1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "direct-io.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* 41 * Helper to fault in page and copy. This should go away and be replaced with 42 * calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct folio *folio, struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int offset = offset_in_page(pos); 50 51 while (write_bytes > 0) { 52 size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes); 53 /* 54 * Copy data from userspace to the current page 55 */ 56 copied = copy_folio_from_iter_atomic(folio, offset, count, i); 57 58 /* Flush processor's dcache for this page */ 59 flush_dcache_folio(folio); 60 61 /* 62 * if we get a partial write, we can end up with 63 * partially up to date page. These add 64 * a lot of complexity, so make sure they don't 65 * happen by forcing this copy to be retried. 66 * 67 * The rest of the btrfs_file_write code will fall 68 * back to page at a time copies after we return 0. 69 */ 70 if (unlikely(copied < count)) { 71 if (!folio_test_uptodate(folio)) { 72 iov_iter_revert(i, copied); 73 copied = 0; 74 } 75 if (!copied) 76 break; 77 } 78 79 write_bytes -= copied; 80 total_copied += copied; 81 offset += copied; 82 } 83 return total_copied; 84 } 85 86 /* 87 * Unlock folio after btrfs_file_write() is done with it. 88 */ 89 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio, 90 u64 pos, u64 copied) 91 { 92 u64 block_start = round_down(pos, fs_info->sectorsize); 93 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 94 95 ASSERT(block_len <= U32_MAX); 96 /* 97 * Folio checked is some magic around finding folios that have been 98 * modified without going through btrfs_dirty_folio(). Clear it here. 99 * There should be no need to mark the pages accessed as 100 * prepare_one_folio() should have marked them accessed in 101 * prepare_one_folio() via find_or_create_page() 102 */ 103 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len); 104 folio_unlock(folio); 105 folio_put(folio); 106 } 107 108 /* 109 * After btrfs_copy_from_user(), update the following things for delalloc: 110 * - Mark newly dirtied folio as DELALLOC in the io tree. 111 * Used to advise which range is to be written back. 112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup 113 * - Update inode size for past EOF write 114 */ 115 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos, 116 size_t write_bytes, struct extent_state **cached, bool noreserve) 117 { 118 struct btrfs_fs_info *fs_info = inode->root->fs_info; 119 int ret = 0; 120 u64 num_bytes; 121 u64 start_pos; 122 u64 end_of_last_block; 123 u64 end_pos = pos + write_bytes; 124 loff_t isize = i_size_read(&inode->vfs_inode); 125 unsigned int extra_bits = 0; 126 127 if (write_bytes == 0) 128 return 0; 129 130 if (noreserve) 131 extra_bits |= EXTENT_NORESERVE; 132 133 start_pos = round_down(pos, fs_info->sectorsize); 134 num_bytes = round_up(write_bytes + pos - start_pos, 135 fs_info->sectorsize); 136 ASSERT(num_bytes <= U32_MAX); 137 ASSERT(folio_pos(folio) <= pos && 138 folio_pos(folio) + folio_size(folio) >= pos + write_bytes); 139 140 end_of_last_block = start_pos + num_bytes - 1; 141 142 /* 143 * The pages may have already been dirty, clear out old accounting so 144 * we can set things up properly 145 */ 146 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 147 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 148 cached); 149 150 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 151 extra_bits, cached); 152 if (ret) 153 return ret; 154 155 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes); 156 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes); 157 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes); 158 159 /* 160 * we've only changed i_size in ram, and we haven't updated 161 * the disk i_size. There is no need to log the inode 162 * at this time. 163 */ 164 if (end_pos > isize) 165 i_size_write(&inode->vfs_inode, end_pos); 166 return 0; 167 } 168 169 /* 170 * this is very complex, but the basic idea is to drop all extents 171 * in the range start - end. hint_block is filled in with a block number 172 * that would be a good hint to the block allocator for this file. 173 * 174 * If an extent intersects the range but is not entirely inside the range 175 * it is either truncated or split. Anything entirely inside the range 176 * is deleted from the tree. 177 * 178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 179 * to deal with that. We set the field 'bytes_found' of the arguments structure 180 * with the number of allocated bytes found in the target range, so that the 181 * caller can update the inode's number of bytes in an atomic way when 182 * replacing extents in a range to avoid races with stat(2). 183 */ 184 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 185 struct btrfs_root *root, struct btrfs_inode *inode, 186 struct btrfs_drop_extents_args *args) 187 { 188 struct btrfs_fs_info *fs_info = root->fs_info; 189 struct extent_buffer *leaf; 190 struct btrfs_file_extent_item *fi; 191 struct btrfs_key key; 192 struct btrfs_key new_key; 193 u64 ino = btrfs_ino(inode); 194 u64 search_start = args->start; 195 u64 disk_bytenr = 0; 196 u64 num_bytes = 0; 197 u64 extent_offset = 0; 198 u64 extent_end = 0; 199 u64 last_end = args->start; 200 int del_nr = 0; 201 int del_slot = 0; 202 int extent_type; 203 int recow; 204 int ret; 205 int modify_tree = -1; 206 int update_refs; 207 int found = 0; 208 struct btrfs_path *path = args->path; 209 210 args->bytes_found = 0; 211 args->extent_inserted = false; 212 213 /* Must always have a path if ->replace_extent is true */ 214 ASSERT(!(args->replace_extent && !args->path)); 215 216 if (!path) { 217 path = btrfs_alloc_path(); 218 if (!path) { 219 ret = -ENOMEM; 220 goto out; 221 } 222 } 223 224 if (args->drop_cache) 225 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 226 227 if (args->start >= inode->disk_i_size && !args->replace_extent) 228 modify_tree = 0; 229 230 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 231 while (1) { 232 recow = 0; 233 ret = btrfs_lookup_file_extent(trans, root, path, ino, 234 search_start, modify_tree); 235 if (ret < 0) 236 break; 237 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 238 leaf = path->nodes[0]; 239 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 240 if (key.objectid == ino && 241 key.type == BTRFS_EXTENT_DATA_KEY) 242 path->slots[0]--; 243 } 244 ret = 0; 245 next_slot: 246 leaf = path->nodes[0]; 247 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 248 BUG_ON(del_nr > 0); 249 ret = btrfs_next_leaf(root, path); 250 if (ret < 0) 251 break; 252 if (ret > 0) { 253 ret = 0; 254 break; 255 } 256 leaf = path->nodes[0]; 257 recow = 1; 258 } 259 260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 261 262 if (key.objectid > ino) 263 break; 264 if (WARN_ON_ONCE(key.objectid < ino) || 265 key.type < BTRFS_EXTENT_DATA_KEY) { 266 ASSERT(del_nr == 0); 267 path->slots[0]++; 268 goto next_slot; 269 } 270 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 271 break; 272 273 fi = btrfs_item_ptr(leaf, path->slots[0], 274 struct btrfs_file_extent_item); 275 extent_type = btrfs_file_extent_type(leaf, fi); 276 277 if (extent_type == BTRFS_FILE_EXTENT_REG || 278 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 279 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 280 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 281 extent_offset = btrfs_file_extent_offset(leaf, fi); 282 extent_end = key.offset + 283 btrfs_file_extent_num_bytes(leaf, fi); 284 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 285 extent_end = key.offset + 286 btrfs_file_extent_ram_bytes(leaf, fi); 287 } else { 288 /* can't happen */ 289 BUG(); 290 } 291 292 /* 293 * Don't skip extent items representing 0 byte lengths. They 294 * used to be created (bug) if while punching holes we hit 295 * -ENOSPC condition. So if we find one here, just ensure we 296 * delete it, otherwise we would insert a new file extent item 297 * with the same key (offset) as that 0 bytes length file 298 * extent item in the call to setup_items_for_insert() later 299 * in this function. 300 */ 301 if (extent_end == key.offset && extent_end >= search_start) { 302 last_end = extent_end; 303 goto delete_extent_item; 304 } 305 306 if (extent_end <= search_start) { 307 path->slots[0]++; 308 goto next_slot; 309 } 310 311 found = 1; 312 search_start = max(key.offset, args->start); 313 if (recow || !modify_tree) { 314 modify_tree = -1; 315 btrfs_release_path(path); 316 continue; 317 } 318 319 /* 320 * | - range to drop - | 321 * | -------- extent -------- | 322 */ 323 if (args->start > key.offset && args->end < extent_end) { 324 BUG_ON(del_nr > 0); 325 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 326 ret = -EOPNOTSUPP; 327 break; 328 } 329 330 memcpy(&new_key, &key, sizeof(new_key)); 331 new_key.offset = args->start; 332 ret = btrfs_duplicate_item(trans, root, path, 333 &new_key); 334 if (ret == -EAGAIN) { 335 btrfs_release_path(path); 336 continue; 337 } 338 if (ret < 0) 339 break; 340 341 leaf = path->nodes[0]; 342 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 343 struct btrfs_file_extent_item); 344 btrfs_set_file_extent_num_bytes(leaf, fi, 345 args->start - key.offset); 346 347 fi = btrfs_item_ptr(leaf, path->slots[0], 348 struct btrfs_file_extent_item); 349 350 extent_offset += args->start - key.offset; 351 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 352 btrfs_set_file_extent_num_bytes(leaf, fi, 353 extent_end - args->start); 354 btrfs_mark_buffer_dirty(trans, leaf); 355 356 if (update_refs && disk_bytenr > 0) { 357 struct btrfs_ref ref = { 358 .action = BTRFS_ADD_DELAYED_REF, 359 .bytenr = disk_bytenr, 360 .num_bytes = num_bytes, 361 .parent = 0, 362 .owning_root = btrfs_root_id(root), 363 .ref_root = btrfs_root_id(root), 364 }; 365 btrfs_init_data_ref(&ref, new_key.objectid, 366 args->start - extent_offset, 367 0, false); 368 ret = btrfs_inc_extent_ref(trans, &ref); 369 if (ret) { 370 btrfs_abort_transaction(trans, ret); 371 break; 372 } 373 } 374 key.offset = args->start; 375 } 376 /* 377 * From here on out we will have actually dropped something, so 378 * last_end can be updated. 379 */ 380 last_end = extent_end; 381 382 /* 383 * | ---- range to drop ----- | 384 * | -------- extent -------- | 385 */ 386 if (args->start <= key.offset && args->end < extent_end) { 387 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 388 ret = -EOPNOTSUPP; 389 break; 390 } 391 392 memcpy(&new_key, &key, sizeof(new_key)); 393 new_key.offset = args->end; 394 btrfs_set_item_key_safe(trans, path, &new_key); 395 396 extent_offset += args->end - key.offset; 397 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 398 btrfs_set_file_extent_num_bytes(leaf, fi, 399 extent_end - args->end); 400 btrfs_mark_buffer_dirty(trans, leaf); 401 if (update_refs && disk_bytenr > 0) 402 args->bytes_found += args->end - key.offset; 403 break; 404 } 405 406 search_start = extent_end; 407 /* 408 * | ---- range to drop ----- | 409 * | -------- extent -------- | 410 */ 411 if (args->start > key.offset && args->end >= extent_end) { 412 BUG_ON(del_nr > 0); 413 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 414 ret = -EOPNOTSUPP; 415 break; 416 } 417 418 btrfs_set_file_extent_num_bytes(leaf, fi, 419 args->start - key.offset); 420 btrfs_mark_buffer_dirty(trans, leaf); 421 if (update_refs && disk_bytenr > 0) 422 args->bytes_found += extent_end - args->start; 423 if (args->end == extent_end) 424 break; 425 426 path->slots[0]++; 427 goto next_slot; 428 } 429 430 /* 431 * | ---- range to drop ----- | 432 * | ------ extent ------ | 433 */ 434 if (args->start <= key.offset && args->end >= extent_end) { 435 delete_extent_item: 436 if (del_nr == 0) { 437 del_slot = path->slots[0]; 438 del_nr = 1; 439 } else { 440 BUG_ON(del_slot + del_nr != path->slots[0]); 441 del_nr++; 442 } 443 444 if (update_refs && 445 extent_type == BTRFS_FILE_EXTENT_INLINE) { 446 args->bytes_found += extent_end - key.offset; 447 extent_end = ALIGN(extent_end, 448 fs_info->sectorsize); 449 } else if (update_refs && disk_bytenr > 0) { 450 struct btrfs_ref ref = { 451 .action = BTRFS_DROP_DELAYED_REF, 452 .bytenr = disk_bytenr, 453 .num_bytes = num_bytes, 454 .parent = 0, 455 .owning_root = btrfs_root_id(root), 456 .ref_root = btrfs_root_id(root), 457 }; 458 btrfs_init_data_ref(&ref, key.objectid, 459 key.offset - extent_offset, 460 0, false); 461 ret = btrfs_free_extent(trans, &ref); 462 if (ret) { 463 btrfs_abort_transaction(trans, ret); 464 break; 465 } 466 args->bytes_found += extent_end - key.offset; 467 } 468 469 if (args->end == extent_end) 470 break; 471 472 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 473 path->slots[0]++; 474 goto next_slot; 475 } 476 477 ret = btrfs_del_items(trans, root, path, del_slot, 478 del_nr); 479 if (ret) { 480 btrfs_abort_transaction(trans, ret); 481 break; 482 } 483 484 del_nr = 0; 485 del_slot = 0; 486 487 btrfs_release_path(path); 488 continue; 489 } 490 491 BUG(); 492 } 493 494 if (!ret && del_nr > 0) { 495 /* 496 * Set path->slots[0] to first slot, so that after the delete 497 * if items are move off from our leaf to its immediate left or 498 * right neighbor leafs, we end up with a correct and adjusted 499 * path->slots[0] for our insertion (if args->replace_extent). 