1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 32 static struct kmem_cache *btrfs_inode_defrag_cachep; 33 /* 34 * when auto defrag is enabled we 35 * queue up these defrag structs to remember which 36 * inodes need defragging passes 37 */ 38 struct inode_defrag { 39 struct rb_node rb_node; 40 /* objectid */ 41 u64 ino; 42 /* 43 * transid where the defrag was added, we search for 44 * extents newer than this 45 */ 46 u64 transid; 47 48 /* root objectid */ 49 u64 root; 50 51 /* last offset we were able to defrag */ 52 u64 last_offset; 53 54 /* if we've wrapped around back to zero once already */ 55 int cycled; 56 }; 57 58 static int __compare_inode_defrag(struct inode_defrag *defrag1, 59 struct inode_defrag *defrag2) 60 { 61 if (defrag1->root > defrag2->root) 62 return 1; 63 else if (defrag1->root < defrag2->root) 64 return -1; 65 else if (defrag1->ino > defrag2->ino) 66 return 1; 67 else if (defrag1->ino < defrag2->ino) 68 return -1; 69 else 70 return 0; 71 } 72 73 /* pop a record for an inode into the defrag tree. The lock 74 * must be held already 75 * 76 * If you're inserting a record for an older transid than an 77 * existing record, the transid already in the tree is lowered 78 * 79 * If an existing record is found the defrag item you 80 * pass in is freed 81 */ 82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 83 struct inode_defrag *defrag) 84 { 85 struct btrfs_fs_info *fs_info = inode->root->fs_info; 86 struct inode_defrag *entry; 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 int ret; 90 91 p = &fs_info->defrag_inodes.rb_node; 92 while (*p) { 93 parent = *p; 94 entry = rb_entry(parent, struct inode_defrag, rb_node); 95 96 ret = __compare_inode_defrag(defrag, entry); 97 if (ret < 0) 98 p = &parent->rb_left; 99 else if (ret > 0) 100 p = &parent->rb_right; 101 else { 102 /* if we're reinserting an entry for 103 * an old defrag run, make sure to 104 * lower the transid of our existing record 105 */ 106 if (defrag->transid < entry->transid) 107 entry->transid = defrag->transid; 108 if (defrag->last_offset > entry->last_offset) 109 entry->last_offset = defrag->last_offset; 110 return -EEXIST; 111 } 112 } 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 114 rb_link_node(&defrag->rb_node, parent, p); 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 116 return 0; 117 } 118 119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 120 { 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 122 return 0; 123 124 if (btrfs_fs_closing(fs_info)) 125 return 0; 126 127 return 1; 128 } 129 130 /* 131 * insert a defrag record for this inode if auto defrag is 132 * enabled 133 */ 134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 135 struct btrfs_inode *inode) 136 { 137 struct btrfs_root *root = inode->root; 138 struct btrfs_fs_info *fs_info = root->fs_info; 139 struct inode_defrag *defrag; 140 u64 transid; 141 int ret; 142 143 if (!__need_auto_defrag(fs_info)) 144 return 0; 145 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 147 return 0; 148 149 if (trans) 150 transid = trans->transid; 151 else 152 transid = inode->root->last_trans; 153 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 155 if (!defrag) 156 return -ENOMEM; 157 158 defrag->ino = btrfs_ino(inode); 159 defrag->transid = transid; 160 defrag->root = root->root_key.objectid; 161 162 spin_lock(&fs_info->defrag_inodes_lock); 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 164 /* 165 * If we set IN_DEFRAG flag and evict the inode from memory, 166 * and then re-read this inode, this new inode doesn't have 167 * IN_DEFRAG flag. At the case, we may find the existed defrag. 168 */ 169 ret = __btrfs_add_inode_defrag(inode, defrag); 170 if (ret) 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } else { 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } 175 spin_unlock(&fs_info->defrag_inodes_lock); 176 return 0; 177 } 178 179 /* 180 * Requeue the defrag object. If there is a defrag object that points to 181 * the same inode in the tree, we will merge them together (by 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 183 */ 184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 185 struct inode_defrag *defrag) 186 { 187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 188 int ret; 189 190 if (!__need_auto_defrag(fs_info)) 191 goto out; 192 193 /* 194 * Here we don't check the IN_DEFRAG flag, because we need merge 195 * them together. 196 */ 197 spin_lock(&fs_info->defrag_inodes_lock); 198 ret = __btrfs_add_inode_defrag(inode, defrag); 199 spin_unlock(&fs_info->defrag_inodes_lock); 200 if (ret) 201 goto out; 202 return; 203 out: 204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 205 } 206 207 /* 208 * pick the defragable inode that we want, if it doesn't exist, we will get 209 * the next one. 210 */ 211 static struct inode_defrag * 212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 213 { 214 struct inode_defrag *entry = NULL; 215 struct inode_defrag tmp; 216 struct rb_node *p; 217 struct rb_node *parent = NULL; 218 int ret; 219 220 tmp.ino = ino; 221 tmp.root = root; 222 223 spin_lock(&fs_info->defrag_inodes_lock); 224 p = fs_info->defrag_inodes.rb_node; 225 while (p) { 226 parent = p; 227 entry = rb_entry(parent, struct inode_defrag, rb_node); 228 229 ret = __compare_inode_defrag(&tmp, entry); 230 if (ret < 0) 231 p = parent->rb_left; 232 else if (ret > 0) 233 p = parent->rb_right; 234 else 235 goto out; 236 } 237 238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 239 parent = rb_next(parent); 240 if (parent) 241 entry = rb_entry(parent, struct inode_defrag, rb_node); 242 else 243 entry = NULL; 244 } 245 out: 246 if (entry) 247 rb_erase(parent, &fs_info->defrag_inodes); 248 spin_unlock(&fs_info->defrag_inodes_lock); 249 return entry; 250 } 251 252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 253 { 254 struct inode_defrag *defrag; 255 struct rb_node *node; 256 257 spin_lock(&fs_info->defrag_inodes_lock); 258 node = rb_first(&fs_info->defrag_inodes); 259 while (node) { 260 rb_erase(node, &fs_info->defrag_inodes); 261 defrag = rb_entry(node, struct inode_defrag, rb_node); 262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 263 264 cond_resched_lock(&fs_info->defrag_inodes_lock); 265 266 node = rb_first(&fs_info->defrag_inodes); 267 } 268 spin_unlock(&fs_info->defrag_inodes_lock); 269 } 270 271 #define BTRFS_DEFRAG_BATCH 1024 272 273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 274 struct inode_defrag *defrag) 275 { 276 struct btrfs_root *inode_root; 277 struct inode *inode; 278 struct btrfs_ioctl_defrag_range_args range; 279 int num_defrag; 280 int ret; 281 282 /* get the inode */ 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 284 if (IS_ERR(inode_root)) { 285 ret = PTR_ERR(inode_root); 286 goto cleanup; 287 } 288 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 290 btrfs_put_root(inode_root); 291 if (IS_ERR(inode)) { 292 ret = PTR_ERR(inode); 293 goto cleanup; 294 } 295 296 /* do a chunk of defrag */ 297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 298 memset(&range, 0, sizeof(range)); 299 range.len = (u64)-1; 300 range.start = defrag->last_offset; 301 302 sb_start_write(fs_info->sb); 303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 304 BTRFS_DEFRAG_BATCH); 305 sb_end_write(fs_info->sb); 306 /* 307 * if we filled the whole defrag batch, there 308 * must be more work to do. Queue this defrag 309 * again 310 */ 311 if (num_defrag == BTRFS_DEFRAG_BATCH) { 312 defrag->last_offset = range.start; 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 314 } else if (defrag->last_offset && !defrag->cycled) { 315 /* 316 * we didn't fill our defrag batch, but 317 * we didn't start at zero. Make sure we loop 318 * around to the start of the file. 319 */ 320 defrag->last_offset = 0; 321 defrag->cycled = 1; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else { 324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 325 } 326 327 iput(inode); 328 return 0; 329 cleanup: 330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 331 return ret; 332 } 333 334 /* 335 * run through the list of inodes in the FS that need 336 * defragging 337 */ 338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 339 { 340 struct inode_defrag *defrag; 341 u64 first_ino = 0; 342 u64 root_objectid = 0; 343 344 atomic_inc(&fs_info->defrag_running); 345 while (1) { 346 /* Pause the auto defragger. */ 347 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 348 &fs_info->fs_state)) 349 break; 350 351 if (!__need_auto_defrag(fs_info)) 352 break; 353 354 /* find an inode to defrag */ 355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 356 first_ino); 357 if (!defrag) { 358 if (root_objectid || first_ino) { 359 root_objectid = 0; 360 first_ino = 0; 361 continue; 362 } else { 363 break; 364 } 365 } 366 367 first_ino = defrag->ino + 1; 368 root_objectid = defrag->root; 369 370 __btrfs_run_defrag_inode(fs_info, defrag); 371 } 372 atomic_dec(&fs_info->defrag_running); 373 374 /* 375 * during unmount, we use the transaction_wait queue to 376 * wait for the defragger to stop 377 */ 378 wake_up(&fs_info->transaction_wait); 379 return 0; 380 } 381 382 /* simple helper to fault in pages and copy. This should go away 383 * and be replaced with calls into generic code. 384 */ 385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 386 struct page **prepared_pages, 387 struct iov_iter *i) 388 { 389 size_t copied = 0; 390 size_t total_copied = 0; 391 int pg = 0; 392 int offset = offset_in_page(pos); 393 394 while (write_bytes > 0) { 395 size_t count = min_t(size_t, 396 PAGE_SIZE - offset, write_bytes); 397 struct page *page = prepared_pages[pg]; 398 /* 399 * Copy data from userspace to the current page 400 */ 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 402 403 /* Flush processor's dcache for this page */ 404 flush_dcache_page(page); 405 406 /* 407 * if we get a partial write, we can end up with 408 * partially up to date pages. These add 409 * a lot of complexity, so make sure they don't 410 * happen by forcing this copy to be retried. 411 * 412 * The rest of the btrfs_file_write code will fall 413 * back to page at a time copies after we return 0. 414 */ 415 if (!PageUptodate(page) && copied < count) 416 copied = 0; 417 418 iov_iter_advance(i, copied); 419 write_bytes -= copied; 420 total_copied += copied; 421 422 /* Return to btrfs_file_write_iter to fault page */ 423 if (unlikely(copied == 0)) 424 break; 425 426 if (copied < PAGE_SIZE - offset) { 427 offset += copied; 428 } else { 429 pg++; 430 offset = 0; 431 } 432 } 433 return total_copied; 434 } 435 436 /* 437 * unlocks pages after btrfs_file_write is done with them 438 */ 439 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 440 { 441 size_t i; 442 for (i = 0; i < num_pages; i++) { 443 /* page checked is some magic around finding pages that 444 * have been modified without going through btrfs_set_page_dirty 445 * clear it here. There should be no need to mark the pages 446 * accessed as prepare_pages should have marked them accessed 447 * in prepare_pages via find_or_create_page() 448 */ 449 ClearPageChecked(pages[i]); 450 unlock_page(pages[i]); 451 put_page(pages[i]); 452 } 453 } 454 455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 456 const u64 start, 457 const u64 len, 458 struct extent_state **cached_state) 459 { 460 u64 search_start = start; 461 const u64 end = start + len - 1; 462 463 while (search_start < end) { 464 const u64 search_len = end - search_start + 1; 465 struct extent_map *em; 466 u64 em_len; 467 int ret = 0; 468 469 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 470 if (IS_ERR(em)) 471 return PTR_ERR(em); 472 473 if (em->block_start != EXTENT_MAP_HOLE) 474 goto next; 475 476 em_len = em->len; 477 if (em->start < search_start) 478 em_len -= search_start - em->start; 479 if (em_len > search_len) 480 em_len = search_len; 481 482 ret = set_extent_bit(&inode->io_tree, search_start, 483 search_start + em_len - 1, 484 EXTENT_DELALLOC_NEW, 485 NULL, cached_state, GFP_NOFS); 486 next: 487 search_start = extent_map_end(em); 488 free_extent_map(em); 489 if (ret) 490 return ret; 491 } 492 return 0; 493 } 494 495 /* 496 * after copy_from_user, pages need to be dirtied and we need to make 497 * sure holes are created between the current EOF and the start of 498 * any next extents (if required). 499 * 500 * this also makes the decision about creating an inline extent vs 501 * doing real data extents, marking pages dirty and delalloc as required. 