bytes; 2257 2258 path->slots[0]--; 2259 fi = btrfs_item_ptr(leaf, path->slots[0], 2260 struct btrfs_file_extent_item); 2261 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2262 end - offset; 2263 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2264 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2265 btrfs_set_file_extent_offset(leaf, fi, 0); 2266 btrfs_mark_buffer_dirty(leaf); 2267 goto out; 2268 } 2269 2270 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2271 u64 num_bytes; 2272 2273 key.offset = offset; 2274 btrfs_set_item_key_safe(fs_info, path, &key); 2275 fi = btrfs_item_ptr(leaf, path->slots[0], 2276 struct btrfs_file_extent_item); 2277 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2278 offset; 2279 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2280 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2281 btrfs_set_file_extent_offset(leaf, fi, 0); 2282 btrfs_mark_buffer_dirty(leaf); 2283 goto out; 2284 } 2285 btrfs_release_path(path); 2286 2287 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2288 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2289 if (ret) 2290 return ret; 2291 2292 out: 2293 btrfs_release_path(path); 2294 2295 hole_em = alloc_extent_map(); 2296 if (!hole_em) { 2297 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2299 } else { 2300 hole_em->start = offset; 2301 hole_em->len = end - offset; 2302 hole_em->ram_bytes = hole_em->len; 2303 hole_em->orig_start = offset; 2304 2305 hole_em->block_start = EXTENT_MAP_HOLE; 2306 hole_em->block_len = 0; 2307 hole_em->orig_block_len = 0; 2308 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2309 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2310 hole_em->generation = trans->transid; 2311 2312 do { 2313 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2314 write_lock(&em_tree->lock); 2315 ret = add_extent_mapping(em_tree, hole_em, 1); 2316 write_unlock(&em_tree->lock); 2317 } while (ret == -EEXIST); 2318 free_extent_map(hole_em); 2319 if (ret) 2320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2321 &inode->runtime_flags); 2322 } 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * Find a hole extent on given inode and change start/len to the end of hole 2329 * extent.(hole/vacuum extent whose em->start <= start && 2330 * em->start + em->len > start) 2331 * When a hole extent is found, return 1 and modify start/len. 2332 */ 2333 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2334 { 2335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2336 struct extent_map *em; 2337 int ret = 0; 2338 2339 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2340 round_down(*start, fs_info->sectorsize), 2341 round_up(*len, fs_info->sectorsize), 0); 2342 if (IS_ERR(em)) 2343 return PTR_ERR(em); 2344 2345 /* Hole or vacuum extent(only exists in no-hole mode) */ 2346 if (em->block_start == EXTENT_MAP_HOLE) { 2347 ret = 1; 2348 *len = em->start + em->len > *start + *len ? 2349 0 : *start + *len - em->start - em->len; 2350 *start = em->start + em->len; 2351 } 2352 free_extent_map(em); 2353 return ret; 2354 } 2355 2356 static int btrfs_punch_hole_lock_range(struct inode *inode, 2357 const u64 lockstart, 2358 const u64 lockend, 2359 struct extent_state **cached_state) 2360 { 2361 while (1) { 2362 struct btrfs_ordered_extent *ordered; 2363 int ret; 2364 2365 truncate_pagecache_range(inode, lockstart, lockend); 2366 2367 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2368 cached_state); 2369 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2370 2371 /* 2372 * We need to make sure we have no ordered extents in this range 2373 * and nobody raced in and read a page in this range, if we did 2374 * we need to try again. 