500 */ 501 path->slots[0] = del_slot; 502 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 503 if (ret) 504 btrfs_abort_transaction(trans, ret); 505 } 506 507 leaf = path->nodes[0]; 508 /* 509 * If btrfs_del_items() was called, it might have deleted a leaf, in 510 * which case it unlocked our path, so check path->locks[0] matches a 511 * write lock. 512 */ 513 if (!ret && args->replace_extent && 514 path->locks[0] == BTRFS_WRITE_LOCK && 515 btrfs_leaf_free_space(leaf) >= 516 sizeof(struct btrfs_item) + args->extent_item_size) { 517 518 key.objectid = ino; 519 key.type = BTRFS_EXTENT_DATA_KEY; 520 key.offset = args->start; 521 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 522 struct btrfs_key slot_key; 523 524 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 525 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 526 path->slots[0]++; 527 } 528 btrfs_setup_item_for_insert(trans, root, path, &key, 529 args->extent_item_size); 530 args->extent_inserted = true; 531 } 532 533 if (!args->path) 534 btrfs_free_path(path); 535 else if (!args->extent_inserted) 536 btrfs_release_path(path); 537 out: 538 args->drop_end = found ? min(args->end, last_end) : args->end; 539 540 return ret; 541 } 542 543 static int extent_mergeable(struct extent_buffer *leaf, int slot, 544 u64 objectid, u64 bytenr, u64 orig_offset, 545 u64 *start, u64 *end) 546 { 547 struct btrfs_file_extent_item *fi; 548 struct btrfs_key key; 549 u64 extent_end; 550 551 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 552 return 0; 553 554 btrfs_item_key_to_cpu(leaf, &key, slot); 555 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 556 return 0; 557 558 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 559 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 560 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 561 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 562 btrfs_file_extent_compression(leaf, fi) || 563 btrfs_file_extent_encryption(leaf, fi) || 564 btrfs_file_extent_other_encoding(leaf, fi)) 565 return 0; 566 567 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 568 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 569 return 0; 570 571 *start = key.offset; 572 *end = extent_end; 573 return 1; 574 } 575 576 /* 577 * Mark extent in the range start - end as written. 578 * 579 * This changes extent type from 'pre-allocated' to 'regular'. If only 580 * part of extent is marked as written, the extent will be split into 581 * two or three. 582 */ 583 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 584 struct btrfs_inode *inode, u64 start, u64 end) 585 { 586 struct btrfs_root *root = inode->root; 587 struct extent_buffer *leaf; 588 struct btrfs_path *path; 589 struct btrfs_file_extent_item *fi; 590 struct btrfs_ref ref = { 0 }; 591 struct btrfs_key key; 592 struct btrfs_key new_key; 593 u64 bytenr; 594 u64 num_bytes; 595 u64 extent_end; 596 u64 orig_offset; 597 u64 other_start; 598 u64 other_end; 599 u64 split; 600 int del_nr = 0; 601 int del_slot = 0; 602 int recow; 603 int ret = 0; 604 u64 ino = btrfs_ino(inode); 605 606 path = btrfs_alloc_path(); 607 if (!path) 608 return -ENOMEM; 609 again: 610 recow = 0; 611 split = start; 612 key.objectid = ino; 613 key.type = BTRFS_EXTENT_DATA_KEY; 614 key.offset = split; 615 616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 617 if (ret < 0) 618 goto out; 619 if (ret > 0 && path->slots[0] > 0) 620 path->slots[0]--; 621 622 leaf = path->nodes[0]; 623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 624 if (key.objectid != ino || 625 key.type != BTRFS_EXTENT_DATA_KEY) { 626 ret = -EINVAL; 627 btrfs_abort_transaction(trans, ret); 628 goto out; 629 } 630 fi = btrfs_item_ptr(leaf, path->slots[0], 631 struct btrfs_file_extent_item); 632 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 633 ret = -EINVAL; 634 btrfs_abort_transaction(trans, ret); 635 goto out; 636 } 637 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 638 if (key.offset > start || extent_end < end) { 639 ret = -EINVAL; 640 btrfs_abort_transaction(trans, ret); 641 goto out; 642 } 643 644 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 645 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 646 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 647 memcpy(&new_key, &key, sizeof(new_key)); 648 649 if (start == key.offset && end < extent_end) { 650 other_start = 0; 651 other_end = start; 652 if (extent_mergeable(leaf, path->slots[0] - 1, 653 ino, bytenr, orig_offset, 654 &other_start, &other_end)) { 655 new_key.offset = end; 656 btrfs_set_item_key_safe(trans, path, &new_key); 657 fi = btrfs_item_ptr(leaf, path->slots[0], 658 struct btrfs_file_extent_item); 659 btrfs_set_file_extent_generation(leaf, fi, 660 trans->transid); 661 btrfs_set_file_extent_num_bytes(leaf, fi, 662 extent_end - end); 663 btrfs_set_file_extent_offset(leaf, fi, 664 end - orig_offset); 665 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 666 struct btrfs_file_extent_item); 667 btrfs_set_file_extent_generation(leaf, fi, 668 trans->transid); 669 btrfs_set_file_extent_num_bytes(leaf, fi, 670 end - other_start); 671 btrfs_mark_buffer_dirty(trans, leaf); 672 goto out; 673 } 674 } 675 676 if (start > key.offset && end == extent_end) { 677 other_start = end; 678 other_end = 0; 679 if (extent_mergeable(leaf, path->slots[0] + 1, 680 ino, bytenr, orig_offset, 681 &other_start, &other_end)) { 682 fi = btrfs_item_ptr(leaf, path->slots[0], 683 struct btrfs_file_extent_item); 684 btrfs_set_file_extent_num_bytes(leaf, fi, 685 start - key.offset); 686 btrfs_set_file_extent_generation(leaf, fi, 687 trans->transid); 688 path->slots[0]++; 689 new_key.offset = start; 690 btrfs_set_item_key_safe(trans, path, &new_key); 691 692 fi = btrfs_item_ptr(leaf, path->slots[0], 693 struct btrfs_file_extent_item); 694 btrfs_set_file_extent_generation(leaf, fi, 695 trans->transid); 696 btrfs_set_file_extent_num_bytes(leaf, fi, 697 other_end - start); 698 btrfs_set_file_extent_offset(leaf, fi, 699 start - orig_offset); 700 btrfs_mark_buffer_dirty(trans, leaf); 701 goto out; 702 } 703 } 704 705 while (start > key.offset || end < extent_end) { 706 if (key.offset == start) 707 split = end; 708 709 new_key.offset = split; 710 ret = btrfs_duplicate_item(trans, root, path, &new_key); 711 if (ret == -EAGAIN) { 712 btrfs_release_path(path); 713 goto again; 714 } 715 if (ret < 0) { 716 btrfs_abort_transaction(trans, ret); 717 goto out; 718 } 719 720 leaf = path->nodes[0]; 721 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 722 struct btrfs_file_extent_item); 723 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 724 btrfs_set_file_extent_num_bytes(leaf, fi, 725 split - key.offset); 726 727 fi = btrfs_item_ptr(leaf, path->slots[0], 728 struct btrfs_file_extent_item); 729 730 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 731 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 732 btrfs_set_file_extent_num_bytes(leaf, fi, 733 extent_end - split); 734 btrfs_mark_buffer_dirty(trans, leaf); 735 736 ref.action = BTRFS_ADD_DELAYED_REF; 737 ref.bytenr = bytenr; 738 ref.num_bytes = num_bytes; 739 ref.parent = 0; 740 ref.owning_root = btrfs_root_id(root); 741 ref.ref_root = btrfs_root_id(root); 742 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 743 ret = btrfs_inc_extent_ref(trans, &ref); 744 if (ret) { 745 btrfs_abort_transaction(trans, ret); 746 goto out; 747 } 748 749 if (split == start) { 750 key.offset = start; 751 } else { 752 if (start != key.offset) { 753 ret = -EINVAL; 754 btrfs_abort_transaction(trans, ret); 755 goto out; 756 } 757 path->slots[0]--; 758 extent_end = end; 759 } 760 recow = 1; 761 } 762 763 other_start = end; 764 other_end = 0; 765 766 ref.action = BTRFS_DROP_DELAYED_REF; 767 ref.bytenr = bytenr; 768 ref.num_bytes = num_bytes; 769 ref.parent = 0; 770 ref.owning_root = btrfs_root_id(root); 771 ref.ref_root = btrfs_root_id(root); 772 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 773 if (extent_mergeable(leaf, path->slots[0] + 1, 774 ino, bytenr, orig_offset, 775 &other_start, &other_end)) { 776 if (recow) { 777 btrfs_release_path(path); 778 goto again; 779 } 780 extent_end = other_end; 781 del_slot = path->slots[0] + 1; 782 del_nr++; 783 ret = btrfs_free_extent(trans, &ref); 784 if (ret) { 785 btrfs_abort_transaction(trans, ret); 786 goto out; 787 } 788 } 789 other_start = 0; 790 other_end = start; 791 if (extent_mergeable(leaf, path->slots[0] - 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 key.offset = other_start; 799 del_slot = path->slots[0]; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 if (del_nr == 0) { 808 fi = btrfs_item_ptr(leaf, path->slots[0], 809 struct btrfs_file_extent_item); 810 btrfs_set_file_extent_type(leaf, fi, 811 BTRFS_FILE_EXTENT_REG); 812 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 813 btrfs_mark_buffer_dirty(trans, leaf); 814 } else { 815 fi = btrfs_item_ptr(leaf, del_slot - 1, 816 struct btrfs_file_extent_item); 817 btrfs_set_file_extent_type(leaf, fi, 818 BTRFS_FILE_EXTENT_REG); 819 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 820 btrfs_set_file_extent_num_bytes(leaf, fi, 821 extent_end - key.offset); 822 btrfs_mark_buffer_dirty(trans, leaf); 823 824 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 825 if (ret < 0) { 826 btrfs_abort_transaction(trans, ret); 827 goto out; 828 } 829 } 830 out: 831 btrfs_free_path(path); 832 return ret; 833 } 834 835 /* 836 * On error return an unlocked folio and the error value 837 * On success return a locked folio and 0 838 */ 839 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos, 840 u64 len, bool force_uptodate) 841 { 842 u64 clamp_start = max_t(u64, pos, folio_pos(folio)); 843 u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio)); 844 int ret = 0; 845 846 if (folio_test_uptodate(folio)) 847 return 0; 848 849 if (!force_uptodate && 850 IS_ALIGNED(clamp_start, PAGE_SIZE) && 851 IS_ALIGNED(clamp_end, PAGE_SIZE)) 852 return 0; 853 854 ret = btrfs_read_folio(NULL, folio); 855 if (ret) 856 return ret; 857 folio_lock(folio); 858 if (!folio_test_uptodate(folio)) { 859 folio_unlock(folio); 860 return -EIO; 861 } 862 863 /* 864 * Since btrfs_read_folio() will unlock the folio before it returns, 865 * there is a window where btrfs_release_folio() can be called to 866 * release the page. Here we check both inode mapping and page 867 * private to make sure the page was not released. 868 * 869 * The private flag check is essential for subpage as we need to store 870 * extra bitmap using folio private. 871 */ 872 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) { 873 folio_unlock(folio); 874 return -EAGAIN; 875 } 876 return 0; 877 } 878 879 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 880 { 881 gfp_t gfp; 882 883 gfp = btrfs_alloc_write_mask(inode->i_mapping); 884 if (nowait) { 885 gfp &= ~__GFP_DIRECT_RECLAIM; 886 gfp |= GFP_NOWAIT; 887 } 888 889 return gfp; 890 } 891 892 /* 893 * Get folio into the page cache and lock it. 894 */ 895 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret, 896 loff_t pos, size_t write_bytes, 897 bool force_uptodate, bool nowait) 898 { 899 unsigned long index = pos >> PAGE_SHIFT; 900 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 901 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN); 902 struct folio *folio; 903 int ret = 0; 904 905 again: 906 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask); 907 if (IS_ERR(folio)) { 908 if (nowait) 909 ret = -EAGAIN; 910 else 911 ret = PTR_ERR(folio); 912 return ret; 913 } 914 /* Only support page sized folio yet. */ 915 ASSERT(folio_order(folio) == 0); 916 ret = set_folio_extent_mapped(folio); 917 if (ret < 0) { 918 folio_unlock(folio); 919 folio_put(folio); 920 return ret; 921 } 922 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate); 923 if (ret) { 924 /* The folio is already unlocked. */ 925 folio_put(folio); 926 if (!nowait && ret == -EAGAIN) { 927 ret = 0; 928 goto again; 929 } 930 return ret; 931 } 932 *folio_ret = folio; 933 return 0; 934 } 935 936 /* 937 * Locks the extent and properly waits for data=ordered extents to finish 938 * before allowing the folios to be modified if need. 939 * 940 * Return: 941 * 1 - the extent is locked 942 * 0 - the extent is not locked, and everything is OK 943 * -EAGAIN - need to prepare the folios again 944 */ 945 static noinline int 946 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio, 947 loff_t pos, size_t write_bytes, 948 u64 *lockstart, u64 *lockend, bool nowait, 949 struct extent_state **cached_state) 950 { 951 struct btrfs_fs_info *fs_info = inode->root->fs_info; 952 u64 start_pos; 953 u64 last_pos; 954 int ret = 0; 955 956 start_pos = round_down(pos, fs_info->sectorsize); 957 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 958 959 if (start_pos < inode->vfs_inode.i_size) { 960 struct btrfs_ordered_extent *ordered; 961 962 if (nowait) { 963 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 964 cached_state)) { 965 folio_unlock(folio); 966 folio_put(folio); 967 return -EAGAIN; 968 } 969 } else { 970 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 971 } 972 973 ordered = btrfs_lookup_ordered_range(inode, start_pos, 974 last_pos - start_pos + 1); 975 if (ordered && 976 ordered->file_offset + ordered->num_bytes > start_pos && 977 ordered->file_offset <= last_pos) { 978 unlock_extent(&inode->io_tree, start_pos, last_pos, 979 cached_state); 980 folio_unlock(folio); 981 folio_put(folio); 982 btrfs_start_ordered_extent(ordered); 983 btrfs_put_ordered_extent(ordered); 984 return -EAGAIN; 985 } 986 if (ordered) 987 btrfs_put_ordered_extent(ordered); 988 989 *lockstart = start_pos; 990 *lockend = last_pos; 991 ret = 1; 992 } 993 994 /* 995 * We should be called after prepare_one_folio() which should have locked 996 * all pages in the range. 997 */ 998 WARN_ON(!folio_test_locked(folio)); 999 1000 return ret; 1001 } 1002 1003 /* 1004 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1005 * 1006 * @pos: File offset. 1007 * @write_bytes: The length to write, will be updated to the nocow writeable 1008 * range. 1009 * 1010 * This function will flush ordered extents in the range to ensure proper 1011 * nocow checks. 1012 * 1013 * Return: 1014 * > 0 If we can nocow, and updates @write_bytes. 1015 * 0 If we can't do a nocow write. 1016 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1017 * root is in progress. 1018 * < 0 If an error happened. 