502 */ 503 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 504 size_t num_pages, loff_t pos, size_t write_bytes, 505 struct extent_state **cached) 506 { 507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 508 int err = 0; 509 int i; 510 u64 num_bytes; 511 u64 start_pos; 512 u64 end_of_last_block; 513 u64 end_pos = pos + write_bytes; 514 loff_t isize = i_size_read(inode); 515 unsigned int extra_bits = 0; 516 517 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 518 num_bytes = round_up(write_bytes + pos - start_pos, 519 fs_info->sectorsize); 520 521 end_of_last_block = start_pos + num_bytes - 1; 522 523 /* 524 * The pages may have already been dirty, clear out old accounting so 525 * we can set things up properly 526 */ 527 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 528 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 529 0, 0, cached); 530 531 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 532 if (start_pos >= isize && 533 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 534 /* 535 * There can't be any extents following eof in this case 536 * so just set the delalloc new bit for the range 537 * directly. 538 */ 539 extra_bits |= EXTENT_DELALLOC_NEW; 540 } else { 541 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 542 start_pos, 543 num_bytes, cached); 544 if (err) 545 return err; 546 } 547 } 548 549 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 550 extra_bits, cached); 551 if (err) 552 return err; 553 554 for (i = 0; i < num_pages; i++) { 555 struct page *p = pages[i]; 556 SetPageUptodate(p); 557 ClearPageChecked(p); 558 set_page_dirty(p); 559 } 560 561 /* 562 * we've only changed i_size in ram, and we haven't updated 563 * the disk i_size. There is no need to log the inode 564 * at this time. 565 */ 566 if (end_pos > isize) 567 i_size_write(inode, end_pos); 568 return 0; 569 } 570 571 /* 572 * this drops all the extents in the cache that intersect the range 573 * [start, end]. Existing extents are split as required. 574 */ 575 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 576 int skip_pinned) 577 { 578 struct extent_map *em; 579 struct extent_map *split = NULL; 580 struct extent_map *split2 = NULL; 581 struct extent_map_tree *em_tree = &inode->extent_tree; 582 u64 len = end - start + 1; 583 u64 gen; 584 int ret; 585 int testend = 1; 586 unsigned long flags; 587 int compressed = 0; 588 bool modified; 589 590 WARN_ON(end < start); 591 if (end == (u64)-1) { 592 len = (u64)-1; 593 testend = 0; 594 } 595 while (1) { 596 int no_splits = 0; 597 598 modified = false; 599 if (!split) 600 split = alloc_extent_map(); 601 if (!split2) 602 split2 = alloc_extent_map(); 603 if (!split || !split2) 604 no_splits = 1; 605 606 write_lock(&em_tree->lock); 607 em = lookup_extent_mapping(em_tree, start, len); 608 if (!em) { 609 write_unlock(&em_tree->lock); 610 break; 611 } 612 flags = em->flags; 613 gen = em->generation; 614 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 615 if (testend && em->start + em->len >= start + len) { 616 free_extent_map(em); 617 write_unlock(&em_tree->lock); 618 break; 619 } 620 start = em->start + em->len; 621 if (testend) 622 len = start + len - (em->start + em->len); 623 free_extent_map(em); 624 write_unlock(&em_tree->lock); 625 continue; 626 } 627 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 628 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 629 clear_bit(EXTENT_FLAG_LOGGING, &flags); 630 modified = !list_empty(&em->list); 631 if (no_splits) 632 goto next; 633 634 if (em->start < start) { 635 split->start = em->start; 636 split->len = start - em->start; 637 638 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 639 split->orig_start = em->orig_start; 640 split->block_start = em->block_start; 641 642 if (compressed) 643 split->block_len = em->block_len; 644 else 645 split->block_len = split->len; 646 split->orig_block_len = max(split->block_len, 647 em->orig_block_len); 648 split->ram_bytes = em->ram_bytes; 649 } else { 650 split->orig_start = split->start; 651 split->block_len = 0; 652 split->block_start = em->block_start; 653 split->orig_block_len = 0; 654 split->ram_bytes = split->len; 655 } 656 657 split->generation = gen; 658 split->flags = flags; 659 split->compress_type = em->compress_type; 660 replace_extent_mapping(em_tree, em, split, modified); 661 free_extent_map(split); 662 split = split2; 663 split2 = NULL; 664 } 665 if (testend && em->start + em->len > start + len) { 666 u64 diff = start + len - em->start; 667 668 split->start = start + len; 669 split->len = em->start + em->len - (start + len); 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 split->generation = gen; 673 674 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 675 split->orig_block_len = max(em->block_len, 676 em->orig_block_len); 677 678 split->ram_bytes = em->ram_bytes; 679 if (compressed) { 680 split->block_len = em->block_len; 681 split->block_start = em->block_start; 682 split->orig_start = em->orig_start; 683 } else { 684 split->block_len = split->len; 685 split->block_start = em->block_start 686 + diff; 687 split->orig_start = em->orig_start; 688 } 689 } else { 690 split->ram_bytes = split->len; 691 split->orig_start = split->start; 692 split->block_len = 0; 693 split->block_start = em->block_start; 694 split->orig_block_len = 0; 695 } 696 697 if (extent_map_in_tree(em)) { 698 replace_extent_mapping(em_tree, em, split, 699 modified); 700 } else { 701 ret = add_extent_mapping(em_tree, split, 702 modified); 703 ASSERT(ret == 0); /* Logic error */ 704 } 705 free_extent_map(split); 706 split = NULL; 707 } 708 next: 709 if (extent_map_in_tree(em)) 710 remove_extent_mapping(em_tree, em); 711 write_unlock(&em_tree->lock); 712 713 /* once for us */ 714 free_extent_map(em); 715 /* once for the tree*/ 716 free_extent_map(em); 717 } 718 if (split) 719 free_extent_map(split); 720 if (split2) 721 free_extent_map(split2); 722 } 723 724 /* 725 * this is very complex, but the basic idea is to drop all extents 726 * in the range start - end. hint_block is filled in with a block number 727 * that would be a good hint to the block allocator for this file. 728 * 729 * If an extent intersects the range but is not entirely inside the range 730 * it is either truncated or split. Anything entirely inside the range 731 * is deleted from the tree. 732 */ 733 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 734 struct btrfs_root *root, struct inode *inode, 735 struct btrfs_path *path, u64 start, u64 end, 736 u64 *drop_end, int drop_cache, 737 int replace_extent, 738 u32 extent_item_size, 739 int *key_inserted) 740 { 741 struct btrfs_fs_info *fs_info = root->fs_info; 742 struct extent_buffer *leaf; 743 struct btrfs_file_extent_item *fi; 744 struct btrfs_ref ref = { 0 }; 745 struct btrfs_key key; 746 struct btrfs_key new_key; 747 u64 ino = btrfs_ino(BTRFS_I(inode)); 748 u64 search_start = start; 749 u64 disk_bytenr = 0; 750 u64 num_bytes = 0; 751 u64 extent_offset = 0; 752 u64 extent_end = 0; 753 u64 last_end = start; 754 int del_nr = 0; 755 int del_slot = 0; 756 int extent_type; 757 int recow; 758 int ret; 759 int modify_tree = -1; 760 int update_refs; 761 int found = 0; 762 int leafs_visited = 0; 763 764 if (drop_cache) 765 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 766 767 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 768 modify_tree = 0; 769 770 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 771 root == fs_info->tree_root); 772 while (1) { 773 recow = 0; 774 ret = btrfs_lookup_file_extent(trans, root, path, ino, 775 search_start, modify_tree); 776 if (ret < 0) 777 break; 778 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 779 leaf = path->nodes[0]; 780 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 781 if (key.objectid == ino && 782 key.type == BTRFS_EXTENT_DATA_KEY) 783 path->slots[0]--; 784 } 785 ret = 0; 786 leafs_visited++; 787 next_slot: 788 leaf = path->nodes[0]; 789 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 790 BUG_ON(del_nr > 0); 791 ret = btrfs_next_leaf(root, path); 792 if (ret < 0) 793 break; 794 if (ret > 0) { 795 ret = 0; 796 break; 797 } 798 leafs_visited++; 799 leaf = path->nodes[0]; 800 recow = 1; 801 } 802 803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 804 805 if (key.objectid > ino) 806 break; 807 if (WARN_ON_ONCE(key.objectid < ino) || 808 key.type < BTRFS_EXTENT_DATA_KEY) { 809 ASSERT(del_nr == 0); 810 path->slots[0]++; 811 goto next_slot; 812 } 813 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 814 break; 815 816 fi = btrfs_item_ptr(leaf, path->slots[0], 817 struct btrfs_file_extent_item); 818 extent_type = btrfs_file_extent_type(leaf, fi); 819 820 if (extent_type == BTRFS_FILE_EXTENT_REG || 821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 822 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 823 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 824 extent_offset = btrfs_file_extent_offset(leaf, fi); 825 extent_end = key.offset + 826 btrfs_file_extent_num_bytes(leaf, fi); 827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 828 extent_end = key.offset + 829 btrfs_file_extent_ram_bytes(leaf, fi); 830 } else { 831 /* can't happen */ 832 BUG(); 833 } 834 835 /* 836 * Don't skip extent items representing 0 byte lengths. They 837 * used to be created (bug) if while punching holes we hit 838 * -ENOSPC condition. So if we find one here, just ensure we 839 * delete it, otherwise we would insert a new file extent item 840 * with the same key (offset) as that 0 bytes length file 841 * extent item in the call to setup_items_for_insert() later 842 * in this function. 843 */ 844 if (extent_end == key.offset && extent_end >= search_start) { 845 last_end = extent_end; 846 goto delete_extent_item; 847 } 848 849 if (extent_end <= search_start) { 850 path->slots[0]++; 851 goto next_slot; 852 } 853 854 found = 1; 855 search_start = max(key.offset, start); 856 if (recow || !modify_tree) { 857 modify_tree = -1; 858 btrfs_release_path(path); 859 continue; 860 } 861 862 /* 863 * | - range to drop - | 864 * | -------- extent -------- | 865 */ 866 if (start > key.offset && end < extent_end) { 867 BUG_ON(del_nr > 0); 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = start; 875 ret = btrfs_duplicate_item(trans, root, path, 876 &new_key); 877 if (ret == -EAGAIN) { 878 btrfs_release_path(path); 879 continue; 880 } 881 if (ret < 0) 882 break; 883 884 leaf = path->nodes[0]; 885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 886 struct btrfs_file_extent_item); 887 btrfs_set_file_extent_num_bytes(leaf, fi, 888 start - key.offset); 889 890 fi = btrfs_item_ptr(leaf, path->slots[0], 891 struct btrfs_file_extent_item); 892 893 extent_offset += start - key.offset; 894 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 extent_end - start); 897 btrfs_mark_buffer_dirty(leaf); 898 899 if (update_refs && disk_bytenr > 0) { 900 btrfs_init_generic_ref(&ref, 901 BTRFS_ADD_DELAYED_REF, 902 disk_bytenr, num_bytes, 0); 903 btrfs_init_data_ref(&ref, 904 root->root_key.objectid, 905 new_key.objectid, 906 start - extent_offset); 907 ret = btrfs_inc_extent_ref(trans, &ref); 908 BUG_ON(ret); /* -ENOMEM */ 909 } 910 key.offset = start; 911 } 912 /* 913 * From here on out we will have actually dropped something, so 914 * last_end can be updated. 915 */ 916 last_end = extent_end; 917 918 /* 919 * | ---- range to drop ----- | 920 * | -------- extent -------- | 921 */ 922 if (start <= key.offset && end < extent_end) { 923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 924 ret = -EOPNOTSUPP; 925 break; 926 } 927 928 memcpy(&new_key, &key, sizeof(new_key)); 929 new_key.offset = end; 930 btrfs_set_item_key_safe(fs_info, path, &new_key); 931 932 extent_offset += end - key.offset; 933 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 934 btrfs_set_file_extent_num_bytes(leaf, fi, 935 extent_end - end); 936 btrfs_mark_buffer_dirty(leaf); 937 if (update_refs && disk_bytenr > 0) 938 inode_sub_bytes(inode, end - key.offset); 939 break; 940 } 941 942 search_start = extent_end; 943 /* 944 * | ---- range to drop ----- | 945 * | -------- extent -------- | 946 */ 947 if (start > key.offset && end >= extent_end) { 948 BUG_ON(del_nr > 0); 949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 950 ret = -EOPNOTSUPP; 951 break; 952 } 953 954 btrfs_set_file_extent_num_bytes(leaf, fi, 955 start - key.offset); 956 btrfs_mark_buffer_dirty(leaf); 957 if (update_refs && disk_bytenr > 0) 958 inode_sub_bytes(inode, extent_end - start); 959 if (end == extent_end) 960 break; 961 962 path->slots[0]++; 963 goto next_slot; 964 } 965 966 /* 967 * | ---- range to drop ----- | 968 * | ------ extent ------ | 969 */ 970 if (start <= key.offset && end >= extent_end) { 971 delete_extent_item: 972 if (del_nr == 0) { 973 del_slot = path->slots[0]; 974 del_nr = 1; 975 } else { 976 BUG_ON(del_slot + del_nr != path->slots[0]); 977 del_nr++; 978 } 979 980 if (update_refs && 981 extent_type == BTRFS_FILE_EXTENT_INLINE) { 982 inode_sub_bytes(inode, 983 extent_end - key.offset); 984 extent_end = ALIGN(extent_end, 985 fs_info->sectorsize); 986 } else if (update_refs && disk_bytenr > 0) { 987 btrfs_init_generic_ref(&ref, 988 BTRFS_DROP_DELAYED_REF, 989 disk_bytenr, num_bytes, 0); 990 btrfs_init_data_ref(&ref, 991 root->root_key.objectid, 992 key.objectid, 993 key.offset - extent_offset); 994 ret = btrfs_free_extent(trans, &ref); 995 BUG_ON(ret); /* -ENOMEM */ 996 inode_sub_bytes(inode, 997 extent_end - key.offset); 998 } 999 1000 if (end == extent_end) 1001 break; 1002 1003 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1004 path->slots[0]++; 1005 goto next_slot; 1006 } 1007 1008 ret = btrfs_del_items(trans, root, path, del_slot, 1009 del_nr); 1010 if (ret) { 1011 btrfs_abort_transaction(trans, ret); 1012 break; 1013 } 1014 1015 del_nr = 0; 1016 del_slot = 0; 1017 1018 btrfs_release_path(path); 1019 continue; 1020 } 1021 1022 BUG(); 1023 } 1024 1025 if (!ret && del_nr > 0) { 1026 /* 1027 * Set path->slots[0] to first slot, so that after the delete 1028 * if items are move off from our leaf to its immediate left or 1029 * right neighbor leafs, we end up with a correct and adjusted 1030 * path->slots[0] for our insertion (if replace_extent != 0). 