2375 */ 2376 if ((!ordered || 2377 (ordered->file_offset + ordered->len <= lockstart || 2378 ordered->file_offset > lockend)) && 2379 !filemap_range_has_page(inode->i_mapping, 2380 lockstart, lockend)) { 2381 if (ordered) 2382 btrfs_put_ordered_extent(ordered); 2383 break; 2384 } 2385 if (ordered) 2386 btrfs_put_ordered_extent(ordered); 2387 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2388 lockend, cached_state); 2389 ret = btrfs_wait_ordered_range(inode, lockstart, 2390 lockend - lockstart + 1); 2391 if (ret) 2392 return ret; 2393 } 2394 return 0; 2395 } 2396 2397 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2398 { 2399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2400 struct btrfs_root *root = BTRFS_I(inode)->root; 2401 struct extent_state *cached_state = NULL; 2402 struct btrfs_path *path; 2403 struct btrfs_block_rsv *rsv; 2404 struct btrfs_trans_handle *trans; 2405 u64 lockstart; 2406 u64 lockend; 2407 u64 tail_start; 2408 u64 tail_len; 2409 u64 orig_start = offset; 2410 u64 cur_offset; 2411 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2412 u64 drop_end; 2413 int ret = 0; 2414 int err = 0; 2415 unsigned int rsv_count; 2416 bool same_block; 2417 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2418 u64 ino_size; 2419 bool truncated_block = false; 2420 bool updated_inode = false; 2421 2422 ret = btrfs_wait_ordered_range(inode, offset, len); 2423 if (ret) 2424 return ret; 2425 2426 inode_lock(inode); 2427 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2428 ret = find_first_non_hole(inode, &offset, &len); 2429 if (ret < 0) 2430 goto out_only_mutex; 2431 if (ret && !len) { 2432 /* Already in a large hole */ 2433 ret = 0; 2434 goto out_only_mutex; 2435 } 2436 2437 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2438 lockend = round_down(offset + len, 2439 btrfs_inode_sectorsize(inode)) - 1; 2440 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2441 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2442 /* 2443 * We needn't truncate any block which is beyond the end of the file 2444 * because we are sure there is no data there. 2445 */ 2446 /* 2447 * Only do this if we are in the same block and we aren't doing the 2448 * entire block. 2449 */ 2450 if (same_block && len < fs_info->sectorsize) { 2451 if (offset < ino_size) { 2452 truncated_block = true; 2453 ret = btrfs_truncate_block(inode, offset, len, 0); 2454 } else { 2455 ret = 0; 2456 } 2457 goto out_only_mutex; 2458 } 2459 2460 /* zero back part of the first block */ 2461 if (offset < ino_size) { 2462 truncated_block = true; 2463 ret = btrfs_truncate_block(inode, offset, 0, 0); 2464 if (ret) { 2465 inode_unlock(inode); 2466 return ret; 2467 } 2468 } 2469 2470 /* Check the aligned pages after the first unaligned page, 2471 * if offset != orig_start, which means the first unaligned page 2472 * including several following pages are already in holes, 2473 * the extra check can be skipped */ 2474 if (offset == orig_start) { 2475 /* after truncate page, check hole again */ 2476 len = offset + len - lockstart; 2477 offset = lockstart; 2478 ret = find_first_non_hole(inode, &offset, &len); 2479 if (ret < 0) 2480 goto out_only_mutex; 2481 if (ret && !len) { 2482 ret = 0; 2483 goto out_only_mutex; 2484 } 2485 lockstart = offset; 2486 } 2487 2488 /* Check the tail unaligned part is in a hole */ 2489 tail_start = lockend + 1; 2490 tail_len = offset + len - tail_start; 2491 if (tail_len) { 2492 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2493 if (unlikely(ret < 0)) 2494 goto out_only_mutex; 2495 if (!ret) { 2496 /* zero the front end of the last page */ 2497 if (tail_start + tail_len < ino_size) { 2498 truncated_block = true; 2499 ret = btrfs_truncate_block(inode, 2500 tail_start + tail_len, 2501 0, 1); 2502 if (ret) 2503 goto out_only_mutex; 2504 } 2505 } 2506 } 2507 2508 if (lockend < lockstart) { 2509 ret = 0; 2510 goto out_only_mutex; 2511 } 2512 2513 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2514 &cached_state); 2515 if (ret) { 2516 inode_unlock(inode); 2517 goto out_only_mutex; 2518 } 2519 2520 path = btrfs_alloc_path(); 2521 if (!path) { 2522 ret = -ENOMEM; 2523 goto out; 2524 } 2525 2526 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2527 if (!rsv) { 2528 ret = -ENOMEM; 2529 goto out_free; 2530 } 2531 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2532 rsv->failfast = 1; 2533 2534 /* 2535 * 1 - update the inode 2536 * 1 - removing the extents in the range 2537 * 1 - adding the hole extent if no_holes isn't set 2538 */ 2539 rsv_count = no_holes ? 