1019 * 1020 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1021 */ 1022 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1023 size_t *write_bytes, bool nowait) 1024 { 1025 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1026 struct btrfs_root *root = inode->root; 1027 struct extent_state *cached_state = NULL; 1028 u64 lockstart, lockend; 1029 u64 num_bytes; 1030 int ret; 1031 1032 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1033 return 0; 1034 1035 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1036 return -EAGAIN; 1037 1038 lockstart = round_down(pos, fs_info->sectorsize); 1039 lockend = round_up(pos + *write_bytes, 1040 fs_info->sectorsize) - 1; 1041 num_bytes = lockend - lockstart + 1; 1042 1043 if (nowait) { 1044 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1045 &cached_state)) { 1046 btrfs_drew_write_unlock(&root->snapshot_lock); 1047 return -EAGAIN; 1048 } 1049 } else { 1050 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1051 &cached_state); 1052 } 1053 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1054 NULL, nowait, false); 1055 if (ret <= 0) 1056 btrfs_drew_write_unlock(&root->snapshot_lock); 1057 else 1058 *write_bytes = min_t(size_t, *write_bytes , 1059 num_bytes - pos + lockstart); 1060 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1061 1062 return ret; 1063 } 1064 1065 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1066 { 1067 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1068 } 1069 1070 int btrfs_write_check(struct kiocb *iocb, size_t count) 1071 { 1072 struct file *file = iocb->ki_filp; 1073 struct inode *inode = file_inode(file); 1074 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1075 loff_t pos = iocb->ki_pos; 1076 int ret; 1077 loff_t oldsize; 1078 loff_t start_pos; 1079 1080 /* 1081 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1082 * prealloc flags, as without those flags we always have to COW. We will 1083 * later check if we can really COW into the target range (using 1084 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1085 */ 1086 if ((iocb->ki_flags & IOCB_NOWAIT) && 1087 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1088 return -EAGAIN; 1089 1090 ret = file_remove_privs(file); 1091 if (ret) 1092 return ret; 1093 1094 /* 1095 * We reserve space for updating the inode when we reserve space for the 1096 * extent we are going to write, so we will enospc out there. We don't 1097 * need to start yet another transaction to update the inode as we will 1098 * update the inode when we finish writing whatever data we write. 1099 */ 1100 if (!IS_NOCMTIME(inode)) { 1101 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1102 inode_inc_iversion(inode); 1103 } 1104 1105 start_pos = round_down(pos, fs_info->sectorsize); 1106 oldsize = i_size_read(inode); 1107 if (start_pos > oldsize) { 1108 /* Expand hole size to cover write data, preventing empty gap */ 1109 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1110 1111 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1112 if (ret) 1113 return ret; 1114 } 1115 1116 return 0; 1117 } 1118 1119 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i) 1120 { 1121 struct file *file = iocb->ki_filp; 1122 loff_t pos; 1123 struct inode *inode = file_inode(file); 1124 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1125 struct extent_changeset *data_reserved = NULL; 1126 u64 release_bytes = 0; 1127 u64 lockstart; 1128 u64 lockend; 1129 size_t num_written = 0; 1130 ssize_t ret; 1131 loff_t old_isize = i_size_read(inode); 1132 unsigned int ilock_flags = 0; 1133 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1134 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1135 bool only_release_metadata = false; 1136 1137 if (nowait) 1138 ilock_flags |= BTRFS_ILOCK_TRY; 1139 1140 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1141 if (ret < 0) 1142 return ret; 1143 1144 ret = generic_write_checks(iocb, i); 1145 if (ret <= 0) 1146 goto out; 1147 1148 ret = btrfs_write_check(iocb, ret); 1149 if (ret < 0) 1150 goto out; 1151 1152 pos = iocb->ki_pos; 1153 while (iov_iter_count(i) > 0) { 1154 struct extent_state *cached_state = NULL; 1155 size_t offset = offset_in_page(pos); 1156 size_t sector_offset; 1157 size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset); 1158 size_t reserve_bytes; 1159 size_t copied; 1160 size_t dirty_sectors; 1161 size_t num_sectors; 1162 struct folio *folio = NULL; 1163 int extents_locked; 1164 bool force_page_uptodate = false; 1165 1166 /* 1167 * Fault pages before locking them in prepare_one_folio() 1168 * to avoid recursive lock 1169 */ 1170 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1171 ret = -EFAULT; 1172 break; 1173 } 1174 1175 only_release_metadata = false; 1176 sector_offset = pos & (fs_info->sectorsize - 1); 1177 1178 extent_changeset_release(data_reserved); 1179 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1180 &data_reserved, pos, 1181 write_bytes, nowait); 1182 if (ret < 0) { 1183 int can_nocow; 1184 1185 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1186 ret = -EAGAIN; 1187 break; 1188 } 1189 1190 /* 1191 * If we don't have to COW at the offset, reserve 1192 * metadata only. write_bytes may get smaller than 1193 * requested here. 1194 */ 1195 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1196 &write_bytes, nowait); 1197 if (can_nocow < 0) 1198 ret = can_nocow; 1199 if (can_nocow > 0) 1200 ret = 0; 1201 if (ret) 1202 break; 1203 only_release_metadata = true; 1204 } 1205 1206 reserve_bytes = round_up(write_bytes + sector_offset, 1207 fs_info->sectorsize); 1208 WARN_ON(reserve_bytes == 0); 1209 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1210 reserve_bytes, 1211 reserve_bytes, nowait); 1212 if (ret) { 1213 if (!only_release_metadata) 1214 btrfs_free_reserved_data_space(BTRFS_I(inode), 1215 data_reserved, pos, 1216 write_bytes); 1217 else 1218 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1219 1220 if (nowait && ret == -ENOSPC) 1221 ret = -EAGAIN; 1222 break; 1223 } 1224 1225 release_bytes = reserve_bytes; 1226 again: 1227 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1228 if (ret) { 1229 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1230 break; 1231 } 1232 1233 ret = prepare_one_folio(inode, &folio, pos, write_bytes, 1234 force_page_uptodate, false); 1235 if (ret) { 1236 btrfs_delalloc_release_extents(BTRFS_I(inode), 1237 reserve_bytes); 1238 break; 1239 } 1240 1241 extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode), 1242 folio, pos, write_bytes, &lockstart, 1243 &lockend, nowait, &cached_state); 1244 if (extents_locked < 0) { 1245 if (!nowait && extents_locked == -EAGAIN) 1246 goto again; 1247 1248 btrfs_delalloc_release_extents(BTRFS_I(inode), 1249 reserve_bytes); 1250 ret = extents_locked; 1251 break; 1252 } 1253 1254 copied = btrfs_copy_from_user(pos, write_bytes, folio, i); 1255 1256 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1257 dirty_sectors = round_up(copied + sector_offset, 1258 fs_info->sectorsize); 1259 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1260 1261 if (copied == 0) { 1262 force_page_uptodate = true; 1263 dirty_sectors = 0; 1264 } else { 1265 force_page_uptodate = false; 1266 } 1267 1268 if (num_sectors > dirty_sectors) { 1269 /* release everything except the sectors we dirtied */ 1270 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1271 if (only_release_metadata) { 1272 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1273 release_bytes, true); 1274 } else { 1275 u64 release_start = round_up(pos + copied, 1276 fs_info->sectorsize); 1277 btrfs_delalloc_release_space(BTRFS_I(inode), 1278 data_reserved, release_start, 1279 release_bytes, true); 1280 } 1281 } 1282 1283 release_bytes = round_up(copied + sector_offset, 1284 fs_info->sectorsize); 1285 1286 ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied, 1287 &cached_state, only_release_metadata); 1288 1289 /* 1290 * If we have not locked the extent range, because the range's 1291 * start offset is >= i_size, we might still have a non-NULL 1292 * cached extent state, acquired while marking the extent range 1293 * as delalloc through btrfs_dirty_page(). Therefore free any 1294 * possible cached extent state to avoid a memory leak. 1295 */ 1296 if (extents_locked) 1297 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1298 lockend, &cached_state); 1299 else 1300 free_extent_state(cached_state); 1301 1302 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1303 if (ret) { 1304 btrfs_drop_folio(fs_info, folio, pos, copied); 1305 break; 1306 } 1307 1308 release_bytes = 0; 1309 if (only_release_metadata) 1310 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1311 1312 btrfs_drop_folio(fs_info, folio, pos, copied); 1313 1314 cond_resched(); 1315 1316 pos += copied; 1317 num_written += copied; 1318 } 1319 1320 if (release_bytes) { 1321 if (only_release_metadata) { 1322 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1323 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1324 release_bytes, true); 1325 } else { 1326 btrfs_delalloc_release_space(BTRFS_I(inode), 1327 data_reserved, 1328 round_down(pos, fs_info->sectorsize), 1329 release_bytes, true); 1330 } 1331 } 1332 1333 extent_changeset_free(data_reserved); 1334 if (num_written > 0) { 1335 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1336 iocb->ki_pos += num_written; 1337 } 1338 out: 1339 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1340 return num_written ? num_written : ret; 1341 } 1342 1343 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1344 const struct btrfs_ioctl_encoded_io_args *encoded) 1345 { 1346 struct file *file = iocb->ki_filp; 1347 struct inode *inode = file_inode(file); 1348 loff_t count; 1349 ssize_t ret; 1350 1351 btrfs_inode_lock(BTRFS_I(inode), 0); 1352 count = encoded->len; 1353 ret = generic_write_checks_count(iocb, &count); 1354 if (ret == 0 && count != encoded->len) { 1355 /* 1356 * The write got truncated by generic_write_checks_count(). We 1357 * can't do a partial encoded write. 1358 */ 1359 ret = -EFBIG; 1360 } 1361 if (ret || encoded->len == 0) 1362 goto out; 1363 1364 ret = btrfs_write_check(iocb, encoded->len); 1365 if (ret < 0) 1366 goto out; 1367 1368 ret = btrfs_do_encoded_write(iocb, from, encoded); 1369 out: 1370 btrfs_inode_unlock(BTRFS_I(inode), 0); 1371 return ret; 1372 } 1373 1374 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1375 const struct btrfs_ioctl_encoded_io_args *encoded) 1376 { 1377 struct file *file = iocb->ki_filp; 1378 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1379 ssize_t num_written, num_sync; 1380 1381 /* 1382 * If the fs flips readonly due to some impossible error, although we 1383 * have opened a file as writable, we have to stop this write operation 1384 * to ensure consistency. 1385 */ 1386 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1387 return -EROFS; 1388 1389 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1390 return -EOPNOTSUPP; 1391 1392 if (encoded) { 1393 num_written = btrfs_encoded_write(iocb, from, encoded); 1394 num_sync = encoded->len; 1395 } else if (iocb->ki_flags & IOCB_DIRECT) { 1396 num_written = btrfs_direct_write(iocb, from); 1397 num_sync = num_written; 1398 } else { 1399 num_written = btrfs_buffered_write(iocb, from); 1400 num_sync = num_written; 1401 } 1402 1403 btrfs_set_inode_last_sub_trans(inode); 1404 1405 if (num_sync > 0) { 1406 num_sync = generic_write_sync(iocb, num_sync); 1407 if (num_sync < 0) 1408 num_written = num_sync; 1409 } 1410 1411 return num_written; 1412 } 1413 1414 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1415 { 1416 return btrfs_do_write_iter(iocb, from, NULL); 1417 } 1418 1419 int btrfs_release_file(struct inode *inode, struct file *filp) 1420 { 1421 struct btrfs_file_private *private = filp->private_data; 1422 1423 if (private) { 1424 kfree(private->filldir_buf); 1425 free_extent_state(private->llseek_cached_state); 1426 kfree(private); 1427 filp->private_data = NULL; 1428 } 1429 1430 /* 1431 * Set by setattr when we are about to truncate a file from a non-zero 1432 * size to a zero size. This tries to flush down new bytes that may 1433 * have been written if the application were using truncate to replace 1434 * a file in place. 1435 */ 1436 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1437 &BTRFS_I(inode)->runtime_flags)) 1438 filemap_flush(inode->i_mapping); 1439 return 0; 1440 } 1441 1442 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1443 { 1444 int ret; 1445 struct blk_plug plug; 1446 1447 /* 1448 * This is only called in fsync, which would do synchronous writes, so 1449 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1450 * multiple disks using raid profile, a large IO can be split to 1451 * several segments of stripe length (currently 64K). 1452 */ 1453 blk_start_plug(&plug); 1454 ret = btrfs_fdatawrite_range(inode, start, end); 1455 blk_finish_plug(&plug); 1456 1457 return ret; 1458 } 1459 1460 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1461 { 1462 struct btrfs_inode *inode = ctx->inode; 1463 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1464 1465 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1466 list_empty(&ctx->ordered_extents)) 1467 return true; 1468 1469 /* 1470 * If we are doing a fast fsync we can not bail out if the inode's 1471 * last_trans is <= then the last committed transaction, because we only 1472 * update the last_trans of the inode during ordered extent completion, 1473 * and for a fast fsync we don't wait for that, we only wait for the 1474 * writeback to complete. 1475 */ 1476 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1477 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1478 list_empty(&ctx->ordered_extents))) 1479 return true; 1480 1481 return false; 1482 } 1483 1484 /* 1485 * fsync call for both files and directories. This logs the inode into 1486 * the tree log instead of forcing full commits whenever possible. 1487 * 1488 * It needs to call filemap_fdatawait so that all ordered extent updates are 1489 * in the metadata btree are up to date for copying to the log. 1490 * 1491 * It drops the inode mutex before doing the tree log commit. This is an 1492 * important optimization for directories because holding the mutex prevents 1493 * new operations on the dir while we write to disk. 1494 */ 1495 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1496 { 1497 struct dentry *dentry = file_dentry(file); 1498 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1499 struct btrfs_root *root = inode->root; 1500 struct btrfs_fs_info *fs_info = root->fs_info; 1501 struct btrfs_trans_handle *trans; 1502 struct btrfs_log_ctx ctx; 1503 int ret = 0, err; 1504 u64 len; 1505 bool full_sync; 1506 bool skip_ilock = false; 1507 1508 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1509 skip_ilock = true; 1510 current->journal_info = NULL; 1511 btrfs_assert_inode_locked(inode); 1512 } 1513 1514 trace_btrfs_sync_file(file, datasync); 1515 1516 btrfs_init_log_ctx(&ctx, inode); 1517 1518 /* 1519 * Always set the range to a full range, otherwise we can get into 1520 * several problems, from missing file extent items to represent holes 1521 * when not using the NO_HOLES feature, to log tree corruption due to 1522 * races between hole detection during logging and completion of ordered 1523 * extents outside the range, to missing checksums due to ordered extents 1524 * for which we flushed only a subset of their pages. 