xref: /linux/fs/btrfs/file.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 
44 /* simple helper to fault in pages and copy.  This should go away
45  * and be replaced with calls into generic code.
46  */
47 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 					 int write_bytes,
49 					 struct page **prepared_pages,
50 					 struct iov_iter *i)
51 {
52 	size_t copied = 0;
53 	int pg = 0;
54 	int offset = pos & (PAGE_CACHE_SIZE - 1);
55 	int total_copied = 0;
56 
57 	while (write_bytes > 0) {
58 		size_t count = min_t(size_t,
59 				     PAGE_CACHE_SIZE - offset, write_bytes);
60 		struct page *page = prepared_pages[pg];
61 		/*
62 		 * Copy data from userspace to the current page
63 		 *
64 		 * Disable pagefault to avoid recursive lock since
65 		 * the pages are already locked
66 		 */
67 		pagefault_disable();
68 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
69 		pagefault_enable();
70 
71 		/* Flush processor's dcache for this page */
72 		flush_dcache_page(page);
73 		iov_iter_advance(i, copied);
74 		write_bytes -= copied;
75 		total_copied += copied;
76 
77 		/* Return to btrfs_file_aio_write to fault page */
78 		if (unlikely(copied == 0)) {
79 			break;
80 		}
81 
82 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
83 			offset += copied;
84 		} else {
85 			pg++;
86 			offset = 0;
87 		}
88 	}
89 	return total_copied;
90 }
91 
92 /*
93  * unlocks pages after btrfs_file_write is done with them
94  */
95 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
96 {
97 	size_t i;
98 	for (i = 0; i < num_pages; i++) {
99 		if (!pages[i])
100 			break;
101 		/* page checked is some magic around finding pages that
102 		 * have been modified without going through btrfs_set_page_dirty
103 		 * clear it here
104 		 */
105 		ClearPageChecked(pages[i]);
106 		unlock_page(pages[i]);
107 		mark_page_accessed(pages[i]);
108 		page_cache_release(pages[i]);
109 	}
110 }
111 
112 /*
113  * after copy_from_user, pages need to be dirtied and we need to make
114  * sure holes are created between the current EOF and the start of
115  * any next extents (if required).
116  *
117  * this also makes the decision about creating an inline extent vs
118  * doing real data extents, marking pages dirty and delalloc as required.
119  */
120 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
121 				   struct btrfs_root *root,
122 				   struct file *file,
123 				   struct page **pages,
124 				   size_t num_pages,
125 				   loff_t pos,
126 				   size_t write_bytes)
127 {
128 	int err = 0;
129 	int i;
130 	struct inode *inode = fdentry(file)->d_inode;
131 	u64 num_bytes;
132 	u64 start_pos;
133 	u64 end_of_last_block;
134 	u64 end_pos = pos + write_bytes;
135 	loff_t isize = i_size_read(inode);
136 
137 	start_pos = pos & ~((u64)root->sectorsize - 1);
138 	num_bytes = (write_bytes + pos - start_pos +
139 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
140 
141 	end_of_last_block = start_pos + num_bytes - 1;
142 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
143 					NULL);
144 	BUG_ON(err);
145 
146 	for (i = 0; i < num_pages; i++) {
147 		struct page *p = pages[i];
148 		SetPageUptodate(p);
149 		ClearPageChecked(p);
150 		set_page_dirty(p);
151 	}
152 	if (end_pos > isize) {
153 		i_size_write(inode, end_pos);
154 		/* we've only changed i_size in ram, and we haven't updated
155 		 * the disk i_size.  There is no need to log the inode
156 		 * at this time.
157 		 */
158 	}
159 	return 0;
160 }
161 
162 /*
163  * this drops all the extents in the cache that intersect the range
164  * [start, end].  Existing extents are split as required.
165  */
166 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
167 			    int skip_pinned)
168 {
169 	struct extent_map *em;
170 	struct extent_map *split = NULL;
171 	struct extent_map *split2 = NULL;
172 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
173 	u64 len = end - start + 1;
174 	int ret;
175 	int testend = 1;
176 	unsigned long flags;
177 	int compressed = 0;
178 
179 	WARN_ON(end < start);
180 	if (end == (u64)-1) {
181 		len = (u64)-1;
182 		testend = 0;
183 	}
184 	while (1) {
185 		if (!split)
186 			split = alloc_extent_map(GFP_NOFS);
187 		if (!split2)
188 			split2 = alloc_extent_map(GFP_NOFS);
189 
190 		write_lock(&em_tree->lock);
191 		em = lookup_extent_mapping(em_tree, start, len);
192 		if (!em) {
193 			write_unlock(&em_tree->lock);
194 			break;
195 		}
196 		flags = em->flags;
197 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
198 			if (testend && em->start + em->len >= start + len) {
199 				free_extent_map(em);
200 				write_unlock(&em_tree->lock);
201 				break;
202 			}
203 			start = em->start + em->len;
204 			if (testend)
205 				len = start + len - (em->start + em->len);
206 			free_extent_map(em);
207 			write_unlock(&em_tree->lock);
208 			continue;
209 		}
210 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
211 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
212 		remove_extent_mapping(em_tree, em);
213 
214 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
215 		    em->start < start) {
216 			split->start = em->start;
217 			split->len = start - em->start;
218 			split->orig_start = em->orig_start;
219 			split->block_start = em->block_start;
220 
221 			if (compressed)
222 				split->block_len = em->block_len;
223 			else
224 				split->block_len = split->len;
225 
226 			split->bdev = em->bdev;
227 			split->flags = flags;
228 			split->compress_type = em->compress_type;
229 			ret = add_extent_mapping(em_tree, split);
230 			BUG_ON(ret);
231 			free_extent_map(split);
232 			split = split2;
233 			split2 = NULL;
234 		}
235 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
236 		    testend && em->start + em->len > start + len) {
237 			u64 diff = start + len - em->start;
238 
239 			split->start = start + len;
240 			split->len = em->start + em->len - (start + len);
241 			split->bdev = em->bdev;
242 			split->flags = flags;
243 			split->compress_type = em->compress_type;
244 
245 			if (compressed) {
246 				split->block_len = em->block_len;
247 				split->block_start = em->block_start;
248 				split->orig_start = em->orig_start;
249 			} else {
250 				split->block_len = split->len;
251 				split->block_start = em->block_start + diff;
252 				split->orig_start = split->start;
253 			}
254 
255 			ret = add_extent_mapping(em_tree, split);
256 			BUG_ON(ret);
257 			free_extent_map(split);
258 			split = NULL;
259 		}
260 		write_unlock(&em_tree->lock);
261 
262 		/* once for us */
263 		free_extent_map(em);
264 		/* once for the tree*/
265 		free_extent_map(em);
266 	}
267 	if (split)
268 		free_extent_map(split);
269 	if (split2)
270 		free_extent_map(split2);
271 	return 0;
272 }
273 
274 /*
275  * this is very complex, but the basic idea is to drop all extents
276  * in the range start - end.  hint_block is filled in with a block number
277  * that would be a good hint to the block allocator for this file.