2 : 3; 2540 trans = btrfs_start_transaction(root, rsv_count); 2541 if (IS_ERR(trans)) { 2542 err = PTR_ERR(trans); 2543 goto out_free; 2544 } 2545 2546 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2547 min_size, 0); 2548 BUG_ON(ret); 2549 trans->block_rsv = rsv; 2550 2551 cur_offset = lockstart; 2552 len = lockend - cur_offset; 2553 while (cur_offset < lockend) { 2554 ret = __btrfs_drop_extents(trans, root, inode, path, 2555 cur_offset, lockend + 1, 2556 &drop_end, 1, 0, 0, NULL); 2557 if (ret != -ENOSPC) 2558 break; 2559 2560 trans->block_rsv = &fs_info->trans_block_rsv; 2561 2562 if (cur_offset < drop_end && cur_offset < ino_size) { 2563 ret = fill_holes(trans, BTRFS_I(inode), path, 2564 cur_offset, drop_end); 2565 if (ret) { 2566 /* 2567 * If we failed then we didn't insert our hole 2568 * entries for the area we dropped, so now the 2569 * fs is corrupted, so we must abort the 2570 * transaction. 2571 */ 2572 btrfs_abort_transaction(trans, ret); 2573 err = ret; 2574 break; 2575 } 2576 } 2577 2578 cur_offset = drop_end; 2579 2580 ret = btrfs_update_inode(trans, root, inode); 2581 if (ret) { 2582 err = ret; 2583 break; 2584 } 2585 2586 btrfs_end_transaction(trans); 2587 btrfs_btree_balance_dirty(fs_info); 2588 2589 trans = btrfs_start_transaction(root, rsv_count); 2590 if (IS_ERR(trans)) { 2591 ret = PTR_ERR(trans); 2592 trans = NULL; 2593 break; 2594 } 2595 2596 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2597 rsv, min_size, 0); 2598 BUG_ON(ret); /* shouldn't happen */ 2599 trans->block_rsv = rsv; 2600 2601 ret = find_first_non_hole(inode, &cur_offset, &len); 2602 if (unlikely(ret < 0)) 2603 break; 2604 if (ret && !len) { 2605 ret = 0; 2606 break; 2607 } 2608 } 2609 2610 if (ret) { 2611 err = ret; 2612 goto out_trans; 2613 } 2614 2615 trans->block_rsv = &fs_info->trans_block_rsv; 2616 /* 2617 * If we are using the NO_HOLES feature we might have had already an 2618 * hole that overlaps a part of the region [lockstart, lockend] and 2619 * ends at (or beyond) lockend. Since we have no file extent items to 2620 * represent holes, drop_end can be less than lockend and so we must 2621 * make sure we have an extent map representing the existing hole (the 2622 * call to __btrfs_drop_extents() might have dropped the existing extent 2623 * map representing the existing hole), otherwise the fast fsync path 2624 * will not record the existence of the hole region 2625 * [existing_hole_start, lockend]. 2626 */ 2627 if (drop_end <= lockend) 2628 drop_end = lockend + 1; 2629 /* 2630 * Don't insert file hole extent item if it's for a range beyond eof 2631 * (because it's useless) or if it represents a 0 bytes range (when 2632 * cur_offset == drop_end). 2633 */ 2634 if (cur_offset < ino_size && cur_offset < drop_end) { 2635 ret = fill_holes(trans, BTRFS_I(inode), path, 2636 cur_offset, drop_end); 2637 if (ret) { 2638 /* Same comment as above. */ 2639 btrfs_abort_transaction(trans, ret); 2640 err = ret; 2641 goto out_trans; 2642 } 2643 } 2644 2645 out_trans: 2646 if (!trans) 2647 goto out_free; 2648 2649 inode_inc_iversion(inode); 2650 inode->i_mtime = inode->i_ctime = current_time(inode); 2651 2652 trans->block_rsv = &fs_info->trans_block_rsv; 2653 ret = btrfs_update_inode(trans, root, inode); 2654 updated_inode = true; 2655 btrfs_end_transaction(trans); 2656 btrfs_btree_balance_dirty(fs_info); 2657 out_free: 2658 btrfs_free_path(path); 2659 btrfs_free_block_rsv(fs_info, rsv); 2660 out: 