1525 */ 1526 start = 0; 1527 end = LLONG_MAX; 1528 len = (u64)LLONG_MAX + 1; 1529 1530 /* 1531 * We write the dirty pages in the range and wait until they complete 1532 * out of the ->i_mutex. If so, we can flush the dirty pages by 1533 * multi-task, and make the performance up. See 1534 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1535 */ 1536 ret = start_ordered_ops(inode, start, end); 1537 if (ret) 1538 goto out; 1539 1540 if (skip_ilock) 1541 down_write(&inode->i_mmap_lock); 1542 else 1543 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1544 1545 atomic_inc(&root->log_batch); 1546 1547 /* 1548 * Before we acquired the inode's lock and the mmap lock, someone may 1549 * have dirtied more pages in the target range. We need to make sure 1550 * that writeback for any such pages does not start while we are logging 1551 * the inode, because if it does, any of the following might happen when 1552 * we are not doing a full inode sync: 1553 * 1554 * 1) We log an extent after its writeback finishes but before its 1555 * checksums are added to the csum tree, leading to -EIO errors 1556 * when attempting to read the extent after a log replay. 1557 * 1558 * 2) We can end up logging an extent before its writeback finishes. 1559 * Therefore after the log replay we will have a file extent item 1560 * pointing to an unwritten extent (and no data checksums as well). 1561 * 1562 * So trigger writeback for any eventual new dirty pages and then we 1563 * wait for all ordered extents to complete below. 1564 */ 1565 ret = start_ordered_ops(inode, start, end); 1566 if (ret) { 1567 if (skip_ilock) 1568 up_write(&inode->i_mmap_lock); 1569 else 1570 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1571 goto out; 1572 } 1573 1574 /* 1575 * Always check for the full sync flag while holding the inode's lock, 1576 * to avoid races with other tasks. The flag must be either set all the 1577 * time during logging or always off all the time while logging. 1578 * We check the flag here after starting delalloc above, because when 1579 * running delalloc the full sync flag may be set if we need to drop 1580 * extra extent map ranges due to temporary memory allocation failures. 1581 */ 1582 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1583 1584 /* 1585 * We have to do this here to avoid the priority inversion of waiting on 1586 * IO of a lower priority task while holding a transaction open. 1587 * 1588 * For a full fsync we wait for the ordered extents to complete while 1589 * for a fast fsync we wait just for writeback to complete, and then 1590 * attach the ordered extents to the transaction so that a transaction 1591 * commit waits for their completion, to avoid data loss if we fsync, 1592 * the current transaction commits before the ordered extents complete 1593 * and a power failure happens right after that. 1594 * 1595 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1596 * logical address recorded in the ordered extent may change. We need 1597 * to wait for the IO to stabilize the logical address. 1598 */ 1599 if (full_sync || btrfs_is_zoned(fs_info)) { 1600 ret = btrfs_wait_ordered_range(inode, start, len); 1601 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1602 } else { 1603 /* 1604 * Get our ordered extents as soon as possible to avoid doing 1605 * checksum lookups in the csum tree, and use instead the 1606 * checksums attached to the ordered extents. 1607 */ 1608 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1609 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1610 if (ret) 1611 goto out_release_extents; 1612 1613 /* 1614 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1615 * starting and waiting for writeback, because for buffered IO 1616 * it may have been set during the end IO callback 1617 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1618 * case an error happened and we need to wait for ordered 1619 * extents to complete so that any extent maps that point to 1620 * unwritten locations are dropped and we don't log them. 1621 */ 1622 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1623 ret = btrfs_wait_ordered_range(inode, start, len); 1624 } 1625 1626 if (ret) 1627 goto out_release_extents; 1628 1629 atomic_inc(&root->log_batch); 1630 1631 if (skip_inode_logging(&ctx)) { 1632 /* 1633 * We've had everything committed since the last time we were 1634 * modified so clear this flag in case it was set for whatever 1635 * reason, it's no longer relevant. 1636 */ 1637 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1638 /* 1639 * An ordered extent might have started before and completed 1640 * already with io errors, in which case the inode was not 1641 * updated and we end up here. So check the inode's mapping 1642 * for any errors that might have happened since we last 1643 * checked called fsync. 1644 */ 1645 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1646 goto out_release_extents; 1647 } 1648 1649 btrfs_init_log_ctx_scratch_eb(&ctx); 1650 1651 /* 1652 * We use start here because we will need to wait on the IO to complete 1653 * in btrfs_sync_log, which could require joining a transaction (for 1654 * example checking cross references in the nocow path). If we use join 1655 * here we could get into a situation where we're waiting on IO to 1656 * happen that is blocked on a transaction trying to commit. With start 1657 * we inc the extwriter counter, so we wait for all extwriters to exit 1658 * before we start blocking joiners. This comment is to keep somebody 1659 * from thinking they are super smart and changing this to 1660 * btrfs_join_transaction *cough*Josef*cough*. 1661 */ 1662 trans = btrfs_start_transaction(root, 0); 1663 if (IS_ERR(trans)) { 1664 ret = PTR_ERR(trans); 1665 goto out_release_extents; 1666 } 1667 trans->in_fsync = true; 1668 1669 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1670 /* 1671 * Scratch eb no longer needed, release before syncing log or commit 1672 * transaction, to avoid holding unnecessary memory during such long 1673 * operations. 1674 */ 1675 if (ctx.scratch_eb) { 1676 free_extent_buffer(ctx.scratch_eb); 1677 ctx.scratch_eb = NULL; 1678 } 1679 btrfs_release_log_ctx_extents(&ctx); 1680 if (ret < 0) { 1681 /* Fallthrough and commit/free transaction. */ 1682 ret = BTRFS_LOG_FORCE_COMMIT; 1683 } 1684 1685 /* we've logged all the items and now have a consistent 1686 * version of the file in the log. It is possible that 1687 * someone will come in and modify the file, but that's 1688 * fine because the log is consistent on disk, and we 1689 * have references to all of the file's extents 1690 * 1691 * It is possible that someone will come in and log the 1692 * file again, but that will end up using the synchronization 1693 * inside btrfs_sync_log to keep things safe. 1694 */ 1695 if (skip_ilock) 1696 up_write(&inode->i_mmap_lock); 1697 else 1698 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1699 1700 if (ret == BTRFS_NO_LOG_SYNC) { 1701 ret = btrfs_end_transaction(trans); 1702 goto out; 1703 } 1704 1705 /* We successfully logged the inode, attempt to sync the log. */ 1706 if (!ret) { 1707 ret = btrfs_sync_log(trans, root, &ctx); 1708 if (!ret) { 1709 ret = btrfs_end_transaction(trans); 1710 goto out; 1711 } 1712 } 1713 1714 /* 1715 * At this point we need to commit the transaction because we had 1716 * btrfs_need_log_full_commit() or some other error. 1717 * 1718 * If we didn't do a full sync we have to stop the trans handle, wait on 1719 * the ordered extents, start it again and commit the transaction. If 1720 * we attempt to wait on the ordered extents here we could deadlock with 1721 * something like fallocate() that is holding the extent lock trying to 1722 * start a transaction while some other thread is trying to commit the 1723 * transaction while we (fsync) are currently holding the transaction 1724 * open. 1725 */ 1726 if (!full_sync) { 1727 ret = btrfs_end_transaction(trans); 1728 if (ret) 1729 goto out; 1730 ret = btrfs_wait_ordered_range(inode, start, len); 1731 if (ret) 1732 goto out; 1733 1734 /* 1735 * This is safe to use here because we're only interested in 1736 * making sure the transaction that had the ordered extents is 1737 * committed. We aren't waiting on anything past this point, 1738 * we're purely getting the transaction and committing it. 1739 */ 1740 trans = btrfs_attach_transaction_barrier(root); 1741 if (IS_ERR(trans)) { 1742 ret = PTR_ERR(trans); 1743 1744 /* 1745 * We committed the transaction and there's no currently 1746 * running transaction, this means everything we care 1747 * about made it to disk and we are done. 1748 */ 1749 if (ret == -ENOENT) 1750 ret = 0; 1751 goto out; 1752 } 1753 } 1754 1755 ret = btrfs_commit_transaction(trans); 1756 out: 1757 free_extent_buffer(ctx.scratch_eb); 1758 ASSERT(list_empty(&ctx.list)); 1759 ASSERT(list_empty(&ctx.conflict_inodes)); 1760 err = file_check_and_advance_wb_err(file); 1761 if (!ret) 1762 ret = err; 1763 return ret > 0 ? -EIO : ret; 1764 1765 out_release_extents: 1766 btrfs_release_log_ctx_extents(&ctx); 1767 if (skip_ilock) 1768 up_write(&inode->i_mmap_lock); 1769 else 1770 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1771 goto out; 1772 } 1773 1774 /* 1775 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1776 * called from a page fault handler when a page is first dirtied. Hence we must 1777 * be careful to check for EOF conditions here. We set the page up correctly 1778 * for a written page which means we get ENOSPC checking when writing into 1779 * holes and correct delalloc and unwritten extent mapping on filesystems that 1780 * support these features. 1781 * 1782 * We are not allowed to take the i_mutex here so we have to play games to 1783 * protect against truncate races as the page could now be beyond EOF. Because 1784 * truncate_setsize() writes the inode size before removing pages, once we have 1785 * the page lock we can determine safely if the page is beyond EOF. If it is not 1786 * beyond EOF, then the page is guaranteed safe against truncation until we 1787 * unlock the page. 1788 */ 1789 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1790 { 1791 struct page *page = vmf->page; 1792 struct folio *folio = page_folio(page); 1793 struct inode *inode = file_inode(vmf->vma->vm_file); 1794 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1796 struct btrfs_ordered_extent *ordered; 1797 struct extent_state *cached_state = NULL; 1798 struct extent_changeset *data_reserved = NULL; 1799 unsigned long zero_start; 1800 loff_t size; 1801 vm_fault_t ret; 1802 int ret2; 1803 int reserved = 0; 1804 u64 reserved_space; 1805 u64 page_start; 1806 u64 page_end; 1807 u64 end; 1808 1809 ASSERT(folio_order(folio) == 0); 1810 1811 reserved_space = PAGE_SIZE; 1812 1813 sb_start_pagefault(inode->i_sb); 1814 page_start = folio_pos(folio); 1815 page_end = page_start + folio_size(folio) - 1; 1816 end = page_end; 1817 1818 /* 1819 * Reserving delalloc space after obtaining the page lock can lead to 1820 * deadlock. For example, if a dirty page is locked by this function 1821 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1822 * dirty page write out, then the btrfs_writepages() function could 1823 * end up waiting indefinitely to get a lock on the page currently 1824 * being processed by btrfs_page_mkwrite() function. 1825 */ 1826 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1827 page_start, reserved_space); 1828 if (!ret2) { 1829 ret2 = file_update_time(vmf->vma->vm_file); 1830 reserved = 1; 1831 } 1832 if (ret2) { 1833 ret = vmf_error(ret2); 1834 if (reserved) 1835 goto out; 1836 goto out_noreserve; 1837 } 1838 1839 /* Make the VM retry the fault. */ 1840 ret = VM_FAULT_NOPAGE; 1841 again: 1842 down_read(&BTRFS_I(inode)->i_mmap_lock); 1843 folio_lock(folio); 1844 size = i_size_read(inode); 1845 1846 if ((folio->mapping != inode->i_mapping) || 1847 (page_start >= size)) { 1848 /* Page got truncated out from underneath us. */ 1849 goto out_unlock; 1850 } 1851 folio_wait_writeback(folio); 1852 1853 lock_extent(io_tree, page_start, page_end, &cached_state); 1854 ret2 = set_folio_extent_mapped(folio); 1855 if (ret2 < 0) { 1856 ret = vmf_error(ret2); 1857 unlock_extent(io_tree, page_start, page_end, &cached_state); 1858 goto out_unlock; 1859 } 1860 1861 /* 1862 * We can't set the delalloc bits if there are pending ordered 1863 * extents. Drop our locks and wait for them to finish. 1864 */ 1865 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 1866 if (ordered) { 1867 unlock_extent(io_tree, page_start, page_end, &cached_state); 1868 folio_unlock(folio); 1869 up_read(&BTRFS_I(inode)->i_mmap_lock); 1870 btrfs_start_ordered_extent(ordered); 1871 btrfs_put_ordered_extent(ordered); 1872 goto again; 1873 } 1874 1875 if (folio->index == ((size - 1) >> PAGE_SHIFT)) { 1876 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1877 if (reserved_space < PAGE_SIZE) { 1878 end = page_start + reserved_space - 1; 1879 btrfs_delalloc_release_space(BTRFS_I(inode), 1880 data_reserved, page_start, 1881 PAGE_SIZE - reserved_space, true); 1882 } 1883 } 1884 1885 /* 1886 * page_mkwrite gets called when the page is firstly dirtied after it's 1887 * faulted in, but write(2) could also dirty a page and set delalloc 1888 * bits, thus in this case for space account reason, we still need to 1889 * clear any delalloc bits within this page range since we have to 1890 * reserve data&meta space before lock_page() (see above comments). 