1031 */ 1032 path->slots[0] = del_slot; 1033 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1034 if (ret) 1035 btrfs_abort_transaction(trans, ret); 1036 } 1037 1038 leaf = path->nodes[0]; 1039 /* 1040 * If btrfs_del_items() was called, it might have deleted a leaf, in 1041 * which case it unlocked our path, so check path->locks[0] matches a 1042 * write lock. 1043 */ 1044 if (!ret && replace_extent && leafs_visited == 1 && 1045 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1046 path->locks[0] == BTRFS_WRITE_LOCK) && 1047 btrfs_leaf_free_space(leaf) >= 1048 sizeof(struct btrfs_item) + extent_item_size) { 1049 1050 key.objectid = ino; 1051 key.type = BTRFS_EXTENT_DATA_KEY; 1052 key.offset = start; 1053 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1054 struct btrfs_key slot_key; 1055 1056 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1057 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1058 path->slots[0]++; 1059 } 1060 setup_items_for_insert(root, path, &key, 1061 &extent_item_size, 1062 extent_item_size, 1063 sizeof(struct btrfs_item) + 1064 extent_item_size, 1); 1065 *key_inserted = 1; 1066 } 1067 1068 if (!replace_extent || !(*key_inserted)) 1069 btrfs_release_path(path); 1070 if (drop_end) 1071 *drop_end = found ? min(end, last_end) : end; 1072 return ret; 1073 } 1074 1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1076 struct btrfs_root *root, struct inode *inode, u64 start, 1077 u64 end, int drop_cache) 1078 { 1079 struct btrfs_path *path; 1080 int ret; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return -ENOMEM; 1085 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1086 drop_cache, 0, 0, NULL); 1087 btrfs_free_path(path); 1088 return ret; 1089 } 1090 1091 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1092 u64 objectid, u64 bytenr, u64 orig_offset, 1093 u64 *start, u64 *end) 1094 { 1095 struct btrfs_file_extent_item *fi; 1096 struct btrfs_key key; 1097 u64 extent_end; 1098 1099 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1100 return 0; 1101 1102 btrfs_item_key_to_cpu(leaf, &key, slot); 1103 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1104 return 0; 1105 1106 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1107 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1108 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1109 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1110 btrfs_file_extent_compression(leaf, fi) || 1111 btrfs_file_extent_encryption(leaf, fi) || 1112 btrfs_file_extent_other_encoding(leaf, fi)) 1113 return 0; 1114 1115 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1116 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1117 return 0; 1118 1119 *start = key.offset; 1120 *end = extent_end; 1121 return 1; 1122 } 1123 1124 /* 1125 * Mark extent in the range start - end as written. 1126 * 1127 * This changes extent type from 'pre-allocated' to 'regular'. If only 1128 * part of extent is marked as written, the extent will be split into 1129 * two or three. 1130 */ 1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1132 struct btrfs_inode *inode, u64 start, u64 end) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct btrfs_root *root = inode->root; 1136 struct extent_buffer *leaf; 1137 struct btrfs_path *path; 1138 struct btrfs_file_extent_item *fi; 1139 struct btrfs_ref ref = { 0 }; 1140 struct btrfs_key key; 1141 struct btrfs_key new_key; 1142 u64 bytenr; 1143 u64 num_bytes; 1144 u64 extent_end; 1145 u64 orig_offset; 1146 u64 other_start; 1147 u64 other_end; 1148 u64 split; 1149 int del_nr = 0; 1150 int del_slot = 0; 1151 int recow; 1152 int ret; 1153 u64 ino = btrfs_ino(inode); 1154 1155 path = btrfs_alloc_path(); 1156 if (!path) 1157 return -ENOMEM; 1158 again: 1159 recow = 0; 1160 split = start; 1161 key.objectid = ino; 1162 key.type = BTRFS_EXTENT_DATA_KEY; 1163 key.offset = split; 1164 1165 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1166 if (ret < 0) 1167 goto out; 1168 if (ret > 0 && path->slots[0] > 0) 1169 path->slots[0]--; 1170 1171 leaf = path->nodes[0]; 1172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1173 if (key.objectid != ino || 1174 key.type != BTRFS_EXTENT_DATA_KEY) { 1175 ret = -EINVAL; 1176 btrfs_abort_transaction(trans, ret); 1177 goto out; 1178 } 1179 fi = btrfs_item_ptr(leaf, path->slots[0], 1180 struct btrfs_file_extent_item); 1181 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1182 ret = -EINVAL; 1183 btrfs_abort_transaction(trans, ret); 1184 goto out; 1185 } 1186 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1187 if (key.offset > start || extent_end < end) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 1193 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1194 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1195 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1196 memcpy(&new_key, &key, sizeof(new_key)); 1197 1198 if (start == key.offset && end < extent_end) { 1199 other_start = 0; 1200 other_end = start; 1201 if (extent_mergeable(leaf, path->slots[0] - 1, 1202 ino, bytenr, orig_offset, 1203 &other_start, &other_end)) { 1204 new_key.offset = end; 1205 btrfs_set_item_key_safe(fs_info, path, &new_key); 1206 fi = btrfs_item_ptr(leaf, path->slots[0], 1207 struct btrfs_file_extent_item); 1208 btrfs_set_file_extent_generation(leaf, fi, 1209 trans->transid); 1210 btrfs_set_file_extent_num_bytes(leaf, fi, 1211 extent_end - end); 1212 btrfs_set_file_extent_offset(leaf, fi, 1213 end - orig_offset); 1214 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1215 struct btrfs_file_extent_item); 1216 btrfs_set_file_extent_generation(leaf, fi, 1217 trans->transid); 1218 btrfs_set_file_extent_num_bytes(leaf, fi, 1219 end - other_start); 1220 btrfs_mark_buffer_dirty(leaf); 1221 goto out; 1222 } 1223 } 1224 1225 if (start > key.offset && end == extent_end) { 1226 other_start = end; 1227 other_end = 0; 1228 if (extent_mergeable(leaf, path->slots[0] + 1, 1229 ino, bytenr, orig_offset, 1230 &other_start, &other_end)) { 1231 fi = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_file_extent_item); 1233 btrfs_set_file_extent_num_bytes(leaf, fi, 1234 start - key.offset); 1235 btrfs_set_file_extent_generation(leaf, fi, 1236 trans->transid); 1237 path->slots[0]++; 1238 new_key.offset = start; 1239 btrfs_set_item_key_safe(fs_info, path, &new_key); 1240 1241 fi = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_file_extent_item); 1243 btrfs_set_file_extent_generation(leaf, fi, 1244 trans->transid); 1245 btrfs_set_file_extent_num_bytes(leaf, fi, 1246 other_end - start); 1247 btrfs_set_file_extent_offset(leaf, fi, 1248 start - orig_offset); 1249 btrfs_mark_buffer_dirty(leaf); 1250 goto out; 1251 } 1252 } 1253 1254 while (start > key.offset || end < extent_end) { 1255 if (key.offset == start) 1256 split = end; 1257 1258 new_key.offset = split; 1259 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1260 if (ret == -EAGAIN) { 1261 btrfs_release_path(path); 1262 goto again; 1263 } 1264 if (ret < 0) { 1265 btrfs_abort_transaction(trans, ret); 1266 goto out; 1267 } 1268 1269 leaf = path->nodes[0]; 1270 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1273 btrfs_set_file_extent_num_bytes(leaf, fi, 1274 split - key.offset); 1275 1276 fi = btrfs_item_ptr(leaf, path->slots[0], 1277 struct btrfs_file_extent_item); 1278 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1280 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1281 btrfs_set_file_extent_num_bytes(leaf, fi, 1282 extent_end - split); 1283 btrfs_mark_buffer_dirty(leaf); 1284 1285 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1286 num_bytes, 0); 1287 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1288 orig_offset); 1289 ret = btrfs_inc_extent_ref(trans, &ref); 1290 if (ret) { 1291 btrfs_abort_transaction(trans, ret); 1292 goto out; 1293 } 1294 1295 if (split == start) { 1296 key.offset = start; 1297 } else { 1298 if (start != key.offset) { 1299 ret = -EINVAL; 1300 btrfs_abort_transaction(trans, ret); 1301 goto out; 1302 } 1303 path->slots[0]--; 1304 extent_end = end; 1305 } 1306 recow = 1; 1307 } 1308 1309 other_start = end; 1310 other_end = 0; 1311 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1312 num_bytes, 0); 1313 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1314 if (extent_mergeable(leaf, path->slots[0] + 1, 1315 ino, bytenr, orig_offset, 1316 &other_start, &other_end)) { 1317 if (recow) { 1318 btrfs_release_path(path); 1319 goto again; 1320 } 1321 extent_end = other_end; 1322 del_slot = path->slots[0] + 1; 1323 del_nr++; 1324 ret = btrfs_free_extent(trans, &ref); 1325 if (ret) { 1326 btrfs_abort_transaction(trans, ret); 1327 goto out; 1328 } 1329 } 1330 other_start = 0; 1331 other_end = start; 1332 if (extent_mergeable(leaf, path->slots[0] - 1, 1333 ino, bytenr, orig_offset, 1334 &other_start, &other_end)) { 1335 if (recow) { 1336 btrfs_release_path(path); 1337 goto again; 1338 } 1339 key.offset = other_start; 1340 del_slot = path->slots[0]; 1341 del_nr++; 1342 ret = btrfs_free_extent(trans, &ref); 1343 if (ret) { 1344 btrfs_abort_transaction(trans, ret); 1345 goto out; 1346 } 1347 } 1348 if (del_nr == 0) { 1349 fi = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 btrfs_set_file_extent_type(leaf, fi, 1352 BTRFS_FILE_EXTENT_REG); 1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1354 btrfs_mark_buffer_dirty(leaf); 1355 } else { 1356 fi = btrfs_item_ptr(leaf, del_slot - 1, 1357 struct btrfs_file_extent_item); 1358 btrfs_set_file_extent_type(leaf, fi, 1359 BTRFS_FILE_EXTENT_REG); 1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1361 btrfs_set_file_extent_num_bytes(leaf, fi, 1362 extent_end - key.offset); 1363 btrfs_mark_buffer_dirty(leaf); 1364 1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1366 if (ret < 0) { 1367 btrfs_abort_transaction(trans, ret); 1368 goto out; 1369 } 1370 } 1371 out: 1372 btrfs_free_path(path); 1373 return 0; 1374 } 1375 1376 /* 1377 * on error we return an unlocked page and the error value 1378 * on success we return a locked page and 0 1379 */ 1380 static int prepare_uptodate_page(struct inode *inode, 1381 struct page *page, u64 pos, 1382 bool force_uptodate) 1383 { 1384 int ret = 0; 1385 1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1387 !PageUptodate(page)) { 1388 ret = btrfs_readpage(NULL, page); 1389 if (ret) 1390 return ret; 1391 lock_page(page); 1392 if (!PageUptodate(page)) { 1393 unlock_page(page); 1394 return -EIO; 1395 } 1396 if (page->mapping != inode->i_mapping) { 1397 unlock_page(page); 1398 return -EAGAIN; 1399 } 1400 } 1401 return 0; 1402 } 1403 1404 /* 1405 * this just gets pages into the page cache and locks them down. 1406 */ 1407 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1408 size_t num_pages, loff_t pos, 1409 size_t write_bytes, bool force_uptodate) 1410 { 1411 int i; 1412 unsigned long index = pos >> PAGE_SHIFT; 1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1414 int err = 0; 1415 int faili; 1416 1417 for (i = 0; i < num_pages; i++) { 1418 again: 1419 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1420 mask | __GFP_WRITE); 1421 if (!pages[i]) { 1422 faili = i - 1; 1423 err = -ENOMEM; 1424 goto fail; 1425 } 1426 1427 if (i == 0) 1428 err = prepare_uptodate_page(inode, pages[i], pos, 1429 force_uptodate); 1430 if (!err && i == num_pages - 1) 1431 err = prepare_uptodate_page(inode, pages[i], 1432 pos + write_bytes, false); 1433 if (err) { 1434 put_page(pages[i]); 1435 if (err == -EAGAIN) { 1436 err = 0; 1437 goto again; 1438 } 1439 faili = i - 1; 1440 goto fail; 1441 } 1442 wait_on_page_writeback(pages[i]); 1443 } 1444 1445 return 0; 1446 fail: 1447 while (faili >= 0) { 1448 unlock_page(pages[faili]); 1449 put_page(pages[faili]); 1450 faili--; 1451 } 1452 return err; 1453 1454 } 1455 1456 /* 1457 * This function locks the extent and properly waits for data=ordered extents 1458 * to finish before allowing the pages to be modified if need. 1459 * 1460 * The return value: 1461 * 1 - the extent is locked 1462 * 0 - the extent is not locked, and everything is OK 1463 * -EAGAIN - need re-prepare the pages 1464 * the other < 0 number - Something wrong happens 1465 */ 1466 static noinline int 1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1468 size_t num_pages, loff_t pos, 1469 size_t write_bytes, 1470 u64 *lockstart, u64 *lockend, 1471 struct extent_state **cached_state) 1472 { 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1474 u64 start_pos; 1475 u64 last_pos; 1476 int i; 1477 int ret = 0; 1478 1479 start_pos = round_down(pos, fs_info->sectorsize); 1480 last_pos = start_pos 1481 + round_up(pos + write_bytes - start_pos, 1482 fs_info->sectorsize) - 1; 1483 1484 if (start_pos < inode->vfs_inode.i_size) { 1485 struct btrfs_ordered_extent *ordered; 1486 1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1488 cached_state); 1489 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1490 last_pos - start_pos + 1); 1491 if (ordered && 1492 ordered->file_offset + ordered->num_bytes > start_pos && 1493 ordered->file_offset <= last_pos) { 1494 unlock_extent_cached(&inode->io_tree, start_pos, 1495 last_pos, cached_state); 1496 for (i = 0; i < num_pages; i++) { 1497 unlock_page(pages[i]); 1498 put_page(pages[i]); 1499 } 1500 btrfs_start_ordered_extent(&inode->vfs_inode, 1501 ordered, 1); 1502 btrfs_put_ordered_extent(ordered); 1503 return -EAGAIN; 1504 } 1505 if (ordered) 1506 btrfs_put_ordered_extent(ordered); 1507 1508 *lockstart = start_pos; 1509 *lockend = last_pos; 1510 ret = 1; 1511 } 1512 1513 /* 1514 * It's possible the pages are dirty right now, but we don't want 1515 * to clean them yet because copy_from_user may catch a page fault 1516 * and we might have to fall back to one page at a time. If that 1517 * happens, we'll unlock these pages and we'd have a window where 1518 * reclaim could sneak in and drop the once-dirty page on the floor 1519 * without writing it. 1520 * 1521 * We have the pages locked and the extent range locked, so there's 1522 * no way someone can start IO on any dirty pages in this range. 1523 * 1524 * We'll call btrfs_dirty_pages() later on, and that will flip around 1525 * delalloc bits and dirty the pages as required. 1526 */ 1527 for (i = 0; i < num_pages; i++) { 1528 set_page_extent_mapped(pages[i]); 1529 WARN_ON(!PageLocked(pages[i])); 1530 } 1531 1532 return ret; 1533 } 1534 1535 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1536 size_t *write_bytes) 1537 { 1538 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1539 struct btrfs_root *root = inode->root; 1540 u64 lockstart, lockend; 1541 u64 num_bytes; 1542 int ret; 1543 1544 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1545 return -EAGAIN; 1546 1547 lockstart = round_down(pos, fs_info->sectorsize); 1548 lockend = round_up(pos + *write_bytes, 1549 fs_info->sectorsize) - 1; 1550 1551 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1552 lockend, NULL); 1553 1554 num_bytes = lockend - lockstart + 1; 1555 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1556 NULL, NULL, NULL); 1557 if (ret <= 0) { 1558 ret = 0; 1559 btrfs_drew_write_unlock(&root->snapshot_lock); 1560 } else { 1561 *write_bytes = min_t(size_t, *write_bytes , 1562 num_bytes - pos + lockstart); 1563 } 1564 1565 unlock_extent(&inode->io_tree, lockstart, lockend); 1566 1567 return ret; 1568 } 1569 1570 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1571 struct iov_iter *i) 1572 { 1573 struct file *file = iocb->ki_filp; 1574 loff_t pos = iocb->ki_pos; 1575 struct inode *inode = file_inode(file); 1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1577 struct btrfs_root *root = BTRFS_I(inode)->root; 1578 struct page **pages = NULL; 1579 struct extent_changeset *data_reserved = NULL; 1580 u64 release_bytes = 0; 1581 u64 lockstart; 1582 u64 lockend; 1583 size_t num_written = 0; 1584 int nrptrs; 1585 int ret = 0; 1586 bool only_release_metadata = false; 1587 bool force_page_uptodate = false; 1588 1589 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1590 PAGE_SIZE / (sizeof(struct page *))); 1591 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1592 nrptrs = max(nrptrs, 8); 1593 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1594 if (!pages) 1595 return -ENOMEM; 1596 1597 while (iov_iter_count(i) > 0) { 1598 struct extent_state *cached_state = NULL; 1599 size_t offset = offset_in_page(pos); 1600 size_t sector_offset; 1601 size_t write_bytes = min(iov_iter_count(i), 1602 nrptrs * (size_t)PAGE_SIZE - 1603 offset); 1604 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1605 PAGE_SIZE); 1606 size_t reserve_bytes; 1607 size_t dirty_pages; 1608 size_t copied; 1609 size_t dirty_sectors; 1610 size_t num_sectors; 1611 int extents_locked; 1612 1613 WARN_ON(num_pages > nrptrs); 1614 1615 /* 1616 * Fault pages before locking them in prepare_pages 1617 * to avoid recursive lock 1618 */ 1619 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1620 ret = -EFAULT; 1621 break; 1622 } 1623 1624 only_release_metadata = false; 1625 sector_offset = pos & (fs_info->sectorsize - 1); 1626 reserve_bytes = round_up(write_bytes + sector_offset, 1627 fs_info->sectorsize); 1628 1629 extent_changeset_release(data_reserved); 1630 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1631 write_bytes); 1632 if (ret < 0) { 1633 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1634 BTRFS_INODE_PREALLOC)) && 1635 check_can_nocow(BTRFS_I(inode), pos, 1636 &write_bytes) > 0) { 1637 /* 1638 * For nodata cow case, no need to reserve 1639 * data space. 1640 */ 1641 only_release_metadata = true; 1642 /* 1643 * our prealloc extent may be smaller than 1644 * write_bytes, so scale down. 1645 */ 1646 num_pages = DIV_ROUND_UP(write_bytes + offset, 1647 PAGE_SIZE); 1648 reserve_bytes = round_up(write_bytes + 1649 sector_offset, 1650 fs_info->sectorsize); 1651 } else { 1652 break; 1653 } 1654 } 1655 1656 WARN_ON(reserve_bytes == 0); 1657 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1658 reserve_bytes); 1659 if (ret) { 1660 if (!only_release_metadata) 1661 btrfs_free_reserved_data_space(inode, 1662 data_reserved, pos, 1663 write_bytes); 1664 else 1665 btrfs_drew_write_unlock(&root->snapshot_lock); 1666 break; 1667 } 1668 1669 release_bytes = reserve_bytes; 1670 again: 1671 /* 1672 * This is going to setup the pages array with the number of 1673 * pages we want, so we don't really need to worry about the 1674 * contents of pages from loop to loop 1675 */ 1676 ret = prepare_pages(inode, pages, num_pages, 1677 pos, write_bytes, 1678 force_page_uptodate); 1679 if (ret) { 1680 btrfs_delalloc_release_extents(BTRFS_I(inode), 1681 reserve_bytes); 1682 break; 1683 } 1684 1685 extents_locked = lock_and_cleanup_extent_if_need( 1686 BTRFS_I(inode), pages, 1687 num_pages, pos, write_bytes, &lockstart, 1688 &lockend, &cached_state); 1689 if (extents_locked < 0) { 1690 if (extents_locked == -EAGAIN) 1691 goto again; 1692 btrfs_delalloc_release_extents(BTRFS_I(inode), 1693 reserve_bytes); 1694 ret = extents_locked; 1695 break; 1696 } 1697 1698 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1699 1700 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1701 dirty_sectors = round_up(copied + sector_offset, 1702 fs_info->sectorsize); 1703 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1704 1705 /* 1706 * if we have trouble faulting in the pages, fall 1707 * back to one page at a time 1708 */ 1709 if (copied < write_bytes) 1710 nrptrs = 1; 1711 1712 if (copied == 0) { 1713 force_page_uptodate = true; 1714 dirty_sectors = 0; 1715 dirty_pages = 0; 1716 } else { 1717 force_page_uptodate = false; 1718 dirty_pages = DIV_ROUND_UP(copied + offset, 1719 PAGE_SIZE); 1720 } 1721 1722 if (num_sectors > dirty_sectors) { 1723 /* release everything except the sectors we dirtied */ 1724 release_bytes -= dirty_sectors << 1725 fs_info->sb->s_blocksize_bits; 1726 if (only_release_metadata) { 1727 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1728 release_bytes, true); 1729 } else { 1730 u64 __pos; 1731 1732 __pos = round_down(pos, 1733 fs_info->sectorsize) + 1734 (dirty_pages << PAGE_SHIFT); 1735 btrfs_delalloc_release_space(inode, 1736 data_reserved, __pos, 1737 release_bytes, true); 1738 } 1739 } 1740 1741 release_bytes = round_up(copied + sector_offset, 1742 fs_info->sectorsize); 1743 1744 if (copied > 0) 1745 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1746 pos, copied, &cached_state); 1747 1748 /* 1749 * If we have not locked the extent range, because the range's 1750 * start offset is >= i_size, we might still have a non-NULL 1751 * cached extent state, acquired while marking the extent range 1752 * as delalloc through btrfs_dirty_pages(). Therefore free any 1753 * possible cached extent state to avoid a memory leak. 1754 */ 1755 if (extents_locked) 1756 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1757 lockstart, lockend, &cached_state); 1758 else 1759 free_extent_state(cached_state); 1760 1761 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1762 if (ret) { 1763 btrfs_drop_pages(pages, num_pages); 1764 break; 1765 } 1766 1767 release_bytes = 0; 1768 if (only_release_metadata) 1769 btrfs_drew_write_unlock(&root->snapshot_lock); 1770 1771 if (only_release_metadata && copied > 0) { 1772 lockstart = round_down(pos, 1773 fs_info->sectorsize); 1774 lockend = round_up(pos + copied, 1775 fs_info->sectorsize) - 1; 1776 1777 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1778 lockend, EXTENT_NORESERVE, NULL, 1779 NULL, GFP_NOFS); 1780 } 1781 1782 btrfs_drop_pages(pages, num_pages); 1783 1784 cond_resched(); 1785 1786 balance_dirty_pages_ratelimited(inode->i_mapping); 1787 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1788 btrfs_btree_balance_dirty(fs_info); 1789 1790 pos += copied; 1791 num_written += copied; 1792 } 1793 1794 kfree(pages); 1795 1796 if (release_bytes) { 1797 if (only_release_metadata) { 1798 btrfs_drew_write_unlock(&root->snapshot_lock); 1799 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1800 release_bytes, true); 1801 } else { 1802 btrfs_delalloc_release_space(inode, data_reserved, 1803 round_down(pos, fs_info->sectorsize), 1804 release_bytes, true); 1805 } 1806 } 1807 1808 extent_changeset_free(data_reserved); 1809 return num_written ? num_written : ret; 1810 } 1811 1812 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1813 { 1814 struct file *file = iocb->ki_filp; 1815 struct inode *inode = file_inode(file); 1816 loff_t pos; 1817 ssize_t written; 1818 ssize_t written_buffered; 1819 loff_t endbyte; 1820 int err; 1821 1822 written = generic_file_direct_write(iocb, from); 1823 1824 if (written < 0 || !iov_iter_count(from)) 1825 return written; 1826 1827 pos = iocb->ki_pos; 1828 written_buffered = btrfs_buffered_write(iocb, from); 1829 if (written_buffered < 0) { 1830 err = written_buffered; 1831 goto out; 1832 } 1833 /* 1834 * Ensure all data is persisted. We want the next direct IO read to be 1835 * able to read what was just written. 1836 */ 1837 endbyte = pos + written_buffered - 1; 1838 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1839 if (err) 1840 goto out; 1841 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1842 if (err) 1843 goto out; 1844 written += written_buffered; 1845 iocb->ki_pos = pos + written_buffered; 1846 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1847 endbyte >> PAGE_SHIFT); 1848 out: 1849 return written ? written : err; 1850 } 1851 1852 static void update_time_for_write(struct inode *inode) 1853 { 1854 struct timespec64 now; 1855 1856 if (IS_NOCMTIME(inode)) 1857 return; 1858 1859 now = current_time(inode); 1860 if (!timespec64_equal(&inode->i_mtime, &now)) 1861 inode->i_mtime = now; 1862 1863 if (!timespec64_equal(&inode->i_ctime, &now)) 1864 inode->i_ctime = now; 1865 1866 if (IS_I_VERSION(inode)) 1867 inode_inc_iversion(inode); 1868 } 1869 1870 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1871 struct iov_iter *from) 1872 { 1873 struct file *file = iocb->ki_filp; 1874 struct inode *inode = file_inode(file); 1875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1876 struct btrfs_root *root = BTRFS_I(inode)->root; 1877 u64 start_pos; 1878 u64 end_pos; 1879 ssize_t num_written = 0; 1880 const bool sync = iocb->ki_flags & IOCB_DSYNC; 1881 ssize_t err; 1882 loff_t pos; 1883 size_t count; 1884 loff_t oldsize; 1885 int clean_page = 0; 1886 1887 if (!