2661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2662 &cached_state); 2663 out_only_mutex: 2664 if (!updated_inode && truncated_block && !ret && !err) { 2665 /* 2666 * If we only end up zeroing part of a page, we still need to 2667 * update the inode item, so that all the time fields are 2668 * updated as well as the necessary btrfs inode in memory fields 2669 * for detecting, at fsync time, if the inode isn't yet in the 2670 * log tree or it's there but not up to date. 2671 */ 2672 trans = btrfs_start_transaction(root, 1); 2673 if (IS_ERR(trans)) { 2674 err = PTR_ERR(trans); 2675 } else { 2676 err = btrfs_update_inode(trans, root, inode); 2677 ret = btrfs_end_transaction(trans); 2678 } 2679 } 2680 inode_unlock(inode); 2681 if (ret && !err) 2682 err = ret; 2683 return err; 2684 } 2685 2686 /* Helper structure to record which range is already reserved */ 2687 struct falloc_range { 2688 struct list_head list; 2689 u64 start; 2690 u64 len; 2691 }; 2692 2693 /* 2694 * Helper function to add falloc range 2695 * 2696 * Caller should have locked the larger range of extent containing 2697 * [start, len) 2698 */ 2699 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2700 { 2701 struct falloc_range *prev = NULL; 2702 struct falloc_range *range = NULL; 2703 2704 if (list_empty(head)) 2705 goto insert; 2706 2707 /* 2708 * As fallocate iterate by bytenr order, we only need to check 2709 * the last range. 2710 */ 2711 prev = list_entry(head->prev, struct falloc_range, list); 2712 if (prev->start + prev->len == start) { 2713 prev->len += len; 2714 return 0; 2715 } 2716 insert: 2717 range = kmalloc(sizeof(*range), GFP_KERNEL); 2718 if (!range) 2719 return -ENOMEM; 2720 range->start = start; 2721 range->len = len; 2722 list_add_tail(&range->list, head); 2723 return 0; 2724 } 2725 2726 static int btrfs_fallocate_update_isize(struct inode *inode, 2727 const u64 end, 2728 const int mode) 2729 { 2730 struct btrfs_trans_handle *trans; 2731 struct btrfs_root *root = BTRFS_I(inode)->root; 2732 int ret; 2733 int ret2; 2734 2735 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2736 return 0; 2737 2738 trans = btrfs_start_transaction(root, 1); 2739 if (IS_ERR(trans)) 2740 return PTR_ERR(trans); 2741 2742 inode->i_ctime = current_time(inode); 2743 i_size_write(inode, end); 2744 btrfs_ordered_update_i_size(inode, end, NULL); 2745 ret = btrfs_update_inode(trans, root, inode); 2746 ret2 = btrfs_end_transaction(trans); 2747 2748 return ret ? ret : ret2; 2749 } 2750 2751 enum { 2752 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2753 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2754 RANGE_BOUNDARY_HOLE = 2, 2755 }; 2756 2757 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2758 u64 offset) 2759 { 2760 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2761 struct extent_map *em; 2762 int ret; 2763 2764 offset = round_down(offset, sectorsize); 2765 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2766 if (IS_ERR(em)) 2767 return PTR_ERR(em); 2768 2769 if (em->block_start == EXTENT_MAP_HOLE) 2770 ret = RANGE_BOUNDARY_HOLE; 2771 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2772 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2773 else 2774 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2775 2776 free_extent_map(em); 2777 return ret; 2778 } 2779 2780 static int btrfs_zero_range(struct inode *inode, 2781 loff_t offset, 2782 loff_t len, 2783 const int mode) 2784 { 2785 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2786 struct extent_map *em; 2787 struct extent_changeset *data_reserved = NULL; 2788 int ret; 2789 u64 alloc_hint = 0; 2790 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2791 u64 alloc_start = round_down(offset, sectorsize); 2792 u64 alloc_end = round_up(offset + len, sectorsize); 2793 u64 bytes_to_reserve = 0; 2794 bool space_reserved = false; 2795 2796 inode_dio_wait(inode); 2797 2798 