1891 */ 1892 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 1893 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1894 EXTENT_DEFRAG, &cached_state); 1895 1896 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 1897 &cached_state); 1898 if (ret2) { 1899 unlock_extent(io_tree, page_start, page_end, &cached_state); 1900 ret = VM_FAULT_SIGBUS; 1901 goto out_unlock; 1902 } 1903 1904 /* Page is wholly or partially inside EOF. */ 1905 if (page_start + folio_size(folio) > size) 1906 zero_start = offset_in_folio(folio, size); 1907 else 1908 zero_start = PAGE_SIZE; 1909 1910 if (zero_start != PAGE_SIZE) 1911 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start); 1912 1913 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 1914 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 1915 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 1916 1917 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 1918 1919 unlock_extent(io_tree, page_start, page_end, &cached_state); 1920 up_read(&BTRFS_I(inode)->i_mmap_lock); 1921 1922 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 1923 sb_end_pagefault(inode->i_sb); 1924 extent_changeset_free(data_reserved); 1925 return VM_FAULT_LOCKED; 1926 1927 out_unlock: 1928 folio_unlock(folio); 1929 up_read(&BTRFS_I(inode)->i_mmap_lock); 1930 out: 1931 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 1932 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 1933 reserved_space, (ret != 0)); 1934 out_noreserve: 1935 sb_end_pagefault(inode->i_sb); 1936 extent_changeset_free(data_reserved); 1937 return ret; 1938 } 1939 1940 static const struct vm_operations_struct btrfs_file_vm_ops = { 1941 .fault = filemap_fault, 1942 .map_pages = filemap_map_pages, 1943 .page_mkwrite = btrfs_page_mkwrite, 1944 }; 1945 1946 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1947 { 1948 struct address_space *mapping = filp->f_mapping; 1949 1950 if (!mapping->a_ops->read_folio) 1951 return -ENOEXEC; 1952 1953 file_accessed(filp); 1954 vma->vm_ops = &btrfs_file_vm_ops; 1955 1956 return 0; 1957 } 1958 1959 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 1960 int slot, u64 start, u64 end) 1961 { 1962 struct btrfs_file_extent_item *fi; 1963 struct btrfs_key key; 1964 1965 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1966 return 0; 1967 1968 btrfs_item_key_to_cpu(leaf, &key, slot); 1969 if (key.objectid != btrfs_ino(inode) || 1970 key.type != BTRFS_EXTENT_DATA_KEY) 1971 return 0; 1972 1973 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1974 1975 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1976 return 0; 1977 1978 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1979 return 0; 1980 1981 if (key.offset == end) 1982 return 1; 1983 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1984 return 1; 1985 return 0; 1986 } 1987 1988 static int fill_holes(struct btrfs_trans_handle *trans, 1989 struct btrfs_inode *inode, 1990 struct btrfs_path *path, u64 offset, u64 end) 1991 { 1992 struct btrfs_fs_info *fs_info = trans->fs_info; 1993 struct btrfs_root *root = inode->root; 1994 struct extent_buffer *leaf; 1995 struct btrfs_file_extent_item *fi; 1996 struct extent_map *hole_em; 1997 struct btrfs_key key; 1998 int ret; 1999 2000 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2001 goto out; 2002 2003 key.objectid = btrfs_ino(inode); 2004 key.type = BTRFS_EXTENT_DATA_KEY; 2005 key.offset = offset; 2006 2007 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2008 if (ret <= 0) { 2009 /* 2010 * We should have dropped this offset, so if we find it then 2011 * something has gone horribly wrong. 2012 */ 2013 if (ret == 0) 2014 ret = -EINVAL; 2015 return ret; 2016 } 2017 2018 leaf = path->nodes[0]; 2019 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2020 u64 num_bytes; 2021 2022 path->slots[0]--; 2023 fi = btrfs_item_ptr(leaf, path->slots[0], 2024 struct btrfs_file_extent_item); 2025 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2026 end - offset; 2027 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2028 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2029 btrfs_set_file_extent_offset(leaf, fi, 0); 2030 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2031 btrfs_mark_buffer_dirty(trans, leaf); 2032 goto out; 2033 } 2034 2035 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2036 u64 num_bytes; 2037 2038 key.offset = offset; 2039 btrfs_set_item_key_safe(trans, path, &key); 2040 fi = btrfs_item_ptr(leaf, path->slots[0], 2041 struct btrfs_file_extent_item); 2042 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2043 offset; 2044 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2045 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2046 btrfs_set_file_extent_offset(leaf, fi, 0); 2047 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2048 btrfs_mark_buffer_dirty(trans, leaf); 2049 goto out; 2050 } 2051 btrfs_release_path(path); 2052 2053 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2054 end - offset); 2055 if (ret) 2056 return ret; 2057 2058 out: 2059 btrfs_release_path(path); 2060 2061 hole_em = alloc_extent_map(); 2062 if (!hole_em) { 2063 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2064 btrfs_set_inode_full_sync(inode); 2065 } else { 2066 hole_em->start = offset; 2067 hole_em->len = end - offset; 2068 hole_em->ram_bytes = hole_em->len; 2069 2070 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2071 hole_em->disk_num_bytes = 0; 2072 hole_em->generation = trans->transid; 2073 2074 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2075 free_extent_map(hole_em); 2076 if (ret) 2077 btrfs_set_inode_full_sync(inode); 2078 } 2079 2080 return 0; 2081 } 2082 2083 /* 2084 * Find a hole extent on given inode and change start/len to the end of hole 2085 * extent.(hole/vacuum extent whose em->start <= start && 2086 * em->start + em->len > start) 2087 * When a hole extent is found, return 1 and modify start/len. 2088 */ 2089 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2090 { 2091 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2092 struct extent_map *em; 2093 int ret = 0; 2094 2095 em = btrfs_get_extent(inode, NULL, 2096 round_down(*start, fs_info->sectorsize), 2097 round_up(*len, fs_info->sectorsize)); 2098 if (IS_ERR(em)) 2099 return PTR_ERR(em); 2100 2101 /* Hole or vacuum extent(only exists in no-hole mode) */ 2102 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2103 ret = 1; 2104 *len = em->start + em->len > *start + *len ? 2105 0 : *start + *len - em->start - em->len; 2106 *start = em->start + em->len; 2107 } 2108 free_extent_map(em); 2109 return ret; 2110 } 2111 2112 static void btrfs_punch_hole_lock_range(struct inode *inode, 2113 const u64 lockstart, 2114 const u64 lockend, 2115 struct extent_state **cached_state) 2116 { 2117 /* 2118 * For subpage case, if the range is not at page boundary, we could 2119 * have pages at the leading/tailing part of the range. 2120 * This could lead to dead loop since filemap_range_has_page() 2121 * will always return true. 2122 * So here we need to do extra page alignment for 2123 * filemap_range_has_page(). 2124 */ 2125 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2126 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2127 2128 while (1) { 2129 truncate_pagecache_range(inode, lockstart, lockend); 2130 2131 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2132 cached_state); 2133 /* 2134 * We can't have ordered extents in the range, nor dirty/writeback 2135 * pages, because we have locked the inode's VFS lock in exclusive 2136 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2137 * we have flushed all delalloc in the range and we have waited 2138 * for any ordered extents in the range to complete. 2139 * We can race with anyone reading pages from this range, so after 2140 * locking the range check if we have pages in the range, and if 2141 * we do, unlock the range and retry. 2142 */ 2143 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2144 page_lockend)) 2145 break; 2146 2147 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2148 cached_state); 2149 } 2150 2151 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2152 } 2153 2154 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2155 struct btrfs_inode *inode, 2156 struct btrfs_path *path, 2157 struct btrfs_replace_extent_info *extent_info, 2158 const u64 replace_len, 2159 const u64 bytes_to_drop) 2160 { 2161 struct btrfs_fs_info *fs_info = trans->fs_info; 2162 struct btrfs_root *root = inode->root; 2163 struct btrfs_file_extent_item *extent; 2164 struct extent_buffer *leaf; 2165 struct btrfs_key key; 2166 int slot; 2167 int ret; 2168 2169 if (replace_len == 0) 2170 return 0; 2171 2172 if (extent_info->disk_offset == 0 && 2173 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2174 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2175 return 0; 2176 } 2177 2178 key.objectid = btrfs_ino(inode); 2179 key.type = BTRFS_EXTENT_DATA_KEY; 2180 key.offset = extent_info->file_offset; 2181 ret = btrfs_insert_empty_item(trans, root, path, &key, 2182 sizeof(struct btrfs_file_extent_item)); 2183 if (ret) 2184 return ret; 2185 leaf = path->nodes[0]; 2186 slot = path->slots[0]; 2187 write_extent_buffer(leaf, extent_info->extent_buf, 2188 btrfs_item_ptr_offset(leaf, slot), 2189 sizeof(struct btrfs_file_extent_item)); 2190 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2191 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2192 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2193 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2194 if (extent_info->is_new_extent) 2195 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2196 btrfs_mark_buffer_dirty(trans, leaf); 2197 btrfs_release_path(path); 2198 2199 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2200 replace_len); 2201 if (ret) 2202 return ret; 2203 2204 /* If it's a hole, nothing more needs to be done. */ 2205 if (extent_info->disk_offset == 0) { 2206 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2207 return 0; 2208 } 2209 2210 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2211 2212 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2213 key.objectid = extent_info->disk_offset; 2214 key.type = BTRFS_EXTENT_ITEM_KEY; 2215 key.offset = extent_info->disk_len; 2216 ret = btrfs_alloc_reserved_file_extent(trans, root, 2217 btrfs_ino(inode), 2218 extent_info->file_offset, 2219 extent_info->qgroup_reserved, 2220 &key); 2221 } else { 2222 struct btrfs_ref ref = { 2223 .action = BTRFS_ADD_DELAYED_REF, 2224 .bytenr = extent_info->disk_offset, 2225 .num_bytes = extent_info->disk_len, 2226 .owning_root = btrfs_root_id(root), 2227 .ref_root = btrfs_root_id(root), 2228 }; 2229 u64 ref_offset; 2230 2231 ref_offset = extent_info->file_offset - extent_info->data_offset; 2232 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2233 ret = btrfs_inc_extent_ref(trans, &ref); 2234 } 2235 2236 extent_info->insertions++; 2237 2238 return ret; 2239 } 2240 2241 /* 2242 * The respective range must have been previously locked, as well as the inode. 2243 * The end offset is inclusive (last byte of the range). 2244 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2245 * the file range with an extent. 2246 * When not punching a hole, we don't want to end up in a state where we dropped 2247 * extents without inserting a new one, so we must abort the transaction to avoid 2248 * a corruption. 2249 */ 2250 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2251 struct btrfs_path *path, const u64 start, 2252 const u64 end, 2253 struct btrfs_replace_extent_info *extent_info, 2254 struct btrfs_trans_handle **trans_out) 2255 { 2256 struct btrfs_drop_extents_args drop_args = { 0 }; 2257 struct btrfs_root *root = inode->root; 2258 struct btrfs_fs_info *fs_info = root->fs_info; 2259 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2260 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2261 struct btrfs_trans_handle *trans = NULL; 2262 struct btrfs_block_rsv *rsv; 2263 unsigned int rsv_count; 2264 u64 cur_offset; 2265 u64 len = end - start; 2266 int ret = 0; 2267 2268 if (end <= start) 2269 return -EINVAL; 2270 2271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2272 if (!rsv) { 2273 ret = -ENOMEM; 2274 goto out; 2275 } 2276 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2277 rsv->failfast = true; 2278 2279 /* 2280 * 1 - update the inode 2281 * 1 - removing the extents in the range 2282 * 1 - adding the hole extent if no_holes isn't set or if we are 2283 * replacing the range with a new extent 2284 */ 2285 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2286 rsv_count = 3; 2287 else 2288 rsv_count = 2; 2289 2290 trans = btrfs_start_transaction(root, rsv_count); 2291 if (IS_ERR(trans)) { 2292 ret = PTR_ERR(trans); 2293 trans = NULL; 2294 goto out_free; 2295 } 2296 2297 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2298 min_size, false); 2299 if (WARN_ON(ret)) 2300 goto out_trans; 2301 trans->block_rsv = rsv; 2302 2303 cur_offset = start; 2304 drop_args.path = path; 2305 drop_args.end = end + 1; 2306 drop_args.drop_cache = true; 2307 while (cur_offset < end) { 2308 drop_args.start = cur_offset; 2309 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2310 /* If we are punching a hole decrement the inode's byte count */ 2311 if (!extent_info) 2312 btrfs_update_inode_bytes(inode, 0, 2313 drop_args.bytes_found); 2314 if (ret != -ENOSPC) { 2315 /* 2316 * The only time we don't want to abort is if we are 2317 * attempting to clone a partial inline extent, in which 2318 * case we'll get EOPNOTSUPP. However if we aren't 2319 * clone we need to abort no matter what, because if we 2320 * got EOPNOTSUPP via prealloc then we messed up and 2321 * need to abort. 2322 */ 2323 if (ret && 2324 (ret != -EOPNOTSUPP || 2325 (extent_info && extent_info->is_new_extent))) 2326 btrfs_abort_transaction(trans, ret); 2327 break; 2328 } 2329 2330 trans->block_rsv = &fs_info->trans_block_rsv; 2331 2332 if (!extent_info && cur_offset < drop_args.drop_end && 2333 cur_offset < ino_size) { 2334 ret = fill_holes(trans, inode, path, cur_offset, 2335 drop_args.drop_end); 2336 if (ret) { 2337 /* 2338 * If we failed then we didn't insert our hole 2339 * entries for the area we dropped, so now the 2340 * fs is corrupted, so we must abort the 2341 * transaction. 