278  *
279  * If an extent intersects the range but is not entirely inside the range
280  * it is either truncated or split.  Anything entirely inside the range
281  * is deleted from the tree.
282  */
283 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
284 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
285 {
286 	struct btrfs_root *root = BTRFS_I(inode)->root;
287 	struct extent_buffer *leaf;
288 	struct btrfs_file_extent_item *fi;
289 	struct btrfs_path *path;
290 	struct btrfs_key key;
291 	struct btrfs_key new_key;
292 	u64 search_start = start;
293 	u64 disk_bytenr = 0;
294 	u64 num_bytes = 0;
295 	u64 extent_offset = 0;
296 	u64 extent_end = 0;
297 	int del_nr = 0;
298 	int del_slot = 0;
299 	int extent_type;
300 	int recow;
301 	int ret;
302 
303 	if (drop_cache)
304 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
305 
306 	path = btrfs_alloc_path();
307 	if (!path)
308 		return -ENOMEM;
309 
310 	while (1) {
311 		recow = 0;
312 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
313 					       search_start, -1);
314 		if (ret < 0)
315 			break;
316 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
317 			leaf = path->nodes[0];
318 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
319 			if (key.objectid == inode->i_ino &&
320 			    key.type == BTRFS_EXTENT_DATA_KEY)
321 				path->slots[0]--;
322 		}
323 		ret = 0;
324 next_slot:
325 		leaf = path->nodes[0];
326 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
327 			BUG_ON(del_nr > 0);
328 			ret = btrfs_next_leaf(root, path);
329 			if (ret < 0)
330 				break;
331 			if (ret > 0) {
332 				ret = 0;
333 				break;
334 			}
335 			leaf = path->nodes[0];
336 			recow = 1;
337 		}
338 
339 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
340 		if (key.objectid > inode->i_ino ||
341 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
342 			break;
343 
344 		fi = btrfs_item_ptr(leaf, path->slots[0],
345 				    struct btrfs_file_extent_item);
346 		extent_type = btrfs_file_extent_type(leaf, fi);
347 
348 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
349 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
350 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
351 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
352 			extent_offset = btrfs_file_extent_offset(leaf, fi);
353 			extent_end = key.offset +
354 				btrfs_file_extent_num_bytes(leaf, fi);
355 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
356 			extent_end = key.offset +
357 				btrfs_file_extent_inline_len(leaf, fi);
358 		} else {
359 			WARN_ON(1);
360 			extent_end = search_start;
361 		}
362 
363 		if (extent_end <= search_start) {
364 			path->slots[0]++;
365 			goto next_slot;
366 		}
367 
368 		search_start = max(key.offset, start);
369 		if (recow) {
370 			btrfs_release_path(root, path);
371 			continue;
372 		}
373 
374 		/*
375 		 *     | - range to drop - |
376 		 *  | -------- extent -------- |
377 		 */
378 		if (start > key.offset && end < extent_end) {
379 			BUG_ON(del_nr > 0);
380 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
381 
382 			memcpy(&new_key, &key, sizeof(new_key));
383 			new_key.offset = start;
384 			ret = btrfs_duplicate_item(trans, root, path,
385 						   &new_key);
386 			if (ret == -EAGAIN) {
387 				btrfs_release_path(root, path);
388 				continue;
389 			}
390 			if (ret < 0)
391 				break;
392 
393 			leaf = path->nodes[0];
394 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
395 					    struct btrfs_file_extent_item);
396 			btrfs_set_file_extent_num_bytes(leaf, fi,
397 							start - key.offset);
398 
399 			fi = btrfs_item_ptr(leaf, path->slots[0],
400 					    struct btrfs_file_extent_item);
401 
402 			extent_offset += start - key.offset;
403 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
404 			btrfs_set_file_extent_num_bytes(leaf, fi,
405 							extent_end - start);
406 			btrfs_mark_buffer_dirty(leaf);
407 
408 			if (disk_bytenr > 0) {
409 				ret = btrfs_inc_extent_ref(trans, root,
410 						disk_bytenr, num_bytes, 0,
411 						root->root_key.objectid,
412 						new_key.objectid,
413 						start - extent_offset);
414 				BUG_ON(ret);
415 				*hint_byte = disk_bytenr;