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2799 alloc_start, alloc_end - alloc_start, 0); 2800 if (IS_ERR(em)) { 2801 ret = PTR_ERR(em); 2802 goto out; 2803 } 2804 2805 /* 2806 * Avoid hole punching and extent allocation for some cases. More cases 2807 * could be considered, but these are unlikely common and we keep things 2808 * as simple as possible for now. Also, intentionally, if the target 2809 * range contains one or more prealloc extents together with regular 2810 * extents and holes, we drop all the existing extents and allocate a 2811 * new prealloc extent, so that we get a larger contiguous disk extent. 2812 */ 2813 if (em->start <= alloc_start && 2814 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2815 const u64 em_end = em->start + em->len; 2816 2817 if (em_end >= offset + len) { 2818 /* 2819 * The whole range is already a prealloc extent, 2820 * do nothing except updating the inode's i_size if 2821 * needed. 2822 */ 2823 free_extent_map(em); 2824 ret = btrfs_fallocate_update_isize(inode, offset + len, 2825 mode); 2826 goto out; 2827 } 2828 /* 2829 * Part of the range is already a prealloc extent, so operate 2830 * only on the remaining part of the range. 2831 */ 2832 alloc_start = em_end; 2833 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2834 len = offset + len - alloc_start; 2835 offset = alloc_start; 2836 alloc_hint = em->block_start + em->len; 2837 } 2838 free_extent_map(em); 2839 2840 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2841 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2842 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2843 alloc_start, sectorsize, 0); 2844 if (IS_ERR(em)) { 2845 ret = PTR_ERR(em); 2846 goto out; 2847 } 2848 2849 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2850 free_extent_map(em); 2851 ret = btrfs_fallocate_update_isize(inode, offset + len, 2852 mode); 2853 goto out; 2854 } 2855 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2856 free_extent_map(em); 2857 ret = btrfs_truncate_block(inode, offset, len, 0); 2858 if (!ret) 2859 ret = btrfs_fallocate_update_isize(inode, 2860 offset + len, 2861 mode); 2862 return ret; 2863 } 2864 free_extent_map(em); 2865 alloc_start = round_down(offset, sectorsize); 2866 alloc_end = alloc_start + sectorsize; 2867 goto reserve_space; 2868 } 2869 2870 alloc_start = round_up(offset, sectorsize); 2871 alloc_end = round_down(offset + len, sectorsize); 2872 2873 /* 2874 * For unaligned ranges, check the pages at the boundaries, they might 2875 * map to an extent, in which case we need to partially zero them, or 2876 * they might map to a hole, in which case we need our allocation range 2877 * to cover them. 2878 */ 2879 if (!IS_ALIGNED(offset, sectorsize)) { 2880 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2881 if (ret < 0) 2882 goto out; 2883 if (ret == RANGE_BOUNDARY_HOLE) { 2884 alloc_start = round_down(offset, sectorsize); 2885 ret = 0; 2886 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2887 ret = btrfs_truncate_block(inode, offset, 0, 0); 2888 if (ret) 2889 goto out; 2890 } else { 2891 ret = 0; 2892 } 2893 } 2894 2895 if (!IS_ALIGNED(offset + len, sectorsize)) { 2896 ret = btrfs_zero_range_check_range_boundary(inode, 2897 offset + len); 2898 if (ret < 0) 2899 goto out; 2900 if (ret == RANGE_BOUNDARY_HOLE) { 2901 alloc_end = round_up(offset + len, sectorsize); 2902 ret = 0; 2903 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2904 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2905 if (ret) 2906 goto out; 2907 } else { 2908 ret = 0; 2909 } 2910 } 2911 2912 reserve_space: 2913 if (alloc_start < alloc_end) { 2914 struct extent_state *cached_state = NULL; 2915 const u64 lockstart = alloc_start; 2916 const u64 lockend = alloc_end - 1; 2917 2918 bytes_to_reserve = alloc_end - alloc_start; 2919 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2920 bytes_to_reserve); 2921 if (ret < 0) 2922 