2342 */ 2343 btrfs_abort_transaction(trans, ret); 2344 break; 2345 } 2346 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2347 /* 2348 * We are past the i_size here, but since we didn't 2349 * insert holes we need to clear the mapped area so we 2350 * know to not set disk_i_size in this area until a new 2351 * file extent is inserted here. 2352 */ 2353 ret = btrfs_inode_clear_file_extent_range(inode, 2354 cur_offset, 2355 drop_args.drop_end - cur_offset); 2356 if (ret) { 2357 /* 2358 * We couldn't clear our area, so we could 2359 * presumably adjust up and corrupt the fs, so 2360 * we need to abort. 2361 */ 2362 btrfs_abort_transaction(trans, ret); 2363 break; 2364 } 2365 } 2366 2367 if (extent_info && 2368 drop_args.drop_end > extent_info->file_offset) { 2369 u64 replace_len = drop_args.drop_end - 2370 extent_info->file_offset; 2371 2372 ret = btrfs_insert_replace_extent(trans, inode, path, 2373 extent_info, replace_len, 2374 drop_args.bytes_found); 2375 if (ret) { 2376 btrfs_abort_transaction(trans, ret); 2377 break; 2378 } 2379 extent_info->data_len -= replace_len; 2380 extent_info->data_offset += replace_len; 2381 extent_info->file_offset += replace_len; 2382 } 2383 2384 /* 2385 * We are releasing our handle on the transaction, balance the 2386 * dirty pages of the btree inode and flush delayed items, and 2387 * then get a new transaction handle, which may now point to a 2388 * new transaction in case someone else may have committed the 2389 * transaction we used to replace/drop file extent items. So 2390 * bump the inode's iversion and update mtime and ctime except 2391 * if we are called from a dedupe context. This is because a 2392 * power failure/crash may happen after the transaction is 2393 * committed and before we finish replacing/dropping all the 2394 * file extent items we need. 2395 */ 2396 inode_inc_iversion(&inode->vfs_inode); 2397 2398 if (!extent_info || extent_info->update_times) 2399 inode_set_mtime_to_ts(&inode->vfs_inode, 2400 inode_set_ctime_current(&inode->vfs_inode)); 2401 2402 ret = btrfs_update_inode(trans, inode); 2403 if (ret) 2404 break; 2405 2406 btrfs_end_transaction(trans); 2407 btrfs_btree_balance_dirty(fs_info); 2408 2409 trans = btrfs_start_transaction(root, rsv_count); 2410 if (IS_ERR(trans)) { 2411 ret = PTR_ERR(trans); 2412 trans = NULL; 2413 break; 2414 } 2415 2416 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2417 rsv, min_size, false); 2418 if (WARN_ON(ret)) 2419 break; 2420 trans->block_rsv = rsv; 2421 2422 cur_offset = drop_args.drop_end; 2423 len = end - cur_offset; 2424 if (!extent_info && len) { 2425 ret = find_first_non_hole(inode, &cur_offset, &len); 2426 if (unlikely(ret < 0)) 2427 break; 2428 if (ret && !len) { 2429 ret = 0; 2430 break; 2431 } 2432 } 2433 } 2434 2435 /* 2436 * If we were cloning, force the next fsync to be a full one since we 2437 * we replaced (or just dropped in the case of cloning holes when 2438 * NO_HOLES is enabled) file extent items and did not setup new extent 2439 * maps for the replacement extents (or holes). 2440 */ 2441 if (extent_info && !extent_info->is_new_extent) 2442 btrfs_set_inode_full_sync(inode); 2443 2444 if (ret) 2445 goto out_trans; 2446 2447 trans->block_rsv = &fs_info->trans_block_rsv; 2448 /* 2449 * If we are using the NO_HOLES feature we might have had already an 2450 * hole that overlaps a part of the region [lockstart, lockend] and 2451 * ends at (or beyond) lockend. Since we have no file extent items to 2452 * represent holes, drop_end can be less than lockend and so we must 2453 * make sure we have an extent map representing the existing hole (the 2454 * call to __btrfs_drop_extents() might have dropped the existing extent 2455 * map representing the existing hole), otherwise the fast fsync path 2456 * will not record the existence of the hole region 2457 * [existing_hole_start, lockend]. 2458 */ 2459 if (drop_args.drop_end <= end) 2460 drop_args.drop_end = end + 1; 2461 /* 2462 * Don't insert file hole extent item if it's for a range beyond eof 2463 * (because it's useless) or if it represents a 0 bytes range (when 2464 * cur_offset == drop_end). 2465 */ 2466 if (!extent_info && cur_offset < ino_size && 2467 cur_offset < drop_args.drop_end) { 2468 ret = fill_holes(trans, inode, path, cur_offset, 2469 drop_args.drop_end); 2470 if (ret) { 2471 /* Same comment as above. */ 2472 btrfs_abort_transaction(trans, ret); 2473 goto out_trans; 2474 } 2475 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2476 /* See the comment in the loop above for the reasoning here. */ 2477 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2478 drop_args.drop_end - cur_offset); 2479 if (ret) { 2480 btrfs_abort_transaction(trans, ret); 2481 goto out_trans; 2482 } 2483 2484 } 2485 if (extent_info) { 2486 ret = btrfs_insert_replace_extent(trans, inode, path, 2487 extent_info, extent_info->data_len, 2488 drop_args.bytes_found); 2489 if (ret) { 2490 btrfs_abort_transaction(trans, ret); 2491 goto out_trans; 2492 } 2493 } 2494 2495 out_trans: 2496 if (!trans) 2497 goto out_free; 2498 2499 trans->block_rsv = &fs_info->trans_block_rsv; 2500 if (ret) 2501 btrfs_end_transaction(trans); 2502 else 2503 *trans_out = trans; 2504 out_free: 2505 btrfs_free_block_rsv(fs_info, rsv); 2506 out: 2507 return ret; 2508 } 2509 2510 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2511 { 2512 struct inode *inode = file_inode(file); 2513 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2514 struct btrfs_root *root = BTRFS_I(inode)->root; 2515 struct extent_state *cached_state = NULL; 2516 struct btrfs_path *path; 2517 struct btrfs_trans_handle *trans = NULL; 2518 u64 lockstart; 2519 u64 lockend; 2520 u64 tail_start; 2521 u64 tail_len; 2522 u64 orig_start = offset; 2523 int ret = 0; 2524 bool same_block; 2525 u64 ino_size; 2526 bool truncated_block = false; 2527 bool updated_inode = false; 2528 2529 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2530 2531 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2532 if (ret) 2533 goto out_only_mutex; 2534 2535 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2536 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2537 if (ret < 0) 2538 goto out_only_mutex; 2539 if (ret && !len) { 2540 /* Already in a large hole */ 2541 ret = 0; 2542 goto out_only_mutex; 2543 } 2544 2545 ret = file_modified(file); 2546 if (ret) 2547 goto out_only_mutex; 2548 2549 lockstart = round_up(offset, fs_info->sectorsize); 2550 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2551 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2552 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2553 /* 2554 * We needn't truncate any block which is beyond the end of the file 2555 * because we are sure there is no data there. 2556 */ 2557 /* 2558 * Only do this if we are in the same block and we aren't doing the 2559 * entire block. 2560 */ 2561 if (same_block && len < fs_info->sectorsize) { 2562 if (offset < ino_size) { 2563 truncated_block = true; 2564 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2565 0); 2566 } else { 2567 ret = 0; 2568 } 2569 goto out_only_mutex; 2570 } 2571 2572 /* zero back part of the first block */ 2573 if (offset < ino_size) { 2574 truncated_block = true; 2575 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2576 if (ret) { 2577 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2578 return ret; 2579 } 2580 } 2581 2582 /* Check the aligned pages after the first unaligned page, 2583 * if offset != orig_start, which means the first unaligned page 2584 * including several following pages are already in holes, 2585 * the extra check can be skipped */ 2586 if (offset == orig_start) { 2587 /* after truncate page, check hole again */ 2588 len = offset + len - lockstart; 2589 offset = lockstart; 2590 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2591 if (ret < 0) 2592 goto out_only_mutex; 2593 if (ret && !len) { 2594 ret = 0; 2595 goto out_only_mutex; 2596 } 2597 lockstart = offset; 2598 } 2599 2600 /* Check the tail unaligned part is in a hole */ 2601 tail_start = lockend + 1; 2602 tail_len = offset + len - tail_start; 2603 if (tail_len) { 2604 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2605 if (unlikely(ret < 0)) 2606 goto out_only_mutex; 2607 if (!ret) { 2608 /* zero the front end of the last page */ 2609 if (tail_start + tail_len < ino_size) { 2610 truncated_block = true; 2611 ret = btrfs_truncate_block(BTRFS_I(inode), 2612 tail_start + tail_len, 2613 0, 1); 2614 if (ret) 2615 goto out_only_mutex; 2616 } 2617 } 2618 } 2619 2620 if (lockend < lockstart) { 2621 ret = 0; 2622 goto out_only_mutex; 2623 } 2624 2625 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2626 2627 path = btrfs_alloc_path(); 2628 if (!path) { 2629 ret = -ENOMEM; 2630 goto out; 2631 } 2632 2633 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2634 lockend, NULL, &trans); 2635 btrfs_free_path(path); 2636 if (ret) 2637 goto out; 2638 2639 ASSERT(trans != NULL); 2640 inode_inc_iversion(inode); 2641 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2642 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2643 updated_inode = true; 2644 btrfs_end_transaction(trans); 2645 btrfs_btree_balance_dirty(fs_info); 2646 out: 2647 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2648 &cached_state); 2649 out_only_mutex: 2650 if (!updated_inode && truncated_block && !ret) { 2651 /* 2652 * If we only end up zeroing part of a page, we still need to 2653 * update the inode item, so that all the time fields are 2654 * updated as well as the necessary btrfs inode in memory fields 2655 * for detecting, at fsync time, if the inode isn't yet in the 2656 * log tree or it's there but not up to date. 2657 */ 2658 struct timespec64 now = inode_set_ctime_current(inode); 2659 2660 inode_inc_iversion(inode); 2661 inode_set_mtime_to_ts(inode, now); 2662 trans = btrfs_start_transaction(root, 1); 2663 if (IS_ERR(trans)) { 2664 ret = PTR_ERR(trans); 2665 } else { 2666 int ret2; 2667 2668 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2669 ret2 = btrfs_end_transaction(trans); 2670 if (!ret) 2671 ret = ret2; 2672 } 2673 } 2674 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2675 return ret; 2676 } 2677 2678 /* Helper structure to record which range is already reserved */ 2679 struct falloc_range { 2680 struct list_head list; 2681 u64 start; 2682 u64 len; 2683 }; 2684 2685 /* 2686 * Helper function to add falloc range 2687 * 2688 * Caller should have locked the larger range of extent containing 2689 * [start, len) 2690 */ 2691 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2692 { 2693 struct falloc_range *range = NULL; 2694 2695 if (!list_empty(head)) { 2696 /* 2697 * As fallocate iterates by bytenr order, we only need to check 2698 * the last range. 2699 */ 2700 range = list_last_entry(head, struct falloc_range, list); 2701 if (range->start + range->len == start) { 2702 range->len += len; 2703 return 0; 2704 } 2705 } 2706 2707 range = kmalloc(sizeof(*range), GFP_KERNEL); 2708 if (!range) 2709 return -ENOMEM; 2710 range->start = start; 2711 range->len = len; 2712 list_add_tail(&range->list, head); 2713 return 0; 2714 } 2715 2716 static int btrfs_fallocate_update_isize(struct inode *inode, 2717 const u64 end, 2718 const int mode) 2719 { 2720 struct btrfs_trans_handle *trans; 2721 struct btrfs_root *root = BTRFS_I(inode)->root; 2722 int ret; 2723 int ret2; 2724 2725 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2726 return 0; 2727 2728 trans = btrfs_start_transaction(root, 1); 2729 if (IS_ERR(trans)) 2730 return PTR_ERR(trans); 2731 2732 inode_set_ctime_current(inode); 2733 i_size_write(inode, end); 2734 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2735 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2736 ret2 = btrfs_end_transaction(trans); 2737 2738 return ret ? ret : ret2; 2739 } 2740 2741 enum { 2742 RANGE_BOUNDARY_WRITTEN_EXTENT, 2743 RANGE_BOUNDARY_PREALLOC_EXTENT, 2744 RANGE_BOUNDARY_HOLE, 2745 }; 2746 2747 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2748 u64 offset) 2749 { 2750 const u64 sectorsize = inode->root->fs_info->sectorsize; 2751 struct extent_map *em; 2752 int ret; 2753 2754 offset = round_down(offset, sectorsize); 2755 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2756 if (IS_ERR(em)) 2757 return PTR_ERR(em); 2758 2759 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2760 ret = RANGE_BOUNDARY_HOLE; 2761 else if (em->flags & EXTENT_FLAG_PREALLOC) 2762 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2763 else 2764 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2765 2766 free_extent_map(em); 2767 return ret; 2768 } 2769 2770 static int btrfs_zero_range(struct inode *inode, 2771 loff_t offset, 2772 loff_t len, 2773 const int mode) 2774 { 2775 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2776 struct extent_map *em; 2777 struct extent_changeset *data_reserved = NULL; 2778 int ret; 2779 u64 alloc_hint = 0; 2780 const u64 sectorsize = fs_info->sectorsize; 2781 u64 alloc_start = round_down(offset, sectorsize); 2782 u64 alloc_end = round_up(offset + len, sectorsize); 2783 u64 bytes_to_reserve = 0; 2784 bool space_reserved = false; 2785 2786 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2787 alloc_end - alloc_start); 2788 if (IS_ERR(em)) { 2789 ret = PTR_ERR(em); 2790 goto out; 2791 } 2792 2793 /* 2794 * Avoid hole punching and extent allocation for some cases. More cases 2795 * could be considered, but these are unlikely common and we keep things 2796 * as simple as possible for now. Also, intentionally, if the target 2797 * range contains one or more prealloc extents together with regular 2798 * extents and holes, we drop all the existing extents and allocate a 2799 * new prealloc extent, so that we get a larger contiguous disk extent. 2800 */ 2801 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2802 const u64 em_end = em->start + em->len; 2803 2804 if (em_end >= offset + len) { 2805 /* 2806 * The whole range is already a prealloc extent, 2807 * do nothing except updating the inode's i_size if 2808 * needed. 