416 			}
417 			key.offset = start;
418 		}
419 		/*
420 		 *  | ---- range to drop ----- |
421 		 *      | -------- extent -------- |
422 		 */
423 		if (start <= key.offset && end < extent_end) {
424 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
425 
426 			memcpy(&new_key, &key, sizeof(new_key));
427 			new_key.offset = end;
428 			btrfs_set_item_key_safe(trans, root, path, &new_key);
429 
430 			extent_offset += end - key.offset;
431 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
432 			btrfs_set_file_extent_num_bytes(leaf, fi,
433 							extent_end - end);
434 			btrfs_mark_buffer_dirty(leaf);
435 			if (disk_bytenr > 0) {
436 				inode_sub_bytes(inode, end - key.offset);
437 				*hint_byte = disk_bytenr;
438 			}
439 			break;
440 		}
441 
442 		search_start = extent_end;
443 		/*
444 		 *       | ---- range to drop ----- |
445 		 *  | -------- extent -------- |
446 		 */
447 		if (start > key.offset && end >= extent_end) {
448 			BUG_ON(del_nr > 0);
449 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
450 
451 			btrfs_set_file_extent_num_bytes(leaf, fi,
452 							start - key.offset);
453 			btrfs_mark_buffer_dirty(leaf);
454 			if (disk_bytenr > 0) {
455 				inode_sub_bytes(inode, extent_end - start);
456 				*hint_byte = disk_bytenr;
457 			}
458 			if (end == extent_end)
459 				break;
460 
461 			path->slots[0]++;
462 			goto next_slot;
463 		}
464 
465 		/*
466 		 *  | ---- range to drop ----- |
467 		 *    | ------ extent ------ |
468 		 */
469 		if (start <= key.offset && end >= extent_end) {
470 			if (del_nr == 0) {
471 				del_slot = path->slots[0];
472 				del_nr = 1;
473 			} else {
474 				BUG_ON(del_slot + del_nr != path->slots[0]);
475 				del_nr++;
476 			}
477 
478 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
479 				inode_sub_bytes(inode,
480 						extent_end - key.offset);
481 				extent_end = ALIGN(extent_end,
482 						   root->sectorsize);
483 			} else if (disk_bytenr > 0) {
484 				ret = btrfs_free_extent(trans, root,
485 						disk_bytenr, num_bytes, 0,
486 						root->root_key.objectid,
487 						key.objectid, key.offset -
488 						extent_offset);
489 				BUG_ON(ret);
490 				inode_sub_bytes(inode,
491 						extent_end - key.offset);
492 				*hint_byte = disk_bytenr;
493 			}
494 
495 			if (end == extent_end)
496 				break;
497 
498 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
499 				path->slots[0]++;
500 				goto next_slot;
501 			}
502 
503 			ret = btrfs_del_items(trans, root, path, del_slot,
504 					      del_nr);
505 			BUG_ON(ret);
506 
507 			del_nr = 0;
508 			del_slot = 0;
509 
510 			btrfs_release_path(root, path);
511 			continue;
512 		}
513 
514 		BUG_ON(1);
515 	}
516 
517 	if (del_nr > 0) {
518 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
519 		BUG_ON(ret);
520 	}
521 
522 	btrfs_free_path(path);
523 	return ret;
524 }
525 
526 static int extent_mergeable(struct extent_buffer *leaf, int slot,
527 			    u64 objectid, u64 bytenr, u64 orig_offset,
528 			    u64 *start, u64 *end)
529 {
530 	struct btrfs_file_extent_item *fi;
531 	struct btrfs_key key;
532 	u64 extent_end;
533 
534 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
535 		return 0;
536 
537 	btrfs_item_key_to_cpu(leaf, &key, slot);
538 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
539 		return 0;
540 
541 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
542 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
543 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
544 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
545 	    btrfs_file_extent_compression(leaf, fi) ||
546 	    btrfs_file_extent_encryption(leaf, fi) ||
547 	    btrfs_file_extent_other_encoding(leaf, fi))
548 		return 0;
549 
550 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
551 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
552 		return 0;
553 
554 	*start = key.offset;
555 	*end = extent_end;
556 	return 1;
557 }
558 
559 /*
560  * Mark extent in the range start - end as written.
561  *
562  * This changes extent type from 'pre-allocated' to 'regular'. If only
563  * part of extent is marked as written, the extent will be split into
564  * two or three.