(iocb->ki_flags & IOCB_DIRECT) && 1888 (iocb->ki_flags & IOCB_NOWAIT)) 1889 return -EOPNOTSUPP; 1890 1891 if (iocb->ki_flags & IOCB_NOWAIT) { 1892 if (!inode_trylock(inode)) 1893 return -EAGAIN; 1894 } else { 1895 inode_lock(inode); 1896 } 1897 1898 err = generic_write_checks(iocb, from); 1899 if (err <= 0) { 1900 inode_unlock(inode); 1901 return err; 1902 } 1903 1904 pos = iocb->ki_pos; 1905 count = iov_iter_count(from); 1906 if (iocb->ki_flags & IOCB_NOWAIT) { 1907 /* 1908 * We will allocate space in case nodatacow is not set, 1909 * so bail 1910 */ 1911 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1912 BTRFS_INODE_PREALLOC)) || 1913 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1914 inode_unlock(inode); 1915 return -EAGAIN; 1916 } 1917 } 1918 1919 current->backing_dev_info = inode_to_bdi(inode); 1920 err = file_remove_privs(file); 1921 if (err) { 1922 inode_unlock(inode); 1923 goto out; 1924 } 1925 1926 /* 1927 * If BTRFS flips readonly due to some impossible error 1928 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1929 * although we have opened a file as writable, we have 1930 * to stop this write operation to ensure FS consistency. 1931 */ 1932 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1933 inode_unlock(inode); 1934 err = -EROFS; 1935 goto out; 1936 } 1937 1938 /* 1939 * We reserve space for updating the inode when we reserve space for the 1940 * extent we are going to write, so we will enospc out there. We don't 1941 * need to start yet another transaction to update the inode as we will 1942 * update the inode when we finish writing whatever data we write. 1943 */ 1944 update_time_for_write(inode); 1945 1946 start_pos = round_down(pos, fs_info->sectorsize); 1947 oldsize = i_size_read(inode); 1948 if (start_pos > oldsize) { 1949 /* Expand hole size to cover write data, preventing empty gap */ 1950 end_pos = round_up(pos + count, 1951 fs_info->sectorsize); 1952 err = btrfs_cont_expand(inode, oldsize, end_pos); 1953 if (err) { 1954 inode_unlock(inode); 1955 goto out; 1956 } 1957 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1958 clean_page = 1; 1959 } 1960 1961 if (sync) 1962 atomic_inc(&BTRFS_I(inode)->sync_writers); 1963 1964 if (iocb->ki_flags & IOCB_DIRECT) { 1965 num_written = __btrfs_direct_write(iocb, from); 1966 } else { 1967 num_written = btrfs_buffered_write(iocb, from); 1968 if (num_written > 0) 1969 iocb->ki_pos = pos + num_written; 1970 if (clean_page) 1971 pagecache_isize_extended(inode, oldsize, 1972 i_size_read(inode)); 1973 } 1974 1975 inode_unlock(inode); 1976 1977 /* 1978 * We also have to set last_sub_trans to the current log transid, 1979 * otherwise subsequent syncs to a file that's been synced in this 1980 * transaction will appear to have already occurred. 1981 */ 1982 spin_lock(&BTRFS_I(inode)->lock); 1983 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1984 spin_unlock(&BTRFS_I(inode)->lock); 1985 if (num_written > 0) 1986 num_written = generic_write_sync(iocb, num_written); 1987 1988 if (sync) 1989 atomic_dec(&BTRFS_I(inode)->sync_writers); 1990 out: 1991 current->backing_dev_info = NULL; 1992 return num_written ? num_written : err; 1993 } 1994 1995 int btrfs_release_file(struct inode *inode, struct file *filp) 1996 { 1997 struct btrfs_file_private *private = filp->private_data; 1998 1999 if (private && private->filldir_buf) 2000 kfree(private->filldir_buf); 2001 kfree(private); 2002 filp->private_data = NULL; 2003 2004 /* 2005 * ordered_data_close is set by setattr when we are about to truncate 2006 * a file from a non-zero size to a zero size. This tries to 2007 * flush down new bytes that may have been written if the 2008 * application were using truncate to replace a file in place. 2009 */ 2010 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2011 &BTRFS_I(inode)->runtime_flags)) 2012 filemap_flush(inode->i_mapping); 2013 return 0; 2014 } 2015 2016 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2017 { 2018 int ret; 2019 struct blk_plug plug; 2020 2021 /* 2022 * This is only called in fsync, which would do synchronous writes, so 2023 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2024 * multiple disks using raid profile, a large IO can be split to 2025 * several segments of stripe length (currently 64K). 2026 */ 2027 blk_start_plug(&plug); 2028 atomic_inc(&BTRFS_I(inode)->sync_writers); 2029 ret = btrfs_fdatawrite_range(inode, start, end); 2030 atomic_dec(&BTRFS_I(inode)->sync_writers); 2031 blk_finish_plug(&plug); 2032 2033 return ret; 2034 } 2035 2036 /* 2037 * fsync call for both files and directories. This logs the inode into 2038 * the tree log instead of forcing full commits whenever possible. 2039 * 2040 * It needs to call filemap_fdatawait so that all ordered extent updates are 2041 * in the metadata btree are up to date for copying to the log. 2042 * 2043 * It drops the inode mutex before doing the tree log commit. This is an 2044 * important optimization for directories because holding the mutex prevents 2045 * new operations on the dir while we write to disk. 2046 */ 2047 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2048 { 2049 struct dentry *dentry = file_dentry(file); 2050 struct inode *inode = d_inode(dentry); 2051 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 struct btrfs_trans_handle *trans; 2054 struct btrfs_log_ctx ctx; 2055 int ret = 0, err; 2056 2057 trace_btrfs_sync_file(file, datasync); 2058 2059 btrfs_init_log_ctx(&ctx, inode); 2060 2061 /* 2062 * Set the range to full if the NO_HOLES feature is not enabled. 2063 * This is to avoid missing file extent items representing holes after 2064 * replaying the log. 2065 */ 2066 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) { 2067 start = 0; 2068 end = LLONG_MAX; 2069 } 2070 2071 /* 2072 * We write the dirty pages in the range and wait until they complete 2073 * out of the ->i_mutex. If so, we can flush the dirty pages by 2074 * multi-task, and make the performance up. See 2075 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2076 */ 2077 ret = start_ordered_ops(inode, start, end); 2078 if (ret) 2079 goto out; 2080 2081 inode_lock(inode); 2082 2083 /* 2084 * We take the dio_sem here because the tree log stuff can race with 2085 * lockless dio writes and get an extent map logged for an extent we 2086 * never waited on. We need it this high up for lockdep reasons. 2087 */ 2088 down_write(&BTRFS_I(inode)->dio_sem); 2089 2090 atomic_inc(&root->log_batch); 2091 2092 /* 2093 * If the inode needs a full sync, make sure we use a full range to 2094 * avoid log tree corruption, due to hole detection racing with ordered 2095 * extent completion for adjacent ranges and races between logging and 2096 * completion of ordered extents for adjancent ranges - both races 2097 * could lead to file extent items in the log with overlapping ranges. 2098 * Do this while holding the inode lock, to avoid races with other 2099 * tasks. 2100 */ 2101 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2102 &BTRFS_I(inode)->runtime_flags)) { 2103 start = 0; 2104 end = LLONG_MAX; 2105 } 2106 2107 /* 2108 * Before we acquired the inode's lock, someone may have dirtied more 2109 * pages in the target range. We need to make sure that writeback for 2110 * any such pages does not start while we are logging the inode, because 2111 * if it does, any of the following might happen when we are not doing a 2112 * full inode sync: 2113 * 2114 * 1) We log an extent after its writeback finishes but before its 2115 * checksums are added to the csum tree, leading to -EIO errors 2116 * when attempting to read the extent after a log replay. 2117 * 2118 * 2) We can end up logging an extent before its writeback finishes. 2119 * Therefore after the log replay we will have a file extent item 2120 * pointing to an unwritten extent (and no data checksums as well). 2121 * 2122 * So trigger writeback for any eventual new dirty pages and then we 2123 * wait for all ordered extents to complete below. 2124 */ 2125 ret = start_ordered_ops(inode, start, end); 2126 if (ret) { 2127 up_write(&BTRFS_I(inode)->dio_sem); 2128 inode_unlock(inode); 2129 goto out; 2130 } 2131 2132 /* 2133 * We have to do this here to avoid the priority inversion of waiting on 2134 * IO of a lower priority task while holding a transaction open. 2135 * 2136 * Also, the range length can be represented by u64, we have to do the 2137 * typecasts to avoid signed overflow if it's [0, LLONG_MAX]. 2138 */ 2139 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1); 2140 if (ret) { 2141 up_write(&BTRFS_I(inode)->dio_sem); 2142 inode_unlock(inode); 2143 goto out; 2144 } 2145 atomic_inc(&root->log_batch); 2146 2147 smp_mb(); 2148 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2149 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2150 /* 2151 * We've had everything committed since the last time we were 2152 * modified so clear this flag in case it was set for whatever 2153 * reason, it's no longer relevant. 2154 */ 2155 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2156 &BTRFS_I(inode)->runtime_flags); 2157 /* 2158 * An ordered extent might have started before and completed 2159 * already with io errors, in which case the inode was not 2160 * updated and we end up here. So check the inode's mapping 2161 * for any errors that might have happened since we last 2162 * checked called fsync. 2163 */ 2164 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2165 up_write(&BTRFS_I(inode)->dio_sem); 2166 inode_unlock(inode); 2167 goto out; 2168 } 2169 2170 /* 2171 * We use start here because we will need to wait on the IO to complete 2172 * in btrfs_sync_log, which could require joining a transaction (for 2173 * example checking cross references in the nocow path). If we use join 2174 * here we could get into a situation where we're waiting on IO to 2175 * happen that is blocked on a transaction trying to commit. With start 2176 * we inc the extwriter counter, so we wait for all extwriters to exit 2177 * before we start blocking joiners. This comment is to keep somebody 2178 * from thinking they are super smart and changing this to 2179 * btrfs_join_transaction *cough*Josef*cough*. 2180 */ 2181 trans = btrfs_start_transaction(root, 0); 2182 if (IS_ERR(trans)) { 2183 ret = PTR_ERR(trans); 2184 up_write(&BTRFS_I(inode)->dio_sem); 2185 inode_unlock(inode); 2186 goto out; 2187 } 2188 2189 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2190 if (ret < 0) { 2191 /* Fallthrough and commit/free transaction. */ 2192 ret = 1; 2193 } 2194 2195 /* we've logged all the items and now have a consistent 2196 * version of the file in the log. It is possible that 2197 * someone will come in and modify the file, but that's 2198 * fine because the log is consistent on disk, and we 2199 * have references to all of the file's extents 2200 * 2201 * It is possible that someone will come in and log the 2202 * file again, but that will end up using the synchronization 2203 * inside btrfs_sync_log to keep things safe. 2204 */ 2205 up_write(&BTRFS_I(inode)->dio_sem); 2206 inode_unlock(inode); 2207 2208 if (ret != BTRFS_NO_LOG_SYNC) { 2209 if (!ret) { 2210 ret = btrfs_sync_log(trans, root, &ctx); 2211 if (!ret) { 2212 ret = btrfs_end_transaction(trans); 2213 goto out; 2214 } 2215 } 2216 ret = btrfs_commit_transaction(trans); 2217 } else { 2218 ret = btrfs_end_transaction(trans); 2219 } 2220 out: 2221 ASSERT(list_empty(&ctx.list)); 2222 err = file_check_and_advance_wb_err(file); 2223 if (!ret) 2224 ret = err; 2225 return ret > 0 ? -EIO : ret; 2226 } 2227 2228 static const struct vm_operations_struct btrfs_file_vm_ops = { 2229 .fault = filemap_fault, 2230 .map_pages = filemap_map_pages, 2231 .page_mkwrite = btrfs_page_mkwrite, 2232 }; 2233 2234 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2235 { 2236 struct address_space *mapping = filp->f_mapping; 2237 2238 if (!mapping->a_ops->readpage) 2239 return -ENOEXEC; 2240 2241 file_accessed(filp); 2242 vma->vm_ops = &btrfs_file_vm_ops; 2243 2244 return 0; 2245 } 2246 2247 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2248 int slot, u64 start, u64 end) 2249 { 2250 struct btrfs_file_extent_item *fi; 2251 struct btrfs_key key; 2252 2253 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2254 return 0; 2255 2256 btrfs_item_key_to_cpu(leaf, &key, slot); 2257 if (key.objectid != btrfs_ino(inode) || 2258 key.type != BTRFS_EXTENT_DATA_KEY) 2259 return 0; 2260 2261 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2262 2263 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2264 return 0; 2265 2266 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2267 return 0; 2268 2269 if (key.offset == end) 2270 return 1; 2271 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2272 return 1; 2273 return 0; 2274 } 2275 2276 static int fill_holes(struct btrfs_trans_handle *trans, 2277 struct btrfs_inode *inode, 2278 struct btrfs_path *path, u64 offset, u64 end) 2279 { 2280 struct btrfs_fs_info *fs_info = trans->fs_info; 2281 struct btrfs_root *root = inode->root; 2282 struct extent_buffer *leaf; 2283 struct btrfs_file_extent_item *fi; 2284 struct extent_map *hole_em; 2285 struct extent_map_tree *em_tree = &inode->extent_tree; 2286 struct btrfs_key key; 2287 int ret; 2288 2289 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2290 goto out; 2291 2292 key.objectid = btrfs_ino(inode); 2293 key.type = BTRFS_EXTENT_DATA_KEY; 2294 key.offset = offset; 2295 2296 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2297 if (ret <= 0) { 2298 /* 2299 * We should have dropped this offset, so if we find it then 2300 * something has gone horribly wrong. 