goto out; 2923 space_reserved = true; 2924 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2925 alloc_start, bytes_to_reserve); 2926 if (ret) 2927 goto out; 2928 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2929 &cached_state); 2930 if (ret) 2931 goto out; 2932 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2933 alloc_end - alloc_start, 2934 i_blocksize(inode), 2935 offset + len, &alloc_hint); 2936 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2937 lockend, &cached_state); 2938 /* btrfs_prealloc_file_range releases reserved space on error */ 2939 if (ret) { 2940 space_reserved = false; 2941 goto out; 2942 } 2943 } 2944 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2945 out: 2946 if (ret && space_reserved) 2947 btrfs_free_reserved_data_space(inode, data_reserved, 2948 alloc_start, bytes_to_reserve); 2949 extent_changeset_free(data_reserved); 2950 2951 return ret; 2952 } 2953 2954 static long btrfs_fallocate(struct file *file, int mode, 2955 loff_t offset, loff_t len) 2956 { 2957 struct inode *inode = file_inode(file); 2958 struct extent_state *cached_state = NULL; 2959 struct extent_changeset *data_reserved = NULL; 2960 struct falloc_range *range; 2961 struct falloc_range *tmp; 2962 struct list_head reserve_list; 2963 u64 cur_offset; 2964 u64 last_byte; 2965 u64 alloc_start; 2966 u64 alloc_end; 2967 u64 alloc_hint = 0; 2968 u64 locked_end; 2969 u64 actual_end = 0; 2970 struct extent_map *em; 2971 int blocksize = btrfs_inode_sectorsize(inode); 2972 int ret; 2973 2974 alloc_start = round_down(offset, blocksize); 2975 alloc_end = round_up(offset + len, blocksize); 2976 cur_offset = alloc_start; 2977 2978 /* Make sure we aren't being give some crap mode */ 2979 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2980 FALLOC_FL_ZERO_RANGE)) 2981 return -EOPNOTSUPP; 2982 2983 if (mode & FALLOC_FL_PUNCH_HOLE) 2984 return btrfs_punch_hole(inode, offset, len); 2985 2986 /* 2987 * Only trigger disk allocation, don't trigger qgroup reserve 2988 * 2989 * For qgroup space, it will be checked later. 2990 */ 2991 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 2992 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2993 alloc_end - alloc_start); 2994 if (ret < 0) 2995 return ret; 2996 } 2997 2998 inode_lock(inode); 2999 3000 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3001 ret = inode_newsize_ok(inode, offset + len); 3002 if (ret) 3003 goto out; 3004 } 3005 3006 /* 3007 * TODO: Move these two operations after we have checked 3008 * accurate reserved space, or fallocate can still fail but 3009 * with page truncated or size expanded. 3010 * 3011 * But that's a minor problem and won't do much harm BTW. 3012 */ 3013 if (alloc_start > inode->i_size) { 3014 ret = btrfs_cont_expand(inode, i_size_read(inode), 3015 alloc_start); 3016 if (ret) 3017 goto out; 3018 } else if (offset + len > inode->i_size) { 3019 /* 3020 * If we are fallocating from the end of the file onward we 3021 * need to zero out the end of the block if i_size lands in the 3022 * middle of a block. 3023 */ 3024 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3025 if (ret) 3026 goto out; 3027 } 3028 3029 /* 3030 * wait for ordered IO before we have any locks. We'll loop again 3031 * below with the locks held. 3032 */ 3033 ret = btrfs_wait_ordered_range(inode, alloc_start, 3034 alloc_end - alloc_start); 3035 if (ret) 3036 goto out; 3037 3038 if (mode & FALLOC_FL_ZERO_RANGE) { 3039 ret = btrfs_zero_range(inode, offset, len, mode); 3040 inode_unlock(inode); 3041 return ret; 3042 } 3043 3044 locked_end = alloc_end - 1; 3045 while (1) { 3046 struct btrfs_ordered_extent *ordered; 3047 3048 /* the extent lock is ordered inside the running 3049 * transaction 3050 */ 3051 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3052 locked_end, &cached_state); 3053 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3054 3055 if (ordered && 3056 