565  */
566 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
567 			      struct inode *inode, u64 start, u64 end)
568 {
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	struct extent_buffer *leaf;
571 	struct btrfs_path *path;
572 	struct btrfs_file_extent_item *fi;
573 	struct btrfs_key key;
574 	struct btrfs_key new_key;
575 	u64 bytenr;
576 	u64 num_bytes;
577 	u64 extent_end;
578 	u64 orig_offset;
579 	u64 other_start;
580 	u64 other_end;
581 	u64 split;
582 	int del_nr = 0;
583 	int del_slot = 0;
584 	int recow;
585 	int ret;
586 
587 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
588 
589 	path = btrfs_alloc_path();
590 	BUG_ON(!path);
591 again:
592 	recow = 0;
593 	split = start;
594 	key.objectid = inode->i_ino;
595 	key.type = BTRFS_EXTENT_DATA_KEY;
596 	key.offset = split;
597 
598 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
599 	if (ret > 0 && path->slots[0] > 0)
600 		path->slots[0]--;
601 
602 	leaf = path->nodes[0];
603 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
604 	BUG_ON(key.objectid != inode->i_ino ||
605 	       key.type != BTRFS_EXTENT_DATA_KEY);
606 	fi = btrfs_item_ptr(leaf, path->slots[0],
607 			    struct btrfs_file_extent_item);
608 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
609 	       BTRFS_FILE_EXTENT_PREALLOC);
610 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
611 	BUG_ON(key.offset > start || extent_end < end);
612 
613 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
614 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
615 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
616 	memcpy(&new_key, &key, sizeof(new_key));
617 
618 	if (start == key.offset && end < extent_end) {
619 		other_start = 0;
620 		other_end = start;
621 		if (extent_mergeable(leaf, path->slots[0] - 1,
622 				     inode->i_ino, bytenr, orig_offset,
623 				     &other_start, &other_end)) {
624 			new_key.offset = end;
625 			btrfs_set_item_key_safe(trans, root, path, &new_key);
626 			fi = btrfs_item_ptr(leaf, path->slots[0],
627 					    struct btrfs_file_extent_item);
628 			btrfs_set_file_extent_num_bytes(leaf, fi,
629 							extent_end - end);
630 			btrfs_set_file_extent_offset(leaf, fi,
631 						     end - orig_offset);
632 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
633 					    struct btrfs_file_extent_item);
634 			btrfs_set_file_extent_num_bytes(leaf, fi,
635 							end - other_start);
636 			btrfs_mark_buffer_dirty(leaf);
637 			goto out;
638 		}
639 	}
640 
641 	if (start > key.offset && end == extent_end) {
642 		other_start = end;
643 		other_end = 0;
644 		if (extent_mergeable(leaf, path->slots[0] + 1,
645 				     inode->i_ino, bytenr, orig_offset,
646 				     &other_start, &other_end)) {
647 			fi = btrfs_item_ptr(leaf, path->slots[0],
648 					    struct btrfs_file_extent_item);
649 			btrfs_set_file_extent_num_bytes(leaf, fi,
650 							start - key.offset);
651 			path->slots[0]++;
652 			new_key.offset = start;
653 			btrfs_set_item_key_safe(trans, root, path, &new_key);
654 
655 			fi = btrfs_item_ptr(leaf, path->slots[0],
656 					    struct btrfs_file_extent_item);
657 			btrfs_set_file_extent_num_bytes(leaf, fi,
658 							other_end - start);
659 			btrfs_set_file_extent_offset(leaf, fi,
660 						     start - orig_offset);
661 			btrfs_mark_buffer_dirty(leaf);
662 			goto out;
663 		}
664 	}
665 
666 	while (start > key.offset || end < extent_end) {
667 		if (key.offset == start)
668 			split = end;
669 
670 		new_key.offset = split;
671 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
672 		if (ret == -EAGAIN) {
673 			btrfs_release_path(root, path);
674 			goto again;
675 		}
676 		BUG_ON(ret < 0);
677 
678 		leaf = path->nodes[0];
679 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
680 				    struct btrfs_file_extent_item);
681 		btrfs_set_file_extent_num_bytes(leaf, fi,
682 						split - key.offset);
683 
684 		fi = btrfs_item_ptr(leaf, path->slots[0],
685 				    struct btrfs_file_extent_item);
686 
687 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
688 		btrfs_set_file_extent_num_bytes(leaf, fi,
689 						extent_end - split);
690 		btrfs_mark_buffer_dirty(leaf);
691 
692 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
693 					   root->root_key.objectid,
694 					   inode->i_ino, orig_offset);
695 		BUG_ON(ret);
696 
697 		if (split == start) {
698 			key.offset = start;
699 		} else {
700 			BUG_ON(start != key.offset);
701 			path->slots[0]--;
702 			extent_end = end;
703 		}
704 		recow = 1;
705 	}
706 
707 	other_start = end;
708 	other_end = 0;
709 	if (extent_mergeable(leaf, path->slots[0] + 1,
710 			     inode->i_ino, bytenr, orig_offset,
711 			     &other_start, &other_end)) {
712 		if (recow) {
713 			btrfs_release_path(root, path);
714 			goto again;
715 		}
716 		extent_end = other_end;
717 		del_slot = path->slots[0] + 1;
718 		del_nr++;
719 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
720 					0, root->root_key.objectid,
721 					inode->i_ino, orig_offset);
722 		BUG_ON(ret);
723 	}
724 	other_start = 0;
725 	other_end = start;
726 	if (extent_mergeable(leaf, path->slots[0] - 1,
727 			     inode->i_ino, bytenr, orig_offset,
728 			     &other_start, &other_end)) {
729 		if (recow) {
730 			btrfs_release_path(root, path);
731 			goto again;
732 		}
733 		key.offset = other_start;
734 		del_slot = path->slots[0];
735 		del_nr++;
736 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
737 					0, root->root_key.objectid,
738 					inode->i_ino, orig_offset);
739 		BUG_ON(ret);
740 	}
741 	if (del_nr == 0) {
742 		fi = btrfs_item_ptr(leaf, path->slots[0],
743 			   struct btrfs_file_extent_item);
744 		btrfs_set_file_extent_type(leaf, fi,
745 					   BTRFS_FILE_EXTENT_REG);
746 		btrfs_mark_buffer_dirty(leaf);
747 	} else {
748 		fi = btrfs_item_ptr(leaf, del_slot - 1,
749 			   struct btrfs_file_extent_item);
750 		btrfs_set_file_extent_type(leaf, fi,
751 					   BTRFS_FILE_EXTENT_REG);
752 		btrfs_set_file_extent_num_bytes(leaf, fi,
753 						extent_end - key.offset);
754 		btrfs_mark_buffer_dirty(leaf);
755 
756 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
757 		BUG_ON(ret);
758 	}
759 out:
760 	btrfs_free_path(path);
761 	return 0;
762 }
763 
764 /*
765  * this gets pages into the page cache and locks them down, it also properly
766  * waits for data=ordered extents to finish before allowing the pages to be
767  * modified.