2809 */ 2810 free_extent_map(em); 2811 ret = btrfs_fallocate_update_isize(inode, offset + len, 2812 mode); 2813 goto out; 2814 } 2815 /* 2816 * Part of the range is already a prealloc extent, so operate 2817 * only on the remaining part of the range. 2818 */ 2819 alloc_start = em_end; 2820 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2821 len = offset + len - alloc_start; 2822 offset = alloc_start; 2823 alloc_hint = extent_map_block_start(em) + em->len; 2824 } 2825 free_extent_map(em); 2826 2827 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2828 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2829 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2830 if (IS_ERR(em)) { 2831 ret = PTR_ERR(em); 2832 goto out; 2833 } 2834 2835 if (em->flags & EXTENT_FLAG_PREALLOC) { 2836 free_extent_map(em); 2837 ret = btrfs_fallocate_update_isize(inode, offset + len, 2838 mode); 2839 goto out; 2840 } 2841 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2842 free_extent_map(em); 2843 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2844 0); 2845 if (!ret) 2846 ret = btrfs_fallocate_update_isize(inode, 2847 offset + len, 2848 mode); 2849 return ret; 2850 } 2851 free_extent_map(em); 2852 alloc_start = round_down(offset, sectorsize); 2853 alloc_end = alloc_start + sectorsize; 2854 goto reserve_space; 2855 } 2856 2857 alloc_start = round_up(offset, sectorsize); 2858 alloc_end = round_down(offset + len, sectorsize); 2859 2860 /* 2861 * For unaligned ranges, check the pages at the boundaries, they might 2862 * map to an extent, in which case we need to partially zero them, or 2863 * they might map to a hole, in which case we need our allocation range 2864 * to cover them. 2865 */ 2866 if (!IS_ALIGNED(offset, sectorsize)) { 2867 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2868 offset); 2869 if (ret < 0) 2870 goto out; 2871 if (ret == RANGE_BOUNDARY_HOLE) { 2872 alloc_start = round_down(offset, sectorsize); 2873 ret = 0; 2874 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2875 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2876 if (ret) 2877 goto out; 2878 } else { 2879 ret = 0; 2880 } 2881 } 2882 2883 if (!IS_ALIGNED(offset + len, sectorsize)) { 2884 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2885 offset + len); 2886 if (ret < 0) 2887 goto out; 2888 if (ret == RANGE_BOUNDARY_HOLE) { 2889 alloc_end = round_up(offset + len, sectorsize); 2890 ret = 0; 2891 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2892 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2893 0, 1); 2894 if (ret) 2895 goto out; 2896 } else { 2897 ret = 0; 2898 } 2899 } 2900 2901 reserve_space: 2902 if (alloc_start < alloc_end) { 2903 struct extent_state *cached_state = NULL; 2904 const u64 lockstart = alloc_start; 2905 const u64 lockend = alloc_end - 1; 2906 2907 bytes_to_reserve = alloc_end - alloc_start; 2908 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2909 bytes_to_reserve); 2910 if (ret < 0) 2911 goto out; 2912 space_reserved = true; 2913 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2914 &cached_state); 2915 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2916 alloc_start, bytes_to_reserve); 2917 if (ret) { 2918 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2919 lockend, &cached_state); 2920 goto out; 2921 } 2922 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2923 alloc_end - alloc_start, 2924 fs_info->sectorsize, 2925 offset + len, &alloc_hint); 2926 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2927 &cached_state); 2928 /* btrfs_prealloc_file_range releases reserved space on error */ 2929 if (ret) { 2930 space_reserved = false; 2931 goto out; 2932 } 2933 } 2934 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2935 out: 2936 if (ret && space_reserved) 2937 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 2938 alloc_start, bytes_to_reserve); 2939 extent_changeset_free(data_reserved); 2940 2941 return ret; 2942 } 2943 2944 static long btrfs_fallocate(struct file *file, int mode, 2945 loff_t offset, loff_t len) 2946 { 2947 struct inode *inode = file_inode(file); 2948 struct extent_state *cached_state = NULL; 2949 struct extent_changeset *data_reserved = NULL; 2950 struct falloc_range *range; 2951 struct falloc_range *tmp; 2952 LIST_HEAD(reserve_list); 2953 u64 cur_offset; 2954 u64 last_byte; 2955 u64 alloc_start; 2956 u64 alloc_end; 2957 u64 alloc_hint = 0; 2958 u64 locked_end; 2959 u64 actual_end = 0; 2960 u64 data_space_needed = 0; 2961 u64 data_space_reserved = 0; 2962 u64 qgroup_reserved = 0; 2963 struct extent_map *em; 2964 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 2965 int ret; 2966 2967 /* Do not allow fallocate in ZONED mode */ 2968 if (btrfs_is_zoned(inode_to_fs_info(inode))) 2969 return -EOPNOTSUPP; 2970 2971 alloc_start = round_down(offset, blocksize); 2972 alloc_end = round_up(offset + len, blocksize); 2973 cur_offset = alloc_start; 2974 2975 /* Make sure we aren't being give some crap mode */ 2976 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2977 FALLOC_FL_ZERO_RANGE)) 2978 return -EOPNOTSUPP; 2979 2980 if (mode & FALLOC_FL_PUNCH_HOLE) 2981 return btrfs_punch_hole(file, offset, len); 2982 2983 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2984 2985 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2986 ret = inode_newsize_ok(inode, offset + len); 2987 if (ret) 2988 goto out; 2989 } 2990 2991 ret = file_modified(file); 2992 if (ret) 2993 goto out; 2994 2995 /* 2996 * TODO: Move these two operations after we have checked 2997 * accurate reserved space, or fallocate can still fail but 2998 * with page truncated or size expanded. 2999 * 3000 * But that's a minor problem and won't do much harm BTW. 3001 */ 3002 if (alloc_start > inode->i_size) { 3003 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3004 alloc_start); 3005 if (ret) 3006 goto out; 3007 } else if (offset + len > inode->i_size) { 3008 /* 3009 * If we are fallocating from the end of the file onward we 3010 * need to zero out the end of the block if i_size lands in the 3011 * middle of a block. 3012 */ 3013 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3014 if (ret) 3015 goto out; 3016 } 3017 3018 /* 3019 * We have locked the inode at the VFS level (in exclusive mode) and we 3020 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3021 * locking the file range, flush all dealloc in the range and wait for 3022 * all ordered extents in the range to complete. After this we can lock 3023 * the file range and, due to the previous locking we did, we know there 3024 * can't be more delalloc or ordered extents in the range. 3025 */ 3026 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3027 alloc_end - alloc_start); 3028 if (ret) 3029 goto out; 3030 3031 if (mode & FALLOC_FL_ZERO_RANGE) { 3032 ret = btrfs_zero_range(inode, offset, len, mode); 3033 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3034 return ret; 3035 } 3036 3037 locked_end = alloc_end - 1; 3038 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3039 &cached_state); 3040 3041 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3042 3043 /* First, check if we exceed the qgroup limit */ 3044 while (cur_offset < alloc_end) { 3045 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3046 alloc_end - cur_offset); 3047 if (IS_ERR(em)) { 3048 ret = PTR_ERR(em); 3049 break; 3050 } 3051 last_byte = min(extent_map_end(em), alloc_end); 3052 actual_end = min_t(u64, extent_map_end(em), offset + len); 3053 last_byte = ALIGN(last_byte, blocksize); 3054 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3055 (cur_offset >= inode->i_size && 3056 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3057 const u64 range_len = last_byte - cur_offset; 3058 3059 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3060 if (ret < 0) { 3061 free_extent_map(em); 3062 break; 3063 } 3064 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3065 &data_reserved, cur_offset, range_len); 3066 if (ret < 0) { 3067 free_extent_map(em); 3068 break; 3069 } 3070 qgroup_reserved += range_len; 3071 data_space_needed += range_len; 3072 } 3073 free_extent_map(em); 3074 cur_offset = last_byte; 3075 } 3076 3077 if (!ret && data_space_needed > 0) { 3078 /* 3079 * We are safe to reserve space here as we can't have delalloc 3080 * in the range, see above. 3081 */ 3082 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3083 data_space_needed); 3084 if (!ret) 3085 data_space_reserved = data_space_needed; 3086 } 3087 3088 /* 3089 * If ret is still 0, means we're OK to fallocate. 3090 * Or just cleanup the list and exit. 3091 */ 3092 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3093 if (!ret) { 3094 ret = btrfs_prealloc_file_range(inode, mode, 3095 range->start, 3096 range->len, blocksize, 3097 offset + len, &alloc_hint); 3098 /* 3099 * btrfs_prealloc_file_range() releases space even 3100 * if it returns an error. 3101 */ 3102 data_space_reserved -= range->len; 3103 qgroup_reserved -= range->len; 3104 } else if (data_space_reserved > 0) { 3105 btrfs_free_reserved_data_space(BTRFS_I(inode), 3106 data_reserved, range->start, 3107 range->len); 3108 data_space_reserved -= range->len; 3109 qgroup_reserved -= range->len; 3110 } else if (qgroup_reserved > 0) { 3111 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3112 range->start, range->len, NULL); 3113 qgroup_reserved -= range->len; 3114 } 3115 list_del(&range->list); 3116 kfree(range); 3117 } 3118 if (ret < 0) 3119 goto out_unlock; 3120 3121 /* 3122 * We didn't need to allocate any more space, but we still extended the 3123 * size of the file so we need to update i_size and the inode item. 3124 */ 3125 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3126 out_unlock: 3127 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3128 &cached_state); 3129 out: 3130 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3131 extent_changeset_free(data_reserved); 3132 return ret; 3133 } 3134 3135 /* 3136 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3137 * that has unflushed and/or flushing delalloc. There might be other adjacent 3138 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3139 * looping while it gets adjacent subranges, and merging them together. 3140 */ 3141 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3142 struct extent_state **cached_state, 3143 bool *search_io_tree, 3144 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3145 { 3146 u64 len = end + 1 - start; 3147 u64 delalloc_len = 0; 3148 struct btrfs_ordered_extent *oe; 3149 u64 oe_start; 3150 u64 oe_end; 3151 3152 /* 3153 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3154 * means we have delalloc (dirty pages) for which writeback has not 3155 * started yet. 3156 */ 3157 if (*search_io_tree) { 3158 spin_lock(&inode->lock); 3159 if (inode->delalloc_bytes > 0) { 3160 spin_unlock(&inode->lock); 3161 *delalloc_start_ret = start; 3162 delalloc_len = count_range_bits(&inode->io_tree, 3163 delalloc_start_ret, end, 3164 len, EXTENT_DELALLOC, 1, 3165 cached_state); 3166 } else { 3167 spin_unlock(&inode->lock); 3168 } 3169 } 3170 3171 if (delalloc_len > 0) { 3172 /* 3173 * If delalloc was found then *delalloc_start_ret has a sector size 3174 * aligned value (rounded down). 3175 */ 3176 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3177 3178 if (*delalloc_start_ret == start) { 3179 /* Delalloc for the whole range, nothing more to do. */ 3180 if (*delalloc_end_ret == end) 3181 return true; 3182 /* Else trim our search range for ordered extents. */ 3183 start = *delalloc_end_ret + 1; 3184 len = end + 1 - start; 3185 } 3186 } else { 3187 /* No delalloc, future calls don't need to search again. */ 3188 *search_io_tree = false; 3189 } 3190 3191 /* 3192 * Now also check if there's any ordered extent in the range. 3193 * We do this because: 3194 * 3195 * 1) When delalloc is flushed, the file range is locked, we clear the 3196 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3197 * an ordered extent for the write. So we might just have been called 3198 * after delalloc is flushed and before the ordered extent completes 3199 * and inserts the new file extent item in the subvolume's btree; 3200 * 3201 * 2) We may have an ordered extent created by flushing delalloc for a 3202 * subrange that starts before the subrange we found marked with 3203 * EXTENT_DELALLOC in the io tree. 3204 * 3205 * We could also use the extent map tree to find such delalloc that is 3206 * being flushed, but using the ordered extents tree is more efficient 3207 * because it's usually much smaller as ordered extents are removed from 3208 * the tree once they complete. With the extent maps, we mau have them 3209 * in the extent map tree for a very long time, and they were either 3210 * created by previous writes or loaded by read operations. 3211 */ 3212 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3213 if (!oe) 3214 return (delalloc_len > 0); 3215 3216 /* The ordered extent may span beyond our search range. */ 3217 oe_start = max(oe->file_offset, start); 3218 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3219 3220 btrfs_put_ordered_extent(oe); 3221 3222 /* Don't have unflushed delalloc, return the ordered extent range. */ 3223 if (delalloc_len == 0) { 3224 *delalloc_start_ret = oe_start; 3225 *delalloc_end_ret = oe_end; 3226 return true; 3227 } 3228 3229 /* 3230 * We have both unflushed delalloc (io_tree) and an ordered extent. 3231 * If the ranges are adjacent returned a combined range, otherwise 3232 * return the leftmost range. 3233 */ 3234 if (oe_start < *delalloc_start_ret) { 3235 if (oe_end < *delalloc_start_ret) 3236 *delalloc_end_ret = oe_end; 3237 *delalloc_start_ret = oe_start; 3238 } else if (*delalloc_end_ret + 1 == oe_start) { 3239 *delalloc_end_ret = oe_end; 3240 } 3241 3242 return true; 3243 } 3244 3245 /* 3246 * Check if there's delalloc in a given range. 3247 * 3248 * @inode: The inode. 3249 * @start: The start offset of the range. It does not need to be 3250 * sector size aligned. 3251 * @end: The end offset (inclusive value) of the search range. 3252 * It does not need to be sector size aligned. 