2301 */ 2302 if (ret == 0) 2303 ret = -EINVAL; 2304 return ret; 2305 } 2306 2307 leaf = path->nodes[0]; 2308 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2309 u64 num_bytes; 2310 2311 path->slots[0]--; 2312 fi = btrfs_item_ptr(leaf, path->slots[0], 2313 struct btrfs_file_extent_item); 2314 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2315 end - offset; 2316 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2317 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2318 btrfs_set_file_extent_offset(leaf, fi, 0); 2319 btrfs_mark_buffer_dirty(leaf); 2320 goto out; 2321 } 2322 2323 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2324 u64 num_bytes; 2325 2326 key.offset = offset; 2327 btrfs_set_item_key_safe(fs_info, path, &key); 2328 fi = btrfs_item_ptr(leaf, path->slots[0], 2329 struct btrfs_file_extent_item); 2330 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2331 offset; 2332 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2333 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2334 btrfs_set_file_extent_offset(leaf, fi, 0); 2335 btrfs_mark_buffer_dirty(leaf); 2336 goto out; 2337 } 2338 btrfs_release_path(path); 2339 2340 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2341 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2342 if (ret) 2343 return ret; 2344 2345 out: 2346 btrfs_release_path(path); 2347 2348 hole_em = alloc_extent_map(); 2349 if (!hole_em) { 2350 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2352 } else { 2353 hole_em->start = offset; 2354 hole_em->len = end - offset; 2355 hole_em->ram_bytes = hole_em->len; 2356 hole_em->orig_start = offset; 2357 2358 hole_em->block_start = EXTENT_MAP_HOLE; 2359 hole_em->block_len = 0; 2360 hole_em->orig_block_len = 0; 2361 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2362 hole_em->generation = trans->transid; 2363 2364 do { 2365 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2366 write_lock(&em_tree->lock); 2367 ret = add_extent_mapping(em_tree, hole_em, 1); 2368 write_unlock(&em_tree->lock); 2369 } while (ret == -EEXIST); 2370 free_extent_map(hole_em); 2371 if (ret) 2372 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2373 &inode->runtime_flags); 2374 } 2375 2376 return 0; 2377 } 2378 2379 /* 2380 * Find a hole extent on given inode and change start/len to the end of hole 2381 * extent.(hole/vacuum extent whose em->start <= start && 2382 * em->start + em->len > start) 2383 * When a hole extent is found, return 1 and modify start/len. 2384 */ 2385 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2386 { 2387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2388 struct extent_map *em; 2389 int ret = 0; 2390 2391 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2392 round_down(*start, fs_info->sectorsize), 2393 round_up(*len, fs_info->sectorsize)); 2394 if (IS_ERR(em)) 2395 return PTR_ERR(em); 2396 2397 /* Hole or vacuum extent(only exists in no-hole mode) */ 2398 if (em->block_start == EXTENT_MAP_HOLE) { 2399 ret = 1; 2400 *len = em->start + em->len > *start + *len ? 2401 0 : *start + *len - em->start - em->len; 2402 *start = em->start + em->len; 2403 } 2404 free_extent_map(em); 2405 return ret; 2406 } 2407 2408 static int btrfs_punch_hole_lock_range(struct inode *inode, 2409 const u64 lockstart, 2410 const u64 lockend, 2411 struct extent_state **cached_state) 2412 { 2413 while (1) { 2414 struct btrfs_ordered_extent *ordered; 2415 int ret; 2416 2417 truncate_pagecache_range(inode, lockstart, lockend); 2418 2419 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2420 cached_state); 2421 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2422 2423 /* 2424 * We need to make sure we have no ordered extents in this range 2425 * and nobody raced in and read a page in this range, if we did 2426 * we need to try again. 2427 */ 2428 if ((!ordered || 2429 (ordered->file_offset + ordered->num_bytes <= lockstart || 2430 ordered->file_offset > lockend)) && 2431 !filemap_range_has_page(inode->i_mapping, 2432 lockstart, lockend)) { 2433 if (ordered) 2434 btrfs_put_ordered_extent(ordered); 2435 break; 2436 } 2437 if (ordered) 2438 btrfs_put_ordered_extent(ordered); 2439 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2440 lockend, cached_state); 2441 ret = btrfs_wait_ordered_range(inode, lockstart, 2442 lockend - lockstart + 1); 2443 if (ret) 2444 return ret; 2445 } 2446 return 0; 2447 } 2448 2449 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans, 2450 struct inode *inode, 2451 struct btrfs_path *path, 2452 struct btrfs_clone_extent_info *clone_info, 2453 const u64 clone_len) 2454 { 2455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2456 struct btrfs_root *root = BTRFS_I(inode)->root; 2457 struct btrfs_file_extent_item *extent; 2458 struct extent_buffer *leaf; 2459 struct btrfs_key key; 2460 int slot; 2461 struct btrfs_ref ref = { 0 }; 2462 u64 ref_offset; 2463 int ret; 2464 2465 if (clone_len == 0) 2466 return 0; 2467 2468 if (clone_info->disk_offset == 0 && 2469 btrfs_fs_incompat(fs_info, NO_HOLES)) 2470 return 0; 2471 2472 key.objectid = btrfs_ino(BTRFS_I(inode)); 2473 key.type = BTRFS_EXTENT_DATA_KEY; 2474 key.offset = clone_info->file_offset; 2475 ret = btrfs_insert_empty_item(trans, root, path, &key, 2476 clone_info->item_size); 2477 if (ret) 2478 return ret; 2479 leaf = path->nodes[0]; 2480 slot = path->slots[0]; 2481 write_extent_buffer(leaf, clone_info->extent_buf, 2482 btrfs_item_ptr_offset(leaf, slot), 2483 clone_info->item_size); 2484 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2485 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset); 2486 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len); 2487 btrfs_mark_buffer_dirty(leaf); 2488 btrfs_release_path(path); 2489 2490 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 2491 clone_info->file_offset, clone_len); 2492 if (ret) 2493 return ret; 2494 2495 /* If it's a hole, nothing more needs to be done. */ 2496 if (clone_info->disk_offset == 0) 2497 return 0; 2498 2499 inode_add_bytes(inode, clone_len); 2500 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2501 clone_info->disk_offset, 2502 clone_info->disk_len, 0); 2503 ref_offset = clone_info->file_offset - clone_info->data_offset; 2504 btrfs_init_data_ref(&ref, root->root_key.objectid, 2505 btrfs_ino(BTRFS_I(inode)), ref_offset); 2506 ret = btrfs_inc_extent_ref(trans, &ref); 2507 2508 return ret; 2509 } 2510 2511 /* 2512 * The respective range must have been previously locked, as well as the inode. 2513 * The end offset is inclusive (last byte of the range). 2514 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent 2515 * cloning. 2516 * When cloning, we don't want to end up in a state where we dropped extents 2517 * without inserting a new one, so we must abort the transaction to avoid a 2518 * corruption. 2519 */ 2520 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path, 2521 const u64 start, const u64 end, 2522 struct btrfs_clone_extent_info *clone_info, 2523 struct btrfs_trans_handle **trans_out) 2524 { 2525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2526 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2527 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2528 struct btrfs_root *root = BTRFS_I(inode)->root; 2529 struct btrfs_trans_handle *trans = NULL; 2530 struct btrfs_block_rsv *rsv; 2531 unsigned int rsv_count; 2532 u64 cur_offset; 2533 u64 drop_end; 2534 u64 len = end - start; 2535 int ret = 0; 2536 2537 if (end <= start) 2538 return -EINVAL; 2539 2540 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2541 if (!rsv) { 2542 ret = -ENOMEM; 2543 goto out; 2544 } 2545 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2546 rsv->failfast = 1; 2547 2548 /* 2549 * 1 - update the inode 2550 * 1 - removing the extents in the range 2551 * 1 - adding the hole extent if no_holes isn't set or if we are cloning 2552 * an extent 2553 */ 2554 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info) 2555 rsv_count = 3; 2556 else 2557 rsv_count = 2; 2558 2559 trans = btrfs_start_transaction(root, rsv_count); 2560 if (IS_ERR(trans)) { 2561 ret = PTR_ERR(trans); 2562 trans = NULL; 2563 goto out_free; 2564 } 2565 2566 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2567 min_size, false); 2568 BUG_ON(ret); 2569 trans->block_rsv = rsv; 2570 2571 cur_offset = start; 2572 while (cur_offset < end) { 2573 ret = __btrfs_drop_extents(trans, root, inode, path, 2574 cur_offset, end + 1, &drop_end, 2575 1, 0, 0, NULL); 2576 if (ret != -ENOSPC) { 2577 /* 2578 * When cloning we want to avoid transaction aborts when 2579 * nothing was done and we are attempting to clone parts 2580 * of inline extents, in such cases -EOPNOTSUPP is 2581 * returned by __btrfs_drop_extents() without having 2582 * changed anything in the file. 2583 */ 2584 if (clone_info && ret && ret != -EOPNOTSUPP) 2585 btrfs_abort_transaction(trans, ret); 2586 break; 2587 } 2588 2589 trans->block_rsv = &fs_info->trans_block_rsv; 2590 2591 if (!clone_info && cur_offset < drop_end && 2592 cur_offset < ino_size) { 2593 ret = fill_holes(trans, BTRFS_I(inode), path, 2594 cur_offset, drop_end); 2595 if (ret) { 2596 /* 2597 * If we failed then we didn't insert our hole 2598 * entries for the area we dropped, so now the 2599 * fs is corrupted, so we must abort the 2600 * transaction. 2601 */ 2602 btrfs_abort_transaction(trans, ret); 2603 break; 2604 } 2605 } else if (!clone_info && cur_offset < drop_end) { 2606 /* 2607 * We are past the i_size here, but since we didn't 2608 * insert holes we need to clear the mapped area so we 2609 * know to not set disk_i_size in this area until a new 2610 * file extent is inserted here. 2611 */ 2612 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2613 cur_offset, drop_end - cur_offset); 2614 if (ret) { 2615 /* 2616 * We couldn't clear our area, so we could 2617 * presumably adjust up and corrupt the fs, so 2618 * we need to abort. 2619 */ 2620 btrfs_abort_transaction(trans, ret); 2621 break; 2622 } 2623 } 2624 2625 if (clone_info && drop_end > clone_info->file_offset) { 2626 u64 clone_len = drop_end - clone_info->file_offset; 2627 2628 ret = btrfs_insert_clone_extent(trans, inode, path, 2629 clone_info, clone_len); 2630 if (ret) { 2631 btrfs_abort_transaction(trans, ret); 2632 break; 2633 } 2634 clone_info->data_len -= clone_len; 2635 clone_info->data_offset += clone_len; 2636 clone_info->file_offset += clone_len; 2637 } 2638 2639 cur_offset = drop_end; 2640 2641 ret = btrfs_update_inode(trans, root, inode); 2642 if (ret) 2643 break; 2644 2645 btrfs_end_transaction(trans); 2646 btrfs_btree_balance_dirty(fs_info); 2647 2648 trans = btrfs_start_transaction(root, rsv_count); 2649 if (IS_ERR(trans)) { 2650 ret = PTR_ERR(trans); 2651 trans = NULL; 2652 break; 2653 } 2654 2655 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2656 rsv, min_size, false); 2657 BUG_ON(ret); /* shouldn't happen */ 2658 trans->block_rsv = rsv; 2659 2660 if (!clone_info) { 2661 ret = find_first_non_hole(inode, &cur_offset, &len); 2662 if (unlikely(ret < 0)) 2663 break; 2664 if (ret && !len) { 2665 ret = 0; 2666 break; 2667 } 2668 } 2669 } 2670 2671 /* 2672 * If we were cloning, force the next fsync to be a full one since we 2673 * we replaced (or just dropped in the case of cloning holes when 2674 * NO_HOLES is enabled) extents and extent maps. 2675 * This is for the sake of simplicity, and cloning into files larger 2676 * than 16Mb would force the full fsync any way (when 2677 * try_release_extent_mapping() is invoked during page cache truncation. 