768  */
769 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
770 			 struct page **pages, size_t num_pages,
771 			 loff_t pos, unsigned long first_index,
772 			 unsigned long last_index, size_t write_bytes)
773 {
774 	struct extent_state *cached_state = NULL;
775 	int i;
776 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
777 	struct inode *inode = fdentry(file)->d_inode;
778 	int err = 0;
779 	u64 start_pos;
780 	u64 last_pos;
781 
782 	start_pos = pos & ~((u64)root->sectorsize - 1);
783 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
784 
785 	if (start_pos > inode->i_size) {
786 		err = btrfs_cont_expand(inode, start_pos);
787 		if (err)
788 			return err;
789 	}
790 
791 	memset(pages, 0, num_pages * sizeof(struct page *));
792 again:
793 	for (i = 0; i < num_pages; i++) {
794 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
795 		if (!pages[i]) {
796 			err = -ENOMEM;
797 			BUG_ON(1);
798 		}
799 		wait_on_page_writeback(pages[i]);
800 	}
801 	if (start_pos < inode->i_size) {
802 		struct btrfs_ordered_extent *ordered;
803 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
804 				 start_pos, last_pos - 1, 0, &cached_state,
805 				 GFP_NOFS);
806 		ordered = btrfs_lookup_first_ordered_extent(inode,
807 							    last_pos - 1);
808 		if (ordered &&
809 		    ordered->file_offset + ordered->len > start_pos &&
810 		    ordered->file_offset < last_pos) {
811 			btrfs_put_ordered_extent(ordered);
812 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
813 					     start_pos, last_pos - 1,
814 					     &cached_state, GFP_NOFS);
815 			for (i = 0; i < num_pages; i++) {
816 				unlock_page(pages[i]);
817 				page_cache_release(pages[i]);
818 			}
819 			btrfs_wait_ordered_range(inode, start_pos,
820 						 last_pos - start_pos);
821 			goto again;
822 		}
823 		if (ordered)
824 			btrfs_put_ordered_extent(ordered);
825 
826 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
827 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
828 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
829 				  GFP_NOFS);
830 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
831 				     start_pos, last_pos - 1, &cached_state,
832 				     GFP_NOFS);
833 	}
834 	for (i = 0; i < num_pages; i++) {
835 		clear_page_dirty_for_io(pages[i]);
836 		set_page_extent_mapped(pages[i]);
837 		WARN_ON(!PageLocked(pages[i]));
838 	}
839 	return 0;
840 }
841 
842 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
843 				    const struct iovec *iov,
844 				    unsigned long nr_segs, loff_t pos)
845 {
846 	struct file *file = iocb->ki_filp;
847 	struct inode *inode = fdentry(file)->d_inode;
848 	struct btrfs_root *root = BTRFS_I(inode)->root;
849 	struct page *pinned[2];
850 	struct page **pages = NULL;
851 	struct iov_iter i;
852 	loff_t *ppos = &iocb->ki_pos;
853 	loff_t start_pos;
854 	ssize_t num_written = 0;
855 	ssize_t err = 0;
856 	size_t count;
857 	size_t ocount;
858 	int ret = 0;
859 	int nrptrs;
860 	unsigned long first_index;
861 	unsigned long last_index;
862 	int will_write;
863 	int buffered = 0;
864 	int copied = 0;
865 	int dirty_pages = 0;
866 
867 	will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
868 		      (file->f_flags & O_DIRECT));
869 
870 	pinned[0] = NULL;
871 	pinned[1] = NULL;
872 
873 	start_pos = pos;
874 
875 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
876 
877 	mutex_lock(&inode->i_mutex);
878 
879 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
880 	if (err)
881 		goto out;
882 	count = ocount;
883 
884 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
885 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
886 	if (err)
887 		goto out;
888 
889 	if (count == 0)
890 		goto out;
891 
892 	err = file_remove_suid(file);
893 	if (err)
894 		goto out;
895 
896 	/*
897 	 * If BTRFS flips readonly due to some impossible error
898 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
899 	 * although we have opened a file as writable, we have
900 	 * to stop this write operation to ensure FS consistency.
901 	 */
902 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
903 		err = -EROFS;
904 		goto out;
905 	}
906 
907 	file_update_time(file);
908 	BTRFS_I(inode)->sequence++;
909 
910 	if (unlikely(file->f_flags & O_DIRECT)) {
911 		num_written = generic_file_direct_write(iocb, iov, &nr_segs,
912 							pos, ppos, count,
913 							ocount);
914 		/*
915 		 * the generic O_DIRECT will update in-memory i_size after the
916 		 * DIOs are done.  But our endio handlers that update the on
917 		 * disk i_size never update past the in memory i_size.  So we
918 		 * need one more update here to catch any additions to the
919 		 * file
920 		 */
921 		if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
922 			btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
923 			mark_inode_dirty(inode);
924 		}
925 
926 		if (num_written < 0) {
927 			ret = num_written;
928 			num_written = 0;
929 			goto out;
930 		} else if (num_written == count) {
931 			/* pick up pos changes done by the generic code */
932 			pos = *ppos;
933 			goto out;
934 		}
935 		/*
936 		 * We are going to do buffered for the rest of the range, so we
937 		 * need to make sure to invalidate the buffered pages when we're
938 		 * done.