ordered->file_offset + ordered->len > alloc_start && 3057 ordered->file_offset < alloc_end) { 3058 btrfs_put_ordered_extent(ordered); 3059 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3060 alloc_start, locked_end, 3061 &cached_state); 3062 /* 3063 * we can't wait on the range with the transaction 3064 * running or with the extent lock held 3065 */ 3066 ret = btrfs_wait_ordered_range(inode, alloc_start, 3067 alloc_end - alloc_start); 3068 if (ret) 3069 goto out; 3070 } else { 3071 if (ordered) 3072 btrfs_put_ordered_extent(ordered); 3073 break; 3074 } 3075 } 3076 3077 /* First, check if we exceed the qgroup limit */ 3078 INIT_LIST_HEAD(&reserve_list); 3079 while (cur_offset < alloc_end) { 3080 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3081 alloc_end - cur_offset, 0); 3082 if (IS_ERR(em)) { 3083 ret = PTR_ERR(em); 3084 break; 3085 } 3086 last_byte = min(extent_map_end(em), alloc_end); 3087 actual_end = min_t(u64, extent_map_end(em), offset + len); 3088 last_byte = ALIGN(last_byte, blocksize); 3089 if (em->block_start == EXTENT_MAP_HOLE || 3090 (cur_offset >= inode->i_size && 3091 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3092 ret = add_falloc_range(&reserve_list, cur_offset, 3093 last_byte - cur_offset); 3094 if (ret < 0) { 3095 free_extent_map(em); 3096 break; 3097 } 3098 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3099 cur_offset, last_byte - cur_offset); 3100 if (ret < 0) { 3101 free_extent_map(em); 3102 break; 3103 } 3104 } else { 3105 /* 3106 * Do not need to reserve unwritten extent for this 3107 * range, free reserved data space first, otherwise 3108 * it'll result in false ENOSPC error. 3109 */ 3110 btrfs_free_reserved_data_space(inode, data_reserved, 3111 cur_offset, last_byte - cur_offset); 3112 } 3113 free_extent_map(em); 3114 cur_offset = last_byte; 3115 } 3116 3117 /* 3118 * If ret is still 0, means we're OK to fallocate. 3119 * Or just cleanup the list and exit. 3120 */ 3121 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3122 if (!ret) 3123 ret = btrfs_prealloc_file_range(inode, mode, 3124 range->start, 3125 range->len, i_blocksize(inode), 3126 offset + len, &alloc_hint); 3127 else 3128 btrfs_free_reserved_data_space(inode, 3129 data_reserved, range->start, 3130 range->len); 3131 list_del(&range->list); 3132 kfree(range); 3133 } 3134 if (ret < 0) 3135 goto out_unlock; 3136 3137 /* 3138 * We didn't need to allocate any more space, but we still extended the 3139 * size of the file so we need to update i_size and the inode item. 3140 */ 3141 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3142 out_unlock: 3143 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3144 &cached_state); 3145 out: 3146 inode_unlock(inode); 3147 /* Let go of our reservation. */ 3148 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3149 btrfs_free_reserved_data_space(inode, data_reserved, 3150 alloc_start, alloc_end - cur_offset); 3151 extent_changeset_free(data_reserved); 3152 return ret; 3153 } 3154 3155 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3156 { 3157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3158 struct extent_map *em = NULL; 3159 struct extent_state *cached_state = NULL; 3160 u64 lockstart; 3161 u64 lockend; 3162 u64 start; 3163 u64 len; 3164 int ret = 0; 3165 3166 if (inode->i_size == 0) 3167 return -ENXIO; 3168 3169 /* 3170 * *offset can be negative, in this case we start finding DATA/HOLE from 3171 * the very start of the file. 3172 */ 3173 start = max_t(loff_t, 0, *offset); 3174 3175 lockstart = round_down(start, fs_info->sectorsize); 3176 lockend = round_up(i_size_read(inode), 3177 fs_info->sectorsize); 3178 if (lockend <= lockstart) 3179 lockend = lockstart + fs_info->sectorsize; 3180 lockend--; 3181 len = lockend - lockstart + 1; 3182 3183 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3184 &cached_state); 3185 3186 while (start < inode->i_size) { 3187 