2678 */ 2679 if (clone_info) 2680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2681 &BTRFS_I(inode)->runtime_flags); 2682 2683 if (ret) 2684 goto out_trans; 2685 2686 trans->block_rsv = &fs_info->trans_block_rsv; 2687 /* 2688 * If we are using the NO_HOLES feature we might have had already an 2689 * hole that overlaps a part of the region [lockstart, lockend] and 2690 * ends at (or beyond) lockend. Since we have no file extent items to 2691 * represent holes, drop_end can be less than lockend and so we must 2692 * make sure we have an extent map representing the existing hole (the 2693 * call to __btrfs_drop_extents() might have dropped the existing extent 2694 * map representing the existing hole), otherwise the fast fsync path 2695 * will not record the existence of the hole region 2696 * [existing_hole_start, lockend]. 2697 */ 2698 if (drop_end <= end) 2699 drop_end = end + 1; 2700 /* 2701 * Don't insert file hole extent item if it's for a range beyond eof 2702 * (because it's useless) or if it represents a 0 bytes range (when 2703 * cur_offset == drop_end). 2704 */ 2705 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) { 2706 ret = fill_holes(trans, BTRFS_I(inode), path, 2707 cur_offset, drop_end); 2708 if (ret) { 2709 /* Same comment as above. */ 2710 btrfs_abort_transaction(trans, ret); 2711 goto out_trans; 2712 } 2713 } else if (!clone_info && cur_offset < drop_end) { 2714 /* See the comment in the loop above for the reasoning here. */ 2715 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 2716 cur_offset, drop_end - cur_offset); 2717 if (ret) { 2718 btrfs_abort_transaction(trans, ret); 2719 goto out_trans; 2720 } 2721 2722 } 2723 if (clone_info) { 2724 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info, 2725 clone_info->data_len); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto out_trans; 2729 } 2730 } 2731 2732 out_trans: 2733 if (!trans) 2734 goto out_free; 2735 2736 trans->block_rsv = &fs_info->trans_block_rsv; 2737 if (ret) 2738 btrfs_end_transaction(trans); 2739 else 2740 *trans_out = trans; 2741 out_free: 2742 btrfs_free_block_rsv(fs_info, rsv); 2743 out: 2744 return ret; 2745 } 2746 2747 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2748 { 2749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2750 struct btrfs_root *root = BTRFS_I(inode)->root; 2751 struct extent_state *cached_state = NULL; 2752 struct btrfs_path *path; 2753 struct btrfs_trans_handle *trans = NULL; 2754 u64 lockstart; 2755 u64 lockend; 2756 u64 tail_start; 2757 u64 tail_len; 2758 u64 orig_start = offset; 2759 int ret = 0; 2760 bool same_block; 2761 u64 ino_size; 2762 bool truncated_block = false; 2763 bool updated_inode = false; 2764 2765 ret = btrfs_wait_ordered_range(inode, offset, len); 2766 if (ret) 2767 return ret; 2768 2769 inode_lock(inode); 2770 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2771 ret = find_first_non_hole(inode, &offset, &len); 2772 if (ret < 0) 2773 goto out_only_mutex; 2774 if (ret && !len) { 2775 /* Already in a large hole */ 2776 ret = 0; 2777 goto out_only_mutex; 2778 } 2779 2780 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2781 lockend = round_down(offset + len, 2782 btrfs_inode_sectorsize(inode)) - 1; 2783 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2784 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2785 /* 2786 * We needn't truncate any block which is beyond the end of the file 2787 * because we are sure there is no data there. 2788 */ 2789 /* 2790 * Only do this if we are in the same block and we aren't doing the 2791 * entire block. 2792 */ 2793 if (same_block && len < fs_info->sectorsize) { 2794 if (offset < ino_size) { 2795 truncated_block = true; 2796 ret = btrfs_truncate_block(inode, offset, len, 0); 2797 } else { 2798 ret = 0; 2799 } 2800 goto out_only_mutex; 2801 } 2802 2803 /* zero back part of the first block */ 2804 if (offset < ino_size) { 2805 truncated_block = true; 2806 ret = btrfs_truncate_block(inode, offset, 0, 0); 2807 if (ret) { 2808 inode_unlock(inode); 2809 return ret; 2810 } 2811 } 2812 2813 /* Check the aligned pages after the first unaligned page, 2814 * if offset != orig_start, which means the first unaligned page 2815 * including several following pages are already in holes, 2816 * the extra check can be skipped */ 2817 if (offset == orig_start) { 2818 /* after truncate page, check hole again */ 2819 len = offset + len - lockstart; 2820 offset = lockstart; 2821 ret = find_first_non_hole(inode, &offset, &len); 2822 if (ret < 0) 2823 goto out_only_mutex; 2824 if (ret && !len) { 2825 ret = 0; 2826 goto out_only_mutex; 2827 } 2828 lockstart = offset; 2829 } 2830 2831 /* Check the tail unaligned part is in a hole */ 2832 tail_start = lockend + 1; 2833 tail_len = offset + len - tail_start; 2834 if (tail_len) { 2835 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2836 if (unlikely(ret < 0)) 2837 goto out_only_mutex; 2838 if (!ret) { 2839 /* zero the front end of the last page */ 2840 if (tail_start + tail_len < ino_size) { 2841 truncated_block = true; 2842 ret = btrfs_truncate_block(inode, 2843 tail_start + tail_len, 2844 0, 1); 2845 if (ret) 2846 goto out_only_mutex; 2847 } 2848 } 2849 } 2850 2851 if (lockend < lockstart) { 2852 ret = 0; 2853 goto out_only_mutex; 2854 } 2855 2856 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2857 &cached_state); 2858 if (ret) 2859 goto out_only_mutex; 2860 2861 path = btrfs_alloc_path(); 2862 if (!path) { 2863 ret = -ENOMEM; 2864 goto out; 2865 } 2866 2867 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL, 2868 &trans); 2869 btrfs_free_path(path); 2870 if (ret) 2871 goto out; 2872 2873 ASSERT(trans != NULL); 2874 inode_inc_iversion(inode); 2875 inode->i_mtime = inode->i_ctime = current_time(inode); 2876 ret = btrfs_update_inode(trans, root, inode); 2877 updated_inode = true; 2878 btrfs_end_transaction(trans); 2879 btrfs_btree_balance_dirty(fs_info); 2880 out: 2881 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2882 &cached_state); 2883 out_only_mutex: 2884 if (!updated_inode && truncated_block && !ret) { 2885 /* 2886 * If we only end up zeroing part of a page, we still need to 2887 * update the inode item, so that all the time fields are 2888 * updated as well as the necessary btrfs inode in memory fields 2889 * for detecting, at fsync time, if the inode isn't yet in the 2890 * log tree or it's there but not up to date. 2891 */ 2892 struct timespec64 now = current_time(inode); 2893 2894 inode_inc_iversion(inode); 2895 inode->i_mtime = now; 2896 inode->i_ctime = now; 2897 trans = btrfs_start_transaction(root, 1); 2898 if (IS_ERR(trans)) { 2899 ret = PTR_ERR(trans); 2900 } else { 2901 int ret2; 2902 2903 ret = btrfs_update_inode(trans, root, inode); 2904 ret2 = btrfs_end_transaction(trans); 2905 if (!ret) 2906 ret = ret2; 2907 } 2908 } 2909 inode_unlock(inode); 2910 return ret; 2911 } 2912 2913 /* Helper structure to record which range is already reserved */ 2914 struct falloc_range { 2915 struct list_head list; 2916 u64 start; 2917 u64 len; 2918 }; 2919 2920 /* 2921 * Helper function to add falloc range 2922 * 2923 * Caller should have locked the larger range of extent containing 2924 * [start, len) 2925 */ 2926 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2927 { 2928 struct falloc_range *prev = NULL; 2929 struct falloc_range *range = NULL; 2930 2931 if (list_empty(head)) 2932 goto insert; 2933 2934 /* 2935 * As fallocate iterate by bytenr order, we only need to check 2936 * the last range. 2937 */ 2938 prev = list_entry(head->prev, struct falloc_range, list); 2939 if (prev->start + prev->len == start) { 2940 prev->len += len; 2941 return 0; 2942 } 2943 insert: 2944 range = kmalloc(sizeof(*range), GFP_KERNEL); 2945 if (!range) 2946 return -ENOMEM; 2947 range->start = start; 2948 range->len = len; 2949 list_add_tail(&range->list, head); 2950 return 0; 2951 } 2952 2953 static int btrfs_fallocate_update_isize(struct inode *inode, 2954 const u64 end, 2955 const int mode) 2956 { 2957 struct btrfs_trans_handle *trans; 2958 struct btrfs_root *root = BTRFS_I(inode)->root; 2959 int ret; 2960 int ret2; 2961 2962 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2963 return 0; 2964 2965 trans = btrfs_start_transaction(root, 1); 2966 if (IS_ERR(trans)) 2967 return PTR_ERR(trans); 2968 2969 inode->i_ctime = current_time(inode); 2970 i_size_write(inode, end); 2971 btrfs_inode_safe_disk_i_size_write(inode, 0); 2972 ret = btrfs_update_inode(trans, root, inode); 2973 ret2 = btrfs_end_transaction(trans); 2974 2975 return ret ? ret : ret2; 2976 } 2977 2978 enum { 2979 RANGE_BOUNDARY_WRITTEN_EXTENT, 2980 RANGE_BOUNDARY_PREALLOC_EXTENT, 2981 RANGE_BOUNDARY_HOLE, 2982 }; 2983 2984 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2985 u64 offset) 2986 { 2987 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2988 struct extent_map *em; 2989 int ret; 2990 2991 offset = round_down(offset, sectorsize); 2992 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize); 2993 if (IS_ERR(em)) 2994 return PTR_ERR(em); 2995 2996 if (em->block_start == EXTENT_MAP_HOLE) 2997 ret = RANGE_BOUNDARY_HOLE; 2998 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2999 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3000 else 3001 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3002 3003 free_extent_map(em); 3004 return ret; 3005 } 3006 3007 static int btrfs_zero_range(struct inode *inode, 3008 loff_t offset, 3009 loff_t len, 3010 const int mode) 3011 { 3012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3013 struct extent_map *em; 3014 struct extent_changeset *data_reserved = NULL; 3015 int ret; 3016 u64 alloc_hint = 0; 3017 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3018 u64 alloc_start = round_down(offset, sectorsize); 3019 u64 alloc_end = round_up(offset + len, sectorsize); 3020 u64 bytes_to_reserve = 0; 3021 bool space_reserved = false; 3022 3023 inode_dio_wait(inode); 3024 3025 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3026 alloc_end - alloc_start); 3027 if (IS_ERR(em)) { 3028 ret = PTR_ERR(em); 3029 goto out; 3030 } 3031 3032 /* 3033 * Avoid hole punching and extent allocation for some cases. More cases 3034 * could be considered, but these are unlikely common and we keep things 3035 * as simple as possible for now. Also, intentionally, if the target 3036 * range contains one or more prealloc extents together with regular 3037 * extents and holes, we drop all the existing extents and allocate a 3038 * new prealloc extent, so that we get a larger contiguous disk extent. 3039 */ 3040 if (em->start <= alloc_start && 3041 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3042 const u64 em_end = em->start + em->len; 3043 3044 if (em_end >= offset + len) { 3045 /* 3046 * The whole range is already a prealloc extent, 3047 * do nothing except updating the inode's i_size if 3048 * needed. 3049 */ 3050 free_extent_map(em); 3051 ret = btrfs_fallocate_update_isize(inode, offset + len, 3052 mode); 3053 goto out; 3054 } 3055 /* 3056 * Part of the range is already a prealloc extent, so operate 3057 * only on the remaining part of the range. 