939 		 */
940 		buffered = 1;
941 		pos += num_written;
942 	}
943 
944 	iov_iter_init(&i, iov, nr_segs, count, num_written);
945 	nrptrs = min((iov_iter_count(&i) + PAGE_CACHE_SIZE - 1) /
946 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
947 		     (sizeof(struct page *)));
948 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
949 
950 	/* generic_write_checks can change our pos */
951 	start_pos = pos;
952 
953 	first_index = pos >> PAGE_CACHE_SHIFT;
954 	last_index = (pos + iov_iter_count(&i)) >> PAGE_CACHE_SHIFT;
955 
956 	/*
957 	 * there are lots of better ways to do this, but this code
958 	 * makes sure the first and last page in the file range are
959 	 * up to date and ready for cow
960 	 */
961 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
962 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
963 		if (!PageUptodate(pinned[0])) {
964 			ret = btrfs_readpage(NULL, pinned[0]);
965 			BUG_ON(ret);
966 			wait_on_page_locked(pinned[0]);
967 		} else {
968 			unlock_page(pinned[0]);
969 		}
970 	}
971 	if ((pos + iov_iter_count(&i)) & (PAGE_CACHE_SIZE - 1)) {
972 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
973 		if (!PageUptodate(pinned[1])) {
974 			ret = btrfs_readpage(NULL, pinned[1]);
975 			BUG_ON(ret);
976 			wait_on_page_locked(pinned[1]);
977 		} else {
978 			unlock_page(pinned[1]);
979 		}
980 	}
981 
982 	while (iov_iter_count(&i) > 0) {
983 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
984 		size_t write_bytes = min(iov_iter_count(&i),
985 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
986 					 offset);
987 		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
988 					PAGE_CACHE_SHIFT;
989 
990 		WARN_ON(num_pages > nrptrs);
991 		memset(pages, 0, sizeof(struct page *) * nrptrs);
992 
993 		/*
994 		 * Fault pages before locking them in prepare_pages
995 		 * to avoid recursive lock
996 		 */
997 		if (unlikely(iov_iter_fault_in_readable(&i, write_bytes))) {
998 			ret = -EFAULT;
999 			goto out;
1000 		}
1001 
1002 		ret = btrfs_delalloc_reserve_space(inode,
1003 					num_pages << PAGE_CACHE_SHIFT);
1004 		if (ret)
1005 			goto out;
1006 
1007 		ret = prepare_pages(root, file, pages, num_pages,
1008 				    pos, first_index, last_index,
1009 				    write_bytes);
1010 		if (ret) {
1011 			btrfs_delalloc_release_space(inode,
1012 					num_pages << PAGE_CACHE_SHIFT);
1013 			goto out;
1014 		}
1015 
1016 		copied = btrfs_copy_from_user(pos, num_pages,
1017 					   write_bytes, pages, &i);
1018 		dirty_pages = (copied + PAGE_CACHE_SIZE - 1) >>
1019 					PAGE_CACHE_SHIFT;
1020 
1021 		if (num_pages > dirty_pages) {
1022 			if (copied > 0)
1023 				atomic_inc(
1024 					&BTRFS_I(inode)->outstanding_extents);
1025 			btrfs_delalloc_release_space(inode,
1026 					(num_pages - dirty_pages) <<
1027 					PAGE_CACHE_SHIFT);
1028 		}
1029 
1030 		if (copied > 0) {
1031 			dirty_and_release_pages(NULL, root, file, pages,
1032 						dirty_pages, pos, copied);
1033 		}
1034 
1035 		btrfs_drop_pages(pages, num_pages);
1036 
1037 		if (copied > 0) {
1038 			if (will_write) {
1039 				filemap_fdatawrite_range(inode->i_mapping, pos,
1040 							 pos + copied - 1);
1041 			} else {
1042 				balance_dirty_pages_ratelimited_nr(
1043 							inode->i_mapping,
1044 							dirty_pages);
1045 				if (dirty_pages <
1046 				(root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1047 					btrfs_btree_balance_dirty(root, 1);
1048 				btrfs_throttle(root);
1049 			}
1050 		}
1051 
1052 		pos += copied;
1053 		num_written += copied;
1054 
1055 		cond_resched();
1056 	}
1057 out:
1058 	mutex_unlock(&inode->i_mutex);
1059 	if (ret)
1060 		err = ret;
1061 
1062 	kfree(pages);
1063 	if (pinned[0])
1064 		page_cache_release(pinned[0]);
1065 	if (pinned[1])
1066 		page_cache_release(pinned[1]);
1067 	*ppos = pos;
1068 
1069 	/*
1070 	 * we want to make sure fsync finds this change
1071 	 * but we haven't joined a transaction running right now.
1072 	 *
1073 	 * Later on, someone is sure to update the inode and get the
1074 	 * real transid recorded.
1075 	 *
1076 	 * We set last_trans now to the fs_info generation + 1,
1077 	 * this will either be one more than the running transaction
1078 	 * or the generation used for the next transaction if there isn't
1079 	 * one running right now.