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3188 start, len, 0); 3189 if (IS_ERR(em)) { 3190 ret = PTR_ERR(em); 3191 em = NULL; 3192 break; 3193 } 3194 3195 if (whence == SEEK_HOLE && 3196 (em->block_start == EXTENT_MAP_HOLE || 3197 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3198 break; 3199 else if (whence == SEEK_DATA && 3200 (em->block_start != EXTENT_MAP_HOLE && 3201 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3202 break; 3203 3204 start = em->start + em->len; 3205 free_extent_map(em); 3206 em = NULL; 3207 cond_resched(); 3208 } 3209 free_extent_map(em); 3210 if (!ret) { 3211 if (whence == SEEK_DATA && start >= inode->i_size) 3212 ret = -ENXIO; 3213 else 3214 *offset = min_t(loff_t, start, inode->i_size); 3215 } 3216 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3217 &cached_state); 3218 return ret; 3219 } 3220 3221 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3222 { 3223 struct inode *inode = file->f_mapping->host; 3224 int ret; 3225 3226 inode_lock(inode); 3227 switch (whence) { 3228 case SEEK_END: 3229 case SEEK_CUR: 3230 offset = generic_file_llseek(file, offset, whence); 3231 goto out; 3232 case SEEK_DATA: 3233 case SEEK_HOLE: 3234 if (offset >= i_size_read(inode)) { 3235 inode_unlock(inode); 3236 return -ENXIO; 3237 } 3238 3239 ret = find_desired_extent(inode, &offset, whence); 3240 if (ret) { 3241 inode_unlock(inode); 3242 return ret; 3243 } 3244 } 3245 3246 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3247 out: 3248 inode_unlock(inode); 3249 return offset; 3250 } 3251 3252 static int btrfs_file_open(struct inode *inode, struct file *filp) 3253 { 3254 filp->f_mode |= FMODE_NOWAIT; 3255 return generic_file_open(inode, filp); 3256 } 3257 3258 const struct file_operations btrfs_file_operations = { 3259 .llseek = btrfs_file_llseek, 3260 .read_iter = generic_file_read_iter, 3261 .splice_read = generic_file_splice_read, 3262 .write_iter = btrfs_file_write_iter, 3263 .mmap = btrfs_file_mmap, 3264 .open = btrfs_file_open, 3265 .release = btrfs_release_file, 3266 .fsync = btrfs_sync_file, 3267 .fallocate = btrfs_fallocate, 3268 .unlocked_ioctl = btrfs_ioctl, 3269 #ifdef CONFIG_COMPAT 3270 .compat_ioctl = btrfs_compat_ioctl, 3271 #endif 3272 .clone_file_range = btrfs_clone_file_range, 3273 .dedupe_file_range = btrfs_dedupe_file_range, 3274 }; 3275 3276 void __cold btrfs_auto_defrag_exit(void) 3277 { 3278 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3279 } 3280 3281 int __init btrfs_auto_defrag_init(void) 3282 { 3283 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3284 sizeof(struct inode_defrag), 0, 3285 SLAB_MEM_SPREAD, 3286 NULL); 3287 if (!btrfs_inode_defrag_cachep) 3288 return -ENOMEM; 3289 3290 return 0; 3291 } 3292 3293 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3294 { 3295 int ret; 3296 3297 /* 3298 * So with compression we will find and lock a dirty page and clear the 3299 * first one as dirty, setup an async extent, and immediately return 3300 * with the entire range locked but with nobody actually marked with 3301 * writeback. So we can't just filemap_write_and_wait_range() and 3302 * expect it to work since it will just kick off a thread to do the 3303 * actual work. So we need to call filemap_fdatawrite_range _again_ 3304 * since it will wait on the page lock, which won't be unlocked until 3305 * after the pages have been marked as writeback and so we're good to go 3306 * from there. We have to do this otherwise we'll miss the ordered 3307 * extents and that results in badness. Please Josef, do not think you 3308 * know better and pull this out at some point in the future, it is 3309 * right and you are wrong. 3310 */ 3311 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3312 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3313 &BTRFS_I(inode)->runtime_flags)) 3314 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3315 3316 return ret; 3317 } 3318