3253 * @cached_state: Extent state record used for speeding up delalloc 3254 * searches in the inode's io_tree. Can be NULL. 3255 * @delalloc_start_ret: Output argument, set to the start offset of the 3256 * subrange found with delalloc (may not be sector size 3257 * aligned). 3258 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3259 * of the subrange found with delalloc. 3260 * 3261 * Returns true if a subrange with delalloc is found within the given range, and 3262 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3263 * end offsets of the subrange. 3264 */ 3265 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3266 struct extent_state **cached_state, 3267 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3268 { 3269 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3270 u64 prev_delalloc_end = 0; 3271 bool search_io_tree = true; 3272 bool ret = false; 3273 3274 while (cur_offset <= end) { 3275 u64 delalloc_start; 3276 u64 delalloc_end; 3277 bool delalloc; 3278 3279 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3280 cached_state, &search_io_tree, 3281 &delalloc_start, 3282 &delalloc_end); 3283 if (!delalloc) 3284 break; 3285 3286 if (prev_delalloc_end == 0) { 3287 /* First subrange found. */ 3288 *delalloc_start_ret = max(delalloc_start, start); 3289 *delalloc_end_ret = delalloc_end; 3290 ret = true; 3291 } else if (delalloc_start == prev_delalloc_end + 1) { 3292 /* Subrange adjacent to the previous one, merge them. */ 3293 *delalloc_end_ret = delalloc_end; 3294 } else { 3295 /* Subrange not adjacent to the previous one, exit. */ 3296 break; 3297 } 3298 3299 prev_delalloc_end = delalloc_end; 3300 cur_offset = delalloc_end + 1; 3301 cond_resched(); 3302 } 3303 3304 return ret; 3305 } 3306 3307 /* 3308 * Check if there's a hole or delalloc range in a range representing a hole (or 3309 * prealloc extent) found in the inode's subvolume btree. 3310 * 3311 * @inode: The inode. 3312 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3313 * @start: Start offset of the hole region. It does not need to be sector 3314 * size aligned. 3315 * @end: End offset (inclusive value) of the hole region. It does not 3316 * need to be sector size aligned. 3317 * @start_ret: Return parameter, used to set the start of the subrange in the 3318 * hole that matches the search criteria (seek mode), if such 3319 * subrange is found (return value of the function is true). 3320 * The value returned here may not be sector size aligned. 3321 * 3322 * Returns true if a subrange matching the given seek mode is found, and if one 3323 * is found, it updates @start_ret with the start of the subrange. 3324 */ 3325 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3326 struct extent_state **cached_state, 3327 u64 start, u64 end, u64 *start_ret) 3328 { 3329 u64 delalloc_start; 3330 u64 delalloc_end; 3331 bool delalloc; 3332 3333 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3334 &delalloc_start, &delalloc_end); 3335 if (delalloc && whence == SEEK_DATA) { 3336 *start_ret = delalloc_start; 3337 return true; 3338 } 3339 3340 if (delalloc && whence == SEEK_HOLE) { 3341 /* 3342 * We found delalloc but it starts after out start offset. So we 3343 * have a hole between our start offset and the delalloc start. 3344 */ 3345 if (start < delalloc_start) { 3346 *start_ret = start; 3347 return true; 3348 } 3349 /* 3350 * Delalloc range starts at our start offset. 3351 * If the delalloc range's length is smaller than our range, 3352 * then it means we have a hole that starts where the delalloc 3353 * subrange ends. 3354 */ 3355 if (delalloc_end < end) { 3356 *start_ret = delalloc_end + 1; 3357 return true; 3358 } 3359 3360 /* There's delalloc for the whole range. */ 3361 return false; 3362 } 3363 3364 if (!delalloc && whence == SEEK_HOLE) { 3365 *start_ret = start; 3366 return true; 3367 } 3368 3369 /* 3370 * No delalloc in the range and we are seeking for data. The caller has 3371 * to iterate to the next extent item in the subvolume btree. 3372 */ 3373 return false; 3374 } 3375 3376 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3377 { 3378 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3379 struct btrfs_file_private *private; 3380 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3381 struct extent_state *cached_state = NULL; 3382 struct extent_state **delalloc_cached_state; 3383 const loff_t i_size = i_size_read(&inode->vfs_inode); 3384 const u64 ino = btrfs_ino(inode); 3385 struct btrfs_root *root = inode->root; 3386 struct btrfs_path *path; 3387 struct btrfs_key key; 3388 u64 last_extent_end; 3389 u64 lockstart; 3390 u64 lockend; 3391 u64 start; 3392 int ret; 3393 bool found = false; 3394 3395 if (i_size == 0 || offset >= i_size) 3396 return -ENXIO; 3397 3398 /* 3399 * Quick path. If the inode has no prealloc extents and its number of 3400 * bytes used matches its i_size, then it can not have holes. 3401 */ 3402 if (whence == SEEK_HOLE && 3403 !(inode->flags & BTRFS_INODE_PREALLOC) && 3404 inode_get_bytes(&inode->vfs_inode) == i_size) 3405 return i_size; 3406 3407 spin_lock(&inode->lock); 3408 private = file->private_data; 3409 spin_unlock(&inode->lock); 3410 3411 if (private && private->owner_task != current) { 3412 /* 3413 * Not allocated by us, don't use it as its cached state is used 3414 * by the task that allocated it and we don't want neither to 3415 * mess with it nor get incorrect results because it reflects an 3416 * invalid state for the current task. 3417 */ 3418 private = NULL; 3419 } else if (!private) { 3420 private = kzalloc(sizeof(*private), GFP_KERNEL); 3421 /* 3422 * No worries if memory allocation failed. 3423 * The private structure is used only for speeding up multiple 3424 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3425 * so everything will still be correct. 3426 */ 3427 if (private) { 3428 bool free = false; 3429 3430 private->owner_task = current; 3431 3432 spin_lock(&inode->lock); 3433 if (file->private_data) 3434 free = true; 3435 else 3436 file->private_data = private; 3437 spin_unlock(&inode->lock); 3438 3439 if (free) { 3440 kfree(private); 3441 private = NULL; 3442 } 3443 } 3444 } 3445 3446 if (private) 3447 delalloc_cached_state = &private->llseek_cached_state; 3448 else 3449 delalloc_cached_state = NULL; 3450 3451 /* 3452 * offset can be negative, in this case we start finding DATA/HOLE from 3453 * the very start of the file. 3454 */ 3455 start = max_t(loff_t, 0, offset); 3456 3457 lockstart = round_down(start, fs_info->sectorsize); 3458 lockend = round_up(i_size, fs_info->sectorsize); 3459 if (lockend <= lockstart) 3460 lockend = lockstart + fs_info->sectorsize; 3461 lockend--; 3462 3463 path = btrfs_alloc_path(); 3464 if (!path) 3465 return -ENOMEM; 3466 path->reada = READA_FORWARD; 3467 3468 key.objectid = ino; 3469 key.type = BTRFS_EXTENT_DATA_KEY; 3470 key.offset = start; 3471 3472 last_extent_end = lockstart; 3473 3474 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3475 3476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3477 if (ret < 0) { 3478 goto out; 3479 } else if (ret > 0 && path->slots[0] > 0) { 3480 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3481 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3482 path->slots[0]--; 3483 } 3484 3485 while (start < i_size) { 3486 struct extent_buffer *leaf = path->nodes[0]; 3487 struct btrfs_file_extent_item *extent; 3488 u64 extent_end; 3489 u8 type; 3490 3491 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3492 ret = btrfs_next_leaf(root, path); 3493 if (ret < 0) 3494 goto out; 3495 else if (ret > 0) 3496 break; 3497 3498 leaf = path->nodes[0]; 3499 } 3500 3501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3502 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3503 break; 3504 3505 extent_end = btrfs_file_extent_end(path); 3506 3507 /* 3508 * In the first iteration we may have a slot that points to an 3509 * extent that ends before our start offset, so skip it. 3510 */ 3511 if (extent_end <= start) { 3512 path->slots[0]++; 3513 continue; 3514 } 3515 3516 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3517 if (last_extent_end < key.offset) { 3518 u64 search_start = last_extent_end; 3519 u64 found_start; 3520 3521 /* 3522 * First iteration, @start matches @offset and it's 3523 * within the hole. 3524 */ 3525 if (start == offset) 3526 search_start = offset; 3527 3528 found = find_desired_extent_in_hole(inode, whence, 3529 delalloc_cached_state, 3530 search_start, 3531 key.offset - 1, 3532 &found_start); 3533 if (found) { 3534 start = found_start; 3535 break; 3536 } 3537 /* 3538 * Didn't find data or a hole (due to delalloc) in the 3539 * implicit hole range, so need to analyze the extent. 3540 */ 3541 } 3542 3543 extent = btrfs_item_ptr(leaf, path->slots[0], 3544 struct btrfs_file_extent_item); 3545 type = btrfs_file_extent_type(leaf, extent); 3546 3547 /* 3548 * Can't access the extent's disk_bytenr field if this is an 3549 * inline extent, since at that offset, it's where the extent 3550 * data starts. 3551 */ 3552 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3553 (type == BTRFS_FILE_EXTENT_REG && 3554 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3555 /* 3556 * Explicit hole or prealloc extent, search for delalloc. 3557 * A prealloc extent is treated like a hole. 3558 */ 3559 u64 search_start = key.offset; 3560 u64 found_start; 3561 3562 /* 3563 * First iteration, @start matches @offset and it's 3564 * within the hole. 3565 */ 3566 if (start == offset) 3567 search_start = offset; 3568 3569 found = find_desired_extent_in_hole(inode, whence, 3570 delalloc_cached_state, 3571 search_start, 3572 extent_end - 1, 3573 &found_start); 3574 if (found) { 3575 start = found_start; 3576 break; 3577 } 3578 /* 3579 * Didn't find data or a hole (due to delalloc) in the 3580 * implicit hole range, so need to analyze the next 3581 * extent item. 3582 */ 3583 } else { 3584 /* 3585 * Found a regular or inline extent. 3586 * If we are seeking for data, adjust the start offset 3587 * and stop, we're done. 3588 */ 3589 if (whence == SEEK_DATA) { 3590 start = max_t(u64, key.offset, offset); 3591 found = true; 3592 break; 3593 } 3594 /* 3595 * Else, we are seeking for a hole, check the next file 3596 * extent item. 3597 */ 3598 } 3599 3600 start = extent_end; 3601 last_extent_end = extent_end; 3602 path->slots[0]++; 3603 if (fatal_signal_pending(current)) { 3604 ret = -EINTR; 3605 goto out; 3606 } 3607 cond_resched(); 3608 } 3609 3610 /* We have an implicit hole from the last extent found up to i_size. */ 3611 if (!found && start < i_size) { 3612 found = find_desired_extent_in_hole(inode, whence, 3613 delalloc_cached_state, start, 3614 i_size - 1, &start); 3615 if (!found) 3616 start = i_size; 3617 } 3618 3619 out: 3620 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3621 btrfs_free_path(path); 3622 3623 if (ret < 0) 3624 return ret; 3625 3626 if (whence == SEEK_DATA && start >= i_size) 3627 return -ENXIO; 3628 3629 return min_t(loff_t, start, i_size); 3630 } 3631 3632 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3633 { 3634 struct inode *inode = file->f_mapping->host; 3635 3636 switch (whence) { 3637 default: 3638 return generic_file_llseek(file, offset, whence); 3639 case SEEK_DATA: 3640 case SEEK_HOLE: 3641 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3642 offset = find_desired_extent(file, offset, whence); 3643 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3644 break; 3645 } 3646 3647 if (offset < 0) 3648 return offset; 3649 3650 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3651 } 3652 3653 static int btrfs_file_open(struct inode *inode, struct file *filp) 3654 { 3655 int ret; 3656 3657 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3658 3659 ret = fsverity_file_open(inode, filp); 3660 if (ret) 3661 return ret; 3662 return generic_file_open(inode, filp); 3663 } 3664 3665 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3666 { 3667 ssize_t ret = 0; 3668 3669 if (iocb->ki_flags & IOCB_DIRECT) { 3670 ret = btrfs_direct_read(iocb, to); 3671 if (ret < 0 || !iov_iter_count(to) || 3672 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3673 return ret; 3674 } 3675 3676 return filemap_read(iocb, to, ret); 3677 } 3678 3679 const struct file_operations btrfs_file_operations = { 3680 .llseek = btrfs_file_llseek, 3681 .read_iter = btrfs_file_read_iter, 3682 .splice_read = filemap_splice_read, 3683 .write_iter = btrfs_file_write_iter, 3684 .splice_write = iter_file_splice_write, 3685 .mmap = btrfs_file_mmap, 3686 .open = btrfs_file_open, 3687 .release = btrfs_release_file, 3688 .get_unmapped_area = thp_get_unmapped_area, 3689 .fsync = btrfs_sync_file, 3690 .fallocate = btrfs_fallocate, 3691 .unlocked_ioctl = btrfs_ioctl, 3692 #ifdef CONFIG_COMPAT 3693 .compat_ioctl = btrfs_compat_ioctl, 3694 #endif 3695 .remap_file_range = btrfs_remap_file_range, 3696 .uring_cmd = btrfs_uring_cmd, 3697 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3698 }; 3699 3700 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3701 { 3702 struct address_space *mapping = inode->vfs_inode.i_mapping; 3703 int ret; 3704 3705 /* 3706 * So with compression we will find and lock a dirty page and clear the 3707 * first one as dirty, setup an async extent, and immediately return 3708 * with the entire range locked but with nobody actually marked with 3709 * writeback. So we can't just filemap_write_and_wait_range() and 3710 * expect it to work since it will just kick off a thread to do the 3711 * actual work. So we need to call filemap_fdatawrite_range _again_ 3712 * since it will wait on the page lock, which won't be unlocked until 3713 * after the pages have been marked as writeback and so we're good to go 3714 * from there. We have to do this otherwise we'll miss the ordered 3715 * extents and that results in badness. Please Josef, do not think you 3716 * know better and pull this out at some point in the future, it is 3717 * right and you are wrong. 3718 */ 3719 ret = filemap_fdatawrite_range(mapping, start, end); 3720 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3721 ret = filemap_fdatawrite_range(mapping, start, end); 3722 3723 return ret; 3724 } 3725