1080 	 */
1081 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1082 
1083 	if (num_written > 0 && will_write) {
1084 		struct btrfs_trans_handle *trans;
1085 
1086 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1087 		if (err)
1088 			num_written = err;
1089 
1090 		if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1091 			trans = btrfs_start_transaction(root, 0);
1092 			if (IS_ERR(trans)) {
1093 				num_written = PTR_ERR(trans);
1094 				goto done;
1095 			}
1096 			mutex_lock(&inode->i_mutex);
1097 			ret = btrfs_log_dentry_safe(trans, root,
1098 						    file->f_dentry);
1099 			mutex_unlock(&inode->i_mutex);
1100 			if (ret == 0) {
1101 				ret = btrfs_sync_log(trans, root);
1102 				if (ret == 0)
1103 					btrfs_end_transaction(trans, root);
1104 				else
1105 					btrfs_commit_transaction(trans, root);
1106 			} else if (ret != BTRFS_NO_LOG_SYNC) {
1107 				btrfs_commit_transaction(trans, root);
1108 			} else {
1109 				btrfs_end_transaction(trans, root);
1110 			}
1111 		}
1112 		if (file->f_flags & O_DIRECT && buffered) {
1113 			invalidate_mapping_pages(inode->i_mapping,
1114 			      start_pos >> PAGE_CACHE_SHIFT,
1115 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1116 		}
1117 	}
1118 done:
1119 	current->backing_dev_info = NULL;
1120 	return num_written ? num_written : err;
1121 }
1122 
1123 int btrfs_release_file(struct inode *inode, struct file *filp)
1124 {
1125 	/*
1126 	 * ordered_data_close is set by settattr when we are about to truncate
1127 	 * a file from a non-zero size to a zero size.  This tries to
1128 	 * flush down new bytes that may have been written if the
1129 	 * application were using truncate to replace a file in place.
1130 	 */
1131 	if (BTRFS_I(inode)->ordered_data_close) {
1132 		BTRFS_I(inode)->ordered_data_close = 0;
1133 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1134 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1135 			filemap_flush(inode->i_mapping);
1136 	}
1137 	if (filp->private_data)
1138 		btrfs_ioctl_trans_end(filp);
1139 	return 0;
1140 }
1141 
1142 /*
1143  * fsync call for both files and directories.  This logs the inode into
1144  * the tree log instead of forcing full commits whenever possible.
1145  *
1146  * It needs to call filemap_fdatawait so that all ordered extent updates are
1147  * in the metadata btree are up to date for copying to the log.
1148  *
1149  * It drops the inode mutex before doing the tree log commit.  This is an
1150  * important optimization for directories because holding the mutex prevents
1151  * new operations on the dir while we write to disk.
1152  */
1153 int btrfs_sync_file(struct file *file, int datasync)
1154 {
1155 	struct dentry *dentry = file->f_path.dentry;
1156 	struct inode *inode = dentry->d_inode;
1157 	struct btrfs_root *root = BTRFS_I(inode)->root;
1158 	int ret = 0;
1159 	struct btrfs_trans_handle *trans;
1160 
1161 
1162 	/* we wait first, since the writeback may change the inode */
1163 	root->log_batch++;
1164 	/* the VFS called filemap_fdatawrite for us */
1165 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1166 	root->log_batch++;
1167 
1168 	/*
1169 	 * check the transaction that last modified this inode
1170 	 * and see if its already been committed
1171 	 */
1172 	if (!BTRFS_I(inode)->last_trans)
1173 		goto out;
1174 
1175 	/*
1176 	 * if the last transaction that changed this file was before
1177 	 * the current transaction, we can bail out now without any
1178 	 * syncing
1179 	 */
1180 	mutex_lock(&root->fs_info->trans_mutex);
1181 	if (BTRFS_I(inode)->last_trans <=
1182 	    root->fs_info->last_trans_committed) {
1183 		BTRFS_I(inode)->last_trans = 0;
1184 		mutex_unlock(&root->fs_info->trans_mutex);
1185 		goto out;
1186 	}
1187 	mutex_unlock(&root->fs_info->trans_mutex);
1188 
1189 	/*
1190 	 * ok we haven't committed the transaction yet, lets do a commit
1191 	 */
1192 	if (file->private_data)
1193 		btrfs_ioctl_trans_end(file);
1194 
1195 	trans = btrfs_start_transaction(root, 0);
1196 	if (IS_ERR(trans)) {
1197 		ret = PTR_ERR(trans);
1198 		goto out;
1199 	}
1200 
1201 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1202 	if (ret < 0)
1203 		goto out;
1204 
1205 	/* we've logged all the items and now have a consistent
1206 	 * version of the file in the log.  It is possible that
1207 	 * someone will come in and modify the file, but that's
1208 	 * fine because the log is consistent on disk, and we
1209 	 * have references to all of the file's extents
1210 	 *
1211 	 * It is possible that someone will come in and log the
1212 	 * file again, but that will end up using the synchronization
1213 	 * inside btrfs_sync_log to keep things safe.