3058 */ 3059 alloc_start = em_end; 3060 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3061 len = offset + len - alloc_start; 3062 offset = alloc_start; 3063 alloc_hint = em->block_start + em->len; 3064 } 3065 free_extent_map(em); 3066 3067 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3068 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3069 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3070 sectorsize); 3071 if (IS_ERR(em)) { 3072 ret = PTR_ERR(em); 3073 goto out; 3074 } 3075 3076 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3077 free_extent_map(em); 3078 ret = btrfs_fallocate_update_isize(inode, offset + len, 3079 mode); 3080 goto out; 3081 } 3082 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3083 free_extent_map(em); 3084 ret = btrfs_truncate_block(inode, offset, len, 0); 3085 if (!ret) 3086 ret = btrfs_fallocate_update_isize(inode, 3087 offset + len, 3088 mode); 3089 return ret; 3090 } 3091 free_extent_map(em); 3092 alloc_start = round_down(offset, sectorsize); 3093 alloc_end = alloc_start + sectorsize; 3094 goto reserve_space; 3095 } 3096 3097 alloc_start = round_up(offset, sectorsize); 3098 alloc_end = round_down(offset + len, sectorsize); 3099 3100 /* 3101 * For unaligned ranges, check the pages at the boundaries, they might 3102 * map to an extent, in which case we need to partially zero them, or 3103 * they might map to a hole, in which case we need our allocation range 3104 * to cover them. 3105 */ 3106 if (!IS_ALIGNED(offset, sectorsize)) { 3107 ret = btrfs_zero_range_check_range_boundary(inode, offset); 3108 if (ret < 0) 3109 goto out; 3110 if (ret == RANGE_BOUNDARY_HOLE) { 3111 alloc_start = round_down(offset, sectorsize); 3112 ret = 0; 3113 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3114 ret = btrfs_truncate_block(inode, offset, 0, 0); 3115 if (ret) 3116 goto out; 3117 } else { 3118 ret = 0; 3119 } 3120 } 3121 3122 if (!IS_ALIGNED(offset + len, sectorsize)) { 3123 ret = btrfs_zero_range_check_range_boundary(inode, 3124 offset + len); 3125 if (ret < 0) 3126 goto out; 3127 if (ret == RANGE_BOUNDARY_HOLE) { 3128 alloc_end = round_up(offset + len, sectorsize); 3129 ret = 0; 3130 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3131 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 3132 if (ret) 3133 goto out; 3134 } else { 3135 ret = 0; 3136 } 3137 } 3138 3139 reserve_space: 3140 if (alloc_start < alloc_end) { 3141 struct extent_state *cached_state = NULL; 3142 const u64 lockstart = alloc_start; 3143 const u64 lockend = alloc_end - 1; 3144 3145 bytes_to_reserve = alloc_end - alloc_start; 3146 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3147 bytes_to_reserve); 3148 if (ret < 0) 3149 goto out; 3150 space_reserved = true; 3151 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3152 alloc_start, bytes_to_reserve); 3153 if (ret) 3154 goto out; 3155 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3156 &cached_state); 3157 if (ret) 3158 goto out; 3159 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3160 alloc_end - alloc_start, 3161 i_blocksize(inode), 3162 offset + len, &alloc_hint); 3163 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3164 lockend, &cached_state); 3165 /* btrfs_prealloc_file_range releases reserved space on error */ 3166 if (ret) { 3167 space_reserved = false; 3168 goto out; 3169 } 3170 } 3171 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3172 out: 3173 if (ret && space_reserved) 3174 btrfs_free_reserved_data_space(inode, data_reserved, 3175 alloc_start, bytes_to_reserve); 3176 extent_changeset_free(data_reserved); 3177 3178 return ret; 3179 } 3180 3181 static long btrfs_fallocate(struct file *file, int mode, 3182 loff_t offset, loff_t len) 3183 { 3184 struct inode *inode = file_inode(file); 3185 struct extent_state *cached_state = NULL; 3186 struct extent_changeset *data_reserved = NULL; 3187 struct falloc_range *range; 3188 struct falloc_range *tmp; 3189 struct list_head reserve_list; 3190 u64 cur_offset; 3191 u64 last_byte; 3192 u64 alloc_start; 3193 u64 alloc_end; 3194 u64 alloc_hint = 0; 3195 u64 locked_end; 3196 u64 actual_end = 0; 3197 struct extent_map *em; 3198 int blocksize = btrfs_inode_sectorsize(inode); 3199 int ret; 3200 3201 alloc_start = round_down(offset, blocksize); 3202 alloc_end = round_up(offset + len, blocksize); 3203 cur_offset = alloc_start; 3204 3205 /* Make sure we aren't being give some crap mode */ 3206 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3207 FALLOC_FL_ZERO_RANGE)) 3208 return -EOPNOTSUPP; 3209 3210 if (mode & FALLOC_FL_PUNCH_HOLE) 3211 return btrfs_punch_hole(inode, offset, len); 3212 3213 /* 3214 * Only trigger disk allocation, don't trigger qgroup reserve 3215 * 3216 * For qgroup space, it will be checked later. 3217 */ 3218 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3219 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3220 alloc_end - alloc_start); 3221 if (ret < 0) 3222 return ret; 3223 } 3224 3225 inode_lock(inode); 3226 3227 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3228 ret = inode_newsize_ok(inode, offset + len); 3229 if (ret) 3230 goto out; 3231 } 3232 3233 /* 3234 * TODO: Move these two operations after we have checked 3235 * accurate reserved space, or fallocate can still fail but 3236 * with page truncated or size expanded. 3237 * 3238 * But that's a minor problem and won't do much harm BTW. 3239 */ 3240 if (alloc_start > inode->i_size) { 3241 ret = btrfs_cont_expand(inode, i_size_read(inode), 3242 alloc_start); 3243 if (ret) 3244 goto out; 3245 } else if (offset + len > inode->i_size) { 3246 /* 3247 * If we are fallocating from the end of the file onward we 3248 * need to zero out the end of the block if i_size lands in the 3249 * middle of a block. 3250 */ 3251 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3252 if (ret) 3253 goto out; 3254 } 3255 3256 /* 3257 * wait for ordered IO before we have any locks. We'll loop again 3258 * below with the locks held. 3259 */ 3260 ret = btrfs_wait_ordered_range(inode, alloc_start, 3261 alloc_end - alloc_start); 3262 if (ret) 3263 goto out; 3264 3265 if (mode & FALLOC_FL_ZERO_RANGE) { 3266 ret = btrfs_zero_range(inode, offset, len, mode); 3267 inode_unlock(inode); 3268 return ret; 3269 } 3270 3271 locked_end = alloc_end - 1; 3272 while (1) { 3273 struct btrfs_ordered_extent *ordered; 3274 3275 /* the extent lock is ordered inside the running 3276 * transaction 3277 */ 3278 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3279 locked_end, &cached_state); 3280 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3281 3282 if (ordered && 3283 ordered->file_offset + ordered->num_bytes > alloc_start && 3284 ordered->file_offset < alloc_end) { 3285 btrfs_put_ordered_extent(ordered); 3286 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3287 alloc_start, locked_end, 3288 &cached_state); 3289 /* 3290 * we can't wait on the range with the transaction 3291 * running or with the extent lock held 3292 */ 3293 ret = btrfs_wait_ordered_range(inode, alloc_start, 3294 alloc_end - alloc_start); 3295 if (ret) 3296 goto out; 3297 } else { 3298 if (ordered) 3299 btrfs_put_ordered_extent(ordered); 3300 break; 3301 } 3302 } 3303 3304 /* First, check if we exceed the qgroup limit */ 3305 INIT_LIST_HEAD(&reserve_list); 3306 while (cur_offset < alloc_end) { 3307 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3308 alloc_end - cur_offset); 3309 if (IS_ERR(em)) { 3310 ret = PTR_ERR(em); 3311 break; 3312 } 3313 last_byte = min(extent_map_end(em), alloc_end); 3314 actual_end = min_t(u64, extent_map_end(em), offset + len); 3315 last_byte = ALIGN(last_byte, blocksize); 3316 if (em->block_start == EXTENT_MAP_HOLE || 3317 (cur_offset >= inode->i_size && 3318 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3319 ret = add_falloc_range(&reserve_list, cur_offset, 3320 last_byte - cur_offset); 3321 if (ret < 0) { 3322 free_extent_map(em); 3323 break; 3324 } 3325 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3326 cur_offset, last_byte - cur_offset); 3327 if (ret < 0) { 3328 cur_offset = last_byte; 3329 free_extent_map(em); 3330 break; 3331 } 3332 } else { 3333 /* 3334 * Do not need to reserve unwritten extent for this 3335 * range, free reserved data space first, otherwise 3336 * it'll result in false ENOSPC error. 3337 */ 3338 btrfs_free_reserved_data_space(inode, data_reserved, 3339 cur_offset, last_byte - cur_offset); 3340 } 3341 free_extent_map(em); 3342 cur_offset = last_byte; 3343 } 3344 3345 /* 3346 * If ret is still 0, means we're OK to fallocate. 3347 * Or just cleanup the list and exit. 3348 */ 3349 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3350 if (!ret) 3351 ret = btrfs_prealloc_file_range(inode, mode, 3352 range->start, 3353 range->len, i_blocksize(inode), 3354 offset + len, &alloc_hint); 3355 else 3356 btrfs_free_reserved_data_space(inode, 3357 data_reserved, range->start, 3358 range->len); 3359 list_del(&range->list); 3360 kfree(range); 3361 } 3362 if (ret < 0) 3363 goto out_unlock; 3364 3365 /* 3366 * We didn't need to allocate any more space, but we still extended the 3367 * size of the file so we need to update i_size and the inode item. 3368 */ 3369 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3370 out_unlock: 3371 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3372 &cached_state); 3373 out: 3374 inode_unlock(inode); 3375 /* Let go of our reservation. */ 3376 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3377 btrfs_free_reserved_data_space(inode, data_reserved, 3378 cur_offset, alloc_end - cur_offset); 3379 extent_changeset_free(data_reserved); 3380 return ret; 3381 } 3382 3383 static loff_t find_desired_extent(struct inode *inode, loff_t offset, 3384 int whence) 3385 { 3386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3387 struct extent_map *em = NULL; 3388 struct extent_state *cached_state = NULL; 3389 loff_t i_size = inode->i_size; 3390 u64 lockstart; 3391 u64 lockend; 3392 u64 start; 3393 u64 len; 3394 int ret = 0; 3395 3396 if (i_size == 0 || offset >= i_size) 3397 return -ENXIO; 3398 3399 /* 3400 * offset can be negative, in this case we start finding DATA/HOLE from 3401 * the very start of the file. 3402 */ 3403 start = max_t(loff_t, 0, offset); 3404 3405 lockstart = round_down(start, fs_info->sectorsize); 3406 lockend = round_up(i_size, fs_info->sectorsize); 3407 if (lockend <= lockstart) 3408 lockend = lockstart + fs_info->sectorsize; 3409 lockend--; 3410 len = lockend - lockstart + 1; 3411 3412 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3413 &cached_state); 3414 3415 while (start < i_size) { 3416 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3417 if (IS_ERR(em)) { 3418 ret = PTR_ERR(em); 3419 em = NULL; 3420 break; 3421 } 3422 3423 if (whence == SEEK_HOLE && 3424 (em->block_start == EXTENT_MAP_HOLE || 3425 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3426 break; 3427 else if (whence == SEEK_DATA && 3428 (em->block_start != EXTENT_MAP_HOLE && 3429 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3430 break; 3431 3432 start = em->start + em->len; 3433 free_extent_map(em); 3434 em = NULL; 3435 cond_resched(); 3436 } 3437 free_extent_map(em); 3438 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3439 &cached_state); 3440 if (ret) { 3441 offset = ret; 3442 } else { 3443 if (whence == SEEK_DATA && start >= i_size) 3444 offset = -ENXIO; 3445 else 3446 offset = min_t(loff_t, start, i_size); 3447 } 3448 3449 return offset; 3450 } 3451 3452 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3453 { 3454 struct inode *inode = file->f_mapping->host; 3455 3456 switch (whence) { 3457 default: 3458 return generic_file_llseek(file, offset, whence); 3459 case SEEK_DATA: 3460 case SEEK_HOLE: 3461 inode_lock_shared(inode); 3462 offset = find_desired_extent(inode, offset, whence); 3463 inode_unlock_shared(inode); 3464 break; 3465 } 3466 3467 if (offset < 0) 3468 return offset; 3469 3470 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3471 } 3472 3473 static int btrfs_file_open(struct inode *inode, struct file *filp) 3474 { 3475 filp->f_mode |= FMODE_NOWAIT; 3476 return generic_file_open(inode, filp); 3477 } 3478 3479 const struct file_operations btrfs_file_operations = { 3480 .llseek = btrfs_file_llseek, 3481 .read_iter = generic_file_read_iter, 3482 .splice_read = generic_file_splice_read, 3483 .write_iter = btrfs_file_write_iter, 3484 .mmap = btrfs_file_mmap, 3485 .open = btrfs_file_open, 3486 .release = btrfs_release_file, 3487 .fsync = btrfs_sync_file, 3488 .fallocate = btrfs_fallocate, 3489 .unlocked_ioctl = btrfs_ioctl, 3490 #ifdef CONFIG_COMPAT 3491 .compat_ioctl = btrfs_compat_ioctl, 3492 #endif 3493 .remap_file_range = btrfs_remap_file_range, 3494 }; 3495 3496 void __cold btrfs_auto_defrag_exit(void) 3497 { 3498 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3499 } 3500 3501 int __init btrfs_auto_defrag_init(void) 3502 { 3503 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3504 sizeof(struct inode_defrag), 0, 3505 SLAB_MEM_SPREAD, 3506 NULL); 3507 if (!btrfs_inode_defrag_cachep) 3508 return -ENOMEM; 3509 3510 return 0; 3511 } 3512 3513 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3514 { 3515 int ret; 3516 3517 /* 3518 * So with compression we will find and lock a dirty page and clear the 3519 * first one as dirty, setup an async extent, and immediately return 3520 * with the entire range locked but with nobody actually marked with 3521 * writeback. So we can't just filemap_write_and_wait_range() and 3522 * expect it to work since it will just kick off a thread to do the 3523 * actual work. So we need to call filemap_fdatawrite_range _again_ 3524 * since it will wait on the page lock, which won't be unlocked until 3525 * after the pages have been marked as writeback and so we're good to go 3526 * from there. We have to do this otherwise we'll miss the ordered 3527 * extents and that results in badness. Please Josef, do not think you 3528 * know better and pull this out at some point in the future, it is 3529 * right and you are wrong. 3530 */ 3531 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3532 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3533 &BTRFS_I(inode)->runtime_flags)) 3534 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3535 3536 return ret; 3537 } 3538