1214 	 */
1215 	mutex_unlock(&dentry->d_inode->i_mutex);
1216 
1217 	if (ret != BTRFS_NO_LOG_SYNC) {
1218 		if (ret > 0) {
1219 			ret = btrfs_commit_transaction(trans, root);
1220 		} else {
1221 			ret = btrfs_sync_log(trans, root);
1222 			if (ret == 0)
1223 				ret = btrfs_end_transaction(trans, root);
1224 			else
1225 				ret = btrfs_commit_transaction(trans, root);
1226 		}
1227 	} else {
1228 		ret = btrfs_end_transaction(trans, root);
1229 	}
1230 	mutex_lock(&dentry->d_inode->i_mutex);
1231 out:
1232 	return ret > 0 ? -EIO : ret;
1233 }
1234 
1235 static const struct vm_operations_struct btrfs_file_vm_ops = {
1236 	.fault		= filemap_fault,
1237 	.page_mkwrite	= btrfs_page_mkwrite,
1238 };
1239 
1240 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1241 {
1242 	struct address_space *mapping = filp->f_mapping;
1243 
1244 	if (!mapping->a_ops->readpage)
1245 		return -ENOEXEC;
1246 
1247 	file_accessed(filp);
1248 	vma->vm_ops = &btrfs_file_vm_ops;
1249 	vma->vm_flags |= VM_CAN_NONLINEAR;
1250 
1251 	return 0;
1252 }
1253 
1254 static long btrfs_fallocate(struct file *file, int mode,
1255 			    loff_t offset, loff_t len)
1256 {
1257 	struct inode *inode = file->f_path.dentry->d_inode;
1258 	struct extent_state *cached_state = NULL;
1259 	u64 cur_offset;
1260 	u64 last_byte;
1261 	u64 alloc_start;
1262 	u64 alloc_end;
1263 	u64 alloc_hint = 0;
1264 	u64 locked_end;
1265 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1266 	struct extent_map *em;
1267 	int ret;
1268 
1269 	alloc_start = offset & ~mask;
1270 	alloc_end =  (offset + len + mask) & ~mask;
1271 
1272 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1273 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1274 		return -EOPNOTSUPP;
1275 
1276 	/*
1277 	 * wait for ordered IO before we have any locks.  We'll loop again
1278 	 * below with the locks held.
1279 	 */
1280 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1281 
1282 	mutex_lock(&inode->i_mutex);
1283 	ret = inode_newsize_ok(inode, alloc_end);
1284 	if (ret)
1285 		goto out;
1286 
1287 	if (alloc_start > inode->i_size) {
1288 		ret = btrfs_cont_expand(inode, alloc_start);
1289 		if (ret)
1290 			goto out;
1291 	}
1292 
1293 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1294 	if (ret)
1295 		goto out;
1296 
1297 	locked_end = alloc_end - 1;
1298 	while (1) {
1299 		struct btrfs_ordered_extent *ordered;
1300 
1301 		/* the extent lock is ordered inside the running
1302 		 * transaction
1303 		 */
1304 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1305 				 locked_end, 0, &cached_state, GFP_NOFS);
1306 		ordered = btrfs_lookup_first_ordered_extent(inode,
1307 							    alloc_end - 1);
1308 		if (ordered &&
1309 		    ordered->file_offset + ordered->len > alloc_start &&
1310 		    ordered->file_offset < alloc_end) {
1311 			btrfs_put_ordered_extent(ordered);
1312 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1313 					     alloc_start, locked_end,
1314 					     &cached_state, GFP_NOFS);
1315 			/*
1316 			 * we can't wait on the range with the transaction
1317 			 * running or with the extent lock held
1318 			 */
1319 			btrfs_wait_ordered_range(inode, alloc_start,
1320 						 alloc_end - alloc_start);
1321 		} else {
1322 			if (ordered)
1323 				btrfs_put_ordered_extent(ordered);
1324 			break;
1325 		}
1326 	}
1327 
1328 	cur_offset = alloc_start;
1329 	while (1) {
1330 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1331 				      alloc_end - cur_offset, 0);
1332 		BUG_ON(IS_ERR(em) || !em);
1333 		last_byte = min(extent_map_end(em), alloc_end);
1334 		last_byte = (last_byte + mask) & ~mask;
1335 		if (em->block_start == EXTENT_MAP_HOLE ||
1336 		    (cur_offset >= inode->i_size &&
1337 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1338 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1339 							last_byte - cur_offset,
1340 							1 << inode->i_blkbits,
1341 							offset + len,
1342 							&alloc_hint);
1343 			if (ret < 0) {
1344 				free_extent_map(em);
1345 				break;
1346 			}
1347 		}
1348 		free_extent_map(em);
1349 
1350 		cur_offset = last_byte;
1351 		if (cur_offset >= alloc_end) {
1352 			ret = 0;
1353 			break;
1354 		}
1355 	}
1356 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1357 			     &cached_state, GFP_NOFS);
1358 
1359 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1360 out:
1361 	mutex_unlock(&inode->i_mutex);
1362 	return ret;
1363 }
1364 
1365 const struct file_operations btrfs_file_operations = {
1366 	.llseek		= generic_file_llseek,
1367 	.read		= do_sync_read,
1368 	.write		= do_sync_write,
1369 	.aio_read       = generic_file_aio_read,
1370 	.splice_read	= generic_file_splice_read,
1371 	.aio_write	= btrfs_file_aio_write,
1372 	.mmap		= btrfs_file_mmap,
1373 	.open		= generic_file_open,
1374 	.release	= btrfs_release_file,
1375 	.fsync		= btrfs_sync_file,
1376 	.fallocate	= btrfs_fallocate,
1377 	.unlocked_ioctl	= btrfs_ioctl,
1378 #ifdef CONFIG_COMPAT
1379 	.compat_ioctl	= btrfs_ioctl,
1380 #endif
1381 };
1382